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Abstract
The GranFilm toolbox aims at linking the morphology to the optical properties of

granular thin films with particle islands in the form of truncated spheres or spheroids of
sub-wavelength sizes. By exploiting the excess field formalism in the non-retarded limit
all the linear Fresnel coefficients of the film can be calculated from the polarizability
tensor of the particles. The tensor is obtained through a multipole expansion of the
scalar potential that can describe the anisotropic response in the directions normal and
parallel to the substrate. While already used to understand in situ growth from the
plasmonic response of equally sized particles, the introduction of pair correlation functions
of islands randomly distributed on the lattice extends the toolbox’s capabilities. Systems
of polydisperse particles can now be described with GranFilm, a more realistic situation
from an experimental point of view.
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Notation

This chapter gives an overview of the notation used in the manuscript.

The use of the bold and italic font

In the text. In the text, like here, the bold font is used to give the title of a paragraph.
Italic is used to emphasize a word, i.e. the first time we introduce a new parameter
or variable.

In expressions and equations. Tensors are written in boldface. A component of a
tensor and variables are presented in italic. To differentiate a second-order tensor (a
dyadic) from a vector a double arrow will be added over the tensor, e.g.

↔

A. Matrices
are written in the blackboard bold font, e.g. A. Mathematical operators are upright.

The multiplication of a tensor of any rank are (most) unmistakably in index
notation with the summation convention. We will use both the ’tensor’ and the ’ma-
trix’ notation through this manuscript, depending on the problem at hand. Equivalent
operations in the two notations are commented on below

Aij = viwj ,
↔

A = v⊗w (1a)

vi = Aijwj , v=
↔

A ◦w. (1b)

(1a) The product of two vectors yields a second-rank tensor, also known as the outer
product or the tensor product.

(1b) Multiplication of a second-rank tensor and a vector yields another vector. In
index notation a sum over the repeated index j is indicated, in tensor notation this
operation is also called a ’single contraction’, represented with ◦.
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Mathematical symbols

Symbol Explanation
⊥ a subscript, associated with the perpendicular direction of the substrate
‖ a subscript, associated with the parallel direction of the substrate
∞ a condition in infinity
? the optimized values of a parameter
6= is not equal to
≈ is approximately equal to
≡ equivalence, identical to
± plus or minus
< smaller than
≤ smaller or equal than
> greater than
≥ greater or equal than
∼ similar to

[ , , ] a vector in matrix notation
{ , , } a set

∗ the complex conjugate
∀ for all
∈ is a member of
/∈ is not a member of
↔ symbol for a second-order tensor, a dyad

↔

A
©s the whole spherical surface s
∩s the whole spherical surface s, above the substrate
∪s the whole spherical surface s, below the substrate
〈·〉 the average over a quantity

Operators

Symbol Explanation
∂a
∂b partial derivative of a with respect to b

∇ ≡
[
∂
∂x ,

∂
∂y ,

∂
∂z

]
the 3D-gradient operator in cartesian coordinates

∇‖ ≡
[
∂
∂x ,

∂
∂y

]
the 2D-gradient operator in cartesian coordinates

∇p ≡
[
∂
∂pi
, ..., ∂

∂pN

]
the first order partial derivatives with respect to a model param-
eter for i = 1, ..., N .

∇· the divergence operator
∇× the curl operator
∇2 the Laplace operator
⊗ the tensor product
◦ single contraction, defines the multiplication of a second ordered

tensor with a vector
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Greek alphabet

Symbol Explanation
α two uses;

(i) with subscript αi,i =‖ /⊥, the parallel/perpendicular component
of the single particle polarizability

(ii) with tilde α̃, a component of the polarizability renormalized for the
island-island interaction

↔
α The (full) polarizability tensor
β the first order (dipolar order) surface susceptibility, associated with the

direction perpendicular to the substrate
γ the first order (dipolar order) surface susceptibility, associated with the

direction parallel to the substrate
Γ the damping frequency in a material, with subscript Γ∞, the damping

frequency in the bulk material
δ three uses;

(i) the second order (quadrupolar) surface susceptibility,
(ii) the Dirac delta function,
(iii) the Kronecker delta

∆ indicates a the change in a parameter/quantity
ε three uses;

(i) the complex dielectric function of a material,
(ii) with subscript ε1/ε2 the real/imaginary part of the dielectric func-

tion,
(iii) the levi-civita tensor

ζ with sub- and superscipts ζm``′ , a constant terms in the SH.
η two uses;

(i) a spheroidal coordinate,
(ii) collective denoting the dimensionless position of the multipole (µ)

or the image multipole (µ̄)
θ two uses;

(i) the polar angle of incidence,
(ii) the heaviside step function

Θ the surface coverage of particles in a lattice
κ scaling factor of the imaginary part of the experimental bulk dielectric

function
λ three uses;

(i) the wavelength of an electromagnetic field,
(ii) with subscripts λνν′ a parameter in the scaling approximation
(iii) the eigenvalues in a matrix equation
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µ three uses;
(i) indicating either the dimensonless direct multipole position,
(ii) with subindices, µR‖ , µR⊥ , or µtr , the mean of a truncated normal

distribution,
(iii) the vacuum permeability

µ̄ the dimensonless image multipole position
ξ two uses;

(i) the surface density,
(ii) specifies the surface of a spheroidal object,
(iii) with subscript ξi geometrical type of particle i

ρ three uses;
(i) the surface density,
(ii) the excess current density of the free charges,
(iii) the distance from a point to the intersections of the ring of foci in

the spheroidal oblate coordinate system
σ two uses;

(i) the standard deviation of a random variable,
(ii) with subscript σf the free charge density

Σ two uses;
(i) the summation symbol,
(ii) a geometry dependent constant used in the surface correction

τ the second order (quadrupolar) surface susceptibility
φ two uses;

(i) azimuthal angle of incidence,
(ii) the normal distribution

Φ CDF for the normal distribution
χ three uses;

(i) a component of the radius ratio to define the thickness of a spherical
layer,

(ii) the minimization criteria in a parameter optimization,
(iii) the electric susceptibility

ψ the electrostatic potential
ω the angular frequency of an electromagnetic field, with subscript, ωp, the

so-called plasma frequency of the free electron gas
Ω two uses;

(i) control volume,
(ii) with subscript ΩN the set of predefined particle geometries

Latin alphabet

Symbol Explanation
a two uses;

(i) the amplitude at r = D0 for the exponential pair-correlation func-
tion model,

(ii) radius of the ring of foci for oblate spheroidal coordinates
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A the surface area of a particle
A

(i)
`m multipole coefficient outside a region of interest i related to the direct

dipole
Ā

(i)
`m multipole coefficient outside a region of interest i related to the image

dipole
A set of lower limits of a set distributed parameters
A three uses;

(i) could be any of the electromagnetic fields,
(ii) with subscript Aex, could be any of the electromagnetic excess

fields ,
(iii) with sub- and superscript As

ex, could be any of the the total excess
fields

B two uses;
(i) with sub- and superscipt B(i)

`m multipole coefficient inside a region
of interest i related to the direct dipole,

(ii) material dependent constant used in the surface correction
B

(i)
`m multipole coefficient inside a region of interest i related to the image

dipole
B set of upper limits of a set distributed parameters
B the magnetic flux density
c the speed of light in vacuum
C two uses;

(i) a normalization constant,
(ii) a cross-section

C the covariance matrix
d two uses;

(i) the distance from the center of a particle to the substrate,
(ii) with subscript µµ, dµµ the distance from the direct to the image

multipole in a particle
d an infinitesimal of a variable
D two uses;

(i) with subscript Deff , the effective oscillation length of the s-
electrons in spheroidal nanoparticles,

(ii) with subscript D0, the apparent diameter of a particle

D the electric displacement field
e the exponential function, sometimes also denoted exp{}
E the electric field
f two uses;

(i) a factor used for determining if a surface is truncated by the sub-
strate or not

(ii) the truncated normal distribution
g(r) two uses;

(i) the RDF in a monodisperse system,
(ii) with subscript gνν′(r), the RDF in a polydisperse system
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h(r) the pair correlation function
~ Planck’s reduced constant, ~ = h

2π
H the magnetic field
H the Hessian matrix
i an index
I two uses;

(i) with subscripts I20/Ī20, the distribution integral to incorporate the
island-island interaction between an island and the direct/image
multipoles of it’s neighbors for particles organized in a random
array,

(ii) with sub- and superscipt Im`` , an identity for the integral of a Leg-
endre polynomial

I the density or the free current
I the unit dyad
j an index, used to indicate a different state than the index i
J with sub- and superscipt Jm`` an identity for an integral of the derivative

of the Legendre polynomial
J the Jacobian matrix
k̃ the imaginary part of the refractive index
k the wave vector of an electromagnetic field

Kf the free surface current density
` four uses;

(i) a given term in the multipole expansion ` = 0, ...,∞,
(ii) with subscripts the lower/upper limit, `min/`max for a bounded

parameter P̄
(iii) with subscript, δ, `δ the skin depth of an electromagnetic field,
(iv) with subscript `∞ the mean free path of the electrons in a bulk

material
L three uses;

(i) the distance between two neighboring particles, the lattice con-
stant,

(ii) with subscript Lz, the total size (height) of an excess region,
(iii) with subscript Li, the geometrical depolarization factor for a

spheroidal object in the directon i
m two uses;

(i) a term in the multipole expansion, defined as m = −`, ..., `
(ii) with subscript me, the electron mass

M two uses;
(i) the number of multipoles in a linear set of equation,
(ii) with sub- and superscipt Mm(i)

``,S matrix element for a region i and
surface s

M the magentization field
M a matrix containing the frequency dependent part of the linear system

of equations containing the multipole coefficients
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n two uses;
(i) the number of particles in a spherical shell of radius r‖,
(ii) the complex refractive index

ñ the real part of the refractive index
n̂ vector normal to the interface
N two uses;

(i) the total number of a variable,
(ii) with sub- and superscipt Nm(i)

``,S matrix element for a region i and
surface s

N the set of individual islands in a distribution
pi a bounded model parameter
p̄i an unbounded model parameter
p with subscript pi/p̄i dipole moment due to direct/image dipole in posi-

tion i
P two uses;

(i) a point of observation,
(ii) with indices P`m, the associated Legendre polynomial

P set distributed parameters
P two uses;

(i) the set of a vector of bounded model parameters,
(ii) with an overline, P , the set of a vector of unbounded parameters.

With superscripts P?, the set of optimized model parameters, P0

the set guessed model parameters
r two uses;

(i) with subscripts rs/rp, the complex reflection amplitude in s/p-
polarization,

(ii) with subscript r(i)
‖ /r̄

(i)
‖ , the radial in plane distance between the

direct-direct/direct-image neighboring particles
r two uses;

(i) the residual array in a χ2-optimization,
(ii) with subscript rµ/µ̄, the position from a direct/image multipole to

a point,
R two uses;

(i) the radius in a particle;
with subscripts R‖/⊥, the radius of the particle parallel/perpendic-
ular to the substrate,
with superscript R(s), the radius of the surface s of a coated parti-
cle,

(ii) with subscripts Rp/Rp the reflectivity, reflection amplitude in s/p-
polarization

s a given surface in a particle
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S two uses;
(i) the total number of surfaces in an island,
(ii) with subscripts S20/S̄20 the lattice sum to incorporate the island-

island interaction between an island and the direct/image multi-
poles of it’s neighbors for particles organized in an ordered array

S a coordinate system
t three uses;

(i) the time variable,
(ii) with subscripts ts/tp, the complex transmission amplitude in s/p-

polarization,
(iii) with subscript tr, the truncation ratio, derived parameter to denote

an island’s degree of truncation
T with subscripts Ts/Tp the transmissivity, transmission amplitude in s/p-

polarization
T a transformation from bounded to unbounded model parameters
↔

T with subscript and bar
↔

T ij/
↔

T ij dipole-dipole/dipole-image interaction
tensor between particle i and j

vf the Fermi velocity of the s-electrons
V the volume of the particle above the substrate
V a vector containing the terms of the field which excites the LSPR oscil-

lations in a system
↔

V with subscript
↔

V ij dyad containing dipole-dipole and dipole-image in-
teraction tensor between particle i and j

x abscissa
x̂ the unit vector in the x-direction

Xm
` radial function in oblate spheroidal coordinates
X column vector containing unknown multipole coefficients
y ordinate
Y with indices Y m

` , the spherical harmonic of order `m
ŷ the unit vector in the y-direction
ẑ the unit vector in the z-direction
z with subscript zmp/zmp the position of the direct/image multipole

mp/mp relative to the center of a reference island
Zm` radial function for oblate spheroidal coordinates
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Chapter 1

Light scattering in complex systems

Nowadays, plasmonics is involved in a broad range of applications and scientific fields.
In plasmonics, one studies the interaction between an electromagnetic (EM)-field and
a metal object that can be of more or less complex form (rough surfaces, particles,
etc. . . ). The free electrons of the metal will react to the external EM-field and oscillate
in phase with it. This collective movement is called a plasmon. This chapter provides
a qualitative explanation of the tunability of the EM response of supported metallic
nanoparticles (NP)s.
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Figure 1.1 Examples of plasmon resonances in a bulk metal (a), at an
interface between air and a metal (b), and in a metallic NP surrounded
by air (c).

Today, we typically use the word plasmonics about a scientific and applied field that
aims to control the interaction between an EM-field and a metallic object. The advent
of nanotechnology has given us the ability to structure matter at the nanoscale and,
therefore, to finely tune the interaction of light and matter. The understanding of
the plasmonic properties of NPs can provide us with design rules for more complex
nanostructures with targeted optical response [1, 2]. There is a wide range of poten-
tial applications of plasmonics in fields like medicine, engineering, space science and
biology [3].
One typically divides the type of plasmons into three main categories: bulk plasmons
encountered in the metallic bulk phase [Fig. 1.1(a)], surface plasmon resonances (SPR)
which can be excited at the interface between a dielectric and a metal, relevant for the
response from a continuous thin metal film [4] [Fig. 1.1(b)], and the localized surface
plasmon resonance (LSPR) typically observed in metallic NPs [Fig. 1.1(c)].
In this work, we are mainly interested in the latter type of excitations, namely the
LSPRs in metallic NPs. We start this chapter with a brief introduction to EM theory
and the interaction between metal and light. Then we will explain the observed
resonances in metallic particles placed in a homogeneous background. Next, the case
of truncated particles on a substrate is treated. Both in terms of analytical models
and computational tools that can be used to model their optical response.

1.1 A brief introduction to electromagnetic theory
A surface may be regarded as a discontinuity between two media of different dielectric
and magnetic properties. Herein we are mainly interested in the study of the inter-
action between light and a non-sharp surface containing metallic NP. As our results
are built from the Bedeaux-Vlieger (BV)-theory of excess fields and surface suscep-
tibilities, we have chosen to follow their choice of the c.g.s unit system for the field
equations, rather than the SI-units. This is a practical choice for our analysis because
the electric fields, the displacement fields, and the polarization densities all have the
same dimension. The experimental relevant formulas are always used in a form where
the choice of unit systems does not matter. The conversion of the field equations to the
SI-system is easily done by adding the appropriate powers of the electric permittivity
and the magnetic permeability of vacuum.
This section aims to give the reader a feeling of the required tools to understand the
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basic theory applied in this work. Thus, the discussion has to start with Maxwell’s
equations (ME).

1.1.1 Maxwell’s equations

The theoretical framework to describe the response of matter to an external EM-field
is given by the fundamental ME which in the c.g.s-unit system read [5]:

∇ ·D(r, t) = ρ(r, t) (1.1a)

∇×E(r, t) = −1
c

∂B(r, t)
∂t

(1.1b)

∇ ·B(r, t) = 0 (1.1c)

∇×H(r, t) = 1
c
I(r, t) + 1

c

∂D(r, t)
∂t

(1.1d)

where the four macroscopic fields are denoted D (the dielectric displacement field),
B (the magnetic induction or the flux density), E (the electric field), H (the magnetic
field), ρ (the external charge), and I (the density or free current), and c is the speed
of light.

Boundary conditions

In general, the fields given in Eq. (1.1) are not continuous over a boundary. They will
change according to the properties of the media on each side of the interface. With
the divergence and Stokes’s theorem, Eq. (1.1) can be written in integral form. A set
of boundary conditions (BC)s can then be derived for the EM-fields [6]:

D1
⊥(r, t)−D2

⊥(r, t) = σf (r, t) (1.2a)
E1
‖(r, t)−E2

‖(r, t) = 0 (1.2b)
B1
⊥(r, t)−B2

⊥(r, t) = 0 (1.2c)
H1
‖(r, t)−H2

‖(r, t) = Kf (r, t)× n̂, (1.2d)

where σf (r, t) is the free charge density at the boundary, Kf (r, t) is the free surface
current density, and n̂ is the unit vector perpendicular to the surface. Furthermore,
the subscript i = ⊥, ‖ indicates a parallel or a perpendicular component of the relevant
field and the superscripts 1 and 2 indicate the relevant medium.

The Fourier transform of Maxwell’s equations

In the following, we will need the temporal fourier transformation (FT) which we
defined as1

A(r, ω) =
∫ ∞
−∞

dt eiωtA(r, t), (1.3)

1We will use the physicist’s convention where the expression ei(k·r−ωt) describes a plane wave traveling
in direction k.
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where A(r, t) may denote any of the EM-fields given in Eq. (1.1). By assuming all the
EM-fields to be time-harmonic, the EM-fields in Eq. (1.1) can readily be transformed
into the temporal Fourier domain. For instance, the FT of the time derivative of a
vector field ∂

∂tA(r, t) yields

∂

∂t
A(r, t) = ∂

∂t
Re
{
e−iωtÂ(r)

}
= −iωRe

{
e−iωtÂ(r)

}
= −iωA(r, ω). (1.4)

Thus, the temporal FT of the ME in Eq. (1.1) results in

∇·D(r, ω) = ρ(r, ω) (1.5a)

∇×E(r, ω) = i
ω

c
B(r, ω) (1.5b)

∇·B(r, ω) = 0 (1.5c)

∇×H(r, ω) = 1
c
I(r, ω)− iω

c
D(r, ω). (1.5d)

The constitutive relations in matter

To relate the behavior of the EM-fields in various materials it is common to introduce
the macroscopic polarization, P(r, ω) and magnetization densities M(r, ω), related to
the EM-fields through the constitutive relations

D(r, ω) = ε(ω)E(r, ω) + P(r, ω) (1.6a)
B(r, ω) = µ(ω) [H(r, ω) + M(r, ω)] , (1.6b)

where the permittivity of the material is denoted ε(ω), and the permeability of the
material µ(ω). In the further analysis we will focus only on the relations for the
electric-field.
For a linear, isotropic and homogeneous medium the macroscopic polarization is linked
to the electric field through the electric susceptibility

P(r, ω) = χ(ω)E(r, ω), (1.7)

thus, with the relations in Eqs. (1.6)-(1.7) one can show that the electric susceptibility
is related to the permittivity of the material like

ε(ω) = χ(ω) + 1. (1.8)

Helmholtz equation in simple materials

In a source free and non-conducting material, one can obtain the Helmholtz equation
by substituting the relations connecting the polarizability and magnetization density
given in Eq. (1.6) together with the curl equations in Eq. (1.1a) and Eq. (1.1d) and
the vector identity
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∇× (∇×A(r, ω)) = εi,j,k∂jεk,l,m∂lAm

= εi,j,kεk,l,m∂j∂lAm
¬

= δi,lδj,m − δi,mδj,l (∂j∂lAm)
= δi,lδj,m∂j∂lAm − δi,mδj,l∂j∂lAm
= ∂j∂iAj − ∂j∂jAi


= ∂i∂jAj − ∂j∂jAi
=∇ (∇ ·A(r, ω))−∇2A(r, ω),

(1.9)

¬ Property of the double levi-cevita tensor: εi,j,kεk,l,m = δi,lδj,m − δi,mδj,l.
 Independent order of the partial derivative: ∂i∂jAj = ∂j∂iAj .
so the Helmholtz equation for the FT electric-field is

ε(ω)µ(ω)ω
2

c2 E(r, ω)−∇2E(r, ω) = 0. (1.10)

As discussed in any book on electromagnetism [6], for the field in a homogeneous and
isotropic medium Eq. (1.10) have plane-wave solutions in the FT domain in the form

E(r, ω) = E0ei(k·r)2πδ(ω − ω0), (1.11a)

and as a function of position and time as

E(r, t) = E0ei(k·r−ωt), (1.11b)

where k is the wave vector of the field, describing the direction of the propagation of
of the field, and ω = 2πν is its angular frequency of the wave.

Furthermore, the plane wave solutions in Eq. (1.10) must satisfy the dispersion relation
of the fields [

n(ω)ω
c

]2
= k2, (1.12)

where the complex refractive index of the medium is defined as n(ω) =
√
ε(ω)µ(ω).

1.1.2 The complex refractive index

The complex refractive index, n(ω) = ñ(ω) + ik̃(ω), relates the phase velocity and
attenuation of plane waves in matter.

The physical meaning of the refraction index

The term evanescent is derived from the Latin word evanescere, and means vanish-
ing from notice [7]. Evanescent fields are described by having a non-vanishing and
positive imaginary part of the wave vector leading to an exponential decay along the
propagation direction.
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Figure 1.2 An EM-wave traveling from one medium (white rectangle)
towards another (gray rectangle). At the interface, the incoming wave
(in blue) is partly reflected (in red) and transmitted (in green). For a
conducting material, the wave is damped evanescently (a), whereas for a
non-conducting material (b) the wave vector is changed, but the propa-
gation continues through the material without being damped.

A plane wave traveling in the positive x-direction can be described by the refractive in-
dex on the form E(x, t) = E0ei[ωñ(ω)x/c−ωt]e−(ωk̃(ω)x/c), which are related to the length
of the wave vector (the wave number) through the dispersion relation in Eq. (1.12),
k = 2π/λ. Thus, the imaginary part of the refractive index, k̃(ω) determines the
optical absorption of an EM-wave propagating through a medium [8].

The skin depth, `δ = 1/b, for such an EM-wave is related to the imaginary part of the
complex refractive index as b = 4πk̂(ω)/λ.

Electromagnetic fields traveling between media

An EM-wave traveling from medium 1 to medium 2 with different dielectric properties
will be partly reflected and transmitted at the interface. An illustration of the different
behaviors at the interface of a conducting and non-conducting material is given in
Fig. 1.2. In the case of a non-conducting material the transmitted part of the wave is
not damped, i.e. the refractive index of the material is purely real.
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Figure 1.3 An illustra-
tion of the optical response
for a flat surface on an in-
terface between the two me-
dia na and ns. The light
beam is partly reflected and
partly transmitted. Notice
the positive z-axis pointing
downwards and the two dif-
ferent polarizations of the
electric-field.
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1.1.3 The Fresnel coefficients for a flat substrate

Applying the BC given in Eq. (1.2) on the EM-fields given as plane waves on a single
interface between two bulk media leads to the well-known Fresnel amplitudes [7, 9]:

rp(ω) = ns(ω) cos θi − ns(ω) cos θt
na(ω) cos θt + ns(ω) cos θi

, (1.13a)

tp(ω) = 2na(ω) cos θi
na(ω) cos θt + ns(ω) cos θt

, (1.13b)

rs(ω) = na(ω) cos θi − ns(ω) cos θt
na(ω) cos θi + ns(ω) cos θt

, (1.13c)

ts(ω) = 2na(ω) cos θi
na(ω) cos θi + ns(ω) cos θt

, (1.13d)

where θx, x = i, t denotes the angle of incidence or transmission, and nj , j = a, s is
the reflection index of the ambient medium or the substrate, respectively. The terms
rν , and tν , ν = s, p is, respectively, the reflection and transmission amplitude in s- or
p-polarization.
The s- or p-polarizations are used to denote the two possible orientations of the incident
electric field. If the polarization is orthogonal to the plane of incidence, we say the
light is s-polarized, where s comes from the German word for orthogonal senkrecht.
This polarization is also known as a transverse electric wave. The opposite possibility
is given by p-polarization or a transverse magnetic wave where p stands for parallel.
With known forms of the reflection and transmission amplitudes one can also express
the Fresnel coefficients. At normal incidence, θi = 0◦, they read

R(ω) = [na(ω)− ns(ω)]2

[na(ω) + ns(ω)]2
, (1.14a)

T (ω) = 4na(ω)ns(ω)
[na(ω) + ns(ω)]2

, (1.14b)

where R denotes the reflection coefficient and T the transmission coefficient. Because
of energy conservation R+ T = 1.
Generally, the reflection and transmission by macroscopic planes and slabs are more
conveniently described by n. The microscopic mechanisms, e.g. absorption and scat-
tering by small particles, are generally better described by the complex dielectic func-
tion [10].

1.2 The complex dielectric function

In the limit of a linear and isotropic medium for which µ(ω) ≈ 1 (non-magnetic
medium), the complex refraction index and the dielectric function are related by

ε(ω) = n(ω)2, (1.15)

where ε(ω) = ε1(ω) + iε2(ω).
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In a metal, the dielectric function models the macroscopic behavior of the conduction
electrons. We have already seen that the complex dielectric function is needed in the
constitutive relations given in Eq. (1.6). Even though more precise theoretical models
for this function exist in the literature, the semi-classical derivation of the complex
dielectric function given by the Drude model is good enough to catch the plasmonic
properties of metals qualitatively.

1.2.1 The Drude Model

The Drude model is a semi-classical model that describes the coupling between elec-
trons and ions with a mechanical analog where the mass of the nucleus is assumed to
be much higher than that of the electrons me � mnucleus.
Following Maier in Ref. 8, a semi-classical derivation of the complex dielectric function
starts with writing an equation of motion for an electron in the plasma sea in a material
under the influence of an external electric field. The equation of motion for the position
of the electrons reads

me
∂2x(t)
∂t2

+meΓ∞
∂x(t)
∂t

= −eE(t), (1.16)

where the displacement of the electron is given by the position vector x(t), me is the
mass of the electrons, E(t) as the external electric field, the term Γ∞ is the damping
constant in the bulk material due to frictional forces and finally the charge carriers in
the material is denoted by e.
Assuming a time harmonic field and again performing the temporal FT, a solution to
Eq. (1.16) is

x(ω) = eE(ω)
me [ω2 + iΓ∞ω] . (1.17)

The displacement of the electrons will contribute to the macroscopic polarization as
follows

P(ω) = −nex(ω)

= − ω2
p

ω2 + iΓ∞ω
E(ω), (1.18)

where n is the total number of electrons, and the introduced term ωp in the last line
of Eq. (1.18) is the so-called Drude plasma frequency which is defined as

ωp =
√
ne2

me
. (1.19)

From the constitutive relations for the polarization P(ω) and the electric susceptibility
in Eq. (1.6a) and Eq. (1.8), respectively, the displacement field D(ω) is given by

D(ω) = ε(ω)E(ω) + P(ω)

=
[
1− ω2

p

ω2 + iΓ∞ω

]
E(ω) (1.20)
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from which the complex dielectric function of the material can be defined as

ε(ω) = 1− ω2
p

ω2 + iΓ∞ω
= ε1(ω) + iε2(ω). (1.21)

For alkaline metals and noble metal (like silver or gold), the Drude model satisfactorily
describes the behavior of the conduction s-electrons. Already with noble metal, not
speaking about transition metals, an extension of the dielectric function involves the
band-to-band transitions involving d-electrons [8]. Thus, the dielectric function is
often corrected by the screening they induce accordingly to an extra-term

ε(ω) = ε∞ −
ω2
p

ω2 + iΓ∞ω
. (1.22)

More complex expressions for the dielectric function exist to include interband transi-
tions as sum of oscillators. Otherwise, one may resort to functions determined exper-
imentally and tabulated as done herein for silver.

1.2.2 Optical properties of a Drude metal

Because of the link between the refractive index and the dielectric function, given
in Eq. (1.15), simple analysis can give us some intuition about the expected optical
behavior of the material. In metals with small damping for the electrons ω � Γ∞,
the dielectric function becomes

ε1 ≈ 1− ω2
p

ω2 (1.23)

ε2(ω) ≈ ω2
pΓ∞
ω3 , (1.24)

thus leading to vanishing real part of the dielectric function [ε1 = 0] at ω = ωp, the
well-known condition for the excitation of the so-called bulk plasmon.

Figure 1.4 illustrates the connection between the bulk dielectric function for a Drude
metal and the connected optical properties of this material at normal incidence (θ =
0°). The conductive behavior (ε1 < 0, illustrated as the gray region in Fig. 1.4)
of this theoretical metal is lost when the real part of the dielectric function becomes
positive [solid blue line in Fig. 1.4(a)]. When ε1 > 0 the imaginary part of the complex
refractive index (the term connected to absorption in the material) approaches zero,
k̃ → 0 [solid red line in Fig. 1.4(c)] and the refractive index becomes purely real.

For a light wave traveling from air to the same theoretical Drude metal at normal
incidence, the transmission coefficient goes to 100% [solid red line in Fig. 1.4(b)] at
the same energy value where the real part of the dielectric function becomes positive
and the metal behaves like a dielectric.
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ñ

k̃

(b) The complex refractive index. index.

0 1 2 3 4 5 6
h̄ω [eV]

0.0

0.2

0.4

0.6

0.8

1.0

ν i

ν = R

ν = T

(c) Reflection and transmission coefficients
of an EM-wave traveling from air to the

Drude metal at normal incidence.

Figure 1.4 The dielectric function (a), reflection (b) and refractive
index (c) at normal incidence for a theoretical Drude metal. The pa-
rameters used in the simulations are retrieved from [11] and described
the free electrons in silver. They are indicated in the upper right corner
of the figure.
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1.2.3 The dielectric function of real metals

The dielectric properties of real materials are only approximately described by a Drude
dielectric function since the interband transitions are not properly accounted for in
this model. In the literature, a corrective term is often added to describe the later [12]

εB(ω) = εD(ω) + εI(ω)

= 1− ω2
p

ω(ω + iΓ∞) + εI(ω), (1.25)

εB(ω) denotes the total bulk permittivity of the metal as a function of frequency
consisting of a Drude and an interband transition part, respectively denoted by εD(ω)
and εI(ω).

Even for silver, which is one of the most used plasmonics materials with almost Drude-
like behavior, the interband transitions of the electrons above ~ω > 3.8 eV complicate
the dielectric function of the material considerably. The energy interval where the
metal behaves as conducting, and could possibly excite plasmons, is less then what
we would expect from the Drude-model.

In Fig. 1.5(a) the decomposition in Drude- and interband components is shown for
silver. Even though the imaginary Drude part of the dielectric function approaches
zero from above as the real part of the Drude dielectric function approaches zero
from below, the contribution of the intraband electrons makes the behavior of the
total dielectric function more complicated than what we saw for the theoretical Drude
metal in Fig. 1.4(a) modeled with Eq. (1.22). As a consequence, the actual energy
interval where the plasmons can be excited are smaller than what we expect from
Fig. 1.4(a).

For materials like gold [Fig. 1.5(b)], chromium [Fig. 1.5(c)] and zinc [Fig. 1.5(d)],
the intraband transitions are progressively shifted towards lower energies making the
energy interval were the plasmon can be excited even smaller.

1.3 Plasmonics of metallic nanoparticles: a starter
Already the Romans were fascinated by the optical properties created by metal par-
ticles in the glass matrix. One of the most famous examples is the Lycurgus cup,
illustrated in Fig. 1.6. The gold NPs in this object make its color changing from green
to red, depending on whether it is seen with reflected or transmitted light, respec-
tively [13,14].

The first structured and scientific works on the investigations of the optical prop-
erties of metallic particles are credited to Maxwell-Garnett and Frölich. In 1904,
Maxwell-Garnett gave the first explanation of the coloration of glasses doped by a
metal precursor [15]. A more detailed description of light scattering by a spherical
particle was given by Mie in 1908 [16].

For metallic NPs, the main effect of an incoming EM wave is to polarize the electronic
gas of the metal and to excite a collective motion of the electrons, known as the LSPR.
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(a) Ag. (b) Au.

(c) Cr. (d) Zn.

Figure 1.5 Actual bulk dielectric functions for silver (a), gold (b),
chromium (c), and zinc (d). Each function is decomposed into its Drude
and interband components. Courtesy of R Lazzari.
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(a) (b)

Figure 1.6 The Lycurgus cup seen in reflected (a) and transmitted (b)
light. Gold nanoparticles embedded in the glass cause the apparent color
change of the object. Figures are given with permission of ©Trustees of
the British Museum.

For a time-varying field the polarization process of the electrons in the NP leads to a
dipole like behavior of the free electrons in the metal. The restoring force acting on
electrons is due to the positive background of charge of the nuclei.

A sketch of the oscillations of the electron cloud in a metallic NP with and without
the impact of an external EM-field is given in Fig. 1.7. As the wave is propagating
the movement of the free electrons in the metallic NP shift their direction, and thus
the particle behavior can be seen as dipole-like.

− − −

− − −

t0 t1 t2

Figure 1.7 Sketch of a
metal sphere without (t =
t0) and with (t = t1 and t =
t2) the influence of an ex-
ternal electrical field. The
oscillating electron cloud is
indicated in blue.

The quasi-static regime

If the size of the particles is much smaller than the wavelength of the incoming field,
i.e. 2R � λ where R is the radius of the particles and λ the optical wavelenght, the
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R

E λ

(a) 2R� λ.

R

E λ

(b) 2R 6� λ.

Figure 1.8 A valid (a) and a non-valid case (b) case of the quasi
static-approximation.

NP experiences a nearly uniform field but with a time-dependence. This size regime
of is known as the quasi-static regime (see Fig. 1.8).
In the quasi-static regime the scattering cross-section of a metallic sphere is given
as [10]

Csca = k4

6π |α(ω)|2 = 8π
3 k2R6

∣∣∣∣ ε(ω)− εa
ε(ω) + 2εa

∣∣∣∣2 , (1.26a)

and the absorption cross-section is

Cabs = kIm {α(ω)} = 4πkR3Im
{
ε(ω)− εa
ε(ω) + 2εa

}
, (1.26b)

where k is a relevant component of the wave-vector, R the radius of the NP, and
α(ω) its polarizability. Furthermore, here ε(ω) is the frequency-dependent dielectric
function of the metallic particle and εa denotes the constant dielectric function of the
surrounding medium. The polarizability is an example of a response function, telling
us how the polarization of a particle is changed under the influence of an applied
electric field. It links the induced dipole in the particle to the incident field.
The extinction cross-section has a scattering component proportional to (λ/2R)4 and
an absorption component proportional (λ/2R). Thus, in the quasi-static regime
2R � λ, the interaction between the field and the particle will be dominated by
absorption. Absorption (and scattering) will be resonant for a frequency ω for which
ε(ω) = −2εa. For a Drude metal, this leads to an oscillator-like behavior for the
absorption called the LSPR. But more generally, the resonance condition will depend
intimately on the shape of the object and the dielectric function ε(ω) of the metal,
or in other words on its polarizability α(ω). This quantity will be central throughout
this thesis.
The two main geometries considered all along this thesis are spheres or spheroids.
Together with simple analytical models, we will present plots of the particles polar-
izabilities with the same model of Drude metal for the dielectric function [given in
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Figure 1.9 Imaginary part of the polarizability of a silver sphere in
a homogeneous medium of different dielectric function Fig. 1.9a with
different radius Fig. 1.9b. The resonance peaks are tagged with (energy,
amplitude).

Eq. (1.22), and displayed in Fig. 1.4(a)]. All the graphs in the following sections keep
the same energy scale so the reader can quickly compare plots. Furthermore, the
resonance peaks are marked by (energy, amplitude) tags.

Spheres

The famous formula for the polarizability of a metal sphere in a homogeneous medium
of dielectric constant εa reads [8]

αs(ω) = 4πR3 ε(ω)− εa
ε(ω) + 2εa

. (1.27)

As mentioned earlier, the resonance condition of Eq. (1.27) is found at the pole of the
function on the right-hand side, i.e. when ε(ω) + 2εa = 0.

For a metal with a small or slowly varying imaginary part of the dielectric function,
the resonance condition simplifies to

Re{ε(ω)}+ 2εa = 0
ε1(ω) = −2εa.

(1.28)

In the literature the condition in Eq. (1.28) is often referred to as the Frölich condition
of the metal particle. The associated mode is known as the metal particle dipole
surface plasmon or the Frölich mode [8, 10]. For an ambient medium of constant
dielectric function εa, and for a Drude metal sphere with a small damping, i.e. Γ� ω
(small absorption), the resonance frequency is given by ω = ωp√

2εa+1 . Thus, the energy
position of the resonance changes with εa [see Fig. 1.9(a) and Fig. 1.9(b)]. Higher
values of the dielectric function εa, red-shifts (a shift towards lower energies) the
resonance. The particle radius, as long as the quasi-static regime holds, will only
change peak amplitude without impacting peak position. Notice that the intensity of
the resonance scales with the particle volume.
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Ellipsoids

An ellipsoid has three symmetry axis given by the relation
x2

a2
1

+ y2

a2
2

+ z2

a2
3

= 1, (1.29)

where a1, a2, and a3 define the radius of the ellipsoid along the x-, y-, and z-directions,
respectively. As a consequence of the different spacial symmetries, the polarizability
of an ellipsoidal in a homogeneous medium becomes direction dependent and is given
as [8]:

αi(ω) = 4πεaa1a2a3
ε(ω)− εa

3εa + 3Li (ε(ω)− εa)
, i = 1, 2, 3 (1.30a)

where the so-called depolarization factor is defined as

Li = a1a2a3
2

∫ ∞
0

dq(
a2
i + q

)√(
a2

1 + q
) (
a2

2 + q
) (
a2

3 + q
) , (1.30b)

and is a geometrical factor dependent of the direction (specified by i) of the exciting
electric field. Notice that ∑i Li = 1 and that in the special case of a sphere, for which
L1 = L2 = L3 = 1/3, the expression for the polarizability Eq. (1.27) is recovered.
The resonance condition of an ellipsoidal is given by

Re{ε(ω)}+ εa(
1
Li
− 1) = 0, (1.31)

in the limit of a non-absorbing ambient medium. For an ellipsoid in a homogeneous
medium with constant dielectric function εa and a Drude metal with small damping
Γ � ω, the resonance frequency is found when ω = ωp/

√
Li.

The polarizability of an ellipsoid is illustrated in the case of oblates3 and prolates4 in
Fig. 1.10(a) and Fig. 1.10(c), respectively. For both cases, the resonances are compared
with a sphere of the same volume. The first observation is a peak splitting due to the
change of particle shape. A smaller value of the radius yields a higher value of the
geometrical factor (Li) and consequently a red-shift compared to the spherical case. In
the opposite case, a smaller value of the geometrical factor will shift the polarizability
to higher values (blue-shift) as compared to the sphere. For both the configurations,
the resonance along the major axis (Ro‖ and R

p
⊥ ) is blue-shifted, and along the minor

axis (Ro⊥ and Rp‖ ) is red-shifted as compared to the sphere of the same volume.

Coated spheres

Spheres or spheroids coated with concentric layer(s) of different materials are geome-
tries of interest in plasmonics [17]. The polarizability of a coated spherical NP in a
homogeneous background is given as [10,12,18,19]:

α(ω) = 4π(R2)3 [ε2(ω)− εa][ε1(ω) + 2ε2(ω)] + f [ε1(ω)− ε2(ω)][εa + 2ε2(ω)]
[ε2(ω) + 2εa][ε1(ω) + 2ε2(ω)] + 2f [ε2(ω)− εa][ε1(ω)− ε2] , (1.32)

3a1 = a2 6= a3, a1 > a3, often illustrated as squeezed sphere in the literature.
4a1 = a2 6= a3, a1 < a3 often illustrated as dragged sphere in the literature.
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Figure 1.10 The shift in the plasmonic peak of an oblate (a) and a
prolate (c) ellipsoid compared to a spherical particle of the same volume
calculated with the expression for the polarizability Eq. (1.30). The
resonance peaks are marked with (energy, amplitude).

where the outer radius of the NP is denoted R2, the inner radius R1, and the number
f = (R1/R2)3 is the fraction of the total particle volume occupied by the inner sphere.
The dielectric function of the inner and outer materials are denoted ε1(ω) and ε2(ω),
respectively. The dielectric function of the non-absorbing embedding medium is again
denoted by εa.

Figure 1.11 displays the imaginary part of the polarizability and therefore the res-
onance conditions for a coated particle in a homogeneous medium for R2 = 10 nm.
The two systems we will consider consist of either a thick [f = 0.4, R1 = 4 nm,
Fig. 1.11(a)] or thin [f = 0.4, R1 = 8 nm, Fig. 1.11(b)] coating layer of a dielectric
material on a metallic core (D/M) or a metallic coating on a dielectric core (M/D).
The resonance frequency of the corresponding non-coated sphere of the same volume
calculated with Eq. (1.27) is shown for comparison. The metallic layer/core is modeled
by a Drude-metal given in Fig. 1.4(a), while the value of the dielectric layer/core is
taken to εD = 1.52.

Choosing a dielectric coating layer (dashed orange lines in the plot), the resonance is
red-shifted in energy as compared to the non-coated sphere (blue dotted lines in the
plot). The amplitudes of the resonances are also changed. The effects of the shifts in
the energy positions of the resonances are most prominent for the thicker dielectric
coating [Fig. 1.11(b)]. For the metallic shell, we observe two resonances (green solid
lines), one which is red-shifted, and one which is blue-shifted as compared to the
corresponding full sphere. The shifts in the energy position of the two peaks are more
prominent for the thin metallic shell configuration.

A qualitative explanation of the oscillation peaks observed for a NP coated with a
dielectric layer and with a metallic core, or a metallic layer on dielectric core is given
in Fig. 1.12. The dielectric layer is mainly shielding the metallic core [Fig. 1.12(a)],
whereas in the metallic layer there are two valid patters for the polarization charges
[Figs. 1.12(b)-(c)], in accordance with the hybridization model [17].



18 | 1 LIGHT SCATTERING IN COMPLEX SYSTEMS

2 3 4 5 6
h̄ω [eV]

0

10

20

30

40

50

60

Im
{α

}/
V

(3.65, 61.254)

(4.4, 11.258)

(3.55, 21.003) (3.85, 24.803)

M/D
D/M
RS

(a) f = 0.4

2 3 4 5 6
h̄ω [eV]

0

20

40

60

80

100

Im
{α

}/
V

(2.65, 106.366)

(4.65, 9.724)

(3.7, 105.65)

(3.85, 24.803)

M/D
D/M
RS

(b) f = 0.8

Figure 1.11 The shift in the plasmonic peak for a particle with a
metallic (M/D) or dielectric (D/M) thick (b) and thin (a) coating layer
as compared to the response of an uncoated sphere. The homogeneous
material is air εair = 1+ i0, and the dielectric material is εD = 1.52+ i0.
The resonance peaks are marked with (energy, amplitude).
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Figure 1.12 The polarization pattern for the electric charges in a
metallic particle coated with a dielectric (a) and for a dielectric particle
coated with a metallic layer (b)/(c).
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(a) Geometries. (b) Environment.
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Figure 1.13 The most important factors controlling the optical prop-
erties of supported nanoparticle films: shape (a), environment (b) and
material (c) of the particles.

1.4 Plasmonic resonances in supported and truncated nanopar-
ticles

The understanding of the connection between the optical properties of granular thin
films and the plasmonic properties of truncated and supported NPs is essential for
the study of the growth process of metallic nanocomposite thin films [1, 20]. The
analytical expressions for the polarizabilities of NPs in a homogeneous medium serve
as general guidelines to understanding the trends of the optical properties of thin films
made out of particles. Shape, environment, and dielectric functions are of paramount
importance for the understanding of the plasmonic response [21–23] (see Fig. 1.13).
However, the presence of the substrate and the truncation of the particles induced
by the partial wetting of the substrate and the break of symmetries as compared to
the case of the free-standing particles previously described. As already seen for the
metallic shell, a complex mode of polarization can be excited in such supported objects.
No analytical model exists for truncated and supported spheres or spheroids. The
forthcoming chapters will describe how to handle such situations. Another important
issue, not treated up till now, is the presence of a collection of objects that may interact
electromagnetically. But before entering into complex modeling, this section aims at
highlighting with basic concepts/models the role of the substrate and the presence of
the neighboring particles.

Role of the substrate and the concept of image charges

When a metallic NP is placed in the vicinity of a substrate, the original symmetry
of the system is broken. Even for a fully symmetrical particle like a sphere, the
presence of the substrate complicates the situation in the quasi-static regime. The
incident field polarizes the particle and creates a dipole. This dipole is mirrored in
the substrate in a so-called image dipole. This latter dipole creates an inhomogeneous
field on the particle that may excite a quadrupole in the particle. In turn, it gives rise
to an image quadrupole and so on. The polarization of the particle can be seen as a
cascade of direct and image multipoles. As a result, the optical response of the particle
will become anisotropic and will depend on the direction of the exciting electric field
parallel and perpendicular to the substrate and on the angle of incidence. The image
response effect will introduce a lift of degeneracy in the polarizability parallel and
perpendicular to the substrate, denoted α‖ 6= α⊥. The electrostatic coupling with the
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(a) Discrete Dipole Approximation
(DDA).

Effective medium

ê‖
ê⊥

εa
εeff

εs
(b) Effective medium theories

(Maxwell-Garnet)

Figure 1.14 A computational expensive [(a)], and inexpensive [(b)]
methods to study the EM-interactions with metallic NPs and light.

substrate can be analyzed in the framework of the method of images [1, 6, 22].

Modeling the response of supported and truncated nanoparticles

There exists a broad collection of computational methods capable of modeling the
plasmonic response of truncated and supported NPs. Using the static-approximation,
the method of image charges and multipoles will be used later to obtain the polariz-
abilities of truncated supported sphere/spheroid.

Solving the full set of MEs is typically a hard task that requires much computational
effort. Methods that are used for this task are often based on a discretization of the
domain of interest. Some of these methods are the Discrete Dipole Approximation
(DDA) [24, 25] and the T-matrix method [26]. Such methods are typically not re-
stricted to a specific particle shape but sufficiently good discretization schemes are
required to obtain accurate results. Furthermore, for the DDA-method the electric
field close to the particle surfaces are inaccurate [27].

Another class of computational methods is effective medium theories [28], where one
tries to find the dielectric function of an equivalent continuous layer containing the NPs
[see Fig. 1.14(b)]. Effective medium theories, like the Maxwell Garnett or Buggerman
model treat the particle interaction with the substrate by embedding them in an
effective medium, of which the dielectric constant is chosen between that of vacuum
and the substrate. Maxwell Garnett [29], successfully describes the colors of glass with
metallic particles and their dependence on volume fraction, but fails to account for the
break of symmetry induced by the substrate. Improvements along various directions
have been attempted to account for the interaction with the substrate, and also for
the interactions between objects at dipolar order.

A dipolar description of the anisotropic response in the quasi-static regime was first
given by Yamaguchi et al. [30]. They tried to explain the anomalous absorption in
thin silver films by replacing each particle by a point-dipole and its image in the
substrate [31].
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Figure 1.15 Dipolar Yamaguchi model : effect of the difference in
the parallel (a) perpendicular (b) component of the imaginary and nor-
malized polarizability when bringing a Drude silver particle close to a
substrate of glass (distance indicated in figure). The dielectric function
of the substrate was εs = εD = 1.52, the ambient media was air εair = 1.
The peaks are marked with (energy, amplitude).

1.4.1 The substrate effect at the dipolar level

In the Yamaguchi model, the direction-dependent polarizabilities of a polarizable
sphere is given by [5]:

αi(0) = 4πR3 εa [ε(ω)− εa]
εa + Li [ε(ω)− εa]

, i = ⊥, ‖ (1.33a)

with

L⊥ = 1
3 + 1

12
εa − εs
εa + εs

(
R

d

)3
(1.33b)

L‖ = 1
3 + 1

24
εa − εs
εa + εs

(
R

d

)3
, . (1.33c)

Here d describes the distance from the particle to the substrate, R is the particle
radius, and εs, and εa are the dielectric constants of the substrate and the ambient,
respectively. The well-known result for the polarizability of a sphere in a homogeneous
medium given in Eq. (1.27) is recovered in the limit of infinite distance limd→∞ αi = α,
as it should. The induced dipoles caused by the incoming field give the expected break
of degeneracy of the parallel and perpendicular direction to the substrate.

A plot of the normalized imaginary part of the direction dependent polarizabilities
for a Drude-like metal sphere in the Yamaguchi dipolar model Eq. (1.33a) is shown
in Fig. 1.15. Far away from the substrate the effect of the image dipole is negligible
and α⊥ ≈ α‖. As the sphere is brought closer to the substrate, the splitting between
the two directions becomes more apparent, while both resonances are shifted towards
lower energies.
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Figure 1.16 Qualitative illustration of the direction of the depolariza-
tion field in the parallel (a) and perpendicular (b) directions caused by
the presence of the surface. The considered dipole is marked in red.

A qualitative explanation of the red-shifts caused by the presence of the substrate is
presented in Fig. 1.16. For both directions, the image dipole will create a depolariza-
tion field in the particle, proportional to the dipole itself, that will be added to the
excitation field. As a result, the restoring force due the positive nuclei acting on the
electrons is reduced. A softening of the resonance frequency and a red-shift compared
to the free-standing particle is therefore observed.

From the literature, it is known that the inclusion of mutltipolar interactions between
the particle and the substrate give rise to additional resonances other than the dipolar
one [1]. The dipolar Yamaguchi-model can not account for these higher order terms.
Also, the model does not incorporate an accurate description of the particle shape
(truncation). The BV-theory describes both the EM-interaction along the surface
and the interaction with the substrate. It is based on a direct/image multipole series
expansion of the electrostatic potential and a correct matching of the BCs of the
potential and its normal derivative at the surface of the particle. It is suitable for
cases of truncated and supported particles (see Chs. 2-4 for a proper description of
the BV-theory applied to truncated NPs). Because BV-theory takes the geometry of
the particles into account it gives better results than the Yamaguchi model [5, 32],
even at dipolar order.

1.4.2 The neighbor effect at dipolar order

In a system where the neighboring particles are sufficiently close to feel their neighbors’
EM response, the island-island interaction must also be included in order to describe
the optical response of the system accurately. In principle, both the island-substrate
and the island-island interaction should be accounted for in the same system at high
multipolar order [1, 5]. However, as soon as the quasi-static approximation is valid
(for particle spacing much smaller than the wavelength), the dipolar coupling leads to
similar results as for quadrupolar coupling given that the surface coverage is smaller
than 50 % [33,34]. For a lattice of particles, the dipolar correction of the polarizabilities
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due to inter-particle coupling reads [5, Eqs. (7.34)–(7.37),Ch. 7]

αi(ω) = 4πR3 εa [ε(ω)− εa]
εa + Li [ε(ω)− εa]

, i = ⊥, ‖, (1.34a)

with

L⊥ = 1
3

{
1− 4

(
R

L

)3 [
S20 −

εa − εs
εa + εs

S20

]√
π/5

}
(1.34b)

L‖ = 1
3

{
1 + 2

(
R

L

)3 [
S20 + εa − εs

εa + εs
S20

]√
π/5

}
, (1.34c)

where S20 and S20 denotes the lattice sums over the 2D array of dipoles and their
images5, and L is the lattice constant (determining the distance between two particles).
Again, in the low coverage limit and when the distance between the particles (lattice
constant) is sufficiently long so the interaction between the particles can be ignored,
we recover the Yamaguchi model at dipolar order. In other words, when S20 → 0 and
2S20

√
π/5 → (L/2d)3, the direction-dependent depolarization factors become equal

to the case of an isolated object in interaction with the substrate [Eq. (1.34b) →
Eq. (1.33b), and Eq. (1.34c) → Eq. (1.33c)].
Plots of the imaginary part of the polarizabilities for a Drude like metal particles
including the island-island interaction at dipolar order Eq. (1.34) are presented in
Fig. 1.17. The peaks in the response along the parallel and perpendicular directions
shift in opposite directions as the lattice constant is decreased. Also, the amplitudes
of the resonances are affected.
The underlying reason for the shift of the resonance frequencies is similar to what was
given previously for the image effect on a dipole. Along the perpendicular direction
[see Fig. 1.18(b)], neighbors create a depolarization field that acts in the opposite
direction to the excitation field. This depolarizaton field, proportional to the dipole
itself, strengthens the restoring force acting on the electronic cloud, and therefore in-
creases the apparent oscillator frequency (blue-shift). Along the parallel direction [see
Fig. 1.18(a)], the situation is less obvious since some neighbors create a depolarization
field in the same direction as the excitating field, others in the opposite direction. But
due the angular variation of the dipolar term, the ones that soften the resonances win.

1.5 Conclusion
This chapter has given a short overview of the theory needed to describe the plas-
monic properties of nanoparticles. In the quasi-static approximation, the absorption
dominates over scattering and is driven by the particle polarizability. The analytical
models for the polarizability of spheres, spheroids, and coated spheres in homogeneous
media have been compared. The case of particles interacting with the substrate and
their neighbors only at dipolar order have been described. These basic models allowed
for the extraction of important trends of the LSPR. These resonances are sensitive to
5An algorithm for the calculation of these lattice sums are given in [5, App. A,Ch. 7]
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Figure 1.17 Particle-particle coupling at dipolar order: parallel (a)
and perpendicular (b) components of the polarizability for a sphere of
radius R = 1, touching the substrate in one point d = 1. Calculations
are done for a Drude metal particle in front of a glass substrate by
varying the distance between the particles. The dielectric function of
the substrate is εD = 1.52 and that of the ambient media is εair = 1.
The peaks are marked with (energy, amplitude).
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ê⊥
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ê⊥

(b)

Figure 1.18 Qualitative illustration of the depolarization field induced
by neighboring dipoles in parallel (a) and perpendicular (b) directions.
The considered dipole is marked in red.
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• the dielectric function of the particle,
• the volume of the particle,
• the dielectric constant of the surroundings,
• the distance of the particle to the substrate through the induced image,
• the neighbors through the depolarization field they induce.

Analytical models for the polarizabilities only serve as general guidelines, to prop-
erly describe the interaction with the substrate and the neighboring particles, and to
predict the effect of the truncated shape of the particles, more complex models are
required.

1.6 Organization of the manuscript
In this chapter, basic concepts about the LSPR have been introduced and the com-
plexity induced by the break of symmetry due to the substrate’s presence and the
truncation of the particle have been discussed.
Chapter 2 will present the theoretical framework of the BV-formalism. It will explain
how the excess fields (EFs) can be used to describe the EM properties of non-sharp
interfaces. The surface susceptibilities are the formalism’s key concepts and allow to
derive all the Fresnel coefficients of the system. These quantities represent the link
between the micro- and macroscopic properties of the system.
As will be shown, the surface susceptibilities depend on the polarizabilities of the
particles. In Ch. 3, we will give the general system of equations used to derive the
polarizabilities of truncated spherical or spheroidal islands interaction at multipolar
order with the substrate. To this end, the image charge technique and multipolar
expansion of the electrostatic potential (quasi-static approximation) will be used to
solve the Laplace equation with appropriate boundary conditions. This chapter ends
with a discussion of the island-island interactions and how they influence the optical
properties of island films containing supported particles.
Chapter 4 is devoted to a detailed description of GranFilm, a software written in
Fortran 90, where the equations from Chs. 2-3 have been implemented. We will here
give a detailed description of the powerful features of this software and we will comment
on some of the new functionality it has, among them, the GranFilm Python interface.
Simulation results for typical system geometries will be presented to illustrate the
capabilities of GranFilm.
The break of symmetry represented by the introduction of the substrate and the trun-
cation of the particles allow for the the excitation of several eigenmodes of polarization
in the NPs. The notion of eigenmodes of oscillations in truncated and potentially
coated NPs will be presented in Ch. 5 and the methodology to identify them will be
introduced. The geometries of non-coated truncated silver spheres, coated particles
with a metallic core/shell, and a dielectric shell/core will all be discussed. The calcu-
lation of ’dispersion’ maps will help to rationalize the effect of truncation and coating
thickness. Contour plots of the spatial variation of the potential will help to visualize
the corresponding pattern of polarization.
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In Ch. 6, we address the so-called experimental broadening of the plasmon resonances,
observed in experimental results, by introducing a dispersion, either in size or shape
of the particles. Both the low- and finite-coverage limit of a polydisperse system will
be considered. The former consists of a ’simple’ average of the polarizabilities over
the shape and size distribution of the partiels in the system. The finite-coverage limit
will be handled within the mean-field approximation to account for fluctuations of the
depolarization fields induced by neighbors of varying size and shape.

Finally, in Ch. 7 we present a summary of the main results obtained during the work
with this thesis. Furthermore, we also here put forward the take-home messages and
perspectives on the work. We also present the general conclusions.
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Chapter 2

Effective boundary conditions for
non-sharp interfaces

The macroscopic optical response of a system containing only sharp (or planar) in-
terfaces can be described using the Fresnel amplitudes. However the EM properties
of non-sharp interfaces, like island films or rough surfaces, can not be described by
these amplitudes alone. This chapter focuses on the BV-formalism, accounted for in
detail in the book Optical properties of surfaces [5] by Bedeaux and Vlieger. The key
concept of the BV-formalism is the introduction of the so-called excess quantities and
the surface susceptibilities. These quantities serve as a link between the microscopic
structure of the system and its macroscopic optical response.
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2.1 The definition of the excess fields

Albano et al. introduced a position dependent excess field (EF) to enable the descrip-
tion of the properties of a boundary layer between two bulk media without considering
the exact structure of the layer along the surface normal [35, 36]. For an arbitrary
time-dependent EM-field, A(r, t), its associated EF is defined as

Aex(r, t) = A(r, t)−A−(r, t)θ(−z)−A+(r, t)θ(z), (2.1)

where θ(z) denotes the Heaviside step function1. In writing the expression in Eq. (2.1),
we have assumed a dividing surface to be located at z = 0 (inside the excess region)
and we have defined the quantities A±(r, t) which denote the far fields extrapolated
into the regions just above and below the dividing surface. In principle, the vector
A(r, t), can represent any of the EM-related quantities2. For instance, it can be the
electric displacement field D(r, t); the electric field E(r, t); the magnetic flux density
B(r, t); the magnetic field H(r, t); the excess or free current density I(r, t); or, finally,
the excess or free charge density ρ(r, t).

Due to the terms A±(r, t)θ(±z) that appear on the right-hand side of Eq. (2.1),
the EFs are only significant in the excess region (around the dividing surface) since
A(r, t) = A±(r, t) when z → ±∞. An illustration of a system with an excess region
is given in Fig. 2.1.

The validity of the BV-formalism is based on the assumption that the integral of the
EF along the entire z-axis essentially can be approximated as

∫ ∞
−∞

dzAex(r, t) ≈
∫ Lz

2

−Lz2
dzδ(z)Aex(r, t), (2.2)

where Lz denotes the full width (height) of the excess region and δ(z) the Dirac delta
function. An illustration of cases where the excess regions are much smaller, and of the
same order of magnitude as the wavelength of the incoming field, is given in Fig. 2.2.

2.2 Maxwell equations for the excess fields

By starting from the original ME given in Eq. (1.1) and the definition of the EF given
in Eq. (2.1) it is possible to derive the following new sets of equations describing the

1Defined as θ(z) ≡ 0, z < 0 and θ(z) ≡ 1, z > 0.
2In the following, A(r, t) will be used to collectively denote any of these quantities in order to avoid
having to repeat similar equations multiple times.
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Figure 2.1 Two bulk materials divided by a sharp interface respec-
tively without (a) and with (b) an excess region (show in pink). Notice
the choice of the z-axis with positive direction pointed downwards. This
convention follows the one assumed by Bedaux and Vlieger [5].
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Figure 2.2 The width of the excess region, Lz, much smaller (a) and
of the same order of magnitude (b) as the wavelength λi of an incoming
EM-field.
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jumps of the EM fields on the planar dividing surface at z = 0

∇·Dex(r, t) +
[
D+
z (r, t)−D−z (r, t)

]
z=0

δ(z) = ρex(r, t) (2.3a)

∇×Eex(r, t) + ẑ×
[
E+
‖ (r, t)−E−‖ (r, t)

]
z=0

δ(z) = −1
c

∂Bex(r, t)
∂t

(2.3b)

∇·Bex(r, t) +
[
B+
z (r, t)−B−z (r, t)

]
z=0

δ(z) = 0 (2.3c)

∇×Hex(r, t) + ẑ×
[
H+
‖ (r, t)−H−‖ (r, t)

]
z=0

δ(z) = 1
c
Iex(r, t) + 1

c

∂Dex(r, t)
∂t

.

(2.3d)

Here A‖(r, t) = [Ax(r, t), Ay(r, t)] represents the in-plane or parallel component of
the field A(r, t) when projected onto the xy-plane (z = 0), and the term Az(r, t),
is the normal component of the corresponding quantity. Moreover, x̂ = [1, 0, 0],
ŷ = [0, 1, 0], and ẑ = [0, 0, 1] are the unit vectors pointing along the positive
x-, y- and z-directions, respectively. The delta function, δ(z), is present to ensure
that the term

[
A+
‖ (r, t)−A−‖ (r, t)

]
is zero away from the dividing surface. As usual,

∇ =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]
denotes the three-dimensional (3D) nabla operator.

Boundary conditions

To see how the EFs modify the BCs given in Eq. (2.3), it is useful to FT the EFs
with respect to the z-coordinate. Such a FT over the spatial component of Aex(r, t)
we define as

Aex(r‖, kz, t) =
∫ ∞
−∞

dze−ikzzAex(r, t). (2.4)

At the location z = 0 one can show that the spatial FT of the EF given in Eq. (2.3)
can be written [35,36]:

∇‖·Dex,‖(r‖, kz, t) + ikzDex,z(r‖, kz, t)

+
[
D+
z (r‖, z = 0, t)−D−z (r‖, z = 0, t)

]
= ρex(r‖, kz, t) (2.5a)

∇‖×Eex(r‖, kz, t) + ikzẑ×Eex,‖(r‖, kz, t)

+ẑ×
[
E+
‖ (r‖, z = 0, t)−E−‖ (r‖, z = 0, t)

]
= −1

c

∂

∂t
Bex(r‖, kzt) (2.5b)

∇‖·Bex,‖(r‖, kz, t) + ikzBex,z(r‖, kz, t)

+
[
B+
z (r‖, z = 0, t)−B−z (r‖, z = 0, t)

]
= 0 (2.5c)

∇‖×Hex(r‖, kz, t) + ikzẑ×Hex,‖(r‖, kz, t)

+ẑ×
[
H+
‖ (r‖, z = 0, t)−H−‖ (r‖, z = 0, t)

]
= 1
c
Iex(r‖, kz, t) + 1

c

∂

∂t
Dex(r‖, kz, t),

(2.5d)

where ∇‖ =
[
∂
∂x ,

∂
∂y

]
denotes the two-dimensional (2D) nabla operator.
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To obtain an expression for the jumps in the fields in a simpler form, one can set kz = 0
and simplify the notation further by introducing the total excess of the quantities

As
‖(r‖, t) ≡ Âex,‖(r‖, kz = 0, t) =

∫ ∞
−∞

dze−ikzzAex,‖(r‖, z, t) (2.6a)

Asz(r‖, t) ≡ Âex,z(r‖, kz = 0, t) =
∫ ∞
−∞

dze−ikzzAex,z(r‖, z, t), (2.6b)

where the superscript s denotes the total excess quantity of the actual field evaluated
at kz = 0.

Applying these simplifications in notation, we can now recast Eq. (2.5) in component
form with the jumps of the bulk fields extrapolated at the surface. In this way we
obtain

D+
z (r‖, z = 0, t)−D−z (r‖, z = 0, t) = −∇‖·Ds

‖

(
r‖, t

)
+ ρs(r‖, t) (2.7a)

E+
x (r‖, z = 0, t)− E−x (r‖, z = 0, t) = ∂

∂x
Esz(r‖, t)−

1
c

∂

∂t
Bs
y(r‖, t) (2.7b)

E+
y (r‖, z = 0, t)− E−y (r‖, z = 0, t) = ∂

∂y
Esz(r‖, t) + 1

c

∂

∂t
Bs
x(r‖, t) (2.7c)

B+
z (r‖, z = 0, t)−B−z (r‖, z = 0, t) = −∇‖·Bs

‖

(
r‖, t

)
(2.7d)

H+
x (r‖, z = 0, t)−H−x (r‖, z = 0, t) = ∂

∂x
Hs
z (r‖t) + 1

c
Isy(r‖, t)

+ 1
c

∂

∂t
Ds
y(r‖, t) (2.7e)

H+
y (r‖, z = 0, t)−H−y (r‖, z = 0, t) = ∂

∂y
Hs
z (r‖, t)−

1
c
Isx(r‖, t)

− 1
c

∂

∂t
Ds
x(r‖, t). (2.7f)

2.3 Surface polarization and magnetization

As explained in Sec. 1.1.1, it is convenient to introduce surface polarization and mag-
netization for the solutions of the MEs. With the total excess of the fields we introduce
the concepts of generalized surface polarization and magnetization densities, denoted
Ps(r‖, t) and Ms(r‖, t), respectively. In the case when a boundary layer is present the
definition for these quantities are not as straightforward as in the bulk case. Here, we
follow Bedeaux and Vlieger and define them as [37]:

Ps(r‖, t) ≡
[
Ds
‖(r‖, t),−Esz(r‖, t)

]
(2.8a)

Ms(r‖, t) ≡
[
Bs
‖(r‖, t),−Hs

z (r‖, t)
]
, (2.8b)

where again the superscript s stands for the total excess of the corresponding quantity
[c.f. Eq. (2.6)].
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2.3.1 The choice of zero fields

It is often convenient to introduce zero fields in the mathematical analysis. This choice
should not affect the global optical properties of the system. Again, following Ref. 37
we chose the following zero fields

Ds
z(r‖, t) ≡ Es

‖(r‖, t) ≡ Bs
z(r‖, t) ≡ Hs

‖(r‖, t) ≡ Isz (r‖, t) ≡ 0. (2.9)

The interfacial polarization and magnetization densities in Eq. (2.8) can then be
rewritten as

Ps(r‖, t) = Ds(r‖, t)−Es(r‖, t) (2.10a)
Ms(r‖, t) = Bs(r‖, t)−Hs(r‖, t). (2.10b)

Bear in mind, that in contrast to the definitions of the surface polarization and mag-
netization densities given in Eq. (2.8), the interfacial polarization and magnetization
densities are now expressed with the total vector fields. Our definition is only true for
a certain choice of zero fields. In general,

As
‖(r‖, t) 6= Âex,‖(r‖, kz = 0, t) (2.11a)

Asz(r‖, t) 6= Âex,z(r‖, kz = 0, t), (2.11b)

where the left-hand side of Eq. (2.11) is zero by definition, but the right-hand side
maybe different from zero.

2.3.2 The planar surface as an example

The polarization and magnetization density for the planar surface can be obtained by
integrating Eq. (2.4) along the entire z-axis with kz = 0

Ps(r‖, t) =
∫ ∞
−∞

dz
[
Ds
‖(r‖, z, t),−Esz(r‖, z, t)

]
(2.12a)

Ms(r‖, t) =
∫ ∞
−∞

dz
[
Bs
‖(r‖, z, t),−Hs

z (r‖, z, t)
]
. (2.12b)

The BCs [given in Eq. (2.7)] for the jumps in the fields can be reexpressed in terms
of the interfacial polarization and magnetization densities defined in Eq. (2.8). When
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this is done, the results is:

D+
z (r‖, z = 0, t)−D−z (r‖, z = 0, t) = −∇‖ ·Ps

‖

(
r‖, t

)
+ ρs(r‖, t) (2.13a)

E+
x (r‖, z = 0, t)− E−x (r‖, z = 0, t) = − ∂

∂x
P sz (r‖, t)−

1
c

∂

∂t
M s
y (r‖, t) (2.13b)

E+
y (r‖, z = 0, t)− E−y (r‖, z = 0, t) = − ∂

∂y
P sz (r‖, t) + 1

c

∂

∂t
M s
x(r‖, t) (2.13c)

B+
z (r‖, z = 0, t)−B−z (r‖, z = 0, t) = −∇‖·Ms

(
r‖, t

)
(2.13d)

H+
x (r‖, z = 0, t)−H−x (r‖, z = 0, t) = − ∂

∂x
M s
z (r‖, t) + 1

c
Isy(r‖, t)

+ 1
c

∂

∂t
P sy (r‖, t) (2.13e)

H+
y (r‖, z = 0, t)−H−y (r‖, z = 0, t) = −1

c

∂

∂y
M s
z (r‖, t)−

1
c
Isx(r‖, t)

− ∂

∂t
P sx(r‖, t). (2.13f)

If the surface polarization and magnetization densities, as well as all the charge and
current densities are set to zero in Eq. (2.13), the resulting BCs reduce, as they should,
to the familiar expressions given in Eq. (1.2).

2.4 The generalized electric displacement field

A common and convenient technique for working with problems of time dependence is
to define a generalized electric displacement field, D′(r, ω). An additional advantage
in the description of surfaces is that to describe charge conservation, it is necessary
to take the normal component of the excess electric displacement field and the excess
electric current density to zero [37, Chapter 3].

In the following, as we did in Ch. 1, we will again use the temporal FT which we
defined as

A(r, ω) =
∫ ∞
−∞

dt eiωtAex(r, t). (2.14)

If one introduces the general electrical displacement field, it is necessary to put only
the normal component of the EF to zero; thus we have a less restrictive formulation.
We define the general displacement field is defined as

D′(r, ω) ≡ D(r, ω) + i

ω
I(r, ω), (2.15)

where the FT over time has been performed [t → ω]. Furthermore, we may use
the definition of the generalized displacement field given in Eq. (2.15) and charge
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conservation3 to rewrite Eq. (1.5)

∇·D′(r, ω) = 0 (2.16a)

∇×E(r, ω) = i
ω

c
B(r, ω) (2.16b)

∇·B(r, ω) = 0 (2.16c)

∇×H(r, ω) = −iω
c

D′(r, ω). (2.16d)

The choice of absorbing the electric current density into the generalized electric dis-
placement field is convenient for time independent problems. In the context of this
thesis, our interest is mainly optical problems. Thus, this choice is not a restriction
for us.
Using these definitions and of the temporal FT [c.f. Eq. (2.14)], the polarization and
magnetization densities become

P′s(r‖, ω) ≡
[
D′s‖ (r‖, ω),−Esz(r‖, ω)

]
(2.17a)

Ms(r‖, ω) ≡
[
Bs
‖(r‖, ω),−Hs

z (r‖, ω)
]
. (2.17b)

Again, following Ref. 37 the choices for the singular behavior of the fields are

Es
‖(r‖, ω) = 0, D

′s
z (r‖, ω) ≡ Ds

z(r‖, ω) + i

ω
Isz (r‖, ω) = 0

Hs
‖(r‖, ω) = 0, Bs

z(r‖, ω) = 0.
(2.18)

The interfacial polarization and magnetization densities are again given by the total
fields

P′s(r‖, ω) = D′s(r‖, ω)−Es(r‖, ω) (2.19a)
Ms(r‖, ω) = Bs(r‖, ω)−Hs(r‖, ω). (2.19b)

Performing the replacements D → D′, Ps → Ps,′ and setting ρ = 0 and I = 0 in
Eq. (2.13), the singular behavior of the time harmonic fields on the dividing surface
with generalized displacement fields becomes

D+
z (r‖, z = 0, ω)−D−z (r‖, z = 0, ω) = −∇‖·P

′s
‖

(
r‖, ω

)
(2.20a)

E+
‖ (r‖, z = 0, ω)−E−‖ (r‖, z = 0, ω) = −∇‖P

′s
z (r‖, ω)− iω

c
ẑ×Ms

‖(r‖, ω) (2.20b)

B+
z (r‖, z = 0, ω)−B−z (r‖, z = 0, ω) = −∇‖·Ms

‖

(
r‖, ω

)
(2.20c)

H+
‖ (r‖, z = 0, ω)−H−‖ (r‖, z = 0, ω) = −∇‖M s

z (r‖, ω) + i
ω

c
ẑ×P′s‖ (r‖, ω). (2.20d)

With our choices for the fields, it is sufficient to set the normal component of the
generalized field D′sz (r‖, ω) to zero, and not separately the displacement field Ds

z(r, ω)
and the free current density i

ω Isz(r, ω). In order to simplify the notation, we will from
now onward suppress the explicit use of primes on the generalized displacement field
and related quantities. In what follows, we will let D′ → D and P′ → P.
3Charge conservation yields: iωρ(r, ω) =∇· I(r, ω)→∇·D′(r, ω) =∇·

[
D(r, ω) + i

ω
I(r, ω)

]
.
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2.5 Constitutive relations

To make practical use of the BCs given by Eq. (2.20) the interfacial polarization and
magnetization densities, Ps(r‖, ω) and Ms(r‖, ω), characterizing the actual surface
need to be linked to the bulk fields extrapolated onto the (dividing) surface [35,36].

2.5.1 Isotropic interfaces without spatial dispersion

Given that the source-observer symmetry is satisfied, as we will assume here, the con-
stitutive coefficients that relate the interfacial polarization and magnetization densities
to the various components of the EM-fields, will be symmetric tensors (matrices).

In the absence of spatial dispersion, the most general constitutive relation is defined
by the multiplication of a second-rank tensor and a vector

Ps(r‖, ω) =
↔

ξse(ω) ◦
[
E‖,Σ(r‖, ω), Dz,Σ(r‖, ω)

]
(2.21a)[

Ms(r‖, ω)
]
i

=
↔

ξsm(ω) ◦
[
H‖,Σ(r‖, ω), Bz,Σ(r‖, ω)

]
, (2.21b)

where the subscript Σ on a EM-field quantity indicates that its associated extrapo-
lated fields on both side of the dividing surface are an average; the formal definition
is AΣ(r‖, ω) = 1

2

[
A−(r‖, ω) + A+(r‖, ω)

]
, the ◦-symbol denotes the multiplication

between a second order tensor and a vector4. The terms
↔

ξse and
↔

ξsm that appear in
Eq. (2.21), are dependent on the actual geometry and properties of the surface. We
call them the constitutive coefficients. In this sense, we can therefore say that the
features and characteristics of the excess region are encoded into these two quantities.
As a consequence, they will be of primary importance when we later on address the
optical properties of surfaces with a non-trivial excess region.

In this thesis, the surface is always assumed to be isotropic. In the Cartesian coor-
dinate system the constitutive coefficients can be represented as matrices with nine
components. For an isotropic surface without spatial dispersion5, only the diagonal
elements of these matrices will be different from zero

↔

ξsi (ω) =

γi(ω) 0 0
0 γi(ω) 0
0 0 βi(ω)

 (2.22)

where βi and γi (with i = e,m) denote the first order surface susceptibilities. These
first order surface susceptibilities have the dimension of length. They can be inter-
preted as an effective optical thickness d, that can be obtained by Surface Differential
Reflectivity Spectroscopy (SDRS) or ellipsometry experiments.

4This operation is also called single contraction in tensor notation [38].
5i.e. the dielectric function has no dependence of the wave vector k.
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Combining Eq. (2.21) and Eq. (2.22) one obtains

Ps
‖(r‖, ω) = γe(ω)Es

‖,Σ(r‖, ω) (2.23a)
P sz (r‖, ω) = βe(ω)Ds

z,Σ(r‖, ω) (2.23b)
Ms
‖(r‖, ω) = γm(ω)Hs

‖,Σ(r‖, ω) (2.23c)
M s
z (r‖, ω) = βm(ω)Bs

z,Σ(r‖, ω). (2.23d)

2.5.2 Isotropic interfaces with spatial dispersion

For a spatially dispersive surface, polarization and magnetization densities are no
longer related to the fields in a spatially local manner. To relate the constitutive
relations to the extrapolated bulk fields one must introduce two new second order
surface susceptibilities. Bedeaux and Vlieger [5] denote them τ and δ, and we will do
the same. It can be shown that the constitutive relations for the ME to first order in
the non-locality take the form [37, Chapter 3.7]

Ps
‖(r‖, ω) = γe(ω)Es

‖,Σ(r‖, ω)− δe(ω)∇‖Ds
z,Σ(r‖, ω) + i

ω

c
τ(ω)ẑ×Hs

‖,Σ(r‖, ω)
(2.24a)

P sz (r‖, ω) = δe(ω)∇‖·Es
‖,Σ(r‖, ω) + βe(ω)Ds

z,Σ(r‖, ω) (2.24b)

Ms
‖(r‖, ω) = γm(ω)Hs

‖,Σ(r‖, ω)− δm(ω)∇‖Bs
z,Σ(r‖, ω) + i

ω

c
τ(ω)ẑ×Es

‖,Σ(r‖, ω)
(2.24c)

M s
z (r‖, ω) = δm(ω)∇‖·Hs

‖,Σ(r‖, ω) + βm(ω)Bs
z,Σ(r‖, ω). (2.24d)

The second order surface susceptibilities δ and τ give the contributions to the deriva-
tives of the magnetic dipole polarization and the electric excess fields. They have the
dimension of length squared and are therefore a factor of optical thickness divided by
the wavelength d/λ smaller than the first order surface susceptibilities. In Ch. 3 it
will become clear that the second order surface susceptibilities are linked to the di-
rection dependent quadrupolar polarizabilities, α10

‖ and α10
⊥ , for a non-sharp interface

containing island particles.

2.5.3 Example geometries

The expressions of the surface susceptibilities will depend on the geometry of the
boundary layer. For a thin film that is parallel to the surface of the substrate, the
first order surface susceptibilities are [39]

γ = d (εf − εa) (2.25a)

β = d
(εf − εa)
εfεa

, (2.25b)

where d is the thickness of the film, and εa and εf denote the relative permittivity of
the ambient medium and the film, respectively. The result in Eq. (2.25) is well-known
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Figure 2.3 Illustration of the ’excess’ regions for a boundary layer
containing a parallel thin film (a) and spherical particles (b).

from thin film theory and is an illustrative and simple example to use to check that the
BV-formalism can reproduce this result correctly. Figure 2.3(a) display the relevant
geometry in such a system.
A less trivial illustration of practical use is a geometry where the boundary layer
consists of spherical particles. In this case, the first order surface susceptibilities are
given by [5]

γ = ρ〈α‖〉 (2.26a)

β = ρ
〈α⊥〉
ε2
a

, (2.26b)

where ρ denotes the density of particles, εa is the relative permittivity of the substrate,
αi is the direction dependent polarizabilities, and the term 〈·〉 denotes the average. A
thin film containing truncated particles in the boundary region defined by the EFs is
illustrated in Fig. 2.3(b).
Since the polarizability scales with the volume of the particle, the surface susceptibili-
ties γ and β are both proportional to the amount of matter in the film. They describe
how the interface polarizes the light that is reflected or trasmitted from it. An explicit
calculation of the polarizabilities α‖ and α⊥ in the case of supported and truncated
spherical or spheroidal particles will be given in detail in Ch. 3.

2.6 Modified Fresnel coefficients
It is a standard exercise in optics to calculate the Fresnel amplitudes of light reflected
or transmitted from a plane and uniform interface between two bulk media. This is
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done by expressing the EM-fields as a superposition of the incoming and the reflected
fields on one side of the boundary and the transmitted field on the opposite side of
the boundary. These expressions are then used to satisfy the BCs of the fields on the
surface.
The relevant geometries considered in this thesis are not sharp interfaces, but following
a similar way of thinking a set of modified Fresnel coefficients can be obtained. How
this can be done is detailed in Ref. [5]. When doing this, one starts from the modified
BCs in Eq. (2.20d) and the constitutive relations in Eq. (2.21).
By inserting the plane wave solutions, defined in Eq. (1.11), for the bulk extrapolated
fields into Eq. (2.23), assuming non-magnetic media such that ni =

√
εi(ω), where

i = a, s are the refractive indices of the ambient and substrate, respectively, and
defining the surface polarization in accordance with Eq. (2.20), one can derive the
following complex reflection and transmission amplitudes for s- and p-polarized light
of angular frequency6 ω:

rs =
na cos θi − ns cos θt + iωc γ

na cos θi + ns cos θt − iωc γ
(2.27a)

ts = 2na cos θi
na cos θi + ns cos θt − iωc γ

(2.27b)

rp =
κ− − iωc

[
γ cos θi cos θt − βεsnans sin2 θi

]
κ+ − iωc

[
γ cos θt cos θi + nansεsβ sin2 θi

] (2.27c)

tp =
2na cos θi

[
1 + ω2

4c2 εaγβ sin2 θi
]

κ+ − iωc
[
γ cos θi cos θt + nsnaεaβ sin2 θt

] , (2.27d)

with
κ± = [ns cos θi ± na cos θt]

[
1− ω2

4c2 εaγβ sin2 θi

]
. (2.27e)

Here θi and θt denote the polar angle of incidence/reflection and transmitted, respec-
tively, and c = √ε0µ0 is the speed of light in vacuum. In the limit when γ and β
are set equal to zero in Eq. (2.27), the familiar Fresnel amplitudes, Eq. (1.13), are
obtained.
Notice that the reflection and transmission amplitudes for s-polarized light in Eq. (2.27)
only depend on the surface susceptibility parallel to the surface. This is so since the
electric field for this polarization only has a component parallel to the surface. On the
other hand, for p-polarized light the Fresnel reflection and transmission amplitudes
both dependent on the parallel and perpendicular surface susceptibility. In this case
the electric field has both parallel and perpendicular components.
In passing it should be remarked that similar, but more complicated, relations to
those given in Eq. (2.27) can be derived that will include also the second order surface
susceptibilities i.e. including δ and τ . We will not do so here, but the interested
reader is directed to Ref. [40] for details. These second order terms are crucial for a
6In the following, the explicit dependence of the frequency for all the amplitudes, rs, rp, ts, tp, the
refractive index, ni, and the first order surface susceptibilities, γ and β, are considered to be implicit.
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proper understanding of the optical properties of systems consisting of, for instance,
non-absorbing (dielectric) particles in the excess region or rough surfaces.

2.6.1 The role of the position of the dividing surface on reflectivity and
transmissivity

The somewhat arbitrary choice of the vertical position of the dividing surface, here
we defined z = 0, should not have any physical significance for measurable quantities.
One should notice that the modified Fresnel amplitudes defined in Eq. (2.27) depend
on the vertical position of the dividing surface because the surface susceptibilities
dependent on this choice. However, one can define a new set of invariant quantities,
i.e. a combination of surface susceptibilities γ, β, δ, and τ that do not depend on the
location of the dividing surface. For instance, this was done in Ref. [37, Chapter 3.8]. It
can be shown that Eq. (2.27) can be expressed in terms of these invariants multiplied by
a noninvariant complex phase factor. This phase factor, is of no physical importance
for a given polarization ν = {s, p} because it disappears in the calculation of the
Fresnel (intensity) coefficients defined as

Rν =
∣∣∣∣rνri

∣∣∣∣2 (2.28a)

Tν =
∣∣∣∣ tνri
∣∣∣∣2 ns cos θt
na cos θi

, (2.28b)

where na and ns again denoted the refraction index for the bulk materials, θi and θt
denotes the angle for the incoming and transmitted field, and the term ri is the am-
plitude if the incident field, and finally Rν and Tν are the reflectivity and transmisivty
coefficients7.

2.6.2 Differential reflectivity

The GranFilm software is designed to perform fast calculations of the optical response
of systems containing a boundary layer of metallic particles obtained, e.g. during the
deposition process in a SDRS experiment. In this context, it is especially useful to
define the differential reflectivity for a given polarization, ν = s or p. This quantity is
defined as

∆Rν
Rν

= |rν |
2 − |rν,0|2

|rν,0|2
, (2.29)

where rν is the reflection amplitude of the substrate with metal particles, and rν,0
denotes the Fresnel reflection amplitude of the ’bare’ substrate, before the deposit
starts.

In the long wavelength approximation, (i.e. when 2π/λγ � 1 and 2π/λβ � 1), it
can be shown that the differential reflectivity signal is directly proportional to the
7For homogeneous and semi-infinite materials separated by a planar surface, as in this work, the
reflectance/transmittance and the reflectivity/transmissivity are the same. For systems where both
specular and diffuse reflection of the incident light beam take place, as is the case in the scattering
from a random surface, one has to distinguish these quantities.
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imaginary parts of the surface susceptibilities, and therefore the absorption in the
layer [20, 41, 42]. With the excess field formalism the formulas for the differential
reflectivity on a non-absorbing dielectric substrate εs are

∆Rs
Rs

= 4ω
c

na cos θi
εs − εa

Im{γ} (2.30a)

∆Rp
Rp

= 4ω
c

na cos θi
(εs − εa)(εa sin2 θi − εs cos2 θi)

[
(εs − εa sin2 θi)Im{γ} − εaε2

s sin2 θiIm{β}
]
.

(2.30b)

The same type of formulas have been derived by Bagchi et al. for the reflectivity of a
surface with a non-local surface dielectric tensor [43].

2.7 Conclusion
This chapter has explained how the BV-formalism may be used to describe the EM
properties of non-sharp interfaces. A detailed description of the formalism is given in
the book Optical properties of surfaces [5] by Bedeaux and Vlieger. The definitions of
the so called excess quantities and the surface susceptibilities were the key concepts of
the formalism.
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Chapter 3

The polarizabilities of supported
islands

In Ch. 2 the BV-formalism was introduced to describe the EM properties of so-called
boundary layers. We saw that the surface susceptibilities of a generic boundary layer
fully determines the optical properties of the considered system. This chapter details
the procedure to calculate the polarizabilities defined in Eq. (2.25) for a truncated
spherical particle in the quasi-static approximation. The polarization of an isolated
island is expressed by a multipolar expansion of the electrostatic potential with the
introduction of image multipoles in the substrate. Then we will outline how the single
particle polarizability is corrected for the interactions with its neighbors.
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3.1 The linear response of an island
Considering a single island surrounded by an ambient material the island’s response
generated by an incoming EM-field may be characterized by the dipole, quadrupolar,
and higher-order multipolar polarizabilities [6]. The general linear response of an
island of arbitrary shape to an incident electric field may be written in the
form [37, Eq. (5.2), Ch. 5.2]

Pi(r, t) =
∫

dr′dt′αij(r, t|r′, t′)Ej(r′, t′), (3.1)

where Pi(r, t) is a component of the polarization vector of the island, αij(r, t|r′, t′) a
component of the island’s polarizability tensor at coordinates r,t induced by a com-
ponent of the incoming electric field at coordinates r′,t′, Ej(r′, t′) . The Einstein
summation convention has been assumed [44]. Thus, the repeated indices in Eq. (3.1)
should be summed over.

As the incoming field is real, the polarization is real, and by source observer symmetry

↔
α(r, t|r′, t′) =

[
↔
α(r, t|r′, t′)

]∗
(3.2a)

αij(r, t|r′, t′) = αji(r′, t′|r, t), (3.2b)

where ∗ denotes the complex conjugate. The systems treated in the following are
always stationary, ↔

α(r, t|r′, t′) = ↔
α(r, t − t′|r′, 0) ≡ ↔

α(r, t|r′), so the FT of the time
dependence can be defined as

↔
α(r, ω|r′) =

∫ ∞
−∞

dt↔α(r, t|r′)eiωt. (3.3)

With similar definitions for the FT of the electric field and polarization density we
can recast Eq. (3.1) to

Pi(r, ω) =
∫

dr′αij(r, ω|r′)Ej(r′, ω). (3.4)

Moreover, the polarizability of an island equals zero outside the island. Thus,
↔
α(r, ω|r′) = 0 if {r, r′} 6∈ V, (3.5)

where V is the volume occupied by the island. If the field, due to the polarization of the
particle, is calculated far away from the island it is convenient to give the polarizability
tensor as a multipole expansion. The series expansion of the i, j-component of the
polarizability tensor up to quadrupolar order reads

αij(r, ω|r′) ≈ α00
ij (ω)δ(r)δ(r′)− α10

kij(ω) ∂

∂rk
δ(r)δ(r′)

− α01
ijk(ω)δ(r) ∂

∂r′k
δ(r′) + α11

`ijk(ω) ∂

∂r`
δ(r) ∂

∂r′k
δ(r′), (3.6)
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where δ(r) denotes the 3D delta-function and the different components of the polar-
izability tensor are

α00
ij (ω) =

∫
dr
∫

dr′αij(r, ω|r′) (3.7a)

α10
kij(ω) = −

∫
dr
∫

dr′rkαij(r, ω|r′) (3.7b)

α01
ijk(ω) = −

∫
dr
∫

dr′αij(r, ω|r′)r′k (3.7c)

α11
`ijk(ω) =

∫
dr
∫

dr′r`αij(r, ω|r′)r′k (3.7d)

By combining Eq. (3.6) and the polarization vector written as in Eq. (3.4) an expansion
of the polarization up quadrupolar order yields

Pi(r, ω) =
∫

dr′αij(r, ω|r′)Ej(r′, ω)

≈
∫

dr′
[
α00
ij (ω)δ(r)δ(r′)− α10

kij(ω) ∂

∂rk
δ(r)δ(r′)

+α01
ijk(ω)δ(r) ∂

∂r′k
δ(r′)− α11

`ijk(ω) ∂

∂r`
δ(r) ∂

∂r′k
δ(r′)

]
Ej(r′, ω)

¬

= α00
ij (r, ω|r′)δ(r)Ei(r′, ω)

∣∣∣
r′=0
− α01

ij (r, ω|r′)r′kδ(r)
[
∂

∂r′k
Ei(r′, ω)

]
r′=0

+ rkα
10
ij (r, ω|r′) ∂

∂rk
δ(r)Ej(r′, ω) |r′=0

− r`α11
ij (r, ω|r′)r′k

∂

∂r`
δ(r)

[
∂

∂r′k
Ei(r′, ω)

]
r′=0

,

(3.8)
¬ By definition of the delta function

[
d

dxδ(x− a)
]
f(x) = −δ(x− a)f ′(x).

where 0 = (0, 0, 0) is the null-vector. Letting Di and Qij denote, respectively the
dipole and quadrupole moments of the polarization, we define

Di(ω) =
∫

drPi(r, ω)

= α00
ij (ω)Ej(r′, ω)

∣∣∣
r′=0

+ α01
ijk(ω)

[
∂

∂r′k
Ej(r′, ω)

]
r′=0

(3.9a)

Qij(ω) =
∫

drriPj(r, ω)

= α10
ijk(ω)Ek(r′, ω) |r′=0 + α11

ijk`(ω)
[
∂

∂r′`
Ek(r′, ω)

]
r′=0

. (3.9b)

Thus, the problem at hand is to identify the terms in the dipole and quadrupolar mo-
ments of the island’s polarizability. Bringing a particle towards a dielectric substrate
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will modify the moments of the polarization tensor in Eq. (3.9) due to the charge
distribution induced in the substrate [45]. As this is the relevant geometry for a film
containing supported NPs we will now detail how such a calculation can be done for
the first order terms in the polarizability tensor, in the case of a rotationally symmetric
field around an axis perpendicular to the substrate and a known form of the incom-
ing field, can be done. Such a derivation will be performed within the quasi-static
approximation.

3.2 Laplace’s equation and the relevant boundary condi-
tions
The BV-formalism described in Ch. 2 was based on the assumption that the charac-
teristic distances in the excess region are much smaller than the wavelength of the
incoming field. If the size of the considered islands are small compared to the wave-
length of the incoming field, we can safely neglect retardation effects inside and around
the island and work in the so-called quasi-static approximation. For non-magnetic ma-
terials, the relevant ME are

∇ ·D(r, ω) = 0 (3.10a)
∇×E(r, ω) = 0. (3.10b)

Furthermore, in the quasi-static approximation, the electric field can be defined only
with the electrostatic scalar potential ψ(r|ω)

E(r, ω) = −∇ψ(r|ω) . (3.11)

Combining Eq. (3.10a) and the fact that materials are defined by a local dielectric
function E(r) = D (r) /ε(ω), where ε(ω) is the dielectric function2 of the considered
region, the well-known Laplace’s equation is obtained

∇2ψ(r|ω) = 0, (3.12)

where ∇2 is the Laplace operator. Equation (3.12) has an infinite set of solutions that
can be restricted by the appropriate BCs. At the boundary between two surfaces,
a text-book analysis of ME shows that the continuity of the potential itself and the
normal components of the displacement field should be continuous [6, 46]

ψi(r|ω) |r=rs = ψj(r|ω) |r=rs (3.13a)
εi(ω)∂nψi(r|ω) |r=rs = εj(ω)∂nψj(r|ω) |r=rs , (3.13b)

where i and j denote different media, the term rs is any point on the surface, and
the term ∂n = n̂ ·∇ denotes the normal derivative of the potential on the surface
evaluated in the point rs. Furthermore, the potential must be finite everywhere i.e.

|ψ(r|ω)| <∞, ∀r. (3.14)

When constructing a meaningful solution to Eq. (3.12), one should pay special atten-
tion to the value of the electrostatic potential at the origin, lim

r→0
, and infinity, lim

r→∞
.

2See Ch. 1, Sec. 1.2 for a reminder of the properties of the dielectric function of a material.
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A general solution of Laplace’s equation

In this work we study truncated NPs of spherical shape. In spherical coordinates,
Eq. (3.12) takes the form

∇2ψ(r|ω) = 1
r2

∂

∂r

(
r2∂ψ(r|ω)

∂r

)
+ 1
r2 sin θ

[
∂

∂θ

(
sin θ∂ψ(r|ω)

∂θ

)
+ 1

sin θ

(
∂2ψ(r|ω)
∂2φ

)]
= 0, (3.15)

where the spherical polar coordinates are defined by; r ∈ [0,∞) the radial distance
from the origin, θ ∈ [0, π] the polar angle from the z-axis, and φ ∈ [0, 2π) the azimuthal
angle around from the x-axis. A general solution of Eq. (3.15) is found with the
technique of separation of variables and is given by the classical multipole expansion
in terms of the spherical harmonics (SH) [47]

ψ(r|ω) =
∞∑
`=0

∑̀
m=−`

(
A`m(ω)r−(`+1) +B`m(ω)r`

)
Y m
` (θ, φ) , (3.16)

where the unknown multipole coefficients are denoted A`m(ω) and B`m(ω). Following
the definition of Refs. 5, 37, the SH Y m

` (θ, φ) are found by the following relation

Y m
` (θ, φ) =

√
(2`+ 1)(`−m)!

(4π)(`+m)! Pm` (cos θ)(−1)meimφ, (3.17)

where the Condon-Shortly phase factor is assumed. The associated Legendre Polyno-
mials are defined as

Pm` (x) =

 1
2``!(1− x2)m/2

(
d
dx

)`+m(
x2 − 1

)` for 0 ≤ m
(−1)m (`+m)!

(`−m)!P
−m
` (x) for m < 0,

(3.18)

with x = cos θ. If follows from Eq. (3.18) that Y −m` (θ, φ) = (−1)m [Y m
` (θ, φ)]∗, where

the superscript ∗ again denotes the complex conjugate. The orthogonality relations
of the SH over all angles yields∫ 1

−1
d (cos θ)

∫ 2π

0
dφY m

` (θ, φ)
[
Y m′
`′ (θ, φ)

]∗
= δ``′δmm′ , (3.19)

which means that the SH form a complete set of functions. As a reminder, a shortlist
of the first few SH is given in Table 3.1.

The relation between the multipole coefficients and the polarizability

An electrostatic potential in the form given in Eq. (3.16) must be finite valued for
all values of r. Hence, the first term containing r−(`+1) gives the field due to sources
inside a region of interest Rs (r < Rs), and the second term r`, gives the field due to
sources outside the region of interest (r > Rs). The position of the expansion point
(the origin) should be chosen somewhere close to the island. An obvious choice for
the origin is the center of the island. Consequnetly, the region of interest Rs will be
defined as the radius of the smallest sphere which contains the island (see the next
sections).
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Table 3.1 The first few SHs.

SH Mathematical Expression
Y 0

0 (θ, φ) 1
2
√
π

Y −1
1 (θ, φ) 1

2

√
3

2π sin θe−iφ

Y 0
1 (θ, φ) 1

2

√
3
π cos θ

Y 1
1 (θ, φ) −1

2

√
3

2π sin θeiφ

Since the amplitudes of the multipole fields in Eq. (3.16) are given in terms of the
incident field, we can express the multipole coefficients with a polarizability matrix

A`m(ω) = −
∑
`′m′

α`m,`′m′(ω)B`′m′(ω), ` 6= 0 (3.20)

where `′ = 1, ...,∞, and m′ = −`′, ..., `′. The A1m coefficient is zero because the
island has no net charge. The B1m coefficient is given from the incident field which is
regarded as constant, and B0m may, therefore, be chosen arbitrarily.
If we choose the island to be symmetric around the z-axis, all matrix elements with
different m-elements are zero and Eq. (3.20) reduces to

A`m(ω) = −
′∑

`′m′

δmm′α`m,`′m′(ω)B`′m′(ω). (3.21)

To conclude, once the expression for the electrostatic potential is known for a given
incident field, one can determine the polarizabilities of the supported islands, and thus
the surface susceptibilities from the expansion coefficients of the potential.
In the following, we derive the polarizabilities up to the second order for the geometry
of a truncated and supported sphere.

3.3 The polarizability of supported truncated spherical
particles

Figure 3.1(a) displays a sketch of a truncated spherical particle placed on a substrate.
Figure 3.1(b) presents a sketch of relevant quantities needed to describe the particle
geometry. Here R denotes the radius of the particle. The z-coordinate of the position
of the surface of the substrate is denoted d.
The degree of truncation of the particles is defined by the truncation ratio tr = d/R
(−1 < tr ≤ 1). The value tr = 1 corresponds to a full sphere touching the substrate
at one point, while tr = 0 corresponds to a hemisphere lying on the surface. For the
configuration tr < 0 the particle will be a spherical cap. The center of the sphere is
then located below the surface of the substrate. The dielectric functions of the ambient
material, the substrate and the particle are respectively denoted εa, εs, and εp. A
natural choice for the origin of the multipolar expansion in Eq. (3.16) is somewhere
inside the particle.
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Figure 3.1 A sketch of a truncated particle placed on a substrate (a)
with relevant coordinate systems used in the calculations (b).

In the original derivation by Wind et al. [48,49], the expansion point was placed in the
center of the spherical particle. The cases where the center of the sphere lies above
or below the substrate must then be treated differently. In the original work, only
symmetry arguments were used to obtain the tr < 0 case from the solutions for the
tr > 0. The actual expressions for the potentials in the case of tr < 0 was given later
in Ref. 37.

Simonsen and co-workers moved the position of the multipoles away from the center
of the sphere along the axis normal to the substrate surface, but always keeping the
expansion point above the surface [46]. This method provides the same expression for
the potentials in the cases for tr > 0 and tr < 0 and improves the convergence of the
numerical implementation.

In the following, we will comply with the formalism made in Ref. 46. The multipole
expansion point will lie somewhere on the z-axis, but always inside the particle and
above the substrate surface.

3.3.1 The island geometry

Figure 3.1(b) also presents a sketch of the relevant coordinate systems needed to
evaluate the potential in Eq. (3.16) in a point P for a system containing a truncated
and supported particle.

The main spherical coordinate system S has it’s origin placed in the center of the
sphere. It’s position vector r = (x, y, z) is defined so the positive z-axis is downwards,
as we did in Ch. 2. The direct and image multipole expansion points are placed in the
positions rmp = zmpẑ and rmp = zmpẑ, marked with red filled circles in Fig. 3.1(b).
The image point is placed so the distance from the plane z = d are equal to the
distance of the direct multipole, i.e zmp = 2d− zmp. If the direct multipole is placed
in the center of the sphere, as originally done by Wind et al. [48, 49], its position is
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rmp = 0. The position vector of the image multipole would then be rmp = 2dẑ.

The distance to a multipole expansion point

For later convenience, we introduce the dimensionless quantities µ = zmp/R and
µ̄ = zmp/R used to denote the direct or image multipole, respectively. To evaluate the
potentials in Eq. (3.16) in a point P we define two new coordinate systems Sµ and Sµ̄.
Their origins are placed in the positions of the direct and image multipole expansion
points, respectively. The position vectors in the two coordinate systems are

rµ(r) = r− zmpẑ (3.22a)
rµ̄(r) = r− zmpẑ. (3.22b)

In spherical coordinates the position vectors in the different coordinate systems S, Sµ,
and Sµ̄ are respectively given as r = (r, θ, φ), rµ = (rµ, θµ, φµ), and rµ̄ = (rµ̄, θµ̄, φµ̄).
Because of the common direction of the z-axis φ = φµ = φµ̄.

Relating the coordinate systems to each other

Using the transformation relation between the two coordinate systems in Eq. (3.22)
Sµ and S are linked by

rµ(r) =
[
r2 + z2

mp − 2rzmp cos θ
]1/2

(3.23a)

cos θµ(r) = r̂µ · ẑ = r cos θ − zmp[
r2 + z2

mp − 2rzmp cos θ
]1/2 (3.23b)

φµ = φ, (3.23c)

where the law of cosines3 and the relation r̂ · ẑ = cos θ have been used. For later use,
also the derivatives of Eqs. (3.23a)-(3.23b) are given

∂rrµ(r) = r − zmp cos θ[
r2 + z2

mp − 2rzmp cos θ
]1/2 (3.24a)

∂r [cos θµ(r)] = cos θ[
r2 + z2

mp − 2rzmp cos θ
]1/2 − (r − zmp cos θ)(r − zmp cos θ)[

r2 + z2
mp − 2rzmp cos θ

]3/2 . (3.24b)

Corresponding relations between the coordinates of the systems Sµ̄ and S are found
by replacing zmp and µ in Eqs. (3.23)-(3.24) with zmp and µ̄.

The numbering convention of surfaces and regions

Core-shell particles are of interest in nanoscience due to the new optical properties
arising from the interaction of the elementary plasmons supported by the individual
3The law of cosines yields: c2 = a2 + b2 − 2ab cos θ.
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(a) Sketch of a coated truncated
spherical particle placed on a substrate.
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Figure 3.2 A sketch of a coated truncated spherical particle placed
on a substrate (a) with the chosen numbering convention to name the
regions around the surface s = 2 (b).

geometries of the spheres and cavities [21]. Thereby, we extend our formalism to
include geometries of coated and supported NPs. To tackle this kind of systems one
has to keep track of the number of surfaces and regions of different materials in the
particle.
To fully describe the geometry of a system with coated particles, we would need to
introduce the radius ratio, and truncation ratio for each surface s. These quantities
are defined as χ(s) = R(s)/R(1) and t(s)r = t

(1)
r /χ(s), respectively. For the outer surface

of the particle, s = 1, we have R(1) ≡ R and t
(1)
r ≡ tr. Since the radii of potential

inner surfaces must be smaller than the radius of the outer surface, we must have
R(s) < R(1), s = 2, 3, ..., S, S ≥ 2.
A special case of coated particle geometry is found in the case where one or several
of the inner layers, s > 1, are non-truncated and ’floating’ either above or below the
substrate. Thus, for this special case t(s)r > 1 for a particle above the surface and
t
(s)
r < 1 for a particle embedded in the substrate. The total number of regions in
the system N , must satisfy N ≤ 2S + 2, dependent on the value of the truncation
ratios for the possible inner surfaces. If N = 2S+ 2 all the surfaces in the particle are
truncated. If N < 2S + 2 some of the inner surfaces s will be non-truncated.
Only one spherical surface s = 1 is shown in Fig. 3.1(b), but the numbering convention
of the surrounding regions is chosen such that the generalization to a system where
the total number of surfaces S > 1 will be straightforward. Figure 3.2(a) displays a
sketch of the system of interest containing a coated truncated spherical particle. An
example of how our numbering convention will number the regions around the surface
s = 2 is given in Fig. 3.2(b).
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For the case of a uncoated particle where the total number of surfaces S = s = 1,
the chosen naming convention results in the following regions: the region with the
ambient material dielectric function is labeled εa = ε1 = ε2s−1. The region outside
the particle in the substrate is labeled εs = ε2 = ε2s. The regions of different materials
inside the particle above the substrate are labeled ε3 = ε2s+1 and below the substrate
ε4 = ε2s+2.
For a general geometry, any material with an odd index will be placed above the
substrate, and any material with an even index will be placed below the substrate.
Furthermore, one can notice the two regions below the substrate inside and outside
the particle are given different labels. This is done for mathematical convenience only.
In the end all dielectric functions in the regions with an even numbered index are set
equal to ε2.
To conclude, a convention consistent with the case of a particle with coating(s) is used
to name the different regions for the geometry considered in Fig. 3.1(b) and Fig. 3.2(b).

3.3.2 The electrostatic potential in different regions around and inside the
particle

The challenge is now to express the electrostatic potential in the regions inside and
outside the islands. From the previous sections, we saw that there are two main types
of regions. Those located above and below the substrate. For a region above the
substrate, i.e. i = {1, 3, ..., 2S + 1}, the general expression for the potential yields

ψi(r|ω) = ψ
(i)
inc(r|ω) δ1,i + ψ

(i)
0 (ω) +

∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)r−`−1

µ +B
(i)
`m(ω)r`µ

]
Y m
` (θµ, φµ)

+
∞∑
`=1

∑̀
m=−`

[
Ā

(i)
`m(ω)r−`−1

µ̄ +B
(i)
`m(ω)r`µ̄

]
Y m
` (θµ̄, φµ̄) , (3.25a)

where the set {A(i)
`m(ω), B(i)

`m(ω)} contains the unknown multipole coefficients related
to the direct multipole expansion point placed at rµ = (rµ, θµ, φµ). Similarly, the
set {Ā(i)

`m(ω), B(i)
`m(ω)} is related to the image multipole expansion point placed at

rµ̄ = (rµ̄, θµ̄, φµ̄). The term δ1,i makes sure that the incoming potential is only
present in the region i = 1. Furthermore, ψ(i)

0 (ω) are the constant potentials in the
considered region.
If a region i is not bounded by the substrate, i.e. for a layer of coating where the
surface is hovering entirely above the substrate, there are no contributions from the
image terms in Eq. (3.25a). Meaning that the coefficients Ā(i)

`m(ω) ≡ 0 and B(i)
`m(ω) ≡ 0.

For a region below the substrate i+ 1, the general electrostatic potential is

ψi+1(r|ω) = ψ
(i+1)
tr (r|ω) δ2,i+1 + ψ

(i+1)
0 (ω)

+
∞∑
`=1

∑̀
m=−`

[
A

(i+1)
`m (ω)r−`−1

µ +B
(i+1)
`m (ω)r`µ

]
Y m
` (θµ, φµ) . (3.25b)
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Our target is to express the unknown multipole coefficients in Eq. (3.25) so we can
identify the polarizabilities with the scaling relation stated in Eq. (3.21). To do so,
we will express the incoming field and satisfy the BCs on the surfaces of the substrate
and sphere.

The electrostatic potential associated with the incoming field

Considering an incident field given by a plane wave

E0(r|ω) = E0(ω) [sin θ0 cosφ0, sin θ0 sinφ0, cos θ0] , (3.26)

where θ0 is the polar angle of incidence between E0 and the negative z-axis4 and φ0
the angle between the projection of E0 on the substrate and the positive x-axis. As
any vector r expressed in spherical coordinates is

r = [r sin θ cosφ, r sin θ sinφ, r cos θ] , (3.27)

the electrostatic potential at the coordinate r associated with the incident field (cor-
responding to the incoming plane wave) reads

ψinc(r|ω) = −r ·E0(r|ω)

= −rE0(ω)
√

2π
3
{√

2 cos θ0Y
0

1 (θ, φ)− sin θ0
[
e−iφ0Y 1

1 (θ, φ)− eiφ0Y −1
1 (θ, φ)

]}
,

(3.28a)

where the definitions of the SH in Table 3.1 have been used. The incident field is
partly transmitted into the substrate. The corresponding transmitted potential is

ψtr(r|ω) = a0 − rE0(ω)
√

2π
3
{
a1
√

2 cos θ0Y
0

1 (θ, φ)

− sin θ0
[
a2e−iφ0Y 1

1 (θ, φ)− a3eiφ0Y −1
1 (θ, φ)

]}
, (3.28b)

where a0, a1, a2, and a3 are constants to be determined by the BCs across the substrate
(see Appendix 3.A for a detailed explanation).

The electrostatic potential in different regions of a truncated spherical
island

Appendix 3.A demonstrates that with the image formulation and the BCs at the
surface of the substrate we can rewrite the potentials in the different regions i on a
form only containing the set {A(i)

`m(ω), B(i)
`m(ω)}.

For a system with one surface, s = 1 [see Fig. 3.1(b)], the potential in the four different

4This choice is consistent with the coordinate system defined in Ch. 2.
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regions is a special case of the general form in Eq. (3.53) expressed as

ψ1(r|ω) = ψinc(r|ω) +
∞∑
`=1

∑̀
m=−`

A
(1)
`m(ω)

[
r−`−1
µ Y m

` (θµ, φµ)

+(−1)`+m ε1(ω)− ε2(ω)
ε1(ω) + ε2(ω)r

−`−1
µ̄ Y m

` (θµ̄, φµ̄)
]

(3.29a)

ψ2(r|ω) = ψtr(r|ω) +
∞∑
`=1

∑̀
m=−`

A
(1)
`m(ω) 2ε1(ω)

ε1(ω) + ε2(ω)r
−`−1
µ Y m

` (θµ, φµ) (3.29b)

ψ3(r|ω) = ψ
(3)
0 (ω) +

∞∑
`=1

∑̀
m=−`

B
(3)
`m(ω)

[
r`µY

m
` (θµ, φµ)

+(−1)`+m ε3(ω)− ε4(ω)
ε3(ω) + ε4(ω)r

`
µ̄Y

m
` (θµ̄, φµ̄)

]
(3.29c)

ψ4(r|ω) = ψ
(3)
0 (ω) +

∞∑
`=1

∑̀
m=−`

B
(3)
`m(ω) 2ε3(ω)

ε3(ω) + ε4(ω)r
`
µY

m
` (θµ, φµ) . (3.29d)

To find the set of the remaining unknown coefficients5 {A(1)
`m(ω), B(3)

`m(ω)}, the BCs
Eq. (3.13) at the spherical surface will be exploited through a so-called a weak formu-
lation of the BCs.

The weak formulation of the boundary conditions

The BCs at the spherical surface given in Eq. (3.13) requires the continuity of the
potential and the normal derivative times the dielectric function at every point on the
spherical surface. A so-called strong formulation of the BCs. For our purpose, it is
more convenient to adopt the so-called weak formulation of the BCs.

This formulation is obtained by multiplying the point-wise BCs by the complex con-
jugated of the SH,

[
Y m′
`′ (θ, φ)

]∗
, and then integrate over the full solid angle. The weak

boundary formulation is necessary, but not sufficient conditions. To verify the quality
of the obtained expressions for the multipole coefficients one should always check the
continuity of the potential in the end [46].

To find the unknown expansion coefficients in Eq. (3.29) we will take advantage of the
orthogonality relations of the SH given in Eq. (3.19) and the BCs evaluated at the
spherical surface given in Eq. (3.13). Distinguishing the regions above and below the
substrate we obtain ∫

©s

dΩ =
∫
∩s

dΩ +
∫
∪s

dΩ, (3.30)

where the symbol ©s denotes the whole spherical surface s, the symbols ∩s and ∪s
are, respectively, the parts of the spherical surface which is placed above and below
the substrate surface, and dΩ = sin θdθdφ the full solid angle.
5The ψ(3)

0 (ω) coefficient is still unknown, but it is only needed to check the BCs and/or map the
potential. The expression for this coefficient is given elsewhere [46].
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The weak formulation of the BCs for the different regions in Eq. (3.29) on the spherical
surface r = Rs are

∫
∩s

dΩ [ψ2s−1(r|ω)− ψ2s+1(r|ω)]|r=Rs
[
Y m′
`′ (θ, φ)

]∗
+ ∫

∪s
dΩ [ψ2s(r|ω)− ψ2s+2(r|ω)]|r=Rs

[
Y m′
`′ (θ, φ)

]∗
= 0 (3.31a)

which follows from the continuity of the electrostatic potential Eq. (3.13a), and

∫
∩s

dΩ [ε2s−1(ω)∂nψ2s−1(r|ω)− ε2s+1(ω)∂nψ2s+1(r|ω)]|r=Rs
[
Y m′
`′ (θ, φ)

]∗
+∫
∪s

dΩ [ε2s(ω)∂nψ2s(r|ω)− ε2s+2(ω)∂nψ2s+2(r|ω)]|r=Rs
[
Y m′
`′ (θ, φ)

]∗
= 0. (3.31b)

as a consequence of the continuity of the dielectric function times the normal derivative
of the potential Eq. (3.13b).

3.3.3 A linear set of equations

In Appendix 3.B we have given the derivation of the linear system of equations for a
truncated and potentially coated sphere. They are obtained after some straightforward
algebra by inserting the expressions from Eq. (3.29) into Eq. (3.31).

In the case of the uncoated truncated spherical particle, the number of surfaces in the
system is S = 1. The relevant unknown expansion coefficients are then A(1)

`m(ω) and
B

(3)
`m(ω). They can be obtained from the relations

∑
`′=|m|
`′ 6=0

ζm``′R
−`′−2
s

[
M

m; (1)
``′; 1 [−`′ − 1](tr)A(1)

`′m

]
+

∑
`′=|m|
`′ 6=0

ζm``′R
`′−1
s

[
−Mm; (3)

``′; 1 [`′](tr)B(3)
`′m

]

= δ`0δm0

√
4π
Rs

ψ
(3)
0

+ E0

{
δm0

√
4π
3 cos θ0

[
ε2 − ε1
ε2

{√
3tr
[
δ`0 − ζ0

`0I
0
`0[0|0](tr)

]
+ ζ0

`1I
0
`1[0|0](tr)

}
+ δ`1

ε1
ε2

]

+δ`1
√

2π
3 sin θ0 [δm,−1 exp(iφ0)− δm1 exp(−iφ0)]

}
(3.32a)
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and∑
`′=|m|
`′ 6=0

ζm``′R
−`′−2
s

[
N
m; (1)
``′; 1 [−`′ − 1](tr)A(1)

`′m

]
+

∑
`′=|m|
`′ 6=0

ζm``′R
`′−1
s

[
−Nm; (3)

``′; 1 [`′](tr)B(3)
`′m

]

= E0

{
δ`1δm0

√
4π
3 ε1 cos θ0

−
√

2π
3 (ε2 − ε1) sin θ0

[
δm,−1 exp(iφ0)ζ−1

`1 I
−1
`1 [0|0](tr)− δm1 exp(−iφ0)ζ1

`1I
1
`1[0|0](tr)

]
+ δ`1

√
2π
3 ε2 sin θ0 [δm,−1 exp(iφ0)− δm1 exp(−iφ0)]

}
, (3.32b)

where ` = 0, 1, . . .; m = 0,±1, . . . ,±`; s = 1. The terms Mm; (1)
``′; 2 , Nm; (1)

``′; 1 , Im``′ [0|0](tr),
ψ

(3)
0 , and ζm``′ are explicitly defined in Appendix 3.B. Again, for a more compact

notation the explicit dependence of the frequency ω of the multipole coefficients, the
field, the constant potential, and the dependence of the direct and image terms in the
matrix elements M and N have been dropped.
Because of the rotational symmetry of the system around the z-axis the different ms
do not couple to each other. Hence, the equation system can be solved separately for
the different values of m. One should note that the right-hand side of Eq. (3.32) are
non-zero only for the values m = 0 and m = ±1.
Furthermore, by comparing the set of equations for m = −1 and m = 1 one realizes
that the expansion coefficients are related like

A
(i)
`′1e

(iφ0) = −A(i)
`′−1e

−(iφ0) (3.33a)

B
(i)
`′1e

(iφ0) = −B(i)
`′−1e

−(iφ0). (3.33b)

Accordingly, only the terms where m = 0 and m = 1 are considered for the solutions
of Eq. (3.32).

3.3.4 The island polarizabilities

For particles which are symmetric around the z-axis one may show that the elements
of the polarizability tensor given in Eq. (3.21) can be written as [5, 48]

A10 = −
M∑
0`′
α10,`′0B`′0 = − α00

⊥
4πε1

B10 (3.34a)

A11 = −
M∑
1`′
α11,`′1B`′1 = α1−1,1−1 = −

α00
‖

4πε1
B11 (3.34b)

A20 = −
M∑
0`′
α20,`′0B`′0 = α2−1,1−1 = −3

α10
‖

4πε1
√

5
B10 (3.34c)

A21 = −
M∑
1`′
α21,`′0B`′1 = 3

5α10,20 = − α10
⊥

2πε1
√

5/3
B11, (3.34d)
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where `′ = 1, ...,M , and the terms α00
i and α10

i denotes the direction dependent
dipole and quadrupolar polarizabilities, respectively, where i = {‖,⊥} are the direction
parallel or perpendicular to the substrate. In the following we will omit the subscript
00 in the direction dependent first order polarizabilities.

With the expressions of the constant incoming and transmitted scalar potential in
Eq. (3.53c) and Eq. (3.28a) and the identities for the B`m coefficients in Eq. (3.34)
one can write the dipole and quadrupolar polarizabilities of the truncated sphere
modified by the presence of the substrate as

α⊥ = 2πε1A10

E0
√
π/3 cos θ0

(3.35a)

α10
⊥ = πε1A20

E0
√
π/5 cos θ0

(3.35b)

α‖ = − 4πε1A11

E0
√

2π/3 sin θ0e−iφ0
(3.35c)

α10
‖ = − 4πε1A21

E0
√

6π/5 sin θ0e−iφ0
. (3.35d)

Notice that the direction dependent polarizabilities in this formulation only are scaled
by the angles of incidents θ0 and φ0.

As discussed in Ch. 2, it is the surface susceptibilities that drives all the optical
response of a film containing metallic NPs. These can, finally, be expressed from the
polarizabilities in Eq. (3.35). For a substrate placed at z = d the electric surface
susceptibilities to dipolar (γ, β) and quadrupolar (τ, δ) order are [37]

γ(d) = ρα‖(d) (3.36a)

β(d) = ρ

ε2
1
α⊥(d) (3.36b)

τ(d) = −ρα10
‖ (d) (3.36c)

δ(d) = − ρ

ε1

[
α10
⊥ (d) + α10

‖ (d)
]
. (3.36d)

Thus, all the macroscopic optical properties of the system can be obtained from the
relations given in Eq. (2.27). If the particles in the film show a slight dispersion in
size and/or shape, the polarizabilities that appear in Eq. (3.36) must be replaced by
an average over the distribution characterizing the size and/or shape dispersion (see
Ch. 6 for details).

Since the polarizabilities are determined from the coefficients A00,A10,A20, and A21
alone, it is tempting to set M = 2 in Eq. (3.32). However, this is not recommended
since the convergence of these coefficients depends critically on the size of the matrix
system. A more stringent and accurate test of convergence is given by the degree of
fulfillment of the BCs for ψ(r) over the spherical surface for a given truncation of the
matrix system atM [46]. We recall that the BCs on the planar surface of the substrate
by construction always are satisfied for any value of M .
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3.4 The polarizability of a truncated spheroidal particle

Solving Laplace’s equation, given in Eq. (3.12), in spherical coordinates is just a
matter of convenience related to the object’s spherical symmetry. As long as one can
find a complete set of functions for which each function also is a solution of Laplace’s
equation, any coordinate system may be used. For particles of spheroidal shapes
where the axis of rotation is normal to the surface of the substrate, either oblate
[Figs. 3.3(a)-(b)] or prolate [Figs. 3.3(c)-(d)] spheroids can be considered.
Detailed derivations for the expressions of the polarizabilities of a spheroidal particle
geometries can be found in Refs. 5, 50,51. For oblate and prolate spheroidal particles
it is most convenient to work in terms of oblate and prolate spheroidal coordinates,
respectively. A multipole expansion of the solutions to the Laplace’s equation is also
possible in these coordinate system and one talks about oblate and prolate spheroidal
multipole expansions. Such expansions are facilitated by the so-called oblate and
prolate spheroidal harmonics which form complete sets of functions on the surface of
the oblate and prolate spheroids, respectively.
In the context of relevant experimental systems, the truncated oblate spheroidal par-
ticles are especially interesting. Therefore, we will only report the relevant results for
the oblate spheroidal particles.

The island geometry

The spheroidal coordinate systems convenient to use for oblate and prolate spheroids
are different. For an oblate spheroid, an oblate spheroidal coordinate system is used.
The coordinates (ξ, η, φ) in this system are defined in the range 0 ≤ ξ <∞,
−1 ≤ η ≤ 1, and 0 ≤ φ ≤ 2π.

Furthermore, the radius parallel to the surface is defined as R‖ = a
√
ξ2

0 + 1 and the
radius perpendicular to the substrate as R⊥ = aξ0. The constant ξ = ξ0 defines
the surface of the spheroid and the term a denotes the radius of the ring of foci [see
Fig. 3.3(b)]. The limit case ξ0 →∞, a→ 0 where aξ0 = R is a constant, corresponds
a sphere with radius R.
The relations between the Cartesian and the oblate spheroidal coordinate system, as
defined by Morse and Feshbach in Ref. 52, are

ξ =
[(
ρ1 + ρ2

2a

)
− 1

]1/2
(3.37a)

η = ±
[(

1− ρ1 − ρ2
2a

)]1/2
(3.37b)

φ = arctan
(
y

x

)
(3.37c)

with

ρ1 =
[
z2 + (x+ a cosφ)2 + (y + a sinφ)2

](1/2)
(3.37d)

ρ2 =
[
z2 + (x− a cosφ)2 + (y − a sinφ)2

](1/2)
, (3.37e)



3.4 The polarizability of a truncated spheroidal particle | 57

z = 0 εa
εs

εp

ê‖
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(c) Truncated prolate spheroidal particle.
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Figure 3.3 A sketch of a truncated oblate (a) and prolate (c)
spheroidal particle with relevant quantities for the actual coordinate sys-
tems, for the oblate in (b) and for the prolate in (d). The particle is
generated by the rotation of an ellipse around it’s large (prolate) or small
(oblate) axis. The radius of the ring of foci is denoted a. The surface of
the spheroid corresponds to ξ = ξ0.
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where ρ1 and ρ2 are the distances from a point P in the (x, y, z)-coordinates to the
intersections of the ring of foci 2a with the plane through (x, y, z) and the z-axis. The
term φ defines the angle of this place with respect to the xz-plane. The positive sign
in Eq. (3.37b) should be used for z ≥ 0 and the negative sign if z < 0.
The inverse transformation from oblate spheroidal coordinates to Cartesian coordi-
nates is given by

x = a
[
(ξ2 + 1)(1− η2)

]1/2
cosφ (3.38a)

y = a
[
(ξ2 + 1)(1− η2)

]1/2
sinφ (3.38b)

z = aξη. (3.38c)

A solution of Laplace’s equation in spheroidal harmonics

In oblate spheroidal coordinates, Laplace’s equation can be written in the form of a
product between radial functions (ξ) and the oblate spheroidal harmonics

ψ(r|ω) =
∞∑
l=0

∑̀
m=−`

[A`mZm` (ξ, a) +B`mX
m
` (ξ, a)]Y m

` (arccos η, φ) , (3.39)

where summation indices again are ` = 0, 1, ...,∞ and m = −`,−`+ 1, ..., `− 1, `, the
angular part of the spheroidal harmonics is given by the Y m

` (arccos η, φ) term, and,
again, the unknown multipole coefficients are denoted A`m and B`m. The functions
Zm` (ξ, a) and Xm

` (ξ, a) are defined for oblate coordinates as in [51]:

Zm` (ξ, a) = i`+1 (2`+ 1)!!
(`+m)! a

−`−1Qm` (iξ), (3.40a)

Xm
` (ξ, a) = im−`

(`−m)!
(2`+ 1)!!a

`Pm` (iξ) (3.40b)

where Pm` (iξ) and Qm` (iξ) are the associated Legendre functions of degree ` and order
m of the first and second kind, respectively [51]. The term (n)!! is defined as
(n)!! ≡ 1×3× ...× (n−2)×n, for odd values of n and (n)!! ≡ 2×4× ...× (n−2)×n
for even numbers of n. By definition (−1)!! ≡ 1.
In the limit ξ →∞ the asymptotic behavior of the functions in Eq. (3.40) are

lim
ξ→∞

Xm
` (ξ, a) ≈ r(`) (3.41a)

lim
ξ→∞

Zm` (ξ, a) ≈ r−(`+1), (3.41b)

and we recover the spherical case.
To finally determine the polarizabilities of a truncated oblate spheroidal islands on a
substrate one would (again) have to express the electrostatic potential in all regions
outside and inside the particle and impose the relevant BCs. This will not be done
here, see Refs. 5, 51 for a full discussion.
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3.5 The polarizabilities of a film of truncated particles
The calculations in the previous sections did not account for the potential island-island
interaction between neighboring particles. The polarizabilities given by Eq. (3.35)
are calculated taking the electrostatic interaction with the substrate (or the image
multipoles) into account to the multipolar order M . In an ensemble of particles, each
particle may create a local field on its neighbors that will locally modify the electric
field. If particles are sufficiently far apart this phenomenon, where the leading term
is of dipolar character, may be safely neglected. We call this organization of particles
for the low coverage regime [Fig. 3.4(a)]. In this case the particle is only polarized
by the incoming field. If the distances between the particles are decreased, at some
point, the island-island interaction between the particles and their respective images
will be of importance and the polarization field of a particle will be modified by the
presence of its neighbors [5,40,53,54]. This limit corresponds to what is called herein
as the finite coverage regime [Fig. 3.4(b)].

In principle, one should take into account all interactions, island-substrate and island-
island, to high order and fulfill the required BCs over all the interfaces. The calcu-
lations of island-island interactions are more complex than the island-substrate inter-
actions. Fortunately, because of the fast decrease of the higher-order terms in the
island-island interaction between particles, the problem can be limited to include only
the low-order terms like the dipolar or quadrupolar ones [40].

The limit where the island-island interaction can not be ignored will depend on the
chosen system (i.e. dielectric function of the materials and the distance between the
particles). Calculations performed by Letnes and co-workers for a lattice of supported
full silver spheres on an alumina substrate have shown that in the case where the
spacing between the particles is greater than four times the sphere diameter, the finite
coverage regime can be ignored. The system could then be regarded as a collection
of independent non-interacting objects [34]. Their simulations were performed in the
quasi-static regime where the radii of the particles were R = 10 nm.

The overlap between the experimental result of lithographically produced arrays of
gold nanoparticles and the theoretical predictions for the case of a square lattice with
gold nanoparticles in the form of oblate islands with the polarizabilities corrected for
the island-island interaction have been found [55]. The size of the island diameters
and lattice constant were, respectively, D = 13− 35 nm and L = 50 nm in this work.

Organization of the particles in an island film

As a matter of convenience, two types of organizations of particles are considered in
the present formalism. The so-called regular array (square or hexagonal) with only
one particle per unit cell (Fig. 3.5), and a random array defined by its pair correlation
function. The calculation of the correction terms for the island-island interactions are
known to dipolar and quadrupolar order in our framework [40]. In the polarizable
dipole models all amplitudes where ` 6= `′ 6= 1 are set to zero. In the quadrupole
model all the amplitudes with ` = `′ > 2 are set to zero. A detailed derivation for
the island-island correction term is reported in [37, 53]. Here, only the final result at
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Figure 3.4 A schematic illustration of the islands in the low (a), or
finite(b) coverage regime.

dipolar order will be commented on.

3.5.1 The dipolar approximation

In the case of particles arranged in a regular array, the direction dependent polariz-
abilities corrected for the interaction between neighboring particles reads

α̂⊥ = α⊥

{
1− α⊥

2πε1L3

[
S2,0 −

(
ε1 − ε2
ε1 + ε2

)
S̄2,0

]}−1
(3.42a)

α̂‖ = α‖

{
1 +

α‖
4πε1L3

[
S2,0 +

(
ε1 − ε2
ε1 + ε2

)
S̄2,0

]}−1
, (3.42b)

where the quantity L denotes the lattice constant and the direct/image lattice sums
are denoted S2,0/S̄2,0. The expressions for the lattice sums are taken from [56]

S2,0 =
∑
i 6=0

(
L

r

)3

r=R(i)
‖

Y m
` (θ, φ) (3.43a)

S̄2,0 =
∑
i 6=0

(
L

r

)3

r=R̄(i)
‖

Y m
` (θ, φ) , (3.43b)

where R(i)
‖ and R̄(i)

‖ denotes, respectively, the radial distance in the plane of the sub-
strate between the direct and image dipoles of the neighbors. The index runs from
i = 1 because the interaction of the considered particle and it’s image is already taken
into account when calculating the single particle response. The lattice sums are cal-
culated according to the method described in Ref. 5. The expressions for the lattice
sums are dependent on whenever the particles are arranged in a square or hexagonal
lattice. In the limit where the distance between the set of direct and image multipoles
are far from each other {R(i)

‖ , R̄
(i)
‖ } � L, the results in the finite and low coverage

regime approach each other.
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ê⊥
ê‖
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Figure 3.5 Illustration of permitted organization of the ensemble of
the particles on a regular lattice accounted for within our framework.
Particles placed in a square (a) or hexagonal (b) structure, as seen from
above. The considered particle is marked 0 whereas the first order neigh-
bors are labeled with 1s.

If, on the other hand, the particles are organized in a random array the multiparticle
correlations are described by pair correlation functions [53]. For the random array
configuration Eq. (3.42) are valid if the normalization term L−3 is replaced with ρ3/2,
where ρ is the surface density of particles and the set of lattice sums {S20, S̄20} become
continuous distribution integrals {I2, Ī2} given as

I2 = 2πρ−1/2
∫ ∞

0
dr‖g(r‖)r−2

‖ P 0
2 (0)

√
5/4π (3.44a)

Ī2 = 2πρ−1/2
∫ ∞

0
dr‖g(r‖)r‖(r2

‖ + d2
µµ̄)−3/2P 0

2 (dµµ̄/(r2
‖ + d2

µµ̄)1/2)
√

5/4π, (3.44b)

where dµµ̄ denotes the distance from the expansion point to its image multipole, and
the integration variable r‖ is taken in the plane of the substrate, P 0

2 again denotes
the associated Legendre-polynomial, and g(r‖) is the pair-correlation. Appendix B
discusses the considered form of the pair-correlation function in our formalism.

Similar, but more complex expressions can be derived at quadrupolar order [37].

3.5.2 The surface coverage parameter

We define the surface coverage of particles in a system by the dimensionless parameter
Θ. It is given by the fraction of the surface area covered by islands, as seen from
above. The area of the bottom part of a single island touching the substrate is given
by Abottom = πR2

app, where Rapp is the apparent radius of the island defined like

Rapp =

R
(1)
‖ t

(1)
r > 0

R
(1)
‖

√
1− (t(1)

r )2 t
(1)
r ≤ 0.

(3.45)



62 | 3 THE POLARIZABILITIES OF SUPPORTED ISLANDS

Thus, we define the surface coverage for the different types of ordered arrays as

Θ(Rapp) = πR2
appρ =

π(RappL )2 Square lattice,
2π√

3(RappL )2 Hexagonal lattice.
(3.46)

The distribution of the particles in a random array are not ordered. To be able to
compare the optical response in ordered and random arrays we define the coverage of
a random array by the equivalent coverage of particles as if the system was organized
in a square or hexagonal array

Θrand(Rapp) = πR2
appρrand =

π(RappL )2 Equivalent to a square lattice,
2π√

3(RappL )2 Equivalent to a hexagonal lattice.
(3.47)

Even though the maximal coverage theoretically is given as L = 2Rapp the actual
lattice sums can only be taken to dipolar or quadrupolar order. Thus, it is not expected
that the lattice sums or the distribution integrals to this order are sufficient to describe
the inter-island couplings [5].

It has been demonstrated that the difference between the two correction terms for
truncated spheres organized in an ordered or random array is negligible up to a cov-
erage of particles which is higher than experimentally relevant (a surface coverage of
particles of about 40%) [53].

3.6 Conclusion
This chapter has illustrated how the polarizabilities, to the second order, of truncated
and supported particles can be obtained in the quasi-static approximation. More
generally, the calculation method described in the previous sections is valid for particles
which are symmetric along the z-axis. The analysis was detailed primarily for the case
of a truncated sphere. Guidelines to the generalization to coated objects as well as
spheroidal particles were given.

Laplace’s equation was solved by separation of variables and a multipole series ex-
pansion containing a direct and an image term. The multipole expansion point was
allowed to move freely along the z-axis, but kept inside the island. The appropriate
BCs at the surface of the substrate were naturally handled by the method of images.
On the spherical surfaces, a weak formulation of the BCs based on the completeness
of the SHs was used. A linear system of equations was obtained to determine the
expressions of the multipolar coefficients. The lower order multipole coefficients are
used to define the dipolar and quadrupolar polarizabilities, which are closely related
to the surface susceptibilities, the main ingredients in the BV-formalism.

Finally, the chapter ended with a discussion of the island-island interactions and how
they influence the optical properties of island films containing supported particles.
Expressions for the polarizabilities renormalized by the island-island interactions were
introduced for particles organized in a regular or random array.
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The theory described in this chapter has been implemented in the GranFilm software.
The organization and capabilities of the code will be the topic of Chapter 4. Our
discussion of the direction dependent polarizabilities was restricted to the case of
identical particles in the system. The cases where the particles exhibit dispersion in
size and shape will be detailed in Chapter 6.
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3.A Fulfillment of the boundary conditions on the planar
surface of the substrate

In this appendix, we will demonstrate how one can simplify the expressions of the
electrostatic potential given in Eq. (3.16) by fulfilling the BCs, Eqs. (3.13)-(3.14), at
the planar surface of the substrate with the use of the method of images.

We start from the general expressions of the potentials that were given in Eq. (3.25).
For a region above the substrate i = {1, 3, ..., 2S + 1} the general expression for the
potential yields

ψi(r|ω) = ψ
(i)
inc(r|ω) δ1,i + ψ

(i)
0 (ω) +

∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)r−`−1

µ +B
(i)
`m(ω)r`µ

]
Y m
` (θµ, φµ)

+
∞∑
`=1

∑̀
m=−`

[
Ā

(i)
`m(ω)r−`−1

µ̄ +B
(i)
`m(ω)r`µ̄

]
Y m
` (θµ̄, φµ̄) , (3.48a)

where the set {A(i)
`m(ω), B(i)

`m(ω)} is related to the unknown multipole coefficients linked
to the direct multipole expansion point placed at rµ = (rµ, θµ, φµ). Similarly, the
set {Ā(i)

`m(ω), B(i)
`m(ω)} is related to the image multipole expansion point placed at

rµ̄ = (rµ̄, θµ̄, φµ̄). The term δ1,i makes sure that the incoming potential is only
present in the region i = 1. Furthermore, ψ(i)

0 (ω) are the constant potentials in the
region.

For a region below the substrate i+ 1, the general electrostatic potential is

ψi+1(r|ω) = ψ
(i+1)
tr (r|ω) δ2,i+1 + ψ

(i+1)
0 (ω)

+
∞∑
`=1

∑̀
m=−`

[
A

(i+1)
`m (ω)r−`−1

µ +B
(i+1)
`m (ω)r`µ

]
Y m
` (θµ, φµ) (3.48b)

Our target is to express the unknown multipole coefficients in Eq. (3.48) so we can
identify the polarizabilities with the scaling relation stated in Eq. (3.21). To do so
we will express the incoming field, and satisfy the BCs on the substrate and sphere
surfaces. At the surface of the substrate, z = d we can write the continuity of the
potentials ψi(r|ω) and ψi+1(r|ω) with the general form given in Eq. (3.48) and the
expressions for the incoming and transmitted field given in Eqs. (3.28a)-(3.28b) as
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ψi(r|ω)− ψi+1(r|ω) =

ψ
(i)
inc(r|ω) δ1,i + ψ

(i)
0 (ω) +

∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)r−`−1

µ +B
(i)
`m(ω)r`µ

]
Y m
` (θµ, φµ)

+
∞∑
`=1

∑̀
m=−`

[
Ā

(i)
`m(ω)r−`−1

µ̄ +B
(i)
`m(ω)r`µ̄

]
Y m
` (θµ̄, φµ̄)

− ψ(i+1)
tr (r|ω) δ2,i+1 + ψ

(i+1)
0 (ω) +

∞∑
`=1

∑̀
m=−`

[
A

(i+1)
`m (ω)r−`−1

µ +B
(i+1)
`m (ω)r`µ

]
Y m
` (θµ, φµ)

 .

By the symmetry of the system, the coordinates for the direct and image points at
z = d are related

rµ̄ = rµ

θµ̄
¬

= π − θµ
φµ̄ = φµ.

(3.49)

¬ cos θµ̄ = cos(π − θµ) = (−1) cos θµ =⇒ Y m` (θµ̄, φµ̄) = (−1)mY m` (θµ, φµ).

Similarly, the BC of the dielectric function times the normal derivative of the potential
on the boundary is
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εi(ω)∂nψi(r|ω)− εi+1(ω)∂nψi+1(r|ω) =

εi(ω) ∂
∂r

∂r

∂n

ψ(i)
inc(r|ω) δ1,i + ψ

(i)
0 (ω) +

∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)r−`−1

µ +B
(i)
`m(ω)r`µ

]
Y m
` (θµ, φµ)

+
∞∑
`=1

∑̀
m=−`

fi
[
Ā

(i)
`m(ω)r−`−1

µ̄ +B
(i)
`m(ω)r`µ̄

]
Y m
` (θµ̄, φµ̄)


−

εi+1(ω) ∂
∂r

∂r

∂n

{
ψ

(i+1)
tr (r|ω) δ2,i+1 + ψ

(i+1)
0 (ω)

+
∞∑
`=1

∑̀
m=−`

[
A

(i+1)
`m (ω)r−`−1

µ +B
(i+1)
`m (ω)r`µ

]
Y m
` (θµ, φµ)


¬

=

εi(ω)
{
−E0(ω)

√
2π
3
(√

2 cos θ0Y
0

1 (θ, φ)− sin θ0
[
e−iφ0Y 1

1 (θ, φ)− eiφ0Y −1
1 (θ, φ)

])

+
∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)(−`− 1)r−`−2

µ +B
(i)
`m(ω)`r`−1

µ

]
Y m
` (θµ, φµ)

+
∞∑
`=1

∑̀
m=−`

[
Ā

(i)
`m(ω)(−`− 1)(−1)`r−`−2

µ̄ +B
(i)
`m(ω)(−1)``r`−1

µ̄

]
Y m
` (θµ̄, φµ̄)


−

εi+1(ω)
{
−E0(ω)

√
2π
3
(√

2a1 cos θ0Y
0

1 (θ, φ)− sin θ0
[
a2e−iφ0Y 1

1 (θ, φ)− a3eiφ0Y −1
1 (θ, φ)

])

+
∞∑
`=1

∑̀
m=−`

[
A

(i+1)
`m (ω)(−`− 1)r−`−2

µ +B
(i+1)
`m (ω)`r`−1

µ

]
Y m
` (θµ, φµ)

 .
¬ Note the different sign for the direct and image mutipole due to the opposite direction of the normal
derivative ∂rµ

∂n
= 1, ∂rµ̄

∂n
= −1.

Since Eq. (3.49) and Eq. (3.50) are verified for any point along the surface, the equality
should hold term by term. Thus, for the continuity of the potential Eq. (3.49) the
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following relations must be fulfilled

A
(i)
`m(ω) + (−1)`+mĀ(i)

`m(ω)−A(i+1)
`m (ω) = 0 (3.50a)

B
(i)
`m(ω) + (−1)`+mB(i)

`m(ω)−B(i+1)
`m (ω) = 0 (3.50b)

ψ
(i)
0 − ψ

(i+1)
0 = 0 (3.50c)

− rE0(ω)
√

2π
3
(√

2 cos θ0Y
0

1 (θ, φ)− sin θ0
[
e−iφ0Y 1

1 (θ, φ)− eiφ0Y −1
1 (θ, φ)

])
− a0

+

rE0(ω)
√

2π
3
(√

2a1 cos θ0Y
0

1 (θ, φ)− sin θ0
[
a2e−iφ0Y 1

1 (θ, φ)− a3eiφ0Y −1
1 (θ, φ)

])
= 0.

(3.50d)

For the dielectric function times the normal derivative of the potential Eq. (3.50) we
can write

εi(ω)
[
A

(i)
`m(ω) + (−1)`+mĀ(i)

`m

]
− εi+1(ω)A(i+1)

`m (ω) = 0 (3.51a)

εi(ω)
[
B

(i)
`m(ω) + (−1)`+mB(i)

`m(ω)
]
− εi+1(ω)B(i+1)

`m (ω) = 0 (3.51b)

εi(ω)
{
−E0(ω)

√
2π
3
(
− sin θ0

[
e−iφ0Y 1

1 (θ, φ)− eiφ0Y −1
1 (θ, φ)

])}
− εi+1(ω)

{
− sin θ0

[
a2e−iφ0Y 1

1 (θ, φ)− a3eiφ0Y −1
1 (θ, φ)

]}
= 0 (3.51c)

εi+1(ω)E0(ω)
√

2π
3
(√

2a1 cos θ0Y
0

1 (θ, φ)
)
− εi(ω)E0(ω)

√
2π
3
(√

2 cos θ0Y
0

1 (θ, φ)
)

= 0
(3.51d)

Rearranging and inserting Eq. (3.50) into Eq. (3.51), one finds the following relations
for the unknown coefficients

a0 = E0(ω) cos θ0d(a1 − 1), (3.52a)

a1 = εi(ω)
εi+1(ω) , (3.52b)

a2 = a3 = 1, (3.52c)

A
(i+1)
`m (ω) = 2εi(ω)

εi(ω) + εi+1(ω)A
(i)
`m(ω), (3.52d)

Ā
(i)
`m(ω) = fi(−1)`+m εi(ω)− εi+1(ω)

εi(ω) + εi+1(ω)A
(i)
`m(ω) (3.52e)

B
(i+1)
`m (ω) = 2εi(ω)

εi(ω) + εi+1(ω)B
(i)
`m(ω), (3.52f)

B
(i)
`m(ω) = fi(−1)`+m εi(ω)− εi+1(ω)

εi(ω) + εi+1(ω)B
(i)
`m(ω). (3.52g)

To have a general formalism in the cases where a region i is not bounded by the planar
surface, we have multiplied the right-hand side of Eq. (3.52e) and Eq. (3.52g) by the
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factor fi. This quantity is relevant for the cases when some of the particle surfaces are
not truncated by the substrate. It is defined fi = 1 when a region is bounded by the
surface of the substrate and fi = 0 otherwise. If fi = 0 in a region i means that the
region i+ 1 does not exist in the geometry of interest. The expansion of the potential
ψi+1(r|ω) is then irrelevant.

The relations between the unknown coefficients in Eq. (3.52) can now be used to
simplify the expressions of the electrostatic potential given in Eq. (3.48). The potential
in the regions i and i + 1, {1, 3, ..., 2S + 1} can then be written only in form of the
(still) unknown set of coefficients {A(i)

`m(ω), B(i)
`m(ω)}

ψi(r|ω) = ψ
(i)
inc(r|ω) δ1,i + ψ

(i)
0 (ω)

+
∞∑
`=1

∑̀
m=−`

A
(i)
`m(ω)

[
r−`−1
µ Y m

` (θµ, φµ) + fi(−1)`+m εi(ω)− εi+1(ω)
εi(ω) + εi+1(ω)r

−`−1
µ̄ Y m

` (θµ̄, φµ̄)
]

+
∞∑
`=1

∑̀
m=−`

B
(i)
`m(ω)

[
r−`−1
µ̄ Y m

` (θµ, φµ) + fi(−1)`+m εi(ω)− εi+1(ω)
εi(ω) + εi+1(ω)r

`
µ̄Y

m
` (θµ̄, φµ̄)

]
,

(3.53a)

For a region below the substrate i+ 1, the general electrostatic potential is

ψi+1(r|ω) = ψ
(i+1)
tr (r|ω) δ2,i+1 + ψ

(i+1)
0 (ω)

+ 2εi(ω)
εi(ω) + εi+1(ω)

∞∑
`=1

∑̀
m=−`

[
A

(i)
`m(ω)r−`−1

µ +B
(i)
`m(ω)r`µ

]
Y m
` (θµ, φµ) ,

(3.53b)

where the constants in the expressions of ψinc(r|ω) also have been determined

ψinc(r|ω) = −rE0(ω)
√

2π
3

{
ε1
ε2

√
2 cos θ0Y

0
1 (θ, φ)

− sin θ0
[
e−iφ0Y 1

1 (θ, φ)− eiφ0Y −1
1 (θ, φ)

]}
+ E0(ω) cos θ0d(ε1

ε2
− 1)

(3.53c)

Furthermore, to fulfill the restriction that the potential should be finitely valued for
any values of r, we set the coefficients

B
(1)
`m(ω) = 0, A

(i)
`m(ω) = 0, i ∈ {3, 5, ..., 2S + 1}, (3.53d)

and chooses (without the loss of generality) that the constant potentials

ψ
(1)
0 = ψ

(2)
0 = 0. (3.53e)

With the potential on the form Eqs. (3.53a)-(3.53b), and the extra restrictions of the
coefficients given in Eqs. (3.53d)-(3.53e) the potential automatically satisfy the proper
BCs at the surface of the substrate z = d.
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3.B Fulfillment of the boundary conditions on the spheri-
cal surface(s)

Writing the potentials in the different regions as we did in Eq. (3.53) still leaves the
set of the expansion coefficients {A(i)

`m(ω), B(i)
`m(ω)}, i ∈ {1, 3, ..., 2S + 1} unknown.

In this appendix we will impose the remaining BCs of the potential itself and the
derivatives of the normal component times the dielectric functions that were given
in Eq. (3.13). By deploying a so-called weak formulation of the boundary conditions.
This formulation follows from the former, but the opposite is not true, we will arrive at
an infinitely dimensional linear system of equations that can determine the multipole
expansion coefficients.

We will do the derivation for the general case of a truncated spherical particle which
may contain coatings. To keep the notation manageable the explicit dependence of
the frequency ω in the multipole coefficients, the electric field, and the scalar potential
will be suppressed.

Useful relations

To evaluate the relations between the potentials for a surface s evaluated at the the
spherical surface r = Rs that were given in Eq. (3.31) we rewrite the expressions that
where given in Eqs. (3.23)-(3.24) to yield

[rη(r)]|r=Rs = Rs
[
1 + η2

s − 2ηs cos θ
]1/2

(3.54a)

[cos θη(r)]|r=Rs = cos θ − ηs
[1 + η2

s − 2ηs cos θ]1/2
(3.54b)

where ηs collectively denotes the set {µs = zmp/Rs, µ̄s = zmp/Rs}. Similarly, deriva-
tives of the relations in Eq. (3.54) becomes

[∂rrη(r)]|r=Rs = 1− ηs cos θ
[1− 2ηs cos θ + η2

s ]
1
2

(3.54c)

[∂r {cos θη(r)}]|r=Rs = 1
Rs [1− 2ηs cos θ + η2

s ]
1
2

[
cos θ − (cos θ − ηs)(1− ηs cos θ)

1− 2ηs cos θ + η2
s

]
.

(3.54d)

Furthermore, we will define the quantities

ζmm
′

``′ = 1
2

((2`+ 1)(2`′ + 1)(`−m)!(`′ −m′)!
(`+m)!(`′ +m′)!

)1/2
. (3.55)

and the matrix elements

M
m; (i)
``′; s [ν](t̂(s)r ) = εi − εi+1

εi + εi+1

[
−Im``′ [ν|µs](t̂(s)r ) + fi(−1)`′+m Im``′ [ν|µ̄s](t̂(s)r )

]
+ 2εi
εi + εi+1

Im``′ [ν|µs](1) (3.56a)
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and

N
m; (i)
``′; s [ν](t̂(s)r ) = εi

εi − εi+1
εi + εi+1

[
Jm``′ [ν|µs](t̂(s)r ) + fi(−1)`′+m Jm``′ [ν|µ̄s](t̂(s)r )

]
+ εi+1

2εi
εi + εi+1

Jm``′ [ν|µs](1), (3.56b)

where i = 2s ± 1 and ν are integers. The quantity fi is again used to determine if a
term should be included or not, depending on if the surface is truncated or not. The
explicit dependence of the matrix elements on µs and µ̄s have been suppressed, again
to keep the notation compact. Since we are working with the general truncated sphere
we have defined the term t̂

(s)
r as

t̂(s)r = min(t(s)r , 1). (3.57)

Moreover, we assume that t(s)r > −1 for all the spherical surfaces s, because this is
the most interesting geometry for us. In this way, we make sure that the limits of the
integrals Eq. (3.58) in the case of a non-truncated particle surface hovering above the
substrate is correctly treated.
Furthermore, the following integrals are defined in the definitions of the matrix ele-
ments in Eq. (3.56):

Im``′ [ν|ηs](t̂(s)r ) =
∫ t̂

(s)
r

−1
duPm` (u)Pm`′

(
u− ηs√

1− 2ηsu+ η2
s

)[
1− 2ηsu+ η2

s

]ν/2
(3.58a)

and

Jm``′ [ν|ηs](t(s)r ) =
∫ t

(s)
r

−1
duPm` (u)

{
∂

∂r̃s

[
Pm`′

(
r̃su− ηs√

r̃2
s − 2ηsr̃su+ η2

s

)

×
[
r̃2
s − 2ηsr̃su+ η2

s

]ν/2]}∣∣∣∣
r̃s=1

. (3.58b)

In both cases, ηs denotes either µs or µ̄s and r̃s = r/Rs.
The integrals in Eq. (3.58) are results from the BCs in Eq. (3.13). The distance vectors
rµ and rµ̄ that appear in the integrands of these integrals have been expressed as in
Eq. (3.54), in terms of the main coordinates of system S.

Derivation of the linear system

Substituting the multipole expansions for the potentials as given in the form in
Eq. (3.53) into the weak formulation of the BCs given in Eq. (3.31a) we define the
following useful relations∫
∩s

dΩ [Y m
` (θ, φ)]∗

[
rνη Y

m′
`′ (θη, φη)

]∣∣∣
r=Rs

= δmm′ζ
m
``′R

ν
s I

m
``′ [ν|ηs](t̂(s)r ) (3.59a)∫

∪s
dΩ [Y m

` (θ, φ)]∗
[
rνη Y

m′
`′ (θη, φη)

]∣∣∣
r=Rs

= δmm′ζ
m
``′R

ν
s

[
Im``′ [ν|ηs](1)− Im``′ [ν|ηs](t̂(s)r )

]
,

(3.59b)
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with ` = 1, 2, . . .; m = 0,±1, . . . ,±`, `′ = 1, 2, . . .; m′ = 0,±1, . . . ,±`′. The symbols
∩s and ∪s denotes, respectively the parts of the spherical surface s above and below
the substrate placed in z = d. The constants ζm``′ are given by Eq. (3.55), and the
integrals Im``′ [ν|ηs](t

(s)
r ) are defined as in Eq. (3.58a).

These results are obtained in the following manner: first the definition of the spherical
harmonics Eq. (3.17) is substituted into the left-hand side of Eq. (3.59). Next we use
relation that φη = φ [Eq. (3.23c)] and apply the orthogonality relation

∫ 2π

0
dφ exp

[−i(m−m′)φ] = 2π δmm′ . (3.60)

Then the results from Eqs. (3.54a)-(3.54b) are used. After making the change of
variable u = cos θ, we obtain the expressions that appear on the right-hand side of
Eq. (3.59).

Similarly, for the boundary conditions for the normal derivative times the dielectric
function in Eq. (3.31b) substituted with the final form of the potential in Eq. (3.53)
the resulting equation will contain terms of the following form

∫
∩s

dΩ [Y m
` (θ, φ)]∗

[
∂r
{
rνηY

m′
`′ (θη, φη)

} ]∣∣∣
r=Rs

= δmm′ζ
m
``′R

ν−1
s Jm``′ [ν|ηs](t(s)r )

(3.61a)∫
∪s

dΩ [Y m
` (θ, φ)]∗

[
∂r
{
rνηY

m′
`′ (θη, φη)

} ]∣∣∣
r=Rs

= δmm′ζ
m
``′R

ν−1
s [Jm``′ [ν|ηs](1)

−Jm``′ [ν|ηs](t(s)r )
]
, (3.61b)

where ` = 1, 2, . . .; m = 0,±1, . . . ,±`, and `′ = 1, 2, . . .; m′ = 0,±1, . . . ,±`′.

The right-hand sides of Eq. (3.61) are derived in an analogous way to the right-hand
sides of Eq. (3.59). The only difference is that the relations were obtained with the
derivatives of the distance vectors as given in Eqs. (3.54c)-(3.54d) for the distance
vectors.

To evaluate the derivative of the Legendre polynomial that appears implicitly in
Eq. (3.61) we have used the recurrence relation [56]

∂Pm` (w)
∂w

= 1
w2 − 1

[
w`Pm` (w)− (`+m)Pm`−1(w)

]
. (3.62)

Explicit form of the equations

Combining the form of the multipole expansion in Eq. (3.53) with the weak formulation
of the BCs for the potential and normal derivative of the potential (times the dielectric
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function) on the form of Eq. (3.59) and Eq. (3.61) we obtain respectively
`′ 6=0∑
`′=|m|

ζm``′R
−`′−1
s

[
M

m; (2s−1)
``′; s [−`′ − 1](t(s)r )A(2s−1)

`′m −Mm; (2s+1)
``′; s [−`′ − 1](t(s)r )A(2s+1)

`′m

]

+
`′ 6=0∑
`′=|m|

ζm``′R
`′
s

[
M

m; (2s−1)
``′; s [`′](t(s)r )B(2s−1)

`′m −Mm; (2s+1)
``′; s [`′](t(s)r )B(2s+1)

`′m

]
= −δ`0δm0

√
4π
[
ψ

(2s−1)
0 − ψ(2s+1)

0

]
− δ2s−1,1

[∫
∩1

dΩ [Y m
` (θ, φ)]∗ψinc(r)|r=R1

+
∫
∪1

dΩ [Y m
` (θ, φ)]∗ψtr(r)|r=R1

]
(3.63a)

and
`′ 6=0∑
`′=|m|

ζm``′R
−`′−2
s

[
N
m; (2s−1)
``′; s [−`′ − 1](t(s)r )A(2s−1)

`′m −Nm; (2s+1)
``′; s [−`′ − 1](t(s)r )A(2s+1)

`′m

]

+
`′ 6=0∑
`′=|m|

ζm``′R
`′−1
s

[
N
m; (2s−1)
``′; s [`′](t(s)r )B(2s−1)

`′m −Nm; (2s+1)
``′; s [`′](t(s)r )B(2s+1)

`′m

]
= −δ2s−1,1

[∫
∩1

dΩ [Y m
` (θ, φ)]∗ ε1∂rψinc(r)|r=R1

+
∫
∪1

dΩ [Y m
` (θ, φ)]∗ ε2∂rψtr(r)|r=R1

]
, (3.63b)

where ` = 0, 1, . . .; m = 0,±1, . . . ,±`; and s = 1, 2, . . . , S.
The first term on the right-hand side of Eq. (3.63a) was obtained by realizing that
ψ

(2s±1)
0 are constant potentials. Thus, with the orthonormality condition for the SH

given in Eq. (3.19) we have∫
©s

dΩ [Y m
` (θ, φ)]∗ψ(2s±1)

0 = δ`0δm0
ψ

(2s±1)
0

Y 0
0 (θ, φ) = δ`0δm0

√
4πψ(2s±1)

0 , (3.64)

where the symbol ©s denotes the whole spherical surface s [©s = ∩s + ∪s]. In the
last transmission of this equation we have used that Y 0

0 (θ, φ) = 1/
√

4π, as stated in
Table 3.1.
The linear system of equations given in Eq. (3.63) for the determination of the set
of expansion coefficients {A(i)

`m, B
(i)
`m} is valid for any form of the incident field. How-

ever, an explicit form of the incident field is needed to have a well-defined system of
equations. Also, the constants ψ(2s±1)

0 , must be determined.

Determining the constant potential

In Eqs. (3.28a)-(3.28b) we found that with a plane wave illumination of the incident
electric field the corresponding incoming potential was

ψinc(r) = −rE0

√
2π
3
{√

2 cos θ0Y
0

1 (θ, φ) + sin θ0
[

exp(iφ0)Y −1
1 (θ, φ)− exp(−iφ0)Y 1

1 (θ, φ)
]}
,

(3.65a)
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and the potential of transmission was

ψtr(r) = E0

[
d

(
ε1
ε2
− 1

)
cos θ0

−r
√

2π
3

{√
2ε1
ε2

cos θ0Y
0

1 (θ, φ)

+ sin θ0
[

exp(iφ0)Y −1
1 (θ, φ)− exp(−iφ0)Y 1

1 (θ, φ)
]}]

. (3.65b)

To do the calculations of the right-hand sides in Eq. (3.63) we recall that for the
surface s = 1 we have R(s) = R ≡ R1 and t

(s)
r = tr ≡ t

(1)
r . We can then define the

relations∫
∩1

dΩ [Y m
` (θ, φ)]∗ψinc(r)|r=R +

∫
∪1

dΩ [Y m
` (θ, φ)]∗ψtr(r)|r=R

=− δm0

√
4π
3 E0R cos θ0

[
ε2 − ε1
ε2

{√
3tr
[
δ`0 − ζ0

`0I
0
`0[0|0](tr)

]
+ ζ0

`1I
0
`1[0|0](tr)

}
+δ`1

ε1
ε2

]
− δ`1

√
2π
3 E0R sin θ0 [δm,−1 exp(iφ0)− δm1 exp(−iφ0)] (3.66a)

and ∫
∩1

dΩ [Y m
` (θ, φ)]∗ ε1∂rψinc(r)|r=R +

∫
∪1

dΩ [Y m
` (θ, φ)]∗ ε2∂rψtr(r)|r=R

=− δ`1δm0

√
4π
3 E0ε1 cos θ0

+
√

2π
3 E0 (ε2 − ε1) sin θ0

[
δm,−1 exp(iφ0)ζ−1

`1 I
−1
`1 [0|0](tr)

−δm1 exp(−iφ0)ζ1
`1I

1
`1[0|0](tr)

]
− δ`1

√
2π
3 E0ε2 sin θ0 [δm,−1 exp(iφ0)− δm1 exp(−iφ0)] , (3.66b)

where again the orthogonality conditions of the SH in Eq. (3.19) and the predefined
integrals from the last section have been used.

In the limit, tr → 1, where the particles are starting to just touch the substrate’s
surface, it is readily demonstrated that the right-hand sides of Eqs. (3.66a)-(3.66b)
are independent of ε2, as they should. This is shown with the identity
Im``′ [0|0](1) = δ``′/ζ

m
``′ , which is a consequence of Eq. (3.19).

The expressions obtained in Eq. (3.66) are identical to the expressions obtained when
the particles are hovering above the surface of the substrate (so that the spherical
surface s = 1 is not truncated). To automatically also deal with the situation where
the particles are located a certain distance above the substrate’s surface the term, tr
should be replaced by t̂r = min(tr, 1) in Eq. (3.66).
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The constant potentials ψ(2s±1)
0 that appear in Eq. (3.63a) are generally obtained with

the relations

ψ
(2s−1)
0 − ψ(2s+1)

0 =

1√
4π


`′ 6=0∑
`′=|m|

ζ0
0`′R

−`′−1
s

[
M

0; (2s−1)
0`′; s [−`′ − 1](t(s)r )A(2s−1)

`′0 −M0; (2s+1)
0`′; s [−`′ − 1](t(s)r )A(2s+1)

`′0

]

+
`′ 6=0∑
`′=|m|

ζ0
0`′R

`′
s

[
M

0; (2s−1)
0`′; s [`′](t(s)r )B(2s−1)

`′0 −M0; (2s+1)
0`′; s [`′](t(s)r )B(2s+1)

`′0

]
+δ2s−1,1

[∫
∩1

dΩ [Y 0
0 (θ, φ)]∗ψinc(r)|r=R1

+
∫
∪1

dΩ [Y 0
0 (θ, φ)]∗ψtr(r)|r=R1

]}
.

(3.67)

For the case of a uncoated truncated spherical particle with s = 1 (as studied in this
chapter) the potential ψ(3)

0 is given as

ψ
(3)
0 =

1√
4π


`′ 6=0∑
`′=|m|

ζ0
0`′R

−`′−1
s

[
M

0; (1)
0`′; 1 [−`′ − 1](tr)A(1)

`′0

]
+

`′ 6=0∑
`′=|m|

ζ0
0`′R

`′
s

[
M

0; (1)
0`′; 1 [`′](tr)B(3)

`′0

]

+
√

4π
3 E0R cos θ0

[
ε2 − ε1
ε2

{√
3tr
[
1− ζ0

00I
0
00[0|0](tr)

]
+ ζ0

01I
0
01[0|0](tr)

}]}
.

(3.68)

This result is consistent with the expressions of the constant term b0 given by Simonsen
and co-workers in [46].

Summary of the calculations

Combining the relations given in Eqs. (3.64)-(3.68) and inserting them into Eq. (3.63),
we finally obtain the linear system of equations that can be used to determine the set
of multipole expansion coefficients {A(i)

`m, B
(i)
`m} for i = 1, 3. It is convenient to multiply

Eq. (3.63a) by 1/Rs to obtain the final form of this linear system. This has been done
in writing the linear matrix system in Eq. (3.32) for the truncated uncoated sphere.
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Chapter 4

The GranFilm software

The GranFilm software is designed to efficiently calculate the optical properties of
thin films [57] containing supported islands whose typical dimensions (size/spacing)
are much smaller than the wavelength. In this chapter, we discuss the software ar-
chitecture and give a user guide to launch a GranFilm simulation. The additional
functionality of automatic correction of the material’s bulk dielectric function with
respect to finite-size and surface effects, and the algorithm used to fit experimental
data will be described. Finally, to illustrate the potential of GranFilm, we present
and comment on some simulation results.
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Figure 4.1 A flowchart of the most important steps in a GranFilm
simulation. The definition of the system geometry and the allocation
of arrays are performed in the initialization process. Next, all the
required micro- and macroscopic quantities are calculated in the step
Run_GranFilm. The finalization process writes the simulation result to
files. If fitting of experimental data is required, the model parameters are
adjusted in the step Run_GranFilm until a χ2-minimization criterion is
reached.

4.1 Software architecture

The success of GranFilm as a simulation tool for the optical properties of supported
granular films is its capability to connect the micro- and macroscopic properties of
a system at a low computational cost. As discussed in Chs. 2-3, the mathematical
foundation of GranFilm is based on an effective boundary condition approach. Orig-
inally the formalism was developed by Bedeaux and Vlieger in the first half of the
1970s [41]. Since the publication of this seminal work, with the help of several other
authors, they have further refined and extended the formalism [37, 46, 48–50]. Much
of these efforts are collected in the book Optical Properties of Surfaces authored by
Bedeaux and Vlieger. It was published in its second edition in 2004 [5].

I. Simonsen and R. Lazzari developed the first version of the software package Gran-
Film. It was published in 2002; the code dealt with truncated spherical and spheroidal
nanoparticles placed on a substrate [56]. Since 2010, its original authors have imple-
mented a complete and more efficient version through several common projects and
master thesis works.

As of today, the code written in Fortran consists of several thousand lines of code.
The package can treat interacting truncated coated spherical and spheroidal supported
particles. Extra features like calculating the electrostatic potential around an island,
automatic corrections of the bulk dielectric function with respect to finite-size and
surface effects, and fit of experimental data have been integrated into the original
framework. For better user experience, a GranFilm Python interface with tutorials
has been developed.

A flowchart of the most prominent steps in a GranFilm simulation is presented in
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Fig. 4.1. The calling sequence in a typical GranFilm simulation starts with the defi-
nition of the system geometry, given by a set of input parameters. These parameters
are sent to the code via the namelist functionality of Fortran. All physical parameters
are internally made dimensionless before the calculation starts. When the GranFilm
object has been properly allocated, the integrals over the particle surface, given in
Eqs. (3.59)-(3.61), are evaluated using the QAG-routine from the QUADPACK library.
This set of routines implement an adaptive Gauss-Kronrod quadrature algorithm with
an automatic sub-interval division to reduce the overall error above a given threshold.
The default of accepted values of the relative and absolute error of the integrals are
1.0e−5 and 1.0e−4, respectively. Since the integrals depend on the geometry of the
system (mainly the truncation of particles), they have to be recalculated for spheres,
spheroids, and coated particles. Hence, this step is among the most time-consuming
calculation process in GranFilm.

Next, the dimensionless multipole coefficients are calculated by solving the linear sys-
tem of equations in Eq. (3.63) to a given finite multipole order M . The corresponding
linear system of equations implicitly depends on the dielectric functions of the dif-
ferent materials. The linear system of equations are solved with routines in the LA-
PACK library. The CGETRF/ZGETRF (single/double precision) routines are used
for lower-upper (LU) decomposition and the CGETRS/ZGETRS routines for the back
substitution. Thereupon, the island polarizabilities are obtained from the multipole
coefficients as stated in Eq. (3.35). The obtained polarizabilities can latter be corrected
to dipolar or quadrupolar order from the island-island interactions and/or averaged
over a given size/shape distribution by looping over the previous steps. From these
average island polarizabilities, the island film layer’s surface susceptibilities can be
obtained from the expressions in Eq. (3.36). Finally, physical observables deriving
from the Fresnel coefficients Eq. (2.27) (e.g. transmissivity, reflectivity, differential
reflectivity) can be obtained.

Once the multipole coefficients have been calculated, the electrostatic potential in
any region inside and outside of the particle can be obtained through the relation
in Eq. (3.13) (applications of this functionality will be given in Ch. 5). The eigen-
values and/or eigenvalues of the equation matrix system are then found with the
CGEEV/ZGEEV (single/double precision) routines in LAPACK. With this function-
ality, the near-field behavior can be studied over a grid of points specified by the user
in an additional input file.

Beyond the convergence of the polarizabilities themselves, the electrostatic potential
can be used to control the accuracy of BCs on both sides of an interface. One should
keep in mind that a build-up of the matrix system is based on a projection of the con-
tinuous BC over the complete basis of spherical/spheroidal harmonics; its truncation
to a given multipolar order is merely a numerical issue.

Before concluding, one should always make sure that increasing the value of M does
not alter the simulation results in a significant manner. In particular, the speed of
convergence depends critically on the target quantity. Typically, far field quantities
like Fresnel coefficients (and incidentally the polarizabilities), converge more rapidly
than near field quantities like the potential close to the particle.
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ê‖ê⊥

εa εp

(a) Sphere.
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(b) Spheroid.
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(c) Coated particle.

Figure 4.2 Supported geometries in GranFilm. The particles can be
shaped like either a sphere (a) or spheroid (b) with an eventual layer(s)
of concentric coating(s) (c).

4.2 A user guide
This section is meant as a short user guide for the needed know-how to run a GranFilm
simulation. We will discuss available geometries, the most important input parame-
ters, the limitations of the software, and the GranFilm Python interface.

4.2.1 Accessible geometries

The underlying mathematics, described in detail in Chs. 2-3, restricts the shapes of
the particles to truncated spheres or spheroids. The reason lies in the expansion of the
Laplace’s equation Eq. (3.12) in terms of a multipolar basis that is readily available for
spheres and spheroids. In the new version of GranFilm, particles can also be coated
with an arbitrary number of concentric layers of different materials. The particle
geometries supported by GranFilm are illustrated in Fig. 4.2.

4.2.2 Input parameters

R2

R1

d

L

θ0

ê‖ê⊥

ε1

ε2

ε3

ε4

ε5

ε6

Figure 4.3 The most
important parameters
needed to define the
system in a GranFilm
simulation:
angle of incidence θ0,
lattice constant L,
radii Ri,
distance to the substrate
d,
and materials εi.

The geometry of the islands, their arrangement on the surface of the substrate, their
interaction with the nearest neighbors, and the values for parameters controlling how
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the numerical calculations are performed are all part of the input parameters required
by GranFilm. Default values are set if these parameters are not explicitly modified
by the user in the input file (see the documentation for a complete description [57]).

An illustration of a typical system with the parameters required in a GranFilm sim-
ulation are presented in Fig. 4.3. A complete example of all the namespaces in the
GranFilm Fortran input file is given in App. C.

The input parameters are organized into groups of Fortran namelists. These are named
Global, Source, Geometry, Interaction, Numerics, and Potential and will be described
in the following.

ê‖ê⊥

εa
εs

εp

(a) tr > 0.

ê‖ê⊥

εa
εs

εp

(b) tr < 0.

Figure 4.4 The trun-
cation ratio parameter,
tr, decides if the center
of the particle is located
(a) above or (b) below the
surface of the substrate.

The Global namelist sets the needed paths to link the executable file with the database
containing the experimental values of the bulk material permittivities. The Source
group defines the angles of incidence θ0, φ0, the polarization state of light, and the
energy range of interest.

The Geometry group defines the geometry of the isolated particle. Required parame-
ters of this type are:

• The particle radii parallel R‖ and perpendicular R⊥ to the surface of the sub-
strate. A spherical particle is modeled when R‖ = R⊥. The spheroid and the
sphere cases are treated with separate equation systems.

• The truncation ratio, tr, characterizes how much of the island that is truncated
by the substrate (see Fig. 4.4). In the range 0 < tr < 1 (−1 < tr < 0, respec-
tively) the center of the particle lies above (below, respectively) the surface of
the substrate1. If tr = 0, the particle has been truncated at the center. The
distance d from the center of the particle to the substrate is derived from the
relation d = trR⊥.

• The dielectric functions εi of the materials in region i of the system (the super-
strate, substrate, and particles etc.).

Furthermore, the radius ratios and the broadening are optional parameters of the
geometry group.

To simulate the response of a particle with coatings, the thickness of each layer is
defined by the (dimensionless) radius ratio χ(s) = R

(s)
⊥ /R

(1)
⊥ where s ∈ {1, . . . , S}.

1Please note that in the current version of the software the multipole position of the direct dipole
must always be placed above the substrate
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The numbering of the surfaces starts from the outermost one, for which s = 1 and
χ(1) = 1.0. When all radius ratios are set, the radii and truncation ratio associated
with the relevant surface s are defined as R(s)

⊥ = χ(s)R
(1)
⊥ , R(s)

‖ = χ(s)R
(1)
‖ , and t(s)r =

t
(1)
r /χ(s), respectively.

In a SDRS experiment, the particles will always be distributed in both size and shape
(aspect ratio). The distribution of the particles will result in what is known as the
experimental broadening of the plasmon resonance. A classical GranFilm simulation
is preformed in a monodisperse system, i.e. all particles are identical. The broadening
parameters σi, i =‖,⊥, are used to add an ’ad hoc’ broadening of the plasmon reso-
nance in the simulations. The broadening are added to the input-file with the keyword
’Broadening’. This inhomogeneous broadening of the monodisperse absorption peak
Im{αi(ω)} is accounted for by a convolution the monodisperse result with a Gaussian
of width σi [42, 58]

〈Im{αi}〉 = 1
σi
√

2π

∫ ω2

ω1
dω′Im{αi(ω′)}e−(ω′−ω)/2σ2

i , i =‖,⊥. (4.1)

Several phenomena contribute to the experimental broadening. These will be discussed
further in Ch. 6.

The parameters in the Interaction group control the particles’ arrangement on the
substrate and how they interact with each other. The distance between the particles is
set with the lattice constant L. A GranFilm simulation will assume that the supported
particles are arranged in either a regular or a random two-dimensional (2D) lattice.
Currently, the types of regular lattices supported by the software package are square
or hexagonal lattices. These have only one particle per unit cell. The random lattice is
defined by an equivalent surface coverage Θrand as if the particles were organizes in a
square or hexagonal lattice (see Sec. 3.5.2). This configuration has an average number
of particles per unit surface area. Once the single particle polarizabilities, originating
from the electrostatic interaction between the single particle and the substrate, have
been calculated they are corrected (or not) by the island-island interactions of dipolar
or quadrupolar order. To do so, the coupling is evaluated through the lattice sums
or distribution integrals described in Sec. 3.5. The interaction is controlled at will
by the island-island interaction parameter. It can be set to either None, Dipole, or
Quadrupole.

The discretization in energy, the number of multipoles M , and the unitless position
of the multipoles relative to the center of the reference particle, the multipole posi-
tion ratio µ = zmp/R⊥, are some of the parameters in the Numerics namelist. The
parameters M and µ have the greatest impact on the convergence of the simulation
result2, although the contrasts of the different dielectric materials in the system also
play a role.

2In Ch. 6 a polydispersity in the size/shape of the particles will be introduced. We will see that one
must pay attention when choosing the multipole position ratio parameter if one wishes to compare
the simulation results obtained in different systems.
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GranFilmPy

Variables:
gf.param[’radius’] = 5
gf.param[’truncation ratio’] = 0.3
gf.param[’lattice constant’] = 15

Methods:
get polarizabilities()
get transmissivity()
optimize model parameters()

(a) A schematic of the GranFilmPy-
class containing variables and func-
tions for smooth user experience.

(b) Calling sequence between the Python interface and
the Fortran code of GranFilm. In courtesy of Alexis
Cvetkov-Iliev.

Figure 4.5 A schematic illustration of the GranFilmPy class (a) and
the sequence to launch a GranFilm simulation from the Python interface
(b).

4.2.3 Limitations of the software

Beyond numerical issues, the limitations of a GranFilm simulation are defined by the
theoretical framework’s approximations. Of these, the most critical one is the assump-
tion that the island’s size and the typical distance between the islands should remain
much smaller than the wavelength of the incoming field. When these assumptions
breakdown neither the excess field formalism nor the quasi-static approximation is
valid [41].

If the wavelength of the incoming field is of the same order of magnitude as the distance
L between the particles, the system may/will suffer from second order scattering or
diffraction [59]. This phenomenon is not included in the present framework and other
methods have to be used to account for them [60].

Also, the value of the surface density Θ, also known as the packing fraction of the
particles, is limited because the island-island interaction is taken into account only to
low order in GranFilm. Depending on geometry and dielectric functions, a discrepancy
between dipolar and quadrupolar (or multipolar in the case of the full supported
sphere [46]) interactions start appearing at a coverage above ∼ 50− 60%. Anyway, in
the case of random growth this threshold corresponds experimentally to the beginning
of percolation. Where we know that the GranFilm approximations breakdown [53].

4.2.4 The GranFilm Python interface

To simplify the use and increase the potential number of users of GranFilm, a Python
interface to the Fortran source code has been developed. For someone without a back-
ground in Fortran, the direct use and compilation of the GranFilm source code require
some time investment. Fortran is a compiled imperative programming language that
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Figure 4.6 Setting the most important input parameters in the Gran-
Film Python interface. First, one initializes an instance of GranFilmPy
(first line). The following lines demonstrate how the actual input pa-
rameter can be changed (or set) by calling the param-dictionary of the
instance.

is not commonly used outside academia, in particular in the community of engineers.
Moreover having a Python interface available for GranFilm also open up for script-
ing capabilities and making further analysis of the obtained simulation results more
convenient. With this interface, a user can access the original functionality of the
software without directly interacting with the Fortran code. The interface is essen-
tially a Python class [see Fig. 4.5(a)], called GranFilmPy, with several variables and
methods. A compiled executable of the GranFilm software3 and installation of the
GranFilmPy-class is all that is needed to run a simulation. The class methods take
care of generating a valid input file, run the simulation, and automatically read the
output files and save the results in the GranFilmPy instance. An illustration of the
calling sequence used in the GranFilm Python interface is presented in Fig. 4.5(b).

All input parameters required to run a simulation with the GranFilm Python in-
terface are set with Python dictionaries. An example of how the most important
parameters can be set using the Python interface is given in Fig. 4.6. If the user does
not explicitly change the input parameters, most of them will be given default val-
ues. A full tutorial with examples detailed in the notebooks Tutorial_GranFilm.ipyb,
Advanced_Functionalities.ipyb, and Theoretical_Aspects.ipyb has been written to de-
scribe the use and capabilities of the Python interface of GranFilm. The GranFilm
Python interface and documentation are currently available on demand.

4.3 Additional functionality

As GranFilm is designed to deliver fast and reliable simulations that can accompany
the results of an experiment two additional functionalities are of great practical use.
The following subsections will detail how material permittivity corrections and fitting
of experimental data can be performed with GranFilm.

3This executable must be compatible with the user’s operative system. Currently, the GranFilm
software is compiled for Windows, Mac, and Linux.
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Table 4.1 Skin depth `δ as a function of the photon energy and the
bulk mean free paths l∞ of the conduction electrons at 273 K [12, Ta-
ble (2.3), Ch. 2].

Element l∞[nm] `δ[nm]
2[eV] 3[eV] 4[eV]

Au 42 31 37 27
Ag 52 24 29 82

Table 4.2 Explicit units and typical values of the parameters for a
hemisphere of a silver particle in Eqs. (4.2)-(4.4). Some of these variables
are also input parameters to GranFilm (values for a silver hemisphere
given in the last row).

Parameter ε ~ωp ~Γ∞ ~ω Σ B A V ~vF Deff C

Unit 1 eV eV eV eV2 eV2 nm nm2 nm3 eV nm nm 1
Value − 9.17 0.018 − − −1.13 − − 0.91 − 0.6

4.3.1 Material permittivity corrections with GranFilm

In metals, the skin depth `δ is dependent on the energy of the incoming EM-field4.
Furthermore, in the classical theory of free-electron metals, the damping frequency
of the oscillating electrons in the bulk material Γ∞ originates from the scattering
with phonons and electrons, lattice defects, or impurities of the material. Due to the
finite dimension of a granular thin film or a nanoparticle (NP), the damping of the
electrons in the material become comparable to the electron mean free path l∞. Thus,
in cases where the material volume is limited the dielectric function is a subject of
the so-called intrinsic size effects due to the changes of the atomic structure or the
influence of NPs on the surface (increased localization of electrons). When `δ is of
the order of the particle size, experimental results indicate that the direct use of the
bulk permittivity breakdowns [12]. Table 4.1 reports the skin depth as a function
of the photon energy compared to the bulk mean free path for gold and silver, two
well-known plasmonic materials.

GranFilm does not model the bulk dielectric functions used in a simulation, but inter-
polates rather over the values taken from an experimental database5. A well-known
solution to circumvent the issue of the finite sized particles is to apply correction on
the bulk permittivity [58]. A specific routine has been added in the flow chart of
the GranFilm software just after the initialization step (see Fig. 4.1). The correction
types involve the finite size correction and the surface correction, as detailed below.
A description of how to enables these corrections with the GranFilm Fortran input
file is given in App. C, Sec. C.2.1.

4Remember from Ch. 1 that the skin depth is related to the imaginary part of the complex refractive
index by the relation `δ = 1/b, b = 4πk̂(ω)/λ, k̂(ω) provides the damping factor of a plane wave,
traveling in the x-direction given as E(x, t) = E0ei[ωñ(ω)x/c−ωt]e−(ωk̃x(ω)x/c)

5 See Appendix A for plots of the relevant bulk dielectric functions used in this work.
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Finite size correction

A finite size correction of the permittivity is necessary when the skin depth of the
incoming field is of the same order of magnitude as the bulk mean free path of con-
duction electrons. Because the scattering by the surface of the particle comes into
play in the damping mechanism of the oscillating electrons, the correction consists in
scaling the corresponding damping on an effective conduction length Deff [12]. This
finite size correction of the Drude part of εB (ω) in Eq. (1.25)
yields [12, Ch. 2, Eq. (2.53)] reads

εFSP (ω,Deff ) = εB(ω)− εD(ω) + εFSD (ω,Deff )

= εB(ω)−
(

1− ω2
p

ω(ω + iΓ∞)

)
+
(

1− ω2
p

ω(ω + iΓ(Deff ))

)

= εB(ω) +
ω2
p

ω(ω + iΓ∞) −
ω2
p

ω(ω + iΓ(Deff )) , (4.2)

where, again, ωp denotes the co-called plasma frequency, and Γ∞ is the damping fre-
quency for the bulk material. The term Γ(Deff ) denotes the size dependent damping
frequency and is determined from the relation

Γ(Deff ) = Γ∞ + ∆Γ(Deff ),

= Γ∞ + C
vF
Deff

. (4.3)

The quantity C that appears in this expression is a dimensionless (Table 4.2) and
theory dependent constant for a given metal6 and vF is the Fermi velocity of the s-
electrons. Although this scattering effect of electrons at interfaces is highly anisotropic
for a truncated and supported particle, only an isotropic correction is implemented in
GranFilm. Appendix 4.A discusses how the effective length Deff is defined for the
different GranFilm geometries. The account of this effective length turns out to be
essential in data analysis [58, 61] as it introduces a size-dependent broadening of the
plasmon resonances.

Surface correction

Particularly in bulk silver, the free sp-conduction electrons are strongly screened by
the more localized d-electrons. Therefore, the bulk plasma frequency is strongly down-
shifted from that of the Drude component of the dielectric function from around 9 eV
to around 3.8 eV. But at surfaces, during the plasmon oscillation, this screening is re-
duced due to the spatial localization of d-electrons; sp-electrons recover their slightly
Drude-like character. This effect, called quantum blueshift, depends on the ratio be-
tween surface and volume and, therefore, on the particle size. Again, starting with
the bulk dielectric function, the Drude part of the dielectric function will be corrected

6The constant C often has a value that is close to one [12, Ch. 2, Eq. (2.53)].
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as [58,62,63]:

εSP (ω,Σ) = εB(ω)− εD(ω) + εSD(ω,Σ)

= εB(ω) +
ω2
p

ω(ω + iΓ∞) −
ω2
p

ω(ω + iΓ∞) + Σ . (4.4)

where Σ = B(A/V ) is a geometry dependent parameter, B is a material dependent
constant, A and V are the surface and the volume of the particle. Appendices 4.B-
4.C discuss how the particle volume and surface area are calculated for the different
geometries. The units of the parameters as they must be given to GranFilm are
presented in Table 4.2.

Finite size and surface correction

When the finite size and the surface corrections described in Eqs. (4.2)-(4.4) both are
active, the combined corrections performed on the Drude part of the bulk permittivity
given in Eq. (1.25) becomes [58, Sec. 3.4, Eq. (4)]

εFS,SP (ω,Deff ,Σ) = εB(ω)− εD(ω) + εFS,SD (ω,Deff ,Σ)

= εB(ω) +
ω2
p

ω2 + iωΓ∞
− ω2

p

ω (ω + iΓ(Deff )) + Σ . (4.5)

4.3.2 Fit of experimental data and parameter estimation with GranFilm

GranFilm simulations can be used to extract information regarding morphology from
optical measurements. By comparing, e.g. a Surface Differential Reflectivity Spec-
troscopy (SDRS) measurement and a modeled differential reflectivity curve, one can
extract detailed information about the evolution of size, shape, and density of parti-
cles all along a growth process [61]. Such nanoscale information is rather difficult to
obtain from real-time microscopies.
A routine for fitting experimental data to the theoretical curves calculated with Gran-
Film has been integrated into the framework. This problem was recast into the
minimization of a least-squares cost function with the Levenberg-Marquardt (LM)
algorithm. We account for constraints on the model parameters via the MINUIT
transformation. The obtained uncertainties on the model parameters are based on a
linearization of the Hessian matrix.
The optimization feature is offered via a generic class structure around LMDIF, an op-
timization routine from the well-established MINPACK library written in Fortran [64].
The class structure handles the constraints on the model parameters and error estima-
tion. The reason for choosing a Fortran implementation instead of a Python equivalent
from the user interface is due to the significantly better numerical efficiency of the For-
tran language. To obtain a fit of the experimental data the Run_GranFilm step in the
calling sequence for GranFilm is looped over until a minimization criterion is reached
[see Fig. 4.1]. The user must provide the experimental data set, an initial guess of the
model parameters, and an observable type, like a reflection or transmission spectra.
If the user does not provide the limits of the fitting parameters, a set of default values
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Table 4.3 Parameters that can be fitted with the GranFilm software
for a given experimental data set. The values specified for `min and `max
correspond to the default values of the lower and upper bounds.

Parameter `min `max

R
(1)
‖ 0 L/2

R
(1)
⊥ 0 3L

R
(s)
‖ , s ∈ {2, ..., S} R

(s+1)
‖ R

(s−1)
‖

R
(s)
⊥ , s ∈ {2, ..., S} R

(s+1)
⊥ R

(s−1)
⊥

L 2R(1)
‖ ∞

tr -1 1
σ‖ 0 ∞
σ⊥ 0 ∞

consistent with the logic of the system geometry will be assumed. The possible fitting
parameters and their default limits are presented in Table 4.3. An example of how
to enable the fitting functionality with the GranFilm Fortran input file is given in
App. C, Sec. C.2.3.

This section details the chosen solver and how to use the functionality within Gran-
Film. As optimization methods are a complex field in itself, we will mainly present the
ideas behind the implementation rather than the full details of the chosen algorithm.
For a detailed introduction to optimization routines, we invite the reader to look into
the excellent texts in [65,66].

Objective function

Given a known set of abscissa values with corresponding ordinates and uncertainties,
respectively denoted xi, yi = f(xi), and σi, where i ∈ {1, ...,m}, we seek an optimal
set of model parameters P = {pj}, j ∈ {1, ..., n} for which the model ordinate f̂(xi|P)
fairly accurately reproduces the ordinate yi = f(xi).

In the case of least-square optimization, the condition

χ2(P) = 1
2

m∑
i=1

[
f(xi)− f̂(xi|P)

σi

]2

= 1
2

m∑
i=1

[ri(P)]2 ,
(4.6)

where ri(P) is a component in the residual vector r(P) = [r1(P), ..., rm(P)]T. Note
that σi works as a weighting term for the residual ri. Thus, Eq. (4.6) can equivalently
be represented as

χ2(P) = 1
2rT(P)r(P). (4.7)

The derivatives of Eq. (4.7) can be represented in terms of the Jacobian J(P), which
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is the n×m matrix of the first order partial derivatives of the residuals

J(P) =
[
∂ri
∂pj

]
i=1,...,m
j=1,...,n

=


∇pr1(P)T

∇pr2(P)T

...
∇prm(P)T

 , (4.8)

where ∇p is the first order partial derivative with respect to the model parameters
and each ∇pri(P) is the gradient of ri(P). The gradient of Eq. (4.7) can then be
expressed as

∇pχ
2(P) =

m∑
i=1

ri(P) [∇pri(P)] = JT(P)r(P). (4.9)

Provided that there exists a minimum (local or global) such that Eq. (4.7) is minimized,
the gradient in Eq. (4.9) equals zero. For the error analysis, the curvature of χ2(P)
and therefore, its second derivative is required. The Hessian is a n×n-matrix defined
as

H(P) =∇2
p

[
χ2(P)

]
=

m∑
i=1

[∇pri(P)]
[
∇pri(P)T

]
+

m∑
i=1

ri(P)∇2
pri(P)

= JT(P)J(P) +
m∑
i=1

ri(P)∇2
pri(P)

(4.10)

With the Hessian on the form given in Eq. (4.10), it means that the first term can be
obtained ’for free’. As long as the Jacobian in Eq. (4.9) is obtained one can evaluate
the term without calculating any second order derivatives. As long as the Jacobian
in Eq. (4.8) is calculated. In cases where ri(P) is close to a minimum, or typically
that the residual is relatively small the JT(P)J(P) term will be the dominant one in
Eq. (4.10). These properties of the Hessian are typically exploited by non-linear least-
square algorithms to avoid the costly evaluation of the second order derivatives [65].

The Levenberg-Marquardt Algorithm

The LM algorithm, thoroughly described in Refs. 67, 68, is a popular and robust
scheme for evaluating non-linear least-squares minimization problems, with objective
functions on the form given in Eq. (4.6). The scheme combines the steepest descent
with the Gauss-Newton method. The parameter estimates are updated iteratively
using a linear solver. In cases where there exist multiple minima of the function, the
LM algorithm is not guaranteed to converge towards the global minimum. A global
minimum will only be identified if the initial guess happened to be sufficiently close
to the optimal parameters.
To obtain a reliable estimate of the model parameters the number of experimental data
points m must be (significantly) higher than the number of model parameters n. The
parameters in the standard LM algorithm are all assumed to be unconstrained. This
means that a given parameter pj , j ∈ {1, ..., n}may vary in the interval −∞ < pj <∞.
Many physical parameters are naturally restricted to a certain range of values where
values outside this range are deemed as non-physical. For instance, the radius of a
spherical particle cannot be negative.
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Constrained optimization

To perform constrained optimization, where one or several parameters have an upper
and/or lower bound `min

j < pj < `max
j , we will adopt the approach used by theMINUIT

minimization package, well-known in particle physics [69].

With this approach, constrained optimization is achieved by first performing a par-
ticular parameter transformation so that after the transformation all the parameters
are unconstrained. Once done, the original LM algorithm can be used to identify the
optimal parameters in the transformed parameter space.

P

T

P

T
−1

r(P) = r(TP) Figure 4.7 Illustration of the map-
ping between the sets of external, P ,
and internal parameters P via the
transformations T and T−1.

The (forward) transformation defines a mapping between the sets of what we call
external (bounded) parameters and internal (unbounded) parameters, denoted P and
P , respectively (see Fig. 4.7). To verify that an updated set of model parameters are
physical the inverse transformation r(T−1P) = r(P) is called each time the algorithm
has calculated a new set of internal parameters. If the bounded parameters are outside
the legal interval, our framework will give an error message and the user should restart
the optimization with a different set of initial values P0. We will now detail how such
transformations can be performed.

For a bounded pj parameter with either a minimum `min
j , a maximum `max

j or both
limits given, and its unbounded counterpart pj , the MINUIT -transformation and it’s
inverse is defined as

pj =


arcsin

(
2 pj−`min

j

`max
j −`min

j
− 1

)
, both√

(pj − `min
j + 1)2 − 1 , only `min

j√
(`max
j − pj + 1)2 − 1 , only `max

j

(4.11a)

pj =


`max
j −`min

j

2

[
sin
(
pj

)
+ 1

]
+ `min

j , both
`min
j − 1 +

√
pj

2 + 1 , only `min
j

`max
j + 1−

√
pj

2 + 1 , only `max
j ,

(4.11b)
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The derivatives of Eq. (4.11), needed for the error analysis, are

∂pj
∂pj

=



2
(`max
j −`min

j )
1√

1−
(

2
pj−`min

j

`max
j
−`min
j

−1
)2

, both

(pj−`min
j +1)√

(pj−`min
j +1)2−1

, only `min
j

−(`max
j −pj+1)√

(`max
j −pj+1)2−1

, only `max
j

(4.12a)

∂pj
∂pj

=



`max
j −`min

j

2 cos
(
pj

)
, both

pj√
pj

2+1
, only `min

j

− pj√
pj

2+1
, only `max

j .

(4.12b)

If the limits are set to `min
j = −∞ and `max

j = ∞, the parameter is considered to be
unbounded and pj = pj .

Error estimation

The uncertainties associated with a set of optimized model parameters P?, can be
obtained from the covariance matrix. The standard error of an optimized parameter
p?j is interpreted as the square root of the diagonal elements in the covariance matrix
σ̂j =

√
Cj,j . For Gaussian distributed data the covariance matrix is found from the

negative inverse of the Hessian

C(P?) = − [H(P?)]−1

≈ −
[
JT(P?)J(P?)

]−1
.

(4.13)

In the last line of Eq. (4.13) only the first term in Eq. (4.10) has been used to ap-
proximate the Hessian. This is a valid conjecture, provided that the set of optimized
model parameter give a residual close to zero, i.e. ri(P) = [f(xi)− f̂(xi|P?)]/σi ≈ 0,
∀i. Since the Hessian is approximated by only a first derivative term this can result
in a so-called ill-conditioned matrix, where the ratio between the largest and smallest
singular values becomes big. In this case, our approximation of the standard deviation
of the optimized parameters is not valid.

Since the optimized parameters essentially are calculated in internal parameters, P?, a
rescaling is needed to obtain the Jacobian for the external parameters. This rescaling
is defined as

J = ∂r
∂P?

J = ∂r
∂P?

∂P?

∂P?

J = J
[
∂P?

∂P?
]−1

,

(4.14a)
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or by the inverse transformation

J = ∂r
∂P?

= J
∂P?

∂P? .
(4.14b)

From stability tests performed on the model parameters in GranFilm we experience
that the best choice is to approximate the Jacobian as in Eq. (4.14b).
It is warned against using the MINUIT-transformation in an optimization if the initial
guess of a bounded parameter is close to a limit. If this is needed anyway, one should
remove the limits and redo the error analysis when an estimate of optimized parameters
has been obtained [69,70].

4.4 Examples of GranFilm simulations: plasmon resonances
in silver particles
In the previous sections, presentations of the most important input parameters, the
corrections of the material permittivities, and the fit algorithm for experimental data
were given. To conclude the discussion of the functionality offered by the GranFilm
software, a series of simulations will be presented to illustrate the capabilities of Gran-
Film. Particular attention will be paid to the role of the geometry on the obtained
results. Silver is used as a testbed material for the particles through out this the-
sis. Indeed, since interband transitions poorly damp its bulk plasmon oscillations,
nanoparticles made from this metal show pronounced LSPRs in the visible region of
the optical spectrum.

4.4.1 Connecting the micro and macro through polarizabilities

As discussed in Sec. 4.1, the interest of GranFilm as a simulation tool lies in its
capability to connect the micro (polarizabilities) and macroscopic (Fresnel coefficients)
properties of a layer of supported particles at reasonable computation times. An
example related to a system consisting of hemispherical silver particles on alumina is
presented in Fig. 4.8 for illumination at θ0 = 45° by an s-polarized plane wave. The
imaginary part of the polarizability and the reflection and transmission coefficients are
presented as a function of the photon energy in Figs. 4.8(a)-(b). These results illustrate
the connection between these quantities; the peak position of Im{α‖} is related to the
positions of peaks (dips) in the reflectivity (transmission). This expected behavior lies
in the fact that Rs depends only on the parallel surface susceptibility γ ∝ α‖, like we
discussed in Sec. 2.6.
Electrostatic potential maps may uncover what kind of resonance gives rise to the
features observed in the Fig. 4.8. To make potential resonances more pronounced and
get rid of the potential of the incoming field, it is useful to suppress the absorption
in the metal particle partly. This is achieved by artificially reducing the imaginary
part of the dielectric function of silver. Figures 4.8(c)-(d) presents contour plots of
the imaginary part of the electrostatic potential in the xz plane of incidence. The



4.4 Examples of GranFilm simulations: plasmon resonances in silver particles | 91
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(c) ~ω = 2.57 eV. (d) ~ω = 3.60 eV.

Figure 4.8 Examples of results from a typical GranFilm simulation
of a hemisphere of silver on an alumina substrate. The energy position
of the parallel polarizability, the highest peak in (a), and the reflection
and transmission amplitudes for s-polarized light (b) are correlated. The
electrostatic potential with the imaginary part of the dielectric function
of silver reduced by a factor of 99% is plotted at the energies correspond-
ing to the peaks of the parallel (c) and the perpendicular (d) polarizabil-
ity. Simulation parameters are indicated on the top of the figure. The
highest amplitude for each system in (a)-(b) is marked with (energy,
amplitude).
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imaginary part of the dielectric function of silver was reduced by 99% of the orig-
inal value. Maps are plotted at photon energies of ~ω = 2.57 eV [Fig. 4.8(c)] and
~ω = 3.60 eV [Fig. 4.8(d)] corresponding to the main peaks of Im{αi}, i =‖,⊥. From
the results in Figs. 4.8(c)-(d), one observes that both resonant modes display a dipole-
like pattern of polarization with a charge accumulation at the interface [Fig. 4.8(c)]
or above [Fig. 4.8(d)]. The dipole-like pattern of the polarization charges points in
the opposite direction of each other. Chapter 5 will investigate the nature of these
resonant modes in further detail.

4.4.2 The effect of simulation parameters

Sections 4.2-4.3.1 presented the most important input parameters and the possible
types of corrections of the material permittivities that GranFilm supports. Among
them, the multipole order, the type of island-island interaction, and the correction
of the bulk permittivity turned out to have a significant influence on the simulation
results.

Changing the number of multipoles, M , will drive the convergence of the simulation
results. Shifts in the amplitudes and position of the peaks of the reflectivity curve in
s-polarization are observed with increasing M Fig. 4.9(a). By changing from M = 1
to M = 16, the energy position of the highest amplitude in the plot is shifted around
0.063 eV towards higher energies. The amplitude of the peak is also reduced by 0.101.
Fortunately, above a given threshold, the obtained curves get closer; the lack of dif-
ference between M = 16 to M = 22 multipoles demonstrate that convergence was
reached at M = 16.

Electrostatic interactions between neighbor particles do not drastically impact the
single particle polarizability if L � 2R. However, when the particles come closer,
the correction of the single particle polarizability leads to shifts of the resonances.
As shown in Fig. 4.9(b), a shift of 0.091 eV down words in energies is observed for
the reflectivity curves in s-polarization between non-interacting particles and those
interacting at dipolar/quadrupolar order. This redshift originates in the effect of
the depolarization field induced by the neighbors [61]. Note that the overlap of the
curves corresponding to dipolar and quadrupolar interactions between the particles
gives some confidence in the validity of the interaction range. If it is found that the
response calculated with quadrupole and dipolar interactions are not contiguous the
island-island interaction should be performed to a higher order than quadrupole. This
choice is currently not available in the GranFilm software.

As discussed in Sec. 4.3.1, the corrections of the bulk permittivity are needed to get
reliable results from GranFilm when the skin depth of the metal is of the same order
of magnitude as the mean free path of the electrons in the metallic nanoparticle.
Figure 4.10 presents the impact of these corrections on the experimental bulk value of
the dielectric function of silver. As expected, for the chosen energy range, the impact
of the corrections is most prominent for the smallest particles. The finite size effect
increases the imaginary part of the dielectric function in the low energy regime, as
compared to the experimental bulk values, while the real part is moderately affected.
This corresponds to enhanced damping. Moreover, Fig. 4.10(b) demonstrates that the
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Figure 4.9 Examples of how certain parameter values affect the reflec-
tivity coefficient in s-polarization of a GranFilm simulation: the number
of multipoles (a), the type of island-island interaction (b), or the type
of correction of the bulk permittivity (c). Simulation parameters are in-
dicated in the lower right of the figure. The highest amplitude for each
system response is marked with (energy, amplitude).
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Figure 4.10 The bulk dielectric functions of silver, compared to cor-
rected values by the finite size effect (a) and the surface effect (b) for
small and middle sized particles.

Table 4.4 Values used for input parameters necessary to perform
finite-size and surface correction for a hemisphere of a silver particle
in a GranFilm simulation [58].

Parameter ~ωp ~Γ∞ B ~vF C

Ag 9.17 eV 0.018 eV −1.13 eV2 nm 0.91 eV nm 0.6

surface effect tends to blueshift the real part of the dielectric function and, therefore,
the position of the cross-over. This corresponds to a shift of the plasmon resonance.

Figure 4.9(c) presents the reflectivity curve calculated with GranFilm for a s-polarized
plane wave at an incident angle of θ0 = 45°. Changing between the experimental
bulk permittivity via a finite size correction, a surface correction, or both shifts and
broadens the resonances. On one hand, finite size correction tends to broaden and
decrease the amplitude of the resonance mainly at low energy as expected from the
increase of the imaginary part of the dielectric function. On the other hand, the
surface correction shifts the same peak towards higher energies. The used values of
the input parameters needed to perform finite-size, surface, or the combination of the
two corrections of the bulk dielectric function for the studied geometry are given in
Table 4.4.

Varying the shape

Figure 4.11 illustrates how the different correction types of the experimental bulk
dielectric function of silver affect the imaginary part of the direction dependent polar-
izability as a function of truncation ration.

Firstly, Figs. 4.11(a)-(b) shows how the imaginary part of the polarizability normalized
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by the volume is blue-shifted for the parallel and red-shifted for the perpendicular
components for increasing truncation ratio without any corrections. The amplitudes
of the curves are also changed for both directions. Increasing the truncation ratio
yields a decrease in the amplitude of the parallel component as opposed to an increase
of the amplitudes in the perpendicular response. These shifts are related to the fact
that a changing truncation ratio changes both the volume and the aspect ratio of
the particles. As the truncation ratio is increased, the parallel part of the particle in
contact with the substrate, is brought further away, and the amplitude is decreased.
In contrast to this, the amount of perpendicular matter is increased because a higher
value of the truncation ratio yields more matter in this direction.

Applying the finite-size or the surface correction on the experimental bulk dielectric
function of silver also displays a different impact on the two direction dependent
polarizabilities. The curves for a system of changing truncation ratio with finite-size
and surface corrections are respectively given in Figs. 4.11(c)-(d) and Figs. 4.11(e)-(f).

The impact of the corrections of the bulk experimental dielectric function of silver
is generally greater the smaller the oscillation path of the electrons or the ratio of
surface/volume in the particle is. Thus, as the truncation ratio is increased, the
impact on the parallel component of the imaginary part of the polarizabilities will be
more and more prominent [Fig. 4.11(c), Fig. 4.11(e)]. In contrast, the perpendicular
component of the imaginary part of the polarizability will be less and less prominent
for a higher value of the truncation ratio [Fig. 4.11(d), Fig. 4.11(f)].

One could also combine the two correction types. The result would then be similar to
what we already saw for the reflectivity coefficient in Fig. 4.9(c).

4.4.3 Fitting the experimental reflectivity curve

Section 4.3.2 presented the algorithm used by GranFilm to perform a fit of experimen-
tal data, like reflectivity measurements. Now we will illustrate how the fitting routine
can be used to investigate a system of silver particles on an Al2O3(0001) substrate.

The green dots in Fig. 4.12(a) represent the differential reflectivity curve for p-polarized
light at θ0 = 45° collected in a SDRS measurement during the vapor-deposition of sil-
ver on alumina. This data set displays two pronounced resonances that will be of im-
portance when the model parameters are optimized. Optimization of the parameters
P = {L,R, tr, σ‖, σ⊥}, with default values as listed in Fig. 4.12(b), was performed. To
improve agreement with experiments, the inherent size/shape distribution that broad-
ens the resonance was treated with the ’ad hoc’ broadening like presented in Eq. (4.1).
Each time a set of the model parameters P(n) were estimated, the single particle direc-
tion dependent polarizabilities were convoluted with Gaussians of standard deviations
σ

(n)
‖ , σ

(n)
⊥ along the parallel and perpendicular direction. A better account of these

effects will the topic of Ch. 6.

Minimization was performed starting from reasonable initial values (or guesses) (last
column of Fig. 4.12(b)). The ∆Rp/Rp curve that corresponds to those parameters
is presented as a blue dotted line in Fig. 4.12(a). The optimization process was per-
formed by minimizing the χ2(P)-function by the use of the LM-algorithm as described
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ê‖ê⊥

dtr
Air

Al2O3

Ag

Parameter Value
R [nm] 5.0
tr dtr
L [nm] 31.0
θ0 45°
M 16

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

10

20

30

Im
{α

‖}
/V

(2.493, 37.077)

(2.627, 20.707)

(2.744, 10.887)

tr=0.00
tr=0.20
tr=0.40

(a) α‖(tr).

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

1

2

3

4

Im
{α

⊥
}/

V

(3.63, 4.144)
(3.589, 4.082)

(3.538, 4.169) tr=0.00
tr=0.20
tr=0.40

(b) α⊥(tr).

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

10

20

30

Im
{α

‖}
/V

(2.493, 20.946)

(2.627, 13.092)

(2.744, 7.681)

(2.493, 37.07) FS, tr=0.00
FS, tr=0.00
FS, tr=0.20
FS, tr=0.40

(c) α‖(tr, εFS).

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

1

2

3

4

Im
{α

⊥
}/

V

(3.639, 3.225)(3.589, 3.239)

(3.538, 3.381)
(3.63, 4.144) FS, tr=0.00

FS, tr=0.00
FS, tr=0.20
FS, tr=0.40

(d) α⊥(tr, εFS).

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

10

20

30

40

Im
{α

‖}
/V

(2.619, 38.531)

(2.727, 19.792)

(2.836, 10.688)

(2.493, 37.07)
S, tr=0.00
S, tr=0.00
S, tr=0.20
S, tr=0.40

(e) α‖(tr, εS).

2.0 2.5 3.0 3.5 4.0 4.5
h̄ω [eV]

0

1

2

3

4

Im
{α

⊥
}/

V

(3.681, 4.283)
(3.639, 4.117)

(3.589, 4.191)
(3.63, 4.144)

S, tr=0.00
S, tr=0.00
S, tr=0.20
S, tr=0.40

(f) α⊥(tr, εS).

Figure 4.11 The imaginary part of the direction dependent polariz-
ability induced in particles as a function of different truncation ratios
without (a)-(b), with finite size (c)-(d), and with surface (e)-(f) correc-
tions of the experimental bulk dielectric function. Simulation parameters
are indicated on the top of the figure. The highest amplitude for each
system response is marked with (energy, amplitude).
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previously in Sec. 4.3.2. After convergence, the set of optimized parameters P? (sec-
ond column of Fig. 4.12(b)) was used to calculate a theoretical differential reflectivity
∆Rp/Rp curve presented as a solid orange line in Fig. 4.12(a). The good agreement
with the experiment gives some degree of confidence in the fitted parameters. Be-
yond that, the real-time capability of SDRS combined with the fitting of experimental
curves are interesting to access the time evolution of the experiments. An ’average’
island radius, density, and aspect ratio can be compared to the expectation from the
physics of nucleation, growth, and coalescence [61]. Such detailed information about
the evolution of the film morphology is not trivial to obtain by other non-invasive
methods.

4.5 Conclusion
This chapter was dedicated to the GranFilm software itself. First, we presented the
software architecture and a short user guide with the needed know-how to launch a
GranFilm simulation (Sections 4.1-4.2). The new functionalities like correction of the
material permittivity with respect to the finite-size and the surface correction and
fit of experimental data via the LM algorithm were described in Section 4.3. The
chapter ended with a brief presentation of the capabilities of the software in Sec. 4.4.
Through examples, we have shown how some input parameters potentially impact the
simulation results. Also, an example of model parameter estimation of the data from
a reflectivity measurement was given.
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(a) The fit of an experimental p-polarized (θ0 = 45°) SDRS
spectrum for silver particles grown on alumina. Data points are
compared to a GranFilm simulation with initial guess parameters
and optimized ones.
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Parameter Optimization Guess
L [nm] 7.31± 0.020 6.76
R [nm] 2.3± 0.000021 2.3
tr 0.67± 0.00000029 0.67
σ‖ [nm] 0.15± 0.0040 0.15
σ⊥ [nm] 0.061± 0.0025 0.075

(b) The values of the optimized model parameters with absolute
error and initial guess.

Figure 4.12 A result of fitting a data set from a SDRS experiment
given in (a), together with the resulting values of the model parameters,
(b). Finite-size and surface correction of the bulk permittivity of silver
were used in the optimization process. Number of multipoles where
M = 16. The particles were arranged in a hexagonal lattice. The
island-island interaction was taken into account to dipolar order.
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4.A The effective oscillation length in a particle

The effective oscillation length Deff of the s-electrons inside a spheroidal nanoparticle
is taken as the smallest distance between the emerging part of the particle and the in-
plane radius seen from above. The values are given by the spheroidal parametrization

x2 + y2

a2 + z2

c2 = 1. (4.15)

with a = R‖ and c = R⊥ and the definition of truncation or the distance from spheroid
center to substrate d = R⊥|t(s)r |. They read:

D
(s)
eff,⊥ =


R

(s)
⊥

(
1 + t(s)r

) ∣∣∣t(s)r ∣∣∣ ≤ 1,

2R(s)
⊥

∣∣∣t(s)r ∣∣∣ > 1,

D
(s)
eff,‖ =


2R(s)
‖ t(s)r ≥ 0,

2R(s)
‖

√
1−

(
t
(s)
r

)2
− 1 ≤ t(s)r ≤ 0,

(4.16)

where t(s)r =
(

d

R
(s)
⊥

)
. For the special case of a spherical particle, R(s)

⊥ = R
(s)
‖ = R(s).

For a coated particle

The effective oscillation length inside the coating of a particle’s surface s is chosen as

∆Di = D
(s)
i −D

(s+1)
i , i =‖,⊥ (4.17)

where D(s)
i −D

(s+1)
i is defined as the difference in length between the surfaces s and

s+ 1 given by Eq. (4.16).

4.B The volume of a particle

Starting from the equation of the spheroid the volume of a truncated spheroidal par-
ticle above the substrate is given by integrating the area of a single disk A(z) along
the z−axis
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(4.18)

¬ The area of an infinitesimal circle in an ellipsoidal particle is A(z) = π
(
r‖
)2 = πa2

[
1−

(
z
c

)2].
 In the geometry of GranFIlm: z1 = −R(s)

⊥ , z2 = d, t
(s)
r = d

R
(s)
⊥

, c = R
(s)
⊥ , a = R

(s)
‖ .

4.C The surface area of a particle

The total surface area of the given layer of a particle is
A

(s)
particle = A

(s)
bottom + A

(s)
cap. A(s)

bottom is the surface area of the circle in the bottom of
the spheroidal/sphere is defined as

A
(s)
bottom = 2πx2

= 2π
(
R

(s)
‖

)2 (
1− (t(s)r )2

) ∣∣∣t(s)r ∣∣∣ < 1. (4.19)

Acap is found by chopping the particle in infinitesimal rings of thickness ds, and then
integrating them along the z-axis
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Chapter 5

The oscillation modes of non-coated
and coated particles

By now, it should be well established that the features of a macroscopic observable
like the SDRS-signal are directly linked to the microscopic properties of the system,
e.g. direction-dependent polarizabilities. This chapter is aimed at describing the
origin of the experimentally observed peaks and dips in terms of shape-driven eigen
oscillation modes or LSPRs. The shifts in the intensities and energy positions of the
resonances are investigated for truncated and coated particles. Interactions with the
substrate and the neighbors are accounted for.
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5.1 The origin of the oscillation modes in supported nanopar-
ticles
In Ch. 1 we gave examples of how the dipolar model can explain qualitatively the
changes in the LSPRs caused by the presence of a substrate [30, 31]. Typical results
of GranFilm simulations were commented in Ch. 4. In particular the link between
the theoretical differential reflectivity curves generated with GranFilm and the exper-
imental SDRS-signals was stressed. In Figs. 4.8(c)-(d) we showed plots of the potential
maps around the two main resonance energies in a system of truncated silver particles
on alumina. In the following, we will discuss in greater details the origin of these
modes.
The LSPRs studied in this work are induced by an incoming electric field. Its main
effect is to polarize the metal’s electron gas and potentially excite the collective oscil-
lations [8]. In an isolated object with spherical symmetry, only one dipolar mode is
optically active while for a spheroid, the degeneracy of the space directions is lifted
off leading to one dipolar mode along each main axis.
However, for supported truncated particles, as described in this thesis, a double break
of symmetry occurs even in the quasi-static approximation. This gives rise to the
excitation of a potentially richer set of polarization modes:

• the first break of symmetry, even for a spherical particles, is induced by the pres-
ence of the substrate. After the constant incident field has created a dipole inside
the metal particle, the substrate reacts by inducing an image dipole which in turn
modifies the local field felt by the particle. The response of the is no more homo-
geneous. The image field excites a quadrupole mode in the particle and therefore
an image quadrupole in the substrate, and so on. This cascade of polarization to
a high multipolar order is naturally described by solving Laplace’s equation for
the geometry in question with proper BCs. As a result, the particle+substrate
ensemble is able to sustain new oscillations modes that are present neither in the
isolated object nor, of course, in the case of the flat surface. The determination
of the strength and energies of the oscillations is obtained self-consistently by
the solution of Laplace’s equation.

• the truncation of the particle itself is an important break of symmetry, com-
pared to the full spherical/spheroidal shape. It is well known that the particle
shape is of paramount importance in defining the nature, the intensity and the
energy of the observed resonances [1]. The most relevant geometrical parameter
is the particle aspect ratio, defined as the ratio of sizes along the parallel and
perpendicular substrate directions. In GranFilm this parameter is controlled
by the truncation ratio of the spheres. As already shown in Fig. 4.11, it gov-
erns the resonance splitting and relative intensities along parallel/perpendicular
directions.

Up to now in this work, no clear description of the nature of theses resonances was
given. Lazzari et al. [20, 32, 72] gave a thorough discussion of the link between the
experimental results obtained in a vapor deposition experiment of silver on alumina
and the oscillation modes, their strengths, and their widths for a geometry of truncated
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spherical particles. Following their approach, we will study the nature of the oscillation
modes in the limit of undamped bulk dielectric functions. The question at hand is how
these oscillation modes are changed with the presence of a substrate and a coating
layer.

5.1.1 Identifying the multipolar modes with GranFilm

The formalism described in Ch. 3 for solving the Laplace’s equation in the case of
a supported truncated particle ended with a linear system of equations [Eqs. (3.64)-
(3.67)] for the multipole expansion coefficients. By solving this linear set of equations
to a given multipole order M , exemplified in Eq. (3.32), all the unknown multipolar
coefficients of the scalar potential could be obtained. In a synthetic way, the set of
equations reads:

M(ω, κ)X(ω, κ) = V(ω, κ), (5.1)
where M(ω, κ) is a matrix containing the frequency dependent integral definitions
given in Eq. (3.63a), X(ω, κ) is a column vector containing the unknown multipole
coefficients
V`m(ω, κ) = [A(i)

`m(ω, κ), B(i)
`m(ω, κ)] of dimension ` = 1, ..., 2M , where M is the multi-

pole order, and m = {0,±1}. The vector V(ω, κ) contains the terms of the field which
excites the system either parallel, m = ±1, or normal, m = 0, to the surface of the
substrate. Finally, κ is an ad hoc parameter used to scale the imaginary part of the
experimental bulk dielectric functions ε = ε1 + iκε2 (0 < κ ≤ 1)) of the media.
We found that the components of the polarizability tensor that drive the optical
response of the system were proportional to the first multipole coefficients: 1

αm(ω, κ) ∝ A1m(ω, κ) = X1m(ω, κ) =
{

[M(ω, κ)]−1 V (ω, κ)
}

1m
. (5.2)

This writing shows that the LSPR modes will appear when the inverse of the matrix
system is ’resonant’. This will occur at an angular frequency ω = ωr, for which the
matrix-system M(ω, κ)X(ω, κ) = 0 has non-trivial solutions [see Eq. (5.1)]. This is
equivalent to saying that the matrix M(ω = ωr, κ) is singular or that its determinant
is zero.
Another way to understand the problem is to see the resonances as undamped eigen
oscillations of the electrostatic potential. Once they have been excited, they do not
need an external field to be maintained. This corresponds to the right-hand side of
Eq. (5.1) being zero. For a non-trivial solution, this is the same as having a zero
determinant for the matrix detM(ω = ωr, κ).
When absorption is present in the system, that is to say, when the dielectric func-
tions has a non-vanishing imaginary part, this typically implies complex angular fre-
quency for the eigenmode, where the imaginary part Im{ω} is related to the lifetime
of the mode. To determine the complex values of the angular frequency for which
detM(ω, κ) = 0 is a highly non-trivial and time-consuming task. In order to avoid
dealing with the non-linear nature of the determinant function we will follow an al-
ternative route, as described below.
1The relations between the multipole coefficients and the components of the polarizability tensor were
discussed in Sec. 3.3.4 or, alternatively, see [5] for a detailed description.
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5.1.2 The minima of the smallest eigenvalue in absolute value

We will seek for the minima of the smallest eigenvalue in absolute value of the ma-
trix M(ω, κ), as a function of the (real) angular frequency minj |λj(ω, κ)|. Note that
this procedure does not require a complex minimization of a highly non-linear func-
tion. Eigenmodes of the system will express themselves as peaks in the function
[minj |λj(ω, κ)|]−1 vs. ω for a given damping 0 ≤ κ < 1. In the small damping limit,
κ ≈ 0, the mode-frequency ω satisfying detM(ω, κ) = 0 is expected to have a vanish-
ing or small imaginary part so that minj |λj(ω, κ)| ≈ 0 and, therefore, its inverse will
show a peak at this value of Re{ω} [20]. The corresponding eigenmode is obtained on
the basis of the eigenvector of the matrix M(ω, κ) (or any linear combination of the
eigenvectors in case of a degenerate mode).

Thus, in a practical way, we will artificially reduce the imaginary parts of the dielectric
functions, typically by 99% of their original values, to sharpen the oscillation modes.
Once the relevant system of equations is defined, the eigenvalues are calculated with
the ZGEEV routine in the Fortran library Lapack. The maxima of the inverse of the
absolute value of M(ω, κ) are obtained in a straightforward way as function of energy.
The corresponding representation of the polarization modes are then given by the
potential maps. The equipotential lines will surround the charges.

In the following, we try to gain some insight into the role of a coating layer on the
polarization modes of the particles. To this end, new automatic plotting routines have
been added to the GranFilm Python interface. As a reminder, the thickness of the
coating is given by (1−χ(2))R, where χ(2) is the second component of the radius ratio
vector 2. When χ(2) → 1−, the thickness of the coating goes to zero; on the other
hand, when χ(2) → 0+ the coating layer disappears. We start the discussion with the
oscillation modes of coated metallic particles in vacuum, before tackling the case of
supported objects.

5.2 Oscillation modes in metallic nanoparticles in vacuum

To start the discussion of the effect of a coating layer, we begin with an unsupported
object embedded in an homogeneous medium. This example also serves as a verifica-
tion of the numerical implementations in GranFilm. Analytical formulas to calculate
the LSPRs in NP within the quasi-static approximation are well-known [8,10,12].

Figure 1.11 in Sec. 1.3 presented a comparison of the imaginary part of the normalized
polarizability of a non-coated and coated spherical particle in a homogeneous media,
calculated for a Drude-like metal particle with the analytical formulas. Figure 5.1
presents the electrostatic potential plotted at the resonance energies in the xz-plane
for:

• a free standing silver sphere;
• a silica coated silver sphere;

2See Ch. 4 for a description of the GranFilm Python interface and relevant parameter/variables in
the software.
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(a) ~ω = 3.53.

VariableValue
R [nm] 10.0
χ(2) {0.8, 0.4}
κ 0.01
M 16

(b) ~ω = 3.29,
χ(2) = 0.8.

(c) ~ω = 3.07,
χ(2) = 0.4.

(d) ~ω = 2.42,
χ(2) = 0.8.

(e) ~ω = 3.34,
χ(2) = 0.4.

(f) ~ω = 3.82,
χ(2) = 0.8.

(g) ~ω = 3.74,
χ(2) = 0.4.

Figure 5.1 Contour plots in the xz-plane of the electrostatic potential
calculated with GranFilm at the resonance energy of the polarizability of
free-standing spheres or coated spheres in vacuum: a single silver sphere
(a), a silver sphere with thin (b) and thick (c) dielectric coating, and a
thin (d)/(f) and a thick (e)/(g) layer of metallic coating on a dielectric
core (metallic nanoshell). The simulation parameters are indicated in the
upper right corner of the figure. The imaginary part of the experimental
bulk dielectric function of silver has been reduced to 1% of its original
value.
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• a silver coated silica sphere
in vacuum calculated with GranFilm and using the values in our dielectric database
for the experimental bulk dielectric functions. The same value for the outer radius,
R = 10 nm, is used for all the objects. To obtain these results, the imaginary part of
the experimental bulk dielectric function of silver Im{εAg} has been reduced to 1% of
its original value. By doing this, the eigenmode peak is sharpened and the oscillation
eigenmode is seen more clearly. The GranFilm truncated sphere morphology was used
by setting the substrate to air, εAir = 1 + i0, and choosing the ’buried’ part of the
sphere to be silver.
The calculated resonant frequency for the free standing sphere at ~ω = 3.53 nm
[Fig. 5.1(a)] matches with to the value we would expect form the Frölich
condition [8, 73]. A clear dipolar spreading of the polarization charges is observed.
Assuming a constant outer radius, we now turn to a silver particle coated with sil-
ica. The presence of the dielectric coating has two effects, dependent on its thickness
[Fig. 5.1(b)/Fig. 5.1(c)]. The first observation is an obvious decrease of the the am-
plitude of the electrostatic potential [Fig. 5.1(b)/Fig. 5.1(c)], caused by the smaller
metallic core. Indeed, as observed from the location of the ’hot-spots’ of the potential
[Fig. 5.1(c)], polarization happens only at the surface of the metallic object. Further-
more, the resonance’s energy position is red-shifted compared to the non-coated NP
due to a screening by the dielectric shell. A similar shift would be observed at the
limit of an infinite dielectric shell i.e. by embedding the metallic core in pure silica.
At last, the dipolar form of the polarization charges is the same as for the non-coated
particle.
We now turn to the more intersting case of metallic nano-shells with dielectric cores.
Two resonances are observed for both the thin [Fig. 5.1(d)/Fig. 5.1(f)] and the thick
[Fig. 5.1(e)/Fig. 5.1(g)] metallic shell. These two different resonance modes have been
explained by a quantum mechanical hybridization approach for plasmons [17,74,75] in
nanoshells. The energies for which the plasmon resonances occur in such structures are
sensitive to the metal shell’s inner and outer radii. The resonances in the nanostructure
arise from the mixing of resonances of the sphere (outer surface of the metallic layer)
and the cavity (inner surface of the metallic layer) [75]. Observing the maps of the
electrostatic potential, we realize that there are two different types of modes: (i) an
inner mode where the oscillation charges are placed inside the coating which is down-
shifted in energy (red-shifted) as compared to the non-coated particle and (ii) the
antisymmetric mode, called an inner-outer mode, which is up-shifted (blue-shifted)
in energy as compared to the non-coated sphere. The oscillation charges are placed
on the outer and inner surface of the metallic shell. As the thickness of the metallic
layer increases, the deviation in energy from the full silver sphere decays; both modes
become progressively degenerated.

5.3 Truncated coated supported particles
In order to perform a detailed analysis of the combined effect of coating, substrate
and island-island interaction, we have defined three test cases:
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• System 1 is the ’classical’ test bed used throughout this thesis: truncated silver
particles on an alumina substrate.

• System 2 consists in truncated NPs with a dielectric silica coating and a metallic
silver core on an alumina substrate.

• System 3 is a the reverse geometry with respect to that of System 2, namely a
silica core and a silver nanoshell supported by alumina.

For all the systems, the outer radius of the (untruncated) spherical particles R = 10 nm
is assumed to be constant, if not stated. Regarding the inter-particle interaction,
particles are organized on a square lattice with a lattice constant L = 31 nm.
As already discussed in Ch. 1, the structure of the SDRS-curves are governed by the
plasmon oscillation modes. To link the macroscopic and microscopic observables in
these systems, we have systematically compared the theoretical SDRS curves gener-
ated with GranFilm without (κ = 1) and with the reduced damping (κ = 0.01) of the
experimental bulk dielectric function, and the inverse of the absolute value of smallest
eigenvalue of the matrix system. All following figures will show how the SDRS-signal
for both s and p polarization is intimately related to the eigenvalues of the left-hand-
side matrix of the linear system defined in Eq. (5.1). In order to be able to distinguish
the modes which are close in energy, the imaginary part of the experimental bulk
dielectric function of silver is reduced, typically to 1% of its original value. Further-
more, when κ 6= 1 we will mark the three most intense modes in the plot by (energy,
intensity) to compare the shifts of the modes in the different systems.

System 1

As a reference, we start the analysis with the response of System 1 at truncation
ratio tr = 0.01 and polar angle of incidence θ0 = 45°. The SDRS-spectra for s- and
p-polarized incident light are displayed in Figures 5.2(a)-(b), respectively, for non-
modified imaginary part of bulk dielectric function (κ = 1). Figures 5.2(c)-(d) present
the corresponding SDRS signal obtained with reduced damping (κ = 0.01) on silver
dielectric function on the right y-axis, while one over the smallest eigenvalue in absolute
value for m = 0 and m = 1 is displayed on the left y-axis. For both polarizations, the
most prominent peaks in the (∆R/R)ν-curves are marked with their energy position
and their amplitude (or intensity).
The electric field in the plane of the substrate for s-polarization, (∆R/R)s is only
driven by the m = 1 modes. At the opposite, for p-polarization, both eigenvalues
m = 0 and m = 1 contribute to the response. For both polarizations, the inverse of
the absolute value of the smallest eigenvalues and the computed SDRS-curve display
a complex structure for energy values higher than 3.6 eV due to the close proximity of
several modes.
As one could expect, by comparing the results presented in Figs. 5.2(c)-(d) peaks in
the (∆R/R)ν-curves are accompanied by a feature at the same energy for
min |λj |−1-curves for m = 0 or m = 1 or, in other words, when the matrix system is
resonant. One should notice from the same figures that the inverse is not necessarily
false; the existence of an eigenmode (a resonance) for the system is not necessarily
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Figure 5.2 System 1: SDRS-curves calculated in s (a) and p (b) po-
larized light with bulk dielectric function (κ = 1) compared, at reduced
damping (κ = 0.01), to the inverse of the absolute value of the smallest
eigenvalue (left scale; m = 0, 1) and SDRS-signal (right scale) (c)-(d). In
(c)-(d) the three most intense peaks are marked by (energy, intensity).
Simulation parameters are given above the figure.
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associated with a feature in the corresponding (∆R/R)ν-curve. For this to be the
case, the incident field must strongly couple into the resonance, and that may, or may
not, be the case.

Finally, when the damping increases, the various resonances broaden in intensity which
causes an overlap between the modes. As a consequence, the modes are not anymore
properly defined and will mix. Nevertheless, the most prominent features can still be
assigned to distinct oscillation modes that will be described later on.

System 2

For System 2 (the dielectric shell configuration), several SDRS-curves are displayed
in Figs. 5.3(a)-(b) for different thicknesses of the shell. As the thickness of the shell
decrease all the curves are red-shifted, as expected, from a simple screening effect. Of
course, the intensity scales with the size of the core, that is to say, with the amount
of polarizable metal. As the core size increases, the SDRS curve approaches the ones
found for System 1 [Figs. 5.2(a)-(b)]. The overall shape of the curves is poorly affected
by the change in coating thickness. This suggests that the dielectric coating is simply
shielding the plasmonic response of the metallic core.

The same analysis of eigenmodes as for System 1 was performed. The resulting SDRS-
signal (solid orange lines) are then plotted for a thicker [χ(2) = 0.4, (e)/(c)] and a
thinner [χ(2) = 0.8, (e)/(c)] dielectric shell. Compared to the non-coated case, the
behavior of System 2 appears more complex, with an energy shift of main resonances
being more prominent for the larger core.

System 3

The SDRS-curves for different core sizes for System 3 are displayed in Fig. 5.4. For
a thick core (i.e. a thin metallic coating), the main peak in the SDRS-signal for the
actual metal dielectric function (κ = 1) is red-shifted outside the energy range of our
tabulated experimental bulk dielectric functions. Beside an overall shift in energy, the
shape of the curves do not seem to be impacted by the core radiuses [Figs. 5.4(a)-(b)].

Switching from a truncated sphere to a shell geomtetry for the metallic part dramat-
ically alters the SDRS-signal in terms of a shift in the energy position of the highest
peak and its amplitude. Also, the set of eigenmodes seem to be richer. As for the
coated particle in homogeneous media [Figs. 5.1(d)-(g)], the thinner the coating, the
more prominent is the effect.

5.4 The oscillation modes

According to the excess field formalism, the reflection and transmission amplitudes
[Eq. (2.27)] are driven only by the surface susceptibilities, parallel to the surface com-
ponent, γ, in s-polarization, and by both the parallel and perpendicular components,
both γ and β, in p-polarization. As these quantities are directly connected to the
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ê‖ê⊥
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Figure 5.3 Same figure as Fig. 5.2 but for a dielectric silica shell on
a silver core. SDRS-curves are calculated in s (a) and p (b) for the
indicated core size. Calculations at reduced damping are performed for
two dielectric shell thicknesses: χ(2) = 0.4 (thick) and χ(2) = 0.8 (thin).
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Figure 5.4 SDRS-curves calculated in s (a) and p (b) polarized light
for changing core radius and a comparison of these with the inverse of the
absolute value of the smallest eigenvalue (c)-(f) of System 3. In (c)-(f)
the three most intense peaks are marked by (energy, intensity), scaling
of Im{εAg} was used. Simulation parameters are given above the figure.
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particle polarizabilities, we will analyze the form of the direction-dependent polariz-
abilities for the previous described i.e. Systems 1, 2, and 3, to further study the link
between the micro- and macroscopic properties for the system. This link is even more
transparent in the long wavelength approximation of the SDRS-signal [Eq. (2.30)]. In
this case, the SDRS-curves are directly driven by Im{γ} and Im{β} [20, 41, 42], and
therefore the absorption in the particles.

In the following, we will present plots of the imaginary part of the polarizabilities
normalized by the particle volume (solid orange lines) together with one over the
smallest eigenvalue of the matrix system in absolute value (green dashed/dotted lines).
The three most intense values of the direction dependent polarizability will be marked
with (energy, intensity) in each plot. To study also the polarization charges, the
electrostatic potential will be mapped at the energy of the corresponding resonance.
It should be kept in mind that parallel modes (m = 1) have a plane of symmetry
perpendicular to the page (x = 0 plane) and perpendicular modes (m = 0) have a
rotational symmetry along the z−axis. The former is excited by the component of the
electric field parallel to the surface and appears in Im{α‖}/V . The latter is excited by
the electric field normal to the surface and appears in Im{α⊥}/V . All relevant system
parameters of the simulations will be indicated on the top of each figure.

System 1

To establish a reference, we start again with the discussion of System 1, the basic
configuration. The imaginary part of the normalized direction-dependent polarizabil-
ties and contour plots of the electrostatic potential in the xz-plane are presented in
Fig. 5.5.

Two main modes are clearly singled out: one at ~ω = 2.49 eV for the parallel compo-
nent of the polarizabilities [Fig. 5.5(a)] and one at ~ω = 3.62 eV for the perpendicular
component [Fig. 5.5(b)]. The corresponding contour maps in the xz-plane of the po-
tential are presented in Fig. 5.5(c), and Fig. 5.5(h), respectively. The distribution of
the oscillation charges associated with those modes with the highest intensities resem-
ble dipoles oriented in the directions parallel and perpendicular to the substrate. In
line with the case of a free standing sphere, we will refer to these modes as dipole
modes. We already saw this form of the oscillation charges in Figs. 4.8(c)-(d), but for
a different geometry configuration of the system.

Note that for energies ~ω > 3.8 eV, neither in the parallel (m = 1) nor the perpendic-
ular (m = 0) directions match with a peak in the eigenmodes. The observed peak in
Im(αi)/V is assigned to bulk absorption through interband transitions in silver.

More interestingly, for both directions, the truncation of the particle and the introduc-
tion of the substrate have introduced ’exotic’ modes as compared to what we could ob-
serve for a free standing sphere. These modes are placed at ~ω = 3.01 eV [Fig. 5.5(d)]
and ~ω = 3.64 eV [Fig. 5.5(e)] for the parallel polarizability, and at ~ω = 2.81 eV
[Fig. 5.5(f)] and ~ω = 3.10 eV [Fig. 5.5(g)] for perpendicular one. The pattern of the
oscillation charges can not be identified directly as a dipole. For instance, in the mode
shown in Fig. 5.5(e), despite a strong dipolar character, the polarization charges are
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Figure 5.5 The normalized imaginary part of the polarizabilities plot-
ted with the inverse of the absolute value of the smallest eigenvalue
parallel (a) and perpendicular (b) to the substrate. The three most in-
tense peaks are pinpointed, and the corresponding part of the potential
are mapped for the parallel (c)-(e) and perpendicular (f)-(h) directions.
Simulation parameters are given above the figure.
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shifted to the top of the particle. This mode also involves some weaker polarization
at the interface with the substrate. It has a quadrupole character. A similar mode
shown in Fig. 5.5(f) has a dipole character due to a ring of charge at the interface and
an isolated charge at the top of the particle.
After close inspection of the form of the potentials in Figs. 5.5(c)-(h), two types of
polarization charge patterns are identified: those arising at the interface between the
sphere and the substrate [(c), (d), (f), (g)], and those arising at the interfaces between
either the particle surface or the substrate [(e), (h)].
All of these modes have already been discussed thoroughly and linked to experimental
spectra obtained in a vapor deposition experiment by Lazzari et al. in Refs. 20, 32.
They have been shown to be ’universal’, i.e. driven by the shape of the particle. They
appear at given values of the real part of the metal dielectric function. It is interesting
to see how these modes will change in terms of polarization patterns, positions in
energy and strengths when a coating layer is introduced in the system.

System 2

The same kind of plots for the imaginary part of the polarizabilities and for the
electrostatic potential at the same value of the truncation ratio are presented in Fig. 5.6
for System 2. Notice that the artificial damping of the experimental bulk dielectric
function of silver was reduced to 0.5% to clearly see the oscillation modes. Because of
this further reduced damping, as compared to System 1, all intensities are increased
as compared to the non-coated case.
The ’dipolar’ peaks are red-shifted from ~ω = 2.49 eV to ~ω = 2.40 eV for the direction
parallel to the surface [Fig. 5.6(a)], and from ~ω = 3.62 eV to ~ω = 3.57 eV for
the perpendicular [Fig. 5.6(b)] direction, as compared to the non-coated truncated
particle. Again, for energy values higher than ~ω > 3.8 eV, eigenmodes are absent
for both directions. As compared to System 1, the set of peaks in the polarizabilities
around ~ω = 3.8 eV are shifted slightly downwards in energy, as expected. This global
red-shift results from the screening of the silica layer.
Inspecting the electrostatic potential maps, the oscillation pattern corresponding to
the highest peak in the parallel direction follows the well-known dipole form [Fig. 5.6(c)].
Interestingly, the potential pattern corresponding to the most intense peak in the per-
pendicular direction has ’changed’ from a clear dipolar form as seen in System 1
[Fig. 5.5(h)], to a different form [Fig. 5.6(h)]. However, despite some differences, a
parallel can be drawn between the non-coated [Fig. 5.6] and silica coated [Fig. 5.6]
patterns of polarization charge; the dielectric coating do not drastically affect the
physics of the polarization of the metallic particle core.

System 3

As already mentioned, we expect different and more complex oscillation patterns for
System 3 (the metallic shell configuration) than for the two other systems. Thus, we
have chosen to study separately the effect of shell thickness and truncation ratio on the
imaginary part of the direction-dependent polarizability and the oscillation patterns.
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Figure 5.6 Same as Fig. 5.5 but for a silver core coated by a thin silica
layer.
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Varying the shell thickness

The types of modes observed in System 3 for a thick and thin shell are displayed in
Fig. 5.7 and Fig. 5.8, respectively. The simulation results obtained for these configu-
rations indicate, once again, that one can observe inner-outer and inside polarization
patters for System 3.
For a thick shell, χ(2) = 0.4, the parallel ’dipolar’ mode is blue-shifted ~ω = 2.38 eV
[Fig. 5.7(c)] relative to the same mode in System 1 [Fig. 5.5(c)]. For a configuration
with a thinner shell, the mode with the highest amplitude is shifted to ~ω = 2.91 eV
[Fig. 5.8(a)]. Looking at the shape of the electrostatic potential, it appears that also
the oscillation pattern has changed along this direction. The most intense mode in the
thick shell configuration had charges at the substrate/sphere interface [Fig. 5.7(c)].
This seems to be replaced by a mode with charges only at the sphere interface
[Fig. 5.8(c)] for a thinner shell.
The ’dipolar’ mode in the direction perpendicular to the substrate is red-shifted in
energy when changing from a thicker to a thinner shell. The most intense mode in the
case of the thicker shell is observed at ~ω = 3.52 eV [Fig. 5.7(b)]. For the configuration
with the thinner shell, the most intense mode is observed at ~ω = 2.61 eV [Fig. 5.8(b)].
The tendency of a shift of the main peak out of the range of accessible energy values
was also observed for System 3 in SDRS-curves in Fig. 5.4.
Varying the truncation ratio

We already know that increasing the truncation ratio (or descreasing the aspect ratio)
of the particles in an non-coated system will induce a strong blue-shift in energy and
decrease in the amplitude of the parallel polarizability, and a weaker red-shift for
the perpendicular polarizability [see Figs. 4.11(a)-(b)]. Interestingly, the trends when
changing truncation ratio in System 3 seem to be more complex.
The parallel oscillation pattern for the dipolar mode in this configuration of System 3
with tr = 0.6 [Fig. 5.9(c)] is not the same as observed for tr = 0.01 [Fig. 5.7(c)]. Still,
some similarities can be observed. The perpendicular dipolar mode is now shifted to
~ω = 2.35 eV [Fig. 5.9(f)]. Inner-outer modes of similar pattern that were observed at
tr = 0.01 are found again at higher energy for the parallel [Fig. 5.8(e) → Fig. 5.9(e)]
and lower energy for the perpendicular [ Fig. 5.8(h) → Fig. 5.9(h)] direction.
In this configuration of System 3 there are modes which appear in both the paral-
lel [Fig. 5.9(d)] and perpendicular [Fig. 5.9(g)] directions at the same energy value
~ω = 2.70 eV. Thus, the electrostatic potential appears as a combination of these two
modes, and there will be no well-defined symmetry or anti-symmetry with respect to
the plane x = 0 for the whole system.

5.5 Maps of polarizabilities versus truncation ratio and
shell-thickness
The study of the imaginary part of the polarizabilities and the corresponding potential
maps of the electrostatic potential at the resonance energies for different configurations
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Figure 5.7 Same as Fig. 5.5 but for a thick silver layer (χ(2) = 0.4)
on a silica core.
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Figure 5.9 Same as Fig. 5.8 but for a truncation of tr = 0.6.
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(Systems 1-3) have taught us that the oscillation modes are sensitive to both the
core radius and the aspect ratio of the particles. Furthermore, the most intense, the
’dipolar’, mode of the various systems displayed different oscillation patters of the
charges. For instance, see the difference of the oscillation patterns between Fig. 5.5(c)
(System 1), and Fig. 5.8(c) and Fig. 5.9(c) (System 3).

In an attempt to track the energy positions and the intensities of the oscillation eigen-
modes, maps of the imaginary part of the direction-dependent polarizabilities have
been generated as a function of energy for a changing truncation ratio tr or a chang-
ing thickness of the coating layer, i.e. changing core thickness for a constant outer
radius χ(2). To compare the results, the same reduction factor (κ = 0.001) of the
experimental bulk dielectric function of silver has been used. As the impact of the
island-island interaction is crucial, as shown by the red-shifts in the reflectivity curves
in s-polarization [see Fig. 4.9(b)], all the potential maps in this section are generated
for a system without and with island-island interaction of dipolar order. To clearly
see the difference with and without the island-island interaction the lattice constant
of the systems was reduced to 21.1 nm. In what follows, the systems without island-
island interaction will be displayed to the left, [subfigures (a) and (c)], whereas the
systems with island-island interaction at dipolar order will be displayed to the right
[subfigures (b) and (d)]. Each contour plot represents simulations for 250 different
sample geometries.

5.5.1 Dependence of the truncation ratio

For the three previously introduced systems, maps of the imaginary part of the par-
allel and perpendicular polarizabilities have been generated for a changing truncation
ratio in the interval tr = 0.01 − 0.79 (Figs. 5.10-5.12). Above or below this range,
convergence issues in the simulation results are encountered [46].

System 1

At truncation ratio tr = 0.01, three eigenmodes are clearly singled out in Fig. 5.10,
in the parallel direction located at energies ~ω = 2.49, 3.01, 3.64 eV [Fig. 5.10(a)], and
the perpendicular direction at energies ~ω = 2.81, 3.10, 3.62 eV [Fig. 5.10(c)]. The
dipolar modes with the highest intensities stand out as red curves in the map. Upon
increasing tr and getting closer to the full sphere configuration, the different modes
tend progressively towards the same energy. This results from the well-known trend
of splitting of resonant modes upon flattening [1, 8, 20].

When the island-island interaction is taken into account, a strong red-shift of the
low-energy parallel mode and a blue-shift of the high-energy perpendicular mode are
found. This is, as expected, on the basis of dipole-dipole coupling arguments. For
instance, the mode at ~ω = 2.50 eV [Fig. 5.10(a)] shifts to ~ω = 2.15 eV [Fig. 5.10(b)].
For the modes observed at higher-energy values, ~ω > 3.60 eV, the imaginary part
of the normalized perpendicular polarizabilities is slightly blue-shifted [Fig. 5.10(d)].
For tr = 0.45 a mode crossing at ~ω = 3.6 eV is observed. The red intensity curves
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ê‖ê⊥

dtr
Air

Al2O3

Ag

Variable Value
R [nm] 10.0
tr dtr
Nenergy 10000
κ 0.001
L [nm] 21.0
M 16

Island_Island None Island_Island Dipole

(a) (b)

(c) (d)

Figure 5.10 Maps of the imaginary part of the direction-dependent
polarizabilities of System 1 when changing truncation ratio in the inter-
val tr = 0.01 − 0.79 without [(a)/(c)] and with [(b)/(d)] island-island
interaction at dipolar order. Simulation parameters are indicated at the
top of the figure.
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meet at one point before they split again. This phenomenon is not clearly observed
anymore if the island-island interaction is taken into account [Fig. 5.10(c)].

System 2

The maps generated with a variable truncation ratio for System 2 without the island-
island interaction [Fig. 5.11(a) and Fig. 5.11(c)] are slightly red-shifted as compared
to the non-coated case. Except for a clearer distinction between the modes at higher
energies ~ω > 3.5 eV, the overall evolution for tr < 0.40 is similar to the non-coated
case. At higher values of the truncation ratio tr > 0.40, the pattern becomes more
intricate. Furthermore, the logarithmic scale in the color maps are one order of mag-
nitude lower than what we found in the non-coated case, an obvious effect of the
reduction of the metal volume. The tracking of the dipolar modes are still possible to
do over the whole range of chosen truncation ratio values.

The global effect for System 2 for changing truncation ratio with island-island interac-
tion to dipolar order [Fig. 5.11(b) and Fig. 5.11(d)] is the same as for non-interacting
particles [Fig. 5.11(a) and Fig. 5.11(c)] except for the blue-shift of the dipolar perpen-
dicular mode starting at ~ω = 3.5 eV around tr = 0.4. In general, also in this system,
the position of the low-energy mode in the parallel mode map is red-shifted. The
position of high-energy mode in the perpendicular mode map is blue-shifted, but at a
smaller amount than the shifts observed in System 1 while including the island-island
interaction to dipolar order [Fig. 5.10(b) and Fig. 5.10(d)].

System 3

Again, as shown by the maps Fig. 5.12(a) and Fig. 5.12(c), the evolution for System 3 is
more complex and the mode structure is richer than what we saw in the contour maps
for System 1 and 2. As for the previous configurations, the three most intense peaks
for the parallel direction at ~ω = 2.91, 3.76, 3.80 eV and the perpendicular direction
at ~ω = 2.61, 2.74, 3.83 eV for truncation ratio tr = 0.01 are consistent with the peaks
seen in Figs. 5.8(a)-(b).

Apart from the modes around ~ω ≥ 3.6 eV, it is not possible to track a single eigenmode
over the total truncation ratio interval. This was already indicated by the observed
shifts of the direction-dependent polarizabilities and the potential maps discussed in
Figs. 5.8-5.9. The energy positions of the high energy eigenmodes, (in the potential
maps these modes were identified as the inner-outer type of modes), for both the
parallel and perpendicular direction are nearly constant close to ~ω ≈ 3.8 eV, even for
a rather big change in the truncation ratio. This was already noticed in the maps of
the electrostatic potential when changing truncation ratio from tr = 0.01 to tr = 0.60
[Fig. 5.8(e)→Fig. 5.9(e) and Fig. 5.8(h)→Fig. 5.9(h)].

The perpendicular symmetric dipolar mode which was blue-shifted from ~ω = 2.61 eV
to ~ω = 2.35 eV with increasing truncation ratio [Fig. 5.8(f)→Fig. 5.9(f)] is not con-
tinuously connected in the maps Fig. 5.12(c). This indicates the existence of mode
crossings. It appears that the spectral superposition of parallel and perpendicular
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Figure 5.11 Same as Fig. 5.10 but for System 2, i.e a silica shell on a
silver core.
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Figure 5.12 Same as Fig. 5.10 but for System 3, i.e a silver shell on
a silica core.
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modes, such as the ’mixed’ mode that was observed at ~ω = 2.70 eV in both the par-
allel [Fig. 5.9(d)] and perpendicular [Fig. 5.9(g)] direction for tr = 0.6 in System 3,
also appear at other truncation ratios such as 0.07, 2.0 etc. [see Fig. 5.12(a) and
Fig. 5.12(c)] for parallel and perpendicular directions, respectively].

After a thorough inspection of the impact of island-island interactions to dipolar order
in System 3, we observe a slight red-shift in energy in the parallel map [Fig. 5.12(b)]
and a blue-shift in the perpendicular one [Fig. 5.12(c)]. But, the impact of the dipolar
interaction between the particles is considerably smaller than what we have seen in
Systems 1 and 2.

5.5.2 Dependence on the thickness of the coating layer

Maps of the imaginary part of the direction-dependent normalized polarizabilities
for changing coating thickness, i.e. inner core radius is changed dχ(2), of the dielec-
tric/metallic coating for System 2/System 3 without and with island-island interaction
to dipolar order are displayed in Figs. 5.13-5.14. To have a clear contrast on the log-
scale, the big coating thickness for System 2 are not displayed in Fig. 5.13. Again, the
mirror systems behave fundamentally differently.

System 2

As the dielectric shell becomes thinner in System 2, the lowest energy mode in map
for the parallel direction is slightly blue-shifted [Fig. 5.13(a)], while the lowset-energy
mode in map for perpendicular direction is slightly red-shifted Fig. 5.13(c)]. The
peaks at higher energy in the interval 3.25 eV ≤ ~ω ≤ 3.8 eV merge at a large core
size χ(2) > 0.7. For χ(2) = 0.8, 6 distinct modes are observed both in the parallel and
perpendicular directions. These correspond to the eigenmodes we observed in System
2 for tr = 0.01 [Fig. 5.10(a) and Fig. 5.10(c)]. Also the chaotic behavior with many
peaks appearing as one around ~ω = 3.5 eV is seen again as a slightly thicker line.

Considering the same system where the island-island interaction to dipolar order has
been included, the shifts are more prominent in the parallel [Fig. 5.13(b)] than the
perpendicular [Fig. 5.13(d)] direction. Also, the geometries with the thinner shell,
χ(2) > 0.7, are more affected by the island-island interaction than the geometries
with a thicker shell, as expected because the dipole-dipole interaction scales with the
amount of polerizable matter [20].

System 3

The maps with changing shell thickness in System 3 display a general red-shift for the
eigenmodes in the lower part of the energy spectra ~ω < 3.6 eV, and a blue-shift for
the high-energy eigenmodes ~ω > 3.7 eV in both parallel and perpendicular direction
[Fig. 5.14]. The number of distinct peaks increase with a thinner shell thickness.
Again, this is consistent with what we have already seen for a thicker [Figs. 5.7(a)-(b)]
and thinner [Figs. 5.8(a)-(b)] metallic coating on a dielectric core.
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Figure 5.13 Maps of the imaginary part of the direction-dependent
polarizabilities in System 2 as function of energy and shell thickness in
the interval χ(2) = 0.4−0.89 without [(a)/(c)] and with [(b)/(d)] island-
island interaction to dipolar order. Simulation parameters are indicated
on the top of the figure.
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Figure 5.14 Same as Fig. 5.13 but for metallic silver shell on a silica
core.
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The dipolar mode in the parallel direction shifts out of the available energy range
around χ(2) = 0.65 [Fig. 5.14(a)]. This was also observed for the main peak in the
SDRS-signal [Figs. 5.4(a)-(b)]. The perpendicular dipolar mode observed at
~ω = 3.52 eV in Fig. 5.7(g), and then at ~ω = 2.61 eV in Fig. 5.8(f) can be traced in
the map [Fig. 5.14(c)], but it does not follow a continuous trend for changing shell
thickness.
Again, as compared to the non-interacting case [Fig. 5.14(a) and Fig. 5.14(c)], we
observe the general trend of a red-shift for the parallel and blue-shift for the perpen-
dicular response.

5.5.3 General trends of the polarization modes in coated particles

The results presented in the maps of Figs. 5.10-5.14 have attempted to investigate how
the oscillation modes are affected by changing the truncation ratio, the shell thickness,
the shell material and if the island-island interaction of dipolar order is included or
not.
The authors of Refs. 20, 32 have showed that the features observed in experimental
SDRS-spectra of silver on alumina obtained during vapor deposition can be explained
by the excitation of several multipolar resonances in the truncated sphere, as pre-
viously described. By reformulating the oscillation conditions of the matrix system
Eq. (5.1) into a spectral representation of the polarizability, they could show that the
island-island interactions at dipolar order give rise to a shift in the energy position, ei-
ther blue- or red-shift, depending on the direction-dependent polarizability. The shift
is proportional to the the intensity of the considered oscillator. The figures described
in the latter sections indicate that the same type of dependence is also valid for the
case of the coated particle. Therefore, the most intense dipolar modes are generally
more affected by the island-island interaction. On the contrary, the energy positions
of the high energy modes, ~ω > 3.6 eV are more or less constant. Compared to the
contour maps shown in Fig. 5.10(a) and Fig. 5.10(c), it appears that System 3 of the
chosen geometries is least affected by the island-island interaction to dipolar order.
However, the truncation ratio of the particle, the presence of the substrate and of the
coating introduce a variety of modes which are not observed for non-coated and coated
spherical particles in a homogeneous media. By bringing in a new break of symmetry,
the metallic shells display the most exotic and complex optical response among the
geometries studied in this chapter. In principle, the discussion could be extended by
introducing several coatings/shells and spheroidal prolate/oblate particles as Gran-
Film’s capabilities also cover these geometries. With recent advances in preparation
techniques at the nanoscale, such geometries are achievable: nanorice (coated pro-
lats), nanoeggs (coated oblates) and nanomatryushkas (dielectric core, metallic shell,
dieletric layer, etc.) [74,75].

5.6 Conclusion

While the effect of a coating on a spherical/spheroidal particle in an homogeneous me-
dia is known analytically (see Fig. 5.1), the combined effect on the plasmonic response



5.6 Conclusion | 131

of the presence of both a coating layer and a dielectric substrate are not fully un-
derstood. The optical response of coated supported truncated metallic nanoparticles
originates from the excitation of multipolar absorption modes caused by the breaks of
symmetry introduced by the presence of the substrate, the truncation of the particle,
and the coating layer. This chapter was devoted to the understanding of the type of
modes excited in such systems.

The oscillation eigenmodes were investigated via a multipolar expansion of the poten-
tial outside and inside the island as implemented in the GranFilm software [56]. To do
so, the mimima of the eigenvalue of the matrix system for the multipolar coefficients
were scrutinized to locate the resonances. Maps of potential at the corresponding
frequencies helped deciphering the nature of the modes. Their shifts in energy were
systematically investigated and compared to the case of objects without coating for
changing particle geometries [20]. While the dielectric shell poorly affect the nature
of the modes and mainly red-shifts their frequency through screening, a much richer
polarization pattern was observed in the case of a metallic shell. Both complex mixing
and splitting of the eigenmodes were observed for this geometry [17].
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Chapter 6

Broadening of the plasmon resonances

Until now, in this manuscript, the considered system has consisted of identical NPs
organized in regular or random arrays and supported by the planar surface of a
dielectric substrate. The physical system encountered in e.g. deposition experiments,
will always display a certain degree of dispersity in the size and shape of the
particles due to the random nature of the growth process. This chapter deals with
the main phenomena behind the so-called experimental broadening that can be
observed in the plasmon resonances of supported aggregates of metallic NPs. The
discussion of the origin of this phenomenon will be divided into two sources; intrinsic
sources, related to the nanoscale; and extrinsic sources that are related to the size
and shape distribution of the individual particles.
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Figure 6.1 The two main contributors to the broadening of the plas-
mon resonance caused by intrinsic (a) and extrinsic (b) sources.

6.1 Origins of the broadening of the plasmon resonances

A classical GranFilm simulation is performed on a system of identical particles orga-
nized in either a lattice (square/hexagonal) or in a random array1. For the random
array configuration, one must define a particle-particle correlation function and the
surface coverage. When comparing the results obtained for a lattice (an ordered ar-
ray) and a random array, one has to make sure that the two configurations correspond
to the same surface coverages of the lattice, this quantity is derived from the lattice
constant.

As we saw in Chapter 3 the calculation of the polarizability is done in two main
steps. First, the single particle polarizabilities are calculated taking its shape (trun-
cated sphere or spheroid) and its electrostatic interaction with the substrate into
account. Second, the electrostatic coupling between the NPs are computed to dipolar
or quadrupolar order. Depending on the array type, this correction is for the sin-
gle particle polarizability calculated with the use of lattice sums (ordered array) or
distribution integrals (random array).

In Ch. 4, we saw that the experimental bulk dielectric function of the metallic NPs
had to be modified to take into account specific phenomena on the nanoscale. Here we
consider two such corrections terms: the finite-size and the surface corrections. The
finite-size correction originates from the reduced mean free path of the free electrons
in small volumes of metal. It leads to an enhancement of the imaginary part of the
dielectric function of the metallic NPs which results in an increased damping that
1See Ch. 3 for a refreshment of the definitions of the given systems.
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broadens the width of the plasmon resonance. The surface correction, on the other
hand, is related to a change in the electronic structure close to the surface of the NP due
to a decrease in the screening of the conduction electrons. Both these effects contribute
to a shift in position and/or a change in the resonance peak width. Generally, the
smaller particles are affected more than the bigger particles by these corrections. Since
these corrections originate from the physical system itself, the broadening they induce
is called intrinsic. Figure 6.1(a) gives a schematic illustration of the origin of the
finite-size effect in a NP.

During the growth of NPs on a surface, in particular, by vapor or sputtering deposi-
tions, some degree of dispersity in particle size and shape will always be present due
to the random character of the growth process [76]. This dispersity will impact the
plasmonic response of the system and, as a consequence, the optical properties [77,78].
Indeed, as we saw in Ch. 1, the polarizabilities scale with the volume of the particle
and the resonance frequencies shift with the truncation ratio, or more generally, with
the aspect ratio of the particles. The resulting effect is an overall complex broadening
that we call extrinsic. A sketch of the size and direction dependent dipoles caused by
the incoming field in a polydisperse system is illustrated in Fig. 6.1(b).

In principle, the resonances of a system display simultaneously both extrinsic and the
intrinsic broadening. Until now, the broadening of the resonance peaks were treated
pragmatically by a simple convolution of the polarizabilities in the monodisperse case
with a somehow arbitrary Gaussian envelope [42, 58]. In the case of a low coverage
polydisperse (LCP) system the island-island interaction between the neighboring par-
ticles can be neglected. Extrinsic broadening results simply from an ensemble average
over sizes and shapes of the particles. However, for a higher surface density of particles,
in a finite coverage polydisperse (FCP) system, the shifts induced by the island-island
interaction will depend on the local environment of each particle. The aim of this
chapter is to treat both limits, in particular, the finite coverage limit within the mean
field approximation.

In the following, we will give a systematic analysis of these intrinsic and extrinsic
effects as sources of plasmon resonance broadening. We start by a description of the
impact of the intrinsic broadening in a LCM system. The impact of the size and shape
distributions in LCP and FCP systems are then considered.

The optical properties of a system containing metallic NPs are, to a great extent,
driven by the polarizabilities of the metallic NPs. Since the energy position of the
direction dependent polarizabilities of supported NPs calculated with GranFilm is
independent of the angle of incidence of the incident field, these observables will be
chosen to illustrate all the effects that can occur in the different cases. Because the
absorption in the substrate is directly linked to the imaginary part of the polariz-
ability, we will use this observable in our discussion [8]. The imaginary parts of the
polarizabilities will always be normalized by a proper average volume term to single
out the broadening/shift effects. The test case of silver particles (Ag) on an alumina
substrate (Al2O3) will be used.
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6.2 Broadening caused by intrinsic effects
The simulation results discussed in Sec. 4.4 showed some general trends of the reflectiv-
ity curves [Fig. 4.9(c)], caused by a finite-size correction of the bulk dielectric function
of the metal. This section illustrates the effect on the polarizabilities upon a change
of particle size in a low coverage monodisperse (LCM) or finite coverage monodisperse
(FCM) system.
Figure 6.2 displays the imaginary part of the parallel and perpendicular polarizabilities
normalized by the volume of the particle in a monodisperse system, for different values
of the radius parameter. The presented curves follow similar trends when changing
the size of the particle.
Firstly, as depicted in Figs. 6.2(a)-(b), without correction of the experimental bulk
dielectric function of the metal, the polarizabilities scaled by the volume of the particle
yield identical results. A well-known result from plasmonics [8].
Secondly, the finite-size and surface corrections impact the polarizabilities in a different
way [Figs. 6.2(c)-(d) and Figs. 6.2(e)-(f)]. Generally, a reduction of the electron mean
free path simply broadens [Figs. 6.2(c)-(d)] the peaks and reduce their amplitudes, as
compared to the cases without corrections. The spectral shift is negligible in this case.
Of course, for both directions, the smaller the particle, the larger the effect.
The surface correction applied to LCM and FCM systems do not cause broadening of
the resonance peak. Instead, this type of correction results in a shift of the peak. As
this effect becomes important for a distribution over size and shape the results for the
monodisperse case are given in Figs. 6.2(e)-(f). Applying the surface correction on the
experimental bulk dielectric function, the positions of the peaks are all shifted towards
higher energies (blue-shifted) for both the parallel and perpendicular directions with a
negligible broadening and a small shift in the amplitude. Again, the smallest particles
are those most affected.

6.3 Broadening caused by extrinsic effects
In the monodisperse system, the polarizabilities of each particle are identical. For a
polydisperse system with a distribution over the size, the shape or both, it is possible
to show that the surface susceptibilities should be calculated from the spatial averages
of the relevant polarizabilities [5, 79]

γ = ρ
〈
α‖
〉

(6.1a)

β = ρ

ε2
a

〈α⊥〉 (6.1b)

τ = −ρ
〈
α10
‖

〉
(6.1c)

δ = − ρ

εa

[〈
α10
⊥

〉
+
〈
α10
‖

〉]
, (6.1d)

where 〈·〉 denotes spatial average2.
2See Ch. 2 for a reminder of the definitions of the electrical surface susceptibilities.
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Figure 6.2 Imaginary parts of the parallel/perpendicular polarizabil-
ities normalized by the volume as a function of different radii without
(a)-(b), with a finite size (c)-(d) and with a surface (e)-(f) correction of
the experimental bulk dielectric function. Parameters of the modeled
system are reminded on the top of the figure.
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Figure 6.3 A scheme for the calculation of the average polarizability
for the different types of polydisperse systems accounted for in GranFilm.

To describe the effect of polydispersity from a statistical point of view, we need to intro-
duce the size and shape probability density function (PDF) of the particles. Moreover,
handling the spatial average requires to take into account properly the electrostatic
coupling between the particles and therefore to distinguish, as done for the monodis-
perse system, between the low and the finite coverage limits. Theoretically, four cases
should be distinguished for the polydisperse system:

• the low coverage limit for which the island-island interaction is negligible and
the spatial average is solely an average over the sizes and shapes times the PDFs
of the particles. This configuration of particles is a LCP system.

• the finite coverage limit for the polydisperse system. In this limit, the local varia-
tions of the depolarization field due to island-island interactions should be taken
into account. The system in this limit is a FCP system. We have three different
ways to account for the island-island interaction for such a configuration:

– in the Mean Field Theory (MFT) approximation the island-island inter-
action ignores the fluctuation of the dipole moments around their mean
values.

– The theoretical case of an ensemble average of monodisperse domains, called
the interaction mean (IM) system. The island-island interaction is taken
into account to dipolar order for the single particle polarizability in the
monodisperse system before the ensemble average is computed.

– The theoretical case of calculating the average particle response before
the island-island interaction of dipolar order is computed for the average
monodisperse response, called mean interaction (MI).

A summary of the different ways to calculate the average polarizabilities for a set of
particles n in FCP is illustrated in Figure 6.3. Note the difference between includ-
ing the island-island interaction before or after the mean is computed. Examples of
polydisperse systems in the LCP and FCP limits are given in Fig. 6.4.
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Figure 6.4 A schematic illustration of a system containing polydis-
perse particles in low (a) and finite (b) coverage.

6.3.1 Working with polydisperse particles in GranFilm

Several changes in the calling structure of GranFilm had to be performed in order
to enable the calculation of observables related to the polydisperse system. In Ap-
pendix C Sec. C.2.2, an example of the updated input file for GranFilm is given.

The distribution parameter namelist

Firstly, the reading of the input file and the logic related to setting consistent param-
eters for the size and shape distribution had to be handled3. An additional keyword
’Size_Distribution’ was added to the Geometry nml-namelist to decide if GranFilm
should simulate a polydisperse or monodisperse system. Valid options for this key-
word are ’None’ or ’Size_Distribution’. If the keyword ’Size_Distribution’ is given,
the optional ’Size_Distribution’ namespace will be read.

To construct the PDF polydispersity over a parameter we have chosen to give the
user the possibility to set the mean value of the wanted distribution µn, the standard
deviation σn, and the lower and upper limits, respectively, an and bn, where the
distributed parameter n is one or all in the set {R‖, R⊥, tr} is the set of geometrical
parameters possible to introduce as the input in a GranFilm simulation. As always in
the case of a spherical particle R‖ = R⊥ = R. The reading of the input file, and the
checking of the logic for several of the variables are now properly taken into account
by the software. The joint size and shape PDF characterizing the polidispersity of
the particles in the system is assumed to be constructed from products of marginal
truncated normal distributions for each of the geometrical parameters of the particles
that can vary ({R(n)

‖ , R
(n)
⊥ , t

(n)
r }).

3See a full description of the most crucial input parameter of GranFilm in Sec. 4.2.
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The truncated normal distribution

For the sake of simplicity, the set of parameter {R(n)
‖ , R

(n)
⊥ , t

(n)
r } that the size/geometry

parameters we can construct a PDF for in a polydisperse system we have chosen the
truncated normal distribution.

The normal distribution with mean µ and variance σ2, denoted φ(µ, σ2;x) for a random
variable x, is formally defined as [80]

φ(µ, σ2;x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . (6.2)

Its cumulative distribution function (CDF) is given by

Φ(µ, σ2;x) =
∫ x

−∞
dt 1
σ
√

2π
e−

(t−µ)2

2σ2 , (6.3)

which can be rewritten

Φ
(
µ, σ2;x

)
= 1

2
(
1 + erf(x/

√
2)
)
, (6.4)

where erf(x) denotes the related error function.

The PDF associated with the truncated normal distribution is, in fact, defined as a
normal distribution with the parameters µ and σ2, but only given in a limited range
(a < x < b) for a random variable x. Outside this range, the PDF is set equal to zero.
As any PDF, the truncated normal distribution should be normalized to 1. Therefore,
if we denote by the truncated normal distribution by f(µ, σ, a, b;x), where µ and σ2 are
the mean and the variance of the ’parent’ normal distribution as defined in Eq. (6.2)
and by the range (a, b) where −∞ ≤ a < b ≤ ∞, then the PDF is defined as

f(x, µ, σ, a, b) =


0 −∞ < x ≤ a
1
σ

φ(x−µσ )
Φ( b−µσ )−Φ(a−µσ ) a < x < b

0 b ≤ x <∞
(6.5)

where

φ

(
x− µ
σ

)
= 1√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
, (6.6)

is the PDF of the standard normal distribution defined by the parameters µ0 and
σ = 1, and Φ (·) is the corresponding standard CDF.

For the sake of simplicity, in the case of distribution over more than one parameter
at the time, we will model the joint probability distribution function as a product
of the marginal probability distribution of each parameter (e.g. radius, truncation,
spheroid flattening etc. . . ) i.e., independent distributions. Each of these independent
distributions has a distinct number of islands N ∈ {NR‖ , NR⊥ , Ntr}.
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The average polarizability

With a known form of the PDF(s) and assuming the eventual joint probability distri-
bution to be independent for the different random variables, the mean polarizability
given by a set of random variables 〈α(P)〉 can be calculated.

The parameters are taken from the set P ∈ {R(n)
‖ , R

(n)
⊥ , t

(n)
r }, n = 1, ..., N with the

smaller and bigger limits of the individual parameters respectively taken from the sets
A ∈ {aR‖ , aR⊥ , atr} and B ∈ {bR‖ , bR⊥ , btr}. Approximating the integral with quadra-
ture integration and the (naive) midpoint rule for sampling, the average (expectation
value) of the polarizability becomes

〈α(P)〉 ≈
∫ B
A

dPpdf(P)α(P)

≈
N∑
n=1

∆Ppdf(Pn)α(Pn), Pn = A+
[
n− 1

2

]
∆P

≈
(B −A

N

) N∑
n=1

pdf(Pn)α(Pn), (6.7)

where N is the total number of unique islands in the distribution and ∆Pn = B−A
N

the length of each subinterval.

The error term when approximating an integral with the midpoint rule in s-dimensions
will scale as Errormidt ∝ O(n−1/s) [81]. This is an important fact to consider when
calculating an average quantity for higher order distributions.

6.3.2 Modified calling sequence in GranFilm

The original calling sequence in the GranFilm software has been adapted to integrate
the possibility of treating systems that contain polydisperse particles. The final code
has readable and accessible structure for the calculations of relevant observables for
both the mono- and polydisperse case. Figure 6.5 displays a flowchart of the most
significant changes made to the original structure we displayed in Fig. 4.1.

Firstly, the distribution is sampled, and all geometry parameters of the individual
islands are set. A loop over the number of individual islands to calculate the single
particle polarizabilities is then performed. In this loop, the (potential) evaluation of
the corrections of the experimental bulk dielectric function is performed each time a
new island configuration pn = {R(n)

‖ , R
(n)
⊥ , t

(n)
r } is chosen. To save the computation

time, the integrals over the spherical surface of the particles are evaluated only if the
value of the truncation ratio has changed from the previous to the next iteration. The
multipole coefficients are calculated, and the single particle polarizabilities evaluated.
At this stage, the code will include the island-island interaction correction of the single
particle polarizabilities if required by the user (in the IM limit).

When the single particle polarizabilities of the total number of islands in the ensemble
or the wanted error term in the calculation is reached, the loop over island types
is ended. In the case of FCP in the MF or MI limit one correct the single particle
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polarizabilities before the average is computed. In the IM limit, the correction of the
single particle polarizabilities is performed already in the loop over island types. If one
uses the LCP configuration, the mean polarizability of the system will be calculated
directly. Finally, from the obtained average (potentially renormalized) polarizabilities,
the surface susceptibilities and the physical observables can be calculated as before.
The bottleneck of the calculation is again the evaluation of the integrals over the
spherical surfaces of the particles; this was discussed in Ch. 4. A significant speed
up is expected if hash or lookup-tables (a technique of mapping data keys) could be
deployed to tabulate the integrals over the spherical surfaces [82]. Due to the time
limitation of the thesis, this aspect is not to be further considered here.
We will now detail how the average polarizabilities calculation is performed and com-
ment on the simulation results for the LCP and FCP limits.

6.4 Polydispersity in the low coverage regime

The LCP regime [see Fig. 6.4(a)] corresponds to a size-distributed sample where the
particles are arranged in such a way that the electrostatic coupling between them can
safely be ignored.

6.4.1 Sampling rule

There are two obvious methods to sample the island distributions to obtain the average
polarizability. One could either choose a quadrature technique as proposed in Eq. (6.7),
or to obtain the average by a Monte Carlo (MC) integration technique.

Monte Carlo integration

For this latter method, the MC integration scheme suggests that an estimate of the
average of the polarizability is given by

〈ᾱ〉N = 1
N

N∑
n

α(xn), (6.8)

where α(xn) is calculated for a random variable (or set of variables), xn is drawn from
the joint size and/or shape distribution function in question. This random variable can
be generated from the inverse CDF of the truncated normal distribution and with the
rejection method [80]. The great advantage of the MC technique is that the estimate
of the average always can be given with a known error. A final assessment of the
average polarizability with an error estimate calculated with this method is

〈α〉 ≈ 〈ᾱ〉N ± σᾱ

≈ 〈ᾱ〉N ±
σ
[
{ᾱn}Nn=1

]
√
N

≈ 〈ᾱ〉N ±

√
〈|ᾱ|2〉N − |〈ᾱ〉N |2√

N
, (6.9)
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Figure 6.5 An updated flowchart of the most crucial steps in a Gran-
Film simulation for a polydisperse system. The (potential) evaluation of
the corrections of the experimental bulk dielectric function is performed
each time a new island configuration is chosen. To save computation
time during the computation of the average polarizabilities, the eval-
uation of the integrals over the spherical surface is only performed if
the truncation ratio is changed between the current and the previous
iteration. The multipole coefficients are then calculated, and the single
particle polarizabilities evaluated. At this stage, polarizabilities can be
corrected from island-island interaction, assuming the IM limit. When
the polarizabilities for the wanted number of islands or the required tol-
erance of calculation is reached, the loop over island types is ended. In
the case of the MF or MI limits, the renormalization of the single par-
ticles are computed before the average is calculated. Finally, from the
obtained average (potentially renormalized) polarizabilities, the surface
susceptibilities and the physical observables can be calculated as before.
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where N is the number of terms added to calculate the average and σᾱ is the standard
deviation of the estimator. It should be remarked that for MC integration the error
estimate scales as ErrorMC ∝ O(n−1/2), independent of the order of the integral [81].

Calculating the average polarizabilities with the Monte Carlo technique

All the relevant equations in the GranFilm software (described in Ch. 3) are given in
dimensionless forms. Thus, special attention has to be paid to the normalization of
the estimator 〈ᾱ〉N . Denoting the dimensionless direction dependent polarizability as

α̂`,0i = α`,0i
R`+2
⊥

, i = {‖,⊥}, ` = {0, 1}, (6.10)

where the subscript i denotes the direction and the subscript ` the order of the polar-
izability. The estimate of the average polarizability 〈ᾱ〉N for a distribution over either
the radii or the truncation ratio parameters is defined as

〈α(`,0)
i 〉N(
R̃⊥
)`+2 ≈

1
N

N∑
n=1

1(
R̃⊥
)`+2α

(`,0,n)
i

(
R

(n)
‖ , R

(n)
⊥ , t(n)

r

)

= 1
N

N∑
n=1

[
R

(n)
⊥
R̃⊥

]`+2

α̂
(`,0,n)
i

(
R

(n)
‖ , R

(n)
⊥ , t(n)

r

)
, (6.11)

where the term R̃⊥ is the chosen normalization of the polarizability. If there is a
distribution over the perpendicular radius R̃⊥ = µR⊥ , if not R̃⊥ = R

(1)
⊥ as usual. For

a proper normalization during the MC integration scheme, the sum Eq. (6.11) can be
recast into

〈α(`,0)
i 〉N−1(
R̃⊥
)`+2 ≈

1
N − 1

N−1∑
n=1

[
R

(n)
⊥
R̃⊥

]`+2

α̂
(`,0,n)
i

(
R

(n)
‖ , R

(n)
⊥ , t(n)

r

)
, (6.12)

and we can rewrite Eq. (6.11) as the sum of two terms

〈α(`,0)
i 〉N(
R̃⊥
)`+2 ≈

1
N

N−1∑
n=1

[
R

(n)
⊥
R̃⊥

]`+2

α̂
(`,0,n)
i

(
R

(n)
‖ , R

(n)
⊥ , t(n)

r

)

+
[
R

(N)
⊥
R̃⊥

]`+2

α̂
(`,0,N)
i

(
R

(N)
‖ , R

(N)
⊥ , t(N)

r

)
= N − 1

N

〈α(`,0)
i 〉N−1(
R̃⊥
)`+2 + 1

N

[
R

(N)
⊥
R̃⊥

]`+2

α̂
(`,0,N)
i

(
R

(N)
‖ , R

(N)
⊥ , t(N)

r

)
. (6.13)

The average volume 〈V 〉N for the islands in the ensemble is calculated in a similar
manner.
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Choosing the integration method

The basis of the quadrature and the MC methods for numerically evaluating the
integrals are fundamentally different, both in the sampling routine and the obtained
error estimate. For quadrature integration, the size of the error term will decrease with
a smaller step size in the discretization of the parameter. For integration in higher-
dimensions, the number of points required to a have a small error quickly becomes
significant.
In the MC method, the error term itself is of probabilistic nature. It’s estimate lies
within one standard deviation of the true value. Both of our two sampling techniques
have great potential for improvement. Important sampling techniques for the MC
method or a smarter quadrature than the midpoint sampling is expected to speed up
the simulation results [81].
For our needs, the computational speed is the most essential requisite. Time estimates
of our software’s calculations shows that the computational speeds when using the two
integration methods to evaluate one-dimensional integrals to calculate the average
polarizabilities essentially are the same. However, for a multivariate size and shape
distributions the MC method is the fastest of the two. The user can choose the
kind of integration method. For quadrature integration, the number of points for
each parameter that should be distributed must be given as input. For the MC
integration the user can set the required tolerance of the error of the estimator of the
standard deviation. The software will then chose the requested number of islands in
the integration routine.

6.4.2 The effect of polydispersity in the low coverage regime

Figure 6.6 and Fig. 6.7 summarize the trends observed in simulations of the direction-
dependent polarizability of a polydisperse system when choosing a truncated normal
distribution over the radius (Fig. 6.6) and over the truncation ratio (Fig. 6.7) param-
eters where the average polarizability is calculated with the deterministic quadrature
method. The effect of varying the widths of the various size and shape distributions
is illustrated by the results presented in Figs. 6.8-6.9.

Radius versus truncation distributions

Figure 6.6(a) and Fig. 6.7(a) display the PDF for the chosen distribution, respectively,
for the radius and truncation ratio parameter. The final results for the average values
appear in Figs. 6.6(b)-(c) and Figs. 6.7(b)-(c) with the dotted pink curve given by the
TOT parameter (right y-axis) together with three different values in the distribution
times the probability of the variable (left y-axis). To highlight the effect of averaging,
as given by Eq. (6.13), the central value µ and two values of equal probabilities µ± σ
are pinpointed for each of the distributions. The other parameters defining the systems
are given in the upper right corner of the figure.
In Fig. 6.6(b) and Fig. 6.7(b) the actual value of the PDF is multiplied by the imag-
inary part of the parallel polarizability for the given random variable scaled by the
average volume factor 〈V 〉, which is also computed according to the relation Eq. (6.7)
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ê‖ê⊥
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Figure 6.6 Effect of polydispersity for a truncated normal distribu-
tion over the radius parameter (a) on the imaginary parts of the parallel
polarizability (b), including for the corrections of the experimental bulk
function εFS (d), εS (f). The perpendicular counterparts of the polariz-
ability are given, respectively, in (c),(e), (g) polarizabilities. Simulation
parameters are given in the upper right corner of the figure.
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for either a radius or truncation ratio4 variable. The corresponding perpendicular
polarizabilities are illustrated in Fig. 6.6(c) and Fig. 6.7(c).

In the case where the particle radius is varied, within a scaling factor, the same curve
is observed for R(1), R(2) and R(3) since the polarizabilities of the truncated particle
of the same aspect ratio will simply scale with the particle volume. The calculation of
the average polarizabilities is just that of the average volume. A trivial case. But, of
course, when size-dependent dielectric functions are introduced, the combined effect of
broadening by intrinsic and extrinsic effects will be more complex, and the averaging
finds all its interest. The results obtained for distributions over the radius parameter
with a correction of either the bulk dielectric function as the finite size or the surface
correction are shown in Figs. 6.6(d)-(e) and Figs. 6.6(f)-(g) respectively.

The finite-size effect will again broaden the response. Because of the probabilistic
nature of the polydispersity it is the orange dashed line for the middle sized radius,
and not the blue dashed-dotted line for the largest radius, which has the highest
amplitude.

We observe that in contrast to the monodisperse case with the surface correction
of the bulk dielectric function [Figs. 6.2(e)-(f)] the polydisperse case with the same
type of correction will i) work differently on the different sizes of the particles in the
distribution, effecting more the smaller than the bigger particles, ii) result in a slightly
broadened peak [Figs. 6.6(f)-(g)] as compared to the effect of the distribution itself
[Figs. 6.6(b)-(c)].

As for the distribution over the truncation ratio parameter, the trend of the response is
more interesting as it reflects the sensitivity of the plasmon resonances to the aspect
ratios of the particles which is changed through the truncation ratio parameter in
GranFilm. The plasmon resonance’s energy position is blue-shifted for the parallel
polarizability with increasing truncation ratio value [Fig. 6.7(b)] and red-shifted for
the perpendicular polarizability [Fig. 6.7(c)]. Note that not only the volume of the
particle is changed with the truncation ratio of the particle, but also the oscillator
strength of the parallel/perpendicular resonances (normalized by the volume) that
will increase/decrease.

Once multiplied by the probability of having a given truncation ratio, the conjunction
of those effects give rise to a complex effect. We observe an apparent broadening of
the peaks which is more important for the parallel than the perpendicular direction.
The reason for this behavior is found in the higher sensitivity to the aspect ratio of
the particle for the parallel resonance than for the perpendicular one. Although, as
a general rule of thumb, this effect depends on the underlying modes of polarization
that show different dispersion with truncation5. A side effect of the truncation ratio
distribution is also an asymmetry of the peaks and a slight shift of its maximum
value away from that of the central component of the truncation distribution [see in
particular Fig. 6.7(b)].

4The general formula to calculate the volume of a particle was discussed in App. 4.B.
5See Ch. 5 for a discussion of the nature of the resonance peaks.
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Figure 6.7 Effect of polydispersity on the imaginary parts of the par-
allel (b) and perpendicular (c) polarizabilities for a truncated normal
distribution over the truncation ratio (a) parameter. Simulation param-
eters of the system are given in the upper right corner of the figure.
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Figure 6.8 Effect of polydispersity on the normalized imaginary parts
of the parallel polarizability of changing distribution widths with the
finite-size (a) and the surface (b) corrections of the bulk dieletric func-
tion. Simulation parameters are reminded above the figure.

The impact of the width of the distributions

The impact of the width of the size and shape distributions are investigated by varying
their variance σ2. As demonstrated earlier, only changing the width of the PDF for
the radius parameter is of limited interest without also correcting of the experimental
bulk dielectric functions of the metal since otherwise the resulting polarizabilities,
when divided by the volume of the particle, will be identical.
Combining both types of corrections of the bulk dielectric function and broader dis-
tributions over the radius parameter yields interesting results. As the distributions
become broader the effects of the polydispersity and the corrections of the bulk ex-
perimental dielectric functions are competing. Again, the effect of the averaging is
such that the broadening related to the surface correction of the experimental bulk
dielectric function is more prominent, as compared to the monodisperse case. In
Figs. 6.8(a)-(b) it is no longer only the distributions with the overall smallest particles
that are most impacted by the corrections. The dash-dotted green line represents the
overall smallest particles with a narrow distribution. For the two wider distributions
we can see that the dashed orange line appears to be affected in the same way as
the broader distribution represented by a solid blue line. This indicates that it is the
smallest particles in the distribution that contributes most significantly to the broad-
ening. The perpendicular polarizabilities show a similar behavior, but the results are
not shown here in order to limit the number of figures.
When increasing the width of the truncation ratio distribution σtr, as already discussed
for more moderate values, the polarizabilities get broader and more asymmetric. A
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Figure 6.9 Effect of polydispersity on the normalized imaginary parts
of the parallel (a) and perpendicuar (b) polarizabilities for a distribution
over the truncation ratio parameter with varying widths. Simulation
parameters are given above the figure.

spectral shift of the peak is also observed, and it is more pronounced for the parallel
than for the perpendicular direction, as illustrated in Figs. 6.9(a)-(b). The asymmetry
and the shift in energy towards the red (lower energies) in case of the parallel resonance
peaks mean that the increase of oscillator strength more than compensates for the
decrease in the particle volume when the truncation ratio is decreased.

Observed trends in the low coverage polydisperse limit

The discussion of a LCP system is terminated by drawing some conclusions from the
results presented so far in this section.

• A radius distribution alone, does change the amplitudes of the polarization peaks
in both the parallel and the perpendicular directions. When the effect of the
averaging is combined with the effect of the corrections of the bulk dielectric
functions both the finite-size and the surface correction will contribute to the
broadening of the plasmon resonance peaks. The surface correction also shifts
the energy position of the peak.

• A distribution over the truncation ratio parameter alone will produce broader
peaks due to the energy shift of plasmon resonance caused by the modification
of the aspect ratio. Again, it is clear that the wider distribution results in the
broader peak. In contrast to a distribution over the radius parameter.

The investigations of varying both the radius and truncation ratio parameter for other
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substrates (MgO, ZnO), have been performed. The results are similar to the ones
reported for Al3O2 and will, therefore, not be given in this manuscript.

6.5 Polydispersity in the finite coverage regime

The FCP system [see Fig. 6.4(b)] corresponds to a size and shape distribution in
the NPs were the island-island interaction matters. In contrast to the monodisperse
case, the local field felt by a particle will depend both on its neighbors of different
sizes/shapes and the distances between the particles. The calculation of the spatial
average of this fluctuating quantity requires to account for the correlation between the
particles in a proper way. Following the idea of Barrera et al. [83], a first solution is
obtained in the Mean Field Theory (MFT) limit. Furthermore, with the idea proposed
by Gazzillo et al. [84] we will apply a scaling approximation of the monodisperse RDF
to approximate the polydisperse RDF. Our approach will be restricted to dipolar
interaction but can, in principle, be generalized to quadrupolar interaction.

6.5.1 The average polarizability calculated in the mean field theory

Let’s assume a polydisperse (size/shape) collection of particles. Since we are interested
only in their dipolar interactions, each particle is replaced by its direct dipole located
at position ri and its images located at ri. Figure 6.10 displays the relevant sizes for
the considered geometry. All particles in the system will have an individual geometry
decided by the set of parameters {Rµ, dµ, zµmp, zµm̄p}. The truncation ratio is (as always)
defined as the distance from the center of the sphere to the surface of the substrate
tµr = dµ/Rµ.

The system that we consider consists of an infinite set of polydisperse particles that
are supported by a dielectric substrate. In the following, it will be assumed that
the geometry of a particle is fully specified by the index ξ that we will refer to as
the particle geometry (or geometrical type of the particle). For instance, collectively
this symbol specifies the radius, truncation ratio and the aspect ratio of the particle
in question or any other parameter needed to characterize the size and shape of the
particle. It can even be used to distinguish different particle types, for instance, if the
particle is coated or not, or its coating thickness or even the material that the coating
consists of. Figure 6.10 displays the relevant sizes for the considered geometry.

When such a system is illuminated by a planar EM wave, for which the electric field
component has the form

E(r, t) = E0 exp [ik · r− iωt] = E0(r) exp [−iωt] , (6.14)

a dipole will be induced inside each of the particles of the system as we have seen
previously. Here E0(r) = E0 exp [ik · r] with E0 being a constant vector and we will
neglect the time-harmonic dependence from now onward. Furthermore, to keep the
notation simple, we will suppress any explicit reference to the angular frequency ω for
the relevant quantities of interest. If we assume that one of these induced dipoles is
located at the spatial position ri = r‖ + zmpẑ and that the particle at this position
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Figure 6.10 Prin-
cipal sketch of a FCP
system. Each parti-
cle in the ensemble
is specified by their
individual geometry.
To keep the sketch
clear the geometry
parameters (R, d)
and the direct/image
multipoles (zmp/zmp)
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particle geometries
{ξi, ξj} and {ξ`, ξk}.

has the geometrical type ξi, then the induced dipole moment at this position will be

pi(ri, ξi) = ↔
α(ξi) Eloc(ri) (6.15)

Here ↔
α(ξi) denotes the polarizability tensor of the ith particle that is of geometry

ξi and Eloc(ri) is the local electric field at ri in the medium of incidence (the host
medium) when the particle is absent. This field receives contributions from both the
incident wave but also from the neighboring particles and from the substrate, that is,
from the immediate surroundings of the particle.

To satisfy the required BCs on the planar surface of the substrate, we used the method
of images for the monodisperse case (see Ch. 3). For the polydisperse system it
is practical to do the same. Therefore, for the dipole at ri and of dipole moment
pi(ri, ξi) given by Eq. (6.15), there is an associated image dipole of moment

p̄i(ri, ξi) =
↔

M pi(ri, ξi) (6.16a)

with

↔

M = ε2 − ε1
ε2 + ε1

diag(−1,−1, 1). (6.16b)

Here ε1 and ε2 denote the dielectric functions of the ambient and the substrate, re-
spectively. The position vector of the image dipole is defined as ri = r‖ + zmpẑ.

It is now time to specify the local electric field that appears in Eq. (6.15). It can be
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written in the form6

Eloc(ri) = E0(ri) +
∑
j 6=i

Ej(ri) +
∑
j 6=i

Ej(ri). (6.17)

Here Ej(ri) represents the (direct) electric dipole field at ri that is due to the jth
dipole of moment pj(rj , ξj) located at rj . Similarly, Ej(ri) is the corresponding field
from the jth image dipole of moment p̄j(r̄j , ξj) that is placed in the substrate at
r̄j . The physical interpretation of Eq. (6.17) is the following: The first term on the
right-hand-side of this equation represents the contribution to the local electric field
from the incident field7; the second term represents the direct contribution to the field
in the ambient medium from the neighboring particles (note that i 6= j in the sum);
while the third and last term in Eq. (6.17) is the contribution due to scattering at the
planar surface of the substrate of the dipole fields originating from the induced dipoles
located above the surface of the substrate (note that the term i = j here is included
in the sum since we want to include the reflected dipole field from the ith dipole).
Here we will assume that the interaction between the particles primarily is of near-
field character. Under this assumption the electric dipole field from the jth induced
dipole has the form [6, 85] (when using the cgs unit system with Lortenz-Heaviside
formalism8)

Ej(ri) = 1
4πε1

3[pj · r̂ij ] r̂ij − pj
r3
ij

, (6.18)

where we have defined the distance vector

rij = ri − rj (6.19)

from the jth dipole (located above the substrate) to the point ri where the field is
evaluated; to simplify the notation we have suppressed the arguments of the dipole
moment so that pj ≡ pj(rj , ξj). A caret over a vector means that it is a unit vector,
and rij = |rij |. In a similar way we have

Ej(ri) = 1
4πε1

3[p̄j · ˆ̄rij ] ˆ̄rij − p̄j
r̄3
ij

, (6.20)

6It should be noted that there is some ambiguity as to if the term j = i should be included, or not,
in the last sum on the right-hand-side of Eq. (6.17). Whether it should be included depends on the
definition of the polarizability ↔

α(ξi) that appears in Eq. (6.15). If the single-particle polarizability
already includes the effect of the substrate, then the term j = i should be excluded from the sum;
on the other hand, if ↔

α(ξi) does not include the effect of the substrate, the term j = i has to be
included in order to account for the response of the substrate. Here we have chosen to exclude
the term j = i since the single-particle polarizabilities calculated with GranFilm automatically will
include the effect of the substrate.

7It should be noticed that if the incident medium is polarizable, not vacuum as we assume here, this
term has to be multiplied by the dielectric function of the incident medium and the wave vector k
of the incident medium.

8This choice of units is consistent with the already developed formalism in Chs. 2-3. Remember that
we took the vacuum permittivity equal to one ε0 = 1.
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where pj ≡ p̄j(r̄j , ξj) and we have defined the distance vector as

r̄ij = ri − r̄j (6.21)

from the jth (induced) image dipole located in the substrate at r̄j to the field point
ri. It should be noted that if the interaction is not only via the near field, as we have
assumed here, the expressions in Eqs. (6.18) and (6.20) have to be replaced by the full
expressions for the electric dipole field which includes, for instance, the contributions
from radiation (see Refs. [6, 85] for details).
To facilitate the coming analysis, it is practical to introduce the dipole interaction
tensors

↔

T ij and
↔

T ij that correspond to the jth dipole and its image dipole, respectively.
They propagate the electric field of the dipoles located at rj and r̄j , respectively, to
the observation point ri. They are implicitly defined by the relations

Ej(ri) =
↔

T ij pj , (6.22a)

and

Ej(ri) =
↔

T ij p̄j . (6.22b)

Written out in explicit form one has for i 6= j

↔

T ij = 1
4πε1

3 rij ⊗ rij −
↔

I
r3
ij

 = 1
4πε1


3x2

ij

r5
ij
− 1

r3
ij

3xijyij
r5
ij

3xijzij
r5
ij

3 yijxij
r5
ij

3 y2
ij

r5
ij
− 1

r3
ij

3 yijzij
r5
ij

3 zijxij
r5
ij

3 zijyij
r5
ij

3 z2
ij

r5
ij
− 1

r3
ij

 , (6.23)

where ⊗ is the tensor product (outer product) and rij = (xij , yij , zij); for reasons
of later convenience, we will also set

↔

T ii = 0 (note that when i = j the distance
rii = 0). The explicit form of

↔

T ij is obtained from Eq. (6.23) by replacing rij with
rij = (xij , yij , zij).
If Eq. (6.17) is multiplied from the left by the polarizability tensor of the ith dipole,
↔
α(ξi), and the resulting expression is combined with Eqs. (6.15) and (6.22), one is
lead to

pi(ri, ξi) = ↔
α(ξi)

E0(ri) +
∑
j

↔

T ij pj(rj , ξj) +
∑
j

↔

T ij p̄j(r̄j , ξj)

 . (6.24)

In writing this equation, we have for reasons of convenience also included the term
j = i in the sums since they do not contribute due to the way the dipole interaction
tensors were defined. To get a closed set of equations, we take advantage of results in
Eq. (6.16) to obtain

pi(ri, ξi) = ↔
α(ξi)

E0(ri) +
∑
j

↔

V ij pj(rj , ξj)

 , (6.25a)
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where we have defined the dyad
↔

V ij =
↔

T ij +
↔

T ij
↔

M . (6.25b)

If the system consists of an infinite and regular array of monodisperse particles, then
all the induced dipole moments pi (now without the dependence on the geometrical
type index) will have the same magnitude, say p; the relative phase change from
dipole-to-dipole is due to the spatial variation of the oscillation electric field. By
introducing pi = p exp[ik · ri] and a similar expression for pj , the substitution of
these expressions into Eq. (6.25a), one is lead to an equation that can be readily
solved for each of the components of the common dipole moment p that is corrected
for the interaction between the particles. By defining p = ↔

α
′E0, where

↔
α
′ denotes the

polarizability renomalized for the interaction of the particles. Without going into the
technical details of this calculation, it suffices to mention that the results will contain
the lattice-sums, and the parallel and perpendicular components for the renormalized
polarizabilities ↔

α
′ will be given by the expression presented previously in Eq. (3.44).

We now turn to the more interesting case of a polydisperse system for which the
induced dipole moments pi(ri, ξi) no longer are the same for all particles. To obtain
them, one needs to solve Eq. (6.25a) for a set of particle geometries but, in general,
this is a highly non-trivial task. Below we will obtain a solution of this equation within
the so-called mean field approximation. However, before presenting this solution we
introduce some necessary concepts.
In principle, there are infinitely many particle geometries ξi in the polydisperse sys-
tem of our interest. However, Eq. (6.25a) can only be solved for a finite number of
unknowns. To overcome this, we start by restricting ourselves to a large area S of
the planar surface of the substrate which consists of NS particles in total. Next we
introduce a set of predefined particle geometries ΩN = {νi}Ni=1 that has a large but
finite number of elements N and which will represents the size and shape probability
distribution function that characterizes the particles of the system. In some sense, ΩN

can be seen as a discretization of the size and shape PDF of the system. Now we make
the approximation that any particle geometry in the system, ξi, is well approximated
as an element of the set ΩN of particle geometries. Furthermore, for a given particle
geometry ν ∈ ΩN we define a set P(ν) consisting of all the particle numbers of those
particles which are characterize by the geometrical type ν.
Now, one may ask for the averaged dipole moment for particles of a given geometry
ν, a quantity that we defined as

〈pi(ν)〉ri|ν = 1
Nν

∑
i∈P(ν)

pi, (6.26)

where Nν is the cardinality (or number of elements) of the set P(ν) (that is Nν =
|P(ν)|). The dipole moment averaged over all particles of the system, that is, averaged
over both position and particle geometry, is defined as

〈pi〉i = 1
NS

∑
i

pi = 1
NS

νN∑
ν=ν1

∑
i∈P(ν)

pi = 1
ρ

∑
ν

ρν 〈pi(ν)〉ri|ν , (6.27)
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where ρ = NS/S is the surface coverage of all particle in the system and ρν = Nν/S is
the surface coverage of only particles of geometry ν. In writing this equation we have
used that∑i = ∑νN

ν=ν1

∑
i∈P(ν) and in the following we will suppress the limits on the

ν-summation to simplify the notation; from the context it should be apparent that
we sum over all particles geometries. Note from Eq. (6.27) that the global average
〈pi〉i can be written as a weighted average of 〈pi(ν)〉ri|ν with weights ρν/ρ (note that
ρ = ∑

ν ρν).

To obtain a solution of Eq. (6.25a) within the mean field approximation, we will
follow Barrera et al. [83] and first define the fluctuations around the mean of the
dipole moment of a particle of geometrical type ξj = ν ′ ∈ ΩN as

∆pj(rj , ν ′) = pj(rj , ν ′)−
〈
pj(ν ′)

〉
rj |ν′

, (6.28)

and when it is introduced into the right-hand side of Eq. (6.25a), we obtain

pi(ri, ξi) = ↔
α(ξi)

E0(ri) +
∑
ν′

∑
j∈P(ν′)

↔

V ij

〈
pj(ν ′)

〉
rj |ν′

+
∑
ν′

∑
j∈P(ν′)

↔

V ij ∆pj(rj , ν ′)

 .
(6.29)

The fluctuating dipole moment (for type ν ′) that appears in the last term on the
right-hand side of this equation is difficult to calculate as it depends on the local
arrangement of particles. To perform such a calculation, one is required to determine
and use higher order position-position pair correlation functions for the system at
hand [83]. This is a challenging task since detailed information and analysis of the
particle morphology is required.

A more appealing approach, from a practical point of view, is to adapt the so-called
mean field approximation. Here one simply neglects the fluctuating dipole moment in
Eq. (6.29), that is, one sets ∆pj(rj , ν ′) = 0 in this equation. This is equivalent to
treat each dipole of type ν as if it was embedded in the mean field exerted by the
other particles. In order to proceed, we define a renomalized polarizability

↔

α̃(ν) for
particles of geometrical type ν by the relation

〈pi(ν)〉ri|ν =
↔

α̃(ν) E0. (6.30)

This renomalized polarizability includes the effect of the interaction with neighboring
dipoles (and image dipoles). However, it is important to realize that this polarizability
only gives the response of an average particle of geometry ν. Depending on the
immediate neighborhood of such a particle, and in particular what kind of particles
that surrounds it, the dipole moments of these particles of geometrical type ν will
vary; such variations are not captured by

↔

α̃(ν).

To obtain the equation satisfied by the renomalized polarizability
↔

α̃(ν) within the
mean field approximation we start by setting ∆pj(rj , ν ′) = 0 and ξi = ν ∈ ΩN

in Eq. (6.29). Next, we apply the spatial average 〈·〉ri|ν to the resulting equation;
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then we introduce the results from Eq. (6.30) and cancel a common amplitude of the
incident electric field. In this way we obtain

↔

α̃(ν) = ↔
α(ν) + ↔

α(ν)
∑
ν′

∑
j∈P(ν′)

〈
↔

V ij

〉
ri|ν

↔

α̃(ν ′), (6.31)

where we have used that the average 〈·〉ri|ν commutes with the sums over ν ′. This
equation is the tensorial equation for the determination of the renomalized polariz-
ability

↔

α̃(ν). Alternatively one may write Eq. (6.31) in the more compact form

νN∑
ν′=ν1

↔

M(ν|ν ′)
↔

α̃(ν ′) = ↔
α(ν), (6.32a)

where we have defined

↔

M(ν|ν ′) =
↔

I − ↔
α(ν)

〈 ∑
j∈P(ν′)

↔

V ij

〉
ri|ν

(6.32b)

with
↔

I denoting the unit dyad. In Appendix 6.A it is shown explicitly that the
↔

M(ν|ν ′) is a diagonal tensor of the form
↔

M = diag(M‖,M‖,M⊥).

Due to the isotropy of the system in the plane of the surface of the substrate, the
polarizability tensors are diagonal for the coordinate system that we assume such that

↔
α(ν) =

α‖(ν) 0 0
0 α‖(ν) 0
0 0 α⊥(ν)

 (6.33)

and a similar relation for
↔

α̃(ν). For this reason, the components of the polarizability
tenors that are parallel and perpendicular to the surface of the substrate are not
coupled in Eq. (6.32a) and, therefore, one can write

νN∑
ν′=ν1

M‖(ν|ν ′) α̃‖(ν ′) = α‖(ν) (6.34a)

and
νN∑

ν′=ν1

M⊥(ν|ν ′) α̃⊥(ν ′) = α⊥(ν), (6.34b)

where ν, ν ′ ∈ ΩN . One should note that Eq. (6.34) should be satisfied for any particle
geometry ν in ΩN . To solve these two systems, we evaluate Eq. (6.34) for ν = νm with
m = 1, . . . , N to get an N × N linear system of equations (in the space of particle
geometries) of the form

Ax = b, (6.35a)
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where the matrix and vector elements of system (6.34a) are

[A]mn =M‖(νm|νn) [x]n = α̃‖(νn) [b]m = α‖(νm). (6.35b)

For system (6.34b) the elements are defined in an equivalent manner. Once the lin-
ear system (6.35a) is solved by standard methods, the renormalized polarizabilities
α̃‖(νn) and α̃⊥(νn) for all νn ∈ ΩN are known. Hence, these results can be used to
obtain, within the mean-field approximation, the renormalized polarizability tensor
averaged over the polydispersity of the system. This average polarizability is defined
in accordance with Eq. (6.26) as〈

↔

α̃

〉
=

νN∑
ν=ν1

ρν
ρ

↔

α̃(ν) (6.36)

and it includes the effect of the (dipole) interaction with the neighboring particles as
well as the effect of the substrate. It is the elements of this tensor,

〈
α̃‖
〉
and 〈α̃⊥〉,

that enter into the calculation of the surface suceptibilities γ and β that are used in
calculating the reflectivity of the system; see Eq. (6.1) for details.
It should be noticed that the ratio ρν/ρ that appears in Eq. (6.36) is not know a priori.
However, for a sufficiently large surface area S it can be obtained in terms of the size
and shape probability distribution function that one has assumed. For the sake of
argument, let us assume that this function pdf(R) only depends on the (outer) radius
R of spherical particles. Hence, the set of particle geometries used to calculate

〈
α̃‖
〉

and 〈α̃⊥〉, for instance, will be of the form ΩN = {Rn}Nn=1 with Rn = R1 + (n− 1)∆R
where ∆R is the (constant) radial sampling interval. Under these assumptions, we
can make the approximation ρνn/ρ ≈ p(Rn)∆R.

The scaling approximation of the radial distribution function

In the calculation of the tensor elements in Eq. (6.32) we needed to evaluate the
integrals given in Eq. (6.46). These included the function gνν′

(
rij,‖

)
which is the partial

pair correlation function for particles of geometrical types ν and ν ′ separated by an
in-plane distance rij,‖ [83]. This function is needed to give a microscopic description
of the morphology of the system.
Already for a system of monodisperse particles where the interaction was approximated
as hard-disks in 2D, the form of the RDF was non analytical. A generalization to the
polydisperse case is far from trivial. A part of the difficulty in approximating these
functions lies in the excluded volumes around the particles.
In the literature one can find several attempts of approximate these functions. Here
the dipole approximation [86] and the local monodisperse approximation [87] represent
important contributions.
We deal with this problem by following Gazzillo et al. 84. These authors suggested a
’scaling approximation’ to express the partial RDFs for polydisperse nonionic collodial
fluids, where the RDF for a mixture is approximated according to

gνν′
(
rij,‖

) ≈ ĝ(λνν′ r̃ij,‖), (6.37)
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where ĝ
(
λνν′ r̃ij,‖

)
is an approximately equal RDF for a monodisperse system. With

the choice of scaling parameters as

λνν′ = D

Dνν′
(6.38a)

Dνν′ = Rν‖ +Rν′‖ , (6.38b)

whereD is the diameter for the monodisperse system andDνν′ is the additive diameter
of the particle ν and ν ′ in the polydisperse system. Furthermore, since λνν′ r̃ij,‖ = r̃νν

′

ij,‖
with the definition r̃νν′ij,‖ = rij,‖/Dνν′ and write a scaling approximation as

gν,ν′(rij,‖) ≈ ĝ(r̃νν′ij,‖),
= ĝ(rij,‖/Dνν′),

(6.39)

Although the scaling approximation of Gazzillo et al. 84 incorrectly assumes that at
contact all values of the RDF are equal, the results obtained on the basis of this
approximation are still satisfactory.

The different forms for the RDF implemented in the GranFilm software are listed in
Appendix B in the case of a monodisperse ensemble of non-overlapping particles.

6.5.2 Implementation of the mean field theory in GranFilm

The calculation of the renormalized polarizabilities
↔

α̃ in the MFT limit as described in
Sec. 6.5.1 has been implemented into the GranFilm software. The main steps to per-
form this calculation are detailed in Fig. 6.5. First, the single particle polarizabilities
are calculated for a given number of different island types in the chosen distributions.
Then, the island-island interaction is calculated with MFT before the average polariz-
abilities are obtained. The samples in the distribution(s) are calculated according to
the midpoint rule given in Eq. (6.7). Using the MC integration technique to compute
the average in Eq. (6.36) is not possible in this limit as we need the dimensions of the
matrices to compute the renormalized polarizabilities.

To compute the matrix elements in Eq. (6.34) the evaluation of the RDF is needed
several times. With the two more realistic models of this function, namely the gexp(rij)
and the ghard(rij) models, calling these functions adds a considerable amount of com-
putational time to the simulation. To optimize the speed of the calculations the
chosen RDF model is only evaluated once in the beginning of the calculation. When
it is needed later, it uses the Akima spline algorithm to interpolate when needed
again [57,88].

Consistency check of the mean field code

As there exist no exact solutions we can compare our results with, a precise test
to check the presented implementation is not obvious. However, some relevant and
interesting limiting behavior does exist.
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When the width of the size distribution tends towards zero the MFT results should
approach the case of a random array given in Eq. (3.44) for monodisperse particles. If
the distance from the direct multipole to the substrate dνmp = (t(ν,1)

r −µ(ν,1))R(ν,1)
⊥ ≈ 0

the form of Eq. (3.44) and Eq. (6.46) becomes approximately equal. This test can
be performed if one choses a narrow size distribution over the radius parameter and
t
(ν,1)
r ≈ µ(ν,1).

A summary of tests comparing the MF code with a narrow distribution over the
radius for different truncation ratios and surface coverage are displayed in Fig. 6.11.
The distribution of the spherical particles in the MFT part of the code was chosen to
be σR = 0.1 nm so the ensemble contains almost identical particles. It was sampled
over a large NR = 100 number of points. Figures 6.11(a)-(b) show an almost perfect
overlap between the two limits for several truncation ratios and a non-overlapping
particles at a surface coverage of Θ = 0.42.

The same comparison for different surface coverages of particles with the RDF form
corresponding to the hard-disk model is presented in Figs. 6.11(c)-(d). In this case,
the truncation ratio was taken to tr = 1.0e−4 and the multipole position ratio was set
to µ = 9.0e−6 for both the random array and for the MFT. The imaginary part of the
average parallel polarizability [Fig. 6.11(c)], the overlap with the random array and
the MF limit, although quite satisfactory, become significantly worse for the increased
surface coverage. The effect of the local environment of each particle becomes more
pronounced. The difference between the imaginary part of the average perpendicular
polarizability [Fig. 6.11(d)] is smaller than on the parallel counterpart. This is related
to a lower oscillator strength along the perpendicular direction, and therefore, a worse
sensitivity to the induced shifts.

6.5.3 The effect of polydipersity in the finite coverage regime

In this subsection, we will present the main trends of calculations made in the FCP
limit. We will start by describing the role of the RDF model in the MF code before we
compare the different results of the more rigorous MF code with the (only theoretical)
IM and MI models.

The role of the radial distribution function in the mean field model

Figure 6.12 investigates the role of the different RDF models for a changing surface cov-
erage calculated with the MF code. A broader width of the distribution σR = 1.5 nm
is chosen to see the real effect of the polydispersity in this limit. The lattice constant
is taken from the set L ∈ {15, 12}, thus the surface coverage of the particle is changed.
The rest of the simulation parameters are indicated above the figure. Figures 6.12(a)-
(b) display, respectively, the imaginary part of the normalized average parallel and
perpendicular polarizability.

For both the directions and coverages, the curves which are modeled with the gstep(r)-
model as the RDF give a distinct response from the two other (more realistic) models.
The results of a simulation with the step-model (turquoise dotted line and the green
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Figure 6.11 A comparison between the result of MF and the random
array code for in the imaginary part of the average parallel and the
perpendicular polarizabilities: (a)-(b) for a small size distribution and
several truncation ratio parameters at fixed coverage, and (c)-(d) for
different surface coverages. The used parameters are reminded on top
of each subfigure.
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solid line), are blue-shifted for the parallel polarizability and red-shifted for the perpen-
dicular polarizability. As this model only is not physical, but taken into the discussion
to test theoretical limits of the simulation models it is expected that the results will
deviate from the two other models.

The agreement between the results for the polarizabilities obtained when RDF is
assumed to be either gexp(r) and ghard(r) is rather good for low values of surface
coverage. As the surface coverage is increased, the difference between the results
obtained when assuming these two forms for the RDF becomes more pronounced, both
in amplitude and energy of the peak for the parallel and perpendicular components of
the polarizabilities. Again, the difference is largest for the parallel component.

As we know from the discussion of the RDF (see Appendix B), the first peak of the
RDF is related to the first order neighbors, the next peak to the second order neighbors
and so on. The higher the amplitude, the more pronounced is the short-range order
of the lattice. The amplitude of the gexp(r)-model is chosen to match the amplitude
of the ghard(r)-model for the same coverage. It seems that for a system where the
coverage of particles is around Θ ≤ 0.40 the contributions from the higher (mainly the
second) order neighbors are less critical than for the first order one. As the coverage
increases, the short-range order in the system increases, and the contribution of the
second-order neighbor in the RDF-model becomes more important.

The table below Figs. 6.12(a)-(b) displays typical computation times of one simulation
for the discussed systems. If the running times are taken into account, it is evident
that the ghard(r)-model is at least one order of magnitude more time-consuming than
the two other models.

The role of the electrostatic coupling

To investigate the qualitative impact of the MF code we have compared how the
plasmon resonances are shifted for the three configurations; that is, for the LCM, the
FCM, and the LCP systems.

Figures 6.13(a)-(b) display the imaginary part of the normalized parallel and perpen-
dicular components of the polarizability averaged over a radius (or size) distribution
function. The LCM and FCM results are illustrated with the dashed-dotted green line
and the dotted orange line, respectively. The particles were organized in a random ar-
ray and the single particle polarizability was corrected with the distribution integrals
to dipolar order as given by Eq. (3.44). For the system where the electrostatic coupling
is calculated (orange dotted line) the peak is red-shifted in the parallel [Fig. 6.13(a)]
and blue-shifted in the perpendicular [Fig. 6.13(b)] direction. The LCP (blue dashed
line) response shifts the amplitude, but not the position of the peaks. A result that
we already commented on in Sec. 6.4.

The difference in positions of energies for the parallel and perpendicular response
for the FCM (dotted orange line) and FCP (solid pink line) where the island-island
interaction in the first case has been calculated with the distribution integrals for the
monodisperse system and the second case with MFT for the polydisperse system are
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ê⊥

Air

Al2O3

Ag AgAg

Parameter Value
R [nm] µR = 4.0, σR = 1.5,minR = 1.0,maxR = 7.0
NR 100
tr 0.0
L [nm] {15.0, 12.0}
Θ dΘ
gx(r) dgx(r)
M 16

2.2 2.3 2.4 2.5
h̄ω [eV]

0

20

40

60

80

100

120

Im
{〈
α

‖〉}
/〈

V
〉

gstep,Θ = 0.40
gexp,Θ = 0.40
ghard,Θ = 0.40
gstep,Θ = 0.63
gexp,Θ = 0.63
ghard,Θ = 0.63

(a) Im〈α‖(tr)〉.

3.5 3.6 3.7 3.8 3.9 4.0
h̄ω [eV]

0

2

4

6

8

10

12

14

Im
{〈
α

⊥
〉}
/〈

V
〉

gstep,Θ = 0.40
gexp,Θ = 0.40
ghard,Θ = 0.40
gstep,Θ = 0.63
gexp,Θ = 0.63
ghard,Θ = 0.63

(b) Im〈α⊥(tr)〉.
Θ gx(r) Simulation time [s]
0.40 step 21
0.40 exp 24
0.40 hard 345
0.63 step 22
0.63 exp 24
0.63 hard 435

Figure 6.12 The imaginary parts of the normalized average parallel
(a) and the perpendicular (b) polarizabilities for different values of the
surface coverage and forms of the RDF. The parameters assummed in
performing the simulations are given on top of the figure. A table dis-
playing the running times for each system is shown below the figure.
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surprisingly good. On the other hand, the amplitudes of the different limits are not
the same.

Figures 6.13(c)-(d) display the imaginary part of the normalized and direction de-
pendent polarizability averaged over a shape distribution. In contrast to the size
distribution the effect of averaging tends to bring the amplitude of the polydisperse
system lower than what was observed in the corresponding monodisperse case.

The agreement in energy position of the peaks within the different systems are surpris-
ingly good for all cases except for a slight difference between the finite coverage result
of the parallel polarizability [Fig. 6.13(a)/Fig. 6.13(c)] where the MF curve (solid pink
line) is slightly red-shifted as compared to the orange dotted line. On the other hand,
the amplitudes of the different limits are not the same except for the perpendicular
polarizability corrected from the island-island interaction for a distribution over the
truncation ratio parameter [Fig. 6.13(d)].

Different ways to calculate the average polarizability in the finite coverage
polydisperse limit

In the FCP limit we had three different ways to calculate the average polarizability
[see Fig. 6.3 for a review of the differences between them], namely the MF, the IM,
and the MI limits. Figure 6.14 displays the imaginary part of the average normalized
polarizabilities for a distribution over size [Figs. 6.14(a)-(b)] and shape [Figs. 6.14(c)-
(d)]. The MF limit is displayed with the green dashed line, the IM with the orange
dotted line, and the MI with the blue dashed-dotted line. The two latter simulations
have been computed with the MC integration scheme.

Again, we observe the general trend that it is the parallel polarizability
[Fig. 6.14(a)/Fig. 6.14(c)] which is most affected by the different ways to compute
the average polarizability in terms of the energy position and the amplitude of the
resonance peak. For the parallel direction relative to the substrate it is obvious that
the order of the averaging and accounting for the island-island interaction between
the particles matter in terms of the obtained result. The MF limit curve (dashed
tourquise line) is blue-shifted for the size distribution [Fig. 6.14(a)] and red-shifted for
the shape distribution [Fig. 6.14(c)].

In the perpendicular direction for a distribution over size [Fig. 6.14(b)] the difference
between the two theoretical limits are smaller, but they do not approach the result
of the MF limit. This curve (dashed turquoise line) lies higher in amplitude than the
two others. For a distribution over shape [Fig. 6.14(d)] the MI (dashed-dotted blue
line) and the MF (dashed turquoise line) are almost imposed. The result calculated
in the IM limit has the same position in energy, but not amplitude.

Observed trends in the finite coverage polydisperse limit

The qualitative shifts of the imaginary part of the direction dependent average normal-
ized polarizability discussed in this subsection have shown us how the three different
methods in the FCP limit differ. Some conclusions can be drawn:
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Figure 6.13 A comparison between the result of the normalized av-
erage polarizability in the parallel (a)/(c) and perpendicular (b)/(d)
direction for a random array of mono- and polydisperse system for a dis-
tribution over the radius/truncation ratio parameter. The Island_Island
interaction is varied with ’None’ (for LCM and LCP), ’DR’ for FCM and
’MF’ for FCP. Simulation parameter are given above each subfigure.
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Figure 6.14 A comparison between the results in the FCP limit for the
average normalized parallel (a)/(c) and perpendicular (b)/(d) polariz-
abilities for a size/shape distribution calculated with the island_island
interaction taken as MF, IM, and MI. The simulation parameters are
given above each subfigure.
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• The implementation of the MF limit has passed certain limit case tests, which
have given consistent results.

• The simulation results for a FCP system are sensitive to the choice of RDF
model. When the software is used, one should take into account the simulation
time. For low surface coverage (Θ ≤ 0.40), a system where one uses the naive
gexp(r)-form seems to give satisfactory results.

• The overlap between the energy position of the resonances for the MF (rigorous)
and MI (naive) results is surprisingly good.

The real part of the average polarizabilities follows similar trends to what we have
observed for the imaginary part of the same polararizabilities. To limit the length of
this manuscript, these results were not included since they do add little additional
information to the discussion.

6.6 Conclusion

This chapter tackled the question of the origins of plasmon resonance broadening.
This phenomenon has been divided into (i) intrinsic and (ii) extrinsic sources. The
former source is related mainly to the finite-size effects and to the reduction of the
electron mean free path of the electrons impacting the dielectric constants of metals
at the nanoscale. The extrinsic source of broadening is inherent to the size and shape
distributions, in other words, to the polydispersity of the particles. Of course, a
coupling between these two sources do exist. To fully conclude several systematic
simulations should be done. Even though the figures shown in the latter sections have
given us some general trends that we can give a first conclusion of.

Polydispersity was handled in the low and finite coverage limits. For non-interacting
objects at low coverage the resonances, as shown by the imaginary part of the polariz-
abilities, are broadened in a complex and intertwined way because of their dependence
to the system parameters, such as

• sensitivity of their positions to aspect ratio (or truncation) and to surface effects
• sensitivity of their intensities to flattening, total volume and finite-size effects.

Nevertheless, as it is well-known in plasmonics, the dominating effect comes from the
distribution of aspect ratio.

At finite surface coverage, the shifts of the plasmons resonance peaks induced by
island-island electrostatic coupling lead to an extra source of broadening. Indeed,
because of the fluctuations of the local environment of each object and of its size
and shape, fluctuating shifts of the peaks exist across the surface. A framework was
proposed to deal this effect within the MFT at dipolar order. The MFT assumes that
each particle is embedded in the average dipolar electric field generated by all the
other particles (all neighbors). However, this effect is treated as a function of the type
(size/shape) of particles. To do so, a deep knowledge of the statistical description of
the morphology is required; to overcome this, a scaling approximation for their RDF
was introduced as a simplification.
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The dispersion was firmly investigated in a polydisperse system. Aside from a full
implementation in GranFilm, a comparison between the LCP and FCP was given. The
new part of the code has passed the tests of certain limit cases and shows promising
results for far. Some conclusions can be drawn:

• Generally, a distribution over sizes of the particles increase the amplitudes of
the plasmon resonances as compared to the monodisperse system consisting of
particles of the average radius. When the corrections of the experimental bulk
dielectric function of the metal is performed on the polydisperse system, the
smaller particles in the ensemble dominate the response. Because of the proba-
bilistic nature of the averaging, both the finite-size and the surface corrections
potentially have a broadening effect on the average polarizability.

• A distribution over the shape tends to bring the amplitude of the resonances
down and broaden the peak, as compared to the monodisperse case. The broader
the shape distribution is, the broader is the plasmon resonances observed in the
average polarizabilities.

• The average parallel polarizability is more sensitive to the corrections in the
FCP limit than the average perpendicular polarizability.

• The results of the average polarizabilities are sensitive to the chosen model of
the RDF. The higher the surface coverage of particles is, the more important
the short-range interactions in the system become.

• A ’full simulation’ in the MF limit is time consuming. For coverages Θ ≈ 0.40 (in
the limit where the short-range in the system is quickly decreasing) simulation
time can be saved by choosing the exponential model.

• The MFT results and the an average particle interacting with the monodisperse
correction (MI) seems to overlap fairly well.

Furthermore, the real part of the normalized average polarizability displays the same
trends as the imaginary part. Figures containing plots for these observables have not
been added to this thesis since they do not add any new points to the discussion.

There are still several interesting paths that have not (yet) been investigated. All
the simulations discussed in this chapter were made for systems of spheres. It would
be interesting to see how spheroidal particles in the MF limit are affected by the
renormalized theory [89].
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6.A Average of the dipole-dipole interaction

In this Appendix we aim at calculating the elements of the tensor
↔

M(ν|ν ′) that appear
in the matrix-system in Eq. (6.32a). It is defined in Eq. (6.40) as

↔

M(ν|ν ′) =
↔

I − ↔
α(ν)

↔

V(ν|ν ′) (6.40)

where we for later convenience have introduced the averaged dipole-interaction tensor
defined as

↔

V(ν|ν ′) =
〈 ∑
j∈P(ν′)

↔

V ij

〉
ri|ν

= 1
Nν

∑
i∈P(ν)

∑
j∈P(ν′)

↔

V ij . (6.41)

In the last transition, we have introduced the meaning of the average 〈·〉ri|ν as defined
by Eq. (6.26). We also recall that the tensor

↔

V ij is defined by Eq. (6.25b) and explicit
expressions for the various elements of it can be obtained with the use of the results
in Eq. (6.23).
With the use of the partial pair-pair correlation function discussed in Appendix B,
all elements of the dipole interaction tensor

↔

V(ν|ν ′) can be calculated. First we will
address the 11-element of this tensor. It is given as[
↔

V(ν|ν ′)
]

11
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1
Nν

Nν

S

Nν′

S

∫
S
d2ri,‖

∫
S
d2rj,‖ gνν′

(
rij,‖

) [(3x2
ij

r5
ij

− 1
r3
ij

)

−ε2 − ε1
ε2 + ε1

(
3x2

ij

r5
ij

− 1
r3
ij

)]
,

(6.42)

where the 3D-distances from (i) the direct dipole at rj and (ii) the image dipole at rj
to the point ri are, respectively, given by

rij = |ri − rj | =
[
r2
ij,‖ + z2

ij,‖

]1/2
(6.43a)

and

r̄ij = |ri − rj | =
[
r2
ij,‖ + z̄2

ij,‖

]1/2
, (6.43b)

with

rij,‖ =
√
x2
ij + y2

ij . (6.43c)

Here S is the area of a large but finite region of the planar surface of the substrate
over which the spatial average is made and Nν [= |P(ν)|] is the number of particles of
geometrical type ν inside this region.
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In writing the expression in Eq. (6.42) one has used that given we have a particle
of geometrical type ν at position ri, then (Nν/S)(Nν′/S) gνν′

(
rij,‖

)
d2ri,‖d2rj,‖ is the

probability to finding a particle of geometrical type ν ′ an in-plane distance rij,‖ away
[at rj ] [90]. The function gνν′

(
rij,‖

)
denotes the partial pair correlation function for

particles of geometrical types ν and ν ′ separated by an in-plane distance rij,‖ [83]. For
given explicit forms of the partial pair correlation function the integrals that appear in
Eq. (6.42) can be evaluated, at least by numerical means, to obtain the tensor-element
V11(ν|ν ′).
The 22-element of the tensor in Eq. (6.41) is obtained by from the right-hand side of
Eq. (6.42) by replacing xij with yij . It is readily shown that the 11-element and the
22-element are equal, and for later convenience we define

V‖(ν|ν ′) = 1
2

[
↔

V(ν|ν ′)
]

11
+ 1

2

[
↔

V(ν|ν ′)
]

22
. (6.44)

Due to the isotropy of the system in the plane of the substrate, the two integrals that
appear in Eq. (6.42) are most easily evaluated by the introduction of polar coordinates.
Hence, for a general scalar function f(·) one has∫

d2ri,‖
∫

d2rj,‖ f(rij,‖) =
∫

d2u‖
∫

d2rj,‖ f(u‖)

= S

∫ 2π

0
dθ
∫ ∞

0
du‖ u‖f(u‖)

= 2πS
∫ ∞

0
du‖ u‖f(u‖),

where we have made the coordinate transformation u‖ = ri,‖−rj,‖ with u‖ = |u‖| and
used the fact that d2u‖ = d2ri,‖. one should note that u‖ = rij,‖.

Finally one obtains when these results are introduced into the expression that result
from substituting the expressions for V11(ν|ν ′) [Eq. (6.42)] and V22(ν|ν ′) into Eq.(6.44)

V‖(ν|ν ′) = 1
ε1

1
4
Nν′

S

∫ ∞
0

du‖ u‖gνν′
(
u‖
) 
 3u2

‖(
u2
‖ + z2

ij

)5/2 −
2(

u2
‖ + z2

ij

)3/2


−ε2 − ε1
ε2 + ε1

 3u2
‖(

u2
‖ + z̄2

ij

)5/2 −
2(

u2
‖ + z̄2

ij

)3/2




= 1
4
ρν′

ε1

[
Gνν′ −

ε2 − ε1
ε2 + ε1

Gνν′

]
, (6.45)

where ρν′ = Nν′/S and we have defined the following two classes of integrals

Gνν′ =
∫ ∞

0
du‖ gνν′(u‖)

u‖
(
u2
‖ − 2z2

ij

)
(
u2
‖ + z2

ij

)5/2 (6.46a)
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and

Gνν′ =
∫ ∞

0
du‖ gνν′(u‖)

u‖
(
u2
‖ − 2z̄2

ij

)
(
u2
‖ + z̄2

ij

)5/2 . (6.46b)

The result expressed by Eq. (6.45) is the final result for the parallel component of the
average dipole interaction tensor.

The 33-element of the tensor
↔

V(ν|ν ′), that we in the following will call V⊥(ν|ν ′), is
obtained in a manner that is equivalent to how we obtained V‖. The result of an
explicit calculation gives

V⊥(ν|ν ′) = 1
4πε1

1
Nν

Nν

S

Nν′

S

∫
S
d2ri,‖

∫
S
d2rj,‖ gνν′

(
rij,‖

) [(3z2
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ij

− 1
r3
ij

)
+ ε2 − ε1
ε2 + ε1
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ij

− 1
r3
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= 1
2
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(
u‖
)  2z2

ij − u2
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2z̄2
ij − u2

‖(
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‖ + z̄2

ij

)5/2


= −1

2
ρν′

ε1

[
Gνν′ +

ε2 − ε1
ε2 + ε1

Gνν′

]
. (6.47)

This is the final expression for the average interaction tensor in the perpendicular
direction.

What remains to obtain are the off-diagonal elements of
↔

V(ν|ν ′). In fact, they all
vanish but we will not here go into great detail to show it. Instead we here simply
mention that it is a result of the following averages 〈xij〉, 〈yij〉, 〈xijyij〉, etc. vanishing.
To conclude, we have in this appendix shown that the average interaction tensor
↔

V(ν|ν ′) is a diagonal tensor of the form
↔

V = diag(V‖,V‖,V⊥) When this result is
substituted into the expression for

↔

M(ν|ν ′), defined in Eq. (6.40), it is found that
also this tensor is diagonal. It can be expressed in the form

↔

M = diag
(
M‖,M‖,M⊥

)
, (6.48a)

where

M‖(ν|ν ′) = δνν′ − α‖(ν)V‖(ν|ν ′) (6.48b)

and

M⊥(ν|ν ′) = δνν′ − α⊥(ν)V⊥(ν|ν ′) (6.48c)

In obtaining these results we have used that the tensor ↔
α(ν) also is diagonal and of

the form given in Eq. (6.33).
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Chapter 7

General conclusion and further work

In this thesis we have studied the optical properties of granular thin films, mainly from
a theoretical and numerical point of view. In this chapter we will state the general
conclusions and comment on some directions of further work.
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(a) Polydisperse system. (b) Oscillation modes in a
coated particle.

GranFilmPy

Variables:
gf.param[’radius’] = 5
gf.param[’truncation ratio’] = 0.3
gf.param[’lattice constant’] = 15

Methods:
get polarizabilities()
get transmissivity()
optimize model parameters()

(c) Schematic of the Gran-
Film Python-class.

Figure 7.1 Most important deliverables from the thesis; the introduc-
tion of polydispersity (a), the discussion of the oscillation modes in a
coated particle (b), and the development of the GranFilm Python inter-
face (c).

7.1 General conclusions

The three most important outcomes of the work performed during the period of this
thesis are summarized in Fig. 7.1. They are:

1. The introduction of polydispersity over the size and shapes of the particles has
extended the accessible geometries one can study with the GranFilm software
[see Fig. 7.1(a)].

2. The analysis of the physical origin of the oscillation modes (eigenmodes) in the
context of coated and truncated particles has demonstrated that the combined
effect of a coating layer and the substrate can be studied with the GranFilm
software [see Fig. 7.1(b)].

3. The update and further development of the GranFilm Python interface is an
important contribution in order to make GranFilm more easily accessible for
new users [see Fig. 7.1(c)].

7.2 Summary

In the previous chapters, the optical properties of granular thin films containing trun-
cated and supported spherical and spheroidal islands have been discussed in depth
from a theoretical point of view. Below we summarize the main conclusions of each
chapter.

We started in Ch. 1 by discussing the general properties of plasmonics needed to un-
derstand the LSPRs observable in metallic NPs. With a series of examples provided by
analytical formulas for the polarizabilities of simple systems (sphere/spheroid/dipo-
lar interaction with a substrate), we learned how the shape of the particle, a coating
layer, the embedding medium and the presence of a substrate or of neighboring islands
strongly affect the optical response of the system. By changing one of these parame-
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ters, one can tune drastically the energy position of the resonance and its amplitude
(or intensity).
In Ch. 2, we explained how the EF-formalism could be used to describe the EM prop-
erties of non-sharp interfaces. The definitions of the so-called excess quantities and
the surface susceptibilities were the formalism’s key concepts. It was shown that the
surface susceptibilities, in the case of truncated particles supported by the substrate,
are linked to particle polarizabilities parallel and perpendicular to the substrate. The
chapter ended by stating the formulas for a set of modified Fresnel amplitudes for a
non-sharp interface. These amplitudes were used to define the differential reflectivity,
an observable which is measured in a SDRS experiment.
Chapter 3 illustrated how the polarizabilities, to the first or second order, of trun-
cated and supported particles can be obtained in the quasi-static approximation. The
calculation method was valid for particles that were symmetric along the z-axis. It
is based on a solution of the Laplace equation through a multipolar expansion of the
expansion supplemented by the image charge technique to account for the electrostatic
coupling with the substrate. A weak formulation of the boundary conditions at the
surface of the sphere leads to a linear system of equations for the multipolar coeffi-
cients. Its solution gives access to the polarizabilities (the first term in the expansion)
and the mapping of the electrostatic potential. The analysis was detailed primarily
for the case of a truncated sphere. Guidelines to the generalization to coated objects,
as well as the case of spheroidal particles, were given. The chapter ended with a
discussion of the island-island interactions and how it influences the optical proper-
ties of island films containing supported particles. Expressions for the polarizabilities
renormalized by the island-island interactions were introduced for particles organized
in regular or random arrays.
The GranFilm software itself was thoroughly introduced in Ch. 4. We gave a detailed
description of the input file and commented on some of the new functionalities. The
development of the GranFilm Python interface was the most important contribution
in order to increase the number of users. Simulation results for typical systems were
discussed. Through examples, we showed how some input parameters could greatly
impact the results produced by the software. Also, an example of model parameter
estimation based on a differential reflectivity curve was given.
Chapter 5 was devoted to the understanding of the type of oscillation modes which
can be excited in a system where the particles experience the combined effect of
the presence of a coating layer and the substrate. A methodology to track them as
function of a given parameter (truncation/shell thickness) was proposed; it consists of
identifying the nearly singular points of the matrix system at low damping. While the
case of a dielectric shell poorly affected the nature of the modes and mainly red-shifted
their frequency through screening, richer polarization patterns were observed in the
case of a supported metallic shell. For such systems complex mixing and splitting of
the eigenmodes, as a function of the geometry were observed.
Finally, in Ch. 6 we address the origin of the broadening of the plasmon resonance
peaks. This phenomenon was divided into (i) intrinsic and (ii) extrinsic sources. The
former is mainly related to finite-size effects and to the reduction of the mean free
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path of the electrons at the nanoscale. This latter effect is inherent to size and shape
distributions, in other words, to the polydispersity of the particles. Of course, a
coupling exist between both. The case of polydispersity was handled in the low and
finite coverage limits.

For non-interacting objects at low coverage the resonances were broadened in a com-
plex and intertwined. The positions of the resonance peaks were shifted because of
their sensitivity to the aspect ratio (or truncation) of the particles and to surface ef-
fects. The amplitude of the peaks were linked to flattening, total volume, and the
finite-size effects. At finite coverage, the shift of the peaks induced by island-island
electrostatic coupling leads to an additional source of broadening. A framework to
treat this effect in the MFT and at dipolar order was proposed and implemented. The
model assumed that each particle is embedded in the average dipolar field generated
by all the (polydisperse) neighbors. A scaling approximation for the particles’ RDF
was introduced as a way to tackle the issue of the statistical description of the particle
morphology.

The dispersion was firmly investigated in a polydisperse system. Aside from a full
implementation in GranFilm, a comparison between the LCP and FCP was given.
The new part of the code has passed a number of consistency checks and for certain
limiting geometries the produced results are promising. The new functionalities model
the polydispersity of real systems, encountered in e.g. deposition experiments, in a
more realistic manner.

7.3 Directions for further work

Although this thesis has made progress towards including a broader set of geometries
into the GranFilm software package, several issues still remain open.

Does our model for the polydisperse systems better match the experimental results
than the results obtained for a corresponding monodisperse system? In the classical
GranFilm configuration the ’experimental broadening’ was accounted for by simply
broadening the monodisperse absorption peak with a convolution of a Gaussian of
width σi [42, 58]. It would be very interesting to see if the MF code can produce
realistic results during parameter optimization. For this to be feasible, one would
need a considerable speed up of the new branches of the code. Also, the effect of the
polydispersity for the spheroidal geometries have not been investigated. The results
are expected to follow similar trends to what we saw for the system consisting of
polydisperse and truncated spheres.

When are our systems definitely out of the quasi-static approximation? We know
that the relevant sizes of the particles simulated with our software must be in the
quasi-static approximation. Furthermore, we also know that the agreement between
the results produced with the dipolar and quadrupolar island-island interactions is
satisfactory for surface coverage as high as 60 % [56]. But, it has not yet been tested
carefully when, for instance, the full set of reduced Rayleigh equations have to be
solved to obtain a physical result were retardation is included. The work described
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in the thesis by J-P Banon [91], is an interesting starting point for performing a
comparison to the similar results obtained by GranFilm simulations.

Is it feasible to combine the speed of GranFilm with other methods? In a study con-
ducted by Alvarez et al. [92] a combination of GranFilm and other simulation methods
were used to model the response of a truncated spheroid placed on a thin film and
a substrate with promising results. Such and similar approaches should definitely be
studied further in the future.
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Chapter A

The experimental bulk dielectric
functions

This appendix contains plots of all the experimental bulk dielectric functions that
were used in the different GranFilm simulations displayed in this thesis.
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Figure A.1 The experimental bulk dielectric functions of the system
materials relevant for this work.

A.1 Materials of the surrounding system
In this work, all the simulations made with GranFilm the dielectric function of the
ambient material is chosen to be air [see Fig. A.1(a)] and the substrate is taken as
alumina [see Fig. A.1(b)] as the substrate. Respectively denoted ε1/εa and ε2/εs.

A.2 Materials of the particles
The materials of the particles and the eventual coatings for the simulations made with
GranFilm in this work are either silver [see Fig. A.2(a)] or silica [Fig. A.2(b)].
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Figure A.2 The experimental bulk dielectric functions of the materials
used in the particles relevant for this work.
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Chapter B

The radial distribution function

In the cases when the organization of the particles is not regular (a so-called random
lattice configuration), the electrostatic interaction between particles can not anymore
be described through lattice sums that are based on the periodic (square or hexag-
onal) arrangement of similar objects. They should be replaced by their continuous
integral counterparts (Sec. 3.5 based on the particle-particle or two-point pair cor-
relation function. When the particles organized in a random 2D lattice, reasonable
analytical models of these correlation functions do not exist [93]. In the following, a
precise definition of this function is presented as well as approximate expression in the
particular case of hard-core interacting (i.e. non-overlapping) objects. In the case of
polydispersed objects, the modeling of the average polarizabilities in the mean-field
approximation (Sec. 6.5) requires similar functions, but for particles of different types,
the so-called partial pair correlation functions. For this case a scaling approximation
of the point-point pair correlation of the monodisperse assembly of NPs is used.
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B.1 Statistical description of amorphous materials

When our particles are organized in what we call herein a random lattice, their ar-
rangement does not follow regular patterns. Typically we will have some kind of
local order between the first few neighbors. Thus, we speak of short-range order in
contrast to the long-range order of lattices. Following Refs. [90, 94, 95], we define
the radial distribution function (RDF), universally denoted by g(r). The framework
around determining the RDF deploys techniques from statistical mechanics to model
the distribution of objects.

Historically, the first experimental studies of the RDF is credited to J. D. Bernal. In
his work carried out in the 1930s, he tried to explain the observed short-range order
of x-ray diffraction patterns [90] of amorphous or glassy media. By the 1960s, the
theoretical framework of statistical mechanics was developed to allow a more formal
description of the RDF in the case of particles interacting through a given potential in
a fluid or gas. The idea is to link the properties of the underlying potential from the
spatial distribution of particles. Among the most famous theories to determine g(r),
are the Ornestin-Zernike equation and the integral equation of Percus-Yevick. Also,
the thermodynamic quantities like the potential energy, pressure, and compressibility
can be directly linked to the RDF [90].

A probabilistic formulation

To give a complete description of the arrangement of all the particles in a system, we
need to specify the n-body correlation function. The n-particle PDF ρn(r1, ..., rn), is
defined by stipulating that the probability that the volumes dr1 around r1, dr2 around
r2, etc., contains only one atom can be given by

dPn(r1, ..., rn) = ρn(r1, ..., rn)dr1, ...,drn. (B.1)

In a disordered system, where a large number of atomic configurations are possible,
the n-particle PDF is determined by taking the average over all configurations to give
a complete description. In practice, it is sufficient to know the one- and two-particle
distribution functions to give a satisfactory description of the system. These latter
quantities can also be determined from experiments [90].

Equivalent representations can give the correlation functions with the average of delta-
functions or with the integral over the phase space and partition functions. We choose
the first representation.

A delta-function representation

Considering a system containing N particles in the volume V , the first-order correla-
tion function is

ρ(1)(r) =
〈

N∑
i=1

δ(r1 − ri)
〉
, (B.2)
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where the δ-is the delta function and ri denotes the center of the ith particle. Similarly,
we can define the second-order correlation function as

ρ(2)(r1, r2) =
〈

N∑
i=1

N∑
j=1
j 6=i

δ(r1 − ri)δ(r2 − rj)
〉
. (B.3)

With the definitions of probability densities,∫
V

drnρ(n)(r(n)) = N !
(N − n)! , (B.4)

where n is the order of the correlation function, V the volume of the system, and N
the total number of particles in the system.
The n-particle probability distribution function is obtained by dividing the n-particle
density function by the one-particle densities

g(r1, ..., rn) = ρN (r1, ...,drn)
ρ(r1), ..., ρ(rn) . (B.5)

By assuming
N(N − 1)/V 2 ≈ N2/V 2 = ρ−2, (B.6)

the two-particle probability distribution function can be re-written as

g(2)(r1, r2) = ρ(2)(r1, r2)
ρ(r1)ρ(r2)

= ρ−2
〈

N∑
i=1

N∑
j=1
j 6=i

δ(r1 − ri)δ(r2 − rj)
〉

= ρ−1
〈

N∑
i=1

N∑
j=1
j 6=i

δ(r1 − r2 + rj − ri)
〉
. (B.7)

With the coordinate transformation r = r1 − r2 we can rewrite Eq. (B.7) as

g(2)(r) = ρ−1
〈

N∑
i=1

N∑
j=1
j 6=i

δ(r− ri + rj)
〉
. (B.8)

In an isotropic system (as assumed in this work), the two-particle distribution function
depends only on the distance between the particles g(r) = g(|r|) = g(r). This quantity
is what we call the RDF. Formally, it measures the probability to find a particle j at
a distance r from the reference particle i relative to the average density of particles j.
If we select the center of one particle as the origin, the number of particles in the
spherical shell of radius r and thickness dr is

n(r)dr = 2πρg(r)rdr. (B.9)
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The limiting behavior of the radial distribution function

Due to the impenetrability of two particles, RDF must be equal to zero when the
distance between the centers of any two particles in the system is less than their
diameter D0. This means that lim

r<D0
g(r) = 0.

When the particles are separated by distances greater than the particle diameter
the behavior of the RDF is highly non-trivial. If there is only short-range order
present in the system the joint probability distribution becomes a product between
two independent distributions

ρ(2)(r1, r2)
ρ(1)(r1)ρ(1)(r2)

= ρ(1)(r1)ρ(1)(r2)
ρ2 = 1, (B.10)

and therefore the limit lim
r→∞

g(r) = 1 should hold for the RDF. It is common practice
to separate this term to define the pair correlation function [90]

h(r) = g(r)− 1. (B.11)

To summarize, the behavior of RDF in the two most relevant limits are

lim
r<D0

g(r) = 0, lim
r→∞

g(r) = 1. (B.12)

The structure factor and the radial distribution function

In X-ray diffraction and/or neutron experiments the spatial FT, universally known as
the structure factor denoted S(k), rather than the RDF is obtained. For an isotropic
2D fluid, these two quantities are related by [90]

S(k) = 1 + 2πρ
∞∫
0

drrg(r)sin kr
kr

, k 6= 0. (B.13)

B.2 Models of the pair-correlation function

The analytical forms of these functions do not exist in 2D. Nevertheless, an approxi-
mate form in the case of hard-core interacting particles, can be defined. As a test of
our model of the particle-particles electrostatic coupling, we used different approxi-
mations for the RDF. Although, even if particles on a substrate do not overlap, they
do not interact through a potential. Their spatial arrangement results from the com-
plex interplay between growth phenomena that can not be accounted for by a simple
potential.

B.2.1 The step-function

In the ideal gas-model, the positions of the atoms are random. Thus, from the previous
sections we know that the absolute simplest form of the RDF that fulfills the behavior
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in the limits proposed in Eq. (B.12) will a step function

gstep(r) =
{

0, r ≤ D0

1, r > D0.
(B.14)

This first model is useful only for testing the different limits of our implementations,
as the considered systems are certainly not equal to those of the ideal gas.

B.2.2 A damped exponential

A more realistic model is some function that is properly normalized. A naive function
that also respects the limits given in Eq. (B.12) is

gexp(r) =

0, r < D0

1 + Ce−
r−D0
a0 , r ≥ D0,

(B.15)

where the two terms C and a0 are positive constants that result from the normalization
of the pair-correlation function. The normalization constant a0 can be determined
from the integral over the pair-correlation function

2πρ
∫ ∞

0
drrh(r) = −2πρ

∫ D0

0
drrg(r) + 2πρ

∫ ∞
D0

drrCe−
r−D0
a0

=
(
−
∫ D0

0
drr + C

∫ ∞
D0

du(u+D0)e−
u
a0

)

= −D
2
0

2 + CD0a0 + Ca2
0

= 0, (B.16)

where the change of variables u = r −D0 was used in the second step of Eq. (B.16).
Solving the second order equation and choosing only the positive solution we find

a0 = 1
2

(
−C +

√
C(C + 2)

)
. (B.17)

The second constant C is the amplitude of gexp (r)|r=D0
.

B.2.3 The hard disk model

A more rigorous approach, but still approximate RDF for hard-core interacting objects
has been obtained by Baus and Colot [93] from thermodynamic considerations. They
derived accurate expressions for the thermodynamic and structural properties of a
fluid of hard D-spheres for even and odd values of D. By rescaling the low density
expressions of the equation of state and the direct correlation function c(r,Θ), they
obtained a satisfying overlap with the well-known result of the integral equation of
Percus-Yevick for hard interacting disks (D = 2). The dimensionless packing fraction1

Θ, is the only needed input for this model.
1The packing fraction is called coverage in the GranFilm software.
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Following the formalism of Ref. 93, our implementation for D = 2-spheres first calcu-
lates a dimensionless structure factor from the relation

S(q,Θ) = [1− c(q,Θ)]−1 , (B.18)

where c(q,Θ) is the spatial FT of the direct correlation function c(r,Θ) and given as

c(q,Θ) = −Θ ∂

∂Θ [Θz(Θ)]
[
(1− a2Θ)22f1(q) + a2Θ

{
(af1(aq/2))2 +H2(q; a)

}]
,

(B.19)
where z(Θ) is a central quantity related to the equation of states, the term f1(.) an
auxiliary function related to the Bessel functions, and H2(q; a)is an one-dimensional
integral. Also, a dimensionless wave number q = kD0 and a rescaling of the diameter
a have been introduced.

The RDF of the hard disk model then determined from the dimensionless structure
factor

ghard(r′) = 1 + 1
2πρ′

∞∫
0

dqJ0(qr′)r′
(
S(qr′)− 1

)
, (B.20)

where r′ = r‖/D0 and ρ′ = ρ/D0 are, respectively, a dimensionless distance and
density, the term J0(qr‖) is the zeroth order Bessel function of the first kind. To deal
with the oscillating behavior of the Bessel function during the computations we deploy
the epsilon algorithm of Wynn [96].

Because the calculation of the inverse of the spatial FT of the static structure to the
given order is a time-consuming process, the calculation of RDF is performed once
for a given coverage of particles. The result of this calculation is then stored and
interpolated to obtain the required value needed during a simulation.

B.3 Examples

In all configurations, the RDF is calculated for a unitless radial distance r′ calcu-
lated from the relationship between the diameter and the radial distance between the
neighboring particles.

An illustration of a typical result for the different choices of the RDF is given in Fig. B.1
for a coverage of Θ = 0.403. The exponential and hard disk model of the RDF as
introduced in Eqs. (B.15)-(B.20), are respectively shown with an orange dotted line
and a solid blue line. The free parameter controlling the amplitude of gexp(r′) is chosen
to match ghard(r′) at r′ = r‖/D0.

In the limit where the coverage of particles is small, Θ → 0, the hard disk would
approach an exponential-like behavior before reaching the dilute limit described by
the step function. The first amplitude of the exponential and the hard disk model
represents the ring of first neighbors.
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Figure B.1 Examples of
the three approximations of
the RDF of hard disks. The
coverage is Θ = 0.403. The
parameter controlling the am-
plitude of gexp(r′) (orange
dotted line) is chosen so
it matches the amplitude of
ghard(r′) (solid blue line).

In all the three models, the demanded limit behavior of the RDF is as stated in
Eq. (B.12). Furthermore, the hard disk model displays an oscillator behavior. The
underlying partial short-range order is rapidly lost at greater distances. As indicated
by the solid blue line approaching one after the second peak in Fig. B.1. However,
the number of peaks and their amplitudes would increase at a higher coverage of
particles until reaching the RDF of a perfect hexagonal lattice. An example of how
the oscillations and amplitudes of the hard disk model change for a different coverage
of particles dΘ is presented in Fig. B.2.
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Figure B.2 Examples of
how the amplitudes and oscil-
lations of the hard disk model
change with a different cover-
age of particles.
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Chapter C

The GranFilm Fortran input file

This appendix will explain all the nml-namespaces which can be given in a GranFilm
Fortran input file. See Ch. 4 and Ch. 6 for a description of the relation between the
different parameters for the different simulation types.
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A Fortran-namespace begins with the &-symbol and is followed by the name of the
namelist. All variables left of the equal sign are taken as keyword-names. The scalars
and vectors of integers, reals, and strings to the right of the equal sign are the values
of the keyword. In cases where there are several possible input values these are given
behind the exclamation mark in parenthesis. In cases where the units of the param-
eters are needed, these are indicated with square brackets. In Fortran, the comment
command is !, i.e. keywords with a ! in front are ignored when the input file is read
by the Fortran code. Some keywords with a ! is added in the following to exemplify
the different configurations.

C.1 Required parameters
These parameters are required to successfully run a GranFilm simulation in the default
configuration of the software, for a system of identical truncated spheres.

C.1.1 Global

! This namelist is in the file param.sif
&Global
Title = "Parameters to run GranFilm"
EPSILON_ROOT = ’/home/usr/local/path_to_DataBase_for_epsilon_values/’

/

The path to the values of the experimental values of the bulk dielectric functions for
the materials used in the simulations are given with the keyword EPSILON_ROOT.

C.1.2 Source

! This namelist is in the file param.sif
&Source
Theta0 = 45 ![deg]
Phi0 = 0 ![deg]
Polarization = ’s’ !(s,p)
Energy_Range = 1.5, 5 ![eV]

/

The chosen interval of the Energy_Range must match with the values in the experi-
mental database.

C.1.3 Geometry

! This namelist is in the file param.sif
&Geometry
Radius = 5 ! [nm] Sphere
! Radius = 5, 3 ! [nm] Oblate
Truncation_Ratio = 0.0
Media = ’air’,’mgo’,’ag’,’mgo’
Radius_Ratios = 1.
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Broadening = 0.17 ! [nm]
Distribution = ’None’ ! ( None, Size_Distribution)

/

If a sphere geometry is chosen, the Radius-keyword will have one value. In the case of a
spheroidal geometry, the Radius-keyword must have two values. If the inhomogeneous
broadening is wanted the number of components of in the Radius- and Broadening-
keywords must match. The first component is always the parallel radius, the second
the perpendicular radius.

To run a configuration with a polydispersity over the size or shape the Distribution-
keyword must be set to ’Size_Distribution’. The additional namespace ’&Size_Distribution’
is then read.

Furthermore, with the Media-keyword the reading routine will automatically search
for namespaces which match the media to decide if corrections of the bulk dielectric
functions should be performed (see optional namelist under corrections).

C.1.4 Interaction

! This namelist is in the file param.sif
&Interaction
Arrangement = ’Lattice ! (Lattice, Random_Array)
Lattice_Type = ’Square’ ! (Square, Hexagonal)
Lattice_Constant = 31 ! [nm]
Island_Island_Interaction = ’None’ ! (None, Dipole, Quadrupole, Mean_Field)
Pair_Correlation_Type = ’Step’ ! (Step, Exponential, Hard_Disk)

/

The Pair_Correlation_Type-keyword is only needed when Arrangement=Random_Array
arrangement of the monodisperse particles, or in the case of a polydisperse system
where the Island_Island_Interaction= Mean_Field.

C.1.5 Numerics

! This namelist is in the file param.sif
&Numerics
Multipole_Order = 16
Multipole_Position_Ratio = 0.00
No_Energy_Points = 500

/

C.2 Extra parameters

These are considered extra as they are not needed to be set for the default configuration
in a GranFilm simulation.
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C.2.1 Correction of the bulk dielectric function

! This namelist is in the file param.sif
&ag
Material = ’ag’
Correction = ’Surface’! (’Scaling’,’Surface’,’Finite-Size’)
Epsilon_Scaling = 1, 0.01
Plasma_Frequency = 9.17 ! [eV]
Damping_Frequency = 0.018 ! [eV]
Fermi_Velocity = 0.91 ! [eVnm]
Finite_Size_Constant = 0.6
Plasmon_Shift = -1.13 ! [eV^2nm]

/

The name of this namelist, i.e. &ag, must match with at least one of the materials in
the Media-keyword given in the Geometry-namelist. The parameter in the Material-
keyword must match with one of the members in the database of the bulk dielectric
function.

C.2.2 Polydisperse systems

! This namelist is in the file param.sif
&Size_Distribution
PDF = ’Truncated_Gaussian_NonCorr’
Sigma_Radius = 2.1 ! [nm]
Min_Radius = 0.1 ! [nm]
Max_Radius = 7.4 ! [nm]
Samples_of_Radius = 100
!Tolerance_Dipole = 0.02
!Tolerance_Quadrupole = 0.009
!Interaction_Sequence = ’Mean-Interaction’ ! (’Mean-Interaction’, ’Interaction-Mean’)

/

The polydispersity is enabled when the keyword Distribution=Size_Distribution in
the &Geometry namespace. The name of the parameter after the underscore for the
keywords Sigma, Min and Max decides which parameter the distribution should be
taken over, here the radius of a sphere.
In cases where the Monte Carlo (MC) integration is performed also the required tol-
erance of the estimate of the average polarizability must bee given. In this case, the
keyword Samples_of_X is not needed.
If the Island_Island_Interaction = ’Dipole’ or ’Quadrupole’ in the &Interaction names-
pace also the sequence indicating the order of averaging and correcting for the island-
island interaction can be decided.
If the Radius-keyword in &Geometry has two components (spheroidal geometry) one
indicates the one that should be distributed by adding an index to the end of the
Radius-keyword, i.e. Sigma_Radius(2) and Tolerance_Dipole(2) indicated a distri-
bution and required tolerance for the perpendicular component.
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C.2.3 Parameter estimation

! This namelist is in the file fit.sif
&Fitting

Experimental_Data = ’experimental_data.dat’
Mode = ’dR/R’
! Tolerance = 1.0E-06
! Radius_Ratios(2) = 0.4, 0, 100 ! [nm]
Radius = 3.50, 2.1, 6 ! [nm]
Truncation_Ratio = 0.62, 0.00001, 0.99
Lattice_Constant = 20, NaN, 25 ! [nm]
! Broadening(2) = 0.13 ! [nm]

/

To be able to perform a series of parameter optimizations efficiently through ’scripting’
the &Fitting-namelist must be placed inside the file fit.sif. The Mode-keyword sets
the type of observable the parameter optimization should be performed for. The
Tolerance-keyword is used to set the size of the relative error of the sum of squares
the wanted in the optimization.

To enable a model parameter for an optimization the name of the keyword must be
given with one or three values. The first value is interpreted as the initial guess of
the parameter. If one wishes to perform constrained optimization of the given model
parameter two additional numbers must be given. The first one is taken as the lower
and the second one as the upper limit of the model parameter. If one wish that only
one of the limits should be constrained in the optimization the ’NaN’ value should be
chosen on the other limit.

If the Radius-keyword in the &Geometry has two components (spheroidal geometry)
or there are present a number of coatings on the particle the right component of
the model parameter to be optimized are chosen by adding an index to the actual
keyword, i.e. Radius_Ratios(2) and Broadening(2). The logic of the chosen model
parameters which should be optimized are automatically checked against the values
in the param.sif file.
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