
HAL Id: tel-03278909
https://theses.hal.science/tel-03278909

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identity in RDF knowledge graphs : propagation of
properties between contextually identical entities

Pierre-Henri Paris

To cite this version:
Pierre-Henri Paris. Identity in RDF knowledge graphs : propagation of properties between contextu-
ally identical entities. Programming Languages [cs.PL]. Sorbonne Université, 2020. English. �NNT :
2020SORUS132�. �tel-03278909�

https://theses.hal.science/tel-03278909
https://hal.archives-ouvertes.fr

Sorbonne Université

École doctorale Informatique, Télécommunications et Électronique (Paris)

Cédric / ISID

Identity in RDF knowledge graphs

Propagation of properties between contextually identical entities

Par Pierre-Henri Paris

Thèse de doctorat d’Informatique

Présentée et soutenue publiquement le 17 juin 2020

THÈSE dirigée par
Mme Si-said Cherfi Samira Professeure des Universités, CNAM
M. Hamdi Fayçal Maître de Conférences, CNAM

RAPPORTEURS
Mme Pernelle Nathalie Professeure des Universités, Université Sorbonne Paris

Nord
M. d’Aquin Mathieu Professeur des Universités, NUI Galway

EXAMINATEURS
Mme Faron-Zucker Catherine Maître de Conférences (HDR), Université Nice Sophia

Antipolis
Mme Zanni-Merk Cecilia Professeure des Universités, INSA Rouen
M. Amann Bernd Professeur des Universités, Sorbonne Université
M. Kotzinos Dimitris Professeur des Universités, ENSEA

Abstract

Due to its strict semantics, the owl:sameAs property is often misused. Nowadays, with

the large number of knowledge graphs published on the Web of Data and, more importantly,

their numerous interconnections using the owl:sameAs property, this situation has become

worrying. Indeed, two entities linked by the owl:sameAs property must be identical in

all possible and imaginable contexts, but this is not always the case. Since identity is

context-dependent, all property-value pairs of the first entity could be wrongly transferred

(propagated) to the other entity, leading to a deterioration of data quality. Therefore, in this

thesis we are particularly interested in how some properties may or may not be propagated

between identical entities in a given context. As a first step, we conducted a large-scale study

on the presence of semantics in knowledge graphs since specific semantic characteristics

allow us to deduce identity links. This study naturally led us to build an ontology to describe

the semantic content of a knowledge graph. Moreover, we observed that some properties

are more important than others to determine the (contextual) identity between two entities.

For this, we proposed an interlinking approach based on the logic of semantic definitions,

and on the predominance of certain properties to characterize the identity relationship

between two entities. Then, we proposed an approach based on sentence embedding to

compute the properties that can be propagated in a context. This propagation approach

allows the expansion of SPARQL queries and, ultimately, the increasing of the completeness

of query results. Finally, we proposed a tool to measure the impact of the propagation on

entity completeness at a schema level. The different approaches proposed in this thesis

have been implemented and evaluated through experiments on real-world data.

3

ABSTRACT

Keywords: Semantic Web, Contextual Identity, Property Propagation, Knowledge

Graph, RDF, OWL, Ontology, Instance Matching, Linked Data, Sentence Embedding,

Completeness, Conceptual Schema Mining.

4

Résumé

En raison de sa sémantique stricte, la propriété owl:sameAs est souvent mal utilisée.

Aujourd’hui, avec le grand nombre de graphes de connaissances publiés sur le Web des

Données et, surtout, leurs nombreuses interconnexions utilisant la propriété owl:sameAs,

cette situation est devenue préoccupante. En effet, deux entités liées par la propriété

owl:sameAs doivent être identiques dans tous les contextes possibles et imaginables, mais

ce n’est pas toujours le cas. L’identité étant dépendante du contexte, toutes les paires

propriété-valeur de la première entité pourraient être transférées (propagées) à tort à l’autre

entité, ce qui entraînerait une détérioration de la qualité des données. C’est pourquoi, dans

cette thèse, nous nous intéressons particulièrement à la manière dont certaines propriétés

peuvent ou non être propagées entre des entités identiques dans un contexte donné. Dans un

premier temps, nous avons mené une étude à grande échelle sur la présence de la sémantique

dans les graphes de connaissance puisque des caractéristiques sémantiques spécifiques nous

permettent de déduire des liens d’identité. Cette étude nous a naturellement conduit à

construire une ontologie pour décrire le contenu sémantique d’un graphe de connaissance.

De plus, nous avons observé que certaines propriétés sont plus importantes que d’autres

pour déterminer l’identité (contextuelle) entre deux entités. Pour cela, nous avons proposé

une approche d’interconnexion basée sur la logique des définitions sémantiques, et sur la

prédominance de certaines propriétés pour caractériser la relation d’identité entre deux

entités. Ensuite, nous avons proposé une approche basée sur les plongements de phrases

pour calculer les propriétés qui peuvent être propagées dans un contexte. Cette approche

de propagation permet l’expansion des requêtes SPARQL et, à terme, l’augmentation de

la complétude des résultats des requêtes. Enfin, nous avons proposé un outil permettant

de mesurer l’impact de la propagation sur la complétude des entités au niveau du schéma.

5

RÉSUMÉ

Les différentes approches proposées dans cette thèse ont été mises en œuvre et évaluées par

des expériences sur des données réelles.

Mots clés : Web Sémantique, Identité Contextuelle, Propagation de Propriétés, Graphe

de Connaissances, RDF, OWL, Ontologie, Appariement d’Instances, Données Liées, Plonge-

ment de Phrases, Complétude, Extraction de Schéma Conceptuel.

6

Acknowledgements

Cette thèse, je ne l’ai pas réalisée tout seul, loin de là. C’est un travail d’équipe et de

nombreuses personnes m’ont aidé avant, pendant et, qui sait, m’aideront peut-être après.

Je tiens donc à commencer mes remerciements par ceux que je dois à mes deux guides

pendant ces presque quatre années, ma directrice de thèse, la Pr Samira Si-said Cherfi,

et mon co-encadrant, le Dr Fayçal Hamdi. Ils ont su aiguiser en moi mes compétences

de chercheurs, m’orienter lorsque j’étais perdu et, je l’espère, faire naître un chercheur

compétent. Je suis certain que nos chemins se croiseront à nouveau parmi les nombreux

projets qui jalonneront encore nos chemins de chercheurs. Samira et Fayçal, merci.

Je tiens à remercier le Dr Nobal Niraula, au contact de qui j’ai beaucoup appris lors

d’un projet bref, mais intense. Mes plus sincères remerciements aussi vont aux Drs Nathalie

Abadie et Carmen Brando. Elles ont été les premières à me guider sur la voie de la

recherche et j’ai pu grâce à elles confirmer mon envie de commencer un doctorat. Mes

sincères remerciements vont aussi à Nadira Lammari qui a su me conseiller et m’a permis

de découvrir mon appétence pour l’enseignement.

J’adresse aussi mes remerciements aux Prs Nathalie Pernelle et Mathieu d’Aquin qui

ont accepté d’être les rapporteurs des fruits de mon travail. Je remercie en outre les

Pr Philippe Rigaux et une seconde fois Nathalie Pernelle pour leurs participation à mes

comités de suivis et leurs remarques constructives. Je suis reconnaissant aux Prs Catherine

Faron-Zucker, Cecilia Zanni-Merk, Bernd Amann et Dimitris Kotzinos d’avoir accepté

d’être membres de mon jury de thèse. C’est un grand honneur que vous me faites.

Mes remerciements vont aussi à toute l’équipe ISID du laboratoire CEDRIC. Non

seulement, car j’ai pu reprendre un master proposé par l’équipe qui m’a amené là où j’en

7

ACKNOWLEDGEMENTS

suis aujourd’hui, mais aussi pour les discussions que nous avons eues et les conseils qu’ils ont

su me prodiguer durant ces années. Je n’oublie pas non plus toute l’équipe administrative,

et notamment Meryem Hara, Sandra Bosse et Alexandre Lescault, qui m’ont apporté leur

soutien indéfectible et amical.

Cela a été une immense joie et un immense honneur aussi de partager le même bureau

que mes loyaux camarades : Dr Noura Herradi, Dr Odette Sangupamba Mwilu, Dr Quentin

Grossetti, Dr Abdelbadie Belmouhcine, Dr Fatma Hannou et Dr Subhi Issa. Merci Noura

pour nos conversations qui m’ont beaucoup manqué après ton départ. Merci Odette pour

ta sagesse, ta douceur et ta bonne humeur. Merci Quentin pour ton ouverture, tes conseils

scientifiques et sur les restaurants, et les quelques morceaux de musique que tu m’auras

fait découvrir. Merci Badie pour ces débats qui n’en étaient pas mais qui en étaient quand

même. Merci Fatma pour toute cette expérience que tu as su partager avec moi en si peu

de temps. J’espère sincèrement que nos chemins professionnels se recroiseront. Enfin, merci

Subhi. Merci à toi pour ton amitié inébranlable, pour avoir supporté mes états d’âme,

pour l’exemple que tu es. Sois toujours certain de ta valeur.

Mille mercis aussi à vous, Ayoub et Khalil, mes très chers padawans. C’est en grande

partie votre influence qui m’a donné le courage de reprendre des études. Nous nous sommes

élevés tous les trois, les uns les autres, grâce à notre rencontre. Merci.

Ces remerciements n’en seraient pas si je ne manifestais pas non plus ma gratitude envers

mes amis fidèles, ma famille de cœur : Anaël, Anne-Flore, Aurel, Aurélie, Brice, Gaëlle,

Hélène, Louise, Lucile, Max, Oliv (ne cherchez pas, vous êtes classés par ordre alphabétique).

Vous avez su me supporter, voire me porter, dans les moments difficiles tout au long de

ma vie. Et nous avons ri, et nous avons partagé, et nous avons vécu et grandi ensemble.

Nos péripéties au collège, au lycée, à l’université, au boulot, dans la cave, en vacances et

ailleurs, resteront à jamais gravées dans ma mémoire. Vous avez été avec moi. Vous êtes

avec moi. Vous serez avec moi.

Ma reconnaissance est aussi immense pour ma famille. Ma petite sœur chérie, Fanny,

regarde le chemin que nous avons parcouru. Je suis immensément content de t’avoir dans

ma vie et si tu es moitié aussi fière de moi que je le suis de toi, alors je suis heureux. Je

remercie mon père pour son soutien et la confiance qu’il a toujours eue en mes capacités.

8

ACKNOWLEDGEMENTS

Je suis heureux que nous nous soyons retrouvés et que tu fasses partie de ma vie. Viviane,

tu le sais, tu es comme une deuxième mère pour moi. Je sais ce que je te dois et j’espère

t’avoir rendue fière. Mameu, même si tu ne peux plus lire ces lignes, je pense à toi tous les

jours et je ne te remercierai jamais assez pour tout l’amour et la force que tu m’as apportée.

Philippe et Annie, je vous remercie d’abord d’avoir donné au monde, et à moi par la même

occasion, la chance de connaître Camille. Je vous remercie aussi de m’avoir accueilli dans

votre famille comme vous l’avez fait. C’est pour moi un honneur et un plaisir de vous

considérer réciproquement comme ma famille. Je tiens aussi à te remercier Marie-Pierre,

déjà de m’avoir embauché en des temps reculés, à une époque durant laquelle je me sentais

perdu. Mais aussi pour tout ce que tu apportes au quotidien à notre petite équipe. Tu es

la meilleure des belles-sœurs et une amie très chère.

Je souhaite aussi remercier celles et ceux qui ne sont plus là. Maman, Papeu, Claude.

Vous avez été chacun à votre façon des piliers de ma vie, des moteurs et des exemples à

suivre. Cette thèse n’aurait pas été possible sans vous et, quoi que j’aie fait ou que je fasse,

vous m’accompagnez. Ma vie, dans toutes ses composantes, est à jamais marquée par votre

empreinte.

Enfin, pour finir sur une note plus joyeuse ces longs remerciements, je termine en beauté

par les deux (pour l’instant ?) joyaux de ma vie, Camille et Sélène. Sélène, tu es la petite

fille la plus formidable de l’univers connu et inconnu. Être ton père est l’expérience la plus

bouleversante et la plus importante de ma vie. J’ai bien peur de ne pouvoir utiliser que des

lieux communs pour décrire ce que je ressens pour toi. Mais, ces lieux communs prennent

tout leur sens à l’instant où l’on devient parent, et tu les comprendras un jour, lorsque tu

seras toi-même passée de l’autre côté du miroir. Nous danserons ensemble pour l’éternité

sur “Vier Stücke für Xylophon” de Carl Orff. Nous chanterons ensemble pour l’éternité nos

chansons connues ou inventées. Je serai toujours là, je serai toujours ton papa qui t’aime.

Camille, j’espère que tu sais, que tu sens, que tu ressens, que tu comprends tout ce que tu

m’as apporté, tout ce que tu m’as donné. Bien sûr, il y a ton soutien pendant cette thèse,

avant aussi, mais il y a surtout tellement plus. Tu as amené la lumière dans ma vie. Toutes

ces épreuves, ces moments de doutes, ces larmes, ces sourires, ces rires, cette complicité,

ces moments de félicités, je les chérirai à jamais comme mon bien le plus précieux. Tu es

9

ACKNOWLEDGEMENTS

l’épine dorsale du chercheur, du père et de l’homme que je suis. Notre équipe est invincible

et immortelle, et donc, cette thèse, c’est à toi que je la dédie.

10

Contents

Résumé en français 19

1 Introduction 25

1.1 Context and objectives . 25

1.2 Contributions . 28

1.3 Thesis outlines . 32

2 Background and State of the art 33

2.1 From documents to knowledge graphs . 33

2.2 Identity from historical and philosophical points of view 37

2.3 Traditional instance matching . 38

2.4 Identity crisis . 39

2.5 Contextual Identity . 40

2.6 Conclusion . 40

3 Knowledge graphs and OWL 2 43

3.1 Introduction . 44

3.2 Related work . 46

3.3 Current state of linked open data . 47

3.3.1 Sources . 48

3.3.2 Information collecting . 49

11

CONTENTS

3.3.3 Overall Results . 51

3.3.4 Results by topic . 53

3.3.5 Results by feature OWL 2 . 54

3.4 Ontology . 58

3.5 Web application . 60

3.6 Conclusion . 63

4 Semantics and predominance of properties 65

4.1 Introduction . 66

4.2 Background and Notation . 68

4.3 Approach . 69

4.3.1 Approach summary . 69

4.3.2 In-depth approach . 70

4.4 Experiments . 78

4.4.1 Results . 78

4.4.2 Discussion . 80

4.5 Conclusion . 82

5 Propagation of properties 83

5.1 Introduction . 84

5.2 Motivation . 87

5.3 Approach . 90

5.3.1 Preliminaries . 90

5.3.2 Computation of contexts . 91

5.3.3 Sentence embedding . 95

5.4 Experimental Results . 99

5.4.1 Implementation and set-up . 99

12

CONTENTS

5.4.2 Quantitative Study . 100

5.4.3 Qualitative Study . 108

5.4.4 Discussion . 112

5.5 Conclusion . 112

6 Effects of Contextual Propagation on Entity Schema Completeness 113

6.1 Introduction . 114

6.2 Related work . 117

6.3 Conceptual schemas derivation . 118

6.3.1 Scope and Completeness Specification 121

6.3.2 Properties Mining . 122

6.3.3 Completeness calculation . 124

6.3.4 Generation of Enriched Conceptual Schemas 125

6.4 Use cases . 128

6.4.1 Class diagram to facilitate data browsing 129

6.4.2 Discovering a subset of MFP . 129

6.4.3 Application to our propagation framework 130

6.5 Conclusion . 130

7 Conclusion and perspectives 133

7.1 Thesis summary . 133

7.2 Future directions . 135

List of publications 137

Bibliography 141

A Annex 157

13

CONTENTS

Index 169

14

List of Tables

3.1 Information collected for each knowledge graph. 50

3.2 Selector definitions. 51

3.3 Basic statistics by selector in terms of number of subjects (first quartile,

median and third quartile) and percentage of datasets using OWL 2 52

3.4 Percentages of subjects without types, and predicates without domains

and/or ranges . 52

3.5 Basic statistics by topic in terms of number of subjects (1st quartile, median

and 3rd quartile) and percentage of knowledge graphs using OWL 2. At

least one OWL 2 feature must be used at least once. 54

3.6 Analysis by types of property. 55

3.7 Analysis by class type (see Def. 3.3.3). 56

3.8 Analysis of OWL 2 properties (see Def. 3.3.3). 57

4.1 Semantics used to find identical entities. 71

4.2 Semantics used to find distinct entities. 72

4.3 Comparison with other approaches . 81

5.1 Identity context contribution to queries. 110

6.1 A sample of triples from DBpedia . 123

6.2 Transactions extracted from triples . 123

15

LIST OF TABLES

6.3 DBpedia number of predicates by classes and thresholds 130

16

List of Figures

1.1 Full framework. The element in green is the input of the approach, the

element in red is the output. Elements in yellow are those that may require

user intervention. The dotted arrows correspond to the part where complete-

ness measurements can be performed. The blue dotted arrows correspond

to the moments when completeness measurements are performed in the flow. 30

2.1 Triple for the sentence “Alain Damasio wrote Les Furtifs”. “Alain Damasio”

is the subject, “writer” is the property and “Les Furtifs” is the object (or

value). 34

2.2 The LOD cloud. 36

3.1 Number of knowledge graphs by OWL features 2. 53

3.2 Web application interface. 60

3.3 Results as a table for DBpedia endpoint. 61

3.4 Results as N-Triples for DBpedia endpoint. 61

3.5 OntoSemStatsWeb workflow. 62

5.1 Excerpt of a knowledge graph about Paris, France. The properties in red

are indiscernible for both the city and the department. The properties in

blue are propagating given the red properties are indiscernible. 88

5.2 Simplified identity lattice from Figure 5.1: each node is an indiscernible set

of properties. Only the red nodes have similar entities. 88

17

LIST OF FIGURES

5.3 Comparison of the average precision by thresholds for all five classes (country,

comics character, political party, literary work, film). The threshold takes

values from 0.5 to 0.95 by steps of 0.05. The baseline is in blue, InferSent in

red, GenSen in yellow and Universal Sentence Encoder in green. 101

5.4 Comparison of the average recall by thresholds for all five classes (country,

comics character, political party, literary work, film). The threshold takes

values from 0.5 to 0.95 by steps of 0.05. The baseline is in blue, InferSent in

red, GenSen in yellow and Universal Sentence Encoder in green. 102

5.5 Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent

and the threshold at 0.9 for the “comics character” class. 102

5.6 Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent

and the threshold at 0.9 for the “country” class. 103

5.7 Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent

and the threshold at 0.9 for the “film” class. 103

5.8 Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent

and the threshold at 0.9 for the “literary work” class. 104

5.9 Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent

and the threshold at 0.9 for the “political party” class. 104

5.10 Qualitative experiment workflow: the elements in red are the inputs and the

element in green is the output. To simplify the diagram, we consider only

one instantiated entity linked to one instantiated property in the query. . . 108

6.1 The LOD-CM Workflow . 120

6.2 LOD-CM main interface . 125

6.3 The Film conceptual schema as a class diagram 127

6.4 Contextual menu for navigation and editing. 128

6.5 The Artist diagram class . 128

6.6 Conceptual schema of the PoliticalParty class in DBpedia. 131

18

Résumé long en français

La littérature scientifique croît depuis des siècles et elle croît de plus en plus vite. Face

à ce constat, dès le milieu des années 40, Vannevar Bush a soulevé les problèmes de l’accès

à ces connaissances et à leur utilisation par les scientifiques. Il a proposé une machine

conceptuelle appelée Memex ([Bush 1945]), qui est une sorte de prothèse mémorielle

permettant le stockage et la consultation de documents et de créer des liens entre eux

afin d’aider l’utilisateur à reprendre sa consultation là où il en était. Ensuite, en 1965,

Ted Nelson ([Nelson 1965]) a complété cette idée en créant les liens hypertextes entre

documents, fichiers, etc. Il s’agit d’un des éléments fondateurs du Web encore à venir.

À la fin des années 80, Tim Berners-Lee [Berners-Lee 1989] propose d’aller plus loin en

distribuant les documents sur des machines différentes, tout en liant ces documents à

l’aide de liens hypertextes. C’est la naissance du Web. Ce dernier repose sur trois briques

fondamentales, à savoir (i) le protocole HTTP pour la communication entre machines ou

clients et serveurs, (ii) le langage HTML pour exposer les données aux clients et enfin

(iii) les URL pour l’identification et l’adressage. Le W3C est l’organisme responsable des

différents standards liés au Web. De nos jours, de très nombreuses données sont publiées

chaque jour sur le Web sous différentes formes. La majorité de ces données est publiée

sous forme de pages HTML et est donc très peu structurée. Des formats tels que XML,

JSON, PDF ou CSV sont aussi régulièrement utilisés, notamment par les organisations,

permettant ainsi aux données d’être structurées ou semi structurées.

Le Web sémantique [Berners-Lee, Hendler, Lassila, et al. 2001] est une extension du

Web proposée par Tim Berners-Lee qui permet d’aller un cran au-delà dans la structuration

des données. Cette extension repose sur une pile technologique gérée par le W3C et qui

permet d’exprimer les données et leur schéma sous forme de graphe. C’est ce qu’on appelle

19

Résumé long en français

le modèle de graphe RDF. Il est composé de trois éléments de bases que sont (i) les

ressources (IRI), (ii) les littéraux et (iii) les noeuds anonymes (quantification existentielle).

Les ressources en sont l’élément principal puisqu’elles permettent d’identifier tout objet

ou concept du monde réel. Elles permettent de décrire tout et n’importe quoi sous forme

de triplets dont le sujet, c’est-à-dire le premier élément, est une entité que l’on souhaite

décrire. Cette entité est identifiée par son IRI. Le second élément du triplet est lui-même

une ressource correspondant à une caractéristique de la chose décrite, comme, par exemple,

une adresse, un nom ou une latitude. C’est la propriété du triplet. Enfin, le troisième

élément du triplet est l’objet, qui représente la valeur de la propriété. Cet objet est au

choix une ressource, permettant ainsi de lier deux ressources entre elles, ou un littéral,

c’est-à-dire une forme lexicale ayant un type tel qu’un entier ou une date exprimée à l’aide

d’un IRI. De plus, par l’intermédiaire des langages RDFS et OWL 2, il est possible de

décrire le schéma de ces données, c’est-à-dire les propriétés utilisées dans les triplets, ainsi

que les classes (les types) que peuvent avoir les ressources. Certaines classes et propriétés

peuvent avoir une sémantique permettant l’inférence de nouvelles données.

Le Web Sémantique favorise donc la réutilisation et le partage de ces données, ainsi que

leur traitement automatique par des agents informatiques. Les données représentées de la

sorte ont un sens et permettent, en théorie, qu’elles soient interprétées consensuellement

par tous les acteurs (producteurs et consommateurs). En 2012, Google a communiqué sur

son “Knowledge Graph”1, ainsi les graphes RDF sont depuis parfois appelés graphes de

connaissances.

Les données contenues dans ces graphes sont liées entre elles, telles que l’a proposé Tim

Berners-Lee avec ses quatre principes des données liées ouvertes :

1. Utiliser des URI pour nommer les choses.

2. Utiliser les URI HTTP pour que l’on puisse déréférencer ces noms.

3. Fournir des informations utiles lorsque l’URI est déréférencé.

4. Inclure des liens vers d’autres URI afin de permettre la découverte de nouvelles
1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html -

Accédé le: 2019-10-31

20

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

Résumé long en français

choses.

Une manière de lier deux entités est d’utiliser un lien owl:sameAs, c’est-à-dire de spécifier

de manière explicite que ces deux entités représentent en réalité les deux mêmes objets

du monde réel, quelles sont identiques. La notion d’identité est une notion étudiée depuis

l’antiquité avec, par exemple, le principe d’identité qui stipule que toute chose est identique

à elle même. Le sujet a été longuement débattu, puisque l’on peut se poser, par exemple,

la question de l’identité si le sujet évolue au cours du temps, ou si certaines de ses parties

sont remplacées. Leibniz a proposé une définition fondée sur les mathématiques. Ce sont

les principes d’identité des indiscernables (si deux entités ont les mêmes propriétés, alors

elles sont identiques) et sa réciproque, le principe d’indiscernabilité des identiques (si deux

entités sont identiques alors elles ont les mêmes propriétés). La propriété owl:sameAs a été

définie en utilisant la proposition de Leibniz concernant l’identité. Ainsi, la sémantique

de owl:sameAs est très stricte, puisque, pour être identiques, deux entités doivent avoir

les mêmes couples de propriété-valeur dans tous les contextes possibles et imaginables.

Cette conception de l’identité a été mainte fois attaquée ou débattue et n’est donc pas

sans poser de problèmes dans notre cadre du Web sémantique. En effet, de nombreux

cas d’utilisations de cette propriété sont discutables, puisque la relation d’identité est

extrêmement dépendante du contexte.

owl:sameAs peut aussi être utilisée pour lier les entités identiques au sein d’un même

graphe ou pour lier plusieurs graphes de connaissances, favorisant ainsi la réutilisation de

ces entités et de leurs descriptions et permettant de découvrir de nouvelles informations.

En effet, un couple de propriété-valeur décrivant une entité peut être réutilisé par n’importe

quelle autre entité qui lui est identique. Ceci est l’un des points forts de cette propriété,

puisque owl:sameAs permet d’augmenter la complétude d’une entité, c’est-à-dire

d’augmenter les connaissances que l’on a à son sujet. La propriété est par définition

transitive, il est ainsi possible d’avoir plusieurs entités identiques reliées par des propriétés

owl:sameAs et formant une chaîne d’entités identiques. Ainsi, sur une chaîne d’entités liées

par owl:sameAs, tout couple propriété-valeur peut être utilisé sur n’importe quelle entité

de cette chaîne. C’est ce que l’on nomme la propagation de propriétés. Mais, de

ce fait, un lien qui peut être parfois vrai et parfois faux risque de propager des informations

21

Résumé long en français

fausses. Cette propagation de données fausses le long d’une chaîne de propriétés owl:sameAs

diminue la qualité des données et peut avoir des conséquences dramatiques selon l’utilisation

qui est faite de ces données. Par exemple, dans le domaine médical, une mauvaise prise

de décision fondée sur des données qui ne sont pas justes peut entraîner un préjudice

important pour les patients.

Afin de pouvoir identifier les différents contextes dans lesquels un lien d’identité peut

être explicité entre deux entités, nous avons observé les différents travaux déjà effectués sur

ce sujet et avons réalisé que la propagation des propriétés n’était pas ou peu traitées, malgré

les propositions de plusieurs définitions d’identité contextuelles. En première approximation

avant d’étudier plus en profondeur sa définition, nous pouvons considérer qu’un contexte

d’identité est un ensemble de propriétés. Toutes les entités identiques dans ce contexte ont

les mêmes valeurs pour les propriétés de cet ensemble.

Dans cette thèse, nous nous intéressons donc particulièrement à la manière dont certaines

propriétés peuvent être propagées ou pas entre des entités identiques dans un contexte

donné. En effet, tout comme la propriété owl:sameAs, pour être utile, un lien d’identité

contextuelle doit permettre la propagation de certains couples de propriété-

valeur au sein des entités identiques dans le contexte donné. Par exemple, si l’on

considère deux médicaments dont le principe actif est le même, mais étant produits par

deux entreprises différentes, alors ces médicaments sont identiques dans le contexte médical,

mais différents dans le contexte commercial. Dans le contexte médical, on peut s’attendre

à ce que les propriétés décrivant les effets indésirables soient les mêmes pour les deux, ou

que l’on puisse compléter les effets de l’un avec ceux de l’autre.

Nos questions de recherches principales sont donc :

• Comment définir une identité contextuelle entre entités appartenant à un graphe de

connaissances RDF ?

• Comment trouver les propriétés qui peuvent être propagées entre les entités identiques

dans un contexte donné ?

Dans un premier temps, nous avons exploré plusieurs pistes pour permettre à un

agent (humain ou machine) de connaître (semi-)automatiquement quelles propriétés sont

22

Résumé long en français

propageables dans un contexte d’identité donné. La première piste consiste à utiliser la

sémantique fournie par les ontologies, exprimée en OWL 2 ou RDFS, qui décrivent les

propriétés et les classes d’un graphe de connaissance. En effet, en raison du manque de

sémantique observé sur quelques graphes, nous avons, dans un premier temps, mené une

étude à large échelle sur la présence et la qualité de l’utilisation d’OWL 2 dans les graphes de

connaissances RDF. Nous avons, dans un second temps, proposé une ontologie permettant

aux fournisseurs de données de préciser quelles sont les parties d’OWL 2 utilisées dans

leurs graphes. Ceci a pour but de faciliter l’exploration des graphes et surtout de permettre

de choisir l’outil approprié pour une tâche donnée en fonction des fonctionnalités OWL

2 qui sont présentes dans le graphe donné. En effet, certains outils peuvent nécessiter la

présence de certaines fonctionnalités OWL 2, telles que des propriétés fonctionnelles, pour

pouvoir produire les résultats attendus par l’utilisateur. Dans le cas qui nous intéresse, une

instance de cette ontologie peut nous aider à déterminer si l’utilisation de la sémantique

peut être envisagée pour aider à déterminer les propriétés propageables.

Nous avons ensuite étudié une piste fondée sur l’importance des propriétés et de leurs

valeurs dans un graphe donné. Il nous est apparu que certaines propriétés peuvent avoir

plus ou moins d’importances pour déterminer si deux entités sont identiques ou pas. Ainsi,

en fonction de l’utilisation des propriétés dans un graphe de connaissances, il est possible

de déterminer le poids que peut avoir une propriété ou encore le pouvoir discriminant d’un

couple propriété-valeur. Ces éléments aident à décider si deux entités sont les mêmes ou

pas. Cette approche utilise aussi la sémantique en premier ressort pour tenter de trouver

les liens d’identités. En effet, la présence de propriétés fonctionnelles, par exemple, peut

aider à trouver de tels liens entre entités.

Pour finir, nous avons proposé une approche qui permet de trouver semi-automatiquement

les propriétés propageables entre entités identiques dans un contexte donné. Nous reprenons

la définition d’un contexte d’identité proposée par [Idrissou, Hoekstra, van Harmelen, Khalili,

and van den Besselaar 2017] puisqu’elle offre un cadre pour la propagation des propriétés

pour un ensemble de propriétés indiscernables donné. Notre approche utilise une technique

de plongement de phrases. Chaque propriété ayant une description longue en langage

naturel peut être représentée par un vecteur. Il est ainsi possible de calculer un vecteur

23

Résumé long en français

représentant un ensemble de propriétés indiscernables d’une part, et, d’autre part, de

calculer la distance entre ce vecteur et ceux des propriétés candidates à la propagation.

Nous postulons en effet que plus la description d’une propriété est proche des descriptions

de l’ensemble d’indiscernabilité et plus cette propriété a de chances d’être propageable.

Pour trouver les contextes d’une entité, nous proposons un algorithme qui calcule le treillis

qui représente l’ensemble des contextes d’identité de cette entité. De plus, notre approche

de propagation utilise notre ontologie sur les statistiques sémantiques et notre approche

sur l’importance des propriétés lors de plusieurs étapes de l’algorithme.

Afin de pouvoir mesurer les effets sur la complétude, au niveau du schéma, de la

propagation des propriétés dans un contexte d’identité donné, nous avons besoin d’un

outil permettant de calculer cette complétude. En effet, un des objectifs de l’établissement

de l’identité entre deux entités est de pouvoir réutiliser de l’information, c’est-à-dire

d’augmenter la complétude d’une entité à l’aide d’une ou plusieurs autres entités. Cette

complétude peut avoir deux formes : (i) au niveau du schéma de l’entité, c’est-à-dire du

nombre de propriétés différentes qu’elle utilise, et (ii) au niveau de ses données, c’est-à-dire

du nombre de valeurs que peut avoir une propriété. La mesure de la complétude des

données est très difficile puisqu’il est presque impossible d’établir un étalon d’or pour les

données dans le domaine du Web sémantique étant donné qu’il est régi par l’hypothèse du

monde ouvert [Darari, Nutt, Pirrò, and Razniewski 2013]. Par conséquent, dans le cas

présent, nous nous intéressons uniquement à la complétude du schéma. Afin de calculer

cette complétude, il est nécessaire d’avoir un schéma de référence correspondant à la nature

de l’entité, c’est-à-dire sa classe (l’objet de la propriété rdf:type). À l’aide de ce schéma, il

est possible de mesurer la complétude d’une entité avant et après liage avec d’autres entités

(contextuellement) identiques. Ainsi, nous présentons une approche et un démonstrateur

(LOD-CM) permettant de trouver le schéma conceptuel d’une classe donnée. Bien entendu,

le contexte et les propriétés propageables doivent être un sous-ensemble des propriétés

utilisées dans le schéma. En effet, si les propriétés propageables n’apparaissent pas dans le

schéma conceptuel, il ne sera pas possible de mesurer l’évolution de la complétude sur ces

propriétés.

24

Chapter 1

Introduction

1.1 Context and objectives

The scientific literature has been growing for centuries, and it is growing faster and

faster. Faced with this observation, as early as the mid-1940s, Vannevar Bush raised the

problems of access to this knowledge and its use by scientists. He proposed a conceptual

machine called Memex ([Bush 1945]), which is a kind of memory prosthesis allowing

the storage and consultation of documents and creating links between them to help the

user to resume her reading where she was. Then, in 1965, Ted Nelson ([Nelson 1965])

complemented this idea by creating hyperlinks between documents, files, or media. Nelson’s

idea is one of the founding elements of the Web yet to come. At the end of the 1980s, Tim

Berners-Lee ([Berners-Lee 1989]) proposed to go further by distributing documents on

different machines while linking them using hyperlinks. It is the birth of the Web. The

latter is based on three fundamental building parts:

1. the HTTP protocol for communication between machines or clients and servers,

2. the HTML language for exposing data to clients,

3. the URLs for identification and addressing.

The W3C is the organization responsible for the various standards related to the Web.

Nowadays, a great deal of data is published daily on the Web in different forms. The

majority of this data is published in the form of HTML pages and is, therefore, very

25

CHAPTER 1. INTRODUCTION

unstructured. Formats such as XML, JSON, PDF, or CSV are also commonly used,

especially by organizations, allowing data to be structured or semi-structured.

The Semantic Web ([Berners-Lee, Hendler, Lassila, et al. 2001]) is an extension of

the Web proposed by Tim Berners-Lee that takes data structuring a step further. This

extension is based on a technology stack managed by the W3C. The stack allows the data

and its schema to be expressed in the form of a graph called the RDF graph model. It

is composed of three fundamental elements, which are (i) the resources (IRI), (ii) the

literals, and (iii) the anonymous nodes (existential quantification). Resources are the

main element since they enable the identification of any real-world object or concept. One

can describe anything and everything in the form of triples whose subject, i.e., the first

element, is an entity identified by an IRI. The second element of the triple is a resource

that characterizes the thing being described, such as an address, a name, or a latitude. It

is called the property of the triple. Finally, the third element of the triple is the object,

which represents the value of the property. This object is either a resource, allowing two

resources to be linked, or a literal, i.e., a lexical form having a type such as an integer or a

date expressed using an IRI. Moreover, through the RDFS and OWL 2 languages, it is

possible to describe the schema of this data, i.e., the properties used in the triples, as well

as the classes (types) that the resources can have. Some classes and properties may have

semantics allowing the inference of new data.

The Semantic Web promotes the reuse and sharing of this data, as well as its automatic

processing by computer agents. The data represented in this way make sense and allow, in

theory, for consensual interpretation by all actors (producers and consumers). Since 2012,

and Google’s communication on this subject1, RDF graphs are sometimes called knowledge

graphs.

By their nature, the data contained in these graphs are intended to be linked, as

proposed by Tim Berners-Lee with his four principles of Linked Open Data:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.
1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html -

Accessed: 2019-10-31

26

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

CHAPTER 1. INTRODUCTION

3. When someone looks up a URI, provide useful information.

4. Include links to other URIs so that they can discover more things.

One way to link two entities is to use a owl:sameAs link, i.e., to explicitly specify that

these two entities represent the same two real-world objects, which are identical. The

notion of identity has been studied since antiquity with, for example, the principle of

identity, which states that everything is identical to itself. There has been much discussion

on the subject. For example, what happens if the subject evolves, or if some of its parts

are replaced. Leibniz proposed a definition based on mathematics called the principle of

identity of indiscernibles (if two entities have the same properties, then they are identical)

and its reciprocal, the principle of indiscernibility of identicals (if two entities are identical,

then they have the same properties). The owl:sameAs property was defined using Leibniz’s

proposal for identity. Thus, the semantics of owl:sameAs is strict, since, to be identical, two

entities must have the same property-value pairs in all possible and imaginable contexts.

This conception of identity has been attacked or debated many times and is therefore not

without problems in the Semantic Web framework. Indeed, many cases of uses of this

property are questionable, since the identity relationship is extremely context-dependent.

owl:sameAs is used to link identical entities within the same graph or to link several

knowledge graphs, thus promoting the reuse of these entities and their descriptions and

allowing the discovery of new information. Indeed, a property-value pair describing an

entity can be reused by any other entity that is identical to it. This reuse is one of the

strong points of this property since owl:sameAs makes it possible to increase the

completeness of an entity, i.e., to increase the knowledge that one has about it. The

property is, by definition, transitive. It is thus possible to have several identical entities

linked by owl:sameAs properties and forming a chain of identical entities. Thus, on a chain

of entities linked by owl:sameAs, any property-value pair can be used on any entity of this

chain. This mechanism is called property propagation. However, as a result, a link

that may sometimes be true and sometimes false risks spreading false information. The

propagation of false data along a chain of owl:sameAs properties decreases the quality of

the data. The quality drop can have dramatic consequences depending on data usage. For

27

CHAPTER 1. INTRODUCTION

example, in the medical field, poor decision-making based on incorrect data can result in

significant harm to patients.

To be able to identify the different contexts in which an identity link can be explained

between two entities, we analyzed the different works already done on this subject. We

realized that the propagation of properties was not or hardly dealt with, despite the proposals

of several contextual identity definitions. As a first approximation before studying its

definition in more depth, we can consider that an identity context is a set of properties.

All identical entities in this context have the same values for the properties of this set.

In this thesis, we are therefore particularly interested in how some properties may

or may not be propagated between identical entities in a given context. Indeed, just

like the property owl:sameAs, to be useful, a contextual identity link must allow

the propagation of certain property-value pairs within identical entities in the

given context. For example, if one considers two drugs with the same active ingredient,

but produced by two different companies, then these drugs will be identical in the medical

context, but different in the commercial context. In the medical context, it can be expected

that the properties describing the adverse effects will be the same for both, or that the

effects of one can be complemented with those of the other.

Our primary research questions are as follows:

• How to define a contextual identity between entities belonging to an RDF knowledge

graph?

• How to find the properties that can be propagated between identical entities in a

given context?

1.2 Contributions

In a first step, we explored several ways to allow an agent (human or machine) to know

(semi-)automatically which properties are propagable in a given identity context. The

first approach consists in using semantics provided by ontologies, expressed in OWL 2 or

RDFS, which describe the properties and classes of a knowledge graph. Indeed, due to the

28

CHAPTER 1. INTRODUCTION

lack of semantics observed on some graphs, we first conducted a large-scale study on the

presence and quality of the use of OWL 2 in RDF knowledge graphs. We then proposed an

ontology allowing data providers to specify which parts of OWL 2 are used in their graphs.

The ontology is intended to facilitate the exploration of graphs and especially to allow

the choice of the appropriate tool for a given task according to the OWL 2 functionalities

present in the given graph. Indeed, some tools may require the presence of certain OWL

2 functionalities, such as functional properties, to produce the results expected by the

user. In the case at hand, an instance of this ontology can help to determine if the use of

semantics can be considered to provide propagable properties.

We then investigated an idea based on the importance of properties and their values in

a given graph. It appeared to us that some properties might be more or less significant

in determining whether or not two entities are identical. Thus, depending on the use of

properties in a knowledge graph, it is possible to determine the weight that a property can

have or the discriminating power of a property-value pair. These elements help to decide if

two entities are the same or not. This approach also uses semantics as a first step to try to

find identity links. Indeed, the presence of functional properties, for example, can help to

find such links between entities.

Afterwards, we proposed an approach that allows finding semi-automatically the

properties that can be propagated between identical entities in a given context. We use the

definition of an identity context proposed by [Idrissou, Hoekstra, van Harmelen, Khalili,

and van den Besselaar 2017] since it provides a framework for property propagation for a

given set of indiscernible properties. Our approach uses a sentence embedding technique

where a vector represents each property having a long description in natural language. It

is thus possible to compute a vector representing a set of indiscernible properties, on the

one hand, and, on the other hand, to compute the distance between this vector and those

of the properties that are candidates for propagation. We postulate that the closer the

description of a property is to the descriptions of the indiscernible set, the more likely it is

propagable. To find the contexts of an entity, we propose an algorithm that computes the

lattice that represents the set of identity contexts of this entity. The proposed approach

relies on techniques of our previous work on using semantics as a first technique and the

29

CHAPTER 1. INTRODUCTION

Figure 1.1: Full framework. The element in green is the input of the approach, the element
in red is the output. Elements in yellow are those that may require user intervention. The
dotted arrows correspond to the part where completeness measurements can be performed.
The blue dotted arrows correspond to the moments when completeness measurements are
performed in the flow.

importance of properties to weight vector calculations (what we called the weight of a

property).

Finally, one of the objectives of establishing the identity between two entities is to be

able to reuse information, i.e., to increase the completeness of an entity using one or more

other entities. This completeness can take two forms: (i) at the schema level of the entity,

i.e., the number of different properties it uses, and (ii) at the data level, i.e., the number

of values a property can have. Measuring data completeness is very difficult since it is

almost impossible to establish a gold standard for data in the Semantic Web domain since

it is governed by the open-world assumption ([Darari, Nutt, Pirrò, and Razniewski 2013]).

Hence, we measure the effects on the completeness, at the schema level, of the propagation

of properties in a given identity context. In this case, it is necessary to have a reference

schema corresponding to the nature of the entity to compute its completeness, i.e., its

class (the object of the property rdf:type). With an entity schema, it is possible to measure

the completeness of the entity before and after binding with other (contextually) identical

entities. Thus, we present an approach and a demonstrator (LOD-CM), allowing us to

find the conceptual schema of a given class. Of course, the context and the propagable

30

CHAPTER 1. INTRODUCTION

properties must be a subset of the properties used in the schema. Indeed, if the propagable

properties do not appear in the conceptual schema, it will not be possible to measure the

evolution of completeness on these properties.

The final objective of this thesis is to propose and implement the framework illustrated

in Figure 1.1 and described below.

1. The user provides a SPARQL query that must be executed on the knowledge graph

KG, and it must contain at least one instantiated variable. The following steps are

repeated for each instantiated variable in the query. For simplicity, we will take the

case where the query has only one instantiated variable called e.

2. The entity e will serve as the seed for the lattice of indiscernible properties, i.e., that

each element of the lattice is a set of indiscernible properties Pii.

3. Computation of entities identical to the seed e from a logical (or semantic) point of

view to enrich the similar entities of each indiscernibility set.

4. The set of PropQuerye properties related to the seed in the query is extracted. These

are the properties that will allow one to select the appropriate context later on.

5. For each Πi, we calculate its corresponding set of propagable properties.

6. The user chooses, if necessary, a conceptual diagram among those proposed to be able

to calculate the completeness of the entity. This schema must include a maximum of

PropQuerye properties.

7. The user chooses, if necessary, an identity context whose propagable properties

contain a maximum of PropQuerye properties.

8. Calculating the completeness C1 of e.

9. Propagation of properties on e.

10. Calculating the completeness C2 of e.

11. Expansion of the query.

31

CHAPTER 1. INTRODUCTION

1.3 Thesis outlines

The thesis is structured as follows:

Chapter 2 introduces the necessary background knowledge and discusses related works.

In the first section of this chapter, we explain how knowledge graphs have emerged as

a mature way to expose structured data and the vocabulary we use in this thesis. In

Section 2.2, we expose the historical and philosophical roots of the problem we tackle in

this work. Then, we describe, in Section 2.3, traditional ways to handle identity with

knowledge graphs. Finally, before concluding, we relate propositions to handle identity in

a contextual way.

Chapter 3 proposes a large-scale study about the presence of semantics in knowledge

graphs. The purpose of the study is to get a clear picture of the current semantic landscape

since semantics is a cornerstone of our work. Then, we describe an ontology, called

OntoSemStats, that captures semantics in a given knowledge graph to facilitate knowledge

discovery.

Chapter 4 describes an approach to find identical entities based on semantics and

predominance of certain properties. The works described in this chapter are a key element

in the main framework we present in Chapter 5.

Chapter 5 describes our main contribution to the propagation of properties for a given

indiscernibility set.

Chapter 6 presents our approach to compute conceptual schemas of a class in a knowledge

graph. The work is based on a property extraction technique to discover, with a given class,

the properties and related classes that can make up a schema. Moreover, this conceptual

schema allows computing entity completeness.

Chapter 7 summarizes our contributions and gives some directions for future work.

32

Chapter 2

Background and State of the art

Firstly, in this chapter, we will clarify the different terms used in this thesis and provide

some background information. Secondly, in Section 2.2, we will present the subject of

identity from classical points of view, to provide some broader perspectives to our work. In

Section 2.3, we present traditional identity management in the Semantic Web community,

i.e., instance matching approaches. In Section 2.4, we will present some work that has

spotlighted the problems that identity, based on Leibniz’s definition, brings to the Semantic

Web community. Finally, in Section 2.5, we will present solutions that have been proposed

so far.

2.1 From documents to knowledge graphs

In 2012, Google1 popularized the “knowledge graph” term. While many definitions

have been proposed, so far, none of them has been unanimously adopted. [Ehrlinger and

Wöß 2016] propose a survey of the most common definitions. Nevertheless, all definitions

agreed on several parts: (i) it must be a graph (ii) that describe entities from the real

world or not, and (iii) the relations between those entities. While Google has used the

“knowledge graph” term since 2012, those graphs have a longer history and are mostly the

results of Tim Berners-Lee’s Semantic Web.

Indeed, when Tim Berners-Lee invented the Web in 1989-90 (see [Berners-Lee 1989]),

1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html -
Accessed: 2019-10-31

33

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Alain Damasio Les Furtifswriter

Figure 2.1: Triple for the sentence “Alain Damasio wrote Les Furtifs”. “Alain Damasio” is
the subject, “writer” is the property and “Les Furtifs” is the object (or value).

he kept in mind that the Web could be more than simple documents. He envisioned

a Web that could be interpreted by an automated agent because of several key ideas.

In [Berners-Lee, Hendler, Lassila, et al. 2001], he proposed the Semantic Web.

The very basis of this construct is the IRI (Internationalized Resource Identifier) that

extend URIs (Uniform Resource Identifier) by expanding permitted characters beyond

ASCII characters. While this is not mandatory, most of the time IRIs are HTTP IRIs,

i.e., they start by “http://” and are dereferenceable. A dereferenceable IRI might be used

to perform an HTTP request to obtain a representation of whatever the IRI identifies. As a

result, this first atom of the Semantic Web uses the HTTP protocol and is used to identify

a resource, i.e., an entity. For example, to identify an entity such as my car, your cat, the

Trojan War, or solipsism, one can use an (HTTP) IRI. Despite some small differences, in the

remainder of this work, a resource, an entity, or an instance are considered as synonymous

terms.

The second piece of the Semantic Web is the RDF data model. It is a specification of

the W3C that allows making statements called triples since they are composed of three

parts (see Figure 2.1): (i) the subject, (ii) the predicate, and (iii) the object.

The subject must be either an IRI or a blank node (an anonymous resource). A

predicate must be an IRI resource. It is a property or a characteristic of the subject. The

object (the value of the triple) is either a resource, a blank node, or a literal, i.e., a lexical

form having a type such as an integer or a date expressed using an IRI. If the object is

an IRI or a blank node, it can be the subject of another statement, which is why several

triples form a graph.

RDFS and OWL are two languages allowing the definition of classes (or types or

concepts) and properties that are grouped in ontologies. Indeed, this is one of the most

important aspects of the Semantic Web, since, unlike traditional databases, one can define

34

CHAPTER 2. BACKGROUND AND STATE OF THE ART

very fine-grained semantics based on description logics (see [Horrocks, Kutz, and Sattler

2006]). Because of semantics, one can infer new knowledge from the original triples.

Finally, SPARQL, for SPARQL Protocol and RDF Query Language, is a query language

allowing retrieving and manipulating RDF data. Listing 2.1 is a straightforward example

of a SPARQL query to retrieve all theaters from Paris, France. The syntax of SPARQL

queries is based on Turtle which is one of the possible serialization of an RDF graph.

SELECT DISTINCT ? thea t e r WHERE
{

? thea t e r : l o ca t ed In : CotyOfParis .
}

Listing 2.1: SPARQL query retrieving all theaters located in Paris, France.

Hence, in the present work, we mean RDF-based knowledge graph when writing using

the “knowledge graph”, i.e., a labeled oriented multi-graph with resources that are IRIs.

Linked (Open) Data is another important part of the Semantic Web. Indeed, Linked

Data is the realization of the Semantic Web, as depicted in Figure 2.2, where each node

represents a knowledge graph. The LOD Cloud2 service exposes more than a thousand

graphs.

Tim Berners-Lee defined four principles to expose how Linked Data should be published:

1. Use Uniform Resource Identifiers (URIs) as names for things.

2. Use HTTP URIs so that people can look up those names on the Web.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL [see in Section 3 below]).

4. Include links to other URIs, so that they can discover more things.

He also proposed a five-tiered deployment program to assess the degree of compliance:

1. Available on the Web (whatever format) under an open license.

2. Published as structured data (e.g., Excel instead of an image scan of a table).
2https://lod-cloud.net/

35

https://lod-cloud.net/

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 2.2: The LOD cloud.

36

CHAPTER 2. BACKGROUND AND STATE OF THE ART

3. Use of a non-proprietary open format (e.g., CSV instead of Excel).

4. Use of URIs to denote things, so that people can point at them.

5. Linking of your data to other data to provide context.

In the following sections, we will clarify the context of this work and delve deeper into

the problematic notion of identity.

2.2 Identity from historical and philosophical points of view

Philosophers were interested in identity since at least classical antiquity, e.g., with the

Theseus paradox. In this thought experiment, one can imagine a ship composed of parts

that are replaced over time. Is the ship still the same when all its parts have been changed?

There is no absolute answer to this question, but several possible candidates. For example,

one possibility is to radically consider that there is no identity over time, which is not ideal

in a database context. Another possibility is to consider a gradual loss of identity.

In the same period, the law of identity, one of the three laws of thought, states that

everything is identical to itself (A = A).

Later, Leibniz proposed the identity of indiscernibles:

∀x, ∀y(∀p,∀o, (⟨x, p, o⟩ and ⟨y, p, o⟩)→ x = y) (2.1)

And its converse, the indiscernibility of identicals:

∀x,∀y(x = y → ∀p,∀o, (⟨x, p, o⟩ → ⟨y, p, o⟩)) (2.2)

Whereas there is almost no discussion about the indiscernibility of identicals, the identity

of indiscernibles is more controversial, as illustrated in the previous paragraph with several

paradoxes that questions its truthfulness.

Nevertheless, the World Wide Web Consortium (W3C3), the organization responsible for

the Web standards, has based on Leibniz’s laws the definition of the property owl:sameAs.

Nowadays, the identity problem remains one of the most important for industry working

with knowledge graphs ([Noy, Gao, Jain, Narayanan, Patterson, and Taylor 2019]).
3https://www.w3.org/

37

https://www.w3.org/

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.3 Traditional instance matching

There are several ways to handle the identity problem. The first one is the traditional

way, which goal is to retrieve (create) a maximum of right links. A second way is to find

wrong identity links among existing ones. By using either semantics or statistics, it is

possible to find links that may be erroneous.

The term instance matching refers to the problem of finding equivalent resources. The

goal is to produce links between a source dataset and a target dataset. For each couple of

entities, a similarity score is produced. If the score is above some (user-defined) threshold,

the link is validated. Frameworks like Silk ([Volz, Bizer, Gaedke, and Kobilarov 2009]) or

KnoFuss ([Nikolov, Uren, Motta, and Roeck 2008]) allow creating links between datasets

after a configuration step. The Ontology Alignment Evaluation Initiative4 (OAEI) proposes

each year a contest to interlink knowledge graphs. We now present some of this work.

[Khiat and Mackeprang 2017] proposed I-Match that computes the similarity between

normalized strings thanks to NLP. [Achichi, Bellahsene, and Todorov 2017] proposed

Legato, a multistage instance matching system that first creates vectors from entities by

using NLP techniques and then compute the correlation between vectors, and finally use a

clustering algorithm to eliminate some false positives candidates. In [Jiménez-Ruiz and

Grau 2011], the authors proposed an instance matching system that is looping between

link discovery and repairing, thus allowing reducing the number of wrong candidates. They

used an external lexicon (like WordNet) to increase the matching capabilities. [Ferrara,

Nikolov, and Scharffe 2011] have published a comprehensive survey and, more recently,

[Achichi, Bellahsene, and Todorov 2016] and [Nentwig, Hartung, Ngomo, and Rahm 2017]

have proposed further surveys.

Identity link assessment approaches consist of checking if an existing link is true or false.

Methods from those approaches may also be used to find links. [Guéret, Groth, Stadler,

and Lehmann 2012] proposed to use standard network measures to assess existing links.

[de Melo 2013] proposed to use the unique name assumption within datasets (i.e., an

instance has one name within a dataset) to spot sets of entities linked by owl:sameAs where

4http://oaei.ontologymatching.org/

38

http://oaei.ontologymatching.org/

CHAPTER 2. BACKGROUND AND STATE OF THE ART

at least one link may be wrong. Next, a linear programming algorithm is used to check if

the link is wrong. In [Papaleo, Pernelle, Saïs, and Dumont 2014], the authors proposed

a logical approach that tries to detect logical conflicts by using semantics features like

functional properties in small sub-graphs containing the two involved entities to assess.

Hence, this approach strongly relies on semantics. [Paulheim 2014] proposed to use data

mining methods. Links are represented in an embedded space. Then an outlier detection

algorithm is used to detect links that may be wrong. [Valdestilhas, Soru, and Ngomo

2017] use a combination of semantics and graph partitioning algorithms to detect erroneous

transitive properties. [Raad, Beek, van Harmelen, Pernelle, and Saïs 2018] proposed to

use community detection on identity links network to detect erroneous links. Also, using

network structure, [Idrissou, van Harmelen, and van den Besselaar 2018] proposed to

combine several network metrics to find wrong links across multiple datasets.

2.4 Identity crisis

As described in [Horrocks, Kutz, and Sattler 2006], owl:sameAs purpose is to link two

entities that are strictly the same, i.e., both entities are identical in every possible context.

owl:sameAs has strict semantics allowing us to infer new information. Many existing tools

produce such owl:sameAs links, as explained in the previous section. However, none of

these approaches consider contextual identity links. Their purpose is to discover identity

links that allegedly always hold. This is, from a philosophical point of view, hard to obtain,

as explained in Section 2.2.

As early as 2002, [Guarino and Welty 2002] raised the issue of identity for ontologies.

Especially when time is involved, stating that two things are identical became a philosophical

problem. The authors proposed to involve only essential properties, i.e., a property that

cannot change in identity. Indeed, as stated in [Halpin, Hayes, McCusker, McGuinness, and

Thompson 2010] or [Ding, Shinavier, Finin, and McGuinness 2010], because of the strict

semantic of owl:sameAs, the burden of data publishers might be too heavy. owl:sameAs

links are not often adequately used. Some might be simply wrong, and, more insidiously,

some might be context-dependent, i.e., the owl:sameAs link does not hold in every possible

context because it is hard to obtain a consensus on the validity of a statement. The

39

CHAPTER 2. BACKGROUND AND STATE OF THE ART

meaning that a data modeler gives to the data may not correspond to what the end-user

expects. The misuse of owl:sameAs is often referred to as the “identity crisis” ([Halpin,

Hayes, McCusker, McGuinness, and Thompson 2010]).

2.5 Contextual Identity

[Beek, Schlobach, and van Harmelen 2016] addressed this issue by constructing a

lattice of identity contexts where contexts are defined as sets of properties. All entities

belonging to a context share the same values for each property of this context. Hence,

a context is a set of indiscernible properties for an entity. However, the authors do not

guide the use of properties outside the context. [Raad, Pernelle, and Saïs 2017] proposed

an algorithm named DECIDE to compute contexts, where identity contexts are defined

as sub-ontologies. Still, as in the first work, properties of entities that are not in the

sub-ontology are ignored. Thus, in the two previous works, there is a limitation regarding

properties that do not belong to a context. This limitation cripples the interest in using

such approaches. Indeed, one of the goals of an identity context is to define an identity

relation between two entities to use information from one to the other. The solution by

[Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017] involves such

propagation of properties, and thus, increases the completeness of an entity according to a

context. However, this proposition requires the user to provide as input the propagable

and indiscernible properties. Hence, it leaves the burden to the user to identify and provide

context and properties. The user must provide the two sets of indiscernible and propagable

properties.

2.6 Conclusion

The formalism proposed by [Idrissou, Hoekstra, van Harmelen, Khalili, and van den

Besselaar 2017] seems to be the most appropriate for representing an identity context. Both

the indiscernibility and propagation parts can be modeled between several entities with two

distinct sets of properties. Nevertheless, the user must provide everything, which might

be a complicated and time-consuming task. Hence, our goal is to propose an approach to

40

CHAPTER 2. BACKGROUND AND STATE OF THE ART

compute indiscernibility sets and their corresponding propagation sets automatically. Our

approach to handle propagation is composed of several parts.

It appeared to us that some properties might be more or less significant in determining

whether or not two entities are identical. Thus, depending on the use of properties in a

knowledge graph, it is possible to determine the weight that a property can have or the

discriminating power of a property-value pair. These elements help to decide if two entities

are contextually the same or not. Moreover, semantics is also used to try to find identity

links that are logically grounded. Indeed, the presence of functional properties, for example,

can help to find such links between entities.

Hence, we proposed an approach that allows finding semi-automatically the properties

that can be propagated between identical entities in a given context. For the definition of

an identity context, we use the one proposed by [Idrissou, Hoekstra, van Harmelen, Khalili,

and van den Besselaar 2017], since it provides a framework for property propagation for a

given set of indiscernible properties. Our approach uses a sentence embedding technique

where a vector represents each property having a long description in natural language.

This vector is weighted by the importance of the property as previously described. It is

thus possible to compute a vector representing a set of indiscernible properties, on the

one hand, and, on the other hand, to compute the distance between this vector and those

of the properties that are candidates for propagation. We postulate that the closer the

description of a property is to the descriptions of the indiscernible set, the more likely it is

to be propagable. To find the contexts of an entity, we propose an algorithm that computes

the lattice that represents the set of identity contexts of this entity. The proposed approach

relies on techniques of our previous work on using semantics as a first technique and the

importance of properties to weight vector calculations (what we called the weight of a

property).

41

CHAPTER 2. BACKGROUND AND STATE OF THE ART

42

Chapter 3

Knowledge graphs and OWL 2

This chapter is based on the following publication:

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-said Cherfi. État des lieux de

l’utilisation de OWL 2 : Analyse et proposition pour capturer les utilisations de la

sémantique OWL 2 dans les graphes de connaissances RDF. Revue des Nouvelles

Technologies de l’Information, Extraction et Gestion des Connaissances , RNTI-E-36:

145–156, 2020c

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Ontosemstats: An

ontology to express the use of semantics in rdf-based knowledge graphs. In Mária

Bieliková, Tommi Mikkonen, and Cesare Pautasso, editors, Web Engineering - 20th

International Conference, ICWE 2020, Helsinki, Finland, June 9-12, 2020, Proceed-

ings, volume 12128 of Lecture Notes in Computer Science, pages 561–565. Springer,

2020a. doi: 10.1007/978-3-030-50578-3_45. URL https://doi.org/10.1007/

978-3-030-50578-3_45 (To be published)

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. A study about the use

of OWL 2 semantics in RDF-based knowledge graphs. In The Semantic Web: ESWC

2020 Satellite Events - ESWC 2020 Satellite Events, 2019b (To be published)

For many users or automated agents, working with knowledge graphs may be a compli-

43

https://doi.org/10.1007/978-3-030-50578-3_45
https://doi.org/10.1007/978-3-030-50578-3_45

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

cated task. Indeed, multiple tools using knowledge graphs rely on semantics to perform

at their best. For example, in the context of data integration, some instance matching

tools use semantic features such as functional and inverse functional properties or disjoint

classes to discover entities that are the same (or not). Hence, in many cases, conducting

an exploratory study is required to discover which semantic features are used or defined

in a knowledge graph. In this chapter, we first propose a large-scale study of the current

state of the Web of data regarding its semantics use. Then, we propose an ontology and

large-scale ontology-based Web service that provides statistics about the OWL 2 and RDFS

semantic features (e.g., functional properties or subclasses) for a given knowledge graph.

The ontology will allow a human or automatic agent to choose the most appropriate tool

or data for a given task. It also gives the data publishers a clear picture of semantics they

provide to data consumers. These statistics are represented in the form of an RDF graph.

The graph makes it easy to use and share.

In Section 3.1, we outline the reasons that led us to conduct this large-scale study on

the Web of Data, and motivated us to create an ontology to encapsulate information and

usage of semantics in knowledge graphs. In Section 3.2, we give an overview of ontologies

that are used to describe knowledge graphs. Section 3.3 is dedicated to present our study

on the use of OWL 2 on the Web of Data. In Section 3.4 and 3.5, we provide the details

about our ontology and the tools to instantiate it. Finally, in Section 3.6, we conclude

both the study and the proposed ontology.

3.1 Introduction

As the number and size of RDF knowledge graphs increase, the difficulty of querying

or using this data grows. For a given task, several types of approaches can be considered.

Some approaches rely mainly on semantics available in the graphs, others, on the contrary,

make little or no use of it. Of course, in between these two extremes, approaches can

take advantage of semantics, without relying entirely on it. For example, if the task is to

interconnect several knowledge graphs, approaches may use a combination of techniques such

as statistics, other external knowledge graphs, semantics, or data partitioning algorithms.

Besides, approaches relying mainly on semantics can outperform other types of approaches

44

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

if semantics is very present in the knowledge graph. Nevertheless, if semantics is lacking,

the results may not be what the user expects. Therefore, it is often necessary to conduct

a first exploratory study of the knowledge graph to know which tool will be best suited

for a given task. Such a study helps to understand what the data may have to offer.

Unfortunately, this exploratory step is time-consuming, especially if the documentation

accompanying the knowledge graph is missing or not very informative. Several vocabularies

or ontologies have been proposed to provide the user with an overview of the data contained

in the knowledge graph. For example, Dublin Core1 [Weibel, Kunze, Lagoze, and Wolf

1998], Creative Commons Rights Expression Language2, Data Catalog Vocabulary3, or

VoID4 [Alexander, Cyganiak, Hausenblas, and Zhao 2009] allow knowledge graphs to be

described. However, they do not give the possibility to express which elements of OWL 2

or RDFS are used.

While investigating how to use semantics in knowledge graphs to discover

(contextual-)identity links, we were confronted by a recurring problem: knowledge graphs

we used for our experiments were lacking semantics. We dug into the literature about

semantic studies of knowledge graphs and discovered that all works were relatively old

(more than ten years) and were about tiny parts of the Semantic Web.

The research questions of this chapter are as follows:

• What is the current state of Linked Open Data knowledge graphs regarding the

presence and usage of semantics?

• How to facilitate access to information on the semantic structure of a knowledge

graph?

Hence, in this chapter, we propose a large-scale study of the current state of the Web

of Data concerning the semantics. Then, this leads us to propose an ontology to express,

for a given knowledge graph, which OWL 2 and RDFS features (e.g., functional properties

or subclasses) are used and in what proportions. Indeed, this ontology allows the necessary
1http://www.dublincore.org/specifications/dublin-core/
2https://creativecommons.org/ns
3https://www.w3.org/TR/vocab-dcat/
4https://www.w3.org/TR/void/

45

http://www.dublincore.org/specifications/dublin-core/
https://creativecommons.org/ns
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/void/

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

information to be brought directly to the data consumer to select, in full knowledge of

the facts, the appropriate tool for the realization of his or her task. Besides, we provide

applications to instantiate the ontology for a given knowledge graph, to its SPARQL

endpoint. The objective is to enable data consumers to know precisely how and to what

extent OWL 2 and RDFS are used in the knowledge graph. This will be achieved by

aggregating statistics about all vocabularies or ontologies of the knowledge graph described

with OWL 2 and RDFS. All the present work is available on GitHub.

3.2 Related work

In this section, we present some works that focus, in one way or another, on the study

of the use of semantics in knowledge graphs of Linked Open Data.

In [d’Aquin, Baldassarre, Gridinoc, Angeletou, Sabou, and Motta 2007], the authors

analyzed 25500 knowledge graphs in terms of expressivity. Although compelling, this study

is old and deals with a tiny number of knowledge graphs.

[Jain, Hitzler, Yeh, Verma, and Sheth 2010] denounces the lack of expressiveness of

knowledge graphs, i.e., that many knowledge graphs do not use all the different features of

OWL 2, far from it. As a result, many approaches based on the most advanced features of

OWL 2 are unusable as they stand on these graphs using non-expressive ontologies. For

example, without properties that could be declared as transitive but are not so described,

it is more complicated to navigate between related data, which is supposed to be one of the

strengths of this type of knowledge graph. Moreover, this paper analyzes only 70 graphs of

the LOD Cloud 5, which is little, would have strayed to its current size (1239 graphs).

In [Hitzler and van Harmelen 2010], the authors emphasize that some data publishers

focus solely on publishing data (i.e., triples) without annotating them with shared ontologies.

The lack of semantics reduces the possibility of resonating with this data. They conclude

that, apart from the owl:sameAs property, the features of OWL 2 are little used. However,

this study is more of an empirical finding than a systematic study.

[Hogan, Harth, Passant, Decker, and Polleres 2010] and [Polleres, Hogan, Harth,

5https://lod-cloud.net/

46

https://lod-cloud.net/

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

and Decker 2010] state that the quality of open Linked Data can be problematic due

to a lack of property and class definitions, i.e., when no OWL 2 or RDFS description is

available. Whereas, for example, defining disjoint classes can help detect inconsistencies in

a knowledge graph. [Hogan, Harth, Passant, Decker, and Polleres 2010] covers 12.5 million

triples and aims to raise the various issues facing the Semantic Web. For example, the

authors note the number of dereferencing problems, syntax problems at the RDF level or

inconsistency problems. However, the small sample size and the age of the study this study

does not provide answers to our questions. Moreover, the study lacks relevant metrics on

the use of semantics.

[Glimm, Hogan, Krötzsch, and Polleres 2012] proposed the biggest and deepest

evaluation of OWL 2 usage so far. They evaluated more than 2 billion triples and found a

wide disparity in usage between the features of OWL 2. Our study covers more recent and

more numerous data (more than 30 billion triples).

[Färber, Bartscherer, Menne, and Rettinger 2018] proposes to investigate the quality

of some of the best-known knowledge graphs. The authors provide basic statistics on

DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Although not a large-scale study of

the use of semantics, some statistics are interesting (like the number of triples, number

of classes, number of relations), but do not sufficiently address semantics expressed by

ontologies based on OWL 2.

None of the cited works proposes a complete study on the use of OWL 2 semantics

in RDF knowledge graphs with precise figures and at such a scale. In this chapter, we

propose to collect information on a large scale about the usage of OWL 2 features. We

also provide an ontology describing these features.

3.3 Current state of linked open data

In this section, we present the sources we used to produce results on a larger scale. Next,

we will describe the methodology we used to carry out this study and present the different

results obtained. The objective of this study is to have an overview, on a large

scale and the most recent data possible, of the use of semantics expressed in

47

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

OWL 2 in RDF knowledge graphs.

Before continuing, we propose the following definition, which will be useful for both the

ontology and the study we have conducted.

Definition 3.3.1 (Semantic feature) A semantic feature is any element of OWL 2,

i.e., all its properties and classes such as owl:Restriction or owl:SymmetricProperty.

For example, ⟨:age a owl:FunctionalProperty⟩ and all the triples using :age as a

predicate. We will consider both the triples defining :age and the use of this property as a

predicate in triples. Or, ⟨:someClasses a owl:AllDisjointClasses⟩ and all triples of form

⟨?x rdf :type :someClasses⟩ are also considered triples using a semantic feature of OWL 2.

The following definition will be useful to observe our results from a different perspective

in Sect. 3.3.4.

Definition 3.3.2 (Topic of a knowledge graph)

The topic of a knowledge graph is the main subject of the data it contains. Our topic

selection is based on LOD Cloud (see Sect. 3.3.1). If a graph has no topic, then it has the

default topic: “unknown”. Some graphs may have more than one topic, in which case each

topic will be used in our study.

3.3.1 Sources

In this section, we will present the different data sources we have considered using for

our study on the use of semantics expressed in the form of OWL 2 ontologies. We will

explain why we have retained some of them and discarded others. Our goal is to gather

information on the use of OWL 2 semantics in RDF knowledge graphs.

The LOD Cloud provides a visual overview of the extent and growth of RDF knowledge

graphs in recent years. Although presenting only a limited number of graphs (a little

more than 1000), the metadata associated with these graphs, especially the topics (see

Def. 3.3.2) in which each graph is focused (e.g., linguistics or social networks), make this

tool a valuable source for our experience. Indeed, this allowed us to compare graphs relating

to very different topics and thus to observe whether differences in modeling and thus in

48

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

the use of OWL 2 semantics appear between these topics.

LOD Laundromat6 ([Beek, Rietveld, Bazoobandi, Wielemaker, and Schlobach 2014])

provides access to more than 650 thousand knowledge graphs in HDT format

([Fernández, Martínez-Prieto, Gutiérrez, Polleres, and Arias 2013] and [Martínez-Prieto,

Gallego, and Fernández 2012]). HDT is a compressed format containing RDF triples and

allowing search operations to be performed on these triples. The data on these graphs have

been cleaned up. Syntax errors, duplicate data, and anonymous nodes, for example, have

been removed or addressed. Each graph is contained in a single file with a unique identifier,

and metadata is also available (like provenance, number of triples, date of processing).

Some of these graphs refer to different versions of the same dataset, e.g., DBpedia-en,

DBpedia-fr or DBpedia 3.8. Some of the graphs in LOD Cloud are contained in LOD

Laundromat.

LOD-a-lot7 is a service providing access to the same data as LOD Laundromat. However,

data are a single graph in which all the LOD Laundromat graphs have been merged into

a single knowledge graph. Although very interesting, merging all the graphs into one no

longer allows us to distinguish between the different original graphs, and therefore the

resulting analysis would have been lessened. That is why we did not select LOD-a-lot as

the data source for our study.

Therefore, we chose to use LOD Laundromat for its large number of knowledge graphs

and their serialization in HDT format, as well as the LOD Cloud for its metadata on the

topics of the different graphs. Wherever possible, we have tried to link the graphs from the

two given sources, as explained in the next section.

3.3.2 Information collecting

In this section, we describe how, from the sources seen in the previous section, we

collected the information. For a given graph, we analyzed the different classes and properties,

on the one hand, i.e., their definitions in OWL 2, and, on the other hand, we analyzed

their uses within this knowledge graph. For the first analysis, if ever the definition of a

6http://lodlaundromat.org/
7http://lod-a-lot.lod.labs.vu.nl/

49

http://lodlaundromat.org/
http://lod-a-lot.lod.labs.vu.nl/

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Name Note
of triples Knowledge graph size
of distinct subjects Graph coverage
of subjects w/o The type of a subject is a very basic piece of information
explicit type
of distinct predicates Necessary to put the following figures into perspective
of predicates w/o Completeness of property definition
explicit domain
of predicates w/o Completeness of property definition
explicit range
for each OWL 2
feature f
of triples using f
of distinct subjects
using f

Topic The subject of the knowledge graph, if applicable

Table 3.1: Information collected for each knowledge graph.

class (respectively of a property) is not explicitly present in the graph, then we tried to

reach this definition by dereferencing, i.e., by going to see if the URL refers to an RDF

document containing the searched definition. This step allows us to know, for example,

whether a particular property is defined as a functional property and how often it is used.

Indeed, sometimes a class or property is defined but is not used in the data at all. Also,

for each property, we have searched for all its possible super properties: for example, if p1

is defined as a sub-property of p2 and the latter is defined as a functional property, then p1

will also be functional. This step ensures that we do not forget properties defined with

implicit OWL 2 features.

Hence, we downloaded metadata from LOD Cloud and LOD Laundromat to bring the

graphs (the HDT files) closer to their topics when the graph is described in both sources.

For each graph, we calculated the numbers presented in Table 3.1.

The software developed for this study was developed in Java and is available for

replication on GitHub8.

8https://github.com/PHParis/sem_web_stats

50

https://github.com/PHParis/sem_web_stats

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Name Description
ALL All knowledge graphs.
w/ topic All graphs with a topic that is not “unknown”.
w/o topic All graphs with the topic “unknown”.
w/ semantics All graphs with at least one OWL 2 feature.
w/ sem & topic All graphs with at least one OWL 2 feature

and a topic that is not “unknown”.
TOP 100 The first 100 graphs in terms of the number of triples.
Topic All graphs with this topic.

Table 3.2: Selector definitions.

3.3.3 Overall Results

Thanks to LOD Laundromat, 647 858 knowledge graphs have been analyzed (an HDT

file represents a graph). Thus, in this document, an RDF knowledge graph is a serialization

of a graph expressed using the RDF graph model, i.e., composed of subject-predicate-value

triples. It contains data (A-Box) or ontology (T-Box). We will first present the overall

results, then according to the topics of the graphs to know if differences appear in the use

of OWL 2 semantics according to the topics. Next, we will take a detailed look at the

results for the different features of OWL 2.

The first view of these results is presented in Table 3.3 and 3.4. The first column

corresponds to the selector, i.e., the filter we applied to select a subset of the nearly 650

thousand graphs. This selector filters all graphs or graphs with at least one OWL 2 feature,

or the 100 largest in terms of the number of triples (see Table 3.2).

Table 3.3 shows a summary of the graphs according to different selectors. The second

column indicates the number of graphs selected by the selector (the maximum being, of

course, 647,858 graphs). In the next three columns, we indicate the first, second, and third

quartiles according to the number of distinct subjects to visualize the distribution of the

graphs. Finally, the last column shows the percentage of graphs containing at least one

class or property using one of the features of OWL 2. We observe in Table 3.3 that if

we consider all graphs and graphs without topics, then the results are very close. This

similarity is to be expected since the vast majority of graphs do not have a topic (either the

graph was not found in LOD Cloud or the topic was not filled in). They are generally very

51

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

% of
Selector # of graphs Q1 Q2 Q3 graphs w/

at least
one OWL 2

feature
All 647,858 547 3146.5 38,580 1.53
w/ topic 706 8 29.5 425.25 37.54
w/o topic 647,152 562 3301 39,126.5 1.49
w/ semantics 10,600 184 3952 93,891 100
w/ sem & topic 271 8.25 62.5 1496.25 100
TOP 100 (# triples) 100 5,611,982 8,951,766 12,635,325 34

Table 3.3: Basic statistics by selector in terms of number of subjects (first quartile, median
and third quartile) and percentage of datasets using OWL 2

Selector % of subjects % of predicates % of predicates
w/o types w/o domain w/o range

ALL 41.08 99.68 99.67
w/ topic 6.49 98.84 96.29
w/o topic 41.49 99.68 99.67
w/ semantics 22.36 98.84 98.79
w/ sem & topic 4.45 98 93.6
TOP 100 12.45 99.69 99.69

Table 3.4: Percentages of subjects without types, and predicates without domains and/or
ranges

poor in semantics since, surprisingly, only about 1.5% of them contain at least one OWL

2 feature. Conversely, graphs with a topic use much more semantics than large graphs

(those in the top 100). Graphs using OWL 2 semantics vary a lot in terms of size since the

smallest 25% use far fewer subjects than in the general case.

Besides, Figure 3.1 shows the number of graphs by OWL 2 features. The horizontal

axis is the number of distinct OWL 2 features contained in a graph, e.g., owl:sameAs,

owl:FunctionalProperty. The vertical axis shows the number of graphs on a logarithmic

scale. We can see that the vast majority of Linked Open Data knowledge graphs contain

very few OWL 2 features. Only 719 knowledge graphs use more than five distinct features

of OWL 2, and 9881 use exactly one.

52

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Figure 3.1: Number of knowledge graphs by OWL features 2.

3.3.4 Results by topic

The metadata of LOD Cloud allows us to obtain the topic of several knowledge graphs:

government, life sciences, publications, user generated, cross domain, geography, media,

linguistics, and social networking. We hypothesize that graphs with different subjects are

not structured in the same way. For example, we expect user-generated graphs to be less

expressive than those on life sciences. Table 3.5 shows the results by topic (each line

concerns a group of graphs with the topic in the first column). The columns are the same

as those in the 3.3 table. We were able to link 706 graphs (out of 1205 in the LOD Cloud)

to a graph in LOD Laundromat (an HDT file). We used strict string matching between the

URIs of LOD Cloud and LOD Laundromat to avoid assigning the wrong topic to a graph.

As expected, graphs whose topic is user generated or social networking use very little

semantics (a little over 12%). Even so, they still use more of them than topicless graphs.

More surprisingly, cross domain graphs are the biggest users of OWL 2, since 64.62% of

them use at least one OWL 2 feature. Additionally, as expected, life sciences are among

53

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

% of graphs
Selector # of graphs Q1 Q2 Q3 w/ at least one

OWL 2 feature
publications 217 8.5 36 252.5 40.55
government 137 4.25 49.5 473.75 30.66
user_generated 91 8 18 39.5 12.09
life_sciences 68 2 21 39 35.29
cross_domain 65 16.75 48.5 208.5 64.62
geography 48 2 8 443 43.75
linguistics 43 1 20 657 48.84
media 29 2 8 110 51.72
social_networking 8 3 13 37 12.50

Table 3.5: Basic statistics by topic in terms of number of subjects (1st quartile, median
and 3rd quartile) and percentage of knowledge graphs using OWL 2. At least one OWL 2
feature must be used at least once.

the largest users of OWL 2. Good news also concerning graphs on publications, the latter

concerning scientists in the first place, who use much semantics.

3.3.5 Results by feature OWL 2

In this section, we focus on each OWL 2 feature from three different perspectives. We

will first look at the property types (e.g., functional). We will then see the different types

of classes offered by OWL 2, and finally, we will observe the properties of OWL 2 (like

owl:sameAs, owl:inverseOf). For these perspectives, we will need a definition of the use of

OWL 2 classes and properties.

Definition 3.3.3 (Class and property usage of OWL 2) Let C be an OWL 2 class

(resp. p an OWL 2 property). Let Ω = {KGi|i ∈ [1, N]} be a set of knowledge graphs.

The class usage (resp. the property usage) of C (resp. of p), called CUΩ(C) (resp.

PUΩ(p)), is the weighted mean of the number of subjects with C as RDF type (resp. using p

as a predicate). The weights are the inverse of the total number of subjects in the knowledge

graph.

CUΩ(C) =
∑︁N

i=1 |Sub(KGi, C)| × 1
|Sub(KGi)|∑︁N

i=1
1

|Sub(KGi)|
(3.1)

PUΩ(p) =
∑︁N

i=1 |Sub(KGi, p)| × 1
|Sub(KGi)|∑︁N

i=1
1

|Sub(KGi)|
(3.2)

54

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

of weighted weighted weighted
Type mean mean mean

graphs of triples of subjects of predicates
ObjectProperty 747 27.5 16.57 7.53
DatatypeProperty 685 31 19.43 5.79
FunctionalProperty 434 9 5.76 3.06
InverseFunctionalProperty 310 22.7 20.6 2.54
TransitiveProperty 396 2.84 2.63 2.4
SymmetricProperty 320 7 4.77 2.87
AsymmetricProperty 15 4.7 4.66 4.66
IrreflexiveProperty 21 1.66 1.65 1.65
ReflexiveProperty 16 1.32 1.32 1.32

Table 3.6: Analysis by types of property.

where Sub(KGi, C) gives all distinct subjects of type C in KGi, Sub(KGi, p) gives all

subjects using p in KGi and Sub(KGi) gives all distinct subjects in KGi.

Definition 3.3.3 prevents large graphs from weighing too much on average. For ex-

ample, suppose C = owl:AllDisjointClasses is an OWL 2 class. Let us also assume

that Ω = {KG1, KG2}, where KG1 has 158 distinct subjects with 2 of them having

owl:AllDisjointClasses as type, and KG2 has 357 distinct subjects, with 9 of them having

owl:AllDisjointClasses as type. Then CU{KG1,KG2}(

owl:AllDisjointClasses) = 2× 1
158 +9× 1

357
1

158 + 1
357

= 2.77.

Table 3.6 concerns the types of properties (for example, a property that would be defined

as functional). In our study, a predicate that is a sub-property of a functional property is

also functional. The second column shows the number of graphs using a property of the

considered type, and the third column their weighted average regarding the number of

triples. The last two columns are similar, but for subjects and predicates. For example,

inverse functional properties are found in 310 graphs. Among these 310 graphs, we can

expect to find an average of 2.54 definitions of such properties that are used in 22.7 triples

with 20.6 different subjects. As we can see, some predicates are used very little, such as

the owl:ReflexiveProperty, which is only used in 16 graphs. In these 16 graphs, very few

reflexive properties are defined (1.28) and used.

Table 3.7 concerns the definition of classes using OWL 2. The second column shows

55

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Class # of graphs Class usage
Class 1905 1.36
Restriction 520 10.3
DataRange 225 1.71
AllDifferent 213 2.35
NamedIndividual 62 10.8
AllDisjointClasses 50 2.09
NegativePropertyAssertion 27 279.76
Axiom 13 14.44
AllDisjointProperties 5 4.96

Table 3.7: Analysis by class type (see Def. 3.3.3).

the number of graphs using the given class. The third column shows the usage of the class

(see Def. 3.3.3). For example, class owl:Restriction is used in only 520 graphs. These 520

graphs use it an average of 10.3 times. As expected, the type owl:Class is the most used

type as opposed to owl:AllDisjointProperties, which is practically not used (5 graphs only).

Table 3.8 shows the use of OWL 2 properties in different graphs. The second column

shows the number of graphs in which the property exists. The last column shows the usage

of this property (see Def. 3.3.3). For example, if a graph uses OWL 2 features, the user

can expect to find 5.41 inverseOf in that graph. As we can see, the owl:sameAs property

is by far the most used property of OWL 2, since it is found in 6 times more graphs than

the second most used property (owl:unionOf). Besides, owl:sameAs, when used, is used

intensively. On average, 10.3 triples use it. These results correspond to the discoveries of

earlier work, such as [Hitzler and van Harmelen 2010]. They showed at the same time the

importance of owl:sameAs and the inertia regarding the change that can be encountered

on this type of graph.

In conclusion, a vast number of knowledge graphs in LOD use little or no semantics in

the form of OWL 2, and a few use a lot. Also, many OWL 2 features are only rarely used.

However, the larger the graph, the more likely it is to use OWL 2.

56

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Property # of graphs Property usage
sameAs 7708 10.30
unionOf 1256 1.02
inverseOf 548 5.41
onProperty 522 10.19
equivalentClass 492 5.11
disjointWith 470 2.49
allValuesFrom 425 7.92
someValuesFrom 413 10.07
cardinality 412 3.1
minCardinality 398 4.26
intersectionOf 394 5.26
maxCardinality 388 4.88
oneOf 364 1.99
hasValue 348 5.58
equivalentProperty 324 4.61
complementOf 315 1.82
distinctMembers 207 2.26
differentFrom 144 30.1
onClass 91 2.99
members 55 2.13
propertyChainAxiom 38 1.76
onDataRange 32 7.2
qualifiedCardinality 32 2.63
assertionProperty 27 279.76
sourceIndividual 27 279.76
targetIndividual 27 279.76
minQualifiedCardinality 25 4.24
disjointUnionOf 24 2.13
withRestrictions 13 1.04
annotatedTarget 12 14.83
maxQualifiedCardinality 12 4.06
annotatedProperty 10 12.71
annotatedSource 10 12.71
onDatatype 10 1.16
hasKey 8 1
propertyDisjointWith 5 1.08
hasSelf 2 1.88
datatypeComplementOf 1 1

Table 3.8: Analysis of OWL 2 properties (see Def. 3.3.3).

57

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

3.4 Ontology

The ontology we propose (available online 9 and in Annex A) aims to explain the use

of classes and properties defined with OWL 2 and RDFS elements in a knowledge graph.

For instance, an objective for a user could be to know the number of properties that are

transitive and their number of uses in the graph.

VoID10 [Alexander, Cyganiak, Hausenblas, and Zhao 2009] is a vocabulary that can be

used to describe a knowledge graph. This description facilitates knowledge graph discovery

and use. Besides, VoID offers elementary statistics such as the number of classes or triples.

Our ontology extends this vocabulary by providing more detailed statistics on the use

of OWL 2 and RDFS elements. We represent a knowledge graph as an instance of the

class void:Dataset that can have as many :Stat11 instances as it uses OWL 2 and RDFS

properties or classes. Each instance of :Stat has one and only one :SemanticFeature instance.

The :hasSemanticFeature property (see Listing 3.1) allows an instance of :Stat to be linked

to its :SemanticFeature. The different types of range of :hasSemanticFeature are disjointed

two by two, thus making it possible to detect any error in the instantiation of this ontology.

: hasSemanticFeature rd f : type owl : ObjectProperty ,
owl : Funct ionalProperty , owl : AsymmetricProperty ,
owl : I r r e f l e x i v e P r o p e r t y ; r d f s : domain : Stat ;
r d f s : range : SemanticFeature ;
r d f s : comment " Spec i f y which OWL 2 or RDFS semantic
f e a t u r e i s the t a r g e t o f the g iven s t a t . " @en ;
r d f s : l a b e l " has semantic f e a t u r e "@en .

Listing 3.1: Definition of the hasSemanticFeature property.

For each feature of OWL 2 and RDFS, we created its own interpretation for two reasons.

First, if one has an OWL 1 KG and wants to integrate the stats, then to keep the OWL

profile unchanged, we must represent the semantic features with our own IRI. For example,

the triple ⟨ :stat :hasSemanticFeature owl:FunctionalProperty ⟩ would lead to OWL 1 Full

and undecidability problems1213 since owl:FunctionalProperty is a class. Therefore, for

9http://cedric.cnam.fr/isid/ontologies/OntoSemStats.owl
10https://www.w3.org/TR/void/
11Classes and properties represented without a prefix belong to our ontology.
12https://www.w3.org/2007/OWL/wiki/Profile_Explanations
13https://www.w3.org/TR/owl2-profiles/

58

http://cedric.cnam.fr/isid/ontologies/OntoSemStats.owl
https://www.w3.org/TR/void/
https://www.w3.org/2007/OWL/wiki/Profile_Explanations
https://www.w3.org/TR/owl2-profiles/

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

every OWL 2 and RDFS feature, we created a subclass of :SemanticFeature. For example,

:FunctionalProperty represents the statistics of the functional properties. Moreover, the

different axioms of OWL 2 and RDFS can impact properties, classes, or entities. For

this, we have chosen to ensure that the design of our ontology reflects these possibilities.

Depending on its purpose, an axiom will be “put” in a particular class. For example,

Listing 3.2 shows the definition of :PropertyType (a subclass of :SemanticFeature) used to

represent the different types that a property can have (e.g., symmetrical, reflexive). Another

example is the “PropertyRelation” class, which gathers, among others, statistics concerning

owl:propertyChainAxiom or owl:inverseOf, which are axioms allowing the description of

the nature of the relation between properties.

: PropertyType rd f : type owl : Class ; r d f s : subClassOf
: PropertyAxiom ;
owl : d i s jo in tUnionOf (: OwlAsymmetricProperty
: OwlFunctionalProperty : OwlInverseFunct ionalProperty
: Owl I r r e f l e x i v ePrope r ty : OwlRef lex iveProperty
: OwlSymmetricProperty : OwlTrans it iveProperty) .

Listing 3.2: Definition of the Properties class which represents the different types used to
define a property.

To provide statistics for each feature of OWL 2, we have created two properties:

:definitionCount and :usageCount. The first one is to state how many times the axiom

is used in a definition (e.g., the number of functional properties) and the second one how

many times the definitions using the axiom are used (e.g., how many triples use a functional

property). Listing 3.3 shows the definition of the :usageCount property, which allows us to

state, for example, that 3 000 triples use a functional property.

: usageCount rd f : type owl : DatatypeProperty ,
owl : Funct ionalProperty ; r d f s : domain : Stat ;
r d f s : range xsd : i n t e g e r ;
r d f s : comment "Number o f usage o f a semantic

f e a t u r e . " @en ; r d f s : l a b e l " usage count "@en .

Listing 3.3: Definition of the property allowing specifying how many times a feature is
used.

59

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Figure 3.2: Web application interface.

3.5 Web application

Our application, OntoSemStatsWeb14, is an open-source software (under the GPL

open-source license) written in C# (using dotnetRDF15) and JavaScript (using Comunica16

[Taelman, Herwegen, Sande, and Verborgh 2018]). The application has three different

forms: (i) a Web page that is our live demonstrator17, (ii) a Web API to operate seamlessly

with an automated agent, and (iii) a command-line application. All the tools that we

developed are available as Docker images (one for the command-line application and one for

the Web application and the Web API), to promote ease of use and adoption. Figure 3.2

shows the interface of the Web demonstrator. Here, a user can provide a SPARQL endpoint

URL, and then the stats are automatically computed. The output is an instantiation of

our ontology.

14https://github.com/PHParis/OntoSemStatsWeb
15https://github.com/dotnetrdf/dotnetrdf
16https://comunica.linkeddatafragments.org/
17https://ontosemstats.herokuapp.com/

60

https://github.com/PHParis/OntoSemStatsWeb
https://github.com/dotnetrdf/dotnetrdf
https://comunica.linkeddatafragments.org/
https://ontosemstats.herokuapp.com/

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Figure 3.3: Results as a table for DBpedia endpoint.

Figure 3.3 shows the results for human readings, and Figure 3.4 shows the results for

an automated agent. The format chosen is N-Triples to facilitate the processing by the

automated agent.

Figure 3.4: Results as N-Triples for DBpedia endpoint.

Figure 3.5 shows the workflow of the OntoSemStatsWeb application. The agent (human

61

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

Figure 3.5: OntoSemStatsWeb workflow.

or automated) must provide a SPARQL endpoint URL (1) as input. The application checks

the status of the endpoint (2), i.e., if it is up or down. Then, for each OWL 2 or RDFS

feature, the application executes the corresponding query on the endpoint (loop (3) to (5)).

Next, all sub-results are aggregated in one serialized RDF graph, i.e., the output is the

graph that is an instance of the ontology regarding the given endpoint.

Depending on the used tool (i.e., Web page, API, or command-line), the graph is

presented in various fashions. The Web page summarizes the results through a user-friendly

table and a visual representation and provides a link to download the graph. On the other

side, the Web API and the command-line applications allow the graph serialization to be

chosen between RDF/XML, Turtle, N-Triples, Notation3, and JSON-LD.

62

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

3.6 Conclusion

In this chapter, we conducted a large-scale study that provides an up-to-date overview

of the semantic usages in Linked Open Data. We observed a real lack of semantics at

several levels. First, many knowledge graphs do not use any OWL 2 features, and many use

only a little semantics. On the contrary, some knowledge graphs use complex structures.

Second, only some features are heavily used. Indeed, many features are almost not used.

These statements are not a judgment, but only an observation about the current state of

the Web of Data: maybe most users do not need semantics. Nevertheless, we argue that

some users could benefit from having access to more semantic data. We also proposed

an ontology that described the OWL 2 and RDFS features defined and used in a given

knowledge graph. Moreover, we provided tools that automatically instantiate this ontology

for a given SPARQL endpoint. A human agent can use these tools through a Web page

and a command-line program or an automated agent through a Web API. By offering easy

access to the statistics about semantic usages, we help data consumers in choosing the right

tool or knowledge graph that best suited his or her objectives. Moreover, this facilitated

access may increase knowledge graph consumption and improve user experience.

As far as our thesis framework is concerned, ontology will help us to decide whether it

is worth using semantics or not for a given knowledge graph.

63

CHAPTER 3. KNOWLEDGE GRAPHS AND OWL 2

64

Chapter 4

Semantics and predominance of
properties

This chapter is based on the following publication:

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Interlinking rdf-

based datasets: A structure-based approach. In Imre J. Rudas, János Csirik, Carlos

Toro, János Botzheim, Robert J. Howlett, and Lakhmi C. Jain, editors, Knowledge-

Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd

International Conference KES-2019, Budapest, Hungary, 4-6 September 2019, volume

159 of Procedia Computer Science, pages 162–171. Elsevier, 2019a. doi: 10.1016/j.

procs.2019.09.171. URL https://doi.org/10.1016/j.procs.2019.09.171 (best

student paper)

While considering (contextual-)identity link discovery, we had the intuition that some

properties might be more relevant than others to govern the choice to create such a link.

Indeed, with an increasing number of Linked Open Data knowledge graphs, insufficient

interlinking quality can lead to a decrease in overall data quality. Therefore, it is necessary

to keep the interlinking quality as high as possible. One of the main ways to link knowledge

graphs is to use owl:sameAs links, i.e., to indicate that two things are the same. However,

with its strict semantics, there is a lot of misuse of owl:sameAs in the wild. Indeed,

65

https://doi.org/10.1016/j.procs.2019.09.171

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

identity is often relative and depends on the context of use. We, therefore, propose an

approach that enables considering the characteristics of involved knowledge graphs to

interlink them thanks to owl:sameAs statements. These characteristics will then be used to

weight properties in our propagation framework (see Chapter 5). The experimental results

performed on real-world knowledge graphs show that the proposed approach is promising.

The remainder of this chapter is structured as follows: in Sect. 4.1, we present our

motivations to take in consideration the predominance of some properties while creating

identity links. In Sect. 4.3, we detail our proposition to improve instance matching quality.

The Sect. 4.4 is about the implementation and results of our approach. Finally, in Sect. 4.5

we present the future works and our conclusions about our approach.

4.1 Introduction

Linked Data1 knowledge graphs use ontologies backed by Description logics and OWL

(see [Horrocks, Kutz, and Sattler 2006]) to define their schema. owl:sameAs2 links are the

most commonly used links to link knowledge graphs together and discover new knowledge.

The property owl:sameAs from the OWL 2 ontology language states that two things (two

individuals, entities, or resources) are the same and that all statements about one entity

are also true for the other (the indiscernibility of identicals as explained in Chapter 2). In

the Semantic Web field, retrieving all interchangeable knowledge between two things is

still a significant challenge.

There are many ways to find such linksets (see Definition 4.2.2) of pairwise identi-

cal things between knowledge graphs. The most obvious is by using OWL semantics

itself, e.g., by using properties such as owl:hasKey, owl:FunctionalProperty, owl:Inverse-

FunctionalProperty, etc. Another way to find such links is to use frameworks based on

similarity measures between entities.

However, owl:sameAs has a strict semantics3 (see Table 4.1) and is proved to be often

misused in the wild (see [Halpin, Hayes, McCusker, McGuinness, and Thompson 2010]).

1http://lod-cloud.net/
2owl: http://www.w3.org/2002/07/owl#
3https://www.w3.org/TR/owl2-profiles/

66

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

A lot of owl:sameAs links are inappropriate, whether they are simply wrong, or because

they are context-dependent.

The research questions of this chapter are as follows:

• How semantics can help to determine the existence or the absence of an identity link

between two entities?

• Is the structure of a knowledge graph in terms of property usage is any help to

discover identity links?

In this chapter, we propose an approach to detect identity links between entities of two

knowledge graphs. This approach takes into account the structure of each knowledge

graph, which consists of the use of explicit (ontology axioms) and implicit (statistics about

properties) characteristics of properties.

The objective of our approach is to find identity links by considering the involved

datasets’ structures. In other words, we use explicit characteristics (from the ontology) like

functional properties, disjoint class axiom, i.e., all available semantics that can help us in

our task. We use OntoSemStats (see Chapter 3) to first detect if searched properties are

used within the knowledge graphs, to avoid unnecessary work if they are lacking. We also

use implicit properties, i.e., how properties are used in datasets. A property is explicitly

defined in the ontology by its domain, its range, the fact that it can have a literal value or

an object value (i.e., another IRI) and is implicitly defined within a dataset by the way it

is used (e.g., how many entities use a given property?). Those explicit and implicit features

may be of great help to discover new identity links. Concerning the implicit features,

we propose to combine similarities function in conjunction with weights according to the

use of each property within datasets. For entities of a given class, we use two types of

weights. The first one is representing the importance of a property, and the second one is

the discriminating power of this property.

67

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

4.2 Background and Notation

In this section, we give the preliminary background knowledge and introduce the

notation. For a more exhaustive background, we refer the reader to [Baader and Sattler

2001].

In all the remainder of this document, KG, KGi denote knowledge graphs, C denotes a

class (or an entity type), and R denotes a property (or predicate). R(a, b) denotes that an

entity a has the property R with the value b. C(a) denotes that a is an entity of class C.

sameAs(a, b) denotes that the entity a is the same as 4 the entity b. We also note S(KG)

(resp. O(KG) and R(KG)) the set of subjects (resp. objects and properties) belonging to

triples from KG. Definition 4.2.1 corresponds to the input of our approach:

Definition 4.2.1 (Source and target knowledge graphs) Let KGs and KGt be two RDF

knowledge graphs such that KGs = ⟨T1,A1⟩ and KGt = ⟨T2,A2⟩. T1 and T2 are T-Boxes,

and A1 and A2 are A-Boxes (see [Baader and Sattler 2001]) such that T1 ⊑ T2

KGs and KGt are called respectively the source and the target knowledge graphs.

Therefore, for this approach, we require that the T-Box of the source knowledge graph

be included in the T-Box of the target knowledge graph. We need for entities in both

knowledge graphs to share the same properties and have the same classes. Indeed, in this

work, we do not deal with the ontology alignment problem for now. Moreover, if there is a

need for alignment, it is possible to use multiple tools that exist and gives good results.

Definition 4.2.2 corresponds to the output of our approach:

Definition 4.2.2 (Linkset) Let LKGs,KGt(R) = {R(a, b)|a ∈ KGs ∧ b ∈ KGt} be a linkset

between KGs and KGt for the property R. LKGs,KGt(R) is thus the set of triples such that

the subject comes from the source knowledge graph, the property is R and object is in the

target knowledge graph.

Example 1 If R = owl:sameAs, {s:London, s:Paris, s:New_Y ork} ⊂ S(KGs) and

{t:London, t:Dublin, t:Paris} ⊂ S(KGt) then LKGs,KGt(R) = {⟨s:London, t:London⟩,
4https://www.w3.org/TR/owl-ref/#sameAs-def

68

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

⟨s:Paris, t:Paris⟩}.

In the next section, we will detail our approach.

4.3 Approach

First, we will see an overview of the main algorithm in Sect. 4.3.1, and then a detailed

description of the different phases of our approach in Sect. 4.3.2.

4.3.1 Approach summary

Our approach to determining whether an owl:sameAs link can be created between two

x1 and x2 entities can be summarized as follows:

1. If there is semantics (see OntoSemStats in Chapter 3), find any semantic proof of

identity. If there is one, stop there.

2. Otherwise, for each common property R between x1 and x2 (such that R(x1, o1) and

R(x2, o2)):

(a) Compute similarity between objects of current common property (e.g., between

o1 and o2) (see Algorithm 2)

(b) Compute the weight of the property R (see Definition 4.3.3)

(c) Compute the discriminating power of the property-value pair ⟨R, o1⟩ (see Defi-

nition 4.3.5)

(d) Aggregate in SubAggregation the similarity, the weight of the property R and

the discriminating power of the property-value pair ⟨R, o1⟩

3. Compute the weight of clues between x1 and x2 in clue (see Definition 4.3.6)

4. Aggregate all SubAggregation variables and the clue weight

In the following section, we will see more details about each step.

69

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

4.3.2 In-depth approach

There are two distinct phases when two entities are compared to know if they are the

same and if an owl:sameAs link must be created between them. The first one relies on

owl:sameAs semantics. The second one is the heart of the approach.

4.3.2.1 Direct semantic proof

The first step of our approach is to check if some OWL 2 features of interest are present

in the knowledge graphs. Hence, we check if the graphs contain instances of our ontology

OntoSemStats (see Chapter 3). Otherwise, we build them with one of our tools (see

Section 3.5). If no feature allowing discovering identity links is present, then we skip this

part. Otherwise, we look for direct semantic proof of equality (or inequality) between the

two inspected resources. Table 4.1 and 4.2 shows the semantics of owl:sameAs that have

been used in our approach. We search for any pattern corresponding to one of the cases

contained in Tables 4.1 or 4.2. If the conditions in the If column holds (are true), then

the column Then can be applied, i.e., we can explicitly add the triples it contained in the

knowledge graph. The first table is used to find logically identical entities, and the second

one is used to find logically different entities.

Example 2 (Rule prp-fp from Table 4.1) Let us suppose we are assessing if the enti-

ties x1 and x2 are the same. If we find that the property P is a functional property 5

(FunctionalProperty(P)) and P (s, x1) and P (s, x2) (either directly in KG1 and KG2 or

by inference), then we know for sure that sameAs(x1, x2) holds. In that case the main

similarity algorithm stops and return 1.

If there is a proof that x1 and x2 are different, the main similarity algorithm stops and

return 0. If no semantic clue has been found, the main similarity algorithm continues to

the next step.

Algorithm 1 illustrate our approach.

The IsSemProof function (line 2 in Algorithm 1) returns a boolean. If a semantic

5https://www.w3.org/TR/owl-ref/#FunctionalProperty-def

70

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

If Then
eq-sym T (?x, owl:sameAs, ?y) T (?y, owl:sameAs, ?x)

eq-trans T (?x, owl:sameAs, ?y)
T (?y, owl:sameAs, ?z) T (?x, owl:sameAs, ?z)

prp-fp

T (?p, rdf :type,
owl:FunctionalProperty)

T (?x, ?p, ?y1)
T (?x, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

prp-ifp

T (?p, rdf :type,
owl:InverseFunctionalProperty)

T (?x1, ?p, ?y)
T (?x2, ?p, ?y)

T (?x1, owl:sameAs, ?x2)

prp-key

T (?c, owl:hasKey, ?u)
LIST[?u, ?p1,. . . , ?pn]

T (?x, rdf :type, ?c)
T (?x, ?p1, ?z1)

. . .
T (?x, ?pn, ?zn)

T (?y, rdf :type, ?c)
T (?y, ?p1, ?z1)

. . .
T (?y, ?pn, ?zn)

T (?x, owl:sameAs, ?y)

cls-maxc2

T (?x, owl:maxCardinality,
“1”̂ x̂sd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?u, rdf :type, ?x)

T (?u, ?p, ?y1)
T (?u, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

cls-maxqc3

T (?x, owl:maxQualifiedCardinality,
“1′′̂ x̂sd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?x, owl:onClass, ?c)

T (?u, rdf :type, ?x)
T (?u, ?p, ?y1)

T (?y1, rdf :type, ?c)
T (?u, ?p, ?y2)

T (?y2, rdf :type, ?c)

T (?y1, owl:sameAs, ?y2)

cls-maxqc4

T (?x, owl:maxQualifiedCardinality,
“1′′̂ x̂sd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?x, owl:onClass, owl:Thing)

T (?u, rdf :type, ?x)
T (?u, ?p, ?y1)
T (?u, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

Table 4.1: Semantics used to find identical entities.

71

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

If Then

prp-asyp
T (?p, rdf :type, owl:AsymmetricProperty)

T (?x, ?p, ?y)
T (?y, ?p, ?z)

T (?x, owl:differentFrom, ?z)

prp-pdw
T (?p1, owl:propertyDisjointWith, ?p2))

T (?x, ?p1, ?y)
T (?z, ?p2, ?y)

T (?x, owl:differentFrom, ?z)

prp-adp

T (?x, rdf :type, owl:AllDisjointProperties)
T (T (?x, owl : members, ?y))

LIST [?y, ?p1, . . . , ?pn]
T (?u, ?pi, ?v)
T (?w, ?pj , ?v)

for each 1 ≤ i < j ≤ n

T (?u, owl:differentFrom, ?w)

cls-com
T (?c1, owl:complementOf, ?c2)

T (?x, rdf :type, ?c1)
T (?y, rdf :type, ?c2)

T (?x, owl:differentFrom, ?y)

cls-maxc1

T (?x, owl:maxCardinality,
“0′′̂̂xsd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?u, rdf :type, ?x)

T (?v, ?p, ?y)

T (?u, owl:differentFrom, ?v)

cls-maxqc1

T (?x, owl:maxQualifiedCardinality,
“0′′̂̂xsd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?x, owl:onClass, ?c)

T (?u, rdf :type, ?x
T (?v, ?p, ?y)

T (?y, rdf :type, ?c)

T (?u, owl:differentFrom, ?v)

cax-dw
T (?c1, owl:disjointWith, ?c2)

T (?x, rdf :type, ?c1)
T (?y, rdf :type, ?c2)

T (?x, owl:differentFrom, ?y)

cax-adc

T (?x, rdf :type, owl:AllDisjointClasses)
T (?x, owl:members, ?y)
LIST [?y, ?c1, . . . , ?cn]

T (?z, rdf :type, ?ci)
T (?w, rdf :type, ?cj)

for each 1 ≤ i < j ≤ n

T (?z, owl:differentFrom, ?w)

Table 4.2: Semantics used to find distinct entities.

72

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

input : x1 ∈ KGs and x2 ∈ KGt (x1 and x2 are entities), hasSem (boolean)
output : the similarity score

1 /* The value of hasSem depends on whether the instance of
OntoSemStats has features from Table 4.1. If nothing found,
then it is false, true otherwise. */

2 if hasSem ∧ IsSemProof(x1, x2) then return SemProofV alue(x1, x2);
3 scores← [];
4 C ← maxC{depthKG(C) | C(x1) ∈ KGs ∧ C(x2) ∈ KGt};
5 /* At worst, C = owl:Thing */
6 foreach R ∈ Rx1 ∩Rx2 do
7 /* see Algorithm 2 for the sim function */
8 (maxSim, o)← max{sim(o1, o2) | (o1, o2) ∈ {o : R(x1, o)} × {o : R(x2, o)}};
9 // the max() function returns a tuple composed of o1 or o2

depending on which one has the highest similarity score, and
this score

10 subscore← Aggregation1(maxSim, (1−WKGs(R, C)), (1−DKGs(C, R, o)));
11 scores.Add(subscore);
12 end
13 /* The more information (triples) there is, the stronger the

decision must be. w represents this force. */

14 clue← |Rx1 ∩Rx2 |
|Rx1 |+|Rx2 |−|Rx1 ∩Rx2 | ;

15 return Aggregation2(clue, SubAggregation(scores));
Algorithm 1: Calculate the similarity score between two entities

proof of equality or inequality is found, it return true. In the same line, SemProofV alue

return either 1 or 0 (one if the clue is in favor of

owl:sameAs, zero otherwise).

4.3.2.2 The use of properties

In this second step of our approach, there are two main ideas. The first one is that

rarely occurring property (among entities of a given class) may be stronger to evaluate

identity between two entities than an omnipresent property (see Example 3). The second

one is that a property-value couple that occurred less is more helpful to find an identity

link (see Example 4). We have been inspired by the fact that when looking for a clue, we

seek for a specificity since peculiarities narrow down the possibilities.

Example 3 If 90% of the People’s entities use the property name but only 8% of those

73

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

input : o1 ∈ KGs and o2 ∈ KGt

output : the similarity score between two objects
1 score← 0;
2 if termType(o1) ̸= termType(o2) then return score;
3 // The termType() function returns a value between resource or

literal, whether the parameter is an RDF resource or a literal
value. Blank nodes are ignored for simplicity

4 if termType(o1) = resource then
5 if semantic proof that o1 = o2 then
6 score← 1;
7 else
8 score← stringSim(fragment(o1), fragment(o2));
9 else if dataType(o1) = dataType(o2) then

10 // The dataType() function returns the data type of a literal,
e.g., string or date.

11 score← simdataT ype(o1)(o1, o2);
12 else
13 score← stringSim(o1, o2);
14 return score;

Algorithm 2: the sim function

entities use the property ownerOf, then ownerOf might help more to determine (the absence

of) an identity relation between two entities.

Example 4 Suppose that we have the following triples: town(a, t1) and town(b, t2). The

discriminating power of the values is important. Suppose we have 100 entities with

the property-value ⟨town, t1⟩ but only 3 entities with the property-value ⟨town, t2⟩, then

clues having the property-value ⟨town, t2⟩ are stronger than clues having ⟨town, t1⟩, since

⟨town, t2⟩ allows discriminating more entities. We name this the discriminating power of

a property-value pair.

Hence, for each common property between the two entities x1 and x2, a similarity score is

computed between objects. For example, if we have country(x1, o1) and country(x2, o2),

we compute the similarity sim(o1, o2)(∈ [0, 1]). This similarity depends on the nature of o1

and o2 (IRIs, typed literals, etc.). We will see more details later. Each of those similarities

will be weighted based on intuitions explain in Example 3 and 4. More formally, before

defining the weight of a property, we need two preliminary definitions:

74

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

Definition 4.3.1 Let NSKG(C) = |{s : ∃(R, o) ∈ R(KG)×O(KG), R(s, o) ∈ KG ∧C(s) ∈

KG}| the number of subjects from KG that are of the class C.

Example 5 In the following examples, we will use this KG = {Woman(ada), Man(lennon),

Woman(kahlo), Man(obama), Man(einstein), age(lennon, 26), age(obama, 47), age(einstein,

26), age(kahlo, 37), nationality(ada, brithish)}.

If C = Woman, then NSKG(Woman) = 2 (kahlo and ada).

Definition 4.3.2 Let NSKG(C, R) = |{s : ∃o ∈ O(KG), R(s, o) ∈ KG ∧ C(s) ∈ KG}| be

the number of subjects of C participating in triples having the property R in KG.

Example 6 With the knowledge graph from Example 5, C = Woman and R = Age, then

NSKG(Woman, Age) = 1 (only kahlo has an age provided).

Now, we can define the weight of a property (as explained in Example 3):

Definition 4.3.3 (weight of a property) The weight of the property R on the class C in

KG is defined by WKG(R, C) = NSKG(C,R)
NSKG(C) and WKG(R, C) ∈ [0, 1].

This weight WKG(R, C) represents the percentage of entities of a class (or class) C having

the property R in their description.

Example 7 With knowledge graph from Example 5, then WKG(Age, Woman) =
NSKG(W oman,Age)

NSKG(W oman) = 1
2 = 50%.

We will next define the second intuition seen in Example 4, which is the discriminating

power of property-value pair:

Definition 4.3.4 Let NSKG(C, R, o) = |{s : ∃s, R(s, o) ∈ KG∧C(s) ∈ KG}| be the number

of subjects of class C participating in triples having the property R and the object o in KG.

Example 8 With the knowledge graph from Example 5, C = Man, R = Age and o = 26,

then NSKG(Man, Age, 26) = 2 (einstein and lennon).

Now, we can define the discriminating power :

75

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

Definition 4.3.5 (discriminating power) The discriminating power of a property-value pair

⟨R, o⟩ on the class C in KG is defined by DKG(C, R, o) = NSKG(C,R,o)
NSKG(C,R) and DKG(C, R, o) ∈

[0, 1].

The lower the number DKG(C, R, o), the more the property-value ⟨R, o⟩ makes it possible

to differentiate between two entities.

Example 9 With the knowledge graph from Example 5, then

DKG(Man, Age, 26) = NSKG(Man,Age,26)
NSKG(Man,Age) = |{lennon,einstein}|

|{lennon,einstein,obama}| = 2
3 = 66% and

DKG(Man, Age, 47) = NSKG(Man,Age,47)
NSKGMan,Age = |{obama}|

|{lennon,einstein,obama}| = 1
3 = 33%. In combina-

tion with the property Age and for Man entities, the object “47" selects only one entity

(obama) with its discriminating power of 33%, against two (lennon, einstein) for the object

“26" with a discriminating power of 66%.

To sum up, for each common property between two entities, we compute a similarity score

weighted by the weight of the property and the discriminating power of the property-value

pair.

Finally, we need to aggregate those weighted similarity scores. In the aggregation

process, we take into account the fact that the more clue there is, the more trustworthy

the result will be (see line 14 in Algorithm 1).

Example 10 Suppose that we have three entities a, b and c where a is from KGs and b

and c are from KGt. On the one hand, if we have four clues between a and b, and on the

other hand, eight clues between a and c then we strengthen the second result. We give a

bonus to the comparison with the more clues to present.

Therefore, after aggregating all weighted similarity scores, we use another weight to either

penalize or reward the result according to the number of common properties between the

compared entities. To do this, we compute the following weight:

Definition 4.3.6 (weight of clues) Let x1 and x2 be two entities. A clue is the usage of a

property by the two entities, whatever the values of the triples are. We define cluex1,x2 ∈ [0, 1]

76

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

as the weight of clues between x1 and x2 with the following formula:

cluex1,x2 = | Rx1 ∩Rx2 |
| Rx1 | + | Rx2 | − | Rx1 ∩Rx2 |

(4.1)

Example 11 If Rx1 = {rdfs:label, foaf :name,dbo:birthP lace, dbo:birthDate}, Rx2 =

{rdfs:label, dbo:birthDate,

dbo:deathDate} and Rx3 = {rdfs:label, foaf :name, dbo:birthP lace, dbo:deathDate}, then

Rx1 ∩Rx2 = {rdfs:label,

dbo:birthDate}, cluex1,x2 = 2
4+3−2 = 2

5 = 0.4 and Rx1 ∩Rx3 = {rdfs:label, foaf :name,

dbo:birthP lace} and cluex1,x3 = 3
4+4−3 = 3

5 = 0.6. We can see in the second case that

there is more information to support the approach. x1 and x3 have more information to be

compared than x1 and x2.

Some additional points need explanation. Line 2 from Algorithm 1 corresponds to the

stage where we search for direct semantic features. Furthermore, in line 4, we use the

depthKG(C) function that is defined by the following:

Definition 4.3.7 (depth of a class) Let depthKG(C) be the distance between the class C

and the class T (i.e., owl:Thing in RDF) in KG. depthKG(C) is called the depth of C.

By definition, ∀KG, depthKG(T) = 0. (The Top class is equivalent to owl:Thing in RDF,

see [Baader, Horrocks, and Sattler 2008] for more details.)

Example 12 If KG = dbo6 then depthdbo(Agent) = 1 and depthdbo(Biologist) = 4 since

Agent is a direct sub class of owl:Thing and Biologist ⊑ Scientist ⊑ Person ⊑ Agent ⊑

owl:Thing.

We retrieve the deepest common class between x1 and x2, i.e., the most specific. It is this

class that will be used to compute the weight of the properties and the discriminating power

of the property-value pairs. The idea is that if, for example, two entities are scientists, we

will obtain better results if we use the Scientist class than the Human class.

Finally, Algorithm 2 shows how our approach handles the similarity between two objects.

The fragment function gives the last part of an IRI, i.e., after the last / or #, to compare
6DBpedia ontology: http://wiki.dbpedia.org/services-resources/ontology

77

http://wiki.dbpedia.org/services-resources/ontology

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

IRIs in last resort. We compare data types, and if they match, we use an appropriate

similarity measure (line 11), e.g., if they are both dates, then we use a similarity function

working with dates. If both are resources, we check for direct semantic proof (as we have

seen it before), and if we do not find anything, we trivially compare IRIs. There has been

no attempt to use recursivity in this part yet.

Furthermore, in the main algorithm (Algo. 1), there are three different aggregation

functions (lines 10 and 15) that are used. We used the mean for all three.

4.4 Experiments

In this section, to evaluate our approach, we will present two experiments performed

on DBpedia/Wikidata and the SPIMBENCH SANDBOX track from OAEI 2017 and then

discuss their results.

4.4.1 Results

We have developed a prototype in C# that can be run either on Linux or Windows

machines. It is also available as a Docker image. We choose the open-source library

dotNetRDF7 to handle SPARQL, OWL, and RDF parts. All experiments are performed

on a computer with an I7 processor (3.10 GHz) and 16 Go of RAM. All our code and

datasets can be found on this Github repository, so our experiments are reproducible:

https://github.com/PHParis/im_prototype.

For each experiment, we have calculated the precision, recall, and F-measure with result

linkset as follows:

• True positive (tp): number of alignments predicted (by our approach) that are actually

true

• False positive (fp): number of alignments predicted and actually wrong

• False Negative (fn): number of true alignment not found among those predicted by

our approach
7https://github.com/dotnetrdf/dotnetrdf

78

https://github.com/PHParis/im_prototype
https://github.com/dotnetrdf/dotnetrdf

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

• Precision = tp
tp+fp

• Recall = tp
tp+fn

• F-measure = 2×P recision×Recall
P recision+Recall

4.4.1.1 First experiment

For the first experiment, we performed an instance matching task on real-world and

well-known knowledge graphs. Thus, we used subsets of DBpedia and Wikidata. More

precisely, we used DBpedia Wikidata8 in place of Wikidata since it is expressed with

DBpedia ontology. Hence, we respect the following condition from Definition 4.2.1: T1 ⊑ T2

(source TBox must be a subset of target TBox). The version of DBpedia used is “2016-10”,

and the version of DBpedia Wikidata is “03.30.2015”.

Now we describe how we built our two test knowledge graphs from real-world datasets.

In the source knowledge graph KGs, we have selected entities of persons from DBpedia

having at least 15 homonyms (according to rdfs:label) in Wikidata. We arbitrarily chose 15

homonyms to have a sufficient challenge without having to recover too many entities (the

scaling of our approach is not our main concern at the moment). We queried all triples

mentioning one of these entities to construct the source knowledge graph. In the target

knowledge graph KGt, we retrieved all homonyms (belonging to DBpedia Wikidata) of

entities from our DBpedia selection. For example, the entity dbpedia:John_Williams has

the label “John Williams”, and there are 88 distinct entities in Wikidata with the label

“John Williams”. The DBpedia selection contains all triples having dbpedia:John_Williams

as subject or object, and the DBpedia Wikidata contains all triples having one of the 88

entities as subject or object. From both source and target knowledge graphs, we deleted

owl:sameAs links after having assessed them (none of them were erroneous). There were

36 owl:sameAs. Those links were then used as a gold standard. The source knowledge

graph contains 277 entities, 3468 triples, and 36 candidate entities belonging to the class to

be matched with the target knowledge graph. The target knowledge graph contains 1170

entities, 7667 triples, and 552 candidate entities belonging to the class to be matched with

8http://wikidata.dbpedia.org/

79

http://wikidata.dbpedia.org/

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

the source knowledge graph.

After applying our approach (that took 12 seconds), we evaluated the generated linkset.

We obtained a precision and a recall of 91.7%. In detail, our approach produced 33 true

positives, 3 false positives, and 3 false negatives.

Therefore, our approach works well on real-world data. Next, we go further and compare

it with other approaches.

4.4.1.2 Second experiment

The goal of this experiment is two folds. First, we want to compare our approach

with state of the art approaches. Secondly, other approaches we selected all use advanced

terminology or structural comparison techniques (see Sect. 2.3) to perform their task.

Hence, we want to prove that a structure-based approach with simple string matching

can perform as well as these approaches that use more advanced techniques. To compare

our approach with others (see Sect. 2.3), we performed tests using the SPIMBENCH

SANDBOX task from OAEI 20179. This task has a source and target knowledge graphs

and a gold standard. A class name is provided, so only the entities of this class might

be linked. SPIMBENCH SANDBOX datasets are alterations of an original one through

value-based, structure-based, and semantics-aware transformations. The source knowledge

graph contains 1432 entities, 10883 triples, and 349 candidate entities belonging to the

class to be matched with the target knowledge graph. The target knowledge graph contains

1453 entities, 10868 triples, and 443 candidate entities belonging to the class to be matched

with the source knowledge graph.

Table 4.3 shows a comparison of our results with each participant of the OAEI 2017

Instance Matching Track for the SPIMBENCH SANDBOX’s task. In detail, our approach

produced 298 true positives, 51 false positives, and one false negative.

4.4.2 Discussion

In the first experiment, results are good since we obtain 91.7% for all measures. Right

links are well found, indicating that our approach is promising. Precision and recall are the
9http://islab.di.unimi.it/content/im_oaei/2017/

80

http://islab.di.unimi.it/content/im_oaei/2017/

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

Participants Precision Recall F-Measure
SPIMBENCH Sandbox

AML 0.849 1.000 0.918
I-Match 0.854 0.997 0.920
Legato 0.980 0.730 0.840
LogMap 0.938 0.763 0.841
Our approach 0.854 0.996 0.920

Table 4.3: Comparison with other approaches

same because, several times, a wrong candidate has been selected instead of the right one.

This candidate selection issue is due to similarity scores that are too close between the

right candidate and the (wrongly) selected one. It seems that our aggregation functions

(see Section 4.3.2.2) are responsible for both true and false negatives.

In the second experiment, for the SPIMBENCH SANDBOX knowledge graph, our

approach performed well since recall is 99.6% and precision 85.4%. We reached the same

F-Measure as I-Match, which was the best competitor on F-measure. In the same way

as in the first experiment, several times, a wrong candidate has been selected instead of

the correct one. The simple aggregation of the weights is responsible for most of the false

positives. Besides, the use of more advanced similarity calculation techniques could improve

candidate selection and thus reduce the number of false positives. For example, external

knowledge graph or NLP techniques can improve the comparison of strings.

One of the weaknesses of our approach we observed is the case where a wrong candidate

is proposed with more corresponding property-value pairs of lesser importance than the right

candidate has corresponding property-value pairs of importance. When entity descriptions

are too close, our approach may not detect false positives.

There are several areas for improvement, like the three different agg, as mentioned in

the previous section. We use simple arithmetic mean, and we must investigate other ways

to aggregate the sub-scores (i.e., scores for each common property from the loop line 6 in

Algorithm 1) and the three weights (i.e., discriminating power and weight of a property,

and the quantification of information). Also, we focus on the source knowledge graph

for computing the discriminating power and weight of a property. It may be interesting

81

CHAPTER 4. SEMANTICS AND PREDOMINANCE OF PROPERTIES

to use both knowledge graphs in the process. Likewise, we use only one common class

between the two entities, although to use all common classes may strengthen the score.

Scalability should also be addressed because if there are more than 1000 entities to match,

our approach takes more than ten minutes to complete. This scalability issue is mainly

due to the absence of any code optimization for the moment. We also need to improve

the post-processing part concerning the validation of matches found. In fact, for now, we

simply select for each source entity the best candidate in the target knowledge graph, but

if the target does not contain an identical entity, then we produce a false positive. Finally,

properties that are not shared by entities (we are trying to match) are discarded, but they

may provide hints too. Unlike some other approaches, we do not use external resources

as background knowledge. Furthermore, some approaches perform post-processing to

eliminate false positives. We could benefit from these last two points, so our approach

combining statistics on structure and semantics can be improved.

4.5 Conclusion

In this chapter, we have proposed a fully automatized approach to perform an instance

matching task between two knowledge graphs sharing their T-Boxes. This approach uses

semantics at its disposal but also uses statistics about properties and property-value pairs

according to the most specific common class between the compared entities.

The results show that our approach is a promising way towards better interlinking. The

recall is good, which means that our approach works well to find links.

Regarding our thesis framework, we use the predominance of properties to compute a

vector that is a weighted mean representing a set of indiscernible properties (see Chapter 5).

82

Chapter 5

Propagation of properties

This chapter is based on the following publications:

• Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Propagation contextuelle

des propriétés pour les graphes de connaissances : une approche fondée sur les

plongements de phrases. In Ingénierie des Connaissances, 2020b (To be published)

• Pierre-Henri Paris, Fayçal Hamdi, Nobal B Niraula, and Samira Si-Said Cherfi.

Contextual propagation of properties for knowledge graphs: A sentence embedding

based approach. In International Semantic Web Conference, 2020d (under review)

With the ever-increasing number of RDF-based knowledge graphs, the number of inter-

connections between these graphs using the owl:sameAs property has exploded. Moreover,

as several works indicate, the identity as defined by the semantics of owl:sameAs could be

too rigid, and this property is therefore often misused. Indeed, identity must be seen as

context-dependent. These facts lead to poor quality data when using owl:sameAs inference

capabilities. Therefore, contextual identity could be a possible path to better quality

knowledge. Unlike classical identity, with contextual identity, only certain properties can

be propagated between contextually identical entities. Continuing this work on contextual

identity, we propose an approach, based on sentence embedding, to find semi-automatically

a set of properties, for a given identity context, that can be propagated between contextually

83

CHAPTER 5. PROPAGATION OF PROPERTIES

identical entities. We conducted qualitative and quantitative experiments to validate our

approach. The use cases provided demonstrate that identifying the properties that can be

propagated helps users achieve the desired results that meet their needs when querying a

knowledge graph, i.e., more complete and accurate answers.

The rest of the chapter is organized as follows. In the following section, we motivate

the purpose of this work. Then, in Section 5.3, we present our approach. In Section 5.4,

we present the quantitative and qualitative experiments we have conducted. Finally, we

conclude and define the next directions for our future work.

5.1 Introduction

Open and RDF-based knowledge graphs, like prominent Wikidata1 or DBpedia2, are

continuously growing in terms of size and usage. Consequently, the number of entities

described in those KGs leads to a problem for both data publishers and data users: how

to know if two entities are the same or not? To interlink knowledge graphs, the

owl:sameAs property has been defined by the W3C3 in 2004 to link entities that are

allegedly the same. Indeed, a (real world) object is described among several knowledge

graphs, and those descriptions are linked thanks to the owl:sameAs property. However, the

semantic definition of owl:sameAs is very strict. It is based on Leibniz’s identity definition,

i.e., the identity of indiscernibles (see Section 2.2).

Hence, two entities are considered identical if they share all their ⟨ property,value ⟩

couples in all possible and imaginable contexts. In other words, two entities are identical if

all their properties are indiscernible for each value. Once an identity link is stated

between two entities, it is possible to use ⟨property, value⟩ couples from one entity to

another. However, it is a very strong assertion to state that two objects are the same

whatever the context. From a philosophical point of view, there are multiple counter-

arguments to the definition of Leibniz’s identity. For example, if we consider two glasses

from the same set of glasses, they are indiscernible from each other and yet they are two

1https://www.wikidata.org
2https://wiki.dbpedia.org/
3https://www.w3.org/TR/owl-ref/

84

https://www.wikidata.org
https://wiki.dbpedia.org/
https://www.w3.org/TR/owl-ref/

CHAPTER 5. PROPAGATION OF PROPERTIES

different physical objects. Is a person the same as she was ten years ago?

It is also a technical problem because of the open-world assumption [Drummond

and Shearer 2006], on the one hand, and on the other hand, because of what a data

publisher has in mind that could be different from what the user expects when using

data. Besides, when data is published, it is “almost” impossible to know the consen-

sus behind the decision of creating an owl:sameAs link. Several works ([Halpin, Hayes,

McCusker, McGuinness, and Thompson 2010] or [Ding, Shinavier, Finin, and McGuin-

ness 2010]) have demonstrated that the use of owl:sameAs was inadequate. Indeed,

established links might be considered as true only in specific contexts. According to

[Noy, Gao, Jain, Narayanan, Patterson, and Taylor 2019], the problem of identity man-

agement in knowledge graphs remains one of the top challenges in the industry.

As a first intuition, a contextual identity between two entities might be seen as a subset

of properties Π for which these entities share the same values for each p ∈ Π.

Example 13 Two different generic drugs Drug1 and Drug2 can be identical when consid-

ering the active ingredient. If a knowledge graph contains the triples ⟨ Drug1 activeIngredi-

ent Molecule1 ⟩ and ⟨Drug2 activeIngredient Molecule1⟩, then Drug1 ≡activeIngredient

Drug2 when the context is activeIngredient.

One of the core features of owl:sameAs is to be able to propagate all properties

from an entity to other identical entities. Hence, owl:sameAs allows discovering more

knowledge and to increase completeness. In the same way, contextual identity must help

to discover more knowledge and to increase completeness, but only under specific

circumstances. So, to be useful, a contextual identity must specify what is happening with

properties that are not part of the context. In other words, an identity context must

have propagable properties.

Example 14 Following the example 13, stating only Drug1 ≡activeIngredient Drug2 has a

limited interest, if we do not know what to do with other properties besides activeIngredient.

Considering the context activeIngredient, the property targetDisease is propagable, and

if the statement ⟨ Drug1 targetDisease Disease1 ⟩ exists then we can state that

85

CHAPTER 5. PROPAGATION OF PROPERTIES

⟨Drug2 targetDisease Disease1⟩. But if we consider the property excipient, then it is

not propagable.

Moreover, the ability to propagate a property between entities depends on the context,

i.e., the same property might be propagable in a context C1 and not propagable in a context

C2.

Several works have attempted to propose a solution to the contextual identity. [Beek,

Schlobach, and van Harmelen 2016], [Idrissou, Hoekstra, van Harmelen, Khalili, and

van den Besselaar 2017] and [Raad, Pernelle, and Saïs 2017] defined three different ways

to handle identity under a given context. However, none of those works propose a solution

to discover properties that can be propagated given a specific context.

Research questions: With a given identity context between two entities, how to

find properties that can be propagated? Is it possible to find propagable properties

(semi-)automatically?

In this chapter, based on the context definition of [Idrissou, Hoekstra, van Harmelen,

Khalili, and van den Besselaar 2017], we propose an approach to find propagable

properties to facilitate knowledge discovery for users. Instead of manually listing the

propagating properties as in [Idrissou, Hoekstra, van Harmelen, Khalili, and van den

Besselaar 2017], we automatically identify the propagating properties for a given context

using semantic textual similarity, significantly reducing burden to users. The semantic

similarity is based on the sentence embeddings corresponding to the textual descriptions of

the properties. Our intuition is inspired by Tobler’s first law [Tobler 1970], that is:

“Everything is related to everything else, but near things are more related than

distant things.”

Therefore, we hypothesize that, from a semantic point of view, the closer a

property is to the identity context, the more likely it could be a right candidate

for propagation. So, the idea is to compute a distance between indiscernible

properties and candidate properties for propagation. Consequently, numbers, and

in our case numerical vectors, are best suited to compute this distance. A numerical

86

CHAPTER 5. PROPAGATION OF PROPERTIES

representation of the textual description of each property through its rdfs:comment4 or

schema:description5 can provide a basis to get this vector. Indeed, sentence embeddings of

properties descriptions give us numerical vectors which distributions in the vector space

comply with the semantic similarity of the sentences. We validated our approach through

quantitative and qualitative experiments.

In this work, we propose to remove partially this burden from the user, i.e., to semi-

automatically compute the propagation set of properties given an indiscerni-

bility set of properties. For this, we will use a sentence embedding approach (presented

in Section 5.3.3) to compute embeddings of (the description of) properties to discover

propagable properties with respect to a given identity context (as defined in [Idrissou,

Hoekstra, van Harmelen, Khalili, and van den Besselaar 2017]).

5.2 Motivation

Sometimes, real-world entities may be close regarding their properties but not exactly

the same. For example, the French capital, Paris, is both a city and a department (an

administrative subdivision of the French territory). While considering that the city and

the department are the same concerning their geography, they are two distinct entities

administratively (or legally) speaking. Now, suppose both Paris are represented in a

knowledge graph as distinct entities, and both are linked to (possibly distinct) movie

theaters. If one wants to retrieve movie theaters located in the city of Paris, results will

not be complete if some of them are linked to the department (see Figure 5.1).

A French citizen might know this ground truth, but how to allow an automated agent

to discover this fact? Contextual identity is a possible answer to this question, i.e., a set of

properties for which values are the same for both entities. Considering the present example,

both Paris (city and department) are geographically the same, and some properties related

to geography might be propagated. In Figure 5.1, the red properties (geo and label) are

indiscernible (have the same values), and the blue properties (located in) are propagating.

In the real world, movie theaters located either in the city or the department, according to
4https://www.w3.org/TR/rdf-schema/#ch_comment
5https://schema.org/description

87

https://www.w3.org/TR/rdf-schema/#ch_comment
https://schema.org/description

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.1: Excerpt of a knowledge graph about Paris, France. The properties in red are
indiscernible for both the city and the department. The properties in blue are propagating
given the red properties are indiscernible.

Figure 5.2: Simplified identity lattice from Figure 5.1: each node is an indiscernible set of
properties. Only the red nodes have similar entities.

88

CHAPTER 5. PROPAGATION OF PROPERTIES

the knowledge graph, are located in the same place. Although the two entities do not share

the same values for the located in property, this one is related to the geographic context.

Indeed, for a human agent, the located in property might be obviously propagated between

the two entities.

While we expected to have the four movie theaters located in Paris, the query in

Listing 5.1 will only return movie theaters 1, 2, and 3 (see Figure 5.1).

SELECT DISTINCT ? movieTheater WHERE {
? movieTheater : l o ca t ed In : CityOfPar is .

}

Listing 5.1: SPARQL query retrieving all movie theaters in Paris, France.

Thus, discovering such contexts of identity between entities might improve the comple-

tion of query results. Our intuition is inspired by Tobler’s first law ([Tobler 1970]), that

is:

“Everything is related to everything else, but near things are more related than

distant things.”

Therefore, we hypothesize that, from a semantic point of view, the closer a

property is to the identity context, the more likely it could be a right candidate

for propagation. In the previous example, located in clearly refers to a geographic fact,

and the context of identity is about geography since it is composed of geographical

coordinates. So, the idea is to compute a distance between indiscernible properties

and candidate properties for propagation. Consequently, numbers, and in our case,

numerical vectors, are best suited to compute this distance. A numerical representation of

the textual description of each property through its rdfs:comment or schema:description

can provide a basis to get this vector. Indeed, the embedding of property descriptions gives

us numerical vectors whose distributions in vector space respect the semantic similarity of

sentences.

89

CHAPTER 5. PROPAGATION OF PROPERTIES

5.3 Approach

In this section, before diving deeper into the core approach, we give some definitions

needed later to describe the approach.

5.3.1 Preliminaries

We first need to formalize the definition of a propagable property.

Definition 5.3.1 (Propagable Property) The property p can be propagated from an

entity e1 to an entity e2 ↔ (∀o : ⟨e1, p, o⟩ → ⟨e2, p, o⟩).

As seen in Section 2.5, several propositions have been made to define an identity context.

We choose the one from [Idrissou, Hoekstra, van Harmelen, Khalili, and van den Besselaar

2017] since it is the only one that considers the propagation of properties. They give the

following definition of the identity context:

Definition 5.3.2 (Identity Context) An identity context C = (Π, Ψ,≈) is defined by two

sets of properties (Π and Ψ) and an alignment procedure (≈). Π is the indiscernibility

set of properties (equation 5.1) and Ψ is the propagation set of properties (equation 5.2).

In the following, x and y are entities.

x =(Π,Ψ,≈) y ↔ ∀(p1, p2) ∈ Π2 with p1 ≈ p2

and ∀v1, v2 with v1 ≈ v2 : ⟨x, p1, v1⟩ ↔ ⟨y, p2, v2⟩
(5.1)

x =(Π,Ψ,≈) y → ∀(p1, p2) ∈ Ψ2 with p1 ≈ p2

and ∀v1, v2 with v1 ≈ v2 : ⟨x, p1, v1⟩ ↔ ⟨y, p2, v2⟩
(5.2)

Moreover, we define the level of a context |ΠC | as the number of its indiscernible

properties.

In the case where similar entities according to an identity context belong to the same

knowledge graph, it is not necessary to have an alignment procedure.

90

CHAPTER 5. PROPAGATION OF PROPERTIES

An entity can have several identity contexts, depending on properties in the indiscerni-

bility set Π. Indeed, two different combinations of properties can give different sets of

similar entities. The identity lattice of all identity contexts of an entity e is defined as

follows (see Figure 5.2):

Definition 5.3.3 (Identity Lattice) An identity lattice L is a lattice, where each element

is an identity context. The set inclusion between indiscernibility set of properties of each

context is the binary relation responsible for the partial order.

The last notion is the seed of a lattice or a context that we define as follows:

Definition 5.3.4 (Seed of a lattice or a context) Each context of a lattice is con-

structed from the same entity e for all the contexts of the lattice. This entity e is called

the seed of the lattice.

Indeed, to build an identity lattice, we need to start from a seed, despite the fact that

the lattice could potentially be valid with another seed (see Figure 5.2).

Now that we have defined the necessary concepts, we will explain the core of our

approach.

5.3.2 Computation of contexts

In this section, we explain how to compute a lattice and its contexts.

We present the first algorithm (see Algo. 3) that computes an identity lattice 6. It

takes as input the seed entity, the source knowledge graph to which the seed belongs,

the target knowledge graph (possibly the same as the source knowledge graph) and an

alignment procedure if the two knowledge graphs are distinct. The main idea is to start

by computing level one identity contexts with each seed’s property and finally combine

those contexts to obtain upper-level identity contexts. The first part of a context is its

indiscernibility set, from which we then get similar entities, to finally obtain candidate

properties for propagation and in the end propagable properties.

6The detail of all presented algorithms are available on the GitHub repository.

91

CHAPTER 5. PROPAGATION OF PROPERTIES

Data: KG1: the source KG, KG2: the target KG, seed: an entity of KG1, ≈: an
alignment procedure between KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the target
KG

1 L = ∅;
2 /* Get all explicit and implicit types of the seed */
3 Tseed = {t : ⟨seed rdf :type t⟩ ∈ KG1};
4 /* Then we get all logically identical entities (see Chapter 3 and

4) */
5 I = getLogicallyIdenticalEntities(seed,KG1);
6 /* the following will create all contexts of the level 1 (with only

one indiscernible property) */
7 for each property p of seed do
8 candidateEntities = ∅;
9 for each value o such as ⟨seed p o⟩ ∈ KG1 do

10 /* entitiesp,o is the set of indiscernible entities with seed
with respect to the p, o couple */

11 entitiesp,o = {e : (∃(p′, o′), p′ ≈ p, o′ ≈ o, ⟨e p′ o′⟩ ∈ KG2) ∧ (∃t ∈ Tseed, t′ ≈
t, ⟨e rdf :type t′⟩ ∈ KG2)};

12 if entitiesp,o ̸= ∅ then
13 candidateEntities = candidateEntities ∪ {entitiesp,o};
14 end
15 end
16 /* entitiesp is the set of indiscernible entities with seed with

respect to the property p */
17 entitiesp = (

⋂︁
candidateEntities) ∪ I;

18 Ψ = getPropagationSet(seed, entitiesp, {p});
19 if Ψ ̸= ∅ then
20 Π = {p};
21 C = (Π, Ψ,≈);
22 L = L ∪ C;
23 end
24 end
25 /* Now we can combine contexts of the same level */
26 return constructUpperLevels(L,KG1,KG2, seed, I,≈)

Algorithm 3: createLattice: calculate identity lattice of an entity.

92

CHAPTER 5. PROPAGATION OF PROPERTIES

Data: L: the lattice with only level 1 contexts, KG1: the source KG, KG2: the
target KG, seed: an entity of KG1, I: the set of logically identical entities,
≈: an alignment procedure between KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the target
KG

1 /* lvl is the current level in the lattice */
2 lvl = 1;
3 while ∅ /∈ L do
4 contexts = ∅;
5 for (C1, C2) ∈ {(Ci, Cj) ∈ L × L : |ΠCi | = |ΠCj | = lvl, i > j} do
6 Π = ΠC1 ∪ΠC2 ;
7 /* getEntities function gives the set of entities that are

similar under the given identity context in the given KG */
8 entities = getEntities(C1,KG2) ∩ getEntities(C2,KG2);
9 if entities ̸= ∅ and Π /∈ L then

10 entities = entities ∪ I;
11 Ψ = getPropagationSet(seed, entities, Π);
12 /* see Algo. 5 */
13 if Ψ ̸= ∅ then
14 C = (Π, Ψ,≈);
15 contexts = contexts ∪ C;
16 end
17 end
18 end
19 L = L ∪ contexts;
20 lvl = lvl + 1;
21 end
22 return L

Algorithm 4: constructUpperLevels: calculate uper levels of the identity lattice of
an entity.

93

CHAPTER 5. PROPAGATION OF PROPERTIES

We first step is to compute all logically identical entities to the seed (line 5). Indeed,

based on Chapters 3 and 4, we search for all entities that can be proven to be identical

to the seed by logical inferences, i.e., with the help of semantics. As a matter of fact,

we believe that we should consider that identity is context-dependent most of the time,

nevertheless we must not discard all classical identity links. We need to distinguish between

owl:sameAs links produced with statistical approaches and the likes and those produced

with logical evidence. The former cannot be trusted, unlike the latter, because semantics

is one of the cornerstones of knowledge graphs. In the approach, we delete all owl:sameAs

links to recompute only those that are logically grounded. Hence, using our ontology

OntoSemStats (see Chapter 3), we can determine if the necessary OWL 2 features (see

Section 4.3.2.1) are available in the knowledge graph. If so, we infer entities that are the

same as the seed. The purpose of I is to increase the number of candidate properties for

propagation, as explained later. The next important step, line 7, is to compute all level 1

identity contexts (see Definition 5.3.2). Indeed, for each property p of the seed, there is

exactly one identity context (its indiscernibility set is Π = {p}). Later, identity contexts

with only one indiscernibility property will be merged to give identity contexts of higher

levels. Next, we retrieve similar entities entitiesp to the seed that have the same value(s)

for the given property p. If p is multi-valuated, then entities in entitiesp are similar to the

seed for all values o such that ⟨seed p o⟩. It is worth noting that, when filling entitiesp, we

search only entities that have the same type(s) with the seed. This is because we want to

avoid absurd results. It also has the advantage of lowering the number of possible identity

contexts to compute. So, in line 17, entitiesp is the set of all entities similar to the seed for

the property p. Moreover, we add to this set the set I of logically identical entities to the

seed as explained at the beginning of the paragraph. entitiesp will next be used to get all

properties that could potentially be propagated. Finally, based on entitiesp, we compute

the propagation set Ψ (line 11) as explained in the following section (Section 5.3.3).

The second step (see Algo. 4) is to compute upper-level identity contexts based on

those from level 1. The loop (line 3) of the algorithm calculates these upper levels by

combining contexts of the same level and stops when it cannot construct new upper-level

identity contexts. This calculation is based on an identity lattice operator which is the set

94

CHAPTER 5. PROPAGATION OF PROPERTIES

inclusion on indiscernibility sets. For example, a level 2 context is built on two contexts

from level 1. Again, to lowering the number of possible identity contexts to compute, if

there is no similar entity to the seed for a given context Ci, there is no need to compute

higher-level contexts based on Ci.

5.3.3 Sentence embedding

Our approach for computing propagation set (Line 11 in Algo. 4) is elaborated in

Algo. 5. It is based on sentence embedding which maps a sentence to a numerical vector.

Ideally, semantically close sentences appear nearby in the numerical vector space.

Data: seed: the entity that generated Π,
entities: set of entities similar to seed with respect to Π,
Π: an indiscernibility set
Result: Ψ: a propagation set

1 /* computation of the embeddings of each property in Π by using one
of the encoder */

2 indiscernibilityEmbeddings← getEmbeddings(Π);
3 /* Based on Chapter 4, we compute the weighted mean of the vectors

with the weight of each property (see Definition 4.3.3) */
4 meanV ector ← mean(indiscernibilityEmbeddings);
5 /* getCandidateProperties function returns the set of all candidate

properties for propagation */
6 candidates← getCandidateProperties(Π, {seed} ∪ entities);
7 /* then compute their embeddings */
8 candidatesEmbeddings← getEmbeddings(candidates);
9 Ψ← ∅;

10 for candidateV ector in candidatesEmbeddings do
11 similarity ← cosineSimilarity(candidateV ector, meanV ector);
12 if similarity ≥ threshold then
13 Ψ← Ψ ∪ {candidateV ector};
14 end
15 end
16 return Ψ

Algorithm 5: getPropagationSet: calculate the propagation set.

Sentence embedding is a technique that maps a sentence to a numerical vector. Ide-

ally, semantically close sentences are represented by close vectors in the numerical space

considered.

95

CHAPTER 5. PROPAGATION OF PROPERTIES

Example 15 “A soccer game with multiple males playing” and “Some men are playing a

sport” are semantically close, thus their vectors should be close in terms of distance.

Reciprocally, two sentences that are not semantically related should have distant vectors.

Example 16 “A man inspects the uniform of a figure in some East Asian country” and

“The man is sleeping” should have distant vectors.

In Section 5.3.3, the context of word w is a “window”, i.e., words before and after

w that can be found in a sentence. Those vectors enable usage of various mathematical

operators that are obviously not available with chains of characters. One of the first major

work in that field is Word2Vec [Mikolov, Chen, Corrado, and Dean 2013] which captures

co-occurrence of words. Each word is processed atomically and provides an embedding

through two possible and distinct approaches, namely Skip–Gram and Continuous Bag of

Words (CBOW). While CBOW aims is to predict a word given its context (i.e., previous

and following words in a sentence), Skip–Gram will try to predict words with which a

word is usually seen. Similarly, GloVe [Pennington, Socher, and Manning 2014] provides

embeddings for single words and might use Skip–Gram or CBOW. But GloVe, instead of

capturing co-occurrence, focuses (in the end) on the count of appearance among contexts

(i.e., previous and following words in a sentence). Then, fastText [Bojanowski, Grave,

Joulin, and Mikolov 2017] is an extension of Word2Vec that treats words as n-gram of

characters instead of as an atomic entity. N-grams sizes depend on input parameters.

N-grams usage allows a better understanding of small words. Each n-gram is mapped to a

vector and the sum of these vectors is the representation of the word. Another advantage

of fastText is its capacity to provide an embedding even for unknown words, thanks to

n-grams usage. While the three previous works are best suited to work with atomic words,

the following computes embedding for a whole sentence.

The reasons behind using sentence embedding instead of a more classical distance

measures, e.g., the edit distance, RDF graph embeddings like RDF2Vec [Ristoski and

Paulheim 2016], or an ontological alignment technique are: (i) classical string distances

ignore sentence semantics, (ii) RDF graph embedding techniques are not yet adapted to

such a task, and (iii) ontological alignment techniques align pairwise properties and not

96

CHAPTER 5. PROPAGATION OF PROPERTIES

sets of properties.

Sentence embedding is widely used in several tasks such as computing semantic similar-

ities between two texts. An encoder derives sentence embeddings, to capture the semantics

of a language, from a large text corpus. A lot of attention has been given to sentence

embeddings lately. Approaches like Universal Sentence Encoder [Cer, Yang, Kong, Hua,

Limtiaco, John, Constant, Guajardo-Cespedes, Yuan, Tar, Sung, Strope, and Kurzweil

2018], GenSen [Subramanian, Trischler, Bengio, and Pal 2018] and InferSent [Conneau,

Kiela, Schwenk, Barrault, and Bordes 2017] are among the state-of-the-art encoder for

sentence embeddings. InferSent, proposed by [Conneau, Kiela, Schwenk, Barrault, and

Bordes 2017], is a state-of-the-art encoder proved to be effective on sentence embedding.

To train their supervised sentence embeddings model, the authors used the Stanford Natu-

ral Language Inference (SNLI) dataset that consists of more than 500K pairs of English

sentences manually labeled with one of three categories (entailment, contradiction and

neutral). They tested several architectures and find out that a BiLSTM network with max

pooling offered the best results. A BiLSTM network is a bi-directional LSTM often used

for sequence data, i.e., a recurrent neural network (with loops). Max pooling is a technique

that allows reducing the number of parameters of the model by selecting the maximum

value of a moving “window”. Moreover, the pre-trained model is based on fastText, thus

allowing computing meaningful representations even for out-of-vocabulary words, i.e., words

that did not appear in the training data. GenSen [Subramanian, Trischler, Bengio, and Pal

2018] and Universal Sentence Encoder [Cer, Yang, Kong, Hua, Limtiaco, John, Constant,

Guajardo-Cespedes, Yuan, Tar, Sung, Strope, and Kurzweil 2018] are both based on

multi-task learning (MTL). MTL purpose is to learn multiple aspects of a sentence by

switching from different tasks like translation or natural language inference. The former

uses a bi-directional Gated Recurrent Units (GRU), which is a recurrent neural network

like LSTM but with fewer parameters. The latter uses the transformer architecture that

transforms a sequence into another but without recurrent neural network (unlike InferSent

and GenSen). In Section 5.4.2.2, we will present results with those three encoders.

As presented in Section 5.1, our intuition, based on Tobler’s first law, is that the

propagation set of properties can be found given an indiscernibility set, if vectors of

97

CHAPTER 5. PROPAGATION OF PROPERTIES

descriptions of those two sets are close enough. As presented in Section 5.3.3, sentence

embedding allows us to represent a sentence, i.e., a sequence of words, as a numerical

vector. When two sentences are semantically close, their respective vectors should also

be close in the considered space. In this work, we propose to use property descriptions

(e.g., rdfs:comment or schema:description) as “standard plug type for mains electricity

in a country”) to find properties that are semantically related and consequently right

candidates for propagation for a given indiscernibility set Π. For example, in Wikidata, the

property “director” has the follow description: “director(s) of film, TV-series, stageplay,

video game or similar”. Descriptions are mainly composed of one sentence. Most of the

properties are described with such annotations, e.g., properties of Wikidata are annotated

with an english schema:description at 98.9%. For the embedding computation, any of the

previously described encoders can be used. We will provide in Section 5.4.2.2, an analysis

of the different results obtained by these encoders.

The last algorithm presents our proposition to compute Ψ given a Π. It takes as input

three parameters: a seed (an entity), a set of property built from the seed (indiscernibility

set Π), and a set of entities that are similar to the seed with respect to Π. The computation

of Π is presented in the previous section (see algorithm 3).

First, for each property in the indiscernibility set Π, we calculate its representational

vector (see line 2). Then, we compute the weighted mean vector that represents the

indiscernibility set (line 4). With use as weights the weight of properties as defined in

Chapter 4 (Definition 4.3.3). Indeed, as explained, some properties are more important to

determine identity. In an identity context, the indiscernibility set Π is a set of properties,

thus we can compute for each property in Π its vector (see line 2). Then we can compute

the mean of the vectors and have a numerical representation of Π (it is also a vector of the

same size). This vector representing the mean of vectors derived from Π properties is noted

⊑Π in the following. Similarly, we consider each property of the seed or its similar entities

and compute their representational vectors. Therefore, on the one hand, we have one vector

that represents the set of indiscernibility and, on the other hand, we have n vectors for

the n properties that are candidates for propagation. Properties of similar entities (with

respect to the indiscernibility set Π) are also considered as candidates since possibly one of

98

CHAPTER 5. PROPAGATION OF PROPERTIES

them can have a propagating property that the seed does not have (see line 6).

Then we loop on each candidate property to compute a cosine similarity [Singhal 2001]

between each candidate vector and the mean vector representing the indiscernibility set Π

(line 10). If the cosine similarity is high enough (above a specified threshold as explained

in the following section) the candidate property is considered as a propagable property.

Now that our approach has been presented, we will introduce experiments to validate

our work.

5.4 Experimental Results

To evaluate our approach, we first implemented our approach and then conducted two

types of experiments. In the first experiment, we built a gold standard upon Wikidata.

Then, we computed standard precision, recall and F-measure against this gold standard.

In the second experiment, we present several SPARQL queries that benefited from our

approach.

5.4.1 Implementation and set-up

We implemented our approach in Python. For the sake of reproducibility, the code is

made available on a GitHub repository7. As mentioned earlier, we used three sentence

embedding approaches, namely InferSent8, GenSen9 and Universal Sentence Encoder10.

We used an HDT file (see [Martínez-Prieto, Gallego, and Fernández 2012] and [Fernández,

Martínez-Prieto, Gutiérrez, Polleres, and Arias 2013]) that contains a dump of the last

version of Wikidata11. HDT is a compressed serialization format for RDF graphs that allows

a better reproducibility than a live SPARQL endpoint. Unlike Turtle or N-Triples, thanks

to compression, HDT facilitates the manipulations needed to reproduce the experiments.

The computer we used has an i7 processor and 32 GB of RAM. As an indication, the

complete calculation of the identity lattice for an entity such as the city of Paris, France

7Anonymous URL
8https://github.com/facebookresearch/InferSent
9https://github.com/Maluuba/gensen

10https://tfhub.dev/google/universal-sentence-encoder/2
11http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz

99

https://github.com/facebookresearch/InferSent
https://github.com/Maluuba/gensen
https://tfhub.dev/google/universal-sentence-encoder/2
http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz

CHAPTER 5. PROPAGATION OF PROPERTIES

takes about 1396 ms. It has more than 1000 property-object couples and, in Wikidata, the

mean number of property-object couples is about 60. Thus, it is a rather large entity and

this approach could scale well.

5.4.2 Quantitative Study

The purpose of the quantitative experiment is to allow comparison with future ap-

proaches that may arise. To the best of our knowledge, our approach is the only one that

has focused on the propagation of properties for contextual identity. Thus, one of the most

important contributions of our work is the gold standard we provide. Indeed, it is not

obvious, even for a human agent, to determine properties that might be propagated for a

given indiscernibility set of properties.

5.4.2.1 Gold standard

As mentioned previously, we want to evaluate if our approach identifies relevant

propagable properties to the user according to a given context. For this, we built

a gold standard from the Wikidata knowledge graph that is known for its high data quality.

It is also one of the most important actors of Linked Open Data initiative and is linked to

many other knowledge graphs, e.g., DBpedia. Obviously, in this case, we no longer need

an alignment procedure (≈), since we do not consider multiple knowledge graphs (source

and target knowledge graphs are the same).

We built 100 identity contexts, each context containing the indiscernibility set of

properties Π and the propagation set of properties Ψ. We choose 5 classes (20 entities by

class): country, comics character, political party, literary work and film. Those classes

have been chosen for several reasons. Firstly, they are sufficiently different to challenge our

approach. Secondly, because the experts must judge which properties are propagable, it is

easier for them if they have a minimum of knowledge about the subjects. Finally, it allows

us to further investigate if results are different for different classes. For each selected class,

we randomly selected one entity. Then we computed its identity lattice.

As stated before, the most difficult part when building the gold standard is to obtain a

consensus among experts. A set of properties representing the indiscernibility set Π, and

100

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.3: Comparison of the average precision by thresholds for all five classes (country,
comics character, political party, literary work, film). The threshold takes values from 0.5
to 0.95 by steps of 0.05. The baseline is in blue, InferSent in red, GenSen in yellow and
Universal Sentence Encoder in green.

the experts must accordingly choose propagable properties in a set of candidates. It is the

most time-consuming part to build the gold standard.

5.4.2.2 Execution against the gold standard

For each entity in the gold standard, we retrieved its partial identity context from

the gold standard, i.e., the context with only the indiscernibility set Π. Then, we applied

our algorithm on each set of indiscernibility to find the corresponding propagation set

Ψ. For each context, we calculate the precision, recall, and F-measure as follows: True

positive (tp) is the number of selected properties (by our approach) that are actually

in Ψ, false positive (fp) is the number of selected properties (by our approach) and

actually not in Ψ, false negative (fn) is the number of properties in Ψ not selected by

our approach, Precision = tp
tp+fp , Recall = tp

tp+fn , and Fmeasure = 2×P recision×Recall
P recision+Recall We

then aggregated precisions, recalls and F-measures of each context thanks to the standard

mean.

As there are no other approaches, to the best of our knowledge, retrieving candidate

properties for propagation with respect to an indiscernibility set Π, we compared our

101

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.4: Comparison of the average recall by thresholds for all five classes (country,
comics character, political party, literary work, film). The threshold takes values from 0.5
to 0.95 by steps of 0.05. The baseline is in blue, InferSent in red, GenSen in yellow and
Universal Sentence Encoder in green.

Figure 5.5: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent
and the threshold at 0.9 for the “comics character” class.

102

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.6: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent
and the threshold at 0.9 for the “country” class.

Figure 5.7: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent
and the threshold at 0.9 for the “film” class.

103

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.8: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent
and the threshold at 0.9 for the “literary work” class.

Figure 5.9: Precision (in blue), recall (in red) and F-measure (in yellow) with InferSent
and the threshold at 0.9 for the “political party” class.

104

CHAPTER 5. PROPAGATION OF PROPERTIES

approach with a baseline method. Instead of computing embeddings of descriptions, we

computed the Jaccard index (JI) [Jaccard 1908] of property descriptions. Since the JI is

a metric distance, we can compute the standard mean of several JI values and still get a

distance. Moreover, the corresponding similarity is defined as distance = 1− similarity

and both distance and similarity are normalized, thus the similarity can be used in the

same way as with cosine similarity of embedded vectors.

The first series of results is presented in the Figure 5.3. It shows the evolution of the

average precision of the baseline (in blue), InferSent (in red), GenSen (in yellow) and

Universal Sentence Encoder (in green). The threshold has been tested from 0 to 1 with

steps of 0.05. For each threshold, we computed the standard mean of the precision for the

100 entities of the five classes (country, comics character, political party, literary work and

film). The goal is to evaluate the suitability of the different embedding technic and the

baseline. At first glance, we observe that the four methods produce the same results for

very low thresholds with precisions in average at 0.3. This is because the median number

of candidate properties is 12 and the median number of propagable properties (in Psi) is

3. Therefore, even if all properties were selected, we obtain thanks to the aforementioned

precision formula 3/(3 + (12− 3)) = 0.25 as a minimum precision for any possible method

of selection. The baseline quickly produces too many false positives without any peak

when the threshold is above 0.05. Thus, as expected, the baseline is inadequate. For the

three encoders, the same phenomenons append, but with very different threshold values

and amplitudes. The three have a peak then a fall. For GenSen and Universal Sentence

Encoder (USE), the peak is rather low and it can be explained by their difficulties to

eliminate a sufficient number of false positives. Indeed, property descriptions are relatively

close and some of them are well ordered (w.r.t. to their similarity), but not sufficiently to

be useful to remove wrong candidates. The peak with InferSent is more interesting since it

appears later and surpasses 0.5. Hence, InferSent can eliminate more false positives than

the two others. When looking at the output of the algorithm, right candidates tend to be

more grouped at the top of the list, while the two other encoders tend to mix right and

wrong candidates. Moreover, because the peaks do not last, it means that the descriptions

of the right candidates are very close, and for the three encoders the fall is more or less

105

CHAPTER 5. PROPAGATION OF PROPERTIES

sudden.

Figure 5.4 shows the evolution of the average recall of the approaches with the same

colors as in Figure 5.3. As previously, the same pattern can be observed for all approaches

except the baseline, but for very different thresholds. Indeed, immediately the baseline

selects too many false negatives, demonstrating once again that it is not suitable to

discriminate the right candidates from wrong ones. For the three encoders, at first, all

properties are selected, thus there is no false negative. Because descriptions are close in

terms of semantics, the cosine similarity produces similarities that are in a close range.

Hence, (almost) all properties are detected as right candidates or (almost) none are. Then,

very quickly for GenSen and USE, there is a sudden drop of the recall. Again, for both

of them, the right candidates are distributed among the wrong candidates in a relatively

uniform manner. Both encoders are unable to properly sort the right candidates on top of

the list and the wrong ones at the bottom. While InferSent maintains its good selectivity a

lot longer (until a threshold of 0.9). The F-measure of GenSen and USE never rises, to the

contrary of InferSent that reaches 0.59. The latter produces vectors that are closer in their

space than the two others, hence the range of cosine similarities is more compacted with

InferSent. For example, for the entity “Wally West”, with InferSent the highest similarity

score with Π for a candidate property is 0.92 and the worst is 0.75. More important,

InferSent is able to order more constantly and in a better way the properties. From those

results, InferSent could be the right candidate to propose to the user an ordered list of

candidate properties for propagation.

The second series of results, presented in Figures 5.6 and 5.7, illustrates the behavior of

our approach with InferSent, since it produces the best results, for each of the five classes.

As a reminder, for each class we randomly selected 20 entities, thus, for example, Figure 5.7

shows the average precision in blue of the 20 film entities, the average recall in red and

the average F-measure in yellow. Of course, thresholds are the same as in the first series

of results. The F-measure is always the better between 0.8 and 0.95, meaning that our

approach is extremely sensitive to threshold variations. For all classes, the pattern is the

same for the three measures. We only present two out of five classes to keep it concise,

all results are available on the GitHub repository. The recall behaves the same for the

106

CHAPTER 5. PROPAGATION OF PROPERTIES

five classes, but for the precisions, there are more differences. Indeed, comics character

and literary work have a quasi-flat part after the peak, meaning that descriptions of right

candidates are more distant in the embedded space than the one’s of other classes. Hence,

similarities of both wrong and right candidates of country, film and political party entities

are very close, since, after the peak, the fall is very sudden. Also, the fact that countries and

political parties are described with many more properties on average appears here because

their precisions start very below other precisions. It is more difficult for our approach

to distinguish the right candidates from wrong ones when there are too many candidate

properties. For comics characters and literary work entities, the approach seems to be less

efficient in removing false positives, maybe because the range of similarity values is too

narrow.

Since the choice of propagable properties is subjective for a given set of indiscernibility,

three experts may not be sufficient. To establish the gold standard, a crowdsourcing

approach might be more appropriate and should merit a formal investigation. As a result,

the identity contexts of the gold standard could be more precise. Nevertheless, this approach

could be used at least to present to the user an ordered list of candidate properties for

propagation, hence helping her to make an educated decision. As a matter of fact, the

good recall allows keeping almost all good candidates when the precision may help the user

to quickly choose between available properties of the list.

However, we believe that our gold standard is sufficiently well built to state that our

results are conclusive. False negatives are due to the fact that some properties are not

semantically related to any indiscernible property of the context, and false positives ones

are due to some properties that are semantically related to the context but not propagable.

Hence, it is obvious that in some cases, considering only the semantic relatedness is a

naïve approach. In addition to that, the lack of string-based description on a property is

prohibitive, since our approach is based on property description consumption. Taking into

account RDF semantics or using other embedding techniques should improve the results.

107

CHAPTER 5. PROPAGATION OF PROPERTIES

Figure 5.10: Qualitative experiment workflow: the elements in red are the inputs and the
element in green is the output. To simplify the diagram, we consider only one instantiated
entity linked to one instantiated property in the query.

5.4.3 Qualitative Study

In this section, we introduce three different queries that could benefit from our approach

by extending their results. To achieve our goal, we used InferSent and a threshold value

equal to 0.9. All of these queries are simplified queries tested on Wikidata (for ease of

reading). The original queries can be found on the GitHub repository.

5.4.3.1 Task description

For each query, the goal is to find an identity context that will allow expanding the

query with similar entities according to the user’s objective. In this way, users can benefit

from more complete results. The workflow is the following (see Figure 5.10): first, from

the query, we extract the instantiated entity (or entities) that will be the seed(s) (step 1).

Second, for each seed, we compute its identity lattice (steps 2, 3 and 5). As explained,

we build the indiscernibility sets, then we get similar and logically identical entities, then

we get candidate properties for propagation and finally, we get propagable properties (see

108

CHAPTER 5. PROPAGATION OF PROPERTIES

Section 5.3). Third, with the instantiated property (or set of properties) linked to the seed

in the query, we select from the lattice, the node having this property in its propagation

set (step 7). This node will be considered as the identity context of the query. Indeed, if

multiple identity contexts are possible, the user must choose the best suited for its task

purpose. Finally, based on the selected identity context, we can rewrite the query with the

seed, logically identical entities and similar entities (steps 9 and 11). Furthermore, users

can decide to check if the schema of the seed entity is more complete with LOD-CM (see

Chapter 6) in steps 8 and 10.

5.4.3.2 Queries

We tested our approach with three queries. The first query in Listing 5.2 is about the

“Paracetamol” drug. The query purpose is to retrieve all clinical trials of this drug. An

interesting expansion of this query could be to find all trials of similar legal drugs in terms

of medical conditions treated and physical interactions.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE
{

? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n : Paracetamol .
}
Listing 5.2: SPARQL query retrieving all studies about the painkiller named Paracetamol.

Table 5.1 shows additional results brought by our approach. Each column corresponds to

a query. For the first query (and also for the next ones), there is only one seed “Paracetamol”

(“France” and “the Republicans” in the second and the third columns respectively)as it is

the only instantiated entity in the query. To fill this table, we first computed the lattice of

the seed, then, selected a context containing the property “research intervention” in its

Ψ. We chose as a context, legal drugs having the same medical conditions and the same

physical interactions (obviously, any other context could be chosen depending on the users’

needs). Finally, the query is expanded with similar entities as shown in Listing 5.3. The

results show a 47% increase in the number of clinical trials for the considered context.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE
{

VALUES (? drug)
{

109

CHAPTER 5. PROPAGATION OF PROPERTIES

Listing 5.2 Listing 5.4 Listing 5.5
Seed Paracetamol France The Republicans
Ψ research intervention head of member of political party

condition treated, capital, country,
Π interacts with, official language political

legal status ideology
Ibuprofen French 2nd Republic, UMP,

Similar Aspirin July Monarchy, RPR,
entities French 3rd Republic, UDR,

Bourbon Restoration, UNR
Kingdom of France, UNR
2nd French Empire,

Vichy France,
French 4th Republic,
1st French Empire,

Paris Commune
of results
w/o context 586 12 2
of results
w/ context 860 99 (77) 13

Table 5.1: Identity context contribution to queries.

(: Paracetamol) (: Ibupro fen) (: Asp i r in)
}
? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n ? drug .

}
Listing 5.3: Expanded SPARQL query retrieving all studies about Paracetamol similar
entities.

The second query, in Listing 5.4, is about retrieving persons who once lead France.

However, France has a complex history and has changed its political regime several times (for

example, during World War II, or during the Napoleonian period). Thus, even if the French

territory was “almost” always the same during the past centuries, each political regime has

its own entity in Wikidata. Therefore, the query might not give all expected results. But if

the user chooses the right identity context, i.e., C({capital,officialLanguage},{headOf},≈) then

all expected people will be retrieved.

SELECT DISTINCT ? headOfState WHERE
{

? headOfState : headOf : France .

110

CHAPTER 5. PROPAGATION OF PROPERTIES

}
Listing 5.4: SPARQL query retrieving all people who were head of the French state.

Similarly to the query about “Paracetamol”, we computed the lattice and search for

context with headOf in the propagable properties. The results are shown in the second

column of Table 5.1. The expanded query could be rewritten as the previous one. It should

be noted that among the 99 results, 22 persons were not head of France. Fourteen were

head of Paris City Council and 8 were Grand Master of a Masonic obedience in France.

This is due to the fact that the council and the obedience are misplaced in the Wikidata

ontology. These errors cannot, therefore, be attributed to our approach. The results show

a 542% increase in the number of France leaders for the considered context.

Finally, in Listing 5.5, we present a query about French politicians from The Republican

party that have been convicted. The peculiarity here is that this major political party

changed its name several times because of either political scandal or humiliating defeats.

Consequently, if the knowledge graph is not up to date or not complete, some persons who

were members of multiple versions of this party in the real world could not be actually

linked to each version in the knowledge graph. This is the case of Wikidata that returns,

for the query of Listing 5.5, only two politicians. However, there are more than a dozen

politicians of this party who have been convicted of various felonies. By using our approach,

it is possible to select a context composed of the political alignment and the country for

which the memberOf property is propagable, and, hence, obtain a more complete result (of

course depending on the completeness of data about politicians in Wikidata).

SELECT DISTINCT ? p o l i t i c i a n ? crime WHERE
{

? p o l i t i c i a n : memberOf : TheRepublicans ;
: convictedOf ? crime .

}
Listing 5.5: SPARQL query retrieving all politicians member of French party named The
Republicans that were convicted.

The same steps as for queries about “Paracetamol” and “France” were reproduced.

Results are shown in the third column of Table 5.1. The results show a 550% increase in

the number of convicted politicians for the considered context.

111

CHAPTER 5. PROPAGATION OF PROPERTIES

5.4.4 Discussion

As we have seen, our approach allows discovering propagable properties for a given

indiscernibility set of properties Π. An identity context with its indiscernibility and

propagation sets can provide more complete answers to queries through query expansion.

The results are very promising but need to be confronted with more different kinds of

knowledge graphs and a combination of distinct knowledge graphs. Also, our approach

does not work well when the property of an entity lack property describing it (such as

rdfs:comment or schema:description). It is a limitation since some ontologies do not provide

textual descriptions of their properties. Hence, the first step for future work is to circumvent

this flaw with a multi-faceted approach. Moreover, in a textual description, some words

might be irrelevant (like a Wikidata identifier) and degrade the quality of the results.

5.5 Conclusion

In this chapter, we proposed an approach based on sentence embedding to discover

propagable properties given an indiscernibility set of properties. Our approach computes,

for an entity, an identity lattice that represents all its possible identity contexts, i.e., both

indiscernible and propagable properties. Qualitative and quantitative studies have been

conducted to evaluate the approach. Besides, an important part of our work was to make

available a gold standard for the reproducibility of the quantitative study and, in general,

for the research community working on contextual identity.

112

Chapter 6

Effects of Contextual Propagation
on Entity Schema Completeness

This chapter is based on the following publications:

• Subhi Issa, Pierre-Henri Paris, and Fayçal Hamdi. Assessing the completeness evolu-

tion of DBpedia: A case study. In Sergio de Cesare and Ulrich Frank, editors, Advances

in Conceptual Modeling - ER 2017 Workshops AHA, MoBiD, MREBA, OntoCom,

and QMMQ, Valencia, Spain, November 6-9, 2017, Proceedings, volume 10651 of

Lecture Notes in Computer Science, pages 238–247. Springer, 2017. doi: 10.1007/

978-3-319-70625-2_22. URL https://doi.org/10.1007/978-3-319-70625-2_22

• Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing

the conceptual schemas of RDF datasets. In Paolo Giorgini and Barbara Weber,

editors, Advanced Information Systems Engineering - 31st International Conference,

CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings, volume 11483 of Lecture Notes

in Computer Science, pages 312–327. Springer, 2019. doi: 10.1007/978-3-030-21290-2\

_20. URL https://doi.org/10.1007/978-3-030-21290-2_20

• Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing

the conceptual schemas of RDF datasets - extended abstract. In INFORSID 2020,

2020 (To be published)

113

https://doi.org/10.1007/978-3-319-70625-2_22
https://doi.org/10.1007/978-3-030-21290-2_20

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

One of the objectives of establishing the identity between two entities is to be able

to reuse information, i.e., to increase the completeness of an entity using one or more

other entities. This completeness can take two forms: (i) at the schema level of the entity,

i.e., the number of different properties it uses, and (ii) at the data level, i.e., the number

of values a property can have. Measuring data completeness is very difficult since it is

almost impossible to establish a gold standard for data in the Semantic Web domain since

it is governed by the open-world assumption ([Darari, Nutt, Pirrò, and Razniewski 2013]).

Hence, we measure the effects on the completeness, at the schema level, of the propagation

of properties in a given identity context. Thus, the objective of the approach proposed

in this chapter is to generate a conceptual schema. This schema will allow measuring the

completeness of the schema of an entity. The completeness could be measured before and

after the application of our general property propagation approach (see Chapter 5).

RDF-based knowledge graphs, thanks to their semantic richness, variety, and fine

granularity, are increasingly used by both researchers and business communities. However,

these knowledge graphs suffer a lack of completeness as the content evolves continuously,

and data contributors are loosely constrained by the vocabularies and schemas related to

the data sources. Conceptual schemas have long been recognized as a key mechanism for

understanding and dealing with complex real-world systems. In the context of the Web of

Data and user-generated content, the conceptual schema is implicit. Each data contributor

has an implicit personal model that is not known by the other contributors. Consequently,

revealing a meaningful conceptual schema is a challenging task that should take into

account the data and the intended usage. In this chapter, we propose a completeness-based

approach for revealing conceptual schemas of RDF data. We combine quality evaluation

and data mining approaches to find a conceptual schema for a knowledge graph. This

model meets user expectations regarding data completeness constraints. To achieve that,

we propose a web-based completeness demonstrator for knowledge graphs: LOD-CM.

6.1 Introduction

Data became a strategic asset in the information-driven world. One of the challenges

for companies and researchers is to improve the display and understandability of the data

114

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

they manage and use.

However, exploiting and using open Linked Data, even if it is more and more accessible,

is not an easy task. Data is often incomplete and lacks metadata. These issues mean that

the quality of published data is not as good as we could expect, leading to a low added

value and low reliability of the derived conclusions. In [Jain, Hitzler, Yeh, Verma, and

Sheth 2010], the authors believe that existing approaches that describe knowledge graphs

focus on their statistical aspects rather than on capturing conceptual information.

A conceptual schema is an abstraction of a reality that can serve as a vehicle for

understanding, communicating, reasoning, and adding knowledge about this reality.

In traditional information system development, conceptual modeling is driven by

intended usage and needs. For knowledge graphs, as in all user-generated content, data is

rather use-agnostic [Lukyanenko and Parsons 2015]. As a result, the data is represented

according to many individual points of view. These points of view lead to a lack of

semantics, whereas semantics is necessary for reasoning about the data. We believe that

a conceptual schema that creates an abstract representation upon data would help to

overcome the disparity of visions and will reveal the underlying semantics [Olivé 2007].

Let us consider, for instance, that we have a collaboratively built knowledge graph. In this

case, the traditional top-down vision of a predefined schema is no more applicable. Both

data and underlying schema evolve continuously, as several communities describe data with

different views and needs. In this situation, a conceptual schema, defined as an abstract

and consensual representation about the reality that is derived from requirements, could

not be applied. The challenge is then to find a way to create a suitable conceptual schema

having entities as a starting point.

The research questions of this chapter are as follows:

• How to compute the schema completeness of an entity in an RDF-based knowledge

graph?

• How to facilitate access to the information structure of a knowledge graph?

In this chapter, we are interested in the conceptual modeling of RDF-based knowledge

115

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

graphs [Klyne and Carroll 2006]. Our objective is to define an approach for deriving

conceptual schemas from existing data. The proposed solution should cope with the

essential characteristics of a conceptual schema that are the ability to make an abstraction

of relevant aspects from the universe of discourse and the one of meeting user’s requirements

[Rolland and Prakash 2000]. The approach we propose in this chapter takes into account

the two facets, namely the universe of discourse represented by the data sources, and the

user’s needs represented by the user’s decisions during the conceptual schema construction.

As the model should express the meaningful state of the considered knowledge graph, we

rely on a mining approach leading to taking into consideration the data model from a more

frequent combination of properties. The relevancy of properties is handled by integrating a

completeness measurement solution that drives the identification of relevant properties. To

meet user’s requirements, we propose to construct the conceptual schema by allowing the

user to decide about the parts of the conceptual schema to reveal according to her needs

and constraints.

The main contributions are:

1. We use a mining approach to infer a model from data, as we consider that no

predefined schema exists. The underlying assumption is that the more frequent a

schema is, the more representative for the knowledge graph it is.

2. We introduce a novel approach, called LOD-CM, for conceptual schema mining based

on quality measures, and, in this chapter, on completeness measures as a way to

drive the conceptual schema mining process.

The remainder of this chapter is organized as follows: Section 6.2 summarizes related

literature on the subject while Section 6.3 details the mining-based approach for RDF

data conceptual modeling. This section explains the tight link with the completeness

quality criterion. Section 6.4 presents two use cases of LOD-CM. Finally, Section 6.5 draws

conclusions.

116

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

6.2 Related work

RDF data is described as sets of statements called triples. A triple ⟨s, p, o⟩ is a fact

where a subject s has a property p, and the property value is the object o. As an

example, ⟨England, capital, London⟩ means that London is the capital city of England.

Understanding and reasoning about this data require at least knowledge about its abstract

model. Consequently, schema discovery has attracted several researchers originating from

several communities. The research directions address objectives such as efficient storage,

efficient querying, navigation through data or semantic representation, etc.

Completeness of Linked Data is one of the most critical data quality dimensions ([Batini

and Scannapieco 2016]). This dimension is defined as the degree to which all required

information is present in a particular knowledge graph ([Zaveri, Rula, Maurino, Pietrobon,

Lehmann, Auer, and Hitzler 2013]). We have to know that a reference schema (or a gold

standard) should be available to compare against a given knowledge graph.

In the database community, the question was how to store this kind of data. [Levandoski

and Mokbel 2009] proposed a solution that derives a classical relational schema from

an RDF data source to accelerate the processing of queries. In the FlexTable method

([Wang, Du, Lu, and Wang 2010]), authors proposed to replace RDF triples by RDF

tuples resulting from the unification of a set of triples having the same subject. All these

approaches do not target a human-readable schema and are more concerned with providing

a suitable structure for a computer processing of data.

The Semantic Web community is more aware of data semantics through the usage of

ontologies and vocabularies. Several semi-automatic or automatic proposals, mainly based

on classification, clustering, and association analysis techniques are proposed. In [Völker

and Niepert 2011] a statistical approach based on association rules mining allows generating

ontologies from RDF data. Other works, such as those presented in [Christodoulou, Paton,

and Fernandes 2015; Pham, Passing, Erling, and Boncz 2015; Kellou-Menouer and Kedad

2015], are closer to modeling. The authors propose to derive a data structure using a

clustering algorithm. After manual labeling of clusters representing groups of frequent

properties, a schema is derived. These approaches, however, do not consider the user’s

117

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

needs and preferences, and the derived schema is the result of automatic preprocessing,

apart from the labeling task.

In traditional conceptual modeling, models are generally derived from user’s require-

ments. However, with the increasing use of external data sources in information systems,

there is a need to apply bottom-up modeling from entities. This is motivated by the

expressiveness and the analysis facilities that conceptual schemas could provide for such

data. Similarly to our bottom-up approach, [Lukyanenko, Parsons, and Samuel 2019]

proposed a conceptual modeling grammar based on the assumption that entities play

a major role while human beings try to represent reality. In [Lukyanenko and Parsons

2015], the authors presented a set of principles for conceptual modeling within structured

user-generated content. The authors highlighted the problem of quality in such produced

content. They focused on the importance of capturing relevant properties from entities.

However, the proposal does not provide an explicit solution for deriving such models.

Concerning unstructured data, we can cite [Embley and Liddle 2013], where authors

addressed the problem of deriving conceptual schemas based on regular-expression pattern

recognition.

Recognizing that conceptual modeling is a powerful tool for data understanding, our

proposal addresses the problem of deriving a conceptual schema from RDF data. By

exploring entities, our approach integrates a completeness measurement as a quality

criterion to ensure the relevancy of the derived schema as data from RDF data sources is

the result of a free individual publication effort. The result would be a conceptual schema

enriched with completeness values.

6.3 Conceptual schemas derivation

To illustrate our proposed approach, let us consider a user willing to obtain a list of

artists with their names and birthplaces from an RDF-based knowledge graph; To do so,

she can write the following SPARQL query1:

SELECT ∗ WHERE
{

1Performed on: http://dbpedia.org/sparql

118

http://dbpedia.org/sparql

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

? acto r rd f : type dbo : Actor .
? ac to r f o a f : name ?name .
? ac to r dbo : b i r thP lac e ? b i r thP lac e .

}
Listing 6.1: SPARQL query retrieving all actor names and birthplaces.

Writing such a query is much more difficult in a Linked Open Data (LOD) source context

than in a relational database one. In a relational context, the database schema is predefined,

and the user writing the query is aware of it. With knowledge graphs, the schema does not

exist. Moreover, there is another problem related to data completeness: The expressed

query returns only the list of actors having values for all the properties listed in the

query. In our example, only actors having values for both foaf:name and dbo:birthPlace are

included in the result. Knowing that at most 74% of actors have a value for dbo:birthPlace,

the user should probably appreciate getting this information to add, for example, OPTIONAL

to the second pattern of the query and obtain more results. Besides, she would be aware of

the fact that the result is complete to a certain degree (i.e., dbo:birthPlace is present in

only 74% of actors).

To tackle these two problems, we propose an approach that aims to help “revealing”

a conceptual schema from an RDF-based knowledge graph. This conceptual schema is

driven by the user for both its content and completeness quality values.

In the context of the Web of Data, most of the knowledge graphs published in the Web are

described by models called, in Linked Data jargon, vocabularies (or ontologies). However,

these models are not used in a prescriptive manner. Consequently, a person who publishes

data is not constrained by the underlying ontology leading to sparse descriptions of concepts.

For example, the instances of class Actor from DBpedia use around 532 properties that

are not equally relevant.

From these observations, it is clear that checking data (entities) is necessary to infer

a relevant model that can be used to guarantee, for example, an expected completeness

value. The approach that we propose deals with this issue through an iterative process,

which infers a conceptual schema complying with the expected completeness. Figure 6.1

gives an overview of this process.

The process of inferring a conceptual schema goes through four steps: First, a subset

119

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Figure 6.1: The LOD-CM Workflow

of data that corresponds to the user’s scope is extracted from the knowledge graph (cf.

Section 6.3.1). This subset is then transformed into transactions, and a mining algorithm

is applied. In our approach, for efficiency reasons, we chose the well-known FP-growth

algorithm [Han, Pei, and Yin 2000; Han, Pei, Yin, and Mao 2004] (any other itemset

mining algorithm could obviously be used). From the generated frequent itemsets, only

a subset of these frequent itemsets, called "Maximal" [Jr. 1998; Gouda and Zaki 2001;

Grahne and Zhu 2003], is captured. This choice is motivated by the fact that, on the one

hand, we are interested in the expression of the frequent pattern, and, on the other hand,

the number of frequent patterns could be exponential when the transaction vector is huge

(cf. Section 6.3.2). MFP is the set containing all maximal frequent patterns. Next, each

pattern in MFP is used to calculate the completeness of each transaction. The presence

or absence of the pattern is reflected in the completeness. Hence, the completeness of the

whole knowledge graph regarding this pattern can be computed by aggregating transaction

completenesses. The final completeness value will be the average of all completeness values

calculated for each MFP pattern (cf. Section 6.3.3). Finally, based on the completeness

value andMFP that guarantees this value, a conceptual schema is generated. The classes,

the attributes, and the relations of the model will be tagged with the completeness value

(cf. Section 6.3.4). All these steps are integrated into an iterative process: the user could

120

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

choose some parts in the generated model to refine. The data corresponding to the parts

to refine is then extracted from the knowledge graph, and the same steps are carried out

to generate a new model.

In the following subsections, we give a detailed description of each step of the workflow.

6.3.1 Scope and Completeness Specification

In this step, a subset of data is extracted from the knowledge graph. This subset could

correspond to a class or a set of classes such as Actor, Film , or Organization. The subset

defines what we call the user’s scope that corresponds to the classes that the user plans to

use in a query, or to the information she wants to explore or any kind of usage based on

data consumption.

The user is also asked to indicate the degree of the desired completeness. Indeed, properties

for a given class are not equally used. For example, for the class Artist, the property

foaf:name has a value for 99% of the entities, whereas the dbo:birthPlace property has

a value for at most 74% of the entities. Our approach gives the possibility to express a

constraint on the completeness values desired for mined properties and associations. Once

the classes are identified, the data is converted into transaction vectors, and a mining

algorithm is applied to obtain a set of frequent itemsets.

Table 6.1 illustrates some entities of the Film class in the form of triples, taken from

DBpedia. Each class is described by a set of properties (predicates). An entity of this class

could have a value for all or a subset of these properties. This subset is called a transaction.

Table 6.2 represents the set of transactions constructed from the triples of Table 6.1.

More formally, given a knowledge graph KG, let us define a set of classes C ∈ KG (e.g., Film,

Artist), EC ∈ KG is the set of entities for classes in C (e.g., The_Godfather is an entity of

the Film class), and PC = {p1, p2, ..., pn} ∈ KG is the set of properties used by entities in

EC (e.g director(Film, Person)).

Given a subset of entities E = {e1, e2, ..., em} with E ⊆ EC (e.g., properties used to describe

the The_Godfather entity are: director and musicComposer), TE = (t1, t2, ..., tm) is the

list of transactions where ∀k, 1 ≤ k ≤ m : tk ⊆ PC and tk is the set of properties used

in the description of ek ∈ E, i.e., ∀p ∈ tk, ∃o ∈ KG : ⟨ek, p, o⟩ ∈ KG. We consider CP

121

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

the completeness of E against properties used in the description of each of its entities.

Moreover, P (tk) is the power set of transaction tk.

6.3.2 Properties Mining

All statements having a subject from a class C1 are grouped. The related properties of

those statements could consequently constitute either the attributes (properties) of the

class C1 or relationships to other classes when the property value (the object in the triple

< s, p, o >) refers to another class. In this step, the objective is to find the properties

patterns that are the most shared by the subset of entities extracted from the knowledge

graph. This set will be then used to calculate a completeness value regarding these patterns.

Let C, EC , PC be respectively classes, instances (of classes in C), and properties (of entities

in EC) of a knowledge graph KG and E be a subset of data (entities) extracted from KG

with E ⊆ EC . We first initialize TE = ∅, MFP = ∅. For each e ∈ E, we generate a

transaction t, i.e., properties used by e. Indeed, each entity e is related to values (either

resources or literals) through a set of properties. Therefore, a transaction tk of an entity ek

is a set of properties such that tk ⊆ PC . Transactions generated for all the entities of E

are then added to the TE list.

Example 17 Referring Table 6.1, let E be a subset of entities such that:

E = {The_Godfather, Goodfellas, T rue_Lies}. The list of transactions TE would be:

TE = ({director, musicComposer}, {director, editing},

{director, editing, musicComposer})

The objective is then to compute the set of frequent patterns FP from the transaction

vector TE .

Definition 6.3.1 (Pattern) Let TE be a set of transactions. A pattern P̂ is a sequence of

properties shared by one or several transactions t in TE. It is sometimes called an itemset.

122

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Subject Predicate Object
The_Godfather director Francis_Ford_Coppola
The_Godfather musicComposer Nino_Rota

Goodfellas director Martin_Scorsese
Goodfellas editing Thelma_Schoonmaker
True_Lies director James_Cameron
True_Lies editing Conrad_Buff_IV
True_Lies musicComposer Brad_Fiedel

Table 6.1: A sample of triples from DBpedia

entity Transaction
The_Godfather director, musicComposer
Goodfellas director, editing
True_Lies director, editing, musicComposer

Table 6.2: Transactions extracted from triples

For any pattern P̂ , let P (P̂) be the power set of P̂ (composed, in our case, of properties),

and T (P̂) = {t ∈ TE | P(P̂) ⊆ P(t)} be the corresponding set of transactions. P(P̂)

designates the expression of P̂ , and |T (P̂)| the support of P̂ . A pattern P̂ is frequent if
1

|TE | |T (P̂)| ≥ ξ, where ξ is a user-specified threshold.

Example 18 Referring Table 6.2, let P̂ = {director, musicComposer} and ξ = 60% . P̂

is frequent as its relative support (66.7%) is greater than ξ.

To find all the frequent patterns FP , we used, as we mentioned above, the FP-growth

itemsets mining algorithm. However, according to the size of the transactions vector, the

FP-growth algorithm could generate a very large FP set. As a reminder, our objective is

to see how a transaction (a description of an entity) is complete against a set of properties.

Thus, we focus on the pattern expression (in terms of items it contains) instead of its

support.

For completeness calculation, we need to select a pattern to serve as a reference schema.

This pattern should present the right balance between frequency and expressiveness.

Therefore we use the concept, called “Maximal” frequent patterns, to find this subset.

Thus, to reduce FP, we generate a subset containing only “Maximal” patterns.

Definition 6.3.2 (MFP) Let P̂ be a frequent pattern. P̂ is maximal if none of its proper

123

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

superset is frequent. We define the set of Maximal Frequent Patterns MFP as:

MFP = {P̂ ∈ FP |̸ ∃P̂ ′ ∈ FP : P̂ ⊂ P̂
′ ∧ |T (P̂ ′)|

|TE |
< ξ}

Example 19 Referring Table 6.2, let ξ = 60% and the set of frequent patterns FP =

{{director},{musicComposer},{editing}, {director,musicComposer},{director,editing}}. The

MFP set would be:

MFP = {{director, musicComposer}, {director, editing}}

6.3.3 Completeness calculation

In this step, we carry out for each transaction a comparison between its corresponding

properties and each pattern of the MFP set (regarding the presence or the absence of

the pattern). An average is, therefore, calculated to obtain the completeness of each

transaction t ∈ TE . Finally, the completeness of the whole t ∈ TE will be the average of all

the completeness values calculated for each transaction.

Definition 6.3.3 (Completeness) Let E be a subset of entities, TE the set of transactions

constructed from E, and MFP a set of maximal frequent pattern. The completeness of

E corresponds to the completeness of its transaction vector TE obtained by calculating the

average of the completeness of TE regarding each pattern in MFP. Therefore, we define

the completeness CP of a subset of entities E as follows:

CP(E) = 1
|TE |

|TE |∑︂
k=1

|MFP|∑︂
j=1

δ(P̂ j , P (tk))
|MFP|

(6.1)

such that: P̂ j ∈MFP, and

δ(P̂ j , P (tk)) =
{︄

1 if P̂ j ⊂ P (tk)
0 otherwise

Algorithm 6 shows the pseudo-codes for calculating CP(E).

Example 20 Let ξ = 60%. The completeness of the subset of entities in Table 6.1 regarding

MFP = {{director,musicComposer}, {director,editing}} would be:

CP(E) = 2× (1/2) + (2/2)
3 = 0.67

124

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

This value corresponds to the completeness average value for the whole knowledge graph

regarding the inferred patterns in MFP.

input :KG, E, ξ
output : CP(E)

1 foreach e ∈ E do
2 ti =

⃓⃓⃓
p1 p2 . . . pn

⃓⃓⃓
;

3 TE = TE + ti;
4 end
5 /* Properties mining */
6 MFP = Maximal(FP-growth(TE , ξ));
7 /* Using equation 6.1 */
8 return CP (E) = CalculateCompleteness(E, TE ,MFP)

Algorithm 6: Completeness calculation

6.3.4 Generation of Enriched Conceptual Schemas

In this step, the goal is to generate a conceptual schema enriched with the completeness

values calculated in the previous step. The MFP patterns used to get the completeness

values are transformed into a class diagram. Figure 6.2 illustrates the user’s interface of our

LOD-CM web service. Using the graphical interface 2, the user can choose her constraints.

The web service permits the user to enter the class name in the text box, and the user

may select the threshold completeness she wants to apply. Currently, our demo supports

DBpedia and Wikidata knowledge graphs.

Figure 6.2: LOD-CM main interface
2http://cedric.cnam.fr/lod-cm

125

http://cedric.cnam.fr/lod-cm

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

After the user selects the class name and desired completeness and clicks the “Sub-

mit” button, the algorithm runs to find the attributes, relationships, and the missed

domains/ranges based on user’s constraints.

The structure of the model is constructed regarding the definitions of the properties of

patterns in the ontology. Figure 6.3 represents a class diagram derived by our approach,

from a set of films extracted from DBpedia.

In this example, the expectation of the user is a model that guarantees at least 50%

of completeness. To generate the model, the first step consists of obtaining the set of

properties p ∈
n⋃︁

j=1
P (P̂ j), and P̂ j ∈MFP that composes the union of all theMFP , mined

from the extracted subset, with a minimum support ξ = 50%. For this example, the set

of properties are: {director, label, name, runtime, starring, type}, {director, label, name,

starring, type, writer} and {label, name, runtime, type, writer}. OWL 2 distinguishes

between two main classes of properties: (i) datatype properties, where the value is a

literal, and (ii) object properties, where the value is an individual (i.e., another entity of a

different class). Each property is considered as an attribute (e.g., name) of the class or

a relationship (e.g., director) with another class. Two types of links will be used during

the generating of conceptual schemas: inheritance and association links. Inheritance link

describes the relationship between the class and the superclass, and the association link

describes the relationship between two classes and points to the property. A dotted link

was added to illustrate that a class has been inferred to complete the relationship. For

this reason, based on the approach that has been proposed in [Töpper, Knuth, and Sack

2012], we infer missed domains (and ranges) of properties. In our example, the class

names and the inheritance links between the classes are derived from class names and

subsumptions described in the DBpedia ontology. We do not derive new class names nor

new subsumptions as the conceptual schema should conform to the data used. Indeed, even

if the derived conceptual schema is not satisfactory from conceptual modeling principles,

it should faithfully reflect the reality of data while taking into account user preferences.

Finally, the diagram is enriched by the completeness values calculated in the previous step.

These values are associated with each component of the model.

A new iteration is triggered when the user chooses to get more details about a part of

126

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Figure 6.3: The Film conceptual schema as a class diagram

the model (e.g., the Artist class, see Fig. 6.4). In this case, a new query is executed on

the knowledge graph to extract data corresponding to this part. The previous three steps

are then executed to generate a new model integrating the new desired details. Figure 6.5

shows an example that details a part of the model from Figure 6.3. In this example, a set

of classes, relationships, and attributes are added to the Artist class with corresponding

completeness values. This way of revealing the conceptual schema is similar to a magnifying

glass that allows the user to navigate around a targeted concept, here the Film class.

The output of our algorithm is a file written in a declarative language. The file includes

the chosen class, the attributes, and the relationships tagged by completeness values. We

127

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Figure 6.4: Contextual menu for navigation and editing.

Figure 6.5: The Artist diagram class

use PlantUML 3 to transfer this generated file into a picture to illustrate it to the user.

6.4 Use cases

The objective of the Linked Open Data cloud is to enable large-scale data integration

so that we can have a contextually relevant Web and find quick answers to a much wider

range of questions. LOD-CM is a web-based completeness demonstrator for RDF-based
3http://plantuml.com/

128

http://plantuml.com/

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

knowledge graphs. It is used to display data related to the chosen class of a knowledge

graph. In this section, we provide a summary of two use cases related to schema discovery

based on user’s needs. The displayed model could help the user to understand the schema

and discover the related properties. LOD-CM only supports two knowledge graphs that

are DBpedia and Wikidata.

6.4.1 Class diagram to facilitate data browsing

LOD-CM aims to visualize the discovered schema based on the user’s requirements.

Suppose a user wants to find the directors and budgets of a list of films. 82% of films have

a director in the DBpedia knowledge graph. Besides, only 15% of films have budget value

for the same knowledge graph. Only the list of films that have the properties (director

and budget) will be displayed (i.e., at most 15% of the films). The outcome model could

help the user to present the properties that are related to the chosen class in a proportion

greater than a specified threshold. Besides, it illustrates the relationship between the

concerned classes. For example, the classes Person and Film are linked by the property

director. Furthermore, the model illustrates the inheritance relationship, such as Artist is a

subclass of Person.

6.4.2 Discovering a subset of MFP

As mentioned in Section 6.3.2, our goal is also to find the set of properties that can be

used together in the query and does not exceed the selected threshold. For example, for the

Film class with 60% of completeness, four sets of properties are greater than 60% {{type,

name, label, director, writer}, {type, name, label, director, runtime}, {type, name, label,

director, starring},{type, name, label, runtime, starring}} For this reason, our LOD-CM

interface enables the user to check the desired properties that appear in the returned

model. It should be noted that the property which does not achieve the completeness

threshold with other selected properties will be inactivated, such as starring and writer in

our previous example. This case could help the user to be sure that the returned results

for its query with this set of properties are equal or greater than the desired threshold.

Finally, Table 6.3 shows the number of properties we get (at the end of our pipeline)

129

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Class/threshold 0.1 0.3 0.5 0.7 0.9
Film 18 12 7 6 3
Settlement 18 14 8 5 4
Organisation 18 4 4 3 3
Scientist 19 16 12 9 5

Table 6.3: DBpedia number of predicates by classes and thresholds

for several classes according to several thresholds. The lower the threshold is, the more

properties there are. Thus, lower thresholds produce more complex conceptual schemas

but with more noise. Hence, this tool can help the user to find the right balance between

those two.

6.4.3 Application to our propagation framework

As explained in Chapter 5, our propagation approach of properties in contextual identity

enables to increase the schema completeness of an entity. Moreover, LOD-CM enables

the generation of a conceptual schema for a given class. Hence, one can measure the

completeness of an entity against its class conceptual schema. This measure can be done

before and after the application of the propagation approach to control the potential

increase.

For example, in DBpedia, the french political party Rally for the Republic has no

country property. However, the conceptual schema of the political party class contains a link

to the country class (see Figure 6.6). The completeness computed against the conceptual

schema before the approach is 75%. When choosing the ideology property as indiscernibility

set Π, one also get the country property in the propagation set Ψ. Hence, applying our

approach enables to propagate the country property to discover that the Rally for the

Republic is a french political party. After using our propagation approach, the completeness

is 100%.

6.5 Conclusion

We have presented an approach for revealing conceptual schemas from RDF knowledge

graphs. The approach is an iterative process that computes a plausible model from the

130

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Figure 6.6: Conceptual schema of the PoliticalParty class in DBpedia.

data values. We have shown how to automatically extract schema and represent it as a

model from a data source using a user-specified threshold. The inferred model takes into

account the data and user quality expectations. The result is a conceptual schema enriched

by both completeness values as a relevancy indicator on the elements of the models, and

existence constraints that inform about how often these elements co-exist or co-appear in

the real data.

The elements composing the model (classes, relationships, and properties) are obtained

by applying a mining algorithm with an underlying assumption stating that the more

frequent a schema is, the more relevant it is. The user can decide on the desired completeness,

the parts of the data for which the model will be inferred, and the possibility to focus

on a different class through an iterative process. Currently, our demo supports only the

DBpedia and Wikidata knowledge graphs.

We have provided several use cases to demonstrate the usefulness of such a tool. We

believe that it can help in the discovery of a new knowledge graph and its internal structure.

131

CHAPTER 6. EFFECTS OF CONTEXTUAL PROPAGATION ON ENTITY
SCHEMA COMPLETENESS

Therefore, it can help in the adoption of Linked Data knowledge graphs.

Our analysis revealed some interesting characteristics allowing the characterization of

the sources and the behavior of the community that maintains each of the data sources.

The results show the rich opportunities of analysis offered by our approach and underlying

outputs.

132

Chapter 7

Conclusion and perspectives

The main objective of this thesis work is to bring to the Semantic Web community a

way to manage contextual identity. Indeed, we stressed the importance of considering the

identity as a relative relationship, i.e., to consider the context. This journey leads us to

explore several secondary research questions. Hence, in this chapter, we summarize our

different contributions before concluding in several directions for our future work.

7.1 Thesis summary

As we just explained, several trails had to be explored to provide a good solution to

our problem with contextual identity.

Large scale study One of the main elements of the Semantic Web field is, of course,

semantics. As we needed some semantic features of OWL 2, we discovered their absence in

the knowledge graphs we used. We wondered whether this absence was general or punctual.

This question led us to conduct a large-scale study on the presence of RDFS and OWL 2

semantics in the Web of Data. We found out that many OWL 2 features are almost not

used, and that only some features are extensively used. We also noticed that there is a

wide variety of knowledge graph in terms of modeling since some heavily used semantic

constructs, and the majority relies only on the most simple features of RDFS. We also

discovered that several specific domains use more semantics than others. All programs and

data are freely available online to promote reproducibility and reuse of our work.

133

CHAPTER 7. CONCLUSION AND PERSPECTIVES

Ontology The large-scale study leads us to propose an ontology, called OntoSemStats, to

capture semantics define and used in a given knowledge graph. Indeed, it is time-consuming

to discover manually, by writing SPARQL queries and dealing with a timeout of the

SPARQL endpoint, which are semantics features proposed by a knowledge graph. Hence,

the instance of our ontology OntoSemStats brings all this information to the user. Not

only does it make its work more comfortable, but it can also satisfy data publishers by

promoting the reuse of their data and improving community adoption of knowledge graphs.

Moreover, we provide several open-source tools to instantiate the ontology for a given

SPARQL endpoint. In the present work, the ontology allows us to immediately decide

whether it is worth trying to use semantics in our approaches.

Instance matching In this contribution, we aimed at testing the hypothesis that not all

properties contribute to the same degree to discover identical entities. The approach finds

if two entities are the same or not and is based on two phases: the first is to find logical

evidence that the two entities are the same when possible, i.e., if our ontology informs us

that there are the necessary semantic features to perform the logical tests and that we can

find logical evidence based on those features and data. Hence, if no logical evidence can or

has been found, then we compute for each property of the two entities several scores that

represent the importance or the predominance of a property. Our approach performs as

well as the OAEI 2017 winner, hence it proves its usefulness for identity. Moreover, the

code is freely available.

Property propagation Finally, we proposed an approach mainly based on sentence

embedding that computes propagable properties for a given identity context. This approach

allows rewriting a SPARQL query to deliver more results to the user.

Conceptual schema As explained, one of the purposes of propagating information

between contextually identical entities is to increase their completeness. Then, to compute

the schema completeness of an entity, one must have a conceptual schema to perform the

comparison against it. Because of their nature, knowledge graphs do not have schema

like traditional relational databases. Hence, we propose this approach based on property

134

CHAPTER 7. CONCLUSION AND PERSPECTIVES

mining, which allows discovering a conceptual schema for a given class of a knowledge

graph.

7.2 Future directions

Several directions are still worth investigating in our work. We want to conduct a

survey to take into consideration user feedback to improve the OntoSemStats ontology.

As stated in Chapter 4, some improvements can be made on the instance matching

algorithm to better take into consideration the structure of the knowledge graphs. Primarily

to address our false positive detection that can do better. Thus, a first step could be to

test other ways to aggregate the different weights. In the future, we may also investigate

other ways to refine linkset we produced to have fewer false positives results. Besides, more

parallelization can improve both scalability and speed performance.

Regarding our conceptual schema generation approach, presented in Chapter 6, we

plan to investigate the role of conceptual modeling in an integration context where the

universe of discourse is not only one data source but an integrated system upon several

Linked Open Data. We plan to make more knowledge graphs available and allow the user

to easily compare two conceptual schemas side by side (from two knowledge graphs). We

believe that the ability to compare two conceptual schemas of two knowledge graphs side

by side can help to choose the one that is best suited for its use.

Regarding the approach of propagation in Chapter 5, some limitations of our approach

need further investigation. Firstly, only properties with a textual description could be

processed. Using other features to improve the results, like values of properties or semantic

features of the property, should be tried. However, capturing ontological information

of a property when embedding is still an open problem. Secondly, using only sentence

embedding, combined with intuition from Tober’s first law, might be naïve in some cases.

Therefore, there is a need to challenge our work with a combination of distinct knowledge

graphs. For the time being, we only considered in lattices the case where the entity is

subject to a triple, and we should also consider cases where it is the value of a triple.

Moreover, using SPARQL queries to help the user to select the best-suited identity context

135

CHAPTER 7. CONCLUSION AND PERSPECTIVES

might be an interesting starting point for later work. Finally, to explore SPARQL queries

expansion (presented in Section 5.4.3), a prototype should be implemented to allow users

to select the proper context according to the ranked list of contexts. Also, using RDF*

and SPARQL* [Hartig and Thompson 2014] to represent the context as defined in this

chapter should be investigated.

136

List of publications

International Journals

Pierre-Henri Paris, Nathalie Abadie, and Carmen Brando. Linking spatial named entities to

the web of data for geographical analysis of historical texts. Journal of Map & Geography

Libraries, 13(1):82–110, 2017

International Conference/Workshop articles

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Interlinking rdf-based

datasets: A structure-based approach. In Imre J. Rudas, János Csirik, Carlos Toro,

János Botzheim, Robert J. Howlett, and Lakhmi C. Jain, editors, Knowledge-Based and

Intelligent Information & Engineering Systems: Proceedings of the 23rd International

Conference KES-2019, Budapest, Hungary, 4-6 September 2019, volume 159 of Procedia

Computer Science, pages 162–171. Elsevier, 2019a. doi: 10.1016/j.procs.2019.09.171. URL

https://doi.org/10.1016/j.procs.2019.09.171 (Best Student Paper Award)

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing

the conceptual schemas of RDF datasets. In Paolo Giorgini and Barbara Weber, edi-

tors, Advanced Information Systems Engineering - 31st International Conference, CAiSE

2019, Rome, Italy, June 3-7, 2019, Proceedings, volume 11483 of Lecture Notes in Com-

puter Science, pages 312–327. Springer, 2019. doi: 10.1007/978-3-030-21290-2_20. URL

https://doi.org/10.1007/978-3-030-21290-2_20

Pierre-Henri Paris, Nathalie Abadie, and Carmen Brando. Georeferencing historical

ressources. In Time Machine conference, 2018

137

https://doi.org/10.1016/j.procs.2019.09.171
https://doi.org/10.1007/978-3-030-21290-2_20

List of publications

Subhi Issa, Pierre-Henri Paris, and Fayçal Hamdi. Assessing the completeness evolu-

tion of DBpedia: A case study. In Sergio de Cesare and Ulrich Frank, editors, Advances

in Conceptual Modeling - ER 2017 Workshops AHA, MoBiD, MREBA, OntoCom, and

QMMQ, Valencia, Spain, November 6-9, 2017, Proceedings, volume 10651 of Lecture Notes

in Computer Science, pages 238–247. Springer, 2017. doi: 10.1007/978-3-319-70625-2_22.

URL https://doi.org/10.1007/978-3-319-70625-2_22

Pierre-Henri Paris, Fayçal Hamdi, Nobal B Niraula, and Samira Si-Said Cherfi. Con-

textual propagation of properties for knowledge graphs: A sentence embedding based

approach. In International Semantic Web Conference, 2020d (under review)

International Conference posters

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. A study about the use of

OWL 2 semantics in RDF-based knowledge graphs. In The Semantic Web: ESWC 2020

Satellite Events - ESWC 2020 Satellite Events, 2019b (To be published)

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Ontosemstats: An ontology

to express the use of semantics in rdf-based knowledge graphs. In Mária Bieliková, Tommi

Mikkonen, and Cesare Pautasso, editors, Web Engineering - 20th International Conference,

ICWE 2020, Helsinki, Finland, June 9-12, 2020, Proceedings, volume 12128 of Lecture Notes

in Computer Science, pages 561–565. Springer, 2020a. doi: 10.1007/978-3-030-50578-3_45.

URL https://doi.org/10.1007/978-3-030-50578-3_45

Pierre-Henri Paris. Assessing the quality of owl: sameas links. In Aldo Gangemi,

Anna Lisa Gentile, Andrea Giovanni Nuzzolese, Sebastian Rudolph, Maria Maleshkova,

Heiko Paulheim, Jeff Z. Pan, and Mehwish Alam, editors, The Semantic Web: ESWC

2018 Satellite Events - ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June

3-7, 2018, Revised Selected Papers, volume 11155 of Lecture Notes in Computer Sci-

ence, pages 304–313. Springer, 2018. doi: 10.1007/978-3-319-98192-5_49. URL https:

138

https://doi.org/10.1007/978-3-319-70625-2_22
https://doi.org/10.1007/978-3-030-50578-3_45
https://doi.org/10.1007/978-3-319-98192-5_49
https://doi.org/10.1007/978-3-319-98192-5_49

List of publications

//doi.org/10.1007/978-3-319-98192-5_49

National Conference articles

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-said Cherfi. État des lieux de l’utilisation

de OWL 2 : Analyse et proposition pour capturer les utilisations de la sémantique OWL 2

dans les graphes de connaissances RDF. Revue des Nouvelles Technologies de l’Information,

Extraction et Gestion des Connaissances , RNTI-E-36:145–156, 2020c

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing

the conceptual schemas of RDF datasets - extended abstract. In INFORSID 2020, 2020 (To

be published) Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Propagation

contextuelle des propriétés pour les graphes de connaissances : une approche fondée sur les

plongements de phrases. In Ingénierie des Connaissances, 2020b (To be published)

Technical Reports

Tayeb Abderrahmani Ghor, Esha Agrawal, Mehwish Alam, Omar Alqawasmeh, Claudia

d’Amato, Amina Annane, Amr Azzam, Andrew Berezovskyi, Russa Biswas, Mathias

Bonduel, Quentin Brabant, Cristina-Iulia Bucur, Elena Camossi, Valentina Anita Carriero,

Shruthi Chari, David Chaves-Fraga, Fiorela Ciroku, Michael Cochez, Hubert Curien,

Vincenzo Cutrona, Rahma Dandan, Danilo Dess, Valerio Di Carlo, Ahmed El Amine

Djebri, Marieke van Erp, Faiq Miftakhul Falakh, Alba Fernndez Izquierdo, Giuseppe

Futia, Aldo Gangemi, Simone Gasperoni, Arnaud Grall, Lars Heling, Pierre-Henri Paris,

Noura Herradi, Subhi Issa, Samaneh Jozashoori, Nyoman Juniarta, Lucie-Aimée Kaffee,

Ilkcan Keles, Prashant Khare, Viktor Kovtun, Valentina Leone, Siying Li, Sven Lieber,

Pasquale Lisena, Tatiana Makhalova, Ludovica Marinucci, Thomas Minier, Benjamin

Moreau, Alberto Moya Loustaunau, Durgesh Nandini, Sylwia Ozdowska, Amanda Pacini

de Moura, Swati Padhee, Guillermo Palma, Pedro Del Pozo Jimnez, Valentina Presutti,

Roberto Reda, Ettore Rizza, Henry Rosales-mndez, Sebastian Rudolph, Harald Sack, Luca

Sciullo, Humasak Simanjuntak, Carlo Stomeo, Thiviyan Thanapalasingam, Tabea Tietz,

Dalia Varanka, Maria-Esther Vidal, Michael Wolowyk, and Maximilian Zocholl. Linked

open data validity - A technical report from ISWS 2018. CoRR, abs/1903.12554, 2019.

139

https://doi.org/10.1007/978-3-319-98192-5_49
https://doi.org/10.1007/978-3-319-98192-5_49

List of publications

URL http://arxiv.org/abs/1903.12554

140

http://arxiv.org/abs/1903.12554

Bibliography

Manel Achichi, Zohra Bellahsene, and Konstantin Todorov. A survey on web data linking.

Ingénierie des Systèmes d’Information, 21(5-6):11–29, 2016. doi: 10.3166/isi.21.5-6.11-29.

URL https://doi.org/10.3166/isi.21.5-6.11-29.

Manel Achichi, Zohra Bellahsene, and Konstantin Todorov. Legato results for OAEI 2017.

In Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, and

Oktie Hassanzadeh, editors, Proceedings of the 12th International Workshop on Ontology

Matching co-located with the 16th International Semantic Web Conference (ISWC 2017),

Vienna, Austria, October 21, 2017, volume 2032 of CEUR Workshop Proceedings, pages

146–152. CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-2032/oaei17_paper6.

pdf.

Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing

linked datasets. In Christian Bizer, Tom Heath, Tim Berners-Lee, and Kingsley Idehen,

editors, Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW

2009, Madrid, Spain, April 20, 2009., volume 538 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009. URL http://ceur-ws.org/Vol-538/ldow2009_paper20.pdf.

Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description

logics. Studia Logica, 69(1):5–40, 2001. doi: 10.1023/A:1013882326814. URL https:

//doi.org/10.1023/A:1013882326814.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Frank van Harme-

len, Vladimir Lifschitz, and Bruce W. Porter, editors, Handbook of Knowledge Rep-

resentation, volume 3 of Foundations of Artificial Intelligence, pages 135–179. Else-

141

https://doi.org/10.3166/isi.21.5-6.11-29
http://ceur-ws.org/Vol-2032/oaei17_paper6.pdf
http://ceur-ws.org/Vol-2032/oaei17_paper6.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper20.pdf
https://doi.org/10.1023/A:1013882326814
https://doi.org/10.1023/A:1013882326814

BIBLIOGRAPHY

vier, 2008. doi: 10.1016/S1574-6526(07)03003-9. URL https://doi.org/10.1016/

S1574-6526(07)03003-9.

Carlo Batini and Monica Scannapieco. Data and Information Quality - Dimensions,

Principles and Techniques. Data-Centric Systems and Applications. Springer, 2016.

ISBN 978-3-319-24104-3. doi: 10.1007/978-3-319-24106-7. URL https://doi.org/10.

1007/978-3-319-24106-7.

Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan Wielemaker, and Stefan

Schlobach. LOD laundromat: A uniform way of publishing other people’s dirty data.

In Peter Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig A. Knoblock,

Denny Vrandecic, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and Carole A.

Goble, editors, The Semantic Web - ISWC 2014 - 13th International Semantic Web

Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, volume

8796 of Lecture Notes in Computer Science, pages 213–228. Springer, 2014. doi: 10.1007/

978-3-319-11964-9_14. URL https://doi.org/10.1007/978-3-319-11964-9_14.

Wouter Beek, Stefan Schlobach, and Frank van Harmelen. A contextualised semantics

for owl: sameas. In Harald Sack, Eva Blomqvist, Mathieu d’Aquin, Chiara Ghidini,

Simone Paolo Ponzetto, and Christoph Lange, editors, The Semantic Web. Latest

Advances and New Domains - 13th International Conference, ESWC 2016, Heraklion,

Crete, Greece, May 29 - June 2, 2016, Proceedings, volume 9678 of Lecture Notes in

Computer Science, pages 405–419. Springer, 2016. doi: 10.1007/978-3-319-34129-3_25.

URL https://doi.org/10.1007/978-3-319-34129-3_25.

Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific american,

284(5):28–37, 2001.

Timothy J Berners-Lee. Information management: A proposal. Technical report, 1989.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. TACL, 5:135–146, 2017. URL https://transacl.

org/ojs/index.php/tacl/article/view/999.

142

https://doi.org/10.1016/S1574-6526(07)03003-9
https://doi.org/10.1016/S1574-6526(07)03003-9
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1007/978-3-319-24106-7
https://doi.org/10.1007/978-3-319-11964-9_14
https://doi.org/10.1007/978-3-319-34129-3_25
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999

BIBLIOGRAPHY

Vannevar Bush. As we may think. The Atlantic Monthly, 176(1):101–108, 1945. URL

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John,

Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung,

Brian Strope, and Ray Kurzweil. Universal sentence encoder. CoRR, abs/1803.11175,

2018. URL http://arxiv.org/abs/1803.11175.

Klitos Christodoulou, Norman W. Paton, and Alvaro A. A. Fernandes. Structure inference

for linked data sources using clustering. Trans. Large-Scale Data- and Knowledge-

Centered Systems, 19:1–25, 2015. doi: 10.1007/978-3-662-46562-2_1. URL https:

//doi.org/10.1007/978-3-662-46562-2_1.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. Super-

vised learning of universal sentence representations from natural language inference data.

In EMNLP, pages 670–680. Association for Computational Linguistics, 2017.

Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta Sabou,

and Enrico Motta. Characterizing knowledge on the semantic web with watson. In Raul

Garcia-Castro, Denny Vrandecic, Asunción Gómez-Pérez, York Sure, and Zhisheng Huang,

editors, Proceedings of the 5th International Workshop on Evaluation of Ontologies and

Ontology-based Tools, EON2007, Co-located with the ISWC2007, Busan, Korea, November

11th, 2007, volume 329 of CEUR Workshop Proceedings, pages 1–10. CEUR-WS.org,

2007. URL http://ceur-ws.org/Vol-329/paper01.pdf.

Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Completeness state-

ments about RDF data sources and their use for query answering. In Harith Alani,

Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris Biemann, Josiane Xavier Parreira,

Lora Aroyo, Natasha F. Noy, Chris Welty, and Krzysztof Janowicz, editors, The Seman-

tic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,

Australia, October 21-25, 2013, Proceedings, Part I, volume 8218 of Lecture Notes in

Computer Science, pages 66–83. Springer, 2013. doi: 10.1007/978-3-642-41335-3_5.

URL https://doi.org/10.1007/978-3-642-41335-3_5.

143

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
http://arxiv.org/abs/1803.11175
https://doi.org/10.1007/978-3-662-46562-2_1
https://doi.org/10.1007/978-3-662-46562-2_1
http://ceur-ws.org/Vol-329/paper01.pdf
https://doi.org/10.1007/978-3-642-41335-3_5

BIBLIOGRAPHY

Gerard de Melo. Not quite the same: Identity constraints for the web of linked data. In

Marie desJardins and Michael L. Littman, editors, Proceedings of the Twenty-Seventh

AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington,

USA. AAAI Press, 2013. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI13/

paper/view/6491.

Li Ding, Joshua Shinavier, Tim Finin, and Deborah L McGuinness. owl: sameas and linked

data: An empirical study. 2010.

Nick Drummond and Rob Shearer. The open world assumption. In eSI Workshop: The

Closed World of Databases meets the Open World of the Semantic Web, volume 15, 2006.

Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In Michael Mar-

tin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceedings of the Posters and Demos

Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and

the 1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16)

co-located with the 12th International Conference on Semantic Systems (SEMANTiCS

2016), Leipzig, Germany, September 12-15, 2016, volume 1695 of CEUR Workshop

Proceedings. CEUR-WS.org, 2016. URL http://ceur-ws.org/Vol-1695/paper4.pdf.

David W. Embley and Stephen W. Liddle. Big data - conceptual modeling to the rescue.

In Conceptual Modeling - 32th International Conference, ER 2013, Hong-Kong, China,

November 11-13, 2013. Proceedings, pages 1–8, 2013. doi: 10.1007/978-3-642-41924-9_1.

URL http://dx.doi.org/10.1007/978-3-642-41924-9_1.

Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger. Linked data

quality of dbpedia, freebase, opencyc, wikidata, and YAGO. Semantic Web, 9(1):77–129,

2018. doi: 10.3233/SW-170275. URL https://doi.org/10.3233/SW-170275.

Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres, and

Mario Arias. Binary RDF representation for publication and exchange (HDT). J. Web

Semant., 19:22–41, 2013. doi: 10.1016/j.websem.2013.01.002. URL https://doi.org/

10.1016/j.websem.2013.01.002.

144

http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6491
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6491
http://ceur-ws.org/Vol-1695/paper4.pdf
http://dx.doi.org/10.1007/978-3-642-41924-9_1
https://doi.org/10.3233/SW-170275
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1016/j.websem.2013.01.002

BIBLIOGRAPHY

Alfio Ferrara, Andriy Nikolov, and François Scharffe. Data linking for the semantic web.

Int. J. Semantic Web Inf. Syst., 7(3):46–76, 2011. doi: 10.4018/jswis.2011070103. URL

https://doi.org/10.4018/jswis.2011070103.

Tayeb Abderrahmani Ghor, Esha Agrawal, Mehwish Alam, Omar Alqawasmeh, Claudia

d’Amato, Amina Annane, Amr Azzam, Andrew Berezovskyi, Russa Biswas, Mathias Bon-

duel, Quentin Brabant, Cristina-Iulia Bucur, Elena Camossi, Valentina Anita Carriero,

Shruthi Chari, David Chaves-Fraga, Fiorela Ciroku, Michael Cochez, Hubert Curien,

Vincenzo Cutrona, Rahma Dandan, Danilo Dess, Valerio Di Carlo, Ahmed El Amine

Djebri, Marieke van Erp, Faiq Miftakhul Falakh, Alba Fernndez Izquierdo, Giuseppe

Futia, Aldo Gangemi, Simone Gasperoni, Arnaud Grall, Lars Heling, Pierre-Henri Paris,

Noura Herradi, Subhi Issa, Samaneh Jozashoori, Nyoman Juniarta, Lucie-Aimée Kaffee,

Ilkcan Keles, Prashant Khare, Viktor Kovtun, Valentina Leone, Siying Li, Sven Lieber,

Pasquale Lisena, Tatiana Makhalova, Ludovica Marinucci, Thomas Minier, Benjamin

Moreau, Alberto Moya Loustaunau, Durgesh Nandini, Sylwia Ozdowska, Amanda Pacini

de Moura, Swati Padhee, Guillermo Palma, Pedro Del Pozo Jimnez, Valentina Presutti,

Roberto Reda, Ettore Rizza, Henry Rosales-mndez, Sebastian Rudolph, Harald Sack,

Luca Sciullo, Humasak Simanjuntak, Carlo Stomeo, Thiviyan Thanapalasingam, Tabea

Tietz, Dalia Varanka, Maria-Esther Vidal, Michael Wolowyk, and Maximilian Zocholl.

Linked open data validity - A technical report from ISWS 2018. CoRR, abs/1903.12554,

2019. URL http://arxiv.org/abs/1903.12554.

Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL: yet to arrive

on the web of data? In Christian Bizer, Tom Heath, Tim Berners-Lee, and Michael

Hausenblas, editors, WWW2012 Workshop on Linked Data on the Web, Lyon, France,

16 April, 2012, volume 937 of CEUR Workshop Proceedings. CEUR-WS.org, 2012. URL

http://ceur-ws.org/Vol-937/ldow2012-paper-16.pdf.

Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent itemsets.

In Nick Cercone, Tsau Young Lin, and Xindong Wu, editors, Proceedings of the 2001

IEEE International Conference on Data Mining, 29 November - 2 December 2001, San

145

https://doi.org/10.4018/jswis.2011070103
http://arxiv.org/abs/1903.12554
http://ceur-ws.org/Vol-937/ldow2012-paper-16.pdf

BIBLIOGRAPHY

Jose, California, USA, pages 163–170. IEEE Computer Society, 2001. doi: 10.1109/

ICDM.2001.989514. URL https://doi.org/10.1109/ICDM.2001.989514.

Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent itemsets. In

Bart Goethals and Mohammed Javeed Zaki, editors, FIMI ’03, Frequent Itemset Mining

Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining

Implementations, 19 December 2003, Melbourne, Florida, USA, volume 90 of CEUR

Workshop Proceedings. CEUR-WS.org, 2003.

Nicola Guarino and Christopher A. Welty. Evaluating ontological decisions with ontoclean.

Commun. ACM, 45(2):61–65, 2002. doi: 10.1145/503124.503150. URL https://doi.

org/10.1145/503124.503150.

Christophe Guéret, Paul T. Groth, Claus Stadler, and Jens Lehmann. Assessing linked

data mappings using network measures. In Elena Simperl, Philipp Cimiano, Axel

Polleres, Óscar Corcho, and Valentina Presutti, editors, The Semantic Web: Research

and Applications - 9th Extended Semantic Web Conference, ESWC 2012, Heraklion,

Crete, Greece, May 27-31, 2012. Proceedings, volume 7295 of Lecture Notes in Computer

Science, pages 87–102. Springer, 2012. doi: 10.1007/978-3-642-30284-8_13. URL

https://doi.org/10.1007/978-3-642-30284-8_13.

Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. McGuinness, and Henry S.

Thompson. When owl: sameas isn’t the same: An analysis of identity in linked data.

In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z.

Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web - ISWC 2010 - 9th

International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-

11, 2010, Revised Selected Papers, Part I, volume 6496 of Lecture Notes in Computer

Science, pages 305–320. Springer, 2010. doi: 10.1007/978-3-642-17746-0_20. URL

https://doi.org/10.1007/978-3-642-17746-0_20.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.

In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings of

the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18,

146

https://doi.org/10.1109/ICDM.2001.989514
https://doi.org/10.1145/503124.503150
https://doi.org/10.1145/503124.503150
https://doi.org/10.1007/978-3-642-30284-8_13
https://doi.org/10.1007/978-3-642-17746-0_20

BIBLIOGRAPHY

2000, Dallas, Texas, USA, pages 1–12. ACM, 2000. doi: 10.1145/342009.335372. URL

https://doi.org/10.1145/342009.335372.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8

(1):53–87, 2004. doi: 10.1023/B:DAMI.0000005258.31418.83. URL https://doi.org/

10.1023/B:DAMI.0000005258.31418.83.

Olaf Hartig and Bryan Thompson. Foundations of an alternative approach to reification in

RDF. CoRR, abs/1406.3399, 2014. URL http://arxiv.org/abs/1406.3399.

Pascal Hitzler and Frank van Harmelen. A reasonable semantic web. Semantic Web, 1

(1-2):39–44, 2010.

Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan Decker, and Axel Polleres.

Weaving the pedantic web. In Christian Bizer, Tom Heath, Tim Berners-Lee, and

Michael Hausenblas, editors, Proceedings of the WWW2010 Workshop on Linked Data

on the Web, LDOW 2010, Raleigh, USA, April 27, 2010, volume 628 of CEUR Workshop

Proceedings. CEUR-WS.org, 2010.

Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In

Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings, Tenth

International Conference on Principles of Knowledge Representation and Reasoning,

Lake District of the United Kingdom, June 2-5, 2006, pages 57–67. AAAI Press, 2006.

URL http://www.aaai.org/Library/KR/2006/kr06-009.php.

Al Koudous Idrissou, Rinke Hoekstra, Frank van Harmelen, Ali Khalili, and Peter van den

Besselaar. Is my: sameas the same as your: sameas?: Lenticular lenses for context-specific

identity. In Óscar Corcho, Krzysztof Janowicz, Giuseppe Rizzo, Ilaria Tiddi, and Daniel

Garijo, editors, Proceedings of the Knowledge Capture Conference, K-CAP 2017, Austin,

TX, USA, December 4-6, 2017, pages 23:1–23:8. ACM, 2017. doi: 10.1145/3148011.

3148029. URL https://doi.org/10.1145/3148011.3148029.

Al Koudous Idrissou, Frank van Harmelen, and Peter van den Besselaar. Network metrics for

assessing the quality of entity resolution between multiple datasets. In Catherine Faron-

147

https://doi.org/10.1145/342009.335372
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
http://arxiv.org/abs/1406.3399
http://www.aaai.org/Library/KR/2006/kr06-009.php
https://doi.org/10.1145/3148011.3148029

BIBLIOGRAPHY

Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick Toussaint, editors, Knowledge

Engineering and Knowledge Management - 21st International Conference, EKAW 2018,

Nancy, France, November 12-16, 2018, Proceedings, volume 11313 of Lecture Notes in

Computer Science, pages 147–162. Springer, 2018. doi: 10.1007/978-3-030-03667-6_10.

URL https://doi.org/10.1007/978-3-030-03667-6_10.

Subhi Issa, Pierre-Henri Paris, and Fayçal Hamdi. Assessing the completeness evolution

of DBpedia: A case study. In Sergio de Cesare and Ulrich Frank, editors, Advances in

Conceptual Modeling - ER 2017 Workshops AHA, MoBiD, MREBA, OntoCom, and

QMMQ, Valencia, Spain, November 6-9, 2017, Proceedings, volume 10651 of Lecture Notes

in Computer Science, pages 238–247. Springer, 2017. doi: 10.1007/978-3-319-70625-2\

_22. URL https://doi.org/10.1007/978-3-319-70625-2_22.

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing the

conceptual schemas of RDF datasets. In Paolo Giorgini and Barbara Weber, editors,

Advanced Information Systems Engineering - 31st International Conference, CAiSE 2019,

Rome, Italy, June 3-7, 2019, Proceedings, volume 11483 of Lecture Notes in Computer

Science, pages 312–327. Springer, 2019. doi: 10.1007/978-3-030-21290-2_20. URL

https://doi.org/10.1007/978-3-030-21290-2_20.

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Revealing the

conceptual schemas of RDF datasets - extended abstract. In INFORSID 2020, 2020.

Paul Jaccard. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat.,

44:223–270, 1908.

Prateek Jain, Pascal Hitzler, Peter Z. Yeh, Kunal Verma, and Amit P. Sheth. Linked

data is merely more data. In Linked Data Meets Artificial Intelligence, Papers from

the 2010 AAAI Spring Symposium, Technical Report SS-10-07, Stanford, California,

USA, March 22-24, 2010. AAAI, 2010. URL http://www.aaai.org/ocs/index.php/

SSS/SSS10/paper/view/1130.

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scalable

ontology matching. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham

148

https://doi.org/10.1007/978-3-030-03667-6_10
https://doi.org/10.1007/978-3-319-70625-2_22
https://doi.org/10.1007/978-3-030-21290-2_20
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1130
http://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1130

BIBLIOGRAPHY

Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist, editors, The

Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn,

Germany, October 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes in

Computer Science, pages 273–288. Springer, 2011. doi: 10.1007/978-3-642-25073-6_18.

URL https://doi.org/10.1007/978-3-642-25073-6_18.

Roberto J. Bayardo Jr. Efficiently mining long patterns from databases. In Laura M. Haas

and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International

Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA., pages

85–93. ACM Press, 1998. doi: 10.1145/276304.276313.

Kenza Kellou-Menouer and Zoubida Kedad. Schema discovery in RDF data sources. In Paul

Johannesson, Mong-Li Lee, Stephen W. Liddle, Andreas L. Opdahl, and Oscar Pastor

López, editors, Conceptual Modeling - 34th International Conference, ER 2015, Stockholm,

Sweden, October 19-22, 2015, Proceedings, volume 9381 of Lecture Notes in Computer

Science, pages 481–495. Springer, 2015. doi: 10.1007/978-3-319-25264-3_36. URL

https://doi.org/10.1007/978-3-319-25264-3_36.

Abderrahmane Khiat and Maximilian Mackeprang. I-match and ontoidea results for OAEI

2017. In Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, and

Oktie Hassanzadeh, editors, Proceedings of the 12th International Workshop on Ontology

Matching co-located with the 16th International Semantic Web Conference (ISWC 2017),

Vienna, Austria, October 21, 2017, volume 2032 of CEUR Workshop Proceedings, pages

135–137. CEUR-WS.org, 2017. URL http://ceur-ws.org/Vol-2032/oaei17_paper4.

pdf.

Graham Klyne and Jeremy J Carroll. Resource description framework (rdf): Concepts and

abstract syntax. 2006.

Justin J. Levandoski and Mohamed F. Mokbel. RDF data-centric storage. In IEEE

International Conference on Web Services, ICWS 2009, Los Angeles, CA, USA, 6-10

July 2009, pages 911–918. IEEE Computer Society, 2009. doi: 10.1109/ICWS.2009.49.

URL https://doi.org/10.1109/ICWS.2009.49.

149

https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-319-25264-3_36
http://ceur-ws.org/Vol-2032/oaei17_paper4.pdf
http://ceur-ws.org/Vol-2032/oaei17_paper4.pdf
https://doi.org/10.1109/ICWS.2009.49

BIBLIOGRAPHY

Roman Lukyanenko and Jeffrey Parsons. Principles for modeling user-generated content. In

Paul Johannesson, Mong-Li Lee, Stephen W. Liddle, Andreas L. Opdahl, and Oscar Pastor

López, editors, Conceptual Modeling - 34th International Conference, ER 2015, Stockholm,

Sweden, October 19-22, 2015, Proceedings, volume 9381 of Lecture Notes in Computer

Science, pages 432–440. Springer, 2015. doi: 10.1007/978-3-319-25264-3_32. URL

https://doi.org/10.1007/978-3-319-25264-3_32.

Roman Lukyanenko, Jeffrey Parsons, and Binny M. Samuel. Representing instances:

the case for reengineering conceptual modelling grammars. Eur. J. Inf. Syst., 28(1):

68–90, 2019. doi: 10.1080/0960085X.2018.1488567. URL https://doi.org/10.1080/

0960085X.2018.1488567.

Miguel A. Martínez-Prieto, Mario Arias Gallego, and Javier D. Fernández. Exchange and

consumption of huge RDF data. In Elena Simperl, Philipp Cimiano, Axel Polleres, Óscar

Corcho, and Valentina Presutti, editors, The Semantic Web: Research and Applications -

9th Extended Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May

27-31, 2012. Proceedings, volume 7295 of Lecture Notes in Computer Science, pages

437–452. Springer, 2012. doi: 10.1007/978-3-642-30284-8_36. URL https://doi.org/

10.1007/978-3-642-30284-8_36.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st

International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,

USA, May 2-4, 2013, Workshop Track Proceedings, 2013. URL http://arxiv.org/abs/

1301.3781.

Theodor Holm Nelson. Complex information processing: a file structure for the complex,

the changing and the indeterminate. In ACM ’65, 1965.

Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm. A

survey of current link discovery frameworks. Semantic Web, 8(3):419–436, 2017. doi:

10.3233/SW-150210. URL https://doi.org/10.3233/SW-150210.

Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne N. De Roeck. Integration of

150

https://doi.org/10.1007/978-3-319-25264-3_32
https://doi.org/10.1080/0960085X.2018.1488567
https://doi.org/10.1080/0960085X.2018.1488567
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-642-30284-8_36
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3233/SW-150210

BIBLIOGRAPHY

semantically annotated data by the knofuss architecture. In Aldo Gangemi and Jérôme

Euzenat, editors, Knowledge Engineering: Practice and Patterns, 16th International

Conference, EKAW 2008, Acitrezza, Italy, September 29 - October 2, 2008. Proceedings,

volume 5268 of Lecture Notes in Computer Science, pages 265–274. Springer, 2008. doi: 10.

1007/978-3-540-87696-0_24. URL https://doi.org/10.1007/978-3-540-87696-0_

24.

Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and

Jamie Taylor. Industry-scale knowledge graphs: lessons and challenges. Commun. ACM,

62(8):36–43, 2019. doi: 10.1145/3331166. URL https://doi.org/10.1145/3331166.

Antoni Olivé. Conceptual modeling of information systems. Springer, 2007. doi: 10.1007/

978-3-540-39390-0. URL https://doi.org/10.1007/978-3-540-39390-0.

Laura Papaleo, Nathalie Pernelle, Fatiha Saïs, and Cyril Dumont. Logical detection of

invalid sameas statements in RDF data. In Krzysztof Janowicz, Stefan Schlobach, Patrick

Lambrix, and Eero Hyvönen, editors, Knowledge Engineering and Knowledge Management

- 19th International Conference, EKAW 2014, Linköping, Sweden, November 24-28,

2014. Proceedings, volume 8876 of Lecture Notes in Computer Science, pages 373–384.

Springer, 2014. doi: 10.1007/978-3-319-13704-9_29. URL https://doi.org/10.1007/

978-3-319-13704-9_29.

Pierre-Henri Paris. Assessing the quality of owl: sameas links. In Aldo Gangemi, Anna Lisa

Gentile, Andrea Giovanni Nuzzolese, Sebastian Rudolph, Maria Maleshkova, Heiko

Paulheim, Jeff Z. Pan, and Mehwish Alam, editors, The Semantic Web: ESWC 2018

Satellite Events - ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June 3-7,

2018, Revised Selected Papers, volume 11155 of Lecture Notes in Computer Science,

pages 304–313. Springer, 2018. doi: 10.1007/978-3-319-98192-5_49. URL https:

//doi.org/10.1007/978-3-319-98192-5_49.

Pierre-Henri Paris, Nathalie Abadie, and Carmen Brando. Linking spatial named entities to

the web of data for geographical analysis of historical texts. Journal of Map & Geography

Libraries, 13(1):82–110, 2017.

151

https://doi.org/10.1007/978-3-540-87696-0_24
https://doi.org/10.1007/978-3-540-87696-0_24
https://doi.org/10.1145/3331166
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-319-13704-9_29
https://doi.org/10.1007/978-3-319-13704-9_29
https://doi.org/10.1007/978-3-319-98192-5_49
https://doi.org/10.1007/978-3-319-98192-5_49

BIBLIOGRAPHY

Pierre-Henri Paris, Nathalie Abadie, and Carmen Brando. Georeferencing historical

ressources. In Time Machine conference, 2018.

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Interlinking rdf-based

datasets: A structure-based approach. In Imre J. Rudas, János Csirik, Carlos Toro,

János Botzheim, Robert J. Howlett, and Lakhmi C. Jain, editors, Knowledge-Based and

Intelligent Information & Engineering Systems: Proceedings of the 23rd International

Conference KES-2019, Budapest, Hungary, 4-6 September 2019, volume 159 of Procedia

Computer Science, pages 162–171. Elsevier, 2019a. doi: 10.1016/j.procs.2019.09.171.

URL https://doi.org/10.1016/j.procs.2019.09.171.

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. A study about the use of

OWL 2 semantics in RDF-based knowledge graphs. In The Semantic Web: ESWC 2020

Satellite Events - ESWC 2020 Satellite Events, 2019b.

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Ontosemstats: An ontology

to express the use of semantics in rdf-based knowledge graphs. In Mária Bieliková,

Tommi Mikkonen, and Cesare Pautasso, editors, Web Engineering - 20th International

Conference, ICWE 2020, Helsinki, Finland, June 9-12, 2020, Proceedings, volume 12128

of Lecture Notes in Computer Science, pages 561–565. Springer, 2020a. doi: 10.1007/

978-3-030-50578-3_45. URL https://doi.org/10.1007/978-3-030-50578-3_45.

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-Said Cherfi. Propagation contextuelle des

propriétés pour les graphes de connaissances : une approche fondée sur les plongements

de phrases. In Ingénierie des Connaissances, 2020b.

Pierre-Henri Paris, Fayçal Hamdi, and Samira Si-said Cherfi. État des lieux de l’utilisation

de OWL 2 : Analyse et proposition pour capturer les utilisations de la sémantique

OWL 2 dans les graphes de connaissances RDF. Revue des Nouvelles Technologies de

l’Information, Extraction et Gestion des Connaissances , RNTI-E-36:145–156, 2020c.

Pierre-Henri Paris, Fayçal Hamdi, Nobal B Niraula, and Samira Si-Said Cherfi. Contextual

propagation of properties for knowledge graphs: A sentence embedding based approach.

In International Semantic Web Conference, 2020d.

152

https://doi.org/10.1016/j.procs.2019.09.171
https://doi.org/10.1007/978-3-030-50578-3_45

BIBLIOGRAPHY

Heiko Paulheim. Identifying wrong links between datasets by multi-dimensional outlier

detection. In Patrick Lambrix, Guilin Qi, Matthew Horridge, and Bijan Parsia, editors,

Proceedings of the Third International Workshop on Debugging Ontologies and Ontology

Mappings, WoDOOM 2014, co-located with 11th Extended Semantic Web Conference

(ESWC 2014), Anissaras/Hersonissou, Greece, May 26, 2014, volume 1162 of CEUR

Workshop Proceedings, pages 27–38. CEUR-WS.org, 2014. URL http://ceur-ws.org/

Vol-1162/paper3.pdf.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for

word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors,

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special

Interest Group of the ACL, pages 1532–1543. ACL, 2014. doi: 10.3115/v1/d14-1162.

URL https://doi.org/10.3115/v1/d14-1162.

Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter A. Boncz. Deriving an emergent

relational schema from RDF data. In Aldo Gangemi, Stefano Leonardi, and Alessandro

Panconesi, editors, Proceedings of the 24th International Conference on World Wide

Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 864–874. ACM, 2015. doi:

10.1145/2736277.2741121. URL http://doi.acm.org/10.1145/2736277.2741121.

Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we ever catch up

with the web? Semantic Web, 1(1-2):45–52, 2010. doi: 10.3233/SW-2010-0016. URL

https://doi.org/10.3233/SW-2010-0016.

Joe Raad, Nathalie Pernelle, and Fatiha Saïs. Detection of contextual identity links

in a knowledge base. In Óscar Corcho, Krzysztof Janowicz, Giuseppe Rizzo, Ilaria

Tiddi, and Daniel Garijo, editors, Proceedings of the Knowledge Capture Conference,

K-CAP 2017, Austin, TX, USA, December 4-6, 2017, pages 8:1–8:8. ACM, 2017. doi:

10.1145/3148011.3148032. URL https://doi.org/10.1145/3148011.3148032.

Joe Raad, Wouter Beek, Frank van Harmelen, Nathalie Pernelle, and Fatiha Saïs. Detecting

erroneous identity links on the web using network metrics. In Denny Vrandecic, Kalina

153

http://ceur-ws.org/Vol-1162/paper3.pdf
http://ceur-ws.org/Vol-1162/paper3.pdf
https://doi.org/10.3115/v1/d14-1162
http://doi.acm.org/10.1145/2736277.2741121
https://doi.org/10.3233/SW-2010-0016
https://doi.org/10.1145/3148011.3148032

BIBLIOGRAPHY

Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta

Sabou, Lucie-Aimée Kaffee, and Elena Simperl, editors, The Semantic Web - ISWC

2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October

8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in Computer Science,

pages 391–407. Springer, 2018. doi: 10.1007/978-3-030-00671-6_23. URL https:

//doi.org/10.1007/978-3-030-00671-6_23.

Petar Ristoski and Heiko Paulheim. Rdf2vec: RDF graph embeddings for data mining.

In Paul T. Groth, Elena Simperl, Alasdair J. G. Gray, Marta Sabou, Markus Krötzsch,

Freddy Lécué, Fabian Flöck, and Yolanda Gil, editors, The Semantic Web - ISWC

2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016,

Proceedings, Part I, volume 9981 of Lecture Notes in Computer Science, pages 498–

514, 2016. doi: 10.1007/978-3-319-46523-4_30. URL https://doi.org/10.1007/

978-3-319-46523-4_30.

Colette Rolland and Naveen Prakash. From conceptual modelling to requirements engi-

neering. Ann. Software Eng., 10:151–176, 2000. doi: 10.1023/A:1018939700514. URL

https://doi.org/10.1023/A:1018939700514.

Amit Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24

(4):35–43, 2001.

Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J. Pal. Learning

general purpose distributed sentence representations via large scale multi-task learning.

CoRR, abs/1804.00079, 2018.

Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh. Comu-

nica: A modular SPARQL query engine for the web. In International Semantic Web

Conference (2), volume 11137 of Lecture Notes in Computer Science, pages 239–255.

Springer, 2018.

Waldo R Tobler. A computer movie simulating urban growth in the detroit region. Economic

geography, 46(sup1):234–240, 1970.

154

https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1023/A:1018939700514

BIBLIOGRAPHY

Gerald Töpper, Magnus Knuth, and Harald Sack. Dbpedia ontology enrichment for incon-

sistency detection. In Valentina Presutti and Helena Sofia Pinto, editors, I-SEMANTICS

2012 - 8th International Conference on Semantic Systems, I-SEMANTICS ’12, Graz,

Austria, September 5-7, 2012, pages 33–40. ACM, 2012. doi: 10.1145/2362499.2362505.

URL https://doi.org/10.1145/2362499.2362505.

André Valdestilhas, Tommaso Soru, and Axel-Cyrille Ngonga Ngomo. CEDAL: time-

efficient detection of erroneous links in large-scale link repositories. In Amit P. Sheth,

Axel Ngonga, Yin Wang, Elizabeth Chang, Dominik Slezak, Bogdan Franczyk, Rainer

Alt, Xiaohui Tao, and Rainer Unland, editors, Proceedings of the International Conference

on Web Intelligence, Leipzig, Germany, August 23-26, 2017, pages 106–113. ACM, 2017.

doi: 10.1145/3106426.3106497. URL https://doi.org/10.1145/3106426.3106497.

Johanna Völker and Mathias Niepert. Statistical schema induction. In Grigoris Antoniou,

Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis,

Pieter De Leenheer, and Jeff Z. Pan, editors, The Semantic Web: Research and Ap-

plications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete,

Greece, May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture Notes in

Computer Science, pages 124–138. Springer, 2011. doi: 10.1007/978-3-642-21034-1_9.

URL https://doi.org/10.1007/978-3-642-21034-1_9.

Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk - A link discovery

framework for the web of data. In Christian Bizer, Tom Heath, Tim Berners-Lee, and

Kingsley Idehen, editors, Proceedings of the WWW2009 Workshop on Linked Data on

the Web, LDOW 2009, Madrid, Spain, April 20, 2009, volume 538 of CEUR Workshop

Proceedings. CEUR-WS.org, 2009. URL http://ceur-ws.org/Vol-538/ldow2009_

paper13.pdf.

Yan Wang, Xiaoyong Du, Jiaheng Lu, and Xiaofang Wang. Flextable: Using a dy-

namic relation model to store RDF data. In Hiroyuki Kitagawa, Yoshiharu Ishikawa,

Qing Li, and Chiemi Watanabe, editors, Database Systems for Advanced Applications,

15th International Conference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Pro-

ceedings, Part I, volume 5981 of Lecture Notes in Computer Science, pages 580–594.

155

https://doi.org/10.1145/2362499.2362505
https://doi.org/10.1145/3106426.3106497
https://doi.org/10.1007/978-3-642-21034-1_9
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf

Springer, 2010. doi: 10.1007/978-3-642-12026-8_44. URL https://doi.org/10.1007/

978-3-642-12026-8_44.

Stuart Weibel, John A. Kunze, Carl Lagoze, and Misha Wolf. Dublin core metadata

for resource discovery. RFC, 2413:1–8, 1998. doi: 10.17487/RFC2413. URL https:

//doi.org/10.17487/RFC2413.

Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, Sören

Auer, and Pascal Hitzler. Quality assessment methodologies for linked open data.

Submitted to Semantic Web Journal, 2013.

https://doi.org/10.1007/978-3-642-12026-8_44
https://doi.org/10.1007/978-3-642-12026-8_44
https://doi.org/10.17487/RFC2413
https://doi.org/10.17487/RFC2413

Appendix A

Annex

<?xml version=" 1 .0 " ?>
<Ontology xmlns=" h t t p : //www. w3 . org /2002/07/ owl#"

xml:base=" h t t p : // c e d r i c . cnam . f r / i s i d / o n t o l o g i e s /OntoSemStats . owl "
xmlns : rd f=" h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns:xml=" h t t p : //www. w3 . org /XML/1998/ namespace "
xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema#"
xmlns : rd f s=" h t t p : //www. w3 . org /2000/01/ rdf−schema#"
onto logyIRI=

" h t t p : // c e d r i c . cnam . f r / i s i d / o n t o l o g i e s /OntoSemStats . owl ">
<P r e f i x name=" "

IRI=" h t t p : // c e d r i c . cnam . f r / i s i d / o n t o l o g i e s /OntoSemStats . owl#" />
<P r e f i x name=" owl "

IRI=" h t t p : //www. w3 . org /2002/07/ owl#" />
<P r e f i x name=" rd f "

IRI=" h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#" />
<P r e f i x name=" xml " IRI=" h t t p : //www. w3 . org /XML/1998/ namespace " />
<P r e f i x name=" xsd " IRI=" h t t p : //www. w3 . org /2001/XMLSchema#" />
<P r e f i x name=" obda " IRI=" h t t p s : //w3id . org /obda/ vocabulary#" />
<P r e f i x name=" r d f s " IRI=" h t t p : //www. w3 . org /2000/01/ rdf−schema#" />
<P r e f i x name=" void " IRI=" h t t p : // r d f s . org /ns/ void#" />
<Annotation>

<AnnotationProperty
IRI=" h t t p : // creativecommons . org /ns#l i c e n s e " />

<IRI>h t t p : // creativecommons . org / l i c e n s e s /by /2 .0/</IRI>
</ Annotation>
<Annotation>

<AnnotationProperty
IRI=" h t t p : // pur l . org /dc/ e lements /1 .1/ c r e a t o r " />

<IRI>h t t p s : // github . com/PHParis</IRI>
</ Annotation>
<Annotation>

<AnnotationProperty
IRI=" h t t p : // pur l . org /dc/ terms / c o n t r i b u t o r " />

<IRI>h t t p : // c e d r i c . cnam . f r /~hamdif/</IRI>
</ Annotation>
<Annotation>

<AnnotationProperty
IRI=" h t t p : // pur l . org /dc/ terms / c o n t r i b u t o r " />

<IRI>h t t p : // c e d r i c . cnam . f r /~ s i s a i d /</IRI>

157

APPENDIX A. ANNEX

</ Annotation>
<Annotation>

<AnnotationProperty
abbrev iatedIRI=" o w l : v e r s i o n I n f o " />

<L i t e r a l
datatypeIRI=" h t t p : //www. w3 . org /2001/XMLSchema#decimal ">
1 .0

</ L i t e r a l>
</ Annotation>
<Dec la ra t i on>

<Class IRI="#Asse r t i on " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Axiom" />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#BooleanConnective " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Class " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#ClassExpres s ion " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#DataRange " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Indiv idualEnumerat ion " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlAl lD i f f e r ent " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlAl lD i s j o in tC la s s e s " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlAl lD i s j o in tPrope r t i e s " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlAllValuesFrom " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlAsymmetricProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlCardinal i ty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlComplementOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlDatatypeComplementOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlDifferentFrom " />

158

APPENDIX A. ANNEX

</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlDisjointUnionOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlDisjointWith " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlEquivalentClass " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlEquivalentProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlFunctionalProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlHasSelf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlHasValue " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlIntersect ionOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlInverseFunct ionalProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlInverseOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Ow l I r r e f l ex i v e P ro p e r t y " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlMaxCardinality " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlMaxQual i f iedCardinal i ty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlMinCardinality " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlMinQual i f i edCardina l i ty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlNegat ivePropertyAssert ion " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlOneOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlPropertyChainAxiom " />
</ Dec la ra t i on>
<Dec la ra t i on>

159

APPENDIX A. ANNEX

<Class IRI="#OwlPropertyDisjointWith " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlQua l i f i edCard ina l i ty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlRef lex iveProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlSameAs" />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlSomeValuesFrom " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlSymmetricProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlTrans it iveProperty " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlUnionOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#OwlWithRestr ict ions " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#PropertyAxiom " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#PropertyRelat ion " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Prope r tyRes t r i c t i on " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#PropertyS ignature " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#PropertyType " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#RdfType " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#RdfsDomain " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#RdfsRange " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#RdfsSubClassOf " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#RdfsSubProperty " />
</ Dec la ra t i on>

160

APPENDIX A. ANNEX

<Dec la ra t i on>
<Class IRI="#SemanticFeature " />

</ Dec la ra t i on>
<Dec la ra t i on>

<Class IRI="#Stat " />
</ Dec la ra t i on>
<Dec la ra t i on>

<Class abbrev iatedIRI=" vo id :Datase t " />
</ Dec la ra t i on>
<Dec la ra t i on>

<ObjectProperty IRI="#hasSemanticFeature " />
</ Dec la ra t i on>
<Dec la ra t i on>

<ObjectProperty IRI="#hasStat " />
</ Dec la ra t i on>
<Dec la ra t i on>

<DataProperty IRI="#de f in i t i onCount " />
</ Dec la ra t i on>
<Dec la ra t i on>

<DataProperty IRI="#usageCount " />
</ Dec la ra t i on>
<Dec la ra t i on>

<AnnotationProperty
IRI=" h t t p : // creativecommons . org /ns#l i c e n s e " />

</ Dec la ra t i on>
<Dec la ra t i on>

<AnnotationProperty
IRI=" h t t p : // pur l . org /dc/ e lements /1 .1/ c r e a t o r " />

</ Dec la ra t i on>
<Dec la ra t i on>

<AnnotationProperty
IRI=" h t t p : // pur l . org /dc/ terms / c o n t r i b u t o r " />

</ Dec la ra t i on>
<Equ iva l entC la s s e s>

<Class IRI="#Stat " />
<ObjectExactCard ina l i ty c a r d i n a l i t y=" 1 ">

<ObjectProperty IRI="#hasSemanticFeature " />
<Class IRI="#SemanticFeature " />

</ ObjectExactCard ina l i ty>
</ Equ iva l entC la s s e s>
<SubClassOf>

<Class IRI="#Asse r t i on " />
<Class IRI="#Axiom" />

</ SubClassOf>
<SubClassOf>

<Class IRI="#Axiom" />
<Class IRI="#SemanticFeature " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#BooleanConnective " />
<Class IRI="#Class " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#Class " />
<Class IRI="#SemanticFeature " />

</ SubClassOf>

161

APPENDIX A. ANNEX

<SubClassOf>
<Class IRI="#ClassExpres s ion " />
<Class IRI="#Axiom" />

</ SubClassOf>
<SubClassOf>

<Class IRI="#DataRange " />
<Class IRI="#SemanticFeature " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#Indiv idualEnumerat ion " />
<Class IRI="#Class " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlAl lD i f f e r ent " />
<Class IRI="#Asse r t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlAl lD i s j o in tC la s s e s " />
<Class IRI="#ClassExpres s ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlAl lD i s j o in tPrope r t i e s " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlAllValuesFrom " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlAsymmetricProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlCardinal i ty " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlComplementOf " />
<Class IRI="#BooleanConnective " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlDatatypeComplementOf " />
<Class IRI="#DataRange " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlDifferentFrom " />
<Class IRI="#Asse r t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlDisjointUnionOf " />
<Class IRI="#ClassExpres s ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlDisjointWith " />
<Class IRI="#ClassExpres s ion " />

</ SubClassOf>

162

APPENDIX A. ANNEX

<SubClassOf>
<Class IRI="#OwlEquivalentClass " />
<Class IRI="#ClassExpres s ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlEquivalentProperty " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlFunctionalProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlHasSelf " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlHasValue " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlIntersect ionOf " />
<Class IRI="#BooleanConnective " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlInverseFunct ionalProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlInverseOf " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#Ow l I r r e f l ex i v e P ro p e r t y " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlMaxCardinality " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlMaxQual i f iedCardinal i ty " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlMinCardinality " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlMinQual i f i edCardina l i ty " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlNegat ivePropertyAssert ion " />
<Class IRI="#Asse r t i on " />

</ SubClassOf>

163

APPENDIX A. ANNEX

<SubClassOf>
<Class IRI="#OwlOneOf " />
<Class IRI="#Indiv idualEnumerat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlPropertyChainAxiom " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlPropertyDisjointWith " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlQua l i f i edCard ina l i ty " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlRef lex iveProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlSameAs" />
<Class IRI="#Asse r t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlSomeValuesFrom " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlSymmetricProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlTrans it iveProperty " />
<Class IRI="#PropertyType " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlUnionOf " />
<Class IRI="#BooleanConnective " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#OwlWithRestr ict ions " />
<Class IRI="#DataRange " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#PropertyAxiom " />
<Class IRI="#Axiom" />

</ SubClassOf>
<SubClassOf>

<Class IRI="#PropertyRelat ion " />
<Class IRI="#PropertyAxiom " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#Prope r tyRes t r i c t i on " />
<Class IRI="#Class " />

</ SubClassOf>

164

APPENDIX A. ANNEX

<SubClassOf>
<Class IRI="#PropertyS ignature " />
<Class IRI="#PropertyAxiom " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#PropertyType " />
<Class IRI="#PropertyAxiom " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#RdfType " />
<Class IRI="#Asse r t i on " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#RdfsDomain " />
<Class IRI="#PropertyS ignature " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#RdfsRange " />
<Class IRI="#PropertyS ignature " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#RdfsSubClassOf " />
<Class IRI="#ClassExpres s ion " />

</ SubClassOf>
<SubClassOf>

<Class IRI="#RdfsSubProperty " />
<Class IRI="#PropertyRelat ion " />

</ SubClassOf>
<Dis jo intUnion>

<Class IRI="#Asse r t i on " />
<Class IRI="#OwlAl lD i f f e r ent " />
<Class IRI="#OwlDifferentFrom " />
<Class IRI="#OwlNegat ivePropertyAssert ion " />
<Class IRI="#OwlSameAs" />
<Class IRI="#RdfType " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#Axiom" />
<Class IRI="#Asse r t i on " />
<Class IRI="#ClassExpres s ion " />
<Class IRI="#PropertyAxiom " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#BooleanConnective " />
<Class IRI="#OwlComplementOf " />
<Class IRI="#OwlIntersect ionOf " />
<Class IRI="#OwlUnionOf " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#Class " />
<Class IRI="#BooleanConnective " />
<Class IRI="#Indiv idualEnumerat ion " />
<Class IRI="#Prope r tyRes t r i c t i on " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#ClassExpres s ion " />

165

APPENDIX A. ANNEX

<Class IRI="#OwlAl lD i s j o in tC la s s e s " />
<Class IRI="#OwlDisjointUnionOf " />
<Class IRI="#OwlDisjointWith " />
<Class IRI="#OwlEquivalentClass " />
<Class IRI="#RdfsSubClassOf " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#DataRange " />
<Class IRI="#OwlDatatypeComplementOf " />
<Class IRI="#OwlWithRestr ict ions " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#PropertyAxiom " />
<Class IRI="#PropertyRelat ion " />
<Class IRI="#PropertyS ignature " />
<Class IRI="#PropertyType " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#PropertyRelat ion " />
<Class IRI="#OwlAl lD i s j o in tPrope r t i e s " />
<Class IRI="#OwlEquivalentProperty " />
<Class IRI="#OwlInverseOf " />
<Class IRI="#OwlPropertyChainAxiom " />
<Class IRI="#OwlPropertyDisjointWith " />
<Class IRI="#RdfsSubProperty " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#Prope r tyRes t r i c t i on " />
<Class IRI="#OwlAllValuesFrom " />
<Class IRI="#OwlCardinal i ty " />
<Class IRI="#OwlHasSelf " />
<Class IRI="#OwlHasValue " />
<Class IRI="#OwlMaxCardinality " />
<Class IRI="#OwlMaxQual i f iedCardinal i ty " />
<Class IRI="#OwlMinCardinality " />
<Class IRI="#OwlMinQual i f i edCardina l i ty " />
<Class IRI="#OwlQua l i f i edCard ina l i ty " />
<Class IRI="#OwlSomeValuesFrom " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#PropertyS ignature " />
<Class IRI="#RdfsDomain " />
<Class IRI="#RdfsRange " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#PropertyType " />
<Class IRI="#OwlAsymmetricProperty " />
<Class IRI="#OwlFunctionalProperty " />
<Class IRI="#OwlInverseFunct ionalProperty " />
<Class IRI="#Ow l I r r e f l ex i v e P ro p e r t y " />
<Class IRI="#OwlRef lex iveProperty " />
<Class IRI="#OwlSymmetricProperty " />
<Class IRI="#OwlTrans it iveProperty " />

</ Dis jo intUnion>
<Dis jo intUnion>

<Class IRI="#SemanticFeature " />

166

APPENDIX A. ANNEX

<Class IRI="#Axiom" />
<Class IRI="#Class " />
<Class IRI="#DataRange " />

</ Dis jo intUnion>
<Funct ionalObjectProperty>

<ObjectProperty IRI="#hasSemanticFeature " />
</ Funct ionalObjectProperty>
<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasSemanticFeature " />
</ AsymmetricObjectProperty>
<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasStat " />
</ AsymmetricObjectProperty>
<I r r e f l e x i v e O b j e c t P r o p e r t y>

<ObjectProperty IRI="#hasSemanticFeature " />
</ I r r e f l e x i v e O b j e c t P r o p e r t y>
<I r r e f l e x i v e O b j e c t P r o p e r t y>

<ObjectProperty IRI="#hasStat " />
</ I r r e f l e x i v e O b j e c t P r o p e r t y>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasSemanticFeature " />
<Class IRI="#Stat " />

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasStat " />
<Class abbrev iatedIRI=" vo id :Datase t " />

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasSemanticFeature " />
<Class IRI="#SemanticFeature " />

</ ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasStat " />
<Class IRI="#Stat " />

</ ObjectPropertyRange>
<FunctionalDataProperty>

<DataProperty IRI="#de f in i t i onCount " />
</ FunctionalDataProperty>
<FunctionalDataProperty>

<DataProperty IRI="#usageCount " />
</ FunctionalDataProperty>
<DataPropertyDomain>

<DataProperty IRI="#de f in i t i onCount " />
<Class IRI="#Stat " />

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI="#usageCount " />
<Class IRI="#Stat " />

</DataPropertyDomain>
<DataPropertyRange>

<DataProperty IRI="#de f in i t i onCount " />
<Datatype abbrev iatedIRI=" x s d : i n t e g e r " />

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI="#usageCount " />
<Datatype abbrev iatedIRI=" x s d : i n t e g e r " />

167

APPENDIX A. ANNEX

</DataPropertyRange>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" rdfs:comment " />
<IRI>#de f in i t i onCount</IRI>
<L i t e r a l xml:lang=" en ">

Number o f d e f i n i t i o n o f a semantic f e a t u r e .
</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" r d f s : l a b e l " />
<IRI>#de f in i t i onCount</IRI>
<L i t e r a l xml:lang=" en ">d e f i n i t i o n count</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" rdfs:comment " />
<IRI>#hasSemanticFeature</IRI>
<L i t e r a l xml:lang=" en ">

Spec i f y which OWL 2 or RDFS semantic f e a t u r e i s
the t a r g e t o f the g iven s t a t .

</ L i t e r a l>
</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" r d f s : l a b e l " />
<IRI>#hasSemanticFeature</IRI>
<L i t e r a l xml:lang=" en ">has semantic f e a t u r e</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" rdfs:comment " />
<IRI>#hasStat</IRI>
<L i t e r a l xml:lang=" en ">

Add a s t a t i s t i c to a vo id :Datase t .
</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" r d f s : l a b e l " />
<IRI>#hasStat</IRI>
<L i t e r a l xml:lang=" en ">has s t a t</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" rdfs:comment " />
<IRI>#usageCount</IRI>
<L i t e r a l xml:lang=" en ">

Number o f usage o f a semantic f e a t u r e .
</ L i t e r a l>

</ Annotat ionAssert ion>
<Annotat ionAssert ion>

<AnnotationProperty abbrev iatedIRI=" r d f s : l a b e l " />
<IRI>#usageCount</IRI>
<L i t e r a l xml:lang=" en ">usage count</ L i t e r a l>

</ Annotat ionAssert ion>
</Ontology>

Listing A.1: Ontology OntoSemStats.

168

Pierre-Henri PARIS

Identity in RDF knowledge graphs:
Propagation of properties between

contextually identical entities

Abstract:
Due to a large number of knowledge graphs and, more importantly, their even more numerous interconnections using the
owl:sameAs property, it has become increasingly evident that this property is often misused. Indeed, the entities linked
by the owl:sameAs property must be identical in all possible and imaginable contexts. This is not always the case and
leads to a deterioration of data quality. Identity must be considered as context-dependent. We have, therefore, proposed
a large-scale study on the presence of semantics in knowledge graphs since specific semantic characteristics allow us to
deduce identity links. This study naturally led us to build an ontology allowing us to describe the semantic content of
a knowledge graph. We also proposed a interlinking approach based both on the logic allowed by semantic definitions,
and on the predominance of certain properties to characterize the identity relationship between two entities. We looked
at completeness and proposed an approach to generate a conceptual schema to measure the completeness of an entity.
Finally, using our previous work, we proposed an approach based on sentence embedding to compute the properties that
can be propagated in a specific context. Hence, the propagation framework allows the expansion of SPARQL queries and,
ultimately, to increase the completeness of query results.
Keywords:
Semantic Web, Contextual Identity, Property Propagation, Knowledge Graph, RDF, OWL, Ontology, Instance Matching,
Linked Data, Sentence Embedding, Completeness, Conceptual Schema Mining.

Résumé :
En raison du grand nombre de graphes de connaissances et, surtout, de leurs interconnexions encore plus nombreuses à
l’aide de la propriété owl:sameAs, il est devenu de plus en plus évident que cette propriété est souvent mal utilisée. En
effet, les entités liées par la propriété owl:sameAs doivent être identiques dans tous les contextes possibles et imaginables.
Dans les faits, ceci n’est pas toujours le cas et induit une détérioration de la qualité des données. L’identité doit être
considérée comme étant dépendante d’un contexte. Nous avons donc proposé une étude à large échelle sur la présence de
la sémantique dans les graphes de connaissances, puisque certaines caractéristiques sémantiques permettent justement de
déduire des liens d’identités. Cette étude nous a amenés naturellement à construire une ontologie permettant de donner la
teneur en sémantique d’un graphe de connaissances. Nous avons aussi proposé une approche de liage de données fondée à
la fois sur la logique permise par les définitions sémantiques, et à la fois sur la prédominance de certaines propriétés pour
caractériser la relation d’identité entre deux entités. Nous nous sommes aussi intéressés à la complétude et avons proposé
une approche permettant de générer un schéma conceptuel afin de mesurer la complétude d’une entité. Pour finir, à l’aide
des travaux précédents, nous avons proposé une approche fondée sur les plongements de phrases permettant de calculer
les propriétés pouvant être propagées dans un contexte précis. Ceci permet l’expansion de requêtes SPARQL et, in fine,
d’augmenter la complétude des résultats de la requête.
Mots clés :
Web Sémantique, Identité Contextuelle, Propagation de Propriétés, Graphe de Connaissances, RDF, OWL, Ontologie,
Appariement d’Instances, Données Liées, Plongement de Phrases, Complétude, Extraction de Schéma Conceptuel.

	Résumé en français
	Introduction
	Context and objectives
	Contributions
	Thesis outlines

	Background and State of the art
	From documents to knowledge graphs
	Identity from historical and philosophical points of view
	Traditional instance matching
	Identity crisis
	Contextual Identity
	Conclusion

	Knowledge graphs and OWL 2
	Introduction
	Related work
	Current state of linked open data
	Sources
	Information collecting
	Overall Results
	Results by topic
	Results by feature OWL 2

	Ontology
	Web application
	Conclusion

	Semantics and predominance of properties
	Introduction
	Background and Notation
	Approach
	Approach summary
	In-depth approach

	Experiments
	Results
	Discussion

	Conclusion

	Propagation of properties
	Introduction
	Motivation
	Approach
	Preliminaries
	Computation of contexts
	Sentence embedding

	Experimental Results
	Implementation and set-up
	Quantitative Study
	Qualitative Study
	Discussion

	Conclusion

	Effects of Contextual Propagation on Entity Schema Completeness
	Introduction
	Related work
	Conceptual schemas derivation
	Scope and Completeness Specification
	Properties Mining
	Completeness calculation
	Generation of Enriched Conceptual Schemas

	Use cases
	Class diagram to facilitate data browsing
	Discovering a subset of MFP
	Application to our propagation framework

	Conclusion

	Conclusion and perspectives
	Thesis summary
	Future directions

	List of publications
	Bibliography
	Annex
	Index

