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Thèse présentée et soutenue en visio-conférence totale, le 12 mars 2021, par
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Titre: Modélisation de la combustion à haut Karlovitz dans les moteurs à allumage
commandé

Mots clés: Haut Karlovitz, modélisation, moteur à allumage commandé, flamme de prémélange tur-
bulente

Résumé : Les constructeurs automobiles ont
pour objectif de développer de nouvelles technolo-
gies pour diminuer les émissions de CO2 des mo-
teurs à allumage commandé (AC) parce que les
réglementations en matière d’émissions deviennent
de plus en plus strictes. Une possible solution
est le concept de “downsizing” appliqué aux mo-
teurs AC, consistant à réduire la cylindrée du mo-
teur tout en augmentant la puissance spécifique.
Néanmoins, cette solution augmente l’apparition de
combustions anormales, comme le cliquetis. Pour
éviter ces phénomènes la combustion est diluée par
la recirculation des gaz d’échappement. Cepen-
dant, celle-ci augmente la variabilité cycle à cy-
cle de la combustion. Aujourd’hui, la concep-
tion et l’optimisation des moteurs AC reposent sur
des outils de mécanique des fluides numériques.
Cependant, les modèles actuels de combustion tur-
bulente perdent leur caractère prédictif lorsqu’ils
sont utilisés pour simuler une combustion fortement
diluée dans un écoulement turbulent. Ces modèles
ont été conçus en faisant l’hypothèse d’une flamme
dans le régime de flammelette. Or, la combustion
dans un moteur AC suralimenté et dilué change de
régime de combustion correspondant au régime de
flamme épaissie (FE). Ainsi, dans cette thèse de doc-
torat une étude numérique avec le code AVBP est
présentée pour mettre en évidence les différences en-
tre les régimes de flammelette et FE. L’objectif de
cette thèse est de déterminer un modèle adapté à la
combustion dans le régime FE utilisant le formalisme
du modèle de flamme cohérente (CFM). Des simu-
lations numériques directes (DNS) d’une flamme de
prémélange C8H18/air sont réalisées.

Une première série de DNS d’interactions
flamme-vortex est effectuée dans l’optique de
modéliser l’étirement tangentiel du front de flamme
à travers la définition d’une fonction d’efficacité. En-
suite, les interactions entre une flamme plane et un
champ turbulent 3D sont étudiées. Le champ tur-

bulent est généré et maintenu suivant une méthode
spectrale de forçage. Ces simulations permettent
d’évaluer la validité du concept de densité de surface
de flamme (FSD) dans le régime FE grâce à des anal-
yses de la surface de flamme, de sa structure et des
caractéristiques de l’étirement du front de flamme
et de la vitesse de déplacement. Ces deux dernières
grandeurs sont considérées comme des facteurs clefs
pour la modélisation de la combustion turbulente
fortement diluée. Premièrement, la zone de réaction
reste fine pour chaque flamme étudiée, ce qui mène
à analyser la flamme à travers une iso-surface parti-
culière de cette zone de réaction. Deuxièmement, la
vitesse de déplacement sur cette iso-surface présente
des dépendances différentes à l’étirement tangen-
tiel et à la courbure, qui sont modélisées à travers
deux longueurs de Markstein effectives dépendant
à la fois de l’intensité turbulente et de la diffusion
différentielle. Des corrélations en fonction du nom-
bre de Karlovitz sont données pour ces longueurs.

Cette analyse de DNS permet d’étendre le model
CFM au régime FE à travers la définition de nou-
velles variable de progrès et FSD. Les équations
de transport de ces nouvelles variables sont ensuite
déterminées. Leur fermeture est présentée en util-
isant de nouveaux modèles ou existants pour les ter-
mes sources. Ces sous modèles sont comparés a
priori aux résultats de DNS permettant de valider
et d’ajuster les sous-modèles. Le modèle CFM
étendu au régime FE est alors implémenté dans
le code AVBP grâce au développement d’une nou-
velle relation entre les variables de progrès filtrées
au sens de Reynolds et de Favre. Une série de sim-
ulations de flamme turbulente monodimensionnelles
est ensuite réalisée pour examiner le comportement
de chaque sous-modèle lorsqu’ils interagissent entre
eux. Une analyse de la sensibilité du modèle à cer-
tains paramètres permet de déduire quelques ajuste-
ments. Finalement, les résultats encourageant des
tests a priori et a posteriori montrent le potentiel de
l’extension du model CFM proposée.
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Title: Modelling of high Karlovitz combustion in spark-ignition engines
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Abstract: Car manufacturers aim to develop
new technologies for reducing the CO2 emissions
of Spark Ignition (SI) engines as emission regula-
tions get increasingly stringent. One of the solutions
found by the car manufacturers is the downsizing
concept applied to SI engines, which is to reduce
the displacement of the engine while increasing the
specific power. Nonetheless, this concept increases
the occurrence of abnormal combustions, like knock
and super-knock. So, to avoid such phenomena, the
combustion is diluted through exhaust gas recircu-
lation (EGR), the rate of which is increased from
5% to 20% or even 30%. However, this recirculation
increases the combustion cycle-to-cycle variability.

Nowadays, the car manufacturers rely on CFD
tools for designing and optimizing SI engines. How-
ever, the current models of turbulent combustion
lose their predictivity when they are used to simulate
a highly diluted combustion involving high turbulent
intensities. Indeed, the current models were built
based on the assumptions of the flamelet regime.
Yet, the combustion in a diluted boosted SI engine
drifts from the flamelet regime to the thin reaction
zone (TRZ) regime in a Peters diagram.

Thus, a numerical study using the AVBP code
is proposed in this Ph.D thesis to highlight the dif-
ferences between flames in the flamelet regime and
flames in the TRZ regime, the aim of which is to
determine a combustion model suitable for combus-
tion in the TRZ regime based on the formalism of
the coherent flame model (CFM). Direct numerical
simulations (DNS) of a premixed C8H18/air flame
are conducted. First, a set of flame-vortex interac-
tions is performed to investigate the modelling of
the tangential strain rate through the definition of
an efficiency function.

Then, interactions between a planar flame and
a three-dimensional turbulent field are studied con-
sidering a forced turbulent field using a spectral
method. These simulations are analysed to investi-
gate the validity of the flame surface density (FSD)

concept in the TRZ regime through the analyses of
the fame surface, the flame structure, the charac-
teristics of the flame stretch and of the displace-
ment speed in the TRZ regime, which are con-
sidered as key factors in the modelling of highly
diluted turbulent combustion. First the reaction
zone is shown to remains thin for each flame, lead-
ing to focus this study on a specific iso-surface in
the reaction zone and how it is affected by turbu-
lence. Second, the displacement speed on this iso-
surface shows a differentiate dependency on tangen-
tial strain rate and curvature. This dependency is
modelled through two effective Markstein lengths,
which depend on both turbulence intensity and pref-
erential diffusion. Models for these lengths with re-
spect to the Karlovitz number are proposed. This
analysis of the DNS yields an extension of the CFM
model to TRZ regime through the definition of a new
progress variable and using a fine-grained flame sur-
face density. Then, the transport equations of both
the new progress variable and the fine-grained FSD
are closed with existing models and new ones for the
source terms involved. Each sub-model is compared
to the DNS results through a specific post-processing
method, leading to adjustment of the proposed mod-
els.

The model proposed is implemented in the
AVBP code. Therefore, a new relationship between
the filtered and the resolved progress variable is de-
veloped. Then, a set of one-dimensional turbulent
flames is performed to evaluate the proposed model
and the behaviour of the sub-models with each other.
The results from these simulations are compared
to the DNS through the previously proposed post-
processing methodology. Adjustments of the models
are deduced from this analysis. Finally, a discussion
on the applicability of this model to engine applica-
tion is drawn.

To conclude, the encouraging results from a pri-
ori and a posteriori validation show the potential of
the extension of the CFM model proposed in this
thesis.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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“And I knew exactly what to do. But in a much

more real sense, I had no idea what to do.”

— Michael Gary Scott, The Office
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du COVID. Enfin je tiens à exprimer mon immense reconnaissance à Michel Guion pour sa

bonne humeur en toutes circonstances et surtout pour s’être démené lors du confinement de
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Introduction

Industrial Context

Nowadays, in the context of climate change, the transport sector is one of the main contributors

to global anthropogenic CO2 emissions, about 23%. From Fig. 1, the road transport, which is

divided equally into heavy-duty and light-duty vehicles, is the main factor in term of emissions.

Furthermore, Spark-Ignition (SI) engine, fuelled with gasoline, powers 70% of the light-duty

vehicles worldwide and should still represent 50% in 2030. Thus, SI engines will remain the

major energy source and CO2 contributor for passenger cars. So, reducing CO2 emissions of

passenger cars seems to be one key factor to mitigating global warmings. For this purpose

engine manufacturers aim at increasing the efficiency of SI engines.

Figure 1: Diagram of anthropogenic emissions focusing on the transport sector

The trend in a route towards high efficiency SI engines is downsizing, which consists in

reducing the piston displacement while increasing the specific power. This process is allowed by

increasing the engine load using forced induction, through turbochargers or superchargers. This

concept could lead potentially to 20% of fuel savings compared to standard engines. However,

the use of turbocharger leads to higher temperatures and pressures during combustion, the

consequence of which is higher occurrence of abnormal combustion as knock and super-knock.

The latter are to be avoided for preserving the engine integrity.

An extensive selection of technologies are available for downsizing, from ultra-lean burn

conditions (Benoit et al., 2019) to pre-chamber ignition system (Bozza et al., 2019). One

solution investigated by car manufacturers is increasing the rate of diluent gases through exhaust

i
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gas recirculation (EGR), from 5% to 20% or even up to 30%, which is the focus of the present

thesis.

The design and optimisation of the complex strategies to be developed for the application of

these technologies rely strongly on computational fluid dynamics (CFD). Indeed, the physical

processes taking place in such complex devices can hardly be studied experimentally. Today,

car manufacturers are mainly using Reynolds average Navier Stokes (RANS) CFD tools, which

allow to make a ranking of different geometries and/or strategies. Nonetheless, RANS is unable

to predict cycle-to-cycle variability and sporadic phenomena like abnormal combustion even

at these standard conditions, because it simulates a phase averaged mean cycle. For this

reason, large-eddy simulation (LES) approach was developed. This approach allows to simulate

typically 10 to 20 consecutive individual cycles giving access to non-cyclic phenomena, allowing

to predict the variance of indicated mean effective pressure (IMEP) of an engine and also the

occurrences of knock (Chen et al., 2020).

(a) Combustion duration (b) Covariance of IMEP (c) Exhaust gas temperature

Figure 2: The impact of variation of exhaust gas recirculation (EGR) rate on the engine:
(a) the evolution of combustion duration with EGR rate, (b) the evolution of fluctuations of
indicated mean effective pressure (IMEP) with EGR rate and (c) the evolution of the exhaust
gas temperature with EGR rate. (Francqueville and Michel, 2014)

The impacts of dilution on real boosted SI engines were evaluated in several experiments,

such as the one conducted by Francqueville and Michel (2014). In this study, they performed

a variation of the dilution rate with EGR in a single-cylinder engine.

The results of this study are summarized in Fig. 2, where the combustion duration is plotted

against the EGR rate in Fig. 2a. This combustion time is computed with the difference CA50−
CA05, where CA05 and CA50 correspond to crank angles when 5% and 50% of the fuel mass

are burnt, respectively. In Fig. 2a, the combustion duration rises with EGR rate. Moreover,

when EGR rate increases, the amount of inert gas to be heated increases, resulting in a decrease

in the temperature of the exhaust gas after combustion, which could explain the decrease in

exhaust gas temperature with the EGR rate in Fig. 2c. This decrease of temperature allows

an increase in the auto-ignition delay of the fuel/air mixture (reducing abnormal combustion

tendency).

Moreover, the evolution of the co-variance of IMEP with EGR rate is plotted in Fig. 2b,
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which represents the combustion cycle-to-cycle variability of the engine. As seen in Fig. 2b, the

covariance of IMEP increases slightly with a growth in EGR rate, for rates below 25%. How-

ever, when EGR rates are greater than 25%, the combustion cycle-to-cycle variability highly

increases, exceeding the acceptable limit fixed at 5% co-variance of IMEP. In addition, this

variability is mainly observed during the first moment after the ignition indicating that the

flame is much more affected by the fluctuations of the turbulent flow.

To better understand how dilution affects combustion, Kobayashi et al. (2007) explored the

behaviour of Bunsen-type turbulent premixed methane-air flames and propane-air flames at

high pressure and temperature. In these experiments, the flames were diluted with CO2 for a

range of EGR rate (in mass) between 0% and 14%. The aim of such a study is to understand the

effect of dilution with burnt gases on turbulent flame at different pressures and temperatures.

(a) (b) (c)

Figure 3: OH-planar Laser induced fluorescence (PLIF) images at 0.5 MPa and 573K: (a) EGR
rate = 0% and u′t/S

0
L = 3, (b) EGR rate = 14% and u′t/S

0
L = 3, and (c) EGR rate = 7% and

u′t/S
0
L ≈ 0. (Kobayashi et al., 2007)

The pictures in Fig. 3 compare OH-planar Laser induced fluorescence (PLIF) of turbulent

flames without dilution (Fig. 3a) and with an EGR rate of 14% (Fig. 3b), and a laminar flame

diluted with an EGR rate of 7% (Fig. 3c). The turbulent flow fields involved in in Figs. 3a and

3b are similar with a velocity ratio of u′t/S
0
L = 3, where u′t is the characteristic velocity of the

largest turbulent scale and S0
L is the laminar flame velocity.

First, the diluted flames present a larger height than the one without dilution, which cor-

responds to smaller reaction rate per surface unit. This phenomena indicate that dilution by

EGR slows the flame. Second, the comparison of the two turbulent flames shows that the depth

of the wrinkles of the flame region tends to increase, and the edge of each wrinkle tends to be-

come sharper when air is diluted with EGR. Third, the laminar flame in Fig. 3c is wrinkled

because of intrinsic flame instabilities. This suggests that the intrinsic flame instability also

plays a significant role in the case of EGR dilution.
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These phenomena may indicate change in the nature of the interaction between the flame

and the turbulence. Indeed, when the laminar flame is diluted, the laminar flame velocity

decreases, which is equivalent to an increase in the laminar flame thickness. Thus, the size of

the vortices seen by the flame front are smaller, relatively to the flame thickness.

So, it seems that the main effect of dilution is to broaden the flame front leading to a more

wrinkled front and a lower burning velocity, which are making the flame more passive in tur-

bulent flow.

While this study highlights the effect of dilution on the flame front, the experiments are

not representative of a real boosted SI engine with exhaust gas recirculation. In that respect,

Mounäım-Rousselle et al. (2013) conducted a set of experiments on a single-cylinder engine,

the aim of which is to study the characteristics of the flame, which can explain the observations

made by Francqueville and Michel (2014). The impact of dilution on a stoichiometric iso-octane-

air premixed flame is observed from in-cylinder measurements. The operating conditions are

summarized below:

• The intake pressure is 1.3 bars, which is representative of a boosted engine

• The intake gases temperature is 50˚C

• The exhaust gases are injected using a mixture of 73.5% of N2, 14% of H2O and 12.5%

of CO2 by volume

• The EGR rate is limited to 30% in mass

Figure 4: Evolution of laminar burning velocity (expressed in cm/s unlike displayed in the
original figure), using the PREMIX code (CHEMKIN package), versus burnt mass fraction for
all conditions. (Mounäım-Rousselle et al., 2013)

When the dilution rate is increased, the authors observed a decrease in the turbulent flame

velocity ST , which is in agreement with the evolution of the combustion duration observed by

Francqueville and Michel (2014). In order to understand this decrease, the impact of dilution
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on the laminar flame velocity, estimated using the PREMIX code (CHEMKIN package) and a

reduced chemical kinetic mechanism (48 reactions and 29 species), is plotted in Fig. 4. In this

graph, the laminar flame velocity is plotted against the burnt mass fraction, which is the mass

fraction of burnt gases in the whole engine cylinder allowing to represent evolution during the

whole combustion duration, for five different EGR rates.

The order of magnitude of S0
L observed in Fig. 4 decreases with a growth in the EGR rate,

as observed by Kobayashi et al. (2007). In addition, this decrease in the laminar flame ve-

locity implies an increase in the laminar flame thickness, as mentioned before. Consequently,

in Fig. 5, considering these effects of dilution on the laminar flame, the ignition conditions (in

cross symbols) shift from the corrugated flamelet regime to the thin reaction zone (TRZ) regime

in the Peters-Borghi diagram (Peters, 1999), when the EGR rate is increased. Furthermore,

the diamond symbols, indicating the conditions as a function of fresh gases, also present this

shift with EGR rate, as observed in Fig. 5.

Figure 5: Comparison of combustion traces in Peters-Borghi diagram, � 10% EGR, � 15% EGR,
� 20% EGR, � 25% EGR, ♦ 30% EGR. Cross symbols indicate the conditions at the spark
timing, while diamond symbols represent the conditions as a function of fresh gas consumption.
Diagram from from (Mounäım-Rousselle et al., 2013).

The existing studies suggest that laminar flames are slowed down and thickened by dilution.

Consequently, these changes impact the interactions between turbulence and flame, which can

be translated in a Peters-Borghi diagram as a shift from the flamelet regime to the TRZ regime.

These observations justify the interest in studying combustion in the TRZ regime. This change

can be expressed by the evolution of the Karlovitz number (described in further details in

Chapter 1):

Ka =

Å
δ0
L

η

ã2

(1)

where δ0
L is the laminar flame thickness and η is the Kolmogorov length-scale, described in

Chapter 1.
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As already seen, dilution by burnt gases and the increase in turbulence, due to turbocharg-

ing, lead to an increase in the Karlovitz number. Yet, the current models of turbulent combus-

tion were created based on combustions with low Karlovitz numbers. Thus, these models seem

unsuitable for high Karlovitz number combustion, as seen by Gülder and Smallwood (2007)

and Oijen et al. (2005).

Finally, from these observations, a project of French National Research Agency (ANR) has

been set up to provide tools for engine designing at high EGR rates. This thesis is one of the

steps of this project, the aim of which is to provide an accurate combustion model for LES

approach.

Aim of the thesis

The main objective of the ANR project MACDIL (Moteur à Allumage Commandé à forte

DILution) is to provide a better understanding and description of the combustion resulting

from high dilution rates and high turbulent intensities inside SI engines. This thesis investigates

one of the scientific issues of this project.

In fact the modelling of combustion regimes with intermediate and high Karlovitz numbers

have only been investigated recently and are the most difficult to describe. Indeed, they do not

occur in the flamelet regime, where a local laminar structure hypothesis can be made. In this

regime, the existing models should be re-evaluated.

The main challenge is to extend the existing combustion models to high Karlovitz combus-

tion regimes while preserving their ability to describe the flamelet regime. Finally, the objective

of this thesis is is to assess the possibility to extend the validity of the approach of the flame

surface density (FSD) concept to the TRZ regime. For this purpose, a series of iso-octane/air

premixed flame direct numerical simulations (DNS) is used to model a priori major source

terms of the progress variable and flame surface density (FSD) equation in the TRZ regime.

Works conducted in this thesis are organized as follow:

• Chapter 1 descirbes the necessary notions and tools for reactive flow simulations. First,

the phenomena governing laminar premixed flames are recalled. Then, notions about

turbulence are introduced to better understand interactions between flame and turbulent

flows. A classification of these interactions is described and different approaches for

modelling and simulating turbulent combustion are presented. Then, a state of the art

on the understanding and modelling of turbulent combustion with high Karlovitz number

is drawn. Then, studies on DNS of combustion in the TRZ regime are analysed to

highlight the phenomena involved with high turbulence intensities and their modelling

implications. This chapter gives the detailed objectives of the present thesis.

• Chapter 2 presents the analysis of a set of 2D DNS of flames interacting with a pair

of counter-rotating vortices. First, the numerical implementation is described along with
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the objective of such simulations, which is to provide elements for modelling the flame

stretch. Second, a discussion of the commonly made assumptions is presented in order to

understand the reason of the failure of current models to predict accurate flame stretch

for high Karlovitz number combustion. Finally, the current models are compared to the

results from DNS and a proposed efficiency function.

• Chapter 3 analyses a set of 3D DNS of flames interacting with a statistically stationary

turbulent flow generated using a spectral forcing method. The numerical implementation

is first described along with the flow configuration and the forcing method. Second, a

general analysis of the resulting turbulent flames is given allowing to propose an approach

for modelling. Third, a focus is made on the analysis of the flame displacement speed

leading to propose a model for this term on a specific iso-surface of the flame front.

• Chapter 4 describes the a priori approach developed in this thesis to adapt the coherent

flame model (CFM) to TRZ regime. First, a discussion on the CFM model is made based

on the state of the art and the results from the 3D DNS in Chapters 1 and 3, respectively.

Second, the modified transport equations of the CFM model are presented. Third, the

different models used and developed during this thesis to close the modified transported

equations are presented and a piori tested against DNS.

• Chapter 5 is dedicated to the analysis of statistically 1D turbulent flames, in order

to perform a posteriori validation of the model proposed in this thesis. First, the pro-

posed model is implemented in the AVBP code. Then, the different closures presented

in Chapter 4 are evaluated. Finally, the application of the proposed approach to LES of

automotive engines is discussed.

• The conclusions and the perspectives for this work are drawn in Chapter 6.





Chapter 1

Modelling of Premixed flames in

spark-ignition engines

1.1 The equations of aero-thermo-chemistry.

The equations of aero-thermo-chemistry are the traditional Navier-Stokes equations used in

fluid mechanics combined to the specific balance equations for reacting flows. The latter are

used for the transport of total energy and chemical species. Many books report these equations,

such as the one by Poinsot and Veynante (2012).

In the rest of this study, Soret and Dufour’s effects are not taken into account and the

diffusion coefficients are considered as constant for all the species transported. So, the equation

system of aero-thermo-chemistry is written as follows:

Continuity equation for incompressible fluid

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1.1.1)

where ρ is the density and ui is the ith component of the flow velocity field u.

Conservation of the chemical species

The mass conservation equation for species k is written:

∂ρYk
∂t

+
∂ρ(ui + Vk,i)Yk

∂xi
= ω̇k, (1.1.2)

where Yk is the mass fraction of species k, Vk,i is the ith component of the diffusion velocity Vk

of species k and ω̇k its reaction rate. Due to the total mass conservation and by summing all

species equations, given in Eq. (1.1.2), a necessary condition is defined for the diffusion velocity:

N∑

k=1

YkVk,i = 0. (1.1.3)

1
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Using the Hirschfelder and Curtiss approximation for multispecies gas (reported by Poinsot

and Veynante (2012)), the diffusion velocity of each species might be expressed as follows:

VkXk = −Dk∇Xk, (1.1.4)

where Xk is the mole fraction of species k and Dk is an equivalent diffusion coefficient of species

k in the rest of the mixture, which is defined using the Schmidt number Sck of species k and

the kinematic viscosity ν:

Dk =
ν

Sck
. (1.1.5)

Conservation of momentum

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂P
∂xj

+
∂τij
∂xj

, (1.1.6)

where P is the pressure and τ is the viscous tensor. The latter is expressed by Eq. (1.1.7)

assuming Newtonian fluid.

τij = µ

Å
∂ui
∂xj

+
∂uj
∂xi

ã
− 2

3
µ
∂uj
∂xj

δij, (1.1.7)

where µ is the dynamic viscosity and δij is the Kronecker delta. The former allows to define

the kinematic viscosity as: µ = ρν.

Conservation of the total energy

∂ρet
∂t

+
∂(ρet + P )uj

∂xj
=
∂uiτij
∂xj

− ∂Jej
∂xj

+ ω̇T , (1.1.8)

where et is the total energy, ω̇T the heat release due to combustion and Jej the heat flux in the

direction j. The latter is expressed, using Fourrier’s law, as:

Jej = −λ ∂T
∂xj

, (1.1.9)

where λ is the thermal diffusivity and T is the temperature.

When the pressure is assumed constant and the viscous heating negligible, the energy bal-

ance equation given in Eq. (1.1.8) can be simplified and expressed with temperature, as follows:

ρCp

Å
∂T

∂t
+
∂Tui
∂xi

ã
= ω̇′T +

∂

∂xi

Å
λ
∂T

∂xi

ã
− ρ ∂T

∂xi

(
N∑

k=1

Cp,kYkVk,i

)
, (1.1.10)

where Cp and Cp,k are the mass heat capacities at constant pressure of the mixture and of the

species k, respectively, and ω̇′T is the reaction term. The latter differs from the heat release ω̇T

and is defined as:

ω̇′T = ω̇T −
N∑

k=1

hskω̇k, (1.1.11)
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where hsk =
∫ T
T 0 Cp,kdT is the sensible enthalpy of the species k. Thus, when all heat capacities

are equal Cp,k = Cp, the terms ω̇′T and ω̇T are equal.

In the case of premixed combustion, the flame is often described using a progress variable

c, such as c = 0 in the fresh gases and c = 1 in the fully burnt gases. There are several ways

to define this variable, for example as a reduced temperature using Eq.(1.1.12a) or a reduced

mass fraction using Eq.(1.1.12b):

c =
T − Tu
Tb − Tu

,

c =

∑
Yk −

∑
Yku∑

Ykb −
∑
Yku

,

(1.1.12a)

(1.1.12b)

where the indices u and b are used to designate variables in the fresh gases and in the burnt

gases, respectively.

From the formulas in Eq.(1.1.12) and from the conservation of total energy in Eq. (1.1.10),

a balance equation is defined for the progress variable c:

∂ρc

∂t
+∇ · (ρcu) = ∇ · (ρDc∇c) + ω̇c, (1.1.13)

where Dc is a diffusion coefficient and ω̇c is a source term.

Ideal gas law

P = ρrT, (1.1.14)

where r is the density weight ideal gas constant. This quantity can be computed following:

• from the universal gas constantR = 8.314 J/mol/K and the molar massW = (
∑
Yk/Wk)

−1,

where Wk is the molar mass of species k, of the mixture:

r =
R

W
, (1.1.15)

• from the mass heat capacities Cp and Cv at constant pressure and volume, respectively:

r = Cp − Cv. (1.1.16)

1.2 Physics of the laminar premixed flame.

The one-dimensional laminar flame propagating into a premixed gas is the basic configuration,

both for theory and for numerical solving. This flame is usually described as a wave propagating

from the burnt to the fresh gases at a speed which reaches a constant value SL after a transient

phase, as illustrated in Fig. 1.2.1.
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Figure 1.2.1: Propagation of a laminar premixed flame in a duct. (Richard, 2005).

When the laminar flame is considered as steady, the conservation equations presented in

Section 1.1 are written as follows:

ρu = constant = ρuSL, (1.2.1)

∂

∂x
(ρ (u+ Vk)Yk) = ω̇k, (1.2.2)

ρCpu
∂T

∂x
= ω̇′T +

∂

∂x

Å
λ
∂T

∂x

ã
− ρ∂T

∂x

N∑

k=1

Cp,kYkVk. (1.2.3)

The reaction terms ω̇k in this set of equations are determined through the chemical mecha-

nism, which can be first approximated with the following general model:

Fuel + Ox → P, (1.2.4)

where Ox and P are the oxidant and the reaction’s products, respectively. The reaction rate ω̇

of this general reaction is usually modelled through an Arrhenius law:

ω̇ = ρAY m
F Y

n
Ox exp

Å
− Ea
RT

ã
, (1.2.5)

where A is a pre-exponential factor, Ea the activation energy for the reaction, YF and YOx the

mass fractions of the fuel and the oxidant, respectively, m and n the partial orders of reaction

for the fuel and the oxidant, respectively.

0.026 0.028 0.03
x [m]

0

2

4

6

8

T/T
u

Y
F
/Y
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ω. /(0.25ω.
max

)

Figure 1.2.2: Spatial profiles of normalized temperature, normalized fuel mass fraction and the
normalized reaction rate of a steady 1D laminar premixed flame.
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Thus, from the knowledge of a chemical mechanism Eqs. (1.2.1) to (1.2.3) can be solved.

A typical solution of this set of equation is given in Fig. 1.2.2, where the spatial profile of the

normalized temperature T/Tu is plotted along with the normalized reaction rate ω̇/(0.25ω̇max)

and the normalized fuel mass fraction. The normalizations of the temperature and the fuel

mass fraction are done with their respective values in the fresh gases, Tu and Y u
F . The reaction

rate is normalized with 0.25 of its maximum value for visual purpose.

Laminar Flame Velocity

Considering the simple case of a 1D stationary laminar flame configuration, the laminar flame

velocity S0
L is deduced from the fuel mass conservation described by Eq. (1.2.2):

ρuS
0
LY

u
F = −

∫ +∞

−∞
ω̇Fdx = Ω̇F , (1.2.6)

where Ω̇F is the total fuel consumption rate in the domain and ω̇F is the local fuel reaction

rate.

Laminar Flame Thickness

One key feature of premixed laminar flames is that they have a specific thickness which can be

characterized by the thermal thickness defined as:

δ0
L =

Tb − Tu
max(|∇T |) , (1.2.7)

where Tb is the temperature of the burnt gases.

By observing the temperature and species profiles and the reaction rate evolution through

the flame, two zones can be distinguished in Fig. 1.2.2: a preheating zone and a reaction zone

of thickness δr. The former is a zone where the temperature of the fresh gases increases; the

latter is the zone where the reactions actually occur. So, different ways exist to compute the

flame thickness, several of them are presented here:

• The total thickness δtL corresponds to the distance over which the temperature changes

from Tu(1 + ε) to Tb(1− ε)

• The diffusion thickness δL is usually dimensionally defined using the kinematic viscosity

in the fresh gases νu and the laminar flame velocity S0
L:

δL =
νu
S0
L

. (1.2.8)

• Reaction thickness δr is generally defined by a proportional law with the diffusion

thickness. For most premixed flames, δr/δ
0
L ≈ 0.1 (Poinsot and Veynante, 2012).

The main drawback of the previous expressions is that they require a first computation

of the flame. Thus, correlations are mainly used for simulation purpose, like the correlation
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proposed by Blint (1986):

δBlintL = 2
λ

ρCpS0
L

Å
Tb
Tu

ã0.7

, (1.2.9)

where Tu is the temperature of the fresh gases and Tb is the adiabatic flame temperature. Note

that this equation requires the knowledge of the laminar flame speed, which can be determined

from phenomenological correlations as the one proposed by Metghalchi and Keck (1982) for

iso-octane.

Finally, because in the flame front occur different competitive phenomena (for example,

thermal conduction, species diffusion, chemical reaction), some non dimensional numbers are

introduced:

• The flame Reynolds number Ref compares the characteristic time associated with diffu-

sion and the time it takes for the flame front to propagate over a distance corresponding

to its thickness:

Ref =
S0
Lδ

νu
, (1.2.10)

where δ is the laminar flame thickness and νu is the kinematic viscosity of the fresh gases.

Thus, the value of the flame Reynolds number is strongly dependent on the definition of

the flame thickness chosen. When the diffusive flame thickness is used in Eq. (1.2.10),

Ref is equal to 1.

• The Prandtl number Pr compares the kinematic viscosity to the thermal conductivity:

Pr =
νρCp
λ

. (1.2.11)

• The Lewis number of each species Lek compares the thermal diffusivity to the molar

diffusivity of the species k:

Lek =
λ

ρCpDk

=
Sck
Pr

. (1.2.12)

The thermal diffusivity is mainly controlled by the major species, which is typically

nitrogen for reactions occuring in the air.

To conclude, a characteristic time of the flame τf is defined as:

τf =
δL
S0
L

. (1.2.13)

τf represents the time needed by the laminar flame to travel a distance equal to the laminar

flame thickness δL
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1.3 Turbulent combustion

. In spark ignition (SI) engines, the flow is strongly turbulent (Heywood, 1988; Lacour and

Pera, 2011; Lorenzo et al., 2020; Mahendar et al., 2019; Prucka et al., 2010).

1.3.1 Physics of turbulent flow

First, turbulence is highly chaotic and stochastic. These characteristics associated with the

fluctuating processes defining turbulence make the response of the flow highly dependent on

initial and boundary conditions. A statistic approach is often chosen to describe turbulent

flows. The main idea is to split any quantity Q into a mean part Q and a fluctuating part Q′

as:

Q = Q+Q′. (1.3.1)

An important issue is how the turbulence energy is distributed over the different length

scales present in the flow field. As proposed by Kolmogorov (1940), turbulent fluctuations are

associated with different scales ranging from the largest, the integral length scale lt, to the

smallest one, the Kolmogorov length scale η. The former scale represents the most energetic

turbulent structures, while the latter corresponds to the structures where all the energy has

been dissipated. From this theory the flow is considered as a collection of vortices with different

characteristic lengths r and characteristic velocities u′(r), allowing to define the eddy turnover

time and wave-number as τr = r/u′(r) and kr = 2π/r, respectively. To characterize each

turbulent scales a Reynolds number Re(r) is introduced as:

Re(r) =
u′(r)r

ν
, (1.3.2)

where u′(r) is the characteristic velocity of the motion of size r. When r corresponds to the

integral scale lt, the corresponding Reynolds number is the integral Reynolds number:

Ret =
u′tlt
ν
, (1.3.3)

where u′t is the characteristic velocity of the integral scale.

Figure 1.3.1 shows the Kolmogorov energetic cascade in a homogeneous isotropic turbulence

(HIT) fully developed and maintained.

Three zones are defined in Fig. 1.3.1 from this spectral representation:

1. The integral zone, which corresponds to the largest and the most energetic structures

(small wave-numbers).

2. The inertial zone, which corresponds to the range of scales where the energy exchanges

are achieved without losses. According to Kolmogorov’s theory (Kolmogorov, 1940) the

energy transfer from the large eddies of size lt is equal to the dissipation of energy at
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Figure 1.3.1: Turbulence spectrum

the Kolmogorov scale η. Since the dissipation rate ε is constant in the inertial zone,

dimensional analysis relates the eddy turnover time τr and the characteristic velocity

u′(r) of the r length scale to ε:

ε ∼ u′(r)2

τr
∼ u′(r)3

r
. (1.3.4)

Therefore, the dissipation rate ε is directly related to the characteristic velocity and the

length of the integral scale eddies through:

ε ∼ u′t
3

lt
. (1.3.5)

The kinetic energy u′(r)2 at scale r is then ε2/3k
−2/3
r leading to the following kinetic energy

density in wave number space E(kr):

E(kr) =
du′(r)2

dk
∼ ε2/3k−5/3

r . (1.3.6)

This is the well-known k−5/3 law for the kinetic energy spectrum in the inertial subrange.

3. The dissipative zone represents the smallest structures with scales lower than the Kol-

mogorov length. At this scale all the energy is dissipated into heat, and the Reynolds

number verifies:

Reη =
u′(η)η

ν
= 1. (1.3.7)

1.3.2 Turbulence/combustion interaction mechanisms

Combustion and turbulent flow are affected by each other within the turbulent reactive flow.

First, by crossing the flame front the turbulent field is perturbed, as described by (Poinsot

and Veynante, 2012, p.196). On the one hand, a relaminarization of the flow can occur as

an effect of the increase in the kinematic viscosity ν with the high temperatures involved in

the burnt gases. On the other hand, the increase in temperature can lead to an acceleration
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of the burnt gases caused by their dilatation enhancing the turbulence intensity. Another

phenomenon due to the increase of temperature is observed on the turbulent transport. The

previous mechanism enhancing the turbulence intensity is usually oriented in the opposite

direction of the gradients of the transported variables (typically toward the fresh gases for

temperature). However, as mentioned because of thermal expansion, the pressure gradient in

flames tends to accelerate the pockets of burnt gas downstream leading to induce vorticity.

This phenomenon known as the baroclinic effect (Batley et al., 1996) generates a counter-

gradient transport, as observed by Veynante and Poinsot (1997). These complexes phenomena

competing with each other are studied in detail by Mueller (1998) through the observation of

vorticity generation in experiments. This study shows how gas expansion and flame stretching

can influence the turbulent flow. As a result, the flame behaviour is clearly not isotropic, and

the assumption of isotropic turbulence cannot be considered any more, although in practice

turbulent combustion models do not take into account this anisotropy.

Second, the flame front by propagating through the turbulent flow is perturbed by the

large and the small eddies. On the one hand, the large scales of turbulence, compared to the

laminar flame thickness, are mostly wrinkling the flame. On the other hand, the small eddies

are penetrating the flame front which allows them to interact directly with chemistry and to

increase turbulent mixing and diffusive effects. However, from a macroscopic point of view the

main effect of turbulence on the flame is to increase the propagation speed ST . Damköhler

(1940) attributed this acceleration to the increase in the flame front surface AT by wrinkling,

leading to:
ST
S0
L

∝ ATAL
, (1.3.8)

where AL represents the flame surface of the laminar flame. From Eq.(1.3.8) the wrinkling

factor is defined as the right hand side term Ξ = AT
AL

. In addition, some experimental studies

conducted by Abdel-Gayed et al. (1984, 1989) allowed to determine a simple expression for the

wrinkling, through ST/SL:
ST
S0
L

= 1 + α

Å
u′t
S0
L

ãn
, (1.3.9)

where α and n are constants close to unity. This approximation is valid for weak turbulence

(Peters, 1999). Finally, the wrinkling of the flame by turbulence can lead to quenching.

1.3.3 The classification of the interactions between flame and tur-

bulence: Combustion regimes

With regards to numerical simulation, it is important to know which of the previous phenomena

described takes over. The classification of the combustion regimes of a turbulent premixed flame

was the subject of many studies, some of them are based on phenomenological interactions

analysis (Borghi, 1985; Peters, 1999). They allow plotting combustion diagrams like Peters-

Borghi diagram in Fig. 1.3.2, which is mainly based on non-dimensional numbers, such as the

Karlovitz number and the Damköhler number. The latter compares the characteristic time of
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the integral scale to the chemical time, Da = τt/τf ; the former compares the chemical time

with the Kolmogorov time, Ka = τf/τη.

These two numbers are often expressed as functions of the laminar flame thickness, the

laminar flame velocity and the characteristic lengths and velocities of turbulence:

Da =

Å
lt
δL

ãÅ
S0
L

u′t

ã
, (1.3.10)

Ka =

Å
lt
δL

ã−1/2 Å u′t
S0
L

ã3/2

. (1.3.11)
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Figure 1.3.2: Combustion regimes using Peters-Borghi diagram (Peters, 1999)

Peters (1999) proposed to classify turbulent premixed flames using the Karlovitz number.

This classification, illustrated in Fig. 1.3.2, is based on the Klimov-Williams criterion, which

corresponds to the line separating the flamelet and the distributed reaction zones with the

condition Ka = 1:

• When Ka < 1, the Kolmogorov scale ηk is larger than the laminar flame thickness. Thus,

none of the structures of turbulence are penetrating the flame front. The flame is seen as

a collection of flamelets, which are 1D thin reactive-diffusive layers locally propagating at

the laminar flame speed, and is wrinkled by turbulence, this is the flamelet regime.

• When Ka > 1, the Kolmogorov scale is smaller than δL, it means that some of the

turbulent structures might penetrate the flame front. However, only few of them will

affect the flame because the small scales are strongly dissipative. Peters refined the

analysis of this zone by proposing a new criterion allowing to identify the structures

penetrating the reaction zone. By considering the reaction thickness instead of δL, the

Karlovitz number becomes Kar = (δr/ηk)
2. When Kar is larger than 1, corresponding

to Ka = 100 by assuming δr/δL ≈ 0.1, the smallest turbulent structures penetrate the

reaction zone. Thus, this zone is divided into two regimes:

– When 1 < Ka < 100, the Kolmogorov scale is smaller than the laminar flame thick-

ness but larger than the reaction zone. Therefore, the smallest turbulent structures



1.4. COMPUTATIONAL FLUID DYNAMICS APPROACHES FOR COMBUSTIONMODELLING.11

are only penetrating the preheat zone. This zone is called the Thin Reaction Zone

(TRZ) regime.

– When Ka > 100, the smallest turbulent structures penetrate the reaction zone.

Thus, the turbulence is perturbing chemical reactions that can locally lead to quench-

ing. This zone is known as the Broken Reaction Zone (BRZ) regime.

Combustion in IC engines

Figure 1.3.3: Operating domain of a IFPEN’s SI engine burning gasoline at different engine
speeds and loads, from the work of Bougrine (2012).

In IC engines, flow in the chamber is generated by aerodynamic motions induced by the

intake, the piston movements and the spray, when direct injection is used. These motions

are therefore controlled by air-paths and chamber geometries. Thus, from global geometrical

considerations, the length and velocity of the integral scale involved in SI engines are typically

in the range: 1 < lt/δL < 100 and 1 < u′t/S
0
L < 50. According to the Peters-Borghi diagram in

Fig. 1.3.2, it corresponds to a zone in both the flamelet regime and the TRZ regime, as displayed

in Fig. 1.3.3. This figure proposed by Bougrine (2012) shows the levels of lt/δL and u′t/S
0
L for

an IFPEN SI engine. It appears that combustion regime involved in SI engines are strongly

dependent on the engine load and engine speeds. However, for naturally aspired engines the

combustion is mainly in the flamelet regime, while for downsized engines the flames drift from

flamelet regime to the TRZ regime.

1.4 Computational fluid dynamics approaches for com-

bustion modelling.

Simulations of IC engines require to resolve the equations of aero-thermo-chemistry presented

in Section 1.1. For this purpose, there are three different approaches, the concepts of which

are derived from the spectral representation of the turbulence presented in Section 1.3. These

approaches are: the direct numerical simulations (DNS), the Reynolds averaged Navier Stokes

(RANS) and the large eddy simulations (LES).
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The principle of these three approaches, described below, are illustrated in Fig. 1.4.1.

Figure 1.4.1: Turbulence spectrum with resolution methods domain

1.4.1 Direct numerical simulations approach

This first method is the most natural one and consists in solving directly the equations of aero-

thermo-chemistry. The idea behind DNS is to resolve all scales of the turbulence (presented

in Fig. 1.3.1). To achieve this objective, the mesh used to numerically solve the equations in

Section 1.1 is subjected to constraints concerning both its size and its cells size. In DNS, to

resolve simultaneously the large scales lt and the small scales η of turbulence, a mesh with N

cells in each spatial direction, the size of which is ∆, should respect the following constraints:

N∆ ≥ lt, (1.4.1)

∆ ≤ η. (1.4.2)

Furthermore, the size of the system studied, like the combustion chamber of a piston engine,

is larger than the integral length. The characteristic length of the system L, which is the

diameter of the chamber combustion in a piston engine, is expressed as L = N∆. So from this

relationship and Eq. (1.4.2), the following relationship is defined between N , the size of the

system and the Kolmogorov length:

N ≥ L

η
, or equivalently, Ret < N4/3. (1.4.3)

However, in the case of a reactive flow the inner flame structure must be fully resolved to

compute correctly the chemical reactions. The proper resolution of chemical scales depends

strongly on the type of chemical scheme used. For simple description of the chemistry, a

minimum of Nf ≈ 20 grid points are required to fully resolved the inner flame structure

(Poinsot and Veynante, 2012). This leads to an upper limit for the turbulence integrale length

scale lt which must be smaller than L to provide converged statistics:

lt
δ0
L

<
L

δ0
L

<
N

Nf

. (1.4.4)
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Equation (1.4.4) can be expressed using the non-dimenional numbers Ret and Da, leading to

the following computation grid condition:

RetDa <

Å
N

Nf

ã2

. (1.4.5)

For example, considering a piston engine, like the one used by Mounäım-Rousselle et al.

(2013), whose combustion chamber has a diameter of L = 85 mm, a typical Kolmogorov length

in this chamber of η = 0.0047 mm and a flame whose thickness is approximately δ0
L = 0.1 mm,

the number of nodes in the mesh in each direction must be N ≥ 18000. Thus, in this case the

total number of cells for computing the flow in the domain is larger than 1012. This example

illustrates the difficulties linked to the use of DNS. Indeed, to perform this simulation the

computer resources required would be too high for an industrial application. That is why the

DNS method is mainly used for academic purpose and simple cases to investigate fundamental

aspects which can not be experimentally studied. This approach is the one used in this study

to analyse different flames interacting with turbulence in Chapters 2 and 3 .

1.4.2 Reynolds averaged Navier Stokes approach

This second method is the most used in industrial processes because of the computing time-

savings. Because of the complexity and the large range of scales involved in a turbulent flow,

as presented in Section 1.3, this method is focused on the averaged component in Eq. (1.3.1).

Usually, the averaged component is interpreted as an ensemble average. In practice, in IC

engines, it is a statistic average of Nt engine cycles:

Q(x, θ) =
1

Nt

lim
Nt→+∞

Nt∑

i=1

Qi(x, θ), (1.4.6)

where Q is any quantity of interest and θ is the time during an engine cycle expressed in crank

angle. The averaged fluctuations of any quantity is zero, Q′ = 0.

This ensemble average is known as the Reynolds average, to be opposed to the Favre average,

which is a density weighted average defined as:

Q̃ =
ρQ

ρ
. (1.4.7)

Analogically to the Reynolds average, any quantity may be decomposed into a Favre average

and the associated fluctuations Q′′ as Q = Q̃ + Q′′. As for the Reynolds average, the Favre

average of the associated fluctuations is zero (i.e., Q̃′′ = 0 but the Reynolds average of these

fluctuation is non-zero, Q′′ 6= 0).

Using these averaged operators, defined in Eqs. (1.4.6) and (1.4.7), the equations of the
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aero-thermo-chemistry in Section 1.1 are averaged and become:

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1.4.8)

∂ρỸk
∂t

+
∂ρũiỸk
∂xi

+
∂ρũ′′i Y

′′
k

∂xi
= − ∂

∂xi

Ç
ρDk

∂Ỹk
∂xi

å
+ ω̇k, (1.4.9)

∂ρũi
∂t

+
∂ρũiũj
∂xj

+
∂ρũ′′i u

′′
j

∂xj
= − ∂P

∂xj
+
∂τij
∂xj

, (1.4.10)

ρCp

(
∂T̃

∂t
+
∂T̃ ũi
∂xi

+
∂T̃ ′′u′′i
∂xi

)
= ω̇′T +

∂

∂xi

Å
λ
∂T

∂xi

ã
− ρ ∂T

∂xi

(
N∑

k=1

Cp,kYkVk,i

)
. (1.4.11)

Assuming that al the heat capacities Cp,k are equal, using Eq. (1.1.3), Eq. (1.4.11) becomes:

ρCp

(
∂T̃

∂t
+
∂T̃ ũi
∂xi

+
∂T̃ ′′u′′i
∂xi

)
= ω̇′T +

∂

∂xi

Å
λ
∂T

∂xi

ã
. (1.4.12)

Finally, in this system of averaged equation, some unknown terms appear corresponding to

the fluctuations of the quantities involved due to the turbulent structures smaller than lt. So,

in the RANS approach models for these terms are needed to close the system and enable its

solving. The main closures are:

• The Reynolds stress tensor ũ′′ku
′′
i , which is usually model using Boussinesq’s assumption

(Boussinesq, 1897) introducing a turbulent viscosity µt:

ρũ′′i u
′′
j = −µt

Å
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũi
∂xi

ã
+

2

3
ρk, (1.4.13)

where k is the turbulent kinetic energy. Many models exist for this tensor, from algebraic

models (for example, using a mixing length (Prandtl, 1925)) to models with two transport

equations (for example, for k and ε known as the k-ε model (Jones and Launder, 1972)).

• The thermal flux T̃ ′′u′′i , which is modelled with a gradient approach introducing a

turbulent Prandtl number Prt:

T̃ ′′u′′i = − νt
Prt

∂T̃

∂xi
. (1.4.14)

• The turbulent species flux Ỹ ′′k u
′′
i , which are usually modelled with gradient approach

introducing a turbulent Schmidt number Sct:

ρỸ ′′k u
′′
i = − µt

Sct

∂Ỹk
∂xi

. (1.4.15)

• The mean reaction rate ω̇k or ω̇′T . Numerous studies propose models for this quan-
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tity and are well documented (Kuo, 2005; Poinsot and Veynante, 2012; Veynante and

Vervisch, 2002). Some of these models are: the eddy break up (EBU) model (Spalding,

1977), the Bray-Moss-Libby (BML) model (Bray and Moss, 1977), flame surface density

models (Marble and Broadwell, 1977; Pope, 1988; Trouvé and Poinsot, 1994) or proba-

bility density functions models (Pope, 1985).

1.4.3 Large eddy simulations approach

The large eddy simulations approach can be seen as a hybrid method combining DNS and

RANS approaches. Indeed, the objective in LES is to explicitly compute the largest struc-

tures of the flow field , whereas the effects of the smallest ones are modelled (as illustrated in

Fig. 1.4.1).

Analogously to RANS approach, variables are spatially filtered to distinguish the largest

and the smallest scales in LES. The filtered quantity Q is then defined as:

Q(x, t) =

∫

V
Q(x′, t)G∆(x− x′)dx′, (1.4.16)

where V is the domain of simulation, ∆ is the filter width and x is the position vector. The

functions used as filter need to respect essential properties, which are:

• the filter is normalized: ∫

V
G∆(x− x′)dx′ = 1. (1.4.17)

• the filter is linear:

Q1 +Q2 = Q1 +Q2. (1.4.18)

• the filter commutes with the derivation operators:

∂Q

∂t
=
∂Q

∂t
, (1.4.19)

∂Q

∂xi
=
∂Q

∂xi
. (1.4.20)

This commutation is only valid under restrictive assumptions and often wrong in IC

engines, where the filter size varies with spatial location. However, the uncertainties due

to this commutation are neglected and their effects are assumed to be incorporated in the

subgrid scale models (Poinsot and Veynante, 2012).

Some of the usual filters in LES are given below:

• The box filter:

G∆(x) =

{
1

∆n if |x| ≤ ∆
2
,

0 otherwise.
(1.4.21)
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• The Gaussian filter:

G∆(x) =

Ç
1

∆

…
6

π

ån
exp

Å
− 6

∆2
x2

ã
. (1.4.22)

• The spectral filter:

G∆(x) =
sin
(
π
∆

x
)

xπ
. (1.4.23)

In Eqs. (1.4.21) and (1.4.22), n represents the number of dimensions of the studied domain.

Finally, a Favre filter is defined in LES analogously to the Favre average in RANS approach:

Q̃ =
ρQ

ρ
. (1.4.24)

In practice, the filtering is done through the mesh of size ∆x. Consequently, the apparent

filtering is assimilated to a Gaussian filter or a box filter, the width of which is close to ∆x.

The following system of the filtered equations of the aero-thermo-chemistry is analogous to

the RANS averaged system in Eqs. (1.4.8) to (1.4.11).

Finally, in this system of filtered equations, some unknown terms appear corresponding to

the effects of unresolved motions. The main closures of these terms in LES are:

• The subgid scale Reynolds stress tensor ũkui− ũkũi, which is usually model through

a kinematic turbulent sub-grid scale viscosity νt and Boussinesq’s assumption:

ũiuj − ũiũj = −νt
Å
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũi
∂xi

ã
+

2

3
ksgs, (1.4.25)

where ksgs is the turbulent sub-grid scale kinetic energy. Many models exist for this tensor,

from algebraic models (such as Smagorinsky’s model (Smagorinsky, 1963)) to models with

a transport equation for ksgs, reported by Richard (2005).

• The sub-grid scale thermal and species flux ũiT − ũiT̃ and ũiYk − ũiỸk are usually

modelled with a gradient approach like for RANS modelling:

ρCp
Ä
ũiT − ũiT̃

ä
= −ρCp

νt
Prt

∂T̃

∂xi
, (1.4.26)

ρ
Ä
ũiYk − ũiỸk

ä
= −ρ νt

Sct

∂Ỹk
∂xi

, (1.4.27)

where Sct and Prt are turbulent Schmidt and Prandtl numbers, respectively.

• The mean reaction rate ω̇k or ω̇′T . As for the RANS approach, numerous studies were

conducted to propose models for this quantity and are well documented (Poinsot and

Veynante, 2012; Veynante and Vervisch, 2002). A non-exhaustive list of models is further

described in the next section.
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To conclude, the potential of the LES can be illustrated on a piston engine application,

where typical values of the mesh size ∆x are approximately 0.5 mm. Using this magnitude

to define a LES filter width for the piston engine cited in Section 1.4.1 (Mounäım-Rousselle

et al., 2013) leads to a mesh using 170 cells in each direction. Thus, the 3D LES mesh for the

combustion chamber would have approximately 4, 000, 000 cells, which is much smaller than

the DNS mesh presented in Section 1.4.1. Nevertheless, with this approach only the largest

structures of turbulence are resolved.

1.5 State of the art on computational fluid dynamics

modelling of turbulent premixed flames.

As told in the previous section, applying an LES filter allows to define a coarse mesh. However,

with such mesh the front flame is usually not resolved. Indeed, the flame thickness is approx-

imately 0.05 mm while a typical cell size for an engine LES simulation is about 0.5 mm. Yet,

the heat release that occurs in the flame front is usually large and the other relevant variables

are evolving in the flame front along a steep slope.

To overcome these issues, three main approaches have been proposed: simulation of an

artificially thickened flame, use of a flame front tracking technique (G-equation), or filtering

with a Gaussian filter larger than the mesh size as proposed by Boger (1998; 2000). Some

RANS approaches, such as probability density function formulations or developing sub-grid

scale models for filtered reaction rates and unresolved scalar transport, can be used to avoid

the aforementioned theoretical problems as reported by Poinsot and Veynante (2012).

The present section is dedicated to the description of the three main LES approaches cited

beginning with artificially thickened flames. Then, the level-set approach is presented following

by the description of models based on flame surface density.

1.5.1 Thickened flame for LES model

The thickened flame for LES (TFLES) model is based on a kinetic description of the flame.

This model first introduced by Butler and O'Rourke (1977) and O'Rourke and Bracco (1979)

for laminar flame simulations consists in thickening artificially the flame front by a factor F .

This thickening affects only the thickness of the flame front.

Indeed, as presented in Section 1.2 the flame thickness δ0
L and the laminar flame speed S0

L

are given by:

δ0
L ∝

D

S0
L

, (1.5.1)

S0
L ∝
√
Dω̇, (1.5.2)

where D is a diffusivity coefficient (either thermal or molar) of the fresh gases and ω̇ is the

mean reaction rate. Thus, multiplying the diffusivity by F while dividing the ω̇ by this same
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factor thickens the flame by a factor F .

Nevertheless, artificially thickening the flame by a factor F leads to decrease the Damköhler

number by this same factor:

DaF =
lt

Fδ0
L

S0
L

u′t
=

1

F
Da, (1.5.3)

where Da and DaF are the real Damköhler number and the one after thickening, respectively.

This decrease in the Damköhler number leads to strongly change the turbulence/flame interac-

tions. Indeed, some studies from DNS (Angelberger et al., 1998; Veynante and Poinsot, 1997)

show that by thickening artificially the flame, the turbulence is not disturbing the flame as much

as it should, in particular the small vortices, the scales of which are larger than the LES filter

width ∆ but smaller than flame thickness Fδ0
L. Veynante and Poinsot (1997) and Angelberger

et al. (1998) show that these vortices are no longer affecting the flame front, while vortices

of scales larger than Fδ0
L are less efficient. Thus, the creation of flame surface by turbulence

through the wrinkling of the flame front is largely underestimated using an artificially thickened

flame.

Based on these observations, some studies such as the one conducted by Colin et al. (2000)

proposed the use of an efficiency function E, the aim of which is to evaluate the real wrinkling

Ξ0 compared to the wrinkling of the resolved flame front Ξ1. The wrinkling is defined as the

ratio AT/A0, where AT is the turbulent flame surface and A0 is the projection of AT on the

normal propagation direction.

E =
Ξ0

Ξ1

. (1.5.4)

The spectral analysis of DNS similar to those conducted by Meneveau and Poinsot (1991)

lead Angelberger et al. (1998) to the following expression for the sub-grid scale wrinkling Ξ

generated by a homogeneous isotropic turbulence:

Ξ = 1 + αΓ

Å
∆

δ0
L

,
u′∆
S0
L

ã
u′∆
S0
L

, (1.5.5)

where u′∆ is the fluctuation velocity associated to the turbulent scales ∆, and Γ is an efficiency

function. Studies (Bougrine et al., 2014; Charlette et al., 2002a; Colin et al., 2000; Meneveau

and Poinsot, 1991) are dedicated to the modelling of this function, some of them are reported

in Table 1.1. The model constant α is written by Colin et al. (2000) to get a turbulent flame

speed ST = ΞS0
L with the form ST = S0

L + u′t:

α = β
2 ln(2)

3cms(Re
1/2
t − 1)

, (1.5.6)

where cms = 0.28 and β is equal to unity. This expression involves the turbulent Reynolds

number Ret = ltu
′
t/ν, which is rarely known a priori in the context of LES. To overcome this

issue, the efficiency function proposed by Charlette et al. (2002a) can be used, which does not

involve integral quantities.
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In practice, the effects of the thickening on the resolved wrinkling are implemented in LES

code by multiplying the reaction rate and the diffusivities by E. Thus, this model may be

summarized with the following relationships:

δL,resolved ∝
EFD

ES0
L

= Fδ0
L, (1.5.7)

ST ∝
…

(EFD)
Eω̇

F
= ES0

L. (1.5.8)

To conclude, this approach presents many advantages mainly due to its simplicity. For

example:

• it allows to control easily the thickening of the flame front given by Fδ0
L,

• its form, which does not depend on combustion regime assumptions, seems universal.

• this model naturally converges to the laminar flame when the turbulence intensity suffi-

ciently decreases.

Nevertheless, the drawbacks of this model are drags to its application for new IC engines:

• The needed thickening factor F for IC engines configurations are very large, approximately

50 to 100. These levels of F might affect the evaluation of the wall heat flux, or the

simulation of the sparking phase. These issues are well documented by Richard (2005).

• The thickening changes the turbulence/combustion interactions due to the change in the

characteristic flame time involved, leading to a modified Damköhler number.

• The efficiency function is developed based on flamelet assumptions and is probably not

valid in the TRZ regime.

• The main issue concerns the equilibrium assumption between production and destruction

of sub-grid scale flame surface, which is needed for the use of an algebraic closure of the

sub-grid scale wrinkling.

1.5.2 G-equation model

Contrary to the TFLES model, the “G-equation” approach is purely kinematic, where the flame

thickness is set to zero and the flame front is described as a propagating surface. To track this

surface, Kerstein et al. (1988) introduced a variable G, the field of which is resolved on the LES

mesh as illustrated in Fig. 1.5.1.

Thereby, the flame is spotted with an iso-surface G = G∗ and the G field is obtained with

the transport equation 1.5.9.
∂G

∂t
+ ui

∂G

∂xi
= w

∣∣∣∣
∂G

∂xi

∣∣∣∣ , (1.5.9)

where w is the propagation velocity of the iso-surface G = G∗.
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Figure 1.5.1: Flame front and G field (Poinsot and Veynante, 2012)

When the G-equation is filtered the term w| ∂G
∂xi
| appears and needs to be modelled. Usually,

a similar transport equation for the resolved field G as the G equation given in Eq. (1.5.9) is

defined (Peters, 1999; Pitsch, 2005):

∂G

∂t
+ ui

∂G

∂xi
= ST

∣∣∣∣∣
∂G

∂xi

∣∣∣∣∣ , (1.5.10)

where ST is the propagation speed of the resolved field G. This velocity can be seen as a

sub-grid scale turbulent flame speed. To close Eq. (1.5.10), this velocity must be modelled.

The commonly used model for ST proposed by Pitsch (2005) is based on a similar relationship

as Eq. (1.3.9):
ST
SL

= 1 + α

Å
u′∆
S0
L

ãn
, (1.5.11)

where the model constants α and n are close to unity. The main drawback of this approach is

that ST is a global variable difficult to measure and the model of which depends strongly on

the modelling of the velocity fluctuations u′∆.

Finally, the main advantage of this approach is that it does not depend on combustion

regimes. Nevertheless, many issues might make difficult its use in new IC engines simulations,

such as:

• From a numerical point of view, the absence of diffusion term in the transport equation

of G might lead to very large gradient of each variables. Consequently, the simulations

could diverge. Therefore, front-tracking techniques are needed, as well as cusp removal

techniques.

• As for the TFLES model, the sub-grid scale wrinkling is introduced through the turbulent

flame speed in Eq. (1.5.11) leading to the same limit for this approach.

• The correlations for the turbulent flame speed are based on flamelet assumptions making

them difficult to use in TRZ regime.
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1.5.3 Flame surface density based models

When Eq.(1.1.13) is filtered with a LES filter following the approach defined in Section 1.4.3,

the filtered equation is:

∂ρc

∂t
+∇ · (ρc̃ũ) +∇ · [ρ(c̃u− c̃ũ)] = ∇ · (ρDc∇c) + ω̇c. (1.5.12)

There are three terms to model in Eq.(1.5.12):

1. The unresolved turbulent transport c̃u− c̃ũ.

2. The filtered molecular diffusion fluxes ∇ · (ρDc∇c).

3. The filtered reaction rate ω̇c.

The unresolved turbulent transport is generally modelled using a simple gradient assump-

tion, as proposed by Boger (1998; 2000):

c̃u− c̃ũ = − νt
Sct
∇c̃, (1.5.13)

where Sct is a sub-grid scale turbulent Schmidt number, and νt is the sub-grid scale viscosity

estimated from turbulence models. Richard et al. (2005; 2007) suggested to take into account a

laminar contribution, due to thermal expansion, in LES in the unresolved turbulent transport

leading to:

∇ · [ρ(c̃u− c̃ũ)] = −∇ ·
ï
ρ
νt
Sct
∇c̃
ò
− ρuS0

L∇ · [(c− c̃)n] , (1.5.14)

where n = −∇c/|∇c| is the normal vector to the filtered flame surface pointing toward the

fresh gases.

In order to model the two other terms, the G-equation and the progress variable approaches

are compared. These two approaches are equivalent, when the variable G is chosen as the

progress variable c:

∇ · (ρDc∇c) + ω̇c = ρSd |∇c| , (1.5.15)

where Sd is the displacement speed of the iso-surface of the progress variable c relatively to

the local flow velocity. The velocity Sd is defined using Eq.(1.5.16), deduced from the exact

balance equation of the progress variable c in Eq.(1.1.13).

Sd =
1

|∇c|
Dc

Dt
, (1.5.16)

where Dc/Dt is the material derivative of the progress variable defined as Dc/Dt = ∂c/∂t +

u · ∇c.
Then, the flame surface density (FSD) is defined as the amount of flame surface in a volume.

This FSD is first defined from the area of the iso-surface of c∗ with Σ∗ = δA∗/δV = |∇c|c=c∗ ,
which corresponds to the fine-grained FSD (Vervisch et al., 1995). However, this approach
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Figure 1.5.2: Schematic iso-surface c = c∗. A flame surface density Σ
∗

and a surface averaged
reaction rate 〈ρSd〉∗s are associated with each iso-surface. The generalized flame surface density
and the generalized surface averaged reaction rate 〈ρSd〉s allow to take into account all the
iso-surfaces in the flame front. (Richard, 2005)

depends strongly on the choice of c∗. Assuming the flame infinitely thin, Σ∗ does not depend

on the choice of c∗ leading to consider Σ
∗

= Σ, where Σ =
∫ 1

0
Σ
∗
dc∗ is the generalized flame

surface density (see Figure 1.5.2).

When Eq. (1.5.15) is filtered, ρSd|∇c| should be modelled. For this purpose, Boger (1998;

2000) proposed to introduce a Dirac function, following Gao’s approach (Gao and O’Brien,

1993), and wrote:

ρSd|∇c| =
∫

V
ρSd|∇c|G∆(x′)dx′, (1.5.17)

=

∫

V

∫ 1

0

ρSd|∇c|δ(c− c∗)G∆(x′)dc∗dx′, (1.5.18)

=

∫ 1

0

〈ρSd〉∗sΣ
∗
dc∗, (1.5.19)

= 〈ρSd〉sΣ, (1.5.20)

where 〈ρSd〉∗s = ρSd|∇c|δ(c− c∗)|/|∇c|δ(c− c∗)| is the surface averaged of ρSd on the iso-surface

c = c∗ and Σ
∗

= |∇c|δ(c− c∗)| is the sub-grid flame surface density of the iso-surface c = c∗.

Equation 1.5.20 defines the generalized surface averaged 〈ρSd〉s, which is generally modelled

with Eq.(1.5.21) in the flamelet regime assuming the flame locally propagates at the laminar

flame speed:

〈ρSd〉s = ρuSL. (1.5.21)

Finally, the filtered balance equation of progress variable Eq.(1.5.12) becomes a filtered

transport equation involving the flame surface density:

∂ρc

∂t
+∇ · (ρcu) = ρuSLΣ. (1.5.22)

The main advantages of this approach are:

• It allows to decouple the chemistry and the turbulence by introducing the laminar flame
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velocity, which allows to adapt the chemistry to a large range of conditions, like in the

G-equation approach.

• The progress variable c is a well defined physical variable, which allows to easily compare

results from simulations and from experiments.

The issue here is to evaluate the flame surface density Σ. There are two main approaches to

model the FSD, through an algebraic model or through a transported equation for Σ, described

in Sections 1.5.4 and 1.5.5, respectively.

1.5.4 Algebraic closure of the flame surface density

The concept of algebraic model of flame surface density is a simple approach. The idea is to

express Σ using a sub-grid scale wrinkling factor Ξ. This wrinkling factor is the ratio between

the subgrid scale flame surface and its projection in the propagating direction. It is computed

as proposed by Boger (2000):

Ξ =
|∇c|
|∇c| . (1.5.23)

An expression for flame surface density is deduced from Eq.(1.5.23):

Σ = Ξ |∇c| , (1.5.24)

where ∇c is the gradient of the resolved progress variable.

Boger et al. (1998; 2000) proposed to use the BML model (well described by Poinsot and

Veynante (2012)) combined with TFLES approach to model Ξ, leading to:

Σ ≈ 4

…
6

π
Ξ
c(1− c)

∆
, (1.5.25)

where ∆ is the width of the LES filter. Note that ∆/Ξ represents a wrinkling scale.

First, the model proposed for Ξ in Eq. (1.5.5) for TFLES model is commonly used. Charlette

et al. (2002a) proposed an algebraic closure of the flame surface density through:

Ξ = 1 = min

Å
∆

δ0
L

,Γ
u′

S0
L

ãβ
, (1.5.26)

where β is a model constant that can be evaluated using a dynamic approach (Charlette et al.,

2002b).

An alternative model, based on the fractal approach by Gouldin et al. (1989), was applied

by Wang et al. (2011). With this approach, the wrinkling is similar to:

Ξ =

Å
∆

δc

ãβ
, (1.5.27)
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where δc is the inner cut-off scale estimated as twice the laminar flame thickness, and β is a

model parameter determined using the dynamic evaluation proposed by Charlette et al. (2002b).

This model, tested using jet flames, has been adapted to simulations of IC engines by Mouriaux

et al. (2017).

The main drawback of this method lies in the equilibrium assumption between production

and destruction of sub-grid scale flame surface, as reported by Rymer (2001). Indeed, the

wrinkling Ξ is given by a similar relationship as the ones involved in TFLES model and G-

equation models.

1.5.5 The Coherent Flame Model: a flame surface density transport

equation approach

The second approach was first introduced by Marble and Broadwell (1977) corresponding to

an empirical transport equation for the flame surface density. Pope (1988) and Candel and

Poinsot (1990) proposed a more rigorous approach based on the use of conservation equations

for elementary volumes and surfaces embedded in a turbulent flow field leading to define an

exact balance equation for the flame surface-to-volume ratio, Σ:

∂Σ

∂t
+∇ · (uΣ) = (∇ · u− nn : ∇u) Σ− n · ∇ (SdΣ) , (1.5.28)

where Sd is the displacement speed defined in Eq. (1.5.16) and n = −∇c/|∇c| is the local normal

vector to the flame surface. Similarly to the work of Trouvé and Poinsot (1994) for RANS

approach, several authors (Boger et al., 1998; Boger, 2000; Hawkes and Cant, 2000; Veynante

and Vervisch, 2002) filtered Eq. (1.5.28) leading to the following LES filtered transport equation

for FSD:

∂Σ

∂t︸︷︷︸
T0

+∇ · (〈u〉sΣ)
︸ ︷︷ ︸

T

= 〈∇ · u− nn : ∇u〉s
︸ ︷︷ ︸

S

Σ + 〈Sd∇ · n〉s
︸ ︷︷ ︸

C

Σ−∇ · (〈Sdn〉sΣ)
︸ ︷︷ ︸

P

, (1.5.29)

where 〈〉s is the generalized surface average operator introduce in Eq. (1.5.20). This operator

corresponds to a filtering operator on the flame front for any quantity of interest Q:

〈Q〉s =
QΣ

Σ
. (1.5.30)

Richard et al. (2005; 2007) introduced the ECFM-LES model consisting in closure of the

different terms of Eq. (1.5.29) described below:

• T0 is the time dependent component.

• T is the convective transport of the FSD Σ.

• S represents the tangential strain rate induced by all turbulent structures.
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• C represents the flame stretching due to curvature.

• P is a term of normal propagation of the flame front.

The closure of each term proposed by Richard et al. (2005; 2007) is based on the decomposition

into resolved and sub-grid scale parts presented below.

The convective transport term

The convective transport term T is decomposed as follows:

∇ ·
(
〈u〉sΣ

)
= ∇ ·

(
ũΣ
)

+
[
∇ ·
(
〈u〉sΣ

)
−∇ ·

(
ũΣ
)]
. (1.5.31)

The first term in Eq. (1.5.31) corresponds to the resolved transport of the FSD. The second

term is the unresolved transport term, which is modelled by Richard et al. (2005; 2007) with

a simple gradient approach, neglecting ∇ ·
(
τS0

Lc̃nΣ
)
, the contribution due to flame-induced

thermal expansion, not related to turbulent structures:

[
∇ ·
(
〈u〉sΣ

)
−∇ ·

(
ũΣ
)]

= −∇ ·
Å
νt
Sct
∇Σ

ã
, (1.5.32)

where νt and Sct are the turbulent kinematic viscosity and a turbulent Schmidt number, re-

spectively.

The tangential strain rate

The tangential strain rate, also noted 〈aT 〉s, is decomposed as follows:

〈aT 〉s = 〈∇ · u− nn : ∇u〉s, (1.5.33)

= 〈AT 〉s + 〈aT 〉sgss . (1.5.34)

The first term in Eq. (1.5.34) is the tangential strain rate induced by the resolved velocity field

that is defined as ∇· ũ−〈nn〉s : ∇ũ. Hawkes and Cant (2000) proposed to express 〈AT 〉s using

the surface averaged flame normal vector 〈n〉s = −∇c/Σ, leading to:

〈AT 〉s =

Å
δij − (〈n〉s)i(〈n〉s)j −

1

3
αδij

ã
∂ũi
∂xj

, (1.5.35)

where α is a term introduced to nullify the isotropic part of the orientation tensor when the

flow becomes laminar. This term is given by α = 1− |〈n〉s|2.

The second term of Eq. (1.5.34) is the tangential strain rate induced by the sub-grid scale

velocity field that should be modelled. As Richard et al. (2005; 2007) proposed, this term is

classically modelled as:

〈aT 〉s,c∗ = αaTΓ
u′

∆
, (1.5.36)
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where αaT is a model constant, u′ is the turbulent velocity fluctuation at scale ∆, which is the

mesh size. Γ is an efficiency function which takes into account the ability of all vortices to

wrinkle the flame.

In LES, the flame front is partly wrinkled by the resolved structures of the turbulent flow,

consequently only the strain due to the unresolved turbulent scales shall be modelled. Never-

theless, as Colin et al. (2000) suggested, only the turbulent structures with a size larger than

the resolved flame thickness ∆̂ are able to efficiently wrinkle the resolved flame front. Thus,

the turbulent structures, the size of which are smaller than ∆̂, must be taken into account in

the modelling of the sub-grid scale tangential strain rate. These structures of scale ∆̂ have a

characteristic velocity û′ that is related to the velocity of the sub-grid scale turbulent structure

u′ considering a homogeneous isotropic turbulence:

û′ = u′
Ç

∆̂

∆

å1/3

. (1.5.37)

The issue is to evaluate the sub-grid scale fluctuation velocity u′. Using Smagorinsky’s model

for turbulence leads to evaluate u′ using the turbulent kinematic viscosity:

u′ =
νt
C∆

, (1.5.38)

where C is a model constant, often chosen equal to 0.12 as suggested by Richard et al. (2007).

The efficiency function Γ can be evaluated following the intermittent turbulent net flame

stretch (ITNFS) function proposed by Meneveau and Poinsot (1991), but Richard et al. (2007)

retained the spectral approach proposed by Charlette et al. (2002a), which has been specifi-

cally developed in a LES context and is theoretically more adapted to estimate the sub-grid

scale tangential strain rate. This spectral approach involves an adimensional wavenumber k+

associated to the wavenumber k defined as follows:

k+ =
k∆̂

π
. (1.5.39)

This adimensional wavenumber is used in the relationship that exists between the strain-rate

and the energy spectrum in homogeneous turbulence allowing to compute Γ as:Å
Γ
û′

∆̂

ã2

=

Å
π

∆̂

ã3 ∫ ∞

1

[Cr(k+)]2k2
+E11(k+)dk+, (1.5.40)

where Cr(k+) is a correction function, which takes into account the ability of the turbulent

eddies at scale π/k to stretch the flame. E11(k+) is the one-dimensional (longitudinal) en-

ergy spectrum in the direction of the wavenumber k, defined using the standard longitudinal

Kolmogorov spectrum with the Pao correction to account for the viscous cut-off :

E11(k+) =
18

55

Å
π

∆̂

ã−5/3

k
−5/3
+ ε2/3exp

Ç
−3

2
Ckπ

4/3k
4/3
+

Å
η

∆̂

ã4/3
å
, (1.5.41)
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where Ck ≈ 1.5 is the universal Kolmogorov constant, η is the Kolmogorov scale and ε is the

rate of dissipation of turbulent kinetic energy.

In this approach to evaluate the efficiency function, the key parameter to model is the

correction function Cr(k+), which is determined using the 2D DNS configuration described by

Meneveau and Poinsot (1991). The most common correction functions are reported in Table 1.1.

Table 1.1: The most common correction functions taking into account the ability of the tur-
bulent eddies at scale rc = π/k to strech the flame. uc is the characteristic velocity of the
trubulent eddies at scale rc

References Validity domain Model

Meneveau and Poinsot (1991) rc
δ0L
∈ [0.8; 10] Cr,MP = 10

− 0.545

log

(
4 rc
δ0
L

)
+0.364

Colin et al. (2000) rc
δ0L
∈ [3; 6] Cr,CDV P = 1

2

ï
1 + erf

Å
0.6

Å
ln
Ä
rc
δ0L

ä
−
√

S0
L

uc

ããò
Charlette et al. (2002a) rc

δ0L
∈ [3; 6] Cr,CMV = Cr,CDV P × 1

2

î
1 + erf

Ä
3 log

Ä
2 uc
S0
L

ääó
Bougrine et al. (2014) rc

δ0L
∈ [3; 30]

Cr,B =
1 + erf[0.9 ln( rc

δ0L
)− 2]

1 + 0.3 uc
S0
L

(1 + erf[0.9 ln( rc
δ0L

)− 2])

×
ï

1

Le
(1.76 + tanh (Le− 2))

ò
Normal propagation and stretch due to curvature

Richard et al. (2005; 2007) proposed to decomposed the stretch due to curvature, C, into

resolved and sub-grid scale parts. From the analysis of a 1D steady laminar flame, Richard

(2005) shows that normal propagation and resolved stretch due to curvature are physically

linked to ensure the laminar flame propagation when the sub-grid scale turbulence is low.

Richard et al. (2005; 2007) proposed a formulation for these terms based on the normal

to the iso-surface of the progress variable, n. When the surface averaged flame curvature is

decomposed as 〈∇ · n〉s = ∇ · n + [〈∇ · n〉s −∇ · n], the proposed formulation (Richard, 2005;

Richard et al., 2007) leads to the following expression:

−∇ ·
(
〈Sdn〉sΣ

)
+ 〈Sd∇ · n〉sΣ = −∇ ·

(
SdnΣ

)
︸ ︷︷ ︸

Pres

+Sd∇ · nΣ︸ ︷︷ ︸
Cres

+
[
n · ∇

(
SdΣ

)
−∇ · 〈Sdn〉sΣ

]
︸ ︷︷ ︸

(P+C)sgs

,

(1.5.42)

where Pres and Cres are the resolved normal propagation and stretch due to curvature terms,

respectively, and (P + C)sgs is a sub-grid scale term.
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To close the resolved terms Pres and Cres, the displacement speed Sd must be evaluated.

From the mass conservation in the case of a 1D steady laminar flame, the displacement speed

is modelled as:

Sd =
ρu
ρ
S0
L. (1.5.43)

The sub-grid scale term (P + C)sgs is closed as a sub-grid scale curvature term. This term

is often modelled as a destruction term:

(P + C)sgs = −β0S
0
L

Σ
2

1− c, (1.5.44)

where β0 is a constant model. Analysis of DNS simulations (Trouvé and Poinsot, 1994) have

shown that the sub-grid scale curvature acts not only as a sink term towards burned gases but

also as a source term towards fresh gases. Hence, Veynante et al. (1996) proposed the following

expression to take into account both effects:

(P + C)sgs = βcS
0
L

c∗ − c
c(1− c)Σ

2
, (1.5.45)

where βc and c∗ are model constants. Equation (1.5.45) is the sub-model used in ECFM-LES

model (Richard et al., 2007).

1.6 State of the art on high Karlovitz premixed flames.

Combustion regimes involved in IC engines are flamelet and TRZ regime, corresponding to

turbulent flames characterized by medium and high Karlovitz numbers. Thus, all efforts for

modelling turbulent combustion should be made on the understanding of a flame in TRZ regime.

In this section is presented the main phenomena involved in the thin reaction zone regime.

Then, the attempts to model turbulent flames in the TRZ regime are described.

1.6.1 Turbulent premixed flames at medium and high Karlovitz

numbers

Peters (1999) defined a theoretical approach describing the flame characteristics in the thin

reaction zone regime. For a flame in the TRZ regime the small eddies of turbulence are entering

the preheat zone and increase the mixing, destroying the quasi-steady laminar flame structure

identified in the corrugated flamelet regime.

The idea behind the model is that small eddies penetrating the preheat zone will transport

preheat fluid from a region near the reaction zone over a distance corresponding to its own size,

as illustrated in Fig. 1.6.1. This mechanism is supposed to lead to a thickening of the preheat

zone.

Peters (1999) proposed to use the level-set approach to model the premixed combustion

with the G-equation model in Eq. (1.5.9). Peters used asymptotic analysis on the flame speed
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Figure 1.6.1: Transport of preheated material from a region of thickness δL, the flame thickness,
by an eddy of size ln during half a turnover time. (Peters, 1999)

(Matalon and Creta, 2012; Matalon and Matkowsky, 1982; Pelce and Clavin, 1982) to propose

closure for the velocity w involved in Eq. (1.5.9) leading to:

w = S0
L − S0

LLκ+ LnG · ∇u · nG, (1.6.1)

where L = DL/S
0
L and DL are the Markstein length and the Markstein diffusivity, respectively.

nG = −∇G/|∇G| is the unit normal vector to the flame surface pointing to the fresh gases

and κ = ∇ · nG is the flame curvature. Equation (1.6.1) associates the phenomenon described

in Fig. 1.6.1 to effects of the flame front curvature and strain rate on the velocity w through

the Markstein length. The author suggested to rather use the mass diffusivity of the deficient

species in the expression of L.

Then, by combining Eq. (1.6.1) with the G-equation (Eq. 1.5.9), the flame in the TRZ

regime can be modelled with the following filtered equation:

ρ
∂G̃

∂t
+ ρũ · ∇G = ρS0

L|̃∇G| − ρD 〈κ〉G |̃∇G|+ ρ〈LnG · ∇u · nG〉G |̃∇G|, (1.6.2)

where 〈〉G is an averaging operator defined for any quantity of interest Q as:

〈Q〉G =
Q̃ |∇G|
|̃∇G|

. (1.6.3)

This work is considered as the starting point for modelling flames in the TRZ regime. In-

deed, lots of works were conducted in order to examine, experimentally or numerically, the

assumptions made by Peters (1999). From all these studies a large range of experiments and

direct numerical simulations are available for the TRZ regime and the BRZ regime and re-

ported recently by Driscoll et al. (2020). The present study only focused on some of them, as

summarized in the Peters-Borghi diagram in Fig. 1.6.2. The present section first focuses on the

experimental data, then on the numerical observations.
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Figure 1.6.2: Some studies of high Karlovitz turbulent premixed flames: � experiments by
Gülder (2007) and Yuen and Gülder (2013), � experiments by Wabel et al. (2017), � DNS by
Ahmed et al. (2019), ♦ DNS by Aspden et al. (2011a,b, 2015, 2016, 2017, 2019), 4 DNS by
Han and Huh (2009), . DNS by Hawkes and Chen (2005), O DNS by Nivarti and Cant (2017),
∗ DNS by Poludnenko and Oran (2010, 2011), and + DNS by Lapointe and Blanquart (2017;
2015) and Savard et al. (2014; 2015; 2017; 2015).

Experimental observations

First, de Goey et al. (2005) conducted experiments to verify the assumptions made by Peters

(1999) on the structure of a flame in the TRZ regime. They analysed methane-air premixed

flames in a weak swirled burner using Rayleigh and OH-laser-induced predissociative fluores-

cence (LIPF) to observe instantaneous flame thickness. The measurements from this study

seem to confirm the theory proposed by Peters (1999). Indeed, the measurement highlighted

that the turbulent motions only affect the preheat layers of the flame front. At the boundary

of the BRZ regime (defined in Section 1.3.3), the Kolmogorov scale turbulent structures are

of comparable size as the reaction zone thickness, δr, allowing these structures to sufficiently

penetrate the flame to enhance mixing near the reaction zone. Nevertheless, it seems that the

small eddies are not able to penetrate in the flame zone all the way up to the reaction zone

suggesting that extreme turbulence does not significantly alter the state relations that describe

the chemistry, as concluded in the review by Driscoll et al. (2020).

Further experiments on the impact of turbulence on the flame front for flames in the TRZ

regime were conducted by Gülder (2007) and Yuen and Gülder (2013)) using methane-air

and propane-air flames in a Bunsen type burner. In these studies, the focus is made on the

macroscopic impacts through the analysis of the fuel consumption using the turbulent flame

speed ST . This turbulent flame speed was evaluated using two methods. The first method
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corresponds to the conventional consumption speed measured using:

ST,1 =
ṁr

ρrAf
, (1.6.4)

where ṁr and ρr are the mass flow rate and the density of reactants, respectively. Af is the

surface area of c = 0.5 contour. The second method is based on Damköhler’s relationship

presented in Eq. (1.3.8):
ST,F
S0
L

= I0
AT
AL

, (1.6.5)

where I0 ≈ 1 is a factor introduced to take into account the effect of stretch on the laminar

flame speed (Matalon and Matkowsky, 1982), and the flame surface AT is computed as the

integral of the FSD using a two-dimensional estimate of Σ:

Σ(c) =
L(c)

A(c)
, (1.6.6)

where L(c) is the flame front length and A(c) is the flame zone area. Halter et al. (2009) and

Veynante et al. (2010) showed that this 2D method to estimate the FSD from experiment data

underestimates the burning speed and even propose corrections. Nevertheless, these corrections

are limited, for example the factor is 4/π ≈ 1.27 using an isotropic assumption. So, the method

presented in Eq. (1.6.6) still gives insight on the general behaviour of turbulent flames with

Karlovitz number.

Figure 1.6.3: Integrated flame surface density data. Also shown are the experimentally deter-
mined turbulent burning velocities evaluated at c = 0.5 (full circles) and c = 0.05 (full squares).
Two dotted-dashed straight lines are approximate linear fits to experimental turbulent burning
velocity data. Empty circles represent the product of J0, defined in Eq. (1.6.7) and integrated
flame surface density. (Gülder, 2007)

The comparison of the ratios ST,1/S
0
L and ST,F/S

0
L in Fig. 1.6.3 shows that for “weak” turbu-

lent intensities, u′t/S
0
L < 6, the increase of both ratios are proportional, confirming Damköher’s

assumption. Nevertheless, when the turbulence intensity is sufficiently high, both the fractal

approach proposed by Gouldin (1987) and the FSD approach fail to reproduce the discrepancies
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between ST,1/S
0
L and AT/AL. The authors explain these discrepancies with the mixing gener-

ated by the small eddies of the turbulent flow increasing the effective transport, in agreement

with the theory of Peters (1999) and the results of de Goey et al. (2005). So, because of the mix-

ing induced by the small eddies, Gülder proposed to introduced a new factor J0 in Damköhler’s

relationship (Eq. 1.3.8) to take into account the enhancement in transport induced by the active

eddies penetrating into the preheat zone of the flame. This factor is evaluated assuming that

active eddies of size of the Taylor microscale penetrate the preheat layer. The factor J0 might

be evaluated using en effective diffusivity due to the Taylor microscale. Therefore, by using the

definition of the Karlovitz number, the factor J0 is written:

J0 ≈
î
1 + ScRe

−1/2
λc

ó Å u′t
S0
L

ã−1

Ka, (1.6.7)

where Sc is the Schmidt number of the mixture and Reλc ≈ Re
1/2
t is the Reynolds number

associated to the Taylor micro-scale λc. This expression suggests that J0 becomes widely larger

than unity, when the turbulence intensity increases. The author then estimates values of ST/S
0
L

close to ST,1/S
0
L using:

ST
S0
L

= I0J0
AT
AL

, (1.6.8)

where I0 is the stretch factor approximately equal to 1.

Wabel et al. (2017) analysed results from an experiment on an axisymmetric Bunsen burner

involving methane-air flame. The authors explored the behaviour of the turbulent flame speed

with u′t/S
0
L following three definitions for ST :

• the conventional speed ST,1 given in Eq. (1.6.4) using the area of the c = 0.5 contour,

• a speed ST,2 computed using Eq. (1.6.4) using the area of the c = 0.2 contour instead of

c = 0.5,

• the turbulent speed computed from the flamelet FSD ST,F = (S0
L/AL)

∫
V ΣdV .

As observed by Gülder (2007); Gülder and Smallwood (2007) and Yuen and Gülder (2013),

the turbulent speed presents a “bending” effect regardless of the definition used, reported in

Fig. 1.6.4. This “bending” occurs when the preheat layers become thick, suggesting that the

thickened preheat layers play a role in the bending. It is assumed that at extreme turbulence

intensity the preheat zone is so thick that eddies passing through the layer cannot survive.

Therefore, burning velocity no longer increases linearly resulting in the bending effect. These

observations are in agreement with the theory proposed by Peters (1999).

Finally, a recent study by Nivarti et al. (2018) analyses further the experimental results by

Yuen and Gülder (2013) and Wabel et al. (2017). The discrepancies observed between ST/S
0
L

and AT/AL are explained by the arising diffusivity from the small scales of the turbulent flow,

of size smaller than the laminar flame thickness, r < δ0
L. This leads the author to modify
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Figure 1.6.4: Mean flamelet velocity, ST,F in red symbols, compared to global consumption
speed based on c = 0.5, ST,1 in black symbols. (Wabel et al., 2017)

Damköhler’s relationship Eq. (1.3.8) into:

ST
S0
L

=

Å
1 +

∆A
A

ãÅ
1 +

∆D

D

ã1/2

, (1.6.9)

where (1 + ∆A/A) = AT/AL is attributed to the large scales of turbulence, of size larger than

δ0
L, while the enhancement factor ∆D/D is attributed to the small scales r < δ0

L. This second

term in Eq. (1.6.9) corresponds to Damkhöler’s second hypothesis reported by Driscoll et al.

(2020), which is: if all of the upstream eddies are smaller than the laminar flame thickness,

then their only influence is to increase the diffusivity from the molecular diffusivity D to the

new value D + ∆D. A simple model is given for this factor by Nivarti et al. (2018):

∆D

D
≈ Ka2/3. (1.6.10)

The combination of Eqs. (1.6.9) and (1.6.10) shows a good agreement with experiments in

Fig.1.6.5 and confirms that turbulence affects mixing in the preheat layer through diffusion

effects. Thus, the results suggest to further investigate the effects of turbulence on diffusion.

Numerical studies

Two DNS studies by Nivarti and Cant (2017) and Ahmed et al. (2019), were conducted to

further explore the “bending” effect observed in experimental studies. The former is the analysis

of 3D-DNS of a statistically planar methane-air premixed flame propagating in a turbulent flow

field. The turbulent flow field is a decaying homogeneous isotropic turbulence. The latter is

the analysis of 3D-DNS of a statistically planar methane-air premixed flame interacting with a

forced turbulent flow field. In both studies the ratio ST/S
0
L remains close to the ratio AT/AL
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Figure 1.6.5: Measured disparity (ST/S
0
L)/(AT/AL) in the profiles of burning velocity enhance-

ment and flame surface area enhancement as observed in experiments (Wabel et al., 2017; Yuen
and Gülder, 2013) (symbols) and the enhancement factor (solid line) obtained from a numer-
ical evaluation of (1 + ∆D/D)1/2. Also shown is the leading-order term Ka1/3 (dashed line).
(Nivarti et al., 2018)

even for high values of u′t/S
0
L as seen in Fig. 1.6.6. This figure shows that the ratio ST/S

0
L

presents a bending, in agreement with experimental studies. However, AT/AL also presents a

bending. Thus, in DNS the bending effect on the turbulent flame speed is associated in the first-

order to the bending on the flame surface. Note that in the DNS conducted by Nivarti and Cant

(2017) the balance between strain and curvature is not reached, questioning the conclusions

drawn. However, the observations from the DNS conducted by Ahmed et al. (2019), where

the strain/curvature balance is reached, confirm the conclusions drawn by Nivarti and Cant

(2017). This suggests that, contrary to the experimental studies, Damköhler’s relationship in

Eq. (1.3.8) is sufficient to evaluate the turbulent flame speed.

Note that the integral length scales involved in these simulations (Ahmed et al., 2019; Nivarti

and Cant, 2017) are much smaller than the integral scales of the experiments (Gülder, 2007;

Wabel et al., 2017; Yuen and Gülder, 2013), by approximately a factor 10 to 100. Nonetheless,

all these works show that turbulent flames with high Karlovitz number present a bending. On

the one hand, the reason of this bending is associated to a saturation of the flame surface

combined to an increase of the local propagation speed in the experiments. On the other hand,

DNS suggest that the bending is mainly due to a bending effect on the flame surface because

the stretch factor I0 is close to 1. Both the experimental and numerical studies suggest to

analyse the inner flame structure to better understand the origin of this “bending”.

In that respect, many direct numerical simulations of premixed flames interacting with a

homogeneous isotropic turbulence generated and forced in all the domain with spectral methods

were conducted to investigate the impact of turbulence on the inner flame structure. Poludnenko

and Oran (2010, 2011) analysed DNS of interaction of a premixed H2-air flame with a subsonic,

homogeneous isotropic turbulence considering a simplified reaction-diffusion model based on
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Figure 1.6.6: Evolution of ST/S
0
L and AT/AL with the velocity ratio u′/S0

L from two DNS
studies (Ahmed et al., 2019; Nivarti and Cant, 2017).

one-step Arrhenius kinetics and assuming unity Lewis numbers.

Figure 1.6.7: Iso-surfaces of fuel mass fraction, the values of which are 0.05 (red), 0.6 (green)
and 0.95 (blue). The red and green iso-surfaces bound the flamelet reaction zone. The green
and blue iso-surfaces bound the preheat zone. z0,min and z1,max mark the flame brush bounds.
(Poludnenko and Oran, 2010, 2011)

They observed that the time-averaged internal structure of the flame is close to that of a

planar laminar flame, especially in the reaction zone. However, the preheat zone shows evi-

dence of broadening. This thickening, associated with disturbance in the flame front due to

turbulence, makes the flame surface difficult to define as seen in Fig. 1.6.7. The evolution of the

temporal averaged area AY normalized with the laminar flame surface L2, computed for each

iso-surface of the fuel mass fraction, against fuel mass fraction was analysed by the authors. It

appeared that this area was much smaller near the burnt gases (Yfuel close to 0) than in the

fresh gases.

Then, Aspden et al. (2011a,b, 2015, 2016, 2017, 2019) conducted 3D-DNS of lean premixed
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hydrogen and methane flames. Simulations were performed using a chemical mechanism includ-

ing 9 species and 27 reactions for hydrogen flames, and a chemical mechanism with 19 species

and 84 reactions for CH4 flames. A very large range of Karlovitz numbers was considered, from

Ka = 4 to 8767. Moreover, the diffusion effects were investigated through a variation of the

equivalence ratio at a constant Karlovitz number Ka = 266.

The authors observed an increase in the flame surface area, because of the wrinkles gener-

ated, and the flame is broadened when the turbulence intensity grows. The higher Karlovitz

numbers, the sharper the wrinkles are observed. At constant Ka, these wrinkles become less

pronounced when the lean flame gets richer, which is in agreement with the observations by

Kobayashi et al. (2007).

This broadening of the flame was evaluated using a thickening factor Θ defined as:

Θ(T ) =
〈∇T (ξ)|ξ=T 〉Ka=1

〈∇T (ξ)|ξ=T 〉Ka=n

, (1.6.11)

where 〈∇T (ξ)|ξ=T 〉 is the conditional means of the temperature gradient. The normalization

by the conditional mean at Ka = 1, instead of the laminar flame, is used to account for the

thermo-diffusive instability in the hydrogen flames (Aspden et al., 2016).

(a) CH4 (b) H2

Figure 1.6.8: Thickening factor Θ(c) as a function of the normalized temperature (a) for CH4

and (b) for H2. (Aspden et al., 2019)

Figure 1.6.8 shows the evolution of Θ with the normalized temperature for both methane and

hydrogen flames at different Karlovitz numbers. When Ka increases, Θ increases strongly for

normalised temperature smaller than 0.5. This increase is greater for hydrogen flames, which

have non-unity Lewis numbers unlike methane flames. These observations are in agreement

with the theory proposed by Peters (Peters, 1999), which suggests that small eddies enhanced

diffusion through turbulent mixing. However, the observed stretch factor I0 remains close to 1

suggesting that the bending is mainly due to the flame surface.

In addition, another set of DNS was conducted by Lapointe and Blanquart (2017; 2015)
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and Savard et al. (2014; 2015; 2017; 2015) to evaluate the impact of turbulence on the inner

flame structure. Unlike previous studies, the fuel used, which was n-heptane, was closer to

real automotive engine fuels. The Karlovitz number was varied in a range between 75 and

1050. The corresponding combustion regimes, defined by Peters (1999), are the TRZ and the

BRZ regimes1. Furthermore, all these simulations were computed twice, first with all the Lewis

numbers equal to unity, and second with non-unity Lewis numbers. Some of the numerical

parameters of the cases simulated (Lapointe and Blanquart, 2017; Lapointe et al., 2015; Savard

and Blanquart, 2014, 2015, 2017; Savard et al., 2015) are reported in Table 1.2

Table 1.2: Parameters of the simulations conducted in (Lapointe et al., 2015). Ka is the

Karlovitz number in the unburnt gases computed as Ka = (δ0
L/S

0
L)
√
u′3t/(νlt).

Case S0
L [m/s] δ0

L [mm] lt/δL u′/S0
L Ka Ret

A 0.36 0.39 1.1 9.0 78 83
B 0.36 0.39 1.1 18.0 220 190
C 0.86 0.32 1.0 38 648 290
D 2.3 0.25 1.2 45 740 380

Figure 1.6.9: Joint probability density function (PDF) and conditional mean 〈Y |T 〉 (in black
solid line) of C2H4 mass fraction vs temperature (a) from the unity Lewis number and (b) from
the non-unity Lewis number. Dashed lines are flamelet solutions for non-unity Lewis number
in blue and for unity Lewis number in orange. (Savard et al., 2015)

Figure 1.6.9a shows the joint probability density function (PDF) and the conditional mean

of C2H4 mass fraction against temperature for a case with all the Lewis numbers equal to 1

compared to a flamelet evolution in dashed line. Tracking C2H4 allows to ensure to analyse

the flame structure, because C2H4 is an intermediate species only existing in the flame front.

The flame structure observed in this case is in average close to a flamelet structure, while

when differential diffusion is taken into account in Fig. 1.6.9b, the turbulent flame structure

lies between that of a full transport and a unity Lewis number flamelet.

1Driscoll et al. (2020) proposed a modified combustion regimes diagram resulting from measure data. Using
this diagram, the set of DNS (Lapointe and Blanquart, 2017; Lapointe et al., 2015; Savard and Blanquart, 2014,
2015, 2017; Savard et al., 2015) corresponds to the wrinkled corrugated flamelet regime. However, the present
study focuses on the effect of increasing Karlovitz number on the flame behaviour.
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Figure 1.6.10: Conditional mean of fuel consumption 〈ω̇F |T 〉 and heat release 〈ω̇T |T 〉 corre-
sponding to temperature of peak source term using data from (Lapointe et al., 2015). The
values are normalized by the corresponding laminar flame.

Even if both Le = 1 and Le 6= 1 cases have a mean flame structure similar to a laminar

flame structure, the differential diffusion has a non negligible impact on the flame. This is

illustrated through an alternative definition of the stretch factor I0,S:

I0,S =
〈ω̇(Tpeak)〉
ω̇lam

, (1.6.12)

where 〈ω̇(Tpeak)〉 is the conditional mean of reaction rate corresponding to temperature of peak

source term, and ω̇lam is the maximum reaction rate of the corresponding 1D laminar flame.

This factor corresponds to a stretch factor of the isotherm T = Tpeak. Contrary to the common

definition of the stretch factor, Eq. (1.6.12) only evaluate the effect of flame stretch on the

reaction zone identified as the isotherm T = Tpeak. Even if this factor does not take into

account the thickening of the preheat zone, it shows how the reaction zone behave to highly

turbulent flows.

Figure 1.6.10 shows the evolution of the stretch factor with the Karlovitz number for the

simulations of flames with Le = 1 and Le 6= 1 . The evolution of I0,S with Ka is close to

constant for the simulations where Le = 1, suggesting that turbulence weakly affects the inner

structure of the flame. While for Le 6= 1 cases, case A presents a significantly smaller stretch

factor (I0,S = 0.6) than the laminar flame. Yet, case A has already a significantly large Karlovitz

number suggesting that when Le 6= 1, I0,S first decreases with Ka. This decrease is attributed

to stretching effects leading to local extinctions, which participate to a decrease of the heat

release. Then, the increase of Ka (from 78 to 740) leads to an increase of I0,S to values close to

the ones encountered with Le = 1 for the highest Karlovitz numbers. So, Figure 1.6.10 suggests

that the turbulent diffusivity due to turbulent mixing becomes dominant when a sufficiently

high Karlovitz number is reached.

The effect of turbulence on the flame front structure for Le 6= 1 cases is further analysed in

Fig. 1.6.11, where the profiles of fuel consumption rate with temperature are plotted. Only the

mean source terms are shown but it should be noted that, as turbulence intensity is increased,



1.6. STATE OF THE ART ON HIGH KARLOVITZ PREMIXED FLAMES. 39

(a) Cases A and B (b) Cases C and D

Figure 1.6.11: Conditional means of normalized fuel consumption rate for non-unity Lewis
number simulations. The fuel consumption rates are normalized by the peak value in the
corresponding laminar flame. (Lapointe et al., 2015)

the fluctuations of the fuel consumption rate are enhanced significantly. It can be seen that

fuel consumption rate, first, decreases relatively to a 1D laminar flame with case A, which is

in agreement with the analysis of Fig. 1.6.10. As explained previously, this decrease is mainly

due to stretching effect leading to local flame extinctions. In Fig. 1.6.11, the fuel consumption

rate tends to the profile of a 1D laminar flame with unity Lewis numbers when Ka increases.

As a consequence, the authors proposed to explain the impact of the turbulence on the flame

front through diffusion, as suggested by Peters (1999), by introducing a turbulent diffusivity

DT to define an effective diffusivity, as suggested by Damkhöler’s second hypothesis:

Deff = Di +DT , (1.6.13)

where Di is the mass diffusivity of the species i. Equation (1.6.13) leads to introduce an effective

Lewis number Lei,eff :

Lei,eff =
1 + aKaKa
1
Lei

+ aKaKa
, (1.6.14)

where aKa is a coefficient adjusted to best fit the data from DNS conducted by Savard and

Blanquart (2014), the value proposed is 0.05.

1.6.2 Attempts to model premixed flame in the thin reaction zone

regime

The starting point of TRZ modelling is the work of Peters (1999), where the author proposed

an adaptation of the level-set approach in Eq. (1.6.2) by assuming that the propagating velocity

w is expressed with Eq (1.6.1).

The difference with the models in the flamelet regime in this equation relies in the terms

linked to the curvature κ and the strain rate n · ∇v · n. Indeed, it is assumed that these

two terms are preponderant compared to the propagative term S0
L|∇G|. Furthermore, Peters



40 CHAPTER 1. MODELLING OF PREMIXED FLAMES IN SI ENGINES

defined a filtered transport equation for the variable σ = |∇G|, where the curvature and the

strain rate are involved. Thus, efforts should be made in the modelling of these two terms.

Finally, considering G as the equivalent of a progress variable and σ = |∇G| as an equivalent

to the FSD, the model proposed by Peters is close to a model based on the transport of the

flame surface density (such as the Coherent Flame Model).

A study of 2D-DNS of lean methane-air and hydrogen-air flames was conducted by Hawkes

and Chen (2005), focusing on the main assumptions used to model the stretch rate acting

on turbulent flame speed. In this study, the approach proposed by Peters (1999) is applied

considering G as the progress variable and σ as the FSD.

Three models for computing stretch rate related to curvature Sd∇ · n were compared in

this study from the analysis of a set of DNS. The models rely on different estimations of the

displacement speed:

1. Sd is equal to the speed of the considered iso-surface in the case of an unstrained laminar

flame, corresponding to a flamelet approach. This model for Sd leads to write the stretch

due to curvature as:

Sd∇ · n ≈
ρu
ρ
S0
L∇ · n. (1.6.15)

2. Sd is considered linearly dependent on the Markstein number Ma, the tangential strain

rate at and the curvature ∇ · n with κa = (at + S0
L∇ · n)δL/S

0
L the total dimensionless

stretch, corresponding to asymptotic analysis. The stretch due to curvature deduced from

this model is expressed as:

Sd∇ · n ≈
ρu
ρ
S0
L(1−Maκa)∇ · n. (1.6.16)

3. Sd is decomposed as:

Sd = Sr + Sn −D∇ · n, (1.6.17)

where Sr is the reaction rate related speed defined in Eq.(1.6.18), Sn is the normal prop-

agation related speed defined in Eq.(1.6.19) and D∇·n is the tangential diffusion related

speed. D is the mass diffusivity of the fuel.

Sr = − ω̇c
ρ|∇c| , (1.6.18)

Sn = −n · ∇ (ρD|∇c|)
ρ[∇c| . (1.6.19)

Then, Eq.(1.6.17) is directly used in the definition of the stretch rate due to curvature

leading to:

Sd∇ · n = (Sr + Sn)∇ · n−D (∇ · n)2 . (1.6.20)

Tangential diffusion effects due to large curvature are assumed dominant in the TRZ

regime. Moreover, the sum of the reaction rate and normal propagation contributions is
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considered of the order of magnitude of the displacement speed of a planar laminar flame,

(ρu/ρ)S0
L, leading to:

Sd∇ · n ≈ −D(∇ · n)2 +
ρu
ρ
S0
L∇ · n. (1.6.21)

(a) Ka = 30

(b) Ka = 165

(c) Ka = 290

Figure 1.6.12: Stretch rate due to curvature, Sd∇ · n, and models versus time - normalized by
the eddy turnover time of integral scale τe, for methane-air premixed flame: for (a) Ka = 30,
for (b) Ka = 165 and for (c ) Ka = 290. (Hawkes and Chen, 2005)

Figure 1.6.12 shows the temporal evolution of the area-weighted mean stretch rate due to

curvature, Sd∇ · n predicted with the first model described above (Sd as a constant) and with

Eq.(1.6.21), for a methane-air flame for three levels of Karlovitz number (Ka = 30, Ka = 165

and Ka = 290). When Sd is considered equal to (ρu/ρ)S0
L, the predicted Sd∇ · n is equal to

zero, because curvature is zero in average. The evolution of Sd∇ · n in Fig. 1.6.12a is over-

predicted by the model using Eq.(1.6.21), while in Figs. 1.6.12b and 1.6.12c the accuracy of the

model seems to increase with the Karlovitz number. So the results in Fig. 1.6.12 show that the

flamelet model (Eq. 1.6.15) is too approximative to compute correctly the stretch rate due to

curvature, while the model taking into account tangential diffusion effects (Eq. 1.6.21) seems

to reproduce more correctly Sd∇ · n. Furthermore, the difference between the actual stretch

due to curvature and −D(∇ · n)2 cannot be explain with the flamelet component of Sd∇ · n,
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which is zero. So, even if the model proposed by Peters shows a clear improvement, choosing

D as the species mass diffusivity does not seem enough.

To conclude on this study, even if the results show the improvement brought by considering

additional terms suggested by Peters (1999) in Eq. (1.6.21), the use of two-dimensional DNS

is limiting the evaluation of a model for curvature and displacement speed because some 3D

geometrical stretch effects are not taken into account and turbulence is not representative of a

real turbulent flame.

Then, Trisjono et al. (2016) and Wang et al. (2017) focused on the displacement speed

and the flame stretch by observing 3D-DNS of hydrogen-air and methane-air premixed flames,

respectively. In both works the displacement speed is decomposed according to Eq.(1.6.17).

They first observed that turbulence seems to locally slow down the flame, with a generalized

flame speed with respect to the unburnt gases of about 0.66S0
L (Trisjono et al., 2016). This

phenomenon was explained by Trisjono et al. (2016) with the evolution of the reaction related

speed Sr with the tangential strain rate plotted in Fig. 1.6.13a. In this study (Trisjono et al.,

2016), aT is in average positive, which implies a decrease in Sr.

(a)
(b)

Figure 1.6.13: (a) Response of reaction related speed Vr = Sr normalized with S0
L to strain.

(Trisjono et al., 2016) (b) The axial evolution of the integrated generalized surface averaged
curvature stretch term: T0 = 〈Sd∇ · n〉 ; T1 = 〈(Sr + Sn)∇ · n〉 ; T2 = −〈D(∇ · n)2〉 ;
T3 = 〈Sd〉〈∇ · n〉 ; T4 = 〈Sd∇ · n〉 − 〈Sd〉〈∇ · n〉. (Wang et al., 2017)

Finally, the curvature term 〈Sd∇·n〉 and the different components according to the equations

1.6.22 and 1.6.23 are plotted through the flame front in Fig. 1.6.13b.

〈Sd∇ · n〉︸ ︷︷ ︸
T0

= 〈(Sr + Sn)∇ · n〉︸ ︷︷ ︸
T1

−〈D(∇ · n)2〉︸ ︷︷ ︸
T2

, (1.6.22)

= 〈Sd〉〈∇ · n〉︸ ︷︷ ︸
T3

+ (〈Sd∇ · n〉 − 〈Sd〉〈∇ · n〉)︸ ︷︷ ︸
T4

. (1.6.23)

This graph shows that 〈Sd〉〈∇ · n〉 is close to zero. So, the flamelet assumption considering

〈Sd∇·n〉 = 〈Sd〉〈∇·n〉 is wrong. The evolution of 〈Sd∇·n〉−〈Sd〉〈∇·n〉 compared to 〈Sd∇·n〉
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shows that the spatial average of the product of the fluctuations is dominant. Furthermore, by

considering the decomposition of the displacement speed (Eq. 1.6.17) the results confirm Pe-

ters’s theory (Peters, 1999) and the observations in 2D simulation of Hawkes and Chen (2005)

on the term D (∇ · n)2, which becomes the dominant term in the curvature term Sd∇n.

The study by Han and Huh (2009), along with others (Sankaran et al., 2015; Wang et al.,

2017), highlighted the curvature effects on the displacement speed, through the sum Sr + Sn.

Nevertheless, Chakraborty and Cant (2006, 2011, 2005a,b) highlighted that both tangential

strain rate and curvature are correlated to Sr + Sn. In addition, they also observe that these

correlations are strongly dependent on the Lewis number of the fuel. To evaluate the influence

of the Lewis number on the correlation between Sr+Sn and curvature, they defined a Markstein

length due to curvature Lrn:

Sr + Sn =
ρu
ρ
S0
L − S0

LLrnκ. (1.6.24)

The analysis of the joint PDF of Sr + Sn and curvature shows that Lrn < 0 when Le < 1 and

Lrn > 0 when Le > 1.

Peters (1999) argued that the dominant curvature effect on displacement speed in the thin

reaction zones regime arises through the tangential diffusion component −D∇ · n, but studies

(Chakraborty and Cant, 2006, 2011, 2005a,b; Chakraborty and Klein, 2008) reveal that in the

case of non-unity Lewis number the curvature effects on the combined reaction and normal

diffusion components Sr + Sn cannot be ignored. This indicates that modelling of curvature

effects on Sr + Sn is required in order to address differential diffusion effects on turbulent

premixed flame propagation. In addition, this study can be compared to the analysis of Hawkes

and Chen (2005). Indeed, they defined an effective diffusivity Deff to be modelled, which can

be related to the Markstein length defined by Chakraborty and Cant (2006, 2011, 2005a,b)

when Eq. (1.6.24) is combined with both the decomposition of the stretch due to curvature in

Eq. (1.6.20):

〈Sdκ〉s = 〈ρu
ρ
S0
Lκ〉s − 〈(D + S0

LLrn)κ2〉s. (1.6.25)

When Le = 0.8, Eq. (1.6.25) suggests that the term S0
LLrn decreases the effective diffusivity

defined as Deff = D + S0
LLrn. This is in agreemet with the work of Hawkes and Chen (2005).

So, studies conducted by Chakraborty and Cant (2006, 2011, 2005a,b) suggest that the

correlation between aT and Sr +Sn, and the one between κ and Sr +Sn should be modelled in

LES and should take into account differential diffusion.

Finally, as suggested by Peters (1999) and Hawkes and Chen (2005), Katragadda et al.

(2012; 2014a; 2014b) proposed a model for the stretch due to curvature in the context of

generalized FSD transport equation. This model was developed in the context of TRZ regime,
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and is given below:

〈Sdκ〉sΣ = −β1S
0
L

Ä
1− 〈N〉s 〈N〉s

ä
(c− c∗) f(c, c̃)Σ

−DeffβH
Ä
1− 〈N〉s 〈N〉s

ä2 1

c2 (1− c)2 Σ,
(1.6.26)

where 〈N〉s = −∇c/Σ is the surface averaged flame normal vector, Deff is an effective diffusivity

which is expected to approach the mass diffusivity for low Da combustion, and β1, c∗, f(c, c̃)

and βH are model parameters defined as follows:

β1 =(7.24Le−0.68)(1 +Ka)−0.25, (1.6.27a)

c∗ =
1.27 exp(−0.77Le)

erf[(1 +Ka)1.1/4.85]

ï
1 +

f2(Ret)− 1.0

[1.0 + exp(−5.0(Ka− 1.9))]5

ò
, (1.6.27b)

f2(Ret) =0.49
Re0.41

t + 0.69

0.46Re0.46
t + 0.56

, (1.6.27c)

f(c, c̃) =1.0− exp(−9.0(1− c̃))
c(1.0− c)m , (1.6.27d)

m =1.56
exp(−0.24Le)

erf[(1.0 +Ka)/1.5]
, (1.6.27e)

βH =2.24Le−0.85 0.5

1 + exp[−(Ret − 20)]
. (1.6.27f)

This model presents some encouraging results allowing to reproduce the stretch due to cur-

vature for different turbulent intensities. However, this model includes numerous constants

directly fitted from the DNS results. Besides, these constants are obtained for light hydrocar-

bons, while fuels used in automotive engine are heavy hydrocarbons. Thus, the universality

of Eqs. (1.6.26) and (1.6.27) remains to be verified. In Chapter 4, this model (Eqs. 1.6.26 to

1.6.27f) is compared to a model proposed in the present study and to DNS.

Finally, a small number of LES were performed at high Karlovitz numbers. Duwig et al.

(2011) performed a well resolved LES using reduced chemistry of an experimental pilot premixed

jet burner with Karlovitz numbers up to 1600. The grid resolution was fine enough to resolve

the reacting layer assuming perfect mixing at the sub-grid scale and neglecting sub-grid scale

fluctuations, this LES is in fact very close to a DNS as sub-grid scale contributions are expected

to be negligible. It is therefore not very surprising that good results were obtained against the

experiment. Such an approach is impractical for SI engines due to the extremely small flame

thickness.

1.7 Conclusions: Objectives and structure of the thesis

In this chapter, the physics of laminar and turbulent flames is presented along with the different

approaches for numerical simulations of turbulent reactive flows. A focus is made on a LES



1.7. CONCLUSIONS: OBJECTIVES AND STRUCTURE OF THE THESIS 45

model based on the definition of a flame surface density, the coherent flame model (CFM). The

CFM model was developed based on the flamelet assumptions.

The first assumption of the flamelet regime, considering the flame as a collection of parallel

infinitely thin flamelets, was seen to be invalid in the TRZ regime. Indeed, numerous studies

(Aspden et al., 2011a,b, 2015, 2016, 2017, 2019; de Goey et al., 2005; Gülder, 2007; Poludnenko

and Oran, 2010, 2011; Yuen and Gülder, 2013) show that a thickening of the preheat zone

occurs, when the turbulence intensity is increased. This thickening is generally associated to a

strong distortion of the progress variable iso-surface towards c = 0. Thus, in the TRZ regime

the iso-surfaces of progress variable are not parallel questioning the validity of the concept of

FSD in this regime.

In addition, the second assumption of the flamelet regime, considering that each flamelet

propagates locally at the laminar flame velocity, appears to be invalid for high Karlovitz num-

bers. Consequently, the model commonly used to evaluate the propagation speed in Eq. (1.5.21)

cannot be used in the TRZ regime. Indeed, as Peters (1999) suggested and confirmed in nu-

merous studies (Chakraborty and Cant, 2006, 2011, 2005a,b; Chakraborty and Klein, 2008;

Han and Huh, 2009; Poludnenko and Oran, 2010, 2011; Sankaran et al., 2015; Trisjono et al.,

2016; Wang et al., 2017) the propagation speed of the flame front is highly impacted by tur-

bulence through the effect of stretch. The focus was made on the stretch due to curvature Sdκ

in many studies. Furthermore, different studies (Chakraborty and Cant, 2006, 2011, 2005a,b;

Chakraborty and Klein, 2008; Lapointe and Blanquart, 2017; Lapointe et al., 2015; Savard

and Blanquart, 2014, 2015, 2017; Savard et al., 2015) suggest that some effects of preferential

diffusion shall be taken into account in models of Sd and Sdκ.

Thus, the main purpose of this PhD, which is to extend the CFM approach to highly diluted

and turbulent premixed flames, can be decomposed into secondary objectives:

1. to propose an adaptation of the concept of the flame surface density to flames in the TRZ

regime,

2. to propose a model for the tangential strain rate valid in the TRZ regime,

3. to propose a model for the stretch due to curvature,

4. to propose a model for the flame displacement speed,

5. to take into account differential diffusion effects in the models.

To reach these objectives, the present PhD thesis is organized as follows:

• Chapter 2 is dedicated to the analysis of two-dimensional flames interacting with pairs

of counter rotating vortices, in order to develop a new efficiency function to be used in

the approach proposed by Charlette et al. (2002a) (Eq. 1.5.36) for tangential strain rate

modelling.
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• Chapter 3 is dedicated to the analysis of 3D DNS of flames interacting with a forced

turbulent field. This analysis is conducted in order to better understand the phenom-

ena involved in the TRZ regime to propose a path for adapting the concept of flame

surface density. Then, a specific focus is made on the effect of turbulence on the flame

displacement speed, through its response to tangential strain rate and curvature, in order

to propose a model for this quantity. These 3D DNS are also used to explore the effects

of differential diffusion on the flame front and on the displacement speed.

• Chapter 4 is dedicated to describe an a priori model proposed for flames in the TRZ

regime. In this chapter, the adaptation of the flame surface density approach is explicitly

presented along with the models for the tangential strain rate, the stretch due to curvature

and the displacement speed, including preferential diffusion effects. This a priori model

is tested using the results from the 3D DNS.

• Chapter 5 is dedicated to complete the a priori model of the previous chapter. It presents

a posteriori validation using one-dimensional turbulent premixed flames compared to

the 3D DNS. Finally, the application of the proposed model to SI engines simulation is

discussed.



Chapter 2

Turbulent strain rate modelling using

2D flame/vortex interactions

In the previous chapter, it is suggested that in the thin reaction zone (TRZ) regime the smallest

scales of turbulence strongly disturb the flame front. In premixed combustion framework, some

authors (Bougrine et al., 2014; Candel and Poinsot, 1990; Charlette et al., 2002a; Colin et al.,

2000; Meneveau and Poinsot, 1991; Poinsot et al., 1991) proposed to study how specific scales

of turbulence affect the flame front through the flame stretch rate using 2D direct numerical

simulations (DNS) of isolated pair of vortices interacting with planar flames.

This chapter is dedicated to the analysis of 2D DNS of a premixed C8H18-air flame interact-

ing with various pair of vortices corresponding to turbulent structures encountered in the TRZ

regime. So, the main purpose of the present study is to develop a new function Cr involved in

tangential strain rate model (see Section 1.5.5) valid for the TRZ regime.

In this chapter, the purpose and the set-up of these 2D-DNS are first described in Section 2.1.

Then, the assumptions commonly made to evaluate an efficiency function in tangential strain

rate modelling are investigated in Section 2.2. Finally, a new function Cr is proposed from the

analysis of the 2D-DNS of flame-vortex interactions in Section 2.3.

Note that this chapter is only dedicated to 2D-DNS analysis. Consequently, the accuracy of

the tangential strain rate model based on the efficiency function derived from these flame/vortex

interactions will be evaluated and compared to other models against 3D-DNS of turbulent flames

at various Karlovitz numbers in Section 4.4.3.

2.1 The direct numerical simulations set-up

2.1.1 Purpose of the analysis of flame-vortex interactions

As presented in Section 1.5.5, the tangential strain rate involved in the filtered transport equa-

tion of flame surface density (FSD) (Eq. 1.5.29) is modelled based on the intermittent turbu-

lent net flame stretch (ITNFS) approach introduced by Meneveau and Poinsot (1991). This

approach, first introduced for Reynold averaged Navier-Stokes (RANS) modelling, consists in

47
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assuming that each scale of turbulence acts independently on the flame front. Consequently, the

resulting total turbulent strain rate is computed by summing strain rates induced by each tur-

bulent scale, from Kolmogorov to integral length scales. This leads to write the total turbulent

strain rate as:

aT = α0Γ
ε

kt
, (2.1.1)

where α0 is a model constant, ε and kt are the turbulent dissipation rate and the turbulent

kinetic energy, respectively. Γ is an efficiency function to take into account the reduced ability

of small vortices to wrinkle the flame front. Charlette et al. (2002a) proposed in a large-eddy

simulation (LES) context a spectral description of the turbulence leading to:Å
Γ
u′

∆̂

ã2

=

Å
π

∆̂

ã3 ∫ ∞

1

[Cr(k+)]2k2
+E11(k+)dk+, (2.1.2)

where k+ = k∆̂/π is an adimensional wavenumber associated to the wavenumber k = π/r with r

the size of the structures of the turbulent flow and E11(k+) is the one-dimensional (longitudinal)

energy spectrum in the direction of the wavenumber k (Eq. 1.5.41). As presented in Chapter 1,

the key parameter in Eq. (2.1.2) is the correction function Cr(k+), which takes into account the

ability of the turbulent eddies at scale r to stretch the flame. In this chapter, the correction

function Cr will also be referred to as the efficiency function.

Figure 2.1.1: Initial geometry of the flame-vortex interaction (Candel and Poinsot, 1990). A
pair of counter-rotating vortices, of radius r and velocity u′r, is initially located at a distance l′

from the flame front. The centres of the two vortices are at a distance l from each other.

The challenge in evaluating this correction function is to isolate the effect each scale on the

flame stretch. Recently, Doan et al. (2017) suggests to use the bandpass filtering method de-

scribed by Leung et al. (2012). The results from these DNS (Doan et al., 2017) are encouraging

but is focused on turbulent scales larger than the flame thickness, which does not correspond

to the scope of the present study. Nevertheless, the effect of each turbulent scale is isolated

through 2D DNS of a planar flame interacting with a pair of counter rotating vortices, as de-

scribed by Meneveau and Poinsot (1991). The initial configuration is displayed in Fig. 2.1.1.

Note that these two dimensional simulations of flame/vortex interactions strongly approximate

the eddies involved in a 3D turbulent flow field.

Because Cr quantifies the ability of the turbulent eddies of size r and velocity u′r to stretch

the flame, the flame stretch is extracted from the DNS. Usually this quantity is evaluated from

the flame surface variation assumed to be proportional to the total reaction rate. Thus, the
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flame stretch K(t) during a simulation is approximated as the rate of change of total heat

release Q:

K(t) =
1

A(t)

dA
dt
≈ 1

Q(t)

dQ

dt
, (2.1.3)

where A is the flame surface. The approximation in Eq. (2.1.3) is based on the assumption

that under stretching effects the local flame speed does not change, which could be accurate for

mixtures with unity Lewis numbers in the flamelet regime. For this reason and because previous

studies (Lapointe et al., 2015; Savard and Blanquart, 2015; Savard et al., 2015) highlight the

strong impact of the flame stretch on the local speed, this assumption should be re-investigated.

During the interaction between a flame and vortices, three phases are observed in Fig. 2.1.2.

1. An induction phase during which the pair of vortices moves toward the flame front without

perturbing it.

2. A stretching phase during which the pair of vortices is interacting with the flame front

by stretching it.

3. An annihilation phase during which the flame fronts interact and merge, leading to flame

surface destruction. This phase is not always observed because the vortices can be dissi-

pated before flame surface destruction occurs.

Figure 2.1.2: An example of the temporal evolution of the total heat release during a flame-
vortex interaction (u′r/S

0
L = 28 and rc/δ

0
L = 5). (Meneveau and Poinsot, 1991)

The function Cr is deduced from the second phase where the reaction rate grows exponen-

tially, corresponding to a constant (1/Q(t))dQ/dt and consequently to a constant flame stretch

Kr. In previous studies (Bougrine et al., 2014; Charlette et al., 2002a; Meneveau and Poinsot,

1991), Kr is deduced from the estimation of the maximum slope of the second phase:

Kr = max

Å
1

Q

dQ

dt

ã
. (2.1.4)

Finally, the efficiency Cr of a pair of vortices of size r and velocity u′r to stretch the flame

is evaluated as:

Cr (r, u′r) = Kr
r

u′r
, (2.1.5)
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where u′r/r is the theoretical strain rate induced by them. To develop a model for Cr depending

on the characteristics of the structures involved in a turbulent flow, the 2D DNS of interactions

flame-vortex are usually conducted by varying both the size r of the vortices and their velocity

u′r. The ranges of variation of the size and the velocities of the vortices already conducted in

previous studies (Bougrine et al., 2014; Colin et al., 2000) correspond to flames in the flamelet

regime focusing on large vortices compared to the flame thickness, i.e., r > δL. These conditions

are reported in Fig. 2.1.3.
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Bougrine et al. (2014)

Colin et al. (2000)

Figure 2.1.3: Diagram presenting the range of operating conditions from the works of Colin
et al. (2000), Bougrine et al. (2014) and from this study with grey, blue and orange areas,
respectively.

2.1.2 DNS implementation

Because the present study is focused on turbulent flames in the TRZ regime, 2D DNS of

flame/vortex interactions are conducted to:

1. Explore the effects of small vortices on the flame stretch, because in the TRZ regime

the small structures of turbulence penetrate the preheat zone and perturb the flame

front. This is made possible by extending the range of sizes and velocities of the vortices,

compared to previous studies (Bougrine et al., 2014; Colin et al., 2000).

2. Re-investigate the approximations commonly made for computing the flame stretch in

flame-vortex interactions based on flamelet assumptions:

• approximating the stretch flame as the rate of change of total heat releaseQ (Eq. 2.1.3),
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• approximating the strain rate with the flame stretch (Kr ≈ aT ).

The AVBP code (Moureau et al., 2005) was used to simulate a 2D steady planar laminar pre-

mixed iso-octane/air flame in a square domain using a two-steps Taylor-Galerkin type scheme

(TTGC) (Colin and Rudgyard, 2000), which is 3rd order in time and space. The iso-octane/air

kinetics are described by a two-step Arrhenius mechanism with 6 species:

C8H18 + 8.5O2 −→ 8CO + 9H2O, (2.1.6)

CO +
1

2
O2 � CO2. (2.1.7)

This scheme was developed for piston engine simulations and validated using both the laminar

flame speed S0
L and the laminar flame thickness δ0

L for the following conditions: 323 K, a

constant pressure of 1 atm and an equivalence ratio ranging between 0.5 and 1.2 (Bonhomme

et al., 2013). The forward reaction rates kf1 and kf2 for C8H18 oxidation and for CO-CO2

equilibrium, respectively, are expressed below.

kf1 = A1T
b1e−

Ea,1
RT [C8H18]nC8H18 [O2]nO2,1 , (2.1.8)

kf2 = A2T
b2e−

Ea,2
RT [CO]nCO [O2]nO2,2 . (2.1.9)

Ai is the pre-exponential factor, bi is the temperature exponent, Ea,i is the activation energy of

reaction i, and nk,i are the reaction exponents for species k in reaction i (Table 2.1). R is the

ideal gas constant equal to 8.314 J.K−1.mol−1. The viscosity µ follows a power law defined as:

µ = µref

Å
T

Tref

ãb
, (2.1.10)

where µref = 7.17 · 10−5kg.m−1.s−1 is the viscosity of the unburnt gases at the reference tem-

perature Tref = 2240 K, and b = 0.66.

For the whole study, a stoichiometric (Φ = 1) C8H18/air mixture is considered, at a temper-

ature Tu = 300 K and a pressure Pu = 1 atm, leading to a laminar flame speed S0
L = 0.366 m/s

and a flame thickness δ0
L = 385 µm.

Table 2.1: Arrhenius parameters for the C8H18 2-step mechanism.

Case LeFuel reaction Ai bi Ea,i [cal/mol] nk

Lek 6= 1 2.9
C8H18 oxidation 5.443 · 1012 0.1 3.6 · 104 nC8H18 = 1.1

nO2,1 = 0.54
CO − CO2 equilibrium 2.0 · 109 0 1.4 · 104 nCO = 1.0

nO2,2 = 0.5

Lek = 1 1.0
C8H18 oxidation 9.150 · 1012 0.1 3.6 · 104 nC8H18 = 1.1

nO2,1 = 0.54
CO − CO2 equilibrium 3.327 · 109 0 1.4 · 104 nCO = 1.0

nO2,2 = 0.5

Because in Section 1.6.1 numerous studies (Chakraborty and Cant, 2006, 2011, 2005a,b;
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Chakraborty and Klein, 2008; Lapointe and Blanquart, 2017; Lapointe et al., 2015; Savard

and Blanquart, 2014, 2015, 2017; Savard et al., 2015) suggest that preferential diffusion has a

significant impact on the flame front, all the simulations were performed twice, once considering

differential diffusion with non unity Lewis numbers and once with all the Lewis numbers equal

to unity. The Arrhenius coefficients of the 2-step mechanism were adapted for Lek = 1 case as

shown in Table 3.1, in order to get the same laminar flame speed and thickness for both cases.
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Figure 2.1.4: DNS configuration of flame-vortex interactions. A pair of counter-rotating vortices
interacts with an initially planar premixed flame. (a) the schematic configuration of the initial
solution. (b) The schematic configuration corresponding to the moment when the flame stretch
is evaluated.

The size Lx×Lx of the domain presented in Fig. 2.1.4a is defined as a function of the size r

of the counter-rotating vortices: Lx = 6r. The vortices are defined through the stream function

Ψ:

Ψ(x, y) = Θ exp

ï
−(x− xc)2 + (y − yc)2

2r2

ò
, (2.1.11)

where Θ is the vortex strength and (x − xc)2 + (y − yc)2 is the square of the distance to the

centre of the vortex. The initial position of the pair of vortices is arbitrary. The vortices should

not be too close together to prevent them from interacting with each other, but not too far

apart to allow them to move towards the flame. In practice, we chose xc = xf − 3r, where r is

the radius of the vortex and the flame position is xf , and yc = ±3r/2.

In this study, similar configurations as (Bougrine et al., 2014; Colin et al., 2000; Meneveau

and Poinsot, 1991) are simulated but extending the range of vortices both in size and in velocity.

Thus, to represent a flame in the flamelet regime and two flames in the TRZ regime, the

turbulent characteristics of cases A, C and D from the 3D DNS, presented in Chapter 3, were

chosen to evaluate u′r of the vortices. Three sets of DNS are performed with a constant u′r for

each of them. The velocity for each set of DNS is chosen to correspond to the characteristic

velocity of the turbulent structures with a scale of δ0
L in the 3D DNS.
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Nevertheless, extending the range of size of vortices to small scales compared to the laminar

flame thickness is limited by the dissipation of the vortices. To evaluate this dissipation, the

enstrophy E of each configuration reported in Table 2.2 is computed. First, the vorticity of the

vortices must be defined as:

Ω = ∇⊗ u. (2.1.12)

The enstrophy is then deduced from the vorticity following:

E =
1

2

∫

V
|Ω|2dx. (2.1.13)
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Figure 2.1.5: Evolution of the normalized enstrophy E/Et=0, with Et=0 the initial enstrophy,
against time normalized with the eddy turnover time τeddy for: (a) vortices with the same
velocity ratio, u′r/S

0
L = 1 and (b) vortices with the same size r/δL = 2.

Figure 2.1.5 shows the evolution of E/Et=0 with time normalized with the eddy turnover

time τeddy = r/u′r for different pair of vortices. In Fig. 2.1.5a, this temporal evolution is

plotted for vortices with the same velocity ratio (u′r/S
0
L = 1). In this figure, the smaller is the

vortex, the quicker its enstrophy reaches zero. When r/δL = 0.5, the vortices are dissipated

after approximately 1 eddy turnover avoiding them to interact with the flame front. Indeed,

interaction with flame front occurs after a time at least larger than τeddy.

In Fig. 2.1.5b, the temporal evolution of enstrophy is plotted for vortices of size r/δL = 2 but

for three different velocities. The impact of the velocity on dissipation is significant. Indeed,

the smaller u′r/S
0
L is, the quicker the vortices are dissipated relatively to the eddy turnover

time.

In order to simulate the maximum vortices interacting with the flame front, the size ratio

is chosen in a range between 0.5 and 50 allowing to simulate the effects of small structures as

well as larger vortices on the flame stretch.

A total of 38 flame-vortex interactions were computed, including 28 non-diluted flames and

10 diluted flames. The latter are diluted with a 20% EGR rate. The exhaust gas used for

dilution is a mixture of CO2 and H2O. The numerical parameters for these 38 simulations are

summarized in Table 2.2. These operating conditions are compared to previous works by Colin
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et al. (2000) and Bougrine et al. (2014) in Fig.2.1.3. The range of vortices is significantly larger

for both size and strength.

Finally, the existing models (Bougrine et al., 2014; Charlette et al., 2002a; Colin et al., 2000;

Meneveau and Poinsot, 1991) are based on the evaluation of Cr using the flame stretch Kr with

Eq. (2.1.5), which includes both tangential strain rate and stretch due curvature. However, as

presented in Section 1.6.1, in the TRZ regime the stretch due to curvature becomes much more

important in the total stretch. Thus, in the present study, we propose to evaluate the impact

of this definition by computing the function Cr considering only the strain rate:

Cr = 〈aT 〉s
r

u′r
, (2.1.14)

where 〈aT 〉s is the surface averaged tangential strain rate defined as:

〈aT 〉s =

∫
V aT |∇c|dV∫
V |∇c|dV

, (2.1.15)

where V is the computation domain and c is the progress variable. Unfortunately, Eq. (2.1.15)

depends on the domain size and the length of the flame affected by the vortices. To minimize

the impacts on the evaluation of 〈aT 〉s, the domain V was limited to the zone of height h (see

Fig. 2.1.4b) containing only the part of the flame affected by the vortices. Despite these major

drawbacks, 〈aT 〉s (Eq. 2.1.15) was chosen because in the FSD transport equation (Eq. 1.5.29)

the tangential strain rate involved is surface averaged.

2.2 Discussion on the common assumptions in the con-

text of the thin reaction zone regime

The progress variable is defined as the reduced temperature :

c =
T − Tu
Tb − Tu

, (2.2.1)

where Tu and Tb are the temperature of the fresh and the burnt gases, respectively. The common

approximations made for analysing flame-vortex interactions are discussed in this section.

As mentioned in the previous section, the analysis of 2D DNS of flame-vortex interactions

relies on the evolution of the flame surface A. This surface in the flamelet regime is either the

generalized surface A =
∫
V |∇c|dV or A∗ =

∫
V |∇c|δ(c − c∗)dV the surface associated to the

progress variable iso-surface c = c∗, because the flame is a collection of parallel iso-surfaces.

Nevertheless, the observations made in different studies presented in Section 1.6.1 on the inner

structure of the flame suggest that the definition of the flame surface must have a significant

impact on the flame modelling. A detailed discussion on the issue of the definition of the flame

surface is proposed in Chapter 3.

In the context of 2D-DNS, the flame stretch rate is first computed, in the present study,
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Table 2.2: The DNS set-up of the flame-vortex interactions

Case EGR rate Lefuel Ka u′r/S
0
L r/δL Nx

A1 0% 2.9 3 1 0.5 320
A2 0% 2.9 3 1 1.0 480
A3 0% 2.9 3 1 2.0 960
A4 0% 2.9 3 1 10.0 1800
C1 0% 2.9 89 8.7 0.5 320
C2 0% 2.9 89 8.7 1.0 480
C3 0% 2.9 89 8.7 2.0 960
C4 0% 2.9 89 8.7 10.0 1800
C5 0% 2.9 89 8.7 50.0 1800
D1 0% 2.9 250 17 0.5 320
D2 0% 2.9 250 17 1.0 480
D3 0% 2.9 250 17 2.0 960
D4 0% 2.9 250 17 10.0 1800
D5 0% 2.9 250 17 50.0 1800
A1u 0% 1.0 3 1 0.5 320
A2u 0% 1.0 3 1 1.0 480
A3u 0% 1.0 3 1 2.0 960
A4u 0% 1.0 3 1 10.0 1800
C1u 0% 1.0 89 8.7 0.5 320
C2u 0% 1.0 89 8.7 1.0 480
C3u 0% 1.0 89 8.7 2.0 960
C4u 0% 1.0 89 8.7 10.0 1800
C5u 0% 1.0 89 8.7 50.0 1800
D1u 0% 1.0 250 17 0.5 320
D2u 0% 1.0 250 17 1.0 480
D3u 0% 1.0 250 17 2.0 960
D4u 0% 1.0 250 17 10.0 1800
D5u 0% 1.0 250 17 50.0 1800
C1EGR 20% 2.9 89 8.7 0.5 320
C2EGR 20% 2.9 89 8.7 1.0 480
C3EGR 20% 2.9 89 8.7 2.0 960
C4EGR 20% 2.9 89 8.7 10.0 1800
C5EGR 20% 2.9 89 8.7 50.0 1800
D1EGR 20% 2.9 250 17 0.5 320
D2EGR 20% 2.9 250 17 1.0 480
D3EGR 20% 2.9 250 17 2.0 960
D4EGR 20% 2.9 250 17 10.0 1800
D5EGR 20% 2.9 250 17 50.0 1800
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using the generalized flame surface and an iso-surface at c∗ = 0.8. The latter corresponds to

the peak of reaction rate of the laminar flame.
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Figure 2.2.1: Comparison of the efficiency functions computed from a stretch rate defined using
the generalized flame surface (�) and using an iso-surface at c∗ = 0.8 (�), for the velocity ratios:
(a) u′/S0

L = 1, (b) u′/S0
L = 8.7 and (c) u′/S0

L = 17.

Figure 2.2.1 compares the efficiency Cr,gen computed with a flame stretch rate deduced

from the generalized flame surface (in plain symbols) and the efficiency C∗r deduced from an

iso-surface at c∗ = 0.8 (in empty symbols). For each velocity ratio, Cr,gen and C∗r present

similar evolutions with a growing size ratio r/δ0
L. Nevertheless, the efficiency C∗r differs from

the generalized definition Cr,gen by 40 to 45% for large vortices (r/δ0
L > 2), while for small

vortices the two efficiencies are of similar magnitudes.

Thus, for simplicity in post-processing, the definition for the efficiency using the generalized

surface is preferred, because both definitions present the same tendency and their magnitudes

are similar for small vortices, which correspond to the turbulent scales involved in the TRZ

regime investigated in this study. The discrepancies observed for large vortices in Fig. 2.2.1

can be taken into account in engines application by tuning the model constant αaT .

The first hypothesis commonly made is to compute the flame stretch as the rate of change

of the total reaction rate. Thus, from this 2D-DNS the impact of the definition of the flame

stretch is studied. The efficiency functions computed from (1/A)dA/dt and from (1/Q)dQ/dt

for the three different velocity ratios are compared in Fig. 2.2.2. When the vortices are large

(r/δ0
L > 2), the two definitions lead to the same Cr. When the vortices get smaller, a slight
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Figure 2.2.2: Comparison of the efficiency functions computed from a stretch defined with
(1/A)dA/dt and with (1/Q)dQ/dt, for the velocity ratios: (a) u′/S0

L = 1, (b) u′/S0
L = 8.7 and

(c) u′/S0
L = 17.

difference appears between Cr defined with (1/A)dA/dt and Cr defined with (1/Q)dQ/dt in

Figs. 2.2.2b and 2.2.2c. However, for large velocities this difference decreases and becomes

negligible for r/δ0
L > 1, while this gap is more important for u′/S0

L = 1 in Fig. 2.2.2a. For

u′r/S
0
L = 1 and r/δ0

L ≤ 1, the estimated efficiency function reaches values smaller than 0.1,

which indicates a very weak ability of these vortices to stretch the flame. Indeed, their energy

dissipates too quickly to sufficiently stretch the flame and thus to sufficiently disturb the heat

release, as shown in Fig. 2.1.5a, leading to insignificant efficiency Cr. Thus, this case defines a

lower boundary for the efficiency function that corresponds to the turbulent scales non-affecting

the flame.

The second common assumption, which allows to compute the effective stretch using the

theoretical strain and an efficiency function, is investigated. The flame stretch rate is often

decomposed into stretch due to curvature and tangential strain rate as:

K = ∇ · u− nn : ∇u︸ ︷︷ ︸
aT

+Sd∇ · n︸ ︷︷ ︸
κ

, (2.2.2)

where n is the local normal vector to the flame surface oriented toward the fresh gases. The

second common approximation made in 2D flame/vortex interactions is to neglect the stretch

due to curvature compared to the strain rate, leading to the idea that the stretch is fully
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Figure 2.2.3: The balance on the flame stretch terms normalized with the flame time τF =
δL/S

0
L, allowing evaluations of the roles of the strain rate 〈aT 〉s and the stretch due to curvature

〈Sdκ〉s, for the velocity ratios: (a) u′/S0
L = 1, (b) u′/S0

L = 8.7 and (c) u′/S0
L = 17.

determined with the strain rate aT :

K ≈ aT . (2.2.3)

Thus, to verify the validity of this approximation, the balance of the curvature term and the

strain rate is shown in Fig. 2.2.3.

The case corresponding to the flamelet regime (u′r/S
0
L = 1) is presented in Fig. 2.2.3a,

where it is observed that 〈aT 〉s ≈ Kr. This is consistent with the assumption that stretch due

to curvature weakly affects the production of flame surface in the flamelet regime. Note that

the smallest vortices (r/δ0
L = 0.5 and r/δ0

L = 1) are not relevant because the flame stretch rate,

the strain rate and the curvature are zero. Nonetheless, when high velocities u′r/S
0
L = 8.7 and

u′r/S
0
L = 17 are considered in Figs. 2.2.3b and 2.2.3c, respectively, the effect of stretch due to

curvature becomes more significant for the smallest vortices. Indeed, the difference observed

between the total stretch and the tangential strain rate increases, when r/δ0
L decreases, up to

50% relative error for r/δ0
L < 5. This effect is logically reduced when r/δ0

L increases because

the curvature reduces with the size of the vortices.

So, this investigation suggests that the large scales of turbulence affect the flame front like

in the flamelet regime by enhancing the tangential strain rate, while the small scales affect the

strain rate and the curvature simultaneously. The latter might be affected through effects of

the small vortices on the displacement speed.
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Thus, the efficiency Cr is computed using the flame stretch Kr (Eq. 2.1.5) and using the

tangential strain rate 〈aT 〉s (Eq. 2.1.14). A comparison of these two definitions is plotted in

Fig. 2.2.4. The efficiency functions computed with 〈aT 〉s are close to those calculated with
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Figure 2.2.4: Comparison of the efficiency functions computed from the stretch Kr (Eq. 2.1.5)
and from the tangential strain rate 〈aT 〉s (Eq. 2.1.14) for the velocity ratios: (a) u′/S0

L = 1, (b)
u′/S0

L = 8.7 and (c) u′/S0
L = 17.

Kr for the unit velocity ratio in Fig. 2.2.4a, consistent with the flame stretching balance in

Fig. 2.2.3a. As expected from the flame stretching balance for u′/S0
L = 8.7 and u′/S0

L = 17

cases, both methods present identical efficiency functions for the largest vortices (r/δL >> 1)

in Figs. 2.2.4b and 2.2.4c. Differences by a factor up to 2 are observed for r/δL < 5, consistent

with the analysis of Figs. 2.2.3b and 2.2.3c.

The deviations observed are quantified using Eq.(2.2.4) and are reported in Table 2.3.

ε =

∣∣∣∣
CaT
r − CK

r

CK
r

∣∣∣∣ . (2.2.4)

In Table 2.3, two values are extreme. First, at u′r/S
0
L = 1 and r/δL = 0.5, the deviation

is surprisingly low, while at u′r/S
0
L = 8.7 and r/δL = 0.5, the deviation is extremely large.

Nevertheless, the efficiencies involved in these two cases are close to zero. The former presents

an efficiency of approximately 0.002, and the latter has an efficiency smaller than 0.1, corre-

sponding to the lower boundary defined in the analysis of Fig. 2.2.2. The efficiency functions

being close to zero, these discrepancies are not relevant.
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Table 2.3: Deviation of the efficiency Cr for each pair of vortices using arT instead of Kr.

PPPPPPPPPu′r/S
0
L

r/δL 0.5 1.0 2.0 10.0 50.0

1.0 3.9% 36% 100% 25%
8.7 263% 100% 48% 0.2% 3.2%
17.0 46% 35% 41% 1.5% 3.7%

Finally, this comparison suggests that the efficiency estimated from strain rate only can

be sensibly smaller than the one estimated from total stretch. As we want to evaluate the

tangential strain rate independently from the stretch due to curvature in the FSD equation,

we choose to estimate the efficiency of eddies considering only the tangential strain rate in the

rest of this study (Eq. 2.1.14).

2.3 Analysis of the efficiency function

In this section, the effect of the Lewis number and of dilution with burnt gases on the efficiency

function is first evaluated. Then, the efficiency functions computed from DNS are compared to

the current models.
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Figure 2.3.1: Comparison of the efficiency functions computed from unity Lewis numbers, non
unity Lewis numbers and diluted cases for the following velocity ratios: (a) u′/S0

L = 1, (b)
u′/S0

L = 8.7 and (c) u′/S0
L = 17.
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Figure 2.3.1 compares the efficiency functions computed from non-unity and unity Lewis

number simulations and diluted cases. Whatever the velocity ratio, the general behaviour of

the efficiency 〈aT 〉sr/u′r of Lek 6= 1, Lek = 1 and diluted flames are similar.

For u′r/S
0
L = 8.7 and u′r/S

0
L = 17.0 in Figs. 2.3.1b and 2.3.1c, respectively, the efficiencies

in Lek 6= 1 cases are smaller than the ones in Lek = 1 cases. When u′r/S
0
L = 8.7, the factor

between efficiencies in Lek 6= 1 and Lek = 1 cases is approximately 0.85, which is close to the

factor predicted by Bougrine et al. (2014) defined as:

Cr(Le 6= 1)

Cr(Le = 1)
=

1

Le
[1.76 + tanh (Le− 2)] , (2.3.1)

where Le is the Lewis number of the fuel species.

When dilution with CO2 and H2O is applied, the efficiencies Cr are larger than those of

unity Lewis numbers cases by approximately 45% and 20% for u′r/S
0
L = 8.7 and u′r/S

0
L = 8.7,

respectively. This suggests that a dependence on the EGR rate should be taken into account.

This issue was not further explored and should be investigated in future works.

In the rest of this study, the efficiency computed from Lek = 1 and Lek 6= 1 cases are

analysed to investigate existing efficiency functions and to propose a new formulation of this

function. The existing functions investigated are the followings:

• Cant et al. (1991) proposed to modelled the turbulent tangential strain rate, in the context

of RANS modelling, as 〈aT 〉s ∝ CA/τη, where CA is a constant equals to 0.28 and τη is

the eddy turnover time of the Kolmogorov scale. This model is equivalent to Eq. (2.1.1)

when the efficiency function Cr involved in Eq. (2.1.2) is a constant:

Cr,C

Å
r

δ0
L

,
u′r
S0
L

ã
= 1. (2.3.2)

• The model proposed by Charlette et al. (2002a):

Cr,CMV

Å
r

δ0
L

,
u′r
S0
L

ã
=

1

4

[
1 + erf (0.6

(
ln

Å
rc
δ0
L

ã
−
 
S0
L

uc

))]

×
ï
1 + erf

Å
3 log

Å
2
uc
S0
L

ããò
.

(2.3.3)

• The model proposed by Bougrine et al. (2014):

Cr,B

Å
r

δ0
L

,
u′r
S0
L

ã
=

1 + erf[0.9 ln( rc
δ0L

)− 2]

1 + 0.3 uc
S0
L

(1 + erf[0.9 ln( rc
δ0L

)− 2])

ï
1

Le
(1.76 + tanh (Le− 2))

ò
. (2.3.4)

The results from the present 2D-DNS are compared to Bougrine’s (Eq. 2.3.4), Charlette’s

(Eq. 2.3.3) and Cant’s (Eq. 2.3.2) functions in Fig. 2.3.2. As expected, the model proposed

by Cant et al. (1991) overestimates the effect of the small vortices. For large velocity ratios
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Figure 2.3.2: Evolutions of the efficiency functions with r/δL from the DNS compared to Cant’s
model, Bougrine’s model (Bougrine et al., 2014), Charlette’s model (Charlette et al., 2002a) and
the proposed model (Eq. 2.3.5) for the following velocity ratios: (a) u′/S0

L = 1, (b) u′/S0
L = 8.7

and (c) u′/S0
L = 17. (d) Comparisons of the efficiencies from from the different velocity ratios

for Lek 6= 1 cases.

(u′r/S
0
L = 8.7 and u′r/S

0
L = 17), Cant’s function overestimates the efficiency function even with

bigger scales of turbulence.

Whatever the velocity ratio considered, the functions proposed by Charlette et al. (2002a)

and Bougrine et al. (2014) reproduce the decrease in efficiency when r/δ0
L is reduced. How-

ever, Charlette’s function (Eq. 2.3.3) underestimates this decrease, whereas Bougrine’s function

(Eq. 2.3.4) overestimates it. Furthermore, only Bougrine’s function predicts the decrease of Cr

with u′r for the largest vortices, but the predicted reduction is exaggerated. In addition, none

of these functions reproduce the increase in efficiency at small scales when u′r/S
0
L increases, as

shown in Fig. 2.3.2d for Lek 6= 1 cases.

All these observations are hints on the shape that the efficiency function should have to

correctly predict the flame stretch for combustion in the TRZ regime, leading to propose a

new efficiency function by combining the functions proposed by Charlette et al. (2002a) and

Bougrine et al. (2014) as follows:

Cr,HK2D

Å
r

δ0
L

,
u′r
S0
L

, Le

ã
= Cr,1

Å
r

δ0
L

,
u′r
S0
L

ãï
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Le
(1.76 + tanh(Le− 2))

ò
, (2.3.5)
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with:

Cr,1

Å
r

δ0
L

,
u′r
S0
L

ã
=
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a log
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Å
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Ä
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√

S0
L

u′r

ããòd , (2.3.6)

where a, b, c, d and e are model parameters. In this study, the model parameters of the new

efficiency function are determined using a least square method to best fit the DNS results. The

values of these parameters are reported in Table 2.4.

Table 2.4: Fitted parameters of the proposed efficiency function.

a b c d e
1.05 0.24 0.91 1.03 1.53

Figure 2.3.2 also shows the efficiencies predicted by the function in Eq. (2.3.5). This function

improves the accuracy of the predicted efficiencies compared to the existing functions (Bougrine

et al., 2014; Cant et al., 1991; Charlette et al., 2002a), especially for the small vortices. These

improvements are illustrated in Fig. 2.3.3, where the predicted tangential strain rate of the

different models are plotted against the effective tangential strain rate of the 28 DNS of non-

diluted flames reported in Table 2.2. As expected, the proposed correlation fits very well the

DNS. So, to quantify the improvements, the global relative error εaT on the effective tangential

strain rate is computed for each model as:

εaT =

…∑∣∣∣〈aT 〉s − u′r
r
Cr

∣∣∣
2

∑〈aT 〉s
, (2.3.7)

where 〈aT 〉s is the tangential strain rate extracted from the DNS and Cr is the efficiency

function. Table 2.5, reporting the global relative errors of the models investigated, confirms

the observations made with Figs. 2.3.2 and 2.3.3. The new function proposed in Eq. (2.3.5)

reduces by a factor 7 the error induced by Charlette’s function (Charlette et al., 2002a) and by

4 the error induced by the function of Bougrine et al. (2014).

Table 2.5: Mean error on the effective tangential strain rate (Eq. 2.3.7) for the 28 non-diluted
flames of Table 2.2.

Efficiency function Relative error εaT

Cant et al. (1991) 116.9%
Charlette et al. (2002a) 39.2%
Bougrine et al. (2014) 24.5%
Present function (Eq. 2.3.5) 5.7%
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(b) Model by Charlette et al. (2002a)
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(c) Model by Bougrine et al. (2014)
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(d) Present model (Eq. 2.3.5)

Figure 2.3.3: Comparisons between effective tangential strain rate from DNS (〈aT 〉s) from the
28 non-diluted flames of Table 2.2 and from several Cr functions following Eq. (2.1.14): (a)
Cant et al. (1991), (b) Charlette et al. (2002a), (c) Bougrine et al. (2014) and (d) Present work
(Eq. 2.3.5).

2.4 Conclusions

In this chapter, a set of two-dimensional direct numerical simulations of flame-vortex interac-

tions was conducted in order to evaluate a model for the flame stretch in the thin reaction zone

regime. The vortices size range computed in this study was extended to small scales compared

to previous studies (Bougrine et al., 2014; Charlette et al., 2002a; Meneveau and Poinsot, 1991),

in order to compute conditions close to the TRZ regime. The analysis of the set of DNS was

dedicated to re-investigate the assumptions commonly made in the previous studies in order to

highlight what could have lead to the inability of the current models to predict the flame stretch

in the TRZ regime. Despite a stretch defined with the rate of change of the total reaction rate

(instead of the rate of change of the flame surface), the strongest approximation is to neglect

the effect of curvature on the flame stretch.

Three set of DNS are performed in order to evaluate the effect of differential diffusion

on the tangential strain rate. The comparison between non-unity and unity Lewis numbers

cases shows that the factor introduced by Bougrine et al. (2014) well captures the impact of

differential diffusion on the tangential strain rate.

Then, the resulting efficiency functions from the DNS were compared to the existing func-
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tions in order to highlight the differences for the small vortices. From these results, a new

efficiency function fitted on the set of DNS with Lek 6= 1 is defined and presents results close

to Bougrine’s function.

Nevertheless, even if some drawbacks in the tangential strain rate estimation from flame/vor-

tex interactions were corrected, other assumptions have not been investigated, like the 2D

configuration and the transient interaction with a single pair of vortices. Thus, the efficiency

function deduced from this analysis might be insufficient to predict the tangential strain rate

of a flame interacting with a fully developed turbulent field, especially in 3D. Consequently,

the behaviour of this model for the tangential strain rate is evaluated using 3D-DNS of quasi-

stationary turbulent flames in Chapter 4.





Chapter 3

Analysis of 3D direct numerical

simulations of premixed flames

interacting with turbulence

Three-dimensional direct numerical simulations (DNS) of statistically stationary turbulent pre-

mixed flames are performed to further explore the impact of turbulence on the flame front,

especially on the source terms involved in the coherent flame model (CFM). Most of the fuels

that were considered in the previous studies were hydrogen, methane and propane, while only a

few works focused on representative fuels of gasoline as n-heptane (Lapointe et al., 2015; Savard

and Blanquart, 2015; Savard et al., 2015). In this study the fuel considered is iso-octane, C8H18.

In this chapter, the set-up for 3D-DNS is first described in Section 3.1. Then, the 3D-DNS

are analysed in Section 3.2 to define an approach for modelling the premixed flame in the thin

reaction zone (TRZ) regime. The response of the displacement speed to turbulence is analysed

on a specific iso-surface of the progress variable in Section 3.3, allowing to propose an adequate

a priori model.

3.1 Direct numerical implementation

The aim of the 3D DNS conducted in this work is to investigate the characteristics of a premixed

flame interacting with a turbulent flow in the TRZ regime. Three kinds of simulations were

conducted to take into account differential diffusion effects, as suggested in (Lapointe et al.,

2015; Savard and Blanquart, 2015; Savard et al., 2015), and dilution effects:

1. simulations with unity Lewis numbers for all species,

2. simulations with non unity Lewis numbers for all species,

3. a simulation with dilution of the fresh gases by burnt gases, to verify that the increase

of the Karlovitz number induced by dilution is sufficient to explain the impacts of EGR

dilution on the flame front.

67
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For this study, the DNS computations were conducted using the AVBP code (Moureau

et al., 2005), which was recently used for DNS by Tagliante et al. (2019). It solves the

three-dimensional compressible Navier-Stokes equations on unstructured and hybrid grids. The

AVBP numerical schemes are based on the cell-vertex method. Two convective schemes are

available :

1. a finite-volume Lax-Wendroff type scheme (LW), which is 2nd order in time and space,

2. a two-steps Taylor-Galerkin type scheme (TTGC) (Colin and Rudgyard, 2000), which is

3rd order in time and space.

A comparison of the two schemes is given in Appendix A to evaluate the benefit of one over

the other by conducting twice the same set-up. LW-scheme is preferred to TTGC-scheme for

the purpose of computational economy for all the present study.

The flow configuration is first introduced with a description of the chemistry followed by

the presentation of the turbulence forcing method. Finally, the different cases simulated and

analysed in this chapter are described.

3.1.1 Flow configuration and chemistry
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Figure 3.1.1: Schematic view of the flow configuration of the DNS with turbulence forced in a
defined volume including fresh and burnt gases. The turbulence is forced between xstart and
xstop. The domain width is Ly = Lz = L and the domain length is Lx = 6L. The position of
the flame front on this view is given by xf .

Figure 3.1.1 presents a schematic view of the computational domain, which is similar to that

of numerous studies (Aspden et al., 2011a,b, 2015, 2016, 2017, 2019; Savard and Blanquart,

2014, 2015, 2017). A statistically-flat flame interacting with a turbulent field is chosen, using

a turbulence forcing method described later (Section 3.2). In this configuration the inlet and

outlet boundaries are specified in the direction of the mean flame propagation. The transverse

boundaries are considered to be periodic. The outflow boundary is taken to be partially non-

reflecting and specified according to the Navier-Stokes Characteristic Boundary Conditions
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(NSCBC) technique (Poinsot and Lelef, 1992). For each simulation, the inflow velocity Uin

is constant throughout the simulation and selected to match the turbulent flame speed ST ,

defined as:

ST =
1

ρuA0

∫

V
ω̇cdV, (3.1.1)

where ω̇c = ω̇′T/(Cp(Tb − Tu)) is the chemical source term with ω̇′T the heat release rate,

ρu the density of the fresh gases and A0 the laminar flame surface corresponding to the y-z

cross section of surface L2 in Fig. 3.1.1. Ly = Lz = L is the domain width. In practice, the

flame drifts slightly, but the velocity of the drift Uin − ST is small and constant in average.

This allows to compute the flame statistics considering at each instant t the space origin as

x0(t) = x0(t = 0) + (Uin − ST )t.

The domain width is chosen as L ≈ 15δ0
L, where δ0

L = (Tb − Tu)/max(|∇T |) is the thermal

flame thickness with Tu and Tb the temperature in the fresh and burnt gases, respectively. The

cell size ∆x used is chosen for each simulation as the minimum length allowing to get at least

20 grid points within the thermal thickness and to get at least a length scale ratio ηk/∆x ≥ 0.5

(where ηk is the Kolmogorov length scale).

The iso-octane/air kinetics are described by a two-step Arrhenius mechanism with 6 species:

C8H18 + 8.5O2 −→ 8CO + 9H2O, (3.1.2)

CO +
1

2
O2 � CO2. (3.1.3)

This scheme was developed for piston engine simulations and validated using both the laminar

flame speed S0
L and the laminar flame thickness δ0

L for the following conditions: 323 K, a

constant pressure of 1 atm and an equivalence ratio ranging between 0.5 and 1.2 (Bonhomme

et al., 2013). The forward reaction rates kf1 and kf2 for C8H18 oxidation and for CO-CO2

equilibrium, respectively, are expressed below.

kf1 = A1T
b1e−

Ea,1
RT [C8H18]nC8H18 [O2]nO2,1 , (3.1.4)

kf2 = A2T
b2e−

Ea,2
RT [CO]nCO [O2]nO2,2 . (3.1.5)

Ai is the pre-exponential factor, bi is the temperature exponent, Ea,i is the activation energy of

reaction i, and nk,i are the reaction exponents for species k in reaction i (Table 3.1). R is the

ideal gas constant equal to 8.314 J.K−1.mol−1. The viscosity µ follows a power law defined as:

µ = µref

Å
T

Tref

ãb
, (3.1.6)

where µref = 7.17 · 10−5kg.m−1.s−1 is the viscosity of the unburnt gases at the reference tem-

perature Tref = 2240 K, and b = 0.66.

Using a simplified mechanism with only few species might alter the effect of differential

diffusion. For this reason, the influence of the chemical mechanism was investigated by per-

forming a simulation of case C (see Section 3.1.3 for cases description) with an analytically
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Table 3.1: Arrhenius parameters for the C8H18 2-step mechanism.

Case LeFuel reaction Ai bi Ea,i [cal/mol] nk

Lek 6= 1 2.9
C8H18 oxidation 5.443 · 1012 0.1 3.6 · 104 nC8H18 = 1.1

nO2,1 = 0.54
CO − CO2 equilibrium 2.0 · 109 0 1.4 · 104 nCO = 1.0

nO2,2 = 0.5

Lek = 1 1.0
C8H18 oxidation 9.150 · 1012 0.1 3.6 · 104 nC8H18 = 1.1

nO2,1 = 0.54
CO − CO2 equilibrium 3.327 · 109 0 1.4 · 104 nCO = 1.0

nO2,2 = 0.5

reduced chemistry (ARC) mechanism (Felden et al., 2018, 2019). From a reduced synthetic

paraffinic kerosene (SPK) mechanism (48 species and 416 reactions) offering the possibility to

model lean premixed combustion of air and iso-octane, a reduction procedure was applied us-

ing the Yark tool (Pepiot-Desjardins and Pitsch, 2008) which includes skeletal reductions and

quasi-steady state (QSS) approximations. The final mechanism, called ISOOCT18, contains 18

transported species and 13 QSS species, which are reported in Table 3.2. It has been validated

for the following conditions: initial temperature of 300-450 K, equivalent ratios of 0.7-1.0 and

a constant pressure of 1 atm (Lapeyre et al., 2016) .

Table 3.2: ISOOCT18 scheme: 18 transported species, and 13 as QSS species to compute source
terms.

Transported QSS
N2 H2O2 iC8H18 HO2 CH2CHO
O C2H6 CH4 CH2 C2H5

H CO C2H2 CH3 C3H5

OH C3H6 C2H4 HCO iC4H7

H2 CH2O HCCO tC4H9

H2O iC4H8 C2H3 iC8H17

O2 CO2 C3H4

For the whole study, a stoichiometric (Φ = 1) C8H18/air mixture is considered, at a temper-

ature Tu = 300 K and a pressure Pu = 1 atm, leading to a laminar flame speed S0
L = 0.366 m/s

and a flame thickness δ0
L = 385 µm.

The effect of preferential diffusion in the TRZ regime is investigated conducting the sim-

ulations twice for each turbulence level, as proposed by Lapointe et al. (2015); Savard and

Blanquart (2014, 2015, 2017) and Savard et al. (2015): once considering differential diffusion

with non-unity Lewis numbers (Lek 6= 1) and once with the Lewis number for all the species

set to unity (Lek = 1). The Lewis number Lek of each species k is defined as:

Lek =
Sck
Pr

, (3.1.7)

where Pr and Sck are the Prandtl number and the Schmidt number of the species k, respectively.

The former is equal to 0.69 in this study and the Schmidt numbers are reported in Table 3.3.
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Table 3.3: Schmidt number of each species of the two-step mechanism for Lek 6= 1 and Lek = 1
cases. The Prandtl number is Pr = 0.69.

Species Lek 6= 1 Lek = 1
C8H18 2.0167 0.69

O2 0.7343 0.69
N2 0.6950 0.69

CO2 0.9461 0.69
H2O 0.5432 0.69
CO 0.7444 0.69

The Arrhenius coefficients of the 2-step mechanism were adapted for the Lek = 1 case as

shown in Table 3.1, in order to get the same laminar flame speed and thickness for both cases.
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Figure 3.1.2: Comparisons of the one dimensional laminar flames spatial profiles of (a) progress
variable and (b) velocity centred on c = 0.5.

Figure 3.1.2 shows the progress variable based on the temperature, Eq. (1.1.12a), and veloc-

ity profiles along the x-axis of 1D laminar flames using non-unity Lewis numbers in black solid

line, unity Lewis numbers in red dashed line with the respective Arrhenius coefficient given

in Table 3.1, and the ARC mechanism in green solid line. Both the progress variable and the

velocity profiles of non unity Lewis and unity Lewis cases are superimposed indicating that

both the laminar flame speed and the laminar flame thickness are similar (as seen in Table 3.4)

whether differential diffusion is deactivated or not.

Figure 3.1.2a illustrates the impact of the ARC mechanism. ARC case presents a progress

variable profile much smoother in the burnt gases side than with the 2-step mechanism. This

difference is also observed on the velocity profile in Fig. 3.1.2b. However, the heat release is

weakly impacted by the mechanism because u2step
b ≈ uARCb , where u2step

b and uARCb are the flow

velocities in the burnt gases of the cases using the 2-step and the ARC mechanisms, respectively.

Thus, it is expected that the two mechanisms will present similar results. Note, the laminar

flame velocity of the ARC mechanism reported in Table 3.4 is close to S0
L computed with the

2-step mechanism.

As already mentioned, a flame diluted with burned gases is also simulated. The chemistry
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use in this case is the 2-step mechanism with non-unity Lewis numbers. A 20% dilution mass

ratio is carried out with a mixture of CO2 and H2O. The progress variable and velocity profiles

of this case are displayed with blue lines in Fig. 3.1.2. When the flame is diluted with burned

gases (with a 20% EGR rate), the flame appears slightly thickened on the progress variable

profiles in Fig. 3.1.2a, confirmed in Table 3.4. The main impact is observed on the velocity

profiles, where ub/S
0
L is approximately 6 with dilution, while this ratio is about 8 for non-

diluted case. This illustrates the impact of dilution on the heat release through the heat release

factor τ = ub/uu − 1, where ub and uu are the flow velocities in the burnt and the fresh

gases, respectively. Note that the laminar flame speed, reported in Table 3.4, is significantly

reduced with dilution, and the diluted thermal laminar flame thickness is approximately twice

the non-diluted δ0
L.

Table 3.4: Laminar flame velocity S0
L = −(1/ρuY

u
F )
∫ +∞
−∞ ω̇Fdx, where ω̇F , ρu and Y u

F are the
local fuel reaction rate, the density and the fuel mass fraction in the fresh gases, respectively,
and thermal diluted laminar flame thickness δ0

L = (Tb−Tu)/max(|∇T |) for the different flames
simulated.

2-step mechanism ARC mechanism
Lek 6= 1 Lek = 1 EGR rate = 20%

S0
L [m/s-1] 0.366 0.37 0.15 0.36
δ0
L [µm] 385 385 791 560

3.1.2 Turbulence forcing method
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Figure 3.1.3: The temporal evolution of the turbulent kinetic energy k normalized by its initial
value k0 for three different turbulent intensities. Two of these cases correspond to turbulent
flows encountered in the TRZ regime. The time in x-axis is normalized with the characterized
time of the flame τf = δ0

L/S
0
L.

In numerical simulations with an initial homogeneous isotropic turbulence (HIT), the decay

of the turbulent kinetic energy (TKE), k, in the absence of velocity field forcing can be estimated

from theory considering dk/dt = −k/τt, with τt the eddy turnover time (τt = lt/u
′
t with u′t the
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characteristic velocity of the integral scale and lt the integral length scale of turbulence). The

temporal evolutions of TKE in decaying HIT is plotted in Fig. 3.1.3 for three levels of turbulence

intensity. The more intense is the turbulence, the faster the decay occurs. Indeed, TKE reaches

zero after a significantly large time compared to the characteristic flame time τf = S0
L/δ

0
L for a

turbulence intensity of u′t/S
0
L = 1. While for turbulent intensities of u′t/S

0
L = 11 and u′t/S

0
L = 17,

corresponding to flames in the TRZ regime, TKE reaches zero after one τf for the former and

even less for the latter. As a consequence, a decaying turbulence set-up would not allow the

flame to adapt to turbulence, therefore leading to unrealistic statistics.

To overcome this issue, different methods exist, reported by Klein et al. (2017):

• The use of a turbulent inflow condition in order to maintain the desired turbulence level

in the computational domain. With this method the temporal decay of the decaying

HIT is replaced by a spatial decay. This gives rise to new complications such as Landau-

Darrieus or Rayleigh-Taylor instabilities. Moreover, planar flames with a turbulent inflow

conditions are rather unsteady. In practice, to overcome this issue a control loop must be

implemented to adjust the inflow velocity.

• The use of volume forcing within the whole computational domain, as illustrated in

Fig. 3.1.1, in order to ensure a constant turbulence level. In previous works, many meth-

ods were used (from linear forcing method (Savard and Blanquart, 2014, 2015, 2017) to

spectral forcing techniques (Aspden et al., 2011a,b, 2015, 2016, 2017, 2019)).

In this study, a spectral forcing method proposed by Eswaran and Pope (1988) is used to

offset the decay of TKE and maintain the turbulence characteristics. This method generates

a stochastic time-evolving forcing vector f . This vector is used as a source term in the mo-

mentum conservation equation of the Navier-Stokes equations, as ρf . This stochastic forcing

term introduces energy in the largest scales of the domain. A turbulent energy spectrum is

established, with the largest scales cascading toward smaller scales and these being dissipated

by viscosity. When the rate of energy introduced by the forcing technique equals the rate of

dissipation, a statistically steady state is reached. However, this forcing term introduces some

heating by viscous dissipation of the turbulent kinetic energy, which should be avoided. For

this purpose a new energy source term is defined, according to the study of Paoli and Shariff

(2009), with :

Se = ρf · u− 〈ρf · u〉 , (3.1.8)

where 〈〉 is the averaging operator over the whole domain and Se is the energy source term due

to the forcing method.

In practice, Eswaran and Pope (1988) added a forcing acceleration in the momentum con-

servation equation of the Navier-Stokes equations in wavenumber space. According to them,

the dissipation rate ε can be estimated from forcing parameters as:

ε =
4τgσ

2
gNg

1 + τg (k2
0ε)

1/3
, (3.1.9)
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where σg and τg are a characteristic forcing acceleration and a characteristic forcing time, re-

spectively. The latter controlled the time to reach a statistically steady state. Moreover, this

method requires two other parameters: the size of the computational domain L, such that 2π/L

is the first forced wave number, and the number of forced modes Ng, which has been set to 92

from the work of Paoli and Shariff (2009).

With the forcing method used, HIT is imposed in the volume defined in Fig. 3.1.1 where

the flame is contained. It can be argued that this forcing term being artificial and imposed at

the flame location, this approach might lead to erroneous flame statistics. For this purpose,

additional simulations were performed conditioning the forcing source term with the progress

variable, as suggested by Klein et al. (2017). These cases are analysed in Appendix B.

3.1.3 Simulation parameters

Four cases A, B, C and D are investigated with increasing Karlovitz number while keeping a

nearly constant integral length scale. This point is important as it means that the flame will see

the same largest scales, while the Kolmogorov scale decreases from A to D, therefore increasing

both the range of scales interacting with the flame structure and their intensities. This way,

the evolution of flame statistics with increasing turbulence intensity can be unambiguously

attributed to small scales influence.

The Karlovitz number, defined as Ka = (δ0
L/lt)

1/2(S0
L/u

′
t)
−3/2, varies from 2.9 to 46.2 as seen

in Table 3.5. Case A is expected to be representative of the upper part of the flamelet regime.

Cases B, C and D were selected to fall inside the TRZ regime. These cases are performed with

differential diffusion (Lek 6= 1) and the 2-step chemistry presented in previous section. As seen

in Table 3.5, the turbulence intensity and integral length scale slightly differ between unity and

non-unity Lewis number cases, which is attributed to the modified species diffusivities leading

to the need to adjust the forcing parameters. However, these adjustments were not conducted

in this study, and the exact same forcing parameters were used for non-unity and unity Lewis

numbers cases.

Case C-ARC is identical to case C but performed with the ARC mechanism in place of the

simplified 2-step mechanism in order to evaluate the importance of the chemistry description

on flame statistics. Case C-EGR is performed using turbulence forcing parameters allowing the

same Karlovitz number as case C, but with a diluted mixture. Dilution is made with burned

products composed of H2O and CO2 at T = Tu.

All these cases are displayed in the Peters-Borghi diagram in Fig. 3.1.4 and their numerical

parameters are reported in Table 3.5.
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Table 3.5: The DNS set-up for the simulations of the interaction between a planar flame
and forced homogeneous isotropic turbulence. The Karlovitz number Ka and the Damköhler
number Da are defined with Eqs. (1.3.11) and (1.3.10), respectively. The laminar flame
thickness used to evaluate these numbers is the thermal laminar flame thickness δ0

L =
(Tb − Tu)/max(|∇T |). Ncell is the number of cells in the mesh used for simulating the flames.

Case lt/δL u′/S0
L Ka Da Ret LeFuel δ0L/∆x ηk/∆x Ncell

A 3.3 3.0 2.9 9.9 89.6 2.9 20 1.7 83e6

B 4.4 8.2 11.2 4.8 325.0 2.9 20 0.9 83e6

C 4.3 12.5 21.4 3.1 489.0 2.9 20 0.6 83e6

D 4.4 21.1 46.2 1.9 833.2 2.9 31 0.7 254e6

C-EGR 4.1 14.5 27.1 2.2 452.5 2.9 21 0.6 83e6

A1 5.1 2.5 1.7 18.7 74.8 1.0 20 2.0 83e6

C1 4.9 11.9 18.5 3.7 530.7 1.0 20 0.7 83e6

D1 5.1 22.1 46.2 2.1 1016.1 1.0 31 0.7 254e6

C-ARC 4.3 12.5 21.4 3.1 489.0 2.9 20 0.6 83e6
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Figure 3.1.4: Direct Numerical Simulations of High Karlovitz turbulent premixed flame.

3.1.4 Post-processing methods

In this study, results from 3D DNS simulations of interactions between premixed flames and

turbulence are post-processed using two approaches :

1. The generalized approach consists in computing the quantity of interest through the

whole flame, which means considering all the values of the progress variable. For some

variables the surface average is computed as:

〈Q〉s(t) =

∫
V Q(t,x)|∇c(t,x)|dV

AT (t)
, (3.1.10)

where Q is a quantity of interest, AT (t) =
∫
V |∇c(t,x)|dV is the generalized flame surface,

V is the simulation domain, t is the time and x is the position vector.

2. The iso-surface approach consists in extracting a specified iso-surface of progress variable

c∗, and then computing the surface average of the variables of interest on this iso-surface
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following:

〈Q〉∗s(t) =

∫
V Q(t,x)|∇c(t,x)|δ (c(t,x)− c∗) dV

A∗T (t)
, (3.1.11)

where Q is a quantity of interest, A∗T (t) =
∫
V |∇c(t,x)|δ (c(t,x)− c∗) dV is the area of

the iso-surface at c∗ and δ(c) is the Dirac function.

Finally, in both approaches the different surface averaging operations are then temporally

averaged as:

〈Q〉 =

∑〈Q〉(t)A(t)

A , (3.1.12)

where 〈Q〉 is either the instanteneous generalized surface averaged quantity of interest (Eq. 3.1.10)

or the instantaneous c∗ iso-surface averaged quantity of interest (Eq. 3.1.11) depending on the

approach chosen. Similarly, A(t) is either the instanteneous generalized flame surface or the

instantaneous area of the c∗ iso-surface, and A is the time averaged flame surface (either gen-

eralized flame surface or c∗ iso-surface) defined as:

A =

∑A(t)

Nt

, (3.1.13)

where Nt is the number of instantaneous solutions. Note that for reasons of simplicity, the

notation used in Eq. (3.1.12) is not retained in the rest of this study. The various results pre-

sented in the following sections are therefore time averages according to Eq. (3.1.12).

The DNS reported in Table 3.5 present a transient phase and a quasi-steady phase, as il-

lustrated with the evolution of the generalized flame surface in Fig. 3.2.2. Thus, the flames

simulated are temporally averaged over their steady-state period, which is defined as the pe-

riod over which the mean and variance of the signal are time-invariant, corresponding to the

phase where the fluctuations of the TKE become constant. It is noteworthy that the levels of

fluctuation of TKE depend strongly on the turbulence intensity. Indeed, the levels of TKE fluc-

tuations of cases with low Karlovitz number (A and A1) are higher than the others because the

levels of dissipation rate ε are very low, causing difficulty to stabilize with the forcing method

used. Statistics are computed after the transient phase using at least 15 eddy turnover times

τt = lt/u
′
t, to get sufficient convergence. The physical time needed to reach convergence τconv

and the physical time needed to compute statistics τstat are reported in Table 3.6 with the CPU

time τtot for each simulations.

3.2 Flame surface analysis: which approach for mod-

elling ?

This section presents the results obtained from the 3D-DNS, and is organized as follows. First,

instantaneous slices of the flames are described. Second, the general flame properties are

presented. Third, the effect of the high turbulence intensity is highlighted through a bending
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Table 3.6: Characteristic times for each simulations.

Case Ka τconv/τf τstat/τt τtot in [hCPU]
A 2.9 5.2 18.2 690,000
B 11.2 4.8 25.2 502,000
C 21.4 5.2 30.7 431,000
D 46.2 5.0 16.0 658,0002
C-EGR 27.1 1.5 7.3 99,000
A1 1.7 5.2 15.0 797,000
C1 18.5 3.8 21.6 350,000
D1 46.2 5.3 23.2 840,000

effect on the wrinkling before analysing the thickening of the flame. Finally, the modelling

implications are discussed. In the present study the progress variable is defined as the reduced

temperature, Eq. (1.1.12a).

3.2.1 Qualitative analysis of instantaneous flames

Figure 3.2.1 presents instantaneous colour fields of the heat release rate and iso-contours of c on

two-dimensional slices in the x-y mid-plane. For the unity Lewis number simulations, the heat

release rate shows weak fluctuations along the flame front, even for cases C1 and D1. At the

same time these cases present c iso-contours that are not parallel to each other in the preheat

zone, corresponding to c values approximately smaller than 0.4. An increase of the Karlovitz

number (case A1 to D1) seems to slightly thicken the preheat zone when preferential diffusion

is not accounted for.

When differential diffusion is taken into account, the thickening of the flame front with

increasing Ka is much more pronounced than in unity Lewis number cases. Indeed, for case

A, which is at the upper limit of the flamelet regime (Ka = 2.9), the contours of progress

variable are wrinkled but remain parallel to each other. For cases C and D, which are in the

TRZ regime (Ka = 21.4 and Ka = 46.2, respectively), c iso-contours on the unburned gases

side of the flame are qualitatively more wrinkled than the ones close to the burnt gases side.

Moreover, they remain globally parallel to each other for c values approximately larger than

0.7, i.e., in the heat release region. In addition, the fluctuations of heat release rate in cases C

and D are much larger than in cases C1, D1 and A. It means that there might be more local

extinctions in the TRZ regime than in the flamelet regime, as already suggested by Lapointe

et al. (2015) and Savard and Blanquart (2015, 2017).

Thus, this qualitative analysis shows that an increase of the turbulence intensity first in-

creases the wrinkling of the flame. As already observed by many authors (Aspden et al.,

2011a,b, 2015, 2016, 2017, 2019; Savard and Blanquart, 2014, 2015, 2017), the second conse-

quence is a thickening of the preheat zone of the flame, which appears more important when

the differential diffusion is taken into account. In addition, turbulence also seems to impact

the heat release rate by increasing its fluctuations, also observed by Lapointe et al. (2015) and
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(b) Case C1
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Figure 3.2.1: Two-dimensional slices in x-y mid-plane of the flames coloured with the heat
release rate and with contours of the progress variable (white lines), defined as the reduced
temperature: (a) to (c) for unity Lewis number cases and (d) to (f) for non-unity Lewis number
cases.

Savard and Blanquart (2015, 2017). As for the thickening, this last effect is less important

when the Lewis numbers are equal to one.

3.2.2 Analysis of the temporal evolution of flame surfaces

Figure 3.2.2 shows the temporal evolution of the flame surface defined as AT (t) =
∫
V |∇c|(t)dV ,

with V the whole domain. This surface is well defined and commonly used to compute the total

flame surface in the flamelet regime. Its relevance in the TRZ regime is questionable but AT is

used in the present study as a reference allowing comparison of flames in the flamelet and TRZ

regimes.

As expected, each case shows a transitory phase followed by a quasi steady-state with AT (t)

oscillating around an average value. Note that the diluted turbulent flame C-EGR (red dashed

line) reaches a stationary phase in Fig. 3.2.2a but the simulation ends shortly after, which

might lead to a sample too small to compute sufficiently relevant statistics. Howevcer, to

verify that the flames are stationary, the temporal averaged rate of change of the flame surface

(1/AT )dAT/dt was verified to be close to zero.
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Figure 3.2.2: Temporal evolution of the turbulent flame surface AT normalized with the laminar
flame surface A0 (a) for cases with Lek 6= 1, (b) for cases with Lek = 1.

3.2.3 Analysis of the turbulent flame velocity and wrinkling

From a macroscopic point of view the main effect of turbulence on the flame is to increase the

propagation speed ST defined as:

ST =
1

ρuA0

∫

V
ω̇cdV, (3.2.1)

where ω̇c = ω̇′T/(Cp(Tb − Tu)) is the chemical source term with ω̇′T the heat release rate, ρu

the density of the fresh gases and A0 the laminar flame surface corresponding to the y-z cross

section of surface L2. Damköhler attributed this acceleration to the increase in the flame front

surface AT by wrinkling, leading to:
ST
S0
L

∝ ATA0

, (3.2.2)

The proportionality between the increase of the propagation speed and the flame wrinkling

Ξ = AT/A0, is often quantified through the effect of the flame stretch using the stretch factor

defined by:

I0 =
ST
S0
LΞ

, (3.2.3)

The evolution of the flame wrinkling (circles) and propagation speed (plain triangles) are

plotted as functions ofKa in Figs. 3.2.3a and 3.2.3b, for Lek 6= 1 and Lek = 1 cases, respectively.

For Lek 6= 1 cases, Ξ and ST reach saturation simultaneously at a Ka corresponding to case C,

while for Lek = 1 cases the quantities even decrease between C and D. This saturation is known

as the bending effect, a phenomenon well documented in the literature (Ahmed et al., 2019;

Driscoll et al., 2020; Gülder, 2007; Gülder and Smallwood, 2007; Nivarti and Cant, 2017; Nivarti

et al., 2018; Wabel et al., 2017). At the same time, the maximum wrinkling and turbulent flame

speed of Lek = 1 cases are approximately 3.5 larger than that of Lek 6= 1 cases. This can be

considered the major impact of preferential diffusion on turbulent flames in the TRZ regime,

and justifies the need to include preferential diffusion in the modelling of this regime. Note that

case C-EGR (dashed symbols) presents values for Ξ and ST/S
0
L consistent with the evolution
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Figure 3.2.3: Evolutions of Ξ = AT/A0, Ξ∗ = A∗T/A0 and ST/S
0
L with Ka, (a) for Lek 6= 1

cases, (b) for cases with Lek = 1 and (c) Evolution of the stretch factor I0. Dashed symbols
are used for case C-EGR.

observed for non-diluted cases in Fig. 3.2.3a suggesting that dilution with burned gases does

not impact the bending effect.

The evolution of the stretch factor I0 with Ka is shown in Fig. 3.2.3c. For unity Lewis

number cases, I0 remains close to unity, even at the largest Ka, which corresponds to the

proximity of Ξ and ST/S
0
L in Fig. 3.2.3b. For non-unity Lewis cases, I0 is already smaller than

unity (0.7) for case A and decreases only slightly down to 0.6 for case D. Note that case C-EGR

(dashed symbol) presents a stretch factor I0 consistent with the evolution observed for non-

diluted cases. These results indicate, in line with previous DNS (Aspden et al., 2011b; Lapointe

et al., 2015; Savard and Blanquart, 2015; Savard et al., 2015) that the local consumption speed

of unity Lewis number flames is weakly affected by stretch, even in the TRZ regime, while flames

showing preferential diffusion are affected in a larger extent. This difference of behaviour is

illustrated by the larger fluctuations of the heat release rate for Lek 6= 1 cases compared to

Lek = 1 cases, as observed in Fig. 3.2.1. These fluctuations indicate that local strain and

stretch rates strongly impact the consumption speed. This aspect will be studied in the present

thesis considering the statistics of the displacement speed Sd.

The evolution of the wrinkling Ξ∗ on an iso-surface c∗ = 0.8, corresponding to the maximum

reaction rates of the laminar flame (see Fig. 3.2.4), is also plotted in Figs. 3.2.3a and 3.2.3b.
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This wrinkling is defined as:

Ξ∗ =
A∗T
A0

, (3.2.4)

where A∗T is the area of the iso-surface c∗ = 0.8.

As expected from previous DNS (Aspden et al., 2011b; Lapointe et al., 2015; Savard and

Blanquart, 2015; Savard et al., 2015), when Lek = 1, Ξ∗ and Ξ are almost similar, which is

a consequence of the weak effect of stretch on the local consumption speed. Similarly, Ξ∗ is

almost equal to Ξ for case A. This is in agreement with the flamelet assumption considering

the flame as a collection of parallel flamelets leading to a generalized flame surface AT close to

the area of any iso-surface of progress variable. Figure 3.2.3a shows a much better agreement

of Ξ∗ with ST than Ξ for high Ka, which suggests that the surface of the reaction zone remains

an accurate measure of the turbulent flame speed and, consequently, of the total reaction rate.

Unlike in the present and previous DNS studies (Ahmed et al., 2019; Nivarti and Cant, 2017;

Nivarti et al., 2018), Gülder and Smallwood (2007) observed experimentally that the flame

wrinkling reaches a saturation, while the turbulent flame speed still increases with increasing

Ka. Consequently, the factor I0 increases with Ka leading to values much larger than unity

in the TRZ regime. They attributed this increase of the local burning velocity in the TRZ

regime by the enhancement of the species and heat transport in the preheat zone by small-scale

turbulent eddies.

This difference between DNS and experiments is still not well understood. It could be ex-

plained by the difficulty to accurately measure flame surface and speed in such highly turbulent

experiments, but it could also be explained by the artificial nature of turbulence forcing technics

in DNS.

3.2.4 Analysis of the inner flame structure

To evaluate the effect of both turbulence and differential diffusion on the inner structure of the

flame, the profile of the conditional mean of the chemical source term ω̇c = ω̇′T/(Cp(Tb − Tu))
with the progress variable is plotted for each case in Fig. 3.2.4.
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Figure 3.2.4: Conditional mean of the chemical source term 〈ω̇c(c)〉ξ=c as a function of progress
variable: (a) for cases with Lek = 1, and (b) for Lek 6= 1 cases. Dotted lines are used to
represent flames diluted with burned gases.
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Figure 3.2.4 shows the conditional mean of the progress variable chemical source term

〈ω̇c(c)〉ξ=c, normalized by the peak chemical source term of the 1D laminar flame, as a function

of the progress variable c for each case. As described in Section 3.1.1, the flames with unity

Lewis numbers and non-unity Lewis numbers have the same S0
L and δ0

L. As a consequence,

the laminar flames with unity Lewis numbers and non-unity Lewis numbers present similar

chemical source term profiles as seen in Fig. 3.2.4 in black dashed lines. The profiles of cases

A1, C1 and D1 are very close to those of the 1D laminar flame, as observed in previous DNS

studies. This suggests that with unity Lewis numbers, although the flame is slightly thickened,

turbulence does not impact the inner flame structure significantly. It is noteworthy that, as

turbulence intensity is increased, the fluctuations of the progress variable chemical source term

are significantly enhanced, as observed in Fig. 3.2.1.

On the contrary, the non-unity Lewis number cases show a decrease of the chemical source

term when Ka increases, from a maximum of 0.55 for case A down to 0.43 for case C. However,

when Ka increases further, the inverse tendency is observed with an increase of ω̇c/max(ω̇lamc )

up to 0.48 for case D. But the number of studied cases here is too low to provide a clear view

on the evolution of this maximum as a function of Ka. This phenomenon was also observed by

Lapointe et al. (2015), who suggested that as turbulent mixing is enhanced, differential diffusion

effects are reduced. It can also be remarked that although peak values are slightly different for

cases A, C and D, the chemical source term assumes very similar shapes for the three cases

when c > cpeak, with cpeak ≈ 0.7 corresponding to the maximum reaction rate. As observed by

Lapointe et al. (2015), cpeak of the turbulent flames shifts from 0.8 to 0.7 for Lek 6= 1, which

is due to preferential diffusion effects. This suggests that the inner structure of high Karlovitz

flames C and D remains close to the structure of a flame in the flamelet regime (case A) on

the burnt gases side, in line with the definition of the TRZ regime. These quantitative analysis

confirm the preliminary observations in Fig. 3.2.1.

Note that the laminar flame diluted with burned gases has a very similar chemical source

term as the non-diluted flame, except that the peak is slightly shifted toward the burned gases

side (with cpeak = 0.85 compared to cpeak = 0.8 for non-diluted case). The diluted turbulent

flame C-EGR has a very similar conditional mean chemical source term as the non-diluted

case C. As for the laminar flames, the peak of mean conditional chemical source term for case

C-EGR is significantly shifted toward the burned gases side. Even if dilution with burned gases

change the location of the peak of conditional chemical source term, it seems to weakly affect

the inner flame structure compared to the corresponding laminar flame.

To quantify the apparent thickening of the flame, the thickening factor Θ introduced by

Aspden et al. (2019) is examined.

Θ =
〈|∇c|(ξ)〉refξ=c
〈|∇c|(ξ)〉ξ=c

, (3.2.5)
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where 〈|∇c|(ξ)〉ξ=c is the mean value of the progress variable gradient conditioned on the

progress variable value ξ. In this study the normalization is made using the gradient of the

laminar flame for both non-unity and unity Lewis number cases, while Aspden et al. (2019)

performed the normalisation using the conditional mean of the gradient for the case Ka = 1.
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Figure 3.2.5: Thickening factor Θ(c) (a) for cases with Lek = 1, and (b) for Lek 6= 1 cases.
Dotted lines are used to represent flames diluted with burned gases.

In Fig. 3.2.5a, the evolution of Θ with the progress variable is shown for unity Lewis number

cases. Case A1 presents a constant value equal to 1.5, which indicates that the flame is uniformly

thickened compared to the laminar flame. Cases C1 and D1 present a thickening on the fresh

gases side (c < 0.5) up to a factor 2 compared to case A1, but Θ converges to the value of

case A1 when c ≥ 0.5. This observation was already made by Aspden et al. (2019), where the

thickening factor of a methane flame collapsed to that of a flame in the flamelet regime. So,

when Ka increases, the flame is thickened on the fresh gases side but remains thin for c ≥ 0.5

for unity Lewis number cases.

The same quantity is shown for non-unity Lewis number simulations in Fig. 3.2.5b. For

case A, Θ reaches values close to 5-6 for c < 0.3 and c > 0.7, but remains close to 2 elsewhere.

The unexpected thickening observed in the fresh gases side might be due to the fact that case

A is at the upper limit of the flamelet regime. Compared to case A, cases C and D present an

even larger thickening on the fresh and burnt gases sides, which is consistent with the observed

non-parallel progress variable iso-surfaces in the preheat zone in Fig. 3.2.1. However, in the

reaction zone (0.5 < c < 0.9 as seen in Fig. 3.2.4) the increase of the thickening compared to

case A is relatively low, approximately 2.4 for case C and 2.6 for case D. The broadening of

the thickening factor on the burnt gases side, in Fig. 3.2.5b, may be due to the normalization

by the laminar case for which the reaction zone extends further towards c = 1 in Fig.3.2.4b,

resulting in higher Θ values. Note that the thickness factor of the diluted case C-EGR (red

dotted line) is close to those of cases A and C1. These similitudes between cases C-EGR and

C1 suggest that dilution with burned gases affects the inner flame structure similarly as setting

all the Lewis numbers to unity.

These results seem to confirm that the inner structure of flames with Lek = 1 are weakly
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affected by an increase of Ka, while the thickening strongly increases with Ka in the fresh

gases side for flames with Lek 6= 1. This is consistent with the observation in Fig. 3.2.1 showing

strongly wrinkled and non-parallel iso-surfaces in the preheat zone. So, the inner structure is

no longer the same as a laminar flame. However, whether the Lewis numbers are unity or not,

Figs.3.2.4 and 3.2.5 show that the structures of the reaction zone of high Karlovitz number

flames are similar to those of the flamelet regime, suggesting that the reaction zone is a good

tracker to capture the general behaviour of the flame.

The analysis proposed by Peters (1999) considering a thin reaction zone for the TRZ regime

is globally verified in the present DNS, but the impact of the Lewis number needs to be added:

when Lek = 1 perturbations of the reaction zone can be neglected, while the flame is strongly

thickened for Lek 6= 1.

3.2.5 Modelling implications

The progress variable source term involved in the right hand side (RHS) of Eq. (1.5.12) is the

first quantity of interest for modelling. Its integral over the whole domain Ωtot =
∫
V ω̇cdV is

evaluated by integrating the RHS of Eq. (1.5.15) because the integral of the diffusive contribu-

tion ∇ · (ρD∇c) in Eq. (1.5.15) is zero. Thus, Ωtot can be related to the displacement speed by

integrating the RHS of Eq. (1.5.12):

Ωtot =

∫

V
[ω̇c +∇ · (ρD∇c)] dV =

∫

V
ρSd|∇c|dV = 〈ρSd〉sAT , (3.2.6)

where V is the whole simulation domain, 〈ρSd〉s is the surface averaged displacement speed and

AT is the flame surface, both defined with the generalized approach of the CFM model:

AT =

∫

V
|∇c|dV, (3.2.7)

〈ρSd〉s =

∫
V ρSd|∇c|dV
AT

. (3.2.8)

As shown in previous sections, for Lek 6= 1 cases, the flame structure is very perturbed

in the preheat zone while only moderately in the reaction zone. This suggests that referring

the reaction rate to an iso-surface in the reaction zone might be easier than considering all

iso-surfaces. This is why we compare Ωtot to the integrated RHS term Ωc∗ conditioned on a c∗

iso-surface:

Ωc∗ =

∫

V
ρSd|∇c|δ(c− c∗)dV = 〈ρSd〉∗sA∗T . (3.2.9)

In Eq. (3.2.9), δ(c) is the Dirac function, 〈ρSd〉∗s and A∗T are the surface averaged displacement

speed at c = c∗ and the area of the c∗ iso-surface, respectively. Note that Ωc∗ is not equal to

the reaction rate on the iso-surface c = c∗,
∫
V ω̇cδ(c− c∗)dV .

Figure 3.2.6 presents the evolutions of Ωc∗ , 〈ρSd〉∗s and A∗T normalized by Ωtot, 〈ρSd〉s and

AT , respectively, as functions of c∗ for case C. In Fig. 3.2.6 is also plotted the stretch factor I∗0
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Figure 3.2.6: The evolution Ωc∗ , 〈ρSd〉∗s and A∗T normalized by Ωtot, 〈ρSd〉s and AT , respectively,
and I∗0 as functions of the progress variable for case C.

at c∗, defined as:

I∗0 =
〈ρSd〉∗s
ρuS0

L

. (3.2.10)

On the one hand, Ωc∗ is equal to Ωtot for all iso-surfaces. This result is in fact expected

because the flame being statistically stationary, all iso-surfaces need to advance at the same

velocity. On the other hand, A∗T decreases substantially with increasing c∗. This result is

consistent with Fig. 3.2.1 which shows a strong distortion of c∗ iso-surfaces towards c∗ = 0,

corresponding to a strong increase of the flame surface A∗T . This illustrates once again that in

the TRZ regimes, c∗ iso-surfaces are not parallel to each other for low values of c∗. As shown

by Eq. (3.2.9) larger values of A∗T at small c∗ need to be compensated by smaller displacement

speeds, i.e., by smaller values of I∗0 .

These results show that the modelling of A∗T and 〈ρSd〉∗s will depend on the choice of c∗ in

the TRZ regime. Figure 3.2.6 shows that I∗0 increases significantly when c∗ increases from 0.2

to 0.8 and that it seems to reach a plateau, indicating again that in the reaction zone, progress

variable iso-surfaces remains approximately parallel, unlike in the preheat zone. This is why

in the rest of this study the flame will be studied through an iso-surface c∗ = 0.8, close to the

maximum of heat release rate iso-surface.

To check the equilibrium state on this particular iso-surface, the flame stretch balance at

c∗ = 0.8 is shown in Fig. 3.2.7. For each simulation the rate of change of A∗, 〈K〉∗s, is close to

zero. This figure shows the absolute values of the tangential strain rate, 〈aT 〉∗s = 〈∇ · u− nn :

∇u〉∗s, and the stretch rate due to curvature, 〈Sdκ〉∗s = 〈Sd∇ · n〉∗s, where n = −∇c/|∇c| is

the local normal vector to the flame, u is the flow velocity and 〈〉∗s is the surface averaging

operator defined with Eq. (3.1.11). Both evolutions increase quasi linearly with Ka. Note that

the tangential strain rate and the stretch due to curvature are significantly smaller, when the

flame is diluted with burned gases (dashed symbols). These reduced values for cases C-EGR are

explained by much less intense turbulence of this case compared to case C. Indeed, even if their

Karlovitz numbers are close because of the reduction of the laminar flame speed by dilution

with burned gases, the velocity of the integral scales involved in case C-EGR is half the one

involved in case C (u′t = 2.2 m/s and u′t = 4.6 m/s, respectively). These reduced tangential

strain rate and stretch due to curvature combined with the observations made previously show
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that a diluted flame is much more sensitive to turbulence than non-diluted one.
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Figure 3.2.7: Evolutions of 〈K〉∗s = (1/A∗T ) (dA∗T/dt) = 〈aT 〉∗s + 〈Sdκ〉∗s, 〈aT 〉∗s = 〈∇ · u − nn :
∇u〉∗s and 〈Sdκ〉∗s = 〈Sd∇ · n〉∗s, where n = −∇c/|∇c| is the local normal vector to the flame, u
is the flow velocity and 〈〉∗s is the surface averaging operator defined with Eq. (3.1.11): (a) for
cases with Lek 6= 1 and (b) for cases with Lek = 1. Dashed symbols are used for case C-EGR.

Figure 3.2.8 summarizes the results about the bending effect on the iso-surface c∗ = 0.8. As

for the generalized approach (Fig. 3.2.3), the wrinkling Ξ∗ = A∗T/A0 presents a bending when

the Karlovitz increases, for each set of simulations in Fig. 3.2.8a. As expected, the stretch factor

I∗0 is almost constant close to 1 with an increase of Ka in Fig. 3.2.8b. The wrinkling Ξ∗ of the

iso-surface c∗ = 0.8 is also reported in Fig. 3.2.3 by square symbols. As for the generalized

approach, Ξ∗ presents a bending for each set of simulations. However, its values are smaller and

closer to ST/S
0
L. This reflects the fact that I∗0 is closer to unity than I0. All these observations

indicate that the iso-surface c∗ allows to well predict the turbulent flame speed and, therefore,

suggests that a flame surface density (FSD) based model is still appropriate.
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Figure 3.2.8: Evolutions of: (a) area of the iso-surface c∗ = 0.8 normalized with the laminar
flame surface and (b) the stretch factor I∗0 = 〈ρSd〉∗s/(ρuS0

L). Non-unity Lewis number cases,
unity Lewis number cases and cases with turbulence forced only in the fresh gases are plotted
in square, circle and cross symbols, respectively.

Finally, in this section it has been seen that flames interacting with a forced turbulent field
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reach a quasi-steady state. The influence of the turbulence on the flame front has two main

effects:

1. It thickens the flame front, especially the preheat zone. The reaction zone is also thickened

but the iso-surfaces of progress variable remain parallel to each other.

2. It increases the total flame surface by increasing the wrinkling of the flame front. However,

a bending effect occurs both on the wrinkling and the propagation speed.

As a consequence, by increasing the Karlovitz number, the consumption speed is increased

until a sufficiently high Ka is reached. For higher Ka values, a decrease of the consumption

speed is observed. The inner structure of Le = 1 cases suggests that this bending effect on the

consumption speed is mainly due to the bending of the surface. Moreover, the inner structure

of the flames remains close to the structure of a flame in the flamelet regime in the burnt gas

side. To conclude, the analysis of the chemical source term through the flame front of a high

Karlovitz case has shown that it seems reasonable to evaluate the overall fuel consumption from

a reaction zone surface density formalism.

Therefore, the purpose of this study being to adapt the CFM model to TRZ regime, the

definition of the progress variable is modified as follows:

C = H(c− c∗), (3.2.11)

where H(c) is the Heaviside function giving C = 0 when c < c∗ and C = 1 otherwise. Using

the same progress variable, Knudsen and Pitsch (2008) modified the balance equation of the

progress variable leading to, when filtered:

∂ρC̃
∂t

+∇ · (ρũC̃) = −∇ ·
Ä
ρuC − ρũC̃

ä
+ 〈ρSd〉s,c∗Σ∗, (3.2.12)

where Σ∗ = |∇C| = |∇c|δ(c− c∗) is the surface density of the iso-surface c = c∗ corresponding

to the fine-grained FSD (Vervisch et al., 1995) and 〈 〉s,c∗ is the surface averaging operation on

the iso-surface c = c∗:

〈Q〉s,c∗ =
Q|∇c|δ(c− c∗)

Σ∗
=

∫
V Q|∇c|δ(c− c∗)G∆(x− x′)dx′∫
V |∇c|δ(c− c∗)G∆(x− x′)dx′

, (3.2.13)

where Q is a quantity of interest.

As for the generalized approach of CFM, the surface density of the iso-surface c = c∗ is

evaluated through a transport equation. This equation is determined by deriving the exact

balance equation of C and then filtering (as presented in Appendix C), leading to:

∂Σ∗

∂t
+∇ · (ũΣ∗) = −∇ ·

(
uΣ∗ − ũΣ∗

)
+ 〈∇ · u− nn : ∇u〉s,c∗Σ∗

+ 〈Sdκ〉s,c∗Σ∗ −∇ ·
(
〈Sdn〉s,c∗Σ∗

)
,

(3.2.14)
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where 〈∇ · u − nn : ∇u〉s,c∗ is the surface averaged tangential strain rate and 〈Sdκ〉s,c∗ is the

surface averaged stretch rate due to curvature, where κ = ∇ · n is the curvature.

3.3 Analysis of the displacement speed on an iso-surface

A more thorough analysis of the displacement speed is now presented with a modelling objective.

In the rest of the present study, the exponent ∗ refers to the value of the variables on the iso-

surface c = c∗.

3.3.1 Analysis of conditional means with curvature
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Figure 3.3.1: Evolution of the conditional mean of displacement speed 〈S∗d(ξ)〉ξ=κ∗ , normalized
with the laminar flame speed at c = c∗, S0

d , with curvature κ∗ : (a) for cases with Lek = 1 and
(b) for Lek 6= 1 cases. The error bars represent the standard deviation.

Figure 3.3.1 presents the mean displacement speed 〈S∗d(ξ)〉ξ=κ∗ conditioned on κ∗, the flame

curvature. The displacement speed is normalized with S0
d = ρuS

0
L/ρ

∗, the displacement speed

of the planar laminar flame at c = c∗. The standard deviation is also reported by error bars.

As observed in previous studies for Lek 6= 1 (Han and Huh, 2009; Hawkes and Chen, 2005;

Nivarti et al., 2018; Sankaran et al., 2015), Fig. 3.3.1b shows a negative correlation between

displacement speed and curvature. It also shows an increase of the slope with the Karlovitz

number. Case C-ARC performed using an ARC mechanism is seen to be very close to case C

performed with the 2-step mechanism. This indicates that the influence of curvature on the

displacement speed is hardly sensitive to the level of chemistry description. In Fig. 3.3.1a, the

same results are presented for Lek = 1 cases: the negative correlation is also observed but the

slope is smaller, and is marginally affected by the increase of the turbulence intensity.

To further analyse the displacement speed, the conditional statistics of the different com-

ponents of S∗d , as defined in Eqs. (1.6.17) to (1.6.19), are plotted as functions of curvature in

Fig. 3.3.2. The thermal diffusivity D∗th depends on the mixture composition and the temper-

ature but is assumed to be the same for Lek = 1 and Lek 6= 1 flames, as shown in Fig. 3.3.2a
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Figure 3.3.2: Evolution of the conditional mean of the components of the displacement speed,
normalized with the laminar flame speed at c = c∗, S0

d , with curvature κ∗ :(a) 〈−D∗thκ(ξ)〉ξ=κ∗
for all the cases (b) 〈S∗r + S∗n(ξ)〉ξ=κ∗ for cases with Lek 6= 1 and (c) 〈S∗r + S∗n(ξ)〉ξ=κ∗ for cases
with Lek = 1. The error bars represent the standard deviation.

where the tangential diffusions 〈S∗t 〉ξ=κ∗ = −D∗thκ∗ of each case are identical. With this rea-

sonable hypothesis, differences observed on 〈S∗d〉ξ=κ∗ are only due to the sum of 〈S∗r 〉ξ=κ∗ and

〈S∗n〉ξ=κ∗ .
Figures 3.3.2b and 3.3.2c present the sum 〈S∗r +S∗n〉ξ=κ∗ as a function of the curvature for the

same flames. The evolution of 〈S∗r +S∗n〉ξ=κ∗ differs from 〈S∗d〉ξ=κ∗ mainly for positive curvature

where the correlation is positive between 〈S∗r + S∗n〉ξ=κ∗ and κ∗. However, it can be observed

that as for 〈S∗d〉ξ=κ∗ , non-unity Lewis number flames show increasing slopes for increasing Ka,

while Lek = 1 flames show weak sensitivity to Ka.

At κ∗ = 0, we could expect 〈S∗d〉ξ=κ∗/S0
d to be close to unity, which is not the case: for

Lek 6= 1, it ranges between 0.37 and 0.8, while for Lek = 1 flames, it takes larger values close

to 0.85. Figure 3.3.3 shows that the mean tangential strain rate conditioned with curvature,

〈a∗T 〉ξ=κ∗ , is not zero at κ∗ = 0 meaning that the flame is positively strained. Moreover, the

standard deviations reported as error bars in Fig. 3.3.3 are very large, particularly for cases D

and D1, and might also be a reason for 〈S∗d〉ξ=κ∗ to be far from S0
d at κ∗ = 0.
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Figure 3.3.3: Evolution of the conditional mean of tangential strain rate 〈a∗T (ξ)〉ξ=κ∗ with
curvature κ∗ : (a) for cases with Lek 6= 1 and (b) for cases with Lek = 1. The error bars
represent the standard deviation.

3.3.2 Analysis of conditional means with strain rate and curvature

This dependency of 〈S∗r +S∗n〉ξ=κ∗ to turbulence intensity is in agreement with previous studies

(Han and Huh, 2009; Hawkes and Chen, 2005; Sankaran et al., 2015; Wang et al., 2017).

Figure 3.3.2 suggests that analysing the response of curvature alone is not sufficient and a

double conditioning on both curvature and strain rate is required, as presented in Fig. 3.3.4.

The joint probability density function (PDF) of curvature and strain rate is also plotted in this

figure by black solid lines corresponding to 10% (outer line), 50% and 90% (inner line) of the

maximum values of the joint PDF.

The correlation of a∗T and κ∗ is evaluated using Pearson’s correlation coefficient (Pearson,

1895), defined in Eq. (3.3.1), and listed in Table 3.7.

rX,Y =

∑n
i=1 (Xi − 〈X〉) (Yi − 〈Y 〉)»
(Xi − 〈X〉)2

»
(Yi − 〈Y 〉)2

, (3.3.1)

where (Xi, Yi) is a sample pair of data, 〈〉 denotes the sample mean, and n is the sample size.

Table 3.7: Pearson’s correlation coefficient, ra∗T ,κ∗ , between strain rate a∗T and curvature κ∗ for
the flames presented in this paper.

Case A C D A1 C1 D1

Ka 2.9 21.4 46.2 2.7 18.5 46.2
ra∗T ,κ∗ -0.65 -0.40 -0.28 -0.56 -0.28 -0.18

As already observed in the literature (Chakraborty and Cant, 2005a), the correlation of a∗T
and κ∗ is negative and decreases as Ka increases. At low Ka, the correlation is strong for

case A and weaker for case A1. As the Karlovitz number increases, the correlation decreases

similarly for Lek = 1 and Lek 6= 1 flames.

Figure 3.3.4 illustrates the complexity of the dependency of the displacement speed with

strain rate and curvature. The evolution of 〈S∗r + S∗n〉(a∗T ,κ∗) with κ∗ (not displayed) presents

the same trend as the evolution of the conditional mean 〈S∗r +S∗n〉ξ=κ∗ in Figs. 3.3.2b and 3.3.2c
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Figure 3.3.4: Evolution of the conditional mean of 〈S∗r + S∗n〉(a∗T ,κ∗) with a∗T and κ∗ for: (a) to
(c) the cases with Lek 6= 1 and (d) to (f) the cases with Lek = 1. Black lines are contours
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〈S∗r + S∗n〉(a∗T ,κ∗) = ρuSL/ρ

∗ and the dashed white line is the iso-contour 〈S∗r + S∗n〉(a∗T ,κ∗) = 0.



92 CHAPTER 3. 3D-DNS OF FLAME-TURBULENCE INTERACTIONS

but the slopes depend on the value of a∗T . The evolution of 〈S∗r +S∗n〉(a∗T ,κ∗) with a∗T seems linear

with a slope that depends on Ka and differential diffusion (through the Lewis number). Thus,

when the flame is stretched, the displacement speed responds differently to tangential strain

rate and curvature.

Figure 3.3.4 shows that a model for S∗d needs to account for both strain rate a∗T and cur-

vature κ∗. To our knowledge, no such expression of S∗d was proposed up to now for the TRZ

regimes. We propose here a model for S∗d that is based on an expression originally proposed from

laminar asymptotic theories (Matalon and Matkowsky, 1982). Although there is no theoretical

justification for that, previous studies (Chakraborty and Cant, 2006, 2011, 2005b; Lapointe

et al., 2015; Savard and Blanquart, 2015, 2017) developed the idea that the flame structure

under strong turbulent conditions might be represented in average as that of a laminar flame

with modified diffusivities and Markstein lengths. Following this idea, the following expression

for S∗d = S∗r + S∗n −D∗κ∗ is retained:

S∗d = S0
d − LaT a∗T − LκS∗dκ∗ −D∗κ∗, (3.3.2)

where LaT and Lκ are turbulent Markstein lengths for strain rate and curvature that need to

be defined. Equation (3.3.2) is implicit as the stretch rate due to curvature is S∗dκ
∗ involving

the displacement speed. It can be rearranged in an explicit form as:

S∗d =
S0
d − LaT a∗T −D∗κ∗

1 + Lκκ∗
. (3.3.3)

In this study, values for (LaT , Lκ) are first determined from DNS using a least square method

to best fit the results of Fig 3.3.4 for each case. This fit is done by minimizing the difference

ε between the DNS and the model values (Eq. 3.3.2) weighted by the joint PDF of a∗T and κ∗

following Eq. (3.3.4) to avoid edge effects and to give more importance to the most probable

strain rate and curvature values:

ε =
[
〈S∗r + S∗n〉(a∗T ,κ∗) −

(
S0
d − LaT a∗T − LκS∗dκ∗

)]
p(a∗T , κ

∗), (3.3.4)

where p(a∗T , κ
∗) is the joint PDF of a∗T and κ∗.

The evolution of MaT = LaT /δ0
L and Mκ = Lκ/δ0

L with turbulence intensity are plotted

in Fig. 3.3.5 for all cases. The values of LaT and Lκ for Ka = 0 are obtained using stretched

laminar flames simulations (detailed in Appendix D): a counter-flow premixed flame to evaluate

LaT using the open-source solver Cantera, and a spherical flame for Lκ using the AVBP code.

For Lek 6= 1 flames, it can be first observed that MaT and Mκ strongly decrease with

increasing Ka number, as expected from the work of Lapointe and Blanquart (2017); Lapointe

et al. (2015); Savard and Blanquart (2014, 2015, 2017) and Savard et al. (2015). Indeed,

they suggest that when turbulence is sufficiently intense, the turbulent diffusivity DT becomes

dominant compared to thermal or mass diffusivities. This leads to define an effective Lewis

number converging toward 1 with an increasing Karlovitz number. This can be taken into
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Figure 3.3.5: Evolution of effective Markstein numbers with Ka: (a) forMaT = LaT /δ0
L and (b)

forMκ = Lκ/δ0
L. The values computed from stretched laminar flame and from the optimization

methods are shown with dots and the dashed lines represent the models in Eqs. (3.3.5) and
(3.3.6).

account with a Markstein number tending toward zero with an increase of Ka. The values

obtained for case A are also seen to be still quite far from laminar values (Ka = 0) for curvature.

The effect of the Lewis number is first observed for a laminar flame. LaT (Lek = 1) is

approximately half the value of LaT (Lek 6= 1), which means that its sensitivity to strain rate

cannot be neglected. The Markstein length Lκ of Lek = 1 cases being lower than Lκ of Lek 6= 1

cases and almost constant with Ka indicates a very low sensitivity to curvature.

Consistently, when the Karlovitz number increases, the decrease of LaT observed for unity

Lewis number flames has a very similar shape to that of non-unity Lewis number cases, while Lκ
remains very close to its laminar value, when Lek = 1. These observations might be specific to

the present fuel, thermodynamic conditions and chemical mechanism and cannot be generalized

to all unity and larger than unity Lewis number flames.

However a similar evolution was described by Savard and Blanquart (2014) for the effective

Lewis numbers they introduced. Using DNS of lean premixed turbulent hydrogen flames they

observed that the flame tends to behave like a unity Lewis number flame when the turbulence

intensity increases sufficiently. From this observation, they proposed an expression for the

effective Lewis numbers (Eq. 1.6.14). In the present study, expressions for LaT and Lκ depending

on the Karlovitz number are proposed inspired from Eq. (1.6.14):

LaT
δ0
L

=
1

1 + αKaa
L0
aT

δ0
L

+

Å
1− 1

1 + αKaa

ã
M∞

aT
, (3.3.5)

Lκ
δ0
L

=
1

1 + βKab
L0
κ

δ0
L

+

Å
1− 1

1 + βKab

ã
M∞

κ , (3.3.6)

where L0
aT

and L0
κ are the laminar Markstein lengths,M∞

aT
andM∞

κ are asymptotic Markstein

numbers at the upper range of the TRZ regime, and α, β, a and b are model parameters.

These parameters, reported in Table 3.8, are chosen using a least square method to best fit the

evolutions of LaT and Lκ. Note that M∞
aT

and M∞
κ take small values in the present DNS.
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As observed in Fig. 3.3.5, the proposed correlation recovers qualitatively the evolution of

LaT and Lκ with Ka, although at low Ka the error is quite important for Lκ. The behaviour

Table 3.8: Fitted parameters for modelling the Markstein numbers with Eqs.(3.3.5) and (3.3.6).

α a β b M∞
aT

M∞
κ

0.04 1.2 0.3 0.7 0.08 0.14

of Eq. (3.3.2) is assessed on 〈S∗r + S∗n〉(a∗T ,κ∗), using the correlations in Eqs. (3.3.5) and (3.3.6)

for the turbulent Markstein lengths, for each case in Figs. 3.3.6 and 3.3.7.

Figure 3.3.6 shows the evolution of 〈S∗r+S∗n〉(a∗T ,κ∗) with a∗T considering a fixed κ∗ correspond-

ing to the maximum of joint PDF of a∗T and κ∗, for DNS and Eq. (3.3.2). In the same figure

is plotted the PDF of a∗T when κ∗ is fixed. Equation (3.3.2) well reproduces the behaviour

of 〈S∗r + S∗n〉(a∗T ,κ∗) for Lek 6= 1 cases in Figs. 3.3.6a to 3.3.6c. However, 〈S∗r + S∗n〉(a∗T ,κ∗) is

overestimated (underestimated), when the tangential strain rate is strongly negative (positive).

Fortunately, these overestimations and underestimations occur at extreme values of a∗T corre-

sponding to very low probabilities according to the joint PDF. For Lek = 1 cases in Figs. 3.3.6d

to 3.3.6f, the predictions of Eq. (3.3.2) reproduce very well the evolutions observed in DNS.

Figure 3.3.6 shows the evolution of 〈S∗r + S∗n〉(a∗T ,κ∗) with κ∗ considering a fixed a∗T corre-

sponding to the maximum of joint PDF of a∗T and κ∗, for DNS and Eq. (3.3.2). In the same

figure is plotted the PDF of κ∗ when a∗T is fixed. For Lek 6= 1 cases in Figs. 3.3.7a to 3.3.7c,

Eq. (3.3.2) is in good agreement with DNS except for strongly negative and positive curvatures.

For these extreme curvatures, Eq. (3.3.2) overestimates the velocity 〈S∗r + S∗n〉(a∗T ,κ∗). However,

these overestimations occur at extreme values of κ∗, corresponding to very low probabilities

according to the joint PDF of a∗T and κ∗. Thus, these marginal values are rare and do not

impact significantly the statistics of the displacement speed.

For Lek = 1 cases in Figs. 3.3.7d and 3.3.7f, the predictions of Eq. (3.3.2) are in good agree-

ment with the DNS for negative curvatures. However, when the curvature becomes positive,

Eq. (3.3.2) underpredicts the increase observed in the DNS. This leads to an underprediction

of 〈S∗r + S∗n〉(a∗T ,κ∗) by a factor close to 2 for κ∗δL ≥ 2. Note that these values correspond to

highly curved front justifying, therefore, that the model is unable to reproduce accurately the

observed 〈S∗r + S∗n〉(a∗T ,κ∗). Even if these underpredictions are observed for curvature values

corresponding to relatively low probabilities of p(aT , κ), it is expected that their impact on the

mean prediction of S∗d by Eq. (3.3.2) will not be negligible.

Finally, note that LaT and Lκ have close values for non-unity Lewis numbers cases, sug-

gesting that a single effective Markstein length should be sufficient for modelling. The use of

a single length simplifies the modelling process because only one length needs to be tabulated.

Here a correlation for a single effective Markstein length Lrn is deduced from the work of Savard

and Blanquart (2014) on an effective Lewis number, Eq. (1.6.14):

Lrn
δ0
L

=
1

1 + αKa

L0
rn

δ0
L

, (3.3.7)
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Figure 3.3.6: Evolution of 〈S∗r + S∗n〉(a∗T ,κ∗) from DNS and predicted by Eq. (3.3.2) with a∗T at
fixed κ∗ values for: (a) to (c) the cases with Lek 6= 1 and (d) to (f) the cases with Lek = 1.
The values of κ∗ chosen correspond to the maxima of joint PDF. The PDF of a∗T is shown in
grey dot lines.
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Figure 3.3.7: Evolution of 〈S∗r + S∗n〉(a∗T ,κ∗) from DNS and predicted by Eq. (3.3.2) with κ∗ at
fixed a∗T values for: (a) to (c) the cases with Lek 6= 1 and (d) to (f) the cases with Lek = 1.
The values of a∗T chosen correspond to the maxima of joint PDF. The PDF of κ∗ is shown in
grey dot lines.
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where α is set to 0.1 to best fit both LaT and Lκ through a least square method. L0
rn is the

Markstein length of the laminar flame. Equation (3.3.7) well reproduces LaT and Lκ for Lek 6= 1

cases in Fig. 3.3.8. On the contrary, this correlation strongly underestimates LaT and Lκ for

Lek = 1 cases, which is expected to generate non negligible errors on the predictions of 〈Sd〉s,c∗ .
These errors are expected to be mainly due to the discrepancies on LaT because this length is

not negligible compared to δ0
L (LaT /δ0

L ≈ 0.5). The errors on Lκ can be neglected because this

length is very small compared to δ0
L (Lκ/δ0

L < 0.2). The impact of this approach compared to

the use of two distinct effective Markstein lengths will be assessed in Chapter 5.

0 10 20 30 40 50
K

a

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
a T

L
e

≠ 1
L

e
 = 1

Eq.(3.3.5)
Eq.(3.3.7)

(a)

0 10 20 30 40 50
K

a

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
κ

L
e

≠ 1
L

e
 = 1

Eq.(3.3.6)
Eq.(3.3.7)

(b)

Figure 3.3.8: Evolution of the effective Markstein numbers with Ka: (a) forMaT = LaT /δ0
L and

(b) for Mκ = Lκ/δ0
L. The values computed from stretched laminar flame and from the opti-

mization methods are shown with symbols, the dashed lines represent the models in Eqs. (3.3.5)
and (3.3.6) and the solid lines correspond to the model in Eq. (3.3.7).

3.4 Conclusions

In this chapter 3D-DNS of flames interacting with turbulence were examined. From this 3D-

DNS, several observations were made in agreement with literature:

• When Ka increases sufficiently, a bending effect is observed on both the flame surface

and the turbulent flame speed.

• When Ka increases, the flame is thickened mostly in the preheat zone. It was shown

that when differential diffusion is taken into account, the flame front is also thickened in

the reaction zone. Nevertheless, this thickening is relatively small compared to the one

occurring in the preheat zone.

• The inner flame structure appears close to the structure of a flame in the flamelet regime

in the reaction zone, whatever the turbulence intensity.

From these observations, the most relevant result toward the modelling of the FSD is that the

fuel consumption can be evaluated through a particular iso-surface of progress variable. This

lead to the analysis of an iso-surface of c = 0.8, which corresponds to the progress variable
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of the peak of the laminar heat release rate. This specific study allows us to evaluate the

impact of turbulence on the displacement speed and to propose a formulation to evaluate

this speed from the knowledge of strain rate a∗T , stretch rate due to curvature S∗dκ
∗ and two

turbulent Markstein lengths LaT and Lκ. The latter showed a decreasing evolution as the

Karlovitz number increased. Models are also proposed in Eqs.(3.3.5) and (3.3.6) to evaluate

these lengths knowing Ka.

Finally, these analysis provide a basis for the development of new closures in the equations

of the CFM approach, as presented in Chapters 4 and 5.



Chapter 4

A priori modelling for premixed flame

in the thin reaction zone regime

In this chapter, the extension of the range of applicability of the coherent flame model (CFM)

approach to thin reaction zone (TRZ) regime is presented, using a large-eddy simulation (LES)

formalism. Closures for each term are presented and assessed against the direct numerical

simulations (DNS) presented in Chapter 3. To allow these comparisons the quantity of interests

are extracted from DNS using a Reynolds averaged Navier-Stokes (RANS) approach. This

RANS procedure was chosen because of the simplicity in extracting statistics from DNS, and

because it allows to dispense with additional parameters such as filter size dependency. This a

priori analysis, which enlightens on the relevance of the proposed closures, is a first step toward

validation of the LES model proposed.

Thus, the present chapter is organised as follows. First, discussion on the CFM model

(Richard et al., 2007) is presented leading to the description of the adapted equations of the

proposed model in Section 4.1. Then, the post-processing methodology using a RANS approach

is described in Section 4.2. The closures for the progress variable and the flame surface density

(FSD) equations are presented and assessed against DNS in Sections 4.3 and 4.4, respectively.

Finally, a discussion on the Bray-Moss-Libby (BML) model is presented leading to a new

relationship between the filtered and resolved progress variable in Section 4.5.

4.1 Discussion on the coherent flame model

The coherent flame model is based on the concept of flame surface density (FSD), as described

in Section 1.5.3. This concept of flame surface density was developed based on the assumptions

of the flamelet regime:

• The flame is considered to remain infinitely thin, when it interacts with a turbulent flow.

Thus, the flame front is defined as a surface separating burnt and fresh gases.

• The flame is a collection of flamelets locally propagating at the laminar flame velocity.

99
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From these assumptions, the filtered balance equation of progress variable is written in a prop-

agative form:
dρc̃

dt
+∇ · (ρũc̃) +∇ · (ρuc− ρũc̃) = ρuS

0
LΣ, (4.1.1)

where Σ is the generalized flame surface density defined as:

Σ =

∫ 1

0

∫
|∇c|δ(c− c∗)G∆(x− x′)dx′dc∗, (4.1.2)

where G∆ is the LES filter, ∆ is the width of the filter, x is the position vector and δ(c) is the

Dirac function. From Eq. (4.1.2), the flame surface density along the iso-surface of the progress

variable at c = c∗ is defined as:

Σ∗ =

∫
|∇c|δ(c− c∗)G∆(x− x′)dx′. (4.1.3)

When the first hypothesis of the flamelet regime is verified, the density of iso-surface c = c∗

does not depend on the choice of c∗ and Σ = Σ∗. However, as shown in Sections 1.6.1 and

3.2, one of the main characteristics of a flame in the TRZ regime is a broadening of the flame

front due to intense turbulence. This observation directly invalidates the first assumption

of the flamelet regime. Moreover, the thickening of the flame might be the consequence of

different propagation velocities of each iso-surface of the progress variable, which are illustrated

in Fig. 3.2.6 displaying for case C, large fluctuations of 〈ρSd〉∗s, from 0.22 kg/m2/s at c∗ = 0.2

to 0.37 kg/m2/s at c∗ = 0.8. Thus, the second assumption of the flamelet regime is not verified

either.

Nevertheless, in the TRZ regime the reaction zone remains thin, as seen in Sections 1.6.1 and

3.2. This suggests that the surface of the reaction zone seems a relevant tracker to describe the

general behaviour of the flame, in particular the flame propagation speed. Thus, the challenge

is to adapt the concept of FSD to the reaction zone and, consequently, to modify the equations

of the coherent flame model. The proposed approach, first presented in Section 3.2.5, consists

in defining a new progress variable C as:

C = H(c− c∗), (4.1.4)

where H(c) is the Heaviside function giving C = 0 when c < c∗ and C = 1 otherwise. Following

the work of Knudsen and Pitsch (2008) and the derivation of the balance equation of C given

in Appendix C, the filtered transport equations of the CFM approach become:

∂ρC̃
∂t

+∇ · (ρũC̃) = −∇ ·
Ä
ρuC − ρũC̃

ä
︸ ︷︷ ︸

T1

+ 〈ρSd〉s,c∗Σ∗
︸ ︷︷ ︸

T2

, (4.1.5)
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∂Σ∗

∂t
+∇ · (ũΣ∗) = −∇ ·

(
uΣ∗ − ũΣ∗

)
︸ ︷︷ ︸

T

+ 〈∇ · u− nn : ∇u〉s,c∗Σ∗︸ ︷︷ ︸
S

+ 〈Sdκ〉s,c∗Σ∗︸ ︷︷ ︸
C

−∇ ·
(
〈Sdn〉s,c∗Σ∗

)
︸ ︷︷ ︸

P

,
(4.1.6)

where Σ∗ is the FSD along the iso-surface of the progress variable at c = c∗ (Eq. 4.1.3). In

these equations, 6 terms need to be closed:

1. The unresolved turbulent transport T1 = ∇ ·
Ä
ρuC − ρũC̃

ä
in Eq. (4.1.5),

2. The surface averaged displacement speed weighted with density 〈ρSd〉s,c∗ involved in T2

(Eq. 4.1.5),

3. The unresolved turbulent transport T = ∇ ·
(
uΣ∗ − ũΣ∗

)
in Eq. (4.1.6),

4. The normal propagation term P = ∇ ·
(
〈Sdn〉s,c∗Σ∗

)
in Eq. (4.1.6),

5. The tangential strain rate 〈aT 〉s,c∗ involved in S (Eq. 4.1.6),

6. The stretch due to curvature 〈Sdκ〉s,c∗ involved in C (Eq. 4.1.6).

The next sectin describes the post-processing method. In Sections 4.3 and 4.4, closures

following LES formalism for these terms are proposed and compared to the DNS presented in

Chapter 3.

4.2 Post-processing methodology of DNS for a priori

validation

As mentioned previously, the closures presented in Sections 4.3 and 4.4 are expressed following

LES formalism. However, for the sake of simplicity, the post-processing procedure used to

analyse the flame for a priori model development consists in a RANS validation. This procedure

allows, as a first step, to verify the relevance of the closures proposed in this work.

The analysis of the flame consists in extracting the mean part and the fluctuating part of

quantities of interest in RANS. In this study we discretize the simulation domain along the

propagation axis, as illustrated in Fig. 4.2.1. The flames being statistically uniform in the y

and z directions, a spatial averaging of C in each slices of thickness δx is performed allowing to

get profiles of C and C̃ against the propagation axis x. The value of δx is chosen as δx = 2∆x,

where ∆x is the cell size of the DNS.

Then, from the extraction of the iso-surface c = c∗, the surface averaging operation, defined

in Eq. (4.2.1), is applied to each variable of interest. Finally, from the profiles of C̃ and of
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Figure 4.2.1: Schematic view of the post-processing method.

〈Q〉s,c∗ versus x, the RANS profiles of 〈Q〉s,c∗ against C̃ are deduced.

〈Q〉s,c∗ =

∫
Vx QδA

∗

A∗ , (4.2.1)

where Q is a general quantity, Vx is the volume of the slice at position x, A∗ is the area of

flame surface contained in the slice and δA∗ is an element of flame surface. In this approach,

the quantities of interest are time averaged because the flames reach a quasi steady state.

4.3 Closure of the transport equation of progress vari-

able

In this section, the closure of terms involved in the transport equation of progress variable C
(Eq. 4.1.5) are presented.

4.3.1 Closure of the turbulent flux

Figure 4.3.1 shows the unresolved transport term T1 in Eq. (4.1.5), extracted from DNS using

the procedure presented in Section 4.2, as a function of C̃ for cases A, C and D. This term

is also compared with the progress variable propagation term T2 = 〈ρSd〉s,c∗Σ∗ in the same

figure. In Fig. 4.3.1, for each case T1 remains significantly smaller than T2. This suggests that

effort should be spent on modelling the progress variable propagation term. Thus, for this

unresolved transport term, the model proposed by Richard et al. (2007) appears sufficient. A

simple gradient assumption combined to a turbulent diffusive mechanism is used, as proposed

by Boger (2000):

∇ ·
Ä
ρuC − ρũC̃

ä
= −∇ ·

Å
ρ
νt
Sct
∇c̃
ã

(4.3.1)

where Sct is a sub-grid scale Schmidt number, and νt is the sub-grid scale viscosity estimated

as:

νt = Cu′∆∆, (4.3.2)
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Figure 4.3.1: Comparison of the source terms involved in Eq. (4.1.5) as functions of C̃. T1 is

the unresolved transport term ∇ ·
Ä
ρuC − ρũC̃

ä
and T2 is the propagation term 〈ρSd〉s,c∗Σ∗.

where u′∆ of the turbulent structures of size ∆ (the LES filter width), C is a constant, which

is usually fixed to 0.12 in the absence of mean velocity gradient in the flow (corresponding to

homogeneous isotropic turbulence). Equation (4.3.2) becomes in RANS modeling:

νt = Cu′tlt, (4.3.3)

As suggested by Rymer (2001), for RANS modelling, and Richard et al. (2007), for LES

modelling, a contribution corresponding to thermal expansion should be taken into account. In

this study the model proposed by Richard et al. (2007) is chosen, and as suggested the simple

case of a one-dimensional steady laminar flame is analysed to evaluate this contribution.

When a one-dimensional steady laminar flame is considered, the flux passing through the

flame front, ρu, is constant leading to:

ρuC = ρuC = ρũC. (4.3.4)

In a steady laminar flame, the relationship between the flow velocity u and the displacement

speed of the flame is u = −Sdn, where ρSd = ρuS
0
L because the flame is steady. The former
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and the latter relationships combined with Eq. (4.3.4) leads to:

ρuC − ρũC̃ = −ρuS0
L(C − C̃)n, (4.3.5)

where n = −∇C/|∇C| is the normal vector to the filtered iso-surface of progress variable

pointing toward the fresh gases. Finally, the complete model for the unresolved transport term

is:

∇ ·
Ä
ρuC − ρũC̃

ä
= −∇ ·

Å
ρ
νt
Sct
∇c̃
ã
− ρuS0

L∇ ·
Ä
(C − C̃)n

ä
(4.3.6)

Figure 4.3.2 compares the simple gradient model (Eq. 4.3.1) and the model completed with

the thermal expansion contribution (Eq. 4.3.6) to the DNS following the procedure presented

in Section 4.2.

For high Karlovitz number cases (case C, C1, D and D1), the simple gradient model is in

good agreement with the DNS. However, for low Karlovitz number the simple gradient model

is unable to reproduce the evolution observed. Indeed, the DNS results suggest that for cases

A and A1 the unresolved transport corresponds to counter-gradient turbulent diffusion. The

model taking into account thermal expansion (given in Eq. (4.3.6) is plotted in this same

figure. For low Karlovitz number cases, this model improves significantly the predictions of

the unresolved transport term T1. In addition, this model presents a similar evolution with the

filtered progress variable for high Karlovitz numbers cases as the simple gradient model.

Veynante et al. (1997) proposed a criterion to determine whether a turbulent flame is in

the counter-gradient regime or in the simple gradient regime. Counter-gradient diffusion is

observed when:

NB ≡
τS0

L

2αu′
> 1, (4.3.7)

where α is an efficiency function introduced by Veynante et al. (1997) to take into account

the variable ability of turbulent eddies to act on the flame front. This efficiency proposed by

Veynante et al. (1997) is similar to the efficiency function introduced by Meneveau and Poinsot

(1991) in their intermittent turbulent net flame stretch (ITNFS) model.

Table 4.1: Etimated values of the efficiency function α using ITNFS model (Meneveau and
Poinsot, 1991) and of NB defined in Eq. (4.3.7) for each case.

Case u′t/S
0
L lt/δ

0
L α NB

A 2.9 3.3 0.48 2.5
C 12.5 4.3 0.7 0.4
D 21.1 4.4 0.72 0.2
A1 2.5 5.1 0.8 1.9
C1 11.9 4.9 0.82 0.4
D1 22.1 5.1 0.86 0.2

The magnitudes of α are evaluated using the ITNFS model (Meneveau and Poinsot, 1991),

and are reported in Table 4.1. In this table is also reported NB for each DNS case. For case A

and A1 NB is 2.5 and 1.9, respectively, confirming that for low Karlovitz cases the flames are

in a counter-gradient turbulent diffusion regime.
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Figure 4.3.2: Comparison T1 = ∇·
Ä
ρuC − ρũC̃

ä
extracted from the DNS with both the simple

gradient model (Eq. 4.3.1) and the model including the thermal expansion (Eq. 4.3.6) as func-

tions of C̃ for: (a) to (c) the cases with Lek 6= 1 and (d) to (f) the cases with Lek = 1.
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4.3.2 Closure of the displacement speed

As suggested in Fig. 4.3.1, the most important term to close in Eq. (4.1.5) is the progress

variable propagation term 〈ρSd〉s,c∗Σ∗.
We assume that 〈ρSd〉s,c∗ is equal to ρ∗〈Sd〉s,c∗ , where ρ∗ is the density at c = c∗ of the

laminar flame. This assumption seems reasonable because on a c∗ iso-surface ρ is expected to

weakly fluctuate. So, the term to model is the displacement speed.

Starting from Eq. (3.3.3) we propose to express the mean displacement speed as the average

over all possible curvature values.

〈ρSd〉s,c∗ = ρ∗
∫ +∞

− 1
Lκ

+ε

S0
d − LaT 〈aT 〉s,c∗ −D∗κ

1 + Lκκ
p(κ)dκ (4.3.8)

where p(κ) is the probability density function (PDF) of κ. The lower limit of the integral is

chosen as −1/Lκ + ε to ensure the denominator remains larger than ε. In Fig. 4.3.3, this limit

is plotted as a vertical line which is shown to correspond to very small probabilities of κ. For

case C for instance, the integral of the PDF of κ using the lower limit −1/Lκ + ε is equal to

0.998, 0.993 and 0.986 for C̃ = 0.2, 0.5 and 0.8, respectively. This confirms that the lower limit

−1/Lκ + ε includes the essential part of the PDF of κ and as a consequence the integral in

Eq. (4.3.8) covers the most significant curvatures contributing to the displacement speed.

At high Karlovitz numbers, strain rate and curvature become decorrelated as shown in

Section 3.3.2. So, we assume that 〈aT 〉s,c∗ does not depend on curvature in Eq. (4.3.8). At

low Karlovitz numbers on the other hand, the impact of strain rate on the displacement speed

becomes small as it becomes nearly uniform and close to S0
d .

The PDF p(κ) is modelled presuming a Gaussian shape:

p(κ) =
1√

2σ2π
exp

Å
−(κ− µ)2

2σ2

ã
, (4.3.9)

where µ = 〈κ〉s,c∗ is the surface average of κ and σ2 is the variance of κ, defined as:

σ2 = 〈κ2〉s,c∗ − 〈κ〉2s,c∗ . (4.3.10)

Figure 4.3.3 presents the PDF extracted from the DNS and the modelled one for cases C and

C1 at three positions in the flame front corresponding to C̃ = 0.2, 0.5 and 0.8. The agreement

is good although the model tends to over-predict the PDF width. This could induce some

larger discrepancies in a posteriori testing than in a priori because all sub-models interact

with each other, which might enhance errors. To better reproduce the PDF observed in DNS,

the presumed PDF can be modified through the variance σ2. Figure 4.3.4 compares the PDF

extracted from case C to the presumed PDF (Eq. 4.3.9) using Eq. (4.3.10) to compute the

variance of κ and using half the variance:

σ2 =
〈κ2〉s,c∗ − 〈κ〉2s,c∗

2
. (4.3.11)
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Figure 4.3.3: Probability density function (PDF) of κ in solid line compared to a presumed

Gaussian PDF, defined in Eq. (4.3.9) in dashed line: (a) for C̃ = 0.2, (b) for C̃ = 0.5 and (c)

for C̃ = 0.8. The vertical dotted line represents the value of κ where 1 + Lκκ is zero for the
case C (for the case C1 this value is approximately −20000 m−1).

In the rest of this chapter, the variance for curvature extracted from DNS (Eq. 4.3.10) is

used to evaluate the potential of the model for displacement speed. Nevertheless, the impact

of the width of the presumed PDF will be assessed in Chapter 5.

To complete the closure of the displacement speed, models for curvature 〈κ〉s,c∗ and its

variance, involved in the PDF p(κ) (Eq. 4.3.9), are needed. Mechanisms linked to curvature are

propagative phenomena (Trouvé and Poinsot, 1994). This means that they are positive in the

fresh gases side and negative in the burned gases side. Thus, Rymer (2001) proposed a model,

that is adapted to the approach presented in this study using C:

〈κ〉s,c∗ = β1
c1 − C
C(1− C)Σ∗, (4.3.12)

where β1 and c1 are model parameters. Moreover, Rymer (2001) also proposed a closure for

curvature vanishing for planar laminar flames by introducing |∇C|. The retained model for the

rest of this study is then:

〈κ〉s,c∗ = β1
c1 − C
C(1− C)

(
Σ∗ − |∇C|

)
. (4.3.13)
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Figure 4.3.4: Probability density function (PDF) of κ in solid line compared to presumed PDF

for case C: (a) for C̃ = 0.2, (b) for C̃ = 0.5 and (c) for C̃ = 0.8. The presumed PDF tested are
the Gaussian presumed PDF defined in Eq. (4.3.9) using the variance of curvature extracted
from DNS (Eq. 4.3.10) and using half the variance (Eq. 4.3.11) in red and blue dashed lines,
respectively.

The parameters in Eq. (4.3.13) are chosen as β1 = 4/3 and c1 = 0.5 (values suggested by

Rymer (2001)). The closure of the curvature term in Eq. (4.3.13) is compared to DNS results

in Fig. 4.3.5, following the procedure presented in Section 4.2. It is noteworthy that C, Σ∗ and

|∇C| used to compute 〈κ〉s,c∗ are the exact values from the DNS. The comparison in Fig. 4.3.5

shows a good agreement between the model and the DNS, especially for the Lek = 1 cases.

In addition, although this closure was proposed for the flamelet regime, it becomes even more

accurate as the Karlovitz number increases.

In Fig. 4.3.5b the DNS results using the ARC mechanism for case C is also presented in

dashed line. Being very close to that obtained with the 2-step scheme, we can conclude that

flame curvature statistics are hardly affected by the chemistry description.

Another important component to model is the variance of the curvature, σ2
κ, which is in-

volved in the models for displacement speed and stretch due to curvature through the presumed

PDF of curvature. The variance of curvature is defined with Eq. (4.3.10) involving 〈κ2〉s,c∗ . A

model of 〈κ2〉s,c∗ is then needed. Hawkes et al. (2009) proposed a model given by the following
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Figure 4.3.5: Comparison of the model for the curvature 〈κ〉s,c∗ given in Eq. (4.3.13) with the

data from the DNS versus C̃ for : (a) to (c) the cases with Lek 6= 1 and (d) to (f) the cases
with Lek = 1. Dashed line in (b) represents the curvature extracted from the simulation using
ARC mechanism (case C-ARC).



110 CHAPTER 4. A PRIORI MODELLING FOR THE TRZ REGIME

0.00 0.25 0.50 0.75 1.00

C̃

0.0

0.5

1.0

〈κ
2
〉 s,
c∗
δ2 L

DNS

Eq.(4.3.14)

Eq.(4.3.15)

(a) Case A

0.00 0.25 0.50 0.75 1.00

C̃

0

2

4

6

8

〈κ
2
〉 s,
c∗
δ2 L

DNS

C-ARC

Eq.(4.3.14)

Eq.(4.3.15)

(b) Case C

0.00 0.25 0.50 0.75 1.00

C̃

0

5

10

〈κ
2
〉 s,
c∗
δ2 L

DNS

Eq.(4.3.14)

Eq.(4.3.15)

(c) Case D

0.00 0.25 0.50 0.75 1.00

C̃

0

1

2

〈κ
2
〉 s,
c∗
δ2 L

DNS

Eq.(4.3.14)

Eq.(4.3.15)

(d) Case A1

0.00 0.25 0.50 0.75 1.00

C̃

0

2

4

6
〈κ

2
〉 s,
c∗
δ2 L

DNS

Eq.(4.3.14)

Eq.(4.3.15)

(e) Case C1

0.00 0.25 0.50 0.75 1.00

C̃

0.0

2.5

5.0

7.5

10.0

〈κ
2
〉 s,
c∗
δ2 L

DNS

Eq.(4.3.14)

Eq.(4.3.15)

(f) Case D1

Figure 4.3.6: Comparison of the model for 〈κ2〉s,c∗ (Eq.4.3.15) with the data from the DNS and

the model proposed by Hawkes et al. (2009) (Eq. 4.3.14) versus C̃ for: (a) to (c) the cases with
Lek 6= 1 and (d) to (f) the cases with Lek = 1. Dashed line in (b) represents 〈κ2〉s,c∗ extracted
from the simulation using ARC mechanism (case C-ARC).
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equation:

〈κ2〉s,c∗ = (1− 〈ni〉s,c∗〈ni〉s,c∗)2 Σ∗
2

C2
(1− C)2

, (4.3.14)

where 〈ni〉s,c∗ is the ith component of surface averaged flame normal vector, 〈n〉s,c∗ . The factor

1 − 〈ni〉s,c∗〈ni〉s,c∗ is a resolution factor introduced by Cant et al. (1991) for vanishing the net

destruction of FSD when the flame is fully resolved.

To take into account this vanishing, we chose to introduce the resolved FSD |∇C| by analogy

with the model for 〈κ〉s,c∗ :

〈κ2〉s,c∗ = β2
1

C2
(1− C)2

(
Σ∗ − |∇C|

)2
, (4.3.15)

where β2 is a model parameter fixed to one in the rest of this study.

Both models presented in Eqs. (4.3.14) and (4.3.15) are compared to the DNS in Fig. 4.3.6.

As for curvature, the values used for C, Σ∗ and |∇C| in the model are the ones extracted

from the DNS. For non-unity Lewis number cases, the order of magnitude of 〈κ2〉s,c∗ is well

reproduced by Eq. (4.3.15). For case A, the model tends to under-predict the strong increase of

〈κ2〉s,c∗ towards C̃ = 0 and nearly fails to predict the increase of 〈κ2〉s,c∗ when C̃ → 1. For cases

C and D, the agreement with the DNS is much better. Note that the oscillations observed on

the DNS results for C̃ close to zero and 1 might be due to the very large curvatures observed

in the regions. For the unity Lewis number cases, the agreement with the DNS is very good at

all Karlovitz numbers.

Model proposed by Hawkes et al. (2009) presents similar results at large Karlovitz numbers,

which is not surprising as both models assume similar expressions. At the same time, Hawkes

model tends to over-predict 〈κ2〉s,c∗ by a factor of three for case A, unlike Eq. (4.3.15).

In Fig. 4.3.6b, 〈κ2〉s,c∗ obtained for the DNS using the ARC mechanism is also presented.

Being very close to that obtained with the 2-step scheme, we can conclude that flame curva-

ture statistics are hardly affected by the chemistry description and that the 2-step description

remains an acceptable approximation of chemistry on this aspect.

Predictions of 〈Sd〉s,c∗ by the proposed model, Eq. (4.3.8), are now assessed against the DNS

and the constant 〈Sd〉s,c∗ model adopted in the standard flamelet models (〈ρSd〉s,c∗ = ρuS
0
L).

Figure 4.3.7a presents 〈Sd〉s,c∗ given by the proposed model for case A, using both the Markstein

lengths fitted from the DNS (in plain symbols and dashed line) and those given by Eqs. (3.3.5)

and (3.3.6). It can be seen that 〈Sd〉s,c∗ is over-predicted when correlations are used, while it

closely follows the DNS for C̃ > 0.1 when the fitted values are used. This result confirms the

strong impact of Markstein length evaluations. Note that the error observed with the Markstein

length correlation is maximum for case A, which is the case where the correlation shows the

poorest agreement with the fitted values as seen in Fig. 3.3.5. On the contrary for cases C and

D, a much smaller difference is observed between fitted and correlation values (not shown).
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Figure 4.3.7: Comparison of the displacement speed 〈Sd〉s,c∗ for the proposed model (Eq. 4.3.8)

with the DNS versus C̃ for: (a) to (c) cases with Lek 6= 1 and (d) to (f) cases with Lek = 1.
Plain symbols and dashed line represent predictions from Eq. (4.3.8) using Markstein lengths
fitted from the DNS. Black dashed line represents 〈Sd〉s,c∗ extracted from the simulation using
ARC mechanism (case C-ARC).
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Figure 4.3.8: Comparison of the displacement speed 〈Sd〉s,c∗ for the proposed models in

Eqs. (4.3.8) and (4.3.16) with the DNS versus C̃ for: (a) to (c) cases with Lek 6= 1 and (d) to
(f) cases with Lek = 1. Plain symbols and dashed line represent predictions from Eqs. (4.3.8)
and (4.3.16) using Markstein lengths fitted from the DNS. Black dashed line represents 〈Sd〉s,c∗
extracted from the simulation using ARC mechanism (case C-ARC).
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For all six DNS cases, the proposed model predicts globally the increase of 〈Sd〉s,c∗ with C̃
observed in the DNS, unlike the flamelet model which remains constant, making a substantial

improvement. At the same time this increase can be substantially over (case D) or under (cases

C1 and D1) predicted on the burned gases side.

More importantly from a modelling perspective, the proposed model does not capture the

strong decrease of 〈Sd〉s,c∗ when C̃ tends toward zero for non-unity Lewis number cases: for

case A, 〈Sd〉s,c∗ approaches zero in this zone and becomes even negative for cases C and D. A

possible explanation might be that the proposed model relies on Eq. (3.3.2) for the displacement

speed, which is directly taken from laminar flame analysis. This expression assumes that the

displacement speed is locally in equilibrium with the local stretch. However, all the cases

considered here present a Karlovitz number larger than unity which means that the smallest

turbulent scales characteristic time is smaller than the flame time scale. In this condition, this

equilibrium assumption might not be valid any more and the flame responds to stretch in a

delayed and attenuated way (Poinsot and Veynante, 2012).

In order to improve the proposed model prediction towards C̃ = 0, the above remark suggests

as a first very simple correction, to replace Sd by S0
d in Eq. (4.3.8) when κ > 0. Mathematically,

this is equivalent to introduce a factor γ in the proposed model expression of the displacement

speed, such that γ = 0 when κ > 0 and γ = 1 when κ < 0, leading to the corrected model

below:

〈ρSd〉s,c∗ = ρ∗
∫ +∞

− 1
Lκ

+ε

S0
d − LaT 〈aT 〉s,c∗ − (D∗ + (1− γ)LκS0

d)κ

1 + γLκκ
p(κ)dκ. (4.3.16)

In Figs. 4.3.8a to 4.3.8c, the corrected model (in green star symbols) is found to be in much

better agreement with the DNS data compared to the proposed model in Eq. (4.3.8) on the

fresh gases side. For Lek = 1 cases, the models based on Eqs. (4.3.8) and (4.3.16) are nearly

identical as in this case, the curvature Markstein lengths are much smaller.

4.4 Closure of the flame surface density transport equa-

tion

In this section, the closure of terms involved in the transport equation of flame surface density

Σ∗ (Eq. 4.1.6) are presented. These terms are:

• The unresolved turbulent transport T = ∇ ·
(
uΣ∗ − ũΣ∗

)
in Eq. (4.1.6),

• The normal propagation term P = ∇ ·
(
〈Sdn〉s,c∗Σ∗

)
in Eq. (4.1.6),

• The tangential strain rate 〈aT 〉s,c∗ = 〈∇ · u− nn : ∇u〉s,c∗ (term S in Eq. 4.1.6),

• The stretch due to curvature 〈Sdκ〉s,c∗ (term C in Eq. 4.1.6).

Figure 4.4.1 shows the unresolved transport term T , the normal propagation P and the

flame surface density source terms S and C as functions of C̃ for cases A, C and D, extracted
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Figure 4.4.1: Comparison of the source terms involved in Eq. (3.2.14) as functions of C̃. T
is the unresolved transport term ∇ ·

(
uΣ∗ − ũΣ∗

)
, S is the source term related to tangential

strain rate and C is the source term related to stretch due to curvature 〈Sdκ〉s,c∗ and P is the
normal propagation term ∇ ·

(
〈Sdn〉s,c∗Σ∗

)
.

from DNS using the procedure presented in Section 4.2. In Fig. 4.4.1, the terms T and P are

approximately one order of magnitude smaller than S and C for each case.

4.4.1 Closure of the unresolved transport term

The unresolved transport term of FSD, T , is modelled with a simple gradient assumption

following Richard et al. (2007):

∇ ·
(
uΣ∗ − ũΣ∗

)
= −∇ ·

Å
νt
Sct
∇Σ∗
ã
. (4.4.1)

As suggested by Rymer (2001), for RANS modelling, and Richard (2005), for LES modelling,

a contribution corresponding to thermal expansion should be taken into account. Similarly to

the term T1 (Eq. 4.1.5), this thermal expansion contribtuion is determined from the analysis

of the simple case of a one-dimensional steady laminar flame. Because the flame is steady,

Eq. (4.1.6) becomes:

∇ ·
Ä
(u + Sdn)Σ∗

ä
= 0, (4.4.2)

where (u + Sdn)Σ∗ is equal to (〈u〉s,c∗ + 〈Sdn〉s,c∗)Σ∗. Yet, the displacement speed at c∗ in

a laminar flame is equal to (ρu/ρ
∗)S0

L, which leads to Eq. (4.4.3) when combined with the
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following relationship: u = −Sdn (presented in Section 4.3).

〈u〉s,c∗ = −ρu
ρ∗
S0
L〈n〉s,c∗ , (4.4.3)

where 〈n〉s,c∗ = −∇C/Σ∗ is the surface averaged normal vector to the iso-surface c = c∗ pointing

toward the fresh gases.

Furthermore, the surface averaged velocity is modelled, using the Favre averaged velocity,

as 〈u〉s,c∗ = ũ + 〈u′′〉s,c∗ , where 〈u′′〉s,c∗ corresponds to the difference between the Favre filtered

velocity and the surface averaged velocity.

Similarly to the term T1, the Favre filtered velocity field is modelled as:

ũ =
ρu
ρ
S0
L〈n〉s,c∗ . (4.4.4)

Note that the normal vector used in Eq. (4.4.4) is 〈n〉s,c∗ , while the normal vector is n in the

model for ũ (Eq. 4.3.5) used for modelling T1. Then, combining the previous decomposition of

〈u〉s,c∗ and Eq. (4.4.4) leads to:

〈u′′〉s,c∗ =

Å
ρu
ρ
− ρu
ρ∗

ã
S0
L〈n〉s,c∗ . (4.4.5)

Equation (4.4.5) corresponds to a thermal expansion term added to the unresolved transport

term of the flame surface density, as proposed by Rymer (2001), allowing to converge to a

laminar flame when turbulence is sufficiently low. Equation (4.4.1) then becomes:

∇ ·
(
uΣ∗ − ũΣ∗

)
= −∇ ·

Å
νt
Sct
∇Σ∗
ã

+∇ ·
ïÅ
ρu
ρ
− ρu
ρ∗

ã
S0
L〈n〉s,c∗Σ∗

ò
. (4.4.6)

The model given in Eq. (4.4.6) is compared to the unresolved term of the flame surface

density extracted from the DNS and to the simple gradient model (Eq. 4.4.1) in Fig. 4.4.2. The

model in Eq. (4.4.6) well predicts the unresolved term of FSD, both in terms of evolution with

C̃ and in magnitude, for each case. As for the term T1 the simple gradient model gives results

similar to Eq. (4.4.6) for high Karlovitz numbers (cases C, D, C1 and D1), while for cases A

and A1 the evolution predicted by the simple gradient model seems to be inaccurate, especially

on the burnt gases side.

4.4.2 Closure of the normal propagation

The normal propagation terms is usually modelled using the following relationship between the

laminar flame speed and the displacement speed:

ρSd = ρuS
0
L. (4.4.7)
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Figure 4.4.2: Comparison T = ∇·
(
uΣ∗ − ũΣ∗

)
extracted from the DNS with the models given

in Eqs. (4.4.1) and (4.4.6) as functions of C̃ for: (a) to (c) the cases with Lek 6= 1 and (d) to
(f) the cases with Lek = 1.



118 CHAPTER 4. A PRIORI MODELLING FOR THE TRZ REGIME

This relationship is then used in the normal propagation speed:

〈Sdn〉s,c∗Σ∗ =
ρu
ρ∗
S0
L〈n〉s,c∗Σ∗. (4.4.8)

Even if in the TRZ regime this flamelet model is not valid, Eq. (4.4.8) is used for high Karlovitz

number because the propagation term appears negligible (as seen in Fig. 4.4.1).

Finally, the sum of the unresolved transport term and the normal propagation is given as

follows:

∇ ·
[
(〈u〉s,c∗ − ũ + 〈Sdn〉s,c∗) Σ∗

]
= −∇ ·

Å
νt
Sct
∇Σ∗
ã

+∇ ·
Å
ρu
ρ
S0
L〈n〉s,c∗Σ∗

ã
. (4.4.9)

Figure 4.4.3 shows 〈Sdn〉s,c∗Σ∗ and the model presented in Eq. (4.4.8) as functions of the

filtered progress variable C̃. For each case, the model is in good agreement with the DNS results,

except for C̃ < 0.4 for Lek 6= 1 cases (up to values approximately 4 times larger than DNS for

case D). These large discrepancies are due to the flamelet assumption I0 ≈ 1. Therefore, in the

same figure is plotted the following model:

〈Sdn〉s,c∗Σ∗ = I∗0
ρu
ρ∗
S0
L〈n〉s,c∗Σ∗, (4.4.10)

where I∗0 is the stretch factor on the iso-surface c = c∗ defined as:

I∗0 =
〈ρSd〉s,c∗
ρuS0

L

. (4.4.11)

Equation (4.4.10) improves significantly the predictions for 〈Sdn〉s,c∗Σ∗ in Fig 4.4.3 for

C̃ < 0.4. However, significant discrepancies remain on the fresh gases side when Ka increases.

Indeed, for case C when C̃ ≥ 0.4 Eq. (4.4.10) is superimposed with the DNS results, elsewhere

it overestimates 〈Sdn〉s,c∗Σ∗ by a factor 2. For C̃ ≤ 0.1 DNS results show small positive values,

which Eq. (4.4.10) cannot reproduce.

Even if the model proposed in Eq. (4.4.8) overestimates strongly the normal propagation

on the fresh gases side, this model is sufficient because it captures the overall evolutions of

〈Sdn〉s,c∗Σ∗.

4.4.3 Closure of the tangential strain rate

Hawkes and Cant (2000) decomposed the tangential strain rate due to the surrounding fluid

〈aT 〉s,c∗ = 〈∇ · u− nn : ∇u〉s,c∗ as:

〈aT 〉s,c∗ = ∇ · ũ− 〈nn〉s,c∗ : ∇ũ︸ ︷︷ ︸
〈AT 〉s,c∗

+〈aT 〉sgss,c∗ + Shr, (4.4.12)
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Figure 4.4.3: Comparison of 〈Sdn〉s,c∗Σ∗ extracted from the DNS with the models given by

Eqs. (4.4.8) and (4.4.10) as functions of C̃ for: (a) to (c) the cases with Lek 6= 1 and (d) to (f)
the cases with Lek = 1.
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where 〈AT 〉s,c∗ is the tangential strain rate due to the resolved flow motions, 〈aT 〉sgss,c∗ is the

tangential strain rate due to unresolved flow motions and Shr is a term that accounts for the

heat release effects. Due to expansion across the flame, the velocity gradients at the flame

surface are different from the velocity gradients of the mean flow. The term Shr is discussed

in Section 4.4.4 dedicated to the stretch rate due to curvature. The term 〈AT 〉s,c∗ involves an

orientation factor 〈nn〉s,c∗ , which is not known. Consequently, the closures for the tangential

strain rate due to resolved flow motions in Eq. (4.4.12) and tangential strain rate due to

unresolved flow motions are presented in this section.

Closure of the tangential strain rate due to resolved flow motions

The tangential strain rate due to resolved flow motions 〈AT 〉s,c∗ is evaluated adapting the model

proposed by Hawkes and Cant (2000) in Chapter 1:

〈AT 〉s,c∗ = ∇ · ũ−
Å
〈n〉s,c∗〈n〉s,c∗ +

1

3
αI3

ã
: ∇ũ, (4.4.13)

where I3 is the identity matrix and α = 1− |〈n〉s,c∗|2 is a resolution factor introduced by Cant

et al. (1991) for vanishing the net destruction of FSD when the flame is fully resolved.

Figure 4.4.4 compares the model proposed by Hawkes and Cant (2000) (Eq. 4.4.13) and the

tangential strain rate due to resolved flow motions in Eq. (4.4.12) extracted from DNS following

the procedure presented in Section 4.2. For all six DNS cases, the proposed model reproduces

the general evolution of 〈AT 〉s,c∗ through the flame front. The predictions of Eq. (4.4.13) are very

accurate for case A and all three Lek = 1 cases. However, the model significantly overpredicts

〈AT 〉s,c∗ for cases C and D. These discrepancies should be further analysed, but because 〈AT 〉s,c∗
represents 20% and 10% of the total tangential strain rate for cases C and D, respectively, the

model proposed by Hawkes and Cant (2000) (Eq. 4.4.13) is considered sufficient in the present

study.

Closure of the tangential strain rate due to unresolved flow motions

The tangential strain rate due to unresolved flow motions, 〈aT 〉sgss,c∗ , is modelled using the same

approach proposed in the generalized CFM, presented in Sections 1.5.3. In this approach,

the tangential strain rate is modelled using the approximated strain rate due to the turbulent

structures smaller than the resolved flame thickness ∆̂:

〈aT 〉sgss,c∗ = αaTΓ
û′

∆̂
, (4.4.14)

where αaT is a model parameter, Γ is an efficiency function applied to differentiate the effect

of the different turbulent scales on the flame straining and û′ is the characteristic velocity of

the turbulent structures at scale ∆̂. The latter is estimated from the sub-grid scale fluctuation
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Figure 4.4.4: Evolutions of the tangential strain rate due to resolved flow motions 〈AT 〉s,c∗ in

Eq. (4.4.12) with the filtered progress variable C̃ for: (a) to (c) the cases with Lek 6= 1 and (d)
to (f) the cases with Lek = 1.



122 CHAPTER 4. A PRIORI MODELLING FOR THE TRZ REGIME

velocity u′ and the mesh size ∆:

û′ = u′
Ç

∆̂

∆

å1/3

. (4.4.15)

The efficiency function Γ, introduced in Section 1.5.5, is recalled below:Ç
Γ
û′

∆̂

å2

=

Å
π

∆̂

ã3 ∫ ∞

0

[Cr(k+)]2k2
+E11(k+)dk+, (4.4.16)

where k+ = k∆̂/π is the dimensionless wavenumber and Cr(k+) is the efficiency function

introduced in Chapter 2. E11(k+) is the one-dimensional (longitudinal) energy spectrum in the

direction of the wavenumber k (Eq. 1.5.41).

As presented in Chapter 1, the key parameter in this model is the efficiency function Cr(k+).

The five following functions are considered and tested:

1. As presented in Chapter 2, Cant et al. (1991) proposed to modelled the turbulent tan-

gential strain rate, in the context of RANS modelling, as 〈aT 〉s ∝ CA/τη, where CA is a

constant equals to 0.28 and τη is the eddy turnover time of the Kolmogorov scale. When a

unit constant function Cr is introduced in Eq. (4.4.16), the model for 〈aT 〉sgss,c∗ (Eq. 4.4.14)

and imposing ∆̂ = lt and û′ = u′t becomes:

〈aT 〉s,c∗ = αaT
3√
55
Ka

S0
L

δL
. (4.4.17)

This equation shows that the model proposed by Cant et al. (1991) is equivalent to the

model proposed by Charlette et al. (2002a) using the unit constant efficiency function.

This model is designated in the rest of this study as Cant model.

2. A Heaviside function defined as follows:

Cr(k+) =

{
1 if k+ < ∆̂

δc

0 otherwise,
(4.4.18)

where δc is a cut-off scale. We assume here that the flame behaves as a low-pass filter

(LPF) in term of wavenumber, the cut-off scale δc of being identified here to the laminar

flame thickness δ0
L. This assumption combined to the Heaviside’s function allows an

analytical integration of Eq. (4.4.16) leading to:Ç
Γ
û′

∆̂

å2

=
9

55
Re∆̂

[
1− exp

(
−3

2
Ck

1

Re∆̂

Ç
π∆̂

δc

å4/3)]
. (4.4.19)

Equation (4.4.19) leads to the following expression for 〈aT 〉sgss,c∗ when ∆̂ = lt and û′ = u′t:

〈aT 〉s,c∗ = αaT
3√
55
Ka

S0
L

δ0
L

ñ
1− exp

Ç
−3

2
Ck

1

Ret

Å
πlt
δc

ã4/3
åô1/2

. (4.4.20)
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Equation (4.4.20) is referred to the LPF model in the rest of this study.

3. The model given by Eqs. (4.4.14) and (4.4.16) considering the function Cr proposed by

Charlette et al. (2002a).

4. The model given by Eqs. (4.4.14) and (4.4.16) considering the function Cr proposed by

Bougrine et al. (2014).

5. The model given by Eqs. (4.4.14) and (4.4.16) considering the function Cr proposed in

Chapter 2 (Eq. 2.3.5). This function is designated as the HK2D model.

All these functions are reported in Table 4.2.

Table 4.2: The efficiency functions of the models compared to the DNS.

Model
Efficiency function

name

Cant Cr
Ä
rk
δ0L
, uk
S0
L

ä
= 1

LPF Cr

Å
rk
δ0
L

,
uk
S0
L

ã
=

®
1 if k+ < ∆̂

δ0L

0 otherwise

Charlette Cr
Ä
rk
δ0L
, uk
S0
L

ä
= 1

4

ï
1 + erf

Å
0.6

Å
ln
Ä
rk
δ0L

ä
−
√

S0
L

uk

ããò î
1 + erf

Ä
3 log

Ä
2 uk
S0
L

ääó
Bougrine Cr

Ä
rk
δ0L
, uk
S0
L

ä
=

1+erf[0.9 ln(
rk
δ0
L

)−2]

1+0.3
uk
S0
L

(1+erf[0.9 ln(
rk
δ0
L

)−2])

[
1
Le

(1.76 + tanh (Le− 2))
]

HK2D Cr
Ä
rk
δ0L
, uk
S0
L

ä
=

ñ
1+erf

Ç
1.05 log

Å
rk
δ0
L

ã
−0.91

…
S0
L
uk

åô1.53ñ
1+0.24

uk
S0
L

Ç
1+erf

Ç
1.05 log

Å
rk
δ0
L

ã
−0.91

…
S0
L
uk

ååô1.03 [ 1
Le

(1.76 + tanh (Le− 2))
]

Equation (4.4.14) does not depend on the filtered progress variable leading to a constant

profile of 〈aT 〉sgss,c∗ with C̃. So, to compare the prediction of each model, the integrated tangential

strain rate due to unresolved flow motions 〈aT 〉∗s is computed from the DNS as:

〈aT 〉∗s =

∫
V〈aT 〉

sgs
s,c∗Σ

∗dx∫
V Σ∗dx

=

∫
V (〈aT 〉s,c∗ − 〈AT 〉s,c∗) Σ∗dx∫

V Σ∗dx
. (4.4.21)

The tangential strain rates predicted by the different models are corrected using a model

parameter αaT for each model. This parameter is adjusted to fit the strain rates predicted by

the Charlette et al. (2002a) model to DNS for the lowest Karlovitz numbers (i.e., cases A and

A1). Its use for the other models allows to evaluate differences between them. The values of

αaT used are 1.65 and 2.81 for Lek 6= 1 and Lek = 1, respectively. The model constant adjusted

for Charlette on case A1 is retained for the Bougrine’s model which is the only one to include
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Figure 4.4.5: Tangential strain rate 〈aT 〉∗s = 〈aT 〉sgss,c∗ from DNS compared to Bougrine’s model
(Bougrine et al., 2014), Cant’s model (Cant et al., 1991), Charlette’s model (Charlette et al.,
2002a), HK2D (Eq. 2.3.5) and LPF models (Eq. 4.4.20): (a) for cases with Lek 6= 1 and (b) for
cases with Lek = 1.

a correction for Lewis number effects (coefficient equal to 0.85 for our non-unity Lewis cases,

leading to a model constant 2.81.85 = 2.39).

Since the values predicted by the Bougrine’s function are much smaller than the other

models, they are plotted in Fig. 4.4.5 by multiplying them by a factor 2.5. Figure 4.4.5compares

model predictions and tangential strain rates extracted from the DNS, plotted as functions of

Ka.

First looking at Lek 6= 1 cases in Fig. 4.4.5a, Cant’s model presents a linear increase of

〈aT 〉sgss,c∗ with Ka, as expected from Eq. (4.4.17), in agreement with the DNS. The turbulent

strain predicts for case A is twice as large as that of the DNS. In addition, the slope of this line

is too steep compared to the DNS. As a consequence, very large discrepancies are observed for

high Karlovitz numbers. For instance, the predicted strain rate for case D is almost four times

larger than that of the DNS. Thus, the Cant’s model clearly overestimates the effect of small

structures of the turbulence on the tangential strain rate.

Charlette’s model over-predicts the turbulent strain rate for high Karlovitz numbers, with

up to 64% relative error for case C. Nevertheless, the general trend with Ka seems to be well
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reproduced, contrary to Cant’s model. Surprisingly, Bougrine’s model deteriorates significantly

strain rate predictions: for each cases the predicted strain rate is about half the DNS values.

This might be due to the strong decrease of the efficiency function for small turbulent structures,

as observed by Bougrine et al. (2014). Nevertheless, the relative evolution of Bougrine’s model

is in good agreement with the DNS. Note that Bougrine’s turbulent strain rate flattens with

increasingKa, while the DNS strain rate remains quasi-linear withKa. This might be explained

by a too strong decrease of Bougrine’s efficiency function with the vortex velocity (Bougrine

et al., 2014). HK2D model presents similar results as Bougrine’s model multiplied by 10. This

is mainly explained by the similar shape of the efficiency function of the two models, displayed

in Fig. 2.3.2. LPF model is the only one to accurately predicts the turbulent strain rate for

each case, with a maximum relative error of 25% for case D.

For Lek = 1 cases shown in Fig. 4.4.5b, the predictions of each model are similar to non-unity

Lewis number cases. As for Lek 6= 1 cases, Bougrine’s model strongly underestimates 〈aT 〉s,c∗
by a factor 2.5 and up to a factor 5 for cases A1 and D1, respectively. Note that predictions of

Cant’s and Charlette’s models are deteriorated compared to Lek 6= 1 cases. The latter presents

a relative error of 150% for the highest Karlovitz number. Nevertheless, the main conclusions

here are the same as for the non-unity Lewis number simulations.

Charlette’s and Bougrine’s functions were not developed for high Karlovitz number flames

and, consequently, have never been validated for these conditions. Thus, the results observed

on Cant’s model confirm that the inability of small eddies to stretch the flame needs to be

included in a turbulent strain rate model. The Charlette’s and Bougrine’s functions take into

account the lower capacity of small vortices to stretch the flame, but the predictions of the

LPF model show that this inability introduced in the Charlette’s and Bougrine functions is

not sufficient. It also shows that choosing δ0
L as the cut-off scale seems appropriate for the

LPF model. From these cases, the LPF model seems to give the better prediction for 〈aT 〉∗s
with a maximum error always smaller than 25%. Nevertheless, this cut-off length might also

be dependent on Ka, as already suggested for low Ka by Gülder (1995).

A comparison of 〈aT 〉∗s extracted from the DNS with the models is then presented in Fig. 4.4.6

for all DNS cases but by tuning for each model the parameter αaT to fit the strain rate obtained

at the lowest Karlovitz numbers (i.e., cases A and A1). This tuned parameter is reported in

Table 4.3 for each model.

Table 4.3: Tuned model parameter αaT for each model.

PPPPPPPPPCase
Model

Bougrine Cant Charlette HK2D LPF

Lek 6= 1 10.6 0.8 1.7 1.2 1.4
Lek = 1 7.1 1.6 2.8 1.1 2.4

Figure 4.4.6 shows that tuning αaT for each model improves significantly the predictions.

The conclusions drawn in the analysis of Fig. 4.4.5 are still valid when αaT is tuned for each

model. Figure 4.4.6 shows that the best model is the LPF model and choosing δ0
L as the cut-

off scale seems appropriate. Note that both Bougrine’s and HK2D models present very similar
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Figure 4.4.6: Tangential strain rate 〈aT 〉∗s = 〈aT 〉sgss,c∗ from DNS compared to Bougrine’s model
(Bougrine et al., 2014), Cant’s model (Cant et al., 1991), Charlette’s model (Charlette et al.,
2002a), HK2D (Eq. 2.3.5) and LPF model (Eq. 4.4.20): (a) for cases with Lek 6= 1 and (b) for
cases with Lek = 1. Each model is tuned to fit the lowest Karlovitz number case.

results showing that the efficiency function proposed in Chapter 2 does not significantly improve

predictions of 〈aT 〉∗s.

4.4.4 Closure of the stretch due to curvature

Similarly to the tangential strain rate in Section 4.4.3, the stretch rate due to curvature 〈Sdκ〉s,c∗
is decomposed as:

〈Sdκ〉s,c∗ =
ρu
ρ∗
S0
L∇ · 〈n〉s,c∗

︸ ︷︷ ︸
〈Sdκ〉ress,c∗

+

ï
〈Sdκ〉s,c∗ −

ρu
ρ∗
S0
L∇ · 〈n〉s,c∗

ò
︸ ︷︷ ︸

〈Sdκ〉sgss,c∗

, (4.4.22)

where 〈Sdκ〉ress,c∗ and 〈Sdκ〉sgss,c∗ are the stretch rates due to curvature caused by resolved and

unresolved flow motions, respectively. The latter is modelled using the approach used for the

displacement speed. First, an expression for (Sdκ)∗ is deduced from Eq. (3.3.3) by multiplying
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it with κ∗:

(Sdκ)∗ =

ρu
ρ∗
S0
Lκ
∗ − LaT a∗Tκ∗ −D∗κ∗2

1 + Lκκ∗
. (4.4.23)

Equation (4.4.23) is then filtered with the operator 〈〉s,c∗ using the presumed PDF of the

curvature, given in Eq. (4.3.9), leading to the following model:

〈Sdκ〉sgss,c∗ =

∫ +∞

− 1
Lκ

+ε

S0
dκ− LaT 〈aT 〉s,c∗κ−D∗κ2

1 + Lκκ
p(κ)dκ. (4.4.24)

The same assumptions are made here as for the model of displacement speed in Eq. (4.3.8).

The proposed model for the stretch due to curvature, defined by Eq. (4.4.24), is compared

to the DNS in Fig. 4.4.7. It is computed using the Markstein lengths correlations for LaT and

Lκ given by Eq. (3.3.5) and Eq. (3.3.6), respectively. In this figure is also presented a model

proposed by Katragadda et al. (2014a) (Eqs. (1.6.26) to (1.6.27f)), using their suggested values

for the model parameters. Although developed for the generalized approach, Katragadda’s

model is here computed using quantities Σ∗ and C on the iso-surface c∗.

For cases A to D, the proposed model reproduces qualitatively the evolution of 〈Sdκ〉s,c∗ as

seen in Fig. 4.4.7a to 4.4.7c. In particular, the model is in good agreement with the DNS towards

C̃ = 0 and the decrease of 〈Sdκ〉s,c∗ with C̃ up to 0.8 approximately is correctly reproduced.

On the contrary, above this value, the model goes back to zero too quickly compared to the

DNS. This discrepancy can partly be explained by the strong numerical noise observed on the

DNS on the burned gases side. Katragadda’s model also recovers the order of magnitude of

〈Sdκ〉s,c∗ but it is less accurate than the proposed model and shows a too flat profile compared

to the DNS. In Fig. 4.4.7a, the proposed model for case A is also presented using the Markstein

lengths directly fitted on DNS case A in Section 3.3.2 (in plain symbols and dashed line). It can

be seen that the proposed model prediction improves remarkably on the burnt gases side with

the fitted Markstein lengths. For instance, at C̃ = 0.8 the proposed model using the correlation

over-estimates 〈Sdκ〉s,c∗ by a factor two while when using the fitted value, the error goes to

nearly zero. This result shows that the proposed model has the ability to correctly recover the

DNS results but it also shows that unfortunately, the model prediction is highly sensitive to

the turbulent Markstein length employed. Future work is certainly needed to better assess how

these lengths could be modelled in a more reliable and possibly universal manner.

For the cases with Lek = 1, the proposed model presents the same type of agreement

with the DNS although on case A it strongly under-estimates 〈Sdκ〉s,c∗ . For Lek = 1 cases,

Eq. (4.4.24) and Katragadda’s model are equivalent for C̃ < 0.7. However, on the burned gases

side the proposed model (Eq. 4.4.24) better predicts 〈Sdκ〉s,c∗ than Katragadda’s model, which

presents large positive values while 〈Sdκ〉s,c∗ remains negative in the DNS. DNS case C using

the ARC mechanism is also presented in Fig. 4.4.7b: as for previous flame statistics, it presents

a very similar 〈Sdκ〉s,c∗ profile as the 2-step mechanism.

Finally, the stretch rate due to curvature caused by resolved flow motions 〈Sdκ〉ress,c∗ can be
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Figure 4.4.7: Comparison of the stretch due to curvature 〈Sdκ〉s,c∗ normalized with the chemical
time τf = δ0

L/S
0
L for Katragadda’s model (Katragadda et al., 2014a) and the proposed model

(Eq. 4.4.24) with the DNS versus C̃ for : (a) to (c) cases with Lek 6= 1 and (d) to (f) cases
with Lek = 1. Plain symbols and dashed line represent predictions from Eq. (4.4.24) using
Markstein lengths fitted from the DNS in (a). Black dashed line represents 〈Sdκ〉s,c∗ extracted
from the simulation using ARC mechanism (case C-ARC).
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combined with the term that accounts for the heat release effects Shr in the the tangential

strain rate. The latter can be expressed (see Appendix E) as:

Shr =

Å
ρu
ρ
− ρu
ρ∗

ã
S0
L∇ · 〈n〉s,c∗ . (4.4.25)

Equation (4.4.25) is similar to the expression proposed by Hawkes and Cant (2000). Thus, the

sum of 〈Sdκ〉ress,c∗ and Shr is:

〈Sdκ〉ress,c∗ + Shr =
ρu
ρ
S0
L∇ · 〈n〉s,c∗ . (4.4.26)

Equation 4.4.26 corresponds to the stretch rate due to curvature caused by resolved flow motions

introduced by Richard (2005).

4.5 Discussion on the relationship between C̃ and C
Accurate predictions of the models presented in the previous section rely on the closure of the

curvature and its variance, which involve C, as presented in Section 4.3.2. Unfortunately, the

available variable, from Eq. (4.1.5), is C̃. So, C should be expressed as a function of the resolved

progress variable C̃.
The usual relationship used is based on the Bray-Moss-Libby (BML) analysis (Bray and

Moss, 1977). The BML model combines a statistical approach using probability density func-

tions and a physical analysis. The PDF of the progress variable C at a given location x is

expressed as the sum of fresh, fully burnt and burning gases contributions:

p(C,x) = α(x)δ(C) + β(x)δ(1− C) + γ(x)f(C,x), (4.5.1)

where α, β and γ denotes the probability to have fresh gases, burnt gases and reacting mixture

at location x, respectively. δ(C) and δ(1 − C) are the Dirac functions corresponding to fresh

and fully burnt gases, respectively. This model is developed assuming large Reynolds and

Damköhler numbers, and is based on some strong assumptions, such as unity Lewis numbers,

adiabatic flame, isobar or flamelet assumptions.

The flame front is considered as infinitely thin, which implies that the probability to be in

the reactive zone is low (γ << 1). Thus, Eq. (4.5.1) reduces to:

p(C) = αδ(C) + βδ(1− C). (4.5.2)

Bray and Moss (1977) express ρ as:

ρ =
ρu

1 + τ C̃
, (4.5.3)

where τ is the heat release factor defined as τ = ρu/ρb − 1. Finally, the relationship between C̃
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Figure 4.5.1: Evolutions of C as a function of C̃ for: (a) non-unity Lewis numbers cases and
(b) unity Lewis numbers cases. The BML relationship is plotted in dashed line. The model
proposed by Chakraborty and Cant (2011) is plotted in dotted lines.

and C is deduced from Eq. (4.5.3):

C =
(1 + τ)C̃
(1 + τ C̃)

. (4.5.4)

Figure 4.5.1 shows the evolution of C as a function of C̃ extracted from the DNS, as well

as the BML relationship given in Eq. (4.5.4). Even for low Karlovitz cases (A and A1), the

profiles of C with C̃ differs significantly from the profile predicted by the BML analysis. When

the Karlovitz number is increased, the relationship between C and C̃ tends to the identity

function. As expected, the BML relationship is not adapted to TRZ regime.

Chakraborty and Cant (2011) adapted the BML relationship given in Eq. (4.5.4) to take

into account the effect of the Lewis number and that the flame is not infinitely thin:

C =
(1 + τgaLe−b)C̃
(1 + τgaLe−bC̃)

, (4.5.5)

where g = ρC ′′2/ρC̃(1− C̃) is the segregation factor, and a and b are positive model constants,

with the suggested values a = 0.26 and b = 1.5 (Chakraborty and Cant, 2011). The factor

Le−b accounts for the strengthening of thermal expansion effects with decreasing Lewis num-

ber. This expression better captures the variations of C with C̃ in dotted lines in Fig. 4.5.1,

when the segregation factor is well fitted. The corresponding segregation factors are reported

in Table 4.4. Nevertheless, to use this expression, a model for ρC ′′2 is needed, which is not

straightforward, especially in the TRZ regime.

Table 4.4: Segregation factor involved in Eq. (4.5.5) fitted to best reproduce C of each DNS.

Case A Case C Case D Case A1 Case C1 Case D1

0.5 0.3 0.25 0.6 0.4 0.35
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Figure 4.5.2: Schematic explanation for the determination of C from Σ+ and C̃.

Even if the model proposed by Chakraborty and Cant (2011) improves significantly the

prediction of C, the issue of evaluating the segregation factor motivates to explore, in this

study, another model for C from the knowledge of C̃. The idea of this new model was developed

originally in the filtered laminar flame-PDF (FLF-PDF) by Moureau et al. (2011).

The FLF-PDF model is based on the sub-filter PDF analysis conducted by Moureau et al.

(2011). The main idea is to filter laminar flames with a filter width ∆0, smaller or equal to the

LES filter ∆, to take into account the decrease of the PDF segregation due to the wrinkling

and the thickening of the flame. In practice, lookup table of filtered quantities is obtained using

spatial filtering of laminar flames. These lookup tables can be reorganized versus C̃ for every

∆0 considered:

ϕ̃ = ϕ̃F (C̃,∆0), (4.5.6)

where ϕ denotes any thermo-chemical quantity of interest. Equation (4.5.6) can be inverted

into:

∆0 = ∆0,F (C̃, ϕ̃). (4.5.7)

This idea is applied in this study to the modelling of the filtered progress variable C from

the knowledge of the filtered FSD Σ∗, which is normalized with the flame thickness δF :

Σ+ = δFΣ∗. (4.5.8)

The procedure described by Moureau et al. (2011) becomes (illustrated in Fig. 4.5.2):

1. From the knowledge of C̃ and Σ+, select the filter width ∆0 = ∆0,F (C̃,Σ+) that results in

the same normalized FSD for the same filtered progress variable value, when the reference

laminar flame is filtered at ∆0 (as seen in Fig. 4.5.3a).

2. Filter the laminar flame progress variable in physical space at ∆0 to obtain the value for

the given parameters C̃ and Σ+, i.e. C = CF (C̃,∆0) (see Fig. 4.5.3b).

So, a filtered premixed laminar flames library is needed to complete this model. This library

can be built by space filtering a laminar progress variable, for a wide range of filter width (∆0).
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Figure 4.5.3: Schematic view of the look-up tables for the determination of C from Σ+ and C̃:
(a) Σ+ versus C̃ and ∆0 and (b) C versus C̃ and ∆0
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Figure 4.5.4: Comparisons of the profiles of filtered progress variable C extracted from DNS
(solid lines), from the FLF-PDF based model using the laminar flame thickness in Eq. (4.5.8)
(dotted lines) and from the FLF-PDF based model using the effective flame thickness δeffL in
Eq. (4.5.8) (dashed lines) for: (a) Lek 6= 1 cases and (b) Lek = 1 cases.

This progress variable is approximated by a hyperbolic tangent function of width δF ,which is

the thermal flame thickness. From the DNS results presented in Section 3.2.1, the thermal

thickness is nearly constant for unity Lewis number cases, while it strongly increases with the

Karlovitz number for non-unity Lewis number cases. A simple dimensional model is proposed

to take into account the thickening of the flame front observed for high Karlovitz number in

Chapter 3 through an effective laminar flame thickness δeffL :

δeffL = δ0
L

Å
1 + α

Lκ
S0
L

〈aT 〉s,c∗
ã
, (4.5.9)

where α is a model constant set to 0.75 to recover the thickening observed in Chapter 3. Lκ
is the Markstein length linked to curvature defined in Section 3.3.2. Equation (4.5.9) allows to

recover δeffL = δ0
L when Ka << 1 and δeffL ≈ δ0

L for unity Lewis number cases, because Lκ is

close to zero in these cases.
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Figure 4.5.4 compares the profiles of filtered progress variable C extracted from DNS to

those predicted by the FLF-PDF based model presented previously. First, when the effective

flame thickness involved in the definition of Σ+ is set to the laminar flame thickness, the FLF-

PDF based model improves slightly the predictions from the BML model. Indeed, this model

(in dotted lines) reproduces the evolution with an increase of Ka, i.e. the profiles of C with C̃
tend to the identity function when Ka increases.

Then, the flame thickness involved in the FLF-PDF based model is computed using Eq. (4.5.9)

in order to take into account the thickening observed in the TRZ regime (even in the reaction

zone as seen in Section 3.2.1). The resulting profiles of filtered progress variable C are plotted

in dashed lines in Fig. 4.5.4. These profiles are in good agreement with the profiles extracted

from DNS. So, the FLF-PDF based model combined with an estimation of the effective flame

thickness due to the overall thickening of the flame front (see Section 3.2.1) allows to accurately

predict the relationship between C and C̃.

4.6 Conclusions

In this chapter, a new approach is proposed to adapt the CFM model to flames in both flamelet

and TRZ regimes. This approach is based on the analysis of the DNS presented in Chapters 2

and 3. This adaptation is based on the simulation of a particular iso-surface of progress variable

c∗ in the reaction zone. This is made possible by defining an adapted progress variable C =

H(c − c∗), where H(c) is the Heaviside function and an adapted flame surface density Σ∗ =

|∇C| = Σδ(c− c∗), where δ(c) is the Dirac function. Using these two variables, the equations of

the CFM model are modified into the transport equations presented in Eqs. (4.1.5) and (4.1.6).

To complete the adaptation of the CFM model, closures are proposed for each term:

• A simple gradient model combined with a term that accounts for thermal expansion is

chosen to model the unresolved transport term of the progress variable in Eq. (4.3.6).

• A model based on DNS analysis is defined for the displacement speed 〈Sd〉s,c∗ in Eq. (4.3.16).

This model is based on the definition of a presumed Gaussian PDF of the flame curvature

in Eq. (4.3.9) and on the definition of two distinct effective Markstein lengths, LaT and

Lκ. The latter are estimated from the correlations given in Chapter 3 in Eqs. (3.3.5) and

(3.3.6).

• As in the currently used CFM model, the tangential strain rate is decomposed into tan-

gential strain rates due to resolved and unresolved flow motions. The former is model

with a well known model proposed by Hawkes and Cant (2000) and given in Eq. (4.4.13).

While the tangential strain rate due to sub-grid scale flow motions, 〈aT 〉sgss,c∗ is modelled

using the approach defined in Sections 1.5.3 and 2.3, where the efficiency function used

is either HK2D, LPF or Bougrine’s functions, reported in Section 4.4.

• The stretch rate due to curvature is also decomposed into contributions due to resolved

and unresolved flow motions. The latter is modelled in Eq. (4.4.24) based on the DNS



134 CHAPTER 4. A PRIORI MODELLING FOR THE TRZ REGIME

analysis presented in Chapter 3. While the stretch rate due to curvature caused by

resolved flow motions is modelled as (ρu/ρ
∗)S0

L∇ · 〈n〉s,c∗ , but when it is combined with

the terms Shr that accounts for the effect of heat release on the tangential strain rate,

it becomes similar to term due to resolved flow motion in ECFM-LES model (Richard,

2005).

• The normal propagation term and the unresolved transport term of the FSD are modelled

together in Eq. (4.4.9).

These closures depends strongly on the flame curvature 〈κ〉s,c∗ and its variance σ2 =

〈κ2〉s,c∗−〈κ〉2s,c∗ . The former is modelled following the model proposed by Rymer (2001) and re-

ported in Eq. (4.3.13). The latter is evaluated through a model for 〈κ2〉s,c∗ given in Eq. (4.3.15).

Both models depend strongly on the evaluation of the filtered progress variable C, which is not

known. Traditionally, C is computed using the BML relationship, which is shown to poorly

predicts the profile of C with C̃ for flames in the TRZ regime. Thus, a model based on the

FLF-PDF approach (Moureau et al., 2011) is proposed in this chapter showing encouraging

results.

This adaptation of the CFM model is compared to DNS in a priori tests, and shows en-

couraging results with good agreement with DNS for each sub-model. Further analysis are

needed to enable the use of this model in engine applications. The first step is to evaluate the

behaviour of this model in a posteriori tests, which is the focus of the next chapter.



Chapter 5

A first a posteriori validation in the

thin reaction zone regime

The previous chapter shows an a priori adaptation of the coherent flame model (CFM) pre-

sented in Chapter 1 to flames in the thin reaction zone (TRZ) regime. Each sub-model presents

encouraging results. In this chapter, a further step toward SI engines applications is proposed

through the implementation of the model presented in Chapter 4 in the AVBP code.

In this chapter, one-dimensional turbulent flame simulations are first presented in Section 5.1

with the different models tested. Then, the predictions of the models are compared to direct

numerical simulations (DNS) by evaluating the general behaviour of the flames in Section 5.2.

Then, the predictions of each closures are compared to DNS in Section 5.3. Finally, the appli-

cation of the model to large eddy simulations (LES) of spark-ignition (SI) engines is discussed

in Section 5.4.

5.1 A posteriori simulations of one-dimensional turbu-

lent flames

The objective here is to assess how the complete model, including each sub-models, behaves

with an increase of the turbulence intensity and with differential diffusion. First, the method

and the set up used to perform a posteriori validation is described. Then, the different models

evaluated are presented.

5.1.1 Description of the one-dimensional turbulent flame method

One-dimensional flames were simulated in Reynolds averaged Navier-Stokes (RANS) using the

AVBP code corresponding to the flames in the 3D-DNS presented in Chapter 3. The results

from these RANS simulations are then compared to the results extracted from the DNS with

the procedure defined in Section 4.2.

In this section, we define the parameters of the RANS simulations. Turbulence is a three-

dimensional phenomenon that needs to be modelled. In these one-dimensional turbulent flames,

135
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effects of turbulence are taken into account as follows:

• The turbulent flow is modelled through an imposed turbulent viscosity, given by:

νt = Cu′tlt, (5.1.1)

where u′t is the velocity of the turbulent structures at the integral scale of length lt. u
′
t

and lt are parameters of the simulations set to the values found in DNS and reported in

Table 5.2. C is a constant determined following a Prandtl-Kolmogorov model (Launder

and Spalding, 1972), where the turbulent viscosity is defined as:

νt = Ckltk
1/2. (5.1.2)

Ck is a constant and k is the turbulent kinematic energy (TKE), defined as k =
»

(3/2)u′t
2

because the turbulence is supposed to be homogeneous and isotropic. Equation (5.1.2)

becomes:

νt = Ck

…
3

2
u′tlt. (5.1.3)

Finally, from Eq. (5.1.3) the constant C in Eq. (5.1.1) is set to 0.12, because Ck = 0.1 in

a homogeneous isotropic turbulence (HIT) without mean gradient of velocity.

• The stirring of the flame due to turbulence is imposed through the tangential strain rate

due to unresolved flow motions 〈aT 〉sgss,c∗ , which is considered constant through the flame

front and defined as presented in Section 4.4:

〈aT 〉sgss,c∗ = αaTΓ
u′t
lt
, (5.1.4)

where Γ is an efficiency function modelled with Eq. (4.4.16) and one of the functions

presented in Table 4.2 and αaT is a constant to be fixed. In these RANS simulations,

the constant αaT is chosen to fit the DNS tangential strain rate due to unresolved flow

motions of case A (〈aT 〉∗s =
∫
V〈aT 〉s,c∗Σ∗dV/

∫
V Σ∗dV ):

αaT =
lt,A〈aT 〉∗s,A

ΓAu′t,A
, (5.1.5)

where the subscript A designates case A. The value of αaT for each model presented in

this study are reported in Table 5.1.

Table 5.1: Tuned model parameter αaT for each model.

Models: Bougrine Cant Charlette HK2D LPF

αaT 10.6 0.8 1.7 1.2 1.4

Figure 5.1.1 presents a schematic view of the computational domain. As for the DNS pre-

sented in Chapter 3, the inflow and outflow boundaries are taken to be partially non-reflecting



5.1. ONE-DIMENSIONAL TURBULENT FLAMES 137

𝑥

𝐿
O

u
tle

t
p

re
s
s

u
reIn

le
t

v
e

lo
c

it
y

Δx

Figure 5.1.1: Schematic view of the flow configuration of a posteriori simulations.

and specified according to the Navier-Stokes Characteristic Boundary Conditions (NSCBC)

technique (Poinsot and Lelef, 1992). For each simulation, the inflow velocity Uin is constant

throughout the simulation and selected to match the turbulent flame speed ST of DNS cases

(given in Section 3.2.3). To ensure convergence of the RANS simulations, the length of the

L domain is defined broadly enough to prevent flames from coming out of it. The numerical

parameters of the cases chosen to validate the model are reported in Table 5.2.

Table 5.2: Set-up for the simulations of one-dimensional turbulent flame.

Case lt/δL u′t/S
0
L Ka Da Ret νt [m2/s] ∆x/δ

0
L ST/S

0
L

A 3.3 3.0 2.9 9.9 89.6 16.9e−5 0.75 1.06
B 4.4 8.2 11.2 4.8 325.0 61.7e−5 1.50 2.06
C 4.3 12.5 21.4 3.1 489.0 91.9e−5 1.50 2.67
D 4.4 21.1 46.2 1.9 833.2 158.7e−5 1.50 2.93
A1 5.1 2.5 1.7 18.7 74.8 21.8e−5 0.75 5.4
C1 4.9 11.9 18.5 3.7 530.7 99.7e−5 1.50 8.97
D1 5.1 22.1 46.2 2.1 1016.1 192.7e−5 1.50 7.33

5.1.2 Description of the models tested

The model proposed in the present study is compared to the standard ECFM-LES model

proposed by Richard et al. (2007). The closures of this model differing from the proposed

model of this study, despite the difference in the approach as presented in Section 4.1, are:

• For the density weighted displacement speed:

〈ρSd〉s = ρuS
0
L, (5.1.6)

where 〈〉s is the surface averaging operator defined in Section 1.5.5.

• The model based on an efficiency function is used for the unresolved tangential strain

rate 〈aT 〉sgss , where the function Cr used is the one proposed by Bougrine et al. (2014)

(see Eq. 2.3.4).
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• The model for the unresolved stretch rate due to curvature is given in Section 1.5.5

by Eq. (1.5.45)

The model proposed in Chapter 4 referred to HK model is tested using different versions

to evaluate the impact of different key parameters. In all the versions tested of HK model,

the sub-models for 〈AT 〉s,c∗ and T + P , are those used by Richard et al. (2007) involving

n = −∇C/|∇C| instead of 〈n〉s,c∗ = −∇C/Σ∗ avoiding potential numerical instabilities. For all

the versions tested in this chapter, the tangential strain rate due to unresolved flow motions

is modelled by the LPF model introduced in Section 4.4.3, as suggested by the results from a

priori tests in Fig. 4.4.6. All the versions of HK model use Eqs. (4.3.16) and (4.4.24) to model

displacement speed and stretch rate due to curvature, respectively.

To differentiate the versions of HK model tested, the subscripts α and γ are used to dif-

ferentiate the variance involved in the presumed probability density function (PDF) curvature

p(κ):

• α corresponds to the presumed PDF for curvature defined using Eq. (4.3.9) with σ =

〈κ2〉s,c∗ − 〈κ〉2s,c∗ , where the model parameter β2 involved in Eq. (4.3.15) is set to 1, as

suggested in Chapter 4.

• γ version differs from α through the definition of the variance σ2 in the presumed PDF

of curvature. In this version, σ2 is defined as half the curvature variance as discussed in

Section 4.3.2 with Eq. (4.3.11).

The exponents 2L and 1L are used to differentiate the correlations used for the Markstein

lengths. The former represents the approach using two distinct effective Markstein lengths, with

Eqs. (3.3.5) and (3.3.6). The latter uses a single effective Markstein length Lrn with Eq. (3.3.7).

The main characteristics of each model tested are reported in Table 5.3. Note that HKα models

correspond to the exact configuration of the model presented in a priori evaluations.

Table 5.3: The different models characteristics

Name 〈Sd〉s,c∗ 〈Sdκ〉s,c∗ σ2 Marstkein lengths 〈aT 〉sgss,c∗
HKα Eq. (4.3.16) Eq. (4.4.24) Eq. (4.3.10) Eqs. (3.3.5) and (3.3.6) LPF

HKγ
2L Eq. (4.3.16) Eq. (4.4.24) Eq. (4.3.11) Eqs. (3.3.5) and (3.3.6) LPF

HKγ
1L Eq. (4.3.16) Eq. (4.4.24) Eq. (4.3.11) Eq. (3.3.7) LPF

ECFM-LES Eq. 5.1.6 Eq. (1.5.45) - - Bougrine

5.2 Analysis of the one-dimensional turbulent flames –

general behaviour of the models

In this section, the general behaviour of each model tested is compared to DNS. The two criteria

chosen to evaluate the potential of each model are:
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• the prediction of the fuel consumption,

• the prediction of the flame structure.

5.2.1 Analysis of predicted fuel consumption

The accuracy of the different models for the prediction of the turbulent flame speed is evaluated

in this section. Two criteria are used to determine the efficiency of a model:

1. the ability of the model to reproduce the bending observed on ST ,

2. the ability of the model to take into account the effect of differential diffusion on the fuel

consumption.
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Figure 5.2.1: Evolutions of the predictions of ST/S
0
L compared to DNS for: (a) Lek 6= 1 cases

and (c) for Lek = 1 cases. (b) and (d) show a focus on the versions of HK model and DNS.

Figure 5.2.1 shows the ratio ST/S
0
L predicted by each model as functions of Ka. First of all, each

version of the proposed model presents a bending for Lek 6= 1 cases, except ECFM-LES. The

latter increases too steeply with Ka leading to huge discrepancies for high Karlovitz number,

up to 550% relative error for Ka = 46.2.

Even if HKα presents a bending, this model over-predicts ST , especially for Ka < 20 in

Fig. 5.2.1b. In Fig. 5.2.1b, HKγ
2L predicts turbulent flame speed with the same bending as

HKα but are approximately 25% smaller. So, it seems that the presumed PDF defined in

Eq. (4.3.9) evaluating the variance with Eq. (4.3.10) leads to an overestimation of the turbu-

lent flame speed, especially for low Karlovitz number cases (Ka = 2.9 and Ka = 11.2). This
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might be explained with the large width of the PDF, which gives weight to extreme values

of curvature that are not observed in cases A (Ka = 2.9) and B (Ka = 11.2). These results

confirm the need to well model the curvature PDF in the proposed approach. HKγ
1L well

reproduces the bending observed in DNS and predict accurate values of ST/S
0
L, unlike HKγ

2L.

Note that HKα and HKγ
2L models present an unexpected change of slope between low and

high Karlovitz numbers (between cases B and C). It should be noted that this phenomenon

is only observed when two distinct effective Markstein lengths are used. In addition, when a

single effective Markstein length is used (HKγ
1L model), the slope for low Karlovitz numbers

(Ka < 15) is overestimates. At this point, we are unable to propose a proper explanation

and further analysis should be conducted to better understand the impact and evolution of

the Markstein lengths. For high Karlovitz numbers, both HKγ
2L and HKγ

1L present the same

slope between cases C and D, but the latter predicts larger ST than the former suggesting that

using two distinct effective Markstein lengths overestimates the effect of strain rate on the flame

front, especially for high Karlovitz numbers. This is illustrated in Fig. 3.3.8, where the values

of Lrn are significantly smaller than LaT predicted by Eq. (3.3.5), approximately 30% smaller

for Ka > 20. So, as a first step, using Lrn better reproduces the trend on the turbulent flames.

As for Lek 6= 1 cases, the turbulent flame speed observed for Lek = 1 cases presents a

bending, which is not predicted by ECFM-LES model. Contrary to non unity Lewis number

cases, HKγ
2L model does not have an increasing evolution in Fig. 5.2.1c. Indeed, ST/S

0
L is

reduced from 3.76 to 3.01, when Ka increases from 1.7 to 46.2. As for Lek 6= 1 cases, HKγ
2L

model, using two distinct effective Markstein lengths, has a worst behaviour than the model

using Lrn. In Fig. 5.2.1d, HKα and HKγ
1L models are the models with the smallest errors in

terms of ST/S
0
L. But these models strongly underestimate the turbulent flame speed found in

DNS with maximum relative errors of 45%, 40% and 30% for cases A1, C1 and D1, respectively.

Finally, only HKα and HKγ
1L models are able to reproduce the decrease of ST/S

0
L from case

C1 (Ka = 18.5) to D1 (Ka = 46.2).

To understand the large discrepancies observed for Lek = 1 cases, the propagation term

〈ρSd〉s,c∗Σ∗ is displayed in Fig. 5.2.2. Lek 6= 1 cases in Figs. 5.2.2a to 5.2.2d show that the

spatial profiles of 〈ρSd〉s,c∗Σ∗ predicted by HKγ
1L are almost superimposed with those from the

DNS. On the contrary, the spatial profiles predicted by ECFM-LES and HKα models are very

different than those from DNS. HKγ
2L predicts similar spatial profiles than HKγ

1L but differing

on the fresh gases side in particular for high Ka (cases C and D). These spatial profiles are

related to the turbulent flame speed ST through:

ST =
1

ρuA0

∫

V
〈ρSd〉s,c∗Σ∗dV, (5.2.1)

where A0 is the area of the flame projected in the propagation direction and V is the domain of

computation. Thus, the differences between the models in term of turbulent speed come from

the integral of the spatial profiles. HKγ
2L model predicts slightly smaller integrated propagation

terms at high Ka than HKγ
1L model showing a strong sensitivity to the spatial profiles of both
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Figure 5.2.2: Predictions of the spatial profile of propagation term 〈ρSd〉s,c∗Σ∗ centred on

C̃ = 0.5 from the proposed model compared to ECFM-LES model and DNS, for :(a) to (d)
cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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〈Sd〉s,c∗ and Σ∗.

Figures 5.2.2e to 5.2.2g show the spatial profiles of the propagation term for Lek = 1 cases.

In these figures, the spatial profiles predicted by all the models tested are strongly different

from DNS leading to very small integrated propagation terms compared to DNS. At this point,

it is difficult to say whether these spatial profiles are due to the iso-surface approach or to the

closures proposed based on Markstein lengths.

Finally, the model that best respects the criteria defined on the fuel consumption is HKγ
1L.

However, to further analyse the behaviour of each model, both the flame structure and the

closures should be evaluated. The former is proposed in the next subsection, while Section 5.3

is dedicated to the latter.

5.2.2 Analysis of the predicted flame structure

A further step in the validation of the proposed model is to verify that the flame structure is

well reproduced. The flame structure is evaluated through:

1. the spatial profile of the resolved progress variable C̃,

2. the spatial profile of flame surface density (FSD) Σ∗.

Figure 5.2.3 shows the spatial profiles of the resolved progress vaiable C̃ obtained with the

different models and compared with the DNS for each case. For Lek 6= 1 cases, ECFM-LES

and HKα models predict larger spatial profiles of resolved progress variable, while HKγ
2L and

HKγ
1L models accurately reproduce the profiles of C̃. Case A shows particular discrepancies

between predictions from HKα and DNS confirming that computing the curvature variance σ2

with Eq. (4.3.10) in the presumed PDF of curvature (Eq. 4.3.9) leads to large discrepancies due

to large values of κ taken into account that are not observed in case A.

For Lek = 1 cases in Figs. 5.2.3e to 5.2.3g, none of the models presented accurately repro-

duces the spatial profiles of C̃, except HKα model for high Ka (cases C1 and D1). However,

the predictions of this model for case A1 present large discrepancies on the burned gases side

(x − xC̃=0.5 > 0). HKγ
2L and HKγ

1L models predict spatial profiles of C̃ too steep for high

Karlovitz numbers, while the profiles predicted have smoother slopes on the burned gases side

for case A1. These observations suggest that the evaluation of the Markstein lengths does not

explain that the proposed model is worst for Lek = 1 cases.

To further investigate these discrepancies, the behaviour of the models on the predictions

of the FSD are displayed in Fig. 5.2.4. This figure shows the spatial profiles of the flame

surface density centred on the position where C̃ = 0.5 for each case. The profiles predicted by

each model present the same behaviours with Ka than the profiles of the progress variable in

Fig. 5.2.3. HKγ
2L and HKγ

1L models are in very good agreement with DNS.

Figure 5.2.4 shows that for cases A, A1 and B, HKα model presents a long tail on the burnt

gases side, which is not in agreement with DNS.
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Figure 5.2.3: Predictions of the spatial profile of C̃ centred on the spatial location corresponding
to C̃ = 0.5 from the proposed model compared to ECFM-LES model and DNS, for :(a) to (d)
cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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Figure 5.2.4: Predictions of the spatial profile of FSD Σ∗ centred on the spatial location cor-
responding to C̃ = 0.5 from the proposed model compared to ECFM-LES model and DNS, for
:(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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The spatial profiles of FSD for Lek = 1 cases predicted by the proposed models, reported

in Table 5.3, have the same shape as the one observed in DNS. Nevertheless, the turbulent

flame width predicted by the models is much smaller than in DNS, from half the thickness

down to a quarter for case A1. These thinner FSD profiles are consistent with the reduced

turbulent flame speeds in Fig. 5.2.1c compared to DNS. These observations show that the pro-

posed model behaves poorly at low Ka. At this point, it is difficult to propose an explanation

for these surprising behaviours. The reasons can be due to the iso-surface approach or to the

closures of the FSD production and destruction terms (〈aT 〉sgss,c∗ and 〈Sdκ〉sgss,c∗), and consequently

to Markstein length correlations. Thus, investigation of the closures proposed in Chapter 4 are

needed, which is the focus of the next section.

Finally, this first analysis of the behaviour of the models with various Karlovitz number

and Lewis numbers shows that HKγ models present the highest potential to simulate flames

in the TRZ regime because they reproduce the bending on the turbulent flame speed and

accurately predict the flame structure. Even if the correlations used for the effective Markstein

lengths have little impact on the flame structure predicted by the models, they are in fact

crucial to accurately estimate the fuel consumption. The results from the models using LaT
and Lκ highlight that the strong assumptions made lead to large discrepancies with the DNS.

Furthermore, the results suggest that these discrepancies might be compensated using a single

Markstein length Lrn. Nevertheless, this observation should be verified through the simulations

of a larger range of conditions.

5.3 Analysis of the one-dimensional turbulent flames -

Predictions of the sub-models

To complete the analysis and validation of the proposed models, the sub-models used to close

Eqs. (4.1.5) and (4.1.6) are compared to the DNS.

5.3.1 Closure of the filtered progress variable

As a first step, the model proposed in Section 4.5 to evaluate the filtered progress variable C is

assessed against DNS. Figure 5.3.1 shows the profiles of C against C̃ obtained with the different

models and compared to the DNS for each case. As already noticed, ECFM-LES model does

not reproduce accurately the profile of C against C̃ for high Karlovitz numbers because the

relationship between C and C̃ is the one proposed in the Bray-Moss-Libby (BML) model. For

large values of Ka, the assumptions of the BML model are not valid leading to the discrepancies

observed in Fig. 5.3.1. The other models use the approach presented in Section 4.5 to determine

the relationship between C and C̃. Figures 5.3.1a to 5.3.1d show that the proposed approach

improves significantly the prediction of C
Ä
C̃
ä

for non-unity Lewis numbers cases. However,

some discrepancies are observed between the different versions of the proposed model.
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Figure 5.3.1: Predictions of C from the proposed model as functions of C̃ compared to ECFM-
LES model and DNS, for :(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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HKγ
2L and HKγ

1L models present, as expected, very similar profiles, while HKα model is

less accurate especially for low Ka. Indeed, for case A the profile of C using HKα model is

closer to the result of ECFM-LES model.

In Figs. 5.3.1e to 5.3.1g, all the models reproduce globally the profile of C against C̃ for

unity Lewis number cases, except ECFM-LES and models using two distinct effective Markstein

lengths, especially for case D1. Finally, these observations do not show any clue to explain the

poor results of the proposed model on the flame structure for Lek = 1 cases.

5.3.2 Closures of curvature and its variance

Figure 5.3.2 compares the proposed model with DNS for the mean curvature. As for a priori

modelling, this comparison shows a good agreement between the models and DNS for Lek = 1

cases and for cases C and D. However, for cases A and B the curvatures predicted by the models

have weaker slopes than in DNS. This is particularly pronounced in case A, where HKα model

even tends to a constant value on the burnt gases side, while the other versions of the proposed

model keep a decreasing evolution in the burnt gases. These results suggest that the model

proposed by Rymer (2001) and presented in Eq. (4.3.13) is accurate enough to reproduce the

flame curvature. Cases A and B suggest that the presumed curvature PDF is one of the key

elements in this model, which is strongly dependent on the variance of the curvature.

So, the model in Eq. (4.3.15) for 〈κ2〉s,c∗ is compared in Fig. 5.3.3 to the DNS for each

version reported in Table 5.3. Figures 5.3.3a to 5.3.3d show this comparison for Lek 6= 1 cases.

Surprisingly, HKα model predicts 〈κ2〉s,c∗ much smaller values than in a priori modelling,

approximately half the value observed in DNS and down to a third for case A.

HKγ
1L and HKγ

2L models accurately predict 〈κ2〉s,c∗ for cases C, D and C1. For low Karlovitz

cases, these models under-predict 〈κ2〉s,c∗ , but still improve the prediction compared to HKα

model. These results suggest that using half the curvature variance (Eq. 4.3.11) in the presumed

PDF for curvature, given in Eq. (4.3.9), is a better suited model to compute the flame curvature

variance. This questions the presumed PDF chosen for curvature in Eq. (4.3.9); a Gaussian

PDF might not be the most suitable function for p(κ) and should be the focus of future work.

In addition, all the models present poor prediction of the profile of 〈κ2〉s,c∗ for cases A and

A1, with the predicted 〈κ2〉s,c∗ decreasing toward zero when C̃ > 0.5, while DNS results show

an increase. So, the model proposed in Eq. (4.3.15) behaves poorly at low Ka. It is difficult to

explain here the cause of these discrepancies, which can be caused by the other closures because

both C and Σ∗ are involved in Eq. (4.3.15). The investigation on the behaviour of this model

at low Ka should be the focus of future work.

Finally, the analysis of the flame curvature and its variance suggests that HKγ
1L and HKγ

2L

models present the best potential for modelling both the surface averaged curvature and its

variance.
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Figure 5.3.2: Predictions of 〈κ〉s,c∗ from the proposed model as functions of C̃ compared to
DNS, for :(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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Figure 5.3.3: Predictions of 〈κ2〉s,c∗ from the proposed model as functions of C̃ compared to
DNS, for :(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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5.3.3 Closures of stretch due to curvature and displacement speed

The proposed model for the stretch due to curvature, defined by Eq. (4.4.24), is compared to

the DNS and to ECFM-LES model (Richard et al., 2007) in Fig. 5.3.4.

For cases A to D, HKγ models reproduce qualitatively the evolution of 〈Sdκ〉s,c∗ , regardless of

the correlations chosen for the effective Markstein lengths, as seen in Figs. 5.3.4a to 5.3.4d, while

ECFM-LES model only reproduces the stretch due to curvature for case A, as expected. When

the flame is in the thin reaction zone regime (cases B to D), ECFM-LES predicts a decreasing

〈Sdκ〉s,c∗ from highly positive values, when C̃ tends to zero, to negative values when C̃ → 1. The

spatial profiles of FSD with ECFM-LES (Fig. 5.2.4) are explained by these positive values of

〈Sdκ〉s,c∗ on the fresh gases side. Indeed, positive values of 〈Sdκ〉s,c∗ enhance the production of

flame surface, which leads to a production of flame surface largely overestimated when combined

to the tangential strain rate.

HKα model presents similar results as HKγ models for cases B to D. Nevertheless, the profiles

of stretch due to curvature predicted by the former are slightly flatter than those estimated from

the latter, leading to slightly weaker flame surface destruction (negative values with smaller

magnitudes) on the burnt gases side. This reduced destruction term explains the occurrence

of a tail behind the flame front in Figs. 5.2.4b to 5.2.4d with HKα. This difference is more

pronounced in case A, where HKα model even predicts 〈Sdκ〉s,c∗ slightly increasing when C̃
tends to 1. This is in agreement with the tail observed on the FSD in Fig. 5.2.4a. However,

because all the sub-models interact with each other, it is difficult to establish if this result on

〈Sdκ〉s,c∗ is caused by the profile of 〈κ〉s,c∗ in Fig. 5.3.2a or if it generates the curvature profile

observed. This issue might be explored in future work, in order to better understand the model

behaviour.

Note that the results of each model for Lek = 1 cases are very similar to Lek 6= 1 cases,

except for low Ka. Contrary to case A, HKγ models present the same profiles of 〈Sdκ〉s,c∗ than

HKα model in case A1. This is in agreement with the results observed on the profiles of 〈κ〉s,c∗ ,
〈κ2〉s,c∗ and Σ∗. These results on 〈Sdκ〉s,c∗ for Lek = 1 cases do not explain the thin spatial

profiles observed for Σ∗.

Predictions of 〈Sd〉s,c∗ by the proposed model, Eq. (4.3.16), are now assessed against the

DNS. It is noteworthy that 〈Sd〉s,c∗ in the models is forced to remain positive in order to avoid

a negative source term ρ∗〈Sd〉s,c∗Σ∗ in Eq. (3.2.12), which would not be physical. This clipping

is a limitation of the proposed approach based on the flame displacement speed. At low to

intermediate Ka values, the clipping remains limited and presumably does not significantly

affect results. This is no more true for the largest Karlovitz of case D, where a substantial part

of the flame front experiences negative displacement speeds. For Lek 6= 1 cases, the a posteriori

models presented in Table 5.3 predict similar profiles as the a priori model in Fig. 4.3.8, which

are globally in agreement with the displacement speed observed in the DNS.

For Lek = 1 cases in the TRZ regime (cases C1 and D1), HKγ
1L model predicts displacement

speed almost superimposed with the one extracted from DNS, while predictions from HKγ
2L
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Figure 5.3.4: Predictions of 〈Sdκ〉s,c∗ from the proposed model as functions of C̃ compared to
DNS, for :(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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Figure 5.3.5: Predictions of 〈Sd〉s,c∗ from the proposed model as functions of C̃ compared to
DNS, for :(a) to (d) cases with Lek 6= 1 and (e) to (g) cases with Lek = 1.
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model have the same evolution with C̃ but shifted down explaining the lower turbulent speed

observed in Fig. 5.2.1c. This shift is due to the effective Markstein length LaT , which is much

larger using Eq. (3.3.5) than Lrn using Eq. (3.3.7) as observed in Fig. 3.3.8a. These larger

values of the effective Markstein lengths lead to a largely negative component due to strain in

the displacement speed. When compared to the results from HKγ
1L model, it suggests that

the tangential strain rate has a very weak effect on the displacement speed, unlike observed in

the DNS analysis in Section 3.3.2. In addition, the predictions of HKα model are slightly less

accurate in tendency than HKγ
2L with a weaker slope.

However, in case A1 the models present similar evolutions for 〈Sd〉s,c∗ , which flatten com-

pared to high Karlovitz number cases and seem to converge toward the constant 〈Sd〉s,c∗ model

(〈ρSd〉s,c∗ = ρuSL)).

To conclude, all proposed versions of HK model reproduce reasonably well 〈κ〉s,c∗ , 〈κ2〉s,c∗ ,
〈Sdκ〉s,c∗ , 〈Sd〉s,c∗ and C found in DNS. Unfortunately, Σ∗ and C̃ for low Ka cases and Lek =

1 cases are poorly predicted showing the limits of the model proposed in this study. The

investigation conducted in this chapter shows that the following sub-models have a great effect

on these results and above all on the turbulent flame speed which is in definitive the main

characteristic to reproduce:

• the model for the presumed PDF p(κ): reference model α gives surprisingly the poorest

results. The use of half the variance in HKγ models give many improvements, suggesting

that a presumed Gaussian PDF might not be adapted to capture the curvature PDF.

• the model for effective Markstein lengths: the 2L model based on the DNS analysis

gives the poorest results, probably because it over-estimates the effect of tangential strain

rate. Even if better results are obtained with the single Markstein length approach (HKγ
1L

model), the models based on Markstein lengths are limited. Indeed, in these models the

concept of Markstein length, inspired from laminar flames concept where the flame stretch

is small, is applied to highly turbulent flames with large flame stretch.

• the model for the turbulent tangential strain rate 〈aT 〉sgss,c∗ , expected to be one of the

major sub-models controlling ST . LPF model is found to bring much better results than

the other models tested.

5.4 Discussion on the application of the proposed ap-

proach to LES and engines simulations

In this section is discussed two issues that can lead to numerical problems when the proposed

model is applied to engine LES simulations. The first issue, discussed in Subsection 5.4.1, was

first pointed out by Rymer (2001), for RANS modelling, and by Richard et al. (2007), for LES

modelling. The second problem investigated in Subsection 5.4.2 is about the approximation

made on the model for tangential strain rate due to unresolved flow motions.
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5.4.1 Discussion on the closure of the transport equation of progress

variable

Here is reminded the filtered transport equation for progress variable:

∂ρC̃
∂t

+∇ · (ρũC̃) = −∇ ·
Ä
ρuC − ρũC̃

ä
+ 〈ρSd〉s,c∗Σ∗, (5.4.1)

where ∇·
(
ρuC

)
is the unresolved turbulent transport term modelled with a simple gradient ap-

proach combined with a thermal expansion term in Eq. (4.3.6). This equation can be expanded

using the property n = −∇C/|∇C| = −∇C̃/|∇C̃|:

∇ ·
Ä
ρuC − ρũC̃

ä
= −∇ ·

Å
ρ
νt
Sct
∇C̃
ã

+ ρuS
0
L

Ä
|∇C| − |∇C̃| − (C − C̃)∇ · n

ä
. (5.4.2)

As already pointed out by Rymer (2001) and Richard et al. (2007), using Eq. (5.4.2) can cause

some numerical difficulties. Indeed, the transported variables Σ∗ and C̃ are no longer explicitly

linked but implicitly, because of the introduction of C in the transport equation of progress

variable (Eq. 5.4.1). These issues were not encountered in present 1D simulations because

∇ · n = 0.

Thus, for this reason the thermal expansion contribution of the unresolved turbulent trans-

port term is taken into account to define a modified FSD, analogically to Richard’s work

(Richard, 2005):

Σ∗C̃ = Σ∗ − |∇C|+ |∇C̃| − (C − C̃)∇ · n. (5.4.3)

This definition leads to write Eq. (5.4.1) as:

∂ρC̃
∂t

+∇ · (ρuC) = −∇ ·
Å
ρ
νt
Sct
∇c̃
ã

+ 〈ρSd〉s,c∗Σ∗C̃. (5.4.4)

As in Richard’s work (Richard, 2005), we do not try to derive an exact transport equation

for Σ∗C̃ but a similar equation to Eq. (4.1.6) is chosen for Σ∗C̃. The closure terms of this new

transport equation are modified following the same methodology as Richard et al. (2007).

Even if the flame surface densities Σ∗ and Σ∗C̃ are different, the transported total flame

surfaces are the same, as demonstrated below and because C = C̃ on the border of the domain

containing the whole flame.

∫

V
Σ∗C̃dV =

∫

V
Σ∗dV +

∫

V

Ä
C − C̃

ä
∇ · ndV (5.4.5)

=

∫

V
Σ∗dV +

∫

dV

Ä
C − C̃

ä
ndS (5.4.6)

=

∫

V
Σ∗dV + 0 (5.4.7)

Figure 5.4.1 compares the spatial profiles of both FSD Σ∗ and Σ∗
C̃

extracted from DNS follow-

ing the procedure presented in Section 4.2. At high Karlovitz numbers (cases B to D) both
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Figure 5.4.1: Spatial profiles of FSD Σ∗ and Σ∗C̃ (Eq. 5.4.4) centred on C̃ = 0.5 extracted from
the DNS for (a) to (d) cases with Lek 6= 1.

FSD are equivalent in Figs. 5.4.1b to 5.4.1d, while at low Ka (case A) Σ∗
C̃

differs slightly from

Σ∗. Indeed, Σ∗
C̃

is slightly shifted toward the burned gases and its spatial profile seems more

symmetrical than Σ∗. Thus, changing the transport FSD to Σ∗
C̃

is expected to have little impact

on the predictions of the proposed model.

In this section, the proposed model is tested using the variable Σ∗C̃ instead of the filtered

FSD Σ∗. HKγ
1L model is retained as considered to be the best one in the previous sections.

When the transported variable Σ∗C̃ is used, the model is called “HKγ
1L-Σ∗C̃ ”. Finally, the

equations resolved using HKγ
1L-Σ∗C̃ model are:

∂ρC̃
∂t

+∇ · (ρuC) = −∇ ·
Å
ρ
νt
Sct
∇C̃
ã

+ 〈ρSd〉s,c∗Σ∗C̃, (5.4.8)

∂Σ∗C̃
∂t

+∇ · (ũΣ∗C̃) = −∇ ·
Å
νt
Sct
∇Σ∗C̃

ã
+ 〈aT 〉s,c∗Σ∗C̃+〈Sdκ〉s,c∗Σ∗C̃

−∇ ·
Å
ρu
ρ
S0
L〈n〉s,c∗Σ∗C̃

ã
,

(5.4.9)

where 〈ρSd〉s,c∗ , and 〈Sdκ〉s,c∗ are modelled with Eqs. (4.3.16) and (4.4.24), respectively. The

tangential strain rate due to unresolved flow motions 〈aT 〉sgss,c∗ is modelled following the approach

defined in Section 4.4.3 using the LPF model (Eq. 4.4.18) for the efficiency function. However,
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the models for 〈κ〉s,c∗ and 〈κ2〉s,c∗ needed for Eqs. (4.3.16) and (4.4.24) are modified as follows:

〈κ〉s,c∗ = β1
c1 − C
C(1− C)

Ä
Σ∗C̃ − Σ∗

lam

C̃

ä
, (5.4.10)

〈κ2〉s,c∗ = β2
1

C2
(1− C)2

Ä
Σ∗C̃ − Σ∗

lam

C̃

ä2
, (5.4.11)

where Σ∗
lam

C̃ = |∇C̃| + (C − C̃)∇ · n is the laminar part of Σ∗C̃, as introduced by Richard

et al. (2007). Lek 6= 1 cases were simulated using model HKγ
1L-Σ∗C̃ comparing to DNS and to
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Figure 5.4.2: Evolution of the predictions of ST/S
0
L when the transported FSD is Σ∗C̃ compared

to DNS and to HKγ
1L model using Σ∗ as the transported FSD.

HKγ
1L model. First, the evolutions of the turbulent flame speed are compared in Fig. 5.4.2.

Both transported FSD models reproduce a bending on the turbulent flame speed. However,

while for Ka = 21 and Ka = 46, HKγ
1L-Σ∗C̃ model accurately predicts the turbulent flame

speed, it overestimates ST by approximately 30% for low Karlovitz number (i.e., Ka = 2.9 and

Ka = 11.2). Thus, the bending effect is too strong using the transported variable Σ∗C̃.

Then, to better understand the effect of this change in the transported variable, the flame

structure is plotted in Fig. 5.4.3. For high Karlovitz numbers (i.e., cases C and D), the spatial

profiles of flame surface density predicted are very similar regardless of the transported variable

chosen. While for low Karlovitz number cases (cases A and B), the profiles differ strongly.

Indeed, when Σ∗C̃ is chosen, a tail appears after the flame front for cases A and B. This profile

of flame surface density is similar to the one obtained with HKα model. This similarity between

the two models suggests that the issue lies in the modelling of production and destruction of

FSD, which is the focus of the next subsection.

5.4.2 Discussion on the modelling of flame surface production and

destruction terms.

One issue of the proposed model based on an iso-surface approach can be understood when

looking at the asymptotic shape of the FSD equation when going to the flamelet regime. In

this regime, S∗d tends toward (ρu/ρ
∗)S0

L and 〈Sdκ〉s,c∗ becomes close to (ρu/ρ
∗)S0

L〈κ〉s,c∗ . Con-
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Figure 5.4.3: Predictions of the spatial profile of FSD Σ∗ centred on C̃ = 0.5 when the trans-
ported FSD is Σ∗C̃ compared to DNS and HKγ

1L model using Σ∗ as the transported FSD, for
(a) to (d) cases with Lek 6= 1.

sequently, the FSD transport equation can be simplified as follows:

∂Σ∗

∂t
+∇ · (〈u〉s,c∗Σ∗) =

(
〈AT 〉s,c∗ + 〈aT 〉sgss,c∗

)
Σ∗ +

ρu
ρ∗
S0
L〈κ〉s,c∗Σ∗. (5.4.12)

Equation (5.4.12) is almost the same equation developed by Richard et al. (2007). It only differs

for the stretch due to curvature by a factor ρu/ρ
∗. Yet, following the flamelet assumptions the

iso-surfaces shall be equivalent. So, the flame surface density should not depend on the choice of

c∗, which is not the case in Eq. (5.4.12) where c∗ appears through the factor ρu/ρ
∗. This factor

causes the large “thickening” of the flame front on the burnt gases side, but it is determinant

to model accurately the flame in the TRZ regime (i.e., for cases C and D).

This observation on Eq. (5.4.12) questions the modelling of the balance between tangential

strain rate and stretch due to curvature. One of the strongest assumption made in the closures

of the FSD transport equation is to consider that the tangential strain rate due to unresolved

flow motions is driven by the fresh gases, leading to model 〈aT 〉sgss,c∗ as independent on C̃. We

propose here to verify this approximation by plotting 〈aT 〉sgss,c∗ = 〈aT 〉s,c∗−〈AT 〉s,c∗ , where 〈aT 〉s,c∗
and 〈AT 〉s,c∗ are the total and the resolved tangential strain rates, respectively, as a function

of C̃. Figure 5.4.4 shows the profiles of total tangential strain rate and tangential strain rates

due to resolved and unresolved flow motions as functions of the filtered progress variable C̃.
Note that when Ka increases, 〈aT 〉sgss,c∗ tends to become constant with C̃. So at high Karlovitz

numbers, the approximation made on the tangential strain rate due to unresolved flow motions

appears reasonable, explaining the agreement between DNS and predictions from the model
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Figure 5.4.4: Evolutions of total, resolved and sub-grid scale tangential strain rate with the
filtered progress variable C̃ for (a) to (c) the cases with Lek 6= 1.

in Sections 5.2 and 5.3. However, cases A and B do not present a constant value through the

flame of the total tangential strain rate, which might explains the discrepancies observed for

these low Ka cases in comparisons with DNS. These results motivate to adapt the tangential

strain rate model from a 1D analysis.

In the 1D RANS simulations presented in this chapter, 〈aT 〉sgss,c∗ being assumed constant

through the flame front, it is evaluated using the unburned gases turbulence properties u′t and

lt from the DNS. However, the tangential strain rate (Fig. 5.4.4) is not constant and should be

evaluated right on the iso-surface c = c∗. The adaptation we propose is based on the schematic

view of the flame front displayed in Fig. 5.4.5. The idea here is that in the iso-surface approach,

the tangential strain rate on the iso-surface c = c∗, a∗T should be defined using velocity field u∗

just in front of the chosen iso-surface:

a∗T = ∇ · u∗ + nn : ∇u∗, (5.4.13)

where n is the local normal vector to the iso-surface c = c∗. Nevertheless, u∗ is not expected to

be equal to the velocity field u ahead of the flame front, mainly because of dilatation effects on
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Figure 5.4.5: Schematic view of the flame front using two progress variable iso-surfaces at c0

and c∗.

the flow field due to flame. However, a relationship can be deduced between those two velocity

fields using the definition of the flame displacement speed:

u∗ = u +
(
S0
d,c0 − S0

d,c∗

)
n, (5.4.14)

where S0
d,c0 and S0

d,c∗ are the laminar displacement speeds of the iso-surfaces c = c0 and c = c∗,

respectively. This relation is only valid in the flamelet regime and for a planar and steady flame.

It is therefore a very rough estimation of the velocity in general. Then, Eq. (5.4.14) is injected

in the definition of the tangential strain rate (Eq. 5.4.13) combined to surface averaging leading

to:

〈aT 〉s,c∗ = 〈A(u)〉s,c∗ + 〈A(
(
S0
d,c0 − S0

d,c∗)n
)
〉s,c∗ , (5.4.15)

where A(φ) is the following operator: A(φ) = ∇ · φ − nn : ∇φ. This operator applied to u,

〈A(u)〉s,c∗ , corresponds to the tangential strain rate on the iso-surface c = c0, where c0 is close

to zero. Equation (5.4.15) suggests that the tangential strain rate can be decomposed into a

tangential strain rate evaluated from the unburned gases velocity u, 〈aT 〉s,c0 , and a corrective

strain rate taking into account dilatation effects on the flow:

〈aT 〉s,c∗ = 〈aT 〉s,c0 + (〈aT 〉s,c∗ − 〈aT 〉s,c0) . (5.4.16)

By comparing Eqs. (5.4.15) and (5.4.16), the corrective strain rate (〈aT 〉s,c∗ − 〈aT 〉s,c0) is mod-

elled by 〈A(
Ä
S0
d,c0 − S0

d,c∗)n
ä
〉s,c∗ . When the operator A(φ) is applied to the unit normal vector
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n, it can be written as:

A(n) =
∂ni
∂xi
− ninj

∂ni
∂xj

, (5.4.17)

=
∂ni
∂xi
− 1

2
nj
∂n2

i

∂xj
(5.4.18)

=
∂ni
∂xi
− 0, (5.4.19)

because
∑
n2
i = 1. Therefore the corrective strain is (S0

d,c0 − S0
d,c∗)〈κ〉s,c∗ . Thus, the balance of

stretch due to curvature with tangential strain rate becomes:

〈aT 〉s,c∗ + 〈Sdκ〉s,c∗ = 〈aT 〉s,c0 + (〈aT 〉s,c∗ − 〈aT 〉s,c0) + 〈Sdκ〉s,c∗ , (5.4.20)

= 〈A(u)〉s,c∗ +
(
S0
d,c0 − S0

d,c∗

)
〈κ〉s,c∗ + 〈Sdκ〉s,c∗ . (5.4.21)

Figure 5.4.6 compares a priori Eqs. (5.4.15) and (5.4.16) to the tangential strain rates 〈aT 〉s,c∗
and 〈aT 〉s,c0 . The objectives of this comparison is to assess the impact of the corrective strain

rate and verify that Eqs. (5.4.15) and (5.4.16) are equivalent.
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Figure 5.4.6: Comparison of the tangential strain rates 〈aT 〉s,c∗ and 〈aT 〉s,c0 with the corrective
strain rate (〈aT 〉s,c∗ − 〈aT 〉s,c0) and the modelled corrective strain rate (S0

d,c0 − S0
d,c∗)〈κ〉s,c∗ , for:

(a) case A and (b) case C.

This approach is evaluated for cases A and C, in order to compare the differences between

low and high Karlovitz number cases, where c0 = 0.2 and c∗ = 0.8. The value of c0 was chosen

to 0.2 because for smaller values the samples are not sufficient to extract relevant statistics.

Figure 5.4.6 shows the profiles of 〈aT 〉s,c∗ , 〈aT 〉s,c0 , (〈aT 〉s,c∗ − 〈aT 〉s,c0) and (S0
d,c0 − S0

d,c∗)〈κ〉s,c∗
against C̃. For the TRZ regime, Fig. 5.4.6b shows that 〈aT 〉s,c∗ and 〈aT 〉s,c0 are close, which is

in good agreement with the behaviour of the proposed model for high Karlovitz number (see

Fig. 5.4.2). However, the profiles of 〈aT 〉s,c∗ and 〈aT 〉s,c0 in Fig. 5.4.6a are significantly different

for case A. Note that 〈aT 〉s,c0 is almost constant, allowing to use a model based on a constant

tangential strain rate due to unresolved flow motions.

For both cases A and C, (S0
d,c0 − S0

d,c∗)〈κ〉s,c∗ is similar to (〈aT 〉s,c∗ − 〈aT 〉s,c0) suggesting
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that this rough model might be sufficient to compute the corrective strain rate involved in

Eq. (5.4.16). Even if this model is theoretically valid only for planar and steady flames, it is

expected to weakly affect the prediction of the proposed model (Chapter 4) in the TRZ regime.

5.5 Conclusions

In this chapter, a set of one-dimensional turbulent flames using different versions of the proposed

model. The results from these simulations are compared to DNS. The closures of the first version

tested (HKα model) are those presented in Chapter 4. Even if a priori tests in Chapter 4 present

very encouraging results, the 1D turbulent flames simulations show that HKα model does not

accurately predict the fuel consumption and assumes a too strong bending effect. It appears

that the discrepancies observed between the a priori model (HKα model) and DNS are due

to the too large width of the Gaussian presumed PDF modelling the distribution of flame

curvature. Thus, thinner presumed PDF, retained in other versions of the model, significantly

improves predictions.

Moreover, the introduction of two Markstein lengths following Eqs. (3.3.5) and (3.3.6) is

found to deteriorate the predictions of the model, especially for unity Lewis numbers cases.

Thus, the single effective Markstein length Lrn modelled with Eq. (3.3.7) is preferred, and

predicts the most accurate fuel consumption and bending.

Nevertheless, the accuracy of the model on the flame structure is gradually falling when

the Karlovitz number decreases toward values of the flamelet regime. For this low Karlovitz

number, the modelled flame structure is thicker in the burnt gases side than the one of the

DNS, which is the consequence of a bad modelling of the balance between tangential strain

rate and stretch due to curvature, as seen in Section 5.4. The mechanisms involved here are

not well understood and should be further investigated.

Finally, the final proposed model presents encouraging results, but is strongly sensitive to

the correlation used for Lrn and the width of the presumed PDF p(κ).





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

The objective of this thesis is to develop a highly diluted combustion model for large eddy

simulations (LES) of new generations of spark-ignition (SI) engine. The review of existing

work on diluted combustion shows that highly diluted turbulent flames correspond to the thin

reaction zone (TRZ) regime. Then, three specific objectives are addressed. The first one is to

adapt the flame surface density (FSD) concept to the TRZ regime. The second objective is to

propose models for source terms involved in the transport equations of progress variable and

FSD, especially the displacement speed. In parallel, the third objective is to include the effect

of differential diffusion in the models of the source terms, as suggested in the literature.

In order to reach these goals, the first chapter of this thesis reviews the physics involved and

the existing studies on both diluted premixed flames and TRZ regime. This review highlights

the main characteristics of a diluted flame interacting with a highly turbulent flow. These

flames present mainly a thickening of the preheat zone and a bending effect on the fuel con-

sumption when the Karlovitz number increases. In addition, a review of the existing works on

the modelling of flames in the TRZ regime is also presented. Most of the existing attempts

are based on the work of Peters (1999), suggesting that the small eddies penetrate the preheat

zone and transport fluid near the reaction zone over a distance corresponding to its own size.

From this assumption Peters (1999) proposes to model the flame through a level set approach

and by modelling the displacement speed using asymptotic analysis. This suggests that one key

element to model is the stretch due to curvature Sdκ. Numerous studies (Hawkes and Chen,

2005; Katragadda et al., 2014a; Trisjono et al., 2016; Wang et al., 2017) then analyse this term

resulting to models involving the tangential diffusion through the diffusivity coefficient. Studies

(Chakraborty and Cant, 2006, 2011, 2005a,b; Chakraborty and Klein, 2008; Savard and Blan-

quart, 2014) suggest to take into account differential diffusion in displacement speed modelling

through the definition of an effective Lewis number or Markstein length.

Then, a study of two-dimensional direct numerical simulation (DNS) of flames interacting

163
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with a pair of counter-rotating vortices is analysed using the AVBP code. The main objective

of this analysis is to isolate the effect of one specific turbulent structure on the stirring of

the flame front. These simulations are largely studied in the literature (Bougrine et al., 2014;

Candel and Poinsot, 1990; Charlette et al., 2002a; Colin et al., 2000; Meneveau and Poinsot,

1991; Poinsot et al., 1991) resulting in the definition of models for the tangential strain rate aT

in the flamelet regime. The study conducted in this thesis aims to re-evaluate some common

approximations made and to extend the operating conditions to TRZ regime. This is done by

analysing small vortices compared to the thermal laminar flame thickness and highly intense

vortices. The common approximations made, which are to approximate the tangential strain

rate with the total flame stretch evaluated from the rate of change of total heat release, appear

to be insufficient to explain that the current models for aT fail to predict accurately the strain

rate in the TRZ regime. Moreover, this analysis leads to define a new efficiency function, which

is close to the one proposed by Bougrine et al. (2014). Thus, no significant improvements are

expected with this efficiency function. Finally, other characteristics of this kind of simulations

are not investigated such as the transitory aspects of interactions between a flame front and a

single pair of counter-rotating vortices.

Third, the interactions between a statistically planar flame and a turbulent flow are anal-

ysed using 3D DNS. The aims of these simulations are to further analyse the different source

terms involved in the CFM model, in particular the displacement speed Sd, and the effects of

differential diffusion on the flame front. To get sufficiently long interactions between turbulence

and flame, a spectral method to force a turbulent field is applied. The simulations were chosen

to cover a range of Karlovitz numbers ranging from the flamelet to the TRZ regimes. They are

performed with Lek 6= 1 and Lek = 1 in order to evaluate the effect of preferential diffusion.

The resulting turbulent flames present a thickened preheat zone with or without preferential

diffusion. Nevertheless, the thickening is much larger for Lek 6= 1 cases. The resulting tur-

bulent flames also present a bending on the fuel consumption through the evolution of the

turbulent flame speed ST . Unlike previous experimental studies (de Goey et al., 2005; Gülder,

2007; Wabel et al., 2017; Yuen and Gülder, 2013), both turbulent flame speed and turbulent

flame surface present this bending in a similar way. These results suggest that preferential

diffusion enhances the effect of turbulence on the flame front, in particular the thickening.

Moreover, this analysis suggests to study the flame front through a particular iso-surface of

the progress variable in the reaction zone, mainly because in this zone the flame structure is

still close to the structure of a flame in the flamelet regime. Thus, the iso-surface c = 0.8 is

analysed and particularly the displacement speed on this surface. It has been observed that

Sd on the iso-surface selected presents strong dependencies on both tangential strain rate and

curvature. These dependencies are modelled based on asymptotic theories by defining two dis-

tinct Markstein lengths. These Markstein lengths allow to differentiate the effects of tangential

strain rate and curvature, which seem to be correlated to differential diffusion. Indeed, the

Markstein lengths computed using the DNS of Lek = 1 flames are much smaller than those
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of Lek 6= 1 cases. In addition, these lengths decrease when the Karlovitz number increases.

This observation is in agreement with studies of an effective Lewis number. Finally, correlations

are proposed to use these Markstein lengths in a model for Sd deduced from asymptotic theories.

In the fourth chapter, the adaptation of the CFM model to flames in the TRZ regime is

presented. This formalism is based on the definition of a new progress variable C = H(c∗c),

where H(c) is the Heaviside function. Then, transport equations for this progress variable

(Eq. 4.1.5) and for the fine grained FSD, Σ∗ = Σδ(c− c∗), (Eq. 4.1.6) are derived. The source

terms involved in these equations are closed with the following models:

• The unresolved transport term of the progress variable is modelled with a simple-gradient

approach including a thermal expansion contribution (Eq. 4.3.6).

• The displacement speed is modelled as a function of the tangential strain rate and cur-

vature involving Markstein lengths (Eq. 4.3.16). The effect of the curvature fluctuations

is taken into account through a Gaussian presumed probability density function (PDF)

of the curvature.

• The unresolved FSD transport is modelled with a simple-gradient approach including a

contribution due to thermal expansion (Eq. 4.4.6).

• The model for normal propagation is similar to ECFM-LES model (Richard et al., 2007)

(Eq. 4.4.8).

• The tangential strain rate is decomposed into contributions due to resolved and unresolved

flow motions. The former is evaluated following a model (Eq. 4.4.13) proposed by Hawkes

and Cant (2000). The approach proposed by Charlette et al. (2002a) is used to model the

latter (Eqs. 4.4.14 and 4.4.16). Different efficiency functions can be used, for instance, the

function proposed by Bougrine et al. (2014) or the one developed in Chapter 2 (Eq. 2.3.5).

• The model (Eq 4.4.24) for the stretch due to curvature is deduced from the model of

displacement speed and the curvature distribution.

Additionally, closures are proposed for both the curvature 〈κ〉s,c∗ and its variance in Eqs. (4.3.13)

and (4.3.15), respectively. These submodels involve the filtered progress variable C, which is

not a priori known. Thus, a new relationship between C and C̃ is defined based on the filtered

laminar flame-PDF (FLF-PDF) model (Moureau et al., 2011). Then, each closure is a priori

tested by comparing their predictions to DNS. These tests show a good agreement of the pro-

posed closures with DNS. Moreover, a simple analysis of the tangential strain rate suggests

that an efficiency function based on a low pass filter (LPF) using a Heaviside function and a

cut-off lengths equal to δ0
L might be sufficient to reproduce the tangential strain rate due to

unresolved flow motions in the TRZ regime.
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The last chapter of this thesis is dedicated to a further step toward LES of spark-ignition

engines. A posteriori tests are conducted using 1D turbulent flames to assess the general be-

haviour of the proposed model. These tests show that the formulation of the model proposed in

Chapter 4 does not well predict the fuel consumption evolution with Ka, when all the closures

interact with each other. However, a variation of different model parameters suggests to use a

single effective Markstein length and half the variance of the curvature. The former show that

modelling the effect of tangential strain rate and curvature on the displacement speed is not

sufficient and should be furhter investigated; the latter suggest that a Gaussian presumed PDF

is not well suited to model the curvature distribution. However, using these parameters allows

the model to well reproduce the fuel consumption, the spatial profiles of progress variable and

flame surface density, as well as source term profiles. Nevertheless, a discussion on the FSD

transported highlights the limits of the proposed model. Indeed, the model predicts poorly the

flame structure, when the flame is in the flamelet regime. A potential correction is proposed

through a theoretical analysis of the tangential strain rate aT on the iso-surface c = c∗. This

correction should be further investigate in future work.

Finally, in this thesis we propose a new formalism of the CFM model valid in the TRZ

regime, through solving transport equations of a specific iso-surface in the reaction zone. Even

if both a priori and a posteriori tests present encouraging results, the model is not complete

and need further analysis before being applied to LES of spark-ignition engines.

6.2 Perspectives for future works

Future works are required to adapt the model to SI engines applications. The further analyses

needed can be organised into model improvement studies and validation works.

Improvements of the model

First, the model for tangential strain rate due to unresolved flow motions is based on strong

assumptions. The first hypothesis that needs to be investigate is the independence on C̃,
as presented in Section 5.4.2. One potential solution lies in adding a corrective strain rate

as proposed with Eq. (5.4.15). However, even if this solution is theoretically interesting, its

application remains to be investigated a priori and a posteriori. The second point to investigate

is the model based on intermittency turbulence. Indeed, the intermittent turbulent net flame

stretch (ITNFS) model (Meneveau and Poinsot, 1991) assumes that each scale of turbulence

stretch the flame independently, i.e., without interacting with other turbulent scales. One

way to reinvestigate this assumption is to adapt the 2D-DNS of flame/vortex interactions by

simulating the interactions between a flame front and multiple vortices. The idea is still to

isolate the effect of one scale of turbulence on the stirring of the flame front but using a method

to simulate statistically stationary flame/vortex interactions with a mean frequency of the

dipole occurrence depending on its size, illustrated in Fig. 6.2.1. However, this method only
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takes into account interactions between turbulent structures of the same scale and many issues

are induced with this approach, such as the physical relevance .
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Figure 6.2.1: Schematic view of pulsed interactions flame-vortex: (a) Initial configuration with
the creation of the first pair of vortices and (b) creation of the nth pair of vortices after nτ ,
where τ is the period to be defined.

On the other hand, interpreting the flame front as a low-pass filter (LPF) to model the tan-

gential strain rate due to unresolved flow motions shows satisfying results in Section 4.4.3. LPF

model is based on a Heaviside function for computing the efficiency function Γ and assuming

that the cut-off length of the low-pass filter is equal to the laminar flame thickness δ0
L. Despite

encouraging results, one way of improving this model would be to check the dependence of the

cut-off length on Karlovitz number, based on the work of Gülder (1995).

Second, improvements of the models of displacement speed and stretch due to curvature

could be proposed. The models proposed being strongly dependent on the values of the Mark-

stein lengths, a further study of these lengths should be conducted. The assumption of two

distinct Markstein lengths to differentiate effects of strain rate and curvature should be further

analysed. Indeed, the a posteriori simulations in Chapter 5 question the relevance of this differ-

entiation. Moreover, the correlations proposed must be verified using different fuels (from H2

and light hydrocarbons, to heavier fuels, like iso-octane). The effect of preferential diffusion on

these Markstein lengths might also be evaluated using different equivalence ratios or different

dilution rates. Nevertheless, this kind of studies is very expensive because 3D DNS for differ-

ent Karlovitz numbers are needed for each fuel, each equivalence ratio and each dilution rate.

Furthermore, as already pointed out the Markstein formalism might not be a suitable way to

model the effect of turbulence on displacement speed and stretch due to curvature, despite en-

couraging results. Thus, future work could be dedicated to evaluate and develop other models,
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for instance, by considering a non-linear relationship between stretch and displacement speed

(Chen, 2011; Halter et al., 2010).

Finally, a key parameter to improve is the modelling of the probability density function

(PDF) of curvature. As already pointed out, a Gaussian presumed PDF (Eq. 4.3.9) does not

predict accurately curvature distribution unless modifying the variance. Thus, other functions

should be studied as presumed PDF in future work.

Toward SI engines application

To use the formalism presented in this thesis in SI engines applications, some steps need to be

achieved. In the present study, the proposed model is evaluated against DNS using a Reynolds

averaged Navier-Stokes (RANS) approach avoiding to explore the behaviour of the resolved

closures. To investigate this aspect of the proposed model, simulation of spherical laminar

flame is a simple test to verify the relevance of the resolved closures. This kind of simulation

is the simplest approximation of a curved flame allowing to explore the effects of curvature

and tangential strain rate due to sphericity, the effects of normal propagation and resolved

transport, as reported in Fig. 6.2.2. These simulations allow to investigate the sensitivity to

LES filter width of the resolved closures. The case of a spherical laminar flame is particularly

interesting because the flames encountered in SI engines are generally spherical flames initially

laminar.

Burned Gases

𝜌𝑢 > 𝜌𝑏

Fresh Gases

Normal propagation

Resolved strain rate 
and thermal expansion

Resolved transport Resolved curvature

Flame front

Figure 6.2.2: Schematic view of the physical mechanisms involved in the propagation of a
spherical laminar flame. (Richard, 2005)

Then, the proposed model should be validated on 3D LES a posteriori analyses. These val-

idations may be performed by extracting the quantities of interest following an LES procedure,

similarly to the RANS method proposed in Section 4.2. In this future procedure, the domain

should be discretized into cells instead of slices. The difficulty encountered in such procedure is

the definition of the filter width, i.e., the size of the cells. Indeed, it should be simultaneously
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large enough to contain unresolved contributions and sufficiently thin to get a large number of

cells in the LES mesh.

Then, the model should be tested on a LES of an actual engine. However, some sub-models

for engine applications should be first verified compatible with the formalism proposed in the

present study:

• The model used for the ignition phase in ECFM-LES model is based on imposing, at the

ignition time tign, an initial profile of Σc̃ close to the spark plug (Richard et al., 2007). In

this model, at the instant of spark timing tign, an initial spherical profile is imposed for

the progress variable c̃. After time tign, the FSD has to be evaluated but cannot be given

by the transport equation Eq. (1.5.29) as the flame front is not fully established. The

FSD is then determined from a zero dimensional model (Richard, 2005; Richard et al.,

2007) until the flame front is fully established and sufficiently resolved. Until then, a

model for the evolution of the wrinkling of the flame kernel due to turbulent flow field

combined with the zero dimensional model allows to evaluate the total flame surface of

the flame kernel. This surface is then distributed as proposed by Boger et al. (1998).

Finally, when the flame kernel is sufficiently large, the ECFM-LES model can be used to

simulate the flame. The difficulty that can be faced with combining this ignition model

with the formalism proposed in the present study lies in the transition phase. Indeed,

with this iso-surface approach the time needed for the flame kernel to grow might be too

long, leading to underestimation of the fuel consumption.

• The behaviour of the proposed model in this thesis should be evaluated in wall/flame

interactions. One potential solution is to adapt the model developed by Bruneaux et al.

(1997), as already done for ECFM-LES by Richard (2005).

When these adaptations are done, the complete model can be assessed using the data

generated from bench measurements of a well known engine, for example an IFPEN engine. In

a final step, this model should be evaluated using a modern downsized spark-ignition engine

using EGR dilution.





Appendix A

Comparison of the convective schemes

As mentioned in Chapter 3, codes dedicated to direct numerical simulation (DNS) use con-

vective scheme with high spatial orders, like S3D in (Wang et al., 2017) or NTMIX (Baum

et al., 1995; Cuenot et al., 1997) with 8th and 6th orders, respectively. In the present study,

the DNS computations were conducted using the AVBP code (Moureau et al., 2005). It solves

the three-dimensional compressible Navier-Stokes equations on unstructured and hybrid grids.

The AVBP numerical schemes are based on the cell-vertex method. Two convective schemes

are available :

1. a finite-volume Lax-Wendroff type scheme (LW), which is 2nd order in time and space,

2. a two-steps Taylor-Galerkin type scheme (TTGC) (Colin and Rudgyard, 2000), which is

3rd order in time and space.

Because the order of TTGC scheme is larger than the one of LW scheme, the former seems to

be a better choice than the latter for DNS with AVBP.

The present appendix is dedicated to the comparison of LW and TTGC schemes. First,

the two schemes are presented in Section A.1 along with the impact of each scheme on compu-

tational cost. Then, the statistics resulting from simulations using LW or TTGC schemes are

compared in Section A.2.

A.1 Numerical schemes description

In this section the different convective schemes used in the AVBP code are presented after the

brief description of the equations to be discretized in time and in space.

A.1.1 Equations and temporal discretization

The differential formulations of the Navier-Stokes (NS) equations presented in Chapter 1 can

be written in the following compact form, which will be use for simplicity in the rest of this

section:
∂w

∂t
+∇ · F = s, (A.1.1)
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where w = (ρ, ρu, ρE) is the vector of conserved variables, F is the corresponding flux tensor

and s is the source terms. The fluxes can be divided into an inviscid, convective part Fi and a

viscous part Fv and expressed as:

F = Fi(w) + Fv(w,∇w) (A.1.2)

Note that viscous fluxes not only depends on w, but also on its gradients ∇w.

Equation (A.1.1) has to be discretized in time and space in order to numerically solve it.

The temporal scheme used is based on a N-step low storage Runge-Kutta (RK) scheme. It is

expressed as follows:

w
(1)
k −wn

k

α1∆t
= −Ck(wn)

w
(2)
k −w

(1)
k

α2∆t
= −Ck(w(1))

...

wn+1
k −w

(N)
k

αN∆t
= −Ck(w(N−1)) +Dk(w

n) + Sk(w
n),

where ∆t is the time step, {αl|l ∈ N} are real coefficients (for consistency, αN = 1) and

wn
k is the conservative variable vector taken at the mesh node k at instant tn. The discrete

operators Ck, Dk and Sk are convection, molar and turbulent diffusion operators, and source

terms, respectively. For N = 1, we get the classical explicit first-order Euler scheme.

In the AVBP code, the stability constraint for the convective schemes is a Courant-Friedrichs-

Lewy (CFL) constraint based on the fastest waves of the flow, i.e., acoustic waves:

∆t < CFL
min(∆x)

max|u|+ c
, (A.1.3)

where c is the speed of sound. The maximum value of CFL constant depends on the numerical

scheme used.

A.1.2 Spatial discretization

Lax-Wendroff scheme

Lax-Wendroff scheme is a single step finite volume scheme. Its temporal integration is deduced

from the RK scheme considering N = 1, leading to:

wn+1
k −wn

k

∆t
= −Ck(wn) +Dk(w

n) + Sk(w
n). (A.1.4)
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In this equation, the convective term Ck(w
n) is written as:

Ck(w
n) =

1

Vk

∑

j|k∈Ωj

VΩjDk,ΩjC
∣∣
Ωj

(wn), (A.1.5)

where Vk is the control volume associated with mesh node k, Ωj designates a mesh cell, Dk,Ωj is

a distribution matrix, C|Ωj (wn) corresponds to the cell gradient operator applied to inviscid,

convective fluxes Fi:

C|Ωj (wn) =
1

NdVΩj

∑

l|l∈Ωj

Fi
l · dSl, (A.1.6)

where Nd is the number of dimensions, VΩj is the volume associated to mesh cell Ωj and dSl are

the normal vectors to the surfaces of mesh cell Ωj. The distribution matrix allows to evaluate

the first and second order terms of the numerical scheme:

Dk,Ωj =
1

nv(Ωj)

Ç
I +

nv(Ωj)

2Nd

∆t

VΩj

AΩj · dSl

å
, (A.1.7)

where nv(Ωj) is the number of nodes of cell Ωj and AΩj is the Jacobian flux tensor at the centre

of cell Ωj.

Taylor-Galerkin scheme

In the AVBP code, a finite element two-steps Taylor-Galerkin type scheme (TTGC) (Colin and

Rudgyard, 2000) was developed for large eddy simulations (LES) focusing mainly on reducing

the numerical dissipation of the smallest resolved scales. Finite element schemes in the AVBP

code rely on the decomposition of conservative variables based on shape functions φk:

Wn(x) =
∑

k

φk(x)wn
k , (A.1.8)

where x is the position vector. When mesh cells are triangles or tetrahedra, the shape functions

are linear, while for all the other elements they are bilinear. TTGC scheme is then written

using first and second order operators L(Wn) and LL(Wn), respectively:

L(Wn) =
∑

j|k∈Ωj

Lk(W
n)|Ωj , (A.1.9)

LL(Wn) =
∑

j|k∈Ωj

LLk(W
n)|Ωj . (A.1.10)

(A.1.11)

When the elements are triangles or tetrahedra, Lk and LLk are similar to the finite volume

operators of LW scheme. However, for the bilinear elements, their expression is much more

complex and needs to approximate residuals (Colin and Rudgyard, 2000).
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A.1.3 Direct numerical simulation set-up for convective scheme com-

parison

A comparison of the two schemes is given in Sections A.2 and A.3 to evaluate the benefit of

one over the other by conducting twice the same set-up. Because the present study is dedicated

to modelling flames in the thin reaction zone (TRZ) regime, the case used to compare both

numerical scheme is selected in the TRZ regime and is case C (presented in Chapter 3). The

chemical mechanism used in this comparison is the two-step Arrhenius mechanism with 6 species

presented in Section 3.1.1. The numerical parameters of this case are reported in Table A.1.

Table A.1: The DNS set-up for the simulation C of the interaction between a planar
flame and forced homogeneous isotropic turbulence. The Karlovitz number Ka and the
Damköhler number Da are defined with Eqs. (1.3.11) and (1.3.10), respectively. The lam-
inar flame thickness used to evaluate these numbers is the thermal laminar flame thickness
δ0
L = (Tb − Tu)/max(|∇T |). Ncell is the number of cells in the mesh used for simulating the

flames.

Case lt/δL u′/S0
L Ka Da Ret LeFuel δ0L/∆x ηk/∆x Ncell

C 4.3 12.5 21.4 3.1 489.0 2.9 20 0.6 83e6

First, the computational time for both LW and TTGC schemes are reported in Table A.2.

The computation time for one iteration τi is about 4 times larger using the TTGC scheme

compared to the LW scheme. Thus, the benefit of LW scheme over TTGC is the computational

economy, but TTGC is expected to be more accurate (with less spatial dissipation) because of

its higher order. The rest of this appendix is dedicated to compare the results from both LW

and TTGC schemes.

Table A.2: Computational characteristics of simulations LW and TTGC schemes.

Scheme
Physical Real elapsed Computation time

CPU time [hCPU]
time [ms] time [h] τi [s/iteration]

LW 4.7 43 0.65 86713
TTGC 5.1 174 2.5 349785

A.2 Comparison of the convective schemes

This section is dedicated to the comparison of the statistics of the flames resulting from the use

of LW and TTGC schemes. Note that in this analysis the progress variable is computed from

the fuel mass fraction:

c =
Yfuel − Y b

fuel

Y u
fuel − Y b

fuel

. (A.2.1)

This definition explains the slight differences between the results presented in this appendix

and those observed in Chapter 3, where the progress variable is computed as the reduced

temperature.
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A.2.1 Temporal evolutions
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Figure A.2.1: Comparison of the overall results using TTGC scheme or LW scheme: (a) the
temporal evolution of the generalized flame surface normalized with the laminar flame surface
A0 = L2, (b) the temporal evolution of the heat release rate normalized with the heat release
rate of the laminar flame HR0, (c) the temporal evolution of the generalized tangential strain
rate in solid lines and the stretch due to curvature in dashed lines, and (d) the temporal
evolutions of the density weighted displacement speed at c = 0.8 normalized with the density
weighted laminar flame speed ρuS

0
L.

The temporal evolutions of some variables are compared in Fig. A.2.1. First, the flame

surface normalized with the laminar flame surface of TTGC case in Fig. A.2.1a has a similar

evolution as LW case. The latter has a time averaged flame surface only 9% higher than

the flame surface of TTGC case. The heat release rate for both cases are also shown in

Fig. A.2.1b. As for the flame surface the heat release rates are very similar, and their time

averaged values differ by 13%. Moreover, the surface averaged stretch due to curvature, strain

rate and displacement speed are compared. Figure A.2.1c shows the temporal evolutions of

the surface averaged strain rate in solid lines and 〈Sdκ〉s in dashed lines. These evolutions

are similar for both TTGC and LW cases with a relative deviation of 6% on the time averaged

strain rate and 5% on the time averaged stretch due to curvature. As for the previous variables,

the displacement speed presents the same temporal evolution in Fig. A.2.1d with both TTGC

and LW schemes. The relative deviation on the time averaged 〈Sd〉s is 2%.

These observations suggest that the numerical scheme (LW or TTGC) has a weak impact

on the statistics of the quantities of interest. However, the observations made present two main



176 APPENDIX A. COMPARISON OF THE CONVECTIVE SCHEMES

drawbacks:

• the quantities displayed in Fig. A.2.1 are surface averaged variables, therefore, the impact

of spatial dissipation for modelling is not highlighted,

• the temporal sample might be too small for a relevant comparison.

A.2.2 Comparison of statistics of displacement speed on a progress

variable iso-surface

Because the modelling approach chosen in this study is based on the analysis of the behaviour

of an iso-surface of progress variable at c = 0.8, the comparison of the displacement speed from

cases using LW and TTGC schemes is performed.
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Figure A.2.2: Comparisons of the conditional mean of (a) displacement speed 〈S∗d(ξ)〉ξ=κ∗ and
(b) its components 〈S∗r + S∗n(ξ)〉ξ=κ∗ , normalized with the laminar flame speed at c = c∗ S0

d as
functions of κ∗. (c) Comparison of the conditional mean of tangential strain rate 〈a∗T (ξ)〉ξ=κ∗
as function of κ∗. The error bars represent the standard deviation.

Figure A.2.2 compares the conditional means of displacement speed, its components 〈S∗r +

S∗n(ξ)〉ξ=κ∗ and tangential strain rate conditioned on κ∗ resulting from simulations using LW

and TTGC schemes. The standard deviation is also displayed by error bars in the same figure.

In Figs. A.2.2a to A.2.2c curves representing results from LW and TTGC simulations are almost

superimposed, meaning that the convective scheme has almost no impact on the conditional
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mean of the quantities of interest. Moreover, the standard deviations observed in these figures

are very similar whether LW scheme or TTGC scheme is used. This suggest that the spatial

dissipation does not impact significantly the statistics of the quantities of interest regarding the

flame curvature κ∗.

A similar analysis is performed on the double conditioning on both curvature and strain

rate conducted in Section 3.3.2. Figure A.2.3 shows this double conditioning resulting from

simulations using LW and TTGC schemes. The joint probability density function (PDF) of

curvature and strain rate is also plotted in this figure by black solid lines corresponding to 10%

(outer line), 50% and 90% (inner line) of the maximum values of the joint PDF.
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Figure A.2.3: Evolution of the conditional mean of 〈S∗r +S∗n〉(a∗T ,κ∗) with a∗T and κ∗ for: (a) case
C using LW scheme and (b) case C using TTGC scheme. Black lines are contours of the joint
probability density function (PDF) of a∗T and κ∗ corresponding to 10% (outer line), 50% and
90% (inner line) of its maximum value. The solid white line is the iso-contour 〈S∗r +S∗n〉(a∗T ,κ∗) =
ρuSL/ρ

∗ and the dashed white line is the iso-contour 〈S∗r + S∗n〉(a∗T ,κ∗) = 0.

The joint PDFs displayed in Fig. A.2.3b are similar to those in Fig. A.2.3a. Pearson’s

correlation coefficient ra∗T ,κ∗ (Pearson, 1895), defined in Eq. (3.3.1), confirm the apparent similar

joint PDFs resulting from LW and TTGC simulataions. Indeed, ra∗T ,κ∗ equals −0.14 and −0.16

when LW and TTGC scheme are used, respectively. Figures A.2.3a and A.2.3b show similar

dependency of 〈S∗r+S∗n〉(a∗T ,κ∗) on both κ∗ and a∗T with very close magnitudes. These observations

confirm the weak impact of the numerical schemes on the statistics of the quantities of interests

regarding dependency on flame curvature and tangential strain rate.
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A.2.3 Comparison of statistics for Reynolds averaged Navier-Stokes

modelling

The impact of the choice in numerical scheme on the statistics of the quantities of interest from

a Reynolds averaged Navier-Stokes (RANS) point of view (see Section 4.2) is here investigated.
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Figure A.2.4: Comparison of statistics as functions of C̃ following the procedure presented in
Section 4.2 from simulations using LW or TTGC scheme for: (a) curvature 〈κ〉s,c∗ , (b) 〈κ2〉s,c∗ ,
(c) stretch due to curvature 〈Sdκ〉s,c∗ and (d) displacement speed 〈Sd〉s,c∗ .

Figure A.2.4 compares the statistics of curvature and its variance, stretch due to curvature

and displacement speed resulting from simulations using LW and TTGC schemes as functions of

C̃. For each quantity, the curves of the extracted statistics resulting from the use of LW scheme

are superimposed with the curves from TTGC simulation. This shows that the numerical

scheme chosen has a weak impact on the statistics of the quantities of interest for a priori

modelling.
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A.3 Conclusions

Even if the AVBP code was not developed for DNS, it has several numerical schemes of different

order in space and time. In this appendix, simulations of turbulent flame with the same

numerical set up, only differing from each other by the numerical scheme chosen, are conducted

and compared. The comparison conducted shows that the statistics of the quantities of interest

are weakly affected by the choice of the convective scheme. It also shows that the Lax-Wendrof

scheme is much faster than the TTGC scheme. Thus, the former is preferred to the latter for

the purpose of computational economy for all the study.





Appendix B

Discussion on turbulence forcing

method

In the present study, the response of a statistically planar flame to a turbulent flow field has

been study. As presented in Chapter 3, the simple case of homogeneous isotropic turbulence

(HIT) is very dissipative, meaning that turbulent kinetic energy (TKE) decays with time. The

more intense the turbulent flow field is, the faster TKE decays. This represents an issue for

studying interactions between turbulence and a flame front because the flame does not have

the time to adapt to turbulence therefore leading to unrealistic statistics.

To overcome this issue, different methods exist, reported in Chapter 3 and by Klein et al.

(2017). Here, the use of volume forcing within the whole computational domain was chosen, in

order to ensure a constant turbulent level, similarly to (Aspden et al., 2011a,b, 2015, 2016, 2017,

2019). However, even if this forcing method allows to offset the decay of TKE and maintain

turbulence, this approach might lead to erroneous flame statistics because turbulence is forced

in the fresh and burned gases.

In this appendix, we propose to study the impact of forcing turbulence in both the fresh

and burned gases by limiting turbulence forcing to fresh gases only.

B.1 Direct numerical simulation implementation

A spectral forcing method proposed by Eswaran and Pope (1988) is used in this study to main-

tain the turbulence characteristics. This method generates a stochastic time-evolving forcing

vector f used as a source term in the momentum conservation equation of the Navier-Stokes

equations, as ρf . This stochastic forcing term introduces energy in the largest scales of the

domain. A turbulent energy spectrum is established, with the largest scales cascading toward

smaller scales and these being dissipated by viscosity. When the rate of energy introduced by

the forcing technique equals the rate of dissipation, a statistically steady state is reached

In practice, Eswaran and Pope (1988) added a forcing acceleration in the momentum con-

servation equation of the Navier-Stokes equations in wavenumber space. According to them,
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the dissipation rate ε can be estimated from forcing parameters as:

ε =
4τgσ

2
gNg

1 + τg (k2
0ε)

1/3
, (B.1.1)

where σg and τg are a characteristic forcing acceleration and a characteristic forcing time,

respectively. The latter controlled the time to reach a statistically steady state. Moreover,

this method requires two other parameters: the size of the computational domain L, such that

2π/L is the first forced wave number, and the number of forced modes Ng, which has been set

to 92 from the works of Paoli and Shariff (2009).
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Figure B.1.1: Schematic view of the flow configuration of the DNS with: (a) turbulence forced
in the whole domain and (b) turbulence forced only in the fresh gases.

With this forcing method, HIT is imposed in the volume defined in Fig. B.1.1a where

the flame is contained. As already mentioned, it can be argued that the forcing term being

artificial and imposed at the flame location, this approach can lead to erroneous flame statistics.

Moreover, flames in engine spark-ignition (SI) engines propagate facing a turbulent flow in the

fresh gases. Thus, to evaluate the impact of forcing turbulence in the fresh and burned gases

and to get closer to conditions encountered in SI engines, additional simulations were performed

conditioning the forcing source term with the progress variable (Eq. B.1.2), as suggested by

Klein et al. (2017). In such a case the forcing is only active in the fresh gases as illustrated

in Fig. B.1.1b, thus leading to the interaction of the flame with a more standard decaying

turbulence.

fFG =

Å
1− tanh

Å
c

clim

ãã
f . (B.1.2)

Three of the four cases presented in Chapter 3 are used to investigate the effects of turbulence

forcing in the whole domain (Fig. B.1.1). Cases A, C and D were selected to evaluate these

effects in the flamelet and the thin reaction (TRZ) regime. These cases are performed with

differential diffusion (Lek 6= 1) and the 2-step chemistry presented in Chapter 3. Cases AFG,

CFG and DFG are performed with the same turbulence forcing parameters as A, C and D, but

by forcing the turbulence only in the fresh gases.

All these cases are displayed in the Peters-Borghi diagram in Fig. B.1.2, where plain and

empty symbols represent cases with turbulence forced in the whole domain and cases with

turbulence forced only in the fresh gases, respectively. Their numerical parameters are reported

in Table B.1.
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Table B.1: The DNS set-up for the simulations of the interaction between a planar flame
and forced homogeneous isotropic turbulence. The Karlovitz number Ka and the Damköhler
number Da are defined with Eqs. (1.3.11) and (1.3.10), respectively. The laminar flame
thickness used to evaluate these numbers is the thermal laminar flame thickness δ0

L =
(Tb − Tu)/max(|∇T |). Ncell is the number of cells in the mesh used for simulating the flames.

Case lt/δL u′/S0
L Ka Da Ret δ0L/∆x ηk/∆x Ncell

A 3.3 3.0 2.9 9.9 89.6 20 1.7 83e6

C 4.3 12.5 21.4 3.1 489.0 20 0.6 83e6

D 4.4 21.1 46.2 1.9 833.2 31 0.7 254e6

AFG 3.5 3.4 3.4 9.1 106.6 20 1.6 83e6

CFG 4.1 11.7 19.8 3.1 427.0 20 0.7 83e6

DFG 4.2 22.7 52.6 1.7 858.2 31 0.6 254e6
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Figure B.1.2: Direct Numerical Simulations of High Karlovitz turbulent premixed flame.

B.2 Flame surface analysis

In this section, the same analysis conducted in Chapter 3 is presented by comparing system-

atically cases AFG, CFG and DFG to cases A, C and D, respectively. The progress variable is

defined as the reduced temperature, Eq. (1.1.12a).

B.2.1 Analysis of the temporal evolution of flame surfaces

Figure B.2.1 shows the temporal evolution of the flame surface defined as AT (t) =
∫
V |∇c|(t)dV ,

with V the whole domain. As expected, each case shows a transitory phase followed by a

quasi steady-state with AT (t) oscillating around an average value. Note that the flame surface

magnitudes are smaller when turbulence is only forced in the fresh gases, especially at high

Karlovitz numbers. To verify that the flames are stationary, the temporal averaged rate of

change of the flame surface (1/AT )dAT/dt was verified to be close to zero.
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Figure B.2.1: Temporal evolution of the turbulent flame surfaceAT normalized with the laminar
flame surface A0 (a) for cases A and AFG, (b) for cases C and CFG and (c) for cases D and DFG.

B.2.2 Analysis of the turbulent flame velocity and wrinkling

The effect of turbulence forcing is then investigated through the propagation speed ST defined

as:

ST =
1

ρuA0

∫

V
ω̇cdV, (B.2.1)

where ω̇c = ω̇′T/(Cp(Tb−Tu)) is the chemical source term with ω̇′T the heat release rate, ρu the

density of the fresh gases andA0 the laminar flame surface corresponding to the y-z cross section

of surface L2. Moreover, as presented in Chapter 3, the increase of ST is often attributed to the

increase in the flame front surface AT by wrinkling. The proportionality between the increase

of the propagation speed and the flame wrinkling Ξ = AT/A0 is often quantified through the

effect of the flame stretch using the stretch factor I0 (Eq. 3.2.3).

The evolutions of the flame wrinkling (circles) and propagation speed (triangles) are plotted

as functions of Ka in Fig. B.2.2a for Lek 6= 1 cases with turbulence forced in the whole domain

and only in the fresh gases in plain and empty symbols, respectively. Cases with turbulence

forced only in the fresh gases present similar evolutions with Ka for Ξ and ST/S
0
L as cases with

turbulence forced in the whole domain in Fig. B.2.2a, but their magnitudes at high Karlovitz

number are reduced by approximately 30% and 20% for cases C and D, respectively. Because
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Figure B.2.2: Evolutions of (a) Ξ = AT/A0, Ξ∗ = A∗T/A0 and ST/S
0
L, (b) of the stretch factors

I0 and I∗0 , and (c) of the surface averaged tangential strain rate 〈aT 〉s with Ka for Lek 6= 1
cases with turbulence forced in the whole domain and only in the fresh gases with plain and
empty symbols, respectively.

the stretch factors I0 are the same in Fig. B.2.2b, the difference observed for the wrinkling and

the turbulent flame speed is due to the reduced turbulent intensity in the flame front leading

to a reduced tangential strain rate as seen in Fig. B.2.2c.

The evolution of the wrinkling Ξ∗ on an iso-surface c∗ = 0.8, corresponding to the maximum

reaction rate of the laminar flame (see Fig. B.2.3), is also plotted in Fig. B.2.2a. This wrinkling

is defined as:

Ξ∗ =
A∗T
A0

, (B.2.2)

where A∗T is the area of the iso-surface c∗ = 0.8. In Fig B.2.2b, the stretch factor I∗0 =

〈ρSd〉∗s/(ρuS0
L) is also displayed.

Figure B.2.2a shows that Ξ∗ (squares) present similar evolution with Ka when turbulence is

only forced in the fresh gases (empty symbols) than cases with turbulence forcing in the whole

domain (plain symbols). However, the former present magnitudes significantly smaller than

the latter, down to a reduction of approximately 35% for cases C and CFG. As mentioned in

Chapter 3, the values of Ξ∗ are close to those of ST/S
0
L, which reflects the fact that I∗0 is closer

to unity than I0 as shown in Fig. B.2.2b. This suggests that the modelling approach chosen in

the present study is not dependent on the turbulence forcing method.
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B.2.3 Analysis of the inner flame structure

To evaluate the effect of turbulence forcing method on the inner structure of the flame, the

profile of the conditional mean of the chemical source term ω̇c = ω̇′T/(Cp(Tb − Tu)) with the

progress variable is plotted for each case in Fig. B.2.3.

0 0.2 0.4 0.6 0.8 1
c

0

0.2

0.4

0.6

0.8

1

1.2

<
ω

c.
>

ξ=
c / 

m
ax

(ω
cla

m
.

) Laminar
Case A

FG
Case C

FG
Case D

FG

(a) Lek 6= 1 cases - forcing only in the fresh
gases

0 0.2 0.4 0.6 0.8 1
c

0

0.2

0.4

0.6

0.8

1

<
ω

c.
>

ξ=
c / 

m
ax

(ω
cla

m
.

) Laminar
Case A
Case A

FG

(b) Cases A and AFG

0 0.2 0.4 0.6 0.8 1
c

0

0.2

0.4

0.6

0.8

1

<
ω

c.
>

ξ=
c / 

m
ax

(ω
cla

m
.

) Laminar
Case C
Case C

FG

(c) Cases C and CFG

0 0.2 0.4 0.6 0.8 1
c

0

0.2

0.4

0.6

0.8

1
<

ω
c.
>

ξ=
c / 

m
ax

(ω
cla

m
.

) Laminar
Case D
Case D

FG

(d) Cases D and DFG

Figure B.2.3: Conditional mean of the chemical source term 〈ω̇c(c)〉ξ=c as a function of progress
variable (a) for cases with Lek = 1 with turbulence forced only in the fresh gases. Comparisons
of conditional mean of the chemical source term 〈ω̇c(c)〉ξ=c (b) for cases A and AFG, (c) for
cases C and CFG and (d) for cases D and DFG.

Figure B.2.3 shows the conditional mean of the progress variable chemical source term ω̇c,

normalized by the peak chemical source term of the 1D laminar flame, as a function of the

progress variable c for each case. As already mentioned in Chapter 3, the non-unity Lewis

number cases with turbulence forced in the whole domain show a decrease of the chemical

source term when Ka increases, from a maximum of 0.55 for case A (Fig. B.2.3b) down to 0.43

for case C (Fig. B.2.3c). However, when Ka increases further, the inverse tendency is observed

with an increase of ω̇c/max(ω̇lamc ) up to 0.48 for case D (Fig. B.2.3d). The conditional means

of the progress variable chemical source term for Le 6= 1 cases with turbulence forced only

in the fresh gases are plotted in Fig. B.2.3a, showing similar tendency with Ka than cases

with turbulence forced in the whole domain. Indeed, from cases AFG to CFG, the maximum of

〈ω̇c〉ξ=c/max(ω̇lamc ) decreases from 0.57 down to 0.46. When Ka increases further, the inverse

tendency is observed with an increase of ω̇c/max(ω̇lamc ) up to 0.52 for case DFG. As mentioned in

Chapter 3, the number of studied cases here is too low to provide a clear view on the evolution of

this maximum as a function of Ka. These similar tendencies with increasing Karlovitz number

confirms that the forcing turbulence does not impact the flame behaviour to turbulence.



B.3. ANALYSIS OF THE DISPLACEMENT SPEED ON AN ISO-SURFACE 187

To quantify the apparent thickening of the flame, the thickening factor Θ introduced by

Aspden et al. (2019) is examined.:

Θ =
〈|∇c|(ξ)〉refξ=c
〈|∇c|(ξ)〉ξ=c

. (B.2.3)

〈|∇c|(ξ)〉ξ=c is the mean value of the progress variable gradient conditioned on the progress

variable value ξ. In this study the normalization is made using the gradient of the laminar

flame.
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Figure B.2.4: Thickening factor Θ(c) (a) for cases with Lek 6= 1 with turbulence forcing in the
whole domain and (b) for cases with Lek 6= 1 with turbulence forced only in the fresh gases.

In Fig. B.2.4, the evolution of Θ with the progress variable is shown for non-unity Lewis

number cases with turbulence forced in the whole domain. The same quantity is shown for non-

unity Lewis number simulations with turbulence forced only in the fresh gases in Fig. B.2.4a. For

both turbulence forcing methods, the resulting thickening factors are quite similar characterized

by a thickening on the fresh (c < 0.3) and burned (c > 0.7) gases getting larger with an increase

of the Karlovitz number. In the reaction zone (0.5 < c < 0.9 as seen in Fig. B.2.3) the increase

of the thickening compared to cases with the lowest Ka (cases A and AFG) is relatively low.

These results seem to confirm that the inner structure of flames is weakly affected by the

turbulent forcing method used in the simulations.

B.3 Analysis of the displacement speed on an iso-surface

Because the modelling approach chosen in this study is based on the analysis of the behaviour

of an iso-surface of progress variable at c = 0.8, this section is dedicated to the comparison of

the displacement speed from cases with turbulence forced in the whole domain or only in the

fresh gases.
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Figure B.3.1: Evolution of the conditional mean of displacement speed 〈S∗d(ξ)〉ξ=κ∗ , normalized
with the laminar flame speed at c = c∗, S0

d , with curvature κ∗ (a) for Lek 6= 1 cases with
turbulence forced only in the fresh gases. Comparisons of: (b) cases A and AFG, (c) cases C
and CFG, and (d) cases D and DFG. The error bars represent the standard deviation.

B.3.1 Analysis of conditional means with curvature

Figure B.3.1 presents the mean displacement speed 〈S∗d(ξ)〉ξ=κ∗ conditioned on κ∗, the flame

curvature. The displacement speed is normalized with S0
d = ρuS

0
L/ρ

∗, the displacement speed

of the planar laminar flame at c = c∗. The standard deviation is also reported by error bars. As

observed in Chapter 3, figure B.3.1a shows a negative correlation between displacement speed

and curvature. Figures B.3.1b to B.3.1d compare the mean displacement speed resulting from

simulations forcing turbulence in the whole domain and only in the fresh gases for each case.

Cases A and AFG show very similar profiles with similar standard deviation. Similarly, cases

at high Karlovitz numbers (Figs.B.3.1c and B.3.1d) show mean displacement speed weakly

affected by the turbulence forcing method. However, for large Karlovitz numbers the standard

deviations are slightly smaller when the turbulence is forced only in the fresh gases.

In Chapter 3, the focus is made on the conditional statistics of the different components of

S∗d , as defined in Eqs. (1.6.17) to (1.6.19). The thermal diffusivity D∗th being the same between

simulations with turbulence forced in the whole domain and those with turbulence forced only

in the fresh gases, only the sum 〈S∗r +S∗n〉ξ=κ∗ is plotted as a function of curvature in Fig. B.3.2.
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Figure B.3.2: Evolution of the conditional mean of displacement speed 〈S∗r + S∗n(ξ)〉ξ=κ∗ , nor-
malized with the laminar flame speed at c = c∗, S0

d , with curvature κ∗ (a) for Lek 6= 1 cases
with turbulence forced only in the fresh gases. Comparisons of: (b) cases A and AFG, (c) cases
C and CFG, and (d) cases D and DFG. The error bars represent the standard deviation.

As already observed for cases with turbulence forced in the whole domain (Chapter 3), the

evolution of 〈S∗r + S∗n〉ξ=κ∗ in Fig. B.3.2a differs from 〈S∗d〉ξ=κ∗ mainly for positive curvature

where the correlation is positive between 〈S∗r + S∗n〉ξ=κ∗ and κ∗. The conclusions drawn for

〈S∗d〉ξ=κ∗ are the same when 〈S∗r +S∗n(ξ)〉ξ=κ∗ resulting from the two forcing methods presented

in Section B.1 are compared for each case in Figs.B.3.2b to B.3.2d.

As noticed for cases with turbulence forced in the whole domain in Chapter 3, 〈S∗d〉ξ=κ∗/S0
d is

not close to unity when κ∗ = 0. Indeed, 〈S∗d〉ξ=κ∗/S0
d ranges between 0.6 and 0.8. Figure B.3.3a

shows that the mean tangential strain rate conditioned with curvature, 〈a∗T 〉ξ=κ∗ , is not zero at

κ∗ = 0 as observed when turbulence is forced in the whole domain (Fig.B.3.3). Figures B.3.3b

to B.3.3d compare the mean tangential strain rate resulting from the two forcing methods

presented in Section B.1 for each case. These comparisons mainly show that forcing turbulence

only in the fresh gases results to much smaller mean tangential strain rate with much smaller

standard deviation.
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Figure B.3.3: Evolution of the conditional mean of tangential strain rate 〈a∗T (ξ)〉ξ=κ∗ with
curvature κ∗ (a) for Lek 6= 1 cases with turbulence forced only in the fresh gases. Comparisons
of: (b) cases A and AFG, (c) cases C and CFG, and (d) cases D and DFG. The error bars
represent the standard deviation.

B.3.2 Analysis of conditional means with strain rate and curvature

The double conditioning on both curvature and strain rate proposed in Chapter 3 is here

analysed in term of impact of the turbulence forcing method. Figure B.3.4 shows this double

conditioning for simulations with turbulence forced in the whole domain and only in the fresh

gases. The joint probability density function (PDF) of curvature and strain rate is also plotted

in this figure by black solid lines corresponding to 10% (outer line), 50% and 90% (inner line)

of the maximum values of the joint PDF.

The joint PDFs displayed in Fig. B.3.4 suggest that a∗T and κ∗ are more correlated when the

turbulence is only forced in the fresh gases. This can be quantified by evaluating Pearson’s cor-

relation coefficient (Pearson, 1895), defined in Eq. (3.3.1), and listed in Table B.2. As already

Table B.2: Pearson’s correlation coefficient, ra∗T ,κ∗ , between strain rate a∗T and curvature κ∗ for
the flames using the two forcing methods presented in Section B.1.

Case A C D AFG CFG DFG

Ka 2.9 21.4 46.2 3.4 19.8 52.6
ra∗T ,κ∗ -0.65 -0.40 -0.28 -0.68 -0.60 -0.50

observed in Chapter 3, the correlation of a∗T and κ∗ is negative and decreases as Ka increases.
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∗ and the dashed white
line is the iso-contour 〈S∗r + S∗n〉(a∗T ,κ∗) = 0.
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When the turbulence is forced only in the fresh gases, Pearson’s correlation coefficients decrease

compared to simulations with turbulence forced in the whole domain, showing that the corre-

lation is stronger for cases AFG to DFG. Figures B.3.4d to B.3.4f show that the dependency of

the displacement speed with strain rate and curvature of cases AFG to DFG is as complex as

cases A to D. Note that the magnitudes of 〈S∗r +S∗n〉(a∗T ,κ∗) of cases with turbulence forced only

in the fresh gases are smaller than cases A to D, which confirms that the iso-surface c∗ = 0.8

interacts with less intense turbulence. In addition, when turbulence is forced only in the fresh

gases, the evolutions of 〈S∗r + S∗n〉(a∗T ,κ∗) seem similar to the lowest Ka cases. This observation

is expected to impact the values of the effective Markstein lengths involved in Eq. (3.3.3).
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Figure B.3.5: Evolution of effective Markstein numbers with Ka: (a) forMaT = LaT /δL and (b)
forMκ = Lκ/δL. The values computed from stretched laminar flame and from the optimization
methods are shown with dots and the dashed lines represent the models in Eqs. (3.3.5) and
(3.3.6). Markstein numbers resulting from simulations with turbulence forcing in the whole
domain are represented in empty symbols, while plain symbols are used for cases with turbulence
forced only in the fresh gases.

The evolutions of MaT = LaT /δL and Mκ = Lκ/δL with turbulent intensity are plotted in

Fig. B.3.5 for all cases. Markstein numbers resulting from simulations with turbulence forced in

the whole domain are displayed in empty symbols, while plain symbols are used for simulations

with turbulence forced only in the fresh gases. Figure B.3.5a shows thatMaT at low Karlovitz

number is weakly affected by the forcing method, while at higher Ka Markstein numbersMaT

are much larger when turbulence is forced only in the fresh gases than in the whole domain.

Indeed, MaT for cases CFG and DFG are 43% and 85% larger than those for cases C and D.

Thus, forcing turbulence only in the fresh gases results to weaker dependency of MaT on Ka,

illustrated by the smoother slope in Fig.B.3.5a. On the contrary, Fig. B.3.5a shows that Mκ

is weakly affected by the turbulence forcing method. Indeed, the maximum relative error is

approximately 23% for cases D and DFG. These observations question the relevance of the

use of the asymptotic theories for turbulent flames. As mentioned in Chapter 6, future work

should be dedicated to a further investigation of these Markstein lengths and even to different

approach for modelling the displacement speed.
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B.4 Statistics for a priori validation

This section is dedicated to investigate the impact of the turbulence forcing method on the

statistics of the quantities of interest from a Reynolds Averaged Navier-Stokes (RANS) point

of view (see Section 4.2).

B.4.1 Statistics of curvature and its variance
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Figure B.4.1: Comparison of the profiles of curvature 〈κ〉s,c∗ by forcing the turbulence in the
whole domain (solid lines) or in the fresh gases only (dashed lines).

Figure B.4.1 compares the curvature 〈κ〉s,c∗ extracted following the procedure presented

in Section 4.2 resulting from simulations with turbulence forced in the whole domain and

only in the fresh gases. For the lowest Karlovitz number (Fig. B.4.1a) the turbulence forcing

method does not have a significant impact on the statistics of the curvature, as seen with the

superimposition of the profiles of 〈κ〉s,c∗ of cases A and AFG. Figures B.4.1b and B.4.1c show

that even for high Ka the impact of the turbulence forcing method is weak on the statistics

of curvature. Note that at high Karlovitz the curvature on the burned gases side (C̃ ≥ 0.6)

is slightly reduced due to less intense turbulence, when turbulence is forced only in the fresh

gases.

Figure B.4.2 compares the variance of curvature (through 〈κ2〉s,c∗) extracted following the

procedure presented in Section 4.2 resulting from simulations with turbulence forced in the

whole domain and only in the fresh gases. As for curvature in Fig. B.4.1a, the variance of

curvature is not affected by the turbulence forcing method at low Ka, as observed in Fig. B.4.2a.

However, for high Karlovitz numbers, even if the shape of curves are similar in Figs. B.4.1b
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Figure B.4.2: Comparison of the profiles of 〈κ2〉s,c∗ by forcing the turbulence in the whole
domain (solid lines) or in the fresh gases only (dashed lines).

and B.4.1c, the magnitudes of 〈κ2〉s,c∗ are significantly reduced when turbulence is forced only

in the fresh gases, down to almost half the values encountered in cases C and D. This results

from the less intense turbulence interacting with the iso-surface c = 0.8 in cases CFG and DFG.

B.4.2 Statistics of stretch due to curvature and displacement speed

Figure B.4.3 compares the stretch due to curvature (〈Sdκ〉s,c∗) extracted following the procedure

presented in Section 4.2 resulting from simulations with turbulence forced in the whole domain

and only in the fresh gases. As for curvature and its variance, the stretch due to curvature is not

affected by the turbulence forcing method at low Ka, as observed in Fig. B.4.3a. As 〈κ2〉s,c∗ ,
the stretch due to curvature is significantly affected for high Karlovitz number in Figs. B.4.3b

and B.4.3c. Indeed, even if the shape of the profiles of 〈Sdκ〉s,c∗ are similar between cases with

turbulence forced in the whole domain and only in the fresh gases, cases CFG and DFG present

reduced stretch due to curvature, especially on the burned gases side, down to approximately

half the values observed in cases C and D.

Figure B.4.4 compares the displacement speed (〈Sd〉s,c∗) extracted following the procedure

presented in Section 4.2 resulting from simulations with turbulence forced in the whole domain

and only in the fresh gases. The profiles of displacement speed displayed in Fig. B.4.4 are

weakly affected by the turbulence forcing method, except at high Ka for C̃ ≥ 0.6 where 〈Sd〉s,c∗
is flatten for cases CFG and DFG compared to cases C and D.



B.4. STATISTICS FOR A PRIORI VALIDATION 195

0.00 0.25 0.50 0.75 1.00

C̃

−15

−10

−5

0

5

〈S
d
∇
·n
〉 s,
c∗
τ f

A

AFG

(a) Cases A and AFG

0.00 0.25 0.50 0.75 1.00

C̃

−30

−20

−10

0

〈S
d
∇
·n
〉 s,
c∗
τ f

C

CFG

(b) Cases C and CFG

0.00 0.25 0.50 0.75 1.00

C̃

−30

−20

−10

0

〈S
d
∇
·n
〉 s,
c∗
τ f

D

DFG

(c) Cases D and DFG

Figure B.4.3: Comparison of the profiles of the stretch due curvature 〈Sdκ〉s,c∗ by forcing the
turbulence in the whole domain (solid lines) or in the fresh gases only (dashed lines).
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Figure B.4.4: Comparison of the profiles of the displacement speed 〈Sd〉s,c∗ by forcing the
turbulence in the whole domain (solid lines) or in the fresh gases only (dashed lines).
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B.5 Conclusions

In this appendix, the turbulence forcing method has been modified to forced turbulence only

in the fresh gases. Then, simulations were conducted using this modified turbulence forcing

method to investigate the impact of this method on the statistics of the flame. The comparisons

performed in this appendix show that the main effects of the turbulence forcing method are due

to the less intense turbulence interacting with the flame. The consequence on a modelling point

of view is a reduction of the magnitudes of the statistics of the quantities of interest. However,

the tendencies observed remain almost unchanged, suggesting that the model proposed in this

PhD thesis is still relevant.



Appendix C

Derivation of the fine grained flame

surface density transport equation

As suggested in Chapter 3, it seems reasonable to evaluate the total chemical source term

by modelling the behaviour of a specific c iso-surface. So, the modelling approach proposed

is based on the definition of the progress variable C and the associated flame surface density

(FSD) Σ∗ corresponding to the fine grained FSD introduced by Vervisch et al. (1995):

C = H(c− c∗), (C.1)

Σ∗ = |∇C| = |∇c|δ(c− c∗), (C.2)

where H(c) and δ(c) are the Heaviside and the Dirac functions, respectively. This appendix is

therefore dedicated to the derivation and filtering of transport equations for both variables.

Knudsen and Pitsch (2008) modified the balance equation of the progress variable (Eq. 1.1.13)

presented in Section 1.1 using the variable defined in Eq. (C.1):

∂ρC
∂t

+∇ · (ρuC) = ρSd|∇C|, (C.3)

Then, Eq. (C.3) is filtered using the large-eddy simulation (LES) filter G∆:

∂ρC̃
∂t

+∇ · (ρũC̃) = −∇ ·
Ä
ρuC − ρũC̃

ä
︸ ︷︷ ︸

T1

+ 〈ρSd〉s,c∗Σ∗
︸ ︷︷ ︸

T2

, (C.4)

where T1 is the unresolved transport term associated with turbulent flux, and 〈 〉s,c∗ is the

surface averaging operation on the iso-surface c = c∗ defined as:

〈Q〉s,c∗ =
Q|∇c|δ(c− c∗)

Σ∗
=

∫
V Q|∇c|δ(c− c∗)G∆(x− x′)dx′∫
V |∇c|δ(c− c∗)G∆(x− x′)dx′

, (C.5)

where Q is a quantity of interest.
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As for the generalized approach of the coherent flame model (CFM), the surface density of

the iso-surface c = c∗ is evaluated through a transport equation. This equation is determined

by first spatially deriving Eq. (C.3), leading to:

∂

∂t

Å
∂C
∂xj

ã
+ ui

∂

∂xi

Å
∂C
∂xj

ã
+
∂ui
∂xj

∂C
∂xi

=
∂

∂xj
(Sd|∇C|) , (C.6)

where subscript i and j correspond to the spatial directions. Eq. (C.7) is deduced from Eq. (C.6)

by multiplying by ∂C/∂xj and summing on the three spatial directions.

1

2

∂|∇C|2
∂t

+
1

2
ui
∂|∇C|2
∂xi

+
∂ui
∂xj

∂C
∂xi

∂C
∂xj

=
∂

∂xj
(Sd|∇C|)

∂C
∂xj

. (C.7)

The local normal vector of the iso-surface c = c∗ pointing towards the reactants is defined

as n∗ = −∇C/|∇C|. Because ∇C = ∇[H(c− c∗)] = (∇c) δ(c− c∗), we can write −∇C/|∇C| =
−∇c/|∇c|. So, the local normal vector of the iso-surface c = c∗ is equal to the local normal

vector of the generalized surface.
∂C
∂xi

= ni|∇C|, (C.8)

where ni is the component along the spatial vector xi of the normal vector n.

When Eq. (C.8) is used, Eq. (C.7) becomes:

∂|∇C|
∂t

+ ui
∂|∇C|
∂xi

+ ninj|∇C|
∂ui
∂xj

= −nj
∂

∂xj
(Sd|∇C|) . (C.9)

Reminding that ∇ · (u|∇C|) = u · ∇ (|∇C|) + |∇C|∇ · u and that ∇ · (Sdn|∇C|) = n ·
∇ (Sd|∇C|) + Sd|∇C|∇ · n, Eq. (C.9) is written as follows:

∂|∇C|
∂t

+∇ · (u|∇C|) = (∇ · u− nn : ∇u) |∇C|+ Sd∇ · n|∇C| − ∇ · (Sdn|∇C|) . (C.10)

Finally, the exact transport equation of FSD of iso-surface c = c∗ given in Eq. (C.10) is

filtered using the LES filter G∆:

∂Σ∗

∂t
+∇ · (ũΣ∗) = −∇ ·

(
uΣ∗ − ũΣ∗

)
︸ ︷︷ ︸

T

+ 〈∇ · u− nn : ∇u〉s,c∗Σ∗︸ ︷︷ ︸
S

+ 〈Sdκ〉s,c∗Σ∗︸ ︷︷ ︸
C

−∇ ·
(
〈Sdn〉s,c∗Σ∗

)
︸ ︷︷ ︸

P

,
(C.11)

where T is the unresolved transport term associated with turbulent flux, 〈aT 〉s,c∗ = 〈∇·u−nn :

∇u〉s,c∗ is the surface averaged tangential strain rate, 〈Sdκ〉s,c∗ is the surface averaged stretch

due to curvature, where κ = ∇ · n is the curvature, and P is the normal propagation term.



Appendix D

Laminar stretched flames

In Chapter 3, Markstein lengths are introduced. These lengths are used to study the speeds

of stretched flames following asymptotic theories, like the one proposed by Pelce and Clavin

(1982). These studies suggest, that in the limit of small strain and curvature terms, stretch K

is the unique parameter controlling the flame structure and therefore the displacement speed

through a linear relationship:
Sd(c = 0)

S0
L

= 1− L
S0
L

K, (D.1)

where L is the Markstein length associated to the displacement speed on the fresh gases side.

However, in Chapter 3, it is proposed to isolate strain and curvature effects leading to define

two distinct Markstein lengths LaT and Lκ, as already proposed by Thiesset et al. (2017). These

lengths lead to express the displacement as follows, by combining asymptotic theories and the

displacement speed decomposition Sd = Sr + Sn −Dκ:

Sd
S0
L

= 1− LaT
S0
L

aT −
Lκ
S0
L

Sdκ−Dκ, (D.2)

where D is either species or thermal diffusivities. The main difficulty that appears in Eq. (D.2)

is to simulate flames where aT = 0 and Sdκ 6= 0 (and aT 6= 0 and Sdκ = 0) to evaluate Lκ (and

LaT ). In this study, we are interested in the displacement speed S∗d on the iso-surface c = c∗,

therefore the Markstein lengths should be evaluated at c = c∗.

Several techniques reported by Poinsot and Veynante (2012) have been used to estimate

a Markstein length. Two configurations allowing to isolate strain and curvature effects were

chosen: a spherical laminar premixed flame for the effect of curvature (Fig. D.1a) and a counter-

flow laminar premixed flame for the tangential strain rate (Fig. D.1b).

D.1 Spherical laminar premixed flame

Using the AVBP-code, one 8th of a freely propagating spherical iso-octane/air premixed laminar

flame is simulated (see Fig. D.1a). Two flames are compared, one with Lek 6= 1 for each species
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Figure D.1: Schematic view of laminar stretched flames.

and one with unity Lewis numbers. With this configuration, the flame stretch is computed as

follows:

K∗ =
1

A∗
dA∗
dt

=
2

R∗
dR∗

dt
, (D.1)

where A∗ is the area of the iso-surface c = c∗, R∗ is the radius of the spherical flame taken at

c = c∗.

The displacement flame speed at c = c∗ is computed as S∗d = dR∗/dt and the curvature at

c = c∗ is κ∗ = 2/R∗. Thus, the flame stretch is only due to curvature and equals S∗dκ
∗ allowing

to evaluate Lκ.
The sum S∗r + S∗n at c = c∗ is extracted from the spherical flame and plotted as a function

of K∗ = S∗dκ
∗ in Fig. D.1. The dashed line in Fig. D.1, represents the linear relationship:

S∗r + S∗n = S0
d − LκK∗. The latter is fitted using a least-square method to best reproduce the

evolution of S∗r + S∗n for low stretch. The arrows displayed in Fig. D.1 represent the temporal
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Figure D.1: Evolution of the sum S∗r + S∗n as a function of stretch K∗ for spherical premixed
flames for (a) non-unity Lewis numbers case and (b) unity Lewis numbers case.
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evolution. Note that large curvatures correspond to the initial instants of the simulations. So,

these values are not representative of the asymptotic theories explaining the slight discrepancies

observed.

D.2 Counter-flow laminar premixed flame

Using the open-source solver Cantera, a counter-flow iso-octane/air premixed flame is computed

as described by Darabiha et al. (1986) and illustrated in Fig. D.1b. As for the spherical flames,

both Lek 6= 1 and Lek = 1 flames are simulated. The flame stretch in this configuration is only

due to tangential strain, i.e., K = aT . The stretch is computed as follows (Van Oijen, 2002):

K =
1

ρ

dρu

dx
. (D.1)

S∗r + S∗n at c = c∗ is extracted and plotted as a function of K∗ in Fig. D.1. The dashed line

in Fig. D.1, represents the linear relationship: S∗r +S∗n = S0
d −LaTK∗. The latter is fitted with

a least square method to best reproduce the evolution of S∗r + S∗n for low stretch.
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Figure D.1: Evolution of the sum S∗r +S∗n as a function of stretch K∗ for counterflow premixed
flames for (a) non-unity Lewis numbers case and (b) unity Lewis numbers case.





Appendix E

Closure of the term due to heat release

in the tangential strain rate

In Chapter 4, the tangential strain rate 〈aT 〉s,c∗ is decomposed, following the work of Hawkes

and Cant (2000), as:

〈aT 〉s,c∗ = ∇ · ũ− 〈nn〉s,c∗ : ∇ũ︸ ︷︷ ︸
〈AT 〉s,c∗

+〈aT 〉sgss,c∗ + Shr, (E.1)

where 〈AT 〉s,c∗ is the tangential strain rate due to the resolved flow motions, 〈aT 〉sgss,c∗ is the

tangential strain rate due to unresolved flow motions and Shr is a term that accounts for the

effects of heat release. The latter is then combined with the stretch due to curvature caused by

the resolved flow motions 〈Sdκ〉ress,c∗ . The present appendix is therefore dedicated to derive an

expression for the term Shr involved in Eq. (E.1).

To derive the surface averaged tangential strain rate 〈aT 〉s,c∗ = 〈∇·u−nn : ∇u〉s,c∗ , the ve-

locity field is decomposed into a surface averaged component 〈u〉s,c∗ and associated fluctuations

v′′:

u = 〈u〉s,c∗ + v′′. (E.2)

In this equation the surface averaged component is decomposed as presented in Section 4.4.1:

〈u〉s,c∗ = ũ + 〈u′′〉s,c∗ , (E.3)

where 〈u′′〉s,c∗ is a term due to thermal expansion expressed as presented in Section 4.4.1:

〈u′′〉s,c∗ =

Å
ρu
ρ
− ρu
ρ∗

ã
S0
L〈n〉s,c∗ . (E.4)

In this equation, ρu and ρ∗ are the densities of the fresh gases and taken at c = c∗, respectively,

ρ is the filtered gas density, S0
L is the laminar flame speed and 〈n〉s,c∗ = −∇C/Σ∗ is the surface

averaged normal vector to the iso-surface c = c∗ pointing toward the fresh gases.

Thus, combining Eqs. (E.2), (E.3) and (E.4) in the definition of the tangential strain rate
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leads to:

〈aT 〉s,c∗ = 〈∇ · ũ〉s,c∗ − 〈nn : ∇ũ〉s,c∗︸ ︷︷ ︸
〈AT 〉s,c∗

+ 〈∇ · v′′〉s,c∗ − 〈nn : ∇v′′〉s,c∗︸ ︷︷ ︸
〈aT 〉sgss,c∗

+∇ ·
ïÅ
ρu
ρ
− ρu
ρ∗

ã
S0
L〈n〉s,c∗

ò
−
≠

nn : ∇
ïÅ
ρu
ρ
− ρu
ρ∗

ã
S0
L〈n〉s,c∗

ò∑
s,c∗︸ ︷︷ ︸

Shr

.
(E.5)

In this equation, the expression of Shr should be simplifies. In the simple case of a laminar flame,

the surface averaged normal vector equals the unit normal vector: 〈n〉s,c∗ = n = n. Therefore,

Shr can be expanded as follows, by introducing the notation Uhr = (ρu/ρ− ρu/ρ∗)S0
L:

∇ · (Uhrn)− nn : ∇(Uhrn) = Uhr
∂ni
∂xi

+ ni
∂Uhr
∂xi

− ninj
ï
Uhr

∂ni
∂xj

+ ni
∂Uhr
∂xj

ò
(E.6)

= Uhr
∂ni
∂xi

+ ni
∂Uhr
∂xi

− njUhr
∂n2

i

∂xj
− n2

inj
∂Uhr
∂xj

(E.7)

= Uhr
∂ni
∂xi

, (E.8)

because
∑
n2
i = 1. This demonstration is only valid for the specific case of a laminar flame.

When a turbulent flame is considered, the equality 〈n〉s,c∗ = n is no longer valid and some

additional terms appear. However, by neglecting these additional terms a similar expression

for Shr as the one proposed by Hawkes and Cant (2000) is derived:

Shr =

Å
ρu
ρ
− ρu
ρ∗

ã
S0
L∇ · 〈n〉s,c∗ . (E.9)



Appendix F

Synthèse en français

Ce manuscrit est consacré à la modélisation de la combustion turbulente dans le contexte

des moteurs à fort taux d’EGR (Exhaust Gas Recirculation). La diminution recherchée du

volume de la chambre de combustion conduit à des phénomènes de cliquetis et super-cliquetis,

qui peuvent être améliorés par une dilution par EGR à hauteur de 20 à 30%. Le régime de

combustion ne peut plus alors être considéré de type flammelette et est situé dans le diagramme

de Borghi-Peters dans le régime TRZ (Thin Reaction Zone) caractérisé par des nombres de

Karlovitz importants. Dans ce régime la flamme peut être décomposée en deux zones : une

première fortement déformée et épaissie par la turbulence et une deuxième, où se situe le

maximum du dégagement de chaleur, conservant des caractéristiques proches d’une flammelette.

Dans cette thèse, on s’attache à l’adaptation de l’approche FSD (Flame Surface Density)

pour ce régime TRZ. Cette démarche est appuyée par des simulations numériques directes

(DNS) représentatives des conditions recherchées. Les modèles existants sont évalués et des

modifications sont proposées pour ce régime à haut Karlovitz. Une validation de l’approche

sur une configuration monodimensionnelle est aussi menée.

Ce document, rédigé en anglais, se décompose en six chapitres. Des conclusions partielles

sont présentes à la fin des chapitres et reviennent sur le points essentiels, jalonnant la progres-

sion.

Après une très courte introduction, le chapitre 1 propose une revue des modélisations exis-

tantes pour la combustion prémélangée dans les moteurs à allumage commandé. Les concepts

de base de la combustion turbulente sont rappelés ainsi que le diagramme de Borghi-Peter

permettant une classification des différents régimes de combustion. Les trois approches DNS,

RANS et LES sont introduites. Une description des modélisations pour la combustion turbu-

lente prémélangée (TFLES, Gequation, FSD) est menée avec l’accent sur le modèle FSD (Flame

Surface Density) qui sera celui retenu dans la suite. Le chapitre s’achève sur les objectifs précis

du travail :

1. adapter l’approche FSD au régime TRZ,

2. modéliser le taux de contrainte tangentielle,

3. modéliser la relation courbure/étirement

205
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4. introduire la diffusion différentielle.

Le chapitre 2 présente une première série de DNS bi-dimensionnelles. La configuration

est celle d’une flamme plane d’iso-octane à la stœchiométrie en interaction avec une paire de

tourbillons. La cinétique est à 2 étapes. Trente-huit simulations ont été effectuées variant les

propriétés des tourbillons, la dilution et le nombre de Lewis du fuel. Le Karlovitz varie donc de

3 à 250. Ces DNS ont pour but principal de caractériser le taux de contrainte tangentielle et

d’en étudier la modélisation. Trois modèles existants sont confrontés aux résultats de la DNS

et un quatrième est proposé hybridant les approches de Charlette et al. (2002a) et Bougrine

et al. (2014). Cette dernière version est la plus représentative des 28 cas non-dilués avec et

sans diffusion différentielle (un fit des 6 paramètres du modèle est effectué pour représenter au

mieux les DNS). La validation de la modélisation sur les cas dilués n’est pas abordée parce que

la dilution présente peu d’influence dans le cadre d’une simulation bidimensionnelle.

Une configuration plus générale est abordée dans le chapitre suivant où une base de données

de DNS de flamme plane interagissant avec une turbulence forcée est construite. Le carburant

est toujours l’iso-octane et en sus de la cinétique à 2 étapes du chapitre précédent, une cinétique

avec 18 espèces transportées et 13 en QSS (Quasi Steady State) est introduite. Au total, 9 cas

sont traités incluant ou non la diffusion différentielle, variant les propriétés de la turbulence, un

cas contient une dilution par EGR et un cas est effectué avec la chimie semi-détaillée. Comme

dans le chapitre précédent, la dilution est faite avec des produits froids, ce qui ne correspond pas

aux conditions réelles. Pour ces DNS, un schéma au second ordre est retenu. Une comparaison

avec un schéma au troisième ordre est effectuée (Annexe A), montrant assez peu de différence

entre les résultats. Les résultats de la DNS ne retrouve pas l’évolution de la vitesse de flamme

turbulente (ST ) telle que dans des expériences de la littérature. L’influence forte du Lewis non

unitaire est mise en évidence. Une formulation est proposée pour la vitesse de déplacement de

l’iso-surface correspond au maximum du dégagement de chaleur dans la flamme laminaire. Deux

longueurs de Markstein sont introduites correspondant respectivement au taux d’étirement et

à la courbure. Une fermeture est proposée tenant compte du nombre de Karlovitz.

Le quatrième chapitre s’attache à la construction d’un modèle complet de type CFM (Co-

herent Flame Model) adapté aux spécificités de la combustion turbulente dans le régime TRZ.

Des fermetures sont proposées et évaluées a priori sur la base de données construite au chapitre

précédent, pour tous les termes. Le contexte RANS est conservé car plus simple à mettre

en œuvre pour la validation a priori des fermetures. En revanche, à ce stade aucune preuve

n’est apportée sur la validité de la modélisation finale dans une approche filtrée. Une nouvelle

variable est introduite, C, qui prend la valeur 0 pour une variable de progrès inférieure à c∗

(ici choisie égale à 0.8) et la valeur 1 pour une variable de progrès supérieure à 0.8. Cette

transformation permet de s’affranchir de la partie de la flamme dont la structure est altérée

par la turbulence. A l’équation de transport pour C, est associée l’équation de transport de

la surface de flamme à c∗. Au total, 6 termes nécessitent d’être fermés par un modèle. Dans

ce chapitre, sont notamment proposées des fermetures pour la vitesse de déplacement 〈Sd〉s,c∗
et l’étirement lié à la courbure 〈Sdκ〉s,c. Ces deux fermetures reposent sur l’intégration de la
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formulation proposée dans la chapitre précédent (faisant intervenir des longueurs de Mark-

stein) sur l’ensemble des courbures possibles à travers une PDF (Probability Density Function)

présumée de la distribution de κ.

Dans le dernier chapitre, une validation a priori est entreprise. Une série de flammes tur-

bulentes mono dimensionnelles sont simulées correspondant aux solutions RANS de la base

de données DNS. Pour ce faire, la modélisation développée dans les 2 chapitres précédents est

implémentée dans AVBP. La comparaison de ces simulations 1D avec les statistiques issues de la

DNS sont globalement très bonnes exceptés pour les cas à Lewis unitaire et bas Karlovitz. Même

si ce point mériterait d’être parfaitement compris, la modélisation remplit son rôle pour les cas

réalistes à Lewis non unitaire et les hauts Karlovitz. Une courte discussion sur l’application de

cette modélisation à la LES des moteurs est menée mais sans mise en œuvre.
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ä
and T2 is the propagation term

〈ρSd〉s,c∗Σ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Comparison T1 = ∇ ·
Ä
ρuC − ρũC̃
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Damköhler number Da are defined with Eqs. (1.3.11) and (1.3.10), respectively.

The laminar flame thickness used to evaluate these numbers is the thermal lam-

inar flame thickness δ0
L = (Tb − Tu)/max(|∇T |). Ncell is the number of cells in

the mesh used for simulating the flames. . . . . . . . . . . . . . . . . . . . . . . 174

A.2 Computational characteristics of simulations LW and TTGC schemes. . . . . . . 174

B.1 The DNS set-up for the simulations of the interaction between a planar flame

and forced homogeneous isotropic turbulence. The Karlovitz number Ka and the

Damköhler number Da are defined with Eqs. (1.3.11) and (1.3.10), respectively.

The laminar flame thickness used to evaluate these numbers is the thermal lam-

inar flame thickness δ0
L = (Tb − Tu)/max(|∇T |). Ncell is the number of cells in

the mesh used for simulating the flames. . . . . . . . . . . . . . . . . . . . . . . 183

B.2 Pearson’s correlation coefficient, ra∗T ,κ∗ , between strain rate a∗T and curvature κ∗

for the flames using the two forcing methods presented in Section B.1. . . . . . . 190



Bibliography

R. G. Abdel-Gayed, K. J. Al-Khishali, D. Bradley, and P. Gray. Turbulent burning velocities

and flame straining in explosions. Proceedings of the Royal Society of London. A. Mathemat-

ical and Physical Sciences, 391(1801):393–414, feb 1984. doi: 10.1098/rspa.1984.0019. URL

https://doi.org/10.1098/rspa.1984.0019. 9

R. G. Abdel-Gayed, D. Bradley, and F.-K. Lung. Combustion regimes and the straining of

turbulent premixed flames. Combustion and Flame, 76(2):213–218, 1989. 9

U. Ahmed, N. Chakraborty, and M. Klein. Insights into the bending effect in premixed turbulent

combustion using the flame surface density transport. Combustion Science and Technology,

191(5-6):898–920, mar 2019. doi: 10.1080/00102202.2019.1577241. URL https://doi.org/10.

1080/00102202.2019.1577241. 30, 33, 34, 35, 79, 81, 210

C. Angelberger, D. Veynante, F. Egolfopoulos, and T. Poinsot. Large eddy simulations of

combustion instabilities in premixed flames. In Proceedings of the Summer Program, Center

for Turbulence Research, Standford, pages 61–82. Citeseer, 1998. 18

A. J. Aspden, M. S. Day, and J. Bell. Lewis number effects in distributed flames. Proceedings

of the Combustion Institute, 33(1):1473–1480, 2011a. doi: 10.1016/j.proci.2010.05.095. URL

https://doi.org/10.1016/j.proci.2010.05.095. 30, 35, 45, 68, 73, 77, 181, 210

A. J. Aspden, M. S. Day, and J. B. Bell. Turbulence–flame interactions in lean premixed

hydrogen: transition to the distributed burning regime. Journal of Fluid Mechanics, 680:

287–320, may 2011b. doi: 10.1017/jfm.2011.164. URL https://doi.org/10.1017/jfm.2011.164.

30, 35, 45, 68, 73, 77, 80, 81, 181, 210

A. J. Aspden, M. S. Day, and J. Bell. Turbulence-chemistry interaction in lean premixed

hydrogen combustion. Proceedings of the Combustion Institute, 35(2):1321–1329, 2015. doi:

10.1016/j.proci.2014.08.012. URL https://doi.org/10.1016/j.proci.2014.08.012. 30, 35, 45,

68, 73, 77, 181, 210

A. J. Aspden, M. S. Day, and J. Bell. Three-dimensional direct numerical simulation of turbu-

lent lean premixed methane combustion with detailed kinetics. Combustion and Flame, 166:

266–283, apr 2016. doi: 10.1016/j.combustflame.2016.01.027. URL https://doi.org/10.1016/

j.combustflame.2016.01.027. 30, 35, 36, 45, 68, 73, 77, 181, 210

223

https://doi.org/10.1098/rspa.1984.0019
https://doi.org/10.1080/00102202.2019.1577241
https://doi.org/10.1080/00102202.2019.1577241
https://doi.org/10.1016/j.proci.2010.05.095
https://doi.org/10.1017/jfm.2011.164
https://doi.org/10.1016/j.proci.2014.08.012
https://doi.org/10.1016/j.combustflame.2016.01.027
https://doi.org/10.1016/j.combustflame.2016.01.027


224 BIBLIOGRAPHY

A. J. Aspden, J. Bell, M. S. Day, and F. Egolfopoulos. Turbulence–flame interactions in lean

premixed dodecane flames. Proceedings of the Combustion Institute, 36(2):2005–2016, 2017.

doi: 10.1016/j.proci.2016.07.068. URL https://doi.org/10.1016/j.proci.2016.07.068. 30, 35,

45, 68, 73, 77, 181, 210

A. J. Aspden, M. S. Day, and J. B. Bell. Towards the distributed burning regime in turbulent

premixed flames. Journal of Fluid Mechanics, 871:1–21, may 2019. doi: 10.1017/jfm.2019.

316. URL https://doi.org/10.1017/jfm.2019.316. 30, 35, 36, 45, 68, 73, 77, 82, 83, 181, 187,

210

G. Batley, A. Mcintosh, and J. Brindley. The baroclinic effect in combustion. Mathematical

and Computer Modelling, 24(8):165–176, oct 1996. doi: 10.1016/0895-7177(96)00148-3. URL

https://doi.org/10.1016/0895-7177(96)00148-3. 9
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Ö. L. Gülder. Contribution of small scale turbulence to burning velocity of flamelets in the thin

reaction zone regime. Proceedings of the Combustion Institute, 31(1):1369–1375, jan 2007.

doi: 10.1016/j.proci.2006.07.189. URL https://doi.org/10.1016/j.proci.2006.07.189. 30, 31,

32, 34, 45, 79, 164, 210
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Rendus Mécanique, 340(11-12):845–858, nov 2012. doi: 10.1016/j.crme.2012.10.031. URL

https://doi.org/10.1016/j.crme.2012.10.031. 29

M. Matalon and B. J. Matkowsky. Flames as gasdynamic discontinuities. Journal of Fluid

Mechanics, 124(-1):239, nov 1982. doi: 10.1017/s0022112082002481. URL https://doi.org/

10.1017/s0022112082002481. 29, 31, 92

C. Meneveau and T. Poinsot. Stretching and quenching of flamelets in premixed turbulent

combustion. Combustion and Flame, 86(4):311–332, sep 1991. doi: 10.1016/0010-2180(91)

90126-v. URL https://doi.org/10.1016/0010-2180(91)90126-v. 18, 26, 27, 47, 48, 49, 52, 54,

64, 104, 164, 166, 211, 222

M. Metghalchi and J. C. Keck. Burning velocities of mixtures of air with methanol, isooctane,

and indolene at high pressure and temperature. Combustion and Flame, 48:191–210, jan 1982.

doi: 10.1016/0010-2180(82)90127-4. URL https://doi.org/10.1016/0010-2180(82)90127-4. 6
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