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Structure of the thesis

In this thesis, we study a class of instruments broadly inspired from natural Olfaction, namely
electronic noses. While our nose helps us to identify and describe an odorant, an electronic
nose aims at analyzing any volatile compound in the environment. Their main feature is the
use of several non-specific chemical sensors which allow them to be sensitive to a broad range
of different compounds. However, this non-specificity is also behind various Signal Processing
challenges. For instance, the instrument is always used in combination with Machine Learning
algorithms to differentiate between two compounds A and B. This is due to the fact that all
the non-specific sensors will likely respond positively to A or B so, classifying a future sample
is simply not a human task. In addition, in the presence of a gas mixture, the response of a
chemical sensor is influenced by all the compounds composing the mixture. The measurement
is affected in a non-trivial way by the individual response of each component and by their
concentration. Designing Source Separation methods can then help to identify and quantify
each compound from the measurement. Finally, chemical sensors are also prone to drift over
time, meaning that their response towards a compound A can change from a day d to a day
d + 1. In this case, the development of correction methods is compulsory to reuse what is
learnt during day d. All these challenges are addressed in this thesis with an optoelectronic
developed by Aryballe (France, Grenoble).

In Chapter 1, we first introduce the traditional techniques for analyzing volatile compounds.

Then, we define the concept of electronic noses by listing in particular the main challenges
and some of the existing technologies. We provide a short critical review of the literature
by pointing out some negative aspects. Afterwards, we introduce the optoelectronic nose
used in this thesis and provided by Aryballe. Some of the results already obtained with this
instrument are reviewed and we finally conclude by describing the different issues studied in
this thesis.

Chapter 2 is a small chapter gathering all the setups used. We introduce an automatic valve
and two robotic platforms designed and developed during the thesis.

In Chapter 3, we study how to relate the response of the instrument to some physico-chemical
parameters, such as concentration. We first describe a model of the response over time when
a pure compound is measured. In a second part, the model is validated using two different
real data sets. The parameters of the model are also evaluated as potential features for

xiii
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classification purpose. In the last part, we formulate a model of the response at equilibrium
when a gas mixture is measured. Some of the theoretical properties of this model are studied.
We also develop an algorithm in a Blind Source Separation framework and we validate it on
simulated data.

In Chapter 4, one of the main problems of electronic noses is studied, namely drift issue.
We first introduce the main causes and consequences of the drift. Then, we describe some
correction methods used in the literature by classifying them according to different scenarios.
Afterwards, we develop two correction methods which are based on a model. The main
feature of these two methods is that they do not require any label from the new measurement
sessions. We evaluate these methods on a real data set acquired over 9 months and affected
by drift. All the introduced methods are then compared and we show that the two proposed
algorithms perform fairly and compensate, at least partly, for the drift.

In Chapter 5, we show the stereoselectivity of the instrument for two pairs of enantiomers
(Carvone and Limonene). We first introduce the problem of differentiating two enantiomers
in analytical chemistry and the different existing methods to do that. Then, we propose
an experimental methodology to reliably evaluate the stereoselectivity of an electronic
nose. This methodology is applied to Aryballe’s eNose and we highlight some potential
confounds which could refute comparable studies. We finally deeply investigate the origin
of the stereoselectivity and we successfully isolate the chemical sensors responsible for the
discrimination.

In Chapter 6, we get the instrument out the lab by placing it on a robot. We first introduce
the robot olfaction field and its main challenges. Two of them are explored in this chapter:
classification and Source Separation. To that end, we design a real-time pipeline based
on a sparse linear model capable of both classifying and unmixing signals. We validate
the proposed algorithm on different data sets generated during the thesis: classification of
12 volatile compounds disseminated in the environment, unmixing of binary and ternary
mixtures, etc...

Chapter 7 summarizes all the results obtained during the thesis and discusses some future
prospects.
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“For people could close their eyes to greatness, to horrors, to beauty, and their ears to
melodies or deceiving words. But they could not escape scent. For scent was a brother of
breath. Together with breath it entered human beings, who could not defend themselves

against it, not if they wanted to live. And scent entered into their very core, went directly to
their hearts and decided for good and all between affection and contempt, disgust and lust,
love and hate. He who ruled scent ruled the hearts of men.”

Patrick Siiskind, Perfume, the Story of a Murderer".

In his book, Patrick Siiskind describes a man having a supernatural sense of smell. Jean
Baptiste Grenouille had the “ability to see right through paper, cloth, wood, and even through
brick walls and locked doors. Without ever entering the dormitory, he knew how many of her
wards - and which ones - were in there”. Unfortunately for him, this natural gift turned rapidly
into an obsession and this obsession into a crime when he decided to kill a woman (and many
others after her). This terrible act was motivated by an idea: capturing the fragrance escaping
from her body. This idea was motivated by a desire and this desire by an odor and this odor
by an odorant. But what is the pathway between the sensation and the initial odorant?

Let us start at the beginning. An odorant is simply a set of molecules which can be evaporated
in the air (or which are soluble in water for aquatic animals). These molecules must be
light enough to evaporate but can be really different in shape, size and structure. Through
respiration, these molecules are inhaled by the nose and meet the olfactory epithelium, a
small area (1-5 cm?) on the ceiling of the nasal cavity. When meeting the epithelium, the
molecules meet several millions of Olfactory Receptor Neurons (ORNs) and bind to some of
them. Each ORN, out of ~400 different types in humans, shows a cross-sensitivity towards
the molecules meaning that it can interact with several molecules and a single molecule can
interact with several ORNs [Mal+99]. If a molecule can bind to the ORN, then the neuron is
activated and converts this interaction into an electrical signal which is transmitted to the
brain. These messages are received by the olfactory bulb and the combination of activated
neurons is decoded by the brain which in turn translates the odorant into a known odor
[Mal+99]. In fact, regarding the decoding process, a lot of mysteries are still to be unraveled.
For instance, how many odorants can the brain discriminate? What is the relation between
the odorant and its odor? Is it only related to the physico-chemical properties of the odorant?
In this case, why can two enantiomers smell completely different (two enantiomers are almost
identical molecules, but we will come back to this notion in Chapter 5)? These questions are
still largely debated by researchers and there exists actually no theory giving full satisfaction
(see for instance the debate by interposed PNAS letters between Turin’s group and Block’s
group [Tur+15; Blo+15a], after the article of Block et al.[Blo+ 15b] about the vibrational
theory of olfaction). This thesis will... not try to answer them, not even a little bit.

!Translated from the German by John E. Woods.

Chapter 1 Introduction



No, this thesis is not about natural olfaction but artificial olfaction. Nature did wonders
to allow humans to be sensitive to surrounding odorants but how do humans to measure,
identify and quantify an odorant by instruments?

1.1 Traditional techniques for VOC analysis

The term “odorant” is in fact a bit misleading for artificial olfaction since it could be uninten-
tionally related to the perception (“odor”). In the following, we prefer to use the term VOC,
for Volatile Organic Compound (a commonly used term), for describing a molecule present
in an odorant. Technically, a VOC is a compound containing carbon which easily evaporates.
Since an odorant is composed of different VOCs, we refer to odorant as gas mixture (it is
also sometimes called a multicomponent gas). Odorant and odor will be kept only in the case
where there is no ambiguity (as in the next section).

1.1.1 Dog’s snout and human nose as tools

There is still no instrument capable of what a human nose can do (and even less what a
dog’s snout can do). Therefore, human nose is still a widely used technique in food and
environmental industries. In practice, it consists in using sensory panelists who fill out some
questionaries about the quality of food, perfumes, cosmetics or chemical products [CLH12].
Since we do not know actually how to relate the odorant” to the odor, the use of human
panels is still crucial regarding for instance the hedonic (like/dislike) property of an odorant.

Dogs show a larger diversity of olfactory receptors (~1000, [AYO5]) and a much larger surface
area of olfactory epithelium (depending on the dog breed, [Qui+12]) than humans. They
have been used in a broad variety of scent-related tasks for hundreds of years. Nowadays,
they are routinely used to detect explosives or drugs but are also deployed in the field to
search for victims in disaster areas [GT03]. Recently, several papers have drawn attention to
the use of dogs in human medicine (for instance, cancer or diabetes detection) [MM10]. Due
to their incredible sense of smell and to their capacity to be trained, dogs have still a bright
future.

These techniques are very useful, and will probably still be for a long time, since technology is
still far from natural systems (e.g. ability to work in everyday life conditions, fast measurement,
link between odorant and feelings, etc...). However, both humans and dogs, can suffer from
fatigue and subjectivity, and be affected by physical and mental conditions [Pea+06]. For
instance, the demonstration of dogs’ ability, especially for medical purposes, are not free from
experimental confounds (e.g. dogs can detect tiny changes of human body language and can
then interpret them as clues) [JHFT13; JHFT17]. For humans, the odor of an odorant suffers
from inter-individual variations and depends on culture and gender [Fer+13]. Besides, both
humans and dogs require intensive and expensive training and cannot tell exactly the amount
of an odorant.

2In this subsection, we kept “odorant” and “odor” since the subsection directly relates to natural olfaction.

1.1 Traditional techniques for VOC analysis
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To avoid the problems of natural systems and to provide a more objective measurement of an
odorant, analytical instruments have been developed. In the next section, we detail the gold
standard: Gas Chromatography - Mass Spectrometer.

1.1.2 Gas Chromatography - Mass Spectrometer
Gas Chromatography (GC) is the gold stan-

dard for separating a gas mixture. The
stationary phase

main principle of GC relies on the use of gas capillary column \_
mixture

S

eter

trom

a column (a tube). The most used type of

Mas

~t
1

o

Spec

columns is the capillary column. It is a long
tube (30-60 m, so it is a rolled-up tube) in

stainless steel whose internal surface is cov-

Ao 0%0 —— i
ered with a molecule, called the stationary 2 2 —
. L o t=t; ||
phase. The gas mixture is injected in this
column through a carrying gas (usually He- . ’_
lium), called the mobile phase. All the VOCs Arso 02?%)
t=t

composing the gas mixture will have differ-

ent affinities with the mobile and stationary

ture composed of A and B is injected through

mixture is composed of two VOCs, say A and a carrying gas (mobile phase) in a capillary
B, if A has more affinity with the stationary column whose internal surface is covered with

. . . a molecule (stationary phase). A and B will
phase than B, then A will spend more time in interact differently with the mobile and sta-
the column than B (interacting takes time). tionary phases. Here, B interacts less so it

) . 1 first the col .
So B will leave the column first, followed caves st the cotimn

by A. We say that the retention time of B is
lower than the retention time of A. More details about GC can be found in [MMS19]. A
simplified representation of the principle of GC is reported in Figure 1.1.

In the output of a GC, the components of the gas mixture have been physically separated
using their retention time. However, they are not yet detected, or identified, or quantified. In
other words, we do not know when they left the column, which VOC and which amount of
VOC left the column. For that, we need another instrument and there exist several different

devices, such as Flame Ionization Detector or Mass Spectrometer.

The principle of GC is simple compared to Mass Spectrometer (MS) which is a bit more
technical. MS is a destructive technique which performs like a scale: it identifies molecules
using their mass. Its principle relies on the separation of electrically charged molecules as a
function of the ratio ! (m the mass, z the charge). MS is composed of 3 steps: ionization,
mass separation, detection. Each one of these steps can be performed by several different
instruments. Detailing each instrument can make things more complicated whereas the
principle remains the same. So we detail only one way for performing each one of the 3 steps
(see [DAO6] for a comparison of methods). The first step is ionization. During ionization, the
molecule, say B since it left first the GC, is bombarded with free electrons (this technique

Chapter 1 Introduction
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Fig. 1.2.: Principle of Mass spectrometer, using Electron Ionization and Time Of Flight. The compound B is
fragmented by being bombarded with free electrons. The fragments are then sorted by their mass by
being accelerated in a field-free environment. The lighter the fragment is, the lower the time to travel
a certain distance is. Therefore, the lightest fragment hits the detector first, followed by the second
lightest, etc... At the end, we obtain the mass spectrum of B, characteristic of the compound.

is called Electron Ionization) causing the fragmentation of B into charged molecules (ions).
The way B fragments into smaller molecules is reproducible and characteristic of B (provided
that the experimental parameters remain the same). Since the resulting pieces depend on
B, a way to obtain a pattern representing B is to sort the pieces by their mass: it is the mass
spectrum of B.

Let us illustrate the mass spectrum by means of analogy, an analogy similar to the one
proposed by [Mab88]. Assume that we want to discriminate two toys that we cannot see, say
a doll and a toy car. Assume that we can break each toy in a reproducible manner: a doll
will break into pieces such as arms, legs and head, and a toy car into tires, engine and doors.
Then, we weigh each piece and draw a chart: in z-axis the weight in grams and in y-axis
the number of pieces having this weight. For instance, the toy car will have a 4 high peak at
100g corresponding to the 4 tires and the doll will have a 2 high peak at 50g corresponding
to the arms. At the end, we obtain the mass spectra of the doll and the toy car. They will
look different and can be compared to a data base containing a lot of spectra of toys. Mass
spectrometer will do the same but at a molecular level.

A way to sort the fragments of B by their mass is to use the Time Of Flight. Time Of Flight
relies on the principle that any particule accelerated in a field-free environment (i.e. no
friction) will take a time ¢ to travel a distance d which is directly proportional to the ratio
. the lighter the molecule is, the lower ¢ is. So, by applying a voltage to the pieces of the
fragmented molecule B, each piece is accelerated towards a detector (detection step) which
counts the number of ions hitting it (generally through a current intensity). Each piece will
take some time to reach the detector, so we have a spectrum over time. Since the time of
flight is directly proportional to ", the spectrum over time is simply converted into the mass
spectrum (by knowing the distance d and the voltage).

1.1 Traditional techniques for VOC analysis
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By comparing this spectrum with a large data base of spectra, we identify the VOC as B.
One of the advantages of MS and one of the reasons to use it with GC is clearly its time of
acquisition, acquiring a mass spectrum requires only ~200 ms. A simplified representation of
MS, using Electron Ionization and Time Of Flight, is reported in Figure 1.2.

The coupling of GC and MS is called GC-MS. The two instruments are quite complementary:
GC allows to separate the components of a gas mixture over time while MS identifies and
quantifies each VOC leaving at any time GC.

The result of a GC-MS is called a chro-
matogram: it represents the amount of

Intensity

molecules measured by the detector over

Intensity

time and looks generally as a series of peaks

'm
Mass spectrum of B *

In fact, each point corresponds to a mass Mass spectrum of A *
spectrum which has been summed. The in- .
formation about the identity of the VOC at

tl / t2 t3 \ t

time ¢ is contained in this spectrum while
Concentration of B Concentration of A

(each VOC leaving the column one-by-one).

Abundancy

o

the integration of the peak tells us about the

concentration of the VOC in the gas mixture.
Fig. 1.3.: Result of a GC-MS: a chromatogram. It repre-

sents the amount of molecules measured by
ported in Figure 1.3. the detector over time. Each time point is a
mass spectrum, enabling the VOC identifica-
tion.

A representation of a chromatogram is re-

GC-MS is the gold standard for analyzing pre-
cisely and reliably a gas mixture with high-
sensitivity and high-selectivity. In other words, GC-MS is able to detect small changes of VOC
concentration (high-sensitivity) and can easily detect a given VOC in presence of interferent
VOCs (high-selectivity). However, it suffers from several drawbacks. GC-MS is clearly not
portable, is quite expensive, works in quite controlled conditions and requires qualified
personnel to be used. All these reasons restrict the use of these instruments to laboratories in

analytical chemistry or large companies.

1.1.83 Gas Chromatography - Olfactometry

Another method is also regularly used in odorant analysis: Gas Chromatography - Olfactom-
etry (GC-O). It combines the separation power of GC with human perception. Instead of
using a detector such as MS, a human nose inhales the components of the odorant leaving
the GC. It generally consists in replying to questions such as detection of an odor, duration
of odor activity, quality or intensity of the perceived odor [DED06]. The idea is then to
correlate sensory responses with volatile chemicals. For instance, it helps to understand which
molecules are responsible for unpleasant odors in a complex odorant. Th result of a GC-O is
reported in Figure 1.4.

Chapter 1 Introduction



Flame Ionization Detector Photolonization Detector

— O
= electrodes electrodes
2 \ '
= © ©
= ® b
3 ) ® ®
3 fruity (\ o (\
Aionizes Aionizes
10 floral
5 «
Hydrogen o UVliight . o
flame °
0 t t ty t S i I o F
o o
Fig. 1.4.: Example of a result from GC-O. A human Fig. 1.5.: Principle of Flame Ionization Detector (FID)
nose inhales the components of the odor- and Photolonization Detector (PID). The
ant leaving the GC, giving information compound is ionized using either a Hydro-
about the separated VOCs (intensity, per- gen flame (FID) or UV light (PID). The ions
ceived odor, etc...). are captured by the electrodes and the gen-
erated current is proportional to VOC con-
centration.

1.1.4 lonization-based detectors

There are other types of detectors based on ionization: Flame Ionization Detector (FID)
[MWD58] and Photolonization Detector (PID) [RAE14]. For FID, the VOC is ionized by
using a flame generated by the combustion of a Hydrogen flow. Then, the formed ions go to
two electrodes and generate a current. This current is proportional to VOC concentration.
FID is a destructive method, so the VOC cannot be reused for further analyses. For PID, the
principle remains the same but the ionization is performed using a light source with high-
energy photons (generally UV light), which allows to reuse partly the VOC. Both techniques
are not selective so they cannot identify the VOC but they can quantify almost any organic
compound. For this reason, FID and PID are often used as a complementary instrument to
GC.

1.2 Electronic noses

The tools described above for analyzing a VOC suffer from some drawbacks. Natural systems
are expensive to train and employ, lack objectivity and are prone to fatigue. GC-MS is quite
expensive, cannot be used on a large scale or for field monitoring and requires qualified
personnel. FID and PID do not allow the identification of the VOC. In comparison, another
kind of tools is particularly appealing for its portability, low cost, easy-to-use and its ability
to identify a broad variety of VOCs. This class of instruments takes inspiration from the
mammalian olfactory system and is usually referred to as electronic nose or artificial nose.
This thesis focuses on this class of instruments.

1.2.1 A bio-inspired concept

An electronic nose (eNose) takes from the natural olfaction only the main steps which are
well-known [PD82; GB94] and which have been detailed earlier in Introduction. First, the
transport of the VOC by respiration to the olfactory epithelium is simply replaced by a pump.

1.2 Electronic noses
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Fig. 1.6.: An electronic nose takes inspiration from the main steps of natural olfaction.

Instead of carrying the VOC to the epithelium, the pump carries it to an array of several
different chemical sensors. A chemical sensor is mainly composed of a sensing material
capable of interacting with the VOC, so it plays the role of an ORN [Boe14]. Chemical sensors
used by eNoses are mainly non-specific and can interact reversibly with a broad range of
molecules. The chemical information resulting from the interaction between the VOC and
the chemical sensor is then translated into exploitable information: this is the transduction
method. The transduction method varies from one technology to another but the nature
of the information can be electrical, optical, frequency etc... Instead of having a brain for
processing the data coming from the ORNSs, eNose relies on Signal Processing (including
filtering, feature extraction, machine learning, unmixing, ...) for extracting information
aiming at identifying and/or quantifying VOCs. Figure 1.6 summarizes the comparison
between artificial olfaction with an electronic nose and natural olfaction.

1.2.2 General response curve

Whatever the nature of the response (electrical, optical, etc...), the response of each chemical
sensor is a time series displaying the interaction over time between the chemical sensor and
the VOC.

This time series is usually obtained using a method called “3-phase sampling”. First, the
chemical sensor is exposed to a reference gas, usually the ambient air (but it could be a
more controlled reference), during a certain amount of time: this is the baseline acquisition.
Second, the VOC (or the gas mixture) is injected, either using a gas bottle or the headspace®
of a vial: this is the VOC injection. During VOC injection, chemical interaction between
the VOC and the sensing material occurs. This interaction is not an abrupt phase transition,
like activated/not activated or 0/1 states. The interaction is really time-related: the longer
the injection is, the greater the response. However, the response does not go to infinity if
we inject the VOC infinitely: the response ends up stabilizing around a steady-state value.
This steady-state value reflects the chemical equilibrium of the chemical reaction which is
measured. In fact, the chemical reaction is always reversible, so whatever the nature of the

3The headspace corresponds to the gas phase over a liquid evaporating in a sealed vial.
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Fig. 1.7.: Data from an electronic nose, for two VOCs (A and B) and two chemical sensors (yellow and blue
curves). A classical way to acquire a measurement is to follow a 3-phase procedure: baseline (e.g.
response to air), VOC injection and recovery (e.g. reinject air and stop VOC injection). The result is
a time series for each chemical sensor highlighting the interaction between the VOC and the sensing
material. We generally summarize the time series by extracting one or two values (for instance, the
response at equilibrium) to build a signature of the VOC. Ideally, two different VOCs have different
signatures, so we can discriminate them and tell which one is A or B.

reaction, there are two possible events: it can go from one side to the other and vice-versa.
When the response reaches the steady-state value, it means that these two events became sort
of equiprobable, causing the response to no longer change. The time that the chemical sensor
needs to reach equilibrium is often referred as the response time. This response time can
vary greatly from one technology to another (from several seconds to several minutes). Then
comes the third phase: the recovery. During recovery phase, the VOC injection is stopped
and the reference gas is again injected. Since there is no longer VOC supply, the chemical
reaction can then only go from one side to the other and the response eventually comes back
to its initial value. The time the chemical sensor needs to come back to the initial value is
called the recovery time, and this time varies also from one technology to another. In Figure
1.7, we report the classical curves obtained after a 3-phase sampling.

The time series obtained result from the reaction between the VOC and the array of chemical
sensors. The nature of the reaction (e.g. binding, reduction-oxidation, ...) depends on the
technology used. Whatever the nature of the reaction, the chemical parameters driving the
reaction is both dependent on the VOC and on the chemical sensor. So, different chemical
sensors will lead to different chemical parameters and thus different chemical reactions (but
of the same nature). Alone, the use of a chemical sensor is limited, however, several chemical
sensors carry different information about the VOC due to their different affinity. We say
that the eNose creates a chemical “signature” of the VOC. A common step to extract this
signature from the time series of the chemical sensors is to extract only the steady-state value
of each time series: this is what the literature usually calls the signature. The extraction
of the signature from the time series is therefore just a feature extraction step, and other
features can obviously be used (in particular, dynamics parameters [Yan+15]). The signature

1.2 Electronic noses
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can be seen as a vector living in a space of dimension the number of chemical sensors, and
summarizing the chemical interactions. This signature is dependent on the VOC but also
on its concentration and many other parameters such as humidity, temperature, age of the
Sensors,...

Two different compounds, say A and B, lead to different chemical reactions with the sensor
array. Therefore, the time series will be also different and likewise for the signatures. In
practice, several measurements are carried out with these two VOCs and signatures are
extracted from all these experiments in order to build a data base. Machine Learning
algorithms are then trained using this data base in order to classify future samples as A or
B. Regressions can also be performed in order to estimate their concentration, based on
calibrating samples. Figure 1.7 reports the extraction of the signatures from the time series of
an eNose-based system.

1.2.3 Why non-specific sensors?
To understand the use of non-specific sensors for eNoses, it helps to understand the properties
that a chemical sensor must, at least partially, observe [BS10]:

* Sensitivity: change of response per VOC concentration unit.

e Limit of detection: lowest concentration of the VOC that can be detected (related to
sensitivity).

* Selectivity: characteristic of the sensor to respond to a given VOC in the presence of
interferent VOCs.

* Stability: reproducibibility of the response over time.

* Response time: time to reach the steady-state value, starting from the reference value.

* Recovery time: time to return to the reference value after an injection.

* Reversibility: the sensing material returns after a measurement to its initial condition.

* Dynamic range: range of the VOC concentration between the limit of detection and
the highest possible concentration.

An ideal chemical sensor would be highly-selective and highly-sensitive with a low limit of
detection but large dynamic range [HGOO08]. In addition, it would have fast response and
recovery times and would show a perfect reversibility [HGOO08]. Finally, an ideal chemical
sensor would also be stable over a long period of time [HGOO08].

Unfortunately, a chemical sensor cannot fill all these requirements, so an ideal chemical sensor
does not exist [BS10]. In fact, some of these properties impose contradictory constraints.
For instance, it is possible to design highly-selective and highly-sensitive chemical sensors
towards a targeted VOC but these properties impose strong interactions between the VOC
and the sensing material. In this way, the sensing material will not be sensitive to any other
VOCs which could act as interferents in the response. However, these strong interactions will
generally prevent reversibility, leading to a short lifetime, a slow recovery time and a lack of
stability over long operation time [HGOO08]. In fact, reversibility implies weak interactions
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but weak interactions cannot lead to high-selectivity. Consequently, chemical sensors will
satisfy only few of these properties depending on their type and on the application.

For eNoses, non-specific sensors are used to ensure reversibility but at the cost of a partial
selectivity and of a cross-sensitivity to other VOCs than the VOC of interest. The combination
of several sensors can then help to cope with these drawbacks.

1.2.4 Existing technologies

The field of eNoses is a 40-year-old field, dating back to the paper of K. Persaud and G. Dodd
[PD82]. Ever since then, several technologies have been investigated to be used as part of an
eNose system. In this section, we detail the main technologies that can be classified according
to the nature of the physical change caused by the chemical interaction: conductivity, mass,
optical properties. We also mention the commercial availibility of the technology.

Conductivity-based sensors. With conductivity-based sensors, the interaction between the
sensing material and the VOC leads to a change in resistance.

The most used kind of conductivity sensors

is undubitably Metal Oxide Semiconductor Baseline VOC injection
Air Air Reducing VOC
sensors (MOS or MOX). MOS sensors are ! ® &
. L . )
based on a reduction-oxidation reaction be- oxygen atoms Oxygen atoms ®
. . ionize
tween the VOC and the sensing material, a adsorb U @<O ,
reaction
metal oxide (combination of a metal with |eeeeeeed 8 88 Y
Reducti dati metal oxide © o€
oxygen atoms). Reduction-oxidation reac- | |jeater conductivity
tions are based on electrons transfer: in a fncreases
] ) T<150 °C T>160 °C T>160 °C
reduction reaction, the reactent takes one

or several electrons whereas in an oxidation

Fig. 1.8.: Working principle of a MOS-based chemical

sensor (n-type with a reducing VOC). First,
oxygen atoms adsorb on the metal oxide at
room conditions. Then, the metal oxide is
heated causing the ionization of oxygen atoms.
Finally, when a reducing VOC is injected, some
oxygen atoms are captured by the VOC caus-
ing the release of their electron into the sur-
face, thus increasing the conductivity.

reaction, the reactent loses one or several
electrons. A VOC is said to be reducing if
it can give one or several electrons to a re-
actent, and oxidizing if it can take one or
several electrons. There are two types of
semiconductors: n-type (SnOs, Zn0, ...) re-
acting mainly with reducing gases (CHy, CO, ...) and p-type (CuO, NiO, ...) reacting mainly
with oxidizing gases (O2, NOo, ...). n-type sensors are often preferred for their stability
[Pea+06] so we detail only the working principle of n-type sensors. At room conditions,
oxygen atoms present in the air are naturally adsorbed* on the surface of the metal oxide,
forming a layer. When the metal oxide is heated at a high temperature (>160°C), this layer
of oxygen atoms ionizes, forming a layer of oxygen ions. When a reducing VOC is carried over
the sensing surface, the VOC reacts with the adsorbed oxygen ions present at the surface. This

“Adsorption # Absorption. Adsorption is a surface phenomenon: the molecules (or ions, atoms) adhere to the
surface of an adsorbent. Absorption is an assimilation phenomenon: the molecules enter the volume (the
bulk) of another substance (the absorbent).
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VOC gains an oxygen and releases the electron to the surface: the number of free electrons
increases. This increase in the number of free electrons increases the conductivity of the sens-
ing material which results in a decrease of the resistance. If the VOC is rather oxydizing, the
reaction is inversed and conductivity of the sensing material decreases (resistance increases).
For a p-type sensor, the mechanism is similar but of opposite sign [Ste78; Pea+06]. Figure 1.8
summarizes the working principle of a MOS-based chemical sensor and a good explanatory
video can be found on the website of Figaro® company (Japan). This type of sensors has been
the first chemical sensors used for an eNose [PD82] and several companies have been created
since then (e.g. Figaro®, Alpha MOS").

Another kind of conductivity-based sensors is Conducting Polymers (CP). As the name
suggests, CP is a compound which can conduct electricity. A polymer is a long chain formed
by the repetition of a molecule, called a monomer. When the polymer adsorbs some VOCs, the
adsorption changes its conducting property and this change can be measured as a resistance
change. Several polymers have been studied, different polymers leading sometimes to
different processes [Ars+04], in particular polypyrrole-based composites and carbon black
based composites. As for MOS-based sensors, the use of CPs in an eNose has been intensively
studied and CPs are currently used in the eNose of Sensigent’ company.

Piezoelectric sensors. Piezoelectric materials are materials which generate electricity in
response to a mechanical stress and can be mechanically stimulated in response to an electrical
field. For this kind of sensor, adsorption of the VOC on the sensing material leads to a change
of mass which is measured by a shift in resonant frequency.

An example of piezoelectric sensors is Quartz Crystal Microbalance (QCM) sensors. Quartz
is a piezoelectric material composed of silicon dioxide (SiO2) which can oscillate at its
resonant frequency (10-30 MHz) when it is exposed to an electrical field [SBE98]. In the
case of QCM, this electrical field is generated by applying an electric potential by means of
two electrodes placed on both sides of a disc-shaped quartz crystal. The quartz is coated
with a sensing material on which VOC can adsorb. The adsorption of the VOC on the sensing
material results in a change of mass which in turn leads to a change of the resonant frequency
[Ars+04]. Figure 1.9 reports the working principle of a QCM-based sensor.

Surface Acoustic Wave (SAW) sensors work according to the same principle. They use
a plate of piezoelectric material (ZnO or lithium niobate) and interdigitated electrodes
(i.e. comb-like electrodes which are interlocked) are put at two ends. In between the
electrodes, the piezoelectric material is covered with a sensing material. From one side,
a set of electrodes excites the piezoelectric material with an electrical field, resulting in a
surface wave propagating along the piezoelectric material including the sensing material
and reaching the other side. On the other side, the other set of electrodes simply converts

Shttp://www.figarosensor.com/movie/ (March 2, 2020).
Shttps://www.alpha-mos.com/ (March 2, 2020).
"https://www.sensigent.com (March 2, 2020).
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the mechanical stress (due to the acoustic wave generated by the first electrodes) into an
electrical measurement. Again, the adsorption of a VOC on the sensing material causes a
frequency shift of the surface wave [Pea+06].

Optical sensors. The interaction between the VOC and the sensing material can sometimes
lead to a change in optical properties. One of the main advantages of this transduction
method compared to the previous ones is that the increase in the number of sensing materials
does not make the architecture of the system more complex.

Colorimetric sensors use a change in color to measure chemical interaction [RS00]. For that,
it consists in using chemically responsive dyes (e.g. metalloporphyrins). When the VOC binds
to one of these dyes, it changes the absorbance spectrum of the dye. A simple RGB camera
is then used and a color change reports the interaction. One of the most advanced works
with colorimetric sensors is from Suslick’s group [RS00], which resulted in a commercial
eNose sold by iSense® company (United States). Figure 1.10 reports the working principle of
a colorimetric sensor.

Another category of sensors based on optical methods are Surface Plasmon Resonance
(SPR) based sensors. This class of instruments will be introduced in the next section. In fact,
the electronic nose used in this thesis is based on SPR imaging.

To conclude, there exists a lot of different technologies and more are detailed in several
reviews [Alb+00; Ars+04; RBWO08; Lak+14]. Sometimes, a comparison table is reported
by the authors of the reviews. In fact, there exists no study benchmarking all the available
technologies of electronic noses for a given application or a given set of VOCs. So, comparison
is limited since it can only be done by comparing different studies of different authors using
different VOCs with different methodologies and different aims. To be clearer, the comparison
could be done if we only compare the size, the cost or the stability of the final device. However,

8h'c‘cp://isensesystems .com/ (March 2, 2020).
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a comparison of sensitivity, response time, limit of detection or selectivity would depend on
the targeted VOCs.

1.2.5 Challenges

Whatever the technology used, several challenges for Signal Processing result from the use of
non-specific chemical sensors by an electronic nose.

An eNose has basically two goals: identification and quantification. However, in comparison
to highly-specific chemical sensors, the two tasks are not straightforward at all. In fact, highly-
specific sensors respond theoretically only to one VOC whatever the other VOCs present at the
time of the measurement. If it reacts, it means that the VOC is present [Boe14] and it is over
for the identification part. For quantification, this kind of sensors are often made in order to
respond linearly over a range of concentration which is as large as possible. So, quantification
is also direct if we have some samples for which we know exactly the concentration.

For non-specific sensors, it is not that simple, even if the measured VOC is pure. If the VOC is
pure, it is unlikely that only one chemical sensor responds while the others remain at zero.
Due to the non-specificity of each chemical sensor, a large part of chemical sensors, if not all,
can respond positively to the VOC. So, the identification is no longer straightforward since all
the chemical sensors would also respond to another VOC.

Let us review all the issues step-by-step. Raw data is a collection of P time series (P the
number of chemical sensors), and the first issue is about extracting one or two values from
each time series: it refers to feature extraction (e.g. which information will summarize the
time series?). Recall that each chemical sensor reacts with the VOC depending on its affinity
with it, and each chemical sensor is expected to have a different affinity, so the variations
in affinity across chemical sensors are expected to be specific to the VOC, making possible
its identification. However, two signatures can look alike, due to tiny differences in affinity.
Even with stronger differences, comparing by sight two vectors of high dimension (several
dozens), is not an easy human task. So, it calls for Machine Learning algorithms, and more
precisely classification algorithms (clustering could also be considered, but since we are
more interested in identifying the VOC rather than in finding groups in data, clustering is
of little interest). Any classification algorithm requires a training set, relating signatures to
labels (VOC identity), so, any task starts by carrying a lot of experiments measuring a lot
of times several VOCs. Ideally, these experiments are carried out under real-life conditions.
Under such conditions, the VOC concentration cannot be reliably controlled. The chemical
reactions are dependent on the VOC concentration, so the time series are also dependent
on the VOC concentration and the same holds for the resulting signature. It could cause
problems for identification. If a classifier learns to differentiate A from B in a given range of
concentration, it is unlikely that it will generalize out of the range since the signatures will
not be the same. So normalization of the signature is often first applied to remove variations
in concentration in the signature. After normalization, ideally, only the variations in affinity
remain. Once the signatures have been normalized, dimensionality reduction techniques
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Fig. 1.11.: Classification and Source Separation issues with an eNose (non-specific sensors) compared to the
use of highly-specific sensors. Signatures are obtained after a feature extraction step from the time
series and are represented as histograms (each bar corresponds to a response of one chemical sensor
to the VOC, characterizing the interaction between the VOC and the sensing material). First row
corresponds to signatures obtained with highly-specific sensors while second row corresponds to
signatures obtained with non-specific sensors (used by an eNose). Figures on the left panel illustrates
the classification problem (for two pure VOCs A and B). For highly-specific sensors, the task is
straightforward while the use of non-specific sensors calls for Machine Learning algorithms. Figures
on the right panel illustrates the Source Separation issue for two different mixtures of A and B (50% A
& 50% B; 75% A & 25% B). Again, the task is straightforward for highly-specific sensors: the amplitude
of each individual sensor gives us the concentration of A or B in the mixture. With non-specific
sensors, estimating concentrations is not trivial and calls for Source Separation algorithms.

are used to, as the name suggests, reduce the number of dimensions (at least equal to the
number of chemical sensors). Then, a chosen classifier is trained from the training set and
tries to predict the labels of future samples. If the pure VOC has been identified, modeling
and regression (linear or not) are used to estimate its concentration.

However, if the VOC is not pure but a mixture of several different VOCs, all the previous steps
become even harder. Once again, for highly-specific sensors, that would not be so hard: if
two VOCs, say A and B, are mixing and are injected in the instrument, only the two chemical
sensors related to A and B will respond positively, and again, it is over. For non-specific
sensors, each chemical sensor can presumably interact with the two VOCs at the same time,
due to their cross-sensitivity. So, the response of the chemical sensor will not depend only on
A or on B but on both. In fact, the instrument will generate a signature for the mixture which
is not directly the signature of A or the signature of B but another signature which is related
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to A and B in a non-trivial way, depending on the proportion of each VOC in the mixture. In
the literature, some authors deal with this case as another classification task where a classifier
learns different proportion of A and B (10% of A & 90% of B, 50% of A & 50% of B, etc... See
for instance [BOD12; Ber+12]). In the same vein, other authors propose a learning approach:
we call this approach mixtures learning. The idea is to generate plenty of mixtures of A
and B at different known concentrations. Then, a learning algorithm (generally a black-box
algorithm based on neural networks) tries to learn the model relating the signatures to the
concentrations (see for instance [Fon+15]). The fundamental issue of mixtures learning is
that it requires the generation of the mixtures to learn the model: regarding experimental
practicability, it becomes rapidly unmanageable if we assume more than two VOCs. Mixtures
learning will be more discussed in Chapter 6. In fact, gas mixtures naturally call for Source
Separation methods (sometimes called Unmixing). Figure 1.11 illustrates the issues related
to Source Separation and classification.

The previous paragraphs neglect some drawbacks of chemical sensors, which can be detrimen-
tal for all the challenges described above. First, chemical sensors are sensitive to environmen-
tal conditions. This sensitivity can vary from one technology to another but temperature and
humidity will often play key roles in the response. Almost any chemical reaction is affected
by the temperature, and humidity acts as an interferent in the measurement. In fact, most
technologies will respond positively to water vapour. Second, even if these environmental
conditions are controlled or their contribution to the response removed, any instrument based
on chemical reactions will drift over time. Drift is a dynamical and time-related process which
affects the reproducibility and repeatability of the instrument. Concretely, the signature of a
VOC, even in the same environmental conditions, will change over time, causing a serious
and obvious problem for classification: the classifier will not generalize to future samples if
too much time has elapsed since the training set was acquired [Hol+97]. Drift can be caused,
e.g., by sensor ageing or by irreversible binding reactions on the sensing material. It is the
topic of Chapter 4 in this thesis. Note that drift also occurs in well-established analytical
instruments, such as GC-MS [RP+18].

To sum up, an eNose is challenging regarding several topics related to Signal Processing:
classification (feature extraction, dimensionality reduction), modeling, quantification, source
separation and drift.

1.2.6 A short critical review of the literature

A specific literature will be introduced chapter-by-chapter, focusing on the themes of each
chapter. eNose methodology has been criticized over the years by several authors [Mie96;
MMLOO; Boel4; Marl4]. These criticisms concern issues related to statistical reliability,
experimental confounds and even semantics [Boel4]. In this section, we point some critical
aspects out, especially data-related aspects.
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A small number of sensors. The number of chemical sensors used by most studies in the
field is small, in the range of a dozen’ (counting the replicas). If we compare to the human
nose, having several millions of ORNs out of ~400 different types, most of the electronic
noses are far behind.

To illustrate this small number, Table 1.1

reports the number of sensors used by Ref. Technology ~ Number of sensors
the authors of the top 10 of the most [Fon+16] MOS 8 (4)
cited articles in the past 5 years. Table [Sai+18] MOS 6 (6)
1.1 highlights a typical number of sen- [Khu+17]  Colorimetric 12(12)
sors between 6 and 12 and also demon- [LGW17] QcM 88
. . . [NC+17] MOS 6 (6)
strates that the literature is dominated [HB16a] MOS 8 (8)
by one technology: MOS-based sensors. [Jia+17] MOS 10 (10)
[MGJ17] MOS 10 (8)
The question “Are more sensors better?” [HB16b] MOS 7(7)

(quoted from A. Hierlemann and R. Tab. 1.1.: Number of sensors used by the top 10 (on February
25, 2020) of the most cited articles in the past 5
years according to the Scopus data base, by limiting
versial question in the eNose field. First, to Sensors and Sensors and Actuators B: Chemical
journals. In parentheses is the actual number of
sensors (removing the replicas).

Gutierrez-Osuna [HGOO8]) is a contro-

all authors agree with the fact that the
use of redundant chemical sensors or
replicas (i.e. using the same sensing ma-
terial) is beneficial. It is well known in
the Signal Processing community that, averaging the outputs of J redundant sensors allows
the variance of the noise to be reduced by a factor J compared to an individual sensor

2
(02er = U}‘d). However, there is a debate regarding the interest of increasing the diversity of

the sensor array with different sensing materials.

On the one side, multiple authors claim that such large sensor array could have many disad-
vantages. First, for a lot of technologies, increasing the number of sensors can considerably
increase the complexity of the system and its cost (e.g. the size, the power consumption in
case of MOS-based systems, ...) [HGOO08]. In this case, it may be more reasonable to think
about an optimal number of sensing materials rather than always increase this number. But
this “optimal” number of sensors is a quite difficult question in practice. Second, increasing
the number of sensors increases the dimensionality of the problem, leading to the so-called
curse of dimensionality'®. For instance, increasing the dimensionality while keeping the

“There are some exceptions such as the eNose from iSense® company which is, to our knowledge, the actual
largest commercial eNose since it can board up to 120 colorimetric chemical sensors.

19The curse of dimensionality was introduced by R. E. Bellman [Bel57; Bel61]. A famous example of the curse of
dimensionality is a problem related to sampling. Suppose that one wants to sample a space with a spacing
of 0.01. In a 1-dimensional space and limiting to the unit interval ([0, 1]), it corresponds to 100 samples
which is quite reasonable. However, in a 10-dimensional space, with the same spacing and limiting to the
unit interval for each dimension, a simple calculation leads to (102)10 = 10%° samples, which is much less
reasonable. This example illustrates the exponential increase in volume due to an increase in the number of
dimensions. Another famous example, introduced by K. Beyer et al. [Bey+99], concerns a problem related
to distances between samples. As dimensionality increases, the distance between a sample and its closest
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number of samples constant can decrease classification performance [Hug68]. Third, adding
sensing materials does not mean that these sensing materials are relevant for the sensing tasks
and can even be sensitive to irrelevant interferents due to the non-specificity of the sensors
[JRP15]. They can even add noisy measurements leading to a decrease in performance
[Pea+06]. Finally, small array of sensors can already discriminate a significant amount of
different compounds [SP02].

On the other side, authors claim that the more, the better. For several authors, the idea of
a small array of sensors as being sufficient can hold only in simplistic scenarios where the
environment is controlled and pure VOCs at known and fixed concentrations are discriminated
[Alb+00]. In practical applications, VOCs of interest are rarely pure, often present in mixtures
and polluted by interferents [Alb+00]. The increase in the number of sensors in an eNose
is then no longer seen as a drawback but as a chance to disambiguate similar signatures
[Alb+00] while potentially reaching the performance of its biological counterpart [Bec+10].
Fears related to the curse of the dimensionality are of course justified. However, by coupling
this increase of diversity with appropriate dimensionality reduction methods, the drawbacks
of the curse of dimensionality can be mitigated: noisy sensors can be identified, sensors
irrelevant to the sensing task can be discarded and informative sensors can be selected. In
fact, many fields have to naturally deal with high-dimensional data and all is not lost in
high-dimension (e.g. principal directions can be consistent when the number of sensors is
much greater than the number of samples by imposing sparsity to PCA [JL09]). But more
sensors imply often more samples, which will lead us to the next point.

To conclude on the question “Are more sensors better?” [HGOO08], the two sides may have
simply a different vision of an electronic nose. On one side, an eNose can be tuned for a
specific application, selecting a set of non-specific sensors having a good sensitivity towards
the targeted VOCs. On the other, authors may have a more universal vision of an eNose, as
being a broad-based measurement device usable for a large number of various applications.
In this thesis, the eNose used will never be specifically tuned towards a given application and
is therefore in line with the second definition.

A small number of samples. Broad-based chemical sensors used by an eNose are plagued
by drift over time, are noisy and are sensitive to external influences (temperature, humidity,
...). In addition, non-specificity, which is often seen as a strength, is also a weakness since the
VOC (or the VOCs) responsible for the measure is not well defined [Boe14]. All these factors
produce a great measurement uncertainty which calls for prudence regarding overoptimistic
conclusions which are often not supported by substantial data sets [GDRO1; Boe14] and lack
of validation procedures [Mar14] (for instance, repeating the experiment over separated
measurement sessions). The small-dataset issue seems particularly true for food-related
[RBWOS8] and health-related studies [Mar14], where it is not rare to find classes with 4-5
samples. Despite this small number, some authors state conclusions such that “This paper

neighbor becomes equivalent to its distance to its farthest neighbor. This counter-intuitive effect can occur for
as few as 10-15 dimensions.
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clearly shows that it is possible to differentiate and classify red wines coming from the same cellar
as well as from the same variety of grapes and same geographic origin”.

The problem with small datasets concerns the confidence in the results. This topic can be

easily found in any good book of Pattern Recognition (see [Mit97] or [DHS12]). Imagine
that we want to show that an eNose is capable of discriminating two VOCs, say A and B,
for a given classifier. This ability of the classifier to differentiate A from B is represented by
the true classification rate, say P. This rate tells us the probability to correctly classify as A
or B a new sample taken randomly from the data distribution. If P is far from the chance
level (here 50% since we have 2 classes) then we can conclude that the eNose is able of
differentiating A from B. However, P is an unknown quantity so we need to estimate it in
practice: this is the estimated classification rate P. This estimation requires data, so we carry
out several experiments to generate several samples, for A and B. Say that we have acquired
a total number of N samples, with an equal proportion of A and B (so % samples/class).
The acquisition of these N samples is assumed to be independently drawn from the data
distribution. Then, a standard procedure to estimate P is to use k-fold cross-validation (CV).
In a k-fold CV, the data set is randomly split into k& groups: k — 1 groups are used to tune the
parameters of the classifier (it is the training set) and, using these parameters, the k™ group
is classified (it is the test set). This procedure is repeated for each one of the k groups. Finally,
the N predicted classes are used to compute P, by comparing predictions and ground truth
(we know the class of each sample). However, the estimated classification rate results from
a random sampling of the data distribution, so this estimation is affected by uncertainty. A
resulting question is then, how good that estimation is?

The answer relates to confidence intervals which relate in turn to the number of samples
N. Confidence intervals are a range of rates which are estimated from the data (so they are
random too) and where we would expect to find the true rate. It is always connected to a
confidence level, generally a confidence level of 95%. A 95% confidence interval is an interval
that is expected with probability 95% to contain the true rate P [Mit97]. More precisely, if we
could repeat over and over again the same experiments with the same number N of samples,
then 95% of the generated confidence intervals would actually contain the true rate. How can
we compute confidence intervals? Let us simplify the problem by considering that all the test
samples are independent. This is a strong assumption which is often violated in practice since
one usually uses cross-validation procedure, making the test samples dependent (for two
different test sets using CV, the corresponding training sets greatly overlap). However, the
assumption of independent test samples makes the theory simpler and is useful to understand
the problem. In theory, we can see the estimate 7 as the result of a series of binary decisions:
the sample is well classified or not. In Statistics, such a binary decision is called a Bernouilli
trial, following a Bernouilli distribution of parameter P (the true probability to correctly
classify a new sample). The series of N independent binary decisions follows a Binomial
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distribution'! of parameters N and P (hence the need of independent test samples). Without
going into calculation details, for N > 30, we can use the Central Limit Theorem and the
95% confidence intervals are calculated according to the normal approximation interval:

P —P)

D +1.96
P N

Figure 1.12 is a figure retaken from the book of Duda & Hart [DHS12] which represents the
relation between the number of samples N and the 95% confidence interval.

For instance, to be reasonably sure that

the true classification rate P is greater 1 —
than 98%, it would require that the clas- o *
08
sifier makes no error out of 250 test sam- % o &Q\%b
ples [DHS12]. From the same figure, we § 06 ‘{%p
N . (o]
can also notice that the notion of chance & * q%;%
level depends on N [MP+08]. For two 2 :4 =
.3
classes, a chance level of 50% is in fact 2 ,
E_‘
an as totic rate, which can hold onl 01
ymp y Z—
for large data sets. For small data sets T 0z 03 o4 05 05 07 o8 o9 1
such as N = 10, the 95% confidence Estimated classification rate P
interval of chance rate is 50% + 26.2% Fig. 1.12.: 95% confidence interval for a given estimated clas-
(Since N is too Small in this case for sification rate P. For each P, there is 95% of
. . chance that the true P lies between the black and
normal approximation, we used the ad- red curves. Numbers near black curves indicate
justed interval proposed by Agresti and the number of test samples. Figure retaken from
. [DHS12] (axis labels have been changed to follow
Coull [AC98]). So the upper bound is our notation).

76.2% and any estimated classification
rate below or close to this value must be considered with caution. In Figure 1.13, we represent
graphically the loss in confidence induced by small data sets.

The 95% confidence interval that we have just introduced is quite interesting to be aware
of the confidence problem with small data sets. However, in the eNose field, even this 95%
confidence interval can be over-confident. In fact, this interval implies that the samples have
been drawn independently and from the same data distribution. Independence is not easy to
obtain with real data sets [Mar14] and even more crucial, samples are acquired over time. As
we have seen in Section 1.2.5, eNose is prone to drift, which means that data distribution
changes over time, so it is likely that time-related samples have not be drawn from the same
distribution. This last point calls even more for prudence regarding the results. In fact, the
low statistical reliability of eNose studies can incidentally explains why there are so many
successful applications in lab environment but so few beyond the lab [Mar14].

The Binomial distribution gives the probability of observing r heads in a series of N independent coin tosses, if
the probability of heads in a single toss is P [Mit97]: P(r) = (})P"(1 —P)N "
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Fig. 1.13.: A small data set leads to low confidence in the results. Black line corresponds to the estimated
decision boundary.

A solution is to increase the number of samples. We agree that it is hard to determine the
minimum number of samples required to be statistically reliable while being realistic in
practice (it is especially true for health-related data where a sample is generally a human and
each new sample has a huge experimental cost). However, in Pattern Recognition, a good rule
to follow is to have at least 5-10 times more training samples per class than the number of
features used by the classifier [JC82; JDMOO]. For instance, after a reduction to 5 dimensions,
this rule would correspond to have at least 25 samples per class for the training phase. It has
also to be noted that this number can increase with the complexity of the classifier [JDMO0O].

In some studies, authors qualified as a sample each time point of the time series shown in
Figure 1.7 (see for instance [Bru+07]). With this definition of a sample, the size of the data
set can be quite high even if the number of repeated experiments is quite small. Having good
temporal resolution and using dynamical features from the time series may help achieve
reliable discrimination. However, this increase can also lead to over-optimistic results: using
N time points of a single measurement is clearly not equivalent to generating N independent
measurements. Therefore, results obtained by considering the entire time series must be
cautious and authors must emphasize the real number of independent samples.

To conclude on this point, small data sets are common in the eNose field [Boe14] whereas the
measurement uncertainty is high. This often leads to over-confident results. Following Pattern
Recognition recommendations [JC82; JDMOO], it is a good practice to have at least 5-10
times more experiments per VOC than the number of features actually used by the classifier.

An abusive terminology. Earlier in Introduction, we have compared the stages of an eNose-
based system to the stages of its biological counterpart. The terminology “electronic nose”,

7 W

“artificial nose”, “artificial olfaction” can then be tolerated to draw attention to these parallels.
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However, the comparison stops there and an eNose is clearly not the direct electronic version
of a human nose. To quote J. R. Stetter and W. R. Penrose [SP02], “eNose devices respond to
the chemicals to which the sensors respond. The concept of odor is a human one and so human
receptors/sensors respond sometimes to totally different compounds than the eNose sensors.”.
Therefore, talking about “odor”, “smell”, “scent”, “odorant”, “fingerprint” or “smellprint” (for
the signature of a VOC) is quite misleading'?. According to the Collins definition, “the smell of
something is a quality it has which you become aware of when you breathe in through your nose”.
So, a smell is highly related to perception but an eNose does not perceive anything. An eNose
only reports chemical interaction between chemical sensors and a VOC (or a gas mixture)
[SP02]. For illustrating this fact, there are plenty of examples. For instance, an eNose can
detect carbon monoxide while the human nose cannot. In addition, smell and taste are also
highly influenced by other senses and can be misled by them [Spel5]. A good example is
the study of Morrot et al. [MBDO1]: in a discrimination task of white and red wines, they
succeeded in misleading a human panel just by coloring a white Bordeaux wine with a red
odorless food dye. In this case, it is clear that if the dye does not have any response to the
eNose, the eNose will not mislead.

A misleading terminology leads sometimes to misleading methodology [Boel4]. To any
newcomer in the field, we recommend to read the article of P. Boeker [Boe14] who warned
researchers in the field and criticized many aspects of the methodology and terminology used.
In fact, almost two decades before him, P. Mielle did same [Mie96; MMLO0OO]. However, it
is still quite common to find research articles'® defending eNose-based system as an odor
measurement system (e.g. Bioelectronic nose and its application to smell visualization [KP16],
Application of electronic nose as a non-invasive technique for odor fingerprinting and detection
of bacterial foodborne pathogens: a review [Bon+19]).

1.3 An SPRi-based optoelectronic nose

The electronic nose used in this thesis is a commercial optoelectronic nose developed by the
French company Aryballe (Grenoble). Aryballe develops a new class of instruments based on
the use of Surface Plasmon Resonance imaging as transduction method and peptides as
sensing materials.

This thesis was in collaboration with Aryballe which provided eNose prototypes. Thierry
Livache and Cyril Herrier from Aryballe took part in the thesis and helped us both with the
chemical aspects and the characterization of the instrument. Throughout this thesis, the
results shown with Aryballe’s eNose have been obtained with different eNoses and versions
of the eNose, since the device was still in maturation phase. For instance, the number of
chemical sensors used and their nature can vary from one Chapter to another. However, the
total number is always around 60.

12To be honest, my first poster defined an electronic nose as an odor sensor.

®Here, we only point researchers’ terminology out. In fact, this terminology is also often used by marketers or
with a popularization aim. In this case, we agree that “Volatile Organic Compound” can be less appealing than
“smell” or “odor”.
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1.3.1 Short history

The first SPRi used in liquid phase for biological analyses was developed in early 2000 at
CREAB'“ and Institut d’Optique d’Orsay, via the startup company Genoptics (now included in
Horiba Scientific) [Gue+00]. The gas phase developpement has been carried out since 2013
at CEA, at INAC institute, in SyMMES lab by the CREAB team. In 2014, the process developed
by the team was patented and published the next year [Liv+15]. In parallel, a technology
transfer and a partnership was concluded between the CEA and Aryballe (at this time, a
start-up called Aryballe Technologies). Aryballe successfully developed a miniaturization of
the device formulated by the CREAB and started to sell the instrument since 2018.

From 2016 to 2019, a consortium has been established between Aryballe and several partners
(industrial and academic) inside the WISE project, supported by the FUI. The CNRS is involved
in this project, in particular represented by GIPSA-lab. This thesis is part of this project and is
also supported by the BPI.

1.3.2 Working principle

Chemical sensors. Sensing materials are mainly peptides (short proteines composed of less
than 10 amino acids), provided by Smartbioscience (France). Some small organic molecules
are also used in addition to peptides as sensing materials. The sensing materials are grafted
on a gold-covered prism using thiol-gold bonding. To form an array of chemical sensors over
the prism surface, Aryballe uses a FlexArray S12 printer (Scienion, Germany) according to a
process previously described ([Hou+12], [Bre+18]). Due to the collaboration with Aryballe
and for confidentiality reasons, the nature of the sensing materials and the functionalization
principle (the way the sensing materials are fixed over the surface) are not detailed in this
thesis.

During an acquisition, the VOC is brought above the gold surface by a flow of air using a pump.
The VOC can then interact with the sensing material through a reversible binding reaction.
This reaction is both dependent on the VOC and on the sensing material. Thus, different
sensing materials will lead to different chemical reactions, creating a chemical signature of the
VOC. Since different VOCs lead to different chemical reactions, and thus different signatures,
we are able to recognize VOCs. In all the experiments reported in this thesis, the nature and
the number of chemical sensors used can vary. However, the cross-sensitive chemical sensor
array is generally composed of ~20 different sensing materials which are replicated 3 or 4
times on the surface, leading an array of more than 60 elements. In the previous section, we
highlighted that the number of sensors generally used by the literature is close to a dozen.
So, this number is quite uncommon. In fact, to our knowledge, the actual largest commercial
eNose is from iSense® company with its colorimetric eNose derived from the work of Suslick’s
group [RS00], which can board up to the impressive number of 120 chemical sensors. Then,
the number of sensors drops radically to a dozen, by way of the eNose of Sensigent” company

14See “List of acronyms” at the beginning of the thesis.
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Fig. 1.14.: Optoelectronic nose used in this thesis and provided by Aryballe. Sensing materials are mainly
peptides and transduction method is based on Surface Plasmon Resonance imaging (SPRi). Left panel
shows an image of the instrument. Middle panel illustrates SPRi: light is sent, reflected by the surface
and caught by a simple optical camera. When a VOC adsorbs on the surface, the amount of reflected
light increases. A real image of the prism is represented. Right panel corresponds to a real image of
the prism surface (one data point).

which sells Cyranose 320 boarding 32 conducting polymers and which has been used in many
research studies.

Since the instrument boards peptides, this kind of electronic noses is sometimes called
bioelectronic nose [Was+19]. We keep here the denomination electronic nose (and more
precisely optoelectronic nose).

Transduction mechanism. The binding reactions at the surface are measured using an
optical method, called Surface Plasmon Resonance imaging (SPRi). The physical phenomena
behind SPRi will be discussed in the Chapter about modeling (Chapter 3, Section 3.1.2).
Briefly, light is sent, reflected by the surface and caught by a simple optical camera. When
a binding reaction occurs with the VOC, this changes the refractive index (more light is
reflected). The changes in reflectivity are caught by the camera, which thus records in
real-time the binding reactions. A representation of the working principle and a real image of
the prism surface is presented in Figure 1.14. Light areas correspond to the chemical sensors
on the surface.

Since the instrument is based on an optical method, this kind of electronic noses is called
optoelectronic nose.

Data extraction. Raw data is a collection of images which reports in real-time the chemical
interactions (generally, at a frame rate of 5 Hz). Instead of directly manipulating the images
as our raw data (which are quite redundant), we just extract the interesting regions from the
images. These regions are the light areas which correspond to the chemical sensors fixed
over the gold surface. To identify these areas, a binary mask is manually built before the
experiments. Each light area is then summarized as a single value by averaging the pixels, so
an image having 60 chemical sensors (60 light areas) produce a vector of dimension 60. This
vector is composed of pixel values. To convert these pixel values into reflectivity, we divide
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Fig. 1.15.: Data from a 3-phase sampling measurement, before (top) and after (bottom) baseline subtraction.
Each line correspond to the time series of one chemical sensor. From one time series, a single time
point corresponds to the average pixel of a light area of one image.

by a reference image from which we have extracted the same areas. The acquisition of this
image will be later described in Chapter 3, when we detail SPRi.

In Figure 1.15, we report a real measurement according to a 3-phase sampling for a pure
VOC ((S)-Limonene). Top figure represents the signals in reflectivity while bottom figure
represents the signals after baseline subtraction (so AReflectivity). This subtraction removes
the reference contribution and it is quite classical in the field to remove the baseline drift
(baseline is unstable from one measurement to another). The dynamics is here quite fast and
the steady-state values are rapidly reached for the ~60 chemical sensors. In practice, we only
keep from these series one or two values per chemical sensor, such as the steady-state value,
to generate the signature of the VOC.

1.3.8 Past and contemporary results

Since the patent, several works and theses have been carried out or are currently in progress,
especially with a lab version of the Aryballe’s eNose developed by the CREAB team. Sophie
Brenet worked on the development and the optimization of this lab instrument, showing the
first results of the instrument in controlled conditions (for confidentiality reasons, her thesis
is not publicly available [Bre18]). Two theses are currently in progress. Charlotte Hurot is
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developing new sensing materials for the eNose and Jonathan S. Weerakkody is working on
the development and the characterization of the instrument for biomedical applications.

In a recent paper, S. Brenet and coworkers have studied the selectivity and sensitivity of the
lab version of the instrument [Bre+18]. First, they showed a good discrimination of both
different and similar molecules up to a single carbon atom. Second, they studied the sensitivity
of the device regarding two VOCs, namely Ethanol (170-1400 ppm) and 1-Octanol (1.43-5.84
ppm). The concentration range of Ethanol was significantly greater than for 1-Octanol due to
a lower affinity of the sensor array to Ethanol. For 1-Octanol, the theoretical limit of detection
was estimated between 375 and 750 ppb, depending on the sensing material. A noteworthy
conclusion from this sensitivity study is that the response of the chemical sensors scales
almost linearly with the VOC concentration (at least for the 2 studied VOCs and in the studied
concentration ranges). Finally, they have also confirmed a result which has already been
highlighted with other technologies: extraction of kinetics parameters can help to increase
classification performance.

Several improvements of the lab instrument are currently developed by the CREAB team and
could, in the end, be transferred to Aryballe. First, an interesting approach to improve the
sensitivity of the instrument is to vary the sensing temperature. J. Weerakkody et al. studied
the effects of the temperature on the sensitivity of the chemical sensors, for temperatures
ranging from 5°C to 45°C, and showed that a decrease in temperature leads to an increase of
sensitivity [Wee+19; Wee+20]. This decrease in temperature can then help to considerably
decrease the limit of detection of a VOC. This result could be of great relevance for applications
under controlled conditions where a VOC has to be detected at really low concentration,
such as biomedical applications. Second, to improve the diversity of the instrument (and
consequently its overall performance, both in classification and quantification), new sensing
materials need to be developed. Two ways are explored, namely Odorant Binding Proteins'®
and DNA, and have already proved their worth for other technologies. C. Hurot et al.
investigated the use of OBPs as potential candidates for new sensing materials with an
instrument operating in liquid phase [Hur+19]. They tested one OBP of a rat, designed 3
derivatives and immobilized them over the gold surface. They showed a good sensitivity
and selectivity towards 3 different VOCs. However, authors stressed a limited lifespan of the
sensing materials and a narrow linear range regarding the effects of the concentration, so
further developments are required. In the same vein, S. Gaggioti et al. investigated the use
of DNA as new sensing materials, in particular hairpin DNA (hairpin term comes from its
hairpin-shaped structure) [Gag+20]. By using a prism combining peptides and hairpin DNA,
they demonstrated similar results as the ones of Brenet et al., namely a good sensitivity and
a good discrimination power. The studies of C. Hurot et al. [Hur+19] and S. Gaggioti et

150dorant Binding Proteins (OBPs) play a key role in natural olfaction. In fact, odorant molecules do not directly
go to the olfactory receptors by themselves but are transported by OBPs. Odorant molecules bind to these
OBPs which transport them to the olfactory receptor then interact, or not, to activate, or not, the ORN. So
OBPs are the first step of natural olfaction [Arc18].
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al. [Gag+20] pave the way for an increase in the number of sensing materials boarded by
Aryballe’s instrument in the future.

The last point, about the addition of sensing materials, highlights a noteworthy advantage of
Aryballe’s eNose, and more widely of optical methods, compared to other existing technologies.
Optical methods offer the possibility of increasing the diversity without increasing the overall
complexity of the instrument. For instance, when the interactions are measured by a simple
camera as in the case of SPRi or colorimetric sensors, the addition of sensing materials does
not require the adjustement of the architecture of the system (e.g. eNose of Suslick’s group
can board up to 120 colorimetric sensors). That is a huge advantage over other transduction
methods such as conductivity-based or mass-based methods. In fact, it can also explain why
some authors in the field are so timorous regarding the increase in the number of chemical
sensors: for a lot of well-established technologies, such as MOS-based sytems, increasing
the number of sensors is costly. As we have already mentioned in Section 1.2.6, we believe
that a key step for improving an eNose system is to increase the number of sensors, so it can
presumably be used for a larger range of applications than a smaller sensor array.

1.4 Challenges of the thesis

As we have just seen, several results have been already reported regarding the performance
of the instrument. Despite the significance of these results, they have been demonstrated
with a lab instrument under lab conditions (for instance with dry air) with a lab setup, and
consequently, with small data sets. Unfortunately, in the eNose field, it often happens that,
what it is proven in the lab, never goes beyond the lab [Mar14]. This is especially true when
proof-of-concept lacks realistic conditions, statistical reliability and external validation.

The miniaturization of the device by Aryballe is a key ingredient for alleviating all these
issues. In fact, it allows the duration of the experiments to be greatly reduced. Let us do a
quick comparison. In the study of Brenet et al. [Bre+ 18], one measurement (so one sample)
with the lab instrument lasts for 30 minutes, which is common for such experiments. In
this thesis, the total duration of an experiment will be max 6 minutes in Chapter 5 (about
stereoselectivity), but will also be as short as a few seconds in Chapter 6 (about robot
olfaction). This short experimental time is a chance to provide statistically reliable results,
following the recommendations about the data set size that we have introduced in Section
1.2.6. The dimensions of the instrument are also a chance to get it out of the lab.

This thesis reports the first results obtained with Aryballe’s eNose and several challenges, some
of them discussed in Section 1.2.5, have been tackled. These results are quite complementary
with the previous results found by the CREAB team [Bre18; Hur+19; Wee+19; Wee+20].

Classification performance (Chapters 3, 4, 5 & 6). Classification is one of the two main
goals of an eNose, in combination with quantification. In fact, classification is always the first
step, since it is a prerequisite for VOC quantification. A lot of issues are related to classification
and it is much more than which classifier is the best to use (which is a difficult question

1.4 Challenges of the thesis
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by the way). For instance, in this thesis, we will investigate feature extraction, focusing on
features extracted either from the stationary or transitory regime (Chapter 3). Classification
performance depends obviously on classes and how difficult the separation of the classes is. In
molecular recognition, one of the hardest problems is the discrimination of two enantiomers
of a chiral molecule [Tro14]. Two enantiomers are almost the same molecule and share
almost the same physico-chemical properties, they are like the left and right hands but at a
molecular level. In Chapter 5, we show that Aryballe’s eNose is actually capable of such a
discrimination power.

Unmixing or Source Separation (Chapters 3 & 6). In the field, VOCs are rarely, if not never,
present as pure VOCs [Bou+03]. For an eNose, it is problematic due to the non-specificity of
the chemical sensors. In fact, each chemical sensor can likely interact with all the components
of the mixture. So, a mixture of VOCs will generate a signature just like a pure VOC but, a
signature related in a non trivial way to the individual signature of each VOC and to their
concentration. In Chapter 3, we define a theoretical mixture model which is non-linear and
based on the Langmuir model. Under low concentration regime or low affinity regime, this
model can, however, be linearized. This linearization is used in Chapter 6 for unmixing
signals in a real-life application. We show that, despite the simplicity of the linear model, it
can fairly estimate which VOCs are present with which intensities (however, we do not prove
that these intensities relate directly to VOC concentration).

Drift (Chapter 4). Chemical sensors are prone to drift over time. Drift is responsible for the
lack of stability of chemical sensors and is considered one of the main factors explaining
the low number of practical applications with these sensors [Pad+10]. Concretely, it is very
likely that the generalization of the classifier to a data base acquired few days or few weeks
after the training set will be quite bad, due to the drift. In fact, it is still largely unrealizable
to make sensing materials which do not drift over time [Ver+12]. So, the only way to
compensate for the drift is to design post-processing methods to align as best as possible data
distributions from the training and testing sets (the drift issue can be seen as a special case
of “Transfer Learning” in Machine Learning). In Chapter 4, we discuss drift in detail and the
main methods related to drift compensation. A class of methods has received little attention
in the literature, namely methods which assume that there is no label available in the testing
set. By considering this scenario, we propose two correction methods based on the idea that
the drift between the two data sets (training and test) follows a preferred direction. During
the thesis, we have acquired a comprehensive data set over 9 months which is affected by
drift. We test several methods to compensate for the drift and show that the two proposed
methods can remove a large part of the drift, enabling the classifier to better generalize.

Complex environment (Chapters 2 & 6). For a part of applications, eNoses are meant to
be used in the field while studies are often carried out under controlled conditions in a lab
environment [Tri10]. As an example, eNose could be used for monitoring environmental
pollution [Bou+03]. In this case, it will continuously measure VOCs which are released in
the environment. To name a few issues, environmental conditions can then no longer be
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controlled, the VOC onset is then no longer known and needs to be identified, the subtraction
of the baseline (reference VOC) is in turn more tricky, and VOCs can easily mix at variable
concentrations. For monitoring environmental pollution, eNose can be static, waiting for VOCs
to reach by themselves the instrument. But, other applications, such as gas leak detection,
require in addition that the instrument can move and locate in space the VOC source [[WM12].
In the eNose literature, this field of applications is referred to as robot olfaction. In Chapter 2,
we describe two robotic platforms which have been built during the thesis to test Aryballe’s
eNose in robot applications. In Chapter 6, we present several data sets from these two setups
and tackle two main issues in robot olfaction: classification and unmixing.

To conclude, we would like to stress a current limitation of the results presented in this thesis.
All the results are classification results, leaving aside quantification. In Chapter 6, we report
some VOC intensities but, the true VOC concentrations are never measured, so a relation
between these intensities and the VOC concentrations cannot be directly established yet.

1.4 Challenges of the thesis
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2.1 Introduction

During this thesis, several experimental setups have been designed for the generation of
several data sets aiming at studying various issues. The introduction of these setups and some
preprocessing steps are gathered in this chapter. However, the introduction of the data sets
are detailed in the involved chapters.

* Automatic valve (Section 2.2). This setup has been built by Aryballe Technologies and
aims at generating large data sets under controlled conditions. This setup has been
especially useful for showing that the instrument is “stereoselective”, in Chapter 5.

* Sniffer robot (Section 2.3.1). This setup has been built and designed at Gipsa-Lab
and aims at studying the performance of the device in a robot scenario. This setup
has been especially useful for both the classification of 12 different VOCs disseminated
in an uncontrolled environment (Chapter 6) and the study of the drift over 9 months
(Chapter 4).

* Sniffer arm (Section 2.3.2). This setup has been built and designed at Gipsa-Lab
and aims at studying the performance of the device in a robot scenario in which gas
mixtures occur. This setup has been especially useful for the study of gas mixtures under
uncontrolled conditions (Chapter 6).

The generation of the data sets and the building of the setups have been assisted by several
persons. I especially would like to acknowledge, for their highly valuable help,

* Romain Dubreuil, Johanna Decorps and Etienne Bultel, who are working for Ary-
balle Technologies and helped me many times to carry out the experiments with the
automatic valve (introduced in Section 2.2).

* Leonardo Carlos Dolcinotti, who was intern at Gipsa-Lab during 3 months under the
supervision of Simon and myself. He built a line-follower robot (introduced in Section
2.3.1).

* Xiran Zuo, who was intern at Gipsa-Lab during 3 months under the supervision of
Simon and myself. She especially helped me with the first experiments using the Sniffer
arm (introduced in Section 2.3.2).

* Sophie Min, Rémy Jaccaz, Aurélien Carriquiry, Sylvain Géranton, Anton Andreev,
who are working at Gipsa-Lab (“Plateformes service”) and who substantially helped to
build the robotic setups (introduced in Section 2.3.1 and Section 2.3.2).

2.2 Automatic valve

Goal. This setup aims at generating data using a method called 3-phase sampling. This
sampling method has been detailed in Introduction (Section 1.2.2) and relies on 3 steps:
baseline acquisition, VOC injection and recovery. The setup is fully automatic in order to
generate large data sets (=100 samples/class).
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Pump output

Fig. 2.1.: Automatic valve. Left figure is a graphical representation of the setup and right figure corresponds to
reality (the setup in placed in an oven).

Description. The main part of this system is an automatic valve represented in Figure 2.1.

In total, 8 lines can be allocated. But, one of the 8 lines is booked for ambient air which is
used as our reference gas during all the experiments. Except the reference line, the lines
are inserted in vials (whose the capacity depends on the experiment), which are sealed with
a Teflon-coated silicon septum and filled with a liquid solution of each VOC studied. The
vials containing the liquid solutions are agitated using a magnetic stir bar to homogenize the
headspace and a small PolyEtherEtherKetone (PEEK) tube is also used to balance the pressure
inside the vials. The fluidic system is made of PEEK tubing. Each gas line has the same tube
length to prevent any “artificial” discrimination due to the transport to the instrument.

The valve is programmed to start with the air line (baseline acquisition). Then, at ¢, the
valve switches to the line i (VOC injection). At ¢., it goes back to the air line (recovery). The
process is repeated for the line ¢ + 1 and so on.

In this setup, temperature can be controlled by placing the entire setup in an oven. But it can
also be placed out of the oven in order to generate more realistic data.

Baseline manipulation. A basic preprocess-

ing with this kind of data is the baseline sub- p—
traction. One reason for baseline subtraction & % //
>
is that baseline tends to shift over time. In = !
) . S 48 baseline VOC injection

Figure 2.2, we represent four different mea- <

. . m
surements of a single chemical sensor, taken 46

at different times. We note a clear drift of the 0 0 (560 40 60
time (sec

baseline. Its subtraction helps to increase the

o1 . . . Fig. 2.2.: Four measurements of a single chemical sensor

repeatability of the instrument. This step is over time. A baseline drift is clear.

straightforward in this setup since we know

exactly when the VOC is injected. Taking as example Figure 2.2, we simply take the average

of the 25 first seconds of signal for each chemical sensor and subtract this value from the

whole response. We therefore no more have Reflectivity (%) but AReflectivity (%) values.

For the next setups, we will see that the baseline subtraction is not as straightforward.

2.2 Automatic valve
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) Robot (b) Setups \ Cup filled with some
drops of liquid solution

funnel-shaped (a
support

Fig. 2.3.: Sniffer robot platform. (a) Line follower robot used. (b) The two setups built, only the size and the
number of possible gas sources differ from one setup to another (up to 34 gas sources for the setup to
the left and up to 4 gas sources for the setup to the right).

2.3 Robotic platforms

Two different robotic setups have been designed during the thesis, namely a line-follower
robot and a robotic arm. Their goal is to evaluate Aryballe’s eNose in a complex environment.

2.3.1 Sniffer robot

Goal. Sniffer robot aims at evaluating gas recognition in this thesis, in a robot scenario.
The platform consists of a robot (see Figure 2.3a) that carries the eNose, moving over a flat
surface where gas sources are placed (Figure 2.3b). Some data sets from this setup will be
introduced in Chapters 4 & 6.

Description. The robot is a line-follower robot, meaning that it can follow a black line drawn
over a white surface. We use two optical sensors to achieve this function. Currently, the robot
is neither autonomous nor capable of locating itself in space. Besides, the robot is not yet
capable of interacting with the eNose, so the measure of the eNose and the movement of
the robot are independent. In fact, we are interested here in testing the eNose in a practical
application (robot olfaction) rather than in defining an optimal movement strategy. The speed
of the robot is tuned before the experiment and is generally set between to 2 cm/s and 3
cm/s. To generate substantial data sets, the path is followed multiple times by the robot.

A funnel-shaped support has been made with a 3D printer and the injection tube of the eNose
is inserted in this support in order to increase the suction area. The ground is a polycrystal
plate which is lifted by 1.5cm. The dimensions of the ground is either Im x 1m x 2.5mm for
the small setup (up to 4 gas sources, used in Chapter 4) or 2m x 2m x 2.5mm for the larger
one (up to 34 gas sources, used in Chapter 6).

Gas sources are small cups which are slid below the plate where the holes have been made.
These cups are filled with some drops (~250uL) of liquid solutions of studied VOCs, just
before the experiment. These setups are placed in an indoor environment, basically a normal
office with low natural advection (no ventilation system). Humidity and temperature are
recorded but not controlled. Regarding parameters of the eNose, the frame rate of the camera
is always set to 5 Hz and the airflow usually to 60 mL/min. The frame rate can be increased
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and the airflow can be decreased but these values are sufficient in practice to measure the
chemical reactions and their dynamics.

Data. In Figure 2.4, we represent the re-

sponse of one chemical sensor during one 470

lap. We can note that the data look like peaks <

and contrast a lot with the data generated % 365

according to a 3-phase sampling (see Figure ‘f:.: 36.0

2.2 for comparison). This is due to the very

short time injection (~1 second compared to 0 20 40 60 80

. . time (sec)
30 seconds for the measurements in Figure
Fig. 2.4.: Data obtained with the Sniffer robot. We rep-

2.2). resent the response of one chemical sensor
during one lap with the small setup. Each
Video. The reader is encouraged to watch peak corresponds to the passage of the robot

avideo! that I have made during the thesis overacup-

using the large setup (Figure 2.3b left):

http://simonbarthelme.eu/personal-website/videos/robot12V0C.mp4

2.3.2 Sniffer arm

Goal. Sniffer arm aims at generating gas mixtures in this thesis, in a robot scenario. For
instance, gas mixtures can easily occur in the event of two gas sources which are spatially
close.

Description. The main part is an aluminium trapezoidal shaft that moves the eNose along one
dimension (see Figure 2.5). The total length of this path is 36.5cm. Again, a funnel-shaped
support is added to increase suction area. Gas sources are scent strips, directly placed along
the 1D-path, on which few drops are deposited. The speed of arm movement is set to 1 cm/s.

In practice, several sweeps are performed in order to generate substantial data sets. At the
end of each sweep, the arm stays in place for 20 sec. The response of the eNose during the
sweeps is recorded continuously (without any interruption between each sweep). Again,
Sniffer arm and the eNose are independent and cannot interact yet.

Data. In Figure 2.6, we represent the response of one chemical sensor for two different
scenarios that one can encounter in the field. The whole data set, another scenario and an
unmixing algorithm will be introduced later in this thesis, in Chapter 6.

f the link does not work, try this one:
https://drive.google.com/file/d/1AddmCYFwQcHtG1laTksn8zyC-0e7CDzbU/view
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Fig. 2.5.: Sniffer arm.
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Fig. 2.6.: Data obtained with the Sniffer arm. We represent the response of one chemical for two different
scenarios which will be described in Chapter 6. Left figure: two gas sources are spatially close along
the path. Right figure: the arm goes over successive trails of pure compounds.

Video. The reader is encouraged to watch a video? that I have made during the thesis using
this setup:

http://simonbarthelme.eu/personal-website/videos/closeSources.mp4

2.3.3 Preprocessing issues

Baseline manipulation. Compared to the automatic valve, baseline manipulation is more
tricky here. Indeed, in Section 2.2, the injection time is exactly known so the baseline is
perfectly identified in the signal. This makes the first preprocessing step easy but this is
no longer the case with the robotic platforms and we do not know exactly when VOCs are
injected.

A trivial solution would be to take the first measurement points to estimate the baseline
(assuming that the robot does not start around a gas source). However, baseline drifts over

2If the link does not work, try this one:
https://drive.google.com/file/d/14exr-R1c4hTyitnlWeuqKYA3uLgDrIbz/view
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Fig. 2.7.: Baseline drifts over time. Drift estimation is represented in red.

time due to complicated phenomena which take place during an experiment. For instance,
reference gas (ambient air) is varying over time due to the evaporation of the studied VOCs.
Temperature and humidity can also vary. In Figure 2.7, we report the response of one chemical
sensor during more than 3 hours using the Sniffer robot. Baseline drift is clearly perceptible
and may be attributed to variation in temperature due to the heating of the electronic system.

If the first points cannot be used, then baseline drift must be estimated over time. The
difficulty is that VOC injections and baseline drift appear at the same time, even if VOC
injections are much shorter over time. Since baseline drift is a slow-varying process compared
to injection areas, we could use some frequency methods and remove low frequencies. Here,
we prefer to directly estimate the baseline trend.

We note y,(t) the response of the chemical sensor p at time ¢. The approach proposed is
based on quantile filtering which enables to estimate the trend by avoiding the peaks. By
considering an integer k and a scalar ¢ € |0, 1], the estimation of the baseline corresponds
to the ¢g-quantile of {y,(t — k£ + 1), ..., y,(¢)}. The estimation of the drift is reported in red in
Figure 2.7.

The size k of the time window and the scalar

g can be important, here they have been man-

(%)

0.6 4 the robot goes over

ually selected for the experiments. We set the z a gas source
2 041
parameters to k = 100 seconds and ¢ = 0.1, § /
=1
for all the data generated with the robotic &£ "]
platforms. 0.0 | _
0 20 40 60
. . time (sec)
Segmentation. Compared to the automatic
unknown times unknown times

valve, time series are not automatically seg-

mented for robotic setups and peaks ap- Fig. 2.8.: Time series of two chemical sensors using the
. Sniffer robot. In this figure, the robot went

peared at unknown times. So, a segmen- over two gas sources, corresponding to the

tation step is required to extract the peaks two observed peaks.

from the data (see Figure 2.8), and is de-

tailed in Appendix A.
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“After a few weeks Grenouille had mastered not only the names of all the odours in Baldini’s
laboratory, but he was also able to record the formulas for his perfumes on his own and, vice
versa, to convert other people’s formulas and instructions into perfumes and other scented
products. And not merely that! Once he had learned to express his fragrant ideas in drops
and drams, he no longer even needed the intermediate step of experimentation. [...] He had
learned to extend the journey from his mental notion of a scent to the finished perfume by
way of writing down the formula.”

Patrick Siiskind, Perfume, the Story of a Murderer'.

In this extract, Grenouille is learning how to make a fragrance by the book, from the perfumer
Baldini. Rapidly, the apprentice surpassed the master and Grenouille discovered how to go
from the scent to the chemical formula, and vice-versa. In fact, we could say that he discovered
the model which allows to go from the formulas of the molecules to the sensations that they
bring.

Modeling is about the characterization of a system and a model tells us about the output
that we should expect if we excite the system with a given input. In fact, if you know the
model then, with a known input, we should be able to predict the output without carrying
the experiment (like Grenouille). In our case, we will not go as far as Grenouille, tracing back
to the structure of the molecules. Instead, we will try to describe more modestly the relation
between the response of the instrument and two parameters: the VOC concentration and the
affinity between the VOC and the chemical sensors.

The chapter is organized as follows. First, we detail a physico-chemical model for describing
the time series in the presence of a pure VOC. It is the result of the combination of the
Langmuir model, describing the chemical interactions, with a linear approximation of the
response obtained by Surface Plasmon Resonance imaging. Then, the parameters of the
proposed model is used to extract features from the dynamics, to test other features than the
classical steady state. Finally, we formulate a model of the response during equilibrium phase
when we no longer measure a pure VOC but a gas mixture.

3.1 Physico-chemical model

3.1.1 Langmuir model
Recall that a measurement of a chemical sensor results from the interaction between a VOC
(we assume a pure VOC here), say A, and the sensing material, say S, of the chemical sensor.
The chemical interaction is a binding reaction in the case of Aryballe’s eNose, which can be
written in the simplest case as:

A+S ? AS (3.1

!Translated from the German by John E. Woods.
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Eq. (3.1) means that when the VOC A interacts with the sensing material S, it creates a “new’
molecule, the complex AS. This is called adsorption of A on the surface covered by S. If the
reaction was irreversible, it would go only from one side (A+S) to the other side (AS) and the
complex AS could never become A+S again. Fortunately, with an eNose, reactions are always
reversible, meaning that the complex AS can become A+S again. This is called desorption of
A from the surface covered by S.

This reaction is controlled by two parameters which are naturally positive: the adsorption
constant o (unit concentration'.time~!) and the desorption constant d (time!). a and d
are specific to the VOC A and to the sensing material S and are related to their affinity. a
tells us the ability of A to bind easily to S, while d tells us the ability of A to leave easily S. For
instance, if d is quite low, then the desorption can be quite long and so for the recovery phase
(so we will have to wait for a long time before the response go back to the baseline value).
These parameters a and d are sensitive to temperature, so we assume that the temperature is
controlled during the experiment and does not change.

To describe mathematically the reaction in

Eqg. (3.1), we generally use a simple notion:
the notion of free/occupied sites (see Figure
3.1). At the beginning of the experiment, A{
the sensing material can be seen as a num- /’; f “
ber of free sites on which a VOC can bind: $

this quantity of free sites is modeled by a oG J >
surfacic concentration [S] (surfacic because free site e
the sensing material is fixed over a surface).
When the VOC A is injected, A adsorbs on

the sensing material and binds to some sites Fiz 3.1.. Free/occupied sites.

which become then occupied: the quantity

of occupied sites is modeled by a surfacic concentration [AS];. The number of free sites be-
coming occupied at time ¢ can be quantified by a simple quantity: a (the adsorption constant)
x [A](t) (the concentration of A) x[S]s(¢) (the number of free sites). Due to the reversibility
of the reaction, the VOC A can desorb from the surface and the occupied sites can become free
again. The release of A in the air can be quantified by a simple quantity: d (the desorption
constant) x[AS](¢) (the number of occupied sites). This allows us to model the number of
sites becoming occupied over time, reflecting the interaction:

d[AS]s(t) _ number of free sites _ number of occupied sites
dt B becoming occupied becoming free (3.2)
= a[A]($)[S]s () - d[AS]s(t) '
= a[A](t)([S]s — [AS]s(t)) — d[AS]s(t)

In fact, instead of quantifying the number of occupied sites, we sometimes prefer to model

the fraction of occupied sites, defined as 0(t) = %

3.1 Physico-chemical model
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From Eq. (3.2), we can easily obtain a differential equation with respect to 6(¢):

do(t

d(t) = a[A](t)(1 — 6(t)) — db(t) (3.3)
Eq. (3.3) is the simplest way to model over time the chemical interaction resulting from a
VOC adsorption and comes from the seminal paper of I. Langmuir [Lan18]. It relies on some

assumptions which could be violated in practice:

* the sensing surface is perfectly flat.

e the interaction is monolayer~.

* all the sites are equivalent.

* there is no other interaction than the interaction between A and S (e.g. A does not
interact with A).

Eq. (3.3) is a simple first-order linear differential equation in function to #. Finding an
analytical solution is easy only if [A](t) (the variations in concentration of A over time)
is known and simple. In the context of 3-phase sampling, if air moves enough quickly in
the pipes, then concentration follows approximately a gate function. In other words, the
concentration of A is constant during all the injection, of value ¢, and is null outside the
injection. Under this hypothesis, if we note ¢, the beginning of the injection, the problem

becomes:
do(t)

dt
which is is straightforward to solve, if we note ¢, the end of the injection (recall that ¢ = 0 if
t > t.), then:

=ac(l—06(t)) —db(t) st O(t=ts)=0 (3.4)

0 ift <t
o) =4 - fac (1 — e~tactdt=t)y — (1) ift € [ts, 1] (3.5)
O (te)eMtte) ift > ¢,

In Figure 3.2, we represent the influence of each parameter on the global response. First,
it is interesting to note that the adsorption constant a and the VOC concentration ¢ play
symmetrical roles in the model (Eq. (3.5)). The greater these two parameters are, the faster
the adsorption is and the greater the response is. However, they do not affect the desorption.
In contrast, the desorption constant d affects both the adsorption and the desorption. The
greater d is, the faster the adsorption and the desorption are but the lower the response is.
Second, ¢ is the fraction of occupied sites, so it is a value naturally bounded by 0 and 1.
Finally, we can notice that if we inject A for a sufficiently long time, the response of the model

ac
d+ac

stabilizes around a value ( ): this value corresponds to the steady state value and means

Monolayer assumption means that each site can hold

, only one molecule of A. Multi-layer assumption (e.g.
bi-layer) would assume that each site can contain mul-
tiple molecules of A.

voc —

~pbiiil B BERE B

sensing material

mono-layer bi-layer
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Fig. 3.2.: Influence of the parameters on the response. When one parameter varies (from 0.1 to 5), the others
are fixed to 1. a and ¢ have symmetrical roles in the model so their influence is the same.

that the chemical reaction is at the equilibrium phase®. Steady state value is classically used
as a feature for classification.

This model is called the Langmuir model” in reference to Irving Langmuir [HBZ06; Lan18].
This model describes only the chemical interaction, but the response of Aryballe’s eNose
results from some physical phenomena that we have to model too.

3.1.2 SPRi model

The transduction method used here is based on Surface Plasmon Resonance imaging (SPRi).
It is a bit technical so we provide here only a short introduction to SPRi, but readers can find
more details in the book of J. Homola [Hom06]. We also recommend the reading of the thesis
of E. Maillart [Mai04] for French speakers.

SPRi is actually the combination of two physical phenomena, namely two electromagnetic
waves which exist under certain conditions. The first one is the surface plasmon (SP) which
is an electromagnetic wave existing at any metal-dielectric interface (e.g. the interface gold-
glass). The second one is an evanescent wave created by an incident light which is totally
reflected by a surface (meaning that the incidence angle is greater than the critical angle).
This evanescent wave appears from both sides of the surface and decays exponentially in
the direction perpendicular to the surface (it is thus limited to a given depth L, ~ 100 nm).
In fact, that is why this wave is called evanescent: it disappears quickly. This evanescent
behaviour is quite interesting because it will not be sensitive to what occurs beyond few
hundreds of nanometers from the surface: it will be sensitive to phenomena which occur only
quite close to the surface (in our case, binding reactions) [Mai04]. The conditions necessary
to the creation of these two waves can be obtained by using a prism coated with gold (the
metal-dielectric interface) and a monochromatic light (for creating the total reflection). This

3The chemical reaction is always reversible, enabling the adsorption and desorption of A. When the response
reaches the steady state value, it means that these two events became sort of equiprobable, causing the
response to no longer change: this is the equilibrium.

*We can notice that this model is very similar to another well-known model: the model describing the charge
and discharge of a capacitor. However, the Langmuir model allows us to understand the connections between
the model parameters and the chemical parameters of the reaction (in particular it tells us the influence of the
VOC concentration on each part of the response).

3.1 Physico-chemical model
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system is represented in Figure 3.4, in Kretschmann configuration (the configuration used by
Aryballe’s eNose).

When the evanescent field is created by a

TM-polarized (TM: Transverse Magnetic) in- ) evanescent wave

cident light, it can be used to excite the sur-

face plasmons in a resonant manner. By ex-

citing the surface plasmons, a part of the en-
ergy of the incident light is transferred to the
plasmons, so the amount of reflected light

. detector
decreases due to the coupling. Here, the cou-

pling of these two waves is performed by a
change of the incidence angle. The decrease
in the amount of reflected light depends on

this angle and can be caught by a simple

\ Plasmon

camera (the detector). By playing with this curve

incidence angle, we can trace the reflectivity 6.6 @ e
1 opt spr

variations as a function of the angle, leading / NG
SPR angle

to the so called plasmon curve represented
working angle

in Figure 3.3. The reflectivity is minimal for

a given angle, namely the SPR angle. During Fig. 3.3.: Working principle of SPRi and plasmon curve

a classical experiment with SPRi, we start by generation. By varying the incidence angle O,
the evanescent wave and the surface plasmons
(SP) can be coupled. For a given range of O,
is then fixed to a given value, which is not a part of the energy of the incident light is
transferred to the SP. This loss in energy is
perceived as a loss in reflectivity. The plasmon
preferably located in the linear range of the curve shows the evolution of the reflectivity
according to ©. The angle for which the curve
is minimal is the SPR angle Osp;. The working
ing the rest of the experiment. For Aryballe’s angle O is preferably located in the linear
range of the curve. See the text for more de-
tails.

generating the plasmon curve and the angle
the SPR angle. This working angle, Oy, is
plasmon curve and no longer changes dur-

eNose, we do not plot the plasmon curve be-
fore each experiment (it is time-consuming).
Aryballe defined reflectivity ranges which correspond to the linear range of the plasmon curve.
In practice, the working angle is fixed such that the reflectivity measured is around 60%.

Why use SPRi to monitor binding reactions? In fact, the entire plasmon curve is quite sensitive
to the medium near the metal interface. Indeed, any tiny increase in the refractive index
of this layer will result in a simple shift to the right of the plasmon curve. Thus, when a
VOC binds to the sensing material which is immobilized on the golden surface, the plasmon
curve is shifted (to the right). Figure 3.4 shows the shift of the plasmon curve during an
experiment. This shift results in an increase of reflectivity at the fixed angle ©p. So, before
injection (baseline), the measure is at a certain reflectivity which then increases after VOC
injection. A simple difference between the two values leads to our raw recording, namely
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Fig. 3.4.: Working principle of SPRi. When adsorption occurs, it changes the refractive index, which in turn shifts
the plasmon curve. See the text for more details. Surface plasmons are abbreviated as SP.

a delta-reflectivity AR (%). In our case, each pixel of the images from the camera gives a
reflectivity measurement representing the interaction on a spatial area of the prism.

However, something is missing in our explanation. In fact, a simple camera does not return
automatically reflectivity measurements but pixel values (in our case, 8-bit pixels, so a value
between 0 and 255 telling us about the amount of light reflected by the surface). How can we
convert pixel values into reflectivity measurements? In fact, the phenomemon occurs only
when the incident light is TM-polarized and completely disappears if the light is TE-polarized
(TE: Transverse Electric). In other words, with TE-light, there is no excitation of the surface
plasmons, so the incident light does not lose any energy, and so the amount of reflected light

is a good approximation of the maximum light that we can receive from the surface [Bas+03].

Consequently, we can see the image formed with a TE-polarized light as a good reference of

max light and a simple division of the TM-image by the TE-image gives us a reflectivity image.

In Figure 3.5, we show some images obtained from real experiments.

A last question is then, how to relate AR to the number of sites becoming occupied over time
(recall that it is the quantity characterized by the Langmuir model)? The answer could be
found by using Maxwell’s equations, which leads to a complex model [Mai04]. However, this
model can be well approximated in liquid phase (and we assume that this model is still true

3.1 Physico-chemical model
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How to convert pixel values into reflectivity? Image from a measure of a VOC

TM-image ..
. . ———— = reflectivity .
TM-image TE-image TE-image AReflectivity

Fig. 3.5.: Conversion of pixel values into reflectivity. On TM-image, each light area corresponds to sensing
materials on the surface. On TE-image, we can no longer see sensing materials since the excitation of
surface plasmons can no longer occur. The division of TM-image by TE-image (multiplied by a factor
depending on the refractive index of the prism) gives us a reflectivity image. Right image corresponds
to a AReflectivity image obtained by subtracting an image from a VOC injection by an image from the
baseline. The adsorption of the VOC is clear, since the light areas remain after subtraction, indicating
that there is more material on the surface due to the bindings.

in gas phase) by a linear model, when the thickness e, (see Figure 3.4) of the medium is
much smaller than the depth of the evanescent wave L, [Ste+91; Jun+98]:

AR(t) 5?2 <« T(1) (3.6)
where § = g—f is the SPRi sensitivity (the variation of reflectivity induced by a variation
of refractive index), %Z (cm?/g) is the change in refractive index of the VOC with change
in concentration and finally I' (ng/mm?) is the recovering rate of the VOC. This model is
reasonable for two reasons: the thickness of the sensing material is quite small (~2-3 nm),
and VOCs are generally small molecules (~1-2 nm, otherwise they could not evaporate easily).
So, the adsorption of the VOC on the sensing material will result in a medium of max 5 nm
which is much smaller than L. (=~ 100 nm). To bring the fraction of occupied sites # out, we
rewrite I" as I = [S]ymf [HomO06] (p78) where m is the molecular mass of the VOC.

AR(®t) = 22 [S]om x 0(t) (3.7)

3.1.3 Full model

The SPRi model tells us that the SPRi response is simply proportional to the chemical response.
By merging the SPRi model with the Langmuir model, we can build a global model of the
measurement y(t) over time:

0 ift <t
S a’I’L ac
t) = = _ o (actd)(t—ts)y _ . .
y(t) L. oc [S]sm x Tt ae (1 e ) Ya(t) ift e [ts, te] (3.8)
Ya(te)emdimte) ift >t

We can easily see that the model (3.8) depends on many different parameters. To see the
relevance of each parameter, let us highlight the dependences of the parameters to the
dimensions of our problem (we have several chemical sensors and, we study several VOCs).
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For that, we note p and P one chemical sensor and the total number of chemical sensors. We
note r and R one VOC and the total number of VOCs studied.

For the SPRi model, the SPRi sensitivity .S and the depth penetration L, are dependent on
SPRi settings (e.g. wavelength, metal-dielectric interface, ...), so they are neither dependent
on the VOC nor the chemical sensor [Hom06]. However, %—Z is the amount of change of

refractive index per VOC concentration unit so it depends on the VOC r, and so for the mass

m. [S]s corresponds to the number of free sites so it clearly depends on the chemical sensor p.

6(t) is the fraction of occupied sites on the sensing material by the VOC, so it depends both
on p and r. By stressing the problem dimensions, we can rewrite Eq (3.7) as:

ARpr(t) = Qspr X My X ¢p X epr(t) 3.9)

with agpr = L% the parameters depending on SPRi, 7, = %ﬁm the parameters depending on
the VOC and ¢, = [S], the parameter depending on the chemical sensor.

For the Langmuir model, the adsorption constant a and desorption constant d depends on the
chemical reaction, so both on p and r. The VOC concentration ¢ depends only on r.

The full model becomes:

0 if t <t
AprC _ _ .
Ypr (t) = Vpr X Adpr fa;rcr _ e (aprertdpr)(t ts)) = Yapr(t) ift € [ts,te] (3.10)
ya,pr(te)eidm(tite) ift > te

With Vpr,‘ = asprnr(bp.

3.1.4 Identifiability

For fitting the model (3.10) to some real measurement Ypr € RNt of duration N;, we need to
find the set of parameters ¢, = (Vpr, ¢, Gpr, dpr). For that, we need to define a cost function

which measures the amount of errors made by the model, and solve an optimization problem.

A classical way is to consider the least squares cost function:

Cpr = argmin [y, - f(C)H2 (3.11)

¢=0 2
with f the function described by the model (3.10) for which (¢, t.) are two known constants.
f returns a vector of dimension V.

The minimization problem in Eq. (3.11) implies a preliminary study: identifiability of the
model.

A model is said identifiable if the parameters of the model can be identified uniquely. In
our case, it would mean that there exists a unique set of parameters ¢,, = (v, ¢}, a,,, d},.)

for which the cost function is minimal. Identifiability is quite important if the parameters

3.1 Physico-chemical model
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need to interpretable. For instance, interpretability is required for the VOC concentration
¢,. Identifiability is also required for using the parameters as new features for classification.
Let us illustrate this point. Assume that there are two different solutions ¢; and ¢, which
have the same cost and we cannot tell which one is the best. So, the algorithm solving the
optimization problem (3.11) will sometimes converge to ¢; and will sometimes converge to
¢-, depending on the initialization. Since initialization is often either random or arbitrary,
this will cause a problem for Machine Learning algorithms which assume that the signature
of a VOC is kind of “unique”.

In the case of the optimization model (3.11), it is easy to see that the parameters a,,
(adsorption constant) and ¢, (VOC concentration) are not identifiable. In fact, we say that
the model suffers from an indetermination. For any A € R*, the solutions %~ and ¢, A
have the same cost. A solution is to rewrite the model (3.10) by replacing a,,c, by a single
parameter z,,. However, even with this simplification, adsorption part suffers from another
indetermination.

The rest of the identifiability analysis is left in Appendix B. In fact, we will see in the next
section that the model in its current form suffers from a main problem: the constants in the
exponential terms are not well predicted by the Langmuir model.

3.2 Experimental
3.2.1 Data sets

To validate or invalidate the model (3.10), we have generated 2 different data sets from two
different eNoses using two different ways of acquisition.

One data set is generated using an automatic valve described in Chapter 2. The other data set
is generated by hand: the vial containing the VOC is brought to the instrument by a human
operator. Both data sets were generated using a 3-phase sampling from the headspace of a
vial: baseline acquisition, VOC injection, recovery. In Table 3.1, we report some information
about the two data sets.

3.2.2 Model validation

Model validation. In the previous section, we saw that the parameters a,, and ¢, are not
identifiable and need to be replaced by a common parameter z,, = ap-c,. To estimate the
parameters (., Zpr, dpr), We use a quasi-Newton algorithm called L-BFGS [Byr+95] with the
R package optim. All the parameters are constrained to be non-negative.

The fit of the model (3.10) to real data performs in fact poorly regarding the estimation of the
parameters: z,, is close to 0 and the estimated parameters depend a lot on the initialization.
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Name Acquisition VOCs Time segmentation fs P (M) N

Dataset1 Automatic Butanol, Cis-3-hexenol, Baseline 6s 6Hz 71(18) 15
Citronellol, Nonane, VOC injection 15
Phenethylamine, 5-Pinene Recovery 110 s

Data set 2 Manual Neopentane, Geranyl acetate, Baseline 20s 2Hz 96 (25) 20
Allyl hexanoate, Butanoic acid, VOC injection 20 s
Propanoic acid, Valeric acid, Recovery 20s

Isovaleric acid

Tab. 3.1.: Description of the data sets used in this chapter. f; corresponds to the number of frames per second
(sampling frequency). P stands for the number of sensors and M for the number of sensing materials.
N stands for the number of experiments per VOC. The recovery time (in the “time segmentation”
column) corresponds to the recovery time which has been recorded. In the case of the manual
acquisition (Date set 2), the actual recovery time is greater than 20 seconds to allow the complete
desorption of each VOC.

To understand the problem, we propose to simplify Eq. (3.10) by considering the following
model:

0 ift <t
Ypr(t) = § 653 (1—e” b)) =y (1) if t € [ts, te] (3.12)
ya7pT(te)€_TgT(t_te) lft > te

The model (3.12) no longer assumes any relation between the three new parameters

(O, 75, 74). Op¢ corresponds to the response at the equilibrium phase (657 = %).
Tor stands for the constant related to adsorption (Tpr = 2pr + dpr) and Tgr for the constant

related to desorption (Tgr = dp).

The fit of the model (3.12) performs much better. In Figure 3.6, we report the fits for 6
different VOCs taken from Data set 1 (see Table 3.1).

3-Pinene Butanol Cis-3-hexenol
3
1.5 1 34
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1.0 1 24
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Fig. 3.6.: Fit of the model (3.12) for 6 VOCs from Data set 1. Blue points corresponds to the raw measurement
of one chemical sensor. Red lines correspond to the fits. The time series have been truncated to 60
seconds for making easier the visualization (each experiment in Data set 1 lasts for ~ 2 min).
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Fig. 3.7.: Estimated adsorption (blue, left bar) and desorption (yellow, right bar) constants from the model
(3.12). For each VOC, the estimated parameters have been averaged over the P chemical sensors and
the N measurements from Data set 1. According to the Langmuir model, the adsorption constant must
be greater than the desorption constant. We observe the opposite in practice. The same observation
holds for the data from Data set 2.

In Figure 3.7, we report a comparison between the two constants 7. and Tgr estimated from
real data. Figure 3.7 highlights a problem if one considers the model (3.10). According to
the Langmuir model, the constant related to adsorption (= z,, + d,) must be greater than
the constant related to desorption (= d,.). With the model (3.12), we show that it is the
opposite in practice: 7, is almost always lower than Tgr. It means that the kinetics of the
binding reactions does not behave as expected by the Langmuir model. The same observation
has been done on the data from Data set 2.

This empirical piece of evidence explains the difficulty to fit the model (3.10). In Figure 3.7,
we observed that 7, < Tg,,. We can relate 75, and Tﬁr to the Langmuir parameters, meaning
that 7%, = 2z, + dpr and 7. = d,,,. So, it comes that z, + dy < dp,. Since all the parameters
are non-negative, the best solution is then to put z,, to 0. However, z,, cannot be strictly null
since z,, has also a multiplicative effect on the global response (due to the term % in the
model (3.10)). It is a balance which is complicated to manage for the optimization method
explaining the presence of several local minima.

Limitations of the Langmuir model. The fit of the simplified model (Eq. (3.12)) performs
well enough to predict the response of the chemical sensors (see Figure 3.6). However, the
Langmuir model predicts poorly the constants of the exponential terms. In Section 3.1.1, we
reviewed some assumptions which are required to apply the Langmuir model. In addition to
these assumptions, VOC concentration over time must resemble a gate function to formulate
this kinetic model. All of these assumptions can be violated in practice. Some of these
violations can be highlighted only by carrying out additional measurements. Others can be
directly stressed by the fits in Figure 3.6 by zooming in on some parts of the responses.

First, in Figure 3.8a, we highlight that the VOC concentration may not resemble a gate
function, despite the use of an automatic valve in the case of Data set 1. When we measure
VOCs from the headspace of a vial, this headspace is assumed to be stable meaning that the
vaporization of the VOC is at the equilibrium phase. By measuring, we take some molecules
of this vapor phase which results in a disruption of this equilibrium phase. If the vaporization
is fast enough compared to the injection speed, this disruption can be rapidly compensated

Chapter 3 Modeling



(a) Concentration may not resemble

a gate function (b) The chemical reactions may not be monolayer
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Fig. 3.8.: Data misfit in some parts of the responses may indicate the violations of some assumptions required for
applying the Langmuir model. The data used are from Data set 1. (a) illustrates that concentration
may not resemble a gate function and (b) illustrates that chemical reactions may not be monolayer.

in the vial. In this case, we can assume that the injected VOC concentration is constant.
If the vaporization is not fast enough, the VOC concentration will not be constant over
injection time and will decrease. Unfortunately, vaporization speed depends on the VOC. In
the case of Nonane (see Figure 3.8a), the decrease of the plateau value indicates that the
VOC concentration is decreasing during the VOC injection.

Second, in Figure 3.8b, we highlight that the response is not completely explained by a single
exponential term, for both adsorption and desorption phases. It could be explained by another
interaction than the one expected by the Langmuir model (see Eq. (3.3)). There are at least
two possible reasons for that and they both rely on the existence of an additional chemical
reaction. One reason is that the monolayer assumption may be too strong. The monolayer
assumption implies that a site of a sensing material can be occupied only by a single molecule.
In practice, it is possible that several molecules bind to a single site, leading to several layers.
In this multilayer case, it could be interesting to derive an extension of the Langmuir model,
starting off by considering two layers. However, there is currently another reason which is
just as likely as the multilayer assumption. This other reason relies on an interaction between
the gold layer and the VOC. In this case, the VOC binds not only to the sensing material but
also to the gold surface. To reduce this possible interaction, Aryballe is currently working
on a method called passivation. The idea is to protect the gold surface by covering it with a
compound, thus limiting the possible interactions between the VOCs and gold.

In the current state of the technology, we do not increase the complexity of the model since
the model (3.12) is still a good approximation of the response.

3.2.3 Feature extraction

Features. From the response of each chemical sensor, we generally extract one or two features
per chemical sensor. The vector built with the P chemical sensors is called “signature” in
the eNose community. There are a lot of possible features which can be extracted from the
response and we explore some of them.
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All these features could be combined to increase the information contained in the signature.
However, the model (3.10) teaches us something about the response, even if this model has
not been completely validated on real data. The response can likely be described with only
three parameters (v, z,r, d,). Consequently, it may be redundant to use the entire time
series or the combination of a lot of “different” features. In the following, we consider only
one feature per chemical sensor.

First, we consider as possible features the parameters estimated from the model (3.12): 65,
Ty and Tgr. We saw that the model well describes real data but are the parameters enough
discriminative to tell two VOCs apart?

Second, we consider four additional features

which we can encounter in the eNose litera- [“eady state
ture [Yan+15]. These features are extracted S?esii;fsttgfe B

directly from the response and do not re- ]

quire any model fitting. Three of them are integration

of adsorption
1 -

integration of the adsorption phase (from integration
of desorption

based on the integration of the response: the

the beginning of the VOC injection to the

. . 5 . . ' ' ' '
beginning the plateau”), the integration of v y, % o
: J beginning end of the
the desorption phase (from the beginning of of the plateau desorption

the recovery to the end of the desorption®
y P ) Fig. 3.9.: Features derived from the responses: the inte-

and the integration of the whole response gration of adsorption, the integration of des-
orption and the steady state. The integration
of the whole response (from the beginning of
the end of the desorption). Finally, we also the VOC injection to the end of desorption) is

(from the beginning of the VOC injection to

consider the steady state by averaging the not represented.

plateau (from 3s before the beginning of the

recovery to the beginning of the recovery). These four additional features are then based
both on the transitory phases (adsorption and desorption) and the stationary phase (steady
state). These features are redundant with the three parameters estimated from the model
(3.12). For instance, 65 and the steady state must be highly correlated since they represent
the same quantity (the response at equilibrium). However, the parameters 6,7, 75 and T;lr
require fitting a model while the others are much easier to obtain. So, this comparison is
interesting to justify or not the use of a model for extracting features.

>We define as beginning of the plateau the time from which the response is greater than 95% of the steady state.
We define as end of the desorption the time from which the response is lower than 5% of the steady state
during recovery. These two times are computed on the average chemical sensor for a given measurement
in order to have a fixed time range for all the chemical sensors. Another solution could be to define the
integration times for each chemical sensor. However, in this case, the integration times may be different from
one chemical sensor to another.
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All these features may be influenced by the VOC concentration. To get rid of the concentration
parameter, we normalize each signature by dividing by its />-norm. It implicitly assumes that
each feature scales linearly with VOC concentration®.

Criterions. A fundamental aspect of a feature regarding classification is that it must be
discriminative. To assess the discriminative power of a feature, we propose to use two
criterions: the classification rate and the Fisher’s ratio. The classification rate informs us
about the ability of the feature to tell the VOCs apart. We estimate the classification rate
by performing a 5-fold cross validation and by using a simple linear classifier, namely a
linear Support-Vector Machine (SVM) [CV95]. Fisher’s ratio [Fis36] informs us about the
class separability of a given feature ([Bis06], p191). Class separability is an important
characteristic of any feature. Ideally, the value of a feature is the same for samples belonging
to the same class while it is as different as possible for samples belonging to different classes.
In other words, distances between samples from the same class must be small while distances
between samples from different classes must be large. Let us define the Fisher’s ratio by

RN*P some data containing the samples of R VOCs, p,. € R” the average sample

noting X €
of the VOC r and p € R” the mean of X. We note N, the number of samples for the VOC r-.

Let us define two matrices ([Bis06], p191):

R
Sw=Y. > @ —p) (@, —p,)" and Sy = > No(p, —p)(p, — )T
r=1

r=1neVOC r

S, and S} are referred to as the within-class covariance matrix and the between-class
covariance matrix. S, evaluates how far from each other are the samples belonging to a
same class. The greater the within-class covariance is, the more spread-out the classes are.
S}, evaluates how far from each other are the different classes. The greater the between-class
covariance is, the farther from each other the different classes are. A good feature has a small
within-class covariance and a high between-class covariance. The Fisher’s ratio is computed
by combining the two matrices and is equal to Tr(S,,'S};)”. The greater the Fisher’s ratio is,
the better.

Results. For each feature, we first reduce the dimensionality of the data. The reduction is
based on PCA. Given the small number of samples used here, we reduce the dimensionality
to 3, by projecting the data onto the first 3 Principal directions (see Figure 3.10). Both the
classification rate and the Fisher’s ratio are computed in this subspace. Results are reported
in Table 3.2.

All the features perform equally well according to the classification rate. However, the Fisher’s
ratio shows some differences amongst the features and reveals that the features extracted

®Note & € RT the unnormalized signature of a VOC and ¢ the VOC concentration. If each feature in & scales
linearly with c then & = cx with x the concentration-free version of &. Consequently, by taking the £2-norm of
=z

12, Al ],

"Tr(-) is the Trace operator, meaning the sum of the diagonal terms of a matrix.

&, we have ||Z||, = c¢||x||,. Hence,
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Fig. 3.10.: Projection of the data onto the two first Principal directions for Data set 1 (top) and Data set 2
(bottom). Left figures use the steady state as feature while right figures use ¢ as feature. Maps are
centered and scaled for visual consideration.

directly from the response perform better. The parameters extracted from the model perform
poorly according to class separability, especially the desorption constant 7¢. The best features
according to the Fisher’s ratio are the classical steady state and the integration of the whole
response. Consequently, we did not find a clear advantage of using the features derived from
a model.

We also tested the discriminative power of a combination of two different features. Since
the classification was already almost perfect for all the features and for both data sets, the
classification rate cannot tell us if there is a benefit of using several features instead of one.
The Fisher’s ratio shows little or no improvement by combining two features instead of using
the best one (integration of the whole response or the steady state).

These results are obviously dependent on the data sets that we have used and especially on
the VOCs studied. It may exists other data sets which would have shown different results.
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From the model Directly from the response

v 4 g Integration Steady
Ads. Des. All state

Dataset1 Class. rate (%) 99 98 100 100 100 100 100
Fisher’s ratio 189 66 2564 2207 698 3971 3038

Dataset 2 Class. rate (%) 99 99 99 99 99 99 100
Fisher’s ratio 63 41 155 196 84 268 297

Tab. 3.2.: Discriminative power of each feature, for each data set. For the Fisher’s ratio, the greater, the better.
In bold, we highlight the best features according to the two criterions.

However, given the results that we have obtained, we will not use the Langmuir model to
extract features in the rest of this thesis. In the next chapters, we will focus on features
extracted directly from the response such as the steady state or features based on integration.

As a final remark, it is interesting to note that the Fisher’s ratios are much higher for Data
set 1 than for Data set 2, whatever the feature. These differences could be explained by the
acquisition method. Data set 1 has been acquired using an automatic valve (see Chapter 2)
while Data set 2 has been acquired by hand. The latter can be affected by several variations
caused by the human operator (e.g. the way the vial is brought to the instrument is never
strictly identical), explaining a larger within-class covariance. However, the Fisher’s ratio
is not only dependent on the within-class covariance but also the between-class covariance.
This covariance is greatly influenced by the choice of the VOCs and Data set 2 contains classes
which may be less separable (especially the four VOCs from the acids family). To better
quantify the influence of the automatic valve, we can look at the trace of the within-class
covariance matrix for a given feature. This value corresponds to the total variance inside the
classes. If we select the steady state as feature, we find that Data set 2 shows clusters which
are ~24 times more spread than the clusters from Data set 1. This observation is intuitive but
can be important if one studies less separable classes than those we studied. However, the
value 24 must be taken with caution since it depends on the feature and the two data sets are
not only differing on the acquisition method but also on: the VOCs used, the eNose tested
(not the same sensing materials), the environmental conditions, etc...

3.2.4 Conclusion

The model proposed in Section 3.1 allowed us to understand the different physical and chem-
ical phenomena which are at the heart of the technology used by Aryballe’s eNose. However,
we showed with real data that this model presents weaknesses and that a simplification was
useful bo better fit real responses.

We discussed about the possibility of using the parameters of the model as new features
for classification. We showed that these parameters perform well according to classification
performance. However, they perform less than more classical features according to a criterion
based on class separability. We found that the classical steady state and the integration of the
whole response perform significantly better.
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In conclusion, the modeling of the response of Aryballe’s eNose did not allow us to find better
features for classification purpose. However, the Langmuir model may be useful for another
task than feature extraction: Source Separation. For now, the formulation of the model is
based on the assumption that we measure a single VOC. In the following, we modify the
Langmuir model to take into account a gas mixture. This modification leads us to a non-linear
mixture model for the equilibrium phase.

3.3 A non-linear mixture model

This section has been published in the Proceedings of the SAM conference in 2018°%:

[hal-01802358] P. Maho, P. Comon, and S. Barthelmé
“Non-linear source separation under the Langmuir model for chemical sensors”
In: 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing,
2018, Sheffield (United Kingdom)

In Section 3.1, we described a model of the response of a chemical sensor over time. This
model is the result of the combination of a chemical model (the Langmuir model) and a
physical model describing the SPRi. However, the chemical model makes a strong hypothesis:
the injected VOC is pure. In practical applications, it is likely that most of the gases detected
by an eNose will be gas mixtures rather than pure VOCs.

For non-specific chemical sensors, we saw in Introduction (Chapter 1) that each VOC com-
posing the mixture will interact with the chemical sensor. So the response of a non-specific
chemical sensor to a gas mixture is then a non-trivial combination between VOC signatures
and VOC concentrations. A solution to make the task easier would be to use specific chemical
sensors which would respond only to a given VOC. However, the use of non-specific chemical
sensors by eNoses is actually a requirement to detect a broad range of different VOCs (a
specific chemical sensor would theoretically detect only a single VOC).

A fundamental question is then: how can we relate the response of Aryballe’s eNose to the
gas mixture (concentrations and signatures)? This question is fundamental for at least two
reasons. First, it is simply important to understand how the measure of the instrument is
generated not even in the pure VOC case (like in the previous section) but also in the more
realistic case of a gas mixture. Beyond the sole understanding, it is also crucial for practical
applications. In practice, one could use the global response of the eNose to a gas mixture as
another signature that the instrument has to learn, just like the signature of a pure VOC. To
illustrate this fact, we can use a well-known example of gas mixtures: perfumes. A perfume
is sometimes composed of several hundreds of different VOCs, which is probably one of the
most difficult mixture to study. A perfume can likely be identified by knowing which VOC
is composing it and at which concentration. These differences in the compositions of two

81t is one of the first published works of this thesis, and it relies on a study made during the first PhD year. It
details a non-linear model for describing the response of the instrument in presence of a gas mixture. In
Chapter 6, we present another study about gas mixtures and we will see that a linear approximation performs
actually well on real data. This study in Chapter 6 is subsequent to the work presented here.
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different perfumes will likely generate two different signatures with an eNose. Therefore, a
solution to identify these two perfumes could be to learn to differentiate them with Machine
Learning algorithms, just like if they were two pure VOCs. However, this solution will
likely fail if the composition of the perfume changes. For instance, it is well-known that
a perfume changes over time due to the exhaustion of the most volatile compounds. In
this case, the results will be greatly dependent on the data used for the learning phase. A
more advantageous solution (but also much more complicated) would be to directly identify
the composition of a perfume, meaning to decompose the measurement’ according to VOC
signatures and VOC concentrations. In the Signal Processing community, this is referred to as
Souce Separation or Unmixing. To be able to decompose the measurement, we need then
to formulate a model relating the response to concentrations and signatures.

In this section, we relax the hypothesis made in Section 3.1: we no longer measure a pure
VOC but a gas mixture. We first define a theoretical non-linear mixture model describing how
the equilibrium phase (i.e. the steady state) relates to concentrations and signatures. Then,
we provide some theoretical properties of this new mixture model. Finally, we develop an
algorithm to estimate both the signatures and the concentrations from measurements. The
validation of this algorithm is based on numerical simulations.

3.3.1 Formulation

Langmuir mixture model. Let us assume that we measure a gas mixture composed of R
VOCs, denoted by Ay, ..., Ag. To simplify the notation used to formulate the model, we
first consider only one chemical sensor. To define the model, we need to reformulate the
assumptions of the classical Langmuir model (see Section 3.1.1) [MB31]:

* the sensing surface is perfectly flat.

* the interaction is monolayer and each site can be occupied by only one VOC at a time.
* all the sites are equivalent.

* there is no interaction between the R VOCs.

Under these assumptions, each one of the R VOCs will interact with the sensing material S by
a binding reaction. Considering all the reactions as independent of each other, there are R
chemical reactions occurring on the surface:

A +S C;: A,S (3.13)

°It would be actually impossible to decompose a perfume according to VOC signatures and concentrations,
at least with the current eNoses. For the decomposition to be possible, a basic assumption is that we have
more sensing materials than there are VOCs actually mixing. Even if we consider simple perfumes with
only one hundred VOCs, the actual number of sensing materials used by an eNose is far much smaller. For
instance, in this thesis, Aryballe’s eNose uses generally ~20 different sensing materials (which is still much
more than in other systems). Even if these sensing materials are replicated a large number of times to have
more chemical sensors, it does not solve the problem. In fact, the information supported by two replicas of a
same sensing material is likely much lower than the information supported by two different sensing materials.
So, the research of new sensing materials is fundamental for these applications to be possible. This research is
currently in progress [Hur+19; Gag+20]
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where a, and d, respectively stand for the adsorption and desorption constants of VOC r.

Similarly to Section 3.1.1, we can use the

notion of free/occupied sites to describe the ° . . ¥
chemical interactions. In the case of a gas

mixture, each free site can be occupied by

one (and only one) of the R VOCs. So, the 5{

number of occupied sites is no longer de- occupied

site
pendent on a single VOC as in the classical

. . free site Prism
Langmuir model. In the model formulation,

we need to consider that the number of oc-

cupied sites is now dependent on the R dif-
ferent VOCs. We can then rewrite Eq. (3.2)
for describing the number of sites becoming occupied by the VOC r, taking into account the
R VOCs:

Fig. 3.11.: Free/occupied sites for a gas mixture.

d[A,S]s(t) u
= alA ; d,[A-S]s(2) (3.14)

Similarly to Section 3.1.1, we can assume that [A,](¢) is constant during injection, of value c,,
and null outside injection. We can also easily derive a differential equation with respect to
the fraction of occupied sites by the VOC r, 6,.(t) = %:

R
dg&ft) = aper (1= ) 0i(t)) = di0,(t) (3.15)

=1

If we wait for a sufficiently long time, the system of chemical reactions will reach an equilib-

rium phase, meaning that d9 (t) = 0. In this case, Eq. (3.15) becomes:
R
arer (1= ) 605%) = d,.0% (3.16)
i=1
R
By summing over the VOCs, we can first isolate Z 0;4. We plug k, = §=:
r=1
R
(3.16) <= koo 2 059 = o
R 'r R
= ke (1- 2 059 = Z g (3.17)
r=1 r=1
R R
- 2 agq _ Zr 1 k rCr
r=1 1+ Zrzl kTCT
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By replacing Eq. (3.17) in Eq. (3.16):

gea — _ Prer (3.18)

R
1+ 2 kyc,
r=1

The model (3.18) is an extension of the Langmuir model in the case of a gas mixture of R
VOCs, derived by E. C. Markham and A. F. Benton [MB31].

Langmuir-SPRi mixture model. Eq. (3.18) corresponds to the chemical model but the re-
sponse of Aryballe’s eNose results also from other phenomena, namely SPRi (the transduction
method). In Section 3.1.2, we described SPRi measurement as being proportional to the
fraction of occupied sites. We recall that this approximation works if the thickness e, of the
medium formed by the adsorption of the VOC on the sensing material is small enough. We
still assume that this assumption is valid in the case of a gas mixture. Therefore, we can write
that:

AR = Z[S]ngrmT x 624 (3.19)

T
with AR;Y the reflectivity (after baseline subtraction) at the equilibrium phase due to the
adsorption of the VOC r. S and L, are constants related to SPRi settings and [S]; is the
initial number of free sites. We take the same notation as in the previous section by noting:

Qspr = L%, ¢ =[S]s and 5, = f;ﬁ: m,.. We note %, the SPRi response during equilibrium phase
for the VOC r:

~ krcr
Tr = asprPn)y X ———F—— (3.20)

R
1+ 2 kyc,
r=1

However, we do not directly measure the fraction of occupied sites of each VOC r. Our
measure is more global and is related to the total fraction of occupied sites. So the model
(3.20) is not the final one.

To find a model leading to the global response # that we actually measure, we make one more
assumption. We already assumed that the thickness ¢, of the medium is small enough to
assume the linearity of the SPRi response. We assume that this assumption also implies that
the medium will be seen as being “homogeneous” by the SPRi, so the individual responses,
Z,, simply add up:

R
Z kympcr

T = Qsprh % (3.21)
1+ Z krc,
r=1

We can notice that & corresponds to the steady state feature that we used in Section 3.2.3 for
classification purpose.

3.3 A non-linear mixture model
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Finally, we propose to simplify the model (3.21) by noticing that a simple normalization can
theoretically remove the contributions of aspr and ¢.

For that, let us assume that before the experiments with gas mixtures, we carry out a
preliminary measurement with a pure VOC, called the VOC 0, at concentration ¢y having the
parameters ag and dy. For any VOC, one can reach a maximum concentration from which the
response will no longer change (even if we increase over and over again the concentration)
[HomO6] (p78). This is due to the fact that all the sites of the sensing material S are occupied
at this boundary concentration. In other words, the fraction of occupied sites 6y equals 1 and
is then no longer dependent on ayg, dy or ¢y. We can show it mathematically. Let us assume
that we are at the equilibrium phase of this preliminary measurement (so we have waited a
sufficiently long time), and note ;! the fraction of occupied sites:

apgCo 1

d
o> 2 — g5 = 1

ao do + aoco —agl‘go +1

If 657 ~ 1, then the SPRi response at equilibrium becomes simply #y ~ asprgmno, with
no = g—’;?mo. So, theoretically, we can easily remove the influence of the parameters ogp, and
¢ on the response of any future measurement. To illustrate that, let us assume that we now

measure the steady state value Z of a gas mixture. We can normalize Z using Zg:

R R
Z kynrcy Z krnrcr
1 ~ r=1

T Qspr =
rT = — = pd))(rl = —

Zo Olsprﬁbno R Mo R
1+Zkzrcr 1+2/€rcr
r=1 r=1

In practice, this trick would only require to perform several experiments with a chosen VOC

(3.22)

(the VOC 0) and to identify this max concentration. The simple normalization provided by
Eq. (3.22) is still theoretical and we did not try it in practice, but we assume in the following
that we can apply it for removing the constants «spr and ¢ (it makes the formulation easier).
As a remark, 79 is a known parameter since we know the VOC 0, so we can multiply the
normalized response x by 7. Therefore, the final model that we consider is the model after
normalization and multiplication by 7y:

R
Z krnycy
_ r=1
r= R
1+ Z krc,
r=1

The model (3.23) corresponds to the theoretical response at the equilibrium phase of a gas

(3.23)

mixture of R VOCs, but considering only one chemical sensor and one experiment. In practice,
an eNose has an array of P chemical sensors. We make the assumption here that each one
of the P chemical sensors has a different sensing material (or that we have averaged the
replicas), so we are in the case P = M (with M the notation for the number of sensing
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Steady state responses X Affinity K Concentration C Mass M
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Fig. 3.12.: Graphical representation of the four matrices used in the model (3.25).

materials). In fact, the replicas of a sensing material are theoretically uninformative according
to the Langmuir model (they share the same parameters). In practice, two replicas can
however respond differently, but we currently do not know why (and especially how to model
these variations). Several experiments are also carried out, say N experiments. To highlight
these dimensions in the model (3.23), we note p and n the subscripts referring respectively
to the chemical sensor and to the experiment index. The affinity constant k&, is dependent on
the chemical sensor. The concentration ¢, is dependent on the experiment (the proportion of
each VOC may vary from one experiment to another). The model (3.23) becomes:

>
kprnr Crn
Tpp = 72— (3.24)

with z,,, the steady state response of the chemical sensor p during experiment n. By consider-
ing all the experiments and all the chemical sensors, we can propose a matrix formulation of
the model (3.24). Let us note:

e z, € RP, the column vector containing the P steady state values of the P chemical
sensors during the experiment n.

e ¢, € RE the column vector containing the R VOC concentrations during the mixture
injection in the experiment 7.

* k, € R, the column vector containing the P affinity constants of the P chemical
sensors for the VOC r.

* X = [x1,...,xy] € RP*N | the measurement matrix containing the steady states.

* C =[ci,...,cy] € RE*N the concentration matrix.

o K = [ky,...,kr] € RP*! the affinity matrix.

e M e RE*E 3 diagonal matrix containing the R parameters 7, (related for instance to
the mass).

* [ the Hadamard (i.e. entrywise) division.
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Then, the model (3.24) can be written as:

X =KMCXA(1ply + KC) (3.25)

In Figure 3.12, we provide a graphical representation of the four matrices X, K,C and M.
We referred to the model (3.25) as the Langmuir-SPRi mixture model. We did not find the
description of this model in the literature so we provide in the next section some theoretical
properties.

3.3.2 Theoretical results

In practice, X € RP*Y is a known data matrix extracted from the steady states of N
experiments using the Aryballe’s eNose with P chemical sensors. In these NV experiments,
a gas mixture composed of R VOCs at different concentrations has been measured. The R
VOCs have certain affinities with the P chemical sensors and this information is contained in
K € RP*E, The responses X are dependent on the concentration of the R VOCs during the
N experiments and this information is contained in C € Rf*¥ In addition, the responses
are also dependent on some parameters only related to the R VOCs (e.g. mass) and this
information is contained in the diagonal matrix M ¢ R®*®, We assume that the three
matrices K, C and M gave us the observed data matrix X according to the non-linear model
(3.25). These three matrices carry important information about the VOCs and the mixtures,
and K and C are particularly important for obvious reasons (K gives us the identity of each
VOC while C quantifies the presence of each VOC in the mixtures). K,C and M can be
assumed to be known but, in practice, at least one of these matrices will be unknown and will
need to be estimated from the data. We can distinguish three possible types of estimation
problem:

* Supervised unmixing or Regression. M is known. Either K or C is unknown.
Regression will be studied on real data in Chapter 6 using a simpler model (but which
can be derived from the Langmuir-SPRi mixture model) and assuming that K is known.

* Blind Source Separation. M is known. Both K and C are unknown. In the next
section, we develop an algorithm for estimating both K and C and we validate this
algorithm on simulated data.

* Fully Blind Source Separation. K, C and M are unknown.

These three problems are not on the same level of difficulty for a simple reason: the greater the
number of parameters to estimate, the harder the problem. So Fully Blind Source Separation
is clearly not trivial and may be impossible to solve (in particular, it may exist many different
possible parameters (K, C, M) giving the same data X). In fact, we did not study this case
and our results are limited to the Regression case and to the Blind case. So, in the following,
we always assume that M is known. We would like to stress that this assumption is strong
for a simple reason: M depends on the R VOCs so, assuming its knowledge implies that we
know the VOCs which are mixing or at least that we know each parameter 7, which can be
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limiting (we recall that 7, = %mr, with m, the VOC mass and %;’ the change in refractive
index of the VOC with change in concentration).

Supervised unmixing
Either K or C is unknown and the rest of the parameters is assumed to be known.

If K is unknown, then we assume that we have more experiments than there are VOCs in
the mixtures, i.e., N > R. If C is unkwown, then we assume that we have more chemical
sensors than there are VOCs in the mixtures, i.e., P > R. These two conditions simply state
that we have enough equations (= P x N) compared to the number of unknown parameters
(= P x Rif K is unknown or R x N if C is unknown), which is a prerequisite to be able to
estimate either K or C.

To find identifiability conditions for K or C, we rewrite the model (3.25) by noticing that it
is separable across experiments:

(3.25) < Vn, z,[(1p+ Kc,)=KMec, (3.26)
— VYn, x, = (KM — diag(x,)K)c, '
with [-] the Hadamard (i.e. entrywise) product.

It is also separable across chemical sensors, noting ) € RY the p™ row of X and k) € RF
the p™ row of K:

(3.25) <« Vp, = =k,(Cdiag(z})— MC) (3.27)

Lemma 1. Let H, Y KM — diag(x,) K. Then c, is identifiable if and only if H,, is full rank.

Similarly, let G, %f C’diag(acg) — MC. Then k; is identifiable if and only if G, is full rank.

Proof. The proof is straightforward: assume there are two solutions ¢,, and ¢},. Then H ¢, =
x, and H,c| = x,. By subtraction, H, (¢, — ¢],) = 0p. Since H,, is full rank, we have
necessarily (¢, — ¢},) = Op. The proof for k; is the same. O

Blind Source Separation
K and C are unknown and M is assumed to be known.

In this case, it is easy to see that we have P x N equations compared to P x R+ N x R

unknown parameters. A prerequisite without any additional information (such as constraints)

is that % < 1, which can be rewritten as % + % < 1. Consequently, it is interesting

to note that the condition P > R and N > R is not enough to satisfy this prerequisite (e.g.

take P = N = R). In the following, we assume that P > 2R and N > 2R, ensuring that we

3.3 A non-linear mixture model
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have enough equations compared to the number of unknown parameters'® (however other
situations work too such as P > R and N > 3R, etc...).

Some limiting cases. The Langmuir-SPRi mixture model in Eq (3.25) is a non-linear model.
For the three estimation problems introduced before, a non-linear model is by nature more
complicated to handle than a linear model. However, it is interesting to note that the
Langmuir-SPRi mixture model can be simplified considering some specific experimental
scenarios. In these scenarios, the problems may be easier or harder.

* Low concentration or low affinity regime. When we deal with an application where low

concentrations are expected, this leads to a simpler version of the model (3.25). Let us
assume C' « 1 (i.e. each coefficient in C' is much smaller than 1) and K ~ O(1) (i.e.
each coefficient in K is dominated by 1), we can simplify (3.25) by a 0-order Taylor
expansion:

X~ KMC ~ KC (3.28)

with C = MC (recall that M is diagonal).

The model (3.28) is the well-known linear mixture model. For instance, identifiability
conditions in the Blind case have been addressed in the literature (see for example
some conditions for Non-negative Matrix Factorization [HSS14] or the conditions
of Independent Component Analysis [Com94]). Since the roles of K and C are
symmetrical in the model (3.25), the approximation also works for: K « 1 and
C ~ O(1). In Chapter 6, we use the model (3.28) on real data obtained from robotic
applications. Finally, we can note that the linear approximation works even better in
the case of low affinity and low concentration regime.

Saturation regime. At the opposite end, if we work with really high concentrations or
with VOCs having a really high affinity with the sensor array, then KC » 1 (i.e. each
coefficient in K C is much greater than 1) and (3.25) becomes harder:

X~KMCWKC (3.29)

Why is the model (3.29) harder than the model (3.25)? It is a matter of identifiability.
The model (3.29) is clearly suffering from an indetermination.

Let (D1, D3) € RP*P x RN*N be two diagonal matrices such that none of the diagonal
terms is null, then:

DiKMCD;yYD1KCDy = KMCQUKC (3.30)

1%Tn the paper [MBC18] that we published in the SAM conference (2018), we have made a mistake by considering
P > Rand N > R, at least for the theoretical part. For the numerical simulations, we had chosen
P = N = 100 while R was max 15. So, for the numerical results, the number of equations was actually
greater than the number of unknown parameters.
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The indetermination (3.30) means that, for instance, each concentration vector ¢,, € R
for an experiment n can be multiplied by a factor ¢ € R* while giving the same result.
Fortunately, this version of (3.25) is unlikely to appear in practice since it would be
useless to put the sensor in a saturation regime.

* VOCs with the same parameter 7,. As a final limiting case, let us consider some VOCs
having the same parameter 7, = . In this case, M is simply nI, so (3.25) becomes:
1
~-X =KC(1p1k + KC) (3.31)
n
This particular model falls into a class known as Post Non-Linear mixtures [TJ99; AJO5].
This kind of models means that the non-linearity can be seen as a non-linear function
that we have applied to the linear model. Therefore, by simply applying the inverse
function to the data, we can then assume the linear model. In our case, the component-

X

1-z
The model (3.31) is interesting but rather unrealistic in an application prospect, as it

wise inversion g(x) = would allow us to recover the linear model X, = KC.

considerably limits the set of VOCs that can be mixed together.

Finally, it is interesting to note that the model (3.31) corresponds to the Langmuir
mixture model if we do not consider the SPRi measurement (the matrix M comes only
from the SPRi model). In other words, the Langmuir mixture model can be seen as a
hidden linear model. Therefore, it may be easier to handle than the Langmuir-SPRi
mixture model that we consider.

Identifiability. First, a usual trivial indetermination in a Blind Source Separation framework
is the source permutation, at least in the simple case where the model is linear. To illustrate
this indetermination, let us assume the linear model X = K C. Then, for any invertible matrix
Q € RF*E we have X = KQ 'QC = KC so the solutions (KQ ™!, QC) and (K, C) are
equivalent. By constraining the problem, we can limit the set of invertible matrices @ causing
the indetermination to the set of permutation and scaling matrices (see for instance the
indeterminations in the case of Independent Component Analysis [Com94]). Permutation
means that we can switch, for instance, the first and second columns of K while switching
the first and second rows of C' and we will still have the same resulting matrix X.

It is clear that the model (3.25) suffers from a scaling indetermination, meaning that for
any diagonal matrix D € RF*F  the solutions (KD !, DC) and (K, C) are equivalent.
However, it is interesting to note that the model (3.25) does not suffer from the permutation
indetermination, subject to a weak assumption.

Indeed, let Q € R**F be an invertible matrix, and keeping in mind that M is diagonal, we
have:

KQMQ'lCn(1,15 +KQQ™'C) = KMCRn(1,1%, + KC)

3.3 A non-linear mixture model
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If and only if,

QMQ™! = Ir
< QM = MQ
& Vi, (QM);; = (MQ);
S Vi, SE gemey = 2 migr (3.32)
& Vi Qijmy; = Miigij
& Vi#j ijmy; = Miiij
& Vi qi; =0 or  mj; = my

Thus, if we assume that each VOC r of the mixture has a different parameter 7,, meaning
that Vi # j, m;; # my;, then the only trivial indetermination which remains is the scaling
ambiguity.

In conclusion, the identifiability of the model (3.25) can be only obtained up to a diagonal
matrix (scaling indetermination). However, proving the identifiability of the model (3.25) is
difficult and we only provide a necessary condition.

Proposition 1 (Necessary condition). If ¢, (resp. kZ) is identifiable Vn (resp. Vp), then K
(resp. C) is full rank, or M is not proportional to the Identity matrix.

Proof. Let us prove the statement for K, since a dual reasoning holds for C. The proof
is by contradiction. Assume rank(K) # Rand M o Id, then Jv € R"\{0x} such that
Kv = 0p. Hence diag(x,,)Kv = 0p. On the other hand, because M oc Id, K Mv = Op.
Hence H,v = 0p, which prevents identifiability from Lemma 1. O

3.3.3 An algorithm in the Blind Source Separation framework

In the previous section, we did not find a sufficient condition for guaranteeing the identifia-
bility of the Langmuir-SPRi mixture model, when both K and C' are unknown (recall that
M is known). However, in this section, we study to what extent the model inversion (i.e.
estimation of K and C from X) is possible in simulation.

In the following, we note the Langmuir-SPRi mixture model as:
Z(K,C)=KMCQ(1p1} + KC)

Optimization problem. We need to first define a cost function, measuring the error between
some data X € RP”*Y and the data predicted by the model .Z (K, C) using the parameters
K e RP*E and C e RE*N . A classical way to do that is to consider the least squares cost
function:

T(K,C)=|X - Z(K,C)|> (3.33)

where ||-|| » is the Frobenius norm (square root of the sum of the squared terms of a matrix).
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By noticing that K and C are non-negative (recall that K corresponds to chemical affinities
and C to VOC concentrations, so all these terms are “naturally” non-negative), we need to
solve the following optimization problem:

K,C = argmin T(K,C) (3.34)
K=>0,C>0

where K > 0 means that all the terms of K are non-negative.

The previous study about some limiting cases of the model (3.25) shows that if the terms
of the product K C becomes too large (saturation regime), then the model suffers from an
indetermination. This indetermination may lead to unstability concerning the estimation of
the parameters. To avoid this “non-identifiable” area, we propose to constrain the product KC
assuming that we are far from the saturation regime (i.e. high affinity or high concentration).
A way to do that is to constrain the max-norm: | K C||max def max;;(|(KC);;|), meaning the
maximum value of the product KC. We assume that the max-norm is lower than Q (a

parameter to define), leading to the new optimization problem:

K,C = argmin Y(K,C) (3.35)
K>0,C20
1K Cllmax <2
Optimization method. Our problem is somewhat similar to the Non-negative Matrix Factor-
ization (NMF) problem, putting the fact that NMF considers a linear model aside. A way to
solve the NMF problem is to use Alternating Least Squares (ALS) [PCB10]. We propose to use
the same approach for solving Problem (3.35).

The idea of ALS is simple. Instead of solving directly Problem (3.35), we solve two simpler
subproblems and alternate the two solutions until convergence. For instance, for estimating
K, we consider that we have an estimation of C, say the estimate C;, and we solve the
subproblem:

K;= argmin Y(K,C;) (3.36)

K=0
| KCillmax <

Solving Problem (3.36) is easier than solving Problem (3.35) (less parameters) and it gives
us an estimation of K, the estimate K ;. We can derive easily a similar subproblem for having
a better estimation of C using the estimate K ;. This will give us a new estimate €. that we
can use for estimating K, and so on and so forth. We alternatively solve the two subproblems
until the two estimates converge (for instance, by stopping when the cost no longer changes).

This is how ALS works, however, Problem (3.36) is not so straightforward to solve. This is
due to the constraint enabling to avoid the saturation area, i.e., || K C'|max < €.
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Algorithm 1 Alternating Least Squares for estimating (K, C)

Require: Cy, €, imax
while |T(K¢+1, Ci+1) - T(Ki7 Cz)| > € & 1< imax dO
K;;1 = argmin YT(K,C;
Q
O§K§m
Cii1= argmin  YT(K;y1,C)
__ o
0<C< R|K ;41 |max
1=1+1
end while
return K, C;

To simplify the problem, we propose to relax the constraint by noticing that the ||||max is
R-submultiplicative'!:
”Ké’z'Hrnax < RHKHmaxHéiHmax (337)

So, instead of upper bounding | K C;|max, we can make the problem easier by upper bounding

R| K| max | Ci|max- It is easier in that the influence of the unknown parameter K in | K C;|max

is now separated from the influence of the “known” parameter C;. So, we can simplify

Problem (3.36) by:

K;= argmin 7YT(K,C)) (3.38)
0<K<

Q
R||C} [max

Again, a similar problem than Problem (3.38) can be derived for C.

For solving Problem (3.38), we use a quasi-Newton method called L-BFGS [Byr+95] with the
R package optim. This algorithm is particularly suitable here since it can easily incorporate
the bound constraints introduced in Problem (3.38) (using the gradient projection method).

The algorithm for estimating K and C' is reported in Algorithm 1. In the following, we
evaluate this algorithm in simulation.

As a final remark, we noticed in the previous theoretical section that the model is separable
either across chemical sensors or across experiments (see Eq. (3.26) & (3.27)). So, Problem
(3.38) can be seen as P subproblems. In other words, instead of solving Problem (3.38), it is
equivalent to solve the following P subproblems (corresponding to Problem (3.38) for each
Tow):

k= argmin ~ Y(kT,C)) (3.39)

2
o<kTg—5
=Y T R|IC; Imax

'Eq. (3.37) is easy to prove. Let K € R”*" and C € R™*" be two matrices.
Recall that ”KC”max = maxw(|(KC’)z]|)
Vi,j  [(KC)ij| = |2, kircrsl 2. Kircrs]
2 |kirllers]
2., maxpg(|kpq|) maxpg (|cpql)
R| K | max || C | max

/AN

S0, | KCmax < B[ K|lmax|Clmax
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where ’2’;@' e RE is the p™ row of the i™" estimate K. Again, a similar formulation can be
easily derived for C by considering the N columns of C;. In Algorithm 1, we do not represent
the P and N subproblems to keep the formulation compact. However, in the developed R
code, Problem (3.38) is solved by considering the P subproblems in Eq. (3.39) (and the same
applies to C).

3.3.4 Simulation

Simulation settings. To validate Algorithm 1 and assess its performance in the presence of
noise, we carry out simulations. The number N of experiments is set to 50. The vector of
parameters 7, is [10,20, ..., 140, 150]" (we take the 2 first parameters when R = 2, etc...)
and Q = 100.

We present two scenarios. First, the number of sensors is constant, with P = 50, and the
number of VOCs in the mixtures is increasing (R = 2,5,10,15). Second, the number of
VOCs in the mixtures is constant, with R = 5, and the number of sensors is increasing
(P = 6,12, 24, 50).

We generate the true parameters K* € R”*® and C* € R**" according to an exponential
law with A\ = 1.5. The columns of K* are normalized in order to avoid the saturation regime
(and any simulation is discarded if | K*C*|max > €2). The noise is additive and Gaussian
with zero-mean and standard deviation o,,. When negative values are created due to noise
addition, we clip them to 0. ¢,, depends on the Signal-to-Noise Ratio (SNR) defined as:

1X |7

SNR = 20logo( %) with 0% = o

On

(3.40)

All our simulations are carried out with noise by considering an SNR going from 40dB (little
noise) to 0dB (noisy). For each SNR, we carry out 50 different realizations (i.e. we generate a
new K* and a new C*, and so a new X). For each realization, Algorithm 1 is used, starting
from 10 different random initializations €. These 10 initializations may give 10 different
solutions. Consequently, for a given realization, we take as final solution (K, C) the solution
having the lowest cost out of the 10. Finally, the criterions used to assess the estimations (see
next point) are averaged for a given SNR over the 50 realizations.

Evaluation. As shown in Section 3.3.2, the parameters (K*,C*) are identifiable up to
a diagonal matrix when the parameter 7, is different for each VOC. In this case, there is
theoretically no permutation issue. However, in practice, we observed that permuted versions
of (K*, C*) are local minima in which Algorithm 1 can converge. In the noise-free case and
when R is small, these local minima may not be a problem since their cost is always greater
than O (the cost taken in (K™, C*)), so performing several initializations can help to converge
to (K*,C*). However, there are R! local minima (i.e. the number of possible permutations)
so even in the noise-free case, when R is large, these local minima are a problem (for instance,
if R = 10, then there are more than 3 millions of possible local minima). In the noisy case,
it may be hard to distinguish between the local minima and (K*, C*), whatever the value
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of R. Consequently, we have to remove this permutation ambiguity to correctly assess the
performance of Algorithm 1.

To remove the permutation ambiguity, we use the correlation between K and K*. More
precisely, we start by finding the two columns of K and K* which have the highest correlation.
These two columns are associated and deleted from the two matrices K and K*. The
procedure is then repeated for the subsequent columns. The sequence found for rearranging
the columns of K is also used for rearranging the rows of C.

To remove the scale ambiguity, we multiply K by a diagonal matrix D € RE*E, The rth

* A
diagonal term of D corresponds to HZ”Q C is multiplied by D~ 1.
"2

As a remark, scale and permutation ambiguities are removed here thanks to the knowledge of
K* (we could have considered equivalently C*). In practice, this is what we are looking for
so K* is unknown. A solution could then be to use some calibrating samples to get rid of
these two ambiguities.

To assess the estimates (K, C'), we use two measures: a correlation measure'? and a measure
¥ based on the sum of squared errors:

KT - K]

* ¥ T 1 4 % 7
U(K* K) &, and Cor(K* K) = E;cor(kr,k:r) (3.41)

The closer to 0 W, the better. The closer to 1 the correlation measure, the better.

Cost evolution. Convergence properties of

Algorithm 1 have not been theoretically in-

vestigated yet. In Figure 3.13, we represent 11
the evolution of the cost for 10 different ini-

Q
< Y]
tializations. Algorithm 1 seems to converge, = s
.. (o I |
at least to local minima. ElRE
6- T T T T T
. . 0 50 100 150 200
N & P constants, R variable. In this sce- ? 7
1teration 2

nario, the number of VOCs R is increasing
Fig. 3.13.: Evolution of the cost over iterations for 10

while the number N of experiments and the random initializations (each color stands for
number P of chemical sensors are fixed. The an initilization). Algorithm 1 is stopped if

. L. the difference between two successive costs
values of N and P are set to 50. Since R is in- is lower than 107*, or after 200 iterations.
creasing, the number of unknowns increases Here, R =5, P = N = 50 and SNR = 20dB.

. . . Top figure is a zoom.
while the number of equations remains con-

stant. However, even in the hardest case

12The correlation is defined as:

V(z,y) € R?, cor(x,y) = N> Z(%lfv;);f/)g; _(z) — )2

where ~ stands for the mean of the vector.
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Fig. 3.14.: Results for N = P = 50 and R = 2,5,10,15. Each color stands for a different R. Left figures
correspond to the ¥ measure and right figures to the correlation measure (see Eq. (3.41)). The closer
to 0 ¥, the better. The closer to 1 the correlation measure, the better.

considered here (R = 15), the number of equations is much greater than the number of
unknowns. To give a general idea of the values of R that we have taken, in the literature,
studies with real data often deal with binary gas mixtures and sometimes ternary mixtures.
However, to our knowledge, gas mixtures with R > 5 have never been studied in practical
applications.

The results are reported in Figure 3.14. For R = 2 or R = 5, Algorithm 1 performs well when
the noise is weak enough. Starting from 20dB, the performance for R = 5 rapidly decreases.

The task is much harder for R = 10 and R = 15, even if the noise is weak, which seems

intuitive. When the noise is high, we observed that the upper bound constraint is always
Q

R|Cmax ) )

the upper bound constraint (but it does not mean that the constraint actually helped the

active (i.e. HK’ |max = ). This means that Algorithm 1 would likely diverge without

algorithm to converge to a better estimation).

In all the cases, we can notice that ¥ is much higher for C than for K (especially when the
noise is high). We explain that by the fact that we always use K* for estimating a diagonal
matrix D enabling to remove the scale ambiguity in K. D! is then used for C. However,
when the noise is too high, the estimated parameters (K, C) are then far from the true ones
(K*,C*). The multiplication by D makes K* and K closer while the multiplication by D~*
makes C* and C farther.

As a conclusion, in this scenario, Algorithm 1 performs well if the noise is weak enough.

However, what is the SNR value that we should expect with real data? In Section 3.2, we
introduced a data set measuring 6 different pure VOCs across 15 experiments each (i.e. Data
set 1 in Table 3.1). From these measurements, we can extract a data matrix X corresponding
to the steady state values (see Figure 3.9, yellow part). From X, we can compute the signal
part of Eq. (3.40), corresponding to o;. We can also compute the noise part by calculating
the standard deviation of the response during the baseline acquisition (by taking the 30 first

3.3 A non-linear mixture model

71



72

\I/ measure Correlation measure

C K C K
20 5| 0.8 . 2 1.00 4 @=———=—p- @Uss 1.00 4 o=——e—e "s‘
o oo p : ° _
151 i A 0.751%__ \ 0.75 - ~—e T
» ) . p > ¢ L - 1Y Sssﬁ\
- [ 4 e
10 LA 0l — '/ 0.50 Y| 050 e
o~ v Ss
5 Ve 4 P 0.25 o, | 025
- g 0.2 o ®
0 {8——0—0—ses° =" 0.00 1 0.00 4
40 30 20 10 0 40 30 20 10 0 40 30 20 10 0 40 30 20 10 0
SNR (dB) SNR (dB)
e e
P= 6 12 24 50

Fig. 3.15.: Results for N = 50, R = 5 and P = 6, 12,24, 50. Each color stands for a different P. Left figures
correspond to the ¥ measure and right figures to the correlation measure (see Eq. (3.41)). The closer
to 0 ¥, the better. The closer to 1 the correlation measure, the better.

time points of a single measurement and by randomly selecting one chemical sensor). If we
do so, then we find an SNR value of 42dB, meaning that the noise in real data is rather weak.
However, this measure is obviously dependent on several parameters such as the VOCs used
or the VOC concentrations (a lower concentration leads to a lower signal). In addition, this
value does not take into account the modeling error. The Langmuir-SPRi mixture model is
just an approximation of what it is really occurring in real life. The assumptions on which the
model relies may not be true leading to another kind of “noise”, which is difficult to measure
(and we saw in Section 3.2 that some of the assumptions are actually violated in practice).

N & R constants, P variable. In Chapter 1 (Section 1.2.6), we made a short critical review
of the literature, pointing out a debate concerning the number of chemical sensors used. We
clearly support the side “the more, the better” and this section is appropriate to show the
benefits of using more chemical sensors. To that end, the number R of VOCs in the mixtures
is now constant (R = 5) while the number of sensors is varying (P = 6,12,24,50). The
idea is then to evaluate the influence of the number of chemical sensors in the Blind Source
Separation framework.

The results are reported in Figure 3.15 and they clearly indicate that the more chemical
sensors, the better. In fact, for P = 6 (a typical value in the literature, see Table 1.1 in Chapter
1), the number of equations (= 300) is then quite close to the number of unknowns (= 280).
To improve the performance, a solution is to increase the number of experiments. However,
this solution is time consuming and the value N used here is already high compared to the
number of samples actually used in the literature (Section 1.2.6, Chapter 1). Similar results
could be obtained by varying N while keeping P and R constants.

3.3.5 Conclusion
In this chapter, we derived the formulation of a theoretical non-linear model in the presence
of a gas mixture. The model has been formulated for the equilibrium phase and is based on
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the combination of the Langmuir model with the linear approximation of the SPRi response,
so we called it the Langmuir-SPRi mixture model.

This model is based on VOCs concentrations, the individual signatures and on some VOCs
characteristics. To our knowledge, this model is new so we provided a theoretical analysis
concerning the estimation of these parameters for two different problems: the Regression
problem (either the concentrations or the signatures are unknown) and the Blind Source
Separation problem (both the concentrations and the signatures are unknown). For the
latter, we also developed an algorithm in order to estimate both the concentrations and
the signatures from a data matrix. This algorithm is based on Alternating Least Squares
with bound constraints. We showed that it performs well in simulation when the noise is
weak enough and when the number of chemical sensors and experiments is sufficiently high
compared to the number of VOCs in the mixtures.

The actual results can be improved in many ways.

Concerning the theoretical part, the identifiability of the Langmuir-SPRi mixture model in the
Blind Source Separation framework has not been proven. In fact, this question is remarkably
difficult even if one considers the same problem but with a linear model. This problem is
referred to as Non-negative Matrix Factorization (NMF) and represents a good example of
the difficulty of the question. In fact, many works have been carried out during the past two
decades in order to find conditions under which NMF becomes identifiable (see for instance
[DS04; Lau+08; HSS14; FHS18]). In the near future, we may take inspiration from these
works in order to find identifiability conditions for the Langmuir-SPRi mixture model (e.g. we
could assume the existence of “pure” mixtures in X).

NMF is actually useful in many practical applications (for instance with spectroscopy mea-
surements [Mou+06]). However, we did not prove yet if the Langmuir-SPRi mixture model is
useful. In Chapter 6, we will see that a linear model is in fact already sufficient to provide good
results with real data obtained in robotic applications. So, a crucial next step is to validate
the Langmuir-SPRi mixture model on real data and to verify in what extent it improves the
results compared to a linear model. To that end, experiments in a controlled environment
with a reliable measure of the VOC concentrations must be conducted (for instance by taking
inspiration from [Mad+18]).

Concerning the algorithmic part, we made the choice of Alternating Least Squares but other
algorithms can be obviously tested. To improve the solution, we could also consider additional
constraints such as sparsity (this constraint will be used in Chapter 6 by considering an /-
penalization).
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“[...] an indescribable chaos of odours reigned in the House of Baldini. However exquisite
the quality of individual items - for Baldini bought wares of only highest quality - the blend of
odours was almost unbearable, as if each musician in a thousand-member orchestra were
playing a different melody at fortissimo. Baldini and his assistants were themselves inured to
this chaos, like ageing orchestra conductors (all of whom are hard of hearing, of course)”

Patrick Siiskind, Perfume, the Story of a Murderer!.

Baldini is an old perfurmer who teaches to Grenouille the foundations of perfumery. By
being surrounded all his life by thousands of different odors, the ability of his nose is now
deteriorated by its long years of use. In fact, his nose grew older and does no longer perceive
the scents in the same way than in his youth. Ageing affects also chemical sensors. It is one
of the main factors causing an unexpected phenomenon: the classifier will not generalize to
future samples if too much time has elapsed since the training set was acquired. This issue is
called drift and all this chapter is devoted to it.

The chapter is organized as follows. First, we detail the drift issue: its causes and its
consequences. Then, we describe state-of-the-art methods to compensate for the drift. Third,
we introduce two new methods which do not require any label from the other measurement
days. Then, the proposed methods are evaluated on an artificial data set. Finally, we introduce
a data set acquired over 9 months, suffering from drift. All the introduced methods are then
compared, based on this data set.

4.1 Introduction
What is “drift”?

Drift is a dynamical process occurring over

time and affecting the reproducibility of the
instrument [Hol+97]. Drift is responsible E 4\
for the lack of stability of chemical sensors El\ ° ]
and is considered as one of the main fac- g %O.B ‘oe® Tam Testset
tors explaining the low number of practical | & %, y oy .. © ©  Session2
applications with these sensors [Pad+10]. o 0(,/)0' % e "
;o‘;o% oo e s "
Let us take an example to make the conse- Train set
quences of the drift more concrete. Let us Session 1 >
assume that we want to build an applica- Chemical sensor 1

tion targeting the classification of 3 differ- Fig. 4.1.: Simplified representation of the drift issue.

ents VOCs, say A, B and C. During the first Here, during Session 2, all new points are
. . classified as C due to the drift.

measurement session (called Session 1), we

start by realizing some time-consuming ex-

periments during which we measure several times these target VOCs. From these labelled

!Translated from the German by John E. Woods.
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measurements, we extract the signatures of the VOCs and build a data base. From this
data base, a classifier learns to differentiate between the target VOCs A, B and C. Then, it
comes time for using the eNose in the field, so we carry out new experiments during another
measurement session (Session 2) occurring during another day.

Unexpectedly, all the new measurements are classified as C, even if A and B are also present.
So, what happened? Drift. Drift occurs between the two sessions, meaning that the signa-
tures learnt from Session 1 are not the same as the signatures acquired during Session 2.
Consequently, the classifier becomes useless and needs to be retrained, or the signatures from
Session 2 need to be corrected. A simplified representation of the drift issue is reported in
Figure 4.1.

What are the causes of the drift?

The causes of the drift are numerous and depend on the sensing and transduction mechanisms
[DCF12]. One generally splits the drift into two parts depending on the causes [HGOO08]. First,
the drift related to the chemical sensors themselves and second, the drift of the measurement
system.

Drift related to the chemical sensors themselves corresponds to chemical and physical changes
of sensing materials. Two main causes are often stressed. The first cause is sensor poisoning.
Sensor poisoning is due to the injection of some VOCs which have led to irreversible reactions
with the sensing materials. These reactions result in the blocking or in the creation of
reaction sites [HAO4]. In our case and in the case of semiconductor sensors [HTK00], sulphur
compounds and acids can lead to such reactions. The second cause is sensor ageing. Sensor
ageing can be due to the spontaneous re-organization of the sensing material [HA04], leading
to a change in the number of reaction sites. These sources of drift will generally impair the
sensitivity of the instrument for the target VOCs.

The drift related to the measurement system itself can be due to changes in temperature,
humidity or pressure [HGOO08]. These external parameters will influence the chemical
reactions, and this also applies to the signatures. Memory effects can also take place. They are
due to some traces of VOCs remaining in the sampling system or on the sensing surface. To
avoid memory effects, a small size sampling system” and a long cleaning phase are desirable
[HAO4]. Third, a short term drift spreading generally over several minutes or hours is often
observed. This can be due to the heating of the electronic system or due to the instrument
warm-up (a short period of time during which the response of chemical sensors can be
unstable) [HAO4]. Finally, a chemical drift of the VOCs themselves can appear due for
instance to a bad storage of the samples (e.g. oxidation). If the final goal of the application is

2It happens that VOCs not only interact with the eNose but also with the sampling system. For instance, VOCs
can adsorb on the side of the pipes (and then desorb after an unknown time). This undesirable reaction can
disturb the next measurement with another VOC if the remaining VOC desorbs from the sampling system at
the same time. To prevent this issue, the sampling system must be small to limit the interaction and ideally
made with materials which are little prone to interact with VOCs (e.g PolyEtherEtherKetone tubing).
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Type Causes (examples)

Measurement system Memory effects Too short cleaning phase

Chemical drift Bad storage of the samples
Change in concentration
(if classification task)

Short-term drift Sensor warm-up,
electronic system heating

Environmental parameters Changes in temperature,
humidity, pressure

Sensor drift Sensor poisoning Irreversible binding reactions
Sensor ageing Re-organization of the sensor
surface

Tab. 4.1.: Summary of some causes of the intra-instrument drift [HGO08; HA04].

only VOC classification (and not VOC quantification), then variations in concentration can also
be considered as a chemical drift. Some components of the drift related to the measurement
system can be avoided when the experiments are carried out in a controlled environment (see
for instance the study of Vergara et al. [Ver+12]). However, in the field, the sampling cannot
be always reliably controlled. The possible sources of the drift are summarized in Table 4.1.

Finally, all the causes previously introduced impair generalization performance of a single
instrument: we call this drift, the intra-instrument drift. However, the final goal is to use
one or several eNoses to generate a data base for training a classifier, and then generalize to
other eNoses deployed in the field. In this case, another drift will appear, an inter-instrument
drift. In fact, the manufacturing process of chemical sensors is rarely reproducible [RN10].
This means that the classifier which learns from an eNose 1 may not directly generalize to an
eNose 2. In all this chapter, we focus only on the intra-instrument drift.

What are the solutions?

A naive solution is to briefly retrain the classifier before testing the eNose in the field. Ideally,
the regeneration of the training samples is also performed in the same conditions (e.g.
temperature, humidity) than the test samples. Obviously, this solution is not desirable at all
since each experiment is time-consuming.

Therefore, the solution adopted in the literature is to design methods compensating for
the drift. Ideally, these methods would correct individually each component of the drift
(ageing, temperature, humidity, etc...). However, the main difficulty is that all the causes of
the drift can be concomitant in realistic experiments, so their effects may not be separable.
Consequently, all these causes are often treated as a single drift.

In the following, we review the main correction methods. All the methods described require
a Fundamental Hypothesis: all the individual drifts of each target VOC must be related
in some way (in the simplest case, correlated). In other words, if each class drifts along a
random direction which is dependent on each target VOC, then there is nothing to do and all

Chapter 4 Drift
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Fig. 4.2.: Simplified representation of the Fundamental Hypothesis. Left figure: Fundamental Hypothesis is valid
meaning that all the classes drift along a common direction. Right figure: Fundamental Hypothesis is
violated meaning that each class drifts along a random direction.

the following methods will fail. A simplified representation of the Fundamental Hypothesis is
represented in Figure 4.2.

4.2 State of the art methods

The literature on drift correction methods is prolific and we decide to review only the main
contributions. We especially focus on drift correction methods which have been successfully
applied on unseen real data (not only simulated data) with several sessions sufficiently spaced
in time (not only real data with 1 week of recordings). Ideally, these methods have been
tested by different authors. Besides, correction methods that we discuss can be applied in
our case: concentration is neither controlled nor measured, environmental conditions may
vary, and the final goal is VOC classification. A more comprehensive review of the existing
techniques can be found in [MGG12] or in [Rud18].

First, drift is often seen as a gradual change of the chemical sensors [Art+00; Ziy+10] or
as a slow-varying process over time [Pad+10; DC+11]. This means that if a measurement
session lasts for only few hours, the drift affecting the samples in this time window is assumed
to be constant. In other words, the drift occurs between measurement sessions but not inside
a measurement session (lasting for few hours).

Second, we can differentiate between two kinds of drift which can be present in the data:
we call them Continuous drift and Discontinuous drift. Continuous drift assumes that little
time has elapsed between the measurement sessions (e.g. one session per day) or that the
environmental conditions are controlled. In this case, the drift between two consecutive

sessions is small enough to be considered as a “continuous” change of the chemical sensors.

At the other end, it happens that a long time elapses between two consecutive sessions or

that a large change of environmental conditions occurs (especially in practical applications).

In this case, a large drift occurs between two consecutive sessions, causing a Discontinuous
drift. A representation of Continuous drift and Discontinuous drift can be found in Figure
4.3. All the methods in the literature are not able to cope with these two types of drift. In

4.2 State of the art methods
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Fig. 4.3.: Simplified representation of the notion of Continuous and Discontinuous Drift. Left figure: the drift
between sessions is small enough to be considered as a gradual change (Continuous drift). Right figure:
the drift between sessions is large (Discontinuous drift).

this chapter, we introduce a data set with Discontinuous drift and, in Chapter 5 we present
another data set suffering from a Continuous drift.

Then, we can identify three different groups of methods which can be classified according to
the required assumptions on the labelled data available for drift correction.

First, a classical approach is to assume the existence of calibrating samples of one or several
reference VOCs during each measurement session. Reference VOCs must have a correlated
drift with the drift of the target VOCs [HTK0O]. The calibrating samples are then used to
estimate the drift directions. We call this scenario: Calibrant Scenario (CS). Hereinafter,
we detail PCA-CC and PLS-CC from Artursson et al. [Art+00]. Both methods can cope with
Continuous drift and Discontinuous drift.

Second, another approach relaxes the assumption of calibrating samples. In fact, finding
reference VOCs is not an easy task and requires a long upstream work which must be repeated
anytime an application with new target VOCs must be designed. In this second group of
methods, the idea is rather to assume that the drift has been captured by training data. In
a classification task, a training set is always required and can be acquired during a single
measurement session. Here, the authors assume that the training set has been acquired
across multiple sessions over time. If a long enough time has elapsed between sessions, then
the training set must contain drift information. So this group of methods extracts the drift
directions directly from the training set and assumes that these directions will no longer evolve
for subsequent sessions. We call this scenario: Multi-Session Scenario (MSS). Hereinafter,
we detail OSC from Padilla et al. [Pad+10] and CPCA-CC from Ziyatdinov et al. [Ziy+10].
Both methods can cope with Continuous drift and Discontinuous drift.

Finally, the last group of methods assumes that the only labelled data available is the training
set, from a single measurement session (so drift is not present). In fact, MSS can be attractive
since it does not require any reference VOC but it requires a long experimental time. For
instance, the results of OSC [Pad+10] were obtained with data acquired over 15 days (the

Chapter 4 Drift
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Fig. 4.4.: Simplified representation of the different scenarios that we proposed to classify the different state-

of-the-art methods. Left figure: calibrating samples are measured during each session (Calibrant
Scenario), here A is the calibrant. Middle figure: the training set includes several measurement sessions
over time, and we assume that it contains drift information (Multi-Session Scenario). Right figure:
the training set includes only Session 1 and there is no other labelled samples (Blind Scenario). We
represent a Discontinuous drift but the same applies to a Continuous drift.

number of measurement sessions is not detailed). For the results of CPCA-CC, Ziyatdinov et
al. used at least one month of recordings [Ziy+10]. This long experimental time is limiting
so other authors try another more appealing approach: they simply assume that there is no
labelled data for estimating the drift. So the directions of the drift between two different
sessions must be estimated blindly. We call this scenario: Blind Scenario (BS). Only few
methods have been reported in the literature for dealing with the BS and they often rely on a
classification step. The classification step identifies the samples and helps therefore to estimate
the drift direction. So these methods can be generally applied only for Continuous drift but
will fail in the presence of Discontinuous drift. Hereinafter, we detail the evolutionary-based
method of Di Carlo et al. [DC+11].

All these scenarios clearly differ in difficulty, even if all of them are challenging. By increasing
order of difficulty, we can rank the scenarios as: CS, MSS and BS. The three scenarios are

represented in Figure 4.4.

In the following sections, without loss of generality, we assume that we have two different
sessions. We note X € RV1*F the data acquired from Session 1. This first measurement

session is entirely labelled (with labels ¢; € R¥1) and will be later used as the training set.

We note X € RV*F another session, affected by some drift compared to Session 1.

4.2.1 Calibrant Scenario
The first group of methods assumes the existence of calibrating samples acquired during
each session. So, for each session, the samples from some reference VOCs are labelled. We

note X ., the matrix containing all these calibrating samples (in all the different sessions).

The two methods described here are based on a technique called Component Correction
(CC). The main assumption behind Component Correction is that the drift follows a preferred
direction which can be removed by subtraction. In the Calibrant Scenario, this direction can
be estimated with the calibrating samples. The way this direction is estimated then depends
on the method used.

4.2 State of the art methods
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Algorithm 2 PCA-CC from Artursson et al. [Art+00]

Input: X; € RVi*P X e RV*P £, e RM £y, K €N

Build Xcal

T,P =PCA(X o) # Xeq = TPT

Xcor = X(Ip — PxPY) # Py e RP*K the K first columns of P

Algorithm 3 PLS-CC from Artursson et al. [Art+00]

Input: X; e RVM*P X e RV*P g, e RV £, K e N

Build XC317 Zcal

W, P, T,C,U = PLS(X cal, Zcal, K) # see [CBC21] for details about PLS
Xeor = X(Ip — Wy (PLWg)~'PL) # W the K first columns of W

The most used method is probably the one of Artursson et al. [Art+00], called PCA-CC.
In this case, the drift direction is estimated with the help of Principal Component Analysis
(PCA). The idea is quite simple: if enough drift occurred between the sessions, then most
of the variance in X, can be attributed to the drift. An easy way to compute the direction
having the largest variance is then to compute the first principal direction p; € R” of the
calibrating matrix X .,. Afterwards, one simply performs an orthogonal projection of X
against p, to remove all the information carrying by the direction p, (for which pIp, = 1)
in X: Xeor = X(Ip— plp{). This procedure can be repeated several times, say K times,
with the next principal directions of X ., if the drift follows several directions. PCA-CC is
described in Algorithm 2.

In the same article, Artursson et al. proposed an alternative version of PCA-CC, called PLS-CC
[Art+00]. Instead of estimating the drift direction as the principal directions of X .,, they
used PLS (Partial Least Squares [WSEO1]). PLS is a quite used technique in Chemometrics in
order to describe some dependent variables Z as a linear combination of predictors R. In
fact, PLS does more than a simple linear regression. PLS estimates some components which
explain both R and Z while maximizing the variance of the cross-product ZTR (see [CBC21]
for details about the PLS method). Artursson et al. proposed to use measurement time as
the dependent variable z., since drift is time-related and X ., as the predictors. Then, they
correct X by using the first latent vectors of X cu: Xeor = X (Ip — —p2 i ). If the drift follows

w;py
several directions, several latent components can be removed in the same way. PLS-CC is

described in Algorithm 3.

The methods in the Calibrant Scenario will likely cope with Continuous and Discontinuous
drifts if all the drift directions are captured by the calibrating samples.

4.2.2 Multi-Session Scenario

The second group of methods assumes that several sessions have been labelled, they corre-
spond to the first measurement sessions, say the first .S; sessions, and correspond to several
weeks of recordings. We note X .5, € ROVt +Ns))xP and L,.q, € RN+ +Ns)x R regpec-

tively the data matrix containing the first S training sessions and the class-membership matrix
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Algorithm 4 CPCA-CC from Ziyatdinov et al. [Ziy+10]

Input: X .5, € RN+ +Ns)xP [, o e R+ +Ns )xE X e RNXP K e N
Compute the covariance matrices S, from X.g,
V., {%1,...,2Xr} =JID(S4,..., Sgr) # Joint Diagonalization (from [CS96])
R
SSE, = >, 1 [Sr — ‘%op,r"’p"’pTH%7
# Note Py the K first columns of the reordered V' (by increasing SSE)
Xeor = X(Ip — P PL)
X1:5,cor = X1:5,(Ip — PKP}{) # Recall that X 1.5, contains also drift

containing Os and 1s. Each row £! € R” of L,.s, contains a single 1 indicating the class
membership (if the ™ element of £} is 1, then the sample n belongs to the class of VOC 7).

A calibrant-free version of the PCA-CC of Artursson et al. [Art+00] has been later pro-
posed by Ziyatdinov et al. [Ziy+10], called CPCA-CC. They proposed to use Common
Principal Component Analysis (CPCA) from B. N. Flury [Flu84]. Given the sample co-
variance matrices S, € RP*F of each class, CPCA aims at finding an orthogonal matrix
V € RP*F able of a simultaneous diagonalization of the R sample covariance matrices,
¥, = V1S,V with ¥, a diagonal matrix. Mathematically, it assumes that the eigendecompo-
sition of each sample covariance matrix can be performed with a common set of eigenvectors
and different eigenvalues. To understand the meaning of these eigenvectors for X ;.g,, it helps
to consider only one class. In fact, with only one class, CPCA is equivalent to a simple PCA so
the first eigenvector indicates the direction of maximum variance of the class. When multiple
classes are present, the first eigenvector provided by CPCA will no longer reflect the direction
of maximum variance of a single class but the direction of variance common for all classes. In
the case of drift, this variance is assumed to be drift-related since the drift will influence all
the classes. The directions estimated by the CPCA of X.g, are then used to correct the drift
in X by orthogonal projection. Since X.g, includes some drift, we correct it in the same way.
CPCA is known as Joint Diagonalization (JD) in the Signal Processing community. Ziyatdinov
et al. used the algorithm of Cardoso and Souloumiac [CS96] for performing the JD of the
sample covariance matrices.

Regarding the matrices X, provided by CPCA, some precautions must be taken when one
performs Joint Diagonalization or CPCA. In fact, compared to PCA in which eigenvalues are
simply ranked by decreasing order, most algorithms for JD will rank the diagonal values oy, ,
of 33, in an arbitrary order. Thus, the first eigenvector may not be the direction of maximum
common variance. Ziyatdinov et al. [Ziy+10] proposed to choose as first eigenvector the one
which has the greatest Signal-to-Noise Ratio (SNR). However, this SNR value is not detailed in
their paper. Here, we propose to use the following metric:

R
SSE, = Z IS — Upp,rUpUpTH%
r=1

with || - |7 the Frobenius norm (sum of the squared terms of a matrix).

4.2 State of the art methods
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Algorithm 5 OSC from Padilla et al. [Pad+10]
Input: X .5, € RN+ +Ns)xP [, o e RN+ +Ns )xE X ¢ RNXP | e N
W, P = 0SC(X.s,, L1.s,, K) # OSC based on Direct Orthogonalization from [And99]
Xceor = X(Ip — PPY) # P e RPXK
X1.5,,cor = X1:5,Ip — PPT) # Recall that X 1.5, contains also drift

The lower the SSE is, the better the set (o, ,, vp) explains the covariance matrices S,. So,
the eigenvectors are then ordered by increasing SSE. CPCA-CC is described in Algorithm 4.

Padilla et al. [Pad+10] proposed to use Orthogonal Signal Correction (OSC), a method which
has been successfully applied to the correction of near infrared spectra [Wol+98]. OSC finds
some directions explaining variance in X ;.g, while being orthogonal to L;.s,. The idea is then
to remove these directions unrelated to L;.g, which are assumed to be drift-related. Many
different algorithms have been proposed for OSC (see [WJS01]), Padilla et al. [Pad+10] used
the MATLAB implementation from Wise and Gallagher [WG]. Since we do not have access
to the MATLAB code, we prefer to use another OSC algorithm proposed by C. A. Andersson
[And99], called Direct Orthogonalization. This algorithm orthogonalizes X.s, against Ly.g,
and computes the Principal directions P of the new data matrix. The method of Padilla et al.
[Pad+10] is reported in Algorithm 5.

The methods considering the Multi-Session Scenario will likely cope with Continuous and
Discontinuous drift if the drift directions do not evolve for further sessions.

4.2.3 Blind Scenario

The last group of methods is the least restrictive in practice. It assumes that there is no
labelled data for estimating the drift, so the only labelled data come from the training set
acquired during the first measurement session. While being the more realistic, this group of
methods has received little attention in the field and is clearly the most challenging. In the
following, only X; € RV *” js labelled (we note £; € R the labels).

Di Carlo et al. [DC+11] proposed an evolutionary-based method to compensate for the
drift in the BS. The algorithm proceeds by updating a correction matrix from one session to
another, so we consider several measurement sessions X, € RV2*" X g e RVs*F which
are unlabelled. In fact, the term evolutionary-based method is a bit misleading since the
authors simply assume a linear model between the matrix X; and X . If N; = N; and the
sampling order is the same for Session 1 and Session i, then the method assumes the following
model: X1 ~ X;M; (in their article M is replaced by Ip + M ;). The “evolutionary” part
of their algorithm comes from the way they estimate M ;: they used an optimization method
called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) from N. Hansen and A.
Ostermeier [HO96]. The approach of Di Carlo et al. proceeds in several stages. Initially, a
classifier learns from X ; (here we use SVM but other classifiers can be chosen) and M = Ip.
Then, samples from X, are corrected starting from Ny =DM, X 2.cor = X o VI 5. Afterwards,
the samples of X ¢, are classified, leading to a class vector £5 € RNz, Based on the prediction
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Algorithm 6 Evolutionary-based method from Di Carlo et al. [DC+11]

Input: X; € RVM*P | XgeRNs*P g ¢ RM
SVMtrained = SVM(X 1, £1) # other classifiers can be used
Compute the R covariance matrices S, from X
M, =1Ip
forAz' in 2 :AS do
M;=M; 1
Xi,cor = XiMi
£; = predict(SVMtrained, X; cor)
M ; = argmingg 305 (M @i, — g, )78, (M @i — gy, )
Xz',cor = XzMz
£; = predict(SVMtrained, X; cor)
end for

0y, of each sample n, M, is updated by minimizing the following cost function (here, we
used Mahalanobis distance but, again, other distance functions can be used):

No
M = arg min D (M oy — g, VTS, (M s, — py, )

n=1

with yy, . and Sy, , the centroid and the covariance matrix of the class /3, in Session 1.

Once M5 has been estimated with CMA-ES, X is corrected with the new M5 and corrected
samples X cor = X o NI, are again classified. Finally, for Session 3, the process is repeated
starting from M3 = N 5. The method is summarized in Algorithm 6.

It is easy to see that the method of Di Carlo et al. will, in the best case, only cope with
Continuous drift. In fact, if two consecutive sessions (X ; 1, X;) suffer from a large drift (i.e.
Discontinuous drift), then the samples X ; will likely be misclassified by the first classification
step since M ,;_; will not be a good estimator of M ;. Even after the optimization process
(CMA-ES), M ; will not be correctly estimated because the optimization process will be
based on these misclassifications (which are rigid in the optimization). Besides, this wrong
estimation will affect the next corrections since their method is incremental. So, in case of
Discontinuous drift, one will have to restart the training phase from M.

Another series of works is based on clustering algorithms and especially on Self-Organized
Maps (SOM) ([NDD95; Mar+98; DSP02; Zup+04]) from Kohonen [Koh82]. SOM is an
unsupervised artificial neural network which can be used to map data into a lower dimensional
space (usually, 2). It can also be used for clustering since SOM tends to preserve the initial
distances in the high dimensional space. For VOC classification, a supervised step is however
required during the training to identify each class in the map created by SOM. The idea of
using such algorithms is to keep training them during the testing phase (Session 2, 3, etc...),
so the map can adapt to new samples which are drifting. However, if a large drift occurred,
then the readaptation will likely fail.

4.2 State of the art methods
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4.2.4 Summary

The methods considering the Calibrant Scenario (CS) or the Multi-Session Scenario (MSS)
will work well in practice as long as the assumptions behind the CS (the calibrant has the
same drift than the target VOCs) and the MSS (after few sessions, drift direction no longer
changes) remain valid. They will work for both Continuous and Discontinuous drift.

The methods considering the Blind Scenario (BS) are much more challenging and often rely
on a classification step, useful for estimating the drift direction. These methods may work in
the presence of Continuous drift but will likely fail in the presence of Discontinuous drift.

As a final note on this state of the art, I have implemented all the algorithms previously
described in R. The implementations of Algorithm 2, 3, 4, 5 and 6 and some simulated data
can be obtained at:

https://github.com/mahopie/eNoseDrift.git

4.3 A correction method in the Blind Scenario

The methods which consider the Blind Scenario generally rely on either the updating of
clustering algorithms or the definition of a drift model. In the following, we derive the
mathematical formulation of a drift model.

In an ideal word, the signature &, of a VOC r at a concentration ¢, is deterministic by nature.
It is due to some chemical reactions which are, ideally, the same for this VOC r at this
concentration ¢,. So, if we repeat N times the same experiment in the same conditions, the
signature should be exactly the same and we should have N identical vectors. However, in the
real world, there is always noise and the noise is random by nature. Therefore, the signature
&, from this noisy measurement is also random and after NV experiments, we do not have N
identical vectors but IV vectors which just look alike. They look alike because they have been
drawn from the same data distribution, the distribution of the VOC r at the concentration
¢r. Let us assume that we measure this VOC in the same conditions but some days or weeks
have elapsed since the first set of measurements. As we have seen in the previous sections,
a drift may appear between the two data sets, meaning that the new signatures now differ
from the older ones. This means that the data distribution has changed. If we could know
the transformation between the new distribution and the old distribution, we could correct
the new signatures and reuse all what we have previously learnt from the old distribution
(e.g. the decision boundaries of a classifier). In the following, we use this notion by assuming
that we know the general form of this transformation. To describe the data distributions, we
use probability densities (a measure giving the probability that the signature lies in a given
region of space).

Let g(&|r,t, c.(t)) be the probability density of the signature & € R” of the VOC r, measured
at time ¢, at concentration ¢,(t). Since we are interested in VOC classification, we assume
that & has been normalized and we note « the concentration-free version of Z. We note
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f(x|r,t) the probability density of the normalized signature x, and we define as class r all
the normalized signatures of the VOC r.

Under Fundamental Hypothesis, the drift of all VOCs is assumed to be related. Here, we
assume that the distribution of each VOC r is simply shifted by a common vector d(t) € R
weighted by a coefficient «,(t) € R (depending on the VOC). Mathematically, it means
that there exists a density fy(.|r) such that f(x|r,t) = fo(x + a,(t)d(t)|r). We assume that
d(t = 0) = 0, which means that the training set (Session 1) defines the starting position.

We can define the following drift model for a point x(¢) at time ¢:

x(t) ~ fo(z + ar(t)d(t)|r) (4.1)

Finally, we assume that the drift is a slow-

varying process, which is a commonly used
assumption ([Pad+10; DC+11]). This
means that for a short time window A;, we
have d(t + Ay) ~ d(t) and a(t + Ay) ~ a(t).
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A simplified representation of the drift model is reported in Figure 4.5.

4.3.1 Simplified case: a frustratingly easy correction method

The drift model can be simplified by assuming that «;(¢) = ... = ag(t). This assumption

states that the drift is a simple translation affecting the R distributions between Session 1 and

samples € Z(7) = [T — %,7— +

computing the expectations:

] In this case, a simple correction method can be derived by

R
2 (x|t = 0,r)m.(t = 0) = Eum t=0)

E(zt=0) = X
E(a|t € Z(r)) = f E(alt € Z(r) ¢ € Z0) Z p, + d(7)m (t € T(r)
with ,(t) = p(r|t) and p, the class centroid. So,
E(a|t € Z(r)) ~ Ezlt = 0) = d() +§]1ur(7rr(t e I(r)) - m,(t = 0)

4.3 A correction method in the Blind Scenario
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Algorithm 7 Moving Recentering
Input: X, € RV1*P X (1) e RN()xP
= - Xilny, p(r) = ﬁX(T)TlN(T)
d(7) = (1) —
wcor(T) = CC(T) - d(T)

Then,
E(z|t e Z(1)) — E(z|t = 0) = d(7) < Vr, m.(t € Z(7)) = m(t = 0) 4.2)
Ny
J N J
the same between Session 1 and the time window Z(7), then the drift can be simply computed

Equation (4.2) simply states that, if the frequency of occurrence of each VOC r remains
as the difference of the means. We call this scenario: Equal Frequency of Occurrence
Scenario (EFOS)?. Equivalently, one can also simply center each data set individually. In this
case, E(x|t =0) = 0 and E(x|t € Z(7)) = 0 so d(1) = 0.

We call this drift correction method: Moving Recentering. We note X (1) € RN(M)*F all the
samples in the time window |7 — %, T+ %], respecting the EFOS, and «(7) the sample at
time 7. The algorithm for correcting x(7) is reported in Algorithm 7.

If Session 2 lasts for few hours, then X (7) € RN(M*” may correspond to the entire session
(all samples will be in the time window [r — 4t, 7 + 5t]). In this case, in Algorithm 7, we
can replace X (1) by the data coming from Session 2, X5 € RV2*P_ Algorithm 7 is then just a
recentering of data from Session 2 on data from Session 1.

Algorithm 7 is somewhat trivial but is clearly neglected in the literature. To illustrate this
remark, let us look closely at the paper of Di Carlo et al. [DC+11] from which we have
previously detailed the correction method (see Section 4.2.3, Algorithm 6).

In their article, Di Carlo et al. tested their correction method with two datasets, one artificial
dataset and one real dataset. The artificial dataset can be easily replicated:

vr e [1,R], p, ~ N(0p, 251 p) with=12,R=5P =6
d~U(0,1)and d = d
(0,1) Via 4.3)

The simulation settings of Di Carlo et al. [DC+11] clearly fulfill the requirements for applying
Algorithm 7: drift is a simple translation independent of the class and we are in the Equal
Frequency of Occurence Scenario (EFOS). Only the parameter h has been decreased (by a
factor 10) compared to the study of Di Carlo et al., in order to include more drift. In Figure
4.6, we represent the projection of the artificial dataset onto the 2 first Principal directions,

3A way to relax the assumption of Equal Frequency of Occurrence Scenario can be to consider the Calibrant
Scenario. If VOC 1 is the calibrant, then E(z|t € Z(7),r = 1) —E(z|t = 0, = 1) = d(7). So the drift direction
is simply estimated as the difference between the mean of the calibrating samples from Session 1 and the
mean of the calibrating samples from the time window Z (7).
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Fig. 4.6.: Artificial dataset used by Di Carlo et al. [DC+11], generated according to the simulation settings in
Eq. (4.3). The two first Principal components of the data (a) before correction and (b) after applying
Moving Recentering (Algorithm 7). X corresponds to the solid points (10 first points of each VOC).

for a random realization. Figure 4.6a corresponds to the raw data (without any correction)
and Figure 4.6b corresponds to the data after applying Algorithm 7. Our algorithm has been
applied by considering only the 10 first samples of each VOC (for X;) and we set A; = 5.
The results are clear and the drift has been completely corrected.

The real dataset used in [DC+11] is not pub-
licly available so we simply extracted the <

figure representing the two first Principal
components of the real dataset from the arti-
cle. It corresponds to the measurements of 5
different VOCs over 1 month by using 6 MOS i
sensors. The drift in Figure 4.7 matches the ot b 144
simulated one, as pointed out by the authors % %

themselves (see [DC+11]). So it is likely )
that we can replicate the results obtained in

Principal_component_2

simulation with our method. It is noteworthy

-2
|
R
§
-----T@--__-__

that Algorithm 7 is simpler than Algorithm

1
¥ - Principal_ccl;mponemj

6 by far (the correction method proposed by '4 '2 ['] é "1

Di Carlo et al.) and requires no classification
Fig. 4.7.: The two first principal components of the real

dataset of Di Carlo et al. Figure retaken from
our method will adapt in case of a Discon- [DC+11].

step. Besides, the last point indicates that

tinuous drift, contrary to the algorithm of Di
Carlo et al.
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Fig. 4.8.: Artificial dataset used by Di Carlo et al. [DC+11] when we are no longer in the EFOS. The two first
principal components of the data (a) before correction and (b) after Moving Recentering (Algorithm
7). X1 corresponds to the solid points (10 first points of each class).

4.3.2 Gaussian case: Expectation-Maximization Component
Correction (EMC?)

In practice, a training set with R VOCs will be generated during Session 1 with a certain
frequency of occurrence (¢t = 0) but it is unlikely that these 7, will remain the same during
next sessions. In the best case, the R VOCs will reappear in different proportions but it is
more realistic to expect only v < R VOCs. In other words, the Equal Frequency of Occurrence
Scenario is somewhat unrealistic. To illustrate this fundamental limitation of Algorithm 7, we
can use the simulation settings in Eq. (4.3) and remove 3 classes (so v = 2) for the sessions
coming after Session 1. In Figure 4.8, we set: 71(t # 0) = ma(t # 0) = my(t # 0) = 0 and
m3(t # 0) = w5(t # 0) = 0.5. The consequences are clear and the correction no longer works.
In fact, Figure 4.8 shows that there exists a latent problem of classification which makes the
task complicated. Indeed, if you know that only classes 3 and 5 are appearing in the next
sessions, then we could apply Algorithm 7 restricting the training set to classes 3 and 5 and
the problem would be solved. Unfortunately, this is not the case, so we have to manage the
classification problem and the drift estimation at the same time.

In the following, we define an Expectation-Maximization algorithm for dealing with the
drift model in Equation (4.1). For a set of observations X (7) acquired in a time window
I(r) = [t — &t,7 + 4], the algorithm aims at estimating both the drift direction d(r), the
class weights a,.(7), the frequencies of occurrence ,(7) and the labels £(7).

Expectation-Maximization (EM) algorithm is an iterative method for finding maximum
likelihood solutions of statistical models depending on latent variables [DLR77; Bis06].
Latent variables are some variables which cannot be directly observed. In our special case,
the latent variables are the labels £(7) of X (7) and the parameters are the drift direction
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d(7) and the weights «,.(7). The main difficulty is that we cannot estimate £(7) without the
knowledge of d(7) and «,.(7), and we cannot estimate d(7) and «,.(7) without the knowledge
of £(7). To solve this issue, an EM iteration proceeds in two steps: the Expectation step and
the Maximization step. The Expectation step will estimate the latent variables by considering
that the parameters are known and the Maximization step will do the reverse. These 2 steps
are then alternated until convergence.

To describe the EM formulation, we assume that each VOC r is drawn from a Gaussian
distribution A (p,., S,.), with u, € RF the class centroid and S, € RP*¥ the class covariance
matrix. p, and S, can be estimated from the training set X; € RV*¥ (Session 1), by noting
X1 € RN1*P the submatrix containing the VOC 7

1

i’\l"l' = N IXI,llNr,l and gr =

1
Nyi—1

(XT:I - 1Nr,1ﬁI)T(XTa1 - 1N'r,1[’\l’7T)

In the following, to lighten the notation, u, and S, are simply replaced by their estimates /i,
and S,.

For a sample x(7) acquired with other samples in a time window Z(7) = [t — 4§, 7 + %],
the drift model states that:

p(@(7)|e(r) =) = N(p, + ar(7)d(7), Sy) (4.4)

To lighten the notation, we remove the time 7 from the notations. So, we have a set of
observations X (1) € RVN(")*F which is abbreviated X € RV*”. One signature in X is noted
x, € R. The weights o, and the class probabilities , are stacked into vectors o € R* and
7 e RE.

Expectation step. In this step, we assume that d, « and 7 are known. Then, we can estimate
the a posteriori probability p(¢,, = r|x,, d, a, ) that x,, belongs to the class r:

Bayes rule p(fn = r)p(:cn|€n =T, d, o, 71')
- p(xnl|d, o, )

p(gn = 7’|wm d,a, 77)

Marginalization p(ﬁn = T)p(mnwn =rd,a, 77)

R
> p(ln = k)p(@nlln = k. d, a, )
k=1

o N(xp, pu, + a,d, S,) 4.5)

p(gn = T|$nad7aaﬂ-) =R
D TN (@, py, + ard, Si)
k=1

For a given r, the closer to 1 p(¢,, = r|x,, d, o, m) is, the more likely it is that «,, belongs to

class r.
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Maximization step. In this step, we assume that p(¢,, = r|x,, d, o, ) is known. Then, we
can estimate each parameter by maximizing the likelihood. The likelihood is the probability
to have the set of observations X given the parameters d, o and =. It is defined as:

L(d,a, 7| X) = p(X|d, o, )

= p(x1,...,xN|d, o, )
independent and N
identically distributed
= JBE

N
H(d, o, n|X) = ) In(p(xnld, o, 7))

n;l R
= Y I MmN (@n, py, + ard, Si))
n=1 k=1

Then, to find the parameters which have likely generated the set of observations X, we can
maximize H(d, a,, w| X') with respect to these parameters. To do this we simply write the
derivatives with respect to each parameter and set them to zero.

We note N (k) = N (xy, py, + ad, Sk) and pni = p(by, = k|xp, d, o, 7).

S8

@® Estimation of

OH N & Nk o, 1
22 TN O — akd)TS @ — o — k)
n=1

— (
od k=1 Zil mN (i) 0d” 2 )
Prk xSy (en—py)—02 S, d
So,
oH _ _
—= =0 <= > puaiS; d = puxarSy (@0 — py)
od n,k n,k
d=A""! Z Pk Sy H(xn — py) (4.6)
n,k

with | A = Zaisglz%k
k n

@ Estimation of a.

? il K o 1
H _ Z WkN( ) (_*(wn_uk_akd)'rsgl(xn_ﬂk —Oékd))

R .
day = > m/\/(z)J ?@k 2 )
I g
Pk d'S; (en—py,)—ad'S™1d
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So,
oH

é’ak

If " pui # O then,
n

=0 << ankadeslzld = andeslzl(an — )

Otherwise ¢&;, = 0.

2 prd" S (T — p)
Vke[l,R], dp=—" (4.7)
'St pa
R

® Estimation of &. Since vector w contains probabilities, Z 7, = 1. To incorporate this

k=1

constraint in the optimization, we build the Lagrangian I'(7, \):

R
T(m,\) = H(d,a, w|X) + A(D m — 1)

k=1

For maximizing I'(7, ), we compute the derivative and set it to zero,

Hence,

N

or
aiﬁk - Z Zf;l m]\/(z)

n=1

or — i N (k)

N (k) + A (4.8)

— =0 — 4+ A=0
Om 2 N ()
N
ALY WkiRN(k) — + A =0
i T S N (i)
Sum

—
—

N R R
(&)lf 227”9%4_27%)\:0

To conclude, inject A = — N in Equation (4.8),

N

2

n=1

N (k)

2 _N=0 &£
S mN (i)

N
2o mNR Ly

n=1 Zf;l miN (i)

Vk € [1, R],

2n Prk 4.9)

T, = N
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Equations (4.5) and (4.9) are quite classical in EM algorithms for mixture estimation. How-
ever, Equations (4.6) and (4.7) are derived from the drift model that we used. There is an
obvious indetermination in our method: a scale ambiguity between « and d. Indeed, for any
AeR*: vre[1,R], § x Ad = a,d. To remove this ambiguity, we simply normalize d after
Equation (4.6).

After convergence, we need a label /,, to correct the sample x,, (the weight depends on the
class). We take the class which maximizes the a posteriori probability:

ly, = argmax p(l,, = r|x,, d, a, ) (4.10)
T
Once we have estimated the label ¢,, of the sample «,,, we can correct it:

Lp,cor = Lp — Oy d (4.11)

n

It is interesting to note that our EM-based algorithm removes one component from x,, which is
ay, d. It is reminiscent of some methods from the literature called Component Correction (see
Section 4.2). So we call this method: Expectation-Maximization Component Correction,
abbreviated EMC?. The algorithm is reported in Algorithm 8.

For an easier implementation, we recall the main formulas, assuming that we are at iteration

e

AN (@, o, + 0l DD, 8)

* Equation (4.5) pm = p(ly = rl@n, d, o, ) =
Z 7T(Z 1 $n7 . + al(gi_l)d(i_l)a Sk)

* Equation (4.6) d¥) = _12 S}l g_l)Slzl(mn — uk)
with A = Y (af V)2 sk12p
k

" > ond D S @ — )
* Equation (4.7) Vk € [1,R], «a;’ = "——p— i
) S; L4( )2 /)5111

) (4)
* Equation (4.9) Vk € [1, R], ngf) _ Z@\fpnk

Some possible variants of Algorithm 8 can be implemented effortlessly:

* As an extension of Algorithm 7. In Algorithm 7, we assume that & = 1 but Algorithm 7
will likely fail if we are not in the EFOS. Algorithm 8 does not require such a hypothesis
and the estimation of « could be simply skipped (setting o = 1g).

* To deal with the case where Session 1 contains few samples compared to the number of
chemical sensors. In this case, the R covariance matrices S, could be underestimated.
In the worst case, this could lead to numerical instabilities since the matrices S, are
often inversed in our algorithm. To prevent this issue, two solutions can be considered:
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Algorithm 8 Expectation-Maximization Component Correction (EMC?)

Input: X; e RM*P g, e RV X e RV*P
Initialization: d©, o) 7(0)
Compute the R centroids p, and the R covariance matrices S, from X
while d unchanged do
# Expectation step
Compute p¥) (¢, = r|x,) from Equation (4.5), Vn € [1, N], Vr € [1, R]
# Maximization step
Compute () from Equation (4.9)
Compute d® from Equation (4.6)
di — _d9
if 7rl(j) > + then
Compute a,(j) from Equation (4.7)
else
a,(;) =0
end if
end while
# Drift correction
Vn € [1, N], £, = arg max, p({, = r|x,)
Vn e [1, N], Zn.cor = Tn, — 0y, d

n

— Approximate S, as a diagonal matrix 3, .
— Set the same covariance matrix for all classes: S = Y7 | §,.

4.3.3 Initialization of EMC?

EMC? is quite sensitive to the initial set of parameters d(¥, a(®, 7(?), As a trivial initialization,
we can take the parameters derived from Algorithm 7:

d? = 3X"1y - $ X1y,
a® =15 (4.12)
0)

7T( :%]_R

However, this initialization will likely lead to a bad correction if the initial parameters are far
from the real ones. Instead, we propose a heuristic based on orthogonalizations and k-NN
(k-Nearest Neighbors) to find better initial parameters.

The main idea is that a simple orthogonalization against d will align X; and X and infor-
mation about d must be contained in some pairwise directions between some samples in X
(here, we use the centroids p, since we know the labels ¢;) and some samples in X. We start
by selecting some random directions going from each centroid p, of X; to some random
samples of X . For each random direction, we project X and X in the subspace orthogonal
to the candidate direction. These versions of X and X are called X | and X, ;. A good
direction would then align X | and X ;, meaning that we would have only R different
clusters. A bad direction would however create additional clusters in the subspace. To check if

4.3 A correction method in the Blind Scenario
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X | and X , are aligned or not, a good figure of merit is the within-class covariance matrix
that we already used in Chapter 3 (Section 3.2.3). Note X | the combination of the two
datasets X | and X |:

Sw=> > Ent— ) @ns—p, )T
r=1neVOC r

with p, | the centroid of the class r in the orthogonal subspace.

Algorithm 9 Heuristic for initializing EMC?

Input: X; e RVM*P £, e RN X e RV*P AeN, kn €N
Compute the centroids p,. (X 1) from X,
Select randomly a set of A samples X 4 € R4*" in X
Compute all the B = A x R possible directions with unit-norm between each sample in
X 4 and each centroid p,. (X 1)
foriinl: B do
X1, =X1(Ip—d;d))
X, =X(Ip—dd))
£; = KNN(X 1 1,£1,X |, kxnn) # Classify in the subspace orthogonal to the candidate
direction
Merge X; | and X | as X |, ¢ and ¢; as £
Compute the score w; with (X 1, £) # w; is the trace of the within-class covariance matrix
end for
I = argmin; w;

e=t;, d9=d;, ol = (u(X) - p(X,))TdO, 7 = #l=r

Select random directions Orthogonalization k-NN classification
I | 11 1
(o] CII
3 o Session 2 selected sample 2 B @
= 3]
L eoe Sessionl g % # ﬁ #
A \, S -
= Op S
_q:EJ B 43D & A %@D %@j wi
[
@] ° S
..o X oo [
° ds o O >
MB(XI) = w w
@ 2 1
X o, o DDD % B h g g% % s .
c 8% g ik A
e} o
J > -SJ A DDDDD DDDDD
Chemical sensor 1 l |
| 11 |

Fig. 4.9.: Graphical representation of the initialization procedure for EMC? (A = 4, R = 3). We first select
random directions from the centroids of X; to some random samples of X . Then, for each candidate
direction, we orthogonalize X; and X against the direction. In the subspace, we classify X | with
a k-NN (k = kynn) trained on X . Finally we compute a score w as the trace of the within-class
covariance matrix in the subspace taking both sessions. Bad directions is assumed to have a greater
value w. In the figure, d; is clearly a better initial direction than ds.
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S evaluates how far from each other are the samples belonging to a same class. The greater
the within-class covariance is, the more spread-out the classes are. To have only a single
number, we take w = Tr(S,,). The lower w is, the more X | and X , are aligned. However,
the within-class covariance matrix needs labels and we do not have any label for X |, so a
classification step is required. For that, we simply apply a k-NN in the orthogonal subspace of
d to estimate the labels £ of X | based on (X |,£;). The initialization procedure is described
in Algorithm 9 and a graphical representation is reported in Figure 4.9.

4.4 Simulation

To validate EMC? (Algorithm 8), we start with an artificial data set. In this artificial data
set, a training set (Session 1) is generated with R VOCs and test sets (future sessions) are
generated according to the drift model in Equation (4.1) with v < R VOCs. These simulations
aim at answering two questions:

 Can EMC? adapt to a variable number of VOCs ~?
¢ Can EMC? cope with Continuous and Discontinuous drift?

4.4.1 Simulation settings

For the generation of the artificial data set, we reuse and complicate the simulation settings of
Di Carlo et al. [DC+11] which were introduced in Equation (4.3). Simulations start with the
generation of a training set X ; € RV *? with no drift and with R VOCs. Then, we generate
data with drift according to the model in Equation (4.1) and only v < R VOCs are simulated
(for the same training set, we test for v from R to 2). Finally, a differentiation is done if the
drift is Continuous, or rather Discontinuous.

Our method only implies that the drift is additive, slow-varying and along a direction d(t)
independent of the VOC (only the weight factor is). So, d(t) is not constrained to be
constant or linear over time, and can be rather complex. To introduce a non-linearity in
the drift over time, we simulate the direction d(¢) with an arbitrary non-linear function:
d(t) = £do + £ sin(£dy), sin is applied component-by-component, d; is a random direction
and h is a hyperparameter. The simulation settings are reported in Table 4.2.

Since the simulations are random, the generation of the clusters could be not easily separable.
In this case, we may not evaluate only the drift correction but also the initial discrimination
between classes. To prevent this issue, we discard simulations for which any pairwise distance
between centroids is lower than g [DC+11]. The simulations are repeated 100 times.

4.4.2 Results

To evaluate the drift correction, we use a classification rate as criterion. In practice, one wants
to recognise the R VOCs based only on the first session (here, Session 1 contains only 10
samples/class), no matter what the drift. So this criterion seems appropriate and realistic.
EMC? (Algorithm 8) already includes a classification step for selecting the weight «,., so we

4.4 Simulation
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Parameters for Session 1
Vr e [1,R], p, ~ N(Op, 21p)

vre[1,R], ©- ~ N(u,,Ip), X1 € RM*F

B=12,R=6,P =4, N, =60

Parameters for next Sessions

i d

do ~L{(0,1) and do = ~OT~
a ~ U(0.5,3)

do dg

vre [1,R], ifr <+ thenn, = %, otherwise 7, = 0
Vre[1,7], Vte I, x.(t) ~ N (i, + ar £ (do + sin(+do)), Ip)
tmax = 251,h = 307 Ay = 8,’}/ is m
Continuous drift Discontinuous drift

1= Ho,tmaxﬂ 7= [[tmax - %ﬂfmax + %H
Tab. 4.2.: Simulation settings.

directly compare these labels to the ground truth. EMC? is initialized with the procedure
described in Algorithm 9.

Performance of EMC? is also compared to three other methods. First, we test the Raw
method which does not apply any correction to the new measurements. This method is
straightforward: we learn a linear SVM from Session 1 and next samples are directly classified.
The classification rates with Raw method will be used as base scores for the other methods.
The second method is the method of Di Carlo et al. [DC+11] which is described in Algorithm
6. This method also includes a classification step, so we directly use the generated labels.
Finally, we also use PCA-CC from Artursson et al. [Art+00] (see Algorithm 2). Comparison
with PCA-CC is a bit unfair since this method requires much more information, in particular
calibrating samples. But the scores of PCA-CC can be seen as the “best” values. The methods
considering the Multi-Session Scenario are not used here since the first sessions will not
contain enough information about the future directions (d(t) is rather complex).

For PCA-CC, a number of components must be chosen. To automatically tune this parameter,
we take the minimal number of components to explain at least 80% of the variance of X,
(the matrix containing the calibrating samples) [Art+00]. For the classification, the corrected
samples are classified with a linear SVM learnt from Session 1. VOC 1 is always chosen as the
reference VOC.

Both EMC? and the method of Di Carlo et al. can be applied on time windows. So we segment
X as a series of non-overlapping windows of size A; + 1 = 9. For the Continuous drift, it

“Due to the high computational time required for CMA-ES (the optimization method used by Di Carlo et al.)
and due to the high number of simulations, we preferred to use a quasi-Newton method which estimates M
much faster while giving similar results as [DC+11]. In particular, we used BFGS method from [Bro70; Fle70;
Gol70; Sha70] with the R package optim. To give some numerical values, BFGS method processes a single
session in few seconds while CMA-ES can require up to 20 minutes.
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corresponds to a total of 28 time windows and for the Discontinuous drift to a single time

window. Each time window is considered as a measurement session of 9 x v samples (Session

1) which needs to be drift corrected. In other words, for each session and for our method, we

estimate a set of parameters o; € R, d; e R and £; € R?:*1. For the method of Di Carlo

et al., for each session i, we estimate another set of parameters M; € R”*F and ¢£; e RA++1,

M ; is used as initialization for the next session.

Two random realizations are reported in Figure 4.10 and classification results are in Table

4.3.
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Fig. 4.10.: Two different random realizations for the Continuous drift (Figure (a), v = 3) and the Discontinuous
drift (Figure (b), v = 4). The indicated scores correspond to classification rates. Left figures
correspond to raw data (without any correction) and right figures correspond to data corrected using

EMC?2.
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Continuous drift Discontinuous drift

v Chance Raw PCA-CC DiCarlo EMC? Raw PCA-CC DiCarlo EMGC?
level et al. et al.

6 17 64+10 62+16 80+15 98+2 50+19 82417 51421 9943

5 20 65+13 60+18 85+12 98+2 52+22 83+15 50+24  98+5

4 25 65+15 61421 89+14 97+2 49424 81420 51426  99+3

3 33 65+17 60423  93+10 97+3 49+27 83420 53+30 9846

2 50 64421 59+27  95+11 8949 49+32 85423 50433 90+26

Tab. 4.3.: Classification results + standard deviation, over the 100 simulations.

EMC? clearly outperforms PCA-CC even if the latter requires much more information. We
can draw this conclusion for both Continuous and Discontinuous drift. We notice that both
methods are stable regarding v (the number of VOCs in the future sessions), whatever
the performance. It is noteworthy for EMC? and predictable for PCA-CC. The parameter
~ mostly influences the variance of the classification rate: the lower ~ is, the more one
misclassification is influencing the score. The performance of PCA-CC is surprisingly quite
poor in our simulation settings, in particular for Continuous drift for which the results of
PCA-CC are even below those of Raw method. We explain that by the low number of chemical
sensors that we simulated (P = 4) in addition to the complexity of the drift. Even if Artursson
et al. [Art+00] claimed that PCA-CC can compensate for a non-linear drift by removing
more and more components, we noticed that this method tends to remove discriminative
directions. In fact, due to the low number of chemical sensors, it is more likely that the
Principal directions of X ., (the matrix containing the calibrating samples) carry information
about class discrimination. To highlight this remark, we realized other simulations with
the same settings, but we increased P to 6. In this case, the average score of PCA-CC for
Continuous drift reached 82 % (averaged over ~) and 93% for Discontinuous drift.

EMC? also outperforms the method of

Di Carlo et al., both for Continuous and 1001

LIS
) W MHH

704

Discontinuous drift even if the results
are even more clear for Discontinuous
drift. For Continuous drift, it is inter-
esting to note that the performance of

Classification rate (%)

the method of Di Carlo et al. is quite

influenced by ~: the lower ~ is, the bet-

ter. We explain that by the fact that
. Index of the window (or session)
their method makes use of the correc-

Fig. 4.11.: Classification rate over time for EMC? (yellow)
and the method of Di Carlo et al. (blue). Error

tion for Session i + 1. So, this method bars correspond to standard deviations over 100

simulations (Continuous drift, v = 4).

tion matrix M ; of Session 7 as initializa-

will tend to accumulate errors and er-
rors will likely increase with ~. In fact,
the classification rate over time reported in Figure 4.11 tends to considerably decrease
(starting from 100%). EMC? does not suffer of this drawback since each session (or time
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window) is treated separately. So, if a session is badly corrected, it will not influence the
next session. However, Figure 4.11 also shows that EMC? behaves badly for the first sessions
compared to the method of Di Carlo et al. In fact, since the first sessions may not suffer
from drift, the initialization (Algorithm 9) and EMC? may find a noisy direction correlated to
classes discrimination. This remark is not really a drawback since there is no need for a drift
correction method if there is no drift.

4.5 Experimental

In this section, we test Moving Recentering (Algorithm 7) and EMC? (Algorithm 8) for the
drift correction of a real data set. This real data set was acquired using the robotic platform
introduced in Chapter 2, Section 2.3.1. The data set includes several measurement sessions
of 3 VOCs acquired over a period of 9 months.

4.5.1 Introduction of the data set

Three gas sources of pure VOCs (Geranyl acetate, Citral and 3-Pinene) are disseminated in
an open environment. This environment is scanned by a robot which carries the eNose. By
following a predefined path, the robot goes over the gas sources and the eNose detects them.
To have a better idea of the setup and of the experiments, we encourage the reader to watch
a video® that I have made during the thesis and available at :

http://simonbarthelme.eu/personal-website/videos/robot12V0C.mp4

In this video, a larger setup is used but the idea remains the same. The path is repeated
multiple times to obtain a substantial data set at each measurement session. The setup and
a raw response (after the baseline subtraction) of a chemical sensor are reported in Figure
4.12. The responses of the chemical sensors always look like peaks due to the very short
time injection (~ 1 sec). A segmentation procedure is applied to extract these peaks. This
procedure is described in Appendix A.

After the segmentation, the position in time of each peak is known. Then, we need to extract
some features from these peaks. At this stage, we have several options: extract slopes from
adsorption and desorption, fit a model and extract the parameters, use all the points of the
peak, etc... Here, we choose integration. This feature was in fact the most robust®. So, each
peak is integrated for each chemical sensor. The eNose is equipped with P = 63 chemical
sensors, which corresponds to M = 26 sensing materials replicated 2 or 3 times on the surface.
So, each peak gives a signature in R, A session usually lasts for few hours so some VOCs
run out at the end of the experiment and injected concentration decreases. To get rid of the

SIf the link does not work, try this one:
https://drive.google.com/file/d/1AddmCYFwQcHtG1laTksn8zyC-0e7CDzbU/view
SIn Chapter 6, we develop another way to process signals by using directly each time point. It bypasses the need
of extracting a feature but we observed a little decrease in classification rate by doing so (compared to the
feature based on integration). Anyway, these two works (Chapter 4 and Chapter 6) must be combined in a
further study.
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Fig. 4.12.: One of the two robotic setups used for the generation of the real data set (left) and the response of
one chemical sensor after one lap (right).

variations in concentration, we normalize each signature individually by dividing it by its
{5-norm.

One lap gives one signature for each one of the R = 3 VOCs, so after a certain number of
laps we have a data matrix X € RV*”, X corresponds to only one measurement session
lasting for few hours. Since we perform several measurement sessions over time, we note
X; € RNi*P the data acquired during Session i.

In total, we have acquired 15 different sessions at different time over 9 months, corresponding
to a total of ~2000 samples. We emphasize that both the number of samples and the total
duration are high compared to other data sets available in the literature. The measurement
sessions differ on several experimental parameters: the amount of liquid solution left in
the gas sources, the environmental conditions (temperature, humidity), the running order,
the robot speed and the number of laps. Some of these experimental parameters and the
recording dates are reported in Table 4.4.

To add another difficulty, all the sessions have not been generated with the same setup. Most
of the sessions have been generated with a setup containing only the 3 VOCs of interest (see
Figure 4.12). However, some of the sessions have been generated with a larger similar setup
containing 12 different VOCs in 24 different cups, including the studied VOCs (see Figure
2.3 in Chapter 2). For these sessions, we extracted from the data the 3 VOCs of interest. In
Table 4.4, the column Nyoc indicates the number of VOCs actually present in the session. The
combination of all the variations which can exist from one session to another makes this data
set really challenging and, with no equivalent in the literature.

In Table 4.4, we also report some classification results. They correspond to the ability of the
eNose to tell the 3 VOCs apart when the training and the testing are performed in the same
session. These scores have been obtained after a dimensionality reduction with PCA using 5
components and after a 5-fold cross validation using a linear SVM. They highlight that the
performance of the eNose regarding these 3 VOCs is stable over time. However, if one wants
to use only Session 1 to predict the future sessions, we will see later that a drift between the
sessions appeared.

Chapter 4 Drift



Session Date N; NMyoc Temp. (°C)  RH (%) AH (mg/m?) SVM (%)
1 Jul 6, 2018 110 3 NA NA NA 98 +1
2 Sep 14, 2018 112 3 NA NA NA 94 + 2
3 Sep 21, 2018 93 3 [31.6, 34.5] [27.0, 36.0] [102.9, 119.8] 90 +1
4 Oct 4, 2018 165 3 [25.1, 29.6] [30.1, 39.0] [88.3, 93.9] 93+1
5 Oct 16, 2018 71 3 [28.0, 28.9] [34.6, 37.5] [98.5, 103.1] 92 +1
6 Nov 9, 2018 142 3 [23.3, 28.2] [31.4, 37.5] [76.9, 87.5] 81+1
7 Nov 23, 2018 132 12 [20.4, 27.6] [26.6, 40.0] [70.3, 74.7] 89 +1
8 Dec4,2018 148 3 [23.5,27.1] [34.7,40.3] [84.8, 94.4] 91+1
9 Dec 14, 2018 173 3 [24.4, 27.8] [18.6, 23.7] [49.8, 56.5] 91 +1
10 Dec 20, 2018 161 12 [26.2, 27.5] [24.1, 29.3] [61.3, 73] 76 +1
11 Jan 9, 2019 75 12 [25.1, 27.5] [20.3, 24.7] [53.6, 59.0] 71+ 3
12 Jan 11, 2019 71 3 [25.6, 27.3] [14.2, 16] [36.6, 38.1] 89 +2
13 Feb 6, 2019 164 3 [24.2, 27.5] [17.2, 21.3] [45.3, 48.0] 91+1
14 Feb 13, 2019 73 12 [24.4, 27.0] [17.6, 23.3] [44.8, 53.3] 87 +1
15 Mar 21,2019 256 3 [24.4,27.2] [18.1,22.7] [46.4,50.8] 9440

9 months 1934 [20.4, 34.5] [14.2, 40.3] [36.6, 119.8] [78, 100]

Tab. 4.4.: Information about the data sets studied in this section. NA values are due to the absence of the sensors
at the recording date. RH and AH respectively stand for Relative Humidity and Absolute Humidity.
SVM column corresponds to the cross-validated classification rate (repeated 10 times) when we train
and test on the same session (mean =+ standard deviation).

4.5.2 Results
Is there any drift in data?

Recall that the data is composed of 15 sessions over 9 months. In practice, one would
want to learn from Session 1 and then use this knowledge for the future sessions. Figure
4.13 represents the projection of all the sessions onto the 2 first Principal directions of
Session 1. Clearly, a drift appears and tends to stabilize at the end. Classification rates have
been obtained after reduction by PCA (using only Session 1 and taking the 5 first Principal
directions) and training on Session 1. They considerably decrease after Session 2. Even if
there is a visible drift between Session 1 and Session 2, the classifier still succeeds in well
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Fig. 4.13.: To the left, we report the projection of all the sessions onto the 2 first Principal directions of Session 1
(the map is centered and scaled for easier visualization). To the right, we report classification rates by
training on Session 1.
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predicting labels of Session 2. After Session 2, the drift becomes too important and two
clusters out of 3 are misclassified. Consequently, results call for drift compensation methods.

How can we compensate for the drift?

To compensate for the drift, we test all the methods described in Section 4.2. We recall that
they assume different scenarios and are clearly not on the same level of difficulty:

* Calibrant Scenario (CS). Methods assume the existence of calibrating samples during
each session. We test PCA-CC (Algorithm 2) and PLS-CC (Algorithm 3) from Artursson
et al. [Art+00].

e Multi-Session Scenario (MSS). Methods assume that several sessions have been la-
belled. Here, we assume that the first 2 sessions have been labelled. We test CPCA-CC
from Ziyatdinov et al. [Ziy+10] (Algorithm 4) and OSC from Padilla et al. [Pad+10]
(Algorithm 5).

* Blind Scenario (BS). Methods assume nothing else than the labels from Session 1. We
test Di Carlo’s method [DC+11] (Algorithm 6). We also test the 2 proposed methods:
MR (Algorithm 7) and EMC?(Algorithm 8). EMC? is initialized with Algorithm 9.

Before testing each method, a preprocessing step is required: dimensionality reduction.
Indeed, the eNose used for this data set contains P = 63 chemical sensors, whereas sometimes
the number of samples in a session drops to 71 (cf Table 4.4). For classification purpose, the
number of chemical sensors is much too high and algorithms could suffer from the effects
of the curse of dimensionality. For mitigating the effects of the curse of dimensionality, an
intuitive method is to simply reduce dimensionality. A first way to do that is to average the
replicas of each sensing material: the number of dimensions drops then to M = 26 (the
number of sensing materials). Each session is now in sensing materials space and we note the
data from Session i, X; € RVi*M

However, there is still an open question: should we have to compensate for the drift then
reduce dimensionality (option 1) or reduce dimensionality then compensate for the drift
(option 2)? Both options were tested for all the methods and, except MR, they all performed
better with option 1 than with option 2. Since each session lasts for only few hours, MR
corresponds to a simple recentering in this case. Therefore projecting onto a lower dimensional
subspace or not does not make any difference for MR. So, we choose option 1 (except for Di
Carlo’s method), meaning that we first compensate for the drift then we reduce dimensionality.

In the Calibrant Scenario, we apply PCA-CC and PLS-CC by using Citral as calibrant and by
removing only one component (K = 1). For PLS-CC, the recording time is used as dependent
variable z,.

In the Multi-Session Scenario, we apply OSC and CPCA-CC by using the first 2 sessions and
by removing also one component. However, only the first session is used for reducing the
dimension and training.
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Fig. 4.14.: Results for all the methods used. Only Session 1 is used for reducing dimensions and training (linear
SVM).

In the Blind Scenario, Di Carlo’s method requires the estimation of a correction matrix of
dimension M x M whereas the number of samples is always lower. So, for this method only,
we first reduce and then correct (i.e. we use option 2). For the method that we proposed,
EMC?, the dimension can also be an issue, especially for the estimation of the covariance
matrices. However, as explained in Section 4.3.2, a variant can be easily implemented by
taking diagonal covariance matrices. In the following, we use this variant of the algorithm and
the R covariances matrices are assumed to be diagonal (we simply set to O the off-diagonal
terms).

Classification scores are obtained after di-

mensionality reduction (based on PCA and Method  Scenario  Score (%)
on Session 1) and after training a linear SVM PLS-CC cs 84.1
using Session 1 (parameters of the SVM are PCA-CC (o 83.7
tuned using a cross-validation procedure). EMC? BS 724
To allow a fair comparison between meth- MR BS 68.2
0SC MSS 59.0
ods, the labels of the corrected data (for each CPCA-CC  MSS 50.0
method) are predicted using this linear SVM Raw - 43.8
trained on Session 1 (i.e. we do not use the Di Carlo BS 42.1

labels which can be automatically returned Tab- 4.5.: Ranked averaged scores over sessions.

by some methods).

In Figure 4.14, we report the classification scores for all the methods used. Only Session
1 was used for reducing dimensions and training a linear SVM. In Table 4.5, we report the
averaged classification scores over sessions (excluding Session 1).
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Clearly, methods using calibrating samples outperfom the others. They are followed by the
two methods that we have proposed: MR and EMC?.

This shows that the drift model is appropriate despite its simplicity. Methods based on
several labelled sessions perform poorly. This poor performance can be attributed to the small
number of training sessions that we have used. The 2 first sessions may not contain enough
drift information about the subsequent sessions (although Session 2 is clearly drifting as
shown by Figure 4.13). Performance may be increased by considering more training sessions.
However, this result is interesting since it highlights their main drawback: in practice, nobody
knows how many training sessions are required for the future. The last method used, namely
Di Carlo’s method, has the same performance than Raw method, the method which does
not apply any correction. This reflects one of the points that we have raised in Section
4.2.3 concerning this method: it cannot adapt to a Discontinuous drift. In Figure 4.13, the
discontinuous nature of the drift is clearly perceptible in the data. This method would likely
perform better if sessions had been less spaced in time. However, the sampling of the sessions
is often not controlled in the field and methods have to cope with both Continuous and
Discontinuous drift.

What would be the performance if Session 1 measures R VOCs while future sessions are measuring
v < R VOCs?

Previous results are not perfect since scores are still not at the level of intra-session scores
(when we test and train on the same session) that we reported in Table 4.4 (SVM column).
However, most of the correction methods enable better performance than Raw method (the
method which does not correct anything). To make the task harder, we can consider a scenario
which can occur in practical applications: Session 1 measures R VOCs while future sessions
are measuring a smaller number of VOCs, say «. The identity of these v VOCs is obviously
unknown, which makes the task of drift correction even more tricky.

Unfortunately, in our data set, all the sessions measure the same number R = 3 of VOCs.
However, we can artificially remove from the subsequent sessions one VOC out of the R VOCs,
leading to v = 2 VOCs. Only the first session (and the 2 first sessions for methods considering
the MSS) keeps R = 3 VOCs for the training. Drift correction methods are then applied
according to the same pipelines. For methods requiring calibrating samples, one VOC out of
the v = 2 VOCs is randomly selected as the calibrant for all the sessions. For selecting which
VOC is removed from all the testing sessions, the solution is simple: in separated experiments,
each one of the R = 3 VOCs is selected in turn.

Table 4.6 reports the classification results, averaged over sessions (excluding Session 1).
The ranking is more or less unchanged compared to Table 4.5. Methods considering the CS
still outperform the others. However, v = 2 which means that 50% of the information is
known by these methods (information from calibrating samples), so the significance of their
performance must be moderated. More surprisingly, the proposed method EMC? performs
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Method  Scenario VOC out Average (%)

Citral Geranyl acetate  (3-Pinene

PLS-CC CS 84.9 91.4 76.2 84.2
PCA-CC CS 83 92.3 75.7 83.7
EMC? BS 70 58.8 68.7 65.8
OsC MSS 58.8 80.1 36.9 58.6
CPCA-CC MSS 55.7 76.2 29.8 53.9
MR BS 40.6 45 54.4 46.7
Raw 54.9 56 7.6 39.5
DiCarlo BS 55.5 50.5 0.1 35.3

Tab. 4.6.: Average scores over sessions when one VOC is removed from the subsequent sessions. Results are
ranked according to the global average (over sessions and VOC out).

fairly well since, recall that nothing else than Session 1 is known by this method. The other
proposed method, MR, is now performing poorly. But this result is expected: with v = 2
VOCs, we are no longer considering the scenario for which MR can work (Equal Frequency of
Occurrence Scenario). Concerning the other methods (CPCA-CC, OSC, Di Carlo’s method),
their global performance is poor which is mainly due to the data set where (-Pinene is
removed. In fact, most of the good classifications of these methods come from this cluster, by
removing it, we remove the good classifications.

4.6 Conclusion and future works

Drift is a fundamental issue affecting chemical sensors and limiting the reproducibility
of electronic noses over time. Factors contributing to the drift are numerous and come
from phenomena which cannot be easily modelled and which are often (or rather always)
concomitant in practical applications.

In this chapter, we have introduced a comprehensive data set composed of 15 different
sessions acquired over 9 months in our lab and under uncontrolled conditions. This data set
highlighted that the eNose of Aryballe suffers also from this issue.

To compensate for the drift, several methods of the literature have been listed and detailed
and we have classified them according to three possible scenarios: methods which are
assuming calibrating samples (Calibrant Scenario), methods which are assuming several
labelled sessions (Multi-Session Scenario) and methods which are assuming nothing else than
the labels from the first measurement session (Blind Scenario). The last group of methods is
by far the most challenging and the least explored in the literature. For the Blind Scenario, we
have proposed two drift correction methods based on a common drift model, namely Moving
Recentering (MR, Algorithm 7) and Expectation-Maximization Component Correction (EMC?,
Algorithm 8).

EMC? has been successfully validated on an artificial data set involving a non-linear drift. MR
and EMC? have been then tested on the real data set that we have generated and which is
affected by a significant drift between the first session and the subsequent sessions. They
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have also been compared to the methods from the literature, whatever the group of methods.
We have also studied the realistic case where the number ~« of VOCs in the future sessions is
smaller than the number R of VOCs in the first session (used for the training).

Most of the methods allowed the drift to be partly compensated. Calibrant-based methods
achieved the best performance, as long as they have calibrating samples, which can be time-
consuming in practice. The two proposed methods performed fairly well given the difficulty of
the task, outperforming some state-of-the-art methods. MR can work only if class proportions
remain stable over time so its performance decreased when we have considered the case
v < R. The performance of EMC? was satisfactory for both cases (y = R and v < R). All the
other methods were less efficient according to the data set and to the settings that we have
used.

What are the perspectives?

Drift is still an open issue. First, the methods have compensated only partly for the drift so
there is still some work for improving the results. The drift model seems appropriate but
the solution proposed with EMC? is also quite dependent on a good initialization. Other
algorithmic methods could be derived from the same model and may be less dependent on the
initialization. Besides, we have considered the drift for a classification task. It is still unclear
what would give the correction if gas quantification is required (namely the estimation of
concentration).

In this chapter, we have been only interested in intra-instrument drift. However, another
fundamental issue is inter-instrument drift. This drift may appear due to the weak repro-
ducibility of the chemical sensors. The solutions proposed may generalize to inter-instrument
drift but this calls for data sets. Besides, two instruments may also not have the same sensing
materials, making the generalization even more difficult.

Chapter 4 Drift
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The results of this chapter have been published in a journal paper:

[hal-02534216] P. Maho, C. Herrier, T. Livache, G. Rolland, P. Comon, and S. Barthelmé
“Reliable chiral recognition with an optoelectronic nose”
In: Biosensors and Bioelectronics 159 (Jul. 2020)
10.1016/j.bios.2020.112183

5.1 Introduction

What is stereoselectivity?

To define stereoselectivity, we need first to
define what chirality is. The word chiral-
ity is derived from the ancient Greek yewp

(“kheir”) which can be translated as hand in
English. Formally, chirality is the property
of an object to be non-superimposable to its
mirror-image. An object having this property
is said chiral while if it does not have this

property it is said achiral (the object and its

mirror-image can be superimposed). The ety- Fig. 5.1.: Left and right hands show chirality at work.
mology takes then on its full meaning: hand

is a chiral object (see Figure 5.1'). What is the mirror-image of the right hand? Left hand.
Using translations and rotations, can we superimpose left and right hands in 3D space?
Of course not. For a chiral object, there are then two possible forms, left or right. These
two forms are called enantiomers. Several conventions are used to differentiate them, the
convention that we used here is (R) and (S). So, for a chiral object, there will be always a
(R)-enantiomer and a (S)-enantiomer. Finally, a technique is said stereoselective if it can

differentiate between (R) and (S) forms. For instance, a left-handed glove is stereoselective.
Nature is chiral.

In chemistry, molecules can be chiral. The two forms of a chiral molecule have a lot in
common, in particular they have almost identical physico-chemical properties (e.g. mass,
boiling point, solubility, volatility, etc...). In fact, it does not exist more similar molecules
than 2 enantiomers of a chiral molecule. However, they are not exactly the same molecule
so there exists two ways for telling two enantiomers apart. First, they do not interact in the
same way with polarized light: one enantiomer deviates light to the right and the other to
the left. Second, they do not react in the same way with a chiral molecule (but they do have
the same reaction with an achiral molecule) [Ben06]. The second principle is at the core of
the stereoselectivity of many biological systems.

!Figure taken from the website https://clipartart.com/
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Fig. 5.2.: Shorthand formulas of some chiral molecules. Limonene and Carvone will be further studied.

In Nature, the building blocks of life, i.e. amino acids and sugars, are chiral. A surprising and
still mysterious fact is that almost all amino acids (out of 22) are left-handed enantiomers
[Chy97]. Amino acids are the structural unit of peptides and proteins, which makes them
chiral too. The chiral property of proteins explains why there are so many biological processes
which are stereoselective.

For instance, human nose is stereoselective [Ben0O6]. It has been proven that the differen-
tiation between two enantiomers is feasible for some chemical substances. For instance,
(R)-Carvone smells spearmint whereas (S)-Carvone smells caraway [RH71]. Another example
is Limonene: (R)-Limonene smells orange whereas (S)-Limonene smells lemon [FM71].
Shorhand formulas® of Carvone and Limonene are reported in Figure 5.2.

Stereoselectivity is also a crucial concept in pharmacology. In fact, a large part of drugs are
chiral and one of the two enantiomers is often preferred since their biological activity can be
stereoselective. In some cases, the use of the wrong enantiomer can lead to inactive substance
but also to side effects [NHPHO6]. An example is the Thalidomide tragedy [KS11]. In the late
1950s, Thalidomide has been marketed as a sedative and was used in the treatment of nausea

2Shorthand formula: it represents the skeletal structure of an organic compound as a series of atoms bonded
together and forms the essential structure of the compound. The labels C (Carbon) and H (Hydrogen) are
generally not represented and only the main bonds (C-C or between C and another atom) are represented to
lighten the structure.
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in pregnant women. Few years later, several thousands of babies were born with missing or
abnormal arms, legs, hands or feet. Thalidomide was eventually banned in most countries
in 1961. Thalidomide is a chiral molecule and was in fact marketed as a racemic mixture
(equal proportion of (R) and (S)), so the drug was composed of both (R)-Thalidomide and
(S)-Thalidomide. Later, researchers discovered that (R)-Thalidomide is actually a sedative
while (S)-Thalidomide can harm a foetus. Thalidomide episode led to a law reinforcement
and changed the way drugs are tested [Var15]. However, this tragedy could not have been
avoided since some human enzyme can transform (R)-Thalidomide into (S)-Thalidomide
[Var15]. So, even a drug only composed of (R)-Thalidomide would probably lead to the same
disaster. Shorhand formulas of Thalidomide are reported in Figure 5.2.

In conclusion, stereoselectivity seems to be straightforward for Nature.
What about man’s machines?

In the laboratory, the differentiation between two enantiomers is quite challenging and is
considered as the most difficult task regarding molecular recognition [Tro14].

Analytical methods. In Section 1.1.2, we cited Gas Chromatography (GC) as the gold stan-
dard for separating a gas mixture into its individual components. Separating two enantiomers
is so complicated that even this analytical method fails. To allow GC to be stereoselective, that
requires to use a chiral stationary phase (the stationary phase corresponds to the molecule
covering the internal surface of a GC column), leading to the so-called chiral-GC [Sch02].
Another method is called derivatization [Sch02]. The idea is to use a chemical reaction
creating new molecules which are simpler to separate. For separating a racemic mixture
(equal proportion of the 2 enantiomers), we introduce a pure chiral reagent which breaks the
chirality by creating two new molecules, called diastereoisomers. Two diastereoisomers are
quite similar molecules but more different than two enantiomers. In fact, one diastereoisomer
is not the direct mirror-image of the other. Consequently, they will not share the same
physico-chemical properties, making their differentiation easier. In fact, they can be separated
by a classical GC. So, by injecting in a GC the new mixture obtained after derivatization, we
can separate the two enantiomers. These methods suffer from the same drawbacks as those
previously cited in Chapter 1 for GC (expensive, requires qualified personnel, cannot be used
on a large scale, etc...).

During the last decade, the use of chemical sensors for this task, instead of analytical methods,
aroused interest and new technologies have been developed [Tro14].

Highly-specific sensors. The most popular method is to build a specific device to the targeted
chiral molecule. One good example of such chiral devices is sensors based on Molecularly
Imprinted Polymers (MIPs). MIPs artificially create recognition sites for a given VOC (for
instance, (R)-enantiomer is used as the template) which we want to detect. First, some
molecules, called functional monomers, bind to the template: this is the pre-arrangement
step [TP15]. Second, the complex formed by the template and the monomers interacts
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Fig. 5.3.: Principle of Molecularly Imprinted Polymers, inspired from [TP15]. First, functional monomers bind
to the template (pre-arrangement). Second, the complex formed by the template and the monomers
interacts with another polymer (polymerization). Finally, the template is removed leaving cavities
inside the polymer. These cavities have the same shape and size as the template.

with another polymer (i.e. a chain formed by the repetition of single molecule): this is the
polymerization step (i.e. small molecules interacts to form a larger molecule) [TP15]. Finally,
the template is removed leaving cavities inside the polymer due to the initial monomers.
These cavities have the same shape and size as the template. So, the resulting sensor will have
a better affinity to the (R) form than (S) form (see [TP15] for an example of a stereoselective
sensor based on MIPs). In Figure 5.3, we report the principle of a MIP-based sensor. This kind
of sensors will be highly-specific to the targeted chiral molecule but will not be useful for
other analyses.

Electronic noses. Compared to the previous group, electronic noses rely on non-specific
chemical sensors which can be used for a broad variety of applications. These instruments
are expected to be universal as their biological counterpart. So, some authors have tried to
show the stereoselectivity of eNoses, at least for two technologies. First, Brudzewski et al.
[Bru+07] explored the stereoselectivity of MOS sensors, using 7 elements (TGS sensors from
Figaro Engineering Inc.) and testing Carvone and Limonene. Based only on 10 samples, they
concluded to a perfect discrimination between the two enantiomers of both chiral molecules.
Their conclusion was motivated by the crystalline nature of the MOS surface. Kybert et
al. [Kyb+13] reported the use of carbon nanotubes coated with single-stranded DNA for
differentiating the enantiomers of Limonene and «-Pinene. They motivated this result by the
chiral nature of DNA. They suggested that their sensors could be incorporated in an electronic
nose system.

What is the goal of this chapter?
The goal is simple: show the stereoselectivity of Aryballe’s eNose.

The motivation is also simple: multiple sensing materials used by the instrument of Ary-
balle are peptides. We have seen earlier in this introduction that, peptides are chiral and
enantiomers may react differently in the presence of a chiral sensor.

However, the demonstration is not that simple. First, chirality of the sensors is a neces-
sary condition but not sufficient for stereoselectivity [Ben06]. Since the instrument is not

5.1 Introduction
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designed for stereoselectivity, its possible stereoselective behaviour is not obvious at all.
Second, differentiating between two enantiomers is the hardest problem regarding molecular
recognition [Trol4]. If observed, the differences must be really tiny so these differences must
be questioned in relation to possible experimental confounds and statistical reliability.

A naive approach for showing the stereoselectivity of the instrument would be to use the
automatic valve described in Chapter 2 and to generate a large data set, thus ensuring the
statistical reliability. However, we will see in this chapter (in Section 5.4.1) an experimental
confound which is surprising and unexpected. The instrument is so sensitive that it can make a
difference between two different vials containing the same compound. We call this unexpected
differentiation, the vial differentiation. The difference is tiny but the same applies to the
difference between two enantiomers. The reason of the vial differentiation is unclear but the
problem is obvious: how can we show that the observed difference between two enantiomers
is not only related to the fact that the two enantiomers are necessarily in two different vials?
The naive approach is not sufficient and we describe in the following a multi-session approach
and an extensive discriminative analysis to alleviate the vial differentiation.

5.2 Experimental: a multi-session approach
5.2.1 Experimental Setup

Chemical compounds. We test the enantiomers of Limonene and Carvone, since the human
nose is stereoselective for these 2 compounds [RH71; FM71]. All the products were purchased
from the same seller (Sigma-Aldrich): Butanol, mineral oil, (R)-Carvone pure at 99.4%, (S)-
Carvone pure at 99.3%, (R)-Limonene pure at 98.4% and (S)-Limonene pure at 97.9%. The
purity of each enantiomer comes from the certificate of analysis of Sigma-Aldrich. Due to
the volatility of Butanol and to the duration of the experiments, we conducted a volumetric
dilution at 25% in mineral oil to avoid exhaustion. This dilution is only conducted on
Butanol and the other chemical compounds are left pure and used as received without further
purification. The purity degree of the samples is in line with previous studies using the same
compounds [Bru+07] (and even better).

Gas sampling system. In this study, we use

the automatic gas sampling system described ™
in Section 2.2 and reported in Figure 5.4, see 8
Chapter 2 for details.

Pump output
All lines except the reference line are in-

serted in 50 mL vials, which are sealed with a
Teflon-coated silicon septum and filled with
a liquid solution of each VOC. The time seg-

mentation used is as follows: 30 sec for the .
. . . Fig. 5.4.: Automatic valve.
reference gas (ie ambient air), 30 sec for VOC

injection and 5 min for desorption. Only the
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two first phases are recorded and the third one is deliberately long, as a precaution. Conse-
quently, a valve’s cycle lasts 42 min, corresponding to 7 measurements.

Optoelectronic nose. Aryballe’s eNose is detailed in Section 1.3. The instrument used in this
chapter boards M = 19 different sensing materials deposited on the surface of the prism. 17
of them are peptides, so are chiral sensors. The two remaining sensing materials are achiral
molecules and are used as a control for the study. Each sensing material is repeated 3 or 4
times on the surface, leading to a cross-sensitive chemical sensor array of P = 59 elements.
The flow of air of the pump is set to 63 mL/min.

5.2.2 Multi-session protocol

Showing the stereoselectivity of an instrument is a difficult task and requires care, especially
regarding statistical reliability and experimental confounds. The use of the automatic valve
allows the statistical reliability to be improved, especially by generating more than 100
samples/class.

Experimental confounds are reduced by repeating the experiment twice over two long sessions,
controlling various factors. Between sessions, all the vials are changed for Session 2 and filled
with new products taken from the same stock solutions as in Session 1. We also change the
liquid volume between the two sessions, adding another source of variability. The running
order is also not the same to exclude any memory effect (i.e. artifact-based discrimination
could be due to some traces of the previously measured VOCs in the sampling system or on the
sensing surface) [DAS03]. Finally, to keep realistic data (mimicking an industrial application),
the whole setup is left at room conditions during the two long sessions. Temperature and
humidity variations are then expected. The lines allocation and other parameters are reported
in Table 5.1.

Session 1 lasted ~88 hours, providing 125 samples/molecule and Session 2 lasted ~182
hours for 260 samples/molecule, both run without interruption. Session 1 and Session 2
are separated by a single day and the total duration of the experiments is ~13 days. So
in total, the evaluation of the stereoselectivity for a given pair of enantiomers is based on
~800 samples. Humidity and temperature variations are reported in Figure 5.5, showing the

day/night cycle.
Session 1 Session 2

Line Molecule V (mL) Molecule V (mL)
@ Air (baseline) - Air (baseline) -
@ (R)-Limonene 0.4 (S)-Carvone 0.150
® Butanol 1.6 (at 25%) Butanol 1.6 (at 25%)
@ (S)-Limonene 0.4 (R)-Carvone 0.150
® Butanol 1.6 (at 25%) Butanol 1.6 (at 25%)
® (R)-Carvone 0.4 (S)-Limonene 0.150
@  Empty vial - Empty vial -
(S)-Carvone 0.4 (R)-Limonene 0.150

Tab. 5.1.: Experimental protocol reporting the lines allocation for each session.

5.2 Experimental: a multi-session approach
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Fig. 5.5.: Temperature and absolute humidity variations over the 2 sessions.

5.2.3 Data processing

Baseline manipulation. For each chemical sensor, baseline value is subtracted (computed by
averaging the first 25 sec of signal). This preprocessing helps to remove, at least partially,
some drift due to a reference change [MGG12]. In Figure 5.6a, we represent the time series
of the P = 59 chemical sensors after subtracting the baseline.

Feature extraction. The most common feature is the steady state value [Yan+15]. This
value is chemically justified since a single time series corresponds to the binding reaction
between the sensing material and the VOC. This reaction is likely to reach an equilibrium
phase, stabilizing the response around a given value. However, due to the schedule we used,
some VOCs reach equilibrium while others do not. As an alternative to steady-state values,
we propose to integrate the signal over the entire adsorption part. We retain the value of the
integral as a feature (e.g. the integration over the 30 seconds after the molecule injection).
We saw in Chapter 3 (Section 3.2.3) that this feature performs actually well compared to
more sophisticated features (for instance, features from a model).

Each chemical sensor provides a feature, and this procedure therefore gives us a vector
&,, € RY, with P the number of chemical sensors, for the measure of the VOC r during a
valve cycle n.

Feature normalization. All measures from Session 2 are represented in polar coordinates
in Figure 5.6b. On the same figure, we can easily see the exhaustion occurring over time,
especially for Limonene, leading to a change in concentration, which in turn results in
a decrease in reflectivity. As this study is interested in qualitative results, variations in
concentration cause undesirable variations. To eliminate these variations, we normalize
&, by subtracting the log-average over all chemical sensors, i.e., if subscript p refers to the
chemical sensor:

P
- 1 -
Lprn = 1Og(xprn) - F 2 log($irn) (5.1)
i=1

The normalization (5.1) implies that measurements scale linearly with VOC concentration.
Although clearly an approximation, it has always worked well in practice. The normalized data
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Fig. 5.6.: (a) Example of time series obtained for (R)-Carvone and (S)-Limonene. A vertical line indicates the
VOC injection. It corresponds to a single measurement, and the baseline has been subtracted. (b) Raw
signatures (integration of the adsorption part, over the 30 s after injection in (a)) in polar coordinates
(angle for sensor number and radius for amplitude). Color gradation stands for the cycle number
(the initial cycle is the lighter, meaning the first measurements), showing for example the gradual
exhaustion of Limonene during Session 2. (c) Normalized signatures according to (5.1): repeatability
is visibly increased (compared to unnormalized signatures in (b)).

of Session 2 is represented in Figure 5.6¢ and clearly demonstrates the increased repeatability
of the measures, even if some time-related variations remain.

Drift compensation. Remember that sessions are spreading over several days (~8 days
for Session 2) and environmental conditions are not reliably controlled to make data more
realistic. In Chapter 4, we deeply discussed a common issue with chemical sensors: their
response is not stable over time, we say that they drift. In Figure 5.7, we represent the 2 first
principal components for the data from Session 2 and drift is clear. To reuse the terminology
that we have introduced in Chapter 4, this data set suffers from a Continuous drift. This
Continuous drift seems to be correlated with the variations in temperature and humidity
that we reported in Figure 5.5. Several methods have been presented to compensate for the
drift. In particular, we proposed two new methods and validated them on both artificial and
real data sets. We named these two methods Moving Recentering (MR, Algorithm 7) and
Expectation-Maximization Component Correction (EMC?, Algorithm 8). Here, MR seems
appropriate. Indeed, we cannot find two other molecules which are more similar than the
two we are looking at, namely two enantiomers (Carvone or Limonene). Consequently, it is
very likely that the 2 molecules will be affected by the same amount and direction of drift.
This is even more true due to the experimental setup and to the short time spacing between
two enantiomeric samples. Besides, class proportions are stable over time. So, we apply MR
method on the two sessions separately with A; = 5 hours. Results for Session 2 are reported
in Figure 5.7 and show a clear improvement which will be quantitatively assessed in the next
section.

5.2 Experimental: a multi-session approach
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Fig. 5.7.: Projection of the data from Session 2 onto the 2 first principal directions, separately for Carvone (top)
and Limonene (bottom). On the right, the drift has been corrected, whereas on the left not. Each point
corresponds to a measurement such the one in Figure 5.6a. Cycle number is represented in the color
scale (the initial cycle has the lightest colour). The data set used here is from Session 2. The maps
have been centered and scaled for easier visualization.

5.3 Stereoselectivity

In this section, we show the stereoselectivity of the optoelectronic nose for Carvone and
Limonene. We start by some controls which have been carried out in-between sessions to
eliminate potential confounds. Then, we perform a rigid proof of the stereoselectivity based
on an intra and inter session analysis.
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5.3.1 Controls of the empty setup

A recent paper warned researchers about the underestimated contamination brought by
magnetic stir bars, which are often assumed clean after intensive washing [Pen+19], but may
retain traces of their previous uses. In fact, the same may hold for every material used in
chemical experiments. In our case, these contaminations may mean that the differentiation is
artifactual, due to traces left in vials or in the tubing.

First, the fluidic system is deliberately made in PolyEtherEtherKetone (PEEK), a material
which is assumed to be non-reactive with any VOC. However, any tiny residue stuck in the
system could lead to a tiny difference between two lines, resulting a difference between two
VOCs. To remove this eventuality, we intensively checked the cleanliness of the whole fluidic
system between Session 1 and Session 2. We ran 20 cycles without any vials. Then, we
extracted from the signals the same feature as the one used in the study (integration of the
adsorption part). Since no vials were present, this value is expected to equal zero, meaning a
clean line. This feature was not normalized to avoid any problems with negative values (the
signal level was very low, and negative values could arise due to noise).

We tested the discrimination between pairs

of lines booked for a pair of enantiomers / Dlsmmmatlon\
(line 2 against 4 and line 6 against 8). This empty lines empty vials
test was as follows: first, we reduced dimen- 100 1 100 1

sionality by taking the 3 first Principal Com-
ponents, then performed a repeated 3-fold 75 75 4
cross validation (repeated 50 times) with a

linear Support Vector Machine from which

we average the results to get an estimate of

Classification rate (%)

the classification rate between 2 empty lines.
The results are reported in Figure 5.8 and

show no discrimination due to a pollution in
the lines. We highlight that the closer to 50%
(chance rate) the results are, the better it is.

2vs4 6vs8 2vs4 6vs8

Fig. 5.8.: Discriminative power of the empty setup. Left

figure checks if we can find any discrimination
Second, the vials were either first-use, or based only on gas lines. Right figure checks if
we can find any discrimination only based on
gas lines, empty vials and magnetic stir bars.
tone then Ethanol and by drying them for A value close to 50% indicates that there is no
discrimination. “2 vs 4” means line 2 versus
line 4 (in Table 5.1).

intensively cleaned by rinsing them with Ace-

several hours. However, as above, any tiny
remaining pollutant in the vials could lead
to a tiny discrimination between two vials,
meaning between two VOCs. Again, we carried out 20 cycles by placing empty vials and
magnetic stir bars. The same discriminative analysis was repeated between pairs of vials
booked for a pair of enantiomers. The results are reported in Figure 5.8 and show again no
discrimination due to the vials.

5.3 Stereoselectivity
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5.3.2 Intra-session
We start by proving stereoselectivity when

we train and test from the same session. To Day 1 Day 2 o Day ]
sl . Intra session _
assess quantitatively both drift compensa- ‘ -
. P _ Training S
tion and stereoselectivity, we use a chrono (PCA + SVM) Validation set
logical validation differing from standard Session 1 Session 2
cross-validation (similar to the scheme in | Inter session [N [

[Pad+10]). Standard cross-validation di-

. . . Fig. 5.9.: Validation scheme used for assessing drift cor-
vides the dataset into random pieces (folds), & 8

rection.
disregarding temporal order. This enables

classifiers to “learn the drift”, meaning that they find a linear discriminant that is orthogonal
to the drift direction. Instead, we split each session into continuous blocks of one day each.
Then, a single one-day block is taken for training (which includes both the estimation of
the principal components and the fitting of SVM classifier), and all other blocks are used for
validation (estimating discrimination performance). This process is repeated for each day
and the classification rates are then averaged: this method thus answers the question of how
reliable the signatures learned on a single day are, when used on another day (and drift may
have occurred in between). The validation scheme is reported in Figure 5.9.

The comparison of results with and without drift compensation is indicated in Table 5.2.
A clear improvement can be noted after drift compensation by MR method. Concerning
stereoselectivity, classification rates averaged over sessions, reach the almost perfect scores
of 99.3% and 99.8% respectively for Carvone and Limonene. These scores clearly indicate
that the eNose can learn to discriminate the vial containing the left-hand form from the one
containing the right-hand form.

5.3.3 Inter-session

Stereoselectivity with a non-specific device is a very hard discrimination task, which requires a
very sensitive instrument. As a result of the instrument’s sensitivity, a successful discrimination
could be explained by an experimental artifact instead of an actual discrimination between
different enantiomers. To exclude this possibility, we carry out an inter-session analysis which
echoes the previous one.

Session  Before correction (%)  After correction (%)

Carvone 1 86.3 98.9
2 73.8 99.7
Limonene 1 95.7 100
2 65.3 99.6

Tab. 5.2.: Comparison with and without drift compensation applied session-by-session. The difference of scores
between Session 1 and Session 2 before correction can be explained by the difference of duration.
Indeed, Session 2 lasts twice the time of Session 1, thus Session 2 includes more drift.
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Fig. 5.10.: Multi-session representation. The two data sets have been drift compensated beforehand. The
principal components are learnt from the Session 1 and the data from Session 2 are projected in this

subspace. Colors indicate the enantiomer. Solid shape is for Session 1 and hollow shape for Session 2.

The maps have been centered and scaled for visual consideration.

The two sessions that we have presented so far varied in some of their parameters. As a
reminder, there were variations in concentrations, the vials which have been changed and
filled with new products (from the same stock solutions), the magnetic stir bars and the
running order are not identical from one session to the other. A resulting check is whether
one could successfully generalize from one session to the other?

To answer this question, the procedure is as follows: learn to discriminate the 2 mirror
molecules using the data from one session and try to classify them in the other session. To
clarify, we compute the new representation space (3 first Principal directions) and optimize
the SVM from Session 1 and we compute the classification rate obtained for Session 2. This
validation methodology is repeated by interchanging the role of each session. The validation
scheme is reported in Figure 5.9.

The projection of samples from Session 2 in the representation space generated by the Session
1 is represented in Figure 5.10. Again, numerical results follow the visual impression since
the averaged classification rate (across the sessions, each one taken as the train set for the

other) reaches respectively 99.9% for Carvone enantiomers and 99.8% for those of Limonene.

These results reduce the likelihood of a memory effect or an artifact-based differentiation.

5.4 Stereoselectivity origin

Stereoselectivity has been shown for Carvone and Limonene. In this section, we investigate
the discrimination origin.

5.4 Stereoselectivity origin
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5.4.1 The vial differentiation

In the experimental protocol in Table 5.1, two vials are booked for the same VOC, namely
Butanol. The experiment is repeated twice over two long sessions. So, in total, we have
samples coming from 4 different vials containing the same VOC. In Figure 5.11, we report
the data of these 4 vials projected onto the two first Principal directions. Despite all our
rigid controls on the empty setup (Section 5.3.1), the data is divided in 4 clusters, each
cluster corresponding to a vial. This sensitivity is surprising and, to our knowledge, previous
literature did not ever report such a bias. The origin of the vial differentiation is mysterious,
but consequences are clear: is the observed differentiation between (R)-form and (S)-form,
only related to a difference of vial?

First, inter-session analysis reduces this pos-

sibility. Indeed, we would be really lucky if
the vial differentiation, random by nature, 21 o _ o
R o ). @ - 0
can generalize from Session 1 to Session 2 ] o @ 'I m} ( %{oj
and vice-versa, and in addition, for both chi- % \& e g ;\@' e,
ral molecules. We evaluate this probability ¢ > 7 %
=0 C (
1 . . [
to 5. To do that, we simplify the problem Zé 2 K.
by assuming that: we have drawn 4 vials S e o0 .
= -11 . @ ). 1
independently from a common distribution = 96, 53 g Vil 1
. . . . w 5 @ Via
and there exists a pair of vials which can by : » Vial 2
generalize the knowledge learnt from this Via:3
. . . > Vial 4
pair of vials to the other. The probability to v T T

randomly select this pair of vials is then: 1 Principal direction 1

4x3 _ i id-
out of ;- =6. So, if we would have consid Fig. 5.11.: Different vials show different clusters. Each

color stands for the data from a different vial
containing Butanol.

ered only one chiral molecule in our study,

the probability to obtain our results by luck

would have been ;.

strated the same result for two different chiral molecules and these results are independent.

The probability to obtain our two results by luck is therefore: § x # = 4.

However, we demon-

Second, we propose to go further in the analysis of the vial differentiation, session-by-session.
We propose to look at the Euclidean distances between the samples of two different vials

measured during cycle n. Since we have 6 different vials containing VOCs, this leads to 15

%, the number of possible pairs) but only 6 among them are really relevant.

For instance, looking both at the pair (Butanol vial 1, (R)-Limonene) and the pair (Butanol

distances (=

vial 1, (S)-Limonene) would be useless (only one of the two is enough). One of the 6
relevant pairs is the pair of (S)-Limonene and (R)-Limonene. Let us note xfn(Limonene)
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Fig. 5.12.: Vial differentiation analysis. We take as our criterion the Euclidean distance between samples from
two different vials during the same cycle. These distances are computed for all the cycles of a
single session. For each session, we compute the average and the standard deviation. Finally, the
bars correspond to the weighted average over sessions and the error bars to the pooled standard
deviation. The red line corresponds to the average distance between the two vials of Butanol (i.e. vial
differentiation).

(resp. as;?n(Limonene)) the normalized response of the chemical sensor p to (R)-Limonene
(resp. (S)-Limonene) during cycle n. The Euclidean distance is defined as:

P
d,,((R)-Limonene, (S)-Limonene) = Z (z[, (Limonene) — x5 (Limonene))?
p=1

This distance is computed for each cycle n and separately for each session (since the two
sessions do not have the same number of samples), without any drift correction, such as
not to incorporate any bias. For each session, we average all the distances and compute the
standard deviation. Finally, we average all the sessions by weighting with their number of
samples. It corresponds to the bar ((S)-Limonene, (R)-Limonene) in Figure 5.12. The error
bar corresponds to the pooled standard deviation. This process is repeated for each relevant
pair of vials and results are reported in Figure 5.12.

Figure 5.12 confirms the vial differentiation since the distance separating the clusters of the
same VOC (Butanol) in two different vials is not zero. In our case, pure vial differentiation is
insufficient to explain the distance between enantiomeric samples.

We think that these checks should be considered by future studies, especially when the
differences are tiny.

5.4.2 The chemical differentiation

Peptides are chiral molecules and are known to be good candidates for the differentiation of
two mirror molecules [NS+17]. We sought to verify that it is indeed what drives stereoselec-
tivity in our case, since our instrument also carries 2 achiral sensing materials. To do that,

5.4 Stereoselectivity origin
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we quantify the discriminative power of each sensing material. Recall that a given sensing
material may be used for more than one chemical sensor, so that in the following, each
sensing material is summarized by the average of its replicas. There are M = 19 different
sensing materials on the device, with 17 of them chiral, and 2 achiral, the latter playing
the role of controls. The goal of the analysis is to assess which sensing materials drive the
discriminative power for the chiral compounds used here.

A simple analysis would look at the sensing materials one-by-one, and see if they can be used
on their own for separating the two enantiomers. A problem arises rapidly: the normalization
given in (5.1), compulsory for removing variations in measurements due to variations in
concentration, implies the use of several sensing materials. This means we cannot look at
sensing materials one-by-one. Another incorrect procedure would be to use all the sensing
materials to first normalize and then to look at them one-by-one. This will implicitly introduce
a bias invalidating the analysis.

We can illustrate it with a short numerical example using only two sensing materials for
discriminating two VOCs, say A and B. We assume that sensing material 1 is discriminative
whereas sensing material 2 is not. Note ¢4 and cp the concentration of A and B during an
experiment for which we have the raw responses reported in Table 5.3.

Sensing material 2 (with raw response Z-) is clearly

not discriminative since it shares the same affinity with To A To B
A and B, only a difference in concentration would lead 5 9

1 CA CB
to a difference in response. Sensing material 1 (with T2 ca cB

raw response Z1) is discriminative since its affinity

with B is twice greater than with A. To get rid of the s 0 Llog(2)

variations in concentration, we normalize using Eq. 2 0 —Llog(2)

(5.1), leading to the normalized responses reported in  Tab. 5.3.: Numerical example. # and z cor-

Table 5.3. respond to the unnormalized and
normalized signature.

So, after normalization, sensing material 2 becomes

discriminative, but only thanks to the initial discrim-

inative power of sensing material 1. It is not hard to understand that this simple example
generalizes to M sensing materials. In fact, only one discriminative sensing material can
create discriminative information for all the others.

This bias is inevitable but we can reduce it by only looking at the sensing materials pair-by-pair.
In the following, we assume that we have selected a pair of sensing materials, normalized the
responses using (5.1) (for signatures of dimension 2) and corrected the drift. It is interesting
to note that since in this case (5.1) creates a linear dependency between the two dimensions,
we have effectively a one-dimensional measurement.

Second, we need to quantify the discriminative power of a given pair of sensing materials.
We propose to use a kind of Signal-to-Noise Ratio (SNR). We define the signal part as the
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Fig. 5.13.: Signal-to-Noise Ratio (SNR) used to identify discriminative sensing materials. Middle figure, each
bar corresponds to the averaged SNR of one sensing material across all its possible pairs. SNR value
is averaged over the two sessions. The colors indicate either the sensing material is chiral (yellow)
or achiral (blue). Left and right figures represent respectively the histograms (the data used for
illustration is from Session 1) for a bad and a good pair of sensing materials.

squared distance between (R) centroid 1t € R and (S) centroid 1 € R; the greater, the
easier the differentiation between the 2 enantiomers. Noise can arguably be measured by
the standard deviation o of the samples (for a given VOC), which quantifies measurement
uncertainty. o is here calculated using samples from the (R)-enantiomer (the results do not
change if we take the (S)-enantiomer). However, the previous section highlighted another
kind of noise, namely vial differentiation, which is another source of experimental uncertainty.
To incorporate this source of noise into the SNR, we focus again on the two vials containing
Butanol (¢f Table 5.1). Similarly to the signal estimation, we take as the noise attributed to
vial differentiation, the squared distance between the centroid of the first vial ;¥(1) € R and
the centroid of the second vial ”(2) € R. The greater this value is, the more likely it is that
discrimination performance is artifactual. Vial noise is then added to measurement noise. For
a chiral molecule m and the pair formed by the sensing material ; with the sensing material j,
this gives:

SN (m) — L0 ) (5.2

(15 (1) = i3 (2))? + o3

This estimation is computed for all 171 distinct pairs. To make the results more clear, we

average the scores for a given sensing material over all pairs in which it appears. The resulting
SNR and a graphical explanation are given in Figure 5.13. The greater the SNR, the more
discriminative the sensing material. Due to confidentiality concerns, the nature of the sensing
materials is not given and labels are substituted by arbitrary numbers.

5.4 Stereoselectivity origin
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We warn that this method does not really correspond to the “true" discriminative power of a
sensing material since we are using pairs. However, we claim that this method is sufficient for
evaluating which sensing materials are discriminative and which are not.

Results are represented in Figure 5.13 and show very high scores for sensing material 16
for Carvone and the two sensing materials 6 and 18 for Limonene. First, the 3 sensing
materials are peptides and we observe that the two achiral molecules are always among the
worst sensing materials. So, the controls did their job. Second, results highlight what we
mentioned in Introduction of this chapter: chirality of the sensors is a necessary condition
but not sufficient for stereoselectivity [Ben06]. Indeed, stereoselectivity is explained only
by a couple of peptides and most of the peptides are not discriminative for the two chiral
molecules studied. Finally, the 3 sensing materials could be replicated multiple times in
future, to design a specific instrument to a given chiral pair.

5.5 Conclusion and future works

Stereoselectivity is the ability of a system to differentiate between two enantiomers. Due
to the chiral character of Nature, stereoselectivity is a property of many biological systems.
However, it remains the hardest problem in molecular recognition for man’s machines.

In this chapter, we showed the stereoselectivity of Aryballe’s eNose for two chiral molecules
(Carvone and Limonene). To do that, we proposed a robust and statistically reliable method-
ology based on a realistic gas sampling system and two different sessions over several days of
measurement. It demonstrated the ability of a peptide-based optoelectronic nose to tell the 2
enantiomers apart.

During this demonstration, we highlighted some controls which should be done by other
studies. We especially reported an experimental confound which is inevitable, named vial
differentiation. We proposed a metric including this inherent differentiation to identify the
most discriminative sensing materials.

What are the perspectives?

Our results show the stereoselectivity of the instrument regarding Carvone and Limonene. Of
course, it does not mean that the instrument can differentiate any enantiomeric pair. Further
studies should be conducted for demonstrating the stereoselectivity on a wider range of chiral
pairs.

Further studies should also be conducted on enantiomeric mixtures. The synthesis of an
enantiomer often starts from its racemic mixture and having an inexpensive and flexible
device that can measure relative enantiomeric concentrations would be highly valuable for
production.

Chapter 5 Stereoselectivity
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The results of this chapter have been submitted to a journal paper:

[hal-02448737] P. Maho, C. Herrier, T. Livache, P. Comon, and S. Barthelmé
“Real-time gas recognition and gas unmixing in robot applications”
Submitted to: Sensors and Actuators B: Chemical
Under review n°2

“[...] the wind brought him something, a tiny hardly noticeable something, a crumb, an atom
of scent; no, even less than that: it was more the premonition of a scent than the scent itself
[...]; it continually eluded his perception, was masked by the powder-smoke of the petards,
blocked by the exudations of the crowd, fragmented and crushed by the thousands of other
city odours. [...] he moved away from the wall of the Pavillon de Flore, dived into the crowd,
and made his way across the bridge. Every few strides he would stop and stand on tiptoe in
order to take a sniff from above people’s heads. [...] he smelled the scent, stronger than
before, knew that he was on the right track, dived in again, burrowed through the throng
[...]. Here, he stopped, gathering his forces, and smelled. He had it. He had hold of it tight.
The odour came rolling down the rue de Seine like a ribbon, unmistakably clear, and yet as
before very delicate and very fine.”

Patrick Siiskind, Perfume, the Story of a Murderer'.

In this extract, Patrick Siiskind describes the tracking of a scent by Grenouille. Grenouille acts
like an animal looking for some food or like a predator hunting its prey. The sense of smell of
Grenouille is unusual for a human, who is rather guided by sight than by scent. Olfaction is
in fact a key sense used by most species of animals for locating an object in the environment.

Source localization with olfaction is not a trivial task. Despite his incredible sense of smell,
Grenouille is about to lose the track of the scent several times. To follow the scent, Grenouille
must take up two main challenges. A first fundamental challenge lies in odour recognition.
The track begins and finishes with odour recognition which is essential for identifying the
source of interest and for discriminating between different compounds. The extract illustrates
perfectly the difficulty of odour recognition in environment. For instance, the odour can
be present at different levels of concentration and can also be mixed with other odours, of
interest or not. The extract also illustrates the second main challenge, which is the definition
of a movement strategy to easily and quickly locate the source. The optimal strategy can
be hard to find especially due to obstacles present in environment (e.g. the crowd) and to
variations in the wind direction.

This animal behaviour has recently inspired a research field, called robot olfaction. To name
a few applications, robot olfaction can be used for gas leak detection, demining or pollutant
localization [TWM12]. In most cases, these applications are based on the recognition of
given Volatile Organic Compounds (VOCs) present in environment. This recognition can be

!Translated from the German by John E. Woods.
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achieved thanks to gas sensors specific to the targeted VOCs (e.g. [Mea+13]). However, L.
Marques [MNAO2] demonstrated that the use of an array of non-specific gas sensors, namely
an electronic nose, can also be an interesting alternative approach.

Electronic noses (eNoses) have been often studied in controlled settings in which temperature,
humidity and VOC concentration are kept constant. In contrast, an olfactory robot will con-
tinuously measure VOCs with time-varying concentrations guided by diffusion and advection,
and that under unstable environmental conditions [Tri10]. In a realistic environment, several
different gas sources can be present, only one of which is of interest. This makes the task
of classification fundamental. In addition, gases can mix in different proportion. Finding
the identity of the mixing gases and their concentration is a quite complicated task which is
referred to as gas unmixing or Source Separation.

In the literature, few works have been devoted to VOC classification with multiple different
VOCs in uncontrolled environments [MT11] and most of them restrict their studies to 2 gas
sources. Even in this case, one major assumption is that gas sources are sufficiently far away
from each other to avoid interaction, meaning that there is no gas mixture (e.g. [Fan+19]).
This assumption is quite unrealistic in real-life applications.

In this chapter, we tackle two issues. First, we deal with classification in uncontrolled
environment where multiple gas sources of different VOCs are disseminated. Second, we
study different robotic scenarios in which gas mixtures occur and we propose an unmixing
algorithm.

In Section 1.3.3 (Chapter 1), we reviewed several key results obtained by the CREAB team
[Bre18; Hur+19; Wee+19; Wee+20]. Their experiments were carried out with a lab
instrument under lab conditions. In the same vein, in Chapter 5, we presented results under
controlled conditions to show the stereoselectivity of Aryballe’s eNose. By devoting this
chapter to robot olfaction, we especially aim at studying this eNose in a complex environment
in which environmental conditions and gas sampling can no longer be reliably controlled.

To that end, we have built two different robotic platforms. This kind of experimental setups
is sometimes called open sampling systems, since the eNose is directly exposed to the
environment to be monitored [Tri+11]. The two open sampling systems are introduced in
Chapter 2 and are placed in an indoor environment with low advection (e.g. no ventilation
system). One setup is used for assessing the recognition of 12 different VOCs disseminated in
24 isolated gas sources. The other setup is used for testing the unmixing of binary and ternary
gas mixtures. These mixtures are generated due to either the proximity of two isolated gas
sources or to the succession of scented trails. We proposed a real-time processing pipeline,
able to deal both with gas recognition and with gas unmixing. The approach is based on a
linear model with sparsity and smoothing constraints. It assumes the existence of a known
dictionary.
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The chapter starts with a short review of the main studies which deal with VOC classification
and gas unmixing in the robot olfaction field. Then, the experimental section presents the
different scenarios studied and several data sets generated during the thesis. The real-time
processing pipeline is presented afterwards as well as the classification criterion used for
quantifying the results. Finally, we present in two separated section the results obtained by
the proposed method for dealing with the classification of 12 VOCs and with gas unmixing.

6.1 State of the art

In this section, we review the main studies related to the classification of multiple gas sources
(i.e. atleast 2 different VOCs) present at the same time in an open environment. To lighten the
review, any study that only considers a single pure gas source or any study with multiple VOCs
but presented in separated experiments is not detailed here. As electronic noses are likely to
be weakly-specific devices, the use of highly-specific instruments with low cross-sensitivities
to the target VOCs is out of the scope of this chapter (see for example the urban air quality
study of [Mea+13]).

The literature on robot olfaction describes different algorithms, assessed with different setups
which are not comparable amongst themselves [MT11]. In this section, we decided to split
VOC classification in open sampling systems into two main types of work: first, the works
assuming that the gas sources are far from each other (we define such gas sources as isolated
gas sources) and second those dealing with mixtures. We already emphasize that the last
one is an application much more rarely considered in the literature. Although it is the most
realistic, it is also the most challenging.

6.1.1 Isolated gas sources

One of the earliest works is probably the one of Loutfi et al. [Lou+05; LCO6]. They studied
the classification of VOCs, up to 5, which were placed in cups present in the environment.
With the help of visual clues, their approach was based on an approach similar to a classical
3-phase sampling. They first waited 30 seconds for the baseline acquisition and then injected
the VOC during 20 seconds by placing the robot near the gas source. Finally, they waited
for the total recovery of the chemical sensors before carrying another measurement. This
approach implies that one waits for chemical sensors to recover, which can easily take 2-5
mins for MOS-based systems.

Then, much effort has been dedicated to use only transient responses, meaning only the
measurement y(t), but at the cost of a limited number of gas sources. Loutfi et al. [Lou+09]
placed two gas sources in two long corridors and improved a kernel-based approach, first
proposed by Lilienthal and Duckett [L.D04], for mapping the gas concentration of each VOC.
This algorithm has been further improved by several studies from the same group [HB+14;
Fan+18; Fan+19]. Monroy et al. [Mon+16] examined the use of time windows instead of
single time points. They concluded that algorithms could be improved by taking advantage
of the temporal correlation of samples in uncontrolled environment. In the same vein, F.

Chapter 6 Robot olfaction



M. Schleif et al. [Sch+16] proposed an algorithm to deal with short time sequences, called
generative topographic mapping through time [BHS97]. They validated their approach with
a robotic arm and four different chemical substances which were presented sequentially to a
MOS-based system.

Another line of research, in the absence of gas mixtures, is the examination of the effects
of external parameters on classification accuracy. Palacin et al. [Pal+19] studied the case
where heating, ventilation and air conditioning were activated or not. They concluded that
these parameters can help to locate gas leaks in open environments. Monroy et al. [MGJ17]
examined the influence of robot speed for the discrimination of 2 gas sources. By using a
MOS-based system, they particularly emphasized a loss in classification accuracy, up to 30%,
when the motion speed strongly differs between the training samples and the test samples.
Vergara et al. [Ver+ 13] made similar conclusions but regarding wind effects. They considered
the recognition of 10 VOCs with different wind speeds under tightly-controlled conditions
(pressure, humidity, temperature, concentration). An interesting aspect of their study is
the number of VOCs used which is uncommon in the literature when one deals with open
sampling system. However, in the case of this study, each VOC was measured in separated
experiments.

An interesting conclusion of this short review is that most of the works consider only the case
of a very limited number of different gas sources, which can be restrictive in practice.

6.1.2 Gas mixtures

The paper of Hernandez Bennetts et al. [HB+14] is probably one of the most realistic
applications in the field. They considered 2 gas sources, separated by a small distance.
They proposed an improved version of an existing kernel-based algorithm [L.D04] which can
deal with mixtures with the help of a Photolonization Detector (PID, see Section 1.1 for an
explanation about the working principle of a PID). However, few experiments were carried
out and one of them concluded to the low probability of one VOC just near its source location,
which is counterintuitive. This could be explained by the exhaustion of the gas source. The
authors emphasized the difficulty of obtaining a ground-truth in such scenarios.

Most existing works concerning gas unmixing in uncontrolled environment rely on mixtures-
learning. Mixtures-learning means that authors generate all possible mixtures with the VOCs
of interest, measure the instrument’s response, and then learn (e.g. with a neural network)
from the measured responses to predict possible responses on novel mixtures. Marques et al.
[MNAO2] built a setup in which an Ethanol source was disturbed by a Methanol source in
a turbulent regime. Their solution was then based on the training of a neural network for
locating the Ethanol source. Fonollosa et al. [Fon+14] also studied turbulent gas mixtures
and proposed to use an Inhibitory Support Vector Machine [Hue+12]. A MOS-based system
was placed in a wind tunnel and the goal was then to identify the presence of Ethylene
when an interfering volatile was present. In another work, Fonollosa et al. [Fon+15]
studied the composition of binary mixtures with an artificial neural network called Reservoir

6.1 State of the art
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Computing [MNMO02]. The sensors were placed in a 60 mL measurement chamber and they
continuously injected random mixtures of two compounds (including “pure” mixtures) with
random transition times. The approach based on Reservoir Computing performed a better
estimation of the true concentration of each compound compared to simpler methods, namely
a linear regression and a Support Vector Regression.

An implicit drawback of a mixtures-learning approach for gas unmixing, is that it requires the
generation of a lot of different mixtures for training the algorithm, ideally all the possible
combinations of the studied VOCs. It can be manageable when one studies only binary
mixtures but it rapidly becomes impossible when one deals with more complex mixtures.
For instance, let us assume that we have R VOCs in the environment which can all mix in
different proportions (including a null concentration). Then we have to generate ) = 27 — 1
mixtures” to be sure that we can recognize any mixture of these R VOCs. For R = 2 as in the
article of Fonollosa et al. [Fon+15], we have to manage “only” 3 different kinds of mixture
(2 pure, 1 real mixture) at different concentration levels. But for R = 3, 7 different kinds of
mixture have to be generated which can be more challenging regarding the experimental
practicability. If we continue, for R = 4, we have to manage 2 = 15 kinds of mixtures, for
R =5, Q = 31, etc...

We believe that a more valuable algorithm, easier to use in practice, would deal only with
experiments generated from the pure VOCs. From these experiments with pure VOCs, we
would build a dictionary and would try to unmix any mixture from this dictionary. In this
way, only R experiments have to be generated which considerably reduces the experimental
time (and human factors at the same time).

As a conclusion, little work has been done concerning the use of an electronic nose for dealing
with mixtures in an uncontrolled environment.

6.2 Experimental

6.2.1 Optolectronic nose

Optoelectronic nose. Aryballe’s eNose is detailed in Section 1.3. The instrument used in this
chapter boards 19 different sensing materials which are replicated 3 or 4 times on the surface,
leading to an array of P = 59 chemical sensors.

Main advantages for a robotic application. Most existing works in robot olfaction use
MOS-based systems [[WM12]. So, we can highlight some advantages of using Aryballe’s
eNose for a robotic application compared to MOS-based sensors.

First, the number of chemical sensors is large compared to other robot studies. Using MOS-
based sensors, this number generally reaches a maximum 5 or 6 elements, replicated or not.
Here, we have four times more sensors since we have 19 different molecules on the sensing

2Each VOC is either present in the mixture or absent. There are therefore 2 possible states for each VOC, so 27
distinct combinations including the “null” mixture.
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surface (replicated 3 or 4 times). It is well known that, when one deals with gas mixtures,
the number of sensors is a crucial parameter when one wants to identify the components of
mixtures [CJ10] (see for instance Section 3.3.4 in Chapter 3 which presents a study about
the influence of the number of sensors in a Blind Source Separation framework).

Second, this instrument demands much less power than a MOS-based system. For instance,
let us consider a MOS gas sensor such as the Figaro TGS 2600 which is often used in the
literature for detecting Carbon monoxide or Hydrogen. If only the power consumption for
the heater part (which is the most power demanding by far) is considered, then according
to the product’s sheet, power consumption reaches 210mW [Fig13]. By doing a simple
multiplication and assuming that we want 60 replicas of this sensor for our robot, we reach
12.6 W. By comparison with our instrument for which the working principle only needs a
camera and an LED, we obtain 1.56 W (these 2 numbers do not take into account the on-board
electronic system such as the pump which creates the flow of air). Thus, this instrument
reduces the power consumption by a factor ~8 which is absolutely not negligible in a mobile
robot application for which battery life is crucial. In addition, with this instrument, we can
easily add new sensors to the prism surface without increasing system complexity [Bre+ 18],
meaning that we can double the number of sensors without changing power consumption.

Finally, a common concern with eNoses is stability over the medium and long term [MGG12]:
are signatures stable enough that VOCs can be reliably recognize over weeks or months? In
Chapter 4, we deeply reviewed this issue, called drift issue. Using a robotic setup (similar
to the one in the next section), we ran repeated measurements of three different VOCs over
several months and under different environmental conditions. The signatures did indeed drift
over time, and we compared several correction methods. The results show that the signatures
used for classification can be used without re-training over a period of several months. Other
advantages have been highlighted in Section 1.3.3 (Chapter 1).

All these characteristics match the desirable attributes needed for a robot application described
by R. A. Russell [Rus01].

6.2.2 Isolated gas sources

The first open sampling system is presented in Chapter 2, in Section 2.3.1. We called this setup
Sniffer robot. The platform (see Figure 6.1) consists of a robot that carries the previously
introduced eNose, moving over a flat surface where gas sources are placed. To have a better
idea of the setup and of the experiments, we encourage the reader to watch a video® that I
have made during the thesis and available at:

http://simonbarthelme.eu/personal-website/videos/robot12V0C.mp4

A funnel-shaped support has been made with a 3D printer and the PEEK (PolyEtherEtherKe-
tone) injection tube of the eNose is inserted in this support in order to increase the suction

3If the link does not work, try this one:
https://drive.google.com/file/d/1AddmCYFwQcHtG1laTksn8zyC-0e7CDzbU/view

6.2 Experimental
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Fig. 6.1.: Sniffer robot platform. Top Left figure: the robot and some dimensions. Top Right figure: the

experimental platform and some dimensions. 12 VOCs are disseminated in 24 gas sources along a
path followed by the robot. Bottom figure: a time series of one chemical sensor during one lap (with
baseline subtracted, taking the first points). Each peak corresponds to the passage of the robot over a
gas source (a small cup). To extract the peaks, we perform a segmentation step detailed in Appendix A.
The results of the segmentation is shown by the colored points (each color stands for one of the 12
VOCs).

area. The ground is a 2m x 1m x 2.5mm polycrystal plate which is lifted by 1.5cm. On
this plate, a black path is drawn for the robot to follow. Along this path, the plate is pierced
at 34 different locations thus enabling to slide below the plate up to 34 gas sources at the
same time. Here, gas sources are small cups in which liquid solutions of VOCs are placed.
This setup is placed in an indoor environment, basically a normal office with low natural
advection (no ventilation system). The liquid solutions (~250uL) are put in the cups just
before the experiment. The speed of the robot is set to 2 cm/s, the frame rate of the camera
to 5 Hz and the airflow to 60 mL/min. The frame rate can be increased and the airflow can
be decreased but these values are sufficient in practice to measure the chemical reactions and
their dynamics.

The 12 VOCs we selected are listed in table 6.1. This selection has been only based on product
availability and on safety, but not on whether their signatures are easy to tell apart. Each VOC
is repeated twice along the track. The position of each VOC is optimized manually according
to two criteria: first, we have to limit the desorption of one compound on the next compound
and second, two cups of a VOC must have different neighbors. In this way, each gas source is
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VOC Formula  Molar mass Psat Chemical
(g/mol) (mbar) family

(S)-Limonene C10His 136.2 2.1 Alcene
B-pinene CioHis 136.2 3.2 Alcene
Allyl-hexanoate  C9H1602 156.2 0.91 Ester
Geranyl acetate  C12H2002 196.3 0.035 Ester
Butanol C4H100 74.1 8.9 Alcohol
Cis-3-hexenol CsH120 100.2 1.4 Alcohol
Linalool C;HgO 154.2 0.021 Alcohol
Benzaldehyde C-H¢O 106.1 1.7 Aldehyde
Trans-2-octenal CsH140 126.2 0.73 Aldehyde
Citral C10H160 152.2 0.12 Aldehyde
Acetic acid C2H40- 60.0 21 Acid
Guaiacol C;HsO- 124.1 0.24 Phenol

Tab. 6.1.: List of the VOCs used and some of their properties (the vapor pressure P, was estimated at 25°C).

sufficiently distant from its neighbors which limits the mixing but does not completely prevent
it. This also explains why some cups are left empty in Figure 6.1 and why “only” 24 cups out
of 34 are really occupied by a VOC. The path is repeated 28 times (the total duration of the
experiment is then 3h and 44 min), so for each VOC we have at most 56 peaks (such the ones
represented in Figure 6.1).

Finally, a raw time series (with baseline subtracted, first points are taken for baseline es-
timation) of one chemical sensor during one lap is represented in Figure 6.1. Each peak
corresponds to the passage of the robot over a gas source (so we can count 24 peaks).

The robot is not capable of interacting with the eNose yet. Ideally, we should know at least
the location of the robot over time to relate the response of the eNose to a spatial position.
However, we do not have this information neither. So, we do not know exactly when the robot
is over a gas source, except that it must correspond to a peak measured by the instrument. To
extract the peaks, we perform a segmentation step detailed in Appendix A. The results of the
segmentation is shown by the colored points (each color stands for a VOC) in Figure 6.1.

6.2.3 Gas mixtures

The second open sampling system is presented in Chapter 2, in Section 2.3.2. We called
this setup Sniffer arm. This setup is used to evaluate different realistic scenarios that can be
encountered in a robot olfaction application.

The main part is an aluminium trapezoidal shaft that moves the eNose along one dimension.
To have a better idea of the setup and of the experiments, we encourage the reader to watch
a video” that I have made during the thesis and available at:

http://simonbarthelme.eu/personal-website/videos/closeSources.mp4

“If the link does not work, try this one:
https://drive.google.com/file/d/14exr-R1c4hTyitnlWeuqKYA3uLgDrIbz/view

6.2 Experimental

135


http://simonbarthelme.eu/personal-website/videos/closeSources.mp4
https://drive.google.com/file/d/14exr-R1c4hTyitn1WeuqKYA3uLgDrI5z/view

136

v=1cm/s
— .
Im Citral rz(s)'“m"“e“e\ Citral

o | -0 |
8'8.5 25.5'_I (cm)
3 1
154 :
=
2
g LE o £ 101
————— E
B -
& Scent strip soaked 2
O.
Funnel-shaped support distance (cm)
(a) Sniffer arm (b) Scenario D
> — (S)-Limonene (S)-Limonene
(S)-Limonene Citral Cis-3-hexenol
b -»--»--»Eﬂﬂ?ﬁ-cm—lﬂ‘-"ﬂén- e ————— ————— ————— S
1(.:.5 15|.5 20|.5 2?.5 (cm) ) Citfal 10!.5 15!.5 20!.5 2?.5 (cm)
. 1.51 | | | | Cis-3-hexenol |
® I | I I ® 10
2101 [ [ [ 2]
2 | L 3
19 9]
< 05 I % 05
= g
01 0
0 10 20 30 0 10 20 30
distance (cm) distance (cm)
(c) Scenario @ (d) Scenario ®

Fig. 6.2.: Sniffer arm setup. (a) The setup. (b) Scenario @: isolated gas sources are spatially close. (c) Scenario
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VOC mixtures). Below each scenario, we represent the averaged AReflectivity (across chemical sensors)
for each sweep (first sweep is the lighter). More details are given in the text.

The total length of this path is 36.5cm. With this setup, we can perform sweeps multiple
times, from left to right and vice versa. To save space, we detail only the data from one
direction of sweep, but the rest is presented in Appendix C.2 (the two directions are highly
similar). Again, a funnel-shaped support is added to increase suction area. Gas sources are
now scent strips, directly placed along the 1D-path, on which few drops are deposited. The
speed of arm movement is set to 1 cm/s.

In the literature on gas recognition in an uncontrolled environment, authors generally work
only with pure compounds which are far from each other in order to avoid mixing. We believe
that these restrictions are not realistic in the field. That is why we focus in this study on binary,
or ternary, mixtures. To this end, we propose different realistic scenarios with increasing
complexity:

* Scenario @, Figure 6.2b: gas sources are spatially close which leads to gas mixtures.
We consider two scent strips which are separated either by 3 cm or by 1 cm. The two
gas sources are Citral and (S)-Limonene. One drop of their liquid solutions (~50 pL) is
deposited on the scent strips. The averaged AReflectivities of 20 sweeps on the Figure
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6.2b clearly indicates that the 2 gas sources mix. Unsurprisingly, the amount of mixing
depends on the distance separating the two gas sources.

* Scenario @, Figure 6.2c: gas sources are trails which are successive. We use three scent
strips (5 cm long) which are placed one after the other. The first trail contains Citral,
the second contains (S)-Limonene and the last one contains Guaiacol. Three drops
of their liquid solutions (~150 pL) are deposited on the scent strips. The averaged
AReflectivities on the Figure 6.2¢c of 20 sweeps clearly demonstrate the complexity of
the task in which transitions between VOCs are unclear.

* Scenario @, Figure 6.2d: gas sources are again trails but no longer pure compounds.
We consider three scent strips (5 cm long) which are placed one after the other. The first
trail contains Citral and Cis-3-hexenol, the second contains Citral and (S)-Limonene
and the last one contains (S)-Limonene and Cis-3-hexenol. For a given scent strip, three
drops of each liquid solution (~150 pL) of the 2 compounds are deposited on the scent
strip. Thus, the mixtures operate both in the gas phase and in the liquid phase. Again,
the averaged AReflectivities on the Figure 6.2d of 20 sweeps clearly demonstrate the
complexity of the task which requires unmixing algorithms that can deal with ternary
mixtures.

In each one of these scenarios, the experiments involve placing the scent strips, depositing
the compounds and doing several sweeps (N=20). At the end of each sweep, the arm stays
in place for 20 sec. The response of the eNose during the sweeps is recorded continuously
(without any interruption between each sweep). Compared to the previous setup, we know
when the arm reaches the end of a sweep. The segmentation of the signals is therefore
straightforward and does not require any additional post-processing. We extract for each
sweep only the part of the signal during which the arm is moving.

The spatial scale of this setup is limited compared to other experimental setups that can be
found in the literature. However, in large-scale setups it is very difficult to obtain a ground
truth [HB+14]. Indeed, nobody can tell if the results of the proposed algorithm far from the
gas sources are valid or not since no one can tell exactly the proportion of a VOC at these
distances in a realistic environment. Thus, we consider that a small-scale setup is completely
appropriate since we would not have more information with a larger one.

6.3 Real-time unmixing

We propose a single processing pipeline which we use in all the scenarios previously in-
troduced. It can be used for the recognition of isolated gas sources (as for Sniffer robot,
described in Section 6.2.2) and for the unmixing of binary and ternary mixtures (as for Sniffer
arm, see Section 6.2.3).

Requirements for real-time algorithms. Recently, [Fan+19] highlighted the need for real-
time algorithms in a robot olfaction application such as emergency response scenarios.

6.3 Real-time unmixing
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Fig. 6.3.: Baseline drifts over time. Drift estimation is represented in red.

Real-time algorithms must be of low algorithmic complexity to avoid any processing lag, and
the processing pipeline described here is designed with that constraint in mind.

Beyond the constraint of low algorithmic complexity, real-time data-processing algorithms
must be causal: at the current time point ¢, we can only use the data acquired up to time
t. All the results shown include this constraint®. Another direct implication of the real-time
constraint is that the whole processing pipeline for the current time point ¢ must have a
computation time lower than the sampling period (here, 200 ms). We report computation
time below, but need to point out that it depends on the data, on the programming language
(here, R) and on computer performance (Dell Inc. Latitude XT3, CPU i7-2640M 2.8GHz,
Ubuntu 16.04). The timings we report could be greatly reduced, as R in particular is an
interpreted language that we use for convenience. An order-of-magnitude improvement is to
be expected from implementing the algorithms in a compiled language.

Baseline drift. In Chapter 2, in Section 2.3.3, we discussed an issue encountered with the
robotic setups: the baseline is drifting over time. To be more precise, baseline suffers always
from drift whatever the setup. Using a 3-phase sampling, the baseline drift is easily corrected
since some time is saved for baseline acquisition. However, with our robotic setups, the eNose
is continuously exposed to the environment and there is no specific time saved for acquiring
the baseline. Consequently, the baseline drift appears at the same time as the VOC injection.
To solve the problem, in Section 2.3.3, we use a ¢g-quantile filter on a time window of size &
which estimates the baseline trend (see Figure 6.3). This estimation is then simply subtracted.
This filter can be applied in real-time since the computation time required is around 10 ms by
setting the parameters to: £ = 100 seconds and ¢ = 0.1. The parameters have been manually
selected for the experiments. Automatic tuning of these parameters is an interesting topic for
further research. In the following, we assume that the baseline drift of each chemical sensor
p at time ¢ has been estimated and subtracted from the response.

Notation. To set notation, we note y,(t) the time series of the chemical sensor p. As in
previous chapters, we note respectively N;, P and R, the duration of the recording, the number

Performance could be improved by processing the data in a batch, but then the algorithms would not be
real-time anymore
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of chemical sensors and the number of VOCs. As explained in the introduction, the instrument
generates a signature k, € R” for each VOC r (the extraction process is detailed in this chapter,
in Section 6.5.1). We stack all these signatures into a matrix K = [k, ..., kg] € RP*%, The
intensities c(t) € R” at time ¢ are stacked into a matrix C = [c(1), ..., ¢(N;)] € RNt and
measurements are stacked into a matrix Y = [y(1), ..., y(N;)] € RP*Ne,

6.3.1 Model

As described in Section 6.1.2, a solution proposed by some authors is based on mixtures-
learning. We already discussed the main drawback of this strategy. In this chapter, we propose
to use a known dictionary K € RP*% containing all the signatures of the R studied VOCs.
This method requires little experimental time (in the training phase), as only pure VOCs have
to be measured. The goal is then to estimate a vector c(t) € R which gives the intensity
of each VOC at time ¢. This implies the formulation of a model relating K and ¢(¢) to the
measurement y(t).

The model we formulate is linear, because linearity greatly simplifies the computations. We
know from Chapter 3 that linearity cannot hold in general, but holds approximately in a
low concentration or low affinity regime (see Section 3.3). In addition, there are several
experimental pieces of evidence in previous chapters which support linear model. In Chapter
1, we reviewed several studies of authors working with the same type of eNoses (see Section
1.3.3). They showed that the response of the eNose is proportional to concentration [Bre18],
at least for a range of concentration depending on the VOC. In Chapter 4, we used a linear
model successfully to normalize signatures for concentration. Another experimental piece of
evidence in favor of using linear models is provided in Section 6.5.1 in which we represent
the linear fitting of data of a single VOC.

Given a vector of sensor responses at time ¢, y(t) € R”’, we express the linear model both in
the presence of a single VOC r and of a mixture of VOCs:

Single VOC Mixture of VOCs

ly(t) = krer(t)| y(t) = Ke(t) 6.1)

The model for a single VOC is used in Section 6.5.1 for the estimation of the signature
k, € R, In the following, we focus on the linear mixing model which simply assumes that
the measurement y(¢) is a linear combination of the signatures of pure VOCs. Again, we
emphasize that this method requires little experimental time since we only need to generate
data with pure VOCs for the estimation of K.

6.3 Real-time unmixing
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6.3.2 Optimization problem

Despite its simplicity, linear unmixing has been successfully applied in many fields such as
remote sensing [BD09], fluorescence microscopy [Dic+01] or spectroscopy [Mou+06]. A
simple way to estimate ¢(¢) is to minimize a least squares cost function:

e(t) = argcmin ly(t) — Kc|3 (6.2)

In this case, the solution is easily obtained from the pseudo-inverse of K. However, the latter
analytic solution may produce negative intensity values, which is not physically possible. To
avoid this, we add a non-negativity constraint on c(¢). In addition, we do not expect that all
the VOCs from the dictionary are present in the mixture (recall that R = 12 and that we study
ternary mixtures in the worst case). This implies that we need to add a sparsity constraint
on c(t). Sparsity can help the estimation since K can suffer from an ill-conditioning due to
correlated signatures. The sparsity of ¢(¢) can be naturally imposed by the /y-“norm” which
counts the number of non-null elements in ¢(¢):

e(t) = ar§>nolin ly(t) — Kc|3 s.t. |lcfo < v (6.3)
Here, it implies that at most  intensity values of ¢(t) will be non-null (we call support S(t)
of ¢(t) the position of non-null coefficients). However, this optimization problem is known to
be NP-hard and the global solution can be reached only in small-scale applications. Indeed,
worst-case computation time increases exponentially with the size R of the dictionary. Another
approach, which we choose here, is to relax this constraint with the ¢,-norm, |c[; = 3% | |¢,],
through a penalty term weighted by A\ > 0:

e(t) = ar§>min ly(t) — Kc|3 + Mlc|: (6.4)
Finally, we add a last constraint to improve the solution, which we call support continuity.
Given a time ¢ and a small integer w, the supports {S(t—w), ..., S(t)} of {e(t —w), ..., c(t)} must
be similar. This constraint implies a weak assumption which is that during a small time frame
(defined by w) the composition of the mixture does not change much (here, w = 1 sec). This
constraint could be formulated as an additional penalty term such as u|c — ¢(t — 1)|3 which
would smooth the estimation of ¢(¢) in relation to ¢(t— 1). However, this would require tuning
an additional hyperparameter . Instead, we propose an heuristic that we detail in the next
paragraph. For the rest, we define ¢5(*)(¢) € R” the restricted version of ¢(t) to the support
S@t), CoV(t) = [SO(t —w), .., SO B)] € RW»>*@+D Y (4) = [y(t — w), ..., y(t)] € RPX@+D)
and K" € RP*7 the restricted version of K to the support S(t). We define the subproblem:

~S(t)

C.V(t) = argmin | Y, (t) — KW |2 (6.5)

C=0

w

where C > 0 means that all the elements of C are non-negative and | - | stands for the
Frobenius norm.
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6.3.3 Optimization method

The proposed method is divided into two main blocks: first, estimate which VOCs have
a non-null intensity in ¢(t¢), i.e. solve Problem (6.4), and, second, integrate the support
continuity constraint.

Solve Problem (6.4). Let us assume that we have a measurement y(¢) from which we want
to identify c(¢). The first problem is to find the support S(¢) of ¢(¢) (the position of non-null
coefficients). This can be done by solving the optimization problem in eq. (6.4), in which the
parameter )\ influences the degree of sparsity of ¢(t), meaning the estimated number of VOCs
in the mixture y(t); the larger \, the sparser ¢(t). If A is too large, then the algorithm may
converge to the null solution (¢(t) = 0r). On the other hand, if A = 0 then all coefficients of
¢(t) can be non-null and only the data misfit will matter. ) is therefore a crucial parameter in
the estimation of the support S(¢) and there exists a A, called Ap;,, which correctly balances
the tradeoff sparsity - data misfit. In order to estimate A\, and solve the problem (6.4) for
A = Amin, We use the algorithm proposed by [FHT10] and the associated R package glmnet.

The algorithm relies on a grid search and a 3-fold cross-validation procedure. Givena \, 5 € N
folds are generated from y(t), then -1 folds are used for estimating ¢(t) with a coordinate
descent, and finally the remaining fold is used for prediction from which a mean squared
error is estimated. This procedure is repeated for each fold, which gives an estimation of the
mean squared error for the given \. This procedure is repeated with the same folds for the
sequence of \. The sequence of values of A is picked using the method proposed by [FHT10].

Cross-validation (CV) is a common technique to estimate the prediction performance of
a model. In our case, it has the advantage of being sensitive to the number of non-null
coefficients. Another approach would be to simply compute a mean squared error using the
whole y(t) for fitting and predicting. However, with this approach, the less sparse ¢(t) is, the
better the fit is and the lower the mean squared error is. By using CV, the error is computed
on data which have not been used for the optimization. So, more parameters (i.e. ¢(t) is less
sparse) in the model does not imply less error (in fact, these parameters will learn the noise
in the training data which will negatively impact the performance on new data).

Finally, the value of \ corresponding to the minimum mean squared error is chosen as Apip.
With A = A\pip, the algorithm then estimates ¢(t) from the whole y(¢) via a coordinate descent.

The support S(t) is therefore identified from &(t) as S(t) = {r € [1,R] : &(t) # 0}. We
emphasize that this method has the great advantage of not requiring the knowledge of the
number of VOCs in the mixture y(¢) (this number is estimated through Ay;,). In Algorithm
10, we do not describe again the cross-validation procedure for the estimation of X in the
minimization process (6.4) for lack of space.

Solve support continuity constraint. At this stage, we have an estimation of S(¢) from
¢(t) considering only the time ¢ and we have already estimated the previous w supports
{S(t —w),...,S(t — 1)}. In order to integrate the support continuity constraint, we just find

6.3 Real-time unmixing
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Fig. 6.4.: Graphical explanation of the estimation of the support. For estimating the support of the intensity
vector ¢(t), we proceed in two steps. First, we solve Problem (6.4). Due to the sparsity constraint, ¢(t)
has many null coefficients. We call S(t) the position of non-null coefficients. Second, we compare S(t)
with the previous supports estimated from the previous time points (in a small time frame). This step
aims at including the support continuity constraint in the estimation of ¢(¢). Support continuity means
that we expect that the VOCs present in the mixture at time ¢ may be the same than the VOCs present
at time ¢ — w (for w small). In other words, the constraint adjusts the support at time ¢ by considering
the previous estimated supports. For that, we compare S(¢) with the most frequent support Sas(¢). The
comparison is done by cross-validation and the support having the lowest error on the time window is
chosen.

the most frequent support Sy;(t) of the w + 1 supports. If the support Sy, (¢) equals S(¢), then
we go to the next step. Otherwise, we need to identify which support better explains the
whole time window. To that end, we perfom again a 5-fold cross-validation. We carry out the
cross-validation on the rows of Y, instead of its columns, since the two supports are known.
We split the P rows of Y, (t) € RY x(w+1) into 3 folds f;, i € [1, 5] (fi contains the indices
of each fold). For each support and each fold, we solve the subproblem (6.5) considering
Y, —(t) (it contains the rows of Y, (t) which are not in f;), with a quasi-Newton algorithm
called L-BFGS [Byr+95]. We then predict Y, f,(t) (it contains the rows of Y, (¢) which are
in f;) and compute the sum of squared errors. We repeat the procedure for each fold, which
gives an estimation of the sum of squared errors for each support. Finally, we identify S(¢) as
the support with the minimal error. For the first w measurements, we just set w tot — 1. A
graphical explanation of the estimation of the support is reported in Figure 6.4.
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Algorithm 10 Real-time estimation of the intensities c(t)

Require: w, T,
# Estimate the support of c(t)
&(t) = argming=q Jy(t) — Kl + Alels
S(t) = {re[1,R] : &.(t) # 0}
# Homogenize the support in relation to the window
Let Sps(t) be the most frequent support in {S(t — w),...,S()}
if S(t) # Sa(t) then
# Compute the cross-validation error for each support
Split the P rows of Y ,,(¢) into § folds f;, i € [1,]. fi; contains the indices of the test
fold i. Ay, (t) contains the rows € f; and A_y,(t) contains the rows ¢ f;.
J, Iy =0
fori=1to 5 do
J=J+minczo [V, () - Kf(;i)cﬂ%
T = Ju +mingso [ Yo, (6) — K30 CJ3
end for
if Jy; < J then
S(t) = Su(t)
end if
end if
# Estimate c(t) on the final support
¢(t) =0p
&0 (1) = argmin g [y(1) - K5Ocl3
# Smooth ¢(t — 1)
ot —7) = 5y XL et —7 i)

Eventually, the final step is then just to solve the problem (6.5) for the final support S(t),
limiting the estimation to y(¢). Furthermore, a smoothing filter is then applied to &(t — 7),
where 7 is an additional parameter (here, 7 = 0.4 sec). We simply replace ¢(t — 7) by the
mean value of {¢(t — 27),...,¢&(¢)}. In Appendix C.1, we provide an intensive comparison
showing the interest of using a smoothing filter. We also show in Appendix C.1 the benefits of
using all the constraints that we impose in our method.

The algorithm is summarized in Algorithm 10. It is important to note that this method does
not assume that we know the number of VOCs in the mixture y(¢) and does not normalize the
data. So, the vector ¢(¢) which contains the intensity of each signature in the measurement
y(t) should be related to the VOC concentration in some way. This claim must be confirmed
by further experiments measuring the true VOC concentration with an additional instrument
that can determine ground-truth concentration.

6.3.4 Computation time

In Section 6.5.4, we perform cross-validation in order to estimate a score for the data from
Sniffer robot (R = 12 VOCs). Out of ~600 000 measurements y(t), the computation time
of Algorithm 10 was then 75 +17 ms. Eventually, the computation time needed by the two
algorithms is lower than the sampling period (200 ms), as required.

6.3 Real-time unmixing
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6.4 Evaluation

In this study, we have no way of measuring the actual concentration of each VOC, which limits
the assessment of our method. In the following, we detail a classification-based criterion.

To compute a score, we can use the location of each gas source. In fact, time and distance are
related in a trivial way. So, we can easily relate the time measurement y(¢) and the estimated
intensities ¢(¢) to a location along the path. Therefore, we can define a set of time points, say
{t1, ...ty }, for which the robot is over the gas source of the VOC r. Then, we can associate
with each time ¢ in this temporal range, a label ¢(¢) according to the maximum intensity:

Vte {t], ...ty }, L(t) = argmax &(t) (6.6)
i
From this label ¢(¢), we can then compute a score based on the position of the gas sources.
Ideally, any label ¢(¢) matches with the identity of the gas source. However, this score can
only work for pure compounds. Since we have also binary mixtures at a time ¢ (Scenario ® of
Section 6.2.3), we extend the previous criterion to the mixtures of v VOCs by simply taking
the ~ first maxima as the classification result:

vte {t;", ...,tET’""H},Vj e[1,7] ¢;(t)= argmax  ¢&(t) (6.7)
N L)l 1 (8}
From the labels {¢,(t),...,¢;(t)}, we consider the output of the algorithm a success if it
correctly identifies all the VOCs present in the mixture. The output is considered false if at
least one VOC has not been correctly identified.

We warn the reader that the location of the gas sources (diameter of the cups, length of
the scent strips) does not really correspond to the beginning and to the end of interactions
(meaning, the rise and the baseline return). Indeed, there exists some inherent lags, such
as: a chemical lag due to the dynamics of the chemical reactions (adsorption, desorption),
a lag due to the airflow (the delay in transporting one molecule from the floor to the prism
surface), a lag due to diffusion (the spatial range is in fact greater than the spatial area of
the gas source) and another lag due to the funnel. Consequently, the response can often
spread over a spatial range larger than the location of the gas source. Future developments
can integrate some deconvolution tools to compensate for all these lags (see for example the
recent study of [MBM19]).

Evaluation for data from Sniffer robot (Section 6.2.2). In this setup, the spatial area of the
cups and the corresponding temporal range are quite small. As a reminder, the cups have
a diameter of 2.5 cm and the speed of the robot is 2 cm/s, leading to only 6 measurements
(frame rate = 5Hz) if we consider strictly speaking the location of the gas source. To avoid an
overoptimistic score (due to a too small temporal range), we extend the location of the gas
sources and we take the time points corresponding to the entire peaks (for an illustration of
the peaks, see Figure 6.1). For finding the peaks, we perform a segmentation of the signal.
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Fig. 6.5.: Graphical explanation of the evaluation procedure. We identify each point y(¢) as being the VOC
having the max intensity in é(¢). This label is then compared to the identity of the gas source over
which the robot is passed. For Sniffer robot, we perform a vote between all the labels extracted and
associate with the gas source the majority label. For Sniffer arm, we use each label ¢(¢) to compute the
score.

This segmentation assumes that there is no mixture between two successive cups (which
may not be true) and is detailed in Appendix A. An example of the segmentation obtained is
shown in Figure 6.1, in which each color corresponds to the temporal range of each of the 24
gas sources. This approach increases the spatial range to 8 + 3.2 cm (i.e. the temporal range
to 4 + 1.6 sec), so we consider much more points than the simple location of the gas source
(which would correspond to some points located around the maximum).

In each temporal range, we then perform a vote between all the labels extracted and associate
with the gas source the majority label. This label is then compared to the experimental plan
in Figure 6.1.

Evaluation for data from Sniffer arm (Section 6.2.3). In this setup, mixtures occur in

different scenarios and it is hard to predict what is occurring outside the gas sources (i.e.

scent strips). So the spatial range is not increased, and is defined as the spatial area occupied
by the scent strips. However, instead of taking a majority label for the whole area as for Sniffer
robot, we keep each label /(t) for the score. In fact, with Sniffer robot, each gas source is much
more away from the other gas sources than with Sniffer arm. In Section 6.2.3, gas sources
are so close that it is hard to expect a consensus regarding the labels (this is especially true

at the boundaries between 2 gas sources). Let us illustrate the evalutation with an example.

6.4 Evaluation
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For Scenario @, the Guaiacol source starts from 10.5c¢m to 15.5c¢cm which corresponds to
25 measurements (speed = 1cm/s and frame rate = 5Hz). For each measurement y(¢),
we predict the label /(¢) based on the criterion (6.6). If the label ¢(¢) is Guaiacol then the
classification is correct, otherwise the prediction is false and so forth for the other gas sources.
For Scenario @ (binary mixtures), we consider a success the identification of the full mixture
(i.e. not only one VOC among the two).

6.5 Classification of isolated gas sources

In this section, we tackle the issue of classification with the data from Sniffer robot (see
Section 6.2.2). As a reminder, these data correspond to 28 laps of a path along which 24
gas sources of 12 VOCs (repeated twice) have been disseminated. The goal is then to apply
Algorithm 10 to recognize each one of these gas sources.

6.5.1 Signature extraction and linear model justification
The method used in this chapter is a supervised one, meaning that we need the signatures of
the 12 VOCs. To this end, we describe a simple method for estimating them.

According to the model we assume here (eq. (6.1)), the response y,.(t) € R” to a VOC r
is simply proportional to its “concentration” ¢,(¢) € R. Let us assume that we measure this
VOC r during a long period of time, say N,, at a variable concentration and that we stack
these measurements into Y, € R”*Nr. Then, model (6.1) implies that the rank of Y, is
1. In other words, we can simply write Y. = k,c! (in the absence of noise) with k, € R
and ¢, € RY". ¢, contains the variations over time and k, contains the variations across the
chemical sensors, in other words k. is the signature of the VOC r.

Here, we do not measure the VOCs with individual experiments, so we do not have directly
a matrix Y, containing the pure measurements. We extract this matrix for each VOC r by
segmenting the signals with a method detailed in Appendix A. With this segmentation, we
stack all the peaks corresponding to the VOC r to generate P time series containing “only” the
VOC r (assuming that there is no mixture between two cups). Let us assume that these time
series are of length N, with N, > P, so we have the matrix Y, ¢ R”*™ Then, we perform
a Singular Value Decomposition (SVD) of this matrix, say Y, = UTZTVZ with U, € RP*P,
3, € RPXF a diagonal matrix and V. € RV"*¥_ Finally, we identify the first column of U,
as the signature k, of the VOC r and the first column of V', as the vector ¢,. Another way
could be to perform a Non-negative Matrix Factorization (NMF) instead of the SVD in order
to ensure that the coefficients of k, are non-negative. However, in practice, the coefficients of
the extracted k, are all of the same sign (sometimes negative, so we just flip the sign). All
these signatures k, are then stacked into a matrix K € R”*f which we call the dictionary.
Each column of this dictionary is a unit-norm vector (i.e. |k,[2 = 1).

In order to check whether the rank-1 approximation is correct or not, we compare the matrix
Y, to its best rank-1 approximation Y, = o,k,c! € R”*Nr_ For easier visualization, we just
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Fig. 6.6.: Justification of the rank-1 approximation. On the left, the blue curve corresponds to the original pure
time series of Citral for one chemical sensor and red curve corresponds to its rank-1 approximation.
The time series have been truncated to 1 min (out of 4 min), for easier visualization. On the right,
another representation (data vs prediction): the more the point cloud is aligned with y = x, the better.

represent in Figure 6.6 (left) the time series y;,,, e RV (one row of Y',.) and its approximation
@;T = o,kp ! for a given chemical sensor p and a given VOC r (here, Citral).

We also compute the goodness-of-fit R?:

2
s Sl e 0
R =1- — (6.8) Butanol 98.0
Zp,n (ypnﬂ’ — ) B-Pinene 99.7
where y,,, , denote the (p,n) entries of Y’ Benzaldehyde 980
pn.r ’ " Citral 92.0

and ¢, € R their average. Allyl hexanoate ~ 98.7

Cis-3-hexenol 99.0

R? equals the proportion of variance ex- Linalool 99.1
plained by the model compared to the total Guaiacol 97.9
variance in Y. The values of R2 for each Geranyl 91.1

Trans-2-octenal ~ 97.9

VOC are reported in Table 6.2 and show a Acetic acid 94.8
generally good fit for all of the VOCs. The (S)-Limonene 99.7
closer to 100% R? is, the better. Both Figure Tab. 6.2.: The goodness of fit R (Eq. (6.8) for each

6.6 and Table 6.2 support the linear approx- Voc.
imation, at least in the case of a pure VOC.

6.5.2 Analysis of the dictionary

The method proposed in this chapter is based on a penalized linear regression. A linear
regression can suffer from collinearities or multicollinearites which may exist between the
signatures of the matrix K € RP*®, A multicollinearity is present when one column of K
is equal to a linear combination of the other colums. For non-penalized linear regression, it
is easy to show that multicollinearity will cause problems. Indeed, in this case, the classical
least squares solution of y = Kcis ¢ = (KT K) 'K'y. The inversion of KT K requires that
rank(KTK) = rank(K) = R (assuming P > R). This condition is then violated if there
exists at least one multicollinearity.

6.5 Classification of isolated gas sources
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(S)-Limonene Citral Guaicaol Cis-3-hexenol

VIF 5.3 10.1 19.7 31.8

Tab. 6.3.: Variance Inflation Factor for 4 VOCs which are used in the setup based on Sniffer arm.

To check for multicollinearity, we use a well-known indicator, namely the Variance Inflation
Factor (VIF) [Jam+13]. Considering a signature k, € RP:

kpr — k)2
VIF, = 2(F A ) (6.9)

Zp(kpﬂ“ - kp,r)Q

with k, = ag — >+, aik; and k, the mean of k.

Like the R? criterion (eq. (6.8)), the VIF is dependent on the notion of variance explained.
Here, we regress k, against the other signatures and the greater the VIF is, the more k,
is linearly dependent on the other signatures. A VIF equals 1 if and only if k, is linearly
independent from the other signatures. A classical rule is that a VIF which is greater than 5
or 10 indicates collinearity problems [Jam+13].

To illustrate the collinearity problem in our case, we focus on a smaller dictionary which will
be used for Sniffer arm. The results are reported in Table 6.3. From the Table 6.3, the factors
indicate strong collinearities between the signatures even with only 4 VOCs in the dictionary
(for the complete dictionary, the results are even worse). These results motivate the use of
Algorithm 10 and its ¢;-penalty which can help to combat these multicollinearities.

6.5.3 Cross-validation

In order to avoid an overestimation of the score (with the criterion defined in Section 6.4),
we perform a cross-validation. In fact, if we extract the signatures with all 28 laps and then
predict the labels for these same laps, we may introduce a bias as the training set (extraction
of the signatures) is then the same as the testing set.

To perform cross-validation, we divide the 28 laps into g folds (here, 5 = 5). The laps
corresponding to the first 3 — 1 folds are taken for extracting the dictionary and the 8™ fold
is used for testing. Concretely, for the testing laps, we apply Algorithm (10) which returns an
intensity vector ¢(t) for a measurement vector y(¢). From this intensity vector, we extract a
label for each region of interest which has been previously identified with a segmentation
step (see Appendix A). We then repeat the procedure for all the 5 folds and compute the
classification rate and the confusion matrix. Finally, we repeat the entire cross-validation
10 times with new folds. From these 10 cross-validations, the classification rates and the
confusion matrices are averaged.

6.5.4 Results

The confusion matrix is reported in Table 6.4 and the average classification score is 73.7%
which is much larger than the chance level (8.33%). Despite the difficulty of the task, some
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Acetic acid 100 0 0 0 2 1 0 5 0 3 0 0
Guaiacol 0 100 0 0 0 0 0 0 0 0 0 0
Benzaldehyde 0 0 99 1 1 1 0 6 0 1 0 4
Linalool 0 0 0 92 2 0 1 0 0 0 0 0
Trans-2-octenal 0 0 0 1 63 6 0 3 0 4 0 17
Allyl hexanoate 0 0 0 0 18 72 0 0 0 1 3 0
Cis-3-hexenol 0 0 0 0 0 1 59 16 0 1 0 0
Butanol 0 0 1 1 4 3 40 59 2 4 0 16
(S)-Limonene 0 0 0 0 1 5 0 7 72 24 9 0
[-Pinene 0 0 0 0 1 6 0 0 20 48 3 0
Geranyl acetate 0 0 0 5 1 3 0 1 4 4 84 35
Citral 0 0 0 0 7 2 0 1 1 1 0 28
None 0 0 0 0 0 0 0 2 0 9 0 0

Tab. 6.4.: Confusion matrix for the data from Sniffer robot. The colored cells correspond to pairs of VOCs which
are hard to differentiate. A None class has been added when Algorithm (10) did not find any VOC.
In fact, it happens that for some regions of interest, Algorithm (10) does not find any VOC (all the
intensities are null) whereas the segmentation method did not discard them (especially areas with low
signal-to-noise ratio).

VOCs are even perfectly or almost perfectly identified. It means that almost all the gas sources
containing these VOCs have been correctly recognized (e.g. Acetic acid or Benzaldehyde).
However, it happens that Algorithm 10 does not find any VOC (i.e. all the VOCs have a null
intensity) even if the segmentation does. These estimations have been classified as “None”
in the confusion matrix and correspond to regions of interest with low signal-to-noise ratio.
For these regions, the null solution (i.e. ¢(t) = Or) must have the lower cost compared to
solutions with one or more VOCs.

Figure 6.7 represents the distribution of the maximum intensities for each VOC over the time.
The diversity of intensities is clear, showing the exhaustion of the liquid phase of some gas
sources (e.g. B-Pinene) and the stability of others (e.g. Guaiacol). It demonstrates that the
good classification score cannot be attributed to a single factor such as a simple difference of
intensity between VOCs. In fact, if each VOC was responding in a different intensity range,
then, the classifier could learn some differences only based on intensities, possibly even after
normalization. Here, classification performance can only be explained by the variability in
affinities between the sensing materials and the VOCs.

Misclassifications are sometimes due to the fact that some pairs of VOCs are quite hard to
differentiate (colored cells in Table 6.4). It is interesting to note that these pairs are sometimes
from the same chemical family. For instance (Butanol, Cis-3-Hexenol) are both Alcohols and
(B-Pinene, (S)-Limonene) are both Alcenes and they even share the same molar mass. Of
course, chemical similarity is not the whole story, since e.g. Linalool is not confused with
other Alcohols. The misclassifications between Citral and Geranyl acetate can be attributed
to the lower signal-to-noise ratio for these two VOCs. This low signal-to-noise ratio can be
explained by both their low volatility and their low affinity with the sensing materials.

6.5 Classification of isolated gas sources
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Fig. 6.7.: Distribution of the maximum intensities over the laps for each VOC.

6.6 Gas unmixing

In this section, we tackle the issue of gas unmixing with the data from Sniffer arm (see
Section 6.2.3). We remind the reader that we have generated various realistic scenarios with
increasing complexity: @ the gas sources are isolated and spatially close, @ the gas sources
are successive trails of pure compounds and @ the gas sources are successive trails of binary
compounds. In each scenario, the data correspond to 20 sweeps (from left to right, the results
for the other direction are reported in Appendix C.2). Each one of these 20 sweeps is then
processed separately for the unmixing with the previously generated dictionary and with
Algorithm 10.

6.6.1 Building and pruning of the dictionary

The dictionary K € RP*% is built with the method detailed in Section 6.5.1 and from the
whole data set from Sniffer robot. This last point is an important aspect of the following
results: it implies that the training setup is not the same as the testing setup. This characteristic
is quite important in practice. Indeed, the dictionary will be always generated in a separated
setup in order to be used in the field afterwards. So, training with Sniffer robot and testing
with Sniffer arm will assess the robustness of the proposed method.

From the dictionary, we first extract the set of the 4 VOCs which are present in the scenarios @
to @, namely: Citral, (S)-Limonene, Guaiacol and Cis-3-hexenol. At least one VOC is always
used as a control, meaning that at least one VOC is present in the dictionary but not in the
experiment. We call the VOCs actually present the target VOCs. We expect that the estimated
intensity of the control VOC will be close to or equal to 0. This is a key point of our results;
indeed, an eNose is a non-specific device that can generate signatures for a broad variety
of VOCs, contrary to specific sensors which are designed for one or two VOCs. In practice,
an eNose may be less effective than specialized sensors if we only target 2 specific VOCs.
So there is no reason to favor an eNose except if we want to use it for a large amount of
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applications with many different VOCs. That is why, in practice, the dictionary will be as large
as possible and only an unknown subset of VOCs from the dictionary will be relevant for a
given application. To our knowledge, by considering a larger dictionary than the number
of VOCs actually present, we go further than most of the studies in the field and especially
studies which perform mixtures-learning. Furthermore, these 4 VOCs are clearly not the best
subset of the 12 VOCs acquired with Sniffer robot. Indeed, by looking at the confusion matrix
in Table 6.4, the subset containing Acetic acid, Guaiacol, Benzaldehyde and Linalool would
probably lead to much better results than the ones presented here.

The results with the dictionary of 4 VOCs are described in the next section. Afterwards, we
progressively extend the dictionary by adding one VOC at a time. The order of the VOCs is
defined with the help of the confusion matrix (Table 6.4). Given the current set of VOCs
in the sub-dictionary, we simply add all the confusions made with these VOCs (i.e. we add
amongst themselves the columns of the confusion matrix containing the set). Then, we
take as new member of the set the VOC that has the lowest confusion coefficient. With this
method, the order of the VOCs (after the 4 VOCs already chosen by default) is: Acetic Acid,
Allyl-hexanoate, Linalool, Benzaldehyde, Trans-2-octenal, -Pinene, Geranyl acetate and
Butanol. The task is then harder and harder and, at the end, the whole dictionary is used in
the unmixing.

6.6.2 Results with a dictionary of 4 VOCs

The intensities estimated for the 4 VOCs in the 3 scenarios are represented in Figure 6.8. Each
color stands for a VOC and each line corresponds to a sweep (a color gradation indicates the
sweep index).

For Scenario @, the intensities are reported in the top panel of Figure 6.8. The intensities of
Citral and (S)-Limonene clearly indicate good unmixing from the signals previously shown
in Figure 6.2b. We can notice that the intensities of the controls (namely Cis-3-hexenol and
Guaiacol) are not strictly null. However, these intensities correspond mainly to transition
areas (from one gas source to another) or to areas with low signal to noise ratio (SNR).
In addition, the intensities of the controls are much smaller than the intensities of the two
VOC:s actually present. By computing the classification criterion defined in Section 6.4, we
reach a noteworthy score of 90% (98% for the other direction) for the spatial areas defined
by the scent strips (corresponding to a total of 240 measurements). In this scenario, we
even go further by estimating the location of each isolated gas source. For that, we simply
take as the position of a gas source, the position of its maximum intensity. The average
estimated locations for the 20 sweeps are reported in Table 6.5. These results highlight
a good estimation of the position of the gas sources when they are far enough from each
other (separated by 3cm). The same task is harder for a smaller distance (1cm) for which
the distance is overestimated. In addition, (S)-Limonene presents better estimation results
compared to Citral. This can be explained by the possible lags introduced in Section 6.4,
especially the chemical lag and the lag related to the airflow. Indeed, Citral is a heavier
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Guaiacol distance (cm)
Citral (S)-Limonene Distance
Source 1 Source 2 Source 1 Source 2 Source 1 Source 2

Mean + 86+035 279+050 11.9+0.31 255+0.28 3.3+041 2.3+047

Stand. dev. (cm)

Ground truth (cm) [8,8.5] [27,27.5] [11.5,12] [25.5,26] 3 1

Tab. 6.5.: Estimation of the position of the isolated gas sources from Scenario @ with the default dictionary
(Citral, (S)-Limonene, Guaiacol, Cis-3-hexenol), based on the location of the maximum intensity. The
column distance refers to the spatial distance between Citral and (S)-Limonene. The two numbers of
the ground truth correspond to the beginning and to the end of the scent strip (i.e. the gas source)
along the path. Top figure gives a graphical explanation of the procedure for estimating the gas source
position from unmixing results. Top figure corresponds to the unmixing of a single sweep (in Figure
6.8 all the sweeps are represented), based on a dictionary of 4 VOCs.

molecule than (S)-Limonene (see Table 6.1) so its transport and its interaction with the
chemical sensors can take more time and thus delay the measurement.

For Scenario @, the results are represented in the middle panel of Figure 6.8. Again, the
estimated intensities correspond to the spatial areas of the gas sources. However, the estimated
intensity of the control (here, Cis-3-hexenol) is no more negligible and no more restricted to
low-SNR regions. We notice that the intensity of the control VOC depends mainly on the VOC
present. Indeed, the gas source containing Guaiacol is well estimated whereas the estimations
for the other gas sources ((S)-Limonene and Citral) are more affected by the presence of
Cis-3-hexenol in the dictionary. This observation is a consequence of the existence of linear
dependencies between the signatures. Despite these correlations, we find a classification
score of 79% (92% for the other direction), out of 1,520 measurements. This score is quite
good in view of the difficulty of the task. Even if the intensity of the control VOC is high, it is
still lower than those of the target VOCs.

Finally, for Scenario @, the intensities are reported on the bottom panel of Figure 6.8. At
first sight, the results seem better than for Scenario @ which is simpler, especially if we focus
on the control VOC. In fact, the control VOC is no more Cis-3-hexenol but now Guaiacol.
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Fig. 6.8.: Results of the proposed algorithm for the different scenarios introduced in Section 6.2.3. Top figures:
Scenario @. Middle figures: Scenario @. Bottom figures: Scenario ®. Each line corresponds to one
sweep (first sweep is the lighter). Each color corresponds to the estimated intensity of the given
VOC at the distance d. The results have been generated with the default dictionary ((S)-Limonene,
Citral, Guaiacol, Cis-3-hexenol). For Scenario ®, the intensities of Citral and (S)-Limonene have been
vertically shifted for easier visualization.

Guaiacol seems to be a much better control VOC than Cis-3-hexenol, since its presence in the
dictionary has little impact on the unmixing. Indeed, the estimated intensities of Guaiacol
are close to 0, as expected. This can be explained by a VIF which is lower for Guaiacol (see
Table 6.3) and by the Table 6.4 which shows that Guaicaol is perfectly identified despite the
11 other VOCs. For the present VOCs, the estimated intensities match the location of the gas
sources, especially for the gas sources containing Citral and (S)-Limonene. The intensities
of Cis-3-hexenol are less simple to analyze. Indeed, the estimated intensities indicate the
presence of Cis-3-hexenol in the middle gas source while Cis-3-hexenol is not present in
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this gas source. We explain that by the presence of ternary mixtures in combination with
the desorption of Cis-3-hexenol. A comforting fact is that these intensities clearly decrease
when the eNose goes over a gas source which does not contain Cis-3-hexenol. The score
reaches 70% (69% in the other sweep direction) which means that the identity of 70% of all
binary mixtures (corresponding to 1,520 measurements, i.e. 1,520 mixtures) has been well
predicted.

6.6.3 Results with a dictionary of increasing size

The previous results emphasize that we can achieve good classification performance even if
one or two VOCs are absent in the experiment but present in the dictionary. Here, we go even
further by adding one-by-one each VOC from the full dictionary. As a reminder (see Section
6.6.1 for details), the order according to which the VOCs are added, is the following: Acetic
acid, Allyl-hexanoate, Linalool, Benzaldehyde, Trans-2-octenal, 5-Pinene, Geranyl acetate
and Butanol.

Concretely, we start by adding the signature of Acetic acid to the previous dictionary of size
R = 4 ((S)-Limonene, Citral, Guaiacol, Cis-3-hexenol). Then, we apply Algorithm (10) to
unmix the signals and estimate the intensity of each VOC of this new sub-dictionary. Ideally,
the estimated intensity of Acetic acid is close to 0. However, in practice the new VOC could
considerably disrupt the unmixing, especially due to correlations which may exist between
this new signature and the signatures already present. To assess the influence of this new
VOC, we simply generate the label /(¢) based on the maximum intensity of ¢(t) (see Section
6.4 for details). This predicted label is then compared to the position of the gas sources.
Afterwards, we repeat the procedure by adding Allyl-hexanoate and so forth for the others.
Until we reach the upper limit of R = 12 VOCs (the full dictionary), the task becomes harder
and harder with each new VOC we add. In Figure 6.9, we report the average score for each
dictionary size and each scenario. In Figure 6.10, we represent the spatial distribution of the
classification score for each dictionary size and each scenario. Figure 6.10 highlights which
locations along the path cause most misclassifications.

From Figure 6.10, for Scenarios @ and @, we see that the scores start to considerably
decrease only at R = 10 VOCs. It is noteworthy that even with 9 VOCs in the dictionary,
we can reach a classification score of 88% for Scenario @ and 74% for Scenario @. In fact,
R = 10 corresponds to the addition of 3-Pinene which is highly-correlated (99.8 %) to (S)-
Limonene (for the two scenarios, the gas sources of (S)-Limonene are no longer identified).
Afterwards, at R = 11, the addition of Geranyl acetate produces another large decrease of the
scores (again, for the two scenarios, the gas sources of Citral are no longer identified). In fact,
the confusion matrix (see Table 6.4) already showed that Geranyl acetate can cause a lot of
misclassifications for Citral. At R = 11 or R = 12 (the full dictionary), the final classification
scores reach 2% for Scenario @ and 49% for Scenario @. This shows that the addition of
Butanol has no effect on the classification. The difference between Scenario @ and @ is
explained by the gas source containing Guaiacol which is present in Scenario @ but not in
Scenario @. The correct identification of Guaiacol agrees with Table 6.4, in which Guaiacol
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Fig. 6.9.: Average score in each scenario and for each dictionary (by averaging over space and across the 20
sweeps). A dashed line indicates the score obtained with the smallest dictionary (e.g. for Scenario
@ the smallest dictionary is (Citral, (S)-Limonene)). The default dictionary corresponds to (Citral,
(S)-Limonene, Guaiacol, Cis-3-hexenol).

is also reliably identified. Finally, the hardest areas to identify are the transition areas. This
observation is really clear in Scenario @ and reflects a drawback of our assessment method.
Indeed, the score is based on the spatial position of the gas sources but it does not take into
account the diffusion of the VOC or some interactions which can occur between different
VOCs. For example, there is no reason that the gas source of (S)-Limonene for Scenario @
starts exactly at the beginning of its scent strip and not a little time after or before due to
diffusion or due to interaction with Guaiacol. So our assessment method may be biased to
some extent.

In Scenario ®, things are even more complicated. If we only refer to the scores, they
“continuously” decrease starting with the introduction of Allyl-hexanoate at R = 6. It means
that when we add two control VOCs (Guaiacol and Acetic acid), there is no strong effect
on classification performance compared to the best dictionary ((S)-Limonene, Citral, Cis-3-
hexenol). In this case, most of the misclassifications are due to the middle gas source in
which the intensity of Cis-3-hexenol seems to be over-estimated (see an example in Figure
6.8). However, again, the score computed with the spatial position of the gas sources does
not take into account all the possible variations which can occur. Here, it is likely that ternary
mixtures occur around the middle gas source (Cis-3-hexenol is present in the two extreme
binary trails). Ternary mixtures are not taken into account by the criterion and a single
misclassification leads to a global misclassification of the mixture according to our criterion
(recall that a correct classification means that the 2 VOCs present in the mixture are well
identified, and not just one over the two). This explains why the scores for Scenario @ are
worse and decrease faster than in Scenarios @ and @.
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Fig. 6.10.: Influence of the size of the dictionary on spatial distribution of the classification score. From the
bottom up, the number of VOCs in the dictionary is increasing, starting from the default dictionary
((S)-Limonene, Citral, Guaiacol, Cis-3-hexenol). Left to right, each panel corresponds to the spatial
distribution of the score for each scenario (for a position d, the score is the average across the 20
sweeps). The spatial distribution highlights the misclassifications (mainly in transition areas) in
each scenario and for each dictionary. For Scenarios @ and ®, a black line indicates the theoretical

transitions between one gas source

6.6.4 Discussion

to another.

The unmixing results seem quite acceptable in all scenarios. To our knowledge, it is the

first demonstration of such unmixing results with an electronic nose in an uncontrolled

environment with open sampling. Moreover, these results have four additional key aspects:

first, the mixtures have not been previously trained (only the dictionary of pure compounds

and, on top of that, with a separated setup), second, the number of VOCs in the mixtures is at

no time assumed known during the unmixing process, third, the dictionary is much larger

than the number of VOCs actually present, and finally, all the results have been generated in

a real-time fashion.
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However, the results are obviously perfectible. First, they can be affected by the correlations or
the linear dependencies which exist between the signatures of the dictionary. The ¢;-penalty
of Algorithm 10 improves the solution in the presence of collinearity compared to classical
least squares solutions. But it improves the solution in a way which can be unacceptable
in our case. Indeed, if two signatures are strongly correlated then the Lasso will tend to
randomly select one of the two signatures, putting the other to zero [Tib11]. In other words,
in the field, if only the VOC A is present and strongly correlated to a VOC B present in the
dictionary, then the Lasso solution may indicate the presence of sometimes A, sometimes
B. If A is a harmful VOC and B is a safe one, it is easy to understand the consequences of
such an error. Improvements can be made by decorrelating A from B or by simply discarding
the signature of B from the dictionary. Another line of research to differentiate A and B, is
also the design of additional sensing materials. Indeed, if A and B have currently correlated
signatures, it means that the actual sensing materials are not enough discriminative regarding
these two compounds. In other words, it means that the sensing materials interact currently

in a similar way with A and B.

Second, even if the linear model seems a good approximation here, a non-linear relationship
exists certainly and may improve the unmixing. A non-linear model motivated by theory
would be hardly achievable due to the variations in multiple crucial parameters during
an experiment, such as humidity, temperature or concentration of the VOC. An empirical
improvement could be to add an interaction term such the one proposed by [Llo+98] for the
MOS sensors. In our notation, the model would correspond to y = >, (k.c, — >, aircCicy)
where a;, € R” is the interaction vector between the VOC i and the VOC r. This interaction
term could then capture some variations which are not taken into account by the linear
model. However, some tradeoffs are involved since a more complicated model can require
more experiments (for calibrating some parameters for instance) and can also be much
more complicated to fit due to the existence of local minima, indeterminations, or numerical
unstability.

6.7 Conclusion and future works

This chapter reports two main results regarding the use of Aryballe’s eNose for a robot
application. First, we succeeded in recognizing up to ~73% of 24 isolated gas sources
containing 12 different VOCs. Second, we succeeded in unmixing binary and ternary mixtures
occurring in various realistic scenarios. When gas sources are close enough for significant
mixing to take place, we reach a classification score of 90%. When the robot goes over several
successive trails of pure compounds, we reach a score of 88%. Finally, when the robot goes
over several successive trails of binary compounds, we reach a score of 70%.

Our methodology has several noteworthy features. First, the results have been obtained with
a single, unified, processing pipeline. Second, this pipeline is based on the use of a dictionary
of pure VOCs, which is quick to generate. Third, real-time estimation of the intensities does
not require any information about the number of VOCs present in the mixtures. Finally, the
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dictionary was generated in a different setup and was always larger (and sometimes much
larger) than the number of VOCs currently present.

Future works. The experiments we have carried out can be extended in many ways. First, be-
sides the convection induced by the funnel, there is not so much advection in our experiments
because we are in a closed room. To be even more realistic, further studies can incorporate
some wind, but wind can decrease recognition performance (see the study of [Ver+13]).
Second, the actual concentration of each VOC is unknown in our experiments. This was a
restrictive factor for the assessment of our results and it should be removed in further studies.
The concentration would be especially highly valuable in order to assess if the intensity matrix
that we estimate is related in some way to the true concentration of the VOCs. For instance,
the use of a Photolonization Detector can provide such information (see [HB+14]) but at
the cost of a high airflow (300-500 mL/min) which could easily impoverish the gas mixture.
Third, the scale of the setups that we have built can be considered small compared to other
setups in the literature (see [Fan+19]). Even if the small scale used here was appropriate
for assessing our algorithm, the next setup must be larger to gain even more realism. Finally,
the experiments were carried out on the same day or with a one-day interval. In practice,
the dictionary is generated once and has to be used several days, weeks or even months after
its generation. It could then be interesting and highly valuable to reproduce the results of
Chapter 4 in the more complicated setting used here.

Regarding the algorithms that we have proposed, the development of methods for decorre-
lating the signatures and the enrichment of the mixing model have been already discussed
in Section 6.6.4. However, other improvements can be imagined. First, if we try to extend
the results of Chapter 4 on drift correction, we will need to design a method to compensate
for the drift (see the review of [MGG12]). In that case, the signatures of the dictionary
will vary and these variations will lead to poor results if no correction is applied. Another
solution in the presence of drift would also be to regenerate the dictionary, but it would be
inconvenient in practice. Second, the measurement is affected by temporal lags, related for
instance to the chemical reactions between the VOC and the sensing materials (see Section
6.4 for details). In source localization, these lags can impair the estimation of the position
of the gas source. Deconvolution techniques can then be deployed to mitigate the effects
of the lags (see [MBM19]). For gas mixtures, these techniques can be particularly difficult
to develop since the chemical lag depends strongly on the VOCs in the mixture, which are
unknown. Finally, an interesting extension of our results would be to consider the blind case,
in other words the Blind Source Separation (BSS) framework. The main difference with
our study is that we would no longer assume knowledge of the signatures matrix K for the
unmixing. Only very few recent studies have dealt with this issue (e.g. [MBC18], [Mad+18])
but a BSS method could considerably reduce the experimental time required for learning.

An opening towards GC-eNose. In Chapter 1, we introduced Gas Chromatography as the
gold standard for separating a gas mixture into its individual components (see Section 1.1.2).
The working principle of GC relies on the use of a column whose internal surface is covered

Chapter 6 Robot olfaction



(a) Data from a GC-FID (b) Data from Sniffer robot platform
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Fig. 6.11.: Comparison between the data from a GC-FID (a) and the data from our robotic setup (b). z-axis
corresponds to time but time has not the same meaning for the two figures: in (a), it corresponds to
the time spent by each VOC in the GC column, and in (b), it is related to the distance followed by the
robot (which then pass over gas sources). However, it is interesting to draw a parallel between these
two figures since data look alike. Figure (a) was retaken from [LT11].

with a molecule. When the gas mixture is injected in this column using a carrier gas, each
component of the mixture interacts differently with the molecule covering the internal surface
of the column and with the carrier gas. Depending on these interactions, each VOC composing
the gas mixture will leave the column at a different time, called retention time. This process
allows the gas mixture to be decomposed into its individual components over time. However,
GC does not allow to detect, identify or quantify the VOCs which leave the column. GC
is therefore always used in combination with another instrument serving as detector (see

Section 1.1 for the review of some detectors).

In Figure 6.11, we compare the data obtained from a GC-FID (figure retaken from [LT11])
and the data acquired after one lap with Sniffer robot. We can notice how similar data are.
This comparison paves the way to an interesting opening regarding the results highlighted in
this chapter: the combination GC-eNose. Aryballe’s eNose would then be used as detector in
the output of a GC, instead of using a mass-spectrometer or a flame ionization detector. The
response would probably look alike Figure 6.11b, meaning a series of peaks appearing over
time. From our study, we know that it would be possible to identify each peak, so it would
be possible to identify each VOC which is leaving the column (on top of that in real-time).
For instance, a FID used in combination with a GC is not capable of such a feature. From our
unmixing results, we also know that it would be possible to deal with unresolved peaks that
one sometimes observed with a GC. In Figure 6.11a, the peaks of Ethylene and Acetylene
illustrate this issue [L.T11]. However, we still do not know if quantification would be feasible.

We can list, at least, 3 further studies which could be performed based on this remark. First,
we could compare the results of a GC-FID with the results of the GC-eNose. This comparison
would allow to know if the peaks observed with our robotic setup (see Figure 6.11b) could
be integrated to estimate the VOC concentration, just like what it is classically done with a

6.7 Conclusion and future works
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FID signal. This comparison would also allow to know if the estimated intensities are directly
related to VOC concentration. Second, with a GC-eNose approach, we could analyze much
more complex mixtures composed of several dozens of different VOCs. For the moment,
this task would be quite hard for Aryballe’s eNose (and for any eNose) since the instrument
boards “only” ~20 different sensing materials. In fact, our unmixing results show that even
the unmixing of ternary mixtures is not trivial. In this case, GC would help to physically
separate the components of the mixture over time. In the same vein, a third utility of the
combination GC-eNose is to simply increase the selectivity of the eNose. A good example is
the study of Zampolli et al. [Zam+05]. In their study, selectivity is crucial for monitoring the
concentration of pollutants in the air. In this case, non-harmful VOCs can be present at high
concentrations while toxic compounds are present at much lower concentrations [Zam+05].
The response of the instrument to non-harmful VOCs may therefore hide the response to
toxic VOCs. To alleviate this issue, Zampolli et al. used a MOS-based system in combination
with a GC. By separating the different VOCs with GC, it allows to increase the selectivity
towards harmful VOCs. To reach to these results, they also built a micromachined GC column
[Zam+05]. In fact, in Chapter 1, we stressed that GC is not suitable for measurements in the
field. To that end, GC needs to be miniaturized to be used in combination with an eNose (for
example, by considerably reducing the length of the column).
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Conclusion

An electronic nose takes inspiration from the main steps of natural olfaction. Their working
principle is based on the use of an array of non-specific chemical sensors. This non-specificity
allows the instrument to interact with a broad variety of volatile compounds, making it poten-
tially useful for a large range of different applications. It actually concerns any application
where a compound is released in the air. To name a few examples, an electronic nose could
be useful for monitoring pollutants, analyzing exhaled breath or detecting gas leaks.

Despite all these possible applications, these instruments are not a widespread technology
and show good results in the lab but they often never go beyond. Several reasons can be
pointed out such as the lack of repeatability of the instrument over time, the low statistical
reliability of the studies, the small number of sensors typically used, etc...

By using optical transduction methods, the number of sensors can be considerably increased
without increasing the system complexity. In this thesis, we used a new instrument developed
by Aryballe (Grenoble, France) and we proved several important results, both theoretical and
experimental.

First, we characterized the response of the instrument in the presence of a pure compound.
The model is based on the combination of the Langmuir model, for describing the chemical
reactions, with a linear approximation of the transduction method. We showed that the
general form of the model fits well real data. However, we found that the features extracted
from the model were less discriminative than other more classical features, showing the
little interest of model-based features for classification purpose. But modeling is not just
about feature extraction for Machine Learning algorithms and is also crucial in Source
Separation. This field aims at estimating individual responses and/or concentrations from
several measurements of a gas mixture. When one works with non-specific chemical sensors,
Source Separation methods are particularly relevant for a simple reason: the response of
a non-specific chemical sensor to a gas mixture is the result of a combination between
individual responses (of each compound) and concentrations. To that end, we derived a
non-linear mixture model relating the response of the instrument to the concentration of each
compound and each individual response. To our knowledge, this model is new so we provided
a theoretical analysis of some of its properties. Then, we developed an inversion algorithm
based on Alternating Least Squares to estimate both concentrations and individual responses
from a measurement matrix. The proposed algorithm showed good results in simulation.
However, the model still needs to be validated on real data.
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Fig. 7.1.: Projection of the data set onto the two first Principal directions. This data set has been acquired
during the thesis for studying the drift issue and corresponds to multiple measurement sessions
acquired over 9 months. Each color stands for a volatile compound. Left figure corresponds to the raw
measurements: we cannot generalize from Session 1 to other sessions. Right figure corresponds to
the measurements corrected with one of our two proposed methods (here, a method that we called
EMC?). The improvement is clear, even if the correction is not perfect (we can see that one session of
the “green class” has been poorly corrected).

Second, all types of chemical sensors are prone to drift over time, meaning that their response
to a given compound changes. This drawback causes a serious problem for Machine Learning
algorithms: what is learnt during a day d may not be generalized to a day d + 1 (it can be
seen as a special case of “Transfer Learning” in Machine Learning). We studied the drift
issue during the thesis by building an extensive data set composed of multiple measurement
sessions over 9 months. We showed that Aryballe’s instrument is no exception to the rule:
if we use the first session as training then the classification score of subsequent sessions
rapidly decreases over time. To correct this drift, we proposed two new algorithms. These
two methods are based on the assumption that the drift follows a preferred direction but
they assume nothing else than the labels of Session 1. This is a significant improvement
compared to most of the methods in the literature which assume the existence of some
labelled measurements in the subsequent sessions. In Figure 7.1, we represent the data set
projected onto the two first Principal directions of the data from Session 1. The improvement
is clear.

Third, we studied and showed the stereoselectivity of the instrument. Stereoselectivity is
the ability of a system to tell two mirror molecules apart. These two mirror molecules are
called enantiomers (an example of two enantiomers are left and right hands) and have almost
identical physico-chemical properties (mass, solubility, volatility, boiling point, etc...). This
last point makes their discrimination as one of the hardest challenges in analytical chemistry.
A surprising fact is that natural olfaction can actually differentiate between two enantiomers.
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An even more surprising fact is that Ary- 44

balle’s instrument has also this ability. We Session 2

studied the stereoselectivity of the instru- o .
Session 1

ment for two different pairs of enantiomers. f

Over two long measurement sessions, the in-

strument was not only capable of a perfect

discrimination inside the same session but

was also able to learn from a session and per-

Principal direction 2

fectly generalize to another (see Figure 7.2).
We showed that this result is supported by
the peptidic nature of the chemical sensors.

Last but not least, we contributed in many

Principal direction 1

ways to robot olfaction by designing new al-
Fig. 7.2.: Projection of the data set onto the two first
Principal directions. Over two long sessions,
setups during the thesis. For monitoring envi- we showed that the instrument is able to dis-
criminate the two enantiomers of Carvone
(one is called (R) and the other (S)). Simi-
be static, waiting for compounds to reach by lar results were obtained for the enantiomers
of Limonene.

gorithms and building different experimental

ronmental pollution, an electronic nose can

themselves the instrument. But, other appli-
cations, such as gas leak detection, require
in addition that the instrument can move and locate in space the gas source. In the literature,
this field of applications is referred to as robot olfaction. In this context, we proposed an
algorithm which is capable in real-time of both identifying a gas source and separating gas
mixtures. The algorithm is based on the existence of a known dictionary containing the
individual responses of each compound. It assumes a linear model relating the response
of the instrument to the gas concentrations. By using this algorithm, we first succeeded in
well identifying 24 gas sources of 12 different compounds which were disseminated in the
environment. To fully appreciate this result and to give a general idea, a great number of
studies in the robot olfaction field restrict the case to two gas sources. Then, we investigated
an issue which is usually ignored by the literature in this complicated (but realistic) context,
namely Source Separation. In the field, gas mixtures can easily occur either due to spatially
close gas sources or due to the fact that the source is actually a mixture. We studied these two
possible cases in three different robotic scenarios. They differ on difficulty but they are all
realistic scenarios which one can encounter in the field. We demonstrated that the proposed
algorithm can unmix these signals in real-time, thus telling us where each compound is
located along the path even in the presence of gas mixtures. One example of these noteworthy
results is reported in Figure 7.3. We also investigated the influence of the size of the dictionary
on the unmixing performance, by considering up to 12 differents compounds in the dictionary
(whereas only three compounds were actually present in the experiments). This issue is even
more ignored by the literature and, to our knowledge, it is the first time that such a study is
conducted with an electronic nose. Our results show that the larger the dictionary, the harder
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Fig. 7.3.: A robotic scenario in which gas mixtures occur. We placed three successive trails of binary compounds
(i.e. composed of two different pure compounds) along a path. This path is followed by a robotic
arm carrying the instrument. The result of a single sweep gives a single curve in left figure. In our
experiments we carried out 20 sweeps which are represented by a color gradation (blue curves) in
left figure. Right figure corresponds to the unmixing results (each line stands for a sweep) by using a
dictionary of four compounds (three of them are actually present in the experiment while the fourth is
not, we called it the control compound).

the task. When the full dictionary (12 different compounds) is considered, the algorithm
performs poorly due to the existence of correlations between individual responses.

Future prospects

In all chapters, we discussed various perspectives of each work. In the following, we list the
main future prospects and we split them in short and long term perspectives.

“Short-term” perspectives. In the near future, much effort must be made to develop an
experimental setup enabling to reliably measure the concentration of volatile compounds.
Ideally, this setup will also deal with gas mixtures. This improvement will allow to more
precisely evaluate the performance of unmixing algorithms, and will especially allow to
know if the estimated intensities in our work (see Figure 7.3) are directly related to the
concentrations. By knowing the concentration, we will be also capable of studying the drift
for gas quantification purpose. For quantification to be possible, we need calibration curves
(sample points for which we know the concentration) which will be generated during the first
measurement session. But how can we reuse these calibration curves for new sessions from
which, for instance, we do not have any calibrating samples?

Finally, an interesting perspective of our robotic applications is the combination of Gas-
Chromatography (GC) with the optoelectronic nose. By using this association, more complex
mixtures than the binary and ternary cases can be easily studied with the current technology.
From our robotic study, we can imagine that the analysis of mixtures of a dozen of different
compounds is possible with the help of GC.
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“Long-term” perspectives. The number of sensing materials (~ 20) currently used is by an
order of magnitude lower than the number of different receptor types in the human nose
(~ 400). Increasing this number is a long research work, implying the development of new
materials which can be easily fixed over the surface, which show a good reversibility and
which can be used for a long operation time. This research effort is fundamental to imagine a
future instrument capable of what a human can do or even, of what an animal can do.

In Introduction, we mentioned the effect of the temperature on the instrument sensitivity. It
would be interesting to investigate the temperature as a factor able to “virtually” increase the
number of sensors. In this case, a single sensor would have several operating temperatures, say
J, so one sensor would lead to J “virtual” sensors. Changing the operating temperature has
in fact already been investigated with MOS-based systems, showing good results. Therefore,
these results could be extended to Aryballe’s technology. We actually know that the response is
influenced by some chemical parameters which are themselves influenced by the temperature.
By controlling this parameter, additional information about the chemical reactions may be
created and then used for classification, quantification or Source Separation purposes.

Finally, our drift study requires also to be extended by considering several optoelectronic
noses manufactured according to the same process. In this case, an inter-instrument drift
will appear and will call for drift correction methods. In fact, in the future, the success of
this kind of instruments relies on the possibility to use a single instrument for generating an
entire data base used by other instruments in the field. This will pave the way for applications
such as multi-robot exploration or in situ monitoring of pollutants using several measurement
stations.
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Segmentation procedure for the data
from robotic setups

In Chapters 4 & 6, we described several data

sets obtained using a robotic setup. This _
. . . . 3¢ 0.67 the robot goes over

setup is described in Chapter 2, Section 2.3.1. z a gas source

B . . 2 044
Briefly, a robot equipped with the Aryballe’s % /

(=1

eNose follows a path along which gas sources £ "]
are disseminated. When the robot goes over 001 | |

20 10

a gas source, it generates a peak-shaped sig- time (sec)

nal such the ones shown in Figure A.1. The unknown times that we would like to know

location of the robot is not known over time Fig. A.1.: Time series of two chemical sensors (blue

and the robot does not interact with the and yellow curves) using the robotic setup
described in Chapter 2, Section 2.3.1. In this
figure, the robot went over two gas sources,
ues are unknown, such as the beginning and corresponding to the two observed peaks.

eNose. Consequently, many temporal val-

the end of the injection when the robot goes
over a gas source. These values are crucial for several algorithms that we developed dur-
ing the thesis, so they need to be extracted. To that end, we introduce in this appendix a

segmentation method.

We refer to segmentation as the extraction of Regions Of Interest (ROIs). A ROI is defined
as the temporal range during which a VOC is picked up by the device. In the following, the
segmentation is performed on the signal averaged across the chemical sensors. We assume
that the baseline has been subtracted.

A.1 Synchronization of the laps

Recall that the data from Sniffer robot is the repetition of a predefined path, say that the
robot did N laps. The gas sources are fixed cups so their positions do not change from one
lap to another. Therefore, the whole signal can be seen as a pattern (one lap) which has been

repeated N times.

To define a first approximation of the ROIs, we propose to work with the average lap, meaning
the signal obtained by averaging the N signals of the N laps. This allows us to enhance
the signal-to-noise ratio (SNR) and to make the detection of the ROIs easier. This first
approximation is especially useful for the last laps where some gas sources are particularly
difficult to detect due to VOC exhaustion (gas sources contain few drops of the compounds in
liquid phase and this liquid solution may completely evaporate after several hours).
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However, we mentioned earlier in this appendix that we do not know the location of the
robot over time. Consequently, we need to first synchronize the laps, meaning that we need
to identify the beginning of each lap.

A naive solution could be to simply take as the beginning of each lap, a multiple of NV, (the
duration of a lap). However, the robot course is not perfectly reproducible from one lap to
another and the duration of a lap may vary a bit. In practice, we observed that this variation
is small but small enough to correspond to a ROI (~1 second).

To have a better estimation of the beginning, we assume that we know the first lap, denoted
by yre(t) of duration V;. In practice, this lap is manually extracted from the signals. Then,
we define the sliding correlation m(t) € [—1,1] as:

Zﬁil Yretf(n)y(n + 1)
(N prep(m)? x SN y(n + 1)2)3

m(t) is then equal to 1 if there is a perfect match between the response y(¢) with the template

(A1)

m(t) =

Yret(t). From m(t) we identify the beginning of each lap as the position of the maxima of
m(t), greater than a threshold (= 0.7).

A.2 Detection of the ROls

The detection of the ROIs is a three-step procedure starting from the average lap. The first
two steps correspond to a rough detection from the average lap based on a thresholding and
on the derivative of the signal. The third step refines the ROI for each lap using a model.

First, from the average lap, we detect the maxima in a given temporal range (here, +5s
due to the distance between two cups and due to the robot speed) which are greater than a
threshold (50, with o, the standard deviation of the noise, estimated from the first points).

Second, from these maxima, we apply a heuristic procedure to approximate the ROIs. Starting
from a local maximum, we increase the area around this position until there is a significant
change in the sign of the derivative. This change signals the beginning of a new ROI. Thus,
we identify 2R = 24 ROIs which are represented by colored lines in Figure A.3.

Finally, we refine these ROIs using a model. We note y,,(t) the ROI of the average chemical
sensor corresponding to the VOC r during the lap n at time ¢ and y,,,(t) the signal of the
chemical sensor p.

Chapter A Segmentation procedure for the data from robotic setups
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Fig. A.2.: Results of the fit for 3 different ROIs. The points correspond to the average chemical sensor and the
lines correspond to the fit.

In Chapter 3, we saw that the response of a chemical sensor p to a VOC r can be fairly
characterized by an exponential rise and decay (see Eq. (3.12) in Chapter 3). We use the
same model but for modeling the average chemical sensor:

0 ift <ts,
Yrn(t) = 2 029 (1 — e7™nltn)) =y, (1) ift e [t2,,15,] (A.2)
Ya,rn (tin)ef‘rﬁn(tftﬁn) if t > tin

From model (A.2), we only want to identify the beginning ¢7,, and the end t¢,, of the response
of the VOC r for each lap n. This explains why we use the average chemical sensor: ¢{,, and
t,, are the same for each chemical sensor (they rise at the same time and decrease at the
same time). However, compared to Chapter 3, the idea is not to use the model (A.2) for
extracting features for classification (we should use each chemical sensor p for that).

For ¢

N>

we extract the adsorption signal by approximating ¢¢,, as the time point with max
amplitude. Then, for each possible value of ¢, , we estimate the parameters (6;, 7%,) which

minimize the quadratic cost, using the L-BFGS algorithm [Byr+95]. Finally, we choose ¢;,, as
the one with the minimal cost.

For t¢

™o

the procedure is similar: assuming that ¢}, is now known, we estimate the parameters
(05, 78, 74 ) from the entire signal y,.,,(t) for values of t¢,, close to the max, then we associate
t¢,, with the lowest cost. We this method, there is no need for an extra hyperparameter, such
as a threshold value, for identifying the injection range in the ROI. In Figure A.2, we report

some results of the fitting of the model for three different VOCs.

Finally, we refine each ROI by taking the points in [t7,,, ¢S, + T%]. The final ROIs for one lap

™I 'rn

and one chemical sensor are represented by colored points in Figure A.3.

A.2 Detection of the ROls
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Fig. A.3.: Results of the segmentation for one lap and one chemical sensor. Each color stands for a different VOC
(12 VOC in total). Colored lines correspond to rough first segmentation (based on the average lap)
and colored points correspond to the final segmentation which is used in this thesis (after refining
with the model (A.2)). Top figures correspond to zoom in on some parts of the response, left figure
represents Linalool and right figure represents Guaiacol.

A.3 Outliers detection

Among all the ROIs extracted, some have too little signal to be useful, which is mainly due
to VOC exhaustion. We detect and remove all the ROIs for which the mean of the average
chemical sensor y,.,(t) around the max (0.5 sec) is lower than 50,.
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|dentifiability of the Langmuir-SPRi
model

B.1 Identifiability

In Chapter 3, we defined a theoretical model for describing the response of Aryballe’s eNose.
This model is the combination of two different models: a chemical part based on the Langmuir
model and a physical part based on the linear approximation of the SPRi response. By noting
y(t) the response of a chemical sensor to a VOC, we recall the model:

0 if t <t
y(t) = { vx icac (1 — e~ (@Facli=t)) — g (1) if t € [t,, 1] (B.1)
Ya(te)edtte) if t > t,

with v a parameter related for instance to the VOC mass, a the adsorption constant, d the
desorption constant and ¢ the VOC concentration. ¢; and ¢, stand for the beginning of the
VOC injection and for the beginning of the recovery phase. ¢, and ¢, are assumed to be known.
We recall that all the parameters are non-negative. To lighten the notation, we removed the
dependences of the parameters to the different dimensions of the problem (different chemical
sensors p and different VOCs r). For the interested reader, these dependences appear in Eq.
3.10 (Chapter 3).

In this appendix, we study the identifiability of the model in Eq. B.1. In Section 3.1.4, we
already discussed about the notion of identifiability and we highlighted a trivial indetermi-
nation due to the parameters a and c. We rewrite the model in Eq. B.1 by noting z = ac:

0 if t <t
z dt ) (f— .
y(t.¢) = § vx (1 —e W) =y (t,Q) i te [t te] (B.2)
Ya(te, C)e_d(t_te) ift > t.

y(t, ¢) means that the response over time is controlled by the set of parameters ¢ = (v, z, d).
For the adsorption part, we found an additional indetermination. Let us define the following

function:
v c
Te: |z | — Z€ (B.3)
d d+(1—e)z

Then, for any € € R*, we have y,(¢,7(¢)) = ya.(t, ). Solutions which are negative can be
easily ruled out since the parameters are physical and chemical constants which are positive.
However, there is still an infinite set of equivalent solutions.
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To illustrate this indetermination, we can perform some numerical simulations. For that, we
generate a response by considering only the adsorption part (¢, = 0 and we just use the
second line of Eq. (B.2)) and using a vector ¢* (the ground truth). This response can be seen
as a vector y, € R™t, which would have been measured after the interaction between a VOC
and a chemical sensor. In practice, we do not know the vector of parameters ¢*, so we need
to estimate it from the “measured” response y,. For that, we need to define an optimization
problem and solve it. To define an optimization problem, we need to choose a cost function (a
function evaluating the error between the “measured” response and the response generated
by the model with parameters (). Several cost functions can be used but the most classical
one is the least squares cost function:

¢ = argmin ||y, — fa(¢)|I3 (B.4)

=

where |-||3 is the fy-norm (square root of the sum of the squared terms) and f,(¢) is the
adsorption function of parameters ¢ returning a vector of the same length than y,. The term
¢ > 0 just means that we search for non-negative parameters.

There are a lot of different methods for solving Problem (B.4). For non-linear problems, the
only possible choice is often to use iterative methods meaning that they start from an initial
guess. From this initial guess, the algorithm finds another solution (e.g. by using derivatives)
which is updated again and again until the algorithm converges (e.g. the cost evaluated on
several successive iterations no longer changes). We use a quasi-Newton algorithm called
L-BFGS [Byr+95] with the R package optim. A Newton algorithm is based on the use of the
second derivatives and a quasi-Newton algorithm uses approximations to compute the second
derivatives.

The algorithm needs then an initialization. This initialization is often random but a better
initialization can also be estimated from the response. If we resort to random initial guesses,
the non-identifiability of the model will cause a fundamental problem: the solution depends
on the initialization. To illustrate this fact, we solve 2,000 times Problem (B.4) based on
2,000 random initializations. In Figure B.1, we represent the 2,000 initial guesses (hollow
points) and the resulting solutions (yellow points) in the (v, z) space and in the (d, z) space.
The ground truth is represented by a red point. All the solutions are strictly equivalent due to
the indetermination (the cost is null since we do not include any noise), so there is no way to
tell which solution would be better. In Figure B.1, we also report two responses based on two
possible ¢, one is the ground truth (red points) and the other is a possible solution (yellow
line): different parameters give exactly the same response. Finally, we can notice that the set
of possible solutions matches with the indetermination in Eq. (B.3) (black line).

This identifiability study reflects a major issue regarding the Langmuir-SPRi model: the
adsorption part is not identifiable. However, it is interesting to note that the indetermination
in Eq. (B.3) disappears if we consider both adsorption and desorption part. If we consider
also desorption then the parameter d is identifiable by the exponential term (in the desorption

Chapter B Identifiability of the Langmuir-SPRi model
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Fig. B.1.: Tllustration of the non-identifiability of the adsorption model. Left and right figures: hollow points
represent 2,000 random initializations and yellow points represent all the estimated solutions by
solving Problem (B.4). The red point is the ground truth ¢* = (1, 1, 1). Solutions and initializations are
represented in the (v, z) space (left) and in the (d, z) space (right). The black line is the indetermination
in Eq. (B.3). Middle figure: we represent two responses generated from two different solutions, one is
the ground truth (red points) and the other is a possible solution (yellow line).

part), meaning that it can no longer change and so the indetermination 7. is only true for
e = 1. To illustrate this point, we can redo the same numerical analysis than before. In
this case, the response is generated by using both adsorption and desorption. A similar
optimization problem than Problem (B.4) can be considered. In Figure B.2, we report the
solutions based on 2,000 random initializations. It clearly shows that the indetermination 7.
(Eq. (B.3)) no longer exists.

However, there is still not a unique estimated solution, which is another problem. According
to our simulations, these estimated solutions are local minima and these solutions are not
strictly equivalent to the ground truth. In Figure B.2, we report two responses generated by
two different solutions, one is the ground truth (red points) and the other is an estimated
solution (yellow line). It clearly shows a data misfit when the response is generated using an
estimated solution differing from the ground truth. In fact, out of 2,000 initializations, the
algorithm converges ~10% of the time to a local minimum. All these solutions had a non-null
cost (but similar for all the local minima) showing that they are not strictly equivalent to
the ground truth (which has a null cost) and do not correspond to a true indetermination
in the full model. So, in this noise-free case, by running multiple times the algorithm from
different initializations, it would be possible to correctly estimate the ground truth ¢*, just
by comparing the different costs. In the noisy case and on real data, these local minima
can however become a real problem since the ground truth has no longer a null cost (due
to the noise). It is especially true as all the models are just an approximation of what is
occurring in real life. In other words, there is a “natural” data misfit which is not related to
the noise but to all the approximations required for building the model. Consequently, even
by considering the full model and multiple initializations, the cost may not be minimal for
the true parameters and several solutions may give similar costs.

B.1 Identifiability

175



176

indetermination line (C.3) Response

0.54 f—' 2.0

0449 @ 4
L [
¢

2.0

031 1.54

® : 5
0.21 b 0 D o
o ¢ e ground truth 3% S

a solution \ w 109
0040

0 5 10 15 20

0.5 — an initialization 0.59 5%

ground truth —

— a solution 0.01
0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0
1%

0.0

Fig. B.2.: Numerical simulations studying the identifiability of the full model. Left and right figures: hollow
points represent 2,000 random initializations and yellow points represent all the estimated solutions
(using a least-squares cost function and L-BFGS optimization method). The red point is the ground
truth ¢* = (1,1, 1). Solutions and initializations are represented in the (v, z) space (left) and in the
(d, z) space (right). The black line is the indetermination in Eq. (B.3). Middle figure: we represent
two responses generated from two different solutions, one is the ground truth (red points) and the
other is a possible solution (yellow line).

This study about the full model is not a thorough and theoretical proof of its identifiability,
since the study relies on simulations (and a specific cost function). But, this forms an empirical
piece of evidence that the full model is likely identifiable in the noise-free case. The existence
of multiple local minima may however prevent estimation of the true parameters in the noisy
case. In the next section, we describe a method enabling to improve the stability of the
solution towards initialization.

B.2 A method to improve solution stability

By looking at the model in Eq. (B.2), we can notice an interesting property of the model: v
acts as a scaling factor. Consequently, by dividing by a quantity proportional to v, we can
remove the influence of this parameter from the response. To that end, we propose to create
a new model by simply dividing by the integral of the adsorption part. The integration of the
adsorption is straightforward:

te te ~ 1 a ; B
| R e AR B

0 + z

By dividing the full model in Eq. (B.2) by this term, we can write a new model depending
only on (z,d):

0 ift <tg
B 1— e—(d-‘rz)(t—ts) B "
y(tv C) = te _ ts + r}»z(@i(chkz)(teits) _ 1) = ya(t7 C) 1 t € [t57te] (B.6)
Ya(te, &)eid(tite) ift >t
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Fig. B.3.: Numerical simulations studying the identifiability of the full normalized model described in Eq. (B.6).
The figure is divided in two parts: the noise-free case (left part) and the noisy case (right part). For
both parts, hollow points represent 2,000 random initializations and yellow points represent all the
estimated solutions (using a least-squares cost function and L-BFGS optimization method). The red
point is the ground truth &= (1,1). The black line is the indetermination for the adsorption phase
due to the term d + z. In the noise-free case, all the solutions converge to the ground truth (yellow
points and the red point are superimposed). In the noisy case, all the solutions converge to the same
solution, different from the ground truth due to the noise. Blue points in the middle figure represent
the noisy measurement (additive Gaussian noise). The red and yellow lines correspond respectively
to the noise-free response and to the response generated by the estimated parameters, showing little
difference.

At first glance, the model in Eq. (B.6) seems much more complicated than the previous model
in Eq. (B.2). However, this model is no longer dependent on three parameters but only two.

Despite this decrease in the number of parameters to estimate, the adsorption is still not
identifiable. In fact, d and z always appear in a single term d + z. For any € € R, the two
solutions (z,d) and (z + €,d — ¢) are strictly equivalent.

However, if we again consider the full model (adsorption and desorption), this indetermina-
tion disappears for the same reason than in the previous section. d is identifiable thanks to
the exponential term in the desorption. If d is identifiable then = becomes also identifiable.
To empirically show it, we can redo the same simulations than in the previous section.

For that, we generate a response according to the full Langmuir-SPRi model, described in Eq.
(B.2). This response is generated using a vector of parameters ¢* = (v*, z*,d*). Then, we
normalize this response by dividing by the integral of the adsorption part (computed from
the response). The normalized response then follows the model in Eq. (B.6) described by the
true parameters ¢ = (z*,d*). Using the normalized response, we estimate the parameters ¢
by solving a similar optimization problem than Problem (B.4).

In Figure B.3, we report the results of the simulations for both the noise-free case (left part)
and the noisy case (right part). The noise is additive and Gaussian. In both cases, all the
solutions estimated from 2,000 random initializations (hollow points) converge to the same

B.2 A method to improve solution stability
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solution, indicating that the normalized model is much more stable than the previous model
described in Eq. (B.2). In the noise-free case, all the solutions converge to the true parameters
while in the noisy case the estimated solutions do not match with the ground truth due to the
noise. As a final remark, once z and d have been estimated, we can also estimate v by going
back to the integral of the adsorption.

Chapter B Identifiability of the Langmuir-SPRi model



Robot olfaction - Additional results

C.1 Evaluation of the proposed constraints

In Chapter 6, we try to estimate a vector of intensities c(t) € R, based on a measurement
y(t) € R” and a known dictionary K € RP*® (recall that, R: number of VOCs in the
dictionary, P: number of chemical sensors). For that, we assume a linear model relating the

response y(t) to the parameters c(t) and K. To estimate c(t), we add some constraints to the

optimization problem:

* Non-negativity (abbreviated Pos.): all the coefficients of ¢(t) are positive.

* Sparsity with ¢;-norm (abbreviated Sp.): many coefficients of ¢(¢) are null.

* Support continuity (abbreviated Sup.): in a small time window (1 second in Chapter

6), we assume that the VOCs in the mixtures will slowly change. In other words, the

position of the null coefficients will be “correlated” for all the vectors c(t) estimated in

the time window.

In addition, a smoothing filter (average filter) is applied at the end of the estimation of

c(t). We deem necessary to evaluate the benefits of each constraint and the benefits of the

smoothing filter. For that, we evaluate 8 different methods which are listed in Table C.1.

Method Constraints Optimization problem Smoothing filter?
L argmin, ||ly(t) — Kc|3 No
L + Smooth. argmin, |y(t) — Kc|3 Yes
L + Pos. Non-negativity argmin,s |y(t) — Kc|3 No
L + Pos. + Smooth. Non-negativity argmin, |y(t) — Kc|3 Yes
L + Pos. + Sp. Non-negativity argmin,s |y(t) — Kc|3 + Al |1 No
Sparsity
L + Pos. + Sp. + Smooth. Non-negativity argmin,., |y(t) — Kc|3 + Allc|x Yes
Sparsity
L + Pos. + Sp. + Sup. Non-negativity argmin, |y(t) — Kc[5 + Allc|1 No
Sparsity
Support continuity
L + Pos. + Sp. + Sup. Non-negativity argmin,., |y(t) — Kc|3 + Alc|x Yes
+ Smooth. Sparsity

Support continuity

Tab. C.1.: Methods compared in this section. For the abbreviations, L: Linear, Pos.: Non-negativity, Sp
Sup.: Support continuity, Smooth.: Smoothing filter.

.: Sparsity,
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To compare these methods, we need some criterions. We propose 2 criterions: a classification
score and the estimated number of VOCs present in the mixtures. The first criterion is detailed
in Chapter 6 and tells us about a key aspect of the methods: their ability to correctly identify
the gas sources. For comparing the methods which achieved the best classification scores,
we can use another criterion which is important too: the estimated number of VOCs present
in the mixtures. This criterion tells us about the ability of the method to correctly predict
the number of VOCs actually present in the mixtures. In fact, it is an important property of
our proposed method: we never assumed in the unmixing that we a priori know the actual
number of VOCs being part of the mixtures. So this number is predicted by the algorithm and
corresponds to the number of non-null intensities in ¢(¢). To give only one value per method,
we average the estimated number of VOCs when the robot is over a gas source.

Finally, we evaluate the methods on two data sets introduced in Chapter 6 and which can be
considered as the most challenging data sets of the chapter:

1. The data set coming from Sniffer robot: 24 gas sources are disseminated in the envi-
ronment. In this scenario, the closer to 1 the estimated number of VOCs, the better
(because gas sources are pure and isolated) .

2. One data set coming from Sniffer arm: the robot goes over successive trails of binary
compounds. In this scenario, the estimated number of VOCs must be between 2 and
3 (there are only binary compounds in the experiment but ternary mixtures can occur
since we placed 3 different VOCs). For this data set, we will also evaluate the influence
of the dictionary size.

C.1.1 Evaluation based on classification score

In Table C.2, we report the classification scores obtained by the different methods for the
data from Sniffer robot. It clearly shows the benefit of using the smoothing filter for all the
methods. It also shows a clear benefit of using the sparsity constraint. However, for this data
set, there is no clear benefit of using the constraint of Support continuity when we apply a
smoothing filter.

In Figure C.1, we report the classification scores obtained by the different methods for the
data from Sniffer arm. In Chapter 6, we showed that the size of the dictionary is a crucial
parameter regarding the unmixing performance. In Figure C.1 we therefore detail the scores
for each possible dictionary size. It may be less easy to interpret due to the number of bars

Method Classification score (%)
Smoothing filter?
No Yes
L 48.0 54.3
L + Pos. 61.8 65.2
L + Pos. + Sp. 70.9 72.7
L + Pos. + Sp. + Sup. 724 73.1

Tab. C.2.: Classification scores obtained by the different methods for the data from Sniffer robot.

Chapter C Robot olfaction - Additional results
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Fig. C.1.: Classification scores obtained by the different methods for the data from Sniffer arm (considering the
scenario with successive trails of binary compounds). Each colored bar corresponds to one method.
z-axis corresponds to the size of the dictionary: the greater the size, the harder the task.

represented in Figure C.1. However, the results obtained with Sniffer robot still hold in the
case of Sniffer arm: the results with a smoothing filter perform significantly better whatever

the dictionary size (for the full dictionary, meaning of size 12, all the methods perform poorly).

In addition, these results allow us to draw another interesting conclusion: even if the benefit
of the constraint of Support continuity is not clear for small dictionary sizes, the method with
this constraint (in combination with the smoothing filter) performs significantly better when
the size of the dictionary increases. Since in practice it can be unrealistic to consider only
small dictionary size, it shows a clear benefit of our proposed method. Another point showing
the interest of the method is that, the results with this method are always amongst the best
classification scores.

To conclude, the criterion based on classification score indicates a clear advantage of the
methods using a smoothing filter. Consequently, for the second criterion (based on the
estimated number of VOCs), we consider only the methods using a smoothing filter. In
addition, this study highlighted three methods which present good classification results: “L +
Pos. + Smooth.” (Linear model with non-negativity constraint followed by a smoothing filter),
“L + Pos. + Sp. + Smooth.” (Linear model with non-negativity and sparsity constraints
followed by a smoothing filter) and “L + Pos. + Sp. + Sup. + Smooth.” (Linear model with
non-negativity, sparsity and support continuity constraints followed by a smoothing filter). So
in the following, we focus on these three methods.

C.1.2 Evaluation based on the estimated number of VOCs

In Table C.3 and in Figure C.2, we respectively report the estimated number of VOCs for 3
methods for Sniffer robot and for Sniffer arm. In Table C.3, the closer to 1 the results, the
better (because gas sources are pure and isolated). In Figure C.2, results between 2 and
3 are expected and the closer to 2 the results, the better (because gas sources are binary
compounds).

Both Table C.3 and Figure C.2 indicate better results for the method that we proposed in
Chapter 6. We can notice that for all the methods, the number of VOCs is overestimated when
the dictionary becomes larger (Figure C.2).

C.1 Evaluation of the proposed constraints
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Fig. C.2.: Averaged estimated number of VOCs when the Tab. C.3.:
robot goes over a gas source for Sniffer arm. Recall
that the estimated number must be between 2 and
3 (and it is likely that the closer to 2, the better).
z-axis corresponds to the size of the dictionary: the

Averaged estimated number of VOCs
when the robot goes over a gas
source for Sniffer robot. Recall that
the closer to 1 the estimated number
of VOCs, the better.

greater the size, the harder the task.

Correctly estimate the number of VOCs in a mixture is not a trivial task and it is even less
trivial given the conditions of our experiments. Consequently, we can conclude that the
proposed method and all its constraints improve significantly the results that we would have
obtained with less constrained methods.

C.2 Sniffer arm - Results for the sweep from right to left

Citral (S)-Limonene Distance
Source 1 Source 2 Source 1 Source 2 Source 1 Source 2
Mean 9.8+032 29.1+£021 11.1+£0.21 249+0.17 1.2+0.28 4.2+0.31
+ Stand. dev. (cm)
Ground-truth (cm) [9,9.5] [28,28.5] [10.5,11] [24.5,25] 1 3

Tab. C.4.: Estimation of the position of the isolated gas sources from Scenario @ with the default dictionary
(Citral, (S)-Limonene, Guaiacol, Cis-3-hexenol), based on the location of the maximum intensity. The
column distance refers to the spatial distance between Citral and (S)-Limonene. The two numbers of
the ground truth correspond to the beginning and to the end of the scent strip (i.e. the gas source).
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Fig. C.3.: Average score in each scenario and for each dictionary. A dashed line indicates the score obtained with
the smallest dictionary (e.g. for Scenario @ the smallest dictionary is (Citral, (S)-Limonene)).
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Fig. C.4.: Right to left direction. Results of the proposed algorithm for the different scenarios introduced. Each

line corresponds to one sweep (first sweep is the lighter). Each color corresponds to the estimated
intensity of the given VOC at the distance d. The results have been generated with the default
dictionary ((S)-Limonene, Citral, Guaiacol, Cis-3-hexenol). For Scenario ®, the intensities of Citral
and (S)-Limonene have been vertically shifted for easier visualization.
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Fig. C.5.: Influence of the size of the dictionary on spatial distribution of the classification score. From the
bottom up, the number of VOCs in the dictionary is increasing, starting from the default dictionary
((S)-Limonene, Citral, Guaiacol, Cis-3-hexenol). Left to right, each panel corresponds to the spatial
distribution of the score for each scenario (for a position d, the score is the average across the 20
sweeps). The spatial distribution highlights the misclassifications (mainly in transition areas) in
each scenario and for each dictionary. For Scenarios @ and ®, a black line indicates the theoretical
transitions between one gas source to another.

Chapter C Robot olfaction - Additional results



Bibliography

[AC98]

[AJO5]

[Alb+00]

[And99]

[Arc18]

[Ars+04]

[Art+00]

[AYO5]

[Bas+03]

[BD0O9]

[Bec+10]

[Bel57]

[Bel61]

A. Agresti and B. A. Coull. “Approximate is Better than “Exact” for Interval Estimation
of Binomial Proportions”. In: The American Statistician 52.2 (May 1998), pp. 119-126
(cit. on p. 20).

S. Achard and C. Jutten. “Identifiability of post-nonlinear mixtures”. In: IEEE Signal
Processing Letters 12.5 (May 2005), pp. 423-426 (cit. on p. 65).

K. J. Albert, N. S. Lewis, C. L. Schauer, et al. “Cross-Reactive Chemical Sensor Arrays”. In:
Chemical Reviews 100.7 (July 2000), pp. 2595-2626 (cit. on pp. 13, 18).

C. A. Andersson. “Direct orthogonalization”. In: Chemometrics and Intelligent Laboratory
Systems 47.1 (Apr. 1999), pp. 51-63 (cit. on p. 84).

G. Archunan. “Odorant Binding Proteins: a key player in the sense of smell”. In: Bioinfor-
mation 14.1 (Jan. 2018), pp. 36-37 (cit. on p. 26).

K. Arshak, E. Moore, G.M. Lyons, J. Harris, and S. Clifford. “A review of gas sensors
employed in electronic nose applications”. In: Sensor Review 24.2 (Jan. 2004), pp. 181-
198 (cit. on pp. 12, 13).

T. Artursson, T. Ekl6v, I. Lundstrom, et al. “Drift correction for gas sensors using multi-
variate methods”. In: Journal of Chemometrics 14.5-6 (Sept. 2000), pp. 711-723 (cit. on
pp- 79, 80, 82, 83, 98, 100, 104).

B. W. Ache and J. M. Young. “Olfaction: Diverse Species, Conserved Principles”. In: Neuron
48.3 (Nov. 2005), pp. 417-430 (cit. on p. 3).

N. Bassil, E. Maillart, M. Canva, et al. “One hundred spots parallel monitoring of DNA
interactions by SPR imaging of polymer-functionalized surfaces applied to the detection
of cystic fibrosis mutations”. In: Sensors and Actuators B: Chemical 94.3 (Oct. 2003),
pp. 313-323 (cit. on p. 45).

J. M. Bioucas-Dias. “A variable splitting augmented Lagrangian approach to linear spectral
unmixing”. In: 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing. Aug. 2009, pp. 1-4 (cit. on p. 140).

R. Beccherelli, E. Zampetti, S. Pantalei, M. Bernabei, and K. C. Persaud. “Design of a very
large chemical sensor system for mimicking biological olfaction”. In: Sensors and Actuators
B: Chemical 146.2 (Apr. 2010), pp. 446-452 (cit. on p. 18).

Bellman, R. E. “Dynamic Programming”. In: Princeton University Press (1957) (cit. on
p-17).

R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, Feb.
1961 (cit. on p. 17).

185



186

[Ben06]

[Ber+12]

[Bey+99]

[BHS97]

[Bis06]

[Blo+15a]

[Blo+15b]

[BOD12]

[Boel4]

[Bon+19]

[Bou+03]

[Brel8]

[Bre+18]

[Bro70]

[Bru+07]

R. Bentley. “The Nose as a Stereochemist. Enantiomers and Odor”. In: Chemical Reviews
106.9 (Sept. 2006), pp. 4099-4112 (cit. on pp. 110, 111, 113, 126).

M. Bernabei, K. C. Persaud, S. Pantalei, E. Zampetti, and R. Beccherelli. “Large-Scale
Chemical Sensor Array Testing Biological Olfaction Concepts”. In: IEEE Sensors Journal
12.11 (Nov. 2012), pp. 3174-3183 (cit. on p. 16).

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. “When Is “Nearest Neighbor”
Meaningful?” In: Database Theory — ICDT’99. Ed. by C. Beeri and P. Buneman. Lecture
Notes in Computer Science. Springer, 1999, pp. 217-235 (cit. on p. 17).

C. M. Bishop, G. E. Hinton, and I. G. D. Strachan. “GTM through time”. In: Artificial Neural
Networks. Jan. 1997, pp. 111-116 (cit. on p. 131).

C. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer-Verlag, 2006 (cit. on pp. 53, 90).

E. Block, S. Jang, H. Matsunami, V. S. Batista, and H. Zhuang. “Reply to Turin et al.:
Vibrational theory of olfaction is implausible”. In: Proceedings of the National Academy of
Sciences 112.25 (June 2015), E3155-E3155 (cit. on p. 2).

E. Block, S. Jang, H. Matsunami, et al. “Implausibility of the vibrational theory of olfaction”.
In: Proceedings of the National Academy of Sciences 112.21 (May 2015), E2766-E2774
(cit. on p. 2).

K. Brudzewski, S. Osowski, and A. Dwulit. “Recognition of Coffee Using Differential
Electronic Nose”. In: IEEE Transactions on Instrumentation and Measurement 61.6 (June
2012), pp. 1803-1810 (cit. on p. 16).

i

P. Boeker. “On ‘Electronic Nose’ methodology”. In: Sensors and Actuators B: Chemical
204.Supplement C (Dec. 2014), pp. 2-17 (cit. on pp. 8, 14, 16, 18, 21, 22).

E. Bonah, X. Huang, J. H. Aheto, and R. Osae. “Application of electronic nose as a non-
invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens:
a review”. In: Journal of Food Science and Technology (Nov. 2019) (cit. on p. 22).

W. Bourgeois, A.-C. Romain, J. Nicolas, and R. M. Stuetz. “The use of sensor arrays
for environmental monitoring: interests and limitations”. In: Journal of Environmental
Monitoring 5.6 (2003), pp. 852-860 (cit. on p. 28).

S. Brenet. “Développement et optimisations d’un nez électronique basé sur 'imagerie de
résonance de plasmons de surface”. PhD thesis. Université Grenoble Alpes, Oct. 2018
(cit. on pp. 25, 27, 129, 139).

S. Brenet, A. John-Herpin, F.-X. Gallat, et al. “Highly-Selective Optoelectronic Nose Based
on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds”. In:
Analytical Chemistry (July 2018) (cit. on pp. 23, 26, 27, 133).

C. G. Broyden. “The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations”. In: IMA Journal of Applied Mathematics 6.1 (Mar. 1970), pp. 76—
90 (cit. on p. 98).

K. Brudzewski, J. Ulaczyk, S. Osowski, and T. Markiewicz. “Chiral behavior of TGS
gas sensors: Discrimination of the enantiomers by the electronic nose”. In: Sensors and
Actuators B: Chemical 122.2 (Mar. 2007), pp. 493-502 (cit. on pp. 21, 113, 114).

Bibliography



[BS10]

[Byr+95]

[CBC21]

[Chy97]

[CJ10]

[CLH12]

[Com94]

[CS96]

[CV95]

[DAO6]

[DASO03]

[DC+11]

[DCF12]

[DEDO6]

[DHS12]

[Dic+01]

V. E. Bochenkov and G. B. Sergeev. “Sensitivity, selectivity, and stability of gas-sensitive
metal-oxide nanostructures”. In: Metal Oxide Nanostructures and Their Applications. Vol. 3.
American Scientific Publishers, 2010, pp. 31-52 (cit. on p. 10).

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. “A Limited Memory Algorithm for Bound Con-
strained Optimization”. In: SIAM Journal on Scientific Computing 16.5 (Sept. 1995),
pp. 1190-1208 (cit. on pp. 49, 68, 142, 171, 174).

J. Cohen, R. Bro, and P. Comon. “Tensor decompositions in Food Sciences”. In: Source
Separation in Physical-Chemical Sensing. Ed. by C. Jutten, L. T. Duarte, and S. Moussaoui.
Wiley, 2021 (cit. on p. 82).

C. F. Chyba. “A left-handed Solar System?” In: Nature 389.6648 (Sept. 1997), pp. 234-235
(cit. on p. 111).

P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent Component
Analysis and Applications. Academic press, 2010 (cit. on p. 133).

R. P. Carpenter, D. H. Lyon, and T. A. Hasdell. Guidelines for Sensory Analysis in Food
Product Development and Quality Control. Springer Science & Business Media, Dec. 2012
(cit. on p. 3).

P. Comon. “Independent component analysis, a new concept?” In: Signal processing 36.3
(1994), pp. 287-314 (cit. on pp. 64, 65).

J.-F. Cardoso and A. Souloumiac. “Jacobi Angles for Simultaneous Diagonalization”. In:
SIAM Journal on Matrix Analysis and Applications 17.1 (Jan. 1996), pp. 161-164 (cit. on
p- 83).

C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine Learning 20.3 (Sept.
1995), pp. 273-297 (cit. on p. 53).

B. Domon and R. Aebersold. “Mass Spectrometry and Protein Analysis”. In: Science
312.5771 (Apr. 2006), pp. 212-217 (cit. on p. 4).

C. Distante, N. Ancona, and P. Siciliano. “Support vector machines for olfactory signals
recognition”. In: Sensors and Actuators B: Chemical 88.1 (Jan. 2003), pp. 30-39 (cit. on
p. 115).

S. Di Carlo, M. Falasconi, E. Sanchez, et al. “Increasing pattern recognition accuracy for
chemical sensing by evolutionary based drift compensation”. In: Pattern Recognition Letters
32.13 (Oct. 2011), pp. 1594-1603 (cit. on pp. 79, 81, 84, 85, 87-90, 97, 98, 104).

S. Di Carlo and M. Falasconi. “Drift correction methods for gas chemical sensors in artificial
olfaction systems: techniques and challenges”. In: Advances in Chemical Sensors. InTech,
2012 (cit. on p. 77).

C. M. Delahunty, G. Eyres, and J.-P. Dufour. “Gas chromatography-olfactometry”. In:
Journal of Separation Science 29.14 (2006), pp. 2107-2125 (cit. on p. 6).

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons, Nov.
2012 (cit. on pp. 19, 20).

M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser. “Multi-spectral
imaging and linear unmixing add a whole new dimension to laser scanning fluorescence
microscopy”. In: BioTechniques 31.6 (Dec. 2001) (cit. on p. 140).

Bibliography

187



188

[DLR77]

[DS04]

[DSP02]

[Fan+18]

[Fan+19]

[Fer+13]

[FHS18]

[FHT10]

[Fig13]

[Fis36]

[Fle70]

[Flu84]

[FM71]

[Fon+14]

[Fon+15]

A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data
via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B (Methodological)
39.1 (1977), pp. 1-38 (cit. on p. 90).

D. Donoho and V. Stodden. “When does non-negative matrix factorization give a correct
decomposition into parts?” In: Advances in neural information processing systems. 2004,
pp. 1141-1148 (cit. on p. 73).

C. Distante, P. Sicilian, and K. C. Persaud. “Dynamic Cluster Recognition with Multiple
Self-Organising Maps”. In: Pattern Analysis & Applications 5.3 (Aug. 2002), pp. 306-315
(cit. on p. 85).

H. Fan, V. H. Bennetts, E. Schaffernicht, and A. J. Lilienthal. “A cluster analysis approach
based on exploiting density peaks for gas discrimination with electronic noses in open
environments”. In: Sensors and Actuators B: Chemical 259 (Apr. 2018), pp. 183-203 (cit. on
p. 130).

H. Fan, V. Hernandez Bennetts, E. Schaffernicht, and A. J. Lilienthal. “Towards Gas
Discrimination and Mapping in Emergency Response Scenarios Using a Mobile Robot with
an Electronic Nose”. In: Sensors 19.3 (Jan. 2019), p. 685 (cit. on pp. 129, 130, 137, 158).

C. Ferdenzi, S. C. Roberts, A. Schirmer, et al. “Variability of Affective Responses to Odors:
Culture, Gender, and Olfactory Knowledge”. In: Chemical Senses 38.2 (Feb. 2013), pp. 175—
186 (cit. on p. 3).

X. Fu, K. Huang, and N. D. Sidiropoulos. “On Identifiability of Nonnegative Matrix Factor-
ization”. In: IEEE Signal Processing Letters PP.99 (2018), pp. 1-1 (cit. on p. 73).

J. Friedman, T. Hastie, and R. Tibshirani. “Regularization Paths for Generalized Linear
Models via Coordinate Descent”. In: Journal of statistical software 33.1 (2010), pp. 1-22
(cit. on p. 141).

Figaro. TGS 2600 - for the detection of Air Contaminants. 2013 (cit. on p. 133).

R. A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”. In: Annals of
Eugenics 7.2 (1936), pp. 179-188 (cit. on p. 53).

R. Fletcher. “A new approach to variable metric algorithms”. In: The Computer Journal
13.3 (Jan. 1970), pp. 317-322 (cit. on p. 98).

B. N. Flury. “Common Principal Components in k Groups”. In: Journal of the American
Statistical Association 79.388 (Dec. 1984), pp. 892-898 (cit. on p. 83).

L. Friedman and J. G. Miller. “Odor Incongruity and Chirality”. In: Science 172.3987 (June
1971), pp. 1044-1046 (cit. on pp. 111, 114).

J. Fonollosa, I. Rodriguez-Lujan, M. Trincavelli, A. Vergara, and R. Huerta. “Chem-
ical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas
Chromatography-Mass Spectrometry”. In: Sensors 14.10 (Oct. 2014), pp. 19336-19353
(cit. on p. 131).

J. Fonollosa, S. Sheik, R. Huerta, and S. Marco. “Reservoir computing compensates slow
response of chemosensor arrays exposed to fast varying gas concentrations in continuous
monitoring”. In: Sensors and Actuators B: Chemical 215 (Aug. 2015), pp. 618-629 (cit. on
pp. 16, 131, 132).

Bibliography



[Fon+16]

[Gag+20]

[GB94]

[GDRO1]

[Gol70]

[GTO03]

[Gue+00]

[HAO4]

[HB+14]

[HB16a]

[HB16b]

[HBZ06]

[HGOO08]

[HO96]

[Hol+97]

J. Fonollosa, L. Fernandez, A. Gutiérrez-Galvez, R. Huerta, and S. Marco. “Calibration
transfer and drift counteraction in chemical sensor arrays using Direct Standardization”.
In: Sensors and Actuators B: Chemical 236 (Nov. 2016), pp. 1044-1053 (cit. on p. 17).

S. Gaggiotti, C. Hurot, J. S. Weerakkody, et al. “Development of an optoelectronic nose
based on surface plasmon resonance imaging with peptide and hairpin DNA for sensing
volatile organic compounds”. In: Sensors and Actuators B: Chemical 303 (Jan. 2020),
p. 127188 (cit. on pp. 26, 27, 57).

J. W. Gardner and P. N. Bartlett. “A brief history of electronic noses”. In: Sensors and
Actuators B: Chemical 18.1 (Mar. 1994), pp. 210-211 (cit. on p. 7).

K. L. Goodner, J. G. Dreher, and R. L. Rouseff. “The dangers of creating false classifications
due to noise in electronic nose and similar multivariate analyses”. In: Sensors and Actuators
B: Chemical 80.3 (Dec. 2001), pp. 261-266 (cit. on p. 18).

D. Goldfarb. “A Family of Variable-Metric Methods Derived by Variational Means”. In:
Mathematics of Computation 24.109 (1970), pp. 23-26 (cit. on p. 98).

I. Gazit and J. Terkel. “Explosives detection by sniffer dogs following strenuous physical
activity”. In: Applied Animal Behaviour Science 81.2 (Apr. 2003), pp. 149-161 (cit. on p. 3).

P. Guedon, T. Livache, F. Martin, et al. “Characterization and Optimization of a Real-
Time, Parallel, Label-Free, Polypyrrole-Based DNA Sensor by Surface Plasmon Resonance
Imaging”. In: Analytical Chemistry 72.24 (Dec. 2000), pp. 6003-6009 (cit. on p. 23).

M. Holmberg and T. Artursson. “Drift Compensation, Standards, and Calibration Methods”.
In: Handbook of Machine Olfaction. Ed. by T. C. Pearce, S. S. Schiffman, H. T. Nagle, and
J. W. Gardner. John Wiley & Sons, Ltd, 2004, pp. 325-346 (cit. on pp. 77, 78).

V. Hernandez Bennetts, E. Schaffernicht, V. Pomareda, et al. “Combining Non Selective
Gas Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical
Compounds”. In: Sensors 14.9 (Sept. 2014), pp. 17331-17352 (cit. on pp. 130, 131, 137,
158).

M. Hassan and A. Bermak. “Biologically Inspired Feature Rank Codes for Hardware Friendly
Gas Identification With the Array of Gas Sensors”. In: IEEE Sensors Journal 16.14 (July
2016), pp. 5776-5784 (cit. on p. 17).

M. Hassan and A. Bermak. “Robust Bayesian Inference for Gas Identification in Electronic
Nose Applications by Using Random Matrix Theory”. In: IEEE Sensors Journal 16.7 (Apr.
2016), pp. 2036-2045 (cit. on p. 17).

A. Halperin, A. Buhot, and E. B. Zhulina. “On the hybridization isotherms of DNA microar-
rays: the Langmuir model and its extensions”. In: Journal of Physics: Condensed Matter
18.18 (2006), S463 (cit. on p. 43).

A. Hierlemann and R. Gutierrez-Osuna. “Higher-Order Chemical Sensing”. In: Chemical
Reviews 108.2 (Feb. 2008), pp. 563-613 (cit. on pp. 10, 17, 18, 77, 78).

N. Hansen and A. Ostermeier. “Adapting arbitrary normal mutation distributions in evolu-
tion strategies: the covariance matrix adaptation”. In: Proceedings of IEEE International
Conference on Evolutionary Computation. May 1996, pp. 312-317 (cit. on p. 84).

M. Holmberg, F. A. M. Davide, C. Di Natale, et al. “Drift counteraction in odour recognition
applications: lifelong calibration method”. In: Sensors and Actuators B: Chemical 42.3 (Aug.
1997), pp. 185-194 (cit. on pp. 16, 76).

Bibliography

189



190

[HomO6]

[Hou+12]

[HSS14]

[HTKOO]

[Hue+12]

[Hug68]

[Hur+19]

[IWM12]

[Jam+13]

[JC82]

[JDMOO]

[JHFT13]

[JHFT17]

[Jia+17]

[JLO9]

J. Homola, ed. Surface Plasmon Resonance Based Sensors. Springer Series on Chemical
Sensors and Biosensors. Springer-Verlag, 2006 (cit. on pp. 43, 46, 47, 60).

Y. Hou, M. Genua, D. Tada Batista, et al. “Continuous Evolution Profiles for Electronic-
Tongue-Based Analysis”. In: Angewandte Chemie International Edition 51.41 (2012),
pp- 10394-10398 (cit. on p. 23).

K. Huang, N. D. Sidiropoulos, and A. Swami. “Non-Negative Matrix Factorization Revisited:
Uniqueness and Algorithm for Symmetric Decomposition”. In: IEEE Transactions on Signal
Processing 62.1 (Jan. 2014), pp. 211-224 (cit. on pp. 64, 73).

J.-E. Haugen, O. Tomic, and K. Kvaal. “A calibration method for handling the temporal
drift of solid state gas-sensors”. In: Analytica Chimica Acta 407.1 (Feb. 2000), pp. 23-39
(cit. on pp. 77, 80).

R. Huerta, S. Vembu, J. M. Amigo, T. Nowotny, and C. Elkan. “Inhibition in multiclass
classification”. In: Neural Computation 24.9 (Sept. 2012), pp. 2473-2507 (cit. on p. 131).

G. Hughes. “On the mean accuracy of statistical pattern recognizers”. In: IEEE Transactions
on Information Theory 14.1 (Jan. 1968), pp. 55-63 (cit. on p. 18).

C. Hurot, S. Brenet, A. Buhot, et al. “Highly sensitive olfactory biosensors for the detection
of volatile organic compounds by surface plasmon resonance imaging”. In: Biosensors and
Bioelectronics 123 (Jan. 2019), pp. 230-236 (cit. on pp. 26, 27, 57, 129).

H. Ishida, Y. Wada, and H. Matsukura. “Chemical Sensing in Robotic Applications: A
Review”. In: IEEE Sensors Journal 12.11 (Nov. 2012), pp. 3163-3173 (cit. on pp. 29, 128,
132).

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning.
Vol. 6. Springer, 2013 (cit. on p. 148).

A. K. Jain and B. Chandrasekaran. “39 Dimensionality and sample size considerations
in pattern recognition practice”. In: Handbook of Statistics. Vol. 2. Classification Pattern
Recognition and Reduction of Dimensionality. Elsevier, Jan. 1982, pp. 835-855 (cit. on
p- 21).

A. K. Jain, R. P. W. Duin, and J. Mao. “Statistical pattern recognition: a review”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.1 (Jan. 2000), pp. 4-37 (cit. on
p- 21).

D. Johnen, W. Heuwieser, and C. Fischer-Tenhagen. “Canine scent detection—Fact or
fiction?” In: Applied Animal Behaviour Science 148.3 (Oct. 2013), pp. 201-208 (cit. on
p- 3).

D. Johnen, W. Heuwieser, and Ca. Fischer-Tenhagen. “An approach to identify bias in scent
detection dog testing”. In: Applied Animal Behaviour Science 189 (Apr. 2017), pp. 1-12
(cit. on p. 3).

S. Jiang, J. Wang, Y. Wang, and S. Cheng. “A novel framework for analyzing MOS E-
nose data based on voting theory: Application to evaluate the internal quality of Chinese
pecans”. In: Sensors and Actuators B: Chemical 242 (Apr. 2017), pp. 511-521 (cit. on
p- 17).

I. M. Johnstone and A. Y. Lu. “On Consistency and Sparsity for Principal Components
Analysis in High Dimensions”. In: Journal of the American Statistical Association 104.486
(June 2009), pp- 682-693 (cit. on p. 18).

Bibliography



[JRP15]

[Jun+98]

[Khu+17]

[Koh82]

[KP16]

[KS11]

[Kyb+13]

[Lak+14]

[Lan18]

[Lau+08]

[LCO6]

[LD04]

[LGW17]

[Liv+15]

[Llo+98]

[Lou+05]

K. J. Johnson and S. L. Rose-Pehrsson. “Sensor Array Design for Complex Sensing Tasks”.
In: Annual Review of Analytical Chemistry 8.1 (2015), pp. 287-310 (cit. on p. 18).

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee. “Quantitative
Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films”.
In: Langmuir 14.19 (Sept. 1998), pp. 5636-5648 (cit. on p. 46).

U. Khulal, J. Zhao, W. Hu, and Q. Chen. “Intelligent evaluation of total volatile basic
nitrogen (TVB-N) content in chicken meat by an improved multiple level data fusion
model”. In: Sensors and Actuators B: Chemical 238 (Jan. 2017), pp. 337-345 (cit. on
p- 17).

T. Kohonen. “Self-organized formation of topologically correct feature maps”. In: Biological
Cybernetics 43.1 (Jan. 1982), pp. 59-69 (cit. on p. 85).

H. J. Ko and T. H. Park. “Bioelectronic nose and its application to smell visualization”. In:
Journal of Biological Engineering 10.1 (Dec. 2016), p. 17 (cit. on p. 22).

J. H. Kim and A. R. Scialli. “Thalidomide: The Tragedy of Birth Defects and the Effective
Treatment of Disease”. In: Toxicological Sciences 122.1 (July 2011), pp. 1-6 (cit. on p. 111).

N. J. Kybert, M. B. Lerner, J. S. Yodh, G. Preti, and A. T. C. Johnson. “Differentiation of
Complex Vapor Mixtures Using Versatile DNA-Carbon Nanotube Chemical Sensor Arrays”.
In: ACS Nano 7.3 (Mar. 2013), pp. 2800-2807 (cit. on p. 113).

S. Lakkis, R. Younes, Y. Alayli, and M. Sawan. “Review of recent trends in gas sensing
technologies and their miniaturization potential”. In: Sensor Review 34.1 (Jan. 2014),
pp. 24-35 (cit. on p. 13).

I. Langmuir. “The adsorption of gases on plane surfaces of glass, mica and platinum”. In:
Journal of the American Chemical Society 40.9 (Sept. 1918), pp. 1361-1403 (cit. on pp. 42,
43).

H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. Jensen. “Theo-
rems on Positive Data: On the Uniqueness of NMF”. In: Computational Intelligence and
Neuroscience (2008) (cit. on p. 73).

A. Loutfi and S. Coradeschi. “Smell, think and act: A cognitive robot discriminating odours”.
In: Autonomous Robots 20.3 (June 2006), pp. 239-249 (cit. on p. 130).

A. Lilienthal and T. Duckett. “Building gas concentration gridmaps with a mobile robot”.
In: Robotics and Autonomous Systems. European Conference on Mobile Robots (ECMR ’03)
48.1 (Aug. 2004), pp. 3-16 (cit. on pp. 130, 131).

Q. Li, Y. Gu, and N. Wang. “Application of Random Forest Classifier by Means of a QCM-
Based E-Nose in the Identification of Chinese Liquor Flavors”. In: IEEE Sensors Journal
17.6 (Mar. 2017), pp. 1788-1794 (cit. on p. 17).

T. Livache, A. Buhot, D. Bonnaffe, and Y. Hou-Broutin. “Electronic Nose or Tongue Sensors”.
Pat. US20150037909A1. Feb. 2015 (cit. on p. 23).

E. Llobet, X. Vilanova, J. Brezmes, et al. “Steady-State and Transient Behavior of Thick-Film
Tin Oxide Sensors in the Presence of Gas Mixtures”. In: Journal of The Electrochemical
Society 145.5 (Jan. 1998), pp. 1772-1779 (cit. on p. 157).

A. Loutfi, M. Broxvall, S. Coradeschi, and L. Karlsson. “Object recognition: A new ap-
plication for smelling robots”. In: Robotics and Autonomous Systems 52.4 (Sept. 2005),
pp. 272-289 (cit. on p. 130).

Bibliography

191



192

[Lou+09]

[LT11]

[Mab88]

[Mad+18]

[MaiO4]

[Mal+99]

[Mar14]

[Mar+98]

[MB31]

[MBC18]

[MBDO1]

[MBM19]

[Mea+13]

[MGG12]

[MGJ17]

A. Loutfi, S. Coradeschi, A. J. Lilienthal, and J. Gonzalez. “Gas distribution mapping of
multiple odour sources using a mobile robot”. In: Robotica 27.02 (2009), pp. 311-319
(cit. on p. 130).

J. S. Lomond and A. Z. Tong. “Rapid Analysis of Dissolved Methane, Ethylene, Acetylene
and Ethane using Partition Coefficients and Headspace-Gas Chromatography”. In: Journal
of Chromatographic Science 49.6 (July 2011), pp. 469-475 (cit. on p. 159).

G. A. Mabbott. “An analogy for teaching interpretation of mass spectra”. In: Journal of
Chemical Education 65.12 (Dec. 1988), p. 1052 (cit. on p. 5).

S. Madrolle, L. T. Duarte, P. Grangeat, and C. Jutten. “A Bayesian Blind Source Separation
Method for a Linear-quadratic Model”. In: 2018 26th European Signal Processing Conference
(EUSIPCO). Sept. 2018, pp. 1242-1246 (cit. on pp. 73, 158).

E. Maillart. “Imagerie par résonance des plasmons de surface pour ’analyse simultanée
de multiples interactions biomoléculaires en temps réel”. PhD thesis. Université Paris
Sud-Paris XI, 2004 (cit. on pp. 43, 45).

B. Malnic, J. Hirono, T. Sato, and L. B. Buck. “Combinatorial Receptor Codes for Odors”.
In: Cell 96.5 (Mar. 1999), pp. 713-723 (cit. on p. 2).

S. Marco. “The need for external validation in machine olfaction: emphasis on health-
related applications”. In: Analytical and Bioanalytical Chemistry 406.16 (June 2014),
PP- 3941-3956 (cit. on pp. 16, 18, 20, 27).

S. Marco, A. Ortega, A. Pardo, and J. Samitier. “Gas identification with tin oxide sensor
array and self-organizing maps: adaptive correction of sensor drifts”. In: IEEE Transactions
on Instrumentation and Measurement 47.1 (Feb. 1998), pp. 316-321 (cit. on p. 85).

E. C. Markham and A. F. Benton. “The adsorption of gas mixtures by silica”. In: Journal of
the American Chemical Society 53.2 (Feb. 1931), pp. 497-507 (cit. on pp. 57, 59).

P. Maho, S. Barthelme, and P. Comon. “Non-linear source separation under the Langmuir
model for chemical sensors”. In: 10th IEEE Workshop on Sensor Array and Multichannel
Signal Processing (SAM 2018). Sheffield, United Kingdom: IEEE, July 2018 (cit. on pp. 64,
158).

G. Morrot, F. Brochet, and D. Dubourdieu. “The Color of Odors”. In: Brain and Language
79.2 (Nov. 2001), pp. 309-320 (cit. on p. 22).

D. Martinez, J. Burgués, and S. Marco. “Fast Measurements with MOX Sensors: A Least-
Squares Approach to Blind Deconvolution”. In: Sensors 19.18 (Jan. 2019), p. 4029 (cit. on
pp. 144, 158).

M. I. Mead, O. A. M. Popoola, G. B. Stewart, et al. “The use of electrochemical sensors
for monitoring urban air quality in low-cost, high-density networks”. In: Atmospheric
Environment 70 (May 2013), pp. 186-203 (cit. on pp. 129, 130).

S. Marco and A. Gutierrez-Galvez. “Signal and data processing for machine olfaction and
chemical sensing: a review”. In: IEEE Sensors Journal 12.11 (2012), pp. 3189-3214 (cit. on
pp. 79, 116, 133, 158).

J. G. Monroy and J. Gonzalez-Jimenez. “Gas classification in motion: An experimental
analysis”. In: Sensors and Actuators B: Chemical 240 (Mar. 2017), pp. 1205-1215 (cit. on
pp- 17, 131).

Bibliography



[Mie96]

[Mit97]
[MM10]

[MMLOO]

[MMS19]

[MNAO2]

[MNMO2]

[Mon+16]

[Mou+06]

[MP+08]

[MT11]

[MWD58]

[NC+17]

[NDD95]

[NHPHO6]

P. Mielle. ““Electronic noses’: Towards the objective instrumental characterization of food
aroma”. In: Trends in Food Science & Technology 7.12 (Dec. 1996), pp. 432-438 (cit. on
pp. 16, 22).

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997 (cit. on pp. 19, 20).

E. Moser and M. McCulloch. “Canine scent detection of human cancers: A review of
methods and accuracy”. In: Journal of Veterinary Behavior 5.3 (May 2010), pp. 145-152
(cit. on p. 3).

P. Mielle, F. Marquis, and C. Latrasse. “Electronic noses: specify or disappear”. In: Sensors
and Actuators B: Chemical. Proceedings of the International Symposium on Electronic
Noses 69.3 (Oct. 2000), pp. 287-294 (cit. on pp. 16, 22).

H. M. McNair, J. M. Miller, and N. H. Snow. Basic Gas Chromatography. John Wiley &
Sons, Sept. 2019 (cit. on p. 4).

L. Marques, U. Nunes, and A. T. de Almeida. “Olfaction-based mobile robot navigation”. In:
Thin Solid Films. Proceedings from the International School on Gas Sensors in conjunction
with the 3rd European School of the NOSE Network 418.1 (Oct. 2002), pp. 51-58 (cit. on
pp. 129, 131).

W. Maass, T. Natschlédger, and H. Markram. “Real-time computing without stable states: a
new framework for neural computation based on perturbations”. In: Neural Computation
14.11 (Nov. 2002), pp. 2531-2560 (cit. on p. 132).

J. G. Monroy, E. J. Palomo, E. Lépez-Rubio, and J. Gonzalez-Jimenez. “Continuous chemical
classification in uncontrolled environments with sliding windows”. In: Chemometrics and
Intelligent Laboratory Systems 158 (Nov. 2016), pp. 117-129 (cit. on p. 130).

S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret. “Separation of Non-Negative
Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling”. In:
IEEE Transactions on Signal Processing 54.11 (Nov. 2006), pp. 4133-4145 (cit. on pp. 73,
140).

G. Miller-Putz, R. Scherer, C. Brunner, R. Leeb, and G. Pfurtscheller. “Better than random?
A closer look on BCI results”. In: International journal of bioelectromagnetism 10.1 (2008),
pp. 52-55 (cit. on p. 20).

K. Mcgill and S. Taylor. “Robot Algorithms for Localization of Multiple Emission Sources”.
In: ACM Comput. Surv. 43.3 (Apr. 2011) (cit. on pp. 129, 130).

I. G. Mc William and R. A. Dewar. “Flame Ionization Detector for Gas Chromatography”.
In: Nature 181.4611 (Mar. 1958), pp. 760-760 (cit. on p. 7).

E. Nufiez Carmona, V. Sberveglieri, A. Ponzoni, et al. “Detection of food and skin pathogen
microbiota by means of an electronic nose based on metal oxide chemiresistors”. In:
Sensors and Actuators B: Chemical 238 (Jan. 2017), pp. 1224-1230 (cit. on p. 17).

C. D. Natale, F. A. M. Davide, and A. D’Amico. “A self-organizing system for pattern
classification: time varying statistics and sensor drift effects”. In: Sensors and Actuators B:
Chemical. Eurosensors VIII 27.1 (June 1995), pp. 237-241 (cit. on p. 85).

L. A. Nguyen, H. He, and C. Pham-Huy. “Chiral Drugs: An Overview”. In: International
Journal of Biomedical Science : IJBS 2.2 (June 2006), pp. 85-100 (cit. on p. 111).

Bibliography

193



194

[NS+17]

[Pad+10]

[Pal+19]

[PCB10]

[PD82]

[Pea+06]

[Pen+19]

[Qui+12]

[RAE14]

[RBWO8]

[RH71]

[RN10]

[RP+18]

[RSO0]

[Rud18]

[RusO1]

J. Navarro-Sdnchez, A. I. Argente-Garcia, Y. Moliner-Martinez, et al. “Peptide Metal-Organic
Frameworks for Enantioselective Separation of Chiral Drugs”. In: Journal of the American
Chemical Society 139.12 (Mar. 2017), pp. 4294-4297 (cit. on p. 123).

M. Padilla, A. Perera, I. Montoliu, et al. “Drift compensation of gas sensor array data by
Orthogonal Signal Correction”. In: Chemometrics and Intelligent Laboratory Systems 100.1
(Jan. 2010), pp. 28-35 (cit. on pp. 28, 76, 79, 80, 84, 87, 104, 120).

J. Palacin, D. Martinez, E. Clotet, et al. “Application of an Array of Metal-Oxide Semi-
conductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection”. In:
Sensors (Basel, Switzerland) 19.9 (Apr. 2019) (cit. on p. 131).

M. D. Plumbley, A. Cichocki, and R. Bro. “Non-negative mixtures”. In: Handbook of Blind
Source Separation. Ed. by P. Comon and C. Jutten. Academic Press, 2010 (cit. on p. 67).

K. Persaud and G. Dodd. “Analysis of discrimination mechanisms in the mammalian
olfactory system using a model nose.” In: Nature 299.5881 (1982), pp. 352-355 (cit. on
pp- 7, 11, 12).

T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner. Handbook of machine
olfaction: electronic nose technology. John Wiley & Sons, 2006 (cit. on pp. 3, 11-13, 18).

E. O. Pentsak, D. B. Eremin, E. G. Gordeev, and V. P. Ananikov. “Phantom Reactivity
in Organic and Catalytic Reactions as a Consequence of Microscale Destruction and
Contamination-Trapping Effects of Magnetic Stir Bars”. In: ACS Catalysis 9.4 (Apr. 2019),
pp. 3070-3081 (cit. on p. 119).

P. Quignon, M. Rimbault, S. Robin, and F. Galibert. “Genetics of canine olfaction and
receptor diversity”. In: Mammalian Genome 23.1 (Feb. 2012), pp. 132-143 (cit. on p. 3).

RAE Systems. The PID Handbook: Theory and Applications of Direct-Reading Photoionization
Detectors. Honeywell, May 2014 (cit. on p. 7).

F. Rock, N. Barsan, and U. Weimar. “Electronic nose: current status and future trends”. In:
Chemical reviews 108.2 (2008), pp. 705-725 (cit. on pp. 13, 18).

G. F. Russell and J. 1. Hills. “Odor Differences between Enantiomeric Isomers”. In: Science
172.3987 (June 1971), pp. 1043-1044 (cit. on pp. 111, 114).

A. C. Romain and J. Nicolas. “Long term stability of metal oxide-based gas sensors for
e-nose environmental applications: An overview”. In: Sensors and Actuators B: Chemical.
Selected Papers from the 13th International Symposium on Olfaction and Electronic Nose
146.2 (Apr. 2010), pp. 502-506 (cit. on p. 78).

R. Rodriguez-Pérez, R. Cortés, A. Guaman, et al. “Instrumental drift removal in GC-MS
data for breath analysis: the short-term and long-term temporal validation of putative
biomarkers for COPD”. In: Journal of Breath Research 12.3 (Mar. 2018), p. 036007 (cit. on
p- 16).

N. A. Rakow and K. S. Suslick. “A colorimetric sensor array for odour visualization”. In:
Nature 406.6797 (Aug. 2000), pp. 710-713 (cit. on pp. 13, 23).

A. Rudnitskaya. “Calibration Update and Drift Correction for Electronic Noses and Tongues”.
In: Frontiers in Chemistry 6 (Sept. 2018) (cit. on p. 79).

R. A. Russell. “Survey of Robotic Applications for Odor-Sensing Technology”. In: The
International Journal of Robotics Research 20.2 (Feb. 2001), pp. 144-162 (cit. on p. 133).

Bibliography



[Sai+18]

[SBE98]

[Sch02]

[Sch+16]

[Sha70]

[SPO2]

[Spel5]

[Ste78]

[Ste+91]

[Tib11]

[TJ99]

[TP15]

[Tri10]

[Tri+11]

[Tro14]

[Tur+15]

T. Saidi, O Zaim, M. Moufid, et al. “Exhaled breath analysis using electronic nose and gas
chromatography-mass spectrometry for non-invasive diagnosis of chronic kidney disease,
diabetes mellitus and healthy subjects”. In: Sensors and Actuators B: Chemical 257 (Mar.
2018), pp. 178-188 (cit. on p. 17).

E. Schaller, J. O. Bosset, and F. Escher. “Electronic Noses’ and Their Application to Food”.
In: LWT - Food Science and Technology 31.4 (Apr. 1998), pp. 305-316 (cit. on p. 12).

V. Schurig. “Chiral separations using gas chromatography”. In: TrAC Trends in Analytical
Chemistry 21.9 (Sept. 2002), pp. 647-661 (cit. on p. 112).

F.-M. Schleif, B. Hammer, J. G. Monroy, et al. “Odor recognition in robotics applications
by discriminative time-series modeling”. In: Pattern Analysis and Applications 19.1 (Feb.
2016), pp. 207-220 (cit. on p. 131).

D. F. Shanno. “Conditioning of Quasi-Newton Methods for Function Minimization”. In:
Mathematics of Computation 24.111 (1970), pp. 647-656 (cit. on p. 98).

J. R. Stetter and W. R. Penrose. “Understanding Chemical Sensors and Chemical Sensor
Arrays (Electronic Noses): Past, Present, and Future”. In: Sensors Update 10.1 (2002),
pp. 189-229 (cit. on pp. 18, 22).

C. Spence. “Multisensory Flavor Perception”. In: Cell 161.1 (Mar. 2015), pp. 24-35 (cit. on
p. 22).

J. R. Stetter. “A surface chemical view of gas detection”. In: Journal of Colloid and Interface
Science 65.3 (July 1978), pp. 432-443 (cit. on p. 12).

E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky. “Quantitative determination of surface
concentration of protein with surface plasmon resonance using radiolabeled proteins”. In:
Journal of colloid and interface science 143.2 (1991), pp. 513-526 (cit. on p. 46).

R. Tibshirani. “Regression shrinkage and selection via the lasso: a retrospective”. In:
Journal of the Royal Statistical Society. Series B (Statistical Methodology) 73.3 (2011),
pp. 273-282 (cit. on p. 157).

A. Taleb and C. Jutten. “Source separation in post-nonlinear mixtures”. In: IEEE Transac-
tions on Signal Processing 47.10 (Oct. 1999), pp. 2807-2820 (cit. on p. 65).

M. P. Tiwari and A. Prasad. “Molecularly imprinted polymer based enantioselective sensing
devices: A review”. In: Analytica Chimica Acta 853 (Jan. 2015), pp. 1-18 (cit. on pp. 112,
113).

M. Trincavelli. “Gas Discrimination for Mobile Robots”. PhD thesis. Orebro University,
2010 (cit. on pp. 28, 129).

M. Trincavelli, A. Vergara, N. Rulkov, et al. “Optimizing the Operating Temperature for
an array of MOX Sensors on an Open Sampling System”. In: AIP Conference Proceedings.
Vol. 1362. Sept. 2011, pp. 225-227 (cit. on p. 129).

M. Trojanowicz. “Enantioselective electrochemical sensors and biosensors: A mini-review”.
In: Electrochemistry Communications 38 (Jan. 2014), pp. 47-52 (cit. on pp. 28, 112, 114).

L. Turin, S. Gane, D. Georganakis, K. Maniati, and E. M. C. Skoulakis. “Plausibility of the
vibrational theory of olfaction”. In: Proceedings of the National Academy of Sciences 112.25
(June 2015), E3154-E3154 (cit. on p. 2).

Bibliography

195



196

[Varl5]

[Ver+12]

[Ver+13]

[Was+19]

[Wee+19]

[Wee+20]

[WG]

[WJS01]

[Wol+98]

[WSEO1]

[Yan+15]

[Zam+05]

[Ziy+10]

[Zup+04]

N. Vargesson. “Thalidomide-induced teratogenesis: History and mechanisms”. In: Birth
Defects Research Part C: Embryo Today: Reviews 105.2 (2015), pp. 140-156 (cit. on p. 112).

A. Vergara, S. Vembu, T. Ayhan, et al. “Chemical gas sensor drift compensation using
classifier ensembles”. In: Sensors and Actuators B: Chemical 166-167 (May 2012), pp. 320-
329 (cit. on pp. 28, 78).

A. Vergara, J. Fonollosa, J. Mahiques, et al. “On the performance of gas sensor arrays
in open sampling systems using Inhibitory Support Vector Machines”. In: Sensors and
Actuators B: Chemical 185 (Aug. 2013), pp. 462-477 (cit. on pp. 131, 158).

T. Wasilewski, D. Migon, J. Gebicki, and W. Kamysz. “Critical review of electronic nose
and tongue instruments prospects in pharmaceutical analysis”. In: Analytica Chimica Acta
1077 (Oct. 2019), pp. 14-29 (cit. on p. 24).

J. S. Weerakkody, C. Hurot, S. Brenet, et al. “Opto-electronic nose - temperature and VOC
concentration effects on the equilibrium response”. In: 2019 IEEE International Symposium
on Olfaction and Electronic Nose (ISOEN). May 2019 (cit. on pp. 26, 27, 129).

J. S. Weerakkody, S. Brenet, T. Livache, et al. “Optical Index Prism Sensitivity of Surface
Plasmon Resonance Imaging in Gas Phase: Experiment versus Theory”. In: The Journal of
Physical Chemistry C 124.6 (Feb. 2020), pp. 3756-3767 (cit. on pp. 26, 27, 129).

B. M. Wise and N. B. Gallagher. http://www.eigenvector.com/MATLAB/OSC.html (cit. on
p. 84).

J. A. Westerhuis, S. de Jong, and A. K. Smilde. “Direct orthogonal signal correction”. In:
Chemometrics and Intelligent Laboratory Systems 56.1 (Apr. 2001), pp. 13-25 (cit. on
p- 84).

S. Wold, H. Antti, F. Lindgren, and J. Ohman. “Orthogonal signal correction of near-
infrared spectra”. In: Chemometrics and Intelligent Laboratory Systems 44.1 (Dec. 1998),
pp. 175-185 (cit. on p. 84).

S. Wold, M. Sjostrom, and L. Eriksson. “PLS-regression: a basic tool of chemometrics”. In:
Chemometrics and Intelligent Laboratory Systems 58.2 (Oct. 2001), pp. 109-130 (cit. on
p. 82).

J. Yan, X. Guo, S. Duan, et al. “Electronic Nose Feature Extraction Methods: A Review”. In:
Sensors 15.11 (2015), pp. 27804-27831 (cit. on pp. 9, 52, 116).

S. Zampolli, I. Elmi, J. Stiirmann, et al. “Selectivity enhancement of metal oxide gas
sensors using a micromachined gas chromatographic column”. In: Sensors and Actuators B:
Chemical 105.2 (Mar. 2005), pp. 400-406 (cit. on p. 160).

A. Ziyatdinov, S. Marco, A. Chaudry, et al. “Drift compensation of gas sensor array data by
common principal component analysis”. In: Sensors and Actuators B: Chemical. Selected
Papers from the 13th International Symposium on Olfaction and Electronic Nose 146.2
(Apr. 2010), pp. 460-465 (cit. on pp. 79-81, 83, 104).

M. Zuppa, C. Distante, P. Siciliano, and K. C. Persaud. “Drift counteraction with multiple
self-organising maps for an electronic nose”. In: Sensors and Actuators B: Chemical 98.2
(Mar. 2004), pp. 305-317 (cit. on p. 85).

Bibliography






Abstract

In Nature, olfaction is a key sense used by most species of animals for detecting, tracking and recognizing odors
in the environment. An electronic nose is an instrument that takes inspiration from natural olfaction in order to
detect volatile compounds. The main characteristic of this kind of instruments is that they use weakly-specific
chemical sensors. This weak specificity allows the device to be sensitive to a broad range of volatile compounds,
making it useful for a large range of applications. However, these instruments are still not a widespread
technology. The small number of sensors used and the lack of repeatability of the instrument over time are some
possible causes. In addition, the weak specificity of the sensors is sometimes a liability. For instance, in the case
of gas mixtures, each compound contributes to the response of a chemical sensor according to its contribution
to the mixture. In this thesis, we tackle several of these issues using a new instrument developed by Aryballe.
Compared to other systems, this device boards a large number of sensors and this number can be easily increased.
This electronic nose has already shown promising results in laboratory conditions. In the same vein, the thesis
reveals the ability of the instrument to tell two mirror molecules apart. However, an electronic nose is not meant
to be used only in the laboratory but must be useful in everyday conditions, just like its biological counterpart.
To that end, we have developed different robotic setups, mimicking the search for multiple gas sources in the
environment. They have allowed us to study recognition performance and gas unmixing in realistic conditions.
In this context, new algorithms have been designed to classify and unmix signals in real-time. Finally, the thesis
has also studied the repeatability of the instrument over 9 months. Correction methods have been proposed and
allow the use of the instrument to be greatly extended.

Résumé

Dans la Nature, l'olfaction est un sens clé du régne animal permettant la détection, le suivi et la reconnaissance
d’un grand nombre d’odeurs présentes dans I’environnement. Un nez électronique est un instrument s’inspirant
des principes de base de I'olfaction naturelle afin d’identifier des composés volatiles. La caractéristique principale
de ce type d’instruments est I'utilisation de capteurs chimiques peu spécifiques. Cette faible spécificité leur
permet d’étre sensible a un nombre élevé de composés volatiles, laissant entrevoir un large champ d’applications.
Cependant, ces appareils de mesure restent assez peu répandus. Le faible nombre de capteurs utilisés et le
manque de répétabilité de I'instrument au cours du temps en sont des causes possibles. La faible spécificité
n’est pas non plus sans inconvénient. Dans le cas de mélanges gazeux par exemple, chacun des composés
contribue a la réponse d’un capteur chimique en fonction de sa contribution au mélange. Dans cette thése, nous
étudions plusieurs de ces problématiques a I'aide d'un nouvel instrument développé par Aryballe. L’appareil
a l'avantage d’embarquer un grand nombre de capteurs dont la gamme peut étre facilement enrichie. Ce nez
électronique a d’ores et déja montré des résultats prometteurs en conditions de laboratoire. Dans la lignée de
ces résultats, la thése démontre la capacité de I'instrument a différencier des molécules miroir 'une de I'autre.
Cependant, I'instrument n’est pas voué a une utilisation réservée au laboratoire mais doit surtout s’avérer utile en
situation réelle, tout comme son équivalent biologique. A cette fin, la these a permis de mettre au point plusieurs
plateformes robotiques, imitant la recherche d’'un certain nombre de sources odorantes dans 'environnement.
Les capacités de reconnaissance de 'appareil et la problématique des mélanges gazeux ont ainsi pu étre étudiées
dans ces conditions réalistes. Dans ce contexte, de nouveaux algorithmes ont été élaborés afin de pouvoir
classifier et démélanger en temps-réel les signaux issus de I'instrument. Enfin, la these a également pu étudier la
répétabilité de I'instrument sur un total de 9 mois et proposer des méthodes de correction permettant ainsi une
utilisation prolongée de I'appareil.
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