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General Introduction

Context

SCADA systems

SCADA which stands for Supervisory Control And Data Acquisition, are Indus-

trial Control Systems (ICS) used for centralized data acquisition and control

of geographically dispersed assets. Those systems are used in water distribu-

tion, wastewater treatment, power transmission and distribution, oil and gas

pipelines, public transportation systems, etc. [145]. The integration of SCADA

systems to the management of industrial systems not only helps improve perfor-

mance, but also reduces operating costs [21].

Historically, no consideration was given to security at the time of the design of

SCADA systems, but engineers were more focused on practical aspects such as

availability, reliability, and performance of physical processes [91]. Designers

relied upon two forms of protection i.e. air gap [22] and security through ob-

scurity. The former was based on the fact that SCADA networks are physically

isolated from other networks making any attack difficult, while the latter relied

on the presumption that information about SCADA systems are not available to

public, thereby making them secured [94].

Attacks on SCADA systems

Nowadays, modern SCADA systems use Commercial-Off-The-Shelf (COTS) hard-

ware, software, standard communication technologies such as TCP/IP and ETH-

1



2 General Introduction

ERNET or Wireless protocols. Moreover, today’s SCADA networks are intercon-

nected to corporate networks and to the Internet for diverse reasons such as

management, system administration, maintenance etc. [23] [134]. Those shifts

in SCADA networks though allowing easy management and reduction of costs,

expose them to cyber-attacks [125] [21].

The consequences of an attack on SCADA systems can be loss of production,

financial losses, environmental disasters and even loss of human lives [154]

[169].

SCADA networks have already been the target of attacks such as those of the

Maroochy Water System in Australia [142], the Davis-Besse nuclear power plant

in Ohio (USA), the Iranian uranium enrichment centrifuges with Stuxnet [48]

[29], power plants in Ukraine [102] and Vermont in the USA [129].

SCADA Intrusion Detection Systems (IDS)

SCADA networks are different from traditional IT ones, and those specificities

must be taken into account in approaches to design security solutions for SCADA

systems. Unlike in traditional IT, software patching and frequent updates are not

well suited for control systems. Those systems also require high availability, have

large amount of legacy systems and usually have static topology and regular

communication patterns [23] [170] [30]. Moreover, the embedded systems

used to implement industrial automation systems also suffer from restrictions

such as memory and processing limitations, lack of robustness and software

implementation and configuration issues [46].

In order to protect SCADA networks, [26] proposes many SCADA-specific secu-

rity standards such as firewall deployment, message monitoring, protocol-based

solutions, cryptographic key management, anti-viruses and software patches.

Consistent security policy, well-designed network architecture, system harden-

ing, two-factor password and data encryption for remote connections are also

useful to secure SCADA systems [35]. Moreover, [125] propose authentication of

communication partners, use of secure protocols and Virtual Private Networks

(VPN).
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Despite the combination of all those security measures, there is no zero-risk

in information systems security, i.e., an attack could succeed in the network.

Intrusion detection systems (IDS) and anomaly detection systems are security

solutions that plays a significant role in information security, as they help detect

successful intrusions or anomalous events in a network. [56] advocates that

IDS should be used along with other security mechanisms such as firewalls,

vulnerability scanners, security policy verifiers to ensure an optimal industrial

control network security. But the specific nature of SCADA systems requires

specific approaches for SCADA intrusion/anomaly detection systems.

There are mainly three kinds of intrusion detection approaches : signature or

misuse detection, anomaly detection and model-based or specification detection

[8] [170]. The signature detection (also known as misuse detection) matches the

traffic to a know signature. On the other hand, anomaly detection learns the

"normal" behavior of the system and tries to detect abnormalities in traffic i.e.

traffic deviating from the “normal” behavior. The main drawbacks of anomaly

detection is the low detection rate and high false alarm. But anomaly detection

based IDS can detect new or zero-day attacks. The model-based approach uses

rules to create a model of what is allowed and raises alerts when the observed

behavior is not matching the rules. Although sounding promising, it is hard to

entirely model a system [8] [169]. Therefore, anomaly detection is an important

defense mechanism to protect SCADA systems.

Objective and Research Questions

In recent years, Deep Learning [59] which is a sub-field of machine learning

became a hot topic among researchers as this approach is successfully applied

to domains like image classification, video and natural language processing

(NLP). In the literature, there is more and more attempts to use deep learning

for networks anomaly detection [6] [44] [50] [51] [52] [67] [80] [84] [85] [86].

But, very few unsupervised deep neural network approaches have been used for

anomaly detection in the specific domain of SCADA networks.
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Anomaly-based intrusion detection systems are either supervised or unsuper-

vised [99]. In supervised methods, training data are labeled "normal" or "abnor-

mal" by the domain expert and the system is trained to discriminate between

"normal" or "abnormal" observations, so that new observations could be classify

to "normal" or "abnormal" classes. In unsupervised approaches there is no la-

beled data. A baseline distribution of "normal" behaviors is modeled, so that

the system could detect observations that show significant difference from the

"normal" ones [99] [157].

But the labeling of huge datasets by human experts is costly, time consuming

and error-prone.

Deep learning techniques can use unsupervised strategies to automatically learn

hierarchical representations in deep architectures for classification purpose [20]

[59] [92] [97] [104] [105] [113] [130] [132].

However, training deep learning models remains quite challenging because

of the huge amount of time required for the training process.

My research objective in this thesis is to propose an accurate anomaly detection

system in terms of detection rate and false positive rate, and efficient in terms of

processing time in SCADA networks, using an unsupervised deep feature learn-

ing approach. In order to reach this objective, we must address the following

research questions :

RQ 1 : How can we design a deep learning based approach for unsupervised
feature learning in SCADA systems?

To answer this question, we have to go through three sub-questions :

RQ 1.1 : What is the state of the art of deep learning based unsupervised feature

learning in SCADA systems?
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This question implies conducting a review of the state of the art in using deep

learning unsupervised feature learning for anomaly detection in SCADA systems.

The second sub-question is :

RQ 1.2 : What are the characteristics of the SCADA dataset used ?

The answer to this question will help us have a clear understanding of the

SCADA dataset used i.e. the nature of the records and the different types of

attacks it contains.

The last sub-question is :

RQ 1.3 : How can we design a deep learning based unsupervised feature learning

framework that will learn important features from SCADA data ?

To answer this question, we will show the process of designing a deep neural

network for unsupervised feature learning in SCADA systems, i.e, how to de-

termine the parameters, the activation functions of the layers, the loss function

to be used, the various hyper-parameters such as the learning rate, batch size,

regularization, etc., and the training method of the model.

The second research question to answer for our objective is :

RQ 2 : How can we design a deep learning based framework for efficient and
accurate anomaly detection in SCADA systems?
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This research question is divided into three sub-questions as well :

RQ 2.1 : How do we build a deep learning general framework for anomaly

detection in SCADA systems?

To answer this question, we will build the different components of the SCADA

anomaly detection system, i.e. the different parts of the pre-processing engine as

well as the different parts of the anomaly detection engine.

The next sub-question is :

RQ 2.2 : Using the unsupervised deep feature learning approach of the previous

research question, can we build an efficient and accurate classifier for anomaly

detection in SCADA networks?

To answer this question, we will show how to build the actual classifier for

anomaly detection, based on the unsupervised deep feature learner.

And the last sub-question of the second research question is :

RQ 2.3 : How can we boost the computational efficiency for deep neural network

based anomaly detection system in SCADA networks?

As training deep learning models is computationally intensive, through this

question, we will propose a distributed version of the anomaly detection model
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in order to train the proposed deep learning model faster.

Contributions

In the course of this thesis, we did five main contributions :

Contribution 1
Our first contribution is a review of deep neural network-based SCADA anomaly

detection systems using feature learning approaches.

Contribution 2
For the second contribution, we proposed a stacked sparse denoising autoen-

coder architecture as feature learner for SCADA networks. This framework is

able to automatically learn the salient features of the SCADA data that will later

be used for classification purpose.

Contribution 3
A framework for an hybrid deep neural network SCADA anomaly detection

system which has a data pre-processing engine and an anomaly detection engine

is proposed as the third contribution. In the pre-processing engine, data are nor-

malized, balanced and one-hot encoded. The anomaly detection engine has an

unsupervised feature learning module to which is added a supervised classifier.

Contribution 4
To speed-up the training process of the hybrid deep neural network SCADA

anomaly detection system, we proposed as a fourth contribution a distributed

version which uses a parameter server and worker nodes. The parameter server

stores the model weights and distributes it to the worker nodes were all the

workload happens. Each of the worker node is responsible for computing the

gradient during the back-propagation training algorithm. The gradient calcu-

lated by each worker node is sent back to the parameter server which updates

the weights and propagates it back to worker nodes.
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Contribution 5
Finally, our fifth contribution is an implementation of the hybrid deep neural

network SCADA anomaly detection system with TensorFlow framework proved

that this approach gives in overall better results in terms of detection rate and

false alarm rate compared to baseline algorithms such as Decision Tree, Naïve

Bayes and Random Forest.

For the distributed version, implementing the proposed approach using the

Distributed TensorFlow framework on a Hadoop Cluster, reduces the training

time significantly, compared to single machine implementation.

Thesis Organization

The manuscript is organized into four parts (Figure 1) i.e. the general introduc-

tion, the state of the art, the contributions and finally, the general conclusion.

After the general introduction, the state of the art has two chapters i.e. chapter

1 and 2. Chapter 1 is an overview of SCADA systems architecture, their vul-

nerabilities, the existing attacks against them, and a review of existing SCADA

intrusion detection systems. Chapter 2 is dedicated to explain deep learning

techniques and architectures to the reader. The third part of the manuscript is

the contributions organized into four chapters (3 through 6). In the chapter 3,

we propose a review of SCADA anomaly detection systems using deep feature

learning approach. This chapter is followed by the design of an unsupervised

deep neural network feature learning framework for SCADA systems in chapter

4. The previously built framework is used in the overall design of an hybrid deep

neural network SCADA Anomaly Detection System in chapter 5. The proposed

approach implementation and results are given in chapter 6 before a general

conclusion.
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Figure 1 – Thesis Organization
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Part I

State of the Art





Chapter1
SCADA Systems

1.1 Introduction

In order to monitor and control industrial systems such as smart grids, nuclear

power plants, gas pipelines, manufacturing plants, etc., experts designed indus-

trial control systems also known as SCADA systems. However, at the time of

their design, they were more focused on practical aspects such as availability,

reliability, performance, longevity of physical processes [91]. Moreover, as time

evolves, not only Commercial-Off-The-Shelf (COTS) hardware and software as

well as standard protocols like Ethernet and TCP/IP are used within SCADA sys-

tems, but they also get interconnected with corporate networks and the Internet.

In the present work, we show the different vulnerabilities of SCADA networks ,

and how those vulnerabilities could be exploited by threat actors to compromise

them. Although many security approaches have been proposed to secure SCADA

systems, we show that a special attention should be paid to intrusion/anomaly

detection systems to secure those networks.

After an overview of SCADA systems architectures, we highlight different vul-

nerabilities within them that could be exploited by attackers. In the follow-

ing section, some documented attacks against SCADA networks are presented.

Thereafter, different solutions to secure SCADA systems are proposed, and a

13



14 CHAPTER 1. SCADA Systems

full section is dedicated to existing SCADA intrusion detection systems before

concluding.

1.2 SCADA Systems Architecture

Industrial Control System (ICS) is a more general term used to designate SCADA

systems or Distributed Control Systems (DCS). In the literature, those terms are

used interchangeably [94] [28] [91]. We would henceforth use the term SCADA

to designate any industrial control system in the remainder of this dissertation.

Figure 1.1 – SCADA system general layout

1.2.1 Components of a SCADA system

A typical SCADA system (Figure 1.1) has three parts that are the control center,

the communication links and one or more distributed field sites [145].

The control center is the part of a SCADA network where the Master Terminal

Unit (MTU) also called SCADA server, the engineering workstations, the Human

Machine Interfaces (HMIs), and the data historian are located. The Master Termi-

nal Unit (MTU) is the key component of the control center. It is used to store and
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process information from the Remote Terminal Units (RTUs). The monitoring

and control of the entire SCADA network is done by human operators thanks to

the HMIs, while the engineering workstations are used by engineers for mainte-

nance and configuration purpose. Finally, all the information collected on the

SCADA networks are store on a database called the data historian for further

processing.

The second component of a SCADA network are the communication links which

are used to transfer the information between the MTU and the RTUs or PLCs.

The Communication links are cable, fiber, radio, telephone lines or satellite.

The last component of SCADA networks are the field sites where we find compo-

nents such as Remote Terminal Units (RTU), Programmable Logic Controller

(PLC), actuators (motors, valves, fans, etc.), and sensors that measure the values

of the physical phenomena (pressure, oil level, temperature, etc.). PLCs defined

by the IEC 61131 are special form of microprocessor-based controllers that use

programmable memory to store instructions and to implement functions such as

logic, sequencing, timing, counting, and arithmetic in order to control machines

and processes [18]. An RTU typically resides in a substation or some remote

location. The role of RTUs is to monitor field parameters and transmit data back

to an MTU, a centrally located PLC, or directly to an HMI [91].

1.2.2 SCADA systems protocols

Most SCADA systems use proprietary protocol (such as Honeywell CDA, General

Electric SRTP or Siemens S7, etc.) or non-proprietary and/or licensed protocols

such as OPC, Modbus, DNP3, ICCP, CIP, PROFIBUS, etc. Originally designed

for serial communications, many of these protocols have been adapted to operate

with Ethernet, TCP/IP or UDP Protocols [91].

Fieldbus protocols as indicated by the name are used on field sites. They are

defined by standard IEC 61158 as a set of protocols deployed to connect process-

connected devices (e.g. sensors) to basic control devices (e.g. programmable

logic controller or PLC), and control devices to supervisory systems (e.g. ICS
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server, human–machine interface or HMI, historian) [91]. In the control center,

the main application-level protocols used is SCADA systems are Modbus [112],

DNP3 [47] [109] and IEC 60870-5 [81].

. The Modbus transmission protocol was developed by Gould Modicon [112]

(now Schneider) for process control systems.

In addition to the standard Modbus protocol, there are other versions of the

protocol such as Modbus Plus, Modbus TCP. The standard Modbus is a serial

protocol which operates on the master/slave principle, a master for up to 247

slaves. Only the master initiates the transaction. Modbus Plus is a peer-to-peer

protocol which runs at 1 mbs. The Modbus Plus protocol specifies the software

layer as well as the hardware layer. And finally, the Modbus TCP/IP is simply

the Modbus RTU protocol with a TCP interface that runs on Ethernet.

On the standard Mobdus which is the most common implementation, the trans-

actions use request/response scheme where only one slave is requested, or of

broadcast/unanswered type where all the slaves are polled [33]. A Modbus

message frame encompasses an address field of 1 byte, a function field of 1

byte, a data field of variable length and an error check filed of 2 bytes. Each

request frame contains a function code that defines the action desired by the

controller. The meaning of the query data field depends on the code of the

specified function.

The second control protocol is the Distributed Network Protocol Version 3.3

(DNP3).

DNP3 is a telecommunication standard that defines communications between

master stations, Remote Telemetry Units (RTUs) and other Intelligent Elec-

tronic Devices (IEDs). DNP3 uses the Enhanced Performance Architecture (EPA)

three layer architecture (physical, data link, and application) to which a pseudo-

transport layer is added. The DNP3 protocol therefore uses the Physical, Data

link, Pseudo-transport and Application layers. As the Modbus protocol, the

DNP3 protocol uses function codes in its message frames.

In a move for a standardized protocol, The International Electro-technical Com-

mission or IEC came-up with IEC 60870-5 that refers to a set of standards

produced to provide an open standard for the transmission of SCADA telemetry

information and controls. Like DNP3, IEC 60870-5 is based on the three layers of
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the Enhanced Performance Architecture or EPA model for data communication.

Modbus is lightweight compared to DNP3 and IEC 60870-5 which are more

complex and offers more interoperability compared to Modbus.

1.3 SCADA Systems vulnerabilities and attacks

1.3.1 SCADA Systems vulnerabilities

Figure 1.2 – Traditional SCADA Network Architecture

As said in the introduction, the designers of early SCADA systems (Figure

1.2)) were more focused on availability, reliability, performance, longevity [91],

than on security. Moreover, the modern architecture of those networks (Figure

1.3) which are linked to corporate networks and to the Internet, as well as en-

compassing VPNs, COTS hardware, software and standard protocols, exposes

them to cyber-attacks like traditional IT ones.

This situation is corroborated by [169], for whom the vulnerabilities of SCADA

systems are due to unsafe network architecture, operating system vulnerabili-

ties, backdoor access to unauthorized users, Wi-Fi hardware, lack of real-time

monitoring and incorrect encryption, etc. A cyber-attack on SCADA network

can take routes from Internet connections, corporate networks, and control



18 CHAPTER 1. SCADA Systems

Figure 1.3 – Modern SCADA Network Architecture

networks down to field devices. He also listed various attack vectors such as

backdoors and holes in network perimeter, vulnerabilities in common protocols,

attack on field devices, database attacks, Man-In-The-Middle attacks, false input

data, forged output data, controller historian and Denial-of-Service. [169] [150]

make a broad classification of attacks on SCADA networks as follow: attacks on

hardware, attacks on software and attacks on the communication stack.

Attacks on hardware

After gaining an unauthenticated remote access to the SCADA devices, the

attacker could inject false data like changing the setpoints, causing device to fail

or mute an alarm. The attacker can also change the HMI display value to lure

the operator.

Attacks on software

SCADA networks software can be targeted by viruses, worms, trojans, botnets.

Stack smashing and function pointer manipulation could also cause a buffer

overflow and allow an attacker to run his own programs against the SCADA

system. Furthermore, the web accessibility of current SCADA systems opens the

door to injection attacks, DNS spoofing, session hijacking, phishing, protocol
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attacks, application layer attacks, etc.

Attacks on the communication stack

The network layer could be attacked by diagnostic server attacks, idle scan or

smurf, the transport layer by attacks like SYN Flood, and the application layer

by DNS forgery or command injection attacks [169].

Furthermore, some attacks are specific to the SCADA protocol used. On Gould

Modicon Modbus protocol [112] SCADA systems, attackers can perform diag-

nostic register reset, remote start or slave reconnaissance attacks. Broadcast

message spoofing, baseline response replay, direct slave control, network scan-

ning, passive reconnaissance, response delay attacks are also among possible

attacks on Modbus protocols. Lastly, TCP-only Modbus SCADA systems could

be attacked using irregular TCP framing, TCP FIN Flood or TCP Pool Exhaustion

[73]. Other SCADA-specific attacks are related to the DNP3 protocol. Among

DNP3-specific attacks, we can mention passive network reconnaissance, baseline

response replay, rogue interpoler, length overflow, reset function, unavailable

function, destination address alteration, fragmented message interruption, trans-

port sequence modification, outstation write attack, outstation data reset and

configuration capture attacks [47].

On the other hand, [53] is grouping SCADA vulnerabilities into four broad cate-

gories i.e. the architectural vulnerabilities, the security policy vulnerabilities, the

software vulnerabilities and the SCADA communication protocol vulnerabilities.

In the architectural vulnerabilities categories, the authors blame the weak sepa-

ration between the process network and the field network that allow every types

of traffic between them. The lack of authentication between actuators-SCADA

servers, actuators-RTUs, RTUs-Central production plan system, SCADA -Data

exchange servers is also pointed. Poor access policies, traceability and patching

are mentioned in the second vulnerabilities category. The third categories of

vulnerabilities involves the various operating systems found in SCADA networks

such as Linux, SCO Unix, Windows NT, Windows 2000 Server, Windows XP, and
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Windows 2003 Server. Those OS as well as the supported applications are not

well patched leaving the SCADA servers exposed to attacks. Finally, the last vul-

nerabilities category i.e. the SCADA communication protocol vulnerabilities are

mainly due to TCP/IP version of traditional protocols such as Modbus, DNP3,

Profibus and Fieldbus. The shift to modern protocols open new possibilities to

attackers because those protocols do not apply integrity checking of commands

between Master and slaves, nor do they perform any authentication mechanism

between Master and slaves. Anti-repudiation and anti-replay mechanisms are

also lacking.

1.4 Documented attacks on SCADA networks

The vulnerabilities detailed in the previous section could be exploited by attack-

ers against the SCADA networks, and many documented attacks are found in

the literature [110]. The first known cyber security incident targeting SCADA

systems was the Siberian Pipeline explosion in 1982. A Trojan was implanted in

a SCADA system that controls the Siberian pipeline. The attack caused an explo-

sion equivalent to 3 kilotons of TNT [38]. Ten years later in 1992, a disgruntled

employee of Chevron’s emergency alert network disabled the firm’s alert system

by hacking into computers in New York and San José California. The alarms

systems were reconfigured so they would crash. During ten hours, populations

in 22 states of the USA and some other areas in Canada were put at risk [42].

With a simple dial-up modem, an attacker gained unauthorized access to the Salt

River Project computer network, back in the summer 1994. He then installed

a backdoor which enabled him to have access to sensitive information such as

water and power monitoring and delivery, financial, customer and personal in-

formation [153]. This attack is a perfect illustration of vulnerabilities introduced

in SCADA networks by their interconnection with corporate networks. SCADA

systems attacks could cause environmental disaster as in June 1999, when a

technical incident due to a malfunction of a SCADA gas pipeline controller

caused several hundred thousand gallons of gasoline leaked from a pipeline into
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a creek in Bellingham, Washington. The gasoline ignited and burned causing

3 deaths and 8 injuries. The loss of human life in this incident illustrates the

critical aspect of SCADA systems [152]. This operating anomaly underlines the

importance of anomaly detection systems for SCADA networks, which could

have detected the incident. A state-sponsored attack was reported by McAfee in

February 2011. In fact, they believed that Chinese government backed attackers

who conducted a wide attack code-named ‘Night Dragon’ that targeted five

global energy and oil firms over a two years period. This blended attack used a

combination of attacks including social engineering, Trojans and Windows-based

exploits. The attackers exfiltrated data such as operational blueprints [123]. The

most emblematic attack on SCADA systems is named Stuxnet [48]. In June 2010,

a worm named Stuxnet attacked a nuclear power plant in Iran. Stuxnet used

four ’zero-day’ vulnerabilities, insider complicity, stolen certificate. The purpose

of Stuxnet was to destroy the centrifuges used by iranian government to enrich

uranium. The United States and the Israeli governments are believed to be the

perpetrators of the Stuxnet attack. Part of the code of Stuxnet was used the

following year in 2011 in the Duqu [11] malware. Duqu did not self-replicate

and contained no payload. It was designed to do reconnaissance on an unknown

control system. Another sibling of Stuxnet named “Flame” was in action in

the Middle East countries and North Africa [11]. It was sponsored by the same

group behind Stuxnet. Flame was designed to spy users of infected machines and

steal data, including documents, recorded conversations and keystrokes. It also

opens a backdoor on the infected system to allow hackers to modify the malware

and add new features. On December 23, 2015, the Ukrainian Kyivoblenergo, a

regional electricity distribution company was attacked. This attack resulted in a

power outage which impacted more than 225.000 customers. The power grid

SCADA system were hacked and remotely controlled using various techniques.

[102]. More recently in 2018, the world was struck by the Petya and NotPetya

malwares [49] which impacted Renault manufacturing plant SCADA systems

in France as well as the Germany railway control systems. Those attacks are

considered as the most devastating cyber-attacks in history which caused more

than 10 billion dollars of financial lost [61].
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Many attacks on SCADA systems are perpetrated by insiders or in complicity

with them. In 1999, Gazprom, a Russian Oil Company is attacked. The attack

was made in collaboration with an insider who was a disgruntled employee.

The hackers used a Trojan to take over the system controlling the flow of oil in

pipelines. Also, in January 2003, the SQL Slammer worm infected the Davis

Besse nuclear power plant in Ohio, USA. This attack resulted in the deactiva-

tion for several hours of the system for displaying the safety parameters and

the computer for controlling the activity of the control unit [114]. Another

insider attack happened in 2000, in Queensland, Australia, where the Maroochy

wastewater treatment system, was attacked by a disgruntled contractor because

he had failed to get hired in the company [142]. Using a laptop computer and a

radio transmitter, the attacker took control of 150 sewage pumping stations and

spilled millions of liters of untreated sewage into the environment that caused a

major pollution. [100] reports the attack by a night security officer on a heating

and ventilation control system at a hospital in Dallas, Texas. He suggests that

measures be taken to ensure the physical security of SCADA systems by means

of physical access controls and traceability mechanisms for access to control

room which will be both deterrent and useful for forensics purpose. The above

attacks tends to reinforce the theory of man being the weakest link in computer

security. This is proven once again by a team of security experts who used social

engineering to deceive employees and take full control of the SCADA network

of an electric power company in a matter of hours [62]. The main cause of this

attack is the transition of SCADA systems from closed environments to open

systems that are interconnected to the Internet and corporate networks. The

use of standard software/hardware and the reluctance of companies to apply

security measures perpetuate those weaknesses.

1.5 Securing SCADA Systems

Previous sections prove that it is critical to propose reliable solutions to secure

SCADA networks. The American National Institute of Standards and Technology

(NIST) [145] as well as France ANSSI [108] [24] proposes guidelines for securing

SCADA networks. Defense-in-Depth is proposed with network segmentation
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and segregation, firewalls; logically separated control network, Unidirectional

Gateways, incident detection and response, or system recovery measures. [91]

also propose enforcing defense-in-depth by establishing zones and conduits

using the ISA 99 i.e. ISA/IEC 62443 standard.

While defense-in-depth is largely encouraged to protect SCADA networks, [58]

points out the fact that in industrial sites, priorities are the safety and the

reliability of physical processes. The priority of cyber protection of SCADA

systems is preventing unauthorized control. Primary, preventive, physical and

cyber-perimeter security controls should be the focus. He recommends a Top-

Down security approach consisting to deploying unidirectional gateways as

sole connection between the protected SCADA system and any outside network.

Additionally, removable media and transient devices controls should be imple-

mented. Only after that, secondary controls like detective controls and incident

response capabilities can be deployed. Because of the safety/reliability/avail-

ability requirements of SCADA systems versus confidentiality/integrity/avail-

ability requirements in traditional IT security, deploying security measures in

the former ones is not straightforward as in traditional IT. Security solutions

should be specific to those environment with regards to their early mentioned

specificities. [35] recommend consistent security policy, well-designed network

architecture, system hardening by shutting down unnecessary services, ports

and software, two-factor password and data encryption for remote connections

are also mandatory to secure SCADA systems. Cryptographic methods such as

cryptographic algorithms (RC4, DES, AES and RSA) are suggested by [46], Mes-

sage authentication through Integrity protection with hash and digital signature,

Key distribution and Entity authentication are used to achieve confidentiality,

integrity, authentication and nonrepudiation security objectives. He also rec-

ommend security in communication protocols like PPP, PAP, CHAP, WEP in

Link Layer, IPSec in Network Layer, SSL and SSH in Transport Layer, Digest

Authentication and PGP in Application Layer. Communications are also secured

by the means of Firewalls and Intrusion Detection Systems. Another critical

issue in SCADA systems are the communications with business partners such

as contractors, vendors and suppliers. As a solution, [125] proposes the au-

thentication of communication partners via hardening passwords or Public Key
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Infrastructure (PKI) Technologies. Firewalls are used to protect against external

threats whereas an Intrusion Detection System (IDS) can protect against insider

as well as external attackers. Internet Protocol Security (IPSec) and Virtual

Private Networks (VPN) protect communications between physically distant

sites.

1.6 SCADA Intrusion Detection Systems (IDS)

This section is adapted from our Inforsid 2017 conference paper [82].

1.6.1 Signature vs anomaly detection systems

Anomaly detection systems are either signature detection or anomaly detection

systems. In the former ones, the system identifies malicious traffic or application

data patterns, whereas in the latter ones, the system compares the activities

against a "normal" baseline [8] [126]. Each type of detection system has his

advantages and drawbacks. The anomaly detection systems are able to detected

even new unknown attacks, but are also subject to false alarms (or false posi-

tives).

1.6.2 Supervised and unsupervised anomaly detection

Anomaly detection are either supervised or unsupervised. Supervised anomaly

detection requires labeled data while in unsupervised approaches there is no

labeled data needed. Labels can be extremely difficult if not impossible to

obtain, and usually, only a small set of available data can be labeled. Data

labeling by human experts is time-consuming, expensive and error-prone. In

real applications, we cannot be sure if labeled data cover all possible attacks.

Not to say that new attacks could never have been seen in training data [17] [99].

1.6.3 Existing SCADA Intrusion Detection Systems

[120] proposes a Statistical Abnormality Detection Method (SADM), based on

the techniques of mean and standard deviation, to thwart internal attacks,
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which often have a high impact and high success rate. The system is based

on the number of "unresolved alarms" on the operator screen. This number

symbolizes the behavior of the operator. [90] developed an approach to detect

cyber-physical attacks by applying clustering techniques on industrial process

data. The technique used combines a k-means algorithm and subtractive clus-

tering. The architecture of their system uses a Big Data Hadoop infrastructure

with the Map/Reduce framework to process large time-series data from several

sensors. For the detection of anomaly in process control systems, [154] pro-

pose a multilayer and correlation architecture. The proposed system monitors

system events at multiple levels (device, network, and hosts) and correlates

events at multiple levels (control center, utility and sector levels). The system

performs model-based detection, leveraging the regularity and predictability of

communication patterns in process control systems. The architecture also uses

a hierarchical security incident management framework to correlate IDS alerts

and potentially abnormal events generated by the process control system. The

solution integrates a visualization tool to help human analysts better understand

network traffic anomalies and prevent the defense perimeter from being violated

or bypassed. [10] rely on the periodic and regular nature of traffic in SCADA

systems to propose an approach to detecting anomalies. The periodicity of

the traffic is characterized by the frequency and the size in number of packets

of the periodic bursts of the traffic. The system consists of four modules i.e.

a traffic analyzer that filters irrelevant traffic, a network flow generation that

groups packets meaningfully by using the server-side transport port, a period-

icity training module that learns the normal behavior of system by extracting

the two elements which characterize the periodic burst, that is to say the period

and the size, and finally, a detection engine. To detect attacks injecting false

data into control systems, [158] propose an approach based on the relation of

states. The proposed approach is a real-time system that monitors system states,

detects inconsistent states and deduces the origins of attacks. By means of the

relationship graph of the variables, when an abnormal state is detected, one can

trace the chain of dependence of violated of the variable (s) involved and deduce

the possible origin of the attack. The system architecture consists of three parts

which are a component analysis module, a detection module, and an original
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inference module. The component analysis module that automatically analyzes

system variables to extract components and generates a graph describing the

valid system states and another graph of relationships between the variables.

Here, alternating vectors which record the alternating relations between two

continuous states are also used to represent the real-time states of a component

in normal operation. The second module is a detection module that uses the

state graph to generate an invalid state alert if a new alternation vector is not

found in the state graph or an invalid transition alert if the current state could

not be reached from a previous state. Finally, an original inference module helps

to locate the origin of the false data injection attacks. The evaluation of the

system by Wang et al. gives a detection rate of 95.83% and a false positive rate of

(0.0125%). An appliance using a multi-algorithm intrusion detection approach

for the Modbus TCP protocol was developed by [30]. This approach is based

on a protocol level model, a pattern of expected communication patterns, and a

server and service detection model. The protocol level model uses function codes,

exception codes, Snort-based policy implementation, and the PVS language to

formally specify a specific Modbus device. In the expected pattern of communi-

cation patterns, the communication models between the various components of

the SCADA network are created, and Snort-based rules are developed to detect

deviations from these models. Note that here, the Snort rules are written to

detect the "complement" of the models symbolizing normal operation. The last

component based on learning to detect changes in server or service availability

consists of two detectors that are an Emerald Bayes and EModbus sensor. Ex-

periments show that the model-based intrusion detection approach is effective

in monitoring SCADA networks and is complementary to the signature-based

approach. Another clustering approach is proposed by [89] for the detection of

anomalies in process control systems. This approach is based on the gaussian

mixture clustering algorithm. Sensor measurements associated with specific

operating states are grouped into clusters, and then the calculation procedure

called silhouette is used to detect anomalies. The approach also demonstrates

that the algorithm of the gaussian mixture outperforms the k-means clustering

algorithm for the detection of anomalies. The proposed system is effective for

stealth malicious attacks such as replay, DoS and false data injections.



Table 1.1 – State of the Art of Existing SCADA IDS
Ref. Research Goal Detection approach Detection mode Outcome/Advantages Shortcomings

[120]
Detect insider attacks
in smart grids

Statistical mean and
standard deviation

model-based

Able to detect
anomalies in both
substation level
and transmission
system with minimum
number of alarms

Requires setting thresholds
of normal behavior of the
system over time. Some
stealthy attacks could go
unnoticed as system
behavior could fall inside
threshold settings

[90]

Use big data technologies
for real-time analysis of
large dataset to detect
cyber attacks in physical
systems

k-means and
substractive
clustering

unsupervised
anomaly
detection

RMSE = 0.107
Able to process
large datasets

The MapReduce slower
compared to approaches like
Apache Spark for real-time
processing. Depends on the ability
to conveniently group features
of the physical process.

[154]

Leverage regularity of
network traffic pattern
to achieve anomaly
detection in ICS

Use of ruleset and PVS
specification language

Model-based
and
signature-based

Provides timely
and accurate
reporting of
security relevant
events

The approach leverages the
regularity of network traffic
patterns, but some advanced
threats could go unnoticed.
The signature-based also
cannot detect unknown attacks

[10]
Exploit traffic periodicity
in ICS in order to perform
anomaly detection

Frequency and size
of bursts fingerprinting

Model-based

Able to detect
frequency
anomaly in the
time domain

The approach is based on the
periodicity of ICS traffic to
detect anomalies. Could be
defeated by advanced threats

[158]
False data injection attacks
detection and retrieval of
attack origin

Use of state alternation
vectors and state
relations graph

Rule-based

Detect. Rate=95.83 %
FPR = 0.00125 %
Good detection rate
and very low FPR

Attacker can modify initial
state of the detection system
and thus not be detected.

[30]
Take advantage of
regularity and stability of ICS to
implement model-based IDS

PVS specification
language and
conditional probability

Model-based
Effective for
monitoring
SCADA networks

Based on regularity and
stability of ICS . Could be
defeated by advanced threats

[89]

Detected cyber attacks
targeting measurements
sent to control hardware
(PLCs)

Gaussian mixture
clustering
and silhouette cluster
evaluation technique

Unsupervised
anomaly
detection

Average
silhouette=0.37067

The approach is implemented
on PLCs or other remote I/O
devices, which have low
memory and processing power.
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1.7 Conclusion

In the present chapter, we showed that security was not a major concern for the

designers of SCADA networks. But as time evolves, SCADA systems which were

using vendor-specific hardware, software and protocols, incorporated in their

architecture Commercial-Off-The-Shelf (COTS) hardware, software, as well as

standard protocols. Moreover, modern SCADA systems are interconnected to cor-

porate networks and to the Internet. This shift in SCADA networks introduced

various vulnerabilities that we explained, and exposed diverse documented at-

tacks which exploited those vulnerabilities. As countermeasures to those attacks,

we provided methods to secure SCADA systems and we made a focus on SCADA

specific anomaly detection systems.

Due to the evolving threat landscape, with more and more new complex attacks

like blended attacks [91] and Advanced Persistent Threats (APT), we need more

advanced approaches that could be more reactive and able to adapt to the new

deal. Deep learning which has the capability to automatically learn the intrinsic

characteristics from a system data could help build anomaly detection systems

to protect SCADA networks from unknown attacks.

In the next chapter, we provide the reader some insights of deep learning fun-

damentals, common architectures, and their unsupervised feature learning

capability that could be used for anomaly detection purpose.



Chapter2
Deep Learning Overview

2.1 Introduction

In 1959, Arthur Samuel [139] defines Machine Learning as a field of study that

gives computers the ability to learn without being explicitly programmed. Later

on in 1997, Tom Mitchell [111] gave a more formal definition of Machine Learn-

ing by stating that "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E".

Deep Learning is a sub-field of Machine Learning which is using deep neu-

ral networks i.e. neural networks with at least two hidden layers [14] [57]

In recent years, Deep Learning became a hot topic among researchers as this

approach is successfully applied to domains like image classification, video and

natural language processing.

The objective of this chapter is to provide the reader the foundations of deep

learning i.e. weights, bias, number of layers, loss and activation functions, hyper-

parameters or back-propagation algorithm, etc. After those knowledge which

are important to understand the design principle of deep learning networks, we

will show the most common deep learning architectures and how they could be

used for feature learning prior to classification tasks.

29
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The first section is dedicated to explaining the different concepts of artificial

neural networks, followed by the study of the process of training deep networks

mainly using the back-propagation algorithm with Gradient Descent. Thereafter,

we explore the main deep learning networks architectures before the conclusion.

2.2 Artificial Neural Networks

The artificial neural networks mimics the human brain that is processing infor-

mation in a totally different way from the conventional digital computer. The

brain is a complex, nonlinear, and parallel computer which has the capability to

organize its basic components known as neurons, so as to perform computations

many times faster than today’s best computers [64].

2.2.1 Biological Neuron

The biological neuron is a nerve cell that provides the fundamental functional

unit for the nervous systems of all animals. Neurons communicate with each

other by the mean of electro-chemical impulses. The impulse must be strong

enough i.e above a minimum threshold to activate the release of chemicals. The

neuron cell body called soma has many dendrites but only one axon that is able

to branch hundreds of times. Dendrites are thin structures that arise from the

main cell body, while axons are nerve fibers with a special cellular extension

that comes from the cell body [128].

2.2.2 Single Layer Perceptron

The perceptron is the first attempt to model the biological neuron. The percep-

tron algorithm was invented in 1958 at the Cornell Aeronautical Laboratory by

Frank Rosenblatt [135]. The perceptron is a linear-model binary classifier with a

simple input–output relationship. A number of inputs are multiplied by their

weights and the result is sent to a step function (Heaviside). The classification

can be modeled as follow [128] :
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f (x) =

0 x < 0

1 x >= 0

2.3 Deep learning foundations

Now, let us give some explanations about the fundamental concepts of deep

learning i.e. weights and bias parameters, the input, hidden and output layers,

the activation and lost functions, as well as the various Hyper-parameters needed

to tune deep networks [128] [121] [141].

2.3.1 Parameters

The parameters of neural network are weights and bias. Weights are real valued

numbers which are multiplied by the inputs and then summed up in the node.

Bias terms are constants attached to neurons and added to the weighted input

before the activation function is applied. The basic idea is that is it possible

there is a threshold upon which your features have an effect. This value is the

bias which is coming along with the weights and must also be learned during

the model training process.

2.3.2 Input, hidden and output layers

The Input layer represent how we get input data fed into the network. It has the

same number of neurons as the number of input features. Each neuron in the

input layer represents a unique attribute in your dataset. On the other hand,

There is one or more hidden layers in a neural network. The weight values on

the connections between the layers are how neural networks encode the learned

information extracted from the raw training data. Hidden layers introduce non-

linearity modeling in neural networks. The Output layer is the final layer in a

network. It receives input from the previous hidden layer, applies an activation

function, and returns an output representing your model’s prediction. The

answer or prediction from the model is in the output layer. The final output

may be a real valued output (regression) or a set of probabilities (classification).
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The output depends on the type of activation function we use on the neurons in

the output layer, which is usually a softmax or sigmoid activation function for

classification.

2.3.3 Activation Functions

The role of activation functions (Table 2.1) is to enable neuron’s activation,

in other words, help the neurons to fire. They play a primary role in hidden

layers as they introduce non-linearity, thus increasing neural networks modeling

capabilities [3]. There are different types of activation functions, and their use

depend of the problem to solve.

The Linear activation function is actually the identity function expressed by

f (x) = Wx. The Linear activation function let the signal passed unchanged

through the neuron. The dependent variable has a direct, proportional relation-

ship with the independent variables. This type of activation function is often

used in input layer of neural networks [141]. However, linear activation func-

tions has two major drawbacks. First, it is not possible to use back-propagation

(gradient descent) to train the model as the derivative of the function is constant.

Second, all layers of the neural network collapse into one no matter their number,

and the output is linear because a combination of linear functions is linear [1]

[128].

The Sigmoid activation function is a logistic transforms type function. Sigmoid

can reduce extreme or outliers in data without removing them. Independent

variables are converted to simple probabilities between 0 and 1, and most of the

output will be very close to 0 or 1. Advantages of sigmoid activation function is

its smooth gradient, the output bound between 0 and 1, which normalize the

output of each neuron, and finally its clear predictions. The sigmoid drawback

is the vanishing gradient problem, the output not centered zero and its compu-

tationally expensive [1] [128] [141].

Unlike the sigmoid activation function, the normalized range of the Tanh activa-
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tion function is -1 to +1. The advantages of Tanh is that it can deal more easily

with negatives numbers and is zero centered unlike sigmoid. They share the

same disadvantages. A variant of Tanh is Hard Tanh where anything less that -1

is set to -1 and anything more than1 is set to 1. Hard Tanh activation function is

a more robust activation function that allows for a limited decision boundary

[128] [1] [83].

Softmax activation function is a generalization of logistic regression that can

contain multiple decision boundaries. Often used in the output layer of classi-

fiers, the softmax activation function return the probability distribution over

mutually exclusive output classes. The returned probabilities sum-up to 1. The

main advantage of softmax is its ability to handle multiple classes. [1] [128].

The Rectified Linear Unit (ReLU) which equation is f (x) = max(0,x) activates

node only if the input is above a certain quantity. While input is below zero,

output is zero. When input is above a certain threshold, it has a linear rela-

tionship with the dependent variable. ReLU is the current state of the art. It

is proven to work in many different situations. Gradient of ReLU is either 0 or

constant, making it possible to reign with the vanishing exploding gradient issue.

ReLU activation functions have shown to train better in practice than sigmoid

activation functions. Compared to the sigmoid and tanh activation functions,

the ReLU activation function does not suffer from vanishing gradient issues.

Relu is computationally efficient and allow the network to converge quickly

[140] [37]. ReLU is also non-linear though looking as a linear function. It has

a derivative and thus allow backpropagation. However, ReLU suffers from the

Dying ReLU problem. When inputs approach zero, or are negative, the gradient

of the function becomes zero, the network cannot perform backpropagation and

cannot learn [1].Various forms of ReLU such as Leaky ReaLU (LReLU) [106],

Parametric ReLU (PReLU) [66] help overcome the aforementioned problem.

The summary of activation functions in Table 2.1 indicates that to design

an efficient deep neural network, one should consider using the ReLU or Leaky

ReLU activation function in the hidden layers instead of sigmoid or Tanh, be-



Function
Mathematical

Model Range Advantages Limitations

Linear f (x) = ax ]-inf, +inf[
- Not complex
- Easy to solve

- Have less learning power
- Does not perform good
most of the time

Sigmoid 1
1+e−x [0, 1]

- S-shape curve
- Easy to understand and apply
- Output as probability

- Vanishing Gradient Problem
- Not zero-centered making
optimization harder
- Saturate and kill gradient
- Slow convergence

Tanh ex−e−x
ex+e−x [-1, +1]

- Output zero-centered
making optimization easier
- Prefered to sigmaoid

- Vanishing Gradient Problem

ReLU f (x) =max(0,x) [0, +inf[

- Very simple
- Computationally efficient
than sigmoid and Tanh
- Avoid Vanishing
Gradient Problem

- Output not zero-centered
leading to slow convergence
- Only used on hidden layers
- Dying ReLU problem

Leaky ReLU f (x) =

0.01x x < 0
x x >= 0

]-inf, +inf[

- All advantages of ReLU
- Fix Dying ReLU Problem
- Output zero-centered,
thus converge faster

Slope parameter added

Softmax f (xj) = e
xj∑
i e
xi

[0, 1]
- Multiclass classification
- maps logits to probabilities

- Only used on output layers

Table 2.1 – Activation Functions
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Loss Function Type of Problem
Scalar/
Binary/
Multiclass

MAE/L1 Loss Regression Scalar
MSE / L2 Loss Regression Scalar
Hinge Loss Classification Binary
Maximum Likelihood Classification Multiclass
Cross Entropy Classification Multiclass
Kullback-Leibler Reconstruction NA

Table 2.2 – Loss Functions

cause of the vanishing Gradient Problem which causes a lots of problems to train,

degrades the accuracy and performance. Furthermore, Leaky ReLU converges

faster, which could help reduce the training complexity challenge. For classifica-

tion problems as in anomaly detection systems, the Softmax activation function

should be used in the output layer.

2.3.4 Loss Functions

A loss function is a metric based on the error of a network’s predictions. Training

a neural network consists in finding the ideal parameters (weights and biases)

that minimize the loss from the errors. With loss function, training a neural

network is solving an optimization problem. The loss function to use when

training a neural network depends of the class of problem we’re trying to solve

i.e. regression, classification or reconstruction (Table 2.2).

Mean Square Error (MSE), Quadratic Loss, L2 loss, Mean Absolute Error (MAE),

L1 loss [107] [75] [79] [34] are loss functions- for regression problems where a

scalar value is the outcome.

However in intrusion/anomaly detection approaches, the problem to solve is

a classification one as the system might be able to classify normal data from

anomalous ones.

For classification problems Hinge Loss or Cross Entropy Loss also called Nega-



36 CHAPTER 2. Deep Learning Overview

tive Loss Likelihood [107] [75] [79] [34] are used. However, while Hinge Loss is

most suited for binary classification [79], Cross Entropy Loss is the most widely

used loss function for multiclass classification.

Cross Entropy Loss
To measure the information theoretic distance between two distributions P =

{p1,p2, ...,pN } and Q = {q1,q2, ...,qN }, Kullback [95] proposes the directed diver-

gence now know as cross-entropy, formulated by:

D(P ,Q) =
N∑
k=1

qklog2
qk
pk

In machine learning, the Cross entropy allows the model to estimate the con-

ditional probability of the classes, given the input, and pick the classes that

minimizes classification error. Cross-entropy loss increases as the predicted

probability diverges from the ground truth label. [59] [121] [79].
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Kullback-Leibler Divergence (KL Divergence)
Deep learning-based anomaly detection systems also use Kullback-Leibler Di-

vergence [96] to introduce sparsity parameter. The KL divergence measures the

divergence between two Bernoulli distributions.

DKL(Y ||Ŷ ) = −
N∑
i=1

Yi × log
(
Yi
Ŷi

)

2.3.5 Hyper-parameters

Hyper-parameters are parameters we tune to make networks train better and

faster. There is two kinds of Hyper-parameters : the ones related to the neural

network structure and those related to the training algorithm [76]. The Hyper-

parameters related to neural network structure are the Number of hidden layers,
Dropout, Neural network activation function, and Weights initialization For the

Number of hidden layers hyper-parameter, usually, adding more hidden layers of

neurons generally improves accuracy to a certain limit. Dropout is a technique

that consists at randomly “killing” a certain percentage of neurons during each

epoch to prevent overfitting.The Neural network activation function is also con-

sidered as an hyper-parameter. The choice of the activation function depend

of the class of problem we are solving. The activation function can impact the

network’s ability to converge and learn for different ranges of input values, and

also its training speed. Weights initialization is a very important factor while

training neural networks. At the beginning of the training process of a neural

network, weights and bias should be initialize. Weights can be set to zero or to

random values. However, this can result in a vanishing or exploding gradient,

which will make it difficult to train the model. A common heuristic used to

mitigate this problem for the Tanh activation is called Xavier initialization.

The other type of hyper-parameters is Hyper-parameters related to the training
algorithm which encompasses Learning rate, Epoch, iterations and batch size, Op-
timizer algorithm and neural network momentum. The learning rate determine

how fast the back-propagation algorithm performs gradient descent. A lower

learning rate makes the network train faster but might result in missing the

minimum of the loss function.After setting the learning rate, Epoch, iterations
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and batch size have to be defined. These parameters determine the rate at which

samples are fed to the model for training. An epoch is a group of samples which

are passed through the model together (forward pass) and then run through

back-propagation (backward pass) to determine their optimal weights. The

epoch can be split into batches before being fed to the network in order to reduce

complexity or in case of big data size. A complete epoch will then be run into

multiple batches. The algorithm used to train a neural network is called an

optimizer. The basic optimizer is Stochastic Gradient Descent. The Momentum
algorithm is also a popular choice. It works by waiting after a weight is updated,

and updating it a second time using a delta amount. This speeds up training

gradually, with a reduced risk of oscillation. Nesterov Accelerated Gradient,

AdaDelta and Adam also can be used.

2.3.6 Regularization

The regularization main purpose is to prevent overfitting during the training

process by using different methods to minimize parameter size over time. Some

of the techniques used to this end is L1, L2 (weight decay), dropout or Early

stopping [75] [59].

The regularization term is added in order to prevent the coefficients to fit so

perfectly to overfit. The L1 regularization is a technique that help to penalize the

size of the weights by adding a regularization term

Ω(θ) = ‖w‖1 =
∑
i

|wi |

to the objective function

w∗ = arg min
w

∑
j

(
t(xj)−

∑
iwihi(xj)

)2
+λ

k∑
i=1

|wi |

In L2 regularization, L2 parameter norm penalty commonly known as weight
decay. This regularization strategy drives the weights closer to the origin by

adding a regularization term Ω(θ) = ‖w‖22 to the objective function
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w∗ = arg min
w

∑
j

(
t(xj)−

∑
iwihi(xj)

)2
+λ

k∑
i=1

w2
i

The L2 regularization is more computationally efficient compared to L1 regular-

ization due to having analytical solutions.

Dropout provides a computationally inexpensive but powerful method of reg-

ularizing a broad family of models. Dropout trains the ensemble consisting of

all sub-networks that can be formed by removing non-output units from an

underlying base network [59]. Finally, Early stopping Early stopping is thought

to be the most commonly used form of Deep Learning regularization. When

training large models we often observe that training error decreases steadily

over time, but validation set error begins to rise again. The main idea is to

return to the parameter setting at the point in time with the lowest validation

set error. Instead of running the optimization algorithm until we reach a (local)

minimum of validation error, we run it until the error on the validation set has

not improved for some amount of time. A copy of the model parameters is store

every time the error of the validation set improves. When the training process is

finished, the stored parameters are return in lieu of the latest parameters [59].

2.4 Training Neural Networks

2.4.1 Gradient Descent Optimization

Most Deep Learning algorithms involve optimization of some sort. Optimization

refers to the task of minimizing a function called the objective function, criterion,

cost function, loss function or error function [59]. Gradient Descent is by far

the most common way to optimize neural networks. Let’s the objective function

be J(θ) with θ ∈ Rd the parameters of the model. Gradient descent is a way

to minimize J(θ) by updating the parameters in the opposite direction of the

gradient of the objective function ∆θJ(θ) with respect to the parameters [137].

In gradient descent also known as batch gradient descent, we would calculate

the overall loss across all of the training examples before calculating the gradient

and updating the parameter vector. Other variants exist such as Stochastic
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Gradient Descent (SGD) or mini-batch gradient descent. In SGD, we compute

the gradient and parameter vector update after every training sample. SGD

speed-up learning and also parallelizes well. In between Batch gradient descent

and SGD lies mini-batch gradient descent, where a batch of samples more than a

single training example and less than the full training dataset is used to compute

the gradient.

The loss function can be minimized by estimating the impact of small variations

of the parameter value on the loss function.

Let′s W be the set of parameters and E(W ) the loss function. The gradient

descent algorithm allow the minimization of E(W ) by iteratively adjusting W as

follow [101].

Wk =Wk−1 − ε
∂E(W )
∂W

Where ε is a scalar constant called the learning rate. This is the Weights update
with Gradient Descent.

2.4.2 Back-propagation Algorithm

In a well-trained ANN, the weights amplify the signal and dampen the noise. A

bigger weight means a tighter correlation between a signal and the network’s

outcome. The process of learning using weights is the process of re-adjusting the

weights and biases. Back-propagation learning computes the input example’s

output with a forward pass through the network. If the output matches the

label, we don’t do anything. If the output does not match the label, we need to

adjust the weights on the connections in the neural network [127]. The key is to

distribute the blame for the error and divide it between the contributing weights

in a backward pass.

The back-propagation algorithm pseudo-code is given bellow by [128] where i is

the index of neuron, ni the neuron at index i, j the index in previous layer con-

necting to j, ai the activation value of neuron i (output of neuron i), Ai the vector

of activation values for the inputs into neuron i, g the activation function g ′ the

derivative of the activation function, Erri the difference between the network

output and the actual output value for the training example, Wi the vector of
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weights leading into neuron i, Wj,i the weights on the incoming connection from

the previous layer neuron j to neuron i, input_sumi the weighted sum of inputs

to neuron i, input_sumj the weighted sum of inputs to neuron j in previous

layer, a the learning rate, ∆j the Error term for connected neuron j in previous

layer and ∆ithe error term for neuron i: ∆i = Erri × g ′(input_sumi).

Algorithme 1 : Back_propagation_algorithm
Data : network, training_records, learning_rate

Result : network

network← initialize_weights(randomly)

while network not converged do
foreach example ∈ training_records do

/* compute the output for this input example */

network_output← neural_network_output(network,example)
/* compute the error and the delta for neurons in the output

layer */

example_err← target_output −network_output /* update the

weights leading to the output layer */

Wj,i ←Wj,i −α ∗ aj ∗Erri ∗ g ′(input_sumi)
foreach subsequent layer ∈ network do

/* compute the error at each node */

∆j ← g ′(input_sumj)
∑
iWj,i∆i

/* update the weights leading into the layer */

Wk,j ←Wk,j +α ∗ ak ∗∆j
end

end

end
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2.5 Deep Learning architectures

2.5.1 Feed-forward neural network

A Feed-forward neural network is a neural network ordered in layers, where the

first layer is called input layer, the last layer output layer, and the layers between

are hidden layers [146]. Connections between the nodes do not form a cycle. An

example of feed-forward neural network is the Multi-Layer Perceptron (MLP)

[136].

Figure 2.1 – Feed Forward Neural Network

2.5.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) goal is to learn higher-order features in

the data via convolutions. The convolution operation is used instead of general

matrix multiplication in at least one of their layers [59]. The convolution opera-

tion (Figure 2.2) is a mathematical operation on two functions of a real-valued
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argument. In CNN, the first argument is called input, the second argument

the kernel and the output feature map. For a two-dimensional image I and a

two-dimensional kernel K, the convolution operations is

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i −m,j −n)K(m,n)

Figure 2.2 – Convolution Operation

CNNs work well for object recognition with images. CNN architecture biological

foundation is the visual cortex in animals. The cells in the visual cortex are

sensitive to small sub-regions of the input called visual field or receptive field.

These smaller sub-regions are tiled together to cover the entire visual field.

The typical components of a CNN are an input layer, a convolution layer, an

activation function (generally ReLU), a pooling layer and a fully connected layer

[127] [128] [93]. The combination of convolution layer, activation function and

pooling layers is the feature extraction layer. Two important characteristics of

CNNs are weight sharing and pooling. Weight sharing is the fact that all the

spatial locations of the input share the same kernel, whereas pooling refers to

an operation reducing the number of connections between convolutional layers,
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thus decreasing the computational burden [113]. The Fully connected layers on

the other hand contain traditional neurons that receive different sets of weights

from the preceding layers; there is no weight sharing between them as is typical

for convolution operations.

Figure 2.3 – Convolution Neural Network

2.5.3 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are dynamic systems with internal state at

each time step of the classification. This is because there are circular connections

between higher- and lower-layer neurons and self-feedback connections. Thanks

to the feedback connections, RNNs are able to propagate data from earlier events

to current processing steps. Thus, RNNs build a memory of time series events.

However, because of Vanishing Gradient Problem, RNNs are not capable to learn

distant dependencies. Hence, RNNs cannot bridge 5 to 10 time steps. This is why

alternatives like LSTM are proposed to solve this issue. LSTM can bridge minimal

time lags of more than 1,000 discrete time steps [144]. RNNs are supervised

approaches but are used as unsupervised methods in some applications. They

are suited to model time-series data or Natural Language Processing (NLP).
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2.5.4 Generative Adversarial Networks (GAN)

Goodfellow and his team [60] proposed a new framework consisting in training

two models: a generative model G that captures the data distribution, and a

discriminative model D that estimates the probability that a sample came from

the training data rather than G. The goal of the model G training is to maximize

the probability of D making a mistake. GANs are mainly used in creating

realistic images, paintings, speech processing, and video clips.

2.5.5 Deep Neural Networks (DNN)

Deep Neural Networks are hybrid architecture combining both generative and

discriminative models. The final goal of DNNs architecture is to discriminate

data, however, in previous stages of the process, it is assisted by features learned

from generative models[87].

There are different architectures of deep neural networks whose building blocks

are feed-forward neural network, Restricted Boltmann-Machines (RBM) or Au-

toencoders (AE) [119] [70]. In a DNN model, RBMs or Auto-encoders are stacked

for feature learning, and a supervised classifier such as a Multilayer Percepron

(MLP), Random Forest, Support Vecor Machine (SVM) or a Softmax layer is

added on the top for classification.
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Figure 2.4 – Stacked Auto-encoder
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2.6 Conclusion

In this chapter, we have learned the foundations of deep learning networks, i.e.

their parameters (weights, bias), loss and cost functions, the different of layers,

and their hyper-parameters. We found that care should be given to activation

and loss functions choices as they depend of the nature of the problem to solve.

Some techniques should also be applied to avoid overfitting. The training pro-

cess of deep learning networks turns to be an optimization problem as it consists

in minimizing the loss function. The backpropagation algorithm which is using

the Gradient Descent method is widely used to train deep networks. Finally, we

covered various deep learning architectures such as CNN, RNN, GAN and DNN.

Even though training deep learning networks is quite challenging in terms

of processing time, their automatic feature learning capabilities [59] [87] [4]

make them clearly interesting for data-driven anomaly detection for SCADA net-

works, as labeling the huge data generated by such networks is hardly feasible.

To find out how deep learning approaches leveraging automatic feature learning

techniques is used in SCADA networks, we will conduct in the next chapter a re-

view of existing SCADA anomaly detection systems using deep feature learning

approach.
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Contributions





Chapter3
Review of SCADA Anomaly

Detection Systems using Deep

Feature Learning Approach

3.1 Introduction

The first chapter of this thesis highlighted the vulnerabilities of SCADA net-

works that could be exploited by attackers. Intrusion and anomaly detection

systems play a key role among other security systems.

The present chapter is a review of deep learning feature-learning based ap-

proaches used for anomaly detection in SCADA systems. Its goal is to show

that the automatic feature learning capability of deep learning approach can be

used to provide anomaly detection in SCADA networks. We have included two

studies related to anomaly detection caused by operating faults in this review

because an operational anomaly could be a consequence of an attack as it was the

case when in 2010 the Stuxnet attack crippled the Iranian uranium enrichment

centrifuges [48].

In the first section, we make a presentation of feature learning technique, fol-

lowed by a review of deep learning-based Intrusion detection systems in SCADA

networks using feature learning. For each topic, we present the problem domain,

51
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the deep learning approach used, the dataset and the experimentation results.

Finally, we make a summary of the different approaches before concluding.

3.2 Unsupervised Feature Learning

In machine learning and pattern recognition, a feature is an individual mea-

surable property or characteristic of a phenomenon being observed [16]. In

standard machine learning, feature learning from data is a complex task as it

requires experts of the domain to handcraft the original features in order to

feed the machine learning algorithms with the best features. The data learning

process could be supervised or unsupervised. The supervised learning also need

the intervention of human to correctly label the data, which is costly and error

prone.

In order to leverage the huge amount of available unlabeled data, deep learning

algorithms can automatically learn important features from data in an unsuper-

vised manner [59] [162] [87] [4]. . The main purpose of unsupervised feature

learning is to provide a function to map the original set of features into a differ-

ent representation [165].

In real world, most data are complex, and building good predictors on those data

means learning complex functions too, which are best represented by multiple

levels of non-linear operations, i.e. deep architectures [155]. Unsupervised

feature learning can be done by using clustering on data using algorithms such

as K-means [13], or by training stacked auto-encoders or convolutional networks

[156].
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3.3 Review of unsupervised feature learning in SCADA

ADS

3.3.1 LSTM/Bloom filter anomaly detector

In order to detected anomalies due to data/command injection, reconnaissance

or Denial-of-Service (DoS) attacks on a gas pipeline SCADA system, [50] propose

an anomaly detection approach consisting of a Bloom filter anomaly detector

and a time-series level anomaly detector (Figure 3.2). The former one is a

packet-level anomaly detector which checks a packet signature in its database.

The database stores network patterns and communication pattern signature as

they are stable in a SCADA system. If the analyzed package signature is not

in the Bloom filter, the packet is considered anomalous. The latter detector

receives normal packet that pass the Bloom filter for a time-series level anomaly

detection, which uses its power of information memorization for an extended

number of time steps to predict the behavior of the next time step. a Bloom

filter is a probabilistic data structure that is used to test whether an element is

a member of a set. It is commonly used as an in memory data structure which

size is limited by the availability of RAM space on the machine [40]. Because of

the limited memory and computing resources of some of SCADA components,

using a Bloom filter as a fast and light-weighted packet level anomaly detector is

important. It efficiently stores the signature database of normal network packets

and detects anomalies thereafter. On the other hand, the time-series anomaly

detector is a Stacked Long Short Term Memory (LSTM) Network-based Anomaly

Detector (Figure 3.1) which takes the input of time-series x(t − 1),x(t − 2), ...,

learns their higher dimensional feature representations, and then uses those

features to predict the next data point x̂(t). Furthermore, the predicted data

point can be used to classify if x(t) is anomalous by checking the similarity

between x(t) and x̂(t). The LSTM network model is then trained to minimize a

softmax loss function suited for multi-class classification [59] [128].

The evaluation of the combined anomaly detection framework on a gas pipeline

SCADA dataset [115] gives an accuracy of 92 %, which is higher compared to

other approaches. However, the training time of the LSTM model of 35 min
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during 50 epochs is rather high.

Figure 3.1 – Architecture of the stacked LSTM-based softmax classifier model
Source: [50] ©2017 IEEE

Figure 3.2 – Combined framework for package and time-series level anomaly detection
Source: [50] ©2017 IEEE
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3.3.2 Stacked Auto-encoder based anomaly detection

Due to Network bandwidth and network data increase, [132] proposes a deep

packet inspection in order to extract the necessary feature that would allow

DoS, Probe, R2L and U2R attacks detection. The authors used a Deep Neural

Networks (DNN) approach which architecture is a stacked auto-encoders for the

feature learning, to which a softmax layer is added for the classification (Figure

??). The stacked auto-encoder has two hidden layers, one with 20 nodes and the

second with 10 nodes. The dimension of the learnt features is 10 compared to

the 41 original features of the NSL-KDD dataset dataset. The overall process

encompasses four steps i.e. a feature learning step with the stacked auto-encoder,

a first fine-tuning step where the softmax layer is trained in a supervised manner

with labels and training data. The input of this first fine-tuning step is the

compressed representation of the data. The following step is a second fine-

tuning with a back-propagation training applied to the whole network layers

after the first fine-tuning step. The goal of this second fine-tuning step is to

refine the features of the intermediate layers to make them more relevant for the

intrusion detection task by adjusting the network weights to minimize the cost

function. Finally, the last step of the process is a classification and testing step

where a test dataset is presented to the fine-tuned network in order to evaluate

the efficiency of the model. Accuracy, precision, recall and f-mesure metrics

are used to evaluate the proposed approach against standard techniques like

k-means, DBN, SOM, AdaBoost.

Experimental results show that despite good detection accuracy for DoS and

Probe attacks (97.6 % and 86.34 % respectively), R2L and U2R attacks give poor

results (12.98 % and 39.62 % respectively). The poor performance of the latter

two categories of attacks is due to the lack of sufficient amount of data related to

R2L and U2R (0.04 % and 0.79 % respectively). 9 to 10 % training data samples

for R2L and U2R categories of attacks as with the probe attacks would have

given better detection results. However, the approach proposed by [132] gives

promising results in feature learning and good detection rate for some classes of

attacks detection. It uses the NSL-KDD dataset, an improved version of KDD

Cup 99 [149] which is a general bench-marking dataset for network intrusion
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detection research, created twenty years ago. Those datasets may not reflect

modern networks traffic complexity nor integrate new complex attacks.

3.3.3 Stacked Auto-encoder for anomaly detection in smart grids

The cyber-physical integration, exposes smart grids which are critical systems

to a ubiquitous attack surface through which exploits may inflict major disrup-

tions or damages. There is a high demand for advanced situational awareness

(SA) to provide early warnings and protect electric utilities against adversaries

from the cyberspace. Among the countermeasures against such attacks, In-

trusion/Anomaly Detection Systems play a key role [8]. Machine learning ap-

proaches are used to develop data-driven anomaly detection systems. However,

human handcrafted features for machine learning anomaly detectors become

more expensive and less effective in smart grid [103] [124]. This situation led

[161] to use a stacked auto-encoder approach to supplement more high-quality

feature for ML-based threat monitoring (Figure 3.3). The approach has two

main phases: An off-line training phase and an online monitoring phase. During

the off-line training phase, historical data are first collected for training purpose

on different system operating conditions. Then, the stacked auto-encoder is used

to learn and obtain robust and high-order feature representations. Finally in the

off-line training phase, all the representation layers are stacked and a classifier

is appended to them. The obtained deep neural network model is then trained

with back-propagation in a supervised manner. After the off-line training phase,

an online monitoring phase allows the online acquisition of measurements from

SCADA in the transmission system. These measurements are fed to the deep

neural network, and the results of the classification are used for applications

such as situational awareness. A testbed simulating a power grid is used to

evaluate the proposed approach (Figure 3.4).

The results show that the introduction of feature learning achieves over 96% in

accuracy against three different types of attacks, outperforming the supervised

detectors by a small margin. This competitive performance would be beneficial

as less details of system model or human expertise is required in constructing
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Figure 3.3 – Stacked autoencoders: (a) traditional autoencoder; (b) layer-wise unsuper-
vised pre-training; and (c) supervised fine-tuning

Source: [161] ©2018 IEEE

Figure 3.4 – Smart Grid benchmark testbed
Source: [161] ©2018 IEEE

the effective detector. In overall, the proposed framework has the potential

to provide adaptive and automatic threat monitoring in complex smart grid

applications, as the off-line training deep network model is updated to reflect

current situation and used in real-time to detect the network anomalies.
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3.3.4 CNN/LSTM anomaly detection in SCADA

The Secure Water Treatment testbed (SWaT) dataset contains up to 36 different

cyber-attacks. To evaluate the use of unsupervised feature learning for intru-

sion detection in such system, [92] proposes two models using either Long

Short Term Memory (LSTM) or 1D Convolutional Neural Networks (CNN) as

feature learner. They use mean squared error (MSE) as a loss function and

AdamOptimizer with weight decay for all experiments. The weight decay as a

regularisation technique prevent model overfitting and the AdamOptimizer [88]

is computationally efficient and require little memory. The first Deep Neural

Network (DNN) architecture is a stacked LTSM with a fully connected layer

at the top for classification purpose. With the LSTM model, setting a learn-

ing rate between 0.001 and 0.00001, and a decay rate ranged from 0.9 to 0.99

they were able to test various depths of LSTM layers (from 64 to 2048) and

sequence lengths (between 50 and 1000). The 1D CNN architecture adopted

the classical Convolution-ReLU-MaxPooling scheme, where convolutions are

1D and applied to each feature separately along the time axis. Different kernel

size were used for the experimentations. On top of the convolutions layer, a

fully connected layer is added for prediction, and dropout is used to prevent

overfitting. The authors tested diverse variations of this CNN architecture, by

adding a batch normalization layer or by replacing the basic CONV-RELU-POOL

block with ( CONV - RELU ) × N-MAXPOOL architecture. They also replaced

the convolutionals layers by Inception layers [147] know to provide superior

performance while keeping computational cost low. The Inception layers use

sparse network connections instead of the fully connections used by convolution

layers, hence the reduction of the computational overhead. The experiments

were conducted on the Secure Water Treatment testbed (SWaT) dataset, which

represents a scaled-down version of a real-world industrial water treatment

plant which has 36 different cyberattacks. The proposed 1 D CNN model suc-

cessfully detected 32 out of 36 attacks of the SWaT dataset, representing 89 % of

detection rate, which is fairly good, but need to be improved.

The comparison of the different architectures shows that LSTMs and inception-

based convolution converge the fastest and produce the lowest training error
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rate. The anomaly detection algorithm provides high Area Under Curve (AUC),

reaching 0.967 for the eight layers convolutional network. The training and

testing times of CNN compared to LSTM network were shorter by a factor 10

to 20 for testing and 15 to 40 for training respectively. Concerning the attack

detection performance comparison, the authors show that pure CNN networks

demonstrated better anomaly detection results than their LSTM alternatives.

The proposed CNN has a detection rates reaching 85 % with a 100 % precision.

3.3.5 Conditional Deep Belief Networks for False Data Injec-

tion in Smart Grid

As a countermeasure for False Data Injection (FDI) attack for electricity theft

in smart grids, [67] proposes a detection mechanism which mainly consists

of a State Vector Estimator (SVE) and a Deep-Learning Based Identification

(DLBI) scheme. SVE evaluates the quality of the real-time measurement data

by calculating the l-2-norm of measurement residual that is compared with

a predetermined threshold θ. When the FDI attack bypass the SVE engine,

the Deep Learning-Base Identification (DLBI) tries to detect the compromised

data. The proposed Deep Neural Network is a Conditional Deep Belief Network

(CDBN) that integrates the standard Deep Belief Network (DBN) with Condi-

tional Gaussian-Bernoulli RBM (CGBRBM) (Figure 3.5). CGBRBM is capable

of addressing real-valued input and modeling the impact of the historical ob-

servations on the current behavior feature extractions. The use of CDBN allow

the analysis of temporal attacks patterns that are presented by the real-time

measurement data from the geographically distributed sensors/meters [159].

On the other hand, using CGBRBM on the first hidden layer and regular RBM

for the other hidden layer reduces the training and execution time of CDBN

architectures. The proposed CDBN which is a binary classifier is able to detect

unobservable FDI attacks in real-time by learning the temporal behavior features

of the FDI attacks. The CDBN is trained in an unsupervised manner and a fully

connected layer is added on top of the model with a binary output node which

has a sigmoid activation function. The whole deep neural network structure is

then fine-tuned with back-propagation supervised training with labeled data.
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The proposed CDBN efficiently reveal the high-dimensional temporal behavior

features of the unobservable FDI attacks that bypass the SVE mechanism with a

high accuracy rate over 94% even in the presence of occasional operation faults,

meaning that unknown attacks could be detected.

Figure 3.5 – CDBN Architecture
Source: [67] ©2017 IEEE

3.3.6 RBM-based Deep Auto-encoder for Anomaly Detection

and Fault Analysis of Wind Turbine Components

Wind turbines usually operate in harsh and variable environment, making theirs

components such as gearbox, main bearing, generator, inverter and controller

subjet to failure. This situation can lead to unavailability and even destruction,

causing expensive repair costs of wind turbines. As a remedy of this situation,

the authors [168] present a deep auto-encoder (DAE) approach to detect early
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anomalies as well as provide fault analysis of wind turbines components. The

data associated to each wind turbine component is extracted in order to build

the DAE model. The deep auto-encoder model is used to extract the important

features and their relationship from the SCADA data of wind turbine compo-

nents. The DAE architecture is a deep learning network composed of multiple

Restricted Boltzmann Machine (RBM) stacks [59]. The use of a DAE based

on RBM building blocks is because of the power of RBM in highly capturing

the variational potential of input data [52]. Two major steps are involved in

the DAE training process i.e. pre-training and fine-tuning. The pre-training

phase, is a layer-wise pre-training of each composing RBM. The pre-training

allows the initialization of the deep auto-encoder. During the pre-training phase,

the long-term normal operating unlabeled SCADA data is used. Following the

pre-training phase which initializes the weights and bias of the DAE is the

fine-tuning step. Taking advantage of the SCADA labeled data in long-term

normal operation SCADA data, the back-propagation (BP) algorithm is used for a

supervised learning to improve the representation of data features and optimize

the parameters of hidden layers in the fine-tuning. The SCADA data fed to the

DAE is encoded, then decoded, and a reconstruction error is calculated (Figure

3.6). A SCADA data samples obtained from wind turbine normal operation is

used to train the DAE model. The training process allow the DAE to extract the

internal relationship between the input and the output, and setup the model

parameters. Next, an index of component health condition is defined by the

reconstruction error of the input and output of the DAE network. For a better

monitoring of the index, a dynamic adaptive threshold was proposed on the

basis of the detection index calculated by the wind turbine SCADA data. The

anomaly detection and fault location analysis is performed by combining the

the reconstruction error, the adaptive threshold and the input-output residual.

The proposed DAE model is capable of avoiding false alarms and of giving valid

warnings at an early stage. In addition, after the DAE model gives an early

warning, the possible fault location of the component can be further determined

by analyzing the change trends of the SCADA variable residuals of the wind

turbine components.
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Figure 3.6 – Structure of DAE Network
Source: [168]

3.3.7 Gas Turbine Combustors monitoring with Stacked De-

noising Auto-encoder and Extreme Learning Machine

In order to monitor gas turbine combustors’ health and detect abnormal behav-

iors and incipient faults earlier, [163] proposes a deep neural network approach.

The proposed model is a Stacked Denoising Auto-encoder (SDAE) [156], to

which an Extreme Learning Machine (ELM) [72] is added. The SDAE used

for the unsupervised learning of features allow more robust feature learning,

even though the input data is noisy. The feature learned from the SDAE are

fed to the ELM module for classification purpose. Unlike in other feedforward

neural networks, in ELM, connections between input and hidden neurons are

randomly generated and fixed, that is, they do not need to be trained. Training

consist in finding connections between hidden and output neurons only, which

makes ELM training becomes very fast [72]. The only ELM design parameter is

the number of hidden neurons. To test the proposed approach, the authors have

used seven months of one turbine data containing normal and abnormal data.

In order to demonstrate the effectiveness of unsupervised feature learning for

combustor anomaly detection, the authors compare classification performance

between using the learned features and handcrafted features. The results show
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that the deep learned features give significant better classification performance

than the handcrafted features (detection rate of 99 % and 96 % for deep learned

features and the handcrafted features respectively) .

3.4 Summary of studied approaches

Table 3.1 shows a summary of the different approaches. For each approach we

highlight the feature learning architecture, the classifier used to discriminate

the data, the types of the attacks detected and the results in terms of accuracy.



Table 3.1 – Summary of Deep Learning Unsupervised Feature Learning in SCADA
Method Feature Extractor Classifier Attacks/Faults Training time Accuracy

SVE + CDBN [67] CDBN-RBM Fully connected NN False Data Injection N/A >94%

Stacked LSTM
+ Bloom Filter [50]

Stacked LSTM Softmax

- Data Injection
- Command Injection
- Reconnaissance
- DoS

35 minutes
for 50 epochs

92 %

Stacked AE
+ Softmax
[132]

SAE Softmax

- DoS
- Probe
- R2L
- U2R

Consume lot of
time

- 97.6 %
- 86.34 %
- 12.98 %
- 39.62 %

CNN/LSTM
+ Fully connected NN
[92]

CNN/LSTM
Fully
connected NN

Set of 36 different
attacks

214 s for 1 epoch f1-score 92 %

DAE-RBM [168] DAE DAE residuals
- Operating anomaly
- Faults

0.44 s for 10 min
data

Early faults
detected

SAE + MLP [161] SAE MLP

- Data injection
- Remote tripping
- Command injection
- Relay setting change

High number
of features increase
computational
complexity

96 %

SDAE + ELM [163] SDAE ELM - Faults N/A 99 %
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3.5 Conclusion

This review of SCADA anomaly detection using a deep feature learning approach

show that various combinations of deep learning architectures with feature learn-

ing capability are used to achieve anomaly detection in SCADA networks. CNN,

LSTM, CDBN architectures are used as feature learners, but most of the ap-

proaches use a stacked autoencoder approach to learn the salient features. On

top of the feature learning architectures, diverse supervised classifiers such as

softmax, fully connected neural network, Extreme Learning Machine are used

for the classification of the data. The detected anomalies range from false data

injection, command injection, reconnaissance attack, DoS, to plant operation

anomalies which could be the consequences of cyber-attacks. In most cases, those

deep learning based approaches detection rate outperform standard approaches

ones. However, deep learning approaches training time remains much higher.

Deep feature learning based approaches are viable for anomaly detection in

SCADA systems, even though detection rate, false alarm rate and training time

need to be improved.

The next chapter is dedicated to the design of an unsupervised deep neural

network feature learning framework for SCADA systems.
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Chapter4
Building an Unsupervised Deep

Neural Network Feature Learning

Framework for SCADA systems

4.1 Introduction

In the previous chapter, the review of anomaly detection systems using deep

learning unsupervised feature learning approaches to protect SCADA networks

showed that more and more researches are trying to propose anomaly detection

measures using this capability. In fact, the feature engineering is one of the most

time consuming in Machine learning, and deep learning have the capability of

significantly reduce that time [32]. Moreover, the unsupervised automatic fea-

ture learning of deep learning [59] [4] is very important for data-driven anomaly

detection systems in SCADA networks because of the heterogeneity, volume and

velocity of data in those systems [172] [7].

In this chapter, our objective is to propose a deep learning based architecture

that is capable to learn the most important features of a SCADA network data.

We are providing the core components of this architecture and its parameters,

hyperparameters, activation and loss functions as well as the training algorithm. .

67
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After the presentation of the water storage tank SCADA dataset used for this

work in the first section, we give the building process of the stacked sparse

denoising auto-encoder in the following section. Thereafter, a section is devoted

to the loss function, activation function, parameters and hyper-parameters. In

the fifth section, we define the algorithm needed to train the model before the

conclusion.

4.2 SCADA Dataset used

The dataset used is obtained from a testbed of the Mississippi State University

SCADA Security Laboratory and Power and Energy Research laboratory. The

physical system is a water storage tank system [115]. The records of the dataset

were captured from the control system of the water storage tank that models oil

storage tanks found in industries like chemical or refineries [55]. The physical

process is made of two storage tanks (a primary and a secondary one), a pump

that moves the water from the secondary storage tank to the primary one, a

relieve valve which allows the water to flow from the primary storage tank to

the secondary tank, and a sensor which indicates the water level in the primary

tank as a percentage of total capacity. The control system of the water storage

tank system have three part : an HMI that allows a human operator to monitor

and control the water storage tank, a Master Terminal Unit (MTU), a Remote

Terminal Unit (RTU) and communication links. A complete description of the

system operation can be found in [116].

Dataset records categories

The dataset contains normal records and 28 attacks against the Modbus Indus-

trial Control System that monitor the water storage tank. The attacks types

are Naïve Malicious Response Injection (NMRI), Complex Malicious Response

Injection (CMRI), Malicious State Command Injection (MSCI), Malicious Param-

eter Command Injection (MPCI), Malicious Function code Command Injection
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Table 4.1 – Dataset records categories
Label Category Description

0 Normal Instance not part of an attack

1 NMRI
Naive Malicious Response
Injection attack

2 CMRI
Complex Malicious Response
Injection attack

3 MSCI
Malicious State Command
Injection attack

4 MPCI
Malicious Parameter Command
Injection attack

5 MFCI
Malicious Function code Command
Injection attack

6 DoS Denial-of-Service attack
7 Reconnaissance Reconnaissance attack

(MFCI), Denial-of-Service (DoS), and Reconnaissance attack (Table 4.1).

Dataset attributes

The datasets contain two types of attributes i.e. the network traffic attributes

and the payload attributes. The topology and services of the SCADA systems are

relatively static compared to traditional IT. Therefore, network traffic attributes

can be used to describe normal traffic patterns and thus detect fraudulent activi-

ties. Network traffic attributes include the device address, function code, packet

length, packet error control information, and the time interval between packets.

The attributes of the payload content provide information about the state of the

SCADA system. They are useful for detecting the cause of abnormal behavior

in hardware (eg PLCs). These attributes include sensor measurements, control

command values and physical process states (see Table 4.2).

4.3 Unsupervised feature learning architecture

As seen in the previous chapter, various deep learning based architecture i.e

CNN, LSTM, Conditional Deep Belief Network, stacked autoencoder (SAE) or

stacked denoising autoencoders (SDAE) are used for feature learning in SCADA
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Table 4.2 – water storage tank attributes
Attribute Type Description

command_address Network Device ID in command packet
response_address Network Device ID in response packet
command_memory Network Memory start position in cmd.
response_memory Network Memory start position in resp.
command_memory_count Network Memory bytes for R/W command
response_memory_count Network Memory bytes for R/W response
comm_read_fun Payload Value command read func.code
comm_write_fun Payload Value command write func.code
response_read_fun Payload Value response read func. code
response_write_fun Payload Value response write func.code
sub_function Payload Value of sub-function code
command_length Network Total length of command packet
response_length Network Total length of response packet
HH Payload Value of HH setpoint
H Payload Value of H setpoint
L Payload Value of L setpoint
LL Payload Value of LL setpoint
control_mode Payload Automatic, manual or shutdown
control_scheme Payload Manual mode compressor/pump
pump_state Payload Compressor/pump state
crc_rate Network CRC error rate
measurement Payload water level
time Network Time interval betw. 2 packets
label Provided Manual classification
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networks anomaly detection. Stacked autoencoders can use standard autoen-

coders or Restricted Boltzmann Machine (RBM) as building blocks. However,

Tan and Eswaran proved in a study [148] that stacked autoencoder using RBMs

tends to make the network more focused on the training dataset, resulting in

a low generalization. A comparison of performances of the stacked denoising

autoencoder (SDAE) introduced by Pascal Vincent and his team [156] and other

deep neural networks based architectures such as on Multi Layer Perceptron

(MLP), Deep Belief Network (DBN) corresponding to stacked Restricted Boltz-

mann Machine (RBM), stacked autoencoder (SAE) shows SDAE architecture

achieves the best performance in terms of test error rate.

Therefore, the proposed deep feature learning architecture will be based on

the stacked denoising autoencoder (SDAE) architecture. However, instead of us-

ing a simple denoising autoencoder (DAE) as building block, we are introducing

a sparsity parameter to allow more robust feature learning.

4.4 Sparse Denoising Autoencoder (SpDAE)

4.4.1 Auto-encoders

An Auto-encoder is a Neural Network that is trained to try to reproduce an ap-

proximation of its input (Figure 4.1). But merely learning the identity function

is not sufficient for learning representation of the input; thus, a traditional ap-

proach to combat the reproduction of the identity function is to use a bottleneck

to produce a under-complete representation where the dimension of the hidden

layer is less that the input dimension [155]. A basic auto-encoder has an input

layer, a hidden layer and an output layer. The first part of the network formed

by the input and the hidden layer is the encoder and likewise, the second part

formed by the hidden layer and the output layer is the decoder. The encoder tries

to represent the input layer at the hidden layer while the decoder reconstructs

the input to its original dimension at the output layer [127]. Let′s set input

x = (x1,x2, ..,xn), hidden layer h = (h1,h2, ...,hd) and output y = x = (y1, y2, . . . , yn).

Let′s W ∈ R(nxd) and b = (b1,b2, . . . ,bd) be the weights and bias at the hidden
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Figure 4.1 – Auto-encoder

layer and W ′ ∈ R(dxn) and b′ = (b′1,b
′
2, . . . ,b

′
n) be the weights and bias for the

output layer. The output of the hidden layer can is h = f 1(Wx+b) and the output

of the output layer id
∧
y = f 2(W ′h+ b′), where f 1 and f 2 are activation functions

(Linear, Sigmoid, ReLU,. . . ). Let′s define the cost C function.

C =
m∑
k=1

∥∥∥∥∥∧y(k)
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∥∥∥∥∥2
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The cost function C can be minimized [59] based on training data by deriving

the model parameters (W,W ′,b,b′).

∧
θ = argmax

θ
C(θ) = argmax

θ

m∑
k=1
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∥∥∥∥∥2
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When using a gradient descent optimizer, the learning rule at iteration t is

defined by :

θ(t+1) = θ(t) − ε∆θC(θ(t))

Where ε is the learning rate and ∆θC(θ(t)) is the gradient of the cost function with

respect to θ at θ = θ(t). Beside the under-complete approach to learn interesting

feature from an input, two novel strategies are used to get more meaningful

representation of input data i.e. the sparsity parameter and denoising.

4.4.2 Sparse Auto-encoder

As previously stated, in under-complete auto-encoders, the number of hidden

neurons is less than the number of input features. In this way, the encoder is

forced to learn the most interesting representation of the input. Another way to

learn interesting features is to introduce a sparsity constraint in the hidden layer.

A neuron is “active” when its output value is close to 1 and “inactive” when the

output value is close to 0. The sparsity will constrain the neurons to be inactive

most of the time [122]. If a(2)
j is activation of hidden unit j in the auto-encoder,

a
(2)
j (x) is the activation of this hidden unit for an input x. The average of the

activations for the hidden unit j for a training set of m samples is

∧
ρj =

1
m

m∑
i=1

[a(2)
j (x(i))]

The idea is to force the average of the activations to be very close to 0. This is

done by introducing a sparsity parameter ρ that would enforce the constraint
∧
ρj = ρ. Typically, ρ is a small value close to 0(ρ = 0.05). To satisfy the constraint,

the hidden unit′s activation must mostly be close to 0. A penalty term is intro-

duced to penalize deviating from ρ, using the Kullback-Leibler (KL) Divergence.

Kullback-Leibler (KL) Divergence

The KL-divergence [122] [127] is a function that measures how different two
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Bernoulli random distributions are.

KL(ρ||∧ρj) = ρ log
ρ
∧
ρj

+ (1− ρ) log
1− ρ

1− ∧ρj

Where ρ and
∧
ρj representing the means of two Bernoulli random variables.

If we set the value of ρ very small (0.05 for example), and
∧
ρj being the mean

of the activation of a given node over a the dataset, that will cause the node to

rarely activate, thus introducing the sparsity.

4.4.3 Denoising auto-encoders

To avoid simply copying the input and guaranty learning useful representation

from the input, another strategy apart from the sparsity has been introduced,

namely, the denoising auto-encoder. This strategy aims to clean the partially

corrupted input or denoising the input. The denoising process which is defined

as a training criterion for learning to extract useful features allows a more robust

feature extraction of the input [155] [156]. For Denoising autoencoders (DAE),

we first corrupt the initial input x into x̃ by means of a stochastic mapping

x̃ ∼ qD(x̃|x) . Then, as in basic auto-encoder, a representation of the corrupted

input is evaluated at the hidden layer y = fθ(x̃) = s(Wx̃ + b), and finally, we

reconstruct back the corrupted input z = gθ′ (y). We then train the parameters θ

and θ′ to minimize the average reconstruction error over a training set. z must

be as close as possible to the uncorrupted input x.

4.4.4 Sparse Denoising auto-encoder

The sparse denoising auto-encoder is a denoising autoencoder with a sparse

parameter. The denoising autoencoder, instead of merely minimizing the loss

function

L(x,g(f (x)))
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where f (x) is the coder and g(f (x)) the decoder, minimizes

L(x,g(f (x̃)))

where x̃ is a copy of x that has been corrupted by some form of noise.

The sparse autoencoder on the other hand adds a sparsity penalty Ω(h) on the

code layer h in addition to the reconstruction error [59] :

L(x,g(f (x))) +Ω(h)

where g(h) is the decoder output and h = f (x), the encoder output. The sparsity

term of an autoencoder make it respond to unique statistical features of the

dataset it has been trained on, rather than simply acting as an identity function.

The sparse denoising autoencoder will then minimize the loss function

L(x,g(f (x̃))) +Ω(h)

4.4.5 Activation Function

In chapter 2, we saw that the ReLU activation function (f (x) = max(0,x) ) is

computationaly efficient compared to the Sigmoid and Tanh and moreover, was

solving the Vanishing Gradient Problem. However, it also suffers from the

Deying ReLU problem which causes neurons to not fire. So, we are choosing

to use the Leaky ReLU in the hidden layers of the stacked sparse denoising

auto-encoder. It has the ReLU advantages, but fixes its Dying ReLU problem.

f (x) =

0.01 x < 0

x x >= 0

4.4.6 Loss Function

Each auto-encoder of the stacked sparse denoising auto-encoder is trained sepa-

rately so as to reconstruct its input. If m is the number of samples in the training

set, we will use the mean square error as the loss function [122]
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J(θ) =
1
m

m∑
i=1

(
1
2

(hW,b(x
(i))− x(i))2)

where θ = {W,b}
As there is a sparsity parameter, we should adjust the cost function accord-

ingly, which becomes

Jsparsity(θ) = J(θ) + βΩsparity

Where Ωsparsity is the sparsity term allowing only a small number of neurons of

the hidden layer h to be active at each iteration.

Ωsparsity =
k∑
i=1

KL(ρ||ρ̂i) =
k∑
i=1

(
ρ log ρ

∧
ρi

+ (1− ρ) log 1−ρ
1−∧ρi

)
Where k is the number of neurons of the hidden layer. The overall cost function

is:

J(θ) =
1
m

m∑
i=1

(
1
2

(hW,b(x
(i))− x(i))2) + β

k∑
i=1

(
ρ log ρ

∧
ρi

+ (1− ρ) log 1−ρ
1−∧ρi

)
β is a factor allowing to adjust the relative importance of the sparsity term in

the loss function.

4.5 Stacked Sparse Denoising Autoencoder (SSpDAE)

4.5.1 Process of building the SSpDAE

In the process of stacking the sparse denoising auto-encoders, the input of the

first auto-encoder is the SCADA dataset features, and the hidden layer is h1 with

some number of nodes. The decoder part of the first auto-encoder is discarded.

For the second auto-encoder, the input layer is the hidden layer h1 of the first

auto-encoder, and the hidden layer of the second auto-encoder is h2. We do this

process until we reach the nth auto-encoder which input is the hidden layer hn−1
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Figure 4.2 – Stacked Sparse Denoising Auto-encoder

of the (n−1)th auto-encoder, and the hidden layer of the nth auto-encoder is hn
(Figure 4.2).

Now that the stacked denoising auto-encoder global structure is defined, in

the next section, we will define the loss function, the activation function, param-

eters and hyper-parameters like the number of layer, the number of nodes per

layer and the regularization used to avoid overfitting.

4.5.2 Depth and width of the SSpDAE

The number of layers (depth) might be set carefully, as low latency is an essential

requirement in SCADA networks. The deeper the neural network gets, the longer

it takes to train the DNN model. Therefore, trade-offs should be made between

the detection rate and the training time of the model. Unlike in Convolutional
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Neural Networks where the deeper the network is, the better it performs, with

deep neural networks, it is shown in practice that 3 layer Neural Network will

outperform a 2 layer one, but going deeper rarely helps much more [74]. There-

fore, we will set the number of layers to 2, and vary it making the architecture

deeper in the implementation phase in chapter 6. With the use of the sparsity

parameter in the model, we will set a number of nodes for the hidden layer

higher than the input dimension.

4.6 Conclusion

In this thesis, we have used a water storage tank testbed SCADA dataset that

have normal and anomalous records. The attributes of the dataset are either from

the network or measures from the physical process observations. The dataset

contains normal as well as attacks records. There is an overall 28 attacks grouped

into 7 categories which are Naïve Malicious Response Injection (NMRI), Com-

plex Malicious Response Injection (CMRI), Malicious State Command Injection

(MSCI), Malicious Parameter Command Injection (MPCI), Malicious Function

code Command Injection (MFCI) and Reconnaissance.

As a basis of the proposed architecture, we choose the stacked denoising autoen-

coder (SDAE) based on its performance in prior studies, to which we added a

sparse parameter to make the feature learning process more robust.

Afterwards, we showed the process of building the stacked sparse denoising

autoencoder (SSpDAE), where the first sparse denoising autoencoder (SpDAE)

input is the SCADA data attributes, and for the subsequent layers, the output

layer of a previous SpDAE is discarded, and its hidden layer is the input layer

of the current SpDAE. Leaky ReLU is used as activation function for its com-

putational efficiency and its non-dying neurons capabilities. The loss function

for each SpDAE is a mean square error to which we added a weight decay for

regularization and a sparsity parameter to control the number of firing neu-

rons per layer. Finally, as low latency is essential in SCADA networks, in the

implementation phase, trade-offs should be made between the detection rate



4.6. Discussion 79

and training time of the model.

In the next chapter, we will use the SSpDAE to build an hybrid deep neural

network anomaly detection system that is leveraging the unsupervised feature

learning capability of deep learning for anomaly detection in SCADA systems. A

distributed approach of the proposed anomaly detection system is also proposed

to deal with the high training time of deep architectures.
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Chapter5
Hybrid Deep Neural Network

Anomaly Detection System for

SCADA Networks

5.1 Introduction

An anomaly detection system is a system which is able to discriminate nor-

mal data from anomalous ones. In order to get best classification results, data

with good features have to be presented to the input of the classifier. In classic

Machine Learning, the features are handcrafted before the training and classi-

fication process. However, Deep Learning has the capability to automatically

learn important features of data in an unsupervised manner [20] [59] [105]. In

the previous chapter, we have designed a stacked sparse denoising auto-encoder

for SCADA networks data unsupervised feature learning.

In the present chapter, we propose a deep neural network for anomaly detection

in SCADA systems by adding a supervised classification layer and providing

the training algorithms. Furthermore, we provide the design framework of

the anomaly detection system and a distributed approach to lessen the model

training time.

81
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In the first section, we give details of the design principles of the deep neu-

ral network. Afterward, we design the general hybrid anomaly detection system

framework. In the following section, we explain the training process of the

unsupervised feature learning component i.e. the greedy layer-wise pre-training.

This section is followed by the training process of the supervised layer and the

fine-tuning of the whole network, as well as the detection phase with test data.

Finally, we propose a distributed approach of the hybrid deep neural network

anomaly detection system as a way to speed-up the training process.

5.2 Hybrid SCADA DNN Anomaly Detection System

The anomaly detection system we propose has two parts: a data pre-processing

part and the anomaly detection part. The proposed anomaly detection approach

is an hybrid SCADA deep neural network anomaly detection system, as it uses an

unsupervised feature learning engine and a supervised classification engine (Fig-

ure 5.1). Before reaching the anomaly detector, the SCADA data is pre-processed

inside the data pre-processing engine which includes a data normalization mod-

ule, a data splitting module, and a data balancing module.

5.3 SCADA Datasets Pre-processing

All the values of the dataset are numerical. The pre-processing encompasses

four different steps i.e. Min-Max normalization, dataset splitting into training,

validation and test sets, balancing the training and validation sets, and one-hot

encoding all the datasets.

5.3.1 Min-Max Normalization

Standardization and Min-Max normalization are two widely normalization tech-

niques in machine learning. However, while the standardization center each

feature value on 0, producing values in range [-1, 1], the Min-Max on the other
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Figure 5.1 – Hybrid SCADA DNN Anomaly Detection System Design

hand produces values in range [0, 1] [128]. As the SCADA dataset contains only

positive values, we choose Min-Max as the normalization technique.

The Min-Max normalization consists in scaling all features values of the dataset

in range [0,1]. For a feature F with a value x, the normalized value x’ is

x′ =
x −min(F)

max(F)−min(F)

where min(F) and max(F) are minimum and maximum F values respectively

[78].

5.3.2 One-hot encoding

One-hot encoding is a vector representation, where we have a group of bits for

which only a single column’s value in the vector can have the value 1. All of

the other column values will be 0. One-hot encoding is often used to represent

categorical features [128].
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5.3.3 Data Splitting into Training, Validation and Testing Sets

To split the datasets, we use a cross-validation technique. The two most com-

monly used cross-validation techniques are the hold-out cross-validation and

the k-fold cross-validation [133]. The hold-out cross-validation is a widely-used

cross validation technique that is efficient and easy to use. The dataset is sep-

arated into three mutually disjoint subsets, i.e., a training, a validation and a

testing sets. There is no restriction on the size of the three data subsets, making

this technique suited for big datasets. The model is trained on the training set

and the validation one is periodically used to evaluate its performance to avoid

overfitting. The training is stopped when the performance on the validation set

is good enough or when it stops giving better results.

With the k-fold cross validation technique, the dataset is divided into k parts

of the same size. One part acts as the validation (testing) set, while the others

form the training set. The process is repeated for each of the k parts. The k-fold

cross-validation is useful when not enough data is available for an hold-out

cross-validation. We are using the hold-out cross-validation in the experiments.

5.3.4 Dataset Balancing

Many approaches exist for unbalanced datasets balancing, e.g. random oversam-

pling, random undersampling, the Synthetic Minority Oversampling Technique

(SMOTE) [27] or the Adaptive Synthetic (ADASYN) [65] sampling methods.

Oversampling methods balance training dataset by increasing the number of

minority class example, while undersampling methods balance training dataset

by decreasing the number majority class examples. In section 6.5 of the next

chapter, the dataset distribution shows that some minority class has very few

samples compared to normal instances. We then focus the balancing method on

oversampling, SMOTE, and ADASYN. Tests results with the SCADA dataset give

better results when applying random oversampling.
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5.4 Hybrid SCADA DNN Anomaly Detection Engine

The main part of the system design is the anomaly detection engine (Figure 5.2).

This engine is made of an unsupervised deep neural network SCADA feature

learning module and a supervised classification module.

Figure 5.2 – Hybrid SCADA DNN Anomaly Detection System Engine

5.4.1 Unsupervised Deep Neural Network SCADA Feature Learn-

ing Module

In the previous chapter, we have designed an unsupervised feature learning

module to be used in the deep neural network-based anomaly detection system.

This module is a stacked sparse denoising auto-encoder i.e a stacked auto-

encoder with sparsity and denoising parameters (Figure 5.3). The purpose of

this module is to learn the most important features of the SCADA unlabeled data,

so that those features will be used subsequently in a classifier to discriminate

data between normal or abnormal classes.
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Figure 5.3 – Unsupervised Feature Learning
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5.4.2 Supervised Classification Module

The SCADA dataset has records from normal operation as well as those caught

from seven different categories of attacks. There is an overall eight categories of

records in the dataset. Hence, we are solving a multiclass classification problem

which consists in discriminating the different records of the dataset with respect

to their correct category.

A layer with nodes using a softmax activation function is suited for multiclass

classification problems [45] [127]. Therefore, in the proposed architecture, we

use on top of the unsupervised deep feature learner, a supervised classifier which

is a softmax layer (Figure 5.4).

When using a softmax layer for a multiclass modeling problem, we only care

about the best score across these classes, and we use an arg-max() function of

the softmax output layer to get the highest score of all the classes. The softmax

output layer gives us a probability distribution over all the classes [128].

σ (z)j =
ezj∑k
i=1 e

zi
f or j = 1, ..., k

If we have a weight matrix W and a bias b, the probability that an input vector x

is a member of a class i, a value of a stochastic variable Y , can be written as [59]

:

P (Y = i|x,W ,b) = sof tmaxi(Wx+ b) =
eWix+bi∑
j e
Wjx+bj

The model’s prediction ypred would be the class which has the highest probability

:

ypred = argmaxiP (Y = i|x,W ,b)

5.4.3 Loss Function of the Supervised Classifier

The loss function that will be defined for the supervised classifier training will

also be used to train the hybrid deep neural network.
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Figure 5.4 – Supervised Classifier

The supervised classifier defined in the previous section is a softmax layer which

output is a probability distribution over all the classes. The input data of the

supervised classifier and the hybrid DNN use labeled data. In the section 5.3

concerning the SCADA datasets pre-processing, those labels have been one-hot

encoded. This is actually a probability distribution where the actual class value

is 1 and all the others 0. We then need a loss function capable of comparing

two probability distribution (the actual label of data one-hot encoded and the

outcome of the classification output by the softmax function). In the sub section

2.3.4 of the chapter 2, we show that cross-entropy is the loss function used to

measure the similarity between two probability distributions P and Q:

H(P ,Q) = −
∑
x∈X

P (x)logQ(x)
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Therefore, the training process of the supervised layer as well as the whole hybrid

deep neural network will consist in minimizing a cross entropy loss function.

5.5 Training the SCADA Hybrid Anomaly Detection

System

There are three steps in the training of the SCADA hybrid anomaly detection

system i.e., the greedy layer-wise unsupervised pre-training step, the softmax

supervised layer training step, and the entire network fine-tuning step which is

a supervised training.

5.5.1 Greedy Layer-wise Unsupervised Pre-training Step

The unsupervised pre-training or greedy layer-wise unsupervised pre-training

[15] [71] [59] [12] plays a key historical role in the revival of deep learning

enabling the training of deep supervised networks without requiring architec-

tural specializations like convolution or recurrence. This approach relies in on

a single-layer representation learning such as a RBM, a single autoencoder, a

sparse coding model, etc. Each layer is pre-trained using unsupervised learning.

A new representation of the date is produced from the output of the previous

layer.

Taking the example of a stacked autoencoder, the greedy layer-wise pre-training

is called greedy because it uses a greedy algorithm i.e. it optimizes each piece of

the deep network (the autoencoder) independently, one at a time, rather than op-

timizing all the pieces altogether. The term layer-wise is because the independent

pieces are the network layers. The k-th layer is trained while the previous layer

of the deep network are maintained fixed. The training is unsupervised because

an unsupervised learning algorithm is used. Finally, it is a pre-training because,

the greedy layer-wise unsupervised pre-training is a first step before the training

of the whole network called fine-tuning, where all the layer are trained together.

The greedy layer-wise unsupervised pre-training can be used as an initialization
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strategy for deep networks [71].

For the training process of the stacked sparse denoising autoencoder, the first

Auto-encoder is trained, and the coded representation of the input i.e. h1 is used

as the input of the second auto-encoder. We train the second auto-encoder and

likewise, another abstraction of the input features is the second hidden layer h2.

Finally, in the same way, the n-th auto-encoder is trained, and a final abstraction

of the input feature is represented by the layer-wise-th hidden layer hn.

Algorithme 2 : DNN_Unsupervised_FL
Data : SCADA_dataset

Result : W, b, learnt_features

initialize (W,b,W ′,b′)

/* L = number of hidden layers */

for l← 1 to L do
foreach example ∈ SCADA_dataset do

H ← f (WX + b) // f is the Leaky ReLU activation

X ′← f (W ′H + b′)

/* Minimize

J(θ) = 1
m

∑m
i=1( 1

2 (hW,b(x(i))− x(i))2) + β
∑k
i=1

(
ρ log ρ

∧
ρi

+ (1− ρ) log 1−ρ
1−∧ρi

)
*/

W,b←Minimize J(θ)

end
learnt_f eatures←HL

end

5.5.2 Softmax Supervised Layer Training Step

The supervised classification module is a softmax layer. The transfer function

for each node of is a softmax function, which maps each output to a vector of

probabilities. The softmax layer has eight nodes corresponding to the number of

the different types of the dataset records. This layer is appended to the stacked

sparse denoising autoencoder (Fig 5.6). After the greedy layer-wise unsupervised
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Figure 5.5 – Feature Learning

pre-training of the stacked sparse denoising autoencoder, in this step, we train

the Softmax layer with the SCADA training dataset with training labels.

Algorithme 3 : Softmax_Supervised_Classification
Data : network, SCADA_dataset, true_labels, training_epoch

Result : W,b,Ws,bs
initialize (W,b,Ws,bs)

for i← 1 to training_epoch do
W,b←DNN_Unsupervised_FL (SCADA_dataset)

X,← SCADA_dataset

H1← f (W1X + b1) // f is the Leaky ReLU activation

for l← 2 to L do
Hl ← f (WlHl−1 + bl)

end
/* P (Y = i|x,W ,b) = sof tmaxi(Wx+ b) = eWix+bi∑

j e
Wjx+bj */

pred_labels← sof tmax(HL)

/* Minimize Cross-Entropy H(P ,Q) = −
∑
x∈X P (x)logQ(x) */

Ws,bs←Minimize D(true_labels,pred_labels)

end
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Figure 5.6 – Softmax Layer Training

5.5.3 Hybrid Anomaly Detection System Fine-tuning Step

After the unsupervised feature leaning and the training of the classification

layer, the Deep Neural Network parameters i.e. weights, biaises are set. In the

fine-tuning [71] [59], the whole network is trained using those parameters and

the training dataset with labels. The fine-tuning (Figure 5.7) enables the whole

network to be further optimized by gradient descent in order to minimize the
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reconstruction error [15], thus increases the classification accuracy .

Algorithme 4 : DNN_Fine_Tuning
Data : network,SCADA_dataset, true_labels, training_epochs,W ,Ws,b,bs
Result : W,Ws,b,bs
for i← 1 to training_epoch do

X← SCADA_dataset

H1← f (W1X + b1) // f is the Leaky ReLU activation

for l← 2 to L do
Hl ← f (WlHl−1 + bl)

end
pred_labels← sof tmax(HLWs + bs)

/* Minimize Cross-Entropy H(P ,Q) = −
∑
x∈X P (x)logQ(x) */

W,Ws,b,bs←Minimize D(true_labels,pred_labels)

end

Figure 5.7 – Fine Tuning
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5.6 Hybrid Anomaly Detection System Detection

Once fine-tuned, we use the test dataset with labels to evaluate the detection

performances of the Deep Neural Network-based Anomaly detection System of

SCADA networks (Fig. 5.8).

Algorithme 5 : DNN_Detection
Data : network,SCADA_test_dataset,W ,b,Ws,bs
Result : pred_labels

X← SCADA_test_dataset

H1← f (W1X + b1) // f is the Leaky ReLU activation

for l← 2 to L do
Hl ← f (WlHl−1 + bl)

end
pred_labels← sof tmax(HLWs + bs)

Figure 5.8 – DNN ADS Detection
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5.7 Distributed Hybrid ADS for SCADA Networks

Distributed Machine Learning frameworks have been proposed by Google Re-

search Team.

5.7.1 First Generation of Distributed Machine Learning Sys-

tems : DistBelief

The first generation of Distributed Machine Learning Systems was the DistBelief

[39], a software framework that can use computer cluster with thousands of

machines to train large models. On each node, the user defines the computation

and the message that should be passed during the computation. In case of large

models, the user can partition it across several machines of the cluster. DisBelief

seamlessly manages the parallelization of the computation, the communication,

the synchronisation as well as data transfer between machine. To enable the

distribution of the training across multiple model instances, they propose two

new large-scale distributed optimization procedures i.e. Downpour SGD and

Sandblaster L-BFGS which are distributed versions of the Stochastic Gradient

Descent (SGD) and the Limited memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) [171] method respectively.

In the Downpour SGD approach, the training dataset is divided into a number

of subsets and a copy of the model is run on each of the subset. A centralized pa-

rameter server keeps the current state of all models parameters scattered across

the nodes. On the other hand, the Sandblaster L-BFGS uses a different approach

where a coordinator issues commands like dot product, scaling, coefficient-wise

addition, multiplication, etc., that is performed by each parameter server shard

independently, with the results being stored locally on the same shard.
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5.7.2 Second Generation of Distributed Machine Learning Sys-

tems : TensorFlow

Thereafter, in 2015, the same Google Research team proposed the second gener-

ation and of Distributed Machine Learning Framework which is Tensorflow [2].

TensorFlow computation is a directed graph which is composed of a set of nodes

(Figure 5.9).

Figure 5.9 – TensorFlow Computation Graph

In TensorFlow, the client which is the main component uses Session interface

to communicate with the master, and one or more worker processes. The graph

nodes are executed on computational devices such as classical CPU or Graphical

Processing Units (GPU). Each worker process manages one or more devices.

Two approaches exist in distributed TensorFlow :

Data Parallel Training

In this case, to speed up Stochastic Gradient Descent (SGD) training algorithm,

we parallelize the computation of the gradient for a mini-batch across mini-batch

elements i.e., the TensorFlow graph has many replicas of the portion of the graph

doing the massive training, and a single client thread drives the entire training

loop for this large graph.
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Training and Model Parallel Training

In Model parallel training, different portions of the model computation are

done on different computational devices simultaneously for the same batch of

example.

5.7.3 Proposed Distributed Deep Neural Network Anomaly De-

tection System for SCADA

In our approach, multiple autoencoders are stacked, and the feature learning

uses a greedy layer-wise pre-training. But it is shown in practice that in deep

neural networks, going deeper than 3 layers does not help much more in terms

of performance [74]. Our main focus is the size of data that could be very

important in SCADA networks. The distributed approach of the hybrid deep

neural network anomaly detection system for SCADA will then use the data

parallelism to speed up the training process. The calculation of the gradient in

the model training that consists of multiplication of large matrices while iterating

over a large dataset is time consuming. To speed up the Stochastic Gradient

Descent training algorithm, we parallelize the computation of the gradient for a

mini-batch across mini-batch elements [2]. Several distributed deep learning

like Dryad [77], Flume [25], CIEL [117], Naiad [118] and Spark [167] exist. But

the Distributed TensorFlow framework [2] uses a hybrid data flow model that

borrow elements from the previous frameworks without their shortcomings.

Furthermore, TensorFlow is more flexible and allows the expression of a wide

variety of machine leaning models and optimization algorithms compared to

distributed deep learning approaches like DistBelief[39], the Adam Project [31]

and the Parameter Server Project [36]. An Hadoop [160] cluster with different

nodes will be used and the training data will be stored on the Hadoop HDFS

database. Thus, the TensorFlow distributed framework will parallelize the

computation of the gradient of the mini-batches across the different nodes and a

parameter server with update the weights on the master (Figure 5.10).
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Figure 5.10 – Distributed DNN-based Anomaly Detection System for SCADA Networks
Architecture
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5.8 Conclusion

In this chapter, we provide the global architecture of the proposed anomaly

detection system which has a pre-processing engine, and a hybrid deep neural

network anomaly detection engine. The pre-processing consists in normalizing,

balancing, one-hot encoding the labels, and splitting the data into training, test

and validations sets.

The hybrid deep neural network anomaly detection engine is obtained by adding

a softmax classification layer on the top of the unsupervised deep feature learner

designed in the previous chapter. The cross-entropy is used as the loss function

for the supervised training and the whole hybrid deep neural network training.

The hybrid DNN anomaly detection system is trained in three steps i.e., a greedy

layer-wise unsupervised pre-training step, a supervised softmax layer training

step and the whole network fine-tuning step. The derived model from the train-

ing process is then used for the detection phase.

As the training time is a big challenge in deep learning approaches, we proposed

a distributed approach of the hybrid DNN anomaly detection system which uses

the distributed TensorFlow framework with a parameter server which stores and

updates the model parameter, then distributes it to each worker node where the

time consuming gradient calculation takes place.

In the next chapter, we do the implementation of the proposed approach on a

single machine and a Hadoop cluster distributed environment, and discuss the

different results.
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Chapter6
Implementation and Results

6.1 Introduction

This last chapter is intended for the implementation of the proposed hybrid

deep neural network based anomaly detection systems for SCADA networks.

After the introduction, the second section shows the development environment

setup used for this thesis. The following section, gives details of the second

dataset used i.e. the gas pipeline SCADA dataset. The fourth and fifth sections

respectively illustrates the preparation of the two datasets before usage and their

distributions. In the sixth section, we show the different performance measures

used to compare the approach with baseline methods. Sections seven through

nine are used to show the different results of the proposed approach with the

SCADA water storage tank and gas pipeline datasets. We discuss about the

experimentation results in section ten before a conclusion.

6.2 Development environment setup

For the different experiments of the present work, we setup an infrastructure

via OpenStack. The hybrid deep neural network anomaly detection system was

implemented on a server with 8vcpu, 8 Go of RAM and 10 Go hard drive. The

server is running a Ubuntu 18.04.2 LTS operating system. The Deep Learning

framework used is TensorFlow 1.5.0 running on Python 2.7.

101
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For the distributed approach of the anomaly detection system, we setup an

Hadoop cluster (Figure 6.1). The Hadoop version is 2.7.3. The cluster has one

master and five workers. Each node has 8vcpu, 8 Go of RAM, 10 Go hard drive

and runs a Ubuntu 18.04.2 LTS operating system. Distributed Deep Learning is

powered by Distributed TensorFlow (version 1.5.0) running on python 2.7. The

HDFS file system on the master node is used to store the SCADA datasets.

Figure 6.1 – Hadoop Cluster
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6.3 SCADA Datasets used

6.3.1 Water Storage Tank SCADA dataset

In chapter 4, we gave a broad description of the Water Storage Tank System

SCADA dataset used (Figures 6.2 and 6.3). Table 6.1 and Table 6.2 respectively

show the water storage tank SCADA dataset records categories and attributes.

Figure 6.2 – Water Storage Tank
Source: [115]

6.3.2 Gas Pipeline SCADA dataset

The gas pipeline system as the water storage tank system is a laboratory-scale

SCADA system from the Mississippi State University [115] . The gas pipeline

system (Figures 6.4 and 6.5) includes an airtight pipeline connected to a com-

pressor, a pressure meter and a solenoid-controlled relief valve. The pipeline

system attempts to maintain the air pressure in the pipeline using a proportional

integral derivative (PID) control scheme [115].

The gas pipeline system dataset contains the same normal and attacks records

categories like in Table 6.1, previously described in chapter 4. But the payload

attribute of both systems differ, though having the same network attributes ( 6.3).
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Figure 6.3 – Water Storage Tank HMI
Source: [115]

Table 6.1 – Dataset records categories
Label Category Description

0 Normal Instance not part of an attack

1 NMRI
Naive Malicious Response
Injection attack

2 CMRI
Complex Malicious Response
Injection attack

3 MSCI
Malicious State Command
Injection attack

4 MPCI
Malicious Parameter Command
Injection attack

5 MFCI
Malicious Function code Command
Injection attack

6 DoS Denial-of-Service attack
7 Reconnaissance Reconnaissance attack
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Table 6.2 – water storage tank attributes
Attribute Type Description

command_address Network Device ID in command packet
response_address Network Device ID in response packet
command_memory Network Memory start position in cmd.
response_memory Network Memory start position in resp.
command_memory_count Network Memory bytes for R/W command
response_memory_count Network Memory bytes for R/W response
comm_read_fun Payload Value command read func.code
comm_write_fun Payload Value command write func.code
response_read_fun Payload Value response read func. code
response_write_fun Payload Value response write func.code
sub_function Payload Value of sub-function code
command_length Network Total length of command packet
response_length Network Total length of response packet
HH Payload Value of HH setpoint
H Payload Value of H setpoint
L Payload Value of L setpoint
LL Payload Value of LL setpoint
control_mode Payload Automatic, manual or shutdown
control_scheme Payload Manual mode compressor/pump
pump_state Payload Compressor/pump state
crc_rate Network CRC error rate
measurement Payload water level
time Network Time interval betw. 2 packets
label Provided Manual classification

6.4 SCADA Datasets Preparation

The Water Storage Tank dataset and the Gas Pipeline dataset went through a

preparation process i.e. a Min-Max normalization that sets all the datasets values

except the labels in the range [0,1], the splitting of the datasets into a training

dataset (60 %), a validation dataset (20 %) and test dataset (20 %) using the

hold-out cross-validation [133], the balancing of training and validation datasets,

and finally the one-hot encoding of all the datasets labels.
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Figure 6.4 – Gas pipeline System
Source: [115]

Figure 6.5 – Gas Pipeline System HMI
Source: [115]

6.5 Datasets distribution

It is a good practice to have a general idea of the class distribution of training

and test datasets. As we are using the hold-out cross validation technique, we

have partitioned the different datasets into training, validation and test dataset

(60 %, 20 %, and 20 % respectively). The datasets contains eight categories
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Table 6.3 – Gas pipeline attributes
Attribute Type Description

command_address Network Device ID in command packet
response_address Network Device ID in response packet
command_memory Network Memory start position in cmd.
response_memory Network Memory start position in resp.
command_memory_count Network Memory bytes for R/W command
response_memory_count Network Memory bytes for R/W response
comm_read_fun Payload Value command read func.code
comm_write_fun Payload Value command write func.code
response_read_fun Payload Value response read func. code
response_write_fun Payload Value response write func.code
sub_function Payload Value of sub-function code
command_length Network Total length of command packet
response_length Network Total length of response packet
Set_point Payload Target gas pressure in the pipe
solenoid_state Payload State of solenoid used to open the gas relief valve
gain Payload Gain parameter value of the PID controller
reset Payload Reset parameter value of the PID controller
dead_band Payload Dead band parameter value of the PID controller
cycletime Payload Cycle time parameter value of the PID controller
control_mode Payload Automatic, manual or shutdown
control_scheme Payload Manual mode compressor/pump
pump_state Payload Compressor/pump state
crc_rate Network CRC error rate
measurement Payload water level
time Network Time interval betw. 2 packets
label Provided Manual classification

of records i.e. one category of normal records (class 0) and seven categories

of attacks (classes 1 through 7). We also considered a version of the datasets

containing two categories of records i.e., one category of normal records (class 0)

and one category of anomalous records (class 0). For the anomalous, records, we

have binarized the dataset i.e., all the attacks records are labeled 1. Figures 6.4

through 6.13 represent the data distribution of the water storage tank and gas

pipeline SCADA training and test dataset (8-class and binary). We notice that

the datasets are very imbalanced, e.g., the water storage tank training dataset
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normal records times more than 140 the attacks of category 6 (DoS) records, or

the gas pipeline normal records is 110 higher than the class 5 (MFCI) attack

records. The test sets are imbalanced as well. To avoid undesirable bias in the

training process, the training data subsets undergo a balancing process before

usage, but all the test data subsets are kept as is.

Table 6.4 – Water Storage Tank dataset distribution eight-class
Total 0 1 2 3 4 5 6 7

Full dataset 236179 172415 9187 12460 1833 3725 1320 1237 34002
Training 141707 103489 5539 7532 1073 2265 982 727 20300
Validation 47236 33586 2033 2785 414 690 153 271 7304
Test 47236 34463 1824 2464 380 730 169 255 6851

Table 6.5 – Water Storage Tank dataset distribution two-class
Total 0 1

Full dataset 236179 172415 63764
Training 141707 103489 38182
Validation 47236 33586 13650
Test 47236 34463 12791

Figure 6.6 – Water Storage Tank Training Data distribution (eight-class)
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Figure 6.7 – Water Storage Tank Training Data distribution (two-class)

Figure 6.8 – Water Storage Tank Test Data distribution (eight-class)

Table 6.6 – Gas Pipeline dataset distribution eight-class
Total 0 1 2 3 4 5 6 7

Full dataset 97019 61156 2763 15466 782 7637 573 1837 6805
Training 58211 36502 1641 9240 482 4637 331 1109 4269
Validation 19404 13408 603 2546 175 1202 147 298 1025
Test 19404 12327 561 3113 150 1500 121 364 1268
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Figure 6.9 – Water Storage Tank Test Data distribution (two-class)

Table 6.7 – Gas Pipeline dataset distribution two-class
Total 0 1

Full dataset 97019 61156 35863
Training 58211 36502 21709
Validation 19404 13408 5996
Test 19404 12327 7077

Figure 6.10 – Gas Pipeline Training Data distribution (eight-class breakdown)
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Figure 6.11 – Gas Pipeline Training Data distribution (two-class breakdown)

Figure 6.12 – Gas Pipeline Test Data distribution (eight-class breakdown)
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Figure 6.13 – Gas Pipeline Test Data distribution (two-class breakdown)
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6.6 Performance measures

Accuracy, recall (or sensitivity), precision, specificity, f1-score ¨[63], along with

training time and prediction time , [151] are the measures used to evaluate the

performances of classifiers. Positive tuples are the tuples of main interest in a

dataset.

In the present work, the anomaly detection system is detecting anomalies. Hence,

the positive tuples are the abnormal ones.

Negative tuples are all the other tuples.

Let P be the number of positive tuples and N the number of negative tuples.

True Positive (TP) represents positive tuples that were correctly labeled by the

classifier.

True Negative (TN) represents negative tuples that were correctly labeled by the

classifier.

False Positive (FP) represents negative tuples that were incorrectly labeled as

positive.

False Negative (FN) represents positives tuples that were incorrectly labeled as

negative.

Accuracy (or recognition rate)

accuracy =
T P + TN
P +N

For imbalanced datasets (i.e main class of interest rare), the Accuracy measure is

not really relevant. Other metrics such as recall, precision and f1-score are used

instead.

recall
The recall is the True Positive rate. It gives the proportion of positive tuples
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correctly identified.

recall =
T P
P

Precision
Precision is a measure of exactness. It answers to the question What percentage of
tuples labeled as positive are actually such?

precision =
T P

T P +FP

False Positive Rate (FPR)
The False Positive Rate (FPR) or False Alarm Rate (FAR) is the proportion of

falsely identifying a normal tuple as anomalous.

FPR =
FP

FP + TN

False Negative Rate (FNR)
The False Negative Rate (FNR) is the proportion of falsely identifying an anoma-

lous tuple as a normal one.

FNR =
FN

FN + T P

f1-score
Precision is a measure of harmonic mean.

f 1− score =
2 ∗ (recall ∗ precision)
recall + precision
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6.7 Results for Water Storage Tank Dataset

6.7.1 Models comparison

The design process of neural networks i.e. defining the parameters and the

hyper-parameters consists of trial and error, guessing what king of hidden unit,

the width, the depth of the network or which learning rate works well [59] [128].

The network will then be trained, and the parameters and hyper-parameters are

evaluated with a validation set.

We have conducted various tests on the datasets by varying the architecture

of the stacked autoencoders to 2, 3, 4 and 5 layers, with various parameters

and hyperparameters configuration. Specifically, we did the tests for different

training epochs i.e. 1, 10, 20, 30, 40, 50.

The Table 6.8 shows two different architectures used for comparison sake,

and their training results in Table 6.9 and 6.10.

Table 6.8 – Two Hybrid DNN Architectures
Architecture

1
Architecture

2
Common parameters
/hyper-parameters

Nb. of hidden layers 2 3 Activation function : Leaky ReLU
Loss function : Cross-Entropy
Learning rate : 0.01
Sparsity : 0.05
Noise level : 30 %

Nb. input nodes 24 24

Nb. of nodes
per layer

L1 = 52
L2 = 34

L1 = 30
L2 = 27
L3 = 40

Nb. Output nodes 8 8

Table 6.9 – Loss, Accuracy, Training Time Per Epochs for Water Storage Tank Dataset 3
layers

Epochs 1 10 20 30 40 50
Training Loss 260.16 161.76 143.20 142.54 139.04 138.57
Validation Loss 248.10 148.32 139.06 142.96 148.70 152.36
Accuracy 89 % 88 % 89 % 90 % 90 % 90 %
Single Machine
Training Time (s) 32.532 141.890 280.686 418.449 554.043 693.971

Distributed Cluster
Training Time (s) 8.025 29.374 60.133 87.682 120.095 155.708
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Table 6.10 – Loss, Accuracy, Training Time Per Epochs for Water Storage Tank Dataset 2
layers

Epochs 1 10 20 30 40 50
Training Loss 287.15 190.02 165.56 152.89 144.99 142.11
Validation Loss 260.33 169.45 152.03 145.22 144.17 151.25
Accuracy 85 % 86 % 86 % 88 % 88 % 88 %
Single Machine
Training Time (s) 25.224 118.111 244.505 365.201 480.996 602.306

Distributed Cluster
Training Time (s) 6.005 23.561 44.774 67.895 95.665 127.354

Figures 6.9 and 6.10 show the loss curves of the two architectures while

6.16 and 6.17 show their respective accuracy curves.

Figure 6.14 – Water Storage Tank Loss Curve 3 hidden layers

The 2 hidden layer architecture loss curve shows that while training loss con-

tinue to decrease after 40 epochs, validation loss increases. So the best results

are obtained after 40 epochs of training. Likewise, the best results are obtained

after 30 epochs of training for the 3 hidden layer architecture.

The two accuracy curves show a better accuracy for the 3 hidden layer architec-

ture.
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Figure 6.15 – Water Storage Tank Loss Curve 2 hidden layers

Figure 6.16 – Water Storage Tank Accuracy Curve 3 hidden layers
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Figure 6.17 – Water Storage Tank Accuracy Curve 2 hidden layers
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6.7.2 Experimental results for the water storage tank dataset

We give here the best results obtained for the SCADA Water Storage Tank dataset.

The results using the multiclass version of the water storage tank SCADA dataset

were obtained for 30 epochs of training, an architecture with 3 hidden layers, a

Leaky ReLU activation function, a cross-entropy loss function, a batch size of

128, a learning rate of 0.01 a sparsity parameter of 0.05, a noise level of 30%,

and 30, 27, 40 number of nodes for layer 1, layer 2 and layer 3 respectively. After

30 epochs, as shown on Figure 6.15, the validation loss increases even though

the training loss continue to decrease. This is why we choose the results at 30

epochs. On the other hand, the results for the binary Water Storage Tank SCADA

dataset is a model trained during 30 epochs, which has 3 hidden layers, a batch

size of 128, a learning rate of 0.01 a sparsity parameter of 0.05, a noise level of

30%, and 38, 24, 20 number of nodes for layer 1, layer 2 and layer 3 respectively.

For the multiclass classification with the Water Storage Tank SCADA dataset

(Table 6.19), we have a detection rate of 0 % for attack classes 1 and 2. Attack

class 6 also have a detection rate of only 35 %. The 36 % of False Positive Rate

for normal records detection confirms the previous results, as class 1, 2 and 6

as mis-classified as normal data. The binary classification for the same dataset

(Table 6.12) gives a 66 % detection rate, due to a high False Negative rate (34 %).

This clearly shows that some of the attacks are not detected, thus classified as

normal records.
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Table 6.11 – Hybrid DNN ADS Water Storage Tank Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 90 % 100 % 88 % 36 % 0 % 94 % 34418
1 (NMRI) 96 % 0 % 0 % 0 % 100 % 0 % 1848
2 (CMRI) 95 % 0 % 0 % 0 % 100 % 0 % 2438
3 (MSCI) 100 % 92 % 97 % 0 % 8 % 94 % 380
4 (MPCI) 100 % 87 % 99 % 0 % 13 % 93 % 742
5 (MFCI) 100 % 85 % 100 % 0 % 15 % 92 % 259
6 (DoS) 100 % 35 % 99 % 0 % 65 % 51 % 225
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 6925

Figure 6.18 – Confusion Matrix Water Storage Tank Dataset Multiclass Classification
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Table 6.12 – Water Storage Tank Binary Classification
Accuracy Recall Precision FPR FNR F1-score

Hybrid DNN 91 % 66 % 100 % 0 % 34 % 79 %

Figure 6.19 – Confusion Matrix Water Storage Tank Dataset Binary Classification
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6.7.3 Single vs Distributed Hybrid DNN SCADA Anomaly De-

tection Results

For the distributed approach, we create the cluster which has a parameter server

and the worker nodes, then we specify the master as the parameter server and

the training job is assigned to the workers. Each worker takes care of only a task

which is a portion of the training job.

Finally, this time, the SCADA data are read from the Hadoop HDFS database.

The command lines used to run the distributed model is :

#### Command line parameter server #####

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,

192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=ps --task_index=0

#### Command line for each worker #####

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,

192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=worker --task_index=0

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,

192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=worker --task_index=1

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,

192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=worker --task_index=2

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,
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192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=worker --task_index=3

$python dist_sae.py --ps_hosts=192.168.1.13:2222

--worker_hosts=192.168.1.9:2222,192.168.1.7:2222,

192.168.1.14:2222,192.168.1.22:2222,192.168.1.8:2222

--job_name=worker --task_index=4

The first command launches the program on the master which is the parameter

server which stores the model and distributes it to the 5 workers. The master as

a parameter server is also responsible for the model update. The five workers are

charged of the bulk of the workload i.e. the computation of the gradient during

the Back-propagation optimization algorithm. The computed gradient is sent by

each worker to the parameter server for updating the model. The first worker

with the task index 0 is the coordinator of the model training job done by the

workers.

With the best model of the water storage tank SCADA dataset, we run the

distributed version with that model setting in order to evaluate the training time

for different epochs.

Figure 6.20 represents the training time of the 3 hidden-layer model of the

hybrid DNN anomaly detection for the Water Storage Tank SCADA dataset for

multiclass classification, on a single machine or a distributed cluster.
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Figure 6.20 – Water Storage Tank Local vs Distributed Training Time



6.8. Results for Gas Pipeline Dataset 125

6.8 Results for Gas Pipeline Dataset

We did the test in the same conditions as previously i.e., using stacked autoen-

coders of 2, 3, 4 and 5 layers and 1, 10, 20, 30, 40, 50 epochs for each layer. The

results are the best ones among all the various configurations for the multiclass

and two class classification.

The results using the multiclass version of the Gas pipeline SCADA dataset were

obtained after training the model with 40 epochs. After 40 epochs, as show on

Figure 6.21, the validation loss increases even though the training loss continue

to decrease. This motivates the choice of the results at 40 epochs. The model

architecture has 2 hidden layers, a batch size of 128, a learning rate of 0.01 a

sparsity parameter of 0.05, a noise level of 35%, and 58, 34 number of nodes for

layer 1 and layer 2 respectively. On The other hand, the results for the binary

water storage tank SCADA dataset architecture has 2 hidden layers, a batch size

of 128, a learning rate of 0.01 a sparsity parameter of 0.05, a noise level of 35%,

and 45, 30 number of nodes for layer 1 and layer 2 respectively.

Table 6.13 – Loss, Accuracy, Training Time Per Epochs for Gas Pipeline Dataset
Epochs 1 10 20 30 40 50
Training Loss 47.48 36.80 35.63 35.14 33.11 34.29
Validation Loss 47.20 36.99 34.01 33.087 33.78 36.13
Accuracy 95 % 95 % 95 % 95 % 95 % 95 %
Single Machine
Training Time (s) 12.034 38.051 69.544 102.968 132.475 165.929

Distributed Cluster
Training Time (s) 3.816 8.125 14.654 22.133 28.504 35.187

Figure 6.21 and 6.22 respectively represent the loss curve and accuracy

curve of the Gas Pipeline SCADA dataset for multiclass classification.
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Figure 6.21 – Gas Pipeline Loss Curve 2 Layers

Figure 6.22 – Gas Pipeline Accuracy Curve 2 Layers
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6.8.1 Experimental Results with the Gas Pipeline SCADA dataset

With the Gas Pipeline SCADA dataset, the results are better compared to the

Water Storage Tank SCADA dataset, as only class 1 with a detection rate of 0 %

is totally mis-classified. Here, the detection rate of class 6 improved to 76 %,

and for the other class of attacks, the detection rate is above 94 %. The False

Positive Rate drops to 10 % for normal records detection. Those good results are

confirmed by binary classification with the Gas Pipeline SCADA dataset where

we have a detection rate of 89 % and a low False Positive Rate of 2 %. The False

Negative rate here has dropped to 11 %, meaning that the mis-classification of

attacks as normal records is less important in this dataset.

Table 6.14 – Hybrid DNN ADS Gas Pipeline Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 95 % 98 % 94 % 10 % 2 % 96 % 12239
1 (NMRI) 97 % 0 % 0 % 0 % 100 % 0 % 541
2 (CMRI) 99 % 98 % 93 % 1 % 2 % 96 % 3103
3 (MSCI) 100 % 95 % 96 % 0 % 5 % 95 % 167
4 (MPCI) 100 % 98 % 97 % 0 % 2 % 98 % 1473
5 (MFCI) 100 % 94 % 94 % 0 % 6 % 94 % 124
6 (DoS) 100 % 76 % 100 % 0 % 24 % 87 % 391
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 1365
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Figure 6.23 – Confusion Matrix Gas Pipeline Dataset Multiclass Classification
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Table 6.15 – Gas Pipeline Binary Classification
Accuracy Recall Precision FPR FNR F1-score

Hybrid DNN 95 % 89 % 96 % 2 % 11 % 92 %

Figure 6.24 – Confusion Matrix Gas Pipeline Dataset Binary Classification



130 CHAPTER 6. Implementation and Results

6.8.2 Single vs Distributed Hybrid DNN SCADA Anomaly De-

tection Results

Figure 6.25 represents the training time of the 2 layer model of the hybrid

DNN anomaly detection for the Gas Pipeline SCADA dataset for multiclass

classification, on a single machine or a distributed cluster.

Figure 6.25 – Gas Pipeline Local vs Distributed Training Time
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6.9 Results for Standard Approaches

The following tables represent the results obtained with the proposed approach

as well as with the standards algorithms, i.e., Decision Tree, Naïve Bayes and

Random Forest. The accuracy, recall, precision, False Positive Rates (FPR), False

Negative Rates (FNR) and the F1-score performance measures are used to this

end.

6.9.1 Water Storage Tank Dataset

Table 6.16 – Decision Tree Water Storage Tank Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 90 % 100 % 88 % 38 % 0 % 93 % 34418
1 (NMRI) 96 % 0 % 0 % 0 % 100 % 0 % 1848
2 (CMRI) 95% 0 % 0 % 0 % 100 % 0 % 2438
3 (MSCI) 99 % 0 % 0 % 0 % 100 % 0 % 380
4 (MPCI) 99 % 99 % 67 % 1 % 1 % 80 % 742
5 (MFCI) 99 % 0 % 0 % 0 % 100 % 0 % 259
6 (DoS) 100 % 0 % 0 % 0 % 100% 0 % 225
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 6925

Table 6.17 – Naïve Bayes Water Storage Tank Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 45 % 23 % 100 % 0 % 77 % 37 % 34418
1 (NMRI) 96 % 0 % 0 % 0 % 100 % 0 % 1848
2 (CMRI) 55% 100 % 11 % 56 % 0 % 19 % 2438
3 (MSCI) 99 % 96 % 58 % 1 % 4 % 72 % 380
4 (MPCI) 100 % 98 % 98 % 2 % 2 % 98 % 742
5 (MFCI) 100 % 100 % 100 % 1 % 0 % 100 % 259
6 (DoS) 100 % 100 % 3 % 18 % 0% 6 % 225
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 6925
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Table 6.18 – Random Forest Water Storage Tank Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 91 % 100 % 89 % 34 % 0 % 94 % 34418
1 (NMRI) 96 % 0 % 0 % 0 % 100 % 0 % 1848
2 (CMRI) 95% 0 % 0 % 0 % 100 % 0 % 2438
3 (MSCI) 100 % 96 % 96 % 0 % 4 % 96 % 380
4 (MPCI) 100 % 98 % 99 % 0 % 2 % 98 % 742
5 (MFCI) 100 % 100 % 100 % 0 % 0 % 100 % 259
6 (DoS) 100 % 100 % 100 % 0 % 0% 100 % 225
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 6925

Table 6.19 – Hybrid DNN ADS Water Storage Tank Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 90 % 100 % 88 % 36 % 0 % 94 % 34418
1 (NMRI) 96 % 0 % 0 % 0 % 100 % 0 % 1848
2 (CMRI) 95 % 0 % 0 % 0 % 100 % 0 % 2438
3 (MSCI) 100 % 92 % 97 % 0 % 8 % 94 % 380
4 (MPCI) 100 % 87 % 99 % 0 % 13 % 93 % 742
5 (MFCI) 100 % 85 % 100 % 0 % 15 % 92 % 259
6 (DoS) 100 % 35 % 99 % 0 % 65 % 51 % 225
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 6925

Table 6.20 – Water Storage Tank Binary Classification
Approach Accuracy Recall Precision FPR FNR F1-score

Decision Tree 90 % 62 % 100 % 0 % 38 % 76 %
Naïve Bayes 91 % 65 % 100 % 0 % 35 % 79 %
Random Forest 91 % 66 % 100 % 0 % 34 % 79 %
Hybrid DNN 91 % 66 % 100 % 0 % 34 % 79 %
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6.9.2 Gas Pipeline Dataset

Table 6.21 – Decision Tree Gas Pipeline Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 78 % 100 % 74 % 61 % 0 % 85 % 12239
1 (NMRI) 97 % 0 % 0 % 0 % 100 % 0 % 541
2 (CMRI) 84% 0 % 0 % 0 % 100 % 0 % 3103
3 (MSCI) 99 % 0 % 0 % 0 % 100 % 0 % 167
4 (MPCI) 100 % 98 % 98 % 0 % 2 % 98 % 1473
5 (MFCI) 99 % 0 % 0 % 0 % 100 % 0 % 124
6 (DoS) 98 % 0 % 0 % 0 % 100% 0 % 391
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 1365

Table 6.22 – Naïve Bayes Gas Pipeline Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 37 % 0 % 50 % 0 % 100 % 0 % 12239
1 (NMRI) 53 % 100 % 6 % 48 % 0 % 11 % 541
2 (CMRI) 88% 100 % 58 % 14 % 0 % 73 % 3103
3 (MSCI) 97 % 97 % 22 % 3 % 3 % 35 % 167
4 (MPCI) 100 % 97 % 98 % 0 % 3 % 97 % 1473
5 (MFCI) 97 % 97 % 19 % 3 % 3 % 31 % 124
6 (DoS) 100 % 96 % 99 % 0 % 4% 98 % 391
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 1365

Table 6.23 – Random Forest Gas Pipeline Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 93 % 96 % 94 % 11 % 4 % 95 % 12239
1 (NMRI) 96 % 20 % 32 % 1 % 80 % 24 % 541
2 (CMRI) 98% 93 % 93 % 1 % 7 % 93 % 3103
3 (MSCI) 100 % 93 % 94 % 0 % 11 % 94 % 167
4 (MPCI) 99 % 95 % 97 % 0 % 5 % 96 % 1473
5 (MFCI) 100 % 97 % 97 % 0 % 3 % 97 % 124
6 (DoS) 100 % 96 % 99 % 0 % 4% 97 % 391
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 1365
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Table 6.24 – Hybrid DNN ADS Gas Pipeline Multiclass Classification
Class Accuracy Recall Precision FPR FNR F1-score Support

0 (Normal) 95 % 98 % 94 % 10 % 2 % 96 % 12239
1 (NMRI) 97 % 0 % 0 % 0 % 100 % 0 % 541
2 (CMRI) 99 % 98 % 93 % 1 % 2 % 96 % 3103
3 (MSCI) 100 % 95 % 96 % 0 % 5 % 95 % 167
4 (MPCI) 100 % 98 % 97 % 0 % 2 % 98 % 1473
5 (MFCI) 100 % 94 % 94 % 0 % 6 % 94 % 124
6 (DoS) 100 % 76 % 100 % 0 % 24 % 87 % 391
7 (Recon.) 100 % 100 % 100 % 0 % 0 % 100 % 1365

Table 6.25 – Gas Pipeline Binary Classification
Approach Accuracy Recall Precision FPR FNR F1-score

Decision Tree 78 % 39 % 99 % 0 % 61 % 56 %
Naïve Bayes 81 % 49 % 99 % 0 % 51 % 65 %
Random Forest 93 % 89 % 92 % 4 % 11 % 91 %
Hybrid DNN 95 % 89 % 96 % 2 % 11 % 92 %
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6.10 Discussion of Results

6.10.1 Decision Tree Approach

In the Water Storage Tank SCADA dataset, the Decision Tree approach detects

all the normal records (100 % of recall) with a 88 % of precision, which leads to

a False Positive Rate of 38 %. This is why all the attacks classes 1, 2, 3, 5 and 6

recall is 0 %, because those types of attacks are considered as normal records

by the classifier. The binary version of the Water Storage Tank SCADA dataset

confirms this analysis with the 62 % detection rate of anomalous records and

38% of False Positive Rate.

The Gas Pipeline SCADA dataset shows the same results for multiclass classifica-

tion with the Decision Tree approach. Classes 1, 2, 3, 5 and 6 are mis-classified as

normal records and we have a 61 % False Positive rate. For binary classification,

we have a poor anomaly detection rate of 39 % and a high False Positive Rate of

61 %.

6.10.2 Naïve Bayes Approach

The Naïve Bayes Approach for the Water Storage Tank SCADA dataset has a

very low detection rate of normal records (23 %) as well as attack class 1 (0 % ).

Furthermore, there is a high False Positive Rates for normal records detection

(37 %). The 100 % of detection rate for both class 2 and 6 with low precision

of 11 % and 3 % respectively is due to normal records being classified as CMRI

and DoS attacks. The binary version of the Water Storage Tank dataset gives a

detection rate of 100 %, but with a 35 % of False Positive Rate.

On the other hand, The Naïve Bayes Approach for multiclass classification,

the Gas Pipeline SCADA dataset has a clear difficulty to classify the normal

records (almost 0 % of recall). This is why the attacks classes 1 through 7 have

high detection rate with poor precision for classes 1, 3 and 5. Binary classifica-

tion gives a 100 % of recall for normal records with a high False Positive Rate of

51 %, and a detection rate for anomalous records of 49 %.



136 CHAPTER 6. Implementation and Results

6.10.3 Random Forest Approach

When doing a multiclass classification on the Water Storage Tank SCADA dataset,

with the Random Forest approach, apart attack classes 1 and 2 where the de-

tection rate is 0, this approach gives better detection rate for the other attacks

categories (> 96 %) and the normal records category (100 %). We have the 89 %

of precision for normal records detection and a False Positive Rate of 34 %. This

is because, attacks classes 1 and 2 classified as normal records. Binary classifica-

tion of the Water Storage Tank dataset confirms the previous results with a 66 %

recall for anomalous records and a False Positive Rate of 34 % for normal records.

For the multiclass classification, the Gas Pipeline SCADA dataset gives a 96

% of detection rate for normal records and a False Positive Rate of 11 %. Apart

from the attack class 1 which has a recall of 20 %, all the other classes of attacks

(2 through 7) have a recall above 93 % and a False Positive Rate less or equal to

1 %. The binary classification of the Gas Pipeline dataset confirm those results

with a 96 % recall for normal records with a False Positive Rate of 11 %, and a

89 % recall for anomalous records.

6.10.4 Comparison of the Proposed Approach with the Base-

line Algorithms

Water Storage Tank SCADA dataset

For the Water Storage Tank SCADA dataset, based on the F1-score performance,

the Decision Tree and Naïve Bayes have overall bad results compared to Random

Forest and the proposed approach in multiclass classification. We will focus

our comparison on the proposed approach and Random Forest. The proposed

approach and Random Forest are totally mis-classifying class 1 and 2 attacks as

those classes have a 0 % of recall and 100 % of False Negative Rate. Reconnais-

sance attacks (class 7) is fully detected by both Random Forest and the proposed

approach (recall of 100 %). Random Forest performs slightly better than the

proposed approach on class 3 (96 % and 92 % of recall respectively). Random

Forest has higher detection rate than the Hybrid DNN approach on class 4 and
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class 5 (98 % vs 87 %, and 100 % vs 85 % of recall respectively). The DoS attack

is still poorly detected by our approach compared to Random Forest (35 % and

100 % of recall respectively). The binary classification of the same dataset shows

that The proposed approach and Random Forest give the best results (66 % of

recall and 34 % of False Negative Rate) compared to the Decision Tree and Naïve

Bayes approaches.

In overall, apart from one attack class, the proposed approach has comparable

results with the best of the standard algorithms which is the Random Forest.

Gas Pipeline SCADA dataset

For multiclass classification with Gas Pipeline dataset, Decision Tree and Naïve

Bayes also show poor results compared to Random Forest and the proposed

approach. The proposed approach outperforms Random Forest for class 2, 3 and

4 attacks (98 %, 95 % and 98 % versus 93 %, 93 % and 95 % of recall respectively).

The DoS attack recall for the proposed approach, though lower than the one of

Random Forest (76 % and 96 % respectively) has increased with this dataset.

The class 1 is still not detected by our approach (0 % of recall), but the the

detection rate of Random Forest is also still poor for this class (20 % of recall).

The binary classification for the Gas Pipeline SCADA dataset, shows that the

proposed approach is outperforming all the standard approaches. The Hybrid

DNN approach has higher f1-score compared to Random Forest (92 % and 91 %

respectively), and has a lowest False Positive Rate compared to Random Forest

(2 % and 4 % respectively).

6.10.5 Single vs Distributed Training Time

Figures 6.20 and 6.25 show a clear reduction of the training time when using a

cluster of computer for deep models training instead of a single computer. One

of the big challenge of deep learning models is the high training time required

to train those models. By using a distributed approach, implemented with

the TensorFlow distributed framework, the training time has been significantly

reduced.
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6.11 Conclusion

An openstack infrastructure has been setup to conduct the different experiments

of this thesis. A standalone instance is used to implement the hybrid deep neural

network anomaly detection system, whereas a Hadoop cluster has been deployed

for the distributed approach. The water storage tank and gas pipeline SCADA

datasets have been pre-processed i.e. minimized, balanced, one-hot encoding

of the labels, and splitted into training, test and validation sets. The proposed

approach is compared with the Decision Tree, Naive Bayes and Random Forest

standard approaches. In all cases of the tests, the proposed approach either

outperforms all the baseline approaches or performs almost as well as the best

of them which is the Random Forest. The distributed approach of the deep

learning based anomaly detection shows a significant reduction of the training

time.

Deep learning approaches are successfully used in domains such as image, video

or natural language processing. The research community is trying to apply deep

learning approaches to information security, particularly in SCADA systems

security. The different results show that deep learning is a promising field to

develop efficient anomaly detection systems to protect SCADA networks. The

results globally outperform those of baseline approaches. Furthermore, the

results also show that the training time challenge of deep learning models could

be mitigated with a distributed approach.

Designing deep learning based approach for SCADA systems gives promising

results. However, given some of the SCADA networks requirements such as

low latency, availability, reliability and performance, trade-offs should be made

between those requirements and the gain in terms of detection rate, false positive

rate and the training time.
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Review of research

SCADA systems are more and more targeted by cyber-attacks because of vulner-

abilities in hardware, software, protocols and communication stack. Nowadays,

those systems use standard hardware, software, operating systems and protocols.

Furthermore, SCADA systems which used to be air-gaped are now intercon-

nected to corporate networks and to the Internet. To thwart those attacks, many

solutions have been proposed such as use of firewalls, anti-viruses, encryption,

etc. But due to the differences between traditional IT and SCADA systems, the

proposed solutions are not always applicable to the latter. Intrusion detection

systems (IDS) are complementary solutions to secure SCADA networks. In the

present thesis, we have proposed an anomaly-based intrusion detection system

using a deep learning approach. Deep Learning have been successfully used

in other research areas like image, video or natural language processing. Our

objective through this thesis to propose an accurate anomaly detection system

in terms of detection rate and false positive rate, and efficient in terms of pro-

cessing time in SCADA networks, using an unsupervised deep feature learning

approach.

To this end, the proposed approach answered the two following research

questions :

RQ1 : How can we design a deep learning based approach for unsupervised
feature learning in SCADA systems ?
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RQ2 : How can we design a deep learning based framework for efficient and
accurate anomaly detection in SCADA systems?

The first research question is divided into three sub-questions:

• RQ 1.1 : What is the state of the art of deep learning based unsupervised
feature learning in SCADA systems ?
To answer this question, we have conducted a review of existing deep

feature learning based anomaly detection systems for SCADA networks.

We found out that various deep neural network approaches were combined

to learn most salient features of the SCADA network data, which help to

improve detection performances. In many cases, those approaches outper-

form other anomaly detection approaches. However, the high training time

of the deep learning based anomaly detectors remains a big challenge in

those approaches.

• RQ 1.2 : What are the characteristics of the SCADA dataset used ?
The physical process and the resulting SCADA dataset were studied to an-

swer this question. The physical process is a water tank system controlled

by a SCADA network. The dataset obtained from the SCADA network has

normal records and seven different types of attacks. The study of the dis-

tribution of the data showed that the SCADA dataset is highly imbalanced

as anomalous records are fewer compared to normal ones.

• RQ 1.3 : How can we design a deep learning based unsupervised feature learn-
ing framework that will learn important features from a SCADA dataset?

To answer this question, we built a stacked sparse denoising autoencoder

for an unsupervised learning of the features of the SCADA network data.

Some noise are added to the SCADA input data, and the building block

of the unsupervised deep network are denoising autoencoders. A sparsity

constraint is added to the deep network loss function to allow more robust

feature learning. The unsupervised deep feature learner is trained one
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layer at a time by using an unsupervised greedy layer-wise pre-training

scheme.

The second research question has three sub-questions as well:

• RQ 2.1 : How do we build a deep learning general framework for anomaly
detection in SCADA systems?

As a response to this question, we designed the general framework of

the deep learning based anomaly detection system for SCADA networks.

The framework has two main parts i.e a pre-processing engine and an

anomaly detection engine. The pre-processing engine is responsible for

the splitting of the dataset in training, validation and test data sub-sets.

It also is responsible of the data normalization, the data balancing and

one-hot encoding of the labels. The anomaly detection engine encompasses

the unsupervised feature learner previously designed, and a classification

layer added to it.

• RQ 2.2 : Using the unsupervised deep feature learning approach of the previous
research question, can we build an efficient and accurate classifier for anomaly
detection in SCADA networks?
The actual design of the detection engine is the answer to that question. A

softmax layer is added to the unsupervised deep feature learner to form

the overall architecture of the anomaly detection system. The architecture

is an hybrid deep neural network anomaly detection system for SCADA

networks as there is an unsupervised feature learning followed by a su-

pervised anomaly detection. We have defined the different parameters,

hyperparameters, activation and loss functions, and the algorithms used to

train the model.

• RQ 2.3 : How can we boost the computational efficiency for deep neural
network based anomaly detection system in SCADA networks?
One of the main challenge in deep learning is the required high training
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time. To answer this question, we proposed a distributed architecture

of the approach consisting in a parameter server and worker nodes. The

parameter server is responsible for storing the model, distributing it to

workers and updating the model, whereas the worker nodes are taking care

of the bulk of the computation i.e. the calculation of the gradient during

the back-propagation training algorithm. The distributed hybrid deep

neural network anomaly detection system has been implemented with the

Distributed TensorFlow framework running on an Hadoop cluster.

Review of contributions

Our first contribution is a review of deep neural network-based SCADA anomaly

detection systems using feature learning approaches. Then, as a second contribu-

tion, we proposed a stacked sparse denoising autoencoder architecture as feature

learner for SCADA networks. This framework is able to automatically learn

the salient features of the SCADA data that will later be used for classification

purpose. A framework for an hybrid deep neural network SCADA anomaly

detection system which has a data pre-processing engine and an anomaly de-

tection engine is proposed as the third contribution. To speed-up the training

process of the approach, we proposed as a fourth contribution a distributed

approach of the deep learning based anomaly detection system, which uses a

parameter server and worker nodes. Finally, our fifth contribution is an im-

plementation of the hybrid deep neural network SCADA anomaly detection

system with the TensorFlow framework proved that this approach gives better

results in terms of detection rate and false alarm rate compared to baseline

algorithms such as Decision Tree, Naïve Bayes and Random Forest. For the im-

plementation of the distributed approach, we used the Distributed TensorFlow

framework on a Hadoop cluster. The results proved that the training time of the

distributed approach is significantly reduced compared to the single machine

implementation.
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Limitations

The detection rates of the proposed approach for NMRI, CMRI and DoS attack

types are lower than other attack types. A possible reason is that those attacks

are treated as noise that occurred during the normal operation of the SCADA

system. This problem could be mitigated by collecting more training data in

order for the system to be able to capture the intrinsic representation of those

class of attacks. Features of the SCADA datasets which better describe the

measurements of observations could also be developed to better represent the

underlined physical process.

Future work

As future work, we would collect larger-scale SCADA datasets from the owner to

further test the proposed approach. We expect the approach will perform better

with larger datasets, especially with more data related to the NMRI, CMRI and

DoS attack types.

Another future direction is also to combine our unsupervised learning frame-

work with architectures such as RNN or LSTM in order to take into account the

time series aspects of the SCADA data.

The distributed approach of the anomaly detection system was tested on a cluster

which has only classic CPUs. To better evaluate the impact on the training time

of the model, we will consider using workers equipped with GPU processors.

Detecting anomalies in real-time in SCADA systems is a primary goal to achieve.

The approach should be tested with live data streams, by adding stream data

acquisition modules to the framework, as well as tested in a SCADA faulty envi-

ronment to check if the operational anomalies are detected.

It would also be interesting to submit the proposed anomaly detector to real-

world SCADA data in order to test its performances in a real-world environment.

Finally, the water tank and the gas pipeline datasets contain seven categories of

attacks. In the future, a thorough modelization of the SCADA systems attack

types will help improve the performance of the approach against Advanced

Persistent Threats (APT) or unknown attack types.
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RÉSUMÉ EN FRANÇAIS

Contexte

Les systèmes SCADA (Supervisory Control And Data Acquisition) sont des sys-
tèmes de contrôle industriel utilisés pour l’acquisition et le contrôle de systèmes
géographiquement étendues. Ces systèmes sont utilisés dans la distribution
d’eau, le traitement des eaux usées, le transport et la distribution d’énergie,
les oléoducs et gazoducs, les systèmes de transport en commun, etc. [145].
L’intégration des systèmes SCADA dans la gestion des systèmes industriels per-
met non seulement d’améliorer les performances, mais également de réduire les
coûts d’exploitation [21].

Historiquement, la sécurité n’était pas prise en compte dans la conception des
systèmes SCADA. Les concepteurs ont eu recours à deux formes de protection,
à savoir le air-gap et la sécurité par l’obscurité. Le premier reposait sur le fait
que les réseaux SCADA étaient physiquement isolés des autres réseaux, rendant
toute attaque difficile, tandis que le second reposait sur la présomption selon
laquelle les informations sur les systèmes SCADA ne sont pas accessibles au
public, ce qui les rend ainsi sécurisés [94].

De nos jours, les systèmes SCADA modernes utilisent le matériel et les logi-
ciels commerciaux, ainsi que les technologies de communication standard telles
que les protocoles TCP / IP ou sans fil. De plus, les réseaux SCADA actuels sont
interconnectés aux réseaux d’entreprise et à Internet pour diverses raisons telles
que la gestion, l’administration système, etc. [23] [134].
Ces changements dans les réseaux SCADA, qui permettent une gestion facile et
une réduction des coûts, les exposent par contre aux cyber-attaques [125] [21].
Les conséquences d’une attaque sur les systèmes SCADA peuvent être des pertes
de production, des pertes financières, des catastrophes environnementales et
même des pertes en vies humaines. CiteValdes2009 [169].
Les réseaux SCADA présentent des vulnérabilités dans différents domaines, tels
que le périmètre réseau, les protocoles, les appareils de terrain, les bases de
données et les liens de communication. Nous pouvons classer les attaques sur
les réseaux SCADA de la manière suivante: attaques sur le matériel, attaques sur
les logiciels et attaques sur la pile de communications [169] [150].

Après un accès à distance non autorisé aux périphériques SCADA, l’attaquant
pourrait injecter de fausses données, telles que la modification des paramètres
des automates, ce qui peut causer une défaillance du périphérique ou couper
une alarme. L’attaquant peut également modifier la valeur d’affichage de l’IHM



168 Contents

pour tromper l’opérateur.

Les logiciels de réseaux SCADA peuvent être ciblés par des virus, des vers, des
chevaux de Troie et des réseaux de zombies. Le smash de pile et la manipulation
de pointeurs de fonction pourraient également provoquer un débordement de
mémoire tampon et permettre à un attaquant de lancer ses propres programmes
contre le système SCADA. En outre, l’accessibilité au web des systèmes SCADA
actuels ouvre la porte aux attaques par injection, à l’usurpation du DNS, au
détournement de session, au phishing, aux attaques de protocole, aux attaques
de la couche application, etc.

La couche réseau peut être attaquée par des attaques de serveur de diagnostic,
les scan passifs, la couche de transport par des attaques comme SYN Flood et la
couche application par des attaques par modification du DNS ou par injection
de commande [169].

De plus, certaines attaques sont spécifiques au protocole SCADA utilisé. Sur
le protocole Gould Modicon Modbus [112], les attaquants peuvent effectuer
des attaques par réinitialisation de registre, de démarrage à distance ou par
reconnaissance d’esclaves. Le détournement de messages broadcast, le rejeu de
réponses, le contrôle direct des esclaves, le balayage du réseau, la reconnaissance
passive font également partie des attaques possibles sur les protocoles Modbus.
Enfin, les systèmes SCADA Modbus TCP pourraient être attaqués en utilisant
par utilisation de trames TCP irrégulier, TCP FIN Flood ou épuisement du Pool
TCP Pool [73]. D’autres attaques spécifiques à SCADA sont liées au protocole
DNP3. Parmi les attaques spécifiques à DNP3, on peut citer la reconnaissance de
réseau passive, le rejeu de réponses originales, le dépassement de longueur, réini-
tialisation de fonction, indisponibilité de fonction, la modification d’adresse de
destination, l’interruption de message fragmenté, la modification de la séquence
de transport, l’attaque d’écriture de la station distante, la réinitialisation et la
configuration des données de la station distante [47]. Ces attaques pourraient
avoir un impact sur la disponibilité, la confidentialité et l’intégrité des données
des systèmes SCADA et avoir des conséquences telles que le vol d’informations
de session, la surveillance et la modification de données SCADA, la divulgation
de serveurs, d’ordinateurs et d’informations sur le matériel, etc.

Les réseaux SCADA ont déjà été la cible d’attaques telles que l’attaque sur
le système de distribution d’eau de Maroochy en Australie [142], la centrale
nucléaire de Davis-Besse dans l’Ohio (États-Unis), Duqu, Flame [110], Stuxnet
[48] [29], les centrales électriques en Ukraine [102] et au Vermont aux Etats-Unis
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[129].

Les réseaux SCADA sont différents des réseaux informatiques traditionnels
et ces spécificités doivent être prises en compte dans les approches de conception
de solutions de sécurité pour les systèmes SCADA. Contrairement aux systèmes
informatiques traditionnels, les correctifs logiciels et les mises à jour fréquentes
ne conviennent pas aux systèmes de contrôle. Ces systèmes requièrent également
une haute disponibilité, intègrent un grand nombre de matériel démodés, ont
une topologie statique et des modes de communication réguliers [23] [170] [30].
De plus, les systèmes embarqués utilisés pour mettre en œuvre des systèmes
d’automatisation industriels souffrent également de restrictions telles que la
mémoire, les limitations de puissance de traitement, le manque de robustesse,
les problèmes d’implémentation logicielle et de configuration [46].

Pour protéger les réseaux SCADA, [26] propose de nombreuses normes de sécu-
rité propres à SCADA, telles que le déploiement de pare-feu, la surveillance
des messages, les solutions basées sur des protocoles, la gestion des clés cryp-
tographiques, les antivirus et les correctifs logiciels. Une politique de sécurité
cohérente, une architecture réseau bien conçue, le durcissement du système en
fermant les services, les ports et les logiciels inutiles, le mot de passe à deux
facteurs et le cryptage des données pour les connexions distantes sont égale-
ment utiles pour sécuriser les systèmes SCADA [35] [125] propose également
l’authentification des partenaires de communication. Les autres solutions util-
isées pour protéger les réseaux SCADA sont les protocoles sécurisés et les réseaux
privés virtuels (VPN).

Malgré la combinaison de toutes ces mesures de sécurité, il n’ya pas de risque
zéro en matière de sécurité des systèmes d’information, c’est-à-dire qu’une at-
taque pourrait réussir sur le réseau. Un système de détection d’intrusion (IDS)
est une solution de sécurité qui joue un rôle important dans la sécurité des
informations car elle permet de détecter les intrusions réussies dans un réseau.
[56] plaide pour que les systèmes IDS soient utilisés avec d’autres mécanismes
de sécurité tels que des pare-feu, des scanners de vulnérabilité, des vérificateurs
de politique de sécurité pour assurer une sécurité optimale du réseau de con-
trôle industriel. Mais la nature spécifique des systèmes SCADA nécessite des
approches spécifiques pour les systèmes de détection d’intrusion SCADA.

Il existe principalement trois types d’approches de détection d’intrusion: la
détection de signature, la détection d’anomalie et la détection basée sur un
modèle. La détection de signature compare le trafic pour connaître la signature.
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D’autre part, la détection d’anomalie apprend le comportement "normal" du
système et tente de détecter des anomalies dans le trafic, c’est-à-dire un trafic
s’écartant du comportement "normal". Les principaux inconvénients de la détec-
tion des anomalies sont le faible taux de détection et le nombre élevé de fausses
alarmes. Mais les IDS basés sur la détection d’anomalies peuvent détecter des
nouvelles attaques. L’approche basée sur un modèle utilise des règles pour créer
un modèle de ce qui est autorisé et déclenche des alertes lorsque le comporte-
ment observé ne correspond pas aux règles. Bien que cela semble prometteur, il
est difficile de modéliser entièrement un système [8] [169]. Par conséquent, la
détection des anomalies est un mécanisme de défense important pour protéger
les systèmes SCADA.

Objectif et questions de recherche

Au cours des dernières années, le Deep Learning [59], un sous-domaine du
Machine Learning, est devenu un sujet brûlant parmi les chercheurs car cette
approche est appliquée avec succès à des domaines tels que la classification
d’images, la vidéo et le traitement du langage naturel. Dans la littérature, on
tente de plus en plus d’utiliser le deep learning pour la détection des anomalies
de réseaux [6] [44] [50] [51] [52] [67] [80] [84] [85] [86].

Cependant, très peu d’approches de réseaux deep learning non supervisées
ont été utilisées pour la détection d’anomalies dans le domaine spécifique des
réseaux SCADA.

Les systèmes de détection d’intrusion basés sur des anomalies sont soit super-
visés ou non supervisés. Dans les méthodes supervisées, les données d’apprentissage
sont étiquetées "normales" ou "anormales" par l’expert du domaine et le système
est entraîné à faire la distinction entre les observations "normales" et "anormales",
de sorte que les nouvelles observations puissent être classées comme "normales"
ou "anormales". Dans les approches non supervisées, il n’y a pas de données
étiquetées. Les comportements "normaux" sont modélisés, de sorte que le sys-
tème puisse détecter les observations présentant une différence significative par
rapport aux comportements "normaux" cite laskov2005learning cite Wang2017.
noindent Les techniques d’apprentissage deep learning peuvent utiliser des
stratégies non supervisées pour apprendre automatiquement les représentations
hiérarchiques dans les architectures deep learning aux fins de classification [20]
[59] [92] [97] [104] [105] [113] [130] [132].

Mon objectif de recherche dans cette thèse est de proposer un système de dé-



RÉSUMÉ EN FRANÇAIS 171

tection d’anomalies précis en termes de taux de détection et de taux de faux
positifs, et efficace en termes de temps de traitement dans les systèmes SCADA,
en utilisant une approche deep learning d’apprentissage en profondeur des car-
actéristiques non supervisé. Pour atteindre notre objectif, nous devons aborder
les questions de recherche suivantes:

QR 1 : Comment pouvons-nous concevoir une approche deep learning pour l’apprentissage
non supervisé des caractéristiques dans les systèmes SCADA?

QR 2 : Comment pouvons-nous concevoir un système pour la détection efficace
et précise des anomalies dans les systèmes SCADA ?

La première question de recherche est divisée en trois sous-questions :

QR 1.1 : Quel est l’état de l’art de l’apprentissage deep learning non supervisé
des caractéristiques dans les systèmes SCADA?

QR 1.2 : Quelles sont les caractéristiques du jeu de données SCADA utilisé?

QR 1.3 : Comment pouvons-nous concevoir un système deep learning d’apprentissage
des caract"ristiques non supervisé basé qui apprendra les caractéristiques importantes
des données SCADA?

La deuxième question de recherche comporte également trois sous-questions:

QR 2.1 : Quels sont les éléments constitutifs d’un système de détection d’anomalies
deep learning dans les systèmes SCADA?

QR 2.2 : Avec l’apprentissage des caractéristiques non supervisé, pouvons-nous
créer un classificateur efficace et précis pour la détection des anomalies dans les
réseaux SCADA?

QR 2.3 : Comment pouvons-nous améliorer l’efficacité du temps de calcul pour
le système de détection d’anomalie deep learning dans les réseaux SCADA?

Revues des contributions

Au cours des travaux de cette Thèse, nous avons réalisé cinq contributions :
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Contribution 1
Notre première contribution est une revue des systèmes de détection d’anomalies
SCADA deep learning utilisant des approches d’apprentissage de de caractéris-
tiques.

Contribution 2
Pour la deuxième contribution, nous avons proposé une architecture stacked
sparse denosing auto-encoder comme méthode d’apprentissage des caractéris-
tiques des données SCADA. Ce système est capable de faire un apprentissage
automatique des principales caractéristiques des données SCADA qui seront
utilisées ultérieurement à des fins de classification.

Contribution 3
Un système deep learning de détection d’anomalies SCADA hybride, doté d’un
moteur de prétraitement des données et d’un moteur de détection d’anomalies,
est proposé comme troisième contribution. Dans le moteur de pré-traitement,
les données sont normalisées, équilibrées et hot-encodé. Le moteur de détection
d’anomalies comporte un module d’apprentissage des caractéristiques non su-
pervisé auquel est ajouté un classificateur supervisé.

Contribution 4
Pour accélérer le processus de formation de notre approche, nous avons proposé
comme quatrième contribution une version distribuée qui utilise un serveur
de paramètres et des nœuds esclaves. Le serveur de paramètres stocke les
paramètres du modèle et les distribue aux nœuds esclaves où toute la charge de
travail se produit. Chaque nœud esclave est responsable du calcul du gradient
lors de l’algorithme de rétro-propagation. Le gradient calculé par chaque nœud
esclave est renvoyé au serveur de paramètres qui met à jour les poids et le trans-
met à nouveau aux nœuds esclave.

Contribution 5
Enfin, notre cinquième contribution est une implémentation du système hy-
bride de détection d’anomalies deep learning pour les réseaux SCADA avec le
framework TensorFlow. Les expérimentations ont prouvé que cette approche
faisait jeu égal avec les meilleurs parmi les approches standards quand elle
ne les surclassait pas dans d’autres cas en termes de taux de détection et de
taux de faux positifs. La version distribuée de notre modèle permet de réduire
considérablement le temps d’entraînement des modèles deep learning.





Hybrid Deep Neural Network Anomaly Detection System for SCADA Networks

Abstract

SCADA systems are more and more targeted by cyber-attacks because of vulnerabilities
in hardware, software, protocols, communication stack. Those systems nowadays use
standard hardware, software, operating systems and protocols. Furthermore, SCADA
systems which used to be air-gaped are now interconnected to corporate networks
and to the Internet. To thwart those attacks, many solutions have been proposed such
as use of firewalls, anti-viruses, encryption, etc. But due to the differences between
traditional IT and SCADA systems, the proposed solutions are not always applicable
to the latter. Intrusion detection systems (IDS) are complementary solutions to secure
SCADA networks. Collecting and labeling huge SCADA data is not always feasible as
it requires human expert intervention and it is a time consuming process. In recent
years Deep learning research has become a hot topic, and sound results have been
proposed in image, video and Natural Image Processing. Deep Learning models have
the capability to automatically learn features from data in an unsupervised manner. But
a big challenge in deep learning model is the high training time of its models. Our thesis
objective is to propose an accurate anomaly detection system in terms of detection rate
and false positive rate, and efficient in terms of processing time in SCADA networks,
using an unsupervised deep feature learning approach. We are using the automatic
feature learning capability to unsupervisingly learn SCADA data in order to classify
them into normal or anomalous data. We build an hybrid deep neural network anomaly
detection system for a Water Tank and Gas Pipeline SCADA systems. Our anomaly
detection system is composed of a stacked denoising autoencoder unsupervised feature
learner and a softmax classifier. Afterward, we proposed a distributed version of our
approach in an attempt to lessen the training time of our deep learning models. The
distributed approach is implemented with the TensorFlow Distributed Framework and
uses a parameter server to store the model parameters, update them and transmit them
to worker nodes which are responsible for calculating the parameters gradient requiring
high matrix multiplication during the back-propagation algorithm. Each worker node
transmits the calculated gradient to the parameter server for update. Our Hybrid deep
neural network anomaly detection system have been compared to standards algorithms.
The experimentations proved that the proposed approach compete equally with the
best among the baseline algorithm or outperform them in other cases. Furthermore, the
distributed version of the proposed approach significantly lowers the training time of
our deep learning models.
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