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The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation ----------------------Paul Dirac 

Contents

Introduction

Cette thèse est consacrée à une étude rigoureuse du problème à N corps en interaction coulombienne et de certaines de ses approximations en Chimie quantique non relativiste et relativiste.

La physique des atomes et des molécules (et donc presque toute la chimie) est largement régie par le problème de la mécanique quantique à N corps dans lequel les électrons et les noyaux interagissent par les forces d'attraction et de répulsion de Coulomb. A travers l'approximation de Born-Oppenheimer, le coeur de cette procédure est d'étudier l'opérateur hamiltonien électronique suivant :

H " ´1 2 N ÿ i"1 i `V pxq, (0.1) 
ou pour le cas relativiste :

D " N ÿ i"1
´ipα α α ¨∇i `βq `αV pxq avec potentiel

V pxq " ´N ÿ i"1 K ÿ ν"1 Z ν |x i ´aν | `1 2 N ÿ i,j"1,i‰j 1 |x i ´xj | .
Le problème principal rencontré en chimie quantique est la complexité des calculs qui, à première vue, croît exponentiellement avec le nombre N d'électrons (voir par exemple [START_REF] Le | From atoms to crystals: a mathematical journey[END_REF]). Ce phénomène est couramment appelé la malédiction de la dimension. Il existe des méthodes d'approximation non-linéaire : Hartree-Fock, qui est une approximation de champ moyen, suivie par les modèles multiconfiguration plus précis, qui tiennent compte de la corrélation électronique négligée par le modèle Hartree-Fock [START_REF] Mathieu Lewin | Solutions of the multiconfiguration equations in quantum chemistry[END_REF]. Si l'on limite le nombre de configurations, la complexité des calculs multiconfiguration croît polynomialement avec N . Mais si l'on veut améliorer l'approximation de Schrödinger par les modèles multiconfiguration, il faut augmenter le nombre de configurations. Pour comprendre le taux de croissance de la qualité de l'approximation avec le nombre de configurations et tenter de l'améliorer, il est fondamental d'avoir une meilleure compréhension des propriétés de régularité des solutions du modèle exact de Schrödinger à N corps, en tant que fonction de 3N variables.

Pour l'étude des atomes lourds (à partir du Fer), une difficulté supplémentaire apparaît: il faut tenir compte des effets relativistes. La théorie exacte est alors l'électrodynamique quantique, qui est mal comprise du point de vue mathématique. Cette théorie donne d'excellents résultats dans un cadre perturbatif, mais en chimie quantique son utilisation est beaucoup plus délicate. En effet la chimie quantique nécessite toujours un premier calcul non perturbatif. Le modèle le plus utilisé permettant un tel calcul est le modèle de Dirac-Fock qui est l'équivalent relativiste du modèle de Hartree-Fock.

Cette thèse porte à la fois sur des aspects non relativistes et relativistes du problème à N corps en chimie quantique. Elle est divisée en deux parties principales: la régularité dans les problèmes à N corps non-relativiste; l'existence de minimseurs dans le modèle de Dirac-Fock pour les cristaux.

La première partie est consacrée aux régularités de modèle Born-Openheimer stationnaire ou dépendent du temps, et ses applications à l'analyse numérique. Les systèmes de particules quantiques sont divisés en deux familles : les bosons et les fermions. Les premières sont décrites par une fonction d'onde symétrique et les secondes par une fonction d'onde antisymétrique sous l'échange d'électrons de même spin à cause du principe d'exclusion de Pauli. Pour les fermions, la fonction d'onde s'annule là où ces électrons se rencontrent, ce qui contrebalance les singularités du potentiel d'interaction entre les électrons. Grâce à cette observation, H. Yserentant [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF] introduit une régularité mixte des solutions pour les problèmes stationnaires. En combinant des estimations de Strichartz et une extension d'inégalité de Caldéron-Zygmund, nous prouvons l'existence et la régularité de solutions du problème d'evolution. Et grâce aux propriétés de régularisation du propagateur de l'opérateur de Schrödinger, nous proposons une approximation nouvelle et directe pour le problème d'évolution.

Pour le cas non-antisymétrique (par exemple bosons), les fonctions d'onde ne pourraient plus contrebalancer les singularités. Cependant, la singularité venant du potentiel coulombien est localement intégrable. Grâce à cela et l'inégalité de Herbst, nous obtenons des estimations dans des espaces de Sobolev fractionnaires pour les solutions du problème stationnaire, qui améliorent les résultat de Yserentant.

Dans la seconde partie, nous présentons l'étude en collaboration avec Isabelle Catto, Eric Paturel et Eric Séré d'un modèle de champ moyen en mécanique quantique relativiste, le modèle de Dirac-Fock pour les cristaux, issu de la limite thermodynamique. Comme le modèle Dirac-Fock pour les molécules ou les atomes, c'est un problème de min-max. Cependant, pour le modèle périodique; la solution peut être décomposée par la décomposition intégrale directe avec les fibres quasi-périodiques à travers la décomposition de Bloch. La décomposition fait perdre la compacité à la fonctionnelle. Grâce à la redéfinition de l'état fondamental et à une méthode nouvelle pour résoudre le problème quasi-périodique, nous montrons l'existence d'état fondamental qui est également la solution de l'équation auto-cohérente.

Notions de base en mécanique quantique à N corps

Dans cette section, nous présentons des connaissances fondamentales en mécanique quantique. C'est une théorie qui permet la description des systèmes quantiques, comme des molécules composées d'électrons et de noyaux.

Les particules quantiques

Un système de N particules quantiques se déplaçant dans l'espace euclidien à 3 dimensions est représenté par une fonction d'onde normalisée Ψ P L 2 pR 3 q  N , c'est-à-dire

}Ψ} 2 L 2 ppR 3 q N q " ż R 3N |Ψpx 1 , ¨¨¨, x N q| 2 dx 1 ¨¨¨dx N " 1.
Ici x i P R 3 est la coordonnée spatiale de la i ème particule. En physique, pour les systèmes électroniques, ou les systèmes fermioniques plus généraux, la fonction d'onde Ψ devrait satisfaire au principe d'exclusion de Pauli, ce qui signifie qu'elle est antisymétrique sous le changement de coordonnées électroniques pour un état de spin [START_REF] Elliott | The stability of matter in quantum mechanics[END_REF]. Si une particule possède s degrés internes de liberté (c'est-àdire s états de spin), alors nous les étiquetons par l'entier σ P t1, 2, ¨¨¨, su.

Et pour un système de N particules, supposons que la i ème particule ait s i états de spin. Alors, une fonction d'onde pour ces N particules peut alors être écrite comme Ψpx 1 , σ 1 , ¨¨¨, x N , σ N q où 1 ď σ i ď s i .

Pour le système à spin fixe σ, Ψ n'est qu'une fonction de x 1 , ¨¨¨, x N , alors elle peut être considérée comme Ψpx 1 , ¨¨¨, x N q. Soit I l " ti|σ i " lu, l " 1, ¨¨¨, s, et P i,j est une permutation qui échange simultanément la position des variables x i , x j et le spin σ i , σ j . Par le principe de Pauli, pour des fermions, nous savons que ΨpP i,j Xq " ´ΨpXq, si D 1 ď l ď s, t.q. i, j P I l .

(1.1) où X " px 1 , ¨¨¨, x N q. Donc, pour une permutation τ quelconque et les fermions indiscernables, nous savons que Ψpx τ p1q , σ τ p1q , ¨¨¨, x τ pN q , σ τ pN q q " pτ qΨpx 1 , σ 1 , ¨¨¨, x N , σ N q, où pτ q désigne la signature de la permutation τ .

Un autre genre de particules appelées bosons satisfait à la statistique de Bose-Einstein. Ses fonctions d'onde ont également des états de spin comme les fermions. Contrairement aux fermions, pour une permutation τ quelconque et les bosons, nous savons que ΨpP i,j Xq " ΨpXq, if D 1 ď l ď s, t.q. i, j P I l .

(1.2)

Et alors, pour les bosons indiscernables, on doit avoir Ψpx τ p1q , σ τ p1q , ¨¨¨, x τ pN q , σ τ pN q q " Ψpx 1 , σ 1 , ¨¨¨, x N , σ N q.

De manière générale, ces relations signifient que la densité |Ψ| 2 est invariante si l'on permute l'indexation des particules. Donc, pour σ fixe, la quantité qui est appelée la fonction de la densité ρ Ψ pxq :"

N ÿ i"1 ρ i Ψ pxq (1.3) où ρ i Ψ pxq "
ż pR 3 q N ´1 |Ψpx 1 , ¨¨¨, x i´1 , x, x i`1 , ¨¨¨, x N q| 2 dx 1 ¨¨¨y dx i ¨¨¨dx N , s'interprète alors comme la densité de probabilité de présence de la particule dans l'espace. La notation y dx i signifie que l'intégration sur la i ème coordonnée est omise. Evidemment, ż

R 3 ρ Ψ dx " N.
La transformée de Fourier p Ψppq est également normalisée dans L 2 ppR 3 q N q et | p Ψ| 2 ppq représente la densité de moment cinétique.

Comme les fonctions d'onde à N particules sont parfois difficiles à manipuler, on utilise souvent l'opérateur de densité à un corps, défini par son noyau γ Ψ px, yq "

N ÿ i"1 ż pR 3 q N ´1 Ψpx 1 , ¨¨¨, x i´1 , x, x i`1 , ¨¨¨, x N q ˆΨpx 1 , ¨¨¨, x i´1 , y, x i`1 , ¨¨¨, x N q dx 1 ¨¨¨y dx i ¨dx N , c'est-à-dire pγ Ψ φqpxq " ż R 3 γ Ψ px, yqφpyqdy (1.4) 
qui vérifie par ailleurs 0 ď γ Ψ ď 1, Trpγ Ψ q " N et ρ Ψ pxq " γ Ψ px, xq.

Opérateur de Schrödinger et de Dirac

Quelle est la relation de dispersion pour l'onde de matière?

Un bon point de départ est l'interprétation d'Einstein de l'effet photoélectrique. Lorsque des plaques métalliques polies sont irradiées par une lumière de longueur d'onde suffisamment courte, elles peuvent émettre des électrons. L'explication d'Einstein, pour laquelle il a reçu le prix Nobel, était que la lumière est constituée de quanta de lumière unique avec énergie et quantité de mouvement α j B j `βmc 2 " ´icα α α ¨∇ `βmc 2 où α α α " pα 1 , α 2 , α 3 q et β doivent être déterminés en imposant (1.7). Il est très aisé de voir que les α i et β doivent être des matrices de dimension 4 qui sont appelées matrices de Pauli:

β " ˜12 0 0 1 2 ¸, α k " ˜0 σ k σ k 0 ¸, où σ 1 " ˜0 1 1 0 ¸, σ 2 " ˜0 ´i i 0 ¸, σ 3 " ˜1 0 0 ´1¸.
Ici, on choisit un système d'unités tel que la masse d'un électron, la vitesse de la lumière ainsi que la constante de Plank valent 1:

m " c " 1 " ; D 0 " ´iα α α ¨∇ `β.

L'opérateur de Dirac agit donc sur des spineurs:

Ψ " ¨ψ1 ψ 2 ψ 3 ψ 4 ‹ ‹ ‹ ‹ ‹ ' P L 2 pR 4 ; C 4 q.
Evidemment, l'opérateur de Schrödinger (resp. l'opérateur de Dirac) est autoadjoint sur L 2 pR 3 , Cq (resp. L 2 pR 3 ; C 4 q), de domaines H 2 pR 3 , Cq (resp. H 1 pR 3 , Cq). Les spectres sont purement continus: σp´ q " r0, `8q; σpD 0 q " p´8, ´1s Y r1, `8q.

Notons que Λ 0 " 1 R ´pD 0 q et Λ 0 " 1 R `pD 0 q sont les projecteurs sur les espaces respectivement associés au spectre négatif et positif de D 0 .

Potentiel coulombien

En chimie quantique, les molécules sont composées d'électrons (charges négatives) et de noyaux (charges positives) interagissant via la force coulombienne. Le potentiel entre deux particules de charge Z et Z 1 qui se trouvent dans x et x 1 en R 3 est:

ZZ 1 |x ´x1 | .
Normalement, un système de molécules comporte beaucoup de noyaux et d'électrons. Alors, pour un système de M noyaux de charges Z i qui se trouvent en a i pour le i ème atome et N électrons, le potentiel est

´N ÿ j"1 M ÿ µ"1 Z ν |x j ´aν | `N ÿ kăj 1 |x j ´xk | `M ÿ kăj Z j Z k |a j ´ak |
Il agit sur les fonctions avec les variables x 1 , ¨¨¨, x N dans R 3 , coordonnées des électrons donnés.

Il y a deux difficultés qui surviennent pour le système électronique, [START_REF] Hainzl | The thermodynamic limit of quantum Coulomb systems Part I. General theory[END_REF]. La première est la singularité de 1{|x| en 0: il est nécessaire d'expliquer à l'aide du principe d'incertitude pourquoi une particule ne se précipitera pas vers une particule de charge opposée.

Une version plus puissante du principe d'incertitude est l'inégalité de type Hardy:

• Hardy: (le cas non-relativiste) pour toutes v P H 1 pR 3 q }|x| ´1v} L 2 pR 3 q ď 2}∇v} L 2 pR 3 q ď 2} a

´ `1v} L 2 pR 3 q ,

• Kato, Herbst: (le cas relativiste) pour toutes v P

H 1{2 pR 3 q v, |x| ´1v ď π 2 v, a ´ v ď π 2 v, a
´ `1v .

Plus généralement, on a le théorème suivant:

Théorème 1.1. [START_REF] Herbst | Spectral theory of the operator pp 2 `m2 q 1{2 ´Ze 2 {r[END_REF] Définissons l'opérateur C α dans SpR N q par C α " |x| ´α|p p p| ´α, p p p " ´i∇ et laissons p ´1 `q´1 " 1. Supposons α ą 0 et N α ´1 ą p ą 1. Alors C α s'étend en un opérateur borné sur L p pR N q avec c α,p " }C α } L p ÑL p " 2 ´α Γp 1 2 pN p ´1 ´αqΓp 1 2 N q ´1qq Γp 1 2 pN q ´1 `αqΓp 1 2 N p ´1qq

(1.8)

Si p ě N α ´1 ou p " 1, alors C α est illimité.

Le deuxième problème concerne le fait que le potentiel coulombien est à longue portée, c'est-à-dire qu'il ne diminue pas plus rapidement que r ´d où r est la distance et d est la dimensionnalité du système. Il est en effet nécessaire d'expliquer comment un très grand nombre d'électrons et de noyaux peuvent rester liés ensemble pour former des systèmes macroscopiques, bien que chaque particule interagisse avec beaucoup d'autres particules chargées en raison de la longue portée du potentiel d'interaction de Coulomb. C'est le Théorème de Stabilité de la Matière, qui fut d'abord prouvé par Dyson et Lenard, [START_REF] Lenard | Stability of matter. II[END_REF][START_REF] Freeman | Stability of matter. I[END_REF], et puis, par une autre méthode par Lieb et Thirring (voir par exemple l'article [START_REF] Elliott | The stability of matter in quantum mechanics[END_REF]) et les rérérences qu'il contient.

Ce problème est également lié à la limite thermodynamique pour des modèles d'approximation du système à N corps, par exemple, le modèle de Thomas-Fermi(-von-Weizsäcker) et le modèle de Hartree-Fock, [START_REF] Elliott | The Thomas-Fermi theory of atoms, molecules and solids[END_REF][START_REF] Catto | The mathematical theory of thermodynamic limits: Thomas-Fermi type models[END_REF][START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF][START_REF] Catto | On some periodic Hartree-type models for crystals[END_REF]. Grosso modo, la limite thermodynamique est la limite mathématique conjointe où • le nombre de particules M " N du système considéré tend vers l'infini;

• le volume occupé par la molécule considéré tend vers l'infini;

• la densité de particules ρ " N {V du système considéré reste constante.

Par rapport à la limite thermodynamique, on obtient les modèles périodiques pour les cristaux, et le potentiel coulombien devient périodique. Le potentiel G coulombien périodique dans Q :" r´1{2, 1{2s 3 est défini par

´ G " 4πp´1 `ÿ yPZ 3 δp¨´yqq,

et ż Q G " 0.
G est en fait la fonction de Green de l'opérateur périodique sur Q. La série de Fourier de G est

Gpxq " 1 π ÿ pPZ 3 p‰0 e 2iπp¨x |p| 2 .
G est borné sur Q sauf une singularité en x " 0, et

M " lim xÑ0 Gpxq ´1 |x|
existe.

Régularité des solutions pour un système électronique et leurs applications à l'analyse numérique

En combinant l'opérateur de Schrödinger avec le système de potentiel coulombien, nous pouvons obtenir le modèle à N corps quantiques non-relativistes. Comme les noyaux sont plus lourds que les électrons, les électrons suivent presque instantanément leur mouvement. Par conséquent, il est habituel en chimie quantique et dans les domaines connexes de séparer le mouvement des noyaux de celui des électrons. Donc, nous avons l'opérateur hamiltonien de l'approximation de Born-Oppenheimer:

H " N ÿ i"1 ˆ´1 2 i ´V px i q ˙`N ÿ iăj 1 |x i ´xj | (2.1)
avec le potentiel

V px i q " K ÿ ν"1 Z ν |x i ´aν | .
En physique et chimie quantique, deux problèmes sont intéressants. Le premier est l'étude des valeurs propres et les fonctions propres de cet opérateur Hu " λu.

(2.2)

En particulier, la fonction propre associée à la première valeur propre est l'état fondamental

EpΨq " inf t Ψ, HΨ ; Ψ P W N u ;

(2.3) avec W N "

" Ψ P L 2 ppR 3 q N ; Cq, ż R 3N |Ψ| 2 " 1, ż R 3N |∇Ψ| 2 ă 8 * .
Et le deuxième est le problème d'évolution par rapport au temps (le problème de Cauchy), surtout si les noyaux sont mobiles et dépendants du temps:

$ & % iB t u " Hptqu, t P r´a, as " I a , x " px 1 , ¨¨¨, x N q P pR 3 q N up0, xq " u 0 pxq.

(2.4)

Ici,

Hptq " N ÿ j"1 ´ j ´N ÿ j"1 V px j , tq `N ÿ kăj W px j , x k q. où V px j , tq " M ÿ µ"1 Z µ |x j ´aµ ptq| (2.5) et W px k , x j q " 1 |x k ´xj | . ( 2.6) 
Cependant, les avantages de la modélisation d'une molécule avec le modèle de Schrödinger s'évanouissent lorsqu'il s'agit d'effectuer des calculs réels à cause de sa grande dimensionnalité. En effet, pour un système à N électrons, on doit travailler dans L 2 pR 3N ; Cq. Donc, pour simuler des systèmes un peu plus grands, on utilise des modèles approchés.

En chimie quantique, pour les fermions indiscernables, les approximations du problème (2.3) sont schématiquement classées en deux catégories [START_REF] Le | Mathematical and numerical analysis for molecular simulation: accomplishments and challenges[END_REF]:

La méthode de la fonction d'onde est utilisée de préférence par les chimistes, sur des petits systèmes, lorsque la précision est l'objectif principal et que le temps de calcul est un problème secondaire. Le plus connu est le modèle de Hartree-Fock et ses nombreuses variantes, extensions et successeurs. Le modèle Hartree-Fock est obtenu en restreignant l'énergie (2.3) aux fonctions qui sont égales à un unique déterminant de Slater Ψ " ψ 1 ^¨¨¨^ψ N , ψ i , ψ j " δ ij , où les ψ 1 , ¨¨¨, ψ N sont appelées orbitales. Alors, on a Ψ, HΨ "

N ÿ i"1 ˆ´ 2 ´V px i q ˙ψi , ψ i `1 2 ij R 3 ˆR3 ρ Ψ pxqρ Ψ pyq |x ´y| dx dy ´1 2 ij R 3 ˆR3 |γ Ψ px, yq| 2 |x ´y| dx dy " Trpp´ 2 ´V px i qqγ Ψ q `1 2 TrpW Ψ γ Ψ q (2.7) où W Ψ φpxq " ρ Ψ ˚1 |x| ´żR 3 γ Ψ px, yqφpyq |x ´y| dy, avec γ Ψ px, yq " N ÿ i"1 ψ i pxqψ i pyq ˚; ρ Ψ pxq " γ Ψ px, xq " N ÿ i"1 |ψ i pxq| 2 .
La deuxième égalité de la formule (2.7) est l'expression de l'opérateur de densité. Et le terme dernier ť

R 3 ˆR3 |γ Ψ px,yq| 2
|x´y| dx dy est appelé le terme d'échange. Et le modèle sans terme d'échange est appelé Hartree-Fock réduit. D'autre part, la méthode de la théorie de la fonctionnelle de la densité (DFT) est utilisé de préférence pour les grands systèmes (et au-delà pour la science des matériaux), lorsque le temps de calcul est important et que les méthodes de fonctions d'onde sont trop coûteuses. Ils consistent à reformuler le problème (2.3) en termes de densité électronique (1.3).

La contribution révolutionnaire qui a rendue la DFT un outil utile pour effectuer des calculs, est dûe à Kohn et Sham [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF], qui ont introduit le modèle Kohn-Sham à la DFT. Il est similaire au modèle de Hartree-Fock où le terme d'échange est remplacé par une fonctionnelle d'échange-corrélation E xc pρ Ψ q, qui est obtenue à l'aide de données expérimentales [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF].

Et pour le problème (2.4), la difficulté est renforcée par la prise en compte de la variable du temps: Les échelles de temps sont très différentes l'un l'autre. Par rapport à l'échelle de temps, les approximations sont classées en deux catégories principales: la simulation adiabatique et la simulation non-adiabatique [START_REF] Cances | Computational quantum chemistry: a primer[END_REF]. Et l'approximation adiabatique consiste à supposer que pour chaque temps t, les fermions sont dans l'état fondamental. Sinon, c'est l'approximation non-adiabatique. Comme dans le problème (2.3), l'approximation non-adiabatique consiste en le modèle de Hartree-Fock dépendant du temps et la théorie de la fonctionnelle dépendant du temps (TDDFT).

A partir de 2004, H. Yserentant [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | Sparse grid spaces for the numerical solution of the electronic Schrödinger equation[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF][START_REF] Yserentant | Regularity and approximability of electronic wave functions[END_REF][START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF][START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] consiste à reconnaître (2.3) comme une équation différentielle partielle de grande dimension, et appliquer des techniques de produits tensoriels clairsemés pour approximer le problème (2.2). C'est la base de nos travaux dans cette partie. Donc, pour bien l'expliquer, on commence par décrire les travaux d'Yserentant.

Les travaux d'Yserentant

Rappelons que

I l " ti|σ i " lu, l " 1, ¨¨¨, s.
Par rapport à l'équation (1.1) pour les fermions, on observe que s'il existe un l " 1, ¨¨¨, s, i, j P I l , upx 1 , ¨¨¨, x i´1 , x i , x i`1 , ¨¨¨, x j´1 , x i , x j`1 , ¨¨¨, x N q " 0. Donc le principe de Pauli contrebalance les singularités de potentiel d'interaction entre électrons. Alors, Yserentant propose un opérateur relié au spin: 

L I l " ź iPI k p1 ´ i q 1{2 , l " 1, ¨¨¨,
R 3 ˆR3 |u| 2 |x ´y| 4 dx dy ď 16 ż R 3 ˆR3 |∇ x b ∇ y u| 2 dx dy. Donc, on a ˇˇˇˆL I l u |x i ´aν | , L I l v ˙ˇˇˇď C}L I l u} L 2 }L I l v} H1 , et ˇˇˇˆL I l u |x i ´xj | , L I l v ˙ˇˇˇď C}L I l u} L 2 }L I l v} H1 , où }u} 2 H1 " }∇ i u} 2 L 2 `}∇ j u}
p u H " p u ´p u L .
Evidemment u L P C 8 ppR 3 q N q. Donc,

1 |ω|ďΩ pL I l pH ´λqu H q " ´1|ω|ďΩ ˜LI l ˜N ÿ i"1 V px i q `N ÿ iăj 1 |x i ´xj | ¸uL ¸,
et dans le cadre variationnel:

L I l pH ´λqu H , L I l v H " ´ L I l ˜N ÿ i"1 V px i q `N ÿ iăj 1 |x i ´xj | ¸uL , L I l v H , v H P X 1 I,H , (2.10) où X 1 I,H " tv H ; L I l v H P H 1 , 1 |ω|ďΩ pv H q " 0u. Soit θpN, Zq " ? N maxtN, Zu avec Z " ř ν Z ν . Donc, on a
Théorème 2.2. [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] Si Ω ą 4CθpN, Zq et u L P tv L P L 2 ; 1 |ω|ďΩ pv L q " v L u, la solution u H P H 1 avec l'état de spin σ de l'équation (2.10) est contenue dans l'espace X 1 I,H , et satisfait

}L I l u H } L 2 ď ? 2}L I l u L } L 2 , }∇L I l u H } L 2 ď ? 2Ω}L I l u L } L 2 ,
où ∇ " p∇ 1 , ¨¨¨, ∇ N q est le gradient pour tous les électrons.

Maintenant, soit

H 1 pRq " # pω 1 , ¨¨¨, ω N q P pR 3 q N ; s ÿ l"1 ź iPI l ˆ1 `ˇˇωi Ω ˇˇ2 ˙ď R 2 + .
Et on introduit le projecteur pP 

u P H 1 avec l'état de spin σ, }u ´P1,R u} L 2 ď ? es R }u} L 2 , }∇u ´∇P 1,R u} L 2 ď ? es R Ω}u} L 2 .
De plus, Yserentant a montré dans [START_REF] Yserentant | Regularity and approximability of electronic wave functions[END_REF] que les régularités mixtes des fonctions d'onde décroissent de façon exponentielle dans le sens L 2 . En utilisant ces propriétés, on peut estimer [START_REF] Yserentant | Regularity and approximability of electronic wave functions[END_REF] le taux de convergence de développement du type "sparse grid" de la fonction d'onde en produits tensoriels antisymmétrisés d'une base de fonctions tridimensionnelles. Le résultat est surprenant compte tenu de la grande dimensionnalité de l'équation. Le taux de convergence de ces expansions est essentiellement le même pour N particules que le cas des s particules ( s est le nombre d'état de spin ).

Maintenant, le but ultime est d'avoir la même complexité que le cas d'une particule. Inspiré par [START_REF] Fournais | Sharp regularity results for Coulombic many-electron wave functions[END_REF][START_REF] Hoffmann-Ostenhof | Electron wavefunctions and densities for atoms[END_REF], Yserentant a montré que l'on peut atteindre presque la même complexité que dans le cas d'un électron en ajoutant un facteur simple de régularisation qui dépends explicitement des distances interélectroniques. Ces méthodes sont désignées comme r12-méthodes en chimie quantique. Par le facteur de régularisation et l'interpolation de Sobolev, Kreusler et Yserentant [START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] ont prouvé que pour les fonctions d'onde sans spin u, on a

}L α I l u} H 1 ă 8, @ 0 ď α ă 3{4.
Ici, I l " t1, ¨¨¨, N u.

Les régularités mixtes optimales de système coulombien stationnaire

Dans cette partie, on améliore les travaux d'Yserentant, et on donne les régularités mixtes optimales pour tous les cas (fermions et bosons) à travers les inégalités de Herbst et de Hardy. Nous décrivions ici nos résultats [START_REF] Meng | A note about the mixed regularity of Schrödinger Coulomb system[END_REF] présentés au Chapitre 1.

Les états de spin de fermions peuvent être divisé en trois cas qui peuvent fournir des régularités différentes:

(A) Chacune des deux particules a un état de spin différent: pour chaque l P t1, ¨¨¨, su, Comme dans [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF], on considère les fonctions tests sur l'espace des fonctions différentiables D I u : pR 3 q N Ñ C : px 1 , ¨¨¨, x N q Ñ upx 1 , ¨¨¨, x N q à support compact avec les états de spin σ pris en considération. Et sa complétion sur

|I l | ď 1, c'est-à-dire, s " N . (B)
L 2 , H 1 est désignée par L 2 I , H 1 I respectivement. Pour le cas (B), on définit l'opérateur L I,α,β par L I,α,β :" ¨s ÿ l"1 ˜ź jPI l p1 `|∇ j | 2 q α ¸¨ź iPIzI l p1 `|∇ i | 2 q β '' 1{2 .
Pour le cas (A) ou le cas (C), on définit un autre opérateur L I,α par L I,α :"

N ź i"1 p1 `|∇ i | 2 q α{2 .
Il peut être considéré comme un cas particulier d'opérateur L I,α,β : s " 1, I l " H pour le cas (A); et pour le cas (C), s " 1, I l " t1, ¨¨¨, N u.

Maintenant, on introduit les espaces fonctionnels suivants X I,α,β et X I,α qui sont définis par X I,α,β :" tu, L I,α,β u P H X I,α,β .

• Pour le cas (C),

u P č 0ďαă1.25 X I,α .
Maintenant, on étudie l'approximation correspondante.

Définition 2.5.

• Pour le cas (A), si 0 ď β ă 0.75, soit

H α,β pRq :" # pω 1 , ¨¨¨, ω N q P pR 3 q N | N ź i"1 ˆ1 `ˇˇωi Ω ˇˇ2 ˙β ď R 2 + .
• Pour le cas (B), si 1 ď α ă 1.25 (ou 0 ă α ă 0.75), 0 ă β ă 0.75 et α `β ă 1.5, soit

H α,β pRq :" $ & % pω 1 , ¨¨¨, ω N q P pR 3 q N | s ÿ l"1 ˜ź iPI l ˆ1 `ˇˇωi Ω ˇˇ2 ˙α¸¨ź jPIzI l ˆ1 `ˇˇωi Ω ˇˇ2 ˙β' ď R 2
, .

-.

• Pour le cas (C), si 1 ď α ă 1.25 (ou 0 ď α ă 0.75), soit

H α,β pRq :" # pω 1 , ¨¨¨, ω N q P pR 3 q N | N ź i"1 ˆ1 `ˇˇωi Ω ˇˇ2 ˙α ď R 2 + .
On définit le projecteur 

pP α,β,R
}u ´Pα,β,R u} L 2 ppR 3 q N q ď ? 2s R e 0.625 }u} L 2 ppR 3 q N q , et }∇pu ´Pα,β,R uq} L 2 ppR 3 q N q ď ? 2s R e 0.
625 Ω}u} L 2 ppR 3 q N q . pour certaines p et q, tels que

Les régularités mixtes de système coulombien dépendant du temps

2 ď p, q ă 6 et θ α,β ą 0 avec 1{θ α,β " mint3{p ´1{2 ´1{α p , 3{q ´1{2 ´1{α q , 1 ´1{β p , 1 ´1{β q u. (2.11) 
Evidemment, les fonctions V et W données par les équations (2.5) et (2.6) satisfont cette hypothèse, avec par exemple p " q " 4 et α p " α q " β p " β q " 8.

La première difficulté pour ce système est la complexité de l'espace fonctionnel. Soit

r i,j " x i ´xj , D i,j " x i `xj , et R i,j upr i,j , D i,j , x 1 , ¨¨¨, x i´1 , x i`1 , ¨¨¨, x j´1 , x j`1 , ¨¨¨, x N q " upx 1 , ¨¨¨, x N q. (2.12)
Alors, on définit l'espace fonctionnel L p,2 x i par

L p,2 x i :" L p pR 3 x i , L 2 ppR 3 q N ´1qq avec la norme }u} p L p,2 x i " ż R 3 x i ˜żpR 3 q N ´1 |u| 2 dx 1 ¨¨¨x dx i ¨¨¨dx N ¸p{2 dx i .
On l'abrège par L p,2 i . Et on définit L p,2 i,j :" L p pR 3 r i,j , L 2 ppR 3 q N ´1qq avec la norme

}u} p L p,2 i,j " ż R 3 r i,j ˜żpR 3 q N ´1 |R i,j u| 2 dD i,j dx 1 ¨¨¨x dx i ¨¨¨y dx j ¨¨¨dx N ¸p{2 dr i,j . Evidemment, }u} L p,2 i,j " }R i,j u} L p,2 r i,j
. Maintenant, on peut construire l'espace fonctionnel suivant:

XpT q " L 8 t pr0, T s, L 2 q č iăj L θp t pr0, T s, L p,2 i,j q č k L θq t pr0, T s, L q,2 k q avec la norme }u} XpT q " max 1ďiăjďN 1ďkďN " }u} L 8 t pL 2 q , }u} L θp t pL p,2 i,j q , }u} L θq t pL q,2 k q * ,
où 2{θ p " 3p1{2 ´1{pq et 2{θ q " 3p1{2 ´1{qq. Si p, q " 2, alors θ p , θ q " `8. Ici nous utilisons la notation abrégée X " XpT q sans risque de confusion. Donc, nous avons le premier résultat:

Théorème 2.8. Sous l'hypothèse 2.7, l'équation (2.4) a une solution unique u P Xpaq, pour chaque u 0 P L 2 ppR 3 q N q.

Et il y a une constante C ne dépendant que de p, q, V, W avec 1{θ α,β ą 0, telle que pour T vérifiant la condition CT 1{θ α,β N pN `1q ă 1{2, on a

}u} X À p,q }u 0 } L 2 .
Maintenant, définir l'opérateur

L I l " â iPI l ∇ i , l " 1, ¨¨¨, s.
Et soit 1{θ " mint3{p2pq `3{p2r pq ´1{2, 3{p2qq `3{p2r qq ´1{2u.

Nous pouvons donc énoncer le résultat principal de la régularité:

Théorème 2.9. Si u 0 possède l'état de spin fixe σ, L I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, et 0 ă α ă 1{2, 6 3´2α ă p, q ď 6, la solution de l'équation (2.4) a une solution unique u avec le même état de spin que σ, et L I l u P Xpaq.

Et il y a une constante C 1 ne dépendant que de α, r p, p, r q et q avec 6 1`2α ă r p, r q ď 6 et 1{θ ą 0, telle que pour T vérifiant la condition

C 1 p ř µ Z µ `N qN T 1{θ ă 1{2, on a }L I l u} L 8 t pL 2 q ď }L I l u} X À p,q }L I l u 0 } L 2 .
Pour obtenir une approximation comme dans le Théorème 2.3, nous introduisons l'opérateur suivant

K I l " ź jPI l p1 ´ j q 1{2 .
Maintenant, il nous faut prouver la régularité des solutions associée à l'opérateur K I l au lieu de l'opérateur L I l . Cependant, à cause de la complexité de l'espace fonctionnel X, on a besoin des estimations pour l'opérateur K I l . En généralisant l'inégalité de Calderón-Zygmund dans l'annexe de Chapitre 2, on a le théorème suivant: Théorème 2.10. Si 1 ă p ă 8, alors les inégalités suivantes sont vrais:

}∇ i u} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.13a) }u} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.13b) }p1 ´∇i qu} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.13c) }∇ i u} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i, j " 1, ¨¨¨, N (2.13d) }u} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i, j " 1, ¨¨¨, N (2.13e) }p1 ´∇i qu} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i " 1, ¨¨¨, N. (2.13f)
En conséquence, Théorème 2.11. Si u 0 possède l'état de spin fixe σ, K I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, et 0 ă α ă 1{2, 6 3´2α ă p, q ď 6, la solution de l'équation (2.4) a une solution unique u avec le même état de spin que σ, et L I l u P Xpaq.

Et il y a une constante C 2 pC 2 ą C 1 q ne dépendant que de α, r p, p, r q et q avec 6 1`2α ă r p, r q ď 6 et 1{θ ą 0, telle que pour T vérifiant la condtion

C 2 p ř µ Z µ `N qN T 1{θ ă 1{2, on a }K I l u} L 8 t pL 2 q ď }K I l u} X À p,q }K I l u 0 } L 2 .
De façons analogue à Yserentant [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], on construit l'opérateur P χ,R par

pP χ,R uqpxq " ˆ1 ? 2π ˙3N ż ωPpR 3 q N χ R pωqp upωqexppiω ¨xq dω.
où χ : pR 3 q N Ñ r0, 1s est une fonction avec la valeur χ R pωq " 1 pour ω P H 3 pRq, et

H 3 pRq " # pω 1 , ¨¨¨, ω N q P pR 3 q N | ÿ 1ďlďs ź iPI l p1 `|ω i | 2 q 1{2 ď R + .
Le plus simple cas de l'opérateur P χ,R est le projecteur 1 H 3 pRq pωq.

Comme dans le Théorème 2.3, on a

Lemme 2.12. Sous l'hypothèse de Théorème 2.11, on a

}u ´Pχ,R u} X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .
Etonnamment, nous avons directement une approximation pour le problème (2.4):

$ & % iB t u R " H R pu R q, t P r´a, as " I a , x " px 1 , ¨¨¨, x N q P pR 3 q N u R p0, xq " P χ,R pu 0 qpxq (2.14) avec H R puq " N ÿ j"1 ´ j u ´N ÿ j"1 M ÿ µ"1 P χ,R pV px j , tquq `N ÿ kăj P χ,R pW px j , x k quq.
Théorème 2.13. Si u 0 possède l'état de spin fixe σ, K I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, et 0 ă α ă 1{2, 6 3´2α ă p, q ă 6, alors la solution d'équation (2.14) a une solution unique u R .

Et il y a une constante C 3 pC 3 ą C 2 q ne dépendant que de α, r p, p, r q et q avec 6 1`2α ă r p, r q ă 6 et 1{θ ą 0, telle que pour T vérifiant la condition

C 3 p ř µ Z µ `N qN T 1{θ ă 1{2, on a }u ´uR } L 8 t pL 2 q ď }u ´uR } X À p,q 1{R s ÿ l"1 }K I l u 0 } L 2 , (2.15)
où u est la solution d'équation (2.4).

C'est un résultat surprenant, d'abord parce que le volume de H 3 pRq est beaucoup plus petit que celui de H 1 pRq pour le système stationnaire, mais aussi parce que l'on peut fournir directement une approximation.

Remarque 2.14. Comme l'opérateur P χ,R est similaire au projecteur P 1,R pour le système stationnaire, les méthodes numériques pour le problème (1.4) (voir par exemple [START_REF] Yserentant | Sparse grid spaces for the numerical solution of the electronic Schrödinger equation[END_REF][START_REF] Griebel | A wavelet based sparse grid method for the electronic Schrödinger equation[END_REF]) peuvent être appliquées au problème (2.14).

L'existence pour le modèle de Dirac-Fock dans les cristaux

En chimie quantique relativiste, la théorie exacte est l'électrodynamique quantique, mais il s'agit d'une théorie très complexe et des approximations sont nécessaires si l'on veut pouvoir faire des calculs. Le modèle de Dirac-Fock est une de ces approximations: voir [START_REF] Marvin H Mittleman | Theory of relativistic effects on atoms: Configuration-space Hamiltonian[END_REF] pour une justification physique, et [START_REF] Barbaroux | Remarks on the Mittleman max-min variational method for the electron-positron field[END_REF][START_REF] Barbaroux | Some connections between Dirac-Fock and electron-positron Hartree-Fock[END_REF] pour une étude mathématique de cette justification.

Donc, au lieu d'analyser les régularités mixtes de problèmes relativistes, on étudie le problème Dirac-Fock. L'énergie de Dirac-Fock peut aussi s'obtenir directement à partir de celle du modèle de Hartree-Fock non-relativiste, en remplaçant l'opérateur de Schrödinger par l'opérateur de Dirac. Cela donne

EpΨq " N ÿ i"1 pD 0 ´V px i qq ψ i , ψ i `α 2 ij R 3 ˆR3 ρ Ψ pxqρ Ψ pyq |x ´y| dx dy ´α 2 ij R 3 ˆR3 Tr 4 pγ Ψ px, yqγ Ψ py, xqq |x ´y| dx dy " TrppD 0 ´V px i qqγ Ψ q `α 2 TrpW Ψ γ Ψ q (3.1) W Ψ φpxq " ρ Ψ ˚1 |x| ´żR 3 γ Ψ px, yqφpyq |x ´y| dy, avec γ Ψ px, yq " N ÿ i"1 pψ i pxq, ψ i pyqq; ρ Ψ pxq " γ Ψ px, xq " N ÿ i"1 ψ i pxq b ψ i pyq. et ż R 3 ψ i ψ j " δ i,j .
Notons que ψ P H 1{2 pR 3 , C 4 q, et que Tr 4 est la trace de la matrice 4 ˆ4.

Son équation d'Euler-Lagrange est

H Ψ ψ k :" D 0 ´V pxqψ k `αW Ψ ψ k " λ k ψ k , k " 1, ¨¨¨, N, (3.2) et Ψ " pψ 1 , ¨¨¨, ψ N q.
où λ k , k " 1, ¨¨¨, N sont des multiplicateurs de Lagrange associés à ces contraintes. Et pour simplifier le modèle, on prend

V pxq " αZ |x| .
Comme σpD 0 q " p´8, ´1s Y r`1, `8q, la borne inférieure de la fonctionnelle (3.1) est ´8. En physique, le problème intéressant est la recherche de valeurs propres positives. Donc, nous nous intéressons à la théorie des points critiques pour résoudre l'équation (3.2) avec les valeurs propres dans r0, 1q. Pour le problème (3.2), l'existence d'une infinité de solutions avec les valeurs propres dans r0, 1q a été étudiée par MJ. Esteban et E. Séré [START_REF] Séré | Solutions of the Dirac-Fock Equations for Atoms and Molecules[END_REF], et sous des hypothèse plus générales par E. Paturel [START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF]. Dans [START_REF] Sere | Nonrelativistic limit of the Dirac-Fock equations[END_REF], MJ. Esteban et E. Séré ont prouvé que la première solution de l'équation (3.2) converge vers le minimiseur de Hartree-Fock dans la limite α Ñ 0 avec N, Z fixe. En conséquence, il est naturel de définir l'état fondamental du modèle de Dirac-Fock par la formule:

E " min 0ďγďP γ Tr L 2 pγq"N Epγq. (3.3)
Autrement dit, l'état fondamental de Dirac-Fock minimise l'énergie de Dirac-Fock parmi les états qui se trouvent dans le sous-ensemble de spectre positif. Par le point fixe, M. Huber et H. Siedentop [START_REF] Huber | Solutions of the Dirac-Fock Equations and the Energy of the Electron-Positron Field[END_REF] ont obtenu un résultat pour le problème (3.3). Finalement, E. Séré [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF] a proposé une rétraction nouvelle, et a analysé directement le problème (3.3).

Maintenant, grâce au travail [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], on étudie l'existence de solutions pour le modèle de Dirac-Fock pour les cristaux. Cependant, il nous faut d'abord mentionner le modèle de Hartree-Fock pour les cristaux.

Le modèle de Hartree-Fock pour les cristaux

Dans le réduction de la limite thermodynamique aux modèles de Hartree-Fock, I. Catto, C. Le Bris et P.L. Lions [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] ont proposé un modèle de Hartree-Fock pour les cristaux.

Ici on considère le modèle sur la cellule élémentaire Q l " r´l 2 , l 2 r 3 . Pour les modèles de cristaux, notamment les modèles périodiques, il nous faut considérer la décomposition de Bloch, qui indique que les états propres d'énergie pour un électron peuvent être écrits comme des ondes de Bloch. Donc, par la décomposition de Floquet on a la cellule duale du réseau Q l " r´π l , π l r 3 , et L 2 pQ l q " l 3

p2πq 3 ş À Q l L 2 ξ pQ l q dξ, où pour chaque ξ P Q l ,
L 2 ξ pQ l q " tu P L 2 loc pR 3 q; e ´iξ¨x u est Q l ´périodiqueu.

On a besoin de la définition suivante: Définition 3.1 (Définition de K). Considérons les familles d'opérateurs auto-adjoints γ ξ sur L 2 ξ pQ l q satisfaisant les propriétés suivantes, pour presque chaque ξ P Q l :

(H2 1 ) 0 ď γ ξ ď 1 L 2 ξ pQ l q ; (H3) l'opérateur γ ξ possède une trace finie et satisfait

l 3 p2πq 3 ş Q l Tr L 2 ξ pQ l q γ ξ dξ ă 8; (H4) Tr L 2 ξ pQ l q p´ ξ γ ξ q ă `8 et l 3 p2πq 3 ş Q l Tr L 2
ξ pQ l q p´ ξ γ ξ q dξ ă `8. Une telle famille des opérateurs est associée, d'une manière unique, à un opérateur auto-adjoint γ dans L 2 pR 3 q, défini par γ :" l 3 (H2) 0 ď γ ď 1 L 2 .

On note par K l'ensemble d'opérateurs γ " l 3 p2πq 3 ş À Q l γ ξ dξ qui satisfont les conditions (H2 1 ),(H3) et (H4), et nous appellerons γ un opérateur de densité Q l -périodique. Définition 3.2. Soit γ appartenant à K. Alors on peut définir d'une manière unique une densité Q l -périodique ρ γ associée à γ par

ρ γ pxq " l 3 p2πq 3 ż Q l γ ξ px, xqdξ. (3.4)
L'état fondamental de la modèle de Hartree-Fock pour les cristaux est

I HF " inftE HF pγq; γ P K, Tr γ " Zu, ( 3.5) 
de plus De plus, Théorème 3.5. [START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF] Supposons que Z ą 0 et N " Z et soit γ le minimiseur de (3.5).

E HF pγq " l 3 p2πq 3 ż Q l Tr L 2 ξ p´ ξ γ ξ q dξ ´αZ ż Q l G l pxqρ γ pxq dx `α 2 ij Q 2 l ρ γ pxqG l px ´yqρ γ pyq dxdy ´α 2 l 6 p2πq 6 ij pQ l q 2 dξdξ 1 ij Q 2 l rγ ξ px,
Alors γ résout l'équation nonlinéaire suivante:

$ ' & ' % γ " 1 p´8,νq pH γ q ` 1 tνu pH γ q, pH γ q ξ " ´ ξ ´ZG l `ργ ˚Gl ´l3 p2πq 3 ż Q l W 8 l pξ 1 ´ξ, x ´yqγ ξ 1 px, yqdξ 1 ,
où P t0, 1u et ν P R est un multiplicateur de Lagrange associé à la contrainte de charge ş Q l ρ γ " Z.

Le modèle de Dirac-Fock pour les cristaux

Maintenant, on présente les résultats pour le modèle de Dirac-Fock pour les cristaux du Chapitre 3 qui ont été obtenus en collaboration avec I. Catto, E. Paturel et E. Séré. En s'inspirant de la relation entre le modèle de Dirac-Fock et le modèle de Hartree-Fock, on construit le modèle Dirac-Fock pour les cristaux de la même manière. C'està-dire que l'on remplace l'opérateur ´ ξ par D ξ dans le modèle de Hartree-Fock pour les cristaux. Donc, l'énergie de la fonctionnelle de Dirac-Fock périodique est 

E DF pγq " l 3 p2πq 3 ż Q l Tr L 2 ξ pD ξ γ ξ q dξ ´αZ ż Q l G l pxqρ γ pxq dx `α 2 ij Q 2 l ρ γ pxqG l px ´yqρ γ pyq dxdy ´α 2 l 6 p2πq 6 ij pQ l q 2 dξdξ 1 ij Q 2 l Tr 4 rγ ξ px,
ż Q l G l py ´xqρ γ pyqdy " Tr L 2 pQ l q pG l p¨´xqγq et W γ,ξ ψ ξ pxq " l 3 p2πq 3 ż Q ˚dξ 1 ż Q W 8
l pξ 1 ´ξ, x ´yqγ ξ 1 px, yqψ ξ pyqdy.

Par la Définition 3.1, on a : Définition 3.6 (Définition de T ). Considérons les familles d'opérateurs auto-adjoints γ ξ sur L 2 ξ pQ l q satisfaisant les propriétés suivantes, pour presque chaque ξ P Q l :

(H6 1 ) 0 ď γ ξ ď 1 L 2 ξ pQ l q ;
(H7) l'opérateur γ ξ possède une trace finie et satisfait l 3

p2πq 3 ş Q l Tr L 2 ξ pQ l q γ ξ dξ ă 8; (H8) Tr L 2 ξ pQ l q p|D ξ |γ ξ q ă `8 et l 3 p2πq 3 ş Q l Tr L 2 ξ pQ l q p|D ξ |γ ξ q dξ ă `8.
Une telle famille d'opérateurs est associée, d'une manière unique, à un opérateur autoadjoint γ dans L 2 pR 3 q, défini par γ :" l 3 (H6) 0 ď γ ď 1 L 2 .

On note par T l'ensemble d'opérateurs γ " l 3 p2πq 3 ş À Q l γ ξ dξ qui satisfont les conditions (H6 1 ),(H7) et (H8), et nous appellerons γ un opérateur de densité Q l -périodique.

Correspondant à cette définition, on a l'espace fonctionnel suivant pour les opérateurs de densité Q l -périodique:

• σ 1 pξq " ! γ ξ P BpL 2 ξ pQ l qq; Tr L 2 ξ p|γ ξ |q ă 8
) avec la norme

}γ ξ } σ 1 pξq " Tr L 2 ξ p|γ ξ |q, • σ 1,1 " # γ; γ " l 3 p2πq 3 ż À Q l γ ξ dξ, pγ ξ q ξPQ l P T , ż Q l }γ ξ } σ 1 pξq , dξ ă 8 + avec la norme }γ} σ 1,1 " l 3 p2πq 3 ż Q l }γ ξ } σ 1 pξq dξ, • X " # γ; γ " l 3 p2πq 3 ż À Q l γ ξ dξ, pγ ξ q ξPQ l P T , ż Q l }|D ξ | 1{2 γ ξ |D ξ | 1{2 } σ 1 pξq dξ ă 8 + , avec la norme }γ} X " l 3 p2πq 3 ż Q l }|D ξ | 1{2 γ ξ |D ξ | 1{2 } σ 1 pξq dξ.
Enfin, soit P γ,ξ :" 1 R ˘pD γ,ξ q, P γ "

l 3 p2πq 3 ż À Q ˚P ˘,ξ γ dξ, et P γ γ 1 " ż À Q l P γ,ξ γ 1 ξ dξ.
Maintenant, on définit

Γ N :" tγ P T ; ż Q l ρ γ pxq dx " N u, et Γ Ǹ :" tγ P Γ N ; P γ γ " 0u.
Par [START_REF] Sere | Nonrelativistic limit of the Dirac-Fock equations[END_REF] et [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], l'état fondamental de Dirac-Fock de cristaux est

I :" inftE DF pγq; γ P Γ Ǹ u.
Pour le potentiel G l on a les inégalités suivantes:

Lemme 3.7. Il existe de constantes C H ą 0, C 1 H ą 0 et C G , telles que, pour chaque ξ P Q l et chaque ψ ξ P H 1{2 ξ pQ l ; C 4 q, on a:

pψ ξ , G l ψ ξ q L 2 pQ l q ď C H pψ ξ , |D ξ |ψ ξ q Q l , (3.8a) pψ ξ , |G l |ψ ξ q L 2 pQ l q ď C 1 H pψ ξ , |D ξ |ψ ξ q Q l , ( 3.8b) 
De plus, il existe de constante C G ě C 1 H ą 0, telle que, pour chaque ξ P Q l et chaque φ ξ P H 1 ξ pQ l ; C 4 q, on a: 

}G l φ ξ } L 2 pQ l q ď C G }|D ξ |φ ξ } L 2 ξ pQ l q . ( 3 
• soit γ P X, }W γ,ξ ψ ξ } L 2 ξ ď C W maxt}γ} X , 1u}ψ ξ } L 2 ξ .
(3.9)

• soit γ P σ 1,1 , }W γ,ξ ψ ξ } L 2 ξ ď C 1 W maxt}γ}σ 1,1 , 1u}|D ξ |ψ ξ } L 2 ξ (3.10)
On a besoin de quelques conditions pour obtenir leur existence: Hypothèse 3.9. Soit N `:" maxtN, 1u, κ :"

αppC 1 H pZ `N q `C1 W N `qq, C EE :" C 1 H CW , A ą 1{4αp1 ´κq ´2p1 `κqC EE , et c ˚pkq :" sup ξPQ l inf dimV "k V ĂΛ ξ H 1{2 ξ sup u ξ PV }|D ξ | 1{2 u ξ } L 2 ξ }u ξ } L 2 ξ on suppose que 1. κ ă 1 ´1{2αC EE N `, 2. κ 1 :" αpC G pZ `N q `C1 W N `q ă 1, 3. A a maxtp1 ´κ ´1{2αC EE N `q´1 p1 ´κq ´1c ˚pN `1qN, 1uN `ă 1.
Théorème 3.10. Sous l'Hypothèse 3.9, il existe un minimiseur γ ˚P Γ Ǹ tel que

E DF pγ ˚q " I :" min γPΓ Ǹ E DF pγq. (3.11)
En outre, γ ˚résout l'équation auto-cohérente suivante:

$ ' & ' % γ " 1 r0,νq pD γ q `δ D γ " l 3 p2πq ż À Q l dξD γ,ξ , (3.12 
) où 0 ď δ ď 1 tνu pD γ q et 0 ď ν ď c ˚pN `1qp1 ´κq ´1.

Remarque 3.11. En physique du solide, la longueur de la cellule unitaire est d'environ quelques Angströms. Et dans le système d'unités, " m " c " 1, on a α « 1 137 et l « 1000. Sous la condition Z " N pour la neutralité électronique, on trouve que l'Hypothèse 3.9 est safisaite pour N ď 4.

Part I

The mixed regularity for

Coulomb potential 1 Introduction and results

For most applications of molecular simulation, the matter is described by an assembly of nuclei equipped with electrons. And in the quantum world, the state of electrons is modelled by the N -body Hamiltonian operator:

H " ´1 2 N ÿ i"1 i ´Vne `Vee (1.1)
with

V ne :" N ÿ i"1 M ÿ ν"1 Z ν |x i ´aν | ,
and

V ee :" 1 2 N ÿ i,j"1,i‰j 1 |x i ´xj | ,
where a 1 ¨¨¨, a M are the positions of nuclei endowed with the charge Z 1 , ¨¨¨, Z M respectively, and x 1 , ¨¨¨, x N are the coordinates of given N electrons. And the right hand-side terms respectively model the kinetic energy, the attraction between nuclei and electrons, the repulsion between electrons.

Mathematically, the electronic ground state or excited state problem can be expressed by the Euler-Lagrange equation which is indeed the eigenvalues problems of the operator (1.1):

Hu " λu.

(1.2)

In quantum mechanics, in addition to the spatial coordinates, a particle such as the electron may have internal degrees of freedom, the most important of which is spin. For example, the electrons have two kinds of spin σ " ˘1{2 (here σ " 1 or σ " 2 for convenience). But here, we consider a more general kinds of particles equipped with q spin states. And we label them by the integer σ P t1, ¨¨¨, qu.

And a wave function of N particles with q spin states can be written as

u : pR 3 q N ˆt1, ¨¨¨, qu N Ñ C : px, σq Ñ upx, σq.
For fixed spin state σ, we can rewrite the wavefunction upx, σq by upxq and

u : pR 3 q N Ñ C : x Ñ upx, σq.
There are two kinds of particles: fermions and bosons. For fermions, the particles satisfy the Pauli exclusion principle. Mathematically speaking, let P i,j be a permutation which exchange the space coordinates x i and x j and the spins σ i and σ j simultaneously, then upP i,j px, σqq " ´upx, σq.

In particular, the identical fermions are totally anti-symmetric. And for bosons, they satisfy the Bose-Einstein statistics which means the particles occupy some symmetric quantum states. Particularly for the identical bosons, they are totally symmetric.

Problem (1.2) is well-explored mathematically (see for example [START_REF] Hunziker | The quantum N-body problem[END_REF], and about the regularity properties of the eigenfunction of problem (1.2) [START_REF] Kato | On the eigenfunctions of many-particle systems in quantum mechanics[END_REF][START_REF] Hoffmann-Ostenhof | Local properties of Coulombic wave functions[END_REF][START_REF] Fournais | The Electron Density is Smooth Away from the Nuclei[END_REF][START_REF] Hoffmann-Ostenhof | Electron wavefunctions and densities for atoms[END_REF][START_REF] Fournais | Sharp regularity results for Coulombic many-electron wave functions[END_REF][START_REF] Hoffmann-Ostenhof | Many-particle Hardy inequalities[END_REF][START_REF] Fournais | Analytic structure of many-body Coulombic wave functions[END_REF]). However,the advantage of this model vanishes when it comes to performing real calculation because of its large dimensionality. Thus models such as Hartree-Fock and Kohn-Sham are proposed, see for example [START_REF] Le | From atoms to crystals: a mathematical journey[END_REF]. However they are no true, unbiased discretizations of the Schrödinger equation in the sense of numerical analysis.

Decades ago, H. Yserentant [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF][START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF][START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] proposed a mixed regularity about the eigenfunctions of problem (1.2), and this result can help to break the complexity barriers in computational quantum mechanics. For fixed spin state σ, he split the particles into the subset q parts with the same spin states I l :" ti; σ i " lu, s " 1, ¨¨¨, q.

If Dl " 1, ¨¨¨, q such that i, j P I l , then upP i,j x, σq " ´upx, σq.

(1.3) herein P i,j is a permutation which only exchange the space coordinate x i and x j . If

x i " x j , upxq " 0. Thus the eigenfunctions can counterbalance the singularity of the interaction potential between electrons. Based on this observation, H. Yserentant proved in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] that the eigenfunction u of problem (1.2) under spin state σ satisfies ż ˜1

`N ÿ i"1 |2πξ i | 2 ¸˜q ÿ l"1 ź kPI l p1 `|2πξ k | 2 q ¸|Fpuq| 2 dξ ă 8
where Fpuq :" ş R d upxqe ´2πiξ¨x dx is the Fourier transform of u. Later, by using r12-methods and interpolation of Sobolev space, H.C. Kreusler and H. Yserentant [START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF][START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] proved that the eigenfunction u of problem (1.2) without the spin state satisfies ż ˜1

`N ÿ i"1 |2πξ i | 2 ¸s ˜N ź k"1 p1 `|2πξ k | 2 q ¸t |Fpuq| 2 dξ ă 0,
for s " 0, t " 1 or s " 1, t ă 3{4. And the bound 3{4 is the best possible and can neither be reached nor surpassed.

But what is the optimal mixed regularities in consideration of the spin states? And could we provide an error estimate for its approximation based on this regularity? In this note, we are trying to answer these questions.

The spin state can be divided into three cases which can provide different regularities:

(A) Any two particles have different spin states: for any l P t1, ¨¨¨, qu, |I l | ď 1, i.e., q " N .

(B) Some particles have the same spin states while the others do not: there exists a l P t1, ¨¨¨, qu, such that 1 ă |I l | ă N , i.e., 1 ă q ă N .

(C) The particles are identical: there exists a l P t1, . . . , qu, such that I l " t1, ¨¨¨, N u and if k ‰ l, I k " H, i.e., q " 1.

Indeed, the case (A) means that the eigenfunction u is totally non-anti-symmetric (for any i, j P t1, ¨¨¨, N u, the equation (1.3) does not hold); and the case (B) means the eigenfunction u has some kind of anti-symmetric property (for some l P t1, ¨¨¨, qu and any i, j P I l , the equation (1.3) holds);; and the case (C) means that the eigenfunction u is totally anti-symmetric (for any i, j P t1, ¨¨¨, N u, the equation (1.3) holds); Similar to [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF], we consider the test functions in D I which is the space of the infinite differentiable functions

u : pR 3 q N Ñ C : px 1 , ¨¨¨, x N q Ñ upx 1 , ¨¨¨, x N q
having a bounded support with spin states taken into consideration. And its completion in L 2 , H 1 is denoted by L 2 I , H 1 I respectively. For the case (B), define the operator L I,α,β by L I,α,β :"

¨q ÿ l"1 ˜ź jPI l p1 `|∇ j | 2 q α ¸¨ź iPIzI l p1 `|∇ i | 2 q β '' 1{2 .
where ∇ i is the gradient for the coordinate x i . This operator is defined by the Fourier transform, for details see Section 2. And the higher derivative parts is because of the anti-symmetry of eigenfunction u. Specially for the case (A) or case (C), we define another operator L α by L I,α :"

N ź i"1 p1 `|∇ i | 2 q α{2 .
It can be viewed as a special case of operator L I,α,β : q " 1, I l " H for case (A); and for the case (C), q " 1, I l " t1, ¨¨¨, N u.

Based on these operators, we introduce the following functional space X I,α,β and X I,α which is defined by X I,α,β :" tu, L I,α,β u P H 

# pω 1 , ¨¨¨, ω N q P pR 3 q N | N ź i"1 ˆ1 `ˇˇωi Ω ˇˇ2 ˙β ď R 2 + .
• For the case (B), if 1 ď α ă 1.25 (or 0 ă α ă 0.75), 0 ă β ă 0.75 and α `β ă 1.5, let

H α,β pRq :" $ & % pω 1 , ¨¨¨, ω N q P pR 3 q N | q ÿ l"1 ˜ź iPI l ˆ1 `ˇˇωi Ω ˇˇ2 ˙α¸¨ź jPIzI l ˆ1 `ˇˇωi Ω ˇˇ2 ˙β' ď R 2
, .

-.

• For the case (C), if 1 ď α ă 1.25 (or 0 ď α ă 0.75), let

H α,β pRq :" # pω 1 , ¨¨¨, ω N q P pR 3 q N | N ź i"1 ˆ1 `ˇˇωi Ω ˇˇ2 ˙α ď R 2 + .
Now we define the projector 

pP α,β,R uqpxq " ż χ R pξqp
}u ´Pα,β,R u} L 2 ppR 3 q N q ď ? 2q R e 0.625 }u} L 2 ppR 3 q N q ,
and }∇pu ´Pα,β,R uq} L 2 ppR 3 q N q ď ? 2q R e 0.625 Ω}u} L 2 ppR 3 q N q .

Fractional Laplacian and related inequalities

For 0 ă α ă 2, the fractional Laplacian |∇| α (or p´ q α{2 ) is defined on functions u : R d Ñ R as a Fourier representation by Fp|∇| α uqpξq " |2πξ| 2α Fpuqpξq.

In addition, for α ą 2, the fractional Laplacian |∇| α can be viewed as the composition of |∇| α´2t α 2 u and p´ q t α 2 u , where txu is the integer part of x. A function u P L 2 pR d q is said to be in H α pα ą 0q if and only if

}u} 2 H α pR d q :" ż R d p1 `|ξ| 2 q α |Fpuqpξq| 2 dξ ă 8.
In this note, the operator L I,α,β is defined by the same manner:

FpL I,α,β uqpξq " ˜q ÿ l"1 ˜N ź i"1 p1 `|2πξ i | 2 q β{2 ¸˜ź jPI l p1 `|2πξ j | 2 q α{2 ¸¸1{2 Fpuqpξq.
If we apply the Fourier transform to solve the Poisson equation

|∇| α u " f in R d ,
we find that |2πξ| α Fpuqpξq " Fpf qpξq. The inverse of the fractional Laplacian, or negative power of the Laplacian |∇| ´α, s ą 0, is defined for f P SpR d q as

Fp|∇| ´αuqpξq " |2πξ| ´αF puqpξq for k ‰ 0.

In principle, we need the restriction 0 ă α ă d because when α ě d the multiplier |k| ´α does not define a tempered distribution (for more details, see for example [START_REF] Raúl | User's guide to the fractional Laplacian and the method of semigroups[END_REF]).

In the other part, the term 1 |x| α is a tempered distribution for 0 ă α ă d with Fourier transform

b α Fp| ¨|´α qpξq " b d´α |ξ| ´d`α , b α " π ´α{2 Γpα{2q, (2.1) 
(see for example [41]). Hence, if 0 ă α ă d, the operator |∇| α can be represented by

|∇| ´αupxq " b d´α p2πq α b α ż R d
|x ´y| ´d`α upyq dy.

(2.2)

Suppose that 0 ă α ă d, then |∇| α |x| β is a L 1 loc pR d q-function for 0 ă β ă d ´α and

|∇| α |x| ´β " p2πq α b α`β b d´β b d´α´β b β |x| ´α´β . (2.3)
And |∇| ´α|x| ´β is equally a L 1 loc pR d q-function for 0 ă α ă β ă d and

|∇| ´α|x| ´β " b β´α b d´β p2πq α b d`α´β b β |x| α´β . (2.4)
However, in this note, we need to deal with the term |∇| ˘αp|x| ´β uq. The first and most important result about it is the famous Herbst's inequality which is based on the Formula (2.2):

Theorem 2.1. [START_REF] Herbst | Spectral theory of the operator pp 2 `m2 q 1{2 ´Ze 2 {r[END_REF] Define the operator C α on SpR d q by C α :" |x| ´α|∇| ´α and let p ´1 `q´1 " 1. Suppose α ą 0 and dα ´1 ą p ą 1. Then C α extends to a bounded operator on L p pR d q with

}C α } BpL p pR d qq " 2 ´α Γp 1 2 pdp ´1 ´αqqΓp 1 2 dq ´1q Γp 1 2 pdq ´1 `αqqΓp 1 2 dp ´1q (2.5) If p ě dα ´1 or p " 1, then C α is unbounded.
Remark 2.2. Let v :" |∇| α u, then this theorem can be expressed as:

}|x| ´αu} L p pR d q ď }C α } BpL p pR d qq }|∇| α u} L p pR d q .
Remark 2.3. For 1 ď p ă d, p ‰ 2 and α " 1, it is not the Hardy's inequality which is written as:

}|x| ´1u} L p pR d q ď p d ´p }∇u} L p pR d q .
However, for d ą 2, p " 2 and α " 1, it is the Hardy's inequality since

}|∇|u} L 2 pR d q " }∇u} L 2 pR d q ,
and

}C α } BpL p pR d qq " 2 d ´2 .
Remark 2.4. Let q ´1 `p´1 " 1, then we have that

}C α} BpL q pR d qq " }C α } BpL p pR d qq .
And particularly, when p " 2, we have a special result:

}C α} BpL 2 pR d qq " }C α } BpL 2 pR d qq , namely }|∇| ´αu} L 2 pR d q ď }C α } BpL 2 pR d qq }|x| α u} L 2 pR d q .
In this note, we only need the case d " 3 and p " 2. Let

c α :" }C α } BpL 2 pR 3 qq
for 0 ă α ă 3{2. And if α " 0, then }u} L 2 pR d q " }u} L 2 pR d q , we define c 0 :" 1.

Considering the interaction between electrons, we need to deal with the term 1 |x´y| :

Lemma 2.5. Define the operator C α,β on SpR 3ˆ3 q by C α,β :" |x ´y| ´α´β |∇ x | ´α|∇ y | ´β
where ∇ x , ∇ y are the gradient for variable x P R 3 and y P R 3 respectively. Suppose that α, β ą 0 and α `β ă 3{2. Then C α,β extends to a bounded operator on

L 2 pR 3ˆ3 q with }C α,β } BpL 2 pR 3ˆ3 qq ď 2c α`β . Proof. Notice that }|x ´y| ´α´β |∇ x | ´α|∇ y | ´β } BpL 2 pR 3ˆ3 qq " }|∇ x | ´α|∇ y | ´β |x ´y| ´α´β } BpL 2 pR 3ˆ3 qq .
Now, for any function upx, yq P L 2 pR 3ˆ3 q, by Fourier transform

}|∇ x | ´α|∇ y | ´β |x´y| ´α´β u} L 2 pR 3ˆ3 q " p2πq ´α´β }|ξ x | ´α|ξ y | ´β Fp|x´y| ´α´β uqpξ x , ξ y q} L 2 pR 3ˆ3 q .
Herein ξ :" pξ x , ξ y q, and ξ x , ξ y are the frequency with respect to x and y respectively. As |t| α ď |t| α`β `1 for t P R, and let t " |ξ x |{|ξ y |, we yield

|ξ x | ´α|ξ y | ´β ď |ξ x | ´α´β `|ξ y | ´α´β .
(2.6)

Thus, }|∇ x | ´α|∇ y | ´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q "p2πq ´α´β }|ξ x | ´α|ξ y | ´β Fp|x ´y| ´α´β uqpξ x , ξ y q} L 2 pR 3ˆ3 q ďp2πq ´α´β }|ξ x | ´α´β Fp|x ´y| ´α´β uqpξ x , ξ y q} L 2 pR 3ˆ3 q `p2πq ´α´β }|ξ y | ´α´β Fp|x ´y| ´α´β uqpξ x , ξ y q} L 2 pR 3ˆ3 q "}|∇ x | ´α´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q `}|∇ y | ´α´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q .
For the term }|∇ x | ´α´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q , it is an integral with respect to x and y together. Now, we only consider the integral over x and fix y. Changing coordinates z " x ´y, then

}|∇ x | ´α´β |x ´y| ´α´β upx, yq} L 2 pR 3 x q pyq "}|∇ z | ´α´β |z| ´α´β upz `y, yq} L 2 pR 3 z q pyq ďc α`β }upz `y, yq} L 2 pR 3 z q pyq "c α`β }upx, yq} L 2 pR 3
x q pyq. Thus,

}|∇ x | ´α´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q ď c α`β }u} L 2 pR 3ˆ3 q .
Analogously,

}|∇ y | ´α´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q ď c α`β }u} L 2 pR 3ˆ3 q .
Consequently, we deduce that

}|∇ x | ´α|∇ y | ´β |x ´y| ´α´β u} L 2 pR 3ˆ3 q ď 2c α`β }u} L 2 pR 3ˆ3 q , namely, }|x ´y| ´α´β |∇ x | ´α|∇ y | ´β } BpL 2 pR 3ˆ3 qq ď 2c α`β .
If u P C 8 0 pR 3 zt0uq, for α ą d{2, we have the following Hardy's type inequality which is the generalization of [59, Lemma 2] with a similar proof: Lemma 2.6. [START_REF] Meng | Regularity of many-body Schrödinger evolution equation and its application to numerical analysis[END_REF] 

If u P C 8 0 pR 3 zt0uq, then › › › › u |x| α › › › › L 2 pR 3 q ď 2 |2α ´3| › › › › ∇u |x| α´1 › › › › L 2 pR 3 q . for α P r1, 3{2q Y p3{2, 5{2q.
And the the potential of the interaction between electrons: Corollary 2.7. [START_REF] Meng | Regularity of many-body Schrödinger evolution equation and its application to numerical analysis[END_REF] If u P C 8 0 pR 3ˆ3 q with upx, yq " ´upy, xq for x, y P R 3 .Then we have the following inequality:

› › › › u |x ´y| α › › › › L 2 pR 3ˆ3 q ď 4 |2α ´5||2α ´3| › › › › ∇ x ∇ y u |x ´y| α´2 › › › › L 2 pR 3ˆ3 q for α P r2, 2.5q.
Combining the Lemma 2.5 with the Corollary 2.7, we have Corollary 2.8. If u P C 8 0 pR 3ˆ3 q with upx, yq " ´upy, xq for x, y P R 3 .Then we have the following inequality:

› › › › u |x ´y| α › › › › L 2 pR 3ˆ3 q ď c k › › ›|∇ x | α{2 |∇ y | α{2 u › › › L 2 pR 3ˆ3 q with c α " 8c α´2
p5´2αqp2α´3q and α P r2, 2.5q.

Properties of the interaction potentials

In the proof of the mixed regularity, the study of the potential plays the core role. In this section, we analyse the regularity of the interaction potentials. And we split firstly the potentials into two types: nucleus-electron interaction potentials and electron-electron interaction potentials.

Nucleus-electron interaction potential

Lemma 3.1. Let K " p1 `|∇| 2 q α{2 p1 `|∇| α q ´1, then for any 0 ď α ď 2

}K} BpL 2 pR 3 qq ď 1.
Proof. For any 0 ď α ď 2, u P L 2 pR 3 q, }Ku} L 2 pR 3 q " }p1 `|2πξ| 2 q α{2 p1 `|2πξ| α q ´1F puq} L 2 pR 3 q .

As p1 `|2πξ| 2 q α{2 ď p1 `|2πξ| α q, we know that }Ku} L 2 pR 3 q ď }Fpuq} L 2 pR 3 q " }u} L 2 pR 3 q . Now we get the conclusion. Lemma 3.2. For 0 ă α ă 1, and u P H 1´α pR 3 q,

› › › › |∇| ´α u |x ´aν | › › › › L 2 pR 3 q ď c α c 1´α }|∇| 1´α u} L 2 pR 3 q .
And for 0.5 ă β ă 1.5, and u P H 2´β pR 3 q,

› › ›|∇| ´β p∇|x ´aν | ´1qu › › › L 2 pR 3 q ď c β c 2´β }|∇| 2´β u} L 2 pR 3 q .
Proof. Here we use Theorem 2.1 twice. And for convenience, let a ν " 0. Notice that by Theorem 2.1,

}|∇| ´α|x| ´α} BpL 2 pR 3 qq " }|x| ´α|∇| ´α} BpL 2 pR 3 qq " c α . Then, › › › › |∇| ´α u |x| › › › › L 2 pR 3 q ď c α }|x| α´1 u} L 2 pR 3 q .
And

}|x| α´1 u} L 2 pR 3 q " }|x| α´1 |∇| α´1 |∇| α u} L 2 pR 3 q ď c 1´α }|∇| α u} L 2 pR 3 q . Now we get › › › › |∇| ´α u |x ´aν | › › › › L 2 pR 3 q ď c α c 1´α }|∇| 1´α u} L 2 pR 3 q .
And for the second inequality, similarly, as 0 ă β ă 1.5 we get that

› › ›|∇| ´β p∇|x| ´1qu › › › L 2 pR 3 q ď c β }|x| β p∇|x| ´1qu} L 2 pR 3 q .
As |∇|x| ´1| " |x| ´2, we have that }|x| β p∇|x| ´1qu} L 2 pR 3 q " }|x| β´2 u} L 2 pR 3 q .

Besides 0 ă 2 ´β ă 1.5, by Theorem 2.1 again,

}|x| β´2 u} L 2 pR 3 q ď c 2´β }|∇| 2´β u} L 2 pR 3 q . Thus, › › ›|∇| ´β p∇|x ´aν | ´1qu › › › L 2 pR 3 q ď c β c 2´β }|∇| 2´β u} L 2 pR 3 q .
Lemma 3.3. For 0 ă α ă 0.5, and u P H 1`α pR 3 q,

› › › › |∇| α u |x ´aν | › › › › L 2 pR 3 q ď pc 1`α `cα qc 1´α }|∇| 1`α u} L 2 pR 3 q .
Proof. Similarly, for convenience, let a ν " 0. Notice that

› › › › |∇| α u |x| › › › › L 2 pR 3 q " › › › › ∇|∇| α´1 u |x ´a| › › › › L 2 pR 3 q . Thus, › › › › |∇| α u |x| › › › › L 2 pR 3 q ď › › |∇| α´1 p∇|x| ´1qu › › L 2 pR 3 q `› › |∇| α´1 |x| ´1p∇uq › › L 2 pR 3 q .
By Lemma 3.2, we get

› › |∇| α´1 p∇|x| ´1qu › › L 2 pR 3 q ď c 1´α c 1`α }|∇| 1`α u} L 2 pR 3 q , and › › |∇| α´1 |x| ´1p∇uq › › L 2 pR 3 q ď c 1´α c α }|∇| 1`α u} L 2 pR 3 q . Consequently, › › › › |∇| α u |x ´aν | › › › › L 2 pR 3 q ď pc 1`α `cα qc 1´α }|∇| 1`α u} L 2 pR 3 q .
Combining Hardy's inequality with Lemma 3.2 and Lemma 3.3, we have the following corollary: Corollary 3.4. For ´1 ă α ă 0.5, and u P H 1`α pR 3 q, then

› › › › |∇| α u |x ´aν | › › › › L 2 pR 3 q ď C α }|∇| 1`α u} L 2 pR 3 q , where C α " pc 1`α `cα qc 1´α if α ą 0; C 0 " 2; C α " c ´αc 1`α if ´1 ă α ă 0.
Now, the main estimate in this subsection is Lemma 3.5. For u, v P C 8 0 pR 3 q and for any 0 ă α ă 1.5, then

ˇˇˇ p1 `|∇| 2 q α{2 u |x ´aν | , p1 `|∇| 2 q α{2 v ˇˇď pC α´1 `2q}p1 `|∇| 2 q α{2 u} L 2 pR 3 q }∇p1 `|∇| 2 q α{2 v} L 2 pR 3 q .
Proof. As p1 `|∇| 2 q α{2 " p1 `|∇| α qK, we know that

p1 `|∇| 2 q α{2 u |x ´aν | , p1 `|∇| 2 q α{2 v " K u |x ´aν | , p1 `|∇| 2 q α{2 v ` |∇| α K u |x ´aν | , p1 `|∇| 2 q α{2 v . (3.1)
For the first term in the right-hand side, by Hölder inequality,

ˇˇˇ K u |x ´aν | , p1 `|∇| 2 q α{2 v ˇˇˇď }u} L 2 pR 3 q › › › › 1 |x ´aν | Kp1 `|∇| 2 q α{2 v › › › › L 2 pR 3 q
. By Hardy's inequality or Herbst's inequality, we know that

› › › › 1 |x ´aν | Kp1 `|∇| 2 q α{2 v › › › › L 2 pR 3 q ď 2 › › ›∇Kp1 `|∇| 2 q α{2 v › › › L 2 pR 3 q .
And as

› › ›∇Kp1 `|∇| 2 q α{2 v › › › L 2 pR 3 q " › › ›K∇p1 `|∇| 2 q α{2 v › › › L 2 pR 3 q ď › › ›∇p1 `|∇| 2 q α{2 v › › › L 2 pR 3 q
, by Lemma 3.1, we know that

› › › › 1 |x ´aν | Kp1 `|∇| 2 q α{2 v › › › › L 2 pR 3 q ď 2 › › ›∇p1 `|∇| 2 q α{2 v › › › L 2 pR 3 q .
For the other part, obviously }u} L 2 pR 3 q ď }p1 `|∇| 2 q α{2 u} L 2 pR 3 q .

Thus,

ˇˇˇ K u |x ´aν | , p1 `|∇| 2 q α{2 v ˇˇˇď 2}p1 `|∇| 2 q α{2 u} L 2 pR 3 q › › ›∇p1 `|∇| 2 q α{2 v › › › L 2 pR 3 q
.

For the second term in the right-hand side of equation (3.1), by Hölder's inequality again

ˇˇˇ |∇| α K u |x ´aν | , p1 `|∇| 2 q α{2 v ˇˇˇď › › › › |∇| α´1 K u |x ´aν | › › › › L 2 pR 3 q }∇p1 `|∇| 2 q α{2 v} L 2 pR 3 q .
And we have that

› › › › |∇| α´1 K u |x ´aν | › › › › L 2 pR 3 q ď › › › › |∇| α´1 u |x ´aν | › › › › L 2 pR 3 q . By Corollary 3.4, › › › › |∇| α´1 u |x ´aν | › › › › L 2 pR 3 q ď C α´1 }|∇| α u} L 2 pR 3 q ď C α´1 }p1 `|∇| 2 q α{2 u} L 2 pR 3 q . Consequently, ˇˇˇ p1 `|∇| 2 q α{2 u |x ´aν | , p1 `|∇| 2 q α{2 v ˇˇď pC α´1 `2q}p1 `|∇| 2 q α{2 u} L 2 pR 3 q }∇p1 `|∇| 2 q α{2 v} L 2 pR 3 q .

Electron-electron interaction potential

Lemma 3.6. For 0 ă β ď α, 1 ď α `β ă 1.5 and upx, yq

P C 8 0 pR 3ˆ3 q, then }|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q ď b α,β }|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q . with b α,β :" 2pp2πq α`β´1 π ´1b α`β c α`β {b 3´α´β `2q
Proof. If α `β " 1, then by Lemma 2.5, we obtain directly

}|x ´y| ´1u} L 2 pR 3ˆ3 q ď 2c 1 }|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q " 4}|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q ,
where c 1 " 4. By virtue of Formula (2.1) and as Fpf p¨`zqqpξq " e 2πiz¨ξ Fpuqpξq, we obtain that for 0 ă t ă 3,

F ˆupx, yq |x ´y| t ˙pξ x , ξ y q " b 3´t b t ż R 3 Fpuqpξ x ´l, ξ y `lq |l| 3´t dl. (3.2)
In particular b 2 b 1 " π ´1. Thus, for α `β ą 1, by Plancherel's Theorem

}|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q "p2πq α`β´1 π ´1 › › › › |ξ x | α`β´1 ż R 3 Fpuqpξ x ´l, ξ y `lq |l| 2 dl › › › › L 2 pR 3ˆ3 q ďp2πq α`β´1 π ´1 › › › › |ξ x | α`β´1 ż R 3 |Fpuqpξ x ´l, ξ y `lq| |l| 2 dl › › › › L 2 pR 3ˆ3 q . For any l, |ξ x | α`β´1 ď |l| α`β´1 `|ξ x ´l| α`β´1 , we yield }|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q ďp2πq α`β´1 π ´1 › › › › ż R 3 |Fpuqpξ x ´l, ξ y `lq| |l| 3´α´β dl › › › › L 2 pR 3ˆ3 q `p2πq α`β´1 π ´1 › › › › ż R 3 ||ξ x ´l| α`β´1 Fpuqpξ x ´l, ξ y `lq| |l| 2 dl › › › › L 2 pR 3ˆ3 q .
Using the Formula (3.2) again, for the first term, we get

› › › › ż R 3 |Fpuqpξ x ´l, ξ y `lq| |l| 3´α´β dl › › › › L 2 pR 3ˆ3 q " b α`β b 3´α´β › › ›|x ´y| ´α´β F ´1p|F puq|q › › › L 2 pR 3ˆ3 q
. By Lemma 2.5, we obtain

› › ›|x ´y| ´α´β F ´1p|F puq|q › › › L 2 pR 3ˆ3 q ď2c α`β }|∇ x | α |∇ y | β F ´1p|F puq|q} L 2 pR 3ˆ3 q "2c α`β }|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q .
For the second term, similarly

p2πq α`β´1 π ´1 › › › › ż R 3 ||ξ x ´l| α`β´1 Fpuqpξ x ´l, ξ y `lq| |l| 2 dl › › › › L 2 pR 3ˆ3 q "}|x ´y| ´1F ´1p|F p|∇ x | α`β´1 uq|q} L 2 pR 3ˆ3 q ,
and as β ď α, then β ă 0.75, thus

}|x ´y| ´1F ´1p|F p|∇ x | α`β´1 uq|q} L 2 pR 3ˆ3 q ď2c 1 }|∇ x | 1´β |∇ y | β F ´1p|F p|∇ x | α`β´1 uq|q} L 2 pR 3ˆ3 q "4}|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q ,
where c 1 " 4. Consequently, for 0 ă β ď α and 1 ă α `β ă 1.5, we deduce

}|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q ď2pp2πq α`β´1 π ´1b α`β c α`β {b 3´α´β `2q}|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q .
Combing these two cases together, as b 1 {b 2 " π and 4

ă 2pp2πq α`β´1 π ´1b α`β c α`β {b 3´α´β 2q if α `β " 1, we conclude }|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q ď2pp2πq α`β´1 π ´1b α`β c α`β {b 3´α´β `2q}|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q .
Lemma 3.7. For upx, yq, vpx, yq P C 8 0 pR 3ˆ3 q, and define

}|v}| α,β :" › › ›p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v › › › L 2 pR 3ˆ3 q . If 0 ă α, β and α `β ă 1.5, then ˇˇ p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď D α,β }|u}| α,β p}|∇ x v}| α,β `}|∇ y v}| α,β q. with D α,β :" # 1 `Cα´1 `Cβ´1 `2c α`β c 1´α´β if 0 ă α, β, α `β ă 1; 1 `Cα´1 `Cβ´1 `bα,β if 0 ă α, β, 1 ď α `β ă 1.5.
Furthermore, if u is anti-symmetric, i.e. upx, yq " ´upy, xq, then for

1 ď α ă 1.25, ˇˇ p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď D α,α }|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q. with if 1 ď α ă 1.25, D α,α :" 1 `2C α´1 `2pc 2α´2 `2c 2α´1 `?6c 2α qc 3´2α .
Proof. Similar to Lemma 3.5, we introduce the operator K α,x defined by

K α,x :" p1 `|∇ x | 2 q α{2 p1 `|∇ x | α q ´1. Now, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v " p1 `|∇ x | α qp1 `|∇ y | β qK α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v " K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ` p|∇ x | α `|∇ y | β qK α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ` |∇ x | α |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v (3.3)
Now, we calculate every term in the right-hand side of this equation separately.

Steps 1. For the first term.

ˇˇ K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď }u} L 2 pR 3ˆ3 q › › ›|x ´y| ´1K α,x K β,y p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v › › › L 2 pR 3ˆ3 q .
Using Hardy's inequality for x and y respectively and by Lemma 3.1, we get

› › ›|x ´y| ´1K α,x K β,y p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v › › › L 2 pR 3ˆ3 q ď}|∇ x K α,x K β,y v}| α,β `}|∇ y K α,x K β,y v}| α,β ď}|∇ x v}| α,β `}|∇ y v}| α,β .
As }u} L 2 pR 3ˆ3 q ď }|u}| α,β , then

ˇˇ K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď }|u}| α,β p}||∇ x |v}| α,β `}|∇ y v}| α,β q.
Steps 2. For the second term.

ˇˇ p|∇ x | α `|∇ y | β qK α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď ˇˇ |∇ x | α K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇˇ |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇˇ.
We have that

ˇˇ |∇ x | α K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇ" ˇˇ |∇ x | α´1 K α,x K β,y |x ´y| ´1u, |∇ x |p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď › › |∇ x | α´1 K α,x K β,y |x ´y| ´1u › › L 2 pR 3ˆ3 q }|∇ x v}| α,β By Lemma 3.1, › › |∇ x | α´1 K α,x K β,y |x ´y| ´1u › › L 2 pR 3ˆ3 q ď › › |∇ x | α´1 |x ´y| ´1u › › L 2 pR 3ˆ3 q .
Only considering the integral over x P R 3 and fixing y P R 3 , by Corollary 3.4 for 0 ă α ă 1.5, we obtain

› › |∇ x | α´1 |x ´y| ´1u › › L 2 pR 3 x q pyq ď C α´1 }|∇ x | α u} L 2 pR 3 x q pyq. Thus, › › |∇ x | α´1 |x ´y| ´1u › › L 2 pR 3ˆ3 q ď C α´1 }|∇ x | α u} L 2 pR 3ˆ3 q . Since }|∇ x | α u} L 2 pR 3ˆ3 q ď }|u}| α,β , we yield › › |∇ x | α´1 |x ´y| ´1u › › L 2 pR 3ˆ3 q ď C α´1 }|u}| α,β . Consequently, ˇˇ |∇ x | α K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇˇď C α´1 }|u}| α,β }|∇ x v}| α,β .
Analogously, for 0 ă β ă 1.5,

ˇˇ |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇˇď C β´1 }|u}| α,β }|∇ y v}| α,β . Thus, ˇˇ p|∇ x | α `|∇ y | β qK α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď pC α´1 `Cβ´1 q}|u}| α,β p}|∇ x v}| α,β `}|∇ y v}| α,β q.
Steps 3. For the last term without anti-symmetry.

Assume that β ď α, thus β ă 0.75 and 0 ă α ´β ă 0.5. If not, we can exchange the notation α, β and x, y respectively, then β ď α.

We have that

ˇˇ |∇ x | α |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇ" ˇˇ |∇ x | α`β´1 K α,x K β,y |x ´y| ´1u, |∇ x | 1´β |∇ y | β p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇŠ ince |z| β ď 1 `|z|, let z " |ξ y {ξ x |, then |ξ x | 1´β |ξ y | β ď |ξ x | `|ξ y |, thus }||∇ y | 1´β |∇ y | β v}| α,β ď p}|∇ x v}| α,β `}|∇ y v}| α,β q.
Now, we yield

ˇˇ |∇ x | α |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď › › ›|∇ x | α`β´1 |x ´y| ´1u › › › L 2 pR 3ˆ3 q p}|∇ x v}| α,β `}|∇ y v}| α,β q. (3.4) If α `β ă 1, by Theorem 2.1 › › ›|∇ x | α`β´1 |x ´y| ´1u › › › L 2 pR 3ˆ3 q ď c 1´α´β }|x ´y| ´α´β u} L 2 pR 3ˆ3 q .
And by Lemma 2.5,

› › ›|∇ x | α`β´1 |x ´y| ´1u › › › L 2 pR 3ˆ3 q ď 2c 1´α´β c α`β }|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q .
If α `β ě 1, then by Lemma 3.6 we get

› › ›|∇ x | α`β´1 |x ´y| ´1u › › › L 2 pR 3ˆ3 q ď b α,β }|∇ x | α |∇ y | β u} L 2 pR 3ˆ3 q . Finally, let C α,β :" 2c 1´α´β c α`β if α `β ă 1, and C α,β :" b α,β if α `β ě 1, then ˇˇ |∇ x | α |∇ y | β K α,x K β,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď C α,β }|u}| α,β p}|∇ x v}| α,β `}|∇ y v}| α,β q.
Steps 4. For the last term with anti-symmetry.

For α " 1, it has been proved in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF], with

ˇˇ |∇ x ||∇ y ||x ´y| ´1u, |∇ x ||∇ y |v ˇď p5 `4? 6q}|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q. Thus, ˇˇ |∇ x | α |∇ y | α K α,x K α,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď p5 `4? 6q}|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q. If α ą 1, we have that ˇˇ |∇ x | α |∇ y | α K α,x K α,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇ" ˇˇ |∇ x | α´1{2 |∇ y | α´1{2 K α,x K α,y |x ´y| ´1u, |∇ x | 1{2 |∇ y | 1{2 p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇǍ s |ξ x | 1{2 |ξ y | 1{2 ď 1{2p|ξ x | `|ξ y |q, we get ˇˇ |∇ x | α |∇ y | α K α,x K α,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď 1{2 › › ›|∇ x | α´1{2 |∇ y | α´1{2 |x ´y| ´1u › › › L 2 pR 3ˆ3 q p}|∇ x v}| α,α `}|∇ y v}| α,α q. (3.5) Notice that › › ›|∇ x | α´1{2 |∇ y | α´1{2 |x ´y| ´1u › › › L 2 pR 3ˆ3 q " › › ›∇ x ∇ y |∇ x | α´3{2 |∇ y | α´3{2 |x ´y| ´1u › › › L 2 pR 3ˆ3 q ď › › ›|∇ x | α´3{2 |∇ y | α´3{2 |x ´y| ´1p∇ x ∇ y uq › › › L 2 pR 3ˆ3 q `› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x |x ´y| ´1qp∇ y uq › › › L 2 pR 3ˆ3 q `› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ y |x ´y| ´1qp∇ x uq › › › L 2 pR 3ˆ3 q `› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x ∇ y |x ´y| ´1qu › › › L 2 pR 3ˆ3 q
Now, we use Lemma 2.5 again. For the first term:

› › ›|∇ x | α´3{2 |∇ y | α´3{2 |x ´y| ´1p∇ x ∇ y uq › › › L 2 pR 3ˆ3 q ď 2c 3´2α › › |x ´y| 2´2α p∇ x ∇ y uq › › L 2 pR 3ˆ3 q ,
and as 0 ă 2α ´2 ă 0.5

› › |x ´y| 2´2α p∇ x ∇ y uq › › L 2 pR 3ˆ3 q ď 2c 2α´2 }|∇ x | α |∇ y | α u} L 2 pR 3ˆ3 q .
Thus,

› › ›|∇ x | α´3{2 |∇ y | α´3{2 |x ´y| ´1p∇ x ∇ y uq › › › L 2 pR 3ˆ3 q ď 4c 3´2α c 2α´2 }|u}| α,α .
For the second term,

› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x |x ´y| ´1qp∇ y uq › › › L 2 pR 3ˆ3 q ď2c 3´2α }|x ´y| 3´2α p∇ x |x ´y| ´1qp∇ y uq} L 2 pR 3ˆ3 q "2c 3´2α }|x ´y| 1´2α ∇ y u} L 2 pR 3ˆ3 q .
As 0 ă 2α ´1 ă 1.5,

› › |x ´y| 1´2α ∇ y u › › L 2 pR 3ˆ3 q ď 2c 2α´1 }|∇ x | α |∇ y | α u} L 2 pR 3ˆ3 q .
Hence,

› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x |x ´y| ´1qp∇ y uq › › › L 2 pR 3ˆ3 q ď 4c 3´2α c 2α´1 }|u}| α,α .
And,

› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ y |x ´y| ´1qp∇ x uq › › › L 2 pR 3ˆ3 q ď 4c 3´2α c 2α´1 }|u}| α,α .
For the last term, as

|∇ x ∇ y |x ´y| ´1| 2 " 6|x ´y| ´6, › › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x ∇ y |x ´y| ´1qu › › › L 2 pR 3ˆ3 q ď2c 3´2α }|x ´y| 3´2α p∇ x ∇ y |x ´y| ´1qu} L 2 pR 3ˆ3 q "2 ? 6c 3´2α }|x ´y| ´2α u} L 2 pR 3ˆ3 q .
And since u P C 8 0 , upx, yq " ´upy, xq, and 2 ă 2α ă 2.5, by Corollary 2.8,

› › ›|∇ x | α´3{2 |∇ y | α´3{2 p∇ x ∇ y |x ´y| ´1qu › › › L 2 pR 3ˆ3 q ď2 ? 6c 3´2α c 2α }|∇ x | α |∇ y | α u} L 2 pR 3ˆ3 q . Consequently, if α ą 1, ˇˇ |∇ x | α |∇ y | α K α,x K α,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď 2pc 2α´2 `2c 2α´1 `?6c 2α qc 3´2α }|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q.
As c 0 " 1, c 1 " 2 and c 2 " 8, we know that 5 `4? 6 ă 2pc 0 `2c 1 `?6c 2 qc 1 q. Finally for 1 ď α ă 1.25,

ˇˇ |∇ x | α |∇ y | α K α,x K α,y |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď 2pc 2α´2 `2c 2α´1 `?6c 2α qc 3´2α }|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q.
Steps 5. Conclusion.

Combining the first three steps, we conclude that there is a constant D α,β , such that 

ˇˇ p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q β{2 v ˇď D α,β }|u}| α,β p}|∇ x v}| α,β `}|∇ y v}| α,β q, with D α,β :" # 1 `Cα´1 `Cβ´1 `2c 1´α´β c α`β if 0 ă α, β, 0 ă α `β ă 1; 1 `Cα´1 `Cβ´1 `bα,β if 0 ă α, β, 1 ď α `β ă 1.5. Furthermore if upx, yq " ´upy, xq, for 1 ď α ă 1.25, ˇˇ p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 |x ´y| ´1u, p1 `|∇ x | 2 q α{2 p1 `|∇ y | 2 q α{2 v ˇď D α,α }|u}| α,α p}|∇ x v}| α,α `}|∇ y v}| α,α q, with if 1 ď α ă 1.
› › ›|∇ x | α`β´1 |x ´y| ´1u › › › L 2 pR 3ˆ3 q ă 8.
Let r 1 " x ´y and r 2 " x `y, then for the gradient ∇ 1 , ∇ 2 corresponding to r 1 , r 2 respectively we have that

∇ x " ∇ 1 `∇2 , ∇ y " ∇ 2 ´∇1 .
As u P C 8 0 pR 3ˆ3 q, by cusp analysis, upr 1 , r 2 q " Opr 1 {|r 1 |q and

|r 1 | ´1u " Op|r 1 | ´1q when |r 1 | Ñ 0. And |∇ x | α`β´1 " |∇ 1 `∇2 | α`β´1 " |∇ 1 | α`β´1 as |r 1 | Ñ 0.
Consequently, in a neighborhood of |r 1 | " 0 small enough, by Formula (2.3)

|∇ x | α`β´1 |x ´y| ´1u " Op|∇ 1 | α`β´1 |r 1 | ´1q " Op|r 1 | ´α´β q. Thus if α `β ě 1.5, }|∇ x | α`β´1 |x ´y| ´1u} L 2 pR 3ˆ3 q " 8.
For u is anti-symmetric, notice that u " Op|r 1 |q when |r 1 | Ñ 0. Then, u{|r 1 | "

Opr 1 {|r 1 |q. As |∇ x | α´1{2 |∇ y | α´1{2 " |∇ 1 | 2α´1 , we get |∇ x | 2α´1 |x ´y| ´1u " Op|∇ 1 | 2α´1 r 1 {|r 1 |q " Op|r 1 | 1´2α q.
Thus, if α ě 1.25,

}|∇ x | α´1{2 |∇ y | α´1{2 |x ´y| ´1u} L 2 pR 3ˆ3 q " 8.
Remark 3.9. In the above lemma, we can not replace Opr 1 {|r 1 |q by Op1q, since |∇ 1 1| " 0 while |∇ 1 pr 1 {|r 1 |q| " Op|r 1 | ´1q.

For the Coulomb system

For convenience, we define another operator L I,l,α,β by

L I,l,α,β :" ˜ź iPI l p1 `|∇ i | 2 q α{2 ¸¨ź jPIzI l p1 `|∇ j | 2 q β{2 '.
Obviously,

L 2 I,α,β " q ÿ l"1 L 2 I,l,α,β .
And recall that

V ne " N ÿ i"1 M ÿ ν"1 Z ν |x i ´aν | , V ee " 1 2 ÿ i‰j 1 |x i ´xj | .
By Lemma 3.5, we know that if 0 ă α, β ă 1.5, for @u, v P D I ,

ˇˇˇ L I,l,α,β u |x i ´aν | , L I,l,α,β v ˇˇˇď C 1 α,β }L I,l,α,β u} L 2 ppR 3 q N q }∇ i L I,l,α,β v} L 2 ppR 3 q N q , with C 1 α,β " maxtC α´1 , C β´1 u `2. Thus, | L I,l,α,β V ne u, L I,l,α,β v | ď C 1 α,β ZN 1{2 }L I,l,α,β u} L 2 ppR 3 q N q }∇L I,l,α,β v} L 2 ppR 3 q N q , where Z " ř M ν"1 Z ν , ∇ :" p∇ 1 , ¨¨¨, ∇ N q and }∇v} 2 L 2 ppR 3 q N q " N ÿ i"1 }∇ i v} 2 L 2 ppR 3 q N q .
Consequently,

| L I,α,β V ne u, L I,α,β v | ď C 1 α,β ZN 1{2 }L I,α,β u} L 2 ppR 3 q N q }∇L I,α,β v} L 2 ppR 3 q N q ,
Now, we need to consider the different cases: (A)-(C). For case (B), if i, j P I l , u satisfies the equation (1.3). And for 1 ď α ă 1.25 (or 0 ă α ă 0.75), by Lemma 3.7,

ˇˇˇˇ L I,l,α,β u |x i ´xj | , L I,l,α,β v ˇˇˇď D α,α }L I,l,α,β u} L 2 ppR 3 q N q ´}∇ i L I,l,α,β v} L 2 ppR 3 q N q `}∇ j L I,l,α,β v} L 2 ppR 3 q N q ¯.
If i P I l and j R I l , for 1 ď α (or 0 ă α ă 0.75), 0 ă β and α `β ă 1.5, by Lemma 3.7,

ˇˇˇˇ L I,l,α,β u |x i ´xj | , L I,l,α,β v ˇˇˇď D α,β }L I,l,α,β u} L 2 ppR 3 q N q ´}∇ i L I,l,α,β v} L 2 ppR 3 q N q `}∇ j L I,l,α,β v} L 2 ppR 3 q N q ¯.
And if i, j R I l , for 0 ă β ă 0.75,

ˇˇˇˇ L I,l,α,β u |x i ´xj | , L I,l,α,β v ˇˇˇď D β,β }L I,l,α,β u} L 2 ppR 3 q N q ´}∇ i L I,l,α,β v} L 2 ppR 3 q N q `}∇ j L I,l,α,β v} L 2 ppR 3 q N q ¯.
Finally, we yield

| L I,l,α,β V ee u, L I,l,α,β v | ďD 1 α,β N N ÿ i"1 }L I,l,α,β u} L 2 ppR 3 q N q }∇ i L I,l,α,β v} L 2 ppR 3 q N q ďD 1 α,β N 3{2 }L I,l,α,β u} L 2 ppR 3 q N q }∇L I,l,α,β v} L 2 ppR 3 q N q .
with D 1 α,β " maxtD α,β , D α,α , D β,β u. Consequently, for 1 ď α ă 1.25 (or 0 ă α ă 0.75), 0 ă β ă 0.75 and α `β ă 1.5:

| L I,α,β V ee u, L I,α,β v | ď D 1 α,β N 3{2 }L I,α,β u} L 2 ppR 3 q N q }∇L I,α,β v} L 2 ppR 3 q N q .
Analogously, for case (A), and for 0 ă β ă 0.75 we have that

| L I,β V ee u, L I,β v | ď D 1 β,β N 3{2 }L I,β u} L 2 ppR 3 q N q }∇L I,β v} L 2 ppR 3 q N q .
And for case (C), and for 1 ď α ă 1.25 (or 0 ă α ă 0.75), we have that

| L I,α V ee u, L I,α v | ď D 1 α,α N 3{2 }L I,α u} L 2 ppR 3 q N q }∇L I,α v} L 2 ppR 3 q N q .
Now we conclude: Lemma 3.10.

• For case (A), if 0 ă β ă 0.75,

| L I,β, pV ne `Vee qu, L I,β, v | ďpC 1 β,β Z `D1 β,β N qN 1{2 }L I,β, u} L 2 ppR 3 q N q }∇L I,β v} L 2 ppR 3 q N q .
(3.6)

• For case (B), if 1 ď α ă 1.25 (or 0 ă α ă 0.75), 0 ă β ă 0.75 and α `β ă 1.5,

| L I,α,β pV ne `Vee qu, L I,α,β v | ďpC 1 α,β Z `D1 α,β N qN 1{2 }L I,α,β u} L 2 ppR 3 q N q }∇L I,α,β v} L 2 ppR 3 q N q .
(3.7)

• For case (C), if 1 ď α ă 1.25 (or 0 ă α ă 0.75),

| L I,α pV ne `Vee qu, L I,α v | ďpC 1 α,α Z `D1 α,α N qN 1{2 }L I,α u} L 2 ppR 3 q N q }∇L I,α v} L 2 ppR 3 q N q .
(3.8)

The Regularity of Solutions

Repeating the proof in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], we split the eigenfunctions into the high-frequency part and the low frequency part and then we will show that the high-frequency part can be dominated by the low frequency part. Let P Ω be the projector to the high frequency part, with

FpP Ω uqpξq :" 1 |ξ|ěΩ Fpuqpξq.

where

|ξ| 2 " N ÿ i"1 |ξ i | 2 .

And let

u H :" P Ω u, u L :" p1 ´PΩ qu.

Hence u L P H 1 I is well-defined. And we only need to prove the existence of u H . We have that }u H } L 2 ppR 3 q N q ď p2πΩq ´1}∇u H } L 2 ppR 3 q N q .

For case (B), taking v H P P Ω X I,α,β (or v H P P Ω X I,β,β and v H P P Ω X I,α,α for case (A) and case (C) respectively ), then for the existence of mixed regularity we need to study:

L I,α,β Hu, L I,α,β v H ´λ L I,α,β u, L I,α,β v H " 0 Decomposing u into u H and u L , we have L I,α,β pH ´λqu H , L I,α,β v H "1{2 ∇L I,α,β u H , ∇L I,α,β v H ` L I,α,β pV ne `Vee qu H , L I,α,β v H ´λ L I,α,β u H , L I,α,β v H " L I,α,β pV ne `Vee qu L , L I,α,β v H . (4.1) Let Ω ě p2πq ´1pC 1 α,β Z `D1 α,α N qN 1{2 ě 1, (4.2) 
then

| L I,α,β pV ne `Vee qu H , L I,α,β v H | ď 1{4}∇L I,α,β u H } L 2 ppR 3 q N q }∇L I,α,β v H } L 2 ppR 3 q N q , }L I,α,β u H } L 2 ppR 3 q N q ď }∇L I,α,β u H } L 2 ppR 3 q N q .
As the eigenvalues of problem 1.2 are negatives, therefore we have the coercivity

L I,α,β pH ´λqu H , L I,α,β u H ě 1{8}u H } 2 I,α,β , (4.3) 
the continuity

| L I,α,β pH ´λqu H , L I,α,β v H | ď }u H } I,α,β }v H } I,α,β , (4.4) 
and the continuity of the term L I,α,β pV ne `Vee qψ,

L I,α,β v H | L I,α,β pV ne `Vee qψ, L I,α,β v H | ď pC 1 α,β Z `D1 α,α N qN 1{2 }L I,α,β ψ} L 2 ppR 3 q N q }v H } I,α,β , (4.5 
) And now, we prove the regularity of the eigenfunctions.

Sketch Proof of the Theorem 1.1. This proof is similar to the proof in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF]. So we just give the sketch of proof, and only consider the case (B), the proof of other cases is same. Now, we prove the theorem under the condition on α and β in Lemma 3.10, and then by Sobolev's interpolation, we get the conclusion.

Step 1. For the frequency bounds Ω as in (4.2), the equation

L I,α,β pH ´λqu H , L I,α,β v H " L I,α,β pV ne `Vee qψ, L I,α,β v H , @v H P P Ω X I,α,β (4.6)
possesses a unique solution u H P P Ω X I,α,β for all given functions ψ P X I,α,β by using the Lax-Milgram theorem, and by the estimate (4.3) and the estimate (3.7) for ψ.

Step 2. For the frequency bounds Ω as in (4.2), the equation

pH ´λqu H , χ H " pV ne `Vee qψ, χ H , @χ H P P Ω H 1 (4.7)
possesses a unique solution u H P P Ω X I,α,β for all given functions ψ P H 1 , see [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF].

Step 3. For all χ H P P Ω H 1 , there is a unique high-frequency function v

H P P Ω X I,α,β such that L 2 I,α,β v H " χ H . By Fourier transform, we have q ÿ l"1 ˜ź iPI l p1 `|2πξ i | 2 q α ¸¨ź mPIzI l p1 `|2πξ j | 2 q β 'x v H pωq " x χ H pωq,
Thus we know that P Ω H 1 Ă L 2 I,α,β P Ω X I,α,β .

Step 4. We rewrite the equation (4.6) as

pH ´λqu H , L 2 I,α,β v H " pV ne `Vee qψ, L 2 I,α,β v H , @v H P P Ω X I,α,β .
And by the step 3, we know the solution of equation (4.6) satisfies the original equation (4.7) for all χ H P P Ω H 1 . Hence for all L I,α,β ψ P L 2 , by the uniqueness of solution, we yield that the solution of problem (4.7) u H P X I,α,β .

Step 5. Since the low-frequency part u L of the solution is contained in D I , we know the solution u P X I,α,β . And by Lemma 3.8, we know the condition α ě 1.25, α `β ě 1.5 or β ě 0.75 can not be reached or surpassed. In this sense, our results are optimal.

Numerical analysis

In this part, we study the hyperbolic cross space approximation. Without loss of generality, we only consider the case (B). We need to modify the operator I I,α,β by operator I I,α,β,τ defined below and give some estimates based on the new operator. Define operator L I,α,β,τ by L I,α,β,τ :"

¨q ÿ l"1 ˜ź jPI l ˜1 `ˇˇˇ∇ j τ ˇˇˇ2 ¸α¸¨ź iPIzI l ˜1 `ˇˇˇ∇ i τ ˇˇˇ2 ¸β'' 1{2 .
Before explaining the main ingredient in this section, we need the following estimate: 

| L I,α,β,τ pV ne `Vee qu, L I,α,β,τ v | ďpC 1 α,β Z `D1 α,β N qN 1{2 }L I,α,β,τ u} L 2 ppR 3 q N q }∇L I,α,β,τ v} L 2 ppR 3 q N q .
(5.1)

Proof. Let u τ pxq :" τ ´3N {2 upτ ´1xq, v τ pxq :" τ ´3N {2 vpτ ´1xq. And let

V τ ne :" N ÿ i"1 M ÿ ν"1 Z ν |x i ´τ a ν | .
By inequality (3.7), we know that

| L I,α,β pV τ ne `Vee qu τ , L I,α,β v τ | ďpC 1 α,β Z `D1 α,β N qN 1{2 }L I,α,β u τ } L 2 ppR 3 q N q }∇L I,α,β v τ } L 2 ppR 3 q N q .
As pV τ ne u τ qpxq " τ ´3N {2´1 pV ne uqpτ ´1xq and pV ee u τ qpxq " τ ´3N {2´1 pV ee uqpτ ´1xq, by the property of scaling, we yield that

| L I,α,β pV τ ne `Vee qu τ , L I,α,β v τ | " τ ´1 | L I,α,β.τ pV ne `Vee qu, L I,α,β,τ v | .
On the other hand,

}L I,α,β u τ } L 2 ppR 3 q N q }∇L I,α,β v τ } L 2 ppR 3 q N q " τ ´1}L I,α,β,τ u} L 2 ppR 3 q N q }∇{τ L I,α,β,τ v} L 2 ppR 3 q N q .
We get conclusion.

Analogously to (4.1), we consider the variational problem:

L I,α,β,τ pH ´λqu H , L I,α,β,τ v H " L I,α,β,τ pV ne `Vee qu L , L I,α,β,τ v H .
Mimicking the proof of estimates (4.3) and (4.5), for Ω ě p2πq ´1pC 1 α,β Z `D1 α,α N qN 1{2 , we have that

L I,α,β,τ pH ´λqu H , L I,α,β,τ u H ě 1{8}L I,α,β,τ u H } H 1 I ppR 3 q N q , and | L I,α,β,τ pV ne `Vee qu L , L I,α,β,τ v H | ďpC 1 α,β Z `D1 α,α N qN 1{2 }L I,α,β,τ u L } L 2 ppR 3 q N q }L I,α,β,τ v H } H 1 I ppR 3 q N q , Now we get 1{8}L I,α,β,τ u H } H 1 I ppR 3 q N q ď pC 1 α,β Z`D 1 α,α N qN 1{2 }L I,α,β,τ u L } L 2 ppR 3 q N q }L I,α,β,τ v H } H 1 I ppR 3 q N q .
Thus,

πΩ{4}L I,α,β,τ u H } L 2 ppR 3 q N q ď1{8}∇L I,α,β,τ u H } L 2 ppR 3 q N q ďpC 1 α,β Z `D1 α,α N qN 1{2 }L I,α,β,τ u L } L 2 ppR 3 q N q . Let Ω ě 32π ´1pC 1 α,β Z `D1 α,α N qN 1{2 large enough, then }L I,α,β,τ u H } L 2 ppR 3 q N q ď ? 2}L I,α,β,τ u L } L 2 ppR 3 q N q , ( 5.2) 
and

}∇L I,α,β,τ u H } L 2 ď ? 2Ω}L I,α,β,τ u L } L 2 .
(5.3)

We take the following norm:

}|u|} 2 I,α,β,1 " q ÿ l"1 ż ˜N ÿ i"1 ˇˇˇξ i Ω ˇˇˇ2 ¸˜ź kPI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸α¸¨ź jPIzI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸β' |Fpuq| 2 dξ,
and

}|u|} 2 I,α,β,0 " q ÿ l"1 ż ˜ź kPI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸α¸¨ź jPIzI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸β' |Fpuq| 2 dξ.
Lemma 5.2. For scaling parameters Ω ě 2π ´1pC 1 α,β Z `D1 α,α N qN 1{2 large enough, the eigenfunction u P X I,α,β satisfies the estimates

}|u|} I,α,β,0 ď a 2qe 0.625 }u} L 2 ppR 3 q N q , }|u|} I l ,α,β,1 ď a 2qe 0.625 }u} L 2 ppR 3 q N q .
Proof. The proof is similar with [61, Theorem 9]. By estimate (5.2) and let τ " 2πΩ, then

}|u}| I,α,β,0 ď ? 2}|u L }| I,α,β,0 , with }|u L }| 2 I,α,β,0 " q ÿ l"1 ż ˜ź kPI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸α¸¨ź jPIzI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸β' |Fpuq| 2 dξ.
As 0 ă β ď α ă 1.25,

˜ź kPI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸α¸¨ź jPIzI l ˜1 `ˇˇˇξ i Ω ˇˇˇ2 ¸β' . ď exp ˜α N ÿ i"1 ˇˇˇξ i Ω ˇˇˇ2 ¸.
Thus,

}|u L }| 2 I,α,β,0 ď q ÿ l"1 ż |ξ|ďΩ exp ˜α N ÿ i"1 ˇˇˇξ i Ω ˇˇˇ2 ¸|Fpuq| 2 dξ ďqe 1.25 ż |Fpuq| 2 dξ.
Finally,

}|u}| I,α,β,0 ď a 2qe 0.625 }u} L 2 ppR 3 q N q .
The other case can repeated equally.

Proof of Theorem 2.6. Thus, we know that

}u ´PR u} L 2 ppR 3 q N q ď 1 R }|u ´PR u}| I,α,β,0 ď 1 R }|u}| I,α,β,0 ď ? 2q R e 0.625 }u} L 2 ppR 3 q N q .
And for the other term,

}∇pu ´PR uq} L 2 ppR 3 q N q ď ? 2q R e 0.625 Ω}u} L 2 ppR 3 q N q .
Chapter 2

Regularity of many body evolution Schrodinger equation and its application to numerical analysis

A decade ago, the mixed regularity of stationary many-body Schrödinger equation has been studied by Harry Yserentant through the Pauli Principle and the Hardy inequality (Uncertainty Principle). In this article, we prove that the many-body evolution Schrödinger equation has a similar mixed regularity if the initial data u 0 satisfies the Pauli Principle. By generalization of the Strichartz estimates, our method also applies to the numerical approximation of this problem: based on these mixed derivatives, we design a new approximation which can hugely improve the computing capability especially in quantum chemistry.

Introduction

In this article, we study the existence, mixed regularity and its application to numerical analysis of the following evolution Schrödinger equation:

$ & % iB t u " Hptqu, t P r´a, as " I a , x " px 1 , ¨¨¨, x N q P pR 3 q N up0, xq " u 0 pxq (1.1)
with

Hptq " N ÿ j"1 ´ j ´N ÿ j"1 M ÿ µ"1 V px j , tq `N ÿ kăj W px j , x k q.
where

V px j , tq " M ÿ µ"1 Z µ |x j ´aµ ptq| (1.2)
and

W px i , x j q " 1 |x k ´xj | . (1.3)
In physics and chemistry, this equation is used to describe the quantum mechanical many-body problem in which the electrons and nuclei interact by Coulomb attaction and repulsion forces. It acts on the functions with variables x 1 , ¨¨¨, x N P R 3 , the coordinates of given N electrons. The atom µ is positioned at a µ ptq P R 3 dependently on time with the charge Z µ .

The Existence of Solution

At the beginning, instead of studying these given potentials V and W , we consider a more general case: for some p and q, such that 2 ď p, q ă 6 and

Assumption 1.1. V px, tq P R 3 ˆR satisfies V P L αq t,
θ α,β ą 0 with 1{θ α,β " mint3{p ´1{2 ´1{α p , 3{q ´1{2 ´1{α q , 1 ´1{β p , 1 ´1{β q u. (1.4)
Obviously, the case V and W in Equation (1.2) satisfies this Assumption, with p " q " 4 and α p " α q " β p " β q " 8.

In the last century, for the one particle case which means N " 1 and W " 0, the evolution Schrödinger equation iB t u " Hptqu was well developed, see [START_REF] Reed | II: Fourier Analysis[END_REF][START_REF] Simon | Schrödinger semigroups[END_REF]. In the case when Hptq " H 0 is independent of t and selfadjoint, the Stone theorem guarantees the existence and uniqueness of the unitary group U 0 pt, sq " expp´ipt ´sqH 0 q such that U 0 H 2 pR N q Ă H 2 pR N q. In 1987, Yajima [START_REF] Yajima | Existence of solutions for Schrödinger evolution equations[END_REF] proved the time-dependent case by Duhamel formula and Strichartz estimate, and then the Schrödinger equation with magnetic field [START_REF] Yajima | Schrödinger evolution equations with magnetic fields[END_REF]. And it is until this century that the existence of one kind of manybody Schrödinger equation was proved, also by Yajima, see [START_REF] Yajima | Existence and regularity of propagators for multi-particle Schrödinger equations in external fields[END_REF]. Inspired by his works, we find out another way to prove the existence of the many-body Schrödinger evolution equation, which is in fact equivalent to the method of Yajima, but much easier to deal with the regularity of the Coulombic potential. Let

r i,j " x i ´xj , D i,j " x i `xj , and R i,j upr i,j , D i,j , x 1 , ¨¨¨, x i´1 , x i`1 , ¨¨¨, x j´1 , x j`1 , ¨¨¨, x N q " upx 1 , ¨¨¨, x N q. (1.5)
Then, define the functional space

L p,2 x i " L p pR 3 x i , L 2 ppR 3 q N ´1qq
with the norm

}u} p L p,2 x i " ż R 3 x i ˜żpR 3 q N ´1 |u| 2 dx 1 ¨¨¨x dx i ¨¨¨dx N ¸p{2 dx i .
We shorten it by }u} L p,2 i , and define

L p,2 i,j " L p pR 3 r i,j , L 2 ppR 3 q N ´1qq
with the norm

}u} p L p,2 i,j " ż R 3 d i,j ˜żpR 3 q N ´1 |R i,j u| 2 dD i,j dx 1 ¨¨¨x dx i ¨¨¨y dx j ¨¨¨dx N ¸p{2 dr i,j .
The notation y dx j means that the integration over the i th coordinate is omitted. Obviously, }u} L p,2 i,j

" }R i,j u} L p,2 d i,j .
Then we introduce the following functional space:

XpT q " L 8 t pr0, T s, L 2 q č iăj L θp t pr0, T s, L p,2 i,j q č k L θq t pr0, T s, L q,2 k q
with the norm

}u} XpT q " max 1ďiăjďN 1ďkďN " }u} L 8 t pL 2 q , }u} L θp t pL p,2 i,j q , }u} L θq t pL q,2 k q * ,
where 2{θ p " 3p1{2 ´1{pq and 2{θ q " 3p1{2 ´1{qq. And if p, q " 2, then θ p , θ q " `8.

Herein we use the shorthand notation X " XpT q without confusion. And we use the notation

L θq t pL q,2 D q (1.6)
to represent the separate functional spaces. If q " 2, then L θq t pL q,2 D q :" L 8 t pL 2 q.

If D " tku, then L θq t pL q,2 D q :" L θq t pL q,2 k q. If D " ti, ju, then L θq t pL q,2 D q :" L θq t pL q,2 i,j q.

Taking U 0 ptq the free propagator exppit ř N j"1 j q, we have our first theorem:

Theorem 1.2. Under the Assumption 1.1, the Equation (1.1) has a unique solution u P Xpaq, for every u 0 P L 2 ppR 3 q N q and s P I a . And there is a constant C only dependent on p, q, V, W with 1{θ α,β ą 0, if T small enough such that CT 1{θ α,β N pN `1q ă 1{2, we have }u} X À p,q }u 0 } L 2 where θ α,β is defined by Equation (1.4). Remark 1.3. Indeed, the constant C satisfies the Inequality (3.1).

Remark 1.4. For some kinds of potentials V and W , for example the Coulombic potentials V and W which satisfy the Equation (1.2) and (1.3) respectively, the case p, q " 6 is also correct. We can use the strategy of proof of Theorem 1.5, regard the petentials q. Then we get the case p, q " 6.

The Regularity under the Fixed Spin States

Nowadays, we return back to electronic evolution equation with V and W satisfying the Equation (1.2) and (1.3).

In physics, for electronic systems, or more general fermionic systems, the initial datum u 0 should satisfy the Pauli Exclusion Principle, which means it is of anti-symmetry under the change of electron coordinates for one spin state [START_REF] Elliott | The stability of matter in quantum mechanics[END_REF][START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF]. If a particle has s spin states, then we label them by the integer σ P t1, 2, ¨¨¨, su.

Suppose there are N particles and the i th particle has s i spin states. Then a wave function for these N particles can then be written as

upx 1 , σ 1 , ¨¨¨, x N , σ N q
where 1 ď σ i ď s i . For the fixed spin σ systems, u is only a function of x 1 , ¨¨¨, x N , then it can be regarded as upx 1 , ¨¨¨, x N q. Let I s " ti|σ i " su, s " 1, ¨¨¨, N, and P i,j is one permutation that exchange the position of variable x i , x j and the spin σ i , σ j simultaneously. By the Pauli Principle, we know upP i,j xq " ´upxq, if D 1 ď l ď s, s.t. i, j P I l .

(1.7)

In fact, in many-body quantum mechanics, fruitful results derive from the antisymmetry. In the past three decades, the stability of Coulomb systems has been studied extensively (see [START_REF] Elliott | The stability of matter in quantum mechanics[END_REF] for a textbook presentation). For all normalized, anti-symmetric wave function ψ with s spin state, pψ, Hp0qψq ě ´0.231s 2{3 N p1 `2.16 max j Z j pM {N q 1{3 q 2 , through the Lieb-Thirring inequalities which are one of the most important consequence of Pauli Exclusion Principle. And recently, new methods for the Lieb-Thirring inequality has been developed by lots of mathematicians [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF][START_REF] Lundholm | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF] Lundholm | Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems[END_REF].

For one smooth function u with s spin states, for the fixed σ, the Equation (1.7) holds, thus we know |upxq| " |x i ´xj | α for some α ě 1 when |x i ´xj | Ñ 0. Based on this observation, Yserentant [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] found out the new mixed regularity and applied it to the numerical analysis.

Denote

L I l " â iPI l ∇ i
with ∇ i the gradient to the ith electron, and b the tensor product.

Provided that Ω ą CpN `řµ Z µ qN 1{2 `maxtλ, 0u, Yserentant [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] tells us that if λ is the eigenvalue of the operator H, then for the eigenvalue equation Hu " λu, there exists one anti-symmetric solution u, and

}L I l u H } L 2 ď }L I l u L } L 2 , }∇L I l u H } L 2 ď Ω}∇L I l u L } L 2 (1.8) with p u L " p u1 |ω|ăΩ , u H " u ´uL .
with p u is the Fourier Transform of u. If Hptq " H is independent of t, obviously it is selfadjoint with the domain H 1 ppR 3 q N q. Hence there is for each Borel set A Ă R, a projection, E A pHq, so that H " ş λ dE λ and exppitHq " ş exppitλq dE λ . It is natural to consider the similar question: if u 0 antisymmetric, and

}L I l u 0 } L 2 ă 8, does }L I l u} L 2 ă 8 hold?
There are fruitful works about the regularity of the eigenfunctions of the Hamiltonian operator H. Beginning from the work of Kato [START_REF] Kato | On the eigenfunctions of many-particle systems in quantum mechanics[END_REF], in which he derived the famous cusp conditions that establish a connection between the function values and certain first order directional derivatives at the points where two particles meet and the corresponding interaction potential becomes singular, Fournais and others directed attention primarily to the local behaviour of the eigenfunctions near the singular points of the interaction potentials, rather than like Yserentant showing that the eigenfunctions possess global, square-integrable weak derivatives of partly very high order, see [START_REF] Fournais | The Electron Density is Smooth Away from the Nuclei[END_REF][START_REF] Fournais | Sharp regularity results for Coulombic many-electron wave functions[END_REF][START_REF] Fournais | Analytic structure of many-body Coulombic wave functions[END_REF][START_REF] Hoffmann-Ostenhof | Local properties of Coulombic wave functions[END_REF][START_REF] Hoffmann-Ostenhof | Electron wavefunctions and densities for atoms[END_REF]. Now, we do the similar work of Yserentant, showing that the solutions of the electronic evolution Schrödinger equation has similar mixed high order derivative regularity.

To simplify the notation, we denote 1{θ " mint3{p2pq `3{p2r pq ´1{2, 3{p2qq `3{p2r qq ´1{2u.

(1.9)

Our main result is Theorem 1.5, 1.8 and 1.10:

Theorem 1.5. If u 0 has the fixed spin states σ, L I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, and 0 ă α ă 1{2, 6 3´2α ă p, q ď 6, the solution of Equation ( 1.1) has a unique solution u with the same spin states σ, and L I l u P Xpsq for s P I a .

And there is a constant C 1 only dependent on α, r p, p, r q and q with 6 1`2α ă r p, r q ď 6 and 1{θ ą 0, if T small enough such that C 1 p ř µ Z µ `N qN T 1{θ ă 1{2, we have

}L I l u} L 8 t pL 2 q ď }L I l u} X À p,q }L I l u 0 } L 2 ,
where θ satisfies the Equation (1.9).

Remark 1.6. Indeed, the constant C 1 is such that the Inequality (4.4) holds.

If u 0 has N spins states, and for every 1 ď l ď N , |I i | " 1, then it can be regarded as the case without spin states. So L I i " ∇ l . Thus we have the following corollary: Corollary 1.7. If ∇ l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, N , and 0 ă α ă 1{2, 6 3´2α ă p, q ď 6, the solution of Equation ( 1.1) has a unique solution u, and L I l u P Xpsq for s P I a .

And if

C 1 p ř µ Z µ `N qN T 1{θ ă 1{2, we have }∇ l u} L 8 t pL 2 q ď }∇ l u} X À p,q }∇ l u 0 } L 2 ,
where θ satisfies the Equation (1.9).

In Yserentant's works, the author also introduced another type of operator

K I l " ź jPI l p1 ´ j q 1{2
which is equivalent to L I l in the L 2 functional space. However, it is not so evident for the X functional space, not only because of the L p ´Lq type functional space, but also the change of variable in the integration. Luckily, after generalization of Calderón-Zygmund inequality and observation of the special property of our functional space, we found out some useful inequalities in Section 2.3. Then, we have the following Theorem:

Theorem 1.8. If u 0 has the fixed spin states σ, K I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, and 0 ă α ă 1{2, 6 3´2α ă p, q ď 6, the solution of Equation (1.1) has a unique solution u with the same spin states σ, and K I l u P Xpaq for s P I a .

And there is a constant C 2 pC 2 ą C 1 q only dependent on α, r p, p, r q and q with 6 1`2α ă r p, r q ď 6 and 1{θ ą 0, if T is small enough such that C 2 p ř µ Z µ `N qN T 1{θ ă 1{2, we have

}K I l u} L 8
t pL 2 q ď }K I l u} X À p,q }K I l u 0 } L 2 . Remark 1.9. Indeed, the constant C 2 is such that the Inequality (4.5) holds.

The Numerical Analysis

Similar to [START_REF] Yserentant | Sparse grid spaces for the numerical solution of the electronic Schrödinger equation[END_REF], it is interesting to consider the numerical approximation of Equation (1.1).

We construct the projection firstly.

Define by ΩpRq the following hyperbolic cross space ΩpRq "

# pω 1 , ¨¨¨, ω N q P pR 3 q N | ÿ 1ďlďs ź iPI l p1 `|ω i | 2 q 1{2 ď R + .
And let χ : pR 3 q N Ñ r0, 1s now be a symmetric function with the values χ R pωq " 1 for ω P ΩpRq. Then, we have the following operator:

pP R,χ uqpxq " ˆ1 ? 2π ˙3N ż ωPpR 3 q N χ R pωqp upωqexppiω ¨xq dω.
For example, let χ R pωq " 1 ΩpRq pωq, then the operator P R,χ is a projector in Fourier space.

As the choice of χ R has few influences to our result, we shorten P R,χ by P R without confusion. And then we have the following approximation of Equation (1.1):

$ & % iB t u R " H R pu R q, t P r´a, as " I a , x " px 1 , ¨¨¨, x N q P pR 3 q N u R p0, xq " P R pu 0 qpxq (1.10) with H R puq " N ÿ j"1 ´ j u ´N ÿ j"1 M ÿ µ"1 P R pV px j , tquq `N ÿ kăj P R pW px j , x k quq.
As a consequence of our main Theorem 1.5 and Theorem 1.8, we have:

Theorem 1.10. If u 0 has the fixed spin states σ, K I l u 0 P L 2 ppR 3 q N q, l " 1, ¨¨¨, s, and 0 ă α ă 1{2, 6 3´2α ă p, q ă 6, then the solution of Equation (1.10) has unique solution u R .

And there is a constant C 3 pC 3 ą C 2 q only dependent on α, r p, p, r q and q with 6 1`2α ă r p, r q ă 6 and 1{θ ą 0, if T small enough such that

C 3 p ř µ Z µ `N qN T 1{θ ă 1{2, we have }u ´uR } L 8 t pL 2 q ď }u ´uR } X À p,q 1{R s ÿ l"1 }K I l u 0 } L 2 , (1.11)
where u is the solution of Equation (1.1).

Remark 1.11. Indeed, the constant C 3 is such that the Inequality (5.1) holds.

Indeed, it provides us several numerical methods, [START_REF] Griebel | A wavelet based sparse grid method for the electronic Schrödinger equation[END_REF][START_REF] Yserentant | Sparse grid spaces for the numerical solution of the electronic Schrödinger equation[END_REF]. For the numerical analysis, normally, we split ΩpRq into finitely many subdomains by means of a C 8 -partition of unity ř L l"1 ψ l " 1 on ΩpRq with l P pN 3 q N , i.e. each ψ l pωq P C 8 has compact support. It forms the basis of many possible approximation procedures that differ mainly by the way that the partition of unity is actually chosen and that the parts are finally approximated by functions in finite dimensional spaces. Let u l pxq " ˆ1 ? 2π

˙3N ż ψ l p upωq exppiω ¨xqdω, and ψ l pωq " p p φ l q 2 .

[60] tells us that the part u l of u can be approximated arbitrarily well by the functions in the space

V l " spantφ l p¨´D ´1 l kq|k P Z 3N u with D l ω " 4 π p2 l 1 ω 1 , ¨¨¨, 2 l N ω N q.
Hence, taking the symmetric ř L l"1 ψ l and let χ R " ř L l"1 ψ l . As a consequence, we get the P R and then u R which satisfies the Inequality (1.11).

Outline of the paper. Before giving the proofs of the main results, we pause to outline the structure of this paper.

• In Section 2 we introduce the tools that we need: the Hardy-type inequalities, the generalization of Strichartz estimates, and the Sobolev inequalities in L p ´L2 functional spaces.

• In Section 3 we prove the existence of the general many-body Schrödinger equation, namely the Theorem 1.2.

• In Section 4, we return back to Coulombic potentials, and study its regularity. Under the assumption of the initial datum that u 0 has the fixed spin states σ, we get our main results: Theorem 1.5 and 1.8. The Sobolev inequalities play one central role in the proof of the Theorem 1.8.

• In Section 5, we design one new hyperbolic cross space approximation and derive the numerical analysis by using the Theorem 2.8.

Preliminary

Hardy Type Inequality

For the mixed regularity, we need to study the Hardy type inequalities. By a similar methods to [59, lemma 1], we generalize the Hardy inequality:

Lemma 2.1. If u P C 8 0 pR 3 zt0uq, then ż R 3 1 |x| k´2 |∇upxq| 2 dx ě pk ´3q 2 4 ż R 3 |upxq| 2 |x| k dx for k P r2, 3q Y p3, 5q.
Proof. Let dpxq " |x|. We have the relationship:

pk ´1q 1 d k " ´∇ 1 d k´1 ¨∇d,
and because of ş

R 3 |upxq| 2
|x| k dx ă 8, hence by the integration by part we obtain

pk ´1q ż R 3 1 d k u 2 " ż R 3 1 d k´1 ∇ ¨pu 2 ∇dqdx.
Using d " 2 d on the right hand, then

pk ´1q ż R 3 1 d k u 2 dx " 2 ż R 3 1 d k´1 u∇u ¨∇d dx `2 ż R 3 1 d k u 2 dx,
by the Cauchy-Schwarz inequality, we yield

ˇˇˇk ´3 2 ˇˇˇż R 3 1 d k u 2 ď ˆżR 3 1 d k u 2 dx ˙1{2 ˆżR 3 1 d k´2 |∇d ¨∇u| 2 dx

˙1{2

and as |∇d| " 1, finally get the estimate.

Using Lemma 2.1 twice and the Fubini's Theorem, we have the following corollary.

Corollary 2.2. If u P C 8 0 ppR 3 q 2 q with upx, yq " ´upy, xq for x, y P R 3 .Then we have the following inequality: |x| 3 dx. Let x " px 1 , x 2 , x 3 q P R 3 . Now, we consider the cylindrical coordinates in R 3 , let x 1 " r cos θ, x 2 " r sin θ then we have the following unit vectors r " pcos θ, sin θ, 0q, θ " p´sin θ, cos θ, 0q.

ż R 3 ż R 3 1 |x ´y| k´4 |∇ x ∇ y upx,
Let A " θ{r. Indeed it is the Aharonov-Bohm magnetic vector potential. So we have the following covariant derivatives:

D α " ´i∇ `αA.
Then, we have the magnetic Hardy-type inequality:

Lemma 2.3. If u P C 8 0 pR 3 zt0uq, then ż R 3 |D α upxq| 2 |x| dx ě min kPZ pk ´αq 2 ż R 3 |upxq| 2 |x| 3 dx.
Proof. Indeed, using the cylindrical coordinates pr, θ, x 3 q we have upx 1 , x 2 , x 3 q " p1{ ?

2πq ř k u k pr, x 3 qe ikθ . Therefore, ż R 3 |D α upxq| 2 |x| dx " ż Rz ż 8 0 ż 2π 0 ˜|u 1 r | 2 `|u 1 x 3 | 2 `ˇˇˇi u 1 θ `αu r ˇˇˇ2 ¸dθdrdx 3 ě 1 2π ż Rz ż 8 0 ż 2π 0 ˇˇˇˇÿ k α ´k r u k e ikθ ˇˇˇˇ2 dθdrdx 3 " ż Rz ż 8 0 ÿ k ˇˇˇα ´k r u k ˇˇˇ2 drdx 3 ě min kPZ pk ´αq 2 ż R 3 |u| 2 |x| 3 dx.
Remark 2.4. This kind of magnetic Hardy inequalities has been well developed for the 2d case, which can be used to study the many-body Hardy inequalities, see [START_REF] Lundholm | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF] Hoffmann-Ostenhof | Many-particle Hardy inequalities[END_REF].

Strichartz Estimate

At the beginning, we recall the free propagator U 0 " exp pit ř N j"1 q. Denoting the integral operator pSuqptq " ż t 0 U 0 pt ´τ qupτ q dτ. and Quptq " N ÿ j"1 pSV px j , ¨quq ptq ´ÿ jăk pSW px j , x k qup¨qq ptq, we consider the integral equation:

uptq " U 0 ptqu 0 `iQuptq. (2.1)
Before the discussion about U 0 , we need the following properties.

Lemma 2.5.

R i,j ∇ i " p∇ d i,j `∇D i,j qR i,j , R i,j ∇ j " p∇ D i,j ´∇d i,j qR i,j and ´Ri,j i " |∇ d i,j `∇D i,j | 2 R i,j , ´Ri,j j " |∇ d i,j ´∇D i,j |R i,j
Proof. We know x i " pd i,j `Di,j q{2 and x j " pD i,j ´di,j q{2, then

∇ d i,j R i,j u " 1{2R i,j p∇ i ´∇j qu, and 
∇ D i,j R i,j u " 1{2R i,j p∇ i `∇j qu.
Then the first equation holds.

For the second, we just use the fact

´ i " ∇ i ¨∇i " |∇ i | 2 .
Together with the first equation, we yield the results.

Then the next integrability property of the free propagator U 0 ptq is fundamental in the following discussions. Lemma 2.6 (Kato). Let 2 ď p ď 8, then

}U 0 ptqu} L p,2 D À p |t| ´3p1{2´1{pq }u} L p 1 ,2 D , D Ă t1, ¨¨¨, N u, 1 ď |D| ď 2.
Proof. For the case |D| " 1, it is just the normal Kato inequality. For the another case, let D " ti, ju. Notice that by Lemma 2.5

´Ri,j x ´Ri,j y " ´2 d i,j R i,j ´2 D i,j R i,j .
Then, we know

R i,j U 0 ptqu " r U 0 ptqR i,j u. with r U 0 ptq " exp p´ip ř k‰i,j k `2 d i,j `2 D i,j qq. Therefore, }U 0 ptqu} L p,2 i,j " }R i,j U 0 ptqu} L p,2 d i,j " } r U 0 ptqR i,j u} L p,2 d i,j À p |t| ´3p1{2´1{pq }R i,j u} L p,2 d i,j À p |t| ´3p1{2´1{pq }u} L p,2 i,j
.

Get conclusion.

Then, we have the following Strichartz estimates:

Lemma 2.7 (Strichartz estimate). [START_REF] Yajima | Existence and regularity of propagators for multi-particle Schrödinger equations in external fields[END_REF][START_REF] Keel | Endpoint strichartz estimates[END_REF] 

For D, D 1 Ă t1, ¨¨¨, N u, 1 ď |D|, |D 1 | ď 2
and 2 ď p, q ď 6, we have

}U 0 ptqf } L θp t pL p,2 D q À p }f } L 2 , (2.2a) › › › › ż U psq ˚upsqds › › › › L 2 À p }u} L θ 1 p t pL p 1 ,2 D q , (2.2b) }Su} L θp t pL p,2 D q À p,q }u} L θ 1 q t pL q 1 ,2 D 1 q , . (2.2c) 
Normally, the operator bounded in L 2 functional space is not bounded in the L p,2 D functional space. But the following theorem tells us that after applying the operator S, the bounded operator in L 2 is also bounded in L p,2 D .

Theorem 2.8. If 2 ď p, q ă 6,for one operator P acting on L 2 pR 3N q, if rP, U 0 s " 0

and }P f 0 } L 2 ď }f } L 2 , then }P Sf p¨, xq} L θp t pL p,2 D q À p,q }f } L θ 1 q t pL q 1 ,2 D 1 q
.

And this inequality has the same optimal constant with Inequality (2.2c).

Proof. It is to prove

› › › › P ż t 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q À p,q }f } L θ 1 q t pL q 1 ,2 D 1 q
.

Then instead of proving this inequality, we prove the following one,

› › › › P ż T 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q À p,q }f } L θ 1 q t pL q 1 ,2 D 1 q
then by Christ-Kiselev lemma, get conclusion. Since P and U 0 commute, we have

› › › › P ż T 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q " › › › › U 0 ptqP ż T 0 U psq ˚f ps, xqds › › › › L θp t pL p,2 D q
.

By Inequality (2.2a), we have

› › › › P ż T 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q À p › › › › P ż T 0 U psq ˚f ps, xqds › › › › L 2 .
Then, by }P f 0 } L 2 ď }f } L 2 , we have

› › › › P ż T 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q À p › › › › ż T 0 U psq ˚f ps, xqds › › › › L 2
.

By Inequality (2.2b), we have

› › › › P ż T 0 U 0 pt ´sqf ps, xqds › › › › L θp t pL p,2 D q À p,q }f } L θ 1 q t pL q 1 ,2 D 1 q
. Corollary 2.9. For D, D 1 Ă t1, ¨¨¨, N u, 1 ď |D|, |D 1 | ď 2 and 2 ď p, q ă 6, we have

}SP R u} L θp t pL p,2 D q À p,q }u} L θ 1 q t pL q 1 ,2 D 1 q , (2.3a) }Sp1 ´PR qu} L θp t pL p,2 D q À p,q 1{R › › › › › ÿ 1ďlďs K I l u › › › › › L θ 1 q t pL q 1 ,2 D 1 q . ( 2 

.3b)

And these inequalities have the same optimal constant with Inequality (2.2c).

Proof. Obviously, by the definition of P R , we have rP R , U 0 s " 0 and

}P R u} L 2 ď }u} L 2 .
Let P " P R , then we get the Inequality (2.3a). Besides,

}p1 ´PR qu} L 2 ď }1 ΩpRq c p u} L 2
For all wave vector ω outside the domain ΩpRq, we have

1 ď 1{R ÿ 1ďlďs ź iPI l p1 `|ω i | 2 q 1{2 .
By the definition of norm, we know

}p1 ´PR qu} L 2 ď 1{R › › › › › ÿ 1ďlďs ź iPI l p1 `|ω i | 2 q 1{2 p u › › › › › L 2 " 1{R › › › › › ÿ 1ďlďs K I l u › › › › › L 2 .
Given rK I l , U 0 s " 0, then take P " Rp1 ´PR q `ř1ďlďs K I l ˘´1 , we get conclusion.

Sobolev Inequalities

Because of the unusuality of our functional space, we need to reconstruct some Sobolev inequalities which will be useful for the regularity. We generalized the Calderón-Zygmund inequality to satisfy the new functional space L p,2 i in Appendix. The following inequalities are the application of the new Calderón-Zygmund inequality and then we make it compatible for the functional space L p,2 i,j .

Theorem 2.10. For 1 ă p ă 8, the following inequalities hold:

}∇ i u} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.4a) }u} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.4b) }p1 ´∇i qu} L p,2 i À p }p1 ´ i q 1{2 u} L p,2 i , i " 1, ¨¨¨, N (2.4c) }∇ i u} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i, j " 1, ¨¨¨, N (2.4d) }u} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i, j " 1, ¨¨¨, N (2.4e) }p1 ´∇i qu} L p,2 i,j À p }p1 ´ i q 1{2 u} L p,2 i,j , i " 1, ¨¨¨, N. (2.4f)
Proof. For the first inequality, we only need to study equivalently the following inequality

}∇ i p1 ´ i q ´1{2 u} L p,2 i À p }u} L p,2 i .
Obviously, apξq " ξ p1 `|ξ| 2 q 1{2 for ξ P R 3 .

Using Theorem A.3, get conclusion. And since ξ P R 3 , we know the optimal constant of this inequality is independent on N .

The second and third inequalities are similar.

For the fourth inequality, by Lemma 2.3, we know

}∇ i u} L p,2 i,j " }R i,j ∇ i u} L p,2 d i,j " }p∇ d i,j `∇D i,j qR i,j u} L p,2 d i,j
.

Define the Fourier transform just for the variable D i,j by F D , and by Parseval's Theorem, then

}∇ i u} L p,2 i,j "}p∇ d i,j ´iξ D i,j qF D R i,j u} L p,2 d i,j "}∇ d i,j exp p´id i,j ¨ξD i,j qF D R i,j u} L p,2 d i,j À p }p1 ´ d i,j q 1{2 exp p´id i,j ¨ξD i,j qF D R i,j u} L p,2 d i,j
.

So in order to get the result, we only need to prove for every u, p1 ´ d i,j q 1{2 exp p´id i,j ¨ξD i,j qu " exp p´id i,j ¨ξD i,j qp1 `|∇ d i,j ´iξ D i,j |q 1{2 u.

It is correct by the fact

p1 ´ q 1{2 " 2{π

ż 8 0 1 ´ 1 ´ `t2 dt and p1 ´ `t2 q ´1 " ż 8 0 exp p´p1 ´ `t2 qsqds.
Finally, repeating the strategy of the fourth inequality, we get the fifth and sixth inequalities.

Remark 2.11. The inequalities we get in Theorem 2.10 work not only on i, but also on j.

Existence of Solution

Proof of Theorem 1.2. In fact, we just need to analyze the term SW px i , x j qu. Since W P L αp t pL p{pp´2q q `Lβp t pL 8 q, we have

W " W 1 `W2 , W 1 P L αp t pL p{pp´2q q, W 2 P L βp t pL 8 q then, }|W | 1{2 u} 2 L 2 ptq " ż |W |ptq|u| 2 ptq dx ď ż |W 1 |ptq|u| 2 ptq dx `ż |W 2 |ptq|u| 2 ptq dx ď}W 1 } L p{pp´2q ptq}u} 2 L p,2 i,j ptq `}W 2 } L 8 ptq}u} 2 L 2 ptq.
Therefore, for every v P L θ 1 q t pL q 1 ,2 D q with 1 ď |D| ď 2 and 2 ď q ă 6.

ż T 0 SW px i , x j quptq, v dt " ż T 0 W px i , x j q 1{2 u, W px i , x j q 1{2 S ˚vpsq ds ď ż T 0 › › ›|W px i , x j q| 1{2 u › › › L 2 › › ›|W px i , x j q| 1{2 S ˚v› › › L 2 ds ď ż T 0 ´}W 2 } 1{2 L 8 }u} L 2 `}W 1 } 1{2 L p{pp´2q }u} L p,2 i,j }W 2 } 1{2 L 8 }S ˚v} L 2 `}W 1 } 1{2 L p{pp´2q }S ˚v} L p,2 i,j ¯ds ď ż T 0 ´}W 2 } L 8 }u} L 2 `}W 1 } 1{2 L p{pp´2q }W 2 } 1{2 L 8 }u} L p,2 i,j ¯}S ˚v} L 2 ds `ż T 0 ´}W 1 } 1{2 L p{pp´2q }W 2 } 1{2 L 8 }u} L 2 `}W 1 } L p{pp´2q }u} L p,2 i,j ¯}S ˚v} L p,2 i,j ds À p,q,W T 1{θ α,β ˆ}u} L 8 t pL 2 q `}u} L θp t pL p,2 i,j q ˙}v} L θ 1 q t pL q 1 ,2 D q À p,q,W T 1{θ α,β }u} X }v} L θ 1 q t pL q 1 ,2 D q . Choosing one sequence v n P L θ 1 q t pL q 1 ,2 D q with }v n } L θ 1 q t pL q 1 ,2 D q " 1, such that }SW u} L θq t pL q,2 D q " lim nÑ8 ˇˇˇ SW u.v n L θq t pL q,2 D q,L θ 1 q t pL q 1 ,2 D q
ˇˇˇÀ p,q,W T 1{θ α,β }u} X .

Let L θq t pL q,2 D q " L 8 t pL 2 q or L θp t pL p,2 i,j q or L θq t pL q,2 k q. Then obviously, }SW u} X À p,q,W T 1{θ α,β }u} X .

Similarly, we have

}SV u} X À p,q,V T 1{θ α,β }u} X
Hence, there is a constant C only dependent on p, q, V, W , such that

}Qu} X ď CT 1{θ α,β N pN `1q }u} X . (3.1)
Let T small enough, such that CT 1{θ α,β N pN `1q ă 1{2, the operator Q is a contraction on X. Since, by Lemma 2.7, u 0 ptq " U 0 ptqu 0 P X, for any u 0 P L 2 , it follows that the integral equation uptq " u 0 ptq `iQuptq has a unique solution uptq " p1 ´iQq ´1u 0 ptq P X. And

}u} X ď 2}U 0 ptqu 0 } X À p,q }u 0 } L 2 .
Besides the standard continuation procedure for the solution of linear integral equations yields a global unique solution u P Xpaq.

Similar to operator L, we define the following operators:

L I l ,j " â iPI l ,i‰j ∇ i , L I l ,j,k " â iPI l ,i‰j,k ∇ i .
For every v P L θ 1 q t pL q 1 ,2 D q with 1 ď |D| ď 2, we consider the following inner product:

ż T 0 rSL I l W px j , x k qu sptq, vptq dt.
If j, k R I l , we have

L I l W px j , x k qu " W px j , x k qL I l u .
And if j P I l , and k R I l ,

L I l W px j , x k qu " W px j , x k qL I l u `p∇ j W px j , x k qqL I l ,j u .
Analogously for k P I l , and j R I l . Finally if j, k P I l ,

L I l W px j , x k qu "W px j , x k qL I l u `p∇ j W px j , x k qqL I l ,j u `p∇ k W px j , x k qqL I l ,k u `p∇ j ∇ k W px j , x k qqL I l ,j,k u .
Then, we have 

|W px j , x k q| ď 1 |x j ´xk | , |∇ j W px j , x k q| À 1 |x j ´xk | 2 , |∇ j ∇ k W px j , x k q| À 1 |x j ´xk | 3 , we yield ż T 0 rSW L I l u sptq, vptq dt " ż T 0 1 |x j ´xk | α L I l u psq, 1 |x j ´xk | 1´α rS ˚vspsq ds À ż T 0 › › › › 1 |x j ´xk | α L I l u › › › › L 2 › › › › 1 |x j ´xk | 1´α rS ˚vs › › › › L 2 ds;
for the second and third term,

ż T 0 rSp∇ j W qL I l ,j u sptq, vptq dt À ż T 0 › › › › 1 |x j ´xk | 1`α L I l ,j u › › › › L 2 › › › › 1 |x j ´xk | 1´α rS ˚vs › › › › L 2 ds À1{p1 ´2αq ż T 0 › › › › 1 |x j ´xk | α L I l u › › › › L 2 › › › › 1 |x ´y| 1´α rS ˚vs › › › › L 2 ds;
and the fourth term

ż T 0 rSp∇ j ∇ k W qL I l ,j,k u sptq, vptq dt À ż T 0 › › › › 1 |x j ´xk | 2`α L I l ,j,k u › › › › L 2 › › › › 1 |x j ´xk | 1´α rS ˚vs › › › › L 2 ds À1{p1 ´2αq 2 ż T 0 › › › › 1 |x j ´xk | α L I l u › › › › L 2 2 › › › › 1 |x j ´xk | 1´α rS ˚vs › › › › L 2 ds.
By the Hölder inequality, we have

› › › › v |x j ´xk | 1´α › › › › 2 ď › › › › 1 |x| 1´α › › › › L r r pBp0,1qq }v} L r p,2 j,k `}v} L 2 À α,r p }v} L r p,2 j,k `}v} L 2 , ( 4.3a) 
› › › › u |x j ´xk | α › › › › 2 ď › › › › 1 |x| α › › › › L r pBp0,1qq }u } L p,2 j,k `}u } L 2 À α,p }u } L p,2 j,k `}u } L 2 , ( 4.3b) 
for 1{2 " 1{p `1{r, 1{2 " 1{r p `1{r r, r p, p ď 6, αr ă 3, p1 ´αqr r ă 3, namely 6 1 `2α ă r p ď 6, 6 3 ´2α ă p ď 6.

Then ż T 0 rSL I l W u sptq, vptq dt À α,p,r p ż T 0 ´}L I l u } L p,2 j,k `}L I l u } L 2 ¯ˆ}rS ˚vs} L r p,2 j,k `}rS ˚vs} L 2 ˙ds À α,p,r p ˜}L I l u } L θ 1 r p t pL p,2 j,k q `}L I l u } L θ 1 r p t pL 2 q ¸}rS ˚vs} L θ r p t pL r p,2 j,k q `´}L I l u } L 1 t pL p,2 j,k q `}L I l u } L 1 t pL 2 q ¯}rS ˚vs} L 8 t pL 2 q À α,p,r p T 1{θ 1 r p ´1{θp ˆ}L I l u } L θp t pL p,2 j,k q `}L I l u } L θp t pL 2 q ˙}rS ˚vs} L θ r p t pL r p,2 j,k q `T 1´1{θp ´}L I l u } L 1 t pL p,2 j,k q `}L I l u } L 1 t pL 2 q ¯}rS ˚vs} L 8 t pL 2 q À α,p,r p T 1{θ }L I l u } X }v} L θ 1 q t pL q 1 ,2 D q
.

Choosing a sequence }v n } L θ 1 q t pL q 1 ,2 D q " 1, for q " 2 or 6 3´2α ă q ď 6 such that

}SL I l W px j , x k qu } L θq t pL q,2 D q " lim nÑ8 ˇˇˇ SL I l W px j , x k qu , v n L θq t pL q,2 D q,L θ 1 q t pL q 1 ,2 D q ˇˇˇ.
Let L θq t pL q,2 D q " L 8 t pL 2 q or L θp t pL p,2 i,j q or L θq t pL q,2 k q. Then,

}SL I l W px j , x k qu } X À α,p,r p,q T 1{θ }L I l u } X .
Similarly, there is a 6 1`2α ă r q ď 6, such that

ż T 0 ă rSL I l V px j , ¨qu sptq, vptq ą dt À α,p,r q,q ÿ µ Z µ T 1{θ }L I l u } X }v} L θ 1 p t pL p 1 ,2 D q
, and

}SL I l V px j , ¨qu } X À α,r p,p,r q,q ÿ µ Z µ T 1{θ }L I l u } X .
Hence, there is a constant C 1 only dependent on α, r p, p, r q and q, such that

}L I l Q u } X ď C 1 p ÿ µ Z µ `N qN T 1{θ }L I l u } X . (4.4) Let C 1 p ř µ Z µ `N qN T 1{θ ă 1{2, by Equation (4.2) we have }L I l u } X ď }U 0 L I l v 0 } X `1{2}L I l u } X , thus, }L I l u } X ď 2}U 0 L I l v 0 } X À p,q }L I l v 0 } L 2 .
Let Ñ 0 and L I l v 0 Ñ L I l u 0 in L 2 , we know

}L I l u} X À p,q }L I l u 0 } L 2 ,
which implies

u á u in X.
We also have these other convergences:

V Ñ V in L 8 t pL 8 x q `L8 t pL r x q, and 
W Ñ W in L 8 t pL 8 x q `L8 t pL r x q.
with 0 ă r ă 3. Thus u is the solution in the sense of distributions and satisfies L I l u P X. And the uniqueness is because of the uniqueness of the solution in L 2 .

Combining the Theorem 2.10, we can prove the Theorem 1.8.

Proof of Theorem 1.8. Denote

K I l ,j " ź i‰j p1 ´ i q 1{2 and K I l ,j,k " ź i‰j,k p1 ´ i q 1{2 .
Analogously, we study the term SKW px j , x k qu p¨q firstly. If j, k P I l , K I l ¨KI l " K I l ,j,k ¨KI l ,j,k p1 ´∇j ¨∇j ´∇k ¨∇k `p´∇ j ¨∇j qp´∇ k ¨∇k qq,

then ż T 0 SK I l W px j , x k qu , K I l v " SW px j , x k qK I l ,j,k u , K I l ,j,k v ` S∇ j W px j , x k qK I l ,j,k u , ∇ j K I l ,j,k v ` S∇ k W px j , x k qK I l ,j,k u , ∇ j K I l ,j,k v ` S∇ j ∇ k W px j , x k qK I l ,j,k u , ∇ j ∇ k K I l ,j,k v .
After calculation, we have

ż T 0 SK I l W px j , x k qu , K I l I l v À α,p,r p ż T 0 ˆ}K I l ,j,k u } L p,2 I l j,k `}K I l ,j,k u } L 2 }rS ˚KI l ,j,k vs} L r p,2 j,k `}rS ˚KI l ,j,k vs} L 2 ˙ds `ż T 0 ˆ}∇ j K I l ,j,k u } L p,2 I l ,j,k `}∇ j K I l ,j,k u } L 2 }rS ˚∇j K I l ,j,k vs} L r p,2 j,k `}rS ˚∇j K I l ,j,k vs} L 2 ˙ds `ż T 0 ´}∇ k K I l ,j,k u } L p,2 j,k `}∇ k K I l ,j,k u } L 2 }rS ˚∇k K I l ,j,k vs} L r p,2 j,k `}rS ˚∇k K I l ,j,k vs} L 2 ˙ds `ż T 0 ´}∇ j ∇ k K I l ,j,k u } L p,2 j,k `}∇ j ∇ k K I l ,j,k u } L 2 }rS ˚∇j ∇ k K I l ,j,k vs} L r p,2 I l ,j,k `}rS ˚∇j ∇ k K I l ,j,k vs} L 2 ˙ds
By the Theorem 2.10, we have for p, r p " 2 or 6 3´2α ă p, r p ď 6

}∇ l 1 j ∇ l 2 k K j,k v} L r p,2 I l ,j,k À r p }K I l v} L r p,2 j,k
, l 1 , l 2 " 0, 1.

and same for u . Then, we yield

ż T 0 SK I l W px j , x k qu , K I l v À α,p,r p ż T 0 ´}K I l u } L p,2 j,k `}K I l u } L 2 }rS ˚KI l vs} L p,2 j,k
`}rS ˚KI l vs} L 2 ¯ds.

If j P I l and k R I l , K I l ¨KI l " K I l ,j ¨KI l ,j p1 ´∇j ¨∇j q

then ż T 0 SK I l W px j , x k qu , K I l v " SW px j , x k qK I l ,j u , K I l ,j v ` S∇ j W px j , x k qK I l ,j u , ∇ j K I l ,j v .
Repeating the above calculation and by Theorem 2.10, we have

ż T 0 SK I l W px j , x k qu , K I l v À α,p,r p ż T 0 ´}K I l u } L p,2 j,k `}K I l u } L 2 }rS ˚KI l vs} L r p,2 j,k `}rS ˚KI l vs} L 2 ˙ds.
Analogously for j R I l and k P I l . Finally if i, k R I l , obviously

ż T 0 SK I l W px j , x k qu , K I l v " SW px j , x k qK I l u , K I l v .
after calculation, we have

ż T 0 SK I l W px j , x k qu , K I l v À p,r p ż T 0 ´}K I l u } L p,2 j,k `}K I l u } L 2 }rS ˚KI l vs} L r p,2 j,k `}rS ˚KI l vs} L 2 ˙ds.
Thus, for any 1 ď j ă k ď N , we have

ż T 0 SK I l W px j , x k qu , K I l v À α,r p,p,r q,q ż T 0 ´}K I l u } L p,2 j,k `}K I l u } L 2 }rS ˚KI l vs} L p,2 j,k `}rS ˚KI l vs} L 2 ¯ds.
And similarly for the term SK I l V u . Repeating the same procedure of Theorem 1.5, there is a constant C 2 only dependent on α, r p, p, r q and q such that

}K I l Q u } X ď C 2 p ÿ µ Z µ `N qN T 1{θ }K I l u } X . (4.5) And if C 2 p ř µ Z µ `N qN T 1{θ ă 1{2, we can get }K I l u } X À p,q }K I l v 0 } L 2 .
Taking Ñ 0 and L I l v 0 Ñ L I l u 0 in L 2 , we have

}K I l u} X À p,q }K I l u 0 } L 2 .
Consequently, u is the solution in the sense of distribution and satisfies K I l u P X.

Numerical Analysis

Lemma 5.1. Under the assumption of Theorem 1.10, we have

}u ´PR u} X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2
Proof. By the Equation (2.1), we know pP R uqptq " pP R U 0 ptqu 0 q `ipP R Quptqq.

Thus,

}u ´PR u} X ď }p1 ´PR qU 0 u 0 } X `}p1 ´PR qQu} X .
By the definition of P R and Lemma 2.7, we know

}p1 ´PR qU 0 u} X À p,q }p1 ´PR qu 0 } L 2 À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .
Instead of studying p1 ´PR qQu directly, we study p1 ´PR qQ u with the initial datum v 0 P C 8 0 ppR 3 q N q, and then take them to the limit. So we just need to consider the term p1 ´PR qS pV pj, ¨qu q and p1 ´PR qS pW px j , x k qu q. They are similar, so we just deal with the latter.

We consider the following inner product

ż T 0 p1 ´PR qS pW px j , x k qu q , ÿ 1ďlďs K I l v dt " ÿ 1ďlďs ż T 0 K I l S pW px j , x k qu q , p1 ´PR qv dt. Let r K I l ,j " p1 `∇j q ź l‰j p1 ´ l q 1{2 , r K I l ,j,k " p1 `∇j q b p1 `∇k q ź l‰j,k
p1 ´ l q 1{2 , and r K j " p1 ´∇j q p1 ´ j q 1{2 . r K j,k " p1 ´∇j q b p1 ´∇k q p1 ´ j q 1{2 p1 ´ k q 1{2 . Then,

K I l " r K j ¨r K I l ,j " r K j,k ¨r K I l ,j,k .
If j, k P I l , we consider the following inner product

ż T 0 K I l S pW px j , x k qu q , p1 ´PR qv dt " ż T 0 r K Il ,j,k pW px j , x k qu q , S ˚p1 ´PR q r K j,k v ds " ż T 0
p1 ´∇j qp1 ´∇k q pW px j , x k qK I l ,j,k u q , S ˚p1 ´PR q r K j,k v ds.

Or if j P I l and k R I l , we consider the following inner product

ż T 0 K I l S pW px j , x k qu q , p1 ´PR qv dt " ż T 0 r K Il ,j pW px j , x k qu q , S ˚p1 ´PR q r K j v ds " ż T 0
p1 ´∇j q pW px j , x k qK I l ,j,k u q , S ˚p1 ´PR q r K j v ds.

Analogously for j R I l and k P I l . And finally, if j, k R I l ,

ż T 0 K I l S pW px j , x k qu q , p1 ´PR qv dt " ż T 0 pW px j , x k qK I l u q , S ˚p1 ´PR qv dt.
Before repeating the proof of Theorem 1.8, we only need to deal with

}S ˚p1 ´PR q r K j v} L θ r p t pL r p,2 j,k q and }S ˚p1 ´PR q r K j,k v} L θ r p t pL r p,2 j,k q
.

By Theorem 2.10 and Corollary 2.9, we know

}S ˚p1 ´PR q r K j v} L θ r p t pL r p,2 j,k q À r p,p,q }S ˚p1 ´PR qv} L θ r p t pL r p,2 j,k q À r p,p,q 1{R › › › › › ÿ l K I l v › › › › › L θ 1 q t pL q 1 ,2 D q and }S ˚p1 ´PR q r K j,k v} L θ r p t pL r p,2 j,k q À r p,p,q }S ˚p1 ´PR qv} L θ r p t pL r p,2 j,k q À r p,p,q 1{R › › › › › ÿ l K I l v › › › › › L θ 1 q t pL q 1 ,2 D q
. Now, we know ż T 0 K I l S pW px j , x k qu q , p1 ´PR qv dt

À α,r p,p,r q,q T 1{θ {R}K I l u } X › › › › › ÿ l K I l v › › › › › L θ 1 q t pL q 1 ,2 D q .
Thus,

ż T 0 p1 ´PR qS pW px j , x k qu q , ÿ 1ďlďs K I l v dt À α,r p,p,r q,q T 1{θ {R ˜ÿ 1ďlďs }K I l u } X ¸› › › › › ÿ l K I l v › › › › › L θ 1 q t pL q 1 ,2 D q .
Therefore, }p1 ´PR qS pW px j , x k qu q } X À α,r p,p,r q,q T 1{θ {R

ÿ 1ďlďs }K I l u } X .
Similarly for the term p1 ´PR qSpV px j , ¨qu Hence, there is a constant C 3 ą C 2 only dependent on α, r p, p, r q and q, such that

}p1 ´PR qQ u } X ď C 3 p ÿ µ Z µ `N qN T 1{θ {R ÿ 1ďlďs }K I l u } X .
(5.1)

If C 3 p ř µ Z µ `N qN T 1{θ ă 1{2, then C 2 p ř µ Z µ `N qN T 1{θ ă 1{2. By Theorem 1.8 we have }K I l u } X À p,q }K I l u 0 } L 2 . Thus }p1 ´PR qQ u } X ď 1{R ÿ 1ďlďs }K I l u } X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 . Therefore, }u ´PR u } X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .
Finally, taking Ñ 0, we have

}u ´PR u} X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .
Proof of Theorem 1.10. The proof of existence is similar to Theorem 1.2 except the following modification:

ż T 0 P R SW px i , x j quptq, v dt " ż T 0 SW px i , x j quptq, P R v ds
Given the symmetry of the projector P R , we know if the Equation (1.10) has a solution, the solution u R keeps the spin states. For the existence, we only need study the term

}P R S ˚v} L θ 1 r p t pL r p 1 ,2 D q
.

By the Corollary 2.9, we have

}P R S ˚v} L θq t pL q,2 D q À r p,p }v} L θ 1 p t pL p 1 ,2 D q .
Thus by Theorem 1.2 and under the assumption of Theorem 1.10, for the Equation (1.10), there exists a unique solution u R , such that }u} X À p,q }u 0 } L 2 .

Instead of studying }u ´uR } X directly, we consider }P R ´uR } X at the beginning. By the Formula 2.1, we know u R ´PR u " iP R Qpu ´uR q Repeating the above process, and under the assumption of Theorem 1.8, we know

}u R ´PR u} X ď 1{2}u ´uR } X ď 1{2}u R ´PR u} X `1{2}u ´PR u} X Then, }u R ´PR u} X ď }u ´PR u} X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .
Finally, we know

}u ´uR } X ď }u ´PR u} X `}u R ´PR u} X À p,q 1{R ÿ 1ďlďs }K I l u 0 } L 2 .

A The Calderón-Zygmund Inequality

Unlike the usual Calderón-Zygmund inequality, we need to prove a new one which is compatible for our special functional space. But the proof is similar, so we just give the sketch of proof, for the details, see [52, p.27-38].

Definition A.1. Let n P N and let n :" tpx, yq P R n ˆRn |x " yu be the diagonal in R n ˆRn . Fix two constants C ą 0 and 0 ă σ ď 1. A Calderón-Zygmund pair on R n with constants C and σ is a pair pT x , Kq, consisting of a bounded linear operator T x : L 2 pR n , Cq Ñ L 2 pR n , Cq working on variable x P R n and a constinuous function K : pR n ˆRn qz n Ñ C, satisfying the following axioms.

• }T x f } L 2 ď C}f } L 2 for all f P L 2 pR n ˆRm , Cq.

• For px, zq P R n ˆRm , if f px, zq : R n ˆRm Ñ C is a continuous function with compact support then

pT x f qpx, zq " ż R n
Kpx, yqf py, zqdy. Then define the function κ f : p0, 8q Ñ r0, 8s by κ f ptq :" µptt ě 0||b f pxq| ą tuq for r ą 0.

• Let x, y P R n such that x ‰ y. Then |Kpx, yq| ď C |x ´y| n . • Let x, x 1 , y, y 1 P R n such that x ‰ y, x 1 ‰ y 1 ,
We shorten the operator T x by T without confusion.

Step 1. (Calderón Zygmund Decomposition). Decompose b f pxq in place of f px, yq directly. Then for t ą 0, there exists a countable collection of closed cubes Q i Ă R n with pairwise disjoint interiors such that

µpQ i q ă 1 t ż Q i
|b f pxq|dx ď 2 n µpQ i q for all i P N and |b f pxq| ď t for almost all x P R n zB where B :"

Y 8 i"1 Q i . Step 2

. (Construction of function).

Define g, h : R n ˆRm Ñ R by gpx, yq :"

f px, yq1 R n zB `ÿ i ş Q i f px, yqdx µpQ i q 1 Q i , h :" f ´g. Then, b g pxq " b f pxq ď t for almost all x P R n zB, (A.1)
and by Minkowski's inequality, b g pxq "

1 µpQ i q ˜żR m ˇˇˇż Q i f dx ˇˇˇ2 dy ¸1{2 ď 1 µpQ i q ż Q i |b f pxq|dx ď 2 n t for x P B. (A.2)
Combining Equation (A.1) and Equation (A.2) together, we know

}g} L 1 pL 2 q " }b g } L 1 ď }b f } L 1 " }f } L 1 pL 2 q , }h} L 1 pL 2 q ď 2}f } L 1 pL 2 q . (A.3)
Hence, we have

κ T g ď 1 t 2 ż R n |b g pxq| 2 dx ď 2 n t ż R n |b g pxq|dx ď 2 n t ż R n |b f pxq|dx ď 2 n t }f } L 1 pL 2 q .
Step 3. (Estimate for κ T h ). Define h i pxq by

h i px, yq " hpx, yq1 Q i .
Denote by q i P Q i the center of the cube Q i and by 2r i ą 0 its length. Then |x ´qi | ď ? nr i for all Q i . Then we have

pT h i qpx, yq " ż Q i Kpx, zqh i pz, yqdz " ż Q i pKpx, zq ´Kpx, q i qq h i pz, yqdz.
Hence, by Minkowski's inequality

b T h i pxq ď ż Q i |Kpx, zq ´Kpx, q i q||b h i pzq|dz.
Then, by the standard proof of Calderón-Zygmund inequality, we know, there is a constant c dependent on n such that

κ T h ptq ď c ˆµpBq `1 t }b h } L 1 ˙for all t ą 0. Besides, µpBq " ÿ i µpQ i q ď 1 t ÿ i ż Q i |b f pxq|dx ď 1 t }f } L 1 pL 2 q .
Together with Equation (A.3),

κ T h ptq ď 3c t }f } L 1 pL 2 q .
By the triangle inequality, we know

b T f pxq ď b T g `bT h , therefore, κ T f p2tq ď κ T g ptq `κT h ptq ď 2 n`1 `6c 2t }f } L 1 pL 2 q .
Finally, using the standard method, we get conclusion.

If a : R n Ñ C is a bounded measurable function, it determines a bounded linear operator

T a : L 2 pR n , Cq Ñ L 2 pR n , Cq
given by

T a u :" | ap u
for u P L 2 pR n ˆRm , Cq, and q u is the inverse Fourier Transform.

Theorem A.3. For every integer m, n P N, every constant C ą 0, and every real number 1 ă p ă 8, there exists a constant c " cpn, p, Cq with the following significance. Let a : R n zt0u Ñ C be a C n`2 function that satisfies the inequality

|B α apξq| ď C |ξ| α
for every ξ P R n zt0u and every multi-index α " pα 1 , ¨¨¨, α n q P N n 0 with |α| ď n `2. Then

}T a f } L p pR n ,L 2 pR m qq ď c}f } L p pR n ,L 2 pR m qq for all f P L 2 pR n ˆRm q, C X L p pR n , L 2 pR m qq.
The proof is same with the normal Mikhlin Multiplier Theorem except using the Theorem A.2 instead of the normal one.

Chapter 3

Existence of minimizers for Dirac-Fock models in crystals

In this paper, we introduce a relativistic crystal model inspired both from the atomic and molecular Dirac-Fock models and the non-relativistic Hartree-Fock type models for crystals. And we give a new definition for the ground state of this model by considering the Lieb's relaxed functional and the Fermi level. By Séré's retraction, the existence of minimizers for this model are proved, and every minimizer is the solution of a selfconsistent equation.

Introduction

Whereas different models exist in the mathematical and physics literature for nonrelativistic crystals, we are not aware of any for relativistic crystals. The aim of this paper is to propose a Dirac-Fock type model for ground states energies of relativistic crystals.

A natural way of building quantum models for the crystalline phase is to consider the so-called thermodynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite but large piece of the (infinite and neutral) crystal. The thermodynamic law predicts that the ground state energy of the obtained large neutral molecule is proportional to the volume of this finite piece (which turns out to be also proportional to the total number of particles composing the molecule). The energy for the whole crystal is then identified with the limit -if it exists -of the energy per unit volume (or equivalently per particle) of the large molecule when the size of the considered piece goes to infinity. This method has been successfully applied by different authors for different wellknown models from quantum chemistry [START_REF] Elliott | The Thomas-Fermi theory of atoms, molecules and solids[END_REF][START_REF] Catto | The mathematical theory of thermodynamic limits: Thomas-Fermi type models[END_REF][START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF][START_REF] Catto | On some periodic Hartree-type models for crystals[END_REF]-see also [START_REF] Catto | Recent mathematical results on the quantum modeling of crystals[END_REF] for a review-but always for non-relativistic crystals.

Concerning relativistic models, the atomic and molecular Dirac-Fock (DF) is the most attracting one since it has been formally justified by Mittleman [START_REF] Marvin H Mittleman | Theory of relativistic effects on atoms: Configuration-space Hamiltonian[END_REF], and gives numerical results in excellent agreement with experimental data [START_REF] Kim | Relativistic self-consistent-field theory for closed-shell atoms[END_REF][START_REF] Ip Grant | Relativistic calculation of atomic structures[END_REF][START_REF] Jp Desclaux | Relativistic Dirac-Fock expectation values for atoms with Z= 1 to Z= 120[END_REF]. The mathematical study of this model has been done in [START_REF] Séré | Solutions of the Dirac-Fock Equations for Atoms and Molecules[END_REF][START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF], but the situation, compared to the non-relativistic models, is different: The existence result for bound states only holds if the total positive charge Z is not too large (with physical units, Z ď 124). On the other hand, relativistic effects have to be taken into account essentially for molecules with heavy atoms. This causes an important problem if we try to find a thermodynamic limit for the Dirac-Fock model, since we do not even know if there are bound states for large systems. Moreover, the energy functional of the atomic DF is strongly indefinite and the notion of ground state has to be handled very carefully (cf. [START_REF] Séré | Solutions of the Dirac-Fock Equations for Atoms and Molecules[END_REF])-anyway, no minimization procedure is available in this case. The similar procedure for crystals is harder than the atomic one.

On the other hand, Esteban and Séré [START_REF] Sere | Nonrelativistic limit of the Dirac-Fock equations[END_REF] showed that certain solutions of the Dirac-Fock equations converge towards the energy-minimizing solutions of the nonrelativistic Hartree-Fock equations when the speed of light tends to infinity. This allows mathematicians to define the notion of ground state solutions and ground state energy of the Dirac-Fock equations. By a simple fixed point theory and this new definition of the ground state of Dirac-Fock model, a similar result of Dirac-Fock model has been done by Huber and Siedentop [START_REF] Huber | Solutions of the Dirac-Fock Equations and the Energy of the Electron-Positron Field[END_REF]. Finally, Séré provided directly a retraction technique in [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF] to construct the ground state of Dirac-Fock. Recently, based on Séré's retraction, the scott correction for Dirac-Fock models has been studied in [START_REF] Fournais | The Scott correction in Dirac-Fock theory[END_REF]. Based on the work [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], we propose a ground state of Dirac-Fock model for crystals, and prove its existence.

Outline of the paper

Before giving the main statement, we pause to outline the structure of this paper:

• We first propose in Section 2 a Dirac-Fock-type periodic functional. This functional is simply derived from the periodic Hartree-Fock functional introduced in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] in the same manner that the Dirac-Fock model for molecules is derived from the Hartree-Fock one; that is, again roughly speaking (see Section 2 for precise formulation), by replacing the Laplace operator by the Dirac operator and the functional space accordingly. Since the Dirac operator is not bounded below, we have to redefine the ground state: instead of defining it in the whole functional space by the critical point theory, we define it in the positive spectra of the periodic Dirac-Fock operator D γ,ξ , namely Γ q :" tγ; Tr L 2 γ " q, 1 r0,8q pD γ,ξ qγ " γu.

At the end, our main result is Theorem 2.13, and the solution also solves a selfconsistent equation.

• In Section 3, we give some fundamental estimates which are useful for the next sections.

• In section 4, analogously to [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], we construct the bounded positive level of the energy Γ ďq by using Séré's retraction: taking T pγq " 1 r0,8q pD γ qγ1 r0,8q pD γ q, and we will see under some conditions, T n pγq Ñ θpγq P Γ ďq with Γ ďq :" tγ; Tr L 2 γ ď q, 1 r0,8q pD γ,ξ qγ " γu as n goes to infinity.

• Finally, in Section 5, we prove the existence of minimizers. Because of the complexity of the exchange terms in this model, we consider first the existence of minimizers in Γ ďq X B R with B R a ball of radius R. We will see that there is a R 0 ą 0 such that for any R ě R 0 the minimizers in Γ ďq X B R will be indeed in the ball B R 0 . Thus the existence of minimizers in Γ ďq is equivalent to the existence of minimizers in Γ ďq X B R 0 . And this minimizer is indeed in Γ q . Now we only need to prove the existence in Γ ďq X B R :

For every γ P Γ ďq , by Bloch decomposition, the corresponding operators D γ can be decomposed into a direct integral of operators D γ,ξ acting on L 2 ξ pQ l ; C 4 q for ξ P Q l . The k-th eigenvalue (counted with multiplicity) of D γ,ξ is bounded and both the upper and lower bounds are independent of ξ P Q l and the choice of γ. Besides, the minimizing sequence γ n can be decomposed into higher parts and lower parts in terms of the spectrum of the operator D γn . The higher parts will disappear when n goes to infinity while the lower parts have a weak-star convergent subsequence. Based on this convergent sequence, we construct some other kinds of convergent subsequences for the potentials which make the sequence pass the limit in the energy and keep the minimizer γ ˚P Γ ďq X B R . Consequently, we proved the existence of minimizers in Γ ďq X B R , and every minimizer solves a self-adjoint equation.

General setting of the models and main results

Preliminaries-Functional framework

We first introduce some notation. We consider only the case of a cubic crystal with only one point-like nucleus per unit cell for simplicity, but the reader should keep in mind that the general case could be handled as well. Let l ą 0 denote the length of the elementary cell Q l "s ´l 2 , l 2 s 3 . The nuclei with positive charge z, which are treated as classical particles with infinite mass, are located at each point of lZ 3 .The electrons are treated quantum mechanically and we ask the electronic density to be a Q l -periodic function with L 1 norm equals to q over the elementary cell. Especially if q " z, the electrons are "periodically distributed among the nuclei" such that electrical neutrality is ensured.

Throughout the paper, we choose units for which m " c " " 1, where m is the mass of the electron, c the speed of light, and the Planck constant. The Dirac operator can be written as D 0 " ´i ř 3 k"1 α k B k `β, with 4 ˆ4 complex matrices α 1 , α 2 , α 3 and β, whose standard forms are:

β " ˜12 0 0 ´12 ¸, α " ˜0 σ k σ k 0 ¸,
where the σ k are the well-known 2 ˆ2 Pauli matrices

σ 1 " ˜0 1 1 0 ¸, σ 2 " ˜0 ´i i 0 ¸, σ 3 " ˜1 0 0 ´1¸.
The operator D 0 acts on 4´spinors -that is on functions from R 3 to C 4 -and it is self-adjoint in L 2 pR 3 ; C 4 q, with domain H 1 pR 3 , C 4 q and form domain H 1{2 pR 3 ; C 4 q. Its spectrum is σpD 0 q " p´8, ´1s Y r`1, 8q. Following the notation in [START_REF] Séré | Solutions of the Dirac-Fock Equations for Atoms and Molecules[END_REF][START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF], we denote by Λ `and Λ ´" 1 L 2 ´Λ`r espectively the two orthogonal projectors on L 2 pR 3 ; C 4 q corresponding to the positive and negative eigenspace of D 0 , and such that

$ & % D 0 Λ `" Λ `D0 " Λ `?1 ´ " ? 1 ´ Λ `; D 0 Λ ´" Λ ´D0 " ´Λ´? 1 ´ " ´?1 ´ Λ
´.

According to the Floquet theory [START_REF] Reed | Methods of modern Mathematical Physics, IV: Analysis of operators[END_REF], the underlying Hilbert space L 2 pR 3 ; C 4 q is unitarily equivalent to L 2 pQ l q  L 2 pQ l ; C 4 q, where Q l " r´π l , π l r 3 is the so-called dual cell of the lattice. The unitary Floquet transform U is given by pU ¨φq ξ " ÿ kPZ 3 e ´ilk¨ξ φp¨`klq for every ξ P Q l and φ in L 2 pR 3 ; C 4 q, and pU ¨φq ξ belongs to L 2 ξ pQ l , C 4 q, ξ P Q ˚, where L 2 ξ pQ l ; C 4 q " tψ P L 2 loc pR 3 ; C 4 q; e ´iξ¨x ψ is Q l -periodicu.

Functions ψ of this form are called Bloch waves or Q l -quasi-periodic functions with quasi-momentum ξ P Q l . Operators L on L 2 pR 3 ; C 4 q which commute with the translations of lZ 3 may be decomposed into a direct integral of operators L ξ acting on

L 2 ξ pQ l ; C 4 q according to L ξ pU ¨φq ξ " pU ¨Lφq ξ (2.1)
for every φ in L 2 pR 3 ; C 4 q(see [START_REF] Reed | Methods of modern Mathematical Physics, IV: Analysis of operators[END_REF] for more details). The operator L is then denoted by l 3

p2πq 3 ş À Q l L ξ dξ.
In particular, the Dirac operator is unitary equivalent to the direct integral of self-adjoint operator D ξ on L 2 ξ pQ l ; C 4 q, with domain

H 1 ξ pQ l , C 4 q " L 2 ξ pQ l ; C 4 q X H 1 loc pR 3 ; C 4 q
and form-domain

H 1{2 ξ pQ l ; C 4 q " L 2 ξ pQ ξ ; C 4 q X H 1{2 loc pR 3 ; C 4 q.
(To simplify the notation, we shall simply write L 2 ξ , H 1 ξ and H 1{2 ξ when there is no ambiguity.) Note that D 2 ξ " 1´ ξ , where ´ "

l 3 p2πq 3 ş À Q l ´ ξ dξ. The spectrum σpD ξ q
of D ξ is composed of two sequences of eigenvalues pd ń pξqq ně1 and pd ǹ pξqq ně1 such that pd ń pξqq ně1 ď ´1, pd ǹ pξqq ně1 ě 1, lim nÑ8 pd ń pξqq ně1 " ´8, lim nÑ8 pd ǹ pξqq ně1 " `8 and Y ξPQ l σpD ξ q " σpD 0 q " p´8, ´1s Y r`1, `8q.

By analogy with the Hartree-Fock model for crystals introduced in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] our energy functional will be defined on a set T of admissible one-particle density matrices γ.

Définition 2.1 (Definition of T ).

A family of self-adjoint operators γ ξ , pξ P Q l q on L 2 ξ pQ l q enjoys the following properties, for almost every ξ P Q l :

(H2 1 ) 0 ď γ ξ ď 1 L 2 ξ pQ l q ;
(H3) the operators γ ξ have finite traces and satisfy l 3

p2πq 3 ş Q l Tr L 2 ξ pQ l q γ ξ dξ ă 8;
(H4) Tr L 2 ξ pQ l q p|D ξ |γ ξ q ă `8 and l 3

p2πq 3 ş Q l Tr L 2 ξ pQ l q p|D ξ |γ ξ q dξ ă `8
To every such family of operators is associated, in a unique way, a self-adjoint operator γ in L 2 pR 3 q, denoted by γ " l 3

p2πq 3 ş À Q l γ ξ dξ, such that (H1) γ commutes with the translations of lZ 3 ; (H2) 0 ď γ ď 1 L 2 .
We denote by T the set of operators γ " l 3 p2πq 3 ş À Q l γ ξ dξ which satisfy the conditions (H2 1 ),(H3) and (H4), and we shall call γ a Q l -periodic density matrix. Remark 2.2. For almost every ξ in Q ˚, there exists a complete set of eigenfunctions pu n pξ, ¨qq ně1 of γ ξ in L 2 ξ pQq corresponding to the non-decreasing sequence of eigenvalues 0 ď λ n pξq ď 1 (counted with their multiplicity) such that u n pξ, ¨q P H 1{2 ξ pQq, and such that

γ ξ px, yq " ÿ ně1 λ n pξqu n pξ, xqu npξ, yq, (2.2)
for almost every ξ in Q ˚.

Remark 2.3. It has been proved in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] that, for every γ in T , the kernel of γ is given by γpx, yq "

l 3 p2πq 3 ż Q l γ ξ px, yqdξ.
Moreover, for every k in Z 3 , γp¨`kl, ¨`klq " γp¨, ¨q This is simply the formulation in terms of kernels of the fact that the operator γ commutes with the translations of lZ 3 .

Définition 2.4. Let γ belong to T . Then we may define in a unique way a Q l -periodic density ρ γ associated to γ by

ρ γ pxq " l 3 p2πq 3 ż Q l Tr 4 γ ξ px, xqdξ. (2.3)
By the way, if γ ξ " ř 8 i"1 λ i pξqu i pξ, xq  u i pξ, yq for almost every ξ P Q l , we have

ρ γ pxq " l 3 p2πq 3 ż Q l 8 ÿ i"1 λ i pξq|u i pξ, xq| 2 dξ,
where | ¨| denotes the usual norm in C 4 , and λ i ě 0 for all i P N.

Now, the following functional spaces associated with the γ and γ ξ are introduced:

•

σ s pξq " ! γ ξ P BpL 2 ξ pQ l qq; Tr L 2 ξ p|γ ξ | s q ă 8
) endowed with the norm

}γ ξ } σspξq " ´Tr L 2 ξ p|γ ξ | s q ¯1{s . • σ s,t " # γ; γ " l 3 p2πq 3 ż À Q l γ ξ dξ, γ ξ P BpL 2 ξ pQ l qq, γ ξ P σ s pξq, ż Q l }γ ξ } t σspξq dξ ă 8 + endowed with }γ} σs,t " ˜l3 p2πq 3 ż Q l }γ ξ } t σspξq dξ ¸1{t .
Particularly, σ 8,8 " L 8 pQ l ; BpL 2 ξ qq.

•

X α pξq " tγ ξ P BpL 2 ξ pQ l qq; |D ξ | α{2 γ ξ |D ξ | α{2 P σ 1 pξqu
endowed with the norm

}γ ξ } X α pξq " }|D ξ | α{2 γ ξ |D ξ | α{2 } σ 1 pξq ; • X α s " # γ; γ " l 3 p2πq 3 ż À Q l γ ξ dξ, pγ ξ q ξPQ l P T , ż Q l }|D ξ | α{2 γ ξ |D ξ | α{2 } s σ 1 pξq dξ ă 8 + endowed with the norm }γ} X α s " ˜l3 p2πq 3 ż Q l }|D ξ | α{2 γ ξ |D ξ | α{2 } s σ 1 pξq dξ ¸1{s ;
For convenience, we use Xpξq, X and Y to represent X 1 pξq, X 1 1 , σ 8,8 respectively. Therefore, we obtain the intersected functional space σ 1,1 X σ 1,4 and X X Y , endowed with the norm }γ} σ 1,1 Xσ 1,4 " maxp}γ} σ 1,1 , }γ} σ 1,4 q, and }γ} XXY " maxp}γ} X , }γ} Y q.

And in addition to the functional space for operators, we also introduce the functional space for functions

W α,1 pQ l ; H s pQ 2 l qq " # f pξ, x, yq; ż Q l }f pξ, ¨, ¨q} H s ξ pQ 2 l q dξ `żQ l }|∇ ξ | α f pξ, ¨, ¨q} H s ξ pQ 2 l q dξ ă 8 + with the norm }f } W α,1 pH s q " l 3 p2πq 3 ż Q l }f pξ, ¨, ¨q} H s ξ pQ 2 l q dξ `l3 p2πq 3 ż Q l }|∇ ξ | α f pξ, ¨, ¨q} H s ξ pQ 2 l q dξ.
Remark 2.5. For every γ P T , in fact, }γ} σ 1,1 " }γ} σ 1 , and

}|D 0 | 1{2 γ|D 0 | 1{2 } σ 1 " }γ} X .
By Floquet decomposition, we have that for any orthonormal basis pu n pxqq ně1 , we have that pU uq ξ pxq "

ÿ kPZ 3
e ´ik¨ξ upx `kq, and γ ξ pU uq ξ " pU γuq ξ .

By virtue of pu, vq

L 2 pR 3 q " l 3 p2πq 2 ż Q l pU uq ξ , pU vq ξ L 2 pQ l q dξ
we know that pU u n q n,ξ is still an orthonormal basis, and

}γ} σ 1 " ÿ ně1 u n , γu n L 2 pR 3 q " l 3 p2πq 2 ż Q l pU u n q ξ , pU γu n q ξ L 2 pQ l q dξ, " l 3 p2πq 2 ż Q l pU u n q ξ , γ ξ pU u n q ξ L 2 pQ l q dξ, "}γ} σ 1,1 .
For another equation, the proof is similar.

Let

Γ ďq :" tγ P T ; γ P X X Y, }γ} σ 1,1 ď qu, and Γ q :" tγ P T ; γ P X X Y, }γ} σ 1,1 " qu.

The condition γ P X X Y can be removed since if γ P T , obviously γ P X X Y . Now, we introduce the periodic Dirac-Fock model.

The periodic Dirac-Fock models

For every γ P Γ ďq , we now define the periodic Dirac operator with potential by:

D γ,ξ :" D ξ ´αzG l `αV γ,ξ
where D ξ is defined by (2.1) and

V γ,ξ " ρ γ ˚Gl pxq ´Wγ,ξ with 
ρ γ ˚Gl pxq " ż Q l
G l py ´xqρ γ pyqdy " Tr L 2 pQ l q pG l p¨´xqγq and

W γ,ξ ψ ξ pxq " l 3 p2πq 3 ż Q l dξ 1 ż Q l W 8
l pξ 1 ´ξ, x ´yqγ ξ 1 px, yqψ ξ pyqdy.

The so-called fine structure constant α is a dimensionless positive constant (the physical value is approximately 1/137).

The operator D ξ have a simple expression in Fourier series: Given any φ ξ P H 1{2 ξ , we have

φ ξ pxq " ÿ kPZ 3 p φ k`ξ e p2iπk{l`iξq¨x , with p φ k`ξ " 1 l 3 ż Q l φ ξ pyqe ´p2iπk{l`iξq¨y dy and D ξ φ ξ pxq " ÿ kPZ 3 " p 2π l k `ξq ¨α `β p φ k`ξ e p2iπk{l`iξq¨x ,
where pk `ξq ¨α " ř 3 j"1 pk j `ξj qα j P M 4 pCq. Thus, the functional framework in this discrete setting should be set: Définition 2.6. The space of H 1{2 pT, C 4 q will be simply denoted by H 1{2 # pQ l q. Recall that

H 1{2 # pQ l q " tψ P L 2 pT, C 4 q; ÿ kPZ 3 c 1 `4π 2 k 2 l 2 | p ψ k | 2 ă 8u,
endowed with the norm

}ψ} 2 H 1{2 # pQ l q " ÿ kPZ 3 c 1 `4π 2 k 2 l 2 | p ψ k | 2 .
In this periodic setting, the Coulomb-like interaction between periodic distributions of particles is described through the Q l -periodic potential G l that is uniquely defined by

´ G l " 4π « ´1 l 3 `ÿ kPZ 3 δ lk ff (2.4) and ż Q l G l " 0. (2.5)
G l is actually the Green function of the periodic Laplace operator on Q l . The Fourier series of G l reads, for x P R 3 ,

G l pxq " 1 πl ÿ pPZ 3 p‰0 e 2iπ l p¨x |p| 2 . ( 2.6) 
The following scaling property, for any λ ą 0,

G λl pxq " 1 λ G l ´x λ ¯(2.7)
is easily checked.

And the potential W 8 l which enters the definition of the exchange term is defined by

W 8 l pη, xq " 4π l 3 ÿ kPZ 3 1 ˇˇ2πk l ´ηˇˇ2 e ip 2πk l ´ηq¨x " λW 8 λl p η λ , λxq, η P R 3 , x P R 3 (2.8) 
(see [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] for a formal derivation of this exchange term from its analogue for molecules).

It is Q l periodic with respect to η and quasi-periodic with quasi-momentum η with respect to x.

Remark 2.7. γp¨, ¨q belongs to L 2 pQ l ˆR3 q and the exchange term is also

l 6 p2πq 6 ij pQ l q 2 dξdξ 1 ij Q 2 l Tr 4 rγ ξ px, yqγ ξ 1 py, xqsW 8 l pξ ´ξ1 , x ´yqdxdy " ż Q l ż R 3
Tr 4 pγpx, yqγpy, xqq |x ´y| dy.

where the trace Tr 4 which appears in the last term (the exchange term) denotes the trace of a 4 ˆ4 matrix.

Finally, let P γ,ξ :" 1 R ˘pD γ,ξ q, P γ "

l 3 p2πq 3 ż À Q ˚P ˘,ξ γ dξ,
and

P γ γ 1 :" ż À Q l P γ,ξ γ ξ dξ.
Note that by definition P 0,ξ " 1 R ˘pD ξ ´αzGq.

Now, define

Γ ďq :" tγ P Γ ďq ; P γ γ " 0u, and Γ q :" tγ P Γ q ; P γ γ " 0u.

Our goal is to give a new definition of the ground state of the periodic Dirac-Fock functional

E DF pγq " l 3 p2πq 3 ż Q l Tr L 2 ξ pD ξ γ ξ q dξ ´αz ż Q l G l pxqρ γ pxq dx `α 2 ij Q 2 l ρ γ pxqG l px ´yqρ γ pyq dxdy ´α 2 l 6 p2πq 6 ij pQ l q 2 dξdξ 1 ij Q 2 l
Tr 4 rγ ξ px, yqγ ξ 1 py, xqsW 8 l pξ ´ξ1 , x ´yq dxdy, (2.9) Even though we restrict our study of ground state to q electrons, this functional is indeed defined on the closed convex set Γ ďq . When q is integers, Γ ďq is the set of all Dirac-Fock states of a system of q-electrons. The relation between E DF and D γ,ξ is the following: if γ and γ `h are in Γ ďq with, then the right derivative of f ptq " [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], we impose that the ground state lies in Γ ďq . However, the direct computation implies that zero minimizes the problem rather than the real ground states. To overcome this problem, we add a penalization term F Tr L 2 pγq, and study the penalized functional

E DF pγ `thq at t " 0 is ş Q l dξ Tr L 2 ξ pD γ,ξ h ξ q. Mimicking
E DF pγq ´ F Tr L 2 pγq in Γ ďq .
A fundamental tool in our definition of a ground state will be a map that we denote θ. It is a retraction of a certain closed subset F of Γ ďq onto F X Γ ďq . The set F will be large enough, so that it will contain the "ground state" of the Dirac-Fock functional. Moreover θ will have an extension on an open neighborhood of F in X X Y and this extension will be of class C 1 . Note that the map θ will be easy to implement numerically. More precisely, for γ P F , let γ 0 " γ and γ p`1 " P γp γ p P γp . Then we define θpγq as the limit, if it exists, of the sequence pγ p q for the topology of X X Y .

Main results

At the beginning, we recall the main properties of the periodic potential G l and W 8 l . In fact, we prove the Hardy-type estimates in section 3 that will be used all along the proof, and we prove the main technical results concerning the operators.

First of all, and it is a major difference with 1 |x| , the periodic Coulomb potential G l is no more positive, but is bounded below: Proposition 2.8. There exists a positive constant C 0 such that, for any l ą 0, x P Q l , we have G l pxq ě ´C0 l .

(2.10) Moreover, we have the following Hardy-type estimates concerning the periodic potential G, and the proof is given in subsection 3.1: Lemma 2.9. There exists C H ą 0 and C 1 H ą 0, such that, for any ξ P Q l and any ψ ξ P H 1{2 ξ pQ l ; C 4 q, we have:

pψ ξ , G l ψ ξ q L 2 pQ l q ď C H pψ ξ , |D ξ |ψ ξ q Q l ,
(2.11a)

pψ ξ , |G l |ψ ξ q L 2 pQ l q ď C 1 H pψ ξ , |D ξ |ψ ξ q Q l , ( 2.11b) 
Moreover, there exists C G ě C 1 H ą 0, such that, for any ξ P Q l and any φ ξ P H 1 ξ pQ l ; C 4 q, we have:

}G l φ ξ } L 2 pQ l q ď C G }|D ξ |φ ξ } L 2 ξ pQ l q .
(2.12)

Remark 2.10. Note that, as a difference with the atomic case, we do not know the best constants C H , C 1 H and C G . We will need, for the proof of Lemma 2.11 the following result, quoted in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF]: we can separate the singularities of W 8 l w.r.t. η and x:

W 8 l pη, xq " e ´iη¨z G l pxq `4π e ´iη¨x |η| 2 `fl pη, xq, (2.13) 
where

f l pη, xq " 2π l e ´iη¨x ÿ mPZ 3 zt0u e 2iπm{l¨x 4πlη ¨m ´l2 |η| 2 |lη ´2πm| 2 |2πm| 2
is a bounded function on Q l ˆp2Q l q. We have that

f l pη, xq " λf λl p η λ , λxq,
and as f pη, xq is harmonic in p1 ` qQ l for any small enough, then for any

x P Q l |f l pη, xq| ď 1 l |f 1 pη, xq| ď c l }f 1 pη, ¨q} 1{2 L 2 pQ l q .
Furthermore, f l P W 1,8 pQ l ; L 8 η pQ l qq. We notice that ∇ η f pη, xq is equally harmonic in p1 ` qQ l , since

´ x ∇ η f l pη, xq " 4π

ÿ kPZ 3 zt0u
´ike ´ik¨η δ k pxq.

By virtue of the mean-value property, we finally obtain for every

x P Q l , |∇ η f l pη, xq| 2 ď ˆżx` Q l |∇ η f l pη, yq|dy ˙2 ďC}∇ η f l pη, ¨q} 2 L 2 η pQ l q ď C ÿ Z 3 zt0u 1 `|m| 2 |lη ´2πm| 4 |2πm| 2 .
(2.14)

And, for the exchange term, W 8 l pξ ´ξ1 , px ´yq{lq "e ´ipξ´ξ 1 q¨px´yq G l px ´yq `4π

ÿ mPZ 3 ,|m|8ď1 e ´ipξ´ξ 1 ´2πm{lq¨px´yq |ξ ´ξ1 ´2πm{l| 2 `gl pξ ´ξ1 , x ´yq, (2.15) 
And analogously to f l , g l is a bounded function on Q l ˆp2Q l q as well as gpη, xq P W 1,8 ppQ l q 2 , L 8 ξ pQ l qq.

(2.16)

We have the following estimates for W , and the proof is given in subsection 3.2:

Lemma 2.11. For any

ψ ξ P H 1{2 ξ , there are constants C W , C 1 W , C 2 W such that for any ξ P Q l : • if γ P X X Y , }W γ,ξ ψ ξ } L 2 ξ ď C W }γ} XXY }ψ ξ } L 2 ξ .
(2.17)

• if γ P σ 1,1 X Y , }W γ,ξ ψ ξ } L 2 ξ ď C 1 W }γ} σ 1,1 XY }|D ξ |ψ ξ } L 2 ξ (2.18) • if γ P σ 1,1 X σ 1,4 , }W γ ψ ξ } L 2 ξ ď C 2 W }γ} σ 1,1 Xσ 1,4 }ψ ξ } L 2 ξ , ( 2.19) 
Before stating the theorem, we need the following assumption:

Assumption 2.12. Let q `" maxtq, 1u, κ :"

αppC 1 H pz `qq `C1 W q `qq, C EE :" C 1 H `CW , A ą 1 4 αp1 ´κq ´2p1 `κqC EE and c ˚pkq :" sup ξPQ l inf dimV "k V ĂΛ ξ H 1{2 ξ sup u ξ PV }|D ξ | 1{2 u ξ } L 2 ξ }u ξ } L 2 ξ .
We assume that

1. κ ă 1 ´1{2αC EE q `, 2. κ 1 :" αpC G pz `qq `C1 W q `q ă 1,

3.

A a maxtp1 ´κ ´1{2αC EE q `q´1 p1 ´κq ´1c ˚pq `1qq, 1uq `ă 1.

We have Theorem 2.13. Under Assumption 2.12, there exists γ ˚P Γ q such that E DF pγ ˚q " I :" min

γPΓ q E DF pγq. (2.20)
Besides, γ ˚solves the following nonlinear self-consistent equation:

$ ' & ' % γ " 1 r0,νq pD γ q `δ D γ " l 3 p2πq ż À Q l dξD γ,ξ , (2.21)
where 0 ď δ ď 1 tνu pD γ q and 0 ď ν ď p1 ´κq ´1c ˚pq `1q. Remark 2.14. In solid state physics, the length of the unit cell is about a few Angstroms. And in our system of unit, " m " c " 1, thus α « 1 137 and l « 1000. Under the condition q " z for electrical neutrality, we find that the Assumption 2.12 is satisfied for q ď 4, and the details can be found in Appendix E. Moreover, our estimates are far from optimal and one can expect that the ideas of this paper apply to higher values of q.

Remark 2.15. Unlike the Hartree-Fock model for crystals [START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF], when q is integer, we can not yield δ " 1 tνu pD γ q where P t0, 1u, since our restriction γ P Γ q is non-linear.

3 Fundamental estimates 3.1 Lemma 2.9 and its corollaries proof of .

Estimates of C H and C 1

H

Let ξ be fixed in Q l and let φ ξ P H 1{2 ξ pQ l ; C 4 q. We write φ ξ on the form φ ξ " e iξ¨x upxq with u Q-periodic. Then, denoting by p upkq the k-th Fourier coefficient of u in its Fourier series expansion, we have, on the other hand,

pφ ξ , |D ξ |φ ξ q L 2 ξ " l 3 ÿ kPZ 3 c 1 `|ξ `2π l k| 2 |p upkq| 2 .
On the other hand, using Equation (2.6), we obtain

pφ ξ , G l φ ξ q L 2 pQ l q " l 2 π ÿ k,k 1 PZ 3 k‰k 1 p upkqp u ˚pk 1 q |k ´k1 | 2 .
Let ϑ a positive number to be determined later. By Cauchy-Schwarz' inequality, we have

ÿ k,k 1 PZ 3 k‰k 1 p upkqp u ˚pk 1 q |k ´k1 | 2 " ÿ k‰k 1 k‰0,k 1 ‰0 p upkq|k| ϑ |k ´k1 ||k 1 | ϑ p u ˚pk 1 q|k 1 | ϑ |k ´k1 ||k| ϑ `ÿ k 1 ‰0 p up0qp u ˚pk 1 q |k 1 | 2 `ÿ k‰0 p u ˚p0qp upkq |k| 2 ď ÿ k‰k 1 k‰0 |p u| 2 pkq|k| 2ϑ |k 1 | 2ϑ |k ´k1 | 2 `2 ˜p up0q ÿ k‰0 p u ˚pkq |k| 2 ¸, (3.1 
) with pzq denoting the real part of the complex number z for z P C. We first bound from above the second term in the right hand side of Equation (3.1), thanks again to the Cauchy-Schwarz inequality by:

2 ˜p up0q ÿ k‰0 p u ˚pkq |k| 2 ¸ď2|p u|p0q ˜ÿ kPZ 3 |p u| 2 pkq||k| ¸1{2 ˜ÿ k‰0 1 |k| 5 ¸1{2 ď ˜ÿ k‰0 1 |k| 5 ¸1{2 ˜|p u| 2 p0q `ÿ kPZ 3 |p u| 2 pkq|k| ¸.
For the first term, we proceed as follows:

ÿ kPZ3 |p u| 2 pkq|k| 2ϑ ÿ k 1 ‰k k 1 ‰0 1 |k 1 | 2ϑ |k ´k1 | 2 " ÿ kPZ 3 |p u| 2 pkq|k| » - - - 1 |k| 3 ÿ k 1 ‰k k 1 ‰0 1 ´|k 1 | |k| ¯2ϑ ˇˇk |k| ´k1 |k| ˇˇ2 fi ffi ffi fl .
Herein we choose ϑ " 1. By Appendix D.1, we know that

ÿ kPZ3 |p u| 2 pkq|k| 2ϑ ÿ k 1 ‰k k 1 ‰0 1 |k 1 | 2 |k ´k1 | 2 ď 59.235 ÿ kPZ3 |k||p u| 2 pkq (3.2) 
We now observe that, for every k in Z 3 , and

ξ in Q l , |k| ď p ? 3 `l 2π q c 1 `|ξ `2π l k| 2 , since |k| ď ˇˇˇk `l 2π ξ ˇˇˇ`l 2π |ξ| ď ˇˇˇk `l 2π ξ ˇˇˇ`? 3. Now we can conclude that pφ ξ , G l φ ξ q L 2 ξ pQ l q ďC l 2 π ¨|p u| 2 p0q `ÿ qPZ 3 q‰0 |p u| 2 pkq|k| ‹ ‹ ' ďp ? 3 `l 2π qC l 2 π ÿ kPZ 3 c 1 `| 2π l k `ξ| 2 |p u| 2 pkq " C πl p ? 3 `l 2π qpφ ξ , |D ξ |φ ξ q L 2 ξ pQ l q , with C " ˜ÿ k‰0 1 |k| 5 ¸1{2 `59.235.
Hence,

C H " 1 π p ? 3 l `1 2π q » - ˜ÿ k‰0 1 |k| 5 ¸1{2 `59.235 fi fl .
The second Hardy inequality (2.11b) is easily deduced from (2.11a) and (2.10) by taking

C 1 H " C H `2 C 0 l .

Estimates of C G

The proof of (2.12) follows the same patterns as the proof of (2.11a). As

pφ ξ , G 2 l φ ξ q L 2 pQ l q " l π 2 ÿ p,k,k 1 PZ 3 k,k 1 ‰p p upkqp u ˚pk 1 q |k ´p| 2 |k 1 ´p| 2 .
Then by Cauchy-Schwarz's inequality, we have

ÿ p,k,k 1 PZ 3 p‰k,k 1 p upkqp u ˚pk 1 q |k ´p| 2 |k 1 ´p| 2 ď ÿ k,k 1 ‰0 p‰k,k 1 p upkq|k| ϑ |p ´k1 | 2 |k 1 | ϑ p u ˚pk 1 q|k 1 | ϑ |p ´k| 2 |k| ϑ `ÿ p‰0 |p u| 2 p0q |p| 4 `ÿ k,pPZ 3 k,p‰0 p‰k p upkqp u ˚p0q |p ´k| 2 |p| 2 `ÿ k 1 ,pPZ 3 k 1 ,p‰0 p‰k 1 p up0qp u ˚pk 1 q |p ´k1 | 2 |p| 2 ď ÿ p,k,k 1 PZ 3 p‰k,k 1 k,k 1 ‰0 |p u| 2 pkq|k| 2ϑ |p ´k| 2 |p ´k1 | 2 |k 1 | 2ϑ `2 ¨p up0q ÿ p,kPZ 3 p‰0,p‰k p u ˚pkq |p ´k| 2 |p| 2 ‹ ‹ ' `ÿ p‰0 |p u| 2 p0q |p| 4 .
By virtue of Cauchy-Schwarz's inequality again,

2 ¨p up0q ÿ p,kPZ 3 k,p‰0 k‰p p u ˚pkq |p ´k| 2 |p| 2 ‹ ‹ ‹ ‹ ‹ ' ď2|p u|p0q ¨ÿ kPZ 3 zt0u |p u| 2 pkq|k| 2 '1{2 ¨ÿ p‰k k,p‰0 1 |p ´k| 4 |p| 4 |k| 2 ‹ ‹ ' 1{2 ď ¨ÿ p‰k k,p‰0 1 |p ´k| 4 |p| 4 |k| 2 ‹ ‹ ' 1{2 ¨|p u| 2 p0q `ÿ kPZ 3 zt0u |p u| 2 pkq|k| 2 '.
And for the first term, we proceed as follows:

b ÿ p,k,k 1 PZ 3 k,k 1 ‰p k,k 1 ‰0 |p u| 2 pkq|k| 2ϑ |p ´k| 2 |p ´k1 | 2 |k 1 | 2ϑ " ÿ kPZ 3 |p u| 2 pkq|k| 2 ÿ p‰k 1 ,k k,k 1 ‰0 1 |k| 6 1 ˇˇp |k| ´k |k| ˇˇ2 ˇˇp |k| ´k1 |k| ˇˇ2 ˇˇk 1 |k| ˇˇ2 ϑ .
Herein, we take ϑ " 1.25. And by Appendix D.2, we get that

ij R 3 ˆR3 1 |x ´e| 2 |y ´x| 2 |y| 2.5 dxdy ď 122498.747 `ÿ p‰0 1 |p| 4.5 . ( 3.3) 
Now, we conclude that

pφ ξ , G 2 l φ ξ q L 2 pQ l q ďC 1 l π 2 ˜|p u| 2 p0q `ÿ k‰0 |p u| 2 pkq|k| 2 ḑp3 `l2 4π 2 qC 1 l π 2 ÿ kPZ 3 ˜1 `ˇˇˇ2 π l k `ξˇˇˇˇ2 ¸|p u| 2 pkq " C 1 π 2 p 3 l 2 `1 4π 2 q}|D ξ |φ ξ } 2 L 2 ξ pQ l q , with C 1 " ÿ p‰0 1 |p| 4 `¨ÿ p‰k k,p‰0 1 |p ´k| 4 |p| 4 |k| 2 ‹ ‹ ' 1{2 `22498.747 `ÿ p‰0 1 |p| 4.5 .
Hence,

C G " 1 π maxp ? 3 l , 1 2π q ¨ÿ p‰0 1 |p| 4 `¨ÿ p‰k k,p‰0 1 |p ´k| 4 |p| 4 |k| 2 ‹ ‹ ' 1{2 `22498.747 `ÿ p‰0 1 |p| 4.5 ‹ ‹ ‹ ' 1{2 .
As a result of Lemma 2.9, we can directly get Corollary 3.1. For any γ, γ 1 , γ 2 P X, we get:

}ρ γ ˚Gl } BpL 2 ξ q ď C 1 H }γ} X (3.4)
and

}pρ γ 1 ´ργ 2 q ˚Gl } BpL 2 ξ q ď C 1 H }γ 1 ´γ2 } X . (3.5) 
Proof. From Lemma 2.9, we know

|G l | ď C 1 H |D ξ |.
Thus,

|ρ γ ˚Gl |pxq " |Tr L 2 pG l p¨´xqγq| pxq ď ż Q l | Tr L 2 ξ pG l p¨´xqγ ξ q|dξ " ż Q l | Tr L 2 ξ p|D ξ | ´1{2 G l p¨´xq|D ξ | ´1{2 |D ξ | 1{2 γ ξ |D ξ | 1{2 q|dξ ď ż Q l }|G l | 1{2 p¨´xq|D ξ | ´1{2 } 2 BpL 2 ξ q }|D ξ | 1{2 γ ξ |D ξ | 1{2 } σ 1 pξq dξ ďC 1 H }γ} X
And similarly, we have

|pρ γ 1 ´ργ 2 q ˚Gl |pxq ď C 1 H }γ 1 ´γ2 } X .
Repeating the proof of the first inequality, we get the conclusion.

Lemma 2.11 and its corollaries

proof of Lemma 2.11. As

}W γ,ξ ψ ξ } L 2 ξ " sup φ ξ PL 2 ξ }φ ξ } L 2 ξ "1 |pW γ,ξ ψ ξ , φ ξ q|,
we only need to study the inner product pW γ,ξ ψ ξ , φ ξ q. Hence, we can separate W γ,ξ in three parts:

• one term with all singularity in z: by Cauchy-Schwarz' inequality |γ|px, yq ď ρ 1{2 pxqρ 1{2 pyq and Corollary 3.1,

ż Q l dξ 1 ż Q 2 l e ´ipξ 1 ´ξqpx´yq Gpx ´yqγ ξ 1 px, yqψ ξ pyq Ď φ ξ pxqdxdy ď ż Q l dξ 1 ż Q 2 l |Gpx ´yq||γ ξ 1 |px, yq|ψ ξ |pyq| Ď φ ξ |pxqdxdy ď ż Q l dξ 1 ˆżQ l |ψ ξ | 2 pyq ż Q l |Gpx ´yq||ρ γ 1 ξ |pxqdxdy ˙1{2 ˆˆż Q l Ď φ ξ | 2 pxq ż Q l |Gpx ´yq||ρ γ 1 ξ |pyq|dxdy ˙1{2 ď ż Q l }γ ξ } Xpξq dξ 1 ˜żQ 2 l |ψ ξ | 2 pyqdxdy ¸1{2 ˜żQ 2 l | Ď φ ξ | 2 pxqdxdy ¸1{2 ďC 1 H }γ} X }ψ ξ } L 2 ξ or ż Q l dξ 1 ż Q l e ´ipξ 1 ´ξqpx´yq Gpx ´yqγ ξ 1 px, yqψ ξ pyq Ď φ ξ pxqdxdy ď ż Q l dξ 1 ˜żQ 2 l |ρ ξ 1 |pxq|ψ ξ | 2 pyq|dxdy ¸1{2 ˆżQ l |ρ ξ 1 |pyq ż Q l |Gpx ´yq| 2 | Ď φ ξ | 2 pxqdxdy ˙1{2 ďC G }γ} σ 1,1 }|D ξ |ψ ξ } L 2 ξ
• the second term, carrying the singularity in η:

ż Q l dξ 1 ż Q 2 l 4π ÿ mPZ 3 ,|m|8ď1 e ´ipξ 1 ´ξ´2πm{lq¨px´yq |ξ 1 ´ξ ´2πm{l| 2 γ ξ 1 px, yqψ ξ pyq Ď φ ξ pxqdxdy ď4π ÿ mPZ 3 ,|m|8ď1 ż Q l dξ 1 ż Q 2 l 1 |ξ 1 ´ξ ´2πm{l| 2 ρ 1{2 γ ξ 1 pxqρ 1{2 γ ξ 1 pyq|ψ ξ |pyq| Ď φ ξ |pxqdxdy ď4π ¨ÿ mPZ 3 ,|m|8ď1 ż Q l ż Q 2 l |ξ 1 ´ξ ´2πm{l| ´2ρ γ ξ 1 pxq|ψ ξ |pyq| 2 dξ 1 dxdy '1{2 ˆ¨ÿ mPZ 3 ,|m|8ď1 ż Q l ż Q 2 l |ξ 1 ´ξ ´2πm{l| ´2ρ γ ξ 1 pxq| Ď φ ξ |pyq| 2 dξ 1 dxdy '1{2 ď4π ˜3 ż 4Q l |η| ´8{3 dη ¸3{4 }γ} σ 1,4 }ψ ξ } L 2 ξ ďC 1 l }γ} σ 1,4 }ψ ξ } L 2 ξ . or by 0 ď γ ξ 1 ď 1 L 2 ξ 1 with γ ξ 1 f ξ 1 pxq " ş Q l γ ξ 1 px, yqf ξ 1 pyqdy, ż Q l dξ 1 ż Q 2 l 4π ÿ mPZ 3 ,|m|8ď1 e ´ipξ 1 ´ξ´2πm{lq¨px´yq |ξ 1 ´ξ ´2πm{l| 2 γ ξ 1 px, yqψ ξ pyq Ď φ ξ pxqdxdy ď4π ÿ mPZ 3 ,|m|8ď1 ż Q l dξ 1 1 |ξ 1 ´ξ ´2πm{l| 2
ˆˇˇ γ ξ 1 e ´ipξ 1 ´ξ´2πm{lq¨p¨q s φ ξ p¨q, e ´ipξ 1 ´ξ´2πm{lq¨p¨q s ψ ξ p¨q ˇď

C l sup ess ξ 1 PQ l }γ ξ 1 } BpL 2 ξ 1 q }ψ ξ } L 2 ξ }φ ξ } L 2 ξ ďC l }γ} Y }ψ ξ } L 2 ξ , with C l " sup ξPQ l ÿ mPZ 3 ,|m|8ď1 ż Q l dξ 1 4π |ξ 1 ´ξ ´2πm{l| 2 .
• the last term, corresponding to g. Obviously, since g P L 8 ,

ż Q l dξ 1 ż Q l gpξ 1 ´ξ, x ´yqγ ξ 1 px, yqψ ξ pyq Ď φ ξ pxqdxdy ď }g} L 8 }γ} σ 1 ,1 }ψ ξ } L 2 ξ As a result, there is a constant C W and C 1 W , such that • }W γ ψ ξ } L 2 ξ ď C W }γ} XXY }ψ ξ } L 2 ξ , as }γ} σ 1,1 ď }γ} X ; • }W γ ψ ξ } L 2 ξ ď C 1 W }γ} σ 1,1 XY }|D ξ |ψ ξ } L 2 ξ ;
• and

}W γ ψ ξ } L 2 ξ ď C 2 W }γ} σ 1,1 Xσ 1,4 }|D ξ |ψ ξ } L 2 ξ ,
where

C W " C 1 H `}f } L 8 `Cl , C 1 W " C G `}f } L 8 `Cl , C 2 W " C 1 H `}f } L 8 `C1 l .
Similarly, we have

Corollary 3.2. Let ψ ξ P H 1{2 ξ , then • if γ 1 , γ 2 P X X Y , }W γ 1 ´γ2 ,ξ ψ ξ } L 2 ξ ď C W }γ 1 ´γ2 } XXY }ψ ξ } L 2 ξ (3.6) • if γ 1 , γ 2 P σ 1,1 X Y , }W γ 1 ´γ2 ,ξ ψ ξ } L 2 ξ ď C 1 W }γ 1 ´γ2 } σ 1,1 XY }|D ξ |ψ ξ } L 2 ξ (3.7) • if γ 1 , γ 2 P σ 1,1 X σ 1,4 , }W γ 1 ´γ2 ,ξ ψ ξ } L 2 ξ ď C 2 W }γ 1 ´γ2 } σ 1,1 Xσ 1,4 }ψ ξ } L 2 ξ (3.8)

Retraction for the periodic Dirac-Fock model

In this section, we repeat the ideas of Séré [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF], and construct the set Γ ďq .

Recall that q `" maxtq, 1u.

Lemma 4.1. Let γ P Γ ďq . For almost every ξ P Q l , then

1. }V γ,ξ } BpL 2 ξ q ď C EE }γ} XXY , with C EE " C 1 H `CW ; 2. for u P H 1 ξ , }V γ,ξ u ξ } L 2 ξ ď C 1 EE }γ} σ 1,1 XY }|D ξ |u} L 2 ξ (4.1) with C 1 EE " C G `C1 W ; 3. if q ą 1, }|D 1{2 γ,ξ ||D ξ | ´1{2 } BpL 2 ξ q ď p1 `αpC 1 H pz `qq `C1 W q `qq 1{2 ; 4. if αpC 1 H pz `qq `C1 W q `q ă 1, then }|D ξ | 1{2 |D γ,ξ | ´1{2 } BpL 2 ξ q ď p1 ´αpC 1 H pz `qq `C1 W q `qq ´1{2 ; 5. if αpC 1 H pz `qq ´C1 W q `q ă 1, then D γ,ξ is a self-adjoint operator.
Proof. For the first inequality, it is just the combination of Corollary 3.1 inequality (3.4) and Lemma 2.11 inequality (2.18). And

C EE " C 1 H `CW .
For the second, we use the Lemma 2.9 and Lemma 2.11, with a small modification:

}G l ˚ργ u ξ } L 2 ξ ď }ρ} L 1 }G l u ξ } L 2 ξ ď C G }γ} σ 1,1 }|D ξ |u ξ } L 2 ξ . Now, }V γ,ξ u ξ } L 2 ξ ď `CG }γ} σ 1,1 `C1 W }γ} σ 1,1 XY ˘. (4.2) 
Thus,

}V γ,ξ u ξ } L 2 ξ ď C 1 EE }γ} σ 1,1 XY }|D ξ |u} L 2 ξ .
where

C 1 EE " C G `C1 W .
And the next two estimates are based on the following inequality:

|D γ,ξ ´Dξ | ď αz|G l | `α|ρ γ ˚Gl | `α|W γ,ξ |.
As }γ} Y ď 1 and }γ} σ 1,1 ď q, thus }γ} σ 1,1 XY ď q `. By Lemma 2.9 and inequality (4.2), we yield

|D γ,ξ ´Dξ | ď αpC 1 H pz `qq `C1 W q `q|D ξ |. (4.3) 
Thus, for the third inequality,

|D γ,ξ | ď |D γ,ξ ´Dξ | `|D ξ | ď p1 `αpC 1 H pz `qq `C1 W q `qq|D ξ |;
and the fourth inequality,

|D ξ | ď |D γ,ξ ´Dξ | `|D γ,ξ | ď αpC 1 H pz `qq ´C1 W q `q|D ξ | `|D γ,ξ |, namely |D ξ | ď p1 ´αpC 1 H pz `qq ´C1 W q `qq ´1|D γ,ξ |.
Finally, the last statement is just application of the Kato-Rellich Theorem.

Recall that P 0,ξ " 1 R `pD 0 `αzG l q Lemma 4.2. Assume that κ " αpC 1 H pz `qq `C1 W q `q ă 1. Let a ą α 2 C EE p1 ´κq ´1. Then for r ą 0 small enough, the map

Q : γ Ñ pP γ ´P 0 q
is defined by Q ξ pγq :" pP γ,ξ ´P 0,ξ qγ ξ and Qpγq :" pP γ ´P 0 qγ "

l 3 p2πq 3 ż À Q l Q ξ pγqdξ.
This map is well-defined and of class C 1,1 on D :" Γ ďq `BXXY prq, open subset of X X Y , with values in the Banach space Y . We have the estimates

• @γ P D, h P X X Y : }|D 0 | 1{2 DQpγqh|D 0 | 1{2 } Y ď a}h} XXY ; • @γ, γ 1 P D, }|D 0 | 1{2 rDQpγqh ´DQpγ 1 qhs|D 0 | 1{2 } Y ď K}γ ´γ1 } XXY }h} XXY .
Proof. For every γ P D, we know that γ " γ 1 `γ2 with γ 1 P Γ ďq and γ 2 P B XXY prq, thus

}γ} σ 1,1 ď }γ 1 } σ 1,1 `}γ 2 } XXY ď q `r.
Obviously, as κ ă 1, there is a R ą 0 small enough, such that r κprq :" αpC 1 H pz `q rq `C1

W pq ``rqq ă 1 for every r P r0, Rq. By Lemma 4.1, D γ,ξ is a self-adjoint operator for all γ P D, then by Taylor's Formula [32, Chapter VI.5, Lemma 5.6] or [START_REF] Griesemer | A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials[END_REF] we have

P γ,ξ " 1 2 `1 2π ż `8
´8 pD γ,ξ ´izq ´1dz.

(4.4)

and

Q ξ pγq " ´α 2π ż `8
´8 pD γ,ξ ´izq ´1V γ,ξ pD 0,ξ ´izq ´1dz. Hence,

DQ ξ pγqh " ´α 2π ż `8
´8 pD γ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1dz. Now, by the Lemma 4.1,

}|D ξ | 1{2 Q ξ pγqh|D ξ | 1{2 } BpL 2 ξ q ď α 2π ż `8 ´8 › › ›|D ξ | 1{2 pD γ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1|D ξ | 1{2 › › › BpL 2 ξ q dz ď α 2π }|V h,ξ |} BpL 2 ξ q }|D ξ | 1{2 |D γ,ξ | ´1{2 } 2 BpL 2 ξ q ż `8 ´8 › › ›|D γ,ξ | 1{2 |D γ,ξ ´iz| ´1› › › 2 BpL 2 ξ q dz ď α 2π C EE p1 ´κq ´1}h} XXY ż `8 ´8 › › ›|D γ,ξ | 1{2 |D γ,ξ ´iz| ´1› › › 2 BpL 2 ξ q dz.
(4.5)

For any u ξ P L 2 ξ pQ l q, we have that

ż `8 ´8 ´uξ , p|D γ,ξ | 2 `|z| 2 q ´1{2 |D γ,ξ |p|D γ,ξ | 2 `|z| 2 q ´1{2 u ξ ¯pL 2 ξ ,L 2 ξ q dz " π 2 }u ξ } 2 L 2 ξ , which means that ż `8 ´8 › › ›|D γ,ξ | 1{2 |D γ,ξ ´iz| ´1› › › 2 BpL 2 ξ q
dz " π.

Now, we yield

}|D 0 | 1{2 Qpγqh|D 0 | 1{2 } Y " }|D ξ | 1{2 Q ξ pγqh|D ξ | 1{2 } L 8 pQ l ;BpL 2 ξ qq ď α 2 C EE p1 ´r κprqq ´1}h} XXY .
And for every a ą α 2 C EE p1 ´κq ´1, obviously there is a 0 ă r 0 ă R, such that a ě α 2 C EE p1 ´r κpr 0 qq ´1. Now, we have finished the first estimate.

For the second, we have that

DQ ξ pγqh ´DQ ξ pγ 1 q " ´α2 2π 
ż `8 ´8 pD γ,ξ ´izq ´1V γ 1 ´γ,ξ pD γ 1 ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1dz ´α2 2π ż `8
´8 pD γ 1 ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1V γ 1 ´γ,ξ pD γ 1 ,ξ ´izq ´1dz

. Now, we only need to calculate the first term in the right hand of the above equality.

For the other term, the estimate is same. Given

α 2 2π › › › › ż `8 ´8 |D ξ | 1{2 pD γ,ξ ´izq ´1V γ´γ 1 ,ξ pD γ 1 ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1|D ξ | 1{2 dz › › › › BpL 2 ξ q ď α 2 2π }V h,ξ } BpL 2 ξ q }V γ 1 ´γ,ξ } BpL 2 ξ q }|D ξ | 1{2 |D γ 1 ,ξ | ´1{2 } 2 BpL 2 ξ q }|D γ 1 ,ξ | ´1} BpL 2 ξ q ˆż `8 ´8 dz}|D γ,ξ | 1{2 pD γ,ξ ´izq ´1} 2 Y ď α 2 2 C 2 EE p1 ´r κprqq ´2}h} XXY }γ ´γ1 } XXY .

Now we have

}|D 0 | 1{2 rDQpγq ´DQpγ 1 qsh|D 0 | 1{2 } Y ď α 2 C 2 EE p1 ´r κprqq ´2}h} XXY }γ ´γ1 } XXY .
Letting K " α 2 C 2 EE p1 ´r κprqq ´2, we get the conclusion.

As a consequence of these estimates, we have the following inequality:

Proposition 4.3. Assume that κ " αpC 1 H pz `qq `C1 W q `q ă 1 and C EE " C 1 H `CW . Let A ą αC EE p1 `κq 1{2 p1 ´κq 3{2 .
Then for r ą 0 small enough, the map T : γ Ñ P γ γP γ is well-defined of class C 1,1 on D " Γ ďq `BXXY prq with values in X X Y , and for any γ P T ´1pDq:

}T 2 pγq ´T pγq} XXY ď A}T pγq} 1{2 σ 1,1 XY }T pγq} 1{2 XXY }γ ´T pγq} XXY . (4.6)
Moreover, for any R ą 0:

}DT pγq} BpXXY q and }T pγq ´γ} XXY are bounded on D X B XXY pR `rq. (4.7)

DL R ą 0, @γ, γ 1 P D X B XXY pR `rq, }DT pγq ´DT pγ 1 q} BpXXY q ď L R }γ 1 ´γ} XXY . (4.8)

Remark 4.4. Notice that T pγq " P γ γP γ "

l 3 p2πq 3 ż À Q ˚P γ,ξ γ ξ P γ,ξ dξ " l 3 p2πq 3 ż À Q ˚Tξ pγ ξ qdξ Proof. Since Qpγq is C 1,1 , then T pγq is C 1,1 .
Now we prove (4.6).

T 2 pγq ´T pγq " pP T pγq ´P γ qT pγqP T pγq `P γ T pγqpP T pγq ´P γ q Then }T 2 pγq ´T pγq} XXY ď }pP T pγq ´P γ qT pγqP T pγq } XXY `}P γ T pγqpP T pγq ´P γ q} XXY , and

}P γ T pγqpP T pγq ´P γ q} X ď }|D 0 | 1{2 pP T pγq ´P γ q|D 0 | 1{2 } Y }T pγqP T pγq |D 0 | 1{2 } σ 1,1 , }P γ T pγqpP T pγq ´P γ q} Y ď }|D 0 | 1{2 pP T pγq ´P γ q|D 0 | 1{2 } Y }T pγqP T pγq } Y .
For the term T pγqP T pγq |D 0 | 1{2 , by Lemma 4.1, we have that

}T ξ pγqP T pγq,ξ |D ξ | 1{2 } σ 1 pξq ď}|D T pγq,ξ | ´1{2 |D ξ | 1{2 } BpL 2 ξ q }T ξ pγqP T pγq,ξ |D T pγq,ξ | 1{2 } σ 1 pξq ďp1 ´κq ´1{2 }T ξ pγq|D T pγq,ξ | 1{2 P T pγq,ξ } σ 1 pξq ďp1 ´κq ´1{2 }T ξ pγq|D T pγq,ξ | 1{2 } σ 1 pξq ďp1 ´κq ´1{2 p1 `κq 1{2 }T ξ pγq|D ξ | 1{2 } σ 1 pξq ďp1 ´κq ´1{2 p1 `κq 1{2 }T ξ pγq} 1{2 σ 1 pξq }T ξ pγq} 1{2 Xpξq .
(4.9) Thus

}T pγqP T pγq |D 0 | 1{2 } σ 1,1 ď p1 ´κq ´1{2 p1 `κq 1{2 }T ξ pγq} 1{2 σ 1,1 }T ξ pγq} 1{2 X .
And as γ, T pγq P D, thus γ `tpT pγq ´γq P D for 0 ď t ď 1,

|D 0 | 1{2 pP T pγq ´P γ q|D 0 | 1{2 " ż 1 0 |D 0 | 1{2 DQ ξ pγ `tpT pγq ´γqqpT pγq ´γq|D 0 | 1{2 dt,
we deduce that Finally, for the term DT pγ 1 q ´DT pγq, we have DT ξ pγ 1 qh ´DT ξ pγqh "pDP γ,ξ hqγ ξ P γ,ξ `Pγ,ξ γ ξ pDP γ,ξ hq `Pγ,ξ h ξ P γ,ξ ´pDP γ 1 ,ξ hqγ 1 ξ P γ 1 ,ξ ´Pγ 1 ,ξ γ 1 ξ pDP γ 1 ,ξ hq ´Pγ 1 ,ξ h ξ P γ 1 ,ξ .

}|D 0 | 1{2 pP T pγq ´P γ q|D 0 | 1{2 } Y ď }|D 0 | 1{2 DQpγq|D 0 | 1{2 } Y }γ ´T pγq} XXY , ( 4 
By Lemma 4.2, the inequality (4.9) and the inequality (4.10), we notice that there is a constant C r κ,r,1 , such that for r small enough

}pDP γ,ξ hqγ ξ P γ,ξ ´pDP γ 1 ,ξ hqγ 1 ξ P γ 1 ,ξ } Xpξq ď}rpDP γ,ξ hq ´pDP γ 1 ,ξ hqsγ ξ P γ,ξ } Xpξq `}pDP γ 1 ,ξ hqpγ ξ ´γ1 ξ qP γ,ξ } Xpξq `}pDP γ 1 ,ξ hqγ 1 ξ pP γ,ξ ´Pγ 1 ,ξ q} Xpξq ďp1 ´r κprqq ´1{2 p1 `r κprqq 1{2 }γ ξ } 1{2 σ 1 pξq }γ ξ } 1{2 Xpξq }|D ξ | 1{2 rpDP γ,ξ hq ´pDP γ 1 ,ξ hqs|D ξ | 1{2 } BpL 2 ξ q `p1 ´r κprqq ´1{2 p1 `κprqq 1{2 }|D ξ | 1{2 pDP γ 1 ,ξ hq} BpL 2 ξ q }|D ξ | 1{2 pγ ξ ´γ1 ξ q|D ξ | 1{2 } σ 1 pξq `}|D ξ | 1{2 pDP γ 1 ,ξ hq|D ξ | 1{2 } BpL 2 ξ q }γ 1 ξ } σ 1 pξq }|D ξ | 1{2 pP γ,ξ ´Pγ 1 ,ξ q|D ξ | 1{2 } BpL 2 ξ q ďC r κ,r,1 ´1 `}γ ξ } 1{2 σ 1 pξq }γ ξ } 1{2 Xpξq `}γ 1 ξ } σ 1 pξq ¯}γ ´γ1 } XXY }h} XXY ,
and

}pDP γ,ξ hqγ ξ P γ,ξ ´pDP γ 1 ,ξ hqγ 1 ξ P γ 1 ,ξ } BpL 2 ξ q ď}rpDP γ,ξ hq ´pDP γ 1 ,ξ hqsγ ξ P γ,ξ } BpL 2 ξ q `}pDP γ 1 ,ξ hqpγ ξ ´γ1 ξ qP γ,ξ } BpL 2 ξ q `}pDP γ 1 ,ξ hqγ 1 ξ pP γ,ξ ´Pγ 1 ,ξ q} BpL 2 ξ q ď}γ ξ } BpL 2 ξ q }|D ξ | 1{2 pDP γ,ξ hq ´pDP γ 1 ,ξ hq|D ξ | 1{2 } BpL 2 ξ q `}|D ξ | 1{2 DP γ 1 ,ξ h|D ξ | 1{2 } BpL 2 ξ q }pγ ξ ´γ1 ξ qP γ,ξ } BpL 2 ξ q `}|D ξ | 1{2 DP γ 1 ,ξ h|D ξ | 1{2 } BpL 2 ξ q }γ 1 ξ } BpL 2 ξ q }|D ξ | 1{2 pP γ,ξ ´Pγ 1 ,ξ q|D ξ | 1{2 } BpL 2 ξ q ďC r κ,r,1 }γ ´γ1 } XXY }h} XXY .
Then,

}pDP γ hqγP γ ´pDP γ 1 hqγ 1 P γ 1 } XXY ď2C r κ,r,1 p1 `}γ} XXY q }γ ´γ1 } XXY }h} XXY .
Analogously, we have

}P γ γpDP γ hq ´Pγ 1 γ 1 pDP γ 1 hq} XXY ď2C r κ,r,1 p1 `}γ ξ } XXY q }γ ´γ1 } XXY }h} XXY .
And by inequality (4.10), there is a constant C r κ,r,2 `and F :"

}P γ hP γ ´Pγ 1 hP γ 1 } XXY ď C
# γ P Γ ďq ; }γ} XXY `}T pγq ´γ} XXY 1 ´Aa q `R ď R + .
Let U :" F `BXXY prq, r small enough. Then U and F satisfy the assumption of Séré's retraction [START_REF] Eric | A new definition of the Dirac-Fock ground state[END_REF] with k :" A ? qR.

Remark 4.6. Here we impose the condition R ą 1. By Formula (5.3), the solution of our problem γ ˚satisfies }γ ˚}Y " 1 if 1 ď q. Thus if R " 1, then }T pγq ´γ} XXY ď 0 which means F Ă Γ ďq ; and if R ă 1, F " H. However F should be sufficiently large, hence we choose R ą 1.

Proof. We only need to prove

k :" A}T pγq} 1{2 σ 1,1 XY }T pγq} 1{2 XXY ă 1.
We have

}T pγq} XXY ď }γ} XXY ď R.
Thus, under the assumption,

k ď A a q `R ă 1.
Theorem 4.7. Let κ and A as in Proposition 4.3, and assume

1 ă R ă 1 A 2 q
`, and κ ă 1. Then there exists an open neighborhood V of F in X X Y with T pVq Ă V and such that the sequence of iterated maps pT p q pě0 converges for the topology of C 1,1 pV, Vq, with the estimate @γ P V, }θpγq ´T p pγq} XXY ď k p 1 ´k }T pγq ´γ} XXY .

In this way, we obtain a retraction θ of V onto FixpT q Y V whose restriction to F is a retraction of F onto FixpT q X F . This map and its differential are bounded and uniformly continuous on V.

Moreover, for any γ P θpF q, by Floquet-Bloch decomposition, we have

γ " l 3 p2πq 3 ż À Q l γ ξ dξ
with γ ξ P θ ξ pF q and θ ξ pγq " γ ξ . Then, for any h P XXY with the operator S ξ " Dθ ξ pγqh satisfies P γ,ξ S ξ P γ,ξ " P γ,ξ h ξ P γ,ξ and P γ,ξ S ξ P γ,ξ " 0

In other words, the splitting L 2 ξ " P γ,ξ L 

E DF pγ n q ´ F Tr L 2 pγ n q ď 0.
And moreover, if κ ă 1 ´1{2αC EE q `, then we have }γ n } XXY ď maxtp1 ´κ ´1{2αC EE q `q´1 F q, 1u. (4.12)

Proof. Note that the operator 0 belongs to Γ ďq and satisfies that E DF p0q ´ F Tr L 2 p0q " 0. It is also belongs to the interior of F in Γ ďq .

Thus, min γPΓ ďq pE DF pγq ´ F Tr L 2 pγqq ď 0. And there is a minimizing sequence, such that

E DF pγ n q ´ F Tr L 2 pγ n q ď 0.
Especially, if min γPΓ ďq pE DF pγq ´ F Tr L 2 pγqq " 0, then γ n " 0 could be the sequence. As

l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ
´ F ´1{2αV γn,ξ qγ n,ξ qdξ " E DF pγ n q ´ F Tr L 2 pγ n q ď 0 and D γn,ξ γ n,ξ " |D γn,ξ |γ n,ξ , we get

l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ ´ F ´1{2αV γn,ξ qγ n,ξ qdξ " l 3 p2πq 2 ż Q l Tr L 2 ξ pp|D γn,ξ | ´ F ´1{2αV γn,ξ qγ n,ξ qdξ ě l 3 p2πq 2 ż Q l Tr L 2 ξ ppp1 ´κq|D ξ | ´ F ´1{2αV γn,ξ qγ n,ξ qdξ ěp1 ´κq}γ n } X ´1{2αC EE }γ n } σ 1,1 XY }γ n } X ´ F }γ n } σ 1,1 ěp1 ´κ ´1{2αC EE q `q}γ n } X ´ F q Thus, p1 ´κ ´1{2αC EE q `q}γ n } X ´ F q ď 0.
As 1 ´κ ´1{2αC EE q `ą 0, }γ n } X ď p1 ´κ ´1{2αC EE q `q´1 F q.

Thus, }γ n } XXY ď maxtp1 ´κ ´1{2αC EE q `q´1 F q, 1u.

Corollary 4.9. Assume that κ ă 1 ´1{2αC EE q `, and let A as above. And assume that A a maxtp1 ´κ ´1{2αC EE q `q´1 F q, 1uq `ă 1.

Then there are A, R as in Proposition 4.5 and ρ ą 0 such that, if γ P Γ ďq satisfies E DF pγq ´ F Tr L 2 pγq ď 0, then B XXY pγ, ρq X Γ ďq is a subset of F .

Proposition 4.10. Assume that κ ă 1. Let γ, γ 1 P Γ ďq such that 0 ď γ 1 ξ ď 1 r0,p1´κq ´1c ˚pq`1qs pD γ,ξ q.

Then, }γ 1 } XXY ď maxtp1 ´κq ´2qc ˚pq `1q, 1u.

Proof. By Lemma 4.1, we have

l 3 p2πq 3 ż Q l dξ Tr L 2 ξ pD γ,ξ γ 1 ξ q " l 3 p2πq 3 ż Q l dξ Tr L 2 ξ p|D γ,ξ |γ 1 ξ q ěp1 ´κq l 3 p2πq 3 ż Q l dξ Tr L 2 ξ p|D ξ |γ 1 ξ q "p1 ´κq}γ 1 } X ,
And since γ 1 P Γ ďq ,

l 3 p2πq 3 ż Q l dξ Tr L 2 ξ pD γ,ξ γ 1 ξ q ď p1´κq ´1c ˚pq`1q l 3 p2πq 3 ż Q l dξ Tr L 2 ξ γ 1
ξ ď qp1´κq ´1c ˚pq`1q.

Now we have

}γ 1 } X ď p1 ´κq ´2qc ˚pq `1q.

And by }γ} Y ď 1, we have }γ 1 } XXY ď maxtp1 ´κq ´2qc ˚pq `1q, 1u.

Existence of minimizers 5.1 Spectral properties of periodic Dirac operators

Our result is based on the observation of the spectral properties of Dirac operators, which will be used several times: Lemma 5.1. Assume that κ " αpC 1 H pz `qq `C1 W q `q ă 1, and γ P Γ ďq . Then there are constants c ˚pkq, c ˚pkq ą 0 independent of ξ, with 1 ď c ˚pkq ď c ˚pkq and c ˚pkq Ñ 8 when k Ñ 8 such that the k-th eigenvalue (counted with multiplicity) of the mean-field operator D γ,ξ is situated in the interval rc ˚pkqp1 ´κq, c ˚pkqp1 ´κq ´1s independent of γ. Moreover, there is a constant e ą c ˚pq `2qp1 ´κq ´1 and another constant M ą 0, such that there are at most q `M eigenvalues in r0, es.

Proof. Letting Λ ξ :" 1 R `pD ξ q " 1 2 `Dξ 2|D ξ | and Λ ξ :" 1 R ´pD ξ q " 1 2 ´Dξ 2|D ξ | .
By the formula in [START_REF] Esteban | Variational methods in relativistic quantum mechanics[END_REF]Equation (64)], we know the positive eigenvalues pλ k q of D γ,ξ :

λ k :" inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PpV À Λ ξ H 1{2 ξ qzt0u pD γ,ξ u ξ , u ξ q }u ξ } 2 L 2 ξ (5.1)
For the lower bound, we have

λ k ě inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PV zt0u pD γ,ξ u ξ , u ξ q }u ξ } 2 L 2 ξ .
By inequality (4.3), we know pD γ,ξ u ξ , u ξ q ě p1 ´κq p|D ξ |u ξ , u ξ q .

Thus,

p1´κq ´1λ k ě inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PV zt0u p|D ξ |u ξ , u ξ q }u ξ } 2 L 2 ξ ě inf V subspace of H 1{2 ξ dim V "k sup u ξ PV zt0u p|D ξ |u ξ , u ξ q }u ξ } 2 L 2 ξ .
Denote c ˚pkq by

c ˚pkq :" inf ξPQ l inf V subspace of H 1{2 ξ dim V "k sup u ξ PV zt0u p|D ξ |u ξ , u ξ q }u ξ } 2 L 2 ξ " inf ξPQ l inf Z k subspace of Z 3 dim Z k "k sup jPZ k a 1 `|j{l ´ξ| 2 .

Now, we know

λ k ě p1 ´κqc ˚pkq.
And obviously,

c ˚pkq Ñ 8 when k Ñ 8.
For the upper bound, by Formula (5.1), we yield

λ k ď sup ξPQ l inf V subspace of Λ `H 1{2 ξ dimV "k sup u ξ PpV À Λ ξ H 1{2 ξ qzt0u pD γ,ξ u ξ , u ξ q }u ξ } 2 L 2 ξ .
Taking

u ξ P pV À Λ ´H 1{2 ξ qzt0u, then let u ξ " Λ `uξ P V, u ξ " Λ ´uξ P Λ ´H 1{2 ξ .
Thus, we know pD ξ u ξ , u ξ q " 0.

Together with inequality (4.3), we have

pD γ,ξ u ξ , u ξ q " ´Dγ,ξ u ξ , u ξ ¯`2 ´Dγ,ξ u ξ , u ξ ¯`´D γ,ξ u ξ , u ξ ď}|D ξ | 1{2 u ξ } 2 L 2 ξ ´}|D ξ | 1{2 u ξ } 2 L 2 ξ `}|D γ,ξ ´Dξ | 1{2 u ξ } 2 L 2 ξ `}|D γ,ξ ´Dξ | 1{2 u ξ } 2 L 2 ξ `2}|D γ,ξ ´Dξ | 1{2 u ξ } L 2 ξ }|D γ,ξ ´Dξ | 1{2 u ξ } L 2 ξ ďp1 `κq}|D ξ | 1{2 u ξ } 2 L 2 ξ `2κ}|D ξ | 1{2 u ξ } 2 L 2 ξ ´p1 ´κq}|D ξ | 1{2 u ξ } 2 L 2 ξ ďp1 ´κq ´1}|D ξ | 1{2 u ξ } 2 L 2 ξ .
Let

c ˚pkq :" sup ξPQ l inf V subspace of Λ `H 1{2 ξ dim V "k sup u ξ PV }|D ξ | 1{2 u ξ } 2 L 2 ξ }u ξ } 2 L 2 ξ .
As

}u ξ } L 2 ξ ď }u ξ } L 2 ξ
, we know λ k ď p1 ´κq ´1c ˚pkq.

And obviously, c ˚pkq ď c ˚pkq.

Proof of Theorem 2.13

Now, we embark on the study of the existence. The following assumptions are necessary: Assumption 5.2. Let q `" maxtq, 1u, κ :" αppC 1 H pz `qq `C1 W q `qq, C EE :" C 1 H `CW and A ą 1{4αp1 ´κq ´2p1 `κqC EE . We assume that 1. κ ă 1 ´1{2αC EE q `, 2. κ 1 :" αpC G pz `qq `C1 W q `q ă 1,

3.

A a maxtp1 ´κ ´1{2αC EE q `q´1 F q, 1uq `ă 1.

We have Theorem 5.3. Under Assumption 5.2, for some constant c ˚pqq ą 0 only dependent on q, if F ą p1 ´κq ´1c ˚pq `1q there exists γ ˚P Γ ďq such that

E DF pγ ˚q ´ F Tr L 2 pγ ˚q " I ď :" min γPΓ ďq `EDF pγq ´ F Tr L 2 pγq ˘. (5.2)
Besides, γ ˚solves the following nonlinear self-consistent equation:

$ ' & ' % γ " 1 r0,νq pD γ q `δ D γ " l 3 p2πq ż À Q l dξD γ,ξ , (5.3)
where 0 ď δ ď 1 tνu pD γ q and 0 ď ν ď p1 ´κq ´1c ˚pq `1q independent of F . Furthermore,

l 3 p2πq 3 ş Q l dξ Tr L 2 ξ γ ˚,ξ " q, thus ν P R is a Lagrange multiplier due to the charge constraint l 3 p2πq 3 ş Q l dξ Tr L 2 ξ γ ˚,ξ " q.
We will prove this theorem in the subsection 5.4.

Proof of Theorem 2.13. By Theorem 5.3, for F ą p1 ´κq ´1c ˚pq `1q, any minimizer γ of I ď satisfies that γ ˚P Γ q .

Then E DF pγ ˚q ´ F Tr L 2 pγ ˚q ě min γPΓ q `EDF pγq ´ F Tr L 2 pγq ˘.

As I ď ď min γPΓ q `EDF pγq ´ F Tr L 2 pγq ˘, we yield

E DF pγ ˚q ´ F Tr L 2 pγ ˚q " min γPΓ q `EDF pγq ´ F Tr L 2 pγq ˘,
namely, E DF pγ ˚q " min γPΓ q E DF pγq " I.

And for any q satisfies the Assumption 2.12, we have a F ą p1 ´κq ´1c ˚pq `1q, thus that A a maxtp1 ´κ ´1{2αC EE q `q´1 F q, 1uq `ă 1.

Now the minimizers of I ď are the minimizers of I. We get the conclusion.

Existence of minimizers for the linearized problem

The following lemma will be used in the next sections: , with some 0 ď δ ď l 3 p2πq 3 ş À Q l 1 tνu pD g,ξ qdξ for some ν P p0, F s independent of ξ P Q l .

Furthermore, for every F , we have that ν ď p1 ´κq ´1c ˚pq `1q, and γ ˚P B.

If F ď ν, every γ ˚P Γ ďq with the structure γ ˚" l 3 p2πq 3 ş À Q l 1 r0, F q pD g,ξ qdξ `δ and 0 ď δ ď l 3 p2πq 3 ş À Q l 1 t F u pD g,
ξ qdξ is a minimizer. And if F ą p1 ´κq ´1c ˚pq `1q, the set of solutions γ ˚is independent of F , and

l 3 p2πq 3 ş Q l dξ Tr L 2 ξ γ ˚,ξ " q.
Proof. For any ξ P Q l we can choose tψ k pξ, ¨qu k a basis of eigenfunctions of D g,ξ , such that

D g,ξ " ÿ kě1 λ k pξq |ψ k pξq ψ k pξq| .
We know from Lemma 5.1 that each positive λ k pξq is bounded independent of ξ. Let us introduce like in [START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF][START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF] the function

C : s Þ Ñ l 3 p2πq 3 ÿ 1ďk |tξ P Q l : 0 ď λ k pξq ď su| .
This function Cpsq is nondecreasing on R, and by Lemma 5.1, Cp0q " 0, Cp8q " 8. Thus we deduce that there exists a ν 1 P r0, 8q and a periodic operator δ ξ such that lim sÑν 1 Cpsq ď q ď lim sÑν 1 Cpsq.

(5.4)

We will prove that every minimizer γ ˚P Γ ďq has the structure

γ ˚" l 3 p2πq 3 ż À Q l 1 r0,νq pD g qdξ `δ
with some 0 ď δ ď l 3 p2πq 3 ş À Q l 1 tνu pD g,ξ qdξ and ν :" mintν 1 , F u. However, we prove firstly ν ď p1 ´κq ´1c ˚pq `1q, and as a result γ ˚P B. Now, we prove that p1 ´κqc ˚pq ´1q ď ν 1 ď p1 ´κq ´1c ˚pq `1q. If not, we assume that ν 1 ą p1 ´κq ´1c ˚pq `1q first. Then by Lemma 5.1, lim sÑv 1 Cpsq ě Cpp1 ´κq ´1c ˚pq `1qq ě q `1, contradicts with formula (5.4). Similarly, for ν 1 ă p1 ´κqc ˚pq ´1q, we have that lim sÑv 1 Cpsq ď Cpp1 ´κqc ˚pq ´1qq ď q ´1. Thus, ν ď p1 ´κq ´1c ˚pq `1q. And if F ě p1 ´κq ´1c ˚pq `1q, then the minimizer is independent of F .

We have that 0 ď γ ˚,ξ ď 1 r0,p1´κq ´1c ˚pq`1qs pD g,ξ q.

And by Lemma 5.1 since p1 ´κq ´1c ˚pq `1q ă e, we know that }γ ˚}σ 1,8 ď q `M. Thus, γ ˚P B. Now, we return back to say that the minimizer in Γ ďq has the structure γ ˚"

l 3 p2πq 3 ş À Q l 1 r0,νq pD g qdξ `δ. The proof is similar to [5]. We consider ν " ν 1 ă F firstly. Notice that ż Q l Tr L 2 ξ ppD g,ξ ´ F qγ ˚,ξ q " ż Q l Tr L 2 ξ ppD g,ξ ´νq1 r0,νq pD g,ξ qq `pν ´ F q ż Q l Tr L 2 ξ γ ˚,ξ dξ.
which means if γ ˚is the minimizer, then

l 3 p2πq 3 ż Q l Tr L 2 ξ γ ˚,ξ dξ " q.
For any γ P Γ ďq , we write

ż Q l Tr L 2 ξ ppD g,ξ ´ F qpγ ξ ´γ˚,ξ qqdξ " ż Q l Tr L 2 ξ ppD g,ξ ´νqpγ ξ ´γ˚,ξ qqdξ `żQ l Tr L 2 ξ pν ´ F qpγ ξ ´γ˚,ξ qqdξ " ż Q l Tr L 2 ξ ppD g,ξ ´νqpγ ξ ´γ˚,ξ qqdξ `|ν ´ F | ˇˇˇˇż Q l Tr L 2 ξ pγ ξ ´γ˚,ξ qdξ ď 0. ˇˇˇě ż Q l Tr L 2 ξ ppD g,ξ ´νqpγ ξ ´γ˚,ξ qqdξ Since 0 ď γ ξ ď 1 L 2 ξ
, we have that γ ξ ψ k pξq, ψ k pξq P r0, 1s, for almost every ξ P Q l . Hence, ż

Q l Tr L 2 ξ ppD g,ξ ´νqpγ ξ ´γ˚,ξ qqdξ " ż Q l ÿ λ k pξqăν Tr L 2 ξ p|λ k pξq ´ν| | γ ξ ψ k pξq, ψ k pξq ´1|q dξ `żQ l ÿ λ k pξqąν Tr L 2 ξ p|λ k pξq ´ν| γ ξ ψ k pξq, ψ k pξq qdξ (5.5)
Obviously, if γ is the minimizer, then γ must have the structure γ " l 3

p2πq 3 ş À Q l 1 r0,νq pD g qdξδ .
For the case ν " F ď ν 1 , we prove firstly that every minimizer γ ˚satisfies γ ˚"

l 3 p2πq 3 ş À Q l 1 r0, F q pD g,ξ qdξ `δ, with some 0 ď δ ď l 3 p2πq 3 ş À Q l 1 t F u pD g,ξ qdξ.
If not, it means that there is a minimizer γ :" γ 1 `γ2 `δ with 0 ď γ 1,ξ ď 1 r0, F q pD g,ξ q, 0 ď γ 2,ξ ď 1 p F ,8q pD g,ξ q. And there is a nonempty set U Ă Q l , such that if γ 2 " 0 then for ξ P U , γ 1,ξ ă 1 r0, F q pD g,ξ q. Using formula (5.5) again, we get

ż Q l Tr L 2 ξ ppD g,ξ
´ F qpγ ξ ´γ˚,ξ qqdξ ą 0 contradicts the fact that γ is the minimizer.

And for every γ P Γ ďq with γ " l 3

p2πq 3 ş À Q l 1 r0, F q pD g,ξ qdξ `δ, obviously we have that ż Q l Tr L 2 ξ ppD g,ξ ´ F qpγ ξ ´γ˚,ξ qqdξ " 0.
Thus γ is equally a minimizer.

Proof of Theorem 5.3

However, because of the complexity of the potential, we can not prove the Theorem 5.3 directly. Thus, we confine the existence into the ball B R :" tγ P X X Y ; }γ} σ 1,8 ď Ru with R large enough which will be used in Lemma 5.14. And global existence of minimizers (Theorem 5.3) will be a consequence of the following result: Theorem 5.5. Under Assumption 5.2, for a constant M large enough and a constant c ˚pqq ą 0 only dependent on q, if F ą p1 ´κq ´1c ˚pq `1q and R ě R 0 :" q `M , there exists a minimizer γ ˚P Γ ďq X B R such that

E DF pγ ˚q ´ F Tr L 2 pγ ˚q " I ď,R :" min γPΓ ďq XB R `EDF pγq ´ F Tr L 2 pγq ˘.
(5.6)

Besides, γ ˚solves the following nonlinear self-consistent equation:

$ ' & ' % γ " 1 r0,νq pD γ q `δ D γ " l 3 p2πq ż À Q l dξD γ,ξ , (5.7)
where 0 ď δ ď 1 tνu pD γ q and 0 ď ν ď p1 ´κq ´1c ˚pq `1q independent of F . Furthermore, γ ˚P B R 0 , and

l 3 p2πq 3 ş Q l dξ Tr L 2 ξ γ ˚,ξ " q. Thus ν P R is a Lagrange multiplier due to the charge constraint l 3 p2πq 3 ş Q l dξ Tr L 2 ξ γ ˚,ξ " q.
And }γ ˚}X ď p1 ´κq ´2qc ˚pq `1q.

(5.8)

The following theorem indeed explains the relationship between I ď and I ď,R , and this theorem will cover the proof of Theorem 5.3: Theorem 5.6. The minimum problem I ď,R with R ě R 0 is equivalent to the minimum problem I ď in the following sense:

• I ď,R " I ď ;
• Any minimizer of I ď minimizes I ď,R , and vice versa.

Proof. We split the proof into two steps:

Step 1. Any minimizer of I ď,R minimizes I ď : By Theorem 5.5, for any minimizer γ ˚of I ď,R such that

E DF pγ ˚q ´ F Tr L 2 pγ ˚q :" I ď,R , we have that I ď,R ď I ď,R 0 . As γ ˚P Γ ďq X B R 0 , we yield I ď,R 0 ď E DF pγ ˚q ´ F Tr L 2 pγ ˚q " I ď,R . Thus for any R ě R 0 , I ď,R " I ď,R 0 . As Y RěR 0 `Γď q X B R ˘" Γ ďq , we know that I ď " lim RÑ8 I ď,R " I ď,R 0 .
Obviously this γ ˚minimizes I ď .

Step 2. Any minimizer of I ď minimizes I ď,R :

Now for Theorem 5.6, it remains to prove that any minimizer γ ˚of I ď is in B R 0 . We have the following linearized problem for the minimizer: Lemma 5.7. Under the Assumption 5.2, and assume that γ ˚P Γ ďq is a minimizer of problem 5.2, then ´ F qγ ξ qdξ.

ż Q l Tr L 2 ξ ppD γ˚,ξ ´ F qγ ˚,ξ dξ " inf γPΓďq, γ"P γ˚γ ż Q l Tr L 2 ξ ppD γ˚,ξ ´ F qγ ξ qdξ ( 
We only need to prove that any minimizer of (5.2) minimizes the problem (5.6). By Lemma 5.7 and Lemma (5.4), we know that if γ ˚minimizes I ď , then γ ˚P B R 0 . Thus, I ď,R 0 " I ď . Now we know that γ ˚minimizes the problem (5.6). This ends the proof.

proof of Theorem 5.5

It remains to prove Theorem 5.5.

Proof of Theorem 5.5. We split the proof into 6 steps.

Step 1. Regularity of the eigenfunctions.

We will need some regularities in H 1 ξ pQ l q for Lemma 5.18 for almost every ξ P Q l to pass to the limit in the kinetic term:

Lemma 5.8. Assume that κ 1 " αpC G pz`qq`C 1 W q `q ă 1, and γ P Γ ďq . Then under the Assumption 5.2, for every ξ P Q l and for every eigenfunction u ξ pxq of the the operator D γ,ξ with the corresponding eigenvalue 0 ď λpξq ď e , we have that u k,ξ P H 1 ξ pQ l q, with the following estimates independent of ξ }|D ξ |u ξ } L 8 pQ l ;L 2 ξ pQ l qq ď p1 ´κ1 q ´1e.

Proof. By Lemma 2.9 and Lemma 2.11, we have that

}D γ,ξ u ξ } L 2 ξ ě p1 ´CG pz `qq ´C1 W q `q}D ξ u ξ } L 8 pQ l ;L 2 ξ pQ l qq " p1 ´κ1 q}D ξ u ξ } L 2 ξ .
As u ξ is the eigenfunction corresponding to eigenvalue 0 ď λpξq ď e, we have that

}D γ,ξ u ξ } L 8 pQ l ;L 2 ξ pQ l qq " }λpξqu ξ } L 2 ξ ď e}u ξ } L 2 ξ " e.
Thus,

}D ξ u ξ } L 8 pQ l ;L 2 ξ pQ l qq ď p1 ´κ1 q ´1e
Step 2. The corresponding linearized problem.

Lemma 5.9. Under the Assumption 5.2, and assume that γ n P Γ ďq XB R is a minimizing sequence of 5.6. Then

ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ n,ξ qdξ ´inf γPΓďq, γ"P γn γ ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ ξ qdξ Ñ 0 (5.10)
Proof. Otherwise, there would be a 0 such that, after extraction,

l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ n,ξ qdξ ě inf γPΓďq, γ"P γn γ l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ
´ F qγ ξ qdξ ` 0 , By Lemma 5.4, there exists an operator γ 1 n P Γ ďq such that γ 1 n P Γ ďq X B R 0 minimizes the following problem 

l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ 1 n,ξ qdξ :" inf γPΓďq, γ"P γn γ l 3 p2πq 2 ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ ξ qdξ.
P Γ ďq Ş B X Ş Y pγ n , ρq Ş B R Ă F Ş B R .
Then from Theorem 4.7, the function

f n : s P r0, σs Ñ pE DF ´ F Tr L 2 qpθrp1 ´sqγ n `sγ 1
n sq is of class C 1 and the sequence of derivatives pf 1 n q is equicontinuous on r0, δs. By Formula (4.11),

f 1 n p0q " l 3 p2πq 2 ż Q l Tr L 2 ξ `pD γn,ξ ´ F qpγ 1 n,ξ ´γn,ξ q ˘ď ´ 0 .
So there is 0 ă s 0 ă σ independent of n, such that @s P r0, s 0 s, f 1 psq ď ´ 2 . Hence,

pE DF ´ F Tr L 2 qpθrp1 ´s0 qγ n `s0 γ 1 n sq ďf n p0q ´ 0 s 0 2 "pE DF ´ F Tr L 2 qpγ n q ´ 0 s 0 2 . But θrp1 ´sqγ n `sγ 1 n s P Γ ďq Ş B R and pE DF ´ F Tr L 2 qpγ n q Ñ min γPΓ ďq Ş B R pE DF ´ F Tr L 2 qpγq
. This is a contradiction. And we get the conclusion.

Step 3. The decomposition of minimizing sequence. Lemma 5.10. Under the Assumption 5.2 and the statement of Lemma 5.9, there is a minimizing sequence γ n P Γ ďq X B R of (5.6). Then, for each n define p n :"

l 3 p2πq 3 ş À Q l p n,
ξ dξ with p n,ξ " 1 r0,es pD γn,ξ q with e defined in Lemma 5.1. Then if F ą p1 ´κq ´1c ˚pq `1q:

l 3 p2πq 3 ż Q l Tr L 2 ξ γ n,ξ dξ Ñ q and }γ n ´pn γ n p n } X Ñ 0.
Proof. By Lemma 5.4, for some ν n P r0, p1´κq ´1c ˚pq`1qs, then l 3

p2πq 3 ş À Q l dξ1 r0,νnq pD γn,ξ qdξδ with 0 ď δ ď l 3 p2πq 3 ş À Q l 1 νn pD γn,ξ qdξ is the minimizer of the problem inf γPΓďq, γ"P γn γ l 3 p2πq 3 ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ ξ qdξ " l 3 p2πq 3 ż Q l dξ Tr L 2 ξ pD γn,ξ 1 νn pD γn,ξ qq`pν n ´ F qq. We denote π n :" l 3 p2πq 3 ş À Q l dξ1 pe,8q pD γn,ξ q, π 1 n :" l 3 p2πq 3 ş À Q l dξ1
pνn,es pD γn,ξ q, and π 2 n :" l 3 p2πq 3 ş À Q l dξ1 r0,νnq pD γn,ξ q. Then we may write

l 3 p2πq 3 ż Q l dξ Tr L 2 ξ ppD γn,ξ ´ F qγ n,ξ q ´inf γPΓďq, γ"P γn γ l 3 p2πq 3 ż Q l Tr L 2 ξ ppD γn,ξ ´ F qγ ξ qdξ " l 3 p2πq 3 ż Q l dξ Tr L 2 ξ ppD γn,ξ ´νn qπ n,ξ γ n,ξ π n,ξ q `l3 p2πq 3 ż Q l dξ Tr L 2 ξ ppD γn,ξ ´νn qπ 1 n,ξ γ n,ξ π 1 n,ξ q `l3 p2πq 3 ż Q l dξ Tr L 2 ξ ppD γn,ξ ´νn qpπ 2 n,ξ γ n,ξ π 2 n,ξ ´1r0,νns pD γn,ξ qqq `p F ´νn q ˜q ´l3 p2πq 3 ż Q l dξ Tr L 2 ξ pγ n,ξ q ¸.
But the four terms in the right hand of the above equation are non-negative.

So Lemma 5.9 implies that l 3

p2πq 3 ş Q l dξ Tr L 2 ξ γ n,ξ Ñ q and l 3 p2πq 3 ş Q l dξ Tr L 2 ξ
ppD γn,ξ νn qπ n,ξ γ n,ξ π n,ξ q Ñ 0. But π n,ξ pD γn,ξ ´νn qπ n,ξ ě pc ˚pq `2q ´c˚p q `1qqp1 ´κq ´1π n,ξ and π n,ξ pD γn,ξ νn qπ n,ξ ě π n,ξ p|D γn,ξ | ´p1 ´κq ´1c ˚pq `1qqπ n,ξ , so that, taking a convex combination of these two estimates:

c ˚pq `2q c ˚pq `2q ´c˚p q `1q π n,ξ pD γn,ξ ´νn qπ n,ξ ě π n,ξ |D γn,ξ |π n,ξ .
Hence

}π n γ n π n } X " l 3 p2πq 3 ż Q l dξ Tr L 2 ξ pπ n,ξ |D ξ |π n,ξ γ n,ξ q ďp1 ´κq ´1 l 3 p2πq 3 ż Q l dξpπ n,ξ |D γn,ξ |π n,ξ γ n,ξ q Tr L 2 ξ Ñ 0.
It remains to study the limit of u n :" π n γ n p n as n goes to infinity. Since pγ n q 2 ď γ n , we have

pπ n γ n π n q 2 `un u n " π n pγ n q 2 π n ď π n γ n π n . Hence l 3 p2πq 3 ż Q l dξ Tr L 2 ξ p|D γn,ξ | 1{2 u n,ξ u n,ξ |D γn,ξ | 1{2 q Ñ 0.
Now, take any operator A, such that }A} Y ă 8. By the Cauchy-Schwartz inequality,

l 3 p2πq 3 ż Q l dξ Tr L 2 ξ pA ξ |D γn,ξ | 1{2 u n,ξ |D γn,ξ | 1{2 q ď l 3 p2πq 3 › › ›Tr L 2 ξ p|D γn,ξ | 1{2 p n,ξ A ξ A ξ p n,ξ |D γn,ξ | 1{2 q › › › 1{2 L 8 ˆ˜ż Q l dξ Tr L 2 ξ p|D γn,ξ | 1{2 u n,ξ u n,ξ |D γn,ξ | 1{2 q

¸1{2

But by Lemma 5.1, there is a M ą 0, such that p n,ξ has at most q `M eigenfunctions, which means that p n,ξ has rank at most q `M and ›

› p n |D γn | 1{2 › › Y ď e 1{2 . As a consequence, } Tr L 2 ξ p|D γn,ξ | 1{2 p n,ξ A ξ A ξ p n,ξ |D γn,ξ | 1{2 q} L 8 ď pq `M qe}A} 2 Y . So we have › › ›|D γn | 1{2 u n |D γn | 1{2 › › › σ 1,1 Ñ 0. Hence, }u n } X Ñ 0. Finally, }γ n ´pn γ n p n } X ď }π n γ n π n } X `2}u n } X Ñ 0.
Now, we have that }γ n ´pn γ n p n } X Ñ 0. Thus, we only need to study the convergence of p n γ n p n . Before it, we give some statements of regularity about p n γ n p n .

From now on, let

h n :" p n γ n p n .
Lemma 5.11. Assume that κ 1 " αpC G pz `qq `C1 W q `q ă 1, then

h n P X 2 8 .
Let h n,ξ px, yq be the kernel of h n,ξ , then we have that h n,ξ P L 8 pQ l ; H 1 ξ pQ 2 l qq.

Proof. We prove that }p n,ξ } X 2 8 is bounded first of all. Let pu n,k,ξ q kě1 be the eigenfunctions for the operator D γn,ξ with the corresponding eigenvalues λ n,k pξq. We know that

p n,ξ " ÿ 1ďk δ n,k pξq |u n,k,ξ u n,k,ξ | with δ n,k " 1 if 0 ď λ n,k pξq ď e and if not δ n,k " 0.
By Lemma 5.1, we know |tk; δ n,k pξq " 1u| ď q `M . And by Lemma 5.8, for any eigenfunction u n,k,ξ , we have that }δ n,k pξqu n,k,ξ } L 8 pH 1 ξ q ď p1 ´κ1 q ´1e. Now,

}p n,ξ } X 2 pξq " ÿ k δ n,k pξq}u n,k,ξ } 2 H 1 ξ ď pq `M q sup k }δ n,k pξqu n,k,ξ } 2 H 1 ξ , hence }p n } X 2 8 
ď pq `M qp1 ´κ1 q ´2e 2 . For h n , notice that p n,ξ " p 2 n,ξ and h n,ξ " p n,ξ h n,ξ p n,ξ , thus we have

}h n,ξ } X 2 8 "}|D ξ |h n,ξ |D ξ |} σ 1,8 "}|D ξ |p n,ξ h n,ξ p n,ξ |D ξ |} σ 1,8 ď}h n,ξ } Y }|D ξ |p n,ξ } 2 σ 2,8 ď}p n } X 2 8 
ďpq `M qp1 ´κ1 q ´2e 2 .

For the kernel,

}|D ξ,x |h n,ξ px, yq} L 2 ξ pQ 2 l q " }|D ξ |h n,ξ } σ 2 pξq ď }h n,ξ |} X 2 pξq ď pq `M qp1 ´κ1 q ´2e 2 ,
and same for |D ξ,y |h n,ξ px, yq. Thus, h n,ξ px, yq P L 8 pQ l ; H 1 ξ pQ 2 l qq, and

}h n,ξ } L 8 pQ l ;H 1 ξ pQ 2 l qq ď 2pq `M qp1 ´κ1 q ´2e 2 .
Step 4. The convergent subsequences.

After extraction, by Lemma 5.11 there is a γ ˚, such that .11) since σ 1,8 is the dual space of L 1 pQ l ; K ξ pQ l qq with K ξ the functional space of compact operators on L 2 ξ pQ l q, and Y is the dual space of σ 1,1 . Now, we prove that there are some strong convergences for h n . Lemma 5.12. Defining that S ξ pγ ξ qpx, yq " l 3 p2πq 3 ş Q l γ ξ px, yqdξ, then we have the following estimates:

h n á γ ˚in X 2 8 X Y. ( 5 
• ρ 1{2 hn is uniformly bounded in H 1 pQ l q.

• For 0 ď s ď 1, if f pξ, x, yq P W α,1 pQ l ; H s`t pQ 2 l qq with t ą 3, then S ξ 1 pf pξ ξ1 qh n,ξ 1 qpx, yq is uniformly bounded in W α,8 pQ l ; H s ξ pQ 2 l qq.

• If f pξ, x, yq P W 1,1 pQ l ; L 8 pQ 2 l qq, then S ξ 1 pf pξ´ξ 1 qh n,ξ 1 qpx, yq is uniformly bounded in W 1,8 pQ l ; L 2 ξ pQ 2 l qq.

Consequently, after extraction,

• ρ 1{2 hn pxq Ñ ρ 1{2 γ˚p xq in H 1{2 pQ l q,
• for any ą 0 and α ą 0,

S ξ 1 pf pξ ´ξ1 qh n,ξ 1 qpx, yq Ñ S ξ 1 pf pξ ´ξ1 qγ ˚,ξ 1 qpx, yq in L 8 pQ l ; H s´ ξ pQ 2 l qq. • |D ξ,x | ´1{2 |D ξ,y | ´1{2 S ξ 1 pf pξ ´ξ1 qh n,ξ 1 qpx, yq Ñ|D ξ,x | ´1{2 |D ξ,y | ´1{2 S ξ 1 pf pξ ´ξ1 qγ ˚,ξ 1 qpx, yq in L 8 pQ l ; L 2 ξ pQ 2 l qq.
Proof. The first estimate has been studies in [7, p. 730]. Combining with Lemma 5.11 we just use their estimate:

ż Q |∇ ? ρ hn px, xq| 2 dx ď l 3 p2πq 3 ż Q l Tr L 2 ξ r´ ξ h n,ξ sdξ ď pq `M qp1 ´κ1 q ´2e 2 .
The second estimate is based on Lemma B.1 and Lemma 5.11:

}|∇ ξ | β f pξ ´ξ1 , x, yqh n,ξ 1 px, yq} H s ξ ďC}|∇ ξ | β f pξ ´ξ1 q} H s ξ´ξ 1 }h n,ξ 1 } H s ξ 1 ď2Cpq `M qp1 ´κ1 q ´2e 2 }|∇ ξ | β f pξ ´ξ1 q} H s`t ξ´ξ 1 Then }|∇ ξ | β S ξ 1 pf pξ ´ξ1 , x, yqh n,ξ 1 qpx, yq} H s ξ ď l 3 p2πq 3 ż Q l }|∇ ξ | β f pξ ´¨, x, yqh n,ξ 1 px, yq} H s ξ dξ 1 ď 2l 3 C p2πq 3 pq `M qp1 ´κ1 q ´2e 2 }|∇ ξ | β f pξq} L 1 pQ l ;H s`t ξ pQ 2 l qq
Let β " 0, α. Hence, we have that

}S ξ pf pξ ´ξ1 qh n,ξ 1 qpx, yq} W α,8 pQ l ;H s ξ pQ 2 l q ď 2l 3 C p2πq 3 pq `M qp1´κ 1 q ´2e 2 }f } W α,1 pQ l ;H s`t ξ pQ 2 l qq .
Similarly, for the last estimate

}S ξ pf pξ ´ξ1 qh n,ξ 1 qpx, yq} W 1,8 pQ l ;L 2 ξ pQ l qq ď 2l 3 p2πq 3 pq `M qp1 ´κ1 q ´2e 2 }f } W 1,1 pQ l ;L 8 ξ pQ 2 l qq .
For every estimate, we have a weak(-star) convergence subsequence. And by Rellich-Kondrachov Theorem, we get the strong convergence. Now, we say that the limits are ρ 1{2 γ˚a nd S ξ 1 pf pξ ´ξ1 qγ ˚,ξ 1 qpx, yq respectively. For the first term, the proof is same with [7, p. 734]. Hence, we only deal with the last two convergences. Obviously, we also have that

h n á h ˚in σ 2,8 .
And we only need prove that S ξ 1 pf pξ ´ξ1 qh n,ξ q á S ξ 1 pf pξ ´ξ1 qh ˚,ξ q in L 8 pQ l ; L 2 ξ pQ 2 l qq. For any operator g P σ 2,1 with the kernel g ξ px, yq P L 1 pQ l ; L 2 ξ pQ 2 l qq, we have that

l 3 p2πq 3 ż Q l ż Q 2 l S ξ 1 pf pξ ´ξ1 qh n,ξ 1 qg ξ dxdydξ " l 3 p2πq 3 ż Q l ż Q 2 l h n,ξ 1 S ξ pf pξ ´ξ1 qg ξ qdxdydξ 1 " l 3 p2πq 3 ż Q l Tr L 2 ξ ph n,ξ 1 S ξ pf pξ ´ξ1 qg ξ qqdξ 1 Ñ l 3 p2πq 3 ż Q l Tr L 2 ξ ph ˚,ξ 1 S ξ pf pξ ´ξ1 qg ξ qqdξ 1 " l 3 p2πq 3 ż Q l ż Q 2 l S ξ 1 pf pξ ´ξ1 qγ ˚,ξ 1 qg ξ dxdydξ since by Young's convolution inequality }S ξ pf pξ ´ξ1 qg ξ q} σ 2,1 "}S ξ pf pξ ´ξ1 qg ξ qpx, yq} L 1 pQ l ;L 2 ξ 1 pQ 2 l qq ď l 3 p2πq 3 }f pξ, x, yq} L 1 pQ l ;L 8 ξ pQ 2 l qq }g ξ 1 px, yq} L 1 pQ l ;L 2 ξ 1 pQ 2 l qq ăC}g} σ 2,1 .
Step 5. Passing to the limit in the energy and in the constraints.

Lemma 5.13. As n goes to infinity, then For the other term, we split it into three part. For convenience, let f n pξ, x, yq :" S ξ 1 pf pξ ´ξ1 qh n,ξ 1 qpx, yq and f ˚pξ, x, yq :" S ξ 1 pf pξ ´ξ1 qγ ˚,ξ 1 qpx, yq.

}|D 0 | ´1{2 G l ˚pρ γn ´ργ˚q |D 0 | ´1{2 } Y Ñ 0. Proof.
For the term with all singularity in z, let f pξ, x, yq " e ´iξpx´yq . Obviously, f P W 

Q l Tr L 2 r|D ξ | ´1{2 V γn´γ˚,ξ |D ξ | ´1{2 |D ξ | 1{2 γ n,ξ |D ξ | 1{2 `|D ξ | ´1{2 V γn´γ˚,ξ |D ξ | ´1{2 |D ξ | 1{2 γ ˚|D ξ | 1{2 s ď}|D 0 | ´1{2 pV γn´γ˚q |D 0 | ´1{2 } Y p}γ n } X `}γ ˚}X q Ñ0.
We get the conclusion.

Step 6. The conclustion. Now, we could say that γ ˚is the minimizer under the condition γ ˚P Γ ďq X B R . Applying Lemma 5.9, we get Besides, }γ ˚}σ 1,8 P B R 0 for any mimimizers in Γ ďq X B R if R ě R 0 :" q `M .

A Séré's retraction

At the end of this article, we state the Séré's retraction for reader's convenience.

Theorem A.1. Let pX, } ¨}X q be a Banach space and U an open subset of X. Let T : U Ñ U a continuous map. We assume:

1. U has a nonempty subset F which is closed in X and such that T pF q Ă F ; 2. Dk P p0, 1q, @x P T ´1pU q, }T 2 pxq ´T pxq} X ď k}T pxq ´x} X .

Then there exists an open neighborhood V of F in X with FixpT q Ă V Ă U, T pVq Ă V and such that for any x P V, the sequence pT p pxqq pě0 has a limit θpxq P V for the norm } ¨}X , with the estimate @x P V, }θpxq ´T p pxq} X ď k p 1 ´k }T pxq ´x} X .

In this way we obtain a retraction θ of V onto FixpT q Ă V whose restriction to F is a retraction of F onto F Ş FixpT q

Assume, moreover, that T is of class C 1,1 on U and that:

3. The function x Ñ }DT pxq} BpXq and x Ñ }T pxq ´x} X are bounded on U;

4. DL ą 0, @x, y P U, }DT pxq ´DT pyq} BpXq ď L}x ´y} X .

Then T p converges uniformly to θ on V and for each x P V, the sequence pDpT p qpxqq pě0 has a limit lpxq P BpXq for the norm } ¨}BpXq , this convergence being uniform in x P V. As a consequence, θ is of class C 1 on V and Dθ " l is uniformly continuous on V.

B Product inequality in Sobolev space

In this section, we discuss the the following inequality in H s ξ pQ 2 l q:

Lemma B.1. Suppose that s ą 0 and t ą 3. Then there is a continuous multiplication map H s ξ pQ 2 l q ˆHs`t ξ 1 pQ 2 l q Ñ H s ξ`ξ 1 pQ 2 l q pu ξ , v ξ 1 q Ñ u ξ v ξ 

C Some singular integrals

In this part, we study the following type of singular integrals, which have been studied in [START_REF] Meng | A note about the mixed regularity of Schrödinger Coulomb system[END_REF] and [START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF].

Let Fpuqpξq " ş e 2πix¨ξ upxqdx be the Fourier transform, then we have that in the sense of distribution for 0 ă α ă d As f pyq and 1 |y| are continuous and bounded in B 1`r p0qzB 1´r p0q with any 0 ă r ă 1 and B s ppq :" tx P R 3 : |x ´p| ď su , we know that for y P B 1`r p0qzB 1´r p0q with r " 1{2, f pyq " π 3 

ξPQ l inf V subspace of Λ `H 1{2 ξ dim V "q sup u ξ PV }|D ξ | 1{2 u ξ } 2 L 2 ξ }u ξ } 2 L 2 ξ .
Let u p,ξ pxq " e p2iπp{l`iξq¨x with p P Z 3 . Then pu p,ξ q pPZ 3 is an orthogonal basis on L 2 ξ pQ l q. And Λ `up,ξ " ˜1 2 `p2πp `lξq ¨α `lβ 2 a l 2 `|2πp `lξ| 2 ¸ep2iπp{l`iξq¨x , and

|D ξ | 1{2 Λ `up,ξ " `1 `|2πp{l `ξ| 2 ˘1{4 Λ `up,ξ .
Obviously, pΛ `up,ξ q p is equally an orthogonal basis on L 2 ξ pQ l q. Let V q " tΛ `up,ξ pxq; p " t1, ¨¨¨, qu ˆt0u ˆt0uu, then c ˚pqq ď sup Now we can check the Assumption 2.12 for z " q " 4 and z " q " 5. For z " q " 5,

• κ « 0.581,

• κ `1{2αC EE q `« 0.731 ă 1

• A ą 1 4 αp1 ´κq ´2p1 `κqC EE ą 0.134,

• κ 1 " αpC G pz `qq `C1 W q `q « 0.908,

• c ˚p6q ą 1,

• A a maxtp1 ´κ ´1{2αC EE q `q´1 p1 ´κq ´1c ˚pq `1qq, 1uq `ą 1.993 ą 1.

And for z " q " 4,

• κ « 0.465,

• κ `1{2αC EE q `« 0.585 ă 1

Introduction 1

 1 Notions de base en mécanique quantique à N corps . . . . . . . . . . . .

a c 2

 2 |p| 2 `m2 c 4 . Cependant, cet opérateur est non-local, ce qui contredit le principe de causalité en mécanique relativiste. Donc, Dirac reformula l'opérateur par D m,c 0

  dξ, tel que (H1) γ commute avec les translations de lZ 3 ;

l

  γ ξ dξ, tel que (H5) γ commute avec les translations de lZ 3 ;

Lemma 5 . 1 .

 51 For case (B), if 1 ď α ă 1.25 (or 0 ă α ă 0.75), 0 ă β ă 0.75 and α `β ă 1.5,

V

  and W as |V | α |V | 1´α and |W | α |W | 1´α with 0 ď α ď 1 and introduce other factor r p and r

ż T 0 rSL

 0 I l W px j , x k qu sptq, vptq dt À ˇˇˇż T 0 rSW L I l u sptq, vptq dt ˇˇˇ`ˇˇˇż T 0 rSp∇ j W qL I l ,j u sptq, vptq dt ˇˇż T 0 rSp∇ k W qL I l ,k u sptq, vptq dt ˇˇˇ`ˇˇˇż T 0 rSp∇ j ∇ k qW L I l ,j,k u sptq, vptq dt ˇˇF or α P p0, 1{2q, by

Proposition 4 . 5 .

 45 r κ,r,2 }h} XXY }γ ´γ1 } XXY . Therefore,}DT pγ 1 qh ´DT pγqh} XXY ď C r κ,r p1 `2}γ} XXY q }γ ´γ1 } XXY }h} XXY with C r κ,r " 2C r κ,r,1 `Cr κ,r,2 .For γ P D X B XXY pR `rq, we know}DT pγ 1 q ´DT pγq} BpXXY q ď C r κ,r p1 `2R `2rq}γ ´γ1 } XXY . Herein, L R " C r κ,r p1 `2R `2rq.We now define a closed set invariant for T and an open neighborhood U of F . Let κ and A as in Proposition 4.3, and assume κ ă 1. Let 1 ă R ă1 A 2 q

Lemma 5 . 4 .QlL 2 ξl 1

 5421 Let g P Γ ďq , B :" tγ P X X Y ; }γ} σ 1,8 ď q `M u. Then the minimum problem inf γPΓďq, γ"P g γ ż Tr ppD g,ξ ´ F qγ ξ qdξ, admits a minimizer. Every minimizer γ ˚has the structure γ ˚" l 3 r0,νq pD g,ξ qdξδ

żQlL 2 ξQlL 2 ξ 3 p2πq 3 ş À Q l 1 l 1 ν 3 ş

 2233113 TrppD γ˚,ξ ´ F qγ ˚,ξ qdξ " inf γPΓďq,γ"P γ˚γ ż Tr ppD γ˚,ξ ´ F qγ ξ qdξ.Then, by Lemma 5.4, we get γ ˚" l r0,νq pD γ˚,ξ qdξ `δ with some 0 ď δ ď pD γ˚,ξ qdξ for ν P p0, F s independent of ξ. If F ě p1 ´κq ´1c ˚pq `1q, the solution γ ˚is independent of F , and l 3 p2πq Q l dξ Tr L 2 ξ γ ˚,ξ " q.

bα 3 |x ´y| 2

 32 Fp| ¨|´α qpξq " b d´α |ξ| ´d`α , b α " π ´α{2 Γpα{2q, Hence, if 0 ă α ă d, the operator |∇| α can be written as|∇| ´αupxq " b d´α p2πq α b α ż R d |x ´y| ´d`α upyqdy.And |∇| ´α|x| ´β is equally a L 1 loc pR d q-function for 0 ă α ă β ă d and|∇| ´α|x| ´β " b β´α b d´β p2πq α b d`α´β b β |x| α´β .Thus, we know that in the sense of distribution ż R 3 |x ´y| ´d`α |y| β dy " b α b β´α b d´β b d´α b d`α´β b β |x| α´β . Now, we know that in the sense of distribution f pyq " ż R |x| 2 dx " π 3 |y| ´1.

ξPQ l sup u ξ PVq }|D ξ | 1{2 u ξ } L 2 ξ }u ξ } L 2 ξ ď a 1 `

 21 |2πpq `1q{l| 2 .

  

  est la masse de l'électron, et c la vitesse de la lumière. Les remplacements E Ð iB t et p Ð ´i∇ fournissent la relation de dispersion de l'équation de Klein-Gordon ´B2 B 2 t Ψpt, xq " p´c 2 `m2 c 4 qΨpt, xq.

			E "	a c 2 p 2 `m2 c 4	(1.5)
	où m i	B Bt	Ψ " ´	2 2m	Ψ.
			H 2 " ´c2 `m2 c 4	(1.7)
	pour l'étude de l'équation			
		i	B Bt	Ψpt, xq " H ¨Ψpt, xq.
	Le cas le plus simple sera			
			H "	a	´c2 `m2 c 4 .
	Ici	a ´c2 `m2 c 4 est l'opérateur pseudo-différentiel du symbole

E " ω, p " k ne dépendant que de la fréquence ω et du vecteur d'onde k. Pour établir la connexion entre ω et k ou E et p, évidemment on utilise: (1.6) Cependant, cette équation n'a pas répondu à ses attentes et a conduit à des fausses prédictions, car elle décrit un autre type de particules (celles avec spin zéro), pas des électrons. Schrödinger revient donc à la physique classique et remplace par la relation énergie-momentum E " 1 2m |p| 2 de la mécanique Newtonienne. Par conséquent, il a obtenu l'équation non-relativiste, à savoir l'équation de Schrödinger: Et pour le cas relativiste, l'équation (1.6) est du second ordre. Donc elle ne décrit pas correctement l'évolution d'un système quantique qui doit être du premier ordre par rapport à t. Il faut donc chercher un opérateur auto-adjoint H vérifiant

  Certaines particules ont les mêmes états de spin tandis que d'autres ne les ont

pas: il y a un l P t1, ¨¨¨, su, tel que 1 ă |I l | ă N , c'est-à-dire, 1 ă s ă N .

(C) Les particules sont identiques: il existe un l P t1, . . . , su, tel que

I l " t1, ¨¨¨, N u et si k ‰ l, I k " H, c'est-à-dire, s " 1.

En fait, le cas (A) indique que la fonction d'onde u est totalement non-antisymétrique; et le cas (B) indique que la fonction d'onde u possède une sorte de propriété antisymétrique; le cas (C) indique que la fonction d'onde u est totalement antisymétrique. En particulier, les bosons peuvent être vus mathématiquement comme un cas spécial de (A) car ils sont totalement non-antisymétriques.

  Dans cette section nous continuons nos travaux sur les régularités mixtes des solutions d'un système à N corps. Maintenant, nous traitons le problème (2.4) avec les résultats obtenus dans le Chapitre 2. Et nous nous intéressons à son approximation.

Tout d'abord, au lieu d'analyser les potentiels V et W dans les équations (2.5) et (2.6), on considère un cas plus général: Hypothèse 2.7. V px, tq P R 3 ˆR satisfait V P L αq t,loc pL q{pq´2q pR 3 qq `Lβq t,loc pL 8 pR 3 qq et W px j , x k , tq " wpx i ´xk , tq avec w P R 3 ˆR tel que w P L αp t pL p{pp´2q pR 3 qq `Lβp t pL 8 pR 3 qq.

  yqγ ξ 1 py, xqsW 8 l pξ ´ξ1 , x ´yq dxdy,

	où							G l pxq "	1 πl	ÿ pPZ 3	e	2iπ l p¨x |p| 2 ,
								p‰0
	et pour le terme d'échange
	W 8 l pη, xq :"	4π l 3	ÿ kPZ 3	ˇˇ2πk l	1 ´ηˇˇe ip 2πk l ´ηq¨x " λW 8 λl p	η λ	, λxq, x, η P R 3 .
	Remarque 3.3. γp¨, ¨q appartient à L 2 pQ l	ˆR3 q et pour le terme d'échange on a également
		l 6 p2πq 6	ij	dξdξ 1	ij	rγ ξ px, yqγ ξ 1 py, xqsW 8 l pξ ´ξ1 , x ´yqdxdy
						pQ l q 2	Q 2 l
	"	ż	Q l	ż	R 3	pγpx, yqγpy, xqq |x ´y|	dy.
	Théorème 3.4. [7] Le problème de minimisation (3.5) admet un minimum.
								(3.6)

  yqγ ξ 1 py, xqsW 8 l pξ ´ξ1 , x ´yq dxdy.

	De plus, l'opérateur de Dirac-Fock périodique est
	D γ,ξ :" D ξ ´αZG l `Vγ,ξ
	avec
	V γ,ξ " αρ γ ˚Gl pxq ´αW γ,ξ
	où
	ρ γ ˚Gl pxq "
	(3.7)

  upξq exp p2πiξ ¨xq dξ with χ R the characteristic function of the domain H α,β pRq.

	Then we have the following norm convergence rate:
	Theorem 1.3. Under the Definition 1.2, for all eigenfunctions u P H 1 with fixed spin
	state σ and λ non-positive, and for Ω large enough, we have

  and x 1 ‰ y. Then Then there exists a constant c " cpn, p, σ, Cq such that every Calderón-Zygmund pair pT x , Kq working only on the variable x P R n with constant C an σ satisfies the inequality}T x f px, yq} L p pR n ,L 2 pR m qq ď c}f px, yq} L p pR n ,L 2 pR m qq for all f P L 2 pR n`m , Cq X L p pR n , L 2 pR m qq. Sketch of proof. Let b f pxq " `şR m |f px, yq| 2 dy˘1{2 , and µ the Lebesgue measure on R n .

	|y ´y1 | ă	1 2	|x ´y| ùñ |Kpx, yq ´Kpx, y 1 q| ď	C|y ´y1 |

σ |x ´y| n`σ , |x ´x1 | ă 1 2 |x ´y| ùñ |Kpx, yq ´Kpx 1 , yq| ď C|x ´x1 | σ |x ´y| n`σ .

Theorem A.2. Fix an integer m, n P N, a real number 1 ă p ă 8, and two constants C ą 0 and 0 ă σ ď 1.

  For statement (4.7), by Lemma 4.2, for any R ą 0, and for any γ P DXB XXY pR`rq, obviously }T pγq ´γ} XXY ď 2}γ} XXY ď 2pR `rq.AsDT pγqh " pDP γ hqγP γ `Pγ γpDP γ hq `Pγ hP γ , then by Lemma 4.2 and inequality (4.9), we yield for r small enough, }DT pγqh} XXY ď ´p1 ´r κprqq ´1p1 `r κprqq `A}T ξ pγq} }DT pγqh} BpXXY q is bounded.

	Thus,
	.10)
	by Lemma 4.2 we yield
	}T 2 pγq ´T pγq} XXY ď 2ap1 ´κq ´1{2 p1 `κq 1{2 }T pγq} 1{2 σ 1,1 XY }T pγq} 1{2 XXY }γ ´T pγq} XXY .
	1{2 σ 1,1 XY }T ξ pγq} 1{2 XXY ¯}h} XXY

  Proof. It is just application of Séré's retraction A.1. And we only need to prove the equation(4.11).As P γ,ξ " pP γ,ξ q 2 , we have DP γ,ξ h " P γ,ξ pDP γ,ξ hq `pDP γ,ξ hqP γ,ξ . P γ,ξ pDP γ,ξ hqP γ,ξ " 0, and P γ,ξ pDP γ,ξ hqP γ,ξ " 2P γ,ξ pDP γ,ξ hqP γ,ξ , DT ξ pγqh " pDP γ,ξ hqγ ξ P γ,ξ `P γ,ξ h ξ P γ,ξ `P γ,ξ γ ξ pDP γ,ξ hq.As γ P θpF q, it is clear that γ " T pγq " θpγq, γ ξ " T ξ pγq " θ ξ pγq.Dθ ξ pγqh "DT ξ pγqh "pDP γ,ξ hqγ ξ P γ,ξ `P γ,ξ h ξ P γ,ξ `P γ,ξ γ ξ pDP γ,ξ hq "pDP γ,ξ hqP γ,ξ γ ξ P γ,ξ `P γ,ξ h ξ P γ,ξ `P γ,ξ γ ξ P γ,ξ pDP γ,ξ hq Dθ ξ pγqhP γ,ξ " P γ,ξ h ξ P γ,ξ P γ,ξ Dθ ξ pγqhP γ,ξ " P γ,ξ pDP γ,ξ hqP γ,ξ γ ξ P γ,ξ P γ,ξ Dθ ξ pγqhP γ,ξ " P γ,ξ γ ξ P γ,ξ pDP γ,ξ hqP γ,ξ P γ,ξ Dθ ξ pγqhP γ,ξ " 0.The question we address now is whether a minimizing sequence for E DF pγq ´ F Tr L 2 pγq in Γ ďq lies in the set F . For this purpose we need the following result. Assume that κ " αpC 1 H pz `qq `C1 W qq ă 1. There is a minimizing sequence γ n P Γ ďq of min γPΓ ďq pE DF pγq ´ F Tr L 2 pγqq, such that

	2 ξ ˜P γ,ξ h ξ P γ,ξ b γ,ξ phq À P γ,ξ L 2 ξ gives a block decomposition of bγ,ξ phq 0 ¸(4.11) P γ,ξ pDP γ,ξ hqP γ,ξ " 0. Dθ ξ pγqh " Now, for DT ξ pγqh, we have Dθ ξ pγqh of the form Thus, which means that Hence, Now, P γ,ξ Lemma 4.8.

  5.9)Proof. Let F pγq " pE DF ´ F Tr L 2 qpγq.By Lemma 5.4, there exists an operator γ 1 n P Γ ďq , γ 1 " P γ˚γ 1 such that ´ F qb γ˚,ξ pγ 1 ´γ˚q q " Tr L 2 ξ ppD γ˚,ξ ´ F qb γ˚,ξ pγ 1 ´γ˚q ˚q " 0.

	ż							ż
	Q	l Tr L 2 ξ	ppD γ˚,ξ ´ F qγ 1 ξ qdξ " inf γPΓďq, γ"P γ˚γ	Q	l Tr L 2
	and						
	DF pγ ˚qpγ 1 ´γ˚q :"	d ds	F pωpsqq| s"0 "	l 3 p2πq 3	ż	Q l Tr L 2 ξ	ppD γ˚,ξ ´ F qpγ 1 ´γ˚q qdξ,
	since by formula (4.10)				
	d ds ω and						
	Tr L 2 ξ ppD γ˚,ξ Thus, we know that				
			ż			
	0 ď DF pγ ˚q " inf γPΓďq, γ"P γ˚γ	Q	l Tr L 2 ξ	ppD γ˚,ξ ´ F qγ ξ qdξ	´żQ l Tr L 2 ξ	ppD γ˚,ξ ´ F qγ ˚,ξ qdξ ď 0.
	Now, we know that					
	ż							ż
	Q							γPΓďq, γ"P γ˚γ	Q

ξ ppD γ˚,ξ ´ F qγ ξ qdξ Now, from Proposition 4.10 and Lemma 5.4, we have a bound on }γ 1 } XXY . So there is σ ą 0 such that for any s P r0, σs, p1 ´sqγ ˚`sγ 1 P Γ ďq X B XXY pγ ˚, ρq Ă F . Then from Theorem 4.7, ωpsq :" θrp1 ´sqγ ˚`sγ

1 

n s P Γ ďq for s P r0, σs, we have 0 ď F pωpsqq ´F pγ ˚q " sDF pγ ˚qpγ 1 ´γ˚q `opsq, ξ psq| s"0 " Dθ ξ pγ ˚qpγ 1 ´γ˚q " P γ˚,ξ pγ 1 ξ ´γ˚,ξ qP γ˚,ξ `bγ˚,ξ pγ 1 ´γ˚q ˚`b γ˚,ξ pγ 1 ´γ˚q with P γ˚,ξ pγ 1 ´γ˚q P γ˚,ξ " γ 1 ´γ˚, l Tr L 2 ξ ppD γ˚,ξ ´ F qγ ˚,ξ qdξ " inf l Tr L 2 ξ ppD γ˚,ξ

  Now, from Proposition 4.10 and Lemma 5.4, we have a bound on }γ 1 n } X R . So there is σ ą 0 such that for any n large enough and any s P r0, σs, p1 śqγ

	Ş	Y and
	γ 1 n P B	

n `sγ 1 n

  For the first one, notice that}G l ˚pρ γn ´ργ˚q } Y ď }G l ˚pρ γn ´ρhn q} Y `}G l ˚pρ hn ´ργ˚q } Y . |dy ´sup ess yPQ l }|D ξ | ´1{2 G l p¨´yq|D ξ | ´1{2 u ξ } L 2 ´1{2 |G l | 1{2 } 2 Y }ρ hn } }|D ξ | ´1{2 G l ˚pρ hn ´ργ˚q |D ξ | ´1{2 } Y "Ñ 0.Now, we get the conclusion. ´1{2 pW γn,ξ ´Wγ˚,ξ q|D 0 | ´1{2 } Y Ñ 0.Proof. Similar to Lemma 5.13, we divided it into two part:}|D 0 | ´1{2 pW γn ´Wγ˚q |D 0 | ´1{2 } Y ď}W γn ´Whn } Y `}|D 0 | ´1{2 pW hn ´Wγ˚q |D 0 | ´1{2 } Y .By inequality 3.8, we know that}W γn ´Whn } Y ď C 2 W }γ n ´hn } XXσ 1,4 .Asγ n P B R , then }h n } σ 1,8 ď }γ n } σ 1,8 ď R. Now }γ n ´hn } 4 σ 1,4 ď p}γ n } σ 1,8 `}h n } σ 1,8 q 3 }γ n ´hn } X ď 8R 3 }γ n ´hn } X .}W γn,ξ ´Whn,ξ } Y Ñ 0, independent of ξ P Q l .

	Thus,			
	By inequality (3.5), we get that
			}G 1{2 hn pρ 1{2 hn	´ρ1{2 γ˚q `pρ	1{2 hn ´ργ˚q	1{2 ρ 1{2 γ˚¯.
	By Hölder's inequality and Lemma 5.12, we have
	}|D ξ | ´1{2 G l ˚pρ 1{2 hn pρ	1{2 hn	´ρ1{2 γ˚q q|D ξ | ´1{2 u ξ } L 2 ξ
	ż		
	ď	Q l	|ρ 1{2 hn pρ 1{2 hn	´ρ1{2
					1{2 L 1 }ρ 1{2 hn	´ρ1{2 γ˚}L 2 }u ξ } L 2 ξ
	ďG 2 H 1 }ρ hn } 1{2 L 1 }ρ 1{2 hn	´ρ1{2 γ˚}L 2 }u ξ } L 2 ξ
	Ñ0.		
	Finally,			

l ˚pρ γn ´ρhn q} Y ď C 1 H }γ n ´hn } X Ñ 0.

For the other term, G l ˚pρ hn ´ργ˚q " G l ˚´ρ γ˚q ξ ď}|D ξ | Lemma 5.14. As n goes to infinity, then }|D 0 |

  1,1 pQ l ; H 5 pQ 2 l qq, thus by Lemma 5.12, f n Ñ f ˚in L 8 pQ l ; H ´ipξ´ξ 1 qpx´yq Gpx ´yqph n,ξ1 ´γ˚,ξ 1 qpx, yqr|D ξ,y | ´1{2 ψ ξ pyqsdy ´1{2 |D ξ,y | ´1{2 pG l px ´yqpf n ´f˚q pξ, x, yqq}|D ξ,x | ´1{2 |D ξ,y | ´1{2 G l p¨´yqpf n ´f˚q pξ, ¨, yq} L 2 ξ pQ l q |ψ ξ pyq|dy ď}|D ξ,x | ´1{2 |D ξ,y | ´1{2 G l px ´yqpf n ´f˚q } L 8 pL 2 ξ pQ 2 l qq }ψ ξ } L 2 ξ pQ l q ď}|D ξ,x | ´1{2 |D ξ,y | ´1{2 G l px ´yq} Y }pf n ´f˚q } L 8 pL 2 ξ pQ 2 l qq }ψ ξ } L 2 ξ pQ l q ď1{2 `}|D ξ,x | ´1G l px ´yq} Y `}|D ξ,y | ´1G l px ´yq} Y ˘}f n ´f˚} L 8 pL 2 ξ pQ 2 l qq }ψ ξ } L 2 ξ pQ l q ďC G }f n ´f˚} L 8 pL 2 ξ pQ 2 l qq }ψ ξ } L 2 }pf n ´f˚q pξ, ¨, yq} L 2 ξ pQ l q |ψ ξ pyq|dy ď}f n ´f˚} L 8 pQ l ;L 2And for the last term, taking f pξ, x, yq " g l pξ, x´yq P W 1,8 pQ l ; L 8 ξ pQ 2 l qq, since by equation (2.16), g l pξ, xq P W 1,8 pQ l ; L 8 ξ pQ l qq. Thus,|D ξ,x | ´1{2 |D ξ,y | ´1{2 f n Ñ |D ξ,x | ´1{2 |D ξ,y | ´1{2 f in L 8 pQ l ; L 2 ξ pQ 2 l qq.Then, by integration by partspf n ´f˚q pξ, x, yqr|D ξ,y | ´1{2 ψ ξ pyqsdy r|D ξ,x | ´1{2 |D ξ,y | ´1{2 pf n ´f˚q spξ, x, yqψ ξ pyqdy ´1{2 |D ξ,y | ´1{2 pf n ´f˚q } L 8 pQ l ;L 2 ξ pQ 2 l qq }ψ ξ } L 2 }|D ξ | ´1{2 pW hn,ξ ´Wγ˚,ξ q|D ξ | ´1{2 } Y Ñ 0. }|D ξ | ´1{2 pW γn,ξ ´Wγ˚,ξ q|D ξ | ´1{2 } Y Ñ 0. }|D 0 | ´1{2 pV γn´γ˚q |D 0 | ´1{2 } Y Ñ 0.As a result, we have that following lemma Lemma 5.16. As n goes to infinity,}P γ˚´P γn } Y Ñ 0.´8 pD γ˚,ξ ´izq ´1V γn´γ˚,ξ pD γn,ξ ´izq ´1dz, by Corollary 5.15, we have}P γ˚,ξ ´P γn,ξ } BpL 2 ´8 }pD γ˚,ξ ´izq ´1V γn´γ˚,ξ pD γn,ξ ´izq ´1} BpL 2 ξ q dz ď 1 2π }D 0 | ´1{2 pV γn´γ˚q D 0 | ´1{2 } Y ˆż `8 ´8 }pD γ˚,ξ ´izq ´1D ξ | 1{2 } BpL 2 ξ q }D ξ | 1{2 pD γn,ξ ´izq ´1} BpL 2 ξ q dz ď 1 4 p1 ´κq ´1}D 0 | ´1{2 pV γn´γ˚q |D 0 | ´1{2 } Y , Ñ0.Now, we begin to study the limit in the constraint and in the energy.Lemma 5.17.γ ˚P Γ ďq X B R . Proof. As h n á γ ˚in X 2 8 X Y, then }γ ˚}σ 1,8 ď inf lim nÑ8 }h n } σ 1,8 ď R, Thus, γ ˚P T and γ ˚P X X Y X B R .Besides, as }γ n ´hn } X Ñ 0, and }ρ Especially, if F ą p1 ´κq ´1c ˚pq `1q, l 3 ˚,ξ dξ " q by Lemma 5.10. Now, we only need to prove that P γ˚,ξ γ ˚,ξ " γ ˚,ξ , in the sense that for every g PL 1 pQ l ; K ξ pQ l qq, ż Q l Tr L 2 ξ rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ sdξ " 0.As gP γ˚P KpQ l q, we know thatż Q l Tr L 2 ξrP γ˚,ξ pγ ˚,ξ ´hn,ξ qg ξ sdξ Ñ 0, rph n,ξ ´γ˚,ξ qg ξ sdξ Ñ 0.For the first term in the right side, by Lemma 5.16, we have that ´P γn,ξ qh n,ξ g ξ sdξ ˇˇˇˇď }P γ˚´P γn } Y }h n } σ 1,1 }g} Y Ñ 0. rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ sdξ ˇˇˇˇ" 0. Now, we know that γ ˚P Γ ďq . We only need to check that γ ˚is the minimizer. Lemma 5.18. E DF pγ ˚q ´ F Tr L 2 pγ ˚q " min γPΓ ďq pE DF pγq ´ F Tr L 2 pγq. |ph n,ξ ´γ˚,ξ q|D ξ ||D ξ | ´1D ξ |D ξ | ´1sdξ Ñ 0, since |D ξ | ´1D ξ |D ξ | ´1 P L 1 pQ l ; K ξ pQ l qq. And since }γ n ´hn } X Ñ 0, H }γ n ´hn } X Ñ 0. As }|D 0 | ´1Gp¨q|D 0 | ´1} σ 4,8 ď C H }|D 0 | ´1} σ 4,8 ă 8, we know that |D 0 | ´1Gp¨q|D 0 | ´1 P For the repulsive potential, we have that ż Q l Tr L 2 rV γn,ξ γ n,ξ ´Vγ˚,ξ γ ˚,ξ s Tr L 2 rV γn´γ˚,ξ γ n,ξ `Vγn´γ˚,ξ γ ˚s

	Thus, similarly, we have that
	and	ď	1 2π	ż `8 ż " Q l	ď	› › › › ż ż Q l ξ q pf n ´f˚q pξ, x, yqψ ξ pyqdy Q l ξ pQ 2 ξ pQ l q › › › › L 2 ξ pQ l q l qq }ψ ξ } L 2 ż Q ξ l Tr L 2
			ˇˇˇˇż						Ñ0.
			Q	l Tr L 2 ξ	rpP γ˚,ξ		
	Consequently, let n Ñ 8,		
									ˇˇˇˇż	
						› › › › |D ξ,x | ´1{2 Q l Tr L 2 Q l ż ξ	› › L 2 ξ › ›
						› ż				›
						›						›
				"	›						›
						›		Q l				› L 2
												ξ	Ñ 0.
	Consequently, and integration by parts › }γ ˚}X 2 8 ď inf lim nÑ8	1{2 ξ pQ 2 l qq. Then by › 8 ď pq `M qp1 ´κ1 q ´2e 2 , }h n } X 2
	› › › › Thus, |D ξ,x | ´1{2 as well as By Formula 5.11, we know that ż Q ż l dξ 1 Q l }γ ˚}Y ď inf lim	› › › › L 2 ξ pQ l q
	" ż Q › › › › ż Q l l Tr L 2 " |D ξ,x | ı 1{2 hn ´ρ1{2 γ˚} L 2 Ñ 0. We know that › › ψ ξ pyqdy › › L 2 ξ pQ l q
	ď	ż	Q l					l 3 p2πq 3	ż Q	l Tr L 2 ξ	γ n,ξ dξ Ñ	l 3 p2πq 3	ż Q	l Tr L 2 ξ	p γ ˚,ξ dξ.
											ż
	ξ pQ l q l Tr L 2 Q ξ For the attractive potential, it is similar: Ñ0. For the second term, let p2πq 2 rD ξ pγ n,ξ ´hn,ξ qsdξ Ñ 0 ş Q l Tr L 2 ξ p ż Q l Tr L 2 ξ pGp¨qpγ n,ξ ´γ˚,ξ qq " ż Q l Tr L 2 ξ pGp¨qpγ n,ξ ´hn,ξ qqdξ`ż Q γ Notice that ˇˇˇˇż Q l Tr L 2 ξ rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ sdξ ˇˇˇď l Tr L 2 ξ pGp¨qph n,ξ ´γ˚,ξ qqdξ. And ˇˇˇˇż Q l Tr L 2 ξ pGp¨qpγ n,ξ ´hn,ξ qqdξ ˇˇˇˇď C 1
			ˇˇˇˇż									ˇˇˇˇ`ˇˇˇˇż
	Proof. Given Q l Tr L 2 ξ	rpP γ˚,ξ	f pξ, x, yq " ´P γn,ξ qh n,ξ g ξ sdξ ÿ |m|8ď1	e ipξ`2πm{lqpx´yq |ξ ´2πm{l| 2 . Q
			P γ˚,ξ	´P γn,ξ "	2π 1	ż `8

e For α ă 1, f pξ, x, yq P W α,1 pQ l ; H 5 pQ 2 l qq, we know that f n Ñ f ˚in L 8 pQ l ; L 2 ξ pQ 2 l qq. ξ ď}|D ξ,x | Now we know that Corollary 5.15. As n goes to infinity, nÑ8 }h n } Y ď 1 l Tr L 2 ξ rP γ˚,ξ pγ ˚,ξ ´hn,ξ qg ξ sdξ ˇˇˇż Q l Tr L 2 ξ rph n,ξ ´γ˚,ξ qg ξ sdξ ˇˇˇˇ. Proof. For the kinetic energy, we have that ż Q l Tr L 2 ξ rD ξ pγ n,ξ ´γ˚,ξ qsdξ " ż Q l Tr L 2 ξ rD ξ pγ n,ξ ´hn,ξ qsdξ `żQ l Tr L 2 ξ rD ξ ph n,ξ ´γ˚,ξ qsdξ. ξ rD ξ ph n,ξ ´γ˚,ξ qsdξ " ż Q l Tr L 2 ξ r|D ξ L 1 pQ l ; K ξ pQ l qq and ż Q l Tr L 2 ξ rGp¨qph n,ξ ´γ˚,ξ qsdξ " ż Q l Tr L 2 ξ r|D ξ |ph n,ξ ´γ˚,ξ q|D ξ ||D ξ | ´1Gp¨q|D ξ | ´1sdξ Ñ 0, " ż

  Remark B.2. This kind of inequality is a periodic case of the product inequality for Sobolev inequality:}uv} H s pR d q ď C}u} H s 1 pR d q }v} H s 2 pR d q ,with s 1 , s 2 ě s and s 1 `s2 ą s `d{2. And the proof is similar.pkqp u ξ pk `k1 ´pqp v ξ 1 pk 1 qp v ξ1 ppq ď ÿ k 1 ,pPZ 6 p1 `|k 1 ´ξ1 |q s |p v ξ 1 pk 1 q|p1 `|p´ξ1 |q s |p v ξ1 ppq| ˆÿ kPZ 6 p1 `|k ´ξ|q s |p u ξ pkq|p1 `|k `k1 ´p ´ξ|q s |p u ξ pk `k1 ´pq|. For the third line of the above inequality, there is a constant C ą 0 such that ÿ k 1 ,pPZ 6 p1 `|k 1 ´ξ1 |q s |p v ξ 1 pk 1 qp1 `|p ´ξ1 |q s |p v ξ1 ppq| ď ÿ k 1 ,pPZ 6 p1 `|k 1 ´ξ1 |q ´tp1 `|k 1 ´ξ1 |q s`t |p v ξ 1 pk 1 q|pk `k1 ´pq| ˆp1 `|p ´ξ1 |q ´tp1 `|p ´ξ1 |q s`t |p v ξ1 ppq| ďC}v ξ 1 } 2 if t ą 3. And for the last line, by Chauchy-Schwartz's inequality, we have that ÿ kPZ 6 p1 `|k ´ξ|q s |p u ξ pkq|p1 `|k `k1 ´p ´ξ|q s |p u ξ pk `k1 ´pq| ď ˜ÿ kPZ 6 p1 `|k ´ξ|q 2s |p u ξ pkq| 2 ¸1{2 ˜ÿ kPZ 6 p1 `|k `k1 ´p ´ξ|q 2s |p u ξ pk `k1 ´pq| 2

	Proof. Obviously, we have p1 `|k `k1 ´ξ1 ´ξ|q 2 ďp1 `|k ´ξ|qp1 `|k 1 ´ξ1 |q ˆp1 `|k `k1 ´p ´ξ|qp1 `|p ´ξ1 |q. Then, applying the above inequality, }u ξ v ξ 1 } 2 H s " ÿ p1 `|k `k1 ´ξ ´ξ1 |q 2s p ξ 1 u ξ H s`t "}u ξ } 2 H s	¸1{2
	k,k 1 ,pPZ 6	
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, and satisfies the estimate

}u ξ v ξ 1 } H s ξ`ξ 1 pQ 2 l q ď C}u ξ } H s ξ pQ 2 l q }v ξ 1 } H s`t ξ 1 pQ 2 l q ξ

Now, we deduce that if t ą 3

}u ξ v ξ 1 } H s ξ`ξ 1 pQ 2 l q ď C}u ξ } H s ξ pQ 2 l q }v ξ 1 } H s`t ξ 1 pQ 2 l q .

  1 |y| . Thus, f peq " π 3 with |e| " 1. Similarly, we know that for |e| " 1, ż R 3 |x ´e| 2 |x| 1.5 dx " 4π 2 , and e l,k " l |k| with l, k P Z 3 zt0u ż R 3 |x ´el,k | 2 |x| 2.5 dx " 4π 2 |e l,k | ´1.5 . For p P F k , f ě 0 on B ´p |k| , 1 2|k| ¯by virtue of the mean value inequality of sub-harmonic function, we yield that Now, we only need to estimate the term of E k . If p P E k , then p`r´1 2 , 1 2 r 3 P B ´k 2 , We are going to estimate the summation: ˇˇl |k| ´k |k| ˇˇ2 ˇˇl |k| ´p |k| ˇˇ2 ˇˇp |k| ˇˇ2 .5 . ˇˇl |k| ´k |k| ˇˇ2 ˇˇl |k| ´p |k| ˇˇ2 ˇˇp |k| ˇˇ2 .5 . ´70e l,k ¨y `15|e l,k | 2 4 |y ´el,k | 4 |y| 4.5 |y ´5 9 e l,k | 2 ´40 567 |e l,k | 2 |y ´el,k | 4 |y| 4.5 2 q ¯zt0, ku, and F l,k " Z 3 zpE l,k Y t0, kuq. For p P F l,k , we have that f l,k ě 0 on B ´p |k| , 1 2|k| ¯. Thus Y pPF l,k B ´p |k| , 1 2|k| ¯1 |y ´el,k | 2 |y| 2.5 dy. Now, we only need to estimate the term of E l,k . If p P E l,k , then p `r´1 2 , 1 2 r 3 P B ´5 9 l, ˇˇl |k| ´k |k| ˇˇ2 ˇˇl |k| ˇˇ1 .5 . Let E k " ´Z3 X B ´3 7 k, ? 120 35 |k| `1 2 ¯¯zt0, ku, and F k " Z 3 zpE k Y t0, kuq. And Thus, we get C W " C 1 H `}g l } L 8 `Cl " C 1 H `1 l }g 1 } L 8 `Cl « 5.019, and C 1 W " C G `}g l } L 8 `Cl " C G `1 l }g 1 } L 8 `Cl « 9.506.

	D.2 Inequality 3.3 And we yield Now, we yield that			
	1 |k| 3 f k 1 |k| 3 f k T :" ÿ pPF k ÿ l,p,kPZ 3 ˆp |k| ˆp |k| ˙ď 6 ˙ď 6 π π p,k‰0 l‰k,p 1 |k| ´3f l,k ˆp |k| ˙ď 6 ż ÿ T 1 ď 298.289 l‰0;k‰0 |k| 3 ż B ´p |k| , 1 2|k| ż Y pPF k B ´p |k| , 1 ¯fk dx. 2|k| ¯fk dx. 1 1 π 1 Now, we consider the function Thus, thus ÿ pPF l,k |k| 6 Let T 1 :" ÿ l,p,kPZ 3 l,p,k‰0 1 |k| 6 1 ? 280 63 |l| `1 2 `?3 2 ¯.. Thus, |E l,k | ď 4π 3 ˆ?280 63 |l| `1 2 `?3 2 f k pxq " 1 |x ´e| 2 |x| 1.5 , Thus with e " k |k| . Similarly, we know that C EE « 8.220. ˙3 . f k pxq " 35 4 ˇˇx ´3 7 e ˇˇ2 ´24 245 |x| 3.5 |x ´e| 4 . Finally, we estimate c ˚pqq. Recall that	? 3 6 |l| `1 2	`?3 2	¯,
	|E k | ď 2|k| , by Divergence Theorem, we have that 4π 3 ˆ?3 6 |l| `1 2 `?3 2 For 0 ă r ď 1 d dr ˜1 4πr 2 ż BB ´p |k| ,r ¯fk ds ¸" 1 4πr 2 ż BB ´p |k| ,r ¯B Bn ˙3 . " 4πr 2 B ´p |k| ,r ¯ f k dy f k ds ě ´36 2 3 r. ÿ p‰0,l 1 |k| 3 1 Thus, we have that Now, we know that ˇˇl |k| ´p |k| ˇˇ2 ˇˇp |k| ˇˇ2 .5 , ě 3|l| 6.5 r. |E k | ď 4π 3 ˆ?120 35 |k| `1 2 `?3 2 ˙3 . ´490|k| 6.5 1 ż l‰k,p Now, we have that T " T 1 `ÿ p,k‰0 1 |k| 6 1 ˇˇp |k| ˇˇ4 .5 ď T 1 `ÿ p‰0 1 |p| 4.5 . We consider first the term For 0 ă r ď 1 2|k| , we have that d dr ˜1 4πr 2 ż BB ´p |k| ,r ¯fl,k ds ¸" 1 4πr 2 ż " 4πr 2 B ´p |k| ,r ¯ f l,k dy 1 ż ´ f k ě ´284. BB ´p |k| ,r ¯B Bn f l,k ds Now, we know that f k ě 0 for x P R 3 zB ˆ3 7 35 e, ? 120 ȧnd c ˚pqq :" sup
	Now, we study the summation T " We consider the function with Now, we have that Thus, f ě 0 for x P B ÿ p,kPZ 3 p‰0,k k‰0 1 |k| 3 ˇˇp |k| ´k |k| ˇˇ2 ˇˇp |k| ˇˇ2 1 f k pxq " 1 |x ´e| 2 |x| 2 , e " k |k| . f " 12|x ´1 2 e| 2 ´1 |x| 4 |x ´e| 4 . ˆ1 2 e, ? 3 6 ˙, and let r " |x ´1 2 e|, f ě 12r 2 ´1 | 1 4 ´r2 | 4 ě ´37 2 3 . Thus, we have that 1 4π ż BB ´p |k| ,r ¯fk ds ě r 2 f k ˆp |k| ˙´3 6 2 4 r 4 . And by the integration over r0, 1 2|k| s, we get that 1 |k| 3 f k ˆp |k| ˙ď 6 π ż B ´p |k| , 1 2|k| ¯fl,k dy `37 2 6 ˆ5|k| 5 , and ÿ pPE k 1 |k| 3 f k ˆp |k| ˙ď 6 π ż Y pPE k B ´p |k| , 1 2|k| ¯fk dy `37 2 6 ˆ5|k| 5 |E l,k |. Besides, after calculation, we know that for |k| ď 10 ÿ pPE k 1 |k| 3 f k ď 5.258. As a consequence, we deduce that for |k| ě 11, ÿ p‰0,k;k‰0 1 |k| 3 f k ˆp |k| ď 6 π ż Y pPZ 3 zt0,lu f k dy `37 2 6 ˆ5|k| 5 4π 3 ˆ?3|k| 6 `1 2 `?3 2 ˙3 ď 6 π ż R 3 f k dx `0.017 ď59.235. and the function f l,k pyq " 1 |y ´el,k | 2 |y| 2.5 , 1 4π ż ¯fl,k ds ě r 2 f l,k ˆp |k| ˙´245|k| 6.5 3|l| 6.5 r 4 . ÿ lPF k 1 |k| 3 f k ˆl |k| ż ˙ď 6 π ¯fk pxqdx. Y pPF k B ´p |k| , 1 2|k| BB ´p |k| ,r And for the term of E k , we have analogously that with e l,k " l |k| . Now, we have that f l,k pyq " 63|y| 2 " 63 4 Thus, f l,k ě 0 for y P R 3 zB ˆ5 9 e l,k , ? ˙. And by the integration again over r0, 1 2|k| s, we get that 1 |k| 3 f l,k ˆp |k| ˙ď 6 π ż B ´p |k| , 1 2|k| ¯fl,k dy 1 |k| 3 f k ˆl |k| ż ˙ď 6 π ¯fk dx `7.1|k| ´5. B ´p |x| , 1 2|k| `49|k| 1.5 4|l| 6.5 , and ÿ pPE k 1 |k| 3 f l,k ˆp |k| ˙ď 6 π ż Y pPE k B ´p |k| , 1 2|k| ¯fl,k dy ÿ 1 |k| 3 f k ˙ď 4.3217. ˆl |k| lPE k `49|k| 1.5 Thus, for |k| ď 10, we have that 4|l| 6.5 |E l,k |. Thus, we get that ÿ l‰0,k;k‰0 1 |k| 3 f k ˙ď 4.3217 `24π. ˆl |k| 280 63 |e l,k | Besides, we yield numerically that f l,k ě ´490|e l,k | ´6.5 . Let E l,k " ´Z3 X Bp 35 63 l, ? 380 ÿ p‰0,l;k‰0 1 |k| 3 f l,k ď And for the term |k| ą 10, we have that ˆp |k| 6 π ż Y pPZ 3 zt0,lu f l,k dy ˆ?280 ˙3 ÿ l‰0,k;k‰0 1 |k| 3 f k ď ˆl |k| `49π|k| 1.5 3|l| 6.5 63 |l| `1 2 `?3 2 ď 6 π ż R 3 f l,k dy `49π|k| 1.5 3|l| 6.5 ˆ?280 63 |l| `1 2 `?3 2 ˙3 6 π ż Y pPZ 3 zt0,ku f k dx `7.1 ˆ10 ˆ?120 ˙3 ´5 4π 3 35 |k| `1 2 `?3 2 ď75.426. 63 |l| `1 |k| ´3f l,k ˆp |k| ˙ď 6 π ż B ´p |k| , 1 2|k| ¯fl,k . ď24π|e l,k | ´1.5 `49π 3 ˆ?280 63 `1 2 `?3 2 Now, we get conclusion that ˙3 |l| ´2|e l,k | ´1.5 |l| T ď 22498.747 `ÿ p‰0 1 |p| 4.5 .			

D Estimates about the summations

D.1 Inequality 3.2 Let E k " ´Z3 X B ´k 2 , ?

3|k|

6 `1 2 ¯¯zt0, ku and

F k " Z 3 z pE k Y t0, kuq. ´2 ď298.289|e l,k | ´1.5 .

Besides, after direct calculation, we now get that for |k| ď 10

Remerciements

Regularity of the Equation

Before analyzing this section, we study the following equation firstly:

$ & % iB t u " H u , t P r´a, as " I a , x " px 1 , ¨¨¨, x N q P pR 3 q N u p0, xq " v 0 pxq with

Lemma 4.1. For ą 0, if v 0 P C 8 0 ppR 3 q N q has the fixed spin states σ, then the above equation has a unique solution with the same spin states and the solution u P C 8 0 ppR 3 q N q.

Proof. Taking the all kinds of derivatives, the potential V and W are still smooth, hence in L 8 t pL q{pq´2q q `L8 t pL 8 q and L 8 t pL p{pp´2q q `L8 t pL 8 q respectively. From Theorem 1.2, we know the equation has a unique solution.

And by the smoothness of V and W , we know the solution u P C 8 0 ppR 3 q N . Let P I l is the permutation operator, denote A by Aupxq " 1

If u is a solution, then Au pxq is another solution too. By the uniqueness of solution, we know u has the same spin states.

Therefore, we can use Corollary 2.2 for u .

Proof of Theorem 1.5. Taking the operator L to the integral equation, we have

The key point is to study the term SL I l W px j , x k qu p¨q and SL I l V px j , ¨qu p¨q, herein we use the Strichartz estimate. And in fact, we just need to deal with SL I l W px j , x k qu p¨q, for the term SL I l V px, ¨qu p¨q the method is same.

Part II The Dirac-Fock models for crystals E Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.14 under the condition l " 1000, and then we show that the Assumption 2.12 is satisfied for q ď 4 for the neutral systems. First, we compute numerically the infimum of the potential G l , C 0 « 0.802. For the potential W l ,

And as

and for the constant C l , we have that

As Q l " r´π l , π l r 3 , we have that if m 1 , m 2 P Z 3 and m 1 ‰ m 2 , pQ l `2πm 1 {lq X pQ l `2πm 2 {lq " H, and let Q " r´3, 3r 3 , then we have that

• A " 0.078 ą 1 4 αp1 ´κq ´2p1 `κqC EE « 0.077,

• κ 1 " αpC G pz `qq `C1 W q `q « 0.727,

• c ˚p5q ă 1.001,

• A a maxtp1 ´κ ´1{2αC EE q `q´1 p1 ´κq ´1c ˚pq `1qq, 1uq `« 0.662 ă 1.

Consequently, we know that the Assumption 2.12 is satisfied for q ď 4 in solid state physics. 
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