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Abstract

The Internet of Things (IoT) based healthcare systems usually composed of medical and environmen-

tal sensors, remote servers, and the network. These systems focus on providing remote monitoring,

disease diagnosis, and treatment progress observation. The healthcare systems in IoT domain helps in

realizing long-term economical, ubiquitous, and patient centered care systems, that result in improving

treatment and patient outcomes. This research contributes to the domain by proposing a Cloud-Fog

based architecture that can embrace multiple healthcare scenarios, and able to adapt dynamically with

the context and status of the patients. It allows the mobility and physical activity of the patients in

the environment through deployment and implementation of an appropriate Received Signal Strength

(RSS) based handoff mechanism. It also proposes a mobility-aware task scheduling and allocation

approach in cloud-fog computing paradigm, called MobMBAR, with the objective of minimizing the

total schedule time (makespan). MobMBAR performs dynamic balanced healthcare tasks distribution

between the cloud and fog devices. It is a data locality based approach that depends on changing

the location where the data is computed to where it actually resides. It takes scheduling decisions

considering the priorities of tasks represented in their classifications and maximum response time.

To evaluate the performance, we conduct an intensive simulation study with different stationery and

mobility scenarios, and compare against other state of art solutions. We measure the performance

metrics: makespan, network load, energy consumption, percentage of missed tasks, latency, execution

cost, number of handoffs, and resource utilization, and study the effect of varying number of tasks,

number of cloud devices, handoff threshold, and percentage of mobile devices on the performance

metrics.

The experiments show acceptable results in terms of makespan, miss ratio, cost, latency, and net-

work load. In case of mobility support, it shows that missed tasks ratios doesn’t exceed one thou-

sandths percent, and is proven to be 88% lower than state-of-the-art solutions in terms of makespan

and 92% lower in terms of energy consumption. Our research also includes a realistic simulation case

study that uses the layout of an indoor hospital building in Chicago, and it has demonstrated accept-

able performance. To authenticate and secure communication between IoT device and gateways, the

thesis also proposes a DTLS (Datagram Transport Layer Security) based mobility-enabled authentica-
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tion scheme for IoT architecture. It ensures mutual authenticated handoff between mobile IoT devices

and visited gateways while saving additional handshakes overhead. The performance of the proposed

scheme is evaluated in terms of handshake time, processing time, energy consumption, and memory

overhead. The results demonstrate its feasibility for limited resource devices.
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Résumé

L’Internet des objets (IoT) est un système de santé basé sur des capteurs médicaux et environnemen-

taux, des serveurs à distance et le réseau. Ces systèmes se concentrent sur la surveillance à distance,

le diagnostic des maladies et l’observation de l’évolution des traitements. Les systèmes de soins

de santé du domaine de l’IdO contribuent à la mise en place de systèmes de soins économiques,

omniprésents et centrés sur le patient à long terme, qui permettent d’améliorer les traitements et

les résultats pour les patients. Cette recherche contribue au domaine en proposant une architecture

basée sur le principe du brouillard nuageux qui peut englober plusieurs scénarios de soins de santé

et s’adapter de manière dynamique au contexte et à l’état des patients. Elle permet la mobilité et

l’activité physique des patients dans l’environnement grâce au déploiement et à la mise en œuvre

d’un mécanisme de transfert approprié basé sur la force du signal reçu (RSS). Il propose également

une approche de planification et d’attribution des tâches tenant compte de la mobilité dans le cadre

du paradigme de l’informatique dans le brouillard, appelée MobMBAR, dans le but de minimiser le

temps total de planification (makepan). MobMBAR effectue une répartition dynamique et équilibrée

des tâches de soins de santé entre les dispositifs de brouillard et de nuage. Il s’agit d’une approche

basée sur la localisation des données qui dépend du changement de l’endroit où les données sont cal-

culées à l’endroit où elles résident réellement. Elle prend des décisions de planification en tenant

compte des priorités des tâches représentées dans leurs classifications et du temps de réponse maxi-

mum. Pour évaluer les performances, nous menons une étude de simulation intensive avec différents

scénarios de papeterie et de mobilité, et nous les comparons à d’autres solutions de pointe. Nous

mesurons les paramètres de performance : la capacité de production, la charge du réseau, la consom-

mation d’énergie, le pourcentage de tâches manquées, le temps de latence, le coût d’exécution, le

nombre de transferts et l’utilisation des ressources, et nous étudions l’effet d’un nombre variable de

tâches, du nombre d’appareils en nuage, du seuil de transfert et du pourcentage d’appareils mobiles

sur les paramètres de performance.
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Les expériences montrent des résultats acceptables en termes de rendement, de taux d’échec, de

coût, de latence et de charge du réseau. Dans le cas de l’assistance à la mobilité, le taux de tâches

manquées ne dépasse pas un millième de pourcent, et il est prouvé qu’il est inférieur de 88 % aux

solutions de pointe en termes de durée de vie et de 92 % en termes de consommation d’énergie.

Notre recherche comprend également une étude de cas de simulation réaliste qui utilise l’aménagement

d’un bâtiment hospitalier intérieur à Chicago, et qui a démontré des performances acceptables. Pour

authentifier et sécuriser la communication entre les dispositifs IoT et les passerelles, la thèse propose

également un schéma d’authentification mobile basé sur la DTLS (Datagram Transport Layer Security)

pour l’architecture IoT. Il garantit un transfert mutuel authentifié entre les dispositifs IdO mobiles

et les passerelles visitées tout en évitant des poignées de main supplémentaires. La performance du

système proposé est évaluée en termes de temps de transfert, de temps de traitement, de consommation

d’énergie et de mémoire. Les résultats démontrent sa faisabilité pour des dispositifs à ressources

limitées.

V



Contents

Acknowledgement I

Abstract II
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Chapter 1

Introduction

1.1 Internet of Things

Internet of things (IoT) is defined as the communication between multiple heterogeneous devices,

through different communication technologies, and to the Internet, for the purpose of proposing vari-

ety of services to be applied in a variety of applications. IoT is a multi-disciplinary field that utilizes

the Internet in addition to different fields of computer sciences all together to achieve the required

benefits of system intelligence and connectivity. Networking, robotics, embedded systems, machine

learning, computer interfacing, and security are examples of computer sciences that are used to allow

IoT devices to collect, exchange, process, and share information and transfer it to a valuable meaning

without human intervention. The IoT devices that can be deployed depend on the application, but

can mainly be one of smart home appliances, environmental and wearable body sensors, intelligent

medical objects, and electronic devices such as smart meters. Internet of things have been utilized and

exploited in multiple applications ranging from small scaled home environment to larger city’s im-

plementation. Among these applications, the most popular are smart home, smart city, transportation,

and healthcare. However, a growing interest and focus on Internet of things for healthcare is adopted

by the healthcare sector. Multiple factors are affecting this orientation such as the rapid investment

in economical smart medical devices and high-speed technologies in addition to the research rising in

advanced IoT infrastructures focusing on active patient-centric care. This in turn leads to the evolution

of term Internet of medical things (IoMT) which potentiate the leverage of IoT dedicated to healthcare

1



and medical technologies.

1.2 Problem Statement

Healthcare data has stringent requirements for quality of service (QoS), security, confidentiality, avail-

ability to authorized users, traceability of access, and long-term preservation. All these requirements

are accompanied with an expected growth in the number of IoT devices. According to IDC (Interna-

tional Data Corporation), IoT market will grow to 75.4 billion IoT connected devices in 2025, gener-

ating 79.4 zettabytes (ZB) of data, where healthcare is forming the highest percentage of about 41%

of this market surpassing other segments such as manufacturing, vehicles, agriculture, etc. [4], [5].

This prediction poses the challenge of handling this big volume of generated data in terms of storage

and processing in accordance with the diversified nature of this data . Adding to that, the challenge of

medical emergency cases that are sensitive to latency. Consequently, this brings up the need for the

design and implementation of architectures that support these challenges.

1.3 Contributions of Thesis

This research aims at proposing an inter-operable cloud-fog based IoT architecture for healthcare.

The proposed architecture supports the mobility of the patients as well as the diversity of the medical

cases. Taking into consideration the constraints of the application and the intended outcomes, our

contribution can be summarized as follows:

1. Present the proposed architecture, environmental context, and user context, the features of the

individual modules, and the interconnection between the different underlying modules. The

networking technology between layers is defined and clarified.

2. Propose, design and implement a task scheduling and allocation approach to effectively bal-

ance healthcare tasks distribution with the objectives of minimizing the latency, and ensuring

reliability such that critical tasks can meet their deadlines. We compare and evaluate different

reallocation methodologies and present the results.
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3. Analyze different mobility-support and hand-off mechanisms, and hence propose and imple-

ment a technique that handles the mobility. In this way, sensing coverage and connectivity in

the proposed architecture can be enhanced even and while the patient is moving without threat-

ening the health of the patient. The proposed approach is two-fold: (a) the first is to guarantee

the connectivity of the mobile patients to their gateways through proposing and implementing

an RSS based handoff mechanism. (b) the second is to guarantee the continuous processing of

healthcare services specially eliminating the latency problems associated with the change in the

location and timing of the data aggregated and stored at the fog devices. This point is accom-

plished by proposing a mobility-aware task scheduling and allocation approach (MobMBAR).

In the context of this part, we compare against the different existing approaches for IoT based

Healthcare such as cloud computing only, cloud-fog architecture, in addition to other scheduling

technique. We also propose a case study to evaluate (MobMBAR) in real conditions.

4. Propose and implement a scheme to maintain privacy while handling the mobility of the pa-

tients and their attached IoT devices. We design, implement, and evaluate a mobility-enabled

datagram transport layer security (DTLS)-based authentication scheme for dynamic mobile IoT

environment.

1.4 Thesis Outline

The thesis is organized as follows:

• Chapter 1 provides an overview about Internet of things for healthcare, problem statement, mo-

tivation and contribution of our presented work.

• Chapter 2 exposes the previous and current explorations of IoT for healthcare including ap-

plications, sensors, architectures, and network technologies through presenting the literature

investigating these domains.

• Chapter 3 reviews task scheduling and allocation in IoT through describing the requirements,

optimization metrics, and recent researches.
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• Chapter 4 reviews security and privacy in IoT healthcare. It lists the requirements and surveys

existing protocols and mechanisms.

• Chapter 5 presents the proposed inter-operable cloud-fog based IoT architecture for healthcare

and scheduling and allocation approach, implementation details, and performance evaluation.

• Chapter 6 presents the extension of the architecture to support the mobility of the patient, per-

formance evaluation, and a comparison against different architectures and approaches in the

vicinity of integrated Cloud-Fog IoT and Cloud-Only IoT. Furthermore, it provides a case study

simulation in real conditions.

• Chapter 7 presents a privacy preserving approach within the scope of the proposed architecture

and its evaluation.

• Chapter 8 concludes the work and recommends the future work.
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Chapter 2

Literature Review

At present, most medical technical devices come with some form of connectivity, from wearable

devices such as biosensors to X-ray machines with Wi-Fi or Bluetooth. This allowed IoT to be the

key enabler in healthcare industry through the integration of medical devices with IoT. IoT dedicated

for healthcare aims at improving the quality of life for elder and unwell people by facilitating their

movement, helping them in their daily activity routines, besides supporting them in their healthcare

treatment plan in hospitals and homes. The main advantages brought to healthcare domain by IoT

are the reduction of costs and time to perform healthcare processes and tasks, and the provision of

fine-grained healthcare activities and decisions coping with the rising number of medical cases while

preserving the number of care givers. There is a growing body of literature that recognizes how IoT

promotes healthcare. This chapter proposes different aspects of this wide adoption.

2.1 IoT Healthcare Applications

IoT healthcare applications emerge specific QoS requirements that differentiate them from other IoT

applications. Delay sensitivity, time criticality, and user mobility features are of the crucial features. In

addition, data collection and processing are prone to real-time variations due to multiple reasons. First

of all, the data collected from body sensors, which are used as an indication for the vital signs of the

patient, has different levels of priorities. Because medically-wise, some vital signs indicate emergent

status of the body. These data may need to be collected and/or processed in varying order. Secondly,

these priorities change dynamically based on the medical status of the patient. For example, if the
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processed vital signs indicates an emergent case for the patient, the rate of the collection may increase

or new tasks may be generated to be processed immediately such as controlling a specific actuator

or sending an alarm message. In addition, if the infrastructure comprises of multiple patients with

different medical cases, the dynamic nature and the variation have to be handled more appropriately.

The key characteristics of IoT healthcare application include:

• Heterogeneity of devices: IoT healthcare applications demand the usage of wide range of het-

erogeneous sensors. The first type is the body sensors (wearable or implantable) classified into

biomedical and activity sensors. Biomedical sensors are mainly targeted to record the health and

physiological vital signs of the patient. Activity sensors are any body worn devices that can help

for determining the location, posture and position of the patient. Examples on body sensors are

heart rate, blood pressure, Electrocardiography (ECG), Electromyography (EMG), gyroscope,

etc. The second type is the environmental sensors for measuring the contextual environment

around the patient. They can be mechanical, acoustic, optical, chemical, force, proximity and

even imaging sensors. Examples are temperature, humidity, infrared, contact, cameras, etc. A

list of possible sensors that are utilized in IoT healthcare and their measurements are shown in

table 2.1. The Heterogeneity can also exists in the connectivity capabilities whether bluetooth,

zigbee or wifi, etc.

Table 2.1: IoT healthcare sensors

Sensor Measurement Unit

Wearable - Biomedical

temperature measures body or skin temperature Celsius degree

ElectroCardioGgram records electrical activity of heart Volts per second

(ECG) electrode (to infer heart beat)

ElectroEncephaloGram records electrical activity of brain Volts per second

(EEG) electrode
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ElectroMyoGram records electrical activity through Volts per second

(EMG) electrode muscles

pulse oximeter
measures the oxygen saturation percentage

in the blood of the patient

glucose level
calculates the amount of sugar electrical signal (Volt)

in the blood

respiration monitors abdominal or thoracic Breaths Per Minute

piezoelectric breathing (BPM)

oscillometric device provides automated oscillometric millimeters of

blood pressure measurement mercury (mmHg)

Wearable - Activity

accelerometer measure the linear acceleration meter per second2

gyroscope measures angular velocity Degrees per second

to infer orientation

magnetometer measures the magnetic field micro Tesla

(magnetic sensor) for physical axes(x, y, z) to

infer orientation

Environmental

ambient temperature measures the degree of Celsius degree
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indoor temperature

relative humidity measure the percentage of percentage

indoor humidity

light measure the indoor illumination Luminous flUX per

unit area (LUX)

electrochemical measure the quantity of CO2 parts per million

carbon dioxide present in the air

gas sensor detects the presence or concen- parts per million

tration of gases in the atmosphere or (percentage)

imager captures the optical information digital or analogue

(image sensor) signals

microphone measures the intensity of the decible (dB)

sound in the air

pressure detects physical pressure on objects Newtons

smart tiles detects physical pressure on floor Newtons

Passive InfraRred measures infrared light radiating Volt with high value

(PIR) from objects to infer motion represents motion

• Latency sensitivity: Healthcare implementations usually implies taking care of the health of
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the person on the short term or the long term, In both cases, it is considered an emergency to

prevent the patients from falling into a health risk specially life threatening. To support medical

emergency, it is required to provide accurate monitoring, quick detection of risk situations, and

real-time care response from system and/or caregiver. The delay in any of these phases exposes

the patient and the system to very high danger.

• Big volume of data: The raw data is collected from numerous sensors existing in the environ-

ment. In addition, the data is collected with high sampling rate over a long duration that can

reach up to days. This production of massive amount of data requires the system to analyze,

store, and to infer notable outcomes. The processing of big data is not an easy task that requires

acute quick task scheduling, allocation, and distribution. Similarly, this voluminous data demand

storage and retrieval in addition to the management of such operations whether in the cloud or

in the servers at the site (edge), or the integration of both proposed as a hybrid methodology.

• High security and privacy requirement: One of the big challenges in IoT healthcare is main-

taining the security of the data gathered and the privacy of the patient served. Multiple factors

have to be guaranteed such as authenticating the communicating peers and devices for the data

exchanged between them to be trustworthy, and hence to protect the data. Furthermore, proper

access control mechanism have to be setup and implemented to allow the client and health care

providers to interact securely. Adding to that, the need to preserve the identity of the patients

if required due to working on personal information. All of these parameters determines the ac-

ceptance or the abandonment of the patients to enable these systems to enter their life. Also, It

provokes the legal entities towards the legislation of such projects and hence, embedding them

into the society.

• Mobility: Healthcare applications seek to fulfill the human nature of the beneficiary patients

who is at the end a person unwilling to be mobility restricted. This is referred to as the quality of

life. In other terms, the quality of service proposed by the IoT healthcare application represented

in have to be accompanied by the quality of life of the patient. This in turn mean the guarantee

of continuous supply of the networking, processing reliable health services whether monitoring
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or treatment. Hence, supporting the mobility characteristic in an IoT healthcare application is

of great demand.

2.1.1 Remote Monitoring and Abnormality Detection

Remote monitoring is defined as long-distance clinical healthcare applications that observe vital signs

of the patient such as blood pressure, glucose level, oxygen saturation, heart rate, ECG ( electrocar-

diogram), EMG (electromyogram), and EMG (electroencephalogram) signs in addition to activity.

Abnormality or Anomaly detection refers to the recognition of unpredicted health state or activity of

the patient. An example can be a measurement of a vital measurement passing a threshold such as

the heart rate. The detection of such cases is considered a second level of monitoring which helps in

proposing immediate action in critical situations.

A patient activity monitoring project entitled SPHERE (Sensor Platform for Healthcare in Resi-

dential Environment) highlights an e-health platform based on a collaborative IoT research by three

universities in UK [6]. The project encompasses three types of sensors: wearable, vision and envi-

ronmental for the purpose of monitoring the movement of the patient in addition to the surrounding

environment. The environmental sensor BLE (Bluetooth low energy), IEEE 802.15.4 equipped board

is responsible of sensing the temperature, humidity, light, air pressure, motion, and noise level sens-

ing. The wearable unit is an accelerometer sensor based board responsible of tracking the activity.

Finally, the RGB-D camera unit is considered the vision board. Whilst in [7], the authors propose a

mobile health application for monitoring glucose level in the patients suffering diabetes. They exploit

IEEE80.15.4 compliant wireless device equipped with glucose sensors in a constrained environment.

An energy saving healthcare IoT approach is proposed in [8]. Based on RFID system, their work is

to be able to monitor vital signs such as glucose level, heart beat, and blood pressure. The authors in

[9] propose a monitoring system for breathing-problems patients. The clinical platform is composed

of gateway and mobile vital sign monitoring board capable of sensing patient’s oxygen saturation.

ECG monitoring is a common application which is addressed in multiple works such as [10], [11],

[12], [13] and [14]. These application tends to propose and use feature extraction algorithms and

classifiers to detect notable ECG information such as QRS, QT and PR intervals. Fast detection of
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heart attack symptoms helps in preventing the deterioration in patient’s health condition. The work

in these article vary between IoT applications that depend only on the ECG signal inferred from the

wearable sensors, and exploiting the aid of the surrounding environmental signal to strengthens the

decision taken about the patient.

An IoT health project named TIHM(technology integrated health management) is proposed in [15]

for health monitoring. It helps to monitor dementia patients - usually elder people - who need a con-

tinuous care due to their memorizing, thinking and socializing disabilities. They can fall into social

and health problems in addition to probability of being alone which in turn requires automatic health

support. TIHM utilizes wearable sensors: blood pressure, pulse oximetry, body temperature, weight,

body water, in addition to environmental sensors: PIR, door sensor, room temperature, room humidity,

and object occupancy to infer the status of the patient by applying rule-based reasoning algorithms.

Similar work is proposed in [16] which describes a general comprehensive IoT architecture for moni-

toring the patients. The main focus of this article is on the layers and components of the architecture

model instead of the medical case. This will be discussed in more details in section 2.2.3. In addi-

tion, healthcare monitoring applications occasionally include treatment followup plans such as insulin

delivery and cancer treatment.

2.1.2 Disease Diagnosis and Classification

Healthcare diagnosis aims at disclosure of specific disease or health situation related to the patient

through utilizing IoT system. This IoT diagnostic system gathers the health information from the

wearable or implantable sensors and then utilize the medically developed methods to predict a disease

based on the council of the medical expert.

The authors in [17] propose a work to predict the diabetes patients in addition to classifying the

severity and level of the disease. They propose a Neural Classifier based on fuzzy rule where they

apply the algorithm on a data set from UCI Machine Learning Repository stored at the cloud that was

collected from an IoT wearable sensors. In [18], the authors tend to diagnose the patient’s disease

based on vital data collected from wearable and implantable sensors such as ECG,EEG, and blood

pressure. They firstly generate a profile for the user containing general and health information such
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as the age, gender, weight, systolic blood pressure, etc. Next, they propose an algorithm to analyze

the potential probability of the diseases with its level. They build their knowledge based on medical

experiences in books and from advisors. Another work is presented in [19] that targets to diagnose

heart disease automatically based on an integration between IoT and fog computing. They utilize deep

learning with that is adapted to fit in the constrained infrastructure of IoT to perform heart analysis

for the patient. The multimodality sensing boards collect the vital health data: ECG,EEG, EMG,

temperature, respiration rate, glucose level, and oxygen level in addition to activity and environmental

data.

2.1.3 Activity and Fall Detection

Similar to the recognition of the abnormal vital signs of the patient, it is important to recognize the

abnormal movements or activities of the person to be able to provide protection or propose quick

helping response. Several articles proposed methods to record and infer the activities of the patient

specially the falling.

The authors in [20] aims at recognizing the critical changes in bipolar disorder patients which can

also be called manic depression where patients suffer sharp swings in their modes. In its negativity

round, this illness can pave to a great risk of bad results on the patient’s behavior. The work tends

to record social, physical and travel data of the patient’s day such as phone call’s number, duration,

sound, speech, and voice data captured from patient’s smartphone. Next, machine learning algorithms

such as linear discriminant analysis and naı̈ve Bayes classifier are applied to extract the features. In

[21], a system is proposed to detect the fall of the patient depending upon wearable sensors in and IoT

environment in an energy efficient way. Through deploying motion sensors: accelerometer, magne-

tometer, and gyroscope, the authors could infer rate of velocity change, absolute magnetic intensity,

and orientation (angular motion) of the body respectively. These data are combined to calculate falling

features parameters through vector operations such as sum vector magnitude (SVM) and differential

SVM which in turn are used to detect the fall. The authors study different factors affecting the energy

consumption of the sensor device such as: sampling rate, communication system, and divergent con-

ditions of transmission. Prime survey are conducted focusing on fall detection and fall prevention as a
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standalone domain that covers the methodologies, architectures and sensors in IoT. Examples on such

survey can be found in [22], [23] and [24].

2.1.4 Sensor Fusion

Multi-sensor fusion techniques are the techniques that combine several unrelated devices and sources

of data to be processed together for better quality of services. Multi-sensor data fusion is presented

to obtain better results from the aforementioned different sources [25], [26], [27], [28], [29]. These

multi-sensor fusion approaches increase the reliability and robustness of the healtchcare systems by

reducing the threatens posed by various malfunctions in the sensors and environment itself such as the

power and communication [30]. In addition, global decisions can be taken based on the dependability

between the data sources.

Several surveys have been conducted on multi-sensor fusion techniques. A survey on multi-sensor

fusion techniques in body sensor networks can be found in [31]. The authors categorize the fusion

process according to the level where the fusion is performed: data-level, feature-level or decision-

level. The authors focus on fusion of the sensors mounted on the body for the purposes of different

applications including the recognition of activities and emotions, and general health. But how the

multi-sensor fusion process affects the different healthcare applications is not tackled such as study-

ing the influence of numerous techniques on the detection and diagnosis of diseases. Another survey

paper in [32] discusses the data fusion mathematical methods. The authors focus on the probabilistic,

artificial intelligence and evidence based methods for data fusion in applications including multi-target

tracking, environmental monitoring and remote sensing without reviewing any techniques applied on

healthcare applications. The authors discussed environmental challenges in IoT such as the distribu-

tion of the environment, heterogeneity and non-linearity and its affection on the process of data fusion.

In [33], the authors propose a survey on data fusion in IoT in correspondence with the term context

awareness. The authors categorizes the data fusion technique to three levels as reviewed in [31]. They

propose explicit details of the advantages and limitations without referring to the application where

the fusion technique is implemented. The paper in [34] proposes the state of the art of the data fu-

sion techniques applied to the sensors settled in mobile devices. These techniques are distinguished
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to be suitable for the different constraints on the mobile devices such as the limited processing and

power capabilities and also distinguished for working on specific sensors equipped in the mobile de-

vices. The work in [35] presents ten parameters to evaluate sensor data fusion frameworks. Next, the

authors focus on one of the proposed parameters ”fusion complexity” to evaluate different proposed

approaches for sensor fusion. According to authors of [30], sensor fusion can be categorized into data-

level, feature-level and decision-level. In data-fusion, the raw data coming from sensors are combined

directly. In feature-level fusion, the features of the data collected from the different sensors are firstly

extracted and then fusion technique are applied on the features for the purpose of combining them. On

the other hand, decision-level fusion includes applying data mining, machine learning and computer

vision techniques on the different decisions gathered from the processing of the individual sensors

for the purpose of reaching a global decision. Several techniques of decision-level sensor fusion cate-

gory are used in healthcare systems for multi-modal sensors including intelligent fusion based models,

e.g. fuzzy logic based techniques, probabilistic and statistical based models e.g. Bayesian reasoning

and Markov Decision Process and Dempster Shafer theory. Other models such as data mining based

models and threshold technique based models also exist. The following paragraph focuses on the

methodologies of decision-level sensor fusion category.

The main metrics authors used for measuring the performance of the decision-level fusion tech-

niques are: sensitivity, specificity, error rate and perfect classification. Sensitivity measures the pro-

portion of positives that are correctly identified. In the healthcare domain, sensitivity means the ability

of a test to correctly identify the status of the patient such as correctly reporting a disease, health

condition, or falling in case of fall detection applications, etc. Whereas specificity measures the pro-

portion of negatives that are correctly identified. Respectively in healthcare domain, it is the ability

of the test to correctly identify those without the disease or not having specific health condition or not

falling in case of fall detection applications. Perfect classification is one of the parameters that are

used to validate a classifier and is defined as the number of correctly classified samples to the total

number of samples [30]. While error rate is the number of wrongly classified samples to the total

number of samples. A summary of fusion techniques in IoT healthcare is presented in table 2.2. The

choice of the sensors differs according to the type of the disease and the type of application. Most
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Table 2.2: A summary of fusion techniques in IoT healthcare
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of applications that perform health monitoring uses all the vital signs sensors, while applications that

perform fall detection mainly depend on the posture sensors such as the tri-axial wearable accelerom-

eter. On the other side, activity monitoring applications rely on environmental sensors such as optical

and mechanical. The processing is mainly centralized in almost all of the proposed techniques where

the data from the sensors are sent to the processing unit. The performance metrics shown in table 2.2

are guiding factors to compare the quality of different decision-level techniques. Table 2.3 lists the

pros and cons of different decision-level fusion techniques in healthcare domain.

2.2 IoT Architecture for Healthcare Systems

2.2.1 Cloud Computing Vs fog Computing

IoT architectures for healthcare are extending from traditional architectures to more comprehensive

ones to be able to help in the medical sector and provide better services to the healthcare domain. IoT

architectures for healthcare describe a context of a hospitalized environment, assisted living environ-

ment such as convalescent home or even a personal home that comprises multiple layers and devices

where IoT devices settle in the lowest layer. IoT devices include multiple medical body sensors and

actuators, motion devices, and environmental sensors. These devices are connected to communica-

tion devices in upper layer(s) which are responsible for transmitting the health data from their source

of generation until reaching their permanent storage at the destination layer (usually cloud storage).

This data is further queried or deeply analyzed by the doctors and the care givers. The nature of the

data stored and analysed at the cloud can be classified into raw data and processed data. Data is raw

if the design of architecture is based on cloud computing only. On the contrast, the data is fully or

partially processed in the case that the architecture embraces other computing infrastructure such as

fog computing.

In cloud computing explorations, datacenters at the cloud side are responsible of performing the

computing and storing the data. This in turn requires continuous sending of large sized data and

demands between the cloud and the IoT devices over a far distance through the Internet. Cloud based

architectures were considered the base to current IoT enabled solutions till recently where attempts are

16



Table 2.3: Comparison of decision-level fusion techniques in healthcare

Technique Pros Cons

Fuzzy logic • Deals with ambiguous input sensors • Mismanage the dependencies

• Flexible between the input senosrs

• Adaptable

• Can be merged with other techniques

(hybrid techniques)

• Most used in monitoring and

classification applications

Bayesian • Simple • Limited scalability

• Dependencies between sensor inputs • Requires prior knowledge

are allowed of medical information

• Behaves better in multi-sensor inputs

• Most used in fall detection applications

Markov Process • Usually built based on binary sensor • High computational

inputs (eliminating ambiguity, easy complexity

environment setup) • Usually combined with

• Most used in detection and predication other fusion method for

of daily activities and abnormality inferring the final decision

detection

Dempster-Shafer based • Deals with uncertainties • Computational overhead

• Works well with limited number of increases proportional with

sensor inputs despite being heterogeneous number of sensors

Threshold technique • Good results when applied to specific case • Case based scenarios

• Can be applied in different applications • Limited papers addressing

healthcare domain

17



made so that cloud computations are pushed to network boundaries for which the term fog computing

is established.

Due to the advances in Information and Communication Technology (ICT) devices in terms of

computation, communication and storage, the fog computing term is introduced where the computa-

tion is transformed to the edge of the network. Fog computing refers to a group of small scale data

centers installed as a middle of the road layer between the cloud and the things (IoT devices) [47].

These fog devices are traditional devices such as wired or wireless switches and routers, in addition

to microcomputers. Fog computing is used in several domains such as in [48], where fog devices

are utilized to support peer-to-peer cashing in content delivery networks (CDN). These fog devices

have computation, storage and networking capabilities. Fog devices have multiple functions to per-

form such as handling the computation of raw data produced by sensors, communicating with similar

corresponding fog devices in the same layer or other layers in the hierarchy for further or combined

processing. Examples of local processes that can be performed on fog devices are described in [49]. In

the environment of fog computing, the intelligence and processing are placed at the local area network

(LAN).

The architecture is popularized as integrated Cloud-Fog based architecture in the case that the IoT

architecture is jointly fog-computing and cloud-computing based. Cloud-Fog integrated IoT architec-

tures are recently proposed targeting many applications including healthcare. Healthcare services with

high quality are provided through the collaboration of heterogeneous computational devices existing

in the fog environment with the processing devices in the cloud [50]. High-grade services of health-

care therefore can be accomplished through on-site execution of the emergent and time sensitive tasks.

The motivation for building such kind of paradigm is achieving the trade-off between larger comput-

ing and storage resources available on the cloud, and the reduced communication latency, bandwidth

and monetary costs in addition to security in fog environment. Table 2.4 describes the QoS require-

ments and their relation with fog and cloud computing characteristics for fulfilling the demands of IoT

healthcare application.
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Table 2.4: QoS Requirements and their relation with fog and cloud computing characteristics

QoS Requirements Fog Computing Characteristics Cloud Computing Characteristics

Scalability Distributed deployment support Centralized deployment support

Delay sensitivity
Low latency due to on-site

processing
Delay tolerant

Energy efficiency
Reduced energy consumption due

to short range communication

Increased energy consumption due

to long range communication

Reliability Small and medium sized tasks Computing intensive tasks

Geographical

arrangement
Distributed Centralized

Privacy
Environment controlled to some

level due to local connectivity
Data needs higher protection
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Cloud Computing

Several IoT cloud-based architectures for healthcare have been proposed. Traditional infrastructures

involve a set of cloud resources accessed remotely by the users. The authors in [51] propose a smart

healthcare system called Health-CPS which is intended for aiding in healthcare application services

such as statistical monitoring, knowledge and prediction. The architecture consists of three layers:

1) the unified data collection layer where individual activity and emotion data can be collected from

the IoT environment in addition to other clinical and research data, 2) the data management layer on

the cloud where data from multiple heterogeneous sources is analyzed and stored, 3) the application

service layer where APIs are provided for the users to access the system and retrieve information. In

[52], a system is introduced to monitor patients with chronic diseases using a mobile device and a

server. The architecture is divided into two components. The client component is a mobile device for

interfacing with the patient. The server component contains context detector and a reasoning engine

responsible for performing the inferences on the data. In [53], the authors propose a remote monitoring

and processing system based on bio-potential signals from the patient. The architecture is composed

of IoT body sensing devices, the gateway and the cloud. The data is transmitted to the cloud where

a processing classification algorithm is performed. The user can access the results of the analysis

through a cloud-based application.

The work in [54] proposes the Ubiquitous Healthcare System (UHS) architecture intended for the

elderly. The proposed system works on several factors aiming to help the elderly in terms of providing

home care services, emergency assistance, and remote medical services. Two systems are proposed

which are the Web-based User Remote Management Service (WURMS) and the Multimodal Inter-

active Computation Services (MICS). The architecture is composed of the IoT sensor layer, (push

buttons,cameras, sound sensor, physiological sensors) connected to the cloud servers layer where the

processing is performed. The service provided requires the implementation of audio and visual tech-

niques on the cloud including speech/sound recognition, speaker identification, face identification,

sound source estimation, text to speech (TTS), and event recognition. In [55], a cloud-based health-

care system is built to monitor the status of the patient through the measurement of ECG signals. A

feedback medication modification is returned to the patient through a mobile device. The architecture
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is composed of three parts: a data acquisition module, a mobile system, and a cloud computing web

server module.

In [56], a cloud-based preventive health monitoring system is proposed to help users maintain and

prevent their health from catching a disease. Cloud services contain the central database holding pa-

tient’s health status and accessed from multiple different doctors/experts through web services. The

health status of the users such as blood pressure, body fat, weight and agility are analyzed and mon-

itored by health assessment systems on the cloud. The assessment systems perform evaluation of the

health risk factors. If exist, the user can work out to maintain their health. Traditional IoT archi-

tectures that are based on cloud computing adds several limitations to the current healthcare systems

despite their huge capabilities. Limitations include huge processing cost due to reserving the cloud

processing devices and data transmission costs and high overhead degrading network performance.

Moreover, extra time connecting to the cloud adds a high latency limitation which is unacceptable for

the criticality and time sensitivity nature of the healthcare applications.

Fog Computing

On the other hand, some authors proposed fog computing based healthcare architectures. A fog based

system for e-health is proposed in [57]. The system aims for detecting abnormal events such as patient

falls and gas leaking in a home environment. In the proposed architecture, the fog devices stores

the medical data gathered from the home devices and sensors in addition to performing the signal

processing. The cloud devices receives and stores the meta data sent from the fog devices. Two

algorithms are implemented for fall detection and gas detection. This system is practically designed

and implemented only for two static scenarios. In [58], authors propose using fog computing devices

(represented by mobile device held by the patient) along with cloud computing servers for a pervasive

fall detection health system. The authors propose a distributed fall detection algorithm where part

1 of the algorithm which is performed on the mobile device processes light weight computation for

threshold based fall detection algorithm. Part2 performs analytics based fall detection algorithm which

has higher accuracy but is complex to be implemented on smart phones. The final decision that fires

the alarm at the patient side is based on results obtained from both implementations specifically the
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edge (mobile) based when connection to the cloud is disconnected or have problems.

Despite that the aforementioned two fog-cloud based papers are only limited to simple processing

that can be processed on the mobile devices, other proposals define the fog devices and their processes

as being more complex such as [59][60][61]. In [59], the authors propose a fog computing architecture

for the aim of clinical speech processing for patients with Parkinson’s disease. Processing is performed

on a fog computer where the cloud is only used for the long term storage. The data are gathered though

a smart watch and then the processing is performed on a fog computer (Intel Edision) in the home.

The cloud layer is used for the storage of the extracted features for longterm analysis. Another work

is proposed in [60] for Chronic Obstructive Pulmonary Disease patients. The authors focus on the

idea of the existence of real-time processing provided by the fog to cloud (F2C) concept. The work

lacks the details about the processing devices, place, capabilities, and how tasks are handled between

the fog and cloud. Generally speaking, the existing work is very specific to certain medical use cases.

In addition, all complex processing is performed on the cloud layer even if it is emergent and greatly

affects the latency.

2.2.2 Cloud-Fog IoT Architectures for Healthcare

Recent research directions in IoT architectures are moving towards exploiting fog resources along with

cloud resources for the purpose of better QoS [62], [63], [64]. In [14], an approach is proposed for

health monitoring relying on the fog layer to save bandwidth of the network. In their work, the fog

layer performs event classification based on Bayesian Belief Network (BBN) classification method.

The classifier defines the status of the patient into normal or emergent in which a DOI (degree of

impact) output is produced. If DOI is over specific threshold, all the signals are sent to the cloud

for processing. Hence, all the health services are processed on the cloud layer, and fog computing is

utilized for determining whether or not tasks are going to be executed on the cloud. The main sensors

they are body temperature, blood pressure, heart rate and glucose level. The authors measure the

accuracy of the classification method used and the classification time.

The authors in [61] propose an architecture where a one low powered fog computer performs

data onsite processing. In this work, the authors utilize the fog gateway computer to perform one of
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defined tasks: dynamic time wrapping, clinical speech processing chain, compression, and data reduc-

tion. Only one service is performed on that fog device depending on the medical case chosen for the

case study. Utilizing this partial processing on the fog computer, the authors can reduce the size of

data permanently sent the cloud. Hence, their QoS can be achieved through bandwidth utilization and

energy efficiency by the means of reduction of transmission power consumed when sending to cloud

layer. In [59], the authors perform analysis of speech tele-treatment in the fog environment through

presenting fog computing interface (FIT). The authors utilize Intel Edison tablet representing a fog

device. The fog device collects data from one patient and performs speech processing (feature extrac-

tion) and then the results are forwarded to the cloud layer. The purpose is enabling the cloud layer to

work on the extracted features directly. The authors evaluate their performance through the measure-

ment of speech features such as loudness and spectral centroid, and the impact of the amplitude of the

speech signal on these factors.

The approach used in [58], where the fog device is represented by a smartphone, is similar to that

used by [59] in partitioning the analysis processes between the fog device and the cloud. Based on

prefixed installation, the fog smart phone is responsible for executing a threshold based fall detection

algorithm. Whereas a more accurate and complex fall detection algorithm based on non-linear time

series analysis is used on the cloud layer. Feedback messages is mutually exchanged between both

devices in order to produce the best accuracy. The authors evaluate the accuracy of system through

measuring the sensitivity and specificity of the classification algorithms performed. In addition, the

energy consumed by smartphone during the sensing (gyroscope and accelerometer sensors) and com-

putation is measured. Finally, the authors also measure the response time which indicates the time for

the detection of the activity of the patient. The work in [57] proposes an architecture for smart home

application specifically fall and gas leaking detection. It uses a standardized method that repeatedly

executes thresholding algorithms implemented on the fog device. Thus, their work considers local

processing on fog device (Arduino Uno board) while the cloud layer is used only for storing patient

medical information. The QoS that the authors take into consideration is the accuracy of detection

which corresponds to percentage of correctly classified falls for fall detection, and correctly classify-

ing the gas leakage into 1 of 10 classes. In the same way, other example in [60] introduces assistant
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systems for Chronic Obstructive Pulmonary Disease (COPD). The authors refers that the health tasks

are executed exploiting fog computing without describing an architecture for linking between the pa-

tient, IoT device, fog device, or cloud device. The tasks are mainly concentrated on measuring the

oxygen saturation, the patient’s activity, and controlling the oxygen doses provided to the patient.

Their target objective is medical wise where they study how the mobility of the patient affects the

oxygen measurement and doses values which unrelated to any networking or computation QoSs.

To conclude, Cloud-Fog IoT architectures dedicated for healthcare published in many recent re-

search are addressing specific medical cases. Moreover, the environment is statically setup and con-

figured throughout the application period. This means the same tasks are executed on the same fog

device or cloud device without taking into consideration the status and number of the patient(s), or

the diversity of the nature, number and heterogeneity of task(s) at a specific time. Hence, adapt-

able architectures that support multiple patients or different medical cases or diseases are rare despite

that these architecture are extremely needed in medical establishments such as hospitals or retirement

homes. Also, there is a lack in works that perform dynamic distribution of the health tasks among the

processing devices.

2.2.3 Networking Technologies in IoT for Healthcare

As discussed in the previous section, IoT architectures for healthcare comprise various communication

requirements between different communicating entities. Multiple factors affect the choice of network-

ing technology such as deployment area, financial costs, and number of patients/users. however, the

most technical parameters influencing the adoption of one technology over the other are the device’s

capabilities and role in the healthcare application, whether IoT device, fog, or cloud, in addition to

the purpose of communication. Wired technology can be utilized between non moving objects for

preserving the reliability and security of the link. For example, wired communication between fog

devices (Local Area Networks communication), or between fog and cloud devices (Ethernet link) can

be used. On the other hand, in case of mobility, specially IoT mobile devices, or hard/costly wired

configurations, wireless technologies can be adapted. Wireless technologies are classified based on the

transmission range, data rate, bandwidth, and power consumption. Wireless Personal Area Networks
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(WPAN) and Wireless Local Area Networks (WLAN) share proximate transmission range from tens

of meters up to 100 meters, while Wireless Local Area Networks (WLAN) supplies higher data rate.

On the other hand, Wireless Wide Area Networks (WWAN) covers longer transmission ranges, but

varies in the data rates and hence can be categorized into two categories: cellular, and low power wide

area (LPWA). low power wide area (LPWA) are networks delivering high transmissin range close

to cellular networks with lower data rate. Examples on standards being developed under LPWA are

LoRaWAN, LTE-M and NB-IoT (NarrowBand-Internet of Things). Here, we discuss some of the

common wireless protocols utilized in these networks and adopted in IoT architectures in section .

• Wi-Fi is the wireless local area network (WLAN) IEEE 802.11 specification based technology.

It is a featured by its high data rate ranging from tens of Mb/s to even some Gb/s and medium

transmission rate less than 100m. It is preferred to be utilized in devices with medium capabil-

ities due to high power consumption. However, in applications that require fast transmission of

data due to latency prone and low cost infrastructures, Wi-Fi can be beneficial.

• Bluetooth low energy (BLE) is a short-range energy efficient wireless personal area (WPAN)

technology designed for IoT applications. It is an enhancement over the Bluetooth wireless

technology standard. Despite its low data rate represented in less than 1 Mb/s, it can be utilized

on applications requiring low-power consumption where devices are settled with close proxim-

ity, and at the same time non restricted to slow data transmission speed.

• Zigbee is considered a common inexpensive protocol with larger transmission range than Blue-

tooth while having lower data rate represented in few hundreds of Kb/s. It is based on IEEE

802.15.4 standard industry implemented protocol. It can be utilized for devices with extremely

energy limited specifications and limited data transfer applications at low transfer rates.

• Z-wave is WPAN protocol that is close in targets and specifications to Zigbee. Z-wave has

shorter communication range than Zigbee that reaches a maximum of about 30 meters while

proposing lower data rates. Despite that Zigbee is more commonly used and adapted in IoT,

Z-wave can be featured by its simplicity in implementation.
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• Cellular (3G,4G,5G )is a very popular licensed long-range wireless connectivity. It is commonly

referred to as LTE(long term evolution) representing the currently used fourth generation 4G.

The fifth generation 5G is predicted to reach the market as the next successor generation with

faster connectivity and more capacity. cellular networks usually provide high data rates in tens

of Mbps transferred over the internet and longer transmission ranges. Despite that, cellular

networks requires a complex costly deployment in addition to very high power consumption.

• LoRaWAN (long range WAN) is a unlicensed Low Power WAN (LPWANs) wide-range tech-

nology reaching communication between devices in terms of kilometers. However, its data rate

is very low which can be considered the lowest between all the wireless technologies in IoT of

around tens of Kbps. Due to this low data rate, it can demand more transmission time for long

range connectivity.

• NB-IoT (NarrowBand-Internet of Things) and LTE-M are licensed versions of the LPWANs.

These two protocols are new network technologies based upon cellular technology less com-

monly known as LoRaWAN. Featured for being battery-life saving, they also provide higher

data rates than LoRaWAN reaching up to 1 Mbps.

Figure 2.1 presents the taxonomy of networking technologies in IoT embedded with their correspond-

ing data rates and transmission ranges.
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Figure 2.1: Network Technologies in IoT
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Chapter 3

Task Scheduling and Allocation in IoT

Task scheduling and allocation is considered one of the most important task management processes

that nominates the appropriate computing source to execute a system’s task, and to order the execution

of all the tasks such that the system’s objective and constraint are met. Firstly, we need to define

• A task or a workload is the piece of code, job, or a service to be executed.

• Task allocation means assigning a given task to be executed and processed over a specific com-

puting device.

• Task Scheduling is the arrangement of tasks execution over a processing device’s queue in ad-

dition to defining the start and end times of the tasks according to some constraints.

Task scheduling and allocation in IoT, whether cloud computing or hybrid cloud-fog computing archi-

tectures, has to utilize the IoT distributed computing resources while taking into account the nature of

the application tasks.

3.1 Requirements and Optimization Metrics

It is important that task scheduling and allocation strategy developed meets the requirements of the

application where it is deployed. Here, we list some of the requirements that IoT environments poses:

• Heterogeneity: The heterogeneous nature of the sensors and IoT devices usually leads to het-

erogeneous tasks. The tasks can have different priorities and can variate in their computing
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requirements and resources consumption. Adding to that, the computing and storage resources

at the IoT environment are dynamic. This in turn poses the requirement for appropriate devel-

opment of effective task management strategies e.g. dynamic scheduling and allocation of these

tasks on the resources.

• Reliability: It is vital that the system is able to overcome the failure in the network and hardware

without affecting the handling of the application’s tasks specially the processing of the critical

tasks in real-time applications such as healthcare tasks.

• Resource constraint IoT devices: One of the biggest challenges in IoT environment is the re-

source constraints devices whether the sensor devices or the networking and processing devices

defined as fog devices. The scheduler has to take into consideration this limitation through ap-

plying workload balancing in terms of processing, energy, and storage resources. This in turn

means when and how to gather the data from the constrained sensor devices, how to balance the

execution of the tasks on the constrained fog devices if exists, and when to offload the tasks to

the cloud without risking the reliability of the application.

• Flexibility: It can be defined as the possibility of adapting to changes in the environment such

as the addition/removal of new data input sources (sensors, users, etc...), or the upgrade in one

of the workloads. It is preferred that the scheduler be flexible enough to to work on changing

inputs without the need for being redeveloped by the designer and the developers.

• Isolation: Isolation is a feature that must exist in the scheduling and allocation strategy in the

applications where there is dependability between the issued tasks. In such situations, the con-

flict between the tasks sharing the same data or controlling the same actuator have to be handled

by the scheduler. This can be handled by multiple methodologies such as reporting the problem

to the mechanism of control access.

Another perspective to investigate is the optimization metrics needed to achieve, which is based on

the application’s specifications. The scheduling and allocation strategy can target one or more of the

following optimization metrics. In case that the target is singular optimization metric, the scheduler is
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called uni-objective, while it is defined as multi-objective scheduler if it is trying to achieve a trade-

off between two or more of the goals. The following list enumerate the metric, its description, and

the objective of the most common metrics measured and evaluated in IoT applications, networks and

architectures:

1. Energy consumption - the energy used by the sensors, IoT devices, the computing devices, or a

combination of them. It needs to be minimized.

2. Cost - monetary costs for delivering a service such as cloud resources utilization cost. It needs

to be minimized.

3. Bandwidth - rate of data transfer. It is better to be maximized.

4. Throughput - the size of actual data transferred from source to destination. It needs to be maxi-

mized.

5. Latency - the time it takes the packet to be transferred from source to destination. It has to be

minimized.

6. Network load /Traffic load - amount of data the whole network carry. It has to be minimized

and/or balanced.

7. Network jitter- the congestion generated when packets are trying to use the same network. It

needs to be minimized.

8. Fairness- defines the fair allocation of scarce resources. It has to be maximized.

9. Coverage of IoT- increasing the network coverage tends to reduce the connectivity gap in the

network. It needs to be maximizes

10. Network Life- represents the time during which the network is operational. It has to be maxi-

mized.

11. Makespan - defines the time difference between the start and finish of a sequence of tasks. It has

to be minimized.
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12. Average waiting time- is the average of time the tasks spend in the ready queue to be executed.

It needs to be minimized.

13. Response time - the time passed since the release of the individual task until its execution is

finished. It needs to be minimized.

14. Delay- the time between the maximum allowed response time of the task until its execution is

finished. It has to be minimized.

3.2 Task Scheduling and Allocation in Distributed Systems

Various task assignment strategies have been developed over the years. They can be categorized as

optimal and sub-optimal. The first method tends to reach the optimal solution, examples are graph

theory, mathematical programming, and state-space search. On the other hand, sub-optimal methods

try to achieve a good solution rather than a complete one. Sub-optimal methods, as well, can be split

into approximate and heuristic solutions. Approximate methods is similar to the optimal methods in

terms of the computational models used. On the other hand, heuristics tend to reach a good solution

while utilizing different computational models.

Heuristics and meta-heuristics optimization methods are mostly applied in cloud computing based

or fog computing based IoT [65], [66], [67], [68], [69], [70], [71], [72]. Other than IoT, heuristic

optimization approaches are used in various fields for performing task scheduling such as: wireless

sensor networks, cloud computing, fog computing, and embedded systems. It is a solving strategy that

is problem independent, with fast convergence speed, and can search global solution. We tackle the

most popular strategies:

3.2.1 Particle Swarm Optimization Based Task Scheduling

Particle swarm optimization (PSO) is a population-based search algorithm derived from the nature

specifically the biological swarm behavior of populations. The algorithm preserves a set of possible

solutions on the search path. It tends to shift from a group of points to another based on some rules

during the one iteration. This shift is supposed to enhance the solution. It is easy to implement and

31



usually used to solve integer optimization problems. Some works applying PSO for task scheduling

are [73], [74], [75], [76], [77], [78], and [79].

3.2.2 Genetic Algorithm Based Task Scheduling

Genetic algorithm (GA) is a population-based search algorithm as well, but derived from the repro-

duction behavior of populations. The algorithm tries to alter the candidate solutions for the purpose

of reaching better ones. GA requires high computational costs and is more used for solving complex

optimization problems [80], [81], [82], [83], [84].

3.2.3 Ant colony optimization Based Task Scheduling

Ant colony optimization (ACO) is a probability based technique inspired by the behavior of real ants

which try to find the shortest path from a source of food to the ant nest with the aid of a chemical in-

stance released on the moving path. Similarly, Ant colony method depends on recording the positions

of previous solutions to be used later during upcoming iterations for reaching the final solution. ACO

can adapt to changes despite that its time to converge is uncertain [85], [86], [87], [88], [89].

3.2.4 Simulated annealing Based Task Scheduling

Simulated annealing (SA) is an optimization algorithm for solving problems without constraints. It is

derived from the physical process of heating to a high temperate and then decreasing the temperate

gradually. The high temperate represents the initial solution. SA tends to generate a random points

at each iteration based upon a probabilistic function. It can reach approximate global optimum, but is

slow in reaching this solution [90], [91], [92], [93], [94].

3.2.5 Heterogeneous Earliest Finish Time

Heterogeneous Earliest Finish Time (HEFT) is a well-known heuristic based scheduling algorithm. It

is intended to schedule a set of dependent tasks to a network of resources. HEFT base its solution

based on computation and communication costs of the network. HEFT can achieve good solution
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while being simple. At the same time, it is claimed to require additional load balancing mechanism

[72], [95], [71], [96], [93].

3.3 Task Scheduling and Allocation in Cloud-Fog IoT Architec-
tures

Promising trials are made to achieve dynamic allocation of tasks between the fog and cloud resources.

By dynamic, we mean that the decision of where to execute the task is decided at runtime by man-

agement unit in the architecture based on the updated information about current tasks and available

resources. This unit is sometimes called broker, control device, layer controller or even fog orchestra-

tor. This problem is usually defined as task allocation/assignment or management of resource inside

fog environment. The problem of task scheduling and allocation in the fog or the cloud is addressed

multiple times outside the domain of the IoT such as [97], [98], [99], [100], [101], [102], and [103].

For example, the authors in [103] propose resource and task allocation methodologies for offloading

smartphones applications supported by 5G network technology to the fog and the cloud. The purpose

of their work is minimizing the computing and network energy. The type of tasks tend to be complex

5G stream applications. However, we focus on task scheduling and allocation when the fog and cloud

computing are combined together in IoT architectures such that multiple heterogeneous sensors are

utilized. These sensors generate independent small sized heterogeneous tasks with short delays.

In [104], the authors formulate the allocation problem as an Integrated linear programming (ILP)

model for the objective of minimizing the delay in total when the resources are asked by the tasks.

They point to the delay in their paper as the slot allocation time for the service on a fog layer. The

model is presented in a combined Fog-Cloud (CFC) architecture where there are multiple fog layers

between the things layer and the cloud layer. However, the authors calculate and represent the delay

on a resource device by a time unit. They take no account of the diversity in tasks complexities nor the

capabilities of the fog devices. In addition they only differentiate the fog devices in the first layer from

the fog devices at the second layer by only adding a one more time unit delay for the devices in the

second layer. They pay no attention to the differences in the communication cost based on the size of

the data or the communication technology. Their work is extended in [105] to adapt multidimensional

33



knapsack modeling for the service allocation problem (MKP) while adding the energy consumption

factor in the objective. Authors in [106] utilize the available resources whether storage or computation

in fog environment and the cloud. They tend to enhance the performance of the system through

the reduction of costs represented by the total delay and makespan for processing the tasks. Their

objective in formulating and solving the problem is to maximize the possible task assignments to

resources in a fog colony in a lower layer and avoid propagation of tasks to higher layer. From

our point of view, their allocation methodology is missing the prioritization factor. Tasks generated

later than their former miss the chance to be processed on the fog layer if their are no resources

available as a result of their timing. In [107], the authors propose, through partitioning the architecture

into three layers: Cloud, High Capacity Fog (HCF) and Local Fog (LF), two strategies for resource

allocation. The authors solve Dynamic Service Execution (DSE) problem using First-fit and Random-

fit algorithms. In first fit methodology, resources are allocated in the order LF, HCF, and cloud layer.

In random fit, the layer where the service is allocated to one of its resources is chosen randomly.

Indeed, despite that the authors consider first-fit as a prioritizing algorithm, we find it somehow a

weak methodology. However, the authors take into consideration the assumption of the mobility of

the computing resources in the fog. The authors evaluate their work through the measurement of the

service/task response time, and the power consumed by the cloud devices only.

Trade-off approaches are also studied where multiple objectives are chosen for the allocation op-

timization problem. A trade-off approach is proposed in [108] in which the authors utilize Lyapunov

optimization algorithm to build an optimization problem of unit slot. A monetary cost minimization

objective as well as the minimization of applications response time in the architecture are their two

objectives. The optimization problem is solved based on the assumption of zero cost in case that

application is computed at fog layer, while utilizing cloud layer consumes communication and com-

putation costs. Actually, we think that we cannot neglect the cost at the fog layer and it must be

an important factor in the optimization problem. The authors in [72] propose Cost-Makespan aware

Scheduling heuristic (CMAS) which is a strategy for task allocation on the fog devices as well as cloud

devices for the purpose of reducing the latency and monetary cost of processing the required tasks.

Their methodology is based upon the popular heterogeneous earliest finish time (HEFT) algorithm and
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assumed the dependencies between tasks.

Both [108] and [72] share the same objective while having significant differences in the network

and computation assumptions and proposed algorithms. For instance, as previously mentioned, [108]

ignore the cost at the fog layer while [72] take the computation and communication at the fog devices

into consideration. Furthermore, [108] assumes no interaction between the fog devices in addition

to restricting the responsibility of the fog device in the execution of the tasks attached solely to IoT

devices in its vicinity. This assumption is dissimilar to the one in [108] where any task can be exe-

cuted on any computing device based on the optimization objective and constraints. This is the same

assumption we are following in our work as well. In [109], the authors propose an estimation model

of required computing resources to acquire the service(s). The authors considers other resources than

the computations such as the storage and the bandwidth. Their estimation adapts the price cost of

the resource and based on a probability function related to the customer (IoT device) requesting the

resource. This probability function takes advantage of the history of the demands of the resources by

this customer.

The previously mentioned approaches function with any IoT application, but an approach dedi-

cated to healthcare, HealthEdge, is proposed in [110]. The authors build an optimization problem

for managing the balance between task allocation on edge workstation or remote cloud datacenter.

A heuristic solution is proposed for the objective of minimizing data traffic and completely utilizing

the edge devices processing capabilities. The assignment of task in either edge queue or cloud queue

is made by task priority determination and task latency estimation modules based on the emergence

state. They lack reporting information about the communication protocols. A thorough search of the

relevant literature yielded an article that take into consideration task criticality and its influence on the

allocation methodology, which is [110]. Table 3.1 summarizes the main feature of aforementioned

Cloud-Fog architectures.
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Table 3.1: Cloud-Fog Architectures in IoT - Literature Review
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Chapter 4

Security and Privacy for IoT Healthcare

In Internet of things (IoT), where heterogeneous devices and network technologies are embedded and

interconnected together to the Internet, security and privacy are important demands. It is required

to guarantee the protection of the IoT devices having Internet accessibility, in addition to protecting

the connection between the IoT devices themselves. This in turn leads to the protection of the data

transferred which contains vital medical data in healthcare applications.

This chapter surveys security and privacy issues in Internet of things (IoT). We discuss security

and privacy requirements, in addition to presenting existing protocols and mechanisms employed in

IoT.

4.1 Security Requirements

Multiple security and privacy requirements must be taken into consideration when considering an IoT

environment

• Data confidentiality: Intends to protect the data against unauthorized access or revelation whether

planned or accidental. Confidentiality is considered to protect the secrecy of the data such that

it is disclosed only to the intended recipients, and according to the rules and regulations.

• Integrity: Is to protect data from being altered or modified improperly by a third party. Further-

more, it ensures and maintains the accuracy of transmitted data.
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• Availability: Means the ability to access the data at anytime such that critical data is continuously

available when needed. Furthermore, it is required to prevent attacks that disrupt the availability

of IoT devices and hence, interrupt the services provided by these devices.

• Privacy: Is a requirement that controls how the personal information is collected and used.

It constitutes and important demand in healthcare applications as medical sensors collect and

transmit patient’s medical data .

• Authentication: Data authenticity is a valuable requirement in security and privacy. It is the

method to validate the communicating parties before and during the exchange of information.

Usually, mutual authentication is required in a communication channel which means that the

sender has to prove itself to the receiver and vice versa. Authentication

• Authorization: Defines the access privileges that given to the users/devices to obtain or alter the

data.

• Forward secrecy: Is the requirement the forbids a device that leaves the network from obtaining

the future key or data exchanged.

• Backward secrecy: Is the process that forbids a new device joining the network from obtaining

past key or data previously exchanged.

To summarize, authentication ensures that the communication is performed only between the

authorized parties, whereas confidentially and integrity ensure the protection of the data itself in

such a way that they all achieve privacy of patients and the security of information respectively.

4.2 Attacks

Internet of things (IoT) is a collection of smart devices connected to the Internet, in addition to commu-

nication together through one or more of wireless sensor networks (WSN), wireless local area network

(WLAN), wireless personal area network (WPAN), wide area network (WAN), or cellular networks.

Hence, it is prone to the most popular network attacks. Adding to that the constrained nature of some
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of IoT devices, where they suffer computation and storage limitations. This in turn poses additional

vulnerabilities due to their resource limitation that forbids them from implementing powerful security

mechanisms.

4.2.1 Common IoT attacks

In this section, we list the most popular attacks in IoT

1. Collusion attack: is the process of combining numerous copies of data to generate new one. This

can be achieved through applying replacement, averaging, or even linear combination methods.

2. Insider attack: is an attack where an authorized person maliciously attacks a device or a network

on the system.

3. Eavesdropping: in this attack, an attacker listens to the network continuously for the purpose of

stealing the sensitive information during its transmission over the unsecured network. Eaves-

dropping is also called sniffing or spoofing attack. This attack leads to leakage of data which

threatens the application.

4. Impersonation: it is when an adversary pretends to be an authorized device to obtain illegitimate

access to critical data. An adversary in this way is considered a rogue IoT node. An example is

when a malicious access point assembles the produced data from connected IoT devices in order

to misuse it. In other cases, this rogue node provide neighboring nodes with malicious data.

5. Denial Of Service (DOS) attack: is commonly a network or device attack where perpetrator

floods the network or device respectively with traffic to disrupt its service or functionality.

6. Sinkhole attack: is an attack where an adversary node attracts the traffic through forge routing.

Next, this attack can be combined with other attacks such as selective forwarding or eavesdrop-

ping to modify or damage the data.

7. Jamming attack: is a sensing layer attack similar to denial of service (DOS) attack where an

attacker jams the radio signals of the device with flooding signals such that the device cannot
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communicate. Jamming attack works with different radio networks whether cellular, WiFi, or

other.

8. Selective forwarding attack: is a sensing layer attack as well. In this attack, an adversrary node

refuses to forward selected packets. In this way, the rate of packet loss is increased and hence,

the operation of the network is corrupted affecting the quality of service.

4.2.2 Cloud-Fog threats

In Cloud-Fog environments, the fog nodes and the cloud nodes are the devices applicable for pro-

cessing and storage on behalf of the resource constrained IoT devices and sensors. However, fog

computing and cloud computing environments are prone to various attack. Here, we list some of

them:

1. Compromise of poorly scattered fog node: For instance, an adversary can compromise gateway

that serves as a fog node. As the fog nodes process or forwards the data from multiple IoT re-

source constrained devices and sensors, compromising a fog node can reveal sensitive or private

information such as identity, location, or even usage or mobility pattern.

2. Cloud node malicious insider: Cloud nodes are where the long-term processing is performed,

and permanent data is stored. Cloud nodes are remotely provided and accessed which makes the

process of securing these data a challenging task. The threat to the data at the cloud can be an

intentional by a malicious insider, or even accidental such as loss or improper altering or delete

without recovery plan.

In addition to the above threats, cloud and fog raises virtualization challenges. The processing

performed at the fog node or cloud node is usually executed through virtualization. During

virtualization, fog or cloud nodes host virtual machines (VMs) while sharing resources such as

processor/cores, memory, cache, network interface card. Hence, an attach can be issued between

VMs on the same device or different devices, but sharing resources. Next, we present the most

common threats in virtualized environments such as the cloud or fog.
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3. Side Channel Attack (SCA): A side channel is a channel that exists in the hardware, but is hid-

den. Examples on SCA are the cache channel between two processors or two virtual machines.

Side channel attack exploits the cache shared between virtual machines (cross-VMs) to gain

unauthorized access to the information. Also, side channel can also be an implementation to

improve the utilization of the cache resource such as hyper threading.

4. VM migration attack: virtual machine migration refers to the process of moving a VM physically

from a host to another due to upgrade or maintenance reasons.

• Migration flooding: In this attack, the adversary can gain unauthorized access to the mod-

ule controlling the migration process. In this way, it can move the virtual machine to

resource limited device where the processing and storage requests are flooded without re-

sponse.

• False resource advertising: In this attack, the adversary can compromise a victim fog or

cloud server and ask for offloading the virtual machines to it as having enough resources.

• Spoofing attack: This attack is the previously described network attack, but the attacker

listens to the network lines where the virtual machine is transmitted to gain illegitimate

access to information.

4.3 Existing protocols and solutions

This section discusses the different security protocols applied in IoT. Taking into consideration the

resource constrained environment and the architecture of IoT healthcare systems, we propose the

common protocols applied in IoT as well as lightweight cryptography which is specifically designed

to constrained IoT devices.

4.3.1 Low-Level Solutions

This type is considered with solution for attacks happening at the physical and data link layer such

as jamming, denial of service (DOS), and eavesdropping attacks. They are mainly concerned with
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the detection of the attack and using a cryptographic algorithms to defend these attacks. Multiple

solutions are proposed in this area such as [111], [112], [113], [114], [115], [116],[117], [118] and

[119]. An example in [115] when the authors try to locate an adversary that is located near the device

attacked. They apply enhanced secrecy utilizing synthetic noise. Similar idea is utilized in [116]

where the idea of artificial noise is adapted to detect the adversary. In [117], the authors propose a

framework that performs a configuration between the communicating devices utilizing data rate in its

minimum value to protect against attackers. The authors in [118] discuss the interference in networks

and models of attack at low-level, in addition to proposed solutions to this level such as collision

detection, cryptographic authentication.

Despite that security solutions at a low-level target to detect and prevent the collection, manip-

ulation of data, these methods could fail to function as required. In this case, strong cryptography

implemented using data encryption, efficient key management is a must in IoT security. In this way, it

is hard for the adversary to understand the acquired data and hence, to forge or alter it. The next two

subsections present data encryption methods and key management methods in IoT networks.

4.3.2 Data Encryption

Data encryption algorithms can be categorized into

• Hop by Hop Data Encryption: The idea behind this type is that each node and its neighbors share

different keys than the other devices in the network. In [120], the authors propose SecureDAV,

an elliptic curve based crtyptographic mechanism for resource constrained networks. Their

idea is based on developing a secret key for a cluster which is shared between the resource

constrained devices in the cluster. Finally, a base station performs the authentication on behalf of

the resource constrained devices using the assembled key. The authors in [121] present a forward

authentication mechanism that is used to aggregate the data in a secure way. The mechanism

performs aggregation operations such as calculating the median, minimum, maximum, counting,

averaging in a secure way. The authors in [121] propose a protocol that protects the aggregated

data from a malicious node attack that tries to corrupt the data. This is done through sharing a

secret key between the aggregating device and a home server where the data is finally sent. The
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aggregator sends a message authentication with the data to the home server through the sensor

node. Due to their limited capabilities, the sensor devices doesn’t store key, but instead they

message authentication code (MAC) of the communication nodes only. This method is prone to

vulnerability risk at each node when the data is decrypted.

• End to End Data Encryption: In this mechanism, the data is not decrypted between the commu-

nicating devices on the path from the source to destination. Despite that it forbids the data from

being revealed at intermediate nodes, this method is easy to attack if the key is compromised at

any node. As an example, in [122], the authors focus on providing security during the process

of data aggregation. They utilize homomorphic encryption which is a methodology to process

the encrypted data without decryption it. Hence, in [122], the sensing devices can assemble the

data aggregated by themselves in addition to the cipher received from their neighbors by per-

forming arithmetic and statistical computations in their encrypted format. The sensing devices

then forward the processed data to their next hop until reaching the end use. A similar approach

is proposed in [123] where the authors apply PH which stand for privacy homomorphism to

perform two operations: averaging and movement detection. Another works are presented in

[124], [123], [125], and [126].

4.3.3 Key Management

In order to encrypt the data being shared between the communicating parties, there must be an efficient

key management protocols to establish the keys used in the encryption. Key establishment protocols

can be categorized into pairwise key establishments and group-wise keys. Pairwise key establishment

protocols are then classified into symmetric key and asymmetric key.

• Symmetric key establishment protocol: in this category, the communicating devices share a pre-

shared key. Symmetric key protocols are energy preserving methods due to less computations

and causes less overhead. However, it is non scalable when the number of devices increases.

Examples on symmetric key pre-distribution algorithms are [127], [128], [129], [130], [131].

• Asymmetric key establishment protocol: this protocol is a real-time method that allow the com-
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municating devices to exchange a pair of keys to authenticate. Asymmetric protocols are more

secure and scalable, usually applying elliptic curve cryptography (ECC) or RSA. They can be

extended to more complex where certificates are exchanges beside the keys [132], [133], [134],

[135], [136].

• Group-wise key establishment: In this category, a single key is shared between multiple com-

municating devices (a group). Multiple protocols implement this method following different

methodologies such as [137], [138], [139], [140], [141]. In [137], a pre-shared key based group

key establishment is proposed. The key is shared between a group of communicating devices

in the same group, not only between a pair of devices. In [138], the protocol formulates a tree

graph describing the relation between a number of keys and a number of devices in the network.

This protocol is appropriate for small scaled networks where the tree can be simply constructed

and implemented. A method in [139] is proposed where the keys are not pre-established, but

instead they are created at run time by the users or devices. An approach where the group keys

are changing during the life time of the network is proposed in [140] called Veltri’s. In Veltri’s,

a differnt key is generated for each time slot and shared between the members of the group.

The authors in [141] propose DBGK protocol which share a similar idea with [140] whereas an

entity called AKMS (area key management server) is responsible for creating and publishing

the keys based on the entry/exit of devices to/from the group.

4.3.4 Lightweight Cryptography

As IoT usually comprises IoT devices with limited resources, a research direction that targets the

development of lightweight cryptography methods. Many cryptographic algorithms are recently de-

veloped to be less in computation complexity and short in footprint to adapt with the constrained IoT

devices. These algorithms are called lightweight cryptography. lightweight cryptography also aims at

providing solutions that preserve energy efficiency, and are capable of presenting high level security.

Next, we present some of these security algorithms:

• Advanced Encryption Standard (AES)-128: AES-128 is a lightweight version of the known Ad-

vanced Encryption Standard (AES) block cipher protocol where the key size is 128 bit. Hence,
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it is adequate to constrained IoT devices due to small storage required in addition to less com-

plexity regarding the operations performed on 128 bit instead of 256 bit standard AES. Despite

that, it is a strong security protocol [142].

• Data Encryption Standard Light(DESL): DES-56 is a lightweight version of the known Data

Encryption Standard (DES) block cipher protocol. It is less secure than AES, but can be fit with

very constrained devices and hence, allows for providing the minimum protection for devices in

IoT [143].

• Grain 128-a: Grain is an example on lightweight stream cipher security protocol for IoT. The

key size is 128 bits which provides a strong while being simple and fast due to its type as a

cipher stream protocol.

• Internet Key Exchange v2 (IKEv2): IKEv2 is a lightweight key management protocol for re-

source constrained IoT devices. It is a lightweight version of IKE used by IPSec protocol im-

plemented at the link layer of the IP protocol stack [144].

• Diet Host Identity Protocol (Diet HIP): Diet HIP is a lightweight version of HIP implemented

at the link layer as well. It is based on the host identification feature [145], [146], [147].

• Extensible Authentication Protocol (EAP): EAP is a lightweight authentication protocol imple-

mented at the data link layer. It suits IoT in the way that proposes low overhead while being

flexible. EAP allows for re transmission and hence, is able to detect errors and deliver data to its

destination [148].

• Datagram Transport Layer Security (DTLS): DTLS is a lightweight version of the Transport

Layer Security (TLS) protocol to protect data privacy at the transport layer. DTLS uses UDP to

adapt with the constrained capabilities of IoT devices while TLS uses TCP [149].
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Chapter 5

Proposed Cloud-Fog based Architecture for
IoT Healthcare

In this chapter, we propose a Cloud-Fog based comprehensive architecture that can embrace multiple

healthcare scenarios and able to adapt dynamically with the context and status of the patients. We

tend to tackle the non-generic implementation in existing Cloud-Fog architectures in healthcare. To

clarify more, existing researches design and implement fixed infrastructures that are specific to certain

medical cases e.g. heartbeat monitoring which receives specific vital signs, etc. Hence, supporting

different medical cases or even updating the current medical case require restructuring the whole

architecture. We hereafter present a healthcare architecture that is Cloud-Fog based and generic.

The architecture proposed is generic in the way that it can handle multiple therapeutic condition

e.g. different healthcare medical cases (applications) and different number of patients. In addition

to the generic implementation that supports diverse medical cases, our proposed architecture allows

the dynamic distribution of healthcare tasks between the fog computing as well as cloud computing

through an implementation of a scheduling and allocation approach to balance the distribution of tasks

processing among the cloud devices and the fog devices. Different virtual run-time environments

defining the software of each task are employed on the computational devices in the form of SaaS

(software as a service). In our contribution, we utilize specific features for the tasks in the healthcare

application. This chapter is composed of three sections: section 5.1 presents the proposed architec-

ture, section 5.2 describes the system model including features of the tasks, and proposed scheduling

solution. Finally, section 5.3 evaluates the proposed approach.
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Figure 5.1: Proposed IoT architecture for healthcare.

5.1 Proposed Architecture

Our architecture assumes an environmental context of a hospital or a retirement home which encom-

passes a user context of multiple mobile patients who are able to perform diverse set of activities.

Our architecture is not restricted to specific medical cases as presented in the previous section. It can

support patients with different diseases for example patients with Parkinson disease who need speech

analysis process in addition to patients with heart problems who need ECG signal processing, etc. An

extension of the scripts describing tasks to be processed is added in task triggering modules as will be

described next. Furthermore, based on the algorithms implemented, our architecture enables dynamic

distribution of health tasks between the fog and the cloud devices in real time in contrast to static

off-line approaches in the literature. The proposed architecture is shown in Fig. 5.1 and consists of
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four layers as follows:

1) Things layer (IoT devices)

The things layer contains all sources of data needed for the healthcare system. We describe two

sets of sensors in this healthcare architecture; set A and set B. Set A contains the environmental sensors

connected through wireless sensor networks (WSNs). These sensors are static such as Infrared (IR),

cameras, light and temperature. Set B involves wearable sensors that generate two types of sensing

data: activity monitoring and biomedical (BIO). The activity sensors are physical body sensors that

are used to infer the motion such as accelerometer and gyroscope. Examples of BIO sensors are the

heart beat, ECG, and glucose sensors.

2) Sink layer

The sink layer contains the data aggregating devices such as the micro-controllers, smart watches,

and mobile devices. These devices are responsible for: 1) Data acquisition; the sink device acquires

and collects the raw data generated from the data sources in the things layer, 2) Data forwarding; the

sink device forwards the collected data to the fog layer for further processing, 3) Inquiries forwarding;

the sink device forwards the inquiry requests to the fog layer. Inquiries are on-demand requests issued

by the end users of the system including the care givers and the patients themselves to obtain health

information. The inquiries are issued using mobile devices connected to the fog layer - mainly the

fog broker. Examples include when a patient wants to know his updated pills timetable assuming the

timetable is updated periodically according to the patient’s health status during the last 24 hours. An-

other example is when a doctor wants to get data log on the last 100 heartbeat readings of a patient, 4)

Limited processing; the sink device helps in the processing of some tasks according to their processing

capacity and if this will lead to the global objective of the allocation. The sink devices are connected

to the fog layer where the data is received and stored in the sensors database.

3) Fog layer

The fog devices are devices with high computation, communication, and storage capabilities, and
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are capable of performing diverse processing operations. Each fog device contains its internal database

used for the computation and storage of its allocated tasks. Beside the internal databases, three global

fog databases are maintained in this layer: 1) Resources database where the processing capacity, uti-

lization, and storage of each processing device are reported, 2) Sensor database where all the sensing

data reported from the things layer is stored and updated, and 3) Patients record database for storing

the results of the analysis operations. The fog devices are responsible for performing the computa-

tions of the following four sets of tasks: data analysis, critical analysis, critical control and context

management [150]. Critical health analysis and critical control tasks have relatively higher priorities.

A fog broker is responsible for querying information from the Resources database to manage the allo-

cation of described tasks on those resources. An extension can be made to include more than one fog

broker device if needed and if there are cases that allow for that.

Fog broker It includes the following modules: a) Periodic Task Trigger. This module is responsible

for releasing periodic tasks. We assume a set of periodic health tasks with different frequencies and

deadlines which are varied based on the current configurations and requirements of the environment

(number of medical cases, current status of the patients health, etc). b) Emergency Monitoring. This

module continuously monitors the patients’ status by accessing the patient record database. Through

the continuous checking of the results of the analysis operations performed, this module can detect

the emergency cases. Next, proper emergency actions are handled whether notifying the care givers or

triggering critical control tasks which are passed to the task collector module to be performed. c) Task

Collector. This module collects all the tasks needed to be processed from the periodic task trigger and

emergency monitoring modules, and inquiries from the patients and the caregivers. It establishes a set

of structures containing information and features of the tasks. d) Resource Collector. This is the mod-

ule that receives information about the available resources on the fog layer. It maintains the utilization

of the fog devices as well as the updated capacities of these devices. f) Task Scheduling and allocation.

This module is responsible for the formulation and setup of the task allocation process for the fog and

cloud devices. This module mainly implements a software routine for an optimization technique to

achieve an optimal solution for minimizing the latency of performing the health tasks. Heuristic ap-

proaches can reach approximate solutions in a faster way than optimization techniques that search for
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optimal solutions [151][152]. The output of this module is a scheduled mapping between the tasks to

be performed and their allocated fog or cloud devices. e) Task Dispatcher. This module is responsible

for contacting the fog and cloud devices, assigning them their allocated tasks.

4) Cloud layer

The cloud layer contains resource devices on the cloud for performing part of the tasks that are not

performed in the fog layer; usually time unconstrained tasks. This layer contains a permanent database

for keeping the patient’s health analysis results to be used by the care givers.

5.2 Task Scheduling and Allocation

This section describes an approach for task scheduling and allocation that is implemented in the fog

broker. The approach achieves a balanced and effective task scheduling and allocation to healthcare

tasks. Our objective is to minimize the latency of healthcare tasks and ensure that critical tasks meet

their deadlines.

5.2.1 System Model

The input to the task scheduler and allocation module includes a set of independent input tasks (U)

and a set of fog devices (V), which are represented as a bipartite graph, and a set of cloud devices (W),

as shown in Fig. 5.2. The bipartite graph links, through an edge, each task represented as a vertex in

the set U with one or more fog devices represented by a vertex in the set V , where U and V are two

disjoint and independent sets. The existence of the edge means that the data related and needed by

that task to be executed is resided in the internal database of that fog device. So, an edge describes

the locality of the data in a fog device. This locality comes from the layered architecture where the

sensors are connected to their upper layer sink and gateway devices. Hence, the data of these sensors

resides initially on that sink and gateway devices before they are transmitted to the global database in

the fog layer or in the cloud layer. Each task is defined by a set of six features:

1. TaskID which is a number that uniquely identifies the task.
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Figure 5.2: Input to the task scheduler and allocation module.

2. Class of the task(Emergency Level) the class is a number that classifies the task type into

four classes of three categories according to their priorities. These classes are uniquely defining

the emergency level of the medical measurement among the heterogeneous measurement and

different medical cases.

3. Size of the measurement data that the task will work on and which depends on the segment

collected from the corresponding sensor(s).

4. MaximumResponseT imewhile in real-time applications there is a demand for quick process-

ing of the tasks, in healthcare scenarios, each task has a diverse maximum time that the system

has to execute the task within.

5. Task complexity complexity of the task is usually defined in the number of cycles it takes

the processor to execute the task. We can refer to the complexity of the task as the number of

instructions to be processed for this task which is defined in terms of MI.

6. Set of Sensors related to this collected task.

The objective of the proposed approach is to choose the best fog or cloud device to allocate a specific

task to, and to schedule all the tasks allocated so that latency can be minimized. The proposed ap-

proach is divided into two phases. The first phase is responsible of prioritizing each task according to
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its emergency level and its required maximum response time. The methodology used for this phase

relies on applying weighted sum method (WSM) decision making algorithm. WSM is a robust multi-

criteria algorithm well-known in the decision theory. We choose this method because of its flexibility

that enables us to variate the weights assigned to each feature of the task according to the situation

[153]. The second phase proposes and implements a task scheduling and allocation algorithm, Mod-

ified BAR, based on the BAlance-Reduced (BAR) algorithm [101]. Table 5.1 enumerates a group of

notations that are utilized throughout chapters 5 and 6.

5.2.2 Ranking

The WSM algorithm is implemented to evaluate and rank the tasks to be executed in terms of task

classification and maximum response time according to Eq. 5.1:

TWSM−score
i =

n∑
j=1

wjaij for i = 1, 2, 3, ...,m (5.1)

TWSM−score
ti refers to the total importance of task ti. The higher tWSM−score

i , the earlier the task

ti to be scheduled. wj is the relative weight of importance of the criterion cj , aij is the performance

value of task Ti when it is evaluated in terms of criterion cj and m is the total number of tasks. We

set n = 2 to exploit two significant weighting criteria: Classti and inverse of MaxRti . We choose

four classes to categorize the tasks. Section 5.3.1 clarifies more details regarding classes of the tasks.

Maximum response time is represented in order of milliseconds, seconds or minutes. The importance

of the task is inversely proportional with the value of the maximum response. We choose w = 0.5

because we assume that the prominence of the task is equally shared between the two criteria. The

ranked list is scanned and the tasks are scheduled and allocated according to the second phase.

5.2.3 Modified BAlance-Reduced (MBAR) algorithm

MBAR is a heuristic algorithm which means it is fast and feasible; thus, it can provide a quick schedul-

ing solution for our problem. The main idea behind MBAR is its data placement dependability such

that the algorithm firstly tries to place the tasks on the processing devices that contain their data streams

as a preliminary phase. The motivation behind this step is to reduce the transmission costs spent to

52



Table 5.1: Notations

Notation Description

α The interval between consecutive executions of allocation algorithm

β Allocation outcome

U A set describes input tasks independently related, of length m

ti Task i ∈ U

Classti Classification of task ti

MaxRti Maximum allowed response time to execute task ti

Θti Complexity of task ti

Dti Volume of collected data required to process task ti

V A set describes fog devices

W A set describes cloud devices

P A processing device (cloud or fog)

N The overall cloud and fog processing devices number

LinitP Pre-allocation initialized workload of P

LfinP Post-allocation final workload of P

LP (ti) Load of processing task ti on computation device P

e(ti, P ) Execution time of task ti on P

t(ti, P )
Time needed to transmit data required by task ti

to processing device P

CP Computational capacity of P

BWP The bandwidth of link between P and sensors DB

transmit the data to remote processing device. The subsequent steps of the algorithm tend to best

utilize the remote processing devices (whether in the fog layer or the cloud layer in our architecture)

to offload some of the tasks basically allocated in the first step. The main objective of the proposed

algorithm is to minimize the total length of the scheduler generated.
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To solve the aforementioned problem model, two steps are performed: Balanced step and Reduce

step. These steps helps us to reach the allocation decision which means whether the processing of the

tasks is performed on a cloud or fog device. Algorithm 1 presents the pseudocode of the proposed

scheduling and allocation approach MBAR.

1) In Balanced step, we allocate a task ti on a processing device considering task data locality or in

other words, where the collected data resides. We select a processing device P which has the minimum

processing load to allocate a task ti according to Eq. 5.2.

β(ti) = min
P∈V

LP (5.2)

The load represents the finish time after the execution of that task and can be calculated following Eq.

5.3:

LP = LinitP + LP (ti) (5.3)

where LinitP is the initial workload of a processing device P . This value is zero at the starting of the

configuration of the environment and updated continuously, and LP (ti) is the total time to process task

ti on that processing device and calculated according to Eq. 5.4.

LP (ti) = e(ti, P ) + t(ti, P ) (5.4)

e(ti, P ) is the execution time of task ti on processing device P and t(ti, P ) is the transmission time

for transferring the data needed by task ti to the processing device P . In balanced step, LP (ti) is

calculated taking into account the execution time only. Hencet(ti,P ) = 0. The execution time e(ti, f)

of processing a task ti on processing device P is calculated according to Eq. 5.5

e(ti, P ) =
Θti

CP
(5.5)

The complexity of task ti is obtained from the task collector module and is represented in MI (millions

of instructions). The processing capacity of the computing device P is obtained from the resource col-

lector module and is represented in MIPS (millions of instructions per second).

2) The Reduce step starts directly after the balanced step and iteratively reallocate some of the tasks
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on remote processing device to enhance the schedule length. Remote processing device means a cloud

device or a fog device that doesn’t store the task data locally. Firstly, we select processing device that

holds the maximum workload using Eq. 5.6.

LfinPmax = max
P∈V

LfinP (5.6)

Secondly, we choose a task to reallocate it. We implement three different strategies to choose the task

to be reallocated;

A. The first strategy selects a random task, whereas the second and third strategies are based on the

nature of the application (Random).

B. The second strategy selects the task with the highest class (Classification).

C. The third strategy chooses the task with the highest maximum response time (MaxResponse).

Next, we calculate the expected makespan after the reallocation step

Makespanexpected = LfinPmax
− LPmax(treallocate) (5.7)

so that task treallocate can be totally allocated to another remote processing device. Following, an

iteration over all the other remote processing devices is started to find P that can achieve expected

makespan. Eq. 5.4 is used again to calculate LP (ti) where e(ti, P ) is calculated according to Eq. 5.5,

and transmission time t(ti, P ) is calculated following:

t(ti, P ) = Dti/BWP (5.8)

where Dti is the size of the measurement data obtained from the task collector, and BWP is the

bandwidth of the link connecting the sensor database in the fog layer with the processing device P .

At this step, MBAR reaches one of three cases: an update in the allocation β when the expected

makespan is achieved. Otherwise, if the expected makespan is missed, but new makespan is reached

which is better than the old makespan, an update in β is performed as well. or the termination of the

reallocation step due to the old allocation being the best. For the reallocation, new iterations are started
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to locate P that fulfills Eq. 5.2 such that e(ti, P ), t(ti, P ) are calculated according to Eqs. 5.5 and 5.8

respectively [101], [154]. The makespan of the scheduler is calculated as

Makespanβ = max
P∈V∪W

LfinP (5.9)

where LfinP is

LfinP = LinitP +
∑

ti:β(ti)=P

LP (ti) (5.10)

Hence, the final workload of the device P is the initial workload of a computing device, which describe

the readiness of the device to process new task, and is accumulated according to the number and

complexities of tasks allocated to it. Note that the actual workload of the processing device is the

processing time after allocating a new task. The final workload of the processing device is the end

processing time after all tasks are allocated.

5.3 Performance Evaluation

This section discusses the experimental setup and evaluation metrics. The configuration details of the

fog devices and cloud devices are shown in tables 6.4 and 6.3 respectively. The simulations are carried

out using iFogSim [155] which is a simulator for modeling customized fog computing environments

with large number of fog devices and IoT devices such as sensors, actuators, routers, etc. In the

simulation environment, we set two sink devices connected to each fog gateway. All the simulation

results are averaged over 10 runs.

5.3.1 Healthcare Tasks

In our simulations we used healthcare tasks information collected and inferred from the reviewed

articles proposing IoT healthcare applications [150]. The tasks are categorized into five classes as

assembled by the authors: context management, critical control, critical analysis, data analysis and

data collection. Data collection is performed at the sink layer in our proposed architecture. We order

the classes as shown in table 5.4. Configuration details of the tasks features are shown in table 5.5.
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Algorithm 1 Pseudocode for MBAR
Define U as a set that describes input tasks
Define V as a set that describes fog devices
DefineW as a set that describes cloud devices
Define G = (U ,V , E) as bipartite graph of sets U ,V
Define (ti, di) as (task, IoTdevice) pair

Phase 1 – Local allocation

procedure BALANCE

Input: Bipartite graph G
Output: Allocation β

for each task ti (represented by vertex v1 ∈ U) do
for each processing device P (represented by vertex v2 ∈ V such that ∃ e(v1, v2) ∈ E) do

LP (ti)← CalcWorkload(θti)

end for
β(ti)←MinWorkload{LP (ti)}
LfinP ← LfinP + LP (ti)

end for
end procedure

Phase 2 – Remote allocation

procedure REDUCE

Input: Bipartite graph G,W , β

Output: Allocation β, Makespan
Pmax ←MaxWorkload{LfinP }
Makespanold ← LfinPmax
βold ← β

do
treallocate ← Choose according to strategy

Makespanexpected ← LfinPmax − LPmax(treallocate)
LfinPmax ← LfinPmax − LPmax(treallocate)
β ← β − β(Pmax)

for each P ∈ V ,W such that P 6= Pmax do
LP (treallocate)← CalcWorkload(Dt reallocate, θt reallocate)

end for
β(treallocate)←MinWorkload{LP (treallocate)}
LfinP ← LinitialP + LP (treallocate)
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Algorithm 1 Pseudocode for MBAR (continue)

Pmax ←MaxWorkload{LfinP }
Makespan← LfinPmax
if Makespan ≤Makespanexpected then

βold ← β

Break

else if Makespanexpected < Makespan && Makespan < Makespanold then
Return

else
β ← βold
Makespan←Makespanold
Return

end if
while

end procedure

Table 5.2: Configurations details for fog devices

Parameter Value

Number of fog devices 22

Processing capacity
[10, 100] MIPS for sink devices

[100, 500] MIPS for others

RAM [512, 1] GB

Storage 4 GB

Bandwidth 1024 Mbps

5.3.2 Evaluation Metrics

We evaluate the proposed architecture and algorithms according to four metrics: makespan, miss ratio,

average delay, and cost per execution.

• Makespan: which defines the total length of the schedule and it is calculated using Eq.5.9. where

Lfin(P ) is the final processing load of processing device P .
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Table 5.3: Configurations details for cloud devices

Parameter Value

Number of cloud devices 25

Processing capacity [250, 1500] MIPS

RAM 40 GB

Storage 11 TB

Bandwidth 10 ,100, 512 Mbps

Cost per time unit 3 $

Table 5.4: Healthcare task classes

Class Description Emergency Level

Critical analysis Data analysis of vital sign conditions High-Level

Critical control Processes for controlling actuators High-Level

Context manage-
ment

Context monitoring for algorithm such as lo-
cation

Meduim-Level

Data analysis Long-term deep medical analysis Low-Level

Table 5.5: Configurations details for tasks

Parameter Value

Number of tasks 300

Complexity [1, 3000] MI

Data size [100, 500] MB

Max response time [15 sec, 30 min]

Sampling rate [20, 5000] Hz

• Miss ratio: is the percentage of tasks that misses the maximum response time and it is calculated
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as in Eq. 5.11.

MissRatio =
No. of tasks missing MaxResponse(n)

Total number of tasks
(5.11)

A task t misses max response time if the condition in Eq. 5.12 is true.

Trig(t) +MaxResponse(t) < CompletionT ime(t) (5.12)

where Trig(t) is the time when the task is triggered by periodic triggerer, emergency monitoring

modules, or inquired by the users.

• Average delay: is the average of the times that exceeded the max response time for all the tasks

and it is calculated as in Eq. 5.13.

AverageDelay =

n∑
j=1

Delay(tj)

No. of tasks missing MaxResponse(n)
(5.13)

where tj is a task that misses its maximum response time.

• Cost per execution which is the total execution cost for using cloud resources and it is calculated

using Eq. 5.14.

CostPerExecution = cP t×
∑
∀C∈CL

Lf (C) (5.14)

where cP t is the processing cost per time unit, Lf (C) is the final processing load of a processing

cloud device C, and CL is the total number of cloud devices.

We investigate the performance of the aforementioned parameters with varying the number of tasks

and the number of cloud devices with respect to three different task selection strategies implemented.

5.3.3 Varying Number of Tasks

Fig. 5.3 illustrates the impact of varying the number of tasks on the makespan, miss ratio and average

delay metrics for the different task selection strategies. makespan, miss ratio and average delay grow

at a steady pace with increasing the number of tasks. Applying different strategies has no significant
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effect on makespan, as shown in Fig. 5.3(a). However, Figs. 5.3(b) and 5.3(c) show great differences

on miss ratio and Avgdelay. Classification and MaxResponse strategies show less miss ratio and

Avgdelay compared to Random strategy, since they qualify the choice of the candidate task to be

reallocated. Also, MaxResponse strategy shows less miss ratio and average delay compared to the

classification strategy since it reallocates the tasks that have maximum MaxResponse time with extra

transmission time cost. Hence, the time-constrained tasks remain for processing with a better chance

of finishing earlier. It is worth noting that the miss ratio when using the MaxResponse strategy is not

exceeding 0.2% when the total number of tasks is 300. Also, the average delay does not exceed 5

seconds in the MaxResponse strategy, whereas it reaches about 25 seconds in the Random strategy.

5.3.4 Varying Number of Cloud Nodes

Fig. 5.4 demonstrates how varying the number of cloud devices affects makespan and the Cost with

number of tasks is set to 60. It is worth noting that despite increasing the cloud resources raises the

costs, no significant improvement in makespan is observed. The impact of varying the number of

cloud devices when the number of tasks is 300 is shown in Fig. 5.5. Increasing the number of cloud

devices results in increasing the cost and decreasing the makespan. So, based on our configurations

and the capabilities of the fog devices, and the complexities of the tasks, it is not preferred to increase

the cloud devices before the number of tasks reaches at least 300 tasks. This leads to monetary cost

savings.
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(a) Makespan

(b) Miss Ratio

(c) Average Delay

Figure 5.3: Varying number of tasks
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(a) Makespan

(b) Cost per execution

Figure 5.4: Varying number of cloud devices for 60 tasks
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(a) Makespan

(b) Cost per execution

Figure 5.5: Varying number of cloud devices for 300 tasks
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Chapter 6

Mobility-Aware Cloud-Fog based
Architecture for IoT Healthcare

In this chapter, firstly, we propose a mobility-aware IoT healthcare architecture through the deploy-

ment and implementation of an RSS-based handoff mechanism, and a Mobility-aware Modified BAl-

ance Reduce scheduling and allocation approach (MobMBAR). Secondly, we perform a comparative

study against the state-of-the-art approaches. We compare against three against different paradigms

and approaches in the vicinity of integrated Cloud-Fog IoT and Cloud-Only IoT. Thirdly, it includes a

realistic simulation case study that uses the layout of an indoor hospital building in Chicago.

6.1 Proposed Mobility-Aware Task Scheduling and Allocation

Healthcare architectures encompasses patients who are human beings interacting and moving. While

the patient is moving freely in the area, it is possible that he/she passes the wireless coverage range of

the gateway device it is connected to and hence, being temporarily disconnected. This in turn results

in network complexities in terms of the change in the location (spatial) and timing (temporal) of the

data forwarding process, in addition to interruption in the services executed (healthcare tasks). Hence,

this imposes a fundamental characteristic to be implemented in our architecture which is handling

mobility through an appropriate handoff mechanism. This helps in the support of free movements of

the patient without affecting the QoS that is represented in the accuracy, delay and cost in most cases.

Consequently, we aim at allowing the mobility (physical activity) of the patients in the environment
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through the deployment and implementation of a suitable handoff mechanism which is tightly related

with the nature of our Cloud-Fog architecture. In addition, a mobility-aware task scheduling and

allocation approach (MobMBAR) is proposed. We thereafter investigate more in the effect of the

patients’ mobility on our proposed scheduling and allocation approach (due to the approach being

data locality based). We validate our proposed architecture and implemented algorithms in the case of

immobility and mobility as well.

Referring to our proposed architecture in chapter 5, the moving patients are equipped with different

body sensors (BIO sensors and activity sensors) which generate continuous raw data aggregated by

mobile sink device such as a smart phone. This smart phone is connected to its upper layer fog device

(gateway represented in access point or wireless router) through wireless communication (WLAN).

Moreover, environmental sensors in IoT devices layer sense the information from the environment

and are then collected by their connected static sink device such as micro-controller to be further

forwarded to next layer (fog layer). Fog layer encompasses fog devices in addition to a specific device

called fog broker representing the mastermind of the architecture. The cloud is the fourth and final

layer in the architecture. Regarding the communication and networking technologies, we assume

Bluetooth/wired connection between IoT devices layer (sensors) and the sink layer, WLAN between

the sink layer and fog layer, LAN between fog devices in the fog layer, and WAN between the fog

layer and the cloud layer.

This section firstly discusses the implementation details of the handoff mechanism utilized to sup-

port the movement of the mobile sink devices from a coverage range of a gateway device to another.

This in turn adds more flexibility to the physical movement of the patient where the mobile sink de-

vice is attached to. The second subsection presents mobility-aware scheduling and allocation approach

based on MobMBAR.

6.1.1 Handoff

Handoff in wireless networks refers to the transfer of connection between a mobile device and its

gateway from a wireless network to another. Handoffs have been studied extensively and are usually

classified into two categories: 1) horizontal handoffs (HHO), and 2) vertical handoffs (VHO). Ex-
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amples on the handoff strategies in wireless networks both horizontal and vertical covering different

wireless technologies such as IEEE 802.11 and LTE are [156], [157], [158], [159], [160], [161], [162],

whereas handoff is explicitly studied for fog computing in [163]. In HHO, the mobile devices change

their attachment between fog gateways in the networks of the same access technology. Whereas in

VHO, the mobile device switches between fog gateways from different access technologies or net-

work environments. In our architecture, we assume that all the sink devices communicate to the fog

gateway through the same WLAN WiFi communication technology. Hence, we are following HHO

implementation.

We have to note that the utilization of WiFi technology comes in view of the fact that our architec-

ture covers small area such as indoor buildings e.g. a retirement home or hospital. Hence, short range

technology is sufficient to fulfil our coverage requirement. On the contrary, long range technology

covering remote ranges up tens of kilometers such as LTE-based cellular networks are intended to

cover wider areas e.g. a small or medium sized city through distributed cellular operators. As a result

of this privilege, LTE-based cellular networks causes a high drain in the power of the devices mak-

ing use of them. This high drain is inadequate for battery constrained devices considered in the sink

layer within our architecture. In addition to energy inefficiency, LTE-based cellular networks typically

face two extra weaknesses which are chargeable services and lower data rate, despite recent attempts

to catch up WiFi rates that is by some means successful. WiFi is preferred over other short-range

networking technologies based on IEEE 802.15 such as ZigBee, 6lowPan, etc... because it is more

powerful in terms of data rate, easily deployed and is able to avoid congestion.

We suggest CoAP over UDP protocols for application and transport layers respectively due to the

constrained features of the sink devices. In addition, we think that UDP specifications best fits our

architecture if we issue a trade-off between the re-transmission process for dropped packets which

contains old vital data of the patient at the expense of delay, and between ignoring them and delivering

the new health information on time.

We adopt the traditional HHO mechanism that uses as a basis the signal strength estimation [156].

Received signal strength (RSS) is typically a common metric for representing the quality of the wire-

less link. Almost the majority of the handoff mechanisms rely on this metric. RSS-based mechanism
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is a lightweight, powerful which results in high handoff success rate. Sometimes, a cost function is

built that utilizes other factors along with RSS such as bandwidth, power consumption, and velocity.

However, multiple parameters can complicate the handoff algorithm which degrade the performance

by adding more delay. In addition, the sink devices have limited capabilities to perform a complex

handoff algorithm. In our scenario, our objective is to enable the mobile sink devices to gain a quick

successful access to the network.

Our HHO mechanism is performed by defining two phases: 1) handoff decision policy, and 2)

handoff strategy. In handoff decision policy phase, received signal strength (RSS) is utilized to give

an indication that a moving device is being transferred from a wireless network area to another. We

choose combining two conditions for confirming the decision of handoff. Hence, a handoff decision

is taken if

(RSSGW < RSSTh) ∧ (RSSnew > RSSGW ) (6.1)

is true where RSSGW is the received signal strength from the fog gateway at the mobile sink device,

RSSTH is the received signal strength threshold, and RSSnew is the received signal strength from the

closest new fog gateway. This decision policy results in lower number of handoff failures, and hence

less number of missed tasks. We can control the number of handoff operations by adjusting RSSTH .

Smaller number of handoff operations results in reduction in latency cost. Hence, it is important

to appropriately set RSSTH value that keeps the number of handoff operations reasonable. For the

choice of RSSTH , we need to choose a threshold value equal to or smaller than -70 dBm which is

approximately the minimum value for reliable data delivery in WiFi and cellular systems [164], [165].

We also rely on RSS as a handoff strategy. In this strategy, when a handoff decision is taken, a

sink device chooses the closest fog gateway device to connect to while we take into consideration the

maximum number of devices that can be connected to the fog gateway [157], [166] and [167]. The

complete handoff procedure is shown in figure 6.1.

We follow log-distance path loss model for indoor WiFi in Eq.6.2 [168].

log d =
1

10n
(PTx − PRx +GTx +GRx −Xσ + 20 log λ− 20log(4π)) (6.2)

d marks the distance between the mobile sink device and the candidate fog gateway, PTx, PRx are the

radio transmit and receive power respectively, GTx, GRx are the antennae gain of the transmitter and
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Figure 6.1: Proposed RSS-based handoff mechanism
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Max_Connected_Devices=X
Num_Connected_Devices = N
Connected_SinkDevices_List =

[SinkNode1,SinkNode2,SinkNode3,SinkNodeN]

Src_Gateway=f
Dest_Gateway=null
Handoff_Status=false

Src_Gateway=f
Dest_Gateway=null
Handoff_Status=false
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Figure 6.2: Communication between Sink Layer and Fog Layer

receiver respectively, λ(m) is the wavelength of the signal, n is the propagation constant, and Xσ is

a normal random variable with a standard deviation equal to σ. Note that after the handoff strategy

is performed, the members list of the fog gateway is updated. This list is continuously reported to

the fog broker through resource collector module and defined as data placement information. Figure

6.2 illustrates the connection between the sink layer and the fog layer in our architecture and how the

handoff is handled. Figure 6.2 describes a sample case for a fog device called f connected to four sink

devices: 1 static sink device (through LAN or WLAN), and 3 mobile sink devices (through WLAN).

The static device is micro-controller that is responsible for the data collection from the environmental

sensors. The mobile sink devices represents smart phones, smart watch, or any easy body held embed-

ded device that is able to gather the data from the body sensors. Data collection from the sensors at the

sink devices is performed through wired or Bluetooth communication. The figure shows 4 scenarios

for the handoff process at time t. All of the 4 sink devices has their source fog gateway f .

• The first device SinkNode1 is static and hence, is always connected to the same fog device f

because of its immobility. Its destination fog gateway is always equal to null and its handoff

status is always equal to false.

The second, third and fourth sink devices are mobile and represent different cases at time t.
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• SinkNode2 is a mobile sink device, at time t, it is still in the safe transmission range of f .

• SinkNode3 encounters a handoff decision so its handoff status is set to true which means that

the RSSf value is less than RSSTh while still searching for the destination fog gateway.

• SinkNode4 also encounters a handoff under the same condition as SinkNode3, and started it

handoff strategy to choose the destination fog gateway which is chosen to be fnew.

The attributes of the f describe: the most extreme devices number able to be associated with it which

depends on the type of the device in addition to the communication technology (X), the actual number

of devices (N) connected at time t, and the members list holding objects representing the sink devices

connected.

6.1.2 Mobility-Aware Modified BAlance-Reduced (MobMBAR) algorithm

As described in chapter 5, our proposed scheduling and allocation approach consists of two phases:

1) Ranking phase, and 2) Scheduling and allocation phase. The first phase adapts and implements a

multi-criteria decision making algorithm called Weighted Sum Method (WSM) for ranking the tasks

and is explained in section 5.2.2. However, in this section, we upgrade and extend the second phase

of the proposed scheme to support the mobility as shown in Algorithm 2. MobMBAR adapts the

scheduling and allocation of the health tasks according to the movement of the patients and hence,

their spatial and temporal data placement. MobMBAR algorithm works on minimizing the makespan

described in Eq. 5.9. In balanced step, MobMBAR follows procedure explained in 5.2.3, however,

if task ti is found to be attached to a sink device that has performed a recent handoff process, The

transmission time is calculated as:

t(ti, P ) = Dti(partial)/BWP (6.3)

where Dti(partial) is the size of partial measurement data. The reported raw data is partially located at

the source fog gateway and partially located at the destination fog gateway or fully located at source

or destination fog gateway based on the time the handoff process is performed. For example, if the

handoff is performed at the start of the interval α, all of the task data will be at the destination fog
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gateway. And if the handoff is performed at the end of the interval α, all of the task data will be at the

source fog gateway. Consequently, Dti(partial) at clock CLK is calculated according to Eq. 6.4.

Dti(partial) =


[ClkHO − (Clk − α)]× Dti

α
, if P = GWDest

[Clk − ClkHO]× Dti

α
, if P = GWSrc

(6.4)

where Dti is the volume of collected data, Clk is the current clock when the allocation is executed

and ClkHO refers to the clock at which the handoff started. GWSrc is the preceding fog gateway

device connected to the sink mobile device that executes ti. GWDest is the current fog gateway device

connected to the sink mobile device that executes ti.

In Reduce step, we choose task with higher Class on Pmax to reallocate it on a remote computing

device according to Eq. 6.5.

treallocate = max
t∈β(Pmax)

Classt (6.5)

Algorithm 2 Pseudocode for MobMBAR
Define U as a set that describes input tasks
Define V as a set that describes fog devices
DefineW as a set that describes cloud devices
Define G = (U ,V , E) as bipartite graph of sets U ,V
Define (ti, di) as (task, IoTdevice) pair
Define Listhandoffs = {d1, d2, ...} as a list of devices that performed succesful handoff since last
allocation βCLK−α

Phase 1 – Local allocation

procedure BALANCE

Input: Bipartite graph G
Output: Allocation β

for each task ti (represented by vertex v1 ∈ U) do
for each processing node P (represented by vertex v2 ∈ V such that ∃ e(v1, v2) ∈ E) do

if Inlist(di , Listhandoffs) then
LP (ti)← CalcWorkload(Dti(partial), θti)

else
LP (ti)← CalcWorkload(θti)
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Algorithm 2 Pseudocode for MobMBAR (continue)
end if

end for
β(ti)←MinWorkload{LP (ti)}
LfinP ← LfinP + LP (ti)

end for
end procedure

Phase 1 – Remote allocation

procedure REDUCE

Input: Bipartite graph G,W , β

Output: Allocation β, Makespan
Pmax ←MaxWorkload{LfinP }
Makespanold ← LfinPmax
βold ← β

do
treallocate ←MaxClass{β(Pmax)}
Makespanexpected ← LfinPmax − LPmax(treallocate)
LfinPmax ← LfinPmax − LPmax(treallocate)
β ← β − β(Pmax)

for each P ∈ V ,W such that P 6= Pmax do
LP (treallocate)← CalcWorkload(Dt reallocate, θt reallocate)

end for
β(treallocate)←MinWorkload{LP (treallocate)}
LfinP ← LinitialP + LP (treallocate)

Pmax ←MaxWorkload{LfinP }
Makespan← LfinPmax
if Makespan ≤Makespanexpected then

βold ← β

Break

else if Makespanexpected < Makespan && Makespan < Makespanold then
Return

else
β ← βold
Makespan←Makespanold
Return

end if
while

end procedure
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6.1.3 Energy Analysis Model to Proposed Approach

In this section, we analyze to network and computing energy consumption of IoT-Fog-Cloud schedul-

ing and allocation approach. We target the fog and sink devices for being constrained IoT devices. We

focus on the network and computing energy consumed for the whole allocation process to be carried

out. We firstly model the energy consumption for computations on the fog devices. Next, we model

the energy consumption for the networking aspects.

Computing Energy

We denote the energy consumed by the CPU of fog device as Ecomp
f . This parameter equals the

combination of the static and dynamic energy consumed [169], [103]. The static energy is the energy

consumed during the idle state of the CPU. The dynamic energy is the energy consumed during the

execution of the tasks allocated to that fog device .

Ecomp
f = Ecomp−static

f + Ecomp−dynamic
f (6.6)

such that

Ecomp−static
f = P IdleCPU

f × (Makespan− Lfinf ) (6.7)

and

Ecomp−dynamic
f = PExecCPU

f × Lfinf (6.8)

Each fog device exerts time Lfinf to process all the tasks allocated to it. This value is equal to the

final workload assigned by the allocation algorithm. Otherwise, the fog device is considered idle.

P IdleCPU
f and PExecCPU

f refer to the power consumption of the CPU at idle state and processing state

respectively. These values depend on the energy profile of the fog devices [169]. Consequently, the

total computing energy consumed by all the fog devices can then be calculated as:

ETotal−comp
F =

V∑
j=1

[P IdleCPU
j × (Makespan− Lfinj ) + PExecCPU

j × Lfinj ] (6.9)
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Networking Energy

Ecomm
f refers to the energy consumed by fog devices communications.

Ecomm
f = Ecomm−static

f + Ecomm−dynamic
f (6.10)

such that

Ecomm−static
f = P IdleNIC

f × (Makespan− T comm−recvf ) (6.11)

and

Ecomm−dynamic
f = PRecvNIC

f × T comm−recvf (6.12)

Ecomm−static
f can be calculated by multiplying the power consumed by the NIC at the idle state times

the duration when the fog device is in the networking idle state (not receiving data). Correspondingly,

Ecomm−dynamic
f is calculated by multiplying the power consumed by the NIC at the receive mode,

times the duration the fog device is receiving data needed to process the task if needed. T comm−recvf

refers to the time the fog devices consume in receiving the data which is equal to the total size of

transmitted data for remote processing divided by the bandwidth of the transmission links and is hsown

in equation 6.16. It is proportional to the number of tasks partially locally and remotely allocated based

on the stationary or mobility status of the sink devices generating the task. Hence, equations 6.14 and

6.15 refer to the time the fog devices consume in receiving the partially and remotely allocated tasks

respectively.

T comm−recvf = T comm−recv−statf + T comm−recv−mobf (6.13)

Stationary scenario:

T comm−recv−statf =

∑N
i=1Dtiδ(β(ti)− f)δ(BCLK(ti, f))

BWf

(6.14)

Mobility scenario:

T comm−recv−mobf =∑N
i=1Dti(partial)δ(β(ti)− f)BCLK(ti, f)δ(BCLK−α(ti, f))

BWf

(6.15)
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δ(β(ti) − f) is the kronecker delta function between the allocation of task ti denoted as β(ti) and

fog device f such that it is true if they are equal and false otherwise. B is the biadjacency matrix of

bipartite graph G = (U ,V , E). B(ti, f) is true if there exist a data locality between task ti and fog

device f . Hence, in stationary scenario, two conditions have to be met to consider the transmission of

data needed for task ti.

1. The first condition is that task ti is allocated to fog device f (β(ti) = f ).

2. the second condition becomes the non-existence of data locality between task ti and fog device

f .

On the other hand, in mobility scenario, an energy is consumed for transmitting the partial data result-

ing from the handoff process. In this case, three conditions have to be met to consider the transmission

of partial data needed for task ti.

1. The first condition is that task ti is allocated to fog device f (β(ti) = f ).

2. The second condition is the existence of data locality between task ti and fog device f in the

current allocation.

3. The third condition the non-existence of locality between task ti and fog device f in the previous

allocation BCLK−α.

Consequently, the total networking energy consumed by all the fog devices can then be calculated as:

ETotal−comm
F =

V∑
j=1

[P IdleNIC
j × (Makespan− T comm−recvj ) + PRecvNIC

j × T comm−recvj ]
(6.16)

Regarding the sink devices, the energy consumed to transmit the data aggregated by sink devices

to their attached fog gateway devices is calculated as:

Ecomm
s = P TranNIC

s ×
∑N

i=1Dti

BWs

(6.17)
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The total energy consumed by the sink devices is equal to the power consumed by NIC when it is at the

transmit mode, multiplied by the total time needed to transmit all the data from the sink devices to their

attached fog gateway devices. We assume that the sink device is awake only during the transmission

of sensed data and sleep otherwise. As an example, based on our utilization of the WiFi technology,

P TranNIC
s can be calculated based on the values reported in [170]

6.1.4 Performance Evaluation

This section presents an evaluation of the performance for the approach proposed after its updated

to support mobility. We carry out our simulations utilizing iFogSim [155]. As reported in chapter

5, iFogSim models a complete environment of fog computing and is built upon CloudSim which is

a well-known simulator for simulating cloud computing. However, we had to extend the simulator

to support mobility for randomly selected devices. The environment and simulation setup is firstly

described followed by an enumeration of the configurations for the devices. For fair comparison, we

tune their parameter to the exact values of the work in [110] regarding the number and capabilities of

fog, cloud devices, and the number of tasks.

The fog environment area is set to 700×700 meter where 50 fog devices are uniformly distributed

over the area at interval of 100 meters as shown in figure 6.3. The environment encompasses 50 sink

devices. The locations of sink devices are randomly generated in each scenario. The mobile sink

devices (smart phone hanged to the patient) are following random waypoint mobility model with no

pause time, and with a fixed speed at 1.4 m/s which is human average walking speed [171], [172], and

[173]. We assume that the sink devices communicate to the fog gateway through Wi-Fi technology.

Hence, we apply indoor WiFi path loss model shown in Eq. 6.2 by setting the parameters of the

path loss model as shown in table 6.1. We set n = 3.8 assuming an indoor building environment with

obstacles. WLAN transmission range reaches up to almost 75 meters. The maximum number of

connected sink devices to access point is set to 50. Table 6.2 shows the simulation setup where the

duration of simulation is 30 minutes and the tasks are periodically allocated every 10 seconds (α = 10),

this sums up to 180 total allocation runs. The fog environment is connected to cloud datacenter consists

of 60 cloud devices. The cloud devices are 200 times the fog devices in the computing capability.
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Figure 6.3: Environment setup

Table 6.1: Path-loss model parameters

Parameter Value

PTx 100 mW

GTx 2.5 dBm

GRx 2.5 dBm

λ(m) 0.12m

σ 3 dBm

n 3.8

The details of the cloud, fog, and sink devices configuration are described in tables 6.3, 6.4, and

6.5 respectively. The corresponding energy related values for fog devices and Ethernet NIC from

[103], and the corresponding energy values for IEEE 802.11n NIC from [174] and [175] are listed.

Configuration details of the tasks features are shown in table 6.6 which describes the configuration

details we implemented.
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Table 6.2: Simulation Setup

Parameter Value

Duration 30 minutes

α 10 seconds

Speed of mobile sink 1.4 m/s

Gateway(Access Point) transmission range: 75 meters,

maximum connected sinks: 50

Table 6.3: Cloud devices parameters

Parameter Value

Cloud devices number 60

Processing capacity 2250 MIPS (2.2 GHz)

RAM 32 GB

Storage 11 TB

Bandwidth 100 Mbps

Cost per time unit 3 $

Evaluation Metrics

In addition to makespan described in 6.1.4 and specified using Eq. 5.9, we extend the evaluation met-

rics to include more analysis and to compare with state-of-the-art. We evaluate the metrics: Network

load, number of handoffs, missed tasks, and energy consumption Etotal. Network load represents total

size of data transmitted on the network links. Number of handoffs is the total number of handoff op-

erations performed during the simulation duration. Missed tasks is the percentage of tasks that are not

processed due to failed handoff process by its attached sink device. Etotal computes the total energy

consumed as discussed in subsection 6.1.3 and is equal to the summation of equations 6.9, 6.16 and

6.17.

NetworkLoad =
∑

β(ti)∈W

Dti (6.18)
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Table 6.4: Fog devices parameters

Parameter Value

Fog devices number 50

Processing capacity 11 MIPS

RAM 8 KB

Storage 92 KB

Bandwidth 1024 Mbps

Idle CPU power consumption 0.36 Watt

Execution CPU power consumption 0.44 Watt

Idle NIC power consumption 10−14 Watt

Receive NIC power consumption 0.285 Watt

Table 6.5: Sink devices parameters

Parameter Value

bandwidth 300 Mbps

Transmit NIC power consumption 1.254Watt

Table 6.6: Tasks parameters

Parameter Value

Complexity [1000, 20000] MI

Data size [100, 500] MB

Max response time [15 sec, 30 min]

MissedTasks =
No. of non− processed tasks

Total issued tasks
(6.19)

ETotal = ETotal−comp
F + ETotal−comm

F + Ecomm
s (6.20)
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All result are averaged over 10 runs which means 10 different scenarios for each evaluation criteria.

The variations are: 1) The class and configuration of tasks, 2) The direction of the moving sink device:

{south, north, east, west, south-east, south-west, north-east, north-west}, and 3) x,y coordinates for

initial location of moving device. All the variations are maintained within the described ranges in

tables 5.4 and 6.6. Diversity in scenarios is intended to provide the assessment under various circum-

stances to best evaluate the scalability and generality of the proposed architecture.

Varying Hand-off Threshold

Figure 6.4 illustrates the effect of varying received signal strength threshold (RSSTh) on the handoffs

as well as the missed tasks. The range of RSSTH is -70 dBm to -90 dBm which is the sensitive value

we consider for disconnection. The percentage of mobile devices is 40% and the number of sink

devices is 50. It can be noticed that the number of handoff operations reaches a maximum value of

90. It is also observed that the number of handoff operations is very close for different thresholds.

The number of missed tasks is zero when RSSTh equal to -70dBm, -75dBm and -80dBm, and reaches

0.001% as a maximum value when RSSTh is equal to -85dBm and -90dBm. It is worth noting that

changing RSSTh has no significant effect on handoff operations number nor missed tasks number.

This is due to that our proposed handoff scheme considers also the strength of signal of the fog gateway

that the sink device is moving to.

Varying Percentage of Mobile Sink Devices

Figure 6.5 shows the result of varying the percentage of mobile devices ranging from 0% to 100%

when the number of sink devices is 50. Figure 6.5(a) shows close values for makespan ranging from

44 to 47 seconds. The insignificant variations between the different percentages is noticed due to the

random waypoint mobility factors for the mobile sink devices (direction and initial location). It must

be taken into consideration that when the sink devices start to move and change their fog gateway as a

result of the handoff process, the workload cost is affected. This results from the necessary additional

time required to transmit part of the data to new/old fog gateway even if the task is processed locally.

However, MobMBAR approach is still able to sustain the stability of makespan values which means
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(a) Number of handoffs

(b) Percentage of missed tasks

Figure 6.4: Varying handoff threshold
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(a) Makespan

(b) Number of handoffs

(c) Percentage of missed tasks

Figure 6.5: Varying percentage of mobile devices
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Table 6.7: Resources utilization

(a) Resources utilization

Device
Allocation Percentage

(out of 27000 task)
Classification of the tasks allocated

Data analysis Context Management
Critical Analysis

/Critical Control

Cloud 54.7% 59% 33.7% 7.3%

Fog 45.3% 5% 30% 65%

(b) Task Allocation

Task Classification Allocation Percentage on devices

Cloud Fog

Data analysis 93.5% 6.5%

Context management 57.5% 42.5%

Critical Analysis / Critical Control 12% 88%

close values with time difference less than 3 seconds for different percentage of mobile sink devices.

This proves the scalability of the approach. Figure 6.5(b) shows that the number of handoff operations

increases when the percentage of mobile devices is increased. Figure 6.5(c) demonstrates that the

number of missed tasks is equal to zero for percentages of mobile sink devices equal to 0%, 20%, and

40%. Starting from percentage of mobile sink devices equal to 60%, the percentage of missed tasks is

increased to be around 0.002%.

Resources Utilization

Table 6.7 show the result for the fog and cloud resources utilization for allocating 150 tasks with 60%

of the sink devices are mobile, and makespan is equal to 46.8 seconds deducted from figure 6.5(a). We

have to note that the allocation is executed 180 times during 30 minutes summing up to 27000 total

tasks. It can be seen from table 6.7(a) that the allocation of the tasks is shared among the gateway fog

devices and the cloud devices. Amongst the tasks allocated on the cloud devices, 59% are classified as

data analysis, 33.7% as context management, and 7.3% as critical tasks. On the contrary, 65% of the
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tasks allocated on the fog devices are classified as critical tasks, 30% as context management, and 5%

as data analysis tasks which constitutes the least percentage. From table 6.7(b), it is also observable

that high percentage of High-Level class tasks (critical analysis and critical control) are allocated on

the fog devices 88%. While high percentage of Medium-Level class tasks (context management) are

allocated on the cloud devices 57.5%. Also, high percentage of Low-Level class tasks (data analysis)

are allocated on the cloud devices 93.5%. This comes from the fact that the higher the level of a task,

the earlier it is ordered in the tasks queue (due to the ranking phase). Next, the leading tasks in the

queue to be allocated are chosen to be processed on their local processing fog devices such that their

time constraints are met.

6.2 Comparative Study

This section compares the performance of the proposed architecture against different architectures and

approaches in the vicinity of integrated Cloud-Fog IoT and Cloud-Only IoT. These comparisons are

performed under different scenarios and with detailed description of the varying parameters for the

healthcare applications. We compare our work with: HealthEdge, HEFT approaches, and Cloud-Only

architecture.

Firstly, we compare MobMBAR with HealthEdge, the single existing approach in literature for

healthcare Cloud-Fog IoT architecture [110]. The task scheduling algorithm implemented in HealthEdge

targets minimizing the schedule length and the network load. HealthEdge is based on two factors for

determining the priority of the task which are the emergency factor and the data size of the task. How-

ever, in MobMBAR, priority determination relies on classification and maximum response time of the

task. HealthEdge statically links each fog device with five tasks without taking into consideration the

mobility of the patients. Whereas our proposed approach handles this mobility through the implemen-

tation of MobMBAR. Secondly, we compare MobMBAR with HEFT [176]. HEFT is a well-known

heuristic algorithm for scheduling which seeks for the minimization of the makespan for the scheduled

tasks. HEFT is adopted as an algorithm in Cloud-Fog IoT architecture proposed in [72]. While the

authors in [72] propose a makespan- monetary cost trade-off for tasks scheduling on cloud and fog

computing devices, our approach targets the latency. Due to the time criticality nature of the health-
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care tasks. However, we build directed acyclic graph (DAG) with no hierarchy (precedence constraint

between two tasks is set to zero). Finally, we compare against Cloud-Only architecture. In this im-

plementation, all the tasks are sent to be processed on the cloud devices. We choose to schedule the

tasks using the first come, first served (FCFS) scheduling algorithm. This is achieved by performing a

rotation on the cloud devices in consecutive order and then allocating the next task in the ready queue.

Figure 6.6 demonstrates the influence of varying the number of tasks on the makespan, network

load in addition to energy consumption in case that 50% of the sink devices are mobile for a simulation

duration of 30 minutes leading to 180 total consecutive allocations. We set the y axis to logarithmic

scale in figures Figure 6.6(a) and Figure 6.6(c) to be able to notice the distinction between the four

approaches.

Figure 6.6(a) shows that MobMBAR outperforms the other approaches. It is observed that the

makespan in HealthEdge exceeds 16 minutes (1000 seconds), when the number of tasks is 100 while

it reaches only 48 seconds in MobMBAR and HEFT, and about 800 seconds (13 minutes) for Cloud-

Only. Increasing the number of tasks causes an increase in the makespan for all the approaches. De-

spite that MobMBAR and HEFT show similar values for makespan when the number of tasks is 100

and 150, starting from 200 tasks, HEFT presents higher makespan This result of MobMBAR perform-

ing better than the other approaches is achieved due to multiple reasons. Firstly, when comparing to

Cloud-Only architecture, MobMBAR makes use of fog devices beside the cloud devices as processing

devices when performing the allocation. This leads to saving in extra transmission costs to the remote

cloud datacenters. Secondly, MobMBAR takes into consideration the locality of data that resides in

the gateway devices. This limits the extra cost caused by the transmission time to remote processing

devices. However, HEFT and Healthedge do not consider data locality in scheduling decision. It is

noticed that HealthEdge demonstrate the worst makespan because of its dual objective optimization

function which tends to minimize the network traffic load at the expense of the makespan. In addition,

HealthEdge chooses to allocate the tasks locally on the fog device (throught placement in edge-queue)

when their emergency level exceeds certain threshold regardless of the capabilities of the fog device

nor the requirements of the task to be processed. Note that we set the y axis to logarithmic scale to be

able to notice the distinction between the four approaches. We have to point out that MobMBAR has
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(a) Makespan

(b) Network load

(c) Energy consumption

Figure 6.6: Varying number of tasks
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makespan values that is always below the MaxResponse time for all the tasks (1800 seconds).

Figure 6.6(b) shows the network traffic load versus the number of tasks for the four approaches. It

can be shown that HealthEdge has the least value for network load due its dual objective optimization

function. However, the network traffic load in MobMBAR is lower than both HEFT and Cloud-Only

approaches for different number of tasks particularly when the number of tasks is increased. Despite

we can notice similar values when we compare HEFT with Cloud-Only, Cloud-Only witnesses higher

network load due to its in-dependability on auxiliary processing devices ( fog devices) beside the cloud

devices.

Figure 6.6(c) displays the energy consumption of the fog and sink devices against the number of

tasks for MobMBAR, HEFT, and HealthEdge. Figure 6.6(c) shows close energy consumption values

for MobMBAR and HEFT at 100 and 200 tasks. When increasing number of tasks above these values,

MobMBAR shows higher value due to its objective for decreasing the latency of the makespan and

thus utilizing more fog devices. While HealthEdge tries to minimize the schedule length and traffic

load, it may allocate more tasks to fog devices in order to reduce the network load for transmitting to

the cloud. This may cause reduction in networking energy, but the computing energy will be greatly

increased based on the nature that fog devices have a limited processing capabilities compared to cloud

devices. An increase is noticed for all the three approaches when the number of tasks is increased.

6.3 Case Study: Simulations in Real Condition

This section presents a case study to evaluate proposed scheduling and allocation approach MobM-

BAR on an indoor hospital building environment in [177] with layout shown in figure 6.7. It consists

of 5 patient’s rooms and a nurse station with approximately 33 m2 each. Each room is occupied with

number of patients varying between 1 and 6. Each patient is attached to a sink device that collects

data from 2 BIO sensors. In addition, 3 static sink devices collect data from 14 environmental sen-

sors that are deployed in the building. Patient’s movement follows constrained mobility (CM) model

[178], which is a graph-based mobility model targets indoor environment with obstacles. CM model

represents source and destination points by the graph vertices, and possible paths by graph edges.

Movements of the patients between vertices should follow shortest path algorithm. Regarding fog
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Figure 6.7: Hospital building layout

layer, Access Points AP are served as fog devices. Following Cisco estimation strategy [179] which

sets the maximum of the number of APs based on throughput and client count, results in 4 APs for

full hospital occupancy. Intel Edison Board with CPU of 500 MHz, 1GB RAM, 4GB storage, and

Bluetooth and WiFi, is selected as AP with limited capability. The board consumes 0.385Watt at CPU

idle state with WiFi enabled, 0.435Watt at CPU execution, NIC idle power consumption is 10-14Watt,

and NIC receiving power consumption is 0.285Watt [180]. For cloud layer, we simulate one cloud

device with 2.2GHz CPU, 32GB RAM, 11TBStorage, and 100Mbps bandwidth.

We simulate 5 types of periodic tasks T1-T5. Period of T3 and T4 is 1 minute, whereas T1, T2 and

T5 are generated each 10 seconds. Table 6.8 shows the configurations of modelled generated tasks:

TaskID, Sensor Type, period, complexity, Data size, Max response time, and its Classification. For

example, T1 that performs ”ECG classification” with a complexity of 1000MI, is classified as Critical

Analysis and requires 16-36KB of measurement data, with 15s maximum response time [61]. Also,

T2 that performs ”speech analysis” is classified as Data Analysis, requires 500KB of measurement

data, and has a complexity of 500MI with unlimited maximum response time [59]. The execution time

89



Table 6.8: Tasks Configuration

Ref Task
ID

Sensor(s) Type Period
(sec)

Complexity
(MI)

Data
size
(KB)

Max response
time(sec)

Classification

[61] T1 ECG classification 10 500 36 15 critical analysis

[59] T2 Audio 10 1000 500 unlimited data analysis

[181] T3 Temperature 60 10 10 500×10−3 context management

[181] T4 humidity 60 10 10 500×10−3 context management

[182] T5 ECG compression 10 211 240 500×10−3 critical analysis

for a task is calculated as follows:

Execution T ime(s) =
Task complexity(MI)

Processor Capacity(MIPS)
(6.21)

Table 6.9 shows the results of makespan, network load, energy consumption (Etotal), miss ratio, and

number of handoffs , for allocating 133 generated tasks in full hospital occupancy (6 patients/room)

condition. Missratio is measured by percentage of tasks that miss their maximum response time to

the total number of tasks. Simulation time is set to 10 minutes, handoff threshold is set to -70dBm,

allocation period α is set to 10s, and patient movement speed is set to 1.4m/s.

Table 6.9(a) demonstrates that makespan is equal to 10.4 seconds and does not exceed maximum

required MaxResponse for all the tasks. This is a good indicator on the ability of MobMBAR to

be applied in critical application scenarios. It can also be noticed that the ratio of tasks missing their

maximum response time is insignificant and equal to 0.2%. This articulates how MobMBAR can meet

the required time constraints of the application. The network load which is the size of data transferred

to the cloud for tasks execution, is equal to 637 MB. This load is a low volume traffic that can be

easily provisioned with minimal latency and cost. Energy consumed by fog devices is equal to around

2458.2 joule where energy consumed by sink devices is equal to 0.8 Joule. We have to point out that

adding a fog device to fog layer helps in enhancing the performance of the tasks processing, due to

locally allocating the processing of tasks (on fog server) that were remotely allocated on the cloud.
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Table 6.9: Case study results

(a) Fog layer with 4 fog devices

Measurement Value

Makespan 10.4 seconds

Network load 637 MB

Energy consumption 2459 Joule

Miss ratio 0.002

Number of handoffs 89

(b) Fog layer with adding extra server

Measurement Value

Makespan 7 seconds

Network load 412 MB

Energy consumption 1832.5 Joule

Miss ratio 0.001

Number of handoffs 87
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Table 6.9(b) shows the performance results when adding Dell OptiPlex 780 fog server with 3GHz

processor, 4GB RAM and 500GB storage. Results shows that MobMBAR provides makespan that

achieves maximum response time of the tasks with reduction of energy consumption by about 25%

and network load by 35%.
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Chapter 7

Mobility-Enabled Privacy for Cloud-Fog IoT
Healthcare

Privacy is defined as controlling the collection and usage of personal information during the lifetime of

the application. In order to encourage patients to use the proposed architecture and to be relaxed when

sharing his/her personal data, privacy must be provided throughout the different layers and modules. In

this chapter, we tend to focus on the personal vital data collected and transmitted between the mobile

sink devices and the gateways. To support this privacy, a strong authentication is required between

both parties, the sink device and the gateway before and after the handoff operation, to prevent an

attack risk if an attacker exploits this handoff as a security gap. Authentication proves and verifies the

identities of the devices and hence helps in achieving privacy.

This chapter presents a mobility-enabled DTLS (Datagram Transport Layer Security)-based au-

thentication scheme for securing the connection between the mobile sink device and the gateway

when a handoff occurs. DTLS is considered as the standard security protocol for IoT constrained

environments. It is an IP based end-to-end security protocol implemented over the transport layer.

Based upon TLS (Transport Layer Security) protocol, DTLS share basic characteristics with TLS,

while using UDP (User Datagram Protocol) instead of TCP (Transmission Control Protocol). DTLS

is specified by IETF (Internet Engineering Task Force) and published in 2012 [1]. The first section

summarizes the overall procedure of DTLS. The second section of this chapter reviews DTLS-based

security in IoT, and the third section presents the proposed authentication procedure.

93



7.1 Introduction to DTLS Protocol

The execution of DTLS handshake is performed through interchanging six consecutive message flights

between a client and a server. The client is the initiator of these messages. Each flight includes one

or more communication messages. The first three flights are reserved for the detection and avoidance

of Denial of Service (DoS) attack. The next 2 flights are used for the session generation through the

authentication of peers and exchanging the security parameters. The final flight is used to sign the

termination of the handshake and the launching of the session. The basic handshake is shown in figure

7.1 [1],[2]. Firstly, the client initiates the handshake by sending a ClientHello message to the server

Figure 7.1: DTLS Overall Handshake [1],[2]

who responds with a HelloV erifyRequest embedding a cookie to verify the client. Once the client

replies with the same cookie in the second ClientHello message, the server can exclude the client as

being DOS attacker and continue the handshake, else the client is ignored. Following, the server start

the exchange of security parameters with the client by sending ServerHello message containing the

cipher suites to be utilized, optional server digital certificate, and optional request for client certificate.

The client then responds accordingly with the cipher suite chosen and its digital certificate if it was
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requested, and an optional request for server certificate if it needs to have it while it was not sent

by the server. The key exchange messages also include the exchange of pre-agreed keys needed to

generate a final session key called master secret. The ChangeCipherSpec message sent by both

parties indicate the start of the session which means using the master secret generated for encrypting

upcoming application messages.

One of three security modes can be used to accomplish this handshake and agree on session mas-

ter secret; pre-shared key (PSK), raw public key (RPK), and X.509 certificate based public key. In

pre-shared key (PSK), a symmetric key based mutual authentication is performed based upon pre-

distributed secret key. This mode is considered unscalable despite being lightweight. In raw public

key (RPK), asymmetric key authentication is performed. While certificate based public key mode is

similar to raw public key (RPK), an additional digital certificate is included. Raw public key (RPK)

and X.509 certificate based public key both use Elliptic Curve Cryptography (ECC). Hence, they are

more scalable and secure while they present higher computation overhead. The choice of the mode

to use depends on the level of security needed in the application, in addition to the constraints of de-

vices performing the handshake. RPK and certificate based public key are stronger than PSK despite

that they require extra communication, computation, and storage overhead. PSK is more lightweight,

fast, and is appropriate to most of IoT applications. However, it is non-scalable due to the need for

pre-configuration of all communicating devices with the symmetric key.

However, as DTLS is a peer to peer authentication, when mobility exists, a new handshake between

the new communicating devices is required. This in turn adds computational and communication over-

head as well as extra delay which is unsuitable for critical applications such as healthcare. The next

section proposes a scheme that maintains the secure authentication for IoT devices while transferring

the connection between gateways, and eliminates the need for performing new full handshake.

7.2 Datagram Transport Layer Security (DTLS) in IoT

Several works have been proposed for enhancing the usage of DTLS in IoT. Authors in [183] work on

a scheme for DTLS header compression to be more adaptable to energy constrained devices. Apart

from working on the header structure, different articles worked on the platforms, the architecture of the
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environment, or the handshake algorithm. In [184], [185], the authors propose an RSA keys certificate

based DTLS handshake authentication. The work depends on the hardware RSA support existing in

trusted platform module (TPM) for both computation and key storage. We found this work limited

in the way that it needs a special chip on the IoT device due to the large key size in an RSA public

key encryption. Consequently, the majority of other works employing DTLS based authentication in

IoT relies on the elliptic curve cryptography. In [134], the authors delegate the handshake to a more

powerful device which owns the resource constrained device. They use ECC keys certificate based for

initial handshake and then utilize session resumption mechanism for reducing the overhead caused due

to handshake re-establishments. In [186], the same authors update their architecture and replace the

process of delegation from the gateways to be performed by one device called delegation server (DS)

to overcome the mistrust in gateways. Despite being trusted and hence the approach is more secure,

deploying one delegation server for performing the handshake drives towards scalability problem.

The authors in [187] also use ECC key certificate based DTLS security. They utilize 6lowpan router

(6LBR) to take part in securing the communication. It acts as an intermediary entity for authorizing

both the client and the server. [188] performs a similar mechanism, but instead they employ a trust

authority called trust anchor (TA) to authenticate and authorize the server to the client. They propose

a method that is independent than the routing protocol used and also that reduces extra burden from

the constrained device in addition to assuring the security. The authors work on two new versions of

the preshared key and raw public key modes which are more scalable. In both, the client exchange

the keys with TA and then it contacts the server. In addition, a new lightweight certificate called

MAC certificate is proposed. The authors in [189] propose the usage of smart e-health gateways as

an intermediate aiding entity in the security mechanism between the client and the server through

applying a session resumption mechanism. They assume that when a mobile client is moved from the

range of a smart e-health gateway to another, they don’t have to perform an authentication as e-health

gateways exchange security update messages about the clients. We found this method is non secure

and threatens the security of both the client and the server. Adding to that, the authors doesn’t reveal

information about the security updates exchanged and hence, their contribution regarding mobility is

not clear. A similar work is proposed in [190] where an IoT healthcare architecture also utilizes the
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idea of gateways running DTLS authentication on behalf of the client representing the patient and also

session resumption for reducing the overhead.

7.3 Proposed Mobility-Enabled Authentication

In this section, we propose a mobility-enabled DTLS-based authentication scheme for moving devices

in IoT architectures. Our scheme is based on the session resumption functionality of TLS protocol in

RFC 5077 [3]. However, in our work we consider an IoT device is able to resume its established secure

session with a new gateway through sharing cryptographic security parameters between the gateways.

In the following overview, we will subsequently present how the resumption is accomplished in the

RFC.

7.3.1 Overview

In the specification of a session resumption without server side mechanism, a previously agreed upon

session is allowed to be resumed between a peer of devices - a client and a server - that was initiated

using a full handshake with the security mode selected. The following clarifies the full handshake with

session resumption notification as shown in figure 7.2:

1. To notify the server of its preparation for a session resumption, the client extends the client hello

message with an empty session ticket (flight 3).

2. If the server agrees to this request, it extends the server hello message with an empty session

ticket (flight 4).

3. The handshake is continued using the security mode selected. In flight 6, the server generates

and sends a complete session ticket to the client. The session ticket is a structure comprising

multiple cryptographic security parameters concerning the server and the session state.

When the session is interrupted, terminated, or disconnected due to handoff, the client initiates an

abbreviated handshake through sending the generated ticket to resume the session as shown in figure

7.3.
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Figure 7.2: Full handshake with session resumption[3]

Figure 7.3: Abbreviated handshake [3]
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In the following subsections, we propose a session resumption-based mobility-enabled DTLS

handshake. Section B presents the IoT system architecture on which we apply our proposed mobility-

enabled authentication, and section C presents detailed implementation of the modified version of

handshake procedure.

7.3.2 Architecture

Figure 7.4 shows IoT system architecture on which we apply our proposed mobility-enabled authen-

tication. In which, gateways layer comprising a number of interconnected gateways, and IoT devices

layer comprising static and mobile IoT devices. The IoT devices utilize the gateways for processing

and forwarding the collected data. The gateway is connected to single/multiple IoT devices, but the

IoT device is connected to one gateway at a time. For our proposed mobility-enabled authentication

scheme, we assume the following:

• After network setup, each pair of gateways (gi, gj) mutually authenticate each other using cer-

tificate based DTLS and agree upon a key key gi gj for encrypting their exchanged messages.

• Single hop communication between IoT device (client) and gateway (server).

• Upon entering the transmission range of a gateway, mobile IoT device initiates a DTLS based

handshake with the gateway so that they mutually authenticate each other.

• Raw public key (RPK) DTLS mode is implemented when performing the handshake between

IoT device and gateway. It is lighter than certificate based DTLS mode and more secure than

preshared key (PSK) mode, and it suits the capabilities of constrained IoT devices.

As it can be seen from figure 7.4, considering a scenario that an IoT device such as a medical

sensor hanged by patient has mutually authenticated with home gateway. When the patient moves,

this medical sensor can change its connection from home gateway to visited gateway. Handoff was

previously explained in chapter 6. In order to overcome the lack of security caused as a result of the

handoff and carry on with the authentication between IoT device and visisted gateway, we propose

mobility-enabled DTLS-based authentication scheme described in the next section.
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Figure 7.4: Proposed scheme architecture

7.3.3 DTLS-based Handshake

The implementation of the proposed scheme is based on communication messages that have the fol-

lowing structures shown in figure 7.5 created by the gateway.

Figure 7.5: Communication messages of proposed scheme

• plain session state: It holds the state of the session established between an IoT device and a

gateway. It consists of : 1) cipher suite: agreed upon between an IoT device and gateway, 2)

compression method: the technique used to compress the data, and 3) master secret: the key

that is used to encrypt the data during the session established between IoT device and gateway.

• ticket: It encapsulates the session state to be forwarded to the IoT device. Ticket structure is

composed of three fields: 1) encrypted session state which is a session state encrypted using

a randomly generated key by the gateway at the startup of the device, 2) keyName: the name
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of the key used to encrypt the session state, and 3) MAC: message authentication code to

authenticate the encrypted session state.

• new session ticket: The new session ticket is the generated ticket sent to the IoT device asso-

ciated with a hint on the period during which the ticket is valid (ticket lifetime hint).

• ticket key state: It holds information concerning the randomly key generated by the gateway

at the startup of device. It consists of the name of the key (key name) used to encrypt the

session state between the IoT device and the gateway, the key itself, and a timestamp of this key

state.

The procedure of proposed mobility-enabled authentication scheme is presented in figure 7.6 where:

1. A full RPK based DTLS handshake with session resumption is performed following the se-

quence described in subsection 7.3.1. Where an IoT device sends client hello message to the

gateway with an empty session ticket extension, and accordingly, the gateway replies with a

server hello message with an empty session ticket extension. Hence, the cipher suite is set to

TLS ECDHE ECDSA WITH AES 128 CCM 8 (flights 1-5).

The first segment of the cipher suite is the key agreement protocol. Elliptic curve Diffie-Hellman

Ephemeral (ECDHE) and Elliptic Curve Digital Signature Algorithm (ECDSA) key agreement

algorithms allow IoT device and gateway, each having an elliptic curve public-private key pair,

to establish a shared secret. Elliptic curve cryptography (ECC) is able to provide high cryp-

tographic strength with much smaller key sizes which distinguishes it than other public key

cryptography algorithms e.g. RSA. The second segment of the cipher suite defines the encryp-

tion algorithm utilized during the session. Advanced Encryption Standard (AES) with 128-bit

key is very popular cryptographic scheme in IoT due to its robustness in addition to it simple

implementation which is suitable for the constrained devices. Finally, CCM 8 (Counter with

CBC-MAC with an 8-Octet) segment identifies the usage of AES-CCM mode which generates

a MAC to achieve integrity.

2. The gateway encrypts the session state plain session state with a randomly generated key key
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at the startup of the device, and sends the complete session ticket ticket along with the name of

the key key name to the IoT device (flight 6).

3. To allow the mobile IoT device to be able to resume the connection with other gateway, the

gateway sends the complete state of the key ticket key state to the mutually authenticated

gateways encrypted using key gi gj.

Upon the handoff of the mobile IoT device between gateway i and gateway j:

1. The mobile IoT device starts DTLS handshake by sending the client hello message to the visited

gateway along with the session ticket new session ticket.

2. The visited gateway firstly checks the lifetime validity of new session ticket. Next, it extracts

the ticket ticket and checks the existence of keyName in its list of ticket key state shared by

the neighboring gateways. If it finds a match, it replies to the IoT device with a verification

message (an empty session ticket extension to the server hello).

3. Then, the visited gateway decrypts the encrypted session state of the ticket ticket using the

inferred key key in ticket key state.

4. Both the visited gateway and IoT device change their cipher specifications according to the cryp-

tographic security parameters of the decrypted session state plain session state: cipher suite,

compression method, master secret.

The proposed scheme maintains the secure authentication while transferring the connection among

gateways, and eliminates the need for performing new full handshake with its key exchange messages.

7.4 Performance Evaluation

In this section, we evaluate the performance of proposed mobility-enabled DTLS-based authentica-

tion scheme. The proposed scheme is implemented utilizing Contiki Cooja simulation tool which is

a network simulator designed for constrained devices. The simulation is running on VM setup on 3.2

GHz laptop. We simulate 16 MHz WiSMote devices [191] equipped with CC2520 IEEE 802.15.4 RF
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Table 7.1: WiSMote specifications

Parameter Value

Frequency 18 MHz

Flash 256 KB

SRAM 16 KB

ADC 12-bit

transceiver [192]. Table 7.1 shows the specifications of a WiSMote device. We make use of tinyDTLS

which is a Datagram Transport Layer Security (DTLS) library supporting the CoAP oriented cipher

suite [193]. We build certificate-based DTLS, and a session resumption without server side state algo-

rithm on TinyDTLS code. We utilize Aaron Gifford’s Implementations of NIST public key operations

and hash algorithms [194].

7.4.1 Evaluation metrics

To evaluate the efficiency of the proposed scheme, we measure and compare the performance of mu-

tual authentication process between IoT device and visited gateway when handoff occurs using: the

proposed scheme based on session resumption handshake against new session establishment hand-

shake. We measure the following four metrics:

• Handshake latency: defines the latency of authentication in case of a new session established by

full handshake protocol, or session resumed by proposed scheme, when handling handoff .

• Processing time: refers to in-node computation overhead for IoT device and gateway in case

of implementing the full handshake, and implementing the proposed session resumption-based

handshake. To measure the processing time, a timer is started on the transmission of client hello

message until the reception of finished message.

• Energy consumption: indicates the total communication and computation energy consumed by

IoT device and the gateway, when implementing both cases: full handshake and proposed ses-
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sion resumption-based handshake. Powertrace program in Contiki Cooja is used to evaluate

the total energy consumption.

• Memory overhead: is the usage of read-only memory (ROM) and random-access memory

(RAM) for the IoT device and the gateway in the cases of full handshake and proposed session

resumption-based handshake. To evaluate the usage of memory and size of code, GNUsize is

used to measure memory sizes.

7.4.2 Results

Table 7.2 shows the andhshake latency created by full handshake protocol and proposed scheme in

the case of a handoff between gateway i and visited gateway j. The proposed scheme speeds-up the

mutual authentication process between IoT device and visited gateway j by 93% compared to full

handshake, due to the reduction in the number of flight messages exchanged.

Table 7.2: Handshake latency

Measurement Full handshake Proposed scheme Improvement

Handshake latency 600 s 40 ms 93%

Tables 7.3, 7.4 show the performance results of handling handoff using full handshake and the

proposed session resumption-based handshake for both IoT device and gateway respectively. Table

7.3 shows that the processing time for the proposed session resumption-based handshake at IoT device

is reduced by about 99.7%, due to the elimination of cryptographic key and hash operations required

to perform the authentication and generate the master secret.

Consequently, it can be noticed from table 7.3 that the energy consumption for the proposed session

resumption-based handshake at IoT device is reduced by the same ratio to reach 39 mJ for computa-

tions. Regarding communication energy consumption for proposed scheme, it is observed that the

transmit energy consumed at the IoT device is 1.8 mJ while the receive energy is 2.4 mJ, with energy

saving 4.5%, and 7% respectively compared to full handshake, due to minimal number of sent and

received messages for resuming the session. Whereas full handshake requires additional messages for
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Table 7.3: Performance Results for IoT device

Measurement Full handshake Proposed scheme Improvement

Processing time 192 s 703 ms 99.7%

Energy consumption processing (10 J) processing (39 mJ) 99.6%

radio tx (40 mJ) radio tx (1.8 mJ) 4.5%

radio rx (33 J) radio rx ( 2.4 J) 7%

RAM overhead 0.43 kB 0.44 kB -

ROM overhead 86.6 kB 87 kB -

Table 7.4: Performance Results for Gateway

Measurement Full handshake Proposed scheme Improvement

Processing time 196 s 1156 ms 99.8%

Energy consumption processing (10.7 J) processing (63 mJ) 99.4%

radio tx (23 mJ) radio tx (1.2 mJ) 5%

radio rx (32 J) radio rx (2.1 J) 6.5%

RAM overhead 0.46 kB 0.47 kB -

ROM overhead 88 kB 88 kB -

key exchanging between IoT device and visited gateway. Table 7.3 also shows ROM and RAM usage

at IoT device for the full handshake against the session resumption-based handshake. The session

resumption-based handshake exhibits larger memory footprint of about 400 bytes as it includes addi-

tional code for handling the session tickets. no significant improvement is observed in RAM overhead.

Table 7.4 shows a reduction by about 99.8% in the processing time at gateway for the proposed

session resumption-based handshake compared to the full handshake. Also, computation overhead at

the gateway is reduced by about 99.4% for the proposed session resumption-based handshake com-

pared to the full handshake. In addition, the proposed session resumption-based handshake achieves

5% and 6.5% reduction in communication energy consumption in transmit and receive mode respec-

tively compared to full handshake. Close measurement values for memory usage are noticed at the
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gateway for both full handshake and the proposed session resumption-based handshake.

7.4.3 Security analysis

The proposed scheme provides confidentiality, integrity, forward secrecy through applying AES-CCM

cryptography encryption, HMAC-SHA-256 on the message encrypted, and applying Elliptic Curve

Cryptography (ECC) for generating the session key respectively. AES (Advanced Encryption Stan-

dard) is known for being strong symmetric encryption technique applicable to constrained IoT devices.

SHA-256 (Secure Hash Algorithm 256-bit) cryptographic hash algorithm produces irreversible and

unique hash to guarantee no altering of the data while being simple and appropriate to IoT devices at

the same time.

We analyze the proposed scheme for most common IoT attacks: Denial of Service (DOS), Eaves-

dropping, and impersonation attacks. An attacker may launch a denial of service attack through flood-

ing the IoT gateway with client hello messages so it becomes unresponsive. This is forbidden utilizing

the hello verify request message sent by the IoT gateway which then waits a valid cookie from the IoT

device. If this valid cookie is not received, the DTLS state initialization is never started. If an attacker

performs an eavesdropping on a session ticket sent by an IoT device to visited IoT gateway, it won’t

be able to obtain the master secret as it is encrypted using a random key generated by the home IoT

gateway. Even this key is exchanged in an encrypted form between the IoT gateways. In the same

way, if an attacker impersonates a visited IoT gateway receiving a session ticket from an IoT device to

receive the data directly continuously without eavesdropping, it won’t be able to decrypt the ticket as

it is not connected, neither performed handshake with its neighbor IoT gateways.

The proposed scheme is able to authenticate between a mobile IoT device and visited gateway

while reducing the overhead of authentication. Compared to other works, e.g. [189] where no au-

thentication is performed when the mobile device changes its gateway. This lack of authentication

is inadequate with the sensitivity nature and large amount of the data gathered and processed by the

gateways and the fog devices.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

IoT for healthcare is a promising approach for long-term ubiquitous daily activity and health monitor-

ing. It endorses the unobtrusive biomedical devices to gather patients’ vital signs data and activities

in-home and outside it.

This research proposed a dynamic Cloud-Fog inter-operable IoT architecture for healthcare. The

proposed architecture supports the mobility of the patients as well as the diversity of the medical

cases. The features of the individual modules are discussed and the interconnection between the dif-

ferent underlying modules and tiers is explained. Firstly, Modified BAlance Reduce (MBAR) task

scheduling and allocation algorithm is proposed to effectively balance healthcare tasks distribution.

Next, (MBAR) is extended and adapted to support the mobility of patients, resulting in implementing

a mobility-aware Modified BAlance Reduce (MobMBAR) for IoT healthcare architecture in cloud-fog

computing paradigm. MobMBAR performs dynamic balanced healthcare tasks distribution between

the cloud and fog devices. It is a data locality-based approach that depends on changing the location

where the data is computed to where it actually resides. It also considers the priorities of tasks rep-

resented in the classification (Class) and maximum response time MaxResponse. As such, as long as

the task has the highest classification and lowest MaxResponse, it has higher scheduling priority. The

proposed approach is able to guarantee the QoS through reliable on-time execution of healthcare tasks

and allows the execution of heterogeneous healthcare tasks featured by different processing rates, data
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sizes, and number.

We conduct a comparative study against different approaches to evaluate the proposed work using

different simulation experiments. The experimental results illustrate that MobMBAR have distinct

lower makespan compared to HealthEdge, HEFT, and Cloud-Only. In terms of network load perfor-

mance, MobMBAR shows network traffic load that is lower than HEFT and Cloud-Only. These results

prove that MobMBAR outperforms HealthEdge, HEFT, Cloud-Only in terms of latency preserving,

while maintaining acceptable network traffic load. In addition, a case study that uses the layout of

a hospital building in Chicago is presented to evaluate MobMBAR in real conditions. Results show

that makespan does not exceed maximum required MaxResponse for all generated tasks, ratio of tasks

missing their maximum response time is insignificant, and low volume traffic that can be easily provi-

sioned with minimal latency and cost.

This research also proposed a mobility-enabled DTLS-based authentication method for moving

IoT devices in indoor IoT architectures. The proposed method makes use of the session resumption

feature of the DTLS standard. Utilizing the proposed methodology, additional handshake for the same

IoT device in the same network is eliminated and hence extra time, power consumption, and energy

are saved. The proposed method is evaluated in terms of handshake time, processing time, energy

consumption, and memory overhead. The results prove the efficiency of the proposed method and its

good impact when implemented in mobile IoT architectures.

8.2 Future Work

The seamless integration of cloud computing and fog computing for healthcare systems introduces

several advantages, which include richer functionalities, services and performance efficiency and facil-

itating the exchange of electronic medical records among hospitals and clinics. To support scalability,

high mobility and fault tolerance of the proposed scheme, we plan to extend the proposed architecture

by replicating multiple fog broker nodes. We intend to propose a distributed scheduling version to en-

hance the scalability and to minimize execution and response time. Also we plan to implement a real

experimental prototype so that the proposed model can be evaluated and real results can be verified to

actual healthcare cases.
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The proposed architecture is open to multiple research investigations that can promote its effi-

ciency. This can include dual or multiple optimization metrics for the scheduling and allocation. For

instance, minimizing the cost of utilizing the cloud resources can be presented as an optimization

metric in addition to the latency. Obviously, this will depend on the health conditions and emergency

levels of the patients supported and the characteristics of the tasks beside the monetary budget of the

health institution. Open research directions can include energy efficient algorithms that tend to mini-

mize energy consumption of the IoT constrained devices. They can be implemented at the IoT devices

and sink layers where constrained IoT devices exist. For example, energy harvesting for the IoT de-

vices and sink layers through data collection can be discussed and examined. Sensor fusion researches

can be explored and utilized in these two layers. Sensor fusion can be used as a pre-processing phase

before the data is sent to the fog and cloud layers. Adaptive fusion technique can be implemented for

saving energy of sensors. In addition, adaptive data sensing which means to trigger sensors periodi-

cally instead of continously based on the medical case and the status of the patient can be investigated.

Open security directions involve proposing a scheme for storage of encrypted data to prevent data

breach in case of malicious fog node. In addition, cloud security through advanced tools such as cloud

access security broker (CASB) systems is of an important interest to protect health private data while

safely using the cloud.
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