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Chapter 1

Introduction

1.1 Control theory

1.1.1 Basic concepts

In control theory we are interested in the evolution of a dynamical system,
in which we exert some influence. Even though dynamical systems can be of
many types (difference equations, probabilistic, etc), here we are interested in
systems modeled by a differential equation, possibly (and mainly) in infinite
dimension. These systems can be written as

ẋ(t) = f(x(t), u(t)),

x(0) = x0,
(1.1)

where x : [0, T ]→ A ⊆ X is the state of the system, that is, x(t) represents
the state of the system at time t, taking values in a set A. The control
function u : [0, T ]→ U represents our influence over the system. For instance,
if we consider the driving of a car, f would represent the Newton’s laws that
govern the car, and u would be the acceleration, direction of the steering
wheel, etc. Normally the set U would represent some physical restriction
over the control, for instance a maximum acceleration. The aim of control
theory is to study the existence and characterization of control u satisfying
certain goals, for instance attain certain state at certain time, minimizing
certain cost along the trajectory, avoiding certain states, etc.

Some examples

In this part we present some example control systems.

Example 1.1.1 (Spring or linearized pendulum). As an easy concrete ex-
ample we can consider the controllability of a mass attached to a spring. In
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this case the dynamic is described by

ẍ+ kx = u, (1.2)
x(0) = x0, (1.3)
ẋ(0) = ẋ0. (1.4)

where k is the constant of elasticity of the spring. In this case the control u is
the acceleration that we apply to the system. The controllability in this case
is whether we can attain any final state xf , ẋf in a given time T . For this
system the answer to the controllability question is positive, independently on
the control time T . In this simple case, this is easy to see, as we can choose
any regular function x ∈ C2([0, T ]) satisfying the conditions

x(0) = x0,

ẋ(0) = ẋ0,

x(T ) = xf ,

ẋ(T ) = ẋf .

This can be done for instance by considering a degree 3 polynomial and choos-
ing the coefficients to satisfy the previous conditions, and then define the
control as

u = ẍ+ kx,

so (x, u) satisfies the system by construction, and by uniqueness, this is the
solution.

Example 1.1.2 (Finite dimensional linear control system). The fact that
the previous example was controllable in any time is not an accident, this is
the case more generally for linear autonomous system,

ẋ = Ax+Bu, (1.5)

where x : [0, T ] → Rn, u : [0, T ] → Rm, and A,B are matrices of the
corresponding dimensions (A ∈Mn,n, B ∈Mn,m).

This type of system are of great importance because often for a nonlinear
system we can study the local controllability properties around a equilibrium
point by studying the linearized system around said point. In section 1.1.7
we will provide a general result to study the controllability of this type of
systems, namely, the Kalman condition which gives sufficient and necessary
conditions for the controllability of system (1.5) in terms of the matrices A
and B.
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Among the nonlinear control problems, an important family is the affine
control systems where f is affine with respect to u:

Example 1.1.3 (Affine system). Let us consider a control system of the form

ẏ(t) = f0(y(t)) +
∑
i

fi(y(t))ui(t), (1.6)

where fi are vector fields

fi : Ω ⊂ Rn → Rn,

of class C∞(Ω). If we let ui ≡ 0, that is, the uncontrolled case, then we are
only left with the term

f0(y),

which is known as the drift of the system.

Example 1.1.4 (Driftless affine system). Of particular importance is the
case where f0 ≡ 0 which is known as the driftless affine system

ẏ(t) =
∑
i

fi(y(t))ui(t), (1.7)

which is one of the few general nonlinear problems where we have a general
global controllability result.

Now we present two particular cases of the previous type of system in
order to show how this type of system apears in practical problems.

Example 1.1.5 (Baby stroller). Let us consider a control system of a baby
stroller (see for instance [14]: The stroller moves at speed u and angle θ (that
we control through the turning speed ω).

ẋ = u cos(θ), (1.8)
ẏ = u sin(θ), (1.9)
ż = ω. (1.10)

In this case f1(x) = (cos(θ), sin(θ), 0) and f2(x) = (0, 0, 1).

Example 1.1.6 (Non holonomic integrator). Let us consider the following
control system known as the non holonomic integrator:

ẋ = u,

ẏ = v,

ż = xv − yu.
(1.11)

In this case f1(x) = (1, 0,−x) and f2(x) = (0, 1, x). we will see later that
this system is globally controllable.
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Finally, we show an example that does not fall in the previous categories.

Example 1.1.7 (Zermelo control system). As a fully nonlinear example, we
consider the Zermelo control system. We consider a boat that wants to cross
a river of width `. We describe the river bounded by the lines y = 0 and
y = `, the boat moves with constant speed v and we can control the angle u(t)
of the boat. Also the current has speed c(y).

ẋ = v cos(u) + c(y),

ẏ = v sin(u).

Figure 1.1: Zermelo control system

1.1.2 Exact controllability

The simplest control problem that we can consider is the controllability prob-
lem: Given and initial state x0, and a target state xf , can we find u such
that the solution to (1.1) satisfies x(T ) = xf . More generally, given sets X0

of initial states, and Xf of final or target states, we say that system (1.1) is
exactly controllable from X0 to Xf in time T if

∀x0 ∈ X0, xf ∈ Xf ,∃u : [0, T ]→ U, s.t. xu(T ) = xf ,

where xu is the solution of (1.1) with u as a control. In most cases, we
will ask some regularity of the control u, for instance u ∈ L2((0, T ), U) or
u ∈ L∞((0, T ), U) depending on the problem.
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1.1.3 Approximate controllability

For some systems, we cannot expect to reach every final state (even if we
restrict ourselves to an open neighborhood of a given state). In this case,
we can ask for a weaker condition instead, that is, to only attain states in a
dense subset. Let us see some examples.

Example 1.1.8 (Interior controllability of the heat equation). We consider
interior controllability of the heat equation:{

∂ty −∆y = uχω in Ω,

y = 0 in ∂Ω,
(1.12)

Figure 1.2: Interior control of heat equation

where χω is the indicator function of the set ω where ω is a set contained
in Ω. The classical theory of regularity of the heat equation tells us that the
solutions will be regular outside of ω, so we cannot hope to control to any
function in L2(Ω) for instance, but we can hope to attain a dense subset of
L2(Ω). In fact, as pointed out in [27], the appropriate idea of controllability
is to control to final states that come from trajectories of (1.12) (but not
necessarily the same initial condition). Thanks to the linearity of the equation
this is equivalent to the null controllability described in the next section.

Example 1.1.9 (Boundary controllability of the heat equation). We con-
sider boundary controllability of the heat equation:

∂ty −∆y = 0 in Ω,

y = 0 in ∂Ω \ Γ,

y = u in Γ,

(1.13)
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Figure 1.3: Boundary control of the heat equation

where Γ is a measurable subset of the boundary ∂Ω. In this case, instead of a
distributed control inside the domain Ω, the control acts only on (a part of)
the boundary of Ω.

1.1.4 Null local controllability

In particular in this thesis we will be concerned with the null controllability,
that is, given a particular state x̄ of interest (in general 0), we are interested
in knowing where we can reach that state from a set of initial states, more
precisely,

∀x ∈ I,∃u ∈ U, xu(T ) = x̄.

In the particular case of local null controllability we only restrict ourselves
to initial conditions close enough to the state x̄, that is

I = B(x̄, ε),

for some ε > 0 and an appropriate metric.

Remark 1.1.1. We should mention that the idea of local control also applies
to other types of control problem, for instance we can consider local exact
controllability, local approximate controllability etc. We focus on this one
because is the one that we study in the corresponding article.

1.1.5 Optimal control

Another problem in control theory is the optimal control problem: In the
typical case, when there is controllability, there is not one but many controls
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u that satisfy the control problem. This gives the possibility to choose among
them the one best suited for our necessities. More concretely, we can consider
a cost functional

J (u, x) =

∫ T

0

f0(x(t), u(t)) dt+ g(x(T )),

and minimize it:
min

xu(T )=x̄
J (u, xu).

Example 1.1.10. In the same spirit of the linear problem for controllability,
an important problem in optimal control is the linear-quadratic problem:

ẋ = Ax+Bu,

J (u, x) =

∫ T

0

x(t)∗Wx(t) + u(t)∗Uu(t) dt+ x(T )∗Gx(T ).
(1.14)

For more details on the subject of optimal control see for instance [64]
and [60], and for the infinite dimensional case, see [15].

1.1.6 Feedback stabilization problems

Another important problem in control theory is the problem of feedback
stabilization. Here, instead of reaching a target equilibrium point x̄ exactly
in a given time, we are interested in converging towards it in the limit when
t→∞, (ideally at an exponential rate), with a control that only depends on
the state at a given time, that is

u(t) = K(x(t)),

where K is a functional operator defined in appropriate spaces. This is equiv-
alent to say that x̄ is a stable equilibrium point of the system

ẋ = f(x,K(x)).

A generalization of this property that must be mention (although we will
not study this case in this thesis), is the feedback stabilization towards a
trajectory. Here, instead of taking an equilibrium point x̄, we consider a
whole trajectory of the system x̃ : [0,∞]→ A, and ask ourselves whether we
can find a feedback function K such that the solution stays close to x̃, more
precisely, the solution to

ẋ = f(x,K(x)).
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should satisfy
d(x(t), x̃(t)) −−→

t→0
0.

This kind of stabilization problem, is very important in the context of robust
control, where we want to design a control not only that satisfies the objec-
tive, but also its stable to perturbation of the system. In this case, x̃(t) is
the controlled trajectory, and we wish to add a feedback to stabilized to the
controlled trajectory.

Example 1.1.11 (Pendulum system). Let us consider a pendulum of mass
m, length ` in a constant gravitational field g:

φ̈ = −g
`

sin(φ) + u. (1.15)

Figure 1.4: Pendulum system

We have the equilibrium trajectories φ = 0 and φ = π. Classical stability
analysis shows that 0 is a stable equilibrium but π is unstable. The sta-
bilization problem then is to find a feedback law u = K(φ, φ̇) to make the
equilibrium φ = π stable.

Now we will see two infinite dimensional stabilization problems.

Example 1.1.12 (Stabilization of parabolic systems). Let us consider the
problem of stabilizing the heat equation with an interior feedback that is

∂y −∆y = χωK(y) in [0,∞)× Ω,

y(0) = y0 in Ω,

y = 0 in ∂Ω,

(1.16)
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where K is a continuous (in an appropriate topology) function of the state y,
and we have a similar setup to the example 1.1.9, but in this case the control
takes the form u = K(y). We know that the solution to this system already
decay exponentially at a rate λ1, the first eigenvalue of the Laplace operator,
that is

‖u‖L2 ≤ ‖u0‖L2e−λ1t.

If we want to have exponential decay with an arbitrary decay rate µ instead,
we can use spectral decomposition. We know that there exists an orthonormal
basis of L2(Ω), such that

−∆ek = λkek in Ω,

ek = 0 in ∂Ω,

where
0 < λ1 < λ2 ≤ λ3 ≤ λ4 ≤ . . . .

If we express our solution as

y(t, x) =
∞∑
k=1

yk(t)ek(x)

then the system (1.16) is written as the infinite system of ordinary differential
equations

ẏk + λkyk = 〈χΩK(y), ek〉,
we see that for big enough k, the equation decay sufficiently fast, so we only
need to make sure that the first N components decay as fast as we want.
This is a linear finite dimensional control system, so we can apply the known
result of this theory to find conditions under which the system is stabilizable
with an arbitrary constant. For further details in this kind of technique see
for instance [2].

Example 1.1.13 (Stabilization of transport type equations). We consider
now the problem of stabilizing the transport equation with periodic boundary
conditions that is 

∂ty + c∂xy = χωK(y),

y(t, 0) = y(t, L),

y(0, x) = y0(x),

(1.17)

in this case we can prove directly that a feedback on the form K(y) = −γy
stabilizes the equation, thanks to the fact that we can compute the solution
explicitedly as

y(t, x) = y0(x− ct)e−γ
∫ t
0 χω(x−cs)ds,
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where we consider the arguments modulo L. As long as ω has positive mea-
sure, we will have ∫ t

0

χω(x− cs) ds ≥ At−B,

for some positive constants A,B, hence we obtain the exponential decay

‖y(t)‖∞L ≤ C‖y0‖L2e−γAt.

Output stabilization

In some cases, the don’t have access to the whole state x but to a part y of
it. More precisely, 

ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)),

x(0) = x0.

(1.18)

In this case we wish to find a feedback law u = K(y) such that a certain
equilibrium point x̄ becomes stable (or more generaly a trajectory).

1.1.7 Some results in control theory

In this section we present some results about the controllability of certain
problems described in the previous section, like the linear systems in infinity
and finite dimensions and the driftless affine system. We start with the linear
finite dimensional case.

Controlability of finite dimensional linear systems

Now we present some result that give us sufficient (and in some cases neces-
sary) condition for controllability for several systems. Regarding to systems
of the form (1.5), we have a general result to decide whether the system is
controllable, the Kalman condition: If we repeatedly apply the matrix A to
the matrix B, until An−1 and put the resulting columns together in a matrix

K =
[
An−1B|An−2B| · · · |AB|B

]
,

then the system (1.5) is controllable if and only if K is of full rank. The
reason for considering only iterations until An−1 is due to Cayley-Hamilton’s
theorem, which allow us to express An as a linear combination of the previous
powers of A.
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Example 1.1.14. Going back to the spring System (1.2), we have

A =

(
0 1
−k 0

)
,

B =

(
0
1

)
,

so in this case the Kalman matrix is

K =

(
1 0
0 1

)
,

which is clearly invertible, hence of full rank. Thanks to the Kalman criterion,
we have that the system (1.2) is controllable for any initial state to any final
state in any time T .

Now we present two result about controllability in the non linear case,
one is for the case where the linearized system is controllable (in which case
we have local controllability of the non linear system), and the second is the
driftless affine case where we have sufficient conditions for global (and local
with local controls).

Controlability of finite dimensional nonlinear systems

As we mentioned earlier, one of the main tools to study the controllability of
nonlinear systems, at least in the local case, is to study the linearized system,
so we have the following linear test:

Theorem 1.1.1. Let x̃(t), ũ(t) a trajectory of the control system

ẋ = f(x, u). (1.19)

If the linearized system around x̃(t),

ẋ = ∂xf(x̃, ũ)x+ ∂uf(x̃, ũ)u,

is controllable, then the system (1.19) is locally controllable around (x̃, ũ).

Example 1.1.15. Going back to system (1.15),

φ̈ = −g
`

sin(φ) + u. (1.20)

We have the equilibrium trajectory φ = 0. The linearized system around 0 is

φ̈ = −g
`
φ+ u,

which we saw that is controllable, hence we obtain that (1.15) is locally con-
trollable around 0.
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Another important result for non linear systems is the Rashevski-Chow
theorem for driftless affine systems. In order to introduce it we need to
define the concepts of Lie bracket and Lie algebra: Given two functions f, g
we difine the lie bracket [f, g] as

[f, g](x) =
∑
i

gi(x)∂if(x)−
∑
i

fi(x)∂ig(x).

The lie algebra generated by a set of functions F , denoted Liex(F) is the
smallest linear space that contains F and is closed to the Lie bracket (this
is well defined because the set of all smooth functions is closed to the Lie
bracket).

Theorem 1.1.2. The system (1.7) is globally controllable if

Liex(f1, f2, . . . , fm) = Rn, ∀x ∈ Rn.

For a proof see for instance [15].

Example 1.1.16. For the system (1.8), we have that

[f1, f2] = (sin θ,− cos θ, 2)t,

hence f1, f2, [f1, f2] form an invertible matrixcos(θ) 0 sin(θ)
sin(θ) 0 − cos(θ)

0 1 2

 ,

So we have at every point (x, y, θ)

Liex(f1, f2) = R3.

From Theorem 1.1.2, we have that system (1.11) is globally exact controllable.

Example 1.1.17. For the system (1.11), we have that

[f1, f2] = (0, 0, 2),

hence f1, f2, [f1, f2] form an invertible matrix. So we have at every point x

Liex(f1, f2) = R3.

From Theorem 1.1.2, we have that system (1.11) is globally exact controllable.

Now we see the case of infinity dimensions where the main difference is
that the linear operator are not necessarily bounded.
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Controlability linear system in infinite dimensions

We are interested in the following type of systems

∂ty − Ay = Bu, (1.21)

where in this case we do not ask A and B to be continuous (as differential
operators usually are not), but we only ask to be densely defined unbounded
operators. More presicely, we have

A : D(A) ⊆ X → X

and
B : D(B) ⊆ U → X

where X is the linear space of states of the system and U is the linear space
of possible values to the control. Because of this we cannot simply define
the exponential of the operator A as we would do in the finite dimensional
case, instead we use semigroup theory, where the Hille-Yosida theorem tells
us that if we assume tha A has dense range and for every λ > 0, I − λA is
invertible and satisfying

‖x− λAx‖X ≥ ‖x‖X ,∀x ∈ D(A),

Then there is a function S : [0,∞)×X → X with the semigroup property

S(t+ s) = S(t) ◦ S(s)

S(0) = I

and such that if x ∈ D(A), z(t) = S(t)x satisfies the uncontrolled differential
equation, that is

∂tz(t) = Az(t), ∀t ∈ [0,∞).

For some references on semigroup theory and in particular, the Hille-Yosida
theorem, see for instance [3], [66] or [9].

In order to consider the controllability of such systems in infinite dimen-
sion, we recall the following result from functional analysis that generalizes
the null-rank theorem:

Theorem 1.1.3. Let T : X → Y be a linear continuous operator, then we
have the following:

• T is surjective if and only if the adjoint operator T ? : Y ? → X? is
injective and we have the inequality for some constant C > 0:

‖T ?(x)‖X? ≥ C‖x‖Y ? ∀x ∈ Y ?.
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• T has dense range if and only if the adjoint operator T ? is injective.

For a proof of this result see for instance [3]. To apply this to our system,
we consider the input to state operator

T : L2([0, T ], U)→ Y

u→ y(T ),

where y is the solution to the system (1.21) with initial condition y(0) = 0.
We see that controllability from zero of the system is equivalent to the

surjectivity of T and that approximate controllability is equivalent to dense
range of T .

Example 1.1.18. In the case of the controllability of the heat equation
(1.12), the adjoint system is given by

−∂tφ−∆φ = 0 in Ω,

φ = 0 in ∂Ω,

φ(T ) = ψ in Ω,

(1.22)

then the adjoint operator T ∗(ψ) is given by ψ ∈ L2(Ω) 7→ φ(t, x)χ(t, x) ∈
L2([0, T ], ω). Hence the approximate controllability is equivalent to the injec-
tivity of T ∗ that is: if φ = 0 in [0, T ] × ω, then φ ≡ 0 in all of [0, T ] × Ω.
For this system in fact we can prove null controllability which is equivalent
to the inequality ∫

Ω

φ(0, x)2dx ≤ C

∫ T

0

∫
ω

φ2(t, x)dx.

The main tools to prove such result is the use of Carleman inequalities: the
idea is to perform estimates with a carefully chosen weight function. This
idea was originally introduced by Fursikov and Imanuvilov [26]. See also the
article of Lebeau and Robbiano [40]

1.2 Some problems in fluid mechanics
Now we describe some models for the dynamics of fluid under different con-
ditions. We assume that the fluid occupies a fixed domain Ω. When it comes
to modeling the evolution of fluids a very important and well known system
of equations is the Navier-Stokes equations{

∂tρ+ div(uρ) = 0,

∂t(ρu) + div(ρu⊗ u) = div(σ),
(1.23)
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where ρ : [0, T ]×Ω→ R is the density field of the fluid, u : [0, T ]×Ω→ Rn

is the velocity field and p : [0, T ] × Ω → R is the pressure field. Here σ is
the stress vector field which expresses how the fluid particles interact with
themselves. This field normally include the pressure and dissipative forces
(viscosity). The first equation expresses the conservation of mass while the
second one expresses the conservation of linear momentum. This equation
is in conservative form (or divergence form) because expresses the change in
the quantities involves in term of the div operator of some field. The second
equation is usually written in terms of u rather than the momentum ρu, i.e,
in non conservative form as follows{

∂tρ+ div(uρ) = 0,

ρ(∂tu+ (u · ∇)u) = div(σ).
(1.24)

In most cases we can assume that σ takes the following form

σ = −pI + λ div(u)I + 2µD(u),

where p is the pressure and λ, µ are known as the Lamé constant of the fluid
and D(u) is the symmetrical gradient

D(u) =
∇u+∇ut

2
.

In this case we say that the fluid is Newtonian. We restrict ourselves to
Newtonian fluids in the rest of the thesis. In this case the system reads{

∂tρ+ div(uρ) = 0,

ρ(∂tu+ (u · ∇)u)− λ∆u− (µ+ λ)∇ div u = −∇p.
(1.25)

In the case where the fluid domain is no the entire space, we must provide
boundary conditions saying what happens there. In the case where we have
viscosity we normaly have the non slipping boudnary condition

u = 0 in ∂Ω,

in the case where the boundary is fixed, and

u = v in ∂Ω(t),

for a moving domain where v is the velocity of the boundary at the given
point. On the other hand, is there is not viscosity, the fluid is allow to move
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tangentially to the boundary so we have a condition only on the normal part
of the velocity, known as an impermeability condition:

u · n = 0 in ∂Ω,

or
u · n = v · n in ∂Ω(t),

in the fixed or moving case respectively. In this general case, because we have
more unknowns that equations, we must supply an extra condition that re-
lates the different fields, a constituent equation. Here we make the difference
between to kinds of models, incompressible models where we assume that the
fluid flow preserves volume, in which case the pressure acts as a Lagrange
multiplier of this condition and compressible models, where we provide the
pressure in terms of the other quantities like the density and temperature
(alternatively we can use the internal energy or entropy as well). For a short
mathematical introduction to fluid systems see for instance [11] For a more
comprehensive mathematical study of the fluid equations see for instance
[63], [45], [44] and for the physical side, [38].

1.2.1 Incompressible models

Example 1.2.1 (Incompressible Navier-Stokes equations). One important
case of this equations the incompressible case, where we assume that the flow
of the fluid preserves volume locally, which is expressed in mathematical terms
as

div u = 0,

in the fluid domain. In this case we obtain the so called, incompressible
Navier-Stokes equations:{

(∂tu+ (u · ∇)u)− λ∆u = −∇p,
div u = 0.

(1.26)

We notice that in this case, we do not need a constituent equation, instead
the unknown p acts as a Lagrange multiplier of the restriction div u = 0.
The existence for smooth solutions for this equations in the 2-dimensional
case was established by Leray in [41]. See also the article of Ladyzhenskaya
in [37] in the same topic. In the 3-dimensional case we only have local in
time existence of strong solutions by Kato in [36] and global in time existence
of some weak solutions by Leray in [42]. In this case weak solutions means
in the sense of distribution with satisfying an energy inequality. The global
existence of strong solutions if one of the 7 millennium problems defined by
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the Clay Mathematics Institute (of which only one has been solve to this
date).

From this model, there are two limiting cases of importance:

Example 1.2.2 (Euler System for an ideal fluid). In the case where the
viscosity effects can be neglected, that is the contribution of the term λ∆u,
we obtain the Euler system:

∂tu+ (u · ∇)u = −∇p in Ω,

div u = 0 in Ω,

u · n = 0 in ∂Ω.

(1.27)

The global existence of solutions for this system was establish by Yudovich in
[69] in the 2 dimensional case. See also [71] for the global existence of smooth
solutions. One important quantity in the study of fluid is the vorticity defined
as (for smooth enough flows)

ω(t, x) = (curlu)(t, x).

If we take the curl at both sides of (1.27), remembering that the curl of a
gradient is always 0, we obtain

∂tω + curl(ω × u) = 0.

This equation can be simplified further depending on the dimension. In di-
mension 2, it is equivalent to

∂tω + u · ∇ω = 0,

so the vorticity is just transported by the fluid flow, in particular all the
Lp norms of ω remain constant (u is divergence free so its flow is volume
preserving). This plays a key roll in the proof and will also appear in our
study of the coupling of this equations with a deformable structure. In the 3
dimensional case we obtain the equation

∂tω + u · ∇ω − ω · ∇u = 0,

instead, so ω gets stretched by u as well as transported.
For the smooth solutions in dimension 3 is still an important open prob-

lem as the case of incompressible Navier-Stokes, although recently blow up of
solutions in an intermediate class of Hölder continuous functions have been
proved in [22].
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Example 1.2.3 (Stokes system). In the case were the convection term is
considerably smaller than the diffusion term, we can approximate the Navier-
Stokes equations by the Stokes system

∂tu− λ∆u = −∇p in Ω,

div u = 0 in Ω,

u = 0 in ∂Ω.

(1.28)

One key difference with respect to the previous systems is that this system is
linear and can be studied in a similar way to the heat equation, but working in
the space of divergence free functions. We can accomplish this in the following
way: It can be prove that every function in L2(Ω) can be decomposed as

f = P(u) +∇q,

where q ∈ L2(Ω), P is divergence free and P(u) ·n = 0 on the boundary. This
decomposition is unique up to an additive constant on q. The projection P is
called the Leray projection and has the following properties,

•
divP (u) = 0

in the sense of distributions

•
P(u) · n = 0

, in the trace sense. Even if in general we cannot define a trace operator
in L2(Ω), we can define the normal trace in the space of L2(Ω) functions
with divergence in L2(Ω), so due to the free divergence condition we can
make sense of the trace.

• The Leray projector is orthogonal in L2(Ω) to gradient fields, that is∫
Ω

P(u)∇q dx = 0 ∀q ∈ H1(Ω)

. This is just a restatement of the first condition.

If we apply the Leray projector to (1.28)
∂tu− λSu = 0 in Ω

div u = 0 in Ω

u · n = 0 in ∂Ω

(1.29)
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were the stokes operator S(u) = P(∆u) ( even considering that ∆u is diver-
gence free, it doesn’t necessarily satisfy the condition ∆u·n = 0 on the bound-
ary, so the Leray projection doesn’t necessarily commute with the Laplace op-
erator). It can be proved that S is a dissipative linear (unbounded) operator
in the space L2

div(Ω) so from the classical semigroup theory we obtain the
existence of global solutions. For a more detailed exposition see for instance
[63].

1.2.2 Compressible models

Without the incompressibility hypothesis we must provide an expression for
the pressure in terms of other variables, typically, density and temperature.
Now we see some examples of this.

Example 1.2.4 (Compressible non-isentropic Navier-Stokes equations). The
most simple of this relations is the ideal gas law

p = Cθρ,

where θ is the temperature of the fluid. In this case, we introduce another
unknown so we must provide an equation describing its evolution, in this case
is the conservation of energy:

ρ(∂tθ + (u · ∇)θ)− k∆θ = −p(θ, ρ) div(u) + λ div(u)2 + 2µD(u) : D(u),

where the product A : B is defined as

A : B =
n∑
i=1

n∑
j=1

AijBij.

So the complete system in this case is
∂tρ+ div(uρ) = 0,

ρ(∂tu+ (u · ∇)u) = λ∆u+ (µ+ λ)∇ div u−∇p,
ρ(∂tθ + (u · ∇)θ)− k∆θ = −p div(u) + λ div(u)2 + 2µD(u) : D(u).

(1.30)

Example 1.2.5 (Compressible isentropic Navier-Stokes equations). In some
cases, we can assume that the pressure depends only on the density. From
thermodynamics we know that this is equivalent to the dynamics being adi-
abatic, that is there is no heat transfer, which in turns is equivalent to the
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entropy being constant (hence the name isentropic). More over, in this case
the pressure necessarily has the form

p(ρ) = Cργ,

with C > 0 and γ ∈ (1, 5
3
) is the heat capacity ratio or adiabatic index. Then

the density and velocity form a closed system as follows{
∂tρ+ div(uρ) = 0,

ρ(∂tu+ (u · ∇)u) = λ∆u+ (µ+ λ)∇ div u−∇(Cργ).
(1.31)

The existence of solutions for this system has been established for instance in
Tani [62] or Valli [70]. Also for local existence around an stationary solution
see the article of Nishida [49].

As we did in the incompressible case, we can also consider the situation
without viscosity or the limit of vanishing viscosity.

Example 1.2.6 (Compressible Euler equations). As a limit case of the pre-
vious example, we can consider the dynamics when there is no viscosity, that
is {

∂tρ+ div(uρ) = 0,

ρ(∂tu+ (u · ∇)u) = −∇(Cργ).
(1.32)

In this case, we have a system of only hyperbolic equations, known as a sys-
tem of conservation laws, as opposed to having a parabolic part due to the
viscosity. One important feature of this type of equation is the development
of shock waves. Even if the start with a very smooth initial condition, and the
flows in the equation are smooth, at some finite time, the solutions can de-
velop jump discontinuities of jumps in the derivatives known as shock waves.

For some background on systems of conservation laws in general see for
instance [58] or [11]. Also for the controllability problems related to this
equations we can mention [17], [29], [30] for the one dimensional case and
[54].

1.3 Fluid-Structure Interaction Problems
An important family of problems in continuous mechanics is the interaction
between different continuous media (with different properties), in particular
when one is a fluid and other is a solid. As in the case of a fluid alone, we
have plenty of models to choose for the dynamics of the solid depending on
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the conditions of the particular problem (rigid, moving parts, elastic, plastic,
viscoelastic, etc ...).

Figure 1.5: Fluid-Structure interaction problem

In the following subsection we present two cases, the rigid case, and the
linear elastic case.

1.3.1 Rigid Solid

Now we describe as an example the case when a rigid solid is immersed in a
perfect fluid.

Example 1.3.1 (Rigid solid inside an ideal fluid). The simplest case is the
case of a rigid solid deformation. In this case we can describe the dynamics
by the movement of the center of mass `(t) and the angular velocity ω(t). In
this case the total force over the solid produced by the fluid pressure is given
by

F = −
∫
∂S(t)

p(t, x)n(t, x) dS,

where n is the outer normal to the solid S(t). Then Newtons law reads

m῭(t) = −
∫
∂S(t)

p(t, x)n(t, x) dS.
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Similarly, the total torque produced by the pressure over the solid is

τ = −
∫
∂S(t)

p(t, x)(x− `(t)) ∧ n(t, x) dS,

so
(Jω)′ = −

∫
∂S(t)

p(t, x)(x− `(t)) ∧ n(t, x) dS,

where J is the moment matrix of the solid. In the case where the fluid is
viscous, the interaction with the fluid is described as the continuity of the
velocity across the boundary: The total speed (normal and tangential) must
be equal (no slipping condition).

u = ˙̀ + ω ∧ (x− `(t)) in ∂S(t).

For an inviscid fluid, only the normal component must be continuous
(impermeability condition):

u · n =
[

˙̀ + ω ∧ (x− `(t))
]
· n in ∂S(t).

For some refence on the study of the Cauchy problem for this type of
system, see for instance [55],[56], [35], and for some other results [32] and
[33].

1.3.2 Deformable solid

On the other hand, we can consider a deformable solid, which could be either
a part of the boundary, for instance if we consider the flow of the blood in a
blood vessel. For an example of this case, see for instance [67] where a viscous
fluid is where the boundary obeys a damped Euler-Bernoulli beam equation.
Even if we restrict ourselves to the case where the deformable body is at
the interior of the fluid domain, still there is a variety of possible systems
depending on the modeling of the structure, the fluid, and the interaction
between them. We can mention for instance, in the case of a linear elastic
structure inside a viscous compressible fluid the work of Desjardins et al
[19]. Another example that we can mention the case of deformable bodies
in an irrotational perfect fluid studied by Munnier in [52]. In this case the
structures can modify their shape to attain certain goal, rather than just
passively evolve from the motion of the fluid. In this thesis we will only
focus on the linear elasticity equation:

∂ttξ − λ∆ξ − (µ+ λ)∇ div ξ = 0, (1.33)
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where in this case ξ is the displacement of the solid with respect to the initial
position, that is, the particle that starts at x in time t = 0, is at position
ξ(t, x) + x at a given time t. We notice that this equation is similar to the
wave equation

∂ttφ− c2∆φ = 0, (1.34)

except that instead of the Laplacian, we have the so called Lamé operator

L(φ) = λ∆φ+ (µ+ λ)∇ div φ,

which is also an elliptic differential operator provided that µ > 0 and µ+λ ≥
0. The difference is due to the fact that (1.34) only takes into account the
effects of compression, whereas the linear elasticity equation (1.33) takes into
account possible shear deformations.

1.3.3 Boundary conditions

Going back to system (1.33), we need to provide some boundary condition
that describe the interaction between the structure and the fluid. In this
case we generally have to provide to types of boundary conditions, the first
related to the continuity of the velocity as we cross the boundary as we saw
in the rigid solid case. The second one is the continuity of the stress tensor
across the boundary. For a Newtonian fluid as in (1.25) the stress tensor is
given by

σF = −pI + µ
∇u+∇tu

2
+ λ div uI, (1.35)

where I is the identity tensor. In particular for a inviscid fluid we have

σF = −pI.

In the case of a deformable solid described by (1.33), we consider the first
Piola tensor as the stress tensor. To define it, we begin by considering the
flow X of the solid given by

X(t, x) = x+ ξ(t, x),

which gives the position at time t that starts at x at time 0. The the first
Piola tensor is defined as

σS = (µ
∇ξ +∇tξ

2
+ λ div ξI)

∇X
det(∇X)

.

If we compare this to the viscous part of (1.35), the factor ∇X
det(∇X)

comes from
the fact that we are describing the solid in Lagrangian coordinates, that is,
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we follow the particles, as opposed to the case of (1.25) which describes the
fluid in Eulerian coordinates, that is, in a fixed reference frame. Then the
stress boundary condition is express as

σFn = σSn.

where n is the normal to the solid. This means that the normal component
of the stress tensor is continuous across the boundary. It is important to
notice that, even though the equations for the dynamics (1.33) are linear,
the boundary conditions make it a highly non linear system which poses a
complication that we need to handle in the study of the equation.

An important concept in the study of this type of systems, and that
becomes important in the proof of our article on this subject, is the concept
of the added mass effect that we explain in the following subsection.

1.3.4 Added mass effect

As our experience with fluids would tell us, when we try to move a solid
object inside a fluid, we must displace the fluid around it. As a consequence,
the apparent mass of the object increases, which is known as the added mass
effect. The reason for this is that the forces over the solid in general are
related to the fluid pressure over the boundary which in turn depends on the
first derivative of the fluid velocity because we generally have an equation of
the form

∂tu+ . . . = −∇p+ . . .

Due to the impermeability boundary condition, part of u depends on the
velocity of the fluid, so in turn, part of the force over the fluid depends
on the acceleration of the solid. Rather than trying to explain the general
situation, let us consider a simple example to explain the ideas:

Example 1.3.2 (Added mass effect). Let us consider a rigid solid sphere in-
side a fluid which is only allowed to move in the horizontal (x-axis) direction,
and it is attached to a spring of elasticity constant k.
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Figure 1.6: Mass attached to a spring inside a perfect fluid

Then the dynamics are given by Newton’s law

m̈r(t) = −kr(t)−
∫

∂B(r(t),R)

p(t, x)n(t, x) · e1 dx,

= −kr(t)−
∫
∂B(0,R)

p(t, x+ r(t)e1)x1 dx.

As for the fluid, we consider the Euler equations for perfect fluids as before.
Assuming that we know the vorticity ω, we can recover u as

div u = 0 in F(t)

curlu = ω in F(t)

u · n = 0 in ∂Ω

u · n = ṙ(t)x1 in ∂S(t)∫
γ

uτ dx =

∫
γ

u0τ dx

(1.36)

In the last equation, γ is a curve that encloses the solid. The reason we
add this condition is due to Kelvin theorem, the circulation over any closed
curve inside the fluid remains constant as the flow evolves and we need this
condition in order to have well-possedness of (1.36) because the fluid domain
is not simply connected. This is a linear system in u, so we can decompose
the solution as

u = ṙ(t)∇Φ +K[ω] +∇⊥Ψ
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where Φ is the Kirchhoff potential satisfying the system
∆Φ = 0 in F(t),

∂Φ

∂n
= x1 in ∂S(t),

∂Φ

∂n
= 0 in ∂Ω.

(1.37)

As for the rest of the terms , K[ω] is called the Biot-Savart operator (By
analogy to the Biot-Savart law in electromagnetism where the magnetic field
satisfies a similar system with the vorticity ω replaced by the electric current
density) and satisfies the system

divK[ω] = 0 in F(t),

curlK[ω] = ω in F(t),

K[ω] · n = 0 in ∂F(t),∫
γ

K[ω] · τ d` = 0

(1.38)

and the function Ψ takes care of the circulation condition and satisfies
curl∇⊥Ψ = 0 in F(t)

Ψ = 0 in ∂F(t)∫
γ

∇⊥Ψ · τ dx =

∫
γ

u0 · τ dx.
(1.39)

Here we only care about the fact that they do not depend on the velocity ṙ or
higher derivatives at this point. Using this in the dynamics of the rigid solid,

mr̈(t) = −kr(t)−
∫
∂B(0,R)

p
∂Φ

∂n
dx

= −kr(t) +

∫
F(t)

∇p · ∇Φ dx

= −kr(t)−
∫
F(t)

(∂tu+ (u · ∇)u) · ∇Φ dx

= −kr(t)−
∫
F(t)

(r̈(t)∇Φ + ṙ(t)∂tΦ) · ∇Φ dx

−
∫
F(t)

(∂tK[ω] + ∂t∇⊥Ψ + (u · ∇)u) · ∇Φ dx.
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The important thing here is to notice that we have a second derivative on the
right hand side that we have to put on the left hand side.

(m+

∫
F(t)

|∇Φ|2 dx)r̈(t) = −kr(t)

−
∫
F(t)

(ṙ(t)∂tΦ + ∂tK[ω] + ∂t∇⊥Ψ + (u · ∇)u) · ∇Φ d`. (1.40)

So we see that the system evolves with the apparent mass

m+

∫
F(t)

|∇Φ|2 dx,

and the term
ma(t) =

∫
F(t)

|∇Φ|2 dx,

is known as the added mass matrix. In this one dimensional case we obtain
just a scalar, but in a system with many degrees of freedom it is a matrix
and in infinite dimensional systems (such as deformable solids) it is a (po-
tentially unbounded) operator. It is important to notice that the added mass
is always positive in this case. In general it is a semi positive definite matrix.
The importance of identifying the added mass is of theoretical and practical
importance. In numerical methods, usually it is important to have all the
higher order derivatives at one side to have stability of the solutions. In the
case of the theoretical study of the systems, it is important to define properly
the fixed point argument and have the appropriate regularity of the solutions.

1.4 Results of the thesis
Now we present the main result that we prove in this thesis.

1.4.1 Controllability of Navier-Stokes equations

Our First results is about the controllability of the non-isentropic Navier-
Stokes system

∂tρ+ div(ρu) = 0 in (0, T )× Ω,

ρ(∂tu+ (u · ∇)u) +∇(p(ρ, θ))

−µ∆u− (µ+ λ)∇(div) = 0 in (0, T )× Ω,

Cvρ(∂tθ + u · ∇θ)− λ div(u)2

−2µD(u) : D(u)− p(θ, ρ) div(u)− κ∆θ = 0 in (0, T )× Ω.

(1.41)

30



We control the equation on the boundary, that is, for the velocity and the
temperature, we prescribe the values on the boundary of the domain ∂Ω. In
the case of the density, due to the fact that satisfies a transport like equation,
we are only allow to prescribe its values on a subset of the boundary, in this
case, in the set where the flow enters the domain, which we can write as

Γ = {(t, x) ∈ [0, T ]× ∂Ω|u(t, x) · n(t, x) < 0}

where n is the outer normal to the fluid domain. We are interested in studying
the system around constant states ρ̄ > 0, ū ∈ Rn and θ̄ ∈ R. For technical
reasons, we will add need to add the condition on the velocity ū 6= 0.

Theorem 1.4.1. Let d ∈ {1, 2, 3}, ρ > 0 and u ∈ Rd \ {0}. Let L > 0 be
larger than the thickness of Ω in the direction u/|u|, and assume

T > L/|u|. (1.42)

Then there exists δ > 0 such that for all (ρ0, u0, θ0) ∈ H2(Ω)×H2(Ω)×
H2(Ω) satisfying

‖(ρ0, u0, θ0)‖H2(Ω)×H2(Ω)×H2(Ω) ≤ δ, (1.43)

there exists a solution (ρS , uS , θS) of (1.41) satisfying the initial condition

ρ(0, x) = ρ+ ρ0(x), u(0, x) = u+ u0(x), θ(0, x) = θ + θ0(x) in Ω,
(1.44)

and the final condition

ρ(T, x) = ρ, u(T, x) = u, θ(T, x) = θ in Ω. (1.45)

Furthermore, we can choose the control so that for the controlled trajectory
(ρS , uS , θS) one has the following regularity:

ρ ∈ C([0, T ];H2(Ω))

u ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H2(Ω))

θ ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H2(Ω)).

(1.46)

In this proof, we follow the ideas of [23], which deals with the same
controllability problem in the isentropic case (i.e. where the pressure depends
only on the density, hence there is no need to consider the temperature in the
model). The first part of the proof consists of proving that certain linearized
system is null controllable. For this we use a fixed point argument relying
on Carleman inequalities, using the same inequalities as in [23] and Banach
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fixed point theorem. Once we have established the null controllability of this
linearized system, we perform a second fixed point argument to include the
nonlinear terms, this time using Schauder fixed point theorem. In the study
of the controllability of the linear system, we use as is usual, the equivalence
between the controllability of the system and the observability of the adjoint
system. The linear system is

∂tρ+ ū · ∇ρ+ ρ̄ div(u) = vρχ+ f̂ρ in (0, T )× TL,
ρ̄(∂tu+ ū · ∇u)− µ∆u− (µ+ λ)∇ div u

+ p̄ρ∇ρ+ p̄θ∇θ = vuχ+ f̂u in (0, T )× TL,

Cvρ̄(∂tθ + ū · ∇θ)− κ∆θ + p̄ div(u) = vθχ+ f̂θ in (0, T )× TL,
(1.47)

where fρ, fu, fθ are the non linear terms of the equations that for the study
of the linear system, we consider as a fixed function. Now the adjoint system
is given by

−(∂tσ + ū · ∇σ)− p̄ρ div(z) = gσ in (0, T )× TL,
−ρ̄(∂tz + (ū · ∇)z)− µ∆z − (µ+ λ)∇(div z)

−ρ̄∇σ − p̄∇η = gz in (0, T )× TL,
−Cvρ̄(∂tη + ū · ∇η)− κ∆η − p̄θ div(z) = gη in (0, T )× TL.

(1.48)
where σ, z, η are the adjoint variables associated with ρ, u, θ respectively, and
gσ, gz, gη are dual functions in negative sobolev spaces associated to fρ, fu, fθ.
A key point in the study of the adjoint is the use of a quantity

q := div(z) +
ρ̄

ν
σ. (1.49)

This quantity is analogous to the effective flux introduced by Lions in [45],
except in this case we use it to study the adjoint system rather than the
primal system. An important property of this quantity is that allow us to
write a close system between z and σ, but with a coupling of zero order, that
is, in the equation for z, σ only appears without derivatives. The system
written in terms of q is

− (∂tσ + ū · ∇σ) = p̄ρ(q −
ρ̄

ν
σ) + gσ in (0, T )× TL,

− ρ̄(∂tq + ū · ∇q)− ν∆q = p̄∆η

+
ρ̄2

ν
p̄ρ(q −

ρ̄

ν
σ) + div(gz) +

ρ̄2

ν
gσ in (0, T )× TL,

− Cvρ̄(∂tη + ū · ∇η)− κ∆η = p̄θ(q −
ρ̄

ν
σ) + gη in (0, T )× TL.

(1.50)
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In comparison with (1.41), where we have the gradient of the density in
the equation for u, in (2.23) we have only a zeroth order coupling. This
difference allow us to get better estimates to perform the fixed point argu-
ment. The idea is that the weaker coupling allow us to use the controllability
of the diagonal system (that is the system without the coupling) to obtain
the controllability of the complete system choosing the parameters of the
Carleman weights appropriately. The diagonal system consists then on two
coupled parabolic equations (q and θ) which we can control using the Carle-
man weight defined in [23]. Two important features of this weights are that,
unlike most Carleman weights for parabolic equations, this does not blow
up at the final time T . The other important feature is that the weight is
transported in some same by the constant speed ū.

Then, for the density equation we perform explicit estimates (in this
case we have a transport equation in which we can work with the solutions
directly) in order to obtain the appropriate Carleman estimates with the
same weight.

Open problems

An interesting generalization of this result would be to study what happens
around solutions of (1.41) other than the non zero constants, in particular,
what happens around zero solutions and around evolving solutions. On the
other hand we could study the same problem coupling the non isentropic
viscous fluid equations with other equations, for instance, with Maxwell
equations to study Magnetohydrodynamics (MHD) control problems of with
Newton’s Gravitational laws to study The effects of gravity on the system.

1.4.2 Stabilization of Navier-Stokes equations

Our second result is about the stabilization by state feedback for the isen-
tropic Navier-Stokes equations with a feedback only on the density equation


∂tρS + div(ρSuS) = Kρ(ρS − ρ̄, uS − ū, σ) in R+ × Td

ρS(∂tuS + (uS · ∇)uS) +∇(p(ρS))

− µ∆uS − (µ+ λ)∇(div uS) = 0 in R+ × Td
(1.51)

Where again ū and ρ̄ > 0 are constant velocity and density and we are
interested in the evolution of the system around this constant states. The
control Kρ is the state feedback supported in the control set ω ⊆ Td and
depending on a one dimentional integrator σ depending on ρS and uS . We
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have the following assumptions on the geometry of the control domain ω and
on the parameters of the equation:

Assumption 1 We assume the pressure function to be at least C2, 1
2 on a

neighborhood of ρ̄. We will assume that all the characteristics of the
flow given by ū intersect ω′, in particular, the interesting case is when
ū 6= 0 otherwise we would require ω = Td. Then we can choose ω with
the same property and ω̄ ⊂ ω′.

Assumption 2 We also will assume that the quantity

ρ̄p̄ρ
ν

> 0

is small enough. More specifically, we assume that it is smaller than
the first nonzero eigenvalue of laplacian in the torus.

0 <
ρ̄p̄ρ
ν

< λ1

In order to quantify the exponential decay, we consider M such that,

0 < M < λ1 −
p̄ρρ̄

ν2
. (1.52)

where λ1 is the first non zero eigenvalue of the Laplacian on the torus and
p̄ρ = p′(ρ̄), γ > 0 is a constant related to the decay of the transport equation.
Then, we have the following result:

Theorem 1.4.2. Suppose that Assumption 1 and Assumption 2 are satisfied
and that M, p̄ρ and ν satisfy (1.52), and take any ε ∈ (0, 1

2
). Then there

are constants δ > 0 and C > 0 such that if (ρ0, u0) ∈ H 3
2

+2ε × H 5
2

+2ε and
‖(ρ0, u0)‖

H
3
2 +2ε×H

5
2 +2ε ≤ δ, then the solution of (1.51) satisfies the following

exponential decay estimate

‖(eMtρ, eMt(u−〈u〉), eMtσ)‖
L∞(0,T ;H

3
2 +2ε×H

5
2 +2ε×R)

≤ C‖(ρ0, u0)‖
H

3
2 +2ε×H

5
2 +2ε .

The basic idea of the proof is similar to the previous result. We try to
study the stabilization of a linearized system, and then we use the stabiliza-
tion of this system to prove the stabilization of the full non linear problem.
In the study of the linear system, for the density equation we needed to in-
clude a one dimensional integrator in order to stabilize the average value of
the velocity. This need of an integrator is not unusual in the context of sta-
bilization of this type of systems as explained by Coron in [18]. To put this
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result in perspective, we can mention the work of [12] for the stabilizability
(and controllability) of the Navier-Stokes System in the isentropic case with
control on the velocity, [50] for a study of the same system in a more regular
functional setting and [13] for a study of stabilizability on the zero velocity
case. The feedback of the system takes the following form

Kρ(ρ, û, σ) = −γχωρ+ σ(ū+ û) · ∇ϕ+ σ
ρ̄p̄ρ
ν
ϕ+ σ̇ϕ. (1.53)

where σ is a one dimensional integrator satisfying

σ̇ = σ〈div uSϕ〉 − σ
ρ̄p̄ρ
ν
〈div uSρ〉+ 〈γχω(ρS − ρ̄)〉 − γ〈ρS − ρ̄〉,

and the function ϕ is a function supported on the control zone that has the
property

suppϕ ∩ suppω′ = ∅
and where ω′ is an open set contained in ω. To construct such feedback law
we begin by the simple feedback law of the transport equation

Kρ,1 = −γχω(ρ),

which sufices to stabilize the transport equation but we still need to deal
with the average part of the velocity which does not decay in the torus (0
is a multiple eigenvalue of the Laplacian and Lamé operators). Hence we
modify the feedback in order to stabilize this average term. When we do
this, we obtain a system of the form

∂tρ+ (ū+ û) · ∇ρ− ρ̄ p̄ρ
ν
〈ρ〉+

ρ̄p̄ρ
ν
ρ = Kρ(ρ, û, σ) + f. (1.54)

where 〈ρ〉 is the average of ρ over the torus. Hence this is a non local PDE.
In order to stabilize this equation we define

ρ̃ = ρ− σϕ.

and we study it as an stabilization problem in ρ̃ and 〈ρ〉.

Open Problems

We still do not know about stabilization with an arbitrary decay rate. Also,
of course, it would be of interest to lift the small parameter restriction. Even
if we consider (localized) controls on all the equations, it is still open to
find a state feedback in Eulerian coordinates that stabilizes the system at
an arbitrary decay rate. Yet another direction in which we could generalize
the result is to stabilize around other type of solutions, not only non-zero
constants, and in particular, around the zero velocity case.
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1.4.3 Cauchy problem for a fluid-structure interaction
model

Finally, we have a result about the existence of a Cauchy problem for a fluid-
structure system (see figure 1.3). It consists of a deformable body following
the system (1.33), but for a finite number of modes.



ρS(0)∂ttξ = div(π(ξ)) = µ∆ξ + (λ+ µ)∇ div ξ in ]0, T ]× S(0)

∂tu+ (u · ∇)u = −∇p in [0, T ]×F(t)

div u = 0 in [0, T ]× S(t)

u(t, x) · n(t, x) = 0 in [0, T ]× ∂F(t) \ ∂S(t)

(u(t, x)− ∂tξ(t,X−1(t, x))) · n(t, x) = 0 in [0, T ]× ∂S(t) ∩ ∂F(t)

(π(ξ)(t,X−1(t, x)))
∇X(t,X−1(t, x)))

det(∇X(t,X−1(t, x))))
+ pI) · n = 0 in [0, T ]× ∂S(t)

(1.55)
where as we said earlier, ξ represent the displacement of the solid with respect
to the initial position (Lagrangian coordinates), X(t, x) = x + ξ(t, x) is the
flow of the elastic solid, µ and λ are the Lamé constant that describe the
elasticity of the body. On the other hand u is the velocity of the fluid
and p it is pressure. We add also the incompressibility condition and an
impermeability condition with the wall of the fluid.

In order to couple the fluid and the elastic solid, we have two boundary
conditions, one the impermeability with the solid, expressed as the continuity
of the normal component of the velocity, as well as the continuity of the
stress tensor that for the fluid is given by the pressure and for the elastic
solid by the Piola tensor π(ξ) together with factor because of the mixture of
Lagrangian and Eulerian coordinates. With a finite modes solution we mean
that we express the displacement ξ as a finite sum of some time independent
functions:

ξ(t, x) =
N+1∑
i=1

αi(t)ηi(x).

In this case we take ηi as the first eigenvalues of the Lame operator with
homogeneous Neumann boundary conditions. The reason we take N + 1
modes is to take care of the incompressibility of the fluid. Because the fluid
preserves the volume, and the total volume is also preserved, this forces the
volume of the solid to remain constant as well, so we choose its coefficient
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αN+1(t) = δ(t) where

δ̇(t) = −
N∑
i

ci(αj(t), δ(t))α̇i(t)

ci(α, δ) =

∫
∂S(α,δ)

ηi · n̂(α,δ)dS∫
∂S(α,δ)

ηN+1 · n̂(α,δ)dS
.

This ensures that ξ preserves volume. So we ask for the displacement to
satisfy the linear lame equation on the space span by this eigenvalues, that
is ∑

j

∫
S(0)

α̈i(ηi − ciηN+1)(ηj − cjηN+1)−
∑
j

∫
S(0)

α̇iċiηN+1(ηj − cjηN+1)

− αiλi − λN+1δc

=

∫
∂S(t)

np(t, x)(ηi(X
−1(t, x))− ci(t)ηN+1(X−1(t, x)))dS. (1.56)

for every i ∈ {1, · · · , N}. In order to explain our result we need to introduce
the following functional space: For a set Ω we denote by LL(Ω) the set of
log-Lipschitz functions, that is, functions f : Ω→ Rn such that

‖f‖LL = sup
x 6=y∈Ω

|f(x)− f(y)|
1 + log(|x− y|)+

<∞

The importance of this space is that we can still ensure the uniqueness of the
flow of f for a log-Lipschitz function. Our result is the following:

Theorem 1.4.3. If the boundary of F(0) is of class C2,α and ω0 ∈ L∞(F(0)),
u0 ∈ LL(F(0)) and

∫
∂S(0)

ηN+1(x) · n̂dS 6= 0, then there is T > 0 such that
there is a finite modes solution to the system (1.56) satisfying

αi ∈ C2([0, T ]),

u ∈ L∞([0, T ],LL(F(t)),

and
ω ∈ L∞([0, T ], L∞(F(t))).

Moreover T satisfies

T > T0(‖α0‖, ‖X−1‖,
∫
∂S(0)

ηN+1(x) · n̂dS)

that is, the minimal time only depends uniformly on α0, X
−1 and γ =

∫
∂S(0)

ηN+1(x)·
n̂dS.
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Also the added mass effect matrix discussed in 1.3.4 plays an important
role in the proof .The idea of the proof is to perform a fixed point argument
as well: Given a possible displacement

ξ(t, x)

for the solid body, we can find the solution of the fluid around it considering
the movement of the solid as prescribed, obtaining

ξ → u

as the solution to the Euler equation with said movement. Then, from the
fluid solution, we can compute the action over the solid to compute a new
displacement. In general this displacement will not be equal to the initial
displacement, but if we manage to prove that this map has a fixed point, we
find a solution to our system.

ξ → u→ ξ̂ = ξ

As it is common in fluid-structure problems, in order to study the system we
need to introduce an added mass matrix. The reason for this is that in the
equation for the displacement we have the pressure p at the right hand side.

Open Problems

The obvious open problem that we could not tackle is what happens in the
case for the complete linear elasticity equation, i.e. without considering the
finite number of modes approximation. In top of that, we can consider what
happens when we consider other equations for the deformable solid, after all,
the linear elasticity equation is just an approximation of more general non
linear equations.
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Chapter 2

Local exact boundary
controllability for the
compressible Navier-Stokes
equations

2.1 Introduction
We will consider the problem of controlling a viscous and compressible fluid
contained in a bounded domain Ω ⊆ Rd, where the dimension d ∈ {1, 2, 3}
and the control will act on the whole boundary, that is, we prescribe the
velocity and the temperature of the fluid passing through the boundary,
and the density of the incoming fluid. The fluid is modeled here by the
compressible Navier-Stokes equations with temperature, and we assume that
the pressure is a function of the density and the temperature. Because of
this, we need to consider also the equation for the energy. More concretely,
we consider the following:

∂tρS + div(ρSuS) = 0 in (0, T )× Ω

ρS(∂tuS + (uS · ∇)uS) = −∇(p(ρS , θS))

+ µ∆uS + (µ+ λ)∇(div uS) in (0, T )× Ω

CvρS(∂tθS + uS · ∇θS)− κ∆θS = p(θS , ρS) div(uS)

+λ div(uS)2 + 2µD(uS) : D(uS) in (0, T )× Ω,

(2.1)
where ρS is the density, uS the velocity, θS is the temperature, and p is the
pressure which is a function of ρS and θS obeying, for instance, the ideal gas
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law
p(θ, ρ) = Rθρ. (2.2)

Here, for square matrices A and B, A : B denotes the Frobenius product
defined by

A : B := tr(AtB),

and for any vector field f , D(f) is the symmetric gradient given by the
formula

D(f)ij =
1

2

(
∂fi
∂xj

+
∂fj
∂xi

)
.

The parameters µ and λ correspond to constant viscosity parameters and
are assumed to satisfy µ > 0 and dλ + 2µ ≥ 0 (the only condition required
for our result is µ > 0 and ν = λ + 2µ > 0). The constant Cv is the heat
capacity which we assume Cv > 0.

We will consider the local exact controllability around constant states
(ρ, u, θ) ∈ R∗+ × (Rd \ {0})× R. The controls applied to the system (2.1) in
velocity and temperature are the values of uS and θS on the whole boundary

θ|∂Ω(t, x) = fθ(t, x), (2.3)
u|∂Ω(t, x) = fu(t, x). (2.4)

For what concerns the density we control only on the part of the region where
the flow is inward Γ = {(t, x) ∈ [0, T ] × ∂Ω| u(t, x) · n(x) < 0} where ~n is
the exterior unit normal to ∂Ω

ρ|Γ(t, x) = fρ(t, x). (2.5)

Here the local exact controllability means that for every initial conditions
(ρ0, u0, θ0) close enough to (ρ̄, ū, θ̄) (in the H2 norm in this case) there are
controls such that the solution to (2.1) reaches the state (ρ̄, ū, θ̄) in certain
given final time T > 0. Because we are controlling in the whole boundary,
instead of considering the control explicitly, we may also consider (2.1) as an
under-determined system (without boundary condition) and we have to find
a trajectory satisfying certain initial and final conditions.

To state our main result we make the following definition, see [23]: Given e
an unit vector in the sphere Sd−1 of Rd, we define the thickness of a nonempty
set A ⊂ Rd in the direction e as follows

sup {s ≥ 0 / ∃x ∈ A, x+ se ∈ A} .

The principal result of this article is the following theorem.
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Theorem 2.1.1. Let d ∈ {1, 2, 3}, ρ > 0 and u ∈ Rd \ {0}. Let L > 0 be
larger than the thickness of Ω in the direction u/|u|, and assume

T > L/|u|. (2.6)

Then there exists δ > 0 such that for all (ρ0, u0, θ0) ∈ H2(Ω)×H2(Ω)×
H2(Ω) satisfying

‖(ρ0, u0, θ0)‖H2(Ω)×H2(Ω)×H2(Ω) ≤ δ, (2.7)

there exists a solution (ρS , uS , θS) of (2.1) satisfying the initial condition

ρS(0, x) = ρ+ρ0(x), uS(0, x) = u+u0(x), θS(0, x) = θ+ θ0(x) in Ω,
(2.8)

and the final condition

ρS(T, x) = ρ, uS(T, x) = u, θS(T, x) = θ in Ω. (2.9)

Furthermore, we can choose the control so that for the controlled trajectory
(ρS , uS , θS) one has the following regularity:

ρS ∈ C([0, T ];H2(Ω))

uS ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H2(Ω))

θS ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H2(Ω)).

(2.10)

Theorem 2.1.1 extends the results in [23] and [24] to the non isentropic
case, i.e. when the pressure also depends on the temperature. As in the
constant temperature case, our result proves local controllability to constant
states having non-zero velocity. This restriction appears explicitly in the
condition (2.6). As expected, this condition is remnant from the transport
equation satisfied by the density which allows the information to travel at a
velocity (close to) u. Recently [47] studied the controllability of the linearized
compressible Navier-Stokes equations in the case where ū = 0 where it was
proved that in the one dimensional case, the system is not null-controllable in
the space L2×L2×L2 if we don’t control the density on the whole domain but
the system is null-controllable if we restrict the density to the H1 function
with zero mean (and in fact, in this case there is no need of a control on the
density) if we control the speed and the temperature on the whole domain
(and controlling the velocity on the whole domain is a necessary condition).

This non-zero velocity condition for the controllability of compressible
Navier-Stokes equations has been studied in [68, 12] focusing on the linearized
equations in the case of zero-velocity. Concerning the closely related prob-
lem of stabilization of compressible Navier-Stokes equations, we can mention
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the work of Chowdhury, Ramswamy, Raymond [12] and Chowdhury, Maity,
Ramaswamy, Raymond [13].

Concerning the incompressible case of the Navier-Stokes equations, Fur-
sikov and Imanuvilov [26] provide a local exact controllability result. On the
other hand, for Euler equations, global exact controllability has been proved
in dimension 2 by Coron [16], and in dimension 3 by Glass [31].

Our strategy will be to treat (2.1) as a coupling of parabolic and trans-
port equations, hence we will adapt the techniques used in [23] to this case,
which uses Carleman estimates in negative Sobolev spaces to prove the con-
trollability of the parabolic and hyperbolic equations.

Remark 2.1.1. In dimension d = 1 the required regularity on the initial can
be relaxed as follows

Theorem 2.1.2. Let d = 1, ρ > 0 and u ∈ Rd \ {0}. Let L > 0 be larger
than the thickness of Ω in the direction u/|u|, and assume

T > L/|u|. (2.11)

Then there exists δ > 0 such that for all (ρ0, u0, θ0) ∈ H1(Ω)×H1(Ω)×
H1(Ω) satisfying

‖(ρ0, u0, θ0)‖H1(Ω)×H1(Ω)×H1(Ω) ≤ δ, (2.12)

there exists a solution (ρS , uS , θS) of (2.1) satisfying the initial condition

ρS(0, x) = ρ+ρ0(x), uS(0, x) = u+u0(x), θS(0, x) = θ+ θ0(x) in Ω,
(2.13)

and the final condition

ρS(T, x) = ρ, uS(T, x) = u, θS(T, x) = θ in Ω. (2.14)

Furthermore, we can choose the control so that for the controlled trajectory
(ρS , uS , θS) one has the following regularity:

ρS ∈ C([0, T ];H1(Ω))

uS ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω))

θS ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)).

(2.15)

For sake of simplicity, we will focus on the proof in the case d ∈ {2, 3}.
The proof in the case d = 1 can be easily deduced from the general case. In
this regard, the regularity obtained is the same as in the article of Ervedoza
and Savel [25], where they prove controllability to smooth trajectories for the
isentropic Navier-Stokes equations.
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Outline. This paper is organized as follows. Section 2.3 introduces the Carle-
man estimates that we will need to prove controllability. Sections 2.4 and 2.5
study the controllability of the linearized problem. Section 2.6 then explains
how to perform a fixed point argument using the controllability results de-
veloped before. Finally, in Section 2.7 we present the proof of Theorem 2.1.1.

2.2 Preliminary steps
First, as in [23], we reduce the boundary control problem to an interior
control problem in the torus. The domain Ω can be embedded into some
torus TL, where TL is identified with [0, L]d with periodic conditions. In
order to construct the Carleman weight, we need to consider the length L
large enough and we may consider the control problem in the cube TL with
controls appearing as source terms supported in TL \ Ω. The new control
system is the following:

∂tρS + div(ρSuS) = v̌ρ in (0, T )× TL
ρS(∂tuS + (uS · ∇)uS) +∇(p(ρS , θS))

− µ∆uS − (µ+ λ)∇ div uS = v̌u in (0, T )× TL
CvρS(∂tθS + uS · ∇θS)− λ div(uS)2 − 2µD(uS) : ∇uS

− p(θS , ρS) div(uS)− κ∆θS = v̌θ in (0, T )× TL
(2.16)

with v̌ρ, v̌u and v̌θ the control functions which are supported in [0, T ]× (TL \
Ω). Because we intend to study the linearized system around (ρ̄, ū, θ̄), we
consider the following translation in order to consider the system around
(0, 0, 0),

ρ̌ := ρS − ρ, ǔ := uS − u, θ̌ := θS − θ.

Accordingly, we extend the initial conditions (ρ0, u0, θ0) to the torus TL in
such a way that∥∥(ρ̌0, ǔ0, θ̌0)

∥∥
H2(TL)×H2(TL)×H2(TL)

≤ CL ‖(ρ0, u0, θ0)‖H2(Ω)×H2(Ω)×H2(TL) .

(2.17)
We introduce the following function to make explicit the support of the

controls v̌ρ, v̌u and v̌θ. We take χ ∈ C∞(TL; [0, 1]) satisfying{
χ(x) = 0 for all x such that d(x,Ω) ≤ ε,
χ(x) = 1 for all x such that d(x,Ω) ≥ 2ε,

(2.18)

where ε > 0 is small enough. How small will be explained in section 2.3.1
when we introduce the weights for the Carleman estimates. We will look for
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v̌ρ, v̌u and v̌θ in the form

v̌ρ = vρχ, v̌u = vuχ and v̌θ = vθχ.

We will start by studying the linearized system around (ρ̄, ū, θ̄) which is
∂tρ+ ū · ∇ρ+ ρ̄ div(u) = vρχ+ f̂ρ in (0, T )× TL,
ρ̄(∂tu+ ū · ∇u)− µ∆u− (µ+ λ)∇ div u

+ p̄ρ∇ρ+ p̄θ∇θ = vuχ+ f̂u in (0, T )× TL,

Cvρ̄(∂tθ + ū · ∇θ)− κ∆θ + p̄ div(u) = vθχ+ f̂θ in (0, T )× TL,
(2.19)

where
p̄ = p(ρ̄, θ̄), p̄ρ =

∂p

∂ρ
(ρ̄, θ̄), p̄θ =

∂p

∂θ
(ρ̄, θ̄).

We will use the equivalence between the controllability of a linear system and
the observability property for the adjoint system. In this case, the adjoint
system of (2.19) is given by
− (∂tσ + ū · ∇σ)− p̄ρ div(z) = gσ in (0, T )× TL,
− ρ̄(∂tz + (ū · ∇)z)− µ∆z − (µ+ λ)∇(div z)− ρ̄∇σ − p̄∇η = gz in (0, T )× TL,
− Cvρ̄(∂tη + ū · ∇η)− κ∆η − p̄θ div(z) = gη in (0, T )× TL.

(2.20)
We notice that ignoring the coupling between the equations, σ satisfies a

transport equation and z and η satisfy a parabolic equation. The main idea
now is to use the controllability of those indual equations inside a fixed point
scheme, but first we need to reduce to a system in which the coupling does
not involve derivatives. If we take the divergence of the equation of z, we
obtain the following system.
− (∂tσ + ū · ∇σ)− p̄ρ div(z) = gσ in (0, T )× TL,

− ρ̄(∂t div(z) + ū · ∇ div(z))− ν∆(div(z) +
ρ̄

ν
σ +

p̄

ν
η) = div(gz) in (0, T )× TL,

− Cvρ̄(∂tη + ū · ∇η)− κ∆η − p̄θ div(z) = gη in (0, T )× TL,
(2.21)

where
ν := λ+ 2µ > 0.

Which is a closed system in σ, div z, η. Now we introduce a new variable q
in order to eliminate the higher order coupling: ∆ ρ̄

ν
σ + ∆ p̄

ν
η as follows:

q := div(z) +
ρ̄

ν
σ. (2.22)
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This variable q was already introduced in [23] and was compared with the
effective viscous flux introduced in [45]. In the new unknown (σ, q, η) the
system (2.21) is as follows:

− (∂tσ + ū · ∇σ) = p̄ρ(q −
ρ̄

ν
σ) + gσ in (0, T )× TL,

− ρ̄(∂tq + ū · ∇q)− ν∆q = p̄∆η

+
ρ̄2

ν
p̄ρ(q −

ρ̄

ν
σ) + div(gz) +

ρ̄2

ν
gσ in (0, T )× TL,

− Cvρ̄(∂tη + ū · ∇η)− κ∆η = p̄θ(q −
ρ̄

ν
σ) + gη in (0, T )× TL,

(2.23)
Now that we got rid of the higher order coupling we use again the du-

ality to obtain that the observability property of (2.23) is equivalent to the
controllability of the following system in (r, y, h), where the adjoint is taken
with respect to the new variables (σ, q, η).

∂tr + ū · ∇r = − ρ̄
ν

(p̄ρr +
ρ̄2

ν
p̄ρy + p̄θh) + fr + vrχ0 in (0, T )× TL,

ρ̄(∂ty + ū · ∇y)− ν∆y = (p̄ρr +
ρ̄2

ν
p̄ρy + p̄θh) + fy + vyχ0 in (0, T )× TL,

Cvρ̄(∂th+ ū · ∇h)− κ∆h = p̄∆y + fh + vhχ0 in (0, T )× TL,
(r(0, ·), y(0, ·), h(0, ·) = (r0, y0, h0) in TL,
(r(T, ·), y(T, ·), h(T, ·)) = (0, 0, 0) in TL,

(2.24)
where we have introduced a new smooth function χ0 in order to have some
margin. It satisfies

Suppχ0 ⊂⊂ {χ = 1} and χ0(x) = 1 for all x ∈ TL such that d(x,Ω) ≥ 3ε.
(2.25)

Now in order to solve the controllability problem (2.24), we use a fixed point
argument, and begin by considering the following decoupled controllability
problem:

∂tr + ū · ∇r +
ρ̄p̄ρ
ν
r = f̃r + vrχ0 in (0, T )× TL,

ρ̄∂ty − ν∆y = f̃y + vyχ0 in (0, T )× TL,
Cvρ̄∂th− κ∆h = f̃h + vhχ0 in (0, T )× TL,
(r(0, ·), y(0, ·), h(0, ·) = (r0, y0, h0) in TL,
(r(T, ·), y(T, ·), h(T, ·)) = (0, 0, 0) in TL.

(2.26)
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2.3 Carleman inequalities
In this section, we will present the Carleman estimates that we will use to
control in each equation of (2.26), and it is mainly borrowed from [1].

2.3.1 Construction of the weight function

Let us define the Carleman weight that we will use, which was introduced
in [1] and has the particularity that it does not blow up in the initial time
t = 0. Let us introduce a function ψ = ψ(t, x) ∈ C2([0, T ] × TL, [6, 7]) that
satisfies the transport equation

∂tψ + u · ∇ψ = 0 in (0, T )× TL, (2.27)

and for which, there exists a subset ω ⊂⊂ {χ0 = 1} such that ψ does not
have critical points in [0, T ]× (TL \ ω). Now we choose T0 > 0, T1 > 0 and
ε > 0 small enough so that

T0 + 2T1 < T − L0 + 12ε

|u|
. (2.28)

Now for any real number α ≥ 2, we introduce the weight function in time
ζ(t) defined by

ζ = ζ(t) such that



∀t ∈ [0, T0], ζ(t) = 1 +

(
1− t

T0

)α
,

∀t ∈ [T0, T − 2T1], ζ(t) = 1,

∀t ∈ [T − T1, T ), ζ(t) =
1

T − t
,

ζ is increasing on [T − 2T1, T − T1],

ζ ∈ C2([0, T )).

(2.29)

Then we consider the following weight function ϕ = ϕ(t, x):

ϕ(t, x) = ζ(t)
(
λ0e

12λ0 − exp(λ0ψ(t, x))
)
, (2.30)

where s, λ0 are positive parameters with s ≥ 1, λ0 ≥ 1. The parameter α is
chosen as

α = sλ2
0e

2λ0 ≥ 2, (2.31)

We point out that we have the following bounds, for all (t, x) ∈ [0, T )× TL,

14

15
Φ(t) ≤ ϕ(t, x) ≤ Φ(t), (2.32)
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where
Φ(t) := ζ(t)λ0e

12λ0 . (2.33)

Notations. In order to simplify the notation we will consider in what follows
the following shortcuts

‖·‖L2(L2) = ‖·‖L2(0,T ;L2(TL)) , ‖·‖L2(H2) = ‖·‖L2(0,T ;H2(TL)) ,

and similarly for other spaces.

2.3.2 Carleman estimates for the heat equation

In this paragraph we will present the Carleman estimates for the following
controllability problem: given y0 and f̃y, find a control function vy such that
the solution y of{ ρ

ν
∂ty −∆y = f̃y + vyχ0, in (0, T )× TL,

y(0, ·) = y0, in TL,
(2.34)

satisfies
y(T, ·) = 0, in TL. (2.35)

The following inequality was proved in [1] and the extra regularity estimates
were proved in [23].

Theorem 2.3.1. There exist constants C0 > 0 and s0 ≥ 1 and λ0 ≥ 1 large
enough such that for all smooth functions w on [0, T ]×TL and for all s ≥ s0,

s
3
2λ2

0

∥∥∥ξ 3
2we−sϕ

∥∥∥
L2(0,T ;L2(TL))

+ s1/2λ0

∥∥ξ1/2∇we−sϕ
∥∥
L2(0,T ;L2(TL))

+ sλ
3
2
0 e

7λ0
∥∥w(0)e−sϕ(0)

∥∥
L2(TL)

≤ C0

∥∥∥∥(−ρν ∂t −∆

)
we−sϕ

∥∥∥∥
L2(0,T ;L2(TL))

+C0s
3
2λ2

0

∥∥∥ξ 3
2χ0we

−sϕ
∥∥∥
L2(0,T ;L2(TL))

.

(2.36)

where we have set
ξ(t, x) = ζ(t) exp(λ0ψ(t, x)). (2.37)

In the rest of the article, λ0 will be fixed so that Theorem 2.3.1 holds.
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Theorem 2.3.2. There exist positive constants C > 0 and s0 ≥ 1 such that
for all s ≥ s0, for all f̃y satisfying∥∥∥ζ− 3

2 f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

<∞ (2.38)

and y0 ∈ L2(TL), there exists a solution (y, vy) of the control problem (2.34)–
(2.35) which furthermore satisfies the following estimate:

s
3
2 ‖yesϕ‖L2(0,T ;L2(TL)) +

∥∥∥ζ− 3
2χ0vye

sϕ
∥∥∥
L2(0,T ;L2(TL))

+ s1/2
∥∥ζ−1∇yesϕ

∥∥
L2(0,T ;L2(TL))

≤ C
∥∥∥ζ− 3

2 f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

+ Cs1/2
∥∥y0e

sϕ(0)
∥∥
L2(TL)

. (2.39)

Besides, this solution (y, vy) can be obtained through a linear operator in
(y0, f̃y).
If y0 ∈ H1(TL), we also have

s−1/2
∥∥ζ−2∇2yesϕ

∥∥
L2(0,T ;L2(TL))

≤ C
∥∥∥ζ− 3

2 f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

+ Cs1/2
∥∥y0e

sϕ(0)
∥∥
L2(TL)

+ Cs−1/2
∥∥∇y0e

sϕ(0)
∥∥
L2(TL)

. (2.40)

Furthermore we have the following extra regularity depending on the reg-
ularities of the initial condition and source term:

1. vy ∈ L2(0, T ;H2(TL)) and

∥∥χ0vye
6sΦ/7

∥∥
L2(0,T ;H2(TL))

≤ C

(∥∥∥ζ− 3
2 f̃ye

sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
L2(TL)

)
.

2. If furthermore y0 ∈ H2(TL), f̃ye6sΦ/7 ∈ L2(0, T ;H1(TL)) and ζ−
3
2 f̃ye

sϕ ∈
L2(0, T ;L2(TL)),

∥∥ye6sΦ/7
∥∥
L2(0,T ;H3(TL))

≤ C

(∥∥∥f̃ye6sΦ/7
∥∥∥
L2(0,T ;H1(TL))

+
∥∥∥ζ− 3

2 f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
H2(TL)

)
.

48



3. If furthermore y0 ∈ H3(TL) and f̃ye6sΦ/7 ∈ L2(0, T ;H2(TL)), ζ−
3
2 f̃ye

sϕ ∈
L2(0, T ;L2(TL)),

∥∥ye6sΦ/7
∥∥
L2(0,T ;H4(TL))

≤ C

(∥∥∥f̃ye6sΦ/7
∥∥∥
L2(0,T ;H2(TL))

+
∥∥∥ζ− 3

2 f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
H3(TL)

)
.

The proof is done in [23]. Because of the presence of the higher order
coupling ∆y on the equation for h in (2.24), we will require to have estimates
on ζ−

3
2 ∆y instead of ζ−2∆y as in Theorem 2.3.2, hence we will need a shifted

version of the estimates as in the following theorem

Theorem 2.3.3. In the same context of Theorem 2.3.2, there exist positive
constants C > 0 and s0 ≥ 1 such that for all s ≥ s0, for all f̃y satisfying∥∥∥ζ−1f̃ye

sϕ
∥∥∥
L2(0,T ;L2(TL))

<∞ (2.41)

and y0 ∈ H1(TL), then the solution (y, vy) of the control problem satisfies

s
3
2

∥∥∥ζ 1
2yesϕ

∥∥∥
L2(0,T ;L2(TL))

+
∥∥ζ−1χ0vye

sϕ
∥∥
L2(0,T ;L2(TL))

+ s1/2
∥∥∥ζ− 1

2∇yesϕ
∥∥∥
L2(0,T ;L2(TL))

+ s−1/2
∥∥∥ζ− 3

2∇2yesϕ
∥∥∥
L2(0,T ;L2(TL))

≤ C
∥∥∥ζ−1f̃ye

sϕ
∥∥∥
L2(0,T ;L2(TL))

+Cs1/2
∥∥y0e

sϕ(0)
∥∥
L2(TL)

+Cs−1/2
∥∥∇y0e

sϕ(0)
∥∥
L2(TL)

.

(2.42)

Besides, this solution (y, vy) can be obtained through a linear operator in
(y0, f̃y).

Furthermore we have the following extra regularity depending on the reg-
ularities of the initial condition and source term:

1. vy ∈ L2(0, T ;H2(TL)) and

∥∥χ0vye
6sΦ/7

∥∥
L2(0,T ;H2(TL))

≤ C

(∥∥∥ζ−1f̃ye
sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
L2(TL)

)
.
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2. If furthermore y0 ∈ H2(TL), f̃ye6sΦ/7 ∈ L2(0, T ;H1(TL)) and ζ−1f̃ye
sϕ ∈

L2(0, T ;L2(TL)),

∥∥ye6sΦ/7
∥∥
L2(0,T ;H3(TL))

≤ C

(∥∥∥f̃ye6sΦ/7
∥∥∥
L2(0,T ;H1(TL))

+
∥∥∥ζ−1f̃ye

sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
H2(TL)

)
.

3. If furthermore y0 ∈ H3(TL) and f̃ye6sΦ/7 ∈ L2(0, T ;H2(TL)), ζ−1f̃ye
sϕ ∈

L2(0, T ;L2(TL)),

∥∥ye6sΦ/7
∥∥
L2(0,T ;H4(TL))

≤ C

(∥∥∥f̃ye6sΦ/7
∥∥∥
L2(0,T ;H2(TL))

+
∥∥∥ζ−1f̃ye

sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥y0e

sΦ(0)
∥∥
H3(TL)

)
.

The proof is done by considering the equation satisfied by ζ
1
2y and ap-

plying the same estimates of Theorem 2.3.2. The only difference is the
appearance of the source term ζ̇ζ−1y which can be absorbed by the term
s

3
2

∥∥∥ζ 1
2yesϕ

∥∥∥
L2(0,T ;L2(TL))

for s big enough.

Remark 2.3.1. When ν 6= κ
Cv
, we can consider instead of

q := div(z) +
ρ̄

ν
σ

the dependent variable

q := div(z) +
ρ̄

ν
σ +

p̄

ν − κ
Cv

η.

In this case, we obtain a similar system, with the exception that the term
p̄∆η does not appear. Without this higher order coupling, the previous shifted
Carleman inequality is not necessary, which simplifies the proof.

2.3.3 Controllability of the transport equation

In this paragraph, we will present Carleman Inequalities for the following
transport equation: Given f̃r and r0, find a control function vr such that the
solution r of{

∂tr + u · ∇r +
pρρ

ν
r = f̃r + vrχ0, in (0, T )× TL,

r(0, ·) = r0, in TL,
(2.43)

50



satisfies the controllability requirement

r(T, ·) = 0 in TL. (2.44)

The following Theorem is a minor modification of Theorem 3.5 in [23], the
only difference being the Carleman weight being ζ−1 instead of ζ−

3
2 ( θ−

3
2 in

the notation of [23])

Theorem 2.3.4. Let (u, T, ε) be as in (2.28). For all f̃r with∥∥∥ζ−1f̃re
sϕ
∥∥∥
L2(0,T ;L2(TL))

<∞ (2.45)

and r0 ∈ L2(TL), there exists a function vr ∈ L2(0, T ;L2(TL)) such that
the solution r of (2.43) satisfies the control requirement (2.44). Besides, the
controlled trajectory r and the control function vr satisfy∥∥ζ−1resϕ

∥∥
L2(0,T ;L2(TL))

+
∥∥ζ−1vre

sϕ
∥∥
L2(0,T ;L2(TL))

≤ C

(∥∥∥ζ−1f̃re
sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥r0e

sϕ(0)
∥∥
L2(TL)

)
. (2.46)

If r0 ∈ H1(TL) and f̃r satisfies (2.43) and f̃re6sΦ/7 ∈ L2(0, T ;H1(TL)), then
r furthermore belongs to L2(0, T ;H1(TL)) and satisfies∥∥re6sΦ/7

∥∥
L2(0,T ;H1(TL))

+
∥∥vre6sΦ/7

∥∥
L2(0,T ;H1(TL))

≤ C

(∥∥∥f̃re6sΦ/7
∥∥∥
L2(0,T ;H1(TL))

+
∥∥∥ζ−1f̃re

sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥r0e

sΦ(0)
∥∥
H1(TL)

)
.

(2.47)

If r0 ∈ H2(TL) and f̃r satisfies (2.43) and f̃re6sΦ/7 ∈ L2(0, T ;H2(TL)), then
r belongs to L2(0, T ;H2(TL)) and satisfies∥∥re6sΦ/7

∥∥
L2(0,T ;H2(TL))

+
∥∥vre6sΦ/7

∥∥
L2(0,T ;H2(TL))

≤ C

(∥∥∥f̃re6sΦ/7
∥∥∥
L2(0,T ;H2(TL))

+
∥∥∥ζ−1f̃re

sϕ
∥∥∥
L2(0,T ;L2(TL))

+
∥∥r0e

sΦ(0)
∥∥
H2(TL)

)
.

(2.48)

Besides, this solution (r, vr) can be obtained through a linear operator in
(r0, f̃r).

Proof. The proof of Theorem 2.3.4 consists in an explicit construction solving
the control problem (2.43)–(2.44) and then on suitable estimates on it.
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An explicit construction. Let η0 be a smooth cut-off function taking value 1
on {x ∈ TL, with d(x,Ω) ≤ 5ε+ |u|T0} and vanishing on {x ∈ TL, d(x,Ω) ≥
6ε+ |u|T0} with ε as in section 2.3.1 . We then introduce η the solution of{

∂tη + u · ∇η = 0, in (0, T )× TL,
η(0, ·) = η0 in TL,

(2.49)

and the solutions rf and rb (here ‘f ’ stands for forward, ‘b’ for backward) of{
∂trf + u · ∇rf + arf = f̃r, in (0, T )× TL,
rf (0, ·) = r0 in TL,

(2.50)

and {
∂trb + u · ∇rb + arb = f̃r, in (0, T )× TL,
rb(T, ·) = 0 in TL,

(2.51)

where a denotes the constant

a =
p̄ρρ

ν
.

We then set

r = η2(x) (ηrf + (1− η)rb) + (1− η2(x))η1(t)rf , in (0, T )× TL, (2.52)

where η1(t) is a smooth cut-off function taking value 1 on [0, T0/2] and van-
ishing for t ≥ T0 and η2 = η2(x) is a smooth cut-off function taking value 1
for x with d(x,Ω) ≤ 3ε and vanishing for x with d(x,Ω) ≥ 4ε. One easily
checks that r solves

∂tr + u · ∇r + ar = η2f̃r + (1− η2)η1f̃r + u · ∇η2(ηrf + (1− η)rb)

− η1u · ∇η2rf + (1− η2)∂tη1rf in (0, T )× TL, (2.53)

thus corresponding to a control function

vr = (η2−1)f̃r+(1−η2)η1f̃r+u·∇η2(ηrf+(1−η)rb)−η1u·∇η2rf+(1−η2)∂tη1rf ,
(2.54)

localized in the support of χ0 due to the condition on the support of η2.
Besides, r given by (2.52) satisfies

r(0, ·) = r0 in TL, r(T, ·) = 0 in TL

due to the conditions on the support of η0, η1, η2 and the condition (2.28)
on the flow corresponding to u.
Actually, thanks to the choice of ε > 0, T0 > 0 and T1 > 0 in (2.28) we have

η2(1− η) = 0 for all (t, x) ∈ [0, T0]× TL, (2.55)
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and
η2η = 0 for all (t, x) ∈ [T − 2T1, T ]× TL. (2.56)

Estimates on r. Let us start with estimates on rf . To get estimates on rf , we
perform weighted energy estimates on (2.50) on the time interval (0, T−2T1).
Multiplying (2.50) by ζ−2rfe

2sϕ, we obtain

d

dt

(
1

2

∫
TL
ζ−2|rf |2e2sϕ

)
≤ 1

2

∫
TL
|rf |2

(
−2aζ−2e2sϕ + (∂t + u · ∇)(ζ−2e2sϕ)

)
+

(∫
TL
ζ−2|rf |2e2sϕ

)1/2(∫
TL
ζ−2|f̃r|2e2sϕ

)1/2

. (2.57)

But, for all t ∈ (0, T − 2T1) and x ∈ TL,

(∂t + u · ∇)(ζ−2e2sϕ) ≤ 0.

We thus conclude∥∥ζ−1rfe
sϕ
∥∥
L∞(0,T−2T1;L2)

≤ C
∥∥∥ζ−1f̃re

sϕ
∥∥∥
L2(0,T−2T1;L2)

+ C
∥∥r0e

sϕ(0)
∥∥
L2 .

Similarly, one can show that rb satisfies∥∥ζ−1rbe
sϕ
∥∥
L∞(T0,T ;L2)

≤ C
∥∥∥ζ−1f̃re

sϕ
∥∥∥
L2(T0,T ;L2)

.

To conclude that∥∥ζ−1resϕ
∥∥
L∞(0,T ;L2)

≤ C
∥∥∥ζ−1f̃re

sϕ
∥∥∥
L2(0,T ;L2)

+ C
∥∥r0e

sϕ(0)
∥∥
L2 ,

we use the explicit definition of r in (2.52) and identity (2.55), and notice
that η0, η1 and η2 belong to L∞, and (η, û) to L∞(L∞).

The estimate on vr in (2.46) is also a simple consequence of its explicit
form in (2.54) and of the fact that η0 ∈ W 1,∞, η1 ∈ W 1,∞, η ∈ L∞(L∞), η2 ∈
L∞.

Regularity results. To obtain regularity results on r and vr, it is then sufficient
to get regularity estimates on rf solution of (2.50) on the time interval (0, T−
2T1) and on rb solution of (2.51) on the time interval (T0, T ). These estimates
are of the same nature, so we only focus on rf , the other case being completely
similar.
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To get weighted estimates in higher norms, we do higher order energy
estimates on (2.50). For instance, ∇rf satisfies the equation{

∂t∇rf + (u · ∇)∇rf + a∇rf = ∇f̃r, in (0, T )× TL,
∇rf (0, ·) = ∇r0 in TL,

(2.58)

Hence, using that ∂tΦ ≤ 0 on (0, T − 2T1), energy estimates directly provide

∥∥∇rfe6sΦ/7
∥∥
L∞(0,T−2T1;L2)

≤ C

(∥∥∥∇f̃re6sΦ/7
∥∥∥
L1(L2)

+
∥∥∇r0e

6sΦ/7
∥∥
L2

)
.

(2.59)
This implies (2.47).

The equation of ∇2rf has the same form. For all (i, j) ∈ {1, · · · , d}2,{
∂t∂i,jrf + (u · ∇)∂i,jrf + a∂i,jrf = ∂i,j f̃r, in (0, T )× TL,
∂i,jrf (0, ·) = ∂i,jr0 in TL.

(2.60)

An energy estimate for ∇2rf on (0, T − 2T1) directly yields

∥∥∇2rfe
6sΦ/7

∥∥
L∞(0,T−2T1;L2)

≤ C

(∥∥∥∇2f̃re
6sΦ/7

∥∥∥
L1(L2)

+
∥∥∇2r0e

6sΦ/7
∥∥
L2

)
,

thus concluding the proof of Theorem 2.3.4.

2.4 The controllability problem (2.24)
Using the results of the previous section about the controllability of the
individual systems we will prove the controllability of system (2.24). More
precisely we have the following theorem:

Theorem 2.4.1. Let (u, T, ε) be as in (2.28).
Let us fix an initial condition (r0, y0, h0) ∈ L2(TL)×L2(TL)×L2(TL). There
exist C > 0 and s0 ≥ 1 large enough such that for all s ≥ s0, if fr, fy and fh
satisfy the estimates∥∥ζ−1fre

sϕ
∥∥
L2(0,T ;L2(TL))

+
∥∥ζ−1fye

sϕ
∥∥
L2(0,T ;L2(TL))

+
∥∥∥ζ− 3

2fhe
sϕ
∥∥∥
L2(0,T ;L2(TL))

<∞,
(2.61)

there exists a controlled trajectory (r, y, h) solving (2.24) and satisfying the
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following estimate:

s
2
3

∥∥ζ−1resϕ
∥∥
L2(0,T ;L2(TL))

+ s ‖hesϕ‖L2(0,T ;L2(TL)) +
∥∥ζ−1∇hesϕ

∥∥
L2(0,T ;L2(TL))

+ s
11
6

∥∥∥ζ 1
2yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s
5
6

∥∥∥ζ− 1
2∇yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s−
1
6

∥∥∥ζ− 3
2 ∆yesϕ

∥∥∥
L2(0,T ;L2(TL))

≤ C
(
s

2
3

∥∥ζ−1fre
sϕ
∥∥
L2(0,T ;L2(TL))

+ s
1
3

∥∥ζ−1fye
sϕ
∥∥
L2(0,T ;L2(TL))

+s−1/2
∥∥∥ζ− 3

2fhe
sϕ
∥∥∥
L2(0,T ;L2(TL))

)
+ C

(
s

2
3

∥∥r0e
sϕ(0)

∥∥
L2(TL)

+ s
5
6

∥∥y0e
sϕ(0)

∥∥
L2(TL)

+
∥∥h0e

sϕ(0)
∥∥
L2(TL)

)
. (2.62)

Furthermore, if the initial condition is more regular, say (r0, y0, h0) ∈
H2(TL)×H3(TL)×H2(TL), and fr, fy and fh satisfy

fre
sΦ ∈ L2(0, T ;H2(TL)), fye

sΦ ∈ L2(0, T ;H2(TL)), fhe
sΦ ∈ L2(0, T ;H1(TL)),

(2.63)
we furthermore have the following estimate:∥∥re6sΦ/7

∥∥
L2(0,T ;H2(TL))

+
∥∥ye6sΦ/7

∥∥
L2(0,T ;H4(TL))

+
∥∥he6sΦ/7

∥∥
L2(0,T ;H3(TL))

+
∥∥χ0vre

6sΦ/7
∥∥
L2(0,T ;H2(TL))

+
∥∥χ0vye

6sΦ/7
∥∥
L2(0,T ;H2(TL))

+
∥∥χ0vhe

6sΦ/7
∥∥
L2(0,T ;H2(TL))

≤ C
(∥∥fresΦ∥∥L2(0,T ;H2(TL))

+
∥∥fyesΦ∥∥L2(0,T ;H2(TL))

+
∥∥fhesΦ∥∥L2(0,T ;H1(TL))

+
∥∥r0e

sΦ(0)
∥∥
H2(TL)

+
∥∥y0e

sΦ(0)
∥∥
H3(TL)

+
∥∥h0e

sΦ(0)
∥∥
H2(TL)

)
, (2.64)

for some constant C independent of s ≥ s0.

Proof. We construct the controlled trajectory by using a fixed point argu-
ment.

Considering the Carleman estimates, we introduce the following sets:

C r
s = {r ∈ L2(0, T ;L2(TL)) s.t. ζ−1resϕ ∈ L2(0, T ;L2(TL))},

C y
s = {y ∈ L2(0, T ;H1(TL)) s.t. ζ

1
2yesϕ, ζ−

1
2∇yesϕ,

ζ−
3
2 ∆yesϕ ∈ L2(0, T ;L2(TL))}.

C h
s = {h ∈ L2(0, T ;H1(TL)) s.t. hesϕ, ζ−1∇hesϕ ∈ L2(0, T ;L2(TL))}.

(2.65)
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For r̃ ∈ C r
s , ỹ ∈ C y

s and h̃ ∈ C h
s , we define

f̃r := f̃r(ỹ, h̃) = fr −
ρ̄

ν
(
ρ̄2

ν
p̄ρỹ + p̄θh̃),

f̃y := f̃y(r̃, ỹ, h̃) = fy − ρ̄ū · ∇ỹ + (p̄ρr̃ +
ρ̄2

ν
p̄ρỹ + p̄θh̃),

f̃h := f̃h(r̃, ỹ, h̃) = fh − Cvρ̄ū · ∇h̃+ p̄∆ỹ.

As fr, fy and fh satisfy (2.61), for (r̃, ỹ, h̃) ∈ C r
s ×C y

s ×C h
s , f̃r satisfies (2.45),

f̃y satisfies (2.41) and f̃h satisfies (2.38).
We then define a map Λs on C r

s × C y
s × C h

s which to a data (r̃, ỹ, h̃) ∈
C r
s × C y

s × C h
s associates (r, y, h), where r is the solution of the controlled

problem{
∂tr + u · ∇r +

p̄ρρ

ν
r = f̃r + vrχ0, in (0, T )× TL,

r(0, ·) = r0(·), r(T, ·) = 0, in TL,
(2.66)

given by Theorem 2.3.4, y is the solution of the controlled problem{
ρ∂ty − ν∆y = f̃y + vyχ0, in (0, T )× TL,
y(0, ·) = y0(·), y(T, ·) = 0, in TL,

(2.67)

given by Theorem 2.3.3, and h is the solution of the controlled problem{
Cvρ∂th− κ∆h = f̃h + vhχ0, in (0, T )× TL,
y(0, ·) = y0(·), y(T, ·) = 0, in TL,

(2.68)

given by Theorem 2.3.2.
We notice that in Theorems 2.3.2, 2.3.3 and 2.3.4 the maps (y0, f̃y) 7→

(y, vy) and (r0, f̃r) 7→ (r, vr) are linear. We now will prove that for a choice
of the parameter s large enough, Λs is a contraction and then, by the Banach
fixed point theorem, it has a fixed point.

Let (r̃a, ỹa, h̃a) ,(r̃b, ỹb, h̃b) be elements of C r
s ×C y

s ×C h
s and consider their

image under Λs (ra, ya, ha) = Λs(r̃a, ỹa, ha) and (rb, yb, hb) = Λs(r̃b, ỹb, hb).
Then we consider the differences R = ra − rb, Y = ya − yb, H = ha − hb,
R̃ = r̃a − r̃b, Ỹ = ỹa − ỹb, H̃ = h̃a − h̃b, F̃r = f̃r(ỹa, h̃a) − f̃r(ỹb, h̃b),F̃y =
f̃y(r̃a, ỹa, h̃a)−f̃y(r̃b, ỹb, h̃b) and F̃h = f̃h(r̃a, ỹa, h̃a)−f̃y(r̃b, ỹb, h̃b), by Theorem
2.3.4 we have

s
2
3

∥∥ζ−1Resϕ
∥∥
L2(0,T ;L2(TL))

≤ Cs
2
3

∥∥∥ζ−1F̃resϕ
∥∥∥
L2(0,T ;L2(TL))

≤ Cs−
1
3

(
s
∥∥∥ζ−1Ỹesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s
∥∥∥ζ−1H̃esϕ

∥∥∥
L2(0,T ;L2(TL))

)
(2.69)
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while Theorem 2.3.3 applied to Y implies (after multiplying (2.42) by s
1
3 )

s
11
6

∥∥∥ζ 1
2Yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s
5
6

∥∥∥ζ− 1
2∇Yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s−
1
6

∥∥∥ζ− 3
2 ∆Yesϕ

∥∥∥
L2(0,T ;L2(TL))

≤ Cs
1
3

∥∥∥ζ−1F̃yesϕ
∥∥∥
L2(0,T ;L2(TL))

≤ Cs−
1
3

(
s

2
3

∥∥∥ζ−1R̃esϕ
∥∥∥
L2(0,T ;L2(TL))

+ s
11
6

∥∥∥ζ−1Ỹesϕ
∥∥∥
L2(0,T ;L2(TL))

+s
2
3

∥∥∥ζ−2ζ̇Ỹesϕ
∥∥∥
L2(0,T ;L2(TL))

+s
∥∥∥ζ−1H̃esϕ

∥∥∥
L2(0,T ;L2(TL))

+ s
5
6

∥∥∥ζ−1∇Ỹesϕ
∥∥∥
L2(0,T ;L2(TL))

)
(2.70)

and applying the estimate (2.40) to H,

s ‖Hesϕ‖L2(0,T ;L2(TL)) +
∥∥ζ−1∇Hesϕ

∥∥
L2(0,T ;L2(TL))

≤ Cs−
1
2

∥∥∥ζ− 3
2 F̃hesϕ

∥∥∥
L2(0,T ;L2(TL))

≤ Cs−
1
3

(
s−

1
6

∥∥∥ζ− 3
2 ∆Ỹesϕ

∥∥∥
L2(0,T ;L2(TL))

+
∥∥∥ζ−1∇H̃esϕ

∥∥∥
L2(0,T ;L2(TL))

)
.

(2.71)

In particular, we have

s
2
3

∥∥ζ−1Resϕ
∥∥
L2(0,T ;L2(TL))

+s ‖Hesϕ‖L2(0,T ;L2(TL))+
∥∥ζ−1∇Hesϕ

∥∥
L2(0,T ;L2(TL))

+ s
11
6

∥∥∥ζ 1
2Yesϕ
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L2(0,T ;L2(TL))

+ s
5
6

∥∥∥ζ− 1
2∇Yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s−
1
6

∥∥∥ζ− 3
2 ∆Yesϕ

∥∥∥
L2(0,T ;L2(TL))

≤ Cs−
1
3

(
s

2
3

∥∥∥ζ−1R̃esϕ
∥∥∥
L2(0,T ;L2(TL))

+ s
11
6

∥∥∥ζ 1
2 Ỹesϕ

∥∥∥
L2(0,T ;L2(TL))

+s
∥∥∥H̃esϕ∥∥∥

L2(0,T ;L2(TL))
+ s

5
6

∥∥∥ζ− 1
2∇Ỹesϕ

∥∥∥
L2(0,T ;L2(TL))

+
∥∥∥ζ−1∇H̃esϕ
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L2(0,T ;L2(TL))

+ s−
1
6

∥∥∥ζ− 3
2 ∆Ỹesϕ
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L2(0,T ;L2(TL))

)
(2.72)
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We define the following norm in C r
s × C y

s × C h
s

‖(r, y, h)‖C rs ×C ys ×C hs
:= s

2
3

∥∥ζ−1resϕ
∥∥
L2(0,T ;L2(TL))

+ s ‖hesϕ‖L2(0,T ;L2(TL))

+
∥∥ζ−1∇hesϕ

∥∥
L2(0,T ;L2(TL))

+ s
11
6

∥∥∥ζ 1
2yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s
5
6

∥∥∥ζ− 1
2∇yesϕ

∥∥∥
L2(0,T ;L2(TL))

+ s−
1
6

∥∥∥ζ− 3
2 ∆yesϕ

∥∥∥
L2(0,T ;L2(TL))

(2.73)

for which the map Λs satisfies∥∥∥Λs(r̃a, ỹa, h̃a)− Λs(r̃b, ỹb, h̃b)
∥∥∥

C rs ×C ys ×C hs

≤ Cs−1/3 ‖(ra, ya, ha)− (rb, yb, hb)‖C rs ×C ys ×C hs
. (2.74)

So, if we take s > C3 (and also s ≥ s0) with C as in (2.74), the map Λs is a
contractive mapping and by Banach’s fixed point theorem, Λs has a unique
fixed point (r, y, h) in C r

s × C y
s × C h

s . It is clear now that (r, y, h) solves the
controllability problem (2.24). Finally, in order to prove the inequality, we
estimate f̃r(y, h), f̃y(r, y, h) and f̃h(r, y, h) by∥∥∥ζ−1f̃r(y, h)esϕ

∥∥∥
L2(L2)

≤ C ‖yesϕ‖L2(L2)+C ‖he
sϕ‖L2(L2)+C

∥∥ζ−1fre
sϕ
∥∥
L2(L2)

,

(2.75)∥∥∥ζ−1f̃y(r, y, h)esϕ
∥∥∥
L2(L2)

≤ C
∥∥ζ−1fye
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L2(L2)

+ C
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+ s
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L2(L2)
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L2(L2)

)
, (2.76)

and∥∥∥ζ− 3
2 f̃h(r, y, h)esϕ
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L2(L2)

≤ C
∥∥∥ζ− 3

2fhe
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+ C
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2 ∆yesϕ
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L2(L2)

)
. (2.77)

One gets with Theorems 2.3.2, 2.3.3 and 2.3.4 that (r, y, h) solution of (2.23)
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satisfies
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sϕ(0)
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,

that is, the estimate (2.62).
Regularity estimates on the solution of the control problem. If we have the ex-
tra regularity for the initial condition (r0, y0, h0) ∈ H2(TL)×H3(TL)×H2(TL)
and the source terms fr, fy, fh satisfy (2.63) then using a typical bootstrap
argument together with the extra regularity estimates with Carleman weights
of Theorem 2.3.2 item 2 and 3, Theorem 2.3.3 item 2 and 3 and Theorem
2.3.4 estimates (2.47) and (2.48), we can obtain (2.64).

2.5 Controllability of system (2.19)
In this section, we recover the controllability of (2.19) from the controllability
of (2.24). This is given in the following statement.

Theorem 2.5.1. There exists s0 ≥ 1, such that for all s ≥ s0, for all
(ρ̂0, û0, θ̂0) ∈ H2(TL)×H2(TL)×H2(TL), f̂ρ, f̂u, f̂θ such that f̂ρesΦ ∈ L2(0, T ;H2(TL))

and f̂ue7sΦ/6, f̂θe
sΦ ∈ L2(0, T ;H1(TL)), there exist control functions vρ, vu, vθ

and a corresponding controlled trajectory (ρ, u, θ) solving (2.19) with initial
data (ρ̂0, û0, θ̂0), satisfying the controllability requirement (2.96), and depend-
ing linearly on the data (ρ̂0, û0, θ̂0, f̂ρ, f̂u, f̂θ). Besides, we have the estimate:∥∥(ρe6sΦ/7, ue6sΦ/7, θe6sΦ/7)

∥∥
L2(0,T ;H2(TL))×L2(0,T ;H3(TL))×L2(0,T ;H3(TL))

+
∥∥(χvρe

6sΦ/7, χvue
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≤ C
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sΦ, f̂ue
7sΦ/6, f̂θe

sΦ)
∥∥∥
L2(0,T ;H2(TL))×L2(0,T ;H1(TL))×L2(0,T ;H1(TL))

+ C
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sΦ(0), û0e
7sΦ(0)/6, θ̂0e

sΦ(0))
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H2(TL)×H2(TL)×H2(TL)

. (2.78)
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Proof. Our first step will be to recover observability estimates for the system
(2.23). In order to simplify the notation, let us introduce the following spaces

I = L2(H2)× L2(H2)× L2(H1)

J = H2 ×H3 ×H2

By definition of the dual norm∥∥(σe−sΦ, qe−sΦ, ηe−sΦ)
∥∥
I′ +

∥∥(σ(0)e−sΦ(0), q(0)e−sΦ(0), η(0)e−sΦ(0))
∥∥
J ′

= sup
‖(fresΦ,fyesΦ,fhesΦ)‖I≤1

〈(fr, fy, fh), (σ, q, η)〉I′,I

+ sup
‖(r0esΦ(0),y0esΦ(0),h0esΦ(0))‖J≤1

〈(r0, y0, h0), (σ(0), q(0), η(0))〉J ,J ′

Now, for (r0, y0, h0) ∈ H2(TL) × H3(TL) × H2(TL) and fr, fy, fh satisfying
the inclusion fre

sΦ, fye
sΦ ∈ L2(0, T ;H2(TL)), fhesΦ ∈ L2(0, T ;H1(TL)), we

consider the controlled trajectory of (2.24) in Theorem 2.4.1 in order to
obtain

〈(fr, fy, fh), (σ, q, η)〉I′,I + 〈(r0, y0, h0), (σ(0), q(0), η(0))〉J ,J ′

= 〈(gσ, div gz+
ρ̄2

ν
gσ, gη), (r, y, h)〉L2(H−2)×L2(H−4)×L2(H−3),L2(H2)×L2(H4)×L2(H3)

+ 〈(σ, q, η), χ0(vr, vy, vh)〉L2(H−2),L2(H2).

Using (2.64), we get:∥∥(σe−sΦ, qe−sΦ, ηe−sΦ)
∥∥
L2(H−2)×L2(H−2)×L2(H−1)

+
∥∥(σ(0)e−sΦ(0), q(0)e−sΦ(0), η(0)e−sΦ(0))

∥∥
H−2×H−3×H−2

≤ C
(∥∥(gσe

−6sΦ/7, gze
−6sΦ/7, gηe

−6sΦ/7)
∥∥
L2(H−2)×L2(H−3)×L2(H−3)

+
∥∥χ0(σe−6sΦ/7, qe−6sΦ/7, ηe−6sΦ/7)

∥∥
L2(H−2)×L2(H−2)×L2(H−1)

)
. (2.79)

The next step is to recover estimates for z in (2.20). In order to do that,
we notice that z satisfies the following equation in terms of (σ, q, η)

−ρ(∂tz + u · ∇z)− µ∆z = gz + ρ̄
µ

ν
∇σ + (λ+ µ)∇q + p̄∇η, in (0, T )× TL.

(2.80)
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Applying Theorem 2.3.3 items 1 & 2 to the dual system of (2.80) we get the
following Carleman inequality,∥∥ze−7sΦ/6

∥∥
L2(H−1)

+
∥∥z(0)e−7sΦ(0)/6

∥∥
H−2

≤ C
(∥∥χ0ze

−sΦ∥∥
L2(H−1)

+
∥∥(σ, q, η)e−sΦ

∥∥
L2(H−2)

+
∥∥gze−sΦ∥∥L2(H−3)

)
≤ C

(∥∥(gσe
−6sΦ/7, gze

−6sΦ/7, gηe
−6sΦ/7)

∥∥
L2(H−2)×L2(H−3)×L2(H−3)

+
∥∥χ0(σe−6sΦ/7, qe−6sΦ/7, ηe−6sΦ/7)

∥∥
L2(H−2)×L2(H−2)×L2(H−1)

+
∥∥χ0ze

−sΦ∥∥
L2(H−1)

)
.

As χ = 1 in Suppχ0 (recall (2.25)), we have χ0χ = χ0 and and χ0 div z =
χ0 div(χz). Now using that χ0 is a multiplier on H−2 we get∥∥χ0qe

−6sΦ/7
∥∥
L2(H−2)

≤ C
∥∥χ0 div ze−6sΦ/7

∥∥
L2(H−2)

+ C
∥∥χ0σe

−6sΦ/7
∥∥
L2(H−2)

≤ C
∥∥χze−6sΦ/7

∥∥
L2(H−1)

+ C
∥∥χσe−6sΦ/7

∥∥
L2(H−2)

,

and combining the above results, we obtain∥∥σe−sΦ∥∥
L2(H−2)

+
∥∥σ(0)e−sΦ(0)

∥∥
H−2+

∥∥ze−7sΦ/6
∥∥
L2(H−1)

+
∥∥z(0)e−7sΦ(0)/6

∥∥
H−2

+
∥∥ηe−sΦ∥∥

L2(H−1)
+
∥∥η(0)e−sΦ(0)

∥∥
H−2

≤ C
∥∥(gσe

−6sΦ/7, gze
−6sΦ/7, gηe

−6sΦ/7)
∥∥
L2(H−2)×L2(H−3)×L2(H−3)

+ C
∥∥χ(σ, z, η)e−6sΦ/7

∥∥
L2(H−2)×L2(H−1)×L2(H−1)

. (2.81)

Using that (σ, z, η) satisfies Equation (2.20), we again argue by duality to
deduce that System (2.19) is controllable and the estimate (2.78) follows
immediately.

From the previous theorem it follows that∥∥ρe5sΦ/6
∥∥
C0([0,T ];H2(TL))∩H1(0,T ;L2(TL))

+
∥∥ue5sΦ/6

∥∥
L2(0,T ;H3(TL))∩C0([0,T ];H2(TL))∩H1(0,T ;H1(TL))

+
∥∥θe5sΦ/6

∥∥
L2(0,T ;H3(TL))∩C0([0,T ];H2(TL))∩H1(0,T ;H1(TL))

≤ C
∥∥∥(f̂ρe

sΦ, f̂ue
7sΦ/6, f̂θe

sΦ)
∥∥∥
L2(0,T ;H2(TL))×L2(0,T ;H1(TL))×L2(0,T ;H1(TL))

+ C
∥∥∥(ρ̂0e

sΦ(0), û0e
7sΦ(0)/6, θ̂0e

sΦ(0))
∥∥∥
H2(TL)×H2(TL)×H2(TL)

. (2.82)
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which can be obtained by applying directly the classical regularity esti-
mates at the equations satisfy by ρe5sΦ/6, ue5sΦ/6 and θe5sΦ/6. Considering
this, we can define the following linear operator: Given ρ̂0, û0, θ̂0, f̂ρ, f̂u, f̂θ in
the vector space{

(ρ̂0, û0, θ̂0, f̂ρ, f̂u, f̂θ) ∈ H2(TL)×H2(TL)×H2(TL)

× L2(0, T ;H2(TL))× L2(0, T ;H1(TL))× L2(0, T ;H1(TL))

with f̂ρesΦ ∈ L2(0, T ;H2(TL)) and f̂ue7sΦ/6, f̂θe
sΦ ∈ L2(0, T ;H1(TL))

}
,

we consider (ρ, u, θ) the controlled trajectory given by 2.5.1 solving (2.19)
with the initial condition (ρ̂0, û0, θ̂0). Then we define G as

G (ρ̂0, û0, θ̂0, f̂ρ, f̂u, f̂θ) = (ρ, u, θ).

2.6 Definition of the fixed point map
We recall that the control problem that we consider is: Given (ρ̌0, ǔ0, θ̌0)
small in H2(TL) × H2(TL) × H2(TL), find control functions v̌ρ, v̌u and v̌θ
supported in [0, T ]× (TL \ Ω) such that the solution of
∂tρ̌+ (ū+ ǔ) · ∇ρ̌+ ρ̄ div(ǔ) = v̌ρ + f̌ρ(ρ̌, ǔ, θ̌) in (0, T )× TL
ρ̄(∂tǔ+ (ū+ ǔ) · ∇ǔ)− µ∆ǔ− (µ+ λ)∇ div ǔ

+ p̄ρ∇ρ̌+ p̄θ∇θ̌ = v̌u + f̌u(ρ̌, ǔ, θ̌) in (0, T )× TL
Cvρ̄(∂tθ̌ + (ū+ ǔ) · ∇θ̌)− κ∆θ̌ + p̄ div(ǔ) = v̌θ + f̌θ(ρ̌, ǔ, θ̌) in (0, T )× TL

(2.83)
with initial data

ρ̌(0, x) = ρ̌0(x), ǔ(0, x) = ǔ0(x), θ̌(0, x) = θ̌0(x) in TL, (2.84)

and source terms
f̌ρ(ρ̌, ǔ, θ̌) = −ρ̌ div(ǔ) (2.85)

f̌u(ρ̌, ǔ, θ̌) = −ρ̌(∂tǔ+ (ū+ ǔ) · ∇ǔ)−∇(p(ρ̄+ ρ̌, θ̄+ θ̌)− p̄ρρ− p̄θθ) (2.86)

f̌θ(ρ̌, ǔ, θ̌) = −Cvρ̌(∂tθ̌ + (ū+ ǔ) · ∇θ̌) + λ div(ǔ)2 + 2µD(ǔ) : ∇ǔ
− (p(θ̄ + θ̌, ρ̄+ ρ̌)− p̄) div(ǔ) (2.87)

satisfies
ρ̌(T ) = 0, ǔ(T ) = 0, θ̌(T ) = 0 in TL. (2.88)
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Now we will use a fixed point argument to prove controllability of (2.83)–
(2.88). We notice that the left hand side of (2.83) is linear in (ρ̌, ǔ, θ̌) except
for the convective terms

ǔ · ∇ρ̌, ǔ · ∇ǔ, ǔ · ∇θ̌

which are quadratic. We could try to put them in the source terms, but the
problem is that the term ǔ · ∇ρ̌ in f̌ρ causes a loss of regularity in the fixed
point and we do not have a regularization effect in this equation. Instead,
we consider a change of coordinates close to the identity that will take care
of this term. The idea of this change of variables is similar to the Lagrangian
coordinates but instead of making disappear completely the convective term,
it will leave only the constant part. Concretely, we define the flow Xǔ =
Xǔ(t, τ, x) corresponding to ǔ and defined for (t, τ, x) ∈ [0, T ] × [0, T ] × TL
by the equation

dXǔ

dt
(t, τ, x) = u+ ǔ(t,Xǔ(t, τ, x)), t ∈ [0, T ], Xǔ(τ, τ, x) = x. (2.89)

In order to be well defined, we will assume that ǔ ∈ L2(0, T ;H3(TL)), in
which case, because of the inclusion

L2(0, T ;H3(TL)) ⊆ L1(0, T ;Lip(TL)),

the flow Xǔ is well-defined classically by Cauchy-Lipschitz’s theorem. We
then set, for (t, x) ∈ [0, T ]× TL,

Yǔ(t, x) = Xǔ(t, T,X0(T, t, x)), Zǔ(t, x) = X0(t, T,Xǔ(T, t, x)), (2.90)

which are inverse one from another, i.e. Yǔ(t, Zǔ(t, x)) = Zǔ(t, Yǔ(t, x)) = x
for all (t, x) ∈ [0, T ]×TL. For ǔ suitably small, both transformations Yǔ(t, ·)
and Zǔ(t, ·), t ∈ [0, T ], are diffeomorphisms of TL which are close to the
identity map on the torus.

We thus set, for (t, x) ∈ [0, T ]× TL,

ρ(t, x) = ρ̌(t, Yǔ(t, x)), u(t, x) = ǔ(t, Yǔ(t, x)), θ(t, x) = θ̌(t, Yǔ(t, x)).
(2.91)

In these new coordinates, the problem is reduced to the controllability of
(See the appendix for the computations)
∂tρ+ ū · ∇ρ+ ρ̄ div(u) = vρχ+ fρ(ρ, u, θ) in (0, T )× TL,
ρ̄(∂tu+ ū · ∇u)− µ∆u− (µ+ λ)∇ div u

+ p̄ρ∇ρ+ p̄θ∇θ = vuχ+ fu(ρ, u, θ) in (0, T )× TL,
Cvρ̄(∂tθ + ū · ∇θ)− κ∆θ + p̄ div(u) = vθχ+ fθ(ρ, u, θ) in (0, T )× TL,

(2.92)
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where χ as defined in (2.18), with initial data given by

ρ(0, x) = ρ̌0(Yǔ(0, x)), u(0, x) = ǔ0(Yǔ(0, x)), θ(0, x) = θ̌0(Yǔ(0, x)) in TL,
(2.93)

and source terms fρ(ρ, u) given by

fρ(ρ, u) = −ρDZt
ǔ(t, Yǔ(t, x)) : Du− ρ(DZt

ǔ(t, Yǔ(t, x))− I) : Du,

fu(ρ, u, θ) by

fi,u(ρ, u, θ) = −ρ(∂tui+u·∇ui)+
d∑
j=1

∂iZj,ǔ(t, Yǔ(t, x))∂j(p(ρ+ρ, θ+θ)−p̄ρρ−p̄θθ)

+ µ

(
d∑

j,k,`=1

∂k,`ui (∂jZk,ǔ(t, Yǔ(t, x))− δj,k) (∂jZ`,ǔ(t, Yǔ(t, x))− δj,`)

+
d∑

k=1

∂kui∆Zk,ǔ(t, Yǔ(t, x))

)

+ (λ+ µ)

(
d∑

j,k,`=1

∂k,`uj(∂jZk,ǔ(t, Yǔ(t, x))− δj,k)(∂iZ`,ǔ(t, Yǔ(t, x))− δi,`)

)

+(λ+µ)

(
d∑

j,k=1

∂i,jZk,ǔ(t, Yǔ(t, x))∂kuj

)
−p̄ρ

(
d∑
j=1

(∂iZj,ǔ(t, Yǔ(t, x))− δi,j)∂jρ

)

− p̄θ

(
d∑
j=1

(∂iZj,ǔ(t, Yǔ(t, x))− δi,j)∂jθ

)
, (2.94)

and fθ(ρ, u, θ) by

fθ(ρ, u, θ) = −Cvρ(∂tθ + u · ∇θ)− p̄(DZt
ǔ(t, Yǔ(t, x))− I) : Du

+ λ
(
DZt

ǔ(t, Yǔ(t, x)) : Du
)2

+ κ

(
d∑

j,k,`=1

∂k,`θ (∂jZk,ǔ(t, Yǔ(t, x))− δj,k) (∂jZ`,ǔ(t, Yǔ(t, x))− δj,`)

+
d∑

k=1

∂kθ∆Zk,ǔ(t, Yǔ(t, x))

)

+µ
d∑

i,j,k,`=1

(∂kuj∂iZk,ǔ(t, Yǔ(t, x)) + ∂kui∂jZk,ǔ(t, Yǔ(t, x))) (∂`ui∂jZ`,ǔ(t, Yǔ(t, x)))

− (p(ρ̄+ ρ, θ̄ + θ)− p̄)DZt
ǔ(t, Yǔ(t, x)) : Du, (2.95)
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where δj,k is the Kronecker symbol , and satisfying the final condition

ρ(T ) = 0, u(T ) = 0, θ(T ) = 0 in TL. (2.96)

The corresponding control functions in (2.92) will then be given for (t, x) ∈
[0, T ]× TL by

v̌ρ(t, x) = χ(Zǔ(t, x))vρ(t, Zǔ(t, x))

v̌u(t, x) = χ(Zǔ(t, x))vu(t, Zǔ(t, x))

v̌θ(t, x) = χ(Zǔ(t, x))vθ(t, Zǔ(t, x)),

(2.97)

which are supported in [0, T ]× (TL \ Ω) provided that

χ(Zǔ(t, x)) = 0 for all (t, x) ∈ [0, T ]× Ω. (2.98)

We notice that the change of coordinates satisfies the following transport
equation

∂tYǔ(t, x) + u · ∇Yǔ(t, x) = u+ u(t, x).

This has two advantages. First, it allows to obtain Yu directly from u. Sec-
ond, it allows to find estimates for Yu in terms of u which will be helpful
when proving the convergence of the fixed point.

Now we introduce the map F : (ρ̂, û, θ̂) 7→ (ρ, u, θ) that we will use in the
fixed point argument, defined on a convex subset of some weighted Sobolev
spaces, corresponding to some Carleman estimate described later. This map
is constructed as follows. Given (ρ̂, û, θ̂) small in a suitable norm, we first
define Ŷ = Ŷ (t, x) as the solution of

∂tŶ + u · ∇Ŷ = u+ û, in (0, T )× TL, Ŷ (T, x) = x, in TL, (2.99)

Then we define Ẑ = Ẑ(t, x) as follows: for all t ∈ [0, T ], Ẑ(t, ·) is the inverse
of Ŷ (t, ·) on TL. In other words, for all (t, x) ∈ [0, T ]× TL,

Ẑ(t, Ŷ (t, x)) = x, Ŷ (t, Ẑ(t, x)) = x. (2.100)

If û is small enough, Ŷ (t, ·) is invertible for all t ∈ [0, T ], see Proposition
2.7.1.

Corresponding to the initial data, we introduce

ρ̂0(x) = ρ̌0(Ŷ (0, x)), û0(x) = ǔ0(Ŷ (0, x)), θ̂0(x) = θ̌0(Ŷ (0, x)), in TL,
(2.101)

and, corresponding to the source terms,

fρ(ρ̂, û) = −ρ̂DẐt(t, Ŷ (t, x)) : Dû− ρ(DẐt(t, Ŷ (t, x))− I) : Dû, (2.102)
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fi,u(ρ̂, û, θ̂) = −ρ̂(∂tûi+u·∇ûi)+
d∑
j=1

∂iẐj,ǔ(t, Ŷǔ(t, x))∂j(p(ρ+ρ̂, θ+θ̂)−p̄ρρ̂−p̄θθ̂)

+ µ

(
d∑

j,k,`=1

∂k,`ûi

(
∂jẐk,ǔ(t, Ŷǔ(t, x))− δj,k

)(
∂jẐ`,ǔ(t, Ŷǔ(t, x))− δj,`

)

+
d∑

k=1

∂kûi∆Ẑk,ǔ(t, Ŷǔ(t, x))

)

+ (λ+ µ)

(
d∑

j,k,`=1

∂k,`ûj(∂jẐk,ǔ(t, Ŷǔ(t, x))− δj,k)(∂iẐ`,ǔ(t, Ŷǔ(t, x))− δi,`)

)

+(λ+µ)

(
d∑

j,k=1

∂i,jẐk,ǔ(t, Ŷǔ(t, x))∂kûj

)
−p̄ρ

(
d∑
j=1

(∂iẐj,ǔ(t, Ŷǔ(t, x))− δi,j)∂j ρ̂

)

− p̄θ

(
d∑
j=1

(∂iẐj,ǔ(t, Ŷǔ(t, x))− δi,j)∂j θ̂

)
, (2.103)

and

fθ(ρ̂, û, θ̂) = −Cvρ̂(∂tθ̂ + u · ∇θ̂)− p̄(DẐt
ǔ(t, Ŷǔ(t, x))− I) : Dû

+ λ
(
DẐt

ǔ(t, Ŷǔ(t, x)) : Dû
)2

+ κ

(
d∑

j,k,`=1

∂k,`θ̂
(
∂jẐk,ǔ(t, Ŷǔ(t, x))− δj,k

)(
∂jẐ`,ǔ(t, Ŷǔ(t, x))− δj,`

)

+
d∑

k=1

∂kθ̂∆Ẑk,ǔ(t, Ŷǔ(t, x))

)

+µ
d∑

i,j,k,`=1

(
∂kûj∂iẐk,ǔ(t, Ŷǔ(t, x)) + ∂kûi∂jẐk,ǔ(t, Ŷǔ(t, x))

)(
∂`ûi∂jẐ`,ǔ(t, Ŷǔ(t, x))

)
− (p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄)DẐt

ǔ(t, Ŷǔ(t, x)) : Dû, (2.104)

We then look for (ρ, u, θ) solving the controllability problem
∂tρ+ ū · ∇ρ+ ρ̄ div(u) = vρχ+ fρ(ρ̂, û, θ̂) in (0, T )× TL,
ρ̄(∂tu+ ū · ∇u)− µ∆u− (µ+ λ)∇ div u+ p̄ρ∇ρ
+ p̄θ∇θ = vuχ+ fu(ρ̂, û, θ̂) in (0, T )× TL,

Cvρ̄(∂tθ + ū · ∇θ)− κ∆θ + p̄ div(u) = vθχ+ fθ(ρ̂, û, θ̂) in (0, T )× TL,
(2.105)
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with initial data

ρ(0, x) = ρ̂0(x), u(0, x) = û0(x), θ(0, x) = θ̂0(x) in TL, (2.106)

with source terms fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂) as in (2.102)–(2.104), and
satisfying the controllability objective (2.96).

2.7 Proof of Theorem 2.1.1
First of all, we now take s = s0 so that theorem 2.5.1 applies. In order to
apply the fixed point, we consider the following spaces:

E = L∞(0, T ;H2(TL)) ∩H1(0, T ;L2(TL)) (2.107)

F = L2(0, T ;H3(TL)) ∩ L∞(0, T ;H2(TL)) ∩H1(0, T ;H1(TL)) (2.108)

and we consider the set

CR = {(ρ, u, θ) with ρ ∈ E, u ∈ F, θ ∈ F∥∥(ρe5sΦ/6, ue5sΦ/6, θe5sΦ/6)
∥∥
E×F×F ≤ R}.

Now we consider the map

F (ρ̂, û, θ̂) = G (ρ̂0, û0, θ̂0, fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂)), (2.109)

where G is the control map constructed in Theorem 2.5.1, (ρ̂0, û0, θ̂0) is
defined in (2.101) and fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂) are defined in (2.102)–
(2.104). As we noticed earlier, a fixed point of F will be a solution to (2.92).
Now, we will prove that the map F is in fact well-defined on from CR to CR.
This will involve having estimates for ρ̂0e

sΦ(0), û0e
7sΦ(0)/6, θ̂0e

sΦ(0), fρ(ρ̂, û)esΦ

, fu(ρ̂, û, θ̂)e7sΦ/6 and fθ(ρ̂, û, θ̂)esΦ. In particular we will need estimates for
Ŷ and Ẑ that we will borrow from [23].

2.7.1 The map F in (2.109) is well-defined on CR and
taking values in CR

We start by presenting the results about Ŷ and Ẑ defined in (2.99)–(2.100)
and prove some of their properties, in particular that they are close to the
identity map. We can then define the source term fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂)

and the initial data (ρ̂0, û0, θ̂). Accordingly, we will deduce that the map F
in (2.109) is well-defined on CR for R > 0 small enough.
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Estimates on Ŷ and Ẑ in (2.99)–(2.100)

The following result concerns to estimates of Y and Z, in particular that Y
is close to the identity henceforth Z is well defined.

Proposition 2.7.1. Let û ∈ L2(0, T ;H3(TL)) ∩H1(0, T ;H1(TL)) with∥∥ûe5sΦ/6
∥∥
L2(0,T ;H3(TL))∩H1(0,T ;H1(TL))

≤ R. (2.110)

Then the map Ŷ defined in (2.99) satisfies, for some constant C independent
of R > 0:∥∥∥(Ŷ (t, x)− x)e5sΦ(t)/12

∥∥∥
C0([0,T ];H3(TL))

+
∥∥∥(Ŷ (t, x)− x)esΦ(t)/3

∥∥∥
C1([0,T ];H2(TL))

≤ CR. (2.111)

Therefore, there exists R0 ∈ (0, 1) such that for all R ∈ (0, R0) the map Ẑ
defined in (2.100) is well-defined and satisfies∥∥∥(DẐ(t, Ŷ (t, x))− I)e5sΦ(t)/12

∥∥∥
C0([0,T ];H2(TL))

≤ CR, (2.112)∥∥∥(DẐ(t, Ŷ (t, x))− I)esΦ(t)/3
∥∥∥
W 1/4,5(0,T ;H7/4(TL))

≤ CR, (2.113)∥∥∥D2Ẑ(t, Ŷ (t, x))e5sΦ(t)/12
∥∥∥
L∞(0,T ;H1(TL))

≤ CR, (2.114)

and
χ(Ẑ(t, x)) = 0 for all (t, x) ∈ [0, T ]× Ω, (2.115)

where χ is defined by (2.18).

See [23] for the proof.

Estimates on fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂)

Now we present estimates concerning the non linear terms in (2.105).

Lemma 2.7.1. Let (ρ̂, û, θ̂) ∈ CR for some s ≥ s0 and R ∈ (0, R0), where
R0 is given by Proposition 2.7.1. Then we have the following estimate∥∥∥(fρ(ρ̂, û)esΦ, fu(ρ̂, û, θ̂)e

7sΦ/6, fθ(ρ̂, û, θ̂)e
sΦ)
∥∥∥
L2(H2(TL))×L2(H1(TL))×L2(H1(TL))

≤ CR2, (2.116)

where fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂) are defined in (2.102)–(2.104).
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Proof. Now we will estimate each of the terms that appear in the non linear
part.

We start by considering fρ(ρ̂, û). We perform the following estimates
term by term: as H2(TL) is an algebra in dimension d ≤ 3,∥∥∥(ρ̂DẐt(t, Ŷ (t, x)) : Dû)esΦ

∥∥∥
L2(H2)

≤ C
∥∥ρ̂e5sΦ/6

∥∥
L∞(H2)

∥∥∥DẐ(t, Ŷ (t, x))
∥∥∥
L∞(H2)

∥∥ûe5sΦ/6
∥∥
L2(H3)

≤ CR2,

and∥∥∥ρ(DẐt(t, Ŷ (t, x))− I) : DûesΦ
∥∥∥
L2(H2)

≤ C
∥∥∥(DẐ(t, Ŷ (t, x))− I)e5sΦ/12

∥∥∥
L∞(H2)

∥∥Dûe5sΦ/6
∥∥
L2(H2)

≤ CR2.

Now we continue with fu(ρ̂, û, θ̂). We estimate each term in (2.94). Using
that the product is continuous from H2(TL)×H1(TL) into H1(TL),∥∥ρ̂∂tûe7sΦ/6

∥∥
L2(H1)

≤
∥∥ρ̂e5sΦ/6

∥∥
L∞(H2)

∥∥∂tûe5sΦ/6
∥∥
L2(H1)

≤ CR2.

Using again that H2(TL) is an algebra,∥∥ρ̂u · ∇ûe7sΦ/6
∥∥
L2(H1)

≤ C
∥∥ρ̂e5sΦ/6

∥∥
L∞(H2)

∥∥ûe5sΦ/6
∥∥
L2(H3)

≤ CR2.

For i, j, k, ` ∈ {1, · · · , d}, we get∥∥∥∂k,`ûj(∂jẐk(t, Ŷ (t, x))− δj,k)(∂iẐ`(t, Ŷ (t, x))− δi,`)e7sΦ/6
∥∥∥
L2(H1)

≤ C
∥∥D2ûe5sΦ/6

∥∥
L2(H1)

∥∥∥(DẐ(t, Y (t, x))− I)e5sΦ/12
∥∥∥2

L∞(H2)
≤ CR3.

Similarly, for i, j, k ∈ {1, · · · , d},∥∥∥∂i,jẐk(t, Ŷ (t, x))∂kûje
7sΦ/6

∥∥∥
L2(H1)

≤ C
∥∥∥D2Ẑ(t, Y (t, x))e5sΦ/12

∥∥∥
L∞(H1)

∥∥Due5sΦ/6
∥∥
L2(H2)

≤ CR2. (2.117)

In order to estimate the terms coming from the pressure, we write

p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄− p̄ρρ̂− p̄θθ̂ = ρ̂2f(ρ̂, θ̂) + θ̂2g(ρ̂, θ̂) + ρ̂θ̂h(ρ̂, θ̂)
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where f, g, h are C1 functions depending on the pressure law (here we use
that the pressure law p belongs to C3 locally around ρ̄, θ̄), so we have

∇(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄ρρ̂− p̄θθ̂))
=
(
2ρ̂f(ρ̂, θ̂) + ρ̂2∂ρf(ρ̂, θ̂) + θ̂2∂ρg(ρ̂, θ̂) + θ̂h(ρ̂, θ̂) + ρ̂θ̂∂ρh(ρ̂, θ̂)

)
∇ρ̂

+
(
2θ̂g(ρ̂, θ̂) + θ̂2∂θg(ρ̂, θ̂) + ρ̂2∂θf(ρ̂, θ̂) + ρ̂h(ρ̂, θ̂) + ρ̂θ̂∂θh(ρ̂, θ̂)

)
∇θ̂.

As ‖ρ̂‖L∞(L∞) ≤ CR ≤ C, we thus obtain, for i, j ∈ {1, · · · , d},∥∥∥∂iẐj(t, Ŷ (t, x))∂j(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄ρρ̂− p̄θθ̂))e7sΦ/6
∥∥∥
L2(H1)

≤ C
∥∥∥DẐ(t, Ŷ )

∥∥∥
L∞(H2)

∥∥ρ̂e5sΦ/6
∥∥
L∞(H2)

∥∥∇ρ̂e5sΦ/6
∥∥
L2(H1)

+ C
∥∥∥DẐ(t, Ŷ )

∥∥∥
L∞(H2)

∥∥∥θ̂e5sΦ/6
∥∥∥
L∞(H2)

∥∥∥∇θ̂e5sΦ/6
∥∥∥
L2(H1)

≤ CR2.

For i, j ∈ {1, · · · , d},∥∥∥p̄ρ(∂iẐj(t, Ŷ (t, x))− δi,j)∂j ρ̂e7sΦ/6
∥∥∥
L2(H1)

≤ C
∥∥∥(DẐ(t, Ŷ (t, x))− I)e5sΦ/12

∥∥∥
L∞(H2)

∥∥ρ̂e5sΦ/6
∥∥
L2(H2)

≤ CR2.

∥∥∥p̄θ(∂iẐj(t, Ŷ (t, x))− δi,j)∂j θ̂e7sΦ/6
∥∥∥
L2(H1)

≤ C
∥∥∥(DẐ(t, Ŷ (t, x))− I)e5sΦ/12

∥∥∥
L∞(H2)

∥∥∥θ̂e5sΦ/6
∥∥∥
L2(H2)

≤ CR2.

Finally we perform estimates in fθ(ρ̂, û, θ̂). Similarly to the first two estimates
for fu, we have∥∥∥Cvρ̂∂tθ̂esΦ∥∥∥

L2(H1)
≤
∥∥ρ̂e5sΦ/6

∥∥
L∞(H2)

∥∥∥∂tθ̂e5sΦ/6
∥∥∥
L2(H1)

≤ CR2.∥∥∥ρ̂u · ∇θ̂esΦ∥∥∥
L2(H1)

≤ C
∥∥ρ̂e5sΦ/6

∥∥
L∞(H2)

∥∥∥θ̂e5sΦ/6
∥∥∥
L2(H3)

≤ CR2.

For i, j, k, ` ∈ {1, · · · , d}, we get∥∥∥∂k,`θ̂(∂jẐk(t, Ŷ (t, x))− δj,k)(∂jẐ`(t, Ŷ (t, x))− δj,`)esΦ
∥∥∥
L2(H1)

≤ C
∥∥∥D2θ̂e5sΦ/6

∥∥∥
L2(H1)

∥∥∥(DẐ(t, Y (t, x))− I)e5sΦ/12
∥∥∥2

L∞(H2)
≤ CR3.
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∥∥∥p̄(DẐt(t, Ŷ (t, x))− I) : DûesΦ
∥∥∥
L2(H1)

≤ C
∥∥∥(DẐ(t, Ŷ (t, x))− I)e5sΦ/12

∥∥∥
L∞(H2)

∥∥Dûe5sΦ/6
∥∥
L2(H1)

≤ CR2.

∥∥∥∥λ(DẐt
ǔ(t, Ŷǔ(t, x)) : Dû

)2

esΦ
∥∥∥∥
L2(H1)

≤ C
∥∥∥DẐ(t, Ŷ (t, x))

∥∥∥2

L∞(H2)

∥∥Dûe5sΦ/6
∥∥
L∞(H1)

∥∥Dûe5sΦ/6
∥∥
L2(H2)

≤ CR2.

∥∥∥∂kûj∂iẐk,ǔ(t, Yǔ(t, x))∂`ûi∂jẐ`,ǔ(t, Yǔ(t, x))esΦ
∥∥∥
L2(H1)

≤ C
∥∥∥DẐ(t, Ŷ (t, x))

∥∥∥2

L∞(H2)

∥∥Dûe5sΦ/6
∥∥
L∞(H1)

∥∥Dûe5sΦ/6
∥∥
L2(H2)

≤ CR2.

∥∥∥(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄)DẐt
ǔ(t, Yǔ(t, x)) : DûesΦ

∥∥∥
L2(H1)

≤
∥∥∥DẐ(t, Ŷ (t, x))

∥∥∥
L∞(H2)

∥∥∥(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄)e5sΦ/6
∥∥∥
L2(H2)

∥∥Dûe5sΦ/6
∥∥
L∞(H1)

,

and using the fact that p is C3∥∥∥(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄)e5sΦ/6
∥∥∥
L2(H2)

≤ C
∥∥ρ̂e5sΦ/6

∥∥
L2(H2)

+ C
∥∥∥θ̂e5sΦ/6

∥∥∥
L2(H2)

,

hence ∥∥∥(p(ρ̄+ ρ̂, θ̄ + θ̂)− p̄)DẐt
ǔ(t, Yǔ(t, x)) : DûesΦ

∥∥∥
L2(H1)

≤ CR2.

Combining all the above estimates yields Lemma 2.7.1.

Estimates on (ρ̂0, û0, θ̂0)

We finally state the following estimates on (ρ̂0, û0, θ̂0) defined in (2.101):

Lemma 2.7.2. Let û ∈ L2(0, T ;H3(TL))∩H1(0, T ;H1(TL)) satisfying (2.110)
for some R ≤ R0 given by Proposition 2.7.1. Let δ ∈ (0, 1) and (ρ̌0, ǔ0, θ̌) ∈
H2(TL)×H2(TL)×H2(TL) with∥∥(ρ̌0, ǔ0, θ̌0)

∥∥
H2(TL)×H2(TL)×H2(TL)

≤ CLδ. (2.118)

Define (ρ̂0, û0, θ̂0) as in (2.101). Then there exists a constant C > 0 inde-
pendent of R such that∥∥∥(ρ̂0, û0, θ̂0)

∥∥∥
H2(TL)×H2(TL)×H2(TL)

≤ Cδ. (2.119)
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Proof. It is a straightforward consequence of the estimate (2.111) derived in
Proposition 2.7.1.

Conclusion

Gathering together all the estimates obtained in Proposition 2.7.1, Lemmas
2.7.1 and 2.7.2 and using Theorem 2.5.1, we get the following theorem, that
will be the key to apply the fixed point argument ( in particular that CR is
invariant under F for R small enough).

Proposition 2.7.2. Let (ρ̌0, ǔ0, θ̌0) in H2(TL)×H2(TL)×H2(TL) satisfying
(2.118) for some δ > 0, (ρ̂, û, θ̂) ∈ CR for some R ∈ (0, R0) with R0 given
by Proposition 2.7.1. Then the map F in (2.109) is well-defined, and there
exist a constant C such that (ρ, u, θ) = F (ρ̂, û, θ̂) satisfies∥∥ρe5sΦ/6

∥∥
L∞(H2)∩H1(L2)

≤ CR2 + Cδ. (2.120)∥∥ue5sΦ/6
∥∥
L2(H3)∩L∞(H2)∩H1(H1)

≤ CR2 + Cδ.∥∥θe5sΦ/6
∥∥
L2(H3)∩L∞(H2)∩H1(H1)

≤ CR2 + Cδ.

Besides, the condition (2.115) is satisfied for χ defined in (2.18).

2.7.2 The fixed point argument

Let’s consider an initial condition (ρ0, u0, θ0) in H2(Ω)×H2(Ω)×H2(Ω) small
enough in the sense of (2.7) with δ > 0. Then we extend the initial condition
to (ρ̌0, ǔ0, θ̌0) satisfying (2.17) and (2.118). Therefore, from Proposition 2.7.2,
the map F in (2.109) is well-defined for (ρ̂, û, θ̂) ∈ CR for R ∈ (0, R0), with
R0 > 0 given by Proposition 2.7.1, and (ρ, u, θ) = F (ρ̂, û, θ̂) satisfies (2.120)
with some constant C > 0. We now choose R ∈ (0, R0) such that CR < 1/2
and δ = R/(2C), so that as a consequence of Proposition 2.7.2, F maps CR

into itself.
Now we intend to apply Schauder’s fixed point theorem to the map F .

First, we notice that the set CR is convex and compact when endowed with
the (L2(0, T ;L2(TL)))3 topology, as a simple consequence of Aubin-Lions’
Lemma, see e.g. [59].

Now the only hypothesis left of the Schauder’s fixed point theorem is
the continuity of the map F on CR endowed with the (L2(0, T ;L2(TL)))3

topology. Let us consider a sequence (ρ̂n, ûn, θ̂n) in CR converging strongly
in (L2(0, T ;L2(TL)))3 to some element (ρ̂, û, θ̂). The set CR is closed under
the topology of (L2(0, T ;L2(TL)))3 hence (ρ̂, û, θ̂) ∈ CR. Also, because of
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Banach-Alaoglu’s Theorem we have the weak-∗ convergence of (ρ̂n, ûn, θ̂n)

towards (ρ̂, û, θ̂) in (L∞(H2) ∩ H1(L2)) × (L2(H3) ∩ H1(H1)) × (L2(H3) ∩
H1(H1)). Furthermore, because of the compactness given by Aubin-Lions’
lemma, we also have the following strong convergences to (ρ̂, û, θ̂):

ρ̂n −→
n→∞

ρ̂ strongly in L∞(0, T ;L∞(TL)),

ρ̂n −→
n→∞

ρ̂ strongly in L2(0, T ;H1(TL)),

ûn −→
n→∞

û strongly in L2(0, T ;H2(TL)),

θ̂n −→
n→∞

θ̂ strongly in L2(0, T ;H2(TL)).

θ̂n −→
n→∞

θ̂ strongly in L∞(0, T ;L∞(TL)).

(2.121)

To every term of the sequence ûn, we associate the corresponding flow Ŷn
solving the transport equation,

∂tŶn + u · ∇Ŷn = u+ ûn in (0, T )× TL, Ŷn(T, x) = x in TL, (2.122)

and the inverse Ẑn as defined in (2.100). Using the estimate (2.111) we obtain
that the sequence Ŷn is bounded in L∞(H3)∩W 1,∞(H2) therefore it converges
weakly-∗ in L∞(H3)∩W 1,∞(H2). Now we take the limit in Equation (2.122)
to obtain that the weak limit Ŷ satisfies (2.99). Also, because of the com-
pactness given by Aubin-Lions’ lemma we also have the strong convergence
of Ŷn to Ŷ in W 1/4,5(0, T ;H11/4(TL)) and in C0([0, T ];C1(TL)). Now that we
have convergence in classical spaces, we use the inverse function theorem to
obtain that the sequence Ẑn strongly converges to Ẑ in C0([0, T ];C1(TL)).
Furthermore

DẐn(t, Ŷn(t, x)) ⇀
n→∞

DẐ(t, Ŷ (t, x)) in D ′((0, T )× TL),

(ρ̂0,n, û0,n, θ̂0,n) ⇀
n→∞

(ρ̂0, û0, θ̂0) in (D ′((0, T )× TL))3,
(2.123)

where (ρ̂0,n, û0,n, θ̂0,n) = (ρ̌0(Ŷn(0, x)), ǔ0(Ŷn(0, x)), θ̌0(Ŷn(0, x))). From the
uniform bounds (2.112)–(2.113) on the quantity DẐn(t, Ŷn(t, x)) − I and
Aubin-Lions’ Lemma, we also deduce that

DẐn(t, Ŷn(t, x))− I →
n→∞

DẐ(t, Ŷ (t, x))− I strongly in L2(0, T ;H1(TL)).

(2.124)
Using then the uniform bound (2.114), the identity

D2Ẑn(t, Ŷn(t, x)) = D(DẐn(t, Ŷn(t, x)))DẐn(t, Ŷn(t, x)),
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and the convergence (2.124), we also conclude that

D2Ẑn(t, Ŷn(t, x)) ⇀
n→∞

D2Ẑ(t, Ŷ (t, x)) weakly in L2(0, T ;H1(TL)). (2.125)

Considering all the previous convergences, we can prove that the functions
fρ(ρ̂n, ûn), fu(ρ̂n, ûn, θ̂n) and fθ(ρ̂n, ûn, θ̂n) weakly converge to fρ(ρ̂, û), fu(ρ̂, û, θ̂)
and fθ(ρ̂, û, θ̂) in L1(0, T ;H1(TL)), and with Lemma 2.7.1, weakly in the
weighted Sobolev space described by (2.116). As the map G in Theorem
2.5.1 is a linear continuous operator in (ρ̂0, û0, θ̂0, f̂ρ, f̂u, f̂θ), it is weakly con-
tinuous as well. Hence

(ρn, un, θn) = F (ρ̂n, ûn, θ̂n)

= G (ρ̂0,n, û0,n, θ̂0,n, fρ(ρ̂n, ûn), fu(ρ̂n, ûn, θ̂n), fθ(ρ̂n, ûn, θ̂n)) (2.126)

weakly converges to

(ρ, u, θ) = F (ρ̂, û, θ̂) = G (ρ̂0, û0, θ̂0, fρ(ρ̂, û), fu(ρ̂, û, θ̂), fθ(ρ̂, û, θ̂))

in D′((0, T ) × TL). But we know that CR is stable by the map F , so that
(ρn, un, θn) all belong to the set CR, which is compact for the (L2(0, T ;L2(TL)))3

topology. Therefore, (ρn, un, θn) = F (ρ̂n, ûn, θ̂n) strongly converges to (ρ, u, θ) =

F (ρ̂, û, θ̂) in (L2(0, T ;L2(TL)))3.
Now that we verified all the hypothesis of Schauder’s fixed point theo-

rem we obtain the existence of a fixed point (ρ, u, θ) = F (ρ, u, θ) which by
construction solves the control problem (2.92)–(2.93)–(2.96).

To go back to the original system (2.83), we define Y as the solution of

∂tY + u · ∇Y = u+ u in (0, T )× TL, Y (T, x) = x in TL,

and Z = Z(t, x) such that for all t ∈ [0, T ], Z(t, ·) is the inverse of Y (t, ·),
which is well-defined according to Proposition 2.7.1. We then simply set, for
all (t, x) ∈ [0, T ]× TL,

ρ̌(t, x) = ρ(t, Z(t, x)), ǔ(t, x) = u(t, Z(t, x)), θ̌(t, x) = θ(t, Z(t, x)).
(2.127)

By construction, (ρ̌, ǔ, θ̌) solves (2.83)–(2.84) and the controllability require-
ment (2.88) with control functions (v̌ρ, v̌u, v̌θ) defined for (t, x) ∈ [0, T ]× TL
by

v̌ρ(t, x) = χ(Z(t, x))vρ(t, Z(t, x)), v̌u(t, x) = χ(Z(t, x))vu(t, Z(t, x)),
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v̌θ(t, x) = χ(Z(t, x))vθ(t, Z(t, x)).

These control functions are supported in [0, T ]× (TL \Ω) thanks to (2.115),
so that by restriction on Ω, we get a solution (ρS , uS , θS) = (ρ, u, θ)+(ρ̌, ǔ, θ̌)
of (2.1) satisfying (2.8)–(2.9).

To get the regularity estimate in (2.10), we first show that the fixed point
(ρ, u, θ) of F satisfies

(ρ, u, θ) ∈ C0([0, T ];H2(TL))× (L2(0, T ;H3(TL)) ∩ C0([0, T ];H2(TL)))

× (L2(0, T ;H3(TL)) ∩ C0([0, T ];H2(TL))), (2.128)

which is a consequence of (2.82). From these regularity results on (ρ, u, θ),
(2.127) and the regularity estimates obtained on Z in Proposition 2.7.1, we
deduce that

(ρ̌, ǔ, θ̌) ∈ C0([0, T ];H2(TL))× (L2(0, T ;H3(TL)) ∩ C0([0, T ];H2(TL)))

× (L2(0, T ;H3(TL)) ∩ C0([0, T ];H2(TL)), (2.129)

from which (2.10) follows.
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Chapter 3

Asymptotic Stabilization of the
compressible Navier-Stokes
equations with an interior
feedback on the density

3.1 Introduction
The aim of this article is to study the asymptotic stabilization of the com-
pressible Navier-Stokes equations on the torus Td of dimension d ≤ 3, namely
the following system

∂tρS + div(ρSuS) = 0 in R+ × Td (3.1)

ρS(∂tuS + (uS ·∇)uS) +∇(p(ρS))−µ∆uS − (µ+λ)∇(div uS) = 0 in R+×Td
(3.2)

where ρS is the density of the fluid, uS the velocity and p is the pressure
which is a function of ρS , typically p(ρS) = κργS .

We consider the problem of stabilizing the system around a constant
homogeneous state (ū, ρ̄) with an interior feedback control supported inside
an open set ω′ ⊆ Td and acting on the density only. This means finding a
feedback function Kρ such that the following system is exponentially stable
around (ū, ρ̄):

∂tρS + div(ρSuS) = Kρ(ρS − ρ̄, uS − ū, σ) in R+ × Td

ρS(∂tuS + (uS · ∇)uS) +∇(p(ρS))

− µ∆uS − (µ+ λ)∇(div uS) = 0 in R+ × Td
(3.3)
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Where p̄ρ = p′(ρ̄), γ > 0 is a constant related to the decay of the transport
equation.

Assumptions

Assumption 1 We assume the pressure function to be at least C2, 1
2 on a

neighborhood of ρ̄. We will assume that all the characteristics of the
flow given by ū intersect ω′, in particular, the interesting case is when
ū 6= 0 otherwise we would require ω = Td. Then we can choose ω with
the same property and ω̄ ⊂ ω′.

Assumption 2 We also will assume that the quantity
ρ̄p̄ρ
ν

> 0

is small enough. More espefically, we assume that it is smaller than the
first nonzero eigenvalue of laplacian in the torus.

0 <
ρ̄p̄ρ
ν

< λ1

In order to construct the feedback operator we introduce a one dimen-
sional integrator σ as the solution of the ODE:

We consider a function ϕ : Td → R supported in ω′ \ ω and with 〈φ〉 = 1
and a function σ : [0,∞]→ R given by the differential equation:

σ̇ = σ〈div uSϕ〉 − σ
ρ̄p̄ρ
ν
〈div uSρ〉+ 〈γχω(ρS − ρ̄)〉 − γ〈ρS − ρ̄〉,

where 〈·〉 denotes the average of a function on the torus

〈f〉 =

∫
Td
f(x) dx.

Then we will consider the feedback operator:

Kρ(ρ, û, σ) = −γχωρ+ σ(ū+ û) · ∇ϕ+ σ
ρ̄p̄ρ
ν
ϕ+ σ̇ϕ. (3.4)

This way our system reads:

∂tρS + div(ρSuS) = Kρ(ρS − ρ̄, uS − ū, σ) in R+ × Td

ρS(∂tuS + (uS · ∇)uS) +∇(p(ρS))

− µ∆uS − (µ+ λ)∇(div uS) = 0 in R+ × Td

σ̇ = σ〈div uSϕ〉 − σ
ρ̄p̄ρ
ν
〈div uSρ〉+ 〈γχω(ρS − ρ̄)〉 − γ〈ρS − ρ̄〉 in R+

(3.5)
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In [18], Coron explains the need of adding an integrator for the stabilization
of certain systems. In the topic of stabilization of Navier Stokes, we can
remark the work of [12] for the stabilizability (and controllability) of the
Navier-Stokes System in the isentropic case with control on the velocity, [50]
for a study of the same system in a more regular functional setting and [13] for
a study of stabilizability on the zero velocity case. For the related problem of
controllability we can mention [23], in the case of boundary controls in both
equations (but it is reduced to the internal controllability in the torus as in
this article).

The main result of this article is the following theorem:

Theorem 3.1.1. There is a constant δ such that if (ρ0, u0) ∈ H
3
2

+2ε ×
H

5
2

+2ε and ‖(ρ0, u0)‖ ≤ δ, then the solution of (3.5) satisfies the following
exponential decay estimate, for M satisfying (3.7)

‖(eMtρ, eMt(u− 〈u〉), eMtσ)‖
L∞(0,T ;H

3
2 +2ε×H

5
2 +2ε×R)

≤ C‖(ρ0, u0)‖
H

3
2 +2ε×H

5
2 +2ε

Theorem 3.1.2. If Assumption 1 and Assumption 2 are satisfied and M, p̄ρ
and ν satisfy (3.7), then for any ε ∈ (0, 1

2
), there are constants δ > 0 and

C > 0 such that if (ρ0, u0) ∈ H 3
2

+2ε ×H 5
2

+2ε and ‖(ρ0, u0)‖
H

3
2 +2ε×H

5
2 +2ε ≤ δ,

then the solution of (3.3) satisfies the following exponential decay estimate

‖(eMtρ, eMt(u−〈u〉), eMtσ)‖
L∞(0,T ;H

3
2 +2ε×H

5
2 +2ε×R)

≤ C‖(ρ0, u0)‖
H

3
2 +2ε×H

5
2 +2ε .

3.2 Linearized System around the steady state
We start by studying the stabilization of the linearized system:


∂tρ+ (ū+ û) · ∇ρ = −ρ̄ div u+Kρ(ρ, u) + fρ in R+ × Td

ρ̄(∂tu+ (ū+ û) · ∇u)− µ∆u− (µ+ λ)∇(div u)

= −p̄ρ∇ρ+ fu in R+ × Td
(3.6)

Here, fρ, fu are source terms for the density and velocity respectively . We
assume that û satisfies

‖e
M
2
tû‖L∞(H1) ≤ R,

with R a constant that we will choose small enough later and where the
exponential decay constant M that we choose so that

M < λ1 −
p̄ρρ̄

ν2
. (3.7)
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where λ1 is the first nonzero eigenvalue of the laplacian on the torus.
As it is done in the study of the controllability of the same system in [23]
and in the non-isentropic case in [51], we introduce the effective flux:

q := div u− p̄ρ
ν
ρ.

The idea of considering this quantity was introduced by Lions in [45]. With
this new variable the linear system becomes:

∂tρ+ (ū+ û) · ∇ρ = −ρ̄(q +
p̄ρ
ν
ρ) +Kρ(ρ, u) + fρ in R+ × Td

ρ̄(∂tq + (ū+ û)∇q)− ν∆q = −ρ̄ε(û) : ε(u)t +
p̄ρρ̄

ν
ρ̄(q +

p̄ρ
ν
ρ)

− ρ̄p̄ρ
ν
Kρ(ρ, u) + div fu −

ρ̄p̄ρ
ν
fρ in R+ × Td

ρ̄(∂tu+ (ū+ û)∇u)− µ∆u− (µ+ λ)∇(div u)− p̄ρ∇ρ+ fu in R+ × Td
(3.8)

Here ε(u) = ∇u+∇ut
2

is the symmetric gradient of the velocity, and for two
matrices we define the tensor scalar product

A : B =
∑
i,j

Ai,jBi,j

We notice that the equation for q is not necessarily stable as the constant
part 〈q〉 in principle could diverge exponentialy because we are on the torus
Td (0 is always an eigenvalue of the Laplace operator). To deal with this we
notice that the constant part of q comes only from 〈ρ〉 as 〈div u〉 = 0, so we
use the fact that

〈q〉 = − p̄ρ
ν
〈ρ〉

to modify the equation for ρ as follows

∂tρ+ (ū+ û) · ∇ρ− ρ̄ p̄ρ
ν
〈ρ〉 = −ρ̄(q − 〈q〉+

p̄ρ
ν
ρ)

+ χωKρ(ρ, û) + fρ in R+ × Td

ρ̄(∂tq + (ū+ û)∇q)− ν∆q

= −ρ̄ε(û) : ε(u)t +
p̄ρρ̄

ν
ρ̄(q +

p̄ρ
ν
ρ)

− ρ̄p̄ρ
ν
χωKρ(ρ, q) + div fu −

ρ̄p̄ρ
ν
fρ in R+ × Td

ρ̄(∂tu+ (ū+ û)∇u)− µ∆u− (µ+ λ)∇(div u)

= −p̄ρ∇ρ+ fu in R+ × Td
(3.9)
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In the following sections, we will split the study of the asymptotic stability
of system (3.3) in the study of the stability of the uncoupled equations, that
is, the transport equations, the heat equations and the Lamé system.

3.3 Stabilization of Transport equation
In this section we study the estimates necessary for the transport equations.
We will begin by the H1 estimates required for the study of the linear system
and later the estimates in the fractional exponent Sobolev space Hs(Td), for
s ∈ R+.

3.3.1 H1 estimates

For the stabilization of the transport equation we will show that we can take
a feedback of the form −γρχω, hence we consider the system

∂tρ+ (ū+ û) · ∇ρ+
ρ̄p̄ρ
ν
ρ = −γχωρ+ f. (3.10)

We will consider Λ : Td → R such that

∇Λ(x) · ū < 0, x 6∈ ω

The following lemma stablishes that such function always exists.

Lemma 3.3.1. There is a C∞(Td) function Λ : Td → R such that

∇Λ(x) · ū < 0 , x 6∈ ω.

Proof. For every point p in the torus we can find an open neighborhood V of p
that satisfies the property: if p ∈ ω we can take any neighborhood contained
in ω and define Λp ≡ 0. If p ∈ Td \ ω, we consider the curve of slope ū that
goes through p and starts and finishes at points i(p), f(p) ∈ ω then, in a
tubular neighborhood of the curve (a rotation of B(0, ε)d−1 × [0, L]), we can
define Λp solving ū · ∇Λp = −1 in Td \ ω. By compactness of the torus, we
can cover it with finite many of these neighborhoods, Vp1 , · · ·Vpn .

Moreover, we can take a partition of unity ϕpi with the property ū·∇ϕpi =
0 in Td \ ω. To prove that this is possible, let us consider ψ ∈ C3(Rd−1)
supported in B(0, 1). Let us consider the orthogonal projection P i

ū orthogonal
to ū. The we consider φi defined outside ω by

ϕi = ψ(P i
ū(
x

ε
)).
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Finally we consider
ϕ̃i =

ϕi∑
j ϕj

,

which satisfies

ū · ∇ϕ̃i =
ū · ∇ϕi∑

j ϕj
−
ϕi
∑

j ū · ∇ϕj
(
∑

j ϕj)
2

= 0,

in Td \ ω. With this we can define

Λ =
n∑
i=1

Λpiϕ̃pi ,

which satisfies the property:

ū · ∇Λ =
n∑
i=1

ū · ∇Λpiϕ̃pi +
n∑
i=1

Λpiū · ∇ϕ̃pi = −1.

With this lemma we can prove the following stabilization result for the
transport equation:

Theorem 3.3.1. There exists µ > 0 depending only on γ and the geom-
etry and parameters of the equation such that if ρ0 ∈ L2(Td) and eMtf ∈
L∞(0, T ;H1(Td)) then the solution ρ of (3.10) satisfies the following esti-
mates:

‖eMteµΛρ‖L∞(L2) ≤ ‖eµΛρ0‖L2 +
1

γ −M
‖eMteµΛf‖L∞(L2), (3.11)

‖eMteµΛ∇ρ‖L∞(L2) ≤ ‖eµΛ∇ρ0‖L2 +
1

γ −M
‖eMteµΛ∇f‖L∞(L2)

+ Cγ‖eMteµΛρ‖L∞(L2). (3.12)

Proof. In order to proof the stability estimates we use a technique introduce
by J.-M. Coron in [17]. Let us consider the Lyapunov function

V [ρ](t) =
1

2

∫
Td
e2µΛρ2 dx.
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Then we compute

V̇ [ρ](t) =

∫
Td
e2µΛρρ̇ dx =

∫
Td
e2µΛρ(−(ū+ û) · ∇ρ+

ρ̄p̄ρ
ν
ρ+−γχωρ+ f) dx

=
1

2

∫
Td
e2µΛρ2(div û+

ρ̄p̄ρ
ν

) dx+
µ

2

∫
Td
e2µΛρ2Λ(x) · (ū+ û) dx

− γ
∫
ω

χωρ
2 dx+ 〈eµΛtρ, eµΛtf〉

≤ 1

2

∫
Td\ω

e2µΛρ2(div û+
ρ̄p̄ρ
ν

+ µΛ(x) · (ū+ û)) dx

− γ
∫
ω

e2µΛρ2 dx+ 〈eµΛtρ, eµΛtf〉.

Because of the condition Λ · ū < 0 in Td \ ω, we can always choose µ large
enough and R small enough so that

(div û+
ρ̄p̄ρ
ν

+ µΛ(x) · (ū+ û)) < −γ,

so we obtain

V̇ [ρ](t) ≤ −γV [ρ](t) +
√
V [ρ](t)‖eµΛf‖L2 ,

from which we deduce the estimate (3.11). For estimate (3.12) we consider
the equation solved by the derivatives of ρ and proceed in similar fashion.
Differentiating with respect to the i-th variable:

∂t∂iρ+ (ū+ û) ·∇∂iρ+
ρ̄p̄ρ
ν
∂iρ = −γχω∂iρ+ ∂if − ∂iûj∂jρ− γ∂iχωρ. (3.13)

and we use the previous estimate with ρ replaced by ∂iρ.

3.3.2 Higher Order estimates

When dealing with the non-linear system we will need higher order estimates.
We begin with an H2 estimate, given in the following statement.

Theorem 3.3.2. There exists C > 0 depending on M and the parameters of
the equation, such that if ρ0 ∈ H2(Td) and eMtf ∈ L∞(0, T ;H2(Td)), then
the solution ρ of (3.10) satisfies the following estimates:

‖eMteµΛD2ρ‖L∞(L2) ≤ ‖eµΛD2ρ0‖L2+C‖eMteµΛD2f‖L∞(L2)+C‖eMteµΛρ‖L∞(H1).
(3.14)
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Proof. We begin by differentiating the equation (3.10) to obtain

∂tDijρ+ (ū+ û) · ∇Dijρ+
ρ̄p̄ρ
ν
Dijρ+DiûkDkjρ

+DjûkDkiρ +DijûkDkρ = −γχωDijρ

− γDijχωρ− γDiχωDjρ− γDjχωDiρ+Dijf. (3.15)

Consider the Lyapunov function

V2[ρ](t) =
∑
i,j

∫
Td
eµΛ(x)(Dijρ)2 dx.

With similar computations we obtain

V̇2[ρ](t) ≤ −γV2[ρ](t) +
√
V2[ρ](t)‖eµΛDijf‖L2 −

∫
Td
Dijû∇ρDijρ dx,

and consequently

V̇2[ρ](t) ≤ −γV2[ρ](t) +
√
V2[ρ](t)‖eµΛDijf‖L2 + ‖Dijû‖L3‖∇ρ‖L6(Td)

√
V2(ρ).
(3.16)

Using the Sobolev embedding eMt∇f ∈ L∞(0, T ;H1(Td)) ⊆ L∞(0, T ;L6(Td)),
we can obtain similar estimates to the ones in Theorem 3.3.1 for the Lya-
punov function

V1,6[ρ](t) =
∑
i

∫
Td
eµΛ(x)(Diρ)6dx,

We obtain that

eMt‖∇ρ‖L6(Td) ≤ ‖∇ρ0‖L6(Td) + C‖eMteµΛ∇f‖L∞(0,T ;L6(Td))

+ C‖eMteµΛf‖L∞(0,T ;H1(Td)). (3.17)

Applying this to (3.16) we obtain

V̇2[ρ](t) ≤ −γV2[ρ](t)+C
√
V2[ρ](t)‖eµΛf‖H2 +R

√
V2[ρ](t)e−Mt‖∇ρ0‖L6(Td)

CR
√
V2[ρ](t)e−Mt‖eMteµΛ∇f‖L∞(0,T ;L6(Td))

+ CR
√
V2[ρ](t)e−Mt‖eMteµΛf‖L∞(0,T ;H1(Td)) (3.18)

from which, together with the Gronwall inequality, (3.14) follows.

Using interpolation theory (see for instance [65]) we obtain the following
estimate
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Theorem 3.3.3. if ρ0 ∈ H
3
2

+ε(Td) and eMtf ∈ L∞(0, T ;H
3
2

+ε(Td)) then we
have the estimate

‖eMteµΛρ‖
L∞(H

3
2 +ε)
≤ ‖eµΛρ0‖H2 + C‖eMteµΛf‖

L∞(H
3
2 +ε)

.

Proof. Let us consider the linear operator

X : L∞(H1(Td) +H2(Td))→ L∞(H1(Td) +H2(Td))

eMteµΛf → eMteµΛρ̃,

where ρ̃ is the solution of (3.10) with zero initial conditions. Then this
operator is continuous in the spaces

X : L∞(H1(Td))→ L∞(H1(Td)),

and
X : L∞(H2(Td))→ L∞(H2(Td)),

from the previous results. From interpolation theory we obtain that the
operator is continuous in the interpolation space

X : L∞(H1(Td))→ L∞(H1(Td)),

and

X : (L∞(H1(Td)), L∞(H2(Td)))λ,θ → (L∞(H1(Td)), L∞(H2(Td)))λ,θ,

as well.
So we have the inequality

‖eMteµΛXf‖
L∞(H

3
2 +ε)
≤ ‖eMteµΛf‖

L∞(H
3
2 +ε)

.

Finally, we can write ρ as

eMteµΛρ = Xf + eMteµΛS(t)ρ0,

where S(t)ρ0 is the solution to the homogeneous equation. Combining (3.11),
(3.12) and (3.14), we have

‖eMteµΛSρ‖ ≤ C‖eµΛρ0‖H2 ,

and then

‖eMteµΛρ‖
L∞(H

3
2 +ε)
≤ ‖eµΛρ0‖H2 + C‖eMteµΛf‖

L∞(H
3
2 +ε)

.
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3.4 Stabilization of Transport equation with av-
erage term

In this section we see how to stabilize the equation with the extra average
term:

∂tρ+ (ū+ û) · ∇ρ− ρ̄ p̄ρ
ν
〈ρ〉+

ρ̄p̄ρ
ν
ρ = Kρ(ρ, û, σ) + f. (3.19)

We recall that ϕ : Td → R supported in ω′ \ ω and with 〈φ〉 = 1 and a
function σ : [0,∞]→ R given by the differential equation:

σ̇ − σ〈div ûϕ〉+ σ
ρ̄p̄ρ
ν

= −〈div ûρ〉+ 〈γχωρ〉 − γ〈ρ〉,

and we let
ρ̃ = ρ− σϕ.

Moreover we consider the feedback

Kρ(ρ, û, σ) = −γχωρ+ σ(ū+ û) · ∇ϕ+ σ
ρ̄p̄ρ
ν
ϕ+ σ̇ϕ. (3.20)

We deduce that ρ̃ satisfies

∂tρ̃+(ū+û)·∇ρ̃−ρ̄ p̄ρ
ν
〈ρ〉+ ρ̄p̄ρ

ν
ρ̃ = −σ̇ϕ−σ(ū+û)·∇ϕ−σ ρ̄p̄ρ

ν
ϕ+Kρ(ρ, û, σ)+f.

Hence it solves the equation

∂tρ̃+ (ū+ û) · ∇ρ̃− ρ̄ p̄ρ
ν
〈ρ〉+

ρ̄p̄ρ
ν
ρ̃ = −γχωρ̃+ f,

where we used that −γχωρ = −γχωρ̃.We also consider the equation satisfied
by the average of ρ

∂t〈ρ〉+ 〈û · ∇ρ〉 = 〈Kρ(ρ, û)〉+ 〈f〉.

Therefore

∂t〈ρ〉 = 〈div ûρ〉 − 〈γχωρ〉 − σ〈div ûϕ〉+ σ
ρ̄p̄ρ
ν

+ σ̇ + 〈f〉.

Consequently
∂t〈ρ〉 = −γ〈ρ〉+ 〈f〉.

So we end up with the system∂tρ̃+ (ū+ û) · ∇ρ̃− ρ̄ p̄ρ
ν
〈ρ〉+

ρ̄p̄ρ
ν
ρ̃ = −γχωρ̃+ f.

∂t〈ρ〉 = −γ〈ρ〉+ 〈f〉.
(3.21)
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From the second equation of(3.21) is clear that

|eMt〈ρ〉| ≤ 1

γ −M
(
|〈ρ0〉|+ ‖eMt〈f〉‖L∞

)
≤ 1

γ −M
(
|〈ρ0〉|+ ‖eMtf‖L∞(L2)

)
.

Using this on the first equation we find

‖eMtρ̃‖L∞(L2) ≤ ‖eµΛρ0‖L2 +
1

γ −M
‖eMtf + eMtρ̄

p̄ρ
ν
〈ρ〉‖L∞(L2)

≤ ‖eµΛρ0‖L2+
1

γ −M
|〈ρ0〉|+

1

γ −M
‖eMtf‖L∞(L2)+

1

γ −M
‖eMt ρ̄p̄ρ

ν
〈ρ〉‖L∞(L2)

(3.22)

It follows that

‖eMtρ̃‖L∞(L2) ≤ ‖eµΛρ0‖L2+
1

γ −M
|〈ρ0〉|+

1

γ −M
(1+

ρ̄p̄ρ
ν(γ −M)

)‖eMtf‖L∞(L2).

So we obtain finally for ρ

‖eMtρ‖L∞(L2) = ‖eMt(ρ̃+σϕ)‖L∞(L2) ≤ ‖eµΛρ0‖L2+
1

γ −M
|〈ρ0〉|+

1

γ −M
(1+2‖ϕ‖L2

+ (1 + ‖ϕ‖L2)
ρ̄p̄ρ

ν(γ −M)
)‖eMtf‖L∞(L2), (3.23)

which proves the exponential decay.

3.5 Stability of Parabolic equations
For the following parabolic equation,

ρ̄(∂tq + ū∇q)− ν∆q − p̄ρρ̄

ν
ρ̄q = fq,

we can prove the following stability estimates based on spectral decompo-
sition: given M < λ1 − p̄ρρ̄

ν2 where λ1 is the first non-zero eigenvalue of the
Laplacian on the torus.

‖eMt(q − 〈q〉)‖L∞(L2) ≤ ‖(q0 − 〈q0〉)‖L2 + CM‖eMtfq‖L∞(L2),

‖e
3M
4
t∇q‖L∞(L2) ≤ ‖∇q0‖L2 + CM‖eMtfq‖L∞(L2).

We have similar properties for the Lamé system.
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3.6 Stabilization of the linear system
Using the previous results we now prove that the linear system is exponen-
tially stable.

∂tρ+ (ū+ û) · ∇ρ− ρ̄ p̄ρ
ν
〈ρ〉 = −ρ̄(q − 〈q〉+

p̄ρ
ν
ρ) + χωKρ(ρ, û) + fρ in R+ × Td

ρ̄(∂tq + (ū+ û)∇q)− ν∆q = −ρ̄D(û) : D(u)t +
p̄ρρ̄

ν
ρ̄(q +

p̄ρ
ν
ρ)

− ρ̄p̄ρ
ν
χωKρ(ρ, q, σ) + div fu −

ρ̄p̄ρ
ν
fρ in R+ × Td

ρ̄(∂tu+ (ū+ û)∇u)− µ∆u− (µ+ λ)∇(div u)

= −p̄ρ∇ρ+ fu in R+ × Td

σ̇ − σ〈div ûϕ〉+ σ
ρ̄p̄ρ
ν

= 〈div ûρ〉 − 〈γχωρ〉+ γ〈ρ〉
(3.24)

Let T ∗ > 0 such that a solution to the system exists in [0, T ∗] for a given
initial condition (u0, ρ0 and take A,B,D,E ∈ R+ fixed to be determined.
For a given T < T ∗ let us consider the norm

‖(ρ, q, u)‖X,T = ‖eMtρ‖L∞([0,T ],L2) + A‖e
3M
4
t∇ρ‖L∞([0,T ],L2)

+B‖eMtq − 〈q〉‖L∞([0,T ],L2) +D‖e
3M
4
t∇q‖L∞([0,T ],L2)

+ E‖e
M
2
tu− 〈u〉‖L∞([0,T ],L2) + F‖e

M
2
tDu‖L∞(L2). (3.25)

Let us consider T̂ as

T̂ = sup{T ∈ [0, T ∗]|‖(ρ, q, u)‖ ≤ K(‖(ρ0, q0, u0)‖+ ‖(fρ, fu))‖}.

Using the previous estimates we obtain that

‖eMtρ‖ ≤ C

γ −M
‖eMt((q − 〈q〉)‖L∞([0,T ],L2(Td)) + C‖(ρ0)‖+ C‖fρ‖, (3.26)

and

‖e
3M
4
t∇ρ‖ ≤ Cγ

γ −M
‖eMt∇q‖L∞([0,T ],L2(Td)) + C‖(∇ρ0)‖+ C‖∇fρ‖. (3.27)

For q we have the estimate

‖eMtq−〈q〉‖L∞([0,T ],L2)+‖e
3M
4
t∇q‖L∞([0,T ],L2) ≤ C

p̄ρρ̄

ν
(1+

p̄ρρ̄

ν
)γ‖eMtρ‖L∞(L2)

+ C(B +D)Rγ‖e
M
2
tDu‖L∞(L2) + C‖q0‖+ C‖ div fu −

ρ̄p̄ρ
ν
fρ‖, (3.28)
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and similarly for u

‖e
M
2
tu−〈u〉‖L∞([0,T ],L2)+‖e

M
2
tDu‖L∞(L2) ≤ C‖e

3M
4
t(−ρ̄û∇u+p̄ρ∇ρ+fu)‖L∞([0,T ],L2)+C‖u0‖

≤ CR‖∇u‖L∞(L2) + C‖e
3M
4
t∇ρ‖L∞(L2) + C‖u0‖+ C‖fu‖. (3.29)

Multiplying with the respective constants and adding everything we ob-
tain the following inequality:

‖(ρ, q, u)‖X,T ≤
C

γ −M
‖eMt(q − 〈q〉)‖L∞([0,T ],L2(Td))

+
ACγ

γ −M
‖e

3M
4
t∇q‖L∞([0,T ],L2(Td))

+ (B +D)C
p̄ρρ̄

ν
(1 +

p̄ρρ̄

ν
)γ‖eMtρ‖L∞([0,T ],L2(Td))

+C(B+D+F+E)Rγ‖e
M
2
tDu‖L∞([0,T ],L2(Td))+(E+F )C‖e

3M
4
t∇ρ‖L∞([0,T ],L2(Td))

+ C‖(ρ0, u0)‖+ C‖(fρ, fu)‖. (3.30)

where the constant C is independent of T and it is bounded if we assume
that pρρ̄

ν
belongs to a fixed interval. Now we choose A,B,D and E such that

C(B +D)γ
p̄ρρ̄

ν
(1 +

p̄ρρ̄

ν
) < 1,

(E + F )C < A,

C

γ −M
< B,

ACγ

γ −M
< D,

C(B +D + E + F )Rγ < F.

This can be achieved in the following way: first we take p̄ρρ̄

ν
small enough so

C2

γ −M
γ
p̄ρρ̄

ν
(1 +

p̄ρρ̄

ν
) < 1,

This allow to choose B so that

C

γ −M
< B,

and
C(B)γ

p̄ρρ̄

ν
(1 +

p̄ρρ̄

ν
) < 1.
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Next we choose D > 0 small enough so that

C(B +D)γ
p̄ρρ̄

ν
(1 +

p̄ρρ̄

ν
) < 1.

After that, we take A > 0 small enough so that

ACγ

γ −M
< D,

E > 0 and F > 0 small enough so that

(E + F )C < A,

and finally R so that

C(B +D + E + F )Rγ < F.

With this choice of A,B,D,E, F and R we will have that for some L < 1

‖(p, q, u)‖X,T ≤ L‖(p, q, u)‖+C‖f‖+C‖ρ0, u0‖ < (LK+C)(‖(fρ, fu)‖+‖ρ0, u0‖).

Because L < 1 we can always chose K large enough such that

LK + C < K.

So
‖(p, q, u)‖X,T < K(‖(fρ, fu)‖+ ‖ρ0, u0‖),

which implies that T̂ was not the maximum so we conclude that

‖(ρ, q, u)‖X,T ≤ K‖(ρ0, u0)‖H1,H2 +K‖(fρ, fu)‖ ∀T > 0,

so we obtain the exponential decay by taking the supremum over T > 0,

‖(ρ, q, u)‖X,∞ ≤ K‖(ρ0, u0)‖H1,H2 +K‖(fρ, fu)‖.

3.7 Extra Regularity
In order to perform the fixed point argument for studying the non linear
system, we will need higher regularity estimates of the solutions assuming
better regularity of the source terms. In this line we have the following result:
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Theorem 3.7.1. We assume that for ε ∈ (0, 1
2
),

ρ0 ∈ H
3
2

+2ε,

u0 ∈ H
5
2

+2ε,

eMtfu ∈ L∞(H
1
2

+3ε),

eMtfρ ∈ L∞(H
3
2

+3ε),

then the solutions satisfies

‖eMtu−〈u〉‖
H

5
2 +ε+‖eMtρ‖H3/2+ε ≤ C‖eMtfu‖L∞(H

1
2 +3ε)

+C‖eMtfρ‖L∞(H
3
2 +3ε)

+ ‖u0 − 〈u0〉‖H 5
2 +ε + ‖ρ0‖H3/2+ε . (3.31)

Proof. Using the following bootstrap type argument we can obtain higher
regularity estimates that we will need in order to study the complete non-
linear system:

q0 ∈ H
3
2

+2ε, eMtρ ∈ L∞(L2), eMt div fu ∈ L∞(H−
1
2

+3ε)⇒ eMtq ∈ L∞(H
3
2

+2ε),

ρ0 ∈ H
3
2

+2ε, eMtq ∈ L∞(H
3
2

+2ε), eMtfρ ∈ L∞(H
3
2

+3ε)⇒ eMtρ ∈ L∞(H
3
2

+2ε),

u0 ∈ H
3
2

+ε, eMtρ ∈ L∞(H
3
2

+2ε), eMtfu ∈ L∞(H
1
2

+2ε)⇒ eMt(u−〈u〉) ∈ L∞(H
5
2

+ε).

we also have the corresponding estimates

‖eMtq‖
L∞(H

3
2 +2ε) ≤ C‖q0‖H 3

2 +2ε + ‖eMtρ‖L∞(L2) + ‖eMt div fu‖L∞(H−
1
2 +3ε)

,

‖eMtρ‖
L∞(H

3
2 +2ε) ≤ C‖q0‖H 3

2 +2ε + ‖eMtρ‖L∞(L2) + ‖eMtfρ‖L∞(H−
1
2 +3ε)

,

‖eMt(u−〈u〉)‖
L∞(H

5
2 +ε) ≤ C‖u0‖H 5

2 +2ε +‖eMtρ‖
L∞(H

3
2 +ε)

+‖eMtfu‖L∞(H
1
2 +2ε)

.
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3.8 Non-linear system
In this part we set the following quantities:

ρ = ρS − ρ̄,

u = uS − ū,

We will consider the following functional setting. Let

Xρ(T ) = {eMtρ ∈ L∞([0, T ], H
3
2

+2ε), eMtρt ∈ L∞([0, T ], H
1
2

+2ε)},

Xu(T ) = {e
M
2
tu ∈ L∞([0, T ], H

5
2

+2ε), e
M
2
tut ∈ L∞([0, T ], H

1
2

+2ε)},

with the obvious norms. And for given R > 0, K > 0 consider the set

CR,T = {(ρ, u, σ) ∈ Xρ(T )×Xu(T )× L∞([0, T ], eMt), ‖ρ, u, σ‖ ≤ R},

3.8.1 Estimates of the non-linear terms

In this part we estimate the non-linear terms to use in the continuous induc-
tion argument.

Theorem 3.8.1. If (ρ, u, σ) ∈ CR,T then

‖fρ, fu, fσ‖ ≤ CR2.

Proof. The non-linear terms are given by:

fρ = −ρ div(u),

fu = −ρ∂tu− ρ(ū+ u) · ∇u− (p′(ρ̄+ ρ)− p′(ρ̄))∇ρ.

For fρ we have:
using the fact that H

3
2

+ε is an algebra

‖eMtρ div(u)‖
L∞(H

3
2 +3ε)

≤ C‖eMtρ‖
L∞(H

3
2 +2ε)
‖eMt div(u)‖

L∞(H
3
2 +ε)
≤ CR2.

Similarly for fu: Using the fact that the products are continuous

H
1
2

+ε ×H
3
2

+2ε → H
1
2

+3ε

‖eMtρ∂tu‖L∞(H
1
2 +3ε)

≤ C‖eMtρ‖
L∞(H

3
2 +2ε)
‖eMt∂tu‖L∞(H

1
2 +ε)
≤ CR2.
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‖eMtρ(ū+ u) · ∇u‖
L∞(H

1
2 +3ε)

≤ C‖eMtρ‖
L∞(H

3
2 +2ε)
‖eMtDu‖

L∞(H
1
2 +ε)
≤ CR2.

Since the product is also continuous

H
1
2

+2ε ×H
3
2

+ε → H
1
2

+3ε

we have

‖eMt(p′(ρ̄+ ρ)− p′(ρ̄))∇ρ‖
L∞(H

1
2 +3ε)

≤ C‖eMt∇ρ‖
L∞(H

1
2 +2ε)
‖eMt(p′(ρ̄+ ρ)− p′(ρ̄))‖

L∞(H
3
2 +ε)
≤ CR2. (3.32)

.

3.8.2 Small time existence of solutions

In this section we will proof that of small enough T > 0, solutions of (3.1)-
(3.2) exist. In order to do that, we notice that we have the following version
of the previous inequalities for small T and without the exponential weight.

Theorem 3.8.2. Let T ∗ > 0, then there exists CT ∗ > 0 such that for T < T ∗

and (ρ0, u0) ∈ H 3
2

+2ε ×H 5
2

+2ε

‖(ρ, u, σ)‖
L∞(0,T ;H

5
2 +2ε×H

3
2 +2ε,R)

≤ C‖(ρ0, u0)‖
H

5
2 +2ε×H

3
2 +2ε

+CT ∗T‖fρ, fu, fσ‖L∞(0,T ;H
1
2 +2ε×H

3
2 +2ε×R)

with this inequality we can obtain the following theorem using a classical
Banach fixed point argument

Theorem 3.8.3. If (ρ0, u0) ∈ H 3
2

+2ε ×H 5
2

+2ε then system (3.1)-(3.2) has a
solution in [0, T ] for some T with

T > C
1

‖(ρ0, u0)‖
H

3
2 +2ε×H

5
2 +2ε

Proof. We define the following fixed point map: To (ρ̂, û, σ̂) we associate
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(ρ, u, σ) ∈ solution of

∂tρ+ (ū+ û) · ∇ρ− ρ̄ p̄ρ
ν
〈ρ〉 = −ρ̄(q − 〈q〉+

p̄ρ
ν
ρ) + χωKρ(ρ, û) + f̂ρ in R+ × Td

ρ̄(∂tq + (ū+ û)∇q)− ν∆q = −ρ̄D(û) : D(u)t +
p̄ρρ̄

ν
ρ̄(q +

p̄ρ
ν
ρ)

− ρ̄p̄ρ
ν
χωKρ(ρ, q, σ) + div fu −

ρ̄p̄ρ
ν
f̂ρ in R+ × Td

ρ̄(∂tu+ (ū+ û)∇u)− µ∆u

−(µ+ λ)∇(div u) = −p̄ρ∇ρ+ f̂u in R+ × Td

σ̇ − σ〈div ûϕ〉+ σ
ρ̄p̄ρ
ν

= −〈div ûρ〉+ 〈γχωρ〉 − γ〈ρ〉
(3.33)

where f̂u, f̂ρ are the non-linear terms computed with (ρ̂, û, σ̂). Then if we
consider to elements (ρ̂i, ûi, σ̂i), with i = 1, 2 with solutions (ρi, ui, σi) then
the difference satisfies

‖(ρ2 − ρ1, u2 − u1, σ2 − σ1)‖ ≤ CT‖(ρ̂2 − ρ̂1, û2 − û1, σ̂2 − σ̂1)‖.
Taking T small enough, we have have a contraction, and we conclude by
Banach fixed point.

3.8.3 Exponential decay of the complete system

We finally prove the exponential decay for the feedback system (3.1)-(3.2)
As we did for the linear system, we use continuous induction to provide the
exponential estimates. We define

T̂ = sup{T ∈ R | t > 0, (ρ, u, σ) ∈ CR,T}

Thanks to Theorem 3.8.3, we have that T̂ > 0. Moreover, for T < T̂

‖(ρ, u, σ)‖ ≤ CR2 + C‖ρ0, u0‖
Let us assume by contradiction that T̂ < ∞. Taking R and ‖ρ0, u0‖ small
enough

R <
1

2C
,

‖ρ0, u0‖ <
1

2CR
we obtain

‖(ρ, u, σ)‖ < R

contradicting the minimality of T̂ , hence

(ρ, u, σ) ∈ CR,T , ∀T > 0

so we obtain the exponential decay for the solutions.
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Chapter 4

Cauchy problem for the
Fluid-Structure interaction for
the Euler and linear elasticity
equations in dimension 2

4.1 Introduction
The aim of this article is to study the Cauchy problem for a system that
models the interaction between an elastic solid contained in a fluid, which in
turns is also contained in a fixed domain Ω in dimension 2, that we will assume
simply connected. There are several results in the literature depending on
the specific model that it is used for the solid and the fluid. In our case,
we consider an incompressible inviscid fluid, that is, we consider the Euler
equations

∂tu+ (u · ∇)u = −∇p,

div u = 0,

that is, the conservation of momentum and incompressibility respectively. In
the case of the solid, we will consider a linear approximation of the elasticity
equation, namely

ρS(0)∂ttξ = µ∆ξ + (λ+ µ)∇ div ξ,

where ξ(t, x) is the displacement of the element that starts at x in time t = 0.
Even though this equation is linear, when we consider the interaction with
the fluid, the boundary conditions depends non-linearly on ξ. To express
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this interaction, we will impose the continuity of the normal component of
the velocity across the boundary of the solid. We can contrast this with the
viscous case, where we have continuity of the velocity, not only the normal
component. Finally we will require that the normal component of the stress
tensor is continuous across the boundary as well.

More precisely, we are interested in solutions for the following system of
equations

ρS(0)∂ttξ = div(π(ξ)) = µ∆ξ + (λ+ µ)∇ div ξ in ]0, T ]× S(0)

∂tu+ (u · ∇)u = −∇p in [0, T ]×F(t)

div u = 0 in [0, T ]×F(t)

u(t, x) · n(t, x) = 0 in [0, T ]× ∂F(t) \ ∂S(t)

(u(t, x)− ∂tξ(t,X−1(t, x))) · n(t, x) = 0 in [0, T ]× ∂S(t) ∩ ∂F(t)

(π(ξ)(t,X−1(t, x)
∇X(t,X−1(t, x)

det(∇X(t,X−1(t, x))
+ p(t, x)I) · n(t, x) = 0 in [0, T ]× ∂S(t)

(4.1)
where S(t) denotes the domain of the elastic solid, F(t) = Ω \ S(t) is the
domain of the fluid. Here and troughout the article, we use the abuse of
notation

[0, T ]× A(t) = {(t, x) ∈ [0, T ]× R2, x ∈ A(t)},

where A(t) is a set that depends on time.
The displacement of the solid with respect to rest is denoted ξ(t, x), and

X is its flow, that is, X(t, x) = x + ξ(t, x). The first equation describes the
elastic deformation of the solid. The operator π is the first Piola stress tensor
given by

π(ξ) = λtr(ε) + 2µε,

where ε(ξ) = 1
2
(∇ξ +∇ξt) is the symmetric gradient.

The second and third equations describe the evolution of the inviscid
incompressible fluid in F(t) where u is the velocity of the fluid and p the
pressure.

Finally to describe the interaction between the fluid and the solid we
have the two boundary condition. The first one describes the continuity of
the normal component of the speed

u(t, x) · n(t, x) = ∂tξ(t,X
−1(t, x)) · n(t, x).

On the other hand we have the continuity of the normal component of the
Stress tensor

σF · n = σS · n,
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where σF is the Cauchy stress tensor given by

σS = π(ξ)
∇X

det(∇X)
,

and for the fluid
σF = −pI.

For technical reasons, we will consider a finite number of modes approxi-
mation for the movement of the solid, that is, we will assume a solution on
the form

ξ(t, x) =
N+1∑
i=1

αi(t)ηi(x),

for some fixed functions ηi. The reason to take N+1 modes is due to the fact
that we will need to ensure that the volume of the solid is constant, which
is a consequence from the fact that the volume of the fluid remains constant
(due to the incompressibility condition). So we will use the (N + 1)-th to
maintain this condition. We could consider any orthonormal family ηi but
in order to simplify the computations, we well take them as the eigenvalues
of the Lamé equations

Lηi(x) = λiηi(x) x ∈ S(0),

π(ηi)n = 0 x ∈ ∂S(0),

where the Lamé operator L is defined as

Lξ = µ∆ξ + (λ+ µ)∇ div ξ.

Concerning previous related works, we have in the case for an linear elastic
solid in a viscous incompressible fluid, the work of Desjadins et al [19] and in
the compressible case [20], [21]. We also can mention the work of Boulakia
[4] in the viscous case with a regularized elasticity equation.

For incompressible Euler equations we have results for a rigid solid, for in-
stance, Glass and Sueur[32], [33] and the work of Glass, Sueur and Takahashi
[34] for a more regular result. We can also mentions the works of Ortega,
Rosier and Takahashi [55], [56] for a incompressible perfect fluid. Finally
we mention the works of Boulakia and Guerrero, [5], [6], [7]. We can also
mention the case of the Cauchy problem for rigid swimmers in a viscous fluid
the work of San Martin et al in [57] and also of Munnier in [53] and [10] as
a middle ground between rigid and elastic solids.

An interesting problem involving solid fluid interactions is the controlla-
bility of such systems, in which case we can mention for instance the work
of Boulakia and Osses [8] and the references within.
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Outline. In section 2 we will define exactly what do we mean by a solution
of the system (4.1). In section 3 we establish the main result of the article.
Then, in section 4 we introduce the concept of added mass which we will need
in order to properly define the fixed point scheme in section 5. In section 6
we prove all the technical results like regularity, continuity and compactness
necessary to apply Schauder fixed point theorem and finally in section 7 we
finish the proof of the main result.

4.2 Definition of solution
We will prove the existence of solution of (4.1) à la Yudovich, that is, if we
consider the vorticity of the fluid ω, then it satisfies the transport equation

∂tω + u · ∇ω = 0 (t, x) ∈ [0, T ]× Ω,

where we have extended the vorticity by 0 inside the solid. This does not
affect the solutions thanks to the condition u · n = 0 so the characteristic
curves of u never enter the solid.

If we consider that Θ the flow of u then

ω(t, x) = ω0(Θ(t, x)).

Reciprocally, given ω we can recover the velocity as the solution of the
system

div u = 0 in F(t)

curlu = ω in F(t)

u · n = 0 in ∂F(t) \ ∂S(t)

u · n = ∂tξ(t,X
−1(t, x)) ∂S(t)∫

γi

τ · udl =

∫
γi

τ · u0dl i ∈ {1, · · · ,m}

(4.2)

so for the fluid a solution would be (u, ω,Ψ) satisfying where γi are curves
around the holes of F(t). The last condition is due to the fact that the circu-
lation around a closed curve is preserved due to Kelvin circulation theorem,
and we need to impose it in order to have uniqueness of the solution due to
the fact that we are working in a non simply connected domain which is nec-
essary to have a solid inside the fluid in dimension 2. With this a equivalent
formulation is (at least for strong solutions):

div u = 0,
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Θ = x+

∫ t

0

u(t,Θ(t, x))dx,

ω = ω0 ◦Θ.

Concerning the solid, we decompose the displacement in a finite number
of modes.

Let us take αi ∈ C1([0, T ]) and ω ∈ L∞(Ω). Then we associate the
displacement

where δ is the solution to the ODE

δ̇(t) = −
N∑
i

ci(αj(t), δ(t))α̇i(t),

and the function c is given by

ci(α, δ) =

∫
∂S(α,δ)

ηi · n̂(α,δ)dS∫
∂S(α,δ)

ηN+1 · n̂(α,δ)dS
,

and S(α,δ) = (Id+
∑N

i αiηi + δηN+1)S(0).

ξ(t, x) =
N∑
i

αi(t)ηi(x) + δ(t)ηN+1(x),

where
div(π1(ηi)) = λiηi,

and δ is the solution to the ODE

δ̇(t) = −
N∑
i

ci(αj(t), δ(t))α̇i(t),

and the function c is given by

ci(α, δ) =

∫
∂S(α,δ)

ηi · n̂(α,δ)dS∫
∂S(α,δ)

ηN+1 · n̂(α,δ)dS
,

and S(α,δ) = (Id +
∑N

i αiηi + δηN+1)S(0). With this the derivative of the
displacement is

∂tξ =
N∑
i=1

α̇iηi + δ̇ηN+1 =
N∑
i=1

α̇i(ηi − ciηN+1),
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hence the second derivative is

∂ttξ =
N∑
i=1

α̈i(ηi − ciηN+1)− α̇iċiηN+1,

We then project the equation of the solid over the space generated by the
ηi − ciηN+1, for i ∈ {1, · · · , N}.∫

S(0)

ξ̈(ηj − cjηN+1)−
∫
S(0)

π(ξ)∇(ηj − cjηN+1)

=

∫
∂S(t)

np(t, x)(ηi(X
−1(t, x))− ci(t)ηN+1(X−1(t, x)))dS.

Then the equations for the solid are given by∑
j

∫
S(0)

α̈i(ηi − ciηN+1)(ηj − cjηN+1)−
∑
j

∫
S(0)

α̇iċiηN+1(ηj − cjηN+1)

−αjλj − λN+1δcj

=

∫
∂S(t)

np(t, x)(ηi(X
−1(t, x))− ci(t)ηN+1(X−1(t, x)))dS.

Due to the fact that the pressure depends in part on the acceleration of
the fluid wish in turn depends in part on the acceleration of the solid thanks
to the impermeability condition, we wish to extract from the last term the
part that depends on α̈. In oder to do that we will make some definitions.
We introduce the Kirchhoff potentials Φi defined as the solutions to

∆Φi = z(x)

∫
∂S(t)

(ηi(X
−1(t, x))− ci(t)ηN+1(X−1(t, x))) · n(t, x) in F(t),

∂Φi

∂n
= (ηi(X

−1(t, x))− ci(t)ηN+1(X−1(t, x))) · n(t, x) in ∂F(t) ∩ ∂S(t),

∂Φi

∂n
= 0 in ∂F(t) \ ∂S(t).

(4.3)
where z : Ω→ R is a fixed function such that∫

Ω

zdx = 1,

and such that the support of z never encounters the solid S(t). The purpose
of this function is to satisfy the compatibility conditions of the Neumann
problem. When we consider the superposition of the Kirchhoff potentials,
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the influence of z will disappear thanks to the volume preserving condition.
Integrating by parts the boundary terms:

∫
∂S(t)

np(t, x)(ηi(X
−1(t, x))−ci(t)ηN+1(X−1(t, x)))dS =

∫
F(t)

∇p∇Φi(t, x)dS,

Using Euler’s equation to remove the pressure we obtain:

(M)α̈− Λα + Γ(t)α̇− λN+1δc = −
∫
F(t)

ut∇Φi(t, x)dS

−
∫
F(t)

(u · ∇)u∇Φi(t, x)dS, (4.4)

where we introduced the proper mass matrix

M(t)ij =

∫
S(0)

(ηi − ciηN+1)(ηj − cjηN+1),

the diagonal matrix of eigenvalues of the Lamé operator Λ given by

Λij = λiδij,

where δij is the Kronecker delta, and finally the auxiliary matrix

Γ(t) =
∑
j

∫
S(0)

ċiηN+1(ηj − cjηN+1).

In order to extract the term α̈ from ∂tu, we will do the following decom-
position of the velocity noticing that is solves the linear system (provided
that we know ω):

div u = 0 in F(t)

curlu = ω in F(t)

u · n = 0 in ∂F(t) \ ∂S(t)

u · n =
∑
i

α̇i(ηi((X
−1)− ciηN+1(X−1)) · n in ∂F(t) ∩ ∂S(t),∂S(t)∫

γi

τ · udl =

∫
γi

τ · u0dl i ∈ {1, · · · ,m}

(4.5)
which solution we can write as

u =
N∑
i

α̇i(t)∇Φi(t, x) +K[ω] +
m∑
i

µihi(t)∇⊥Φ̂i(t, x), (4.6)
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where in addition to the Kirchhoff potentials, we consider the Biot-Savart
operator given by the solution to the system:

divK[ω] = 0 , in Ω,

curlK[ω] = ω in Ω,

K[w] · n = 0 in ∂Ω.∫
γi

τ ·K[ω]dl = 0 .

(4.7)

As well as functions Φ̂i satisfying

∆Φ̂i = 0 in F(t),

Φi = 1 in γi,

Φ̂i = 0 in ∂F(t) \ γi.
(4.8)

and the functions hi are
hi(t) =

1∫
γi

∂Φ̂
∂n
dx
.

which is well defined thanks to the maximum principle and the Hopf’s lemma.
Then the acceleration is given by

∂tu =
N∑
i

(α̈i(t)∇Φi(t, x)+αi(t)∂t∇Φi(t, x))+∂tK[ω]+
m∑
i

µihi(t)∂t∇⊥Φ̂i(t, x)+ḣi(t)∇⊥Φ̂i(t, x),

(4.9)
With this we can rewrite the equation as

(M)α̈− Λα + Γ(t)α̇− λN+1δc = −
∫
F(t)

∂tK[ω]∇Φi(t, x)

−
N∑
j=1

∫
F(t)

(α̇j∂t∇Φj + α̈j∇Φj)∇Φi(t, x)

−
m∑
j=1

µjhj(t)

∫
F(t)

∂t∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
m∑
j=1

µjḣj(t)

∫
F(t)

∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
∫
F(t)

(u · ∇)u∇Φi(t, x)dS, (4.10)
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So we will define a Yudovich solution of system (4.1) as functions α ∈
W 2([0, T ]), u ∈ L∞(LL(F(t)), ω ∈ L∞(L∞),Θ ∈ C0,α([0, T ] × F(t)) such
that

(M)α̈− Λα + Γ(t)α̇− λN+1δc = f̃(α, α̇, α̈, u) t ∈ [0, T ]

δ̇(t) = −
N∑
i

ci(αj(t), δ(t))α̇i(t), t ∈ [0, T ]

div u = 0 (t, x) ∈ [0, T ]×F(t)

curlu = ω (t, x) ∈ [0, T ]×F(t)

∫
γ

τ · udl =

∫
γ

τ · u0dl t ∈ [0, T ]

Θ = x+

∫ t

0

u(t,Θ(t, x))dx (t, x) ∈ [0, T ]×F(t)

ω = ω0 ◦Θ (t, x) ∈ [0, T ]×F(t)

u · n = ∂tX · n (t, x) ∈ [0, T ]× ∂S(t)

u · n = 0 (t, x) ∈ [0, T ]× ∂F(t) \ ∂S(t)

(4.11)
where the components of f are given by

f̃i(α, α̇, α̈, u) = −
∫
F(t)

∂tK[ω] · ∇Φi(t, x)

−
N∑
j=1

∫
F(t)

(α̇j∂t∇Φj + α̈j∇Φj)∇Φi(t, x)

−
m∑
j=1

µjhj(t)

∫
F(t)

∂t∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
m∑
j=1

µjḣj(t)

∫
F(t)

∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
∫
F(t)

(u · ∇)u∇Φi(t, x)dS. (4.12)

4.3 Main result
The main result of this article is the following:

Theorem 4.3.1. If the boundary of F(0) is of class C2,α and ω0 ∈ L∞(F(0)), u0 ∈
LL(F(0)) and

∫
∂S(0)

ηN+1(x) · n̂dS 6= 0, then there is T > 0 such that there
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is a solution (α, u, ω,Θ) ∈ W 2,∞([0, T ])×L∞([0, T ],LL(F(t)))×L∞([0, T ]×
∞(Ω))× C0,α([0, T ]×F(t)) to the system (4.11) and moreover T satisfies

T > T0(‖α0‖, ‖X−1(0, ·)‖,
∫
∂S(0)

ηN+1(x) · n̂dS)

that is, the minimal time only depends uniformly on α0, X
−1(0, ·) and

∫
∂S(0)

ηN+1(x)·
n̂dS.

4.4 Added mass matrix
In order to remove the second time derivative from the right hand side of
(4.10) we introduce the added mass matrix

A(t)ij =

∫
F(t)

∇Φi∇Φjdx,

which is semi-definite positive as it is a Gramian matrix, in effect

ξtA(t)ξ =

∫
F(t)

∣∣∣∣∣∑
i

ξi∇Φi

∣∣∣∣∣
2

dx ≥ 0

.
With this we can write the term involving the second time derivate in

(4.10) as ∑
i

α̈i

∫
F(t)

∇Φi∇Φjdx = A(t)α̈,

and system (4.10) reads as:

(M+A(t))α̈ + Γ(t)α̇ + Λα− λN+1δc = f(α, α̇, u) (4.13)
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where the components of f are

fi(α, α̇, α̈, u) = −
∫
F(t)

(∂tK[ω]∇Φi(t, x)

−
N∑
j=1

∫
F(t)

α̇j∂t∇Φj∇Φi(t, x)

−
m∑
j=1

µjhj(t)

∫
F(t)

∂t∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
m∑
j=1

µjḣj(t)

∫
F(t)

∇⊥Φ̂i(t, x) · ∇Φi(t, x)dS

−
∫
F(t)

(u · ∇)u∇Φi(t, x)dS, (4.14)

where the main difference is that be put the second order time derivatives
in the left hand side. This will be important when we consider the fixed point
argument to have the appropriate regularity of the fixed point map.

In order to this equation to be well defined, we need that the "complete"
mass matrix (proper mass + added mass)

M(t) +A(t),

to be invertible and, in order to have good estimates, that the inverse is
bounded. This can be obtained from the fact thatM is definite positive as
well because the functions ξi are an orthonormal.

4.5 Fixed Point Argument
In this section we well provide the construction of the map which fixed points
would correspond to solutions to system (4.11). Later we will proof, using
Schauder’s fixed point theorem, that such fixed point exists indeed. Let us
consider the set

CR ={(α, ω) ∈ C1([0, T ],RN)× L∞([0, T ], L∞(Ω))|
‖α− α(0)‖C1 ≤ R, ‖ω‖L∞ ≤ ‖ω0‖L∞},

with the topology of C1([0, T ],RN+1)× L∞((0, T ), L2(Ω)).
Let us take αi ∈ C1([0, T ]) and ω ∈ L∞(Ω). Then we associate the

displacement

ξ(t, x) =
N∑
i

αi(t)ηi(x) + δ(t)ηN+1(x),
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where δ is the solution to the ODE

δ̇(t) = −
N∑
i

ci(αj(t), δ(t))α̇i(t),

and the function c is given by

ci(α, δ) =

∫
∂S(α,δ)

ηi · n̂(α,δ)dS∫
∂S(α,δ)

ηN+1 · n̂(α,δ)dS
,

and S(α,δ) = (Id+
∑N

i αiηi + δηN+1)S(0). With an abuse of notation we will
write

ci(t) = ci(α(t), δ(t)).

The flow of the solid is given by

X(t, x) = x+ ξ(t, x),

in particular

X ∈ C1([0, T ], H3(S(0))) ⊂ C1([0, T ], C1(S(0))),

and for small enough times the inverse flow is defined and satisfies

X−1(t) ∈ C1([0, T ], H3(S(0))).

With this we construct a solution to the Euler system

u =
N∑
i

αi(t)∇Φi(t, x) +K[ω] +
m∑
i

µi∇⊥Φ̂i(t, x), (4.15)

as discussed earlier.
Provided that u is log-Lipschitz, we can define the flow Θ(t, x). With

log-Lipschitz we refer to bounded functions that satisfy the inequality

sup
x6=y

|f(x)− f(y)|
|x− y|(1 + ln− |x− y|)

<∞.

We denote the space of such functions by LL(F(t)) and we endow it with
then norm

‖u‖LL(F(t)) = ‖u‖L∞(F(t)) + sup
x 6=y

|u(x)− u(y)|
|x− y|(1 + ln− |x− y|)

.
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Then we can define a new vorticity

ω̃(t, x) = ω0(Θ(t, x)),

and finally we solve the elasticity equations with the added mass term

(M+A(t)) ¨̃α + Γ(t)α̇− Λα− λN+1δc = f(α, α̇, u) (4.16)

with this we define the map

G : CR → CR

(α, ω)→ (α̃, ω̃).

In the next sections, our aim is to proof that this map has a fixed point, and
that such fixed point provides a solution to (4.11).

4.6 Estimates
In this section we provide all the estimates necessary to prove that the fixed
point map is well defined, continuous and that maps the set CR into itself.
In what follows, we assume that T is bounded by a fixed T ∗ > 0, so when we
say that a constant does not depend on T , we mean that it does not blow up
on [0, T ∗].

4.6.1 Estimates on the Kirchhoff potentials

Lemma 4.6.1. Let α, δ ∈ CR and the Kirchhoff potential Φi defined as in
(4.3), then Φi is of class C2,α(F(0)) and we have the uniform estimate

‖Φi‖C2,α(F(0)) ≤ CR,

with CR independent of T .

Proof. In order to obtain uniform estimates on the Kirchhoff potentials let
us consider a smooth function Ψ(t, x) such that

Ψ(t, ·)F(0) = F(t),

and
Ψ(t, x) = X(t, x), x ∈ ∂S(t),

Ψ(t, x) = x, x ∈ ∂F(t) \ ∂S(t),
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we can achieve this by considering solutions to the equations

∆θi = 0,

θi = ∂tXi,

θi = 0,

and then define Ψ as the flow of θi. Let Φ the Kirchhoff potentials satisfying

∆Φ(t, x) = f(t, x),

n(t, x) · ∇Φ = g(t, Y (t, x))n(t, x),

then if we define
Φ̃(t, x) = Φ(t,Ψ(t, x))),

we have that Φ̃ satisfies the elliptic equation

−
∑
k,l

akl∂klΦ̃ +
∑
k

∆(Ψ−1)∂kΦ̃ = f(t,Ψ(t, x)),

n(t,Ψ(t, x))DΨ−1 · ∇Φ̃ = n(t,Ψ(t, x)) · g(t, x),

where
akl =

∑
i

∂i(Ψ
−1
k )∂i(Ψ

−1
k ),

Using Hölder regularity estimates (see for instance [28] page 127) we obtain
the estimates

‖Φ̃‖C2,α(F(0)) ≤ C(‖Φ̃‖C0(F(0)) + ‖f‖C0,α(F(0)) + ‖g(t, ·)n(t,Ψ(t, ·))‖C1,α(F(0))),

where the constant C depends uniformly on

‖Ψ−1‖C2,α ,

and
‖n(t,Ψ(t, ·)DΨ−1)‖C1,α .
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4.6.2 Estimates on the fluid velocity

For the velocity we are interested in log-Lipschitz estimates in order to be
able to define the flow and to have holder estimates on the flow.

Lemma 4.6.2. Let u be as in (4.9), then, there is CR independent of time
such that,

‖u‖LL ≤ C‖ω0‖+ CR.

Proof. By estimates each term separately we obtain:

‖u‖LL ≤ C‖ω‖L∞ + ‖α‖C1 max
i
‖∇Φi‖LL + max

j
‖∇⊥φj‖,

where we used the fact that (see for instance [48])

‖K[ω]‖LL ≤ C‖ω‖L∞ .

so we obtain

‖u‖LL ≤ C‖ω‖L∞ + ‖α‖C1 max
i
‖Φi‖C2,ε + max

j
‖∇⊥φj‖,

and finally

≤ C‖ω‖L∞ + ‖α‖C1 max
i
‖(ηi − ci(t)ηN+1) · n(t, x)‖C1,ε + max

j
‖∇⊥φj‖.

4.6.3 Spatial regularity of the flow and its inverse

If we have
‖X(t, x)− x‖C1(S(0)) ≤ ` < 1,∀t ∈ [0, T ]

then we know, as a consequence of Banach fixed point argument that X is
invertible and its inverse, denoted Y , is C1. We now study the Sobolev norm
of the inverse of the flow.

Lemma 4.6.3. If X ∈ H3(S(0)) and the inverse flow is defined in [0, T ], we
have the estimate

‖Y ‖H3(S(t)) ≤
C

inf | det∇X| 72
‖X‖H3(S(0))(1 + ‖Y ‖3

C1(S(t))).∀t ∈ [0, T ]
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Proof. Let us denote
J = det(DX).

From the inverse function theorem we have

DY (x) = (DX ◦ Y )−1 =
1

J ◦ Y
Adj(DX ◦ Y )

where adj is the adjugate matrix (which is a linear operator in dimension 2).

∂iDY =
∑
j

−1

J2 ◦ Y
(∂jJ◦Y )(∂iYj) Adj(DX◦Y )+

1

J ◦ Y
Adj(∂jDX◦Y )(∂iYj),

Henceforth

|∂iDY | ≤
∑
j

1

inf |J |2
|∂jJ ◦ Y ||∂iYj||DX ◦ Y |+

1

inf |J |
|∂jDX ◦ Y ||∂iYj|,

so for the L2 norm we obtain

‖∂iDY ‖L2(S(t)) ≤ ‖Y ‖C1

∑
j

1

inf |J |2
‖∂jJ ◦ Y ‖L2(S(t))‖X‖C1

+
1

inf |J |
‖∂jDX ◦ Y ‖L2(S(t)), (4.17)

and using the fact that ‖f ◦ Y ‖L2(S(t)) ≤ 1

inf J
1
2
‖f‖L2(S(0))

‖∂iDY ‖L2(S(t)) ≤ ‖Y ‖C1

∑
j

1

inf |J | 52
‖∂jJ‖L2(S(0)) +

1

inf |J | 32
‖∂jDX‖L2(S(0)).

Similarly if we compute the second derivatives of DY , we obtain

∂imDY =
∑
j,k

2

J3 ◦ Y
(∂jJ ◦ Y )(∂mJ ◦ Y )(∂iYj)(∂kYm) Adj(DX ◦ Y )

+
∑
j,k

−1

J2 ◦ Y
(∂jmJ ◦ Y )(∂kYm)(∂iYj) Adj(DX ◦ Y )

+
∑
j

−1

J2 ◦ Y
(∂jJ ◦ Y )(∂ikYj) Adj(DX ◦ Y )

+2
∑
j,m

−1

J2 ◦ Y
(∂jJ ◦ Y )(∂iYj) Adj(∂mDX ◦ Y )∂kYm
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+
∑
j,m

1

J ◦ Y
Adj(∂jmDX ◦ Y )(∂iYj)(∂kYm)

+
∑
j

1

J ◦ Y
Adj(∂jDX ◦ Y )(∂ikYj),

Due to the fact that H2 is an algebra in dimension 2, and J is sum of product
of derivatives of X, we have

‖J‖H2 ≤ C‖X‖2
H3 .

4.6.4 Regularity of the flow Xα,δ and Yα,δ

Now we are concerned with the regularity with respect to α, δ. For Xα,δ we
have

∂δXα,δ(t, x) = ηN+1(x),

∂αiXα,δ(t, x) = ηi(x).

In the case of the inverse Yα,δ we have the following result

Lemma 4.6.4. Given ᾱ, δ̄ ∈ RN+1 there is ε > 0 such that Yα,δ is of class
C1 in an ε-neighbourhood of ᾱ, δ̄ and

‖Yi‖C1(Bε(ᾱ,δ̄)) ≤ C.

Proof. From the implicit function theorem we obtain that Yα,δ is C1 with
respect to α and δ and moreover,

∂δYα,δ(t, x) = −DYα,δ(t, x)∂δXα,δ(t, Y (t, x)) = −DYα,δ(t, x)ηN+1(Y (t, x)),

∂αiYα,δ(t, x) = −DYα,δ(t, x)∂αiXα,δ(t, Y (t, x)) = −DYα,δ(t, x)ηi(Y (t, x)).

Indeed, if we consider the function for fixed t and x,

F : RN+1 × R2 → R2

F (α, δ, y) = X(α, δ, y)− x
then its Fréchet derivative with respect to y is given by DXα,δ which is
invertible in CR, so applying the implicit function theorem to F , around a
fixed α̂, δ̂, we obtain that the solution to

F (α, δ, y) = 0 = X(α, δ, y)− x,

is C1 in α, δ but by definition Yα,δ satisfies this equation, so we obtain the
desired regularity to justify the computations.
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4.6.5 Regularity of ci(α, δ)

In this section we study the functions

ci(α, δ) =

∫
∂S(α,δ)

ηi · n̂(α,δ)dS∫
∂S(α,δ)

ηN+1 · n̂(α,δ)dS
,

where S(α,δ) = (Id+
∑N

i αiηi + δηN+1)S(0).

Lemma 4.6.5. Given ᾱ, δ̄ ∈ RN+1 there is ε > 0 such that ci is of class C1

in an ε-neighborhood of ᾱ, δ̄ and

‖ci‖C1(Bε(ᾱ,δ̄)) ≤ C.

Proof. Let us define

fi(α, δ) =

∫
∂S(α,δ)

ηi(X
−1
(α,δ)(t, x)) · n̂(α,δ)dS =

∫
S(α,δ)

dive(ηi(X
−1
(α,δ)(t, x)))dx

=

∫
S(α,δ)

Dηi(Y(α,δ)(t, x)) : DY t
(α,δ)(t, x))dx

=

∫
S(0)

Dηi(x) : DY t
(α,δ)(t,X(α,δ)(t, x)) det(DXα,δ)dx

So for the partial derivatives

∂δfi(α, δ) =

∫
S(0)

Dηi(x) : ∂δDY
t

(α,δ)(t,X(α,δ)(t, x)) det(DXα,δ)dx

+

∫
S(0)

Dηi(x) : (D2Y t
(α,δ)(t,X(α,δ)(t, x))∂δX(α,δ)(t, x)) det(DXα,δ)dx

+

∫
S(0)

Dηi(x) : DY t
(α,δ)(t,X(α,δ)(t, x))∂δ det(DXα,δ)dx

Similarly for the derivative with respect to αi

∂δfi(α, δ) =

∫
S(0)

Dηi(x) : ∂δDY
t

(α,δ)(t,X(α,δ)(t, x)) det(DXα,δ)dx

+

∫
S(0)

Dηi(x) : (D2Y t
(α,δ)(t,X(α,δ)(t, x))∂δX(α,δ)(t, x)) det(DXα,δ)dx

+

∫
S(0)

Dηi(x) : DY t
(α,δ)(t,X(α,δ)(t, x))∂δ det(DXα,δ)dx
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Going back to the functions ci we have

∂δci(α, δ) =
∂δfi
fN+1

− fi∂δfN+1

f 2
N+1

∂δci(α, δ) =
∂δfi
fN+1

− fi∂δfN+1

f 2
N+1

Thanks to the continuity of fN+1 and the fact that

fN+1(α(0), δ(0)) 6= 0

we have that there is εR such that if |α− α(0)|+ |δ − δ(0)| ≤ εR

|fN+1(α, δ)| ≥ δR

so we obtain that
‖ci‖C1 ≤ CR

in an neighborhood of α(0), δ(0).

4.6.6 Time derivative of the Kirchhoff potentials

Now we consider the terms involving the time derivative of the Kirchhoff
potentials. We have the following lemma:

Lemma 4.6.6. Let Φ[w] defined as in (4.3) and assuming that (α, ω) ∈ CR,
then we have: ∣∣∣∣∣

N∑
i=1

∫
F(t)

∇∂tΦi · ∇Φjdx

∣∣∣∣∣ ≤ CR,

where CR is independent of T .

Proof. In this section we study the Kirchhoff potentials satisfying

∆Φi = fi in F(t)

n · ∇Φi = n · gi(t, Y (t, x)) in ∂S(t)

where fi and gi satisfy the compatibility condition∫
F(t)

fi(t, x)dx =

∫
∂S(t)

n · gi(t, Y (t, x))dS(x).

Let Ψ(t, x) be such that

Ψ(t, ·)F(0) = F(t),

112



and
Ψ(t, x) = X(t, x),

for x ∈ ∂S(t). Then

∆Φi(t,Ψ(t, x)) = f(t,Ψ(t, x)) in F(0),

n(t,Ψ(t, x)) · ∇Φi(t,Ψ(t, x)) = n(t,Ψ(t, x)) · g(t,Ψ(t, x)) in ∂S(0)

Differentiating with respect to t

∂t∆Φi(t,Ψ(t, x)) = ∂tf(t,Ψ(t, x)) in F(0),

n(t,Ψ(t, x)) · ∇∂tΦi(t,Ψ(t, x)) = −nD2Φi(t,Ψ(t, x))∂tX,

+∂t(n(t,Ψ(t, x)))(g(t,Ψ(t, x))−∇Φi(t,Ψ(t, x)))+n(t,Ψ(t, x))∂tg(t, x) in ∂S(0)

In order to compute the derivative of the normal, we consider the tangent to
the boundary of S(t)

τ(t, x) =
DX(t, Y (t, x))τ0(Y (t, x)

‖DX(t, Y (t, x))τ0(Y (t, x))‖
,

and then
n(t, x) = τ(t, x)⊥,

n(t,Ψ(t, x)) =
(DX(t, x)τ0(x))⊥

‖DX(t, x)τ0(x)‖
.

If F = DX(t, x)τ0(x) then

∂tτ(t,Ψ(t, x)) = (I − FF t

‖F‖2
)
∂tF

‖F‖
.

Henceforth
‖∂tn(t,Ψ(t, x))‖ ≤ 2‖∂tDX(t, x)τ0‖

‖F‖
,

and we notice that, because DX is invertible and τ0 is unitary

‖F‖ ≥ ‖DY ‖−1,

so
‖∂tn(t,Ψ(t, x))‖ ≤ 2‖DY ‖‖∂tDX(t, x)‖.

In particular∫
F(t)

∇∂tΦi · ∇Φjdx = −
∫
F(t)

∂tfiΦj +

∫
∂S(t)

nD2Φi∂tXΦj

+ ∂tn(gi −∇Φi)Φj + n(∂tgi(t, x)). (4.18)
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Due to the condition
∑

i fi = 0, we have

N∑
i=1

∫
F(t)

∇∂tΦi·∇Φjdx =
N∑
i=1

∫
∂S(t)

nD2Φi∂tXΦj+∂tn(gi−∇Φi)Φj+n(∂tgi(t, x)),

so we obtain ∣∣∣∣∣
N∑
i=1

∫
F(t)

∇∂tΦi · ∇Φjdx

∣∣∣∣∣ ≤ CR,

where CR is independent of T .

4.6.7 Holder estimates on the flow of the velocity

Given that the velocity field is Log-Lipschitz, we have the following Holder
estimates on its flow:

Lemma 4.6.7. If u ∈ L∞([0, T ],LL(F(t))) then its flow Θ is of class C0,α

and moreover there is C > 0 independent of T such that

‖Θ‖Cα([0,T ],Ω) ≤ C exp(1− T‖u‖L∞(LL)) + CT 1−α‖u‖L∞ ,

where α = exp(−T‖u‖LL).
For a proof of this classical result, see for instance [36]

4.6.8 Time derivative of the Biot-Savart Operator

Similarly as for the Kirchhoff potentials, we have the following uniform esti-
mate on the time derivative of the Biot-Savart Operator:

Lemma 4.6.8. Let K[w] defined as in (4.7) and assuming that (α, ω) ∈ CR„
the we have: ∣∣∣∣∫

F(t)

∂tK[ω] · ∇Φj

∣∣∣∣ ≤ CR

where CR is independent of T

Proof. For the Biot-savart operator we do similar computations to the Kirch-
hoff potentials:

(divK)(t,Ψ(t, x)) = 0 in F(t)

(curlK)(t,Ψ(t, x)) = w(t,Ψ(t, x)) in F(t)

n(t,Ψ(t, x)) ·K(t,Ψ(t, x)) = 0 in ∂S(0)
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then
div ∂tK = 0 in F(t)

curl ∂tK = ∂tω = −u · ∇ω in F(t)

n · ∂tK = −nt(DK)∂tX − (∂tn)K in ∂S(0)

In particular∫
F(t)

∂tK[ω] · ∇Φj = −
∫
∂S(t)

nt(DK[ω])∂tXΦjdS −
∫
∂S(t)

∂tnK[ω]ΦjdS

so we obtain ∣∣∣∣∫
F(t)

∂tK[ω] · ∇Φj

∣∣∣∣ ≤ CR

where CR is independent of T .

4.6.9 Time derivative of ∇⊥Φ̂i

Similarly as for the Kirchhoff potentials, we have the following uniform esti-
mate on the time derivative of the Biot-Savart Operator:

Lemma 4.6.9. Let Φ̂i defined as in (4.8) and assuming that (α, ω) ∈ CR„
the we have:∣∣∣∣∫

F(t)

hi(t)∂t∇⊥Φ̂i · ∇Φj

∣∣∣∣+

∣∣∣∣∫
F(t)

ḣi(t)∇⊥Φ̂i · ∇Φj

∣∣∣∣ ≤ CR

where CR is independent of T

Proof. By considering the shape derivative of the equation for Φ̂i as we did
for the other equations before, we obtain

∆(∂tΦ̂i) = 0, in F(t)

∂tΦ̂i = −∇Φ̂∂tX, in ∂F(t)

using classical estimates for the equations for Φ̂i and ∂tΦ̂i, we can obtain the
inequality.
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4.6.10 Estimates on the solid displacement

Thanks to the fact that (M + A(t))−1 is uniformly bounded, we have the
following estimates

Lemma 4.6.10. Let α as in (4.16), then we have the following estimate

‖α‖W 2,∞([0,T ]) ≤ |α0|+ TCR,

where CR is uniform in CR.

Proof. Using the differential equation for α̃, that is equation (4.16),

| ¨̃α| ≤ C‖(u · ∇)u∇Φi(t, ·)‖L1(Ω)

+ C
∑
j

max
i
‖α‖C1‖∂t∇Φj∇Φi(t, ·)‖L1(Ω)

+ C max
i
‖∂tK[ω]∇Φi(t, ·)‖L1(Ω)

+
∑
j

µj max
i
‖(hi∂t∇⊥Φ̂i(t, x) + ḣi∇⊥Φ̂i(t, x))∇Φi(t, ·)‖L1(Ω) + |λN+1δc|,

(4.19)

so we have

‖α̃‖W 2,∞([0,T ]) ≤ |α0|+ T‖(u · ∇)u∇Φi(t, x)‖L∞([0,T ],L1)

+CT‖α‖C1‖∂t∇Φj∇Φi(t, x)‖L∞([0,T ],L1)

+CT‖(∂tK[ω]∇Φi(t, x)∇Φi(t, x)‖L∞([0,T ],L1),

+CT
∑
j

µj max
i
‖(hi∂t∇⊥Φ̂i(t, x)+ḣi∇⊥Φ̂i(t, x))∇Φi(t, ·)‖L1(Ω)CT‖λN+1δc‖L∞

henceforth

‖α̃‖W 2,∞([0,T ]) ≤ |α0|+ CT‖(u · ∇)u‖L∞([0,T ],L2)‖∇Φi(t, x)‖L∞([0,T ],L2)

+ CT‖α‖C1‖∂t∇Φj∇Φi(t, x)‖L∞([0,T ],L1)

+ CT‖(∂tK[ω]∇Φi(t, x)∇Φi(t, x)‖L∞([0,T ],L1)

+
∑
j

µj max
i
‖(hi∂t∇⊥Φ̂i(t, x)+ḣi∇⊥Φ̂i(t, x))∇Φi(t, ·)‖L1(Ω)+CT‖λN+1δc‖L∞

(4.20)

finally, using lemmas 4.6.3, 4.6.6, 4.6.8 and 4.6.9, we obtain

‖α̃‖W 2,∞([0,T ]) ≤ |α0|+ TCR.
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4.6.11 Compactness

In order to proof compactness of the set A(CR) we use the fact that

W 2,∞([0, T ]) ⊂⊂ C1([0, T ]).

To obtain compactness for the vorticity we use the following lemma

Lemma 4.6.11. Let C > 0 and ω0 ∈ L∞(Ω). Then the set

A(ω0) = {ω0◦Θ for Θ ∈ C0,α such that ‖Θ‖C0,α ≤ C and measure preserving}

is relatively compact in L∞([0, T ], L2(Ω)).

Proof. This follows from Arzelà-Ascoli’s theorem after we replace ω0 with a
continuous L2 approximation, that is, ω̂ ∈ C0(Ω) such that ‖ω − ω̂‖L2 ≤ ε,
then we know that we can find an ε cover in the continuous norm (as Holder
function are compact in the space of continuous functions), from which we
can construct a 2ε cover in the L∞([0, T ], L2(Ω)) metric and thus is compact
as ε is arbitrary.

With this lemma is clear that

G(CR) ⊆ BW 2,∞([0,T ]) × A(ω0) ⊂⊂ CR.

proving that the fixed point map fixes the set CR. In the following part we
will proof that it is continuous as well.

4.6.12 Continuity of the fixed point map G
Now we prove the continuity of the map G.

Lemma 4.6.12. The map G : CR −→ C2(RN+1) × L∞((0, T ), L∞(Ω)) is
continuous in the C2(RN+1)× L∞((0, T ), L2(Ω)) topology.

Proof. Let (αn, ωn) ∈ CR converging to (α, ω) in the C1([0, T ],RN)×L∞([0, T ], L∞(Ω)∩
Lq(Ω)) topology. Evidently

N∑
i

αni (t)ηi(x) −→n→∞

N∑
i

αi(t)ηi(x), in C1(H3(S(0)))

In order to proof the convergence of

δn(t) −→ δ(t) in C1([0, T ]),
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we consider

|δn − δm| ≤
∑
i

∫ T

0

|ci(αn, δn)α̇n − ci(αm, δm)α̇m|dt

≤ CR

∫ 1

0

|δn − δm|+ |α̇n − α̇m|+ |αn − αm|dt (4.21)

So applying Gronwall’s lemma

|δn − δm| ≤ C exp(Ct)‖αn − αm‖C1 .

Henceforth
ξni → ξi, in C1([0, T ], H3(S(0))),

in particular, because of the embedding H3(S(0)) ⊆ C1(S(0)), we have

ξni → ξi, in C1([0, T ]× S(0)),

so the flow satisfies

Xn → X, in C1([0, T ]× S(0)).

If T is small enough,

(Xn)−1 → X−1 in C1([0, T ]× S(0)) ∩ C1([0, T ], H3(S(t)))

from this we obtain convergence of the Kirchhoff potentials

Φn
i → Φi in C2,α(Ω),

which implies, together with the fact that the Biot-Savart operator is con-
tinuous, that

un → u,

in the log-Lipschitz norm. With this, all the right hand side terms in (4.16)
converge in L∞[0, T ], which implies that α̂n converges in C1([0, T ])

4.7 Proof of the main theorem
With the results of all the previous sections we have all the elements to
perform the proof to the main theorem: Lets consider the fixed point map
G. From the previous sections, we know that there is a time T ∗ such that
G is well defined for T < T ∗, and it is continuous and compact from CR to
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C1([0, T ],RN) × L∞([0, T ], L2(Ω)). In order to apply Schauder theorem it
only remains to proof that

G(CR) ⊆ CR.

Due to the fact that Θ is measure preserving, we have that

‖ω̃‖L∞(L2) ≤ ‖ω0‖L2 ,

from the estimates for the solid displacement, we have

‖α(t)‖C1 ≤ ‖α(0)‖+ TCR,

where CR is independent of T . Taking T small enough we obtain

‖α(t)‖C1 ≤ R.

So the map G has a fixed point. By construction, this fixed point will satisfy
the equations

(M+A(t))α̈ + Γ(t)α̇− Λα− λN+1δc = f(α, α̇, u),

u(t, x) =
N∑
i

α̇i(t)∇Φi(t, x) +K[ω](t, x) +
m∑
i

µihi(t)∇⊥Φ̂i(t, x),

Θ(t, x) = x+

∫ t

0

u(t,Θ(t, x))dx,

ω(t, x) = ω0(Θ(t, θ)).

By design, u satisfies

div u = 0 in F(t)

curlu = ω in F(t)∫
γi

τ · udl =

∫
γi

τ · u0dl i ∈ {1, · · · ,m}

u · n = ∂tX · n in ∂S(t)

u · n = 0 in ∂F (t) \ ∂S(t)

(4.22)

by removing the added mass term, we obtain existence of a solution for the
system (4.11).
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4.8 Conclusions
We manage to proof existence for the finite modes approximation of the
problem for small time. The more obvious open problems now are to extend
the proof to the general case, by obtaining uniform estimates on the finite
modes solutions, independent on the number of modes. Another possible
approach would be to work directly with a general solution, but our main
difficulty in this case was to proof the invertibility of the added mass operator
in this case.

Another open problem is to extend the local time result to a "global" in
time, that is, until a collision happens (either the solid hits the boundary
of the domain or the solid hits itself), or the flow of the solid becomes non-
invertible. In particular would be necessary to get rid of the condition of
the nonvanishing of the N + 1 component of the flux through the boundary,
namely ∫

∂S(t)

n · ηN+1dx 6= 0.
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RÉSUMÉ

Dans cette thèse, on étudie des problèmes de côntrole et des problèmes de Cauchy dans la mécanique des milieux
continus, en particulier sur la mécanique de fluides. On montre un résultat de contrôlabilité pour la equation de Navier-
Stokes non isentropique, où la pression dépend de la température et de la densité, un résultat de stabilisation avec un
côntrole en boucle fermée dans la densité. Finalement, on montre un résultat d’existance pour le problème de Cauchy
pour un solide elastique plongé dans un fluide Eulerien.

ABSTRACT

In this thesis we study control related problems and Cauchy problems that appear in continuum mechanics, with an
emphasis in fluids. We present a local null controllability result for the non-isentropic Navier-Stokes equations where the
pressure depends on the temperature as well as the density, a local stabilization with state feedback law on the density
for the isentropic case of Navier-Stokes, and finally, we present an existence result for the Cauchy problem of a linear
elastic solid submerged on an Eulerian fluid in the case of a finite number of modes approximation.
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