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Résumé substantiel

Cette recherche doctorale a été réalisée en collaboration avec les laboratoires Nokia
Bell Labs France et a été aussi financée par eux. Les Bell Labs sont connus par
leur récente recherche dans le domaine de la télécommunication. Le domaine de
recherche de cette thèse est une étude des algorithmes de programmation pour
FPGAs. Cela est motivé par l’utilisation récente des accélérateurs comme FPGAs
dans des infrastructures du centre de données dans le cloud pour mieux fournir les
besoins de calcul du travail intensif. L’objectif de cette contribution est la minimisa-
tion du temps de latence des travaux pour les applications avec les dépendances de
données internes lesquelles sont exécutées en cloud en louant l’utilisation de FPGAs
car il peut être fait par d’autres ressources hardware (ex. : CPUs, stockage). Nous
traitons les applications dont les tâches ne peuvent pas correspondre à la fois à la
zone FPGA : ainsi, le FPGA peut être reconfiguré au moins une fois avant de com-
pléter l’exécution de l’entière application. Le choix de quelles tâches nous devons
attribuer à quel stage de reconfiguration, a un fort impact le temps de latence globale.
Les algorithmes de planification efficaces, lesquels minimisent le temps de latence,
sont intéressants tant pour les utilisateurs (le coût est lié au temps d’utilisation) que
pour les fournisseurs (pour mieux utiliser le FPGA). Comme déjà vu dans le chapitre
3, la plupart des travaux existants sont basés sur des algorithmes lents et précis ou
sur des heuristiques rapides dont la qualité n’est pas optimale. Dans ce manuscrit,
on proposera une nouvelle solution de programmation dont la qualité est meilleure
que les heuristiques courants tandis que le temps d’exécution est semblable à une
de ces heuristiques (presque dizaine de millisecondes pour les applications com-
munes). Il existe diffèrent ouvrages connexes qui capturent les applications et les
architectures en utilisant des modèles trop abstraits pour trouver de bons (en ter-
mes de temps de latence) ou décisions valides de programmation. (ex : dans
le Chapitre 3 nous verrons que le FPGA est souvent représenté avec un numéro
unique qui indique la quantité de la logique reconfigurable). Pour cette raison, nous
avons décidé de compter sur une ou plusieurs applications concrètes et modèles
d’architectures dans notre contribution. En raison de la nécessité croissante pour
exécuter des tâches de calcul intensif (ex. : apprentissage automatique, traitement
de signal, cryptographie, etc.) pour lesquels l’exécution des software n’offre pas une
performance suffisant, les architectures cloud équipées avec seulement le CPU ne
sont pas plus suffisant. Une solution serait celle d’intégrer l’accélérateur de hard-
ware, lequel inclut FPGAs et CPUs. En fait, il y a des différences entre eux et par
conséquent ils ne sont pas complètement interchangeables. Ainsi, un FPGA peut
être plus adapté à exécuter une application donnée, et réciproquement. Pour cer-
tains types de processus, FPGAs ont été démontré d’être capable d’assurer une
meilleure efficacité énergétique que le GPUs. Dans ce document, les auteurs com-
parent l’exécution d’un Convolutional Neural Network (CNN) en un FPGA mais aussi
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dans un GPU dans le système cloud de Microsoft Catapult. En effet, leur expéri-
ence ont démontré une efficacité énergétique d’un ordre de grandeur au bénéfice de
l’exécution du FPGA.

Les applications pour lesquelles FPGAs sont le plus pratiques inclues les appli-
cations hautement parallèles et/ou avec des opérations élémentaires qui ne convi-
ennent pas bien dans le modèles de programmation CPUs ou GPUS, par exem-
ple, le changement de bit, les données personnalisés avec de largeurs de bits non
standard, etc. Les canaux qui codent et décodent les algorithmes utilisés dans la
télécommunication sont de bons exemples de ces applications. Dans quelques cir-
constances, l’apprentissage automatique et les algorithmes d’apprentissage profond
peuvent être aussi de bons candidats, en particulier s’ils sont irréguliers et si les
types de données utilisées sont optimisés aux représentations non standard. Un
autre exemple est montré dans le chapitre 3, où le temps et l’efficacité énergétique
meilleure de FPGAs sur le GPUs est démontrée par des applications de slinding-
windows, appelées Sum of Absolute Differences, 2-D convolution et Correntropy.
Les applications sliding-window sont une typologie spéciale de traitement de sig-
naux numérique qui consiste à glisser un signal plus petit, appelée window (fenêtre),
à travers différentes positions dans un signal plus grand. (ex, une image). À chaque
position de la window (fenêtre), il y a souvent de nombreux calculs à exécuter. GPUs
sont préférés pour les computations que peuvent exploiter leur parallélisme, quand
les opérations concernent les opérations SIMD ou les opérations à virgule flottante,
même certains FPGA récents intègrent aussi un grand nombre d’opérations à vir-
gule flottante. Le rendu graphe est un exemple d’application dans laquelle le GPU
est un ajustement naturel en raison du traitement à virgule flottante massivement
parallèle. Les autres traitements de signal, l’apprentissage automatique ou les ap-
plications de l’apprentissage profond avec des caractéristiques très semblables sont
fréquemment accélérés grâce à l’utilisation de GPUs. Les accélérateurs jouent un
rôle fondamental dans le cloud computing. Dans cette thèse, nous nous concen-
trons sur les FPGAs. Comme nous verrons, FPGAs cloud sont gérés comme tout
autre ressources informatique ou de stockage et loués aux utilisateurs finales par le
fournisseur cloud, la plupart du temps à travers la virtualisation. Accordant avec le
paradigme Software-as-a-Service (SaaS), les services fournis par un FPGA (ou par
des FPGAs) sont accessibles par APIs. FPGAs peuvent être partagé et leurs usages
est multiplexé entre les usagers de plusieurs manière: synchronisation, espacement
etc. D’un point de vue de la synchronisation, les ressources de le hardware peu-
vent être efficacement utilisées par le fournisseur pour maximiser leur ROI (Return
On Investment). La solution de programmation proposée dans ce manuscrit cible
la minimisation du temps d’exécution d’une application (temps de latence), lequel
est un avantage pour le prix payé par les utilisateurs. En effet, plus l’exécution du
temps de latence est optimisée et moins de temps est loué à la ressource matériel
(hardware). Dans le moderne data centers cloud les FPGAs sont architecturalement
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organisés en groupes]. Les applications qui sont l’objectif de cette thèse contien-
nent un grand nombre de tâches dépendantes et potentiellement parallèles. Un
autre exemple est l’agrégation de différentes applications avec le but de minimiser
le temps de latence de l’ensemble des applications résultantes. Par exemple, celui
est le cas du Spark streaming où le temps de latence de ce batch est le temps de fin
de la dernière tâche. Les solutions existantes pour la programmation des applica-
tions peuvent être divisées en macro-familles. Avant tout nous avons des solutions
qui se basent sur des formulations mathématiques exactes (ex. : programmation
MILP). Elles assurent des solutions exactes au prix d’un temps d’exécutions po-
tentiellement haut (jusqu’à heures, jours où années en accord avec la grandeur du
problème). Cela est dû au très grand espace de solution qui caractérise le problème
de programmation auquel nous nous attaquons. Les paramètres qui contribuent à la
grandeur du problème sont inclus, mais ne sont pas limités à : dépendances entre
les tâches, temps d’exécution, numéro des ressources demandés, temps de recon-
figuration, caractéristiques du FPGA. Une autre famille bien connue est représentée
par les heuristiques. Parmi les heuristiques, nous nous intéressons surtout aux list-
based heuristiques. Dans les list-based heuristiques, dont les tâches individuelles
sont triées dans une liste de priorité et assignées, en séquence, à la première unité
disponible que correspond à leur demande de ressources. Les priorités peuvent
être assignées de façon statique ou dynamique selon le différents caractéristiques,
ex. : le temps d’exécution où occupation des ressources. Les list-based heuris-
tiques ont deux avantages sur la proposition de cette thèse, appelé ce (i) ils tra-
vaillent même dans le cas où travail arrivent séquentiellement à être exécutés avec
aucune connaissance préalable des emplois ultérieurs et (ii) ils sont plus vite en ter-
mes de temps d’exécution. Malheureusement, comme montré dans le chapitre 3,
ces heuristiques calculent une solution de programmation qui est, en moyenne, pire
que le temps de latence calculé avec notre approche. Les travaux basés sur les
Meta-Heuristiques (MHs) tels que les Genetic Algorithms (GAs), Simulated Anneal-
ing (SA), Tabu Search (TS) et ainsi de suite sont très communs. En général, MHs
commencent d’une solution initiale et explorent de façon itérative un sous-ensemble
de l’espace de solution. Leur usage a un sens spécialement quand l’espace de
solution est très grand pour être exploré entièrement, comme le problème de la
planification statique des tâches sur les FPGAs. Les MHs peuvent être appliquées à
une grande variété de problèmes. Au contraire, notre solution, comme montré dans
le chapitre 3 traite explicitement les FPGAs et les hypothèses relatives aux tâches.
En outre, ils fournissent des solutions de bonne qualité mais le temps de calcul est
plus élevé que celui de notre contribution. Pour résumer, les solutions MH offrent une
bonne solution qui nécessite de beaucoup de temps pour les calculs et les list-based
heuristiques n’offrent pas ces bonnes solutions de façon rapide. Comme le montre
notre manuscrit, Slot effectué de manière rapide et trouve une solution meilleure que
les list-based heuristiques. Dans cette thèse nous mettons l’accent sur le scheduling
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d’ application sur le FPGAs. Nous prenons comme hypothèse que les applications
sont composées de tâche dépendant (exprimable comme DAGs). Ainsi nous sup-
posons que la somme des ressources matérielles pour chaque tâche à exécuter
dans le FPGA excède les ressources matérielles de le FPGA. Par conséquent, nous
ciblons les applications qui nécessitent au moins deux stages de reconfigurations à
exécuter. Chaque stage de reconfiguration est ainsi composé d’une reconfiguration
totale du FPGA suivi par un sous-ensemble de tâches de l’application. Les stages de
reconfiguration sont exécutés séquentiellement et la séquence des stages de recon-
figuration doit respecter la dépendances de données de le DAG. En d’autres mots,
si la tâche B dépend de la tâche A, la tâche A ne peut pas faire partie du stage de
reconfiguration qui suit le stage de reconfiguration qui inclut la tâche B. Si la tâche A
et la tâche B font partie du même stage de reconfiguration, alors A doit être totale-
ment exécuté avant que B commence à être exécuté. Évidemment, la construction
des stages de reconfiguration influence fortement l’application du temps de latence.
Conséquemment, notre problème de programmation consiste dans l’identification
rapide des stages de reconfiguration qui mènent à l’exécution d’une application avec
un temps de latence lequel est proche ou égale au temps de latence optimale. La
programmation sur FPGAs est diverse de la programmation sur les CPUs. En effet,
l’implémentation hardware d’une tâche exige des ressources comme des éléments
logiques reconfigurables, blocs de mémoire intégrés, etc. Ces ressources peuvent
rassembler à des transformateurs, ex. : mémoires, registres, noyaux etc. En plus,
les ressources hardware du CPUs et des FPGAs ne sont pas suffisantes pour exé-
cuter toutes les tâches d’une application. Néanmoins, passer d’une tâche à une
autre dans les CPUs est souvent plus rapide que reconfigurer un FPGA. Ainsi, re-
configurer un FPGA peut introduire à un chronométrage qui peut être comparé à le
HET de la tâche. Par conséquent, le choix de quelles tâches il faut exécuter ensem-
ble dans un stage de reconfiguration a un grand impact pour les FPGAs que des
choix semblables pour le transformateur. En plus, à cause de cette surcharge, les
reconfigurations sur le FPGAs devraient être moins fréquentes du changement de
contexte sur le processeur. Le problème de programmation que nous ciblons dans
cette thèse est semblable à la catégorie de Resource-Constrained Scheduling Prob-
lem (RCSP). Informellement un RCSP considère les ressources et les activités lim-
itées à une durée connue. Un RCSP prévoit aussi que les demandes de ressources
soient liées par des relations précédentes. Un RCSP consiste à finding a schedule
of minimal duration en assignant un temps de départ à chaque activité ainsi les re-
lations précédentes et les ressources disponibles sont respectées. Les travaux cités
dans le chapitre 3 démontrent que le RCSP classique est un grand problème NP-
hard. Néanmoins, notre problème de recherche diffère du RCSP classique parce
que la reconfiguration FPGA présente une nouvelle variable dans l’espace de solu-
tion dont le surcharge contribue considérablement au temps de latence totale. En
considérant différents exemples, on peut remarquer les intuitions suivantes : (i) la
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meilleure solution n’est toujours celle qui possède un plus petit nombre de reconfig-
urations et (ii) la mesure clé est la quantité de temps utilisé pour exécuter les tâches
de façon parallèle et qui peuvent être aussi maximisés. Afin de le faire, les tâches
qui consomment plus de temps doivent être probablement considérées comme les
plus importantes parce que elles ont des avantages potentiellement plus grands.

Notre solution essaye de minimiser le temps de latence d’une application en re-
groupant les tâches en stages de reconfigurations. Comme montré dans les sections
précédentes, le parallélisme entre tâches et tâche dominantes (ex. : tâches qui ont
des HET plus élevés) sont les points clé des problèmes qui sont traités par nos so-
lutions. En effet, notre solution est liée à la sélection des tâches dominantes et nous
voulons aussi mettre ces tâches dominantes en parallèle avec un sous-ensemble de
tâches qui peuvent être exécutés en parallèle. Afin de sélectionner quelles tâches
mettre en parallèle à la tâche dominante, nous considérons tout le graphe, et pas
seulement la qualité du parallélisme entre la tâche dominante et la tâche parallèle
à elle. Ainsi, notre décision considère les ressources demandées et les HET des
tâches, les dépendances des données entre eux, les caractéristiques du FPGA et le
temps de reconfiguration. Parmi toutes les tâches possibles qui peuvent être mises
en parallèle avec la tâche dominante, nous définissons, dans ce travail, un approche
de base qu’aide à définir quelles sont les tâches à sélectionner.

Une fois que la tâche dominante et les tâches mises en parallèle ont été sélec-
tionnées grâce au service de notation (ex. : la création d’un stage de reconfigura-
tion), le graphe a été remanié pour fusionner toutes les tâches qui ont été sélection-
nées dans cette itération dans un nœud unique. À chaque itération, il se crée un
nouveau stage de reconfiguration et ses tâches se fussent ensemble dans un seul
nœud du graphe. L’input du graphe devient une séquence de stages de reconfigura-
tion. Cette séquence exprime la programmation sélectionnée. Pour rappel, un stage
de reconfiguration contient la reconfiguration totale du FPGA suivi par l’exécution
des tâches qui appartiennent aux stages de reconfiguration. Comme le montre le
chapitre 4 un processus d’optimisation finale essaie de compacter davantage les
stages de reconfiguration afin de continuer à réduire le temps de latence. Notre ap-
proche mire à identifier, très probablement, une bonne solution, que va minimiser le
temps de latence, parce que au lieu de considérer seulement une partie donnée du
graphe comme quand commence de la tâche initiale, nous préférons considérer la
tâche dominante (quelle que soit son emplacement dans le graphe) et le parallélisme
plus puissant du graphe pour mieux exploiter la capacité de parallélisme des FPGAs.
Cet heuristique est présenté dans le Chapitre 4, tandis que l’efficience de cet heuris-
tique est présenté dans le Chapitre 5. Les FPGAs modernes ne sont pas simplement
un récipient de hardware reconfigurable mais ils peuvent aussi incorporer d’autres
éléments comme les processeurs généraux, les DSPs et ainsi de suite. L’un des
pionniers de ce type hétérogène de hardware reconfigurable par un software est le
dispositif Xilinx Virtex II Pro, où le FPGA inclut un IBM PowerPC405. De ce moment,
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ont été apportées différentes améliorations. Par exemple, les produits Stellarton
distribuent un processeur Intel Atom E6XX avec un FPGA Intel dans le même pa-
quet. La dernière tendance pour le calcul d’haute performance est représentée par
des projets comme Cygnus, un superordinateur qui a été développé près le Cen-
ter for Computational Sciences (CCS), en Tsukuba, lequel intègre un mélange de
CPUs, GPUs et FPGAs. Le calcul intensif n’est pas le seul domaine dans lequel les
processeurs et les accélérateurs travaillent ensemble, parce qu’il est très commun
dans les infrastructures cloud. Le problème de programmation que nous ciblons
dans cette thèse est similaire à la catégorie de Resource-Constrained Scheduling
Problem (RCSP). Les RCSP sont des problèmes programmés dont la programma-
tion est influencée par la disponibilité ou le manque de ressources. Cela signifie,
souvent, qu’en raison de la limitation des ressources, seulement une certaine ap-
plication prendra plus de temps. Le chapitre 3 définit généralement le RCSP et
présente la manière dont notre problème de programmation spécifique du FPGA
s’adapte à cette classification. Le reste du travail est composé par deux aspects
différents. On analyse comme chaque entité (ex. : application et architecture) est
modelée avec la contribution du programme FPGA. En d’autres mots, on présente
un aperçu concernant les inputs, les outputs, les hypothèses, les modèles et les
paramètres nécessaires pour calculer le programme d’application dans les FPGAs.
Les modèles sont utilisés pour décrire les applications et aussi l’architecture. En
ce qui concerne les applications, nous mettons l’accent sur la présentation des as-
sets de modélisation lesquels permettent de capturer les paramètres d’input perti-
nent pour résoudre le problème de programmation. Les modèles utilisés dans les
problèmes de la programmation ont généralement beaucoup plus de paramètres
grossières que les modèles utilisés par les travaux dont l’objectif est, par exemple,
de générer une implémentation spécifique de hardware FPGA pour une application
bien spécifique. Il est possible de conduire le même discours pour les architectures
: comme nous verrons, les FPGAs sont caractérisés par une architecture complexe
et les détails ne sont pas tous pertinents à la programmation. Les stratégies de
programmation peuvent, en effet, faire une abstraction des paramètres avec un im-
pact négligeable sur le temps d’exécution de l’algorithme de programmation. À cet
égard, le chapitre 3 décrit comme les travaux connexes modèlent les architectures
FPGA. Les modèles imprécis (ex. : les modèles qui ne considèrent pas les détails
pertinents à la programmation) pourraient mener à des solutions de programmation
sous-optimales ou erronées.

Modeler est important mais si nous faisons une comparaison avec la programma-
tion, l’algorithme utilisé pour résoudre le problème de programmation est également
important. Dans ce qui suit, nous allons désigner l’algorithme de résolution comme
la « stratégie de programmation ». Ainsi, on va illustrerles œuvres principales de l’art
qui traitent les stratégies de programmation et cela représente la partie la plus large
de ce chapitre. Nous avons classifié les travaux principaux basés sur la stratégie
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de programmation qui l’utilisent. En général, une stratégie de programmation peut
être basée sur les meta-heuristique (MHs) ou sur les heuristiques. En outre, nous
classons les derniers en list-based heuristiques et les packing-based heuristiques.
Nous préférons nous concentrer seulement sur certaines de ces catégories pour les
solutions d’haute qualité qu’elles fournissent (ex. : meta-heuristiques, formulations
exactes) ou pour le temps d’exécution très rapide (ex. : list-based algorithmes de
programmation). La contribution de cette thèse peut être placée dans la catégorie
"packing-based" (ex. : les algorithmes qui prennent des décisions considérant les
groupes des tâches. Cela permet d’atteindre des résultats qui peuvent se com-
parer avec les meta-heuristiques en termes de qualité tandis que maintenir le temps
d’exécution peut être comparable aux list-based heuristiques. Pour ne pas être in-
complète, les formulations mathématiques exactes peuvent être utilisées comme
spécification du problème également par les heuristiques non exactes.

Afin d’évaluer la qualité du planning calculé par le Slot, nous devons comparer
le temps de latence obtenu avec une référence optimale absolue. Donc, en pre-
mier lieu, nous avons formellement modelé le problème de programmation du FPGA
et nous l’utilisons pour résoudre ces cas problématiques avec une approche ex-
acte. Nous choisissons d’utiliser le Mixed Integer Linear Programming (MILP) parce
qu’il semble vraiment adapté pour ces types de problèmes d’optimisation. Puis
nous désignons un générateur d’instance aléatoire pour générer un grande nom-
bre d’instances du problème de programmation du FPGA. Nous résoudrons ces
instances avec un solveur MILP pour obtenir un temps de latence mineur et le com-
parer avec le temps de latence trouvé par le Slot dans les mêmes cas. Nous com-
parons aussi le temps d’exécution des deux approches. Enfin, nous comparons
la qualité et les temps d’exécution du Slot avec le HEFT-NF heuristique dont nous
avons déjà discuté. Au meilleur de notre connaissance HEFT-NF est la seule propo-
sition comparable au Slot.

Dans le chapitre sur l’évaluation, nous avons montré parce qu’une analyse ex-
haustive est impossible du point de vue du temps de calcul. Puis, nous avons décrit
comment nous capturons les ressources hardware et les applications. Enfin nous
avons décrit les étapes principales du Slot et nous avons discuté sa complexité
théorique. Nous pensons que le clé-force du Slot est son calcul intelligent des stages
de reconfiguration lesquels exploitent efficacement le parallélisme d’un FPGA. Le
chapitre suivant vous montrera l’évaluation d’un Slot sur un indice de référence syn-
thétique composé par différentes instances générées de manière pseudo-aléatoire.
En particulier, nous allons évaluer la qualité de la solution de programmation produite
par le Slot et son temps d’exécution.

Nous comptons sur le fait que le Slot pourrait être également intéressant pour le
design du système intégré complexe. Ainsi, dans ce chapitre, nous appliquons le
Slot dans un contexte différent que les centres de données cloud, comme Model-
Driven Engineering. Model-Driven Engineering (haut niveau) modèle le système
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intégré en offrant des modèles dédiés pour capturer des composants hétérogènes
de hardware/software. Les modèles peuvent représenter une application, une plate-
forme et donc la manière dans laquelle une application peut être mappée sur une
plateforme. En plus, les modèles peuvent être transformés afin de générer de mod-
èles exécutables (pour des vérifications formelles ou pour des fins de simulation) et
un code exécutable pour les modèles de haut niveau. Grâce à leurs abstractions
internes, les modèles devraient aider à se concentrer sur les aspects les plus im-
portants du système. À l’égard des FPGAs, nous pensons que ces deux caractéris-
tiques importantes devraient être prises en considération : parallélisme de hardware
et reconfiguration dynamique.

Pour mieux supporter le design des systèmes intégrés, nous avons intégré un
Slot dans un cadre de Model-Driven Engineering (MDE) appelé TTool. TTool est
un instrument gratuit et open-source qui supporte différents stages de développe-
ment avec UML/SysML (ex. : déterminations des besoins, analyses, partitioning
hardware/software et design software (intégré). Parmi les différents instruments
MDE, TTool a été sélectionné en raison de sa légèreté et de son extension facile,
TTool, en effet, a déjà démontré de supporter les applications de traitement de sig-
naux. Nous avons intégré le Slot aux TTool/DIPLODOCUS à travers un plugin.
TTool/DIPLODOCUS étaient déjà capables de représenter les FPGAs et les recon-
figurations dynamiques pour effectuer des simulations sur les tâches mappés sur
le FPGA. Encore, la programmation des tâches pour les FPGAs devrait être faite à
main. Étant donné une application mappée sur le FPGA, le Slot peut être appliqué
pour déterminer les stages de reconfiguration de la programmation. Cet information
de programmation peut être transmise au moteur de simulation – par exemple pour
vérifier que cette programmation sélectionnée travaille bien avec les autres parties
du système – où qu’elle peut être utilisée par le moteur Design Space Exploration
qui peut utiliser l’information fournit par un stage de reconfiguration pour prendre des
décisions davantage.

Le travail futur de cette thèse cible à des architectures différentes des celles
présentées dans le Chapitre 7. En effet, nous voulons appliquer les principes du
Slot aussi dans d’autres typologies de situation qui pourraient se vérifier dans les
projets réels. Nous rappelons au lecteur que les stages principaux du Slot sont (i)
privilégier les tâches dominantes, (ii) la génération d’un ensemble de stages de re-
configuration candidats commence par la tâche dominante, (iii) l’évaluation du stage
de reconfiguration plus promettant à l’égard du temps de latence globale (pour cela
nous utilisons un système de notation) et (iv) optimiser davantage la solution en
compactant les stages de reconfiguration sélectionnés. Grâce à l’approche mod-
ulaire du Slot, nous comptons qu’avec une légère adaptation les différents stages
peuvent utiliser le Slot pour d’autres problèmes de recherche.

Ainsi nous proposons les six directions suivantes:
Pour résoudre les problèmes d’évolutivité du Slot: de la complexité de la discus-
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sion et l’évaluation, nous avons remarqué que le Slot ne s’adapte pas très bien avec
le nombre des stages de reconfiguration candidats, même si les dépendances des
données et les ressources disponibles limitent le nombre des stages de reconfigu-
ration candidats. Cela peut affecter le temps d’exécution du heuristique dans le cas
où il est appliqué aux graphes avec des centaines de tâches.

La programmation des tâches que peut requêter des ressources programmées
dépendantes : nous avons classifié les ressources en deux typologies : appelé
scheduling-independent et scheduling-dependent resources. Une scheduling-independent
resource est une ressource qu’est assignée exclusivement à une tâche pour la durée
totale du stage de reconfiguration et que contient la tâche. Ainsi, une requête pour
une spécifique scheduling-independent resource (tels que LEs) sans un stage de
reconfiguration peut être géré simplement en ajoutant les deux ensembles. Une
scheduling-dependent resource est une ressource qui peut être assignée à une
tâche pour la durée totale de la tâche. La dernière est toujours mineure ou égale à la
vie totale du stage de reconfiguration qui contient la tâche. Les tâches qui enquêtent
une scheduling-dependent resource excèdent la limite physique pour un FPGA spé-
cifique qui peut faire partie du même stage de reconfiguration comme s’ils étaient
scheduling-independent ainsi, probablement de façon pessimiste.

Une discussion intéressante est que le Slot travaille mieux quand toutes les
tâches qui composent les graphes d’application diffèrent l’un de l’autre. En effet,
dans le cas où le graphe d’application contient des multiples instances de la même
tâche mais dans différent parties du graphe, nous pensons que la meilleure manière
pour calculer les stages de reconfiguration devrait être bien définie. En plus, dans
le Slot future il faut considérer des multiples implémentations pour la même tâche et
décider quel peut apporter plus bénéfices à la réduction du temps de latence.

Le Slot courant est appliqué à une ou plusieurs applications qui sont exécutées
sur un seul FPGA. En future, nous planifions de l’appliquer à des meilleures architec-
tures ciblées lesquelles permettent d’exploiter les capacités des FPGAs à distance,
comme dans Microsoft Catapult. Si nous supposons que cette latence est vraiment
basse au regard du HET des tâches et au regard de la reconfiguration du FPGA,
une solution pourrait simplement être celle d’adapter le Slot courant en résumant
ensemble les ressources des FPGAs à distance.

Enfin, nous aimerions mieux adapter le Slot pour mieux aborder les changements
dynamiques que le contexte des centres de données cloud peut nécessiter. En
particulier, nous voulons relancer de façon dynamique le Slot chaque fois que la
nouvelle application est assignée à un FPGA qui est déjà en train d’exécuter une
application.

Ce manuscrit présente la programmation des applications sur les FPGAs. Nous
avons supposé que les applications sont composées par des tâches dépendantes
et les FPGAs soient totalement reconfigurés. Notre but est de minimiser le temps
de latence de l’application. Nous avons placé notre contribution dans les centres de



10

données cloud. Nous montrons comment les architectures du centre de données
cloud intègrent les accélérateurs de le hardware, comme les FPGAs, pour mieux
supporter les besoins croissants des applications en termes de puissance de cal-
cul. Le travail connexe montre que toutes ces approches existantes ne peuvent pas
répondre de façon efficace à notre problématique. Nous présentons notre approche,
Slot, laquelle offre un juste compromis entre la qualité de la solution (en termes de
temps de latence) et le temps d’exécution qu’elle nécessite pour identifier cette so-
lution. Le Slot est basé sur un processus itératif. Premièrement, cela considère tous
les graphes et la tâche dominante de ce graphe. Dès les stages de reconfigura-
tion qui peuvent être construits à partir de ce graphe, nous utilisons une méthode
de notation qui permet de sélectionner le meilleur stage de reconfiguration. Quand
un stage de reconfiguration a été sélectionné, nous fusionnons toutes les tâches de
ce stage de reconfiguration ensemble dans le graphe. Enfin, cette itération extrants
une séquence de stages de reconfiguration laquelle, après une optimisation finale,
représentera la programmation proposée.

Nous avons montré que le Slot est efficace sur un benchmark de 37500 graphes
générés de manière pseudo-aléatoire. Nous l’avons aussi comparé aux autres deux
approches : Une formulation MILP, laquelle retourne souvent une solution optimale,
et un heuristique existant lequel a été adapté pour mieux cibler le problème de la pro-
grammation du FPGA (appelé HEFT-NF). Dans la partie finale du manuscrit, nous
montrons que le Slot peut être appliqué dans des contextes différents du centre
de données cloud. Nous allons montrer comme nous l’avons intégré dans un outil
d’ingénierie pilote, appelé TTool/DIPLODOCUS, lequel supporte la conception ini-
tiale des systèmes embarqués.
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Chapter 1

Introduction

1.1 Introduction

This doctoral research has been realized in collaboration with Nokia Bell Labs France
laboratories and has been financed by it. Bell Labs are known for their recent re-
search in the telecommunication domain. The research domain of this thesis is a
study of scheduling algorithms for FPGAs. This is motivated by the recent use of
accelerators such as FPGAs in cloud data center infrastructures to better supply
the computation needs of intensive workloads. The target of this contribution is the
makespan minimization for applications with internal data-dependencies, which are
executed in cloud by renting the use of FPGAs as it can be done for other hardware
resources (e.g., CPUs, storage). We address applications whose tasks cannot fit at
once the FPGA area: thus, the FPGA must be reconfigured at least one time before
completing the execution of the entire application. The choice of which tasks are as-
signed to which slot has a strong impact on the overall makespan. Efficient schedul-
ing algorithms which minimize the makespan are interesting both for the users (cost
is related to usage time) and for providers (to better utilize the FPGA pool).

As discussed in Chapter 3, the vast majority of existing works is either based
on slow and precise algorithms or on fast heuristics whose quality is not close to
the optimum. In this manuscript, we will propose a new scheduling solution whose
quality is better than the current heuristics whila having run-time which is similar to
the one of these heuristics (around tens of milliseconds for common applications).
Several related works capture applications and architectures using models which in
our opinion are too abstract to find good (in terms of makespan) or valid scheduling
decisions. (e.g., we will see in Chapter 3 that the FPGA is often represented with
a single number that indicates the amount of reconfigurable logic). For this reason,
we have decided to rely on more concrete application and architecture models in our
contribution.
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1.2 Motivation

Because of the increasing necessity to execute computationally-intensive tasks (e.g.,
machine learning, signal processing, cryptography, etc.), for which software execu-
tion does not offer sufficient performance, cloud architectures equipped with only
CPUs are not sufficient anymore. A solution is to integrate hardware accelerators,
which include FPGAs and GPUs. Actually, there are important differences between
them and thus they are not completely interchangeable. As a consequence, an
FPGA can be most suitable to execute a given application, and reciprocally. For
certain types of processing, FPGAs have been proved to be able to ensure a better
energy efficiency than GPUs, as shown in [89]. In this paper, authors compare the
execution of a Convolutional Neural Network (CNN) both in an FPGA and in a GPU
in the Microsoft Catapult cloud system. Indeed, their experiments have shown an
energy efficiency of one order of magnitude in favor of FPGA execution.

Applications for which FPGAs are the most convenient include highly parallel ap-
plications and/or with elementary operations that do not fit well in CPUs or GPUs pro-
gramming models, for instance bit swapping, custom data types with non-standard
bit widths, etc. Channel coding and decoding algorithms used in telecommunication
are good examples of such applications [56] [99]. In certain circumstances machine
learning and deep learning algorithms can also be good candidates, especially if
they are irregular and if the used data types are optimized to non-standard represen-
tations.

Another example is shown in paper [50], where the better temporal and energy
efficiency of FPGAs over GPUs is demonstrated for sliding-windows applications,
namely Sum of Absolute Differences, 2-D convolution and Correntropy. Sliding-
window applications are a special type of digital signal processing that consist in
sliding a smaller signal, named window, across different positions in a larger sig-
nal (e.g., an image). At each window position, there is usually a computationally
intensive function to execute.

GPUs are preferred for computations which can exploit their parallelism, when
operations concern SIMD operations or floating point operations, even some recent
FPGAs also embed large numbers of floating point units. Graphics rendering is a
typical example of application where GPUs are a natural fit because of its massively
parallel vector floating point processing. Other signal processing, machine learning
or deep learning applications with similar characteristics are also frequently acceler-
ated using GPUs.

Accelerators play a crucial role in Cloud computing. In this thesis, we focus on
FPGAs. As we will in Section 2.3, cloud FPGAs are managed like any other comput-
ing or storage resources and rented to final users by cloud providers, most of the time
through virtualization. According with the paradigm Software-as-a-Service (SaaS),
services provided by an FPGA (or by a pool of FPGAs) are accessed through APIs.



FPGAs can then be shared and their usage is multiplexed among users in various
ways: timing, spacing, etc.

From a timing point of view, hardware resources must be efficiently utilized by
the provider to maximize its ROI (Return On Investment). The scheduling solution
proposed in this manuscript targets the minimization of the execution time of an
application (makespan), which is an advantage for the price users pay. Indeed, the
more the execution makespan is optimized, the less time is rented the hardware
resource.

In modern cloud data centers FPGAs are architecturally organized in a pool [91].
Applications that are the target of this thesis contain a large number of dependent
and potentially parallel tasks. Another example is the aggregation of different appli-
cations with the objective of minimizing the overall makespan of the whole resulting
application. For instance, this is the case of Spark Streaming [111], where makespan
of this batch is the termination time of the last task [112].

Existing solutions for the static scheduling of applications can be divided into
macro-families. First, we have solutions based on exact mathematical formulations
(e.g., MILP programming). These ensure exact solutions at the price of potentially
high execution times (up to hours, days or years according to the size of the prob-
lem). This is due to the very large solution space which characterizes the scheduling
problem we are addressing. Parameters that contribute to the size of the problem
include, but are not limited to: dependencies among tasks, execution times, number
of requested resources, nature of requested resources, reconfiguration time, FPGA
features.

Another well-known family is represented by heuristics. Among heuristics, we will
particularly deepen list-based heuristics. In list-based heuristics, which individual
tasks are sorted in a priority list and assigned, in sequence, to the earliest avail-
able unit that fits their resource request. Priorities can be assigned statically or
dynamically according to different characteristics, e.g., execution time or resource
occupancy. List-based heuristics have two advantages over the proposal of this
thesis, namely that (i) they work even in the case where jobs sequentially arrive to
be executed with no prior knowledge of subsequent jobs and (ii) they are faster in
terms of run-time. Unfortunately, as shown in Chapter 5, these heuristics compute a
scheduling solution which is, in average, worse than the makespan computed by our
approach.

Works based on Meta-Heuristics (MHs) such as Genetic Algorithms (GAs), Sim-
ulated Annealing (SA), Tabu Search (TS) and so on are also very common. In gen-
eral, MHs start from an initial solution and iteratively explore a subset of the solution
space. Their usage has a sense especially when the solution space is too large to
be entirely explored, such as the problem of static scheduling of tasks onto FPGAs.
MHs can be applied to a wide variety of problems. On the contrary, our solution as
shown in Section 4.2, explicitly handle FPGAs and tasks related assumptions. More-



over, they provide good quality solutions but the computation time that is higher than
the one of our contribution [93].

As a summary, exact and MH solutions offer a good solution but which take too
much time to compute and list-based heuristics offer not that good solutions in a fast
way. As shown in our manuscript, Slot performs in a fast way and find a solution
which is better than list-based heuristics.

1.3 Glossary
Following a list of most common concepts we use throughout the thesis. Some of
these concepts may have more interpretations, so we state here which meaning they
have within this manuscript.

• Scheduling: we define the scheduling of an application onto a reconfigurable
device the process to select an execution order among dependent tasks.

– On-line/Off-line scheduling of applications: on-line scheduling con-
sists in making scheduling decisions during the execution of the appli-
cations while off-line scheduling is precomputed before the applications
executes. The choice between on-line and off-line scheduling is frequently
guided by criteria like the frequency at which scheduling decisions must be
made, the run-time of the tasks to schedule, the run-time of the scheduling
algorithm itself, the determinism of the applications...

• Makespan: the total duration between the start and the end of execution of an
application.

• Reconfiguration of an FPGA

– Full reconfiguration: it consists in saving the logical setting of an FPGA by
using a bitstream.

– Partial reconfiguration: it allows a limited, predefined portion of an FPGA
to be reconfigured while the configuration of the remainder of the device
is unmodified

• FPGA scheduling problem: the problem of how to decide in which order the
tasks of an application or of a set of applications shall be executed on an
FPGA. These decisions must usually meet requirements (e.g. the inter-task
dependencies or the instantaneous amount of available resources) and try to
optimize one or more specific objectives (e.g. energy consumption or total
makespan). The way scheduling decisions are taken also depends on the con-
text (partial or total FPGA reconfiguration, on-line or off-line scheduling, etc.).



In this contribution we consider total FPGA reconfiguration and our objective is
the minimization of the total makespan.

• Slot: it has a dual meaning

– If Slot is written in italic and with the uppercase S - it refers to the name
of the algorithm presented in this thesis.

– Else, if slot is written lowercase and not italicized - it consists in a total
reconfiguration of the FPGA, followed by the execution of the tasks in the
configuration, and the release of the device. A slot usually includes one
or more tasks whose (a part of) processing time (HET, explained later in
this list) may overlap. In the rest of this thesis, we will use the following
notation for a slot: [R, {t0 . . . tn}], where:

∗ ”[” denotes the beginning of a slot;
∗ ”R” represents a total FPGA reconfiguration;
∗ ”{t0 . . . tn}” are the set of tasks which compose the slot. Tasks
t0 . . . tn are not executed sequentially, but they follow the dependen-
cies of the application;

∗ ”]” denotes the end of a slot.

• Hardware Execution Time - HET:

– Task Hardware Execution Time - task HET : the processing time of a
task on the FPGA.

– Slot Hardware Execution Time - slot HET : the total time taken by a slot.

• Valid solution: a scheduling solution is composed of a sequence of slots. In
our FPGA scheduling problem, such solution is valid if it respects two condi-
tions. First, tasks within a slot must not exceed the capabilities of the FPGA
in terms of resources. Second, the sequence of slots must respect the data
dependencies between tasks. This means that a task of slot N cannot be a
successor of a task of slot N + k (k > 0).

• Scheduling-independent resource: a scheduling-independent resource is a
resource which is exclusively assigned to a task for the entire lifetime of the slot
that contains the task.

• Scheduling-dependent resources: a scheduling-dependent resource is a re-
source which is assigned to a task for the entire task’s lifetime. The latter is
always less or equal the entire lifetime of the slot that contains the task.



1.4 Research Problem

In this thesis we focus on the scheduling of applications onto FPGAs. We take
the assumptions that applications are composed of dependent tasks (expressible
as DAGs). We thus assume that the sum of the physical resources necessary for
each task to execute in the FPGA exceeds the physical resources of the FPGA. As a
consequence, we target applications which need at least two slots to execute. Each
slot is thus composed of a total reconfiguration of the FPGA followed by a subset of
tasks of the application. Slots are executed sequentially and the sequence of slots
must respect data dependencies of the DAG. In other words, if a taskB depends on a
task A, task A cannot be part of a slot that follows a slot that includes task B. If tasks
A and B are part of the same slot, then A must be totally executed before B can start
being executed. Obviously, the construction of slots strongly influence the application
makespan. Consequently, our scheduling problem consists in identifying in an
fast way slots that lead to execution an application with a makespan which is
close or equal to the optimum makespan.

Scheduling onto FPGAs is different than scheduling on CPUs. Indeed, a hard-
ware implementation on FPGA of a task requires resources such as reconfigurable
logic elements, embedded memory blocks, etc. These resources may look like the
one of processors, e.g., memory, registers, cores, etc. Also, hardware resources
of both CPUs and FPGAs may not be sufficient to execute all together all the tasks
of an application. However, switching from one task to another in CPUs is usually
much faster than reconfiguring an FPGA [107]. Thus, reconfiguring an FPGA may
introduce a timing overhead comparable to the HET of a task. As a consequence,
the choice of which tasks execute together in a slot has a larger impact for FPGAs
than similar choices for processors. Additionally, because of this overhead, recon-
figurations on FPGAs are expected to be less frequent than context-switching on
processors.

The scheduling problem we target in this thesis is similar to Resource-Constrained
Scheduling Problem (RCSP) category. Informally, a RCSP considers limited re-
sources and activities of known durations. A RCSP also expects resource requests
to be linked by precedence relations. A RCSP consists in finding a schedule of
minimal duration by assigning a start time to each activity such that the prece-
dence relations and the resource availabilities are respected [101]. For a taxonomy
of RCSPs, we invite the reader to consult the work in [60]. The authors in [30]
demonstrated that the classical RCSP is a strong NP-hard problem.

However, our research problem differs from the classical RCSP because FPGA
reconfigurations introduce a new variable in the solution space whose overhead sig-
nificantly contributes to the overall makespan. As said before, choices of tasks that
compose a slot has a strong impact on the overall makespan. Let us for instance con-
sider the example in Figure 1.1. In this figure Source and Sink are artificial tasks,
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Figure 1.1: 8-tasks DAG example

Task Occupancy Time
A 33% 10 [u]
B 33% 300 [u]
C 33% 20 [u]
E 33% 150 [u]
F 33% 150 [u]
G 33% 10 [u]

Table 1.1: Parameters of tasks for the example of Figure 1.1 - Occupacy represents
the percentage of the hardware resources used by tasks in a given FPGA and the
time represents the number of time units that the tasks take to execute in the given
FPGA

whereas other tasks are parametrised with hardware occupancy and HET; as listed
in Table 1.1. For simplicity reasons, each task of this example occupies 33% of the
FPGA. This means that up to three tasks can be put in the same slot.

We consider an FPGA whose reconfiguration R requires TR = 40 units of time.
We now compare two possible schedulings:

• Scheduling 1: [R, {A B E}], [R, {C F G}]→ 550 [u]

• Scheduling 2: [R, {A}], [R, {B E F}], [R, {C G}]→ 460 [u]

Scheduling 1 minimizes the number of reconfigurations. Since up to three tasks
can share the FPGA area, A, B and E are put in the same slot. The next slot
includes tasks C, F and G. The overall makespan is therefore 550 units of time,
included 80 units spent in reconfigurations. Scheduling 2 is less intuitive. Indeed,
the first slot contains only task A. The second slot includes task B in parallel with
the sequence of tasks E and F . The last slot contains the sequence of C and G.
The total makespan of Scheduling 2 is 460 units of time. Finally, Scheduling 2 has a
shorter makespan than Scheduling 1. Considering this example and several others,
we could notice the following intuitions:
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Figure 1.2: 10-tasks DAG example
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Figure 1.3: DAG of Figure 1.2 after merging task D and task E in slot Slot

1. The best solution is not always the one with the lowest number of reconfigura-
tions. Indeed, Scheduling 1 reconfigures the FPGA twice, whereas in Schedul-
ing 2 the FPGA is reconfigured three times.

2. The key metric is the amount of time spent executing tasks in parallel, which
should be maximized. In order to do so, the most time-consuming tasks should
probably be considered first because the potential gains are the largest. In-
deed, in the second schedule the sequence of tasks E and F and the execution
of task B (the three most time-consuming tasks) perfectly fit together.

Another interesting example is given in Figure 1.2. For simplicity reasons, in this
example each task is supposed to occupy exactly 50% of the FPGA. Let us imagine
to schedule tasksD and E in the same slot. This choice totally remove the theoretical
parallelisms between the two branches (except for tasks D and E). Indeed, following
this choice any parallelism between B and C with F and G would become not valid
because of the data dependencies, as shown in Figure 1.3.

It could be convenient though. The best choice depends on how much the gain
derived from the scheduling of tasks D and E is with respect to the other tasks of
the graph. For example, if the execution times of tasks D and E are similar and
much higher than the other tasks, the minimum makespan is obtained by exploiting
this parallelism, which implies forbidding any other parallelism. Thus, the choice of
which tasks shall be put in parallel shall not consider only the tasks that could
fill the slot, but it should also consider all the tasks of the whole graph.

Obviously, for larger examples, the exhaustive search may induce combinatory
explosion. Indeed many parameters, which can be combined, have an impact on



Figure 1.4: A realistic application DAG

Task LEs DSPs EMBs DRAM Network bandwidth Time[u]
t0 33% 11% 53% 65% 50% 187
t1 48% 70% 3% 10% 91% 1662
ti 50% 15% 90% 6% 17% 974
... ... ... ... ... ... ...
t10 22% 78% 10% 49% 9% 563

Table 1.2: Example of resources types and resources distribution in the realistic DAG
of Figure 1.4

the final solution. These include data dependencies, parallelism, HETs, requested
resources and the availability of resources, reconfiguration overhead, number of re-
configurations and so on.

The objective of our thesis is to define a heuristic that targets specifically the static
scheduling of tasks onto an FPGA. We expect our solution to provide a scheduling
which is as good as the one that can be computed by meta-heuristics with a run-
time which is much lower. Additionally, we also expect to handle situations where the
standard deviation between the different parameters of tasks are much higher than
the one presented in Figure 1.1 in which for instance all occupancies were similar. An
example is illustrated in Figure 1.4 and Table 1.2. Finally, having generic models to
represent resources and constraints make the approach more adaptable to various
applications and FPGAs.

1.5 Overview of the solution
Our solution is based on an iterative process summarised in the schema in Figure
1.5. Our solution tries to minimize the makespan of an application by grouping tasks
in slots. As shown in previous sections, the parallelisms between tasks and dom-



inating tasks (i.e., tasks that have the higher HET) are key-points of the problems
that are tackled by our solution. Indeed, our solution relies on the selection of the
dominating tasks and it also relies on putting in parallel to these dominating tasks a
subset of the tasks than can be executed in parallel.

In order to select which tasks to be put in parallel to the dominating task, we con-
sider all the graph, and not only the quality of the parallelism between the dominating
tasks and the tasks in parallel to it. For instance, our decision cosiders the requested
resources and HET of tasks, data-dependencies among them, FPGA features and
reconfiguration time.

Among all the possible tasks that can be put in parallel with the dominating task,
we define in this work a score-based approach that helps defining which tasks to
select. Once the dominant task and the tasks to be put in parallel have been selected
thanks to the scoring facility (i.e., a slot is created), the graph is reworked so as to
merge in a single node all the tasks that have been selected in this iteration.

At each iteration a new slot is created and its tasks are merged together in one
node of the graph. The input graph finally becomes a sequence of slots. Such
sequence expresses the selected scheduling. As a reminder, a slot contain a to-
tal FPGA reconfiguration followed by the execution of tasks belonging to the slot.
As shown in Section 4.6.4, a final optimization process tries to further compact the
computed slots in order to further reduce the makespan.

Our approach is very likely to identify a good solution, which is the solution that
minimizes the makespan, because instead of considering only a given sub-part of the
graph, just like when starting from the source task, we rather favour the dominating
task (regardless of its location in the graph) and the most powerful parallelism of
the graph to better exploiting the parallelism capacity of FPGAs. This heuristic is
presented in Chapter 4, while the efficiency of this heuristic is presented in Chapter
5.

1.6 Outline of the thesis
The rest of this thesis is organized as follows. Chapter 2 illustrates the main con-
text of this thesis by providing an overview of reconfigurable computing and how
cloud data centers may integrate FPGAs. Chapter 3 discusses the related work in
this domain. Chapter 4 describes the main steps of our approach, Slot . Chapter 5
experimentally evaluates Slot and compares it with other, exact or approximate, ap-
proaches. Chapter 6 shows how Slot might also be interesting for the design of com-
plex embedded system. In this respect, we have integrated Slot in an open-source
Model-Driven Engineering tool. Chapter 7 concludes the thesis and it illustrates the



Figure 1.5: The main steps of Slot

future work. Finally, Appendix A provides low level details of the MILP formulation
that we used to calculate the optimal solution for each test-case of our benchmark
and Appendix B contains a list of acronyms used in this thesis.

1.7 Conclusion

As presented in this introduction, cloud data centers may now integrate hardware
accelerators such as FPGAs. In ordert to efficiently use these FPGAs, we have also
described the problem of scheduling dependent tasks onto these FPGAs. We have
assumed that they are totally reconfigured. Unfortunately, as it will be more detailed
in Chapter 3, there are not yet good solutions to tackle this problem. Solutions are
either precise but far too long to be computed or they are very fast to compute but



they offer solutions in average too far from the optimum. We think that there is an
intermediate approach that could compute solutions in a fast way while providing
solutions much closer to the optimum.

Then, we have presented the main challenges that such scheduling problems
introduce. For this, we have presented several examples. In particular, we have
shown that only an algorithm which works on the global graph, that is by taking de-
cision considering all the tasks of the graph together, their resources requirements,
HETs, dependencies among them, the features of the targeted FPGA and the recon-
figuration time, is more likely to compute a solution close to the optimum, because it
can better exploit the parallelism of FPGAs.

We have also in this Chapter sketched our solution, named Slot , which is based
on an iterative process that first considers all the graph and the dominating task of
this graph. Slot also relies on a scoring approach to select the best slots among
candidates. Also, our approach contains a final optimization stage.

The manuscript first elaborates on which elements of FPGAs must be taken into
account for obtaining a good result. We then present in detail the heuristic and we
compare it with other, exact or approximate, approaches.



Chapter 2

Context

This chapter illustrates the main context of this thesis. Firstly, Section 2.1 explains the
increasing role of hardware accelerators and particularly of reconfigurable computing
to better supply the performance requirements of applications. Secondly, Section 2.2
describes the main features of FPGAs, namely the hardware accelerators in which
this thesis is focused. Finally, Section 2.3 describes how modern cloud data centers
may integrate FPGAs. Also, we describe three real cloud architectures.

2.1 Main Context

Modern computer systems are miniaturizing while being multicore. The current trend
is not to use a single and monolithic core, but rather several cores of different nature.
The direction is the specialization of each computational unit and the execution of
a given task on the most suitable core. This distributed architecture has many ad-
vantages in terms of efficiency but new challenges have to be tackled. With the rise
of System-on-Chips (SoCs), system design concerns the implementation of sev-
eral tasks in a single system. Thus, such systems must evolve to better meet the
run-time needs of the applications with the combined execution of heterogeneous
computational units. In this regard, the 90/10 optimization rule states that 90% of
the execution time of a program is spent while executing 10% of the program it-
self. In this way, architectures provide designers with the means to speed up the
execution of the critical path (intended as the heaviest part of a program from a
timing complexity point of view), while maintaining a good flexibility level. Recon-
figurable logics arise in this context. A reconfigurable logic is a particular type of
hardware device whose circuits can be reconfigured to implement a custom behav-
ior after the manufacturing. The reconfiguration process usually consists in writing
configuration information in a particular memory. Reconfigurable computing is join-
ing two different and completely separated worlds: hardware and software. Their
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separation is mitigated by the fact that also hardware can be programmable with
the reconfigurable computing. The gap between hardware and software is covered
by potentially achieving a better level of performance than software while keeping
the high flexibility offered by a General-Purpose Processor (GPP). Figure 2.1 po-
sitions reconfigurable hardware, in particular FPGAs, between Application Specific
Integrated Circuit (ASICs, namely integrated circuits whose function is implemented
at manufacturing and never changes) and GPPs from a design time and a perfor-
mance point of view. Figure 2.2 compares ASICs and FPGAs cost. The number of
produced devices is shown in abscissa. Y-axis shows the total cost. X = 0 shows
non-recurring engineering (NRE) costs, that is to say one-time costs for research-
ing, designing, developing and testing a certain product. NRE costs are almost zero
for FPGAs (and GPP). This is due to their flexibility. The same FPGA device can
be indeed used in principle in order to realize any implementation. The total cost
for FPGAs is only given by the cost for their integrated circuit. This is not true for
ASICs though. ASICs devices are realized to execute tasks that are known during
the manufacturing. In this way they must be designed, studied and tested ad-hoc
to meet customer needs. Most of the NRE difference is the licensing of IPs (e.g.
ARM cores, I/O controllers...) and the manufacturing of the masks. For circuits using
many IP blocks and manufactured in an advanced technology (e.g. 7 nm), all-in-all,
it represents several million euros. For ASICs this cost is entirely supported by one
company while for FPGAs it is shared among all user companies. NRE costs are
therefore very high for ASICs, but slope is flatter. For this reason, integrated circuit
of ASICs are more convenient in terms of cost for high production volume. We can
conclude that reconfigurable computing is a trade-off between general-purpose and
application-specific computation in terms of performance, energy, flexibility and de-
sign time.
Reconfigurable computing has enhanced performance of the applications coming
from a large range of domains: scientific computing and biological computing, Arti-
ficial Intelligence (AI), signal processing among others. The presence of experts in
hardware/software co-design is not guaranteed at all in these domains. This means
that the future trend will be the definition of a friendly reconfigurable eco-system that
opens these technologies to everyone who may take advantage from their use. The
contribution of this thesis can also be part of this eco-system. Reconfigurable has
become increasingly popular thanks to recent progress in FPGAs development. To
sum up, FPGAs are a particular sort of integrated circuits that allow custom hardware
implementations. They can be reconfigured a several number of times. Reconfigu-
ration means that they can change their implemented functionality to support a new
application. This is logically equivalent to having a new hardware mapped to the chip
with a different behaviour. FPGAs allow to have custom-designed high-density hard-
ware within an electronic circuit, with the peculiarity of making its variation possible,
even while an application is still running over it. This flexibility and reconfigurability
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Figure 2.1: Reconfigurable computing as a trade-off between GPPs and ASICs

come at a price. Indeed in the past large implementations in terms of resources
(corresponding to large or complex algorithms) were not possible [37]. The lack of a
standard programming and architectural model is the main disadvantage nowadays.
The absence of high-level programming tools, APIs, standard platforms constitutes
the largest obstacle to the extensive use of FPGAs, especially in comparison to other
acceleration technologies such as GPUs [105]. With respect to GPUs that are char-
acterized by an easy to use programming model, FPGAs allow higher performance-
per-watt and improved hardware acceleration performance.

2.2 A Short introduction to FPGAs
An FPGA is a semiconductor device characterized by programmable logic elements
and programmable interconnections. Unlike GPPs, there are neither run-time in-
structions fetching nor a Program Counter (except by mapping a GPP in the FPGA,
such as [10], [9] and [66]). FPGA are programmed to implement required function-
alities. In this respect, Intellectual Property (IP) blocks can be used to save design
time by using an already existing design. FPGAs are the current state of the art
for Programmable Logic Devices (PLDs). A PLD is generically an integrated circuit
that contains logic elements of different nature. The latter can be configured and
connected each other in various ways. Manufacturing mask sets do not depend on
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specific end users applications, which are not known during the manufacturing pro-
cess of a PLD. The same PLD can be used to implement very different functions. The
functions are described by end users using the same kind of hardware description
languages used for the logic part of ASIC design but end users are almost com-
pletely relieved of the heavy physical design tasks.

FPGAs join PLD idea to gate arrays. FPGAs components are grouped in logic
elements (LEs). The latter are named in different manner by the most known pro-
ducers. For example, Configurable Logic Blocks (CLBs) by Xilinx [15] or Adaptive
Logic Module (ALM) by Intel-Altera [1].

Programmable interconnections link LEs together and, together with I/O blocks,
they represent the main components of an FPGA:

LEs: LEs are the heart of an FPGA. These elements are configured to implement
application logic. They can be used to implement both combinatory and sequential
logic. A LE is an element that can be customised according to the designer needs.
Their combination allows the implementation of complex functions. With regard to
Xilinx, a single LE is a hierarchical structure composed of a set of slices. The num-
ber of slices forming a LE changes according to the device: they can be two such as
7-Series [18] or one, such as the most recent Xilinx UltraScale+ FPGAs [17]. Figure
2.3 shows the internal composition of a single slice. It contains at least a memory
known as Look-Up Table (LUT), a flip-flop, a multiplexer and the necessary intercon-
nection hardware. LUTs are little memories used to implement small combinatory
functions. Number of inputs is limited (generally 4 or 6 bits per 1 or 2 bits of output)
and it is a trade-off involving, among others, the total size and the actual usability by
the synthesis tools for the average design. LUT in Figure 2.3 implement a 4-input,



Figure 2.3: Composition of a Logic Element

Figure 2.4: LEs organization

1-output function. It is composed of 16 memory cells, typically SRAM, which are
written during the configuration phase. One particular input for the LUT of Figure 2.3
that is 4-bits wide basically corresponds to a number in the [0 ... 15] range. On the
other hand, a configuration corresponds to what it is stored in the LUT. For a 16 bits
LUT, that is a number in the [0 ... 65535] range. It is possible to store 1-bit output
corresponding to each specific input regardless of the complexity of the desired func-
tion. The presence of a flip-flop in Figure 2.3 enables sequential circuits, whereas
the interconnecting logic and gates allows to route signals from and to the LUT. The
multiplexer is used to select the output value and the storage of its selector that can
be realized with a 2-bits SRAM (namely the same technology which is used for the
LUT).

Matrix groups of LEs are finally the backbone of the FPGA, as shown in Figure
2.41.

Input/Output blocks: input/output blocks (I/Os) are responsible for connecting
signals of the internal logic to a pin which is located in the package of the FPGA.
There is only one I/O block for each I/O pin of FPGA chip. I/O blocks are usually
also configurable in direction, voltage, signaling standard, etc. In order to support

1LEs are named using the Xilinx term Configurable Logic Block - CLB



Figure 2.5: FPGA interconnections - Switch boxes

this the I/O blocks contain buffers, multiplexers, etc. which configuration is stored in
SRAM-like memory elements. Figure 2.7 illustrates the position of such I/O blocks
with respect to the rest of FPGA architecture.

Interconnections: programmable interconnections allow arbitrary connections
among LEs and between LEs and I/O blocks. There are two main interconnection
models: directed and segmented. Directed interconnections cross the device in
all dimensions. Vertical and horizontal links among LEs shown in Figure 2.4 are an
example of this. Once a computation has finished, LEs inject data onto the most suit-
able channel for a certain destination (e.g., an I/O block or another LE). This imple-
mentation also includes additional short channels connecting neighbouring blocks.
On the other hand, segmented interconnections are composed of lines that intercon-
nect through programmable switch boxes, as shown in Figure 2.5. Switch boxes are
implemented using pass-transistors that can be enabled or not, depending on the
configuration. Directed interconnections are characterized by amost constant para-
site resistance and parasite capacity and that leads to better predictability of signal
propagation time. On the other hand, the segmented model is characterized by less
power dissipation. Indeed, resistance and capacity of interconnection lines are only
those of interconnections between boxes. The limited leght of such lines is due to
the distribution of several boxes onto FPGA area. A mixture of both models is the
most common trend nowadays [98].

Modern FPGAs are not just an array of interconnected reconfigurable elements
and I/O blocks. They also frequently contain additional resources. As shown in
Figure 2.7, in addition to the logic elements, an FPGA can embed larger dedicated
hardware blocks. These can be RAM blocks, optimized integer or floating point arith-
metic units (frequently referred to as "DSP blocks"), clock synthesizers, etc. Some
FPGAs even embed complete GPPs. Note that these FPGAs with a GPP as a hard-
ware block (hard core) are not the same as an FPGA in which the reconfigurable
logic is used to implement a GPP (soft core). The performance of a hard core is



Figure 2.6: FPGAs architecture - a global view

Figure 2.7: Main components of FPGAs architecture

much better, it is smaller and consumes less power than the equivalent soft core. In
this way, system designers can take advantages from the hardware already present
in the circuit and can integrate it in their designs without implementing all the desired
functions onto the reconfigurable part of FPGA. Hard-cores of an FPGA enrich its
functionalities and they enhance both the speed of the architecture and the design
speed. It is important to add two things to complete this short FPGA introduction:
how FPGAs are physically configured and how system designer can describe the
desired behaviour of circuits. Memory cells, which are adjacent to LEs in Figure 2.7,
drive their key-features. LEs behaviour such as equations of LUTs, I/O blocks and
interconnections are driven by particular bit values stored in memory cells (known as
configuration memory). Configuration memory is composed of SRAM blocks. Thus,
it is a volatile memory. Upon a device restarting, all its configuration is lost and a new
one must be downloaded onto the configuration memory. The most common trend
provides an external non-volatile storage from which the FPGA downloads its con-
figuration through a dedicated interface. Once the download is complete, the FPGA
starts executing the application defined by the current configuration.



FPGA configuration, that is the information copied onto the SRAM configuration
memory, consists of a file known as bitstream. A bitstream file can be either full or
partial depending on the scope of the reconfiguration taken into account. A full bit-
stream reconfigures the whole FPGA at once, while a partial bitstream reconfigures
only portions of the FPGA. When the reconfiguration can be done during the execu-
tion of an application, we say that the FPGA can be dynamically reconfigured. As
shown in Figure 2.6, the reconfigurable part of an FPGA can be divided into inde-
pendently reconfigurable zones known as regions. Different regions can be charac-
terized by different frequency, depending on the clock infrastructure of the FPGA. A
region bitstream is the sequence of bit used to configure a reconfigurable region. Of
course designers do not write configuration bistreams by hand. They use Hardware
Description Languages (HDL), which are high-level languages dedicated to the de-
scription of the structure and the behaviour of electronic circuits. The descriptions
written in HDL are simulated to verify that they really model the expected behaviour
and, finally, they are translated into a network of interconnected logic elements (a
"netlist") by a software tool called a logic synthesizer. In ASIC design flows these
netlists are the entry point of the physical design that leads to the production of the
physical masks used to create integrated circuits. In FPGA design flows they are
the entry point of a shorter and simpler physical design where the netlist elements
are mapped to FPGA resources and interconnected using the reconfigurable inter-
connect. HDL languages have many similarities with high-level computer languages
but there are also important differences like, for instance, the parallelism or the time
which are fundamental aspects and at the heart of HDLs while they are frequently
provided by external libraries or calls to the operating system in traditional program-
ming languages. The most common HDL languages for ASIC and FPGA design
flows are VHDL [21] and SystemVerilog [20].

2.3 FPGAs in the Cloud

Modern FPGAs are not merely a container of reconfigurable hardware but they can
also embed other elements such as general-purpose processors, DSPs, and so on.
One among the pioneers of this heterogeneous software-reconfigurable hardware
nature is Xilinx Virtex II Pro device, where FPGA includes an IBM PowerPC405.
Several improvements have been done since. For instance, Stellartron products dis-
tribute an Intel Atom E6XX processor with an FPGA Intel in the same package [59].
The last trend for high-performance computation is represented by projects such as
Cygnus [35], a supercomputer that has been developed at Center for Computational
Sciences (CCS), in Tsukuba, which embeds a mixture of CPUs, GPUs and FPGAs.
Supercomputing is not the only domain in which processors and accelerators works
together, because this is very common in cloud infrastructures. Here FPGAs are



Figure 2.8: Three possible connection scenarios between CPUs and FPGAs in cloud
data centers

essentially coupled with one or more host CPUs via a fast connection such as PCI
Express (PCIe). This scenario is transforming FPGAs from devices which are only
used within the context of a single System-on-Chip, (e.g., left-hand side of Figure 2.8)
into a custom accelerator for the code running on the CPU as shown in the middle
picture of Figure 2.8. In both cases the FPGA can be used as a custom accelerator
for the application running on the CPU. The difference is that the CPU(s) can be or
not in the same integrated circuit as the FPGA(s). With the configuration in the mid-
dle picture of Figure 2.8, FPGA resources are ready to be used upon deployment
and can be elastically scaled. Thanks to their ultra-large scale resource pool, they
can meet the needs of greater numbers of FPGA resources whether necessary (e.g.,
it is possible to offload a part of the computation to a remote FPGA, as in [33]). The
reconfigurable nature of FPGAs can finally provide a suitable fit during changing of
workloads in modern data centers. Despite all these advantages, FPGAs have been
only recently introduced into cloud infrastructures. Microsoft was indeed one of the
first large companies to do it in 2010. The vast majority of other important companies
(e.g, Amazon and the three major Chinese companies Alibaba, Tencent and Baidu)
followed this trend in the late 2016 and in the early 2017, as can be seen in Figure
2.9. This was due to the costs of FPGA engineering. FPGA design and develop-
ment was definitely not an easy task few years after the dawn of this technology, and
they could host relatively small designs [37]. In the last decade, FPGAs are rather
used as computational elements within cloud scenarios or complex heterogeneous
systems which include general-purpose processors too [36].

The coupling of one or more FPGAs with one or more processors has become the
basic node of a distributed architecture. As can be seen in Figure 2.9, several com-
panies have shown interest in these distributed and heterogeneous architectures. In
the rest of this section, we will briefly explore the basic node of two of them: Microsoft
Catapult and F1 instance of Amazon Elastic Compute Cloud. We will focus on the
architecture of the node itself and on how nodes are connected in the distributed
architecture. We have chosen these particular architectures because they are the
closest to those targeted by this thesis. Although they are similar in principle, they
are used by companies with different targets and technologies.



Figure 2.9: The integration of FPGAs in some cloud data centers

2.3.1 Microsoft Catapult

FPGAs are being deployed in Microsoft’s data centers and the idea is the accel-
eration of Bing, Azure, processing and network speeds [92] [33]. Instead of using
potentially less efficient software to implement intermediate services, using FPGAs
Microsoft engineers can implement their algorithms directly onto the hardware. By
doing this with a programmable device, instead of using an ASIC, they can gain ad-
vantages by the device reconfiguration. Figure 2.10 shows the architecture of a basic
node of the distributed architecture and how it is connected to the rest of it. A single
server includes two CPUs, each one with its own memory. FPGA has three type of
connections, one towards the host CPU, one with the Network Interface Card (NIC)
of the server and one with the rest of the data center (Top-Of-the-Rack - TOR net-
work switch). The FPGA is connected to the host CPU through a PCIe connection
and this allows the CPU to exploit the FPGA as a local accelerator. Connections with
the NIC and with the TOR network switch allows the FPGA to be tightly coupled with
the network of the data center. In this way, servers that do not exploit all the FPGAs
resources can make the rest of them available to remote servers. Microsoft engi-
neers has shown how remote FPGAs can be accessed with a latency in the order of
few microseconds. The target FPGA is an Intel (Altera) Stratix V D5, characterized
by 172.6K of LEs (named Adaptive Logic Modules - ALMs, using Intel convention),
4770 DSPs, one channel to a 4 GB DDR3-1600 DRAM, two PCIe links, which sup-
ports a bi-directional bandwidth of up to 16 Gb/s between CPU and FPGa and two 40
Gb Ethernet interfaces towards th NIC and the TOR switch [2]. Microsoft designers



Figure 2.10: Microsoft Catapul cloud data center architecture, from [33]

Figure 2.11: Division Shell-Roles in Microsoft Catapul FPGAs, from [33]

have logically divided the FPGA into a static part (named Shell) and several recon-
figurable parts (known as Roles). Roles host the application logic, whereas the Shell
implements all the logic used by the services that are going to be accelerated. In
this respect, Roles cover around 32% of the LEs of the FPGA and they are the only
ones being reconfigured. The rest is covered to implement the Shell, which includes
the memory controller (around 8%), the communication interfaces, and so on. Shell
uses reconfigurable resources to implement the supporting logic but there is no need
to reconfigure it in order to change the application. Figure 2.11 shows the division
between Shell and Roles.



2.3.2 Amazon Elastic Compute Cloud (F1 instances)

In this part we deepen the architecture of Amazon Elastic Compute Cloud [4]. We
will specifically focus on the basic node of the distributed architecture, namely F1
instances. In contrast with Catapult Project where FPGAs are used by Microsoft to
accelerate Bing ranking or network services, FPGAs parts of F1 instances can be
directly accessed by end-users who can implement their custom designs. Here FP-
GAs are available to users that want to customise and rent them as a cloud service.
This implements a sort of AaaS (Acceleration as a Service). Briefly, designers must
create an FPGA design through a special virtual device known as Amazon Machine
Image (AMI). Then, the user must register her design as an Amazon FPGA Image
(AFI), and he can finally deploy it to the F1 instance, the heart of the acceleration.
Once an Amazon FPGA image has been developed, this can be made available to
other customers on the Amazon Web Services (AWS). The acceleration is acces-
sible to software developers with little to no FPGA experience, thanks of the Xilinx
High Level Synthesis design flows that allow designers to use OpenCL, C and C++
as their design entry languages to accelerate their applications onto Amazon F1 in-
stances [22].
Figure 2.12 shows the architecture of a F1 instance and its connection with other
nodes of the data center. F1 instances can contain one, two or eight FPGAs (the
latter is the case illustrated in Figure 2.12). Each FPGA is connected to a 8-cores
vCPU over a PCIe link. The FPGA chosen for this architecture is a Xilinx Virtex Ultra-
scale 9P [16]. AA single Xilinx Virtex Ultrascale+ 9P FPGA provides about 150,000
Logic Elements (LEs), that is, about 1.2 millions 6-inputs LUTs and 2.4 millions Flip-
Flops, more than 6800 DSP slices and 75.9 Mb of total block RAM. The whole F1
instance provides up to 122/976 Gb of DDR memory plus up to 470/4*940 Gb of
SSD, according to the number of FPGAs in the particular F1 instance. Each channel
towards the DDR memory is characterized by a total bandwidth of 48 gigabytes per
second.

It is interesting to notice how Amazon has affected the research of other realities.
It is the case of Ryft with the Ryft One project [12], a Big Data infrastructure obtained
via a Xilinx FPGA-accelerated architecture. Ryft has developed Ryft Cloud, an ac-
celerator for data analytics and machine learning that extends Elastic. Ryft Cloud
sources data from Amazon Web Services (such as Amazon Kinesis [5], Amazon
Simple Storage Service (s3) [6], Amazon Elastic Block Store [3]) and uses massive
bitwise parallelism to drive performance.

2.3.3 Future trend in distributed systems using FPGAs

In most of these servers architectures each FPGA is connected to a CPU through a
high-speed point-to-point connection (such as PCIe). FPGA is a co-processor slave



Figure 2.12: Amazon Elastic Cloud 2 - F1 instance, from [4]

under the control of a master CPU. This situation is shown in the middle of Figure
2.8. Because of this master-slave paradigm, such FPGA is integrated in the cloud
as a computational option of its owner device. As a matter of fact, FPGA can only be
accessed through an indirect manner such as containers or virtual machines (VMS),
e.g., F1 instances of Amazon Elastic Cloud. New research trends are overturning
this paradigm. An example is the cloudFPGA initiative of IBM [23] [97]. Right-hand
side of Figure 2.8 shows the idea behind cloudFPGA. Here FPGAs are indepen-
dent devices attached to the network. So, they can be directly accessed by end
users similarly to CPU VMs or Containers. The architecture of Microsoft Catapult
presented in Section 2.3.1 actually goes in this direction by connecting each FPGA
with the network of data center. Each FPGA remains connected to a master CPU
though. "cloudFPGA" initiative completely disaggregates the FPGA from the CPU.
FPGA has then become a completely standalone computing unit. In this regard,
there is no more need of a power-hungry CPU associated to each FPGA. This leads
to a rise of distributed FPGA devices. Figure 2.3.3 shows the architecture of cloudF-
PGA. We can identify, in green, three main actors, at different layers of granularity:
a Data Center Resource Manager (DCRM), a Sled Manager (SM), and an FPGA
Manager Core (FMC). There is only one DCRM in each data center. It stores user
images, it knows FPGA resources and it drives several SM. Each SM drives in turn
a Sled, which is a group of 32 FPGAs. It is responsible both for the power cycle
and monitoring of each device. Each FMC collaborates with the other two layers
to provide demanding tasks with the requested FPGA resources. FMC contains a
simple HTTP server and it communicates with the rest of infrastructure through a
set of RESTful APIs. REST has been chosen because it is a platform independent
framework proven to scale well with large volumes (e.g., CPU-based applications in
the Web).



Figure 2.13: System architecture of the IBM cloudFPGA platform, from [97]



Chapter 3

Related Work

3.1 Introduction

The scheduling problem we target in this thesis is similar to Resource-Constrained
Scheduling Problem (RCSP) category. RCSP problems are scheduling problems
whose scheduling is influenced by the availability or lack of resources. Often this
means that due to resource limitations a certain application will take longer. Section
3.1.1 generally define the RCSP and it introduces how our specific FPGA scheduling
problem fits onto this classification.

The rest of related work is composed of two different aspects. Section 3.2 ana-
lyzes how each entity (i.e., application and architecture) is modelled within contribu-
tions on FPGA scheduling. In other words, Section 3.2 presents an overview about
inputs, outputs, assumptions, models and parameters which are necessary to cal-
culate a scheduling of applications onto FPGAs. Models are used to describe both
the applications and the architecture. With regard to applications, we focused on
presenting modelling assets which allow to capture input parameters that are rele-
vant for solving a scheduling problem. Models used in scheduling problems have
generally more coarse-grained parameters than models used by works whose goal
is, for instance, generating an hardware implementation FPGA-specific for a specific
application. Similarly for architectures: as we will see, FPGAs are characterized by
a complex architecture and not all the details are relevant for scheduling. In this
respect, Section 3.2 describes how related works models FPGA architectures. Im-
precise models (i.e., models that does not consider details which are relevant for the
scheduling) could lead to sub-optimal or even erroneous scheduling solutions.

Modelling is important but with respect to scheduling, the algorithm used to solve
the scheduling problem is important too. In the following we designate this solving
algorithm the "scheduling strategy". Thus, Section 3.3 illustrates main works of the
state of the art dealing with scheduling strategies and it represents the largest part
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of this chapter. We have classified related works based on the scheduling strategy
they use. Overall, a scheduling strategy can be based on meta-heuristics (MHs,
Section 3.3.2) or on heuristics (Section 3.3.1). We further classify the latter in list-
based heuristics (Section 3.3.1.1) and packing-based heuristics (Section 3.3.1.2).
Some of these categories are preferred for the high-quality solutions they provide
(e.g., meta-heuristics, exact formulations) or for the quick run-time (e.g., list-based
scheduling algorithms). The contribution of this thesis can be placed in "packing-
based " category, i.e. algorithms that take decisions by considering groups of tasks.
This permits to achieve results that are comparable with meta-heuristics in terms of
quality while keeping the run-time comparable with list-based heuristics. Not to be in-
complete, exact mathematical formulations can be used as the problem specification
by non-exact heuristics too.

Several related works are based on assumptions which are different from those
taken in this thesis, but still relevant for our research work. These assumptions help
in categorizing similar works. In this regard, many of them target partial reconfigu-
ration ( [96], [43], [93], [55], [58], [82], [27], [102]). Partial reconfiguration allows a
limited, predefined portion of an FPGA to be reconfigured while the configuration of
the remainder of the device is unmodified. Note that this is different from the con-
cept of dynamic configuration in which the device is reconfigured during operation.
Partial reconfiguration provides an advantage over multiple full bitstreams in appli-
cations that require continuous operation of the FPGA, which would not be possible
during full reconfiguration. One example of this could be the baseband processor
of a 5G receiver mapped in an FPGA and in which the channel decoder block is
dynamically reconfigured to implement a different decoding algorithm or a different
variant of the same decoding algorithm while the other blocks (FFT processor, de-
scrambler, QAM de-mapper, channel estimator...) continue their operations. Taking
into account partial reconfiguration is a completely different research problem from
ours because there are no more reconfigurations that separates entire groups of
tasks: reconfigurations of a portions of the device may occur in parallel to tasks exe-
cution and their overhead can be partially hidden by loading a task (namely configure
an FPGA portion to execute a certain task) before the time in which such task is ef-
fectively ready to start its execution (reconfiguration prefetching). If characteristics
(e.g., timing, resources, dependencies and so on) of tasks that compose the applica-
tion are known a priori, the space of solutions is even larger than the corresponding
with full reconfigurable FPGAs.

Knowing tasks features a priori is a common situation in cloud computing con-
texts. According to [112], there are families of cloud applications that launch a simul-
taneous and large number of dependent tasks on an accelerator or they aggregate
batch of tasks to accelerate such batch. This implies that features of such batch
are surely known before their acceleration. However, some contributions ( [55], [58])
do not consider an application whose tasks and tasks characteristics are known a



priori, as assumed in this thesis, but rather they schedule tasks by reconfiguring a
subset of the FPGA resources according to their requirements in terms of resources,
which are known only at the time of arrival. In contrast to this, we will address the
scheduling of application by assuming we have a complete knowledge of resources
and dependencies of tasks which are assigned to an FPGA at a given moment.

The remaining criteria which contribute to catalogue the related work are: com-
putational complexity of models, presence of data dependencies among tasks and
the scheduling goal. About the latter, this chapter includes contributions whose tar-
get is not makespan minimization but similar in the sense that they consider timing
objectives. For instance, common goals of other contributions are the minimization
of the reconfiguration numbers, the respect of deadlines, the reduction of hardware
waste for each reconfiguration stage, the minimization of rejection rate in case of
online scheduling and so on.

In this section we have first chosen to divide the different approaches accord-
ing to the approach to solve the scheduling problem (i.e., exact formulations, meta-
heuristics, heuristics). Within each category, further classifications are made ac-
cording to the scheduling goal (e.g., makespan minimization), to the nature of the
reconfiguration (i.e., full or partial reconfiguration) and to on-line/off-line scheduling
of applications (refer to Section 1.3). Table 3.1 gives a global overview of the family
to which every work belongs according to the previously introduced classification.

Section 3.4 finally concludes this chapter. A resume of existing approaches is
provided along with a discussion of their unsuitability for the FPGA scheduling prob-
lem targeted in this thesis. We chose to not dedicate a section to them because
exact solutions are radically different and do not really compare with the other works.
However, as we will see in Chapter 4, we will use an exact strategy to compute the
optimum solutions and serve as a quality reference in our benchmarks.

3.1.1 Resource-Constrained Scheduling Problem

The scheduling problem we address in this thesis is similar to Resource-Constrained
Scheduling Problem (RCSP). As explained in [11], a RCSP is a combinatorial opti-
mization problem that consists in minimizing a schedule for an application composed
of dependent tasks, characterized by known parameters in terms of execution time
and required resources. Such schedule is subject to constraints given by the limited
availability of the resource and some of them must be renewed to execute new tasks
(e.g., the reconfigurable area of an FPGA). “More formally, the RCSP can be defined
as a combinatorial optimization problem. A combinatorial optimization problem is
defined by a solution space X, which is discrete or which can be reduced to a dis-
crete set, and by a subset of feasible solutions Y ⊆ X associated with an objective
function f : Y −→ R. A combinatorial optimization problem aims at finding a feasible
solution y ∈ Y such that f(y) is minimized or maximized.” [11]



The RCSP belongs to the NP-hard class of problems [52]. In the general case it
means that its decision version (deciding if a schedule with a makespan less than a
given bound exists) is NP-complete. More concretely it means that when the size of
the problem instances increase (e.g. the number of tasks), finding optimal solutions
quickly becomes intractable.

Our FPGA scheduling problem resembles but is not exactly a RCSP problem
because of two differences:

• The configuration slots cannot overlap in time: before any task of a slot can
start, all tasks of the previous slot must complete. While in the schedule of a
RCSP problem it can be that there is always at least one running task.

• The reconfiguration time is not zero and will have to be considered in order to
minimize the total makespan.

Because of these differences, and because we did not find a proof of equivalence,
we cannot claim that our FPGA scheduling problem has the same complexity as
RCSP. However, our experiments with classic exact solving methods (Mixed Integer
Linear Programming) show that the run-time of the solver increases very rapidly with
the size of the problem instances. This is a good indication that the problem is hard,
that efficient heuristics are needed and that the trade-off between the heuristics’
run-time and the quality of their results will be a key aspect. In order to propose
solutions to the FPGA scheduling problem we need a model, which abstracts the
application and the underlying architecture, and a scheduling strategy. Related work
on modelling is presented in next section, namely Section 3.2, whereas scheduling
strategies are presented in Section 3.3.

3.2 Modelling
Digital design for FPGA targets can take many forms and use different Models of
Computation (MoC) and different types of tools, from logic synthesis of Register
Transfer Level (RTL) descriptions expressed in HDL, to high-level synthesis of algo-
rithmic descriptions [68]. In all cases the final result is too detailed and complex for
the kind of analyzes we are interested in. The use of abstract models allows to solve
problems by focusing on parameters that are relevant (e.g., HET and reconfiguration
time for our FPGA scheduling problem, among others), without considering low-level
implementation details.

Modelling regards both the input applications and the FPGA architecture. For ex-
ample, authors in [47], [45] propose the analysis of processing graphs applications
onto FPGAs by focusing on efficient computational models to capture all the details
of a hardware application. Their research problem is finding a computational model



to represent applications in the form of direct acyclic graphs (DAGs) that efficiently
capture low level details with respect to a specific FPGA. Through it they aim to
verify the correctness of a data-stream output subject to hardware constraints given
by a real FPGA device. Indeed, this task is often subject to a large work of debug
directly done by developers (e.g., through test-benches) and it is tedious and time-
consuming. They analyse computational models of the family of Synchronous Data
Flow (SDF) [76], included Cyclo-Static Data Flow (CSDF) [29] and Static dataflow
with Access Patterns (SDF-AP) [54]. According to the authors of [47], with respect
to efficiency, scheduling strategies play even a more important role than the compu-
tational models themselves.

To this respect, the abstractions provided by SDF models can be inadequate and
can lead to inefficient scheduling from the makespan point of view. It is common
practise associating the worst-case execution time (that corresponds to the time we
defined as HET in FPGA scheduling problems) while to the standard SDF when an-
alyzing the timing behavior of tasks which compose an application [108], [90], [87].
Along with such timing information, these timed-SDF models can be used to cap-
ture the behavior of hardware (or software) tasks to specific architectures accord-
ing to resources constraints. However, such timed-SDF models suffer of an impor-
tant drawback that is the loss of information about the precise timing of consump-
tion/production of tokens (i.e., data exchanged between tasks). Indeed, for hardware
implementations, data tokens should be delivered to them at precise clock cycles,
such as in [77], but such SDF models can only describe the number of needed and
produced tokens. The SDF model assumes that a task (i.e., an actor using SDF
terminology) should wait to execute until there are sufficient tokens available at the
inputs. For example, if a task B must receive data from a task A. A produces one
SDF token per clock cycle and B lasts for x clock cycles and consumes x tokens per
firing, x > 1. An efficient implementation of such behavior can be achieved by a FIFO
queue of size 1, but the timed version of the original SDF cannot capture such be-
havior: in this example, task B must wait to receive x tokens in x clock cycles before
firing. This can lead to inefficient makespan estimations that are longer than reality.
Enhancements of such timed-SDF models such as Cyclo-Static Data Flow (CSDF)
and Static dataflow with Access Patterns (SDF-AP) try to overcome such limitations
by considering the presence of buffers between tasks. However, even simple designs
can lead to huge or infinite buffers and that makes the scheduling solution unfeasible.
Finally, they propose their own model of computation named Actors with Stretchable
Access Patterns (ASAP) [46], an extension of SDF-AP model. The use of Access
Patterns permits to capture the exact moment at which input/output tokens are pro-
duced. These works ( [47], [45], [46]) is particularly interesting and complementary
with respect of the research goal addressed by this thesis. Indeed, they focus on find-
ing the most appropriate computational model for applications to capture hardware
constraints in order to achieve a correct design and a correct scheduling, whereas



this thesis focuses more on the scheduling strategy.This means that the proposed
ASAP model presented in [46] can be used as a input for the scheduling methods
presented in this thesis, especially in an extension of our work (ref. to future work
in Section 7.2). In turn, scheduling methods presented in this thesis can be used
by [47] to generate an efficient scheduling that is assured to be feasible and efficient
by their verification methods. Last, [47], [45], [46] focus on the applications only and
not on architectures. In our FPGA scheduling problem, some timing parameters are
determined by the architecture and therefore they cannot be captured by application
modelling. This is the case of the overhead given by reconfigurations, which are in
turn dictated by the resources demanded by each task and by the availability of the
FPGA, the contention given by concurrent accesses to common resources such as
memories, delays introduced by buffers and so on.

Along with the abstractions used to describe an application, abstractions are also
used to describe the architecture, in this case an FPGA. Even though there exists
modelling languages which are specialized on abstract hardware description, such
as MARTE [8], scheduling problems for FPGAs usually require architetural mod-
els which are simple and very coarse-grained. For this reason, we discussed of
hardware descriptions based on MARTE in Section 6.1, where we show a possible
integration of our contribution in Model-Driven Engineering for the early design of
embedded systems. As it can be seen in the fifth column of Table 3.1, several works
( [41], [96], [93], [64], [62], [63], [42], [55], [58], [51], [112]) in this domain represent
the FPGAs with a mono-dimensional model capturing the area of FPGA in terms of
number of Logic Elements (LEs). Tasks that are scheduled onto the FPGA requires
a certain percentage of FPGA area and this is considered enough to establish how
many and which tasks can fit the FPGA area at the same time with no need to recon-
figure. These simple models are related to what the FPGAs offered when the models
were proposed, as the column year in Table 3.1 suggests. However, even more re-
cent contributions (e.g., [112], [96]) considers very simple models. Even though we
agree that very fine-grained hardware representations are not necessary, we con-
sider such mono-dimensional model extremely limiting with respect to the reality.
However, more recent In this respect, we chose to model an FPGA with a nD-size
array of resources. Each resource can represent a scheduling-independent resource
such as number of LEs, number of DSP or number of Embedded Memory Blocks
(EMBs) available on a certain device. In future, our model will tackle scheduling-
dependent resources too. Naturally, because this thesis is focused on makespan
optimization, an FPGA is labelled with all the information needed to determine the
reconfiguration time such as bitstream size, clock frequency for the reconfiguration
interface and size of the data bus towards the reconfiguration memory. Reconfigura-
tion time has a non negligible impact on the final makespan of an application.



3.3 Scheduling

3.3.1 Heuristics
3.3.1.1 List-based scheduling

In list-based scheduling, individual tasks are sorted in a priority list and assigned, in
sequence, to the earliest available unit that fits their resource request [26]. Priorities
can be assigned statically or dynamically based on different characteristics, e.g., ex-
ecution time, resource occupancy and subject to data-dependencies among tasks, if
they are present. With respect to FPGA scheduling problem, an available unit is a re-
configuration stage that can physically satisfy the resources required by a target task.
This process is repeated until a valid scheduling is obtained. List heuristics are very
popular, they require very small run-times in exchange for the optimality of the output
schedule. Priority list can be calculated in several ways. For instance, order of tasks
can be driven by deadlines, if applicable (e.g., Earliest Deadline First - EDF). EDF
algorithm, which executes tasks according to their absolute deadline, has proven to
be optimal in a single processor real-time system [19]. For a multi-processor system
withmmachines, EDF, which executes the firstm tasks with them strictest deadlines
among the ready tasks, is not optimal though [65]. FPGA scheduling problem looks
like to multi-processor scheduling but it differs on several aspects. For instance,
FPGA reconfigurations are different from switching penalities in software scheduling.
On one hand, switching penalities in software scheduling are not constant and they
are difficult to predict. On the other hand, FPGA reconfigurations add an overhead
on the overall makespan that can be comparable to the HET of a task. Always in
case of heterogeneous workers (e.g., multi-processors or different regions within an
FPGA) a well known list scheduling strategy is Heterogeneous Earliest Finish Time
(HEFT) algorithm. Our own classification of list-based scheduling heuristics is:

• Timing-based: tasks are ordered according to their data dependencies and
their execution time. For example, parallel tasks can be ordered by increasing
or decreasing hardware execution time.

• Resource-based: similarly to timing-based approach, tasks are ordered ac-
cording to their data dependencies and their resource consumption. It is pos-
sible to privilege largest tasks or shortest tasks, for instance.

• Critical resource-based: resource-based approach has a global nature that
statically considers resource utilization. Ordering can be done by considering
the availability of the different resources during the construction of the schedul-
ing.

Tasks within the priority list have to be interleaved by device reconfigurations in order
to make the scheduling feasible. Starting from the beginning of the list, consecutive



tasks in this list form a reconfiguration stage. When there are not enough resources
for the next task in the list, device is reconfigured and another reconfiguration stage
is instantiated. Ordering tasks according to their data dependencies allows to build
a feasible scheduling. Parameters such as timing, resources, and so on can be
combined in more complex ways than the one presented so far. However, regard-
less the strategy used, list-based strategies have a common flaw that make them
strongly sub-optimal for the FPGA scheduling problem addressed in this thesis. Us-
ing a list-based strategy to address our FPGA scheduling problem, which targets
the makespan minimization onto fully reconfigured devices, requires to first create
a priority list and second to interleave total reconfigurations when resource require-
ments of consecutive tasks cannot be satisfied by the FPGA device. The problem
is that in such a way the total reconfiguration is driven by constraints on resources
and therefore it is performed only when necessary, regardless of parallelism among
tasks or data dependencies. The consequence is that the device reconfiguration
can occur in such a way that separates two parallel tasks whose parallelism is par-
ticularly convenient. For these reasons, list-based heuristics are more common in
FPGA scheduling problems that target partial reconfiguration: indeed, the risk that
a full reconfiguration acts as a wall between two tasks is not applicable. However,
some works applies list-based scheduling to fully reconfigured devices, such as [41]
and [64].

Paper [41] proposes an adaptation of the well known Earliest Deadline First (EDF)
algorithm to schedule periodic real-time tasks onto FPGAs with the aim to respect the
larger number of deadline possible. Each task is labelled with a hardware execution
time HET , a period time P (i.e., the interval of time between successive occurrences
of the same task) and the proportion 0/leA ≤ 1 of a unique hardware resource (e.g.
LEs) it requires. The authors propose two utilisation metrics for a task set Γ:

1. Time utilization factor: UT (Γ) = ∑
Ti∈Γ(HETi/Pi).

2. System utilization factor: US(Γ) = ∑
Ti∈Γ(HETi ∗ Ai/Pi).

In the extreme cas where all tasks are executed sequentially UT (Γ) represents
the fraction of time in which the FPGA is used. US(Γ) represents the time-area
resource utilization factor for a sheduling of Γ, with or without parallelization. As
explained by the authors, if US(Γ) > 1 there is no feasible schedule. Authors of [41]
adapted original EDF algorithm to the Next-Fit (NF) version. EDF-NF maintains a
list, sorted by absolute increasing deadlines, which contains tasks that are ready but
still not running. EDF-NF scans the ready list to select which task to add to the list
of running tasks: tasks are selected to run as long as the resulting set is feasible,
according to UT (Γ) and US(Γ) utilization metrics. When a task cannot be scheduled,
EDF would reconfigure the device and starting again the process. EDF-NF acts
differently because, when the following task in the ready list cannot be scheduled



Figure 3.1: Architecture model of [93]

because of constraints on physical resources, it continues to scan the list in order to
find other tasks, with an absolute longer deadline, that can be run with the current list
of running tasks. The motivation of the Next-Fit adaptation is to improve the device
utilization. In this paper, EDF-NF algorithm is applied online and it is run when a
new instance of a periodic task becomes ready. Complexity analysis show that it is
performed in O(n) time, where n is he number of tasks.

Paper [93] targets the makespan minimization of an application, described by a
DAG, with partial reconfiguration. Authors compares their list-based heuristics with
a Mixed Integer Linear Programming (MILP) formulation and a meta-heuristics ap-
proach based on GAs. The latter is discussed in Section 3.3.2. This paper focuses
on static scheduling of applications which are described with Direct Acyclic Graphs
(DAGs) by considering partial reconfiguration of the FPGA. Each task in the input
graph is preceded by a reconfiguration task that models the time spent to load the bit-
stream onto the configuration memory. Because partial reconfiguration is addressed,
authors consider tasks prefetching. Task prefetching is defined in [61] and consists
in hiding the reconfiguration overhead (or part of it) by loading tasks into the physical
area in advance with respect to when they are needed. This allows the FPGA to be
partially reconfigured when another task is running. Architecture is modeled with a
parallel reconfiguration model, first defined in [110] and shown in Figure 3.1.

Reconfigurable logic elements are grouped in homogeneously contiguous tiles, which
are in turn composed of a reconfigurable circuit and the configuration SRAM that
drives such circuit. If a task requires more than one tile, they have to be allocated in
a contiguous way. All the configuration SRAMs of each tile are connected through a
crossbar to a number of parallel reconfiguration controllers such that each reconfig-
uration controller can have access to each reconfiguration SRAM but at most one at
a time. This architecture is applicable also in the case of full reconfigurable device.
Tasks of DAG have a dual nature. Hardware tasks are labeled with the Hardware
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Figure 3.2: Case study from [93]

Execution time (HET ) and with the required resources in terms of tiles. Configura-
tion tasks which represent the configuration of a single tile are added to the input
DAG and labeled with the reconfiguration time. Thus, if a task requires n tiles of
logic elements, the corresponding node in the input DAG is preceded with n parallel
reconfiguration nodes. DAG structure as well as its parameters are shown in Figure
3.2.
The challenge of minimizing the overall execution timing of an application described
with a DAG is achieved through task prefetching: tasks are loaded in the reconfig-
urable area before they are ready, according to the availability of tiles and reconfig-
uration controllers. As well as any other list-based scheduling strategy, each task
has a priority that represents the urgency of configuring such task onto the recon-
figurable hardware. The task with highest priority is scheduled as soon as there are
free resources. Priority is calculated by considering three elements, namely mobility,
gap and delay. More precisely, mobility represents the urgency of an execution (i.e.,
how the current scheduling time is close to the time in which a task becomes ready
to be executed), gap shows how much benefit a task can get if it is immediately se-
lected for scheduling and delay estimates how many configurations will be delayed
if the task selected for configuration cannot start immediately. The latter parameter
assigns a larger delay to tasks with more successors and gives no advantages in
prefetching successors while predecessors have not been scheduled yet.
The algorithm starts to iterate by setting the scheduling time s − time to 1 and it
concludes when all tasks have been scheduled. At each iteration, priorities for all



tasks are calculated. A free tile and a free controller are found, if they exist. The
first task of the priority list is then configured if a certain number of contiguous tiles
that satisfy requirements on resources are found, but it may not be ready for exe-
cution because of configuration prefetching. Thus, the ready time for execution is
calculated. This process of looking for free tile-controller, scheduling of configura-
tions and executions is repeated as long as a free pair exists. If the algorithm is not
able to find a free pair tile-controller, s − time in increased by 1 and a new iteration
takes place. With respect to the calculus of the priority, mobility is calculated as
(ALAPs− time)− (ASAPs− time) + 1, where ALAP and ASAP respectively mean
As Long As Possible and As Soon As Possible. Gap is calculated by assuming that
task is configured at s− time and it can be executed at (ASAPs− time), so its value
is (ASAPs − time) − (configurationEnds − time). Finally, delay is the normaliza-
tion of the total number of successors. Each parameter is weighted with a different
value not specified by authors. This list-based scheduler executes in a run-time of
milliseconds for workloads similar to those used in this thesis (refer to Chapter 5) by
obtaining solutions similar in quality to those produced by meta-heuristics used for
comparison. Even though it targets partial reconfiguration, there are analogies be-
tween this paper and the approach used in this thesis such as the fact that a metrics
takes scheduling decisions by considering the global situation (i.e., it jointly consid-
ers the current state of the scheduling, the available hardware resources and the
dependencies in the input DAG). However, the calculus of priority is not compatible
with our assumptions. For example, because we do not build a scheduling order by
taking decisions starting from the source of a DAG, it is not relevant for us talking
about ASAP and ALAP scheduling time of a task. Moreover, priority in [93] takes
into account only the number of successors of a task, without weighting them with
the execution time.

Closer to our FPGA scheduling problem, [64] proposes a set of list-based schedul-
ing algorithms that target applications, described as DAGs, which are executed onto
fully reconfigured devices. Two of them aim to minimize the number of reconfigura-
tions, whereas the third one minimizes the overhead given by communications. In
this work, tasks are labeled with their resources requirements only, without explicit-
ing their hardware execution time. Edge between tasks are labelled with a commu-
nication cost expressed in terms of units of time. Because the FPGA is seen as a
co-processor of a master CPU, the execution model of hardware tasks presents four
different types of timing:

1. The time to entirely configure the FPGA

2. The communication time to transfer input data between the master CPU and
the FPGA device

3. The hardware execution time of tasks onto the reconfigurable logic (HET )



4. The communication time to transfer output data from the FPGA to the master
CPU

Configuration time and communication times are seen as pure overhead and their
contribution in the final makespan shall be minimized. All the approaches presented
target this minimization goal by using common principles:

1. Minimizing the number of reconfigurations stages, in order to limit the number
of interactions between CPU and FPGA

2. Overlapping as most as possible the processing of tasks within a reconfigura-
tion stage, to exploit task parallelism

The first contribution presented in [64] is named Weight-Based Scheduling Algorithm
(WBS) and it uses a breadth-first search (BFS) to build a scheduling solution. Nodes
of DAG are sorted first for their BFS level and then for their resource occupancy in
increasing order. BFS level of a node is defined as the maximum distance of such
node from one among the sources of the graph. Sources are in turn defined as the
nodes that do not have any predecessors. After nodes are sorted, they are visited in
their order and reconfiguration stages are created. When the next task of the list can-
not fit the available area, a full reconfiguration of the device occurs and the next task
is scheduled in another reconfiguration stage. Once all the nodes of a certain level
are scheduled, the algorithm takes into account the next level. Figure 3.3a shows
an example of the reconfiguration stages created by WBS algorithm. In the figure,
nodes are internally labeled with their normalized resource consumption in terms of
logic elements slices. This approach is very simple and fast, but it has a major de-
fault. It considers the parallelism between tasks but such parallelism is not weighted
with the execution time. Avoiding to consider a timing-weighted parallelism makes
inadequate the concept of BFS level: indeed, a single task may have a HET that
can be strongly larger than the sum of HETs of a sequence of tasks. This produces
solutions that are sub-optimal whether the variance among HET of tasks is large.
The second contribution of [64] partially mitigates the fact to separately consider
each BFS level. The algorithm is named Highest Priority First - Next Fit (HPF-NF)
and it is inspired by the EDF-NF of [41], already presented in this section. HPF-NF
does not consider deadlines but it focuses on reducing communication overhead be-
tween nodes. Similarly to WPS algorithm, priorities are assigned according to data-
dependencies (i.e., predecessor nodes have a better priority than their successors)
and according to resources requirements in an increasing order. Then, reconfigura-
tions stages are built by following this order. With respect to WPS, HPF-NF differs
when the next task in the priority list cannot fit the remaining area of the FPGA. Dif-
ferently to WPS, HPF-NF does not create a new reconfiguration stage for the next
task in the priority list, but it tries to schedule tasks with lower priority in the same



Figure 3.3: Case studies from [64]. Figure (a) shows the application of WBS algo-
rithm. Figure (b) shows the application of HPF-NF algorithm. Figure (c) shows the
application of RDMS algorithm. The latter is explained in Section 3.3.1.2.

reconfiguration stage, if data-dependencies make this scheduling feasible. This is
the case of task with priority 15 in Figure 3.3b (in Figure 3.3b, the number inside the
task represents the resource consumption, whereas the number on the right side of
each task represents the priority calculated by HPF-NF algorithm), that is scheduled
with tasks whose priority is 1, 2, 3 but not 4, which belongs to the subsequent recon-
figuration stage. The Next-Fit option allows to improve device utilization and saving
reconfiguration time and this can be seen that scheduling produced by HPF-NF al-
gorithm (Figure 3.3b) has one reconfiguration stage less than scheduling produced
by WPS (Figure 3.3a). Even though each reconfiguration stage has an impact on the
overall makespan, there are no guarantees that the overall makespan of the schedul-
ing produced by HPF-NF is better than the one produced by WPS. With respect to
Figure 3.3b, if the HET of tasks with priority 5 and 6 is similar and incredibly larger
than HET of other tasks and to the configuration time, scheduling produced by WPS
would result in a better makespan because it exploits the parallelism of those two
tasks.

3.3.1.1.1 HEFT Next-Fit - HEFT is a list scheduling algorithm where tasks are
scheduled in decreasing order of their upward rank, that is computed based on the
critical path (in terms of hardware execution time) from a task to the sink of the de-
pendency graph. HEFT was initially proposed for multi-processor platforms and is
directly adaptable to reconfigurable platforms: tasks are assigned to logical proces-
sors (our slots) rather than physical processors.



• ranku(ni) = wi+maxnj∈succ(ni)(cij +ranku(nj)) is defined as upward ranking for
a certain task ni, from the sink (included) to ni itself.

• succ(ni) is the set of immediate successors of task ni (from a topology point of
view).

• cij is the cost of the link between task ni and its successor nj. Even though the
original HEFT considers this parameter, this is not directly taken into account
in Slot .

• wi is the computation of task ni.

The algorithm is composed of two parts: the task priority phase and the processor
selection phase.
Task priority phase: the upward ranking is calculated for each task. At a first glance,
it seems a recursive approach. However, from an implementation point of view, it is
enough a breadth first search. Then, tasks are ordered in decreasing order based on
their calculated upward ranking. This ranking guarantees the respect of topological
dependencies in the provided list. In case of equal scores, a random tie-break is
done.
Processor selection phase: in the original version of the algorithm, a task ni is
assigned to the first processor pj that is free when the task ni starts.
Whereas the first phase could be kept using an architecture FPGA-based instead of
a multi-processor platform, some minor and non-invasive modifications shall to be
done in order to adapt the second phase. Basically, tasks ni is assigned to the first
valid slot RSj. Also in this case, the politics first-fit is kept.

Many variants of HEFT exist in the literature. We selected the HEFT-Next-Fit
as it improves the utilization of logic processors (FPGA slots). In HEFT, if a task t
does not fit a logic processor p because of resource constraints, t and all higher-rank
tasks are assigned to another logic processor (a new slot, in our case). In HEFT-NF,
instead, p can execute tasks with higher ranks than t, as long as there are available
resources.

3.3.1.2 Packing-based scheduling

Packing-based algorithms are related to Bin-Packing Problem (BPP). Bin-Packing
Problem is a well-known combinatory optimization problem which is proven to be
NP-hard [75]. In BPP, items of different volumes v must be packed into a finite
number of bins, which are in turn characterized by a fixed volume V , in a way that
minimizes the number of bins used. In the simplest version of BPP there are no
constraints on items shapes. In other words, a set of k items can fit a bin if and only
if
∑k
i=0(vi) ≤ V, 0 ≤ v ≤ V, k ∈ N∗.



Bin-Packing Problem can be, in principle, applied to FPGA scheduling. Items in
BPP can be considered as tasks of an application: volume v of items corresponds
to the requested resources by tasks, volume V corresponds to the overall resources
offered by the FPGA and the instantiation of a new bin corresponds to a new re-
configuration stage. As described in Table 3.1, some works represent the FPGA
with a 2-dimensional model, namely resources offered by the device are seen as a
rectangle of reconfigurable logic elements. In this regard, resources consumption of
tasks is represented in a geometrical space and the shape of tasks therefore plays
an important role in the evaluation of a reconfiguration stage. Variants of BPP cover
this case too. For example, 2-D BPP considers sizes of both tasks and bins in terms
of finite rectangles. A set of items fit a bin not only if the sum of the items area is
at most equal to the area of the bin, but also if their placement does not exceed the
physical limits of the bin. Article [81] and survey [80] contain an overview of 2D-BPP
problems with mathematical formulations and the most known heuristics and meta-
heuristics used to solve them. Most heuristics are based on well-known heuristics
such as First-Fit, Last-Fit and so on. They are not dissimilar to the list-based algo-
rithms already discussed.

Despite the analogies, there are four important differences between the BPP and
our FPGA scheduling problem, which make the solution presented for the BPP un-
suitable for the FPGA scheduling problem. Firstly, in BPP items are free from any
data-dependencies and the level of parallelism in BPP is consequently the maximum
possible. This case corresponds to the theoretic case of a DAG with no edges, which
violates our design assumptions, since we have assumed that application DAGs al-
ways present a unique source and sink. The second important difference is that
items in BPP are only labeled with resource consumption, whereas in FPGA schedul-
ing problem tasks have a hardware execution time (HET ) in addition to resources.
This increases the computational complexity because the introduction of a new di-
mension (i.e., HET ) and, differently from resources, it directly contributes to the
overall makespan. Thirdly, the introduction of a new reconfiguration stage has a cost
on the final makespan (i.e., the reconfiguration time), whereas introducing a new bin
in BPP is free of costs. Ultimately and most importantly, the main goal of bin-packing
is to minimize the number of bins. In FPGA scheduling problem, this corresponds to
the minimization of the number of reconfigurations which is not necessarily translated
into the minimization of the makespan of an application: few high-latency stages may
require more time to execute than a larger set of low-latency stages. This is possible
even though a new reconfiguration stage introduces a timing overhead given by the
reconfiguration.

For the sake of completeness, FPGA scheduling problem is similar to another op-
timization problem named Knapsack Problem [85]. A Knapsack Problem is a com-
binatory optimization problem. Given a set of different items, each of them being
characterized by a weight and a value, the goal is determining which items to include



in the knapsack in order to maximize the value of the collected items while respecting
the size constraints of the knapsack. FPGA scheduling problem looks like a Knap-
sack Problem, in which the FPGA area can be seen as the size of the knapsack,
weight of an item corresponds to the requirements of a task in terms of hardware
resources and value of an item is the HET of a task. However, solving a Knapsack
Problems does not directly solve the FPGA scheduling problem addressed in this
thesis. We assume that a single application needs more than one reconfiguration
stage to be exactly solved and this would require to run the knapsack problem mul-
tiple times, obtaining at each step a knapsack that is hopefully the best one. Even if
each knapsack problem would be solved in an exact way, there is no guarantee that
this would lead to a good overall solution. This because each step aims to generate
the best local knapsack without considering the overall scheduling situation as we
do in Slot .

This is what it is iteratively done by [63] and [62], which extend paper [64]. Differ-
ently from WPS and HPF-NF list-based algorithms, presented in Section 3.3.1.1, for
this contribution authors assign an HET to each node, that in the specific example
of Figure 3.3c is equal to the resource consumption of the task. Authors aim to solve
such FPGA scheduling problem by iteratively solving a variant of knapsack problem
that considers dependent items [69]. They propose an algorithm named Reduced
Data Movement Scheduling (RDMS) that tries to enssure that each reconfiguration
stage uses the maximum combined resources while exploiting data-dependencies.
Authors apply a dynamic programming algorithm, presented in [72] to solve in an
optimal way this dependencies-aware Knapsack Problem, by setting the capacity of
the FPGA as an upper bound constraint. This optimal dynamic programming algo-
rithm to solve knapsack problem is run several times until all the tasks are scheduled.
With respect to WBS and HPF-NF, RDMS is able to further reduce the number of re-
configurations stages, as shown in Figure 3.3c compared to Figures 3.3a and 3.3b.
However, it is a greedy algorithm that takes local optimal scheduling decisions with-
out considering the global scheduling situation. All the critical issues introduced for
both the bin-packing problem and the knapsack problem are applicable here. It is
true that reconfiguration constitute an issue and it should be minimized. However,
the best solution can be characterized by a larger overhead because it better exploits
timing-weighted parallelism between tasks.

An important family of packing-based algorithms is represented by Server-based
(SB) algorithms. Server-based scheduling is a recent technique from the real-time
community [32] that groups tasks in the so-called servers. In [32], a server is defined
as a periodic task whose purpose is to serve requests for resources as soon as
possible. Static server-based scheduling for FPGAs has been first studied in [40] for
not dependent periodic tasks. Authors proposed a scheduling technique to create
predictable task timing for the scheduling of periodic tasks onto fully reconfigured
devices. Tasks and hardware models are the same to those already introduced



for [41]. For reminder purpose, each task is labelled with a hardware execution time
HET , a period time P and the proportion 0 ≤ A ≤ 1 of a single type of hardware
resource (e.g. LEs) it requires. The authors propose two utilization metrics for a set
Γ of tasks:

1. Time utilization factor: UT (Γ) = ∑
Ti∈Γ(HETi/Pi).

2. System utilization factor: US(Γ) = ∑
Ti∈Γ(HETi ∗ Ai/Pi).

In the extreme case where all tasks are executed sequentially UT (Γ) represents
the fraction of time during which the FPGA is used. The US(Γ) metric is a time-area
product measuring the utilization of the FPGA in any scheduling, with or without
parallelization. Obviously, as noted by the authors, if US(Γ) > 1 there is no feasible
schedule for task set Γ.

Authors of [40] propose an algorithm named Merge Server Distribute Load (MSDL)
that is based on the concept of a task Server defined as Si = (Ri, Pi, HETi, Ai). Ri

is the set of tasks for which resources are reserved, whereas the other terms have
already been defined for a single task and must be applied to the set of tasks Ri. For
example, Ai is the sum of area of tasks composing Ri. MSDL aims to construct a set
of servers Ω starting from the original task set Γ by merging tasks together for parallel
execution. Servers execution is then sequentialized. In this work, tasks are not de-
pendent on each other but they have a deadline equal to their period. Once servers
have been composed, their order will be defined by the well-known Earliest Deadline
First (EDF) algorithm. Server composition works as follows. Each task is initially
considered as a server composed only of the task itself. At each iteration of the algo-
rithm, a couple of servers is chosen and merged if possible (i.e., if area of the merged
server does not exceed the available FPGA area). The couple of servers is selected
according to a greedy approach. For each possible couple of servers, servers which
will be merged are those that minimize the time utilization of the device given by
UT (Ωold) − UT (Ωnew) by increasing the device utilization US(Ωnew) − US(Ωold) and for
which constraints on area are respected. The algorithm returns when no more cou-
ples candidates can be merged. Paper [42] applies a similar principle by allowing a
task to be realized in alternative implementation. For example, for some type of tasks
an implementation which occupies more resources needs less HET to be executed.
This happens when the intrinsic parallelism of a task can be exploited by using more
reconfigurable resources [71]. Authors proved that alternative implementations en-
hance the quality of the proposed solutions and it enhances the resource utilization
of each server. This idea is confirmed in paper [106] and it can be integrated in an
entension of our work. The goal of article [40] is to find a feasible scheduling while
minimizing the number of reconfigurations.
This approach is not effectively applicable to applications whose tasks are connected
by dependencies (e.g., DAGs). Indeed, the utilization metrics take into account



only parameters (area, timing, etc.) within a single server without considering the
global scheduling situation. For instance, tasks that compose a server shall gener-
ate an high quality server (i.e., a server whose tasks well exploit the time-weighted
parallelism) but also by leaving a fair amount of time-weighted parallelism among
unscheduled tasks, in order to minimize the makespan contribution given by tasks
which are unscheduled. The utilization metrics of [40] evaluates only the quality of
a server, without considering the situation of unscheduled tasks. Thus, the best
greedy choice when merging servers can lead to an inefficient overall scheduling
while treating with dependencies.

Another Server-based algorithm, which schedules tasks, by considering par-
tial reconfiguration of the FPGA, in the context of a Real-Time Operating System
(RTOS), is described in [55] and [58]. Since the contribution is integrated in a RTOS,
this paper deals with online scheduling of tasks that must be scheduled upon their
arrival trying to respect their deadline. Features of tasks as well as their arrival order
are known only at run-time. The target architecture is composed of a CPU and an
FPGA but, in contrast to other works, the CPU does not only offload tasks to the
FPGA but it can execute them as well. Tasks are provided both a software and a
hardware implementation, and they are scheduled either on CPU or FPGA accord-
ing to the decisions taken by the scheduler. The chosen scheduler is a classical
EDF scheduler, but in order to minimize the rejection rate relocation of tasks from
hardware to software and vice-versa is considered. With regard to our thesis, this
contribution is not interesting for the scheduling strategy (indeed it is a classical EDF
with no variations), but because it is applied to a RTOS context. Each task is labeled
with the software occupancy (in terms of CPU workload) and hardware occupancy
(in terms of required area of reconfigurable logic elements). Relocation between
them is possible and relocation decisions are taken at run-time.

Work [27] targets partial reconfiguration and it relies on packing-based schedul-
ing to minimize makespan of an application which is represented by a chain of tasks.
In a chain each task has exactly one predecessor and one successor, except for the
source which does not have a predecessor anche the sink which does not have a
successor. This means that chains are devoid of parallelism among tasks (except
for the case in which chains are executed in a pipeline way). A representative exam-
ple of such chain applications is the JPEG decoding. Similarly to us, they consider
an application scenario in which tasks parameters (i.e., dependencies, resources,
execution timing) are known a-priori without changing or being variable at run-time.
This is named semi-online application scenario and this assumption is taken in the
contribution of this thesis too. The application can be dynamically invoked and this
determines the allocated resources that are reserved to it. Authors aim to choose
the right parallelism-granularity for each data-parallel task. Granularity is defined
as the number of instances (i.e., copies) of the task and the HET of them. The
fact to consider copies of the task is not desirable in the contribution presented in



our thesis, because it was defined to be used in a cloud data center environment:
users who rent one or more FPGAs have to pay also for the resources occupied
by duplicate tasks. Since they consider partial reconfiguration, they consider task
prefetching too. With regard to architectural modelling, an FPGA is seen as a set
of logic elements arranged in a 2D matrix, so authors take into consideration the
problem of physical placements of tasks within this 2D matrix. A tuple (ci, ti, ri) is as-
signed to each task Ti of the application graph, where ci is the requested resources
in terms of columns of logic elements, ti is the HET whereas ri is the time needed
to charge in memory the bitstream associated to Ti. In the chain dependent tasks
communicate through a shared memory, which can physically be mapped on on-chip
RAM blocks or on an external memory, according to application requirements. They
assume to have enough bandwidth to meet the needs of tasks at any time, as we
do in Slot contribution presented in Chapter 4. Besides an integer linear program-
ming (ILP) formulation, authors of [27] first introduce a heuristic to schedule simple
task chains. It is named Modified First Fit (MMF) and tries to satisfy task resource
constraints through a modified version of First-Fit approach. It jointly finds a physical
placement and schedules tasks when trying to reduce resources fragmentation and
hiding part of the reconfiguration overhead. This modified version of First-Fit relies
on a local optimization that better handles the available resources. The idea is to
delay the reconfiguration ri of a task Ti, enough to save hardware resources and to
parallelize the execution of Ti with the reconfiguration Ri+1 of the following task Ti+1
in the chain without delaying the actual execution of Ti. MFF alone does not consider
data-parallelism (i.e., how the implementation of a task can be parallelizable), so au-
thors propose PALGRAN, acronym for parallelism granularity selection, namely an
application mapping approach that selects a suitable granularity of data-parallelism
for individual data parallel tasks when considering key issues such as reconfigura-
tion overhead and placement constraints. PALGRAN is an adaptation of MFF that
essentially tries to greedily add multiple copies of data parallel tasks as long as it
estimates that the addition of a new copy is beneficial for the overall makespan. Let’s
clarify this with an example. By considering a task T2 that follows T1 in the chain,
the starting time of T2 = end time of T1 + r2. However, if T1 is 100% intrinsically
parallel for all its execution (i.e., from the source until the sink), it can be divided into
two tasks, whose HET is exactly T1/2. Starting time of T2 then has become T1/2
+ r2. This data-parallelism concept is similar to [42], where they consider multiple
implementations for the same task (e.g., one larger in terms of resources and faster
in terms of HET and another one longer in terms of HET but smaller in terms of
resources) and they choose the one among them that is considered the best for the
overall makespan. This enhancement is combined to other considerations that have
already been made for the joint placement and scheduling. However, the utilization
of data-parallelism is not always a good idea because implementations which better
utilize data-parallelism usually consume more hardware resources. These resources



could not be available in a certain time by consequently introducing a degradation
on the starting time of a task. PALGRAN algorithm jointly evaluates all these aspects
before grouping tasks. Even though paper [27] targets the scheduling by consid-
ering partial reconfiguration, which introduces an FPGA scheduling problem totally
different by our FPGA scheduling problem, as explained in Section 3.1, the consid-
erations on data-parallelism are particularly interesting and we retain we could take
inspiration from them in the future work of this thesis, as explained in Section 7.2.

Paper [82] illustrates an online packing algorithm that takes into account con-
straints on communications among tasks as well as the physical placement of tasks.
Their target is an FPGA, with partial reconfiguration, driven by a host processor.
FPGA is represented with a 2D area model divided into columns of reconfigurable
logic named slots. Note that, in this paragraph, the term Slot has a different mean-
ing from the one used in the rest of this thesis and defined at the beginning of the
chapter. Slots are a group of reconfigurable logic elements. A hardware tasks is
labeled with the occupancy of resources in terms of width and height of required re-
configurable area and with four different times, namely the hardware execution time
(HET ), the time which is required to reconfigure the area reserved for a task, a com-
munication time to read input data and a communication time to write output data.
Tasks can exchange data through an external memory or performing read/write op-
erations with a peripheral. Within the FPGA, the communication infrastructure is
modeled in terms of communication channels, local buses, system buses, periph-
eral busses and their connections. Authors of [82] consider the FPGA placement
problem as a 2D Strip-Packing problem [88]. Given a set of axis-aligned rectangles
and a strip of bounded width and infinite height, it consists in the determination of an
overlapping-free packing of the rectangles into the strip minimizing its height. When
a new task arrives for scheduling, it is necessary to find a free time and space slot
(FTSS) that can host it. In paper [83] authors designed an algorithm, named mod-
ified Flow Scanning (mFS), which returns the maximum FTSS upon the arrival of
a task. Paper [82] also takes into consideration communications, in order to enable
the scheduler to consider a more correct data exchanges between peripherals and
tasks when an application is executing. The proposed algorithm is named Commu-
nication Aware online task Scheduling Algorithm (CASA). In CASA, tasks arrive for
scheduling in form of tasks chains. Exactly like [27], because they deal with chains
(sequences) of tasks, data-dependencies are taken into account in the form of one
single predecessor and one single successor for each task (except for source and
sink which do not have respectively a predecessor and a successor) but there is no
parallelism among tasks. The algorithm is logically divided into three steps: firstly,
upon the arrival of a new task, mFS algorithm finds all the available FTSSs by solv-
ing the strip-packing problem. Then, a control step prunes or adjusts all the FTSSs
that can generate a conflict with the configuration port. Thirdly, a FTSS is chosen
for scheduling as soon as communication requirements are satisfied. This last step



is performed through a heuristic named locked communication scheduling (LCS).
For each task of the chain, a contention on a shared resource may appear. This
is the case in which a task Ti wants to read/write data from/to a shared memory or
a peripheral and the latter is being used at run-time by another entity. The access
of task Ti to the shared resources is consequently delayed and the communication
times are delayed as well. When that happens, CASA algorithm adjusts the commu-
nication time for task Ti and, once the new timing has been evaluated, it will choose
the most appropriate FTSS. The preference is a FTSS which is adjacent to the
FTSS allocated for a task Tj having a direct data-dependency with Ti. This is the
most suitable situation to minimize communication overheads because tasks Ti and
Tj can exchange data by using a local bus (a bus that directly connects adjacent
blocks). If that is not possible, task Ti will be scheduled in a slot that is not adjacent
to the slot allocated for Tj. Then, the two tasks communicate through a system bus,
which horizontally expand the FPGA by connecting all the local busses and allowing
communication among non-adjacent slots. Finally, if this situation is not applicable
as well, tasks Ti and Tj will communicate through an intermediate peripheral buffer.
It is particularly interesting how authors of [82] model the communication within an
FPGA and from an FPGA towards externals peripherals. Models proposed in [82]
can be directly integrated in our contribution and a solver can evaluate the overhead
given by tasks which exchange data over such communication infrastructure.

3.3.2 Meta-heuristics

Meta-heuristics are general optimization procedures that are independent from the
specific instance of the problem. Meta-heuristics are used for large-scale problems
when the solution space is too large to be entirely explored in a reasonable time.
They usually lead to good solutions without ensuring that the global optimum can be
found. Although they require more time than the traditional heuristics (i.e., seconds
to minutes), their implementation is simple. The basic idea is to explore the solu-
tion space by avoiding local optimums, namely solutions which are optimal within a
neighboring set of candidate solutions. Meta-heuristics are based on two general
concepts that are common to all the algorithms of this family. The intensification al-
lows a promising region of solutions to be better explored by improving the current
solution. Diversification allows the escape from the local optimum trap by forcing
the research towards unexplored regions. A good diversification strategy makes a
meta-heuristic less dependent on the initial solution. Several contributions rely on
meta-heuristics to address the FPGA scheduling problem. Because their run-time,
most of them are applied to an offline scenario or to an online scenario if it is charac-
terized by a limited size of the problem (e.g., a limited number of tasks to be sched-
uled). With regard to FPGA scheduling problem we mention, among the most known
and consolidated meta-heuristics, Genetic Algorithms (GAs), Tabu Search (TS), Ant



Colony Optimization (ACO) and Simulated Annealing (SA).
Genetic Algorithms (GAs) [84] is a guided random search technique inspired by

evolutionary biology. Starting from a population of solutions (individuals), the idea
is to mute them in an iterative way by randomly combining individuals through the
crossover operator and to modify them by introducing disorder elements through the
mutation operator until a new population is produced. The obtained solution, named
chromosome, is composed of a population whose quality should be closer to the
optimum than the previous one. The quality of a solution is evaluated by a fitness
function. and it is obtained by the proper selection of a subset of the newly generated
individuals that replace a subset of the original individuals, according to the evolution
strategy.

Paper [93] targets the makespan minimization of an application, described by
a DAG, with partial reconfiguration. Authors compare their list-based heuristic with
a Mixed Integer Linear Programming (MILP) formulation and a meta-heuristics ap-
proach based on GAs. We have already introduced the problem description as well
as paper assumptions in Section 3.3.1.1 where we have described the list-based
heuristic approach for this paper. For reminder purposes, this paper focuses on the
static scheduling for dependent tasks, on dynamic reconfigurable FPGA. Tasks are
labeled with the required resources Ri in terms of required tiles (a tile is a group
of reconfigurable logic elements) and with the hardware execution time HET . The
input DAG includes extra nodes representing the configuration that precedes the ex-
ecution of a task and the architecture includes some reconfiguration controllers such
that one reconfiguration controller can reconfigure one tile at a time. Then there is a
description of how authors implemented the main entities such as the generation of
the initial population, genetic operators (e.g., crossover, mutation, evaluation, selec-
tion) and the evolutionary strategy.
The group of initial solutions, which compose the initial population, is derived through
a resource-constrained list scheduling strategy. Firstly, a ready task is randomly se-
lected. A ready task is a task whose predecessors have already been scheduled.
Secondly, a controller is randomly selected as well as the required number of con-
tiguous tiles. Thirdly, the process is repeated until there are unscheduled tasks,
otherwise an initial individual (i.e., a string that contains a sequence of tasks) is cre-
ated.
Crossover operator must combine individuals when generating feasible solutions.
This is achieved as follows. Two individuals, named child1 and child2, are generated
by combining two parent individuals named parent1 and parent2. For each parent,
the application graph that corresponds to the scheduling solution is divided in two
DAGs named GL and GR (namely, left graph and right graph). GL and GR are built in
such a way that only one edge connect GL to GR. Crossover sites are then selected
for each parent. Strings which are associated to each parent are divided into two
parts in such a way that all nodes in the left string belong to GL and all nodes in



right string belong to GR. Once the crossover sites have been marked in parents
strings, they copy the left-string of parent1 to child1. The right part of child1 is gen-
erated from the right-part of parent2. An ASAP scheduler is used to schedule tasks
for which there is ambiguity (i.e., tasks that are both in left-part of parent1 and in
right-part of parent2 or neither. This allows a feasible child to be constructed.
Mutation is performed by separately considering task nodes and configuration nodes
because of their different nature. With regard to tasks, a task is randomly chosen and
moved to a new physical location that can guarantee the availability of the required
number of tiles. Mutations concern configuration nodes for a task. If a task requires
N tiles, N reconfiguration controllers will be assigned to it. Such controllers are then
rotated. For example, if N ≤ 4, controller which is assigned to tile 1 is replaced by
the controller previously assigned to tile 2 that is in turn replaced by the controller
assigned to tile 3 and so on until the controller originally assigned to tile 1 takes in
charge the reconfiguration of tile N .
Evaluation of individuals of a population is done through a fitness function which eval-
uates the length of the critical path. The objective function of the genetic algorithm
is the minimization of the application makespan. The size of population is kept fixed
for all the iterations. 80% of new individuals survive and replace the worst individual
among parents. They will escape from local optimum by dynamically mutating the
mutation probability if the fitness of newly generated individuals is not far from those
of the original population.
Authors tested their approach on a synthetic benchmark composed of 10 DAGs, in
turn composed of 10 tasks and with few practical applications. Despite the size of the
test suite, the scheduling deviation is 0.85% far from optimum, which is calculated
through constraint programming. Average run-time is 0.91 s, far from the run-time
achievable through heuristics (i.e., order of milliseconds for similar DAGs).

Paper [39] proposes a meta-heuristics based on Genetic Algorithms to minimize
the delay of independent tasks that must be scheduled onto a fully reconfigured
FPGA. The delay for a task ti is defined as TDelay(ti) = TF (ti)− TD(ti), where TF (ti)
and TD(ti) are respectively the actual finishing time and the deadline time for ti. In
addition to these parameters, tasks are labeled with the arrival time, the hardware
execution time (HET ) and with a couple of values which quantify the required num-
ber of gate arrays (i.e., the resources consumption) on x and y axis of a geometrical
space. This work is interesting because they improve traditional GAs with the Small
World (SW) network model. A SW network model can be considered as a not ori-
ented graph where the typical distance L between two randomly selected nodes
grows in proportion to the logarithm of the number of nodes N in the graph [109].
It can be informally defined as a graph characterized by tightly direct connections
among adjacent nodes and poorly remote connections. In principle, such strong
locality character fits well with the FPGA scheduling problem targeted by authors,
which is the minimization of tasks delay in a semi-online scenario. In the latter tasks



Figure 3.4: GA-SW generation of the initial population of [39]

which are characterized by a different arrival time, must be scheduled but the se-
quence of tasks as well as their parameter is known a-priori. Optimal solutions for
such FPGA scheduling problem, which are based on authors’ observations and ex-
periments, also have a strong locality character, in the sense that the best sequence
(i.e., the sequence of tasks that minimize the overall delay of the set) is close to the
deadline-based sequence. Because of this locality analogies, the idea beyond this
paper is to use the SW network model to generate the initial population for a Genetic
Algorithm. Generally speaking, the quality of the initial population is an important
factor for a GA: if a population which is very far from the region of the optimal so-
lution is provided, several iterations will be necessary to eventually move the newly
generated individuals to the right region. Moreover, the solution domain exponen-
tially increases if the number of tasks increases as well. The motivation of a GA-SW
algorithm is primarily to reduce the initial population domain by maintaining a good
quality. Secondly, authors re-designed crossover and mutation operators to make
them adapted and effective with the SW model.
The initial population of GA is generated as follows. Firstly, a sequence of tasks is
sorted according to the deadline of tasks. Such sequence is later fluctuated by uti-
lizing a gliding window in order to enable the newly generated individuals to keep the
advantages given by the locality principle and not to deviate too much from their orig-
inal position in the deadline-sorted sequence. The gliding window has size m, with
m less than the total number of tasks n, it starts from the left of the sorted sequence
and it moves right until all tasks in the original sequence are considered. Figure
3.4 illustrates an example of this process. The sorted sequence is composed of 10
tasks ordered through the earliest deadline first paradigm, whereas the size of the
gliding window is fixed to 5 tasks (Figure 3.4a) . Tasks within the window are tuned
according to a certain probability (Figure 3.4b), then the window is moved right for
4 positions (Figure 3.4c) and the involved 5 tasks are tuned in a similar way (Figure
3.4d).



Conventional crossover and mutation operators are adapted to the SW model. Their
adaptation has the purpose to reduce the number of unfeasible solutions and speed-
up the convergence of the algorithm. Instead of the traditional crossover, which
generates a child individual by mixing parts of two parents, with the adapted method,
named Converging Crossover (CX), a child exactly imitates only a part of a parent.
With respect to mutation, traditional single-point mutation can generate unfeasible
solutions, so authors designed a small-world two-points window-based exchange
mutation operator (STWEMO) which generates a higher number of valid individuals.
Firstly, the probability of a task to be moved to the location of another task (and vice-
versa) is inversely weighted with the distance of the two sequence in the original
deadline-sorted sequence. An exchange of far tasks can dramatically decrease the
quality of the solution though. So they are confined withing a window in order to
better utilize the advantages offered by the locality principle, especially when the
number of tasks is large (always according to the described probability principle: the
more two tasks are close in the original deadline-sorted sequence, the more likely
their exchange will occur). Authors proved that the complexity of GA-SW is O(n2),
where n is the number of tasks.

Paper [67] compares Genetic Algorithms and Simulated Annealing for a mixed
FPGA placement-scheduling problem. GA and SA are used to calculate a physi-
cal placement of tasks onto FPGA, whereas the resulting makespan and the power
consumption are compared. An FPGA is seen as a 2-D array of clusters, that are
groups of logical elements. Each task (named design clusters occupies a sub-matrix
of clusters. Given a starting schedule, SA iteratively and randomly swaps design
clusters. Some of these swaps improve the resulting scheduling, some others intro-
duce a degradation and from a certain iteration they are not be accepted. Keeping
non-improving solutions allows to escape from local optimums. Authors tested a GA
whose fitness function takes into account execution timing of tasks as well as the
delay of connections between tasks, wiring cost (i.e., the amount of resources re-
quired) and power estimation. Chosen GA algorithm is based on a fine-grain genetic
mutation approach in which crossover operation is not used and mutation randomly
swaps the position of design-clusters. This choice has been done to keep as many
analogies as possible with SA and consequently compare the efficiency of similar
algorithms. Indeed, both SA and fine-grain genetic mutation based GA are based
on the same operation, the random swap of clusters: using a GA that includes the
crossover operation would have disrupted the experiment. Authors concluded that
fine-grain genetic mutation based GAs are not as good as SAs.

Paper [49] proposes a joint mapping-scheduling of tasks and communications
onto a target architecture by addressing makespan minimization. To do that, they
propose am approach based on Ant Colony Optimization (ACO). Ant Colony Opti-



mization is a meta-heuristic based on a stochastic decision process that was initially
introduced to solve another well known optimization problem that is the Traveling
Salesman Problem [44]. ACO has this name precisely because it takes inspira-
tion from the collaborative behavior of ants while searching for food: first, each ant
leaves the nest taking a random direction. Throughout a path towards a source
of food, each ant releases a trace of pheromone, a secretion that triggers a social
response in other members. Other ants are then motivated to follow a path with
pheromone with a probability that depends on the amount of pheromone present
in such path. Quantity of pheromone released by an ant evaporates as time goes
by. Consequently, when a source food is found, the shortest path from the nest to it
would be characterized by a larger quantity of pheromone rather then longer routes:
other ants are motivated to follow the shortest path. ACO meta-heuristic is based
on this principle: different decisions represent the different routes towards the food.
Pheromones are represented through a matrix that stores, for each decision, the
probability that such decision lead to a good overall solution. At the beginning of the
algorithm probability is uniformly distributed among decisions. Then, iteratively, ants
(that represent functions of the algorithm) construct different solution by reinforcing
the most promising decision by modifying values in the matrix of pheromones. At the
end of each iteration, older pheromones contributions evaporates by reducing some
values in the matrix itself. ACO techniques are strongly used for problems in which
a good solution can be obtained by taking, at each iteration, subsequent decisions.
Authors in [86] demonstrated the superiority of ACO with respect to Tabu Search,
Genetic Algorithms and Simulated Annealing for the resource-constrained schedul-
ing problem (RCSP) mentioned in Section 3.1.1.
Actually, paper [49] targets general Multi-processor Systems on chip (MpSoc) com-
posed of a set of process elements, each of them equipped with its own local mem-
ory, connected through a set of communication elements (e.g., a system bus in the
simplest representation). We can apply this architecture to the FPGA scheduling
problem we target in this thesis because authors classify hardware resources in two
different classes, namely renewable resources (i.e., resources that return available
after they are used) and non-renewable resources (i.e., resources whose quantity
reserved to a tasks cannot be immediately reused). The latter is exactly the case
of an FPGA: when FPGA area is assigned to one or more tasks, it returns available
only upon a reconfiguration that introduces a timing overhead. We discuss this work
by restricting it in a single FPGA context. In this work, authors consider resource
sharing, namely the case in which a hardware resource is used by different tasks.
Communications introduce an overhead on the total makespan and they are taken
into account as well. In this respect, tasks are assumed to read input data and to
write output data from their own local memories. Communications between tasks
mapped on the same processing element are considered negligible, whereas be-
tween processing elements a time consuming, directly proportional to the quantity of



data, Direct Memory Access (DMA) is modeled. Applications are modeled through
DAGs and also in this case different implementations per tasks are considered. How-
ever, resource consumption and execution timing are assumed to be statically pre-
dicted and they does not change run-time, whereas communications contribution on
the makespan can be evaluated only once the definition of a scheduling order. The
term implementation point is used to define a particular combination of resources
and time required to execute a task on a certain hardware component, for example
an FPGA reconfiguration stage.
Authors considers separately the construction of a solution and its evaluation. The
latter can indeed be done only by knowing when incoming data transfers have been
terminated. The proposed algorithm works as follows. First, an initial and feasible
solution is initialized, for instance by assigning each task to the same processing
element with reconfigurations injected when a sequence of tasks finishes the avail-
able resources. The makespan of this initial solution is used to initialize the best
solution and the pheromone values as well. Each ant is also initialized with tasks
without precedences (i.e., source tasks). After such initialization, the first colony of
L ants is run. At each iteration of the algorithm, for each ant, a task is selected and
it is assigned to an implementation point. Assigning a task to a hardware resource
contributes to unlock direct dependent tasks that become eligible for scheduling.
Incoming communications for unlocked tasks can now be evaluated and unlocked
tasks become eligible for the scheduling at next iteration. This process is repeated
until the whole set of tasks and communications are assigned to an implementation
point. Then, the solution is evaluated from a makespan point of view: if this solu-
tion is better than the current best, it replaces the best one. If the exploration is not
finished (i.e., the maximum number of generations is not reached), pheromones are
updated and a local optimization is applied to the current best solution according
to pheromones values. In particular, tasks part of the solution change the position,
in a feasible way, according to a probability that depends on pheromones values.
Pheromones are represented through a matrix that stores, for each combination of
task and a feasible implementation point, the probability that such correspondence
leads to an overall good solution. Matrix is updated with a metric based on the re-
sults of the choices taken by each ant with respect to the resulting makespan. This
metric has been designed in order to privilege combinations for which the task is
completed as soon as possible. At this step a new colony of ants is launched and
the best found solution is returned at the end of these iterations. ACO is compared
to a ILP formulation as well as SA, TS, GA implementations. ACO is demonstrated
to be superior than each of them while keeping the run-time comparable (order of
seconds) for test-cases similar in dimensions to those of benchmark used in Chapter
5.



Ref. Category Rec. Type Goal Model Dep. Year
[41] LB F respect deadlines 1D No 2005
[40] SB F min(nb rec.) 1D No 2007
[96] LB P min(makespan) 1D Yes 2020
[43] MILP P min(makespan) nD Yes 2015

[93][a] LB P min(makespan) 1D Yes 2007
[93][b] MILP P min(makespan) 1D Yes 2007
[93][c] MH P min(makespan) 1D Yes 2007
[64] LB F min(nb. rec.) 1D Yes 2008
[62] PB F min(nb. rec.) 1D Yes 2009
[63] PB F min(nb. rec.) 1D Yes 2010
[42] PB F respect deadlines 1D No 2006
[55] SB P feasible sched. 1D No 2006
[58] SB P feasible sched. 1D No 2009
[39] MH F min(tot. delay) 2D No 2010
[67] MH NaN min(makesp-power) 2D No 2010
[79] MILP NaN min(mkspan + IO) 2D Yes 2009
[82] PB P min(makespan) 2D+1 Yes 2010
[51] MILP F min(nb rec.) 1D No 2008
[27] PB P min(makespan) 2D Yes 2009

[112] MILP NaN min(makespan) 1D No 2018
[102] LB P max(acceptance) 2D No 2004
[49] ACO F Multiple nD Yes 2010

Slot [28] PB F min(makespan) nD Yes 2020

Table 3.1: Resume of related contributions

3.4 Conclusion

In this chapter we have described the related work on scheduling of applications
onto FPGAs. FPGAs are complex and for this reason we have firstly explored how
scheduling-relevant parameters of FPGAs are abstracted by models which repre-
sent the input for scheduling strategies. With regard to this thesis, we target the
makespan minimization of applications which can be represented through a Direct
Acyclic Graph onto fully reconfigured FPGAs. This situation is common in a cloud
data center environment [112]. However, an FPGA scheduling problem can be dif-
ferent depending on objective of scheduling, input applications and FPGA character-



istics. For instance, the minimization of the number of reconfigurations, the respect
of deadlines or the finding of a feasible scheduling can all be objectives of the related
work. In addition to the objectives, there are FPGA scheduling problems which con-
siders partial reconfiguration. Finally, the context where existing works are applied
contribute to differentiate the related work. In this thesis, we focus on cloud data
centers, but FPGA scheduling problems are widely present also in the context of Op-
erating Systems/Real-time Operating Systems (RTOS), such as [102], [55] and [58].

However, the related work described in this thesis is firstly divided according to
the used approach. We have identified three main methodologies, namely:

• Exact formulations, such as Constraint Programming, Mixed-Integer Linear
Programming and so on.

• Meta-Heuristics (MHs), such as Genetic Algorithms, Tabu Search, Simulating
Annealing and Ant Colony Optimizations.

• Heuristics

– List-based heuristics, namely heuristics which assign a priority to each
task of the application, then they build an ordered list of tasks according
to their priority and then they take scheduling decisions according to the
order of this list.

– Packing-based heuristics, namely heuristics which take scheduling deci-
sion on groups of tasks.

In this chapter we have not dedicated a whole section to exact formulations.
Works based on exact formulations, such as [51], [112], [79], [43] and [93] (the
latter compares MILP formulation with a list-based heuristic and a meta-heuristic)
return an optimal solution at cost of a very large run-time. We think that, with re-
spect to this thesis, describing a set of mathematical formulations is not interesting
at all and we have therefore focused on different and more original heuristics and
meta-heuristics strategies. However, Section 5.2 proposes an exact formulation of
our FPGA scheduling problem, which will be used to calculate the optimum of each
test-case of the synthetic benchmark that we have used to evaluate the quality of our
contribution in Chapter 5.

Our contribution is a heuristic, specifically it is part of packing-based heuristics.
Although the related work focuses on several different FPGA scheduling problems,
works described in Section 3.3.1 are comparable from several points of view, such
as run-time, complexity, strategy and so on. This is not directly applicable to meta-
heuristics, which generally return solutions characterized by a good quality, but with
longer run-times than those of heuristics. The cited meta-heuristics include Tabu
Search, Simulated Annealing, Ant Colony Optimization but each work includes at



least one implementation of Genetic Algorithms. In the whole section, we compare
our heuristic with such meta-heuristics by only comparing the run-time. We take as
a reference Genetic Algorithms. Complexity of Genetic Algorithms depends on the
genetic operators, on their implementation (which may have a very significant effect
on the overall complexity), on the representation of individuals and population and
on the fitness function. Given the most common choices (point mutation, one point
crossover, roulette wheel selection), a Genetic Algorithms complexity is O(g ∗ (2 ∗
nm + n)) with g the number of generations, n the population size and m the size of
individuals. Their execution (and execution of MHs in general) is often limited to a
certain threshold in timing or to a certain number of iterations in which the algorithm
does not produce improving generations. With regard to MHs, the comparison of only
the theoretical complexity can be misleading and for this reason, in Section 3.3.2, we
have retained that the measurement of the run-time for workloads which are similar
in size to those considered in the evaluation of our contribution (ref. Chapter 5) is a
better way to compare the related works with our contribution.

However, we have identified some common drawbacks of existing works applied
to our FPGA scheduling problem. On the one hand, existing works privileges either
run-time (e.g., heuristics) or quality (exact formulations, meta-heuristics), whereas
our contribution merges both sides. On the other hand, FPGA models of existing
works capture only a subset of parameters (e.g., number of logic elements). We
think that it has a strong impact on the overall makespan of a scheduled application
and for this reason we enhance existing models by representing an FPGA with a
nD-size array of resources.



Chapter 4

Slot

4.1 Introduction
This chapter presents the Slot heuristic, our proposal to solve the FPGA scheduling
problem. We will first explain our approach to solve the problem and then justify why
it is promising. In Chapter 5 we will experimentally evaluate Slot and compare it with
exact solutions and another well-known heuristic.

Section 4.2 lists the assumptions we make about applications, tasks and tar-
get FPGAs. Section 4.3 motivates the need of a heuristic and explains why exact
solving techniques are not suitable. Section 4.4 focuses on the abstract modelling
of FPGA hardware resources and of the requirements of applications and tasks.
Section 4.5 discusses our target platforms, how applications can share the FPGA
resources of these platforms and how Slot can be used to minimize the applica-
tions’ makespans. Section 4.6 is dedicated to the description of the Slot heuristic
we propose. Section 4.6.5 discusses the complexity of the algorithm. Section 4.7
concludes the chapter.

4.2 Assumptions
These include restrictions that limit the domain of the problem. Indeed, FPGA schedul-
ing has a large spacial complexity, where different nature of inputs, applications,
and reconfiguration types result in very different problems that require different tech-
niques to be solved.

The following assumptions are mainly dictated by the context of cloud data cen-
ters. Here, FPGAs are available for multiple users as a general-purpose reconfig-
urable platform for different types of workloads. Scheduling is thus possible under
some some reasonable and acceptable restrictions on the input workloads. We have
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categorized the assumptions in three families: assumptions on fpga, on applica-
tions and on tasks.
Assumptions on applications

• For each workload, a user disposes of one or more bitstreams that are de-
signed off-line either by the user or are available as part of a library developed
by third-parties, e.g., the cloud provider, the FPGA manufacturer.

• As users rent cloud resources, they are always aware of their workload charac-
teristics on a target family of FPGAs. In other words, run-time or resource oc-
cupancy of tasks is known beforehand, typically thanks to data available during
the synthesis and simulation of a workload bitstream, profiling or interpolation
and curve-fitting from historic data. This is coherent with real cloud instances
and with the the IaaS, PaaS and SaaS paradigms.

• We suppose that each application cannot execute in its entirety on a given
FPGA (and the latter must be reconfigured at least once). Indeed, Slot algo-
rithm shows its benefits for applications which present parallel tasks and which
cannot fit the FPGA at once.

• Without loss of generality we assume that application DAGs have a single
dummy source and a single dummy sink, not mapped onto the FPGA. This
is to ease the design of solving algorithms by guaranteeing that each appli-
cation has a unique entry and exit point. If an application has more than one
source or sink, we connect all the real sources or sinks to a single dummy
source or sink. These dummy sources and sinks consume no FPGA resources
their run-time is zero.

• We consider acyclic applications which can be represented by Directed Acyclic
Graphs (DAG). Iterative applications where outputs of one iteration are used as
inputs of the next one can still be scheduled by Slot by computing the schedule
on a single iteration and chaining identical schedules, at the cost of the potential
inter-iterations parallelism that this approach cannot exploit.

• We do not allow tasks preemption. This a quite common assumption with hard-
ware tasks where preemption involves complex and costly mechanisms and are
frequently considered as inefficient.

Assumptions on tasks

• Tasks require a fixed amount of n resources and have a fixed execution time.
Thus, we do not consider moldable nor malleable tasks, differently from [49]
and [40]. Characteristics of tasks are known at design time.



• As a direct consequence of the previous point, we assume that the demand of
resources requested by tasks cannot vary run-time. Few works address this
case by proposing a Machine Learning model to estimate the real demand for
resources of an application whose consumption varies at run-time [31].

• The time to read, write and transfer the input/output data for a task t in different
memory locations is included in the hardware execution time of the task, and
all communications perform without memory contention.

• All the tasks are released at the same time instant, each of them with a deadline
that is equal to the deadline of the entire workload (i.e., the time granted to a
user to dispose of the FPGA).

• We require tasks to be implemented without pipelining between a producer and
a consumer tasks. This means that a task must completely execute before its
direct successor(s) can start. In workloads that do not respect this constraint,
pipelined tasks must be merged to a single task in the input dependency graph.

Assumptions on FPGA

• FPGAs are captured in an abstract way considering both their resources and
processing capabilities. This is further discussed in Section 4.4.

• Characteristics of FPGAs that are going to be rented are known by users.

• We have categorized the nature of resources offered by the FPGA (or by the
platform that includes the FPGA) in two families: scheduling-independent re-
sources and scheduling-dependent resources. Details of those families are
described in Section 4.4.

• The time to transfer a reconfiguration bitstream is included in the FPGA total
reconfiguration time TR.

4.3 Unfeasibility of an exhaustive analysis
This has already been partially covered in Chapter 3, in which we listed run-times
of exact solvers and meta-heuristics. We also study a practical example. Exact
methods (such as brute force) are unfeasible for scheduling a realistic number of
tasks at run-time. Yet, in Chapter 5, we can afford to compare our heuristic algorithm
with the optimum because the target test benchmark also contains relatively small
applications, composed of 6-to-15 tasks applications. For 16-to-30 applications, this
will not be possible. We define a topological order of a DAG as a linear ordering of
its nodes such that for every directed edge uv, from node u to node v, node u comes



before node v in the ordering. Data dependency between tasks strongly reduces the
number of topological orders. Consequently, the space of the solutions is reduced
too, making an exhaustive analysis possible if the number of nodes is limited.

Let us consider a graph composed of dummy source and sink and n parallel
tasks between them, as shown in Figure 4.1(a). The maximum number of topological
orders for this graph is n!, not included. n! is not included because, if all tasks can fit
at the same time in the FPGA, the scheduling solution is trivial. Exhaustive research
has to build all the possible valid solutions starting from each topological order. To
do that, it has to interleave tasks with reconfigurations without ignoring any case. In
fact, the best solution is not always the solution that contains the minimum number
of reconfigurations. Similarly, the slots of a best solution may not be best-fitted from
area point of view, as we already demonstrated in the example in Section 1.4.

As a further demonstration, let us consider the simple case in Figure 4.1(b), com-
posed of four tasks of which two of them are parallel. In this example we assume
that each task occupies exactly half of the FPGA resources. Two possible scheduling
solutions are:

1. [R, {A}], [R, {B,C}], [R, {D}]

2. [R, {A,B}], [R, {C,D}]

If the relation min(HETB, HETC) > TRtiming is verified, the solution character-
ized by the minimum makespan is the first one, even if it has more reconfigurations.
This is to say that an exhaustive analysis shall evaluate all valid combinations that
interleave reconfigurations between set of tasks, for each topological order, and for
all possible sets. In the simple example of Figure 4.1(b), we have two topological
orders:

1. A, B, C, D

2. A, C, B, D

And, starting from each topology order, there is a total of 9 possible and valid
solutions:

• [R, {A}], [R, {B}], [R, {C}], [R, {D}]

• [R, {A}], [R, {B}], [R, {C,D}]

• [R, {A}], [R, {B,C}], [R, {D}] or [R, {A}], [R, {C,B}], [R, {D}]

• [R, {A,B}], [R, {C,D}]

• [R, {A,B}], [R, {C}], [R, {D}]



Figure 4.1: Application DAGs - simple case studies

• [R, {A,C}], [R, {B}], [R, {D}]

• [R, {A}], [R, {C}], [R, {B}], [R, {D}]

• [R, {A}], [R, {C}], [R, {B,D}]

• [R, {A,C}], [R, {B,D}]

Thus, there are 10 possible solutions to be evaluated for an example of 4 tasks
only, with a maximum parallelism of 2. It is natural to imagine that this number tends
to explode with the increasing of number of tasks, especially with applications char-
acterized by a huge parallelism due to the low number of data dependencies as the
extreme general case in Figure 4.1(a). Starting from the n! topological orders of this
graph, for each of them we need to interleave tasks with reconfigurations whenever
possible, to be sure to consider all valid cases. Yet, calculating an upper bound of
the complexity is not a trivial problem, because we cannot establish in a general
way how data dependencies and resources consumption will impact the number of
slots or the number of tasks for each slot. In an experimental way, however, we un-
derstood that the complexity tends to be exponential with the number of tasks. By
profiling the code for the benchmark evaluated in Chapter 5, which includes 6-to-30
task graphs, for some test cases, we evaluated up to tens of thousands theoreti-
cal candidate solutions. Thus, a heuristic is absolutely necessary to scale with the
problem size.



Figure 4.2: 6-tasks application DAG

4.4 Abstracting hardware resources and
applications

In this regard, we have classified hardware resources according to their nature. In-
deed, requests for some types of resources may have an impact on requests of other
tasks scheduled in the same slot.

Different nature of hardware resources: Hardware resources have a different
nature and they can therefore impact the scheduling in a different way. A little part
of our contribution consists in the differentiation between scheduling-independent
and scheduling-dependent resources, which are two categories that, to the best of
our knowledge, have not been identified, so far, by existing taxonomies on resource
constrained scheduling problems [60].

To explain how they differently impact the scheduling, let us take as a reference
a DAG composed of 4 parallel tasks plus artificial source and sinks, such as the one
in Figure4.2.

A scheduling-independent resource is a resource which is exclusively assigned to
a task for the entire lifetime of the slot that contains the task. Thus, requests for a
given scheduling-independent resource (such as LEs) within a slot can be handled
simply by adding them together. Yet, if the total amount of requested resources
exceeds the availability (for a given FPGA) or all the tasks requesting the resources
cannot be part of the slot. This is shown in Figure 4.3, in which task T4 cannot be
part of the slot that already contains T1, T2 and T3.

A scheduling-dependent resource is a resource which is assigned to a task for the
entire task’s lifetime. The latter is always less or equal the entire lifetime of the slot
that contains the task. Tasks whose requests of a scheduling-dependent resource
exceed the physical limit for a given FPGA, such as T1, T2 and T3 in Figure 4.4,



Task LEs [%] I/O bandwidth [%]
t1 15 33
t2 25 37
t3 40 40
t4 50 40

Table 4.1: Parameters of tasks for the example of Figure 4.2 - Occupacy represents
the percentage of the hardware resources used by tasks in a given FPGA

Figure 4.3: Occupancy of the FPGA with regards to the number of used Logic Ele-
ments (LEs). Tasks T4 cannot be part of the same slot of T1, T2 and T3.

cannot be executed in parallel. However, differently from scheduling-independent
resources, they can be part of the same slot by introducing a delay, as shown in
Figure 4.5.

Our formulation presented in Section 4.6 efficiently considers scheduling-independent
resources. Scheduling-dependent resources can be treated as if they were scheduling-
independent at the price of a pessimistic output schedule. Note that, to efficiently
treat scheduling-dependent resources, the data dependencies in the task graph of a
slot are no more a sufficient condition to determine a total execution order for tasks
in such slot. Differently from hard-constraints imposed by physical limitations on
scheduling-independent resources, constraints on scheduling-dependent resources
can be relaxed by modifying the execution order of tasks which are part of the same
slot in a stronger way than constraints imposed by data-dependencies, at cost of
introducing a delay.



Figure 4.4: Occupancy of the FPGA with regards to the required I/O bandwidth.
Tasks T3 cannot run in parallel with tasks T1 and T2

Figure 4.5: Occupancy of the FPGA with regards to the required I/O bandwidth.
Tasks T3 cannot run in parallel with tasks T1 and T2, but they can be part of the
same slot by introducing a delay

Abstracting FPGAs: FPGAs, such as those deployed in cloud data centers, offer
multiple types of physical resources to allocate tasks. The basic units of an FPGA are
blocks of reconfigurable logic, which we refer as logic elements (LEs). However, as
we saw in details in Chapter 1, many other resources are available. Indeed, FPGAs
also offer pre-built digital signal processing blocks (DSPs), e.g., multipliers, to save
on the usage of logic units and accelerate workloads such as scientific computing
and signal processing. Memory resources are available, to store temporary results
or communicate between tasks, in the form of Random Access Memory (RAM), both
on-chip (e.g., Embedded Memory Blocks - EMBs) and off-chip (e.g., Dynamic-RAM).
We retain that modelling which only represent an FPGA as a bunch of LEs, like sev-
eral related works do as shown in Table 3.1, are extremely limiting. For instance, let
us consider an application whose tasks perform several I/O operations.A modelling



Figure 4.6: An example of application DAG which is the input of Slot : each node,
representing a task, is labelled with resource requests information and HET

which represents the FPGA only in terms of LEs only may suggest that a certain set
of tasks may share the area of the FPGA, whereas the constraints on the number of
I/O pins make actually non-valid the scheduling of such set of tasks (in other words,
such tasks require more I/O pins than those actually available onto the FPGA).
In addition, resources are available in different quantities, packaged in different ways
(e.g., granularity of blocks, for instance rows/columns of LEs) and with slightly differ-
ent denominations according to the FPGA manufacturer and/or FPGA family.
We designed Slot heuristic to be generic and valid for k-dimensional models of re-

sources whose requests are constant in time and do not depend on the scheduling
of tasks. Users of the algorithm (i.e., both cloud users and cloud providers) are free
to model an FPGA with any type of resource, each of them packaged in any way.
Modelling of application shall be coherent with modelling of the FPGA. As shown in
Figure 4.6, each task of the application must be provided with the information about
Hardware Execution Time (HET ) and requests of resources. The latter must be
exactly the same which composes the k-dimensional model provided for the FPGA.

4.5 Sharing of applications over platforms

In our work, we target platforms as such in Figure 4.7, which are composed of two
logical parts: a static region and a reconfigurable region, interconnected by a bus-
based infrastructure. The static region executes on a general-purpose processor,
in charge of running the reconfiguration management, source and sink tasks and a
reconfigurator device that internally reconfigures the system at run-time. The recon-
figurable region is composed of a reconfigurable hardware device that is assigned
to one or more users by a network orchestrator (e.g., according to some service-



Static region, CPU

Reconfig. manager,
bitstream library

PCIe, AXI

Reconfigurable region, FPGA

Cloud data-center
network

User application

Server

Figure 4.7: The architecture of a modern FPGA-based server

level policy). This assignment is fixed for the entire execution of any workloads. We
distinguish between two different FPGA usages:

1. Single application: a user wishes to execute a single application onto a FPGA.
In this case, there is no sharing and the whole FPGA is reserved to a single
application. User can rely on Slot heuristic to find a scheduling that shall mini-
mize the latency time (i.e., makespan) of the target application. This is exactly
what is reproduced in Figure 4.7.

2. Multi application: this is the case in which several applications, possibly be-
longing to different users, have to execute on the same FPGA area. We further
divide this case in two different sub-cases, according to policies of cloud data
center providers.

a) According to [112], there are families of cloud applications which aggre-
gate batch of tasks before accelerating such batch. This situation is rep-
resented in Figure 4.8, in which the red application is batched with the
blue application by connecting each entry node to a pseudo source node
(i.e., the left black-dotted task) and each termination to a pseudo sink
node (i.e., the right black-dotted task). Thus, the objective function is the
makespan minimization of the entire group of applications and this can be
achieved through Slot heuristic. With respect to Slot , each task of the red
application is topologically parallel to each task of the blue application.

b) An alternative policy is shown in Figure 4.9, in which an FPGA is statically
divided in several reconfigurable regions, and one or more reconfigurable



Figure 4.8: Sharing of applications on the same platform

regions are assigned to a different user/application. In the example, up
to 9 applications belonging to 3 users can share the FPGA and Slot algo-
rithm would be applied to each reconfigurable region. This case is not very
dissimilar by the Single application case, but here each application sees
only a part of the FPGA. However, directly considering this case would
require the introduction of the partial reconfiguration to independently re-
configure each region. We deepen discuss this case in the future work, in
Chapter 7.

4.6 Slot
First of all, we will introduce an example which will serve as a case study to bet-
ter understand the algorithm, step-by-step. Section 4.6.1 shows and describes the
pseudo-code of the algorithm. Sections 4.6.2, 4.6.3 and 4.6.4 deepen the three main
components of the algorithm, namely the candidate generation, the score and the fi-
nal optimization phase. Details on such three components are separately treated to
keep the explanation of the main loop of the algorithms as light as possible.

The formulation of our heuristic is generic and valid for k-dimensional models of
resources whose requests are constant in time and do not depend on the scheduling
of tasks. We consider a set K that contains k resources, available in Rk units.
A user’s workload is denoted as a DAG G =< T,E > and it is executed onto plat-
form illustrated in Figure 4.7. The source and sink tasks (control tasks), t0, tn+1,
are mapped to the static region of the platform. Remaining data-intensive tasks
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Figure 4.9: Sharing of the platform among different users through reconfigurable
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ti ∈ T \ {t0, tn+1} are mapped onto the reconfigurable region, which is a techno-
logically mapped netlist implementing the ith task. We characterize it by means of
a tuple (hi, ri1, ri2, ..., rik), where hi is the hardware execution time (HET ) that is
the time taken by ti to execute. The reconfigurable resources that ti requires are
expressed by the generic tuple (ri1, ri2, ..., rik). In this chapter we adopted a 3D
model in which ri1 is the number of logic elements, ri2 is the amount of (on-chip)
Embedded Memory Blocks (EMBs), ri3 is the number of DSP blocks. Note that,
for instance, for easier partial bitstreams composition, the logic elements resource
could very easily be replaced by entire rows of logic elements. The occupancy of
resources in the tuple is associated to an operating frequency. Multiple tuples for
different operating frequencies can be assigned to a workload. Each task ti con-
sumes a fixed amount of each resource, rik that does not vary with time. Slot takes
scheduling decisions for groups of tasks that we call a Slot . A slot s is defined
by the tuple (Gs, hs, rs1, rs2, ..., rsk). Gs ⊆ G is the graph of tasks associated to the
slot and hs is the Hardware Execution Time (HET ) of the slot. The generic tuple
(rs1, rs2, ..., rsk) denotes the slot occupancy for each of the k resources (e.g., number
of logic elements, memory, DSP blocks). Resources occupied by a slot correspond
to the sum of the resources occupied by its constituent tasks. Obviously, the amount
of resources of a slot cannot be larger than those available in the target FPGA:
rs1 = ∑

ti∈Gs
ri1 ≤ R1, rs2 = ∑

ti∈Gs
ri2 ≤ R2, ..., rsk = ∑

ti∈Gs
rik ≤ Rk. Slots are

executed sequentially, tasks within a slot cannot execute until all tasks in preceding
slots have terminated. Slots are interposed by FPGA reconfigurations that add a
latency denoted by TR.



Figure 4.10: 13-tasks application DAG, used as case study for this Chapter

In synthesis, Slot heuristic iteratively transforms a DAG that expresses multiple par-
tial execution orders into a DAG that expresses a single total execution order (a
schedule). This is performed, at each iteration, by creating a Slot , thanks to the con-
cept of computational dominance. A slot is built around the task that has the largest
HET (dominating task) among unscheduled tasks. Dominated tasks are added to
a slot, as long as there are enough FPGA resources, in a way that reduces the par-
allelism for further slots the least possible. After the generation of the first slot, the
process is repeated by taking the task larger in timing among unscheduled. The final
schedule is a succession of FPGA configurations, whose latency is determined by
the sum of the dominating tasks (that hide the latencies of the dominated tasks).
To better explain Slot algorithm in Section 4.6.1, we will use an example. Specifically,
we will show how the input DAG will be transformed, step-by-step, by Slot . Topology
of the example is shown in Figure 4.10, whereas resources requests are expressed
in Table 4.2. Values refers to a real FPGA, specifically Xilinx Virtex Ultrascale 9P
FPGA [16], which is integrated on servers of Amazon Elastic Compute Cloud. Ac-
cording to the 3D resource model adopted in this Chapter, resource availabilities of
such FPGA are listed in Table 4.3.

4.6.1 Pseudocode

Algorithm 1 shows the pseudo-code of Slot . Its core is constituted by a loop, lines
5-14, that iterates over a worklist where tasks are sorted in decreasing order of their
HET (lines 3-4). From the motivating example in Section 1.4, we noticed that tasks
with the highest HET impact more the total application makespan. So, regardless
of its location within the DAG, we select the largest task in terms of execution timing
from the worklist and we start to take scheduling decision from it (line 5). We name it
dominating task ti. In the first iteration of Slot , the dominating task of the Example in
Figure 4.10 if t3. Starting from the dominating task ti, function buildCandidateSlots()
(line 7) computes a set S of candidate slots. For the sake of simplicity, we provide



Task LEs [u] DSPs [u] EMBs [Mb] HET [ms]
t0 487k 1966 7 287
t1 402k 2565 7 139
t2 272k 1539 15 209
t3 353k 1966 12 460
t4 609k 513 18 200
t5 704k 428 15 314
t6 943k 1453 10 199
t7 788k 1881 5 303
t8 566k 428 5 35
t9 1004k 599 9 49
t10 291k 855 20 114

Table 4.2: The resource occupancy and HET of the tasks in Figure 4.10

LEs [u] DSPs [u] EMBs [Mb] TR time [ms]
2586k 6840 76 200

Table 4.3: Xilinx Virtex Ultrascale 9P FPGA - 3D Modelling

1 Function generateSlots( G = < T, E > ):
2 G′ := G;/* Copy G to G’, G’=<T’,E’> */
3 worklist← T ′ \ {tsource, tsink};
4 worklist← sortInDecreasingOrderOfHET (worklist);
5 foreach ti ∈ worklist do
6 S ← ∅;/* set of candidate slots */
7 S ← buildCandidateSlots(ti, G′, S, R1, R2, ..., Rk, HETti);
8 foreach s ∈ S do
9 scores[ s ]← computeScore(s, G′);

10 end
11 s← retrieveLowestScoreSlot(scores[]);
12 G′ ← contractSubgraph(ss, G′);
13 worklist← worklist \ {tasksins};
14 end
15 G′′ ← minimizeReconfigurations(G′);
16 return G”;

Algorithm 1: Slot scheduling heuristic



Figure 4.11: First slot computed by Slot with respect to the case study of Figure 4.10

here an intuitive description of its behavior (see Algorithm 2 and Section 4.6.2 for the
details). A candidate slot is composed of a dominating task ti and a valid set of dom-
inated tasks. Such a set is composed of all combinations of tasks that can execute
in parallel to ti and fit the remaining FPGA resources (i.e., the total FPGA resources
minus those occupied by ti) and which respect the dependencies among tasks (i.e.,
a candidate slot cannot contain a task tk and a task tj, which is sequential to tk, with-
out all the tasks between tk and tj). Examples of valid candidates slots are those
composed of tasks {t3, t2, t5}, {t3, t2}, {t3, t7, t9}. Examples of non-valid candidates
slots are those composed of tasks {t7, t8, t9, t10} (it occupies more resources than
those offered by the FPGA) and {t3, t5, t8} (a candidate slot cannot contain tasks t5
and t8 without containing task t6 too).

Among all candidate slots in S, only one is selected to be created in the current
DAG G′, lines 8-10 in Algorithm 1. This selection is based on the score returned
by function computeScore(s,G′) that we detail in Algorithm 3 and Section 4.6.3. A
score is an estimate of the makespan in the graph G′ − Gs that would result if we
removed its tasks the subgraph of tasks created by slot s, Gs, from G′. Briefly, it tries
to evaluates how much a candidate slot impacts the future makespan. At line 11, we
select the slot with the lowest score, which is {t3, t2, t5} with respect to our example
(see Figure 4.11).

This is the candidate slot for which the estimated makespan in G′ − Gs is the
lowest. Therefore, creating this slot leaves the (estimated) highest degree of time-
weighted parallelism in the residual DAG G′ − Gs. Creating a slot is performed by
contracting the nodes for the tasks of slot Gs into a single node, in G′, by function
contractSubgraph() (line 12). The latter modifies G′ by relabeling nodes that belong
to Gs with the new slot identifier. It collapses the newly relabeled nodes by removing
internal edges as well as duplicate cross edges (edges with an endpoint in the slot



Figure 4.12: Merging of the tasks which compose the slot identified in Figure 4.11

and one in G′ − Gs) and self-loops (edges whose endpoints are identical). With
respect to the example, contraction of slot composed of tasks {t3, t2, t5} would result
in slot S0, as shown in Figure 4.12.

Once the winning slot has been selected and the DAG is transformed, tasks of Gs

are removed by the worklist (line 13). The algorithm is repeated until there are tasks
in the worklist, i.e. there are tasks to be scheduled. Figure 4.13 illustrates all the
graph transformations that the heuristic performs from a partially order DAG of tasks
(Figure 4.13a) to a totally ordered DAG of slots (Figure 4.13g). Each transformation
corresponds to an iteration of the for-loop in Algorithm 1. Such a totally ordered DAG
of slots constitutes a schedule.

The final optimization phase given in line 15 attempts to further improve the so-
lution by removing useless reconfigurations. We will define this step in details in
Algorithm 4 and Section 4.6.4.



Figure 4.13: All the steps of Slot applied to an example. To keep the figure ligher,
artificial source and sink are not represented



4.6.2 Candidates Generation

The pseudo-code for the creation of candidate slots for a dominating task ti, function
buildCandidateSlots() (line 7 in Algorithm 1) is presented in Algorithm 2.

1 Function buildCandidateSlots( ti, G′ = < T ′, E′ >, S, R1, R2, ..., Rk):
2 C ← G′ \ {ti, pred(ti, G′), succ(ti, G′)};
3 foreach C ′ ∈ combinationsOfParallelTasks(C) do
4 Gs = {ti};
5 s← ({ti}, hi, ri1, ri2, ..., rik);
6 valid = true;
7 foreach tc ∈ C ′ do
8 if executionT ime(Gs + tc, G′) ≤ hi then
9 if validAllocation(s, tc, R1, R2, ..., Rk) then

10 s←
(Gs+tc, executionT ime(Gs+tc, G′), rs1+rc1, rs2+rc2, ..., rsk+rck);

11 continue;
12 end
13 end
14 valid = false;
15 end
16 if valid == true then
17 S ← S ∪ {s};
18 end
19 end
20 return S

Algorithm 2: The function that builds the candidate slots.

Candidate slots are computed from C : a subgraph of the current DAG G′, where
the dominating task ti, its successors and predecessors are removed. For instance,
with respect to Figure 4.11, graph C is equal to the graph in figure without tasks
t0 and t10, because they are respectively predecessor and successor of the domi-
nating task t3. For the sake of precision, we specify that functions pred(ti, G′) and
succ(ti, G′), line 2, return the set of predecessors (from the source) and succes-
sors (up to the sink) of a task ti ∈ G′, respectively. Successors and predecessors
are removed because Slot algorithm is based on the concept to paralellize the best
subsets of unscheduled tasks with the dominating task, namely the task among un-
scheduled which very likely will have a strong impact on the overall makespan. Thus,
at this step of the algorithm, the dominating task is not sequentialized to any other
task. Function combinationsOfParallelTasks(), line 3 in Algorithm 2, returns the
c-combinations of tasks in the subgraph K ⊆ G′, with c = 1, ...|C| that can be exe-
cuted in parallel to a dominating task. In Figure 4.11, for the dominating task t3, this



Figure 4.14: Removing tasks t0, t3 and t10 from case study of Figure 4.10

function returns the combinations of c = 1, 2, ..., 8 tasks that can execute in parallel
to t3, from the subgraph obtained by removing t0, t3 and t10, depicted in Figure 4.14.
Candidates are generate by adding one task at a time (line 7). However, some of
these combinations are invalid and must be filtered out (lines 8-13 in Algorithm 2).
Valid combinations are those whose tasks respect three conditions:

1. Resources-availability condition: the sum of scheduling-independent resources,
which are the only ones taken into account in this chapter, shall not exceed
those offered by the FPGA. Function validAllocation(), line 9, verifies if a slot
disposes of enough FPGA resources to accomodate at least one remaining
task.

2. Topology condition: constraints on topology may affect the generation of can-
didates in a dual way.

a) Constraints among unscheduled tasks - as we already seen in Section 4.6.1,
a candidate slot cannot contain a task tk and a task tj, which is sequential
to tk, without all the tasks between tk and tj. This is the case for the can-
didate {t3, t5, t8} in Figure 4.14. Such candidate contains tasks t5 and t8,
but not task t6 and then it is topologically non-valid.

b) Constraints between unscheduled tasks and already formed slots - the
same principle as above can be applied to already formed slots. Fig-
ure 4.14 does not provide us a valid example because it refers to the first
iteration of Algorithm 1 and therefore no slots are still formed. Let us con-
sider Figure 4.13b instead. Regardless the scheduling choices taken in
the rest of Figure 4.13b, a candidate which contains both tasks t4 and t6
would be topologically non-valid. Indeed, task t4 precedes slot S0 which
in turn precedes task t6. Since slots must be executed in sequence, any
situation in which an already defined slot (such as S0) is placed between



a set of tasks (such as t4 and t6) makes topologically non-valid scheduling
such set of tasks in the same slot.

3. Computational-dominance condition: the total HET required by all tasks of
a candidate slot cannot exceed theHET of the dominating task for such slot. In
other words, the execution of all the tasks which are parallel to the dominating
task (i.e., dominated tasks), is hidden by the execution of the dominating task.
This implies the fact that the HET of the dominated tasks has no impact with
respect to the overall makespan. The choice of which tasks are dominated
in which slot plays a key-role in the minimization of the makespan. Function
executionT ime(X,G′), line 8, is used to verify if a combination of tasks X re-
spects the computational dominance principle in the DAG G′. It returns the
length of the critical path that tasks in X form in G′. For X = {t2, t4, t5} in Fig-
ure 4.14, the function returns max{HET2, (HET4 + HET5)}, which does not
respect the computational-dominance condition (indeed, HET4 + HET5 = 514
ms and this exceeds the HET of the dominating task t3, which is 460 ms).

With respect to the example, for dominating task t3 we calculated 256 candidates,
but only 20 of them did pass all the feasibility tests, as labeled in Figure 4.13, below
each slot. Back to Algorithm 2, operation Gs + tc, at line 10, adds tc to the slot task
graph Gs. This addition produces the same graph as the subtraction G − Gs − tc. If
the generated candidate s respects all the feasibility constraints, it is added to the
set of valid candidates S (lines 16-18), which is returned at the end of the algorithm
(line 20), after all the combinations of tasks which are parallel to the dominating one
have been explored (loop in lines 3-19).

4.6.3 Score

Once a list of valid candidate slots is provided from function buildCandidateSlots()
(line 7 in Algorithm 1), it is necessary to evaluate which one among them is expected
to lead to the best overall scheduling. When targeting reconfigurable hardware, a
schedule is constrained by two elements. Thus, score is computed by separately
considering inter-task dependencies and HETs, from the reconfiguration time TR
and the occupancy of tasks resources. Hence, the two terms returned by Algo-

1 Function computeScore( slot s, dependency graph G′ ):

2 J := merging Gs in G′copy; r̄J1 :=
∑

ti∈J
ri1

R1
; r̄J2 :=

∑
ti∈J

ri2

R2
; ...; r̄Jk :=

∑
ti∈J

rik

Rk
;

3 nreconfigJ := max(dr̄J1e, dr̄J2e, ..., dr̄Jke);
4 return T∞(J) + nreconfigJ × TR;

Algorithm 3: The function that assigns a score to a slot



rithm 3. The first term, T∞(J) quantifies the impact of tasks HET and inter-task
dependencies (that impose scheduling constraints) in graph J , the graph obtained
by merging tasks of candidate slot Gs in a copy of graph G′. Differently from function
contractSubgraph(Gs, G

′), line 12 of Algorithm 2, computeScore(s,G′) (detailed in Al-
gorithm 3) does not actually modify nor overwrite G′, because it acts on a copy of it.
Calculating T∞(J) is equivalent to calculating the makespan of unscheduled tasks in
DAG J , by scheduling them onto an FPGA characterized by infinite resources. In this
manner, we evaluate the level of HET -weighted parallelism among tasks which re-
main in graph G′ if we would choose slot Gs as a winning slot. T∞(J) considers only
the impact of HETs and data-dependencies by ignoring resources occupancy. The
latter has a contribution on the overall makespan, because the estimated number of
reconfigurations in graph J , multiplied per the reconfiguration time TR, determines
the estimated time spent in future reconfigurations. This is taken into account by
the second parameter of the score, which calculates the minimum number of re-
configurations in graph J by considering the occupancy of the tasks only without
consider inter-task dependencies. For each scheduling-independent resource (i.e.,
LEs, DSPs, EMBs in this example) ri, we calculate the sum of requests of tasks
which belong to graph J ,

∑
ti∈J ri1. This sum is divided by the total availability of the

FPGA for such resource Ri and the next integer (provided by ceil (ceile) function),
named r̄i, is taken. The overall minimum number of reconfigurations is given by the
largest among each r̄i. We chose to optimistically consider the minimum number of
reconfigurations because, from our simulations, the number of slots of the optimal so-
lutions was often equal to the number of slots calculated through Algorithm 3. Such
value, multiplied per TR gives the time contribution given by future reconfigurations.

As an example, let us calculate the score for the slot {t3, t2, t5}. Graph G’ (equiva-
lent to the DAG depicted in Figure 4.13a) is duplicated in graph J and tasks {t3, t2, t5}
are merged onto slot SX in graph J by obtaining a situation illustrated in Figure 4.15.
We calculate the two contributions over such graph. In this respect, neither SX
nor other already defined slots (not present in Figure 4.15 because it refers to the
first iteration of Algorithm 1) contribute on the two parameters. In other words, all
the slots (which can be already defined or under evaluation such as SX) have a
null contribution over the calculus of T∞(J) or nreconfigJ × TR. This is because we
are only interested on the impact derived by scheduling slot SX onto tasks which
are still unscheduled. T∞(J) is given by: HETt0 + max(HETt4 , HETt1) + HETt6 +
max(HETt7 , HETt8+t9) + HETt10 = 287 + 200 + 199 + 303 + 114 [ms] = 1103 [ms].
The minimum number of reconfigurations is given by: nreconfigJ := max(dr̄LEse, dr̄DSPse, dr̄EMBse),
where:

dr̄LEse is given by the ceil of the sum of LEs required by tasks in J divided by availability
of LEs of FPGA (2586k in this example), namely: d5090k/2586ke = d1.968e = 2.

dr̄DSPse is given by the ceil of the sum of DSPs required by tasks in J divided by avail-



Figure 4.15: DAG considered by the scoring-based system for the first iteration of
Slot

ability of DSPs of FPGA (6840 in this example), namely: d10266/6840e = d1.5e
= 2.

dr̄EMBse is given by the ceil of the sum of EMBs Mb required by tasks in J divided by
availability of EMBs Mb of FPGA (75.9 in this example), namely: d81/75.9e =
d1.06e = 2.

The estimated time which will be passed by tasks of G′ by choosing tasks {t3, t2, t5}
as a winning slot is: 2 ∗TR. The latter parameter is fixed to 200ms in this example, for
a total of 400ms.
The score for slot {t3, t2, t5} is then: 1103 + 400 ms = 1503 ms. This number can
be read as follow: by scheduling tasks {t3, t2, t5} together, remaining tasks in graph
G′ would need at least total ms to be executed. In this respect, the actual num-
ber calculated once the scheduling has been defined is 1477 ms. As the iterations
go on, such estimation tends to become more precise, because both the number
of unscheduled tasks and the complexity decrease. In order to take a scheduling
decision, we do not need to calculate a perfect estimation, but only that the calcu-
lated numbers respect the real quality of each candidate. In this sense, this score
experimentally demonstrated to work well (refer to evaluation, in Chapter 5).

We highlight that such score allows the heuristic to take scheduling decisions that
a user normally considers counter-intuitive. For instance, slot composed of tasks
{t2, t3, t5} is preferred over 19 other resource-valid candidates, such as {t2, t3, t4}. At
a first glance, a slot composed of tasks {t2, t3, t4} may seem more effective, because
all the tasks are parallel and they belong to the same breadth-first search level (i.e.,
they are all far 2 steps from the source of the graph). In this respect, score under-
stood that slot {t2, t3, t5} amortizes the execution time of t5 (larger than that of t4) as
t5 can execute in parallel to the dominating task t3. In addition, score evaluated that,
even though t5 is one breadth-first search level far more from the source rather than
t3 and t2, slot {t2, t3, t5} is still preferable over the other 19 candidates. This choice is



not trivial because it depends on a combination of parameters: data-dependencies,
HETs of tasks, reconfiguration time, number of reconfigurations, and so on. With
respect to this example, in fact the optimal solution provides slot {t2, t3, t5} and it is
the same as the one calculated by Slot . Not limited to this example, we experimen-
tally demonstrated in Chapter 5, that the scoring system often led to select a good
choice.

4.6.4 Optimization Phase

As illustrated in Figure 4.13, we compute a schedule by progressively transforming
an initial tasks DAG, which defines a partial order for tasks, Figure 4.13a, into a slot
DAG that specifies a total execution order for both slots and tasks, Figure 4.13g.

While designing the heuristic, we observed that during the final iterations of Algo-
rithm 1, slots tend to be composed of a single dominating task ti, see Figure 4.13e,
Figure 4.13f and Figure 4.13g. This is because most of the candidate dominated
tasks have already been assigned to slots in previous iterations. As an additional
improvement of the results, in order to improve the FPGA utilization and saving more
reconfigurations, we propose Algorithm 4. Here, we scan all slots in the slot DAG
and, for each slot, we attempt to allocate its tasks to a neighboring slot, in a first-
fit manner. This re-allocation is performed by means of contracting edges between
slots. Edge contraction is defined in [57] as the operation that removes an edge from
a graph, while merging the edge’s end vertices and removing duplicate edges. Tasks
of a slot are allocated to the first neighboring slot s′ that has enough FPGA resources
and for which dependencies are respected. All tasks in s′ must either be predeces-
sors or successors of ti in the initial DAG G. Figure 4.16 illustrates how function

1 G′ ← generateSlots(G);
2 G′ ← reduceReconfigurations(G′);
3

4 Function reduceReconfigurations( slot DAG G′ =< S, L > ):
/* S := set of slots, L := set of slot arcs */

5 foreach s ∈ S do
6 foreach s′ ∈ {S \ s} | ∀ti ∈ Ts′ , ti ∈ pred(s, G′) ∨ ti ∈ succ(s, G′) do
7 if (rs′1 + rs1 < R1) ∧ (rs′2 + rs2 < R2) ∧ ... ∧ (rs′k + rsk < Rk) then
8 contractEdge(s→ s′, G′);
9 break;

10 end
11 end
12 end
13 return G’;

Algorithm 4: Merging single-task slots in first-fit.



Figure 4.16: Reducing the makespan of Figure 4.13g as described in Algorithm 4.

reduceReconfigurations() reduces the latency for the slot DAG of Figure 4.13g. It
merges S2 and S3 in the new slot S2,3 and it merges S0 and S4 in the new slot S0,4.
The improved DAG in Figure 4.16c contains 4 slots (instead of 6 in Figure 4.13g)
by saving 2 ∗ TR = 400ms. Algorithm 4 is simple yet efficient enough to produce
solutions that are very close to the optimum (see Chapter 5). In fact, the problem
solved by Algorithm 4 is a research problem which is simpler than the one solved by
Slot , for which a heuristic is necessary in order to keep the run-time low. Thus, we
cannot exclude that exact solution (or almost exact solutions) which solve the slots
compacting problem by keeping the run-time limited to the order of tens of millisec-
onds may exist. Based on our experiments, an algorithm simple and fast such as
Algorithm 4 (its complexity is linear with the number of slots) was enough to produce
results which are close-to-optimum.

4.6.5 Complexity discussion

For each component of Slot we provide a theoretical complexity, which corresponds
to the worst-case, and a practical complexity, which corresponds to the average case.

Table 4.4 illustrates our considerations about complexity of Slot algorithm. We
distinguish between four main contributions (i.e., the contributions which are compu-
tationally heaviest): the main loop of Algorithm 1 (i.e., lines 5-14), function buildCandidateSlots
(line 7 of Algorithm 1 and further detailed in Algorithm 2), function computeScore (line
9 of Algorithm 1 and further detailed in Algorithm 3) and functionminimizeReconfigurations
(line 15 of Algorithm 1 and further detailed in Algorithm 4).

The main loop of Algorithm 1 iterates over a worklist composed of the sequence
of tasks that compose the input DAG ordered for decreasing HET . Thus, iteration in



Algorithm Theoretical complexity Practical complexity
Main loop of Alg. 1 O(|N|) O(|N|)

Candidate gener. - Alg. 2 exponential* polynomial*
Score - Alg. 3 O(|N| + |E|) O(|N| + |E|)

Optimization - Alg. 4 O(|slots|) O(|slots|)

Table 4.4: Computational complexity of the main steps of Slot . We remind the reader
that |N | represents the number of nodes of the application DAG (i.e., the number of
tasks) and |E| represents the number of edges (i.e., the data-dependencies between
tasks)

lines 5-14 of Algorithm 1 is repeated a number of times that is equal to the number
of tasks in the worst-case. This is equivalent to the situation in which each task com-
poses a single-task slot. In the average case, the main loop is repeated a number
of times which is under the number of tasks in the DAG (i.e., some tasks are aggre-
gated). We left the analysis of function buildCandidateSlots and Algorithm 2 for the
end of this section and we pass to the analysis of function computeScore and Algo-
rithm 3. In our implementation, we calculate both contributions of the score through a
single breadth-first visit of the graph. In the worst case, every vertex and every edge
will be explored. O(|E|) may vary between O(1) and O(|N|2), depending on how
sparse the DAG is [38]. As the iterations go on, the original DAG is simplified be-
cause of the effect of function contractSubgraph, line 12 of Algorithm 1, making the
breadth-first visit less complex. Our implementation of minimizeReconfigurations
function (Algorithm 4) has a complexity linear with the number of nodes in the slot
DAGs (e.g., DAG in Figure 4.13g).

Thus, the real complexity of the heuristic is determined by the number of com-
binations of tasks that may form a slot, for the subgraph C defined at line 2 in Al-
gorithm 2. This number depends on the task dependencies in C and cannot be
expressed in closed form. In the worst case, for a graph C where all tasks can exe-
cute in parallel, the number of combinations amounts to

∑|NC |
i=1

(
|NC |
i

)
, where |NC | is

the number of tasks in C1. Fortunately, these highly parallel graphs are almost never
encountered in practice. In fact, the total number of combinations is strongly limited
by task dependencies and by resource constraints. In most of the practical cases we
encountered, the complexity is maximal at the first iterations of the loop at line 3 in
Algorithm 2. Complexity decreases significantly with the creation of subsequent slots
as parallelism in G′ is progressively reduced. This can be seen in Figure 4.13 where
below each slot we reported a pair of numbers f/g. f is the number of combinations

1This also corresponds to the theoretic case of a graph with no edges (null graph). We ignore this
case as it violates our design assumptions.



in C that can be computed without considering for inter-task dependencies (the the-
oretical complexity). g is the number of valid candidate slots (the actual complexity).
A significant difference between f and g exists only for S0. In our implementation,
we combined function combinationsOfParalleTasks() with the tests at lines 7 and
10. When a combination of tasks X does not respect the computational dominance
condition or requires more FPGA resources than those available, we stop explor-
ing combinations that are descendants of X. This prunes the candidate space and
significantly reduces run-time. Resuming, the generation of candidate slots surely
constitute the most expensive operation of Slot from time complexity point of view.
Even though the theoretical complexity of this function is exponential, this is not not
reflected in practical cases for several reasons. Firstly, data-dependencies and con-
straints that defines the feasibility of a candidate slot reduce the number of candidate
slots. Secondly, as the iterations go on, more the input DAG is simplified because
merging tasks together reduce the parallelism of the graph. If we deal with large
application graphs (e.g., hundreds of tasks), some additional heuristics which avoid
to consider all the combinations of tasks which are parallel to a dominating tasks can
be considered. Examples in such sense are (i) considering only slots which max-
imize the resource occupancy of the FPGA (in other words, that means to discard
all the slots whose tasks are entirely contained in another valid slot) and (ii) forbid
to place in parallel tasks whose breadth-first distance from the source of the graph
exceeds a certain threshold. However, these are only ideas since we did not move
our research in such sense.

Precisely estimating the timing complexity of this part of Slot algorithm is a com-
plex problem which we did not entirely taken into account in this thesis. However,
we did some experimental considerations in this respect. In the face of a theoretical
complexity which is exponential, in the benchmark presented in Chapter 5 we no-
ticed a practical complexity which tends to be polynomial with the number of tasks in
the input DAG.

4.7 Conclusion

In this chapter we have described how our approach, named Slot , can efficiently
tackle the FPGA scheduling problem. At the beginning of the chapter, we have
shown why an exhaustive analysis is unfeasible from the computational timing point
of view. Then, we have described how we capture hardware resources and applica-
tions. Finally, we have described the main steps of Slot and we have discussed its
theoretical complexity. We think that the key-strenght of Slot is its intelligent com-
putation of slots, which efficiently exploit the parallelism of an FPGA. Next chap-
ter will show the evaluation of Slot on a synthetic benchmark composed of several
pseudo-randomly generated instances. Specifically, we will evaluate the quality of



the scheduling solution produced by Slot and its run-time.





Chapter 5

Experimental evaluation

5.1 Introduction
This chapter experimentally evaluates Slot and compares it with other, exact or ap-
proximate, approaches.

In order to evaluate the quality of the schedule computed by Slot we must com-
pare the obtained makespans with an optimal absolute reference. We thus first for-
mally model the FPGA scheduling problem and use this to solve problem instances
with an exact approach. We chose to use Mixed Integer Linear Programming (MILP)
because it seams very suitable for this kind of optimization problems. We then de-
sign an instance random generator to generate a large number of instances of the
FPGA scheduling problem. We solve these instances with an MILP solver to obtain
the minimal makespans and compare them with the makespans found by Slot on
the same instances. We also compare the run-times of the two approaches. Finally,
we compare the quality and the run-times of Slot with the HEFT-NF heuristic that we
already discussed in Chapter 3. To the best of our knowledge HEFT-NF is the only
proposal comparable to Slot .

Section 5.2 presents our formal description suitable for MILP solving. Section 5.3
describes the instances generator we used to generate about 37500 instances of
the FPGA scheduling problem. Section 5.4 shows the results obtained by MILP,
HEFT-NF and Slot on this benchmark and discusses them. Section 5.5 concludes
the chapter.

5.2 MILP Formulation
Until now we discussed the FPGA scheduling problem based on an informal de-
scription. A formal model is needed to feed an exact solver and obtain exact optimal
solutions for instances of the FPGA scheduling problem. The choice of a formu-
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lation suitable for MILP solving comes from the characteristics of the problem: its
constraints are time-related (dependent tasks must execute in a correct order) and
resources-related (the FPGA available resources shall never be exceeded). These
constraints can conveniently be expressed using numeric variables (start and end
times, amounts of available or consumed resources) and inequalities. On top of
this the optimization goal is easily expressed as a simple objective function: the
makespan. For all these reasons MILP is a good candidate exact solver. As we do
not know what the theoretical complexity of the problem is, we do not know how an
MILP solver will perform and what is the maximum instance size it can solve in a rea-
sonable amount of time but this is one of the expected outcomes of this experiment:
get an estimate of the practical complexity.

Each problem instance is entirely specified by a set of input values, a set of
constraints and an objective function1. Input values can be, for instance, the number
of tasks or their durations. From these input values, the constraints and the objective
function, the MILP solver computes output variables like the start times of tasks or
the task-to-slot allocations.

Inputs

The input values used in our formulation are:

• nt ∈ N, nt ≥ 2 is the total number of tasks, including the artificial source and
sink. In the following we denote T = {T0, . . . , Tnt−1} the set of tasks. T0 and
Tnt−1 are the artificial source and sink tasks with zero duration and zero re-
source consumption. We remind that the artificial source and sink tasks are
just a way to close the DAG that represents the inter-task dependencies and
that they are added without loss of generality. They ease the modelling by
providing simple start and end points but they have no impact on the results.

• y ∈ R+nt is the vector of the durations of the tasks; yt is the duration of task Tt.
We always have y0 = ynt−1 = 0 because tasks T0 and Tnt−1 have zero duration.

• nr ∈ N, nr ≥ 1 is the number of types of resources offered by the target FPGA.
R = {R1, . . . , Rnr} is the set of types of resources (e.g. LE, DSP blocks, Em-
bedded Memory Blocks, Clock Generators. . . )

• ns = nt − 2 ∈ N is the total number of slots. S = {S1, . . . , Sns} is the set of
slots. By definition the maximum number of slots is equal to the number of
non-artificial tasks so, to simplify the problem specification, we fix the number
of slots to its theoretical maximum (ns = nt − 2). In most cases the last slots
of a schedule have no allocated tasks and are not considered in the computed

1Plus the semantics of the model, of course



makespan, but in exceptional cases it can be that all slots are used, each by
one single task.

• T ∈ R+ is the reconfiguration time of the target FPGA.

• P ∈ {0, 1}nt×nt is a matrix of precedence relations; elements of P are binary
values; if P element πt,t′ = 1, then task Tt precedes task Tt′ (Tt′ can execute
only after Tt termination). Precedence is transitive so all precedence matrices
with same transitive closure are equivalent. P is not a free variable and must
obey constraints: the directed graph G with vertices in T and edges defined
by P must be acyclic. P must also be such that task T0 is a direct or indirect
predecessor of all other tasks and task Tnt−1 is a direct or indirect successor of
all other tasks.

• q ∈ Nnr is the vector of the total available quantities of FPGA resources; qr is
the total quantity of resource Rr. We decided to use natural number values
because FPGA hardware resources are usually discrete elements. As these
are input variables, and no output integer variables are derived from them, this
choice has no impact on the solving complexity. If other types of resources
were needed and would be better described by real numbers (e.g. energy),
this choice could easily be changed and would have no impact.

• R ∈ Nnt×nr is the matrix of resources consumptions; elements of R are natural
numbers; R element 0 ≤ ρt,r ≤ qr is the consumption of resource Rr by task Tt
(we consider only problem instances for which solutions exist, so there are no
tasks that consume alone more resources than what is available). The artificial
source and sink tasks do not consume any resource:

∀ 1 ≤ r ≤ nr ρ0,r = ρnt−1,r = 0

• H is a large number, larger than every possible makespan. In MILP parlance
this is the “horizon”. In our case H can easily be set to the sum of the task
durations plus the sum of the maximum number of reconfiguration times. This
extreme case corresponds to the worst possible schedule where all slots are
used with one single non-artificial task per slot:

H = ns × T +
∑

0≤t<nt

yt

Outputs

The outputs are the values computed by the MILP solver and that fully define a solu-
tion. They must be very carefully selected and their types (real, integer, binary) must



also be carefully chosen because these choices have a strong impact on the solv-
ing complexity. The theoretical complexity of the general Linear Programming (LP)
problem is polynomial and instances can actually be solved in polynomial time us-
ing interior-point techniques. Changing some of its real output variables into integer
output variables changes the LP problem into MILP and the theoretical complexity
becomes NP-hard. The rule of thumb of our formulation is thus to limit the num-
ber of integer output variables and use binary variables instead of integer variables
whenever possible.

• x ∈ R+nt is the vector of start times of tasks; xt is the start time of task Tt.
Without loss of generality we constrain the start time of the artificial source task
to be zero: x0 = 0. The x0 component is thus technically an input. Note that this
means that the initial reconfiguration time is not counted in the total makespan,
which is the same convention used by the two heuristics we compare with
MILP. This convention is a bit more convenient on a pure implementations
point of view and it does not change anything to the schedules selected by
the three methods. It is just their claimed makespans that are systematically
shorter by one reconfiguration time. The missing initial reconfiguration time
is added to all makespans in a post-processing such that relative makespan
comparisons are correct.

• z ∈ R+nt is the vector of end times of tasks; zt is the end time of task Tt. If we
consider the xt as true output variables, as task durations yt are known inputs,
the zt are not true output variables: they can be computed from the xt and the
yt and they should not add to the complexity.

• u ∈ R+ns is the vector of start times of slots; us is the start time of slot Ss.
Without loss of generality we constrain the start time of the first slot to be zero:
u1 = 0. The u1 component is thus technically an input. As for x0, this convention
is a bit more convenient on a pure implementations point of view and does
not change the computed schedules; the omitted initial reconfiguration time is
added to the computed makespan in a post-processing.

• v ∈ R+ns is the vector of durations of slots; vs is the duration of slot Ss.

• w ∈ R+ns is the vector of end times of slots; ws is the end time of slot Ss. A bit
like for the xt, yt and zt, the us, vs and ws are redundant: the ws, for instance, can
be computed from the us and the vs and they should not add to the complexity.

• A ∈ {0, 1}nt×ns is the allocation matrix; elements of A are binary values. A
element αt,s = 1 if task Tt is allocated in slot Ss, else αt,s = 0. The αt,s are
the unavoidable but only source of MILP solving complexity. Without loss
of generality we constrain task T0 to be allocated to slot S1: α0,1 = 1 and
∀ 1 < s ≤ ns, α0,s = 0. These matrix elements are thus technically inputs.



Objective function

Our objective function is the total makespan and can be very easily expressed using
the output variables: it is znt−1 − x0 = znt−1, the end time of the artificial sink task
Tnt−1. The MILP solver will be instructed to find a solution that complies with the
constraints and that minimizes znt−1. This objective function does not involve the
number of actually used slots, which naturally solves the potential issue about the
total number of slots ns = nt − 2; the unused slots, if any, and the corresponding
reconfiguration times are not counted in the objective function and do not influence
the optimization effort.

Constraints

We present here a high-level human-readable form of the constraints of the MILP
formulation. The low-level form that can directly be used by the solver is less in-
tuitive. It makes use of auxiliary variables defined by linear equations of the input
and output variables. A low-level constraint then consists in specifying upper and/or
lower bounds of the output and auxiliary variable, plus type constraints on the output
variables (e.g. the αt,s are binary values).

For instance, in order to express that a task Tt cannot be pre-empted and its end
time is its start time plus its duration we introduce the auxiliary variables at such that:

∀ 0 ≤ t < nt, at = xt + yt − zt
∀ 0 ≤ t < nt, 0 ≤ at ≤ 0

We do not detail here this low-level form and the auxiliary variables. The reader
interested in the low-level details of the MILP formulation will find them in Appendix A.

The list of time-related constraints is the following:

• A task cannot be pre-empted, its end time is equal to its start time plus its du-
ration:

∀ 0 ≤ t < nt, zt = xt + yt

• There is no idle time between slots and the start time of a slot is the end time
of the previous slot plus the reconfiguration time:

∀ 2 ≤ s ≤ ns, us = ws−1 + T



• A slot cannot be pre-empted, its end time is equal to its start time plus its dura-
tion:

∀ 1 ≤ s ≤ ns, ws = us + vs

• If a task Tt is allocated in a slot Ss (αt,s = 1), then its execution happens during
the slot’s duration:

∀ 0 ≤ t < nt, ∀ 1 ≤ s ≤ ns, αt,s = 1⇒ us ≤ xt ≤ zt ≤ ws

• If a task Tt precedes another task T ′t (πt,t′ = 1), then Tt end time is less or equal
Tt′ start time:

∀ 0 ≤ t < nt − 1, ∀ 1 ≤ t′ < nt, πt,t′ = 1⇒ zt ≤ xt′

The resources-related constraints can be condensed in one single statement:
the tasks allocated to a slot cannot use more of any resource than its total available
quantity:

∀ 1 ≤ r ≤ nr, ∀ 1 ≤ s ≤ ns,
∑

0≤t<nt,αt,s=1
ρt,r ≤ qr

Finally one more constraint is needed to express the fact that a task is allocated
to one and only one slot:

∀ 0 ≤ t < nt, ∃! 1 ≤ s ≤ ns, αt,s = 1

5.3 Random generation of problem instances
In order to build a large collection of instances with thousands of samples we could
not use real world examples, first because we would never find such a large number
of well documented designs, second because modelling them by hand according
our MILP template would represent an enormous and error prone work. We thus
decided to generate instances randomly.

An instance of the FPGA scheduling problem is characterized by its number of
tasks, its DAG, the tasks durations and resources consumptions. Randomly as-
signing task durations or resources consumptions does not pose a problem, apart



deciding of bounds. In order to cover a large scope we eliminated too small resource
consumptions because they tend to relax the resource-related constraints in favour
of the time-related constraints and somehow bias towards a different, more classic,
type of scheduling problems. Indeed, if all tasks fit in a single slot because they con-
sume very few of each resource, the problem is not an FPGA scheduling problem
any more. We also eliminated too large resource consumptions because they tend to
over-simplify the problem: each task with a large consumption of one resource tends
to become a slot by itself and cuts the rest of the schedule in two simpler halves.
For our benchmark we decided that each task can consume any proportion between
10% and 50% of each available resource. Our experiments show that this produces
many “hard” instances with non-trivial optimal solutions.

A similar reasoning led to our choice for the task durations. Too short tasks tend
to bias the problem towards a resource-only optimization while too long tasks tend to
favour our approach based on dominant tasks first. We decided that each task can
last between 1/4 and 4 times the reconfiguration time of the FPGA. There again our
experiments show that a lot of “hard” instances are generated.

The DAG random generation is a bit more difficult because of the acyclic con-
straint, the unique source and sink tasks and the need to obtain “realistic” depen-
dency graphs that can be considered as representative of real-world applications.
Indeed, the DAG of real world applications do not have arbitrary large number of
edges; tasks with many producers and/or with many consumers are rare. We inte-
grated all these constraints as follows:

• The DAG random generator is given a number of vertices nt > 2 and a number
of internal edges ne. An internal edge is an edge that does not connect ver-
tex T0 or vertex Tnt−1. The vertices represent tasks and the edges the direct
dependencies between them.

• The task (vertex) indexes are used as a topological ordering of the dependency
graph: if there is an edge from vertex Ti to vertex Tj, then i < j. This is a
necessary and sufficient condition to guarantee that the graph is acyclic.

• The generator starts with a graph with nt vertices and no edges. It iterates ne
times and adds one internal edge per iteration. At each iteration the generator
randomly selects two different vertices Ti and Tj such that 0 < i < j < nt − 1
and there is no edge already between them. In order to avoid unrealistic num-
bers of incident edges the two vertices must also be such that after adding an
edge between them:

– Their total number of input internal edges is less or equal 2.

– Their total number of output internal edges is less or equal 4.

– Their total number of incident internal edges is less or equal 5.



• The generator then adds an internal edge from Ti to Tj. At the end of this first
phase vertices T0 and Tnt−1 are not yet connected and the rest of the DAG is
not guaranteed to be fully connected. It could be composed of several disjoint
sub-graphs.

• The second phase closes the DAG by adding one edge between vertex T0 and
each other vertex without a predecessor (except Tnt−1), and one edge between
each vertex without a successor (expect T0) and vertex Tnt−1. This second
phase produces a connected DAG with one single source task (T0) and one
single sink task (Tnt−1).

Of course, this algorithm works if and only if the specified number of internal
edges ne is less or equal the theoretical maximum: the nt−2 non-artificial tasks have
at most two input internal edges each, except task number 1 which has none and
task number 2 which has at most one (coming from task number 1). The maximum
number of internal edges is thus 0 + 1 + 2× (nt − 4) = 2× nt − 7.

We also excluded DAG with too few internal edges: applications with few or no
inter-tasks dependencies are closer to a classical multidimensional bin packing prob-
lem than to our FPGA scheduling problem. We considered only graphs with at least
one incident internal edge per non-artificial task, that is a minimum of nt − 3. This
is the case, for instance, of a perfectly sequential application (or two independent
sequential applications with one extra internal edge in one of the two sub-DAG).

With this random generator we generated 37500 different instances with 6 to
30 tasks, 3 to 53 internal edges, and 5 to 61 total edges. In the following we will
frequently split this benchmark in subsets according the number of tasks; we name
“batches” these subsets.

Figure 5.1 shows two DAG, without the artificial source and sink tasks, of the
nt = 10 tasks batch, one with ne = 7 internal edges (the minimum) and the other with
ne = 13 (the maximum).

The goal of the constraints we integrated to our DAG random generator is to
produce more realistic problem instances but they could also hide important aspects.
In Section 5.4.4 we study the effect of relaxing these constraints.

5.4 Evaluation results
The target FPGA used for all evaluations was the Xilinx XC7S25 from the Spartan-7
family and we used a 3D model of it, with LE, RAM blocks and DSP resources. The
XC7S25 FPGA is a relatively small FPGA but the complexity of the FPGA scheduling
problem does not depend on the size of the target FPGA. Resources could as well
be normalized and their quantities or consumptions represented as real numbers in
the [0, 1] interval, it would not change anything. We could have used the Xilinx Virtex
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Figure 5.1: Randomly generated 10 tasks DAG

Ultrascale P9 FPGA (the one used in F8 instances of Amazon Elastic Cloud), for
instance, with similar results.

We compared 3 different implementations of one exact solver and two heuristics:

• A MILP solver written in C using the GNU Linear Programming Kit (GLPK) [7]
and based on the MILP formulation presented in Section 5.2 and Appendix A.

• A Slot Java 8 implementation on a 64 bit Java Virtual Machine, version 1.8.0_201.

• A HEFT-NF Java 8 implementation on a 64 bit Java Virtual Machine, version
1.8.0_201.

HEFT-NF is the Next-Fit version of Heterogeneous Earliest Finish Time [104]
heuristic already presented in Section 3.3.1.1. HEFT-NF is commonly used in the
literature as a baseline for comparison [93, 100] because of its simplicity and high
performance. To the best of our knowledge, a direct comparison with other heuris-
tics is not possible without significantly denaturing them and biasing the comparison.
Indeed, some of the works cited in Chapter 3 are based on simpler single resource
models that are still valid for old FPGA without embedded DSP or on-chip RAM
blocks. Other related works are based on design assumptions that conflict with the
context of FPGA-based servers in cloud data centres. For instance, the contribution



in [110] is based on partial reconfiguration. In [42], independent tasks are packed,
whereas we account for dependencies that partially constrain schedules.

All experiments have been run on a workstation with 2 sockets, 16 hyper-threaded
cores per socket, that is, 64 logical CPUs, clocked at 3.5 GHz and with 64 GB of
memory. Due to the very large set of instances and the run-times of the MILP solver,
up to 60 runs have been launched in parallel. The memory monitoring shown that
the memory was not a bottleneck.

For each problem instance the MILP solver produced an optimal solution and
the two heuristics produced one approximate solution each. The schedule, the
makespan and the tool’s CPU User Time (CUT) have been recorded in a database.
For the MILP approach a time-out of 24 hours has been set: for any instance exceed-
ing this real time the solver has been stopped, and the instance has been excluded
from the comparison with MILP. These “hard” instances have however been retained
for comparisons not involving MILP.

5.4.1 The practical complexity of the FPGA scheduling problem

One of the first outcomes of our experiments is the practical complexity of the FPGA
scheduling problem. 7486 out of 37500 problem instances were solved by MILP in
less than the 24 hours time-out. All solved instances had between 6 and 15 tasks.
We did not try to go above 15 tasks because the total CUT spent on the nt = 15
tasks batch already represents about 6 days of cumulated CUT (not counting the
24 hours time-out of the aborted instances, plus the fact that the real time is always
significantly larger than the CUT). Moreover, the proportion of instances for which the
24 hours time-out was exceeded increases with the number of tasks, which probably
introduces a significant bias by keeping only “simple” instances. Continuing with
larger instances would take huge computation times and produce more and more
biased batches.

On the 7486 solved instances we estimated the practical complexity of the FPGA
scheduling problem from the CUT taken by our MILP solver. The CUT were all mea-
sured with the getrusage function of the glibc library. As the complexity increases
with the number of tasks, we analysed the distribution of the CUT independently
for the different batches. Table 5.1 summarizes the observations for 6 ≤ nt ≤ 15,
one row per batch, with the proportion of instances for which the MILP solver ter-
minated before the 24 hours time-out (Solved), the total CUT spent on the solved
instances (Total), the minimum, maximum, average, standard deviation and median
of the CUT. All CUT are in microseconds. Zero values are due to the limited resolu-
tion of getrusage.

The CUT distributions of MILP solving are highly biased towards the minimum
as can be seen for the nt = 15 tasks batch (1187/1200 instances solved) and its
histogram represented on Figure 5.2. There are more than 6 orders of magnitude



Tasks Solved Total Min Max Mean Std Median

6 300/300 8.87E+05 0.00E+00 9.75E+03 2.96E+03 1.62E+03 3.05E+03
7 400/400 3.66E+06 0.00E+00 3.04E+04 9.15E+03 4.27E+03 8.53E+03
8 500/500 1.37E+07 2.63E+03 7.36E+04 2.75E+04 1.26E+04 2.56E+04
9 600/600 4.58E+07 1.07E+04 3.47E+05 7.63E+04 4.47E+04 6.60E+04

10 700/700 1.72E+08 2.70E+04 1.80E+06 2.46E+05 1.75E+05 2.02E+05
11 800/800 6.49E+08 7.90E+04 8.77E+06 8.11E+05 6.95E+05 6.62E+05
12 900/900 2.49E+09 2.09E+05 2.55E+07 2.77E+06 2.64E+06 2.02E+06
13 1000/1000 1.10E+10 5.41E+05 2.21E+08 1.10E+07 1.91E+07 6.38E+06
14 1099/1100 9.77E+10 1.11E+06 4.17E+09 8.89E+07 2.99E+08 2.53E+07
15 1187/1200 4.31E+11 3.44E+06 4.24E+09 3.63E+08 6.22E+08 1.28E+08

Table 5.1: MILP CPU user times in micro-seconds

between the non-zero minimum (0.0 milliseconds) and maximum (1.2 hours), and
more than 95% of the instances fall in the first decile (0 to 7 minutes).
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Figure 5.2: Histogram of MILP CPU user times for nt = 15 tasks

Because of the extreme variability of the CUT and their bias in each batch towards
the minimum, we decided to use the median instead of the less relevant average to
compare the different batches. They are plotted in Figure 5.3 with a logarithmic
scale.

Even if we can still not conclude about the real theoretical complexity of the FPGA
scheduling problem, we clearly see that its practical complexity, measured on the
CUT of a very well adapted exact solving technique, increases very rapidly with the
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Figure 5.3: Median of MILP CPU user times vs. the number of tasks

size of the instances. This very rapid and apparently exponential complexity, at least
for the numbers of tasks we could explore, again advocates for much faster, but still
high quality heuristics.

5.4.2 Comparison of Slot and HEFT-NF quality

For the 7486 instances for which the MILP approach completed in less than the
24 hours time-out the criteria we retained to compare the quality of the schedules
computed by Slot and HEFT-NF is the additional makespan they add to the optimum
computed by MILP.

The Empirical Cumulative Distribution Function (ECDF) is commonly used to rep-
resent the distribution of quality metrics when comparing optimization techniques.
We thus chose to plot the ECDF of the respective over-makespans, expressed as
percentages of the MILP makespan. Let Mref , Ms and Mh be the makespan of MILP,
Slot and HEFT-NF, respectively, considered as random variables, we defined the
over-makespans ∆s and ∆h as follows, where x ∈ {s, h} for Slot and HEFT-NF:

∆x = 100× Mx −Mref

Mref

And we plot:



ECDFx : R+ → [0, 1]
δ 7→ P (∆x ≤ δ)

The plots of the ECDFs and ECDFh for all batches are shown on Figure 5.4.
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Figure 5.4: ECDF of Slot and HEFT-NF over-makespans vs. MILP, all batches

These ECDF curves clearly show that Slot outperforms HEFT-NF. Indeed, Slot
over-makespan is less than 10% on more than 90% of the cases against about 45%
of the cases for HEFT-NF. In order to analyse how this advantage over HEFT-NF
depends on the number of tasks we also plotted separately on Figure 5.5 the in-
dividual ECDF curves per batch. The plots show that the Slot improvement over
HEFT-NF is significant for all explored numbers of tasks with a dramatic advantage
to Slot for small numbers of tasks. They also show that the quality of the two heuris-
tics decrease when the number of tasks increases, which is not very surprising for a
problem which practical complexity seems exponential.

To compare the performance of Slot and HEFT-NF on the instances for which the
MILP solver exceeded the 24 hours time-out we cannot use an absolute optimum
reference any more. We thus imagined a new heuristic, BEST, that simply consists
in taking the best of the Slot and HEFT-NF solutions. The ECDF curves of the over-
makespans of Slot and HEFT-NF vs. BEST for all batches are shown on Figure 5.6.
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Figure 5.5: ECDF Slot and HEFT-NF over-makespans vs. MILP, separate batches
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Figure 5.6: ECDF of Slot and HEFT-NF over-makespans vs. BEST, all batches

The individual ECDF curves per 16 ≤ nt ≤ 30 batch are shown on Figure 5.7.
Again, these ECDF curves show that Slot outperforms HEFT-NF in most cases.

5.4.3 Comparison of Slot and HEFT-NF CPU user times

We did our best to implement MILP, Slot and HEFT-NF as efficiently as possible.
MILP CPU user times have already been discussed in Section 5.4.1. Tables 5.2
and 5.3 summarize the observed CUT for Slot and HEFT-NF on a subset of the
batches.

Tasks Solved Total Min Max Mean Std Median

10 700/700 1.18E+08 1.00E+05 3.10E+05 1.68E+05 5.98E+04 1.30E+05
15 1200/1200 2.58E+08 1.30E+05 4.10E+05 2.15E+05 7.61E+04 1.70E+05
20 1700/1700 4.90E+08 1.60E+05 6.80E+05 2.88E+05 1.05E+05 2.30E+05
25 2200/2200 9.24E+08 2.00E+05 1.11E+06 4.20E+05 1.63E+05 3.50E+05
30 2700/2700 2.07E+09 2.90E+05 2.25E+06 7.68E+05 3.20E+05 6.90E+05

Table 5.2: Slot CPU user times in micro-seconds
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Figure 5.7: ECDF Slot and HEFT-NF over-makespans vs. BEST, separate batches



Tasks Solved Total Min Max Mean Std Median

10 700/700 4.20E+07 4.00E+04 8.00E+04 6.01E+04 6.23E+03 6.00E+04
15 1200/1200 1.05E+08 4.00E+04 1.70E+05 8.72E+04 3.18E+04 7.00E+04
20 1700/1700 1.47E+08 4.00E+04 1.50E+05 8.63E+04 3.07E+04 7.00E+04
25 2200/2200 1.99E+08 5.00E+04 1.70E+05 9.05E+04 3.31E+04 7.00E+04
30 2700/2700 1.80E+08 4.00E+04 9.00E+04 6.66E+04 7.08E+03 7.00E+04

Table 5.3: HEFT-NF CPU user times in micro-seconds

Figure 5.8 shows the median of the CUT for the two heuristics as a function of
the number of tasks.
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Figure 5.8: Median CUT of Slot and HEFT-NF vs. number of tasks

The minimum CUT of the two heuristics, observed for 6 tasks, are slightly larger
than with MILP. This offset is due to the different programming languages (Java
instead of C for MILP) and timing utility (ThreadMXBean.getCurrentThreadUserTime
instead of getrusage).

Just like MILP, Slot has a growing complexity with the number of tasks. However,
the median CUT for the 15 tasks instances is 170 milliseconds, that is, several orders
of magnitude less than with MILP. Regardless the quality of our Java implementa-
tions, these CUT also show that HEFT-NF scales much better than Slot with the
increase of the number of tasks. The HEFT-NF CUT is apparently almost constant,
which means that a part of it is probably linear but with a too small contribution to
the overall CUT to be visible on the instances we used. While the Slot CUT grows
much faster with the number of tasks. For very large instances the Slot advantages



in terms of quality of the computed schedules will be counterbalanced by its larger
run-times.

5.4.4 Problem instances with completely random DAG

As noted at the end of Section 5.3 the constraints we added to our instances gener-
ator may look arbitrary and could hide important aspects. In order to check this we
relaxed the constraints on the DAG generation: the vertices can now have an arbi-
trary large number of incident edges. For each number of tasks 6 ≤ nt ≤ 30 and for
each possible number of internal edges 0 ≤ ne ≤ (nt−3)×(nt−2)

2 we generated totally
random instances. As the number of nt × ne combinations is very large we gener-
ated 100 instances per combination where 6 ≤ nt ≤ 15 and only 10 per combination
where 15 < nt ≤ 30.

As with the first benchmark, in the 6 ≤ nt ≤ 15 batches we tried to obtain an
optimum solution by MILP and we eliminated the 5940/36000 instances for which
the 24 hours time-out was exceeded. For the larger instances we observed cases
where the Slot real CPU time was significantly larger than with the first benchmark.
We thus also added a 1 minute time-out to Slot , which eliminated 1273/62032 other
instances. In total, this left a total of 60759 instances with completely random DAG,
among which 30060 have an MILP optimal solution. The number of internal edges
range from 0 to 378 and the total number of edges range from 5 to 380. Figure 5.9
shows two DAG (with source and sink tasks) of the 10 tasks batch, one with no
internal edges and the other with the maximum: 28.

The plots of the ECDFs and ECDFh for all batches with a known MILP optimal
solution are shown on Figure 5.10.

The individual ECDF curves per batch are plotted separately on Figure 5.11.
The plots show that the Slot improvement over HEFT-NF still exists for all explored

numbers of tasks but it is less impressive than with the first benchmark.
The performance of Slot and HEFT-NF on instances for which the MILP solver

exceeded the 24 hours time-out are compared thanks to the same BEST reference
heuristic we already used with the first benchmark. The ECDF curves of the over-
makespans of Slot and HEFT-NF vs. BEST for all batches are shown on Figure 5.12.

The individual ECDF curves per 16 ≤ nt ≤ 30 batch are shown on Figure 5.13.
Again, the Slot advantage over HEFT-NF is visible but not as much as with the

first benchmark.

5.5 Conclusion
In this chapter we first presented a Mixed Integer Linear Programming (MILP) formu-
lation of our FPGA scheduling problem. The technical details of the implementation
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Figure 5.9: Randomly generated 10 tasks DAG
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Figure 5.10: ECDF of Slot and HEFT-NF over-makespans vs. MILP, all batches
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Figure 5.11: ECDF Slot and HEFT-NF over-makespans vs. MILP, separate batches
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Figure 5.12: ECDF of Slot and HEFT-NF over-makespans vs. BEST, all batches

we designed based on this formulation are given in Appendix A. MILP is well adapted
to this class of problems.

We then presented how we randomly generated a first large benchmark of thou-
sands of problem instances with various numbers of tasks, edges and Directed
Acyclic Graph (DAG) shapes. We used random generation because a statistical
evaluation of our heuristics needed a large number of instances and such large
numbers cannot be obtained from real-world use cases. For this first benchmark
we constrained the DAG shapes to eliminate pathological graphs with too few or too
many inter-tasks dependencies.

We then ran our MILP solver and our two heuristics (Slot and the reference ex-
isting work HEFT-NF) on this benchmark. The first outcome was the MILP run-times
which are apparently exponential in the instances’ size (number of tasks). This con-
firmed that we are facing a hard problem, if not theoretically, at least practically. Due
to the very long run-times only the “smallest” instances could be solved by MILP. We
used these optimal solutions to show how Slot outperforms HEFT-NF and is close to
the optimal in a large proportion of the cases. Our metric for this comparison was the
over-makespan added by the heuristics to the minimal makespan found by MILP. We
however noted that the performance of the two heuristics decreases, still compared
to MILP, when the size of the instances increases.
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Figure 5.13: ECDF Slot and HEFT-NF over-makespans vs. BEST, separate batches



On larger instances for which we had no known optimal solution we compared
our two heuristics to BEST, a kind of meta-heuristic which consists in taking the best
of the two. There again, Slot shown a significant makespan advantage over HEFT-
NF, even if, without an absolute reference, it was impossible to estimate how far from
the optimum the proposed schedules were.

On the run-times point of view the advantage is clearly in favour of HEFT-NF,
which CPU User Time (CUT) seams almost constant while the Slot CUT increases
rapidly with the instances’ number of tasks. Even if Slot CUT is several orders of
magnitude less than that of MILP our experiments indicate that for very large in-
stances Slot ’s run-times will probably counterbalance its better makespans.

Finally we verified that the quality of the schedules computed by Slot are still
better than the schedules computed by HEFT-NF on a second benchmark where
all constraints on the shape of the DAG have been relaxed. We discovered that on
theses instances Slot still offers a quality advantage over HEFT-NF but also that it
sometimes exhibits much larger run-times than with the first benchmark, exceeding
the 1 minute time-out that we set.

In conclusion we can say that Slot is definitely well adapted to small to medium
size instances of the FPGA scheduling problem (e.g. 6 to 30 tasks), especially if
the shape of the DAG is not too exotic. When the size of the instances increases
its quality advantage over HEFT-NF is counterbalanced by its increasing run-times,
again especially with unconstrained DAG shapes with very few or a lot of inter-task
dependencies.

For a given host system where FPGA scheduling is needed, the choice of one
heuristic or the other (or even the BEST mixed heuristic) depends on the operating
conditions: size and shape of instances, rate and maximum latency of scheduling
decisions.





Chapter 6

Integration to Model-Driven
Engineering

We expect that Slot might also be interesting for the design of complex embed-
ded system. Thus, in this Chapter, we apply Slot in another context than cloud
data centers. For better supporting the design of embedded systems, we have inte-
grated Slot into a Model-Driven Engineering (MDE) framework called TTool. TTool
is a free and an open-source tool that supports several development stages with
UML/SysML, e.g. requirements capture, analysis, hardware/software partitioning
and (embedded) software design. Among various MDE tools, TTool was selected
because it is lightweight, easily extensible, and TTool has already demonstrated to
support signal processing applications [78]. The rest of this chapter is organized
as follows. Section 6.1 presents Model-Driven Engineering and it introduces some
related works. Section 6.2 describes the hardware/software partitioning stage of
TTool (called "DIPLODOCUS"). Section 6.3 shows how we have integrated Slot into
TTool/DIPLODOCUS and demonstrates this integration with a case study.

6.1 Model-Driven Engineering

Model-Driven Engineering (MDE) targets (high-level) embedded system modeling
by offering dedicated models to capture heterogeneous hardware/software compo-
nents. Models can represent an application, a platform and how an application can
be mapped onto a platform. In addition, models can be transformed in order to
generate executable models (for formal verification or simulation purpose) and exe-
cutable code from high-level models. Thanks to their inner abstractions, models are
expected to help focusing on the most important aspects of a system. With respect
to FPGAs, we think that two important features shall be taken into account: hardware
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Figure 6.1: FPGA modelling in Gaspard and MARTE, from [95]

parallelism and dynamic reconfiguration.
Several modeling profiles and tools have been proposed to tackle to design of

hardware and software components. MARTE (Modeling and Analysis of Real-Time
and Embedded Systems) [8] is an OMG profile that extends UML for the design and
the development of embedded systems. Such extensions particularly target hard-
ware systems. Gaspard [103] is a MDE-based System on Chip co-design framework
based on MARTE. One of their goals is the representation of parallelism, both for
software and hardware aspects. In particular, Gaspard exploits the inherent paral-
lelism of hardware elements or regular operators such as application loops. It is thus
well adapted to represent FPGAs. Papers [95] and [94] suggest the use of MARTE
models of GASPARD to generate an intermediate Register-Transfer-Level model that
can be in turn transformed into VHDL code for synthesis. Figure 6.1 represents the
modelling XC2VP30 Virtex-II Pro chip reconfigurable architecture. It is composed of
several units, such as the Partial Reconfigurable Region (PRR), a storage manager,
peripherals and a communication medium, the Bus Macro (BM). Reshape connec-
tions are used to connect the ports of the different block. Blocks defined in Figure
6.1 can contain sub-blocks giving more details about the master block. For instance,
Figure 6.2 shows the internal composition in MARTE of the PRR block. The latter is
composed of a hardware PLD connected through two ports to an Intellectual Prop-
erty Interface (IPIF) module, namely a Xilinx wrapper for hardware buses. Finally,
the FPGA model that can be built in MARTE and Gaspard can be very precise.



Figure 6.2: Internal composition of PRR block, from [95]

Such representations are interesting because they focus on the main FPGA features
while remaining sufficiently precise to generate executable codes for FPGAs. Obvi-
souly, since the objective of Slot is not to generate FPGA code —Slot rather targets
the early design of embedded systems—, low-level details of the platform can be
left apart. The level of abstraction offered by TTool/DIPLODOCUS is definitely more
adapted to Slot since TTool/DIPLODOCUS targets high-level decisions about the
platforms and the mapping of functional aspects to the select platform. Having infor-
mation about how tasks mapped to FPGAs could be efficiently scheduled is likely to
support designers’ decisions on mapping, or on architecture selection, thus being a
building brick of Design Space Exploration engine (DSE) [74] [53].

6.2 TTool/DIPLODOCUS

6.2.1 TTool/Diplodocus overview
TTool/DIPLODOCUS (DesIgn sPace exLoration based on fOrmal Description teCh-
niques, Uml and SystemC) [25] [13] targets the partitioning of Systems-on-Chip, i.e.
finding the best candidate software and hardware architecture for executing a set of
functions. TTool/DIPLODOCUS supports the Ψ-chart approach [48], namely an ex-
tension of the well known Y−chart approach [70]. TTool/DIPLODOCUS have several
abstractions helping to keep models at a high-level of abstractions (e.g., value and
type of data for the application, size and policy of cache memories for a CPU for the
platform). Designs can be verified by a simulation engine [73] or a formal verification
engine to check for e.g. liveness, reachability, scheduling and simulation code can
be automatically generated.

According to the Ψ-chart approach, the partitioning of the system is done with four
views, as shown in Figure 6.3:
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Figure 6.3: Ψ-Chart approach from [48]

1. Application view: functions of the system are modeled with SysML Blocks
which can be interconnected by both data and control dependencies via ports.
The internal behavior of each block is described by a UML Activity Diagram. In
these diagrams, only the amount of data exchanged between blocks is mod-
eled, whereas decisions that depend on the value of data can be expressed in
terms of non-deterministic and static operators (i.e., non-deterministic choices).
Algorithms are modeled with processing complexity operators intended to indi-
cate the minimum and maximum number of operations (e.g. int, float, custom)
required to complete an algorithm. These functional blocks are modeled inde-
pendently from their respective implementation (hardware or software).

2. Platform view: the hardware elements that the system under design uses are
modeled with different types of parametrized nodes. There are processing
nodes like CPUs, DMAs and hardware accelerators, communication nodes
like buses and bridges and storage nodes like memories. These intercon-
nected resources are represented with UML Deployment Diagrams and they
are characterized by performance parameters used for DSE purposes or for
rapid prototyping. For example, a bus is defined by an arbitration policy and
the size of data, among others, and a CPU by the number of cores, its clock



frequency,. . . These hardware node are highly abstracted with regards to the
usual SystemC abstraction levels (TLM, CABA).

3. Communication view: in the context of the Ψ-chart approach, communications
are modeled independently of the underline architecture or the application’s
functionalities. The communication models implemented in TTool/DIPLODOCUS
are called Communication Patterns (CPs) [48] and they model the communi-
cation protocol at both physical and data-link layers (referring to the ISO/OSI
network protocol stack). A CP describes the behaviour of a communication pro-
tocol with two different UML/SysML diagrams: Activity Diagrams to express the
high-level algorithm of a protocol and Sequence Diagrams to represent precise
exchange of signals.

4. Mapping view: The mapping model is built upon the platform model to which
it adds the application functions. The latter are mapped to hardware nodes. A
function mapped to a hardware accelerator becomes an ASIC while a function
mapped to a processor becomes software. Communications between applica-
tions are allocated onto communication patterns that are themselves mapped
to storage nodes and communication nodes. UML artifacts are used for map-
ping purpose.

6.3 Integration of Slot in TTool
Figure 6.4 shows how our heuristic could help designing HW/SW platforms of em-
bedded systems by extending the Ψ-chart approach. At first, tasks and their de-
pendencies are to be designed in the functional view. The architectural view should
contain FPGAs processing elements for which availability of resources as well as
dynamic reconfiguration time must be specified. Communications are modelled too.
At mapping, a subset of the tasks may be mapped onto FPGAs. In the case of task-
to-FPGA mapping, information such as HET, number of LEs, DSPs, EMBs, etc. shall
be provided. After the mapping stage, our heuristic can be applied to each FPGA in
order to deduce the best task scheduling, thus leading to a pre-scheduled mapping
model.

We have integrated Slot to TTool/DIPLODOCUS through a plugin. TTool/DIPLODOCUS
was already able to represent FPGAs and dynamic reconfigurations as well as per-
forming simulations on tasks mapped onto the FPGA. Yet, tasks scheduling for FP-
GAs had to be hand-made. Given an application mapped onto a FPGA, Slot can now
be applied to determine scheduling slots. This scheduling information can be trans-
mitted to the simulation engine —for instance to verify that this selected scheduling



SysML model
Functional view

Communication(s) 
model(s)

Architecture model  

FPGA  

Tasks possibly labelled
with FPGA-relevant

information

Other 
computational

nodes

Mapping model  

FPGA  Other 
computational

nodes
Subset of

mapped tasks

Slot

Mapping model  

FPGA  Other 
computational

nodes
Sequence of 

slots

Figure 6.4: Integration of Slot in TTool/DIPLODOCUS and in Ψ-chart approach

works well with other parts of the system— or it can be used by the Design Space
Exploration engine that can use information provided by slot to take further decisions.

We have modelled in TTool/DIPLODOCUS the application presented in Section
4.6. Figure 6.5 shows the application view. There, data dependencies among tasks
are expressed through signals which are exchanged through ports (in light-blue).
Each task can be labelled with the requests of resources. Figure 6.6 shows the
mapping view. All the tasks of the application have been mapped onto the FPGA
block. The latter is labelled with the information about scheduling-independent re-
sources availabilities (e.g., LEs, DSPs and EMBs1) and the time required to perform
the dynamic reconfiguration of the FPGA, as shown in Figure 6.7.

Figure 6.8 shows the internal behavior of task t6. As we can see from signals,
task t6 receives data from tasks t1, t2 and t5 and it sends data to tasks t7 and t8. The

1EMBs are called in TTool/DIPLODOCUS Block RAMs - BRAMs.
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Figure 6.5: TTool - Application view
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HET of task is modelled in terms of a number of integer operations (EXECI), which
are 199 with regards to t6. An EXECI corresponds to exactly one clock cycle of the
FPGA, as it can be seen in Figure 6.7. Tasks are also modelled with their occupancy
in terms of scheduling-independent resources.



Figure 6.7: TTool - Parameters for FPGA block
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Figure 6.9: TTool - Application of Slot to the mapping view

Through the developed plugin, it is possible to use Slot to calculate slots and
makespan, as shown in Figure 6.9. For this specific example, it returns the following
slots: [R, {t0, t1, t4}], [R, {t2, t3, t6, t5}], [R, {t8, t7, t9, t10}], for a total makespan of
2217 ms. Thus, we have simulated the modelled application. For a better visualiza-
tion, we invite the reader to consult the simulation trace, saved in HTML, which is
present in [14].

6.4 Conclusion
Finally, we have tried to apply Slot in other context than cloud data centers. Thus,
we have integrated Slot in a Model-Driven Engineering tool for the design of complex
embedded system, named TTool/DIPLODOCUS. We have successfully modelled an
application and we have thus obtained a simulation trace after the computation of
slots through our approach. Such scheduling information can also be used by the
Design Space Exploration engine of TTool/DIPLODOCUS in a wider context [74] [53].
Obviously, integrations with other domains may be meaningful, such as a middleware
or an operating system for reconfigurable hardware (for instance: [24]).





Chapter 7

Future Work and Conclusion

7.1 Resume of the contribution

This manuscript has presented the scheduling of applications onto FPGAs. We have
assumes that applications are composed of dependent tasks and that FPGAs are
totally reconfigured. Our objective was the minimization of the application makespan.

In the first part of the manuscript, we have positioned our contribution in the
context of cloud data centers. We have shown how recent cloud data center ar-
chitectures integrate hardware accelerators, such as FPGAs, to better support the
increasing requirements of applications in terms of processing power.

Then, the related work following the presentation of FPGAs and cloud data cen-
ters (i.e., Chapter 3) is divided in three categories. There are approaches based on
exact mathematical formulations (e.g., MILP), which can compute the optimal solu-
tion, but they are slow to identify this solution. Second, there are approaches based
on meta-heuristics (e.g., Genetic Algorithms, Simulated Annealing, Tabu Search,
Ant Colony Optimization, etc.), which usually return a scheduling solution whose
makespan is close to the optimum, but they are slow to return this solution (i.e., or-
der of seconds/minutes for common applications). Third, heuristics addressing our
problem are fast to execute (order of milliseconds) but as an average they do not re-
turn a result which is close to the optimum. Moreover, several related works capture
applications and architectures using models which in our opinion are too abstract
to be able to identify good (in terms of makespan) or valid scheduling solutions. Fi-
nally, the related work has shown that all these existing approaches cannot efficiently
answer to our problematic.

Our approach can be seen as an intermediate between the presented approaches
because it offers a good trade-off between the quality of the solution (in terms of
makespan) and the run-time it requires to identify this solution. This approach is
called Slot . Slot is based on an iterative process. It first considers all the graph and
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the dominating task of this graph. From slots that can be built from this graph we use
a scoring approach that tries to select the best slot. When a slot has been selected,
we merge all the tasks of this slot together in the graph. Finally, this iteration out-
puts a sequence of slots which, after a final optimization, represents the proposed
scheduling.

We have shown that Slot is efficient on a benchmark of 37500 pseudo-randomly
generated graphs. We have also compared it to two other approaches: a MILP
formulation1 and an existing heuristic which has been adapted to better target the
problem of FPGA scheduling (named HEFT-NF). HEFT-NF extends HEFT algorithm
by maximizing the FPGA utilization. Our comparison evaluates both the quality of the
results and the timing it takes computing the scheduling solution. We have shown
that Slot outperforms HEFT-NF and is close to the optimal in a large proportion
of the cases. Run-time of Slot is comparable to the one of HEFT-NF (i.e., tens of
milliseconds), but HEFT-NF scales better with the number of tasks. This is different
from MILP, which needs much more time to be executed. For example, the average
run-time for 15-tasks graphs is in the order of tens of milliseconds for Slot and HEFT-
NF, and hundreds of seconds for MILP.

In the last part of the manuscript, we have shown how Slot may be applied in other
context than cloud data centers. We have integrated it in a model-driven engineering
tool, named TTool/DIPLODOCUS, which supports the early design of embedded
systems.

Figure 7.1 summarizes all the steps described in this conclusion with a schema.

7.2 Future work
Future work of this thesis targets different architectures than the one presented in
Chapter 4. Indeed, we would like to apply the principles of Slot also in other types
of situations that may be found in real projects. We remind the reader that the main
steps of Slot are (i) privileging the dominating tasks, (ii) the generation of a set of
candidate slots starting from a dominating task, (iii) evaluation of the most promising
slot with respect to the overall makespan (for this we use a scoring-based system)
and (iv) further optimizing the solution by compacting the selected slots. Thanks to
the modular approach of Slot , we expect that by slightly adapting the different steps
we can reuse Slot to other research problems.

Thus, we propose the six following directions:

1. Addressing scalability issues of Slot
1We remind the reader that MILP formulation always returns an optimal solution.



Figure 7.1: A schema which resumes the most important contents of this thesis

2. Scheduling of tasks that can request scheduling-dependent resources

3. Scheduling of both hardware and software tasks

4. Particular features of tasks

5. Exploiting the capabilities of remote FPGAs

6. Dynamic adaptation of scheduling in cloud

We have already started to tackle some of these directions.

7.2.1 Addressing scalability issues of Slot
From the complexity discussion in Section 4.6.5 and the evaluation in Chapter 5, we
have noticed that Slot does not scale very well with the number of candidate slots,
even if data-dependencies and resources availability limit the number of candidate
slots. This complexity issue is particularly true for the following graph structure. For
instance, the graph shown in Figure 7.2 is composed of three parallel chains (namely
c0, c1 and c2) of n tasks, with a total of 300 tasks (plus artificial source and sink).
Let us imagine that the dominant task is the first task of the second chain, namely
c1t0. We have already seen a similar situation in the research problem explained
in Section 1.4. There, we have understood that, for instance, a slot composed of



Figure 7.2: DAG composed of three parallel chains (namely c0, c1 and c2) of n tasks

the dominating task c1t0 and a far parallel task, such as c0tn, is convenient only in
particular conditions. More specifically, this slot should bring a great advantage from
total makespan point of view, because all the potential parallelism between other
tasks of chain0 and other tasks of chain1 would be removed (as in Figure 1.2). This
means, for example, that the HET of c1t0 and c0tn should be similar and it should
also be higher than the HET of the other tasks. So, a consequence of this could
be that taking into consideration slots which are composed of tasks which are far
from each other, could probably be avoided in most situations. As a conclusion,
a part from few border cases2, the scoring-based system can already handle such
situations, but at the cost of an extra computation time. Thus, the main benefit from
slot limitation is from run-time point of view but there are also cases for which the
scoring system will not find the good solution when two concerned tasks are far from
each other. But, again we expect that it mostly impacts the run-time and not the
quality of the solution.

Thus, given a dominating task, whose distance from source, for instance calcu-
lated through Breadth-First Search, is dx, we could consider only candidate slots
composed of tasks whose distance from source is dx ± k. Thus, the new research
problem to tackle would be to efficiently pre-analyse the DAG to calculate k. Very
likely, the calculus of this parameter shall consider the average parallelism of the
DAG, HETs of tasks and the standard deviation among them.

7.2.2 Scheduling of tasks that can request
scheduling-dependent resources

7.2.2.1 Recall about scheduling-dependent resources

As we have already explained in Section 4.4, we have classified resources in two
types: scheduling-independent and scheduling-dependent resources. This section
contains a reminder of the differences between them. A scheduling-independent

2An example of border case, with respect to Figure 7.2, is when the HET of chain2 is higher than
the sum of the HETs of chain0 and chain1.



Figure 7.3: Occupancy of the FPGA with regards to the number of used Logic Ele-
ments (LEs). Tasks T4 cannot be part of the same slot of T1, T2 and T3.

resource is a resource which is exclusively assigned to a task for the entire lifetime
of the slot that contains the task. Thus, requests for a given scheduling-independent
resource (such as LEs) within a slot can be handled simply by adding them together.
Yet, if the total amount of requested resources exceeds the availability (for a given
FPGA) or all the tasks requesting the resources cannot be part of the slot. This is
shown in Figure 7.3, in which task T4 cannot be part of the slot that already contains
T1, T2 and T3.

A scheduling-dependent resource is a resource which is assigned to a task for
the entire task’s lifetime. The latter is always less or equal the entire lifetime of the slot
that contains the task. Tasks whose requests of a scheduling-dependent resource
exceed the physical limit for a given FPGA, such as T1, T2 and T3 in Figure 7.4,
cannot be executed in parallel. However, differently from scheduling-independent
resources, they can be part of the same slot by introducing a delay, as shown in
Figure 7.5.

7.2.2.2 Architectures

Figure 7.6 shows a possible architecture that includes scheduling-dependent re-
sources.

Thus, in addition to the architecture presented in Chapter 4, the platform in Figure
7.6 includes an external DRAM that is connected to the FPGA through a shared bus.



Figure 7.4: Occupancy of the FPGA with regards to the required I/O bandwidth.
Tasks T3 cannot run in parallel with tasks T1 and T2.

Figure 7.5: Occupancy of the FPGA with regards to the required I/O bandwidth.
Tasks T3 cannot run in parallel with tasks T1 and T2, but they can be part of the
same slot by introducing a delay

Figure 7.6: A possible platform that includes scheduling-dependent resources. In
this respect, we can notice the presence of a DRAM, external to the reconfigurable
chip, and a shared bus to this DRAM



Task LEs BadwidthDRAM HET WCETwriting

t1 50% 100% 100 [u] 50 [u]
t2 50% 100% 80 [u] 50 [u]
t3 50% 100% 20 [u] 80 [u]

Table 7.1: Resources requests of tasks of Figure 7.7

Tasks read the input data from this external memory and also write the results of their
computations in this external memory. We remind the reader that, in Section 4.2, we
assumed that the time to read, write and transfer the input/output data for a task in
different memory locations was included in the HET of the task. Moreover, we have
also assumed that all communications were performed without memory contention.

To better consider these architectures, we need to define how inter-task commu-
nications work. Let us assume that two tasks, t1 and t2, exchange data but are part of
different slots. Since t1 and t2 are executed in different slots, they have to exchange
data through the external DRAM. If t1 and t2 were to be executed in the same slot,
they could use instead the Embedded Memory Blocks of the FPGA chip. The current
version of Slot could consider the latter case (i.e., forcing two tasks to exchange data
through the EMBs of the FPGA) by merging t1 and t2 as one unique task t1,2 (so, t1
and t2 are mandatorily placed in the same slot). Based on this, we could imagine
defining a new version of Slot that could decide between using EMBs or external
memories to exchange data between tasks. Meanwhile, the workaround is running
Slot on two different application models (t1 and t2 merged or not) and considering
only the best one. Of course, this could increase the complexity of Slot .

To use scheduling-dependent resources we would also need to define other pa-
rameters. For instance, the shared bus and the DRAM could be simply captured
with one unique resource: the maximum bandwidth with the external DRAM. Conse-
quently, tasks should be labelled with the requested read and write bandwidth and
the Worst-Case Execution Time (WCET) of this communication.

7.2.2.3 Motivating example

As we have seen in Section 7.2.2.1, when the sum of scheduling-dependent re-
sources exceeds those offered by the architecture, tasks can still be part of the same
slot but delays have to be introduced. This delay introduction raises a new issue: with
respect to the overall makespan, is it better to introduce a delay or to split the slot?
Let us consider the example in Figure 7.7. Resources needs of task is given in Table
7.1. For simplicity, let us assume that tasks write the results of their computations
on an external DRAM, whereas the reading is instantaneous. The research problem
can be summarized in the choice of the best scheduling between:
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• Scheduling 1: [R, {t1, t2}], [R, {t3}]

• Scheduling 2: [R, {t1, t3}], [R, {t2}]

Let us view the two different scheduling with Gantt diagrams. Total reconfigura-
tion time TR is fixed to 20 units of time. Since t1 and t2 have the highest HETs,
Scheduling 1 better exploits the parallelism between the execution of tasks. How-
ever, as shown in the Gantt diagram of Figure 7.8, this involves a contention while
writing the result of the tasks in the DRAM. Thus, the dominating task t1 must wait 30
units of time before being able to access the DRAM. In Scheduling 2 the situation
is different, because in the first slot task t3 has already finished to write its results to
the memory when the dominating task t1 can finally write its results to the DRAM,
as shown in Figure 7.9. Finally, the makespan of Scheduling 2 is slightly higher
than the makespan of Scheduling 1. However, Slot is currently not able to correctly
evaluate even simple situations such as the one in our example. Indeed, the scoring-
based system introduced in Chapter 4, would have definitely chosen Scheduling 1,
because the first computed slot contains the two tasks with higher HET , namely
tasks t1 and t2. Actually, we have seen that both Scheduling 1 and Scheduling 2
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Figure 7.10: The architecture of a modern FPGA-based server - scheduling of both
hardware and software tasks

have similar makespans. So, the scoring-based system did not recognize this simi-
larity.

So, currently Slot lacks the concept of contention to shared resources. For
this reason, it considers scheduling-dependent resources as they were scheduling-
independent and this could lead to erroneous slots estimations.

7.2.3 Scheduling of both hardware and software tasks

We would like to apply the principles of Slot also in the context of heterogeneous
scheduling, namely the scheduling of applications whose tasks can either have hard-
ware implementation and therefore be executed on an FPGA, or a software imple-
mentation and so being executed on a processor (CPU). We can thus reuse the
platform presented in Chapter 4, but now the CPU can be used to run some of the
tasks that compose the application graph, as shown in Figure 7.10. A processor can
execute only a maximum number of tasks which is limited by its number of cores.
Each software task requires exactly one core of the CPU. The latter can be seen as



a scheduling-independent resource. Similarly to hardware tasks, also software tasks
must be labelled with an execution time, named Software Execution Time (SET ).
We assume that this SET also includes the communication to the memory.

In Chapter 4 we have forbidden the pre-emption of hardware tasks during their
execution on an FPGA. The pre-emption of a hardware task would have implied a
total FPGA reconfiguration. We would like to allow the pre-emption of software tasks
because of the low overhead of context-switching3 with regards to the timing taken
to reconfigure an FPGA. For instance, CPU overhead is in the order of microseconds
for recent processors running a recent Linux kernel [107].

7.2.3.1 Challenges

We have identified three peculiarities of software tasks that Slot cannot take into
account efficiently:

• Software tasks can run while FPGAs are being reconfigured;

• Software tasks can be pre-empted.

Slot as presented in Chapter 4 Cannot estimate how much software and hardware
tasks can run and where this parallelism is located (in terms of dependencies). In
other words, Slot is unable to exploit the flexibility given by software tasks: it could
only consider them as they were hardware tasks, so in a non-efficient way.

Let us consider the graph in Figure 7.11. For convenience, tasks are graphically
labelled with the information about their nature (i.e., software or hardware) and their
execution time (either HET or SET ). For the sake of simplicity, we do not consider
resource requests for hardware tasks for this example. In this graph, task t3 has the
highest execution time, but it cannot be the dominating task because it is a software
task. Since t3 is a software task, its execution time could be masked by other hard-
ware tasks executed in parallel to it. For instance, in this graph, t1, t2, t4, t5 and t6
could be executed in parallel to t3. In addition, t3 can also run during the dynamic
reconfigurations of the FPGA, if any. Moreover, the other software task t8 is only
parallel to one hardware task: t7. So only 50 units of time of t8 can be masked.

This leads to the introduction of a concept which is specific to software tasks
only, namely the concept of True Software Execution Time (TSET ). The TSET of
a task t, noted as tTSET , is the time of a software task that cannot be parallelized with
the execution of hardware tasks. In general, the more the ratio TSET/SET tends to
0, the more the execution of a software task can be masked by the execution of other
hardware tasks. Thus, we could think that the scheduling algorithm could ignore
ignore t3 or, at least, it could give it a less important weight, because its execution

3We remind the reader that the context-switching is the process of storing and restoring the state
(context) of a process so that execution can be resumed from the same point at a later time.
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Figure 7.11: 13-tasks DAG. Each task has been labelled with the information about
the execution node that will execute it (either the CPU or the FPGA)

can be in any case be put in parallel to the execution of other hardware tasks. So,
for software tasks, the idea of dominating task is probably not as important as for
hardware tasks.

Yet, in this example, the calculation of t3TSET and t8TSET has been trivial because
the set of hardware tasks which are in parallel to t3 is totally disjoined by the set
containing those parallel to t8. However, this situation is not so frequent in concrete
applications and so the calculus of the TSET of a task may not be easy to define:
this is still an open issue. Obviously, the current version of Slot is neither able to
evaluate how much the software tasks are parallel to the hardware tasks, nor it is
able to take into account the flexibility given by the pre-emption or the concept of
TSET .

7.2.4 Particular features of tasks

Another possible future work is to consider advanced features of tasks. We therefore
discuss about two possible directions.

7.2.4.1 Addressing duplicated tasks

An interesting discussion is that Slot works better when all the tasks that compose
the application graphs are different from each other. Indeed, in case the application
graph contains multiple instances of the same task at different places of the graph,
we think a better way of computing slots should be defined. Thus, it may be better
to put the same instances in the same slot. But currently, Slot cannot consider
duplicated tasks, so it considers multiple instances of the same tasks as if they were
different tasks. So currently it lacks information to better handle this situation.



Figure 7.12: Microsoft Catapul cloud data center architecture, from [33]

7.2.4.2 Multiple implementations

Some related works, such as [42] and [27], consider multiple implementations for
the same task, and they let the scheduling algorithm deciding which one would bring
more benefits to the objective function. As explained in [71], a hardware task can
have multiple implementations. For instance, let us consider a task which executes
a function with a sequential algorithm. Let us now assume that this implementation
can be parallelized. In this second case, task will execute in less time, but very likely
it will require more hardware resources. This future work would require to integrate
in Slot the concept of Design Space Exploration. Currenty, what we could do is
running n times Slot for n different application models (each one with a different
implementation of a task) and comparing the results. But unfortunately, if several
tasks of the application present multiple implementations, this leads to evaluate many
all the combinations: this approach does not scale.

7.2.5 Exploiting the capabilities of remote FPGAs

In Section 2.3.1 we have provided a short introduction to Microsoft Catapult cloud
data center architecture and how it integrates a pool of FPGAs [33]. Figure 7.12
recalls the architecture of Microsoft Catapult. In Microsoft Catapult, FPGAs are or-
ganized in a pool, and each FPGA can donate its unused resources to the pool.
FPGAs that need them can then access to these resources trough a low latency
connection (the order of tens of µs or less), based on Lightweight Transport Layer
(LTL) protocol [34].

Currently Slot is applied to one or more applications which are executed onto a
single FPGA. In future, we plan to apply it to better target architectures that allow



to exploit the capabilities of remote FPGAs. If we assume that this latency is very
low with regards to the HET of tasks and with regards to the FPGA reconfiguration,
a solution could simply be to adapt the current Slot by summing up together the
resources of remote FPGAs.

7.2.6 Dynamic adaptation of scheduling in cloud
We would like to better adapt Slot in order to better tackle dynamic changes that the
context of cloud data centers may require. In particular, we would like to dynamically
re-run Slot everytime a new application is assigned to an FPGA which is already
running an application. Let us consider the following example:

1. An application X is selected for scheduling onto an FPGA F

2. The orchestrator runs Slot : k slots are computed

3. Application X starts to execute at time t0

4. At time t1 > t0, an application Y is assigned to the same FPGA F . Always
at time t1, application X has already completed the execution of the w slots,
w < k.

5. At this point, we would like to automatically re-run Slot over a new application
Z, which is an artificial application composed of an artificial source and sink
that join the tasks of application Y with the tasks of the remaining k − w slots
of application X.

6. New slots are calculated and they are executed onto FPGA F

7. This would give the illusion, to the owners of applications, to be the only users
of the FPGA F . Moreover, the owner of application Y would see its application
immediately execute, without annoying waiting queues.





Appendix A

Low-level details of the MILP
formulation

The MILP solver that we used for our experiments is the free and open source GLPK
C library [7]. GLPK represents a LP or MILP problem instance as a constraint matrix
M ∈ Rn×m. Each column j of M corresponds to one structural variable σj, that is, an
input or output variable of the problem, and each row i corresponds to one auxiliary
variable ξi used to express a constraint on the structural variables. The difference
between LP and MILP is that in MILP structural variables can be constrained to be
integer or binary values, while in LP all variables are real.

If we denote ξ ∈ Rn the vector of auxiliary variables and σ ∈ Rm the vector of
structural variables, then:

ξT = M × σ

Each structural or auxiliary variable v is also constrained by inequalities. Struc-
tural and auxiliary constraints can take one of five forms (Lv, Uv and Vv are some
user-specified constant values):

• −∞ ≤ v ≤ +∞ (unbounded)

• Lv ≤ v ≤ +∞ (lower bound)

• −∞ ≤ v ≤ Uv (upper bound)

• Lv ≤ v ≤ Uv (double-bounded)

• Vv ≤ v ≤ Vv (fixed)
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The objective function is expressed as a linear combination of the structural vari-
ables, plus a constant shift, and a direction (minimize or maximize):

min /max
λ+

∑
0≤j<m−1

λj × σj


Before we present our formulation we must explain why it uses more structural

and auxiliary variables than strictly needed. The reader could indeed wonder why
we uselessly added to the already great complexity of the MILP solving. There are
always several ways to model a problem instance for MILP solving. A constant input
value V , for instance, can be presented as an input structural variable σ, that is, a
column of the constraint matrix M , with a fixed constraint:

V ≤ σ ≤ V

The V constant input value can then appear in the expression of an auxiliary
variable ξ if its coefficient µ in the linear combination is not null and thus participate
the auxiliary constraint:

L ≤ ξ = · · ·+ µ× σ + · · · ≤ U

But it can also not be presented as an input structural variable and appear directly
in the bounds of the constraint:

L′ = L− µ× V
U ′ = U − µ× V
L′ ≤ ξ ≤ U ′

In the formulation we designed the tasks durations are input structural variables
because the coding was simpler and more regular but they could as well be constants
used to compute the bounds of the auxiliary constraints.

A constant input value can even be used in the two forms and appear both as
an input structural variable and in the bounds of constraints. This is the case with
the horizon in the constraints that a task execution time is entirely contained in the
execution time of the slot it is assigned to. In the following we thus denote H the
constant value of the horizon and ~ the input structural variable constrained to have
this value.

Another degree of freedom comes from some output variables that are indeed
intermediate variables we are not really interested in. Task start and end times xt



and zt, for instance, are redundant. One can be computed from the other and the
durations yt. We can thus add the start and end times in the set of output structural
variables if it is more convenient to express some constraints but we do not have to.
We could also replace, for instance, the end time by xt + yt in all linear combinations
where they appear. And each time we add such optional output variables we usually
also need to add extra auxiliary variables to express their relation with the other
variables. For each task, for instance, we must add the following auxiliary variable
and fixed constraint:

0 ≤ at = xt + yt − zt ≤ 0

It is the same with the slot durations, start and end times us, vs and ws, three sets
of outputs that could easily be reduced to two. This reduction would also avoid the
following auxiliary variables:

0 ≤ cs = us + vs − ws ≤ 0

All these non-essential variables add to the number of rows and columns of the
constraint matrix M . And in most cases it is perfectly possible to get rid of them
by hard-wiring the values of the inputs variables in the bounds of constraints, by
replacing the intermediate output variables by their expressions and by removing
the now useless auxiliary variables. One could argue that the larger the constraint
matrix, the more difficult the solving and the longer the solver’s run-time.

But in practice this is not the case because the difficulty of the MILP solving
also strongly depends on the density and on the values of the elements of the con-
straint matrix. In order to assess this we tested several variants of the formulation,
including one where most input variables have been transformed into constants and
only essential output variables and auxiliary variables have been kept, leading to
the smallest possible constraint matrix. This “optimized” version was the worst in
terms of run-time with an average slow-down factor of 10 compared to the version
we present here, which is the one that exhibits the best average run-times, even if it
uses more variables than the minimum.

We already introduced the structural variables of our formulation in Section 5.2;
they are listed in table A.1 where |Tt| is the duration of task Tt. The variables with
fixed constraints, like, for instance the task durations yt, are inputs while the others
are outputs to be computed by the solver. What makes this an MILP problem instead
of an LP problem is only the constraint that the αt,s task-to-slot allocation variables
are binary.

The auxilliary variables and their bounds are listed in table A.2 where t0 and t1
are two task indexes such that πt0,t1 = 1 (task Tt0 precedes task Tt1).



Name Min Max Type Definition

x0 0 0 Real Start time of task T0
xt>0 0 H Real Start time of task Tt>0
yt |Tt| |Tt| Real Duration of task Tt
zt 0 H Real End time of task Tt
u1 0 0 Real Start time of slot S1
us>1 0 H Real Start time of slot Ss>1
vs 0 H Real Duration of slot Ss
ws 0 H Real End time of slot Ss
α0,1 1 1 Bin. Allocation of task T0 to slot S1
α0,s>1 0 0 Bin. Allocation of task T0 to slot S1
αt>0,s 0 1 Bin. Allocation of task Tt>0 to slot Ss
~ H H Real Horizon as a structural variable

Table A.1: Structural variables

Name Min Max Definition Expressed constraint

at 0 0 xt + yt − zt Task end time = start time
+ duration

bs>1 T T us − ws−1 Slot start time = previous
slot end time + reconfigu-
ration time

cs 0 0 us + vs − ws Slot end time = start time
+ duration

dt 1 1 ∑
1≤s≤ns

αt,s Tasks are allocated to one
single slot

es,r 0 qr
∑

0≤t<nt

αt,s × ρt,r No resource overuse

ft,s 0 2×H ~− αt,s ×H + xt − us Task start time ≥ its slot
start time

gt,s 0 2×H ~− αt,s ×H + ws − zt Task end time ≤ its slot
end time

ht0,t1 0 H xt1 − zt0 Successor task start time
≥ its predecessor task end
time

Table A.2: Auxiliary variables



The objective function is the end time of the Tnt−1 sink task and the objective
consists in minimizing it:

min(znt−1)





Appendix B

List of acronyms

List of recurring acronyms in this thesis:

• ACO: Ant Colony Optimization

• ALM: Adaptative Logic Module

• ASIC: Application Specific Integrated Circuit

• AWS: Amazon Web Services

• BFS: Breadth-First Search

• BPP: Bin-Packing Problem

• BRAM: Block-RAM

• CLB: Configurable Logic Element

• CUT: CPU User Time

• DAG: Direct Acyclic Graph

• DRAM: Dynamic RAM

• DSE: Design Space Exploration

• DSP: Digital Signal Processing

• ECDF: Empirical Cumulative Distribution Function

• EDF: Earliest Deadline First

• EMB: Embedded Memory Block
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• EC: Elastic Cloud

• FPGA: Field Programmable Gate Array

• GA: Genetic Algorithm

• GPP: General Purpose Processor

• GPU: Graphics Processing Unit

• HDL: Hardware Description Language

• HEFT: Heterogeneous Earliest Finish Time

• HEFT-NF: Heterogeneous Earliest Finish Time Next-Fit

• HET: Hardware Execution Time

• IP: Intellectual Property

• LE: Logic Element

• LUT: Look-Up Table

• MDE: Model-Driven Engineering

• MH: Meta-Heuristic

• MILP: Mixed-Integer Linear Programming

• NIC: Network Interface Card

• NRE: Non-Recurring Engineering

• nreconfig: number of reconfigurations

• PLD: Programmable Logic Device

• RCSP: Resource Constrained Scheduling Problem

• RTOS: Real Time Operating System

• SA: Simulating Annealing

• SET: Software Execution Time

• SoC: System on Chip

• SRAM: Static RAM



• TS: Tabu Search

• TSET: True Software Execution Time

• TOR: Top-Of-the-Rack

• TR: Total Reconfiguration (time)

• T∞: T infinite

• WCET: Worst Case Execution Time
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