
HAL Id: tel-03279801
https://theses.hal.science/tel-03279801

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting dynamic pathways with time-course gene
expression datasets: from differential expression analysis

to temporal multilayer networks
Michaël Pierrelée

To cite this version:
Michaël Pierrelée. Extracting dynamic pathways with time-course gene expression datasets: from
differential expression analysis to temporal multilayer networks. Quantitative Methods [q-bio.QM].
Aix-Marseille Université, 2021. English. �NNT : 2021AIXM0162�. �tel-03279801�

https://theses.hal.science/tel-03279801
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

2

I, undersigned, Michaël Pierrelée, hereby declare that the work presented in this

manuscript is my own work, carried out under the scientific direction of Bianca H.

Habermann and Aziz Moqrich, in accordance with the principles of honesty, integrity

and responsibility inherent to the research mission. The research work and the writing

of this manuscript have been carried out in compliance with both the French national

charter for Research Integrity and the Aix-Marseille University charter on the fight

against plagiarism.

This work has not been submitted previously either in this country or in another

country in the same or in a similar version to any other examination body.

Marseille, February 15, 2021

Cette œuvre est mise à disposition selon les termes de la Licence Creative

Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification

4.0 International.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Dynamic pathways regulate gene expression by series of genes and proteins

interacting with each other. They can be identified by first mapping dysregulated

genes from differential expression analysis on biological networks. Second,

subnetwork extraction identifies regions of the network enriched in dysregulated

genes. However, most methods build or extract static networks and thus, dynamics of

pathways are lost.

Multilayer networks have been introduced to combine multiple data types and

factors. In this thesis project, I developed a method that combines time-course gene

expression datasets and multilayer networks, creating so-called temporal multilayer

networks (tMLNs). Each layer represents one time-point as a biological network with

dysregulated genes. Layers are linked to each other following the time axis. To predict

dynamic pathways, I adapted classic subnetwork extraction to tMLNs. I implemented

this approach in the Cytoscape app TimeNexus. I tested it on a yeast dataset to

evaluate its efficiency to extract key cell-cycle regulators, as well as on a mouse dataset

to identify subnetworks involved in the inflammation of sensory neurons.

In a side project, I explored the lipid metabolism of the microalga Chlorella sp. HS2.

Differential expression analysis showed that the overflow of metabolic co-factors is

likely to induce a production of lipids under salt water.

TimeNexus is the first method to extract subnetworks from tMLNs.

Keywords: computational biology, RNA-sequencing, temporal multilayer networks,

time-course datasets, pathways, interactomes.

4

Les voies cellulaires dynamiques régulent l'expression génétique par des séries

de gènes et de protéines qui interagissent entre eux. Elles sont déterminées en

commençant par marquer les gènes dérégulés, identifiés par l'analyse de l'expression

différentielle, sur des réseaux biologiques. Ensuite, l’extraction de sous-réseaux

identifie des régions enrichis en gènes dérégulés. Cependant, la plupart des méthodes

construisent ou extraient des réseaux statiques et donc, la dynamique est perdue.

Les réseaux multicouches peuvent combiner plusieurs types de données et

facteurs. Dans ce projet de thèse, j'ai développé une méthode qui combine des données

temporelles d’expression génétique à des réseaux multicouches, créant ainsi ce que

l'on appelle des réseaux multicouches temporels (tMLNs). Chaque couche est un réseau

biologique avec des gènes dérégulés à un point temporel. Les couches sont reliées entre

elles en suivant l'axe temporel. Pour prédire les voies cellulaires, j'ai adapté l'extraction

classique de sous-réseaux aux tMLNs. J'ai implémenté cette approche dans

l'application Cytoscape TimeNexus. Je l'ai testée sur des données de levure pour

évaluer son efficacité à extraire les principaux régulateurs du cycle cellulaire, ainsi que

sur des données de souris pour identifier les sous-réseaux impliqués dans

l'inflammation des neurones sensoriels.

Dans un projet parallèle, j'ai exploré le métabolisme des lipides de la microalgue

Chlorella sp. HS2. L'analyse de l'expression différentielle a montré que le surplus de

cofacteurs métaboliques induirait une production de lipides dans l'eau salée.

TimeNexus est la première méthode d'extraction de sous-réseaux à partir de

tMLNs.

Mots-clés : biologie computationnelle, séquençage à ARN, réseaux multicouches

temporels, séries temporelles, voies cellulaires, interactomes.

5

First of all, I would like to thank Bianca for her warm-hearted and trustful supervision

as well as, in particular, her comprehensive proof-reading of the thesis. This PhD was

a great experience. I could enjoy it as much as possible, especially the opportunities

given around research, such as training and associative life. It would have been

difficult to do this PhD in another team and lab. I hope my scientific contributions will

help for the future of the team.

The Habermann’s team was kind and friendly. Even if the last year did not allow many

social interactions, I thank all of you for this time and in particular, Fabio. We survived

together to the time when we were only two, with jokes and interesting debates about

the definition of a meal. I am happy to know that you will become the senior PhD

candidate after my departure. Thank you a lot to Maxime and Laurent to proof-read

the thesis in a short time!

I also give a warm thanks to Aziz and his team. It was exciting to follow the scientific

questioning and progresses. Beyond having fed me, all the team was truly supportive.

I regret that we did not have more opportunities to work together. I think to Lucie who

was supposed to be my co-PhD. It was not the case in practice, but in heart. Xoxo to

Anissa and Catarina!

More generally, IBDM was a friendly lab with a specific attention to the PhD

candidates.

My PhD project actually started in South Korea, during my master’s internship. It

ended up with the publication I present in this thesis. I have a warm thought to Giao,

who helped me to survive to this travel, as well as the friendship of Jin-Ho.

Par ailleurs, je souhaiterais remercier les membres du réseau NetBio qui m’ont aidé

pour la partie RNA-seq de mon doctorat : Nathalie Vialaneix, Guillem Rigaill and

Marie-Laure Martin-Magniette. J’en profite pour remercier l’excellent tutorial sur le

RNA-seq d’Ignacio Gonzalez qui m’a permis de découvrir aisément ce monde

fabuleux.

J’ai eu l’opportunité d’être bénévole pour plusieurs associations, dont Hippo’Thèse et

la Confédération des Jeunes Chercheurs. Elles m’ont beaucoup appris sur les autres et

moi-même, j’en retire une grande expérience. Je remercie vivement les personnes avec

qui j’ai eu la chance de travailler.

Je tiens à remercier ma sœur, Aurélie, pour m’avoir hébergé durant ce difficile 2e

confinement.

Enfin, merci à Merveille de son soutien et son amour durant ces 3 années, malgré la

distance. J’attends avec impatience le moment où je te retrouverai.

Note: I thank the online tool Excalidraw to enable me to draw the figures of this thesis.

https://excalidraw.com/

6

Bioinformatics terms

API Application Programming Interface

CPM Counts Per Million

DE Differentially Expressed

DEA Differential Expression Analysis

DEG Differentially Expressed Gene

FPKM Fragments Per Kilobase of transcript per Million fragments mapped

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

KO KEGG Orthology

LFC Log2-fold change

MLN Multilayer network

PCSF Prize-Collecting Steiner Forest

PDI Protein-Protein interaction

PPI Protein-DNA interaction

RLE Relative Log-Expression

rlog Regularized-log transformation

RPKM Reads Per Kilobase of exon model per Million mapped reads

TC Total Count

tMLN Temporal Multilayer Network

TMM Trimmed Mean of M values

VST Variance-stabilizing transformation

Molecules

ATP Adenosine Triphosphate

cDNA Complementary DNA

DNA Deoxyribonucleic Acid

dUTP Deoxyuridine Triphosphate

mRNA Messenger RNA

NAD(H) Nicotinamide Adenine Dinucleotide

NADP(H) Nicotinamide Adenine Dinucleotide Phosphate

RNA Ribonucleic Acid

rRNA Ribosomal RNA

TF Transcription Factor

Molecular techniques

ChIP Chromatin Immunoprecipitation

PCR Polymerase Chain Reaction

qPCR Quantitative PCR

Y2H Yeast Two Hybrids

Statistics

ANOVA Analysis Of Variance

AUC Area Under the receiver operating characteristic Curve

BH Benjamini-Hochberg

FDR False Discovery Rate

FWER Family-Wise Error Rate

GLM Generalized Linear Model

Log Logarithm / Logarithmic

LRT Likelihood Ratio Test

M Million

NB Negative Binomial

qCML Quantile-adjusted Conditional Maximum Likelihood

QL Quasi-Likelihood

ROC Receiver Operating Characteristic

7

Affidavit ___ 2

Abstract __ 3

Résumé ___ 4

Acknowledgment __ 5

Abbreviations ___ 6

Table of contents __ 7

List of figures __ 10

Introduction ___ 11

1 Pathways are dynamic ___ 11

2 Differential expression analysis of RNA-sequencing datasets ____________ 12

2.1 Overview of RNA-sequencing ___ 12
2.2 Data processing of de novo RNA-sequencing _____________________________________ 14
2.3 Differential expression analysis __ 15

2.3.1 Preparing read counts __ 15
2.3.1.1 Filtering out genes with low expression __________________________________ 15
2.3.1.2 Normalizing samples __ 15

2.3.2 Testing differential expression ___ 16
2.3.3 Calling dysregulating genes ___ 19

2.4 Testing methods dedicated for time-course datasets ______________________________ 19

3 Analyzing dysregulated genes from time-course datasets ________________ 21

3.1 Clustering of time series __ 21
3.1.1 Mfuzz __ 21
3.1.2 DREM ___ 23

3.2 Functional enrichment of gene lists ___ 24

4 Building biological networks __ 24

4.1 Monolayer networks ___ 24
4.2 Inferring networks ___ 26

4.2.1 Building co-expression networks from gene expressions ________________________ 27
4.2.2 Reverse engineering of gene regulatory networks ______________________________ 28

4.3 Building networks from the cellular interactome _________________________________ 31
4.3.1 Experimental detection of molecular interactions _______________________________ 31
4.3.2 Getting interactions from databases __ 33

4.3.2.1 Protein-protein interaction databases _____________________________________ 33
4.3.2.2 Other database types __ 35

4.3.3 Weighting the networks __ 36
4.3.3.1 Weighting enables to favor network elements _____________________________ 36
4.3.3.2 Penalizing hubs ___ 37

4.3.4 Edge directions __ 38
4.3.5 Condition-specific networks___ 39

5 Finding patterns within biological networks ___________________________ 40

5.1 Extracting subnetworks ___ 40
5.1.1 Greedy algorithm: viPEr __ 41
5.1.2 Evolutionary algorithm: jActiveModules ______________________________________ 41
5.1.3 Diffusion-flow algorithm: TimeXNet ___ 42

8

5.1.4 Shortest path algorithm: PathLinker __ 42
5.1.5 Steiner tree algorithms: CySpanningTree, PCSF and AnatApp ___________________ 43
5.1.6 Parameter selection __ 45

5.2 Detecting communities ___ 46
5.2.1 Vocabulary ___ 46
5.2.2 Identifying communities __ 47
5.2.3 Identifying functional modules __ 49
5.2.4 Evolving communities ___ 49

5.3 Exploring dynamic networks __ 51
5.3.1 Visualizing networks ___ 51
5.3.2 Rewiring ___ 52
5.3.3 Causality inferences __ 52

6 Developing temporal multilayer networks _____________________________ 53

6.1 Temporal networks __ 53
6.2 Dynamic networks ___ 56
6.3 Multilayer networks __ 57
6.4 Temporal multilayer networks ___ 60

Chapter 1 – Chlorella sp. HS2 paper ___ 66

Chapter 2 – TimeNexus paper __ 100

Discussion and conclusion __ 142

1 Chlorella sp. HS2 __ 142

2 TimeNexus __ 145

Appendix – About good DEA practices ______________________________________ 148

1 Generating input data for differential expression analysis ______________ 148

1.1 Library preparation ___ 148
1.1.1 Sequencing __ 149
1.1.2 Data processing __ 150

1.2 General considerations about the experimental design ___________________________ 150
1.2.1 Biological replicates and sequencing depth ___________________________________ 151
1.2.2 Pooling samples __ 151

2 Identifying dysregulated genes using differential expression analysis ___ 152

2.1 About statistics and reliability of computational approaches ______________________ 152
2.2 Gene filtering __ 154
2.3 Normalizing read counts ___ 155

2.3.1 Methods for normalization ___ 156
2.3.2 Theoretical aspects __ 156
2.3.3 Benchmarks__ 157

2.4 Modeling differential expression __ 159
2.4.1 The story of edgeR and its subsequent developments __________________________ 159

2.4.1.1 Classic edgeR implemented an overdispersed negative binomial model. _____ 160
2.4.1.2 GLM-edgeR can manage multifactor experimental designs. ________________ 161
2.4.1.3 Quasi-edgeR increases the test efficiency by accounting for the variance

uncertainties and outlier genes. ___ 163
2.4.2 Few other tools for DEA ___ 164

2.4.2.1 Limma-voom __ 164
2.4.2.2 DESeq and DESeq2 ___ 165
2.4.2.3 Cuffdiff2 __ 165

2.4.3 Benchmarks__ 165
2.4.4 Quality control of the DEA ___ 168

9

2.5 Correcting the multiple-hypothesis testing problem _____________________________ 169
2.6 Calling a gene “differentially expressed” _______________________________________ 172

3 Analyzing the DEG list from time-course datasets _____________________ 173

3.1 Transformation ___ 173
3.2 Clustering with Mfuzz ___ 174
3.3 Functional enrichment of gene lists __ 177

3.3.1 GSEA ___ 177
3.3.2 Enrichr __ 178
3.3.3 Creating gene sets __ 178

3.4 Limits of approaches to analyze ___ 180

References __ 181

10

Figure 1. Workflow to extract pathways from time-course RNA-sequence dataset. 12
Figure 2. Workflow to measure transcript abundance from RNA-sequencing. _____ 13
Figure 3. Differential expression analysis measures levels of dysregulation. ______ 17
Figure 4. An experiment with a transiently perturbed system should generate 13

clusters. ___ 23
Figure 5. Networks can model any type of relationship between objects of a system.

 ___ 25
Figure 6. Computing gene-pairwise correlations enables to build co-expression

networks. __ 27
Figure 7. Dynamic Bayesian networks model a directed network over time. ______ 30
Figure 8. Databases collect and curate scientific papers testing molecular

interactions. ___ 33
Figure 9. HitPredict computes confidence scores of interactions from the reliability

of methods and annotations. ___ 35
Figure 10. Hub nodes have a very high node degree. ____________________________ 37
Figure 11. PPIs and PDIs are not equivalent. _________________________________ 39
Figure 12. Non-expressed genes are removed to build condition-specific networks. _ 40
Figure 13. A shortest path is a path with the lowest number of crossed edges. _____ 43
Figure 14. Steiner trees searches for an optimal subnetwork. ____________________ 44
Figure 15. Community detection searches for groups of connected nodes. _________ 47
Figure 16. A maximal clique has all nodes linked to all nodes. __________________ 48
Figure 17. Solving the graph-coloring problem enables to detect temporal

communities. ___ 51
Figure 18. Temporal networks model transient links between objects. ____________ 54
Figure 19. Shortest paths from static network are not applicable to temporal

networks. __ 55
Figure 20. Dynamic networks represent temporal networks as collections of

snapshot networks. ___ 56
Figure 21. Multilayer networks define complex networks. ______________________ 58
Figure 22. Temporal multilayer networks model time with one aspect. ___________ 61
Figure 23. Aggregated and flattened networks are simple networks representing

tMLNs. __ 62
Figure 24. Global extraction method applies extraction on the full flattened network.

 ___ 63
Figure 25. Local extraction method applies extraction on each layer of the tMLN. _ 64
Figure 26. Pairwise extraction method applies extraction on each pair of consecutive

layers. ___ 64

11

(Jacob and Monod, 1961) demonstrated that the Lactose system was not inhibited at

the enzyme level, but at the gene level by a “regulator gene”. This gene was producing

a “cytoplasmic product” repressing the synthesis rates of the enzymes by repressing

gene expression with a high specificity. They showed that this product could only be

a dedicated protein, which was inactivated in the presence of a particular molecule (an

“inducer”), allowing the end of the repression. The repressing protein will be latter

included into the family of transcription factors, i.e. proteins regulating gene expression.

They predicted that a type of RNA, called “messenger RNA” (mRNA), would serve as

intermediate molecules between the genes and the proteins. Doing so, Jacob and

Monod built the first piece of gene regulatory networks by showing that genes control

other genes and eventually, the proteins involved in cellular pathways. This work also

laid the foundation of technologies used to measure gene activity: qPCR and, the one

I will explore in this thesis, the (m)RNA-sequencing. Indeed, as genes regulate protein

activities by adapting their expression, mRNA levels depend on both gene- and

protein-activity levels.

Genes and proteins are classified into biological processes called pathways. Networks

interpret pathways as series of interactions between molecules. Endogenous pathways

are related to internal processes, e.g. cell cycle, while exogenous pathways answer to

environmental perturbations, e.g. inflammation. I illustrated the analysis of both

pathway types in (Pierrelée et al., 2020). In a network with all molecules of the cells,

pathways are assumed to be subnetworks of molecules and interactions. Thereby, one

can determine active pathways by searching for subnetworks showing dysregulations

when compared to a reference without activity. Differential expression analysis of

RNA-sequencing data is the most common approach to detect these dysregulations at

the gene level.

Pathways are intrinsically dynamic: interactions are not instantaneous and processes

can have multiple effects over time. This aspect should not be forgotten when

exploring them. Yet, RNA-sequencing measures gene expression at a given time. It is

a snapshot of the cell state. Therefore, time-course experiments give a series of

snapshots, enabling to measure the individual steps of pathways.

This introduction is organized as follows (Figure 1). In section 2, I present how

differential expression analysis from RNA-sequencing datasets enables to identify

dysregulated genes. Common approaches can be used to explore the list of

dysregulated genes, but they fail to determine pathways (section 3). Instead, one can

build networks (section 4) and then, identify regions of interests within networks

(section 5). Yet, these networks are static and do not enable to find dynamic pathways.

To solve this issue, I present temporal multilayer networks and discuss how to extract

subnetworks from them (section 6).

12

Figure 1. Workflow to extract pathways from time-course RNA-sequence dataset.
Object models from (Tjang, 2020).

RNA-sequencing enables to measure the relative abundance of mRNAs in a sample (e.g.

a cell culture, a tissue or an entire small organism). This technology requires a complex

workflow divided in roughly 5 main steps (Figure 2). First, the RNA fragments are

extracted from the biological material. Several RNA fragments can come from the same

transcript, which carries information from a genomic sequence. Genes and transcripts

are herein interchangeable. Then, the samples are prepared for sequencing. A

prepared sample is called library. Third, the RNA fragments are sequenced to get their

sequence as well as their abundance. Each sequenced fragment is called a read. Fourth,

the data are processed to identify the transcripts related to each read. Reciprocally,

counting the number of reads assigned to each transcript gives the transcript

abundance. One read gives one read count for the associated transcript. The final step

is the differential expression analysis (DEA) to compare read counts between samples. It

identifies the genes which are differentially expressed (DEG) in one condition compared

to another. In the next sections, I present downstream steps to explore these results.

13

Figure 2. Workflow to measure transcript abundance from RNA-sequencing. (Top

panel) An experiment has 2 conditions with 3 samples each. (Panel 1) mRNAs are extracted

from total RNAs of each sample. (Panel 2) mRNAs are converted into cDNA and prepared for

sequencing. (Panel 3) Libraries are pooled together to sequence all of them at the same time.

RNA-sequencing identifies the sequence of each fragment, giving one read per fragment. The

panel shows one gene (transcript) which has been sequenced 4 times, giving 4 reads. (Panel 4)

Data processing aligns the reads on a genome to identify the gene related to the reads. Another

step counts the number of reads for each gene to have gene abundance.

The wet-lab steps of RNA-sequencing can generate confounding effects. A confounding

effect is an uncontrolled variable which prevents to test the causality between

controlled variables and their effects during the experiment. Indeed, each sample is

14

independently prepared during library preparation (second step). The preparation can

have different efficiencies caused by technical manipulations. Further developments

are expected to solve this issue (Alpern et al., 2019).

The goal of the data processing is to get the gene abundance from the raw reads. For

an organism with a sequenced and annotated genome, on can apply a simple

workflow. In (Pierrelée et al., 2020), I processed read counts for yeast and mouse

datasets. To do so, I first applied STAR (Dobin et al., 2013) to align the reads on the

genome. It enables to assign the reads to the transcripts or the genes. Then,

featureCounts (Liao, Smyth and Shi, 2014) counts the reads assigned to each gene. It

returns a count table used by the differential expression analysis (see section 2.3). Both

tools are popular and efficient.

If there is no annotated genome (or transcriptome) available for mapping, the

workflow is more complicated. An additional step is required to build a transcriptome,

so-called de novo assembly. I applied the workflow based on Trinity (Haas et al., 2013)

to process the microalga dataset of (Yun et al., 2020). The first step is to assemble the

reads into a transcriptome with Trinity. This transcriptome has thousand more de novo

transcripts than expected; most of them are redundant or irrelevant. Biological

transcripts are not always fully sequenced or too difficult to assemble, e.g. because of

repetitive patterns in their sequence. Then, Bowtie2 (Langmead and Salzberg, 2012)

aligns back the reads on the transcriptome from which RSEM (Li and Dewey, 2011)

estimates the counts at the gene level. The next step is to identify the genes by finding

their orthologs from annotated species. It enables to share annotations and thus,

explore the results of the differential expression analysis. This step is quite challenging.

I applied the Trinotate pipeline as presented in (Bryant et al., 2017). It calls a series of

tools to annotate the genes and find the best orthologs. In particular, TransDecoder

(Haas et al., 2013) predicts protein sequences from the gene sequences. BLASTP

searches for orthologs from the predicted proteins and BLASTX from the gene

sequences (Camacho et al., 2009). Furthermore, I converted the orthologs into KEGG

orthologies (KOs) (Kanehisa, 2000) which are cross-species orthologous groups (see

section 4.3.2.2). A gene must have at least one KO from BLASTP or BLASTX. If there

are KOs for both, they should be the same. In my dataset, this was often the case. As

Trinity produces many redundant genes, those having the same KO were merged if

their dysregulation was equivalent (i.e. up- or down-regulated). Only few genes had

inconsistent dysregulations. In this case, I filtered out the genes with the lowest e-value

(i.e. quality of the ortholog prediction). The use of KO has many advantages. First, it

enables to exploit all predicted orthologies, rather than being restricted to a given

species. Second, it avoids to select one gene sequence among a group of redundant

sequences at an early step. A tool such as SuperTranscripts (Davidson, Hawkins and

Oshlack, 2017) after Trinity removes redundancies by defining a representative

sequence for a group of redundant genes. Yet, a higher diversity of sequences increases

the chances to get orthologs at the expense of runtime. This workflow had an efficiency

estimated at 89% by counting the number of genes that the assembly is expected to

find.

15

A problem with RNA-sequencing is that the datasets have a high number of genes

with zero counts or with a very low number. Consequently, the negative-binomial

(NB) distributions (see section 2.3.2) cannot model well the data, biasing the estimation

of parameters by the methods based on NB models. Moreover, when comparing two

conditions, the statistical tests will eventually give p-values at 1 for the genes with so

few counts. This is why we observe an enrichment in high p-values when we plot the

distribution of raw p-values. As the procedures to control the false discovery rate

(FDR) depend on the total number of computed tests (see section 2.3.3), these

unnecessary tests also decrease the overall statistical power of the experiment

(Bourgon, Gentleman and Huber, 2010). From the theoretical point of view, these two

points justify to filter out the genes with counts under a given cutoff. The choice of the

filtering strategy raised discussions among the research community.

The filtering can be useful if there are few DEGs or for technologies generating many

low counts by improving the FDR control, without necessarily increasing the recall

(Rigaill et al., 2016). It can be either based on a minimal level of counts within few

conditions (Chen, Lun and Smyth, 2016), or the sum or the mean of counts across the

samples (Rau et al., 2013). One can set the threshold by iteratively searching for the

value optimizing the number of DEGs, without filtering more than 20% of the genes

(Bourgon, Gentleman and Huber, 2010; Sha, Phan and Wang, 2015). It is worth noting

that filtering does not add much if there are many or enough DEGs to explore. In this

context, the filtering step can be removed to simplify the workflow.

Besides the gene expression, the read counts from RNA-sequencing have three main

sources of variation: library size (Mortazavi et al., 2008) from the sequencing effects (i.e.

total number of counts in one sample), gene length (Oshlack and Wakefield, 2009) as

well as GC-content (Zheng, Chung and Zhao, 2011). GC-content represents the ratio of

the Guanine and Cytosine bases in the sequence, compared to the Adenine and

Thymine (or Uracil for RNA) bases. Indeed, long genes and GC-rich sequences tend to

accumulate more reads, all things being equal. If a gene has higher read counts, the

statistical power related to this gene increases, promoting its identification as a DEG

(Oshlack and Wakefield, 2009). To compare the genes and samples to each other, one

should remove these sources of variations. This procedure is called normalization. To

do that, many methods have been proposed. I will discuss a few of them here which

are popular. Note that filtering should be applied after normalization (Lin et al., 2016).

Within-sample normalization consists of removing biases when comparing two genes to

each other. As DEA only compares samples to each other, this normalization would

not be required. Yet, (Risso et al., 2011) confirmed that GC-content biased the fold-

changes and p-values from the DEA, with a positive correlation between DEGs and

GC-content. To account for length and GC-content effect, the authors proposed a

16

normalization method included in the package EDASeq. However, to my knowledge,

this entire issue seems to have been ignored afterwards.

A simple and common method for between-sample normalization is RPKM (Reads Per

Kilobase of exon model per Million mapped reads) (Mortazavi et al., 2008). It

normalizes according to the library size, i.e. the sum of counts in a sample. The

literature strongly advises against its use because it is easily biased (Bullard et al., 2010;

Zheng, Chung and Zhao, 2011; Dillies et al., 2013; Maza et al., 2013; Lin et al., 2016). One

of the most popular method is TMM (Trimmed Mean of M values) developed for

edgeR (Robinson and Oshlack, 2010) that I applied for (Pierrelée et al., 2020). It

normalizes the samples by adjusting the count distribution. TMM is a robust method

(Dillies et al., 2013; Maza et al., 2013; Rapaport et al., 2013; Seyednasrollah, Laiho and

Elo, 2015; Zyprych-Walczak et al., 2015). Normalization works well in general, but

unexpected conditions can break the assumptions used to distinguish between

technical and biological effects (Bullard et al., 2010; Lin et al., 2012; Lovén et al., 2012;

Soneson and Delorenzi, 2013; Roca et al., 2017; Evans, Hardin and Stoebel, 2018).

Therefore, the user needs to be sure that these assumptions hold before to start the

differential expression analysis.

One critical assumption of standard normalization tools is the lack-of-variation

hypothesis. It assumes that most of the genes are not differentially expressed in the

experiment. While acceptable in most cases, the lack-of-variation hypothesis does not

hold for some datasets which require another normalization approach. It was the case

in (Yun et al., 2020). The studied microalgae HS2 underwent massive phenotypic and

metabolic changes when grown in salt water. Therefore, I applied SVCD to normalize

the counts (Roca et al., 2017). This method normalizes the counts without assuming the

lack-of-variation hypothesis. It first computes within-condition normalization factors.

Then, iteratively, it applies a statistical test to identify the non-differentially expressed

genes (DEGs) by comparing the average of each condition. At each iteration, it

removes the genes showing the highest variations until convergence. It then computes

the final normalization factors from the pool of non-DEG. Interestingly, the method

does not assume any count distribution (e.g. Poisson or Negative-Binomial). The

authors claimed that their approach can work for any proportion of DEGs within the

gene population, as soon as there are enough genes from which we can estimate the

normalization factors. Nonetheless, as for TMM, it still assumes that normalization

factors for non-DEGs can also apply to the DEGs and the proportion of counts is not

distorted.

The normalization methods produce normalization factors used by the tools for the

differential expression analysis. They do not directly update the read counts. Indeed,

the statistical tools of the differential expression analysis need to estimate some

parameters from the raw counts, otherwise the normalized counts would bias the

estimation.

Statistical inference generalizes results of a given experiment to any other experiments.

It estimates statistical properties of samples for each condition, in particular the

17

variance. This variance can only be computed with biological replicates, i.e. several

samples for the same condition. Contrary to technical replicates, biological replicates are

different individuals (e.g. mouse, cell culture), but which underwent the same

treatments or manipulations (i.e. factors). If individuals are more different, then results

are more generalizable. In practice, individuals with the same genetic background are

considered as biological replicates. The individual variability would be enough to

generalize the results to the population.

Differential expression analysis (DEA) identifies the genes with variation of their

expression, in a given condition compared to a reference condition, by applying

statistical inference (Figure 3). They are called differentially expressed genes (DEGs). DEA

measures 1) the size effect, expressed as a log2-fold change (LFC), and 2) the significance,

evaluated from a probability called p-value. For a simple pairwise comparison, the fold

change is the ratio of the gene abundance between a given condition and a reference

condition. It is on a log2-scale. The p-value is the probability to observe a difference

between conditions, while assuming the conditions are equivalent. In the context of

pathways, I employ the adjective dysregulated when the gene is differentially

expressed.

Figure 3. Differential expression analysis measures levels of dysregulation. (Top panel)

RNA-sequencing generates read counts for each gene in each sample. This example shows the

reads for one gene in an experiment with 2 conditions and 3 biological replicates each. (Bottom

panel) Differential expression has 4 main steps which finally give the size effect (log2-fold

18

change) by comparing two conditions. Here, the gene is up-regulated with a size effect of 0.73

(i.e. a fold-change of 1.7) in condition A compared to condition B.

EdgeR is a popular tool to run differential expression analysis. It was successively

improved to solve the limitations of the previous versions. The first version is the so-

called classic-edgeR (Robinson and Smyth, 2007, 2008; Robinson, McCarthy and

Smyth, 2010). It models the read count with a negative-binomial model which enables to

define the variance as a function of the mean and a dispersion parameter. While a Poisson

distribution is more natural to model the independent probability of a read being

assigned to a RNA fragment, it cannot model a distribution where the variance

depends on the mean. A common dispersion parameter is first computed from all genes

using a quantile-adjusted conditional maximum likelihood (qCML). This enables to share

information between genes. Yet, not all genes have the same dispersion. A gene-specific

dispersion parameter is computed using a weighted likelihood function, but there are not

enough samples to correctly estimate this dispersion. Therefore, it should be corrected.

To do so, an empirical Bayesian approach “shrinks” the gene-specific dispersions

toward the common dispersion. This shrinking enables to smoothly estimate the gene-

specific dispersion parameters, without too strong or too weak correction. That is why

the dispersion estimation is said to be moderated. Finally, an exact test, similar to the

Fisher’s exact test, compares the conditions using the estimated means and

dispersions.

However, the first version of edgeR only manages experimental designs with a single

factor. To process more complicated designs, (McCarthy, Chen and Smyth, 2012)

implemented the generalized linear models (GLM) to GLM-edgeR. The principle is the

same as above. A locally weighted profile-adjusted likelihood function, computes a

dispersion trend across the genes and a second function, called Cox-Reid profile-adjusted

likelihood, estimates the gene-specific dispersion parameters which are then shrinked

toward the trend. (Zhou, Lindsay and Robinson, 2014) completed this approach to

account for outliers (i.e. highly-variable genes). GLM-edgeR applies a likelihood ratio

test (LRT) to correctly approximate the exact test of the classic-edgeR.

quasi-edgeR extended GLM-edgeR by developing a quasi-likelihood (QL) framework

for the statistical test of the differential expression (Lund et al., 2012). Its main

advantage is to compute the uncertainties of the estimated variances and account them

for the statistical test. The latter is thus more robust to errors in the modeling of the

experimental design. (Phipson et al., 2016) added an option to the quasi-edgeR QL

fitting function to increase the robustness against outliers. It increases the shrinking

for the main body of genes, while decreasing it for the outliers. Moreover, it decreases

the shrinking for genes with null counts. Without robustness, one could call genes

differentially expressed if they have very high or low dispersions across the samples.

Indeed, Phipson and colleagues showed that the robust QL increased the power and

the false discovery rate (FDR) control in presence of outliers.

Regardless of its version, edgeR is one of the best tool with low false negatives and

false positives as well as an accurate FDR control (Soneson and Delorenzi, 2013;

Rajkumar et al., 2015; Seyednasrollah, Laiho and Elo, 2015; Rigaill et al., 2016; Schurch

19

et al., 2016; Holik et al., 2017; Lamarre et al., 2018; Li et al., 2020). It should however be

used with its robustness feature. Therefore, I applied quasi-edgeR in (Pierrelée et al.,

2020).

Differential expression analysis aims to test thousands of genes with significant

changes. By setting a significance level on the raw p-values, it is certain to have false

positives among all DEGs (Bender and Lange, 2001). This is called the multiple-

hypothesis testing problem. Solving this issue means controlling the number of false

positives among the gene population for a given significance level, at the expense of

false negatives. It is not possible to control for both errors, but at least controlling the

false positives avoids spurious conclusions. From raw p-values, the controlling

procedures produce adjusted p-values to select the DEGs according to the threshold of

the significance level (Wright, 1992). The adjusted p-value is a random variable, not a

probability. An adjusted p-value is a new value which accounts for the raw p-value with

regard to the whole set of tested hypotheses. The Benjamini-Hochberg (BH) procedure

controls the false discovery rate (FDR), i.e. the expected proportion of false positives

among the DEGs (Benjamini and Hochberg, 1995). It gives an upper bound on the FDR

to adjust the p-values. This is the most common approach in RNA-sequencing data

analysis, but it generates rough FDR estimations.

Usually, a gene is called differentially expressed if it meets one or two conditions: its

(adjusted) p-value is lower than a FDR cutoff and/or its size effect is lower than an

(absolute) LFC cutoff. On a theoretical point of view, there is no reason to justify an

LFC cutoff, except if one wants to test a gene by qPCR, as qPCR is less sensitive than

RNA-sequencing. Indeed, the level of dysregulation in a pathway does not depend on

the LFC level (Hughes et al., 2000; Ideker et al., 2002; Subramanian et al., 2005).

Therefore, I did not apply an LFC cutoff in (Pierrelée et al., 2020; Yun et al., 2020).

Nonetheless, the user can apply an LFC cutoff according to a volcano plot (LFC vs.

adjusted p-value of genes) or the distribution of LFCs. Note that if one applies an LFC

cutoff, then it is equivalent to run multiple new statistical tests. These tests are said

post hoc and can break the FDR control by inducing a selection bias. Therefore, it is

necessary to control the FDR by considering both FDR and LFC cutoffs with a post hoc

inference tool such as cherry (Goeman and Solari, 2011) or sanssouci (Blanchard,

Neuvial and Roquain, 2020).

One can take snapshots of gene expression over time by applying RNA-sequencing on

successive time-points in an experiment. One can measure the expression dynamics

by adapting the differential expression analysis to identify the genes varying over

time. A claimed advantage is that tools dedicated to time-course datasets could use the

dependencies (i.e. causality) between time-points to increase the statistical power

(Spies et al., 2019).

A main aspect with time-course datasets is the sampling rate, i.e. the number of

sampled time-points and their frequency. For RNA-sequencing, if the frequency is

20

high, e.g. time-points every few minutes, then the time-points are strongly dependent

on each other. It means that one can assume a direct causality between two consecutive

time-points. In the other hand, it is harder to assume a causality with a sampling every

day because the system evolves too much between time-points. Also, in this case, one

can simply consider time as a categorical variable. A higher frequency enables to

consider it as a continuous variable. (Bar-Joseph, Gitter and Simon, 2012) reviewed

methods to analyze time-course datasets and gave recommendations concerning the

sampling rate. A higher sampling rate will increase the number of detected DEGs

varying over time or explore the kinetics of a process, but a higher number of replicates

are necessary to identify precisely where the DEGs are varying. The sampling rate

should also be higher shortly after a perturbation, where most of the gene expression

varies. The time-points at the end of the experiment measure the permanent changes.

(Spies et al., 2019) benchmarked 9 tools developed to identify differentially expressed

genes over time from RNA-sequencing datasets. Among these tools, there is a popular

tool for time series called next-maSigPro (Conesa et al., 2006; Nueda, Tarazona and

Conesa, 2014). This tool identifies the genes with a “non-flat profile” by using a

negative-binomial model and a polynomial regression. Then, it tests the differences of

expression profiles by applying an iterative regression to select the conditions with the

highest changes. next-maSigPro is mainly distinct from edgeR in two aspects. First, it

considers time as a quantitative variable, while the time is multifactorial in edgeR. This

increases the number of variables and so, the false positives. Second, the tool computes

the differential expression on the non-flat genes, thereby increasing the FDR control

and the model fitting on gene expressions. In comparison, (Fischer, Theis and Yosef,

2018) developed ImpulseDE2. The tool models the gene expression profiles and the

read counts with an impulse model and a negative-binomial model (as edgeR),

respectively. The impulse model considers that the gene expression temporarily

switches from a permanent to a transient state, before going back to the permanent

state. The negative-binomial model brings “noise” to the impulse model. From the

estimated models, the tool can then test the differential expression between two

conditions. The authors did not consider its application to cyclic processes.

The benchmark of (Spies et al., 2019) especially compared next-maSigPro and

ImpulseDE2 to pairwise comparisons computed by classic-edgeR. The authors used

simulated dataset from NB models. In brief, the authors concluded that “pairwise

methods” such as edgeR still had overall the best efficiency. ImpulseDE2 could equal

them, or outperform them with a high number of replicates, but it had lower

performances with more than 8 time-points or with noise. On the contrary, next-

maSigPro had a lower efficiency, but it was more robust to noise and could benefit

from more time-points. Interestingly, selecting the DEGs by finding the overlaps

between the results of 2 or 3 tools could increase the number of true positives without

increasing the false positives. However, the most conservative tool will dominate the

results in this approach.

In their study, (Spies et al., 2019) used edgeR to compute pairwise comparisons and

showed these tools were still competitive. However, they can enable more complex

designs to test for any difference between time-points, as for ANOVA. Also, even if it

21

seems unused in RNA-sequencing, the authors could have tried limma-voom (Smyth,

2004; Law et al., 2014) with a natural regression spline, which models time as a

continuous variable, following (Smyth et al., 2020, p. 49). For microarrays, limma

showed the best performances compared to other tools dedicated to time-course

datasets (Moradzadeh et al., 2019).

Therefore, these dedicated methods are not useful to analyze differential expression

from time-course datasets. These dedicated methods are less known and used than

more general methods. To support their use, the community should have benchmarks

focusing on making the best use of well-known tools such as edgeR and limma. They

should include real and/or synthetic datasets to assess their performances. (Spies et al.,

2019) showed that the number of replicates and the sampling rate affected the

performance. The ideal benchmarks should therefore test these different use-cases.

Differentially expression analysis (DEA) allows to select a subset of genes showing

interesting behaviors. At this point, read counts were generated as well as a list of

differentially expressed genes (DEG). This list can be large, making its exploration

harder. A simple approach is to identify few genes of interest and after, to use them

for further experiments. Instead, one can search for causes which explain the cell’s

phenotype by looking at the patterns within the DEG list. Grouping the genes into

smaller highly-consistent subsets enables to detect such patterns. Three approaches

are commonly used to do that: clustering, functional enrichment and networks. I will

illustrate these two first approaches with time-course datasets in which time is a

categorical factor. However, they work with any other categorical factor.

Clustering is an automatic method to define gene subsets from their expression profile.

It can use the whole table of read counts and any factor. Many clustering methods have

been developed. I will only present two of them dedicated to clustering time-course

datasets from temporal RNA-sequencing or microarray data.

(Futschik, 2003; Futschik and Carlisle, 2005; Kumar and Futschik, 2007) introduced the

tool Mfuzz to cluster gene-expression profiles. Contrary to hard clustering were one

gene is assigned to one cluster, Mfuzz applies a soft clustering algorithm where genes

are shared between clusters. It enables clusters with similar profiles. Therefore, the

clusters are more precise and more robust to noise. In my experience, it is difficult to

find relevant clusters among all possible clusters. To decrease this number, one can

only consider the DEGs. It is motivated by the fact that DEA tools can test the

significant variations. Therefore, a cluster without significant variation would be less

biologically relevant.

22

The main issue with clustering is to define the number of clusters. For Mfuzz, the

authors suggested 3 options. Two of them consist of computing statistics decreasing

when the number of clusters increases. The statistics are expected to decrease strongly

after a given number. The optimal number of clusters is the highest statistics before

the decrease is too strong. Yet, the user cannot apply these approaches if this drop

happens just after a single cluster. This happens when the profiles are not dissimilar

enough, e.g. if the number of time-points is low. On the contrary, if the drop is too soft,

picking a value would be arbitrary. In practice, it is easier to determine a number of

clusters when the number of genes within the dataset is low, e.g. by only considering

the DEGs.

Finally, the authors suggested to apply functional enrichment on the clusters (see

section 3.2). The enrichment is computed for each cluster and the clusters with the

most relevant results are kept. Doing so, genes sharing the same profile are assumed

to be co-regulated, i.e. a group of genes directly regulated by a transcription factor.

This direct co-regulation should have roughly the same size effect and direction for

each gene of the cluster. Though, two genes with the same profile are not necessarily

co-regulated. This is a similar problem to the correlations used to infer networks (see

section 4.2). Even if it is the case, it is harder to have clusters with few but consistent

genes when there are few time-points.

The user should not focus too much on the number of clusters because it is too difficult

to find a meaningful value. Instead, one should try to estimate if this number makes

sense with regard to the biological context. To illustrate that, let’s take an experiment

with 4 time-points. In this experiment, observations suggest that the system is at a

normal state for the first and last points, while the intermediary points are at a perturbed

state. Thereby, one could observe genes starting with an up-regulation, then stabilizing

and finally ending with a down-regulation. Also, genes can increase their expression

after the 1st or 2nd time-point and then decrease it. It gives 3 clusters, more 3 others

which are symmetric. In more, there are 6 clusters having permanently up- or down-

regulated genes after the 1st, 2nd or 3rd time-points. There is of course a final cluster for

non-regulated genes. In total, it should have 13 clusters in this experiment (Figure 4).

One can then compute statistics for each cluster, find empty clusters and search for

non-clustered genes showing unexpected variations. This method fuzzifies gene-

expression profiles by converting their continuous values into fuzzy qualitative

values. For example, -1.3 and +2.5 become “down-regulated” and “up-regulated”. This

greatly simplify the problem of assigning genes to clusters. Thus, it avoids to apply a

more time-consuming approach proposed by Futschik and colleagues. In fact, it

implies that clustering methods would be superfluous.

23

Figure 4. An experiment with a transiently perturbed system should generate 13

clusters. Genes can be manually assigned to each cluster without a dedicated algorithm. In this

example, there are 4 time-points. Only clusters with a single dysregulation (i.e. up- or down-

regulation) or two opposite dysregulations (i.e. up- and down-regulations) are shown. If there

are 4 time-points and 3 possible directions for dysregulations (up, down or constant), then 27

clusters are possible (3x3x3), but not all of them are always relevant. It would be more

interesting to start with a smaller number as shown here and only after, increase this number

if necessary.

Mfuzz is highly demanding for the user because the user needs to tune each step

without a clear aim. This is a general issue for the unsupervised clustering where

experimental data are exploited to make decisions.

DREM is an approach developed by (Ernst et al., 2007; Schulz et al., 2012) for time-

course datasets. The goal is to find the transcription factors causing the gene

expression profiles by combining gene expression data and transcription factor (TF)

binding data (i.e. sequence motifs or ChIP-sequencing). Briefly, at the first time-point,

24

all genes are in the same cluster. In the next time-points, if the gene expression profiles

split into new branches, a statistical model assigns each branch to a new cluster. It

gives a tree of nested clusters with a splitting based on the time. DREM assigns

transcription factors to the clusters by using the TF binding data. These TF binding

data constrain the number of clusters so the user does not have to set it. Contrary to

Mfuzz, the authors recommended to filter out non-differentially expressed genes. The

2nd version of DREM especially enables to consider dynamic TF binding data and the

expression levels of transcription factors. One limit of DREM is that the clusters cannot

merge back after a split event. Moreover, the sampling rate should be large enough,

otherwise it cannot associate the transcription factors to the clusters. Note that the

authors claimed to use and build networks, but this is a misuse of language. Their

method is a clustering method benefiting from two data types, while standard

clustering methods only use one data type.

Above, I presented a strategy to group the genes, but the groups still lack a biological

meaning. A common follow-up is to find overrepresented terms by applying

functional enrichment.

Functional enrichment aims to find gene sets with an overrepresented number of genes

from an input list, for example the list of differentially expressed genes. A gene set is a

list of genes annotated by a same term, such as a gene ontology (e.g. “nucleus”), a

pathway (e.g. “cell cycle”) or a co-regulation by the same transcription factor (e.g.

“CREB”). Statistical tests assign a score to these genes sets to represent how many

DEGs they have. The gene sets with the highest scores are called enriched terms. This

approach is useful to explore consistent groups of genes within an input list, especially

for large lists, or to quickly annotate the input list. Many methods were developed to

build gene sets, weight the genes of the input list and test their enrichment. Even in

2009, 68 methods were already available to enrich gene sets (Huang, Sherman and

Lempicki, 2009). The drawback of enrichment is that it heavily depends on the gene

sets, the input lists and the algorithm (Huang, Sherman and Lempicki, 2009). Any

change in the DEA method, the DEG calling or biases in RNA-sequencing will strongly

affect the results of the functional enrichment.

At this point, functional relations between genes are available, but they do not enable

to find cellular mechanisms that generated them. To answer this question, physical

interactions between genes must be considered. This will be the topic of the next part.

Networks model systems through their objects and the relationships between these

objects (Figure 5). The objects are represented as nodes and the relationships as edges.

Both are constitutive elements of the network. A network is not the system, but an

approximation of it. This consideration is trivial but easy to forget in the context of

networks. Indeed, they enable to intuitively represent the system under study. Such

25

systems are for instance mechanistic biological processes called pathways. In this

context, the edges (i.e. physical interactions) are the main element of pathways because

the nodes (i.e. molecules) alone cannot form a pathway. The aim is to use networks to

represent pathways.

Figure 5. Networks can model any type of relationship between objects of a system.

The top network is a general network. The system’s objects are represented as nodes (here 3

nodes) and the relations as edges. Edges can be directed, e.g. node #1 as a relation with #2 but

without reciprocity, or undirected, e.g. nodes #2 and #3 which have a relation to each other. In

this example, there are multi-edges between nodes #2 and #3 because two edges link both nodes

with the same direction (i.e. an undirected edge has both opposite directions). The bottom

network is a biological network. A biological process is modeled as a network. It contains one

protein-DNA interaction as a genetic activation from the transcription factor “gene A” to the

gene B. Biological networks generally consider a gene and its encoded protein as the same entity.

This greatly simplifies the modeling. Proteins of gene B and C form a protein complex such as

they bind to each other without a particular direction. Yet, gene B can catalyze a chemical

reaction which phosphorylates gene C. Therefore, this edge is directed. This biological network

is a complex network because its edges do not have the same type. Aggregating this network

will generate a network equivalent to the top network.

26

As networks approximate pathways, they include a limited number of types of

molecules and interactions. Choosing these types mainly depends on the goal (e.g.

representing genes, proteins, metabolites), the experimental data (e.g. transcriptomics,

phosphoproteomics, metabolomics) and the prior knowledge (e.g. interactions).

Networks of all possible physical interactions within the cell are called interactomes

(Sanchez et al., 1999). They are often made of interactions between proteins, the so-

called protein-protein interactions (PPI). In comparison, effects of transcription factors

on target genes are considered as protein-DNA interactions (PDI). They are the edges of

gene regulatory networks where each node represents a gene as well as its protein. Gene

regulatory networks can be inferred from co-expression networks. In the latter, edges are

correlations between gene expression. I will present co-expression networks in section

4.2 and networks of physical interactions in section 4.3.

Common methods processing and exploring networks do not manage complex networks

with multiple element types. Rather, networks must be homogeneous. An aggregation

step can homogenize a complex network into a simple network, a so-called monolayer

or monoplex network. Although monolayer networks are easier to analyze, information

is lost during aggregation. They do not enable to combine (i.e. “integrate”)

multiple -omics datasets or complicated experimental designs such as time series. In

the case of time-course datasets, the resulting monolayer networks are unavoidably

static. Some methods claim to not require an aggregation step, but they typically

ignore these multiple element types and/or produce static networks. The next sections

will be dedicated to analyze such monolayer networks. I will focus on how to explore

local structures of networks rather than measuring their global properties or

determining general laws, in agreement with (Lima-Mendez and van Helden, 2009).

In the past decade, complex modeling approaches have increased in popularity to

properly exploit complex networks by representing them as temporal or multilayer

networks. In multilayer networks, each element type is represented as a layer, i.e. a

homogeneous network. Yet, the layers can “interact”. Complex networks will be the

topic of the final section 6 of this introduction.

Biological network can be built de novo by computing co-expression between genes.

Such networks are called co-expression networks. Fundamentally, building these

networks does not require to incorporate any prior knowledge, e.g. physical

interactions between proteins.

By paying attention to the vocabulary employed by the papers cited below, there is an

inconsistent terminology. Many do not provide any definition. I present how to build

co-expression network (see section 4.2.1) and how to convert them into gene regulatory

networks using reverse engineering (section 4.2.2). The first step is often called network

construction and the second step network inference associated with reverse engineering.

Sometimes, network reconstruction is also associated to the second step. Yet, this term is

employed by authors to define a network built from physical interactions (section 4.3)

or an extracted subnetwork (section 5.1). To keep away the confusion of the terms

construction and reconstruction with the other approaches, I will not employ them.

27

Herein, I am simply using building co-expression networks for the first step and reverse

engineering for the second step.

Approaches based on network inference compute associations between gene-

expression profiles (Figure 6). An association between two genes means that if the

expression of one gene varies, then the expression of the other gene also varies. The

association is positive or negative if both variations have the same or opposite

direction (increasing or decreasing), respectively. Typical statistical methods

measuring association strengths (also called similarities) compute correlations. Nodes of

co-expression networks are genes, more exactly gene-expression profiles, and edges are

association strengths. There are two main categories of approaches: directed approaches

and undirected approaches (Aoki, Ogata and Shibata, 2007). Directed approaches

compute correlations between all genes versus user-selected genes (Lisso et al., 2005).

For example, one can select genes related to a given pathway. These approaches enable

to find novel members of pathways. In comparison, undirected approaches measure

associations between all genes versus all genes, i.e. in a pairwise manner. They are not

limited to a set of genes, but they require more computation power. They are also more

often used. For reviews, see (Contreras-López et al., 2018; van Dam et al., 2018; Rao and

Dixon, 2019; Chowdhury, Bhattacharyya and Kalita, 2020a).

Figure 6. Computing gene-pairwise correlations enables to build co-expression

networks. First, correlations of all genes versus all genes are computed. Second, the co-

28

expression network is built by representing a correlation between two nodes by an edge. The

edge’s weight depends on the correlation coefficient. Thereby, all nodes are linked to all nodes.

The thickness of the edge depends on the coefficient. 0.8 and -0.7 are two strong coefficients,

even if they imply a positive and a negative correlation, respectively. In this example, I

represented linear correlations (e.g. Pearson correlation), but any other type of methods

measuring associations between gene expressions are possible.

There is a great diversity of statistical methods computing association strengths.

Among them, the Spearman’s rank correlation is a simple, yet popular and efficient

method (Kumari et al., 2012; Ballouz, Verleyen and Gillis, 2015). (Kumari et al., 2012)

tested 8 methods. The authors showed non-parametric rank-based methods, such as

the Spearman’s correlation, were the most robust and efficient. It does not require a

linear relationship or a bivariate normal distribution (i.e. both variables follow a

normal law), as the widely-applied Pearson’s correlation, for example. To compute

accurate pairwise correlations, (Ballouz, Verleyen and Gillis, 2015) recommended at

least 20 time-points.

To generate a co-expression network, the association strengths are converted into edge

weights. It depends on whether the network is unweighted or not. For unweighted

networks, a hard-thresholding step filters out the edges with a strength below a given

threshold. The other edges get a weight of 1. In comparisons, soft-thresholding computes

a continuous weight between 0 and 1 (Zhang and Horvath, 2005). A parameter controls

the weight by pushing the lowest strengths toward 0. (Zhang and Horvath, 2005)

showed weighted co-expression networks are more robust. A continuous edge weight

is not an issue for the downstream steps, but visualizing the network would certainly

require to cut off low-weighted edges.

Gene co-expression networks enable to explore correlations between genes, but not

causations. Reverse engineering aims to transform correlations into causations by

directing edges according to causality and by removing those related to indirect

associations. The result is an inferred gene regulatory network; the edges are regulatory

interactions. For each edge, the type and the strength of the regulation should be

known. See (Liu, 2015) for a comprehensive review of reverse engineering approaches.

For example, (Margolin et al., 2006) developed ARACNE. The method computes the

association strengths, applies a hard-filtering step and filters out unnecessary edges.

The filtering applies a mathematical procedure removing the edge with the smallest

weight in each group of 3 connected nodes. The authors proved that the reverse-

engineering method perfectly recovers the edge directions if there are no loops in the

network (i.e. feedbacks).

Dynamic Bayesian networks are another class of approaches dedicated to infer gene

regulatory networks from time series (Murphy and Mian, 1999). They solve the

feedback-loop issue by extending Bayesian networks which were introduced by

(Friedman et al., 2000) for gene expression datasets. A Bayesian network models gene

regulation with random variables (i.e. the nodes) representing gene expression levels.

The edges represent conditional dependencies between the variables. Thereby, the value

29

of a node depends on the values of its parent nodes. Random variables follow either a

continuous or a discrete model. In the discrete model, a node can be up-regulated, down-

regulated or normally expressed when comparing its expression level to a reference.

This model enables to detect non-linear effects but information is lost. The causal

Markov assumption considers that the level of a given gene only depends on a limited

set of other genes. It enables to interpret edges as causal relationships, thus directed,

and to simplify the computations. This is an immediate dependency; the nodes are

independent from the parents of their parents. Therefore, Bayesian networks must be

acyclic. One node cannot depend on itself through other nodes. Thus, Bayesian

networks do not incorporate feedback loops.

An algorithm based on Bayesian networks searches for a model (i.e. all nodes and

edges) maximizing its posterior probability given the dataset. The Bayes rule computes

it by reverting the requirements. Thereby, the posterior probability depends on the

probability of the dataset given a model and the prior probability of this model.

(Friedman et al., 2000) took a prior network with random variables following a uniform

distribution, before iteratively updating the model until maximization of the posterior

probability. The uniform distribution aims to not favor any edge. A powerful feature

of Bayesian networks is to include any type of prior knowledge, such as known

interactions, to decrease the false positives (Hill et al., 2012). Another advantage is that

the networks can also account for missing values by adding hidden variables to the

model. For example, (Ong, Glasner and Page, 2002) added nodes representing

operons. (Bacterial operons are groups of genes regulated by the same promoter and

thus, transcription factor.) The dataset only contains the expression levels of the genes.

The algorithm can then estimate an adequate model for this network structure.

Bayesian networks are extended by dynamic Bayesian networks (Murphy and Mian,

1999). They incorporate feedback loops by representing edges as causal relationships

over time (Figure 7). Doing so, the nodes at a given time only depend on the node at

the previous time. It assumes the regulatory interactions have a delay; their effect is

only observable at the next time-point. No edges are allowed between nodes of the

same time-point. Note that dynamic Bayesian networks can be considered as following

a temporal multilayer network (see section 6.4). (Ong, Glasner and Page, 2002; Husmeier,

2003; Hill et al., 2012) are example of methods implementing this approach. In

particular, (Hill et al., 2012) used continuous variables enabling non-additive effects,

while (Husmeier, 2003) modeled discrete variables. These methods had been

developed for microarrays, but they are also applicable for RNA-sequencing. For both

data types, Bayesian networks are fundamentally limited by three issues. First, there

are not enough time-points compared to the number of variables (e.g. genes). Second,

there are hidden variables that are not included (e.g. post-transcriptional

modifications). Finally, even with a perfect dataset and modeling, two models do not

necessarily give the same results because there is no unique solution for the resulting

causal network.

30

Figure 7. Dynamic Bayesian networks model a directed network over time. This

example shows how to unfold a Bayesian network (i.e. all edges are directed) into a dynamic

Bayesian network. All nodes are copied at each layer representing one time-point. Edges model

dependencies between nodes, but over time. The list of all dependencies is a transition matrix

which is the same for each pair of consecutive layers. It enables to represent graphs with cycles

(i.e. feedback loops). Therefore, no edges are allowed within a given layer. A biological or gene

co-expression network is directed by identifying the optimal combination of edge directions.

(Djordjevic et al., 2014) observed that most of the edges of co-expression networks do

not correspond to causal relationships. The authors concluded that reverse

engineering would not be feasible with co-expression networks alone. Using

mammalian developmental gene-expression datasets, a method such as ARACNE did

not have a better recall and specificity than random networks. Therefore, they are not

reliable. The authors also explored perturbation (e.g. mutations, knock-out) gene-

expression datasets. These experiments enable to identify all the genes affected by a

given perturbation. The authors showed that it was easier to predict more accurate

networks with perturbation experiments than with time series.

31

Co-expression networks are built using the time component of the experiment, but

they are still static. They do not enable to identify mechanistic biological processes

explaining the observations. Reverse engineering overcomes this limitation by

introducing causality to the network. Yet, it requires time-course datasets with a high

sampling rate and frequency. The resulting networks often do not include any

dynamics, for example when a node is involved in the pathway. They also do not

enable to explore interactions within a given time. Representing temporal networks

with multilayer networks solves these issues (see section 6). Fundamentally, co-

expression networks have genetic interactions, i.e. indirect interactions. They do not

represent true physical interactions between molecules. To predict pathways, it is

necessary to revert the approach by starting from these physical interactions and then,

to map gene-expression data on the network. I will present this strategy in the next

section.

Molecules physically interact with (or bind to) each other, generating the cellular

activity. For the purpose of this thesis, two types of molecules are of interest: DNA and

proteins. They result in two types of interactions: protein-protein interactions (PPI) and

protein-DNA interactions (PDI). Proteins and genes are assumed to be equivalent so one

can represent the PDI similarly to the PPI. In the network, a protein and a gene are

therefore identical and interact with each other either in a PPI or a PDI. Roughly

speaking, the DNA is a “passive” molecule while a protein is “active”. Therefore, PPIs

are bidirectional and PDIs are unidirectional. The PDI is unidirectional because we

incorporate the regulatory hierarchy between the two molecules. With the same idea,

one can use unidirectional PPIs to represent a hierarchical relationship such as post-

translational modifications (e.g. phosphorylations).

Many approaches exist to biologically detect protein-protein interactions. They can be

high-throughput (i.e. detecting many interactions at a time) or low-throughput (i.e. few

interactions at a time). For example, a well-known high-throughput method is the yeast

two-hybrid (Y2H) system introduced by (Fields and Song, 1989). It detects many protein

interactors of a given protein. The idea is to use a transcription factor divided into two

parts. The first part (the “bait”) consists of the transcription factor’s DNA-binding

domain and is linked to one protein to test. The second part (“the prey”) consists of

the transcription factor’s activating domain and is linked to a library of other proteins.

If the two proteins linked to the bait and to the prey interact with each other, the

transcription factor will be active and expression of a reporter gene will be induced.

Using a pre-made library of prey and a screening procedure, all the interactors of a

given bait protein can be identified. (Sprinzak, Sattath and Margalit, 2003) predicted

between 10,000 to 15,000 PPIs in yeast. Yeast has 100,000 detected PPIs today (López,

Nakai and Patil, 2020). Sprinzak and colleagues also estimated that the method

produces 50% of false positives. Yet, a well-done Y2H experiment rather generates 20%

false positives, e.g. (Li et al., 2004). Thus, the Y2H system is not inferior to other

detection approaches (Braun et al., 2009). Braun and colleagues claimed that the issue

was mostly a lack of sensitivity as only 25% of interactors could be found in their

32

benchmark with human samples. Particular protein post-translational modifications

(not available in yeast) or very long proteins limit the ability of the Y2H system to

detect some interactions. It should however be considered that detecting an interaction

in a Y2H context does not mean that this interaction is biologically relevant.

One can computationally predict molecular interactions using transfer of knowledge

across orthologs. This approach assumes orthologs conserve their interactions across

distant species. To reduce the number of false-positive interactions, (Gupta et al., 2020)

predicted the PPIs of a network across species by applying four successive steps. First,

the authors determined the orthologs and they retrieved their interactions from other

species. Second, they kept the PPIs when both interactors of a PPI shared interacting

protein domains. Third, they filtered out the PPIs with interactors not sharing the same

subcellular localization. Finally, the isoforms from the same gene were merged into a

single node. To computes a confidence score for the interactions, they measured the

network modularity (i.e. capacity to form groups of well-connected nodes). They

showed these steps increased the average confidence score of the final PPI network.

Strictly speaking, protein-protein interactions are physical and direct interactions. Yet,

many interaction databases (see the next section) also host less reliable interactions, i.e.

associations. These associations can be physical or functional. Functional associations

define proteins with a functional effect on others, with or without a physical

interaction. In comparison, genetic interactions are the associated effects of two genetic

perturbations such as mutations, gene deletion or overexpression. The HUPO PSI

consortium controls this vocabulary (Hermjakob et al., 2004). To build physical

interactomes for (Pierrelée et al., 2020), I filtered out functional associations and genetic

interactions.

Sequencing technologies enable to determine regulatory protein-DNA interactions

(PDIs), e.g. (Teixeira et al., 2018). They identify DNA regions on which a given

transcription factor binds to. Correlating binding regions to the nearest genes give

binding evidences. From the collection of all DNA regions, one can also get its binding

profile and identify potential binding evidences by searching for other DNA regions

where the transcription factor could be bound. Chromatin can be indeed folded and

thus, not accessible to the factor at the time of the experiment. Furthermore, genetic

perturbations (e.g. knock-out, knock-down) of a transcription factor give transcription

evidences, i.e. dysregulated genes that are assumed to be regulated by the factor. The

more an interaction is supported by evidences, the more it is reliable. I selected the

PDIs having these three evidences (binding, potential binding and transcription

evidences) in (Pierrelée et al., 2020). Yet, these evidences are still indirect. Sequencing

chromatin structure provides direct evidences by showing DNA regions interacting to

each other. Indeed, a transcription factor binds a region, bends the DNA and links the

RNA polymerase at the promoter, inducing gene expression. Therefore, it is expected

that the transcription factor’s binding region is spatially close to the gene’s promoter.

33

To build networks, one needs interactions between genes. Primary databases collect

molecular interactions from published experiments. They can have a curation process

in which experts manually check and annotate the interactions. Secondary databases,

also called consolidated databases by (López, Nakai and Patil, 2015), collect interactions

from primary databases and re-process them (Figure 8). They can merge several

primary databases to complete them or correct some biases. The databases can

especially differ how they collect and curate their input data. Some of them contain

predicted interactions.

Figure 8. Databases collect and curate scientific papers testing molecular interactions.

Secondary databases do not collect interactions, but curate primary databases to clean false

positives. Object models from (Tjang, 2020).

Among the galaxy of primary database, there is the IMEx consortium. The consortium

has 13 database members to develop curation and database standards. They work

together to curate PPIs derived from publications, splitting their work based on their

expertise, capabilities and interests. The members have common guidelines to find and

annotate molecular interactions. In particular, they annotate them using the HUPO

PSI-MI format (Hermjakob et al., 2004). The fields of this format describe the tools used

to detect an interaction as well as the references to the papers where they were

published. The format includes controlled vocabulary to ensure the consistency of

annotations. Within the IMEx dataset, more than 80% of the PPIs were not validated

as physical and functional PPIs. Most experiments only test whether the proteins bind

to each other. Moreover, 85% of interactions come from Yeast, Human, E. coli and

Mouse. The IMEx dataset only contains experimentally-detected PPI but the member

databases can also have predicted PPI, functional associations and genetic interactions.

Some IMEx members score the interactions based on the reliability of their detection,

using a so-called confidence score. Different approaches exist to compute it. The HUPO

PSI consortium recommends to use the MIscore approach (Villaveces et al., 2015). For

each interaction, it computes the final score by combining the sub scores of the

detection method, the interaction type and the number of publications. The final score

is the weighted sum of each sub score. It ranges between 0 and 1, with 1 equaling

maximal confidence. For example, a direct association (i.e. molecules have direct

34

contact) has a sub score of 1 while a physical association (i.e. molecules are spatially close

but not necessarily in direct contact) has a sub score of 0.66; a Y2H assay and an

imaging technique-based co-detection of two proteins give sub scores of 0.66 and 0.33

respectively.

The primary BioGRID database (Oughtred et al., 2021) includes protein, genetic and

chemical interactions. It is the biggest interaction database with 800,000 genetic

interactions and more than 1 million protein interactions for around 70 species, taken

from more than 16,000 publications. In particular, the yeast and mouse species have

117,000 and 72,000 PPIs, respectively. BioGRID does not include predicted molecular

interactions. Note that BioGRID PPIs do not include isoforms as the protein IDs are

mapped to gene IDs. BioGRID does not belong to the IMEx consortium but it takes

part in their development of standards for the community.

Primary databases can contain errors in their curation due to false positive interactions

or curation issues. They are also incomplete or have redundant interactions. For

networks, one wants physical PPIs but these databases often mix several interaction

types. A secondary database such as HitPredict (López, Nakai and Patil, 2015) aims to

solve these biases by combining primary databases and re-processing their data. It

combines 4 databases which are IMEx members as well as BioGRID. In the 2020

update, there are around 800,000 PPIs for 128 species. From those, more than 126,000

come from yeast and 34,000 PPIs from mouse (López, Nakai and Patil, 2020). The

curation process is an automated workflow. First, it removes inconsistent, indirect and

duplicated PPIs. Then, it converts the protein IDs to have the same format and resolves

the unknown IDs by mapping the protein sequences to a sequence database. To

compute a confidence score, annotations from primary databases are collected and

cleaned. Therefore, it removes around 30% of the initial interactions. HitPredict

extended the confidence score by computing the geometric mean of the MIscore and

an “annotation-based score” (Figure 9). The latter combines 3 sub scores: whether the

protein pairs have common binding domains, whether they share gene ontology terms

and whether the interaction has been observed in other species. The authors

recommend a minimal confidence of 0.281 to have high quality interactions. It

corresponds to have either a MIscore or an annotation score higher than 0.5. Therefore,

HitPredict is much more fitted to build networks, as it reduces the number of false

positives within the resulting network.

35

Figure 9. HitPredict computes confidence scores of interactions from the reliability of

methods and annotations. A protein-protein interaction is supported by experimental

papers: what and how many methods were applied. Method scores also depend on the type of

the interaction, e.g. complex interactions (“physical interactions”) or phosphorylations (“direct

interactions”). Moreover, HitPredict computes an annotation score whether the structures of

interactors are consistent and share gene ontologies as well as whether the interaction is found

in other species. Both method and annotation scores are then combined into a confidence score.
Object models from (Tjang, 2020).

To get protein-DNA interactions, I looked at databases harboring transcription factor

occupancy and regulatory data. For example, JASPAR (Fornes et al., 2019) and

TRANSFAC (Wingender, 2008) are well-known curated databases. Both contain the

genomic binding sites of transcriptions factors, but only TRANSFAC provides the

target genes for the transcription factors. However, TRANSFAC has a paywall and is

limited to eukaryotes. There are no community efforts to curate cross-species PDIs

from the literature as for PPIs. To my knowledge, only the primary database

YEASTRACT+ (Monteiro et al., 2020) collects PDIs for yeast. It contains information

on 183 transcription factors involved in 175,000 PDIs. The primary database TRRUST

36

(Han et al., 2018) and the secondary database RegNetwork (Z. P. Liu et al., 2015)

provide PDIs for human and mouse but they have no recent major updates.

Another database relevant for this thesis is KEGG (Kanehisa, 2000), a reference

database of functional classifications. It assigns a KEGG Orthology (KO) to each gene.

A KO is a functional ortholog of a gene. If two genes from two species have the same

function, share sequence similarity and identify each other in similarity searches, then

they will have the same KO. KEGG groups the KOs into functional classes, such as

pathways in the KEGG PATHWAY sub-database, or with hierarchies, such as in the

KEGG BRITE sub-database. I used it to annotate genes and find relationships between

them. For example in (Yun et al., 2020), the KEGG tools annotated the predicted genes

with orthologs from different species. To find dysregulated pathways, I assigned the

best KO from the orthologs to the genes. Therefore, I could consistently use KEGG by

comparing the KOs of a model microalga species to the KOs from my DEG list. KEGG

is a highly curated database, but its goal is not to generate the whole PPI or PDI

network as the aforementioned databases, but rather stores single pathways. It is

therefore less complete than a network combining all known PPIs and PDIs of a

species.

Weighting the network enables to give a preference to some network elements, i.e.

nodes and/or edges, in the downstream steps. There are two criteria to consider. First,

the weighting depends on the requirements of the task. If one wants to extract regions

of the interactome enriched in dysregulated genes, then it is relevant to put more

weights on the nodes that are differentially regulated. For example, among the tools

cited in the section 5.1, viPEr (Garmhausen et al., 2015), TimeXNet (Patil and Nakai,

2014) and PCSF (Tuncbag et al., 2013) advised to take the size effect (e.g. log-fold

changes) as node weights, while jActiveModules (Ideker et al., 2002) took as input the

significance (e.g. p-value or adjusted p-value). Regarding the edge weight, methods

such as AnatApp (Yosef et al., 2011), TimeXNet, PathLinker (Gil, Law and Murali,

2017) and PCSF typically consider the confidence score of interactions.

CySpanningTree (Shaik, Bezawada and Goveas, 2015) uses correlation scores of gene-

expression profiles, but the authors applied this tool on a gene co-expression network.

Not all tools support both node and edge weights. These include the aforementioned

tools viPEr, jActiveModules, PathLinker and CySpanningTree.

Although weighting the network with experimental data such as differential

expression is relevant, most tools extracting subnetworks or detecting communities of

dysregulated genes also require input nodes. These nodes are given by the user by

tagging those nodes which are of particular interest, such as dysregulated genes. If the

weight already includes this information, these nodes will be more strongly prioritized

than the others. Therefore, as a user, one should ensure that the final results are not

too constrained by the dysregulated genes, as they can still be false positives and false

negatives.

37

Node or edge weights can be adapted to include other features of a network, such as

hub nodes (Figure 10). Hub nodes have a much higher node degree than average nodes.

Biological networks were often assumed to be scale free (Jeong et al., 2000). Thus, node

degrees would follow a power law which generates few hub nodes and many nodes

with a low node degree. Hub nodes can make the subnetwork extraction (see section

5.1) more difficult by offering shortcuts. To avoid this, one could penalize them to

extract more complex subnetworks. However, the universality of scale-free networks

has been highly debated, e.g. (Lima-Mendez and van Helden, 2009; Broido and

Clauset, 2019), thus questioning the disturbance that hub nodes could cause in

subnetwork extraction.

Figure 10. Hub nodes have a very high node degree. The node degree is the number of

adjacent edges to the node. For example, the node “7” has seven edges. Other edges have a much

smaller degree. Node degrees of biological networks are biased because not all edges are known.

Nonetheless, hub nodes should still be penalized because their high degree is partly

due to technical and experimental facts. Well-studied proteins have a higher node

degree in PPI networks, e.g. (von Mering et al., 2002; Schaefer, Serrano and Andrade-

Navarro, 2015). Detecting an interaction depends on the detection method as well as

the abundance, function, localization and evolutionary novelty of the proteins (von

Mering et al., 2002). In yeast, (Sprinzak, Sattath and Margalit, 2003) found that most of

detected interactions of hub nodes were false. Thus, even from a biological point of

view, hub nodes are not necessarily relevant. They can be low-level metabolites (e.g.

H2O, ATP, NAD) in metabolic networks or degrading proteins that bind to virtually

all proteins in protein-protein interaction networks. In general, hub nodes should be

considered one by one, because their importance in the network depends on their

biological functions. One can merely remove those which should not contribute to any

relevant result.

Penalizing the hub nodes increases the accuracy of subnetwork extraction methods

(Faust et al., 2010). For example, PCSF penalizes the hubs nodes by subtracting the

node degree from the node weight (Tuncbag et al., 2016).

38

Directed edges imply an asymmetry between two interacting nodes with one source

node and one target node. On the contrary, undirected edges do not distinguish between

them. Directed edges enable to include causality, for example a transcription factor

binding in the promoter of a gene and thereby influencing gene expression or a protein

affecting another between two time-points. They also reduce the number of solutions

to search when using the network to e.g. extract subnetworks. A network is directed

or undirected when all its edges are directed or undirected, respectively. (Faust et al.,

2010) showed that using directed networks enabled to find more optimal solutions

than undirected networks.

Some tools can only process undirected networks, e.g. viPEr, jActiveModules and

CySpanningTree, while others can process both, e.g. TimeXNet, PathLinker and

PCSF. AnatApp, PCSF and TimeXNet can process mixed networks with both

undirected and directed edges. Consequently, the input network has to match the

requirements of the applied tool. This can be an issue when the network contains

several edge types. Usually, PPIs are undirected, while PDIs are directed (Figure 11).

The user has to choose how to aggregate them to build a monolayer network. It is easier

when the goal is to obtain an undirected network: all edges are converted into

undirected edges, where the causal information is lost. To aggregate them into a

directed network, one can convert undirected edges into two opposite directed edges.

This, however, dramatically increases the number of edges in the network.

Moreover, network aggregation causes two more problems: 1) how to aggregate the

weights and 2) how to manage multi-edges. For the weights, I took the arithmetic mean

in (Pierrelée et al., 2020) to aggregate PDIs and PPIs. When converting an undirected

edge to two opposite directed edges, one can assign the same weight to the two

children edges as the mother edge, but this is still an assumption. Multi-edges are

several edges connecting two nodes in parallel and in the same direction. Most tools

do not manage them well. Therefore, they should be aggregated into at most two

opposite directed edges. Yet, for example, AnatApp cannot process these opposite

edges. This issue of multi-edges can also be raised within networks with a single edge

type, if the database is inconsistent. Thus, the user should check this before using any

tool on his network.

39

Figure 11. PPIs and PDIs are not equivalent. A PPI can be modeled by one undirected edge

or two opposite edges, while a PDI cannot. If two nodes are linked by one PPI and one PDI,

then one can consider that there is one edge going in one direction and two edges going in the

opposite direction. In (Pierrelée et al., 2020), I aggregated these edges by making the sum of

their weight such as the confidence score of the PPI was the same for both opposite edges

converted from the undirected edge.

To conclude, network-analysis tools manage various types of networks, but they have

precise requirements. This makes it difficult to compare two tools which do not share

the same requirements.

Condition-specific networks only keep the nodes and edges which are relevant to a

given condition. The condition can be a treatment, a tissue or a time-point. I will call

some networks being time-specific to highlight the temporal factor.

To generate a condition-specific network, a simple approach is to filter out the nodes

with a low level of gene expression together with the edges which connect them to

other nodes (Figure 12). DyNetViewer (Li et al., 2018) provides the algorithm of (Tang

et al., 2011) which applies this approach. In comparison, (Park et al., 2017) computed a

“perturbation score” for each gene at each time-point by computing the difference

between the expression score and the mean of expression across time. Park and

colleagues built a time-specific network by filtering out the genes with a low

perturbation score, except those which had at least one perturbed gene in their

neighborhood.

40

Figure 12. Non-expressed genes are removed to build condition-specific networks. This

is the most common approach in RNA-sequencing as the technology can only detect gene

expression.

In this section, I presented how to build physical networks representing a system of

interest. The following sections will focus on how to extract knowledge from them.

Successive molecular interactions produce biological mechanisms, i.e. pathways.

Pathways can for instance trigger the assembly of new molecules, release or capture

molecules outside the cell, activate or inhibit gene expression, etc. One way to produce

these effects is by dysregulating gene expression, compared to a reference or control

condition where such pathways did not happen. These dysregulations can be observed

through RNA-sequencing. Reciprocally, finding paths between dysregulated genes

should identify the successive interactions and so pathways. A list of paths gives a

subnetwork. Extracting subnetworks aims to find these paths (Ideker et al., 2002). A path

is the list of edges that one can go through to join a target node from a source node. This

is the same analogy as going from one city to another and searching for highways on

a map. Methods for subnetwork extraction can incorporate non-dysregulated genes

and reject dysregulated genes from subnetworks. They enable to make predictions and

reduce the noise from the differential expression analysis. More practically, a user

cannot explore large interaction networks by hand. Subnetwork extraction enables a

user to visualize and interpret them.

On the contrary, community detection looks for parts of the networks enriched in

dysregulated genes (see section 5.2). These parts are not necessarily connected together

and thus, community detection is less mechanistic-oriented than subnetwork

extraction. Yet, the approach should allow to extract several independent subnetworks

because the network does not incorporate all possible nodes and edges (Ideker et al.,

2002). Consequently, it cannot identify all the paths of the pathway. Several pathways

can also occur in parallel and their exploration would be simpler if they were

41

disconnected. Furthermore, subnetwork extraction has the advantage over gene-

expression clustering (see section 3.1) that the approach accounts for genes with low

differential expression regardless of their direction (i.e. positive or negative log-fold

change) (Ideker et al., 2002).

(Nguyen et al., 2019) is a recent review on subnetwork-extraction methods, although it

includes per se community-detection tools. The authors especially grouped them into

“greedy algorithms”, “evolutionary algorithms” and “diffusion-flow algorithms”. Yet, they

did not mention other types of algorithms such as shortest paths computation and

Steiner trees problems. I present examples of methods implementing these algorithms

below. All of them take as inputs a network and list of nodes of interest (e.g.

dysregulated genes). The input nodes are often split into groups of source nodes and

target nodes. The goal is often to create a causal link between genes considered as

effectors and others that are treated as receptors.

In the context of subnetwork extraction, greedy algorithms are methods exploring the

neighbors of seed nodes to find paths between them. They blindly make the locally

optimal choice at each stage of the computation, yielding locally optimal solutions that

approximate a globally optimal solution in a reasonable amount of time. More

precisely, they explore all possible paths around a seed node such as the paths have a

maximal length (i.e. number of nodes included in the path). For example, given a

source node and a target node, the Cytoscape app (Shannon et al., 2003) viPEr

(Garmhausen et al., 2015) starts from the target and searches for all paths with a

maximal length in its neighborhood. It keeps the paths including the target node to

generate the subnetwork. It scores them by aggregating the node weights of the path

and the path length. viPEr does that for each pair of source and target nodes. Greedy

algorithms tend to find suboptimal solutions and produce very large networks as they

explore all possible paths independently of each other.

(Ideker et al., 2002) developed jActiveModules which is still widely used on

Cytoscape. (Nguyen et al., 2019) grouped it within the category of evolutionary

algorithms. The method applies simulated annealing. It computes a subnetwork by

randomly adding or removing nodes from the network. At each iteration, it scores the

subnetwork by summing non-customizable node weights. The node weight is

computed using the p-values from the differential expression analysis. The

subnetwork score is corrected by comparing it to the score for randomly-selected

genes. If the score at an iteration is lower than the score at the previous iteration, then

the added node is not kept. It can be included back with a certain probability that

decreases at each iteration. The method can also account for multiple conditions (e.g.

time-points). In this case, it computes the subnetwork score for each condition, it takes

the “highest” score and finally, it corrects this score. In the paper, it is not clearly stated

how the authors treated edges. jActiveModules can be iteratively applied to reduce

the size of subnetworks. The main issue of the algorithm is the simulated annealing

procedure which costs runtime.

42

TimeXNet is initially dedicated to extract subnetworks from time-course datasets

(Patil et al., 2013; Patil and Nakai, 2014). The method searches for paths from source to

target nodes through intermediate nodes. To define these input nodes, the authors

assigned the dysregulated genes to each group according to the time of their highest

fold change. Only the input nodes have a weight (e.g. fold change), while all edges

have a weight (e.g. confidence score). In fact, the method adds an artificial source and

an artificial sink connecting all the sources and targets, respectively. To find the paths

between both artificial sources and sinks, the method applies a minimum-cost flow

optimization algorithm. It computes a flow for each node and edge such, that those with

the highest flow are extracted. The flow goes from the artificial source to the sink

through the intermediate nodes. On its way, it goes through other nodes. The

algorithm computes their flow as the sum of flows from incoming edges. Yet, this flow

has a cost when passing by the edges. Therefore, the optimization aims to reduce the

total edge cost while saving as much as possible the total flow. The edge cost is

computed according to the edge weight such that a higher weight gives a lower cost.

However, for edges connected to the input nodes, the algorithm replaces the edge

weight by a specific weight depending itself on the weight of the input node(s). It

favors the edges connected to the input nodes. Finally, as viPEr, PathLinker or

AnatApp (Yosef et al., 2011; Almozlino et al., 2017) (see below), TimeXNet takes a

precise list of input nodes but divides them in 3 groups instead of 2. This division is

still not general enough for time series. Thus, TimeXNet does not have features which

could confer a theoretical advantage over the other tools.

(Ritz et al., 2016; Gil, Law and Murali, 2017) developed PathLinker for Cytoscape. It

applies an algorithm to find the first shortest paths between the source and the target

nodes (Figure 13). A shortest path is a path with the smallest length. It minimizes the

number of nodes that one crosses to go from one node to the other. The path is loopless,

i.e. a node appears only once in the path. As for TimeXNet, PathLinker adds an

artificial source connected to all source nodes and an artificial sink connected to all

target nodes. It finds all the shortest paths between both artificial nodes. Removing the

artificial nodes results in shortest paths between the input nodes. Then, PathLinker

scores each path by computing the product of the edge weights (e.g. confidence score)

within the path. Finally, it returns the paths with the highest score. The user has to

define the number of returned paths. The subnetwork is the union of these paths. Two

advantages of PathLinker are its speed and its API enabling to run it from another app

or outside Cytoscape. It also enables to define the same nodes for the sources and

targets.

43

Figure 13. A shortest path is a path with the lowest number of crossed edges. The

shortest path from the source to the target node includes the nodes and the edges with the bold

lines.

To obtain a subnetwork, one can merely remove all the non-dysregulated genes. Yet,

nodes of biological networks tend to have a high degree. The yeast PPI network has 14

edges per node on average. Subnetwork extraction decreases this degree by selecting

edges which are likely to be involved in the dysregulated pathway. Using again the

example of traveling from one city to another, the highway map connecting the cities

does not need to include all possible highways, but only those of interest. Solving the

spanning tree problem produces the minimal subset of edges connecting all nodes. In

other words, it is the smallest list of interactions required to generate the pathway.

This problem accounts for edge weights. The minimal spanning tree minimizes the sum

weights while its maximal version maximizes the sum weights. CySpanningTree

(Shaik, Bezawada and Goveas, 2015) implements algorithms to solve spanning tree

problems within Cytoscape.

Spanning trees create subnetworks in term of edges, not nodes. They include all the

input nodes, while some of them can be false positives. On the contrary, they do not

enable other nodes of the network to be included to the subnetwork, i.e. false

negatives. Steiner trees answer these issues by generalizing spanning trees (Figure 14).

Among a full network, solving the Steiner tree problem aims to connect the terminals

(i.e. input nodes). Each edge has a cost, so the algorithm searches to remove them as

often as possible. Yet, removing an edge can disconnect a terminal. Excluding a

terminal gives a penalty. Losing a terminal is necessary when its connection to the

subnetwork costs too much compared to the penalty that it gives. In comparison,

adding a Steiner node (i.e. non-input node) requires to account for the cost of edges, but

that can serve to connect terminals to each other.

44

Figure 14. Steiner trees searches for an optimal subnetwork. The algorithm tries to extract

terminal nodes (grey nodes). A terminal node which is not included in the subnetwork (e.g. the

node with “5”) gives a penalty. On the other hand, included edges require a cost. The optimal

subnetwork minimizes penalties and costs. The final subnetwork can include non-terminal

nodes called Steiner nodes (white nodes) which do not have a penalty.

This type of Steiner tree is the prize-collecting Steiner tree introduced by (Huang and

Fraenkel, 2009) for biological interactomes. Their algorithm aims to minimize the edge

costs and the node penalties. A parameter enables to tune the effect of the node

penalties. Fraenkel and colleagues added multiple improvements to the algorithm

efficiency in the last decade. In particular, the authors extended the algorithm to find

independent subnetworks in the same network (Tuncbag et al., 2013). They called it

the prize-collecting Steiner forest problem (PCSF). It has a second parameter to enable

more or less independent subnetworks. The algorithm has been implemented into the

R package PCSF (Akhmedov et al., 2017). Among the subnetwork-extraction tools, it

seems the most flexible. It enables to find independent subnetworks, to not split the

input nodes into multiple subgroups and to account node and edge weights as well as

directed and undirected edges. In fact, the terminal nodes are not necessarily the input

nodes defined as dysregulated genes. Terminal nodes are any nodes with a penalty

higher than 0. This avoids to fix an arbitrary threshold for the p-value and/or the fold

change after the differential expression analysis.

45

AnatApp is a Cytoscape app implementing both, shortest paths and Steiner trees

(Yosef et al., 2011; Almozlino et al., 2017). Steiner tree algorithms optimizes the

subnetwork by measuring the effect of adding or removing a node or an edge. They

work at the global level. On the contrary, shortest paths returns a list of paths but

without optimizing the whole subnetwork. They work at the local level. In (Yosef et al.,

2009), the authors developed an algorithm designed to combine both aspects. The

trade-off between the global and the local level is set by a parameter. The authors

observed that the global level had a better efficiency then the local when most of the

relevant genes were defined as input nodes. This algorithm requires the input nodes

to be split into a set of source and target nodes. The edges can be directed or not and

the algorithm considers both node and edge weights. Moreover, AnatApp also

includes an algorithm applying only Steiner trees as well as another one applying only

shortest paths. The Steiner tree-specific algorithm does not require the input nodes to

be split, but it does not take into account the node weights and the edge direction.

While AnatApp is the only Cytoscape app applying Steiner trees, it is not very user-

friendly because the network and the input nodes have to be written into a file with a

complicated format. It also runs the algorithms on a dedicated server which requires

to send the data, which is unfeasible for sensible data or slow internet connections.

As subnetwork-extraction methods are made for data exploration, selecting their

parameters is typically arbitrary. A first criterion is to reduce the subnetwork size such

that it enables its exploration. Yet, changing parameters can be unpredictable. To make

this choice, (Magnano and Gitter, 2019) proposed the R package called Pathway

Parameter Advising. It decomposes networks into graphlets and compares their

distribution to those of reference networks from curated databases. Graphlets are

subnetworks of limited size (e.g. 4 for this approach) representing all possible

connections between the nodes. They represent network patterns. For example, the

authors’ definition includes the graphlet with the nodes A, B, C and D and the edges

A to B and B to C, such that D is isolated. This approach assumes subnetworks are

reliable if they have a distribution of graphlets close to biological references. Therefore,

one can test several parameters and select those with the closest distribution. In

general, the authors recommend not to stick to the default parameters of software

packages.

Comparing different subnetwork-extraction methods or algorithms to each other is

difficult. No independent benchmarks compared the efficiency of the methods or

explored their domain of applicability. It is not possible to a priori favor any method,

except by considering practical aspects. The papers of the methods also ignore to assess

their method with random data and networks. This assessment is critical for network

methods as they can easily find correlations within the network structure regardless

of the experimental data. Furthermore, no method is available to process time-course

datasets even by considering time as a categorical variable. TimeXNet claims to be

dedicated to time series but its approach does not differ from the others. To process

time-course datasets, one can apply these static subnetwork-extraction methods at

each time-point of a dynamic network (see section 6.2). For example, I connected the

46

Cytoscape app TimeNexus to PathLinker and AnatApp to use them to extract

subnetworks from temporal multilayer networks (Pierrelée et al., 2020).

(Hartwell et al., 1999) introduced the concept of modules. They are groups of molecules

generating a function by interacting together. Herein, there are both topological and

functional modules. In a network, community detection methods identify communities

of nodes that are considered as modules if they meet certain validation criteria (Figure

15). As for subnetwork-extraction methods, they assume a reciprocity between the

function and the structure, which is not necessarily true (Hric, Darst and Fortunato,

2014). Community is a larger concept than module. Studies from the physics literature

call communities clusters. In the fields of mathematics and engineering, they are called

network partitions when the communities are non-overlapping. In RNA-sequencing, the

methods search for communities of dysregulated genes. (Ravasz, 2002) showed that

community structures are hierarchical, i.e. they are nested within each other, and

(Lewis et al., 2010) confirmed that they are functional modules at multiple scales.

Although one could apply the same method discussed above for both community and

subnetwork extraction, community detection is often confused with subnetwork

extraction because of two semantic issues. First, communities can be strictly speaking

considered as a particular case of subnetworks. Therefore, subunits would be less

confusing. Second, some authors only consider the functional aspect of modules when

saying module. In this case, subnetwork extraction indeed aims to find functional

modules. Yet, the goals and the assumptions of community detection and subnetwork

extraction are different. The former assumes nodes of communities interact more

inside the community than outside (Fortunato and Hric, 2016), while the latter does

not. An subnetwork of section 5.1 can merely be a path of nodes without direct

connections between the first and last nodes. This vocabulary is not conserved and

often mixed up. Below, I mention a few methods to illustrate the diversity of active

community detection methods. Many reviews made efforts to precise the definitions

and classify the methods, e.g. (Fortunato and Hric, 2016; Batra et al., 2017; Nguyen et

al., 2019). (Batra et al., 2017) and benchmarked about 20 tools, but the study is not yet

comprehensive.

47

Figure 15. Community detection searches for groups of connected nodes. This examples

shows two communities of highly connected nodes. One central node links both. This node

would not be returned by a community-detection tool, while it should be useful for a

subnetwork-extraction tool if there are input nodes to extract in both sides.

(Nguyen et al., 2019) reviewed 3 approaches to extract subnetworks which are actually

detecting communities: the random-walk, maximal-clique and clustering-based algorithms.

Random-walk algorithms are based on a “walker” jumping from a node to its neighbor.

Choosing a neighbor where to jump to depends on a transition probability. The

communities are the network regions accumulating more jumps than others. For

example, EnrichNet starts the walkers from the input nodes and uses the edge’s

confidence score as transition probabilities (Glaab et al., 2012). The method belongs to

the class of random walks with restart because the walker has a given probability to go

back to its node of origin. The walker’s path through high-degree nodes are down-

weighted to remove this bias from the community detection.

Maximal-clique algorithms search for the largest regions in which all the nodes are

connected to each other, i.e. cliques (Luce and Perry, 1949) (Figure 16). (Vlaic et al., 2018)

developed ModuleDiscover to find maximal cliques enriched in dysregulated genes.

It starts by finding small cliques and then, it expands them. To avoid too large cliques,

several cliques can be explored at the same time such that they are competitors.

Interestingly, as the nodes are not shared by the cliques, the latter can be merged into

a unique “super-node” to simplify the network structure and its visualization. An

advantage of ModuleDiscover is to generate modules which are not centered on the

dysregulated genes which usually serve as input nodes. This is a drawback of many

tools for subnetwork extraction and community detection.

48

Figure 16. A maximal clique has all nodes linked to all nodes. This examples shows 5

nodes. If there were less nodes, the clique will not be maximal. Network model from (Pawlina, 2021).

The category of maximal-clique algorithms could also include the methods aiming to

directly optimize clustering coefficients. They measure how much a community is close

to be a clique at a level of one community (Watts and Strogatz, 1998) or all communities

(Luce and Perry, 1949). With the same idea, modularity measures the clustering level

by comparing the number of edges in a given community to a random community

(Clauset, Newman and Moore, 2004). The latter study applied a greedy algorithm to

optimize the modularity. Furthermore, (Xu et al., 2007) developed SCAN to find small,

highly-connected regions of a network. These regions are less stringent than cliques.

They give communities after expanding them to their neighborhood. One interesting

feature of SCAN is that it enables to detect hubs and outliers, which are not included

in the communities. It defines the hubs as nodes connecting communities and the

outliers as nodes which do not belong to a community and are not hubs.

In comparison, clustering-based algorithms combine clustering of gene expression

profiles as well as interaction networks. To avoid a confusion with the clustering

methods discussed in this section, it is more exact to call them gene profile-clustering

algorithms, similarly to Mfuzz or DREAM but incorporating network information.

ClustEx finds communities around node pairs with similar expression profiles (Gu et

al., 2010). It thus requires time-course datasets. First, it computes the correlations

between gene expressions to weight the edges with the correlation coefficients. Then,

it computes the distance between a node pair of dysregulated genes by taking the

length of the shortest path. The algorithm considers the edge weights to compute the

length. Third, ClustEx applies a hierarchical clustering to group the dysregulated

genes. Fourth, it adds the nodes from the shortest paths between the dysregulated

genes, as well as their neighbor nodes to the groups. Finally, it computes again the

shortest paths between the nodes of the groups and it ranks them. ClustEx returns the

modules with the shortest paths having the best scores.

49

To evaluate modules identified by community detection methods, one common

criterion is the significance of functional enrichment, e.g. (Mete et al., 2008). If enriched

terms are assigned to communities, then they are considered as functional modules.

Another criterion is the functional semantic similarity of communities, e.g. (Zheng, Wang

and Glass, 2008). This approach measures how many annotation two nodes share. It

considers the probability to find a node annotated by a given annotation within the

annotation database. To score a given community, the approach computes the score of

each node pair in it. However, similarly to their effect on network structure, (Luecken

et al., 2018) showed well-studied proteins are more likely to be included into modules.

On the contrary, there are less modules within regions enriched in poorly-studied

proteins. This is a selection bias. Therefore, the authors developed CommWalker to

remove this bias. It applies a short random walk (see below) on each node of modules

identified by community detection tools. It then computes a functional homogeneity for

each random walk, i.e. the level of similarity between the annotations of nodes. This

gives the functional homogeneity of the network background at a local level. Next,

CommWalker computes a score for the module by comparing its functional

homogeneity to its local background. Finally, the communities with a score below a

recommended cutoff are called modules.

When time series are available, one can explore how communities evolve over time.

(Spiliopoulou, 2011) reviewed the multiple definitions of evolving communities and the

applied approaches as well as their assumptions. These approaches typically consider

that networks evolve at each time-point by updating their structure, i.e. adding or

removing nodes or edges. A time-point without update is ignored. This is the same

input as for temporal networks (see section 6.1).

A first approach is to consider time as successive discrete time-points and identify

communities for each of them. It enables to explore the evolution of each community

by comparing them over time. For example, (Palla, Barabási and Vicsek, 2007) applied

a maximal-clique algorithm on each time-point. To identify evolving communities,

they applied the algorithm on the union of a pair of two consecutive time-points. This

joint network contained the common communities as well as the communities unique

to a time-point of the pair. Thereby, they could compare how the communities evolved

over time: size increasing, decreasing, merging, splitting, birth and death.

The above approach considers the time-points as being independent. However, one

can assume that a network at a given time-point depends on its state at the previous

time-point. This is considered by evolutionary clustering algorithms. Again, several

approaches exist. An interesting one is to smooth the time-independent processing of

the approach by (Palla, Barabási and Vicsek, 2007). To do so, (Chakrabarti, Kumar and

Tomkins, 2006) identified communities by applying algorithms such that similarity

scores are optimized. Similarity scores include a local similarity, equivalent to

clustering coefficients, as well as a temporal similarity. The latter measures the

distance between the current time-point and the previous one.

50

Both approaches explore evolving communities by aggregating time-points within a

time window of either one or two time-points. They model the system at each time

window. However, estimating a single model from the whole time series enables to

find other types of patterns, such as global or irregular patterns or those with a

frequency lower than the size of the time window. With this goal,

(Tantipathananandh, Berger-Wolf and Kempe, 2007) suggested a method enabling an

intuitive representation of evolving communities by solving a graph-coloring problem.

A famous application of this problem is to color the countries on a map with 4 colors

such that two neighbor countries do not have the same color. The method follows the

individuals (e.g. genes) over time; an individual at a given time is a node. The

individuals form temporal communities. A community at a given time is a so-called

group. Therefore, a node only belongs to one group. One group represents one specific

community. The method focuses on how the communities evolve and so, it assumes

that the groups are already known at each time-point.

Solving the graph-coloring problem aims to find the smallest number of temporal

communities explaining the time series (Tantipathananandh, Berger-Wolf and Kempe,

2007) (Figure 17). In the first step, it consists of assigning a color (i.e. temporal

community) to each group. The second step is to assign a color to the nodes from the

group colors. Indeed, at a given time, an individual can have either 1) the same color

as its group color or 2) a color different from its group color. An individual having

inconsistent colors implies that it is an “intruder” to its current community. In other

words, it belongs to a temporal community but it transiently contributes to another.

Between two time-points, the individual can either 1) stay in the same community, 2)

switch its membership to another or 3) become an intruder. The algorithm assigns

colors to the nodes by searching for the optimal node coloring. To do so, it minimizes

the total penalty of the node coloring. The penalty is increased when an individual

changes its community or is an intruder. Therefore, the authors assumed that the

individuals tend to keep their membership and stay in their community’s groups, or

switch between a limited number of communities. Splitting the graph-coloring

problem into two steps simplifies the optimization by avoiding to test all combinations

of node colors. Yet, testing all combinations of group colors is not possible either. The

authors developed approximation algorithms for large datasets.

51

Figure 17. Solving the graph-coloring problem enables to detect temporal

communities. Each square is a group of nodes clustering together at a given time-point. The

numbers indicates the temporal community assigned to a group or to a node. Indeed, at a given

time-point, a node can belong to one temporal community while its group belongs to another

community. For example, at time 1, the node 1 belongs to the community 1 and to a group also

assigned to the community 1. Yet, at time 2, node 1 and node 2 are assigned to the same group

which is assigned to the community 2. Thus, node 1 is an intruder to the community 2 at time

2. On the contrary, node 4 changed from the community 2 to 3 before to go back in 2. The node

3 does not exist at time 2. Edges within groups are not showed. Dashed lines represent evolution

of nodes over time.

The approach of (Tantipathananandh, Berger-Wolf and Kempe, 2007) is an example of

temporal networks (see section 6.1). They enable to represent the dynamics within the

network structure. The other aforementioned approaches, methods and algorithms

still produce static networks and do not incorporate the dynamics into their

computation. They are thus not fitted to determine and explore dynamic pathways.

In the below sections, I present 3 examples of approaches to explore dynamic

(sub)networks: visualizing their structure, comparing networks to identify their

rewired elements or inferring causalities to determine the behavior of predicted

pathways.

Cytoscape (Shannon et al., 2003) is a popular tool for network visualization and

analysis with almost 10,000 citations on PubMed (NCBI, 2021). The most prominent

feature is its modularity. It enables the research community to create apps extending

the capabilities of Cytoscape. For dynamic networks, DyNet is a popular app enabling

to visualize condition- or time-specific networks (Goenawan, Bryan and Lynn, 2016).

I developed the app TimeNexus to process temporal multilayer networks (Pierrelée et

52

al., 2020). An app store is available to easily download the apps, e.g.

http://apps.cytoscape.org/apps/timenexus. Other tools exist, such as D3.js (Bostock,

2011) and BioJS (Dao, Wilzbach and Corpas, 2014) to visualize networks on web

browsers.

In comparison, KEGG Mapper (Kanehisa and Sato, 2020) enables to visualize the maps

from the KEGG PATHWAY database with nodes colored by the user. The user just

provides a list of KEGG orthologies and specifies the species. Then, KEGG Mapper

returns all the KEGG maps matching at least one KO of the list. The provided KOs are

colored on the maps. This is convenient to quickly annotate an input list. I applied this

tool in the paper (Yun et al., 2020) to get the pathways enriched by the differentially

expressed genes.

Between conditions or over time, networks do not necessarily conserve their

interactions. Some molecules can start to interact while others stop their interactions.

Comparing networks across conditions allows to identify these rewired edges

(Bandyopadhyay et al., 2010). This topic has been extensively studied for gene co-

expression networks, see for example the reviews (van Dam et al., 2018; Chowdhury,

Bhattacharyya and Kalita, 2020a).

For a series of networks (e.g. time-points), TVNViewer merely enables to visualize the

rewiring by shadowing the rewired edges (Curtis et al., 2012). PPICompare identifies

and returns the significant rewired edges by comparing a collection of networks from

one condition to another, assuming all networks were built from the same original

network (Will and Helms, 2017). From the pairwise comparisons of networks of both

conditions, this method computes two statistics. First, it sums the number of removed

and lost edges between each pair of neighbor nodes. This gives the “amount of

rewiring per edge”. Second, the method also computes the fraction of rewired edges

in each pairwise comparison. The fraction is used to evaluate the probability of

rewiring for a given edge. Further, PPICompare predicts rewiring events which could

explain the significant rewired edges. This method could be used to compare time-

specific networks from two conditions. DyNet also provides visualization features to

represent the rewired nodes and edges (Goenawan, Bryan and Lynn, 2016). The

authors defined the rewired nodes as the nodes with the highest variance for a given

numerical attribute.

Inferring causality within a network aims to direct the edges according to the time’s

arrow. The methods assume that the effect on a given gene at a given time-point

depends on the effects of the neighbor genes at the previous time-point. In other word,

a dysregulated gene at a time induces a dysregulation of its interacting partners at the

next time. The edge is then directed from the former to the latter. These methods

produce temporal paths as the nodes depending on time. They assume the sampling

rate is high enough and that a signal can indeed propagate within the network. Also,

the effect should happen on the same molecular layer (e.g. PPI network or gene

regulatory network), otherwise it would confound the causality.

http://apps.cytoscape.org/apps/timenexus

53

(Köksal et al., 2018) developed TPS to direct the network’s edges according to the

causality. Their tool takes as input an undirected condition-specific network. PCSF

generated this network by extracting a subnetwork from a PPI with the node weights

being the highest fold change across time-points. TPS also uses the fold changes to

identify which nodes are activated or inhibited at a given time. These dysregulations

correspond to a temporal event. The tool then defines 3 logical constrains to the edges.

First, a given edge can only have one type of dysregulation (i.e. activation or inhibition)

in one direction. Second, to respect the causality, the edge has to start from the node

which first underwent a dysregulation. Third, the user can define prior constrains, for

example to force the direction of an edge. These constrains define all possible models

for the final time-directed network. TPS infers it by applying a mathematical solver to

not explicitly define the quasi infinite number of possible models. Note that the tool

assumes the final network is loopless (i.e. no feedbacks) and a temporal event can only

happen once.

(Anand and Chatterjee, 2017) implemented a simpler method to find a temporal path

among a network of gene sets. To build a network at each time-point, the functional

enrichment method GSEA is used to identify the enriched gene sets. The edges then

link the gene sets with common genes. It gives as many networks as time-points. To

find a temporal path, the method selects the gene set with the highest enrichment score

in the first network. In the second network and the next, it takes the gene set with the

highest score in the neighborhood of the last gene set of the path. The temporal path

corresponds to a succession of highly enriched gene sets. The authors claim that the

path identifies the propagation of dysregulation among the biological processes.

However, the method has three limits. First, two consecutive enriched gene sets do not

necessarily imply a causality, as a biological process can affect another without sharing

any gene with it. Moreover, the method is restricted to find a unique path, while

parallel propagations could happen. Finally, the enrichment score does not measure

how much a gene set is dysregulated, even if GSEA includes gene scores (e.g. fold

changes). It would be more relevant to directly consider the significance and/or the

fold changes of genes among the gene sets. Nonetheless, the method is not restricted

to networks of gene sets.

(Lima-Mendez and van Helden, 2009; Przytycka, Singh and Slonim, 2010) advocated

to combine multiple data types and consider time within networks. Multilayer and

temporal networks enable these goals.

Temporal networks extend static networks by redefining edges as contacts. A contact

is a transient link between two nodes happening at a given time. The list of contacts

defines the temporal network. (Holme and Saramäki, 2012; Holme, 2015) defined this

research field by unifying various approaches exploring time series with networks

under this paradigm.

54

Figure 18. Temporal networks model transient links between objects. Solid lines are

contacts (i.e. transient edges). Dashed lines represent evolution of nodes over time. This

represention is called “contact sequence”. Dynamic and multilayer networks can also be used

to represent temporal networks.

Modeling dynamic processes with temporal networks requires to first assume that

changes of the network structure can affect the dynamic process. The latter should be

of the same order or last longer than the time-point frequency (called time scale).

Temporal networks are thus not applicable to model biological processes from

experiments were the sampling frequency is too low. A very fast sampling frequency

would not be an issue because time-points without changes could be filtered out or

aggregated. On the contrary, evolving static networks model static networks

approximating dynamic processes when the time-point frequency is not fast enough

compared to the dynamic process.

To my knowledge, no method was developed to extract temporal subnetworks

following the same goal as in section 5.1. One idea would be to find the equivalent of

shortest paths for temporal networks and then, apply the same strategy as PathLinker

(Ritz et al., 2016; Gil, Law and Murali, 2017), i.e. merge all the shortest paths between

source and target nodes. However, it is not straightforward to define a temporal path or

even the source and target nodes. For a start, (Bui-Xuan, Ferreira and Jarry, 2003)

proposed 3 definition of temporal paths (called journeys). A journey depends on the

nodes of departure and arrival as well the traveling time and the arrival time. The

shortest journey is the smallest number of nodes that a walker has to go through to join

two nodes. Instead, the fastest journey optimizes the traveling time. When traveling

between cities, the country roads give shortest paths but not the quickest connections.

To arrive at the earliest time, the walker searches for the foremost journey between two

nodes. The walker can choose to go through traffic jams to arrive in time, even if that

55

was less efficient than leaving at a later time. Note that a journey must follow the time

flow; no shortcut is possible by going back in time. Therefore, going from the departure

to the arrival node is not equivalent to going from the arrival to the departure node.

Furthermore, temporal paths do not guarantee that a sub-path respects the property

of its path, e.g. a sub-journey of a shortest journey is not necessarily a shortest journey

itself. For example, let’s take 3 edges (a, b), (b, c) and (c, d) such that they are activated

at the time-points 1, 2 and 3, respectively, as well as an edge (a, c) activated at time 4

(Figure 19). The path 〈(a, b), (b, c), (c, d)〉 is the shortest journey from 𝑎 to 𝑑. Yet, the

sub-journey 〈(a, b), (b, c)〉 is a not the shortest journey from 𝑎 to 𝑐; it would be 〈(a, c)〉.

Consequently, algorithms from static networks cannot be applied on temporal

networks. This motivated the work of (Wu et al., 2016) to develop algorithms to

minimize these temporal paths.

Figure 19. Shortest paths from static network are not applicable to temporal

networks. Following the contact-sequence representation, solid lines are contacts (i.e.

transient edges). Dashed lines represent evolution of nodes over time. The journey from node

(a) to (d) is the only shortest journey. It goes through nodes (b) and (c). Contrary to static

shortest paths, subsets of shortest journeys are shortest journeys. Indeed, the journey from (a)

to (c) is a subset of the shortest journey from (a) to (d), but the shortest journey is the contact

from (a) to (c) at time 4 without going through (b). Other definitions of minimal temporal paths

are possible. For example, the foremost journey optimizes the arrival date. The journey going

from node (a) at time 1 to node (c) at time 2 is a foremost journey. A walker will arrive sooner

to node (c) with this journey than using the journey between both nodes at time 4.

Subnetwork extraction methods for temporal networks are still lacking.

56

Dynamic networks represent temporal networks as a collection of networks, each of

which representing the network at a given time-point (so-called snapshot network)

(Holme, 2015) (Figure 20). These are popular in computational biology. If there is no

interaction between two proteins at a given time-point, then the snapshot network

does not contain the edge between these two nodes. Time-specific networks are thus

dynamic networks (see section 4.3.5). I already presented how to use these to detect

evolving communities (see section 5.2.4). Datasets from RNA-sequencing cannot

usually define whether an interaction happened or not. Therefore, methods building

time-specific networks do not remove edges, but nodes. Typically, they do not include

non-expressed proteins at a given time in the associated time-point network, e.g. (Tang

et al., 2011). This limit is intrinsic to the technology.

Figure 20. Dynamic networks represent temporal networks as collections of snapshot

networks. A snapshot network includes all contacts which are present at a given time-point.

Dynamic networks enable to apply methods developed for static networks on each

snapshot networks. For instance, (Luo and Kuang, 2014) aimed to search for proteins

of interest within a dynamic protein-protein interaction network. The authors built a

time-specific network following the same principle as (Tang et al., 2011). Then, they

computed static measures for each node of each snapshot network. The measures do

not depend on other time-points. To have a dynamic measure for a given protein, the

authors’ idea was to sum the static measures of a protein’s nodes and to divide the

sum by the number of networks containing the protein. In other words, they computed

the average of the static measure across time.

This approach does not exploit the whole dynamic network. It measures local

properties of nodes. Instead, one can explore the global structure. (Masuda and Holme,

2019) developed a method to identify major events (i.e. change-points) affecting the

network structure. The authors assumed snapshot networks can be grouped such that

the transition from one group to another implies a change-point. To do so, they

computed the pairwise distances between each snapshot network and applied a

hierarchical clustering. For a given cutoff, they obtained clusters. The transitions

between clusters are the change-points.

Temporal networks are not adapted to model biological processes with interactomes.

Knowing which interactions happened and which did not is too difficult. A more

57

general definition of dynamic networks, which includes potential interactions, would

enable to process RNA-sequencing data as I presented in the sections 5.2 and 5.3. Yet,

dynamic networks lack the potential of temporal networks, as illustrated by the

temporal paths, because this representation constrains the view to independent

snapshots. Exploring the dynamics requires an ad hoc step where processing is limited

or information is lost. Finding pathways and what happened at each time-point, in

relation to the full time series, requires another approach.

Multilayer networks (MLN) are collections of homogeneous networks (Figure 21). They

enable to combine multiple data types into a single model. Herein, I apply the

definitions of (Kivelä et al., 2014). A homogeneous network is called an elementary layer

(abbreviated as layer). It has the same type of nodes and the same type of edges. Several

layers can have common properties. A consistent group of layers is called an aspect.

For example, time is an aspect shared by layers, each of them representing a time-

point. One can take the statistical factors and their levels as an analogy to describe the

aspects and their layers, respectively. The advantage of multilayer networks is to

combine an unlimited number of aspects. Following this example, another aspect can

be added to time, with one layer representing RNA-sequencing data and another layer

representing phosphoproteomics data at each time-point. Thereby, a layer is the

results of one of these two experiments at a given time-point.

As layers can share the same “node”, a node represents the set of nodes specific to

layers. A node within a given layer is called node-layer tuple as it is the coordinate of

the node depending on the aspects. In (Pierrelée et al., 2020), we abbreviated it as “layer-

node”. Layer-nodes are thus concrete entities in the multilayer network, while nodes

are more abstract. In other words, they are the state of a node. The layer-nodes are

connected through intra-layer edges within the same layer and through inter-layer edges

between two layers. The latter enable to define how layers interact. If an inter-layer

edge connects two layer-nodes related to the same node, then this inter-layer edge is

so-called a coupling edge.

58

Figure 21. Multilayer networks define complex networks. Each layer is a network with

homogenous data types: one type of nodes (e.g. protein) and one type of edges (e.g. interactions).

A group of layers sharing a feature is called an aspect. In this example, there are two aspects:

A and B. Each aspect can have one of two versions of the feature. For example, an aspect could

be the time with two time-points. Therefore, a layer is identified a tuple, e.g. (A1, B1). All layers

share the same 3 nodes: (1), (2) and (3). Therefore, the multilayer network is node-aligned. A

node in a given layer is called layer-node. It can have different values which are specific to the

layer. Following the same principles, intra-layer edges link layer-nodes within a same layer. In

comparison, inter-layer edges link layer-nodes between layers. The inter-layer edges only link

layer-nodes and their counterparts. Thus, the multilayer network is diagonally coupled and it

can be called multiplex network. Furthermore, this coupling is also ordinal because there are no

inter-layer edges between layers (A1, B1) and (A2, B2).

The definition of multilayer networks is general. For example, a node can be present

on a single layer, i.e. it has a single layer-node, and a layer-node can connect any other

layer-node. On the contrary, a popular form of a multilayer network is the multiplex

network. Multiplex networks have diagonal couplings, i.e. all inter-layer edges are

coupling edges. In other words, the nodes can only be connected to themselves. The

diagonal coupling is ordinal when a layer is connected to a limited number of layers.

59

Often, the nodes are present in every layer. The multilayer network is thus said node-

aligned. In section 6.4, I present multiplex networks with an ordinal coupling and one

aspect corresponding to time. They are so-called temporal multilayer network (tMLN)

(Pierrelée et al., 2020). A virgin tMLN is node-aligned but this property is lost

afterwards.

Multilayer networks enable to combine multiple -omics datasets without an

aggregation step. For example, (Lu et al., 2009) measured the fold-changes of genes on

4 layers: differential gene expression from RNA abundances, protein quantities from

mass spectrometry, gene promoters with chromatin modifications and genes being

transcribed by the RNA polymerase II. They determined at what layer (i.e. chromatin,

transcription, post-transcription or post-translation) the cell regulates its pathways by

comparing the agreement of fold-changes between layers. (Cantini et al., 2015)

identified communities from a multiplex network combining protein-DNA

interactions (PDIs), micro-RNA interactions, protein-protein interactions (PPIs) and

gene co-expression networks. They applied standard community-identification tools

on each layer. Then, they clustered the layer-specific communities and computed the

consensus community across layers. Yet, the methods of both studies did not use the

inter-layer edges; they represented data with layers but without actually applying

multilayer networks.

To consider the full potential of multilayer networks is challenging because it requires

to distinguish between intra- and inter-layer edges. Most of the other properties of

multilayer networks (e.g. diagonal coupling) are directly incorporated within the

network structure and do not require to be considered by network measures. For

example, (Cozzo et al., 2015) defined clustering coefficients for multiplex networks by

allowing node triangles to jump across layers. Highly clustered nodes tend to have

many triangles. The triangles can have either all their sides on the same layers or on

several layers. The side on another layer includes one intra-layer edge (i.e. the side

itself) and one inter-layer edge (i.e. the jump from the layer to the other). Therefore,

the multiplex clustering coefficient can be decomposed into the effects of “within-

layer” triangles and “between-layer” triangles.

Rather than using clustering coefficients, algorithms such as random walks (see section

5.2) enable to identify multilayer communities. (Valdeolivas et al., 2019) built a

multilayer network including one layer with PPIs, a second layer with interactions

from pathway databases, a third layer representing a gene co-expression network and

a last layer with gene-disease interactions. They applied a random walk with restart to

identify communities. The walker is able to jump within a layer (as usual) and between

layers. Jumping from one layer to another depends on a probability set by the user.

This method does not directly generate communities, but it scores the nodes to identify

those with a particular interest. On the contrary, (De Domenico et al., 2015) extended a

common tool for community detection called InfoMap to multiplex networks.

Multiplex-InfoMap applies random walks and summarizes the trajectories of the

walkers. This summary results in communities where the walkers tend to be trapped.

See (Huang et al., 2021) for a review of community detection tools for multilayer

networks.

60

There are few studies working on shortest paths for multilayer networks and none for

subnetwork extraction. There are two main challenges: how to compare the layers and

how to allow the jumps between the layers. To define shortest paths, (Magnani and

Rossi, 2013) assumed walking on intra-layer edges is equivalent to walking on inter-

layer edges. Yet, the authors assumed a path in one layer is not comparable to another.

For example, on a multilayer network of roads where each type of road is a layer, if a

path goes through 3 cities in the layer of country roads, it is not necessarily shorter

than a path with 4 cities in the layer of highways. Therefore, the authors counted the

number of steps (i.e. edges) in each layer for each path and compared only the steps

from the same layer. A path is the shortest or one of the shortest paths if it has the

lowest number of steps in each layer. For example, one path with 2 steps in layer A

and 3 steps in layer B is shorter than another path with 2 steps in layer A but 4 steps

in layer B. However, both paths have the same length as a path with 3 steps in layer A

and 2 steps in layer B. This is the concept of Pareto efficiency that (Magnani and Rossi,

2013) applied to define a so-called Pareto distance to compute shortest paths. The Pareto

efficiency is quite useful to make decisions based on multiple variables.

Multilayer networks can represent temporal networks as multilayer temporal networks.

Yet, standard –omics experiments cannot distinguish between actual and potential

interactions. Moreover, the sampling frequency is often not high enough to apply

temporal networks. Multilayer temporal networks are thus not appropriate to model

biological processes because of these two practical issues.

To overcome the limits of temporal networks, I defined temporal multilayer networks

(tMLN) (Pierrelée et al., 2020) (Figure 22). They benefit from the flexibility of multilayer

networks while representing time as an aspect. Each tMLN layer is a given time-point.

This is why temporal is an adjective of multilayer networks. A temporal aspect implies

the layers are ordered by time and the inter-layer edges are ordinal, such as the layer

at time 𝑡 is connected to the layers at times 𝑡 − 1 and 𝑡 + 1. To forbid going backward

in time, all inter-layer edges are directed from 𝑡 to 𝑡 + 1. Under this large definition,

dynamic Bayesian networks (see section 4.2.2) can also be considered as tMLNs, but

without intra-layer edges. In comparison, (Mucha et al., 2010) applied a community

detection method on temporal multilayer networks by computing statistics from the

weights of both intra- and inter-layer edges. The statistics can then be used by

monolayer-network analysis tools to detect communities across layers. Inter-layer

edges are not directed but this information is not required for this approach.

61

Figure 22. Temporal multilayer networks model time with one aspect. In this example,

the tMLN is a multiplex network with ordinal coupling. Inter-layer edges are directed following

the time axis.

As for temporal networks, no method was available to extract subnetworks from

multilayer networks. To fill this gap, I developed TimeNexus to do so (Pierrelée et al.,

2020). TimeNexus is a Cytoscape app with three features: building Cytoscape objects

representing multilayer networks, extracting subnetworks and visualizing multilayer

networks; see Figure 1 of (Pierrelée et al., 2020). The tool was applied to tMLNs. Yet, it

is applicable for any kind of multilayer networks with a unique aspect and ordered

layers as presented above. To illustrate the use of TimeNexus, a tMLN was built with

specific properties. Protein-DNA and protein-protein interactions were aggregated

into an interactome. This interactome was copied in each layer. The layer-nodes related

to the same node were connected between consecutive layers. Thereby, this tMLN was

a multiplex network with ordinal couplings. Intra-layer edges did not change over

time as they represented potential interactions, but layer-nodes did. Intra-layer edge

weights depended on the confidence score, while layer-node weights were computed

from the scores of the differential expression analysis. Layer-nodes were tagged

whether they were considered as dysregulated or not. As inter-layer edges connecting

dysregulated nodes would be expected to be part of subnetworks, their weights

depended also on the layer-node weights they were connecting.

As Cytoscape to not manage multilayer networks, tMLNs were represented by two

monolayer networks: the flattened network and the aggregated network (Figure 23). Each

of them represents one dimension of a multilayer network if one considers it as a 3D

object. The flattened network projects the multilayer network on a flat surface such

that intra- and inter-layer edges are not distinguishable. Moreover, each layer-node

becomes an independent entity. The aggregated network stacks up the layer-nodes

related to the same node into a single object. Intra-layer edges are stacked up as well.

For a virgin multiplex tMLN, it is equivalent to reuse the structure of one layer.

Therefore, the aggregated network loses the inter-layer edges. Flattened networks

62

enable to extract subnetworks and visualize multilayer networks. Aggregated

networks are only used for visualization.

Figure 23. Aggregated and flattened networks are simple networks representing

tMLNs. In an aggregated network, all layers are merged into a single network. Layer-nodes

related to the same node are aggregated into a single node. Intra-layer edges are also aggregated

into one. An edge is added to the aggregated network if there is at least an intra-layer edge in

one layer. Inter-layer edges are lost. On the other hand, the flattened network does not lose

inter-layer edges and do not merge layer-nodes, but the layers are lost. It implies that layer-

nodes are converted into simple nodes. A tag is added to node names to recognize the layer of

origin. Moreover, the intra- and inter-layer edges are not distinguishable anymore. The layout

of the aggregated network serves to create the layout of the flattened network.

To extract subnetworks, I used two algorithms available in Cytoscape: the extracting

apps PathLinker and AnatApp (see section 5.1.4 and 5.1.5) because they have an API

enabling TimeNexus to directly call them within Cytoscape. It executes the app

selected by the user on the flattened network after a processing step adapting the

network format. Indeed, both apps require a different network format. The apps also

need source and target nodes from the flattened network. Selecting these nodes

depend on the extraction method. With the global method (Figure 24), the source and

target nodes are the nodes corresponding to the layer-nodes of the first and last layer,

respectively. TimeNexus then sends the flattened network in the correct format to

PathLinker and AnatApp, gets the nodes of the extracted subnetwork and removes

the nodes which are not in this list from the flattened network. This generates a new

multilayer network corresponding to the active multilayer subnetwork. On the

contrary, the local method (Figure 25) applies the subnetwork extraction on each layer

independently. To do so, TimeNexus splits the flattened network according to the

layers of origin and sends the parts to one of the extracting apps. Next, it combines the

extracted nodes from each part into a single list, generating the new multilayer

63

network. The pairwise method (Figure 26) does the same but on a group of two

consecutive layers. This method is thus a compromise between the global and the local

methods. The former does not consider intermediate layers and the latter ignores inter-

layer edges. The multilayer subnetworks generated by TimeNexus lose their node-

alignment.

Figure 24. Global extraction method applies extraction on the full flattened network.

The top network is the flattened network from Figure 23 and the bottom subnetwork is the

extracted subnetwork. The latter is then converted back into a tMLN. Grey nodes are input

nodes (e.g. dysregulated genes).

64

Figure 25. Local extraction method applies extraction on each layer of the tMLN. It

does not account for inter-layer edges. The subnetworks from each layer are merged and

converted into a tMLN afterwards. Grey nodes are input nodes (e.g. dysregulated genes).

Figure 26. Pairwise extraction method applies extraction on each pair of consecutive

layers. Each pair is converted into a flattened network on which extraction is applied. The

subnetworks from each pair are merged and converted into a tMLN afterwards. Grey nodes are

input nodes (e.g. dysregulated genes).

65

Finally, the visualization feature creates a view for the Cytoscape object containing the

flattened network. The nodes are grouped according to their layer of origin. All groups

get the same layout corresponding to the layout of the aggregated network such as the

layer-nodes related to the same node are aligned. This ensures a consistent view

simulating the multilayer network structure.

66

Transcriptomic analysis of Chlorella sp. HS2 suggests the overflow of acetyl-CoA and

NADPH co-factor induces high lipid accumulation and halotolerance

Jin-Ho Yun1,†,^, Michaël Pierrelée2,†, Dae-Hyun Cho1, Urim Kim1,3, Jina Heo1,3, Dong-Yun

Choi1, Yong Jae Lee1, Bongsoo Lee4, HyeRan Kim5, Bianca Habermann2, Yong Keun Chang6,7,

Hee-Sik Kim1,3,*

1Cell Factory Research Center, KRIBB, Yuseong-gu, Daejeon, 34141, Republic of Korea

2Aix Marseille University, CNRS, IBDM, Marseille, France

3Department of Environmental Biotechnology, UST, Yuseong-gu, Daejeon, 34113,

Republic of Korea

4Department of Microbial and Nano Materials, College of Science and Technology, Mokwon

University, Seo-gu, Daejeon, 35349, Republic of Korea

5Plant Systems Engineering Research Center, KRIBB, Yuseong-gu, Daejeon, 34141, Republic

of Korea

6Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic

of Korea

7Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon,

34141, Republic of Korea

*Corresponding author: hkim@kribb.re.kr

†These authors contributed equally to this work.

^Current address: Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544 USA

Funding

This work was supported by “Carbon to X Project” and the Advanced Biomass R&D Center

(ABC) of the Global Frontier Program funded by the Ministry of Science and ICT of the

Republic of Korea (2020M3H7A1098291, 2016922286), by grants from Marine

Biotechnology Program and Collaborative Genome Program funded by the Ministry of Oceans

and Fisheries of the Republic of Korea (20150184, 20180430); and a grant from KRIBB

Research Initiative Program (www.kribb.re.kr).

67

http://www.kribb.re.kr/

Abstract

Previously, we isolated Chlorella sp. HS2 (referred hereupon as HS2) from a local tidal rock

pool and demonstrated its halotolerance and high biomass productivity under different salinity

conditions. To further understand acclimation responses of this alga under high salinity stress,

we performed transcriptome analysis of triplicated culture samples grown in freshwater and

marine conditions at both exponential and stationary growth phases. The results indicated that

the transcripts involved in photosynthesis, TCA and Calvin cycles were downregulated,

whereas the upregulation of DNA repair mechanisms and an ABCB subfamily of eukaryotic

type ABC transporter was observed at high salinity condition. In addition, while key enzymes

associated with glycolysis pathway and triacylglycerol (TAG) synthesis were determined to be

upregulated from early growth phase, salinity stress seemed to reduce the carbohydrate content

of harvested biomass from 45.6 dw% to 14.7 dw% and nearly triple the total lipid content from

26.0 dw% to 62.0 dw%. These results suggest that the reallocation of storage carbon toward

lipids played a significant role in conferring the viability of this alga under high salinity stress

by remediating high level of cellular stress partially resulted from ROS generated in oxygen-

evolving thylakoids as observed in a direct measure of photosystem activities.

Summary Statement

Allocation of storage carbon towards the synthesis of lipids seemed to play a critical role in

conferring the halotolerance of a Chlorella isolate by remediating excess oxidative stress

experienced in photosystems.

Keywords: acetyl-CoA, Chlorella sp. HS2, halotolerance, lipid synthesis, photosynthesis,

RNA-seq

68

1. Introduction

Microalgae exhibit a greater biomass yield than most terrestrial crops and can be grown

with excess nutrients in wastewater sources, prompting its industrial utilization as a

biofeedstock for the production of nutraceuticals, pharmaceuticals, cosmetics, and biofuels (Hu

et al., 2008; Quinn & Davis, 2015; Smith, Sturm, Denoyelles, & Billings, 2010; Unkefer et al.,

2017; Yun, Cho, Lee, Heo, et al., 2018). However, commercial production of algal biomass is

not yet considered to be economically competitive because of high energy inputs associated

with biomass harvesting and downstream extraction of desirable biomolecules (Laurens et al.,

2017; Stephens et al., 2010; Valizadeh Derakhshan, Nasernejad, Abbaspour‐Aghdam, &

Hamidi, 2015). Importantly, the productivity and operational stability of algal cultivation

platforms are prone to be compromised by unpredictable meteorological conditions and culture

contamination (McBride et al., 2014; Wang et al., 2016; Yun et al., 2019; Yun, Cho, Lee, Kim,

& Chang, 2018; Yun, Smith, La, & Keun Chang, 2016), which has led to multifactorial efforts

to develop robust algal “crops” under changing environments, just as in the case of

conventional agriculture.

Of environmental conditions that determine the productivity of biomass and desirable

biomolecules from industrial crops, salinity appears on the top of the list because of high crop

sensitivity to presence of high concentrations of salts in the soil or waters (Flowers, Troke, &

Yeo, 1977; Peng et al., 2014; Yuge Zhang & Liang, 2006). In particular, the extensive

application of chemical fertilizer facilitates accumulation of salts in agricultural fields, which

in turn could lead to a positive feedback loop by necessitating an increased application of

synthetic fertilizer (Yuge Zhang & Liang, 2006). Notably, industrial algal cultivation platforms

require continuous provision of nutrient salts with some studies demonstrating the utilization

of saline wastewater sources enriched with nitrogenous and phosphorus nutrients as growth

media to drive down the costs of commercial operation of algal cultivation systems (Yun, Cho,

69

Lee, Heo, et al., 2018; Yun, Smith, & Pate, 2015; Zhu et al., 2013). In addition, the direct

application of salinity stress for algal cultivation systems has been demonstrated as an effective

abiotic inducer of high lipid accumulation and an environmental barrier inhibiting the

proliferation of undesirable alien invaders in cultivation systems (Church et al., 2017; Kakarla

et al., 2018; Lee, Nam, Yang, Han, & Chang, 2016). Kakarla et al., for instance, supplemented

60 g/L of NaCl into concentrated Chlorella cultures for 48 hr and reported ca. 58% increase in

algal lipid productivity, supporting the possibility of deploying high salinity stress as a

promising post-treatment for the cultivation systems targeting to produce algal lipids (Kakarla

et al., 2018). Moreover, while high salinity stress could act as an effective method of crop

protection in reducing freshwater cyanobacterial or ciliate contaminants, it was successfully

demonstrated to facilitate algal harvesting by enlarging cellular diameter and increasing algal

settling rates (Church et al., 2017; Lee et al., 2016; von Alvensleben, Stookey, Magnusson, &

Heimann, 2013). Even though general osmosensitivity of algal crops has been acknowledged

(Flowers et al., 1977), there is thus a great industrial incentive to exploit algal diversity and

especially high tolerance of some algal species to highly saline environment (Yun et al., 2015).

With the apparent advantages of incorporating high salinity stress into the management

of industrial algal cultivation platforms, bioprospecting halotolerant algal strains that exhibit

high and reliable production of biomass and/or desirable biomolecules was the motivation of

our previous study in which a halotolerant Chlorella sp. was isolated from a tidal rock pool

(Yun et al., 2019). While the remarkable toughness of Chlorella under different physical and

chemical stress and its recognition as one of a handful of successful industrial crops have been

well documented (Fogg, 2001; Yun et al., 2019), this isolated Chlorella sp. HS2 (referred to

hereupon as HS2) exhibited relatively high growth under a wide range of salinity conditions

(i.e., 0-7% (w/v) of supplemental NaCl) compared to reference Chlorella strains (Yun et al.,

2019). Importantly, substantial shifts in the composition of fatty acid methyl ester (FAME) and

70

the amount of carotenoid pigments under different salinity conditions led us to speculate that

elucidating mechanisms behind relatively short-term (i.e., few days) algal acclimation to high

salinity stress would enable maximizing the industrial potential of HS2 by guiding ongoing

efforts in metabolic and process engineering (Oh, Chang, & Lee, 2019; Rathinasabapathi, 2000;

Yun et al., 2019).

In previous studies, transcriptome analysis has served as an important tool to

understand intricate algal responses to changing salinity conditions. For example, Foflonker et

al. challenged Picochlorum cells with high or low salinity shock and used transcriptomic and

chlorophyll fluorescence analyses to elucidate salinity-tolerance mechanisms (Foflonker et al.,

2016); the authors identified photoprotective mechanisms, oxidative stress response, cell wall

and membrane rearrangement, nitrogen assimilation, and diverting resources from growth and

PSII repair in favor of maintaining homeostasis as the main responses against a challenging

environment (Foflonker et al., 2016). Moreover, Perrineau et al. compared salt-acclimated and

progenitor populations of Chlamydomonas reinhardtii, and reported downregulation of genes

involved in the salt stress response (most notably, glycerophospholipid signaling) and in

transcription/translation in the salt-acclimated populations, suggesting gene-rich mixotrophic

algal lineages could rapidly adapt to high salinity conditions (Perrineau et al., 2014).

Importantly, the survey of existing literature suggested the presence of strain-specific algal

responses that could be closely associated with the phenotypic characteristics of an algal strain

of interest (Erdmann & Hagemann, 2001).

Herein, we report the transcriptome of HS2 grown in freshwater and marine conditions

to accomplish mechanistic understanding of algal acclimation to high salinity stress. Triplicated

cultures samples were first obtained at exponential and stationary growth phases in freshwater

and marine growth media for RNA-seq analysis, and the proximate analysis of harvested

biomass was additionally performed along with the measure of photosystem II (PSII) activity.

71

Combined together with the results in our previous study, we were able to elucidate how vital

metabolic pathways were shifted under high salinity stress, and an important role of allocating

storage carbon towards the synthesis of lipids in conferring the viability of HS2 and

remediating high oxidative stress under high salinity stress.

2. Materials and Methods

2.1. Strain selection and cultivation conditions

HS2 was previously isolated from a local tidal rock pool, and its high tolerance to a

wide range of salinity conditions was acknowledged (Yun et al., 2019). While the results of

HS2 cultivation in 1-L cylindrical PBRs were reported in our previous study (Yun et al., 2019),

both autotrophic cultures grown in freshwater inorganic medium and in marine inorganic

growth medium supplemented with 3% (w/v) sea salt were subjected to transcriptome analysis.

These triplicated cultures were grown under pre-determined optimal light and temperature

conditions with continuous supplementation of 5% CO2 at 0.2 vvm and agitation at 120 rpm.

2.2. PSII activity measurement and proximate analysis

While pigment and FAME composition of harvested HS2 biomass in both freshwater

and marine conditions were reported previously, photoautotrophically grown cells in

exponential and stationary growth phases were subjected to measurements of the

photosynthetic parameters in vivo using Multi-Color-PAM (Heinz Walz, Germany) (Shin et al.,

2017). After adapting cells under dark condition for 20 min, the light response curves of the

relative electron transport rate (rETR), the quantum yields of non-photochemical quenching

(Y(NPQ)) and nonregulated excess energy dissipation (Y(NO)) were measured in biological

triplicates while increasing the actinic light intensities of 440 nm LEDs with a step width of 2

min (Shin et al., 2017). In addition, proximate analysis of the biomass harvested at stationary

growth phase was performed in biological triplicates to further elucidate metabolic shifts in

72

HS2 under high salinity stress. The lipid content of harvested biomass was first analyzed by

extracting total lipids from freeze-dried biomass with chloroform-methanol (2:1 (v/v))

following a slightly modified version of Bligh and Dyer’s method (Bligh & Dyer, 1959).

Sample-solvent mixtures were then transferred into a separatory funnel and shaken for 30 min

and the lipid fraction was separated from the separatory funnel; the solvent was evaporated

using a rotary evaporator and the weight of the crude lipid obtained from each sample was

measured using an analytical balance following Yun et al (Yun, Cho, Lee, Heo, et al., 2018). In

addition, the protein content was determined using the method of Lowry using ca. 2 mg (dry

weight) of the cell pellet resuspended in 0.5 ml of 1 M NaOH and boiled for 5 min (Illman,

Scragg, & Shales, 2000; Lowry, Rosebrough, Farr, & Randall, 1951); the carbohydrate content

was measured using the phenol sulfuric acid method of Dubois et al. using ca. 0.5 mg (dry

weight) of the cell pellet resuspended in 1 ml of water (Dubois, Gilles, Hamilton, Rebers, &

Smith, 1956; Illman et al., 2000). Finally, the ash content was analyzed gravimetrically after

exposing dry biomass to 500 °C in a muffle furnace for 8 hours (Kent, Welladsen, Mangott, &

Li, 2015).

2.3. RNA extraction, library construction, and Illumina sequencing

Each of salt-stressed and control PBR cultures was harvested during exponential and

stationary growth phases by centrifugation at 4500 rpm for 10 min. Total RNA was then

extracted using the Trizol reagent (Invitrogen, Carlsbad, CA, USA), according to

manufacturer’s instructions. Subsequently, the RNA samples were treated with DNase I for 30

min at 37 °C to remove genomic DNA contamination, and the quantity and integrity of the total

RNA were verified using an Agilent 2100 bioanalyzer. The cDNA libraries were developed

according to manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA), and sequenced

on the Illumina HiSeq 2000 platform at Seeders Co. (Daejeon, Korea) (Liu et al., 2017). In

addition, RNA-Seq paired end libraries were prepared using the Illumina TruSeq RNA Sample

73

Preparation Kit v2 (catalog #RS-122-2001, Illumina, San Diego, CA). Starting with total RNA,

mRNA was first purified using poly (A) selection or rRNA depletion, then RNA was chemically

fragmented and converted into single-stranded cDNA using random hexamer priming; the

second strand was generated next to create double-stranded cDNA. Library construction began

with generation of blunt-end cDNA fragments from ds-cDNA. Thereafter, A-base was added

to the blunt-end in order to make them ready for ligation of sequencing adapters. After the size

selection of ligates, the ligated cDNA fragments which contained adapter sequences were

enhanced via PCR using adapter specific primers. The library was quantified with KAPA

library quantification kit (Kapa biosystems KK4854) following the manufacturer's instructions.

Each library was loaded on Illumina Hiseq2000 platform, and the desired average sequencing

depth was met while performing high-throughput sequencing.

2.4. De novo assembly and analysis

 De novo assembly was performed using Trinity 2.8.5 (Grabherr et al., 2011) using raw

100 bp paired-end reads. Assembly quality assessment was carried out with BUSCO 3.0.2

(Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015), for which the chlorophyte

database of OrthoDB 10 was employed as datasets at an e-value cutoff of 1e-5 (Kriventseva et

al., 2018); high-quality reads were mapped onto genome sequences using Bowtie2 2.3.5.

Thereafter, the quantification of the number of reads (i.e., counts mapped per transcripts) was

performed following alignment and abundance estimation of each Trinity script using RSEM

1.3.2 and Bowtie 1.2.2, respectively (Langmead, Trapnell, Pop, & Salzberg, 2009; B. Li &

Dewey, 2011). Transcripts with no count across all sampling points were removed. The matrix

of counts for unigenes (i.e., a collection of expressed sequences that are aligned or located to

the same position on genome) was used for downstream analyses.

2.5. DEG analysis and functional annotation

 Prior to functional annotation, differential expression analysis (DEA) was performed

74

first to avoid determining the most relevant transcript for each unigene based on unnecessary

assumptions at the early stage. In addition, given that quantitative asymmetry between up- and

downregulated unigenes was strong, SVCD 0.1.0, which does not assume the lack-of-variation

between up- and downregulated unigene counts (Evans, Hardin, & Stoebel, 2017; Roca, Gomes,

Amorim, & Scott-Fordsmand, 2017), was used for normalization of unigenes. The mean of raw

counts greater than the first quartile (i.e., 5.9 raw counts) as recommended (Roca et al., 2017)

was used during normalization. To determine DEGs, we used DESeq2 1.20.0, and the DEGs

between exponential and stationary growth phases were based on the adjusted p-values (i.e.,

DEGs were determined as unigenes with adjusted p-value < 0.01).

Functional annotation of DEGs was subsequently performed using Swiss-Prot, Pfam,

and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. First, following Trinotate

3.2.0’s recommendation, we predicted transcript coding regions that could be assigned to

putative proteins using TransDecoder 5.5.0 (Haas et al., 2013). Thereafter, homologies were

identified using in parallel BLASTp from BLAST+ 2.9.0; to identify pfam domains, hmmscan

from HMMER 3.2.1 was used (Camacho et al., 2009; Eddy, 2011). BLASTp and hmmscan

were run twice from the predicted proteins. SignalP 5.0b

(http://www.cbs.dtu.dk/services/SignalP/) was used to determined eukaryotic signal peptides

within transcripts. We also used BLASTx to find homologues, which allows to identify

sequence similarities within all six reading frames of the transcript. All BLAST runs were

performed against the Swiss-Prot database through DIAMOND 0.8.36 (Buchfink, Xie, &

Huson, 2015) with an e-value cutoff of 1e-10. Then, KEGG cross-references associated with

BLASTx or BLASTp hits were retrieved to assign each BLAST hit with a KEGG Orthology

number (KO). Transcripts without a BLASTx or BLASTp hit were excluded, and a pair of

transcript and coding region was removed when the KOs of corresponding transcript and

coding regions were not identical. In addition, when one gene had multiple KOs, the mean of

75

average e-values was computed and the KO with the lowest mean was selected as the most

relevant KO. Metabolic pathway maps were constructed using KEGG mapper based on the

organism-specific search results of Chlorella variabilis (cvr) and biological objects for each

KO were determined using KEGG BRITE. Enrichment was performed by implementing

GSEAPreranked from Gene Set Enrichment Analysis with the conda package GSEApy 0.9.15

(Mootha et al., 2003; Subramanian et al., 2005). A term was considered to be significantly

enriched when its false discovery rate (FDR) was lower than 0.25. All data generated from our

transcriptome analysis are available at the NCBI GEO repository: GSE146789 at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146789.

3. Results

3.1. Phenotypic shifts of HS2 under high salinity stress

Shifts in growth, FAME and pigment composition of HS2 during autotrophy in

freshwater (i.e., 0% (w/w) of supplemental sea salt) and marine (i.e., 3% (w/w) of supplemental

sea salt) media were reported in the previous study (Yun et al., 2019). Briefly, the results

indicated a nearly 10-fold decrease in the maximum cell density of the autotrophic PBRs in

marine medium at stationary growth phase, whereas only a two-fold decrease in the average

dry cell weight (DCW) was observed (Yun et al., 2019) (Supplementary Figure 1). As

microscopic observation revealed, a non-proportional decrease in DCW of HS2 under high

salinity stress corresponded to roughly 50% increase in cellular diameter or 3.4-fold increase

in cellular volume. While previous study also reported substantial decreases in the amount of

algal pigments and relative amount of polyunsaturated fatty acids under high salinity stress

(Yun et al., 2019), TEM images of harvested algal cell suggested the formation of large lipid

droplets under high salinity stress (Fig. 1): indeed, proximate analysis of harvested biomass

indicated a significant increase in lipid content from 25.0 dw% to 62.0 dw% under high salinity

76

stress, contrasting a nearly three-fold decrease in the amount of carbohydrate (Figs. 1 and 2).

While relatively high amounts of carotenoid pigments (i.e., β-carotene and lutein)

under high salinity stress observed in the previous study suggested their possible contribution

to the protection of photosynthetic machinery (Talebi, Tabatabaei, Mohtashami, Tohidfar, &

Moradi, 2013; Yun et al., 2019), the measures of relative electron transport rate (rETR), the

quantum yields of non-photochemical quenching (Y(NPQ)) and non-regulated excess energy

dissipation (Y(NO)) using multi-color-PAM indicated that rETR was reduced early during the

exponential growth phase under high salinity stress and was recovered at later stationary

growth phase. Although differences in Y(NPQ) and Y(NO) were not observed respectively at

exponential and stationary phases, a significant difference in Y(NPQ) was observed during

stationary phase only at high light intensities and Y(NO) of salt-shocked culture was

significantly greater than that of control across all light intensities during exponential growth

phase (Fig. 3).

3.2. Summary of de novo assembly

To determine differential transcriptomic regulation of HS2 under freshwater and

marine conditions, RNA-seq was performed using Illumina Hiseq 2000 platform, followed by

de novo RNA-seq assembly and mapping of data to the newly assembled and processed

transcriptome. Alignment statistics from Trinity and Bowtie2 2.3.5 mapping results were

summarized in Supplementary Table 1. Overall, 57640 unigenes were obtained out of 290

million raw reads, and the assessment of assembly quality indicated 89% of complete BUSCOs

following the removal of 4870 unigenes with 0 count in any of the treatments.

3.3. Functional annotation of differentially expressed genes

To elucidate differentially expressed genes (DEGs), read normalization was first

performed using SVCD normalization following standard DEGseq2 statistical test; a total of

9117 DEGs were subsequently obtained from 52770 unigenes corresponding to 39469

77

transcripts. While 3573 DEGs were commonly observed across all conditions, 2334 and 3120

DEGs were distinctively observed at exponential and stationary phases, respectively (Fig. 4).

Overall, global observation of transcriptome changes indicated general transcriptional

downregulation under high salinity stress, highlighting substantial metabolic constraints and

subsequent biochemical shifts that presumably facilitated the survival of algal cells under high

salinity stress. It should be also noted that a substantial difference in terms of the overall DEG

expression was observed between exponential and stationary growth phases, with more

transcriptional shifts towards downregulation during stationary growth phase. Finally, KO

annotation of DEGs yielded 2795 DEGs (i.e., 31% of all DEGs) with 1982 unique consensus

KOs, and these DEGs represented one third of genes of Chlorella variabilis NC64A’s genome

(Eckardt, 2010).

3.4. Functional enrichment of differentially expressed genes

Enrichment analysis was performed with the first and second elements of functional

hierarchies of KEGG BRITE. While the terms with a p-value lower than 0.05 and a false

discovery rate (FDR) equal to or lower than 0.25 were considered to be enriched, the results

indicated high enrichment of ribosomal proteins (Fig. 5). In addition, papain family of

intramolecular chaperones and heparan sulfate/heparin glycosaminoglycan binding proteins

were enriched. Notably, even though FDR values below the cutoff were not observed, many

enriched terms with a p-value lower than 0.05 were related to protein processing and membrane

trafficking.

3.5. KEGG pathway analysis

To elucidate metabolic pathways associated with the acclimation of HS2 to high

salinity stress, we mapped DEGs to 120 reference KEGG pathways; pathways enriched with

20 or more DEGs were summarized in Supplementary Table 2.

3.5.1. Genes involved in cell cycle and DNA replication

78

Upon exposure to high salinity stress, the growth of HS2 seemed to be inhibited with

an apparent enlargement of cellular biovolume (see 3.1). Correspondingly, most unigenes

homologous to genes identified to be involved in cell cycle were downregulated (Table 1).

Additionally, DNA replication seemed to be downregulated as well, although Mcm4 of MCM

complex (helicase) and DNA polymerase delta subunit 1 [EC: 2.7.7.7] were upregulated

(Supplementary File 1), suggesting the inhibition of DNA replication under high salinity stress.

Likewise, most of the unigenes associated with RNA degradation seemed to be downregulated

under high salinity stress (Table 1), except CNOT3 (Supplementary File 1). Furthermore, most

genes associated with RNA transport seemed to be downregulated under high salinity stress;

and genes associated with aminoacyl-tRNA biosynthesis were downregulated, except

glutaminyl-tRNA synthetase [EC: 6.1.1.18] and cysteinyl-tRNA synthetase [EC: 6.1.1.16]

(Table 1 and Supplementary File 1). Although these results generally supported the impairment

of both DNA and RNA processing under high salinity stress, it should be emphasized that a

number of unigenes associated with repair mechanisms (i.e., nucleotide excision repair, base

excision repair, mismatch repair) seemed to be upregulated (Supplementary File 1).

3.5.2. Genes involved in protein processing, MAPK signaling pathway, and ABC transporters

While salinity stress is known to substantially influence the processing and function

of protein (Erdmann & Hagemann, 2001; Perrineau et al., 2014), the results indicated the

downregulation of enzymes associate with protein processing in endoplasmic reticulum, except

mannosyl-oligosaccharide alpha-1,3-glucosidase [EC:3.2.1.207] (GIcII), protein disulfide-

isomerase A6 [EC: 5.3.4.1], and protein transport protein SEC24 (Table 1 and Supplementary

File 1). Moreover, most of the ribosomal proteins were downregulated under high salinity stress:

of 89 unigenes enriched on KEGG mapper’s ribosome pathway, only S9, S16, and S26e of

ribosomal proteins seemed to be upregulated at the exponential or stationary growth phases. In

addition, while mitogen activated protein kinase (MAPK) signaling cascades are widely

79

recognized for their role in stress response and signal transduction in eukaryotes (Yang, Suh,

Kang, Lee, & Chang, 2018), most of the genes associated with MAPK signaling pathway

seemed to be downregulated, except P-type Cu+ transporter (RAN1) (Table 1). Although

enriched unigenes indicated that all of the genes associated with protein export were also

downregulated under high salinity stress, 3 protein subunits associated with the PA700 (base)

of proteasome seemed to be upregulated along with an ABCB subfamily of ABC transporters

(i.e., ATM) under high salinity stress (Supplementary File 1).

3.5.3. Genes involved in photosynthesis and Calvin cycle

There was a clear trend that all of the genes associated with PSII and PSI were

downregulated from exponential phase under high salinity stress, corroborating with the

measure of PSII activity that indicated a significant reduction in rETR during early growth

phase. It should be, however, noted that these genes seemed to be less-downregulated or reverse

its downregulation at later stationary growth phase (Table 1 and Supplementary File 1). Notably,

there were more than 3-fold downregulation of transcripts (based on log2 fold change)

associated with PSI-D, -E, -F, -H, -K and -O subunits and PSII Psb27 protein during

exponential growth phase under high salinity stress; however, most of the transcripts associated

with these subunits were upregulated during stationary growth phase, except those associated

with PSI-K and PSII Psb27, which exhibited the downregulation with less than an absolute log2

fold change of 1.0 (Supplementary File 1). Similarly, all of the proteins associated with light

harvesting complex (LHC) of HS2 seemed to be downregulated initially under high salinity

stress at transcriptional level, whereas Lhcb2 and Lhcb4 were upregulated at the later growth

phase.

While these results suggested an early compromise in photosynthesis, it should be pointed out

that most of the enriched genes involved in carbon fixation via Calvin cycle were

downregulated as well (Table 1 and Supplementary File 1). However, the upregulation of

80

alanine transaminase [EC: 2.6.1.2] was observed under high salinity stress and no differential

expression in RUBISCO [EC: 4.1.1.39] was observed. In addition, although the results of our

transcriptome analysis did not indicate differential expression of ferredoxin-NADP+ reductase,

an enzyme that catalyzes the reaction generating NADPH in PSI (Medina & Gómez-Moreno,

2004), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) [EC: 1.1.1.40], the

third-class malic enzyme that catalyzes the oxidative decarboxylation of malate to pyruvate by

the reduction of NADP+ into NADPH, was upregulated during the exponential growth phase

(Spaans, Weusthuis, Van Der Oost, & Kengen, 2015). Furthermore, our transcriptome analysis

suggested that glucose-6-phosphate 1-dehydrogenase [EC: 1.1.1.49], one of the key enzymes

involved in the generation of NADPH during the oxidative phase of pentose phosphate pathway,

was substantially upregulated (Spaans, Weusthuis, Van Der Oost, & Kengen, 2015). It is thus

likely that these enzymes associated with central carbon metabolism played a significant role

in enhancing NADPH supply upon the induction of high salinity stress.3.5.4. Genes associated

with glycolysis and TCA cycle

High salinity stress seemed to induce the upregulation of important genes associated

with the conversion of glucose to acetyl-CoA (Table 1 and Supplementary File 1). In particular,

pyruvate dehydrogenase E1 component alpha subunit [EC: 1.2.4.1], which is involved in the

first step of converting pyruvate to acetyl-CoA was upregulated along with pyruvate

decarboxylase [EC: 4.1.1.1]. Moreover, phosphoglucomutase [EC: 5.4.2.2], the enzyme

involved in the first step of glycolysis, was upregulated. On the contrary, our results clearly

indicated the downregulation of TCA cycle under high salinity stress: most unigenes

corresponded to the known genes on TCA cycle were downregulated, suggesting the inhibition

of cellular respiration (Table 1 and Supplementary File 1). In particular, 3 transcripts associated

with citrate synthase [EC: 2.3.3.1], which mediates the first step of TCA cycle of converting

acetyl-CoA to citrate, were substantially downregulated during both growth phases; and a

81

transcript associated with isocitrate dehydrogenase [EC: 1.1.1.42], which catalyzes the rate-

limiting step of the oxidative decarboxylation of isocitrate to α-ketoglutarate, was

downregulated during exponential growth phase (Bellou & Aggelis, 2013). Collectively, these

results suggested that acetyl-CoA became more available for other cellular metabolisms,

including lipid synthesis, under high salinity stress (Bellou & Aggelis, 2013).

3.5.5. Genes associated with fatty acid and TAG accumulation

Although the genes involved in the synthesis of fatty acids at upstream were

downregulated, fatty acyl-ACP thioesterase A [EC: 3.1.2.14] and acyl-desaturase [EC:

1.14.19.2] were upregulated. Provided that the combined amount of C16:1, C18:0, and C18:1

was increased under high salinity stress (Yun et al., 2019), it is especially notable that these

two upregulated genes are directly associated with the synthesis of these groups of

monosaturated or saturated fatty acids. Moreover, while the genes enriched on KEGG mapper

indicated that fatty acid elongation and the biosynthesis of unsaturated fatty acids were not

upregulated, survey of the fatty acid degradation pathway indicated the inhibition of fatty acid

degradation under high salinity stress (Table 1 and Supplementary File 1). Most notably,

transcripts associated with acyl-CoA dehydrogenase [EC:1.3.8.7], enoyl-CoA hydratase

[EC:4.2.1.17], and acyl-CoA oxidase [EC:1.3.3.6] were substantially downregulated during

both exponential and stationary growth phases. Given that these enzymes facilitate fatty acid

β-oxidation in mitochondria or in peroxisome (Gross, 1989; Kong et al., 2017), the results

suggested their role in decreasing fatty acid turnover rate and in possibly preserving fatty acids

under high salinity stress.

As the upregulation of lipid synthetic pathway in marine medium was postulated based

on the increased lipid content in harvested biomass (see 3.1), the transcriptome analysis also

identified that genes essential for the synthesis of triacylglycerol (TAG) were upregulated: both

phosphatidate phosphate [EC: 3.1.3.4] and diacylglycerol O-acyltransferase 2 [EC: 2.3.1.20]

82

that both are involved in the conversion of 1,2,-Diacyl-sn-glycerol 3-phosphate to 1,2,-Diacyl-

sn-glycerol and in the generation of TAG from 1,2,-Diacyl-sn-glycerol seemed to be

substantially upregulated under high salinity stress during early growth phase.

3.5.6. Genes associated with carotenoid synthesis

Of 5 unigenes enriched on KEGG mapper’s carotenoid biosynthesis pathway, all of

the genes were downregulated, including a gene involved in the conversion of alpha-carotene

to lutein (i.e., carotenoid epsilon hydroxylase [EC: 1.14.14.158]) (Supplementary File 1). In

addition, two genes associated with the conversion of phytoene to lycopene, an important

intermediate for the synthesis of other carotenoids, were downregulated (i.e., zeta-carotene

isomerase [EC: 5.2.1.12] and zeta-carotene desaturase [EC: 1.3.5.6]) (Supplementary File 1).

Interestingly, both relative and absolute amounts of lutein were increased under high salinity

stress (Yun et al., 2019); these results suggest the provision of far-upstream precursors could

have played an important role in lutein synthesis.

4. Discussion

Given that high salinity stress strongly influences the viability and biochemical

composition of algal crops and thus the economic feasibility of entire algal biorefinery (Kakarla

et al., 2018; Laurens et al., 2017; Oh et al., 2019), this study was set out to elucidate

transcriptional responses that give rise to the salt tolerance of highly-productive HS2. While

genetic engineering approaches have been extensively explored with an aim of obtaining robust

algal crops, the results clearly indicated that halotolerant HS2 undergoes systematic

acclimation responses against high salinity stress, identifying potential target pathways of

interest for further genetic modifications or process optimization efforts (Ajjawi et al., 2017;

Oh et al., 2019; Qiao, Wasylenko, Zhou, Xu, & Stephanopoulos, 2017). Of these acclimation

responses, our results particularly identified a significant role of allocating available carbon

83

towards the synthesis of algal lipids.

These results support a preferential role of lipid as a carbon and energy reserve under

growth-inhibiting stress in HS2. Being an energy dense biomolecule, previous studies indeed

identified the role of lipids as a reserve facilitating cellular survival and growth upon the

alleviation of growth inhibiting stress conditions (Juergens, Disbrow, & Shachar-Hill, 2016).

Similarly, our results indicated the upregulation of enzymes associated with glycolysis and the

accumulation of lipid throughout entire growth stages: these results clearly suggest that a “push”

of the acetyl-CoA precursor from glycolysis towards lipid synthesis is a major driver of lipid

accumulation. Accordingly, the shift in the allocation of storage carbon resulted in an increase

in algal lipids and a corresponding decrease in carbohydrates from the harvested biomass. In

addition, KEGG pathway analysis of carotenoid synthesis pathway and TCA cycle suggested

that these competing pathways for the “pulling” of acetyl-CoA precursor were downregulated,

thereby positively contributing to the redirection of acetyl-CoA towards glycerolipid synthesis

(Fig. 6).

Recent studies, however, further revealed that lipid droplets are essential and

dynamical components of the cellular stress response in terms of maintaining energy and redox

homeostasis (Jarc & Petan, 2019), suggesting another important metabolic function of algal

lipids besides simple storage reserve. In particular, the accumulation of TAG and/or starch

could prevent cellular damage by utilizing excess photosynthetic energy and/or carbon inputs

as postulated in the overflow hypothesis (OH) (Juergens, Disbrow, & Shachar-Hill, 2016;

Neijssel & Tempest, 1975; Tan & Lee, 2016). Provided that Y(NO) of PSII represents non-

regulated losses of excitation energy and thus indirectly indicate the relative amount of reactive

oxygen species (ROS) (GmbH, 2012; Klughammer & Schreiber, 2008), our results suggested

a strong reduction of PSII accepters and photodamage via formation of ROS during early

growth phase under high salinity stress, which seemed to be subsequently resolved at stationary

84

phase with no substantial compromise in non-photochemical quenching (NPQ). In addition,

while our results indicated no differential expression of D1 protein of HS2 under high salinity

stress, overall downregulation of protein processing, including subunits of the proteasome,

under high salinity stress hints at a decrease in D1 protein turnover in PSII (Andersson & Aro,

2001; Erdmann & Hagemann, 2001), which likely further contributes to the increased oxidative

stress due to the inhibition of the recovery of damaged PSII and could elicite cellular

remediative responses, including lipid synthesis (Zhang, Paakkarinen, van Wijk, & Aro, 2000).

Importantly, the synthesis of glycerolipid necessitates NADPH as a cofactor (Tan &

Lee, 2016): being an electron donor, NADPH is synthesized along with ATP during the light

reaction of photosynthesis, and has been acknowledged for its role as an oxidative stress

mediator (Valderrama et al., 2006). It should be, however, noted that there was no substantial

upregulation of ferredoxin-NADP+ reductase in photosystems based on our transcriptome

analysis. Nonetheless, the upregulation of glucose-6-phosphate 1-dehydrogenase and malate

dehydrogenase (oxaloacetate-decarboxylating) (NADP+) suggests that these enzymes coupled

to central carbon metabolism likely made a substantial contribution to an increased NADPH

pool in HS2 under high salinity stress (Spaans et al., 2015). Furthermore, given that KEGG

pathway analysis suggested the downregulation of Calvin cycle under high salinity stress, the

excess NADPH not utilized in carbon fixation was likely to be also directed to the high

accumulation of fatty acid and/or glycerolipid, which in turn could play an important role in

remediating excess oxidative stress in PSII (Fig. 6).

In addition to carbon allocation to lipid accumulation, common cellular responses

under high salinity stress involve the upregulation of anti-oxidative enzymes, including

catalase, superoxide dismutase (SOD), and glutathione reductase (GR) as well as the

upregulation of DNA repair mechanisms and ABC transporters (Fu, Wang, Yin, Du, & Kan,

2014; Huang, Fulda, Hagemann, & Norling, 2006; Valderrama et al., 2006). Although

85

substantial upregulation of anti-oxidative enzymes was not observed at least at transcriptional

level, the degree to which each mitigation response contributes to the overall acclimation of

HS2 under high salinity stress across different growth stages remains to be elucidated.

Importantly, the results also indicated upregulation of P-type Cu+ transporter (RAN1) on

MAPK signaling pathway in HS2 – the activity of RAN1 was determined to be positively

correlated with plant cold resistance; overexpression of RAN1 was further reported to increase

abiotic stress tolerance in Arabidopsis thaliana (Xu & Cai, 2014; Xu, Zang, Chen, & Cai, 2016;

Yang et al., 2018). Moreover, the increased relative proportion of saturated and mono-saturated

fatty acids in HS2 under high salinity stress corresponded to the upregulation of enzymes

involved in the synthesis of palmitoleate (C16:1), stearate (C18:0), and oleate (C18:1n9c) (Guo,

Liu, & Barkla, 2019). Hence, the putative remediation of oxidative stress under growth-

inhibiting high salinity condition could concurrently involve signal transduction and a shift in

membrane fluidity (Guo et al., 2019), in addition to directing acetyl-CoA precursor and excess

co-factor towards lipid synthesis.

While the orchestration of each of elucidated responses likely conferred the relatively

high salt tolerance of HS2, lack of some of common algal responses under high salinity stress

could offer potential targets along with the identified responses when aiming to further enhance

the robustness of HS2 as an industrial algal crop. First, violaxanthin deepoxidase (VDE) and

zeaxanthin epoxidase (ZEP) that are respectively involved in the synthesis of zeaxanthin and

violaxanthin were not differentially expressed in HS2 under high salinity stress. Zeaxanthin,

however, is known to be associated with several types of photoprotection events of the PSII

reaction center (Dall'Osto et al., 2012); therefore, VDE upregulation has been acknowledged

as one of common algal responses under high oxidative stress (Z. Li et al., 2016). Given that

the relative amount of carotenoid pigments in HS2 was increased under high salinity stress

(Yun et al., 2019), enhancing the content of zeaxanthin by either upregulating VDE or

86

downregulating ZEP may further enhance the halotolerance of HS2. Furthermore, although

NPQ was not changed under high salinity stress, the elevation of NPQ has been denoted as one

of the common algal responses under stress conditions (Cui, Zhang, & Lin, 2017). It would be,

therefore, interesting to modulate the NPQ activity of HS2 as part of an effort to confer a greater

halotolerance or induce a higher lipid productivity. As an example of the latter, reducing the

expression levels of peripheral light-harvesting antenna proteins in PSII was demonstrated to

decrease NPQ of Chlorella vulgaris, thereby improving biomass productivity by funneling

more photosynthetic energy towards the electron transport chain (Shin, Lee, Jeong, Chang, &

Kwon, 2016). A similar approach can be adapted to direct more light energy towards the

electron transport chain and/or to possibly increase the available NADPH pool, although

cautions should be taken to avoid the possibility of antagonistic interactions between

competing metabolic pathways.

Acknowledgements

We would like to thank Dr. Carlos P. Roca for his thoughtful comments on SVCD normalization;

Sujin Lee and Dr. Saehae Choi for RNA extraction; and Drs. HyunSeok Shin and Byung-Kwan

Cho for their suggestions on RNA-seq analysis.

Conflict of Interest

The authors declare no conflict of interests.

Authors’ Contributions

JY and HK designed, conceived, coordinated the project and wrote the manuscript; JY, MP and

BH performed DEG analysis; DC, D-Y C, YJL, BL, HRK and YKC assisted manuscript

preparation and contributed to data interpretation; DC and JH contributed to RNA extraction;

87

and DC, UK and JH performed supporting experiments. All authors have read and approved

the final manuscript.

References

Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., . . . Xu, W. (2017).

Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of

a single transcriptional regulator. Nature biotechnology, 35(7), 647.

Andersson, B., & Aro, E.-M. (2001). Photodamage and D1 protein turnover in photosystem II.

In Regulation of photosynthesis (pp. 377-393): Springer.

Bellou, S., & Aggelis, G. (2013). Biochemical activities in Chlorella sp. and Nannochloropsis

salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor.

Journal of biotechnology, 164(2), 318-329.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification.

Canadian journal of biochemistry and physiology, 37(8), 911-917.

Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using

DIAMOND. Nature methods, 12(1), 59.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.

L. (2009). BLAST+: architecture and applications. BMC bioinformatics, 10(1), 421.

Church, J., Hwang, J.-H., Kim, K.-T., McLean, R., Oh, Y.-K., Nam, B., . . . Lee, W. H. (2017).

Effect of salt type and concentration on the growth and lipid content of Chlorella

vulgaris in synthetic saline wastewater for biofuel production. Bioresource technology,

243, 147-153.

Cui, Y., Zhang, H., & Lin, S. (2017). Enhancement of non-photochemical quenching as an

adaptive strategy under phosphorus deprivation in the dinoflagellate Karlodinium

veneficum. Frontiers in microbiology, 8, 404.

Dall'Osto, L., Holt, N. E., Kaligotla, S., Fuciman, M., Cazzaniga, S., Carbonera, D., . . . Bassi,

R. (2012). Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet

yield in specific light-harvesting antenna subunits. Journal of biological chemistry,

287(50), 41820-41834.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric

88

method for determination of sugars and related substances. Analytical chemistry, 28(3),

350-356.

Eckardt, N. A. (2010). The Chlorella genome: big surprises from a small package. In: Am Soc

Plant Biol.

Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS computational biology, 7(10),

e1002195.

Erdmann, N., & Hagemann, M. (2001). Salt acclimation of algae and cyanobacteria: a

comparison. In Algal adaptation to environmental stresses (pp. 323-361): Springer.

Evans, C., Hardin, J., & Stoebel, D. M. (2017). Selecting between-sample RNA-Seq

normalization methods from the perspective of their assumptions. Briefings in

bioinformatics, 19(5), 776-792.

Flowers, T., Troke, P., & Yeo, A. (1977). The mechanism of salt tolerance in halophytes. Annual

review of plant physiology, 28(1), 89-121.

Foflonker, F., Ananyev, G., Qiu, H., Morrison, A., Palenik, B., Dismukes, G. C., &

Bhattacharya, D. (2016). The unexpected extremophile: tolerance to fluctuating salinity

in the green alga Picochlorum. Algal research, 16, 465-472.

Fogg, G. (2001). Algal adaptation to stress—some general remarks. In Algal adaptation to

environmental stresses (pp. 1-19): Springer.

Fu, X., Wang, D., Yin, X., Du, P., & Kan, B. (2014). Time course transcriptome changes in

Shewanella algae in response to salt stress. PloS one, 9(5), e96001.

GmbH, H. W. (2012). MULTI-COLOR-PAM Manual.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., . . . Zeng, Q.

(2011). Trinity: reconstructing a full-length transcriptome without a genome from

RNA-Seq data. Nature biotechnology, 29(7), 644.

Gross, W. (1989). Intracellular localization of enzymes of fatty acid-β-oxidation in the alga

Cyanidium caldarium. Plant physiology, 91(4), 1476-1480.

Guo, Q., Liu, L., & Barkla, B. J. (2019). Membrane lipid remodeling in response to salinity.

International journal of molecular sciences, 20(17), 4264.

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., . . . Lieber,

M. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity

platform for reference generation and analysis. Nature protocols, 8(8), 1494.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A.

(2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives

89

and advances. The plant journal, 54(4), 621-639.

Huang, F., Fulda, S., Hagemann, M., & Norling, B. (2006). Proteomic screening of salt‐stress‐

induced changes in plasma membranes of Synechocystis sp. strain PCC 6803.

Proteomics, 6(3), 910-920.

Illman, A., Scragg, A., & Shales, S. (2000). Increase in Chlorella strains calorific values when

grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631-635.

Juergens, M. T., Disbrow, B., & Shachar-Hill, Y. (2016). The relationship of triacylglycerol and

starch accumulation to carbon and energy flows during nutrient deprivation in

Chlamydomonas reinhardtii. Plant physiology, 171(4), 2445-2457.

Kakarla, R., Choi, J.-W., Yun, J.-H., Kim, B.-H., Heo, J., Lee, S., . . . Kim, H.-S. (2018).

Application of high-salinity stress for enhancing the lipid productivity of Chlorella

sorokiniana HS1 in a two-phase process. journal of microbiology, 56(1), 56-64.

Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian

microalgae as potential human health supplements. PloS one, 10(2), e0118985.

Klughammer, C., & Schreiber, U. (2008). Complementary PS II quantum yields calculated

from simple fluorescence parameters measured by PAM fluorometry and the Saturation

Pulse method. PAM application notes, 1(2), 201-247.

Kong, F., Liang, Y., Légeret, B., Beyly‐Adriano, A., Blangy, S., Haslam, R. P., . . . Li‐Beisson,

Y. (2017). Chlamydomonas carries out fatty acid β‐oxidation in ancestral peroxisomes

using a bona fide acyl‐CoA oxidase. The plant journal, 90(2), 358-371.

Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov,

E. M. (2018). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,

bacterial and viral genomes for evolutionary and functional annotations of orthologs.

Nucleic acids research, 47(D1), D807-D811.

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Bowtie: An ultrafast memory-

efficient short read aligner. Genome Biol, 10(3), R25.

Laurens, L. M., Markham, J., Templeton, D. W., Christensen, E. D., Van Wychen, S., Vadelius,

E. W., . . . Pienkos, P. T. (2017). Development of algae biorefinery concepts for biofuels

and bioproducts; a perspective on process-compatible products and their impact on

cost-reduction. Energy & Environmental Science, 10(8), 1716-1738.

Lee, H., Nam, K., Yang, J.-W., Han, J.-I., & Chang, Y. K. (2016). Synergistic interaction

between metal ions in the sea salts and the extracellular polymeric substances for

efficient microalgal harvesting. Algal research, 14, 79-82.

90

Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data

with or without a reference genome. BMC bioinformatics, 12(1), 323.

Li, Z., Peers, G., Dent, R. M., Bai, Y., Yang, S. Y., Apel, W., . . . Niyogi, K. K. (2016). Evolution

of an atypical de-epoxidase for photoprotection in the green lineage. Nature plants,

2(10), 16140.

Liu, K.-H., Ding, X.-W., Rao, N., Prabhu, M., Zhang, B., Zhang, Y.-G., . . . Li, W.-J. (2017).

Morphological and transcriptomic analysis reveals the osmoadaptive response of

endophytic fungus Aspergillus montevidensis ZYD4 to high salt stress. Frontiers in

microbiology, 8, 1789.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement

with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275.

McBride, R. C., Lopez, S., Meenach, C., Burnett, M., Lee, P. A., Nohilly, F., & Behnke, C.

(2014). Contamination management in low cost open algae ponds for biofuels

production. Industrial Biotechnology, 10(3), 221-227.

Medina, M., & Gómez-Moreno, C. (2004). Interaction of ferredoxin–NADP+ reductase with

its substrates: Optimal interaction for efficient electron transfer. Photosynthesis

research, 79(2), 113-131.

Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., . . .

Laurila, E. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are

coordinately downregulated in human diabetes. Nature genetics, 34(3), 267.

Neijssel, O., & Tempest, D. (1975). The regulation of carbohydrate metabolism in Klebsiella

aerogenes NCTC 418 organisms, growing in chemostat culture. Archives of

Microbiology, 106(3), 251-258.

Oh, S. H., Chang, Y. K., & Lee, J. H. (2019). Identification of significant proxy variable for the

physiological status affecting salt stress-induced lipid accumulation in Chlorella

sorokiniana HS1. Biotechnology for Biofuels, 12(1), 242.

Peng, Z., He, S., Gong, W., Sun, J., Pan, Z., Xu, F., . . . Du, X. (2014). Comprehensive analysis

of differentially expressed genes and transcriptional regulation induced by salt stress in

two contrasting cotton genotypes. BMC genomics, 15(1), 760.

Perrineau, M. M., Zelzion, E., Gross, J., Price, D. C., Boyd, J., & Bhattacharya, D. (2014).

Evolution of salt tolerance in a laboratory reared population of Chlamydomonas

reinhardtii. Environmental microbiology, 16(6), 1755-1766.

Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P., & Stephanopoulos, G. (2017). Lipid production

91

in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature

biotechnology, 35(2), 173.

Quinn, J. C., & Davis, R. (2015). The potentials and challenges of algae based biofuels: a

review of the techno-economic, life cycle, and resource assessment modeling.

Bioresource technology, 184, 444-452.

Rathinasabapathi, B. (2000). Metabolic engineering for stress tolerance: installing

osmoprotectant synthesis pathways. Annals of Botany, 86(4), 709-716.

Roca, C. P., Gomes, S. I., Amorim, M. J., & Scott-Fordsmand, J. J. (2017). Variation-preserving

normalization unveils blind spots in gene expression profiling. Scientific reports, 7,

42460.

Shin, W.-S., Lee, B., Jeong, B.-r., Chang, Y. K., & Kwon, J.-H. (2016). Truncated light-

harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass

productivity. Journal of Applied Phycology, 28(6), 3193-3202.

Shin, W.-S., Lee, B., Kang, N. K., Kim, Y.-U., Jeong, W.-J., Kwon, J.-H., . . . Chang, Y. K.

(2017). Complementation of a mutation in CpSRP43 causing partial truncation of light-

harvesting chlorophyll antenna in Chlorella vulgaris. Scientific reports, 7(1), 17929.

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).

BUSCO: assessing genome assembly and annotation completeness with single-copy

orthologs. Bioinformatics, 31(19), 3210-3212.

Smith, V. H., Sturm, B. S., Denoyelles, F. J., & Billings, S. A. (2010). The ecology of algal

biodiesel production. Trends in ecology & evolution, 25(5), 301-309.

Spaans, S. K., Weusthuis, R. A., Van Der Oost, J., & Kengen, S. W. (2015). NADPH-generating

systems in bacteria and archaea. Frontiers in microbiology, 6, 742.

Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., . . . Hankamer, B.

(2010). An economic and technical evaluation of microalgal biofuels. Nature

biotechnology, 28(2), 126.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., . . .

Lander, E. S. (2005). Gene set enrichment analysis: a knowledge-based approach for

interpreting genome-wide expression profiles. Proceedings of the National Academy of

Sciences, 102(43), 15545-15550.

Talebi, A. F., Tabatabaei, M., Mohtashami, S. K., Tohidfar, M., & Moradi, F. (2013).

Comparative salt stress study on intracellular ion concentration in marine and salt-

adapted freshwater strains of microalgae. Notulae Scientia Biologicae, 5(3), 309-315.

92

Tan, K. W. M., & Lee, Y. K. (2016). The dilemma for lipid productivity in green microalgae:

importance of substrate provision in improving oil yield without sacrificing growth.

Biotechnology for Biofuels, 9(1), 255.

Unkefer, C. J., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Baxter, I., Blaby, I. K., . . . Dale,

T. (2017). Review of the algal biology program within the National Alliance for

Advanced Biofuels and Bioproducts. Algal research, 22, 187-215.

Valderrama, R., Corpas, F. J., Carreras, A., GÓMEZ‐RODRÍGUEZ, M. V., Chaki, M., Pedrajas,

J. R., . . . Barroso, J. B. (2006). The dehydrogenase‐mediated recycling of NADPH is a

key antioxidant system against salt‐induced oxidative stress in olive plants. Plant, Cell

& Environment, 29(7), 1449-1459.

Valizadeh Derakhshan, M., Nasernejad, B., Abbaspour‐Aghdam, F., & Hamidi, M. (2015). Oil

extraction from algae: A comparative approach. Biotechnology and applied

biochemistry, 62(3), 375-382.

von Alvensleben, N., Stookey, K., Magnusson, M., & Heimann, K. (2013). Salinity tolerance

of Picochlorum atomus and the use of salinity for contamination control by the

freshwater cyanobacterium Pseudanabaena limnetica. PloS one, 8(5), e63569.

Wang, L., Yuan, D., Li, Y., Ma, M., Hu, Q., & Gong, Y. (2016). Contaminating

microzooplankton in outdoor microalgal mass culture systems: An ecological

viewpoint. Algal research, 20, 258-266.

Xu, P., & Cai, W. (2014). RAN1 is involved in plant cold resistance and development in rice

(Oryza sativa). Journal of experimental botany, 65(12), 3277-3287.

Xu, P., Zang, A., Chen, H., & Cai, W. (2016). The small G protein AtRAN1 regulates vegetative

growth and stress tolerance in Arabidopsis thaliana. PloS one, 11(6), e0154787.

Yang, A., Suh, W. I., Kang, N. K., Lee, B., & Chang, Y. K. (2018). MAPK/ERK and JNK

pathways regulate lipid synthesis and cell growth of Chlamydomonas reinhardtii under

osmotic stress, respectively. Scientific reports, 8(1), 13857.

Yuge Zhang, Y. J., & Liang, W. (2006). Accumulation of soil soluble salt in vegetable

greenhouses under heavy application of fertilizers. Agr J, 1, 123-127.

Yun, J.-H., Cho, D.-H., Heo, J., Lee, Y. J., Lee, B., Chang, Y. K., & Kim, H.-S. (2019).

Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool,

as an industrial algal crop under a wide range of abiotic conditions. Journal of Applied

Phycology, 1-14.

Yun, J.-H., Cho, D.-H., Lee, B., Kim, H.-S., & Chang, Y. K. (2018). Application of

93

biosurfactant from Bacillus subtilis C9 for controlling cladoceran grazers in algal

cultivation systems. Scientific reports, 8(1), 5365.

Yun, J.-H., Cho, D.-H., Lee, S., Heo, J., Tran, Q.-G., Chang, Y. K., & Kim, H.-S. (2018). Hybrid

operation of photobioreactor and wastewater-fed open raceway ponds enhances the

dominance of target algal species and algal biomass production. Algal research, 29,

319-329.

Yun, J.-H., Smith, V. H., La, H.-J., & Keun Chang, Y. (2016). Towards managing food-web

structure and algal crop diversity in industrial-scale algal biomass production. Current

Biotechnology, 5(2), 118-129.

Yun, J.-H., Smith, V. H., & Pate, R. C. (2015). Managing nutrients and system operations for

biofuel production from freshwater macroalgae. Algal research, 11, 13-21.

Zhang, L., Paakkarinen, V., van Wijk, K. J., & Aro, E.-M. (2000). Biogenesis of the chloroplast-

encoded D1 protein: regulation of translation elongation, insertion, and assembly into

photosystem II. The Plant Cell, 12(9), 1769-1781.

Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient

removal and biodiesel production by integration of freshwater algae cultivation with

piggery wastewater treatment. Water research, 47(13), 4294-4302.

94

Table 1. Up- and down-regulated genes within KEGG pathway at exponential and stationary

growth phases.

KEGG pathway Total
Upregulation (downregulation)

at exponential phase

Upregulation (downregulation)

at stationary phase

ABC transporters 16 5 (11) 5 (11)

Aminoacyl-tRNA

biosynthesis
43 5 (38) 3 (40)

Base excision repair 15 7 (8) 2 (13)

Biosynthesis of

unsaturated fatty acids
8 2 (6) 2 (6)

Carbon fixation in

photosynthetic organisms
21 5 (16) 7 (14)

Carotenoid biosynthesis 9 3 (6) 1 (8)

Cell cycle 26 8 (18) 2 (24)

Citrate cycle (TCA cycle) 37 8 (29) 8 (29)

DNA replication 23 8 (15) 2 (21)

Fatty acid biosynthesis 15 5 (10) 4 (11)

Fatty acid degradation 16 4 (12) 1 (15)

Glycerolipid metabolism 13 9 (4) 2 (11)

Glycolysis /

Gluconeogenesis
38 13 (25) 12 (26)

MAPK signaling pathway 25 4 (21) 0 (25)

Mismatch repair 11 5 (6) 0 (11)

Nucleotide excision repair 25 13 (12) 4 (21)

Photosynthesis 17 1 (16) 8 (9)

Photosynthesis - antenna

proteins
12 0 (12) 7 (5)

Proteasome 32 14 (18) 6 (26)

Protein export 16 5 (16) 1 (15)

Protein processing in

endoplasmic reticulum
72 20 (52) 0 (72)

Ribosome 123 3 (120) 2 (121)

RNA degradation 35 14 (21) 5 (30)

RNA transport 62 6 (56) 2 (60)

95

Figures

Fig 1. Electron micrographs of Chlorella sp. HS2 grown in freshwater (left) and marine

(right) growth media at stationary growth phase. Scale bar denotes 1 µm.

Fig 2. Proximate composition of Chlorella sp. HS2 grown in freshwater and marine growth

media. Biomass harvested at stationary growth phase (n=3) was used in analysis.

96

Fig 3. Measurements of parameters related to the photosynthetic activity of Chlorella sp. HS2

in freshwater and marine conditions at exponential and stationary growth phases. (a) Relative

Electron Transport Rate in PSII. (b) Quantum yield of non-photochemical quenching in PSII.

(c) Quantum yield of non-regulated non-photochemical energy loss in PSII. Error bars denote

standard error of the mean from triplicate culture samples. E and S respectively denote

exponential and stationary growth phases.

97

Fig 4. Analysis of DEGs. (A) Venn diagram of the DEGs with an adjusted p-value cutoff of

0.01 in marine (M) and freshwater (F) conditions. (B) Asymmetry between the numbers of

up- and downregulated DEGs in exponential (E) and stationary (S) growth phases. Note that

negative % asymmetry indicates more DEGs were downregulated generally.

Fig 5. Functional enrichment of DEGs with KEGG pathway and BRITE databases

98

Fig 6. Simplified scheme of carbon and energy flows in Chlorella sp. HS2 for putative early

responses against high salinity stress. Red and blue dashed arrows respectively indicate

upregulation and downregulation of a given conversion or response based on transcriptome or

phenotypic analyses. Glycerate-3p Glycerate-3-phosphate; NADPH Nicotinamide adenine

dinucleotide phosphate; ROS Reactive Oxygen Species; TAG Triacylglycerol

99

100

TimeNexus: a novel Cytoscape app to analyze time-series data using temporal

MultiLayer Networks (tMLNs)

Michaël Pierrelée 1, Ana Reynders 2, Fabrice Lopez 3, Aziz Moqrich 2, Laurent Tichit 4 and

Bianca H. Habermann 1

1 Aix-Marseille University, CNRS, IBDM UMR 7288, Turing Centre for Living Systems

(CENTURI), Computational Biology Team, Marseille, France

2 Aix-Marseille University, CNRS, IBDM UMR 7288, Turing Centre for Living Systems

(CENTURI), Team Chronic Pain: Molecular and Cellular Mechanisms, Marseille, France

3 Aix-Marseille University, INSERM, TAGC U 1090, Marseille, France

4 Aix-Marseille University, CNRS, I2M UMR 7373, Turing Centre for Living Systems

(CENTURI), Marseille, France

Corresponding Author :
Bianca H. Habermann
Aix-Marseille University, CNRS, IBDM UMR7288
Turing Center for Living Systems (CENTURI)
Parc Scientifique de Luminy, Case 907
163, Avenue de Luminy,
13009 Marseille
France
e-mail: bianca.habermann@univ-amu.fr

101

Abstract

Integrating -omics data with biological networks such as protein-protein interaction

networks is a popular and useful approach to interpret expression changes of genes in

changing conditions, and to identify relevant cellular pathways, active subnetworks or

network communities. Yet, most -omics data integration tools are restricted to static

networks and therefore cannot easily be used for analyzing time-series data.

Determining regulations or exploring the network structure over time requires time-

dependent networks which incorporate time as one component in their structure. Here, we

present a method to project time-series data on sequential layers of a multilayer network,

thus creating a temporal multilayer network (tMLN). We implemented this method as a

Cytoscape app we named TimeNexus. TimeNexus allows to easily create, manage and

visualize temporal multilayer networks starting from a combination of node and edge tables

carrying the information on the temporal network structure. To allow further analysis of the

tMLN, TimeNexus creates and passes on regular Cytoscape networks in form of static

versions of the tMLN in three different ways: i) over the entire set of layers, ii) over two

consecutive layers at a time, iii) or on one single layer at a time. We combined TimeNexus

with the Cytoscape apps PathLinker and AnatApp/ANAT to extract active subnetworks from

tMLNs. To test the usability of our app, we applied TimeNexus together with PathLinker or

ANAT on temporal expression data of the yeast cell cycle and were able to identify active

subnetworks relevant for different cell cycle phases. We furthermore used TimeNexus on our

own temporal expression data from a mouse pain assay inducing hindpaw inflammation and

detected active subnetworks relevant for an inflammatory response to injury, including

immune response, cell stress response and regulation of apoptosis. TimeNexus is freely

available from the Cytoscape app store at https://apps.cytoscape.org/apps/TimeNexus.

102

https://apps.cytoscape.org/apps/TimeNexus

Introduction

Time-series gene or protein expression data can give invaluable insight into the temporal

dynamics of biological processes. It informs about the changes in activity of molecular

pathways and key players upon a cellular stimulus or helps characterize molecular activity in

cyclic processes, such as the cell cycle or the circadian rhythm. Methods and protocols exist

to analyze time-series expression data and extract the dynamically expressed genes from a

temporal dataset, some of which have been reviewed and compared in 1. Results from such

tools however do not provide insights into the activity of key molecules or pathways at a

given time point. Clustering temporal expression of genes is another possibility to analyze

time-series data 2. Here, especially the clustering of expression profiles over time points is

useful to follow the trajectory of expression dynamics of genes over time and to identify co-

regulated gene groups 3-5 .

Integrating temporal expression data with protein interaction data is more challenging.

Generally, the integration of -omics data with interactomes is very useful to gain deeper

insight, like identifying dysregulated pathways or gene communities of interest 6-9. Popular

approaches in network analysis combined with expression data include community

detection, identification of active subnetworks or of changes in general network features

such as centrality measures 10-21.

However, most approaches in this type of data integration are limited to static interactomes

even though the necessity of dynamic interactomes was recognized some time ago 22. A

dynamic interactome can be modeled as a temporal network. In brief, a temporal network

can be described as a sequence of static networks states ordered in time, whereby each state

represents the activity of the network at a given time point. Temporal networks and their

usability in different scientific disciplines have been reviewed in 23,24. In principle, the same

network analysis techniques used for static networks can be applied to temporal networks,

for instance extracting active subnetworks or detecting communities, identifying important

nodes by centrality measures, etc. 25-27. Yet, it should be considered that some of the standard

assumptions applied to static networks are not transferable to temporal networks and so

additional tools for temporal network analysis will be required 26.

Some approaches have been introduced that enable users to analyze temporal gene

expression data by integrating them with an interactome in a dynamic manner. TimeXnet is

a stand-alone JAVA application to identify active subnetworks in interactomes based on

103

time-course expression data 28. TimeXNet assumes cellular responses to be divided into early,

middle and late phases. It takes as an input a weighted interactome together with three gene

lists representing the active subset of genes at the three given phases (early, middle, late). It

will return the predicted active subnetwork together with the flow between the nodes (active

genes) in the early, middle and late phases. The output can be directly visualized in Cytoscape

in form of a network. While TimeXNet has shown promising results in mouse innate immune

response 29, it allows only three phases, where each gene belongs to exactly one phase that

needs to be defined a priori by the user. Thereby, TimeXNet cannot manage more complex

dynamic systems. The Cytoscape app DyNet allows to visualize and analyze dynamic

molecular interaction networks 30. It offers interactive visualization of a temporal network as

sets of state graphs, allowing re-arranging of the nodes on each state simultaneously.

Moreover, network analysis functions are provided, such as comparing attributes (of nodes

or edges) over two or more layers or identification of the most dynamic neighborhood by

searching for the most ‘rewired’ nodes in the temporal network. The Cytoscape app

DyNetViewer 31 is able to construct, analyze and visualize active temporal networks. It

provides four different algorithms for constructing one static active subnetwork for each time

point by retaining only the active nodes from a large protein interaction network at that time

point. It provides in addition network analysis functions, mostly focusing on centrality

measures and graph clustering algorithms of the temporal network. Furthermore,

DyNetViewer enables the user to analyze and visualize the resulting active subnetwork.

However, its functions are limited to handling one single layer at a time. Therefore, it does

not fully apply the principles of temporal networks.

What is generally missing is an easy to use and flexible app for working with temporal data in

network analysis. With TimeNexus, we introduce an approach which models a temporal

network as a discrete time longitudinal network, in which the expression changes over time

are projected on the layers of a multilayer network. Expression changes of one time point are

projected on one layer in the form of node weights and the layers are ordered in a time-

dependent manner. Other than available methods, TimeNexus uses the edges connecting

the layers (inter-layer edges) to model transition states between nodes from one time point

to the next and thus takes full advantage of the time-series data. A priori, all layers contain

the same network (the same nodes and edges) and thus, the multilayer network initially

generated by TimeNexus is a multiplex network. TimeNexus multilayer networks are not

104

temporal networks in the sense of 23, which assumes that edge activity varies over time. To

avoid ambiguity, we refer to our networks as temporal multilayer networks (tMLNs, Figure 1).

TimeNexus can be used to generate, manage and visualize tMLNs.

Figure 1: Basic structure of a temporal multilayer network (tMLN). Here shown is a tMLN of three layers.
Each layer of the network contains the same protein-protein interaction network (PPIN). Nodes within one layer
(layer-nodes) are connected via intra-layer edges, the same node between two layers is connected by an inter-
layer edge. For example, the layer-nodes from a given node A (A1, A2, A3) are successively linked by inter-layer
edges (A1->A2->A3). Numerical data, such as differential expression data from a time-series RNA-sequencing
study, are integrated with the TimeNexus tMLN, whereby one layer represents one time point. Yellow nodes
represent query nodes, which need to be defined a priori by the user. Query nodes can for instance be chosen
based on significant differential expression of genes at a given time point versus a control. Grey nodes
connecting query nodes but being themselves not significantly differentially expressed are referred to as Steiner
nodes in extracted active subnetworks.

We wanted to use TimeNexus to extract active subnetworks from time-series data.

Therefore, in the current release of TimeNexus, we provide a connection to the Cytoscape

apps PathLinker 16,17 and AnatApp / the ANAT server 18-21 for active subnetwork extraction

based on differential expression data, making use of their respective programmatic

interfaces. PathLinker finds a user-defined number (K) of shortest paths between source and

target nodes in a network and then creates active subnetworks by unifying these paths. It

requires user-defined query nodes (source and target), and makes use of edge weights within

the network to calculate scores for each path between query nodes. To identify shortest

paths in large networks, it has implemented an A* heuristic version of Yen’s algorithm 32.

ANAT, on the other hand, identifies ‘functional networks’ from a large cellular interactome.

When extracting ‘anchored’ networks, ANAT connects a set of target proteins (nodes that

were for instance identified in a large-scale screen) with ‘anchor’ proteins (nodes around

105

which the network should be constructed), and by making use of edge weights. ANAT tries

to find the most probable connecting path between two nodes based on minimizing the sum

of weights of all edges in the extracted active subnetwork, which is known as the Steiner tree

problem 33. As the two end-points need to be connected, the algorithm tends to include non-

query nodes in the final active subnetwork, which are known as Steiner nodes (or Steiner

points). Theoretically, TimeNexus can be extended with any network analysis app available

within Cytoscape, provided that it possesses a programmatic interface, as do PathLinker and

ANAT.

To test TimeNexus, we used our app together with PathLinker and ANAT on a yeast cell cycle

temporal study, following gene expression dynamics of the yeast cell division cycle in

synchronized cells 34. We extracted active subnetworks of the cell cycle from a temporal

multilayer network comprised of 16 temporal layers of one full cycle. We scored these active

subnetworks for relevance to the process under study by looking for enriched GO-terms

related to cell cycle. We also applied TimeNexus to our own data from an injury induced pain

assay in mouse, following mechanosensitivity and associated transcriptional changes over 30

days. We predicted pathways relevant for this process, including immune response, stress

response, apoptosis regulation and axonal growth. Although TimeNexus has been optimized

for temporal and multiplex networks, it is also applicable to all other forms of multilayer

networks. TimeNexus is freely available from the Cytoscape App store

(https://apps.cytoscape.org/apps/TimeNexus). The source code is also available on GitLab

(https://gitlab.com/habermann_lab/temporal-network-project).

106

https://apps.cytoscape.org/apps/TimeNexus
https://gitlab.com/habermann_lab/temporal-network-project

Methods

Definitions

We project temporal differential gene expression data from a time-series on a multilayer

network structure in the Cytoscape app TimeNexus, whereby we assign the differential

expression data from each time point to the layer representing this time point in the form of

node weights. We refer to this network model as a temporal multilayer network (tMLN, Figure

1). A priori, the network is the same on all layers. Therefore, the tMLN created by TimeNexus

is a multiplex network. We refer to a node on an individual layer as a layer-node, as opposed

to a node of a single-layer static network. Edges connecting nodes within one layer (A1, B1,

C1) are termed intra-layer edges; those connecting the same node between two different

layers (A1 and A2) are called inter-layer edges. Weights can be added to intra- and inter-layer

edges. Intra-layer edge weights will most of the time represent confidence scores on a

specific interaction. Inter-layer edge scores on the other hand can contain information on

changes in differential expression of one gene from one time point to the next. Thus, they

represent transition weights from one layer to the next and can be used for subsequent

network analysis tasks, such as active subnetwork extraction. For follow-up analysis of the

tMLN, we furthermore need to define query nodes: a query node is a layer-node that shows

significant differential expression at the given time point that is associated with that specific

layer.

TimeNexus represents the tMLN by two simplified objects: the Flattened network and the

Aggregated network. These two networks are complementary. Thus, in Cytoscape, a

TimeNexus tMLN is represented by a network collection, which includes the Flattened and

the Aggregated network, as well as a static network for each layer, representing the snapshot

of differential gene expression at a given time. The Flattened network is the visual

representation of the tMLN and serves for most applications, such as processing the tMLN

by static network tools. In the Flattened network, layer-nodes become independent entities

and the intra- and inter-layer edges become indistinguishable. Therefore, the Cytoscape

‘create view’ feature will not display this object properly as a temporal succession of layers

and a dedicated viewer app is required; The Aggregated network represents the collapsed,

single-layer network of all layers: all layer-nodes and intra-layer edges are unified in a single

node and edge, respectively and all temporal information is lost.

107

Temporal information required for building a temporal multilayer network with

TimeNexus

TimeNexus builds a tMLN by converting tables into a collection of Cytoscape networks. The

conversion requires 2 types of tables: a node table containing attributes for each of the layer-

nodes and an intra-layer edge table connecting the layer-nodes (Figure 2: 1. data import).

Optionally, an inter-layer edge table can be provided which specifies user-defined weight

information for connecting the layers.

The node table must contain information on the nodes in form of gene or protein names. It

must also contain the information whether a layer-node is a query node or not. The query

attribute is important as it is used by the active subnetwork extracting apps to identify the

layer-nodes that will contribute to the extracted active subnetwork. The query node attribute

can for instance be defined based on the log2 fold change of the layer-node surpassing a

selected cut-off and must either be TRUE or FALSE. Query nodes on each of the layers are

thus pre-set by the user. Additional layer-specific attributes such as the weight for each layer-

node in form of a numerical value can be provided, for instance reflecting the differential

expression at each time point. The interactome of a tMLN is assumed to be the same at each

layer. It should however be noted that TimeNexus can also handle multilayer networks that

are not multiplex. In this case, the user has to provide one node table for each layer.

The intra-layer edge table contains the information to build the interactome, which is

common to each layer. This table contains the edge information of the interacting nodes

(proteins or genes). A weight can be given to each intra-layer edge, for instance in form of a

confidence score for the interaction. The type of interaction (protein-protein interaction (PPI)

or protein-DNA interaction (PDI)) can be distinguished by adding an optional attribute to

each edge.

The optional inter-layer edge table is equivalent to the intra-layer edge table, but it defines

the edges connecting the nodes from one layer to the next. In our example of a tMLN, the

inter-layer edges connect the same layer-nodes from two different , consecutive layers. Their

attributes represent weights calculated by combining the weights of the source and target

nodes and thus carry information on the change in expression of that node between two time

points. If the inter-layer edge table is not provided, TimeNexus will automatically create

these inter-layer edge weights (see below). See Supplementary Tables S1-S3 for examples

108

for the node table and the intra- and inter-layer edge tables. To create a tMLN, at least 2

layers are required.

Connecting layers in TimeNexus

The layers are connected through the inter-layer edges. If the user does not provide an inter-

layer edge table, the weight between a layer-node on a given layer and its counterpart on the

next layer will be computed as

 winter-layer edge = (w_i+w_j)/(1+w_i+w_j)

where w_i is the weight of the layer-node from the layer i and w_j the layer-node weight on

the layer j=i+1. Contrary to the intra-layer edges, the inter-layer edges are directed for active

subnetwork extraction with ANAT. For PathLinker, inter-layer edge directionality is

removed, as this app cannot handle mixed edge types.

Building, managing and visualizing tMLNs with the Cytoscape app TimeNexus

We created the Cytoscape app TimeNexus to build, manage and visualize tMLNs and to

prepare them for extracting active subnetworks (defined as the region of the interactome

that connects the differentially expressed nodes over time 12 (Figure 2, see also

Supplementary Figure S1)). TimeNexus was entirely implemented in Cytoscape 3.8.0 35 and

using Java 11. It is incompatible with earlier versions of Cytoscape.

109

Figure 2: Workflow of the Cytoscape app TimeNexus for creating, managing and analyzing tMLNs. 1. data
import: First, the elements (layer-nodes, intra-, and inter-layer edges) structuring the temporal multilayer
network (tMLN) have to be imported into Cytoscape in the form of tables. 2. build temporal multilayer
network: In the second step, TimeNexus converts these data into a tMLN. For each element and for each layer,
the user selects the appropriate table and specifies the attribute type of each column. Once this is done,
TimeNexus represents the tMLN as a collection of Cytoscape networks (center box). It contains a Flattened
network, an Aggregated network and Layer-specific networks. In the Flattened network view, each layer-node,
together with the intra- and inter-layer edges are shown. In the Aggregated network view, the layers are
collapsed into a single-layer network. 3. extract active subnetwork: In the next step, an active subnetwork is
extracted from the tMLN. First, the user has to choose the method used to extract active subnetworks.
TimeNexus offers three methods: method 1 (global): the entire Flattened network is used at once, without
taking into account the edge type (intra- or inter-layer edges are treated as identical); method 2 (pairwise): two
successive layers are used to extract the active subnetwork that are then combined to the final active
subnetwork; method 3 (one-by-one): active subnetworks are extracted in each individual layer and these are

110

combined to the final active subnetwork. For extraction of active subnetworks, TimeNexus offers two
algorithms, PathLinker and the ANAT server. PathLinker is a Cytoscape app, while ANAT is executed on the
cloud and thus requires a working internet connection. 4. visualize temporal multilayer network: Finally, to
visualize the tMLN or active subnetwork, TimeNexus creates a view of the Flattened network. To do so, it takes
the node locations from the Aggregated network and transmits it on each layer. Layers are ordered in time on
the X-axis from left to right.

Building the temporal multilayer network (tMLN).

TimeNexus can build a tMLN from scratch by converting tables describing the network

structure, or by converting a single-layer network into a tMLN by adding a table with

temporal node information. To build a tMLN from scratch, TimeNexus requires at least one

node table together with one intra-layer edge table, as well as an optional inter-layer edge

table (Figure 2: 1. data import). After importing and specifying the content of the tables'

columns, the TimeNexus Converter that is accessible from the Cytoscape Apps menu

creates the tMLN (Figure 2: 2. build temporal multilayer network; Supplementary Figure

S1) which will appear as a collection of networks within Cytoscape: the Flattened network, the

Aggregated network, as well as one static network for each layer (Figure 2). The Flattened

network can be used to visualize the tLMN with the TimeNexus Viewer. In this view, the

layers will be ordered on the X-axis according to time and the layer-nodes will be placed and

aligned according to their position in the Aggregated network.

Extracting active subnetworks from tMLNs using PathLinker or ANAT

TimeNexus can be used to extract active subnetworks. To do so, the methods and apps for

extracting the active subnetworks have to be chosen with the TimeNexus Extractor (Figure

2: 3. extract active subnetwork, Supplementary Figure S1). First, the method for applying

active subnetwork extraction on the tMLN needs to be set. There are several possible logical

ways to extract active subnetworks from a temporal multilayer network: globaI, pairwise and

one-by-one (Supplementary Figure S2). Global extracts an active subnetwork from the

Flattened network representation of the tMLN. In the global method, intra-layer and inter-

layer edges are not distinguished during the extraction, but are re-established for visualizing

the final active subnetwork. This method only considers the queries of the first and the last

layer as the source- and target- query nodes, respectively. Pairwise combines two adjacent

layers in a single network and performs the extraction on this 2-layer Flattened network. Each

layer is used twice, once as layer N and once as N+1. The active subnetworks are extracted as

111

in the global method for each pair of layers. Finally, all extracted active subnetworks are

combined in one final active subnetwork over all time points (layers). One-by-one extracts

active subnetworks on single layers and combines them at the final step into the final active

subnetwork, again over all time points.

Second, the active subnetwork extracting app has to be selected. Currently, the TimeNexus

Extractor (Figure 2, Supplementary Figure S1) offers the Cytoscape app PathLinker 17, which

runs in the Cytoscape environment, and the ANAT server 18, which is called externally, for

active subnetwork extraction. PathLinker is called by TimeNexus by its CyRest interface and

performs the extraction on the user’s computer. ANAT has a Cytoscape app called AnatApp,

but its extraction algorithm is executed on an external server. TimeNexus directly calls this

server through a SOAP interface and does not need the AnatApp to be installed to execute

ANAT. We only refer to the ANAT server in this paper. When either of the extracting apps is

called, TimeNexus displays the specific parameters that need to be set by the user

(Supplementary Figure S1). Both apps provide default settings which can be adjusted by the

user. For details on the usage and parameter choices of ANAT or PathLinker, the user should

refer to the documentation of the respective chosen app. Either all layers of the tMLN or a

subset of layers can be selected for active subnetwork extraction. The result of active

subnetwork extraction from a tMLN is again a temporal multilayer network. It will appear in

Cytoscape as a collection of active subnetworks similar to the network collection described

above. It should be noted here that once active subnetworks have been extracted, the tMLN

representing the active subnetworks is per definition no longer multiplex, as active

subnetworks will have a different number of extracted nodes and edges on each of the layers,

depending on the query nodes that have been defined for that specific layer (time point).

Visualizing temporal multilayer networks with TimeNexus

Finally, the TimeNexus Viewer enables users to visualize a temporal multilayer network. The

tMLN can be visualized in several ways (Figure 2: 4. visualize temporal multilayer network).

In the Aggregated network view, all layers are collapsed into a single-layer network. The

Flattened network shows the individual layers of the tMLN next to each other on a horizontal

axis, preserving the position of a layer-node on each layer. The position of a layer-node

depends on its position in the Aggregated network and layers are connected to each other by

the inter-layer edges. Finally, each individual layer can be visualized. We provided a feature

112

to copy the layouts to multiple multilayer networks. It should be noted that the TimeNexus

visualization is optimized for networks that have the same semantics, in our case nodes

representing proteins or genes and edges interactions between those.

Yeast and mouse datasets used

Yeast cell cycle dataset

The yeast dataset from Kelliher et al. 34 was retrieved from the NCBI GEO database

(GSE80474). We reprocessed the raw fastq files corresponding to the 36 first samples of the

wild-type S. cerevisiae cultures from 0 to 175 minutes by mapping the reads to the S. cerevisiae

S288C genome R64-1-1 with STAR aligner 36 with default parameters. Raw read counts were

determined using featureCounts 37.

For all following steps, we selected 16 time points representing the first complete cell division

cycle. These start at time point 25 minutes and last until time point 100 minutes as described

by Kelliher according to the expression profiles of key cell cycle regulators. We renumbered

these time points in our dataset to start at 0 min of the first full cycle (corresponding to 25

minutes in the original dataset) until 75 min (corresponding to 100 min in the original dataset).

Using edgeR 38, lowly expressed genes were removed by the automatic function filterByExpr

and the read counts were normalized by the Trimmed Mean of M-values (TMM

normalization), resulting in normalized log-counts per million (logCPM). Then, we calculated

the log2FC for each gene at time point i (ti) versus its mean over the entire first cycle as

follows:

log2FCnode(ti) = logCPMnode(ti) - <logCPMnode>

where logCPM is the log-counts per million given by edgeR and <logCPM> is the average

logCPM over time for a given gene. Genes with a |log2FC| higher than or equal to 0.25 were

considered differentially expressed and defined as query nodes at the respective layer where

this cut-off criterion was met. As no replicates were available, we did not consider statistical

significance for this dataset.

Time-resolved assay and RNA-sequencing dataset of a mouse pain assay

Pain assay

113

All experiments were conducted in line with the European guidelines for care and use of

laboratory animals (Council Directive 86/609/EEC). All experimental procedures were

approved by an independent animal ethical committee (APAFIS), as required by the French

law and conform to the relevant institutional regulations of the French legislation on animal

experimentation under the license number 2015070217242262-V5#1537. All experiments

were carried out according to the ARRIVE guidelines. C57/Bl6JRj male mice of 8-12 weeks of

age were bought from Janvier Labs (https://www.janvier-labs.com). Mice were maintained

under standard housing conditions (22°C, 40% humidity, 12 h light cycles, and free access to

food and water). Special effort was made to minimize the number as well as the stress and

suffering of mice used in this study.

Carrageenan-Induced Inflammation

20µl of a solution containing 1% carrageenan in H2O (weight/vol, Sigma) were injected

subcutaneously into the plantar side of the left hindpaw, using a 30G needled syringe.

Mechanical thresholds of the plantar surface were determined using Von Frey’s filaments

with the up-down method 39, prior to inflammation (D0) and one- (1d), three- (3d) and thirty-

days (30d) post inflammation.

RNA extraction

Mice were deeply anesthetized with a mix of ketamine/xylazine and transcardially perfused

with 5-10 mL RNA Later (Qiagen). L3 to L5 Dorsal Root Ganglia (DRG) were rapidly dissected

and RNA was extracted by using RNeasy Micro Kit (Qiagen), according to manufacturer's

instructions. For quality control, RNAs were loaded on an RNA NanoChip (Agilent) and

processed with 2100 Bioanalyzer system (Agilent technology).

RNA sequencing

DRG RNAs were extracted in experimental duplicates from 2-3 mice each (2 pooled

replicates). RNA-seq libraries were prepared using the TruSeq RNA Sample Preparation Kit

(Illumina). All libraries were validated for concentration and fragment size using Agilent

DNA1000 chips. Sequencing was performed on a HiSeq 2000 (Illumina), base calling

performed using RTA (Illumina).

114

Data processing of RNA-seq datasets

Mouse sequencing data were quality controlled using FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We used cutadapt

(https://cutadapt.readthedocs.io/) to trim adapter sequences. Resulting trimmed reads were

mapped to the M. musculus genome version 10 (mm10) using STAR aligner with default

parameters. Mapped data were re-analyzed with MultiQC 40. Raw read counts were

determined and filtered as described above for the yeast dataset. Differential expression

analysis was done using edgeR, comparing the time points 1-day post injection (PI), 3 days PI

and 30 days PI always against the 0 day control prior to injection. Finally, we showed the

evolution of gene expression for the significantly differentially expressed genes of the mouse

dataset by first computing the z-score of log counts per million and then splitting the

significantly differentially expressed genes according to the time of their significant

differential expression. Raw fastq files were submitted to the Gene Expression Omnibus

database under the accession number GSE161764. We defined layer-nodes as query nodes if

the associated gene had an adjusted p-value lower than 0.05 for that given time point (layer)

versus the 0d control.

Building the S. cerevisiae and M. musculus interactomes and node tables

Both interactomes were built from the high-quality protein-protein interactions (PPIs)

provided by HitPredict 41,42. As recommended, interactions with a confidence score lower

than 0.281 were removed to only keep high-quality interactions. We also removed self-loops

in the network. For the yeast interactome, YEASTRACT+ protein-DNA interactions (PDIs) 43

were concatenated with the PPIs to obtain a more complete network. We used the extracting

apps PathLinker and ANAT, both of which do not support multi-edges between nodes. Thus,

we merged multi-edges of a given node pair by taking the mean of their confidence scores.

For this, we assumed that a PPI is equal to 2 directed edges and set the confidence score of

each PDI to 1. The final edge lists gave the undirected intra-layer edge tables. The nodes of

the tMLN represent both, the genes and the proteins as the same entities, in case a node is

both, a protein in a PPI or a regulated gene in a PDI. Nodes of genes that were not detected

in the RNA-seq datasets were removed. Consequently, edges where one partner was

removed were also filtered out. The weight for each individual layer-node was computed as

follows:

115

https://cutadapt.readthedocs.io/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

wnode = -log10(p_adj) * |log2FC|

where p_adj is the adjusted p-value and log2FC the log2-fold change for the time point

represented by that layer. As no replicates were available for the yeast cell cycle data, the

p_adj term was ignored for this dataset. The node weight was then standardized between

0.01 to 1 (0.01 was chosen to avoid rejection of nodes with weight 0 by extracting apps).

Moreover, a layer-node was tagged as a query for a layer if this layer-node had a |log2FC| ≥

0.25 for the yeast cell cycle dataset; or if it had been defined as significantly differentially

expressed with an adjusted p-value < 0.05 for the mouse dataset. Node names, node weights,

as well as the information whether a node is a query node were contained in the node tables,

enabling TimeNexus to set the correct attributes to the layer-nodes.

Extraction of active subnetworks

Active subnetworks were extracted with TimeNexus in combination with either ANAT or

PathLinker from the yeast cell cycle time-series dataset. The algorithm “anchored network”

with the sub-algorithm “approximation” was applied for ANAT. The network was set as

“undirected” for PathLinker. For performance tests with PathLinker, we selected the optimal

parameter K=750 by testing PathLinker with K-values from K50 to K=2000 and optimizing for

the F1-score (Supplementary Table S4; see below for calculating performance measures).

PathLinker with a K=50 was used to extract an active subnetwork for the mouse dataset, as

the network size and the number of queries were both smaller. All other parameters were

chosen by default.

Construction of maximum-weight, node-randomized and weight-randomized networks for

robustness tests

To test the robustness of TimeNexus, we generated 3 types of multilayer networks from the

yeast cell cycle tMLN. The maximum-weight network had intra-layer edge weights of 1 for

each connection. The node-randomized network had node names shuffled in the node table,

so the biological meaning of the network was lost. For the weight-randomized network,

random weights were assigned to intra-layer edges following the uniform distribution

116

[0.01,1). 0.01 was chosen instead of 0, as ANAT removes edges with weight 0. For all

networks, the node and inter-layer edge weights were not changed.

Calculating performance measures for extracted active subnetworks

We computed the extraction performances by testing if PathLinker and ANAT were able to

recover the 130 genes of the KEGG yeast cell cycle pathway sce04111 44. In each extracted

active subnetwork from the yeast cell cycle dataset, we counted the number of nodes in this

active subnetwork (# subnetwork nodes) and the number of active subnetwork nodes

overlapping with the 130 KEGG cell cycle genes (True Positives (TPs)). We then calculated the

percentage of the active subnetwork size, the False Positives (FPs, as subnetwork size minus

TPs), as well as the false negatives (FNs, as # KEGG cell cycle genes minus TPs). From these

values, we computed a set of scores: the ratio of extracted nodes and the interactome size,

as well as Recall, Precision, and F1-score as follows:

Recall = TP / (TP + FN)

Precision = TP / (TP + FP)

F1-score = 2 * ((Recall * Precision) / (Recall + Precision))

In addition, we performed GO enrichment analysis of active subnetworks to test for relevance

of extracted nodes for the biological process ‘cell cycle’. The tests were performed using

modEnrichr for yeast 45. We first extracted the expected enriched terms for 130 genes of the

KEGG cell cycle pathway. A term was called “enriched” if its adjusted p-value was lower than

0.05. We then computed the percentage of these enriched terms related to KEGG cell cycle

genes also found to be enriched for the nodes of the extracted active subnetwork. Finally, we

also calculated this percentage of relevant terms at the first quartile (top 25% enriched terms)

of the active subnetwork.

Enrichment analysis of active subnetworks extracted from mouse pain assay data

117

We used Enrichr 46 to calculate enrichments for active subnetworks extracted from the tMLN

integrating the mouse pain assay temporal RNA-seq data and the mouse interactome.

Enriched terms had an FDR <0.05 and a combined score > 100.

118

Results

Core functions of the TimeNexus app

TimeNexus was developed with the idea to create a versatile framework for working with

temporal multilayer networks in the Cytoscape environment (Figure 2). This included a

function to easily create tMLNs given tabular information on the structure of the network and

its temporal dynamic – realized in the TimeNexus Converter. We wanted to enable users to

visualize tMLNs in different ways – realized in the TimeNexus Viewer: in form of a Flattened

network, which visualizes the tMLN itself, as well as an Aggregated network, representing the

collapsed view of the tMLN. Finally, we wanted to be able to extract active subnetworks from

tMLNs. We realized this by connecting TimeNexus to active subnetwork extracting apps

available in Cytoscape that have a programmatic interface, PathLinker and the ANAT server.

We wanted to take full advantage of the information provided by the temporal multilayer

network. We therefore decided to include edge weights for the inter-layer edges of the tMLN

that connect the same gene between two layers. These edge weights represent transition

weights and describe the change in gene expression of a gene between two consecutive time

points. The functionality for active subnetwork extraction was realized in the TimeNexus

extractor.

We wanted to demonstrate and test the usability of TimeNexus by extracting active

subnetworks from two temporal gene expression datasets: from the yeast cell cycle which

offers highly resolved temporal information; and from mouse temporal gene expression data

following pain response after injury with low temporal resolution.

Active subnetwork extraction using TimeNexus and PathLinker identifies relevant

processes involved in early and late cell cycle events in S. cerevisiae

We wanted to test TimeNexus using a well-described, temporal biological system. We chose

the budding yeast cell cycle as our model system. During the cell cycle, cells duplicate their

content, replicate their DNA and at the end of the cycle faithfully divide into two identical

cells. A cyclin-dependent kinase and its various, successive binding partners, the cyclins, drive

progression of the cell cycle by precisely controlled events of phosphorylation, which is

followed by the destruction of the kinase activity by the anaphase promoting complex (APC)

at the onset of mitosis. Some cell cycle regulators are tightly controlled at transcriptional

level. To test TimeNexus, we used time-resolved expression data from a previous study on

119

the transcriptional dynamics of the cell cycle 34: in that study, S. cerevisiae cells were

synchronized before releasing them to undergo three cell divisions. RNA was extracted each

5 minutes and subjected to RNA-sequencing to monitor the changes in gene expression

during the three cell division cycles. We re-processed the raw read counts and used the

normalized counts (see Methods) to calculate the log2 fold-change (log2FC) in expression for

each gene of a time point versus the mean over one cycle. We created a tMLN of the first full

cell cycle, representing time points 25min-100min as described in the original publication 34.

For demonstration purposes, we focused on three early time points of the cell cycle, which

are characterized by cell growth and DNA replication (time points 0min, 5min and 10min

representing time points 25min, 30min and 35min of the original dataset); and three late time

points, which fall into the mitotic phase (60min, 65min and 70min, representing the time

points 85min, 90min and 95min of the original dataset; see Supplementary Table S5). We

also created a cell cycle interactome by using HitPredict and YEASTRACT+ interactions of

the 130 cell cycle genes as defined by KEGG, encompassing the 130 nodes (genes/proteins)

and 390 edges (interactions, see node table and intra-layer edge table in Supplementary

Table S5). We used a |log2FC| cut-off of ≥ 0.25 to define a layer-node as a query node. Using

TimeNexus Viewer, we created the Flattened network of the KEGG cell cycle (Figure 3 a). We

used the pairwise method and PathLinker with default settings and a K of 150 to extract an

active subnetwork from the three early and late temporal layers, respectively.

120

Figure 3: TimeNexus extracts active subnetworks from the yeast cell cycle interactome enriched in relevant
biological terms related to cell cycle from early and late cell cycle stages. (a) Flattened network of the S.
cerevisiae cell cycle pathway, containing core components of the yeast cell cycle as defined by KEGG. Yellow
nodes are differentially expressed query nodes in the first three time points (0min, 5min, 10min) of the first full
cycle in the time-series expression dataset 34, blue ones are differentially expressed query nodes in the late time
points 60min – 70min; those with a gradient from yellow to blue are differentially regulated and therefore query
nodes in both, early and late time points. Blue lines (edges) represent protein-protein interactions, red ones
protein-DNA interactions. Dotted lines represent inter-layer edges. The interaction data were extracted from
HitPredict and the YEASTRACT+ databases, respectively. (b) An active subnetwork was extracted from the first
three time points of the yeast cell cycle (0min - 10min), containing genes differentially expressed in early phases
of the cell cycle. (c) Enrichment analysis with genes in the early active subnetwork identified processes related
to replication and active transcription. (d) An active subnetwork of late time points in the cell cycle (60min -

121

70min) was extracted. (e) Enrichment analysis of the genes contained in the late active subnetwork from time
points 60 – 70min shown in d resulted in enriched pathways related to late processes in the cell cycle, such as
contractile ring organization, cell septum assembly or septin ring assembly and organization. Shown in b and d
are the extracted active subnetworks of core cell cycle components of the early and late phases as displayed by
the TimeNexus Viewer. Active subnetworks were extracted using PathLinker (pairwise method, K=150).

The extracted active subnetwork of the early phase of the cell cycle contained 41 nodes and

134 edges (Figure 3 b). As expected, its members included proteins important for cell

proliferation, DNA replication and active transcription, such as the MCM proteins MCM1 –

MCM7, the cyclin dependent kinases CLB1, 2, 5, 6 and CLN2, as well as CDC28, CDC45, DBF2,

SWI4, SWI5 or SIC1. To systematically identify enriched biological processes or phenotypes,

we submitted the proteins of the active subnetwork to modEnrichr for yeast. We found that

biological processes and phenotypes associated with early cell cycle phases were

predominantly enriched (Figure 3 c, Supplementary Table S5).

To test whether extracted active subnetworks truly reflect cell cycle phases, we also used

differentially expressed query genes in the three time points between 60 min and 70 min,

reflecting the late stages of the yeast cell cycle, where cells prepare to undergo cell division

(Supplementary Table S5). The active subnetwork extracted with PathLinker is substantially

different from the one of the first three time points, with only 27 nodes and 101 edges (Figure

3 d). In accordance with the late stage in the cell cycle, genes involved in cell septum

assembly, bud neck septin ring organization, actomyosin contractile ring assembly,

regulation of G2/M transition and other late cell cycle events were enriched (Figure 3 e,

Supplementary Table S5). Taken together, TimeNexus provides a versatile and useful

platform to construct, manage and visualize tMLNs. By linking TimeNexus to active

subnetwork extraction tools such as PathLinker, it is able to extract biologically meaningful,

active subnetworks from the tMLN as demonstrated by analyzing time-resolved expression

dynamics of the early and late yeast cell cycle.

TimeNexus performance in identifying relevant active cell cycle subnetworks from the S.

cerevisiae interactome

We next wanted to test more rigorously the extraction performance of TimeNexus in

combination with PathLinker or ANAT on tMLNs. More specifically, we were interested

whether we could reliably extract the 130 genes defined by the KEGG cell cycle pathway from

the yeast interactome using the time-resolved cell-cycle expression data 34. Log2FC was

122

calculated as described above. The absolute log2FC was used as node weight, to compute

inter-layer edge weights and to define layer-nodes as queries when their weight was equal to

or higher than 0.25 (Supplementary Tables S6, S7). We built a high-quality interaction

network for S. cerevisiae which included protein-protein, as well as protein-DNA interactions

(see Methods and Supplementary Table S6). We constructed the tMLN using the TimeNexus

Converter and extracted active subnetworks using PathLinker or ANAT. For PathLinker, the

parameter K was set to 750 after optimization (Supplementary Table S4). We calculated the

efficiency of both extracting apps by calculating Precision, Recall and F1 score for each time

point individually, as well as over all 16 time points. Moreover, we performed GO enrichment

analysis with the extracted nodes for each time point, as well as over the entire extracted

active subnetwork. We scored the % enriched expected terms, so those identical to the

original 226 terms enriched for the 130 KEGG-defined cell cycle genes, as well as the % top

expected GO-terms in the first quartile of enriched GO-terms (Table 1 and Supplementary

Table S8).

Generally, we could observe that PathLinker performed better than ANAT with our data.

PathLinker extracted an active subnetwork that had 9.6% of the size of the entire yeast

interactome. The overall Recall of core cell-cycle nodes was 45.4% for PathLinker, though

Precision was 10.6% only, leading to an F1-score of 17.2%. 39% of expected GO-terms were

found overall, and 71.7% expected GO-terms were retrieved in the first quartile of enriched

GO-terms. The active subnetwork extracted by ANAT contained 12.3% of the total

interactome. ANAT reached a Recall of 37.7%, a Precision of 6.9% and an F1-score of 11.7%.

35.2% expected GO-terms were found overall, and 68% within the first percentile of enriched

GO-terms (Table 1). Recall, Precision and F1-score were dependent on the individual time

point (layer). They peaked in the earlier phases of the cell cycle and dropped towards the end.

This was not unexpected, as the number of query nodes was much lower in late phases of the

cycle. Overall, expected GO-terms ranged around 50%, whereby the expected GO-terms in

the first quartile seemed to be generally high throughout the entire cycle and with both

extracting apps (Supplementary Table S8).

Table 1: Efficiency and robustness of TimeNexus-based active subnetwork extraction
with PathLinker and the ANAT server over the entire tMLN

123

Robustness Subnetwork
size

Recall Precision F1-score % expected
GOs

% top expected
GOs

TN+PL
original 9.6 45.4 10.6 17.2 39 71.7
maximum
edge weight

53.2 93.1 3.9 7.6 16.2 34.4

node-
randomized

51.6 83.9 3.7 7.0 15.2 27.3

weight-
randomized

11.9 35.4 6.7 11.3 28 47.6

TN+ANAT
original 12.3 37.7 6.9 11.7 35.2 68
maximum
edge weight

12.4 41.6 7.5 12.7 35.7 68

node-
randomized

15.1 41.5 6.2 10.7 29 52.7

weight-
randomized

12.6 40.8 7.3 12.4 36.4 67

We also wanted to know how sensitive active subnetwork extraction with either PathLinker

or ANAT was to changes in the network structure or network attributes. To this end, we first

changed the weights of all intra-layer edges to 1 (maximum edge weight); second, we shuffled

the node names from the node table so the biological meaning of the network was lost, but

its topology preserved (node-randomized); finally, we used random edge weights following a

uniform distribution [0.01,1) for the intra-layer edges (weight-randomized). We observed that

PathLinker was more sensitive to changes in the network structure or attributes than ANAT

(Table 1): ANAT performance was overall in the same range for all extracted active

subnetworks, though slightly higher performance could be observed for the maximum edge

weight network. PathLinker, on the other hand showed significant differences (Table 1). The

maximum edge weight, as well as the node-randomized networks resulted in very large

extracted active subnetworks, both containing over 50% of the nodes of the original

interactome. Consequently, Recall was very high (93.1% for maximum edge weight and

83.9% for node-randomized), and Precision very low (3.9 and 3.7%, respectively), resulting in

low F1-scores (7.6% and 7.0%, respectively). The weight-randomized network showed

general lower performance compared to the original one (Recall 35.4%, Precision 6.7%, F1-

score 11.3%), together with lower % of enriched GO-terms relevant to cell cycle genes (28%

expected and 47.6% top expected GO-terms). To conclude, TimeNexus in combination with

particularly PathLinker was able to extract key cell cycle genes as defined by KEGG as an

active subnetwork from the tMLN of the entire yeast interactome based on integrated

124

temporal cell cycle expression data, resulting in a significant enrichment of GO-terms related

to cell cycle genes in the active subnetwork.

TimeNexus combined with PathLinker identifies active pathways relevant for tissue

inflammation and repair in time-course expression data of pain induction in mouse

Next we tested, whether we could use TimeNexus on other systems, other model organisms

and with less dense time-resolved data on differential gene expression. We used our own

data from a time-resolved study of recovery from acute pain in mouse. In this experiment,

Carrageenan is injected in the mouse hindpaw, inducing inflammation and mechanical

hypersensitivity (Figure 4 a). The onset and the recovery from hypersensitivity can be

measured by testing the ability of mice to respond to Von Frey filaments with increasing

caliber. In this pain model, one day after Carrageenan injection, mice exhibit a significant

decrease in their mechanical thresholds, which is a sign of inflammation-induced mechanical

hypersensitivity. At day 3 post-inflammation (PI) mice recover normal mechanical sensitivity

which remains steady at day 30 PI and beyond (Figure 4 a, Supplementary Table S9). In order

to monitor the changes in gene expression in the pain-sensing dorsal root ganglia (DRG), we

extracted RNA from these cells and performed RNA-sequencing before (0d), 1 day (1d), 3

days (3d) and 30 days (30d) after Carrageenan injection.

After differential expression analysis, we found that 60 genes were significantly differentially

expressed between day 0 and day 1 PI and 38 genes showed significant differential expression

between day 0 and day 3 PI (Supplementary Table S9). Finally, only 4 genes were significantly

differentially expressed at day 30: Apoe (Apolipoprotein E), Itgb8 (Integrin Beta-8), Ncam2

(Neural Cell Adhesion 2) and Slc25a37 (Mitochondrial Iron Transporter 1). The temporal

expression dynamics of significantly differentially expressed genes collected from the 3

comparisons showed that genes were generally upregulated between day 0 and day 1, while

the majority of them was downregulated between day 3 and 30. Genes with a significant

differential expression between day 30 and day 0 were few (Figure 4 b). In conclusion, acute

pain induced a temporary significant differential expression of genes in DRG and the vast

majority of genes returned to basal expression levels after full recovery of the mouse at day

30.

We next were interested whether we could extract active subnetworks relevant for this

process from expression data integrated with the mouse PPI interactome using tMLNs. Using

125

TimeNexus, we built a high-quality mouse interactome using HitPredict. We created a pain

node table from the differential expression data for the three time points 1d, 3d and 30d PI

compared to the 0d time point prior to injection. Query nodes were defined as having an

adjusted p-value lower than 0.05 (Supplementary Table S9). Using TimeNexus, we generated

the tMLN for these data. We used PathLinker with K=50 and the method pairwise to extract

active subnetworks (Figure 4 c). Layer ‘1d vs 0d’ contained a network with 23 genes. Among

those were genes involved in immune response (Stat1, Irf7, Traf6, Rsad2 and TifA), as well as

cell survival and stress response (Arnt, Epas1, Hif3a, Hif1a, Mcl1, Gsk3b, Grb2 and Egfr1, as

well as Stat1 and Irf7). At the second time point at 3d versus 0d, genes involved in immune

response were still prevalent, as were genes involved in the regulation of apoptosis. The

network is less homogenous with respect to pathways at time point 30d versus 0d. We found

some genes involved in axonal growth, as well as negative regulation of apoptosis. Finally,

we performed enrichment analysis of the entire active subnetwork, as well as the individual

time points (1d, 3d, 30d, versus 0d control) and could confirm the enrichment of pathways

and GO terms related to immune response and inflammation, regulation of apoptosis, as well

as neuronal processes (Figure 4 d, Supplementary Table S9).

In conclusion, by extracting active subnetworks from the temporal multilayer network

created with TimeNexus, we could identify genes involved in direct response to

inflammation, cellular stress and regulation of apoptosis, as well as neuronal processes in

DRG following Carrageenan-induced inflammation.

126

Figure 4: Identification of pathways relevant for cellular stress response, apoptosis, immune response, as
well as axonal growth in mouse sensory neurons after Carrageenan-induced inflammation. (a) We injected
Carrageenan in the hind paw of a C57BL/6J mouse, which induces inflammation and pain, affecting the sensory
neurons. We monitored the mechanosensitivity of the paw before injection, as well as 1, 3 and 30 days after
injection. We observed high mechanosensitivity up to day 1. Thereafter, we observed complete recovery of the
mechanosensitivity by day 3, which persisted at least until day 30. We isolated the dorsal root ganglions at those
time points and performed RNA-sequencing, identifying significant differential gene expression between time
point compared to day 0 control (0d, before injection). (b) The 3 plots show the significantly differentially
expressed genes varying over time. These genes were grouped according to their appearance in the 3 time
points, day 1, day 3 or day 30 each compared against the 0d control. Consistent with the onset of injury and

127

inflammation, we could see strong induction of gene expression at day 1, as well as day 3 after injury, while at
day 30, only few genes were significantly differentially expressed compared to the 0d control. Genes that are
significantly differentially expressed at two time points will be present in each of the two associated plots. Blue
dots indicate significant differential expression of a gene at the given time point. Blue lines indicate significant
differential expression between two time points. Y-axis is plotted as the z-score of the log-transformed counts
per million. (c) From a tMLN based on the entire mouse interactome, we extracted an active subnetwork
containing 3 layers, one for each time point compared to the 0d control using PathLinker (pairwise method,
K=50). We extracted an active subnetwork containing genes relevant for the pain assay: at day 1, we found
genes involved in stress (red bubble) and immune response (blue bubble). At day 3, we identified genes involved
in immune response (blue bubble), as well as regulation of apoptosis (cyan bubble). Finally, at day 30, a more
heterogenous set of proteins was identified, including anti-apoptotic genes (cyan arrow), as well as genes
involved in axonal growth (green arrows). Orange nodes represent query nodes (which showed significant
differential expression at a given time point versus 0d control). Active subnetwork extraction returned Steiner
nodes (grey nodes), i.e. nodes that are part of the network, but were themselves not significantly differentially
expressed and, thus, not query nodes. Solid blue lines are protein-protein interactions within one layer (intra-
layer edges), dashed lines represent inter-layer edges. (d) Enrichr enrichment results of WikiPathways and Gene
Ontology (GO) Biological Process (BP) and Molecular Function (MF). Nodes from each of the layers (day 1, 3,
and 30) as well as the layers of all nodes of the active subnetwork (all) were used for enrichment analysis.
Enrichments of the first two time points included terms related to immune and stress response, encompassing
signaling pathways involved in these processes. The signature changed at the later time point (day 30), where
more terms related to apoptosis, as well as axonogenesis were enriched. Enriched terms had an FDR <0.05 and
a combined score > 100.

128

Discussion

We introduced here TimeNexus, a Cytoscape app to create, manage and visualize temporal

multilayer networks. TimeNexus is easy to use: tMLNs can be created either by uploading a

collection of tables that contain attributes of the nodes, as well as information on edges; or

by adding temporal information to a static Cytoscape network. The TimeNexus Viewer

allows to visualize the tMLN by creating different views, enabling users to focus on the single

static, as well as the dynamic features of the tMLN. This first release of TimeNexus

furthermore provides a framework to extract active subnetworks from a tMLN. To this end,

we create static networks of the tMLN in three different ways which are standard Cytoscape

networks that can be handled by basic Cytoscape features, as well as other Cytoscape apps.

These objects are created either globally over the entire tMLN by combining all layers in a

single-layer network with layer-nodes as separate entities and by ignoring the differences

between intra- and inter-layer edges; pairwise by creating a single-layer network from two

consecutive layers similar to the global method, over the entire tMLN structure; or one-by-

one by creating a single-layer network for each individual layer. The global method has the

drawback that the network to be analyzed increases drastically, as the initial interactome is

multiplied by the number of layers. Active subnetwork extraction is therefore compute-

intense. Moreover, only nodes from the first and last layers will be used as source and target

nodes and active subnetworks will only be extracted if they span the entire dataset. The one-

by-one method on the other hand uses less memory, but does not consider inter-layer edges,

so the nature of the temporal multilayer network is ignored. The pairwise method is a good

compromise between both methods and therefore recommended especially with larger

networks or many time points. The global and pairwise method also take full advantage of

TimeNexus’ unique feature to work with transition weights between layers, representing

expression changes of a gene between two time points. While we have combined TimeNexus

with tools to extract active subnetworks from interactomes, it should be noted that any

Cytoscape app for network analysis can be combined with TimeNexus, as algorithms are

applied to a classical static network structure by the global, pairwise or one-by-one method.

The only pre-requisite is the availability of a programmatic interface for the chosen app.

We tested TimeNexus by extracting active subnetworks in combination with the Cytoscape

apps PathLinker and the ANAT server. PathLinker outperformed ANAT in extracting

biologically relevant, active subnetworks and worked better in our hands. It was however also

129

more sensitive to specific network attributes, such as intra-layer edge weights. This is not

surprising, as it uses edge weights to calculate scores for paths between nodes to extract

active subnetworks. The user should therefore carefully choose intra-layer edge weights in

order to extract meaningful biological information from the network. We also observed that

the selection of query nodes has a substantial effect on the results. In general, the overall

performance of both extracting apps was mediocre, which might be owed to the test itself:

we tried to extract cell cycle genes from the KEGG-defined yeast cell cycle pathway. Many of

these genes are not regulated on RNA-level but rather by phosphorylation or protein

degradation. While for some processes, RNA- and protein expression levels correlate quite

well 47, this is not necessarily the case for cyclic processes such as the cell cycle, where a rapid

activation or destruction of regulatory proteins is required and thus, protein phosphorylation

as well as degradation play an important role. However, we did not want to artificially bias

the test to extract differentially expressed genes, but rather wanted to know, how efficiently

we could recover well-described, core cell cycle genes from the tMLN using either of the two

apps, irrespective of their RNA expression dynamics. Therefore, it might not be surprising

that both, Recall, as well as Precision were not high with either of the two tested apps.

Furthermore, it should be noted that PathLinker and ANAT are optimized to extract active

subnetworks from static single-layer networks, not from a temporal multilayer network and

thus may not fully consider the information a multilayer network offers.

There are three other Cytoscape apps available for integrating temporal data with

interactomes: DyNetViewer, DyNet and TimeXNet. DyNet is not able to extract active

subnetworks, which excluded it from further consideration. DyNetViewer creates individual

temporal layers from expression data directly, removing all nodes from an interactome that

are not significantly differentially expressed. In principle, the output of the DyNetViewer

could be used to create directly an active subnetwork within TimeNexus. But this app also

omits transition weights from one layer to the next and therefore, is not taking full advantage

of the temporal information provided. Yet, its visualization properties exceed those of

TimeNexus. TimeXNet can be used for active subnetwork extraction from temporal

expression data. However, it defines only three phases, representing early, middle and late

genes, which could correspond to the layers in a multilayer network representation. If a

higher temporal resolution is required and available, as is the case for a cyclic process such as

the cell cycle, the classification in these three phases is difficult to make. Moreover, in

130

TimeXNet, one gene can only be part of one phase, which limits the usability of this tool for

cyclic processes even further. We therefore decided not to use it for performance tests, as it

would have significant disadvantages compared to TimeNexus in combination with the

extracting apps PathLinker or ANAT.

We used TimeNexus in combination with PathLinker to extract active subnetworks from a

time-resolved pain assay in mouse, based on expression data from the pain sensing dorsal

root ganglia. While we did not find a large amount of significantly differentially expressed

genes, we identified by performing tMLN analysis with TimeNexus an active subnetwork that

contained genes relevant for the process of inflammation: genes involved in immune

response, in cellular stress response and in anti-apoptotic signaling, as well as – at late stages

– genes involved in axonal growth. Our active subnetwork contained many Steiner nodes,

representing genes that were not initially identified as significantly differentially expressed.

This demonstrates that integrating and analyzing temporal gene expression data together

with interaction data leads to meaningful biological insights that can also help in the design

of further experimental studies.

In conclusion, TimeNexus is a Cytoscape app that introduces true temporal multilayer

networks within the Cytoscape environment. While we have used it to create, manage,

visualize and analyze temporal data projected on a multilayer network that is multiplex, it can

also handle other kinds of multilayer networks. We have combined the first release of

TimeNexus with two apps for active subnetwork extraction, PathLinker and ANAT. However,

TimeNexus builds native Cytoscape objects which can be handled by core Cytoscape features

or other apps dedicated to network analysis. Therefore, TimeNexus can be extended with

other Cytoscape apps, provided they offer a programmatic interface. Consequently,

TimeNexus can be added into existing pipelines and workflows as an app for analyzing

temporal multilayer networks.

131

Acknowledgements

Mouse and yeast interaction data from HitPredict, as well as YEASTRACT+ interactions were

kindly provided by the respective authors of the resources. We thank Andy Saurin for support

in RNA-sequencing of mouse pain assay samples. We thank Anais Baudot, Maxime Lucas,

Friedhelm Pfeiffer and all members of the IBDM Computational Biology Team for critical

reading of the manuscript. This work was supported by ANR-grant 17-CE16-0020-02

(Myochronic) awarded to AM and BHH, Aix-Marseille University and the French National

Centre for Scientific Research (CNRS).

132

References

1. Spies, D., Renz, P. F., Beyer, T. A. & Ciaudo, C. Comparative analysis of differential
gene expression tools for RNA sequencing time course data. Brief. Bioinformatics
20, 288–298 (2019).

2. Spies, D. & Ciaudo, C. Dynamics in Transcriptomics: Advancements in RNA-seq
Time Course and Downstream Analysis. Comput Struct Biotechnol J 13, 469–477
(2015).

3. Kumar, L. & E Futschik, M. Mfuzz: a software package for soft clustering of
microarray data. Bioinformation 2, 5–7 (2007).

4. Kaur, S. et al. Temporal ordering of omics and multiomic events inferred from
time-series data. NPJ Syst Biol Appl 6, 22–7 (2020).

5. Hestilow, T. J. & Huang, Y. Clustering of gene expression data based on shape
similarity. EURASIP J Bioinform Syst Biol 2009, 195712 (2009).

6. la Fuente, de, A. From 'differential expression' to ‘differential networking’ -
identification of dysfunctional regulatory networks in diseases. Trends Genet. 26,
326–333 (2010).

7. Grimes, T., Potter, S. S. & Datta, S. Integrating gene regulatory pathways into
differential network analysis of gene expression data. Sci Rep 9, 5479–12 (2019).

8. Charitou, T., Bryan, K. & Lynn, D. J. Using biological networks to integrate,
visualize and analyze genomics data. Genet Sel Evol 48, 27–12 (2016).

9. Rhodes, D. R. & Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome.
Nat. Genet. 37 Suppl, S31–7 (2005).

10. Nguyen, H. et al. A Comprehensive Survey of Tools and Software for Active
Subnetwork Identification. Front Genet 10, 155 (2019).

11. Mitra, K., Carvunis, A.-R., Ramesh, S. K. & Ideker, T. Integrative approaches for
finding modular structure in biological networks. Nat. Rev. Genet. 14, 719–732
(2013).

12. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1,
S233–40 (2002).

13. Huang, S.-S. C. & Fraenkel, E. Integrating proteomic, transcriptional, and
interactome data reveals hidden components of signaling and regulatory
networks. Sci Signal 2, ra40–ra40 (2009).

14. Tornow, S. & Mewes, H. W. Functional modules by relating protein interaction
networks and gene expression. Nucleic Acids Res. 31, 6283–6289 (2003).

15. Cline, M. S. et al. Integration of biological networks and gene expression data using
Cytoscape. Nat Protoc 2, 2366–2382 (2007).

16. Ritz, A. et al. Pathways on demand: automated reconstruction of human signaling
networks. NPJ Syst Biol Appl 2, 16002–9 (2016).

17. Gil, D. P., Law, J. N. & Murali, T. M. The PathLinker app: Connect the dots in protein
interaction networks. F1000Res 6, 58 (2017).

18. Almozlino, Y., Atias, N., Silverbush, D. & Sharan, R. ANAT 2.0: reconstructing
functional protein subnetworks. BMC Bioinformatics 18, 495–5 (2017).

19. Atias, N. & Sharan, R. iPoint: an integer programming based algorithm for
inferring protein subnetworks. Mol Biosyst 9, 1662–1669 (2013).

20. Yosef, N. et al. ANAT: a tool for constructing and analyzing functional protein
networks. Sci Signal 4, pl1–pl1 (2011).

133

21. Yosef, N. et al. Toward accurate reconstruction of functional protein networks.
Mol. Syst. Biol. 5, 248 (2009).

22. Przytycka, T. M., Singh, M. & Slonim, D. K. Toward the dynamic interactome: it's
about time. Brief. Bioinformatics 11, 15–29 (2010).

23. Holme, P. & Saramäki, J. Temporal networks. Physics Reports 519, 97–125 (2012).
24. Holme, P. Modern temporal network theory: a colloquium. The European Physical

Journal B 88, 234 (2015).
25. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community

structure in time-dependent, multiscale, and multiplex networks. Science 328,
876–878 (2010).

26. Masuda, N. & Holme, P. Detecting sequences of system states in temporal
networks. Sci Rep 9, 795–11 (2019).

27. Thompson, W. H., Brantefors, P. & Fransson, P. From static to temporal network
theory: Applications to functional brain connectivity. Netw Neurosci 1, 69–99
(2017).

28. Patil, A. & Nakai, K. TimeXNet: identifying active gene sub-networks using time-
course gene expression profiles. BMC Syst Biol 8 Suppl 4, S2–8 (2014).

29. Patil, A., Kumagai, Y., Liang, K.-C., Suzuki, Y. & Nakai, K. Linking transcriptional
changes over time in stimulated dendritic cells to identify gene networks
activated during the innate immune response. PLoS Comput Biol 9, e1003323
(2013).

30. Goenawan, I. H., Bryan, K. & Lynn, D. J. DyNet: visualization and analysis of
dynamic molecular interaction networks. Bioinformatics 32, 2713–2715 (2016).

31. Li, M., Yang, J., Wu, F.-X., Pan, Y. & Wang, J. DyNetViewer: a Cytoscape app for
dynamic network construction, analysis and visualization. Bioinformatics 34,
1597–1599 (2018).

32. Yen, J. Y. Finding the K Shortest Loopless Paths in a Network. Management Science
17, 712–716 (1971).

33. Winter, P. Steiner problem in networks: A survey. Networks 17, 129–167 (1987).
34. Kelliher, C. M., Leman, A. R., Sierra, C. S. & Haase, S. B. Investigating Conservation

of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen,
Cryptococcus neoformans. PLoS Genet 12, e1006453 (2016).

35. Su, G., Morris, J. H., Demchak, B. & Bader, G. D. Biological network exploration with
Cytoscape 3. Curr Protoc Bioinformatics 47, 8.13.1–24 (2014).

36. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21
(2013).

37. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program
for assigning sequence reads to genomic features. Bioinformatics 30, 923–930
(2014).

38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26,
139–140 (2010).

39. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative
assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53,
55–63 (1994).

40. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics 32, 3047–
3048 (2016).

134

41. López, Y., Nakai, K. & Patil, A. HitPredict version 4: comprehensive reliability
scoring of physical protein–protein interactions from more than 100 species.
Database (Oxford) 2015, (2015).

42. Patil, A. & Nakamura, H. Filtering high-throughput protein-protein interaction
data using a combination of genomic features. BMC Bioinformatics 6, 100–13
(2005).

43. Monteiro, P. T. et al. YEASTRACT+: a portal for cross-species comparative
genomics of transcription regulation in yeasts. Nucleic Acids Res. 48, D642–D649
(2020).

44. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28, 27–30 (2000).

45. Kuleshov, M. V. et al. modEnrichr: a suite of gene set enrichment analysis tools for
model organisms. Nucleic Acids Res. 47, W183–W190 (2019).

46. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 44, W90–7 (2016).

47. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene
expression control. Nat. Rev. Genet. 21, 630–644 (2020).

135

TimeNexus: a novel Cytoscape app to analyze time-series data using temporal

MultiLayer Networks (tMLNs)

Michaël Pierrelée 1, Ana Reynders 2, Fabrice Lopez 3, Aziz Moqrich 2, Laurent Tichit 4 and

Bianca H. Habermann 1

Supplementary Data:

Supplementary methods
Notes to the selection of query nodes for the yeast cell cycle data and the mouse pain assay
We defined the query nodes by selecting the differentially expressed genes. Genes were called
differentially expressed if they were deregulated between a time-point and a reference. The reference
was the average gene expression across time for the yeast dataset and a control time-point for the
mouse dataset. Comparing to a control time-point is relevant for perturbation experiments, where
we measure the effects of a modified factor. When monitoring periodic processes (e.g. cell-cycle) or
continuous processes (e.g. morphogenesis), choosing a particular time-point would be arbitrary, so
deregulation can be defined by comparing either an expression level to an average expression, two
consecutive time-points or expression levels using other statistical models. These models must be
able to select the interesting genes at a given time-point as query nodes to guarantee that the
extraction will prioritize them using TimeNexus together with either PathLinker or ANAT. Thereby,
paying attention to the sample rate of time-series experiments is equally critical, because a given
process cannot be studied with the same model when the sampling rates do not have the same order
(e.g. minutes vs. hours vs. days).

136

Supplementary Tables:
Supplementary Table S1: Exemplary node table

Node Weight_1 Weight_2 Weight_3 Query_1 Query_2 Query_3
YKL022C 0.039733842 0.031992741 0.028613951 FALSE FALSE FALSE
YGL116W 0.309084735 0.39682512 0.65252339 TRUE TRUE TRUE
YLR103C 0.395338334 0.293985868 0.274277839 TRUE TRUE TRUE
YMR001C 0.524117777 0.332445277 0.178371881 TRUE TRUE FALSE
YPR119W 0.548604495 0.399577103 0.202970354 TRUE TRUE FALSE
YPR120C 0.317746605 0.218357517 0.140080492 TRUE FALSE FALSE
YGR109C 0.561372231 0.343806274 0.222554583 TRUE TRUE FALSE
YMR199W 0.281998475 0.210768255 0.21303971 TRUE FALSE FALSE
YPL256C 0.412229379 0.295000464 0.288928797 TRUE TRUE TRUE

Supplementary Table S2: Exemplary intra-layer edge table

source target Weight edge type
YKL022C YLR102C 0.380438563 PPI
YKL022C YLR127C 0.382194976 PPI
YKL022C YMR001C 0.250513473 PPI
YGL116W YML027W 0.25 PDI
YGR092W YML027W 0.25 PDI
YLR103C YLR274W 0.379473319 PPI
YLR103C YMR043W 0.229153333 PPI
YLR103C YPL153C 0.320794327 PPI
YLR103C YPR019W 0.382440191 PPI
YLR127C YMR001C 0.267785362 PPI
YLR127C YNL172W 0.370272197 PPI

Supplementary Table S3: Exemplary inter-layer edge table

source target Weight_1>2 Weight_2>3
YKL022C YKL022C 0.066926195 0.057143418
YGL116W YGL116W 0.413802554 0.512040048
YLR103C YLR103C 0.408047313 0.362352138
YMR001C YMR001C 0.461370301 0.338106537
YPR119W YPR119W 0.486700829 0.375993519
YPR120C YPR120C 0.349002463 0.263860409
YGR109C YGR109C 0.4751148 0.361577509
YMR199W YMR199W 0.330102969 0.297658094
YPL256C YPL256C 0.414255788 0.368658674

137

Supplementary Table S4: PathLinker optimization tests for different K (# of paths)

of paths
PathLinker

Subnetwork
size

Recall Precision F1-score

K50 3.5 19.2 12.5 15.2
K100 5.6 29.2 11.7 16.7
K150 6.9 33.1 10.8 16.3
K200 7.4 36.9 11.2 17.1
K250 7.6 37.7 11.2 17.2
K500 8.6 40.8 10.6 16.9
K750 9.6 45.4 10.6 17.2
K1000 10.4 46.2 10 16.4
K2000 12.2 53.9 9.9 16.7

Supplementary Table S5: Excel sheet with data for Yeast cell cycle interactome (original
node tables and intra-layer edge tables for early and late cell cycle phases, as well as
enrichment results for early and late tMLNs

Supplementary Table S6: Excel sheet with node table, intra-layer -, and inter-layer edge
table for entire yeast interactome with 16 cell cycle layers

Supplementary Table S7: relation of query nodes to KEGG cell cycle genes in queries of
the original KEGG cell cycle tMLN

Query node-layers # query nodes # KEGG genes
in query

Layer 1 243 26
Layer 2 148 18
Layer 3 242 20
Layer 4 193 14
Layer 5 132 11
Layer 6 135 13
Layer 7 172 23
Layer 8 249 29
Layer 9 264 32
Layer 10 281 34
Layer 11 178 10
Layer 12 98 4
Layer 13 100 6
Layer 14 87 5
Layer 15 62 2
Layer 16 69 2

Supplementary Table S8: PathLinker and AnatApp/ANAT Layer-by-Layer results

138

TN+extracting
app

Subnetwork
size

Recall Precision F1-score % expected
GOs

% top expected
GOs

TN+PL_1 3.1 20.8 15.2 17.5 50 87.76
TN+PL_2 3.5 25.4 16.2 19.7 47.44 84.48
TN+PL_3 4.0 23.8 13.2 17.2 43.64 59.32
TN+PL_4 3.7 20.8 12.6 15.7 42.06 75.47
TN+PL_5 3.3 20 13.7 16.3 48.81 83.33
TN+PL_6 3.5 25.4 16.1 19.7 54.03 88.68
TN+PL_7 3.1 20 14.7 16.9 58.33 84.44
TN+PL_8 3.8 23.1 13.8 17.2 56.84 82.98
TN+PL_9 4.1 27 14.7 19 50.42 83.05
TN+PL_10 4.5 31.5 15.8 21.1 45.49 78.26
TN+PL_11 3.3 23.1 15.6 18.6 54.23 86
TN+PL_12 2.6 13.8 11.8 12.7 48.95 55.56
TN+PL_13 2.8 14.6 11.7 13 45.11 65.22
TN+PL_14 2.4 14.6 14 14.3 45.36 63.04
TN+PL_15 1.9 10 12.9 10.9 44.03 60.61
TN+PL_16 1.8 8.5 10.8 9.5 43.97 60

TN+ANAT_1 2.0 12.3 13.7 13 61.62 92
TN+ANAT_2 2.6 13.8 11.8 12.8 51.70 81.08
TN+ANAT_3 4.7 17.7 8.5 11.4 35.98 48.48
TN+ANAT_4 3.6 11.5 7.2 8.9 29.45 46.34
TN+ANAT_5 2.5 9.2 8.2 8.7 46.08 60
TN+ANAT_6 2.7 10.8 9.1 9.9 49.32 77.78
TN+ANAT_7 3.3 17.7 12.2 14.4 58.05 86.05
TN+ANAT_8 4.7 23.8 11.3 15.3 47.66 74.58
TN+ANAT_9 5 25.4 11.5 15.8 44.44 80
TN+ANAT_10 5.2 26.2 11.3 15.8 40.80 81.33
TN+ANAT_11 3.5 13.1 8.3 10.1 38.98 54.55
TN+ANAT_12 1.8 3.1 3.8 3.4 27.42 46.67
TN+ANAT_13 2.0 5.4 5.9 5.6 31.11 45.45
TN+ANAT_14 1.9 5.4 6.4 6.9 42.65 35.29
TN+ANAT_15 1.2 1.5 2.8 2 27.08 33.33
TN+ANAT_16 1.4 2.3 3.8 2.9 32.65 33.33

Supplementary Table S9: excel table with original data on mechanical sensitivity assay,
DEGs from mouse pain assay, node and intra-layer edge tables, plus GO enrichment of
individual layers, we well as the entire extracted subnetwork

139

Supplementary Figures
Supplementary Figure S1

Figure S1 legend: The TimeNexus Converter, Extractor and Viewer interfaces. For creating a tMLN,
first the table attributes have to be assigned to create the structure of the multilayer network using the
TimeNexus Converter. In the TimeNexus Extractor, first a tMLN, second the extraction method and third
the extracting app have to be chosen. The columns need to be individually assigned prior to extraction.
The TimeNexus Viewer is needed to display a tMLN. Again, a tMLN has to be loaded and the layers to
show have to be chosen.

140

Supplementary Figure S2

Figure S2 legend: Different extraction methods used in TimeNexus. (a) the global method extracts
subnetworks over the entire flattened network-like structure, considering only the query nodes in the first
and last layer. (b) in the pairwise method, two neighboring layers are collapsed for subnetwork extraction,
whereby each layer is once layer N and once layer N+1. The subnetworks are combined to a final temporal
multilayer subnetwork. (c) in the one-by-one method, one subnetwork is extracted per layer and all
subnetworks are then combined to the final temporal multilayer subnetwork.

141

142

In (Yun et al., 2020), we explored the phenotypic changes and the dysregulated

pathways of the microalga Chlorella sp. HS2, so-called HS2, under salt stress. The

microalga has a difficult but existing growth and produces high amount of lipids in

salt water compared to fresh water. This makes HS2 a halotolerant and oleaginous

microalga species. In both conditions, it undergoes an exponential growth phase

before entering in a stationary growth phase. RNA-sequencing measured gene

expression for both conditions and both phases. I applied functional enrichment and I

returned the KEGG pathways with dysregulated genes. In particular, we observed a

down-regulation of photosynthesis at the exponential phase, as previously observed

for microalgae under stress, before they recover at the stationary phase. This was

consistent with measures of photosynthesis efficiency. We also observed that the Krebs

cycle was strongly down-regulated, while enzymes related to Acetyl co-enzyme A and

NAPDH were up-regulated. Both metabolites are co-factors to build lipid molecules.

We concluded that the availability of these co-factors was pushing lipid synthesis,

instead of being used for classic energy production, explaining the oleaginity of HS2.

The main challenge of this bioinformatics analysis is that HS2 does not have any

annotated genome or at least pre-built transcriptome. Therefore, it requires to apply de

novo assembly and gene annotation. This quickly expands the number of steps in the

workflow. Each step increases the risk of errors. I could only estimate the reliability of

results by comparing the results to close species.

For this study, I applied several workflows to process data and test for differential

expression and I obtained consistent results each time. The current workflow

correlated well with a simpler workflow based on SuperTranscripts (Davidson,

Hawkins and Oshlack, 2017) and Blast2GO (Conesa et al., 2005): around 85% of

differentially expressed genes (DEGs) were shared. To compute the differential

expression analysis, I initially applied a normalization method called RLE (relative log

expression) (Anders and Huber, 2010) and I already found more than 20% of DEGs

among the gene list. This is a lot for this class of normalization methods. Knowing that

HS2 underwent dramatic phenotypic changes, I applied another method, called SVCD

(Roca et al., 2017), not sensitive to the ratio of DEGs. It gave around 30% of

dysregulated genes. Down-regulated genes dominated the DEG list. This result was

highly consistent across the tested workflows. To annotate the DEG without being

restricted to a given species, I chose to assign them a KEGG ortholog (KO). This

resulted in more than 75% annotated DEGs. I aggregated the DEG values to the KO

level. 15% of DEGs could not be directly aggregated together because they had

opposite dysregulations. Some were down-regulated, while others were up-regulated.

Yet, I noticed that most of these conflicts were caused by genes with high adjusted p-

values, especially because of a lower expression. Therefore, I applied a stringent cutoff

at 0.0001 (the usual cutoff is at 0.01) for the adjusted p-value, removing half of the

conflicting DEGs. Reducing the cutoff cost 20% of KOs, but it also decreased the risk

143

for false positives and helped a manual exploration of the list. This stringent cutoff is

also justified by the fact that the conditions are expected to have a low within-condition

variability because the biological replicates are cell cultures averaging individual

variability. Thus, p-values are more decreased than in other experiments.

The experiment had 3 biological replicates per condition. It should be noted than the

condition of HS2 under salt stress at the stationary growth phase had a higher within-

condition variability than the 3 other conditions. One replicate was indeed less similar.

This difference could come from a lower efficiency during the library preparation or

the sequencing. Therefore, having more replicates would enable to withdraw one

replicate that would decrease the statistical power of the differential expression

analysis (DEA). From a statistical point of view, 2 replicates do not enable to generalize

the results to other experiments. 3 replicates per condition is the lowest possible

number for statistical inference. For example, (Soneson and Delorenzi, 2013) observed

that only 2 biological replicates per condition dramatically increases the false DEG

detections. However, (Chen, Lun and Smyth, 2016) found 2 biological replicates

acceptable if most of the genes have little biological variability and if the differential

expression is high, i.e. the differences between the conditions are clear. Based on

around 42 replicates per condition, (Schurch et al., 2016) recommended at least 6

replicates. 3 replicates enabled to only find 20 to 40% of the actual DEGs. To find most

DEGs (90% with an absolute log-fold change higher than 0.5), it required at least 12

replicates. More replicates increased the statistical power for detecting genes with a

smaller differential expression. This recommendation was a bit exaggerated according

to (Lamarre et al., 2018). Based on a meta-analysis of 17 datasets, they concluded that

the maximal useful number of replicates would be 10 replicates. Consequently, I

would advocate to have at least 4 biological replicates, if necessary at the expense of

sequencing depth and complex experimental design. As illustrated above, 4 replicates

would have enabled me to withdraw one without losing the inferential capabilities of

the experiment.

Differential expression analysis produces a list of DEGs to further explore. In (Yun et

al., 2020), I applied functional enrichment and pathway analysis. Functional

enrichment was not so helpful to interpret the results of the DEA. Only few terms had

a low enough adjusted p-value. The other terms with a low p-value were not

informative. On the contrary, pathway analysis with KEGG mapper (Kanehisa and

Sato, 2020) produced pathway maps showing the DEGs. These pathway maps enabled

to find meaningful relationships between dysregulated genes. The relationships are

interactions, so one can qualitatively estimate how a DEG is integrated in its pathway

and what parts of the pathway are dysregulated. Functional enrichment does not

provide such exploration. Yet, pathway analysis requires to have enough dysregulated

genes in a given pathway to make a conclusion on its general dysregulation, e.g. as in

our case, in which the Krebs cycle is down-regulated. The advantage of functional

enrichment is indeed to filter out the pathways which are expected to have few

dysregulations by chance. Both approaches, functional enrichment and pathway

analysis, are strongly dependent on the input list of DEGs.

144

The conclusions are based on the accumulation of dysregulations. Yet, differential

expression analysis can generate false negatives and false positives. The cutoff of false

positives is very low, but they are still possible. We cannot ensure that pathways with

a low number of dysregulated genes are not more dysregulated. This could change the

final model proposed in our study. Few genes of interest could be tested to confirm

hypotheses, but this approach cannot validate the whole results of a differential

expression analysis. To do so, (Leek, Taub and Rasgon, 2012) suggested a statistical

approach. First, the user randomly tests genes from the dataset by qPCR. Then, their

approach computes the probability that the actual FDR is lower than the FDR initially

defined by the user. To confirm the DEA, this probability must be much higher than

0.5. The testing must be random, otherwise it would bias the probability. For example,

to have a validation probability of 0.5 for a FDR at 5%, then at least 240 genes should

be tested. If there are 3 replicates, (Lamarre et al., 2018) would suggest a FDR at 10%,

giving 110 genes to test. A technology such as the BRB-sequencing (Alpern et al., 2019)

can be used as an independent validation technique as it has a lower cost than multiple

qPCR. The approach of Leek and colleagues is of course not necessary if the goal of the

RNA-sequencing is to determine few target genes. However, validating the DEA is

required to confirm hypotheses generated from a DEG list.

The DEA workflow depends on a series of algorithms which have been benchmarked.

While these benchmark studies took complementary approaches and apply them on

various datasets, they are still a collection of benchmarks. There is no meta-analysis.

Meta-analysis studies evaluate hypotheses by reprocessing results from previous

studies. There are necessary to make general conclusions, such as if one tool is more

efficient than another. Two issues limit the production of meta-analyses. First, the field

has a fast development with many novel approaches and improvements. Second, no

“golden standard” is available for benchmark studies, which make them hardly

comparable. Furthermore, these meta-analyses – and benchmark studies in general –

should not just focus on comparing tools between them. They should also enable to

know whether one can apply a tool to a given dataset. Indeed, tools have domains of

applicability. For example, (Soneson and Delorenzi, 2013) defined borderline cases for

normalization methods by searching for a proportion of DEGs making the DEA results

unreliable. These statistics could be compared to tables from meta-analysis studies in

order to confirm whether a given tool would be applicable. In the absence of such

studies, the DEA results should be put in question. From a practical point of view, it is

difficult to rationally choose one tool or algorithm over another.

This work contributed to the community by proposing a workflow for data processing

of de novo RNA-sequencing as well as hypotheses about how HS2 adapts to salt stress.

Pathway analysis generated results about the relationships between dysregulated

genes from known pathways. Yet, they do not enable to find relations between

pathways or from unknown pathways. Network-based methods can solve this issue

by exploring interactions between genes regardless known pathways. These methods

thus work at a lower scale than pathways, i.e. at the scale of interactions instead of

group of interactions.

145

The goal of developing the TimeNexus app was to identify dynamic pathways using

the results of the differential expression analysis from time-course gene expression

datasets. It should be robust to the typical lack of power of the DEA, i.e. missing DEGs,

as well as the inability of RNA-sequencing to detect dysregulation outside gene

expression, e.g. post-translational modifications. Therefore, it should be able to

especially return non-dysregulated genes which are predicted to take part to the

pathway. It should also enable to filter out dysregulated genes which are not involved

in the studied pathway, thereby removing false positives.

I developed TimeNexus, a Cytoscape app to build and visualize temporal multilayer

networks (tMLN) (Pierrelée et al., 2020). It extracts subnetworks by adapting the format

of multilayer networks and applying the static extraction tools PathLinker (Ritz et al.,

2016; Gil, Law and Murali, 2017) and AnatApp (Yosef et al., 2011; Almozlino et al.,

2017). The apps use the dysregulated genes as input nodes (i.e. source and target

nodes) to search for subnetworks. To extract a subnetwork, it uses one of the three

methods: global, local or pairwise. We applied the pairwise method in order to

consider the dysregulated genes of each layer. We tested TimeNexus on time-course

RNA-sequencing datasets from yeast cell-cycle and mouse sensory-neuron

inflammation.

With the yeast dataset, we evaluated its efficiency to extract the cell-cycle pathway by

counting the genes which are part of the cell cycle pathway. I built the yeast

interactome by aggregating a protein-protein interaction (PPI) network and a protein-

DNA interaction (PDI) network. In particular, the overall recall of TimeNexus with

PathLinker or AnatApp was respectively 45% and 38%, with a precision of 11% and

7%, respectively. A minimal recall of 33% was expected as genes involved in the cell-

cycle were already dysregulated. These rates were low. They could be caused by the

fact that PPIs play a major role in the cell-cycle, that the DEG selection was not

appropriate, that network weights were not ideal or that the extracting apps are not

fitted for complex networks. We also evaluated the effect of intra-layer edge weights

by replacing them with a random value or the maximal weight. The effect of the

network structure was evaluated by shuffling the node names. In all cases, these

changes had dramatic effects for PathLinker but not for AnatApp. PathLinker extracts

subnetworks by only using edge weights, while AnatApp also considers node weights

which were computed from the DEA results (size effect and significance). PathLinker

is expected to be more affected by edge weights. However, it is surprising to observe

that this app returned half of the network when the intra-layer edge weights were

equal, i.e. it did not extract anything, while randomized weights generated results

similar to those of AnatApp. AnatApp returned not much more than 33% of

dysregulated cell-cycle genes. It implies that AnatApp was not able to reach the initial

goal to predict non-dysregulated genes. All these observations do not have clear

explanations. In fact, the behavior of both apps when extracting subnetworks is not

well known. They were not tested with random networks. These evaluations are

surprisingly not common in the literature of methods for biological networks. Further

studies should focus on this point.

146

For the mouse dataset, we searched to determine a pathway for sensory neurons which

would be activated under inflammation. The interactome of the mouse dataset was

only the PPI network. The temporal multilayer networks had 3 layers: day 1 (after

inflammation) versus day 0 (before inflammation), day 3 versus day 0 and day 30

versus day 0. This is an exogenous pathway, while the cell cycle is an endogenous

pathway. Following an idea similar to that presented in section 3.1.1, we first observed

2 main groups of dysregulated genes by plotting their expression profile. A first group

had most of its genes up-regulated at day 1 before returning to their basal level. The

genes of the second group were up-regulated at day 2 and returned to their basal level

at day 1 and day 30. Only few genes remained dysregulated at day 30. These

observations were consistent with the fact that individuals appeared to have recovered

from inflammation at that time point. Extracting subnetworks from the tMLN showed

that parts of the interactome were successively activated by inflammation. On the first

day, a group of genes related to stress response and immune response were

dysregulated. On the third day, the immune response evolved and supplemented by

a gene group participating in the regulation of apoptosis. The stress response genes no

longer appeared at this time. A heterogeneous group of genes was extracted at the last

day of the experiment, but it was centered on genes related to axonal growth and

apoptosis regulation. These functional groups of genes are consistent with an

inflammation process. While our conclusions represent only hypotheses, this

approach illustrates the usefulness of TimeNexus to intuitively and qualitatively

explore a biological process over time.

It should be pointed out that the yeast dataset does not have any biological replicate

and the mouse dataset has only two replicates. Moreover, the latter are pooled

samples, i.e. RNAs from several individuals were pooled together to give one

indivisible sample. This is necessary when the total RNA amount is too low to use for

a standard library-preparation protocol. Yet, (Rajkumar et al., 2015) strongly advised

against such an approach. Indeed, it introduces a bias due to the pooling, which

averages the biological variations. It breaks the theorem of variance decomposition

which demonstrates that the total variance of a gene is the sum of the within-condition

variance and the between-condition variance. Yet, the DEA tests for differential

expression from the estimated parameters of the model (mean and variance). By

removing the within-condition variance, the statistical methods cannot properly

estimate the total variance. Therefore, the results would be unreliable. The authors

compared the DEA results in two cases. In the first one, the tested conditions had 8

individual RNA samples. In the other, they made 2 pools of 8 RNA samples for each

condition, before starting the library preparation for the sequencing. The authors

observed that the pooling experiments detected thousands more DEGs than

experiments with individual samples. Thus, pooling strongly increased the number of

false positives. Therefore, this strategy should be avoided as much as possible.

(Pierrelée et al., 2020) introduced temporal multilayer networks (tMLNs) for networks

of molecular interactions. This is the first report of an app on Cytoscape managing

multilayer networks. TimeNexus represents tMLNs as standard Cytoscape networks

to enable other apps to process them. The layers can be easily imported by dynamic-

147

network visualization apps, such as DyNet (Goenawan, Bryan and Lynn, 2016). To my

knowledge, it also the first time that subnetwork extraction was adapted and applied

to multilayer networks. The first limit of TimeNexus is that it cannot build any type of

multilayer network. It only manages one aspect with inter-layer edges between

consecutive layers. The second limit comes from Cytoscape networks used to model

the flattened network. As the latter contains all layer-nodes as independent entities

within Cytoscape, the user’s computer must have enough memory to load a full

interactome on multiple time-points. For example, a tMLN of the yeast dataset cannot

be loaded on a standard laptop; it requires more than 10 gigabytes of RAM. The CPU

requirements are lower because subnetwork extraction depends on the extracting

apps. PathLinker does not exploit multiprocessing and AnatApp executes its

algorithm on a dedicated server. These limits cannot be solved by using classic

Cytoscape objects. A future version of TimeNexus could fully exploit the symmetries

of biological tMLNs as presented here, i.e. the same nodes and edges on each layer.

Indeed, a feature of Cytoscape can create virtual objects which are represented as

physical objects on the graphical interface, but are internally linked to the same object.

Nonetheless, if the multilayer network has no symmetries, there is no possibility to

compress data, i.e. it would be equivalent to the current situation.

A third issue is that PathLinker and AnatApp are not optimized for multilayer

networks. For example, they do not allow multiple edge types, while multilayer

networks have intra- and inter-layer edges. Despite not being optimized for multilayer

networks, these apps are themselves constrained by the weights (e.g. no node weight

for PathLinker), the edge directions (e.g. either fully directed or undirected for

PathLinker), the multi-edges (e.g. not allowed by AnatApp) and the input nodes.

Therefore, the results from both apps are not directly comparable in (Pierrelée et al.,

2020) because the tMLNs used for each app are not the same. Source and target nodes

are necessarily defined for each layer when using the pairwise method, otherwise the

extracting apps won’t process the multilayer network. Subnetwork extraction should

enable either to have any number of intermediate input nodes, instead of just 1 as

TimeXNet (Patil and Nakai, 2014), to be able to process a multilayer network or to

merely have no input nodes. Moreover, input nodes are categorical variables: a node

is either an input or not. Instead, one could consider a continuous variable such as a

weight to model the interest in a given node. This is initially the function of layer-node

weights depending on the size effect and the significance from the DEA. Developing a

method to extract subnetworks requires to test its behavior according to extraction

parameters and features of the network. Random networks are critical to ensure the

methods are efficient and not biased.

Finally, TimeNexus should have an API to enable users to automatize their workflow

and connect it to Python or R, following (Ono et al., 2015). This API should also enable

app developers to add their own extraction algorithm to TimeNexus using one of three

extraction methods already implemented (pairwise, global or local). Yet, these

methods return static networks. If the new version of TimeNexus includes a new

format of multilayer networks, an interface should also be developed to enable third-

part apps to extract subnetworks from the multilayer networks.

148

I present below complementary details about limitations of standard sequencing

protocols, experimental designs and differential expression analysis.

For a concise review of this field, the reader can refer to (Chowdhury, Bhattacharyya

and Kalita, 2020b).

Note: references to sections below are related to this appendix, unless otherwise indicated.

See section 2.1 of the introduction for a general workflow of RNA-sequencing.

Following a standard library-preparation protocol such as TruSeq (Illumina, 2010), the

RNA extraction should finish with a minimal RNA quantity of at least 0.1 µg. With

lower quantity or if the RNAs were degraded, this protocol is not adapted. This

quantity gives the total RNA amount. The library preparation starts by removing the

ribosomal RNAs (rRNA) which overcome the messenger RNAs (mRNA). In the

standard protocol, we purify the mRNAs by using magnetic beads attaching them.

Rather than purifying mRNA, it is also possible to deplete rRNA, but it requires

specific protocols. This enables in particular to sequence the non-coding RNAs and the

degraded mRNAs. (Holik et al., 2017) confirmed the efficiency of rRNA depletion to

reach these goals. Interestingly they also showed the method increases clustering of

samples and predicts better differential expression, with a boost of 20-30% in the

signal, by accounting for read counts within introgenic regions and pre-mRNA. Yet,

they did not recommend one method over the other. For complementary information,

(Haile et al., 2019) evaluated protocols for rRNA depletion for samples with degraded

RNAs or in low concentrations. They concluded it was more efficient to selectively

degrade rRNAs rather than to selectively remove them out of the samples.

Then, the mRNAs are fragmented to a median size of around 150 base pairs because

Illumina sequencing cannot manager longer fragment sizes. As Illumina only

sequences DNA, we reverse transcribe the mRNAs to cDNA. The reverse transcription

is in two parts. First, it creates a DNA strand complementary to the RNA strand.

Second, it degrades the RNA strand and replaces it by a DNA strand. In the standard

protocol, we do not know if the cDNA molecule was a mRNA from the plus strand or

the minus strand of the genomic DNA. Indeed, a gene can be on one or the other

strand. Thus, we are losing information that we will need to identify the reads during

the bioinformatics steps. The TruSeq protocol is said non-stranded. (Sultan et al., 2012)

developed a stranded protocol to identify the genomic DNA strand from which the

mRNA was transcribed by synthesizing the second cDNA strand with dUTP. The

dUTP-marked strand is then degraded before the PCR amplification. For (Corley et al.,

2017), the stranded protocol improved the mapping of reads to the DNA (see section

1.1.2) by resolving multi-mapped reads, i.e. reads ambiguously assigned to multiple

149

transcripts because of a short length. It also decreased the number of false positives

and false negatives within the DEG list (see section 2).

Next, we add adapters to each cDNA according to their library of origin and we

amplify the cDNAs by PCR (polymerase chain reaction). The adapters have a tag to

identify the library of origin of the RNA. It enables to pool all the samples so we can

sequence them at the same time. Doing so, we remove the confounding effects related to

the sequencing (see section 1.2) (Auer and Doerge, 2010). Note that it does not removed

the effects related to the RNA extraction and library preparation, i.e. batch effects.

Indeed, the PCR amplification increases the number of reads from sequencing (see

next section 1.1.1) by increasing the number of cDNA fragments. This can add

amplification biases to the sequencing, i.e. some fragments being more amplified than

others.

To correct these batch effects and decrease the RNA quantity needed by the library

preparation, (Alpern et al., 2019) developed a protocol called BRB-sequencing. This

method is inspired from single-cell RNA-sequencing where the RNAs are pooled

together at the beginning of the preparation. It dramatically decreases the financial

costs by simplifying the library preparation. Indeed, if an experiment has a given

number of samples, then the biologist needs to prepare each library in parallel. The

BRB-sequencing protocol enables to prepare all samples at the same time by tagging

the RNAs before to pool them. Contrary to TruSeq, the first step of the library

preparation is to synthesize the first strand of the cDNA. This enables to tag the tags

to the 3’-end of mRNAs. Thereby, we can pool together the samples containing

mRNAs. The next steps are the synthesis of the second strand, the fragmentation of

the double stranded cDNA and the PCR amplification. The BRB-sequencing loses the

5’-end after the fragmentation. Thus, this protocol cannot address the experimental

questions requiring the full RNA-sequencing, such as the differential expression at the

transcript-level. However, it enables to compute differential expression at the gene

level, as presented herein, with the same statistical power as standard TruSeq. In my

point of view, BRB-sequencing could replace quantitative PCR (qPCR) to validate the

DEA results by testing a high number of genes (see section 2.6). That being said, 3’-

enrichment technologies are recent. We still need to evaluate their advantages and

drawbacks at a large scale.

We load the pooled libraries into one or more lanes of a flow cell within the sequencer.

If the libraries were not pooled, we would have one library per lane and so,

confounding effects. Very briefly, the lane tethers the cDNA fragments and the

sequencer synthesizes a new strand for each fragment. In the meanwhile, it monitors

the base pairs added to the new strands during the synthesis. The synthesis stops after

a certain number of base pairs, between 75 and 150 base pairs. This gives one read for

one end of the cDNA fragment. Thereby, the cDNA fragment is not entirely sequenced.

Contrary to single-end sequencing, paired-end sequencing repeats the synthesis but for the

other end. It generates two paired reads for one cDNA fragments. Paired-end

sequencing increases the read mapping (i.e. transcription identification) and the

downstream results, but less than using a stranded protocol (Corley et al., 2017). Thus,

150

there are 3 main sequencing parameters: the read length, the sequencing depth (total

number of reads) as well as the choice between single- and paired-end sequencing.

Choosing the parameters will depend on the objectives of the study and the budget.

We will discuss this choice in the next section (1.2).

Besides, the sequencing depth is fixed. It means that the sequencing will assign reads

to a transcript depending on the available pool of reads. This pool depends on the

sequencing depth, but also on the other transcripts. For example, let’s take two

transcripts and a sequencing depth fixed at 100 reads. If the first transcript accumulates

70 reads for any reason, the other will have 30 reads. If we have 200 reads, each will

have 140 and 60 respectively. This gives a ratio. Therefore, RNA-sequencing measures

the relative abundance of transcripts. We do not know the exact number of molecules in

the cell. It is a critical point for normalization methods (see section 2.3).

Among the reasons explaining that some transcripts accumulate more reads is their

length (Oshlack and Wakefield, 2009). This is typical bias of RNA-sequencing that we

do not find in the microarray technology.

The goal of the data processing is to get the gene abundance from the raw reads. Before

that, one can apply a pre-processing step on the reads. We observe that the sequencing

biases the 3’-end of raw reads. One could trim this part to improve the next step, but it

could bias the differential expression analysis (Williams et al., 2016). I would suggest

to avoid such trimming to simplify the workflow.

See section 2.2 of the introduction for more details.

Herein, we consider experiments aiming to compare conditions. A condition is a group

of homogenous samples that underwent the same factors (e.g. treatment, mutation,

tissue, time). A factor has one or more levels. For example, let’s take the factor “mouse

mutation” with 3 levels “mutation 1”, “mutation 2” and “wild-type”. We can add a

factor “treatment” with the levels “treated” and “not treated” to the experiment. Then,

an experimental design could have 6 conditions combining a level of “mutation” and

a level of “treatment”. We search to explore the effects of each factor on the genes of

our biological material by comparing the conditions.

To make conclusions, we need two important things. First, we have to be sure that a

given level of a given factor is the cause of the observed effect. We must not mix several

factors together or add uncontrolled factors to a condition. An unwanted factor is

called a confounding factor. The measured effect is mixed up between the controlled and

confounding factors. It breaks the causal chain from the factor to the effect.

Second, the experiment is not useful if we are not able to generalize the results of the

experiment to any other experiments (Auer and Doerge, 2010). We do that using

statistical inference. It estimates statistical properties from the samples for each

condition, in particular the variance. This variance can only be computed if we have

151

biological replicates, i.e. several samples for the same condition. Contrary to technical

replicates, the biological replicates are from different biological materials, but which

underwent the same factors. From our example above, we can consider 3 treated mice

with the same mutation (e.g. “mutation 1”). They give us 3 samples combining the

same factors. More the mice are different, more we can generalize our results but it

will be harder to see any differences between the conditions. Moreover, few biological

replicates can create confounding effects, so we need to increase their number. In

practice, we consider the individuals (e.g. one mouse, one cell culture) with the same

genetic background as biological replicates. The individual variability would be

enough to generalize the results to the population. I will present other statistics

considerations for differential expression analysis (DEA) in section 2.1.

We are now seeing how to optimize the experimental design for DEA in RNA-

sequencing.

Sequencing can adjust for the total number of reads to sequence, this is the sequencing

depth (see section 1.1.1). It is usually between 1 and 100 million (M) reads per sample.

A higher depth identifies more differentially expressed genes (DEGs), i.e. genes with

a significant variation between conditions. As the experiment budget is limited, one

can identify more DEGs by increasing either the sequencing depth or the replication

(number of replicates in each condition). Increasing sequencing depth requires less

efforts but it is not the optimal choice.

(Liu, Zhou and White, 2014) sequenced human cell lines, treated or not. Each condition

had 7 replicates and 30M reads were sequenced per sample. Compared to increasing

the replication, they observed that increasing sequencing depth had little effect on the

capacity to identify DEGs (i.e. statistical power, see section 2.1). For example, from

10M to 30M reads per sample, with 2 samples per condition, they observed the power

increased by 20%. Yet, at 10M reads with 3 samples per condition, the increase was by

40%. After 4 biological replicates, this effect was reduced. They concluded that 10M

reads was enough. To increase the power, the replication should be preferred over the

sequencing depth. Although some of them preferred 20M reads, this conclusion was

consistent with the results of (Rapaport et al., 2013; Soneson and Delorenzi, 2013;

Ching, Huang and Garmire, 2014; Rajkumar et al., 2015; Seyednasrollah, Laiho and Elo,

2015; Schurch et al., 2016; Lamarre et al., 2018). In the same way, one should prefer

more replicates than using paired-end sequencing (Corley et al., 2017).

See section 1 of the discussion for recommendations about the optimal number of

biological replicates.

We saw there are two confounding factors during sequencing: the batch effect from the

library preparation and the lane effect from the sequencing in the flow cell. Hopefully,

(Marioni et al., 2008) showed that the lane effect in RNA-sequencing is very low and

only few genes (0.5%) are concerned. This means there is little need for technical

replicates. However, some lanes can still have issues and are anyway limited in each

flow cell. After collecting data, statistical methods cannot remove confounding factors

152

without partially or totally losing statistical power. For example, if a lane of a cell,

where the sequencing takes place, has a lower efficiency, then the sample will be less

sequenced than the others. However, if all samples were in this lane, then all samples

would be equally affected. Therefore, the samples should be pooled together as soon

as possible to reduce the technical differences between them. Consequently, (Auer and

Doerge, 2010) suggested to pool the samples by using multiplexing after library

preparation. Their simulations showed this kind of approach outperforms the other

kinds of experimental designs.

See section 2 of the discussion for recommendations about the optimal number of

biological replicates.

RNA-sequencing is powerful, but it comes with its own biases. Today, 3’-enrichment

RNA-sequencing enables to avoid pooling caused by a lack of RNAs. It also reduces

the batch effects by applying multiplexing much earlier in the library preparation. Yet,

the more important aspect is the replication. It is necessary to correct use to apply a

differential expression analysis.

Assuming that the samples of the dataset have the same biological materials but in

different proportions, differential expression analysis (DEA) identifies the genes with an

unexpected variation of their expression by comparing the samples from two or more

conditions. We call them differentially expressed genes (DEGs). They have to measures:

the size effect, expressed as a log2-fold change (LFC), and the significance, expressed as a

low p-value. For a simple pairwise comparison, the fold change is the ratio of the gene

abundance between a given condition and a reference condition. It is on a log2-scale.

In the context of pathways, we assume the genes have a constant expression in the

reference condition.

Among a population of elements (e.g. genes), we do not know the elements belonging

to the positive class (e.g. differential expression) and those belonging to the negative class

(e.g. constant expression). The statistical tests aim to predict which elements are

positive and which are negative. These tests are not perfect. Sometimes, they predict

that an actual positive element is negative, resulting in false negatives. Conversely, they

predict that an actual negative element is positive, resulting in false positives. In

practice, for each element, the statistical test computes the probability to observe its

data, assuming the null hypothesis that the element was negative. This probability is the

p-value. If the p-value is low enough, it is unlikely that the element is negative and

thus, we predict that the element is positive. Doing so, we accepted the risk that the

element is false positive. We call this risk the significance level, i.e. the threshold under

which the p-value is low enough to reject the null hypothesis.

153

To measure the prediction efficiency, we compute several statistical measures by

counting the number of correct and incorrect calls. In particular, we are interested in:

 the area under the receiver operating characteristic (ROC) curve (AUC), informing

about the capacity to detect true positive over false positive;

 the sensitivity, also called recall or statistical power (i.e. the rate of true positives

on the actual positive class);

 the specificity (i.e. the rate of true negatives on the actual negative class);

 and the precision (i.e. the rate of true positives on the predicted positive class),

which leads to the false discovery rate (FDR).

The false discovery rate (FDR) is 1 – precision, so the number of false positive divided

by the size of the predicted positive class. In other words, it measures the proportion

of wrongly-predicted positive elements among all predicted positive elements. If FDR

increases, the number of false positive increase, so the precision decreases. In our

analyses, we do not want false positives. We will search to decrease the FDR without

decreasing too much the recall. Controlling the FDR means that if the user sets a given

FDR, then, among the genes in agreement with this FDR, the actual FDR is equal to the

given FDR. On the contrary, we call conservative the methods giving an actual FDR

lower to what we wanted, while liberal the methods giving a higher FDR. The FDR

control is incorrect in both cases. Indeed, the conservative methods are not “harmful”,

but they are less reliable. If one wants to have less false positives in a gene list, the best

approach is to select a lower FDR, not to use another method. In the section 2.5, we

will see how to estimate the FDR.

They will be enough to benchmark predictive tools presented in the following sections.

The first difficulty is obviously that we do not know the positive and negative classes

in real datasets. Therefore, to benchmark a given statistical test, we have to either

assume which elements are true or false within real datasets, or to simulate artificial

datasets. If there are enough replicates, we can evaluate the predictions by assuming

the absence of differential expression within-condition (e.g. (Seyednasrollah, Laiho

and Elo, 2015; Schurch et al., 2016)). In all cases, we are introducing biases by ignoring

complex data structures. However, this is common to any type of modeling in

empirical sciences, from statistics to networks. The solution is to stay humble on the

results from a given benchmark and rather consider the tendency we can observe from

a collection of independent benchmarks, or confirm the results with other

computational and experimental approaches.

Second, often the tools assume and apply different hypotheses, parameters and

methodologies, making the comparison not possible. Even if this is exact,

benchmarking can group the tools according to their assumptions to allow general

comparisons. Also, the interest of a tool is its robustness, i.e. whether it produces

satisfying results outside their assumptions and despite slight changes in its

parameters. It is critical to identify the limits of this robustness to identify when one

cannot predict the behavior of a tool and therefore, when the results are unreliable.

Note that “unreliable” does not mean “wrong”.

154

Below, I present few popular tools applied in the context of differential expression

analysis. I will particularly insist on the limits that benchmark studies identified.

A problem with RNA-sequencing is that the datasets have a high number of genes

with zero counts or with a very low number. Consequently, the negative-binomial

(NB) distributions (see section 2.4) cannot model well the data, biasing the estimation

of parameters by the methods based on NB models. Moreover, when comparing two

conditions, the statistical tests will eventually give p-values at 1 for the genes with so

few counts. This is why we observe an enrichment in high p-values when we plot the

distribution of raw p-values (see section 2.4.4). As the procedures to control the false

discovery rate (FDR) depend on the total number of computed tests (see section 2.5),

these unnecessary tests also decrease the overall statistical power of the experiment

(Bourgon, Gentleman and Huber, 2010). From the theoretical point of view, these two

points justify to filter out the genes with counts under a given cutoff. The choice of the

filtering strategy raised discussions among the research community.

(Bourgon, Gentleman and Huber, 2010) introduced the independent filtering. The idea

is to rank the genes and remove the genes below a given rank. It is called independent

because the filtering does not depend on the p-value computed by the final statistical

test. In other words, we do not exclude a gene because it did not give a good p-value.

To not loss the FDR control, the filter should also not depend on the conditions, but in

overall.

For example, in (Chen, Lun and Smyth, 2016), the authors recommend to keep the

genes with a log-counts per million (logCPM) above 0.5 in at least 2 samples if the

minimum number of replicates per condition was 2. A logCPM of 0.5 corresponds to

10-15 counts for a library size of around 20 million reads. They implemented this

strategy into the function filterByExpr of edgeR. If one uses Reads Per Kilobase of exon

model per Million mapped reads (RPKM) instead of logCPM, (Mortazavi et al., 2008)

showed that a RPKM above 1.0 was robust and considered transcripts with more than

30 RPKMs as abundant. In their study, a RPKM of 1.0 corresponded to around 80 reads

for a library size of 40M.

(Rau et al., 2013) valuated filtering methods using real and simulated datasets, but they

could only compute the precision and the recall with the simulated datasets. They

tested 3 filtering methods: the mean-based filters (remove genes with an average of

counts across the samples below a cutoff), maximum-based filters (remove genes with a

maximum count across samples below a cutoff, e.g. the logCPM method) and a home-

made “global Jaccard index filter” (compute a cutoff such as all filtered genes have counts

below this cutoff, and all kept genes have counts above this cutoff). They

recommended to use the maximum-based filters, in particular the logCPM method, or

their home-made filter.

The filtering cutoff can be given by the user or defined by an unsupervised procedure.

Using a real dataset with spike-ins and qPCR validations, (Sha, Phan and Wang, 2015)

showed that first, a filtering up to 20% of the genes could increase the recall and the

155

precision of DEGs. Second, the filtering correlated with the number of DEGs. The

authors recommended to choose the cutoff by maximizing the number of DEGs.

Indeed, rather than fixing an arbitrary cutoff, DESeq2 (Love, Huber and Anders, 2014)

implemented an automatic independent filtering such as the filtering cutoff was the

mean counts optimizing the number of DEGs at a given FDR threshold.

However, filtering is not always helpful. (Rigaill et al., 2016) built synthetic datasets by

combining one dataset without DEGs (i.e. from replicated samples) and another with

many DEGs (i.e. from samples with strong differences). The latter dataset partially

contained DEGs validated by qPCR. They then combined the datasets. I will describe

more precisely this approach in section 2.4.3. They showed that filtering could increase

the FDR control for GLM-edgeR and limma-voom, by making limma-voom more

liberal and GLM-edgeR more conservative. Yet, it did not increase much the AUC and

recall for the methods based on linear models (GLM-edgeR, limma-voom, DESeq2),

but it could stabilize the scores of limma-voom. Also, they showed that filtering didn’t

improve computation of raw p-values. They concluded that filtering had little

importance compared to other parts of the DEA, but it was interesting to decrease the

number of false positives (FDR control) with a constant recall.

For (Lin et al., 2016), the filtering had little effect on the final list of DEGs for the main

factors of the experimental design. They compared the results between a filtering

before or after normalization methods. They observed the methods were robust for the

main factors of the experimental design, but this change can affect the results for the

interaction terms, especially for TMM compared to RLE (see section 2.3). They

advocated to filter after normalizing the data in order to change the filter cutoff

without repeating the normalization.

In conclusion, the filtering can be useful if there are few DEGs or for technologies

generating many low counts by improving the FDR control, without necessary

increasing the recall. The filtering should be applied after the normalization. It can be

either based on a minimal level of counts within few conditions, the sum or the mean

of counts across the samples. One can set the threshold by iteratively searching for the

value optimizing the number of DEGs, without filtering more than 20% of the genes.

It is worth noting that filtering does not bring much if there are many or enough DEGs

to explore. In this context, the filtering step can be removed to simplify the workflow.

Besides the gene expression, the read counts from RNA-sequencing have three main

sources of variation: library size (Mortazavi et al., 2008) from the sequencing effects

(i.e. total number of counts in one sample), gene length (Oshlack and Wakefield, 2009)

as well as GC-content (Zheng, Chung and Zhao, 2011). Indeed, long genes tend to

accumulate more reads and GC-rich and poor less reads, all things being equal. And

if a gene has more reads, the statistical power related to this gene increases, promoting

its identification as a DEG (Oshlack and Wakefield, 2009). To compare the genes and

samples to each other, one should remove these sources of variations. This procedure

is called normalization. To do that, many methods have been proposed, I will present

few of them which are popular.

156

Total Count (TC) normalizes the read counts in a given sample by dividing them by

the library size. It shifts evenly the count distribution of the sample. This is the simplest

method. Doing so, it assumes the sequencing depth is the single bias and that it evenly

affects all genes. Therefore, some genes with unexpectedly low or high counts will

affect the whole distribution.

(Mortazavi et al., 2008) introduced the Reads Per Kilobase of exon model per Million

mapped reads (RPKM) normalization. This method normalizes the read counts by the

library size as TC, but also by the gene length. A slight variation to RPKM is the

Fragments Per Kilobase of transcript per Million fragments mapped (FPKM),

developed for the Cufflinks-Cuffdiff pipeline (Trapnell et al., 2010).

With DESeq (Anders and Huber, 2010), the authors developed the Relative Log

Expression (RLE) method. It first divides the counts of a given sample with the

geometric mean across samples and then, it computes the median. This gives the

normalization factor of the sample.

The Trimmed Mean of M values (TMM) (Robinson and Oshlack, 2010) uses another

approach. By making pairwise comparisons between samples, it filters out the genes

with the 30% extreme log-fold changes (LFCs) as well as those with the 5% extreme

count means. From the pools of remaining genes, it computes the mean of LFCs

weighted by their approximated variance. The resulting mean gives the normalization

factor of the sample. The normalized counts are often exported as log-counts per

million (log-CPM).

As normalization is at the beginning of the differential expression analysis (DEA), any

issue at this stage can strongly undermine the prediction of DEGs. One should take

into account 3 elements: the library size is not sufficient to normalize the samples, these

methods assume the absence of differential expression and if such differential

expression happens, it should be symmetrical between up- and down-regulated genes

(Evans, Hardin and Stoebel, 2018).

(Robinson and Oshlack, 2010) explained that the read counts of gene depends on the

composition of the RNA population. Within one sample relative to another, if some

genes tend to monopolize the pool of available reads during the sequencing, the other

genes have less chances to get the remaining reads. For example, (Bullard et al., 2010)

noted that 5% of genes monopolized 50% of reads in their experiment. This is also true

when fragments contaminate the samples. Therefore, methods such as TMM and RLE,

which can account for this effect, have a theoretical advantage. As DEA aims to

compare genes between samples (conditions), rather than within samples, they should not

need to consider within-sample effects (e.g. gene length and GC-content). In practice,

(Risso et al., 2011) confirmed that GC-content biased the fold-changes and p-values

from the DEA, with a positive correlation between DEGs and GC-content. To account

for length and GC-content effect, they proposed a normalization method included in

the package EDASeq. However, to my knowledge, this questioning seems to have

been ignored afterwards.

157

Normalization methods enable comparisons of samples by removing sample-specific

effects. To have a correct normalization, the method should not remove any biological

effect. However, it cannot itself distinguish between technical and biological effects, so

they must not be confounded. Such confounding happens if the cells undergo a general

transcriptional shift, for example transcription factors amplifying the transcriptional

program within tumors as observed by (Lin et al., 2012). Therefore, the conventional

normalization methods presented above assume the lack-of-variation hypothesis, i.e.

most genes are not differentially expressed (Roca et al., 2017).

Normalization methods correcting the distribution of counts, e.g. RLE and TMM,

allow to break the lack-of-variation hypothesis with moderation, as soon as there is

still symmetry between up- and down-regulated genes. In other words, there are

robust to a higher proportion of DEGs if there are as many up- as down-regulated

genes. The higher expression of up-regulated genes balances the lower expression of

down-regulated genes. In case of asymmetry, the assumption cannot hold anymore

and the normalization will eventually fail.

Furthermore, even with a perfect normalization, the RNA-sequencing still measures

relative abundances of transcripts. A most fundamental assumption is that each cell

has the same absolute amount of RNAs. If the cells have twice more RNAs within a

condition than within another, this difference cannot be observed after sequencing.

Indeed, the same number of RNAs is sequenced in both condition, giving the same

proportion and thereby, the same fold changes. In this case, there is a high proportion

of DEGs and a strong asymmetry. If the DEG population had equivalent up- and

down-regulated genes, they would counterbalance each other and the proportion of

transcripts could still be comparable. The lack-of-variation hypothesis would not hold,

but we could still normalize by searching for the non-DE genes among the population.

This observation encouraged (Lovén et al., 2012) to include spike-ins, i.e. known

concentration of artificial RNAs, within the samples before RNA extraction. They

counted the cells and added the spike-ins in proportion. Thus, they could normalize

the samples according to the spike-ins. (Chen et al., 2016) also advocated for a general

use of spike-ins and gave advises to do so.

I would suggest that, when working within a new transcriptional context, one should

first test whether the differential expression analysis would be possible with standard

sequencing workflows. To have complementary details, (Evans, Hardin and Stoebel,

2018) reviewed the normalization methods and categorized them by their

assumptions.

Using real datasets with DEGs confirmed by qPCR, (Bullard et al., 2010) showed the

normalization methods had more effects on the DEGs than the statistical tests. Also,

the authors observed highly expressed genes (i.e. outliers) strongly biased the RPKMs,

while this method could not fully correct the read counts for the gene length. (Zheng,

Chung and Zhao, 2011) confirmed the latter observation. (Dillies et al., 2013) used

diverse real and simulated datasets to compare the aforementioned normalization

methods. They observed both TMM and RLE had similar and robust results, while

158

RPKM and TC were sensitive to outliers and produced samples with more variability.

They concluded that RPKM and TC should be “definitely abounded in the context of

differential expression analysis”. This conclusion was in agreement with (Maza et al.,

2013; Lin et al., 2016). Between RLE and TMM, no method outperforms the other

(Dillies et al., 2013; Maza et al., 2013; Rapaport et al., 2013; Seyednasrollah, Laiho and

Elo, 2015), even if (Zyprych-Walczak et al., 2015; Lin et al., 2016) had a slight preference

for RLE. On the contrary, (Li et al., 2015) correlated the normalized data with qPCR

data and observed that RLE or TMM did not increase the correlations, while RPKM

did, but they did not push more their study. It was the only paper to make this

conclusion, against theoretical and practical aspects we saw above.

(Robinson and Oshlack, 2010) claimed that their TMM method was robust up to 30%

of genes differentially expressed in the same direction. However, to my knowledge,

only one study evaluated the effects of the proportion of DEGs and the asymmetry

between up- and down-regulated genes within a condition. (Soneson and Delorenzi,

2013) compared DEA tools by using simulated datasets from a negative-binomial (NB)

model. The datasets had 0, 10 or 30% of DEGs with an asymmetry at 0% (i.e. as many

up- as down-regulated genes) or 100% (i.e. only up-regulated genes). Even if it was

not possible from their experiment to distinguish between the effects of the

normalization and the statistical modeling, they observed that 10% of DEGs slightly

decreased the AUC (area under the ROC curve), while 30% DEGs dramatically

decreased it. A full asymmetry between up-and down-regulated genes enhanced this

effect and increased the FDR, especially at higher numbers of replicates and DEG

proportion. Interestingly, the authors noted that replication more important to

increase the statistical power than the symmetry in the DEG population. (Rigaill et al.,

2016) had opposite results to (Soneson and Delorenzi, 2013) when considering the

proportion of DEGs. However, they did not evaluate the effect of the normalization

methods and they did not test the asymmetry within the DEG population. It is

therefore not possible to conclude.

While acceptable in most cases, the lack-of-variation hypothesis does not hold for some

datasets which require another normalization approach. For example, (Roca et al.,

2017) developed two methods, called SVCD and MedianCD, to normalize the counts

without assuming the lack-of-variation hypothesis. Their methods first compute

within-condition normalization factors. Then, iteratively, they apply a statistical test

to identify the non-DE genes by comparing the average of each condition. At each

iteration, they removed the genes showing the highest variations until convergence.

They can finally compute the final normalization factors from the pool of non-DE

genes. Interestingly, the methods do not assume any count distribution (e.g. Poisson

or Negative-Binomial). The authors claimed that their approach can work for any

proportion of DEGs within the gene population, as soon as there are enough genes

from which we can estimate the normalization factors. Current normalization methods

cannot work when the lack-of-variation hypothesis does not hold and so, they cannot

estimate the actual proportion of DEGs. Standard normalization methods already gave

a high proportion of DEGs with an asymmetry in favor of down-regulated genes,

consistently with the literature. Therefore, I applied SVCD to normalize the counts.

159

More benchmarking should be done to test the relevancy of SVCD and MedianCD.

Roca and colleagues’ normalization enters in the category of “normalization by

testing” described by (Evans, Hardin and Stoebel, 2018). As for TMM and RLE, it still

assumes that normalization factors for non-DE genes can apply to the DE genes and

the proportion of counts is not distorted.

To conclude, normalization aims to remove technical aspects of the sequencing. The

simplest and common approaches are TC and RPKM. They apply library-size

normalization. The literature strongly advised against their use because they are easily

biased. The most popular and robust approaches are TMM developed for edgeR and

RLE developed for DESeq. They normalized by adjusting the count distribution. They

produce similar results but some studies have a slight preference for RLE.

Normalization works well in general, but unexpected conditions can break the

assumptions used to distinguish between technical and biological effects. Therefore,

the user needs to be sure that these assumptions hold before to start the differential

expression analysis. The normalization methods produce normalization factors used

by the tools of the DEA. They do not directly update the read counts. Indeed, the

statistical tools of the DEA need to estimate some parameters from the raw counts,

otherwise the normalized counts would bias the estimation. We will find the

normalized counts during the downstream analyses (see section 3).

In this section, we will look at the core part of the differential expression analysis. Here,

the tools compute a statistical inference for each gene by comparing conditions. From

the raw counts and the normalization factors, they return a size effect (i.e. log-fold

change) and a significance (i.e. p-value) for each gene. We will use these values in the

downstream analyses to explore the list of differentially expressed genes. In the

sections 2.4.1 and 2.4.2, we see the tools for the DEA and the concepts behind them.

Then, we review the literature to find the presumed best tools (section 2.4.3). We

quickly finish by seeing 3 statistics to consider before to move to the next step (section

2.4.4).

I will present the story of edgeR to reach 3 objectives. First, this is a popular tool and

it allows us to illustrates the concepts of the differential expression analysis. Second,

Smyth and colleagues successively improved their tool to overcome issues, mainly to

implement complex experimental design, increase the FDR control and increase the

robustness against outliers. With these changes, edgeR has become a complicated

statistical machinery. Such changes were of course well motivated, as confirmed by

the numerous benchmarks (see section 2.4.3). However, this is also interesting because

as a user, we mostly see few line codes to run the tools and we can quickly forget what

it is behind. After discussing with few biostatisticians, it appeared that the DEA tools

still have surprising behaviors for some datasets or use cases. This section will

illustrate that even if these tools are practically straightforward to use, their machinery

is not.

160

To complete the following story provided by the canonical papers presented below, I

used the reviews (Chen, Lun and Smyth, 2014, 2016; Lun, Chen and Smyth, 2016).

(Robinson and Smyth, 2007, 2008; Robinson, McCarthy and Smyth, 2010) introduced

the negative binomial (NB) models for RNA-sequencing, which are now used by the

most popular approaches for the DEA. Note that the 2008 paper precedes the 2007

paper. I will synthetize below how this modeling works, as implemented in the first

version of edgeR published in 2010 (called classic edgeR), in order to understand the

context of the statistical terms that one could read across the papers.

Because we have biological replicates, the read counts of one gene in a given condition

has a mean and a variance. If we assume the sequencing has the same chance to

independently detect each RNA fragment, then the read counts of each gene should

follow a Poisson distribution. This distribution implies that the mean is equal to the

variance, which is not observed in RNA-sequencing. On the contrary, the NB

distribution enables to define another mean-variance relationship. For a gene 𝑖 in a given

sample 𝑗, the gene variance 𝜎𝑖,𝑗
2 depends on the gene mean 𝜇𝑖,𝑗 as well as a common

dispersion parameter 𝜙: 𝜎𝑖,𝑗
2 = 𝜇𝑖,𝑗 + 𝜇𝑖,𝑗

2 ∗ 𝜙. Thereby, the dispersion is the same for all

genes in order to share information across them. Computing a gene-specific dispersion

is not justified and, anyway, not possible with a small number of replicates. The range

of values of the dispersion parameter (strictly higher than 0) is such as the model is

overdispersed. Thus, the reads are only modeled by a gene mean and a common

dispersion. The gene mean is itself the product of the offset of the sample, i.e. the

sequencing effects (sequencing depth and library size) that the sample underwent, and

the true relative abundance of the gene. Testing the differential expression means testing the

null hypothesis that a gene has the same abundance between two conditions. At the

end, the statistical test computes a p-value giving the probability that the difference of

abundances between the two conditions could happen under the null hypothesis, i.e.

by chance.

Consequently, the statistical method must estimate the mean and the dispersion. It

estimates the common dispersion parameter, along with the true relative abundance,

by computing a likelihood function from the data and then finding the dispersion

maximizing this likelihood. Without going into details, classic edgeR implements a

quantile-adjusted conditional maximum likelihood (qCML). With simulated datasets, they

showed that the qCML decreased false predictions, but it only works for experimental

designs with a single factor.

Yet, the authors recognized that the dispersion is not always the same for each gene

and the outliers (i.e. genes with large variance) could bias the dispersion. Therefore, in

a second step, they computed a gene-specific dispersion 𝜙𝑖,𝑗 to replace 𝜙 by drawing

a weighted likelihood function for the gene, but such as it “squeezed” (or “shrank”) the

dispersion toward the common dispersion parameter. The “squeezing” also depends

on a weight parameter that the weighted likelihood function cannot estimate.

However, this method is close to another based on an empirical Bayesian model, which

can estimate the squeezing weight. The authors did not directly apply this model

161

because it does not manage well very different variances. They estimated the

squeezing weight from the empirical Bayesian model at the point where the latter had

the same results as the weighted likelihood function. It enables to estimate the

dispersion parameters without too strong or too weak correction. That is why the

dispersion estimation was said to be moderated.

Finally, a statistical test can compare the conditions using the estimated parameters.

In short, the test can be asymptotic (e.g. Wald’s test or likelihood ratio test (LRT)), but, as

the replication is low, the authors developed their own exact test, similar to the Fisher’s

exact test, which controls better the FDR.

In brief, the main advantage of this method compared to the previous ones, is that it

can account for sequencing effects and within-condition variability from the biological

replicates. However, this classic edgeR could only manage simple experimental

designs with a single factor. The authors still recommend to use classic edgeR over

GLM-edgeR when possible.

(McCarthy, Chen and Smyth, 2012) implemented the generalized linear models (GLM)

and the likelihood ratio tests (LRT) to edgeR. As we saw, classic edgeR cannot manage

experimental designs with multiple factors, e.g. 2 yeast strains (r, s) grown on 2

mediums (A, B). Here, there are 2 factors with 2 levels, so 4 conditions. To solve this

issue, the authors extended the simple NB models with non-linear models called

generalized linear models (GLMs). The first step is to write the equation of the

experimental design. In linear modeling, the total effect y is the sum of the effect of

each factor, here strain and medium. The model can also include interaction terms

describing non-additive effects. If we want to consider the combined effect of strain

and medium, then the interaction is written as the product of both factors. The final

equation of the experimental design can be effect ~ strain + medium + strain ∗

medium. Adding more factors and interaction terms enables to model more precisely

the system, but it decreases the statistical power and this choice must be biologically

relevant. Also, it is not possible to solve the linear model if there are more factors and

interaction terms than the number of conditions.

Finally, to compare two or more factors, we define our hypothesis by modeling it with

a contrast and the statistical test will compute the p-value for each gene. For a given

gene, the hypothesis can be whether the effect in one condition is equal to the effect in

another. GLMs enable more complex hypotheses, such as whether the differences of

two conditions are equal to the differences of two other conditions.

For RNA-sequencing, the equation of the experimental design means that, for one

condition 𝑖, the number of counts 𝑦𝑖 of a gene is the sum of a series of term. Each term

𝑗 is the product of a gene-specific regression coefficient 𝛽𝑗 and a condition-specific predictor

𝑥𝑖𝑗. The 𝛽 coefficient represents the number of counts brought by one level of one

factor. The predictor is equal to 1 if the level of the factor contributed to the condition,

0 otherwise. This is the same principle for the interaction terms. In our example, for a

given gene from the condition (r, A), we will have:

162

𝑦𝑖 = strain𝑖 + medium𝑖 + strain𝑖 ∗ medium𝑖

= (𝑥𝑖𝑟𝛽𝑟 + 𝑥𝑖𝑠𝛽𝑠) + (𝑥𝑖𝐴𝛽𝐴 + 𝑥𝑖𝐵𝛽𝐵) + 𝑥𝑖𝑠𝑥𝑖𝐵𝛽𝑠𝐵

⇒ 𝒚𝒓𝑨 = (1 ∗ 𝛽𝑟 + 0 ∗ 𝛽𝑠) + (1 ∗ 𝛽𝐴 + 0 ∗ 𝛽𝐵) + 0 ∗ 𝛽𝑠𝐵 = 𝜷𝒓 + 𝜷𝑨

While possible, this approach can lead to some statistical issues or prevent to use some

tools such as the ANOVA-like test of edgeR. Usually, one condition serves as a

reference, averaging the expression across the condition, to which the other

coefficients will add their own effect. The coefficient of the reference is 𝛽0 and its

predictor is always 1. Thus, there is no need to add the coefficients related to the

reference condition, as 𝛽0 already includes their effect. The example above gives:

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝑠𝛽𝑠 + 𝑥𝑖𝐵𝛽𝐵 + 𝑥𝑖𝑠𝑥𝑖𝐵𝛽𝑠𝐵

⇒ 𝒚𝒓𝑨 = 𝛽0 + 0 ∗ 𝛽𝑠 + 0 ∗ 𝛽𝐵 + 0 ∗ 𝛽𝑠𝐵 = 𝜷𝟎

We can repeat the process for each condition and add all the predictors within a design

matrix, where the rows are the conditions, the columns are the coefficients and the cells

are the predictors. The intercept, a column of 1, represents the reference condition.

Using the matrix, is it straightforward to compute the contrast modeling the desired

hypothesis. For example, the null hypothesis 𝑦𝑟𝐴 = 𝑦𝑠𝐴 is equivalent to 𝛽0 = 𝛽0 + 𝛽𝑠,

so we want to test that +1 ∗ 𝛽𝑠 = 0, as the condition (𝑟, 𝐴) is the reference. We obtain

this contrast by subtracting the two related rows of the matrix.

𝑗 𝛽0 𝛽𝑠 𝛽𝐵 𝛽𝑠𝐵

𝑟, 𝐴 1 0 0 0

𝑠, 𝐴 1 1 0 0

𝑟, 𝐵 1 0 1 0

𝑠, 𝐵 1 1 1 1

Contrast for H0:
(𝑠, 𝐴) − (𝑟, 𝐴)
= 0

0 1 0 0

Note that in the case of RNA-sequencing, the model is log-linear, i.e. the total effect

and the coefficients are in log2-scale. Also, the offset of the condition is added to each

𝑦𝑖.

The question is how edgeR uses this modeling. Compared to the classic-edgeR, the

authors changed the estimation approach to account for complex designs in GLM-

edgeR, but it is still similar. The approach is an iterative algorithm to fit the GLM

defined by the design matrix using a Cox-Reid profile-adjusted likelihood function.

Assuming the dispersion parameters, a method similar to the Newton-Raphson

algorithm estimates the regression coefficients. Maximizing the likelihood function

gives the gene-specific dispersion parameters, as well as the regression coefficients. At

each round of the fitting, it estimates both and then, the approach squeezes the

dispersion parameters toward a trended dispersion, computed by a locally weighted

profile-adjusted likelihood. The issue is how to estimate the squeezing weight. At this

163

time, the amount of squeezing was a general constant. In the further developments,

quasi-edgeR will apply another approach (see below). The latter tool will require the

common dispersion computed in parallel by the profile-adjusted likelihood.

(Zhou, Lindsay and Robinson, 2014) completed this approach to account for the

outliers by weighting the first likelihood function with the difference between the

observations and the model.

Finally, to test the hypotheses in this first version of GLM-edgeR, they applied a

likelihood ratio test (LRT), that they though to correctly approximate the exact test of the

classic-edgeR.

They also introduced the biological coefficient of variation, which is the square-root of the

gene-specific dispersion parameter. The coefficient includes both technical and

biological variability. Yet, for highly-expressed genes in RNA-sequencing, the

technical variability is low so the biological variability should dominate and stabilize.

(POV) In my opinion, the average biological coefficient of variation also enables us to

estimate whether we can expect a good power from the DEA. More the coefficient is

high, more the experiment should have replicates to ensure the quality of the DEA.

(Lund et al., 2012) extended GLM-edgeR by developing a quasi-likelihood (QL)

framework for the statistical test of the differential expression. Its main advantage is

to compute the uncertainties of the estimated variances and account them for the

statistical test. The latter is thus more robust to errors in the modeling of the

experimental design.

Quasi-edgeR follows and uses the results of the dispersion estimation of GLM-edgeR.

It enables to set the squeezing weight more precisely by estimating the prior degree of

freedom (number of independent variables). A low gene variability between conditions

induce a high degree and so, a strong squeezing. Moreover, the amount of squeezing

does not take into account genes with null counts, as they cannot contribute to the

estimations. This extension is currently implemented within the function 𝑔𝑙𝑚𝑄𝐿𝐹𝑖𝑡 of

edgeR, which replaces 𝑔𝑙𝑚𝐹𝑖𝑡.

To estimate the prior degree of freedom, we will estimate gene-specific QL dispersions.

Quasi-edgeR models the variance of counts by a function depending on the gene

mean, the common dispersion of the NB model and the unknown gene-specific QL

dispersions. It estimates the QL means by maximizing a quasi-likelihood function

based on this variance function. From these results, quasi-edgeR computes estimators

for the QL dispersions and the prior degrees of freedom. It squeezes the QL

dispersions toward the trend using the empirical Bayes method described by (Smyth,

2004), with the prior degree of freedom to set the squeezing weight.

Finally, for a given contrast, the function 𝑔𝑙𝑚𝑄𝐿𝐹𝑇𝑒𝑠𝑡 of edgeR computes a QL test

statistic from the QL dispersions, the QL means and the estimated degrees of freedom.

To compute the p-value, this statistic is compared to an F-distribution, similarly to the

F-tests of standard ANOVA. The QL test is similar to the Fisher’s test for a reduced

164

number of replicates as they are more robust and conservative. On the contrary, the

LRT statistics is asymptotic, i.e. the number of replicates should then toward the

infinite.

(Phipson et al., 2016) added an option to the edgeR QL fitting function to increase the

robustness against outliers (i.e. highly-variable genes). It increases the squeezing for

the main body of genes, while decreasing it for the outliers, by estimating a gene-

specific degree of freedom. Also, it decreases the degree of freedom for genes with null

counts to reduce their squeezing. Without robustness, one could call differentially

expressed the genes with very high or low dispersions across the samples. Indeed, they

showed the robust QL increased the power and the FDR control in presence of outliers

within simulated datasets.

The story of edgeR showed successive modifications to overcome the fact that count

distributions from RNA-sequencing do not match well NB models. On the contrary,

we will see below that limma-voom makes fewer assumptions, while it has similar

efficiencies to edgeR. It will be interesting to see in the next years whether the Gaussian

linear models will replace the other approaches based on NB models.

Limma fits Gaussian linear model (Smyth, 2004) by following the sample principle as

quasi-edgeR. It uses an empirical Bayes approach to estimate the moderated

dispersion parameters and regression coefficients. From these estimators, the

approach can then compute a moderated t-statistics following a t-distribution under

the null hypothesis. It is said moderated because under-estimated variances do not

affect its value. By comparing the t-statistics to the t-distribution, we obtain the p-

value. The t-statistics are linked to the F-statistics, which are used for complex designs

(more than 2 factors). Quasi-edgeR uses the functions of limma that (Phipson et al.,

2016) extended to increase the robustness of the approaches.

Even if edgeR enables generalized linear models, it makes statistical assumptions

limiting its range of applicability. In general, limma can be applied to large-scale

dataset to enables any possible experimental design (e.g. temporal effects, inter-gene

dependencies, sample correlations, customized weighting of samples or genes), use

techniques originally applied to microarrays and speed up the computation, while

quasi-edgeR would be adapted for low-count datasets with few biological replicates.

As we will see in section 2.4.3, they give similar results.

(Law et al., 2014) introduced voom to RNA-sequencing by transforming the data used

by limma. Indeed, limma cannot process heteroscedastic data, i.e. data with a variance

depending on the mean. The logarithmic transformation corrects that for the genes

with large counts, but not for those with small counts. Voom solves this issue by

estimating the mean-variance relationship with a nonparametric model. Then, it

communicates this information to limma through weights for each count value, which

can remove the heteroscedasticity to produce homoscedastic data. Voom can use the

normalized counts from TMM (Oshlack and Wakefield, 2009). To down-weight

samples with a large variability, rather than removing them from the datasets, (R. Liu

165

et al., 2015) used the results from this first round to estimate the sample-quality

weights. Then, voom re-computed the mean-variance relationship using these weights

in a second round.

DESeq (Anders and Huber, 2010) applies the same principles as classic-edgeR but it

uses another approach. First, the authors introduced the RLE normalization method.

Second, DESeq does not estimate a dispersion parameter. It also models the gene-

specific variance as 𝜎𝑖,𝑗
2 = 𝜇𝑖,𝑗 + 𝑓𝑖,𝑗. 𝑓𝑖,𝑗 has the same function as the term 𝜇𝑖,𝑗

2 ∗ 𝜙𝑖,𝑗 for

classic-edgeR, but it is a smooth function computed from the abundance of counts and

the mean-variance relationship. It is simpler than using a likelihood function to

estimate the dispersion. Then, the authors applied an exact test similar to classic-

edgeR. Later, (Love, Huber and Anders, 2014) proposed DESeq2 to implement GLM

and to have another method to share information across genes, as DESeq

overestimated the variances. To do so, it estimates the gene-specific dispersions and

squeezes them toward the trend defined by the smooth function using an empirical

Bayes approach. In fact, this is a similar procedure to GLM-edgeR with a Cox-Reid

profile-adjusted likelihood. Another empirical Bayes approach moderates the log-fold

changes (LFC) to remove the exaggerated LFC of lowly expressed genes. DESeq2 also

removes the lowest expressed genes with independent filtering removes. Finally, a

Wald’s test tests for the differential expression using the squeezed the moderated LFCs

and other parameters estimated by the tool.

(Trapnell et al., 2010, 2012) developed the Cufflinks-Cuffdiff pipeline. Cuffdiff

estimates the transcript abundances from the assembled transcripts of Cufflinks and

implements the differential expression analysis. Contrary to other classical DEA tools,

both tools cannot be independently used. Later, (Trapnell et al., 2013) updated Cuffdiff

to Cuffdiff2. Using the RLE method, Cuffdiff2 normalizes independently each

condition first, and then normalizes the samples by considering all samples this time.

It applies another distribution law to model the counts, the beta NB model. An

advantage of Cufflinks-Cuffdiff is to directly test the differential expression at the

transcript level, even if it can return results at the gene level. On the contrary,

increasing the number of replicates does not benefit Cuffdiff.

The DEA tools applied various approaches to get differentially expressed genes. They

are highly competitive because one tool can often execute all the steps from the raw

counts to the statistical inference. Thus, many papers evaluated the efficiency of DEA

tools using real, simulated or synthetic datasets. Real datasets enable to evaluate them

by comparing the lists of DEGs and by computing the prediction errors if qPCR

validations are available (e.g. (Rajkumar et al., 2015)). If there is no qPCR validation,

one can estimate prediction errors from the biological replicates or by resampling them

(i.e. bootstrap method, e.g. (Schurch et al., 2016)). The experiment should have a high

number of biological replicates to do that. Most of the time, the authors generated

simulated datasets by simulating the count distribution from a model (e.g. negative-

binomial) with the parameters from real datasets (e.g. (Soneson and Delorenzi, 2013)).

166

Yet, (Hawinkel et al., 2020) explained that simulated datasets from NB models favor

DEA tools based on NB models. This is called a circular reasoning. Instead, synthetic

datasets aimed to overcome the limits of each approach by mixing two datasets (e.g.

(Rigaill et al., 2016)). For example, one dataset has a high chance to contain DEGs, the

other a low chance. We can them assume that the former contains true positives and

the latter true negatives.

Following the publication time, we will see a series of benchmark papers. It gives us

the tendencies related to the continuous developments of the methods. I won’t present

the DEA tools that are not aforementioned, because they are either not popular or not

efficient. If the reader is not interesting in the results from the benchmark approaches,

it is possible to jump to the conclusive paragraph. Note that some benchmarking

papers referring to GLM-edgeR apply the approach of the quasi-edgeR pipeline, as

presented by (Chen, Lun and Smyth, 2014). Therefore, I will replace their naming of

edgeR versions by the one I presented above. It avoids the ambiguity between the exact

test of classic-edgeR, the LRT of GLM-edgeR and the QL-F test of quasi-edgeR. If not

indicated, they do not use the robust feature recommended in the recent versions of

edgeR developed by (Phipson et al., 2016). Some researchers recommend to give the

version number of the tools. Yet, for edgeR, this is not sufficient because the authors

ensured the retro-compatibility by implementing the new features into new functions

or parameters.

(Soneson and Delorenzi, 2013) benchmarked 11 approaches whose classic-edgeR,

DESeq and limma-voom using simulated data from NB distributions. If the number of

biological replicates increases from 2 to 5, then classic-edgeR controls better the false

discovery rate (FDR) such the true FDR is close to the selected FDR (0.05). In all cases,

the replication is still the most important factor to improve the FDR control. For 2

replicates, the best AUC among the tested tools was with classic-edgeR, DESeq and

limma-voom. See the section 2.1 for a definition of the AUC. The authors observed

that DESeq was too conservative, while classic-edgeR was not robust against outliers.

Both tools were less efficient to detect true differential expression when the number of

outliers increased. The authors recommended limma-based methods for the datasets

with more than 3 biological replicates.

(Rajkumar et al., 2015) tested Cuffdiff2, GLM-edgeR and DESeq2, as well as another

tool, using real datasets comparing 2 conditions with 8 biological replicates per

condition. They verified by qPCR the DEGs within the overlap between the DEG lists

of the tools. They observed that GLM-edgeR had good recall and precision. On the

contrary, DESeq2 had a low recall and Cufflink2 a low specificity. The authors

preferred GLM-edgeR in the end.

(Seyednasrollah, Laiho and Elo, 2015) used 2 real datasets of 2 conditions with 10 to 28

replicates in each condition. They estimated the FDR by randomly splitting the

replicates of a same condition into two artificial groups of uneven size. Thereby,

comparing the two groups should result in a uniform distribution of p-values,

indicating the absence of differential expression. With 8 other tools, they benchmarked

classic-edgeR, DESeq, Cuffdiff2 and limma-voom. They did not include DESeq2

167

because it increased the false positives compared to DESeq. They sorted the tools from

the best to worst recall: classic-edgeR, limma-voom, DESeq and then, Cuffdiff2.

However, edgeR had the highest number of false positives among these 4 tools. They

observed that increasing replicates did not increase the recall of Cuffdiff2. Cuffdiff2

had also the lowest precision, while limma-voom and DESeq had the highest

precision. The authors concluded that limma-voom and Cuffdiff2 were the most and

less satisfying, respectively.

(Rigaill et al., 2016) had an interesting approach. They generated a synthetic dataset by

mixing two real datasets. The first dataset compared biological replicates of plant

leaves, so it should not have any DEG. The second came from flowers buds and was

compared to the plant leaves. This comparison should result in many DEGs. The

authors partially validated these DEGs by qPCR. To generate the synthetic dataset,

they randomly selected the non-DE genes of the first dataset and the DE genes of the

second, such as this list should contain the genes validated by qPCR. They used the

synthetic dataset to compare DESeq, DESeq2, classic-edgeR, GLM-edgeR and

limma-voom. They first observed that all methods generated a non-uniform

distribution of raw p-values when there were no DEGs. It implied that these tools did

not properly model the counts. Nonetheless, GLM (i.e. GLM-edgeR, DESeq2) or linear

models (i.e. limma-voom) can better compute raw p-value distributions, indicating the

models can fit the data. These 3 methods also had a higher AUC and recall as well as

better a FDR control than the tools using simple NB models (DESeq, classic-edgeR).

Simple NB models as well as DESeq2 were too conservative, while GLM-edgeR

control well the FDR (i.e. expected FDR is the actual FDR). FDR control of limma-voom

was more variable, but robust to a high proportion of DEGs and a filtering could

stabilize it. The authors concluded that GLM-edgeR, limma-voom and DESeq2 were

the most satisfying with a slight preference for the GLM-edgeR and limma-voom. The

3 tools enable to take into account all experimental factors into the model and thus,

they give good predictions by better estimating the mean and the variance.

(Schurch et al., 2016) used a real dataset. They compared a wild-type and a mutant

strains of the yeast, with around 42 final replicates per condition. They estimated the

number of correct or wrong DEG predictions with bootstrapping. They applied 11

tools, whose DESeq, DESeq2, exact-edgeR, GLM-edgeR, Cuffdiff2 and limma. They

observed that DESeq, DESeq2, limma and both edgeR had the highest recall with a

good specificity for any LFC cutoff and number of replicates. DESeq2, limma and

classic-edgeR gave similar results, indicating a high efficiency. On the contrary, GLM-

edgeR gave distinct results from them. In general, the authors recommended to use

classic-edgeR or DESeq2 for the experiments with less than 12 replicates. Otherwise,

one should use DESeq.

(Holik et al., 2017) prepared libraries by making technical replicates to which they

added variability by degrading the samples. It enabled them to compare two

conditions in which they expected to observe a given list of DEGs. They compared

classic-edgeR, GLM-edgeR, DESeq2 as well as limma-voom with or without the

improvement of (R. Liu et al., 2015). They observed that the improved limma-voom

168

was the most efficient for its recall and specificity, but it was closely followed by the

aforementioned other tools.

(Lamarre et al., 2018) used a real dataset from which they estimated the true DEGs with

a FDR lower than 0.1%. They compared DESeq, DESeq2, classic-edgeR and GLM-

edgeR. For less than 5 replicates, the AUC ranking of the tool efficiency by descending

order was DESeq, DESeq2, classic-edgeR and GLM-edgeR. However, the authors did

not prefer one tool to another.

Finally, (Li et al., 2020) reported the most contradictory results. They wanted to

benchmark their new normalization method against RLE and TMM using either

classic-edgeR, quasi-edgeR, DESeq2 or limma-voom. I usually avoid to analyze

results from benchmarks dedicated to prove that the author’s tool is the best. Yet, this

is a rare study comparing quasi-edgeR to the former tools. They used benchmark

datasets developed for microarrays where the true and false positives are defined.

They observed that the classic-edgeR detected the highest number of true positives

with the lowest false positives. In comparison, DESeq2 had less true positives and

quasi-edgeR had more false positives. Limma-voom had both drawbacks. They also

compared biological replicates from cancer datasets to estimate the number of false

positives. In this context, quasi-edgeR tended to be more conservative than the exact

test. Strangely, they observed that classic- and quasi-edgeR returned more false

positives with a higher replication. It was not the case with DESeq2 and this effect

should not be observable for less than 10 replicates. The authors recommended quasi-

edgeR for small replication. Yet, this study seems to have contradictory conclusions

and to disagree with the literature; one should therefore remain cautious.

To conclude, in overall, the popular edgeR, DESeq2 and limma-voom gave similar

results. DESeq2, and mostly DESeq, tend to be more conservative than expected, but

some papers still recommend them. It is not clear whether quasi-edgeR or GLM-

edgeR are more efficient than classic-edgeR, but experiments with multiple factors

constrain to use the formers. On the contrary, Cuffdiff2 has a low efficiency and it

should be avoided.

DEA is sensible to the experimental design and, in particular, to the confounding

factors. The user should check them before to process the DEA results with

downstream methods. (Lun, Chen and Smyth, 2016) advise to plot two statistics. First,

the function plotMDS of edgeR. It clusters the samples by computing the root-mean

square of the genes with the highest log-fold changes. The replicates should cluster

together because we expect the within-condition variance to be lower than the

between-condition variance. If the samples cluster together according to an undefined

factor, then it could bias the DEA. Second, the function plotBCV. If the trend of the

biological coefficient of variation does not stabilize for high counts, it may indicate the

data underwent some confounding factors.

Furthermore, the user can check the distribution of raw p-values. It should be the sum

of the distribution of p-values under the null hypothesis (no differential expression)

and the distribution under the alternative hypothesis (differential expression). The

169

former follows the uniform distribution (“flat-shape”). It can eventually have an

enrichment in p-values at 1 because of null counts (“U-shape”). On the contrary, the

distribution under the alternative hypothesis is enriched in low p-values. Other types

of distributions indicate that the DEA did not correctly model the experiment.

To solve this issue, one can remove the faulty samples or assign them a dedicated

factor to the experimental design until the biological coefficient of variation and the p-

value distributions are acceptable. It will decrease the statistical power, but the results

would not be reliable otherwise. However, one should try to simplify the experimental

design. If the statistical test gives too few significant p-values for a factor or an

interaction term, the latter can be removed to simplify the experimental design.

Moreover, if a condition is not used in the downstream analysis, one can ignore it

during the DEA to improve the power.

Differential expression analysis aims to test thousands of genes with significant

changes. If the significance level is set at 5%, then the genes with a p-value lower than

this threshold pass the test. There is reciprocally a probability of 5% that the

differentially expressed genes are false positives. Few false positives would be

acceptable however 5% of thousand genes would yield as many as hundreds of false

positives under the null hypothesis (Bender and Lange, 2001). This is called the

multiple-hypothesis testing problem. We correct this problem by controlling the number

of false positives among the gene population for a given significance level, at the

expense of false negatives. It is not possible to control for both errors, so we prefer to

control the false positives which can lead to spurious conclusions.

From raw p-values of the statistical tests, the controlling procedures produce adjusted

p-values to select the DEGs according to the threshold of the significance level (Wright,

1992). The adjusted p-value is a random variable, not a probability. Adjusting the p-value

of a test means that we define a new value which accounts for the test significance with

regard to the whole set of tested hypotheses. If this value is under a given significance

level, then we reject the null hypothesis (no differential expression) for the test. It gives

the results of the statistical inference for any significance level we choose in advance.

For example, if the adjusted p-value is at 0.04, then we reject the null hypothesis at a

significance level of 5%, but we do not at 1%. These values are not absolute; they can

vary depending on the assumptions made. One’s expertise can serve to assess whether

the null hypothesis could be rejected even if the adjusted p-value is above the cutoff

(Westfall, 2011).

A first aspect is to choose the tests to simultaneously adjust in the same family (Shaffer,

1995; Bender and Lange, 2001). We usually compare conditions multiple times by

testing thousands of genes each time. A rigorous way would be to take all tests and

control the proportion of false negatives. Yet, as we cannot decrease both the false

positives and negatives, we could be too conservative. In practice, researchers tend to

consider each comparison as a family and apply the controlling procedure

independently for each of them. DESeq2 does that by default and (Bender and Lange,

2001) recommended that for exploratory experiments which do not aim to prove a

170

defined hypothesis. Such choice should be explicit. Of course, choosing one of both

approaches should depend on the final goal of the experiment. For example, if we want

to have a list of DEGs where a gene is differentially expressed in at least one

comparison, then we should apply the controlling procedure on the tests from all the

used comparisons. We can observe that this case can be avoided by testing the

appropriate hypothesis with a generalized linear model.

Without doing a comprehensive review of this field, several procedures have been

proposed to correct the multiple testing problem (Goeman and Solari, 2014). An initial

set of procedures aimed to compute the cumulated number of false positives within a

set of tested hypotheses. For example, the Bonferroni procedure and its direct extension,

the Holm procedure (Holm, 1979). Both procedures compute the familywise error rate

(FWER), which is the probability to have at least one false positive within the DEGs.

In the Bonferroni procedure, the adjusted p-values are the raw p-values multiplied by

the number of tests. With a significance of 0.05 for 10,000 genes, we will have at most

500 false positives. The Holm procedure does the same, but by rejecting one by one the

hypotheses from the lowest to the highest p-values. Holm proved his procedure has

the same control on the FWER as Bonferroni, but with a higher power. The main

drawback of these methods is that they are not well adapted when there are many

tests.

On the contrary, the Benjamini-Hochberg (BH) procedure controls the false discovery rate

(FDR), i.e. the expected proportion of false positives among the DEGs (Benjamini and

Hochberg, 1995). This method and its derived version gives an upper bound on FDR.

This is the most common approach in RNA-sequencing. Contrary to the Bonferroni

and Holm procedures, it is much less conservative, but it assumes independent p-

values, which is not the case in genomics and transcriptomics. The BH procedure is

more adapted when many null hypotheses are rejected. Yet, too many hypotheses

(genes) increase the FDR-control burden. The control procedure increases the FDR of

each test because more tests induce a higher probability to have false positives.

Therefore, this burden decreases the statistical power. We saw in section 2.2 that a first

way is to remove the lowly expressed genes without enough counts to predict them as

differentially expressed. In the same idea, using isoforms instead genes can only

decrease the power (Goeman and Solari, 2014), explaining perhaps the low efficiency

of Cuffdiff2. It could be interesting to aggregate the counts at higher level, such as

basic pieces of pathways, to decrease more the number of tests.

As RNA-sequencing is more often used for exploratory researchers, the FDR-

controlling procedures are more useful than the FWER procedures. However, they

have two main drawbacks which are often overlooked. First, FDR is an expected

proportion and it does not guarantee that the actual proportion of false positives is

equal to the given significance level (Korn et al., 2004). Second, FDR procedures do not

allow to only consider a subset of the DEGS (Finner and Roters, 2001), for example for

functional enrichment or clustering. They do not guarantee that any random subset of

the DEG is not fully made of false positives. For such considerations, only the FWER-

controlling procedures are usable. An another consequence of this second point is that

the FDR adjusted p-values represent the whole multiple testing control, not the tested

171

hypothesis itself (Goeman and Solari, 2014). It is difficult to examine them to manually

reevaluate the prediction of the statistical test. In practice, these drawbacks may not be

strong issues in RNA-sequencing. If there are too many DEGs or if one needs to have

strong conclusions to test hypotheses, switching from FDR- to FWER-controlling

procedures should be considered. The latter are more interpretable and have more

advantages than merely lowering the FDR cutoff.

Still, the FDR control is still too conservative. (Storey and Tibshirani, 2003) introduced

a second type of procedure to estimate the FDR, instead of defining an upper bound.

The introduced the term q-value to define the estimated proportion of false positives

we would have if the q-value of a gene is lower than the significance threshold. This is

a sort of adjusted p-value, but it is not computed as for the aforementioned procedures.

Today, the q-value has become a synonym for the adjusted p-value. The procedure

estimates the FDR by measuring the proportion of null hypotheses from the flat tail of

the p-value distributions. In comparison, the BH procedures assumes that this

proportion is 1. This FDR-estimating procedure does not work on U-shaped

distributions. (Burden, Qureshi and Wilson, 2014) solved this issue by removing the

peak of p-values at 1 and fitting the tail with a function. The Storey-Tibshirani

procedure is less conservative than the BH procedure, but it still has 3 main drawbacks

(Goeman and Solari, 2014). First, it assumes the absence of dependences between the

p-values. The estimated FDR has a certain variability as any estimated statistics. The

estimated FDR is robust to the dependency, but its variability can be unpredictable in

this context. If the variability is higher, then there is no guarantee that the actual FDR

is close to the estimated FDR. Second, it does not estimate the variability of the

estimated FDR, so we cannot know about its reliability. Third, it does not guarantee

that any subset of the DEGs have the same subset as the whole list.

This last point motivated the work of (Goeman and Solari, 2011) who developed the R

package cherry. The procedure estimates the FWER and its variability for any subset

of genes, with or without dependencies between p-values. The goal is not to get a list

of DEGs by setting a significance level, but it is to select a list of interesting genes with

a measure of the risk taken. For example, one can build a list of the DEGs according to

a significance, a size effect and a pathway. From this list, the Goeman-Solari procedure

estimates the proportion of false positives. If necessary, the user can change the criteria

to build the list in order to reduce this proportion without biasing the analysis. Such

selection after a statistical test, called post hoc inference, is rigorously not possible with

the BH procedure. Similarly, (Blanchard, Neuvial and Roquain, 2020) introduced the

R package sanssouci. The latter offers an option to quickly select the DEGs based on

both FDR and LFC cutoffs using a volcano plot (LFC vs. adjusted p-value with each

gene as a dot).

To conclude, we saw procedures to correct the multiple-hypothesis testing procedure

by controlling and/or estimating error rates, such as the FWER (probability to one or

more false positives) and the FDR (proportion of false positives among the predicted

positives). In the other sections of this thesis, I only considered the FDR control as the

field usually applies the BH procedure. Yet, one can replace by another procedure

depending on the goal. For example, instead of changing the FDR cutoff of the BH

172

procedure, one could apply an FWER-controlling procedure to be more conservative,

or an FDR-estimating procedure to be more liberal. This question is still open. Recent

developments show an interest in correcting the multiple-hypothesis testing by

including downstream hypotheses, such as the LFC cutoff (see section 2.6). However,

when comparing to the benchmarks for the normalization methods or the DEA tools,

I was surprised that little attention has been paid to the correcting procedures, while

they enable us to properly declare a gene being differentially expressed or not. The

Benjamini-Hochberg procedure is venerable, but there may be a room for

improvement.

Usually, we call a gene being differentially expressed if it meets one or two conditions:

its (adjusted) p-value is lower than the FDR cutoff and/or its size effect is lower than

an (absolute) LFC cutoff.

On a theoretical point of view, there is no reason to justify an LFC cutoff, except if one

wants to test a gene by qPCR, as qPCR is less sensitive than RNA-sequencing. (Hughes

et al., 2000) explored how mutations can affect the magnitude of differential

expression. They measured the expression levels of the whole genome of 300 mutated

yeasts. They concluded that dysregulated pathways were mostly made of

differentially expressed genes with a low size effect. Indeed, in a pathway, a

combination of many little gene-expression changes can be more important than only

one change (Subramanian et al., 2005). (Ideker et al., 2002) also showed that the

transcription factors had a lower log-fold change than genes they regulates.

The user can apply an LFC cutoff according to a volcano plot (LFC vs. adjusted p-value

of genes) or the distribution of LFCs. Yet, such filtering would be arbitrary. A more

rational justification is to remove a second peak of LFC, after 0, which could indicate

a bias. However, if one applies an LFC cutoff, then it is equivalent to run multiple new

statistical tests. These tests are said post hoc and can break the FDR control by inducing

a selection bias. Therefore, it is necessary to control the FDR by considering both FDR

and LFC cutoffs with a post hoc inference tool such as cherry (Goeman and Solari,

2011) or sanssouci (Blanchard, Neuvial and Roquain, 2020) (see section 2.5). In all

cases, the LFC filtering should not remove genes with a high number of counts, which

tend to have a smaller LFC compared to the lowly-expressed genes.

With their dataset of 42 biological replicates, (Schurch et al., 2016) estimated the effect

of an LFC filtering (without post hoc inference) on the recall and the specificity. A

higher LFC cutoff increased the number of true positives, while maintaining stable the

number of false positives, by converting false negatives into DEGs. With 3 replicates

per condition, 85% of DEGs had an LFC higher than 2. To have the same proportion

with 6 replicates, this threshold was at 0.5. Note that 6 replicates enabled to only

identify 35% of possible DEGs. From these results, the authors estimated that the

optimal LFC cutoff was 0.5 with 3 replicates and 0.25 with 10 replicates because

replication enables to detect smaller size effects. Therefore, this work is in favor of LFC

filtering, even without post hoc inference. However, to my knowledge, Schurch and

173

colleagues were the only ones to study this question, but without exploring

alternatives.

To find an optimal FDR cutoff, (Lamarre et al., 2018) measured the ROC curves of

DESeq2 for a number of biological replicates varying from 2 to 7. They showed that

an optimal cutoff for the FDR followed the relation 2−𝑟 with 𝑟 the number of replicates.

It means that with 3 replicates, using a cutoff of 0.1 can increase the number of true

positives without increasing much the false positives. A lower cutoff would be too

stringent with regard to the statistical power enabled by the replication. A cutoff of

0.05 and 0.01 is relevant with 4 and 5 replicates per condition, respectively. Such work

would need to be replicated to other datasets, but it could indicate that common FDR

cutoffs are unnecessary too conservative.

After the differential expression analysis, the researchers usually test few DEGs by

qPCR. However, this approach cannot validate the whole results of a differential

expression analysis. To do so, (Leek, Taub and Rasgon, 2012) suggested a statistical

approach. First, the user randomly tests genes from the dataset by qPCR. Then, their

approach computes the probability that the actual FDR is lower than the FDR initially

defined by the user. To confirm the DEA, this probability must be much higher than

0.5. The testing must be random, otherwise it would bias the probability. For example,

to have a validation probability of 0.5 for a FDR at 5%, then at least 240 genes should

be tested. If there are 3 replicates, (Lamarre et al., 2018) would suggest a FDR at 10%,

giving 110 genes to test. In term of work and cost, it would be interesting to think about

the use of a technology such as the BRB-sequencing we saw above (Alpern et al., 2019)

as an independent validation technique. The approach of Leek and colleagues is of

course not necessary if the goal of the RNA-sequencing is to determine few target

genes. However, if one wants to analyze the DEGs, for example with clustering

(section 3.2), enrichment (section 3.3) or networks (section 4), then validating the DEA

is required to support their potential conclusions.

To conclude, common procedures call a gene as differentially expressed by defining

cutoffs on the false discovery rate (i.e. significance), the log-fold change (i.e. size effect)

or both. Common cutoffs are often arbitrary and studies suggest other approaches to

optimize them or to make them statistically sound. This is necessary to strengthen the

conclusions. Nonetheless, exploring a dataset requires to select a list of genes, even

with a rough approach. If one needs less DEGs, lowering the FDR and increasing the

LFC cutoffs are quick and easy.

In brief, DEA is powerful and widely used but its methods are not trivial. Now, I will

present approaches to analyze its results.

Genes with a low number of counts tend to have a higher variance than the other

genes. Such data are said heteroscedastic as the mean depends on the variance. Yet,

174

highly-variable data have an exaggerated weight when computing statistical measures

of the dataset, e.g. clustering. (Anders and Huber, 2010) proposed the variance-

stabilizing transformation (VST) to have counts with a similar variance, i.e.

homoscedastic data. It transforms the counts using the mean-variance relationship and

the normalization factors estimated by DESeq. In a next paper, (Love, Huber and

Anders, 2014) introduced the regularized-log transformation (rlog) which transforms the

counts using the empirical Bayes approach of DESeq2 for moderated log-fold change

(LFC). It also accounts for the normalization factors. According to the authors, rlog is

useful for datasets with less than 30 samples, but it is less efficient with a higher

number (Love, 2018). It can fail if the samples do not follow well a negative-binomial

distribution, for example if there are many outliers.

More generally, it can be necessary to apply a z-score standardization on the

normalized or transformed counts. It enables to have each gene with a mean of 0 and

standard deviation of 1. Whereby, one can have the gene variations on the same scale

when plotting the gene expression profiles. For example, Mfuzz chose this approach

(Kumar and Futschik, 2007). On these plots, one can also color the significant

variations (see figure), from the results of the DEA, as not all variations can have a

biological meaning. It was interesting for us to that in (Pierrelée et al., 2020). We could

quickly define DEG subsets correlated to phenotypic observations using expression-

profile plots.

(Futschik, 2003; Futschik and Carlisle, 2005; Kumar and Futschik, 2007) introduced the

tool Mfuzz to cluster gene-expression profiles using an algorithm based on soft-

clustering. Futschik developed it in his thesis of 2003. They published it in 2005 and

implemented it as Mfuzz in 2007.

Commonly, we refer to clustering as hard clustering. The idea is to assign one gene to

one cluster. A popular method is the hierarchical clustering where the clusters are nested

such as one cluster regroup several sub-clusters. One can show this grouping by

representing the clustering results with a dendrogram. Then, the user can set the

number of clusters according to the desired level of deepness after the clustering.

Another method is the partitional clustering. It is less sensible to noise than hierarchical

clustering. One algorithm of partitional clustering is the k-mean clustering. It iteratively

reassigns the genes to the clusters until the within-cluster variation is the lowest. In

this method, the user sets the number of clusters before the clustering. The authors

claimed that hard clustering will find cluster even in random data contrary to soft

clustering.

The idea of soft clustering is to assign one gene to one or more clusters. It enables

clusters with similar profiles and sharing genes. Therefore, the clusters are more

precise and more robust to noise. The authors implemented into Mfuzz a soft-

clustering algorithm called fuzzy c-means which generalizes the k-means clustering. In

this algorithm, each gene has a membership value to each cluster. The membership

varies from 0 to 1 such as the gene strongly belongs to the cluster at 1, but not at 0.

Hard clustering does not allow this continuity. Above 0.5, the gene was more assigned

175

to the cluster than to the others. The authors defined core genes such as genes with a

membership higher than 0.7. Core genes enable to filter the genes after the clustering,

contrary to other methods which prefer to filter before the clustering.

Genes with low counts tend to have a higher variation (heteroscedasticity). Standard

approaches usually filter out these genes. However, the authors showed that Mfuzz

was robust to noise. To avoid arbitrary thresholds, they advised against filtering before

clustering. It also enables to cluster the whole dataset without being restricted to a

DEG subset. Indeed, one can search for common regulatory elements shared by the

genes of a cluster. The authors showed it was easier to find them with their approach,

especially among core genes and stable clusters (see below). In my experience, it is

difficult to find relevant clusters among all possible clusters. To decrease this number,

one can only consider the DEGs. It is motivated by the fact that DEA tools can test the

significant variations. Therefore, a cluster without significant variation would be less

biologically relevant.

Mfuzz clusters data in Euclidian space. We should use normalized and/or transformed

counts before to apply a z-score standardization. Then, we set two parameters: the

number of clusters and a “m” parameter. Mfuzz applies an iterative algorithm. First,

it assigns random membership values for each gene. Second, it computes the centroid

of a given cluster using the counts, the membership and the m parameter. The centroid

is the average expression profile of the cluster. Third, it updates the memberships from

the centroid. This step decreases the within-cluster variation, i.e. the distance of gene

expression to the centroid. The algorithm repeats the two last steps until convergence

or if it reaches the maximal number of iterations. One can play with the number of

iterations but if this value is large enough, it does not affect the results but it improves

the runtime. The default value is 1000. We can follow the convergence of the algorithm

using the objective function “Jm” of Mfuzz. The function measures the overall within-

cluster variation. In all cases, it is a good practice to plot the Jm values to ensure the

convergence of the algorithm. The authors warmed the algorithm is less efficient when

the number of time-points is low and when the genes tend to have the similar

expression profiles.

The m parameter aims to strengthen the soft clustering by increasing the gene sharing

between cluster. If m is at 1, then it is equivalent to hard clustering. Higher values

decrease the membership values. The clusters would have less genes with high

membership but robust clusters should keep their core genes. The authors considered

that the genes shared by multiple clusters have a “large noise”. Instead, robust clusters

should not lose their “core” genes when the m parameter changes. To automatically

set this parameter, Mfuzz provides an option developed by (Schwämmle and Jensen,

2010). It is usually between 1 and 1.5. In my opinion, considering genes with low

memberships as noise is incorrect. The user should not ignore them. The noisiness

cannot only be defined by the ability of gene to cluster. For example, it could rather

mean that there are not enough genes with the same profile among the population. It

also depends on the number of clusters. We could increase this number to reduce the

number of genes which do not have a strong membership to a cluster, but it is not

necessarily biologically meaningful.

176

The main issue with clustering is to define the number of clusters. For Mfuzz, the

authors suggested 3 options. First, (Schwämmle and Jensen, 2010) benchmarked many

approaches and suggested the “Dmin” function. From the clustering results, the

function computes the distance between the centroids of each pair of clusters. The

smallest value gives the minimum centroid distance. This distance should be stable for

a low number of clusters and then drop after with higher values. The drop indicates

that clusters started to split without giving clusters with unique profiles. The optimal

number of clusters could be the highest number before the drop. Yet, we cannot use

this approach if the drop is too fast enough. This happens when the profiles are not

enough dissimilar, i.e. when the number of time-points is low. On the contrary, is the

drop is too soft, picking a value would be arbitrary.

Second, Mfuzz provides the “Cselection” function. In a cluster, if no gene has a

membership higher than 0.5, then we consider the cluster has empty. Empty clusters

will appear if the number of clusters is large enough. One can set this parameter by

choosing the highest number for which there are no empty clusters. In practice, a large

number of genes can produce a high diversity of expression profiles. No empty cluster

would appear in this context.

Finally, the authors suggested to apply functional enrichment on the clusters (see

section 3.3). We test the enrichment for each cluster and we keep the clusters with the

most relevant results. Doing so, we assume that genes sharing the same profile are co-

regulated. It implies that co-regulation should be of the 1st order, e.g. a group of genes

directly regulated by a transcription factor. This direct co-regulation should have

roughly the same size effect and direction for each gene of the cluster. Though, two

genes with the same profile are not necessarily co-regulated. This is a similar problem

to the correlations used to infer networks (see section 4.2). Even when it is the case, if

there are few time-points, it is harder to have clusters with few but consistent genes.

After we set the clustering parameters, we can explore the clustering with its stability

and its global structure. We evaluate the cluster stability by varying the m parameter.

Stable clusters show strong structures within the data because their core is stable. In

other words, core genes of stable clusters do not change while varying m. The user

should explore the most stable clusters first. Furthermore, we group the clusters

according to how many genes they share. It enables to remove some unnecessary

clusters or to look for common features.

The user should not focus too much on the number of clusters because it is too difficult

to find a meaningful value. Instead, one should try to estimate if this number makes

sense with regard to the biological context. I present an intuitive method in section

3.1.1 of the introduction.

Soft clustering brings its own ambiguity. We enable the clusters to share genes, but we

want clusters with unique profiles. Our approaches aim to reduce as few as possible

the number of clusters. We only consider the core genes and ignore the others which

benefit from the soft clustering. Therefore, we can discuss the advantages of the soft

clustering compared to other approaches.

177

Functional enrichment aims to find gene sets with an overrepresented number of genes

from an input list, for example the list of differentially expressed genes. A gene set is a

list of genes annotated by a same term, such as a gene ontology (e.g. “nucleus”), a

pathway (e.g. “cell cycle”) or a transcription factor (e.g. “CREB”). Statistical tests

compute these gene sets and give them a score to rank according to their level of

enrichment. They are called enriched terms when their score is higher than a given

threshold. Many methods were developed to build gene sets, weight the genes of the

input list and test their enrichment. (Huang, Sherman and Lempicki, 2009) Even in

2009, 68 methods were already available to enrich gene sets.

(Subramanian et al., 2005) developed the Gene Set Enrichment Analysis (GSEA). It

aims to identify the gene sets which are overrepresented at the top and at the bottom

of a ranked gene list. For the authors, the advantages of gene enrichment are to take

into accounts genes with low size effect, to reduce the noise in the DEG identification

and to enable a better overlapping of results from the experiments studying a same

pathway. GSEA can take as an input either the matrix of read counts or a pre-ranked

gene list. An advantage of the first option is to not filter out genes based on a particular

threshold. Thus, the results do not depend on an arbitrary choice and the genes which

are not passing the test can still contribute to the enrichment. However, the pre-ranked

list is the step after the differential expression analysis which already ranked the genes.

The pre-ranked list enables to customize the gene’s rank score. (Xiao et al., 2014) ranked

the genes according to both the adjusted p-values and the log-fold change. They

combined these scores with the formula −log10 𝑝𝑣𝑎𝑙 ∗ 𝐿𝐹𝐶. The genes with high

significance and size effect have higher ranks. (Zyla et al., 2017) benchmarked 11 other

ranking metrics for microarrays, so the study is offside.

GSEA applies an iterative algorithm. For each gene set, a “walker” reads the ranked

list from the top to the bottom and increases its value when it meets a gene belonging

to the set. Otherwise, if the gene is not in the set, the walker decreases its value. The

increase or decrease depends on the gene’s score. The enrichment score of a gene set is

the highest value of the walker. Then, a Kilmogorov-like statistics computes a p-value by

comparing the enrichment score to an empirical null distribution, i.e. determined from

the dataset. Finally, it estimates the false discovery rate (FDR) for each enrichment

score. The authors advised a FDR lower than 0.25 to call a term enriched.

As we saw, GSEA requires pre-made gene sets. (Liberzon et al., 2015) created the

Molecular Signature Database (MSigDB). This dataset is human-oriented. It has

around 30,000 curated gene sets split into 9 collections. Especially, the “hallmark”

collection is a summary of the 8 other collections, but the authors corrected 3 biases

related to the enrichment. First, many enriched terms are related to the same biological

process. Also, we often find many terms enriched thanks to the same genes. Third,

genes from a gene set do not always have the same behavior over time.

178

(Chen et al., 2013; Kuleshov et al., 2016, 2019) introduced enrichr. It comes with a

database of gene sets for 6 species: Human, Mouse, Fly, Yeast, Worm and Fish. For

human and mouse species, more than 300,000 gene sets are available divided into 17

collections. The biggest advantage of enrichr over GSEA is that we can easily enrich a

gene list from their webpage. The authors also developed a complete API (Application

Programming Interface) which is quite convenient to use. The user only needs to

provide a gene list.

Enrichr computes three enrichment scores. First, it computes a p-value with the exact

fisher test using a binomial distribution. Contrary to GSEA, it assumes gene-gene

independence. In parallel, enrichr computes a z-score by comparing the enrichment to

random models. Then, it combines these two scores by combining the p-value and the

z-score. The authors showed that this combined score was more efficient than the two

other scores alone.

Contrary to GSEA, web service of enrichr cannot take into account a custom

background. A background is a reference gene list against which the statistical test

computes the enrichment (Simillion et al., 2017). It enables to remove the sample bias.

To illustrate, let’s take as input a DEG list from an experiment. The experiment

explores a limited number of conditions where the biological material expresses a

limited number. A cell does not express all genes at the same type. Thereby, a gene

cannot obviously be differentially expressed if it is not expressed in any condition. Yet,

gene sets include all genes from the genome. They do not depend on the experiment.

Consequently, the DEGs have a higher weight than the other genes, so gene sets

having few DEGs will become more significant, even if their presence was purely

random. To avoid the sample bias, the background should only contain the genes

expressed during the experiment. It results in less spurious enriched terms.

For (Tamayo et al., 2016), the Fisher’s exact test of enrichr and the hypergeometric tests

are competitors of the Kilmogorov-like statistics computed by GSEA. Tamayo and

colleagues showed that the methods based on these two former tests overlook the most

enriched terms and assume gene-gene independence. Thus, they increase the number

of false positives. More generally, (Huang, Sherman and Lempicki, 2009) criticized the

use of p-values for the functional enrichment. Various factors can strongly affect them.

Instead, the order of enriched terms should be taken into account by varying the

background. Moreover, (Blüthgen et al., 2005) considered that the standard FDR

control is not suited for gene sets because it is too conservative with regard to the huge

number of gene sets to enrich. For example, GSEA authors recommended a FDR cutoff

of 0.25. Note that enrichr authors recommended a cutoff at 0.05. Blüthgen and

colleagues suggested a method to estimate the FDR by computing the number of false

discoveries. They showed it was more exact and robust to other estimation procedures.

These considerations seem to have been ignored lately.

The aforementioned tools provide pre-made gene sets for common model species.

However, most species and in particular, the datasets from de novo sequencing, do not

179

have ready-to-use gene sets, as there are no annotations for their genome. I was

confronted to this issue for the paper (Yun et al., 2020) where we had only had the

transcriptome of the biological material. We have to define an ortholog for each gene

and fetch its annotations such as pathways. Then, we build gene sets by grouping the

gene with the same annotations.

This is less straightforward for gene ontology annotations. Gene ontologies (GOs) are

standard annotations of genes (Ashburner et al., 2000). A GO can be a more specialized

annotation than another GO and in this case, the specialized GO is linked to the general

GO. The GO annotations shape 3 independent trees starting from the root (i.e. most

general) GOs “Molecular Function”, “Biological Process” and “Cellular Component”,

respectively. All the other GOs are their direct or indirect subsets. This relationship

between the GOs enables to propagate the gene assignment through the GO tree. If a

gene is assigned to a given GO, then it is also assigned to the containing GOs.

Therefore, we can use that to build GO gene sets. Other type of relations between the

GOs exist, but they do not interest us.

Enrichr creates the GO gene sets as follows (Kuleshov et al., 2019). First, it builds the

GO trees. Then, for each tree, it removes the 3 first levels starting from the root GO.

Third, it assigns the genes from the specialized GOs to the general GOs far from 4

levels at most. Finally, it removes the gene sets with less than 5 genes.

In comparison, (Powell, 2014) developed GO2MSIG to automatically generate gene

sets for GSEA from a GO tree and a list of annotated genes representing the

background. The approach is similar to Enrichr with the difference that it does not

remove the first levels and it does not limit the tree propagation. The user can set a

minimum and maximum number of genes in each set. Moreover, the author corrected

another bias resulting from gene sets with the same genes by merging them into a

single set. Indeed, identical gene sets would affect the enrichment scores without

adding value. I manually applied this method in (Yun et al., 2020).

In experiments, we expect to get enriched terms consistent with the experiment. For

example, comparing healthy tissue to a tumor should result in enriched terms related

to growth and angiogenesis. This information could be taken into account when

computing the enrichment. It would enable to highlight unexpected enriched terms

or, on the contrary, found terms which are unexpectedly not enriched. Bayesian

statistics enables that and could improve the statistics.

To conclude, functional enrichment enables to find the relationships between the

differentially expressed genes. It groups the genes because, for a given enriched gene

set, we obtain the DEGs which contributed to its enrichment. There are two popular

tools: GSEA and enrichr. GSEA removes biases by taking into account a background

and the gene dependencies. In comparison, enrichr is much easier to use. Both tools

have a limited number of species and gene sets. Therefore, one has to build gene sets

dedicated to non-annotated species if this information is not available.

180

Differential expression analysis is a long and complex workflow. It directly affects the

downstream methods such as clustering and functional enrichment. If the statistical

power is low, then these methods produce truncated results that could change the

conclusion. Each method has its own drawbacks

Clustering finds expression patterns among a gene list. One can use the whole dataset,

but it makes harder to the clustering parameters. The clusters without differential

expression are not ensured to be meaningful. (Ideker et al., 2002) explaining that

clustering depend on the strength and the direction of the expression changes. These

are stringent constrained. Moreover, it assumes that genes with similar expression

profiles can be grouped. When exploring the results, one can interpret them as co-

regulated genes across all conditions. This is not always true. Most clustering methods

will cluster all genes, while some of them are not involved in the dysregulated

pathway. On the practical side, applying clustering takes time. While it does not bring

any information on the relationships, the following analyses of the results are limited.

From the DEG lists or the clustering results, one can apply functional enrichment. It

gives functional hypotheses on the patterns within the gene list. Yet, enrichment

heavily depends on the gene sets, the input lists and the algorithm (Huang, Sherman

and Lempicki, 2009). RNA-sequencing biases the input list. For example, enriched

terms include longer genes than expected because they have more chances to be called

differentially expressed. Moreover, we already know that DEA does not identify most

of the DEGs (e.g. (Schurch et al., 2016)). Missing one gene can greatly affect the

significance of gene sets with few terms. Gene sets with many terms are not necessarily

meaningful either. We often observe many enriched terms with more or less the same

genes, likely because the latter are highly annotated. Therefore, it is difficult to

compare enriched terms from different experiments without controlled the biases,

such as those presented by MSigDB. The incompleteness of annotations is a strong

issue with functional enrichment. Even if the genes are well annotated, these

annotations could have been made from a particular condition which does not enable

to generalize them (Tamayo et al., 2016). (Corley et al., 2017) observed that even a

sequencing protocol (single- or paired-end and stranded or non-stranded) affected the

enrichment. The authors showed these protocols had an overlap of only 40 to 60% for

the 20 most enriched GOs. The overlap was much higher when considering a larger

number of enriched GOs, but it indicates that the user cannot only trust the top

enriched terms. This is not tractable if there are hundreds of enriched terms. On the

end, “the notion that the enriched terms should make sense based on a priori biological

knowledge of the study is the most important guideline” (Huang, Sherman and Lempicki,

2009). Even if the enrichment analysis is long-time popular approach, there are still

rooms for improvements, from building gene sets to computing enrichment statistics

(Huang, Sherman and Lempicki, 2009; Tamayo et al., 2016).

181

Akhmedov, M. et al. (2017) ‘PCSF: An R-package for network-based interpretation of

high-throughput data’, PLOS Computational Biology. Edited by D. Schneidman. Public

Library of Science, 13(7), p. e1005694. doi: 10.1371/journal.pcbi.1005694.

Almozlino, Y. et al. (2017) ‘ANAT 2.0: reconstructing functional protein subnetworks’,

BMC Bioinformatics. BioMed Central, 18(1), p. 495. doi: 10.1186/s12859-017-1932-1.

Alpern, D. et al. (2019) ‘BRB-seq: ultra-affordable high-throughput transcriptomics

enabled by bulk RNA barcoding and sequencing’, Genome Biology. BioMed Central

Ltd., 20(1), p. 71. doi: 10.1186/s13059-019-1671-x.

Anand, R. and Chatterjee, S. (2017) ‘Tracking disease progression by searching paths

in a temporal network of biological processes’, PLOS ONE. Edited by G. Bontempi.

Public Library of Science, 12(4), p. e0176172. doi: 10.1371/journal.pone.0176172.

Anders, S. and Huber, W. (2010) ‘Differential expression analysis for sequence count

data’, Genome Biology, 11(10), p. R106. doi: 10.1186/gb-2010-11-10-r106.

Aoki, K., Ogata, Y. and Shibata, D. (2007) ‘Approaches for Extracting Practical

Information from Gene Co-expression Networks in Plant Biology’, Plant and Cell

Physiology, 48(3), pp. 381–390. doi: 10.1093/pcp/pcm013.

Ashburner, M. et al. (2000) ‘Gene Ontology: tool for the unification of biology’, Nature

Genetics, 25(1), pp. 25–29. doi: 10.1038/75556.

Auer, P. L. and Doerge, R. W. (2010) ‘Statistical Design and Analysis of RNA

Sequencing Data’, Genetics. Genetics, 185(2), pp. 405–416. doi:

10.1534/genetics.110.114983.

Ballouz, S., Verleyen, W. and Gillis, J. (2015) ‘Guidance for RNA-seq co-expression

network construction and analysis: safety in numbers’, Bioinformatics, 31(13), pp. 2123–

2130. doi: 10.1093/bioinformatics/btv118.

Bandyopadhyay, S. et al. (2010) ‘Rewiring of Genetic Networks in Response to DNA

Damage’, Science, 330(6009), pp. 1385–1389. doi: 10.1126/science.1195618.

Bar-Joseph, Z., Gitter, A. and Simon, I. (2012) ‘Studying and modelling dynamic

biological processes using time-series gene expression data’, Nature Reviews Genetics.

Nature Publishing Group, 13(8), pp. 552–564. doi: 10.1038/nrg3244.

Batra, R. et al. (2017) ‘On the performance of de novo pathway enrichment’, npj Systems

Biology and Applications. Springer US, 3(1), p. 6. doi: 10.1038/s41540-017-0007-2.

Bender, R. and Lange, S. (2001) ‘Adjusting for multiple testing—when and how?’,

Journal of Clinical Epidemiology, 54(4), pp. 343–349. doi: 10.1016/S0895-4356(00)00314-0.

Benjamini, Y. and Hochberg, Y. (1995) ‘Controlling the False Discovery Rate: A

Practical and Powerful Approach to Multiple Testing’, Journal of the Royal Statistical

Society. Series B (Methodological), 57(1), pp. 289–300. doi:

https://www.jstor.org/stable/2346101.

182

Blanchard, G., Neuvial, P. and Roquain, E. (2020) ‘Post hoc confidence bounds on false

positives using reference families’, Annals of Statistics, 48(3), pp. 1281–1303. doi:

10.1214/19-AOS1847.

Blüthgen, N. et al. (2005) ‘Biological profiling of gene groups utilizing Gene Ontology.’,

Genome informatics. International Conference on Genome Informatics, 16(1), pp. 106–115.

doi: 10.11234/gi1990.16.106.

Bostock, M. (2011) ‘D3.js’. Available at: https://d3js.org/.

Bourgon, R., Gentleman, R. and Huber, W. (2010) ‘Independent filtering increases

detection power for high-throughput experiments’, Proceedings of the National Academy

of Sciences, 107(21), pp. 9546–9551. doi: 10.1073/pnas.0914005107.

Braun, P. et al. (2009) ‘An experimentally derived confidence score for binary protein-

protein interactions’, Nature Methods, 6(1), pp. 91–97. doi: 10.1038/nmeth.1281.

Broido, A. D. and Clauset, A. (2019) ‘Scale-free networks are rare’, Nature

Communications. Springer US, 10(1), p. 1017. doi: 10.1038/s41467-019-08746-5.

Bryant, D. M. et al. (2017) ‘A Tissue-Mapped Axolotl De Novo Transcriptome Enables

Identification of Limb Regeneration Factors’, Cell Reports. ElsevierCompany., 18(3), pp.

762–776. doi: 10.1016/j.celrep.2016.12.063.

Bui-Xuan, B.-M., Ferreira, A. and Jarry, A. (2003) ‘Computing shortest, fastest, and

foremost journeys in dynamic networks’, International Journal of Foundations of

Computer Science, 14(02), pp. 267–285. doi: 10.1142/S0129054103001728.

Bullard, J. H. et al. (2010) ‘Evaluation of statistical methods for normalization and

differential expression in mRNA-Seq experiments’, BMC Bioinformatics, 11(1), p. 94.

doi: 10.1186/1471-2105-11-94.

Burden, C. J., Qureshi, S. E. and Wilson, S. R. (2014) ‘Error estimates for the analysis of

differential expression from RNA-seq count data’, PeerJ, 2(1), p. e576. doi:

10.7717/peerj.576.

Camacho, C. et al. (2009) ‘BLAST+: architecture and applications’, BMC Bioinformatics,

10(1), p. 421. doi: 10.1186/1471-2105-10-421.

Cantini, L. et al. (2015) ‘Detection of gene communities in multi-networks reveals

cancer drivers.’, Scientific reports. Nature Publishing Group, 5, p. 17386. doi:

10.1038/srep17386.

Chakrabarti, D., Kumar, R. and Tomkins, A. (2006) ‘Evolutionary clustering’, in

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’06. New York, New York, USA: ACM Press, p. 554. doi:

10.1145/1150402.1150467.

Chen, E. Y. et al. (2013) ‘Enrichr: Interactive and collaborative HTML5 gene list

enrichment analysis tool’, BMC Bioinformatics, 14, p. 128. doi: 10.1186/1471-2105-14-128.

Chen, K. et al. (2016) ‘The Overlooked Fact: Fundamental Need for Spike-In Control

183

for Virtually All Genome-Wide Analyses’, Molecular and Cellular Biology, 36(5), pp. 662–

667. doi: 10.1128/MCB.00970-14.

Chen, Y., Lun, A. T. L. and Smyth, G. K. (2014) ‘Differential Expression Analysis of

Complex RNA-seq Experiments Using edgeR’, in Statistical Analysis of Next Generation

Sequencing Data. Cham: Springer International Publishing, pp. 51–74. doi: 10.1007/978-

3-319-07212-8_3.

Chen, Y., Lun, A. T. L. and Smyth, G. K. (2016) ‘From reads to genes to pathways:

differential expression analysis of RNA-Seq experiments using Rsubread and the

edgeR quasi-likelihood pipeline’, F1000Research. Faculty of 1000 Ltd, 5, p. 1438. doi:

10.12688/f1000research.8987.2.

Ching, T., Huang, S. and Garmire, L. X. (2014) ‘Power analysis and sample size

estimation for RNA-Seq differential expression’, RNA. Cold Spring Harbor Laboratory

Press, 20(11), pp. 1684–1696. doi: 10.1261/rna.046011.114.

Chowdhury, H. A., Bhattacharyya, D. K. and Kalita, J. K. (2020a) ‘(Differential) Co-

Expression Analysis of Gene Expression: A Survey of Best Practices’, IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 17(4), pp. 1154–1173. doi:

10.1109/TCBB.2019.2893170.

Chowdhury, H. A., Bhattacharyya, D. K. and Kalita, J. K. (2020b) ‘Differential

Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools’, IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 17(2), pp. 566–586. doi:

10.1109/TCBB.2018.2873010.

Clauset, A., Newman, M. E. J. and Moore, C. (2004) ‘Finding community structure in

very large networks’, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, 70(6), p. 6. doi: 10.1103/PhysRevE.70.066111.

Conesa, A. et al. (2005) ‘Blast2GO: a universal tool for annotation, visualization and

analysis in functional genomics research’, Bioinformatics, 21(18), pp. 3674–3676. doi:

10.1093/bioinformatics/bti610.

Conesa, A. et al. (2006) ‘maSigPro: a method to identify significantly differential

expression profiles in time-course microarray experiments’, Bioinformatics. Oxford

Academic, 22(9), pp. 1096–1102. doi: 10.1093/bioinformatics/btl056.

Contreras-López, O. et al. (2018) ‘Step-by-Step Construction of Gene Co-expression

Networks from High-Throughput Arabidopsis RNA Sequencing Data’, in Ristova, D.

and Barbez, E. (eds) Root Development. Methods in Molecular Biology. 1st edn. New York,

NY: Humana Press, pp. 275–301. doi: 10.1007/978-1-4939-7747-5_21.

Corley, S. M. et al. (2017) ‘Differentially expressed genes from RNA-Seq and functional

enrichment results are affected by the choice of single-end versus paired-end reads

and stranded versus non-stranded protocols’, BMC Genomics. BioMed Central, 18(1),

p. 399. doi: 10.1186/s12864-017-3797-0.

Cozzo, E. et al. (2015) ‘Structure of triadic relations in multiplex networks’, New Journal

of Physics. IOP Publishing, 17(7), p. 073029. doi: 10.1088/1367-2630/17/7/073029.

184

Curtis, R. E. et al. (2012) ‘Enabling dynamic network analysis through visualization in

TVNViewer’, BMC Bioinformatics. BioMed Central, 13(1), p. 204. doi: 10.1186/1471-

2105-13-204.

van Dam, S. et al. (2018) ‘Gene co-expression analysis for functional classification and

gene–disease predictions’, Briefings in Bioinformatics. Oxford University Press, 19(4),

pp. 575–592. doi: 10.1093/bib/bbw139.

Dao, D., Wilzbach, S. and Corpas, M. (2014) ‘BioJS’. Available at:

https://github.com/biojs.

Davidson, N. M., Hawkins, A. D. K. and Oshlack, A. (2017) ‘SuperTranscripts: A data

driven reference for analysis and visualisation of transcriptomes’, Genome Biology.

BioMed Central Ltd., 18(1), p. 148. doi: 10.1186/s13059-017-1284-1.

Dillies, M. A. et al. (2013) ‘A comprehensive evaluation of normalization methods for

Illumina high-throughput RNA sequencing data analysis’, Briefings in Bioinformatics,

14(6), pp. 671–683. doi: 10.1093/bib/bbs046.

Djordjevic, D. et al. (2014) ‘How Difficult Is Inference of Mammalian Causal Gene

Regulatory Networks?’, PLoS ONE. Edited by F. Emmert-Streib, 9(11), p. e111661. doi:

10.1371/journal.pone.0111661.

Dobin, A. et al. (2013) ‘STAR: ultrafast universal RNA-seq aligner’, Bioinformatics.

Oxford University Press, 29(1), pp. 15–21. doi: 10.1093/bioinformatics/bts635.

De Domenico, M. et al. (2015) ‘Identifying Modular Flows on Multilayer Networks

Reveals Highly Overlapping Organization in Interconnected Systems’, Physical Review

X, 5(1), p. 011027. doi: 10.1103/PhysRevX.5.011027.

Ernst, J. et al. (2007) ‘Reconstructing dynamic regulatory maps’, Molecular Systems

Biology. John Wiley & Sons, Ltd, 3(1), p. 74. doi: 10.1038/msb4100115.

Evans, C., Hardin, J. and Stoebel, D. M. (2018) ‘Selecting between-sample RNA-Seq

normalization methods from the perspective of their assumptions’, Briefings in

Bioinformatics, 19(5), pp. 776–792. doi: 10.1093/bib/bbx008.

Faust, K. et al. (2010) ‘Pathway discovery in metabolic networks by subgraph

extraction’, Bioinformatics. Narnia, 26(9), pp. 1211–1218. doi:

10.1093/bioinformatics/btq105.

Fields, S. and Song, O. (1989) ‘A novel genetic system to detect protein–protein

interactions’, Nature. Nature Publishing Group, 340(6230), pp. 245–246. doi:

10.1038/340245a0.

Finner, H. and Roters, M. (2001) ‘On the False Discovery Rate and Expected Type I

Errors’, Biometrical Journal, 43(8), p. 985. doi: 10.1002/1521-4036(200112)43:8<985::AID-

BIMJ985>3.0.CO;2-4.

Fischer, D. S., Theis, F. J. and Yosef, N. (2018) ‘Impulse model-based differential

expression analysis of time course sequencing data’, Nucleic Acids Research. Oxford

University Press, 46(20), pp. 1–10. doi: 10.1093/nar/gky675.

185

Fornes, O. et al. (2019) ‘JASPAR 2020: update of the open-access database of

transcription factor binding profiles’, Nucleic Acids Research, 48(D1), pp. D87–D92. doi:

10.1093/nar/gkz1001.

Fortunato, S. and Hric, D. (2016) ‘Community detection in networks: A user guide’,

Physics Reports. Elsevier B.V., 659, pp. 1–44. doi: 10.1016/j.physrep.2016.09.002.

Friedman, N. et al. (2000) ‘Using Bayesian Networks to Analyze Expression Data’,

Journal of Computational Biology, 7(3–4), pp. 601–620. doi: 10.1089/106652700750050961.

Futschik, M. E. (2003) Methods for Knowledge Discovery in Microarray Data, Chapter V:

Clustering of Gene Expression Data. University of Otago, Dunedin New Zealand.

Available at: http://www.sysbiolab.eu/PhD/index.htm.

Futschik, M. E. and Carlisle, B. (2005) ‘Noise-Robust Soft Clustering of Gene

Expression Time-Course Data’, Journal of Bioinformatics and Computational Biology,

03(04), pp. 965–988. doi: 10.1142/S0219720005001375.

Garmhausen, M. et al. (2015) ‘Virtual pathway explorer (viPEr) and pathway

enrichment analysis tool (PEANuT): Creating and analyzing focus networks to

identify cross-talk between molecules and pathways’, BMC Genomics. BMC Genomics,

16(1), pp. 1–13. doi: 10.1186/s12864-015-2017-z.

Gil, D. P., Law, J. N. and Murali, T. M. (2017) ‘The PathLinker app: Connect the dots

in protein interaction networks’, F1000Research, 6, p. 58. doi:

10.12688/f1000research.9909.1.

Glaab, E. et al. (2012) ‘EnrichNet: network-based gene set enrichment analysis’,

Bioinformatics, 28(18), pp. i451–i457. doi: 10.1093/bioinformatics/bts389.

Goeman, J. J. and Solari, A. (2011) ‘Multiple Testing for Exploratory Research’,

Statistical Science. Institute of Mathematical Statistics, 26(4), pp. 584–597. doi:

10.1214/11-STS356.

Goeman, J. J. and Solari, A. (2014) ‘Multiple hypothesis testing in genomics’, Statistics

in Medicine, 33(11), pp. 1946–1978. doi: 10.1002/sim.6082.

Goenawan, I. H., Bryan, K. and Lynn, D. J. (2016) ‘DyNet: visualization and analysis

of dynamic molecular interaction networks’, Bioinformatics. Narnia, 32(17), pp. 2713–

2715. doi: 10.1093/bioinformatics/btw187.

Gu, J. et al. (2010) ‘Identification of responsive gene modules by network-based gene

clustering and extending: application to inflammation and angiogenesis’, BMC Systems

Biology, 4(1), p. 47. doi: 10.1186/1752-0509-4-47.

Gupta, S. K. et al. (2020) ‘Genome-wide inference of the Camponotus floridanus

protein-protein interaction network using homologous mapping and interacting

domain profile pairs’, Scientific Reports, 10(1), p. 2334. doi: 10.1038/s41598-020-59344-1.

Haas, B. J. et al. (2013) ‘De novo transcript sequence reconstruction from RNA-seq

using the Trinity platform for reference generation and analysis’, Nature Protocols.

Nature Publishing Group, 8(8), pp. 1494–1512. doi: 10.1038/nprot.2013.084.

186

Haile, S. et al. (2019) ‘Evaluation of protocols for rRNA depletion-based RNA

sequencing of nanogram inputs of mammalian total RNA’, PLOS ONE. Edited by T.

Preiss. Public Library of Science, 14(10), p. e0224578. doi:

10.1371/journal.pone.0224578.

Han, H. et al. (2018) ‘TRRUST v2: An expanded reference database of human and

mouse transcriptional regulatory interactions’, Nucleic Acids Research. Oxford

University Press, 46(D1), pp. D380–D386. doi: 10.1093/nar/gkx1013.

Hartwell, L. H. et al. (1999) ‘From molecular to modular cell biology’, Nature,

402(S6761), pp. C47–C52. doi: 10.1038/35011540.

Hawinkel, S. et al. (2020) ‘Sequence count data are poorly fit by the negative binomial

distribution’, PLOS ONE. Edited by S. Kumar, 15(4), p. e0224909. doi:

10.1371/journal.pone.0224909.

Hermjakob, H. et al. (2004) ‘The HUPO PSI’s Molecular Interaction format—a

community standard for the representation of protein interaction data’, Nature

Biotechnology, 22(2), pp. 177–183. doi: 10.1038/nbt926.

Hill, S. M. et al. (2012) ‘Bayesian Inference of Signaling Network Topology in a Cancer

Cell Line’, Bioinformatics, 28(21), pp. 2804–2810. doi: 10.1093/bioinformatics/bts514.

Holik, A. Z. et al. (2017) ‘RNA-seq mixology: designing realistic control experiments to

compare protocols and analysis methods’, Nucleic Acids Research. Oxford University

Press, 45(5), pp. e30–e30. doi: 10.1093/nar/gkw1063.

Holm, S. (1979) ‘A Simple Sequentially Rejective Multiple Test Procedure’,

Scandinavian Journal of Statistics, 6(2), pp. 65–70. doi: 10.2307/4615733.

Holme, P. (2015) ‘Modern temporal network theory: a colloquium’, The European

Physical Journal B, 88(9), p. 234. doi: 10.1140/epjb/e2015-60657-4.

Holme, P. and Saramäki, J. (2012) ‘Temporal networks’, Physics Reports, 519, pp. 97–

125. doi: 10.1016/j.physrep.2012.03.001.

Hric, D., Darst, R. K. and Fortunato, S. (2014) ‘Community detection in networks:

Structural communities versus ground truth’, Physical Review E, 90(6), p. 062805. doi:

10.1103/PhysRevE.90.062805.

Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) ‘Bioinformatics enrichment

tools: paths toward the comprehensive functional analysis of large gene lists’, Nucleic

Acids Research. Oxford University Press, 37(1), pp. 1–13. doi: 10.1093/nar/gkn923.

Huang, S. -s. C. and Fraenkel, E. (2009) ‘Integrating Proteomic, Transcriptional, and

Interactome Data Reveals Hidden Components of Signaling and Regulatory

Networks’, Science Signaling. NIH Public Access, 2(81), pp. ra40–ra40. doi:

10.1126/scisignal.2000350.

Huang, X. et al. (2021) ‘A survey of community detection methods in multilayer

networks’, Data Mining and Knowledge Discovery. Springer US, 35(1), pp. 1–45. doi:

10.1007/s10618-020-00716-6.

187

Hughes, T. R. et al. (2000) ‘Functional Discovery via a Compendium of Expression

Profiles’, Cell, 102(1), pp. 109–126. doi: 10.1016/S0092-8674(00)00015-5.

Husmeier, D. (2003) ‘Sensitivity and specificity of inferring genetic regulatory

interactions from microarray experiments with dynamic Bayesian networks’,

Bioinformatics, 19(17), pp. 2271–2282. doi: 10.1093/bioinformatics/btg313.

Ideker, T. et al. (2002) ‘Discovering regulatory and signalling circuits in molecular

interaction networks’, Bioinformatics. Narnia, 18(Suppl 1), pp. S233–S240. doi:

10.1093/bioinformatics/18.suppl_1.S233.

Illumina (2010) TruSeq RNA Sample Prep Guide (15008136 A). Available at:

https://emea.support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/samplepreps_truseq/t

ruseqrna/truseq_rna_sampleprep_guide_15008136_a.pdf (Accessed: 2 December

2020).

Jacob, F. and Monod, J. (1961) ‘Genetic regulatory mechanisms in the synthesis of

proteins’, Journal of Molecular Biology, 3(3), pp. 318–356. doi: 10.1016/S0022-

2836(61)80072-7.

Jeong, H. et al. (2000) ‘The large-scale organization of metabolic networks’, Nature,

407(6804), pp. 651–654. doi: 10.1038/35036627.

Kanehisa, M. (2000) ‘KEGG: Kyoto Encyclopedia of Genes and Genomes’, Nucleic Acids

Research, 28(1), pp. 27–30. doi: 10.1093/nar/28.1.27.

Kanehisa, M. and Sato, Y. (2020) ‘KEGG Mapper for inferring cellular functions from

protein sequences’, Protein Science, 29(1), pp. 28–35. doi: 10.1002/pro.3711.

Kivelä, M. et al. (2014) ‘Multilayer networks’, Journal of Complex Networks. Oxford

University Press, 2(3), pp. 203–271. doi: 10.1093/comnet/cnu016.

Köksal, A. S. et al. (2018) ‘Synthesizing Signaling Pathways from Temporal

Phosphoproteomic Data.’, Cell reports. Elsevier, 24(13), pp. 3607–3618. doi:

10.1016/j.celrep.2018.08.085.

Korn, E. L. et al. (2004) ‘Controlling the number of false discoveries: application to high-

dimensional genomic data’, Journal of Statistical Planning and Inference, 124(2), pp. 379–

398. doi: 10.1016/S0378-3758(03)00211-8.

Kuleshov, M. V. et al. (2016) ‘Enrichr: a comprehensive gene set enrichment analysis

web server 2016 update’, Nucleic acids research, 44(W1), pp. W90–W97. doi:

10.1093/nar/gkw377.

Kuleshov, M. V. et al. (2019) ‘modEnrichr: a suite of gene set enrichment analysis tools

for model organisms’, Nucleic Acids Research. Oxford University Press, 47(W1), pp.

W183–W190. doi: 10.1093/nar/gkz347.

Kumar, L. and Futschik, M. E. (2007) ‘Mfuzz: A software package for soft clustering of

microarray data’, Bioinformation, 2(1), pp. 5–7. doi: 10.6026/97320630002005.

188

Kumari, S. et al. (2012) ‘Evaluation of Gene Association Methods for Coexpression

Network Construction and Biological Knowledge Discovery’, PLoS ONE. Edited by S.

Horvath, 7(11), p. e50411. doi: 10.1371/journal.pone.0050411.

Lamarre, S. et al. (2018) ‘Optimization of an RNA-Seq Differential Gene Expression

Analysis Depending on Biological Replicate Number and Library Size’, Frontiers in

Plant Science. Frontiers Media SA, 9, p. 108. doi: 10.3389/fpls.2018.00108.

Langmead, B. and Salzberg, S. L. (2012) ‘Fast gapped-read alignment with Bowtie 2’,

Nature Methods, 9(4), pp. 357–359. doi: 10.1038/nmeth.1923.

Law, C. W. et al. (2014) ‘Voom: Precision weights unlock linear model analysis tools

for RNA-seq read counts’, Genome Biology, 15(2), pp. 1–17. doi: 10.1186/gb-2014-15-2-

r29.

Leek, J. T., Taub, M. A. and Rasgon, J. L. (2012) ‘A statistical approach to selecting and

confirming validation targets in -omics experiments’, BMC Bioinformatics. BioMed

Central, 13(1), p. 150. doi: 10.1186/1471-2105-13-150.

Lewis, A. C. et al. (2010) ‘The function of communities in protein interaction networks

at multiple scales’, BMC Systems Biology, 4(1), p. 100. doi: 10.1186/1752-0509-4-100.

Li, B. and Dewey, C. N. (2011) ‘RSEM: accurate transcript quantification from RNA-

Seq data with or without a reference genome’, BMC Bioinformatics. Edited by Y. Liu.

Apple Academic Press, 12(1), p. 323. doi: 10.1186/1471-2105-12-323.

Li, M. et al. (2018) ‘DyNetViewer: a Cytoscape app for dynamic network construction,

analysis and visualization’, Bioinformatics. Edited by J. Wren. Oxford University Press,

34(9), pp. 1597–1599. doi: 10.1093/bioinformatics/btx821.

Li, P. et al. (2015) ‘Comparing the normalization methods for the differential analysis

of Illumina high-throughput RNA-Seq data’, BMC Bioinformatics. BMC Bioinformatics,

16(1), p. 347. doi: 10.1186/s12859-015-0778-7.

Li, S. et al. (2004) ‘A map of the interactome network of the metazoan C. elegans.’,

Science, 303(5657), pp. 540–3. doi: 10.1126/science.1091403.

Li, X. et al. (2020) ‘Choice of library size normalization and statistical methods for

differential gene expression analysis in balanced two-group comparisons for RNA-seq

studies’, BMC Genomics. BMC Genomics, 21(1), pp. 1–17. doi: 10.1186/s12864-020-6502-

7.

Liao, Y., Smyth, G. K. and Shi, W. (2014) ‘featureCounts: an efficient general purpose

program for assigning sequence reads to genomic features’, Bioinformatics. Oxford

University Press, 30(7), pp. 923–930. doi: 10.1093/bioinformatics/btt656.

Liberzon, A. et al. (2015) ‘The Molecular Signatures Database Hallmark Gene Set

Collection’, Cell Systems, 1(6), pp. 417–425. doi: 10.1016/j.cels.2015.12.004.

Lima-Mendez, G. and van Helden, J. (2009) ‘The powerful law of the power law and

other myths in network biology’, Molecular BioSystems, 5(12), p. 1482. doi:

10.1039/b908681a.

189

Lin, C. Y. et al. (2012) ‘Transcriptional amplification in tumor cells with elevated c-

Myc’, Cell, 151(1), pp. 56–67. doi: 10.1016/j.cell.2012.08.026.

Lin, Y. et al. (2016) ‘Comparison of normalization and differential expression analyses

using RNA-Seq data from 726 individual Drosophila melanogaster.’, BMC genomics.

BMC Genomics, 17(1), p. 28. doi: 10.1186/s12864-015-2353-z.

Lisso, J. et al. (2005) ‘Identification of brassinosteroid-related genes by means of

transcript co-response analyses’, Nucleic Acids Research, 33(8), pp. 2685–2696. doi:

10.1093/nar/gki566.

Liu, R. et al. (2015) ‘Why weight? Modelling sample and observational level variability

improves power in RNA-seq analyses’, Nucleic Acids Research, 43(15), pp. e97–e97. doi:

10.1093/nar/gkv412.

Liu, Y., Zhou, J. and White, K. P. (2014) ‘RNA-seq differential expression studies: more

sequence or more replication?’, Bioinformatics. Oxford University Press, 30(3), pp. 301–

304. doi: 10.1093/bioinformatics/btt688.

Liu, Z.-P. (2015) ‘Reverse Engineering of Genome-wide Gene Regulatory Networks

from Gene Expression Data’, Current Genomics, 16(1), pp. 3–22. doi:

10.2174/1389202915666141110210634.

Liu, Z. P. et al. (2015) ‘RegNetwork: An integrated database of transcriptional and post-

transcriptional regulatory networks in human and mouse’, Database, 2015, pp. 1–12.

doi: 10.1093/database/bav095.

López, Y., Nakai, K. and Patil, A. (2015) ‘HitPredict version 4: comprehensive

reliability scoring of physical protein–protein interactions from more than 100 species’,

Database. Oxford University Press, 2015(1), p. bav117. doi: 10.1093/database/bav117.

López, Y., Nakai, K. and Patil, A. (2020) HitPredict statistics. Available at:

www.hitpredict.org/species_interactions.txt (Accessed: 11 January 2020).

Love, M. I. (2018) rlog transformation producing outliers with very high log-transformed

counts, Bioconductor. Available at: https://support.bioconductor.org/p/105334/#105336

(Accessed: 28 December 2020).

Love, M. I., Huber, W. and Anders, S. (2014) ‘Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2’, Genome Biology, 15(12), pp. 1–21. doi:

10.1186/s13059-014-0550-8.

Lovén, J. et al. (2012) ‘Revisiting Global Gene Expression Analysis’, Cell, 151(3), pp.

476–482. doi: 10.1016/j.cell.2012.10.012.

Lu, R. et al. (2009) ‘Systems-level dynamic analyses of fate change in murine embryonic

stem cells’, Nature. Nature Publishing Group, 462(7271), pp. 358–362. doi:

10.1038/nature08575.

Luce, R. D. and Perry, A. D. (1949) ‘A method of matrix analysis of group structure’,

Psychometrika, 14(2), pp. 95–116. doi: 10.1007/BF02289146.

190

Luecken, M. D. et al. (2018) ‘CommWalker: Correctly evaluating modules in molecular

networks in light of annotation bias’, Bioinformatics. Oxford University Press, 34(6), pp.

994–1000. doi: 10.1093/bioinformatics/btx706.

Lun, A. T. L., Chen, Y. and Smyth, G. K. (2016) ‘It’s DE-licious: A Recipe for Differential

Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in

edgeR’, in Methods in Molecular Biology. Humana Press Inc., pp. 391–416. doi:

10.1007/978-1-4939-3578-9_19.

Lund, S. P. et al. (2012) ‘Detecting Differential Expression in RNA-sequence Data Using

Quasi-likelihood with Shrunken Dispersion Estimates’, Statistical Applications in

Genetics and Molecular Biology, 11(5). doi: 10.1515/1544-6115.1826.

Luo, J. and Kuang, L. (2014) ‘A new method for predicting essential proteins based on

dynamic network topology and complex information’, Computational Biology and

Chemistry. Elsevier Ltd, 52, pp. 34–42. doi: 10.1016/j.compbiolchem.2014.08.022.

Magnani, M. and Rossi, L. (2013) ‘Pareto Distance for Multi-layer Network Analysis’,

in Greenberg, A. M., Kennedy, W. G., and Bos, N. D. (eds) Social Computing, Behavioral-

Cultural Modeling and Prediction. Springer, Berlin, Heidelberg, pp. 249–256. doi:

10.1007/978-3-642-37210-0_27.

Magnano, C. S. and Gitter, A. (2019) ‘Automating parameter selection to avoid

implausible biological pathway models’, bioRxiv. doi: 10.1101/845834.

Margolin, A. A. et al. (2006) ‘ARACNE: An Algorithm for the Reconstruction of Gene

Regulatory Networks in a Mammalian Cellular Context’, BMC Bioinformatics, 7(S1), p.

S7. doi: 10.1186/1471-2105-7-S1-S7.

Marioni, J. C. et al. (2008) ‘RNA-seq: An assessment of technical reproducibility and

comparison with gene expression arrays’, Genome Research, 18(9), pp. 1509–1517. doi:

10.1101/gr.079558.108.

Masuda, N. and Holme, P. (2019) ‘Detecting sequences of system states in temporal

networks’, Scientific Reports, 9(1), p. 795. doi: 10.1038/s41598-018-37534-2.

Maza, E. et al. (2013) ‘Comparison of normalization methods for differential gene

expression analysis in RNA-Seq experiments’, Communicative & Integrative Biology,

6(6), p. e25849. doi: 10.4161/cib.25849.

McCarthy, D. J., Chen, Y. and Smyth, G. K. (2012) ‘Differential expression analysis of

multifactor RNA-Seq experiments with respect to biological variation’, Nucleic Acids

Research. Oxford University Press, 40(10), pp. 4288–4297. doi: 10.1093/nar/gks042.

von Mering, C. et al. (2002) ‘Comparative assessment of large-scale data sets of protein–

protein interactions’, Nature, 417(6887), pp. 399–403. doi: 10.1038/nature750.

Mete, M. et al. (2008) ‘A structural approach for finding functional modules from large

biological networks’, BMC Bioinformatics, 9(Suppl 9), p. S19. doi: 10.1186/1471-2105-9-

S9-S19.

Monteiro, P. T. et al. (2020) ‘YEASTRACT+: a portal for cross-species comparative

191

genomics of transcription regulation in yeasts’, Nucleic Acids Research, 48(D1), pp.

D642–D649. doi: 10.1093/nar/gkz859.

Moradzadeh, K. et al. (2019) ‘Analysis of time-course microarray data: Comparison of

common tools’, Genomics. Elsevier, 111(4), pp. 636–641. doi:

10.1016/j.ygeno.2018.03.021.

Mortazavi, A. et al. (2008) ‘Mapping and quantifying mammalian transcriptomes by

RNA-Seq’, Nature Methods, 5(7), pp. 621–628. doi: 10.1038/nmeth.1226.

Mucha, P. J. et al. (2010) ‘Community Structure in Time-Dependent, Multiscale, and

Multiplex Networks’, Science, 328(5980), pp. 876–878. doi: 10.1126/science.1184819.

Murphy, K. and Mian, S. (1999) Modelling Gene Expression Data using Dynamic Bayesian

Networks, Tech. Rep. MIT Artificial Intelligence Lab.

NCBI (2021) Citations of Cytoscape 2003 paper. Available at:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/citedby/ (Accessed: 21

January 2021).

Nguyen, H. et al. (2019) ‘A Comprehensive Survey of Tools and Software for Active

Subnetwork Identification’, Frontiers in Genetics. Frontiers Media SA, 10, p. 155. doi:

10.3389/fgene.2019.00155.

Nueda, M. J., Tarazona, S. and Conesa, A. (2014) ‘Next maSigPro: updating maSigPro

bioconductor package for RNA-seq time series’, Bioinformatics. Oxford University

Press, 30(18), pp. 2598–2602. doi: 10.1093/bioinformatics/btu333.

Ong, I. M., Glasner, J. D. and Page, D. (2002) ‘Modelling regulatory pathways in E. coli

from time series expression profiles’, Bioinformatics, 18(SUPPL. 1), pp. 241–248. doi:

10.1093/bioinformatics/18.suppl_1.S241.

Ono, K. et al. (2015) ‘CyREST: Turbocharging Cytoscape Access for External Tools via

a RESTful API’, F1000Research, 4, p. 478. doi: 10.12688/f1000research.6767.1.

Oshlack, A. and Wakefield, M. (2009) ‘Transcript length bias in RNA-seq data

confounds systems biology.’, Biology direct, 4, p. 14. doi: 10.1186/1745-6150-4-14.

Oughtred, R. et al. (2021) ‘The BioGRID database: A comprehensive biomedical

resource of curated protein, genetic, and chemical interactions’, Protein Science, 30(1),

pp. 187–200. doi: 10.1002/pro.3978.

Palla, G., Barabási, A.-L. and Vicsek, T. (2007) ‘Quantifying social group evolution’,

Nature, 446(7136), pp. 664–667. doi: 10.1038/nature05670.

Park, C. et al. (2017) ‘Systematic identification of an integrative network module during

senescence from time-series gene expression’, BMC Systems Biology. BioMed Central,

11(1), p. 36. doi: 10.1186/s12918-017-0417-1.

Patil, A. et al. (2013) ‘Linking Transcriptional Changes over Time in Stimulated

Dendritic Cells to Identify Gene Networks Activated during the Innate Immune

Response’, PLoS Computational Biology. Edited by J. J. Saucerman. Public Library of

192

Science, 9(11), p. e1003323. doi: 10.1371/journal.pcbi.1003323.

Patil, A. and Nakai, K. (2014) ‘TimeXNet: identifying active gene sub-networks using

time-course gene expression profiles.’, BMC systems biology. BioMed Central, 8(Suppl

4), p. S2. doi: 10.1186/1752-0509-8-S4-S2.

Pawlina, J. (2021) Graphs, Excalidraw.

Phipson, B. et al. (2016) ‘Robust hyperparameter estimation protects against

hypervariable genes and improves power to detect differential expression’, The Annals

of Applied Statistics, 10(2), pp. 946–963. doi: 10.1214/16-AOAS920.

Pierrelée, M. et al. (2020) TimeNexus: A Novel Cytoscape App to Analyze Time-Series Data

Using Temporal MultiLayer Networks (tMLNs), Research Square. PREPRINT (Version 1).

doi: 10.21203/rs.3.rs-133258/v1.

Powell, J. A. C. (2014) ‘GO2MSIG, an automated GO based multi-species gene set

generator for gene set enrichment analysis’, BMC Bioinformatics, 15(1), p. 146. doi:

10.1186/1471-2105-15-146.

Przytycka, T. M., Singh, M. and Slonim, D. K. (2010) ‘Toward the dynamic interactome:

It’s about time’, Briefings in Bioinformatics, 11(1), pp. 15–29. doi: 10.1093/bib/bbp057.

Rajkumar, A. P. et al. (2015) ‘Experimental validation of methods for differential gene

expression analysis and sample pooling in RNA-seq’, BMC Genomics. BioMed Central,

16(1), p. 548. doi: 10.1186/s12864-015-1767-y.

Rao, X. and Dixon, R. A. (2019) ‘Co-expression networks for plant biology: Why and

how’, Acta Biochimica et Biophysica Sinica. Oxford University Press, pp. 981–988. doi:

10.1093/abbs/gmz080.

Rapaport, F. et al. (2013) ‘Comprehensive evaluation of differential gene expression

analysis methods for RNA-seq data’, Genome Biology, 14(9), p. R95. doi: 10.1186/gb-

2013-14-9-r95.

Rau, A. et al. (2013) ‘Data-based filtering for replicated high-throughput transcriptome

sequencing experiments’, Bioinformatics, 29(17), pp. 2146–2152. doi:

10.1093/bioinformatics/btt350.

Ravasz, E. (2002) ‘Hierarchical Organization of Modularity in Metabolic Networks’,

Science, 297(5586), pp. 1551–1555. doi: 10.1126/science.1073374.

Rigaill, G. et al. (2016) ‘Synthetic data sets for the identification of key ingredients for

RNA-seq differential analysis’, Briefings in Bioinformatics. Oxford University Press,

19(1), p. bbw092. doi: 10.1093/bib/bbw092.

Risso, D. et al. (2011) ‘GC-Content Normalization for RNA-Seq Data’, BMC

Bioinformatics. BioMed Central, 12(1), p. 480. doi: 10.1186/1471-2105-12-480.

Ritz, A. et al. (2016) ‘Pathways on demand: Automated reconstruction of human

signaling networks’, npj Systems Biology and Applications. Nature Publishing Group,

2(1), p. 16002. doi: 10.1038/npjsba.2016.2.

193

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) ‘edgeR: A Bioconductor

package for differential expression analysis of digital gene expression data’,

Bioinformatics, 26(1), pp. 139–140. doi: 10.1093/bioinformatics/btp616.

Robinson, M. D. and Oshlack, A. (2010) ‘A scaling normalization method for

differential expression analysis of RNA-seq data’, Genome Biology. BioMed Central,

11(3), p. R25. doi: 10.1186/gb-2010-11-3-r25.

Robinson, M. D. and Smyth, G. K. (2007) ‘Moderated statistical tests for assessing

differences in tag abundance’, Bioinformatics, 23(21), pp. 2881–2887. doi:

10.1093/bioinformatics/btm453.

Robinson, M. D. and Smyth, G. K. (2008) ‘Small-sample estimation of negative

binomial dispersion, with applications to SAGE data’, Biostatistics, 9(2), pp. 321–332.

doi: 10.1093/biostatistics/kxm030.

Roca, C. P. et al. (2017) ‘Variation-preserving normalization unveils blind spots in gene

expression profiling’, Scientific Reports. Nature Publishing Group, 7(1), p. 42460. doi:

10.1038/srep42460.

Sanchez, C. et al. (1999) ‘Grasping at molecular interactions and genetic networks in

Drosophila melanogaster using FlyNets, an internet database’, Nucleic Acids Research.

Oxford University Press, pp. 89–94. doi: 10.1093/nar/27.1.89.

Schaefer, M. H., Serrano, L. and Andrade-Navarro, M. A. (2015) ‘Correcting for the

study bias associated with protein–protein interaction measurements reveals

differences between protein degree distributions from different cancer types’, Frontiers

in Genetics, 6(Aug), pp. 1–8. doi: 10.3389/fgene.2015.00260.

Schulz, M. H. et al. (2012) ‘DREM 2.0: Improved reconstruction of dynamic regulatory

networks from time-series expression data’, BMC Systems Biology. BioMed Central,

6(1), p. 104. doi: 10.1186/1752-0509-6-104.

Schurch, N. J. et al. (2016) ‘How many biological replicates are needed in an RNA-seq

experiment and which differential expression tool should you use?’, RNA. Cold Spring

Harbor Laboratory Press, 22(6), pp. 839–851. doi: 10.1261/rna.053959.115.

Schwämmle, V. and Jensen, O. N. (2010) ‘A simple and fast method to determine the

parameters for fuzzy c–means cluster analysis’, Bioinformatics, 26(22), pp. 2841–2848.

doi: 10.1093/bioinformatics/btq534.

Seyednasrollah, F., Laiho, A. and Elo, L. L. (2015) ‘Comparison of software packages

for detecting differential expression in RNA-seq studies’, Briefings in Bioinformatics,

16(1), pp. 59–70. doi: 10.1093/bib/bbt086.

Sha, Y., Phan, J. H. and Wang, M. D. (2015) ‘Effect of low-expression gene filtering on

detection of differentially expressed genes in RNA-seq data’, in Proceedings of the

Annual International Conference of the IEEE Engineering in Medicine and Biology Society,

EMBS. Milan, Italy: IEEE, pp. 6461–6464. doi: 10.1109/EMBC.2015.7319872.

Shaffer, J. P. (1995) ‘Multiple Hypothesis Testing’, Annual Review of Psychology, 46(1),

194

pp. 561–584. doi: 10.1146/annurev.ps.46.020195.003021.

Shaik, F., Bezawada, S. and Goveas, N. (2015) ‘CySpanningTree: Minimal Spanning

Tree computation in Cytoscape’, F1000Research, 4, p. 476. doi:

10.12688/f1000research.6797.1.

Shannon, P. et al. (2003) ‘Cytoscape: A software Environment for integrated models of

biomolecular interaction networks’, Genome Research. Cold Spring Harbor Laboratory

Press, 13(11), pp. 2498–2504. doi: 10.1101/gr.1239303.

Simillion, C. et al. (2017) ‘Avoiding the pitfalls of gene set enrichment analysis with

SetRank’, BMC Bioinformatics. BMC Bioinformatics, 18(1), p. 151. doi: 10.1186/s12859-

017-1571-6.

Smyth, G. K. (2004) ‘Linear Models and Empirical Bayes Methods for Assessing

Differential Expression in Microarray Experiments’, Statistical Applications in Genetics

and Molecular Biology, 3(1), pp. 1–25. doi: 10.2202/1544-6115.1027.

Smyth, G. K. et al. (2020) Linear Models for Microarray Data User’s Guide, Bioconductor.

Available at:

https://www.bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/users

guide.pdf (Accessed: 1 January 2020).

Soneson, C. and Delorenzi, M. (2013) ‘A comparison of methods for differential

expression analysis of RNA-seq data’, BMC Bioinformatics, 14, p. 91. doi: 10.1186/1471-

2105-14-91.

Spies, D. et al. (2019) ‘Comparative analysis of differential gene expression tools for

RNA sequencing time course data’, Briefings in Bioinformatics. Oxford University Press,

20(1), pp. 288–298. doi: 10.1093/bib/bbx115.

Spiliopoulou, M. (2011) ‘Evolution in Social Networks: A Survey’, in Aggarwal, C. C.

(ed.) Social Network Data Analytics. Boston, MA: Springer US, pp. 149–175. doi:

10.1007/978-1-4419-8462-3_6.

Sprinzak, E., Sattath, S. and Margalit, H. (2003) ‘How Reliable are Experimental

Protein–Protein Interaction Data?’, Journal of Molecular Biology. Academic Press, 327(5),

pp. 919–923. doi: 10.1016/S0022-2836(03)00239-0.

Storey, J. D. and Tibshirani, R. (2003) ‘Statistical significance for genomewide studies’,

Proceedings of the National Academy of Sciences of the United States of America, 100(16), pp.

9440–9445. doi: 10.1073/pnas.1530509100.

Subramanian, A. et al. (2005) ‘Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles’, Proceedings of the National

Academy of Sciences, 102(43), pp. 15545–15550. doi: 10.1073/pnas.0506580102.

Tamayo, P. et al. (2016) ‘The limitations of simple gene set enrichment analysis

assuming gene independence’, Statistical Methods in Medical Research, 25(1), pp. 472–

487. doi: 10.1177/0962280212460441.

Tang, X. et al. (2011) ‘A comparison of the functional modules identified from time

195

course and static PPI network data’, BMC Bioinformatics, 12(1), p. 339. doi:

10.1186/1471-2105-12-339.

Tantipathananandh, C., Berger-Wolf, T. and Kempe, D. (2007) ‘A framework for

community identification in dynamic social networks’, in Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining - KDD ’07. New

York, New York, USA: ACM Press, p. 717. doi: 10.1145/1281192.1281269.

Teixeira, M. C. et al. (2018) ‘YEASTRACT: an upgraded database for the analysis of

transcription regulatory networks in Saccharomyces cerevisiae’, Nucleic Acids Research.

Oxford University Press, 46(D1), pp. D348–D353. doi: 10.1093/nar/gkx842.

Tjang, Y. (2020) Software Architecture, Excalidraw.

Trapnell, C. et al. (2010) ‘Transcript assembly and quantification by RNA-Seq reveals

unannotated transcripts and isoform switching during cell differentiation’, Nature

Biotechnology. Nature Publishing Group, 28(5), pp. 511–515. doi: 10.1038/nbt.1621.

Trapnell, C. et al. (2012) ‘Differential gene and transcript expression analysis of RNA-

seq experiments with TopHat and Cufflinks’, Nature Protocols, 7(3), pp. 562–578. doi:

10.1038/nprot.2012.016.

Trapnell, C. et al. (2013) ‘Differential analysis of gene regulation at transcript resolution

with RNA-seq’, Nature Biotechnology. Nature Publishing Group, 31(1), pp. 46–53. doi:

10.1038/nbt.2450.

Tuncbag, N. et al. (2013) ‘Simultaneous Reconstruction of Multiple Signaling Pathways

via the Prize-Collecting Steiner Forest Problem’, Journal of Computational Biology. Mary

Ann Liebert, Inc., 20(2), pp. 124–136. doi: 10.1089/cmb.2012.0092.

Tuncbag, N. et al. (2016) ‘Network-Based Interpretation of Diverse High-Throughput

Datasets through the Omics Integrator Software Package.’, PLoS computational biology.

Public Library of Science, 12(4), p. e1004879. doi: 10.1371/journal.pcbi.1004879.

Valdeolivas, A. et al. (2019) ‘Random walk with restart on multiplex and

heterogeneous biological networks’, Bioinformatics. Edited by A. Valencia, 35(3), pp.

497–505. doi: 10.1093/bioinformatics/bty637.

Villaveces, J. M. et al. (2015) ‘Merging and scoring molecular interactions utilising

existing community standards: Tools, use-cases and a case study’, Database. Narnia,

2015, p. bau131. doi: 10.1093/database/bau131.

Vlaic, S. et al. (2018) ‘ModuleDiscoverer: Identification of regulatory modules in

protein-protein interaction networks’, Scientific Reports. Springer US, 8(1), p. 433. doi:

10.1038/s41598-017-18370-2.

Watts, D. J. and Strogatz, S. H. (1998) ‘Collective dynamics of “small-world” networks’,

Nature, 393(6684), pp. 440–442. doi: 10.1038/30918.

Westfall, P. H. (2011) ‘Discussion of “Multiple Testing for Exploratory Research” by J.

J. Goeman and A. Solari’, Statistical Science, 26(4), pp. 604–607. doi: 10.1214/11-

STS356C.

196

Will, T. and Helms, V. (2017) ‘Rewiring of the inferred protein interactome during

blood development studied with the tool PPICompare’, BMC Systems Biology. BMC

Systems Biology, 11(1), p. 44. doi: 10.1186/s12918-017-0400-x.

Williams, C. R. et al. (2016) ‘Trimming of sequence reads alters RNA-Seq gene

expression estimates’, BMC Bioinformatics. BioMed Central, 17, p. 103. doi:

10.1186/s12859-016-0956-2.

Wingender, E. (2008) ‘The TRANSFAC project as an example of framework technology

that supports the analysis of genomic regulation’, Briefings in Bioinformatics, 9(4), pp.

326–332. doi: 10.1093/bib/bbn016.

Wright, S. P. (1992) ‘Adjusted P-Values for Simultaneous Inference’, Biometrics, 48(4),

p. 1005. doi: 10.2307/2532694.

Wu, Huanhuan et al. (2016) ‘Efficient Algorithms for Temporal Path Computation’,

IEEE Transactions on Knowledge and Data Engineering, 28(11), pp. 2927–2942. doi:

10.1109/TKDE.2016.2594065.

Xiao, Y. et al. (2014) ‘A novel significance score for gene selection and ranking’,

Bioinformatics, 30(6), pp. 801–807. doi: 10.1093/bioinformatics/btr671.

Xu, X. et al. (2007) ‘SCAN: A Structural Clustering Algorithm for Networks’, in

Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’07. New York, New York, USA: ACM Press, pp. 824–833. doi:

10.1145/1281192.1281280.

Yosef, N. et al. (2009) ‘Toward accurate reconstruction of functional protein networks’,

Molecular Systems Biology, 5(1), p. 248. doi: 10.1038/msb.2009.3.

Yosef, N. et al. (2011) ‘ANAT: A Tool for Constructing and Analyzing Functional

Protein Networks’, Science Signaling. American Association for the Advancement of

Science, 4(196), pp. pl1–pl1. doi: 10.1126/scisignal.2001935.

Yun, J. et al. (2020) ‘Transcriptomic analysis of Chlorella sp. HS2 suggests the overflow

of acetyl‐CoA and NADPH cofactor induces high lipid accumulation and

halotolerance’, Food and Energy Security, p. e267. doi: 10.1002/fes3.267.

Zhang, B. and Horvath, S. (2005) ‘A General Framework for Weighted Gene Co-

Expression Network Analysis’, Statistical Applications in Genetics and Molecular Biology,

4(1). doi: 10.2202/1544-6115.1128.

Zheng, H., Wang, H. and Glass, D. H. (2008) ‘Integration of Genomic Data for Inferring

Protein Complexes from Global Protein–Protein Interaction Networks’, IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), pp. 5–16. doi:

10.1109/TSMCB.2007.908912.

Zheng, W., Chung, L. M. and Zhao, H. (2011) ‘Bias detection and correction in RNA-

Sequencing data’, BMC Bioinformatics, 12(1), p. 290. doi: 10.1186/1471-2105-12-290.

Zhou, X., Lindsay, H. and Robinson, M. D. (2014) ‘Robustly detecting differential

expression in RNA sequencing data using observation weights’, Nucleic Acids Research,

197

42(11), pp. e91–e91. doi: 10.1093/nar/gku310.

Zyla, J. et al. (2017) ‘Ranking metrics in gene set enrichment analysis: Do they matter?’,

BMC Bioinformatics. BioMed Central, 18(1), p. 256. doi: 10.1186/s12859-017-1674-0.

Zyprych-Walczak, J. et al. (2015) ‘The Impact of Normalization Methods on RNA-Seq

Data Analysis’, BioMed Research International, 2015, pp. 1–10. doi: 10.1155/2015/621690.

	Affidavit
	Abstract
	Résumé
	Acknowledgment
	Abbreviations
	Table of contents
	List of figures
	Introduction
	1 Pathways are dynamic
	2 Differential expression analysis of RNA-sequencing datasets
	2.1 Overview of RNA-sequencing
	2.2 Data processing of de novo RNA-sequencing
	2.3 Differential expression analysis
	2.3.1 Preparing read counts
	2.3.1.1 Filtering out genes with low expression
	2.3.1.2 Normalizing samples

	2.3.2 Testing differential expression
	2.3.3 Calling dysregulating genes

	2.4 Testing methods dedicated for time-course datasets

	3 Analyzing dysregulated genes from time-course datasets
	3.1 Clustering of time series
	3.1.1 Mfuzz
	3.1.2 DREM

	3.2 Functional enrichment of gene lists

	4 Building biological networks
	4.1 Monolayer networks
	4.2 Inferring networks
	4.2.1 Building co-expression networks from gene expressions
	4.2.2 Reverse engineering of gene regulatory networks

	4.3 Building networks from the cellular interactome
	4.3.1 Experimental detection of molecular interactions
	4.3.2 Getting interactions from databases
	4.3.2.1 Protein-protein interaction databases
	4.3.2.2 Other database types

	4.3.3 Weighting the networks
	4.3.3.1 Weighting enables to favor network elements
	4.3.3.2 Penalizing hubs

	4.3.4 Edge directions
	4.3.5 Condition-specific networks

	5 Finding patterns within biological networks
	5.1 Extracting subnetworks
	5.1.1 Greedy algorithm: viPEr
	5.1.2 Evolutionary algorithm: jActiveModules
	5.1.3 Diffusion-flow algorithm: TimeXNet
	5.1.4 Shortest path algorithm: PathLinker
	5.1.5 Steiner tree algorithms: CySpanningTree, PCSF and AnatApp
	5.1.6 Parameter selection

	5.2 Detecting communities
	5.2.1 Vocabulary
	5.2.2 Identifying communities
	5.2.3 Identifying functional modules
	5.2.4 Evolving communities

	5.3 Exploring dynamic networks
	5.3.1 Visualizing networks
	5.3.2 Rewiring
	5.3.3 Causality inferences

	6 Developing temporal multilayer networks
	6.1 Temporal networks
	6.2 Dynamic networks
	6.3 Multilayer networks
	6.4 Temporal multilayer networks

	Chapter 1 – Chlorella sp. HS2 paper
	Chapter 2 – TimeNexus paper
	Discussion and conclusion
	1 Chlorella sp. HS2
	2 TimeNexus

	Appendix – About good DEA practices
	1 Generating input data for differential expression analysis
	1.1 Library preparation
	1.1.1 Sequencing
	1.1.2 Data processing

	1.2 General considerations about the experimental design
	1.2.1 Biological replicates and sequencing depth
	1.2.2 Pooling samples

	2 Identifying dysregulated genes using differential expression analysis
	2.1 About statistics and reliability of computational approaches
	2.2 Gene filtering
	2.3 Normalizing read counts
	2.3.1 Methods for normalization
	2.3.2 Theoretical aspects
	2.3.3 Benchmarks

	2.4 Modeling differential expression
	2.4.1 The story of edgeR and its subsequent developments
	2.4.1.1 Classic edgeR implemented an overdispersed negative binomial model.
	2.4.1.2 GLM-edgeR can manage multifactor experimental designs.
	2.4.1.3 Quasi-edgeR increases the test efficiency by accounting for the variance uncertainties and outlier genes.

	2.4.2 Few other tools for DEA
	2.4.2.1 Limma-voom
	2.4.2.2 DESeq and DESeq2
	2.4.2.3 Cuffdiff2

	2.4.3 Benchmarks
	2.4.4 Quality control of the DEA

	2.5 Correcting the multiple-hypothesis testing problem
	2.6 Calling a gene “differentially expressed”

	3 Analyzing the DEG list from time-course datasets
	3.1 Transformation
	3.2 Clustering with Mfuzz
	3.3 Functional enrichment of gene lists
	3.3.1 GSEA
	3.3.2 Enrichr
	3.3.3 Creating gene sets

	3.4 Limits of approaches to analyze

	References

