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Due to its strict semantics, the owl:sameAs property is often misused. Nowadays, with the large number of knowledge graphs published on the Web of Data and, more importantly, their numerous interconnections using the owl:sameAs property, this situation has become worrying. Indeed, two entities linked by the owl:sameAs property must be identical in all possible and imaginable contexts, but this is not always the case. Since identity is context-dependent, all property-value pairs of the first entity could be wrongly transferred (propagated) to the other entity, leading to a deterioration of data quality. Therefore, in this thesis we are particularly interested in how some properties may or may not be propagated between identical entities in a given context. As a first step, we conducted a large-scale study on the presence of semantics in knowledge graphs since specific semantic characteristics allow us to deduce identity links. This study naturally led us to build an ontology to describe the semantic content of a knowledge graph. Moreover, we observed that some properties are more important than others to determine the (contextual) identity between two entities.

For this, we proposed an interlinking approach based on the logic of semantic definitions, and on the predominance of certain properties to characterize the identity relationship between two entities. Then, we proposed an approach based on sentence embedding to compute the properties that can be propagated in a context. This propagation approach allows the expansion of SPARQL queries and, ultimately, the increasing of the completeness of query results. Finally, we proposed a tool to measure the impact of the propagation on entity completeness at a schema level. The different approaches proposed in this thesis have been implemented and evaluated through experiments on real-world data.

Résumé

En raison de sa sémantique stricte, la propriété owl:sameAs est souvent mal utilisée.

Aujourd'hui, avec le grand nombre de graphes de connaissances publiés sur le Web des Données et, surtout, leurs nombreuses interconnexions utilisant la propriété owl:sameAs, cette situation est devenue préoccupante. En effet, deux entités liées par la propriété owl:sameAs doivent être identiques dans tous les contextes possibles et imaginables, mais ce n'est pas toujours le cas. L'identité étant dépendante du contexte, toutes les paires propriété-valeur de la première entité pourraient être transférées (propagées) à tort à l'autre entité, ce qui entraînerait une détérioration de la qualité des données. C'est pourquoi, dans cette thèse, nous nous intéressons particulièrement à la manière dont certaines propriétés peuvent ou non être propagées entre des entités identiques dans un contexte donné. Dans un premier temps, nous avons mené une étude à grande échelle sur la présence de la sémantique dans les graphes de connaissance puisque des caractéristiques sémantiques spécifiques nous permettent de déduire des liens d'identité. Cette étude nous a naturellement conduit à construire une ontologie pour décrire le contenu sémantique d'un graphe de connaissance.

De plus, nous avons observé que certaines propriétés sont plus importantes que d'autres pour déterminer l'identité (contextuelle) entre deux entités. Pour cela, nous avons proposé une approche d'interconnexion basée sur la logique des définitions sémantiques, et sur la prédominance de certaines propriétés pour caractériser la relation d'identité entre deux entités. Ensuite, nous avons proposé une approche basée sur les plongements de phrases pour calculer les propriétés qui peuvent être propagées dans un contexte. Cette approche de propagation permet l'expansion des requêtes SPARQL et, à terme, l'augmentation de la complétude des résultats des requêtes. Enfin, nous avons proposé un outil permettant de mesurer l'impact de la propagation sur la complétude des entités au niveau du schéma.

RÉSUMÉ

Les différentes approches proposées dans cette thèse ont été mises en oeuvre et évaluées par des expériences sur des données réelles. 
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1.1 Full framework. The element in green is the input of the approach, the element in red is the output. Elements in yellow are those that may require user intervention. The dotted arrows correspond to the part where completeness measurements can be performed. The blue dotted arrows correspond to the moments when completeness measurements are performed in the flow.
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Résumé long en français

La littérature scientifique croît depuis des siècles et elle croît de plus en plus vite. Face Le Web sémantique [START_REF] Berners-Lee | The semantic web[END_REF] Le Web Sémantique favorise donc la réutilisation et le partage de ces données, ainsi que leur traitement automatique par des agents informatiques. Les données représentées de la sorte ont un sens et permettent, en théorie, qu'elles soient interprétées consensuellement par tous les acteurs (producteurs et consommateurs). En 2012, Google a communiqué sur son "Knowledge Graph"1 , ainsi les graphes RDF sont depuis parfois appelés graphes de connaissances.

Les données contenues dans ces graphes sont liées entre elles, telles que l'a proposé Tim Berners-Lee avec ses quatre principes des données liées ouvertes :

1. Utiliser des URI pour nommer les choses.

2. Utiliser les URI HTTP pour que l'on puisse déréférencer ces noms.

3. Fournir des informations utiles lorsque l'URI est déréférencé.

4. Inclure des liens vers d'autres URI afin de permettre la découverte de nouvelles Résumé long en français choses.

Une manière de lier deux entités est d'utiliser un lien owl:sameAs, c'est-à-dire de spécifier de manière explicite que ces deux entités représentent en réalité les deux mêmes objets du monde réel, quelles sont identiques. La notion d'identité est une notion étudiée depuis l'antiquité avec, par exemple, le principe d'identité qui stipule que toute chose est identique à elle même. Le sujet a été longuement débattu, puisque l'on peut se poser, par exemple, la question de l'identité si le sujet évolue au cours du temps, ou si certaines de ses parties sont remplacées. Leibniz a proposé une définition fondée sur les mathématiques. Ce sont les principes d'identité des indiscernables (si deux entités ont les mêmes propriétés, alors elles sont identiques) et sa réciproque, le principe d'indiscernabilité des identiques (si deux entités sont identiques alors elles ont les mêmes propriétés). La propriété owl:sameAs a été définie en utilisant la proposition de Leibniz concernant l'identité. Ainsi, la sémantique de owl:sameAs est très stricte, puisque, pour être identiques, deux entités doivent avoir les mêmes couples de propriété-valeur dans tous les contextes possibles et imaginables.

Cette conception de l'identité a été mainte fois attaquée ou débattue et n'est donc pas sans poser de problèmes dans notre cadre du Web sémantique. En effet, de nombreux cas d'utilisations de cette propriété sont discutables, puisque la relation d'identité est extrêmement dépendante du contexte.

owl:sameAs peut aussi être utilisée pour lier les entités identiques au sein d'un même graphe ou pour lier plusieurs graphes de connaissances, favorisant ainsi la réutilisation de ces entités et de leurs descriptions et permettant de découvrir de nouvelles informations.

En effet, un couple de propriété-valeur décrivant une entité peut être réutilisé par n'importe quelle autre entité qui lui est identique. Ceci est l'un des points forts de cette propriété, Dans cette thèse, nous nous intéressons donc particulièrement à la manière dont certaines propriétés peuvent être propagées ou pas entre des entités identiques dans un contexte donné. En effet, tout comme la propriété owl:sameAs, pour être utile, un lien d'identité contextuelle doit permettre la propagation de certains couples de propriétévaleur au sein des entités identiques dans le contexte donné. Par exemple, si l'on considère deux médicaments dont le principe actif est le même, mais étant produits par deux entreprises différentes, alors ces médicaments sont identiques dans le contexte médical, mais différents dans le contexte commercial. Dans le contexte médical, on peut s'attendre à ce que les propriétés décrivant les effets indésirables soient les mêmes pour les deux, ou que l'on puisse compléter les effets de l'un avec ceux de l'autre.

Nos questions de recherches principales sont donc :

• Comment définir une identité contextuelle entre entités appartenant à un graphe de connaissances RDF ?

• Comment trouver les propriétés qui peuvent être propagées entre les entités identiques dans un contexte donné ?

Dans un premier temps, nous avons exploré plusieurs pistes pour permettre à un agent (humain ou machine) de connaître (semi-)automatiquement quelles propriétés sont Chapter 1

Introduction

Context and objectives

The scientific literature has been growing for centuries, and it is growing faster and faster. Faced with this observation, as early as the mid-1940s, Vannevar Bush raised the problems of access to this knowledge and its use by scientists. He proposed a conceptual machine called Memex ( [START_REF] Bush | As we may think[END_REF]), which is a kind of memory prosthesis allowing the storage and consultation of documents and creating links between them to help the user to resume her reading where she was. [START_REF] Holm | Complex information processing: a file structure for the complex, the changing and the indeterminate[END_REF], Ted Nelson ([Nelson 1965]) complemented this idea by creating hyperlinks between documents, files, or media. Nelson's idea is one of the founding elements of the Web yet to come. At the end of the 1980s, Tim

Berners-Lee [START_REF] Berners-Lee | Information management: A proposal[END_REF]) proposed to go further by distributing documents on different machines while linking them using hyperlinks. It is the birth of the Web. The latter is based on three fundamental building parts:

1. the HTTP protocol for communication between machines or clients and servers, 2. the HTML language for exposing data to clients, 3. the URLs for identification and addressing.

The W3C is the organization responsible for the various standards related to the Web.

Nowadays, a great deal of data is published daily on the Web in different forms. The majority of this data is published in the form of HTML pages and is, therefore, very CHAPTER 1. INTRODUCTION unstructured. Formats such as XML, JSON, PDF, or CSV are also commonly used, especially by organizations, allowing data to be structured or semi-structured.

The Semantic Web [START_REF] Berners-Lee | The semantic web[END_REF]) is an extension of the Web proposed by Tim Berners-Lee that takes data structuring a step further. This extension is based on a technology stack managed by the W3C. The stack allows the data and its schema to be expressed in the form of a graph called the RDF graph model. It is composed of three fundamental elements, which are (i) the resources (IRI), (ii) the literals, and (iii) the anonymous nodes (existential quantification). Resources are the main element since they enable the identification of any real-world object or concept. One can describe anything and everything in the form of triples whose subject, i.e., the first element, is an entity identified by an IRI. The second element of the triple is a resource that characterizes the thing being described, such as an address, a name, or a latitude. It is called the property of the triple. Finally, the third element of the triple is the object, which represents the value of the property. This object is either a resource, allowing two resources to be linked, or a literal, i.e., a lexical form having a type such as an integer or a date expressed using an IRI. Moreover, through the RDFS and OWL 2 languages, it is possible to describe the schema of this data, i.e., the properties used in the triples, as well as the classes (types) that the resources can have. Some classes and properties may have semantics allowing the inference of new data.

The Semantic Web promotes the reuse and sharing of this data, as well as its automatic processing by computer agents. The data represented in this way make sense and allow, in theory, for consensual interpretation by all actors (producers and consumers). Since 2012, and Google's communication on this subject1 , RDF graphs are sometimes called knowledge graphs.

By their nature, the data contained in these graphs are intended to be linked, as proposed by Tim Berners-Lee with his four principles of Linked Open Data:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

CHAPTER 1. INTRODUCTION 3. When someone looks up a URI, provide useful information.

4. Include links to other URIs so that they can discover more things.

One way to link two entities is to use a owl:sameAs link, i.e., to explicitly specify that these two entities represent the same two real-world objects, which are identical. The notion of identity has been studied since antiquity with, for example, the principle of identity, which states that everything is identical to itself. There has been much discussion on the subject. For example, what happens if the subject evolves, or if some of its parts are replaced. Leibniz proposed a definition based on mathematics called the principle of identity of indiscernibles (if two entities have the same properties, then they are identical)

and its reciprocal, the principle of indiscernibility of identicals (if two entities are identical, then they have the same properties). The owl:sameAs property was defined using Leibniz's proposal for identity. Thus, the semantics of owl:sameAs is strict, since, to be identical, two entities must have the same property-value pairs in all possible and imaginable contexts.

This conception of identity has been attacked or debated many times and is therefore not without problems in the Semantic Web framework. Indeed, many cases of uses of this property are questionable, since the identity relationship is extremely context-dependent.

owl:sameAs is used to link identical entities within the same graph or to link several knowledge graphs, thus promoting the reuse of these entities and their descriptions and allowing the discovery of new information. Indeed, a property-value pair describing an entity can be reused by any other entity that is identical to it. This reuse is one of the strong points of this property since owl:sameAs makes it possible to increase the completeness of an entity, i.e., to increase the knowledge that one has about it. The property is, by definition, transitive. It is thus possible to have several identical entities linked by owl:sameAs properties and forming a chain of identical entities. Thus, on a chain of entities linked by owl:sameAs, any property-value pair can be used on any entity of this chain. This mechanism is called property propagation. However, as a result, a link that may sometimes be true and sometimes false risks spreading false information. The propagation of false data along a chain of owl:sameAs properties decreases the quality of the data. The quality drop can have dramatic consequences depending on data usage. For CHAPTER 1. INTRODUCTION example, in the medical field, poor decision-making based on incorrect data can result in significant harm to patients.

To be able to identify the different contexts in which an identity link can be explained between two entities, we analyzed the different works already done on this subject. We realized that the propagation of properties was not or hardly dealt with, despite the proposals of several contextual identity definitions. As a first approximation before studying its definition in more depth, we can consider that an identity context is a set of properties.

All identical entities in this context have the same values for the properties of this set.

In this thesis, we are therefore particularly interested in how some properties may or may not be propagated between identical entities in a given context. Indeed, just like the property owl:sameAs, to be useful, a contextual identity link must allow the propagation of certain property-value pairs within identical entities in the given context. For example, if one considers two drugs with the same active ingredient, but produced by two different companies, then these drugs will be identical in the medical context, but different in the commercial context. In the medical context, it can be expected that the properties describing the adverse effects will be the same for both, or that the effects of one can be complemented with those of the other.

Our primary research questions are as follows:

• How to define a contextual identity between entities belonging to an RDF knowledge graph?

• How to find the properties that can be propagated between identical entities in a given context?

Contributions

In a first step, we explored several ways to allow an agent (human or machine) to know (semi-)automatically which properties are propagable in a given identity context. The first approach consists in using semantics provided by ontologies, expressed in OWL 2 or RDFS, which describe the properties and classes of a knowledge graph. Indeed, due to the CHAPTER 1. INTRODUCTION lack of semantics observed on some graphs, we first conducted a large-scale study on the presence and quality of the use of OWL 2 in RDF knowledge graphs. We then proposed an ontology allowing data providers to specify which parts of OWL 2 are used in their graphs.

The ontology is intended to facilitate the exploration of graphs and especially to allow the choice of the appropriate tool for a given task according to the OWL 2 functionalities present in the given graph. Indeed, some tools may require the presence of certain OWL 2 functionalities, such as functional properties, to produce the results expected by the user. In the case at hand, an instance of this ontology can help to determine if the use of semantics can be considered to provide propagable properties.

We then investigated an idea based on the importance of properties and their values in a given graph. It appeared to us that some properties might be more or less significant in determining whether or not two entities are identical. Thus, depending on the use of properties in a knowledge graph, it is possible to determine the weight that a property can have or the discriminating power of a property-value pair. These elements help to decide if two entities are the same or not. This approach also uses semantics as a first step to try to find identity links. Indeed, the presence of functional properties, for example, can help to find such links between entities.

Afterwards, we proposed an approach that allows finding semi-automatically the properties that can be propagated between identical entities in a given context. We use the definition of an identity context proposed by [START_REF] Koudous Idrissou | Is my: sameas the same as your: sameas?: Lenticular lenses for context-specific identity[END_REF] since it provides a framework for property propagation for a given set of indiscernible properties. Our approach uses a sentence embedding technique where a vector represents each property having a long description in natural language. It is thus possible to compute a vector representing a set of indiscernible properties, on the one hand, and, on the other hand, to compute the distance between this vector and those of the properties that are candidates for propagation. We postulate that the closer the description of a property is to the descriptions of the indiscernible set, the more likely it is propagable. To find the contexts of an entity, we propose an algorithm that computes the lattice that represents the set of identity contexts of this entity. The proposed approach relies on techniques of our previous work on using semantics as a first technique and the Finally, one of the objectives of establishing the identity between two entities is to be able to reuse information, i.e., to increase the completeness of an entity using one or more other entities. This completeness can take two forms: (i) at the schema level of the entity, i.e., the number of different properties it uses, and (ii) at the data level, i.e., the number of values a property can have. Measuring data completeness is very difficult since it is almost impossible to establish a gold standard for data in the Semantic Web domain since it is governed by the open-world assumption ( [START_REF] Darari | Completeness statements about RDF data sources and their use for query answering[END_REF]).

Hence, we measure the effects on the completeness, at the schema level, of the propagation of properties in a given identity context. In this case, it is necessary to have a reference schema corresponding to the nature of the entity to compute its completeness, i.e., its class (the object of the property rdf:type). With an entity schema, it is possible to measure the completeness of the entity before and after binding with other (contextually) identical entities. Thus, we present an approach and a demonstrator (LOD-CM), allowing us to find the conceptual schema of a given class. Of course, the context and the propagable CHAPTER 1. INTRODUCTION properties must be a subset of the properties used in the schema. Indeed, if the propagable properties do not appear in the conceptual schema, it will not be possible to measure the evolution of completeness on these properties.

The final objective of this thesis is to propose and implement the framework illustrated in Figure 1.1 and described below.

1. The user provides a SPARQL query that must be executed on the knowledge graph KG, and it must contain at least one instantiated variable. The following steps are repeated for each instantiated variable in the query. For simplicity, we will take the case where the query has only one instantiated variable called e.

2.

The entity e will serve as the seed for the lattice of indiscernible properties, i.e., that each element of the lattice is a set of indiscernible properties P i i .

3. Computation of entities identical to the seed e from a logical (or semantic) point of view to enrich the similar entities of each indiscernibility set.

4. The set of P ropQuery e properties related to the seed in the query is extracted. These are the properties that will allow one to select the appropriate context later on.

5.

For each Π i , we calculate its corresponding set of propagable properties.

6. The user chooses, if necessary, a conceptual diagram among those proposed to be able to calculate the completeness of the entity. This schema must include a maximum of P ropQuery e properties.

7. The user chooses, if necessary, an identity context whose propagable properties contain a maximum of P ropQuery e properties.

8. Calculating the completeness C 1 of e.

9. Propagation of properties on e.

10. Calculating the completeness C 2 of e.

11. Expansion of the query.

Thesis outlines

The thesis is structured as follows:

Chapter 2 introduces the necessary background knowledge and discusses related works.

In the first section of this chapter, we explain how knowledge graphs have emerged as a mature way to expose structured data and the vocabulary we use in this thesis. In Section 2.2, we expose the historical and philosophical roots of the problem we tackle in this work. Then, we describe, in Section 2.3, traditional ways to handle identity with knowledge graphs. Finally, before concluding, we relate propositions to handle identity in a contextual way.

Chapter 3 proposes a large-scale study about the presence of semantics in knowledge graphs. The purpose of the study is to get a clear picture of the current semantic landscape since semantics is a cornerstone of our work. Then, we describe an ontology, called

OntoSemStats, that captures semantics in a given knowledge graph to facilitate knowledge discovery.

Chapter 4 describes an approach to find identical entities based on semantics and predominance of certain properties. The works described in this chapter are a key element in the main framework we present in Chapter 5.

Chapter 5 describes our main contribution to the propagation of properties for a given indiscernibility set.

Chapter 6 presents our approach to compute conceptual schemas of a class in a knowledge graph. The work is based on a property extraction technique to discover, with a given class, the properties and related classes that can make up a schema. Moreover, this conceptual schema allows computing entity completeness.

Chapter 7 summarizes our contributions and gives some directions for future work.

Chapter 2

Background and State of the art

Firstly, in this chapter, we will clarify the different terms used in this thesis and provide some background information. Secondly, in Section 2.2, we will present the subject of identity from classical points of view, to provide some broader perspectives to our work. In Section 2.3, we present traditional identity management in the Semantic Web community, i.e., instance matching approaches. In Section 2.4, we will present some work that has spotlighted the problems that identity, based on Leibniz's definition, brings to the Semantic Web community. Finally, in Section 2.5, we will present solutions that have been proposed so far.

From documents to knowledge graphs

In 2012, Google 1 popularized the "knowledge graph" term. While many definitions have been proposed, so far, none of them has been unanimously adopted. [START_REF] Ehrlinger | Towards a definition of knowledge graphs[END_REF] Hence, in the present work, we mean RDF-based knowledge graph when writing using the "knowledge graph", i.e., a labeled oriented multi-graph with resources that are IRIs. Linked (Open) Data is another important part of the Semantic Web. Indeed, Linked Data is the realization of the Semantic Web, as depicted in Figure 2.2, where each node represents a knowledge graph. The LOD Cloud2 service exposes more than a thousand graphs.

Tim Berners-Lee defined four principles to expose how Linked Data should be published:

1. Use Uniform Resource Identifiers (URIs) as names for things.

2. Use HTTP URIs so that people can look up those names on the Web.

3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL [see in Section 3 below]).

4. Include links to other URIs, so that they can discover more things.

He also proposed a five-tiered deployment program to assess the degree of compliance:

1. Available on the Web (whatever format) under an open license.

2. Published as structured data (e.g., Excel instead of an image scan of a table). 4. Use of URIs to denote things, so that people can point at them. 5. Linking of your data to other data to provide context.

In the following sections, we will clarify the context of this work and delve deeper into the problematic notion of identity.

Identity from historical and philosophical points of view

Philosophers were interested in identity since at least classical antiquity, e.g., with the Theseus paradox. In this thought experiment, one can imagine a ship composed of parts that are replaced over time. Is the ship still the same when all its parts have been changed?

There is no absolute answer to this question, but several possible candidates. For example, one possibility is to radically consider that there is no identity over time, which is not ideal in a database context. Another possibility is to consider a gradual loss of identity.

In the same period, the law of identity, one of the three laws of thought, states that everything is identical to itself (A = A).

Later, Leibniz proposed the identity of indiscernibles: ∀x, ∀y (∀p, ∀o, (⟨x, p, o⟩ and ⟨y, p, o⟩) 

→ x = y) (2.1)
And its converse, the indiscernibility of identicals:

∀x, ∀y(x = y → ∀p, ∀o, (⟨x, p, o⟩ → ⟨y, p, o⟩))

(2.2)
Whereas there is almost no discussion about the indiscernibility of identicals, the identity of indiscernibles is more controversial, as illustrated in the previous paragraph with several paradoxes that questions its truthfulness.

Nevertheless, the World Wide Web Consortium (W3C3 ), the organization responsible for the Web standards, has based on Leibniz's laws the definition of the property owl:sameAs.

Nowadays, the identity problem remains one of the most important for industry working with knowledge graphs ( [START_REF] Noy | Industry-scale knowledge graphs: lessons and challenges[END_REF]).

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Traditional instance matching

There are several ways to handle the identity problem. The first one is the traditional way, which goal is to retrieve (create) a maximum of right links. A second way is to find wrong identity links among existing ones. By using either semantics or statistics, it is possible to find links that may be erroneous.

The term instance matching refers to the problem of finding equivalent resources. The goal is to produce links between a source dataset and a target dataset. For each couple of entities, a similarity score is produced. If the score is above some (user-defined) threshold, the link is validated. Frameworks like Silk ( [START_REF] Volz | Silk -A link discovery framework for the web of data[END_REF]) or

KnoFuss [START_REF] Nikolov | Integration of BIBLIOGRAPHY semantically annotated data by the knofuss architecture[END_REF]) allow creating links between datasets after a configuration step. The Ontology Alignment Evaluation Initiative4 (OAEI) proposes each year a contest to interlink knowledge graphs. We now present some of this work.

[ [START_REF] Khiat | I-match and ontoidea results for OAEI[END_REF] proposed I-Match that computes the similarity between normalized strings thanks to NLP. [START_REF] Achichi | Legato results for OAEI[END_REF] proposed Legato, a multistage instance matching system that first creates vectors from entities by using NLP techniques and then compute the correlation between vectors, and finally use a clustering algorithm to eliminate some false positives candidates. In [START_REF] Jiménez | Logmap: Logic-based and scalable ontology matching[END_REF], the authors proposed an instance matching system that is looping between link discovery and repairing, thus allowing reducing the number of wrong candidates. They used an external lexicon (like WordNet) to increase the matching capabilities. [START_REF] Fernández | Binary RDF representation for publication and exchange (HDT)[END_REF] have published a comprehensive survey and, more recently, [START_REF] Achichi | A survey on web data linking[END_REF] and [START_REF] Nentwig | A survey of current link discovery frameworks[END_REF] have proposed further surveys.

Identity link assessment approaches consist of checking if an existing link is true or false.

Methods from those approaches may also be used to find links. [START_REF] Guéret | Assessing linked data mappings using network measures[END_REF] proposed to use standard network measures to assess existing links.

[ [START_REF] Bibliography Gerard De Melo | Not quite the same: Identity constraints for the web of linked data[END_REF] proposed to use the unique name assumption within datasets (i.e., an instance has one name within a dataset) to spot sets of entities linked by owl:sameAs where CHAPTER 2. BACKGROUND AND STATE OF THE ART at least one link may be wrong. Next, a linear programming algorithm is used to check if the link is wrong. In [START_REF] Papaleo | Logical detection of invalid sameas statements in RDF data[END_REF], the authors proposed a logical approach that tries to detect logical conflicts by using semantics features like functional properties in small sub-graphs containing the two involved entities to assess.

Hence, this approach strongly relies on semantics. [Paulheim 2014] proposed to use data mining methods. Links are represented in an embedded space. Then an outlier detection algorithm is used to detect links that may be wrong. [START_REF] Valdestilhas | CEDAL: timeefficient detection of erroneous links in large-scale link repositories[END_REF] use a combination of semantics and graph partitioning algorithms to detect erroneous transitive properties. [START_REF] Raad | Detecting erroneous identity links on the web using network metrics[END_REF] proposed to use community detection on identity links network to detect erroneous links. Also, using network structure, [Idrissou, van Harmelen, and van den Besselaar 2018] proposed to combine several network metrics to find wrong links across multiple datasets.

Identity crisis

As described in [START_REF] Horrocks | The even more irresistible SROIQ[END_REF], owl:sameAs purpose is to link two entities that are strictly the same, i.e., both entities are identical in every possible context.

owl:sameAs has strict semantics allowing us to infer new information. Many existing tools produce such owl:sameAs links, as explained in the previous section. However, none of these approaches consider contextual identity links. Their purpose is to discover identity links that allegedly always hold. This is, from a philosophical point of view, hard to obtain, as explained in Section 2.2.

As early as 2002, [START_REF] Guarino | Evaluating ontological decisions with ontoclean[END_REF] raised the issue of identity for ontologies.

Especially when time is involved, stating that two things are identical became a philosophical problem. The authors proposed to involve only essential properties, i.e., a property that cannot change in identity. Indeed, as stated in [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF] or [START_REF] Ding | owl: sameas and linked data: An empirical study[END_REF], because of the strict semantic of owl:sameAs, the burden of data publishers might be too heavy. owl:sameAs links are not often adequately used. Some might be simply wrong, and, more insidiously, some might be context-dependent, i.e., the owl:sameAs link does not hold in every possible context because it is hard to obtain a consensus on the validity of a statement. The CHAPTER 2. BACKGROUND AND STATE OF THE ART meaning that a data modeler gives to the data may not correspond to what the end-user expects. The misuse of owl:sameAs is often referred to as the "identity crisis" ( [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF]). [START_REF] Beek | A contextualised semantics for owl: sameas[END_REF] 

Contextual Identity

Conclusion

The formalism proposed by [Idrissou, Hoekstra, van Harmelen, Khalili, and van den

Besselaar 2017] seems to be the most appropriate for representing an identity context. Both the indiscernibility and propagation parts can be modeled between several entities with two distinct sets of properties. Nevertheless, the user must provide everything, which might be a complicated and time-consuming task. Hence, our goal is to propose an approach to CHAPTER 2. BACKGROUND AND STATE OF THE ART compute indiscernibility sets and their corresponding propagation sets automatically. Our approach to handle propagation is composed of several parts.

It appeared to us that some properties might be more or less significant in determining whether or not two entities are identical. Thus, depending on the use of properties in a knowledge graph, it is possible to determine the weight that a property can have or the discriminating power of a property-value pair. These elements help to decide if two entities are contextually the same or not. Moreover, semantics is also used to try to find identity links that are logically grounded. Indeed, the presence of functional properties, for example, can help to find such links between entities.

Hence, we proposed an approach that allows finding semi-automatically the properties that can be propagated between identical entities in a given context. For the definition of an identity context, we use the one proposed by [Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017], since it provides a framework for property propagation for a given set of indiscernible properties. Our approach uses a sentence embedding technique where a vector represents each property having a long description in natural language.

This vector is weighted by the importance of the property as previously described. It is thus possible to compute a vector representing a set of indiscernible properties, on the one hand, and, on the other hand, to compute the distance between this vector and those of the properties that are candidates for propagation. We postulate that the closer the description of a property is to the descriptions of the indiscernible set, the more likely it is to be propagable. To find the contexts of an entity, we propose an algorithm that computes the lattice that represents the set of identity contexts of this entity. The proposed approach relies on techniques of our previous work on using semantics as a first technique and the importance of properties to weight vector calculations (what we called the weight of a property).

Chapter 3

Knowledge graphs and OWL 2

This chapter is based on the following publication:

• For many users or automated agents, working with knowledge graphs may be a compli-CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2 cated task. Indeed, multiple tools using knowledge graphs rely on semantics to perform at their best. For example, in the context of data integration, some instance matching tools use semantic features such as functional and inverse functional properties or disjoint classes to discover entities that are the same (or not). Hence, in many cases, conducting an exploratory study is required to discover which semantic features are used or defined in a knowledge graph. In this chapter, we first propose a large-scale study of the current state of the Web of data regarding its semantics use. Then, we propose an ontology and large-scale ontology-based Web service that provides statistics about the OWL 2 and RDFS semantic features (e.g., functional properties or subclasses) for a given knowledge graph.

The ontology will allow a human or automatic agent to choose the most appropriate tool or data for a given task. It also gives the data publishers a clear picture of semantics they provide to data consumers. These statistics are represented in the form of an RDF graph.

The graph makes it easy to use and share.

In Section 3.1, we outline the reasons that led us to conduct this large-scale study on the Web of Data, and motivated us to create an ontology to encapsulate information and usage of semantics in knowledge graphs. In Section 3.2, we give an overview of ontologies that are used to describe knowledge graphs. Section 3.3 is dedicated to present our study on the use of OWL 2 on the Web of Data. In Section 3.4 and 3.5, we provide the details about our ontology and the tools to instantiate it. Finally, in Section 3.6, we conclude both the study and the proposed ontology.

Introduction

As the number and size of RDF knowledge graphs increase, the difficulty of querying or using this data grows. For a given task, several types of approaches can be considered.

Some approaches rely mainly on semantics available in the graphs, others, on the contrary, make little or no use of it. Of course, in between these two extremes, approaches can take advantage of semantics, without relying entirely on it. For example, if the task is to interconnect several knowledge graphs, approaches may use a combination of techniques such as statistics, other external knowledge graphs, semantics, or data partitioning algorithms. [START_REF] Alexander | Describing linked datasets[END_REF] allow knowledge graphs to be described. However, they do not give the possibility to express which elements of OWL 2

or RDFS are used.

While investigating how to use semantics in knowledge graphs to discover (contextual-)identity links, we were confronted by a recurring problem: knowledge graphs we used for our experiments were lacking semantics. We dug into the literature about semantic studies of knowledge graphs and discovered that all works were relatively old (more than ten years) and were about tiny parts of the Semantic Web.

The research questions of this chapter are as follows:

• What is the current state of Linked Open Data knowledge graphs regarding the presence and usage of semantics?

• How to facilitate access to information on the semantic structure of a knowledge graph?

Hence, in this chapter, we propose a large-scale study of the current state of the Web of Data concerning the semantics. Then, this leads us to propose an ontology to express, for a given knowledge graph, which OWL 2 and RDFS features (e.g., functional properties or subclasses) are used and in what proportions. Indeed, this ontology allows the necessary information to be brought directly to the data consumer to select, in full knowledge of the facts, the appropriate tool for the realization of his or her task. Besides, we provide applications to instantiate the ontology for a given knowledge graph, to its SPARQL endpoint. The objective is to enable data consumers to know precisely how and to what extent OWL 2 and RDFS are used in the knowledge graph. This will be achieved by aggregating statistics about all vocabularies or ontologies of the knowledge graph described with OWL 2 and RDFS. All the present work is available on GitHub.

Related work

In this section, we present some works that focus, in one way or another, on the study of the use of semantics in knowledge graphs of Linked Open Data.

In [START_REF] Mathieu D'aquin | Characterizing knowledge on the semantic web with watson[END_REF], the authors analyzed 25500 knowledge graphs in terms of expressivity. Although compelling, this study is old and deals with a tiny number of knowledge graphs. [START_REF] Jain | Linked data is merely more data[END_REF] denounces the lack of expressiveness of knowledge graphs, i.e., that many knowledge graphs do not use all the different features of OWL 2, far from it. As a result, many approaches based on the most advanced features of OWL 2 are unusable as they stand on these graphs using non-expressive ontologies. For example, without properties that could be declared as transitive but are not so described, it is more complicated to navigate between related data, which is supposed to be one of the strengths of this type of knowledge graph. Moreover, this paper analyzes only 70 graphs of the LOD Cloud5 , which is little, would have strayed to its current size (1239 graphs).

In [START_REF] Hitzler | A reasonable semantic web[END_REF], the authors emphasize that some data publishers focus solely on publishing data (i.e., triples) without annotating them with shared ontologies.

The lack of semantics reduces the possibility of resonating with this data. They conclude that, apart from the owl:sameAs property, the features of OWL 2 are little used. However, this study is more of an empirical finding than a systematic study. [START_REF] Hogan | Weaving the pedantic web[END_REF] and [Polleres,Hogan,Harth,CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2 and Decker 2010] state that the quality of open Linked Data can be problematic due to a lack of property and class definitions, i.e., when no OWL 2 or RDFS description is available. Whereas, for example, defining disjoint classes can help detect inconsistencies in a knowledge graph. [START_REF] Hogan | Weaving the pedantic web[END_REF] covers 12.5 million triples and aims to raise the various issues facing the Semantic Web. For example, the authors note the number of dereferencing problems, syntax problems at the RDF level or inconsistency problems. However, the small sample size and the age of the study this study does not provide answers to our questions. Moreover, the study lacks relevant metrics on the use of semantics.

[ [START_REF] Glimm | OWL: yet to arrive on the web of data?[END_REF] proposed the biggest and deepest evaluation of OWL 2 usage so far. They evaluated more than 2 billion triples and found a wide disparity in usage between the features of OWL 2. Our study covers more recent and more numerous data (more than 30 billion triples). [START_REF] Färber | Linked data quality of dbpedia, freebase, opencyc, wikidata, and YAGO[END_REF] proposes to investigate the quality of some of the best-known knowledge graphs. The authors provide basic statistics on DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Although not a large-scale study of the use of semantics, some statistics are interesting (like the number of triples, number of classes, number of relations), but do not sufficiently address semantics expressed by ontologies based on OWL 2.

None of the cited works proposes a complete study on the use of OWL 2 semantics in RDF knowledge graphs with precise figures and at such a scale. In this chapter, we propose to collect information on a large scale about the usage of OWL 2 features. We also provide an ontology describing these features.

Current state of linked open data

In this section, we present the sources we used to produce results on a larger scale. Next, Before continuing, we propose the following definition, which will be useful for both the ontology and the study we have conducted.

Definition 3.3.1 (Semantic feature) A semantic feature is any element of OWL 2, i.e., all its properties and classes such as owl:Restriction or owl:SymmetricP roperty.

For example, ⟨:age a owl:F unctionalP roperty⟩ and all the triples using :age as a predicate. We will consider both the triples defining :age and the use of this property as a predicate in triples. Or, ⟨ : someClasses a owl:AllDisjointClasses⟩ and all triples of form ⟨?x rdf :type :someClasses⟩ are also considered triples using a semantic feature of OWL 2.

The following definition will be useful to observe our results from a different perspective in Sect. 3.3.4.

Definition 3.3.2 (Topic of a knowledge graph)

The topic of a knowledge graph is the main subject of the data it contains. Our topic selection is based on LOD Cloud (see Sect. 3.3.1). If a graph has no topic, then it has the default topic: "unknown". Some graphs may have more than one topic, in which case each topic will be used in our study.

Sources

In this section, we will present the different data sources we have considered using for our study on the use of semantics expressed in the form of OWL 2 ontologies. We will explain why we have retained some of them and discarded others. Our goal is to gather information on the use of OWL 2 semantics in RDF knowledge graphs.

The LOD Cloud provides a visual overview of the extent and growth of RDF knowledge graphs in recent years. Although presenting only a limited number of graphs (a little more than 1000), the metadata associated with these graphs, especially the topics (see Def. 3.3.2) in which each graph is focused (e.g., linguistics or social networks), make this tool a valuable source for our experience. Indeed, this allowed us to compare graphs relating to very different topics and thus to observe whether differences in modeling and thus in CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2 the use of OWL 2 semantics appear between these topics.

LOD Laundromat6 ( [START_REF] Beek | LOD laundromat: A uniform way of publishing other people's dirty data[END_REF])

provides access to more than 650 thousand knowledge graphs in HDT format ( [START_REF] Fernández | Binary RDF representation for publication and exchange (HDT)[END_REF] and [START_REF] Miguel | Exchange and consumption of huge RDF data[END_REF]). HDT is a compressed format containing RDF triples and allowing search operations to be performed on these triples. The data on these graphs have been cleaned up. Syntax errors, duplicate data, and anonymous nodes, for example, have been removed or addressed. Each graph is contained in a single file with a unique identifier, and metadata is also available (like provenance, number of triples, date of processing).

Some of these graphs refer to different versions of the same dataset, e.g., DBpedia-en, DBpedia-fr or DBpedia 3.8. Some of the graphs in LOD Cloud are contained in LOD Laundromat.

LOD-a-lot7 is a service providing access to the same data as LOD Laundromat. However, data are a single graph in which all the LOD Laundromat graphs have been merged into a single knowledge graph. Although very interesting, merging all the graphs into one no longer allows us to distinguish between the different original graphs, and therefore the resulting analysis would have been lessened. That is why we did not select LOD-a-lot as the data source for our study.

Therefore, we chose to use LOD Laundromat for its large number of knowledge graphs and their serialization in HDT format, as well as the LOD Cloud for its metadata on the topics of the different graphs. Wherever possible, we have tried to link the graphs from the two given sources, as explained in the next section.

Information collecting

In this section, we describe how, from the sources seen in the previous section, we collected the information. For a given graph, we analyzed the different classes and properties, on the one hand, i.e., their definitions in OWL 2, and, on the other hand, we analyzed their uses within this knowledge graph. For the first analysis, if ever the definition of a class (respectively of a property) is not explicitly present in the graph, then we tried to reach this definition by dereferencing, i.e., by going to see if the URL refers to an RDF document containing the searched definition. This step allows us to know, for example, whether a particular property is defined as a functional property and how often it is used.

Indeed, sometimes a class or property is defined but is not used in the data at all. Also, for each property, we have searched for all its possible super properties: for example, if p 1 is defined as a sub-property of p 2 and the latter is defined as a functional property, then p 1 will also be functional. This step ensures that we do not forget properties defined with implicit OWL 2 features.

Hence, we downloaded metadata from LOD Cloud and LOD Laundromat to bring the graphs (the HDT files) closer to their topics when the graph is described in both sources.

For each graph, we calculated the numbers presented in Table 3.1.

The software developed for this study was developed in Java and is available for replication on GitHub 8 . Name Description ALL All knowledge graphs. w/ topic All graphs with a topic that is not "unknown". w/o topic All graphs with the topic "unknown". w/ semantics

All graphs with at least one OWL 2 feature. w/ sem & topic

All graphs with at least one OWL 2 feature and a topic that is not "unknown". TOP 100

The first 100 graphs in terms of the number of triples. Topic All graphs with this topic.

Table 3.2: Selector definitions.

Overall Results

Thanks to LOD Laundromat, 647 858 knowledge graphs have been analyzed (an HDT file represents a graph). Thus, in this document, an RDF knowledge graph is a serialization of a graph expressed using the RDF graph model, i.e., composed of subject-predicate-value triples. It contains data (A-Box) or ontology (T-Box). We will first present the overall results, then according to the topics of the graphs to know if differences appear in the use of OWL 2 semantics according to the topics. Next, we will take a detailed look at the results for the different features of OWL 2.

The first view of these results is presented in Table 3.3 and 3.4. The first column corresponds to the selector, i.e., the filter we applied to select a subset of the nearly 650 thousand graphs. This selector filters all graphs or graphs with at least one OWL 2 feature, or the 100 largest in terms of the number of triples (see Table 3.2).

Table 3.3 shows a summary of the graphs according to different selectors. The second column indicates the number of graphs selected by the selector (the maximum being, of course, 647,858 graphs). In the next three columns, we indicate the first, second, and third quartiles according to the number of distinct subjects to visualize the distribution of the graphs. Finally, the last column shows the percentage of graphs containing at least one class or property using one of the features of OWL 2. We observe in Table 3.3 that if we consider all graphs and graphs without topics, then the results are very close. This similarity is to be expected since the vast majority of graphs do not have a topic (either the graph was not found in LOD Cloud or the topic was not filled in). 

Results by topic

The metadata of LOD Cloud allows us to obtain the topic of several knowledge graphs:

government, life sciences, publications, user generated, cross domain, geography, media, linguistics, and social networking. We hypothesize that graphs with different subjects are not structured in the same way. For example, we expect user-generated graphs to be less expressive than those on life sciences. the largest users of OWL 2. Good news also concerning graphs on publications, the latter concerning scientists in the first place, who use much semantics.

Results by feature OWL 2

In this section, we focus on each OWL 2 feature from three different perspectives. We will first look at the property types (e.g., functional). We will then see the different types of classes offered by OWL 2, and finally, we will observe the properties of OWL 2 (like owl:sameAs, owl:inverseOf ). For these perspectives, we will need a definition of the use of OWL 2 classes and properties. CU 3.6 concerns the types of properties (for example, a property that would be defined as functional). In our study, a predicate that is a sub-property of a functional property is also functional. The second column shows the number of graphs using a property of the considered type, and the third column their weighted average regarding the number of triples. The last two columns are similar, but for subjects and predicates. For example, inverse functional properties are found in 310 graphs. Among these 310 graphs, we can expect to find an average of 2.54 definitions of such properties that are used in 22.7 triples with 20.6 different subjects. As we can see, some predicates are used very little, such as the owl:ReflexiveProperty, which is only used in 16 graphs. In these 16 graphs, very few reflexive properties are defined (1.28) and used. 

Ω (C) = ∑︁ N i=1 |Sub(KG i , C)| × 1 |Sub(KG i )| ∑︁ N i=1 1 |Sub(KG i )| (3.1) P U Ω (p) = ∑︁ N i=1 |Sub(KG i , p)| × 1 |Sub(KG i )| ∑︁ N i=1 1 |Sub(KG i )| (3.2) CHAPTER 3. KNOWLEDGE GRAPHS

Ontology

The ontology we propose (available online9 and in Annex A) aims to explain the use of classes and properties defined with OWL 2 and RDFS elements in a knowledge graph.

For instance, an objective for a user could be to know the number of properties that are transitive and their number of uses in the graph.

VoID : h a s S e m a n t i c F e a t u r e r d f : type owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y , owl : AsymmetricProperty , owl : I r r e f l e x i v e P r o p e r t y ; r d f s : domain : S t a t ; r d f s : r a n g e : S e m a n t i c F e a t u r e ; r d f s : comment " S p e c i f y which OWL 2 o r RDFS s e m a n t i c f e a t u r e i s t h e t a r g e t o f t h e g i v e n s t a t . " @en ; r d f s : l a b e l " has s e m a n t i c f e a t u r e " @en .

Listing 3.1: Definition of the hasSemanticFeature property.

For each feature of OWL 2 and RDFS, we created its own interpretation for two reasons.

First, if one has an OWL 1 KG and wants to integrate the stats, then to keep the OWL profile unchanged, we must represent the semantic features with our own IRI. For example, the triple ⟨ :stat :hasSemanticFeature owl:FunctionalProperty ⟩ would lead to OWL 1 Full and undecidability problems 1213 since owl:FunctionalProperty is a class. Therefore, for every OWL 2 and RDFS feature, we created a subclass of :SemanticFeature. For example, :FunctionalProperty represents the statistics of the functional properties. Moreover, the different axioms of OWL 2 and RDFS can impact properties, classes, or entities. For this, we have chosen to ensure that the design of our ontology reflects these possibilities.

Depending on its purpose, an axiom will be "put" in a particular class. For example, Listing 3.2 shows the definition of :PropertyType (a subclass of :SemanticFeature) used to represent the different types that a property can have (e.g., symmetrical, reflexive). Another example is the "PropertyRelation" class, which gathers, among others, statistics concerning To provide statistics for each feature of OWL 2, we have created two properties:

:definitionCount and :usageCount. The first one is to state how many times the axiom is used in a definition (e.g., the number of functional properties) and the second one how many times the definitions using the axiom are used (e.g., how many triples use a functional property). Listing 3.3 shows the definition of the :usageCount property, which allows us to state, for example, that 3 000 triples use a functional property.

: usageCount r d f : type owl : DatatypeProperty , owl : F u n c t i o n a l P r o p e r t y ; r d f s : domain : S t a t ; r d f s : r a n g e xsd : i n t e g e r ; r d f s : comment " Number o f u s a g e o f a s e m a n t i c f e a t u r e . " @en ; r d f s : l a b e l " u s a g e count " @en .

Listing 3.3: Definition of the property allowing specifying how many times a feature is used. 

Web application

Our application, OntoSemStatsWeb14 , is an open-source software (under the GPL open-source license) written in C# (using dotnetRDF15 ) and JavaScript (using Comunica16 [START_REF] Taelman | Comunica: A modular SPARQL query engine for the web[END_REF]). The application has three different forms: (i) a Web page that is our live demonstrator17 , (ii) a Web API to operate seamlessly with an automated agent, and (iii) a command-line application. All the tools that we developed are available as Docker images (one for the command-line application and one for the Web application and the Web API), to promote ease of use and adoption. Figure 3.2

shows the interface of the Web demonstrator. Here, a user can provide a SPARQL endpoint URL, and then the stats are automatically computed. The output is an instantiation of our ontology. or automated) must provide a SPARQL endpoint URL (1) as input. The application checks the status of the endpoint (2), i.e., if it is up or down. Then, for each OWL 2 or RDFS feature, the application executes the corresponding query on the endpoint (loop (3) to ( 5)).

Next, all sub-results are aggregated in one serialized RDF graph, i.e., the output is the graph that is an instance of the ontology regarding the given endpoint.

Depending on the used tool (i.e., Web page, API, or command-line), the graph is presented in various fashions. The Web page summarizes the results through a user-friendly table and a visual representation and provides a link to download the graph. On the other side, the Web API and the command-line applications allow the graph serialization to be chosen between RDF/XML, Turtle, N-Triples, Notation3, and JSON-LD.

Conclusion

In this chapter, we conducted a large-scale study that provides an up-to-date overview of the semantic usages in Linked Open Data. We observed a real lack of semantics at several levels. First, many knowledge graphs do not use any OWL 2 features, and many use only a little semantics. On the contrary, some knowledge graphs use complex structures.

Second, only some features are heavily used. Indeed, many features are almost not used.

These statements are not a judgment, but only an observation about the current state of the Web of Data: maybe most users do not need semantics. Nevertheless, we argue that some users could benefit from having access to more semantic data. We also proposed an ontology that described the OWL 2 and RDFS features defined and used in a given knowledge graph. Moreover, we provided tools that automatically instantiate this ontology for a given SPARQL endpoint. A human agent can use these tools through a Web page and a command-line program or an automated agent through a Web API. By offering easy access to the statistics about semantic usages, we help data consumers in choosing the right tool or knowledge graph that best suited his or her objectives. Moreover, this facilitated access may increase knowledge graph consumption and improve user experience.

As far as our thesis framework is concerned, ontology will help us to decide whether it is worth using semantics or not for a given knowledge graph.

Chapter 4

Semantics and predominance of properties

This chapter is based on the following publication: While considering (contextual-)identity link discovery, we had the intuition that some properties might be more relevant than others to govern the choice to create such a link.

Indeed, with an increasing number of Linked Open Data knowledge graphs, insufficient interlinking quality can lead to a decrease in overall data quality. Therefore, it is necessary to keep the interlinking quality as high as possible. One of the main ways to link knowledge graphs is to use owl:sameAs links, i.e., to indicate that two things are the same. However, with its strict semantics, there is a lot of misuse of owl:sameAs in the wild. Indeed, CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES identity is often relative and depends on the context of use. We, therefore, propose an approach that enables considering the characteristics of involved knowledge graphs to interlink them thanks to owl:sameAs statements. These characteristics will then be used to weight properties in our propagation framework (see Chapter 5). The experimental results performed on real-world knowledge graphs show that the proposed approach is promising.

The remainder of this chapter is structured as follows: in Sect. 4.1, we present our motivations to take in consideration the predominance of some properties while creating identity links. In Sect. 4.3, we detail our proposition to improve instance matching quality.

The Sect. 4.4 is about the implementation and results of our approach. Finally, in Sect. 4.5

we present the future works and our conclusions about our approach.

Introduction

Linked Data1 knowledge graphs use ontologies backed by Description logics and OWL (see [START_REF] Horrocks | The even more irresistible SROIQ[END_REF]) to define their schema. owl:sameAs2 links are the most commonly used links to link knowledge graphs together and discover new knowledge.

The property owl:sameAs from the OWL 2 ontology language states that two things (two individuals, entities, or resources) are the same and that all statements about one entity are also true for the other (the indiscernibility of identicals as explained in Chapter 2). In the Semantic Web field, retrieving all interchangeable knowledge between two things is still a significant challenge.

There are many ways to find such linksets (see Definition 4.2.2) of pairwise identical things between knowledge graphs. The most obvious is by using OWL semantics itself, e.g., by using properties such as owl:hasKey, owl:FunctionalProperty, owl:Inverse-FunctionalProperty, etc. Another way to find such links is to use frameworks based on similarity measures between entities.

However, owl:sameAs has a strict semantics3 (see Table 4.1) and is proved to be often misused in the wild (see [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF]).

A lot of owl:sameAs links are inappropriate, whether they are simply wrong, or because they are context-dependent.

The research questions of this chapter are as follows:

• How semantics can help to determine the existence or the absence of an identity link between two entities?

• Is the structure of a knowledge graph in terms of property usage is any help to discover identity links?

In this chapter, we propose an approach to detect identity links between entities of two knowledge graphs. This approach takes into account the structure of each knowledge graph, which consists of the use of explicit (ontology axioms) and implicit (statistics about properties) characteristics of properties.

The objective of our approach is to find identity links by considering the involved datasets' structures. In other words, we use explicit characteristics (from the ontology) like functional properties, disjoint class axiom, i.e., all available semantics that can help us in our task. We use OntoSemStats (see Chapter 3) to first detect if searched properties are used within the knowledge graphs, to avoid unnecessary work if they are lacking. We also use implicit properties, i.e., how properties are used in datasets. A property is explicitly defined in the ontology by its domain, its range, the fact that it can have a literal value or an object value (i.e., another IRI) and is implicitly defined within a dataset by the way it is used (e.g., how many entities use a given property?). Those explicit and implicit features may be of great help to discover new identity links. Concerning the implicit features, we propose to combine similarities function in conjunction with weights according to the use of each property within datasets. For entities of a given class, we use two types of weights. The first one is representing the importance of a property, and the second one is the discriminating power of this property.

Background and Notation

In this section, we give the preliminary background knowledge and introduce the notation. For a more exhaustive background, we refer the reader to [START_REF] Baader | An overview of tableau algorithms for description logics[END_REF].

In all the remainder of this document, KG, KG [START_REF] Baader | An overview of tableau algorithms for description logics[END_REF]) such that T 1 ⊑ T 2 KG s and KG t are called respectively the source and the target knowledge graphs.

Therefore, for this approach, we require that the T-Box of the source knowledge graph be included in the T-Box of the target knowledge graph. We need for entities in both knowledge graphs to share the same properties and have the same classes. Indeed, in this work, we do not deal with the ontology alignment problem for now. Moreover, if there is a need for alignment, it is possible to use multiple tools that exist and gives good results.

Definition 4.2.2 corresponds to the output of our approach: In the next section, we will detail our approach.

Definition 4.2.2 (Linkset) Let L KG s ,KG t (R) = {R(a, b)|a ∈ KG s ∧ b ∈ KG t }

Approach

First, we will see an overview of the main algorithm in Sect. 4.3.1, and then a detailed description of the different phases of our approach in Sect. 4.3.2.

Approach summary

Our approach to determining whether an owl:sameAs link can be created between two

x 1 and x 2 entities can be summarized as follows:

1. If there is semantics (see OntoSemStats in Chapter 3), find any semantic proof of identity. If there is one, stop there.

2. Otherwise, for each common property R between x 1 and x 2 (such that R(x 1 , o 1 ) and In the following section, we will see more details about each step.

R(x 2 , o 2 )): ( 

In-depth approach

There are two distinct phases when two entities are compared to know if they are the same and if an owl:sameAs link must be created between them. The first one relies on owl:sameAs semantics. The second one is the heart of the approach.

Direct semantic proof

The first step of our approach is to check if some OWL 2 features of interest are present in the knowledge graphs. Hence, we check if the graphs contain instances of our ontology OntoSemStats (see Chapter 3). Otherwise, we build them with one of our tools (see Section 3.5). If no feature allowing discovering identity links is present, then we skip this part. Otherwise, we look for direct semantic proof of equality (or inequality) between the two inspected resources. 

if hasSem ∧ IsSemP roof (x 1 , x 2 ) then return SemP roof V alue(x 1 , x 2 ); 3 scores ← []; 4 C ← max C {depth KG (C) | C(x 1 ) ∈ KG s ∧ C(x 2 ) ∈ KG t }; 5 /* At worst, C = owl:T hing */ 6 foreach R ∈ R x 1 ∩ R x 2 do 7 /*

The use of properties

In this second step of our approach, there are two main ideas. The first one is that rarely occurring property (among entities of a given class) may be stronger to evaluate identity between two entities than an omnipresent property (see Example 3). The second one is that a property-value couple that occurred less is more helpful to find an identity link (see Example 4). We have been inspired by the fact that when looking for a clue, we seek for a specificity since peculiarities narrow down the possibilities. In combination with the property Age and for M an entities, the object "47" selects only one entity ( obama) with its discriminating power of 33%, against two ( lennon, einstein) for the object "26" with a discriminating power of 66%.

To sum up, for each common property between two entities, we compute a similarity score weighted by the weight of the property and the discriminating power of the property-value pair.

Finally, we need to aggregate those weighted similarity scores. In the aggregation process, we take into account the fact that the more clue there is, the more trustworthy the result will be (see line 14 in Algorithm 1).

Example 10 Suppose that we have three entities a, b and c where a is from KG s and b and c are from KG t . On the one hand, if we have four clues between a and b, and on the other hand, eight clues between a and c then we strengthen the second result. We give a bonus to the comparison with the more clues to present.

Therefore, after aggregating all weighted similarity scores, we use another weight to either penalize or reward the result according to the number of common properties between the compared entities. To do this, we compute the following weight: Definition 4.3.6 (weight of clues) Let x 1 and x 2 be two entities. A clue is the usage of a property by the two entities, whatever the values of the triples are. We define clue x 1 ,x 2 ∈ [0, 1] as the weight of clues between x 1 and x 2 with the following formula:

clue x 1 ,x 2 = | R x 1 ∩ R x 2 | | R x 1 | + | R x 2 | -| R x 1 ∩ R x 2 | (4.1)
Example 11 If R x 1 = {rdf s:label, f oaf :name,dbo:birthP lace, dbo:birthDate}, R x 2 = {rdf s:label, dbo:birthDate, dbo:deathDate} and R x 3 = {rdf s:label, f oaf :name, dbo:birthP lace, dbo:deathDate}, then

R x 1 ∩ R x 2 = {rdf s:label, dbo:birthDate}, clue x 1 ,x 2 = 2 4+3-2 = 2 5 = 0.4 and R x 1 ∩ R x 3 =
{rdf s:label, f oaf :name, dbo:birthP lace} and clue x 1 ,x 3 = 3 4+4-3 = 3 5 = 0.6. We can see in the second case that there is more information to support the approach. x 1 and x 3 have more information to be compared than x 1 and x 2 . Some additional points need explanation. Line 2 from Algorithm 1 corresponds to the stage where we search for direct semantic features. Furthermore, in line 4, we use the depth KG (C) function that is defined by the following: We retrieve the deepest common class between x 1 and x 2 , i.e., the most specific. It is this class that will be used to compute the weight of the properties and the discriminating power of the property-value pairs. The idea is that if, for example, two entities are scientists, we will obtain better results if we use the Scientist class than the Human class.

Finally, Algorithm 2 shows how our approach handles the similarity between two objects.

The fragment function gives the last part of an IRI, i.e., after the last / or #, to compare IRIs in last resort. We compare data types, and if they match, we use an appropriate similarity measure (line 11), e.g., if they are both dates, then we use a similarity function working with dates. If both are resources, we check for direct semantic proof (as we have seen it before), and if we do not find anything, we trivially compare IRIs. There has been no attempt to use recursivity in this part yet.

Furthermore, in the main algorithm (Algo. 1), there are three different aggregation functions (lines 10 and 15) that are used. We used the mean for all three.

Experiments

In this section, to evaluate our approach, we will present two experiments performed on DBpedia/Wikidata and the SPIMBENCH SANDBOX track from OAEI 2017 and then discuss their results.

Results

We have developed a prototype in C# that can be run either on Linux or Windows machines. It is also available as a Docker image. We choose the open-source library dotNetRDF7 to handle SPARQL, OWL, and RDF parts. All experiments are performed on a computer with an I7 processor (3.10 GHz) and 16 Go of RAM. All our code and datasets can be found on this Github repository, so our experiments are reproducible: https://github.com/PHParis/im_prototype.

For each experiment, we have calculated the precision, recall, and F-measure with result linkset as follows:

• True positive (tp): number of alignments predicted (by our approach) that are actually 

First experiment

For the first experiment, we performed an instance matching task on real-world and well-known knowledge graphs. Thus, we used subsets of DBpedia and Wikidata. More precisely, we used DBpedia Wikidata8 in place of Wikidata since it is expressed with DBpedia ontology. Hence, we respect the following condition from Definition 4.2.1: T 1 ⊑ T 2 (source TBox must be a subset of target TBox). The version of DBpedia used is "2016-10", and the version of DBpedia Wikidata is "03.30.2015". Now we describe how we built our two test knowledge graphs from real-world datasets.

In the source knowledge graph KG s , we have selected entities of persons from DBpedia having at least 15 homonyms (according to rdfs:label) in Wikidata. We arbitrarily chose 15 homonyms to have a sufficient challenge without having to recover too many entities (the scaling of our approach is not our main concern at the moment). We queried all triples mentioning one of these entities to construct the source knowledge graph. In the target knowledge graph KG t , we retrieved all homonyms (belonging to DBpedia Wikidata) of entities from our DBpedia selection. For example, the entity dbpedia:John_Williams has the label "John Williams", and there are 88 distinct entities in Wikidata with the label "John Williams". The DBpedia selection contains all triples having dbpedia:John_Williams as subject or object, and the DBpedia Wikidata contains all triples having one of the 88 entities as subject or object. From both source and target knowledge graphs, we deleted owl:sameAs links after having assessed them (none of them were erroneous). There were 36 owl:sameAs. Those links were then used as a gold standard. The source knowledge graph contains 277 entities, 3468 triples, and 36 candidate entities belonging to the class to be matched with the target knowledge graph. The target knowledge graph contains 1170 entities, 7667 triples, and 552 candidate entities belonging to the class to be matched with the source knowledge graph.

After applying our approach (that took 12 seconds), we evaluated the generated linkset.

We obtained a precision and a recall of 91.7%. In detail, our approach produced 33 true positives, 3 false positives, and 3 false negatives. Therefore, our approach works well on real-world data. Next, we go further and compare it with other approaches.

Second experiment

The goal of this experiment is two folds. First, we want to compare our approach with state of the art approaches. Secondly, other approaches we selected all use advanced terminology or structural comparison techniques (see Sect. 2.3) to perform their task.

Hence, we want to prove that a structure-based approach with simple string matching can perform as well as these approaches that use more advanced techniques. To compare our approach with others (see Sect. 2.3), we performed tests using the SPIMBENCH SANDBOX task from OAEI 20179 . This task has a source and target knowledge graphs and a gold standard. A class name is provided, so only the entities of this class might be linked. SPIMBENCH SANDBOX datasets are alterations of an original one through value-based, structure-based, and semantics-aware transformations. The source knowledge graph contains 1432 entities, 10883 triples, and 349 candidate entities belonging to the class to be matched with the target knowledge graph. The target knowledge graph contains 1453 entities, 10868 triples, and 443 candidate entities belonging to the class to be matched with the source knowledge graph.

Table 4.3 shows a comparison of our results with each participant of the OAEI 2017

Instance Matching Track for the SPIMBENCH SANDBOX's task. In detail, our approach produced 298 true positives, 51 false positives, and one false negative.

Discussion

In the first experiment, results are good since we obtain 91.7% for all measures. Right links are well found, indicating that our approach is promising. In the second experiment, for the SPIMBENCH SANDBOX knowledge graph, our approach performed well since recall is 99.6% and precision 85.4%. We reached the same F-Measure as I-Match, which was the best competitor on F-measure. In the same way as in the first experiment, several times, a wrong candidate has been selected instead of the correct one. The simple aggregation of the weights is responsible for most of the false positives. Besides, the use of more advanced similarity calculation techniques could improve candidate selection and thus reduce the number of false positives. For example, external knowledge graph or NLP techniques can improve the comparison of strings.

One of the weaknesses of our approach we observed is the case where a wrong candidate is proposed with more corresponding property-value pairs of lesser importance than the right candidate has corresponding property-value pairs of importance. When entity descriptions are too close, our approach may not detect false positives.

There are several areas for improvement, like the three different agg, as mentioned in the previous section. We use simple arithmetic mean, and we must investigate other ways to aggregate the sub-scores (i.e., scores for each common property from the loop line 6 in Algorithm 1) and the three weights (i.e., discriminating power and weight of a property, and the quantification of information). Also, we focus on the source knowledge graph for computing the discriminating power and weight of a property. It may be interesting to use both knowledge graphs in the process. Likewise, we use only one common class between the two entities, although to use all common classes may strengthen the score.

Scalability should also be addressed because if there are more than 1000 entities to match, our approach takes more than ten minutes to complete. This scalability issue is mainly due to the absence of any code optimization for the moment. We also need to improve the post-processing part concerning the validation of matches found. In fact, for now, we simply select for each source entity the best candidate in the target knowledge graph, but if the target does not contain an identical entity, then we produce a false positive. Finally, properties that are not shared by entities (we are trying to match) are discarded, but they may provide hints too. Unlike some other approaches, we do not use external resources as background knowledge. Furthermore, some approaches perform post-processing to eliminate false positives. We could benefit from these last two points, so our approach combining statistics on structure and semantics can be improved.

Conclusion

In this chapter, we have proposed a fully automatized approach to perform an instance matching task between two knowledge graphs sharing their T-Boxes. This approach uses semantics at its disposal but also uses statistics about properties and property-value pairs according to the most specific common class between the compared entities.

The results show that our approach is a promising way towards better interlinking. The recall is good, which means that our approach works well to find links.

Regarding our thesis framework, we use the predominance of properties to compute a vector that is a weighted mean representing a set of indiscernible properties (see Chapter 5).

Chapter 5

Propagation of properties

This chapter is based on the following publications:

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Propagation contextuelle des propriétés pour les graphes de connaissances : une approche fondée sur les plongements de phrases. In Ingénierie des Connaissances, 2020b (To be published)

• Pierre-Henri Paris, Fayçal Hamdi, Nobal B Niraula, and Samira Si-Said Cherfi.

Contextual propagation of properties for knowledge graphs: A sentence embedding based approach. In International Semantic Web Conference, 2020d (under review)

With the ever-increasing number of RDF-based knowledge graphs, the number of interconnections between these graphs using the owl:sameAs property has exploded. Moreover, as several works indicate, the identity as defined by the semantics of owl:sameAs could be too rigid, and this property is therefore often misused. Indeed, identity must be seen as context-dependent. These facts lead to poor quality data when using owl:sameAs inference capabilities. Therefore, contextual identity could be a possible path to better quality knowledge. Unlike classical identity, with contextual identity, only certain properties can be propagated between contextually identical entities. Continuing this work on contextual identity, we propose an approach, based on sentence embedding, to find semi-automatically a set of properties, for a given identity context, that can be propagated between contextually CHAPTER 5. PROPAGATION OF PROPERTIES identical entities. We conducted qualitative and quantitative experiments to validate our approach. The use cases provided demonstrate that identifying the properties that can be propagated helps users achieve the desired results that meet their needs when querying a knowledge graph, i.e., more complete and accurate answers.

The rest of the chapter is organized as follows. In the following section, we motivate the purpose of this work. Then, in Section 5.3, we present our approach. In Section 5.4, we present the quantitative and qualitative experiments we have conducted. Finally, we conclude and define the next directions for our future work.

Introduction

Open and RDF-based knowledge graphs, like prominent Wikidata1 or DBpedia2 , are continuously growing in terms of size and usage. Consequently, the number of entities described in those KGs leads to a problem for both data publishers and data users: how to know if two entities are the same or not? To interlink knowledge graphs, the owl:sameAs property has been defined by the W3C3 in 2004 to link entities that are allegedly the same. Indeed, a (real world) object is described among several knowledge graphs, and those descriptions are linked thanks to the owl:sameAs property. However, the semantic definition of owl:sameAs is very strict. It is based on Leibniz's identity definition, i.e., the identity of indiscernibles (see Section 2.2).

Hence, two entities are considered identical if they share all their ⟨ property,value ⟩ couples in all possible and imaginable contexts. In other words, two entities are identical if all their properties are indiscernible for each value. Once an identity link is stated between two entities, it is possible to use ⟨property, value⟩ couples from one entity to another. However, it is a very strong assertion to state that two objects are the same whatever the context. One of the core features of owl:sameAs is to be able to propagate all properties from an entity to other identical entities. Hence, owl:sameAs allows discovering more knowledge and to increase completeness. Besselaar 2017], we automatically identify the propagating properties for a given context using semantic textual similarity, significantly reducing burden to users. The semantic similarity is based on the sentence embeddings corresponding to the textual descriptions of the properties. Our intuition is inspired by Tobler's first law [START_REF] Tobler | A computer movie simulating urban growth in the detroit region[END_REF], that is:

"Everything is related to everything else, but near things are more related than distant things."

Therefore, we hypothesize that, from a semantic point of view, the closer a property is to the identity context, the more likely it could be a right candidate for propagation. So, the idea is to compute a distance between indiscernible properties and candidate properties for propagation. Consequently, numbers, and in our case numerical vectors, are best suited to compute this distance. A numerical CHAPTER 5. PROPAGATION OF PROPERTIES representation of the textual description of each property through its rdfs:comment4 or schema:description5 can provide a basis to get this vector. Indeed, sentence embeddings of properties descriptions give us numerical vectors which distributions in the vector space comply with the semantic similarity of the sentences. We validated our approach through quantitative and qualitative experiments.

In this work, we propose to remove partially this burden from the user, i.e., to semiautomatically compute the propagation set of properties given an indiscernibility set of properties. For this, we will use a sentence embedding approach (presented in Section 5.3.3) to compute embeddings of (the description of) properties to discover propagable properties with respect to a given identity context (as defined in [Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017]).

Motivation

Sometimes, real-world entities may be close regarding their properties but not exactly the same. For example, the French capital, Paris, is both a city and a department (an administrative subdivision of the French territory). While considering that the city and the department are the same concerning their geography, they are two distinct entities administratively (or legally) speaking. Now, suppose both Paris are represented in a knowledge graph as distinct entities, and both are linked to (possibly distinct) movie theaters. If one wants to retrieve movie theaters located in the city of Paris, results will not be complete if some of them are linked to the department (see Figure 5.1).

A French citizen might know this ground truth, but how to allow an automated agent to discover this fact? Contextual identity is a possible answer to this question, i.e., a set of properties for which values are the same for both entities. Considering the present example, both Paris (city and department) are geographically the same, and some properties related to geography might be propagated. In Figure 5.1, the red properties (geo and label) are indiscernible (have the same values), and the blue properties (located in) are propagating.

In the real world, movie theaters located either in the city or the department, according to Indeed, for a human agent, the located in property might be obviously propagated between the two entities.

While we expected to have the four movie theaters located in Paris, the query in Listing 5.1 will only return movie theaters 1, 2, and 3 (see Figure 5.1).

SELECT DISTINCT ? movieTheater WHERE { ? movieTheater : l o c a t e d I n : C i t y O f P a r i s . } Listing 5.1: SPARQL query retrieving all movie theaters in Paris, France.

Thus, discovering such contexts of identity between entities might improve the completion of query results. Our intuition is inspired by Tobler's first law [START_REF] Tobler | A computer movie simulating urban growth in the detroit region[END_REF]]), that is: "Everything is related to everything else, but near things are more related than distant things."

Therefore, we hypothesize that, from a semantic point of view, the closer a property is to the identity context, the more likely it could be a right candidate for propagation. In the previous example, located in clearly refers to a geographic fact, and the context of identity is about geography since it is composed of geographical coordinates. So, the idea is to compute a distance between indiscernible properties and candidate properties for propagation. Consequently, numbers, and in our case, numerical vectors, are best suited to compute this distance. A numerical representation of the textual description of each property through its rdfs:comment or schema:description can provide a basis to get this vector. Indeed, the embedding of property descriptions gives us numerical vectors whose distributions in vector space respect the semantic similarity of sentences.

Approach

In this section, before diving deeper into the core approach, we give some definitions needed later to describe the approach.

Preliminaries

We first need to formalize the definition of a propagable property.

Definition 5.3.1 (Propagable Property)

The property p can be propagated from an entity e 1 to an entity e 2 ↔ (∀o : ⟨e 1 , p, o⟩ → ⟨e 2 , p, o⟩).

As seen in Section 2.5, several propositions have been made to define an identity context.

We choose the one from [Idrissou, Hoekstra, van Harmelen, Khalili, and In the following, x and y are entities.

x = (Π,Ψ,≈) y ↔ ∀(p 1 , p 2 ) ∈ Π 2 with p 1 ≈ p 2 and ∀v 1 , v 2 with v 1 ≈ v 2 : ⟨x, p 1 , v 1 ⟩ ↔ ⟨y, p 2 , v 2 ⟩ (5.1) x = (Π,Ψ,≈) y → ∀(p 1 , p 2 ) ∈ Ψ 2 with p 1 ≈ p 2 and ∀v 1 , v 2 with v 1 ≈ v 2 : ⟨x, p 1 , v 1 ⟩ ↔ ⟨y, p 2 , v 2 ⟩ (5.2)
Moreover, we define the level of a context |Π C | as the number of its indiscernible properties.

In the case where similar entities according to an identity context belong to the same knowledge graph, it is not necessary to have an alignment procedure.

An entity can have several identity contexts, depending on properties in the indiscernibility set Π. Indeed, two different combinations of properties can give different sets of similar entities. The identity lattice of all identity contexts of an entity e is defined as follows (see Figure 5. Indeed, to build an identity lattice, we need to start from a seed, despite the fact that the lattice could potentially be valid with another seed (see Figure 5.2). Now that we have defined the necessary concepts, we will explain the core of our approach.

Computation of contexts

In this section, we explain how to compute a lattice and its contexts.

We present the first algorithm (see Algo. 3) that computes an identity lattice6 . It takes as input the seed entity, the source knowledge graph to which the seed belongs, the target knowledge graph (possibly the same as the source knowledge graph) and an alignment procedure if the two knowledge graphs are distinct. The main idea is to start by computing level one identity contexts with each seed's property and finally combine those contexts to obtain upper-level identity contexts. The first part of a context is its indiscernibility set, from which we then get similar entities, to finally obtain candidate properties for propagation and in the end propagable properties.

Data: KG 1 : the source KG, KG 2 : the target KG, seed: an entity of KG 1 , ≈: an alignment procedure between KG 1 and KG 2 Result: L: a lattice of identity contexts between the seed and entities in the target Data: L: the lattice with only level 1 contexts, KG 1 : the source KG, KG 2 : the target KG, seed: an entity of KG 1 , I: the set of logically identical entities, ≈: an alignment procedure between KG 1 and KG 2 Result: L: a lattice of identity contexts between the seed and entities in the target KG 1 /* lvl is the current level in the lattice */ 2 lvl = 1; CHAPTER 5. PROPAGATION OF PROPERTIES inclusion on indiscernibility sets. For example, a level 2 context is built on two contexts from level 1. Again, to lowering the number of possible identity contexts to compute, if there is no similar entity to the seed for a given context C i , there is no need to compute higher-level contexts based on C i .

KG 1 L = ∅; 2 /*
3 while ∅ / ∈ L do 4 contexts = ∅; 5 for (C 1 , C 2 ) ∈ {(C i , C j ) ∈ L × L : |Π C i | = |Π C j | = lvl, i > j} do 6 Π = Π C 1 ∪ Π C 2 ;

Sentence embedding

Our approach for computing propagation set (Line 11 in Algo. 4) is elaborated in Algo. 5. It is based on sentence embedding which maps a sentence to a numerical vector.

Ideally, semantically close sentences appear nearby in the numerical vector space. Sentence embedding is a technique that maps a sentence to a numerical vector. Ideally, semantically close sentences are represented by close vectors in the numerical space considered.

Data

Example 15 "A soccer game with multiple males playing" and "Some men are playing a sport" are semantically close, thus their vectors should be close in terms of distance.

Reciprocally, two sentences that are not semantically related should have distant vectors.

Example 16 "A man inspects the uniform of a figure in some East Asian country" and "The man is sleeping" should have distant vectors.

In Section 5.3.3, the context of word w is a "window", i.e., words before and after w that can be found in a sentence. Those vectors enable usage of various mathematical operators that are obviously not available with chains of characters. One of the first major work in that field is Word2Vec [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] which captures co-occurrence of words. Each word is processed atomically and provides an embedding through two possible and distinct approaches, namely Skip-Gram and Continuous Bag of Words (CBOW). While CBOW aims is to predict a word given its context (i.e., previous and following words in a sentence), Skip-Gram will try to predict words with which a word is usually seen. Similarly, GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] provides embeddings for single words and might use Skip-Gram or CBOW. But GloVe, instead of capturing co-occurrence, focuses (in the end) on the count of appearance among contexts (i.e., previous and following words in a sentence). Then, fastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF]] is an extension of Word2Vec that treats words as n-gram of characters instead of as an atomic entity. N-grams sizes depend on input parameters.

N-grams usage allows a better understanding of small words. Each n-gram is mapped to a vector and the sum of these vectors is the representation of the word. Another advantage of fastText is its capacity to provide an embedding even for unknown words, thanks to n-grams usage. While the three previous works are best suited to work with atomic words, the following computes embedding for a whole sentence.

The reasons behind using sentence embedding instead of a more classical distance measures, e.g., the edit distance, RDF graph embeddings like RDF2Vec Sentence embedding is widely used in several tasks such as computing semantic similarities between two texts. An encoder derives sentence embeddings, to capture the semantics of a language, from a large text corpus. A lot of attention has been given to sentence embeddings lately. Approaches like Universal Sentence Encoder [Cer, Yang, Kong, Hua, Limtiaco, John, Constant, Guajardo-Cespedes, Yuan, Tar, Sung, Strope, and Kurzweil 2018], GenSen [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF] and InferSent [START_REF] Conneau | Supervised learning of universal sentence representations from natural language inference data[END_REF] are among the state-of-the-art encoder for sentence embeddings. InferSent, proposed by [Conneau, Kiela, Schwenk, Barrault, and Bordes 2017], is a state-of-the-art encoder proved to be effective on sentence embedding.

To train their supervised sentence embeddings model, the authors used the Stanford Natural Language Inference (SNLI) dataset that consists of more than 500K pairs of English sentences manually labeled with one of three categories (entailment, contradiction and neutral). They tested several architectures and find out that a BiLSTM network with max pooling offered the best results. A BiLSTM network is a bi-directional LSTM often used for sequence data, i.e., a recurrent neural network (with loops). Max pooling is a technique that allows reducing the number of parameters of the model by selecting the maximum value of a moving "window". Moreover, the pre-trained model is based on fastText, thus allowing computing meaningful representations even for out-of-vocabulary words, i.e., words that did not appear in the training data. GenSen [START_REF] Subramanian | Learning general purpose distributed sentence representations via large scale multi-task learning[END_REF] and Universal Sentence Encoder [START_REF] Cer | Universal sentence encoder[END_REF] are both based on multi-task learning (MTL). MTL purpose is to learn multiple aspects of a sentence by switching from different tasks like translation or natural language inference. The former uses a bi-directional Gated Recurrent Units (GRU), which is a recurrent neural network like LSTM but with fewer parameters. The latter uses the transformer architecture that transforms a sequence into another but without recurrent neural network (unlike InferSent and GenSen). In Section 5.4.2.2, we will present results with those three encoders.

As presented in Section 5.1, our intuition, based on Tobler's first law, is that the propagation set of properties can be found given an indiscernibility set, if vectors of CHAPTER 5. PROPAGATION OF PROPERTIES descriptions of those two sets are close enough. As presented in Section 5.3.3, sentence embedding allows us to represent a sentence, i.e., a sequence of words, as a numerical vector. When two sentences are semantically close, their respective vectors should also be close in the considered space. In this work, we propose to use property descriptions (e.g., rdfs:comment or schema:description) as "standard plug type for mains electricity in a country") to find properties that are semantically related and consequently right candidates for propagation for a given indiscernibility set Π. For example, in Wikidata, the property "director" has the follow description: "director(s) of film, TV-series, stageplay, video game or similar". Descriptions are mainly composed of one sentence. Most of the properties are described with such annotations, e.g., properties of Wikidata are annotated with an english schema:description at 98.9%. For the embedding computation, any of the previously described encoders can be used. We will provide in Section 5.4.2.2, an analysis of the different results obtained by these encoders.

The last algorithm presents our proposition to compute Ψ given a Π. It takes as input three parameters: a seed (an entity), a set of property built from the seed (indiscernibility set Π), and a set of entities that are similar to the seed with respect to Π. The computation of Π is presented in the previous section (see algorithm 3).

First, for each property in the indiscernibility set Π, we calculate its representational vector (see line 2). Then, we compute the weighted mean vector that represents the indiscernibility set (line 4). With use as weights the weight of properties as defined in Chapter 4 (Definition 4.3.3). Indeed, as explained, some properties are more important to determine identity. In an identity context, the indiscernibility set Π is a set of properties, thus we can compute for each property in Π its vector (see line 2). Then we can compute the mean of the vectors and have a numerical representation of Π (it is also a vector of the same size). This vector representing the mean of vectors derived from Π properties is noted ⊑ Π in the following. Similarly, we consider each property of the seed or its similar entities and compute their representational vectors. Therefore, on the one hand, we have one vector that represents the set of indiscernibility and, on the other hand, we have n vectors for the n properties that are candidates for propagation. Properties of similar entities (with respect to the indiscernibility set Π) are also considered as candidates since possibly one of them can have a propagating property that the seed does not have (see line 6).

Then we loop on each candidate property to compute a cosine similarity [START_REF] Singhal | Modern information retrieval: A brief overview[END_REF] between each candidate vector and the mean vector representing the indiscernibility set Π (line 10). If the cosine similarity is high enough (above a specified threshold as explained in the following section) the candidate property is considered as a propagable property. Now that our approach has been presented, we will introduce experiments to validate our work.

Experimental Results

To evaluate our approach, we first implemented our approach and then conducted two types of experiments. In the first experiment, we built a gold standard upon Wikidata.

Then, we computed standard precision, recall and F-measure against this gold standard.

In the second experiment, we present several SPARQL queries that benefited from our approach.

Implementation and set-up

We implemented our approach in Python. For the sake of reproducibility, the code is made available on a GitHub repository 7 . As mentioned earlier, we used three sentence embedding approaches, namely InferSent 8 , GenSen 9 and Universal Sentence Encoder 10 .

We used an HDT file (see [START_REF] Miguel | Exchange and consumption of huge RDF data[END_REF] and [START_REF] Fernández | Binary RDF representation for publication and exchange (HDT)[END_REF]) that contains a dump of the last version of Wikidata 11 . HDT is a compressed serialization format for RDF graphs that allows a better reproducibility than a live SPARQL endpoint. Unlike Turtle or N-Triples, thanks to compression, HDT facilitates the manipulations needed to reproduce the experiments.

The computer we used has an i7 processor and 32 GB of RAM. As an indication, the complete calculation of the identity lattice for an entity such as the city of Paris, France 7 Anonymous URL 8 https://github.com/facebookresearch/InferSent 9 https://github.com/Maluuba/gensen 10 https://tfhub.dev/google/universal-sentence-encoder/2 11 http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz takes about 1396 ms. It has more than 1000 property-object couples and, in Wikidata, the mean number of property-object couples is about 60. Thus, it is a rather large entity and this approach could scale well.

Quantitative Study

The purpose of the quantitative experiment is to allow comparison with future approaches that may arise. To the best of our knowledge, our approach is the only one that has focused on the propagation of properties for contextual identity. Thus, one of the most important contributions of our work is the gold standard we provide. Indeed, it is not obvious, even for a human agent, to determine properties that might be propagated for a given indiscernibility set of properties.

Gold standard

As mentioned previously, we want to evaluate if our approach identifies relevant propagable properties to the user according to a given context. For this, we built a gold standard from the Wikidata knowledge graph that is known for its high data quality.

It is also one of the most important actors of Linked Open Data initiative and is linked to many other knowledge graphs, e.g., DBpedia. Obviously, in this case, we no longer need an alignment procedure (≈), since we do not consider multiple knowledge graphs (source and target knowledge graphs are the same).

We built 100 identity contexts, each context containing the indiscernibility set of properties Π and the propagation set of properties Ψ. We choose 5 classes (20 entities by class): country, comics character, political party, literary work and film. Those classes have been chosen for several reasons. Firstly, they are sufficiently different to challenge our approach. Secondly, because the experts must judge which properties are propagable, it is easier for them if they have a minimum of knowledge about the subjects. Finally, it allows us to further investigate if results are different for different classes. For each selected class, we randomly selected one entity. Then we computed its identity lattice.

As stated before, the most difficult part when building the gold standard is to obtain a consensus among experts. A set of properties representing the indiscernibility set Π, and the experts must accordingly choose propagable properties in a set of candidates. It is the most time-consuming part to build the gold standard.

Execution against the gold standard

For each entity in the gold standard, we retrieved its partial identity context from the gold standard, i.e., the context with only the indiscernibility set Π. Then, we applied our algorithm on each set of indiscernibility to find the corresponding propagation set Ψ. For each context, we calculate the precision, recall, and F-measure as follows: True positive (tp) is the number of selected properties (by our approach) that are actually in Ψ, false positive (fp) is the number of selected properties (by our approach) and actually not in Ψ, false negative (f n) is the number of properties in Ψ not selected by our approach, P recision = tp tp+f p , Recall = tp tp+f n , and F measure = 2×P recision×Recall P recision+Recall We then aggregated precisions, recalls and F-measures of each context thanks to the standard mean.

As there are no other approaches, to the best of our knowledge, retrieving candidate properties for propagation with respect to an indiscernibility set Π, we compared our Figure 5.9: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent and the threshold at 0.9 for the "political party" class. CHAPTER 5. PROPAGATION OF PROPERTIES approach with a baseline method. Instead of computing embeddings of descriptions, we computed the Jaccard index (JI) [START_REF] Jaccard | Nouvelles recherches sur la distribution florale[END_REF]] of property descriptions. Since the JI is a metric distance, we can compute the standard mean of several JI values and still get a distance. Moreover, the corresponding similarity is defined as distance = 1 -similarity and both distance and similarity are normalized, thus the similarity can be used in the same way as with cosine similarity of embedded vectors.

The first series of results is presented in the Figure 5.3. It shows the evolution of the average precision of the baseline (in blue), InferSent (in red), GenSen (in yellow) and Universal Sentence Encoder (in green). The threshold has been tested from 0 to 1 with steps of 0.05. For each threshold, we computed the standard mean of the precision for the 100 entities of the five classes (country, comics character, political party, literary work and film). The goal is to evaluate the suitability of the different embedding technic and the baseline. At first glance, we observe that the four methods produce the same results for very low thresholds with precisions in average at 0.3. This is because the median number of candidate properties is 12 and the median number of propagable properties (in P si) is 3. Therefore, even if all properties were selected, we obtain thanks to the aforementioned precision formula 3/(3 + (12 -3)) = 0.25 as a minimum precision for any possible method of selection. The baseline quickly produces too many false positives without any peak when the threshold is above 0.05. Thus, as expected, the baseline is inadequate. For the three encoders, the same phenomenons append, but with very different threshold values and amplitudes. The three have a peak then a fall. For GenSen and Universal Sentence Encoder (USE), the peak is rather low and it can be explained by their difficulties to eliminate a sufficient number of false positives. Indeed, property descriptions are relatively close and some of them are well ordered (w.r.t. to their similarity), but not sufficiently to be useful to remove wrong candidates. The peak with InferSent is more interesting since it appears later and surpasses 0.5. Hence, InferSent can eliminate more false positives than the two others. When looking at the output of the algorithm, right candidates tend to be more grouped at the top of the list, while the two other encoders tend to mix right and wrong candidates. Moreover, because the peaks do not last, it means that the descriptions of the right candidates are very close, and for the three encoders the fall is more or less CHAPTER 5. PROPAGATION OF PROPERTIES sudden.

Figure 5.4 shows the evolution of the average recall of the approaches with the same colors as in Figure 5.3. As previously, the same pattern can be observed for all approaches except the baseline, but for very different thresholds. Indeed, immediately the baseline selects too many false negatives, demonstrating once again that it is not suitable to discriminate the right candidates from wrong ones. For the three encoders, at first, all properties are selected, thus there is no false negative. Because descriptions are close in terms of semantics, the cosine similarity produces similarities that are in a close range.

Hence, (almost) all properties are detected as right candidates or (almost) none are. Then, very quickly for GenSen and USE, there is a sudden drop of the recall. Again, for both of them, the right candidates are distributed among the wrong candidates in a relatively uniform manner. Both encoders are unable to properly sort the right candidates on top of the list and the wrong ones at the bottom. While InferSent maintains its good selectivity a lot longer (until a threshold of 0.9). The F-measure of GenSen and USE never rises, to the contrary of InferSent that reaches 0.59. The latter produces vectors that are closer in their space than the two others, hence the range of cosine similarities is more compacted with InferSent. For example, for the entity "Wally West", with InferSent the highest similarity score with Π for a candidate property is 0.92 and the worst is 0.75. More important, InferSent is able to order more constantly and in a better way the properties. From those results, InferSent could be the right candidate to propose to the user an ordered list of candidate properties for propagation.

The second series of results, presented in Figures 5.6 and 5.7, illustrates the behavior of our approach with InferSent, since it produces the best results, for each of the five classes.

As a reminder, for each class we randomly selected 20 entities, thus, for example, Figure 5.7

shows the average precision in blue of the 20 film entities, the average recall in red and the average F-measure in yellow. Of course, thresholds are the same as in the first series of results. The F-measure is always the better between 0.8 and 0.95, meaning that our approach is extremely sensitive to threshold variations. For all classes, the pattern is the same for the three measures. We only present two out of five classes to keep it concise, all results are available on the GitHub repository. The recall behaves the same for the five classes, but for the precisions, there are more differences. Indeed, comics character and literary work have a quasi-flat part after the peak, meaning that descriptions of right candidates are more distant in the embedded space than the one's of other classes. Hence, similarities of both wrong and right candidates of country, film and political party entities are very close, since, after the peak, the fall is very sudden. Also, the fact that countries and political parties are described with many more properties on average appears here because their precisions start very below other precisions. It is more difficult for our approach to distinguish the right candidates from wrong ones when there are too many candidate properties. For comics characters and literary work entities, the approach seems to be less efficient in removing false positives, maybe because the range of similarity values is too narrow.

Since the choice of propagable properties is subjective for a given set of indiscernibility, three experts may not be sufficient. To establish the gold standard, a crowdsourcing approach might be more appropriate and should merit a formal investigation. As a result, the identity contexts of the gold standard could be more precise. Nevertheless, this approach could be used at least to present to the user an ordered list of candidate properties for propagation, hence helping her to make an educated decision. As a matter of fact, the good recall allows keeping almost all good candidates when the precision may help the user to quickly choose between available properties of the list.

However, we believe that our gold standard is sufficiently well built to state that our results are conclusive. False negatives are due to the fact that some properties are not semantically related to any indiscernible property of the context, and false positives ones are due to some properties that are semantically related to the context but not propagable.

Hence, it is obvious that in some cases, considering only the semantic relatedness is a naïve approach. In addition to that, the lack of string-based description on a property is prohibitive, since our approach is based on property description consumption. Taking into account RDF semantics or using other embedding techniques should improve the results. 

Qualitative Study

In this section, we introduce three different queries that could benefit from our approach by extending their results. To achieve our goal, we used InferSent and a threshold value equal to 0.9. All of these queries are simplified queries tested on Wikidata (for ease of reading). The original queries can be found on the GitHub repository.

Task description

For each query, the goal is to find an identity context that will allow expanding the query with similar entities according to the user's objective. In this way, users can benefit from more complete results. The workflow is the following (see Figure 5.10): first, from the query, we extract the instantiated entity (or entities) that will be the seed(s) (step 1).

Second, for each seed, we compute its identity lattice (steps 2, 3 and 5). As explained, we build the indiscernibility sets, then we get similar and logically identical entities, then we get candidate properties for propagation and finally, we get propagable properties (see CHAPTER 5. PROPAGATION OF PROPERTIES Section 5.3). Third, with the instantiated property (or set of properties) linked to the seed in the query, we select from the lattice, the node having this property in its propagation set (step 7). This node will be considered as the identity context of the query. Indeed, if multiple identity contexts are possible, the user must choose the best suited for its task purpose. Finally, based on the selected identity context, we can rewrite the query with the seed, logically identical entities and similar entities (steps 9 and 11). Furthermore, users can decide to check if the schema of the seed entity is more complete with LOD-CM (see Chapter 6) in steps 8 and 10.

Queries

We tested our approach with three queries. The first query in Listing 5.2 is about the "Paracetamol" drug. The query purpose is to retrieve all clinical trials of this drug. An interesting expansion of this query could be to find all trials of similar legal drugs in terms of medical conditions treated and physical interactions. SELECT DISTINCT ? c l i n i c a l T r i a l WHERE { ? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n : Paracetamol . } Listing 5.2: SPARQL query retrieving all studies about the painkiller named Paracetamol.

Table 5.1 shows additional results brought by our approach. Each column corresponds to a query. For the first query (and also for the next ones), there is only one seed "Paracetamol" ("France" and "the Republicans" in the second and the third columns respectively)as it is the only instantiated entity in the query. To fill this table, we first computed the lattice of the seed, then, selected a context containing the property "research intervention" in its Ψ. We chose as a context, legal drugs having the same medical conditions and the same physical interactions (obviously, any other context could be chosen depending on the users' needs). Finally, the query is expanded with similar entities as shown in Listing 5.3. The results show a 47% increase in the number of clinical trials for the considered context. The second query, in Listing 5.4, is about retrieving persons who once lead France.

SELECT DISTINCT

However, France has a complex history and has changed its political regime several times (for example, during World War II, or during the Napoleonian period). Thus, even if the French territory was "almost" always the same during the past centuries, each political regime has its own entity in Wikidata. Therefore, the query might not give all expected results. But if the user chooses the right identity context, i.e., C ({capital,of f icialLanguage},{headOf },≈) then all expected people will be retrieved. This is due to the fact that the council and the obedience are misplaced in the Wikidata ontology. These errors cannot, therefore, be attributed to our approach. The results show a 542% increase in the number of France leaders for the considered context.

SELECT DISTINCT

Finally, in Listing 5.5, we present a query about French politicians from The Republican party that have been convicted. The peculiarity here is that this major political party changed its name several times because of either political scandal or humiliating defeats.

Consequently, if the knowledge graph is not up to date or not complete, some persons who were members of multiple versions of this party in the real world could not be actually linked to each version in the knowledge graph. This is the case of Wikidata that returns, for the query of Listing 5.5, only two politicians. However, there are more than a dozen politicians of this party who have been convicted of various felonies. By using our approach, it is possible to select a context composed of the political alignment and the country for which the memberOf property is propagable, and, hence, obtain a more complete result (of course depending on the completeness of data about politicians in Wikidata).

SELECT DISTINCT ? p o l i t i c i a n ? c r i m e WHERE { ? p o l i t i c i a n : memberOf : TheRepublicans ; : c o n v i c t e d O f ? c r i m e . } Listing 5.5: SPARQL query retrieving all politicians member of French party named The Republicans that were convicted.

The same steps as for queries about "Paracetamol" and "France" were reproduced.

Results are shown in the third column of Table 5.1. The results show a 550% increase in the number of convicted politicians for the considered context.

Discussion

As we have seen, our approach allows discovering propagable properties for a given indiscernibility set of properties Π. An identity context with its indiscernibility and propagation sets can provide more complete answers to queries through query expansion.

The results are very promising but need to be confronted with more different kinds of knowledge graphs and a combination of distinct knowledge graphs. Also, our approach does not work well when the property of an entity lack property describing it (such as rdfs:comment or schema:description). It is a limitation since some ontologies do not provide textual descriptions of their properties. Hence, the first step for future work is to circumvent this flaw with a multi-faceted approach. Moreover, in a textual description, some words might be irrelevant (like a Wikidata identifier) and degrade the quality of the results.

Conclusion

In this chapter, we proposed an approach based on sentence embedding to discover propagable properties given an indiscernibility set of properties. Our approach computes, for an entity, an identity lattice that represents all its possible identity contexts, i.e., both indiscernible and propagable properties. Qualitative and quantitative studies have been conducted to evaluate the approach. Besides, an important part of our work was to make available a gold standard for the reproducibility of the quantitative study and, in general, for the research community working on contextual identity.

Chapter 6

Effects of Contextual Propagation on Entity Schema Completeness

This chapter is based on the following publications:

• Subhi Issa, Pierre-Henri Paris, and Fayçal Hamdi. Assessing the completeness evolution of DBpedia: A case study. In Sergio de Cesare and Ulrich Frank, editors, Advances in Conceptual Modeling -ER 2017Workshops AHA, MoBiD, MREBA, OntoCom, and QMMQ, Valencia, Spain, November 6-9, 2017, Proceedings, volume 10651 of Lecture Notes in Computer Science, pages 238-247. Springer, 2017. doi: 10.1007/ 978-3-319-70625-2\_22. URL https://doi.org/10.1007/978-3-319-70625-2_22

• Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing the conceptual schemas of RDF datasets. In Paolo Giorgini and Barbara Weber, editors, Advanced Information Systems Engineering -31st International Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings, volume 11483 One of the objectives of establishing the identity between two entities is to be able to reuse information, i.e., to increase the completeness of an entity using one or more other entities. This completeness can take two forms: (i) at the schema level of the entity, i.e., the number of different properties it uses, and (ii) at the data level, i.e., the number of values a property can have. Measuring data completeness is very difficult since it is almost impossible to establish a gold standard for data in the Semantic Web domain since it is governed by the open-world assumption ( [START_REF] Darari | Completeness statements about RDF data sources and their use for query answering[END_REF]).

Hence, we measure the effects on the completeness, at the schema level, of the propagation of properties in a given identity context. Thus, the objective of the approach proposed in this chapter is to generate a conceptual schema. This schema will allow measuring the completeness of the schema of an entity. The completeness could be measured before and after the application of our general property propagation approach (see Chapter 5).

RDF-based knowledge graphs, thanks to their semantic richness, variety, and fine granularity, are increasingly used by both researchers and business communities. However, these knowledge graphs suffer a lack of completeness as the content evolves continuously, and data contributors are loosely constrained by the vocabularies and schemas related to the data sources. Conceptual schemas have long been recognized as a key mechanism for understanding and dealing with complex real-world systems. In the context of the Web of Data and user-generated content, the conceptual schema is implicit. Each data contributor has an implicit personal model that is not known by the other contributors. Consequently, revealing a meaningful conceptual schema is a challenging task that should take into account the data and the intended usage. In this chapter, we propose a completeness-based approach for revealing conceptual schemas of RDF data. We combine quality evaluation and data mining approaches to find a conceptual schema for a knowledge graph. This model meets user expectations regarding data completeness constraints. To achieve that, we propose a web-based completeness demonstrator for knowledge graphs: LOD-CM.

Introduction

Data became a strategic asset in the information-driven world. One of the challenges for companies and researchers is to improve the display and understandability of the data SCHEMA COMPLETENESS they manage and use.

However, exploiting and using open Linked Data, even if it is more and more accessible, is not an easy task. Data is often incomplete and lacks metadata. These issues mean that the quality of published data is not as good as we could expect, leading to a low added value and low reliability of the derived conclusions. In [Jain, Hitzler, Yeh, Verma, and Sheth 2010], the authors believe that existing approaches that describe knowledge graphs focus on their statistical aspects rather than on capturing conceptual information.

A conceptual schema is an abstraction of a reality that can serve as a vehicle for understanding, communicating, reasoning, and adding knowledge about this reality. In traditional information system development, conceptual modeling is driven by intended usage and needs. For knowledge graphs, as in all user-generated content, data is rather use-agnostic [START_REF] Bibliography | Principles for modeling user-generated content[END_REF]. As a result, the data is represented according to many individual points of view. These points of view lead to a lack of semantics, whereas semantics is necessary for reasoning about the data. We believe that a conceptual schema that creates an abstract representation upon data would help to overcome the disparity of visions and will reveal the underlying semantics [START_REF] Olivé | Conceptual modeling of information systems[END_REF]].

Let us consider, for instance, that we have a collaboratively built knowledge graph. In this case, the traditional top-down vision of a predefined schema is no more applicable. Both data and underlying schema evolve continuously, as several communities describe data with different views and needs. In this situation, a conceptual schema, defined as an abstract and consensual representation about the reality that is derived from requirements, could not be applied. The challenge is then to find a way to create a suitable conceptual schema having entities as a starting point.

The research questions of this chapter are as follows:

• How to compute the schema completeness of an entity in an RDF-based knowledge graph?

• How to facilitate access to the information structure of a knowledge graph?

In this chapter, we are interested in the conceptual modeling of RDF-based knowledge SCHEMA COMPLETENESS graphs [START_REF] Klyne | Resource description framework (rdf): Concepts and abstract syntax[END_REF]. Our objective is to define an approach for deriving conceptual schemas from existing data. The proposed solution should cope with the essential characteristics of a conceptual schema that are the ability to make an abstraction of relevant aspects from the universe of discourse and the one of meeting user's requirements [START_REF] Rolland | From conceptual modelling to requirements engineering[END_REF]. The approach we propose in this chapter takes into account the two facets, namely the universe of discourse represented by the data sources, and the user's needs represented by the user's decisions during the conceptual schema construction.

As the model should express the meaningful state of the considered knowledge graph, we rely on a mining approach leading to taking into consideration the data model from a more frequent combination of properties. The relevancy of properties is handled by integrating a completeness measurement solution that drives the identification of relevant properties. To meet user's requirements, we propose to construct the conceptual schema by allowing the user to decide about the parts of the conceptual schema to reveal according to her needs and constraints.

The main contributions are:

1. We use a mining approach to infer a model from data, as we consider that no predefined schema exists. The underlying assumption is that the more frequent a schema is, the more representative for the knowledge graph it is.

2. We introduce a novel approach, called LOD-CM, for conceptual schema mining based on quality measures, and, in this chapter, on completeness measures as a way to drive the conceptual schema mining process.

The remainder of this chapter is organized as follows: Section 6.2 summarizes related literature on the subject while Section 6.3 details the mining-based approach for RDF data conceptual modeling. This section explains the tight link with the completeness quality criterion. Section 6.4 presents two use cases of LOD-CM. Finally, Section 6.5 draws conclusions.

Related work

RDF data is described as sets of statements called triples. A triple ⟨s, p, o⟩ is a fact where a subject s has a property p, and the property value is the object o. As an example, ⟨England, capital, London⟩ means that London is the capital city of England.

Understanding and reasoning about this data require at least knowledge about its abstract model. Consequently, schema discovery has attracted several researchers originating from several communities. The research directions address objectives such as efficient storage, efficient querying, navigation through data or semantic representation, etc.

Completeness of Linked Data is one of the most critical data quality dimensions [START_REF] Batini | Data and Information Quality -Dimensions, Principles and Techniques[END_REF]). This dimension is defined as the degree to which all required information is present in a particular knowledge graph ( [START_REF] Zaveri | Quality assessment methodologies for linked open data[END_REF]). We have to know that a reference schema (or a gold standard) should be available to compare against a given knowledge graph.

In the database community, the question was how to store this kind of data. [START_REF] Levandoski | RDF data-centric storage[END_REF] proposed a solution that derives a classical relational schema from an RDF data source to accelerate the processing of queries. In the FlexTable method ( [START_REF] Wang | Flextable: Using a dynamic relation model to store RDF data[END_REF]), authors proposed to replace RDF triples by RDF tuples resulting from the unification of a set of triples having the same subject. All these approaches do not target a human-readable schema and are more concerned with providing a suitable structure for a computer processing of data.

The Semantic Web community is more aware of data semantics through the usage of ontologies and vocabularies. Several semi-automatic or automatic proposals, mainly based on classification, clustering, and association analysis techniques are proposed. In [START_REF] Völker | Statistical schema induction[END_REF] a statistical approach based on association rules mining allows generating ontologies from RDF data. Other works, such as those presented in [START_REF] Christodoulou | Structure inference for linked data sources using clustering[END_REF][START_REF] Pham | Deriving an emergent relational schema from RDF data[END_REF][START_REF] Kellou-Menouer | Schema discovery in RDF data sources[END_REF], are closer to modeling. The authors propose to derive a data structure using a clustering algorithm. After manual labeling of clusters representing groups of frequent properties, a schema is derived. These approaches, however, do not consider the user's CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY SCHEMA COMPLETENESS needs and preferences, and the derived schema is the result of automatic preprocessing, apart from the labeling task.

In traditional conceptual modeling, models are generally derived from user's requirements. However, with the increasing use of external data sources in information systems, there is a need to apply bottom-up modeling from entities. This is motivated by the expressiveness and the analysis facilities that conceptual schemas could provide for such data. Similarly to our bottom-up approach, [START_REF] Lukyanenko | Representing instances: the case for reengineering conceptual modelling grammars[END_REF] proposed a conceptual modeling grammar based on the assumption that entities play a major role while human beings try to represent reality. In [START_REF] Bibliography | Principles for modeling user-generated content[END_REF], the authors presented a set of principles for conceptual modeling within structured user-generated content. The authors highlighted the problem of quality in such produced content. They focused on the importance of capturing relevant properties from entities.

However, the proposal does not provide an explicit solution for deriving such models.

Concerning unstructured data, we can cite [START_REF] Embley | Big data -conceptual modeling to the rescue[END_REF], where authors addressed the problem of deriving conceptual schemas based on regular-expression pattern recognition.

Recognizing that conceptual modeling is a powerful tool for data understanding, our proposal addresses the problem of deriving a conceptual schema from RDF data. By exploring entities, our approach integrates a completeness measurement as a quality criterion to ensure the relevancy of the derived schema as data from RDF data sources is the result of a free individual publication effort. The result would be a conceptual schema enriched with completeness values.

Conceptual schemas derivation

To illustrate our proposed approach, let us consider a user willing to obtain a list of artists with their names and birthplaces from an RDF-based knowledge graph; To do so, she can write the following SPARQL query 1 : SELECT * WHERE { SCHEMA COMPLETENESS ? a c t o r r d f : type dbo : Actor . ? a c t o r f o a f : name ?name . ? a c t o r dbo : b i r t h P l a c e ? b i r t h P l a c e . } Listing 6.1: SPARQL query retrieving all actor names and birthplaces.

Writing such a query is much more difficult in a Linked Open Data (LOD) source context than in a relational database one. In a relational context, the database schema is predefined, and the user writing the query is aware of it. With knowledge graphs, the schema does not exist. Moreover, there is another problem related to data completeness: The expressed query returns only the list of actors having values for all the properties listed in the query. In our example, only actors having values for both foaf:name and dbo:birthPlace are included in the result. Knowing that at most 74% of actors have a value for dbo:birthPlace, the user should probably appreciate getting this information to add, for example, OPTIONAL to the second pattern of the query and obtain more results. Besides, she would be aware of the fact that the result is complete to a certain degree (i.e., dbo:birthPlace is present in only 74% of actors).

To tackle these two problems, we propose an approach that aims to help "revealing" a conceptual schema from an RDF-based knowledge graph. This conceptual schema is driven by the user for both its content and completeness quality values.

In the context of the Web of Data, most of the knowledge graphs published in the Web are described by models called, in Linked Data jargon, vocabularies (or ontologies). However, these models are not used in a prescriptive manner. Consequently, a person who publishes data is not constrained by the underlying ontology leading to sparse descriptions of concepts.

For example, the instances of class Actor from DBpedia use around 532 properties that are not equally relevant.

From these observations, it is clear that checking data (entities) is necessary to infer a relevant model that can be used to guarantee, for example, an expected completeness value. The approach that we propose deals with this issue through an iterative process, which infers a conceptual schema complying with the expected completeness. Figure 6.1

gives an overview of this process.

The process of inferring a conceptual schema goes through four steps: First, a subset SCHEMA COMPLETENESS Figure 6.1: The LOD-CM Workflow of data that corresponds to the user's scope is extracted from the knowledge graph (cf.

Section 6.3.1). This subset is then transformed into transactions, and a mining algorithm is applied. In our approach, for efficiency reasons, we chose the well-known FP-growth algorithm [START_REF] Han | Mining frequent patterns without candidate generation[END_REF][START_REF] Han | Mining frequent patterns without candidate generation: A frequent-pattern tree approach[END_REF] (any other itemset mining algorithm could obviously be used). From the generated frequent itemsets, only a subset of these frequent itemsets, called "Maximal" [START_REF] Bayardo | Efficiently mining long patterns from databases[END_REF][START_REF] Gouda | Efficiently mining maximal frequent itemsets[END_REF][START_REF] Grahne | Efficiently using prefix-trees in mining frequent itemsets[END_REF], is captured. This choice is motivated by the fact that, on the one hand, we are interested in the expression of the frequent pattern, and, on the other hand, the number of frequent patterns could be exponential when the transaction vector is huge (cf. Section 6.3.2). MFP is the set containing all maximal frequent patterns. Next, each pattern in MFP is used to calculate the completeness of each transaction. The presence or absence of the pattern is reflected in the completeness. Hence, the completeness of the whole knowledge graph regarding this pattern can be computed by aggregating transaction completenesses. The final completeness value will be the average of all completeness values calculated for each MFP pattern (cf. Section 6.3.3). Finally, based on the completeness value and MFP that guarantees this value, a conceptual schema is generated. The classes, the attributes, and the relations of the model will be tagged with the completeness value (cf. Section 6.3.4). All these steps are integrated into an iterative process: the user could CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY SCHEMA COMPLETENESS choose some parts in the generated model to refine. The data corresponding to the parts to refine is then extracted from the knowledge graph, and the same steps are carried out to generate a new model.

In the following subsections, we give a detailed description of each step of the workflow.

Scope and Completeness Specification

In this step, a subset of data is extracted from the knowledge graph. This subset could correspond to a class or a set of classes such as Actor, Film , or Organization. The subset defines what we call the user's scope that corresponds to the classes that the user plans to use in a query, or to the information she wants to explore or any kind of usage based on data consumption.

The user is also asked to indicate the degree of the desired completeness. Indeed, properties for a given class are not equally used. For example, for the class Artist, the property foaf:name has a value for 99% of the entities, whereas the dbo:birthPlace property has a value for at most 74% of the entities. Our approach gives the possibility to express a constraint on the completeness values desired for mined properties and associations. Once the classes are identified, the data is converted into transaction vectors, and a mining algorithm is applied to obtain a set of frequent itemsets.

Table 6.1 illustrates some entities of the Film class in the form of triples, taken from DBpedia. Each class is described by a set of properties (predicates). An entity of this class could have a value for all or a subset of these properties. This subset is called a transaction. 

Completeness calculation

In this step, we carry out for each transaction a comparison between its corresponding properties and each pattern of the MFP set (regarding the presence or the absence of the pattern). An average is, therefore, calculated to obtain the completeness of each transaction t ∈ T E . Finally, the completeness of the whole t ∈ T E will be the average of all the completeness values calculated for each transaction. The output of our algorithm is a file written in a declarative language. The file includes the chosen class, the attributes, and the relationships tagged by completeness values. We 

Use cases

The objective of the Linked Open Data cloud is to enable large-scale data integration so that we can have a contextually relevant Web and find quick answers to a much wider range of questions. LOD-CM is a web-based completeness demonstrator for RDF-based SCHEMA COMPLETENESS knowledge graphs. It is used to display data related to the chosen class of a knowledge graph. In this section, we provide a summary of two use cases related to schema discovery based on user's needs. The displayed model could help the user to understand the schema and discover the related properties. LOD-CM only supports two knowledge graphs that are DBpedia and Wikidata.

Class diagram to facilitate data browsing

LOD-CM aims to visualize the discovered schema based on the user's requirements.

Suppose a user wants to find the directors and budgets of a list of films. 82% of films have a director in the DBpedia knowledge graph. Besides, only 15% of films have budget value for the same knowledge graph. Only the list of films that have the properties (director and budget) will be displayed (i.e., at most 15% of the films). The outcome model could help the user to present the properties that are related to the chosen class in a proportion greater than a specified threshold. Besides, it illustrates the relationship between the concerned classes. For example, the classes Person and Film are linked by the property director. Furthermore, the model illustrates the inheritance relationship, such as Artist is a subclass of Person.

Discovering a subset of MFP

As mentioned in Section 6.3.2, our goal is also to find the set of properties that can be used together in the query and does not exceed the selected threshold. For example, for the Film class with 60% of completeness, four sets of properties are greater than 60% {{type, name, label, director, writer}, {type, name, label, director, runtime}, {type, name, label, director, starring},{type, name, label, runtime, starring}} For this reason, our LOD-CM interface enables the user to check the desired properties that appear in the returned model. It should be noted that the property which does not achieve the completeness threshold with other selected properties will be inactivated, such as starring and writer in our previous example. This case could help the user to be sure that the returned results for its query with this set of properties are equal or greater than the desired threshold.

Finally, for several classes according to several thresholds. The lower the threshold is, the more properties there are. Thus, lower thresholds produce more complex conceptual schemas but with more noise. Hence, this tool can help the user to find the right balance between those two.

Application to our propagation framework

As explained in Chapter 5, our propagation approach of properties in contextual identity enables to increase the schema completeness of an entity. Moreover, LOD-CM enables the generation of a conceptual schema for a given class. Hence, one can measure the completeness of an entity against its class conceptual schema. This measure can be done before and after the application of the propagation approach to control the potential increase.

For example, in DBpedia, the french political party Rally for the Republic has no country property. However, the conceptual schema of the political party class contains a link to the country class (see Figure 6.6). The completeness computed against the conceptual schema before the approach is 75%. When choosing the ideology property as indiscernibility set Π, one also get the country property in the propagation set Ψ. Hence, applying our approach enables to propagate the country property to discover that the Rally for the Republic is a french political party. After using our propagation approach, the completeness is 100%.

Conclusion

We have presented an approach for revealing conceptual schemas from RDF knowledge graphs. The approach is an iterative process that computes a plausible model from the SCHEMA COMPLETENESS The elements composing the model (classes, relationships, and properties) are obtained by applying a mining algorithm with an underlying assumption stating that the more frequent a schema is, the more relevant it is. The user can decide on the desired completeness, the parts of the data for which the model will be inferred, and the possibility to focus on a different class through an iterative process. Currently, our demo supports only the DBpedia and Wikidata knowledge graphs.

We have provided several use cases to demonstrate the usefulness of such a tool. We believe that it can help in the discovery of a new knowledge graph and its internal structure. CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY SCHEMA COMPLETENESS Therefore, it can help in the adoption of Linked Data knowledge graphs.

Our analysis revealed some interesting characteristics allowing the characterization of the sources and the behavior of the community that maintains each of the data sources.

The results show the rich opportunities of analysis offered by our approach and underlying outputs.

Chapter 7

Conclusion and perspectives

The main objective of this thesis work is to bring to the Semantic Web community a way to manage contextual identity. Indeed, we stressed the importance of considering the identity as a relative relationship, i.e., to consider the context. This journey leads us to explore several secondary research questions. Hence, in this chapter, we summarize our different contributions before concluding in several directions for our future work.

Thesis summary

As we just explained, several trails had to be explored to provide a good solution to our problem with contextual identity.

Large scale study One of the main elements of the Semantic Web field is, of course, semantics. As we needed some semantic features of OWL 2, we discovered their absence in the knowledge graphs we used. We wondered whether this absence was general or punctual.

This question led us to conduct a large-scale study on the presence of RDFS and OWL 2 semantics in the Web of Data. We found out that many OWL 2 features are almost not used, and that only some features are extensively used. We also noticed that there is a wide variety of knowledge graph in terms of modeling since some heavily used semantic constructs, and the majority relies only on the most simple features of RDFS. We also discovered that several specific domains use more semantics than others. All programs and data are freely available online to promote reproducibility and reuse of our work.

Ontology

The large-scale study leads us to propose an ontology, called OntoSemStats, to capture semantics define and used in a given knowledge graph. Indeed, it is time-consuming to discover manually, by writing SPARQL queries and dealing with a timeout of the SPARQL endpoint, which are semantics features proposed by a knowledge graph. Hence, the instance of our ontology OntoSemStats brings all this information to the user. Not only does it make its work more comfortable, but it can also satisfy data publishers by promoting the reuse of their data and improving community adoption of knowledge graphs.

Moreover, we provide several open-source tools to instantiate the ontology for a given SPARQL endpoint. In the present work, the ontology allows us to immediately decide whether it is worth trying to use semantics in our approaches.

Instance matching

In this contribution, we aimed at testing the hypothesis that not all properties contribute to the same degree to discover identical entities. The approach finds if two entities are the same or not and is based on two phases: the first is to find logical evidence that the two entities are the same when possible, i.e., if our ontology informs us that there are the necessary semantic features to perform the logical tests and that we can find logical evidence based on those features and data. Hence, if no logical evidence can or has been found, then we compute for each property of the two entities several scores that represent the importance or the predominance of a property. Our approach performs as well as the OAEI 2017 winner, hence it proves its usefulness for identity. Moreover, the code is freely available.

Property propagation Finally, we proposed an approach mainly based on sentence embedding that computes propagable properties for a given identity context. This approach allows rewriting a SPARQL query to deliver more results to the user.

Conceptual schema

As explained, one of the purposes of propagating information between contextually identical entities is to increase their completeness. Then, to compute the schema completeness of an entity, one must have a conceptual schema to perform the comparison against it. Because of their nature, knowledge graphs do not have schema like traditional relational databases. Hence, we propose this approach based on property mining, which allows discovering a conceptual schema for a given class of a knowledge graph.

Future directions

Several directions are still worth investigating in our work. We want to conduct a survey to take into consideration user feedback to improve the OntoSemStats ontology.

As stated in Chapter 4, some improvements can be made on the instance matching algorithm to better take into consideration the structure of the knowledge graphs. Primarily to address our false positive detection that can do better. Thus, a first step could be to test other ways to aggregate the different weights. In the future, we may also investigate other ways to refine linkset we produced to have fewer false positives results. Besides, more parallelization can improve both scalability and speed performance.

Regarding our conceptual schema generation approach, presented in Chapter 6, we plan to investigate the role of conceptual modeling in an integration context where the universe of discourse is not only one data source but an integrated system upon several Linked Open Data. We plan to make more knowledge graphs available and allow the user to easily compare two conceptual schemas side by side (from two knowledge graphs). We believe that the ability to compare two conceptual schemas of two knowledge graphs side by side can help to choose the one that is best suited for its use.

Regarding the approach of propagation in Chapter 5, some limitations of our approach need further investigation. Firstly, only properties with a textual description could be processed. Using other features to improve the results, like values of properties or semantic features of the property, should be tried. However, capturing ontological information of a property when embedding is still an open problem. Secondly, using only sentence embedding, combined with intuition from Tober's first law, might be naïve in some cases.

Therefore, there is a need to challenge our work with a combination of distinct knowledge graphs. For the time being, we only considered in lattices the case where the entity is subject to a triple, and we should also consider cases where it is the value of a triple.

Moreover, using SPARQL queries to help the user to select the best-suited identity context might be an interesting starting point for later work. Finally, to explore SPARQL queries expansion (presented in Section 5.4.3), a prototype should be implemented to allow users to select the proper context according to the ranked list of contexts. Also, using RDF* and SPARQL* [START_REF] Hartig | Foundations of an alternative approach to reification in RDF[END_REF] to represent the context as defined in this chapter should be investigated.
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  à ce constat, dès le milieu des années 40, Vannevar Bush a soulevé les problèmes de l'accès à ces connaissances et à leur utilisation par les scientifiques. Il a proposé une machine conceptuelle appelée Memex ([Bush 1945]), qui est une sorte de prothèse mémorielle permettant le stockage et la consultation de documents et de créer des liens entre eux afin d'aider l'utilisateur à reprendre sa consultation là où il en était. Ensuite, en 1965, Ted Nelson ([Nelson 1965]) a complété cette idée en créant les liens hypertextes entre documents, fichiers, etc. Il s'agit d'un des éléments fondateurs du Web encore à venir. À la fin des années 80, Tim Berners-Lee [Berners-Lee 1989] propose d'aller plus loin en distribuant les documents sur des machines différentes, tout en liant ces documents à l'aide de liens hypertextes. C'est la naissance du Web. Ce dernier repose sur trois briques fondamentales, à savoir (i) le protocole HTTP pour la communication entre machines ou clients et serveurs, (ii) le langage HTML pour exposer les données aux clients et enfin (iii) les URL pour l'identification et l'adressage. Le W3C est l'organisme responsable des différents standards liés au Web. De nos jours, de très nombreuses données sont publiées chaque jour sur le Web sous différentes formes. La majorité de ces données est publiée sous forme de pages HTML et est donc très peu structurée. Des formats tels que XML, JSON, PDF ou CSV sont aussi régulièrement utilisés, notamment par les organisations, permettant ainsi aux données d'être structurées ou semi structurées.

  puisque owl:sameAs permet d'augmenter la complétude d'une entité, c'est-à-dire d'augmenter les connaissances que l'on a à son sujet. La propriété est par définition transitive, il est ainsi possible d'avoir plusieurs entités identiques reliées par des propriétés owl:sameAs et formant une chaîne d'entités identiques. Ainsi, sur une chaîne d'entités liées par owl:sameAs, tout couple propriété-valeur peut être utilisé sur n'importe quelle entité de cette chaîne. C'est ce que l'on nomme la propagation de propriétés. Mais, de ce fait, un lien qui peut être parfois vrai et parfois faux risque de propager des informations Résumé long en français fausses. Cette propagation de données fausses le long d'une chaîne de propriétés owl:sameAs diminue la qualité des données et peut avoir des conséquences dramatiques selon l'utilisation qui est faite de ces données. Par exemple, dans le domaine médical, une mauvaise prise de décision fondée sur des données qui ne sont pas justes peut entraîner un préjudice important pour les patients. Afin de pouvoir identifier les différents contextes dans lesquels un lien d'identité peut être explicité entre deux entités, nous avons observé les différents travaux déjà effectués sur ce sujet et avons réalisé que la propagation des propriétés n'était pas ou peu traitées, malgré les propositions de plusieurs définitions d'identité contextuelles. En première approximation avant d'étudier plus en profondeur sa définition, nous pouvons considérer qu'un contexte d'identité est un ensemble de propriétés. Toutes les entités identiques dans ce contexte ont les mêmes valeurs pour les propriétés de cet ensemble.

Figure 1

 1 Figure1.1: Full framework. The element in green is the input of the approach, the element in red is the output. Elements in yellow are those that may require user intervention. The dotted arrows correspond to the part where completeness measurements can be performed. The blue dotted arrows correspond to the moments when completeness measurements are performed in the flow.
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 2 Figure 2.2: The LOD cloud.

  Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-said Cherfi. État des lieux de l'utilisation de OWL 2 : Analyse et proposition pour capturer les utilisations de la sémantique OWL 2 dans les graphes de connaissances RDF. Revue des Nouvelles Technologies de l'Information, Extraction et Gestion des Connaissances , RNTI-E-36: 145-156, 2020c • Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Ontosemstats: An ontology to express the use of semantics in rdf-based knowledge graphs. In Mária Bieliková, Tommi Mikkonen, and Cesare Pautasso, editors, Web Engineering -20th International Conference, ICWE 2020, Helsinki, Finland, June 9-12, 2020, Proceedings, volume 12128 of Lecture Notes in Computer Science, pages 561-565. Springer, 2020a. doi: 10.1007/978-3-030-50578-3\_45. URL https://doi.org/10.1007/ 978-3-030-50578-3_45 (To be published) • Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. A study about the use of OWL 2 semantics in RDF-based knowledge graphs. In The Semantic Web: ESWC 2020 Satellite Events -ESWC 2020 Satellite Events, 2019b (To be published)

  we will describe the methodology we used to carry out this study and present the different results obtained. The objective of this study is to have an overview, on a large scale and the most recent data possible, of the use of semantics expressed in CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2 OWL 2 in RDF knowledge graphs.
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 3 Figure 3.1: Number of knowledge graphs by OWL features 2.

  10 [Alexander, Cyganiak, Hausenblas, and Zhao 2009] is a vocabulary that can be used to describe a knowledge graph. This description facilitates knowledge graph discovery and use. Besides, VoID offers elementary statistics such as the number of classes or triples.Our ontology extends this vocabulary by providing more detailed statistics on the use of OWL 2 and RDFS elements. We represent a knowledge graph as an instance of the class void:Dataset that can have as many :Stat 11 instances as it uses OWL 2 and RDFS properties or classes. Each instance of :Stat has one and only one :SemanticFeature instance.The :hasSemanticFeature property (see Listing 3.1) allows an instance of :Stat to be linked to its :SemanticFeature. The different types of range of :hasSemanticFeature are disjointed two by two, thus making it possible to detect any error in the instantiation of this ontology.

  owl:propertyChainAxiom or owl:inverseOf, which are axioms allowing the description of the nature of the relation between properties. : PropertyType r d f : type owl : C l a s s ; r d f s : s u b C l a s s O f : PropertyAxiom ; owl : d i s j o i n t U n i o n O f ( : OwlAsymmetricProperty : O w l F u n c t i o n a l P r o p e r t y : O w l I n v e r s e F u n c t i o n a l P r o p e r t y : O w l I r r e f l e x i v e P r o p e r t y : O w l R e f l e x i v e P r o p e r t y : OwlSymmetricProperty : O w l T r a n s i t i v e P r o p e r t y ) . Listing 3.2: Definition of the Properties class which represents the different types used to define a property.
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 3 Figure 3.2: Web application interface.
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 3 Figure 3.3: Results as a table for DBpedia endpoint.
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 3 Figure 3.3 shows the results for human readings, and Figure 3.4 shows the results for an automated agent. The format chosen is N-Triples to facilitate the processing by the automated agent.
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 3 Figure 3.4: Results as N-Triples for DBpedia endpoint.
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 3 Figure 3.5 shows the workflow of the OntoSemStatsWeb application. The agent (human

  a) Compute similarity between objects of current common property (e.g., between o 1 and o 2 ) (see Algorithm 2) (b) Compute the weight of the property R (see Definition 4.3.3) (c) Compute the discriminating power of the property-value pair ⟨R, o 1 ⟩ (see Definition 4.3.5) (d) Aggregate in SubAggregation the similarity, the weight of the property R and the discriminating power of the property-value pair ⟨R, o 1 ⟩ 3. Compute the weight of clues between x 1 and x 2 in clue (see Definition 4.3.6) 4. Aggregate all SubAggregation variables and the clue weight
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 789 Let N S KG (C, R) = |{s : ∃o ∈ O(KG), R(s, o) ∈ KG ∧ C(s) ∈ KG}| be the number of subjects of C participating in triples having the property R in KG. Example 6 With the knowledge graph from Example 5, C = W oman and R = Age, then N S KG (W oman, Age) = 1 (only kahlo has an age provided). Now, we can define the weight of a property (as explained in Example 3): Definition 4.3.3 (weight of a property) The weight of the property R on the class C in KG is defined by W KG (R, C) = N S KG (C,R) N S KG (C) and W KG (R, C) ∈ [0, 1]. This weight W KG (R, C) represents the percentage of entities of a class (or class) C having the property R in their description. With knowledge graph from Example 5, then W KG (Age, W oman) = N S KG (W oman,Age) N S KG (W oman) define the second intuition seen in Example 4, which is the discriminating power of property-value pair: Definition 4.3.4 Let N S KG (C, R, o) = |{s : ∃s, R(s, o) ∈ KG ∧C(s) ∈ KG}| be the number of subjects of class C participating in triples having the property R and the object o in KG. With the knowledge graph from Example 5, C = M an, R = Age and o = 26, then N S KG (M an, Age, 26) = 2 ( einstein and lennon). Now, we can define the discriminating power: Definition 4.3.5 (discriminating power) The discriminating power of a property-value pair ⟨R, o⟩ on the class C in KG is defined by D KG (C, R, o) = N S KG (C,R,o) N S KG (C,R) and D KG (C, R, o) ∈ [0, 1]. The lower the number D KG (C, R, o), the more the property-value ⟨R, o⟩ makes it possible to differentiate between two entities. With the knowledge graph from Example 5, then D KG (M an, Age, 26) = N S KG (M an,Age,26) N S KG (M an,Age) = |{lennon,einstein}| |{lennon,einstein,obama}| = 2 3 = 66% and D KG (M an, Age, 47) = N S KG (M an,Age,47) N S KG M an,Age = |{obama}| |{lennon,einstein,obama}| = 1 3 = 33%.

  depth of a class) Let depth KG (C) be the distance between the class C and the class T (i.e., owl:T hing in RDF) in KG. depth KG (C) is called the depth of C. By definition, ∀KG, depth KG (T ) = 0. (The Top class is equivalent to owl:Thing in RDF, see [Baader, Horrocks, and Sattler 2008] for more details.) Example 12 If KG = dbo 6 then depth dbo (Agent) = 1 and depth dbo (Biologist) = 4 since Agent is a direct sub class of owl:T hing and Biologist ⊑ Scientist ⊑ P erson ⊑ Agent ⊑ owl:T hing.

true•

  False positive (f p): number of alignments predicted and actually wrong • False Negative (f n): number of true alignment not found among those predicted

  From a philosophical point of view, there are multiple counterarguments to the definition of Leibniz's identity. For example, if we consider two glasses from the same set of glasses, they are indiscernible from each other and yet they are two different physical objects. Is a person the same as she was ten years ago?It is also a technical problem because of the open-world assumption[START_REF] Drummond | The open world assumption[END_REF], on the one hand, and on the other hand, because of what a data publisher has in mind that could be different from what the user expects when using data. Besides, when data is published, it is "almost" impossible to know the consensus behind the decision of creating an owl:sameAs link. Several works ([START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF] or[START_REF] Ding | owl: sameas and linked data: An empirical study[END_REF]) have demonstrated that the use of owl:sameAs was inadequate. Indeed, established links might be considered as true only in specific contexts. According to[START_REF] Noy | Industry-scale knowledge graphs: lessons and challenges[END_REF], the problem of identity management in knowledge graphs remains one of the top challenges in the industry.As a first intuition, a contextual identity between two entities might be seen as a subset of properties Π for which these entities share the same values for each p ∈ Π. Example 13 Two different generic drugs Drug1 and Drug2 can be identical when considering the active ingredient. If a knowledge graph contains the triples ⟨ Drug1 activeIngredient Molecule1 ⟩ and ⟨Drug2 activeIngredient M olecule1⟩, then Drug1 ≡ activeIngredient Drug2 when the context is activeIngredient.
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 51 Figure 5.1: Excerpt of a knowledge graph about Paris, France. The properties in red are indiscernible for both the city and the department. The properties in blue are propagating given the red properties are indiscernible.
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 5 Figure 5.2: Simplified identity lattice from Figure 5.1: each node is an indiscernible set of properties. Only the red nodes have similar entities.

  van den Besselaar 2017] since it is the only one that considers the propagation of properties. They give the following definition of the identity context: Definition 5.3.2 (Identity Context) An identity context C = (Π, Ψ, ≈) is defined by two sets of properties (Π and Ψ) and an alignment procedure (≈). Π is the indiscernibility set of properties (equation 5.1) and Ψ is the propagation set of properties (equation 5.2).

  Identity Lattice) An identity lattice L is a lattice, where each element is an identity context. The set inclusion between indiscernibility set of properties of each context is the binary relation responsible for the partial order.The last notion is the seed of a lattice or a context that we define as follows: Definition 5.3.4 (Seed of a lattice or a context) Each context of a lattice is constructed from the same entity e for all the contexts of the lattice. This entity e is called the seed of the lattice.

  we can combine contexts of the same level */ 26 return constructU pperLevels(L, KG 1 , KG 2 , seed, I, ≈)Algorithm 3: createLattice: calculate identity lattice of an entity.

7/*

  getEntities function gives the set of entities that are similar under the given identity context in the given KG */ 8 entities = getEntities(C 1 , KG 2 ) ∩ getEntities(C 2 , KG 2 ); 9 if entities ̸ = ∅ and Π / constructUpperLevels: calculate uper levels of the identity lattice of an entity.

  [START_REF] Ristoski | Rdf2vec: RDF graph embeddings for data mining[END_REF], or an ontological alignment technique are: (i) classical string distances ignore sentence semantics, (ii) RDF graph embedding techniques are not yet adapted to such a task, and (iii) ontological alignment techniques align pairwise properties and not CHAPTER 5. PROPAGATION OF PROPERTIES sets of properties.

Figure 5

 5 Figure 5.3: Comparison of the average precision by thresholds for all five classes (country, comics character, political party, literary work, film). The threshold takes values from 0.5 to 0.95 by steps of 0.05. The baseline is in blue, InferSent in red, GenSen in yellow and Universal Sentence Encoder in green.
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 54 Figure 5.4: Comparison of the average recall by thresholds for all five classes (country, comics character, political party, literary work, film). The threshold takes values from 0.5 to 0.95 by steps of 0.05. The baseline is in blue, InferSent in red, GenSen in yellow and Universal Sentence Encoder in green.

Figure 5

 5 Figure 5.5: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent and the threshold at 0.9 for the "comics character" class.

Figure 5

 5 Figure5.6: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent and the threshold at 0.9 for the "country" class.

Figure 5

 5 Figure 5.7: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent and the threshold at 0.9 for the "film" class.

Figure 5

 5 Figure 5.8: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent and the threshold at 0.9 for the "literary work" class.

Figure 5 .

 5 Figure 5.10: Qualitative experiment workflow: the elements in red are the inputs and the element in green is the output. To simplify the diagram, we consider only one instantiated entity linked to one instantiated property in the query.
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  : Paracetamol ) ( : I b u p r o f e n ) ( : A s p i r i n ) } ? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n ? drug . } Listing 5.3: Expanded SPARQL query retrieving all studies about Paracetamol similar entities.
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 34 Generation of Enriched Conceptual SchemasIn this step, the goal is to generate a conceptual schema enriched with the completeness values calculated in the previous step. The MFP patterns used to get the completeness values are transformed into a class diagram. Figure6.2 illustrates the user's interface of our LOD-CM web service. Using the graphical interface 2 , the user can choose her constraints.The web service permits the user to enter the class name in the text box, and the user may select the threshold completeness she wants to apply. Currently, our demo supports DBpedia and Wikidata knowledge graphs.

Figure 6

 6 Figure 6.2: LOD-CM main interface

Figure 6

 6 Figure 6.4: Contextual menu for navigation and editing.

Figure 6 . 5 :

 65 Figure 6.5: The Artist diagram class

Figure 6 . 6 :

 66 Figure 6.6: Conceptual schema of the PoliticalParty class in DBpedia.
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  Résumé long en français le modèle de graphe RDF. Il est composé de trois éléments de bases que sont (i) les ressources (IRI), (ii) les littéraux et (iii) les noeuds anonymes (quantification existentielle).Les ressources en sont l'élément principal puisqu'elles permettent d'identifier tout objet ou concept du monde réel. Elles permettent de décrire tout et n'importe quoi sous forme de triplets dont le sujet, c'est-à-dire le premier élément, est une entité que l'on souhaite décrire. Cette entité est identifiée par son IRI. Le second élément du triplet est lui-même une ressource correspondant à une caractéristique de la chose décrite, comme, par exemple, une adresse, un nom ou une latitude. C'est la propriété du triplet. Enfin, le troisième élément du triplet est l'objet, qui représente la valeur de la propriété. Cet objet est au choix une ressource, permettant ainsi de lier deux ressources entre elles, ou un littéral,

est une extension du Web proposée par Tim Berners-Lee qui permet d'aller un cran au-delà dans la structuration des données. Cette extension repose sur une pile technologique gérée par le W3C et qui permet d'exprimer les données et leur schéma sous forme de graphe. C'est ce qu'on appelle c'est-à-dire une forme lexicale ayant un type tel qu'un entier ou une date exprimée à l'aide d'un IRI. De plus, par l'intermédiaire des langages RDFS et OWL 2, il est possible de décrire le schéma de ces données, c'est-à-dire les propriétés utilisées dans les triplets, ainsi que les classes (les types) que peuvent avoir les ressources. Certaines classes et propriétés peuvent avoir une sémantique permettant l'inférence de nouvelles données.

  Résumé long en français propageables dans un contexte d'identité donné. La première piste consiste à utiliser la sémantique fournie par les ontologies, exprimée en OWL 2 ou RDFS, qui décrivent les propriétés et les classes d'un graphe de connaissance. En effet, en raison du manque de sémantique observé sur quelques graphes, nous avons, dans un premier temps, mené une étude à large échelle sur la présence et la qualité de l'utilisation d'OWL 2 dans les graphes de connaissances RDF. Nous avons, dans un second temps, proposé une ontologie permettant aux fournisseurs de données de préciser quelles sont les parties d'OWL 2 utilisées dans leurs graphes. Ceci a pour but de faciliter l'exploration des graphes et surtout de permettre

	Nous postulons en effet que plus la description d'une propriété est proche des descriptions
	de l'ensemble d'indiscernabilité et plus cette propriété a de chances d'être propageable.
	Pour trouver les contextes d'une entité, nous proposons un algorithme qui calcule le treillis
	qui représente l'ensemble des contextes d'identité de cette entité. De plus, notre approche
	de propagation utilise notre ontologie sur les statistiques sémantiques et notre approche
	sur l'importance des propriétés lors de plusieurs étapes de l'algorithme.

de choisir l'outil approprié pour une tâche donnée en fonction des fonctionnalités OWL 2 qui sont présentes dans le graphe donné. En effet, certains outils peuvent nécessiter la présence de certaines fonctionnalités OWL 2, telles que des propriétés fonctionnelles, pour pouvoir produire les résultats attendus par l'utilisateur. Dans le cas qui nous intéresse, une instance de cette ontologie peut nous aider à déterminer si l'utilisation de la sémantique peut être envisagée pour aider à déterminer les propriétés propageables.

Nous avons ensuite étudié une piste fondée sur l'importance des propriétés et de leurs valeurs dans un graphe donné. Il nous est apparu que certaines propriétés peuvent avoir plus ou moins d'importances pour déterminer si deux entités sont identiques ou pas. Ainsi, en fonction de l'utilisation des propriétés dans un graphe de connaissances, il est possible de déterminer le poids que peut avoir une propriété ou encore le pouvoir discriminant d'un couple propriété-valeur. Ces éléments aident à décider si deux entités sont les mêmes ou pas. Cette approche utilise aussi la sémantique en premier ressort pour tenter de trouver les liens d'identités. En effet, la présence de propriétés fonctionnelles, par exemple, peut aider à trouver de tels liens entre entités. Pour finir, nous avons proposé une approche qui permet de trouver semi-automatiquement les propriétés propageables entre entités identiques dans un contexte donné. Nous reprenons la définition d'un contexte d'identité proposée par [Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017] puisqu'elle offre un cadre pour la propagation des propriétés pour un ensemble de propriétés indiscernables donné. Notre approche utilise une technique de plongement de phrases. Chaque propriété ayant une description longue en langage naturel peut être représentée par un vecteur. Il est ainsi possible de calculer un vecteur Résumé long en français représentant un ensemble de propriétés indiscernables d'une part, et, d'autre part, de calculer la distance entre ce vecteur et ceux des propriétés candidates à la propagation.

Afin de pouvoir mesurer les effets sur la complétude, au niveau du schéma, de la propagation des propriétés dans un contexte d'identité donné, nous avons besoin d'un outil permettant de calculer cette complétude. En effet, un des objectifs de l'établissement de l'identité entre deux entités est de pouvoir réutiliser de l'information, c'est-à-dire d'augmenter la complétude d'une entité à l'aide d'une ou plusieurs autres entités. Cette complétude peut avoir deux formes : (i) au niveau du schéma de l'entité, c'est-à-dire du nombre de propriétés différentes qu'elle utilise, et (ii) au niveau de ses données, c'est-à-dire du nombre de valeurs que peut avoir une propriété. La mesure de la complétude des données est très difficile puisqu'il est presque impossible d'établir un étalon d'or pour les données dans le domaine du Web sémantique étant donné qu'il est régi par l'hypothèse du monde ouvert

[START_REF] Darari | Completeness statements about RDF data sources and their use for query answering[END_REF]

. Par conséquent, dans le cas présent, nous nous intéressons uniquement à la complétude du schéma. Afin de calculer cette complétude, il est nécessaire d'avoir un schéma de référence correspondant à la nature de l'entité, c'est-à-dire sa classe (l'objet de la propriété rdf:type). À l'aide de ce schéma, il est possible de mesurer la complétude d'une entité avant et après liage avec d'autres entités (contextuellement) identiques. Ainsi, nous présentons une approche et un démonstrateur (LOD-CM) permettant de trouver le schéma conceptuel d'une classe donnée. Bien entendu, le contexte et les propriétés propageables doivent être un sous-ensemble des propriétés utilisées dans le schéma. En effet, si les propriétés propageables n'apparaissent pas dans le schéma conceptuel, il ne sera pas possible de mesurer l'évolution de la complétude sur ces propriétés.

  very present in the knowledge graph. Nevertheless, if semantics is lacking, the results may not be what the user expects. Therefore, it is often necessary to conduct a first exploratory study of the knowledge graph to know which tool will be best suited for a given task. Such a study helps to understand what the data may have to offer. Unfortunately, this exploratory step is time-consuming, especially if the documentation accompanying the knowledge graph is missing or not very informative. Several vocabularies or ontologies have been proposed to provide the user with an overview of the data contained in the knowledge graph. For example, Dublin Core 1 [Weibel, Kunze, Lagoze, and Wolf 1998], Creative Commons Rights Expression Language 2 , Data Catalog Vocabulary 3 , or VoID 4 [

Besides, approaches relying mainly on semantics can outperform other types of approaches if semantics is

Table 3

 3 

	Name

.1: Information collected for each knowledge graph.

Table 3 .

 3 Table3.5 shows the results by topic (each line concerns a group of graphs with the topic in the first column). The columns are the same as those in the 3.3 table. We were able to link 706 graphs (out of 1205 in the LOD Cloud) to a graph in LOD Laundromat (an HDT file). We used strict string matching between the URIs of LOD Cloud and LOD Laundromat to avoid assigning the wrong topic to a graph. 5: Basic statistics by topic in terms of number of subjects (1st quartile, median and 3rd quartile) and percentage of knowledge graphs using OWL 2. At least one OWL 2 feature must be used at least once.

	As expected, graphs whose topic is user generated or social networking use very little
	semantics (a little over 12%). Even so, they still use more of them than topicless graphs.

More surprisingly, cross domain graphs are the biggest users of OWL 2, since 64.62% of them use at least one OWL 2 feature. Additionally, as expected, life sciences are among

Definition 3.3.3 (Class and property usage of OWL 2) Let

  

C be an OWL 2 class (resp. p an OWL 2 property). Let Ω = {KG i |i ∈ [1, N ]} be a set of knowledge graphs. The class usage (resp. the property usage) of C (resp. of p), called CU Ω (C) (resp.

P U Ω (p)), is the weighted mean of the number of subjects with C as RDF type (resp. using p as a predicate). The weights are the inverse of the total number of subjects in the knowledge graph.

Table 3 .

 3 7 concerns the definition of classes using OWL 2. The second column shows

	CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2	
	Class	# of graphs Class usage
	Class	1905	1.36
	Restriction	520	10.3
	DataRange	225	1.71
	AllDifferent	213	2.35
	NamedIndividual	62	10.8
	AllDisjointClasses	50	2.09
	NegativePropertyAssertion	27	279.76
	Axiom	13	14.44
	AllDisjointProperties	5	4.96
	Table 3.7: Analysis by class type (see Def. 3.3.3).

the number of graphs using the given class. The third column shows the usage of the class (see

Def. 3.3.3)

. For example, class owl:Restriction is used in only 520 graphs. These 520 graphs use it an average of 10.3 times. As expected, the type owl:Class is the most used type as opposed to owl:AllDisjointProperties, which is practically not used (5 graphs only).

Table

3

.8 shows the use of OWL 2 properties in different graphs. The second column shows the number of graphs in which the property exists. The last column shows the usage of this property (see

Def. 3.3.3)

. For example, if a graph uses OWL 2 features, the user can expect to find 5.41 inverseOf in that graph. As we can see, the owl:sameAs property is by far the most used property of OWL 2, since it is found in 6 times more graphs than the second most used property (owl:unionOf ). Besides, owl:sameAs, when used, is used intensively. On average, 10.3 triples use it. These results correspond to the discoveries of earlier work, such as

[START_REF] Hitzler | A reasonable semantic web[END_REF]

. They showed at the same time the importance of owl:sameAs and the inertia regarding the change that can be encountered on this type of graph.

In conclusion, a vast number of knowledge graphs in LOD use little or no semantics in the form of OWL 2, and a few use a lot. Also, many OWL 2 features are only rarely used.

However, the larger the graph, the more likely it is to use OWL 2.

Table 3

 3 

.8: Analysis of OWL 2 properties (see

Def. 3.3.3

).
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  i denote knowledge graphs, C denotes a class (or an entity type), and R denotes a property (or predicate). R(a, b) denotes that an entity a has the property R with the value b. C(a) denotes that a is an entity of class C.

sameAs

(a, b) 

denotes that the entity a is the same as 4 the entity b. We also note S(KG) (resp. O(KG) and R(KG)) the set of subjects (resp. objects and properties) belonging to triples from KG. Definition 4.2.1 corresponds to the input of our approach: Definition 4.2.1 (Source and target knowledge graphs) Let KG s and KG t be two RDF knowledge graphs such that KG s = ⟨T 1 , A 1 ⟩ and KG t = ⟨T 2 , A 2 ⟩. T 1 and T 2 are T-Boxes, and A 1 and A 2 are A-Boxes (see

  be a linkset between KG s and KG t for the property R. L KG s ,KG t (R) is thus the set of triples such that the subject comes from the source knowledge graph, the property is R and object is in the target knowledge graph.

Example 1 If R = owl:sameAs, {s:London, s:P aris, s:N ew_Y ork} ⊂ S(KG s ) and {t:London, t:Dublin, t:P aris} ⊂ S(KG t ) then L KG s ,KG t (R) = {⟨s:London, t:London⟩, CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES ⟨s:P aris, t:P aris⟩}.

Table 4

 4 

	If there is a proof that x 1 and x 2 are different, the main similarity algorithm stops and
	return 0. If no semantic clue has been found, the main similarity algorithm continues to
	the next step.
	Algorithm 1 illustrate our approach.

.1 and 4.2 shows the semantics of owl:sameAs that have been used in our approach. We search for any pattern corresponding to one of the cases contained in Tables 4.1 or 4.2. If the conditions in the If column holds (are true), then the column Then can be applied, i.e., we can explicitly add the triples it contained in the knowledge graph. The first table is used to find logically identical entities, and the second one is used to find logically different entities.

Example 2 (Rule prp-fp from Table

4

.1) Let us suppose we are assessing if the entities x 1 and x 2 are the same. If we find that the property P is a functional property 5 (F unctionalP roperty(P )) and P (s, x 1 ) and P (s, x 2 ) (either directly in KG 1 and KG 2 or by inference), then we know for sure that sameAs(x 1 , x 2 ) holds. In that case the main similarity algorithm stops and return 1.

The IsSemP roof function (line 2 in Algorithm 1) returns a boolean. If a semantic T (?c, owl:hasKey, ?u) LIST[?u, ?p 1 ,. . . , ?p n ] T (?x, rdf :type, ?c) T (?x, ?p 1 , ?z 1 ) . . . T (?x, ?p n , ?z n ) T (?y, rdf :type, ?c) T (?y, ?p 1 , ?z 1 ) . . . T (?y, ?p n , ?z n ) T (?x, owl:sameAs, ?y) T (?x, owl:onP roperty, ?p) T (?u, rdf :type, ?x)

T (?u, ?p, ?y 1 ) T (?u, ?p, ?y 2 )

T (?y 1 , owl:sameAs, ?y 2 ) cls-maxqc3

T (?x, owl:maxQualif iedCardinality, "1 ′′ ˆˆxsd:nonN egativeInteger) T (?x, owl:onP roperty, ?p) T (?x, owl:onClass, ?c) T (?u, rdf :type, ?x) T (?u, ?p, ?y 1 ) T (?u, ?p, ?y 2 )

T (?y 1 , owl:sameAs, ?y 2 ) Table 4.1: Semantics used to find identical entities. T (?x, rdf :type, owl:AllDisjointP roperties) T (T (?x, owl : members, ?y)) LIST [?y, ?p 1 , . . . , ?p n ] T (?u, ?p i , ?v) T (?w, ?p j , ?v) for each 1 ≤ i < j ≤ n T (?u, owl:dif f erentF rom, ?w) cls-com T (?c 1 , owl:complementOf, ?c 2 ) T (?x, rdf :type, ?c 1 ) T (?y, rdf :type, ?c 2 ) T (?x, owl:dif f erentF rom, ?y) cls-maxc1 T (?x, owl:maxCardinality, "0 ′′ ˆxsd:nonN egativeInteger) T (?x, owl:onP roperty, ?p) T (?u, rdf :type, ?x) T (?v, ?p, ?y) T (?u, owl:dif f erentF rom, ?v) cls-maxqc1 T (?x, owl:maxQualif iedCardinality, "0 ′′ ˆxsd:nonN egativeInteger) T (?x, owl:onP roperty, ?p) T (?x, owl:onClass, ?c) T (?u, rdf :type, ?x T (?v, ?p, ?y) T (?y, rdf :type, ?c) T (?u, owl:dif f erentF rom, ?v) cax-dw T (?c 1 , owl:disjointW ith, ?c 2 ) T (?x, rdf :type, ?c 1 ) T (?y, rdf :type, ?c 2 ) T (?x, owl:dif f erentF rom, ?y) cax-adc T (?x, rdf :type, owl:AllDisjointClasses) T (?x, owl:members, ?y) LIST [?y, ?c 1 , . . . , ?

Table 4 .

 4 2: Semantics used to find distinct entities. input : x 1 ∈ KG s and x 2 ∈ KG t (x 1 and x 2 are entities), hasSem (boolean) output : the similarity score 1 /* The value of hasSem depends on whether the instance of OntoSemStats has features from Table 4.1. If nothing found, then it is false, true otherwise. */ 2

  see Algorithm 2 for the sim function */

8 (maxSim, o) ← max{sim(o 1 , o 2 ) | (o 1 , o 2 ) ∈ {o : R(x 1 , o)} × {o : R(x 2 , o)}}; 9 // the max() function returns a tuple composed of o 1 or o 2 depending on which one has the highest similarity score, and this score 10 subscore ← Aggregation 1 (maxSim, (1 -W KG s (R, C)), (1 -D KG s (C, R, o))); 11 scores.Add(subscore); 12 end 13 /* The more information (triples) there is, the stronger the decision must be. w represents this force. */ 14 clue ← |Rx 1 ∩Rx 2 | |Rx 1 |+|Rx 2 |-|Rx 1 ∩Rx 2 | ; 15 return Aggregation 2 (clue, SubAggregation(scores)); Algorithm 1: Calculate the similarity score between two entities proof of equality or inequality is found, it return true. In the same line, SemP roof V alue return either 1 or 0 (one if the clue is in favor of owl:sameAs, zero otherwise).

  The termType() function returns a value between resource or literal, whether the parameter is an RDF resource or a literal value. Blank nodes are ignored for simplicity 4 if termT ype(o 1 ) = resource then

	Example 5 In the following examples, we will use this KG = {Woman(ada), Man(lennon),
	Woman(kahlo), Man(obama), Man(einstein), age(lennon, 26), age(obama, 47), age(einstein,
	26), age(kahlo, 37), nationality(ada, brithish)}.
	5	if semantic proof that o 1 = o 2 then
	6	score ← 1;
	7	else
	8	score ← stringSim(f ragment(o 1 ), f ragment(o 2 ));
	Hence, for each common property between the two entities x 1 and x 2 , a similarity score is
	computed between objects. For example, if we have country(x 1 , o 1 ) and country(x 2 , o 2 ),
	we compute the similarity sim(o 1 , o 2 )(∈ [0, 1]). This similarity depends on the nature of o 1
	and o 2 (IRIs, typed literals, etc.). We will see more details later. Each of those similarities

Example 3 If 90% of the People's entities use the property name but only 8% of those input : o 1 ∈ KG s and o 2 ∈ KG t output : the similarity score between two objects 1 score ← 0; 2 if termT ype(o 1 ) ̸ = termT ype(o 2 ) then return score; 3 // 9 else if dataT ype(o 1 ) = dataT ype(o 2 ) then 10 // The dataType() function returns the data type of a literal, e.g., string or date. 11 score ← sim dataT ype(o 1 ) (o 1 , o 2 ); 12 else 13 score ← stringSim(o 1 , o 2 ); 14 return score; Algorithm 2: the sim function entities use the property ownerOf, then ownerOf might help more to determine (the absence of) an identity relation between two entities. Example 4 Suppose that we have the following triples: town(a, t 1 ) and town(b, t 2 ). The discriminating power of the values is important. Suppose we have 100 entities with the property-value ⟨town, t 1 ⟩ but only 3 entities with the property-value ⟨town, t 2 ⟩, then clues having the property-value ⟨town, t 2 ⟩ are stronger than clues having ⟨town, t 1 ⟩, since ⟨town, t 2 ⟩ allows discriminating more entities. We name this the discriminating power of a property-value pair. will be weighted based on intuitions explain in Example 3 and 4. More formally, before defining the weight of a property, we need two preliminary definitions:

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES Definition 4.3.1 Let N S KG (C) = |{s : ∃(R, o) ∈ R(KG) × O(KG), R(s, o) ∈ KG ∧ C(s) ∈ KG}| the number of subjects from KG that are of the class C. If C = W oman, then N S KG (W oman) = 2 ( kahlo and ada).

  Precision and recall are the

	Participants	Precision Recall F-Measure
	SPIMBENCH Sandbox	
	AML	0.849 1.000	0.918
	I-Match	0.854 0.997	0.920
	Legato	0.980 0.730	0.840
	LogMap	0.938 0.763	0.841
	Our approach	0.854 0.996	0.920
	Table 4.3: Comparison with other approaches
	same because, several times, a wrong candidate has been selected instead of the right one.

This candidate selection issue is due to similarity scores that are too close between the right candidate and the (wrongly) selected one. It seems that our aggregation functions (see Section 4.3.2.2) are responsible for both true and false negatives.

identity context must have propagable properties.

  Moreover, the ability to propagate a property between entities depends on the context, i.e., the same property might be propagable in a context C 1 and not propagable in a contextC 2 .Several works have attempted to propose a solution to the contextual identity.[START_REF] Beek | A contextualised semantics for owl: sameas[END_REF], [Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017] and[START_REF] Raad | Detection of contextual identity links in a knowledge base[END_REF] defined three different ways to handle identity under a given context. However, none of those works propose a solution to discover properties that can be propagated given a specific context.

	Example 14 Following the example 13, stating only Drug1 ≡ activeIngredient Drug2 has a
	limited interest, if we do not know what to do with other properties besides activeIngredient.

In the same way, contextual identity must help to discover more knowledge and to increase completeness, but only under specific circumstances. So, to be useful, a contextual identity must specify what is happening with properties that are not part of the context. In other words, an Considering the context activeIngredient, the property targetDisease is propagable, and if the statement ⟨ Drug1 targetDisease Disease1 ⟩ exists then we can state that ⟨Drug2 targetDisease Disease1⟩. But if we consider the property excipient, then it is not propagable.

Research questions:

With a given identity context between two entities, how to find properties that can be propagated? Is it possible to find propagable properties (semi-)automatically?

In this chapter, based on the context definition of

[START_REF] Koudous Idrissou | Is my: sameas the same as your: sameas?: Lenticular lenses for context-specific identity[END_REF]

, we propose an approach to find propagable properties to facilitate knowledge discovery for users. Instead of manually listing the propagating properties as in

[Idrissou, Hoekstra, van Harmelen, Khalili, and van den 

14 end 15 end 16

  Get all explicit and implicit types of the seed */ 3 T seed = {t : ⟨seed rdf :type t⟩ ∈ KG 1 };

	4 /* Then we get all logically identical entities (see Chapter 3 and	
	4)	*/
	5 I = getLogicallyIdenticalEntities(seed, KG 1 );	
	6 /* the following will create all contexts of the level 1 (with only
	one indiscernible property)	*/

7 for each property p of seed do 8 candidateEntities = ∅; 9 for each value o such as ⟨seed p o⟩ ∈ KG 1 do 10 /* entities p,o is the set of indiscernible entities with seed with respect to the p, o couple */ 11 entities p,o = {e : (∃(p ′ , o ′ ), p ′ ≈ p, o ′ ≈ o, ⟨e p ′ o ′ ⟩ ∈ KG 2 ) ∧ (∃t ∈ T seed , t ′ ≈ t, ⟨e rdf :type t ′ ⟩ ∈ KG 2 )}; 12 if entities p,o ̸ = ∅ then 13 candidateEntities = candidateEntities ∪ {entities p,o }; /* entities p is the set of indiscernible entities with seed with respect to the property p */ 17 entities p = ( ⋂︁ candidateEntities) ∪ I; 18 Ψ = getP ropagationSet(seed, entities p , {p});

  Similarly to the query about "Paracetamol", we computed the lattice and search for context with headOf in the propagable properties. The results are shown in the second column of Table5.1. The expanded query could be rewritten as the previous one. It should be noted that among the 99 results, 22 persons were not head of France. Fourteen were head of Paris City Council and 8 were Grand Master of a Masonic obedience in France.

	}
	Listing 5.4: SPARQL query retrieving all people who were head of the French state.
	? headOfState WHERE
	{
	? headOfState : headOf : France .

Table 6 .

 6 2 represents the set of transactions constructed from the triples of Table6.1.More formally, given a knowledge graph KG, let us define a set of classes C ∈ KG (e.g., Film, Artist), E C ∈ KG is the set of entities for classes in C (e.g., The_Godfather is an entity of the Film class), and P C = {p 1 , p 2 , ..., p n } ∈ KG is the set of properties used by entities in Given a subset of entities E = {e 1 , e 2 , ..., e m } with E ⊆ E C (e.g., properties used to describe the The_Godfather entity are: director and musicComposer), T E = (t 1 , t 2 , ..., t We consider CP SCHEMA COMPLETENESS the completeness of E against properties used in the description of each of its entities. Moreover, P (t k ) is the power set of transaction t k .All statements having a subject from a class C 1 are grouped. The related properties of those statements could consequently constitute either the attributes (properties) of the class C 1 or relationships to other classes when the property value (the object in the triple < s, p, o >) refers to another class. In this step, the objective is to find the properties patterns that are the most shared by the subset of entities extracted from the knowledge graph. This set will be then used to calculate a completeness value regarding these patterns.The objective is then to compute the set of frequent patterns FP from the transaction vector T E . We define the set of Maximal Frequent Patterns MFP as:

	E C (e.g director(F ilm, P erson)).

m ) is the list of transactions where ∀k, 1 ≤ k ≤ m : t k ⊆ P C and t k is the set of properties used in the description of e k ∈ E, i.e., ∀p ∈ t k , ∃o ∈ KG : ⟨e k , p, o⟩ ∈ KG.

Let C, E C , P C be respectively classes, instances (of classes in C), and properties (of entities in E C ) of a knowledge graph KG and E be a subset of data (entities) extracted from KG

with E ⊆ E C . We first initialize T E = ∅, MFP = ∅.

For each e ∈ E, we generate a transaction t, i.e., properties used by e. Indeed, each entity e is related to values (either resources or literals) through a set of properties. Therefore, a transaction t k of an entity e k is a set of properties such that t k ⊆ P C . Transactions generated for all the entities of E are then added to the T E list.

Example 17 Referring Table

6

.1, let E be a subset of entities such that: E = {T he_Godf ather, Goodf ellas, T rue_Lies}. The list of transactions T E would be:

T E = (

{director, musicComposer}, {director, editing}, {director, editing, musicComposer}) Definition 6.3.1 (Pattern) Let T E be a set of transactions. A pattern P ˆis a sequence of properties shared by one or several transactions t in T E . It is sometimes called an itemset. SCHEMA COMPLETENESS superset is frequent.

  Algorithm 6 shows the pseudo-codes for calculating CP(E).Example 20 Let ξ = 60%. The completeness of the subset of entities in Table6.1 regarding MFP = {{director,musicComposer}, {director,editing}} would be: This value corresponds to the completeness average value for the whole knowledge graph regarding the inferred patterns in MFP. MFP = M aximal(FP-growth(T E , ξ)); 7 /* Using equation 6.1 */ 8 return CP (E) = CalculateCompleteness(E, T E , MFP) Algorithm 6: Completeness calculation

	CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
	SCHEMA COMPLETENESS		
		input : KG, E, ξ			
		output : CP(E)			
	1 foreach e ∈ E do			
	2	t i =	⃓ ⃓ ⃓p 1 p 2 . . . p n	⃓ ⃓ ⃓;		
	4 end				
	5 /* Properties mining				*/
	6					
			CP(E) =	1 |T E |	|T E | ∑︂ k=1	|MF P| ∑︂ j=1	δ(P ˆj, P (t k )) |MFP|	(6.1)
			CP(E) =	2 × (1/2) + (2/2) 3	= 0.67

Definition 6.3.3 ( Completeness) Let E be a subset of entities, T E the set of transactions constructed from E, and MFP a set of maximal frequent pattern. The completeness of E corresponds to the completeness of its transaction vector T E obtained by calculating the average of the completeness of T E regarding each pattern in MFP. Therefore, we define the completeness CP of a subset of entities E as follows: such that: P ˆj ∈ MFP, and

δ(P ˆj, P (t k )) = {︄ 1 if P ˆj ⊂ P (t k ) 0 otherwise 3 T E = T E + t i ;

  Table6.3 shows the number of properties we get (at the end of our pipeline) Table 6.3: DBpedia number of predicates by classes and thresholds

	CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
	SCHEMA COMPLETENESS				
	Class/threshold 0.1 0.3 0.5 0.7 0.9
	Film	18 12 7	6	3
	Settlement	18 14 8	5	4
	Organisation	18 4	4	3	3
	Scientist	19 16 12 9	5
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CHAPTER 5. PROPAGATION OF PROPERTIES

We first step is to compute all logically identical entities to the seed (line 5). Indeed, based on Chapters 3 and 4, we search for all entities that can be proven to be identical to the seed by logical inferences, i.e., with the help of semantics. As a matter of fact, we believe that we should consider that identity is context-dependent most of the time, nevertheless we must not discard all classical identity links. We need to distinguish between owl:sameAs links produced with statistical approaches and the likes and those produced with logical evidence. The former cannot be trusted, unlike the latter, because semantics is one of the cornerstones of knowledge graphs. In the approach, we delete all owl:sameAs links to recompute only those that are logically grounded. Hence, using our ontology OntoSemStats (see Chapter 3), we can determine if the necessary OWL 2 features (see Section 4.3.2.1) are available in the knowledge graph. If so, we infer entities that are the same as the seed. The purpose of I is to increase the number of candidate properties for propagation, as explained later. The next important step, line 7, is to compute all level 1 identity contexts (see Definition 5.3.2). Indeed, for each property p of the seed, there is exactly one identity context (its indiscernibility set is Π = {p}). Later, identity contexts with only one indiscernibility property will be merged to give identity contexts of higher levels. Next, we retrieve similar entities entities p to the seed that have the same value(s) for the given property p. If p is multi-valuated, then entities in entities p are similar to the seed for all values o such that ⟨seed p o⟩. It is worth noting that, when filling entities p , we search only entities that have the same type(s) with the seed. This is because we want to avoid absurd results. It also has the advantage of lowering the number of possible identity contexts to compute. So, in line 17, entities p is the set of all entities similar to the seed for the property p. Moreover, we add to this set the set I of logically identical entities to the seed as explained at the beginning of the paragraph. entities p will next be used to get all properties that could potentially be propagated. Finally, based on entities p , we compute the propagation set Ψ (line 11) as explained in the following section (Section 5.3.3).

The second step (see Algo. 4) is to compute upper-level identity contexts based on those from level 1. The loop (line 3) of the algorithm calculates these upper levels by combining contexts of the same level and stops when it cannot construct new upper-level identity contexts. This calculation is based on an identity lattice operator which is the set SCHEMA COMPLETENESS To find all the frequent patterns FP, we used, as we mentioned above, the FP-growth itemsets mining algorithm. However, according to the size of the transactions vector, the FP-growth algorithm could generate a very large FP set. As a reminder, our objective is to see how a transaction (a description of an entity) is complete against a set of properties.

Thus, we focus on the pattern expression (in terms of items it contains) instead of its support.

For completeness calculation, we need to select a pattern to serve as a reference schema.

This pattern should present the right balance between frequency and expressiveness.

Therefore we use the concept, called "Maximal" frequent patterns, to find this subset.

Thus, to reduce FP, we generate a subset containing only "Maximal" patterns. IRI=" h t t p : // c e d r i c . cnam . f r / i s i d / o n t o l o g i e s / OntoSemStats . owl#" /> <P r e f i x name=" owl " IRI=" h t t p : //www. w3 . o r g /2002/07/ owl#" /> <P r e f i x name=" r d f "

IRI=" h t t p : //www. w3 . o r g /1999/02/22 -r d f -syntax-ns#" /> <P r e f i x name=" xml " IRI=" h t t p : //www. w3 . o r g /XML/1998/ namespace " /> <P r e f i x name=" xsd " IRI=" h t t p : //www. w3 . o r g /2001/XMLSchema#" /> <P r e f i x name=" obda " IRI=" h t t p s : // w3id . o r g / obda / v o c a b u l a r y#" /> <P r e f i x name=" r d f s " IRI=" h t t p : //www. w3 . o r g /2000/01/ r d f -schema#" /> <P r e f i x name=" v o i d " IRI=" h t t p : // r d 

Pierre-Henri PARIS Identity in RDF knowledge graphs: Propagation of properties between contextually identical entities

Abstract:

Due to a large number of knowledge graphs and, more importantly, their even more numerous interconnections using the owl:sameAs property, it has become increasingly evident that this property is often misused. Indeed, the entities linked by the owl:sameAs property must be identical in all possible and imaginable contexts. This is not always the case and leads to a deterioration of data quality. Identity must be considered as context-dependent. We have, therefore, proposed a large-scale study on the presence of semantics in knowledge graphs since specific semantic characteristics allow us to deduce identity links. This study naturally led us to build an ontology allowing us to describe the semantic content of a knowledge graph. We also proposed a interlinking approach based both on the logic allowed by semantic definitions, and on the predominance of certain properties to characterize the identity relationship between two entities. We looked at completeness and proposed an approach to generate a conceptual schema to measure the completeness of an entity. Finally, using our previous work, we proposed an approach based on sentence embedding to compute the properties that can be propagated in a specific context. Hence, the propagation framework allows the expansion of SPARQL queries and, ultimately, to increase the completeness of query results.

Keywords:

Semantic Web, Contextual Identity, Property Propagation, Knowledge Graph, RDF, OWL, Ontology, Instance Matching, Linked Data, Sentence Embedding, Completeness, Conceptual Schema Mining.

Résumé :

En raison du grand nombre de graphes de connaissances et, surtout, de leurs interconnexions encore plus nombreuses à l'aide de la propriété owl:sameAs, il est devenu de plus en plus évident que cette propriété est souvent mal utilisée. En effet, les entités liées par la propriété owl:sameAs doivent être identiques dans tous les contextes possibles et imaginables. Dans les faits, ceci n'est pas toujours le cas et induit une détérioration de la qualité des données. L'identité doit être considérée comme étant dépendante d'un contexte. Nous avons donc proposé une étude à large échelle sur la présence de la sémantique dans les graphes de connaissances, puisque certaines caractéristiques sémantiques permettent justement de déduire des liens d'identités. Cette étude nous a amenés naturellement à construire une ontologie permettant de donner la teneur en sémantique d'un graphe de connaissances. Nous avons aussi proposé une approche de liage de données fondée à la fois sur la logique permise par les définitions sémantiques, et à la fois sur la prédominance de certaines propriétés pour caractériser la relation d'identité entre deux entités. Nous nous sommes aussi intéressés à la complétude et avons proposé une approche permettant de générer un schéma conceptuel afin de mesurer la complétude d'une entité. Pour finir, à l'aide des travaux précédents, nous avons proposé une approche fondée sur les plongements de phrases permettant de calculer les propriétés pouvant être propagées dans un contexte précis. Ceci permet l'expansion de requêtes SPARQL et, in fine, d'augmenter la complétude des résultats de la requête.
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