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Abstract 
 
Spondyloarthritis (SpA) is a family of related chronic inflammatory diseases (CID), and is 
characterised by inflammation of the spine and sacroiliac joints, the hallmarks of the axial form of 
this disease (AxSpA). Genome-wide association studies (GWAS) have identified genetic loci 
associated to SpA disease susceptibility. GWAS also have provided evidence of a key role for 
immune signalling pathways in the pathogenesis of SpA, as many of the identified loci map to 
immune genes. In particular, GWAS have suggested a role for the interleukin-23/interleukin-17 (IL-
23/IL-17) axis in the pathogenesis of several CIDs. However, for most associated loci, the 
mechanism by which they affect pathogenesis and the immune cell populations in which they act 
are still not known. The goal of this project is to understand the molecular mechanisms of the 
disease pathogenesis by studying immune cell function and response to biologics in SpA. 
 
To understand the role of susceptibility loci in CIDs we designed an nCounter® gene expression 
panel (NanoString Technologies): the Autoimmune Discovery Consortium Panel. This panel was 
created utilising the reported loci from GWAS in 9 CIDs, with the addition of several immune genes, 
such as cytokine and chemokine genes. We used this panel to determine the expression pattern 
of “GWAS genes” in immune cell populations isolated from 50 axial SpA (AxSpA) patients. The 
cell-type-specific gene expression profiles were then correlated with the patient genotype to 
identify expression quantitative trait loci (eQTLs). Gene expression analysis showed that ~80% of 
genes associated with CIDs were expressed in T cell subsets (CD4+ and CD8+, under resting and 
activated states), implicating their role in disease. The eQTL study revealed a genomic region on 
chromosome 11, including SNPs that affect the expression of cathepsin W (CTSW), a lysosomal 
peptidase implicated in cytotoxic activity in CD8+ T cells. Furthermore, we demonstrated that 
transcription factor NFATC2 (Nuclear factor of activated T-cells, cytoplasmic 2) binds in an allele-
specific manner to the eQTL rs12225345, supporting its role in CTSW regulation in T cells. These 
data illustrate how allele-specific binding of transcription factors could contribute to the regulation 
of disease-associated genes, and may play a role in the pathogenesis of the disease. 
 
In the second part of this project, we studied the molecular mechanism of AxSpA pathogenesis 
and the impact of biologics (TNF inhibitors, TNFi) on immune responses of AxSpA patients.  
To study the role for the IL-23/IL-17 axis in the pathogenesis of AxSpA, we have characterised the 
immune cells that produce IL-17A in AxSpA patients. We compared the IL-17 production capacity 
of cell subsets of the innate (MAIT, γδT, and neutrophils) and adaptive (CD4+ and CD8+ T-cells) 
arms of the immune system. We identified MAIT cells as the main producers of IL-17 in AxSpA. 
We also observed that both innate and adaptive lymphocytes express genes belonging to the IL-
23/IL-17 pathway and genes previously associated with SpA susceptibility. To understand the 
mechanism of action of TNF blockade in axSpA patients, we investigated the effect of TNFi on 
immune responses to microbial and pathway-related stimuli. We demonstrated that anti-TNF 
therapy induced profound changes in patients’ innate immune responses, but has minor effects on 
Th1/Th17 immunity. Additionally, we observed that TNFi affect the NFκB transcriptional network – 
an important regulatory network for innate immune response genes. We also reported that TNFi 
steers monocytes/macrophages towards an M2-like profile, which may be an important factor in 
the regulation of inflammatory responses. 
 
Keywords: chronic inflammatory diseases, spondyloarthritis, innate and adaptive immune cells, 
cell-type-specific gene expression, eQTLs 
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Résumé 
 
La spondylarthrite (SpA) est une famille de maladies inflammatoires chroniques apparentées 
(CID), et se caractérise par une inflammation de la colonne vertébrale et des articulations sacro-
iliaques, caractéristiques de la forme axiale de cette maladie (AxSpA). Des études d'association 
pangénomique (GWAS) ont identifié des locus génétiques associés à la susceptibilité à la maladie 
de la SpA. GWAS a également fourni la preuve d'un rôle clé pour les voies de signalisation 
immunitaire dans la pathogenèse de la SpA, car de nombreux loci identifiés sont associés à des 
gènes immunitaires. En particulier, les GWAS ont suggéré un rôle pour l'axe interleukine-23 / 
interleukine-17 (IL-23 / IL-17) dans la pathogenèse de plusieurs CID. Cependant, pour la plupart 
des loci associés, le mécanisme par lequel ils affectent la pathogenèse et les populations de 
cellules immunitaires dans lesquelles ils agissent ne sont toujours pas connus. L’objectif de ce 
projet est de comprendre les mécanismes moléculaires de la pathogenèse de la maladie en 
étudiant la fonction des cellules immunitaires et la réponse aux traitement biologique dans la SpA. 
 
Pour comprendre le rôle des loci de susceptibilité dans les CID, nous avons conçu un panel 
d'expression génique nCounter® (NanoString Technologies): le panel Autoimmune Discovery 
Consortium. Ce panel a été créé en utilisant les loci rapportés de GWAS dans 9 CID, avec l'ajout 
de plusieurs gènes immunitaires, tels que les gènes de cytokine et de chimiokine. Nous avons 
utilisé ce panel pour déterminer le modèle d'expression des «gènes GWAS» dans les populations 
de cellules immunitaires isolées de 50 patients SpA axiaux (AxSpA). Les profils d'expression 
génique spécifiques au type de cellule ont ensuite été corrélés avec le génotype du patient pour 
identifier les locus de caractères quantitatifs d'expression (eQTL). L'analyse de l'expression 
génique a montré qu'environ 80% des gènes associés aux CID étaient exprimés dans des sous-
ensembles de cellules T (CD4+ et CD8+, à l'état de repos et activé), ce qui implique leur rôle dans 
la maladie. L'étude eQTL a révélé un cluster sur le chromosome 11, y compris des SNP qui 
affectent l'expression de la CTSW (cathepsin W), une peptidase lysosomale impliquée dans 
l'activité cytotoxique des cellules T CD8+. En outre, nous avons démontré que le facteur de 
transcription NFATC2 (Nuclear factor of activated T-cells, cytoplasmic 2) se lie de manière allélique 
spécifique à l'eQTL rs12225345, soutenant son rôle dans la régulation CTSW dans les 
lymphocytes T. Ces données illustrent comment la liaison allélique spécifique des facteurs de 
transcription pourrait contribuer à la régulation des gènes associés à la maladie et jouer un rôle 
dans la pathogenèse de la maladie. 
 
Dans la deuxième partie de ce projet, nous avons étudié le mécanisme moléculaire de la 
pathogenèse AxSpA et l'impact des traitement biologiques (inhibiteurs du TNF, TNFi) sur les 
réponses immunitaires des patients axSpA. Pour étudier le rôle de l'axe IL-23 / IL-17 dans la 
pathogenèse de AxSpA, nous avons caractérisé les cellules immunitaires qui produisent l'IL-17A 
chez les patients AxSpA. Nous avons comparé la capacité de production d'IL-17 de sous-
ensembles cellulaires des bras innés (MAIT, γδT et polynucléaires neutrophiles) et adaptatifs 
(cellules T CD4+ et CD8+) du système immunitaire. Nous avons identifié les cellules MAIT comme 
les principaux producteurs d'IL-17 dans AxSpA. Nous avons également observé que les 
lymphocytes innés et adaptatifs expriment des gènes appartenant à la voie IL-23 / IL-17 et des 
gènes précédemment associés à la sensibilité SpA. Pour comprendre le mécanisme d'action du 
blocage du TNF chez les patients AxSpA, nous avons étudié l'effet du TNFi sur les réponses 
immunitaires aux stimuli microbiens et liés à la voie. Nous avons démontré que la thérapie anti-
TNF induisait des changements profonds dans la réponse immunitaire innée des patients, mais 
avait des effets mineurs sur l'immunité Th1 / Th17. De plus, nous avons observé que le TNFi 
affecte le réseau transcriptionnel du NFκB - un réseau de régulation important pour les gènes de 
réponse immunitaire innée. Nous avons également signalé que le TNFi oriente les monocytes / 
macrophages vers un profil de type M2, ce qui peut être un facteur important dans la régulation 
des réponses inflammatoires. 
 
Mot clefs :  maladies chroniques inflammatoire, spondyloarthrites, cellules immunitaires innées et 
adaptatives, expression génetique, eQTLs
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An immunologist and a cardiologist are kidnapped.  
The kidnappers threaten to shoot one of them, but promise to spare whoever has 
made the greater contribution to humanity. The cardiologist says, “Well, I’ve identified 
drugs that have saved the lives of millions of people.”  
Impressed, the kidnappers turn to the immunologist. “What have you done?” they ask. 
The immunologist says, “The thing is, the immune system is very complicated …” And 
the cardiologist says, “Just shoot me now.” 
 

Ed Yong  (The Atlantic, August 5, 2020) 
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1.1 Chronic inflammatory diseases (CID): An overview 
 

Chronic inflammatory diseases (CIDs) are disorders that feature dysregulation of 

normal immune response resulting in persistent inflammation. During CIDs the immune 

system either overreacts (autoinflammation) or fails to distinguish between self from non-self 

(autoimmunity), or it induces an exaggerated response to antigens (allergies) (Janeway et al., 

2001). CIDs encompass a spectrum of chronic and polygenic immune disorders featuring 

inflammation in the target organs and tissues- blood, bones, skin, GI tract etc., as depicted in 

Figure 1. The prevalence rate of CIDs in the Western population is estimated to be 5% - 7% 

(El-Gabalawy, Guenther & Bernstein, 2010). Some examples of CIDs are systemic lupus 

erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), psoriasis 

(Pso), type 1 diabetes (T1D), ankylosing spondylitis (AS) and multiple sclerosis (MS). 

Clinically, the pathophysiology of these diseases are distinct. However, immune dysregulation 

through imbalance in cytokine secretion resulting in prolonged inflammation is a shared 

signature in their pathology (Kuek, Hazleman, & Östör, 2007).  

 

 

 
 

Figure 1: Chronic inflammatory diseases and target tissues and organs. CIDs are a spectrum of 
chronic and complex inflammatory disorders with localised inflammation and other systemic effects. 
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Epidemiologically, the incidence rate of immune disorders has been on the rise since 

the 1950s (Bach, 2002). Around 1 in 30 individuals have a type of inflammatory or autoimmune 

disease, thus making them a major global health problem (Wandstrat & Wakeland, 2001). 

Numerous factors can be attributed to the rise in CIDs, namely, environment, interaction 

between genetics and environment, lifestyle and socio-economic factors (Figure 2). These 

factors alone and/or combined can perturb interactive biological networks that maintain 

immune homeostasis. Due to the multifactorial nature of these diseases, it is particularly 

challenging to understand their pathophysiology.  

 

 

 
 

Figure 2: Contributing factors to chronic inflammatory diseases. CIDs can be triggered as a result 
of host genetics, environmental and lifestyle elements, combined gene-environment interactions and 
the resulting immune regulation. 

1.2 Genetic susceptibility to CIDs 
The development of CIDs has a strong hereditary component. Heritability (h2) is 

defined as the proportion of total phenotypic variation for a given trait (VP) in a population that 

can be attributed to the observed genetic variance (VG) among individuals. It explains how 

much of the phenotypic variation is due to the genetic factors. h2 is the proportion of genetic 

variance from additive genetic factors, h2 = VA/ VP, where VA is the genetic variance explained 

by the sum total of the genetic effects and VP is the observed phenotypic variance (Wray & 
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Visscher, 2008). The heritability in genetic diseases is classically assessed using family based 

studies to calculate sibling recurrence risk and twin concordance rates.  

 

The sibling recurrence risk (𝜆s) is the ratio of the disease risk in siblings of affected 

individuals to the disease incidence in the general population, whereas twin concordance rate 

refers to the proportion of siblings of the affected twins that also have the disease. Most CIDs 

have a sibling recurrence risk score between 6 and 20 and concordance rates between 25% 

- 50% in monozygotic (MZ) twins and 2% - 12% in dizygotic (DZ) twins (Goris & Liston, 2012). 

For example, the computed relative risk in RA from 𝜆s is 5 – 10, MZ concordance rate was 

12% - 15% and the DZ concordance rate was between 2% - 3% (Wandstrat & Wakeland, 

2001). Additionally, co-occurrence of multiple CIDs in individuals along with clustering of these 

diseases in families indicate the strong genetic influences that contribute to susceptibility to 

these diseases. 

 

1.2.1 Genetic studies in CIDs: Pre-GWAS era 
 

Before the advent of sequencing technologies and big data analysis in genomics, 

genes associated with disease predisposition were identified through candidate-gene 

approaches and family-based linkage studies. However, for CIDs, these approaches did not 

yield much progress in identifying novel risk loci. Candidate gene studies required prior 

knowledge of the disease mechanism to select genes and to test genetic variants for 

association with the disease. With limited understanding of the disease biology, identifying 

new candidate genes was difficult. Additional drawbacks included testing one or few 

polymorphisms at a time and the lack of statistical power to detect significant associations. 

Despite these limitations, candidate-gene studies were still able to identify some prominent 

susceptibility genes in immune diseases, like CTLA4 (cytotoxic T-lymphocyte-associated 

protein 4) associated with Grave’s disease (GD) and T1D (Ricaño-Ponce & Wijmenga, 2013). 

CTLA4 association to GD and T1D were replicated later on by several association studies and 

CTLA4 is now a well-established locus for other CIDs like RA (Gregersen et al., 2009) and 

Coeliac’s disease (CeD) (Trynka et al., 2011). 

 

Unlike candidate-gene studies, linkage analysis is conducted in a hypothesis-free 

manner without requiring prior knowledge of the disease pathology. Family-based linkage 

studies work by a transmission model to explain the inheritance pattern of a phenotype (a 

complex trait, e.g. an immune disease like IBD) and the genotype observed in a pedigree 

(Lander & Schork, 1994). This approach was successful in monogenic diseases where linkage 

can be established within a single pedigree. Due to the polygenic nature of complex immune 
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diseases, linkage analysis had limited success in identifying disease-associated genes. 

However, using this method Hugot et al. mapped variants in the NOD2, a gene associated 

with CD susceptibility (Hugot et al., 1996). NOD2 was later identified as a causal gene for IBD 

by the same team (Hugot et al., 2001). Genetic approaches to study immune diseases, prior 

to GWAS, identified associations of several CIDs with the human leukocyte antigen (HLA) 

alleles within the major histocompatibility complex (MHC) on chromosome 6 (Kumar, 

Wijmenga & Xavier, 2014). 
 

 
1.2.2 Genetic studies in CIDs: GWAS era 
 

GWAS is a large-scale analysis of genetic variants across the human genome that is 

used to study the relationship between single nucleotide polymorphisms (SNPs) with a 

phenotypic trait within a population (Hardy & Singleton, 2009). Conceptually, in the first stage 

of case-control GWAS, cohorts of ethnically matched patients and healthy controls are 

recruited (ideally). In the second stage, genomic DNA isolated from the individuals is 

hybridised on SNP arrays with 300,000 to millions of markers with fluorescently labelled 

alleles. In the third stage, the fluorescent signals corresponding to the alleles of SNPs are 

used to calculate the allele frequencies in the cases and in the controls. Variants associated 

with the disease will be found at a higher frequency in cases than in controls as shown in 

Figure 3. A statistical test is carried out to assess how likely a variant is to be associated with 

a trait and the results are represented in p-values. The p-value in GWAS indicates the 

probability that the allele is likely to be associated with the trait (Bush & Moore, 2012). The 

results can be represented as a “Manhattan plot” as seen in Figure 3. The association is also 

represented as odds ratios (OR), which is the ratio between the odds of individuals having the 

disease associated with a specific allele and the odds of individuals who have the disease but 

do not carry the same associated allele.  
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Figure 3: Genome-wide association study methodology. GWAS surveys the entire genome for 
SNPs that occur more frequently in individuals with the disease (cases) compared to the healthy 
individuals (controls). When the frequency of a SNP between cases and control is significantly different, 
that SNP is associated with disease risk. 
 
 
 

Unlike family-based linkage studies, GWAS is done in a hypothesis-free manner 

without the bias from prior knowledge about the disease pathology. Therefore, through GWAS, 

several novel loci can be identified that may give new insights into disease pathogenesis. 

Association studies have been successful in identifying hundreds of loci linked to immune 

disease susceptibility owing to the linkage disequilibrium (LD) structure in the genome. In 

multifactorial diseases, GWAS is effective in identifying common variants with modest effect 

sizes, i.e. a modest proportion of individuals in a population carry the allele associated with a 

phenotype, which makes the variant moderately penetrant (Lobo, 2008). However, these 

variants with modest effect sizes do not fully account for the observed disease susceptibility. 

The discrepancy may be due to the rare variants with minor allele frequency (MAF) <1% and 

low to modest effect sizes, that are challenging to detect using GWAS (McCarthy et al., 2008). 

Due to this drawback the effect of rare variants is often discounted in association studies. 

Other limitations of GWAS include population stratification bias and sample size bias resulting 

in false-positive and false-negative results. Moreover, overcoming the burden of multiple 

testing requires a large sample size, in order to reach the genome-wide significance threshold 

(p-value < 10-8), and rigorous replication studies are necessary to validate the findings (Flint, 

2013). However, the advantages of GWAS outweigh the disadvantages especially in 

measuring the disease risk in large case-control cohorts of polygenic disorders. 

 

Through immune-related GWAS, common variants in the non-MHC region with odds 

ratios (OR) ranging between 1.04 and 3.99 were identified (Ricaño-Ponce & Wijmenga, 2013). 

GWAS and replication studies conducted in individual CIDs have successfully identified and 

replicated numerous loci, such as 137 loci in IBD (De Lange et al., 2017), 56 loci in Pso (Tsoi 

et al., 2017), and 52 loci in MS (Beecham et al., 2013). A combined meta-analysis study in 
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CIDs (ankylosing spondylitis, Crohn’s disease, psoriasis, primary sclerosing cholangitis and 

ulcerative colitis), collectively revealed a total of 156 loci including 27 new associations 

(Ellinghaus et al., 2016). There are a plethora of public data repositories that maintain GWAS 

summary statistics and data from published studies worldwide-  for e.g., GWAS catalog, 

Immunobase consortium and Open Targets Genetics.   

 

However, most GWAS associations explain less than 50% of the heritability of a 

disease, and the rest remains unaccounted for. For complex diseases, heritability assessed 

through GWAS is small and the remaining unexplained heritability is termed as “missing 

heritability”. Rare variants in the genome that are missed during GWAS may be a source for 

the missing heritability in autoimmune diseases. However, exon sequencing studies of GWAS 

loci have revealed that rare exonic variants have minor impact on immune disease risk (Hunt 

et al., 2013). Another source could be rare variants in the intronic region or from the gene-

gene interactions and epigenetic regulations in polygenic diseases (Ye, Gillespie & Rodriguez, 

2018). A plausible reason for missing out variants in GWAS could be due to the population 

bias from SNP-genotyping arrays. Genotyping arrays were often designed with 

polymorphisms that occur in the individuals of European ancestry, under-representing the 

variants from non-European populations. (Bush & Moore, 2012). This urges the need to 

extend the genome-wide investigations in selected cohorts with extensive population data and 

disease cohorts of appropriate sample sizes. A recent initiative from the UK Biobank aims to 

achieve these goals with 500,000 participants of the British population with diverse genetic 

ancestry between the ages of 40-69. Using the available genetic data, association studies for 

over 4000 different phenotypes were conducted (Bycroft et al., 2017). Furthermore, a large 

phenotype-wide association study (PheWAS) on the UK Biobank data under the leadership of 

Benjamin Neale’s team was conducted with two rounds of results. These results were made 

publicly available to enable replication studies in independent disease cohorts and have been 

a useful resource for complex disease genetics research (http://www.nealelab.is/uk-biobank/). 

 
1.2.3 Shared loci and shared pathogenesis in CIDs: findings from GWAS 
 

The existence of shared pathogenetic factors among CIDs has been well-established 

from the co-occurrence pattern of the diseases, HLA haplotypes and through GWAS findings. 

Co-occurrence of chronic inflammatory immune disorders has been reported in patients with 

one form of CIDs- for example, occurrence of CeD in patients after the onset of T1D has been 

previously reported (Barera et al., 2002). Similarly, patients with AS, a prominent form of SpA 

have shown to exhibit extra-articular manifestations such as Pso, IBD and anterior uveitis (El 

Maghraoui, 2011). 
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The knowledge from genetic and functional studies have elucidated the role of the 

immune system in CIDs and emphasizes how dysregulation of the immune system and 

disrupted homeostasis can lead to immune disorders. In the interest of achieving replication 

of the association studies and the fine-mapping of the GWAS loci, a SNP microarray called 

“Immunochip” was developed by a collaborative effort led by the Wellcome Trust Case-Control 

Consortium (Cortes & Brown, 2011). The chip was designed exclusively for 11 autoimmune 

and inflammatory diseases from experts of RA, AS, SLE, T1D, autoimmune thyroid disease, 

CeD, MS, ulcerative colitis (UC), Crohn’s disease (CD), and Pso.  

 

A highlight of Immunochip studies is that the many reported genetic loci are shared 

among several diseases, as shown, as an example, in Figure 4 for loci identified in 

chromosome 6. Almost all of the CIDs share the genetic association to the HLA locus. There 

are also hundreds of non-MHC loci identified in this manner that demonstrate shared 

associations to several diseases, which suggested similar effector pathways in regulating the 

immune responses observed in autoimmune and inflammatory diseases. Although the 

concomitance of these CIDs in patients and the shared genetic loci among the co-occurring 

diseases give an insight into the shared immune pathways at play, the disease mechanism 

and biology still remain incompletely understood.  

 

 
 
Figure 4: Loci associated with chronic inflammatory diseases on chromosome 6. Susceptibility 
loci reported on chromosome 6 associated to different immune disorders identified through GWAS. The 
figure is adapted from Ricaño-Ponce & Wijmenga, 2013. 
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Therefore, the shared genetic background observed in CIDs may be important in 

providing information about the disease mechanism and the underlying biology. However due 

to the limited resolution of the GWAS approach, it is difficult to determine whether the shared 

genetic variants are true associations or if they are detected as a result of the close proximity 

of the SNPs in the locus.  

 

Shared genetic loci from Immunochip studies have highlighted the pleiotropic nature 

of the disease-associated genes and SNPs. The overlap in the shared loci can chiefly indicate 

three things: (i.) the SNP is correlated and concordant- i.e., the same SNP confers disease 

risk for more than one disease, (ii.) the SNP is correlated and discordant- the SNP can be 

associated with increased risk for one disease and has a protective effect for another disease 

and (iii.) the SNP is not correlated- i.e.,  the shared locus shows different haplotypes (Parkes 

et al., 2013). By careful analysis of GWAS loci in different chronic inflammatory and 

autoimmune diseases, Zhernakova et al. assessed the common immune pathways that are 

detected in the Immunochip consortium in a comprehensive review (Zhernakova et al., 2009). 

(Table 1). Similarly, another article analysed the overlap in the shared loci detected from 

Immunochip studies for 6 immune diseases- AS, CeD, IBD, Pso, RA and T1D (Parkes et al., 

2013a). The findings from both articles identified shared disease-associated genes and the 

immune pathways they are involved in antigen presentation, T-cell differentiation, the 

interleukin-23 pathway, transcription factors that are essential for immune cell function and 

differentiation (NF-κB), and other innate immune response pathways. The findings from these 

combined analyses highlight the potential role of the shared loci in disease pathogenesis by 

modulating immune signalling as summarised in Table 1.  The authors also analysed genes 

that are unique to one disease, such as genes of chemokines and cytokines that could point 

to new pathways that are relevant for disease biology (Zhernakova et al., 2009; Parkes et al., 

2013). 
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Pathway/genes Shared candidate genes Associated diseases 

Aminopeptidase ERAP1, ERAP2 AS, Pso, IBD 
IL-2 and IL-21 IL2, IL21, IL2RA, IL2RB IBD, CeD, RA, T1D & MS 

IL-23 and Th1 
IL23R, IL12B, IL12A, TYK2, JAK2, 

STAT3,STAT4, IL27 & CCR6 
Pso, RA, MS & IBD 

Tyrosine 
phosphatases 

PTPN2, PTPN22 IBD, CeD, RA, T1D & SLE 

Transcription factors NFKB1 MS, Pso, IBD 
 IRF4 Pso, CeD 
 TNFAIP3 IBD, CeD, Pso, RA, T1D & SLE 

Cytokines IL10 IBD, T1D & SLE 

 IL18RAP IBD, CeD & T1D 
Others BACH2 AS, IBD, CeD, T1D & MS 

 CARD9 AS and IBD 
 TAGAP IBD, CeD, Pso, RA, MS &T1D 
 ZMIZ1 IBD, Pso, CeD & MS 

 PTGER4 AS, IBD & MS 

 
Table 1:  Some genes and pathways that are associated with two or more CIDs. Examples of 
some shared candidate genes and the implicated pathways based on the analysis conducted by 
Zhernakova et al., 2009 and Parkes at al., 2013. The lead positional candidate gene is mentioned, as 
well as the pathway linked and the shared associated diseases 
 
 
 
1.2.4 GWAS loci affect the function of immune signalling pathway genes 
 

The MHC loci were the first reported and strongest genetic association with most CIDs. 

The MHC region is very gene-dense with extensive LD pattern and hundreds of immune-

related genes. Diseases exhibiting classical autoimmune phenotypes such as SLE, T1D, CeD 

etc. are associated with HLA class II alleles, whereas diseases with prominent 

autoinflammatory phenotypes are generally associated with specific HLA class I alleles, for 

example HLA-B27 for AS, HLA-Cw6 for Pso and HLA-B51 with Behçet’s disease. Further 

analysis of MHC associations to CIDs has been challenging due to the strength of these 

associations and the tight LD structure in this locus. However with dense SNP-typing and 

HLA-imputation methods several independent MHC loci have been reported in CIDs (Parkes 

et al., 2013).  
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Immune-GWAS have revealed a number of additional genes that are vital for T-cell 

function, mainly for differentiation of peripheral T-cells into subsets of Th1 cells, Th17 cells and 

regulatory T cells (Treg cells). Identification of susceptibility genes like IL10, IL12, IL18RAP, 

and STAT4 have suggested the involvement of Th1 cells in disease pathology (Moss et al., 

2004; Raphael, Nalawade, Eagar, & Forsthuber, 2015). Genes associated with the function of 

Th17 cells, like STAT3, IL23R and IL21, are also susceptibility genes for CD, RA and Pso, 

suggesting their mechanistic role in disease (Patel & Kuchroo, 2015). Consistently, the sites 

of inflammation in these diseases, have been found infiltrated with Th17 cells that mediate the 

inflammatory responses (Maddur et al., 2012). Also, diminished Treg activity observed in 

autoimmune diseases is possibly resulting from polymorphisms in genes like IL2 and IL2RA, 

that regulate Treg function (Brusko, Putnam & Bluestone, 2009). Disease susceptibility genes 

involved in T-cell activation, like CTLA4, TAGAP, and ICOSLG have linked the involvement of 

activated T-cells in the disease pathology of T1D and CeD. Hence, disrupted T-cell function 

due to genetic variants from the susceptibility loci could have a critical role in the pathogenetic 

mechanisms of some CIDs.  
 

PTPN2 is a protein tyrosine phosphatase gene associated to T1D and CD. PTPN2 

may play a direct role in the destruction of beta cells in T1D and it is suggested to modulate 

innate immune responses in CD (Sharp et al., 2015). Shared adapter protein coding gene 

SH2B3, associated with T1D and CeD, has been shown to mediate T-cell receptor and TNF-

alpha signalling (Zhernakova et al., 2009). In diseases like SLE, the identified susceptibility  

loci were genes in the B-cell signalling pathway like TNFSF5, which is crucial for B-cell 

activation and proliferation; and BANK1 (B-cell scaffold protein with ankyrin repeats 1) that 

manages to the autoantibody production observed in lupus.  

 

Additionally, the involvement of these disease-associated genes in several immune 

signalling pathways suggests the interplay between innate and adaptive immune system. For 

example, NOD2, a susceptibility gene for CD, is crucial for maintaining intestinal epithelial 

barrier function and to produce anti-microbial peptides to protect the epithelium. Genes 

associated to autophagy, such as ATG16L1 (autophagy 16 related-like 1) and IRGM 

(immunity-related GTPase M), support the role of intracellular processing of bacterial particles 

in CD (Levine & Deretic, 2007). A cytokine gene associated to TNF signalling pathway, 

TNFSF15, is linked to IBD (CD & UC), and has been reported to control both Th1 and Th17 

cellular functions (Takedatsu et al., 2008). TNFAIP3 encodes for a ubiquitin-modifying 

enzyme, A20, which is vital in regulating TNF-induced NF-κB activation through TLRs. 

Therefore, polymorphisms in TNFAIP3 could affect the production of functional A20, disrupting 

signalling downstream of TLR that can then lead to long-term inflammation (Zhernakova et 
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al., 2009). These associated genes are also suggestive of the role of pathogen exposure in 

the onset of certain CIDs. Therefore GWAS associated genes in immune disorders point to a 

strong genetic link between dysregulation in the immune signalling pathways and disease. 
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2.1 Challenges in post-GWAS era 
 

Association studies have paved the way to remarkable progress in studying the genetic 

architecture of complex diseases in an unbiased manner. Although GWAS have revolutionised 

the field of complex disease genetics, they do not immediately reveal a clear picture of the 

mechanisms that lead to disease. It is challenging to establish a functional link between GWAS 

loci and disease, as ~90% of the disease-associated SNPs are situated in the non-coding 

regions of the genome, such as enhancers and promoters (Hrdlickova et al., 2014).  

 

GWAS associations denote susceptibility loci in the genome that convey either disease 

risk or protection. A susceptibility locus is defined as the region in the genome that contains 

the genetic variant associated to a disease.  In current practice, the identified SNP is linked to 

the nearest gene, however this gene may not explain the disease mechanism and the 

underlying biology since the susceptibility loci often contain multiple genes. Therefore, there 

is a need to develop approaches to identify the causal gene, and to test the effects of the 

genetic variants on the function of the nearest genes.  

 

An additional difficulty is given by the fact that the associated SNPs might have a 

context-specific activity or can only be of relevance in a specific cell type or tissue. Approaches 

to identify relevant cell types by studying their transcriptional profiles to detect the expression 

of disease-associated genes have shown promising results. One example is the suggested 

role of dendritic cells in CD based on the enrichment of IBD loci in these cells from Gene 

Ontology analysis (Jostins et al., 2012). However, many attempts to explore the functional role 

of susceptibility loci in disease mechanism are not done in the appropriate cell types, and it is 

therefore difficult to ascertain their biological relevance. The challenging aspects in 

establishing causal links from GWAS variants are depicted in Figure 5. 
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Figure 5: Challenges in translating GWAS variants to function. Modified from the seminar titled 
“Immune disease variants converge on regulation of CD4 T cell activation” at the CSHL Systems 
immunology meeting, Trynka G, 2019. 
 
 
 

Linkage disequilibrium (LD) is a property of adjacent SNPs that determines the degree 

to which an allele of one SNP is inherited with an allele of another SNP in the same locus 

within a population (Bush & Moore, 2012). The high density genotyping arrays used for 

association studies utilise the LD pattern of the SNPs in the locus to select representative 

SNPs- termed “tag SNPs”. In GWAS, the genotyped tag SNPs and LD pattern are used to 

extrapolate the disease association. However, LD patterns are population dependent. 

Therefore, tag SNPs selected for one population may not show the same inheritance pattern 

in another population. The tag SNP could directly influence the biological mechanism that give 

rise to the associated disease. In this scenario the tag SNP is referred to as the functional 

SNP. Alternatively, the genotyped tag SNP is not the functional SNP, but it may be in LD with 

another SNP in the locus that affects the phenotype (Hirschhorn & Daly, 2005). Hence it is 

crucial to recall that a significant SNP association from GWAS should not be assumed as 

being causal without precise functional studies. Methods to conduct functional studies on the 

GWAS loci are ongoing with the help of fine mapping, SNP prioritisation by combined genetic 

and bioinformatic approaches and by in vitro and in vivo experimental methods to verify the 

predicted mechanisms of likely causal genes (Edwards et al., 2013). 
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2.2 Fine-mapping efforts to link GWAS variants to causal 
implications 
 
 

There are numerous pipelines that have been proposed to conduct the post-GWAS 

analysis for the functional assessment of non-coding variants. Most methodologies employ 

fine-mapping- which is a general term used for the refining process of the GWAS variants 

using statistical, bioinformatic and functional methods to sift out the SNPs that are less likely 

to be involved in a causal mechanism. The typical analysis pipeline for fine-mapping proceeds 

in the following steps: genotype imputation to enlist the associated variants, examining the LD 

structure of the genomic loci highlighted by the SNPs, shortlisting the independent SNP 

associations using regression models, merging the data from multiple studies (meta-analyses) 

to increase the resolution and finally, integrating SNP information from functional annotation 

database and gene expression data to assign causality. The outline of this general strategy to 

prioritise GWAS SNPs to determine regions of interest is described in the schematic in Figure 
6 (Schaid, Chen & Larson, 2018). A brief overview of the processes involved in fine-mapping 

is given below: 

 

 
 
 

Figure 6: Post-GWAS analysis pipeline for fine-mapping associated variants. Genomic loci 
indicated by the associated variants from GWAS are examined further for LD patterns. If strong LD is 
established, then independent associations and replicated variants from multiple studies are shortlisted 
for more analysis using gene expression data to assess the likely function of the selected SNPs. 
(Modified from Schaid, Chen & Larson, 2018). 
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2.2.1 Genotype imputation 
 
All the SNPs located in a genomic region are not included in the SNP genotyping arrays giving 

rise to intermittent missing genotypes. Imputation is a method used to predict the genotypes 

that are not directly genotyped. These predicted genotypes can then be used to boost the 

power of association studies and facilitate meta-analysis. Imputation also improves the 

resolution of an associated region and enables identification of a causal SNP (Marchini & 

Howie, 2010). 

 
2.2.2 Identify independent associations 
 
Multiple SNPs in a region can show marginal association to a particular trait while analysing 

one SNP at a time. The LD pattern among SNPs in a genomic locus can show several non-

causal SNPs to be correlated with one causal SNP. When SNPs are analysed jointly, the local 

LD among the SNPs is accounted for and as a result only the causal variant should show 

association to the trait. However, if there are multiple causal SNPs and they show a correlation 

with each other and to several other non-causal SNPs, identifying the true source of the signal 

can be challenging. Hence in some fine-mapping analyses, a conditional approach is used to 

detect secondary association signals at a given locus. In this method, the effect from the 

primary SNP associated to a trait is adjusted to verify if the secondary signals show an 

association to the trait independent of the primary SNP (Yang et al., 2012).  

 
2.2.3 Integrative analysis combining multi-cohort studies  
 
Fine-mapping resolution can be improved by pooling individual-level data from multiple studies 

in complex diseases. (Pasaniuc & Price, 2017). Although it can be challenging to attain 

individual-level data from multi-cohort and multi-centric studies due to privacy concerns, 

summary statistics from GWAS can be used as they are publicly available for most studies. 

Summary association statistics report the estimated effect sizes and standard errors for each 

SNP analysed in a GWAS. Summary statistics from different GWAS conducted for a specific 

disease can be used for a meta-analysis, where association statistics of each study are 

analysed jointly to increase power to detect SNP associations of small effect sizes. 

 

2.2.4 Integrating functional annotation 
 
Fine-mapping accuracy can be improved by integrating functional annotations that assigns a 

biological function to sequence information. This approach is useful in assessing the likely 

functional role of SNPs and can help in the prioritisation process for follow-up functional 
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studies. There are a number of publicly available resources with large-scale information about 

genomic regions, protein coding and non-coding regions, like ENCODE, FANTOM5 and 

Roadmap Epigenomics Project (Pasaniuc & Price, 2017). Combining different layers of data 

from tissues and cell types along with the corresponding annotation gives an insight into the 

biological context in which certain SNPs act. This approach is widely accepted based on the 

background provided by early research showing that disease-associated genomic loci are 

enriched in regulatory marks in specific cell types, suggesting their potential function in 

pathogenesis (Schaub et al, 2012), as described in detail in chapter 3. 

 
2.2.5 Integrating gene expression data with GWAS 
 

The majority of the genetic variants identified through GWAS are located in the non-

coding regions of the genome. However several GWAS variants are situated within regulatory 

regions with enhancers, promoters, silencers and insulators. Additionally, these trait-

associated variants are more likely to be expression quantitative trait loci (eQTLs), which are 

genomic regions that influence the expression levels of a nearby or distant gene (Nicolae et 

al., 2010), suggesting that the altered gene expression affects the associated disease 

phenotype. Statistical approaches to combine eQTL and GWAS data facilitates the 

identification of susceptibility genes and potential causal pathways involved in disease 

mechanisms.  
 

Research teams focused on translating GWAS associations to disease mechanisms 

have developed fine-mapping algorithms that aid in identification of candidate causal variants. 

For example, the Probabilistic Identification of Causal SNPs (PICS) algorithm was developed 

by Farh et al. to enhance the selection of loci associated to autoimmune and inflammatory 

disease variants. PICS computes the probability of a SNP being causal by utilising the 

haplotype structure and the association pattern observed at a locus (Farh et al., 2015). This 

algorithm used summary statistics from Immunochip studies and other GWAS data for 21 

diseases. In this study the authors integrated fine-mapped variants from PICS with 

transcription and cis-regulatory element information (RNA-seq, ENCODE ChIP-seq, histone 

modification profiles and DNase hypersensitivity profiles) from primary immune cells. With this 

approach they reported that nearly 90% of the causal variants are in fact in the non-coding 

region and importantly, ~60% of them are situated in immune-cell enhancers.  
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2.3 eQTL studies unravel susceptibility genes in CIDs 
 

As demonstrated by Farh et al. the majority of the disease-associated SNPs identified 

through GWAS are located in the non-coding regions of the genome, suggesting their role in 

gene regulation. Studying the effect of these SNPs on gene expression in a specific cell type 

or tissue could explain the regulatory mechanism of the genetic variants implicated in a 

disease. eQTL mapping is a method used to identify genetic variants that influence the 

expression levels of a gene. An eQTL is a locus with a SNP that is correlated with the variation 

in the expression levels of a gene (Gilad, Rifkin & Pritchard, 2008). A genomic locus with 

eQTLs may indicate the presence of gene regulatory elements like transcription factors 

binding sites (TFBS). With eQTL mapping, SNPs identified through GWAS can be prioritised 

by their regulatory effects on gene expression in a specific cell type or tissue, and this can 

then be used to investigate their downstream functional role in disease.  

 
Conventionally, the eQTL analysis is proximity-based, where you define an arbitrary 

distance around the eQTL SNP to detect the affected genes (eGenes). If the eGene is located 

within a given window of genomic distance  (e.g. <1 Mb) of the SNP, the local effect is referred 

to as a cis-eQTL (Figure 7a). On the contrary, if the eGene is located at a greater distance 

(e.g. >5 Mb or on a different chromosome), the observed effect on the gene is indirect, and is 

called a trans-eQTL effect (Figure 7b).  

 
eQTL mapping is a powerful method for prioritisation of disease susceptibility genes 

from GWAS loci. Cis-eQTLs tend to have large effect sizes, and can therefore be detected in 

a modest sample size. Cis-eQTLs are often situated near the transcription start sites (TSS) of 

genes or within gene bodies (Brown, Mangravite, & Engelhardt, 2013). As a general 

observation, the effect size of the eQTL SNP increases with the decrease in the distance 

between the eQTL SNP and TSS. Due to their location near the TSS, cis-eQTLs have been 

shown to modify transcription factor binding sites (TFBS) or other cis-regulatory elements 

(CREs) like DNase I hypersensitivity sites (DHSs) (Westra & Franke, 2014). Unlike cis-eQTLs, 

trans-eQTLs show small effect sizes and therefore large samples sizes are required to detect 

them. Trans-eQTLs, however, provide meaningful insights into disease pathogenesis by 

identifying multiple eGenes and gene networks that may be involved in the disease 

mechanism. Due to the sample size limitation in most eQTL analyses, to perform a trans-

eQTL analysis one must rely on meta-analysis to increase the sample size and to boost 

statistical power. 
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Figure 7: Effect of cis- and trans- acting SNPs in gene expression. (a.) The disease SNP shows a 
local effect on Gene A, as both the SNP and the gene are located on the same chromosome within an 
arbitrary genomic distance (<1Mb). (b) Distal effect from a disease-associated SNP on the genes B and 
C, which are located at a genomic distance >5Mb. The gene expression levels are altered by the 
presence of a SNP that either increases or decreases the levels of mRNA transcripts. Modified from 
Cheung & Spielman, 2009; Võsa et al., 2018.  
 

The eQTL approach has enabled prioritisation of susceptibility genes in immune 

diseases. Early GWAS and replication studies identified numerous eQTLs, for e.g., in CD out 

of 71 detected loci, 39 were eQTLs, and in T1D 32 out of 53 loci were eQTLs (Ricaño-Ponce 

& Wijmenga, 2013). Since then, hundreds of eQTL analyses have been conducted in 

cardiometabolic diseases, autoimmune and inflammatory disorders. One prominent example 

is the eQTLGen Consortium: a recent initiative in whole blood eQTL studies, which identified 

~17,000 cis-eQTL and ~6000 trans- eQTL analyses from 37 datasets including over 31,000 

individuals (Võsa et al., 2018).  

 

2.3.1 eQTLs are context-specific  
 

Large-scale epigenomic studies like the Roadmap Epigenomics project (Kundaje et 

al., 2015) have identified cis-regulatory functions for ~20% of the non-coding regions and 

showed an enrichment of cell-type specific cis-regulatory associations, demonstrating that 

SNPs affect gene expression in a context-specific manner, and the importance of performing 

eQTL studies in functionally pertinent cell types and tissues. Early eQTL studies were 

a. Local effect of disease SNP on Gene A (cis- eQTL)

b. Distal effect of disease SNP on Gene B (trans- eQTL)
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predominantly done in peripheral blood mononuclear cells (PBMCs) in unstimulated 

conditions, and in tissues.  An initiative from the Genotype-Tissue Expression (GTEx) 

consortium enabled eQTL studies across 53 human tissues in ~1000 individuals, and also 

demonstrated the tissue-specific cis-regulatory effects of GWAS variants (Lonsdale et al., 

2013; Melé et al., 2015). The functional relevance of detected tissue eQTLs were assessed 

by cross-referencing them with GWAS associations from the Wellcome Trust Case Control 

Consortium (WTCCC) studies in several complex diseases. With this approach, they found 

that eQTLs detected in whole blood and lymphoblastoid cell lines in GTEx also included SNPs 

that are associated to immune diseases like CD, RA and T1D.  

 

Later on, eQTL studies interrogating the inter-individual variation in the human immune 

system were performed mainly in cell lines as reviewed by Zhernakova et al., 2017 and more 

recently in selected cell types like monocytes (Fairfax et al., 2014) and dendritic cells (Lee et 

al., 2014). For example, Fairfax et al. conducted an eQTL study in human primary monocytes 

activated with innate stimuli (IFNγ and LPS) for 2h or 24h (Fairfax et al., 2012). This study 

found that ~50% of the detected cis-eQTLs from IFNγ stimulated monocytes, overlapped with 

the GWAS-associated loci. The authors also reported that several eQTLs identified were 

dependent on the duration of stimulation. Using the newly identified stimulus-specific eQTLs, 

they explored their role in disease risk from previously reported GWAS loci. One of the 

associations they reported is in the CARD9 locus, where a constitutively active eQTL SNP 

(rs4078099) was present, that was previously tagged from GWAS in IBD and AS (Evans et 

al., 2011), and was also shown to be associated with risk allele for CD (Jostins et al., 2012). 

Fairfax et al. detected a second stimulus-induced eQTL (rs36119806) in CARD9, also 

associated to CD risk, from IFNγ-stimulated monocytes. The risk alleles of both the SNPs 

were correlated with reduced CARD9 expression levels. In the context of CD, CARD9 is a 

mediator of innate and adaptive immune responses in the gut, and it is associated with IFNγ 

production in response to bacterial infection in the gut (Sokol et al., 2013). Low levels of 

CARD9 may be linked to disruption in the maintenance of mucosal immune responses to clear 

out pathogens, thereby exacerbating the disease. This study elegantly shows that cell-type-

dependent eQTLs which overlap with GWAS loci can explain the role of risk alleles in disease 

mechanism. 
 

In order to study the role of regulatory variants in immune cell types, the DICE 

(database of immune cell expression, expression quantitative trait loci and epigenomics) 

project was established by Schmiedel et al. in 2018. The cell-type-specific gene expression 

patterns and the potential regulatory function of disease-associated SNPs were interrogated 

in 13 different immune cell types from 91 donors, under 2 activation states (Schmiedel et al., 
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2018). The cell-type-specific gene expression data and genotyping data from the donors were 

used to discover 16,989 unique cis-associations and 6,298 trans-associations. The authors 

also reported SNPs that show cell-type-dependent effects, for e.g., the RA-associated variant, 

rs3093026, was associated with the expression of the chemokine receptor gene CCR6 

specifically in Th1/Th17  and Th17  cell subsets. Therefore, studying cell-type-specific effects 

of genetic variants plays a vital role in linking GWAS variants to cell type function, which could 

in turn explain disease pathogenesis. 

2.4 Integrating GWAS and eQTL data: TWAS 
 
 

Disease-associated variants from GWAS are enriched for eQTLs (Nicolae et al., 2010). 

Therefore, susceptibility genes and SNPs from GWAS can be probed for causal implications 

in disease using eQTL data. This approach is called transcriptome-wide association analysis 

(TWAS), and it evaluates the association between the expression of each gene and a trait or 

disease of interest (Pasaniuc & Price, 2017). Since the number of genes is lower than the 

number of genetic variants, using gene expression rather than genotypes for association (like 

in GWAS) reduces the burden from multiple testing. However, such an approach is impractical 

as it would require gene expression data from hundreds of cases and controls and from 

multiple tissues and cell types. Alternatively, transcriptomic reference data can be used to 

impute gene expression pattern based on genotypes, without having the need to perform 

large-scale RNA-sequencing experiments. When performing TWAS, the information from 

GWAS and eQTL database is used to predict the expected gene expression in cases and 

controls. Gene expression can be predicted based on genotypes due to their high heritability 

and as most of its heritability comes from the nearest variants to the genes (Cano-Gamez & 

Trynka, 2020). TWAS also utilises eQTL data with the tissue or cell-type-specific gene 

expression and the genotypes of all the included donors as a training set to build gene 

expression predictors. The predictors take into account the SNPs that are located near a 

susceptibility gene to determine its expression levels and are used to impute the gene 

expression values for the genotypes of the individuals included in GWAS. The imputed gene 

expression values are then tested for association with the disease to obtain a set of genes 

that either positively or negatively affect it (Cano-Gamez & Trynka, 2020).  
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TWAS can enable the prioritisation of candidate causal genes in complex diseases. 

With the help of eQTL studies from multiple tissues and cell types with appropriate sample 

sizes these approaches can advance the functional gene prioritisation process that is 

important for determining the most likely candidate causal genes in a disease. However SNP 

prioritisation methods are mainly based on observational and theoretical analysis. Therefore 

it is important to integrate the regulatory information in the region with prioritised SNPs and 

carry out downstream experimental validation to establish causality. 
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3.1 Regulatory elements and gene expression 
 

Regulatory elements are important to initiate or curb gene expression in specific cell 

types in response to various developmental cues. These elements are present within the non-

coding regions of the genome. An important class of regulatory molecules that affect gene 

expression are transcription factors (TFs) that can act as an activators or repressors 

depending on the biological context. TFs have the ability to bind to cis-regulatory elements 

that are situated in the transcription start sites (TSS) like promoter. They can also interact with 

distal regulatory components located far away from the TSS, such as enhancers, silencers 

and insulators. TFs enable the correct docking of RNA polymerase II which is important for 

the formation of the transcription-initiation complex (Rojano et al., 2019). Key regulatory 

elements that are involved in the transcriptional process are: 

 
§ Promoters are DNA sequences situated in the 5’ region of the genes. They 

activate transcription through the action of TFs that enable the binding of RNA 

polymerase II to a consensus sequence forming the transcription-initiation 

complex. 

§ Enhancers are short DNA sequences that are bound by DNA-binding proteins 

called activators, located several base pairs away from the TSS. Enhancers 

interact with activators and form DNA loops that bring them closer to the promoter 

region, and increase gene transcription by interacting with RNA polymerase II. 

§ Silencers are short sequences of DNA that bind to repressors (DNA-binding 

proteins) to decrease transcription. They are either located close to the TSS or far 

away with the ability to form DNA loops that enable them to interact with promoter 

regions. 

§ Insulators are regulatory sequences that inhibit interactions between chromatin 

domains to regulate chromatin states. Transcriptional repressors like CCCTC-

binding factor (CTCF) can act as an insulator by binding to its target sequence and 

blocking the interactions between promoters and enhancers. 

 
The regulatory elements have an important role in governing transcriptional activity 

and gene expression. They can act as a transcriptional rheostat to synthesise the target gene 

transcripts based on the context. Gene expression is a very dynamic process that involves 

various events at the transcriptional level that can be affected by genetic variants, such as 

transcription factor binding to promoter and enhancer regions, chromatin regulation and 

interaction with other regulatory elements, alternative splicing and post-translational 
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modifications. Regulatory variants found in both genic and intergenic sites can disrupt these 

dynamic processes, affecting gene expression (Knight, 2014), and GWAS variants in the non-

coding region of the genome are enriched in regulatory regions (Hrdlickova et al., 2014). 

These regulatory variants have been shown to affect transcription factor binding sites (TFBS), 

enhancers and DNA methylation, and can modulate the expression of downstream target 

genes as eQTLs (Glinos, Soskic, & Trynka, 2017; Rojano et al., 2019) (Figure 8).  

 

 
Figure 8: Epigenomic approach to study the role of disease variants. Immune disease variants are 
functionally annotated using epigenomics. This approach ascertains the epigenetic landscape of 
disease associated genomic loci to identify regulatory elements that enable better understanding of the 
effects of disease SNPs in target gene regulation. Adapted from Glinos, Soskic, & Trynka, 2017. 
 

3.2 Epigenetic changes and chromatin accessibility 
 

Putative regulatory regions are determined by studying the epigenetic modifications in 

the genomic locus. The basic unit of chromatin is the nucleosome, which consists of a histone 

octamer structure resulting from ~147bp DNA encircled around two molecules of the four core 

histones (H2A, H2B, H3 and H4) (Barth & Imhof, 2010). The physical interaction of DNA and 

histone can lead to the assembly of individual nucleosomes into several higher-order 

chromatin structures which can hinder DNA accessibility for the transcriptional machinery 

(Talbert & Henikoff, 2010). However, formation of chromatin loops bring about regulatory 

elements such as promoters and enhancers in close proximity and can enable transcription. 

Through several DNA-binding proteins or transcription factors (TFs) (Zhang et al., 2016).  

 

Epigenetic modifications are heritable chemical or physical changes in chromatin- 

mainly histone modifications and DNA methylation. Histones are important players in 

epigenetic regulation of gene expression, and are subjected to post-translational modifications 

such as methylation, acetylation, ubiquitination, phosphorylation, that can be assessed using 
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chromatin immunoprecipitation (Kimura, 2013). For example, in actively transcribed genes, 

histone marks like trimethylation of Lysine 4 on Histone 3 (H3K4me3) is a signature of gene 

promoters, monomethylated H3K4 (H3K4me1) is enriched at distal regulatory elements like 

enhancers, and acetylated H3K27 (H3K27ac) is a hallmark of transcription start sites and 

enhancers (Figure 9) (Kuznetsova et al., 2020). Modifications of histones can create binding 

sites that are recognized by transcription factors (TFs), which upon binding recruit RNA 

polymerase II (Turner, 2005) and initiate transcription. The formation and removal of histone 

modifications occur in a coordinated manner with nucleosome turnover events that alter the 

regulatory landscape dynamically at each cell cycle (Chory et al., 2019). The histone 

modifications can thereby regulate chromatin accessibility and activation of regulatory 

elements like enhancers and promoters. 

 

 

 
 

Figure 9: Epigenetic landscape of regulatory regions. Graphic representation of chromatin 
modifications and transcription factors in active promoters and enhancers. Active enhancers are 
characterised by the presence of H3K4 monomethylation (H3K4me1) and H3K27 acetylation as marked 
in the figure. Active promoters have H3K4me3 and H3K27ac. The ATAC-seq peaks represent open 
chromatin regions.  Transcription factor binding occurs in regions outside the nucleosome, 
characterized by ATAC- seq signal enrichment as shown in the peaks. Adapted from Kuznetsova et al. 
2020. 

 

Chromatin accessibility (CA) refers to the extent to which the nuclear macromolecules 

can physically interact with chromatinized DNA (Klemm, Shipony, & Greenleaf, 2019). The 

accessibility remodelling is an important step during which TFs compete with nucleosomes to 
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gain access to their sites on the nucleosomal DNA (Lambert A et al., 2018). During 

nucleosome turnover, regions can remain exposed and accessible for small periods of time, 

during which the TFs can gain access to the histone-bound DNA. Hence, TFs play a crucial 

role in chromatin remodelling machinery by providing DNA-sequence specificity.  

 

Chromatin accessibility is a direct consequence of epigenetic changes and 

organisation of nucleosomes that enable DNA-sequence specific TF binding. It can therefore 

be used to ascertain the regulatory potential at a genomic locus. The chromatin accessibility 

can be quantified through DNase I hypersensitivity assay to identify sites (DNase I 

hypersensitivity sites, DHSs) sensitive to cleavage by DNase I enzyme. Increased number in 

DHSs is a direct measurement of chromatin accessible regions. Another technique that is 

widely used to assess chromatin accessibility is via assay for transposase- accessible 

chromatin using sequencing (ATAC- seq), where the open chromatin regions are fragmented 

by transposase. These fragments are then sequenced to retrieve a stack of mapped reads, 

which is interpreted as the signature of a chromatin accessible region, illustrated in Figure 9. 
 
3.2.1 Methods to functionally annotate the epigenomic landscape 
 

High-throughput sequencing technologies have achieved functional annotation of the 

regulatory features in the epigenome. Several international consortia aim to produce data to 

annotate the regulatory elements in the non-coding genome, using different experimental 

approaches, such as Chromatin Immunoprecipitation Sequencing (ChIP-seq), chromosome 

conformation capture methods, DNase I hypersensitivity assays, DNase Sequencing (DNase-

seq) and RNA Sequencing (RNA-seq). There are also tools available to process and utilise 

the information on TFBS, enhancer and promoter sites and interactions, DNA methylation 

sites, introns, splice sites, among many others. Some of the international projects that 

maintain databases for these data are ENCODE (The ENCyclopedia of DNA Elements) and 
Roadmap Epigenomics Project. ENCODE consists of epigenomic maps of several human 

cells and tissues. ENCODE provides information about chromatin state, TFBS and RNA 

transcripts. These data can be used to identify functional DNA elements and regulatory SNPs. 

Roadmap Epigenomics Project shows an overview of the human epigenome by including DNA 

methylation data, histone modifications, chromatin accessibility and mRNA transcripts in cell 

types and tissues.  
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Table 2:  List of online data resources and tools in regulatory variant analysis. Some of the 
online tools used to assess the functional SNPs based on the regulatory data in the genomic loci. 
 

Name Description URL 

ENCODE Encyclopedia of DNA 
elements Project 

https://www.encodeproject.org 
 

FANTOM 
Functional Annotation of 
the Mammalian Genome 
project 

http://fantom.gsc.riken.jp/5/ 

UCSC Genome Browser Interactive visualisation of 
genomes https://genome.ucsc.edu/ 

Roadmap Epigenomics 
Project 

NIH Roadmap 
Epigenomics Mapping 
Consortium 

http://www.roadmapepigenomics.org 
 

International Human 
Epigenome Consortium 

International Human 
Epigenome Consortium 
Data Portal 

http://ihec-
epigenomes.org/outcomes/ihec-
data-portal/ 

BLUEPRINT European hematopoietic 
epigenome project http://www.blueprint-epigenome.eu 

JASPAR Transcription factor 
binding profile database http://jaspar.genereg.net 

PROMO Transcription factor 
binding site analysis 

http://alggen.lsi.upc.es/cgi-
bin/promo_v3/promo/ 
promoinit.cgi?dirDB=TF_8.3 

 
 
 

These data can be accessed through the University of California Santa Cruz (UCSC) 

Genome Browser. Based on the experimental data generated from these consortia, the 

regulatory variants are annotated and classified into database such as RegulomeDB and 

HaploReg. Some commonly used online data resources and tools for identifying putative 

functional variants are given in the Table 2. 
 

A more recent addition to the list of resources available for regulatory variant analysis 

is the Open Targets Genetics platform (https://genetics.opentargets.org/). This platform 

provides a comprehensive catalogue of associations between traits/diseases, SNPs and 

genes. Open Targets Genetics is a compendium of association studies for complex disorders 

focusing on multi-trait analysis and variant-gene-trait association from the UK Biobank and the 

GWAS Catalog. This new resource has been very useful to gather information by gene or SNP 

or by complex disease/trait. Gene search generates the list of associated traits and variants 

identified in the gene locus. Similarly, SNP queries list information about the assigned nearest 

genes in the indicated SNP locus, eQTL effects of the SNP, distance of the SNP to the TSS 

and other potential regulatory information from published studies. Phenome-wide association 

studies (PheWAS), with SNP-phenotype associations (Pendergrass et al., 2011) and 

summary statistics from the UK Biobank and the GWAS Catalog are also listed for genetic 

variants, with level of significance, odds ratio and β-value (effect size) and direction of the 
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association (a β+ indicates risk, and a β- value denotes protective effect). This repository has 

been extremely useful to prioritize relevant SNPs for further functional analysis in independent 

disease cohorts. 

3.3 Linking regulatory landscape with disease  
 

The majority of the known GWAS associations overlap with a functional region, or are 

in LD with another SNP overlapping a functional region (Schaub et al., 2012). This effective 

approach to translate the role of regulatory variants in disease pathogenesis was established 

in a seminal paper focusing on post-GWAS analysis conducted on the ENCODE data, in order 

to link regulatory information with GWAS loci, and to identify functional SNPs potentially 

important in disease (Schaub et al., 2012). In this approach, Schaub et al. determined whether 

the lead variant from GWAS is a functional SNP or if it is in strong LD with a functional SNP. 

Next, they assessed whether the GWAS lead SNP or another SNP in strong LD with the lead 

SNP affect gene expression.  
 

For example, as illustrated in Figure 10,  SNP1 (the lead GWAS SNP) is in LD with 

SNP6 (functional SNP), which coincides with a TFBS. SNP3 is an eQTL SNP in LD with the 

lead SNP. However, neither SNP1 nor SNP3 are located in a functional region overlapping 

DHSs or TFBSs. This would suggest that the SNP6 is more likely to be the functional SNP 

associated with the biological phenotype (Schaub et al., 2012). Although a predicted TF 

binding motif is located at SNP2, a variant in LD with SNP1, this sequence does not overlap 

with DHS or ChIP-seq peaks, making it less likely to be functional. Similarly, SNP4 overlaps 

with a regulatory element, however it is not in LD with the lead variant and so it is less likely 

to be a functional variant for the disease. 
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Figure 10: Overview of the functional SNP approach. This figure shows the schematic 
representation of the method used to identify functional SNPs. Regulatory data in the locus shows 
predicted motifs, DNase I hypersensitivity sites, ChIP-seq peaks and TF binding sites from ChIP-seq 
data. SNP1 is the lead SNP that is associated with a phenotype in GWAS. SNP2 is another variant in 
the locus in LD with the lead SNP. SNP3 is an eQTL SNP in the locus. SNP6 is highly likely to be 
functional as it is in LD with the lead SNP and the eQTL SNP (r2>0.8), and it coincides with DNase I 
hypersensitivity peak with a TF binding site. This schematic is adapted from Schaub et al., 2012. 
 

Using a similar approach for SNP prioritisation, Maurano et al. also reported that more 

than 90% of the disease-associated variants present in the non-coding region showed 

enrichment in regulatory features (like DHSs), that disrupt TFBS (Maurano et al., 2012). 

Therefore, functional annotation of GWAS loci has been successful though combining 

regulatory evidence from multiple sources. Using this method, several lead SNPs have been 

annotated to assess their functional relevance in disease association. For 

example, rs7163757, was a reported lead SNP for type 2 diabetes, that overlaps with a ChIP-

seq peak and DHS peak, identifying it as a functional SNP. Additionally, DNA footprinting 

analysis revealed that the functional SNP overlaps with a predicted NFAT binding site (Schaub 

et al., 2012). This was one of the first integrative studies that combined GWAS, gene 

expression and evidence of regulatory activity to prioritise and identify functional loci that could 

explain the underlying biological mechanism of disease. Furthermore, Maurano et al. showed 

that GWAS SNPs associated to autoimmune diseases were found in DHSs in immune cells 

and some of them were reported to alter binding sites for several TFs involved in the IRF9 

network associated with type I interferon induction, which may mediate autoimmune and 

inflammatory disorders (Maurano et al., 2012). 



Chapter 3                                                Approaches to study the role of regulatory variants 
 

 44 

 

Another disease-specific example using this approach was reported in the UK IBD 

consortium paper, where a non-coding SNP (rs12212067) located in the intronic region of the 

gene FOXO3A was associated with reduced severity CD and RA (Lee et al., 2013). In this 

study, the authors assessed the influence of this variant in CD prognosis through the observed 

LD pattern in the locus and by testing for allele-specific expression. They also showed that 

FOXO3-regulates production of cytokine TGFβ1 in monocytes by measuring allele-specific 

binding of FOXO3 to the TGFβ1 promoter (Lee et al., 2013).  

 
3.3.1 Regulatory marks aid in identifying disease-relevant cell types 
 

The context-specific nature of the epigenetic regulatory landscape makes it 

challenging to interpret the consequence of functional variants. The regulatory variant effects 

can occur only in a certain cell type, and/or under a certain activation state. Due to this diversity 

in the gene regulatory mechanism it is important to study the effect of SNPs in appropriate cell 

types and tissues to understand their functional mechanism (Kellis et al., 2014). The 

overlapping of SNP position with a regulatory feature such as histone marks is also an 

effective way to shortlist disease-related cell types (Trynka et al., 2013; Farh et al., 2015). This 

approach was used to explore the selective enrichment of GWAS variants within the regulatory 

regions in specific cell types. For example, Maurano et al. reported a significant enrichment of 

GWAS variants in DHSs in Th17 and Th1 immune cell subtypes for CD which is concordant 

with the implicated disease pathology (Maurano et al., 2012). Moreover, Farh et al. showed 

that histone marks signifying transcription initiation (H3K3me3) are enriched with RA and T1D 

associated variants in CD4+ T cells (Farh et al., 2015). Similarly, an enrichment of GWAS 

SNPs was observed in a region bearing marks of active transcription in regulatory T cells 

(Treg), which may be implicated in triggering autoimmune diseases including IBD, CeD and RA 

(Trynka & Raychaudhuri, 2013). These studies have provided an important link in complex 

disease genetics by implicating a role for disease-associated SNPs in immune cell function, 

activation and differentiation (Calderon et al., 2019; Soskic et al., 2019) 

3.4 GWAS variants affect immune cell functions 
 

Genetic studies in immune disorders have identified several loci associated with 

immunological parameters like immune cell counts, ratio between different immune cell 

populations and cytokine secretion in response to stimuli (Brodin et al., 2015). For instance, 

the risk allele of a SNP associated to T1D was associated with increased number of CD4+ T 
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cells (Ferreira et al., 2010). Similarly, another study reported an overlap of SNPs associated 

to asthma and eosinophil counts emphasising their correlation (Astle et al., 2016). Hu et al. 

demonstrated that the genes in proximity to a locus associated to RA were enriched in effector 

memory CD4+ T cells (Hu et al., 2014). Upon further analysis the authors reported a non-

coding variant that correlates with proliferation capacity of effector memory CD4+ T cells.  

 

Another aspect of genetic studies in immune diseases is to understand how SNPs 

affect the effector mechanism of immune cells by regulating the secretion of cytokines and 

chemokines. Like gene expression, cytokine levels in the blood is highly heritable as shown 

by Brodin et al. in 2015. Studies from Mihai Netea’s group have characterised cellular 

response to bacterial and fungal stimulations have identified cytokine-QTLs (cQTLs) for 

inflammatory cytokine levels such as IL-10, IL-6, IL-8 and TNFα (Li et al., 2016). cQTL 

associations are relevant in terms of autoimmune diseases, as many of the associated 

cytokines are targets for biologic therapies, for e.g., the usage of anti-TNFα for IBD, SpA, Ps 

& RA (Garcês, Demengeot & Benito-Garcia, 2013). Another article from by Li et al. worked 

with whole blood, PBMCs and monocyte-derived macrophages and examined the immune 

response to bacterial, fungal, viral, and non-microbial stimuli in 500 individuals  (Li et al., 2016). 

The study identified monocyte-specific cQTLs associated with infectious disease susceptibility 

and T-cell-specific cQTLs being associated with autoimmune diseases (Li et al., 2016). 

Furthermore, studies conducted with standardised whole blood cultures by the Milieu Intérieur 

consortium from 1000 healthy donors with flow cytometric analysis and gene expression 

assays revealed the complex immune response signatures to a wide range of physiologically 

appropriate stimuli (Duffy et al., 2014; Urrutia et al., 2016), and the genetic influences at play 

in transcriptional variation in human immune responses (Piasecka et al., 2018). All these 

findings highlight how the genetic control of cytokines through cQTLs can affect immune 

response regulation. 

3.5 Experimental validation of functional variants to assign 
causal relationships 
 
 

The study of regulatory variants from GWAS associations has enabled the 

identification of target genes and genomic regions of interest for disease pathogenesis. 

Although these variants are implied in regulating gene expression, the lack of mechanistic 

insights that functionally link a specific risk variant to the underlying disease pathogenesis is 

a major limitation. Integrating GWAS variants with the regulatory information of a given locus, 

using eQTL mapping, ATAC-seq, and chromatin conformation capture assays, we can 
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postulate the function of a variant to an associated phenotype. The hypotheses generated 

from this approach can then be experimentally validated in an appropriate cell type or disease 

(Osgood & Knight, 2018). 

 

Reporter gene assays are effective in determining the functional consequence of SNPs 

by testing allele-specific expression. This method was used by Vecellio et al. to validate a 

possible regulatory region in the RUNX3 locus with a variant associated to ankylosing 

spondylitis (Vecellio et al., 2016). In this study, using reporter gene assays, the risk allele was 

correlated with decreased binding of the TF IRF4 and the decreased RUNX3 expression in 

CD8+ T cells, implicating a potential role for them in AS pathology.  

 

Using the CRISPR/Cas9 method point mutations or a knockout can be introduced to 

study the downstream effects of the implicated variant and/or gene. This approach has been 

successfully employed in a study in Parkinson’s disease, where an associated risk variant was 

identified in the enhancer region, which affected the expression of a disease-associated gene 

SNCA (α-synuclein). Using this approach, the authors established a causal relationship 

between the risk allele of the SNP and altered TF binding causing increased SNCA 

expression, that leads to disease (Soldner et al., 2016). Therefore, integrative approaches 

using regulatory data and experimental methods like reporter gene assays and gene-editing 

technologies can be useful to establish causal relationships.  

 

 



Chapter 4  Spondyloarthritis 

 47 

  

Chapter 4 

SPONDYLOARTHRITIS 



Chapter 4  Spondyloarthritis 

 48 

4.1 Overview of spondyloarthropathies 
 

Spondyloarthritis (SpA) is a collective term for a spectrum of inter-related chronic 

inflammatory rheumatic diseases that share genetic, clinical and pathophysiological features 

(Joachim Sieper & Poddubnyy, 2016). The spondyloarthropathies are categorised into two 

disease subsets: either axial SpA (AxSpA) or peripheral SpA, based on the dominant clinical 

and radiological manifestation (Rudwaleit et al., 2011) as shown in Figure 11. The subsets of 

SpA include psoriatic arthritis (PsA), spondylitis associated IBD, reactive arthritis (ReA) 

undifferentiated SpA (uSpA) and ankylosing spondylitis (AS) (Costantino, Breban & Garchon, 

2018). The clinical characteristics of AxSpA are the involvement of sacroiliac joints and spine 

(axial skeleton), and peripheral SpA largely presents features such as enthesitis, dactylitis, 

and arthritis that prominently affect the lower extremities. SpA may also have extra-articular 

clinical manifestations including psoriasis, anterior uveitis and IBD (Joachim Sieper & 

Poddubnyy, 2016). 

 

 
 

Figure 11: Schematic representing the SpA disease subsets and overlap between various 
spondyloarthropathies. The two main forms of SpA, axial and peripheral, with the corresponding 
disease subsets and shared features. Adapted from Proft & Poddubnyy, 2018. 
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4.2 Classification criteria 

 
The criteria for disease classification for SpA are based on (i.) inflammatory back pain 

(IBP), (ii.) imaging evidence and (iii.) HLA-B27 status. IBP is a key clinical symptom of SpA 

that reflects the extent of inflammation in the sacroiliac joints, spine and spinal entheses. 

However, the diagnostic accuracy and specificity in using IBP for classification is limited. On 

the other hand, imaging of the sites of SpA-associated inflammation in the sacroiliac joints 

and spine has been shown to improve disease classification of SpA patients (Akgul & 

Ozgocmen, 2011). The conventional radiographic methods used to assess sacroiliitis could 

not aid diagnosis at early stages of SpA, as the structural changes manifest later in the 

disease. Magnetic resonance imaging (MRI) enables clinicians to capture active inflammation 

in the spine and sacroiliac joints also in early axial form of SpA. Specifically, MRI-based 

assessment can identify osteitis (bone marrow oedema), enthesitis, synovitis and ankylosis 

(Akgul & Ozgocmen, 2011). Considering this, the new Assessment of SpondyloArthritis 

International Society (ASAS) integrated an “imaging arm” and a “clinical arm” into the 

classification criteria for identifying axial SpA (Rudwaleit et al., 2011). In the clinical arm, HLA-

B27 positivity is an important factor to support early diagnosis of SpA, since about 8% of the 

general population are HLA-B27 positive and around 90% of patients with SpA (AS) are HLA-

B27 positive (Akassou & Bakri, 2018). 

 
The ASAS classification for axial SpA includes patients under 45 years of age with 

persistent inflammatory back pain lasting over a period of 3 months. Patients should also have 

evidence of sacroiliitis on X-ray or MRI along with an additional SpA feature, or HLA-B27 

positivity and at least two additional extra-articular features (Pso, uveitis or IBD) (Rudwaleit et 

al., 2011) (Figure 12). 
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Figure 12: Assessment in Spondyloarthritis International Society (ASAS) classification criteria 
for axial spondyloarthritis (SpA). *Sacroiliitis on imaging refers to definite radiographic sacroiliitis 
according to the modified New York criteria or active sacroiliitis on magnetic resonance imaging 
according to the ASAS consensus definition. CRP, C-reactive protein; HLA-B27, human leucocyte 
antigen-B27; IBD, inflammatory bowel disease; NSAIDs, nonsteroidal anti-inflammatory drugs. Adapted 
from Proft & Poddubnyy, 2018. 
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4.3 Ankylosing spondylitis 
 

Ankylosing spondylitis (AS) is the prototypic form of SpA with radiographic changes in 

the sacroiliac joints (radiographic axial SpA) (Dougados & Baeten, 2011). Persistent 

inflammation at target sites can lead to fibrosis and bone calcification. The more advanced 

cases of AS present osteoproliferation, bony fusions of vertebral joints and formation of 

syndesmophytes (Taurog, Chhabra & Colbert, 2016) that affect flexibility of the spine by 

forming long bony column often referred to as “bamboo spine” (Sieper et al., 2002) (Figure 
13). Furthermore, nearly 25% of AS patients present evidence of musculoskeletal features 

such as peripheral enthesitis. AS patients may also develop extra-articular manifestations, for 

example, 5-10% of AS patients have IBD, nearly 10% show psoriasis, approximately 25% 

have uveitis and around 70% of cases have subclinical ileitis (Thomas & Brown, 2010). Some 

of the major accompanying co-morbidities of AS are cardiovascular and gastrointestinal 

complications, contributing to prominent socio-economic impact for young adults.  

 
 

 
 

Figure 13: Diagrammatic representation of the musculoskeletal and extra-articular 
manifestations of AS together with comorbidities and major complications. AS is characterized 
by musculoskeletal complications such as inflammation and osteoproliferation, followed by bone fusion 
of the spine and sacroiliac joints. It also presents anterior uveitis, psoriasis and IBD as extra-articular 
manifestations. Comorbidities involving pulmonary diseases and cardiovascular diseases along with 
other complications such as osteopenia are often observed. Adapted from Osgood & Knight, 2018. 
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AS has a worldwide prevalence between 0.1 – 1.4% (Dean et al., 2014), with a higher 

prevalence rate in Europe (0.25%) and North America (0.20%) (Sieper et al., 2006). AS also 

shows higher prevalence rate in males compared to females with an approximate male to 

female ratio of 3:1 (Ngo, Steyn, & Mccombe, 2014; Stolwijk et al., 2016). Men also tend to be 

more severely affected than women. Commonly observed age of onset for AS in multiple 

cohorts is in the second and third decade of life, with a determined mean age of onset of 28.3 

years according to a study conducted by a German rheumatological database sampling over 

8000 subjects (Sieper et al., 2002). AS is a highly heritable form of arthropathy with a strong 

genetic association to HLA-B27 (Brown, 2011). The prevalence rate of AS correlates with the 

HLA-B27 status in specific populations. More than 80% of the Caucasian European AS cases 

are HLA-B27 positive. However, only around 6% of HLA-B27 carriers actually develop AS 

(Matthew A. Brown, 2011). 
 
4.3.1 HLA-B27 and AS 
 

The association of HLA-B*27 was discovered in the 70’s by Caffrey and James when 

the polygenic nature of AS was poorly understood (Caffrey & James, 1973). Although HLA is 

the main genetic factor associated to AS, the exact mechanism and role of HLA-B27 is not 

clear. This association was detected and replicated across diverse populations suggesting 

that this is in fact a true disease-association. Being a highly polymorphic region, there are 

many subtypes that have also been associated to AS based on the population ancestry. HLA-

B*27:05 is the most frequent ancestral allele which is present in nearly all populations. Other 

associated subtypes that are derived from B*27:05 are population-dependent, namely,  

B*27:02 in the Caucasian and Mediterranean populations, B*27:06 in south-east Asia, 

B*27:04 and B*27:07 are the major subtypes in Asians (Khan et al., 2007; Li & Brown, 2017). 

Additionally, Immunochip studies in AS identified many other HLA-B alleles that were linked 

to either increased disease risk (B*13:02, B*40:01, B*40:02, B*47:01, B*51:01) or protection 

(B*07:02 and B*57:01). Independent variants in the MHC class II genes were also associated 

to AS susceptibility - for example, HLA-DRB1, HLA-DPA1, HLA-DPB1 specifically in the 

French and Spanish populations (Reveille, 2014). Non-HLA related genes in the MHC locus 

have also been associated with AS. However, these associations are difficult to interpret due 

to strong LD between variants in the non-HLA genes (MICA, TNF, etc.) with the MHC locus  

as discussed by Costantino, Breban & Garchon (2018). 
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4.3.2 Pathogenetic mechanisms in AS 
 

The aetio-pathological mechanisms in AS are not fully understood. The HLA-B27 

association along with the genetic associations from GWAS have provided insights into the 

underlying disease biology. However, many functional aspects of these genetic loci are yet to 

be studied. The actual mechanism of HLA-B27 in AS disease biology is not known. Classically 

there are three main hypotheses that discuss the potential pathogenetic mechanisms of HLA-

B27 in AS (Figure 14):  
 
 

4.3.2.1  The arthritogenic peptide theory  
 

MHC class I molecules (HLA-B27) bind peptides derived from intracellular proteins and 

present them to CD8+ cytotoxic T cells (CTLs). The heavy chains of HLA-B27 are synthesised 

in the endoplasmic reticulum (ER) where they form a peptide-loading complex with β2-

microglobulin, which enables the cell surface presentation of antigenic peptides and self-

antigens to CTLs. Considering this role of HLA-B27, Parham and Benjamin proposed that in 

AS, an HLA-B27-restricted CTL response is initiated by the endogenous arthritogenic 

peptides, that may resemble microbial peptides (Benjamin & Parham, 1990). There are 

several studies supporting this theory from the 90s. For example, a study conducted in T cells 

reported that HLA-B27-restricted CD8+ T cells recognised both infected and uninfected target 

cells that were present in the peripheral blood and synovial fluid from the joints of ReA and 

AS patients (Hermann et al., 1993). There has also been some evidence in identifying potential 

pathogen-specific peptides in the synovial fluid of ReA patients, for example Yersinia- and 

Chlamydia-derived peptides were reported in this study (Hermann et al., 1993). However, the 

autoantigens that cross-react with autoreactive T cells have not been identified yet. Therefore 

it has not been possible to identify a suitable arthritogenic peptide from disease-relevant tissue 

sites that proves the HLA-B27-restricted and CTL-mediated cross-reactivity (Mchugh & 

Bowness, 2012). Moreover, there are some contradictory evidence from studies conducted in 

CD8α-/- or B27-depleted transgenic rat models, in which the disease developed and persisted, 

suggesting that the disease is not entirely CD8+ T cell dependent (May et al., 2003; Taurog et 

al., 2009).  
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4.3.2.2 Unfolded protein response and the ER stress response 
 

HLA-B27 has a tendency to form misfolded homodimers in the ER that lead to cytosolic 

protein degradation. Under normal circumstances, the heavy chain of HLA-B27 is internalised 

from the cell surface and processed by lysosomes. But a proportion of the HLA-B27 heavy 

chains dislocates from the ER membrane soon after synthesis before binding to β2-

microglobulin and gets degraded by cytosolic proteasomes. The accumulated misfolded 

proteins can create a stress response in the ER and initiate the unfolded protein response 

(UPR) mechanism and/or autophagy.  The ER-associated degradation (ERAD) pathway and 

unfolded protein response (UPR) mechanisms are used to discard misfolded and non-

assembled ER proteins (Colbert et al., 2009). Evidence of this mechanism has been detected 

in bone-marrow derived macrophages from HLA-B27 transgenic rats, where HLA-B27 

misfolding observed after cytokine stimulation correlated with increased IL-23 production 

(Turner et al., 2007; DeLay et al., 2009).  Although these data have indicated that AS/SpA 

could be the result of incorrectly folded HLA-B27 accumulating in the ER, contributing to ER 

stress and consequent inflammatory responses, there is no direct evidence in human SpA for 

this mechanism. Furthermore, a study performed in B27-transgenic rats by introducing copies 

of human β2-microglobulin gene reduced B27 misfolding and alleviated colitis, but 

exacerbated arthritic features (Tran et al., 2006). Studies in AS human tissues did not show 

convincing evidence for ER stress and UPR. However, a report found signs of autophagy in 

the gastrointestinal tract of AS patients with increased IL-23 production and secretion by gut-

derived mononuclear cells (Ciccia et al., 2014). This study suggests that autophagy related 

pathways might be implicated in human AS. However, most of the autophagy linked genes 

identified in GWAS are associated with CD, and are not shared with AS, raising question about 

the importance of this pathway in AS pathogenesis. 
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Figure 14: Hypotheses explaining pathogenic mechanisms in AS. 1. Arthritogenic peptide 
hypothesis: Self- and/or pathogen-derived peptides are selected and presented by properly folded 
forms of HLA-B27 for recognition by the autoreactive CD8+ T cells. 2. B27 misfolding hypothesis: 
Misfolding of B27 within the ER causes ER stress, unfolded protein response (UPR), or autophagy, 
which has downstream effects on cellular function. 3. Cell surface B27 free heavy chain expression 
and immune recognition hypothesis: B27 free heavy chains including dimers are expressed at the 
cell surface, where they are recognized by cells bearing killer immunoglobulin–like receptors (KIR) 
and/or leukocyte immunoglobulin–like receptors to trigger inflammation. Adapted from Bowness, 2015.  
 

 
4.3.2.3 Cell surface B27 free heavy chain expression and immune recognition 
hypothesis 
 

HLA-B27 homodimers can be expressed on the cell surface after the β2-microglobulin 

detaches from the HLA heavy chain. These homodimers can bind to killer immunoglobulin-

like receptors (KIR3DL2) and leukocyte immunoglobulin-like receptors (LILR) on the surface 

of NK cells and certain subsets of T cells (CD4+ T cells, CD8+ T cells and γδT cells) (Bowness, 

2015). Antigen presenting cells that express HLA-B27 homodimers can therefore interact with 

KIRs expressed on NK cells (Chan et al., 2005) and T cells (Wong-Baeza et al., 2013) and 

induce pro-inflammatory effects (Bowness, 2015). HLA-B27 expressing APCs have also been 

reported to enhance IL-17 production from KIR3DL2+ CD4+ T cells in SpA patients, linking 

HLA-B27 with IL-17 secretion (Bowness et al., 2011). Moreover, KIR3DL2/B27 interaction 

have shown to enhance the proliferation and survival of Th17 cells in AS (Taurog et al., 2016). 
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4.4 Genetic epidemiology of AS 
 

Family-based studies gave the first indication that genetic factors contribute to disease 

predisposition in AS. The recurrence risk of AS in first-degree relative or sibling of patients 

was estimated to be 80 (Brown et al., 2000). Furthermore, disease recurrence patterns from 

twin studies in AS estimated heritability to be >90% (Brown et al., 1997; Robinson & Brown, 

2014). However, it was not clear whether the high recurrence rate in families came from 

shared genetics or environmental factors until the discovery of HLA-B27 association to AS 

susceptibility in 1973 (Brewerton et al., 1973; Caffrey & James, 1973). The MHC locus on the 

chromosome 6 is one the most gene dense regions in the genome with several genes 

associated to immunological function. This region is by far the strongest association to AS 

susceptibility through MHC class I molecule HLA-B27, which contributes to 20.5% of the 

estimated heritability (Ellinghaus et al., 2016). Although 96% of AS patients are HLA-B27 

positive, only a small fraction of HLA-B27 positive patients develop AS. HLA-B27 remains the 

strongest known genetic association between the MHC antigen and a disease, but it alone is 

not sufficient to develop the disease, especially since monozygotic twins with AS show a 

concordance rate of ~75% and dizygotic twins only around 15% (Breban, 2006). Hence there 

must be other factors besides the MHC region that contribute to disease susceptibility. 
 
4.4.1 Associations outside the MHC region: GWAS results in AS 
 

Since the discovery of HLA-B27, over 40 loci have been associated to AS 

susceptibility, which include both MHC and non-MHC genetic factors as shown in Figure 15. 

Some of these were identified through early candidate-gene based approaches. However, the 

majority of these loci were identified through GWAS. The first GWAS in AS was conducted by 

the Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis 

consortium in 2007, and identified 2 non-MHC susceptibility loci - ERAP1 and IL23R (Burton 

et al., 2007). Later, the International Genetics of Ankylosing Spondylitis Consortium (IGAS) 

conducted a GWAS using the Immunochip whole-genome microarray and identified 13 

associated loci (Cortes et al., 2013). A more recent study by Ellinghaus et al. combined the 

Immunochip data from 5 chronic inflammatory diseases (AS, Crohn’s disease, psoriasis, 

primary sclerosing cholangitis, and ulcerative colitis) to increase the statistical power 

(Ellinghaus et al., 2016), and reported 117 variants associated to AS, 17 of which were novel 

associations.  
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Despite its limitations, GWAS was able to uncover some important susceptibility loci 

in AS that indicated biological mechanisms and pathways that could be important in its 

pathology. The main findings from GWAS in AS pointed to the involvement of aminopeptidase 

genes, genes of the tumour necrosis factor (TNF) and IL-23/IL-17 pathways. 

 

Aminopeptidase genes such as ERAP1 and ERAP2 encode enzymes in the 

endoplasmic reticulum (ER) that trim and process peptides before they are presented on the 

MHC class I molecules (Brown, Kenna, & Wordsworth, 2015). ERAP1 association with AS 

susceptibility has been demonstrated in AS disease models by Evans et al., who reported 

abnormal or reduced peptide trimming due to SNPs in ERAP1 that disrupt antigen 

presentation by HLA class I molecules (Evans et al., 2011). ERAP1 activity has also been 

linked to the expression of HLA-B27 free heavy chain on the cell surface implied in the Th17 

responses in AS (Chen et al., 2016). Additionally, there are other aminopeptidase genes that 

are implicated in AS, such as LNPEP and NPEPPS.  
 

Another pathway associated with AS pathology through GWAS is the IL-23/IL-17 axis. 

IL-23 is a pro-inflammatory cytokine that is important in the activation of like the Th17 subset 

of T cells.  Many variants in genes of this pathway have been detected through GWAS 

including: IL12B, tyrosine kinase 2 (TYK2), CARD9, PTGER4, JAK2, nuclear factor kappa B 

subunit 1 (NFKB1), IL27 and IL23R (Li & Brown, 2017). Members of this pathway, like TYK2, 

play an important role in the signal transduction of several cytokines, including IL-10, IL-12, 

IL-23, IL-6, IFN-α and IFN-β (Dendrou et al., 2016). Genes of this pathway show pleiotropic 

effects in many CIDs. For example, IL23R locus is associated to AS-related disorders, like 

Pso and IBD. Variants in TYK2 have been reported in AS, Pso, IBD, T1D, MS and RA. There 

are also other shared genetic associations between these diseases, for e.g., IL12B, IL23R, 

JAK2 and IL27 are shared susceptibility loci for AS and IBD. Although these loci are implicated 

in many CIDs, suggesting a shared pathology through IL-23R signalling, the exact biological 

mechanism is yet to be understood. 

  

The TNF signalling pathway has also been highlighted in AS pathology through 

GWAS. SNPs were identified in TNF signalling pathway genes, such as TNFRSF1A, TRADD 

and TNFSF15. TNF is a key player in initiating and maintaining inflammatory responses and 

therefore is an important target for biologic treatments. TNF inhibitors are widely used in 

managing several forms of SpA and other CIDs, to treat inflammation.  
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Figure 15: Overview of AS GWAS loci. Loci associated with AS at genome-wide significance reported 
by Ellinghaus et al. are plotted (numbered 1–48). The implicated gene and chromosomal position 
(marked in red) are shown for each locus. Asterix indicates loci where there is no reported gene. 
Adapted from Osgood & Knight, 2018. 
 

 

To date, only 27.82% of the overall heritability in AS has been explained. The majority 

of the heritability component comes from the association with HLA-B27 (20.44%) (Figure 16). 

All the other associations from candidate gene studies and GWAS add up to nearly 7% 

(Ellinghaus et al., 2016). The rest 72% of the missing heritability could be attributed to rare 

variants, gene-gene and gene-environment interactions as it is the case for many complex 

diseases (Eichler et al., 2010). Solving the missing heritability puzzle in AS requires further 

study integrating methods to assess protein interactions, epistasis and the effects of structural 

variants (deletions, duplications and inversions) and rare variants (O’Rielly, Uddin, & Rahman, 

2016).  
 

GPR37
GPR65
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Figure 16: Heritability explained in AS. 27.82% of the heritability in AS is attributed to HLA-B27 and 
other non-MHC loci and the rest 72% remain unaccounted for. Figure adapted from Ellinghaus et al., 
2016 and Costantino, Breban & Garchon, 2018. 

4.5 The IL-23/IL-17 pathway in spondyloarthritis 
 

The IL-17 superfamily of cytokines consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E 

and IL-17F. IL-17A is the most common and widely studied member of this family and it is 

often referred to as IL-17 in the literature. It was initially described in CD4+ T cells of the Th17 

phenotype but later identified in other cell types, including CD8+ T cells, γδT cells, natural killer 

T cells (NKT cells) and mucosal associated invariant T (MAIT) cells, as reviewed by Taams et 

al., 2018. Mast cells, neutrophils and innate lymphoid cells have also been reported to produce 

IL-17A (Cua & Tato, 2010). IL-17A signalling has been implicated in many inflammatory 

diseases including RA and SpA (Lubberts, 2015). IL-17 can regulate transcriptional activation 

and consequent production of pro-inflammatory cytokines and chemokines such as TNF, IL-

1, CCL2 and CXCL8. It has also been shown to increase the secretion of granulocyte colony-

stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) 

in T cells and macrophages (Taams et al., 2018). Moreover, in the context of inflammatory 

arthritis, IL-17A has been reported to induce matrix metalloproteinases (MMPs) in target cells, 

which drive the degradation of extra-cellular matrix at the inflamed synovial joints (Chabaud 

et al., 2000). 
 
 
 

Genetic architecture of ankylosing spondylitis

HLA-B27
20.44%

Loci other than 
HLA-B27

7.38%
Unknown
72.18%

HLA-B27 Loci other than HLA-B27 Unknown
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Interleukin 23 (IL-23), has been shown to regulate the differentiation of CD4+ Th17 cells 

and IL-17 production (Aggarwal et al., 2003; McGeachy et al., 2009). Furthermore, Sherlock 

et al. reported that the IL-23R expressing T cells that reside in entheses can induce SpA under 

the influence of IL-23 present in the milieu (Sherlock et al., 2012). Turner et al. had shown that 

HLA-B27 misfolding could result in ER stress and unfolded protein response (Turner et al., 

2005); furthermore, DeLay et al. showed that ER stress was correlated with IL-23 production 

in HLA-B27 transgenic rat models (DeLay et al., 2009). The misfolded protein was also 

reported to induce UPR that can consequently increase IL-23 production from the APC 

(Colbert et al., 2010). These results suggest a possible link between IL-23 and ER stress 

induced UPR hypothesis in SpA. Additionally, several variants identified through association 

studies in the IL23R and the IL-12B locus, which encodes for the IL-12p40 subunit shared 

between IL-12 and IL-23, have been associated with susceptibility to SpA-related disorders 

(PsA, AS, Pso and IBD) (Cortes et al., 2013). The summary of the polymorphisms identified 

in the IL-23/IL-17 pathway in AS and PsA is shown in the Figure 17.  Therefore in order to 

determine the role of IL-23/IL-17 pathway in SpA, it is important to investigate the immune 

cells that are involved in the production of these cytokines and how they behave in the context 

of disease. 

 

 
  

 
 
Figure 17: Single nucleotide polymorphisms identified in the IL-23/IL-17 signalling pathway that 
have been linked to axial SpA and PsA. aSignificant association shown in European but not Asian 
populations; bNo risk associated with this SNP shown in certain studies; cNo risk associated with this 
SNP shown in certain studies207; dSNP can be associated with risk or protection depending on the 
specific mutation. AS is ankylosing spondylitis and PsA is psoriatic arthritis. Adapted from McGonagle 
et al., 2019. 
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4.6 Innate and adaptive immune cells implicated in AS pathology 
 

Although the precise pathological mechanisms of AS are not fully understood, several 

different immune cell populations may be implicated in the pathogenesis of the disease. 

 

4.6.1 Innate immune cells 
 
Natural Killer (NK) cells comprise 1 – 6% of the peripheral blood mononuclear cells. NK cells 

are important components of innate immunity and are involved in immunosurveillance and 

defence against pathogens. They are characterised by the expression of surface markers 

CD56 and CD16 and the lack of CD3. NK cells are further divided into two groups based on 

CD56 expression: CD56dim and CD56bright. 90% of the circulating NK cells are CD56dim NK cells 

that express perforin and killer immunoglobulin-like receptors (KIRs), whereas CD56bright NK 

subset are localised to the secondary lymphoid tissues (Caligiuri, 2008). Impaired function of 

NK cells has been associated with immune mediated disorders such as AS, SLE, RA and MS 

(Fogel, Yokoyama, & French, 2013). AS patients have shown an increased percentage of 

CD56dim CD16+ NK cells with high expression of the NK-inhibitory receptor CEACAM1 

(carcino-embryonic antigen-cell adhesion molecule) (Azuz-Lieberman et al., 2005). This study 

observed that CEACAM1 is induced by IL-8 and stromal cell derived factor 1 (SDF-1), which 

are present in elevated levels in the sera of AS patients, suggesting a potential role for 

CEACAM1 expressing NK cells in AS pathology. 

 

HLA molecules have been reported to interact with NK cell inhibitory receptors, for 

e.g., KIR3DL1 has been shown to recognise HLA-B27. KIR3DL1 interacts with HLA-B27 and 

suppress cytolytic potential of NK cells and T cells (Rezaiemanesh et al., 2018). Additionally, 

GWAS have reported genetic polymorphisms in KIR genes (KIR2DL1, KIR3DL1, KIR2DS5, 

KIR3DS1, and KIR2DL5) associated to AS susceptibility in different populations, which 

emphasises their potential role in disease mechanism. 

Monocytes are precursors to antigen presenting cells, including dendritic cells and 

macrophages, and are characterised by the expression of surface markers CD14 and CD16. 

Microarray data from peripheral blood monocytes from SpA patients showed an increase in 

MNDA (myeloid nuclear differentiation antigen) which is a marker for inflammatory 

monocyte/macrophage (Gu et al., 2002). Another study in SpA patient-derived monocytes also 

found increased expression of toll-like receptors 2 and 4 (TLR2 and TLR4), which were 

reduced by TNFα-blockade (De Rycke et al., 2005). Monocyte-derived macrophages have 
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also been implicated in AS disease pathogenesis through UPR from HLA-B27 misfolding, 

which eventually results in the production of pro-inflammatory cytokines such as TNF, IL-1α, 
IL-6 and IL-23 (Colbert, Tran & Layh-Schmitt, 2014). There is additional evidence in the 

literature that reported elevated frequency of classical monocytes (CD14+ CD16-) and reduced 

frequency of non-classical monocytes (CD14- CD16+) from the peripheral blood of AS patients 

(Surdacki et al., 2014; Conrad et al., 2015).  

Furthermore, SNPs associated to AS are enriched in open chromatin regions in 

immune cells including monocytes, suggesting a potential role of these cells in disease biology 

(Farh et al., 2015). eQTL studies in monocytes have revealed that innate immune pathways 

are affected through variants in the regulatory region in a stimulus-dependent manner (Fairfax 

et al., 2014). For example, polymorphisms in IL7R associated with pre-disposition to AS were 

found to be eQTLs in blood-monocytes activated with an innate stimulus (Al-Mossawi et al., 

2019). The same study also reported an enrichment of IL7R+ monocytes in the synovial fluid 

from AS patients giving further emphasis on the potential role of monocytes in AS pathology. 

Another study explored the role of micro-RNA (miRNA) in SpA associated pathology by 

determining the expression profile of miRNA in monocytes derived from SpA patients (Fogel 

et al., 2019). The authors identified an enrichment of deregulated miRNAs, where miRNA are 

either degraded or not translated during gene regulation, in pathways associated to 

monocyte/macrophage differentiation and polarization, and in pathways that control the 

expression and secretion of pro-inflammatory cytokines. These studies highlight the potential 

function of monocyte in AS pathogenesis, and could be useful for developing targeted 

therapeutic interventions. 

 

4.6.2 Innate-like T cells 
 

γδT cells are “unconventional T cells” that present features of adaptive T cells such as antigen 

recognition through T cell receptors and orchestrate T cell effector functions, but act in an 

innate-like manner. γδT cells express heterodimeric T-cell receptors (TCRs) composed of γ 

and δ chains, and are mainly found in the tissues but they are also present in peripheral blood 

in smaller proportions (0.5- 5%). γδT cells expressing IL-17 were detected in peripheral blood 

from Pso patients, in whom the lower percentage of the variable domain- γ in (Vγ)9Vδ2 T cells 

showed a direct correlation to increased cell migration of the to the inflamed skin (Laggner et 

al., 2011).  
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Increased frequency of γδT cells that express IL-17A were reported in patients with 

active AS, ReA and enthesitis, compared to healthy donors (Kenna et al., 2012). Similarly, 

enrichment of IL-17A+ γδT cells was observed in the synovial fluid from patients with other 

forms of SpA (ReA, PsA and uSpA) implicating their role in the tissue-specific features of SpA 

(Taams et al., 2018).  
 

Mucosal-associated invariant T cells (MAIT cells) are unique innate-like T cells that are 

characterised by expression of an invariant T cell receptor (TCR) α-chain (Vα7.2–Jα33 in 

humans (Toubal et al., 2019). MAIT cells also show high expression of CD161 and MHC class 

I- related gene protein (MR1) restriction, as shown by Oliver Lantz’s team in 2003 (Treiner et 

al., 2003). MAIT cells reportedly express pro-inflammatory cytokines such as IL-17, IFNγ and 

TNF and also the cytolytic molecule granzyme B upon stimulation with phorbol myristate 

acetate and ionomycin (PMA-Ionomycin) (Dusseaux et al., 2011). A potential role of IL-17 

producing MAIT cells has been proposed in diseases of the SpA family. For example, patients 

with AS exhibited an increased frequency of IL-17+ MAIT cells in peripheral blood compared 

to healthy controls (Gracey et al., 2016; Hayashi et al., 2016). Another group reported low 

frequencies of IL-17-producing CD8+CD161+Vα7.2+ MAIT cells together with IL-17 producing 

CD8+ T cells in synovial fluid derived from PsA patients (Menon et al., 2014). Additionally, IL-

17+ CD8+ MAIT cells have been detected in psoriasis patients from skin and blood samples. 

These studies provide insights into the variability in MAIT cell frequency in blood and target 

tissues and the increased activation of MAIT cells that might be important in disease 

mechanism. 

 
4.6.3 Adaptive immune cells 
 
CD4+ T cells of the Th17 phenotype produce IL-17 along with other proinflammatory cytokines 

like IL-6, IL-22, and IFNγ. HLA-B27 homodimers can bind to KIR3DL2 and promote the 

differentiation of KIR3DL2+ CD4+ T cells that produce IL-17A (Bowness et al., 2011). IL-17 

producing CD4+ T cells have been detected at higher frequencies in the peripheral blood of 

patients with AS and RA, compared to that of healthy donors as reviewed by Shen, Goodall & 

Gaston, 2009. In AS patients, IL17A+ CD4+ T cell percentages in peripheral blood correlated 

with disease activity (Al-Mossawi et al., 2019). The presence of IL-17A+ CD4+ T cells has also 

been reported in synovial fluid from patients with PsA, ReA and AS (Al-Mossawi et al., 2017; 

Shen, Goodall & Hill Gaston, 2010). These additional findings support the potential 

involvement of Th17 cells in AS.  
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CD8+ T cells are involved in the adaptive arm of the immune system that differentiate into 

effector and cytotoxic T lymphocyte subsets. Effector CD8+ T cells secrete pro-inflammatory 

cytokines like TNFα, IFNγ and IL-17. IL-17+ CD8+ T cells have been described in inflammatory 

diseases (Srenathan, Steel & Taams, 2016). The first report of such a phenotype was through 

IL17 mRNA expression detection in CD8+ T cell clones derived from skin lesions of patients 

with Pso. This phenotype was also described in other inflammatory diseases, such as MS and 

PsA. In AS patients with an advanced form of the disease, high frequencies of IL-17+ CD8+ T 

cells were detected in the peripheral blood (Taams et al., 2018). Additionally, an increased 

number of IL-17 producing CD8+ T cells has been reported in the synovial fluid from patients 

with AS and PsA, when compared with the cell numbers in peripheral blood (Menon et al., 

2014). This phenotype of CD8+ T cells might be involved in the HLA class I associated 

mechanism of AS pathogenesis. 
 

Furthermore, SNPs identified in the aminopeptidase genes involved in MHC class I 

peptide trimming – ERAP1 and ERAP2, and RUNX3, a vital transcription factor for CD8+ T cell 

differentiation have also been associated with PsA, AS and Pso. The location of the SNPs 

associated to AS were enriched in epigenetic marks of active transcription in immune cells, 

including CD8+ T cells (Li et al., 2017). Vecellio et al. demonstrated that variants in the RUNX3 

locus that coincided with epigenetic marks for enhancer region (H3K4Me1) affected binding 

of the transcription factor IRF4 and RUNX3 expression, suggesting the role of CD8+ T cells in 

AS (Vecellio et al., 2016).  
 

Cytotoxic activity is another possible mechanism for CD8+ T cell associated 

pathogenicity in AS. The cytotoxic activity of CD8+ T cells is mediated through perforins and 

granzymes, and the activation of the Fas/FasL pathway. Altered cytotoxic activity in AS 

patients has been reported recently by Gracey et al., who observed a reduced expression of 

cytotoxicity-associated genes in whole blood samples of AS patients (Gracey et al., 2020). 

The reduced levels of granzyme and perforin was correlated with reduced CD8+ T cell 

frequency in blood and an increased CD8+ T cell frequency in the synovial fluid from AS 

patients. This study demonstrated the enrichment of cytotoxic CD8+ T cells in the site of 

inflammation and underlined their importance in the joint inflammation observed in AS. 
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4.7 Overview of the therapeutic strategies in diseases of the SpA 
family  
 

The ASAS/EULAR recommendations state that the first-line of treatment for patients 

diagnosed with active axial SpA are nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs, 

including selective cyclooxygenase-2 (COX-2) antagonists, are effective in reducing 

inflammation, pain and stiffness exhibited by AxSpA patients. They are administered either 

continuously or on demand, based on the appearance of flares in patients. According to 

reported clinical studies, nearly 10% of the patients achieve partial remission with NSAIDs. 

Patients show better response rate to NSAIDs if the diagnosis and treatment starts early in 

the course of their disease (Sieper et al., 2015). Disease-modifying anti-rheumatic drugs and 

glucocorticoids (DMARDs) are a class of drugs that include methotrexate and sulfasalazine 

compounds that have been shown to inhibit radiographic disease progression, but do not aid 

in the management of the axial manifestations of SpA. However, DMARDs might help in 

treating peripheral form of SpA (Joachim Sieper & Poddubnyy, 2016). Systemic glucocorticoid 

therapy is not recommended in the axial disease, as they are less efficient in AxSpA compared 

to other inflammatory diseases. 

 

Patients who show poor response to NSAIDs or exhibit other contraindications or 

intolerance for NSAIDs have the option of adopting biological DMARDs (bDMARDs) such as 

TNFα-inhibitors (TNFi) or monoclonal antibody against IL-17A (Secukinumab) (Van Der 

Heijde et al., 2017). TNFi are considered the first-line of bDMARDs in AxSpA and PsA. There 

are five TNFi that are currently available: infliximab (IFX), etanercept (ETN), adalimumab 

(ADA), golimumab (GOL), and certolizumab pegol (CZP). TNFi have brought about 

remarkable progress in AxSpA patients’ treatment, with high efficacy despite the presence of 

radiographic modifications in patients. TNFi, specifically monoclonal antibodies, have also 

shown to improve peripheral arthritis, enthesitis, and extra-articular manifestations like uveitis, 

Pso and IBD. TNFi improve functional and spinal mobility, along with substantial reduction of 

C-reactive protein levels (CRP), and increase the overall quality of life and productivity in 

patients (Braun et al., 2018). Anti-IL-17A (Secukinumab) is effective in patients presenting 

active AS (radiographic form of AxSpa) and PsA, reducing the common signs and symptoms 

and by slowing the radiographic progression (Blair, 2019). IL-17 inhibition has now been 

introduced in clinical practice and shows similar levels of clinical efficacy as TNFi across most 

clinical manifestations, including peripheral arthritis, axial disease, dactylitis and enthesitis 

(McGonagle et al., 2019).  
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However, a major challenge lies ahead in teasing apart the biological mechanisms 

behind the success of IL-17A inhibitors. The IL-23/IL-17 axis has been previously implicated 

in SpA/AS pathology, with evidence showing that IL-23 enhances IL-17A production (Sherlock 

et al., 2012). Therefore, IL-23 inhibition was expected to show similar results as IL-17A 

inhibitors. On the contrary, IL-12/IL-23 inhibition with ustekinumab in AxSpA was discontinued 

due to poor efficacy, although it was effective in treating patients with Pso (Papp et al., 2008). 

These opposing results in the efficacy of IL-17A and IL-23 inhibitors in AS might suggest that 

IL-17A in the context of AS is produced and maintained during the inflammatory response in 

an IL-23-independent manner (McGonagle et al., 2019).
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PART I | Linking GWAS variants in the susceptibility loci with nearest gene 

function 

 
GWAS have successfully identified loci associated to several chronic inflammatory diseases 

over the past decade. There is evidence of considerable overlap in the loci linked to 

susceptibility to a wide range of immune disease. A susceptibility locus consists of the top 

significant variant from the GWAS that is associated to a trait/disease and the gene that is in 

close proximity to the variant. However, for the majority of the associations, there is no 

mechanistic evidence that links the SNPs and gene in the susceptibility locus to the disease. 

Attempts to assign causal relationships for the GWAS variants have been successful for a 

fraction of the variants. Translating GWAS variants to function is challenging as ~90% of the 

GWAS variants lie in the non-coding region of the genome. Furthermore, it is not well-

established whether the susceptibility genes have a function in cell types that are relevant in 

disease biology.  

 

The first part of my thesis tackles these issues by investigating the following questions in an 

inflammatory disease model: axial spondyloarthritis (AxSpA) 

 

1. Are genes in the susceptibility loci of CIDs expressed in immune cells? In which 

immune cell populations are they expressed? 

2. Do variants associated to CIDs affect the nearest genes in the susceptibility loci? 

3. How do variants associated to CIDs affect the nearest gene function in immune cells?  

 

PART II | Innate and adaptive IL-17A producing cells in axial spondyloarthritis 

 
The genetic association studies in AxSpA revealed several variants in genes of the IL-23/IL-

17 axis- IL23R, IL12B, IL6R, etc., suggesting a possible role in disease pathogenesis. IL-17A-

blockade has been used successfully in AxSpA over the past 6 years, however the cell 

populations that serve as the main source of IL-17A remain uncharacterised. Surprisingly, the 

failure of anti-IL-23 in AxSpA suggests a biological mechanism that leads to IL-17A-mediated 

inflammation in AxSpA, independent of IL-23. This emphasises the importance of identifying 

cell populations producing IL-17A in AxSpA, and the mechanisms of IL-23 independent 

induction of this cytokine. 

The second part of my thesis addresses the question: What are the IL-17A producing immune 

cell populations in AxSpA?  

The submitted manuscript is appended in Chapter 9 and the Annex II. 
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PART III | Mechanism of action of TNF-blockers in AxSpA and immunological 

correlates of responsiveness to TNFi. 

 
TNF inhibitors (TNFi) are highly effective in reducing inflammation and associated clinical 

symptoms in AxSpA. However, 30-40% of the patients respond poorly to anti-TNF therapy. 

There is very little known about how TNFis affect immune responses in patients, and there 

are no methods currently in clinical practice that can identify the patients who will respond to 

TNFi before they undergo the therapy. Hence there is a need to improve our understanding 

of how the molecular pathways affected by TNFis and to develop strategies to guide the choice 

of therapies for patients affected by AxSpA.  

 

Part III discusses the results from the collaborative study investigating 1) the mechanism of 

action of TNF-blockers in AxSpA and 2) the immunological correlates of responsiveness to 

TNFi. The manuscript currently in revision is appended in Chapter 10 and the Annex II.
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5.1 Patient cohort description 

 
 This project was conducted as a part of the collaborative effort between the Unité Mixte 

Recherche at Institut Pasteur and the Service de Rhumatologie B, headed by Pr Maxime 

Dougados, at Hôpital Cochin, Paris. A cohort of patients with axial spondyloarthritis (AxSpA) 

was recruited from our collaborators. Whole blood samples of 50-60 mL volume were collected 

from each patient in Vacutainers with Lithium-Heparin anti-coagulating agent (BD Vacutainer® 

Safety-Lok™, Becton-Dickenson, Franklin Lakes, NJ, USA).  

 

This study was performed by fulfilling the current Good Clinical Practice Guidelines 

and with the approval of the Ethical Review Committee (Comité de Protection des Personnes 

Ile-de-France III). All the participants included in the study gave their written informed consent 

prior to sample collection. The patients recruited met with either modified New York criteria for 

ankylosing spondylitis or the Amor criteria for spondyloarthritis (Amor, Dougados, & Mijiyawa, 

1990; Linden, Valkenburg, & Cats, 1984). Patients exhibiting inflammatory back pain 

symptoms in the buttock, lumbar or thoracic spine over 3 months and other symptoms 

suggestive of spondyloarthritis were included in the study. The age range of patients was >18 

years and <70 years.  

 

Patients who showed other spinal diseases (e.g. discarthosis), history of any biological 

treatments or history of other conditions that might interfere with the criteria mentioned in the 

informed consent, such as, psychological disorders, substance addiction, etc. were excluded 

from the study. Patients were prescribed corticosteroids (prednisone) only at a lower dose 

(<10mg) per day for at least weeks prior to the blood sample collection. 

 

 Records of patient characteristics including age, sex, disease duration, HLA-B27 

positivity, ongoing treatments (e.g. analgesics, NSAIDs, DMARDs including biologics, 

physiotherapy), co-morbidities, and other main clinical features of SpA (acute anterior uveitis, 

psoriasis, inflammatory bowel disease, enthesitis, peripheral articular involvement) were 

collected on a Case Record Form during each visit. Erythrocyte Sedimentation Rate (ESR) 

and C-Reactive Protein (CRP) were collected at the baseline. CRP measurements were 

quantified from sera collected on the first visit using the high-sensitivity CRP (hs-CRP) test. 

Disease activity score was calculated as per the criteria dictated in the Ankylosing Spondyltitis 

Disease Activity Score (ASDAS) (Machado et al., 2011). Cholesterol (HDL, LDL) levels and 

blood count were collected during visits, along with systematic radiological evaluation to 

monitor disease progression by X-rays and MRI of the spine and pelvis. 
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5.2 Blood sample collection and processing 
 
5.2.1 Whole blood TruCulture stimulation system 
 
 TruCulture systems were manufactured in accordance with EN ISO 13485 (Medical 

Device Directive) standards, at EDI GmbH (Reutlingen, Germany), a subsidiary of Myriad 

RBM (Austin, Texas). The same manufacturing batch of TruCulture tubes has been used for 

all the samples processed in this study. TruCulture tubes were stored at -20°C and thawed at 

room temperature (RT) 30 minutes before usage, or thawed at room temperature for 10 

minutes and pre-warmed for 10 additional minutes at 37°C. 

 

Venous blood was collected from patients in sterile Lithium-Heparin vacutainers (BD 

Vacutainer®, Becton-Dickenson, Franklin Lakes, NJ, USA). Seven vacutainer tubes, 

containing 7 mL of blood, were collected for all AxSpA patients. Of the total 50 mL of the 

collected blood, 21 mL were used for the TruCulture assays study. Only three TruCulture 

stimulation conditions were utilized for this project (Part I). The rest of the conditions were 

used for the anti-TNF study described in Part III. The rest of the blood was used for isolating 

peripheral blood mononuclear cells (PBMCs). All TruCulture tubes and tubes for sample 

collection were identified with cryogenic labels prior to start of sample processing. Each tube 

was identified by patient ID (serial number), time point, stimulus pre-loaded in the TruCulture 

assay and date of sample collection. 

 

Within 30 minutes of blood sample collection, 1mL of the whole blood was distributed 

using an electronic pipette distributor into the each of pre-warmed TruCulture tubes with an 

appropriate stimulus. The samples were mixed well with the medium and stimulus present in 

the tube by inverting the them several times. The tubes were then incubated using a bench-

top heating block at 37°C (± 1°C),  for 22h (± 15 min). After the incubation period, a filter 

system with a plunger was inserted to separate the sedimented cell pellet and the supernatant. 

Supernatant was harvested and 3 aliquots of 400 μL were prepared with an electronic 

adjustable tip spacing multichannel equalizer pipette and stored at -80°C until the time of use. 

Cell pellets were re-suspended in 2 mL of TRIzolÔ LS reagent (Sigma) and mixed well with a 

vortex mixer for 5 minutes and stored at -80°C until the time of RNA extraction. 

 

The stimuli used for this system were lipopolysaccharide (LPS at 10ng/ml) and 

staphylococcus enterotoxin B (SEB at 0.4 μg/ml) stimulation and the negative control (Æ) as 

per the description in (Duffy et al., 2014). We utilised 25 patient samples in the three conditions 
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to validate the gene expression panel (Autoimmune disease consortium panel) we designed 

with NanoString. 

 
5.2.2 Experimental work flow for PBMC isolation and cell culture 
 
5.2.2.1 PBMC isolation from patient blood samples 
 

Venous blood samples were collected from patients in sterile Lithium-Heparin tubes 

(BD Vacutainer®, Becton-Dickenson, Franklin Lakes, NJ, USA) for peripheral blood 

mononuclear cells (PBMC) isolation. PBMCs were separated from whole blood diluted in 1:3 

volumes with room temperature Phosphate Buffered Saline (PBS, Fisher Scientific) using 

Lymphocyte separation medium (Eurobio, France) and density gradient centrifugation. The 

layer of PBMCs was collected and was transferred into a new Falcon® tube and then 

centrifuged with cold PBS to remove platelets. Cells to be counted were re-suspended in a 

known volume of PBS. The cells were then counted on a Neubauer chamber slide using 0.4% 

Trypan Blue, using the formula given below: 

 
Total # of cells = Mean cell count x dilution factor x volume (ml) x 104 

 

5.2.2.2 Healthy donor samples 
 

Human mononuclear cells were isolated by Lymphocyte separation medium by density 

gradient centrifugation (Eurobio, France) from buffy coat samples (EFS Hôpital Saint-Louis).  

 
 
5.2.2.3 Cell purification by magnetic separation: monocytes and NK cells 
 

The isolated PBMCs were labelled with human CD14 or CD56 (MicroBeads (Miltenyi 

Biotec), 20µL beads for 107 cells suspended in separation buffer (1x PBS + 0.5% FCS + 2mM 

EDTA) of appropriate volume (80µL for 107 cells ) and were incubated for 15 minutes at 4°C 

on a rotor. After the incubation period the magnetic separation was carried out using the MS 

columns following the kit protocol. The positive fraction was counted using the same method 

described before and then cultured in 48-well plates. The purity of monocytes was over 97% 

as verified by flow cytometry (LSR II, BD Biosciences). The CD14- fraction was used to isolate 

the T cell subsets with fluorescence-activated cell sorting (FACS). 
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5.2.2.4 Fluorescence-activated cell sorting (FACS) for T cells 
 

The counted CD14- fraction was stained in the dark at 4°C for 20 minutes in FACS 

buffer (1x PBS + 1%FCS) with anti-human CD3-APC (Clone BW264/56, Miltenyi Biotec®), 

anti-human CD4 APC-Vio770 (Clone M-T466, Miltenyi Biotech®) and anti-human CD8- PerCP 

Vio 700 (BW135/80 Miltenyi Biotec®). For the experiments on healthy blood donors, we 

performed first a CD3 positive magnetic separation using anti-CD3 monoclonal antibodies 

coated beads (Miltenyi Biotec®). The CD3 positive fraction was labelled with CD3-BV711 (BD 

Horizon) to sort the T cell subsets. T cells were purified from healthy donor samples using the 

respective markers: CD4-BV750 (clone: SK3, BD Horizon™), CD8- PerCP-Vio700 (Miltenyi 

Biotec®), γδT cells (TCRgd- PE (clone: 11F2), TCRd2- PE (clone: 123R2)) and MAIT cells 

(Va7.2- APC (clone: 3C10), Biolegend® and CD161-BV421 (clone: HP3G10), Sony 

Biotechnology®). Cells were purified on a FACS Aria II (BD Biosciences, San Jose, CA) at the 

Center for Translational Science (CRT)/Cytometry Biomarkers Unit of Technology and Service 

(CB UTechS) at Pasteur Institute in Paris. The purity of each population was verified with post-

sort analysis. Cells were collected into 5mL FACS tubes coated with medium. 

 
5.2.2.5 Cell culture conditions 
 

The purified cells were pelleted at 3500 rpm for 5 minutes. For the unstimulated 

sample, cells were immediately lysed in 350μL of Buffer RLT plus (Qiagen RNeasy Micro Kit, 

Valencia, CA). The stimulated samples were cultured in 1ml of pre-warmed medium Roswell 

Park Memorial Institute (RPMI) 1640 (Gibco Life Technologies, Oslo, Norway) + 5% FCS 

(HyClone, Fisher Scientific) + Penicillin/Streptomycin and the respective stimuli in a 5% CO2 

incubator for later time points. CD14+ Monocytes were cultured in 48-well plates (500,000 

cells/400 or 500 μL, respectively) in pre-warmed RPMI 1640 medium (Invitrogen) without FCS 

and antibiotics, and LPS from Escherichia coli (LPS, Invivogen) at 20ng/ml concentration for 

16h at 37°C. T cells were cultured with anti-CD3/anti-CD28 human T activator Dynabeads 

(Invitrogen) at a bead:T cell ratio of 1:4 at 37°C. Cell lysates were stored at -80°C until RNA 

extraction. Cells isolated from healthy donor samples were stimulated as per the following 

conditions: NK cells activated with IL-18 (50ng/mL), monocytes stimulated with LPS from 

Escherichia coli (LPS, Invivogen, at 20ng/mL), T- cells (CD4, CD8  and γδT cells) were 

activated with IL-2 (20U/mL) and TCR-stimulation (Human T Cell TransAct™, Miltenyi 

Biotec®). MAIT cells were activated with a combination of cytokines (IL-2 (20U/mL) + IL-1β 
(10ng/mL) + IL-23 (10ng/mL) and the tetramer MR1/5-OPRU (0.2nM, NIH Tetramer Core 

Facility). 
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5.3 Gene expression Analysis 
 
5.3.1 RNA extraction 
 

TruCulture RNA samples were extracted in a randomised manner to avoid batch 

effects. Cell pellets in TRIzol LS were thawed on ice for 30 minutes. The thawed samples 

were mixed vigorously with a vortex mixer for 5 minutes at 2000 rpm to dislodge the frozen 

pellet and to resuspend it and to lyse it homogenously. The phenol-chloroform method 

(Chomczynski & Sacchi, 1987) was used to proceed with the RNA extraction. To the 600 μL 

of TRIzol lysate, 150 μL of chloroform (Merck) was added and mixed thoroughly using a vortex 

mixer. The samples were centrifuged for 15 minutes at 14000g at 4°C to enable phase 

separation. After centrifugation, the upper aqueous phase was transferred to a clean 

Eppendorf tube and 300 μL of isopropyl alcohol (Sigma) was added to precipitate the RNA. 

The RNA was then washed with 70% ethanol twice and then dissolved in 30 μL RNase-free 

water. Aliquots of 4 μL were prepared for quality control measures to avoid repeated freeze-

thaw cycles. All the extracted RNA samples were stored at -80°C until use. 

 

Total RNA from cell populations CD4+ T cells, CD8+ T cells, γδT cells, MAIT cells, NK 

cells and monocytes from patients and controls, was isolated using RNeasy Micro Kit or 

RNeasy Mini Kit (Qiagen RNeasy Micro Kit, Valencia, CA), based on the cell numbers 

obtained. Extraction was performed following the protocol provided by the manufacturer. RNA 

concentration was estimated using Qubit RNA HS Assay Kit (Life Technologies, Grand Island, 

New York, USA) according to the manufacturer’s instructions. 

 
5.3.2 RNA quantification and quality control 
 

RNA quantification was done using Qubit RNA HS Assay Kit (Life Technologies, Grand 

Island, New York, USA) according to the manufacturer’s instructions on the Qubit 2.0 

fluorometer. RNA quality was assessed using RNA 6000 Nano Kit on the Agilent BioAnalyzer 

2100 system (Agilent Technologies, Palo Alto, CA). The RNA integrity number (RIN) was 

determined using the LabChip System software. The quality threshold was set at RIN > 8. 

 
5.3.3 NanoString  AID panel design 
 

We designed a gene expression assay in collaboration with NanoString Technologies 

called Autoimmune Discovery Consortium Panel (AID panel) with 755 genes. This panel 

comprises 518 genes associated to 9 different autoimmune and autoinflammatory diseases, 

namely, MS, RA, SLE, T1D, AS, Pso, CD, UC and IBD (gene list included in Annex I). These 



Chapter 5  Materials & Methods 

 76 

genes were selected after reviewing summary statistics of published GWA studies curated by 

Open Targets Genetics platform- previously maintained by the ImmunoBase 

(https://genetics.opentargets.org/immunobase). All the disease-associated genes in the panel 

have been reported to be the nearest gene in the susceptibility locus for an immune disease. 

We also included 237 genes related to immune response and 15 internal reference genes.  

 

5.3.4 Gene Expression Analysis with NanoString nCounterÒ Technology 
 
 NanoString nCounterÒ technology utilises direct molecular barcoding to detect target 

messenger ribonucleic acid (mRNA) molecules in a sample. The technology is multiplexed, 

and allows simultaneous detection and quantification of up to 800 mRNA molecules without 

the amplification step required in conventional gene expression technologies. The probe pair 

consists of a biotinylated Capture probe at the 3’ end, and a Reporter probe, which carries the 

barcode on its 5’ end. The Capture probe has a 35-50-base sequence that is complementary 

to a target mRNA molecule, along with a short common sequence coupled to the biotin. The 

Reporter probe consists of a second 35-50-base complementary sequence to a the target 

mRNA coupled to a colour-coded tag that emits the detection signal. The colour code is made 

up of six positions and each position can be one of four colours, enabling a combination of 

thousands of barcode combinations. Unique pairs of Capture probe and Reporter probe 

combinations are created in this manner to measure mRNA transcripts for each gene of 

interest (Geiss et al., 2008). 

 
 The hybridisation step was carried out in 12-tube PCR strips. RNA samples were 

diluted with RNase-free water to have a total concentration of 100ng in 5μL. A mix of 

hybridisation buffer and Reporter probes were added to the diluted RNA, followed by the 

addition of Capture probes. The contents of the tubes were mixed gently and transferred to a 

thermocycler set at 65°C for 22h. During the hybridisation reaction a tripartite structure with 

the target mRNA bound to the specific Reporter and Capture probes is formed. After the 

hybridisation step, the samples were transferred to the Prep Station for further processing 

steps to remove excess and unbound probes by affinity purification. This step is entirely 

automated to avoid variabilities between users. The remaining tripartite complexes are then 

immobilised and aligned onto a cartridge coated with streptavidin. The target mRNA of interest 

is identified by the colour code generated by the fluorescent barcode on the Reporter probe. 

The expression level is measured by counting the number of barcodes for each target mRNA 

as per the technology described by Geiss et al., 2008. Cartridges were scanned using the 

nCounterÒ Digital analyser at the highest resolution of 555 fields of view (FOV) per flow cell to 

obtain a Reporter Code Count (RCC) data set.  
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nCounterÒ assays were performed at the CB UTechs technology core facility of the 

Pasteur Institute (Paris, France).  

 

5.3.5 Gene expression data analysis 
 
 Each sample was analysed in a separate multiplexed reaction including in each, eight 

negative probes and six serial concentrations of positive control probes. Negative control 

analysis was performed to determine the background level for each sample. We generated 

raw data (RCC files) from whole blood TruCulture samples stimulated with LPS and SEB and 

the negative control (n=25), CD8+ T  cells (n=49), CD4+ T cells (n=55) and monocytes (n=45) 

under resting and activated states using the NanoString AID panel. Quality control and data 

normalisation was carried out as per the established pipeline provided by NanoString using 

nSolver Analysis software (version 3.0) using three steps described here: (1.) positive control 

normalisation, (2.) negative control normalisation and (3.) internal reference (housekeeping) 

gene normalisation. (1.) The positive control normalisation was used to correct for technical 

variation by calculating the geometric mean of the positive probe counts of each sample and 

then by calculating the average geometric mean of the positive probes across all the samples. 

A scaling factor was calculated by dividing the average geometric mean by the geometric 

mean for each sample. The computed scaling factor was then multiplied to the corresponding 

positive and negative controls and the target gene counts to correct for technical variation. (2.) 

Negative control normalisation, a background threshold was calculated by taking the mean of 

the negative controls + 2 standard deviations (SD) and then this value was subtracted from 

the gene counts. (3.) The variation in mRNA input was corrected using the same method as 

the positive control normalisation, but the geometric means were calculated for the selected 

housekeeping genes. 

 

 Housekeeping genes were selected using geNorm algorithm (Vandesompele et al., 

2002) built-in to the nSolver analysis software. Using this method we selected the following 

housekeeping genes: POLR2A, SDHA and TBP for whole blood data, GUSB, RPL19 and 

SDHA for CD4+  and CD8+ T cell data set; and  OAZ1, HPRT1 and PPIA for monocyte data 

set. Probes with low counts were determined with respect to the background level, defined as 

the mean of the negative controls + 2*SD. All the 755 genes including low count genes were 

used for the eQTL analysis. The selected housekeeping genes for innate and adaptive cell 

type data from healthy donors data were the following: G6PD, GUSB, OAZ1 and RPL19. MAIT 

cells were normalised separately using  ALAS1, HPRT1, PP1A and EEF1G. 
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5.4 Genotyping data 
 

All patient samples were genotyped using the Illumina Global Screening Array (GSA), 

in collaboration with the genotyping platform at the Centre National de Recherche en 

Génomique (CNG) in Ivry. The genotyping data analysis was done in collaboration with the 

Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI) at the Pasteur Institute. 

Genotyping data were obtained were subjected to standard quality control steps and all the 

samples passed the initial quality control done by the CNG. There were two sibling pairs in 

the cohort which were excluded There were no sex inconsistencies between the genotyping 

data and the clinical information. Imputation was performed using IMPUTE2 (2.3.2) (Howie, 

Donnelly, & Marchini, 2009). and the 1000G Phase 3 reference panel, based on 250 kb 

windows and a buffer region of 250 kb. We removed imputed SNPs with information metric < 

0.8 as well as imputed SNPs with > 5% missing data (individual genotype probabilities < 0.8 

were considered missing data). 

 
5.4.1 SNP selection process for functional analysis 
 

We compiled a list of SNPs based on the results from the eQTL analysis from the T 

cell data set (CD4+ and CD8+ T cells under resting and activated states). All the eQTLs 

indicated a region on chromosome 11 around the gene CTSW. We queried if the eQTLs from 

our analysis were also SNPs from association studies in immune diseases, specifically in 

ankylosing spondylitis. This step was done by consulting the online resources: GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) and Open Targets Genetics (https://genetics.opentargets.org/). 

Linkage disequilibrium (LD) between eQTLs and GWAS variants was determined using the 

LDpair and LDmatrix settings from LDlink interactive tool (https://ldlink.nci.nih.gov/?tab=home) 

in the European population (EUR: CEU, TSI, FIN, GBR and IBS), indicated in R2. The LD 

threshold was set at R2 > 0.8. 

 

 To explore the regulatory information of the given locus. The SNP positions were 

marked using the SNP database dbSNP 151 track available on the UCSC Genome Browser 

version GRCh37/hg19 (http://genome.ucsc.edu/cgi-bin/hgGateway). The SNP locations were 

overlapped with data tracks for regulatory element marks- histone marks, DNase 

hypersensitivity sites using the “track hubs” option embedded in the genome browser. When 

the SNPs overlapped with histone marks indicating open chromatin conformation, we checked 

if there were also transcription factors binding sites (TFBS) in the given position using a 

combination of three different online tools. Firstly, we used HaploReg v4.1 

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to assess if there were 
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published data on TFBS and altered motifs by giving the variant information. Secondly, within 

the UCSC genome browser we plugged in the JASPAR TFBS track with profiles of 

transcription factor predictions from the JASPAR CORE collection. Thirdly, we utilised Promo 

v3 to predict the possible TF binding sites by providing the sequence of the locus 10 bases 

upstream and downstream from the location of the SNP of interest. We compiled the three list 

of TFs based on the SNP of interest and cross-referenced the expression of these factors in 

immune cell types from public RNA-Seq profiles curated in DICE eQTLs (https://dice-

database.org/) (Schmiedel et al., 2019) and the Human Blood Atlas (part of the Human Protein 

Atlas) (https://www.proteinatlas.org/humanproteome/blood). Based on the TF list and the 

expression pattern in cell types we tested the TFs for allele-specific binding pattern in relevant 

immune cell subsets. 

 
5.4.2 eQTL analysis  
 
 The normalised gene expression from the cell type-specific data set and genotyping 

data were used to carry out expression quantitative trait locus (eQTL) mapping, using the R 

package MatrixEQTL (Shabalin, 2012). The aim was to correlate existing polymorphisms in 

regions surrounding SNPs of interest (i.e., variants mentioned in the literature as associated 

with AS) with expression level of disease-associated genes from the AID panel. Sex, HLA-

B27 status, cohort and ethnicity (European vs non-European background) were included as 

covariates in the analysis. We selected the variants post-imputation based on the loci 

associated to AS and analysed 68442 SNPs for genotype-gene expression correlation. 

Expression data were log-transformed. 

 

Two types of associations were investigated: (i) associations between SNPs and 

expression levels of genes that were at a genomic distance < 250kb from SNPs (henceforth, 

cis-eQTL); (ii) associations between SNPs and expression levels of genes that were at a 

genomic distance > 250kb from SNPs (henceforth, trans-eQTL). P-values were further 

adjusted to account for multiple testing using permutations. The observed effect size is 

denoted as Z- score, which is a standardised estimate (i.e., the slope of the regression divided 

by the level of variation observed in both variables, gene expression and genotypes). We 

calculated the estimates of effect size Scis and Strans based on the permuted data. In this 

method, rows of gene expression tables were permuted in order to simulate the distribution of 

statistic parameters Scis-max and Strans-max in under the null hypothesis (no genuine association 

between SNPs and gene expression). These parameters are standardised estimates of the 

maximum effect size (of SNPs on gene expression) across the genome in both types, cis- and 

trans-associations. We ran regressions on the data (gene expression as a function of 
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genotypes) and recorded the estimates (observed values) Scis – obs  and similarly, Strans – obs . 

Then, the distribution of the highest effect size across the genome Scis−max and Strans−max were 

obtained with the permuted data. This process was repeated over a large number of 

permutations ( i > 10,000) to generate a simulation of the empirical distribution of the Smax  

estimates. This distribution was then used to compute adjusted P-values as: the number of 

times where Scis-max  is higher than Scis-obs  in cis-associations, divided by the total number of 

permutations. The same process was performed for computing Strans-max and Strans-obs in the 

trans- analysis. This method was applied to each cell type data by stimulation condition 

(resting and activated).  

5.5 Affinity capture assay for DNA binding proteins 
 
 Oligonucleotides were designed with 10 bases upstream and downstream of the 

location of the two SNPs of interest to test for preferential binding. The oligonucleotides were 

synthesised and purchased from Eurofins Biotech (Table 3). The reverse complement of the 

oligonucleotides were tagged with biotin. Both the forward strand and the biotinylated reverse 

complement strand were annealed in TE plus 100mM NaCl  buffer at 95°C to the form the 

biotinylated double-stranded (ds) oligonucleotides. 

 

Total cell extracts were prepared from CD8+ T cells (5 x106 cells per reaction) lysed in 

extraction buffer (20 mM Hepes/NaOH pH 7.9, 0.35 M NaCl, 0.1% Nonidet P-40, 1 mM MgCl2, 

0.5 mM EDTA, 20% glycerol and proteinase inhibitors), using a vortex mixer, followed by high 

speed centrifugation at 4°C for 5 minutes. The lysate was removed and the salt content was 

adjusted to 0.35M using the dilution buffer (20mM HEPES, 20% glycerol and proteinase 

inhibitor), followed by the addition of the respective biotinylated ds-oligonucleotides (2 pmol) 

and 2µg poly(dI-dC). The lysates were then incubated for 45 minutes at 4°C to enable binding. 

After the incubation, 20µL Dynabeads™ M-280 Streptavidin (Thermo Fisher Scientific) pre-

incubated with 2% BSA, was added to pull down the bound protein and then incubated for 15 

min at 4°C.  The samples were then washed 4 times with ice-cold wash buffer (25 mM 

Hepes/NaOH pH 7.9, 0.15 M NaCl, 0.1% Nonidet P-40) and once with ice-cold PBS. The 

bound complex was then eluted in 2X sample buffer and denatured at 95°C for 5 minutes. 

 

The protein samples were separated on SDS gels by Western blot and transferred to 

PVDF membrane (Amersham). The membranes were probed with anti-NFATC2 (4G6-G5, 

Santa Cruz biotechnologies; concentration:1μg/mL) and anti-RBPJK (E7, Santa Cruz 
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biotechnologies; concentration:1μg/mL). Proteins were visualised using ECL (SuperSignal™ 

West Pico PLUS Chemiluminescent Substrate  (Thermo Fisher Scientific) on the ImageQuant 

LAS 4000mini chemiluminescence analyser (Fuji) at an appropriate exposure. 

 
Table 3: Oligonucleotides used for high affinity DNA capture assay 

rs658524_ref Oligo 1 Forward 
primer 

GTTTCTCCAGCCCCACCCTCACACCGTCCT 
 

  Reverse 
primer 

AGGACGGTGTGAGGGTGGGGCTGGAGAAAC 

rs658524_alt Oligo 2 Forward 
primer 

GTTTCTCCAGCCCCGCCCTCACACCGTCCT 

  Reverse 
primer 

AGGACGGTGTGAGGGCGGGGCTGGAGAAAC 

rs12225345_ref Oligo 3 Forward 
primer 

TCCAACCTGGGTGGAAAAAAAAAAGAAAGA 
 

  Reverse 
primer 

TCTTTCTTTTTTTTTCCCACCCAGGTTGGA 
 

rs12225345_alt Oligo 4 Forward 
primer 

TCCAACCTGGGTGGGAAAAAAAAAGAAAGA 
 

  Reverse 
primer 

TCTTTCTTTTTTTTTCCCACCCAGGTTGGA 
 

5.6 Generation of reporter gene constructs for regulatory SNP 
rs12225345 
 

To measure the activity of NFATC2 binding on transcription in the presence of 

regulatory SNPs in the CTSW promoter region, we cloned a fragment of the promoter region 

containing the reference and alternative allele of rs12225345. The sequence was doubled to 

create a long oligonucleotide of 104 bp with two sites of the SNPs to increase the sensitivity 

of the assay as shown in table 4. The oligos were cloned upstream of the luciferase gene into 

the pGL4.23 vector (Promega) with a minimal promoter, using the restriction sites BglII and 

NheI. Correct cloning was verified by sequencing. 

 

Table 4: Primers used for reporter gene assay 
rs12225345_ref Long 

(2 sites for 
SNP) 

Forward 
primer 

5’-CTAGCGCCACTGCACTCCAACCTGGGTGGAAAAAAAAAAGAAAGA 
AAGAAAGAAGCCACTGCACTCCAACCTGGGTGGAAAAAAAAAAGAAAG
AAAGAAAGAAA- 3’ 

  Reverse 
primer 

5’-GATCTTTCTTTCTTTCTTTCTTTTTTTTTTCCACCCAGGTTGGAGTG 
CAGTGGCTTCTTTCTTTCTTTCTTTTTTTTTTCCACCCAGGTTGGAGTGC
AGTGGCG- 3’ 

 
rs12225345_alt Long  

(2 sites for 
SNP) 

Forward 
primer 

5’-CTAGCGCCACTGCACTCCAACCTGGGTGGGAAAAAAAAAGAAAGAA 
AGAAAGAAGCCACTGCACTCCAACCTGGGTGGGAAAAAAAAAGAAAGA
AAGAAAGAAA-3’ 
 

  Reverse 
primer 

5’-GATCTTTCTTTCTTTCTTTCTTTTTTTTTCCCACCCAGGTTGGAGTGC 
AGTGGCTTCTTTCTTTCTTTCTTTTTTTTTCCCACCCAGGTTGGAGTGCA
GTGGCG-3’ 
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5.7 Transfection with Lipofectamine™ 
 
Kidney epithelial 293 T cells were cultured in DMEM with 10% serum. Cells were 

transfected using Lipofectamine™ 2000 according to manufacturer’s instruction (Life 

Technologies). Cells were transfected in a 24 well plate with 100 ng of pGL4.23 vector of 

interest and 5 ng of pRL-TK vector with Renilla luciferase to normalize for transfection 

efficiency. Where indicated, 0.5 μg of the vector expressing NFATC2 (pEF6/His) was added. 

To obtain equal amounts of DNA in all samples, the appropriate amount of pBluescript vector 

was added to the transfected DNA. The Luciferase activity was measured 24h after 

transfection using Dual-Luciferase Reporter Assay System kits (Promega).   

5.8 Statistical Analysis and Data Visualisation 
 

Statistical analyses were performed using GraphPad Prism version 7 (GraphPad 

Software, San Diego, CA) and R Studio (v1.1.463). Unless otherwise indicated, horizontal 

bars represent the mean. Bar graphs, pie charts and box plots were generated using R 

packages ggplot2 (v3.3) and ggpubr (v0.4). Upset plots were generated using the R package 

UpSetR (v1.4). Principal Component Analysis (PCA), hierarchical clustering, paired and 

unpaired t tests were performed with Qlucore Omics Explorer version 3.0 (Qlucore, Lund, 

Sweden). Before applying PCA and hierarchical clustering, mRNA expression levels were log-

transformed, mean-centred and scaled to unit variance. 

5.9 Protein de-glycosylation assay 
 

CD8+ T cells were lysed in radioimmunoprecipitation (RIPA) buffer. Protein 

quantification was done using Bradford’s assay. The lysate was then mixed with glycoprotein 

denaturing buffer (New England Biolabs, Ipswich,MA) and incubated at 100 °C for 10 min. 1μg 

of the target glycoprotein was incubated for protein de-glycosylation reaction using Endo H 

(Promega) and recombinant PNGase F (Promega), at 37°C, for 1h30min. 
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6.1 Patient cohort description 
 

This project was done in collaboration with the Service du Rhumatologie B team at 

Hôpital Cochin (Paris) directed by Pr Maxime Dougados. A cohort of 68 patients with axial 

spondyloarthritis (AxSpA) were enrolled in this study. Blood was collected from the patients to 

perform whole blood TruCulture assays and to isolate immune cell populations. In parallel to 

this, DNA samples were isolated to genotype the patients. The TruCulture assays were tested 

and standardised with the first 12 patients recruited in the study in the work done by Menegatti 

et al (in revision). The workflow of the patient recruitment and experimental set up is given in 

Figure 18. After quality control measures, we used 53 patients for further analysis. 

 

 
 

Figure 18: Axial spondyloarthritis (AxSpA) patients enrolled in the study. A cohort of patients with 
AxSpA were included in the study. Peripheral blood samples were obtained for all patients (n = 68) at 
baseline before the onset of any biologic treatment.  
 
6.1.2 Patient Characteristics 
 

The clinical  characteristics of the patients included in the study are summarised in 

Table 5. The average age was 39±13 years (ranging from 18 to 69 years), and 74% of the 

subjects were male, consistently with the observed prevalence of SpA in males (Gran, Husby, 

& Hordvik, 1985; W. Lee et al., 2007; Ngo et al., 2014). 78% of the overall patients (n=53) 

were HLA-B27 positive; 72% of female and 80% of male patients were HLA-B27 positive. 49% 

of the patients enrolled had a familial history of spondyloarthritis and related disorders (Figure 
19).  

 

(Hôpital Cochin, Paris)

(Institut Pasteur, Paris)

(CNG, Ivry)
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Figure 19: Demographic characteristics of SpA patient cohort recruited for the study. Each data 
point represents one patient at baseline (D0). Pie chart shows the proportion of males and females in 
the cohort. Bar chart graphs indicate the number of women and men in the respective age groups, HLA-
B27 status in men and women and the number of male and female patients with familial history of SpA. 
 
 

All the included patients were naïve to any biological treatment. The majority of the 

patients presented with radiographic features, either X-ray sacroiliitis (63%) and/or MRI 

sacroiliitis (88%). 47% of the patients showed elevated levels of CRP at baseline (>6 mg/L) 

(see Figure 20). Patients also presented extra-articular manifestations such as: 32% also had 

acute anterior uveitis (n=22), 19% had psoriasis (n=13), 4% had SpA-associated inflammatory 

bowel disease (n=1) and nearly half of the patients (47%) also presented with enthesitis 

(Figure 20). Prior to recruitment, 82% of the patients were treated with non-steroidal anti-

inflammatory drugs (NSAIDs), 7% with DMARDs (methotrexate, n=4; sulphasalazine, n=1) 

and 3% with corticosteroids (Figure 20). Patients who were prescribed corticosteroids were 

(n = 68)
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only admitted to the study if a lower dosage (<10 mg of prednisone per day) was maintained 

for at least 4 weeks prior to the recruitment. 

 

 

Variable Results 

Number of patients 68 

Age (years, mean ± SD) 39±13 

Gender (% Female) 26.5% 

Disease duration (years, mean ± SD) 6±10 

HLA-B27 positive (%) 78 %  

ASAS criteria (%) 100% 

Radiological sacroiliitis (mNY) (%) 63% 

Abnormal CRP (%) 47% 

MRI – SI joints (%) 88% 

Familial history of SpA (%) 49% 

Current symptoms or past history of: % 

-       Peripheral arthritis (%) 18% 
-       Uveitis (%) 32% 
-       Psoriasis (%) 19% 
-       IBD (%) 4% 
-       Enthesitis (%) 47% 

Therapies before biologic treatment:   

-        DMARDs (%) 7% 
-        Corticosteroids  (%) 3% 
-        NSAIDs  (%) 82% 

 
 
Table 5: Clinical and demographic data of spondyloarthritis patients included in the study at 
baseline. Values are reported as means ± SD, or proportions (%) of total patients. 
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Disease activity was evaluated with the Bath AS Disease Activity Index (BASDAI) 

(Garrett et al., 1994) and the Ankylosing Spondylitis Disease Activity Score (ASDAS)  

(MacHado et al., 2011; Machado et al., 2015; Rudwaleit et al., 2009) (Figure 20). 

 
 

 
Figure 20: Clinical characteristics of the patients to assess disease status and progression. Bar 
plot indicates the frequency of patients with very high, high, moderate or low disease activity evaluated 
using the ASDAS score. Dot plots show the CRP levels measured in mg/L and disease activity scores- 
ASDAS and BASDAI in men and women present in the cohort. Mean CRP level and disease activity 
scores are marked by the red dot in the plot. P-values were calculated using Wilcoxon rank sum test 
between the men and women. 
  

Disease activity CRP levels

ASDAS BASDAI
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6.2 Expression of disease susceptibility genes identified in 
GWAS  
 

To study the role of genes in the susceptibility loci reported by GWAS in immune 

diseases, we first asked whether these genes are expressed in immune cell populations from 

AxSpA patients. To this end, we designed a gene expression assay, the Autoimmune 

Discovery Consortium Panel, in collaboration with NanoString. For this panel, we selected 518 

genes associated in GWAS studies to 9 different autoimmune and autoinflammatory diseases: 

MS, RA, SLE, T1D, AS, Pso, CD, UC and IBD (Figure 21). These genes were selected after 

reviewing summary statistics of published GWA studies curated by Open Targets Genetics 

platform, previously maintained by the ImmunoBase (https://genetics.opentargets.org/). All 

the genes reported in these studies were the gene nearest to the disease-associated SNP 

identified in the GWAS.  We also included in the panel 237 genes related to immune 

responses, and 15 internal reference genes, for a total of 755 genes.  

 

 

 
 

Figure 21: Design of the NanoString Autoimmune Discovery Consortium Panel gene expression 
assay. Employing the nearest-gene concept, from reported genetic loci associated to 9 different 
immune-mediated diseases, we designed with NanoString a gene expression assay for 755 genes. 
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Using this panel, we performed gene expression analysis on whole blood samples and 

cell populations isolated from patients. The TruCulture assays from 25 patients at baseline 

were used to explore the expression pattern of genes associated to diseases in whole blood 

under innate and adaptive stimulation conditions as described by Duffy et al. (2014). (Table 
6). This tested the NanoString gene expression panel we designed to address our question.  

 
Table 6: Innate and Adaptive Immune Stimuli Used in TruCulture Assays 

 
Stimulus Concentration Supplier Sensor or 

Receptor 
Null (Æ) - NA - 

LPS-EB (hi) 10 ng/mL  TLR4 

Enterotoxin SEB 0.4 μg/mL Bernhard 
Nocht Institute TCR 

   
 

 
 

 From the overall gene expression data, we observed that 87% of the genes in the 

panel (n=658) were expressed in whole blood,  while the remaining 13% of the genes were 

below the background threshold. In particular, nearly 80% of the GWAS genes (n=409) were 

detected in whole blood (Figure 22). 
 

 

 
 
 
 

Figure 22: Proportion of genes detected in TruCulture whole blood assays using the new 
NanoString panel. Percentage of genes detected from the whole panel is depicted in a. The 
percentage of disease-associated genes detected out of the 518 genes included in the panel is showed 
in b. 
 
 
                Since nearly 80% of the genes associated with CIDs can be detected in blood 

samples, it implies that these genes are important in immune cell function. Therefore, 

it supports the hypothesis that dysregulation in the immune cell function plays an 

important role in disease mechanism. 

a. b. 
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6.2.1 Expression profile of GWAS genes in whole blood 
 

In line with observation in Figure 22, we asked whether the detected genes participate 

in the innate or the adaptive arm of the immune response. To address this question, we 

compared the expression pattern of GWAS genes in response to innate and adaptive stimuli 

in whole blood cultures from 25 AxSpA patients. We performed a principal component analysis 

(PCA) to assess the data structure. PCA is a dimensionality reduction method that simplifies 

the complexity in a data set while retaining trends and patterns in the data (Lever, Krzywinski, 

& Altman, 2017). As shown in Figure 23a, the main driving factor of the clusters in the PCA 

is the stimulus condition. The other variables, such as sex (Figure 23b) and HLA-B27 status 

(Figure 23c), did not have an observable effect on the clustering of the samples.  This analysis 

also demonstrated that there were no outliers, as the different stimulation groups defined 

homogeneous clusters. The maximum variance (PC1 = 58%) is attributed to cell activation 

versus non stimulated conditions (Null) (Figure 23a). 

 

 
 
 
 
Figure 23: Gene expression analysis of whole blood TruCulture assays. Principal component 
analysis (PCA) on the 25 SpA patients under (a.) LPS (red), SEB (blue) and Null (grey) stimulation 
conditions. In (b.) samples were coloured by sex and in (c.) by HLA-B27 status. Gene expression values 
are log2 transformed, centred to a mean value of zero and scaled to unit variance. 

 
By performing an unsupervised hierarchical clustering analysis, we observed that 

several disease-associated genes were modulated selectively by the innate stimulus (156 

genes) or the adaptive stimulus (133 genes) (Figure 24). We also observed a cluster of 70 

genes relatively upregulated in the unstimulated (Null) sample. This context-dependent 

induction following treatment with an innate stimulus (LPS) and adaptive stimulus (SEB) 

supports the involvement of the disease-associated genes in both innate and adaptive 

immune functions. Therefore, we wanted to investigate the potential role of disease-

associated genes in innate and adaptive immune cell populations- such as monocytes and T 

cells. 

LPS
SEB
Null

Female

Male
HLA-B27-

HLA-B27+

b. c. a. 
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Figure 24: Gene expression profile in whole blood cultures following innate and adaptive 
stimulation. Heat map representation generated by agglomerative hierarchical clustering of disease-
associated genes above background, after LPS (red) and SEB (blue) stimulation conditions, or left 
unstimulated (NULL in grey) from 25 SpA patients. In the heatmap, the columns represent patient 
samples and the rows represent genes. The group of genes upregulated by a stimulus marked by black 
dotted boxes. Gene expression values are log2 transformed, centred to a mean value of zero and scaled 
to unit variance. Bar to the left represents the scale for the level of gene expression- red indicates high 
levels of expression, light blue indicates low levels of expression and yellow indicates no relative change 
in the expression value. 

Figure: Gene expression profile in whole blood cultures following innate and adaptive stimulation.
Heat map representation generated by agglomerative hierarchical clustering of disease-associated
genes above background, after LPS (red) and SEB (blue) stimulation conditions, or left unstimulated
(NULL in grey) from 25 AS patients. In the heatmap, the columns represent patient samples and the
rows represent genes. The group of genes upregulated by a stimulus marked by black dotted boxes and
numbered. Gene expression values are log2 transformed, centred to a mean value of zero and scaled to
unit variance. Bar to the left represents the scale for the level of gene expression- red indicates high
levels of expression, light blue indicates low levels of expression and yellow indicates no relative
change in the expression value.

LPS
SEB
Null

1

3

2
4

5

Defined clusters:

1 & 2: Genes upregulated in the SEB stimulated group
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5: Genes upregulated in the NULL
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Ø Context-dependent induction following treatment with an innate stimulus (LPS) 
and adaptive stimulus (SEB) supports the involvement of the disease-associated 
genes in both innate and adaptive immune functions
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6.2.2 Expression pattern of disease-associated genes in innate and adaptive 
cell populations in patients 
 

To gain insight into the functional role of disease-associated genes in innate and 

adaptive immune responses, we performed a gene expression analysis in representative cell 

populations purified from AxSpA patients. We compared the gene expression patterns of the 

panel genes in CD4+ and CD8+ T cells and monocytes under resting and activated states. The 

initial data structure was demonstrated by conducting PCA in the three data set to determine 

the quality of the data for further analysis and to assess the extent to which the gene 

expression is affected by stimulation. 

 

6.2.2.1 Cell-type-specific gene expression analysis in T cells 
         

 PCA performed on the CD4+ T cell data indicated that the main factor driving gene 

expression variance was the stimulation condition, which contributed 71% of the variance 

(Figure 25a). We did not observe any significant effects from sex (Figure 25b) and HLA-B27 

status (Figure 25c) as presented in PCA plots below. 

 

 
 

Figure 25: Data structure of the gene expression data from CD4+ T cells. Principal component 
analysis (PCA) conducted in CD4+ T cell data set from 55 SpA patients. (a.) Data points coloured by 
stimulation conditions- TCR stimulation (16h) in dark blue and unstimulated in light blue. (b.) Data points 
coloured by sex of the patients- males in pink and females in sky blue (c.) Data points coloured by HLA-
B27 status of the patients- HLA-B27+ patients in blue and HLA-B27- patients in yellow. Gene expression 
data are log2 transformed, centred to a mean value of zero and scaled to unit variance.  
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We detected 618 genes (~82%) from the total 755 genes in the panel that were above 

the background threshold (Figure 26a). Nearly 70% of the genes that were above the 

background were disease-associated GWAS genes (Figure 26b). Hierarchical clustering 

analysis performed in the CD4+ T cell data grouped the data by stimulation (Figure 27). 57% 

of the genes we detected were upregulated after TCR activation in CD4+ T cells (Figure 27). 

 
 

 
 
Figure 26: Proportion of genes detected from the NanoString panel. Percentage of genes detected 
in the CD4+ T cell data is coloured in lime green. Genes that fall fellow background are in grey (a.). The 
percentage of disease-associated genes detected out of 618 genes is shown in (b.). 
 
 

 
 
Figure 27: Gene expression pattern in CD4+ T cells upon TCR activation. Heatmap shows the 
unsupervised clustering of genes (in rows) and samples (in columns). The samples are grouped by the 
stimulation condition: TCR stimulation (16h) in dark blue and the unstimulated  group in light blue. 
Genes with expression values below the background threshold were removed. Gene expression data 
are log2 transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left 
represents the scale for the level of gene expression- red indicates higher levels of expression, light 
blue indicates lower levels of expression and yellow indicates no relative change in the expression value 
 
 

Similarly, in the CD8+ T cell data, PCA shows that the stimulation condition is the main 

factor driving gene expression variance, with 65% of the variance captured by PC1 (Figure 
28a). We did not observe any significant effects from sex (Figure 28b) and HLA-B27 status 

(Figure 28c) as shown in the PCA plots below. 

Expression pattern of disease-associated genes in innate and adaptive cell
types : CD4+ T cells
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Principal component analysis on the CD8+ T cell data
Figure: Data structure of the gene expression data from CD4+ T cells. Principal component analysis
(PCA) conducted in CD4+ T cell data set from 55 SpA patients. (A.) Data points coloured by
stimulation conditions- TCR stimulation in dark blue and unstimulated in light blue. (B.) Data points
coloured by sex of the patients- males in pink and females in sky blue (C.) Data points coloured by
HLA-B27 status of the patients- HLA-B27 positive patients in blue and HLA-B27 negative patients in
yellow. Gene expression data are log2 transformed, centred to a mean value of zero and scaled to
unit variance.

Figure: Proportion of genes detected from the Nanostring panel. Percentage of genes detected in
the CD4+ T cell data is coloured in blue. Genes that fall fellow background is in grey.

a. b.

TCR stimulation
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Figure: Gene expression pattern in CD4+ T cells upon TCR activation. Heatmap shows the
unsupervised clustering of genes (in rows) and samples (in columns). The samples are grouped by
the stimulation condition- TCR stimulation in dark blue and the unstimulated group in light blue.
Genes with expression values below the background threshold were removed. Gene expression
data are log2 transformed, centred to a mean value of zero and scaled to unit variance. Bar to the
left represents the scale for the level of gene expression- red indicates higher levels of expression,
light blue indicates lower levels of expression and yellow indicates no relative change in the
expression value

IL-2 IL-4 IFNG

Figure: Expression of TCR stimulation induced genes in CD4+ T cells. Box plots show the
expression levels of genes in the unstimulated (NULL) and stimulated (TCR) CD4+ (in blue). Gene
expression data are log2 transformed. A paired T-test was performed between the two groups and
the corresponding p-value is indicated within the graph.
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Figure 28: Data structure of the gene expression data from CD8+ T cells. Principal component 
analysis (PCA) conducted in CD8+ T cell data set from 49 SpA patients. Data points coloured in (a.) by 
stimulation conditions- TCR stimulation (16h) in dark green and unstimulated in light green, (b.) by sex 
of the patients- males in pink and females in sky blue and (c.) by HLA-B27 status of the patients- HLA-
B27 positive patients in blue and HLA-B27 negative patients in yellow. Gene expression data are log2 
transformed, centred to a mean value of zero and scaled to unit variance 
 

624 genes (~83%) from the total 755 genes in the panel were above the background 

threshold (Figure 29a), and out of the 624 genes, 69% were specifically disease-associated 

genes (Figure 29b).  

 

 
 

Figure 29: Proportion of genes detected from the NanoString panel. Percentage of genes detected 
in the CD8+ T cell data is coloured in lime green. Genes that fall fellow background is in grey is shown 
in (a). The percentage of disease associated genes detected out of 624 genes is shown in (b.). 
 
 

We performed a hierarchical clustering analysis in the CD8+ T cell data, which grouped 

the samples by stimulation condition. 53% of the genes we detected in CD8+ T cells were 

induced after TCR activation (Figure 30). 
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Figure: Data structure of the gene expression data from CD8+ T cells. Principal component analysis
(PCA) conducted in CD8+ T cell data set from 49 SpA patients. Data points coloured in (A.) by
stimulation conditions- TCR stimulation in dark green and unstimulated in light green, (B.) by sex of
the patients- males in pink and females in sky blue and (C.) by HLA-B27 status of the patients- HLA-
B27 positive patients in blue and HLA-B27 negative patients in yellow. Gene expression data are log2
transformed, centred to a mean value of zero and scaled to unit variance.

Figure: Proportion of genes detected from the Nanostring panel. Percentage of genes detected in
the CD8+ T cell data is coloured in green. Genes that fall fellow background is in grey.

Expression pattern of disease-associated genes in innate and adaptive cell
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Figure 30: Gene expression pattern in CD8+ T cells upon TCR activation. Heatmap shows the 
unsupervised clustering in of genes (in rows) and samples (in columns). The samples clustered by the 
stimulation condition- TCR stimulation (16h) in dark green and the unstimulated  group in light green. 
Genes with expression values below the background threshold were removed. Gene expression data 
are log2 transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left 
represents the scale for the level of gene expression- red indicates higher levels of expression, light 
blue indicates lower levels of expression and yellow indicates no relative change in the expression value 
 

As a quality control for cell stimulation, we also checked the expression of cytokine 

genes in  unstimulated and activated T cells (Figure 31). Since most of the genes associated 

with disease were induced upon TCR activation (16h), they may have a potential role in 

regulating T cells function. 

 
 

 
Figure 31: Expression of TCR stimulation induced genes in T cells. Box plots show the expression 
levels of genes in the unstimulated (NULL) and stimulated for 16h (TCR) CD4+ (in blue) and CD8+ T-
cells (plots in green). Gene expression data are log2 transformed. A paired T-test was performed 
between the two groups and the corresponding p-value is indicated within the graph.  
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Figure: Gene expression pattern in CD8+ T cells upon TCR activation. Heatmap shows the
unsupervised clustering in of genes (in rows) and samples (in columns). The samples clustered by the
stimulation condition- TCR stimulation in dark green and the unstimulated group in light green. Genes
with expression values below the background threshold were removed. Gene expression data are log2
transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left represents the
scale for the level of gene expression- red indicates higher levels of expression, light blue indicates
lower levels of expression and yellow indicates no relative change in the expression value
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Figure: Expression of TCR stimulation induced genes in CD8+ T cells. Box plots show the
expression levels of genes in the unstimulated (NULL) and stimulated (TCR) CD8+ (in green). Gene
expression data are log2 transformed. A paired T-test was performed between the two groups and
the corresponding p-value is indicated within the graph.

Ø Most of the genes associated with diseases were induced upon TCR activation, suggesting
that they have a potential role in regulating T cells function

Ø Activation state of the cells could be important for disease-associated gene function
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6.2.2.2 Cell-type specific gene expression analysis in monocytes   
 

We performed a PCA in the monocyte dataset and observed that cell stimulation with 

LPS contributed the largest part of the variance (PC1 = 38%) (data not shown). However, for 

some donors (n=15), the separation between unstimulated and stimulated samples was not 

clear, possibly due to cell activation of the unstimulated samples during the preparation 

procedure. We explored this variability further in the following sections. We did not observe 

any significant effects from sex and HLA-B27 status (data not shown). After removing 

technical outliers from the data, we further analysed 30 samples. We observed that nearly 

87% of the genes from the panel were detected in this dataset as illustrated in the pie chart 

below (Figure 32a). The rest of the genes were below the background threshold.  67% of the 

genes that were above background were disease-associated genes (Figure 32b). 

 

 
 

Figure 32: Proportion of genes detected from the NanoString panel. Percentage of genes detected 
in the CD8+ T cell data is coloured in lime green. Genes that fall fellow background is in grey is shown 
in (a). The percentage of disease associated genes detected out of 657 genes is shown in (b). 
 

 
The hierarchical clustering performed on the rest of the 30 patients showed that the 

clustering is driven by the stimulation condition (Figure 33). To have an overview of the effect 

of the LPS stimulation, we analysed the levels of cytokine genes- IL1A, IL1B and IL6R, that 

are typically induced by LPS in monocytes as shown in boxplots in Figure 34. The difference 

in gene expression between stimulated and unstimulated group maintained the direction of 

the induction pattern with statistical significance (p < 0.05) (Figure 34). 
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Figure: Data structure of the gene expression data from monocytes. Principal
component analysis (PCA) conducted in CD14+ monocyte dataset from 45 SpA patients.
Data points are coloured (A.) by stimulation conditions- LPS stimulation in red and
unstimulated in light pink, (B.) by sex- males in pink and females in sky blue and (C.) by
HLA-B27 status of the patients- HLA-B27 positive in blue and HLA-B27 negative in
yellow. Gene expression data are log2 transformed, centred to a mean value of zero and
scaled to unit variance.

Figure: Proportion of genes detected from the Nanostring panel. Percentage of 
genes detected in the CD14+ monocytes is coloured in light pink. Percentage of genes 
that fall below background is in grey.

Expression pattern of disease-associated genes in innate and adaptive cell
types : Monocytes
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Figure 33: Gene expression pattern in revised monocyte data. Heatmap shows the unsupervised 
clustering in of genes (in rows) and samples (in columns). The samples coloured by the stimulation 
condition- LPS stimulation in red and the unstimulated group in light pink. The batch of the CD14 
magnetic beads are indicated in black and grey. Genes with expression values below the background 
threshold were removed. Gene expression data are log2 transformed, centred to a mean value of zero 
and scaled to unit variance. Bar to the left represents the scale for the level of gene expression- red 
indicates higher levels of expression, light blue indicates lower levels of expression and yellow indicates 
no relative change in the expression value 
 

 

 
 

Figure 34: Expression of LPS-induced cytokine genes in monocytes. Box plots show the 
expression levels of genes in the unstimulated (NULL) and stimulated (LPS) monocytes. Gene 
expression data are log2 transformed. A paired T-test was performed between the two groups and the 
corresponding p-value is indicated within the graph. 
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6.2.3 Analysis of disease-associated gene modules in isolated immune cell 
types from AS patients 
 
 

We characterised the expression pattern of disease-associated genes in CD4+, CD8+ 

T cells and monocytes isolated from patients with AS. Firstly, we identified which of the genes 

associated with ankylosing spondylitis and its extra-articular conditions like Pso and IBD are 

induced upon stimulation in monocytes and T cells. Then we conducted the same analysis for 

genes associated with other chronic inflammatory disorders, like T1D and MS, which are not 

associated with SpA. The number of genes assigned to each disease module is given in the 

table below (Table 7) and the number of overlapping genes between AS and other diseases 

are given in the Venn diagrams in Figure 35a & b. 

 
Table 7: Number of genes assigned per each disease module 

Chronic inflammatory disease Number of genes in the panel 
Ankylosing spondylitis 43 

Psoriasis 48 

Inflammatory bowel disease 253 

Type 1 Diabetes 36 

Multiple sclerosis 104 

 

 

 
Figure 35: Venn diagram showing the overlap in the number of genes in disease modules. The 
number of shared genes among AS and its extra-articular manifestations are shown in (a). The overlap 
of genes between AS and unrelated CIDs (T1D and MS) are shown in (b).  
  

a. b.
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6.2.3.1 Gene expression analysis of the ankylosing spondylitis associated gene 
module 
 

We detected expression of 36 genes out of the 43 genes present in the ankylosing 

spondylitis module in the stimulated purified cell populations. We did not observe a significant 

difference between the number of genes expressed between the different cell populations 

(Figure 36). Twenty-three of the genes were shared among T cells and monocytes. Only a 

few genes from the detected list were distinctive to a cell type, i.e., five genes were uniquely 

induced in monocytes, and another five were specific to T cells. Only one gene was uniquely 

induced in each CD4+ and CD8+ T cells. 

 

 
 

 
 
 

Figure 36: Profile of ankylosing spondylitis gene module. Upset plots indicate the number of genes 
detected in the three stimulated cell types. The bottom panel of the upset plots shows the number of 
genes detected in each cell type. The dots represent the cell types where the genes are detected. Line 
connecting the dots shows the number of genes shared between cell types. The bar plot on the top 
panel shows the number of genes shared among the cell types. The statistics from two-proportions test 
between the number of genes detected in monocytes and in T cells are shown below the figure. 
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Figure: Profile of ankylosing spondylitis gene module. Upset plots indicate the number of genes
induced in the three stimulated cell types. The bottom panel of the upset plots shows the number
of genes detected in each cell type. The bar plot on the top panel shows the number of genes
shared among the cell types. The test statistic between the number of genes detected between
monocytes and T cells are shown in the figure.
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shared among the cell types. The test statistic between the number of genes detected between
monocytes and T cells are shown in the figure.
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By performing unsupervised hierarchical clustering, we analysed the levels of the gene 

expression as shown in Figure 37, and we observed that the cell type primarily drives the 

clustering of the samples. The majority of the genes in the AS module had relatively higher 

expression in LPS-stimulated monocytes compared to the activated T cells (CD8+ T cells 

shown in the Figure 37). We observed a cluster of genes with higher expression in T cells 

consisting of transcription factor genes that are important for regulating T cell functions, such 

as, T-bet (TBX21) and RUNX3 (Figure 38). A study published in 2017 demonstrated that AS 

patients showed higher T-bet expression in NK and CD8+ T cells compared to healthy 

individuals (Lau et al., 2017). Another group evaluated the functional mechanism of RUNX3 

association with AS susceptibility (Evans et al., 2011), by exploring the allele-specific effects 

on transcription factor IRF4 recruitment and RUNX3 expression in primary CD8+ T cells from 

AS patients (Vecellio et al., 2016). We noted higher levels in CD8+ T cells of EOMES, which 

encodes an essential protein for the differentiation of effector CD8+ T cells as previously 

described (Pearce et al., 2003) (Figure 38). 

 

 
 
 

Figure 37: Expression of AS-linked gene module. Gene expression pattern of the disease module 
for AS in activated monocytes and CD8+ T cells is shown in the heatmap ordered by hierarchical 
clustering. Gene expression data are log2 transformed, centred to a mean value of zero and scaled to 
unit variance. Bar to the left represents the scale for the level of gene expression- red indicates higher 
levels of expression, light blue indicates lower levels of expression and yellow indicates no relative 
change in the expression value. 
 

Other genes with preferential expression in T cells included KIF21B, which encodes a 

kinesin-like protein involved in Golgi-to-ER retrograde transport, RAVER1 encoding a 

ribonucleoprotein, CDKAL1, a methylthiotransferase that controls the quality of protein 

translation, and TBKBP1, which encode an adaptor protein that binds to the NF-κB factors, as 
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seen in the heatmap in Figure 37. We also observed that aminopeptidases essential for 

peptide trimming during the generation of HLA class I-binding peptides were expressed in 

both monocytes and T cells, with higher expression of ERAP1 in monocytes (Figure 38) and 

of ERAP2  in T cells, respectively. 

 

 
 

Figure 38: Expression of AS module genes in activated monocytes and T cells. Box plots show 
the expression levels of genes in the LPS activated CD14+  monocytes (in red) and TCR stimulated 
CD4+ (T cells (dark blue) and CD8+ T-cells dark green). Gene expression data are log2 transformed. A 
non-parametric multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-
value is indicated within the graph. 
 
          TYK2 (tyrosine kinase 2), a gene associated with several CIDs is detected at higher levels 
in LPS activated monocytes than in activated T cells (Figure 38). Similarly, we saw that the 

interleukin-7 receptor (IL7R) was more expressed in monocytes following LPS stimulation, 
compared to stimulated T cells (Figure 38), which concurs with the findings from Al-Mossawi et al. 
(2019). Interleukin-7 (IL-7) is a crucial regulator of T-cell survival and proliferation, whose functional 

effects are controlled by the soluble form of the IL-7R which is induced in myeloid cells. Therefore, 
polymorphisms in the IL-7R could impact the interaction between IL-7 and IL-7R, and affect the 

downstream inflammatory response. 
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Figure: Expression of AS module genes in activated monocytes and T cells. Box plots
show the expression levels of genes in the LPS activated CD14+ monocytes (in red) and
TCR stimulated CD4+ (T cells (dark blue) and CD8+ T-cells dark green). Gene expression
data are log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis)
was performed and the corresponding p-value is indicated within the graph.
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6.2.3.2 Gene expression analysis of genes associated with AS-related diseases 
 

Inflammatory bowel disease 
 

Inflammatory Bowel Disease (IBD) is another extra-articular manifestation of 

ankylosing spondylitis (AS). 5 - 10% of AS cases are related to IBD; and there is an association 

between gut inflammation in AS and IBD (Rudwaleit & Baeten, 2006). Using the NanoString 

panel, we assessed the expression pattern of genes associated with IBD (Crohn’s disease 

and ulcerative colitis) in monocytes and T cells. We detected expression in immune cells of 

204 genes out of the 253 genes in the panel associated with IBD. 

 

 
 

Figure 39: Profile of IBD gene module. Upset plots indicate the number of genes induced among the 
three stimulated cell types. The bottom panel of the upset plots shows the number of genes detected 
in each cell type. The dots represent the cell types where the genes are detected. Line connecting the 
dots shows the number of genes shared between cell types. The bar plot on the top panel shows the 
number of genes shared among the cell types and the calculations are given below the figure. The 
statistics from two-proportions test between the number of genes detected in monocytes and in T cells 
are shown below the figure. 
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Figure: Profile of IBD gene module. Upset plots indicate the number of genes induced
among the three stimulated cell types. The bottom panel of the upset plots shows the
number of genes detected in each cell type. The bar plot on the top panel shows the number
of genes shared among the cell types.
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Expression of 174 genes was identified in CD4+ T cells, 163 genes in the CD8+ T cells 

and 159 genes in monocytes. Similar to AS and Pso, most genes (126) were shared among 

the three activated immune cell subsets (Figure 39). A set of 26 genes were uniquely 

expressed in monocytes. To visualize the levels of gene expression, we did a hierarchical 

clustering (Figure 40). We noted a stronger expression of IBD-associated genes in 

monocytes, which could be due to the fact that LPS is a stronger stimulation compared to the 

TCR activation. 

 

 
 

 
Figure 40: Expression of IBD gene module. Gene expression pattern of the disease module for IBD 
T1D in activated monocytes and CD8+ T cells is shown in the heatmap ordered by hierarchical 
clustering. Gene expression data are log2 transformed, centred to a mean value of zero and scaled to 
unit variance. Bar to the left represents the scale for the level of gene expression- red indicates higher 
levels of expression, light blue indicates lower levels of expression and yellow indicates no relative 
change in the expression value. 
 

We observed several upregulated IBD susceptibility genes in monocytes such as: 

pattern recognition receptor NOD2, pro-inflammatory cytokine genes like tumor necrosis factor 

superfamily 15 (TNFSF15) and genes of cytokine members of IL-6 family, such as Oncostatin 

M (OSM, Figure 41). NOD2 expression is restricted to monocytes, where it can drive the 

innate inflammatory responses by activating NF-κB and MAPK (mitogen-activated protein 

kinases) and caspase-1 pathways (Ogura et al., 2001).  
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TNFSF15 encodes the TNF superfamily cytokine, TL1A, which has been associated 

to IBD susceptibility by signalling through the death receptor 3 (DR3) and activating NF-κB to 

co-stimulate IFN-γ production in T cells (Prehn et al., 2007). Increased expression of TL1A 

was observed in monocytes and monocyte-derived DCs following bacterial stimulation. TL1A 

was shown to have a role in the inflammation of the gut mucosa and ileum, which is a 

prominent feature of active IBD (Bamias et al., 2003). However, an eQTL study in 2018 

demonstrated that reduced expression of TNFSF15 from peripheral blood monocytes is 

associated with IBD risk (Richard et al., 2018). The study showed that the protective allele for 

IBD at TNFSF15 was strongly associated with increased mRNA levels of TNFSF15 in 

monocytes in both IBD patients and healthy donors. High levels of oncostatin-M (OSM) were 

previously described in the inflamed intestinal mucosa of IBD patients. OSM is also a 

predictive factor for response to anti-TNF therapy in IBD (West et al., 2017) (see Figure 41).  
 

 

 
 

Figure 41: Expression of IBD module genes in activated monocytes and T cells. Box plots show 
the expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR stimulated 
CD4+ T cells (dark blue) and CD8+ T cells (dark green). Gene expression data are log2 transformed. A 
non-parametric multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-
value is indicated within the graph. 
 

 

Figure: Expression of IBD module genes in activated monocytes and T cells. Box
plots show the expression levels of genes in the LPS activated CD14+ monocytes (in

red) and TCR stimulated CD4+ T cells (dark blue) and CD8+ T cells (dark green). Gene

expression data are log2 transformed. A non-parametric multiple group comparison

(Kruskal-Wallis) was performed and the corresponding p-value is indicated within the

graph.
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Among the genes that were relatively increased in T cells were the proinflammatory 

cytokine gene IFNG, protein tyrosine phosphatase non-receptor type 22 (PTPN22) and 

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (Figure 41). IFNG was identified as a 

major cytokine in IBD pathogenesis (Langer et al., 2019). Prehn et al. previously reported that 

production of TNFSF15 from monocytes stimulated through FcγR induces IFNG in CD4+ T-

cells (Prehn et al., 2007). We noticed an increase in PTPN22 expression in activated T cells 

(Figure 41), which is a protein tyrosine phospahatase (PTP) that regulates T-cell activation 

and effector function (Brownlie, Zamoyska, & Salmond, 2018). PTPN22 also influences 

inflammatory signalling in lymphocytes by affecting cytokine secretion and autophagy, which 

is an essential pathway for clearing out the invading pathogens. In IBD, protein tyrosine 

phosphatases (PTPs) also have a role in controlling the intestinal epithelial barrier function. 

Therefore, dysfunction of PTPs can lead to exaggerated immune responses and consequent 

chronic intestinal inflammation featured in IBD (Spalinger et al., 2015).  

 

We observed high expression levels of CTLA4 in CD4+ and CD8+ T cells (Figure 41).  

In IBD patients, CTLA4 was shown to have an essential role in Treg suppressive function during 

intestinal inflammation (Read et al., 2006). It is possible that SNPs in CTLA4 may disrupt the 

regulatory T cell function and exacerbate IBD-associated colitis. 

 

 
 
Psoriasis 
 

Psoriasis (Pso) is one of the extra-articular manifestations of ankylosing spondylitis 

(AS). 5-25% psoriasis cases go on to develop AS and SpA-associated inflammatory spinal 

disease (Machado et al., 2013). In our expression data, we detected 37 genes from the 48 

genes assigned to Pso from the panel. We observed that similar to AS, the Pso genes (30) 

were shared genes among the three cell types (Figure 42). The hierarchical clustering 

revealed genes affected by both LPS stimulation in monocytes and TCR-activation in T cells 

(Figure 43). 
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Figure 42: Profile of psoriasis gene module. Upset plots indicate the number of genes induced in 
the three stimulated cell types. The bottom panel of the upset plots shows the number of genes detected 
in each cell type. The dots represent the cell types where the genes are detected. Line connecting the 
dots shows the number of genes shared between cell types. The bar plot on the top panel shows the 
number of genes shared among the cell types. The statistics from two-proportions test between the 
number of genes detected in monocytes and in T cells are shown below the figure. 
 
 

           We observed upregulated levels of transcription factor genes like IRF4 in T cells 

(Figure 44). We also saw that monocytes had relatively higher expression of TRAF3IP2, 

which encodes for an adaptor protein involved in the induction of IL-17-dependent 

inflammatory responses (Qian et al., 2007). This observation supports our previous findings 

from the analysis in AS module that the disease-associated genes suggest a role for the 

interaction between innate and adaptive cells in disease pathogenesis. 
 

Gene expression analysis of genes associated with AS-related diseases

Psoriasis

Figure: Profile of psoriasis gene module. Upset plots indicate the number of genes induced in
the three stimulated cell types. The bottom panel of the upset plots shows the number of genes
detected in each cell type. The bar plot on the top panel shows the number of genes shared
among the cell types. The test statistic between the number of genes detected between
monocytes and T cells are shown in the figure.
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Figure 43: Expression of psoriasis gene module. Gene expression pattern of the disease module 
for Pso in activated monocytes and CD8+ T cells is shown in the heatmap ordered by hierarchical 
clustering. Gene expression data are log2 transformed, centred to a mean value of zero and scaled to 
unit variance. Bar to the left represents the scale for the level of gene expression- red indicates higher 
levels of expression, light blue indicates lower levels of expression and yellow indicates no relative 
change in the expression value. 
 
 
 

 
Figure 44: Expression of Pso module genes in activated monocytes and T cells. Box plots show 
the expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR stimulated 
CD4+ T cells (dark blue) and CD8+ T cells (dark green). Gene expression data are log2 transformed. A 
non-parametric multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-
value is indicated within the graph. 
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Figure: Expression of Pso module genes in activated monocytes and T cells. Box
plots show the expression levels of genes in the LPS activated CD14+ monocytes (in

red) and TCR stimulated CD4+ T cells (dark blue) and CD8+ T cells (dark green). Gene

expression data are log2 transformed. A non-parametric multiple group comparison

(Kruskal-Wallis) was performed and the corresponding p-value is indicated within the

graph.
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6.2.3.3 Gene expression analysis of genes associated with other CIDs 
 
Type 1 Diabetes 
 

Type 1 Diabetes (T1D) is a chronic metabolic disorder with autoimmune destruction of 

pancreatic islet beta cells that produce insulin. We investigated the disease gene module (36 

genes) from T1D to compare the expression pattern of genes from unrelated inflammatory 

and autoimmune diseases to that of AS-associated genes. The UpSet analysis showed that 

nearly all of the genes were expressed in CD4+ T cells (34 genes) and CD8+ T cells (33 genes), 

and we noted 25 genes that were detected in monocytes (Figure 45 & 46).  

 
Figure 45: Profile of T1D gene module. Upset plots indicate the number of genes induced in three 
stimulated cell types. The bottom panel of the upset plots shows the number of genes detected in each 
cell type. The dots represent the cell types where the genes are detected. Line connecting the dots 
shows the number of genes shared between cell types. The bar plot on the top panel shows the number 
of genes shared among the cell types and the calculations are given below the figure. The statistics 
from two-proportions test between the number of genes detected in monocytes and in T cells are shown 
below the figure. 
 

Among the genes with higher expression in monocytes we observed IL10, an adaptor 

protein that encodes for phosphatase for JAK2 (SH2B3) and NRP1 (Neuropilin-1), which 

codes for a peptide that is highly linked to diabetic neuropathy (Bondeva & Wolf, 2015) (Figure 

Gene expression analysis of genes associated with other chronic
inflammatory diseases

Figure: Profile of T1D gene module. Upset plots indicate the number of genes induced in
three stimulated cell types. The bottom panel of the upset plots shows the number of genes
detected in each cell type. The bar plot on the top panel shows the number of genes shared
among the cell types.

Type 1 Diabetes

Ø 44 genes totally in T1D module- detected 36 above background across the 3
cell types

Ø No significant difference between monocytes and T cells

2-sample test for equality of proportions 
with continuity correction

data:  c(25, 34) out of c(44, 44)
X-squared = 3.2916, df = 1, p-value = 0.06963
alternative hypothesis: two.sided
95 percent confidence interval:
-0.418984102  0.009893193
sample estimates:

prop 1    prop 2 
0.5681818 0.7727273

2-sample test for equality of proportions with
continuity correction

data:  c(25, 33) out of c(44, 44)
X-squared = 2.4782, df = 1, p-value = 0.1154
alternative hypothesis: two.sided
95 percent confidence interval:
-0.39894314  0.03530677
sample estimates:

prop 1    prop 2 
0.5681818 0.7500000 
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47). CD14+ CD16+ monocytes from peripheral blood have been reported to produce cytokine 

IL-10 upon activation (Skrzeczyńska-Moncznik et al., 2008). However, in the context of T1D, 

a recent study showed that type I interferons selectively inhibit IL-10 signalling in effector T-

cells in T1D (Iglesias et al., 2018). 

 
 

 
 

Figure 46: Expression of T1D associated gene module. Gene expression pattern of the disease 
module  for T1D in activated monocytes and CD4+ T cells is shown in the heatmap ordered by 
hierarchical clustering. Gene expression data are log2 transformed, centred to a mean value of zero 
and scaled to unit variance. Bar to the left represents the scale for the level of gene expression- red 
indicates higher levels of expression, light blue indicates lower levels of expression and yellow indicates 
no relative change in the expression value. 
 
 

 
Figure 47: Expression of T1D module genes in activated monocytes. Box plots show the 
expression levels of genes in the LPS activated CD14+  monocytes (in red) and TCR stimulated CD4+ 
T cells (dark blue) and CD8+ T-cells (dark green). Gene expression data are log2 transformed. A non-
parametric multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value 
is indicated within the graph.  
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Figure: Expression of T1D module genes in activated monocytes. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells (dark green). Gene expression data
are log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.

Figure: Expression of T1D module genes in activated T cells. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells dark green). Gene expression data are
log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.
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Among the genes with higher expression in T cells was the ORMDL Sphingolipid 

Biosynthesis Regulator 3 (ORMDL3), a crucial regulator of ER-stress and UPR through 

activation of the transcription factor 6 (ATF6) (Figure 48). Dysfunction in this gene is shown 

to affect the function of pancreatic beta-cells and the development of insulin resistance in T1D 

(Eizirik DL et al., 2008). TAGAP, a member of the Rho GTPase-activator superfamily, was 

reported to be upregulated in activated CD4+ and CD8+ T cells (Schmiedel B et al. 2018). 

TAGAP is also associated with RA susceptibility, however, its biological function and 

relevance are not understood well in either T1D or RA.  

 

 

 
 
Figure 48: Expression of T1D module genes in activated T cells. Box plots show the expression 
levels of genes in the LPS activated CD14+  monocytes (in red) and TCR stimulated CD4+ T cells (dark 
blue) and CD8+ T-cells dark green). Gene expression data are log2 transformed. A non-parametric 
multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value is indicated 
within the graph.  
 
 
Multiple Sclerosis 
 

Multiple sclerosis (MS) is a common autoimmune disease that targets myelin in the 

central nervous system (CNS). The expression of genes in the MS gene module was analysed 

in activated monocytes and T cells. We detected 90 genes from the 104 genes of the module: 

86% of these were expressed in CD4+ (79 genes) and CD8+ T cells (77 genes). We detected 

62 genes in the activated monocytes (Figure 49). The overall gene signature shows that a 

large number of MS-associated genes could be of functional relevance in T cells. 

 
 

 

Figure: Expression of T1D module genes in activated monocytes. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells (dark green). Gene expression data
are log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.

Figure: Expression of T1D module genes in activated T cells. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells dark green). Gene expression data are
log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.
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Figure 49: Profile of MS gene module. Upset plots indicate the number of genes induced in three 
stimulated cell types. The bottom panel of the upset plots shows the number of genes detected in each 
cell type. The dots represent the cell types where the genes are detected. Line connecting the dots 
shows the number of genes shared between cell types. The bar plot on the top panel shows the number 
of genes shared among the cell types and the calculations are given below the figure. The statistics 
from two-proportions test between the number of genes detected in monocytes and in T cells are shown 
below the figure. 
 
 

Hierarchical clustering analysis performed on the MS-module gene set indicates that 

there are cell type-specific gene clusters (Figure 50). Genes that encode for TNF-receptor 

superfamily (CD40), NF-κB inhibitor Zeta (NFKBIZ) and members of the glycosyl hydrolase 2 

family, Mannosidase beta (MANBA), were upregulated in the activated monocytes (Figure 
51). CD40 is constitutively expressed in B-cells and DCs. However, CD40 was also expressed 

in T cells, monocytes and macrophages upon cell activation (Aarts et al., 2017). NFKBIZ 

encodes for IκBζ, which is a repressor of NF-κB signalling and may influence IL6 production 

and Th17 differentiation. MANBA encodes a glycosyl hydrolase localised to the lysosome. The 

MANBA gene is located adjacent to the NFKB1 gene, which may also be influenced by SNP 

in the MANBA locus (Hussman et al., 2016). 

Gene expression analysis of genes associated with other chronic
inflammatory diseases

Figure: Profile of MS gene module. Upset plots indicate the number of genes induced in three
stimulated cell types. The bottom panel of the upset plots shows the number of genes detected
in each cell type. The bar plot on the top panel shows the number of genes shared among the
cell types.

Multiple Sclerosis

Ø 104 genes totally in MS module- detected 90 above background across the 3 cell
types

Ø Difference is significant between the genes detected in monocytes and T cells

2-sample test for equality of proportions 
with continuity correction

data:  c(62, 79) out of c(104, 104)
X-squared = 5.6365, df = 1, p-value = 0.01759
alternative hypothesis: two.sided
95 percent confidence interval:
-0.29812684 -0.02879624
sample estimates:

prop 1    prop 2 
0.5961538 0.7596154

2-sample test for equality of proportions with
continuity correction

data:  c(62, 77) out of c(104, 104)
X-squared = 4.2507, df = 1, p-value = 0.03924
alternative hypothesis: two.sided
95 percent confidence interval:
-0.280308187 -0.008153351
sample estimates:

prop 1    prop 2 
0.5961538 0.7403846
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Figure 50: Expression of MS associated gene module. Gene expression pattern of the disease 
module  for MS in activated monocytes and CD8+ T cells is shown in the heatmap ordered by 
hierarchical clustering. Gene expression data are log2 transformed, centred to a mean value of zero 
and scaled to unit variance. Bar to the left represents the scale for the level of gene expression- red 
indicates higher levels of expression, light blue indicates lower levels of expression and yellow indicates 
no relative change in the expression value. 
 

 
Figure 51: Expression of MS module genes in activated monocytes. Box plots show the expression 
levels of genes in the LPS activated CD14+  monocytes (in red) and TCR stimulated CD4+ T cells (dark 
blue) and CD8+ T-cells (dark green). Gene expression data are log2 transformed. A non-parametric 
multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value is indicated 
within the graph.  
 

Among the genes with higher expression in T cells were: SOX8, a transcription factor 

essential for neural crest development (International Multiple Sclerosis Genetics Consortium, 

2013), and RGS14, a scaffolding protein that integrates G protein and Ras/ERK/MAP kinase 

signalling pathways implicated in controlling synaptic plasticity (Lee SE et al., 2010) (Figure 
52). TNFSF14 is another member of the tumor necrosis factor (TNF) ligand family, that can 

act as a costimulatory signal that activates the NF-KB pathway to induce pro-inflammatory 

cytokine genes (Cheung TC et al., 2009).  
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Figure: Expression of MS module genes in activated monocytes. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells (dark green). Gene expression data
are log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.

Figure: Expression of MS module genes in activated T cells. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells dark green). Gene expression data are
log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.
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Figure 52: Expression of MS module genes in activated T cells. Box plots show the expression 
levels of genes in the LPS activated CD14+  monocytes (in red) and TCR stimulated CD4+ T cells (dark 
blue) and CD8+ T-cells dark green). Gene expression data are log2 transformed. A non-parametric 
multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value is indicated 
within the graph.  
 
 

The UpSet analysis and the detected gene expression patterns support the notion that 

both the adaptive and innate arms of the immune system are involved in orchestrating the 

immune response in chronic inflammatory conditions. We observed no significant difference 

in the numbers of genes expressed in T cells and in monocytes in the case of genes 

associated with AS (p-value = 1), and its extra-articular manifestations. We observed a trend 

for genes associated with T1D and MS towards larger expression in T cells than in monocytes 

(p values = 0.069 for T1D and 0.017 for MS), suggesting an important involvement of T cell 

populations in these diseases as discussed it is discussed in the literature.  

 

This analysis demonstrated that the expression pattern of GWAS-genes is cell-type-

dependent. Therefore, to understand the functional role of disease susceptibility genes, it is 

crucial to characterise them in the appropriate cell type and possibly in the appropriate 

activation state, as the polymorphisms reported in these genes, therefore may conditionally 

alter gene function and the subsequent immune response. 

 

  

Figure: Expression of MS module genes in activated monocytes. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells (dark green). Gene expression data
are log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.

Figure: Expression of MS module genes in activated T cells. Box plots show the
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR
stimulated CD4+ T cells (dark blue) and CD8+ T-cells dark green). Gene expression data are
log2 transformed. A non-parametric multiple group comparison (Kruskal-Wallis) was
performed and the corresponding p-value is indicated within the graph.
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6.2.4 Genes of the IL-23/IL-17 axis in chronic inflammatory diseases 
 

From genetic association studies, we observed a substantial overlap among the 

susceptibility genes for AS, Pso and IBD, suggesting the involvement of common pathways in 

these diseases. The IL-23/IL-17 axis and Th17-mediated inflammation have been strongly 

implicated in the pathogenic mechanisms of these diseases by several clinical, experimental 

and genetic studies (Gaffen et al., 2014; Schön & Erpenbeck, 2018; Sieper, Poddubnyy, & 

Miossec, 2019). However, the immune cells in which these genes function in the context of 

chronic inflammatory diseases are not fully understood. Using our NanoString panel we also 

explored the expression pattern of the genes in the IL-23/IL-17 pathway that were identified 

as disease-associated through GWAS (Figure 53). Gene sets were obtained from the 

molecular signature database (MSigDB) for the IL-17 signalling pathway (standard name: 

BIOCARTA_IL17_PATHWAY; systematic name: M19422) and for the IL-23 signalling 

pathway (standard name: PID_IL23_PATHWAY; systematic name: M196). 

 

 
 

Figure 53: Expression of genes from IL-23/IL-17 pathway in activated innate and adaptive 
immune cells. Gene expression pattern of genes from the IL-23/IL-17 pathway implicated in AS, Pso 
and IBD pathogenesis is shown in the heatmap ordered by hierarchical clustering. Gene expression 
data are log2 transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left 
represents the scale for the level of gene expression- red indicates higher levels of expression, light 
blue indicates lower levels of expression and yellow indicates no relative change in the expression 
value. 
 

Genes of the IL-23/IL-17 axis in chronic inflammatory diseases

Figure: Expression of genes from IL-23/Th17 pathway in activated innate and adaptive
immune cells. Gene expression pattern of genes from the IL-23/IL-17 pathway
implicated in AS, Pso and IBD pathogenesis is shown in the heatmap ordered by
hierarchical clustering. Gene expression data are log2 transformed, centred to a mean
value of zero and scaled to unit variance. Bar to the left represents the scale for the
level of gene expression- red indicates higher levels of expression, light blue indicates
lower levels of expression and yellow indicates no relative change in the expression
value.

Ø The importance of IL-23/IL-17 axis is discussed in the pathophysiology of 
AS and its related disorders

Ø We observed that the genes of this pathway are induced in stimulated 
innate and adaptive T cells- suggesting an interplay between in the AS 
pathology
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Figure 54: IL-23/IL-17 pathway genes in activated monocytes and T cells. Box plots show the 
expression levels of genes in the LPS activated CD14+ monocytes (in red) and TCR stimulated CD4+ T 
cells (dark blue) and CD8+ T cells (dark green). Gene expression data are log2 transformed. A non-
parametric multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value 
is indicated within the graph. 
 

We noted that genes involved in Th17 cells and adaptive immunity induction, such as  

TYK2 was expressed in activated monocytes (Figure 54). Role of TYK2 in IL-12-mediated 

pathogenic IFNγ production and IL-23-induced pathogenic IL-17A production was previously 

shown by Ishizaki et al. (2011) in Tyk-/- mice models (Ishizaki et al., 2011). We observed the 

cytokine genes that are crucial in mediating Th17 response- IL17A and IL17F genes were 

expressed mainly in activated CD4+ T cells (Figure 54). 
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6.2.5 Expression pattern of CID associated genes in innate and adaptive 
immune cell subsets from healthy donors 
 
 

Given the cell type-specific gene expression pattern we observed in patients with an 

inflammatory disease background, we enquired whether the CID-associated genes show a 

similar expression pattern in healthy controls. We wanted to understand whether the 

expression of CID-associated genes is influenced by the inflammatory environment observed 

in patients with AxSpA. We isolated representative cell populations of the innate immune 

system (CD56+ NK cells and CD14+ monocytes, and adaptive system (CD4+ and CD8+ T cells) 

from healthy controls (n=3). We also included the innate-like γδT cells. We noted that the main 

factor driving gene expression variance was the cell type (PC1= 52%) (Figure 55). 

 

 
 

Figure 55: Structure of the gene expression data from innate and adaptive cell populations from 
healthy donors. Principal component analysis (PCA) conducted in 5 cell populations from 3 healthy 
controls. Data points are coloured (a.) by cell type as indicated in the key on the left, (b.) by stimulation- 
IL-18 stimulation (20h) in dark blue, IL-2+TCR stimulation (6 days) in light blue and LPS stimulation 
(20h) in red. Gene expression data are log2 transformed, centred to a mean value of zero and scaled 
to unit variance 
 

 

We observed that nearly 89% of the genes (671) in our panel was above the 

background threshold. Hierarchical clustering analysis showed a higher expression of a large 

number of genes in monocytes stimulated with LPS (Figure 56a). From these 671 genes, 453 

were CID- associated genes, that showed cell-type-specific gene induction. We noted a group 

of genes that are expressed in relatively higher levels specifically in LPS-activated monocytes 

compared to the other activated cell populations. We performed a multi group comparison to 

across the five cell types, and observed 298 differentially expressed genes (p< 0.006, FDR = 

1%) (Figure 56a). Several CID-linked genes were expressed at relatively higher levels in the 

innate cell populations- LPS-activated monocytes and then in IL-18 activated NK cells. 
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Figure 56: Differential gene expression analysis in disease-associated gene expression analysis 
in activated innate and adaptive immune cells. (a.) Heatmap shows the hierarchical clustering of 
differentially expressed genes (in rows) and samples (in columns) across five cell populations are 
shown, with a p-value = 0.006 and FDR at 1%. The cell type and stimulation conditions are indicated in 
the key on the left. condition- TCR stimulation (16h) in dark green and the unstimulated  group in light 
green. Genes with expression values below the background threshold were removed. Gene expression 
data are log2 transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left 
represents the scale for the level of gene expression- red indicates higher levels of expression, light 
blue indicates lower levels of expression and yellow indicates no relative change in the expression 
value. (b.) Plots showing levels of differentially expressed genes in cell populations. A non-parametric 
multiple group comparison (Kruskal-Wallis) was performed and the corresponding p-value is indicated 
within the graph. 
 

We saw a distinct gene expression pattern for disease-associated genes in innate and 

adaptive immune cells. For example, susceptibility genes for CD were expressed at higher 

levels in the innate immune cells, such as MYRF (myelin regulatory factor) (Liu et al., 2015) 

in activated NK cells, and the NFκB subunit RELA (Liu et al., 2015; Ellinghaus et al., 2016) in 

LPS-activated monocytes (Figure 56b). We observed the C-C chemokine receptor 4 (CCR4) 

associated to MS (Beecham et al., 2013; Patsopoulos et al., 2019), expressed at higher levels 

in the activated T cells subsets compared to activated monocytes and activated NK cells 

(Figure 56b). Tyrosine kinase 2 (TYK2) (Figure 56b)- a GWAS gene linked to susceptibility 

of multiple CIDs was induced in both innate an adaptive cell populations, concordant with the 

observation from AS patient-derived cell type data (see Figure 38).  
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6.2.5.1 Ankylosing spondylitis susceptibility genes in innate and adaptive cell subsets 
 

We analysed the expression signature in innate and adaptive cell subsets of genes in 

the 43 loci associated to AS. There was an overall enrichment of susceptibility genes in 

activated monocytes and NK cells, compared to activated T cells as seen in the hierarchical 

clustering analysis in Figure 57a. The associated genes are differentially expressed across 

the cell types, for e.g., EOMES, RUNX3, IL7R and Prostaglandin E2 receptor EP4 subtype 

(PTGER4), are upregulated in NK and monocytes and downregulated in the T cells (p<0.05) 

(Figure 57b), consistently with the signature observed in the hierarchical clustering. 

 

 
Figure 57: Expression of AS-linked gene module in healthy donor cells. (a.) Gene expression 
pattern of 37 detected genes from the disease module for AS in activated monocytes, NK cells, CD4+ 
T cells, CD8+ T cells and γδT cells ordered by hierarchical clustering. Gene expression data are log2 
transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left represents the 
scale for the level of gene expression- red indicates higher levels of expression, light blue indicates 
lower levels of expression and yellow indicates no relative change in the expression value. (b.) Levels 
of genes associated to AS across the five stimulated cell types. A non-parametric multiple group 
comparison (Kruskal-Wallis) was performed and the corresponding p-value is indicated within the 
graph. 
 

The expression pattern of AS module genes in NK cells and monocytes suggest that 

these genes might have a role in the innate immune response. Interestingly, we observed that 

anti-TNF therapy in AxSpA has a more pronounced impact on the innate immunity pathways 

than the Th1/Th17 immune responses (Menegatti et al, in revision). Innate immune cells act as 

the “first responders” during an inflammatory event. Therefore, the stronger expression of the 

susceptibility genes in innate cells could imply that these genes are important in orchestrating 

the innate immunity signature in AxSpA. 

Expression pattern of AS associated genes in immune cell subsets from 
healthy donors

Cell type

IL-2 + TCR
LPS

IL-18

gdT cells

CD8+ T cells

CD4+ T cells
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6.2.5.2 IL-23/IL-17 axis genes in innate and adaptive immune cells in healthy donors 
 

We studied the expression of genes of the IL-23/IL-17 pathway in the healthy donor 

cell type data. Gene set was obtained from the molecular signature database (MSigDB) for 

the IL-17 signalling pathway and for the IL-23 signalling pathway. Although the IL-23/IL-17 

pathway genes implicate the involvement of Th17 immunity, we observed that most of these 

genes are also induced in the innate immune cells: activated monocytes and NK cells, 

indicating that they are implicated in additional pathways, besides Th17 cell induction (Figure 
58). 

 

 
 

Figure 58: Expression of genes from IL-23/IL-17 pathway in activated innate and adaptive 
immune cells from healthy controls. Gene expression pattern of genes from the IL-23/IL-17 pathway 
implicated in AS, Pso and IBD pathogenesis is shown in the heatmap ordered by hierarchical clustering. 
Gene expression data are log2 transformed, centred to a mean value of zero and scaled to unit variance. 
Bar to the left represents the scale for the level of gene expression- red indicates higher levels of 
expression, light blue indicates lower levels of expression and yellow indicates no relative change in 
the expression value. 
 
 
 

Cytokine genes like IL17A and IL17F were not detected in stimulated cells from healthy 

donors. However, we observed that these genes were upregulated in activated CD4+ T cells from 
AxSpA patients (Figure 54). The context-specific induction of IL-23/IL-17 pathway associated 

genes in innate immune cells could be essential to initiate the Th17-mediated response by the 
adaptive immune cells. 
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6.2.5.3 Expression of disease associated genes in MAIT cells from healthy donors 
 

We also analysed the expression pattern of susceptibility genes associated to AS in 

MAIT cells from healthy donors. The isolated MAIT cells were activated with a combination of 

cytokines (IL-2 (20U/mL) + IL-1β (10ng/mL) + IL-23 (10ng/mL) and the tetramer MR1/5-OPRU 

(0.2nM, NIH Tetramer Core Facility). Most of the genes were below the background or 

detected at very low levels. However, genes such as TNFRSF1A, IL7R and ERAP2 were 

relatively higher in resting MAIT cells (Figure 59a), while IL23R was expressed upon cell 

stimulation. Similarly, genes associated to Pso (Figure 59b)  and IBD (Figure 59c) showed 

elevated levels in resting MAITs. The observed gene induction pattern may suggest that the 

conditions in which MAIT cells were cultured did not reflect the physiological setting observed 

in patients that is required to trigger these genes. 
 

 
Figure 59: Expression of disease associated genes module in MAIT cells from healthy donors. 
(a.) Gene expression pattern of detected genes associated to (a.) ankylosing spondylitis, (b.) psoriasis 
and (c.) IBD, in MAIT cells ordered by hierarchical clustering. Gene expression data are log2 
transformed, centred to a mean value of zero and scaled to unit variance. Bar to the left represents the 
scale for the level of gene expression- red indicates higher levels of expression, light blue indicates 
lower levels of expression and yellow indicates no relative change in the expression value. 
 
 

The expression pattern of CID-associated genes in immune cells in AxSpA patients 

and healthy controls implies a functional role for these genes in the immune system. The 

associated genes we studied are the nearest genes with respect to a disease-associated 

variants. Therefore, we wanted to explore if the susceptibility variants had a role in regulating 

the nearest genes, using the cell-type-specificity of the genes. To answer this question, we 

performed an expression-quantitative trait locus (eQTL) mapping study, between the SNP 

genotype data from patients and the corresponding cell type gene expression data. With this 

approach, we wanted to identify SNPs that affected the expression levels of the genes in the 

susceptibility locus in immune cell types.  
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6.3 eQTL analysis in immune cell populations 

 
To address the second question in the Part I of this project, to identify whether variants 

associated to CIDs affect the nearest genes in the susceptibility loci, we performed an eQTL 

mapping in the T cell data. It was shown that context-dependent eQTLs that affect eGenes 

can help in prioritising putative causal genes and SNPs (Zhernakova et al., 2017). Therefore 

to elaborate the potential role of SNPs in regulating genes in the susceptibility loci, we 

performed an eQTL analysis. The eQTL analysis was performed using gene expression data 

from CD4+ and CD8+ T cells purified from AxSpA patients. The genotyping data of the SNPs 

from the Illumina Infinium Global Screening Array was included. However, the genotyping 

array did not include all the SNPs associated with AS. To overcome this shortcoming, we first 

assessed the genomic loci associated with AS, and imputed the missing SNPs in close 

proximity with these loci to yield a set of 68442 SNPs for further analysis. Based on the 

positions of both genes and polymorphisms, we carried out the analysis by separating cis-

effects (i.e., <250 kb) and trans-effects (i.e., >250 kb). The analysis was conducted in resting 

and activated cell data separately, and detected several significant cis- associations. Trans-

eQTL analysis did not yield significant results. We observed that the majority of the cis-hits 

detected in the data were in resting cell data as given below (Table 8). 

 
Table 8: The number of detected cis-eQTLs from the T cell data 

 CD4+ T cells CD8+ T cells 

eGene Resting Activated Resting Activated 

FADS2 52 13 4 3 

CTSW 15 - 12 1 

 

 
6.3.1 Cis-eQTL analysis in resting and activated CD4+ T cells 
 

We observed 67 cis-eQTLs in the unstimulated dataset that correlated with the 

expression of the eQTL-genes (eGenes) FADS2 (fatty acid desaturase 2) and CTSW  

(cathepsin W), located on chromosome 11. The top significant cis-eQTL hits are shown in the 

Manhattan plot in Figure 60a, and the top 10 significant hits are listed in Table 9 along with 

the test statistic (z-score >5) and adjusted p-values (<0.05). The eQTL effect of two of the top 

significant hits on the expression of eGenes from the resting CD4+ T cells data is shown in the 

boxplots in Figure 60b. 
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The majority of the individuals have the alternative allele (G) for rs658524 (allele 

frequency of 0.81 in the European population, from the 1000 Genome (Auton et al., 2015), 

which is correlated with high expression of CTSW in resting CD4+ T cells. The eQTL SNP 

rs968567 has an allele frequency of 0.85 for the reference allele (“C”) in the European 

population (1000 Genomes), which is correlated with reduced levels of FADS2. 

 
Table 9: The number of detected cis-eQTLs in the resting CD4+ T cell data 

SNPs Position (hg19) eGene Test statistic Adjusted p-value 
rs968567 61595564 FADS2 8.816 0.0001305 
rs61897793 61599347 FADS2 8.816 0.0001305 
rs658524 65647260 CTSW 8.612 0.0001305 
rs10791830 65661291 CTSW -8.415 0.0001305 
rs7943728 61547068 FADS2 8.368 0.0001305 
rs61896141 61556039 FADS2 8.368 0.0001305 
rs693824 65654783 CTSW -8.177 0.0001305 
rs2308217 65655259 CTSW 8.177 0.0001305 
rs641018 65655393 CTSW -8.177 0.0001305 
rs656980 65656282 CTSW -8.177 0.0001305 

 

 

 
Figure 60: cis-eQTLs identified from resting CD4+ T cells. (a) Manhattan plot showing the significant 
cis-eQTL hits. The x-axis shows all the chromosomes and the coloured dots denote the SNPs tested. 
The horizontal lines on the graph (dotted and dashed) represent the adjusted-P < 0.05 and adjusted-P 
< 0.1.(b.) Box plots showing the levels of eGene expression for CTSW and FADS2. The normalised 
gene expression (log2 transformed counts) is on the y-axis and the SNP genotype group is on the x-
axis.  
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In the TCR-activated data set, we observed only 13 significant cis-eQTLs, which 

correlated with the expression of only one eGene - FADS2. Table 10 shows the SNPs linked 

to FADS2 expression with the position of the SNP and the corresponding test statistic and p-

value. The SNPs detected above the level of significance threshold are indicated in the 

Manhattan plot in Figure 61a.  The reference allele of SNP rs174534 (A) (frequency of 0.65 

in the European population, 1000 Genomes) correlated with lower expression levels of FADS2 

(Figure 61b). A similar pattern in the direction of the allelic effect was observed for rs968567, 

as shown in the box plot in Figure 61b. 

 
Table 10: The number of detected cis-eQTLs in the TCR-stimulated CD4+ T cell data 
 

SNPs Position (hg19) eGene Test statistic Adjusted p-value 
rs968567 61595564 FADS2 6.06 0.003119 
rs61897793 61599347 FADS2 6.06 0.003119 
rs174582 61607168 FADS2 5.871 0.005718 
rs7943728 61547068 FADS2 5.753 0.007927 
rs61896141 61556039 FADS2 5.753 0.007927 
rs108499 61547237 FADS2 5.521 0.01962 
rs174534 61549458 FADS2 5.521 0.01962 
rs174538 61560081 FADS2 5.521 0.01962 
rs174559 61581656 FADS2 5.424 0.02534 
rs174585 61611694 FADS2 5.321 0.03405 

 

 

 
Figure 61: cis-eQTLs identified in TCR-activated CD4+ T cells. (a) Manhattan plot showing the 
significant cis-eQTLs. The x-axis shows all the chromosomes and the coloured dots denote the SNPs 
tested. The horizontal lines on the graph (dotted and dashed) represent the adjusted-P < 0.05 and 
adjusted-P < 0.1. (b) Box plots showing the levels of eGene FADS2. The normalised gene expression 
log2 transformed counts are on the y-axis and the SNP genotype group is on the x-axis.  
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6.3.2 Cis-eQTL analysis in resting and activated CD8+ T cells 
 
 

In the unstimulated dataset we detected 16 cis-eQTLs that correlated with the 

expression of the genes FADS2 and CTSW located on chromosome 11 (Manhattan plot in 

Figure 62a).  A list of the top 10 significant SNPs is listed in the Table 11. The eQTL effect 

on the expression of FADS2 and CTSW is shown in the boxplots in Figure 62b. The reference 

allele of rs10791830 (C) (frequency: 0.81) is correlated with high CTSW expression (Figure 
62b). The reference allele for the FADS2 SNP rs108499 (ref: C, AF= 0.67, European 

population, 1000 Genomes) correlates with lower eGenes expression (Figure 62b). 
 
Table 11: The number of detected cis-eQTLs in the resting CD8+ T cell data 

SNPs Position (hg19) eGene Test statistic Adjusted p-value 
rs658524 65647260 CTSW 6.548 0.0019 
rs10791830 65661291 CTSW -6.004 0.009299 
rs568617 65653242 CTSW -5.967 0.009999 
rs694994 65653309 CTSW -5.967 0.009999 
rs677931 65654665 CTSW -5.967 0.009999 
rs693824 65654783 CTSW -5.933 0.0114 
rs641018 65655393 CTSW -5.933 0.0114 
rs656980 65656282 CTSW -5.933 0.0114 
rs507062 65661656 CTSW -5.933 0.0114 
rs588114 65662752 CTSW -5.933 0.0114 

 
 

 
Figure 62: cis-eQTLs identified from resting CD8+ T cells. (a) Manhattan plot showing the significant 
cis-eQTL hits. The x-axis shows all the chromosomes and the coloured dots denote the SNPs tested. 
The horizontal lines on the graph (dotted and dashed) represent the adjusted-P < 0.05 and adjusted-P 
< 0.1. (b.) Box plots showing the levels of eGenes CTSW and FADS2. The normalised gene expression 
log2 transformed counts are on the y-axis and the SNP genotype group is on the x-axis.  
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In the TCR activated CD8 data we observed only 4 significant cis-eQTLs, and these 

correlated with the expression of eGenes FADS2 (rs108499, rs174534 & rs174538) and 

CTSW (rs658524) with a z-score >5 and adjusted p-values p<0.05 (Table 12 & Figure 63a). 

eQTLs rs658524 and rs174534 in Figure 63b showed the same allelic effect direction for the 

gene expression levels of CTSW and FADS2. Some of the detected eQTLs in CD8+ T cell 

data were also shared in resting and/or activated CD4+ T cells. These findings suggest that 

these eQTLs are potentially regulatory and could control the eGenes in a similar manner in 

both CD4+ and CD8+ T cells. 
 
Table 12: The number of detected cis-eQTLs in the TCR-stimulated CD8+ T cell data 

SNPs Position (hg19) eGene Test statistic Adjusted p-value 
rs658524 65647260 CTSW 5.868 0.0116 
rs108499 61547237 FADS2 5.458 0.0336 
rs174534 61549458 FADS2 5.458 0.0336 
rs174538 61560081 FADS2 5.458 0.0336 

 

 
Figure 63: cis-eQTLs identified from TCR-activated CD8+ T cells. (a) Manhattan plot showing the 
significant cis-eQTL hits. The x-axis shows all the chromosomes and the coloured dots denote the 
SNPs tested. The horizontal lines on the graph (dotted and dashed) represent the adjusted-P < 0.05 
and adjusted-P < 0.1. (b) Box plots showing the levels of eGenes CTSW and FADS2. The normalised 
gene expression log2 transformed counts are on the y-axis and the SNP genotype group is on the x-
axis. 
  

This analysis highlighted a region on chromosome 11 as a region of interest for T-cell 

function in the context of AS, since several of the SNPs identified as eQTLs had been 

associated with immune and inflammatory diseases through GWAS. For example, 

rs10791830, an eQTL for CTSW in resting CD4+ and CD8+ T cells, was previously associated 

to IBD and Crohn’s disease (De Lange et al., 2017), and most recently with AS susceptibility 

based on the round 2 analysis of the UK Biobank data (http://www.nealelab.is/uk-biobank/). 
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6.3.3 Cell-type specific expression of FADS2 and CTSW 
 

To investigate the cell-type-specific expression of FADS2 and CTSW, we surveyed 

published studies and gene expression databases to assess the expression pattern of these 

eGenes in immune cell subsets.  From the DICE database we observed that FADS2 was 

expressed at high levels in NK cells (CD16+CD56+), followed by classical and non-classical 

monocytes, and B-cells (Figure 64) (Schmiedel et al., 2018). FADS2 was expressed at 

relatively low levels in T-cell subsets as seen in the box plot below (Figure 64). 

 

 
Figure 64: Expression levels of eGene FADS2 in immune cell subsets. The gene expression of 
FADS2 as measured by Schmeidel et al. using bulk RNA-seq from 15 immune cell subsets from 91 
donors (https://dice-database.org/genes/FADS2). The expression is shown in the y-axis as log2 
transformed normalised transcripts per million, labelled as “Log2 counts”.  
 

The FADS cluster locus is a polymorphic region consisting of fatty acid desaturase 

genes 1,2 and 3 (FADS1, FADS2 & FADS3), which have been previously reported in genetic 

studies concerning immune (Ellinghaus et al., 2016) and cardiometabolic traits (Chen et al., 

2019). A recent integrative gene regulatory network analysis reported allele specificity in 

transcription factor binding for FADS2 regulation (Van Der Wijst et al., 2018). This study 

reported the regulatory role of eQTL rs968567, an RA-associated GWAS variant, for FADS2 

expression, by identifying allele-specific binding to this sequence of a sterol binding factor 

(SREBF2), using ENCODE ChIP-seq data. Additionally, eQTLs for FADS2 were previously 
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detected in monocytes (Zeller et al., 2010) and FADS2 expression has been well-

characterised in tissue studies from GTEx data (Reynolds et al., 2018).  
 

On the other hand, we noted that CTSW is expressed at high levels in CTLs CD8+ T 

cells and NK cells (Figure 65), suggesting its role in cytotoxicity-associated activity. As the 

eQTLs detected for CTSW were in CD8+ T cells, and since CTSW is predominantly expressed 

in CTLs, we explored the role of the eQTLs in regulating CTSW expression in CD8+ T cells.  

 

 

 
Figure 65: Expression levels of eGene CTSW in immune cell subsets. The gene expression of 
FADS2 as presented by Schmeidel et al. using bulk RNA-seq from 15 immune cell subsets from 91 
donors (https://dice-database.org/genes/CTSW). The expression is shown in the y-axis as log2 
transformed normalised transcripts per million labelled as “Log2 counts”.  
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6.3.4 Cysteine cathepsins in the immune system 
 

Cathepsins are proteases that are classified into three categories by the amino acid 

residues present in their active sites, namely, aspartic proteases, serine protease and cysteine 

proteases. These enzymes require an acidic environment to be active. Due to their selective 

activity in low pH, they were initially thought to be intracellular enzymes involved in proteolytic 

activities in the endosomes and lysosomes (Turk, 2001). The role of cathepsins is not confined 

to the endo-lysosomal system as they have been later detected in the nucleus, cytoplasm and 

the extra-cellular and extra-lysosomal space (Brix et al., 2008). 

 
Most cysteine cathepsins show ubiquitous expression in human tissues - for 

example,  B, C, F, H, L, O, and X cathepsins, whereas cathepsins K, S, V and W show tissue- 

and cell type-restricted expression suggesting a specific role. Cysteine cathepsins are 

involved in several innate and adaptive immune responses due to their constitutive expression 

in immune cells (Figure 66). For example, cathepsins B,F, L and H are found in macrophages; 

cathepsin C has been reported in CTLs, macrophages, granulocytes and mast cells. Similarly, 

cathepsin K is expressed at high levels in osteoclasts, epithelial cells and synovial fibroblasts 

in RA joints. Cathepsin S is present in antigen presenting cells (DCs, B-cells and 

macrophages) and is implicated in MHC class II antigen presentation (Vidak et al., 2019). 

Cathepsin W is predominantly expressed in cytotoxic cells like CD8+ T cells and NK cells and 

is implicated in cytotoxicity (Brown et al., 1998; Wex et al., 2003).  

 

Cysteine cathepsins are involved in a wide range of cellular and physiological functions 

such as ion channel activity, innate immunity, complement activation, apoptosis, peptide 

synthesis and vesicular trafficking (Brix et al., 2008; Repnik et al., 2012). Cysteine cathepsins 

are known to mediate autophagy, which is an essential cellular process that enables 

lysosomal degradation of misfolded protein. Dysregulated autophagic pathway has been 

associated with diseases such as rheumatoid arthritis, dermatitis, osteoporosis, IBD, 

cardiovascular disease and cancer. (Patel et al., 2018).  
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Figure 66: Expression levels of cathepsins in immune cell types. The expression data is acquired 
from the DICE database (Schmiedel et al., 2018). 
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6.3.5 CTSW eQTLs are lead variants from GWAS 
 

Previous studies have established that trait-associated SNPs are more likely to be 

eQTLs (Nicolae et al., 2010). We therefore assessed if the eQTLs we identified for CTSW are 

also lead variants from GWAS in AS and other CIDs. We searched for lead variants in the 

CTSW locus associated to CIDs in the GWAS Catalog (https://www.ebi.ac.uk/gwas/). We also 

consulted an updated online resource to verify the associated lead SNPs with CIDs from the 

UK Biobank PheWAS analysis (http://www.nealelab.is/uk-biobank/).  

 

 
 

Figure 67: List of eQTL SNPs from our AS data that are lead variants reported in immune GWAS. 
The eQTLs that are also a lead SNP associated with AS is indicated in green, with IBD (CD & UC) and 
Pso is in purple and the lead variant from the meta-analysis study is in dark blue. 
 

We identified three SNPs - rs658524, rs568617, and rs12225345 - that were 

associated with CID susceptibility from GWAS (Figure 67). The SNP rs12225345 was 

reported to be associated with IBD (De Lange et al., 2017) and Pso (UK Biobank PheWAS, 

http://www.nealelab.is/uk-biobank/). SNPs rs658524 and rs568617 were initially detected as 

GWAS variants for CD (Liu et al., 2015) and IBD (De Lange et al., 2017). These two SNPs 
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were later identified as risk variants for AS in the UK Biobank round 2 PheWAS analysis 

(http://www.nealelab.is/uk-biobank/).  

 

We assessed the LD structure of the 15 unique and significant eQTL SNPs in the 

CTSW locus using LDlink (https://ldlink.nci.nih.gov/?tab=ldmatrix) to calculate the pairwise LD 

between SNPs. The haplotypes were extracted from the 1000 Genomes European population. 

We observed a correlation coefficient, r2 > 0.8, showing that the SNPs we tested are in strong 

LD, as shown in the correlation matrix in Figure 68.  

 

 
Figure 68: Pairwise LD matrix of the SNPs. LD correlation matrix for the variants in the CTSW locus 
that are eQTLs and lead GWAS SNPs. LD values were computed from LDlink in the European 
population from 1000 Genomes. 
 

The regional plot indicating the location of the SNPs in the CTSW locus is shown in 

Figure 69. The plot indicates the position of the 15 SNPs we tested in the locus with respect 

to the gene location. The adjusted p-values from our eQTL analysis are shown on the y-axis. 

The SNPs are clustered near the gene body of CTSW. The tight linkage of the SNPs (red 

dots) to the top SNP rs658524 (purple diamond) is indicated by the r2 values. LD values were 

computed from the 1000 Genomes (March 2014 release) European population using 

LocusZoom (Pruim et al., 2011). 

 

 

SNPs at the CTSW locus (Chr11)
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Figure 69. Regional plot for the significant eQTLs over the CTSW locus. The SNPs are coloured 
by the strength of the LD association (r2) as shown by the scale on the left. The adjusted p-value from 
the eQTL analysis is shown in the y-axis as −log10 scale. The genomic region on the chr11 where the 
SNPs are located with respect to CTSW gene is indicated in the bottom panel of the LocusZoom plot. 
 

 

 

The strong LD among the eQTL SNPs makes it difficult to pin-point the functional SNP 

that regulates CTSW expression. To gain biologically meaningful insights from our eQTL data, 

we integrated in our study the analysis of epigenetic regulatory marks of the locus by 

examining the publicly available chromatin conformation data at the SNP location. Using the 

dbSNP data track of the UCSC genome browser, we located the SNPs in the CTSW locus. 

The eQTL SNPs from our analysis are marked in fig. 70 with red rectangle boxes. We added 

the Roadmap Epigenomics data track available on UCSC genome browser (GRCh37/hg19) 

for regulatory element information. This includes DNase hypersensitivity sites (DHS) and 

histone marks from CD4+ and CD8+ T cells, as shown in Figure 70 

(http://genome.ucsc.edu/cgi-bin/hgGateway) (Kundaje et al., 2015).  
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We assessed the co-occurrence of DHSs and methylation marks with the SNP 

positions (Figure 70). From this analysis, we observed that two eQTL SNPs (rs658524 & 

rs12225345, marked in magenta dotted lines), are in the CTSW promoter region and coincided 

with DHS peaks in CD8+ primary T cells. Additionally, these SNPs also overlapped with marks 

of active promoters and enhancers (H3K4me3 and H3K27ac) in CD8+ T cells (Figure 70). 

This evidence strongly suggests a possible regulatory mechanism for these eQTLs in CD8+ T 

cells.  

 

DHS peaks overlapping these SNPs in CD4+ T cells were less pronounced, compatibly 

with lower expression of CTSW in these cells, compared to CD8+ T cells (Figure 70). 

However, there were some H3K4me3 peaks in the CD4 cells. This observation may indicate 

a potential regulatory activity for these SNPs in regulating CTSW in CD4+ T cells also. 

 

rs658524 is located 48bp upstream of the transcription start site (TSS) and 

rs12225345 at 203bp upstream of the TSS for CTSW (Figure 71). The SNP location with 

respect to the TSS and overlapping chromatin accessibility peaks from immune cell subsets 

are indicated in Figure 71. The chromatic accessibility information was obtained from the 

UCSC data track for ATAC-seq data generated by Calderon et al. from immune cell subsets 

(Calderon et al., 2019).  

 

 
 
  

rs658524

rs12225345

CTSW

rs658524 rs12225345

CTSW

- 48 bp

- 203 bp

Distance from CTSW TSS

a.

AS risk
UC, CD, Pso  
protection 

b.

TSS

Figure 71: Location of the SNPs reported at the CTSW 
promoter, as distance from the TSS. SNP positions are 
marked by pale blue lines. The TSS location for CTSW 
obtained from the Eukaryotic promoter database (EPD) is 
indicated by the blue box with white arrows showing the 
direction of transcription. The ATAC-seq peaks from 
monocytes, NK, CD4+ and CD8+ T cells are shown. 
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The UK Biobank PheWAS analysis reported the “G” allele (AF= 0.81) of rs658524 as 

correlated with AS risk. We noted that patients with the GG genotype showed elevated levels 

of CTSW, as shown in the box plot in Figure 72a. In our resting CD4+ T cell eQTL data, we 

observed a significant eQTL effect from rs12225345 correlated with low levels of CTSW 

expression in the G allelic group, and a similar trend in the activated CD8+ T cell data (Figure 
72a). These two SNP are also in LD with each other (r2 > 0.8) (Figure 72b): the G allele of 

rs658524 that correlates with increased CTSW expression, is linked with the A allele of 

rs12225345. The high levels of CTSW in patients with the corresponding SNP genotype may 

indicate a potential functional link between these SNPs and CTSW regulation in CD8+ T cells. 

 

 

 
 
Figure 72: Allelic direction for the eQTL effect of two promoter SNPs on CTSW expression. (a.) 
Box plots show the levels of CTSW mRNA in resting CD4+ T cells (light blue) and stimulated CD8+ T 
cells (dark green). The genotype groups of the SNP are shown on the x-axis. The y-axis represents the 
normalised and log2 transformed expression data. (b.) The LD calculation between rs658524 and 
rs12225345 extracted from LDlink using 1000 Genomes European population haplotypes. Shown are 
the Pearson correlation coefficient (r2) and the standardized linkage disequilibrium coefficient (D’), along 
with the correlation pattern between the alleles of the variants. 
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6.4 CTSW eQTLs are located at transcription factor binding sites 
 

Given the correlation we observed with the SNP genotype and CTSW expression 

levels, we asked if rs658524 and rs12225345 overlap with predicted transcription factor 

binding sites. Firstly, we consulted HaploRegv4 (Ward & Kellis, 2012) to retrieve the predicted 

or validated TF sites in the SNP location from published studies. Secondly, we utilised Promo3 

- an online bioinformatics tool, to predict TF binding motifs in the sequence of the reference 

and alternative alleles for the SNPs (Farré et al., 2003; Messeguer et al., 2002). Thirdly, we 

identified predicted TF motifs in a given genomic locus from JASPAR dB CORE 2020 (Fornes 

et al., 2020) track on UCSC genome browser. We compiled the results from these three 

approaches to refine the list of possible TFs for further analysis. In particular, we selected TFs 

that are predicted to show allele-specific binding (Table 13).  

 

 
Table 13: TFs that are predicted to show allele-specific binding to rs658524 and rs12225345 

 
rs658524 rs12225345 

Egr-1 IRF1 
IRF1, IRF2 NFATC1, NFATC2, NFATC3 

KLF9, KLF10 STAT1, STAT4 
ZNF740 RBPJK 

 
 

 
We analysed the expression profiles of these TFs in immune cells using the DICE 

database (https://dice-database.org/) and the Human Blood Atlas 

(https://www.proteinatlas.org/humanproteome/blood), as an additional measure to select 

relevant TF that are expressed in the same cell type where CTSW is expressed (Figure 73). 
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Figure 73: Gene expression profiles of TFs in immune cell subsets. The TF gene expression from 
RNA-seq data from the DICE database is shown as boxplots. The levels of expression are depicted as 
transcripts per million (TPM). 
 

We observed that the TFs such as NFATC2, RBPJK, IRF1 and STAT4 were expressed 

at higher levels in either resting and activated CD8+ and CD4+ T cells, suggesting they may 

be involved in CTSW regulation (see Figure 73). NFATC2 also showed high level of 

expression in NK cells. Therefore, SNPs that disrupt the binding of these TF could play a role 

in regulating the transcription of CTSW in these cell types. To assess this hypothesis further 

we tested whether any of these TF bind to rs658524 and rs12225345 in an allele-preferential 

fashion. 

  

IRF1 STAT4

Transcripts per million (TPM)

Transcripts per million (TPM)

NFATC2

Transcripts per million (TPM)

RBPJK
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6.4.1 NFATC2 shows allele-preferential binding at CTSW genomic sequences 
in vitro 
 

We tested the binding specificity of the predicted TFs using high-affinity DNA capture 

assay. The biotinylated oligos with either the reference or the alternative alleles of SNPs 

rs658524 (A/G) and rs12225345 (A/G) were pre-incubated with the cell extract from resting 

and stimulated CD8+ T cells. The bound proteins were then tested for the presence of various 

TFs using Western blot analysis (Figure 74).  

 

 

 
 
Figure 74: Work flow for high-affinity DNA capture assay. Lysates from unstimulated or 
PMA/ionomycin stimulated CD8+ T cells were incubated with biotinylated oligos, followed by incubation 
with streptavidin beads. Proteins bounds to the DNA sequences are eluted, separated by SDS-PAGE 
and analysed by Western blotting. Membranes are probed with antibodies directed towards the TFs of 
interest.  
 
 

From the Western blot analysis, we observed allele-preferential binding of NFATC2 

(nuclear factor of activated T-cells, cytoplasmic 2) to rs12225345 in resting CD8+ T cells 

(Figure 75a). The predicted consensus sequence for NFATC2 from the JASPAR CORE 2020 

database (http://jaspar.genereg.net/), together with the genomic sequence upstream of the 

CTSW promoter encompassing rs12225345, is shown in the bottom panel of Figure 75a. The 

binding of NFATC2 is reduced in the presence of the alternative allele of rs12225345 (G), as 

shown in Figure 75a.  Binding of NFATC1 to the same sequence was much weaker (Figure 
75b).  

 

 

§ Demonstrated the allele specific TF binding at the SNP position using high affinity DNA 
capture assay

Testing allele-specific TF binding

High-affinity DNA capture assay
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Figure 75: Allele-specific binding of NFATC2 in unstimulated CD8+ T cells. DNA affinity capture 
assay was performed in lysates from CD8+ T cells with biotinylated oligos containing the sequences of 
the CTSW promoter encompassing SNPs rs658524 and rs12225345. Western blots from the DNA-
affinity capture assay was probed with (a.) anti-NFATC2 antibody and (b.) anti-NFATC2 antibody are 
shown. Binding motif for NFATC2 and NFATC1 are shown as per the JASPAR database, and the 
sequence of the CTSW promoter region indicating the alternative allele of rs12225345. “RC” denotes 
the reverse complement sequence. The matching sequence with the predicted motif is highlighted in 
grey, and is indicated in the sequence logo with square brackets. 
 

 

We then performed a competitive DNA affinity capture assay to confirm the allele-

specificity of NFATC2 binding (lanes 5 to 10 in Figure 76). Binding to the biotinylated oligo of 

the reference allele (A*) was competed by decreasing amounts (5x, 2x and 1x ) of the non-

biotinylated oligos of alleles A or G. In the competition assay, we observed that the A allele 

(lanes 5, 7 & 9 of Figure 76) was more efficient in competing binding compared to the non-

biotinylated G allele (lanes 6, 8 & 10 in Figure 76). 
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Figure 76: DNA affinity capture assay on stimulated CD8+ T cells. (a.) DNA affinity capture assay 
was performed in CD8+ T cells lysates with biotinylated oligos of the sequences from the CTSW 
promoter containing the SNPs rs658524 or rs12225345. Western blot from the DNA-affinity capture 
assay was probed with anti-NFATC2 antibody. Lanes 1 and 2 are the reference and alternative alleles 
of the SNP rs658524, and lanes 3 and 4 correspond to the reference and alternative alleles for 
rs12225345. Lanes 5 -10 show the binding of NFATC2 from competition assay between biotinylated 
(marked with *) and non-biotinylated oligos. Lane 11 is the total lysate from the stimulated CD8+ T cells 
(PMA (100ng/ml) + Ionomycin (1µg/mL) + IFNγ (10ng/mL) for 30min).  
 

These results support NFATC2 preferential binding to the reference allele (A) of 

rs12225345. Presence of the alternative allele (G) may result in weaker binding of NFATC2 

affecting gene transcription, which is consistent with lower levels of CTSW expression in CD8+ 

T cells carrying this allele (see Figure 75a). 

 

  
 

Figure 77: Transcription factor binding pattern for predicted sites in unstimulated CD8+ T cells. 
DNA affinity capture assay was performed in lysates from CD8+ T cells with biotinylated oligos 
containing the sequences of the CTSW promoter encompassing SNPs rs658524 and rs12225345. 
Western blots from the DNA-affinity capture assay was probed with (a.) anti-IRF1 antibody and (b.) anti-
STAT4 antibody are shown. Binding motif for IRF1 and STAT4 are shown as per the JASPAR database, 
and the sequence of the CTSW promoter region indicating the alternative allele of rs658524, the 
matching sequence with the predicted motif is highlighted in grey, and is indicated in the sequence logo 
with square brackets.   
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On the other hand, we did not observe allele-specificity for other TFs predicted for 

rs658524, such as IRF1 (Figure 77a) and for rs12225345, STAT4 (Figure 77b) in 

unstimulated CD8+ T cells. Binding of IRF1 was very weak in the presence of either alleles of 

rs658524 (Figure 77a). STAT4 bound everywhere irrespective of the allele present for 

rs12225345 (Figure 77b), suggesting that the SNPs is not adequate to alter the binding 

potential of the TF. The lower panel of Figure 77b shows the consensus sequence of the 

binding motif for STAT4 (JASPAR database). 

 

Interestingly, we noted that the transcriptional regulator of the Notch signalling 

pathway, RBPJK (Recombination Signal Binding Protein For Immunoglobulin Kappa J 

Region), binds preferentially to the alternative allele (G) of rs12225345 (Figure 78a). The 

predicted consensus sequence for RBPJK is shown in Figure 78b, as presented in JASPAR 

CORE 2020 database (http://jaspar.genereg.net/). The alternative allele (G) of rs12225345 

was correlated with low expression levels of CTSW (See Figure 72a). The selective binding 

of RBPJK to the alternative allele may suggest a possible repressive mechanism through 

Notch signalling pathway in low levels of CTSW expression in activated CD8+ T cells.  

 
Figure 78: Allele-specific binding of RBPJK in stimulated CD8+ T cells. (a.) DNA affinity capture 
assay was performed in lysates from CD8+ T cells with biotinylated oligos containing the sequences of 
the CTSW promoter encompassing SNPs rs658524 and rs12225345. Western blot from the DNA-
affinity capture assay was probed with anti-RBPJK antibody. (b.) Binding motif for RBPJK as shown in 
the JASPAR database, and  the sequence of the CTSW promoter region indicating the alternative allele 
of rs12225345. 
 

The allele-preferential binding of TF supports the regulatory role of the variant 

rs12225345 located within the CTSW promoter region. Based on the selective binding affinity 

of NFATC2 in the presence of the reference allele, we hypothesise that NFATC2 is important 

in the regulation of CTSW expression in CD8+ T cells. We explored this hypothesis further 

using reporter gene assays to validate the role of these putative SNPs in NFATC2-mediated 

activation of CTSW transcriptional activity. 
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6.4.2 Cis-eQTLs regulate CTSW expression through NFATC2-mediated 
transcription activation 
 

To test the role NFATC2 binding to rs12225345 in transcription regulation in vitro, we 

performed a dual luciferase reporter gene assay in the human kidney epithelial cell line 

HEK293T. We constructed a luciferase reporter plasmid by cloning either the reference or the 

alternate allele into a luciferase expressing plasmid with a minimal promoter 

(pGL4.23[luc2/minP]) as illustrated in Figure 79a. The constructs with reference and 

alternative alleles were then transfected into HEK293T cells, with or without the vector 

expressing the transcription factor NFATC2, using the Lipofectamine™ 2000 protocol (Figure 
79b). The luciferase ratio of the experimental reporter (Firefly) to the control reporter (Renilla) 

was then used to measure the transcriptional activity in the presence of each allele. 

 

 

 
 
Figure 79: Dual reporter gene assay to test the eQTL-dependent transcriptional activity. (a.) 
pGL4.23 vector with the minimal promoter used to clone the CTSW promoter construct with the SNP 
rs12225345 (A/G). (b.) The firefly luciferase reporter containing the SNP alleles, the control reporter 
with Renilla luciferase and the NFATC2 vector were co-transfected into HEK293 T cells using 
Lipofectamine 2000. The luciferase activity measured was used to assess transcription levels. 
  

 b. 

a. 
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Presence of CTSW promoter sequences increased luciferase transcription over the 

background (Figure 80 column 1). Overexpression of NFATC2 showed a further increase in 

transcriptional activity, significantly more pronounced in the presence of the “A” allele of 

rs12225345, compared to the allele “G” as shown in Figure 80. This difference in 

transcriptional activity is consistent with the findings from our eQTL study, showing increased 

CTSW expression in the presence of the “A” allele (See Figure 72a), We also observed that 

in the absence of NFATC2, the transcriptional activity did not show allele-dependency 

compared to the vector without the promoter constructs, as indicated by the dark grey and 

light grey bars in Figure 80. The reporter gene assay results support our hypothesis that 

NFATC2 regulates the transcription activity in the CTSW promoter region, in an allele-

dependent manner.  

 

 

 
 

Figure 80: NFATC2 increases transcription in an allele-dependent manner at the CTSW 
promoter. Luciferase reporter gene assays were carried out in the HEK293 T cell line. Cells were 
transfected with the CTSW promoter construct containing the SNP rs12225345 (A/G), with or without 
NFATC2, as indicated in the panel below the graph. Firefly luciferase activity was measured and 
normalised to the control reporter Renilla luciferase activity in each sample, and is represented as fold 
changes over the empty vector alone. The average and standard deviation of 6 independent 
experiments are shown. T-test was performed between different conditions as indicated (p-values). 
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6.4.3 Cathepsin W is sensitive to Endo H and PNGase F 

Cell-type-specific CTSW expression in CTLs and NK cells led us to investigate the 

cellular compartments where cathepsin W is localized to understand its functional relevance 

in cytotoxic cells. Post-translational modification of cathepsin W takes place through the 

protein trafficking pathway. Therefore, cathepsin W (CatW) may be present in different 

vesicular compartments at various stages of its maturation. To improve our understanding of 

the localisation of cathepsin W, we performed an enzymatic treatment using total lysates from 

CD8+ T cells with the glycosidases Endo H and PNGase F. 

Protein trafficking can be monitored by studying the glycosylation of proteins. 

Glycosidases are enzymes that hydrolyse glycosidic structures in proteins. Endoglycosidase 

H (Endo H) cleaves high mannose structures of a glycoprotein in the endoplasmic reticulum 

(ER). When protein structures are resistant to Endo H it can be inferred that the protein has 

progressed to the other vesicular compartments and has acquired complex glycan structures 

as part of post-translational modification. Peptide-N-Glycosidase F (PNGase F) is another 

enzyme that can cleave both high mannose structures and the hybrid complex sugar 

molecules (asparagine-linked oligosaccharides) attached to the protein in the Golgi 

compartment (Figure 81).  

 

Figure 81: Enzymatic action of glycosidases Endo H and PNGase F (Structures adapted from QA-
Bio)  

Glycoproteins can also have high mannose structures with added phosphate residues 

in the Golgi (mannose-6-phosphates, M6P) that are sensitive to Endo H (Figure 82). 

Therefore, sensitivity and resistance towards Endo H and PNGase F can help us determine 

the stage and location of the protein processing.  
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Figure 82: Protein-processing and trafficking through mannose-6-phosphate pathway in the ER 
and Golgi. (1.) High mannose and asparagine-linked structures of the glycoproteins in the ER make 
them sensitive to Endo H and PNGase F. (2.) When glycoproteins move from ER to Golgi, they acquire 
M6P conformation, and retain their sensitivity to Endo H. (3.) Upon reaching the Golgi, most 
glycoproteins add on complex oligosaccharide structures that are resistant to Endo H, but still remain 
PNGase F sensitive. (Adapted from Caval et al., 2019) 

 

 

 

Figure 83: Deglycosylation of cathepsin W. Total lysates from CD8+ T cells were examined in the 
absence or presence of Endo H and PNGase F. Decrease in the CTSW band from 50 to 37 kDa was 
noted. 

We observed that CatW is sensitive to both the enzymes (Figure 83). The high 

mannose-type structure from CatW is cleaved by Endo H and PNGase F, compared to the 

untreated total cell lysate. CatW shows two bands in untreated total lysate close to 50 kDa, 

which may represent two different glycosylation product, since glycosidase treatment results 

in a single band with a lower molecular weight (37 kDa). A similar observation regarding 

murine cathepsin W deglycosylation was reported in lysates from IL2/ConA-activated blasts 

by Ondr & Pham (2004). The sensitivity of CatW to glycosidases may suggest that it may still 

be in the early stages of protein processing within the ER compartment.

Golgi 

ER compartment Glycoproteins with high mannose 
structures are sensitive to Endo H 
and PNGase F in the ER

During ER-to-Golgi transport, 
glycoproteins can have complex 
oligosaccharide structures with M6P 
that are sensitive to Endo H and 
PNGase F in the GolgiIn the Golgi glycoproteins can have complex 

oligosaccharide structures that are resistant 
to Endo H and sensitive to PNGase

1

2

3
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Golgi. (1.) High mannose and asparagine-linked structures of the glycoproteins in the ER make them
sensitive to Endo H and PNGase F. (2.) When glycoproteins move from ER to Golgi, some proteins can
acquire M6P conformation, and retain their sensitivity to Endo H. (3.) Upon reaching the Golgi, the most
glycoproteins acquire complex oligosaccharide structures that is resistant to Endo H, but still remain
PNGase F sensitive. (Adapted from Caval et al., 2019)
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In the first part of this project, we have addressed the molecular mechanisms of the disease 

pathogenesis by studying immune cell function in AxSpA. We linked genetic variants in 

susceptibility loci of CIDs to immune cell function using gene expression analysis and eQTL 

mapping. We also demonstrated the mechanism by which variants in the susceptibility loci 

regulate the nearest genes in the locus. 

7.1 Quantifying expression of GWAS genes using NanoString 
 

The NanoString nCounterÒ technology proved to be a robust and reproducible method 

to answer our specific question about the expression pattern of genes in the CID susceptibility 

loci. Methods to study the whole transcriptome such as RNA-seq have the advantages of 

identification of rare transcripts, splice variants and non-coding RNAs to characterise complex 

diseases. However, the experimental procedures involved (library preparation, conversion of 

mRNA to cDNA by reverse transcription and amplification) can introduce variability in the data. 

NanoString technologies focuses on targeted transcriptomics by directly measuring a 

transcript of interest, and it’s a highly quantitative, reproducible technique, which can be 

applied to small amount of starting material. We utilised this approach for the specific task of 

assessing the expression profiles of GWAS genes in blood and immune cell populations. 

7.2 GWAS genes are involved in the interplay between innate and 
adaptive immunity  
 

The whole blood cultures using the TruCulture system were used to challenge the 

patient immune system in an ex vivo setting with stimulation conditions that represent the in 

vivo inflammatory conditions. The TruCulture system is a highly standardised ex vivo assay 

that can be used to capture the physiological cellular interactions without the variability that 

arise from experimental processes (blood draw, cell isolation, cell culture conditions, etc.). 

 
As the numerous genetic loci associated with CIDs implicate dysregulation of the 

immune system, we looked at the expression pattern in whole blood cultures of genes in the 

susceptibility loci. Expression analysis of the candidate genes showed that around 80% of the 

GWAS genes can be detected in blood cells, supporting their role in the immune system 

function. The whole blood gene expression data from patients with AxSpA revealed that 

disease associated genes are activated under innate or adaptive stimulation. The stimulation-

dependent expression pattern of GWAS gene clusters shows that they participate in both 

innate and adaptive immune system. Therefore, we suggest that these genes have a 
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functional role in cell populations of the innate and adaptive immunity. To test this hypothesis, 

we analysed the expression of GWAS genes in T cells and monocytes derived from AxSpA 

patients. Our analysis revealed that genes associated to CIDs are expressed in both innate 

and adaptive immune cell subsets when subjected to physiologically appropriate stimulation 

conditions. Gene expression pattern shows that most GWAS genes are expressed in 

monocytes after a microbial stimulus and in T cells activated through TCR signalling in AxSpA 

patients.  

 

During an immune response, cells from innate immune compartment serve as the first 

line of defence against infection. Innate immune cells when challenged can express genes 

that aid in fighting against the infection directly through anti-microbial peptides or indirectly by 

attracting and activating the adaptive immune system through secretion of cytokines and 

chemokines. The fact that we observe nearly 70% of the genes in the susceptibility loci in 

activated innate and adaptive immune cells, reveals that the GWAS genes can be activated 

by stimulation conditions that occur during an inflammatory response. The activation of these 

genes may imply that they have a role in the coordinated immune response by the innate and 

adaptive cells.   

7.3 Expression of disease-associated genes and upon stimulation in 
distinct immune cell populations  
 

We analysed whether disease-associated genes are also cell-type-specific, i.e., to 

assess whether genes associated to a disease are expressed more in a specific cell type, and 

whether that may be of biological relevance. We did not observe a significant difference 

between the number of disease-associated genes detected in T cells and monocytes for AS, 

Pso and IBD disease modules in the upset analysis. We observed a significant difference in 

the number of genes detected between T cells and monocytes in MS gene module, with most 

genes detected in T cells. The difference in the significance among the gene modules could 

be due to the fact that the number of genes per disease module was not evenly distributed 

and this is a possible limitation in this analysis (Table 7). 

 

GWAS genes associated with AS, Pso and IBD could be activated in the presence of 

an innate stimulus in monocytes and in T-cells activated via TCR-signalling. This suggests 

that susceptibility genes may be involved in the regulation of immune responses mediated by 

innate and adaptive cells in CIDs. The context-specific gene expression in autoimmune 

diseases has been discussed by the Fairfax lab for IL7R association in AS (Al-Mossawi et al., 
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2019). This work elucidated the possible function of monocytes in AS, as it showed activation 

of IL7R (AS GWAS gene) in LPS-activated monocytes. Prior to the IL7R study, another 

publication from Bowness group had reported the increased expression of GPR65, a GWAS 

gene for AS, in GM-CSF+ IL17A+ T cell subsets (CD4+, CD8+, γδT cells) and NK cell in AS 

patients (Al-Mossawi et al., 2017). These studies and the expression pattern we observed for 

GWAS genes in innate and adaptive cells suggest their potential involvement in the immune 

events in AxSpA.  

 

T1D gene module also showed a trend that indicated most disease-associated genes 

were detected in CD4+ T cells and monocytes (Figure 45). This is interesting as studies have 

shown that immune cell types including autoreactive CD4+ T cells and APCs have effector 

roles in pancreatic β-cell destruction- a main feature of T1D (Coppieters et al., 2012; 

Sarikonda et al., 2014). We also noted a similar pattern in MS module, where the number of 

GWAS genes expressed in T cells is significantly higher than in monocytes (Figure 49). The 

expression levels showed that GWAS genes from MS can be involved in both T cells and 

monocytes. It is important to note that the disease-associated gene signatures were measured 

in patients with AxSpA- an inflammatory disease with overlapping immune features with many 

CIDs. However, the functional relevance of GWAS genes associated to T1D, MS and other 

CIDs in immune cells can be assessed by using appropriate immune cell types or tissues 

derived from representative disease cohorts. This analysis however provides information 

about in which cell type and under which activation condition the disease-associated genes 

can be measured. 

 

GWAS genes and variants may present a range of functional consequences in disease 

pathogenesis. A variant that affects the function of a gene which may be vital in the 

development of one or several diseases can have the opposite effect in another disease. An 

example is the role of TYK2 variant rs34536443 in autoimmunity and infectious diseases. This 

SNP has been reported to impair cytokine signalling in immune cells (Li et al., 2013), and 

present protection against Pso, RA, SLE and T1D, while it confers disease risk for AS, CD 

and UC (Dendrou et al., 2016). Furthermore, TYK2 knock-out can increase the susceptibility 

to mycobacterial infections as previously shown by Kreins et al. (2015). These results have 

demonstrated that disease-associations can have multiple and/or disparate effects. In such 

situations, the analysis of individuals with inborn errors of immunity can provide important 

information about the function of GWAS genes. This approach has been particularly useful for 

the analysis of TYK2 variants as reported by (Boisson-Dupuis et al., 2018). Analysis of 

immune cells from IL23R- or IL12RB2-deficient individuals in this study has revealed the non-
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redundant roles of these genes in vivo and provided detailed information about the signalling 

downstream of these receptors. 

 

The context-dependent expression pattern of GWAS genes showed that these genes 

potentially have a function in T cells and/or monocytes which may be related to the disease 

pathogenesis. For example, GWAS gene TBX21- which encodes T-bet, a T-cell specific 

transcription factor, showed a significantly higher level in CD4+ and CD8+ T cells. However, 

we also noted that ERAP1- an aminopeptidase that trims HLA class I-binding precursors to 

enable antigen presentation, is expressed in both monocytes and T cells. The trimmed 

peptides are presented by MHC class I molecules on the cell surface of APCs that are then 

recognised by surface receptors of CD8+ T cells and NK cells. Interestingly, aminopeptidases 

(ERAP1 & ERAP2) have been shown to regulate cytotoxic T cell (Zervoudi et al., 2013) and 

NK cell responses (Cifaldi et al., 2015). 

7.4 The GWAS genes may be involved in the effector mechanism of 
immune cells in patients with inflammatory diseases 
 

To assess whether chronic inflammation in patients affects the expression of GWAS 

genes, we analysed the gene expression in immune cells isolated from healthy donors. We 

observed the same stimulation-dependent gene expression pattern, with majority of the genes 

upregulated in the innate immune cells (monocytes and NK cells). However, it is important to 

note that the overall number of GWAS genes detected and the range of gene expression was 

much lower in healthy donors. This might suggest that the stimulation conditions were not 

sufficient to activate the susceptibility genes. It may also suggest that the baseline 

inflammatory environment required to activate these genes may be more prominent in patients 

than in healthy donors. However, the gene expression analysis was done in patient and 

healthy donor data separately due to the differences in the RNA amounts in the two groups.  

 

The association of IL-23/IL-17 pathway in CIDs, like AS, IBD and Pso was identified 

through GWAS. These findings indicated a role of Th17-driven immunity in the pathogenetic 

mechanisms of these diseases. We observed that the genes in the IL-23/IL-17 pathway are 

not only expressed in adaptive T-cells, but also in innate cells - both in controls and AxSpA 

patients, consistent with the literature in CID pathophysiology (Schön & Erpenbeck, 2018). 

This supports the previous observation that there is an interplay between the innate and 

adaptive immune cells to mediate the immune responses. 
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With the observed interplay between innate and adaptive immune cells, we 

investigated whether GWAS genes were also expressed in innate-like cells. γδT cells and 

MAIT cells are “inbetweener” populations that have the properties of adaptive cells, but 

mediate innate-like responses. The expression pattern of GWAS genes in immune cells from 

healthy donors showed that these genes can be activated with the appropriate immune 

stimulus, that is concordant with the findings from the patient data. We observed a group of 

genes that are significantly upregulated in activated monocytes compared to activated NK 

cells and T cell subsets. However, this observation has an added caveat that the effect of LPS 

stimulation may be stronger compared to other stimuli. The analysis on MAIT cells were 

performed separately due to the technical issue of low cell numbers and low RNA quantity. 

GWAS genes were detected more in resting MAIT cells than the activated cells from healthy 

donors. MAIT cells being innate-like might already be in a challenged state, which could 

explain why the susceptibility genes are activated in them without additional stimulation.  

7.5 Variants in the susceptibility loci affect the expression of FADS2 and 
CTSW 
 

To analyse whether GWAS genes are affected by genetic variants that are in the 

susceptibility loci we performed an eQTL analysis. Cell-type-specific eQTLs are like signposts 

that indicate a region of interest that may be linked to a biological mechanism involved in the 

disease pathogenesis. eQTLs are useful to identify candidate genes/variants from a GWAS 

locus that are most likely to have a functional role. Cell-type-specific eQTL-Genes (eGenes) 

also give a clue about possible biological pathways that are perturbed in patients.  

 

eQTL studies in the literature are done using gene expression data from cells or tissues 

derived from healthy donors such as the tissue-specific eQTLs in the GTEx project (Ardlie et 

al., 2015) and recently, the eQTL analysis from immune cell-types conducted by the DICE 

study (Schmiedel et al., 2018). Such studies have shown genotype-gene expression 

correlations in representative cell types derived from healthy donors in activated cell states. 

Due to this context-dependent nature of eQTLs, they are often detected in cells isolated from 

healthy donors under stimulation. These stimulation conditions may resemble the 

pathological/physiological settings observed in patients, and thus eQTLs detected in this 

manner may be more informative in terms of disease biology. However, these signatures 

might not resemble the actual genotype-gene expression associations in patients. eQTL 

studies conducted in patient cohorts can therefore give a better insight into the effects of 

variants in expression of genes associated to the disease. We performed eQTL mapping from 
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gene expression data from T cells isolated from AxSpA patients, under both resting and 

activated states. We detected more eQTLs from resting T cells from AxSpA patients than the 

activated T cells.  This observation could be attributed to the fact that the immune cells from 

CID patients may already be in an activated state, due to the higher baseline in patients 

compared to healthy controls. Another possibility for this observation could be the temporal 

effects on stimulus-dependent eQTLs. Fairfax et al. reported time-dependent and stimulation-

dependent gain or loss of eQTL effects in LPS-stimulated monocytes from healthy donors 

(Fairfax et al., 2014). One example is the effect of rs2275888 on IFNB1 gene, where the eQTL 

effect was not observed for the SNP in IFNB1 expression in resting monocytes. Interestingly, 

after 2h of LPS stimulation, IFNB1 showed differences in expression levels by SNP genotype, 

which was lost after 24h of LPS stimulation (Fairfax et al., 2014). In our study, the patient cells 

may already be in an activated state due to the chronic inflammation. When we top-up cells, 

that are already in a challenged state, with a stimulus for a longer period (>>2h), we may lose 

the eQTL effect over time, and that could be why we did not detect many eQTLs in stimulated 

cells. 

 

The eQTL analysis revealed many SNPs in a region on chromosome 11 acting in cis- 

that could be of interest in T cell function for AxSpA. Our eQTL analysis yielded several 

significant SNPs in close proximity to one another affecting the expression of genes FADS2 

and CTSW located on chromosome 11. We did not observe significant trans-eQTL 

associations, possibly given the limited sample size of our cohort.  

 

FADS2 is one of the fatty acid desaturases in a highly polymorphic region called the 

“FADS” cluster. Several SNPs in this locus have been previously associated with blood-related 

traits such as high sensitivity C-reactive protein (hs-CRP) (Roke et al., 2013), levels of 

metabolites from the ω-3 and ω-6 fatty acid pathways in the serum and immune cell counts 

(UKBB v2, 2018), and cardiovascular diseases. The SNPs in this region are also strongly 

linked to CIDs such as IBD, Pso & AS (Ellinghaus et al., 2016). The pleiotropic effect of SNPs 

in the FADS cluster make it challenging to define concrete associations from variant-to-gene 

function-to-disease. However, a recent work from Franke group showed an integrative 

approach studying the regulatory role of SNPs in genomic loci like the FADS cluster for linking 

GWAS variants to function (Van Der Wijst et al., 2018). In this approach, the authors 

elucidated regulatory gene networks that control the expression of FADS2 by combining 

information about allele-specific TF binding and enhancer and promoter elements, with an 

identified cis-eQTL rs968567 from GTEx data, which is a GWAS variant linked to RA 

susceptibility originally reported by Stahl et al. (2010). Van der Wijst et al. discussed the allele-
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specificity of sterol binding transcription factor SREBF2 using the ENCODE ChIP-seq data 

analysis in a previous paper from the same group (Zhernakova et al., 2017).  
 

To understand the function of FADS2, we explored its expression pattern in immune 

cells from the DICE database (Schmiedel et al., 2018). FADS2 expression is cell-type-specific, 

with highest levels seen in NK cells, followed by classical and non-classical monocytes, 

suggesting a potential functional role in these cell types (Figure 64). However, we observed 

that in the AxSpA patient data, the expression of FADS2 was similar in both activated 

monocytes and T cells. Moreover, the SNP from our eQTL analysis, rs968567, was already 

shown to affect the FADS2 promoter activity by allele-dependent binding of the transcription 

factor ELK1 (a member of the ETS domain transcription factor family), using reporter assays 

in HepG2 and HeLa cell lines (Lattka et al., 2010). Therefore we focused our analysis on the 

SNPs that regulate the expression of CTSW, since there’s no data about the regulation of 

CTSW expression, and because this gene is expressed specifically in immune cells, 

suggesting a role for cathepsin W in immune function. 

 

Due to the limitations in the sample size and statistical power in our eQTL 

analysis, we did not detect long-range effects that were reported through association 

studies and meta-analyses. We did not detect previously reported significant and 

robust associations linked to AS, e.g., the non-MHC locus ERAP1 (Burton et al., 2007; 

Evans et al., 2011). SNPs reported in ERAP1 have shown strong association to AS 

susceptibility and were replicated by several large independent cohorts with 

substantial statistical power, as reviewed by Costantino, Breban & Garchon (2018). A 

study performed in 2015 showed a strong correlation between expression 

of ERAP1 and polymorphisms in ERAP1 in monocyte-derived dendritic cells 

(Costantino et al., 2015). ERAP1 is an aminopeptidase implicated in AS susceptibility 

through its peptide trimming function in the ER and antigen presentation by MHC class 

I molecules. As our eQTL analysis was not performed in monocytes or APCs, we may 

have missed replicating this association reported by Costantino et al. (2015). 

Therefore it would be interesting to extend the eQTL analysis to monocytes and other 

APCs, preferably in a larger cohort to improve the resolution of the signals detected.  
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7.6 Functional annotation of GWAS SNPs that are eQTLs is important to 
make variant-to-gene function associations 
 

The CTSW eQTLs we identified were localised to the region on the chromosome 11 

that has been previously reported in autoimmune disease susceptibility. Therefore, we wanted 

to see if our eQTLs were also reported GWAS variants, that may be functional in regulating 

CTSW expression.  

 

Integrating eQTL data from relevant tissues and cell types along with the GWAS 

variant information can help in selecting SNPs that are more likely to have a functional role in 

the phenotype. Using this approach we identified the three CTSW eQTLs - rs658524, 

rs568617, and rs12225345 - as GWAS variants associated with AS, IBD and Pso susceptibility 

from the 15 significant eQTLs. The lead variant and CTSW eQTL rs568617 was reported in 

the meta-analysis study conducted by Ellinghaus et al. (2016) was linked to IBD susceptibility. 

rs658524 and rs122253445 were found in the UKBB PheWAS data, where rs658524 was a 

risk variant for AS, and rs12225345 was associated with Pso. This concurs with the premise 

reported by Nicolae et al. that nearly half of the SNPs associated with complex traits 

(autoimmune diseases, cancers and neuropsychiatric disorders) are eQTLs in at least one 

cell type (Nicolae et al., 2010). GWAS-associated variants can therefore affect the phenotype 

by altering the amount of mRNA synthesised, which may have a direct or indirect effect on the 

underlying biology associated with the disease. The regional LD in the locus highlighted in our 

eQTL analysis showed that all the eQTLs are in strong LD with each other and that they are 

co-inherited. Due to the strong LD structure it is complicated to determine the functional 

consequence without empirical validation. 

 

Interestingly, the “G” allele of rs658524 was correlated with high CTSW expression in 

T cells from AxSpA patients. The UKBB PheWAS analysis reported the “G” allele of rs658524 

as being associated with AS risk, and with a protective effect in Pso, CD & UC. The “G” allele 

of rs658524 was correlated with the “A” allele of rs12225345, which also corresponds to the 

genotype group with high CTSW expression. These findings further indicated a possible 

functional importance for these SNPs. Pleiotropic effect of SNPs with discordant associations 

have been previously reported in the literature. For instance, a follow-up study on IBD GWAS 

associated regions in an independent case-control group identified variants associated with 

IBD that show discordant effects (Rivas et al., 2011). The authors reported a rare missense 

variant rs2476601 in PTPN22, associated with risk of T1D, RA and Vitiligo, and protective 

against CD (Rivas et al., 2011). Furthermore, discordant effects of SNPs were also identified 

for the variants in TYK2 that showed increased susceptibility to mycobacterial infections and 
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protection against autoimmune diseases, as discussed by Dendrou et al. (2016). 

Conceptually, the discordant effect of a SNP in two diseases may be due to the fact the 

associated SNP might be perturbing the function of a specific cell type and a related biological 

pathway that can lead to one disease. The SNP perturbation can also have a concomitant 

effect on another cell type or pathway that can lead to a protective effect against another 

disease. Another possibility is that, the disruption in the biological mechanism from the SNP 

in one disease may be biologically linked to having less of another disease. 

 

 To prioritize SNPs that are most likely to have a functional role in CTSW regulation, 

we analysed the overlap of the eQTL variants that we have identified, which were also GWAS 

SNPs at cis-regulatory elements (CREs). We observed that SNPs rs658524 and rs12225345 

were in the non-coding region upstream of CTSW TSS, and in strong LD with each other (r2 > 

0.8) (Figure 68). Public epigenetic regulatory data from CD8+ T cells showed that promoter 

and enhancer marks (H3K4me3 and H3K27ac) overlapped with the location of the two SNPs 

(Figure 70). This analysis suggests that these SNPs may be important for the regulation of 

CTSW in CD8+ T cells. We noticed that the SNPs also coincided with chromatin accessible 

regions in CD8+ T cells from the ATAC-seq data in immune cell populations (Calderon et al., 

2019) (Figure 71), further emphasising the importance of these SNPs in CTSW regulation in 

CD8+ T cells. It is however, important to note that the chromatin accessibility data showed that 

these regions are also accessible in NK cells (Figure 71), suggesting a similar regulatory 

mechanism for these SNPs in CTSW expression in NK cells.  

 

Furthermore, we cannot exclude the possibility that there could be other variants in the 

locus that have causal implications. The region on the chromosome 11 has other genes like 

FIBP and FOSL1, which are expressed in specific immune cells. The SNPs in this region may 

also have a causal role for these genes. For instance the lead variant rs568617 from the meta-

analysis by Ellinghaus et al. is located within FIBP, and it may be important in regulating FIBP 

expression in cell types where they are expressed that could imply causal relationships. FIBP 

is expressed in monocytes, NK cells and T cells based on the DICE database (not shown). 

Similarly, there are variants within FOSL1 that may be influencing its expression in immune 

cells where the gene is prominently expressed- CD4+ T cells, CD8+ T cells and monocytes 

(DICE database; plot not shown). 

 

Using a similar approach Vecellio et al. identified the functional role of rs4648889 in 

the regulation of RUNX3 (GWAS gene for AS and PsA) by allele-specific binding of the TF 

IRF4 in T-cells (Vecellio et al., 2016). The authors also conducted a conditional SNP analysis 

between a lead GWAS SNP associated with AS (rs6600247) and SNP in LD with the lead 
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variant (rs4648889). Through the conditional analysis and the regulatory information at the 

SNP location (DHSs, ChIP-seq peaks for TF binding and histone modification) they identified 

rs4648889 as the most likely variant with a functional implication in AS.  

7.7 Functional SNPs alter transcriptional factor binding activity to regulate 
CTSW expression 
 

Genomic sequence-dependent TF binding at cis-regulatory elements is a mechanism 

that drives cell-type-specific gene expression (Liu & Tjian, 2018). From the eukaryotic 

promoter database we observed that rs12225345 and rs658524 are located 48 bp and 203 

bp upstream of the CTSW TSS, respectively. Since 147 nucleotide make up a single turn 

around a nucleosome, the SNPs may be close to one another on the surface of the 

nucleosome. Due to their close proximity, the TFs binding to these SNPs may interact and 

cooperate with other TFs. We predicted binding sites for several TFs such as IRFs at rs658524 

site, and NFAT and IRF4 are known to cooperate with each other (Hogan et al., 2003). Such 

interactions may be taking place during the regulation of CTSW expression. 

 

The utilization of three online tools- HaploRegv4, Promo3 and JASPAR database 

ensured the reliability of the TF list we generated. Testing for allele-specific binding pattern, 

we identified NFATC2 as an important TF in CTSW regulation that binds in the presence of 

“A” allele of the SNP rs12225345. Using high affinity DNA capture assays, we demonstrated 

the preferential binding of NFATC2 by allele for rs12225345 in resting CD8+ T cells, in 

comparison to other predicted TFs (Figure 75). The competitive binding assay validated that 

the “A” allele of rs12225345 is more effective in binding the TF than the allele “G” (Figure 76). 

These results provide substantial evidence that shows the effect of eQTL variants in regulating 

nearest gene expression implicated in disease mechanism. NFATC2 is a well-known 

transcriptional regulator associated with T-cell development and activation. NFAT family 

members have specific roles in CD4+ T cells of Th1, Th17, Treg and Tfh as reviewed by 

Hermann-Kleiter & Baier (2010). The differential role of NFATC1 and NFATC2 was reported 

in CD8+ T cell differentiation and CTL function during acute viral infection recently by Xu, 

Keller, & Martinez (2019). The authors showed that despite the similarity in DNA binding motifs 

for NFATC1 and NFATC2,  the former was essential in the differentiation of effector CD8+ T 

cells, whereas the latter is essential to promote CTLs. Interestingly, a study published in 2017, 

had shown that NFATC1 contributed to CD8+ T cell-mediated cytotoxicity, with ChIP-seq data 

showing NFATC1 binding for genes that are associated with CTL activity (Klein-Hessling et 

al., 2017). In our data, we observed weak binding for NFATC1 for CTSW regulation in CD8+ 
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T cells. However, a possible role for NFATC1-mediated CTSW regulation and CTL activity 

cannot be ruled out. 

 

An interesting finding was that, while NFATC2 preferentially bound to the “A” allele of 

the SNP rs12225345, RBPJK (Recombination Signal Binding Protein For Immunoglobulin 

Kappa J Region) showed preferential binding to the alternate “G” allele of rs12225345 (Figure 
78). RBPJK (CSL/CBF-1) is a DNA-binding transcription factor in the Notch signalling 

pathway. Notch-mediated gene transcription is initiated by the conversion of RBPJK from a 

co-repressor to a co-activator that occurs during the notch signalling pathway activation. Notch 

signalling is activated when the membrane bound Notch protein is cleaved to release the 

Notch intracellular domain (NICD). RBPJK acts as a repressor or activator based on the 

availability of NICD in the nucleus. In the absence of NICD, the target gene transcription is 

hindered by co-repressor complexes assembled on RBPJK. The cleaved NICD translocates 

to the nucleus and forms the “Notch transcription complex” with RBPJK, and replaces the co-

repressor protein complex by recruiting co-activator protein Mastermind (MAM). We are 

currently studying whether RBPJK has a activator or repressor properties in this context. 

However, the allele “G” of rs12225345 where RBPJK binds is correlated with low expression 

levels of CTSW. These findings are consistent with reduced NFATC2-regulated transcription, 

and possibly, the recruitment of a repressor complex by RBPJK. It is also interesting to note 

that both NFATC2 and RBPJK, belong to the class Rel homology region (RHR) factors.  

 

In the literature, CTSW has been reported to have a biphasic expression pattern after 

TCR activation, starting with high expression levels at 0h, followed by a dip after 6h of 

stimulation (Stoeckle et al., 2009). The CTSW expression increases again after 24-48h, 

reaching peak levels at 72h. NFATC2 activity is induced after TCR activation, hence there 

may be some constitutive TFs that maintain the CTSW high expression at unstimulated state 

of the cells. Therefore, the increase in CTSW expression from 24-48h may be NFATC2 

dependent. When CD8+ T cell are activated and in the presence of the “G” allele, RBPJK might 

be involved in regulating CTSW transcription in a repressive manner that results in decreased 

CTSW levels. RBPJK expression has been detected in activated CD4+ and CD8+ T cells from 

the DICE database (Schmiedel et al., 2018), consistent with a role for Notch-mediated 

signalling in activated T cells. 

 

NFATC2 has been shown to inhibit Notch signalling by competing with RBPJK (CSL) 

for DNA binding with Notch transcriptional complex in osteoblasts (Zanotti, Smerdel-Ramoya, 

& Canalis, 2013). Notch signalling is known to play an important role in T cell differentiation 

and function. RBPJK has been shown to promote differentiation of pathogenic Th17 cells 
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through IL-23R signalling (Meyer zu Horste et al., 2016). The authors elucidated the dual role 

of RBPJK as a transcriptional regulator in Th17 cells by inducing IL-23R and supressing the 

production of anti-inflammatory cytokine IL-10. A similar mechanism may be occurring in CD8+ 

T cells during their effector function. The essential role of Notch signalling in effector memory 

CD8+ T cells in airway inflammation was reported by Okamoto et al., where the authors 

observed the activation of Notch 1 in TCR-activated CD8+ Teff cells (Okamoto et al., 2008). 

Another study showed that Notch 1 signalling is important to mediate CTL activity by regulation 

of expression of cytotoxic molecules (perforins and granzyme B) through RBPJK-mediated 

transcription activation (Cho et al., 2009). This study also reported that Notch signalling 

regulates EOMES expression- a key TF in CTL development through RBPJK binding at 

EOMES promoter region, showing a direct evidence in Notch 1 regulated EOMES 

transcription and CTL activity. In our data, the RBPJK binding to promoter region of CTSW 

was enabled by the presence of the “G” allele of rs12225345.  

 

Our work demonstrated the effects of allele-dependent NFATC2 binding in 

transcriptional activation using dual reporter gene assay. We report an increase in luciferase 

activity in the presence of CTSW promoter sequences and NFATC2 for the “A” allele 

compared to “G” allele of rs12225345. Considering these results it would be interesting to 

understand how CTSW is involved in CD8+ T cell function, and whether it may have a potential 

role in pathogenesis of CIDs such as AS and IBD. rs12225345 has shown concordant effects 

on CD and PsA- another form of AxSpA (UKBB, round 2 results). However, discordant effect 

of rs12225345 has not been reported in the literature for AS and IBD. A recent report showed 

that AxSpA patients have less number of CD8+ intraepithelial lymphocytes (IELs) in gut 

compared to healthy donors, whereas an increase in number of IELs were reported in IBD 

patients compared to healthy donors (Regner et al., 2018). There are clinical cases of AxSpA 

and quiescent IBD and AxSpA and concomitantly active IBD, drawing attention to the gut-joint 

axis as reviewed by Gracey et al. (2020) 

7.8 Possible implication of CD8+ T cells in AS.  
 

Cytotoxic T lymphocytes (CTLs) synthesize lytic proteins like perforins and granzymes, 

which are stored in lytic granules and released upon CTL triggering (Stinchcombe & Griffiths, 

2007) as illustrated in Figure 84. CTL-mediated responses have been documented in several 

autoimmune and inflammatory diseases as discussed by Gravano & Hoyer, 2013. For 

example, patients with SLE exhibit elevated levels of CD8+ T cells that express perforin and 

granzyme B, which were correlated with high disease activity (Blanco et al., 2005). 
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Despite the strong genetic association with HLA-B27 and other CD8+ T cell function 

related genes (EOMES, TBX21, RUNX3, NPEPPS, ERAP1 and ERAP2) to AS susceptibility, 

the specific role of CD8+ T cells in AS is yet to be defined. MHC class I restricted CTLs have 

been reported to present self and non-self peptides in AS patients (Hermann et al., 1993; 

Fiorillo et al., 2000). Moreover, increase in circulating CD8+ CD28- T cells that exhibit a dual 

cytotoxic and regulatory role has been observed in peripheral blood from AS patients 

(Schirmer et al., 2001). Studies from Robert Inman’s group have observed the expansion of 

CD8+ T cells in AS patients (Faham et al., 2017) and also described a unique CD8+ T cell 

subset prevalent in synovial fluid (SF) from AS patients that expresses several integrins (β7, 

CD103, CD29 and CD49a) (Qaiyum et al., 2019). The CD8+ T cells from SF of AS patients 

reported by Qaiyum et al. also showed a cytotoxic profile with high levels of GZMB and PRF1, 

and regulatory potential with increased IL-10 and TNFAIP3. To the contrary, a recent study 

from the same group reported a reduction in cytotoxic potential of CD8+ T cells with low 

expression of granzyme B and perforin using gene, protein and cellular data from whole blood 

(Gracey, Yao, et al., 2020). These studies suggest the existence of altered cytotoxicity and a 

possible role of CD8+ T cells in AS pathogenesis.  

 

 

 
 

Figure 84: Granule-mediated cytotoxicity in CTLs. Cytotoxic granules (granzymes and perforins) 
are produced by the effector cells and are released into the immunological synapse via exocytosis. 
Perforin forms a pore on the plasma membrane of the target cell allowing granzyme to be delivered and 
consequently induce cell death. Adapted from Willenbring & Johnson, 2017. 
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7.9 Role of cysteine cathepsins in cytotoxic T lymphocytes 
 

Cathepsins have been shown to have an important function during the synthesis and 

activation of granzyme B. In the secretory pathway, granzyme B is in the pro-granzyme B form 

(zymogen) in the ER, with an N-terminal peptide that prevents it from getting activated. When 

pro-granzyme B reaches the Golgi, it moves on to the lysosomes using the mannose-6-

phosphate secretory pathway (Stinchcombe & Griffiths, 2007). In the lysosome, cysteine 

protease cathepsin C cleaves the N-terminal dipeptide of the pro-granzyme B and activates it 

(D’Angelo et al., 2010). The authors also showed a similar function for cathepsin H in 

converting pro-granzyme B into its active form in vitro. 

 

Cysteine cathepsins have also been implicated in the protection of cytotoxic cells from 

the activity of their lytic granules. The acidic environment in the granules prevents the 

granzymes and perforins from getting activated. However, it remains unclear how the CTLs 

remain protected from perforins and granules when they are released into the lytic synapse. 

Cathepsin B (CatB) has shown to play a role in the self-protection mechanism of cytotoxic 

cells during exocytosis of granules (Balaji et al., 2002). This study demonstrated that CatB 

inhibition leads to perforin-dependent death of CTLs, suggesting that CatB might prevent self-

destruction of CTLs when the granules are released into the cytolytic synapse, as depicted in 

Figure 85. CatB is present in the membrane of the secretory granules containing perforins 

and granzymes. Upon exocytosis, the membrane of the lytic granules fuses with the plasma 

membrane and release the granules into the lytic synapse. The CatB present on the granular 

membrane fuses with the plasma membrane of the CTLs and might act on the cytolytic 

molecules by cleaving and deactivating them.  
 

 
Figure 85: Perforin and granzyme secretion from cytotoxic cell in the presence of cathepsin B. 
Adapted from (Griffiths, 2013). 
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However, another study reported that CTLs in CatB deficient mice were able to survive 

and maintain their cytotoxic potential and effector function in vitro and in vivo (Baran et al., 

2006). Therefore the lack of CatB may be compensated by different cysteine cathepsins 

present in granular compartments. Of note, CatW is predominantly expressed in cytotoxic cells 

compared to CatB and has a higher expression in NK cells compared to CD8+ CTLs (Stoeckle 

et al., 2009). However, the enzymatic properties and the function of CatW in cytotoxicity are 

still unclear. 

 

7.9.1 Cathepsin W in cytotoxic cells and cytotoxicity 
 

CatW was initially identified as a cysteine endopeptidase of the papain family that was 

mainly expressed in CD8+ T cells (Linnevers, Smeekens, & Brömme, 1997). Brown et al. 

referred to this enzyme as “lymphopain” due to its restricted expression in cytotoxic T cells 

and NK cells (Brown et al., 1998), suggesting a role in cytotoxic cell-mediated apoptosis. 

Phylogenetic analyses showed that cathepsin F and W share similarities in the amino acid 

sequences compared to other peptidases (Brinkworth et al., 2000). 

 

Wex et al. explored the functional role of CatW by using cytotoxicity assays with the 

NK cell line NK92 against the erythropoietic cell line K562 (Wex et al., 2003). This study used 

anti-sense mediated inhibition to downregulate CatW and observed impaired cytotoxic activity 

in NK92 cells, which was correlated with low levels of CatW. Moreover, they observed that 

CatW protein levels decreased over time from cell lysates during the cytotoxic assay, 

compatibly with a release during the cytotoxic attack. Interestingly, Wex et al. also observed 

that overexpressed CatW was localised to the ER compartment of NK92 cells using 

immunofluorescence experiments. These data suggest that CatW was not directed to the 

target K562 cells during the cytotoxic attack by the NK92, indicating a role within the cytotoxic 

cell. Stoeckle et al. reported that siRNA knockdown of CatW in CD8+ T cells co-incubated with 

target T2 cells loaded with CMV-specific peptides did not perturb target cell killing using a 

chromium release assay (Stoeckle et al., 2009). Furthermore, the authors did not observe an 

effect on IFNγ production after CatW knockdown, suggesting that, although CatW is released 

during target cell killing from human CTLs, it is not a requirement to initiate cytotoxicity 

(Stoeckle et al., 2009). This may also suggest that, in the absence of CatW there may be other 

cathepsins that can compensate for its function. Cathepsin F and W have shown phylogenetic 

similarities as previously reported by Brinkworth et al. (2000); CatF is also expressed in T cells 

and NK cells (Figure 66). CatW expressing cells were also detected in the gastrointestinal 
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tissue of patients with IBD (CD & UC) and autoimmune gastritis as reported by Buhling et al. 

in 2002.  
 

Another paper discussed the potential involvement of CatW in the endo-lysosomal 

pathway. A study published in 2015 described the role of CatW in influenza A virus (IAV) 

replication and reported that CatW is required to release IAV from the late endosome (Edinger 

et al., 2015). The authors observed that the knockdown of CatW led to the accumulation of 

viral nucleoprotein in the endosome, preventing translocation of the viral particles into the 

nucleus. This finding indicates that CatW is present in the endosomal pathway. Together, the 

earlier hypothesis about the role of CatW in cytotoxic granule formation and exocytosis, and 

the results from Edinger et al. suggest a role for CatW in the vesicular transport pathway within 

the cell.  

 
7.9.2 Cathepsin W may be involved in autophagy 
 
          Cathepsins have also been implicated in the autophagy process. Autophagy is a 

constitutive cellular mechanism for compartmentalisation and lysosomal degradation of 

various cytoplasmic components- misfolded proteins, damaged organelles, invading 

pathogens, etc. Autophagic responses are vital intrinsic cellular processes that protect cells 

from internal and external stresses. Autophagy-related genes (ATG) have been linked to 

membrane-trafficking pathways involved in phagocytosis, lysosomal delivery and exocytosis 

of secretory granules (Ma et al., 2013; Levine & Kroemer, 2019). Autophagy also has an 

important role in cellular immunity - especially in the differentiation and activation of immune 

cells, such as APCs and T lymphocytes as reviewed by Ma et al. (2013). Several genetic 

polymorphisms in ATG are also associated with CIDs like SLE (ATG5) (Harley et al., 2008) 

and CD (ATG16L1 and NOD2) (Fritz et al., 2011). Autophagy is suggested to influence the 

expression of IL-23 in driving the gut inflammation in AS patients (Ciccia et al., 2014).  

 

          Cathepsins have been implicated in autophagic processes - impaired CTSB and CTSD 

can cause saposin C deficiency in fibroblasts, leading to the accumulation of autophagosomes 

that is a feature Gaucher disease - of a lysosomal storage disorder (Tatti et al., 2013). Another 

function for autophagy in secretory lysosome exocytosis was reported in osteoclasts. Bone 

resorption mechanism requires secretory lysosome fusion to the specialised osteoclast cell 

membrane during which cathepsin K is released for bone matrix degradation (DeSelm et al., 

2011). It would be interesting to explore whether cathepsin W may have a role in the vesicle 

trafficking observed in CTLs. 
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7.9.3 Cathepsin W may be localized to the compartments of vesicular transport 
pathways 

We observed that CatW is sensitive to both glycosidases Endo H and PNGase F, 

suggesting that CatW possesses high mannose structures (Figure 83). Glycoproteins in the 

ER can acquire high mannose structures, as they pass through the stages of glycosylation. 

Upon reaching the Golgi, glycoproteins tend to lose their high mannose structures. However, 

there is a group of proteins leaving the ER, that retain a high mannose structures, which 

becomes phosphorylated in the Golgi (M6P). These proteins are targeted towards lysosomes 

and vesicular compartments that express M6P-receptors (M6P-R). Therefore, the M6Ps act 

as recognition markers that aid in the transportation of these enzymes to the 

endosomal/lysosomal compartments through recognition by the M6P-R as reviewed by Gary-

Bobo et al. (2007).  Therefore, in the case of CatW, the glycosidase sensitivity may indicate 

three things: (1.) CatW is an ER protein and has a site-specific function within the ER 

compartment, (2.) CatW may have a phosphorylated high mannose conformation, that may 

be targeted to endo-lysosomal compartments, and (3.) some CatW may be in a simple high 

mannose structure and be localized in the ER, and another pool of CatW may adopt M6P 

structures in the Golgi as it moves along the protein trafficking pathway. The second and third 

possibilities, are compatible with a localization of CatW in lysosomes and exocytosis vesicles 

that may perform a potential CTL-related function. 

Our results complement the previous work from Wex et al. (2001) and Ondr & Pham 

(2004), who reported that CatW is sensitive to Endo H, suggesting localisation of CatW to ER. 

Moreover, Stoeckle et al. proposed that CatW is localized to the ER and the Golgi apparatus 

based on immunofluorescence microscopy data (Stoeckle et al., 2009). Edinger et al. (2015) 

showed that cathepsin W is required for release of influenza A virus (IAV) from the late 

endosome for viral replication. This study also observed that CatW was co-localised with 

calnexin (ER-resident protein), and with LAMP1 (Lysosomal-associated membrane protein 1, 

or CD107a) - a marker for late endosome in A549 cells. These studies may have captured the 

different stages of maturation of CatW in the vesicular compartments, which suggests that 

CatW may be processed and transported out of the cell through the trafficking pathway. The 

preprocathespsin W (immature form) may start out in the ER, which is then translocated to the 

Trans-Golgi network (TGN) to be parcelled out to the endosome/lysosome. The acidic pH in 

the endosomal/lysosomal compartment could enable the maturation of CatW. The mature 

form of CatW may then aid in protein degradation and autophagy related events. CatW may 

also have a site-specific function within the organelles during the processing, transport and 

release of lytic molecules from cytotoxic cells (Figure 86). These results along with the 
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suggested role of CatW in cytotoxicity may indicate its potential function in the release of lytic 

granules, however this hypothesis requires further study. 

 
 

 
 
Figure 86: Schematic explaining the hypothetical role of cathepsin W in membrane trafficking 
pathways in cytotoxic cells (Adapted from Levine & Kroemer, 2019; Yadati et al., 2020). 

Conclusion 

The genetic associations in CIDs have implicated the immune system in the pathogenesis of 

these diseases through the identification of several immune function-related genes. However, 

the evidence linking these susceptibility genes to immune function, and the immune cell types 

in which they are expressed have been incompletely explored. We report that the disease-

susceptibility genes are expressed in innate and adaptive immune cells that may be relevant 

to the disease biology of AxSpA. With the eQTL analysis in T cells, we showed that disease-

associated variants: rs658524 and rs12225345 can affect CTSW expression - a nearest gene 

in the susceptibility locus for AS, Pso, CD and UC. We further demonstrated a regulatory role 

for rs12225345 in CTSW expression by altering TF binding motif for NFATC2. This work allows 

us to better understand the mechanism by which variants associated to diseases can 

moderate expression of genes in the susceptibility locus, which could be important in the 

mechanism of CIDs.  
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List of genes in the AID panel 

 
Gene Alias / Previous Symbol 
AAMP  Angio Associated Migratory Cell Protein 
ABHD6  Abhydrolase Domain Containing 6, Acylglycerol Lipase 
ACKR2 CMKBR9,CCBP2;chemokine binding protein 2 
ACOXL acyl-Coenzyme A oxidase-like 
ACSL6 FACL6;fatty-acid-Coenzyme A ligase, long-chain 6 
ADA  Adenosine Deaminase 
ADAM30 a disintegrin and metalloproteinase domain 30 
ADCY3  Adenylate Cyclase 3 
ADCY7  Adenylate Cyclase 7 
AFF3 LAF4;lymphoid nuclear protein related to AF4,AF4/FMR2 family, member 3 
AGAP2 CENTG1;centaurin, gamma 1 
AHI1 Abelson helper integration site 
AHR  Aryl Hydrocarbon Receptor 
AHSA2 AHSA2;AHA1, activator of heat shock 90kDa protein ATPase homolog 2 

(yeast),activator of HSP90 ATPase homolog 2 
AIRE APECED;autoimmune regulator (autoimmune polyendocrinopathy candidiasis 

ectodermal dystrophy) 
AMIGO3  Adhesion Molecule With Ig Like Domain 3 
ANKRD55  Ankyrin Repeat Domain 55 
ANTXR2  ANTXR Cell Adhesion Molecule 2  
APEH D3F15S2,DNF15S2,D3S48E;N-acylaminoacyl-peptide hydrolase 
APOBEC3G apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G 
ARG1 arginase, liver 
ARHGAP30  Rho GTPase Activating Protein 30 
ARID5B AT rich interactive domain 5B (MRF1-like) 
ARPC2 actin related protein 2/3 complex, subunit 2 (34 kD),actin related protein 2/3 

complex subunit 2, 34kDa 
ATF4 TXREB;activating transcription factor 4 (tax-responsive enhancer element B67) 
ATG16L1 APG16L,ATG16L;APG16 autophagy 16-like (S. cerevisiae),ATG16 autophagy 

related 16-like (S. cerevisiae),ATG16 autophagy related 16-like 1 (S. cerevisiae) 

ATG5 APG5L;APG5 (autophagy 5, S. cerevisiae)-like,APG5 autophagy 5-like (S. 
cerevisiae),ATG5 autophagy related 5 homolog (S. cerevisiae) 

ATM ATA,ATDC,ATC,ATD;ataxia telangiectasia mutated (includes complementation 
groups A, C and D),ataxia telangiectasia mutated 

B2M  Beta-2-Microglobulin 
B3GNT2 B3GNT1;UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 
BABAM2 BRE;brain and reproductive organ-expressed (TNFRSF1A modulator) 
BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 
BAD  BCL2 Associated Agonist Of Cell Deat 
BANK1  B Cell Scaffold Protein With Ankyrin Repeats 1 
BATF basic leucine zipper transcription factor, ATF-like 
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BATF3 basic leucine zipper transcription factor, ATF-like 3 
BCL10  BCL10 Immune Signaling Adaptor 
BCL3 D19S37,BCL4 
BCL6 ZNF51;zinc finger protein 51 
BID  BH3 Interacting Domain Death Agonist 
BLK B lymphoid tyrosine kinase 
BLNK  B Cell Linker 
BORCS5 LOH12CR1;loss of heterozygosity, 12, chromosomal region 1 
BSN ZNF231;bassoon (presynaptic cytomatrix protein) 
BTK AGMX1,IMD1;Bruton agammaglobulinemia tyrosine kinase 
BTLA  B And T Lymphocyte Associated 
BTNL2 butyrophilin-like 2 (MHC class II associated),butyrophilin-like 2 
C1QBP HABP1;complement component 1, q subcomponent binding protein 
C1QTNF6 C1q and tumor necrosis factor related protein 6 
C1orf106 C1orf106;chromosome 1 open reading frame 106 
C1orf53  Chromosome 1 Open Reading Frame 53 
C5orf30  Chromosome 5 Open Reading Frame 30 
CALM3 calmodulin 3 (phosphorylase kinase, delta) 
CARD11 caspase recruitment domain family, member 11 
CARD14 PSORS2;psoriasis susceptibility 2,caspase recruitment domain family, member 14 
CARD9 caspase recruitment domain family, member 9 
CARM1  Coactivator Associated Arginine Methyltransferase 1 
CASP1 IL1BC;caspase 1, apoptosis-related cysteine protease (interleukin 1, beta, 

convertase),caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, 
convertase),caspase 1, apoptosis-related cysteine peptidase 

CASP10 caspase 10, apoptosis-related cysteine protease,caspase 10, apoptosis-related 
cysteine peptidase 

CASP2 NEDD2;neural precursor cell expressed, developmentally down-regulated 
2,caspase 2, apoptosis-related cysteine peptidase 

CASP3 caspase 3, apoptosis-related cysteine protease,caspase 3, apoptosis-related 
cysteine peptidase 

CASP8 caspase 8, apoptosis-related cysteine protease,caspase 8, apoptosis-related 
cysteine peptidase 

CAVIN1 PTRF;polymerase I and transcript release factor 
CBLB Cas-Br-M (murine) ectropic retroviral transforming sequence b,Cas-Br-M (murine) 

ecotropic retroviral transforming sequence b,Cbl proto-oncogene B, E3 ubiquitin 
protein ligase 

CCDC116  Coiled-Coil Domain Containing 116 
CCDC88B CCDC88;coiled-coil domain containing 88 
CCL11 SCYA11;small inducible cytokine subfamily A (Cys-Cys), member 11 

(eotaxin),chemokine (C-C motif) ligand 11 
CCL13 SCYA13;small inducible cytokine subfamily A (Cys-Cys), member 13,chemokine 

(C-C motif) ligand 13 
CCL18 SCYA18;small inducible cytokine subfamily A (Cys-Cys), member 18, pulmonary 

and activation-regulated,chemokine (C-C motif) ligand 18 (pulmonary and 
activation-regulated),chemokine (C-C motif) ligand 18 

CCL19 SCYA19;small inducible cytokine subfamily A (Cys-Cys), member 19,chemokine 
(C-C motif) ligand 19 

CCL2 SCYA2;small inducible cytokine A2 (monocyte chemotactic protein 1, homologous 
to mouse Sig-je),chemokine (C-C motif) ligand 2 



Annex I 

 174 

CCL20 SCYA20;small inducible cytokine subfamily A (Cys-Cys), member 20,chemokine 
(C-C motif) ligand 20 

CCL21 SCYA21;small inducible cytokine subfamily A (Cys-Cys), member 21,chemokine 
(C-C motif) ligand 21 

CCL22 SCYA22;small inducible cytokine subfamily A (Cys-Cys), member 22,chemokine 
(C-C motif) ligand 22 

CCL23 SCYA23;small inducible cytokine subfamily A (Cys-Cys), member 23,chemokine 
(C-C motif) ligand 23 

CCL24 SCYA24;small inducible cytokine subfamily A (Cys-Cys), member 24,chemokine 
(C-C motif) ligand 24 

CCL3 SCYA3;small inducible cytokine A3 (homologous to mouse Mip-1a),chemokine (C-
C motif) ligand 3 

CCL4 LAG1,SCYA4;small inducible cytokine A4 (homologous to mouse Mip-
1b),chemokine (C-C motif) ligand 4 

CCL5 D17S136E,SCYA5;small inducible cytokine A5 (RANTES),chemokine (C-C motif) 
ligand 5 

CCL7 SCYA6,SCYA7;small inducible cytokine A7 (monocyte chemotactic protein 
3),chemokine (C-C motif) ligand 7 

CCL8 SCYA8;small inducible cytokine subfamily A (Cys-Cys), member 8 (monocyte 
chemotactic protein 2),chemokine (C-C motif) ligand 8 

CCNY C10orf9;chromosome 10 open reading frame 9 
CCR1 SCYAR1,CMKBR1;chemokine (C-C motif) receptor 1 
CCR2 CMKBR2;chemokine (C-C motif) receptor 2 
CCR4 chemokine (C-C motif) receptor 4 
CCR5 CMKBR5;chemokine (C-C motif) receptor 5,chemokine (C-C motif) receptor 5 

(gene/pseudogene) 
CCR6 STRL22;chemokine (C-C motif) receptor 6 
CCR7 CMKBR7,EBI1;chemokine (C-C motif) receptor 7 
CD19 CD19 antigen 
CD209 CD209 antigen 
CD226 CD226 antigen 
CD244 natural killer cell receptor 2B4,CD244 natural killer cell receptor 2B4,CD244 

molecule, natural killer cell receptor 2B4 
CD247 CD3Z;CD3z antigen, zeta polypeptide (TiT3 complex),CD247 antigen 
CD27 TNFRSF7;tumor necrosis factor receptor superfamily, member 7 
CD274 PDCD1LG1;programmed cell death 1 ligand 1,CD274 antigen 
CD28 CD28 antigen (Tp44) 
CD40 TNFRSF5;tumor necrosis factor receptor superfamily, member 5,CD40 molecule, 

TNF receptor superfamily member 5 
CD40LG HIGM1,IMD3,TNFSF5;tumor necrosis factor (ligand) superfamily, member 5 

(hyper-IgM syndrome) 
CD44 MIC4,MDU2,MDU3;CD44 antigen (homing function and Indian blood group 

system) 
CD45R0 CD45 
CD45RA CD45 
CD45RB CD45 
CD48 BCM1;CD48 antigen (B-cell membrane protein),CD48 molecule  
CD5 LEU1;CD5 antigen (p56-62) 
CD58 LFA3;CD58 antigen, (lymphocyte function-associated antigen 3) 
CD6 CD6 antigen 
CD69 CD69 antigen (p60, early T-cell activation antigen) 
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CD80 CD28LG,CD28LG1;CD80 antigen (CD28 antigen ligand 1, B7-1 antigen),CD80 
molecule  

CD83 CD83 antigen (activated B lymphocytes, immunoglobulin superfamily),CD83 
molecule  

CD86 CD28LG2;CD86 antigen (CD28 antigen ligand 2, B7-2 antigen) 
CDC37 CDC37 (cell division cycle 37, S. cerevisiae, homolog),CDC37 cell division cycle 

37 homolog (S. cerevisiae),cell division cycle 37 homolog (S. cerevisiae) 

CDK2  Cyclin Dependent Kinase 2 
CDK6  Cyclin Dependent Kinase 6 
CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 
CEBPB TCF5;CCAAT/enhancer binding protein (C/EBP), beta 
CEBPG CCAAT/enhancer binding protein (C/EBP), gamma 
CENPO  Centromere Protein O 
CEP250 CEP2;centrosomal protein 2,centrosomal protein 250kDa 
CEP57 centrosomal protein 57kDa 
CFLAR CASP8AP1;CASP8 and FADD-like apoptosis regulator 
CHUK TCF16 
CIITA MHC2TA;MHC class II transactivator,class II, major histocompatibility complex, 

transactivator 
CISD1 C10orf70,ZCD1;chromosome 10 open reading frame 70,zinc finger, CDGSH-type 

domain 1 
CISH cytokine inducible SH2-containing protein 
CLEC16A KIAA0350;KIAA0350,C-type lectin domain family 16, member A,C-type lectin 

domain family 16 member A 
CLEC4A CLECSF6;C-type (calcium dependent, carbohydrate-recognition domain) lectin, 

superfamily member 6,C-type lectin domain family 4, member A 

CLEC4E CLECSF9;C-type (calcium dependent, carbohydrate-recognition domain) lectin, 
superfamily member 9,C-type lectin domain family 4, member E 

CLEC5A CLECSF5;C-type (calcium dependent, carbohydrate-recognition domain) lectin, 
superfamily member 5,C-type lectin domain family 5, member A,C-type lectin 
domain family 5 member A 

CLEC6A CLECSF10;C-type (calcium dependent, carbohydrate-recognition domain) lectin, 
superfamily member 10,C-type lectin domain family 6, member A,C-type lectin 
domain family 6 member A 

CLEC7A CLECSF12;C-type (calcium dependent, carbohydrate-recognition domain) lectin, 
superfamily member 12,C-type lectin domain family 7, member A,C-type lectin 
domain family 7 member A 

COG6  Component Of Oligomeric Golgi Complex 6 
CPEB4  Cytoplasmic Polyadenylation Element Binding Protein 4 
CREM  CAMP Responsive Element Modulator 
CRTC3  CREB Regulated Transcription Coactivator 3 
CSF1 colony stimulating factor 1 (macrophage) 
CSF1R FMS;McDonough feline sarcoma viral (v-fms) oncogene homolog 
CSF2 colony stimulating factor 2 (granulocyte-macrophage) 
CSF2RB IL3RB;colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-

macrophage) 
CSF3 GCSF,G-CSF,C17orf33;chromosome 17 open reading frame 33,colony stimulating 

factor 3 (granulocyte) 
CSF3R CD114;colony stimulating factor 3 receptor (granulocyte) 
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CSK c-src tyrosine kinase,CSK, non-receptor tyrosine kinase 
CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small 

phosphatase 1 
CTLA4 CELIAC3,IDDM12;celiac disease 3,insulin-dependent diabetes mellitus 12 
CTNNB1 CTNNB;catenin (cadherin-associated protein), beta 1 (88kD),catenin (cadherin-

associated protein), beta 1, 88kDa,catenin (cadherin-associated protein), beta 1 

CTSH CPSB 
CTSW cathepsin W (lymphopain) 
CTSZ  cathepsin Z 
CX3CR1 GPR13,CMKBRL1;chemokine (C-X3-C) receptor 1,chemokine (C-X3-C motif) 

receptor 1 
CXCL1 MGSA,GRO1,FSP;GRO1 oncogene (melanoma growth stimulating activity, 

alpha),fibroblast secretory protein,chemokine (C-X-C motif) ligand 1 (melanoma 
growth stimulating activity, alpha) 

CXCL10 INP10,SCYB10;small inducible cytokine subfamily B (Cys-X-Cys), member 
10,chemokine (C-X-C motif) ligand 10 

CXCL11 SCYB9B,SCYB11;small inducible cytokine subfamily B (Cys-X-Cys), member 
11,chemokine (C-X-C motif) ligand 11 

CXCL13 SCYB13;small inducible cytokine B subfamily (Cys-X-Cys motif), member 13 (B-
cell chemoattractant),chemokine (C-X-C motif) ligand 13 

CXCL2 GRO2;GRO2 oncogene,chemokine (C-X-C motif) ligand 2 
CXCL3 GRO3;GRO3 oncogene,chemokine (C-X-C motif) ligand 3 
CXCL5 SCYB5;small inducible cytokine subfamily B (Cys-X-Cys), member 5 (epithelial-

derived neutrophil-activating peptide 78),chemokine (C-X-C motif) ligand 5 

CXCL8 IL8;interleukin 8,chemokine (C-X-C motif) ligand 8 
CXCL9 CMK,MIG;monokine induced by gamma interferon,chemokine (C-X-C motif) ligand 

9 
CXCR1 CMKAR1,IL8RA;interleukin 8 receptor, alpha,chemokine (C-X-C motif) receptor 1 
CXCR2 IL8RB;interleukin 8 receptor, beta,chemokine (C-X-C motif) receptor 2 
CXCR3 GPR9;G protein-coupled receptor 9,chemokine (C-X-C motif) receptor 3 
CXCR4 chemokine (C-X-C motif), receptor 4 (fusin),chemokine (C-X-C motif) receptor 4 
CXCR5 BLR1;Burkitt lymphoma receptor 1, GTP-binding protein,Burkitt lymphoma 

receptor 1, GTP binding protein (chemokine (C-X-C motif) receptor 5),chemokine 
(C-X-C motif) receptor 5 

CXCR6 chemokine (C-X-C motif) receptor 6 
CXorf21  Chromosome X Open Reading Frame 21 
DAP  Death Associated Protein 
DBP D site of albumin promoter (albumin D-box) binding protein 
DCLRE1B DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae) 
DDAH1  Dimethylarginine Dimethylaminohydrolase 1 
DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 
DDX6 HLR2;DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 6 (RNA helicase, 

54kD),DEAD (Asp-Glu-Ala-Asp) box polypeptide 6,DEAD (Asp-Glu-Ala-Asp) box 
helicase 6 

DENND1B FAM31B,C1orf218;family with sequence similarity 31, member B,chromosome 1 
open reading frame 218,DENN/MADD domain containing 1B 

DEXI Dexi homolog (mouse) 
DGKA DAGK,DAGK1;diacylglycerol kinase, alpha (80kD),diacylglycerol kinase, alpha 

80kDa 



Annex I 

 177 

DHCR7 SLOS;Smith-Lemli-Opitz syndrome 
DLD LAD,GCSL;dihydrolipoamide dehydrogenase (E3 component of pyruvate 

dehydrogenase complex, 2-oxo-glutarate complex, branched chain keto acid 
dehydrogenase complex) 

DLK1 delta-like homolog (Drosophila),delta-like 1 homolog (Drosophila) 
DNASE1L3 deoxyribonuclease I like 3 
DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha 
DOK3  Docking Protein 3 
DPP4 CD26,ADCP2;dipeptidylpeptidase IV (CD26, adenosine deaminase complexing 

protein 2),adenosine deaminase complexing protein 2,dipeptidyl-peptidase 4 

DUSP4  Dual Specificity Phosphatase 4 
EBI3  Epstein-Barr Virus Induced 3 
EDEM3 C1orf22;chromosome 1 open reading frame 22,ER degradation enhancer, 

mannosidase alpha-like 3 
EFR3B KIAA0953;KIAA0953,EFR3 homolog B (S. cerevisiae) 
EGR1  Early Growth Response 1 
EGR2 KROX20;early growth response 2 (Krox-20 homolog, Drosophila) 
EIF3C EIF3S8;eukaryotic translation initiation factor 3, subunit 8, 110kDa,eukaryotic 

translation initiation factor 3, subunit C 
ELMO1 engulfment and cell motility 1 (ced-12 homolog, C. elegans) 
ELP1 DYS,IKBKAP;dysautonomia (Riley-Day syndrome, hereditary sensory autonomic 

neuropathy type III),inhibitor of kappa light polypeptide gene enhancer in B-cells, 
kinase complex-associated protein 

EMSY C11orf30;chromosome 11 open reading frame 30 
ENTPD1 CD39 
EOMES eomesodermin (Xenopus laevis) homolog 
EPO  Erythropoietin 
EPS15L1 epidermal growth factor receptor pathway substrate 15-like 1 
ERAP1  Endoplasmic Reticulum Aminopeptidase 1 
ERAP2  Endoplasmic Reticulum Aminopeptidase 2 
ERBB3 LCCS2;lethal congenital contracture syndrome 2,v-erb-b2 avian erythroblastic 

leukemia viral oncogene homolog 3 
ERRFI1  ERBB Receptor Feedback Inhibitor 1 
ESRRA ESRL1 
ETS1 EWSR2;v-ets avian erythroblastosis virus E26 oncogene homolog 1 
ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian),v-ets avian 

erythroblastosis virus E26 oncogene homolog 2 
ETV7 ets variant gene 7 (TEL2 oncogene) 
EVI5  Ecotropic Viral Integration Site 5 
EXOC2 SEC5L1;SEC5-like 1 (S. cerevisiae) 
EXTL2 exostoses (multiple)-like 2 
F11R JAM1;junctional adhesion molecule 1 
FADD Fas (TNFRSF6)-associated via death domain 
FADS1 LLCDL1 
FADS2 LLCDL2 
FADS3 LLCDL3 
FAM213A C10orf58;chromosome 10 open reading frame 58,family with sequence similarity 

213, member A 
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FAM213B C1orf93;chromosome 1 open reading frame 93,family with sequence similarity 
213, member B 

FAM98B family with sequence similarity 98, member B 
FAS FAS1,APT1,TNFRSF6;tumor necrosis factor receptor superfamily, member 6,Fas 

(TNF receptor superfamily, member 6) 
FASLG APT1LG1,TNFSF6;tumor necrosis factor (ligand) superfamily, member 6,Fas 

ligand (TNF superfamily, member 6) 
FBXL19  F-Box And Leucine Rich Repeat Protein 19 
FCER1A FCE1A;Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide 
FCER1G Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide 
FCGR1A/B Fc fragment of IgG, high affinity Ia, receptor for (CD64),Fc fragment of IgG, high 

affinity Ia, receptor (CD64) 
FCGR2A/C Fc fragment of IgG, low affinity IIc, receptor for (CD32),Fc fragment of IgG, low 

affinity IIc, receptor for (CD32) (gene/pseudogene) 
FCGR2B FCG2,FCGR2;Fc fragment of IgG, low affinity IIb, receptor for (CD32),Fc fragment 

of IgG, low affinity IIb, receptor (CD32) 
FCGR3A/B FCGR3,FCG3;Fc fragment of IgG, low affinity IIIa, receptor for (CD16),Fc 

fragment of IgG, low affinity IIIa, receptor (CD16a) 
FCGRT Fc fragment of IgG, receptor, transporter, alpha 
FCMR FAIM3;Fas apoptotic inhibitory molecule 3 
FCRL1 Fc receptor-like 1 
FIGNL1 fidgetin-like 1 
FKBP5 FK506-binding protein 5 
FLI1 Friend leukemia virus integration 1 
FLRT1  Fibronectin Leucine Rich Transmembrane Protein 1 
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog,FBJ murine 

osteosarcoma viral oncogene homolog 
FOSL1 FOS like antigen 1 
FOSL2 FOS like antigen 2 
FOXO3 FKHRL1,FOXO3A 
FOXP1  Forkhead Box P1 
FOXP3 IPEX;immune dysregulation, polyendocrinopathy, enteropathy, X-linked 
FUT2 SE;fucosyltransferase 2 (secretor status included) 
FYN FYN oncogene related to SRC, FGR, YES 
GALC galactosylceramidase (Krabbe disease) 
GART PRGS,PGFT 
GATA3 GATA-binding protein 3 
GBP1 guanylate binding protein 1, interferon-inducible, 67kDa,guanylate binding protein 

1, interferon-inducible 
GBP5  guanylate binding protein 5 
GFI1 ZNF163;growth factor independent 1 
GLIS3 ZNF515;zinc finger protein 515 
GMPPB  GDP-Mannose Pyrophosphorylase B 
GNA12 guanine nucleotide binding protein (G protein) alpha 12 
GNLY LAG2 
GPR18  G Protein-Coupled Receptor 18 
GPR183 EBI2;Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled 

receptor) 
GPR25  G Protein-Coupled Receptor 25 
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GPR35  G Protein-Coupled Receptor 35 
GPR65  G Protein-Coupled Receptor 65 
GPX1  Glutathione Peroxidase 1 
GPX4 glutathione peroxidase 4 (phospholipid hydroperoxidase) 
GSDMA GSDM,GSDM1;gasdermin,gasdermin 1 
GSDMB GSDML;gasdermin-like 
GZMA HFSP,CTLA3;granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine 

esterase 3) 
GZMB CTLA1,CSPB;granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine 

esterase 1) 
GZMK granzyme K (serine protease, granzyme 3; tryptase II),granzyme K (granzyme 3; 

tryptase II) 
HCK hemopoietic cell kinase 
HHAT  Hedgehog Acyltransferase 
HHEX PRHX 
HNF4A TCF14,MODY,MODY1 
HSPA6 heat shock 70kD protein 6 (HSP70B'),heat shock 70kDa protein 6 (HSP70B') 
ICAM1  Intercellular Adhesion Molecule 1 
ICAM2  Intercellular Adhesion Molecule 2 
ICAM3  Intercellular Adhesion Molecule 3 
ICAM4 intercellular adhesion molecule 4 
ICAM5 TLCN 
ICOS  Inducible T Cell Costimulator 
ICOSLG  Inducible T Cell Costimulator ligand 
IDO1 IDO,INDO;indoleamine-pyrrole 2,3 dioxygenase 
IFI16  Interferon Gamma Inducible Protein 16 
IFI30 interferon gamma inducible protein 30 
IFI35 interferon-induced protein 35 
IFIH1 interferon induced with helicase C domain 1,interferon induced, with helicase C 

domain 1 
IFIT2 IFI54,G10P2;interferon-induced protein with tetratricopeptide repeats 2 
IFITM1 IFI17;interferon induced transmembrane protein 1 (9-27) 
IFNA1/13  Interferon Alpha 1/13 
IFNA2  Interferon Alpha 2 
IFNAR1 IFNAR;interferon (alpha, beta and omega) receptor 1 
IFNAR2 IFNABR;interferon (alpha, beta and omega) receptor 2 
IFNB1 IFNB;interferon, beta 1, fibroblast 
IFNG  Interferon Gamma 
IFNGR1 Interferon Gamma Receptor 1 
IFNGR2 IFNGT1;interferon gamma receptor 2 (interferon gamma transducer 1) 
IFNL1 IL29;interleukin 29,interleukin 29 (interferon, lambda 1) 
IFNL2/3 IL28B;interleukin 28B,interleukin 28B (interferon, lambda 3) 
IFNLR1 IL28RA;interleukin 28 receptor, alpha,interleukin 28 receptor, alpha (interferon, 

lambda receptor),interferon, lambda receptor 1 
IGFBP1 IBP1;insulin-like growth factor binding protein 1 
IGFBP3 insulin-like growth factor binding protein 3 
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IKBKB inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 
IKBKE inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 
IKBKG IP2,IP1;incontinentia pigmenti,inhibitor of kappa light polypeptide gene enhancer 

in B-cells, kinase gamma 
IKZF1 ZNFN1A1;zinc finger protein, subfamily 1A, 1 (Ikaros),IKAROS family zinc finger 1 

(Ikaros) 
IKZF2 ZNFN1A2;zinc finger protein, subfamily 1A, 2 (Helios),IKAROS family zinc finger 2 

(Helios) 
IKZF3 ZNFN1A3;zinc finger protein, subfamily 1A, 3 (Aiolos),IKAROS family zinc finger 3 

(Aiolos) 
IKZF4 ZNFN1A4;zinc finger protein, subfamily 1A, 4 (Eos),IKAROS family zinc finger 4 

(Eos) 
IL10  interleukin 10 
IL10RA IL10R;interleukin 10 receptor, alpha 
IL10RB CRFB4,D21S58,D21S66;interleukin 10 receptor, beta 
IL11RA interleukin 11 receptor, alpha 
IL12A NKSF1;interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte 

maturation factor 1, p35) 
IL12B NKSF2;interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic lymphocyte 

maturation factor 2, p40) 
IL12RB1 IL12RB;interleukin 12 receptor, beta 1 
IL12RB2 interleukin 12 receptor, beta 2 
IL13  interleukin 13 
IL13RA1 interleukin 13 receptor, alpha 1 
IL15  interleukin 15 
IL15RA interleukin 15 receptor, alpha 
IL16 interleukin 16 (lymphocyte chemoattractant factor) 
IL17A CTLA8,IL17;interleukin 17 (cytotoxic T-lymphocyte-associated serine esterase 8) 
IL17B  interleukin 17B 
IL17F  interleukin 17F 
IL18 interleukin 18 (interferon-gamma-inducing factor) 
IL18R1  interleukin 18 receptor 1 
IL18RAP  Interleukin 18 Receptor Accessory Protein 
IL1A interleukin 1A 
IL1B  interleukin 1B 
IL1R1 IL1R,IL1RA;interleukin 1 receptor, type I 
IL1R2 IL1RB;interleukin 1 receptor, type II 
IL1RAP  Interleukin 1 Receptor Accessory Protein 
IL1RL1  Interleukin 1 Receptor Like 1 
IL1RN  Interleukin 1 Receptor Antagonist 
IL2  Interleukin 2 
IL20RB FNDC6;fibronectin type III domain containing 6,interleukin 20 receptor 

beta,interleukin 20 receptor beta subunit 
IL21  Interleukin 21 
IL21R  Interleukin 21 recepter 
IL22  Interleukin 22 
IL23A interleukin 23, alpha subunit p19 
IL23R  Interleukin 23 receptor 
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IL24 Interleukin 24 
IL27 IL30;interleukin 30 
IL2RA IL2R,IDDM10;insulin-dependent diabetes mellitus 10,interleukin 2 receptor, alpha 
IL2RB IL15RB;interleukin 15 receptor, beta,interleukin 2 receptor, beta 
IL2RG SCIDX1,IMD4,CIDX;severe combined immunodeficiency,combined 

immunodeficiency, X-linked,interleukin 2 receptor, gamma 
IL3 interleukin 3 (colony-stimulating factor, multiple) 
IL31  Interleukin 31 
IL32  Interleukin 32 
IL33 C9orf26;chromosome 9 open reading frame 26 (NF-HEV) 
IL4  Interleukin 4 
IL4R  Interleukin 4 receptor 
IL5 interleukin 5 (colony-stimulating factor, eosinophil) 
IL6 IFNB2;interleukin 6 (interferon, beta 2) 
IL6R  Interleukin 6 receptor 
IL6ST interleukin 6 signal transducer (gp130, oncostatin M receptor) 
IL7  Interleukin 7 
IL7R  Interleukin 7 receptor 
IL9  Interleukin 9 
ILF3 interleukin enhancer binding factor 3, 90kD,interleukin enhancer binding factor 3, 

90kDa 
INPP5B inositol polyphosphate-5-phosphatase, 75kD,inositol polyphosphate-5-

phosphatase, 75kDa 
INPP5D inositol polyphosphate-5-phosphatase, 145kD,inositol polyphosphate-5-

phosphatase, 145kDa 
INPP5E JBTS1;Joubert syndrome 1,inositol polyphosphate-5-phosphatase, 72 kDa 
IP6K1 IHPK1;inositol hexaphosphate kinase 1 
IP6K2 IHPK2;inositol hexaphosphate kinase 2 
IPMK  Inositol Polyphosphate Multikinase 
IQCB1 IQ calmodulin-binding motif containing 1 
IQGAP1  IQ Motif Containing GTPase Activating Protein 1 
IRAK1  Interleukin 1 Receptor Associated Kinase 1 
IRAK2   Interleukin 1 Receptor Associated Kinase 2 
IRAK3 interleukin-1 receptor-associated kinase 3 
IRAK4   Interleukin 1 Receptor Associated Kinase 4 
IRF1  Interferon Regulatory Factor 1 
IRF3  Interferon Regulatory Factor 2 
IRF4 Interferon Regulatory Factor 4 
IRF5  Interferon Regulatory Factor 5 
IRF7  Interferon Regulatory Factor 7 
IRF8 ICSBP1;interferon consensus sequence binding protein 1 
ITGA2B GP2B;integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen 

CD41B),integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen 
CD41) 

ITGA4 CD49D;integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 
ITGA5 FNRA;integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 
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ITGA6 integrin, alpha 6 
ITGAE integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1; alpha 

polypeptide) 
ITGAL CD11A;integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated 

antigen 1; alpha polypeptide) 
ITGAM CR3A,CD11B;integrin, alpha M (complement component receptor 3, alpha; also 

known as CD11b (p170), macrophage antigen alpha polypeptide),integrin, alpha M 
(complement component 3 receptor 3 subunit) 

ITGAX CD11C;integrin, alpha X (antigen CD11C (p150), alpha polypeptide),integrin, 
alpha X (complement component 3 receptor 4 subunit) 

ITGB1 FNRB,MSK12,MDF2;integrin, beta 1 (fibronectin receptor, beta polypeptide, 
antigen CD29 includes MDF2, MSK12) 

ITGB2 CD18,MFI7;integrin, beta 2 (antigen CD18 (p95), lymphocyte function-associated 
antigen 1; macrophage antigen 1 (mac-1) beta subunit),integrin, beta 2 
(complement component 3 receptor 3 and 4 subunit) 

ITGB7 integrin, beta 7 
ITGB8 integrin, beta 8 
ITIH4 ITIHL1;inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein) 
ITPKA inositol 1,4,5-trisphosphate 3-kinase A 
JAK1 Janus Kinase 1 
JAK2  Janus Kinase 2 
JAK3  Janus Kinase 3 
JAZF1  JAZF Zinc Finger 1 
JRKL jerky (mouse) homolog-like, 
JUN v-jun avian sarcoma virus 17 oncogene homolog,jun oncogene 
JUNB  JunB Proto-Oncogene, AP-1 Transcription Factor Subunit 
KCNJ2 potassium inwardly-rectifying channel, subfamily J, member 2 
KEAP1  Kelch Like ECH Associated Protein 1 
KIAA1841   
KIF21B  Kinesin Family Member 21B 
KIR2DL1 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 1 
KLF4 Kruppel-like factor 4 (gut) 
LAG3 lymphocyte-activation gene 3 
LAMP3 lysosomal-associated membrane protein 3 
LAT linker for activation of T cells 
LBH limb bud and heart development homolog (mouse) 
LCE3B  Late Cornified Envelope 3B 
LCE3D SPRL6B,SPRL6A;small proline rich-like (epidermal differentiation complex) 6B 
LCK lymphocyte-specific protein tyrosine kinase 
LCP2 lymphocyte cytosolic protein 2 
LEF1 lymphoid enhancer-binding factor 1 
LGALS3 LGALS2;lectin, galactoside-binding, soluble, 3 
LGALS9 lectin, galactoside-binding, soluble, 9 
LIF leukemia inhibitory factor 
LILRB4 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), 

member 4 
LIME1  Lck Interacting Transmembrane Adaptor 1 
LITAF lipopolysaccharide-induced TNF factor 



Annex I 

 183 

LNPEP leucyl/cystinyl aminopeptidase 
LPXN  Leupaxin 
LSP1  Lymphocyte Specific Protein 1 
LST1  Leukocyte Specific Transcript 1 
LTA TNFB;lymphotoxin alpha (TNF superfamily, member 1) 
LTB TNFC 
LTB4R P2RY7,GPR16,CMKRL1 
LTB4R2  Leukotriene B4 Receptor 2 
LTBR Lymphotoxin Beta Receptor  
LYST CHS1;Chediak-Higashi syndrome 1 
MAF v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog 
MALT1 MLT;mucosa associated lymphoid tissue lymphoma translocation gene 1 
MAML2 mastermind (Drosophila)-like 2,mastermind-like 2 (Drosophila) 
MAMSTR  MEF2 Activating Motif And SAP Domain Containing Transcriptional Regulator 
MANBA mannosidase, beta A, lysosomal 
MAP3K14  Mitogen-Activated Protein Kinase Kinase Kinase 14 
MAP3K7 TAK1 
MAP3K8 COT,ESTF 
MAP4K1  Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1 
MAP4K2 Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 
MAP4K4 Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 
MAPK1 PRKM2,PRKM1 
MAPK11 PRKM11 
MAPK14 CSPB1,CSBP1,CSBP2 
MAPK3 PRKM3 
MAPK8 PRKM8 
MAPKAPK2  MAPK Activated Protein Kinase 2 
MARCO  Macrophage Receptor With Collagenous Structure 
MBD2  Methyl-CpG Binding Domain Protein 2 
MBP  Myelin Basic Protein 
MECP2 RTT,MRX16,MRX79;mental retardation, X-linked 16,mental retardation, X-linked 

79,Rett syndrome,methyl CpG binding protein 2 (Rett syndrome),methyl CpG 
binding protein 2 

MED1 TRIP2,PPARGBP,PPARBP;PPAR binding protein 
MERTK c-mer proto-oncogene tyrosine kinase 
METTL1 C12orf1;methyltransferase-like 1 
MICB  MHC Class I Polypeptide-Related Sequence B 
MIF GLIF;macrophage migration inhibitory factor (glycosylation-inhibiting factor) 
MLH3 mutL (E. coli) homolog 3,mutL homolog 3 (E. coli) 
MLX TCFL4;transcription factor-like 4,MAX-like protein X 
MMEL1 MMEL2;membrane metallo-endopeptidase-like 2 
MMP3 STMY1,STMY;matrix metalloproteinase 3 (stromelysin 1, 

progelatinase),stromelysin 1 
MMP9 CLG4B;matrix metalloproteinase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV 

collagenase) 
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MPV17L2  MPV17 Mitochondrial Inner Membrane Protein Like 2 
MR1 HLALS;major histocompatibility complex, class I-like sequence 
MST1 D3F15S2,HGFL,DNF15S2;hepatocyte growth factor-like 
MST1R RON,PTK8;PTK8 protein tyrosine kinase 8 
MSTO1 misato homolog 1 (Drosophila) 
MTF1  Metal Regulatory Transcription Factor 1 
MTMR3  Myotubularin Related Protein 3 
MUC1 PUM,MCKD1;mucin 1, transmembrane,medullary cystic kidney disease 1 

(autosomal dominant) 
MX1 myxovirus (influenza) resistance 1 
MYC v-myc avian myelocytomatosis viral oncogene homolog 
MYD88 myeloid differentiation primary response gene (88) 
MYRF C11orf9;chromosome 11 open reading frame 9 
NAA25 C12orf30;chromosome 12 open reading frame 30 
NADSYN1  NAD Synthetase 1 
NCF2 neutrophil cytosolic factor 2 (65kD, chronic granulomatous disease, autosomal 2) 
NCOA5  Nuclear Receptor Coactivator 5 
NDFIP1  Nedd4 Family Interacting Protein 1 
NDUFAF1 NADH dehydrogenase (ubiquinone) complex I, assembly factor 1 
NFATC1 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 
NFATC2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 
NFATC3 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 
NFIL3 IL3BP1 
NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 
NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 
NFKBIA NFKBI;nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 

alpha 
NFKBIE nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon 
NFKBIL1 NFKBIL;nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor-like 1 
NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 
NKX2-3 NKX2C;NK-2 (Drosophila) homolog C,NK2 transcription factor related, locus 3 

(Drosophila) 
NLRP2 NALP2;NACHT, leucine rich repeat and PYD containing 2 
NLRP3 C1orf7,CIAS1;cold autoinflammatory syndrome 1 
NOD1 CARD4;caspase recruitment domain family, member 4 
NOD2 IBD1,CARD15;caspase recruitment domain family, member 15 
NOS2 NOS2A;nitric oxide synthase 2A (inducible, hepatocytes),nitric oxide synthase 2, 

inducible 
NOTCH1 TAN1;Notch (Drosophila) homolog 1 (translocation-associated),Notch homolog 1, 

translocation-associated (Drosophila) 
NOTCH2 Notch (Drosophila) homolog 2,Notch homolog 2 (Drosophila) 
NPEPPS  Aminopeptidase Puromycin Sensitive 
NRP1  Neuropilin 1 
NUPR1  Nuclear Protein 1, Transcriptional Regulator 
NUSAP1  Nucleolar And Spindle Associated Protein 1 
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NXPE1 FAM55A;family with sequence similarity 55, member A,neurexophilin and PC-
esterase domain family, member 1 

NXPE4 neurexophilin and PC-esterase domain family, member 4 
ODF3B   
OR5B21 olfactory receptor, family 5, subfamily B, member 21 
ORMDL3 ORM1 (S. cerevisiae)-like 3,ORM1-like 3 (S. cerevisiae) 
OSM   Oncostatin M 
OSMR  Oncostatin M Receptor 
P2RY10 purinergic receptor P2Y, G-protein coupled, 10,purinergic receptor P2Y10 
PADI4 PADI5;peptidyl arginine deiminase, type V,peptidyl arginine deiminase, type IV 
PARK7 Parkinson disease (autosomal recessive, early onset) 7,parkinson protein 7 
PAX5 paired box gene 5 (B-cell lineage specific activator protein),paired box gene 5 (B-

cell lineage specific activator) 
PDCD1 SLEB2;systemic lupus erythematosus susceptibility 2 
PDCD1LG2  Programmed Cell Death 1 Ligand 2 
PDCD2  Programmed Cell Death 2 
PDLIM4  PDZ And LIM Domain 4 
PF4 platelet factor 4 
PFKFB4  6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 
PHACTR2 C6orf56;chromosome 6 open reading frame 56 
PHGDH  Phosphoglycerate Dehydrogenase 
PHRF1 RNF221 
PHTF1 PHTF 
PIGR  Polymeric Immunoglobulin Receptor 
PITPNM2 phosphatidylinositol transfer protein, membrane associated 2 
PLAU  Plasminogen Activator, Urokinase 
PLAUR  Plasminogen Activator, Urokinase Receptor 
PLCG2 phospholipase C, gamma 2 (phosphatidylinositol-specific) 
PLCH2 PLCL4;phospholipase C-like 4,phospholipase C, eta 2 
PLCL1 PLCE;phospholipase C, epsilon,phospholipase C-like 1,phospholipase C like 1 
PLCL2 PLCE2;phospholipase C, epsilon 2,phospholipase C-like 2 
PLD2  Phospholipase D2 
PLEK  Pleckstrin 
PLEKHG5 pleckstrin homology domain containing, family G (with RhoGef domain) member 5 
PLTP  Phospholipid Transfer Protein 
PMPCA INPP5E;inositol polyphosphate-5-phosphatase, 72 kD,peptidase (mitochondrial 

processing) alpha 
PNKD paroxysmal nonkinesiogenic dyskinesia 
PNMT PENT 
POLI RAD3OB,RAD30B;polymerase (DNA directed) iota,polymerase (DNA) iota 
POU3F1 OTF6;POU domain class 3, transcription factor 1 
PPARG peroxisome proliferative activated receptor, gamma,peroxisome proliferator-

activated receptor gamma 
PPIL4 peptidylprolyl isomerase (cyclophilin)-like 4 
PRDM1 BLIMP1;PR domain containing 1, with ZNF domain,PR domain 1 
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PRDX5  Peroxiredoxin 5 
PRF1 perforin 1 (pore forming protein) 
PRKCB PRKCB2,PKCB,PRKCB1;protein kinase C, beta 1,protein kinase C, beta 
PRKCD protein kinase C, delta 
PRKCH PRKCL;protein kinase C, eta 
PRKCQ protein kinase C, theta 
PRM3  Protamine 3 
PROCR protein C receptor, endothelial 
PRSS53  Serine Protease 53 
PTGDR2 GPR44;G protein-coupled receptor 44 
PTGER4 prostaglandin E receptor 4 (subtype EP4) 
PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 

cyclooxygenase) 
PTK2 PTK2 protein tyrosine kinase 2 
PTPN11 NS1;Noonan syndrome 1 
PTPN2 PTPT 
PTPN22 PTPN8;protein tyrosine phosphatase, non-receptor type 8,protein tyrosine 

phosphatase, non-receptor type 22 (lymphoid) 
PTPN6  Protein Tyrosine Phosphatase Non-Receptor Type 6 
PTPRK  Protein Tyrosine Phosphatase Receptor Type K 
PVT1 pvt-1 (murine) oncogene homolog, MYC activator,Pvt1 oncogene homolog 

(mouse) 
PXK PX domain containing serine/threonine kinase 
RABEP2  Ras Interacting Protein 1 
RAC2 ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein 

Rac2) 
RAD51B RAD51L1;RAD51 (S. cerevisiae)-like 1,RAD51-like 1 (S. cerevisiae),RAD51 

homolog B (S. cerevisiae) 
RAF1 v-raf-1 murine leukemia viral oncogene homolog 1 
RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 
RASIP1   
RASSF5 Ras association (RalGDS/AF-6) domain family member 5 
RAVER1 ribonucleoprotein, PTB-binding 1 
RBM17  RNA Binding Motif Protein 17 
RBPJ IGKJRB1,RBPSUH;recombining binding protein suppressor of hairless 

(Drosophila) 
RCAN1 DSCR1;Down syndrome critical region gene 1 
REL v-rel avian reticuloendotheliosis viral oncogene homolog 
RELA NFKB3;nuclear factor of kappa light polypeptide gene enhancer in B-cells 3 
RELB v-rel avian reticuloendotheliosis viral oncogene homolog B (nuclear factor of kappa 

light polypeptide gene enhancer in B-cells 3) 
REV3L REV3 (yeast homolog)-like, catalytic subunit of DNA polymerase zeta,REV3-

like,REV3-like, polymerase (DNA directed),  
RGS1 IER1;regulator of G-protein signalling 1,regulator of G-protein signaling 1 
RGS14 regulator of G-protein signalling 14,regulator of G-protein signaling 14 
RIMBP3  RIMS Binding Protein 3 
RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1 
RIPK2 receptor-interacting serine-threonine kinase 2 
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RIT1 RIT;Ric (Drosophila)-like, expressed in many tissues 
RMI2 C16orf75;chromosome 16 open reading frame 75,RMI2, RecQ mediated genome 

instability 2, homolog (S. cerevisiae) 
RNASET2  Ribonuclease T2 
RNF114 ZNF313;zinc finger protein 313 
RNF186  Ring Finger Protein 186 
RNLS C10orf59;chromosome 10 open reading frame 59 
RORA RAR-related orphan receptor A 
RORC RAR-related orphan receptor C 
RPS6KA2 ribosomal protein S6 kinase, 90kD, polypeptide 2 
RPS6KA4 ribosomal protein S6 kinase, 90kD, polypeptide 4 
RPS6KB1 STK14A;ribosomal protein S6 kinase, 70kD, polypeptide 1 
RTEL1 C20orf41;chromosome 20 open reading frame 41 
RTKN2 PLEKHK1;pleckstrin homology domain containing, family K member 1 
RUNX1 AML1,CBFA2;acute myeloid leukemia 1,runt-related transcription factor 1 
RUNX3 CBFA3;runt-related transcription factor 3 
S100A8 CAGA,CFAG;S100 calcium-binding protein A8 (calgranulin A),S100 calcium 

binding protein A8 (calgranulin A) 
S100A9 CAGB,CFAG;S100 calcium-binding protein A9 (calgranulin B),S100 calcium 

binding protein A9 (calgranulin B) 
S1PR1 EDG1;endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 
SBNO2 KIAA0963;KIAA0963,strawberry notch homolog 2 (Drosophila) 
SCAMP3 C1orf3 
SDCCAG3  ENTR1, Endosome Associated Trafficking Regulator 1 
SEC16A KIAA0310;KIAA0310,SEC16 homolog A (S. cerevisiae) 
SELE ELAM1,ELAM;endothelial adhesion molecule 1 
SELL LYAM1,LNHR;lymphocyte adhesion molecule 1 
SELPLG  Selectin P Ligand 
SERINC3 TDE1;tumor differentially expressed 1 
SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 
SH2B1  SH2B Adaptor Protein 1 
SH2B3  SH2B Adaptor Protein 3 
SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain 
SKP1 SKP1A;S-phase kinase-associated protein 1A (p19A) 
SLAMF1 SLAM;signaling lymphocytic activation molecule 
SLAMF7  SLAM Family Member 7 
SLAMF8  SLAM Family Member 8 
SLC10A4 solute carrier family 10, member 4 
SLC11A1 LSH,NRAMP,NRAMP1;solute carrier family 11 (proton-coupled divalent metal ion 

transporter), member 1 
SLC15A2 solute carrier family 15 (H+/peptide transporter), member 2,solute carrier family 15 

(oligopeptide transporter), member 2 
SLC15A4 solute carrier family 15, member 4,solute carrier family 15 (oligopeptide 

transporter), member 4 
SLC22A5 CDSP;solute carrier family 22 (organic cation/carnitine transporter), member 5 
SLC2A4RG  SLC2A4 Regulator 
SLC30A7 solute carrier family 30 (zinc transporter), member 7 
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SLC44A2 solute carrier family 44 (choline transporter), member 2 
SLC45A1 DNB5;deleted in neuroblastoma 5,solute carrier family 45, member 1 
SLC9A8 solute carrier family 9 (sodium/hydrogen exchanger), isoform 8 
SMAD3 MADH3;MAD, mothers against decapentaplegic homolog 3 (Drosophila),SMAD, 

mothers against DPP homolog 3 (Drosophila) 
SMAD5 MADH5;MAD, mothers against decapentaplegic homolog 5 (Drosophila),SMAD, 

mothers against DPP homolog 5 (Drosophila) 
SMAD7 MADH8,MADH7;MAD, mothers against decapentaplegic homolog 7 

(Drosophila),SMAD, mothers against DPP homolog 7 (Drosophila) 
SMG7 C1orf16;chromosome 1 open reading frame 16,smg-7 homolog, nonsense 

mediated mRNA decay factor (C. elegans) 
SMIM20 C4orf52;chromosome 4 open reading frame 52 
SMURF1  SMAD Specific E3 Ubiquitin Protein Ligase 1 
SNAPC4 small nuclear RNA activating complex, polypeptide 4, 190kD,small nuclear RNA 

activating complex, polypeptide 4, 190kDa 
SNX32 SNX6B;sorting nexin 6B 
SOCS1  Suppressor Of Cytokine Signaling 1 
SOCS3  Suppressor Of Cytokine Signaling 3 
SOX8 SRY (sex determining region Y)-box 8,SRY box 8 
SP140  SP140 Nuclear Body Protein 
SPHK2  Sphingosine Kinase 2 
SPP1 BNSP,OPN;osteopontin,bone sialoprotein I 
SPRED2  Sprouty Related EVH1 Domain Containing 2 
SPRY4 sprouty homolog 4 (Drosophila) 
STAT1 signal transducer and activator of transcription 1, 91kD,signal transducer and 

activator of transcription 1, 91kDa 
STAT2 signal transducer and activator of transcription 2, 113kD,signal transducer and 

activator of transcription 2, 113kDa 
STAT3 signal transducer and activator of transcription 3 (acute-phase response factor) 
STAT4  Signal Transducer And Activator Of Transcription 4 
STAT5A Signal Transducer And Activator Of Transcription 5A 
STAT5B  Signal Transducer And Activator Of Transcription 5B 
STAT6 signal transducer and activator of transcription 6, interleukin-4 induced 
STMN3 stathmin-like 3 
SULT1A1 STP,STP1;sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1 
SULT1A2 STP2;sulfotransferase family, cytosolic, 1A, phenol-preferring, member 2 
SYK spleen tyrosine kinase 
SYNGR1  Synaptogyrin 1 
TAB1 MAP3K7IP1;mitogen-activated protein kinase kinase kinase 7 interacting protein 

1,TGF-beta activated kinase 1/MAP3K7 binding protein 1 
TAGAP T-cell activation GTPase activating protein 
TBK1 TANK-binding kinase 1 
TBKBP1  TBK1 Binding Protein 1 
TBX21  T-Box Transcription Factor 21 
TCF7 transcription factor 7 (T-cell specific, HMG-box) 
TEC  Tec Protein Tyrosine Kinase  
TET2 KIAA1546;KIAA1546,tet oncogene family member 2 
TGFB1 TGFB,DPD1;transforming growth factor, beta 1 
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TGFBI CSD3,LCD1,CSD1,CSD2;transforming growth factor, beta-induced, 
68kD,transforming growth factor, beta-induced, 68kDa 

TGFBR1 MSSE,ESS1;multiple self-healing squamous epithelioma,transforming growth 
factor beta receptor I 

TGFBR2 MFS2;transforming growth factor, beta receptor II (70/80kDa),transforming growth 
factor beta receptor II 

THADA thyroid adenoma associated 
THEMIS C6orf207,C6orf190,TSEPA;chromosome 6 open reading frame 207,chromosome 

6 open reading frame 190,thymocyte selection pathway associated 
TICAM1 toll-like receptor adaptor molecule 1 
TIGIT VSIG9,VSTM3;V-set and immunoglobulin domain containing 9,V-set and 

transmembrane domain containing 3,T cell immunoreceptor with Ig and ITIM 
domains 

TIMMDC1 C3orf1;chromosome 3 open reading frame 1 
TIRAP Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein 
TLE3 transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila) 
TLR1 toll-like receptor 1 
TLR2 toll-like receptor 2 
TLR3 toll-like receptor 3 
TLR4 toll-like receptor 4 
TLR5 SLEB1;systemic lupus erythematosus susceptibility 1,toll-like receptor 5 
TLR7 toll-like receptor 7 
TLR8 toll-like receptor 8 
TLR9 toll-like receptor 9 
TMBIM1  Transmembrane BAX Inhibitor Motif Containing 1 
TMEM50B C21orf4;chromosome 21 open reading frame 4 
TNC HXB,DFNA56;hexabrachion (tenascin C, cytotactin),deafness, autosomal 

dominant 56 
TNF TNFA;tumor necrosis factor (TNF superfamily, member 2) 
TNFAIP3 tumor necrosis factor, alpha-induced protein 3 
TNFAIP6 tumor necrosis factor, alpha-induced protein 6 
TNFRSF10C tumor necrosis factor receptor superfamily, member 10c, decoy without an 

intracellular domain 
TNFRSF11A PDB2,LOH18CR1;tumor necrosis factor receptor superfamily, member 11a, 

activator of NFKB,Paget disease of bone 2,loss of heterozygosity, 18, 
chromosomal region 1,tumor necrosis factor receptor superfamily, member 11a, 
NFKB activator 

TNFRSF13B tumor necrosis factor receptor superfamily, member 13B 
TNFRSF13C tumor necrosis factor receptor superfamily, member 13C 
TNFRSF14 tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry 

mediator),tumor necrosis factor receptor superfamily, member 14 
TNFRSF17 BCMA;tumor necrosis factor receptor superfamily, member 17 
TNFRSF18 tumor necrosis factor receptor superfamily, member 18 
TNFRSF1A TNFR1;tumor necrosis factor receptor superfamily, member 1A 
TNFRSF1B TNFR2;tumor necrosis factor receptor superfamily, member 1B 
TNFRSF4 TXGP1L;tumor necrosis factor receptor superfamily, member 4 
TNFRSF6B tumor necrosis factor receptor superfamily, member 6b, decoy 
TNFRSF8 CD30,D1S166E;tumor necrosis factor receptor superfamily, member 8 
TNFRSF9 ILA;tumor necrosis factor receptor superfamily, member 9 
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TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 
TNFSF11 tumor necrosis factor (ligand) superfamily, member 11 
TNFSF12 tumor necrosis factor (ligand) superfamily, member 12 
TNFSF13B TNFSF20;tumor necrosis factor (ligand) superfamily, member 13b 
TNFSF14 tumor necrosis factor (ligand) superfamily, member 14 
TNFSF15 tumor necrosis factor (ligand) superfamily, member 15 
TNFSF18 tumor necrosis factor (ligand) superfamily, member 18 
TNFSF4 TXGP1;tax-transcriptionally activated glycoprotein 1, 34kD,tumor necrosis factor 

(ligand) superfamily, member 4 
TNFSF8 CD30LG;tumor necrosis factor (ligand) superfamily, member 8 
TNIP1  TNFAIP3 Interacting Protein 1 
TNNI2 AMCD2B;troponin I, skeletal, fast,arthrogryposis multiplex congenita, distal, type 

2B,troponin I type 2 (skeletal, fast) 
TNP2 transition protein 2 (during histone to protamine replacement) 
TNPO3 LGMD1F;limb girdle muscular dystrophy 1F (autosomal dominant) 
TOLLIP  Toll Interacting Protein 
TPD52  Tumor Protein D52 
TRADD TNFRSF1A-associated via death domain 
TRAF1  TNF Receptor Associated Factor 1 
TRAF2  TNF Receptor Associated Factor 2 
TRAF3  TNF Receptor Associated Factor 3 
TRAF3IP2 C6orf4,C6orf5,C6orf6,C6orf2;chromosome 6 open reading frame 5,chromosome 6 

open reading frame 2 
TRAF4  TNF Receptor Associated Factor 4 
TRAF5  TNF Receptor Associated Factor 5 
TRAF6 TNF receptor-associated factor 6, E3 ubiquitin protein ligase 
TRIB1 tribbles homolog 1 (Drosophila) 
TRPT1  TRNA Phosphotransferase 1 
TSFM  Ts Translation Elongation Factor, Mitochondrial 
TSPAN14 TM4SF14;transmembrane 4 superfamily member 14 
TSPAN33  Tetraspanin 33 
TTYH3 tweety homolog 3 (Drosophila) 
TUBD1 tubulin, delta 1 
TXK PTK4;PTK4 protein tyrosine kinase 4 
TXNDC11  Thioredoxin Domain Containing 11 
TYK2  Tyrosine Kinase 2  
UBA7 UBE1L;ubiquitin-activating enzyme E1-like,ubiquitin-like modifier activating 

enzyme 7 
UBASH3A  Ubiquitin Associated And SH3 Domain Containing A 
UBE2D1 SFT;stimulator of Fe transport,ubiquitin-conjugating enzyme E2D 1 (UBC4/5 

homolog, yeast),ubiquitin-conjugating enzyme E2D 1 
UBE2E3 ubiquitin-conjugating enzyme E2E 3 (homologous to yeast UBC4/5),ubiquitin-

conjugating enzyme E2E 3 (UBC4/5 homolog, yeast),ubiquitin-conjugating 
enzyme E2E 3 

UBE2L3 ubiquitin-conjugating enzyme E2L 3 
UBQLN4 C1orf6;chromosome 1 open reading frame 6 
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UCN  Urocortin 
UCN2  Urocortin 2 
UHRF1BP1 C6orf107;chromosome 6 open reading frame 107 
UQCC1 C20orf44,UQCC;chromosome 20 open reading frame 44,ubiquinol-cytochrome c 

reductase complex chaperone 
USF1  Upstream Transcription Factor 1 
USP4 UNP;ubiquitin specific peptidase 4 (proto-oncogene) 
VAMP3  Vesicle Associated Membrane Protein 3 
VCAM1  Vascular Cell Adhesion Molecule 1 
VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 
VMP1 TMEM49;transmembrane protein 49 
VSIR C10orf54;chromosome 10 open reading frame 54 
WDFY4 C10orf64;chromosome 10 open reading frame 64 
WWOX WW domain-containing oxidoreductase 
XBP1 XBP2 
YDJC YdjC homolog (bacterial) 
ZAP70 SRK;zeta-chain (TCR) associated protein kinase (70 kD),zeta-chain (TCR) 

associated protein kinase 70kDa,zeta chain of T cell receptor associated protein 
kinase 70kDa,zeta chain of T cell receptor associated protein kinase 70 

ZBTB16 ZNF145;zinc finger protein 145 (Kruppel-like, expressed in promyelocytic 
leukemia) 

ZBTB46 ZNF340,BTBD4;BTB (POZ) domain containing 4 
ZC2HC1A C8orf70,FAM164A;chromosome 8 open reading frame 70,family with sequence 

similarity 164, member A 
ZEB1 TCF8,PPCD3;transcription factor 8 (represses interleukin 2 expression),posterior 

polymorphous corneal dystrophy 3 
ZFP36L1 BRF1;zinc finger protein, C3H type, 36-like 1,zinc finger protein 36, C3H type-like 

1 
ZFP90 zinc finger protein 90 homolog (mouse) 
ZGPAT KIAA1847;KIAA1847,zinc finger CCCH-type with G-patch domain 
ZMIZ1 RAI17;retinoic acid induced 17 
ZNF767P ZNF767;zinc finger family member 767 
ZNF831 C20orf174;chromosome 20 open reading frame 174 
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Characterization of peripheral and entheseal IL-17 secreting 
Mucosal Associated Invariant T (MAIT) cells in Axial 
Spondyloarthritis 
 
Summary 
 
The IL-23/IL-17 axis has been implicated in the pathogenesis of axSpA through association 

studies. However, the success of anti-IL-17A therapy and the failure of anti-IL-23 raised the 

possibility of IL-23-independent IL-17 production in SpA, and made us wonder what are the 

IL-17 producing cells in axSpA. In the third part of this project we have characterised the 

immune cells that produce IL-17A from 18 axSpA patients. We compared the IL-17 production 

capacity of five cell populations of the innate (MAIT, γδT, and neutrophils) and adaptive (CD4+ 

and CD8+ T-cells) arms of the immune system.  

 

From analysing the secreted protein data, we identified MAIT cells as the main producers of 

IL-17 in axSpA, compared to CD4+ T, CD8+ T and γδ T cells. In our data, neutrophils did not 

produce IL-17A, although they have been suggested in the literature as the main producers 

of IL-17A in AS by Appel et al. We also generated gene expression data for IL-17A using 

nCounterÒ technology, that complements our protein data with MAIT cells showing the highest 

level of IL17A expression in these cells, followed by CD4+ T cells. We also noted a significantly 

higher expression of IL-17F and IL-23R in MAIT cells. Additionally, we studied the stimulation 

conditions that induce IL17F in MAIT cells, and observed that TCR activation associated with 

IL-7 or with IL-18 induced a high expression of IL17F by MAIT cells.  

 

Our results emphasize the importance of MAIT cells in the SpA pathogenesis. This premise 

is further supported by the tissue data collected in collaboration with the McGonagle’s team 

at University of Leeds, who could detect the presence of MAIT cells in the entheseal samples 

from healthy donors. Our data suggest the involvement of MAIT cells in the inflammatory 

events in enthesitis - a signature of SpA pathogenesis. 

 

It is also important to note that both innate and adaptive lymphocytes express genes belonging 

to the IL-23/IL-17 pathway, and genes previously associated with axSpA susceptibility. The 

detailed manuscript, figures and supplementary information is provided in the following pages. 
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Abstract 

Objectives: The failure of anti-IL-23 in Axial Spondyloarthritis (AxSpA) raised questions about the 

nature of IL-17-producing cells involved in AxSpA pathogenesis. We undertook this study to identify 

and characterize the major IL-17A-producing cell populations in AxSpA. 

 

Methods: We compared IL-17A production capacity of 5 sorted cell populations from 18 AxSpA 

patients: neutrophils, MAIT, γδ T cells, CD4+T and CD8+T cells after stimulation by 

PMA+A23187+β1,3 glucan. IL-17A expression and production were assessed with ultra-sensitive 

technology (SimoA technology for protein production and Nanostring Technology for gene 

expression). We assessed the presence of MAIT in normal human enthesis soft tissue (EST) and 

adjacent perientheseal bone (PEB) (n=5) by immunophenotyping. 

 

Results: On a per cell basis, we observed that MAIT produced the highest amount of IL-17A compared 

to CD4+T (p <0.01), CD8+T (p <0.0001) and γδ T cells (p <0.0001). Neutrophils did not produce IL-

17A. The results were confirmed by gene expression analysis. Significantly higher IL23R and IL17F 

expression were observed in MAIT compared to other cell types. Stimulation of MAIT with 

aCD3/CD28 in the presence of IL-23 did not induce IL17A expression. MAIT cells express high levels 

of IL-18 receptor subunits and stimulation with aCD3/CD28 associated to IL-7 or IL-18 induced a 

strong expression of IL17F. MAITs were present in both EST and PEB from normal human enthesis 

and were characterized by an immunoregulatory phenotype based on the expression of JAK1, STAT4 

and TGFb1. 

 

Conclusion: Innate T cells could play an important role in IL-17A production in AxSpA. MAIT cells 

displayed the highest production capacity for IL-17A compared to CD4+T, γδT, and CD8+T. Addition 

of IL-23 did not increase IL17A and IL17F expression by these cells. The combination of IL-7 and IL-

18 on a background of CD3/CD28 stimulation induced high levels of IL-17F. The presence of MAIT 

cells in normal human enthesis suggest their key role in axial SpA pathogenesis. 
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Key messages 

What is already known about this subject? 

The success of anti-IL-17A therapy in Axial Spondyloarthritis has confirmed that IL-17A is a critical 

cytokine in the pathophysiology of the disease. However, the main IL-17 producing cell populations in 

AxSpA have not been clearly identified yet. 

 

What does this study add? 

MAIT have the highest IL-17A production capacity in AxSpA compared to CD4 +T, gdT and CD8+T 

cells and are present in human enthesis. These cells are also able to express high levels of IL-17F after 

IL-7 and IL-18 stimulation combined with CD3/CD28. Addition of IL-23 to CD3/CD28 stimulation 

does not induce the expression of IL17A or IL17F by MAIT. 

Neutrophils do not produce IL-17A in AxSpA after a strong stimulation with β1,3 glucan. MAIT cells 

are present in normal enthesis and transcriptomic analysis confirmed expression on IL-17A and IL-17F. 

 

How might this impact on clinical practice or future developments? 

Further studies on MAIT cells might help to describe the IL-23-independent IL17 expression and to 

understand the failure of anti-IL-23. Expression of IL-17F by MAIT cells and their presence in normal 

human enthesis gives arguments in favour of the effectiveness of anti-IL-17A and anti-IL-17F in axial 

disease. 

 

Introduction 

Spondyloarthritis (SpA) is one of the most common chronic inflammatory rheumatic conditions, with 

prevalence in the general population ranging from 0.5% to 1.9%[1]. In addition to disabling 

rheumatologic manifestations, some patients with SpA develop severe extra-articular manifestations 

such as chronic inflammatory bowel disease (IBD), uveitis and psoriasis (Pso). The therapeutic 

challenge in 2020 and for the coming years will be to identify new therapeutics that are effective on the 

whole spectrum of clinical manifestations observed in SpA. In fact, SpA mainly affects young adults 

and the functional consequences of a poorly controlled disease lead to an alteration in their quality of 

life and professional capacity, which has a direct impact on healthcare costs. The appearance of 

biologics in the rheumatology therapeutic arsenal has revolutionized the treatment of chronic 

inflammatory diseases such as SpA. The first biologics available in this indication were those targeting 

the Tumor Necrosis Factor (TNF). However, clinical studies showed that 30 to 40% of patients did not 

respond to or acquired resistance to anti-TNF[2]. It was therefore important to continue to expand our 

therapeutic arsenal. 
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With the development of technologies available for biomedical research, the in-depth analysis of patient 

samples has made it possible to demonstrate the role of the IL-23/IL-17 axis in the physiopathology of 

the disease[3]. The importance of this axis was first supported by the discovery of genetic associations 

between several gene variants involved in IL-23/IL-17 pathway with SpA (IL-23Rc, IL-12B, IL-6Rc, 

etc.). As IL-17 is the terminal cytokine of this pathophysiological pathway, the development of new 

treatments has initially focused on blocking this cytokine. In fact, clinical trials have demonstrated the 

efficacy of biologics targeting IL-17 (secukinumab SCK and ixekizumab IXE) in the axial (AxSpA) [4, 

5] and peripheral forms of SpA (psoriatic arthritis - PsA) [6-9]. 

 

More than ten years ago, scientific work has shown that IL-23 plays a crucial role in the production of 

IL-17 by maintaining the differentiation state of Th17 lymphocytes, the main known cellular source of 

IL-17 secretion[10]. IL-23 is a heterodimer composed of one IL12p40 and one IL23p19 subunit. Whereas 

the genetic associations of variants of the IL-17/IL-23 pathway had been demonstrated in the axial form 

of the disease (ankylosing spondylitis - AS)[2], surprisingly, clinical trials targeting IL-23, either via 

IL23p19 (risankisumab) or IL-12p40 (ustekinumab USK), failed in the axial forms of the disease[11,12] 

while their use in the peripheral forms was effective[13,14]. These results suggest a distinct 

pathophysiology between the different forms of the disease and underline our incomplete understanding 

of the mechanisms of action of these molecules during the course of the disease. One of the hypotheses 

put forward to explain this discordant effect of IL-23 targeting on axial and peripheral forms of SpA is 

that other IL-17 source cells may be independent of IL-23[15-17]. Assuming this, therapeutic strategies 

targeting IL-23 would not be effective enough in preventing the secretion of the effector cytokine (IL-

17) and would be ineffective in treating the axial form in which these cells would be involved. 

 

Several IL-17A producing cells have been described. Among those, CD4+ Th17 cells have been 

considered for several years as the main IL-17 producing cell type. Their increased prevalence has been 

reported in the peripheral blood of AxSpA patients[18]. Nevertheless, alternative sources of IL-17 have 

been further reported, in particular innate T lymphocytes: gdTs and MAITs. Their increased frequency 

in AxSpA has been reported by Kenna et al. for gdT[19] and Gracey al. for MAITs[17], suggesting their 

involvement in disease pathogeny. Neutrophils have been also described as IL-17A producing cells. 

Appel et al. suggested that they might be the main producers of IL-17A at the facet joint level in AS[20]. 

Nevertheless, the ability of neutrophils to produce IL-17A is very controversial[21]. 

 

The recent failure of Rizankimumab in AxSpA, an anti-IL-23p19 yet effective in psoriasis and psoriatic 

arthritis, questions the predominant role of Th17[11] in the context of AxSpA. The ineffectiveness of 

blocking IL-23, which is essential to stabilize the phenotype of these cells, suggests that other cell types 
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can produce IL-17, at least partially independently from IL-23. According to the literature, MAIT, gdT, 

and neutrophils represent potential candidates in that respect. 

 

The objective of the present study was to compare the respective IL-17 production capacity of different 

cell subsets belonging to the adaptive (CD4+ and CD8+ T-cells) and innate (MAIT, gdT, and 

neutrophils) immune system in AxSpA and to study the conditions associated with their best profiles 

of IL17 expression. 
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Material and Methods 

Patients and samples 

Blood samples from 18 patients with a clinical diagnosis of axial Spondyloarthritis (AxSpA) fulfilling 

the Assessment of SpondyloArthritis international Society criteria[22] were included in two tertiary 

centers (Cochin and Saint-Antoine Hospitals – Paris – France).  

 

Human interspinous process and matched peripheral blood were obtained from 5 non-AxSpA patients 

who underwent elective spinal surgery for either decompression or scoliosis correction using methods 

previously reported[23]. All patients provided written informed consent before enrollment in the study 

as approved by the French Ethics Committee and by the north West-Greater Manchester West Research 

Ethics Committee. The clinical characteristics of the AxSpA patients and of the non-AxSpA patients 

who underwent spinal surgery are summarized in supplementary table 1 (Annex II).  

 

Samples from AxSpA patients 

Cell sorting 

Neutrophils were isolated by negative magnetic cell sorting using MACSxpress Whole Blood Human 

Neutrophils isolation kit (Milteny Biotec®) according to the manufacturer’s instructions. 

For T cells, PBMCs were isolated from blood using lymphocyte separation medium (Eurobio®). After 

isolation, PBMCs were labeled with CD3 BUV395 (BD Biosciences®), CD4 VioBright FITC (Milteny 

Biotec®), CD8 PerCP vio700 (Milteny Biotec®), TCR Vd PE (Milteny Biotec®), TCR Vd2 PE 

(Milteny Biotec®), TCR Va7.2 APC (BioLegend®), CD161 BV421 (Sony Biotecnology®). PBMCs 

subsets were isolated using a BD FACS Aria II according to the gating strategy presented in 

Supplementary Figure 1 (Annex II). 

For the experiments on healthy blood donors (n=3), we performed first a CD3 positive magnetic 

separation using anti-CD3 monoclonal antibodies coated beads (Milteny Biotec®) then the CD3 

positive fraction was labeled with CD3 APC Vio770 (Milteny Biotec®) CD4 VioBright FITC (Milteny 

Biotec®), Va7.2 APC (BioLegend®), CD161 BV421 (Sony Biotechnology®) CCR6 BV786 (BD 

Biosciences®) and CD3 subsets were isolated using a second gating strategy presented in 

Supplementary Figure 2 (Annex II). 

 

Cell stimulations and cultures 

Neutrophils were plated in 48 well plates (5x106 cells/well) and cultured in complete media alone 

(Roswell Park Memorial Institute (1640 medium RPMI Invitrogen®)). Sorted T cells were plated in 48 

well plates (1x106 cells/well) or 96 well plates (2x105 cells/well) according to the number of cells 
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obtained after sorting, and cultured in complete media (Roswell Park Memorial Institute (1640 medium 

RPMI Gibco life technologies®)) with 5% heat inactivated fetal calf serum (Hyclone, Fischer 

Scientific®) and penicillin/streptomycin. 

Where applicable, cells were stimulated with Phorbol 12-mristate 13-acetate (50ng/ml) (Merck®), 

A23187 (5µM) (Merck®), IL-7 (20ng/ml) (Milteny Biotec®), IL-18 (50ng/ml) (R and D System®) IL-

23 (20ng/ml) (Milteny Biotec®), Dynabeads Human T-activator CD3/CD28 (Thermo Fisher 

Scientific®). 

b1,3 glucan (50µg/ml) was isolated from the alkali-insoluble (AI) fraction of the A. fumigatus mycelial 

cell-wall as described earlier[9,10].  

 

Gene expression analysis 

Gene expression profiles from AxSpA patients sorted cells were assessed using the nCounterÒ 

Autoimmune Discovery Consortium codeset (NanoString Technologies®). The resultant Reporter code 

count (RCC) data were imported in nSolver Analysis Software® for quality control and normalization.  

Transcriptional profiling of entheseal and blood MAITs was performed on non-AxSpA patients. MAITs 

cells were isolated from EST, PEB and peripheral blood from patients subjected to spinal surgery. Basal 

expression of cytokines, chemokines, growth factors, signalling molecules, tissue residency markers 

was assessed. 

See supplementary materials for details (RNA preparation and gene expression analysis- Annex II).  

 

Protein expression analyses 

IL-17A concentrations (in fg/ml) in cell culture surpernatants from AxSpA patients were determined 

with Simoa IL-17A 2.0 Reagent kit (Quanterix corp. Lexington, MA 02421) using HD-1 Analyzer 

(Quanterix ®) (see supplementary Materials). The LOD was calculated by the blank+3SDs. When IL-

17A was undetectable, we replaced by LOD value for presentation and analysis purpose. The lowest 

LOD was 7 fg/ml. 

Intracellular TNF and IL-17 cytokine expression with and without stimulation with PMA/ionomycin 

was assessed in the presence of Golgi Plug in PEB derived MAIT cells from non-SpA patients subjected 

to spinal surgery. 

 

Samples from non-AxSpA 

Isolation of primary cells from entheses and match blood 

Entheseal samples were separated into entheseal soft tissue (EST) and perientheseal bone (PEB) and 

both were enzymatically digested as previously described[23]. For both cell preparations, blood and 
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entheseal cells, density gradient separation (Lymphoprep) was conducted in order to obtain PBMCs 

and entheseal mononuclear cells (EMCs), respectively, as previously described[24].  

 

Immunophenotyping and sorting of entheseal and peripheral blood MAIT cells 

EMCs or PBMCs were stained with zombie aqua (live/dead discrimination), anti-CD45 (to exclude 

non-leucocytes), CD3 (T-cell inclusion). MAIT cells were identified by CD161+ and Vα7.2 TCR+. All 

flow cytometry was conducted on the Cytoflex LX (Beckman Coulter) and subsequent analysis 

completed using the CytExpert Acquisition and Analysis Software (V.2.3) and FlowJo software (Tree 

Star, USA). A full list of antibodies, clones and fluorophores can be found in online Supplementary 

Table 3 (Annex II). 

 

Statistical analysis 

GraphPad Prism software was used for statistical analyses (GraphPad Software, La Jolla, California, 

USA).  

For all graphs, non-significant results (p>0.05) were indicated, *p<0.05, **p<0.01, ***p<0.001, 

****p>0.0001. Error bars represent the SE of the mean (SEM).  

Qlucore omics explorer 3.5 was used to generate heatmaps with unsupervised hierarchical clustering 

after applying to the data log transformation, mean centering, and unit variance scaling.  
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Results 

Genes associated with AS susceptibility are differentially expressed in innate and adaptive T cell 
populations isolated from peripheral blood of axSpA patients 
 
More than 40 loci have been significantly associated with AS susceptibility[2]. Among those, some are 

involved in IL-23/IL-17 expression pathways such as IL-1R, IL-6R, TYK2, RUNX3, and IL-12B. To 

better decipher the role of MAITs, CD4+, CD8+ and γδT-cells in AS pathogeny, we specifically 

analyzed the expression profiles of genes significantly associated to AS susceptibility, including those 

belonging to the IL-17/IL-23 pathways. The expression of 36 genes from the total of 45 AS-associated 

genes panel was detected in four T cell populations isolated from 9 axSpA patients and stimulated with 

PMA (50ng/ml) + A23187(5µM) + 𝛽-glucan (50µg/ml). The expression pattern observed after 

hierarchical clustering showed a clear distinction between the innate and adaptive T cell groups as 

shown in the heatmap (Figure 1A). Gene clusters consisting of members of the MHC class I mediated 

antigen processing & presentation - NPEPPS and UBE2L3 - were expressed in CD4+ and CD8+ T 

cells. We observed genes that were expressed at relatively higher levels in a specific cell type, e.g., 

PTGER4 in CD4+ T cells and TYK2 in CD8+ T cells. MAIT cells express high levels of IL23R and the 

G protein-coupled receptors GPR35 and GPR65. We also noted cell type-specific expression of several 

IL-23/IL-17 pathway genes (Figure 1B). IL17F was expressed about one log higher in CD4+ and MAIT 

cells, while IL23R was expressed two logs higher in MAIT and one log higher in γδT cells compared 

to CD4+ and CD8+ T cells. NFKB1, RELA and NFKBIA are preferentially expressed in CD4+ T cells, 

while several genes encoding cytokines and their receptors (IL23A, IL23R, IL12RB1, IL18R1, IL18RAP, 

TNF and IFNG) were expressed at higher levels in “innate” MAIT and γδT cells when compared to 

“adaptive” CD4+ and CD8+ T cells. IL1R1, TYK2 and RUNX3 were expressed at high levels in CD8+ 

T cells. Nevertheless, many other genes, not belonging to IL-17/IL-23 pathway, participated in cell 

clustering suggesting that those different cell types were involved in AS susceptibility beyond their 

relative role in IL-17/IL-23 pathway.  
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Figure 1A: Heatmap showing the expression of genes associated with AS in T cell subpopulations 
isolated from peripheral blood of axSpA patients. The expression of 36 genes genetically linked to AS in 
T cells from axSpA patients after 2h of stimulation by PMA (50ng/ml) + A23187(5µM) + 𝛽-glucan 
(50µg/ml). Cell populations are colour-coded as shown by the legend on the left. Columns in the heatmap 
represent patient samples (n=9) and the rows represent genes. The heatmap is ordered by hierarchical 
clustering. Gene expression data are log2 transformed, centred to a mean value of zero and scaled to unit 
variance. The bar on the left denotes the scale for the gene expression levels- yellow indicates higher- and 
blue lower levels of expression. 
 

 

Figure 1B: The heatmap depicts the gene expression pattern of IL-23/IL-17 pathway genes in T cell 
populations isolated from axSpA patients as above. Genes associated with the IL-23 and IL-17 pathways 
were obtained from the molecular signature database (MSigDB) were selected. Shown are the mRNA levels 
of 29 genes after 2h of stimulation by PMA (50ng/ml) + A23187(5µM) + 𝛽-glucan (50µg/ml). Cell 
populations are colour-coded as shown by the legend on the left. Columns in the heatmap represent patient 
samples (n=9) and the rows represent genes. The heatmap is ordered by hierarchical clustering. Gene 
expression data are log2 transformed, centred to a mean value of zero and scaled to unit variance. The bar 
on the left denotes the scale for the gene expression levels- yellow indicates higher- and blue lower levels of 
expression. 
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Peripheral blood derived MAITs cells have a high potential of IL-17A and IL-17F secretion. 

 
To better define the relative role of MAITs, CD4+, CD8+ and γδT cells in IL-17 expression, we sorted 

these cells, together with neutrophils which have been controversially suspected to secrete IL-17A [11]. 

Cell sorting was performed on peripheral blood from 18 AxSpA patients (a representative cytometry 

panel with the gating strategy is shown in supplementary Figure 1- Annex II). We compared IL-17A 

secretion on a per cell basis. We divided the IL-17A concentration by the number of sorted cells and 

normalized by the volume in which they were stimulated. Since not all cells from a population are likely 

to produce the cytokine, we expressed the result in femtograms (fg) per 1000 cells. This showed a high 

level of IL-17A production by MAIT cells, significantly higher than CD4+T (p <0.01), gdT (p <0.0001), 

CD8+T (p <0.0001) and neutrophils (p <0.0001). Although lower than in MAIT (mean = 478.60 fg / 

1000 cells), the IL-17A production capacity by CD4+T was high (mean = 128.65 fg / 1000 cells). gdT 

cells produced a small amount of IL-17A with a mean of 13.71 fg / 1000 cells, and in the same range 

than IL-17A produced by CD8+T cells (mean = 4.66 fg / 1000 cells). bglucan is the main component 

of Aspergillus Fumigatus hyphae. Different teams have demonstrated a potential role of the hyphae of 

these fungi on the production of IL-17A by human neutrophils [25]. Despite of a strong b-glucan-

associated stimulation, most neutrophils' samples did not exceed the detection limit (Figure 2A). Gene 

expression analysis confirmed protein data, MAIT cells displaying the highest level of IL17A 

expression followed by CD4+T cells. We noted low levels of IL17A expression in gdT and CD8+T 

cells. For neutrophils, IL17A was undetectable, results which were consistent with protein data (Figure 

2B). 
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Figure 2: IL-17A protein production and IL17A gene expression by sorted cells from Axial SpA 
patients. (A) Left, IL-17A protein levels presented as femtograms per 1000 cells in sorted CD4+ T cells (in 
yellow), MAIT cells (in red), CD8+T cells (in blue), 𝛾𝛿 T cells (in purple) and neutrophils (in green) after 
18h of stimulation by PMA (50ng/ml) + A23187(µM) + bglucan (50µg/ml). P-values were calculated using 
a Mann-Whitney T test. Horizontal bars indicate the median and SD. Differences are considered significant 
for P-values < 0.05. ****, P< 0.0001, ***, P<0.001, **, P<0.01, *, P<0.05, ns; not significant. (B) Right, 
Transcripts levels of IL17A presented as normalized counts in sorted CD4+ T cells (in yellow), MAIT cells 
(in red), CD8+T cells (in blue), 𝛾𝛿 T cells (in purple) and neutrophils (in green) after 2h of stimulation by 
PMA (50ng/ml) + A23187(µM) + bglucan (50µg/ml). P-values were calculated using a Mann-Whitney T 
test. Horizontal bars indicate the median and SD. Differences are considered significant for P-values < 0.05. 
****, P< 0.0001, ***, P<0.001, **, P<0.01, *, P<0.05, ns; not significant 
 

 

Next, we expanded our analysis to IL17F, IL23R and IFNg expression. We observed that the expression 

level of IL17F displayed the same ranking as IL17A for the 5 cell populations (Figure 3A). 

Nevertheless, there was no significant difference between CD4+ and MAIT. We also observed a lower 

level of expression of IL17F compared with that of IL17A in all cell subsets. Regarding IL23R (Figure 

3B), MAIT had the highest level of expression, followed by gdT cells and CD4+T cells. As expected, 

CD8+ T-cells and neutrophils did not express significant levels of IL23R. Contrarily to IL-17, the 

expression level of IFNg was high in all T cell populations (Figure 3C) suggesting cell-specific 

expression profiles for IL17.  

 

Collectively, these data indicate that MAIT cells represent the main producer of IL-17A at a 

per-cell level and express high levels of IL17F and IL23R compared to the other IL-17A-producing 

cells in AxSpA.  
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Peripheral blood derived MAIT cells express IL-17F independently of IL-23 stimulation. 

We further aimed to assessed which stimulation conditions were able to induce IL-17A and IL-17F 

expression by MAIT cells. We stimulated sorted MAIT (a representative flow cytometry gating strategy 

is shown on Supplementary Figure 2- Annex II) for 36 hours with anti CD3/CD28 alone or in 

combination with cytokines (IL-23, IL-7, IL-18 or both IL-7 and IL-18). We used CD4+CCR6+ T cells 

(“Th17-like” T cells) as control (Figure 4). We observed that a stimulation by CD3/CD28 associated 

with IL-7 or with IL-18 induced a high expression of IL17F by MAIT cells (Figure 4B). The 

combination of both 2 cytokines (IL-7 and IL-18) with CD3/CD28 even increased this level. Contrarily, 

we observed that addition of IL-23 to CD3/CD28 stimulation did not affect IL17F expression by MAIT 

cells (fig 3b). The expression of IFNg was also remarkably high after a stimulation by CD3/CD28 

associated with IL-7 or IL-18 (Figure 4C). We observed that CD3/CD28 stimulation alone or combined 

with IL-23 was not able to induce IL17A expression by MAIT cells. In comparison, CD4+CCR6+ T 

cells expressed high level of IL17A and IL17F after CD3/CD28 stimulation and CD3/CD28 stimulation 

with IL-23 (Figure 4A). 

Figure 3: Gene expression analysis of sorted 
cells  
(A-C) Transcripts levels of IL17F, IL23R, IFNG 
presented as normalized counts in sorted CD4+ 
T cells (in yellow), MAIT cells (in red), CD8+T 
cells (in blue), 𝛾𝛿 T cells (in purple) and 
neutrophils in green) treated by PMA (50ng/ml) 
+ A23187(µM) + bglucan (50µg/ml). P-values 
were calculated using a Mann-Whitney T test 
and are indicated above the graph. Horizontal 
bars indicate the median and SD. Differences 
are considered significant for P-values < 0.05. 
****, P< 0.0001, ***, P<0.001, **, P<0.01, *, 
P<0.05, ns; not significant. 
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Figure 4: Stimulation conditions for IL-17 expression in sorted MAIT cells and CD4+CCR6+ T cells. 
(A-C) Transcripts levels of IL17A, IL17F, IFNG presented as normalized counts in sorted MAIT cells (left 
column) and CD4+CCR6+ T cells (right column) from donors (n=3) after 36 hours of stimulation in 6 
different conditions: unstimulated (black), CD3/CD28 stimulation (blue), CD3/CD28 stimulation + IL-23 
(20ng/ml) (burgundy), CD3/CD28 stimulation + IL-7(20ng/ml) (orange), CD3/CD28 stimulation + IL-18 
(50ng/ml) (green), CD3/CD28 stimulation + IL-7 (20ng/ml)+ IL-18 (50ng/ml) (red).  
 
 
MAIT cell are present in human entheses 
 

Considering that the hallmark of SpA pathogenesis is an entheses inflammation, we further aimed to 

assess the presence of MAIT cells within human entheses. Human interspinous process and matched 

peripheral blood were obtained from 5 non-AxSpA and entheseal samples were separated into entheseal 

soft tissue (EST) and perientheseal bone (PEB). MAIT cells were identified as CD3 + cells expressing 

both CD161 and TCR Vα7.2. The gating strategy is shown on supplementary Figure 4 (Annex II). 

MAIT cells were identified within human entheses as shown Figure 5A. Within both EST and PEB, 

MAIT cells mainly expressed the CD69 resident memory marker compared to MAIT cells from the 

peripheral blood which were mainly CD45RA+ corresponding to a naïve/circulating phenotype (Figure 

5A).  
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Figure 5: Entheseal MAIT cells Transcriptional profiling and pro-inflammatory cytokines induction. 
MAIT cells were sorted from Entheseal Soft Tissue (EST), Peri-entheseal Bone (PEB) and Peripheral Blood 
(PB) defined by their expression of Vα7.2 TCR and CD161. Cells expressing tissue resident (R)/memory 
(M) markers were identified by CD69+ and naïve (N)/circulating (C) cells by CD45RA+. Results displayed 
as mean from n=5 (A). Basal expression of cytokines, chemokines, growth factors, signalling molecules, 
tissue residency markers was assessed. Colour coding refers to differentially expressed genes where values 
less than −1 indicate low expression and values greater than 1 indicate higher expression, those with grey 
boxes indicates no values, values displayed are log 10ΔCt relative to HPRT (n=7) (B). Intracellular TNF and 
IL-17 cytokine expression with and without stimulation with PMA/ionomycin in the presence of Golgi Plug 
in PEB derived MAIT cells (C).  
 
 
Transcriptional profiling of entheseal MAIT cells compared to peripheral blood supports their 
immunomodulatory status 
 
The comparison of blood- and entheseal-derived (from both PEB and EST) MAIT cell transcripts 

(Vα7.2+ CD161+) suggested that EST MAIT cells were more immunomodulatory due to higher JAK1, 

STAT4 and TGFβ1 transcript expression (Figure 5B). Contrastingly, transcripts indicative of 

circulating T-cells, such as KLF2 and T-bet showed higher transcript expression in blood T-cells 

(Figure 5B). Entheseal MAIT cells also showed higher expression of growth factors and molecules 
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associated with tissue repair and homeostasis, such as VEGFA and IL-10 when compared to matched 

peripheral blood (Figure 5B). 

 

Significance between Blood and EST MAIT’s in CCR6, JAK2, STAT4 and TGFβ1 following non-

parametric testing with Dunn’s post-hoc testing p=0.023, 0.036, 0.046 and 0.046, respectively. 

Significance between Blood and PEB MAIT’s in CXCR3 and TCF7 following non-parametric testing 

with Dunn’s post-hoc testing p=0.050 and 0.045 respectively (Figure 2A) 

 

Discussion 

This work reports for the first time the ability of MAITs to express IL-17A as well as IL-17F 

according to various cell stimulation conditions. These MAITs were present in the spinal entheses of 

healthy subjects where they mainly showed a profile of resident memory cells.  

Before studying more precisely the role of MAITs in the secretion of IL-17, we analysed the 

gene expression profiles of 45 genes whose polymorphisms were significantly associated with the 

predisposition to AS in the 4 T lymphocyte populations sufficiently represented in peripheral blood: 

CD4+ and CD8+ T lymphocytes, gd T-lymphocytes and MAITs. We observed the expression of 80% 

of these genes in these 4 cell types with a differential expression from one cell population to another 

leading to cell clustering induced by these susceptibility genes. These new findings suggest that the 

functional consequences of polymorphisms carrying the susceptibility genes for AS should be studied 

in the corresponding cell subsets. A previous work from our lab [26] had already shown that some 

susceptibility SNPs could modify the function of CD4+ T cells. Similar mechanisms may also affect 

innate T cells since they expressed some of these genes at remarkably high levels. 

 

The susceptibility genes differentially expressed in T-cell subsets are involved in numerous 

cellular functions that go well beyond their role in the IL23/IL17 pathway. Genes related to this latter 

pathway were evenly distributed across all cell clusters and not restricted to one specific cell type, 

suggesting their potential joint contribution in IL17-dependent pathophysiology of AS. Gene expression 

data using the NanoString technology showed that MAIT cells were able to express both IL17A and 

IL17F in stimulation condition, as shown for CD4+ T-cells. To better decipher the relative contribution 

of MAITs in IL-17A/F expression compared with CD4+ T-cells, we assessed IL-17A secretion in cell 

culture supernatant under cell stimulation. On a per-cell basis, MAIT cells were the main producers of 

IL-17A in AxSpA compared to CD4+T cells, CD8+T cells and gdT cells. This was demonstrated both 

at the mRNA and at the protein levels. For the latter, the analysis on per cell basis allowed us to precisely 

characterize the production capacity of each cell type which is generally challenging for small cell 

subsets. Similarly, MAIT cells were also able to express at least as much IL-17F than CD4+ T cells.  

MAITs strongly express IL23R and are able to express IL-17 in a context of IL-23 stimulation but our 
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work shows that other cytokines, alone or in combination, such as the IL-7/IL-18 combination are able 

to induce a strong expression of IL-17 RNA. IL-18 is a member of the IL-1 family. As for IL-1, IL-18 

is cleaved by caspase 1 leading to its active form. IL-18 forms a complex with a receptor consisting of 

the IL18Ra (ubiquitous) and IL-18Rb (expressed by lymphocytes and dendritic cells) subunit that 

induces the NFKB pathway via MyD88/IRAK/TRAF6. Associated with IL-12 and IL-15, IL-18 induces 

IFNg secretion by Th1[28]. This combination of cytokines seems to have a similar effect on MAITs. A 

recent publication also showed the co-expression of IL-17F following this stimulation. Association with 

IL-7 appeared to potentiate this IL-17F expression. IL-7 is a key cytokine of the adaptive immune 

system, especially for the development of T-cells and dendritic cells but also for the expansion and 

survival of immature B-cells. Stromal and epithelial cells are the main producers of this cytokine but 

Ciccia et al. also showed that Paneth's intestinal cells could produce it. IL-7 is produced consistently 

and independently of stimulation but at low levels under physiological conditions. Elevated levels of 

IL-7 have been observed in sacroiliac joint fluid in patients with SpA. Detecting an elevated level of 

these cytokines at the enthesis level would support our hypothesis that MAITs represent the main source 

of IL17 in axial SpA. 

 

The contribution to IL-17A production of gdT and CD8+T cells was minor, but the cell specific 

expression of genes with a polymorphism associated to the disease still suggest their involvement in 

disease pathogeny through other mechanism of action. Interestingly, neutrophils have been previously 

described as IL-17 producing cells. This was not confirmed in our work, even using a strong stimulation. 

Our choice to use the combination PMA+A23187+b1,3 glucan was guided by the objective of 

maximizing the potential of each cell population for the production of IL17A. Aspergillus hyphae had 

been used by Taylor et al. [25] to stimulate PBMC to induce IL-17A production by neutrophils but these 

results have not been reproduced. Despite a similar approach, our results rather support the data 

published by Tamassia et al. [21] with two other robust techniques (Nanostring technology and SimoA 

technology), that neutrophils do not substantially contribute to IL-17 production. 

 

In the peripheral form of the disease, several publications suggest that MAITs are not the only 

IL-17 producing cells[17]. Both iNKT and gdT-cells are increased in the synovial fluid of patients with 

SpA and contribute to IL-17 expression but through an IL-23-dependent mechanism[29]. Kenna et al. 

observed a high expression of IL23R on the surface of gdT-cells[19] but this cell population did not seem 

to be the main source of Il-17 contrary to what we observed in the axial form of the disease. In this 

study, they defined Th17 as the major source of IL17A. ILC3 would also be able to produce IL-17A 

but Blijdorp et al.[30] have recently shown that these cells produced IL-22 rather than IL17A in the joints 

of patient with peripheral SpA, results in accordance with anti-IL-23 efficacy of in this indication. 
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Recently IL-17F got interest with the approval of Bimekizumab in psoriasis [27] and promising 

results in AxSpA. Bimekizumab blocks IL-17A and IL-17F that share 50% of homology. We 

demonstrated that MAITs were able to express high levels of IL-17F after stimulation by IL-18 and to 

a lesser extent by IL-7. The combination of IL-7 and IL-18 was the best inducer of IL-17F. Despite the 

high level of IL23R expression, IL-23 stimulation did not induce expression of either IL17A or IL17F. 

This suggests that IL-23 alone is not sufficient to trigger IL-17 production by these cells. 

 

In conclusion, this study shows that both innate and adaptive lymphocytes express a range of 

genes belonging to the IL-23/IL-17 pathway and previously associated with AS susceptibility. These 

data reinforce the hypothesis of the major involvement of these cell subsets in the pathogeny of SpA. 

On a per cell basis, MAIT cells were shown to be the main producers of IL-17A in AxSpA compared 

to CD4+T cells, CD8+T cells and gdT cells. Moreover, IL-7/IL-18 combination were able to strongly 

induce IL-17F expression by MAITs cells were also able to express high levels of IL17F, independently 

from IL-23 signalling. MAITs cells were identified within entheseal tissues, showing a regulatory 

profile. Further studies are needed to assess whether similar findings are observed in the entheseal 

tissues from AxSpA patients and to what extent an in-situ production of IL-7 and Il-18 could induce 

IL-17F expression. 
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Immune response profiling of spondyloarthritis patients reveals 
signalling networks mediating TNF-blocker function in vivo  
 
Summary 

 
Anti-TNF therapy has transformed the treatment strategies for several CIDs, including 

axSpA. However, the effectiveness of TNF-blockers and the response rate in patients are 

highly variable, as nearly 40% of axSpA patients are poor responders (Menegatti, Bianchi, & 

Rogge, 2019). The biological mechanism behind the treatment failure and the effect of anti-

TNF therapy in patients’ immune response remain uncharacterised. The third part of my 

project addressed this matter by analysing immune response in cell cultures from axSpA 

patients induced microbial stimuli and stimuli that activate specific signalling pathways. We 

performed whole-blood stimulation assays using TruCulture system with designated stimuli, 

from 80 axSpA patients before and after anti-TNF therapy, and measured the cytokine and 

chemokine profiles and monitored gene expression using NanoString nCounterÒ assays. 

 

We stimulated blood samples from 12 patients with a range of microbial stimuli or 

signalling agonists, and we measured the levels of 31 secreted molecules. We observed that 

TNF-inhibitors (TNFi) affect induced immune responses towards microbes and stimuli 

targeting specific immune receptors. In particular, TNFi induced specific changes in patients’ 

immune responses that are mostly detected in the challenged immune system, and not in the 

resting state. 

 

We demonstrated that the effect of TNF-blockers is detectable after a single dose and 

remained stable over a period of three months after initiation of therapy. Pro-inflammatory 

molecules such as- MIP-1β, IL-1Ra and IL-8 were reduced in response to many stimuli, which 

indicated the influence TNF blockers have towards many intracellular pathways. TNFi directed 

its effects towards the innate immune responses of the patients, with minor effects on the 

Th1/Th17 immunity, as we did not see major effects on secreted IL-6, IFN-γ and IL-17 proteins. 

The gene expression data was consistent with the secreted protein analysis, as there were no 

effects of the treatment on genes IL17A, IFNG and IL6.  

 

The analysis on expression pattern of immune-related genes at day 7 (D7) and after 

three months (D90) of anti-TNF therapy revealed that a number of genes of the NF-κB 

transcriptional network were affected. We report that TNFi target a core immune response 

gene signature that includes NF-κB genes (NFKB1, RELA, NFKB2 & RELB) and NF-κB 
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targets (IL1A, IL1B & CCL20). Additionally, we observed a strong downregulation of the 

cyclooxygenase-2 (COX2) gene PTGS2 - an enzyme involved in the biosynthetic pathway of 

prostaglandin synthesis, and PTGER4, which encodes the PGE2 receptor EP4. Signalling 

through EP4 upregulates IL-23R expression promoting human Th17 cell development, and 

suppresses disease progression in an experimental mouse model of autoimmune 

encephalomyelitis as reported by Yao et al. (2009). Of note, PTGER4 has been associated 

with SpA susceptibility, as have been NFKB1 and CARD9, which were also strongly 

downregulated by TNFi. Collectively, these data provide evidence that TNFi target the 

expression of genes closely linked to SpA pathogenesis. Our findings suggest that TNFi target 

several immune cell pathways that cooperate to control inflammation. 

 

To study the effect of TNFi on the immune networks we compared the immune 

responses at D0 and D7 using Quantitative Set Analysis for Gene Expression (QuSAGE) for 

several gene modules. Group of genes of the “NF-κB transcription factors” and “NF-κB target 

genes” modules were observed to be downregulated by TNF-blockers. While the gene set 

showed a reduction in most immune events following TNF inhibition, we report an increased 

activity in the cytotoxic gene module. Cytotoxic granules are essential in the effector function 

of CTLs and NK cells. We observed an increase in the pathway activity after therapy for the 

genes linked to target cell lysis and “NK cells” module, such as granzymes (GZMA and 

GZMB), perforin (PRF1) and granulysin (GNLY), as well as killer cell lectin receptors (KLRD1, 

KLRF1). 

 

Another key finding from our analysis is the decrease in the genes from the “M1-like 

monocyte” and the increase in “M2-like monocyte” gene module. This data indicate that the 

TNFi may affect monocyte/macrophage polarisation, specifically towards the activation of M2-

phenotype macrophages. Our data also showed that many characteristic surface markers of 

the regulatory M2-macrophages, such as mannose receptor MRC1, and scavenger receptors 

MSR1 and CD163 are upregulated at D7 after the anti-TNF therapy, implicating their role in 

inflammation resolution in axSpA patients.  

 

Through this study we show that TNFi target multiple immune cell pathways that 

cooperate to resolve inflammation. We propose that immune response profiling provides new 

insight into the biology of TNF-blocker action in patients and can identify signalling pathways 

associated with therapeutic responses to biologic therapies. The detailed manuscript, with 

figures and supplementary data of this work that is currently under revision with Annals of 

Rheumatic Diseases is given in the following pages. 
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ABSTRACT 

Objectives  
Anti-tumor necrosis factor (TNF) therapy has revolutionized treatment of several chronic 
inflammatory diseases, including spondyloarthritis (SpA). However, TNF-inhibitors (TNFi) are 
not effective in all patients and the biological basis for treatment failure remains unknown. 
We have analyzed induced immune responses to define the mechanism of action of TNF-
blockers in SpA and to identify immunological correlates of responsiveness to TNFi.  

Methods 
Immune responses to microbial and pathway-specific stimuli were analyzed in peripheral 
blood samples from 80 axial SpA patients before and after TNFi treatment, using highly 
standardized whole-blood stimulation assays. Cytokines and chemokines were measured in a 
CLIA-certified laboratory, and gene expression was monitored using nCounter assays.  

Results 
Anti-TNF therapy induced profound changes in patients’ innate immune responses. TNFi 
action was selective, and had only minor effects on Th1/Th17 immunity. Modular 
transcriptional repertoire analysis identified prostaglandin E2 synthesis and signaling, 
leukocyte recirculation, macrophage polarization, dectin and IL-1 signaling, as well as the NF-
kB transcription factor family as key pathways targeted by TNF-blockers in vivo. Analysis of 
induced immune responses before treatment initiation revealed that expression of molecules 
associated with leukocyte adhesion and invasion, chemotaxis and IL-1 signaling are correlated 
with therapeutic responses to anti-TNF.  

Conclusions 
We show that TNFi target multiple immune cell pathways that cooperate to resolve 
inflammation. We propose that immune response profiling provides new insight into the 
biology of TNF-blocker action in patients and can identify signaling pathways associated with 
therapeutic responses to biologic therapies. 

 

KEYWORDS 

Spondyloarthritis, anti-TNF therapy, immune response profiling, mechanisms of biologic drug 
action, therapeutic responses 
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KEY MESSAGES 

What is already known about this subject? 

Ø Anti-TNF therapy has revolutionized treatment of many chronic inflammatory diseases, 
including spondyloarthritis (SpA) and rheumatoid arthritis. However, TNF-inhibitors (TNFi) 
are not effective in 30-40% of patients. The immunosuppressive effects of TNF-blockers 
therefore expose a substantial fraction of patients to side-effects, in particular infections, 
without clinical benefit. Despite the extensive use of TNFi for many years, the biological 
basis for treatment failure remains unknown.  

 

What did this study add? 

Ø We demonstrate that anti-TNF therapy induces profound changes in patients’ innate 
immune responses, but does not affect Th1/Th17 immunity.  

Ø Modular transcriptional repertoire analysis showed that prostaglandin E2 synthesis and 
signaling, leukocyte recirculation, macrophage polarization, dectin and IL-1 signaling, as 
well as the NF-kB transcription factor family are key pathways targeted by TNF-blockers 
in vivo.  

Ø To investigate the concept that the immune status of patients before treatment initiation 
will define their response to TNFi treatment, we have searched for immunological 
transcripts that correlate with clinical efficacy of TNF-blockers in stimulated immune cells. 
We found that high expression of molecules associated with leukocyte adhesion and 
invasion, chemotaxis and IL-1 signaling is correlated with favorable outcome of anti-TNF 
therapy.   

How might this study impact on clinical practice or future developments? 

Ø We have established a robust pipeline to monitor immune responses in patients that can 
be translated into a clinical setting. We show that immune response profiling can identify 
signaling pathways associated with therapeutic responses to TNFi. Further studies will 
assess whether this approach can be used to develop molecular biomarkers to help 
stratify patients to the most appropriate therapy.  
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INTRODUCTION 
Chronic inflammatory diseases (CID) are challenging illnesses that often strike at a young age 
and cause lifelong morbidity, representing a considerable burden for the affected individuals 
and for society. Spondyloarthritis (SpA) is a family of related inflammatory disorders with 
common pathologic and genetic features.[1-3] Clinical manifestations include spinal (axial) 
inflammation, peripheral arthritis, enthesitis and extra-articular features such as uveitis, 
psoriasis and inflammatory bowel disease.[4] 
Anti-TNF therapy has proven effective to reduce inflammation and clinical symptoms in SpA, 
however, little is known about how TNF inhibitors (TNFi) affect immune responses in patients, 
and TNFi have been associated with infectious complications,[5] including M. tuberculosis 
reactivation.[6-8] 
Furthermore, the high rate of non-responsiveness (30-40%) to TNFi exposes a substantial 
fraction of patients to side effects without clinical benefit, and it is still not possible to 
determine which patients will respond to TNFi before treatment initiation.[9-11] The recent 
introduction of antibodies blocking IL-17A has expanded the therapeutic options for axial SpA 
(axSpA), as well as psoriasis and psoriatic arthritis.[12, 13] It is therefore important to develop 
tools to guide treatment decisions for patients affected by SpA and other CID, to optimize 
clinical care and contain health care costs.  
Here, we investigated the global impact of TNFi on immune responses to microbial or 
pathway-specific stimuli, with the goal to enhance our understanding of the molecular 
mechanism of action of TNF-blockers in SpA patients and to identify immunological correlates 
of responsiveness to TNFi. 

 

METHODS 

Patients  
Peripheral blood samples were obtained from 80 biologic-naïve patients fulfilling ASAS 
criteria for axSpA,[14, 15] attending the Rheumatology Departments of Cochin or Saint-
Antoine Hospitals (Paris, France). This study fulfills the current Good Clinical Practice 
Guidelines and a clinical protocol has been accepted by regulatory committees: Comité de 
Protection des Personnes Ile de France III; Référence CPP: n° AT-100), Institut Pasteur (Projet 
de recherché clinique n° 2011-32, CCTIRS (DGRI CCTIRS MG/CP°2012.035), and CNiL (Décision 
DR-2013-080). A written informed consent has been obtained from each subject.  
Patients’ demographics, HLA-B27 status, information regarding symptoms, ongoing 
treatments, co-morbidities and other main clinical features of spondyloarthritis were 
recorded on a Case Record Form before and 3 months (D90) after initiation of anti-TNF 
therapy (see Table 1 and online supplementary table 1). 
Primary responsiveness to anti-TNF therapy was based on the Ankylosing Spondylitis Disease 
Activity Score (ASDAS).[16] The “improvement score” was calculated as: ASDAS at baseline 
(D0) - ASDAS at D90). Patients achieving a delta ASDAS < 1.1 were classified as non-
responders.[16]  



 

 241 

Whole-Blood TruCulture Stimulation was performed with TruCulture assays (Myriad RBM, 
Texas).[17] Multi-analyte profiling of culture supernatants was performed with Luminex 
xMAP technology (Myriad-RBM, Austin, TX, USA), gene expression analysis with nCounter 
Technology (NanoString), with the Human Immunology v2 Gene Expression CodeSet.[18, 19] 
Purification of monocytes and in vitro cell stimulation 
To generate in vitro derived macrophages, monocytes were isolated from healthy donors and 
cultured  with M-CSF in presence or absence of TNFi. Cells were polarized towards M1 with 
LPS (20 ng/mL, Invivogen) and IFN-� (20 ng/ml, Milteny), or towards M2 with IL-4 and IL-
13 (20 ng/ml, Miltenyi). 

Data analysis 
Quantitative set analysis of gene expression was performed using the R QuSage package.[20] 
Differential gene expression was analyzed using the LIMMA package,[21] principal 
component analysis and hierarchical clustering were performed with Qlucore Omics Explorer 
(Qlucore). 
 

Methods are described in detail in the online supplementary material. 

 

RESULTS 

TNFi affect immune responses to microbes and stimuli targeting specific immune receptors 
We analyzed immune responses in axSpA patients with indications for TNFi treatment (Table 
1), using whole blood (“TruCulture”) assays[17] (figure 1A). We stimulated blood samples 
from 12 patients with a range of microbial stimuli or signaling agonists, and we measured the 
levels of 31 secreted molecules (online supplementary table 3 and 4, online supplementary 
figure 1A). Three months (D90) after TNFi initiation, the induction of many pro-inflammatory 
cytokines and chemokines (such as MIP-1β, IL-1Ra and IL-8) was reduced in response to 
various stimuli, indicating that TNFi target intracellular pathways shared by a broad range of 
immune activators (figure 1B). In contrast, TNFi had no major effects on IL-6, IFN-g and IL-17 
(online supplementary figure 1D), although the Th17 pathway is suggested to be of key 
importance in SpA pathophysiology.[22]  
Only few secreted proteins increased after TNFi therapy. Among these was IL-10 following 
stimulation with gardiquimod (figure 1B), a selective ligand for TLR7.  
These results show that TNFi induce selective changes in patients’ immune responses, mostly 
detected in the challenged immune system, and not in the resting state (online supplementary 
figure 1D). 
 

The effects of TNFi are detected after a single injection and remain stable over time 
To determine the early effects of TNFi, we analyzed 17 consecutive axSpA patients 7 days 
after initiation of TNFi therapy (online supplementary figure 1B). Secretion of pro-
inflammatory mediators was already affected after a single TNFi injection (figure 1C, D and 
G) and over a broad range of stimuli (online supplementary figure 2A). Production of IL-6, IL-
17 and IFN-� was largely unaffected (figure 1E and F).  
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The reduction in pro-inflammatory mediators was maintained at D90 (online supplementary 
figure 2B and C), demonstrating that the effects of TNFi on immune responses remain stable 
over time.  

 

TNF-blockers affect key transcriptional networks of innate immune responses 
To gain insight into the mechanisms by which TNFi affect immune responses, we analyzed the 
expression of immune-related genes before and at D7 and D90 after TNFi treatment. TNF 
blockade profoundly altered the transcription of a large number of genes (figure 2A).  
The majority of genes differentially expressed after therapy were shared by different 
stimulation conditions, revealing a “core immune response signature” targeted by TNFi 
(figure 2B), which included NF-kB genes, such as NFKB1, RELA, NFKB2 and RELB, and NF-kB 
targets, such as IL1A, IL1B and CCL20 (figure 2C, 2D, S3A and online supplementary figure 
3B). In particular, TNFi strongly downmodulated expression of PTGS2, encoding 
cyclooxygenase (COX-2), the key enzyme in prostaglandin E2 (PGE2) biosynthesis, and PTGER4 
encoding the PGE2 receptor EP4 (figure 2D). TNFi-induced downmodulation of PTGS2 and 
PTGER4 did not depend on the NSAID index at baseline (online supplementary figure 4). 
Consistent with our analysis of secreted proteins (figure 1D), IL17A, IFNG and IL6 were largely 
unaffected (online supplementary figure 3A). 
The analysis of patients stratified into responders and non-responders showed that the 
majority of differentially expressed genes are common to both groups, although  a number 
of genes are uniquely affected in each patient subset (online supplementary table 6 and 
online supplementary figures 5 and 6). 
The effects of TNFi also on gene expression could be measured after a single injection and 
remained stable over time (online supplementary figure 7A).  
To determine if changes in cell populations accounted for these effects, we analyzed cell 
counts at D0 and D90. While leukocyte and monocyte counts remained stable, we observed 
a modest decrease of neutrophils and increase of lymphocyte counts after TNFi therapy 
(online supplementary figure 7B).  

 

Modular transcriptional repertoire analysis reveals multiple mechanisms of TNFi action in 
vivo  
The observation that TNFi affected several molecules in the same signaling pathway 
prompted us to further define the effects of TNFi on immune networks. We compared 
immune responses at D0 and D7 using Quantitative Set Analysis for Gene Expression 
(QuSAGE)[20] (online supplementary table 5). The modules “NF-kB transcription factors” and 
“NF-kB target genes” were among those most strongly downregulated by TNFi (figure 3A-C 
and online supplementary table 7), followed by the “IL-1/IL-1R” module (figure 3A and B). 
Inspection of the individual genes in this module showed downregulation of IL1A, IL1B, IRAK2, 
IL1R1, and IL1RN, as well as a substantial increase of SIGIRR, after TNF blockade (figure 3D).  
TNFi therapy also reduced the activity of the “dectin” module (figure 3A and B and online 
supplementary figure 8A), which groups C-type lectin receptors (CLRs) for C. albicans and 
other fungi such as Dectin-2 (encoded by CLEC6A), or Mincle (encoded by CLEC4E) and 
associated signaling molecules, such as CARD9, a molecule involved in antifungal immunity 
that mediates signals from CLRs to the NF-kB pathway via BCL10.[23]  
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While gene set activities for most gene modules were reduced by TNFi, we observed 
increased activity at D7 of the “cytotoxic molecules” module and of the M2-like monocytes 
gene module, while the overall activity of the module “M1-like monocytes” was reduced after 
TNFi, indicating that TNF-blockers may affect monocyte/macrophage polarization (figure 3). 
In particular, we observed an upregulation of the genes encoding surface markers 
characteristic of regulatory macrophages, such as the mannose receptor MRC1, the scavenger 
receptors MSR1 and CD163, the decoy receptor IL1R2, and of IL10 (figure 3G and online 
supplementary figure 8B).  
Analogous results were obtained at D90 after initiation of TNFi (online supplementary figure 
8C), indicating the multiple immune pathways that mediate TNFi function in SpA patients.  
Many of the genes affected by TNFi are expressed in monocytes and macrophages, which 
prompted us to investigate the roles of these cells in the response to TNFi. We stimulated 
monocytes from SpA patients with LPS in the presence or absence of etanercept (Eta), and 
measured transcript levels before and at different time points after stimulation (online 
supplementary figure 9). Several of the genes downregulated by etanercept were direct NF-
kB target genes, such NFKBIA, TNFAIP3, TNFAIP6, or IL1A (online supplementary figure 9).  

 

 

TNFi skew macrophage polarization towards an M2 phenotype in vitro 
We then asked whether TNFi affect also macrophage gene expression. As the analysis of 
tissues is rarely performed in axSpA[24] we investigated the effects of two TNFi, etanercept 
and adalimumab, on in vitro differentiated macrophages (figure 4A). Although the effects of 
adalimumab on gene expression were stronger in our system, a core of 56 genes was 
regulated by both TNFi (figure 4B-E).  
We noted strong downregulation of M1-macrophages genes such as IL18 (figure 4C, D and E), 
while expression of genes associated with M2-macrophages, such MRC1, MSR1 and CLEC7A 
was significantly increased (figure 4E). 
TNFi also strongly downmodulated PTGS2 expression in stimulated M1 macrophages (figure 
4E), and affected the mRNA levels of chemokines and their receptors: the expression of 
CCL19, CCL4, and CCL3 was downregulated, while CCL13 and CCL24 were upregulated by TNFi 
(figure 4C, D and E). These data are consistent with our results for TNFi treatment in vivo and 
suggest that TNFi may affect leukocyte recruitment to inflamed joints.  
Finally, we confirmed a significant downregulation of NF-kB pathway genes (figure 4C, D and 
F). These data further support the notion that TNFi affect immune responses by acting on 
multiple inflammatory pathways and that phagocytic cells are important targets of these 
effects (figure 4F).  

 

Immune gene expression associated with therapeutic responses to anti-TNF therapy 
Finally, we investigated the correlation between therapeutic responses to TNFi and 
stimulated immune responses in 80 axSpA patients, before initiation of anti-TNF therapy. 
Response to therapy was calculated as the delta ASDAS “improvement score” (ASDAS D0 – 
ASDAS D90).[16, 25] 50 patients (62.5%) had either a major or a clinically important 
improvement (“responders”, delta ASDAS ≥ 1.1), while 30 (37.5%) were non-responders 
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(Table 1 and online supplementary table 1). The analysis of whole-blood cultures stimulated 
with LPS or SEB revealed that 55 genes were differentially expressed between responders and 
non-responders (Table 2 and figure 5A).  
To explore if different types of anti-TNF drugs could have an impact on therapeutic responses 
to TNFi, we compared differential gene expression between responders and non-responders 
treated with soluble TNFR2 (n=53) to those treated with monoclonal antibodies (n=27). We 
found a good correlation (R=0.901) for the 55 genes differentially expressed. These data 
indicate that the type of TNF-blockers does not have a major effect on the genes significantly 
associated with therapeutic responses before treatment (online supplementary figure 10B). 
A search of the DICE database[26] showed expression of these genes in different immune 
cells, including activated T cells, Treg, Th17 and NK cells (figure 5B). Notably, 29 of the genes 
were expressed specifically in resting classical or non-classical monocytes (figure 5B). These 
data suggest that several immune cell populations contribute to determine the efficacy of 
anti-TNF therapy in SpA patients.  
Among the 55 differentially expressed genes, 15 regulate key steps of leukocyte migration 
and invasion: these include PLAU and PLAUR, the integrin subunits ITGB1, ITGA5, ITGAX, and 
ITGA6, and the CD2 ligand CD58 (figure 5B, 5C and Table 2). The importance of leukocyte 
recirculation as a determinant of therapeutic responses to TNFi is supported by the 
observation that several genes encoding chemokines and their receptors, such as CCL20, IL8, 
CXCL1, CXCL2 and CXCR1 are expressed at higher levels in cultures from SpA patients 
responding to TNFi than in non-responders, while CXCL9 is expressed at higher levels in non-
responders (figure 5B-C, Table 2 and online supplementary figure 10). Expression of the 
receptors for the pro-inflammatory cytokines TNF (TNFRSF1B), IL-6 (IL6R) and IL-1 (IL1R1, 
IL1R2 and IL1RAP) was also substantially higher in responders than in non-responders, as was 
expression of the IL-1R-associated kinases IRAK1 and IRAK3, and of NLRP3, which controls 
caspase-1-dependent processing of pro-IL-1� and IL-18. These data indicate that the 
activation status of the IL-1 signaling pathway may influence responsiveness to TNFi. We also 
noted substantially higher expression in responders of CLEC5A (MDL-1, myeloid DAP12-
associating lectin-1), an important mediator of autoimmune inflammation in experimental 
arthritis models[27] (figure 5C and Table 2).  

 

DISCUSSION 
To investigate immune responses in SpA patients, we have used highly standardized and 
robust assays that may be directly translated into a clinical setting. “TruCulture” assays were 
designed to preserve physiological cellular interactions and capture immune cell activity 
without introducing sample collection and manipulation variables.[28] We chose to analyse 
responses in whole blood, because tissue biopsies cannot be performed routinely in axSpA.  
Most of the effects of TNFi could be observed only in stimulated cultures, supporting the 
notion that TNFi act on activated immune cells, rather than in homeostatic conditions. This 
may explain the relatively modest changes in gene expression in response to TNFi detected 
in a recent study of unstimulated PBMCs from axSpA patients.[29]  
Our modular transcriptional repertoire analysis of the stimulation cultures[20] established a 
hierarchy of signaling pathways affected by anti-TNF therapy, with potential clinical 
implications.  
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We found a strong decrease of pro-inflammatory molecules produced primarily by innate 
immune cells, pointing to the importance of these cells in SpA pathogenesis. The decreased 
activity of the NF-kB module underlines the major role of these factors in mediating TNF-
blocker functions. However, TNF-blockade had only minor effects on the expression and 
secretion of IL-6, contrary to what observed in RA patients.[30] These data suggest that this 
cytokine may be more relevant to RA, but less to SpA pathogenesis, consistent with the 
limited therapeutic efficacy of IL-6-blockade in SpA.[31]  
We observed downregulation of the classical, M1-like module and an increase of the non-
classically activated, M2-like monocyte gene module activity, consistent with the finding that 
TNFi can expand a cell population with a M2 macrophage-like appearance in vivo and in 
vitro.[32, 33] Analysis of the effects of TNFi in vitro provided direct evidence that TNFi act 
directly on macrophage polarization. These results are consistent with a previous study 
performed with in vitro differentiated macrophages from RA patients.[34] M2 macrophages, 
characterized by expression of IL-10, high-levels of scavenger and mannose receptors, IL1R2 
and IL1RN, are implicated in the resolution of inflammation and orchestrate tissue repair and 
remodeling[35, 36]. Polarization of monocytes/macrophages towards a M2-like profile may 
be an additional mechanism by which TNF-blockers act on the immune system to regulate 
inflammatory responses[37] and could also explain the increased risk of opportunistic 
infections observed for patients treated with TNFi, in particular M. tuberculosis.[38]  
TNFi strongly downregulated expression of PTGS2, the key enzyme in prostaglandin E2 (PGE2) 
biosynthesis and target of non-steroidal anti-inflammatory drugs, the first-line treatment of 
SpA. PGE2 is an important early mediator of enthesitis, the hallmark of SpA[39] and COX-2 
inhibition may be an important mechanism of TNFi therapeutic action in this disease. PGE2 
induces vasodilation, which may facilitate neutrophil recruitment into the entheseal 
compartment[39]. We also found that expression of the PGE2 receptor PTGER4 (EP4) was 
downregulated by TNFi. Signaling through EP4 upregulates IL-23R expression promoting 
human Th17 cell development,[40] and suppresses disease progression in an experimental 
mouse model of autoimmune encephalomyelitis.[41] Of note, PTGER4 has been associated 
with SpA susceptibility, as have been NFKB1 and CARD9,[42] also strongly downregulated by 
TNFi. Collectively, these data provide evidence that TNFi target the expression of genes 
closely linked to SpA pathogenesis.  
Our findings suggest that TNFi target several immune cell pathways that cooperate to control 
inflammation. Targeting PGE2biosynthesis via PTGS2 downregulation is of particular 
relevance for enthesitis, a critical early pathogenic feature of spondyloarthitis, while shifting 
the balance of macrophages from a pro-inflammatory phenotype to a pro-resolving 
phenotype is important for the resolution of synovitis. MDL-1/CLEC5A was among the most 
strongly downregulated molecule after TNFi therapy. Dengue virus-mediated activation of 
MDL-1/CLEC5A can trigger potent induction of TNF, IL-6 and IL-1� and NLRP3 inflammasome 
activation and shock.[43, 44] MDL-1/CLEC5A is also expressed in synovial tissue from RA 
patients and MDL-1/CLEC5A blockade reduced tissue inflammation and bone erosion in 
experimental arthritis models.[27] Reduction of MDL-1/CLEC5A expression by TNFi may result 
in inhibition of bone erosion and inflammatory cytokine production in SpA.  
The involvement of multiple pathways in TNF-blocker functions could also explain the 
difficulties in identifying a genetic marker for treatment response to TNFi.[45] We could not 
identify a single gene whose expression correlates with responsiveness to TNFi, but rather a 
set of genes. A limitation is that our study focused on a pre-defined panel with 594 immune-
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related genes. In addition, this study was performed in patients from France and and should 
be replicated in patients from different genetic and environmental backgrounds. Genome-
wide studies may be necessary to identify unique molecular biomarkers. Nevertheless, our 
data indicate that high-level expression of molecules associated with leukocyte invasion and 
migration as well as IL-1 signaling in stimulated immune cells predisposes to favorable 
outcome of anti-TNF therapy in the consistent cohort of 80 patients recruited for this study.  
In conclusion, we suggest that immune response profiling of patients is a powerful approach 
to define the mechanism of action of biologic drugs and may be a useful strategy to establish 
objective criteria guiding treatment decisions. 
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Table 1. Clinical characteristics of the 80 axSpA patients included in the study 
 
Characteristic SpA (n = 80) 
Female n (%) 25 (31%) 
Median (IQR) age at sampling (years) 37 (19-64) 
Median (IQR) disease duration (years)  2 (0-33) 
HLA-B27 positive n (%) 63 (79%) 
Current smokers n (%) 40 (50%) 
Median (IQR) CRP (mg/l) at baseline 6.06 (0.09-62) 
Median (IQR) BASDAI at baseline 49.80 (9.40-90) 
Median (IQR) ASDAS at baseline 3.05 (1.13-4.79) 
Axial involvement n (%) 80 (100%) 
Axial and enthesial involvement n (%) 38 (47.5%) 
Radiological sacroiliitis n (%) 48 (60%) 
MRI sacroiliitis n (%) 63 (79%) 
 
TNF blocker  
Soluble TNF receptor Etanercept n (%) 53 (66.25%) 
Monoclonal antibody Adalimumab n (%) 13 (16.25%) 
Monoclonal antibody Golimumab n (%) 13 (16.25%) 
Monoclonal antibody Infliximab n (%) 1 (1.25%) 
  
Extra-articular manifestations  
Psoriasis n (%) 16 (20%) 
Uveitis n (%) 26 (33%) 
IBD (%) 3 (4%) 
  
Response at D90  
Median (IQR) C-reactive protein (mg/l) at D90 1.95 (0-51.80) 
Median (IQR) BASDAI at D90 23.50 (0-78) 
Median (IQR ) ASDAS at D90 1.44 (0.64-3.45) 
Patients with major ASDAS improvement n (%) 20 (25%) 
Patients with clinically important improvement ASDAS n 
(%) 30 (37.5%) 
Non-Responder ASDAS n (%) 30 (37.5%) 
Non-Responder ASDAS treated with Etanercept n (%) 22 (73.33%)* (41.5%)** 
Non-Responder ASDAS treated with Adalimumab n (%) 5 (16.67%)* (38.5%)** 
Non-Responder ASDAS treated with Golimumab n (%) 3 (10%)* (23.1%)** 
Non-Responder ASDAS treated with Infliximab n (%) 0 (0 %) 
Non-Responder BASDAI50 n (%) 52 (65%) 

Median and interquartile range (IQR) or percentages are shown; CRP, C-reactive 
protein; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; ASDAS, 
Ankylosing Spondylitis Disease Activity Score; IBD, inflammatory bowel disease 
*percentage of total Non-Responders ** percentage of patients treated with the 
indicated drug 
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Table 2. Genes differentially expressed between responders and non-responders to TNFi 
 

Gene ID Log Fold-change 
(R/NR) 
((R/NR(R/NR) 
(R/NR) 

P-value 
(R/NR) 
(R/NR)(R/NR) 

Adjusted P-value (R/NR) 
PLAUR_LPS 0.4816 2.86E-06 0.0023 
ITGB1_LPS 0.2860 5.29E-06 0.0023 
CD14_LPS 0.5704 1.78E-05 0.0041 
CCL20_LPS 0.6264 2.04E-05 0.0041 
IL1R1_LPS 0.7803 2.48E-05 0.0041 
IRAK1_LPS 0.2964 3.41E-05 0.0041 
IRAK3_LPS 0.3977 3.49E-05 0.0041 
CLEC5A_LPS 0.7180 3.8E-05 0.0041 
ITGA5_LPS 0.2684 0.0001 0.0066 
LTB4R_LPS 0.5985 0.0001 0.0069 
LTA_LPS -0.3366 0.0001 0.0074 
BST1_LPS 0.5186 0.0001 0.0077 
IL1RAP_LPS 0.4707 0.0001 0.0083 
CD58_LPS 0.2690 0.0001 0.0083 
CEBPB_LPS 0.2989 0.0001 0.0083 
IL8_LPS 0.5694 0.0002 0.0083 
IFNGR1_LPS 0.3022 0.0002 0.0097 
IL1R2_LPS 0.4411 0.0003 0.0121 
CXCL9_LPS -2.0206 0.0003 0.0121 
TNFRSF1B_LPS 0.3157 0.0003 0.0121 
IL6R_LPS 0.3360 0.0003 0.0121 
NLRP3_LPS 0.3896 0.0003 0.0121 
CTNNB1_LPS 0.1495 0.0003 0.0121 
FCGRT_LPS 0.3159 0.0003 0.0121 
ITGAX_LPS 0.3600 0.0003 0.0121 
IFNG_LPS -1.4398 0.0005 0.0180 
CXCL1_LPS 0.4515 0.0006 0.0180 
FCGR2A_LPS 0.2634 0.0006 0.0180 
ITGA6_SEB -0.2569 0.0006 0.0180 
PRKCD_LPS 0.3330 0.0006 0.0187 
ZEB1_LPS 0.3487 0.0007 0.0201 
CLEC7A_LPS 0.3795 0.0007 0.0201 
PECAM1_LPS 0.4050 0.0008 0.0218 
IRAK1_SEB 0.1988 0.0009 0.0231 
APP_LPS 0.1938 0.0010 0.0237 
FCER1G_LPS 0.2902 0.0011 0.0255 
ICAM5_SEB 0.5363 0.0011 0.0257 
IL8_SEB 0.3880 0.0011 0.0257 
PLAUR_SEB 0.3067 0.0012 0.0270 
IL7R_SEB -0.1991 0.0012 0.0270 
IGF2R_LPS 0.2310 0.0013 0.0270 
IKZF3_LPS -0.1544 0.0013 0.0276 
TNFRSF8_LPS 0.3647 0.0014 0.0276 
NFIL3_LPS 0.2830 0.0015 0.0290 
LIF_LPS 1.0229 0.0015 0.0292 
MBP_LPS 0.2114 0.0016 0.0296 
TP53_LPS -0.1846 0.0016 0.0296 
CXCL2_LPS 0.4914 0.0020 0.0371 
CXCR4_LPS 0.2833 0.0022 0.0398 
ATG7_LPS 0.2486 0.0024 0.0412 
CRADD_SEB 0.3238 0.0025 0.0435 
PLAU_LPS 0.4759 0.0027 0.0452 
SPP1_SEB 0.4451 0.0028 0.0452 
SKI_LPS 0.1760 0.0028 0.0452 
CXCR1_LPS 0.6786 0.0029 0.0452 
TLR2_LPS 0.2718 0.0031 0.0471 
MAP4K4_LPS 0.2504 0.0031 0.0471 
DUSP4_LPS 0.4570 0.0031 0.0471 
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Figures and figure legends 
 
Figure 1 
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Figure 1. An immunologic signature of anti-TNF therapy 

(A) Study design. Blood samples were collected from axSpA patients prior to (D0), 7 days (D7, for a subset 

of patients), and 3 months (D90) after beginning TNFi treatment. Clinical efficacy was monitored at D90 

according to the current standard of care. (B) The levels of 31 secreted molecules in response to 18 

different immune stimuli were compared in samples from 12 patients at D0 (black rectangles) and D90 

(orange rectangles). Patients with CRP-levels > 6 mg/l are marked with yellow rectangles, while CRP-levels 

< 6 mg/l are indicated with grey rectangles. Patients responding to anti-TNF therapy (delta ASDAS ≥ 1.1) 

are marked in blue and non-responders (delta ASDAS < 1.1) are marked in red. The heatmap shows the 

levels of differentially secreted proteins (paired t-test, FDR ≤ 0.05, fold-change ≥ 2, red indicates higher and 

green lower levels of protein secretion). Analyte-stimulus combinations were ranked by decreasing fold-

change (color-code bar, top left); patient IDs are indicated below the heatmaps. (C) The same analysis as 

in (B) was performed for additional 17 axSpA patients, sampled at D0 (blue rectangles) and D7 (green 

rectangles). (D-G) Levels of proteins identified in (C), for 5 representative stimuli and the unstimulated 

(null) condition, in 17 axSpA patients at D0 (red) and D7 (blue). Red lines indicate the least detectable dose 

(LDD) for each assay. P-values were calculated using a Wilcoxon matched-pairs test (SpA patients D0 versus 

D7) *: P<0.05; **: P<0.01; ***: P<0.001; ****: P<0.0001; ns: not significant. Horizontal black bars indicate 

the median. Y-axes are log2 scales 
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Figure 2 
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Figure 2. TNF-blockers strongly affect key transcriptional networks of innate immune 
responses 

(A) Number of genes differentially expressed in 10 different TruCulture stimulation assays 
performed at D0 and D7 (17 patients, paired t-test, FDR ≤ 0.05). (B) Venn diagram of the genes 
differentially expressed as in (A), in 5 representative stimulation conditions. (C) Heatmap 
showing the genes most affected by TNFi (D0, black rectangles versus D7, green) in LPS and 
SEB stimulation conditions. Paired t-test, FDR ≤ 0.005 and fold-difference threshold of ≥ 2. 
Gene-stimulus combinations were ranked by decreasing fold-change (color code bottom left 
bar). (D) Expression levels of NF-kB family members for the unstimulated TruCulture assay 
and 5 representative stimuli at D0 (red) and D7 (blue) after initiation of TNFi therapy. P-values 
were determined using a Wilcoxon matched-pairs test (D0 versus D7, *: P<0.05; **: P<0.01; 
***: P<0.001; ****: P<0.0001; ns: not significant, n = 17). Horizontal black bars indicate the 
median. 
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Figure 3. Modular transcriptional repertoire analysis reveals multiple mechanisms of TNF-
blocker action in SpA  

(A, B) Effect of anti-TNF therapy on the activity of 45 gene modules (online supplementary 
table 5) generated from 456 immune-related genes. Whole-blood cultures were stimulated 
with SEB (A) or LPS (B). For each gene module, the mean activity fold-change and 95% 
confidence interval are plotted and color-coded according to their FDR-corrected P-values 
(means compared to fold-change zero). Confidence intervals overlapping the horizontal 
dotted line indicate statistically significant increased or decreased module activity at D7 as 
compared to D0. (C-G) Detailed gene activity in five representative modules with decreased 
(C, D, E, LPS-stimulation) or increased (F, G, SEB-stimulation) pathway activity after anti-TNF 
therapy. The cultures were stimulated with LPS and SEB, respectively. Represented are the 
mean fold-change and 95% confidence interval for individual genes in each module. The 
horizontal dashed blue line and the grey band indicate the mean differential expression of all 
genes in the module at D7 versus D0, and the 95% confidence interval. (H) QuSAGE fold-
enrichment of gene set activity in 9 different stimulated cultures at D7 versus D0. For each 
module, the mean fold-change is color-coded to indicate increased (red) or decreased (green) 
module activity. Only changes reaching a significance threshold of FDR ≤ 0.01 are represented. 
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Figure 4. TNFi have largely overlapping effects on in vitro differentiated M1-type 
macrophages 

(A) Study design. CD14+ cells isolated from healthy donors were differentiated in vitro into 
macrophages in the presence or absence of etanercept or adalimumab. TNFi were added at 
day 3 and macrophages were polarized to the M1 subset in the presence or absence of 
etanercept (Eta) or adalimumab (Ada). Gene expression was analyzed with the nCounter 
Human Immunology v2 panel and  with LIMMA, (paired sample adjusted P-value threshold 
0.01). (B) Venn Diagram showing the overlap of genes affected by Eta or Ada. Analysis of 
paired samples with LIMMA, adjusted P-value threshold 0.01). (C, D) Heatmaps showing the 
genes most affected by Eta (orange rectangles) versus no treatment (green rectangles) (C) 
and Ada (blue rectangles) versus no treatment (D) in macrophages stimulated for 24h with 
LPS and IFN-g (“M1” polarization). (C) Paired t-test, Eta versus no treatment, adjusted p-value 
threshold 0.01.  Included also gene expression levels for Ada-treated samples for the same 
genes. (D) Paired t-test, Ada versus no treatment and fold-change threshold of ≥ 2. Included 
also gene expression levels for Eta-treated samples for the same genes. Samples were 
ordered by hierarchical clustering and genes were ranked by decreasing fold-change. (E) 
Shown are the mRNA levels of 8 selected genes from (C) and (D) in untreated M1-polarized 
macrophages (M1), M1 macrophages treated with Ada, M1 macrophages treated with Eta or 
untreated M2-polarized and macrophages (M2). Symbols represent individual data points, 
boxes the median and whiskers the interquartile range. Adjusted P-values are those of the 
LIMMA analysis. (F) Effect of Ada on the activity of 45 gene modules (online supplementary 
table 5) as in Figure 3. For each gene module, the mean activity fold-change and 95% 
confidence interval are plotted and color-coded according to their FDR-corrected P-values 
compared to zero. Red and green bars indicate statistically significant increased or decreased 
module activity, respectively, in M1 polarized macrophages treated with Ada versus no 
treatment. 
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Figure 5. Immune gene expression associated with therapeutic responses to anti-TNF therapy 
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(A) Volcano plot representation of genes differentially expressed between 50 SpA patients 
responding to anti-TNF therapy and 30 non-responders in whole-blood cultures stimulated 
with LPS or SEB before initiation of therapy; red triangles: genes higher in responders; green 
triangle: higher in non-responders  (LIMMA analysis, adjusted p-value < 0.05). Expression 
levels and fold-change values of the 58 gene-stimulus combinations (corresponding to 55 
genes) that are the most differentially expressed between responders and non-responders 
are reported in Table 2. (B). The heatmap shows the expression levels of the differentially 
expressed genes in different immune cell subpopulations. Gene expression data were 
extracted from the DICE database (http://dice-database.org/). (C) The expression levels of 
selected gene-stimulus combinations correlated with treatment response are plotted before 
treatment initiation (D0). Patients with major or clinically important improvement of disease 
activity were grouped together as responders and are represented in blue (R, blue, n=50). 
Non-responders are represented in red (NR, red, n=30). The horizontal black line represents 
the median. Statistical significance was tested using LIMMA analysis (responders versus non-
responders) and adjusted P-values are indicated above the graph.  
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Supplementary information (Manuscript I) 
Characterization of peripheral and entheseal IL-17 secreting Mucosal 
Associated Invariant T (MAIT) cells in Axial Spondyloarthritis 
 
Supplementary figures and legends from manuscript 1 (Part II results) 
 

 

Figure S1: Flow cytometry gating strategy 1. Flow cytometry gating strategy for the isolation of 

MAIT, γ𝞭 T cells, CD4+ and CD8+ T cells. 
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Figure S2: Flow cytometry gating strategy 2. Flow cytometry gating strategy, after CD3 positive 

magnetic sorting, of MAIT and CD4+ CCR6+T cells. 

 
Figure S3: Transcripts levels of CD28 and CLEC7A presented as normalized counts in sorted CD4+ 

T cells (in yellow), MAIT cells (in red), CD8+T cells (in blue), 𝛾𝛿 T cells (in purple) and neutrophils 

(in green) after 2h of stimulation by PMA (50ng/ml) + A23187(µM) + bglucan (50µg/ml).  

 

 

Figure S4: Flow cytometry gating strategy for phenotypic identification of MAIT cells in 

entheseal tissues and peripheral blood cells. Doublet excluded EMCs or PBMCs were stained with 

zombie aqua (live/dead discrimination), anti-CD45 (to exclude non-leucocytes), CD3 (T-cell 

inclusion), CD161 and Vα7.2 TCR. 
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Supplementary Materials 
 
 
Patients characteristics 
 

 
AxSpA patients Non-AxSpA patients with spinal 

surgery 

Age (years) 38.5±14.79 42.6±27.4 
Gender (M/F) 10/8 1/4 
Disease duration (years)  9.26±10.43 NA 
HLAB27 (%) 76,47% NA 
CRP (mg/l) 10.79±13.49 NA 
BASDAI (0-10) 41.33±14.93 NA 
BASFI (0-10) 28.8±19.9 NA 
ASDAS-CRP  2.7±0.79 NA 

 
Supplementary Table 1 
 
 
RNA extraction (AxSpA patients)  
 
Total RNA from sorted Neutrophils, CD4+, CD8+, MAIT, gd T cells were isolated using RNeasy Micro 

Kit or Mini Kit (Qiagen RNeasy Micro Kit, Valencia, CA) following the protocol provided by the 

manufacturer. RNA concentration was estimated using Qubit RNA HS Assay Kit (Life Technologies, 

Grand Island, New York, USA) according to the manufacturer’s instructions.  

RNA quality was assessed on a selection of random samples across the cohorts using the RNA 6000 

Nano Kit on an Agilent BioAnalyzer 2100 system (Agilent Technologies, Palo Alto, CA). The RNA 

integrity number (RIN) was determined using the LabChip System software. RNA aliquots were stored 

at -80°C until use.  

 
Gene expression analysis (AxSpA patients) 
 
Total RNAs were diluted with RNase-free water at 5 ng/μl into 0.2ml tubes of the 12-strip provided by 

NanoString. 25 or 50ng (5μl total volume) of total RNA from each sample were analyzed according to 

manufacturer’s instructions. 

Hybridization reactions were performed in 12-tube PCR strips. First 5μl of each sample were added. 

Next, a mix containing hybridization buffer and Reporter probes was added. Finally, the Capture probes 

were added and PCR strips were quickly transferred to a thermocycler set at 65°C. Samples were 

hybridized at 65°C for 22 hours. Cartridges were read on a nCounter Digital Analyzer at the highest 

resolution (555 fields-of-view (FOV) collected per flow cell) to yield a Reporter Code Count (RCC) 

data set.  
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Data QC and normalisation 

We generated raw data (RCC files) using purified cell populations from 18 patients for various 

stimulation conditions, using the Nanostring®  AS panel. Quality control and data normalization was 

carried out as per the established pipeline provided by Nanostring®  using nSolver Analysis software 

(version 3.0) using three steps described here: (1.) positive control normalization, (2.) negative control 

normalization and (3.) internal reference (housekeeping) gene normalization. (1.) The positive control 

normalization was used to correct for technical variation by calculating the geometric mean of the 

positive probe counts of each sample and then by calculating the average geometric mean of the positive 

probes across all the samples. A scaling factor was calculated by dividing the average geometric mean 

by the geometric mean for each sample. The computed scaling factor was then multiplied to the 

corresponding positive and negative controls and the target gene counts to correct for technical 

variation. (2.) Negative control normalization, a background threshold was calculated by taking the 

mean of the negative controls + 2 standard deviations (SD) and then this value was subtracted from the 

gene counts. (3.) The variation in mRNA input was corrected using the same method as the positive 

control normalization and housekeeping normalization. Housekeeping genes were selected by 

comparing the most stable genes across the panel according to the standard of deviation and coefficient 

of variation across all the samples. Using this method, we selected the following housekeeping genes: 

GAPDH, PPIA and RASSF. Probes with low counts were determined with respect to the background 

level, defined as the mean of the negative controls + 2*Standard deviation.  

 
Gene expression analysis on AS disease module 

Genes associated with AS were assigned using public GWAS data and annotations from Immunobase 

consortium. We then assessed the expression levels of these genes in different public repositories for 

gene expression data (RNA-seq and microarray). The genes that showed low levels of expression were 

excluded from the panel. Following these steps we originally assigned 43 associated genes to AS, which 

was later modified based on the list of susceptibility loci summarized by Osgood & Knight, 2018, to 

give 45 associated genes in the panel. After generating the gene expression data from 5 cell types 

isolated from SpA patients, QC and normalization were applied using the standard Nanostring nSolver 

data analysis pipeline. We then determined genes that fall below the background in our data and 

excluded them from further analysis, resulting in 36 associated genes. 

Supplementary Table 2 

Complete list of TaqMan Assays used for analysis of gene expression on non-SpA patients. 
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Single-molecule array (Simoa) IL-17A digital ELISA  

IL-17A concentrations (in fg/ml) were determined with Simoa technology (Quanterix SimoaTM IL-17A 

Reagent Kit, Lexington, MA, USA) according to the manufacturer’s instructions. The working dilutions 

were 1:4 for all samples, in working volumes of 80 μL. Each plate was run with a control sample to 

normalize the concentrations. Cytokine concentrations were interpolated from standard curves. The 

Gene Symbol Gene Name Assay ID 

AHR aryl hydrocarbon receptor HS00169233_m1 

BMP2 bone morphogenetic protein 2  HS00154192_m1 

CCR10 C-C motif chemokine receptor 10 HS00706455_s1 

CCR6 C-C motif chemokine receptor 6 HS00171121_m1 

CLEC7A C-type lectin domain family 7 member A / dectin-1 Hs01902549_s1 

CXCL10 C-X-C motif chemokine ligand 10 HS01124251_g1 

CXCL11 C-X-C motif chemokine ligand 11 HS04187682_g1 

CXCL12 C-X-C motif chemokine ligand 12 HS00171022_m1 

CXCR3 C-X-C motif chemokine receptor 3 HS00171041_m1 

KLF2 Krupple like factor 2 Hs00360439_g1  

NR4A1 Nuclear Receptor Subfamily 4 Group A Member 1 Hs00374226_m1  

T-Bet T-bet HS00203436_m1 

FGF7 Fibroblast growth factor 7 Hs00940253_m1 

FGF9 Fibroblast growth factor 9 Hs00181829_m1 

FOXP3 Forkhead Box P3 Hs1085834_m1 

HPRT1 hypoxanthine phosphoribosyl transferase 1 HS99999909_m1 

IFNG interferon gamma HS00989291_m1 

IL6 Interleukin 6 Hs00174131_m1 

IL10 interleukin 10 HS00961622_m1 

IL17A interleukin 17A HS00174383_m1 

IL17F interleukin 17F HS00369400_m1 

IL22  interleukin 22 HS01574152_g1 

IL23R interleukin 23 receptor HS00332759_m1 

IL36R IL-36 receptor Hs00543916_m1 

JAK1 Janus kinase 1 HS01026983_m1 

JAK2 Janus kinase 2 HS01078136_m1 

JAK3 Janus kinase 3 HS00169663_m1 

RORA RAR related orphan receptor A Hs00536545_m1 

RORC RAR related orphan receptor C HS01076122_m1 

SOCS1 suppressor of cytokine signalling 1 HS00705164_s1 

SOCS2 suppressor of cytokine signalling 2 HS00919620_m1 

SOCS5 suppressor of cytokine signalling 5 HS00367107_m1 

STAT1 signal transducer and activator of transcription 1 HS01013996_m1 

STAT2 signal transducer and activator of transcription 2 HS01013123_m1 

STAT3 signal transducer and activator of transcription 3 HS00374280_m1 
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lower limit of detection was 7 fg/mL.  

 
 

Supplementary Table 3  

List of antibodies used for flow cytometry (FC) and activation assays (AA) on non-SpA patients 

 

 
  

 

Target  Colour Clone  Manufacturer Application 

CD3 n/a OKT3 Invitrogen AA 

CD3 BUV395 UCHT1 BD Biosciences FC 

CD45   RF710 HI30 Tonbo 
Biosciences 

FC 

CD161 BV510 HP-3G10 Biolegend FC 

TCR Vα7.2 BV785 3C10 Biolegend FC 

CD45RA FITC HI100 Biolegend FC 

CD69 APC FN50 Biolegend FC 

IL17A PE eBio64DEC17 ThermoFisher FC 

TNFα PE-CF594 MAb11  BD Biosciences FC 
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Supplementary Methods 
 
Patients  
Peripheral blood samples were obtained from 80 consecutive patients with a definitive 
diagnosis of axial spondyloarthritis (axSpA) attending the Rheumatology Department of 
Cochin Hospital or the Rheumatology Department of Saint-Antoine Hospital (Paris, France). 
This study fulfills the current Good Clinical Practice Guidelines and a clinical protocol to 
analyze peripheral blood from SpA patients before and after therapy with TNF-blockers has 
been accepted by ethical committees (Comité de Protection des Personnes Ile de France III; 
Référence CPP: n° AT-100) and Institut Pasteur (Projet de recherché clinique n° 2011-32). The 
project has been approved by the “comité consultatif sur le traitement de l’information en 
matière de recherche dans le domaine de la santé (CCTIRS, Référence DGRI CCTIRS 
MG/CP°2012.035), as well as the “Commission Nationale de l’Information et des Libertés” 
(CNiL; Project “du genotype à la physiopathologie dans les spondylarthropathies, analyse de 
l’axe IL-23/Th17 chez les patients traités par un anti-TNF”; Décision DR-2013-080). A written 
informed consent, in compliance with the applicable regulatory and ethical requirements, has 
been obtained from each subject. All patients met assessment of spondyloarthritis 
international society (ASAS) criteria for axSpA.[1, 2] Blood was collected from each participant 
at days 0, 7 and/or 90 after initiation of anti-TNF therapy.  
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Inclusion criteria 

• Patients aged over 18 and under 60 years 
• Compliance with criteria established by the “Assessment of SpondyloArthritis 

international Society” (ASAS, http://www.asas-group.org/)    

Exclusion criteria: 

• Other spinal disease clearly defined (e.g. discarthrosis); 
• History of any biotherapy; 
• It is possible to include patients that have received corticosteroid treatment, with the 

condition that the therapy is stable for at least 4 weeks at the moment of inclusion, and 
with a dose inferior to 10 mg prednisone. 

• patient with active IBD or ongoing uveitis  
• patients with psoriatic involvement more than 10% of the skin surface. 
• Pregnancy 
• History or current disorders which might interfere with the validity of the informed 

consent and/or prevent an optimal compliance of the patient to the cohort (e.g. 
alcoholism, psychological disorders). 

• No affiliation with a social security scheme 
• Person deprived of liberty by judicial or administrative decision, person subjected to a 

legal protection measure 
The first 12 patients were recruited and analyzed during 2015. Recruitment of the subsequent 
patients was between 2016 and 2018. Patients’ demographics, HLA-B27 status, information 
regarding evaluation of symptoms (including duration of morning stiffness, pain or swelling 
in peripheral joints and back pain), ongoing treatments (e.g. analgesics, NSAIDs, DMARDs, 
physiotherapy), co-morbidities with a specific check-list including in particular cardiovascular 
and malignant diseases, and other main clinical features of spondyloarthritis (e.g. acute 
anterior uveitis, psoriasis, inflammatory bowel disease, enthesitis, peripheral articular 
involvement) were recorded on a Case Record Form before and 3 months after initiation of 
anti-TNF therapy (see Table S1). Axial, peripheral or enthesial presentation was clinically 
assessed. 
 
The Ankylosing Spondylitis Disease Activity Score (ASDAS), the Bath Ankylosing Spondylitis 
Disease Activity Index (BASDAI), erythrocyte sedimentation rate, C-reactive protein, 
cholesterol (HDL, LDL) and complete blood count were collected before and 3 months after 
initiation of anti-TNF therapy. C-Reactive Protein (CRP) levels were measured using the high-
sensitivity test (hs-CRP test). Radiological evaluation (including plain X-rays and MRI of the 
spine and the pelvis) was collected systematically for each patient at baseline and at different 
times after the beginning of the biotherapy.  

 
Definition of Disease Activity and Response to anti-TNF therapy 
The criteria for determining disease activity and primary responsiveness to anti-TNF therapy 
based on the Ankylosing Spondylitis Disease Activity Score (ASDAS) have been described 
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previously.[3, 4] ASDAS-CRP was calculated at baseline (ASDAS D0) and 3 months after 
initiation of anti-TNF therapy (ASDAS D90). To assess the clinical response to anti-TNF therapy 
the “improvement score” (delta ASDAS = ASDAS D0 - ASDAS D90) was calculated. Delta ASDAS 
≥2 defines a major improvement (responders), delta ASDAS ≥1.1 defines a clinically important 
improvement (partial responders) and patients achieving a delta ASDAS < 1.1 were classified 
as non-responders.[3, 4]  

 
Whole-Blood TruCulture Stimulation 
TruCulture tubes (Myriad RBM, Texas) are whole-blood stimulation systems consisting in 
syringe-based medical devices containing the indicated stimulus resuspended in 2 ml of 
buffered media.[5] Control tubes with no stimulants to assess background levels of genes and 
mediators of interest were included for each patient at each time point. TruCulture systems 
were manufactured in accordance with EN ISO 13485 (Medical Device Directive) standards, 
at EDI GmbH (Reutlingen, Germany), a subsidiary of Myriad RBM (Austin, TX, USA). All 
TruCulture tubes used in this study were prepared in the same batch, using the same lot of 
stimuli, and stored at -20°C until use. We performed whole blood stimulation experiments 
exactly as described previously.[5]  

 
Multi-analyte Profiling   
Supernatants from whole-blood stimulation systems were analyzed with Luminex xMAP 
technology by Myriad-RBM (Austin, TX, USA) as described.[5]  

 
RNA Extraction 
Total RNA was extracted from TruCulture cell pellets lysed in Trizol LS and stored at -80°C. 
Tubes containing cell lysate were thawed on ice 30 minutes before processing, vortexed twice 
for 5 min at 2000 rpm to complete thawing and RNA release and centrifuged (3000 x g for 5 
min at 4°C) to pellet the cellular debris generated during the Trizol lysis. Total RNA was 
isolated according to a protocol provided by the supplier (Sigma-Aldrich). 

 
RNA Quality Assessment 
RNA concentration was estimated using Qubit RNA HS Assay Kit (Life Technologies, USA) 
according to the protocol provided by the manufacturer. RNA quality was assessed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies). The RNA Integrity Number (RIN) was 
determined using the LabChip System software and all samples with a RIN > 6 were processed 
for gene expression analysis.  

 
Gene Expression Analysis with nCounter Technology  
The nCounter system, a hybridization-based multiplexed assay, was used for the digital 
counting of transcripts using protocols provided by the supplier (NanoString). Briefly, 100 ng 
of total RNA from each sample was hybridized according to manufacturer’s instructions with 
the Human Immunology v2 Gene Expression CodeSet, which contains 594 endogenous gene 
probes, 8 negative control probes (NEG A to NEG H) and 6 positive control probes (POS A to 
POS F) designed against six in vitro transcribed RNA targets at a range of concentrations (from 
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128fM to 0.125fM). Data collection was carried out in the nCounter Digital Analyzer at the 
highest standard data resolution (555 fields of view (FOV) collected per flow cell).  
We used in total three different batches of the nCounter XT formulation. To correct for a 
potential batch effect, the expression level of 24 randomly selected RNA samples was 
measured with the three batches to calculate the calibration factor. 

 
Quality Control of the NanoString Data 
Each sample was analyzed in a multiplexed reaction including eight negative probes and six 
serial concentrations of positive control probes. Quality control consisted of checking the field 
of view counted (flag if < 0.75), binding density (flag if not in 0.05 − 2.75 range), linearity of 
positive controls (flag if R2 < 0.9), and limit of detection for positive controls (flag if 0.5fM 
positive control < 2 standard deviation (SD) above the mean of the negative controls). 
Negative control analysis was performed to determine the background for each sample. Of 
note, we excluded three negative control probes (NEG B, NEG F, NEG H), for which we 
observed variable expression probably due to cross-reaction with bacterial nucleic acid 
present in two of the TruCulture stimulation systems (S. aureus and SEB). nSolver analysis 
software (version 3.0, NanoString) and R Software (version 3.3.3), NanoStringQCPro (version 
1.12.0), NormqPCR (version 1.26.0) packages) were used for quality control and data 
normalization.  

 
Normalization of the NanoString Data  
A first step of normalization using the internal positive controls permitted correction of 
potential sources of variation associated with the technical platform (e.g. hybridization, 
purification, or binding efficiency). To do so, the geometric mean of the positive probe counts 
was calculated for each sample. The scaling factor for a sample was defined as: (average of 
all the sample geometric means) / (geometric mean of the considered sample). For each 
sample, we multiplied all gene counts by the corresponding scaling factor. Next, the 
background noise, defined as the mean + 2 SD across the five negative probe counts, was 
subtracted from each gene in a sample. Finally, to normalize for differences in RNA input we 
used the same method as in the positive control normalization, except that geometric means 
were calculated over three housekeeping genes (EEF1G, HPRT1 and TBP). These genes were 
selected using geNorm method [6], an established approach for identification of stable 
housekeeping genes, from the 15 candidate genes included in the CodeSet. The impact of 
anti-TNF treatment on the expression level of these housekeeping genes was also evaluated 
and none of them were affected by TNFi in patient samples.  

 
Gene Filtering 
The Human Immunology v2 gene CodeSet contained a total of 594 probes (15 correspond to 
housekeeping genes), of which 456 were included in downstream analysis after removing 
probes mapping to multiple genes or aligning to polymorphic regions with greater than two 
SNPs (9 probes) and probes with low counts (114 probes). Probes mapping to multiple 
locations and aligning to polymorphic regions with more than two SNPs were excluded from 
the analysis as described.[7]  
We estimated the background level for each sample as the mean plus 2 standard deviations 
of the five negative probes counts, excluding NEG B, NEG F and NEG H for which we observed 
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significant differences in counts between conditions as previously explained. We defined as 
30 counts the highest background level across all the genes in the different stimulations. In 
order to easily identify genes that were low in high proportions in a given condition, we 
calculated for each gene in each condition the percentage of samples with expression below 
the background (30 counts). We removed 114 genes which expression was below the 
background level in more than 80% of samples in one condition. A condition was considered 
a given stimulus at a given time point before or after anti-TNF treatment (D0, D7, D90).  

 

Design of gene modules  
We generated 45 gene modules by grouping genes included in the immunology_v2 panel 
according to the  Molecular Signatures Database (MSigDB) annotation 
(http://software.broadinstitute.org/gsea/msigdb)[8] and manual curation from published 
literature (see Table S4). Each gene module contains a minimum of three genes, and the same 
gene can be included in different modules. 

 
Quantitative set analysis of gene expression 
We used quantitative set analysis of gene expression (QuSAGE) to identify differences in gene 
modules by quantifying gene-module activity using a probability density function.[9] The 
analysis was performed using R Bioconductor package v2.6.1. As compared to other gene set 
enrichment analysis methods, QuSAGE improves power by accounting for inter-gene 
correlations and quantifies gene-module activity with a complete probability density function 
(PDF). From this PDF, P values and confidence intervals can be easily extracted.  
To generate heatmaps representing QuSAGE fold-enrichment of gene sets in the different 
stimulated cultures, only changes reaching a significance threshold of FDR ≤ 0.01 were 
represented. When this threshold was not reached for a given module in a specific culture, 
the value of 0 was assigned to the fold-change, to reflect no statistically significant change. 
 
Venn diagram 
The Venn diagram was generated using the web application jvenn 
(http://genoweb.toulouse.inra.fr:8091/app/example.html).  

 
Purification of PBMCs and in vitro cell stimulation 
Peripheral blood mononucleated cells (PBMCs) were isolated from fresh blood samples by 
gradient separation on Ficoll density gradient centrifugation (Lymphocyte separation 
medium, Eurobio, France) as described previously.[10] Monocytes were purified by magnetic 
cell sorting using anti-CD14 monoclonal antibody (mAb)-coated beads as recommended by 
the manufacturer (Miltenyi Biotec). The purity of monocytes was over 97% as verified by flow 
cytometry (LSR II, BD Biosciences). CD14+ cells were plated in 48-well plates at a final 
concentration of 1 x 106 PBMCs per ml and cultured for different times in pre-warmed Roswell 
Park Memorial Institute (RPMI) 1640 medium (Invitrogen) not supplemented with fetal calf 
serum, nor antibiotics. Untreated cells were immediately lysed in RLT buffer (Qiagen) with 1% 
β-mercaptoethanol to form the naïve subset and snap frozen for RNA extraction at a later 
date. All the rest of the monocytes were incubated or not with the soluble receptor 
etanercept (gift from Rheumatology Hardy B Unit of Cochin Hospital (Paris, France)) at a 
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concentration of 10 μg/ml for 10 minutes at 37°C [11] prior to the stimulation for various 
times with lipopolysaccharide (LPS, 20 ng/mL) from Escherichia coli (LPS, Invivogen). Cells 
were harvested after 15, 30, 60, 120 and 240 minutes of stimulation for analysis of mRNA 
expression. Cultured monocytes were lysed directly in RLT buffer (Qiagen) with 1% β-
mercaptoethanol and homogenized by pipetting. mRNA was isolated using a RNeasy Micro 
kit (Qiagen) and analyzed with the nCounter Human Immunology v2 Gene Expression 
CodeSet. 

 

Culture of Monocyte-Derived Macrophages 
Monocytes were isolated from peripheral blood of six healthy donors using CD14 microbeads 
(Miltenyi Biotec) and cultured for 3 days in RPMI-Glutamax medium (Gibco) supplemented 
with antibiotics (penicillin and streptomycin) and 10% FCS in presence of 50 ng/ml M-CSF 
(Miltenyi Biotec). Monocyte-derived macrophages were subsequently cultured for three 
additional days in RPMI with M-CSF in presence or absence of etanercept or adalimumab 
(gifts from Rheumatology Hardy B Unit of Cochin Hospital (Paris, France)) at a concentration 
of 10 μg/ml, and then polarized for 24h towards the M1 subset with LPS (20 ng/mL, Invivogen) 
and IFN-g (20 ng/ml, Milteny Biotec), or towards the M2 subset with IL-4 and IL-13 (both 20 
ng/ml, Miltenyi Biotec). M1- and M2-macrophages were lysed in RLT buffer (Qiagen) with 1% 
β-mercaptoethanol and homogenized by pipetting. mRNA was isolated using a RNeasy Micro 
kit (Qiagen) and analyzed with the nCounter Human Immunology v2 Gene Expression CodeSet 
as described above.  

 

Gene expression analysis for correlation to therapeutic responses 
Using baseline clinical parameters (collected before the initiation of anti-TNF therapy), and 
baseline (D0) NanoString gene expression for LPS and SEB stimulations, differential gene 
expression analysis was performed to correlate therapeutic responses to TNFi in 80 axSpA 
patients, according to the delta ASDAS score. 
Prior to the differential expression analysis, the NanoString gene expression dataset 
composed from LPS and SEB stimulations was filtered based on level of expression and 
pattern of expression. Lowly expressed genes were discarded when their normalized median 
count was below 30 counts in LPS and SEB stimulation conditions at D0 (R Software v3.3.3, 
dplyr v0.7.4).  
We analyzed differential gene expression between the stimulation cultures from the 50 
responders and 30 non-responders using the LIMMA package.[12] with an FDR correction for 
multiple testing. Age, sex, smoking history, B27 status, comorbidities and type of TNF inhibitor 
were included as covariates in the analysis. Genes were considered as differentially expressed 
when their adjusted p-values were lower than 0.05. The differentially expressed genes are 
reported in Table 2 with their log Fold-Change, P-values and adjusted P-values. 

 
Statistical analysis 
Unless otherwise indicated, horizontal bars represent the median. Statistical tests were two-
sided and are specified in figure legends. Differences were considered to be significant when 
P < 0.05. Multiple testing corrections were applied where appropriate. Dot-plot graphs were 
compiled with GraphPad Prism v.7.0.  
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Principal component analysis (PCA) and agglomerative hierarchical clustering were 
performed with Qlucore Omics Explorer, version 3.6 (Qlucore). Before applying PCA and 
agglomerative hierarchical clustering, the variables (proteins or mRNA expression levels) 
were log-transformed, mean-centered per donor, and scaled to unit variance. 
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Supplementary Figure 1. Effects of different stimuli on protein signatures. 
(A) Principal component analysis (PCA) was performed on the secreted protein data obtained from 12 patients before 
initiation of anti-TNF therapy (D0), measured in 18 different whole blood stimulations. Each filled circle represents a 
stimulated sample. Although the samples cluster by stimulation, some stimuli largely overlap, reflecting the activation of 
common signaling pathways. Values for each of the 31 analytes were centered to mean = zero and scaled to unit variance. 
(B) PCA was performed on the secreted protein data obtained from additional 17 patients at D0. The overall PCA structure 
of this cohort is similar to the one in (A). (C) Shown are the representative stimuli selected for further analysis of patient 
profiles before and after initiation of anti-TNF therapy: S. aureus (a gram-positive bacteria), C. albicans (a yeast), influenza 
virus, Lipopolysaccharide (LPS) and Staphylococcal enterotoxin B (SEB), a superantigen triggering T cell activation. (D) Plots 
(as in Fig. 1) indicate the levels of differentially secreted proteins for 6 representative stimuli and the unstimulated (null) 
condition, in 12 patients before (D0, in red) and 90 days after (D90, in blue) initiation of anti-TNF therapy (identified as 
described in Fig. 1B). 
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Supplementary Figure 2. Effects of different stimuli on protein signatures before and at different time points after anti-
TNF treatment. 
(A) Quantification of MIP-1β in TruCulture assay supernatants from 17 patients, at D0 (red) and D7 days (blue). The stimuli 
present in the TruCulture assays are indicated below the x-axis. (B) Quantification of proteins in supernatants of TruCulture 
assays stimulated with SEB from patients at D0, D7 and D90 after initiation of anti-TNF therapy. Horizontal bars indicate the 
median. Significance was determined using a Wilcoxon matched-pairs test (SpA patients before versus after treatment) and 
P-values are indicated above the graph (*: P<0.05; **: P<0.01; ***: P<0.001; ****: P<0.0001; ns: not significant). (C) The 
levels of 31 secreted molecules in response to LPS and SEB were compared in samples from 17 patients at D0 (black 
rectangles), D7 (green rectangles) and D90 (orange rectangles). The heatmap shows the levels of differentially secreted 
proteins (paired t-test, FDR ≤ 0.01, red indicates higher and green lower levels of protein secretion). 
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Supplementary Figure 3. TNF-blockers strongly affect key regulators of innate immune responses. 
(A) Plots indicate expression level of genes encoding molecules with pro-inflammatory properties and of IL17A, IFNG and IL6 
for the unstimulated condition and 5 representative stimuli, in samples before (D0, red) and 7 days after (D7, blue) initiation 
of anti-TNF therapy. Stimuli present in the TruCulture assays are indicated below the x-axis (n = 17, FDR ≤ 0.05, as in Fig. 2). 
(B) Heatmap of differentially expressed genes, comparing samples from 32 patients before (D0, black rectangles) and 90 
days (D90, orange rectangles) after initiation of anti-TNF therapy. A paired t-test with false-discovery rate FDR ≤ 0.01 and a 
fold-change threshold of ≥ 2 identified 61 genes (ranked by decreasing fold-change). Red indicates high-level, and green low 
level of gene expression, respectively. Data are normalized and log2 transformed. 
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Supplementary Figure 4. The NSAID index was determined at baseline for the 32 patients for which gene expression data 
were available before (D0) and after (D90) TNFi treatment, and stratified patients according to the NSAID index (cut-off, 
median, B). PTGS2 and PTGER4 expression levels at D0 and D90 were plotted for the two groups of patients. Horizontal bars 
represent the median, and P-values are indicated above the graph (**: P<0.01; ***: P<0.001; ****: P<0.0001; ns: not 
significant). 
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P01 11 low
P02 0 low
P03 150 hi
P04 84 hi
P05 177 hi
P06 89 hi
P07 100 hi
P08 46 low
P09 50 low
P10 50 low
P11 38 low
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P21 150 hi
P23 33,33 low
P24 0 low
P25 14,5 low
P26 83,33 hi
P27 50 low
P28 29 low
P29 100 hi
P30 11,11 low
P31 100 hi
P32 83,88 hi
P33 66,67 hi
P34 57 low
P35 100 hi
P36 6,33 low
P37 4,93 low
P38 100 hi
P39 110 hi
P40 76,34 hi
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Supplementary Figure 5 
 

Supplementary figure 5. A. Gene expression data were analyzed in LPS- 
stimulated Truculture samples from 32 patients. Limma analysis was performed 
to compare gene expression at D0 versus D90 in 32 patients (all), or selectively 
in patients classified as Responders (R) or Non-responders (NR), according to 
ASDAS criteria. The Venn diagram shows the distribution of genes differentially 
expressed (adjusted p-value <0.05) in the indicated patient populations. The 
large majority (102) of differentially expressed genes was shared by all patient 
populations. Analysis of differentially expressed genes in NR patients alone 
identified 3 genes with significant changes between D0 and D90 specifically in 
these patients (CD274, GBP1, and IL12B). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Selected genes from A. See also Supplementary Table 6. 
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Supplementary Figure 6 
 
A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary figure 6. Differential gene expression between D0 (before treatment initiation) and D90 after treatment 
initiation.  
Differential gene expression before and 90 days after TNFi treatment was calculated for Responders and Non-Responders 
(adjusted p-value <0.01, see online supplementary table 6), and Fold-changes of the differentially expressed genes were 
plotted for both populations. The labels identify the genes with log Fold-Change > 1 or < 1. The colors indicate the value of 
the adjusted p-value for each gene in Responders (A) and Non-responders (B)  
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Supplementary Figure 7. The effects of TNF-blockers on immune responses can be detected after a single injection and 
remain stable over time. 
(A) Plots indicate gene expression levels of immune genes from stimulation cultures containing LPS or SEB performed before 
(D0, in red), 7 days (D7, in green) and 90 days (D90, in blue) after initiation of anti-TNF therapy (17 patients). (B) Complete 
blood cell counts (Coulter counter) in 37 axSpA patients at D0 and D90 after initiation of anti-TNF therapy. Significance was 
determined using a Wilcoxon matched-pair test (values before versus after treatment). P-values are indicated above the 
graph (*: P<0.05; **: P<0.01; ***: P<0.001; ****: P<0.0001; ns: not significant). We noted a modest decrease (1.23-fold) of 
neutrophil counts and a 1.24-fold increase of lymphocyte counts after TNF therapy. 
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Supplementary Figure 8. Modular transcriptional framework to assess the signaling pathways affected by TNF-blockers in 
stimulated immune cells.  
(A) Fold changes in gene activity in modules before and 7 days after initiation of anti-TNF therapy (D7 versus D0) for SEB 
stimulated samples. Represented are the mean fold-change and 95% confidence interval for individual genes in each module. 
Gene activity = 0 signifies no change. The horizontal dashed blue line and the grey band indicate the mean differential 
expression of genes in the module at D7, compared to D0, and the 95% confidence interval, respectively. (B) Plots indicate 
expression levels of M2-like monocyte-related genes for the null and 5 representative stimuli in Truculture assays from 17 
patients before (D0, in red) and 7 days (D7, in blue) after initiation of anti-TNF therapy.  (C) Heatmap representing QuSAGE 
fold-enrichment of gene sets in 9 different stimulated cultures from 12 SpA patients, at D90 after initiation of anti-TNF 
therapy versus D0. For each module, the mean fold-change is represented and color-coded to indicate increased (red) or 
decreased (green) module activity. 
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Supplementary Figure 9. TNF blockers break a TNF- and IL-1-dependent feed-forward loop of NF-kB activation in 
monocytes isolated from SpA patients 
(A) Monocytes were isolated from 5 SpA patients and pre-incubated with or without TNFi (etanercept) for 10 minutes, prior 
to stimulation with LPS (20 ng/mL) for the indicated times. Gene expression was analyzed with the nCounter Human 
Immunology v2 panel. (B, C) Heatmaps show the top differentially expressed genes in monocytes in response to in vitro TNFi 
treatment after stimulation with LPS for 120 minutes (B) or 240 minutes (C). Orange and green rectangles distinguish samples 
pre-treated or not with TNFi, respectively. Gene expression analysis at the individual time points was performed using the 
Limma package with an adjusted P-value threshold of 0.1. (D) Expression kinetics of NF-kB target genes in LPS-stimulated 
monocytes cultured for the indicated times (minutes, horizontal axis). Monocytes were incubated with LPS (20 ng/mL) alone 
(red solid line), or pre-treated with TNFi for 10 minutes, followed by addition of LPS (blue dashed line). Shown are mean and 
standard deviation of 5 independent experiments. (E) Model for the intracellular mechanism of action of TNF-blockers.  
 
Gene expression profiles of monocytes treated or not with Eta were strikingly different after 2 and 4 hours of LPS stimulation. 
A large proportion of the genes downregulated by TNFi at these time points were direct NF-kB target genes, such NFKBIA, 
TNFAIP3, TNFAIP6, or IL1A. The expression of NF-kB target genes in monocytes pre-treated with TNFi overlapped with 
untreated cultures during the first hour of stimulation, but diverged after 2 and 4 hours, compatibly with a positive feed-
forward mechanism mediated by LPS-stimulated TNF production, which induces sustained activation of NF-kB and 
expression of its target genes, such as IL1A and IL1B, amplifying the inflammatory response.[13] Our data suggest that TNFi 
act by breaking the TNF- and the IL-1-dependent autocrine loops, dampening the activity of the NF-kB transcriptional 
cascade. Very similar results were obtained with monocytes isolated from 4 healthy donors, indicating that the action of 
TNFi on the NF-kB pathway is not dependent on the disease process (data not shown). 
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Supplementary Figure 10. A. Modular transcriptional repertoire analysis reveals differential activity of signaling pathways 
in responders versus non-responders before treatment initiation (D0). 
Differential activity of 45 gene modules (online supplementary table 5) generated from 456 immune-related genes (80 
patients). Whole-blood cultures were stimulated with LPS. For each gene module, the mean activity fold-change and 95% 
confidence interval are plotted and color-coded according to their FDR-corrected P-values (means compared to fold-change 
zero). Confidence intervals overlapping the horizontal dotted line indicate statistically significant increased or decreased 
module activity comparing responders and non-responders. B. Patients were grouped based on the type of treatment 
(etanercept (sTNFR2) versus monoclonal antibodies (mAb), see online supplementary table 1) and differential gene 
expression between responders and non-responders was calculated for each group at D0 (adjusted p-value <0.05, table 2), 
and fold-changes of the differentially expressed genes were plotted for both groups. The labels identify the genes with 
differential expression at adj. p-value < 0.05.  
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Supplementary Table 1. Demographic and clinical characteristics and response to anti-TNF 
treatment of the 80 axSpA patients included in the study  
 

Patient 
ID 

Gender Age CRP 
M0 

ASDAS 
M0 

CRP 
M3 

ASDAS 
M3 

Reponse 
ASDAS 

Smoke B27 Psoriasis Uveitis IBD Anti-
TNF 

1 M 31 5.40 1.99 2.00 0.98 NR 1 1 0 0 0 Eta 
2 F 37 2.10 3.71 2.00 3.39 NR 1 1 0 1 0 Ada 
3 M 19 2.00 2.28 2.00 2.08 NR 0 0 0 0 0 Eta 
4 M 37 2.00 1.96 2.00 0.97 NR 1 1 1 0 0 Eta 
5 M 24 47.00 4.79 2.00 1.27 R 1 1 0 0 0 Eta 
6 M 53 7.00 2.64 2.00 1.26 PR 1 1 0 1 0 Eta 
7 M 54 2.00 1.13 5.00 1.71 NR 0 1 0 0 0 Eta 
8 M 58 5.00 2.50 2.00 1.23 PR 0 1 0 1 0 Eta 
9 M 34 17.00 4.39 2.00 1.58 R 0 1 0 0 0 Eta 
10 M 42 9.00 3.03 2.00 0.94 R 1 0 1 0 0 Eta 
11 M 23 51.00 4.46 2.00 0.87 R 1 1 0 0 0 Eta 
12 F 42 2.00 2.16 2.00 0.83 PR 1 1 0 0 0 Eta 
13 M 26 0.09 3.87 1.20 2.61 PR 0 1 0 0 0 Eta 
14 M 26 2.48 1.28 0.00 0.87 NR 0 0 0 0 0 Eta 
15 F 40 10.73 3.35 0.00 1.10 R 0 1 0 1 0 Eta 
16 M 24 1.72 2.35 0.00 1.09 PR 0 1 0 0 0 Eta 
17 F 27 11.35 2.58 2.00 0.64 PR 0 1 0 0 0 Eta 
18 M 47 5.41 3.49 4.10 1.69 PR 0 1 1 1 0 Eta 
19 M 30 1.11 3.53 0.50 2.58 NR 1 0 0 0 0 Eta 
20 F 39 1.23 2.96 0.00 2.09 NR 1 1 1 0 0 Eta 
21 F 21 20.15 2.35 2.80 1.08 PR 0 1 0 0 0 Eta 
23 M 20 0.53 2.02 4.00 1.38 NR 0 1 0 1 0 Eta 
24 F 58 37.50 4.75 7.00 2.97 PR 1 0 0 0 0 Eta 
25 M 36 0.28 1.72 0.30 0.64 PR 0 1 0 0 0 Eta 
26 M 48 7.46 1.61 0.00 0.77 NR 0 0 0 0 0 Eta 
27 M 33 1.24 2.30 1.30 3.29 NR 0 1 1 1 0 Ada 
28 F 40 21.44 4.68 0.00 0.87 R 1 1 1 0 0 Eta 
29 M 50 27.45 4.39 3.10 2.29 R 1 1 0 1 0 Gol  
30 M 57 2.63 3.07 1.20 2.67 NR 1 1 0 1 0 Gol  
31 M 51 33.06 4.73 0.00 3.01 PR 1 1 0 1 0 Gol  
32 M 58 16.97 3.25 0.00 1.24 R 0 0 1 0 0 Eta 
33 F 24 5.72 2.78 4.00 1.16 PR 0 0 0 0 0 Eta 
34 M 56 3.27 3.56 0.00 2.93 NR 0 1 0 1 0 Eta 
35 F 38 39.38 4.43 2.00 0.75 R 0 1 0 1 1 Ada 
36 F 47 0.68 2.50 0.50 1.48 NR 0 0 0 0 0 Eta 
37 M 37 14.27 3.74 0.40 2.15 PR 0 1 0 1 0 Gol  
38 M 43 4.09 3.10 2.00 1.71 PR 1 1 1 0 0 Eta 
39 F 34 8.31 2.30 6.40 2.27 NR 0 1 0 0 0 Eta 
40 M 43 1.11 2.32 3.00 0.92 PR 0 1 0 0 0 Eta 
41 M 41 6.39 2.43 2.00 1.13 PR 0 1 1 0 0 Eta 
42 M 55 15.24 2.88 21.10 2.63 NR 0 1 0 1 0 Eta 
43 M 43 27.20 3.63 1.10 1.91 PR 0 1 0 1 0 Ada 
44 M 47 0.18 2.14 0.50 1.63 NR 1 1 0 0 0 Eta 
45 M 24 0.50 2.62 0.00 2.76 NR 1 1 0 0 0 Gol  
46 M 27 0.35 3.50 0.00 1.33 R 1 1 1 0 0 Gol  
47 M 44 4.18 3.21 2.70 2.08 PR 1 0 0 0 0 Eta 
48 M 27 0.82 2.55 0.90 1.70 NR 1 1 0 0 0 Eta 
49 F 52 15.20 4.07 9.00 1.87 R 0 0 0 1 1 Ada 
50 F 27 3.58 3.09 4.00 2.82 NR 0 1 0 0 0 Gol  
51 F 32 1.87 3.69 0.00 3.34 NR 1 0 0 0 1 Ada 
52 M 27 2.00 2.56 1.00 0.96 PR 0 1 0 1 0 Eta 
53 M 42 0.82 2.12 0.00 1.56 NR 1 1 0 0 0 Eta 
54 M 45 3.39 3.16 1.00 1.78 PR 1 0 0 0 0 Gol  
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Patient 
ID Gender Age 

CRP 
M0 

ASDAS 
M0 

CRP 
M3 

ASDAS 
M3 

Reponse 
ASDAS Smoke B27 Psoriasis Uveitis IBD 

Anti-
TNF 

55 M 58 16.65 3.45 7.00 2.47 NR 1 0 0 0 0 Eta 
56 M 41 10.74 2.80 0.00 0.71 R 0 1 0 1 0 Gol  
57 M 39 3.35 3.29 1.90 1.89 PR 1 1 0 0 0 Gol  
58 M 46 21.24 3.96 1.00 1.06 R 1 0 1 1 0 Ada 
59 M 27 12.21 2.17 3.40 0.86 PR 1 1 0 0 0 Gol  
60 F 29 16.38 2.56 1.00 0.94 PR 1 1 0 0 0 Gol  
61 M 20 17.48 3.99 0.80 0.84 R 0 1 0 0 0 Eta 
62 F 23 2.55 1.88 0.00 1.15 NR 1 1 0 0 0 Eta 
63 M 32 0.48 1.92 2.00 0.64 PR 0 1 1 1 0 Eta 
64 M 43 10.64 4.12 2.70 1.92 R 1 1 0 0 0 Eta 
65 M 39 17.70 3.13 0.30 1.27 PR 0 1 0 1 0 Ada 
66 F 64 15.23 3.88 6.00 1.72 R 0 1 0 1 0 Eta 
67 M 57 12.53 4.19 2.10 3.45 NR 1 1 1 0 0 Eta 
68 M 22 26.76 3.87 1.90 1.13 R 1 1 0 0 0 Eta 
69 M 36 9.70 3.55 1.30 1.59 R 0 1 0 1 0 Eta 
70 F 31 1.40 2.70 1.00 2.21 NR 1 1 0 0 0 Eta 
71 F 21 62.00 4.61 51.80 3.12 R 1 1 0 0 0 Eta 
72 F 55 1.00 2.75 1.00 0.94 R 1 0 0 0 0 Eta 
73 M 57 28.60 3.90 2.00 0.94 R 0 1 0 1 0 Ada 
74 F 48 1.00 2.69 1.00 1.62 NR 1 1 1 1 0 Ada 
75 F 33 1.00 2.61 1.00 2.73 NR 0 0 0 0 0 Ada 
76 F 53 7.80 2.64 1.40 1.41 R 0 1 1 1 0 Ada 
77 F 25 6.40 2.10 5.00 1.06 NR 1 1 0 0 0 Eta 
78 M 30 1.90 1.54 0.60 0.64 NR 0 1 0 0 0 Eta 
79 M 31 19.20 3.60 2.00 2.40 R 1 1 0 0 0 Inf 
80 M 23 20.00 3.30 2.00 0.90 R 0 1 0 0 0 Gol  
81 M 26 8.20 3.10 2.00 1.10 R 1 1 1 0 0 Ada 
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Supplementary Table 2. Drug dosage and anti-drug antibodies 
 

Patient ID anti-TNF response ASDAS Drug dosage (µg/ml) Dosage ADAb (ng/ml) 
P01 Etanercept NR 2.8 <10 
P02 Adalimumab NR 2 <10 
P03 Etanercept NR 1.6 <10 
P04 Etanercept NR 1.2 <10 
P05 Etanercept R <0.2 <10 
P06 Etanercept R 1.2 <10 
P07 Etanercept NR 3.2 <10 
P08 Etanercept R 1.6 <10 
P09 Etanercept R 2.8 <10 
P10 Etanercept R 2.8 <10 
P11 Etanercept R <0.2 <10 
P12 Etanercept R 1.6 <10 
P13 Etanercept R 2.3 <10 
P14 Etanercept NR 0.7 <10 
P15 Etanercept R 2.6 <10 
P16 Etanercept R 3.1 <10 
P18 Etanercept R 0.3 <10 
P19 Etanercept R 3.7 <10 
P21 Etanercept NR 0.7 <10 
P23 Etanercept R 2.2 <10 
P24 Etanercept R 1.3 <10 
P25 Etanercept R 1.9 <10 
P26 Etanercept R 2.5 <10 
P27 Adalimumab NR 8.7 <10 
P28 Etanercept R 2.3 <10 
P29 Golimumab R 4.2 <2,5 
P30 Golimumab NR 3.6 <2,5 
P31 Golimumab NR 2.7 <2,5 
P32 Etanercept R 0.9 <10 
P33 Etanercept R 2.6 <10 
P34 Etanercept NR 4.2 <10 
P35 Adalimumab R >20 <10 
P36 Etanercept R 3.2 <10 
P37 Golimumab NR 1 <2,5 
P39 Etanercept NR 3.8 <10 
P40 Etanercept R 1.7 <10 
P41 Etanercept R 3.3 <10 
P42 Etanercept NR 2.8 <10 
P44 Etanercept NR 1.6 <10 
P45 Golimumab NR 2 <2,5 
P46 Golimumab R 1.8 <2,5 
P47 Etanercept NR >5 <10 
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Patient ID anti-TNF response ASDAS Drug dosage (µg/ml) Dosage ADAb (ng/ml) 
P48 Etanercept NR 2.3 <10 
P49 Adalimumab R 10.3 <10 
P51 Golimumab NR 2 <2,5 
P53 Adalimumab NR 10.2 <10 
P54 Etanercept R >5 <10 
P55 Etanercept NR 2.1 <10 
P56 Golimumab R 1.9 <2,5 
P57 Etanercept NR 1.1 <10 
P58 Golimumab R 1.8 <2,5 
P59 Golimumab R 0.9 <2,5 
P60 Adalimumab R 13.8 <10 
P61 Golimumab R <0,1 <2,5 
P62 Golimumab R 4.8 <2,5 
P63 Etanercept R >5 <10 
P64 Etanercept R 1.8 <10 
P65 Etanercept R >5 <10 
P66 Etanercept R 2.3 <10 
P67 Adalimumab NR 8.4 <10 
P68 Etanercept R 3.3 <10 
P69 Etanercept NR <0,2 <10 
P70 Etanercept R >5 <10 
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Supplementary Table 3. Innate and Adaptive Immune Stimuli included in TruCulture Assays 
 

Stimulus Concentration Supplier Sensor or Receptor 
Null   NA  
C12-iE-DAP 4 µg / ml Invivogen NOD1 
a-CD3 + a-CD28 0.4µg/ml + 0.33 µg/ml   TCR 
CPPD 100 µg/ml Invivogen NLRP3 & TLR2 
Gardiquimod  3 µM Invivogen TLR7 
HK C. albicans 107 bacteria Invivogen complex 
HK E.coli 0111:B4 107 bacteria Invivogen complex 
HK H. pylori 107 bacteria Invivogen complex 
HK S. aureus 107 bacteria Invivogen complex 
IFNg (Imukin) 1000 IU/mL Boehringer Ingelheim IFNgR 
IL-1b 25 ng/ml  Peprotec IL1R 
IL-1b + TNFa 25 ng/ml + 10 ng/ml  IL1R + TNFR 
IL-23 50 ng/ml Miltenyi Biotech IL23R 
Influenza (live) 1:700 Charles Rivers Complex 
LPS-EB (hi) 10 ng/ml  TLR4 
BCG (Immucyst)  3 * 105 bacteria Sanofi Pasteur complex 
poly I:C  20 µg/ml Invivogen TLR3 
R848 1 µM Invivogen TLR7 & TLR8 
Enterotoxin SEB 0.4 µg/ml  Bernhard Nocht Institute TCR 
TNFa 10 ng/ml Miltenyi Biotech TNFR 
WGP  40 µg/ml Invivogen Dectin-1 
Zymosan  300 μg/mL Sigma-Aldrich  TLR2 

 
Abbreviations are as follows: HK, heat killed; IU, international units. The stimulation conditions used 
for the preparation of TruCulture tubes are listed, with the indicated dose and commercial supplier.  
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Supplementary Table 4. Analytes measured in the supernatants of TruCulture Assays with 
Luminex xMAP technology 
 

Analytes Abbreviation Units  LDD LLOQ 
Brain-Derived Neurotrophic Factor  BDNF pg/mL 18.0 56.0 
Eotaxin-1 Eotaxin-1 pg/mL 99.0 117.0 
Factor VII Factor VII pg/mL 3000.0 2400.0 
Granulocyte-Macrophage Colony-
Stimulating Factor  

GM-CSF pg/mL 15.0 26.0 

Intercellular Adhesion Molecule 1  ICAM-1 pg/mL 4200.0 6200.0 
Interferon gamma  IFN-gamma pg/mL 6.3 6.8 
Interleukin-1 alpha  IL-1 alpha pg/mL 0.8 1.1 
Interleukin-1 beta  IL-1 beta pg/mL 2.8 8.5 
Interleukin-1 receptor antagonist  IL-1ra pg/mL 38.0 59.0 
Interleukin-2  IL-2 pg/mL 49.0 55.0 
Interleukin-3  IL-3 pg/mL 8.3 8.6 
Interleukin-4  IL-4 pg/mL 29.0 43.0 
Interleukin-5  IL-5 pg/mL 3.5 6.0 
Interleukin-6  IL-6 pg/mL 5.4 6.8 
Interleukin-7  IL-7 pg/mL 30.0 41.0 
Interleukin-8  IL-8 pg/mL 3.9 6.1 
Interleukin-10  IL-10 pg/mL 4.9 8.1 
Interleukin-12 Subunit p40  IL-12p40 pg/mL 220.0 450.0 
Interleukin-12 Subunit p70  IL-12p70 pg/mL 25.0 37.0 
Interleukin-15  IL-15 pg/mL 670.0 1200.0 
Interleukin-17  IL-17 pg/mL 2.9 8.9 
Interleukin-18  IL-18 pg/mL 31.0 42.0 
Interleukin-23  IL-23 pg/mL 1300.0 3200.0 
Macrophage Inflammatory Protein-1 
alpha  

MIP-1 alpha pg/mL 43.0 48.0 

Macrophage Inflammatory Protein-1 
beta  

MIP-1 beta pg/mL 56.0 59.0 

Matrix Metalloproteinase-3  MMP-3 pg/mL 55.0 70.0 
Matrix Metalloproteinase-9  MMP-9 pg/mL 41000.0 33000.0 
Monocyte Chemotactic Protein 1  MCP-1 pg/mL 107.0 83.0 
Stem Cell Factor  SCF pg/mL 97.0 222.0 
Tumor Necrosis Factor alpha  TNF-alpha pg/mL 16.0 24.0 
Tumor Necrosis Factor beta  TNF-beta pg/mL 39.0 58.0 
Vascular Endothelial Growth Factor  VEGF pg/mL 16.0 42.0 

 
* The least detectable dose (LDD) was determined as the mean + 3 standard deviations of 200 blank 
readings. Results below the LDD are more variable than results above the LDD. 
 
† The LLOQ (Lower Limit of Quantitation) is the lowest concentration of an analyte in a sample that can 
be reliably detected and at which the total error meets CLIA requirements for laboratory accuracy. As 
the LLOQ and the LDD values are independent from each other, on occasion the LLOQ is lower than 
the LDD.  
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Supplementary Table 5. Gene modules used in QuSAGE analysis 
 
Module Genes 

Adhesion molecules 
APP, CD164, CD2, CD36, CD44, CD58, CD6, CD9, CD97, CD99, CEACAM1, CTNNB1, 
CX3CR1, DPP4, FN1, ICAM1, ICAM2, ICAM3, ICAM4, ICAM5, ITGA4, ITGA5, ITGA6, 
ITGAE, ITGAL, ITGAM, ITGAX, ITGB1, ITGB2, LGALS3, PECAM1, PLAU, PLAUR, PTK2, 
S100A9, SELE, SELL, SELPLG, SPP1, SRC, TGFBI, TNFAIP6 

Allergy CCL18, CCL5, FCER1A, IL13RA1, LTB4R, LTB4R2 

APC (Antigen 
Presenting Cells) 

BATF3, CCR7, CD14, CD163, CD1D, CD209, CD80, CD83, CD86, CD8A, CX3CR1, 
CXCR4, ITGAL, ITGAM, ITGAX, PDCD1LG2 

Apoptosis 
APP, BAX, BCAP31, BCL10, BCL2, BCL2L11, BID, CASP1, CASP10, CASP2, CASP3, 
CASP8, CD2, CD27, CD44, CDKN1A, CLEC5A, CRADD, CSF2RB, CTSC, CTSS, FAS, 
GZMB, LEF1, LGALS3, LTBR, MCL1, PDCD2, PRF1, PTK2, RAF1, TNFRSF10C, 
TNFRSF8, TNFSF10, TNFSF12, TNFSF15, TP53 

Autophagy ABL1, ATG10, ATG12, ATG16L1, ATG5, ATG7, IFI16, PTPN22, S100A8, S100A9, TOLLIP, 
XBP1 

B-cells 
BCL6, BLNK, BST1, BST2, BTK, CD19, CD22, CD24, CD27, CD79A, CD79B, CD80, CD81, 
CD99, CR2, CXCL13, ENTPD1, IFITM1, IL4R, IL6R, IRF8, ITGA5, LEF1, LILRB3, MS4A1, 
PAX5, PRDM1, PRKCD, PTPN6, SYK, TNFRSF13C, TNFRSF8, TNFSF13B, TNFSF8, 
ZAP70 

Cell cycle ABL1, AHR, BAX, BCL2, BID, CCND3, CDKN1A, IKZF1, MAPK1, PML, PRKCD, PTK2, 
RARRES3, S100A8, S100A9, SRC 

Chemotaxis 
CCL13, CCL18, CCL19, CCL2, CCL20, CCL22, CCL23, CCL24, CCL3, CCL4, CCL5, CCL7, 
CCL8, CCR1, CCR2, CCR5, CCR6, CCR7, CCRL2, CD99, CX3CR1, CXCL1, CXCL10, 
CXCL11, CXCL13, CXCL9, CXCR1, CXCR2, CXCR3, CXCR4, CXCR6, IL16, IL8, LGALS3, 
PPBP 

Complement 
C1QB, C1QBP, C2, C3, CASP1, CASP10, CASP3, CCL5, CD36, CD40LG, CD46, CD59, 
CEBPB, CFB, CFD, CFP, CR1, CR2, CTSC, CXCL1, FCER1G, FYN, ITGAM, ITGAX, 
ITGB2, LTF, PLAUR, PRKCD, PSMB9, RAF1, SERPING1, SRC, TNFAIP3 

Costimulatory 
molecules 

ADA, CD27, CD28, CD40, CD40LG, CD48, CD6, CD79B, CD80, CD82, CD86, CLEC5A, 
DPP4, ICOS, ICOSLG, MBP, PDCD1LG2, TAGAP, TNFRSF4, TNFRSF8, TNFRSF9, 
TNFSF12, TNFSF15, TNFSF4, TNFSF8, TRAF1 

Cytotoxic molecules GNLY, GZMA, GZMB, GZMK, IFNG, KLRD1, KLRF1, PRF1 

Dectin BCL10, CARD9, CD209, CLEC4A, CLEC4E, CLEC6A, CLEC7A, MALT1, SRC, SYK, 
ZAP70 

Granulocytes 
CCRL2, CD164, CD24, CD44, CLEC5A, CSF2, CSF3R, CXCL1, CXCR1, CXCR2, 
FCGR1A.B, FCGR3A.B, IL3, IL8, ITGAL, ITGAM, ITGAX, ITGB2, LTB4R, LTB4R2, LTF, 
MME, NCF4, SELL 

IFN targets BST2, CXCL10, IFI35, IFIH1, IFIT2, IFITM1, IFNA1.13, IFNAR1, IFNAR2, IRF1, IRF3, IRF4, 
IRF5, IRF7, IRF8, JAK1, MX1, PSMB8, TMEM173, TYK2 

IL1 EGR1, IL18, IL18R1, IL18RAP, IL1A, IL1B, IL1R1, IL1R2, IL1RAP, IL1RL1, IL1RN, IRAK1, 
IRAK2, IRAK3, IRAK4, MYD88, SIGIRR, TOLLIP, TRAF6 

IL6 IL6, IL6R, IL6ST 

Innate immune 
response 

ABL1, APP, BCL10, C1QBP, CD14, CLEC5A, CLEC7A, FCER1G, IKBKG, IL1RAP, IRAK1, 
IRAK4, LY96, NLRP3, S100A8, S100A9, TLR2, TLR4, TOLLIP 

JAK_STAT CISH, JAK1, JAK2, JAK3, PTPN2, PTPN6, PTPRC_all, SOCS1, SOCS3, STAT1, STAT2, 
STAT3, STAT4, STAT5A, STAT5B, STAT6, TYK2 

Lymphopoiesis CXCR4, IKZF1, IKZF2, IKZF3, NT5E, PAX5, RUNX1 

M1-like monocytes CCL19, CCL20, CCL5, CCL8, CCR7, CD80, CD86, CXCL10, CXCL11, CXCL9, IDO1, 
IFNGR1, IL12B, IL1R1, IL23A, IL2RA, MARCO, PTGS2, SOCS3 
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Module Genes 

M2-like monocytes CCL13, CCL18, CCL2, CCL22, CCL24, CD163, CD209, CD36, CLEC7A, EGR2, FCER1A, 
FN1, IL10, IL1R2, IL1RAP, IL1RN, IL21R, IL4R, IRF4, MRC1, MSR1 

MAPK CD83, DUSP4, MAP4K1, MAP4K2, MAP4K4, MAPK1, MAPK14, MAPKAPK2, RAF1 

MHC presentation 
B2M, BCAP31, CD74, CTSS, HLA.A, HLA.B, HLA.C, HLA.DMA, HLA.DMB, HLA.DOB, 
HLA.DPA1, HLA.DPB1, KLRC1, KLRC2, KLRC3, KLRC4, KLRD1, KLRF1, KLRG1, KLRK1, 
LAMP3, LILRA1, LILRA2, LILRA3, LILRA6, LILRB1, LILRB2, LILRB4, MR1, MS4A1, NCF4, 
TAP1, TAP2, TAPBP, TNFSF4, XBP1 

NFkB inhibitors NFKBIA, NFKBIZ, TNFAIP3 

NFkB regulators BCL10, BTK, CHUK, IKBKAP, IKBKB, IKBKE, IKBKG, MALT1, MAP4K4, TBK1, TRAF4 

NFkB target genes BCL2, BCL3, CCL13, CCL19, CCL4, CXCL2, CYBB, ICAM1, IL1B, IL8, NFKBIA, PLAU, 
PTGS2, TNF, TNFAIP3, TNFSF13B, TRAF1, TRAF2 

NFkB transcription 
factors NFKB1, NFKB2, RELA, RELB 

NK-cells 
CD244, FCGR3A.B, GZMA, GZMB, IFNG, IL21R, IL2RA, IL2RB, IL2RG, ITGAL, ITGB2, 
KLRB1, KLRC1, KLRC2, KLRD1, KLRF1, KLRG1, KLRK1, NCAM1, NCR1, PRF1, SH2D1A, 
SIGIRR, SLAMF6, SLAMF7 

NLR_inflammasomes BCL2, CASP1, GBP5, NLRP3, PYCARD 

NOD CARD9, NOD1, NOD2, TRAF4, TRAF6 
NOTCH APP, IL2RA, NCR1, NFIL3, NOTCH1, NOTCH2, TGFB1, TGFBR2 

Osteoclast CEBPB, CSF1, CSF1R, CTNNB1, GPR183, LILRA1, LILRA2, LILRA3, LILRA5, LILRA6, 
MAPK14, NFATC1, SYK, TFRC, TRAF6 

Phagocytosis 
CYBB, ETS1, FCER1A, FCER1G, FCGR1A.B, FCGR2A, FCGR2A.C, FCGR2B, 
FCGR3A.B, FCGRT, ICAM3, ICAM5, IRF8, ITGAL, ITGAM, ITGAX, ITGB2, MARCO, 
PECAM1, SLAMF1 

Proinflammatory 
molecules 

CCL13, CCL18, CCL19, CCL2, CCL20, CCL22, CCL23, CCL24, CCL3, CCL4, CCL5, CCL7, 
CCL8, CCR1, CCR2, CCR5, CD163, CMKLR1, CSF1, CSF1R, CSF2, CXCL1, CXCL2, 
CXCR1, CXCR2, CXCR4, IL1B, IL32, IL6, IL6R, IL6ST, IL8, LILRA5, LITAF, MIF, PTAFR, 
PTGER4, PTGS2, S100A8, S100A9, TNF 

Regulatory B-cells CD19, CD1D, CD24, CD27, CD40, CD5, CD80, CD86, ICOSLG, IL10, PAX5, TFRC, 
TGFB1, TNFRSF13C 

T-cell signaling 
CD247, CD28, CD3D, CD3E, CD4, CD45R0, CD45RA, CD45RB, CD7, CD8A, CD8B, FYN, 
IL2RA, IL2RB, IL2RG, LCK, LCP2, NFATC1, NFATC2, NFATC3, PTPN22, PTPRC_all, 
ZAP70 

T-cell inhibitory 
signals 

BTLA, CAMP, CD244, CD274, CD276, CD5, CD96, CTLA4_all, CTLA4.TM, HAVCR2, IDO1, 
LAG3, PDCD1LG2, sCTLA4, TIGIT, TNFRSF14 

TGFB MAPK1, SKI, SMAD3, SMAD5, TGFB1, TGFBI, TGFBR1, TGFBR2 

TLR BCL10, CD14, IRAK1, IRAK2, IRAK4, LY96, MALT1, MYD88, TBK1, TICAM1, TIRAP, 
TLR1, TLR2, TLR3, TLR4, TLR7, TLR8, TOLLIP 

TNF LTA, LTBR, TNF, TNFRSF1B, TNFSF12, TRAF1, TRAF2, TRAF3, TRAF5, TRAF6 

T-regulatory cells CTLA4_all, CTLA4.TM, EGR2, ENTPD1, FOXP3, IL10, IL2, IL2RA, IL2RB, IL2RG, LAG3, 
LGALS3, NT5E, RUNX1, sCTLA4, STAT5A, STAT5B, TGFB1 

Type 1 immunity BATF3, CSF2, CXCR3, EBI3, GZMB, IFNG, IFNGR1, IL12B, IL12RB1, IL27, PRF1, STAT1, 
STAT4, TBX21, TNF 

Type 17 immunity AHR, BATF, CCR6, IL12B, IL17A, IL17F, IL21, IL22, IL23A, IRF4, KLRB1, MAF, STAT3, 
ZBTB16 

Type 2 immunity CCL18, CEBPB, CXCR4, CXCR6, IL13, IL1RL1, IL4R, STAT6 

Ubiquitin / 
proteasome CUL9, PSMB10, PSMB5, PSMB7, PSMB8, PSMB9, PSMC2, PSMD7, UBE2L3 
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Supplementary Table 6. Differential gene expression between D0 (before treatment 
initiation) and D90 after treatment initiation* 

  ALL patients (n=32) RESPONDERS n=(19) NON RESPONDERS (n=13) 
Gene ID logFC adj.P.Val logFC adj.P.Val logFC adj.P.Val 
ABL1 0.253176758 0.001442703 0.30586301 0.006636767 0.176173775 0.222400494 
ARHGDIB 0.21558608 3.61186E-06 0.201240695 0.001991642 0.236552413 0.00577187 
ATG7 -0.806553689 6.3366E-11 -0.76352244 4.30165E-06 -0.869445515 1.23085E-05 
B2M -0.186180517 0.003718453 -0.11403 0.232445 -0.291628825 0.004017264 
BATF -0.418270605 3.22532E-05 -0.25939167 0.086164035 -0.650478282 1.23085E-05 
BATF3 -0.824332688 4.53682E-08 -0.76012543 0.000211741 -0.918174066 0.000377461 
BCL10 -0.260307478 4.88768E-05 -0.23718 0.010894 -0.294103926 0.003440946 
BCL2L11 0.310465201 1.08621E-05 0.361489029 0.001221817 0.235891913 0.016977221 
BID -0.386253923 0.003427715 -0.335769 0.07856512 -0.460039575 0.029254642 
BLNK 0.642740956 0.000113894 0.83513124 0.000559507 0.361555156 0.088286622 
BTK 0.407795145 1.10241E-06 0.485467354 4.54742E-05 0.294274224 0.025728486 
C1QB 1.298878127 0.002256578 1.920997082 0.000728495 0.389627346 0.67250275 
C1QBP 0.175416058 0.009720333 0.243298384 0.009080724 0.076203 0.597687 
C3 -1.236195878 1.73288E-12 -1.10986335 4.86561E-06 -1.420835733 2.24648E-07 
CARD9 -1.366533982 3.75512E-05 -1.64858428 0.000384184 -0.954306617 0.094026687 
CASP1 -0.256446002 0.006838877 -0.13 0.354265 -0.441256469 0.002979257 
CASP2 0.187295816 1.20777E-05 0.21786434 0.00065451 0.142619 0.070906 
CASP8 0.153024118 0.00628384 0.14024682 0.09774861 0.171698632 0.060545374 
CCL18 -0.945888265 0.0003865 -0.79553 0.010676 -1.16564 0.030486 
CCL20 -1.287913287 4.62521E-08 -1.5420472 4.76266E-07 -0.916486796 0.03208227 
CCL22 0.64122106 0.000282579 0.80783953 0.001002966 0.397701757 0.20070615 
CCL23 -1.479951808 1.03024E-07 -1.12084465 4.69475E-05 -2.004800729 0.000650271 
CCL3 -1.21153499 2.8261E-11 -1.17490667 3.20446E-06 -1.265068689 1.88176E-05 
CCL4 -1.381514235 1.53306E-12 -1.28750358 1.79524E-06 -1.518914417 1.86125E-06 
CCL7 1.397525731 0.006838877 1.357208422 0.067879816 0.303937794 0.005981057 
CCL8 0.91478911 0.006054825 1.146072573 0.013102692 0.576759433 0.342077344 
CCND3 0.30486017 5.86801E-07 0.305491269 0.000384184 0.303938 0.005981 
CCR2 0.542001344 0.006267441 0.706916022 0.003047309 0.300972 0.496146 
CCR6 0.373827331 0.00052979 0.399839161 0.009836448 0.33581 0.065575 
CCRL2 -0.710506217 1.34062E-07 -0.61429394 0.001127077 -0.851124167 4.95602E-05 
CD19 0.408952327 6.90133E-05 0.486926825 0.000446304 0.294989599 0.098863245 
CD1D 1.58606564 1.25323E-07 2.027168669 3.20446E-06 0.941377 0.050676 
CD209 1.066351628 0.00053409 1.221933753 0.002604643 0.838962368 0.145168481 
CD22 -0.689190454 4.52499E-06 -0.70825783 0.00127915 -0.661322747 0.003015926 
CD274 -0.169834846 0.229203138 0.027022 0.915602 -0.457548233 0.008113729 
CD3E 0.142228304 0.008427814 0.127954284 0.127351976 0.16309 0.05572 
CD4 0.175907644 0.007214366 0.207115 0.020234 0.130296392 0.315832453 
CD44 -0.430761404 8.68282E-08 -0.36339167 0.000947654 -0.529224861 5.38549E-05 
CD48 -0.15982423 0.006749758 -0.11564771 0.196980747 -0.22439 0.015094 
CD53 -0.213420521 0.005641292 -0.18267 0.112217 -0.258361946 0.026996209 
CD58 -0.510167608 4.77139E-08 -0.51696989 4.9506E-05 -0.500225805 0.000528138 
CD74 0.255761012 0.000311337 0.288231669 0.013884888 0.208304 0.01278 
CD79A 0.502219684 3.89983E-08 0.562565512 8.20946E-06 0.414021936 0.006403097 
CD79B 0.470882264 1.88402E-05 0.518391159 0.000578627 0.401446188 0.041019776 
CD82 -0.660170925 1.48723E-06 -0.61122447 0.002614556 -0.731708058 5.67222E-05 
CD83 -0.436272449 9.93638E-05 -0.36562 0.024918 -0.53953624 0.00283801 
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  ALL patients (n=32) RESPONDERS n=(19) NON RESPONDERS (n=13) 
Gene ID logFC adj.P.Val logFC adj.P.Val logFC adj.P.Val 
CD86 0.386163476 0.001303576 0.321470565 0.053924554 0.480714654 0.011091724 
CDKN1A -0.46189628 1.87844E-05 -0.44215002 0.004284074 -0.490756204 0.003520628 
CFB -0.50162 0.016864 -0.2442 0.489735 -0.877853933 0.001255433 
CFP -0.395356865 0.00853923 -0.29629492 0.226126483 -0.540139709 0.004705888 
CLEC4E -0.661224 1.60969E-08 -0.55272992 0.000372592 -0.819792266 2.88963E-05 
CLEC5A -0.974540425 8.55814E-06 -1.11103278 0.000132995 -0.775051593 0.021319142 
CLEC6A -0.88133631 0.001315286 -0.58318589 0.059775076 -1.317094621 0.018794245 
CMKLR1 0.691054017 0.004847332 1.041467919 0.002100337 0.178911 0.712636 
CR1 0.700674902 8.68282E-08 0.682214063 5.50216E-05 0.727656129 0.001976613 
CSF1R 1.072382648 0.007543374 0.873350027 0.089829004 1.36327648 0.0376294 
CSF3R 0.884218586 9.30584E-08 0.862728133 3.61882E-05 0.91562771 0.003520628 
CTLA4.TM 0.30033701 0.002287422 0.322429 0.013816 0.268049 0.14634 
CTSS -0.291748424 0.00187452 -0.17162511 0.232253804 -0.467313265 0.000650271 
CXCL13 -0.747634709 0.009915684 -1.02821 0.024732 -0.33756904 0.395990086 
CXCL2 -0.512839732 0.012003273 -0.71951007 0.006462195 -0.21078 0.63822 
CXCR1 1.393945583 1.35617E-09 1.289375477 5.13172E-05 1.546778815 3.05185E-05 
CXCR2 1.624132901 4.78263E-10 1.498542502 4.9506E-05 1.8076881 1.01218E-05 
CXCR3 0.455116599 0.003934521 0.432833349 0.062474661 0.487684 0.057755 
EGR2 -1.193637301 0.005169237 -1.27371 0.051147 -1.07661219 0.078384248 
FCGR3A.B 0.50565039 0.000473349 0.470280905 0.024887141 -0.12161 0.741475 
GBP1 -0.30919 0.061949 -0.05915 0.856059 -0.674629045 0.00594838 
GFI1 -0.331428841 0.000364426 -0.29799237 0.016222066 -0.380297523 0.01880011 
GZMA 0.335012971 0.019117139 0.51511183 0.009836448 0.071792 0.797502 
HLA.DMA 0.398497551 1.97889E-06 0.447338798 0.000804489 0.327114189 0.003135577 
HLA.DMB 0.400221403 3.35841E-07 0.524745205 9.40411E-06 0.218225078 0.062579352 
HLA.DPA1 0.399941187 2.11781E-05 0.531855391 0.0002424 0.207144 0.108904 
HLA.DPB1 0.324440692 3.22532E-05 0.426154747 0.000442848 0.175781689 0.106433258 
ICAM1 -0.585892693 3.82126E-09 -0.49916988 0.000283245 -0.712641417 1.23085E-05 
ICAM5 -1.868511919 3.36776E-06 -2.35700327 2.63903E-05 -1.15456 0.097668 
ICOSLG -0.350217647 0.001818817 -0.28376 0.090759 -0.447349566 0.005241155 
IFITM1 0.340797741 0.000117897 0.43726364 0.001416312 0.199809119 0.10777694 
IFNA1.13 -0.482674487 0.008038195 -0.65052326 0.005755428 -0.23736 0.545243 
IKBKAP 0.275415395 0.009915684 0.316681853 0.06165645 0.215102878 0.095971671 
IKBKB -0.586494261 4.05119E-10 -0.54132876 4.23135E-05 -0.652505384 2.07119E-05 
IKBKE -0.5041171 6.78676E-08 -0.4404755 0.000846567 -0.59713175 8.36705E-05 
IKZF3 0.178708824 0.007872859 0.206137 0.020362 0.138621 0.260855 
IL12B -0.54674 0.08931 0.010747 0.984681 -1.361529376 0.004705888 
IL12RB1 0.468047093 0.003956999 0.65134258 0.007385616 0.200153689 0.440823919 
IL1A -1.588912275 2.15941E-11 -1.69809729 2.14274E-07 -1.429334177 0.000314071 
IL1B -1.002162478 9.87292E-10 -1.0953298 1.79524E-06 -0.865994858 0.001269259 
IL1RN -0.651814707 2.97169E-05 -0.59560873 0.008921978 -0.733961901 0.002979257 
IL21R 0.403332947 0.000582278 0.513279894 0.002100337 0.242641 0.227161 
IL2RA -0.541302821 8.09206E-05 -0.53361 0.013885 -0.552547674 0.001989851 
IL2RG -0.361122445 6.54302E-08 -0.33909897 0.00065451 -0.393310596 6.46097E-05 
IL8 -0.945016376 1.10241E-06 -1.14106032 7.03263E-06 -0.658490605 0.06012345 
IRAK2 -1.190504303 1.57408E-13 -1.13387517 7.19758E-07 -1.27326996 2.24648E-07 
IRAK3 -0.62522298 2.44206E-06 -0.64086859 0.000155825 -0.602356317 0.005979485 
IRF3 0.800892843 0.000443594 0.742095693 0.009345021 0.886827 0.05073 
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  ALL patients (n=32) RESPONDERS n=(19) NON RESPONDERS (n=13) 
Gene ID logFC adj.P.Val logFC Gene ID logFC adj.P.Val 
IRF5 -0.365246966 0.001919254 -0.21617117 0.214886147 -0.583126974 0.001194602 
IRF8 0.302224424 0.000790595 0.427388287 0.000278178 0.119292624 0.543391483 
ITGA4 0.197001693 0.002680241 0.237105427 0.009836448 0.138389 0.273789 
ITGA6 0.479899036 1.01785E-05 0.512806788 0.001481542 0.431803091 0.011464671 
KCNJ2 -0.716060168 7.33496E-06 -0.42315 0.054942 -1.144152681 1.23085E-05 
KLRB1 0.383235294 0.000150528 0.426704773 0.001982921 0.319703 0.078384 
LCK 0.155076478 0.002051829 0.115774681 0.077399912 0.212517566 0.043546384 
LGALS3 -0.346184251 0.000426199 -0.26579 0.069423 -0.463680833 0.002189262 
LIF -1.188262593 0.010734849 -1.87595349 0.002606424 -0.18318 0.851711 
LILRA5 0.764340852 3.09327E-06 0.854163228 0.000207665 0.633061994 0.02163132 
LITAF -0.282569407 0.003504842 -0.1912827 0.195135199 -0.415988437 0.002785657 
LY96 0.394479046 1.01785E-05 0.422931162 0.000680084 0.352895 0.019343 
MAF 0.803491056 0.002838368 0.697089022 0.057124202 0.959001721 0.047282386 
MAP4K1 0.323772798 7.34957E-07 0.317921328 0.000139679 0.332324946 0.008199687 
MAP4K4 -0.731686012 2.88379E-10 -0.71535371 6.31502E-06 -0.755556305 1.23085E-05 
MAPKAPK2 -0.23123666 0.000507941 -0.21108877 0.030291873 -0.260683578 0.017436201 
MR1 -0.278917486 0.001462725 -0.23801 0.097427 -0.338701136 0.000505089 
MS4A1 0.49613521 4.08127E-07 0.588380908 1.54772E-06 0.361314574 0.060322602 
MSR1 2.090184322 5.50291E-05 2.096634806 0.002799193 2.080756691 0.021319142 
NCF4 -0.502544188 1.7403E-06 -0.4912643 0.000637919 -0.519030178 0.002249831 
NFATC3 0.105235214 0.004604782 0.136827971 0.009403209 0.059061 0.496146 
NFIL3 -0.372637632 0.000643062 -0.35581634 0.026157748 -0.397222603 0.008199687 
NFKB1 -0.79545124 3.85948E-17 -0.71464798 4.52343E-08 -0.913548312 1.15864E-08 
NFKB2 -1.035590339 1.0278E-17 -0.93058387 4.52343E-08 -1.189061328 1.18783E-10 
NFKBIA -0.929375472 1.81968E-13 -0.8143065 4.30165E-06 -1.097553208 1.15864E-08 
NFKBIZ -0.660373378 1.64257E-08 -0.53605548 0.00127915 -0.842068761 3.84915E-06 
NLRP3 -0.468266914 0.002203625 -0.58871229 0.002656799 -0.292231363 0.285936157 
NOD2 -0.361212226 0.006838877 -0.34381 0.065951 -0.38664 0.070625 
PAX5 0.684106563 3.00373E-06 0.810584093 4.23135E-05 0.499254788 0.04754084 
PDCD2 0.396623252 0.000309816 0.430426776 0.002606424 0.347218 0.098863 
PECAM1 0.553546251 6.90133E-05 0.471065216 0.009836448 0.674095456 0.004017264 
PLAU -1.316292651 1.97984E-08 -1.26929666 0.000140084 -1.384979097 4.02053E-05 
PLAUR -0.504355418 0.000365784 -0.57978451 0.001999694 -0.394112905 0.064915461 
POU2F2 -0.482414564 9.17239E-07 -0.483269 0.000878999 -0.481165777 0.000912509 
PSMB8 -0.17211 0.030245 -0.04890618 0.722042935 -0.352168114 0.004084143 
PTAFR -0.342918864 0.00060921 -0.27654 0.062596 -0.439939362 0.002767448 
PTGER4 -0.597416412 2.13124E-07 -0.53083817 0.001517981 -0.694723068 4.26947E-05 
PTGS2 -1.386926469 3.90116E-08 -1.59610243 3.20446E-06 -1.08121 0.015094 
PTPN6 -0.325569865 0.000282579 -0.25426042 0.043644988 -0.429791368 0.004280161 
PYCARD 1.130288149 3.07935E-06 1.238654912 0.00127915 0.971905957 0.000825361 
RARRES3 0.191450911 0.017127959 0.306867286 0.008921978 0.02276544 0.883038304 
RELA -0.581464106 9.94774E-09 -0.46431158 0.001127077 -0.752687024 3.84915E-06 
RELB -0.432904533 1.93687E-08 -0.3725432 0.000756653 -0.521124937 1.23085E-05 
S1PR1 0.392213947 7.07808E-07 0.372395484 0.000947654 0.421179392 0.001991995 
sCTLA4 -0.478750817 0.000730678 -0.44104 0.053153 -0.533867162 0.001850054 
SELL 0.523442023 1.35938E-10 0.537322904 4.30165E-06 0.503154582 0.000153988 
SELPLG 0.757833519 8.83505E-10 0.797775589 8.20946E-06 0.699456648 0.000314071 
SERPING1 0.51739366 0.00164636 0.703850838 0.004768582 0.244879 0.314625 
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  ALL patients (n=32) RESPONDERS n=(19) NON RESPONDERS (n=13) 
Gene ID logFC adj.P.Val logFC Gene ID logFC adj.P.Val 
SIGIRR 0.407921841 1.87018E-08 0.388157515 5.04747E-05 0.436808164 0.001414008 
SLAMF6 0.416915322 4.31456E-06 0.42569929 0.00214681 0.404077215 0.002437258 
SLAMF7 -0.854984503 1.03024E-07 -0.59398939 0.00765582 -1.236438906 7.75456E-07 
SMAD3 -0.457325657 8.20745E-07 -0.40614065 0.002213422 -0.532134521 0.000459663 
SPP1 -0.794205003 0.006838877 -1.13375815 0.009734778 -0.297935018 0.525169427 
SRC -0.670388058 7.48334E-10 -0.63305952 4.9506E-05 -0.724945148 1.44397E-05 
STAT3 -0.185796453 0.002739462 -0.15686506 0.084910947 -0.22808 0.030486 
STAT4 -0.187332013 0.009835226 -0.15119 0.181257 -0.240157118 0.033513267 
STAT5A -0.511725699 2.11201E-08 -0.3733039 0.004269041 -0.714034475 4.03351E-07 
TBK1 -0.548140736 3.17416E-09 -0.48200561 0.00013077 -0.644799762 1.23085E-05 
TCF4 0.240389232 0.000182434 0.253729701 0.005921155 0.220892 0.027591 
TGFBI 1.257893485 0.000934785 -0.03817041 0.799722111 1.707269505 0.008873181 
TGFBR2 0.155682235 0.003427715 0.147221 0.045992 0.168048137 0.105730884 
TICAM1 -0.627297527 9.94774E-09 -0.55943284 0.000251976 -0.726484375 5.38549E-05 
TLR1 0.301487889 0.003795702 0.336966816 0.012181055 0.249634071 0.194842484 
TLR2 -0.354026519 0.001753236 -0.38141463 0.010009451 -0.313997736 0.098863245 
TLR7 1.502003515 4.85702E-07 1.630807897 4.23135E-05 1.313750958 0.008113729 
TLR8 -0.24383 0.046783 -0.02036 0.923926 -0.570439977 0.000108151 
TMEM173 0.212835816 0.001818817 0.249259051 0.010675997 0.159602 0.189862 
TNF -0.737837176 1.63006E-07 -0.62379687 0.001815452 -0.904511471 5.67222E-05 
TNFAIP3 -0.743909873 3.73123E-12 -0.67338653 1.74548E-05 -0.846982456 1.5869E-08 
TNFAIP6 -0.77937602 2.75691E-09 -0.63472702 0.000578627 -0.990786101 4.89881E-07 
TNFRSF10C 1.662540627 2.75691E-09 1.539185685 5.50216E-05 1.842828618 4.26947E-05 
TNFRSF13C 0.303073544 0.000626729 0.311564959 0.004009388 0.290663015 0.098863245 
TNFRSF14 -0.23832668 0.000187472 -0.1966 0.039269 -0.299317481 0.001991995 
TNFRSF1B -0.331628502 0.003985162 -0.37665385 0.017275321 -0.26582 0.118605 
TNFRSF8 -0.537510779 0.000157277 -0.59340591 0.004262181 -0.455817896 0.021041647 
TNFRSF9 -0.737572652 7.60717E-06 -0.61598 0.012135 -0.915282656 0.00012323 
TNFSF10 0.489942445 0.001425955 0.627319215 0.006396474 0.289161 0.208458 
TNFSF12 0.288440067 4.37051E-06 0.244761545 0.009345021 0.352277908 0.000452173 
TNFSF15 -1.050889668 3.49818E-05 -1.16887786 0.001218513 -0.87844539 0.034916538 
TNFSF8 -0.564143873 6.42165E-08 -0.57483268 5.4258E-05 -0.548521777 0.002437258 
TRAF1 -0.861854702 2.3542E-17 -0.81646177 4.52343E-08 -0.928198212 1.15864E-08 
TRAF3 -0.499738901 6.61848E-10 -0.45991522 8.02238E-05 -0.557942744 3.84915E-06 
XBP1 -0.566411149 3.14357E-11 -0.50349512 1.72885E-05 -0.65836535 8.47457E-06 

 
*Gene expression data was analyzed in Truculture LPS stimulated samples from 32 patients. Limma 
analysis was performed to compare gene expression at D0 versus D90 in all 32 patients (column 2 and 
3), or selectively in patients classified as Responders (column 4 and 5) or Non-responders, according 
to ASDAS criteria. Shown are the log fold change and adjusted p-values for the genes that resulted 
differentially expressed (adjusted p value equal or <0.01) in at least one of the three analyses.  The 
grey shading indicates the comparisons that do not reach statistical significance at the adjusted p-
value level of 0.05. 
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Supplementary Table 7. Gene Module Scoring Table when comparing D0 vs D7 for SEB and 
LPS stimulation 
 

Gene module, SEB stimulation log fold change p Value FDR 
NFkB_inhibitors -1.0811 2.02E-12 9.08E-11 
NFkB_transcription_factors -0.8426 2.51E-11 5.64E-10 
NFkB_target_genes -0.7197 4.46E-11 6.70E-10 
TNF -0.3519 1.23E-08 1.38E-07 
NOD -0.3290 0.0002 0.0009 
dectin -0.3283 4.29E-05 0.0003 
IL1 -0.2952 6.18E-05 0.0003 
TLR -0.2914 0.0008 0.0031 
NFkB_regulators -0.2880 1.23E-06 1.11E-05 
costimulatory_molecules -0.2342 3.73E-06 2.8E-05 
MAPK -0.2158 0.0001 0.0007 
M1_like_monocytes -0.1913 0.0359 0.0734 
NOTCH -0.1599 0.0041 0.0142 
complement -0.1530 0.0387 0.0756 
type_2_immunity -0.1468 0.0190 0.0475 
adhesion_molecules -0.1445 0.0118 0.0312 
JAK_STAT -0.1374 0.0299 0.0641 
IL6 -0.1241 0.1699 0.2548 
autophagy -0.1139 0.1506 0.2420 
innate.immune.response -0.1131 0.0951 0.1646 
allergy -0.1127 0.3181 0.4469 
IFN_targets -0.1111 0.0813 0.1510 
NLR_inflammasomes -0.1012 0.3928 0.5199 
Tregulatory_cells -0.0950 0.0839 0.1510 
cell_cycle -0.0905 0.1592 0.2470 
apoptosis -0.0806 0.1103 0.1839 
phagocytosis -0.0521 0.4715 0.5894 
Tcell_inhibitory_signals -0.0307 0.6199 0.7153 
T_cell_signalling -0.0052 0.9062 0.9483 
type_17_immunity -0.0037 0.9633 0.9852 
TGFB 0.0006 0.9974 0.9974 
proinflammatory_molecules 0.0143 0.8390 0.8989 
type_1_immunity 0.0235 0.7952 0.8728 
Bcells 0.0293 0.6046 0.7153 
ubiquitin_proteasome 0.0304 0.5214 0.6341 
chemotaxis 0.0324 0.6567 0.7387 
lymphopoiesis 0.0458 0.4136 0.5318 
MHC_presentation 0.0661 0.3278 0.4469 
osteoclast 0.0872 0.3111 0.4469 
regulatory_B_cells 0.1668 0.0084 0.0235 
NKcells 0.2034 0.0268 0.0604 
APC 0.2368 0.0011 0.0041 
granulocytes 0.2622 0.0076 0.0229 
cytotoxic_molecules 0.2823 0.0268 0.0604 
M2_like_monocytes 0.3084 0.0073 0.0229 
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Gene module, LPS stimulation log fold change p Value FDR 
NFkB_inhibitors -1.2400 3.44E-12 3.87E-11 
NFkB_transcription_factors -1.1598 1.78E-15 7.99E-14 
NFkB_target_genes -0.9257 4E-15 8.99E-14 
NOD -0.6677 0.0002 0.0007 
IL1 -0.6262 1.47E-08 9.46E-08 
TNF -0.5435 4.41E-13 6.62E-12 
M1_like_monocytes -0.5073 0.0002 0.0006 
dectin -0.4728 0.0003 0.0008 
NFkB_regulators -0.4424 7.69E-10 6.92E-09 
costimulatory_molecules -0.4246 3.5E-08 1.97E-07 
MAPK -0.3875 6.25E-09 4.69E-08 
type_1_immunity -0.3813 0.0374 0.0732 
type_2_immunity -0.3728 0.0006 0.0017 
Tregulatory_cells -0.3393 0.0001 0.0004 
type_17_immunity -0.3152 0.0021 0.0052 
TLR -0.2818 0.0061 0.0144 
IL6 -0.2740 0.0002 0.0007 
NOTCH -0.2562 0.0001 0.0004 
JAK_STAT -0.2377 0.0004 0.0011 
cell_cycle -0.2348 0.0001 0.0003 
adhesion_molecules -0.2189 0.0069 0.0156 
autophagy -0.2077 0.0177 0.0379 
innate.immune.response -0.2010 0.0362 0.0732 
proinflammatory_molecules -0.1644 0.1176 0.1864 
Tcell_inhibitory_signals -0.1397 0.0760 0.1368 
apoptosis -0.1290 0.0527 0.0988 
complement -0.1258 0.1201 0.1864 
chemotaxis -0.1028 0.3238 0.4180 
ubiquitin_proteasome -0.0873 0.0977 0.1691 
phagocytosis -0.0541 0.6510 0.7146 
IFN_targets -0.0537 0.5600 0.6300 
allergy -0.0535 0.7086 0.7416 
MHC_presentation -0.0474 0.3977 0.4774 
T_cell_signalling -0.0467 0.1170 0.1864 
Bcells -0.0173 0.7776 0.7952 
NLR_inflammasomes 0.0318 0.8381 0.8381 
granulocytes 0.0492 0.6799 0.7285 
lymphopoiesis 0.0552 0.3251 0.4180 
NKcells 0.0682 0.4773 0.5507 
osteoclast 0.0878 0.3801 0.4751 
M2_like_monocytes 0.1029 0.4031 0.4774 
regulatory_B_cells 0.1091 0.1945 0.2917 
APC 0.1140 0.2805 0.3944 
TGFB 0.1404 0.2162 0.3139 
cytotoxic_molecules 0.1906 0.3019 0.4117 
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