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Abstract

The study of quantum field theory in de Sitter spacetime is notably motivated by the
success of inflation, and the possibility to test fundamental physics through cosmo-
logical experiments. Going beyond the usual linearized description, one has to use
nonperturbative methods to circumvent the infrared and secular divergences arising
from the gravitational amplification of superhorizon modes. This thesis first focuses
on the backreaction of an O(N) quantum scalar theory on the background geometry,
related to the cosmological constant problem, as such divergences may signal an insta-
bility of de Sitter space towards a Minkowski spacetime. Our study uses the functional
renormalization group (FRG) and shows a finite backreaction in the presence of interac-
tions, which saturates as a result of the nonperturbative generation of a mass. The FRG
methods also allows to probe a large parameter space, including the case of a massless
minimally coupled field and symmetry breaking potentials, and concludes in favor of
the stability of de Sitter in all case. The second main topic of the thesis is the effect of
selfinteractions on scalar field correlators correlators at separate spacetime points, in the
infrared limit. The spacetime dependence gives access to several interesting physical
quantities such as power spectra, relaxation time, or decoherence time. The stochas-
tic formalism is considered. A functional formulation, in terms of a one-dimensional
supersymmetric field theory, is obtained through the Janssen-de Dominic procedure,
and we use it as an effective field theory to compute the correlators with different tech-
niques. The FRG is first implemented beyond the usual local potential approximation
(LPA) to second order in the derivative expansion, as the LPA is known to give a too
simplistic result for the spacetime dependence of the correlators. We compare with ex-
act analytical results in the context of a 1/N expansion and with numerical results for
the case of a single (N = 1) massless minimally coupled field. We typically obtain a ten
percent accuracy in both cases for the correlation time (or length), at large spacetime
separation. The aforementioned analytic results in the 1/N expansion are computed
solving the Schwinger-Dyson equations at next-to-leading order (NLO). We obtain the
two- and four-point field correlators and the results are shown to coincide with the one
obtained in the original Lorentzian field theory. Finally, the 1/N expansion is applied
directly to the Fokker-Planck formulation of the stochastic approach, which is phrased
as an equivalent, Schrödinger-like, eigenvalue problem. The correponding spectrum is
entirely computed at NLO, giving access to the spacetime dependence of any correla-
tor.
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Résumé

L’étude des champs quantiques en espace-temps de Sitter est notamment motivée par
le succès de la théorie de l’inflation, et la possibilité de réaliser des tests de physique
fondamentale à travers des expériences de cosmologie. Pour aller au delà de la descrip-
tion linéarisée habituelle, il est nécessaire d’utiliser des méthodes non-perturbatives,
pour s’affranchir des divergences infrarouges ou séculaires, elles-mêmes conséquences
de l’amplification gravitationnelle des modes super-horizon. Cette thèse se concentre
tout d’abord sur le problème de la rétroaction d’une théorie O(N) de champs scalaires
quantiques sur la géométrie ambiante, en lien avec le problème de la constante cos-
mologique, les divergences précédemment citées pouvant révéler une instabilité de
l’espace-temps de Sitter relaxant vers un espace-temps de Minkowski. On utilise ici
le groupe de renormalisation fonctionnel (GRF), and on montre que la rétroaction est
toujours finie malgré la présence d’interactions. Le mécanisme de saturation est in-
trinsèquement non-perturbatif et résulte de la génération d’une masse pour le champ
scalaire. Le GRF permet de sonder un large espace de paramètres, incluant notam-
ment le cas d’un champ sans masse minimalement couplé et des potentiels à symétrie
brisée, et conclu à la stabilité de de Sitter dans tous les cas. L’autre thématique majeure
concerne les effets des auto-interactions sur les corrélateurs du champ scalaire pris en
différents points de l’espace-temps, dans la limite infrarouge. La dépendance dans
les coordonnées d’espace-temps donne accès à diverses quantités physiques d’intérêt,
comme des spectres de puissance, des temps de relaxation, ou de décohérence. Le
formalisme stochastique est utilisé dans ce cadre. Une formulation fonctionnelle en
terme d’une théorie unidimensionnelle supersymétrique est obtenue avec la procédure
de Janssen-de Dominicis, et est utilisée comme une théorie des champs effective pour
le calcul des corrélateurs via différentes techniques. Le GRF est d’abord implémenté
au delà de l’approximation du potentiel local (APL) usuelle au deuxième ordre dans
le développement dérivatif, l’APL donnant un résultat trop simplistes pour la dépen-
dance en espace-temps des corrélateurs. On compare ensuite avec des résultats analy-
tiques obtenus dans le contexte d’un développement 1/N, et numériques pour un seul
champ (N = 1) sans masse et minimalement couplé. On obtient typiquement une pré-
cision de l’ordre de dix pourcent dans ces deux cas pour le temps (ou la longueur) de
corrélation à grandes séparations d’espace-temps. Les résultats analytiques précédem-
ment mentionnés dans le développement 1/N sont également calculés par la résolu-
tion des équations de Schwinger-Dyson, à l’ordre sous dominant (OSD). On obtient
les corrélateurs du champ à deux et quatre points, et on constate que le résultat co-
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incide avec le calcul fait dans la théorie des champs Lorentzienne originale. Enfin, un
développement 1/N est appliqué directement à la formulation en terme d’une équation
de Fokker-Planck de l’approche stochastique, exprimée comme un problème équivalent
d’une équation aux valeurs propres de type équation de Schrödinger. Le spectre asso-
cié est calculé en intégralité à l’OSD, et donne accès à la dépendance en espace-temps
de tous les corrélateurs de la théorie.
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Introduction

Quantum field theory (QFT) in curved spacetime, i.e., in the presence of a nontrivial
background geometry, is believed to give a good approximation of the yet unknown
quantum theory of gravity in numerous contexts where the typical energy scales are
well below the Planck scale [1]. Among its most celebrated result is the correct descrip-
tion of the production of inhomogeneities from quantum fluctuations in the primordial
Universe. This leads, in turn, to the observed spectrum for temperature fluctuation in
the Cosmic Microwave Background (CMB) [2], which seeds all the subsequent struc-
ture formation in the Universe. Indeed, the inflationary phase, initially introduced to
tackle some problems of the cosmological standard model [3–6], relies on an exponen-
tial expansion, which dramatically amplifies the small quantum fluctuations up to cos-
mological scales. This phase being approximately described by de Sitter spacetime, the
inclusion of quantum effects in such a geometry is important for at least two reasons. It
is theoretically motivated by the need for a coherent description of higher order correc-
tions, to understand the success of the actual description. Also, the increasing precision
in cosmological experiments opens interesting perspective to test quantum effects at a
fundamental level.

The computation leading to the well-known scale invariant power spectrum for the
inflaton field is, so far, essentially based on a linearized description [7, 8]. Going to
higher orders in the perturbative expansion is in principle required by the presence of
non-linearities, either in the form of interactions of the inflaton field, or intrinsic to the
relativistic theory of gravitation. However, the computation of loop diagrams in a de
Sitter background is plagued by the very amplification mechanism that makes inflation
so appealing. It materializes as a huge particle production in the infrared (superhori-
zon) sector of the theory [9–12], which turns out as problematic divergences in loop
integrals [11, 13, 14]. The latter cannot be treated through the usual perturbative renor-
malization procedure developed in flat spacetime, they rather signal nonperturbative
effects, and nontrivial physics in the infrared.

The proper treatment of these divergences has been an active subject of research in
the past four decades, with renewed interest in the recent years, and has lead to differ-
ent nonperturbative approaches and studies of the nonlinearities. One of the first tech-
niques introduced in this context is the stochastic formalism [15–18]. It describes the dy-
namics of superhorizon modes in terms of a Langevin equation, sourced by the modes
coming out of the horizon during the expansion. This formalism has been shown to
resum the leading logarithm contributions of the diagrammatic computations [11, 19,
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20], leading to genuinly nonperturbative results. In parallel, several QFT techniques,
initially developed to tackle nonperturbative effects in flat spacetime, have been devel-
oped over the years [21–42]. Among them, those which will be used throughout this
thesis are the 1/N expansion and the functional renormalization group (FRG) [43–45].
The latter is specifically designed to treat infared physics, and is used in a variety of
situations, ranging from critical phenomena [46, 47] to quantum gravity [48]. It has
been systematically studied for interacting test scalar fields in de Sitter spacetime at
the Local Potential Approximation (LPA) [39], and has been shown to coincide in some
appropriate limits with the stochastic results.

As a particular manifestation of the infrared divergences, secular divergences that
grows in terms of the cosmic time appear to be very generic in cosmological setups [13,
14]. Such behavior is often encountered in nonequilibrium QFT as an artifact of the
perturbative approach, which disappears after an appropriate resummation [49–51],
and similar methods can be implemented in de Sitter [29, 34, 35]. Simultaneously, in
de Sitter, such large loop contributions could lead to important backreaction effects on
the geometry, and have sometimes been considered as a sign of possible instability of
such spacetime [10, 12, 52–62]. This type of backreaction effect is often considered as a
possible solution to the cosmological constant problem [63–65], as it gives a dynamical
screening process. However, similarly to what happens in the nonequilibrium QFT
setup, this could be an artifact of an invalid pertubative expansion. Studying this idea
in de Sitter using an appropriate extension of the FRG approach for test scalar fields is
one of the main topic of this thesis. The use of FRG is motivated by the fact that it does
not deal directly with secular divergencies but, instead, with the equivalent infrared
divergences in momentum space. In particular, this allows to consider stability along
the renormalization flow rather than a time coordinate, so as to preserve the symmetries
of spacetime.

Even in the case of test scalar fields, explicit nonperturbative computations have
been restricted so far essentially to one-point functions, and there are few explicit re-
sults for more complicated correlators, depending on different spacetime points. An-
other goal of the present thesis is to compute such correlators, which give access to a
variety of physical quantities, e.g., relaxation times, decoherence times, or power spec-
tra of various operators.

For example, the FRG computation in the LPA predicts the so-called dynamical
mass, which measures the amplitude of the local field fluctuations in a Hubble patch,
but it gives an incorrect answer for unequal time quantities, such as the field auto-
correlation time. We investigate the FRG beyond the LPA, testing in particular whether
going to higher order in the derivative expansion improves the result. The computation
for the Lorentzian QFT proves difficult [40], as one needs to compute the flow equation
of the complete theory before considering the infrared regime which we are interested
in. An alternative is to consider an effective theory that describes the infrared, such as
the stochastic formalism. Applying the FRG to the latter has been shown to correctly
reproduce the infrared limit of the original QFT approach in the LPA [42]. In this thesis,
we follow this line, and extend this computation, using the fact that the stochastic ap-
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proach is nothing but a particular case of the model A in the classification of Hohenberg
and Halperin [66]. The latter has been extensively studied in statistical physics, using
in particular the FRG [67, 68]. The starting point is a functional formulation of the
stochastic equation, derived with the Janssen-de Dominicis (JdD) procedure [68–70]. In
the present context, the JdD path integral is one-dimensional and can be linked with
supersymmetric quantum mechanics which has been recently studied with the FRG for
a single field [71]. Starting from these existing works, we compute the flow equation for
an O(N) model of test scalar fields beyond the LPA at the next order in the derivative
expansion. We check that this reproduces the LPA’ result, which includes a field inde-
pendent renormalization for the kinetic term and was computed in the original QFT
[40]. The validity of the derivative expansion can then be studied in a 1/N expansion
of the flow equation, that can be compared to other 1/N computations that are also
treated in this thesis. The precision for the obtained autocorrelation time is of about ten
percent. The same precision is obtained when comparing the single field (N = 1) result
with known numerical results [18, 72].

The result of the FRG computation shows that analytical results cannot be obtained
easily beyond the LPA. Moreover, although the precision on the autocorrelation time
could be improved by going to higher order in the derivative expansion, we show that
it is not able to reproduce the correct structure of the unequal time propagator. This
structure has however been captured correctly by solving the Schwinger-Dyson equa-
tions in two specific approximations [34, 35]. We apply this method directly to the JdD
path integral formulation of the stochastic formalism. We compute the self-energies for
the effective one-dimensional supersymmetric theory, in a perturbative expansion at
three-loop order, and to next-to-leading order (NLO) in a 1/N expansion. The compar-
ison with the original QFT gives a perfect agreement for the infrared correlators, which
shows a nontrivial equivalence with the stochastic formalism, while the computations
are much easier for higher orders in the latter framework.

Finally, we turn to the formulation of the stochastic approach in terms of the equiv-
alent Fokker-Planck equation, phrased as en eigenvalue problem [18, 72–74]. This gives
a natural explanation to the observed splitted structure of the correlators at NLO [35],
in terms of its spectral decomposition. In this language, by solving the Schwinger-
Dyson equations, we are able to find the lowest eigenvalues, by direct computation of
the correlators. The expressions obtained at leading order (LO) in the 1/N expansion
have a very simple structure, pointing towards the possibility to obtain the entire spec-
trum analytically. In principle, the latter can be used to reconstruct all observables. We
thus investigate a 1/N expansion directly at the level of the Fokker-Planck equation,
and explicitly compute the eigenvalues and eigenfunctions up to NLO (and NNLO for
some quantities). To test the validity of the 1/N expansion, we solve numerically the
eigenvalue problem in the case of a massless field for arbitrary values of N, down to
N = 1. The comparison between the numerical results and the 1/N expansion shows
a good agreement down to low values of N, including N = 1 for some cases.

The thesis is organized as follows. In the first chapter, we recall the motivations
for introducing an inflationary phase to the cosmological standard model, which is ap-
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CONTENTS

proximately described by de Sitter spacetime. We then present some technical aspects
concerning the semi-classical approach, in particular the quantization of the free mas-
sive field, to comment one central aspect of quantum fluctuations in de Sitter, namely
the gravitational amplification of infrared modes. The final tool we introduce is the
FRG, formulated in the effective average action formalism.

We then move on to the study of the backreaction problem in the second chapter. We
first introduce a minimal extension to the case of an O(N) theory of test scalar fields. It
amounts to consider a classical metric renormalized only by the scalars quantum fluctu-
ations, discarding in particular the metric fluctuations such as the graviton. We derive
the regularized semi-classical Einstein equations, and use them to compute the renor-
malization flow of the Hubble rate in the deep infrared limit. The flow is dominated
by the effective potential, which is computed from a zero-dimensional theory. The FRG
allows to consider several initial potentials and we explore different regimes, either
Gaussian, or deeply nonperturbative, possibly with spontaneous symmetry breaking
at the classical level. The large-N limit of the RG flow is also considered, as it gives
simple analytical formulas that give interesting physical insight.

In the third chapter, after a brief derivation of the stochastic formalism, the JdD
procedure is described. Some general consequences on the correlators are then dis-
cussed, and we extract different constraints in the infrared which gives both interesting
interpretations in terms of properties of thermal systems, and useful relations for sub-
sequent computations. The FRG is then implemented, and we can show that the flow
of the effective potential is exactly captured in the LPA. The flow of the effective action
is then computed at second order in the derivative expansion, and the convergence is
discussed in special cases.

Finally, the last chapter focus on two different approaches to extract analytical re-
sults for the correlators in a 1/N expansion. A first direct computation solves the
Schwinger-Dyson equations at NLO to resum a class of diagrams. The second com-
putation formulates a 1/N expansion of the Fokker-Planck equation, formulated as an
eigenvalue problem, and we compute the entire spectrum at NNLO.
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This chapter is devoted to the context and motivations of this thesis. Although quan-
tum field theory in curved spacetime can be developed as a relevant subjet in its own
right, the specific case of de Sitter is particularly interesting because of its link to cos-
mology and the inflationary Universe. This will be the topic of Sec. 1.1. The following
section 1.2 will be concerned with the technical setup necessary to the semi-classical
treatment of quantum fields in a curved background. As this work is about nonper-
turbative treatments, we will give a general introduction to the principle of the FRG in
Sec. 1.3.

1.1 From the Big Bang to inflation

This introduction to cosmology is brief and partial, and mainly focus on understand-
ing how inflation comes as a solution to several theoretical problems of the standard
approach to cosmology. What makes inflation particularly interesting is that, on top
of solving several fine-tuning issues, it has observable signatures in the Cosmic Mi-
crowave Background (CMB) that are directly related to quantum effects in the early
Universe.
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1. CONTEXT AND MOTIVATIONS

1.1.1 Cosmological standard model

It is remarkable that, although we lack a complete description of physics at intermedi-
ate scales, the Universe at very large scales can be described with good accuracy by the
equations of general relativity, together with a fundamental assumption of homogene-
ity and isotropy, valid at large distances. This approach gives rise to the cosmological
standard model, also called Λ-CDM, which we now discuss.

The basic equations describing the dynamics of the Universe are the Einstein equa-
tions,

Gµν =
8πG

3
Tµν . (1.1)

Using the assumed symmetries of spacetime, we can specialize them to a Friedman-
Lemaître-Robertson-Walker (FLRW) metric expressed in cosmic time t and comoving
distances x

ds2 = −dt2 + a(t)2d~x2 , (1.2)

where a(t) is the scale factor, describing the expansion of space as time flows. The
spatial part can be expressed in spherical coordinates as

d~x2 =
dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2) , (1.3)

with K the spatial curvature which can be either open, flat or closed (resp. K = −1, 0, or
1). The energy-momentum tensor can be taken to describe a perfect fluid with energy
density ρ and pressure P to give the Friedmann equations

H2 =

(
ȧ
a

)2

=
8πG

3
ρ− K

a2 , (1.4)

ä
a
= −4πG

3
(ρ + 3P) , (1.5)

where we introduced the Hubble expansion rate H ≡ ȧ/a.
We can rewrite the first Friedmann equation (1.4) making use of the critical density

ρcrit, defined in terms of the Hubble rate

ρcrit =
3H2

8πG
. (1.6)

The different matter components of the Universe are described as several coexisting
fluids and we introduce the density parameters

Ωm =
ρm

ρcrit
, Ωr =

ρr

ρcrit
and ΩΛ =

ρΛ

ρcrit
, (1.7)

respectively for the matter, radiation and dark energy densities. Each of these species
has a different equation of state, expressed in the form P = wρ, and w = 0 (resp. 1/3,
−1) for matter (resp. radiation, dark energy). The continuity equation for a perfect
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1.1. From the Big Bang to inflation

fluid, which is obtained either by combining Eqs. (1.4) and (1.5), or by using the conser-
vation of the energy-momentum tensor, is

ρ̇ + 3H(ρ + P) = 0 . (1.8)

Assuming each fluid to be independent, we deduce that their energy densities simply
behave as a power law ρ ∝ a−3(1+w). Using the notation ΩK = −K/(aH)2 for the spatial
curvature, we end up with

H2

H2
0
=

[
Ωm,0

( a0

a

)3
+ Ωr,0

( a0

a

)4
+ ΩΛ,0 + ΩK,0

( a0

a

)2
]

. (1.9)

where the quantity today are denoted with a 0 subscript. As the expansion goes on, one
can see that the different species are diluted at a different rate, leading to a succession
of eras where the Universe energy content is dominated by a single species, see Fig. 1.1,
where we used actual experimental data [2, 75],

Ωm,0 = 0.32, Ωr,0 = 9.4 10−5, ΩΛ,0 = 0.68, |ΩK,0| . 0.01 . (1.10)

These values are constrained by independent data, including large scale structures sur-
vey and baryon acoustic oscillation, type IA supernovæ and CMB temperature. In this
logic, the Universe has been in a radiation dominated era, before reaching the matter-
radiation equality time, after which matter became predominant. A most surprising
conclusion coming out of the data is that we entered lately in a phase of accelerated
expansion, dominated by the dark energy, which is now supposed to represent around
70 percent of the Universe energy content, although its exact nature is not precisely
known.

One important moment in the history of the Universe is the recombination, which
is qualitatively defined as follows. In the early past, the Universe was in a hot and
dense state. Cooling off as a result of expansion, it reached a point where the matter
and radiation content formed a plasma of nucleons, electrons and photons. This kind of
medium, from an optical point of view, is opaque, meaning that the photons scatter too
much on the charged particles to propagate on long distances. At some point, however,
the temperature gets low enough for hydrogen atoms to form. As electrons are bound
together with protons, the cross section with photons is drastically reduced, so that
radiation can propagate freely. This precise moment happened around 370000 years
after the Big Bang and is called the recombination time.

This leads to a crucial cosmological observable, called the CMB, composed of the
primordial photons freely propagating from recombination time isotropically towards
us, with a perfect black-body spectrum redshifted by the subsequent expansion. This
radiation encodes a lot of valuable information about the Λ-CDM model parameters,
and about earlier stages of the Universe, as we will describe in the following.
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1. CONTEXT AND MOTIVATIONS
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Figure 1.1: Time evolution of the energy density of the different matter components
of the Universe, together with the total energy density, in units of the critical density
ρcrit. The numerical values are extrapolated from the experimental data (1.10). The
equivalence time corresponds to the crossing of the red and blue curves, corresponding
to the radiation and baryonic matter.

1.1.2 Problems

Despite its many successes, the Λ-CDM model has some theoretical flaws. We will
mention two of these problems, which are both formulated as fine tuning issues, and
thus appear physically unnatural.

The horizon problem is related to the large scale homogeneity of the Universe, ob-
served in the CMB. Although homogeneity underlies the whole description, the cosmo-
logical standard model by itself does not provide a natural explanation for it. Because
the size of causally connected patches, meaning regions of space which share a com-
mon history, is very small at recombination time, it is not possible to find a dynamical
explanation for, e.g., the observed constant value of the CMB temperature.

Let us show this in more detail. Because it travels along null geodesics, the physical
distance covered at time t f by a photon emitted at time ti is

d(t f , ti) = a(t f )
∫ t f

ti

dt
a(t)

. (1.11)

In particular, the maximal size of a causally connected region, or the horizon size, at
recombination, will be given by Eq. (1.11) with ti the time of the Big Bang tBB, and t f
the recombination time trec.
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1.1. From the Big Bang to inflation

For us, recombination appears on a spherical surface at constant time and radius,
called the last scattering surface. This spatial hypersurface has a metric which is given
by the following projection

ds2 = a2(trec)r2
rec
(
dθ2 + sin2 θdφ2) (1.12)

where a(trec)rrec is the radius of the sphere, expressed as the physical distance between
the observer, located at the origin, and the last scattering surface. It is easily expressed
as the following integral

a(trec)rrec = a(trec)
∫ t0

trec

dt
a(t)

, (1.13)

with t0 our observing time today. Putting everything together, the angular size of a
causally connected patch on the observed map of the CMB is given by

∆Ω =

∫ trec
tBB

dt a−1(t)∫ t0
trec

dt a−1(t)
. (1.14)

Numerical computation of this quantity for a Λ-CDM Universe can be achieved using
the Friedmann equation (1.4). We first express the integral over 1/a(t) as∫ t f

ti

dt
a(t)

=
∫ a f

ai

da

a2H0

√
∑i Ωi,0(a0/a)3(1+wi)

, (1.15)

and we use the value of the scale factor at recombination time, which is arec/a0 =
a(trec)/a0 ' 1/1091 [2], to get ∆Ω ' 0.02 rad = 1.16°. The fact that the observed
value of the CMB temperature is uniform in every directions up to relative fluctuations
of order 10−5, while the expected angular size of the regions of the sky which share
a common past is of the order of a few degrees is called the horizon problem and is
depicted in Fig. 1.2. Solving this problem would require some serious fine tuning of
the initial conditions of the Universe to ensure that each independent patch of the sky
shares common initial conditions up to five order of magnitudes.

A different, although similar, problem is the so-called flatness problem, which stems
from the experimental value of ΩK,0. During the expansion, this quantity scales as a−2.
We write the Friedmann equation (1.4) in terms of Ωtot = Ωm + Ωr + ΩΛ,

1−Ωtot = ΩK . (1.16)

At very early times, the Universe was dominated by radiation, so that Ωtot ' Ωr, which
gives, using the continuity equation for the radiation energy density together with its
equation of state

Ωtot

ΩK
' Ωr,0

ΩK,0

( a0

a

)2
. (1.17)

Combining Eqs. (1.16) and (1.17), together with the fact that a � a0 at early times, we
end up with

ΩK '
ΩK,0

Ωr,0

(
a
a0

)2

. (1.18)
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1. CONTEXT AND MOTIVATIONS

Figure 1.2: The horizon problem is easily understood in terms of spacetime diagrams
in conformal time, defined later in Sec. 1.2.1, and comoving scales. The observer is at
the origin and the blue lines represent null geodesics. The left diagram corresponds to
the situation in the Λ-CDM model, where the two photons coming from opposite di-
rections from the last scattering surface do not have any intersection between their past
light cones. Adding the inflationary phase between ti and t f corresponds to extending
this diagram towards negative conformal time and is represented in the right diagram.
Provided this phase lasts long enough, the past light cones of the two photons now has
an overlap in the infinite past.

This, again, requires a fine-tuned value of ΩK in the early Universe in order for today’s
Universe to be flat enough, i.e. to get the experimental value |ΩK,0| . 0.01.

Both of these problems can be cured by adding an inflationary phase [3], taking
place before the radiation dominated epoch, defined as a phase with accelerating ex-
pansion

ä > 0 . (1.19)

According to the second Friedmann equation (1.5), provided the Universe is dominated
by a single perfect fluid, this would correspond to an equation of state with w < −1/3.

For a Universe dominated by a fluid with a given w between ti and t f , the integral
appearing in Eq. (1.11) gives a contribution proportional to

∫ t f

ti

dt
a

∝
a

1
2 (1+3w)
f − a

1
2 (1+3w)
i

1 + 3w
. (1.20)

Now for standard matter, w > −1/3, pushing ti to very early time bring the lower
bound contribution of the integral to small values

a
1
2 (1+3w)
i → 0 , (1.21)

whereas it can take large values if the fluid is of the type w < −1/3. An early phase
dominated by such a fluid would bring a significant contribution in the numerator in
the angular size of a causally connected patch (1.14), solving the horizon problem. The
graphic representation of this phenomenon is given in Fig. 1.2.
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1.1. From the Big Bang to inflation

Similarly, for the flatness problem, the previous computation for the spatial curva-
ture energy density at early time, see Eq. (1.18), is modified in a Universe dominated
by a non standard fluid F between a time ti and a time t f . Denoting the quantities at ti
and t f with a corresponding subscript we have

ΩK, f =
1

1 + ΩF,i
ΩK,i

(
a f
ai

)−(1+3w)
. (1.22)

When w < −1/3, whatever spatial curvature we start with initially, it is diluted by
the accelerated expansion and can give arbitrarily small values for ΩK, f provided this
phase lasts long enough.

Introducing a phase of accelerated expansion, the so-called inflationary phase, gives
an elegant dynamical explanation to the observed flatness of the Universe, and pro-
vides a space for a possible causal mechanism explaining the large-scale homogeneity.
Both of these apparently unrelated fine-tuning problems are thus solved simultane-
ously. Some important questions remain, however, about the precise nature of this
nonstandard fluid F, and the mechanism allowing to fall back to the cosmological stan-
dard model afterwards. As a final remark, although the recent phase of acceleration
could also cure these problem in principle, its duration is too small to explain the ob-
served values, and the fine-tuning problem remains.

1.1.3 Inflation

We saw that introducing a phase of accelerated expansion that lasts for a sufficient
number of e-folds after the Big-Bang helps solving some issues of the Λ-CDM model.
It turns out that it is pretty easy to describe a fluid with an equation of state w < −1/3
using a single scalar field dominated by its potential energy [4–6]. This scalar field is
called the inflaton. Consider a classical action of the type

S[φ] = −
∫

x

[
1
2

∂µφ∂µφ + V(φ)

]
, (1.23)

where
∫

x =
∫

dDx
√−g, g is the determinant of the metric, and D is the spacetime

dimension. The energy-momentum tensor can be written as in the perfect fluid case
with the following energy density and pressure

ρφ =
φ̇2

2
+ V(φ) , (1.24)

Pφ =
φ̇2

2
−V(φ) , (1.25)

where the spatial derivatives are discarded due to the homogeneity and isotropy. We
get the desired equation of state provided φ̇2 < V(φ) so that ρφ + 3Pφ < 0.

An interesting limit is the so-called slow-roll regime, which is widely used in model
building for inflation. It consists qualitatively in expanding in the time derivatives of
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1. CONTEXT AND MOTIVATIONS

the scalar field, taking the following limit

φ̇2 � V(φ) , (1.26)

which means w = −1. Although the slow-roll in itself is not necessary, it leads to lower
values of w, corresponding to shorter inflation, in the sense that less e-folds are required
to solve the horizon and flatness problems [76]. The first Friedmann equation at leading
order in the slow-roll regime reads

H2 =
8πG

3
V(φ) , (1.27)

which means that H is almost constant. This corresponds to a de Sitter Universe1.
The equation governing the dynamics of the inflaton field is simply the Klein-Gordon
equation

φ̈ + 3Hφ̇ + V ′(φ) = 0 . (1.28)

Moreover, the slow-roll approximation further assumes

φ̈� Hφ̇ , (1.29)

and we end up with
3Hφ̇ + V ′(φ) = 0 , (1.30)

which can be solved together with Eq. (1.27) to give the spacetime dynamics at leading
order in slow-roll.

Another important feature of inflation is its prediction for the CMB anisotropies
spectrum, which we describe schematically here. Indeed, as already mentioned, precise
measurements of the CMB reveals small inhomogeneities, of the order of 10−5 relatively
to the average temperature of the radiation [2]. These are well described by taking
into account the quantum fluctuations of the inflaton and of the metric. The usual
computation, considering the smallness of the perturbations, is to do a perturbative
expansion for the metric and the scalar field.

The leading order gives the classical solutions we juste described, with a quasi-de
Sitter Universe. Going beyond requires a careful treatment of the gauge redundancies.
For the scalar part of the perturbations, this leads to the definition of a specific gauge in-
variant quantity, the Mukhanov-Sasaki variable, composed of first order perturbations
coming from the metric and the scalar field [7, 8]. Because of the perturbative treat-
ment, its dynamics is the one of a free massless field in de Sitter spacetime. As we will
later describe, this leads, after quantization, to a scale invariant power spectrum for the
inflationary perturbations, together with the dramatic amplification of the fluctuations
as a result of the expansion of the geometry.

The subsequent history of these perturbations is then sketched in Fig. 1.3. The rel-
evant scales exits the horizon before the end of inflation, and are frozen until horizon

1More accurately, it is a subpatch of de Sitter called the expanding Poincaré patch, see Sec. 1.2.1
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Figure 1.3: Sketch of the history of the inflationary perturbations. The horizon scale
(aH)−1 is depicted in blue, and the decreasing left part corresponds to the inflation
epoch, while the increasing right part is the standard evolution of the Universe. The
modes observed in the CMB are between the dashed lines, and the red line represent
one particular mode, amplified by the gravitational expansion, frozen after horizon exit
and turning into temperature fluctuations in the CMB.

reentry during the radiation dominated era [77–79]. Then, the amplified fluctuations
of spacetime gives rise to macroscopic variations in the recombination process, which
translates into fluctuations of the temperature of the blackbody spectrum of the CMB
temperature [80], in very good agreement with the experimental result.

1.2 Semi-classical theory

The framework of quantum fields in curved spacetime is a semi-classical approach,
which consider a non trivial gravitational background described by general relativity,
together with a quantum content. It is motivated by the fact that such an effective
approach should be valid for energy scales well below the Planck mass, at which the
quantum gravity effects become relevant [1]. It should be recovered, in the end, as a
limit of an ultraviolet complete theory of quantum gravity.

In addition to the motivations coming from cosmology, the specific case of de Sitter
spacetime is of particular theoretical interest, as its symmetries are essential in solv-
ing technical difficulties, related, e.g. to quantization. This makes de Sitter one of the
simplest situation for practical computations.
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1. CONTEXT AND MOTIVATIONS

1.2.1 De Sitter geometry

De Sitter spacetime in D dimensions can be defined as the Lorentzian sphere of radius
H−1 in D + 1 dimensions, defined through the following implicit equation

− X2
0 +

D

∑
i=1

X2
i = H−2 . (1.31)

It arises as a maximally symmetric solution of the Einstein equations in the vacuum in
the presence of a positive cosmological constant

Gµν + Λgµν = 0 , (1.32)

provided

Λ =
(D− 1)(D− 2)

2
H2 . (1.33)

In cosmology, the description of the inflationary phase, which is said to be quasi-de
Sitter in the slow-roll approximation, relies only on a subpart of de Sitter spacetime
called the expanding Poincaré patch (EPP). The remaining half is called the contracting
Poincaré patch, and will not be considered in the following.

The EPP can be viewed as a specific case of a FLRW spacetime, with a constant
Hubble rate H, with a cosmic time such that

t ∈]−∞,+∞[ . (1.34)

This means that the scale factor in the previous metric (1.2) is simply given in terms
of the cosmic time as a(t) = eHt. In these coordinates, the spatial translations and
rotations are explicitly realized, but the time translation symmetry of the de Sitter ge-
ometry is not manifest due to the explicit time dependence of the scale factor. In fact, it
is a general property of de Sitter spacetime that the generators of spatial and temporal
translations do not commute. Physically, this translates, for example, into the gravita-
tional redshift, and on a technical level, it has crucial consequences for the quantization
and QFT computations, as we will see in Sec. 1.2.3.

Another interesting coordinate system makes use of the conformal time, defined as
dη = dt/a(t), so that the metric is conformally flat

ds2 = a(η)
(
−dη2 + d~x2) , (1.35)

and the scale factor can be expressed as a(η) = −1/(Hη). The conformal times is such
that

η ∈]−∞, 0[ . (1.36)

The last coordinate system we mention is the Painlevé-Gullstrand one, defined in terms
of the cosmic time and the physical coordinate~r = a(t)~x, so that

ds2 = −(1− H2~r2)dt2 − 2H dt~r · d~r + d~r2 . (1.37)

In these coordinates, the spatial homogeneity is no longer explicit, but the time transla-
tion invariance is, as the metric coefficient no longer depend on the time variable t.
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Figure 1.4: Representation of the 1+ 1 dimensional de Sitter spacetime embedded in the
three dimensional Euclidean space. The vertical direction is used as a time direction.
The EPP is colored in red, while the contracting Poincaré patch is in blue. The black
lines correspond to constant cosmic time t, while the dashed lines represent constant
comoving distance x.

1.2.2 In-in formalism

De Sitter spacetime, despite being maximally symmetric, differs from flat spacetime
on the fact that the generators of spatial and temporal translations do not commute.
Contrarily to what is usually done in QFT in Minkowski spacetime, we cannot codiag-
onalize space and time translations by going to Fourier space and introducing a four
momentum. This procedure is necessary to define asymptotic states in the infinite past
and infinite future, and to compute overlaps between incoming and outgoing quantum
states, or S-matrix elements, relevant for scattering amplitudes.

The preferred method is to use spatial homogeneity only and treat the time depen-
dence as a nonequilibrium problem2 [49]. The in-in, or Schwinger-Keldysh [81, 82],
formalism, is adapted to such problems, as it computes the expectation value of opera-
tors in a given initial quantum state as a path integral over a time contour C.

Let us briefly discuss how the formalism is obtained in the case of a single scalar
field in the Heisenberg picture. We start with the expectation value of some Heisenberg

2Note that although the time translation invariance will no longer appear explicitly, it is not a priori
broken.
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Figure 1.5: Time contour for the cosmic time used in the in-in formalism.

operatorOH in an initial quantum state |Ω〉. Upon insertion of several complete sets of
eigenstates of the field operator, labeled as |ϕ, t〉, we get

〈Ω|OH |Ω〉 =
∫

dϕ1 dϕ2 dϕ3 〈ϕ2, t2|Ω〉 〈Ω|ϕ3, t3〉 〈ϕ3, t3|OH |ϕ1, t1〉 〈ϕ1, t1|ϕ2, t2〉 .

(1.38)
Taking t2/3 < t1, the product 〈ϕ3, t3|OH |ϕ1, t1〉 〈ϕ1, t1|ϕ2, t2〉 can be computed as a
product of path integral, one going from t3 to t1 and one going back from t1 to t2, with
the appropriate boundary conditions. Taking t2/3 to the infinite past and t1 to the infi-
nite future, these two integrals can be formulated as a single one defined on a contour
C going from the infinite past to the infinite future and back, see Fig. 1.5. If |Ω〉 is de-
fined as the vacuum of the noninteracting field in the infinite past3 (see next section for
a more precise definition), the remaining expectation values 〈ϕ2, t2|Ω〉 〈Ω|ϕ3, t3〉 can
be shown [83] to contribute as some iε-term, quadratic in the fields, that are added to
the action. This in turns defines a prescription for the computation of the propagator,
which ends up being the time ordered propagator for our boundary conditions.

In the end, the action is typically written as

S[φ̂] = −
∫

x

(
1
2

gµν∂µφ̂∂νφ̂ + V(φ̂) + iε terms
)

, (1.39)

with the following integration measure
∫

x =
∫
C dt

∫
dd~x
√−g, where D ≡ d + 1 and

the time variable now runs over the contour.
It is also useful for the following computations to define covariant notations for the

functional derivative
δc

δφ
=

1√−g
δ

δφ
, (1.40)

as well as the Dirac distribution

δc(x− y) =
δC(tx − ty)δ(d)(~x−~y)√−g

, (1.41)

where δC(t) is the Dirac distribution on the contour.
From there, we define the usual machinery of quantum field theory in terms of

path integrals using a microscopic action S[φ̂], depending on the scalar field. First, the
functional quantities Z andW are defined as

Z [j] = e−iW [j] =
∫
Dφ̂ exp

(
iS[φ̂]− i

∫
x

jφ̂
)

, (1.42)

3It is not necessary here to chose the vacuum state, however the state has to be defined in the infinite
past so that the interactions are turned on adiabatically later.
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in terms of a source field j. Successive functional derivatives of Z (resp. W) will extract
the different Green functions (resp. connected Green functions). Both sets contains all
the information of the theory, in the sense that any observable can in principle be built
from these functions.

Of particular interest are the various two-point functions. The time-ordered two-
point function in the presence of external current j is simply obtained by taking two
derivatives ofW with respect to the source

G(x, y) = i
δ2

cW
δj(x)j(y)

=
〈
φ̂(x)φ̂(y)

〉
j −
〈
φ̂(x)

〉
j

〈
φ̂(y)

〉
j , (1.43)

with the eigenvalue 〈〉j computed for a given external current j. The reason why we ob-
tained this particular correlator from the path integral is related to the choice of bound-
ary conditions hidden in the iε-terms, itself related to a choice of vacuum state. This
point will be discussed in the next section. For now, we just introduce several other
correlators which will be used throughout this work.

The statistical and the spectral correlators are denoted by F(x, y) and ρ(x, y). They
are defined as

G(x, y) = F(x, y)− i
2

signC(tx − ty)ρ(x, y) , (1.44)

where signC is the sign function on the contour. Finally the retarded and advanced
correlator are defined as

GR(x, y) = θC(tx − ty)ρ(x, y) and GA(x, y) = GR(y, x) , (1.45)

where θC is the Heaviside distribution defined on the time contour.
These correlators can also be expressed in terms of Heisenberg field operators φH,

with the quantum state |Ω〉, using the time ordering operator on the contour TC ,

G(x, y) = 〈Ω|TCφH(x)φH(y)|Ω〉 − 〈Ω|φH(x)|Ω〉 〈Ω|φH(y)|Ω〉 , (1.46)

F(x, y) =
1
2
〈Ω|{φH(x), φH(y)}|Ω〉 , (1.47)

ρ(x, y) = i 〈Ω|[φH(x), φH(y)]|Ω〉 . (1.48)

1.2.3 Bunch-Davies vacuum and quantization

The previous expressions rely on the definition of a vacuum state, that we have not
made precise so far. To do so, we describe quickly the quantization procedure of a free
massive scalar field in de Sitter. The classical action is

S[φ̂] = −
∫

x

[
1
2
(∂φ̂)2 + m2φ̂2

]
, (1.49)

and the associated equation of motion for the scalar field is

(−�+ m2)φ̂ = 0 , (1.50)
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where the box operator reads, in terms of the background metric� = 1√−g ∂µgµν√−g∂ν.
In conformal time, Eq. (1.50) reads(

∂2
η −

D− 2
η

∂η − ∂2
~x + a2(η)m2

)
φ̂ = 0 . (1.51)

Solving this equation can be achieved by going to spatial Fourier space, introducing the
comoving momentum~k,

φ̂(η,~x) =
∫
~k

(
φk(η)ei~k·~xa~k + φ?

k (η)e
−i~k·~xa†

~k

)
, (1.52)

with
∫
~k =

∫ dd~k
(2π)d , and a~k and a†

~k
are simple constant Fourier coefficients at this point.

The mode function φk(η) verifies the following equation(
∂2

η −
D− 2

η
∂η + k2 + a2(η)m2

)
φk(η) = 0 , (1.53)

which has a general solution in terms of the Hankel function of the first kind, denoted
Hν. We get

φk(η) = a(η)
1−d

2

√−ηπ

2
[αk Hν(−kη) + βk H?

ν (−kη)] , (1.54)

with two integration constants αk and βk, and we define the parameter ν as

ν =

√
d2

4
− m2

H2 . (1.55)

Following the canonical quantization procedure, we promote the field to an opera-
tor φH. The Fourier decomposition (1.52) is now expressed in terms of creation a†

~k
and

annihilation a~k operator, and we impose the commutation relation[
a~k, a†

~k′

]
= (2π)dδ(d)(~k−~k′) . (1.56)

The mode functions have to verify the Wronskian relation

φk∂ηφ?
k − φ?

k ∂ηφk = i , (1.57)

to get the usual commutation relations for the field operator. The vacuum state corre-
sponding to this particular set of creation and annihilation operators is defined as

a~k |Ω〉 = 0 . (1.58)

In flat space, the constants αk and βk are chosen so that the Hamiltonian is diagonal-
ized. This selects the positive frequency solutions, which leads to the construction of
quantum states with a well defined particle number. In curved space, the situation is
more complicated, as there may be no globally defined time-like Killing vector, and if

18



1.2. Semi-classical theory

one is available, as in de Sitter spacetime, it does not commute with the spatial sym-
metries and in particular cannot be codiagonalized. Thus we cannot define the positive
frequency modes and the notion of the number of particles in a given quantum state is
no well defined in general.

Different choices for αk and βk are thus equally acceptable, and as they corresponds
to different sets of creation and annihilation operators, they give rise to different vac-
uum states. However, Eq. (1.57) gives the following constraint

|αk|2 − |βk|2 = 1 , (1.59)

which means that the different possibilities are related by Bogolyubov transformations.
Looking for symmetric states, the isometries impose that these coefficients are inde-
pendent of k [10, 29], and the resulting vacuum states form a (complex) one-parameter
family called the α-vacua [10, 84].

Although there is no global determination of the positive frequency states, it is pos-
sible to require positive frequency solutions in the infinite past −kη � 1, meaning that
the physical momentum p ≡ k/a(η) is such that p� H . This condition can also be in-
terpreted as constraining the behavior at short distance (or high energy), in units of H,
to be equivalent to Minkowski space. This is physically motivated by the equivalence
principle, as for scales below any typical distance scale of the background geometry,
the latter appears as effectively flat. We have the following asymptotic behavior for the
Hankel functions

Hν(−kη) ∼
√
−2
πkη

e−ikη−iϑν with ϑν =
π

2

(
ν +

1
2

)
, (1.60)

and the positive frequency in the infinite past is defined as

φk(η) ∼ a(η)
1−d

2
e−ikη

√
2k

, (1.61)

which is obtained for αk = eiϑν and βk = 0. The corresponding state is called the Bunch-
Davies (BD) vacuum, and will be used throughout this manuscript. In addition to the
short distance behavior, this choice of vacuum state does not break any isometry, by
construction. As an additional remark, BD is an attractor state in the EPP of de Sitter
[85]. Other (non vacuum or less symmetric) states have often been considered in the
literature [85–88]. In this thesis, we stick to the standard choice of BD vacuum.

1.2.4 Infrared amplification

We turn to the two-point function of the free scalar field, to underline a specificity of
QFT in de Sitter spacetime, namely the gravitational infrared amplification.

The power spectrum of the scalar field operator is defined as〈
φ̂(η,~x)φ̂(η,~x)

〉
=
∫

d log kP(η, k) . (1.62)
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Figure 1.6: Plot of the modulus squared of the Hankel function of the first kind (left),
corresponding to the mode occupation of the scalar field, together with the associated
power spectrum (right), for various masses: Light case (blue), conformal case (red) and
heavy case (green). The variable z is the physical momentum in units of H.

With the mode function (1.54) in the Bunch-Davies vacuum we get

Pd(η, k) =
kdΩd

(2π)d |φk(η)|2

=
Hd−1Ωdπ

4(2π)d (−kη)d|Hν(−kη)|2 ,
(1.63)

with Ωd = 2πd/2/Γ(d/2). Note that the power spectrum is actually a function of
p/H = −kη, the physical momentum in units of H.

The asymptotic behaviors in the ultraviolet (UV) and infrared (IR) limits are as fol-
lows {

Pd(p) ∼ H2ν−1Cd,ν pd−2ν for p� H ,

Pd(p) ∼ C′d pd−1 for p� H ,
(1.64)

with the constant coefficients equal to

Cd,ν =
Ωd[2νΓ(ν)]2

2(2π)d+1 and C′d =
Ωd

2(2π)d . (1.65)

By construction, in the BD state, the UV limit is similar to the flat spacetime behavior, as
it reproduces the appropriate mode function. The IR limit however, exhibits a modified
spectrum, which signals the gravitational amplification of the mode function on super-
horizon scales. For ν = 1/2, we see that the UV and IR asymptotic behavior are the
same. In fact, this case, called the conformal case, exhibits a dilatation symmetry which
allows one to scale out the cosmic expansion. Physical observables are the same as in
Minkowski vacuum. Note, also, that the massless limit leads to ν ≈ d/2, which cancels
the power law in the IR power spectrum and gives the well known scale invariance that
is observed in the CMB. This is summarized in Fig. 1.6.
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1.2. Semi-classical theory

•

Figure 1.7: One loop tadpole diagram, which features an infrared divergence.

This IR amplification can be viewed as gravitational particle production on super-
horizon scales. It is similar in nature to the Schwinger effect, where pairs of charged
particles are produced in the presence of an external electric field. It is physically inter-
preted as virtual pairs of particles, created from quantum fluctuations of the vacuum,
which are unable to recombine because the external field strength pulls them apart,
thus forming a real pair [10, 59, 61].

There are several important consequences to this long distance behavior of the mode
functions. First, we mentioned the remarkable feature of scale invariance of the power
spectrum which is needed for a successful theory of inflation. However, at the same
time, this makes computations difficult when it comes to quantum (loop) corrections.
Let us show how in the case of a λφ4 self-interaction for a light scalar field m � H.
If we try to apply perturbation theory, we have to compute loop diagrams, such as in
Fig. 1.7. This diagram is proportional to G(x, x), which we already expressed in terms
of the power spectrum and the mode functions in Eqs. (1.62) and (1.63). Introducing a
UV cutoff Λ on physical spatial momenta we get in real space and up to a numerical
factor

G(x, x) ∝
∫ Λ/H

0
dz zd−1|Hν(z)|2 . (1.66)

This loop integral has UV divergences, which can be treated with the usual perturbative
renormalization tools. If we compute its infrared contribution up to a scale µ � H so
that we can use the asymptotic form of the Hankel function we get, developing in terms
of the mass m and of µ, see for example [36],

∫ µ/H

0
dz zd−1|Hν(z)|2 =

22νΓ(ν)2

π2(d− 2ν)

( µ

H

)d−2ν
+O

(
(µ/H)2)

=
2d−2

π

[
1
2ε

+ c + log
µ

H

]
+O

(
ε, (µ/H)2) ,

(1.67)

with ε = d/2− ν, c = 2− γ− log 2 and γ is the Euler constant. This diverges as ε→ 0,
or equivalently m→ 0, and is an example of infrared divergence in de Sitter spacetime.
It is again a direct consequence of the infrared amplification of the mode function.

Had we started with a massless scalar field, we could have tried to regulate the log-
arithmic infrared divergence in integral (1.66) with a cutoff on the comoving momenta,
as is often done in the literature [11, 13]. Because the integration variable z is the physi-
cal momentum in units of H, the cutoff introduces a time dependence which translates
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1. CONTEXT AND MOTIVATIONS

into a logarithm of the scale factor. This term, and hence the diagram contribution,
grows with time and is an example of a secular divergence appearing in loop integrals
[13, 14]. Such secular divergences are actually generic features in non equilibrium sys-
tems [49].

Because of these problems, perturbation theory has a limited range of applicability
in an expanding spacetime. These divergences are not specific to de Sitter and appear
for example in flat spacetime in out-of-equilibrium computations. A number of tools
have been developed to tackle these, which are able to resum infinite series of diagrams.
Indeed, in a number of situations, the apparent divergence is an artifact of the pertur-
bative expansion. For these reasons, we will introduce one of these tools, the functional
renormalization group method.

1.3 The functional renormalization group

Among the several nonperturbative techniques in QFT is the FRG. It has interesting ap-
plications in de Sitter spacetime, as it is well designed to manage infrared divergences.
We summarize here its main ideas and methods, using the example of a scalar field, in
a fixed de Sitter background.

1.3.1 Principle

Wilson’s renormalization group (RG) implements the coarse graining idea which un-
derlies the renormalization procedure [89]. Instead of developing in terms of diagrams
with loop integrals involving all energy scales, which produce UV and potentially IR
divergences, Wilson’s RG progressively integrates out momentum shells to build an
effective theory for long wavelength modes, where the short wavelength have been
integrated out. There are different implementations of this principle, and the one we
consider here, based on the effective action, has been developed in [43, 90–96], see [44]
for a pedagogical introduction and [45] for a recent review. Technically, it transforms
the problem of computing path integrals into a (functional) differential problem which,
although difficult to solve, can serve as a basis to implement powerful nonperturbative
approximation schemes.

The effective action is defined as the Legendre transform of the generating func-
tionalW [j],

Γ[φ] = −W [j] +
∫

x
jφ , (1.68)

with the classical field φ defined as

φ(x) =
δcW
δj(x)

=
〈
φ̂(x)

〉
. (1.69)

Successive functional derivatives of the effective action generate the vertex functions,
which can be related to the correlation functions, so that Γ[φ] contains all the informa-
tion of the theory.
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1.3. The functional renormalization group

To integrate the scales progressively we use a regulator term of the form,

∆Sκ[φ̂] =
1
2

∫
xy

φ̂(x)Rκ(x, y)φ̂(y) . (1.70)

The kernel Rκ(x, y) is chosen such that it freezes selectively the modes below the scale κ
by giving them a mass of order κ2, leaving modes higher than κ essentially untouched,
see Fig. 1.8. In particular, in the limit κ → 0, the regulator vanishes, leaving the theory
unchanged.

Adding the regulator to the action, the generating functional W inherits a depen-
dence on κ,

e−iWκ [j] =
∫
Dφ̂ eiS[φ̂]−i

∫
x jφ̂+i∆Sκ [φ̂] , (1.71)

building a continuum of theories where the modes above κ fluctuate freely and are
integrated out while the modes below κ are frozen. The latter are thus progressively
integrated out as κ is decreased. The effective action is modified by subtracting a regu-
lator term

Γκ[φ] = −Wκ[j] +
∫

x
jφ− ∆Sκ[φ] , (1.72)

so as to interpolate between the correct limits for extremal values of κ. Indeed, in gen-
eral,

eiΓκ [φ] =
∫
Dφ̂ eiS[φ̂]−i

∫
x j(φ̂−φ)+i∆Sκ [φ̂]−i∆Sκ [φ] . (1.73)

Taking a derivative of (1.72) with respect to φ, we get

jκ(x) =
δcΓκ

δφ(x)
+

δc∆Sκ

δφ(x)
, (1.74)

and replace it in the previous path integral. Changing variable φ̂ = φ + φ̃ we obtain

eiΓκ [φ] =
∫
Dφ̃ eiS[φ+φ̃]−i

∫
x

δΓκ
δφ φ̃+i∆Sκ [φ̃] . (1.75)

For κ large compared to all the scales appearing in the problem, the regulator term
makes the fluctuation field φ̃ very heavy, so that it decouples. Integrating it out, we get

Γκ→∞[φ]→ S[φ] . (1.76)

In the opposite limit, κ → 0, the regulator vanishes and we end up with the usual
effective action, with fluctuations at all scales taken into account

Γκ→0[φ] = Γ[φ] . (1.77)

In the end, the continuum of effective theories that we constructed interpolates between
the classical theory for κ → +∞ to the full quantum theory with all its quantum fluctu-
ations for κ → 0.
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Figure 1.8: Plot of two typical regulator kernels in momentum space.

1.3.2 Wetterich equation

The flow of the effective action is computed from Eqs. (1.71) and (1.72) taking a deriva-
tive with respect to κ. For a given φ, the source field j has a dependence on κ from
Eq. (1.74), so that

∂κΓκ[φ] = −∂κWκ[jκ]− ∂κ jκ
δcWκ

δj
+ ∂κ jκφ− ∂κ∆Sκ[φ] . (1.78)

Because of Eq. (1.69), the terms in ∂κ jκ cancel out. From Eq. (1.71), we get

∂κWκ[j] = −
〈
∂κ∆Sκ[φ̂]

〉
j . (1.79)

In the end
∂κΓκ[φ] =

1
2

∫
x,y

∂κRκ(x, y)
[〈

φ̂(x)φ̂(y)
〉

jκ
− φ(x)φ(y)

]
=

1
2

∫
x,y

∂κRκ(x, y)Gjκ
κ (x, y) ,

(1.80)

with Gj
κ the propagator computed with an external source j. This propagator can be

expressed in terms of the vertex functions in order to get a closed equation. Deriving
Eq. (1.74) with respect to φ, we have

δc jκ(x)
δφ(y)

=
δ2

c Γκ

δφ(x)δφ(y)
+ Rκ(x, y) (1.81)
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1.3. The functional renormalization group

and the left-hand side is obtained deriving Eq. (1.69), applied at jκ, with respect to φ,∫
z

δWκ

δj(x)δj(z)
δjκ(z)
δφ(y)

= δ(x− y) . (1.82)

In the end, one has, in matrix notations

Gκ = i
(

Γ(2)
κ + Rκ

)−1
, (1.83)

and the flow equation becomes

∂κΓκ =
i
2

tr
[

∂κRκ

(
Γ(2)

κ + Rκ

)−1
]

, (1.84)

which is known as the Wetterich equation [90]. Importantly, this equation has a one-
loop structure, and the loop integral is regulated both in the UV, by the ∂κRκ factor, and
in the IR, where the additional Rκ in the propagator acts as a regulating mass term.

1.3.3 Approximation strategies and regulator

The Wetterich equation (1.84) is exact so far, but is impossible to solve in general. We
have to resort to some approximation strategies in order to extract information. One
way to implement such approximations is by injecting a specific ansatz for the effective
action. The ansatz has to respect all the symmetries of the action, provided they are not
broken by the regulator, and if no anomaly is present.

In de Sitter, we will use the derivative expansion [43, 96], which consists in keeping a
functional dependence for the potential part, truncating only the derivative interactions
at a given order. For example, the derivative expansion at order ∂2 for a scalar field with
a Z2 symmetry gives the following ansatz

Γκ[φ] = −
∫

x

[
1
2

Zκ(φ)(∂φ)2 + Vκ(φ)

]
. (1.85)

The leading order in the derivative expansion, called the local potential approximation
(LPA) consists in setting Zκ(φ) = 1. The LPA still includes a kinetic term in order to get
the correct interpolation point with the classical action in the UV, but its renormalization
is not taken into account.

In de Sitter spacetime, we do not know of a fully de Sitter invariant regulator. More
precisely, we cannot reconcile the isometries with an efficient regulation of the loop
integral in the RG flow equation (1.84). For example, consider a pure mass term

Rκ(x, y) ∝ f (κ)δc(x− y) , (1.86)

where the function f (κ) cannot depend on spacetime coordinates. Choosing f (κ) = κ2

gives the appropriate behavior in the IR, but does not regulate the UV divergence.
However, we can build regulators that preserve a subgroup of the de Sitter isome-

tries [38], called the affine subgroup, generated by spacetime translations and spatial
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rotations. Using the cosmic time together with the physical coordinates (corresponding
to the Painlevé-Gullstrand metric), we define the following kernel

Rκ(x, y) = δ(tx − ty)
∫
~p

ei(~rx−~ry)·~prκ(p) , (1.87)

where rκ(p) is a function of the physical momentum which has to verify{
rκ(p)→ 0 for p→ ∞ ,

rκ(p) ∼ κ2 for p� κ ,
(1.88)

in order to regulate and interpolate correctly. Importantly, a change in the regulating
function changes the flow at finite κ, but the asymptotic value at κ = 0 should not
depend on the exact form of rκ, at least in the exact theory. However, because of the
approximation introduced by the truncation, the flow will have different limits when
κ → 0 for different regulators. An optimal choice for the regulator that leads as close
as possible to the exact result has been discussed in [97, 98]. At the LPA level, it is the
Litim regulator, which we use in this thesis. However, when going beyond the LPA,
we do not study the dependence on the regulator further, and simply stick with this
choice.
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The infrared amplification in de Sitter spacetime mentionned in Sec. 1.2.4 can be inter-
preted as a gravitational particle production, in analogy with the Schwinger effect in the
presence of a background electric field [10–12]. In the latter case, each pair of charged
particles creates a small electric field, which counteracts the background, leading to an
overall decrease of the original background field. This nontrivial backreaction is also
expected in the gravitational case, where the amplified interacting modes will gravitate
and modify the spacetime geometry accordingly.

The study of quantum backreaction in de Sitter spacetime is an important open
problem, as it is considered a possible solution to the cosmological constant problem
[63–65]. In the framework of semiclassical gravity, the hope is that quantum correc-
tions, coupled to the spacetime geometry through the Einstein equations, could relax
the cosmological constant to its small observed value today in a dynamical way.

A conclusive computation faces several difficulties. First, the inclusion of graviton
or scalar metric perturbation loop contributions is technically difficult [99–101], cou-
pled to the fact that loop diagrams in this framework contain infrared and secular di-
vergences [11, 13, 14] which need to be resummed using a nonperturbative method,
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2. BACKREACTION

although this is still debated [100, 102]. A second problem is that a general pertur-
bation of the metric would break de Sitter symmetries and undermine the formalism
developed in the previous chapter, which relies on the isometries for the quantization
procedure.

Thus, as a first step, we restrict our attention to the possible implication of an inter-
acting O(N) scalar theory, whose infrared sector is expected to have sizeable quantum
effects. Motivated by results obtained using FRG on spectator scalar fields [36–39], i.e.
with a fixed background geometry, we would like to extend the formalism to a back-
reacting situation to circumvent the limited applicability of perturbation theory. The
problem is formulated in a slightly different way, namely by studying the build up of
quantum fluctuations and their backreaction not as a function of time but of the RG
scale. This has the crucial advantage that we can compute these RG trajectories in the
subspace of de Sitter geometries and constant fields configuration, keeping all available
symmetries. In the end, we extract the flow of the effective spacetime curvature as the
quantum fluctuations are integrated out.

In Sec. 2.1, we discuss the addition of a dynamical (but classical) metric to the FRG
formalism, and define the relevant flow that we will compute in Sec. 2.2. Some partic-
ular case where analytic calculations are possible, such as the limit where N is large, as
well as generic numerical results, are discussed in Sec. 2.3.

2.1 Self-consistent metric

The formulation of QFT in de Sitter spacetime that we described in Sec. 1.2 considered a
fixed background geometry, to which were added possible quantum fluctuations. The
usual way to make the metric dynamical keeping the semiclassical framework is to use
the semiclassical Einstein equation, that relates the Einstein tensor to the expectation
value of the energy momentum tensor

Gµν = M−2
P
〈

Tµν

〉
, (2.1)

where we introduced the Planck mass M2
P = 3/(8πG). Using the FRG formalism, we

need to take care of the specific questions regarding the addition of the regulator.

2.1.1 Regularized semiclassical Einstein equations

We first derive the modified semiclassical Einstein equation, using the effective action,
in order to clarify the regime of validity of the present approach, and the precise mean-
ing of the considered backreaction we compute.

We start with a microscopic action S[φ̂, ĝ] which now depends on a scalar field φ̂ and
a metric ĝµν, where both can in principle fluctuate. For energies well below the Planck
mass, the gravity vertices are suppressed, as the derivative interactions dimensions are
compensated by powers of the Planck mass. This means that high order diagrams with
gravitational interactions can be neglected with respect to low order ones. We also
neglect all diagrams involving graviton loops, which we assume not to be amplified in

28



2.1. Self-consistent metric

the infrared contrarily to the scalar field, so that they are subdominant. Whether this is
reliable or not is still an open question [57, 100, 102–104].

In practice, this amounts to replacing ĝ by its average value 〈ĝ〉 = g. All the func-
tional quantities S, W and Γ now depend on this average metric. To implement the
FRG, we add the following quadratic modification to the action

∆Sκ[φ̂, g] =
1
2

Tr Rκ[g]φ̂φ̂ , (2.2)

where the trace uses the covariant measure and the time contour previously defined,
and the regulator kernel Rκ typically depends on the metric.

So far the settings are just those of a regularised field theory, in the geometry de-
scribed by the metric gµν, with the flow of the effective action described by Eq. (1.84).
For our present purposes, the background metric is to be determined self-consistently
at each scale κ from the (exact) extremization conditions

δcΓκ[φ, g]
δφ(x)

∣∣∣∣
φκ ,gκ

= 0 ,
δcΓκ[φ, g]
δgµν(x)

∣∣∣∣
φκ ,gκ

= 0 . (2.3)

At the order of approximation considered here for the gravitational fluctuations, this
gives the set of regularized semiclassical Klein-Gordon and Einstein equations, which
encode the backreaction of the scalar field quantum fluctuations onto the average value
of the metric field gµν. The second equation in (2.3) writes, equivalently[〈

δcS[φ̂, g]
δgµν

〉
+

1
2

δc

δgµν
Tr Rκ[g]Gκ[φ, gκ]

]
φκ ,gκ

= 0 , (2.4)

where the average 〈. . .〉κ is evaluated at the extremum (φκ, gκ) and we stress that the
functional derivative in the second regulator term does not act on Gκ.

To be more explicit, let us decompose the action in a pure gravitational term and a
matter term as

S[φ̂, g] = Sg[g] + Sm[φ̂, g] , (2.5)

and define accordingly

M2
PGµν = 2

δcSg

δgµν
and Tµν = −2

δcSm

δgµν
. (2.6)

The regularized semiclassical Einstein equation becomes

M2
PGµν[gκ] =

〈
Tµν[φ̂, gκ]

〉
κ
+ ∆Tκ

µν[φκ, gκ] . (2.7)

The explicit contribution from the regulator reads

∆Tκ
µν(x) =

∫
z,z′

tκ
µν(x; z, z′)Gκ(z, z′) , (2.8)
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where we defined

tκ
µν(x; z, z′) =

[
1
2

gµν(x)
(
δc(x− z) + δc(x− z′)

)
− δc

δgµν(x)

]
Rκ(z, z′) . (2.9)

As a check, one verifies that a simple mass term, Rκ(z, z′) = −m2δc(z− z′) yields the
expected

∆Tκ
µν = −m2

2
gµν(x)Gκ(x, x) . (2.10)

The general picture is as follows: The progressive integration of the long wave-
length scalar field fluctuations through the Wetterich equation (1.84), results in an ef-
fective renormalization of the geometry through the extremization conditions (2.3).

2.1.2 Symmetries and the regulator

We now would like to specify the above framework to the maximally symmetric case,
with homogeneous sources, that is, homogeneous field configurations φ. In order to
get a self-consistent Einstein equation we need the condition

〈
Tµν

〉
κ

∝ ∆Tκ
µν ∝ gκ

µν to
be valid along the flow. This would be the case if we had a de Sitter invariant regula-
tor. However, as mentionned in Sec. 1.3.3, we do not know how to choose a regulator
invariant under the full de Sitter group that regulates efficiently the UV and IR part of
the loop integral in the Wetterich equation.

Still, this issue will not play a role in our analysis for the following reasons. No-
tice that our choice of regulator (1.87), formulated in terms of an IR cutoff on physical
momenta, still preserves the affine subgroup [29]. For the sake of the argument, this al-
lows to consider FLRW solutions and define a scale factor and a corresponding Hubble
rate. Moreover, we are interested in the backreaction of the infrared modes of the scalar
field, as they are the ones which get amplified, meaning we want to compute the flow
for values of κ below a finite value κ0 . Hκ0 .

Looking back at the first Friedman equation (1.4), for a generic scalar action with a
covariant kinetic term and a potential, the expectation value of the first component of
the energy momentum tensor has the following contributions, in comoving coordinates

〈T00〉 =
〈

1
2

˙̂φ2 +
1
2

(
∂~xφ̂

a(t)

)2

+ V(φ̂)

〉
. (2.11)

The contributions of the kinetic and gradient terms are dominated by ultraviolet scales
[105], so that they will only affect the initial condition of the flow Hκ0 . In the infrared
regime, the potential term will be the dominant contribution, and it suffices to compute
its flow to get an accurate picture.

Additionally, the symmetry breaking induced by the regulator only affects the flow
of the derivative terms. Indeed, for the flow of the effective potential, preserving the
affine subgroup is enough, as we only need the subspace of constant field configuration.
It has been shown, and this will be explained in more details in the following, that the

30



2.2. Flow equations

LPA captures the flow of the effective potential exactly, in the present context. Going
beyond the LPA, however, the flow of the derivative terms would be affected by this
symmetry issue [40].

Summing up the previous argument, we are interested in infrared effects, where
the Hubble rate is mainly renormalized by the contribution from the potential. The
flow of the effective potential is obtained exactly using the LPA, despite the symmetry
breaking induced by the regulator, which plays no role in the subspace of constant field
configurations. Thus, projecting the metric in a de Sitter subspace along the flow is
expected to be a good approximation of a more complete computation achieved in a
general FLRW metric.

2.1.3 Hubble parameter

This justifies the procedure to specify the above framework to homogeneous field con-
figurations φ(x) = φ and de Sitter metric gµν(x) = gH

µν(x), characterized by its Hub-
ble scale H only. It is always possible to choose a coordinate system where the H-
dependence of the metric appears as a global conformal factor

gH
µν(x) = H−2 g̃µν(x) , (2.12)

with g̃µν is a fiducial de Sitter metric with Hubble parameter H̃ = 1. This is obviously
realized for instance in the conformal coordinate system (1.35). It is then possible to
express the functional derivative with respect to the metric as a derivative with respect
to H, and we have

H∂HΓκ[φ, gH ] = 2
∫

x
gµν

H (x)
δΓκ[φ, g]
δgµν(x)

∣∣∣∣
gH

. (2.13)

The effective action for constant field depends only on the effective potential

Γκ[φ, gH ] =
∫

x
Vκ(φ, H) , (2.14)

and putting this in the extremization conditions for the effective action (2.3), we can
determine the physical values using

∂Vκ

∂φ

∣∣∣∣
φκ ,Hκ

= 0,
∂(H−DVκ)

∂H

∣∣∣∣
φκ ,Hκ

= 0 . (2.15)

This transforms the semiclassical Einstein equations into semiclassical Friedmann equa-
tions corresponding to the one with a derivative with respect to H in Eq. (2.15), as we
will show more explicitly in the following.

2.2 Flow equations

We now have a consistent way to compute the effect of the quantum corrections com-
ing from the scalar field on the metric, in a preferred subspace where it is maximally
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2. BACKREACTION

symmetric. Although this is not a fully general perturbation, it can still test whether de
Sitter space is dynamically relaxed to a flat metric. The key ingredient is the flow of the
effective potential which has been studied in [36–39]. We will be interested only in the
infrared part of this flow, from an initial value κ0 . Hκ0 to the limit where we take κ to
0.

2.2.1 Flow of the effective potential

We recall here the main results regarding the effective potential for an O(N) scalar
theory in the LPA in a de Sitter background [36–39]. Take the following ansatz

Γκ[φ, gH ] = −
∫

x

[
1
2

gµν
H ∂µφa∂νφa + NUκ(χ, H)

]
, (2.16)

where χ = φaφa/(2N) and NUκ = Vκ is the complete effective potential where we
have factored out a N for later purposes. We choose a regulator diagonal in field space,
acting as a cutoff on the physical momenta p = k/a(η), see (1.87). In particular, the
Litim regulating function

rκ(p) = (κ2 − p2)θ(κ2 − p2) , (2.17)

allows to perform the momentum integral in the flow equation analytically and get a
simple expression for the beta function of the potential.

The flow equation for Uκ is obtained from Eq. (1.84), for constant field φ

N∂κUκ =
1
2

∫
~k

∂κrκ

(
k

a(η)

)
Gaa

κ (η, η,~k) , (2.18)

in terms of the spatial Fourier transform of the propagator of the regularized theory.
The inverse propagator can be decomposed in transverse and longitudinal parts. Using
the projectors in field space

Pt
ab = δab −

φaφb

φ2 , Pl
ab =

φaφb

φ2 , (2.19)

we get from the ansatz Γ(2)
κ,ab = Pt

abΓ(2)
t,κ + Pl

abΓ(2)
l,κ , where

Γ(2)
t/l,κ(x, y) = (−�+ m2

t/l,κ)δ(x− y) , (2.20)

and the transverse and longitudinal masses are nothing but the curvatures of the effec-
tive potential in the appropriate directions

m2
t,κ = ∂χUκ and m2

l,κ = ∂χUκ + 2χ∂2
χUκ . (2.21)

The computation of the transverse and longitudinal part of the propagator is thus iden-
tical to the single field case, where the curvature of the potential is replace by its appro-
priate component.
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2.2. Flow equations

We summarize here the single field computation, in terms of the curvature of the
effective potential m2

κ = V ′′κ . The spatial Fourier transform of the propagator at equal
time can be expressed in terms of mode functions vk

Gκ(η, η,~k) = |vk(η)|2 . (2.22)

and for our choice of regulator, vk satisfies the following Klein-Gordon equation[
∂2

η −
D− 2

η
∂η + k2 + a(η)2m2

κ + a(η)2rκ

(
k

a(η)

)]
vk(η) = 0 . (2.23)

For k/a(η) ≥ κ, the regulator vanishes and the equation can be solved exactly as in the
free field case, using the Bunch-Davies condition. For k/a(η) ≤ κ the Litim regulator
cancels the gradient term, and replaces it by a mass term a(η)2κ2. We have

vk(η) = a(η)
1−d

2

√−ηπ

2
eiϑνκ Hνκ (−kη),

k
a(η)

≥ κ

vk(η) = a(η)
1−d

2

√−ηπ

2
eiϑνκ

[
c+κ

(
k

a(η)κ

)ν̄κ

+ c−κ

(
a(η)κ

k

)ν̄κ
]

,
k

a(η)
≤ κ ,

(2.24)

where

νκ =

√
d2

4
− m2

κ

H2 , ν̄2
κ = ν2

κ −
κ2

H2 , (2.25)

and

c±κ =
1
2

[
Hνκ

( κ

H

)
± κ

Hν̄κ
H′νκ

( κ

H

)]
, (2.26)

to ensure the continuity of the mode function vk and its time derivative at k/a(η) = κ.
The transverse and longitudinal parts of the propagator are obtained substituting

m2
κ → m2

t/l,κ in the previous expressions. Going back to Eq. (2.18), the beta function is
now a sum of two contributions

Nκ∂κUκ = β(m2
l,κ, κ) + (N − 1)β(m2

t,κ, κ) , (2.27)

where

β(m2, κ) =
πΩd

16d(2π)d
κd+2

Hd(κ2 + m2)
Bd(νκ, κ) , (2.28)

and [37, 39]

Bd(ν, κ) = e−π Im ν

[(
d2 − 2ν2 + 2

( κ

H

)2
)∣∣∣Hν

( κ

H

)∣∣∣2 + 2
( κ

H

)2∣∣∣H′ν( κ

H

)∣∣∣2
−2d

κ

H
Re
(

H∗ν
( κ

H

)
H′ν
( κ

H

))]
.

(2.29)

In the deep infrared, κ � H, and when the curvature of the potential is small m2
t/l,κ �

H2, this beta function can be approximated as [36, 39]

β(m2, κ) ≈ HD

ΩD+1

κ2

κ2 + m2 . (2.30)
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2. BACKREACTION

As pointed out in [36, 39], the beta function (2.30) is similar to that of a zero-
dimensional Euclidean theory. This effective dimensional reduction results, again, from
the strong gravitational amplification of infrared scalar fluctuations1. This points out a
simple effective description for the infrared physics, through the following generating
functional

eNVDWκ(j,H) =
∫

dN φ̂ e−NVD[Uin(χ̂,H)+κ2χ̂−j·φ̂] , (2.31)

where VD = ΩD+1/HD, χ̂ = φ̂2/(2N) and Uin is to be specified below. It is easy to
check that the regularized effective potential Uκ, defined in terms of χ = φ2/2N as the
modified Legendre transform

Uκ(χ, H) + κ2χ = −Wκ(j, H) + j · φ , (2.32)

satisfies Eq. (2.27) and thus coincide with the effective potential of our initial problem
provided one adjusts Uin in Eq. (2.31) to match the initial condition at κ = κ0.

2.2.2 Flow of the Hubble parameter

Moving on to compute the flow of Hκ, we choose a particular initial condition for the
flow by specifying the potential Uin as

Uin(χ̂, H) = g(H) + µ2(H)χ̂ +
λ

2
χ̂2 , (2.33)

where
g(H) = α− β

2
H2 +

γ

4
H4 and µ2(H) = m2 + ζH2 . (2.34)

The function g(H) contains the terms coming from the gravitational part of the action.
In a de Sitter metric, the constant and H2 terms reflect the standard Einstein-Hilbert
action with cosmological constant, while the H4 describes a term quadratic in the cur-
vature tensor (e.g. R2), which could for example be induced by loop effects in the UV.
We shall see that it does not play a role here when D = 4. The parameters α and β are
related to the cosmological constant Λ and the Planck mass as

Nα = ΛM2
P and Nβ = D(D− 1)M2

P . (2.35)

The effective mass function µ(H) includes a possible nonminimal coupling to the Ricci
scalar R = D(D− 1)H2. In terms of the standard normalization, m2 + ξR, we have

ζ = D(D− 1)ξ . (2.36)

1The dimensional reduction can be understood comparing with the flow equation of a Euclidean scalar
theory in a D dimensional flat space. In that case, the flow equation reads

β(m2, κ) ∝
κD+2

κ2 + m2

and the deep infrared result in de Sitter space corresponds to the specific case when D = 0.
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2.2. Flow equations

Again, we have extracted the convenient factors of N for later use.
The minimum of the effective potential, Eq. (2.15), is now determined in terms of

our new variables as

∂Uκ

∂φa

∣∣∣∣
χκ ,Hκ

= 0,
∂(H−DUκ)

∂H

∣∣∣∣
χκ ,Hκ

= 0 (2.37)

which, using the integral representation (2.31) are equivalent to the implicit relations
〈

H∂H(H−DUin)
〉

κ
= DH−D

κ κ2[〈χ̂〉κ − χκ]

φa
κ =

〈
φ̂a〉

κ
,

(2.38)

where the expectation values are to be computed with the measure in (2.31), evaluated
with the source Nja = κ2φa

κ, and H = Hκ. The term proportional to κ2 is the explicit
contribution from the regulator, which we saw in Eq. (2.8). Importantly, Eqs. (2.38) are
implicit relations for Hκ and χκ, as both are needed to compute the expectation values
on the right-hand side.

On the left-hand side of the first member of Eqs. (2.38), the initial potential will
generate expectation values for quadratic and quartic operators in the fields. The latter
can be eliminated using the following property, valid for any function u for which the
integral exists and the boundary terms vanish, obtained through an integration by part∫

dN φ̂ e−u(φ̂)φ̂a ∂u
∂φ̂a = N

∫
dN φ̂ e−u(φ̂) . (2.39)

Using this with u(φ̂) = NVD(Uin(χ̂) + κ2χ̂− j · φ̂), we obtain

〈χ̂∂χ̂Uin〉κ + κ2(〈χ̂〉 − χ) =
HD

2ΩD+1
. (2.40)

With the initial conditions (2.33), this gives

λ
〈
χ̂2〉

κ
=

HD
κ

2ΩD+1
− µ2(H) 〈χ̂〉κ − κ2(〈χ̂〉κ − χκ) . (2.41)

which we inject in the first implicit relation in Eq. (2.38) to get

Dα− D− 2
2

βH2 +
DHD

κ

4ΩD+1
+

D
2
(m2 + κ2)[〈χ̂〉κ − χκ] +

D
2

m2χκ

=
D− 4

2

(γ

2
H4 + ζH2 〈χ̂〉κ

)
.

(2.42)

To solve this equation, in addition to computing the average value φa
κ =

〈
φ̂a〉

κ
, we

only need the two-point correlator of the zero dimensional theory Gab
κ =

〈
φ̂aφ̂b〉

κ
−
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2. BACKREACTION

φa
κφb

κ. Again, this propagator has a transverse and longitudinal part, which can be ex-
pressed in terms of the effective potential, inverting the two-point vertex function. We
have a sum of two contributions

〈χ̂〉κ − χκ =
Gaa

κ

2N
=

HD
κ

2NΩD+1

[
1

m̄2
l,κ + κ2

+
N − 1

m̄2
t,κ + κ2

]
, (2.43)

with the longitudinal and transverse masses defined as in Eq. (2.21) and evaluated at
the physical point m̄t/l,κ = mt/l,κ(χκ, Hκ).

These equations simplify further in D = 4. In particular, the right-hand side of
Eq. (2.42) cancels, which leads to the following regulated semiclassical Friedmann equa-
tion,

4α− βH2
κ +

H4
κ

Ω
+ 2(m2 + κ2)[〈χ̂〉κ − χκ] + 2m2χκ = 0 , (2.44)

where the volume factor is Ω = 8π2/3. It is to be compared with the classical result

H2
cl =

4α

β
, (2.45)

for a symmetric state with χκ = 0.
It is interesting to note that similar equations have been obtained recently in a com-

pletely different context [106], namely using holographic methods to integrate out a
QFT living in a constant curvature spacetime and compute its backreaction on the am-
bient geometry.

2.3 Interesting limits

We now compute and comment on the solutions to this flow equation. To have a better
understanding of the physics at stake, we will study two particular cases where the
effective potential can be computed analytically namely the case of a Gaussian poten-
tial, and the limit when N is large (i.e. the leading order in a 1/N expansion). The
generic case for a finite number of interacting fields can be solved numerically and will
be discussed in the end.

2.3.1 Gaussian case

For a Gaussian theory, λ = 0, the generating function of the cumulantsWκ, defined in
(2.31), can be computed exactly,

Wκ(j, H) = −g(H) +
Nj2

2µ2
κ(H)

− HD

2ΩD+1
log
(

ΩD+1µ2
κ(H)

HD2π

)
. (2.46)

where we introduced the regulated effective mass function µ2
κ(H) = µ2(H) + κ2. From

there we take the Legendre transform (2.32), expressed in terms of

φa = ∂jaWκ =
Nja

µ2
κ(H)

or χ =
Nj2

2µ4
κ(H)

, (2.47)
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to get

Uκ(χ, H) = g(H) + µ2(H)χ +
HD

2ΩD+1
log
(

ΩD+1µ2
κ(H)

HD2π

)
. (2.48)

The effective potential is the sum of the classical potential, corrected by the one-loop
logarithm, which is the only quantum correction in the Gaussian case. The argument
of the logarithm should in principle be dimensionless, which can be done by means
of an arbitrary mass scale that should be included to make the integration measure
dimensionless in Eq. (2.31). We do not need to worry about this here, as we will be
mostly interested in derivatives of H−DUκ, insensitive to this additional constant.

Using this expression to compute the physical minimum, Eq. (2.37), the average
field cancels φa

κ = 0, and we find the following equation for Hκ, in D = 4

4α− βH2
κ +

H4
κ

Ω

(
1 +

m2 + κ2

µ̄2
κ

)
= 0 , (2.49)

with µ̄κ = µκ(Hκ) the mass function at the minimum. This equation matches with the
semiclassical Friedmann equation, Eq. (2.44), as we know that χκ = 0 and

〈χ̂〉κ =
H4

κ

2Ωµ̄2
κ

. (2.50)

As expected, Hκ does not flow when the non minimal coupling ζ is taken to zero, as
the κ dependence simplifies in Eq. (2.49)

4α− βH2
κ +

2H4
κ

Ω
= 0 . (2.51)

However, the Hubble rate is not equal to its classical value, as it is corrected by the one-
loop contribution which gives the H4

κ term. Out of the two solutions of the quadratic
equation (2.51), only one is compatible with the range of validity of the semiclassical
approximation, H2

κ � β. We get

H2
κ =

βΩ
4

(
1−

√
1− 32α

β2Ω

)
≈ H2

cl +
2H4

cl
βΩ

. (2.52)

We see that the quantum correction is actually small with respect to the classical value,
and is already present at the ultraviolet scale κ0.

Adding the non minimal coupling, a nontrivial flow exists, that leads to a finite
value of the Hubble rate as κ goes to zero. The renormalization can be either positive
or negative, depending on the sign of ζ: For ζ < 0, the curvature is increased, and vice
versa for ζ > 0, see Fig. 2.1.

As a final remark, for α = 0, meaning in the absence of cosmological constant,
Hκ = 0 is a fixed point of the flow equation, corresponding to flat spacetime. This,
however, goes beyond the range of validity of our approach, where the effective po-
tential curvature is supposedly small compared to Hκ at each scale. Nonetheless, it is
reassuring to check that Minkowski spacetime is a fixed point of the flow.
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Figure 2.1: Flow of the Hubble parameter H2
κ as a function of the regulating scale κ. We

consider Gaussian initial conditions λ = 0, the gravitational parameters are chosen as
β = 1 and α = 0.1, and the mass is chosen as m2 = 0.1, while the non minimal coupling
ζ is varied between positive and negative values. Even for ζ = 0, the value of H2

κ is
not the classical value and receives a one-loop correction, so that the blue curve is not
exactly at H2

cl = 0.4.

2.3.2 large N interacting case

Another interesting limit is when we take N → ∞, in which case the computation can
be done analytically. The function Wκ can again be computed exactly, introducing an
auxiliary field σ (here a simple real variable), with a normalized Gaussian weight,∫

dσ

√
NVD

π
e−NVD(σ−i

√
λ
2 χ̂)2

= 1 . (2.53)

The factors are chosen so that when we insert this integral in Eq. (2.31), the χ̂2 term in
the initial potential is cancelled, and we can perform the gaussian integral over φ̂. We
get

eNVDWκ(j,H) =
∫

dσ

√
NVD

π
e−NVD F(z,j,H) , (2.54)

and we expressed the function F in terms of a new variable z = µ2
κ(H)− i

√
2λσ, so that

F(z, j, H) = g(H)−
(

z− µ2
κ(H)

2λ

)2

+
1

2VD
log
(VDz

2π

)
− Nj2

2z
. (2.55)

At leading-order in 1/N, the integral over σ can be performed using the saddle point
approximation. The result is easily expressed in terms of the minimum z̄ of F, obtained
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through ∂zF
∣∣
z̄ = 0,

Wκ(j, H) = −F(z̄, j, H) . (2.56)

The Legendre transform is expressed in terms of

φa = ∂jaWκ = Nja/z̄ . (2.57)

Taking a derivative of Eq. (2.32) with respect to φa, we find that z̄ is equal to the regu-
larized transverse mass M2

κ ≡ m2
t,κ + κ2. It is expressed in terms of χ and H as

M2
κ(χ, H) =

µ2
κ(H) + λχ

2
+

√(
µ2

κ(H) + λχ

2

)2

+
λHD

2ΩD+1
. (2.58)

Finally, the effective potential is

Uκ(χ, H) = g(H)− κ2χ+
M4

κ(χ, H)− µ4
κ(H)

2λ
+

HD

2ΩD+1
log
(

ΩD+1M2
κ(χ, H)

2πe

)
. (2.59)

This result coincides with the Gaussian limit when λ→ 0.
Again, we can derive the flow of Hκ from there, computing directly the physical

minimum through Eqs. (2.37). In D = 4, we get the following equation for Hκ

4α− βH2
κ +

2
λ
(M̄2

κ − µ̄2
κ)(M̄2

κ + m2 + κ2) = 4κ2χκ , (2.60)

with M̄2
κ = M2

κ(χκ, Hκ), and using the expression for χκ, obtained from ∂φaUκ = φa
κ∂χUκ =

0. Either φa
κ = 0 and χκ = 0, which corresponds to the symmetric phase, or m̄2

t,κ = 0,
corresponding to the broken-symmetry regime. In both cases, we know that

m2
t,κχκ = 0 , (2.61)

and from the expression (2.58) of M̄2
κ , we get

M̄4
κ − (µ̄2

κ + λχκ)M̄2
κ −

λHD
κ

2ΩD+1
= 0 . (2.62)

Using Eqs. (2.61) and (2.62) in Eq. (2.60), we end up with, in D = 4,

4α− βH2
κ +

H4
κ

Ω

(
1 +

m2 + κ2

m̄2
t,κ + κ2

)
+ 2m2χκ = 0 . (2.63)

We can check that Eq. (2.63) coincide with the semiclassical Friedmann equation, Eq. (2.44),
at leading order in a 1/N expansion.
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Figure 2.2: Flow of H2
κ in the massless minimally coupled case, m2 = ζ = 0, for various

values of N. The other parameters are set to β = 1, α = 0.1 and λ = 1. The negative
renormalization is induced by the generation of a mass. The flow is frozen once the
regulating scale goes below this generated mass, around κ ≈ m̄t,κ=0 ≈ 0.2. The result
obtained for finite values of N can be seen to be very similar to the large-N limit, even
for low values of N.

2.3.2.1 Symmetric regime

Let us first study the symmetric regime, where χκ = 0. In that case, the regularized
transverse mass is

M̄2
κ =

µ̄2
κ

2
+

√
µ̄4

κ

4
+

λH4
κ

2Ω
, (2.64)

and the flow equation (2.63) reads

4α− βH2
κ +

H4
κ

Ω

(
1 +

m2 + κ2

M̄2
κ

)
= 0 . (2.65)

At large values of κ, the regularized transverse curvature can be essentially approx-
imated by M̄2

κ ≈ κ2, and the flow equation becomes

4α− βH2
κ + 2

H4
κ

Ω
= 0 , (2.66)

which is the same as Eq. (2.51) and gives nothing but the minimally coupled Gaussian
solution. This is expected as all fluctuations are effectively frozen in this limit.

We then focus on the massless minimally coupled case, m = ζ = 0, to probe directly
the nonperturbative dynamics. Decreasing the value of κ, the transverse mass increases,
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which leads to a negative renormalization of H2
κ , see Fig. 2.2. This can be interpreted as

the scalar field drawing energy from the gravitational field. Indeed, while the field is
initially massless, a mass is gravitationally generated by the interactions. As κ is taken
to zero, the generated mass is

m2
t,κ=0 =

√
λH4

κ=0
2Ω

, (2.67)

and saturates to a finite value, while H2
κ=0 is obtained through

4α− βH2
κ=0 +

H4
κ=0
Ω

= 0 . (2.68)

The solution reads

H2
κ=0 =

βΩ
2

(
1−

√
1− 16α

β2Ω

)
≈ H2

cl +
H4

cl
βΩ

. (2.69)

The fact that we obtain a finite value indicates a stabilization of the geometry, as a
consequence of this mass generation. Indeed, it gives a new scale below which the flow
is effectively frozen. The difference between the asymptotic values is small and it is
controlled by the dimensionless parameter

H2
cl

βΩ
� 1 , (2.70)

whose smallness is a necessary condition for the validity of the present semiclassical
approach. Eq. (2.69) is, again, similar to the result obtained in [106] with holographic
methods, see their Eq. (4.23). Interestingly, their result is not limited to the semiclassical
regime: They explore a wider range of values for α, and they keep the other solution to
the quadratic equation as a viable possibility.

The analysis is very similar when taking nonzero values for m2 and ζ. Actually, the
addition of a bare mass tends to freeze the flow earlier, as the second term in factor
of the H4

κ in Eq. (2.65) will not flow down to zero. The non minimal coupling, as in
the Gaussian case, can have nontrivial effects depending on its sign. In particular, a
negative value of ζ tends to renormalize positively H2

κ , competing with the negative
renormalization coming from the interactions, see Fig. 2.3.

2.3.2.2 Broken-symmetry regime

In the broken-symmetry regime, the initial potential is chosen so as to have nontrivial
minima in χ away from the origin. For a quartic potential this is realized at the classical
level under the condition m2 + ζH2

κ0
< 0.

The value of χκ is determined as a function of Hκ from the cancellation of the trans-
verse mass

∂χUκ

∣∣∣∣
χκ

= 0 , (2.71)
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Figure 2.3: Flow of H2
κ which displays an interplay between a negative value of the

non minimal coupling ζ and the effect of the interactions λ. As the latter is decreased,
the positive renormalization induced by a negative ζ becomes the leading effect. The
parameters are set to β = 1, α = 0.1, m2 = 0.1, and ζ = −0.01.

which gives, in terms of Hκ,

χκ = −m2 + ζH2
κ

λ
− H4

κ

2Ωκ2 . (2.72)

Injecting this into the flow equation (2.63), it can be expressed in a similar form as for
the minimally coupled Gaussian case, Eq. (2.51),

4α′ − β′H2
κ + 2

H4
κ

Ω
= 0 , (2.73)

with the modified gravitational parameters

α′ = α− m4

2λ
and β′ = β +

2m2ζ

λ
, (2.74)

and H2
κ does not flow, as all explicit dependence in κ has disappeared.

In the limit N → ∞, the dynamics in the broken phase is entirely dominated by the
Goldstone transverse modes, which are massless. It appears that these modes do not
contribute to the flow of Hκ. This is actually expected from the flow of the effective
potential. Indeed, going back to the beta function of the potential in the infrared limit,
Eq. (2.30), we know that when the curvature of the potential vanishes in a particular
direction,

β(0, κ) =
HD

ΩD+1
. (2.75)

42



2.3. Interesting limits

This means that if the curvature of the potential at a minimum χκ is null, then we can
derive the minimum condition for H, ∂H(H−DUκ)|Hκ ,χκ = 0, with respect to κ to obtain

∂κ Hκ = − ∂H(H−D∂κUκ)

∂2
H(H−DUκ)

∣∣∣∣
χκ ,Hκ

= 0 . (2.76)

where we used Eq. (2.75) to see that the numerator vanishes. As a consequence, a
massless mode gives no contribution to the renormalization of the curvature, although
it is strongly amplified in the infrared.

Another way to phrase this is to look at the running of the potential at its minimum,

Uκ(χκ, H) = g(H)− µ4(H)

2λ
+

H4

2Ω

(
1 + log

(
Ωκ2

2πe

))
. (2.77)

The only term with an explicit dependence in κ is the logarithm, and it renormalizes
the H4, which does not participate in the renormalization of H2

κ in D = 4.
The actual value of H2

κ is the same as in the minimally coupled Gaussian case,
Eq. (2.52), with the replacement (α, β) → (α′, β′). Notice in particular that the classical
solution in this case is now

H′2cl =
4α′

β′
. (2.78)

These new values do not have the same constraints as the purely gravitational param-
eters, and we can explore more of the parameter space to see whether the renormaliza-
tion of H2

κ can be made bigger. This will be discussed later.
Before that, an important point is that the symmetry is always restored along the

flow at a finite value of κ. Looking at Eq. (2.72), the condition to start the flow in a
broken phase is

m2 + ζH2
κ0
< − λH4

κ0

2Ωκ2
0

, (2.79)

and we see that the classical condition has already received a quantum correction, as a
consequence of the initial condition being fixed at a finite value of κ. As κ is decreased,
this correction grows like 1/κ2, and the condition for a broken-symmetry regime is
always eventually violated. In other words, the symmetry is always restored at a finite
scale [36, 38, 39, 107, 108]

κ2
c = − λH4

κ

2Ω(m2 + ζH2
κ)

. (2.80)

The picture is that, although the symmetry is broken on domains of size below 1/κc, it
is restored at larger scales as these domains are uncorrelated and the expectation value
will average out among these different macroscopic domains. The flow for κ ≤ κc
is controlled by the previous flow equation for the symmetric regime (2.65), and has
already been discussed. The resulting flow is depicted in Fig. 2.4.
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Figure 2.4: Flow of χκ (left) and H2
κ (right), around the symmetry restoration, happening

at κc ≈ 0.28. The parameters are chosen as β = 1, α = 0.1, m2 = −0.1, ζ = 0, and
λ = 0.1. This corresponds to the deeply broken regime and the approximate solution
of the flow (2.85) is represented as the red dashed line.

An interesting limit where we can obtain simple expressions is the deeply broken
phase, when

∣∣m2 + ζH2
κ0

∣∣2 � λH4
κ0

. In that case, the regulated curvature can be ex-
panded for κ ≤ κc as

M̄2
κ =

λH4
κ

2Ω|µ̄2
κ|

(
1− λeff,κ

2
+O

(
λ2

eff,κ
))

, (2.81)

in terms of the effective coupling

λeff,κ =
λH4

κ

Ω|µ̄2
κ|2

. (2.82)

Injecting this expression in the flow equation (2.65) gives, after the symmetry restora-
tion,

4α′κ − β′κ H2
κ +

H4
κ

Ω

(
1− m2 + κ2

µ̄2
κ

)
= 0 , (2.83)

with the regulated modified gravitational parameters

α′κ = α− (m2 + κ2)2

2λ
and β′κ = β +

2ζ(m2 + κ2)

λ
. (2.84)

This is similar to the Gaussian case, Eq. (2.49), with the replacement (α, β) → (α′κ, β′κ)
and a change of sign for the κ dependent terms in the parenthesis. In particular, when∣∣ζH2

κ

∣∣� ∣∣m2
∣∣, we have the approximate solution

H2
κ =

4α′κ
β′κ

, (2.85)

which converges towards the new classical solution (2.78) when κ = 0

H2
κ=0 = H′2cl . (2.86)

This approximate solution is represented together with the actual flow in Fig. 2.4.
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Figure 2.5: Flow of H2
κ around the symmetry restoration for the fined tuned parameters

m2 = −4.47175 10−3, ζ = 1.113 10−2 and λ = 10−4. The gravitational parameters are
β = 1 and α = 0.1. The Hubble parameter is renormalized by an overall factor of two.

2.3.2.3 Fine tuned parameters

As previously mentioned, for generic parameters in the symmetric phase, the renormal-
ization of H2

κ is controlled by H2
cl/(βΩ)� 1, which has to be small for the semiclassical

approximation to hold.
In the broken-symmetry regime, the value in the UV is given by

H2
κ0
=

β′Ω
4

(
1−

√
1− 32α′

β′2Ω

)
, (2.87)

and to get the solution to Eq. (2.73) which is continuously connected to the classical
one, we need to ensure

α′ > 0 , β′ > 0 , β′2Ω > 32α′ . (2.88)

After the symmetry restoration, the asymptotic infrared value can be computed from
the symmetric phase flow equation (2.83). According to our previous analysis, for
generic parameters in the broken phase, both asymptotic values will be close to the
classical solution, with corrections controlled by H′2cl /(β′Ω)� 1.

We can however fine-tune the parameters so that the quantity H′2cl /(β′Ω) is of order
one, so that the quantum corrections become important, still respecting the aforemen-
tioned constraints (2.88) and the semiclassicality condition 0 < H2

κ � β. Thus, we try
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Figure 2.6: Feynman diagrams appearing in the perturbative expansion analysis of the
flow of the Hubble parameter, at up to two loop order.

to minimize the determinant in the solution (2.87)

0 < 1− 32α′

β′2Ω
� 1 , (2.89)

which leads to H2
κ0
≈ (β′Ω)/4. Then, the semiclassical constraint tells us that α′ ∼

β′2 � β2. Using Eq.(2.88), this means that

− m2
√

λ
.
√

2α and
ζ√
λ
.

β

2
√

2α
. (2.90)

The value of λ is constrained by the requirement that the curvature of the potential in
field space is small in units of the spacetime curvature or, equivalently, of H2, which at
the classical level gives

∣∣m2 + ζH2
κ0

∣∣� H2
κ0

. From Eq. (2.90), m2 and ζ scale as
√

λ for a
given α and β which means we have to choose λ� 1. In the end, we can further adjust
the parameters for the approximate solution (2.85) to be valid. The result is shown in
Fig. 2.5, where, with the choice of parameter, we obtain an overall renormalization of
H2

κ by approximately a factor of two, which is the maximal value we can obtain. The
renormalization of H2

κ never gets bigger, and we do not find any instability, or relaxation
towards Minkowski spacetime.

2.3.3 Finite N case

Finally, we turn to the general case, when N is finite. The semiclassical Friedmann
equation (2.44) can easily be solved numerically. The general features that we discussed
before in the large-N limit are essentially unchanged in the symmetric case. In partic-
ular for the massless minimally coupled fields, m2 = ζ = 0 the asymptotic values are
exactly the same for all N. Indeed, looking at (2.44) in the UV, the field is essentially
Gaussian with a mass κ2, and we get Eq. (2.51), which is solved as (2.52), while at κ = 0,
we easily get Eq. (2.69) (see also Fig. 2.2).

It is instructive to compare the observed flow with the result one could obtain from
a perturbative expansion in the coupling λ, applied to the zero-dimensional theory. In
the regulated massless minimally coupled case, we already computed the tree level
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correlator, see Eq. (2.50),

〈χ̂〉0,κ =
H4

κ

2Ωκ2 . (2.91)

Again, this is infrared divergent when we take κ → 0, and we expect the loop cor-
rections to blow up in this limit. Keeping κ at a high enough value, the perturbative
expansion is well behaved, and it is possible to compute standard Feynman diagrams.
The dimensionless expansion parameter appearing from loops is, see Eq. (2.82),

λeff,κ

4
=

λΩ
H4

κ

〈χ̂〉20,κ . (2.92)

The one- and two-loop diagrams contributing to the correlator are depicted in Fig. 2.6,
and the two-loop result reads, for the correlator,

〈χ̂〉κ = 〈χ̂〉0,κ

(
1− N + 2

2N
λeff,κ +

(N + 2)(N + 3)
2N2 λ2

eff,κ +O
(
λ3

eff,κ
))

, (2.93)

and for the transverse mass, using the inversion of the two-point vertex function, see
Eq. (2.43),

m̄2
t,κ = −κ2 +

H4
κ

2Ω 〈χ̂〉κ
= κ2

(
N + 2

2N
λeff,κ −

(N + 4)(N + 2)
4N2 λ2

eff,κ +O
(
λ3

eff,κ
))

.
(2.94)

The equation for H2
κ , in the symmetric regime,

4α− βH2
κ +

H4
κ

Ω

(
1 +

κ2

m̄2
t,κ + κ2

)
, (2.95)

is then solved perturbatively to get

H2
κ

H2
κ0

= 1− N + 2
2N

H2
κ0

βΩ− 4H2
κ0

λeff,κ +
(N + 2)H2

κ0

2N2(βΩ− 4H2
κ0
)3 [H

4
κ0
(34 + 9N)

− 2βΩH2
κ0
(3N + 10) + β2Ω2(N + 3)]λ2

eff,κ +O
(
λ3

eff,κ
)

,

(2.96)

where H2
κ0

is given by the minimally coupled Gaussian solution Eq. (2.52). The one
loop contributions leads to a negative renormalization, which could be interpreted as
a sign of instability of the geometry, as the correction goes unbounded when we take
κ → 0. However, when doing so, the effective coupling λeff,κ becomes nonperturbative
and all terms in the perturbative series are of the same order of magnitude. Taking all
loop orders into consideration with a nonperturbative method corresponds to what we
did in the previous section with the FRG procedure in the large-N limit, and gives a
saturating flow for H2

κ , as a consequence of the nonperturbative generation of a mass
which freezes the flow of Hκ at a finite value, see Fig. 2.7.
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Figure 2.7: Flow of H2
κ (left) and the transverse mass (right) in the massless minimally

coupled case, for N = 1, and λ = 1. The gravitational parameters are β = 1, α = 0.1.
The dashed lines corresponds to the first and second order in the loop expansion and
diverge as κ is decreased. The approximate red dashed curve corresponds to the leading
order in a development in H2

κ0
/(βΩ), which is small in the semiclassical framework:

The value of H2
κ is obtained from Eq. (2.102), while m̄2

t,κ = M̄2
κ− κ2 is using the analytical

solution Eq. (2.100) to compute M̄2
κ , evaluated at Hκ0 .

In general, the solution can be obtained using the integral representation of the gen-
erating functional (2.31). In the symmetric regime, starting with the following integral

Z(A, B) =
∫ ∞

0
dχ̂ χ̂N/2−1e−Aχ̂− Bχ̂2

2 , (2.97)

we have
〈χ̂〉κ = −∂A logZ(A, B) , (2.98)

with
A = NVDµ̄2

κ and B = NVDλ . (2.99)

The result can be expressed in terms of the confluent hypergeometric function of the
second kind U(a, b, c), as

〈χ̂〉κ
〈χ̂〉0,κ

=
µ̄2

κ

M̄2
κ

=
N

2λeff,κ

U
(

N+4
4 , 3

2 , N
2λeff,κ

)
U
(

N
4 , 1

2 , N
2λeff,κ

) . (2.100)

We can check that Eq. (2.100) gives the correct asymptotic expressions in the limit N →
∞, and for N = 1. Also, in the massless minimally coupled case, we find for finite N

M̄2
κ=0

H2
κ=0

=
Γ
(N

4

)
Γ
(N+2

4

)√λN
8Ω

, (2.101)

with the expected non analytic dependence in the coupling λ [18].
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Figure 2.8: Flow of H2
κ in the broken-symmetry regime for various values of N, for

m2 = −0.05, ζ = 0 and λ = 1. We also chose β = 1 and α = 0.1. The flow in the broken
phase is entirely due to the longitudinal mode, and is suppressed as N is increased, up
to the limit N → ∞, where only the massless transverse modes contribute.

Alhtough we do not have an analytic solution for Hκ in general, we can obtain
a simple expression by developing in H2

κ0
/(βΩ), which is small in the semiclassical

approach. In the massless minimally coupled case, we get

H2
κ

H2
κ0

= 1− H2
κ0

βΩ

(
1− κ2

M̄2
κ,Hκ0

)
+O

(
H4

κ0

(βΩ)2

)
, (2.102)

where we added an index to the running regulated curvature to signify that it should
be evaluated at Hκ0 . This equation, for large enough κ, relates the development of Hκ

to the development of the transverse mass, and we can check that

H2
κ

H2
κ0

= 1− N + 2
2N

Hκ0 λeff,κ

βΩ
+

(N + 2)(N + 3)
2N2

H2
κ0

λ2
eff,κ

βΩ
+O

(
λ3

eff,κ,
H4

κ0

(βΩ)2

)
, (2.103)

matches with the result from Eq. (2.94). Eq. (2.102) is, however, valid nonperturbatively.
In the broken phase, the main difference with the N → ∞ case is the contribution of

the longitudinal mode. Indeed, although it is suppressed by a factor 1/N, it can mod-
ify the flow significantly for a small number of fields. Contrary to what happens in the
symmetric phase, the renormalization due to the longitudinal mode only appears as a
two-loop effect, which means it increases H2

κ along the flow in the presence of interac-
tions, and a nonminimal coupling produces the opposite behavior as before, increasing
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(resp. decreasing) H2
κ for ζ > 0 (resp. ζ < 0). As before, the symmetry will be restored

at a finite value of the coarse graining scale κ, and the subsequent behavior is that of
the symmetric regime, see Fig. 2.8.

2.4 Conclusion

To summarize, the FRG framework, previously applied to spectator fields in a fixed
de Sitter geometry [36–39], can be extended to a situation where the classical metric is
modified by the backreaction of O(N) quantum scalar fields. More precisely, we com-
pute the renormalization of the Hubble parameter, which characterizes the geometry
entirely in the subset of de Sitter metrics and constant average field configurations,
upon progressive integration of the amplified infrared fluctuating modes, and in the
presence of interactions.

The case of a noninteracting minimally coupled field is a fixed point of the renor-
malization flow, as expected, and the inclusion of either a non minimal coupling ζ to the
spacetime curvature, or self interaction λ leads to a nontrivial, but finite, backreaction.
The overall amplitude of the effect is generically controlled by H2

cl/M2
P � 1, which is

small in the present semiclassical approach and leads to a small renormalization. Al-
though some fine tuning is possible to get a sizeable effect, we see no sign of instability
and always get a finite result at the end of the flow.

The nonminimal coupling leads to a positive or negative renormalization depend-
ing on its sign. The interactions of the infrared modes tends to draw energy from the
gravitational field, and we indeed observe a negative renormalization of the spacetime
curvature. In the case of initially massless fields, for which the infrared modes are

strongly amplified, the dynamical generation of a mass of order
√

λH4
cl gives a finite

scale below which the fluctuations are effectively frozen and the flow saturates. This
effect is nonperturbative in nature and we show that loop computations up to a fi-
nite order in perturbation theory lead to misleading results where the corrections grow
unbounded. This signals the breakdown of the perturbative approach and the FRG
treatment we use provides a resummation of these divergences.

For an initial potential which breaks the O(N) symmetry, the Goldstone modes do
not contribute to the backreaction, despite being massless and thus strongly amplified.
This is actually the case for any flat direction in the potential and is a rather surpris-
ing conclusion of this work. As the symmetry is always restored at a finite scale, the
subsequent flow always ends up back in the symmetric case.

There are close correspondances between the present work and results obtained in a
recent study using a gauge/gravity duality to compute a similar backreaction problem
[106]. Interestingly, the result of [106] is not limited by the semiclassical approximation,
and is generally valid for positive and negative constant curvature space.

Finally, although we observe an overall saturation of the renormalization of the
scalar curvature, and thus to a stabilization of the metric, in our specific context, the
present computation is in no way a definitive conclusion to the problem of the cos-

50



2.4. Conclusion

mological constant. In particular, an accurate treatment of the metric perturbations [57,
109–111], or the use of a quantum state which is not de Sitter invariant [87, 88, 112–114],
are not taken into account here.
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One of the first, and most prominent, nonperturbative approach to compute infrared
quantum effects for scalar fields in de Sitter spacetime is the stochastic formalism, de-
veloped in [15–18]. It gives an effective description of the long-wavelength (superhori-
zon) physics in terms of a Langevin stochastic equation. The infrared modes behave
classically as a result of the gravitational amplification, and are subject to a random
noise, coming from the expansion of subhorizon modes as they grow out of the hori-
zon. This effective description has been shown to resum the leading infrared logarithms
appearing in the perturbative expansion of the original quantum field theory [11, 19,
20], and thus leads to genuinely nonperturbative results.

There are several ways to extract information from this stochastic equation. The one
which is usually considered is to solve the equivalent Fokker-Planck equation in terms
of an eigenvalue problem [18, 72, 73]. This will be discussed in more details in the
next chapter. Alternatively, the Langevin equation is a particular case of the so-called
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model A in the Hohenberg and Halperin classification of nonequilibrium dynamical
systems [66]. An approach has been developed in this context which leads to a path
integral formulation, through the Janssen-de Dominicis (JdD) procedure, in terms of a
one-dimensional QFT that features a supersymmetry [68–70].

This last approach can be used as a basis for implementing other methods. In par-
ticular, the FRG has been applied to the model A in the context of statistical physics [67,
68], supersymmetric quantum mechanics [71], and in the stochastic formalism [42]. In
[42], it has been shown that the LPA flow for the effective potential is identical to the
one obtained in the original Lorentzian QFT [37–39]. The LPA has been found to give
the exact answer for the effective potential, which encodes all the information about
local (equal-time and inside a Hubble patch) fluctuations. One result of the present the-
sis, described in this chapter, is to clarify why this is so. However, a limitation of the
LPA is that it does not correctly predict some important phenomenological quantities
such as the field autocorrelation time, which are related to unequal-time correlators.
For this reason, it is desirable to go beyond the LPA and investigate the possiblity to get
simple (maybe analytical) results for, e.g. autocorrelation times. Another motivation
is the possibility of unravelling new phenomena. For instance, in flat Euclidean space,
the topological Kostherlitz-Thouless transition is not seen at the LPA level but is clearly
captured by including the flow of the kinetic (derivative) term in the effective action
[46, 47]. The method of choice to go beyond the LPA, that we shall investigate here, is
the so-called derivative expansion, where one expands the running effective action in
powers of the field derivatives.

Trying to go beyond the LPA in the context of the Lorentzian QFT computation is
notably difficult, and actual calculations were only limited to the LPA’, where one adds
a field independant renormalization to the kinetic term [40]. The computation for the
model A appears to be much simpler and the second order of the derivative expansion
has already been implemented for a single scalar field in the context of supersymmetric
quantum mechanics [71]. It is thus interesting to study the derivative expansion for an
O(N) theory in this context.

We recall in Sec. 3.1 the principle of the effective stochastic approach, and the JdD
procedure is detailed in Sec. 3.2. General properties of the correlators are then discussed
in the light of this path integral formulation in Sec. 3.3. Finally, in Sec. 3.4, we imple-
ment the FRG in this context. We first prove that the LPA gives the exact result for the
effective potential, and move on to compute the flow to second order in the derivative
expansion.

3.1 Stochastic formalism

In this section, we consider a single test scalar field φ̂, with a potential V(φ̂), in a de
Sitter background, and work in cosmic time t (see Eq. (1.2) for the metric). The deriva-
tion of the stochastic equation is well-known in that case, see for example [18], and
we review it here for completeness. We add some considerations on the slow-roll limit
which, although they are in essence not new, bring, we believe, an interesting light.
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3. MODEL A AND FRG

The formalism itself can be generalized in various ways, to an inflaton field, in a slowly
rolling FRLW background or even beyond slow-roll [115–119].

3.1.1 Coarse graining

To derive the stochastic Langevin equation obeyed by the coarse-grained scalar field,
we use the Hamiltonian formalism. Denoting with a dot the derivative with respect
to the cosmic time, the conjugate momentum to the field φH reads, in terms of the
microscopic action,

πH =
δS
δφ̇

= adφ̇H , (3.1)

and we have the commutation relation [φH(t,~x), πH(t,~y)] = δ(d)(~x−~y). The Hamilto-
nian is

H =
∫

dd~x ad

[
1
2

(πH

ad

)2
+

1
2

(
∂~xφH

a

)2

+ V(φH)

]
, (3.2)

which gives the equations of motion for φH and πH

φ̇H =
πH

ad ,

π̇H

ad =
∂2
~xφH

a2 −V ′(φH) .
(3.3)

The strategy is to separate both the field and its conjugate momentum in short-
and long-wavelength parts with respect to a fixed subhorizon physical scale εH, with
ε . 1, and to integrate out the short-wavelength part. In terms of comoving scales, the
separation is done in terms of the following time-dependent quantity

kε = εa(t)H . (3.4)

We define the coarse-grained field φ̄ and momentum π̄ as

φH(t,~x) = φ̄(t,~x) +
∫
~k

W
(

k
kε

)[
φk(t)ei~k·~xa~k + φ∗k (t)e

−i~k·~xa†
~k

]
,

πH(t,~x) = π̄(t,~x) +
∫
~k

W
(

k
kε

)[
πk(t)ei~k·~xa~k + π∗k (t)e

−i~k·~xa†
~k

]
,

(3.5)

where the window function W is chosen so that W ∼ 0 for k � kε and W ∼ 1 for
k � kε. Additionally, the mode functions have been assumed to depend only on the
norm of~k, which implies the use of an isotropic quantum state, e.g., the BD vacuum.

The short-wavelength mode functions φk and πk corresponds, by definition, to sub-
horizon modes, which are not gravitationally amplified. As a first approximation we
can thus linearize their equations of motion to get

φ̇k =
πk

ad ,

π̇k

ad = − k2

a2 φk −V ′′(φ̄)φk .
(3.6)
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3.1. Stochastic formalism

We show in the following section that the coarse grained field φ̄ behaves classically.
Moreover, if we assume that the typical timescale for φ̄ is much larger than the one
for UV modes, we can treat V ′′(φ̄) as a constant in Eq. (3.6). Eventually, we shall see
that this term actually disappears from the noise correlators in the slow-roll limit so we
refrain to discuss it in more detail. We simply consider it as a constant in what follows.

Using these in Eqs. (3.3), and neglecting the gradient term for the long-wavelength
part we get the following equation for the dynamics of the coarse grained fields

˙̄φ =
π̄

ad + ξφ ,

˙̄π
ad = −V ′(φ̄) + ξπ .

(3.7)

where we defined the noise terms

ξφ(t,~x) = −
∫
~k

Ẇ
(

k
kε

)[
φk(t)ei~k·~xa~k + φ∗k (t)e

−i~k·~xa†
~k

]
,

ξπ(t,~x) = −
1

ad(t)

∫
~k

Ẇ
(

k
kε

)[
πk(t)ei~k·~xa~k + π∗k (t)e

−i~k·~xa†
~k

]
,

(3.8)

corresponding to short-wavelength modes exiting the horizon at a given time. Here,
the derivative of the window function with respect to time is nonvanishing as a conse-
quence of the time dependence of kε.

3.1.2 Classicalization

So far, the coarse-grained fields and noises are defined in terms of quantum operators,
with nontrivial commutation relations. To interpret Eqs. (3.7) as Langevin equations
with random noises (3.8), we need to understand how these quantities become effec-
tively classical.

This quantum-to-classical transition has been described in different ways [86, 118,
120, 121]: It has been linked with the squeezing of the quantum state of the fluctuations
in the Schrödinger picture, or as the consequence of a decoherence process. We will
only give a hint of the phenomenon here considering the fluctuations of a test field
as an isolated system, i.e. without decoherence, in the Heisenberg picture, using the
BD vacuum. The transition appears as the consequence of the existence of growing
and decaying solutions, in terms of time evolution, to the mode function equation.
The growing solutions corresponds to a classical behavior that tend to dominate the
decaying ones on superhorizon scales. What we mean by classical behavior here is the
possibility to neglect the noncommutativity effects [122], which is the case for these
specific modes.

We first focus on the noise terms. The mode functions appearing in Eq. (3.8) verify
the linearized equation of motion (3.6). Thus the situation is identical to the free massive
scalar field case. As we have already seen in Sec. 1.2, in the Bunch-Davies vacuum [see
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3. MODEL A AND FRG

Eq. (1.54), with m2 = V ′′(φ̄)],

φk(t) = a−
d
2 (t)

√
π

4H
eiϑν Hν

(
k

a(t)H

)
. (3.9)

Here, the growing and decaying solutions are both contained in the Hankel function
Hν, and can be identified for superhorizon modes to its imaginary and real part respec-
tively. The momentum πk(t), is obtained from the first equation of (3.6). The derivative
of the Hankel function satisfies the identity H′ν(z) = Hν−1(z) − (ν/z)Hν(z). For the
long-wavelength modes, k ∼ kε � aH, we can use H′ν(z � 1) ∼ −(ν/z)Hν(z) which
amounts to neglecting the decaying solution1. We get

πk(t) ∼
(

ν− d
2

)
Had(t)φk(t) . (3.10)

This means in particular that ξπ is almost proportional to ξφ, which implies that their
equal-time commutator is small compared to their anticommutator.

For a free massive scalar field, this argument directly applies to the coarse-grained
field and its conjugate momentum. In that case, the average value of the canonical
commutator, proportional to the spectral correlator ρ, will be small compared to the
average value of the anticommutator, proportional to the statistical correlator F

F(x, y)� ρ(x, y) . (3.11)

This property can be generalized to interacting fields [122], and is a sufficient condition
for a classical field behavior. Indeed, this means that the correlators of the field and the
noises can be effectively obtained as the result of an equivalent classical stochastic pro-
cess, whose dynamics is given by the Langevin equation (3.7): The corrections coming
from noncommutation effects can be neglected.

3.1.3 Stochastic noise

To further characterize the noises, we compute the quantum average of the related op-
erators, again in the Bunch-Davies vacuum. As a consequence of the linearization, they
have Gaussian statistics. Thus, they are entirely characterized by their two-point func-
tion, which we can compute from Eqs. (3.9) and (3.10) with

ν =

√
d2

4
− V ′′(φ̄)

H2 . (3.12)

We get,

〈
ξ f (t,~x)ξg(t′,~x′)

〉
=
∫
~k

Ẇ
(

k
kε(t)

)
Ẇ
(

k
kε(t′)

)
fk(t)g∗k (t

′)ei~k·(~x−~x′) , (3.13)

1In the limit z � 1, for a real and positive value of ν, the Hankel function is approximated by its
growing component, or equivalently its imaginary part, as Hν(z � 1) ∼ [(2ν)Γ(ν)]/[iπzν]. This can be
used to show H′ν(z� 1) ∼ −(ν/z)Hν(z).
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3.1. Stochastic formalism

with f and g which can be either φ or π. Because of the symmetries of the Bunch-Davies
vacuum, the mode functions only depends on the modulus of the wavevector. We can
use isotropic window functions, in order to integrate the angular part of the integral,
and we get

〈
ξ f (t,~x)ξg(t′,~x′)

〉
=
∫

dk kd−1Ẇ
(

k
kε(t)

)
Ẇ
(

k
kε(t′)

)
fk(t)g∗k (t

′)Fd(k
∣∣~x−~x′

∣∣) , (3.14)

where the function Fd represent the spatial smearing of the noise correlator, and can be
expressed in terms of a Bessel function

Fd(z) = (2π)−
d
2 z

2−d
2 J d−2

2
(z) . (3.15)

The simplest option for the coarse-graining function is a Heaviside step W(x) =
θ(x− 1), which gives,〈

ξ f (t,~x)ξg(t′,~x′)
〉
= δ(t− t′)Hkd

ε fkε
(t)g∗kε

(t)Fd(kε

∣∣~x−~x′
∣∣) . (3.16)

For coincident points in space, we find the following numerical factor Fd(0) = Cd,ν,
related to the power spectrum, see Eq. (1.65), and it vanishes rapidly for |~x−~x′| & k−1

ε ,
or superhorizon spatial separations. In the following, we restrict to a single Hubble
patch, so that F ∼ Cd,ν, and we can discard the spatial dependence.

Therefore, the stochastic noises are just Gaussian white noises with amplitudes re-
lated to the different power spectra of φ and π. Specifically, using Eqs. (3.9) and (3.10),
we have 〈

ξφ(t)ξφ(t′)
〉
= δ(t− t′)Cd,νεd−2νHd ,〈

ξφ(t)ξπ(t′)
〉
= δ(t− t′)Cd,ν

(
ν− d

2

)
εd−2νHd+1 ,

〈
ξπ(t)ξπ(t′)

〉
= δ(t− t′)Cd,ν

(
ν− d

2

)2

εd−2νHd+2 .

(3.17)

From Eq. (3.17), it is easy to see that in the case of light fields, ν ≈ d/2, and the noise
term ξπ can be neglected compared to ξφ in the Langevin equation. The two-point
correlator of ξφ simplifies to

〈
ξφ(t)ξφ(t′)

〉
= δ(t− t′)

2Hd

dΩD+1
. (3.18)

We see that, as announced above, in the light mass limit where we take ν ≈ d/2, the
mass term proportional to V ′′(φ̄) from Eq. (3.6) does not play a role. Combining with
Eq. (3.7), and neglecting the appropriate noise terms, we find

¨̄φ + dH ˙̄φ + V ′(φ̄) = ξφ . (3.19)
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3. MODEL A AND FRG

3.1.4 Light fields in slow-roll

As an additional relevant approximation, we consider a slowly rolling scalar field. We
saw in Sec. 1.1 that it corresponds to neglecting the second derivative term in Eq. (3.19).
In order to make the consequences on the quantum correlators more precise, we now
discuss the case of a free field of mass m� H, which can be solved exactly.

Eq. (3.19) now reads
¨̄φ + dH ˙̄φ + m2φ̄ = ξφ , (3.20)

and we follow the definitions of Eqs. (1.44), (1.47) and (1.48), for the various two-point
functions of the spatially smeared field. The spectral correlator

ρ̄(t− t′) = i 〈Ω|
[
φ̄(t), φ̄(t′)

]
|Ω〉 , (3.21)

verifies
˙̄ρ(t = 0) = i 〈Ω|

[
˙̄φ(t), φ̄(t)

]
|Ω〉 = Z , (3.22)

as a consequence of the canonical commutation relation, in the presence of an arbitrary
field normalization Z for later purposes2. It can be computed from the retarded Green’s
function for the differential operator (3.20), which verifies the following equation

(∂2
t + dH∂t + m2)ḠR(t) = Zδ(t) , (3.23)

solved in frequency space as

ḠR(ω) =
Z

2νH

(
i

ω + iω+
− i

ω + iω−

)
, (3.24)

where

ω± = H
(

d
2
± ν

)
. (3.25)

Using the relation (1.45) between the retarded and spectral correlators, expressed here
in real time as ḠR(t) = θ(t)ρ̄(t), we get

ρ̄(ω) = 2i Im ḠR(ω) =
Z

2νH

(
2iω

ω2 + ω2
+

− 2iω
ω2 + ω2

−

)
, (3.26)

and in real space

ρ̄(t) =
Z

2νH
sign(t)

(
e−ω−|t| − e−ω+|t|

)
. (3.27)

As we discussed in Sec. 3.1.2, the spectral correlator is expected to be negligible
compared to the statistical one, which means that we can identify3

F̄(t− t′) =
1
2
〈Ω|

{
φ̄(t), φ̄(t′)

}
|Ω〉 ≈

〈
φ̄(t)φ̄(t′)

〉
. (3.28)

2The normalization of the smeared field has no reason to be equal to that of the original field, which
would correspond to the case when Z = 1.

3Note that the second equality relies on several identifications between quantum operators and
stochastic variables, as explained in Sec. 3.1.2. In the last expression, 〈φ̄(t)φ̄(t′)〉, the field is understood
as a stochastic variable, and the average is a stochastic average on the classical random noise ξφ. We keep
the same notations for simplicity.
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3.1. Stochastic formalism

This can be computed from the solution to Eq. (3.20),

φ̄(t) = φ̄0(t) +
d
Z

∫
dt′ ḠR(t− t′)ξφ(t′) , (3.29)

where φ̄0 is a solution of the homogeneous equation. It contains the initial conditions
and is associated to a transient regime, whereas the integral term, which dominates at
long time, will correspond to a stationary regime, independent of the initial conditions.
Because we study the stationary regime, φ̄0 will be discarded in the following. We get

F̄(ω) =
d2

Z2N (ω)
∣∣ḠR(ω)

∣∣2 , (3.30)

where N (ω) is the Fourier transform of the
〈
ξφξφ

〉
correlator

N (ω) =
2Hd

dΩD+1
. (3.31)

In real time, we end up with

F̄(t) =
Hd

ΩD+1ν

(
e−ω−|t|

2ω−
− e−ω+|t|

2ω+

)
. (3.32)

Now, the slow-roll approximation, which amounts to neglecting the second tempo-
ral derivative in Eq. (3.19), would only give a single root for the homogeneous equation,
ω0 = −im2/d, instead of ω±. This is obtained from the complete equation, provided
one takes the limit m� H, for which

ω+ ≈ dH and ω− ≈
m2

dH
, (3.33)

and neglecting the higher order pole ω+, as ω+ � ω−. This corresponds, in real time,
to neglecting e−ω+|t| � e−ω−|t|,

ρ̄(t) = sign(t)
Ze−

m2
dH |t|

dH
, F̄(t) =

HDe−
m2
dH |t|

ΩD+1m2 . (3.34)

This is represented in Fig. 3.1.
One important point is that, in doing so, the canonical commutation relation (3.22)

is no longer verified. In fact, the slow-roll approximation amounts to consider a coarse
grained-theory which cannot resolve time scales below ω−1

− . As a consequence, the
canonical commutation relation (3.22), which requires the presence of both roots ω±,
or equivalently involves shorter timescales of order ω−1

+ , is lost. This is similar to the
neglect of the decaying mode as described in Sec. 3.1.2. Some information about the
field normalization remains, however, and can be obtained from the spectral correlator
from

ρ̄(t = 0+) =
Z

dH
, (3.35)

59



3. MODEL A AND FRG

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Figure 3.1: Plot of the statistical function F̄ (left) and spectral function ρ̄ (right) as a
function of time in units of ω−1

− . This illustrates the coarse graining resulting from the
slow-roll approximation. The functions were rescaled by a factor d/(2ν) for a nicer
plot.

where the limit t→ 0+ is to be understood in units of the relevant timescale ω−1
− .

The effects of the slow-roll limit on the different correlators, computed here in the
noninteracting case, will be generalized later to an arbitrary potential and used to prove
useful relations on the stochastic correlators defined in the JdD procedure.

3.1.5 Generalization to several fields

We end this section by generalizing the above equations to the case of N light scalar
field in slow-roll with an O(N) symmetry. We obtain a system of coupled Langevin
equations for the field φ̄a, with a the field-space index. Because we consider the BD
vacuum, which is an O(N) invariant quantum state, the noise correlator computed
using Eq. (3.8) is diagonal in field space,〈

ξa
φ(t)ξ

b
φ(t
′)
〉
= δabδ(t− t′)

2Hd

dΩD+1
. (3.36)

It is useful to rescale the fields and the potential to absorb the different volume
factors

φ̄a →
√

2Hd

dΩD+1
ϕa and V(φ̄)→ 2HD

ΩD+1
V(ϕ) . (3.37)

Unless explicitly states, we now exclusively use these rescaled variables in the follow-
ing.

The Langevin equation in the slow-roll approximation then reads

ϕ̇a(t) + ∂ϕa V(t) = ξa(t) , (3.38)

where 〈
ξa(t)ξb(t′)

〉
= δabδ(t− t′) . (3.39)
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3.2. Functional formulation

The associated one-point probability distribution function (PDF), denoted P(ϕa, t), can
be shown by standard methods to verify the following Fokker-Planck equation [123],

∂tP = ∂ϕa

(
(∂ϕa V)P +

1
2

∂ϕa P
)

, (3.40)

It has an equilibrium distribution Peq which is a solution of

∂ϕa

(
(∂ϕa V)Peq +

1
2

∂ϕa Peq

)
= 0 . (3.41)

One obtains [18]

Peq(ϕa) =
1
Neq

e−2V(ϕa) , (3.42)

where Neq is a normalization factor. The general time-dependent solution tends to-
wards this equilibrium distribution after a long enough time, which will be discussed
in the next chapter. This is another manifestation of the fact that the BD vacuum, corre-
sponding to this equilibrium distribution, is an attractor state in the EPP [85].

This equilibrium distribution can be seen as the Boltzmann distribution for a ther-
mal system,

P ∝ e−βH , (3.43)

where H is the Hamiltonian for the superhorizon field in the Hubble patch under con-
sideration and β is an inverse temperature. It is expressed in terms of the potential
as

H =
∫

dd~x V =
Ωd

dHd V . (3.44)

where we use the fact that the volume of a d-dimensional spherical Hubble patch of
radius H−1 is Ωd/(dHd). With the rescalings (3.37), the equilibrium distribution (3.42)
becomes

Peq ∝ e−ΩD+1 H−DV(ϕ̄a) , (3.45)

which gives for the inverse temperature

β =
ΩD+1

HD
dHd

Ωd
=

2π

H
. (3.46)

This is nothing but the inverse Gibbons-Hawking temperature [124].

3.2 Functional formulation

The Langevin equation (3.38) that we obtained is a particular case of the model A in the
classification of Hohenberg and Halperin [66], which has been studied in the context
of out-of-equilibrium statistical physics [67, 68]. It can be given an elegant functional
formulation through the JdD procedure [69, 70], which provides an efficient starting
point for the implementation of various QFT techniques.
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3.2.1 Janssen-de Dominicis integral

The expectation value of a given operator O(ϕ) can be expressed as

〈O(ϕ)〉 =
∫
Dξ P[ξ]O(ϕξ) , (3.47)

where ϕξ is a solution of Eq. (3.38) with given initial condition4, and

P[ξ] =
1√
2π

e−
∫

dt 1
2 ξ2

. (3.48)

is the normalized probability distribution for the noise, with ξ2 = ξaξa. Assuming the
uniqueness of the solution to the Langevin equation for a given realization of the noise
and a given initial condition, one can write

O(ϕξ) =
∫
Dϕ δ[ϕ̇a + ∂ϕa V − ξa]J [ϕ]O(ϕ) , (3.49)

where J [ϕ] = |det(δab∂t + V,ab)| is the appropriate functional Jacobian. Under the
uniqueness assumption, one can forget the absolute value of the determinant and ex-
ponentiate it in terms of Grassmann fields

J [ϕ] =
∫
D[ψ, ψ̄] ei

∫
dtψ̄a(δab∂t+V,ab)ψb . (3.50)

Similarly, one exponentiates the functional delta as

δ[ϕ̇a + ∂ϕa V − ξa] ∝
∫
D[iϕ̃] e−

∫
dtϕ̃a(ϕ̇a+∂ϕa V−ξa) , (3.51)

where the so-called response fields ϕ̃a are purely imaginary. Integration over the Gaus-
sian noise finally gives, up to an irrelevant constant factor,

〈O(ϕ)〉 =
∫
D[ϕ, iϕ̃, ψ, ψ̄]e−SJdD [ϕ,ϕ̃,ψ,ψ̄]O(ϕ)∫
D[ϕ, iϕ̃, ψ, ψ̄]e−SJdD [ϕ,ϕ̃,ψ,ψ̄]

, (3.52)

with the following action

SJdD[ϕ, ϕ̃, ψ, ψ̄] =
∫

dt
{

ϕ̃a(ϕ̇a + ∂ϕa V)− 1
2

ϕ̃2 − iψ̄a(δab∂t + V,ab)ψb

}
. (3.53)

This one-dimensional theory with 4N fields describes the leading infrared behaviour of
the underlying QFT in de Sitter spacetime in the BD vacuum. Alternatively, we can use

4We should in principle also average over the initial conditions in Eq. (3.47), reflecting the quantum,
and possibly the statistical (for a mixed state) fluctuations in the initial state. Here, we can avoid this
procedure and consider an arbitrary fixed initial condition for our random variable because we are only
interested in the late-time equilibrium state of the system where all information about the actual initial
state has been washed away.
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a more symmetric form of the action by changing the variable ϕ̃a → Fa = i(ϕ̇a − ϕ̃a).
The action rewrites as

SJdD[ϕ, F, ψ, ψ̄] =
∫

dt
{

1
2

ϕ̇a +
1
2

F2 − iψ̄aψ̇a + iFa∂ϕa V + ψ̄aV,abψb

}
, (3.54)

where, in the stationary state, we can discard the boundary term∫
dt 2ϕ̇a∂ϕa V =

∫
dt V̇ . (3.55)

This form of the action clarifies another link, namely its relation to a supersymmetric
quantum mechanics after the Wick rotation t→ iτ [71].

3.2.2 Supersymmetry

The action (3.54) possesses various symmetries, e.g. time translation and time reversal
in the stationary regime, which can be conveniently encoded in a supersymmetry that
mixes the bosonic and fermionic degrees of freedom [68, 71]. This supersymmetry can
be made explicit recasting the different fields into a superfield

Φ̂a(t, θ, θ̄) = ϕa + θ̄ψa + ψ̄aθ + θ̄θFa , (3.56)

living on the superspace (t, θ, θ̄), with Grassmann variables θ and θ̄. The generators of
the supersymmetry can be expressed as

Q = i∂θ̄ + θ∂t and Q̄ = i∂θ + θ̄∂t . (3.57)

Introducing the covariant derivatives

D = i∂θ̄ − θ∂t and D̄ = i∂θ − θ̄∂t , (3.58)

and the supersymmetric d’Alembertian operator

K =
1
2
[D, D̄] , (3.59)

the JdD action can be written as

SJdD[Φ̂] =
∫

dz
{

1
2

Φ̂KΦ̂ + iV(Φ̂)

}
, (3.60)

with z = (t, θ, θ̄), dz = dt dθ dθ̄, and the convention for the Grassmann integration is∫
dθ dθ̄ θ̄θ = 1.
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3.3 General properties of correlators

Various considerations, most importantly the supersymmetry and the causality, allow
to put constraints on the correlators of the superfield. Although some of the following
properties are well-known in the context of statistical physics, their use in the cosmo-
logical context is new and we believe it brings an interesting perspective. We comment
here the case of the connected5 two-point correlator, denoted as

Gab
12(t1, t2) =

〈
Φ̂a(t1, θ1, θ̄1)Φ̂b(t2, θ2, θ̄2)

〉
. (3.61)

In this section, we consider the single field case (N = 1) for simplicity, and the general-
ization to finite N is trivial.

3.3.1 Supersymmetry constraints

The dependence of the propagator G and inverse propogator Γ(2) on the Grassmann
variables are heavily constrained by the supersymmetry generated by Q and Q̄. Using
first the anticommutator {

Q, Q̄
}
= 2i∂t , (3.62)

which generates the time translation invariance, we can work in frequency space

G12(t1, t2) =
∫ dω

2π
e−iω(t1−t2)G12(ω) , (3.63)

The same can be done to define Γ(2)
12 (ω), and the most general dependence of this cor-

relator on the Grassmann variables can be written a priori in terms of six independent
functions of the frequency

Γ(2)
12 (ω) = A(ω) + θ̄1θ1B(ω) + θ̄2θ2C(ω) + θ̄1θ1θ̄2θ2D(ω) + θ̄1θ2E(ω) + θ̄2θ1F(ω) .

(3.64)
Then, the supersymmetry implies the following Ward identities,

(Q1 + Q2)Γ
(2)
12 (ω) = 0 ,

(Q̄1 + Q̄2)Γ
(2)
12 (ω) = 0 ,

(3.65)

where the numerical index indicates the Grassmann variable each operator Q and Q̄ is
acting on. These gives four independent constraints which are solved as

C(ω) = B(ω) ,

D(ω) = ω2A(ω) ,
E(ω) = −B(ω)−ωA(ω) ,
F(ω) = −B(ω) + A(ω) .

(3.66)

5We consider only connected two-point correlators in the following. For simplicity we do not intro-
duce a special notation.
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3.3. General properties of correlators

Renaming A(ω) = η(ω) and B(ω) = iγ(ω), the general structure of the two-point
vertex reads

Γ(2)
12 (ω) = iγ(ω)δ12 + η(ω)Kωδ12 , (3.67)

where the two Grassmann structures

δ12 = (θ̄1 − θ̄2)(θ1 − θ2) ,

Kωδ12 = 1 + ω(θ̄2θ1 − θ̄1θ2) + ω2θ̄1θ1θ̄2θ2 ,
(3.68)

denote, repsectively, the Dirac function in Grassmann coordinates and the supersym-
metric d’Alembertian operator Kδ(z1− z2) in frequency space, with δ(z1− z2) = δ(t1−
t2)δ12.

The superfield propagator is obtained by inversion,∫
2

Γ(2)
12 (ω)G23(ω) = δ13 , (3.69)

with
∫

2 =
∫

dθ2 dθ̄2, and reads

G12(ω) =
−iγ(ω)δ12 + η(ω)Kωδ12

ω2η2(ω) + γ2(ω)
. (3.70)

Using the decomposition (3.56) of the superfield, we can obtain the correlators for its
different components. Using the notation

〈
A(t)B(t′)

〉
=
∫ dω

2π
e−iω(t−t′)GAB(ω) , (3.71)

we have

Gϕϕ(ω) =
η(ω)

ω2η2(ω) + γ2(ω)
, (3.72)

GϕF(ω) =
−iγ(ω)

ω2η2(ω) + γ2(ω)
, (3.73)

and the others can be expressed as

GFF(ω) = ω2Gϕϕ(ω) ,
Gψψ̄(ω) = −GϕF(ω)−ωGϕϕ(ω) ,

Gψ̄ψ(ω) = GϕF(ω)−ωGϕϕ(ω) .

(3.74)

Using the permutation identity of the superfield correlator, G12(t) = G21(−t), we
see that Gϕϕ(ω) and GϕF(ω) are even functions of the frequency. Inverting Eqs. (3.73)
in terms of γ(ω) and η(ω) shows that they are both even functions of ω.

Then, from the path integral representation (3.52), we compute the complex con-
jugate of 〈ϕ(t)ϕ(t′)〉. It only changes the sign of ϕ̃ in the action SJdD, as the response
field is purely imaginary. Making the change of variable ϕ̃→ −ϕ̃ in the numerator and
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3. MODEL A AND FRG

the denominator gives back the original action, without changing the global sign of the
expression, thus showing 〈

ϕ(t)ϕ(t′)
〉?

=
〈

ϕ(t)ϕ(t′)
〉

. (3.75)

Using the same method to compute 〈ϕ(t)ϕ̃(t′)〉?, again the sign of ϕ̃ is changed in the
action as well as in the additional ϕ̃ we are integrating upon. The same change of
variable, ϕ̃→ −ϕ̃ gives back the original correlator and we have〈

ϕ(t)ϕ̃(t′)
〉?

=
〈

ϕ(t)ϕ̃(t′)
〉

. (3.76)

Thus, both 〈ϕ(t)ϕ(t′)〉 and 〈ϕ(t)ϕ̃(t′)〉 are real (despite ϕ̃ being imaginary). We get in
Fourier space

Gϕϕ(ω)? = Gϕϕ(−ω) = Gϕϕ(ω) , (3.77)

and

Gϕϕ̃(ω)? = Gϕϕ̃(−ω) . (3.78)

From the definition of F, we know that

Gϕϕ̃(ω) = i
[
GϕF(ω) + ωGϕϕ(ω)

]
=

i
ωη(ω) + iγ(ω)

,
(3.79)

and we conclude that

GϕF(ω)? = −GϕF(ω) . (3.80)

In the end, Gϕϕ(ω) ∈ R and GϕF(ω) ∈ iR, and we conclude that in frequency space
both the functions γ(ω) and η(ω) are real.

We can write down explicitly the expressions for free massive scalar field, i.e. for
V(ϕ) = m2ϕ2/2. In that case,

γ(ω) = m2 and η(ω) = 1 , (3.81)

and we denote the associated superpropagator as

Gm2

12 (ω) =
−im2δ12 + Kωδ12

ω2 + m4 . (3.82)

This gives in real space

〈
ϕ(t)ϕ(t′)

〉
=

e−m2|t−t′|

2m2 ,
〈

ϕ(t)ϕ̃(t′)
〉
= θ(t)e−m2|t−t′| . (3.83)
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3.3. General properties of correlators

3.3.2 Fluctuation-dissipation relation

As a consequence of the above constraints for the propagator, we can formulate a re-
lation between the fluctuation, encoded in Gϕϕ, and the dissipation, encoded in the
response function Gϕϕ̃.

For a free massive scalar field, from Eqs. (3.83), we can identify the expressions
of the stochastic correlators with the results for the original Lorentzian QFT using the
expressions (3.34), and using the real time relation ḠR = θ(t)ρ̄. With the rescalings
(3.37), we find

ḠR =
Z

dH
Gϕϕ̃ , (3.84)

and

F̄ =
2Hd

dΩD+1
Gϕϕ . (3.85)

Note that the correlator Gϕϕ̃ is not sensitive to a field rescaling. It follows from the
definition (3.51) that the response field ϕ̃ should rescale as the inverse of ϕ.

Going back to the interacting case, we can define, by analogy, a stochastic spectral
function, using the relation in frequency space

ρ(ω) ≡ 2i Im Gϕϕ̃(ω) . (3.86)

In the free field case, ρ is related to ρ̄ as ρ̄ = Z/(dH)ρ. From Eq. (3.79), the response
function is expressed in frequency space in terms of γ and η as

Gϕϕ̃(ω) =
i

ωη(ω) + iγ(ω)
, (3.87)

and we find that
ρ(ω) = 2iωGϕϕ(ω) . (3.88)

This equation is the fluctuation-dissipation relation, characteristic of a thermal state in
the high-temperature, or classical-field, regime. It is the frequency space version of
the Einstein relation for the Brownian motion, relating the dissipation coefficient to the
noise amplitude [125], which was pointed out in [33, 126] in the context of the stochastic
approach in de Sitter.

The above relation (3.88) gives in real space the following limit

ρ(t = 0+) = 1 . (3.89)

This is the equivalent of Eq. (3.35), which was formulated for a free field, in the inter-
acting case. Indeed, Eq. (3.88) in real time reads

ρ(t) = −2∂tGϕϕ(t) . (3.90)

The right-hand side can be computed for t→ 0+,

−2∂tGϕϕ(t)
∣∣∣∣
t=0+

= −2
〈

ϕ̇(0+)ϕ(0)
〉
=
〈
2ϕV ′(ϕ)

〉
, (3.91)
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where we used the Langevin equation (3.38), and the fact that 〈ξ(0+)ϕ(0)〉 is zero by
causality. The average value 〈2ϕV ′(ϕ)〉 can be evaluated with the one-point PDF in
equilibrium (3.42). Using the following identity

∫ +∞

−∞
dϕ 2ϕV ′(ϕ)e−2V =

∫ +∞

−∞
dϕ e−2V , (3.92)

we find Eq. (3.89).

3.3.3 Causality

One last relation we can prove makes use of causality. It implies in particular that the
response function vanishes for negative time separations. Indeed, it is easy to see from
the above definition (3.86) that

Gϕϕ̃(t) = θ(t)ρ(t) . (3.93)

This is also expressed in frequency space as

Gϕϕ̃(ω) =
∫

ω′

ρ(ω′)
ω−ω′ + i0+

, (3.94)

which implies in particular that Gϕϕ̃(ω) is analytic in the upper half of the complex
frequency plane for a well-behaved spectral function ρ(ω). Using the fluctuation-
dissipation relation, Eq. (3.88), we deduce

Gϕϕ̃(ω = 0) = 2
∫ dω

2π
Gϕϕ(ω) = 2Gϕϕ(t = 0) . (3.95)

This gives an exact expression for the so-called dynamical mass mdyn, which measures
the amplitude of the equal-time fluctuations of the stochastic field within a Hubble
patch as

Gϕϕ(t = 0) =
〈

ϕ2〉 ≡ 1
2m2

dyn
. (3.96)

Using the expression of the response function in frequency space (3.87), we find

m2
dyn = γ(0) . (3.97)

This is analogous to a magnetic susceptibility in statistical field theory, which is the
inverse of the response function, here identified as Gϕϕ̃, at zero momentum (here fre-
quency). It measures the response of the system to a static perturbation, and should be
distinguished from the poles of the propagator, whose relation to correlations between
separated spacetime points in the present context will be discussed in Chap. 4.
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3.4. FRG for the model A

3.4 FRG for the model A

We saw in Sec. 2.2 the implementation of the FRG to the full Lorentzian QFT, in the
LPA. It is interesting to note that the zero-dimensional theory that describes the effec-
tive potential in the deep infrared, see Eq. (2.31), can actually be identified with the
equilibrium distribution of the Langevin equation (3.42) as

eNVDWκ(j,H) =
∫

dN φ̂ P̂eq(φ̂a)e−
κ2
2 φ̂2−j·φ̂ , (3.98)

where we used the appropriate rescalings (3.37), for which we have

P̂eq(φ̂a) =
1
Neq

exp
(
−VDV(φ̂a)

)
, (3.99)

In particular, the cumulants obtained in both formalism will exactly coincide, meaning
the LPA on the Lorentzian QFT captures the equilibrium PDF exactly.

This approximation, however, is not well suited for the computation of correlators
at different spacetime points, which requires higher orders in the derivative expansion.
This corresponds intuitively to pushing the expansion of correlators at higher orders
in frequency/momentum space to approximate the time dependence better. Among
the technical difficulties for doing so, in the context of the FRG, is the impossibility to
diagonalize the Laplace-Beltrami operator due to the noncommutativity of the space
and time translations, and the difficulty to construct a regulator function respecting the
de Sitter symmetries [40].

These issues can be significantly simplified by applying FRG techniques not to the
full QFT but to the effective stochastic theory describing its infrared dynamics. This
was implemented first in the cosmological context, for a single scalar spectator in the
LPA, in [42], where it was shown that the flow equation exactly coincide with the one
obtained in the Lorentzian QFT in the infrared regime. Going beyond the LPA, we
will be able to compute unequal-time correlators with better accuracy, and to test the
convergence of the derivative expansion on these quantities. The derivative expansion
at second order, in the single field case, has already been computed in the context of
supersymmetric quantum mechanics [71]. We aim at extending these results to the case
of N scalar fields, which will in particular give us access to the large-N limit where
analytic nonperturbative results exist [35].

3.4.1 Flow of the effective potential

The first step is to choose a specific regulator which preserves the symmetries of the
model A6. Following Canet et al. [68], we add the following term, quadratic in the

6These symmetries are distinct from, although partly related to, the initial de Sitter symmetries, for
which a regulator preserving the full group has not yet been found. In particular, in the stochastic ap-
proach, the symmetries are formulated in the infrared regime and in a specific coordinate system.
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superfields so as not to break the supersymmetry

∆Sκ[Φ] =
1
2

∫
dz1 dz2 Rab

κ (z1, z2)Φa(z1)Φb(z2) . (3.100)

Because the theory is now one-dimensional, the loop integrals are well behaved in the
UV, which means it is sufficient to choose a simple mass term to regulate the IR,

Rab
κ (z1, z2) = iκ2δabδ(z1 − z2) . (3.101)

We first compute the flow equation of the effective potential in the LPA [42, 71], to
show the equivalence with the result obtained in the infrared limit in the Lorentzian
QFT. The appropriate ansatz reads

Γκ[Φ] =
∫

dz
{

1
2

ΦaKΦa + iNUκ(X)

}
, (3.102)

with X = Φ2/(2N).
At the end of our computations, we always drop the mean values of the auxiliary

fields, and we particularize to constant values of φa = 〈ϕa〉, meaning we take constant
values of the superfield Φa = φa. The field space structures can be projected using the
projectors (2.19) in terms of φ.

Again, the flow equation receives two contributions, one coming from the trans-
verse modes and one form the longitudinal modes, whose respective effective masses
were defined in Eqs. (2.21) expressed in terms of χ = φ2/(2N). The longitudinal and
transverse components of the inverse propagator can be decomposed on the Grass-
mann structures as in Eq. (3.67), and we have, in the LPA,

γt/l,κ(ω) = m2
t/l,κ and ηt/l,κ(ω) = 1 . (3.103)

The regulator acts as a mass term and adds a κ2 contribution to the γ components. The
propagator can be easily deduced from Eq. (3.70). The flow equation (1.84)7 yields, for
a constant superfield Φa = φa, and after factorizing out an infinite volume factor

κ∂κUκ =
κ2

2N

(
N − 1

m2
t,κ + κ2

+
1

m2
l,κ + κ2

)
. (3.104)

This is identical to Eq. (2.27) and (2.30) in the infrared and small curvature limit, up to
a numerical factor stemming from the rescaling (3.37). This equivalence was obtained
in [42] for a single scalar field, and the same flow equation was found in the super-
symmetric quantum mechanics [71]. Our expression generalizes the result to an O(N)
scalar theory.

7Notice here that the JdD path integral involves e−S as it is concerned with a classical (stochastic)
field theory rather than the eiS of the quantum theory (1.71). In that case, the right hand side of the flow
equation (1.84) does not include the factor i in front of the trace.
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Interestingly, we can show that this computation can be further generalized at an
arbitrary order in the derivative expansion. In general, the ansatz for the derivative
expansion at order 2n should include all possible terms with n covariant derivative D
and n corresponding D̄, to get a bosonic quantity. Morevover, the flow of the effective
potential only uses the propagator, which we obtain by taking two functional deriva-
tives of the effective action ansatz and inverting the result. Thus, all terms where the
derivatives act on more than two different occurrences of the field do not give any con-
tribution. Up to partial integrations, we can thus consider only monomials of the form

Yab
κ (Φ)Φa(DD̄)pΦb , (3.105)

where Yab
κ (Φ) is an arbitrary function of the superfield Φ and p ≤ n. Using the identity

DD̄ =
1
2
[D, D̄] +

1
2
{D, D̄} = K− i∂t , (3.106)

together with the fact that K2 = −∂2
t , the second functional derivative of Eq. (3.105) at

constant superfield Φa = φa will have either zero, or one, occurrence of K, and up to
2n powers of time derivatives acting on a Dirac distribution. In frequency space, this
corresponds respectively to contributions to γκ(ω) and ηκ(ω) in the form of polynomi-
als in the frequency of degree lower than 2n8. In particular they have no pathological
behavior at ω = 0.

Thus, at zero frequency, we have γt/l,κ(ω) = m2
t/l,κ, which is identical to the LPA

case. Using Eq. (3.97), suitably generalized to a finite number of fields and in the pres-
ence of a regulator, the dynamical mass is expressed as the sum of a longitudinal and
transverse component as

N
m2

dyn,κ
=

N − 1
m2

t,κ + κ2
+

1
m2

l,κ + κ2
. (3.107)

Now the right hand side of the flow equation (1.84), evaluated at constant super-
field, gives,

κ∂κUκ = κ2 〈ϕ2〉 . (3.108)

By definition of the dynamical mass,

κ∂κUκ =
κ2

2m2
dyn,κ

, (3.109)

and together with Eq. (3.107), we find the LPA flow equation (3.104) for the effective
potential. We conclude that the effective potential, as it is computed from the LPA flow
equation (3.104), is identical at all order in the derivative expansion.

8We have shown that these functions are even in general, meaning that they are in fact polynomials in
ω2.
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3.4.2 Flow at second order in the derivative expansion

We now turn to the flow of the effective action at second order in the derivative expan-
sion. This computation has been done for a single scalar field in [71]. The appropriate
ansatz reads

Γκ[Φ] =
∫

dz
{

1
2

Zab
κ (Φ)D̄ΦaDΦb + iNU(X)

}
. (3.110)

where we introduced a renormalization of the kinetic term, with an arbitrary depen-
dence on the superfield Zab

κ (Φ). Computing the second field derivative, and evaluating
at constant superfield, we get the following expressions for the transverse and longitu-
dinal components of the inverse propagator in frequency space

γt/l,κ(χ) = m2
t/l,κ(χ) and ηt/l,κ(χ) = zt/l,κ(χ) , (3.111)

where zt/l,κ are the transverse and longitudinal projections of the field renormalization
tensor Zab

κ , and every function depends on the field value through χ. Thus, the flow of
Zab

κ can be extracted by taking two derivatives of the flow equation (1.84), evaluating
at constant superfield, and looking, e.g., at the component of the Kωδ12 Grassmann
structure9.

The second derivative of the flow equation yields [43, 44, 68]

κ∂κΓ(2)
12,ab,κ(ω) = iκ2(2I12,ab,κ(ω)−J12,ab,κ(ω)) , (3.112)

with

I12,ab,κ(ω) =
∫ dω′

2π

∫
34567

Γ(3)
134,acd,κ(ω + ω′,−ω′)Γ(3)

256,be f ,κ(ω
′,−ω−ω′)

× G57,eg,κ(ω
′)G74,gd,κ(ω

′)G36,c f ,κ(ω + ω′) ,
(3.113)

J12,ab,κ(ω) =
∫ dω′

2π

∫
345

Γ(4)
1234,abcd,κ(ω,−ω′, ω′)G45,de(ω

′)G53,ec(ω
′) , (3.114)

corresponding to the contribution from the diagrams of Fig. 3.2.
These Grassmann and frequency intregrals can be computed exactly. Noting with

a prime the derivative with respect to χ and omitting the χ dependence for simplicity,
we have the following flow equation for zl,κ,

κ∂κzl,κ = −2κ2

N

{
(N − 1)

(
zt,κ − zl,κ + χz′l,κ

4χm4
t,κ

− (m2
t,κ)
′(zl,κ − zt,κ)

m6
t,κ

+
3χzt,κ[(m2

t,κ)
′]2

4m8
t,κ

)

+
z′l,κ + 2χz′′l,κ

4m4
l,κ

−
(m2

l,κ)
′2χz′l,κ

m6
l,κ

+
3χzl,κ[(m2

l,κ)
′]2

4m8
l,κ

}
,

(3.115)

9Extracting this component can be done by taking the part independent of the Grassmann, for example
setting θ1/2 = θ̄1/2 = 0.
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•
J12,ab,κ

×

I12,ab,κ

• •

×

Figure 3.2: Diagrammatic representations of the contributions to the flow of the inverse
propagator. The cross represents a regulator insertion, and the dots are the three- and
four-point vertex functions.

and for zt,κ,

κ∂κzt,κ = −2κ2

N

{
(N − 1)χz′t,κ + zl,κ − zt,κ

4χm4
t,κ

+
z′t,κ + 2χz′′t,κ

4m4
l,κ

− (zl,κ − zt,κ − 2χz′t,κ)
2(zl,κ + zt,κ)

4χM4
κ

− 2(m2
t,κ)
′(zl,κ − zt,κ)zt,κ[(zt,κ + zl,κ)m2

t,κ +M2
κ]

m4
t,κM4

κ

−
2(m2

t,κ)
′χz′t,κzl,κ[(zt,κ + zl,κ)m2

l,κ + M2
κ ]

m4
l,κM4

κ

+
χ[(m2

t,κ)
′]2zl,κzt,κ[(zt,κ + zl,κ)m2

l,κm2
t,κ +M2

κ(m2
t,κ + m2

l,κ)]

m4
t,κm4

l,κM4
κ

}
.

(3.116)
where M2

κ = zt,κm2
l,κ + zl,κm2

t,κ. The full calculation is shown in Appendix A. These
equations are partial differential equations, as zt,κ and zl,κ both depend on the com-
posite field value χ. The contribution from the four-point vertex, corresponding to the
tadpole diagram of Fig. 3.2, gives the terms where the denominator involves only m4

t/l,κ,
which stems from the loop diagram having only two glued propagators. All other con-
tributions, with the denominator involving higher powers of the masses, or mixing in
terms of M4

κ , come from the sunset diagram of Fig. 3.2. This time, the diagram involves
two glued propagators multiplied by a third, which typically produces higher powers
of m2

t/l,κ. Similarly, most of these terms feature insertions of derivatives of the trans-
verse and longitudinal masses, corresponding to the contributions from the three-point
vertices.

These flow equations can be compared to known results in several limits. First, for
N = 1, the transverse component disappears and the longitudinal component verifies

κ∂κzl,κ = −2κ2

(
∂2

φzl,κ

4m4
l,κ
−

2χ∂φzl,κ∂3
φU

m6
l,κ

+
3χzl,κ(∂

3
φU)2

4m8
l,κ

)
. (3.117)

This coincides with the result of Ref. [71].
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Another comparison, somewhat less trivial, comes from the computation done in
the LPA’ scheme in the original Lorentzian field theory in the deep infrared regime for
light fields [40]. The LPA’ is a minimal extension of the LPA where a field renormaliza-
tion is added, but does not depend on the field. It is obtained as a particular limit of our
computation, taking zt,κ = zl,κ, and z′t,κ = 0. Applying these restrictions to Eq. (3.116),
the flow of the transverse part of the inverse propagator becomes an ordinary differen-
tial equation given by

κ∂κzt,κ

zt,κ
=
−2κ2

N
χ[(m2

t,κ)
′]2(m4

l,κ + 4m2
l,κm2

t,κ + m4
t,κ)

m4
t,κm4

l,κ(m
2
t,κ + m2

l,κ)
2

. (3.118)

This equation coincides with the result obtained in [40] where the authors regulate the
spatial physical momenta, similarly to what we did in Sec. 2.2. This is different from
our present regulation scheme, as the mass terms (3.101) regulates the frequencies, and
the fact that we get the same flow equation, although expected from the de Sitter in-
variance, is nontrivial. This is a generalization of the similar observation done for the
LPA flow in [42].

3.4.3 Convergence of the derivative expansion

In order to test the convergence of the derivative expansion in a nonperturbative regime,
we use exact results coming from resummation techniques that will be explained in de-
tails later on in Sec. 4.2 and from existing numerical results [18]. Among other things,
using a 1/N expansion, we compute the inverse propagator, and the four-point vertex
function. Thus, we perform a 1/N expansion of the flow equations and extract the two-
and four- point vertex.

The initial condition is given by the microscopic action and we take the following
initial superpotential

V(Φ) =
m2

2
Φ2 +

λ

8N
(
Φ2)2

. (3.119)

For simplicity, we only consider parameters in the symmetric regime, meaning φκ = 0
and χκ = 0, all along the flow.

There is a technical issue with the way we set the initial condition in actual com-
putations. Formally, the initial value of the effective potential is set to coincide with
Eq. (3.119) in the limit κ → ∞, where the theory is effectively Gaussian. Initializing
the flow at a finite value κ0 creates small discrepancies, accounting for the fact that we
should rather initialize the effective potential by computing the effective potential at
κ0 with a Legendre transform. This technical issue has no influence on the physics,
however, and becomes numerically negligible for a high enough value of κ0.

The leading order (LO) effective potential, has already been computed from the
LPA, see Eq. (2.59), and will be denoted here as u0,κ. At LO, the equation for the trans-
verse part is

κ∂κzt,κ = −κ2 z′t,κ
2m2

t,κ
, (3.120)
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which is solved by zt,κ = const., independent of κ and χ, fixed to zt,κ = 1 by the initial
conditions (3.110). For the longitudinal part, we define y0,κ as

zl,κ = 1 + 2χy0,κ +O
(

1
N

)
. (3.121)

Its flow equation is obtained from Eq. (3.115) as

κ∂κy0,κ =
−2κ2

m4
t,κ

(
y′0,κ +

4y0,κu′′0,κ

m2
t,κ

− 3(u′′0,κ)
2

2m4
t,κ

)
, (3.122)

and can be formally solved using the method of characteristics. More precisely, Eq. (3.123)
is a transport equation, which we rewrite in the form

∂κy0,κ = aκ(χ)y′0,κ(χ) + bκ(χ)y0,κ(χ) + cκ(χ) , (3.123)

with

aκ(χ) = −
2κ

m4
t,κ(χ)

, bκ(χ) = −
8κu′′0,κ(χ)

m6
t,κ(χ)

and cκ(χ) =
3κ(u′′0,κ(χ))

2

m8
t,κ(χ)

. (3.124)

The solution is expressed in terms of ζκ(χ), defined as the solution of the differential
problem

∂κζκ(χ) = −aκ(ζκ(χ)) , ζκ0(χ) = χ . (3.125)

where we introduced κ0 as the scale at which the flow is initialized. The function ζκ is
formally inverted in terms of χ̄κ,χ

ζκ(χ̄κ,χ) = χ , (3.126)

the solution to Eq. (3.123) reads

y0,κ(χ) =
∫ κ

κ0

dκ′ cκ′(ζκ′(χ̄κ′,χ))e
∫ κ

κ′dκ′′bκ′′ (ζκ′′ (χ̄κ′′ ,χ)) . (3.127)

These expressions can be easily computed numerically. Although solving Eq. (3.123)
is easy using direct numerical integration of the differential equation, the formal result
(3.127) suffers less from discretization issues and was used as a calibration tool.

Now, in terms of the solution to the flow equation (3.123), the LO four-point vertex
function for the ansatz (3.110) can be expressed as

Γ(4)
1234,abcd,κ(ω1, ω2, ω3) =

1
N

δ12δ34δabδcdD13,ac,κ(ω1 + ω3) + perms. . (3.128)

where perms. denotes the appropriate permutations of Grassmann and frequency vari-
ables as well as O(N) indices, and

D12,ab,κ(ω) = δab
[
iu′′0,κδ12 + y0,κKωδ12

]∣∣∣∣
χ=0

. (3.129)

75



3. MODEL A AND FRG

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

0.20

0.25

Figure 3.3: Flow of y0,κ obtained from the flow equation and the resummation at LO in
a 1/N expansion. The regulator being a simple mass term, the flow of the resummation
result was obtained adding κ2 to the bare mass and taking κ → 0, to compare on a finite
range of values. There is a good quantitative agreement between the two results.

The exact LO four-point function obtained through diagram resummations in the
next chapter, see Eq. (4.72), is expressed in terms of a free propagator of mass 2M2

0(1 +
λ̃), where

M2
0 =

m2

2
+

√
m4

4
+

λ

4
, (3.130)

and the effective coupling λ̃ is

λ̃ =
λ

4M4
0

. (3.131)

The free propagator of mass m2 in the symmetric regime, i.e. when χ = 0, is diagonal
in field space and is expressed in terms of the single field result (3.82) as

Gm2

12,ab(ω) = δabGm2

12 (ω) . (3.132)

In principle we should compare the results only at the end of the flow, at κ = 0. How-
ever, because the regulator (3.101) is a simple mass term, we can reproduce the entire
flow by adding a κ2 to the bare mass. To this end, we define

M2
0,κ =

m2 + κ2

2
+

√(
m2 + κ2

2

)2

+
λ

4
and λ̃κ =

λ

4M4
0,κ

. (3.133)
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Figure 3.4: Flow of z1,κ obtained from the flow equation and the resummation at NLO in
a 1/N expansion. The regulator being a simple mass term, the flow of the resummation
result was obtained adding κ2 to the bare mass and taking κ → 0, to compare on a finite
range of values. We see an error of about ten percent for the final value, which can be
understood as a consequence of the systematic expansion in the frequencies, which is
not able to correctly reproduce the pole structure of the inverse propagator.

This gives

D12,ab,κ(ω) = δab

[
iλδ12 +

λ2

2M2
0,κ

G
2M2

0,κ(1+λ̃κ)

12 (ω)

]
. (3.134)

The identification with Eq. (3.128) is done by developing Eq. (3.134) in frequencies, in
order to reproduce the derivative expansion. We find that, at zero frequency,

y0,κ

∣∣∣∣
χ=0

?
=

2λ̃2
κ M2

0,κ

(1 + λ̃κ)2
, (3.135)

which is in perfect agreement with the FRG result, see Fig. 3.3. This agreement at LO is
expected. Indeed, the diagrammatic computation of the four-point vertex at this order
only involves the bare propagator. The structure of the latter, see Eq. (3.82), is correctly
captured by the ansatz (3.110). Thus, the final result developed in frequency coincides
with the result of the flow.

To test the derivative expansion further, we turn to the two-point vertex at NLO in
the 1/N expansion. We obtained the LO, for the transverse component as zLO

t,κ = 1, so
that we parametrize the transverse field renormalization as

zt,κ = 1 +
z1,κ

N
+O

(
1

N2

)
, (3.136)
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and the corresponding flow equation reads

κ∂κz1,κ = −κ2 z′1,κ

2m4
t,k
− 2κ2

{
y0,κ

2m4
t,κ
− 2χy2

0,κ(1 + χy0,κ)

M4
κ

− 4χu′′0,κy0,κ(2(1 + χy0,κ)m2
t,κ +M2

κ)

m4
t,κM4

κ

+
2χ2(u′′0,κ)

2y0,κ(2(1 + χy0,κ)m2
l,κm2

t,κ +M2
κ(m2

t,κ + m2
l,κ))

m4
t,κm4

l,κM4
κ

}
.

(3.137)
This equation can again be formally solved, using the same method as for Eq. (3.127).
Defining dκ(χ) such that Eq. (3.137) reads

∂κz1,κ(χ) = aκ(χ)z′1,κ(χ) + dκ(χ) , (3.138)

and dκ(χ) can be read off (3.137), the solution is expressed in terms of ζκ. Using
Eqs. (3.125) and (3.126), we get

z1,κ(χ) =
∫ κ

κ0

dκ′ dκ′(ζκ′(χ̄κ′,χ)) . (3.139)

Again, in practice, we mostly used this expression to calibrate the direct numerical
resolution of the flow equation (3.137) with the appropriate precision, which is more
efficient.

The result is directly related to the inverse propagator through Eq. (3.111). The exact
NLO expression of the self-energy will be obtained in the next chapter through diagram
resummation, see Eq. (4.68). It gives, in terms of the η function,

η(ω) = 1 +
2M4

0
N

λ̃2(3 + 2λ̃)

(1 + λ̃)

1
ω2 + M4

0(3 + 2λ̃)2
. (3.140)

As before, we extend this expression to a finite κ making use of Eq. (3.133), and we
match the derivative expansion result by expanding in the frequency. We get

z1,κ

∣∣∣∣
χ=0

?
=

2λ̃2
κ

(1 + λ̃κ)(3 + 2λ̃κ)
. (3.141)

The comparison with the result from the flow equation is in qualitative agreement, but
has a mismatch of around ten percent at κ = 0, see Fig. 3.4.

This mismatch can be understood as a consequence of the frequency expansion in-
herent in the derivative expansion. In this case, contrarily to what happened in the LO
computation, in addition to the propagator, the diagrammatic computation involves
the complete (frequency dependent) four-point vertex. However, the frequency depen-
dence of the latter, see (3.134), is not correctly reproduced by the ansatz (3.110). The
FRG computation effectively introduces a frequency expansion of the structure (3.134).
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Figure 3.5: Flow of the potential (left) and field renormalization (right) for N = 1 mass-
less minimally coupled interacting field, with λ = 1. The flow should be initialized
in the UV, for a large value of κ, for the initial effective potential to coincide with the
microscopic one, Eq. (3.119). The effective potential is normalized at zero for φ = 0, to
better see the mass generation, appearing as an increasing curvature at the origin.

The systematic expansion in the frequencies spoils the pole structure of the full inverse
propagator.

We end this section with a comparison to existing numerical results [18, 72] in the
case of a single massless field, N = 1 and m = 0. Then, only the longitudinal field
renormalization zl,κ exists, and its flow is described by Eq. (3.117). We use a direct
numerical resolution of Eq. (3.117), together with the flow equation of the effective
potential (3.104). This leads to zl,κ

∣∣
κ=0,φ=0 = 1.18. The numerical integration of the

flow of the potential together with the field renormalization is depicted in that case in
Fig. 3.5.

This can be compared with the result coming from the direct numerical resolution
of the Langevin equation. In the notations of [18], in order to cancel the effect of the dif-
ferent normalizations, we compute the ratio between the lowest pole of the propagator
of ϕ and the dynamical mass. The pole is computed as 3HΛ1, while the dynamical
mass is 3/(8π2 〈ϕ2〉). With the ansatz (3.110), the propagator in frequency space reads

Gϕϕ(ω) =
zl,κ

ω2z2
l,κ + m4

l,κ

∣∣∣∣
κ=0,φ=0

, (3.142)

giving for the lowest pole in ω, up to a factor i, m2
l,κ/zl,κ

∣∣
κ=0,φ=0, and the dynamical

mass ml,κ
∣∣
κ=0,φ=0. The ratio thus directly gives zl,κ

∣∣
κ=0,φ=0. Using the numerical values

from [18], we find

zl,κ=0

∣∣∣∣
φ=0

=
Γ(1/4)

2Γ(3/4)× 1.36859
≈ 1.08092 . (3.143)

Again, we get an agreement of about ten percent with the FRG result.

79



3. MODEL A AND FRG

3.5 Conclusion

In this chapter, the stochastic formalism is first presented, and the well-known descrip-
tion in terms of a Langevin equation is derived, with a special emphasis on the proper
way to implement slow-roll at the level of the correlators.

The JdD path-integral formulation of the stochastic formalism allows to study gen-
eral properties of the correlators for an O(N) scalar theory in the deep infrared. The
resulting field theory is a one-dimensional supersymmetric theory with N scalar su-
perfields. The supersymmetry appears as an implementation of several symmetries of
the original problem, including the time-translation invariance and the time-reversal
symmetry, in the stationary state. The Ward identities associated to the supersymme-
try generators, together with a causality constraint, give some relations between the
different two-point correlators of the theory, valid in the long distance limit, including
a fluctuation-dissipation relation between the spectral and statistical functions. These
relations are valid independently of any approximation scheme, and give useful in-
sight for practical computation, notably on the possible Grassmann structures that can
appear.

The FRG and its derivative expansion can be implemented using a supersymmetric
regulator. As previously observed in [42], the LPA flow of the effective potential ob-
tained in the Lorentzian QFT is recovered in a very simple way. Moreover, the result
of [42] can be generalized, showing that this flow equation would not be modified at
any order in the derivative expansion, so that it is exactly captured already in the LPA.
In the language of nonequilibrium statistical physics, this tells us that the equilibirum
state of the Langevin process, which is determined by the effective potential alone, is
unaffected by the possible nonequilibrium deviations [67, 68].

Going beyond the LPA, up to second order in the derivative expansion, corresponds
to the inclusion of a functional renormalization of the kinetic term. The flow of the latter
is obtained in relatively simple way and compares well with the much more challeng-
ing computation in the Lorentzian QFT where the latter could only be obtained in a
simplified version, the LPA’, where one drops the field dependence of the kinetic term
renormalization.

Finally, the convergence of the derivative expansion is tested in a limit where ana-
lytical results are available, namely at NLO in a 1/N expansion and against numerical
results for N = 1. The integration of the flow equations gives qualitatively correct re-
sults for the inverse propagator, and good quantitative predictions for the four-point
function. However, the frequency expansion does not correctly capture the actual fre-
quency dependence of the various vertex functions which enter in loop diagrams. Ulti-
mately, this means that the 1/N and frequency expansions do not commute, hence the
mismatch in detailed comparisons. In practice, in all the cases where we could test it,
we found a difference of about ten percents between the result of the flow and the exact
result.
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A powerful method to extract information from the stochastic formalism uses a refor-
mulation of the Langevin equation in terms of a Fokker-Planck equation for a PDF for
the field value at a given time [18]. This can, in turn, be formulated as an eigenvalue
problem which, although convenient for implementing a numerical resolution [72, 73],
is not analytically solvable in the presence of interactions.

Analytical results can however be obtained in several limits for simple potentials,
for instance a perturbative expansion around the Gaussian case [18, 72], or a 1/N ex-
pansion. Here we will consider a quartic potential. The 1/N expansion is particularly
interesting as it gives access to strongly nonperturbative regimes [35], where the ef-
fects of the interactions can have sizeable physical consequences. We shall present two
different ways to obtain these results. The first relies on the path integral formulation
introduced in Sec. 3.2. Using specific resummations of diagrams, we can compute sev-
eral correlators through the Schwinger-Dyson equations [30, 35]. The other approach
consists in formulating the 1/N expansion directly for the eigenvalue problem.

In the first section 4.1, we recall how the Fokker-Planck equation and its formulation
as an eigenvalue problem is obtained, and how it is linked to the structure of the dif-
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ferent correlators. Sec. 4.2 is devoted to the computation of some two-point correlators
through diagram resummations. The 1/N expansion of the Fokker-Planck equation is
then presented in Sec. 4.3.

4.1 Fokker-Planck formulation of the stochastic formalism

In this chapter, unless explicitly stated, we use the rescaled variables defined in Eq. (3.37)
for the field and the potential.

Starting from the stochastic equation (3.38) for N interacting scalar field with an
O(N) symmetry, the associated PDF, P(ϕa, t), verifies the Fokker-Planck equation (3.40),
which we recall here to be [123]

∂tP = ∂ϕa

(
(∂ϕa V)P +

1
2

∂ϕa P
)

. (4.1)

Note that, because we consider the specific case of test scalar field, the Langevin equa-
tion (3.38) is linear, meaning that there is no field dependent term multiplying the noise.
For linear Langevin equations, we do not need to chose a particular discretization, such
as Itô or Stratonovitch, as it has no incidence on the Fokker-Planck equation [123]. This
would be different for example for the inflaton, where one has to chose a particular
prescription [117], as the Hubble parameter becomes a field dependent factor.

4.1.1 Eigenvalue problem

Eq. (4.1) can be formulated as an eigenvalue problem. For that purpose, we introduce
the reduced PDF, p(ϕa, t), defined as

P(ϕa, t) = e−V(ϕa)p(ϕa, t) , (4.2)

which is governed by the Schrödinger-like equation

∂t p =
1
2

∆ϕ p−W p , (4.3)

where ∆ϕ = ∂ϕa ∂ϕa is the Laplacian in field space, and W is related to V as

W =
1
2
[
(∂ϕa V)2 − ∆ϕV

]
. (4.4)

For an O(N)-symmetric potential, it is convenient to use spherical coordinates in field
space. We decompose the angular dependence onto generalized spherical harmonics
[127] Y`i(θi), where θi=1...N−1 denotes the N− 1 angular variables in field space and the
`i are integers such that

|`1| ≤ `2 ≤ · · · ≤ `N−1 . (4.5)

These harmonics diagonalize the angular part of the Laplacian. The latter is decom-
posed as

∆ϕ =
1
N

∂2
x +

N − 1
Nx

∂x +
∆SN−1

Nx2 , (4.6)

82



4.1. Fokker-Planck formulation of the stochastic formalism

using the rescaled radial variable x =
√

ϕ2/N. We have, for the angular part,

∆SN−1Y`i(θi) = −`(`+ N − 2)Y`i(θi) , (4.7)

with ` = `N−1. We can thus separate the radial and angular parts and expend the
reduced PDF in terms of eigenfunctions Ψn,` of the form

Ψn,`(ϕa) = Rn,`(x)Y`i(θi)e−Λn,`t , (4.8)

where the radial part verifies

−
R′′n,`

2N
− N − 1

2Nx
R′n,` +

[
`(`+ N − 2)

2Nx2 + W
]
Rn,` = Λn,`Rn,` . (4.9)

The index n represent a possible additional quantum number. For example in the Gaus-
sian case, as will be explained in more details in Sec. 4.3, n has to be a positive integer
chosen such that n− ` is even and positive. We expect this to be true also for the quartic
potential that we consider here, and it will be explicitly verified in the 1/N expansion
described in Sec. 4.3.

In general, the differential operator in Eq. (4.3), that acts on the eigenfunctions
Ψn,`(ϕa), can be factorized as(

−1
2

∆ϕ + W
)

Ψn,` =
(
−∂ϕa + V ′

)(
−∂ϕa + V ′

)†Ψn,` . (4.10)

This differential operator being the square of an operator, it is positive, and its eigenval-
ues are thus nonnegative. Moreover, from Eq. (4.8), the equilibrium value corresponds
to Λ = 0. We have seen that such an equilibrium exists in Sec. 3.1, see Eq. (3.42), and
thus the ground state always verify Λ0,0 = 0.

4.1.2 Mass hierarchy and correlators

Using the decomposition of the reduced PDF in terms of the eigenfunctions (4.8), the
unequal time two-point correlator of a given operator A(ϕ) can be written as

GAA(t− t′) ≡
〈
A(t)A(t′)

〉
= ∑

n≥0

n

∑
`=0

CAn,`e
−Λn,`|t−t′| . (4.11)

The coefficients CAn,` are computed as the following matrix elements [18, 72],

CAn,` =
∫

dN ϕΨ0,0(ϕa)AΨn,`(ϕa) , (4.12)

and depending on the symmetry properties of A, symmetry selection rules [72] will
leave only a subset of nonvanishing coefficients.

For example, choosing A = ϕ will select only the vector channel ` = 1, meaning
we only have contributions from the Cϕ

2n+1,1 coefficients. For A = χ = ϕ2/(2N), the
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operator is in the scalar channel, ` = 0, and the nonvanishing contributions will come
from the Cχ

2n,0 coefficients. From the expression (4.11), for a given correlator, it is clear
that the late-time (or long-distance) behavior is dominated by the lowest contributing
eigenvalue.

For later convenience, we define the rescaled coefficients cϕ
2n+1 and cχ

2n as,

Cϕ
2n+1,1 =

cϕ
2n+1

2Λ2n+1,1
and Cχ

2n,0 =
cχ

2n
2Λ2n,0

, (4.13)

and the tree-level propagator of mass m2 reads, in real-time and in frequency space

Gm2(t) =
e−m2|t|

2m2 , Gm2(ω) =
1

ω2 + m4 . (4.14)

In terms of these quantities we can easily express the 〈ϕϕ〉 and the 〈χχ〉 correlators as

Gϕϕ = ∑
n≥0

cϕ
2n+1GΛ2n+1,1 ,

Gχχ = ∑
n≥0

cχ
2nGΛ2n,0 .

(4.15)

Using the response field ϕ̃ introduced in the JdD formulation (3.52), the response
function Gϕϕ̃ was shown to be the analog of the retarded Green function in Sec. 3.3.
The functions Gϕϕ(ω) and Gϕϕ̃(ω) can both be expressed in terms of γ(ω) and η(ω),
defined in Eq. (3.67). For a free massive propagator, these are given by γ(ω) = m2

and η(ω) = 1. Each tree-level propagator GΛ2n+1,1 in Eq. (4.15) thus corresponds to a
contribution to Gϕϕ̃ which, using Eqs. (3.72) and (3.87), gives

Gϕϕ̃(ω) = ∑
n≥0

icϕ
2n+1

ω + iΛ2n+1,1
. (4.16)

Thus, the coefficients (4.13) and eigenvalues Λn,`=0,1 can be obtained as poles and residues
of the appropriate response function. Using the results shown in Sec. 3.3, we can get
general relations on these quantities. Specifically, Eq. (3.89) gives the following sum
rule

∑
n≥0

cϕ
2n+1 = 1 , (4.17)

while Eq. (3.97) gives the following expression for the dynamical mass

∑
n≥0

cϕ
2n+1

Λ2n+1,1
=

1
m2

dyn
. (4.18)
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(a)

Figure 4.1: One-loop diagram giving the expression of Cm2

12 in a free theory. The lines
denote the tree-level propagator (4.21).

4.2 Diagrammatic resummations with the Janssen-de
Dominicis path integral

We now turn to the actual computations of the 〈ϕϕ〉 and 〈χχ〉 correlators using the
JdD path integral formulation. We consider two different approximation schemes, a
perturbative expansion and a 1/N expansion, from which we obtain Λ2n,0 and Λ2n+1,1
at the relevant order of approximation. These two approximations were already studied
in the D-dimensional Lorentzian theory [34, 35], to which we can thus compare our
results. The microscopic potential reads, in terms of the superfield,

V(Φ̂) =
m2

2
Φ̂2 +

λ

8N
(Φ̂2)2 . (4.19)

We mentioned in Sec. 2.3 that, due to the low dimensionality of the system, no spon-
taneous symmetry breaking is possible, and thus

〈
Φ̂a
〉
= 0, independently of the sign

of the parameter m2. As a consequence, the two-point correlators is diagonal in field
space, e.g. G12,ab(ω) = δabG12(ω).

We define the self-energy Σ in the following way

Γ(2)
12 (ω) = im2δ12 + Kωδ12 + Σ12(ω) . (4.20)

We isolated the free field contribution, corresponding to the free superpropagator (3.132),
which we recall here to be

Gm2

12 (ω) =
−im2δ12 + Kωδ12

ω2 + m4 . (4.21)

The supercorrelator of X̂ = Φ̂2/(2N) is denoted

C12(t− t′) =
〈

X̂(t, θ̄1, θ1)X̂(t′, θ̄2, θ2)
〉

. (4.22)

In the free theory, it is given by the diagram (a) of Fig. 4.1, which is computed in fre-
quency space as

Cm2

12 (ω) =
1

2N

∫
ω′

Gm2

12 (ω−ω′)Gm2

12 (ω
′) =

G2m2

12 (ω)

2Nm2 , (4.23)

85



4. MODEL A AND EIGENVALUES

•
(b) (c)

•

•

(d)

• •

Figure 4.2: Perturbative contributions to the self-energy at one- and two-loop orders.
The interaction vertex is represented with a dot and gives a factor −iλ/(8N), while the
propagator lines are given by the tree-level propagator (4.21).

where we used the relations

δ2
12 = 0 ,

δ12Kωδ12 = δ12 ,
Kωδ12Kω′δ12 = Kω+ω′δ12 .

(4.24)

The scalar component is extracted at θ1,2 = θ̄1,2 = 0, and we have

Gm2

χχ(ω) =
1

2Nm2
1

ω2 + 4m2 . (4.25)

Using the decomposition (4.11), we can read off Eq. (4.14) that

Λfree
1,1 = m2, cϕ,free

2n+1 = δn,0 ,

Λfree
2,0 = 2m2, cχ,free

2n =
δn,1

2Nm2 .
(4.26)

This is in agreement with the known spectrum for the Gaussian case [18, 72]

Λfree
n,` = nm2 , (4.27)

which we derive explicitly later in Sec. 4.3.

4.2.1 Perturbative expansion

We first compute the self-energy at two-loop order in the perturbative expansion. The
three-loop order is computed in Appendix B. The relevant diagrams are shown in
Fig. 4.2. Standard diagrammatic rules yield, for the contribution of the one-loop di-
agram (b) of Fig. 4.2.

Σ(b)
12 = δ12

N + 2
N

iλ
2

∫ dω

2π
Gm2

12 (ω) . (4.28)

Using the expression (4.21) of the free superpropagator, and the formulas (4.24), the
Grassmann algebra gives

Σ(b)
12 (ω) = i

N + 2
N

λ

2
F (m2)δ12 , (4.29)
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where
F (m2) =

∫ dω

2π

1
ω2 + m4 =

1
2m2 . (4.30)

This leads to
Σ(b)

12 (ω) = i
N + 2

N
λ

4m2 δ12 . (4.31)

It corresponds to a simple shift in the value of γ(ω), which is nothing but a mass renor-
malization. This is also the case for the two-loop local contribution coming from dia-
gram (c) of Fig. 4.2 (local meaning that external legs are attached to a single vertex),
which reads

Σ(c)
12 (ω) =

(
N + 2

N

)2 λ2

4

∫
3

∫ dω′

2π
Gm2

13 (ω
′)Gm2

32 (ω
′)
∫ dω′′

2π
Gm2

33 (ω
′′) . (4.32)

Using again the Grassmann formulas (4.24), we get

Σ(c)
12 (ω) = i

(
N + 2

N

)2 λ2

4
F ′(m2)F (m2)δ12

= −i
(

N + 2
N

)2 λ2

16m4 δ12 .

(4.33)

A nontrivial frequency dependence appears with the nonlocal contribution from
diagram (d) of Fig. 4.2, which can be expressed as

Σ(d)
12 (ω) =

λ2

2
N + 2

N2

∫ dω′

2π

dω′′

2π
Gm2

12 (ω−ω′ −ω′′)Gm2

12 (ω
′)Gm2

12 (ω
′′) . (4.34)

The frequency integration is performed using the following identity∫ dω′

2π
Gm2

A
12 (ω′)Gm2

B
12 (ω−ω′) =

1
2m2

AB
Gm2

A+m2
B

12 (ω) , (4.35)

where m2
AB is the reduced square mass, defined as

1
m2

AB
=

1
m2

A
+

1
m2

B
. (4.36)

Eq. (4.35) expresses the fact that a product of two tree level superpropagators in real
space is proportional to a superpropagator with the sum of the two square masses. For
example for the Gϕϕ component, we have

Gm2
A
(t)Gm2

B
(t) =

1
2m2

AB
Gm2

A+m2
B
(t) , (4.37)

which follows trivially from Eq. (4.14). Using this relation twice on Eq. (4.34) gives

Σ(d)
12 (ω) =

N + 2
N2

3λ2

8m4 G3m2

12 (ω) . (4.38)
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Putting together Eqs. (4.31), (4.33) and (4.38), we get for the inverse propagator, in
terms of the functions γ and η

γ(ω) = M2 − 6λ̄2

N + 2
3m6

ω2 + 9m4 +O
(
λ̄3) ,

η(ω) = 1 +
6λ̄2

N + 2
m4

ω2 + 9m4 +O
(
λ̄3) ,

(4.39)

where we have introduced the dimensionless coupling

λ̄ =
N + 2

N
λ

3m4 , (4.40)

and the renormalized mass
M2 = m2(1 + λ̄− λ̄2) . (4.41)

We immediately obtain the expression for the dynamical mass from Eq. (3.97)

m2
dyn = γ(0) = m2

[
1 + λ̄− N + 4

N + 2
λ̄2 +O

(
λ̄3)] . (4.42)

Following Eq. (4.16), we can read the relevant mass hierarchy from the response func-
tion, which reads, at this order of approximation,

Gϕϕ̃(ω) =
icϕ

1
ω + iΛ1,1

+
icϕ

3
ω + iΛ3,1

+O
(
λ̄3) . (4.43)

Using Eq. (4.39) we compute the poles

Λ1,1 = m2
[

1 + λ̄− N + 5
N + 2

λ̄2 +O
(
λ̄3)] ,

Λ3,1 = m2[1 +O(λ̄)] ,
(4.44)

and the residues

cϕ
1 = 1− 3λ̄2

2(N + 2)
+O

(
λ̄3) ,

cϕ
3 =

3λ̄2

2(N + 2)
+O

(
λ̄3) .

(4.45)

Notice that we check the sum rule (4.17).
The structure of the propagator, involving only two poles at this order of approxi-

mation, precisely coincides with the propagator obtained in the Lorentzian QFT in D
dimensions of Ref. [34], which reads

Gϕϕ(t) = c+Gm2
+
(t) + c−Gm2

−
(t) . (4.46)

The expressions of these various masses and coefficients agree with our results pro-
vided we identify

c+ = cϕ
1 , c− = cϕ

3 ,

m2
+ = Λ1,1 , m2

− = Λ3,1 ,
(4.47)
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•

( f )

•

(e)

Figure 4.3: Two-loop contribution to the 〈χχ〉 correlator. The diagram (e) is just an
effect of the mass renormalization.

with the appropriate rescaling (denoting the quantities of Ref. [34] with a hat)

m2 =
m̂2

dH
, λ =

2Hd−1

d2ΩD+1
λ̂ . (4.48)

We now compute the two-loop correction to the 〈χχ〉 correlator, given by the di-
agrams of Fig. 4.3. The diagram (e) simply corresponds to the effect of the one-loop
renormalization of one propagator line [similarly to the diagram (c) of Fig. 4.2], and
can be computed easily. Equivalently, one can use a trick, implicitly including this di-
agram in the one-loop diagram of Fig. 4.1 by using effective propagator lines with a
mass M. The latter is then replaced by its expression (4.41), and the result is expanded
systematically at the relevant order. Although this is not necessary here, this method
will be useful later in the 1/N expansion.

Each loop in the diagram (a) of Fig. 4.1 and the diagram ( f ) of Fig. 4.3 is given by
CM2

12 , see Eq. (4.23). The sum reads

C(a+ f )
12 (ω) = CM2

12 (ω)− iλ(N + 2)
∫

3
CM2

13 (ω)CM2

32 (ω) . (4.49)

Using the identity ∫
3

Gm2

13 (ω)Gm2

32 (ω) =
(ω2 −m4)δ12 − 2im2Kωδ12

(ω2 + m4)2 , (4.50)

and extracting the component at vanishing Grassmann variables, we obtain in terms of
M,

Gχχ(ω) =
1

2NM2
1

ω2 + 4M4

[
1− 8λ̄M4

ω2 + 4M4 +O
(
λ̄2)]

=
1

2NM2
1

ω2 + 4M4(1 + λ̄)2 +O
(
λ̄2) .

(4.51)

In the second line we used our knowledge of the general structure of the correlator
(4.11) to resum the two-loop correction to the χ propagator in the appropriate form (i.e.
a correction to the corresponding self-energy). We can directly read off the expressions

Λ2,0 = 2m2[1 + 2λ̄ +O
(
λ̄
)]

, (4.52)

cχ
2 =

1
2Nm2

[
1− λ̄ +O

(
λ̄2)] . (4.53)
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An important remark is that the present computation with two-loop diagrams, up
to order λ̄2, only gives access to the LO expression of the subleading eigenvalue Λ3,1, as
the corresponding coefficient cϕ

3 is itself of order λ̄2. It is interesting to push our pertur-
bative calculation up to three-loop order to get the first correction to Λ3,1, to compare
with the result obtained from the Fokker-Planck approach. This computation is pre-
sented in Appendix B, where the reader can find the results obtained for m2

dyn, Λ1,1, cϕ
1

and cϕ
3 at three-loop order. We report here the NLO results for the eigenvalues

Λ1,1 = m2[1 + λ̄ +O
(
λ̄2)] ,

Λ2,0 = 2m2[1 + 2λ̄ +O
(
λ̄2)] ,

Λ3,1 = 3m2
[

1 +
5N + 22
3(N + 2)

λ̄ +O
(
λ̄2)] ,

(4.54)

which reproduce and generalize to arbitrary N and D the results of Refs. [72, 73].
The present perturbative computation is controlled by the dimensionless parameter

λ̄ ∝ λ/m4, which blows up as m is taken to zero. As is well-known, perturbative
results are thus invalid in this limit, as well as for negative square mass, similarly to the
loop computations of Sec. 2.3. The nonperturbative regime can be reached with a 1/N
expansion, which was also studied in Ref. [35] with the Lorentzian QFT, and that we
now compute in the stochastic framework.

4.2.2 1/N expansion

The diagrammatic formulation of the 1/N expansion that we now present closely fol-
lows the calculation of Ref. [35] in the D-dimensional Lorentzian QFT. The local and
nonlocal contributions to the self-energy are treated separately, and the former can be
put in an effective squared mass M2, defined through the following gap equation

M2 = m2 + σ , (4.55)

where σ is given by the diagram (b) of Fig. 4.2, computed with the full propagator,
namely

σ =
N + 2

N
λ

2

∫ dω

2π
G11(ω) =

N + 2
N

λ

4γ(0)
. (4.56)

Here, we used the fact that G11(ω) = Gϕϕ(ω) and Eq. (3.97). We first compute the
LO contribution in the form M2 = M2

0 +O(1/N). At this order, there is no nonlocal
contribution, thus the propagator is simply a tree-level propagator, see Eq. (4.21), with
a renormalized mass M2

0, which corresponds to γ(0) = M2
0 +O(1/N). Using the LO

expressions in Eq. (4.55), we find, keeping the positive solution,

M2
0 =

m2

2
+

√
m4

4
+

λ

4
. (4.57)

Note that this result coincides, up to the rescalings (4.48), with the curvature of the ef-
fective potential at the origin we obtained in the FRG treatment, Eq. (2.64), at vanishing
regulator and absorbing the nonminimal coupling into m2.
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(g)

•
• •

•

• •
(h)

Figure 4.4: The diagram (g) represent the topology of the contributions to the self-
energy at NLO in the 1/N expansion. The diagram (h) is the single bubble Π12.

The NLO propagator is obtained using the LO propagator GM2
0

12 to compute the non-
local contribution to the self-energy. This automatically resums the LO local insertions
in the internal lines. Then, we have to solve the implicit equation (4.55) with the ob-
tained propagator to get the NLO expression of M2

0. The nonlocal part is given by the
diagrams of the type of diagram (g) in Fig. 4.4, where an arbitrary number of loops
are inserted between the two external legs. The one-loop bubble is represented by the
diagram (h) and gives a conribution

Π12(ω) =
λ

2

∫ dω′

2π
GM2

0
12 (ω′)GM2

0
12 (ω−ω′) . (4.58)

The infinite series of bubbles is summed through the integral equation [30, 35, 122]

I12(ω) = Π12(ω) + i
∫

3
Π13(ω)I32(ω) . (4.59)

The function I resums the entire chain of bubbles, as represented in Fig. 4.5, where it is
depicted as a wiggly line. The NLO nonlocal contribution is obtained in terms of this
quantity, and corresponds to the diagram (i) of Fig. 4.5. We get the effective one-loop
expression

Σ(i)
12 (ω) = − λ

N

∫ dω′

2π
GM2

0
12 (ω′)I12(ω−ω′) . (4.60)

We now compute explicitly all these quantities. The integral in Eq. (4.58) is com-
puted using the formula (4.35), to get

Π12(ω) = −2λ̃M2
0G2M2

0
12 (ω) , (4.61)

in terms of the dimensionless effective coupling

λ̃ =
λ

4M4
0

. (4.62)

which is the large-N analog of the one defined in the perturbative expansion in Eq. (4.40).
Writing explicitly the Grassmann structures,

Π12(ω) = iπγ(ω)δ12 + πη(ω)Kωδ12 ,
I12(ω) = iIγ(ω)δ12 + Iη(ω)Kωδ12 ,

(4.63)
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= + • + . . .

= + •

• •

(i)

Figure 4.5: Top: Diagrammatic representation of the function I12 which sums the infi-
nite series of bubble diagrams. Bottom: The nonlocal contribution to the self-energy at
NLO in the 1/N expansion.

we can express Eq. (4.59) as

Iγ(ω) = πγ(ω)− πγ(ω)Iγ(ω) + ω2πη(ω)Iη(ω) ,
Iη(ω) = πη(ω)− πγ(ω)Iη(ω)− πη(ω)Iγ(ω) .

(4.64)

Using Eq. (4.61), this is solved as

Iγ(ω) = 2λ̃M2
0

2M2
0(1 + λ̃)

ω2 + 4M2
0(1 + λ̃)2

,

Iη(ω) = −2λ̃M2
0

1
ω2 + 4M2

0(1 + λ̃)2
,

(4.65)

which can be reassembled as a tree-level propagator with mass 2M2
0(1 + λ̃), so that

I12(ω) = −2λ̃M2
0G2M2

0(1+λ̃)
12 (ω) . (4.66)

Using, again, Eq. (4.35), we finally get

Σ(i)
12 (ω) =

2M4
0

N
λ̃2(3 + 2λ̃)

1 + λ̃
GM2

0(3+2λ̃)
12 (ω) . (4.67)

The structure is similar to the two-loop case discussed above, and we get, for γ(ω) and
η(ω),

γ(ω) = M2 − 2M4
0

N
λ̃2(3 + 2λ̃)

1 + λ̃

M2
0(3 + 2λ̃)

ω2 + M4
0(3 + 2λ̃)2

,

η(ω) = 1 +
2M4

0
N

λ̃2(3 + 2λ̃)

1 + λ̃

1
ω2 + M4

0(3 + 2λ̃)2
.

(4.68)
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The response function is, as before, the sum of two poles, see Eq. (4.43), which at the
present order of approximation are

Λ1,1 = M2
[

1− 1
N

λ̃2(3 + 2λ̃)

(1 + λ̃)2
+O

(
1

N2

)]
,

Λ3,1 = M2
[

3 + 2λ̃ +O
(

1
N

)]
,

(4.69)

with the residues

cϕ
1 = 1− 1

N
λ̃2(3 + 2λ̃)

2N(1 + λ̃)3
+O

(
1

N2

)
,

cϕ
3 =

1
N

λ̃2(3 + 2λ̃)

2N(1 + λ̃)3
+O

(
1

N2

)
.

(4.70)

Similarly to the previous computation, the coefficient cϕ
3 being of order 1/N, we only

obtain the LO expression for Λ3,1.
Let us now discuss the 〈χχ〉 correlator which, at LO, is simply given by the chain of

bubbles. Indeed, in the symmetric phase, one has

〈ΦAΦBΦCΦD〉nc = GABGCD + perms.− GAEGBFGCGGDHΓ(4)
EFGH , (4.71)

where 〈〉nc includes the disconnected contributions, perms. denotes the relevant permu-
tations, the capital indices encompass the time variable, the Grassmann variables, and
the field space index, and GAB = 〈ΦAΦB〉. We use the LO expression for the four-point
vertex function, which is, in frequency space [30],

Γ(4)
1234,abcd(ω1, ω2, ω3) =

1
N

δ12δ34δabδcdD13,ac(ω1 + ω3) + perms. , (4.72)

where
D12,ab(ω) = iλδab[δ12 + iI12(ω)] . (4.73)

Inserting this in Eq. (4.71), and retaining only the LO terms, one obtains, after some
simple algebra,

C12(ω) = − 1
λN

[
Π12(ω) + i

∫
3

Π13(ω)Π32(ω)−
∫

34
Π13(ω)Π34(ω)I42(ω)

]
. (4.74)

Using Eq. (4.59), we finally get

C12(ω) = − 1
λN

[
Π12(ω) + i

∫
3

Π13(ω)I32(ω)

]
= − 1

λN
I12(ω) .

(4.75)

From this, taking θ1,2 = θ̄1,2 = 0, we get the connected correlator of χ,

Gχχ(ω) =
1

2NM2
0

G2M2
0(1+λ̃)(ω) +O

(
1

N2

)
, (4.76)
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and we deduce the LO expressions

Λ2,0 = 2M2
0(1 + λ̃) , (4.77)

cχ
2 =

2
N
(
1 + λ̃

)
. (4.78)

Finally, we need to solve Eq. (4.55) to get the NLO expression of the effective mass
squared parameter M2. We use

γ(0) = M2
[

1− 2
N

λ̃2

1 + λ̃
+O

(
1

N2

)]
, (4.79)

from which we obtain

M2 = M2
0

[
1 +

2
N

λ̃(1 + λ̃ + λ̃2)

(1 + λ̃)2
+O

(
1

N2

)]
. (4.80)

Collecting the previous formulas, we have for the dynamical mass,

m2
dyn = M2

0

[
1 +

2
N

λ̃

(1 + λ̃)2
+O

(
1

N2

)]
, (4.81)

and for the lowest eigenvalues

Λ1,1 = M2
0

[
1 +

1
N

λ̃(2− λ̃)

(1 + λ̃)2
+O

(
1

N2

)]
,

Λ2,0 = M2
0

[
2 + 2λ̃ +O

(
1
N

)]
,

Λ3,1 = M2
0

[
3 + 2λ̃ +O

(
1
N

)]
.

(4.82)

As for the perturbative results, the above expressions exactly agree with those of the
direct QFT calculations in Ref. [35]. In fact, remarkably, the agreement concerns all the
intermediate quantities Π, I and Σ, using the rescalings (4.48) of the parameters and

Ĝ =
dΩD+1

2Hd G, Î =
ΩD+1

HD I, and Σ̂ =
ΩD+1

2dHD+1 Σ , (4.83)

for the different two-point functions. The very same results have also been recently
obtained from a QFT calculation in Euclidean de Sitter in Ref. [128]. Such an agreement
between the stochastic approach and direct QFT calculations on either Lorentzian or
Euclidean de Sitter was already well-known for equal-time correlators, e.g. 〈ϕn〉, which
measure the local field fluctuations [11, 24, 27]. Although expected on the basis of gen-
eral arguments [11, 19, 20], the agreement mentioned here for unequal time (nonlocal)
correlators is far less trivial. In particular, for nonperturbative approximation schemes,
the present results, together with those of Refs. [35] and [128] provide an explicit non-
trivial check.
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Figure 4.6: Effective coupling λ̃ as a function of the bare squared mass m2. The bare
coupling is taken as λ = 1. The coupling becomes strongly nonperturbative for small
and negative values of m2.

4.2.3 Discussion

We now discuss the previous results in different regimes. First we check that the ex-
pressions of the eigenvalues Λn,` and the coefficients cϕ/χ

n coincide in the limit where
both expansion schemes are valid, i.e. when λ̄, defined in Eq. (4.40), is small and N is
large. Denoting

λ̄∞ = lim
N→∞

λ̄ =
λ

4m4 , (4.84)

we have M2
0 = m2[1 + λ̄∞ − λ̄2

∞ + O
(
λ̄3

∞
)
], and λ̃ = λ̄∞ + O

(
λ̄2

∞
)
, meaning that the

two couplings coincide at LO. We can check for example that Λ1,1 at NLO, given in
Eq. (4.82), has the following expansion,

Λ1,1

m2 = 1 + λ̄∞ − λ̄2
∞ +

2λ̄∞ − 7λ̄2
∞ + 27λ̄3

∞
N

+O
(

λ̄4
∞,

1
N2

)
. (4.85)

which coincides with the three-loop order expression (B.19), given in Appendix B, ex-
panded up to order 1/N.

The results obtained from the 1/N expansion allow us to probe the nonperturbative
regime in λ̄, corresponding to small or negative values of m2. The effective coupling,
which is the actual expansion parameter, and its dependence on m2 for a fixed value of
λ is represented in Fig. 4.6. It becomes of order one for m2 = 0 and becomes larger for
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Figure 4.7: The eigenvalues Λ1,1, Λ2,0 and Λ3,1 at LO in the 1/N expansion, as a function
of the tree-level squared mass m2 for λ = 1.

m2 < 0. The LO eigenvalues can be rewritten as

Λ1,1 =
m2

2
+

√
m4

4
+

λ

4
,

Λ2,0 = 4

√
m4

4
+

λ

4
,

Λ3,1 =
m2

2
+ 5

√
m4

4
+

λ

4
.

(4.86)

They are depicted Fig. 4.7. For small masses, we have

Λ1,1 =
√

λ/4 , Λ2,0 = 4Λ1,1 , Λ3,1 = 5Λ1,1 , (4.87)

meaning that all eigenvalues are of the same order of magnitude, and the associated
correlators will have relatively large autocorrelation times, particularly in the small
coupling limit 1.

For bare potential with spontaneous symmetry breaking, m2 < 0, in the limit of a
steep well λ/

∣∣m4
∣∣� 1, we find

Λ1,1 =
λ

4|m2| , Λ2,0 = Λ3,1 = 2
∣∣m2∣∣� Λ1,1 . (4.88)

1Note that the domain of validity of the whole stochastic approach implies that the various mass scales
have to be small in units of H. In the massless regime (4.87), this implies that λ/H4 � 1.
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The correlator of the field ϕ, in the vector sector ` = 1, has a small eigenvalue Λ1,1
and a large one Λ3,1 corresponding respectively to the transverse (would-be Goldstone)
mode, and the longitudinal mode in the tree-level potential. The fact that the first eigen-
value is nonvanishing is a consequence of the dynamical restoration of the symmetry,
or equivalently the effective dimensional reduction of the system. The scalar sector,
` = 0, which encompasses the case of the composite field χ is controlled by the heavy
(longitudinal) mode Λ2,0.

In terms of correlation functions, this means in particular that correlators for scalar
operators have a much smaller autocorrelation time than the one in the vector channel,
which sees the transverse flat direction. These autocorrelation times can be related to
other physical quantities such as a relaxation (or equilibration) time from an excited
state to the Bunch-Davies vacuum [74, 129], decoherence timescales [125, 130–132], or
to the spectral index of observables [18, 72].

As an illustration of the latter, exploiting the de Sitter invariance, the equal time
correlator for large physical distances can be related to the temporal correlator as [18,
72]

〈A(t,~x1)A(t,~x2)〉 = GAA

(
2
H

log(a(t)H|~x1 −~x2|)
)

. (4.89)

This is easily translated in terms of the power spectrum PA, defined as in Eq. (1.62).
The spectral tilt is defined as

logPA(k)
log k

= nA − 1 . (4.90)

As the long-time behavior is dominated by the lowest eigenvalues appearing in the
decomposition (4.11), which we denote by ΛA, we end up with

nA − 1 =
2
H

ΛA . (4.91)

In particular, the spectral index for ϕ is given by nϕ − 1 = 2Λ1,1/H. In the scalar sector,
the spectral index for the χ field, or for the density contrast

δ =
V(ϕ)− 〈V(ϕ)〉
〈V(ϕ)〉 , (4.92)

is given by nδ − 1 = 2Λ2,0/H.
Finally the comparison between the LO and NLO result for Λ1,1 is represented in

Fig. 4.8, for the extreme case N = 2 to emphasize the difference. We see that the cor-
rection to the LO value remains small down to low positive values of m2, which corre-
sponds to nonperturbative regime in the coupling. The NLO correction becomes more
important for m2 < 0.

We have to consider N > 1 in this case, as the 1/N expansion of Λ1,1 becomes
singular in the deeply broken limit for N = 1. Indeed, the expression (4.82) gives,

Λ1,1 =
λ

4|m2|

(
1− 1

N
+O

(
1

N2

))
. (4.93)
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Figure 4.8: The lowest nonzero eigenvalue Λ1,1 at LO and NLO in the 1/N expansion,
as a function of m2 with λ = 1 and N = 2.

In the limit N → 1, Λ1,1 → 0 and the autocorrelation time diverges. This corresponds
to a singular limit for this particular eigenvalue.

4.3 1/N expansion of the Fokker-Planck equation

The LO result for the three eigenvalues (4.82) only involves simple combinations of
two quantities, λ̃ and M2

0. This hints at a possible analytical solution for the entire
spectrum in the limit N → ∞. However, extracting the spectrum from the calculations
of correlators as we did in the previous section is particularly inefficient since, as we
have noticed, the contributions from higher-order eigenvalues are suppressed.

This problem can be avoided by the direct resolution of the eigenvalue problem at
the level of the Fokker-Planck equation. There, simple quantum mechanical methods
can be used to obtain, e.g., the Gaussian spectrum, entirely [18, 72]. In the presence of
interactions, the problem can be formulated as an anharmonic oscillator in N dimen-
sions, to which we apply the 1/N expansion. Similar situations have been considered
in quantum mechanics [133–135], but set up the expansion in slightly different ways,
that we shall comment on later. In the stochastic formalism framework, the single field
case has been recently thoroughly studied in [72, 73], for a potential with quadratic and
quartic terms, possibly with a spontaneous symmetry breaking. First multifield results
for a massless theory with quartic interactions at finite N has been obtained numerically
in [74].

This motivates the implementation of the 1/N expansion directly to the eigenvalue
equation (4.9), in order to obtain the entire spectrum analytically. Preparing for a proper
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4.3. 1/N expansion of the Fokker-Planck equation

large-N expansion, we need to identify which quantities are to be considered of O(1),
which amounts to chose a point in theory space around which to expand. In this spirit,
we use the standard scaling [136], in which we consider ϕ2 to be of order N. This makes
the potential scale like N, and justifies the definition of the following rescaled potential

V(ϕ) = Nv(x) , (4.94)

and similarly for the corresponding W

W(ϕ) ≡ Nw(x) =
1

2N

[
N(v′)2 − v′′ − (N − 1)

v′

x

]
, (4.95)

using the rescaled variable x =
√

ϕ2/N. As x is of O(1), we see that taking naively
the limit N → ∞ in Eq. (4.9) gives simply R(x) = 0, as the potential term has an
additional factor of N and dominates the other terms. This is because the ansatz (4.8)
that we plugged into the Fokker-Planck equation still contains some dependence in N
that we now discuss. In order to understand how the different quantities scale with N,
we begin by investigating the Gaussian case for N finite, which is exactly solvable.

4.3.1 Gaussian case

For a quadratic potential

v(x) =
m2

2
x2 and w(x) = −m2

2
+

m4

2
x2 , (4.96)

so that, up to a constant shift −m2/2 on the energy levels, Eq. (4.9) is nothing but the
radial Schrödinger equation for a symmetric N-dimensional harmonic oscillator with
unit mass and pulsation ω = m2. The spectrum is degenerate in the quantum numbers
`i, and labeled by a nonnegative integer n,

Λn,` = nm2 . (4.97)

The eigenfunctions are obtained in Cartesian coordinates as product of Hermite poly-
nomials. In radial coordinates, they can be written as

Rn,` = e−Nm2 x2
2 rn,` , (4.98)

where n− ` = 2k is bound to be a nonnegative even integer and rn,` is the finite poly-
nomial

rn,` = x`
n−`

2

∑
q=0

aqx2q . (4.99)

The coefficients aq are determined through the recursion relation

(N + 2`+ 2q)(q + 1)aq+1 = −2Nm2(k− q)aq . (4.100)
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The solution to Eq. (4.100) has a well-defined limit for N → ∞ for n and ` fixed. In
that case, the recursion relation becomes

(q + 1)aq+1 = −2Nm2(k− q)aq (4.101)

which is solved as
aq = a0Ck

q(−2m2)q , (4.102)

with Ck
q the binomial coefficient. In particular we obtain for the LO radial eigenfunction

rn,` = a0x`(1− 2m2x2)
n−`

2 , (4.103)

where the constant a0 is fixed by requiring the eigenfunction to be normalized.
The first important remark is that the eigenvalues (4.97) do not scale with N. Also,

the appropriate radial variable to work with in order to obtain a nontrivial large-N limit
is the rescaled variable x. Finally, the exponential term in Eq. (4.98), which is consistent
with the naive limit R → 0 for N → ∞, is necessary to obtain the spectrum, and has to
be factored out explicitly to obtain nontrivial solutions.

4.3.2 Interacting case

These prescriptions can be implemented in the interacting case, introducing the re-
duced radial function Rn,`(x) = e−Nv(x)rn,`(x), and plugging it in the radial equation
(4.9) we obtain

−
r′′n,`

2N
−
(

N − 1
2Nx

− v′
)

r′n,` +
`(`+ N − 2)

2Nx2 rn,` = Λn,`rn,` , (4.104)

which possesses a well defined large N limit. Taking N → ∞, we get

− 1− 2xv′

2x
r′n,` +

`

2x2 rn,` = Λn,`rn,` (4.105)

which gives the following LO equation

(log rn,`)
′ =

`− 2x2Λn,`

x(1− 2xv′)
. (4.106)

This can be easily integrated for polynomial potentials in terms of the roots of (1 −
2xv′). We focus on the case of a quartic potential again chosen as

v(x) =
m2

2
x2 +

λ

8
x4 , (4.107)

which provides simple analytic formulas. Using the identity2

1− 2xv′(x) = (1− 2m2
+x2)(1− 2m2

−x2) , (4.108)
2The mass scales m± should not be mixed up with those discussed in the resummations (4.46), which

were the ones introduced in [34, 35].
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Figure 4.9: LO eigenvalues Λn,` as a function of the bare squared mass m2 for λ = 1.
We show three groups, corresponding to n = `, n = `+ 2 and n = `+ 4 from bottom
to top on the m2 = 0 axis.

where

m2
± = ±m2

2
+

√
m4

4
+

λ

4
, (4.109)

the right hand side of Eq. (4.106) can be decomposed in simple fractions as

(log r′n,`) =
`

x
− 4α+m2

+x
1− 2m2

+x2
+

4α−m2
−x

1− 2m2
−x2

, (4.110)

with

α± =
±Λn,` − `m2

±
2(m2

+ + m2
−)

. (4.111)

Integrating Eq. (4.110) is now elementary and yields the leading-order radial function,
up to a normalization constant denoted a0

rn,`(x) = a0x`(1− 2m2
+x2)α+(1− 2m2

−x2)α− . (4.112)

The obtained eigenfunctions lead to a normalizable PDF thanks to the exponential
factors that were extracted, P ∝ e−V R ∝ e−2Vr. Requiring the solutions to be regular
for all x selects a discrete subset, as expected from the analogous quantum mechanical
problem. Using the fact that m2

± ≥ 0, we see that regularity imposes α+ = k ∈ N.
In turns, this implies that the eigenvalues are indexed by nonnegative integers n and `
such that n− ` = 2k, meaning that n− ` is even and positive. They are given by

Λn,` = nm2
+ + (n− `)m2

− , (4.113)
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and the corresponding eigenfunctions are

rn,`(x) = a0x`(1− 2m2
+x2)

n−`
2 (1− 2m2

−x2)−
n
2 . (4.114)

Notice that, as expected, the lowest eigenstate of the series has a vanishing eigenvalue,
Λ0,0 = 0, which is guaranteed by the symmetries of the system, and corresponds to the
equilibrium state with a PDF P ∝ e−2V .

Eqs. (4.113) and (4.114) completely solve the eigenvalue problem at LO. The present
formulation allows one to set up a systematic large-N expansion, and compute higher-
orders in 1/N, some of which are detailed in Appendix C. We report here the NLO
result for the eigenvalue as an illustration

Λn,` = nm2
+ + (n− `)m2

− +
λ

4N(m4 + λ)
(an,`m2

+ − bn,`m2
−) +O

(
1

N2

)
, (4.115)

where
an,` = n(3n− 2)− `(`− 2) and bn,` = a`−n,` . (4.116)

4.3.3 Discussion

Before commenting on several limits of interest, let us remark that, as expected, the
results obtained from this approach coincide with the ones obtained from the direct
computations of correlators achieved in Sec. 4.2, or in the D-dimensional QFT [35, 128],
where the first eigenvalues Λ1,1, Λ2,0 and Λ3,1 were computed respectively at NLO for
the first and LO for the lasts, see Eqs. (4.82). The different variables are related through

m2
+ = M2

0 and m2
− = −λ̃M2

0 . (4.117)

It is also worth mentioning that in the Gaussian limit, λ = 0 so that m+ = m and
m− = 0, Eqs. (4.113) and (4.114) gives back the Gaussian result (4.97) and (4.103).

The variation of the spectrum as a function of the mass squared is shown in Fig. 4.9.
The perturbative limit is again controlled by λ/m4 and we have the following expan-
sion

Λn,` = nm2 + (2n− `)
λ

4m2 +O
(

λ

m6

)
, (4.118)

which shows the lifting of the Gaussian degeneracy for nonzero λ. The limit m2 →
0 is again not attainable within the perturbative framework, and one has to use the
nonperturabative expression (4.113). This gives

Λn,` ≈ (2n− `)

√
λ

4
, (4.119)

where we see another manifestation of the dynamical mass m2
dyn =

√
λ/4 gravita-

tionally generated by the interactions. The spectrum (4.119) ressembles to a Gaussian
potential with a mass m2

dyn, although the degeneracies are different for each energy
level.
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4.3. 1/N expansion of the Fokker-Planck equation

The last interesting regime is the broken symmetry regime, m2 < 0, correspond-
ing to a mexican hat potential, which is strongly nonperturbative, due to the massless
Goldstone modes. In the deeply broken regime, λ/m4 � 1, we have m2

+ ≈ 0 and the
spectrum takes the simple form

Λn,` = (n− `)
∣∣m2∣∣+O(λ/m2) . (4.120)

Because n− ` is an even integer, this is similar, up to the degeneracies, to a Gaussian
spectrum, but with a fundamental frequency 2

∣∣m2
∣∣. The latter corresponds to the cur-

vature of the potential at the nontrivial minimum. Each energy level is now infinitely
degenerated, as a consequence of the flat directions in the potential. Finally, for a given
`, the eigenvalue Λ`,` is always suppressed,

Λ`,` ≈ `
λ

4|m2| �
∣∣m2∣∣ , (4.121)

leading to a large autocorrelation time (or length) for the higher-order representations,
` ≥ 1, in field space. As was previously mentioned, in Sec. 4.2, this is not the case for
the scalar channel, ` = 0, which is not sensible to the Goldstone directions and is thus
only controlled by the heavy radial mode. The autocorrelation time for scalar operators
is thus fixed by the higher energy levels Λ2n,0, leading to a much smaller value than the
other channels.

We end this discussion by commenting on different 1/N expansion that have been
considered in the literature [133–135]. One important difference with these approaches
stems from the fact that the fundamental potential they consider is what we called W,
see Eq. (4.9), whereas we started from a potential V, related to W through Eq. (4.4). For
a quartic potential V such as (4.107), we obtain the following W, expressed here as Nw,
see Eq. (4.95),

w(x) = −m2

2
+

(
m4

2
− N + 2

2N
λ

2

)
x2 +

m2λ

2
x4 +

λ2

8
x6 , (4.122)

which contains terms up to x6. Although generic sextic potentials have been consid-
ered, e.g., in [134], it is not possible in general to deduce a unique corresponding V, and
to introduce the reduced radial function (4.104) which we consider here.

4.3.4 Comparison to finite N results

Moving on to the applicability of the present results to finite value of N, we begin
by discussing the massless case. Here, we expect possible significant difference with
the numerical results at low N, due to the nonperturbative physics, contrary to the
Gaussian case where the spectrum is identical for all N. We show some eigenfunctions
for the lowest eigenstates in Fig. 4.10, at m = 0, with the NLO corrections, and the
numerical result, for N = 2 and N = 5. The agreement is good down to low values of
N.
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Figure 4.10: The leading order (blue) and next-to-leading order (red) eigenfunctions
Rn,`(x), together with the exact numerical result (green) for some of the lowest levels
for m2 = 0 and λ = 1, and for various N. Here the normalization is chosen so that
either the function or its first nonzero derivative at x = 0 is fixed to 1. In practice this
means a0 = 1/`!.

The numerical results were obtained by solving numerically Eq. (4.104), fixing initial
conditions at x = 0+, and determining the eigenvalue that makes the function regular
by trials and errors. In practice, we use the fact that when the value of Λ crosses an
actual eigenvalue, the divergence of the eigenfunction changes from +∞ to−∞ or vice-
versa. This allows to implement a dichotomy procedure on an initial interval, which is
progressively narrowed down to the required precision.
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Figure 4.11: First eigenvalues in the scalar and vector channels, for m2 = 0 and λ = 1,
as a function of N. The dots are the exact value coming from a numerical resolution,
and we represented the NLO and NNLO corrections.

The explicit formulas for m2 = 0, meaning m2
+ = m2

− =
√

λ/4,

Λn,`√
λ

=
2n− `

2

[
1 +

3`− 2
4N

+O
(

1
N2

)]
. (4.123)

Comparison to numerical results is shown in Fig. 4.11. For Λ1,1, the 1/N expansion
gives a good qualitative agreement at LO down to relatively low values of N. The
agreement becomes quantitative at NLO (or NNLO), and we get a relative error of 8%
at NLO for N = 1. Looking at Eq. (4.123), the correction in the vector channel ` = 1 is
indeed expected to be relatively small at the order 1/N.

We can also test the scalar channel Λ2,0, see Fig. 4.11. Again, the LO behaviour gives
a correct qualitative estimate, which is improved by the NLO correction, but reaches
a relative error of 8% for N = 4 and 25% at N = 1. In that case, adding the NNLO
correction, which is computed in Appendix C, greatly improves the prediction, and the
relative error goes down to 10% for N = 1.

We now compare, when possible, our results with the ones existing in the literature.
While the N = 1 case has been studied in great details [18, 72, 73], only of few results
exist for N ≥ 2 [74]. The authors of [74] have presented results for the N = 2, 3 cases,
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Num. [74] Num. (here) LO NLO NNLO
Λ̂N=1

1,0 0.0889 0.0889 0.0650 0.0812 0.110
Λ̂N=2

1,0 0.3656 0.366 0.368 0.276 0.402
Λ̂N=3

1,0 0.4344 0.434 0.450 0.375 0.444
Λ̂N=1

2,0 0.289 0.289 0.260 0.130 0.487
Λ̂N=2

2,0 0.933 0.919 0.735 0.551 1.49
Λ̂N=3

2,0 1.034 1.033 0.900 0.750 1.26

Table 4.1: Comparison between the eigenvalues obtained numerically in Ref. [74] in the
first column with our numerical values, and the result from the 1/N expansion at the
different order of approximation. As expected, the numerical results obtained in the
two approaches are very close, and are considered as exact.

for a purely quartic potential, i.e. m = 0. The coupling λ̂ in that reference is related to
the one here, Eq. (4.107), through

λ̂ = λ
d2ΩD+1

4N
, (4.124)

and the authors labeled the quantum states using the integer k = (n − `)/2. Their
eigenvalues are related to ours as

Λ̂k,` =
Λ2k+`,`√

λ

√
N

6π2 , (4.125)

where we specialized to d = 3 and we used Ω5 = 8π2/3. This is valid provided N ≥ 2.
In the N = 1 case, there are no angular variables and only eigenvalues with ` = 0, 1 are
allowed. One has

Λ̂2k =
Λ2k,0√

λ

√
1

6π2 ,

Λ̂2k+1 =
Λ2k+1,1√

λ

√
1

6π2 .

(4.126)

Numerical comparisons are summarized in 4.1.
The case of a double-well potential (N = 1 and m2 < 0) is a bit different. Indeed,

the symmetry is discrete, and the relevant physics is driven by the tunneling effects be-
tween the minimas rather than the Goldstone modes. The other important point is that
the potential appearing in the eigenvalue problem, when formulated in its canonical
form (4.9), is not V but rather W. In the standard approach, the radial equation (4.9)
is reformulated by eliminating the first derivative term, by means of the redefinition
R(x) = x

1−N
2 ψ(x), leading to

− 1
2N

ψ′′ + Weffψ = Λψ , (4.127)
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where

Weff(x) =
`(`+ N − 2)

2Nx2 +
(N − 1)(N − 3)

8Nx2 + W(x) . (4.128)

Eq. (4.127) is the canonical form of the one-dimensional Schrödinger equation with a
potential Weff, up to a factor N in front of the second derivative which arises from the
definition of x. As pointed out in [73], in the case N = 1, for a double-well potential
V with sufficiently deep wells, W exhibits a third minimum at the origin (as a function
of ϕ), in addition to the usual minima at nonzero x. The resulting spectrum is thus, up
to exponentially small splittings due to tunneling effects, a superposition of Gaussian
spectra from each well at x = 0 and x 6= 0, with frequencies

∣∣m2
∣∣ and 2

∣∣m2
∣∣ respectively,

with a global energy shift of 3
∣∣m2
∣∣/2 for the central well relatively to the other wells.

For arbitrary N > 1, the central well remains, and the potential receives additional
centrifugal and geometrical contributions behaving as ∝ 1/x2. These contributions shift
the central well away from x = 0. As N increases, the potential reaches the asymptotic
form

Weff(x)
N

≈ 1
8x2 +

1
2

[
(v′)2 − v′

x

]
+O

(
1
N

)
. (4.129)

For the quartic potential (4.107), the minima are located at

x2
− =

1
2|m2| and x2

+ =
2
∣∣m2
∣∣

λ
. (4.130)

The corresponding values of the potential are

Weff(x−) =
3N
∣∣m2
∣∣

4
and Weff(x+) = 0 , (4.131)

and it appears that the excitations of the central well are lifted with a factor N compared
to the ones of the external well. In the end, the central energy states from the central
well decouple in the large-N limit. The potential Weff is shown in Fig. 4.12 together
with some of the large-N radial eigenstatesRn,`.

4.4 Conclusion

Summing up the results of this chapter, two different formulations of the stochastic for-
malism are used to compute (unequal-time) two-point correlators for an O(N) scalar
theory on superhorizon scales. In both cases, nonperturbative analytic results are ob-
tained by means of a 1/N expansion. The first approach used the JdD path integral
formulation of the Langevin equation. We compute directly some correlators with dia-
grammatic techniques, using an explicit resummation of the series of bubble diagrams.
We can check that these results coincide with other computations done either in the
Lorentzian QFT [30, 34, 35] or the Euclidean case [128].

The second approach consists in solving the equivalent eigenvalue problem, coming
from the Fokker-Planck equation associated to the stochastic equation. The entire spec-
trum is computed analytically up to NLO (and NNLO for the eigenvalues) in the 1/N
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Figure 4.12: Rescaled effective potential Weff(x)/N, with m2 = −1, λ = 0.05, and
N = 10, together with the LO eigenfunctions Rn,` for the first few values of n at ` = 0.
Although another local minimum appears at low x, it is lifted by a factor N and thus
gives subleading eigenvalues. The normalization is arbitrary and the eigenfunctions
have been upshifted by their respective eigenvalues.

expansion. This problem corresponds to an anharmonic oscillator in N dimensions,
and although different large-N limits have been considered before [133–135] they differ
from the one proposed here.

The eigenvalues are related to several physical quantities, such as relaxation and
decoherence times or spectral indices [72–74, 125, 129–132]. Our results allows us to
probe deeply nonperturbative regimes, when the scalars are light, or for potentials with
a negative square mass. In this latter case, in the deep potential regime, we find that
the autocorrelation time in the scalar channel ` = 0 is strongly suppressed compared
to the higher-order channels ` ≥ 1. Finally, we find that for the lowest eigenvalues, the
1/N expansion offers a qualitative (at LO) and even quantitative (at NLO or NNLO)
approximation down to relatively low values of N.
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Conclusion

Due to the strong gravitational amplification of the scalar modes on superhorizon scales,
the long-distance physics in de Sitter spacetime is highly nontrivial. It is a key in-
gredient for inflationary physics, to produce the observed scale-invariant spectrum in
primordial fluctuations [2], which gives strong motivations to investigate further quan-
tum corrections. Specifically, going beyond the tree-level computation is interesting for
theoretical reasons, to explain the experimental success of the actual approximation,
and as an interesting playground for fundamental questions on quantum physics. In
this context, perturbation theory has a limited range of applicability, and is plagued by
infrared divergences, that can take the form of, e.g., low momentum divergences, or
secular terms growing as a function of time [13, 14].

Some of these effects are already present in the simplified setups of scalar specta-
tors, where other issues do not intervene, such as, for example, the gauge invariance
in the presence of metric fluctuations. Studying the infrared physics in this more basic
situations is thus an interesting step to study the specificities of adding interactions and
nonlinearities. It can also be used directly in some inflationary scenarios, where spec-
tator fields play an important role [129]. In this thesis, we have investigated interacting
test scalar fields in the EPP of a de Sitter background, with and without backreaction of
the former on the latter.

The first part of the thesis is concerned with the backreaction of the quantum con-
tent on the de Sitter background geometry. This is a possible scenario for solving the
cosmological constant problem, through a dynamical screening [63–65]. The intense
particle production, seen as a secular effect, could be a sign of a possible instability [10,
12, 52–62], but is also common in nonequilibrium QFT as an artifact of the perturbative
expansion [49–51]. This question can be addressed for the backreaction of the infrared
modes of an O(N) model, where secular effects are already present. We have extended
a previous work using the FRG for interacting test scalar fields [36–40], which resums
the infrared divergences, and the stability is considered along the renormalization flow
rather than along a time coordinate, thus allowing to preserve de Sitter symmetries.

We have formulated this problem as the computation of the flow of the Hubble pa-
rameter, as it gets renormalized by the superhorizon quantum fluctuations. A key role
is played by two nonperturbative effects, the symmetry restoration and the dynami-
cal mass generation. The latter phenomenon generates a scale below which the RG
flow freezes, which results in the stabilization of the geometry. Interestingly, a recent
study of the backreaction problem in the context of holographic renormalization [106]
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obtains very similar equations as those presented here. It will be interesting to inves-
tigate further the relation between the two approaches. Notably, the study of [106] is,
in principle, not constrained by the semiclassical approximation. In the work of [106],
the space of solution is larger and features two branches, the “regular” one, that we
recover in our approach in the appropriate limit, and the “exotic” one, which lies out-
side the range of the semiclassical approximation, although it appears as a solution to
our flow equation. The conclusion of our approach is that the secular terms, after an
appropriate resummation, add up and produce a finite backreaction, preserving the de
Sitter geometry. In particular, the scalar curvature does not diverge at a finite scale.

The method proposed in this thesis provides a new way to tackle the question of
backreaction. We have limited our attention to the renormalization flow in the subspace
of de Sitter geometries, where we have seen no sign of instability. This, however, does
not close the discussion and other effects have to be accounted for. In particular, one
should include other potentially dangerous fluctuations from the metric [57, 109–111],
or consider a quantum state that is not completely de Sitter invariant [87, 88, 112–114].

In the second part of this thesis, we have studied several aspects of the stochastic
formalism, focusing on the computation of key dynamical quantities in the presence
of interactions, such as the field autocorrelation time. The stochastic description gives
an effective theory for the infrared superhorizon physics, that we have applied to an
O(N) model of test scalar fields, using the JdD procedure, to obtain a functional formu-
lation in terms of a one-dimensional supersymmetric Euclidean QFT. We have studied
the nonperturbative dynamics of this theory by means of FRG techniques, as first pro-
posed in [42], and generalized their LPA study by implementing a systematic derivative
expansion [68, 71]. We have given an all-order proof that the flow of the effective po-
tential is exactly given by its LPA expression at all orders. Then, we have computed the
flow of the effective action at the second order in the derivative expansion, for arbitrary
N, generalizing the result of [71]. Remarkably, the flow equation coincides with the one
obtained from the Lorentzian QFT in the LPA’, showing that the stochastic approach
entirely captures the physics in this approximation scheme.

We could also test the convergence of the derivative expansion in a nonperturbative
regime through a 1/N expansion of the flow equations compared to the solution of the
Schwinger-Dyson equations (also computed in this thesis), and saw that the frequency
expansion allowed for a precision of around ten percent for the large time behavior of
the inverse propagator at NLO. The same precision was found comparing to existing
numerical results in the single field case. This precision is not bad and could be im-
proved by going to higher order. Also, the flow equations may be used in more general
contexts, for example to extend the backreaction computation presented in this thesis.
However, our present purpose was to investigate whether FRG could bring, similarly
to the LPA computation, simple, and possibly analytical access to, e.g., autocorrela-
tion times. From that perspective, our study is not conclusive since the flow equations
are not solvable analytically, and the direct numerical resolution of the Langevin (or
Fokker-Planck) equation is lighter.

This motivates the last part of this thesis, which focuses on the 1/N expansion of
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the stochastic formalism, to obtain analytical results for the spacetime dependence of
correlators. We have first explored another application of the JdD path integral formu-
lation, solving the Schwinger-Dyson equations at NLO in a 1/N expansion, effectively
resumming a series of bubble diagrams in the self-energy of the stochastic field. We
obtained analytic formulas, which coincide nontrivially with previous Lorentzian [35]
or Euclidean [128] QFT computations. This provides an interesting explicit check that
the stochastic approach correctly captures such dynamical quantities.

Alternatively, the Fokker-Planck formulation of the stochastic formalism phrases
the dynamics in terms of a Schrödinger-like eigenvalue problem. In that context, the
spacetime dependence previously obtained through the Schwinger-Dyson computa-
tion is interpreted in terms of a spectral decomposition of the correlators. Identifying
the large-N limit of the first eigenvalues from the previous diagrammatic computation,
they appear to have a simple structure, which hints for a direct computation of the
complete spectrum. Indeed, the eigenvalue problem simply corresponds to an anhar-
monic oscillator in N dimensions. We have set up a 1/N expansion of this problem
and computed the entire spectrum analytically up to NNLO, extending the result of
the diagrammatic computation to virtually all correlators.

This allows to explore unequal-time correlators in the nonperturbative regime. We
find that the spectrum for massless fields and in the deeply broken regime ressembles
a Gaussian spectrum, however with a modified fundamental frequency, and different
degeneracies. The obtained eigenvalues are related to several physical quantities of
interest, such as relaxation and decoherence times [74, 125, 129–132], and spectral in-
dices of operators [18, 72]. In particular, in the deeply broken regime, we find that the
autocorrelation time in the scalar channel is strongly suppressed compared to higher
representations, whose autocorrelation times are large in units of 1/H. This results in
large equilibration/decoherence times, which could have important implications for
inflationary models with light spectator fields [131, 132]. Possible such phenomenolog-
ical consequences remain to be investigated. Finally, we have checked that, at least for
the massless case and for low quantum numbers, the results are in good agreement with
exact numerical values down to relatively low values of N. A more complete numerical
analysis for arbitrary parameters, in the spirit of [72, 73] remains to be done.

This thesis opens a number of prospects for future research. A first possibility is to
apply the results obtained for the spectrum in the 1/N expansion to specific models
of inflation, where several spectator fields are present, and possibly play a role after
inflation [129]. This could provide constraints on the interaction potentials of such
models, where the configuration of the scalar fields at the end of inflation is important.
This calls for a generalization of our previous computation to a situation where the
background geometry is a FLRW spacetime in slow-roll, which could have important
consequences for the relaxation timescales [129].

Another interesting extension concerns the decoherence processes at stake in the
early Universe. This encompasses several distinct situations [125, 130–132, 137, 138],
including, e.g., the quantum-to-classical transition caused by spectator fields, acting as
an environment for the inflationary fluctuations.
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4. MODEL A AND EIGENVALUES

Finally, there are several possible extensions of the FRG in de Sitter spacetime. In
particular, it would be interesting to consider higher spin fields, such as the graviton,
which fluctuations could play a role in the destabilization of de Sitter [57, 111]. This
could be investigated, for instance, by means of an effective theory for the inflationary
dynamics [139]. Other possibilities include spinor or vector fields [41, 140]. One last
interesting line of development would be to extend the FRG to less symmetric space-
time, especially a FLRW geometry in slow-roll, and extend the previous computations
for the backreaction to this more generic case.

112



A Flow of the inverse propagator

We present here the computation of the flow of the inverse propagator starting from
Eq. (3.112). In all this appendix, we do not write explicitly the κ dependence for sim-
plicity, and we always set the superfield at constant value Φ(t, θ, θ̄) = φ and X(t, θ, θ̄) =
χ = φ2/(2N).

A.1 Four-point vertex contribution

We first introduce some specific notations. We can decompose the Grassmann and field
space structures of the superpropagator as follows,

G12,ab(ω) =
[

Gt
γ(ω)δ12 + Gt

η(ω)Kωδ12

]
Pt

ab +
[

Gl
γ(ω)δ12 + Gl

η(ω)Kωδ12

]
Pl

ab . (A.1)

in terms of the projectors (2.19). Using the ansatz (3.110), we recall the following nota-
tions,

Zab = Pt
abzt + Pl

abzl , m2
t = ∂χU , m2

l = ∂χU + 2χ∂2
χU , (A.2)

in terms of which we have

Gt
γ(ω) =

−im2
t

ω2z2
t + m4

t
and Gt

η =
zt

ω2z2
t + m4

t
, (A.3)

and similarly for the longitudinal part. The function J12,ab, defined as

J12,ab(ω) =
∫

3
G13,ac(ω)G32,cb(ω) , (A.4)

is decomposed as in (A.1) and gives

Jt
γ(ω) =

ω2z2
t −m4

t(
ω2z2

t + m4
t
)2 and Jt

η(ω) =
−2iztm2

t(
ω2z2

t + m4
t
)2 , (A.5)

and the longitudinal part is obtained substituting t→ l.
The integral J12,ab, defined in Eq. (3.114), can be expressed as

J12,ab(ω) =
∫ dω′

2π

∫
34

Γ(4)
1234,abcd(ω,−ω′, ω′)J43,dc(ω

′) . (A.6)
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In the end, we are not interested in the δ12 component, which does not contribute to the
flow of Zab, so we can forget the corresponding terms. Moreover, the function J43,dc(ω

′)
is symmetric under the exchange of its field space indices, so that the corresponding
anti-symmetric component of the four point vertex function under c ↔ d will not con-
tribute to the integral. Thus, the direct computation of the four-point vertex function
gives the following relevant terms

Γ(4)
1234,abcd(ω2, ω3, ω4) = ∂φc ∂φd Zab

[
−1

2
(D̄ω2 δ12Dω4 δ14 + D̄ω4 δ14Dω2 δ12)δ13

−1
2
(D̄ω2 δ12Dω3 δ13 + D̄ω3 δ13Dω2 δ12)δ14 + δ13δ14Kω2 δ12

]
+ (. . . ) ,

(A.7)
where the (. . . ) at the end stands for the terms, proportional to δ12 or anti-symmetric in
c↔ d, we discarded, and we recall

δ12 = (θ̄1 − θ̄2)(θ1 − θ2) ,

Kωδ12 = 1 + ω(θ̄2θ1 − θ̄1θ2) + ω2θ̄2θ2θ̄1θ1 ,
(A.8)

and define
Dωδ12 = i(θ1 − θ2) + iω(θ̄1 − θ̄2)θ1θ2 ,
D̄ωδ12 = i(θ̄2 − θ̄2) + iωθ̄1θ̄2(θ2 − θ1) .

(A.9)

Using the following identity, which follows from simple algebra,

D̄ωδ12Dω′δ13 + D̄ω′δ13Dωδ12 = δ12Kω′δ13 + δ13Kωδ12 − δ23Kω+ω′δ13 , (A.10)

we can rewrite the four point vertex (A.7) as

Γ(4)
1234,abcd(ω2, ω3, ω4) =

1
2

∂φc ∂φd Zab(δ14δ23Kω2+ω3 δ13 + δ13δ24Kω2+ω4 δ14)+ (. . . ) . (A.11)

Using Eq. (A.11) in Eq. (A.6) and integrating over the Grassmann variables gives,

J12,ab =
1
2

∫ dω′

2π

[
Pt

cd Jt
η(ω

′) + Pl
cd Jl

η(ω
′)
]
∂φc ∂φd ZabKωδ12 + (. . . ) , (A.12)

where we used Eq. (4.24). The frequency integrals are easily obtained∫ dω

2π
Jt/l
η (ω) =

1
2im4

t/l
. (A.13)

The second derivative of Zab can be decomposed as

Pl
cd∂φc ∂φd Zab =

1
N

[
(z′t + 2χz′′t )Pt

ab + (z′l + 2χz′′l )Pl
ab

]
Pt

cd∂φc ∂φd Zab =
N − 1

N

[
z′tP

t
ab + z′l P

l
ab

]
+

1
N

zl − zt

χ
(Pt

ab − (N − 1)Pl
ab) .

(A.14)
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and we finally get, using for J12,ab a similar decomposition as for Eq. (A.1)

J t
η (ω) =

1
2iN

(
zl − zt + (N − 1)χz′t

χm4
t

+
z′t + 2χz′′t

m4
l

)

J l
η(ω) =

1
2iN

(
(N − 1)(zt − zl + χz′l)

χm4
t

+
z′l + 2χz′′l

m4
l

)
.

(A.15)

A.2 Three-point vertex contribution

Moving on to the computation of I12,ab, defined in Eq. (4.59). We have

I12,ab =
∫ dω′

2π

∫
3456

Γ(3)
134,acd(ω + ω′,−ω′)Γ(3)

256,be f (ω
′,−ω−ω′)J54,ed(ω

′)G36,c f (ω + ω′) .

(A.16)
The direct computation of the three-point vertex function from the ansatz (3.110) gives,

Γ(3)
123,abc(ω2, ω3) =

1
2
(∂φa Zbc − ∂φb Zac − ∂φc Zab)(D̄ω2 δ12Dω3 δ13 + D̄ω3 δ13Dω2 δ12)

+ ∂φb Zacδ12Kω3 δ13 + ∂φc Zabδ13Kω2 δ12 + iN∂φa ∂φb ∂φcUδ12δ13 .
(A.17)

Using the identity (A.10), we see that there are only four Grassmann structures appear-
ing in the three-point vertex, namely

δ12Kω3 δ13, δ13Kω2 δ12, δ23Kω2+ω3 δ13, δ12δ13 . (A.18)

The integral (A.16) involves several projections of the form PedPc f Γ(3)
134,acdΓ(3)

256,be f , where
P can be either a transverse or a longitudinal projector. We have four possible combi-
nations in total. Each one can be written in terms of the Grassmann structures (A.18)
as

PedPc f Γ(3)
134,acd(ω + ω′,−ω′)Γ(3)

256,be f (ω
′,−ω−ω′) =

χ

2N
πab

× (Aδ13K−ω′δ14 + Bδ14Kω+ω′δ13 + Cδ34Kωδ14 +Dδ13δ14)

× (Aδ26Kω′δ25 + Bδ25K−ω−ω′δ26 + Cδ56K−ωδ26 +Dδ25δ26) .

(A.19)

Denoting by (t/l, t/l) the projection involving the Pt/l
ed Pt/l

c f combination, we obtain

(t, t), πab = (N − 1)Pl
ab, A = B = z′t, C = zl − zt

χ
− z′t, D = 2iU′′ ,

(l, l), πab = Pl
ab, A = B = C = z′l , D = 2i(3U′′ + 2χU′′′) ,

(t, t), πab = Pt
ab, A = C = z′t, B =

zl − zt

χ
− z′t, D = 2iU′′ ,

(t, t), πab = Pt
ab, A =

zl − zt

χ
− z′t, B = C = z′t, D = 2iU′′ .

(A.20)
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A. FLOW OF THE INVERSE PROPAGATOR

The integration over the Grassmann variables gives, for one particular projection,

∫
3456

(Aδ13K−ω′δ14 + Bδ14Kω+ω′δ13 + Cδ34Kωδ14 +Dδ13δ14)

× (Bδ25K−ω−ω′δ26 +Aδ26Kω′δ25 + Cδ56K−ωδ26 +Dδ25δ26)

× (Jγδ54 + JηKω′δ54)(Gγδ36 + GηKω+ω′δ36)

= 2JγGγ(AB +AC + BC) + 2JγGη(A+ C)D + 2JηGγ(C + B)D
+ JηGη [D2 + (ω′)2(2CA+ 2CB +A2 + B2)] + (. . . ) ,

(A.21)

using again Eq. (4.24), and where the dots represent terms proportional to δ12, which
do not contribute to the flow of Zab.

We again decompose I12,ab as in Eq. (A.1), and first compute I l
η . There are two

contributions, coming from the (t, t) and the (l, l) projections. We use the frequency
integrals ∫ dω

2π
Jt
γ(ω)Gt

γ(ω) = −
∫ dω

2π
Jt
η(ω)Gt

η(ω)ω2 =
i

8m4
t zt

,∫ dω

2π
Jt
γ(ω)Gt

η(ω) =
1
3

∫ dω

2π
Jt
η(ω)Gt

γ(ω) = − 1
8m6

t
,∫ dω

2π
Jt
η(ω)Gt

η(ω) = − 3izt

8m8
t

,

(A.22)

and similarly for the integrals involving the longitudinal components. We get

I l
η =

N − 1
iN

(
(zl − zt)(m2

t )
′

m6
t

− 3χzt
[
(m2

t )
′]2

4m8
t

)
+

1
iN

(
2χz′l(m

2
l )
′

m6
l

− 3χzl
[
(m2

l )
′]2

4m8
l

)
.

(A.23)
Moving on to It

η , we have two contributions coming from the (t, l) and (l, t) projec-
tions. We need the following integrals

∫ dω

2π

[
Jt
γ(ω)Gl

γ(ω) + Jl
γ(ω)Gt

γ(ω)
]
= i

zl + zt

2M4 ,∫ dω

2π

[
Jt
η(ω)Gl

η(ω)ω2 + Jl
η(ω)Gt

η(ω)ω2
]
= −i

zl + zt

2M4 ,∫ dω

2π

[
Jt
γ(ω)Gl

η(ω) + Jl
η(ω)Gt

γ(ω)
]
= − zl [(zl + zt)m2

t +M2]

2m4
lM4

,

∫ dω

2π

[
Jl
γ(ω)Gt

η(ω) + Jt
η(ω)Gl

γ(ω)
]
= − zt[(zl + zt)m2

l +M2]

2m4
tM4

,

∫ dω

2π

[
Jt
η(ω)Gl

η(ω) + Jl
η(ω)Gt

η(ω)
]
= −i

zlzt[(zl + zt)m2
l m2

t +M2(m2
l + m2

t )]

m4
t m4

lM4
,

(A.24)
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whereM2 = ztm2
l + zlm2

t . In the end, we get

I t
η =

1
iN

(
(zl − zt − 2χz′t)

2(zl + zt)

4χM4 +
2(m2

t )
′(zl − zt)zt[(zt + zl)m2

t +M2]

m4
tM4

+
2(m2

t )
′χz′tzl [(zt + zl)m2

l +M2]

m4
lM4

−χ[(m2
t )
′]2zlzt[(zt + zl)m2

l m2
t +M2(m2

t + m2
l )]

m4
t m4

lM4

)
.

(A.25)

Putting together Eqs. (A.15), (A.23) and (A.25) gives the flow equations (3.115) and
(3.116).
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B Self-energy at three-loop order

In this appendix, we compute Λ3,1 at order O(λ). Indeed, we saw in Sec. 4.2.1 that
taking diagrams up to order O

(
λ2) only gives Λ3,1 at LO because of the subleading

coefficient cϕ
3 . To extract theO(λ) contribution to Λ3,1, we need to go to orderO

(
λ3) for

the self-energy. This can be done either by a direct calculation of the relevant local and
nonlocal contributions to the latter, or by following the strategy adopted in Sec. 4.2.2.
We first compute the nonlocal contributions to the self energy using an effective tree-
level propagator with mass M, which is determined self-consistently by solving the
gap equation (4.55), at the appropriate order of approximation. As explained before,
this automatically takes into account local self-energy insertions in propagator lines.

We start with the only three-loop nonlocal diagram (j) of Fig. B.1. It is expressed as

Σ(j)
12 (ω) =

(N + 2)(N + 8)
N3

iλ3

4

∫ dω1

2π
GM2

12 (ω−ω1)
∫

3

∫ dω2

2π
GM2

13 (ω1 −ω2)GM2

13 (ω2)

×
∫ dω3

2π
GM2

32 (ω1 −ω3)GM2

32 (ω3) .

(B.1)
Using Eq. (4.35), the integrals on ω2,3 both give a propagator with mass 2M2,

Σ(j)
12 (ω) =

(N + 2)(N + 8)
N3

iλ3

4M4

∫ dω1

2π
GM2

12 (ω−ω1)
∫

3
G2M2

13 (ω1)G2M2

32 (ω1) . (B.2)

The integral over the Grassmann variable is computed using Eq. (3.68), and the explicit
expression of the propagators (3.82). We get∫

3
G2M2

13 (ω1)G2M2

32 (ω1) =
(ω2

1 − 4M4)δ12 + 4iM2Kω1 δ12

(ω2
1 + 4M4)2

. (B.3)

Applying Eqs. (4.24) to multiply this result to GM2

12 , we end up with

Σ(j)
12 (ω) =

(N + 2)(N + 8)
N3

iλ3

4M4

∫ dω1

2π

(ω2
1 − 8M4)δ12 + 4iM2Kωδ12

(ω2
1 + 4M4)2[(ω−ω1)2 + M4]

. (B.4)

We obtain, after integration,

Σ(j)
12 (ω) = − (N + 2)(N + 8)

N3
λ3

32M8

(
3iM2 ω2 − 27M4

(ω2 + 9M4)2 δ12 +
ω2 + 45M4

(ω2 + 9M4)2 Kωδ12

)
,

(B.5)
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( j)

Figure B.1: Three-loop nonlocal contribution to the self-energy in the perturbative ex-
pansion.

which gives the following expressions for γ and η

γ(ω) = M2
[

1− 3αλ2

ω2 + 9M4

(
1 + βλ

ω2 − 27M4

ω2 + 9M4

)]
, (B.6)

η(ω) = 1 +
αλ2

ω2 + 9M4

(
1− βλ

ω2 + 45M4

ω2 + 9M4

)
, (B.7)

where

α =
N + 2

N2
3

8M4 and β =
N + 8

3N
1

4M4 . (B.8)

We then proceed as in Sec. 4.2.1 and compute the roots of−iG−1
ϕϕ̃(ω) = iγ(ω) + ωη(ω),

with

− iG−1
ϕϕ̃(ω) = ω + iM2 +

αλ2

ω + 3iM2

(
1− βλ

ω + 9iM2

ω + 3iM2

)
. (B.9)

To get the correct perturbative expression for the poles Λ1,1 and Λ3,1, and the coeffi-
cients cϕ

1 and cϕ
3 , we have to factorize this expression such that the retarded propagator

is decomposed into a sum of free propagators, as in Eq. (4.43). To do this, we write, up
to higher-orders terms,

− iG−1
ϕϕ̃(ω) = ω + iM2 +

αλ2(1− βλ)

ω + 3iM2(1 + 2βλ)
+O

(
λ̄4
)

. (B.10)

This is the only combination compatible with the decomposition (4.43) in simple frac-
tions. Computing the poles and residue yields

Λ1,1 = M2
(

1− α

2M4 λ2 +
2αβ

M4 λ3
)

, (B.11)

Λ3,1 = 3M2(1 + 2βλ) , (B.12)

cϕ
1 = 1− αλ2(1− βλ)

4M4 , (B.13)

cϕ
3 =

αλ2(1− 7βλ)

4M4 . (B.14)
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We now need to compute the effective square mass M2 at three-loop order. The
exact gap equation (4.55) for M2 reads

M2 = m2 +
N + 2

N
λ

4γ(0)
, (B.15)

where, at the present order of approximation,

γ(0) = M2
(

1− αλ2

3M4 +
αβλ3

M4

)
. (B.16)

This is readily solved as

M2

m2 = 1 + λ̄− λ̄2 + 2
N + 3
N + 2

λ̄3 +O
(

λ̄4
)

. (B.17)

We thus find, at three-loop order

m2
dyn

m2 = 1 + λ̄− N + 4
N + 2

λ̄2 + 2
N2 + 9N + 20

(N + 2)2 λ̄3 +O
(

λ̄4
)

, (B.18)

and
Λ1,1

m2 = 1 + λ̄− N + 5
N + 2

λ̄2 +
2N2 + 23N + 62

(N + 2)2 λ̄3 +O
(

λ̄4
)

, (B.19)

together with

cϕ
3 =

3λ̄2

2(N + 2)
− 19N + 80

2(N + 2)2 λ̄3 +O
(

λ̄4
)

, (B.20)

and cϕ
1 = 1− cϕ

3 +O
(
λ̄4). We also get the O(λ̄) correction to Λ3,1

Λ3,1

3m2 = 1 +
5N + 22
3(N + 2)

λ̄ +O
(
λ̄2) . (B.21)
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C 1/N expansion of the Fokker-Planck
eigenvalue problem at higher-order

We presented in Sec. 4.3 a well-defined N → ∞ limit for the eigenvalue problem ex-
tracted from the stochastic formalism. This formulation also allows for a systematic
1/N expansion, which we illustrate here by explicitely computing the NLO. The fol-
lowing orders can be obtained in a similar fashion, and we discuss the NNLO.

C.1 Computation of the spectrum at next-to-leading order

We start by inserting the 1/N expansion of the eigenfunctions and eigenvalues,

r = r0 +
r1

N
+O

(
1

N2

)
(C.1)

Λ = Λ0 +
Λ1

N
+O

(
1

N2

)
, (C.2)

in Eq. (4.104). The LO equation is given by Eq. (4.106), and was solved in Sec. 4.3.2. The
LO eigenfunctions and eigenvalues depend on two quantum numbers n and `, and are
given in Eqs. (4.113) and (4.114). To keep the formulas simple, we do not write explicitly
the dependence in the quantum numbers in the following. We define

g =
`− 2x2Λ0

x(1− 2xv′)
. (C.3)

The NLO equation reads

−
(

1
2x
− v′

)
r′1 +

(
`

2x2 −Λn,`
0

)
r1 =

r′′0
2
− r′0

2x
−
[
`(`− 2)

2x2 −Λ1

]
r0 . (C.4)

The right-hand side can be written in terms of g using the following relations

r′0 = gr0 ,

r′′0 =
(

g′ + g2)r0 ,
(C.5)

together with the factorization (4.108), and we end up with

r′1 − gr1 = hr0 , (C.6)
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where

h =
xg(1− xg)− x2g′ + `(`− 2)− 2x2Λ1

x(1− 2xv′)
. (C.7)

Using the method of variation of constants, we take the following ansatz,

r1(x) = C(x)r0(x) , (C.8)

into Eq. (C.6), which yields the equation

C′ = h . (C.9)

For the quartic potential (4.107), the function h is a polynomial fraction which can,
again, be decomposed into partial fractions. Introducing the notations

p± = 1∓ 2m2
±x2 , (C.10)

with the definition (4.109), the functions r0 and g can be expressed as

r0 = a0x`pα+
+ pα−

− , (C.11)

and

g =
`

x
+ α+

p′+
p+

+ α−
p′−
p−

, (C.12)

with α+ = n−`
2 and α− = − n

2 . Note also that

1− 2xv′ = p+p− . (C.13)

We obtain, after some calculations,

h =
3

∑
k=1

[
αk

p′+
pk
+

+ βk
p′−
pk
−

]
, (C.14)

with the coefficients

α1 =
Λ1

2M2 −
m2

+m2
−(an,`m2

+ − bn,`m2
−)

2M6 ,

α2 = (n− `)m2
+

2(n− `)m2
− − (n + `− 2)m2

+

2M4 ,

α3 = (n− `)(n− `− 2)
m2

+

2M2 ,

(C.15)

and
β1 = −α1 ,

β2 = nm2
−

2nm2
+ − (n− 2`+ 2)m2

−
2M4 ,

β3 = n(n + 2)
m2
−

2M2 ,

(C.16)
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where we defined M2 = m2
+ + m2

− and

an,` = n(3n− 2)− `(`− 2)
bn,` = (n− `)(3n− 3`+ 2)− `(`− 2) .

(C.17)

Note that bn,` = a`−n,`. We verify explicitly the + ↔ − symmetry, obvious from
Eqs. (C.12) and (C.13). In particular, we check that the coefficients αk ↔ βk under
the exchange m2

+ ↔ −m2
− and n− `↔ −n.

With the decomposition (C.14), Eq. (C.9) is readily integrated as

C = α1 log
p+
p−
− α2

p+
− α3

2p2
+

− β2

p−
− β3

2p2
−
+ a1 , (C.18)

with a1 a free integration constant to be fixed, e.g., by a normalization condition at NLO.
As before, at LO, possible singularities are related to the zero of the polynomial p+.
Remembering that the solution we seek is r1 = Cr0, we see that the p−1

+ and p−2
+ terms

in the first line of Eq. (C.18) contribute as α2 pα+−1
+ and α3 pα+−2

+ and are thus potentially
singular for n − ` = 0 and n − ` = 0, 2, respectively. This singularities are, in fact,
absent thanks to the fact that the coefficients α2 and α3 vanish for these values of n− `.
The only possible singular behavior comes from the term log p+ and regularity thus
imposes α1 = 0. This fixes Λ1 as

Λ1 =
m2

+m2
−

M4

(
an,`m2

+ − bn,`m2
−
)

. (C.19)

The expression (4.115) is obtained using the identities M2 =
√

m4 + 2λ and m2
+m2
− =

λ/2. Finally, the corresponding eigenfunction reads

rn,`(x) =
[

1 +
Cn,`(x)

N
+O

(
1

N2

)]
rn,`

0 (x) . (C.20)

The above expressions are valid for all values of the parameters m2 and λ. To end
this Section, we present the explicit formulas for the case m2 = 0, where m2

+ = m2
− =√

λ/2. We have

Λn,`√
λ

=
2n− `

2

[
1 +

3`− 2
4N

+O
(

1
N2

)]
, (C.21)

and the various coefficients in the function C(x) read

α2 =
(n− `)(n− 3`+ 2)

8

α3 =
(n− `)(n− `− 2)

4

β2 =
n(n + 2`− 2)

8

β3 =
n(n + 2)

4
.

(C.22)
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As an illustration, the corresponding eigenfunctions are plotted against the LO ones in
Fig. 4.10 for N = 2. In practice, we observe that the NLO eigenfunctions provide a
pretty good approximation of the numerical results down to N = 2 for the eigenstates
we have computed numerically here, namely,R1,1 andR2,0.

C.2 Eigenvalues at NNLO

The computation at NNLO is very similar to the NLO and we summarize the main
steps here. We insert the following 1/N expansion

r = r0 +
r1

N
+

r2

N2 +O
(

1
N3

)
Λ = Λ0 +

Λ1

N
+

Λ2

N2 +O
(

1
N3

)
,

(C.23)

into Eq. (4.104) and repeat the steps leading to Eq. (C.6). We obtain at NNLO

r′2 − gr2 = h̃r0 , (C.24)

where we used Eq. (C.5) and (C.8) to get

h̃ =
C[`(`− 2)− 2x2Λ1 + xg(1− xg)− x2g′] + xC′(1− 2xg)− xC′′ − 2xΛ2

x(1− 2xv′)
. (C.25)

Again, using the variation of constants, we have the following ansatz

r2(x) = C̃(x)r0(x) , (C.26)

which we plug in Eq. (C.24) to get
C̃′ = h̃ . (C.27)

The function h̃ is a polynomial fraction which we decompose into partial fraction in
inverse powers of p±. We end up with

h̃ =
5

∑
k=1

[
α̃k

p′+
pk
+

+ β̃k
p′−
pk
−

]
, (C.28)

with twelve numerical coefficients α̃k and β̃k. These coefficients can be computed ex-
plicitly, however their expression is quite long and not particularly enlightening and
we do not give them here. Note the following relation

α̃1 = β̃1 . (C.29)

The function h̃ is easily integrated to give,

C̃ = α̃1 log
p+
p−
−

4

∑
k=1

[
α̃k

kpk
+

+
β̃k

kpk
−

]
+ a2 , (C.30)
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up to an integration constant a2 fixed by the normalization condition at NNLO. We look
for regular solutions of the form r2 = C̃r0. Potential singularities come from the loga-
rithm as well as α̃k p−k

+ terms in Eq. (C.30), which gives α̃k pα+−k
+ and could be singular

for n − ` < 2k. We check that in those cases, α̃k actually vanishes so that there is no
singularity. Thus, regular solutions are selected by requiring α̃1 = 0, which fixes Λ2 as

Λ2 =
2m4

+m4
−

M10

[
ãn,`m4

+ + b̃n,`m4
− + c̃n,`m2

+m2
−
]

, (C.31)

with
ãn,` = (3n− 2)(`2 − 2`+ 2n)− 6n3

b̃n,` = −ã`−n,`

c̃n,` = `3 − 9`2(n− 1) + 2n(11n2 + 6)− 3`(11n2 − 6n + 2) .

(C.32)

Finally the corresponding eigenfunction reads

rn,`(x) =
[

1 +
Cn,`(x)

N
+

C̃n,`(x)
N2 +O

(
1

N3

)]
rn,`

0 (x) . (C.33)

We conclude this computation by giving the expression of the eigenvalue in the
massless case, for the scalar sector ` = 0. We have n = 2k,

Λ2k,0√
λ

=
4k
2

[
1− 1

2N
+

1 + 10k2

8N2 +O
(

1
N3

)]
. (C.34)
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Présentation de la thèse

La théorie quantique des champs en espace-temps courbe, c’est-à-dire en présence
d’une géométrie non triviale, est considérée comme une bonne approximation d’une
possible théorie de la gravité quantique, dans de nombreux contextes où les éner-
gies typiques des processus sont très en deçà de l’échelle de Planck [1]. La descrip-
tion correcte de la production des inhomogénéités primordiales à partir des fluctu-
ations quantiques dans l’Univers primordial comte parmi ses résultats les plus mar-
quants. Cette approche aboutit au spectre des fluctuations de température dans le ray-
onnement diffus cosmologique (RDC) [2], et se manifeste également dans la formations
des grandes structures de l’Univers. En effet, la phase d’inflation, introduite initiale-
ment comme une possible solution à des problèmes théoriques du modèle standard
cosmologique [3–6], s’appuie sur une expansion exponentielle, qui amplifie les fluc-
tuations quantiques initialement microscopiques à des échelles cosmologiques macro-
scopiques. Cette phase correspondant approximativement à un espace-temps de Sitter,
l’étude des effets quantiques dans une telle géométrie est important à au moins deux
titres. Sur un plan théorique, cette étude est motivée par le besoin d’une description
cohérente des corrections d’ordre supérieur, pour comprendre le succès de la descrip-
tion actuelle. Dans le même temps, l’augmentation de la précision des expériences de
cosmologie ouvre la perspective intéressante de tester des aspects quantiques fonda-
mentaux.

Le calcul menant au spectre de puissance invariant d’échelle pour l’inflaton est
aujourd’hui essentiellement basé sur une description linéarisée [7, 8]. Le traitement
des ordres supérieurs dans le développement perturbatif est en principe requis par la
présence de non-linéarités, sous la forme d’interactions de l’inflaton, ou simplement in-
trinsèques à la gravité dans la théorie de la relativité générale. Toutefois, le calcul de di-
agrammes à boucles dans une géométrie de Sitter pose des difficultés, directement liées
au mécanisme d’amplification qui motive la phase d’inflation. Celles-ci se manifestent
à travers une importante production de particules dans le secteur infrarouge (super-
horizon) de la théorie [9–12], qui provoque des divergences problématiques dans le
intégrales de boucles [11, 13, 14]. Ces dernières ne peuvent pas être traitées avec les
outils habituels de la renormalisation perturbative, développée en espace plat, et sont
plutôt le reflet d’effets non-perturbatifs et non triviaux dans l’infrarouge.

Le traitement correct de ces divergences est un sujet de recherche actif depuis une
quarantaine d’années, avec un intérêt récemment renouvelé, et a conduit à une pro-
fusion d’approches non-perturbatives et d’études de ces non-linéarités. Une des pre-
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mières techniques introduites dans ce contexte est le formalisme stochastique [15–18].
Ce dernier décrit la dynamique des modes super-horizon en termes d’une équation de
Langevin, sourcée par les modes sortant de l’horizon au cours de l’expansion. Cette
approche permet en fait de resommer les contributions logarithmiques dominantes du
développement diagrammatique [11, 19, 20], et est donc capable de décrire des effets
authentiquement non-perturbatifs. Des techniques de théorie des champs, initialement
développées pour étudier des effets non-perturbatifs en espace-temps plats, ont en par-
allèle été adaptées et développées au cours des ans [21–42]. Parmi elles, les deux qui
seront principalement utilisées au cours de cette thèse sont des développement en 1/N
et le groupe de renormalisation fonctionnel (GRF) [43–45]. Ce dernier est particulière-
ment utile pour traiter la physique dans l’infrarouge, et est utilisé dans des situations
très diverses, allant des phénomènes critiques [46, 47] à la gravité quantique [48]. Une
étude systématique a été réalisée pour des champs scalaires tests en espace-temps de
Sitter, dans l’approximation du potential local (APL) [39], et a obtenu des résultats iden-
tiques au formalisme stochastique dans la limite appropriée.

Les divergences séculaires, qui grossissent en fonction du temps cosmique, appa-
raissent comme des manifestations spécifiques fréquentes des divergences infrarouges
dans le contexte cosmologique [13, 14]. Ce comportement apparaît également dans
les théories quantiques des champs hors équilibre, comme un artéfact de calcul de
l’approche perturbative, qui disparaît après une resommation appropriée [49–51], et
des méthodes similaires ont été implémentées en espace-temps de Sitter [29, 34, 35]. Si-
multanément, dans de Sitter, ces contributions importantes des diagrammes à boucles
pourraient conduire à une importante rétroaction sur la géométrie ambiante, et ont par-
fois été considérées comme l’origine d’une potentielle instabilité de cet espace-temps
[10, 12, 52–62]. Ce type de rétroaction pourrait également fournir une résolution du
problème de la constante cosmologique [63–65], via un mécanisme d’écrantage dy-
namique. Cependant, dans la logique de l’approche de la théorie des champs hors
équilibre, ces contributions pourraient simplement être la conséquence d’un développe-
ment perturbatif invalide. Une des thématiques principales de cette thèse est d’étudier
cette idée dans de Sitter en utilisant une généralisation appropriée du GRF appliqué
aux champs tests. L’utilisation du GRF est motivée par le fait qu’il ne fait pas appa-
raître directement des divergences séculaires, mais plutôt des divergences infrarouges
dans l’espace des moments. Ceci permet en particulier de considérer la stabilité au
cours du flot de renormalisation, et non de la coordonnée temporelle, ce qui permet de
préserver les symétries de de Sitter.

Même dans le cas des champs scalaires tests, les calculs explicites non-perturbatifs
sont essentiellement limités à des fonctions à un point, et peu de résultats explicites ex-
istent pour des corrélateurs plus compliqués, avec une dépendance en plusieurs points
d’espace-temps. Un autre objectif de cette thèse est le calcul de ces corrélateurs, qui
donnent ensuite accès à des quantités physiques diverses, comme des temps de relax-
ation, de décohérence, ou des spectres de puissance.

Par exemple, le calcul du GRF dans l’APL permet d’obtenir la masse dynamique,
qui mesure l’amplitude des fluctuations locales du champ au sein d’une région de Hub-
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ble, mais donne une réponse incorrecte pour des quantités à temps inégaux, comme le
temps d’autocorrélation. On explore donc le GRF au delà de l’APL, en particulier pour
tester si les ordres supérieurs dans le développement en dérivées améliorent ce résultat.
Le calcul dans la théorie des champs Lorentzienne se révèle difficile [40], notamment
parce que l’on est obligé de calculer l’équation de flot pour la théorie complète avant
de prendre la limite infrarouge. Une alternative possible est de considérer une théorie
effective pour l’infrarouge, comme le formalisme stochastique. Il a été démontré que
le GRF appliqué sur ce dernier donne des résultats identiques à la limite infrarouge de
l’implémentation dans la théorie des champs initiale, dans l’APL [42]. Dans cette thèse,
on poursuit cette démarche, et on généralise ce calcul en utilisant le fait que l’approche
stochastique peut être vu comme un cas particulier du modèle A dans la classification
de Hohenberg et Halperin [66]. Ce dernier a été étudié en détail en physique statistique,
en particulier avec le GRF [67, 68]. Le point de départ est une formulation fonctionnelle
de l’équation stochastique, que l’on obtient avec la procédure de Janssen-de Dominicis
(JdD) [68–70]. Dans le contexte cosmologique, l’intégrale de chemin de JdD est uni-
dimensionnelle, et peut être vue comme une mécanique quantique supersymétrique,
qui a été récemment étudiée avec le FRG pour un champ scalaire unique [71]. En
s’appuyant sur ces travaux existants, on calcule l’équation de flot pour un modèle O(N)
de champs scalaires tests au delà de l’APL, à l’ordre suivant dans le développement en
dérivées. On vérifie que ce calcul reproduit le résultat de l’APL’, qui inclus une renor-
malisation indépendante du champ pour le terme cinétique, et a été calculé pour la
théorie des champs initiale [40]. La validité du développement en dérivées peut alors
être étudiée via un développement 1/N de l’équation de flot, que l’on peut comparer
à d’autres calcul en 1/N, également traités dans cette thèse. La précision constatée
pour le temps d’autocorrélation est autour de dix pourcent. La même précision est
obtenue dans la comparaison dans le cas un champ unique (N = 1), avec des résultats
numériques connus [18, 72].

Le résultat du calcul avec le GRF montre que l’obtention de formules analytiques au
delà de l’APL est difficile. De plus, s’il est en principe possible d’améliorer la précision
pour le temps d’autocorrélation en allant à des ordres supérieurs dans le développe-
ment en dérivées, on montre qu’il n’est pas à même de reproduire la bonne struc-
ture pour le propagateur à temps inégaux. Cette structure a toutefois été correctement
obtenue par la résolution des équations de Schwinger-Dyson dans deux cas spécifiques
[34, 35]. On applique donc cette méthode, directement à la formulation du formal-
isme stochastique en intégrale de chemin de JdD. On calcule les self-energies pour la
théorie effective supersymétrique à une dimension, dans un développement pertur-
batif jusqu’à trois boucles, ou à l’ordre sous-dominant dans un développement 1/N.
La comparaison avec les résultats obtenus dans la théorie des champs initiale montre
une correspondance parfaite pour le corrélateurs infrarouges, ce qui montre une équiv-
alence non triviale avec le formalisme stochastique. Ce contexte offre également une
méthode de calcul beaucoup plus simple pour les ordres supérieurs.

Enfin, on s’intéresse à la formulation de l’approche stochastique en termes d’une
équation de Fokker-Planck, exprimée comme une équation au valeurs propres [18, 72–
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74]. Ceci donne une explication naturelle à la structure du corrélateur que l’on ob-
serve à l’ordre sous-dominant [35], comme conséquence de la décomposition spectrale.
Dans cet esprit, la résolution des équations de Schwinger-Dyson permet de trouver
les première valeurs propres, par le calcul direct des corrélateurs. Par ailleurs, les
expressions obtenues à l’ordre dominant dans le développement 1/N ont une struc-
ture particulièrement simple, qui indique la possibilité d’obtenir l’intégralité du spec-
tre analytiquement. Ce dernier peut en principe être utilisé pour reconstruire n’importe
quelle observable. On s’intéresse donc à la possibilité d’appliquer un développement
1/N directement au niveau de l’équation de Fokker-Planck, et on calcule explicitement
les valeurs et fonctions propres à l’ordre sous-dominant (et sous-sous-dominant pour
quelques quantités spécifiques). Pour tester la validité du développement 1/N, on ré-
sout numériquement le problème aux valeurs propres pour un champ sans masse et
pour une valeurs de N arbitraire incluant le cas limite où N = 1. La comparaison entre
les résultats numériques et le développement 1/N montre un bon accord même pour
des valeurs de N relativement basses, y compris pour N = 1 dans certains cas.

La thèse est organisée de la manière suivante. Dans le premier chapitre, on rappelle
les raisons pour lesquelles on est amené à introduire une phase d’inflation dans le mod-
èle standard de la cosmologie, qui peut être approximativement décrite par l’espace-
temps de Sitter. On présente ensuite quelques aspects techniques concernant l’approche
semi-classique, en particulier à propos de la quantification du champ scalaire libre mas-
sif, pour souligner un aspect central de la théorie des champs en espace-temps de Sitter,
qui est l’amplification gravitationnelle des modes infrarouges. Le dernier outil que l’on
introduit est le GRF, formulé dans le formalisme de l’action effective moyenne.

On s’intéresse ensuite à l’étude du problème de la rétroaction dans le second chapitre.
On présente tout d’abord une extension minimale au cas de la théorie O(N) de champs
scalaires tests. Cela revient à considérer une métrique classique, mais renormalisée
uniquement par les fluctuations quantiques des champs scalaires, où l’on ignore en par-
ticulier les fluctuations de la métrique comme le graviton. On dérive ensuite les équa-
tion d’Einstein semi-classiques, que l’on utilise pour calculer le flot de renormalisation
du taux d’expansion de Hubble, dans la limite infrarouge. Le flot est dominé par le po-
tentiel effectif, qui est calculé à partir d’une théorie à zéro dimension. Le GRF permet
de considérer plusieurs conditions initiales, et on explore différents régimes, notam-
ment Gaussien, ou profondément non-perturbatif, avec une possible brisure spontanée
de symétrie au niveau classique. La limite où N est grand du flot de renormalisation
est également discutée, et permet d’obtenir des formules analytiques simples qui per-
mettent d’éclairer la physique mise en jeu.

Dans le troisième chapitre, après une brève dérivation du formalisme stochastique,
on rappelle la procédure de JdD. Quelques conséquences générales pour les corréla-
teurs sont discutées, et on extrait plusieurs contraintes, valides dans l’infrarouge, qui
donnent non seulement des interprétations intéressantes en termes de propriétés des
systèmes thermiques, mais aussi des relations utiles dans les calculs présentés par la
suite. Le GRF est ensuite implémenté, et on montre que le flot du potentiel effectif est
capturé exactement dans l’APL. Le flot de l’action effective est ensuite calculé au sec-

140



Bibliography

ond ordre du développement en dérivées, et la convergence est discutée dans des cas
spécifiques.

Finalement, le dernier chapitre s’intéresse à deux approches distinctes pour ex-
traire des résultats analytiques pour les corrélateurs dans un développement 1/N. Un
premier calcul résout directement les équations de Schwinger-Dyson à l’ordre sous-
dominant, en resommant une certaine classe de diagrammes à boucles. Le deuxième
formule un développement 1/N de l’équation de Fokker-Planck, exprimée comme
une équation aux valeurs propres. On calcule l’intégralité du spectre à l’ordre sous-
dominant.
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