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This [street] is one of the principal thoroughfares of the city, and had been very
much crowded during the whole day. But, as the darkness came on, the throng

momently increased; and, by the time the lamps were well lighted, two dense and
continuous tides of population were rushing past the door. At this particular
period of the evening I had never before been in a similar situation, and the

tumultuous sea of human heads filled me, therefore, with a delicious novelty of
emotion. I gave up, at length, all care of things within the hotel, and became

absorbed in contemplation of the scene without.
At first my observations took an abstract and generalizing turn. I looked at the

passengers in masses, and thought of them in their aggregate relations. Soon,
however, I descended to details, and regarded with minute interest the

innumerable varieties of figure, dress, air, gait, visage, and expression of
countenance.

– Edgar Allan Poe, The Man of the Crowd, (1840)
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Synthèse en français

Les mouvements collectifs décrivent des populations dans lesquelles les interac-
tions entre individus sont le moteur de leurs déplacements dans l’espace et de
leurs transformations dans le temps. La compréhension et le contrôle des mou-
vements collectifs constituent des enjeux majeurs dans de nombreux domaines,
notamment pour l’étude des écosystèmes (dynamique des essaims d’animaux), la
sécurité dans les grands rassemblements et les bâtiments (mouvement de foule),
ou encore l’agriculture (étude de la croissance des plantes). Les modèles de pop-
ulation que nous considérons sont des systèmes d’équations différentielles ayant
la propriété d’être hétérogènes, c’est-à-dire d’être constituées d’individus avec des
caractéristiques différentes, et ces caractéristiques ont une influence sur la dy-
namique. Formellement, un système hétérogène représentant une population de
taille N prend la forme suivante

(x0
i , θi)1≤i≤N ∼ µ⊗N

0

∀i ∈ J1;NK, {
xi(0) = x0

i
dxi

dt
(t) = gN(xi(t), θi, x ̸=i(t), θ ̸=i)

.

Les conditions initiales x0
i et les paramètres individuels θi, ou caractéristiques

individuelles, de ce système sont aléatoires, de distribution µ0, et les interactions
entre les différents individus de la population se font via une fonction d’interaction
gN . Cette hypothèse d’hétérogénéité est motivée par l’application agricole, où il
est question d’étudier les interactions entre plantes de différentes variétés, voire
de différentes espèces. Ces systèmes sont également supposés symétriques, c’est-à-
dire ayant une dynamique invariante par permutation des individus, ce qui est une
caractéristique largement répandue au sein des modèles de mouvement collectif,
et qui permet de nombreuses simplifications. Un certain nombre de défis restent
toutefois à relever pour que ces modèles soient utilisés dans des cas d’application
concrets. Nous nous concentrons en particulier sur les problèmes liés à l’inférence
statistique, c’est-à-dire à la confrontation du modèle à des données expérimentales.

Un premier niveau de difficulté est d’ordre computationnel : la simulation de
grandes populations en interaction peut s’avérer trop coûteuse en temps de calcul,
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Synthèse en français

et elle constitue ainsi un premier obstacle à l’étude de la population à une échelle
macroscopique. Un second niveau difficulté a trait à la qualité des données : du fait
de la complexité du système modélisé, les observations expérimentales ne peuvent
permettre de caractériser exactement la dynamique du système (en particulier car
elles ne portent généralement que sur une sous-partie de la population), et il est
nécessaire de quantifier les incertitudes liées aux imperfections dans l’acquisition
de ces données.

Dans cette thèse, nous caractérisons l’ensemble des sources d’incertitude liées
aux observations partielles des systèmes symétriques et hétérogènes dans un cadre
bayésien. Ces incertitudes se regroupent en deux catégories : les premières portent
sur l’état de la population, les secondes portent sur la dynamique du système, sur
lequel on ne dispose pas de modèle exact ou que l’on ne peut qu’imparfaitement
simuler. En particulier, si le protocole expérimental ne permet pas de connaître
exactement la taille de la population, on peut se heurter à des problèmes d’inférence
particulièrement difficiles à résoudre. Nous proposons dans cette thèse, dans le cas
particulier où la fonction de transition gN peut être associée à une fonction de
transition asymptotique g∞ quand N →∞, de négliger ces sources d’incertitudes
pour les grandes populations en ayant recours à une représentation macroscopique
de la dynamique. Ces approximations statistiques du mouvement global de la
population sont basées sur des simulations numériques des distributions limites de
champ moyen associées au mouvement collectif, distribution s’exprimant comme
la solution d’une équation de transport non local. Le schéma numérique proposé
est du type lagrangien, c’est-à-dire que l’on cherche à approcher les trajectoires du
flot caractéristique associé à l’équation de transport.
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Summary

Collective motions describe populations in which individuals’ interactions are the
driving force behind their displacements and their transformation over time. Un-
derstanding and controlling collective motions are significant issues in many fields,
especially for the study of ecosystems (swarm dynamics), safety in large gather-
ings and buildings (crowd movement), or agriculture (the study of plant growth).
The population models we consider are systems of differential equations with the
property of being heterogeneous, i.e., made up of individuals with different char-
acteristics influencing the dynamics. This assumption is motivated by the agri-
cultural application, to study interactions between plants of different varieties or
even different species. These systems are also assumed to be symmetric, i.e., hav-
ing dynamics invariant by permutation of individuals’ labels, which is a widespread
property within collective motion models, enabling numerous simplifications. How-
ever, several challenges remain to be addressed before these models can be used
in real-life applications. We focus on the problems related to statistical inference,
i.e., matching the model with experimental data and observations made on the
system under study.

The first level of difficulty is computational: the simulation of a sizeable inter-
acting population can be too costly in terms of computing time, and, therefore,
it is a first impediment to the study of the population at a macroscopic scale.
The second level of difficulty relates to the quality of the data: because of the
complexity of the modeled system, experimental observations cannot characterize
the system’s dynamics exactly, in particular because they generally only concern
a subset of the population. It is necessary to quantify the uncertainties related to
the imperfections in the acquisition of such data.

In this thesis, we characterize all the uncertainty sources related to partial
observations of symmetric and heterogeneous systems in a Bayesian framework.
Some sources of uncertainty, notably the ones arising from inaccurate knowledge
of the population size, result in particularly complex inference problems, which we
propose to approach using a macroscopic representations of the population. This
statistical approximation of the global population motion is based on numerical
simulations of the mean-field limit distribution, i.e., a probability distribution
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expressed as the solution of a non-local transport equation associated with the
symmetric system.
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Introduction

De vos forêts et de vos prés,
O très paisibles photographes !
La Flore est diverse à peu près

Comme des bouchons de carafes !
–Arthur Rimbaud, Ce qu’on dit au poète à propos de fleurs (1871)

The increase in agricultural productivity in the second half of the twentieth
century has improved food security for the entire world’s population and has man-
aged to support its exponential growth, as one can read in the synthesis by Reid
et al. (2005),34 page 51. Nevertheless, many concerns emerged during the 1990s,
within the agronomic community (Griffon, 199622) and outside the scientific com-
munity (Shiva, 199136), about the fragility of this productivist model in the long
term. The article by Foley et al. (2011)18 is one of the many studies that confirms
these concerns, arguing that current yields are not worth the environmental and
health sacrifices they entail. The authors advocate structural changes in agricul-
tural production management, describing how high-yield crops’ practices will be
the principal causes of tomorrow’s food insecurity, particularly by contributing
to climate change. The same synthesis of Reid et al.34 gives on page 57 the es-
timate that the cost of the environmental damage caused by UK agriculture in
1996 alone would amount to 9% of agricultural income for the whole decade of the
1990s. Driven by the awareness of this long-term fragility, agricultural practices
have begun to adapt, but the extent of this mutation is still too limited to qual-
ify it as the Double Green Revolution Griffon22 advocates. Duru et al. (2015)16

classify these initiatives in two categories: the first, called efficiency/substitution-
based agriculture, consists in reducing the ecological footprint of existing crops, in
particular by a more parsimonious and responsible use of farm inputs; the sec-
ond, called biodiversity-based agriculture suggests a paradigm radically different
from the productivist model, by the optimization of the richness of the ecosys-
tem constituting the rural environment, on the natural plan and the sociocultural
plan. It should be stressed that the second scenario is not incompatible with yield
optimization, since diversified ecosystems are characterized by a higher biomass
production than homogeneous ecosystems, and that this production is more stable
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Introduction

and resilient to environmental disturbances, as Barot et al. (2017)[2] point out.
This argument leads to the practice of mixing varieties of different phenologies
and morphologies within the same field or even mixing several species (potentially
with different sowing and harvesting dates). Mixed cropping (Malézieux et al.,
200928), used for vegetable gardens, has been generalized to larger-scale crops and
offers promising results. If the mixed crop is well designed, a synergy between
the different species or varieties takes place, and the resulting yield can be higher
than its sole crop equivalent, with a considerably reduced use of farm inputs, such
as fertilizers or pesticides. However, mixed cropping remains a marginal practice:
Leff et al. (2004)25 derives from satellite data that only 20 species out of the 2500
domesticated plants cover 44% of the world’s arable land. This lack of enthusiasm
is mainly due to the inadequacy of the technologies and infrastructures for this
type of agriculture (initially designed for small crops), and the fact that the de-
sign of a successful mixed crop is still too empirical and not reproducible enough.
As monocultures’ modelling is still a challenge and an active topic of research
(Wallach et al., 201839), it is clear that this challenge is complexified by the het-
erogeneous and multi-scale aspects of mixed cropping. Despite the identification
of many promising studies, Gaudio et al. (2019)20 conclude that the modelling of
these complex systems is still in its infancy.

In the review by Gaudio et al.,20 the authors focus on mechanistic models of
plants, as opposed to purely statistical models that can also be used in the field
(Chen and Cournède, 2018,9 Galinier, 201819). Mechanistic plant models consist of
dynamical systems describing the temporal evolution of a set of coupled variables,
such as biomass production, water consumption, or plant architecture, and whose
transition function takes as arguments a more or less large number of parameters,
which must be calibrated on experimental data so that the dynamics can reproduce
the observations as well as possible. Gaudio et al.20 make the distinction between
individual-based models, in which each plant constituting the crop is represented,
and crop models, which are designed on a more macroscopic scale, with dynamics
not obtained by aggregating individual evolutions. Crop models can be practical
decision support tools in the case of the sole crop, but they do not offer the possi-
bility to represent the effects of local interactions between individuals of different
varieties or species with the same accuracy as individual-based models, although
Corre-Hellou et al. (2007)10 succeed in modeling legume-cereal nitrogen transfers
using STICS crop model (Brisson et al., 20037). Individual-based population mod-
els are more difficult to simulate than crop models, due to their finer representation
of the system, especially in the case of functional-structural plant models, repre-
senting the coupling between the morphology and physiology of each plant, along
with its interactions with neighboring plants (Cournède et al., 2008,14 Sievänen
et al., 2008,37 Hemmerling et al.,200823). Nevertheless, algorithmic tricks can be
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considered to alleviate their computational cost (Kang et al., 2003,24 Cournède et
al., 200613). According to Evers et al. (2019),17 functional-structural models are
the proper formal framework to test hypotheses on the interactions between plants
on the one hand, and, on the other hand, to discover new effects emerging from
the combination of several types of plants, such emergence is impossible to predict
when considering the system at a macroscopic scale only. The individual level is
also the proper scale for the adequate representation of the heterogeneities within
a population: within a group of individuals of the same species or the same variety,
one can model inter-individual variations in the dynamics, variations that can be
of genetic or environmental origin. Thus, the formalism of mixed-effect models is
used by Baey et al. (2018)1 for GreenLab functional-structural model, represent-
ing individual plants as samples from some probability distribution accounting for
the diversity within the population according to specific traits. However, local
interactions between individuals are not directly considered in this study.

It is necessary to find an optimal trade-off between modeling at a macro-
scopic scale, where all the variables of interest (field yield, water consumption)
are located, and modeling at a more granular scale, to understand the phenom-
ena determining the success or the failure of a mixed crop. The problem is how
to construct, starting from an individual-based model, a model at the crop scale,
with minimal information loss. Therefore, it would be a matter of approaching the
whole population’s dynamics while avoiding aggregating all the individual mod-
els that constitute it, these models being potentially expensive to simulate. This
type of approximation would be somewhat similar to the approach implemented in
Boltzmann’s kinetic theory of gases (1902),5 where, from a microscopic description
of a volume of gas as a system of colliding particles, a macroscopic representation
of the fluid is constructed, by deriving the dynamics of its pressure and tempera-
ture fields. Kinetic equations theory has recently been applied to many biological
systems, including animal swarming models (Carrillo et al., 20108), natural neural
networks (Perthame et al., 201732), and opinion formation phenomena (Boudin
and Salvarini, 20106). There are, therefore, many reasons to believe that similar
reasoning can be used for plant growth models.

Several difficulties remain to be overcome before statistically approaching a
population of plants represented by functional-structural models, as the ones dis-
cussed in Evers et al..17 First of all, plant simulators, which are initially computer
programs, present challenges for formal analysis. Therefore, it seems complicated
to obtain a simplified representation of the population if the individual scale is
problematic. For instance, functional-structural models representing plant archi-
tecture, such as GreenLab (Yan et al., 200441), require an unbounded and time-
dependent number of state variables: plant compartments can appear, as well as
they can disappear; each time, they are represented by a set of features, such as
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their masses, their dimensions, their orientations in space,..., and these different
quantities can evolve to reproduce the morphogenesis of the plant. Formally, the
GreenLab model appears as a stochastic L-system, whose architectural develop-
ment alone is the subject of the article by Loi and Cournède (2008).26 In this
article, the interaction of the architecture and the plant environment is not con-
sidered, and the authors adapt methods used for multitype branching processes
to analyze this type of system. When taking into account the interaction with
the environment, in particular the competitive relationship between neighboring
plants (Mathieu et al., 200929), the analysis of such a complex interaction model,
necessary for the construction of consistent approximations at population scale,
seems very challenging to carry out. However, the model’s dependence on its var-
ious input variables can be studied numerically by conducting global sensitivity
analysis (Wu et al., 201240), and this can provide directions for simplifying the
model and lightening the computational cost of the parametric identification step
(Mathieu et al., 201830).

Secondly, functional-structural models are themselves of outstanding diversity,
and sometimes the instances of the same model applied to different species may
diverge. The existence of these variants is an indicator of the great flexibility
of these models and of the community’s determination to match them as closely
as possible to real systems rather than to build a speculative monolith. It is
nevertheless a hindrance to a unified framework for conducting methodological
research with minimal impact. The first step towards a standardized formalism
for functional-structural plant models was made in the design of generic platforms,
such as PYGMALION (Cournède et al., 2013,11 Bayol, 2016,3 chapter 3) and
ADJUSTIN (Viaud, 2018,38 chapter 5) which focus on parametric identification
and mathematical analysis, and OpenAlea (Pradal et al., 200833) which focuses on
model simulation and visualization.

A final level of difficulty concerns the statistical inference problems associated
with this type of model, which needs to be calibrated and validated on experimental
data. As a consequence of the complexity of the model, but also of the access to
the data that are costly to acquire experimentally (Cournède et al., 201112), the
parametric identification of functional-structural models with varying architecture
is still an open research question, with nevertheless substantial progress achieved
in Beyer et al. (2017),4 where Lidar data is used to calibrate a model giving the
spatial distribution of a tree crown.

This thesis restricts its scope to simpler individual-based models than functional-
structural models, namely systems of smooth differential equations. Although
more straightforward, this formalism is also used as population models by the
community (Schneider et al., 2006,35 Lv et al., 2008,27 Nakagawa et al., 201531),
and can be more easily reconciled with the methodologies exposed in Carrillo et
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al..8 Besides, we consider only models of populations with the property of being in-
variant by permutation of its individuals. This invariance has to be understood in
the probabilistic sense (invariance in distribution). As we will see in chapter 3, such
an assumption is essential for being able to construct a macroscopic approximation
of a population from an individual-based model. Concerning the terminology, this
is equivalent to assuming that the system is composed of indistinguishable par-
ticles (de Munyck, 197515), and this assumption is common in quantum physics.
In our context, the qualification of indistinguishable can be a source of confusion
because we need to consider a system of particles having different properties, for
instance, to model plants with different genotypes. Therefore, we have chosen
the term symmetric to qualify the population model, referring to the invariance
property of the probability measure describing the state of the whole population
(Golse, 2013,21 definition 1.5.1).

This thesis is organized into three chapters. The first chapter formally defines
symmetric and heterogeneous population models and presents a methodology to
simulate this type of model by distinguishing the macroscopic level from the in-
dividual level. The second chapter discusses the problems of statistical inference
encountered with this type of differential system and suggests a model of the
different uncertainty sources that can disturb the parametric identification. The
third and last chapter examines how the notion of mean-field limit, inherited from
the theory of kinetic equations, can help construct consistent approximations of
population dynamics and neglect some of the uncertainty sources mentioned in
chapter 2.
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Chapter 1

Simulations of symmetric and
heterogeneous population systems

All these people that you mention, yes, I know them, they’re quite lame
I had to rearrange their faces and give them all another name

—Bob Dylan, Desolation Row, (1965)

1.1 Introduction
When modelling a population of living forms, making the assumption that it con-
sists only of similar individuals is somewhat restrictive. Such an assumption ne-
glects all eventual specificities at the individual level that may impact the stud-
ied phenomenon. It makes no sense to make such an assumption if one intends
to model a multi-species population, but these individual specificities might also
need to be taken into account even in the case of a mono-species population.
These specificities might have a genetic origin, or they might come from micro-
environmental variations affecting each individual in different ways.

The importance of integrating this representation of population diversity even
in a monospecific population was formulated in biological/ecological articles such
as Liu et al. (2004),27 which underlines that the variability of emergence within a
maize crop has an impact on the final yield. Emergence is related to the thermal
and mechanical properties of the soil, and of course, to some genetic factors of the
maize plant (see, for instance, Claverie, 2018,8 chapter 4, or Feng et al., 201419).
Such variability can only be accurately represented by individual-based popula-
tion models, such as GreenLab (Cournède et al., 200812), Lignum (Sievänen et al.,
200837) or GroIMP (Hemmerling et al., 200823). These different individual-based
models consist of dynamical systems, representing both plant inner processes and
interactions with their direct environment. Estimating some parameters has to

1



Simulations of symmetric and heterogeneous population systems

be carried out, at the individual level, so that the model reproduces better the
dynamics of the specimens under study (concerning the methodology for the pa-
rameter estimation on the individual plant, see Cournède et al., 201110). In a first
approach, a population can be derived by simulating all individual models jointly
(Cournède et al., 200911). The population is then said to be heterogeneous when
the parameters change from one individual to another. The observed variability
of the parameters related to the functioning processes of the considered plant is
generally explained by genetic factors (Letort et al., 200825).

Baey et al. (2013)2 underline the problem that such a methodology is limited
by the requirement of calibrating individual models composing the population,
which appears to be too costly to implement when the number of individuals
is significant. The authors advocate that any heterogeneous population model
should incorporate some assumptions on the distribution of parameters from one
individual to another so that observations collected at the individual scale might
be connected and bring information to the population scale. The authors rely on
the formalism of mixed-effect models, first introduced by Fisher (1919).20 Within
this formalism, a population is not only a collection of individuals, but it is also
a representation of how the individuals are generated or instantiated. It consists
of defining a probability distribution, or a set of possible probability distributions,
explaining the variability of parameter values at the individual level.

Mixed-effect models are rarely used for populations where individuals interact
with each other, with the notable exception of the article by Schneider et al.
(2006),36 studying the growth dynamics of competing plants. This relative lack of
coverage of this subject may come from the fact that the modelling of interactions
leads to non-analytical dynamical systems, whose numerical resolution can be
costly in computational time. This difficulty can be a hindrance to parameter
identification, and it can lead the authors to neglect or to give up taking into
account heterogeneity. For instance, Lv et al. (2008)28 and Nakagawa et al.
(2015)31 choose to simplify the model introduced by Schneider et al. (2006)36 by
considering that all individuals are identical, whereas in the original model all
plants have intrinsic growth parameters.

In this chapter, we restrict ourselves to individual-based models taking the form
of differential equations systems with random initial conditions (Strand, 197038).
This formalism can lead to technical issues if the distribution of heterogeneities is
not compatible with the transition function of the system. If the model is non-
linear, an unwise choice of the distribution of parameters and initial conditions
can lead to biologically (or physically) aberrant behaviour of the system: one may
observe finite time blow-ups or abnormal values of state variables. Therefore,
the relationship between the initial distribution and the system dynamics func-
tion must be investigated beforehand to ensure that individual trajectories remain
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within an acceptable domain of the phase space.
These dynamical systems use labels to distinguish members of the population;

most often, these labels are numbers from 1 to N , where N is the population’s
size. Except in some rare cases, the assignment of these labels is arbitrary, and
such indices should have no impact on the population dynamics, for the sake of
reproducibility of the results. A population model is said to be symmetric when
any permutation of individual labels does not change the overall evolution. As our
objective is to perform a statistical inference, it is essential to make sure that the
system presents this property of invariance by relabelling; without this property,
the study of a population from a subgroup of individuals requires first to address
the question of the selection of this subgroup, and this selection is entirely model-
dependent.

Section 1.2 introduces the notion of distribution providing global solutions to
a differential equation and the notion of symmetric population model in a prob-
abilistic setting. A specific class of symmetric population model is considered,
characterized by dynamics depending on the population’s empirical measure, i.e.,
the uniform distribution over the individuals in the population. Section 1.3 sug-
gests possible approaches to reduce the computational time of the simulations of
symmetric ODE-based population models. If the state of the population, repre-
sented by the empirical measure, can be approximated by a piecewise polynomial
process, then individual trajectories can be computed separately, in parallel, at
least over a short period of time. Section 1.4 applies this methodology for the
simulation of the plant population model introduced by Schneider et al. (2006).36

1.2 Symmetric and heterogeneous population sys-
tems

The population models studied in this chapter consist of differential systems with
random initial conditions. Let us start by introducing some notations concerning
the phase space, where the dynamics take place, and the probability space, over
which the random variables of the systems are defined.

notation for the state space: X is an Euclidean vector space, endowed with a
dot product (x, y) ∈ X 2 7→ x.y ∈ R and the associated Euclidean norm x ∈ X 7→
|x| =

√
x.x ∈ R+. Typically X = RdX for some dimension dX and the dot product

is the canonical dot product.

notation for the space of heterogeneities: Θ is a metric space subset of a
finite-dimensional vector space. Θ is endowed with the metric mΘ : Θ2 → R+.
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Typically Θ ⊂ RdΘ for some dimension dΘ and the chosen metric is the one defined
from the 1-norm or the 2-norm on RdΘ .

notations for the probability space: (Ω,F ,P) is a probability space. We
assume that the sample space (Ω,F) is rich enough so that all random variables
defined in what follows do not have existence problem. The set of random variables
taking values in a Borel space (Z, E), i.e. the set of measurable functions from
(Ω,F) to (Z, E), is R(Ω,F ,Z, E). The set of probability measures over (Z, E) is
P(Z).
Let Z be a random variable in R(Ω,F ,Z, E) and PZ ∈ P(Z). Z ∼ PZ denotes
the fact that Z is of distribution PZ , i.e. for all A ∈ E , P(Z ∈ A) = PZ(A). If
Y is another random variable taking values in the same space, we note Z ∼ Y the
fact that Z and Y have the same probability distribution.
Let (X1,A1, µ1) and (X2,A2, µ2) be two measurable spaces. Then µ1⊗µ2 denotes
the product measure over the product of σ-algebras A1 ×A2, defined by

∀(A1, A2) ∈ A1 ×A2, (µ1 ⊗ µ2)(A1, A2) = µ1(A1)µ2(A2) (1.1)

If µ1 = µ2 = µ then the product measure is µ⊗2.

1.2.1 Heterogeneous population systems
In this section, we consider a population system having the following expression (x0

i , θi)1≤i≤N ∼ µN
0

∀t ≥ 0,
dxt

i

dt
= giN(t, x

t
i, θi, (x

t
j, θj)j ̸=i)

(1.2)

N is the size of the population. Each individual i is represented at time t by a
state variable xt

i and a set of constant parameters θi. The initial configuration of
the population, assigning to each individual an initial state x0

i and a constant pa-
rameter θi, is sampled from a probability measure µN

0 ∈ P
(
(X ×Θ)N

)
. The time

evolution of the state variables is then completely determined by the transition
functions giN , which take into account the eventual interactions between individu-
als. The following definitions aim at providing some conditions ensuring that the
system 1.2 is well-defined. Some elementary properties of the resulting trajectories
are also recalled.

Let us start by a reminder on the terminologies of maximal solutions and
global solutions, whose existence and uniqueness is given by the Cauchy-Lipschitz
theorem in the deterministic case.
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Theorem 1.1. Cauchy-Lipschitz
Let F : R × X → X a locally Lipschitz continuous function with respect to its
second argument, i.e. such that

∀t ∈ R, ∀x ∈ X , ∃Kx,t > 0,∃Rx,t > 0,∀x1, x2 ∈ X ,
|x1 − x2| ≤ Rx,t ⇒ |F (t, x1)− F (t, x2)| ≤ Kx,t|x1 − x2| (1.3)

Then for all initial condition (t0, x0) ∈ R×X , there exists a unique interval J of
R containing t0 and a function x : J → X continuously differentiable such that:

1. {
x(t0) = x0

∀t ∈ J , dx

dt
(t) = F (t, x(t))

(1.4)

x is solution of the Cauchy problem associated to (t0, x0) over interval J .

2. for all interval J ′ containing t0, and y : J ′ → X satisfying the Cauchy
problem (t0, x0) over J ′, we have

J ′ ⊂ J and x|J ′ = y (1.5)

We say that (J, x) is the maximal solution of the Cauchy problem associated to
(t0, x0). Besides if there exists a function K : R → R+ continuous such that
∀x ∈ X , |F (t, x)| ≤ K(t)(1 + |x|), then the maximal solution is defined over R.
We then say that such solution is a global solution.

Because of the biological context of our study, we only consider systems gen-
erating trajectories defined for all time t ≥ 0 for some specific initial conditions.
The following definition formalizes this constraint on the initial configuration dis-
tribution.
Definition 1.1. distribution providing global solutions to a differential
equation
Let f : R+ × X × Θ → X the function associated to the parametric differential
equation y′ = f(t, y, θ) and let µ0 ∈ P(X ×Θ) a probability distribution. Then we
say that µ0 is compatible with the differential equation of function f if it provides
global solution to the equation, i.e. if for all random variable z0 = (x0, θ) of
distribution µ0 and for P-almost every ω ∈ Ω, the differential equation

x(0) = x0(ω)

∀t ∈ R+,
dx

dt
(t) = f(t, x(t), θ(ω))

(1.6)

has a unique global solution defined over R+.
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Definition 1.2. sample path integrable process, from Strand (1970)38

A stochastic process (xt)t≥0 taking values in X is said to be sample path integrable

if for all t ≥ 0 and for P-almost every ω ∈ Ω, the integral
∫ t

0

xs(ω)ds exists.

Ordinary differential equations with random initial conditions are studied in
Strand (1970).38 In the cases that interest us in here, having a probability distribu-
tion providing global solutions to a differential equation implies that there exists
a stochastic process (xt)t≥0 taking values in X , adapted to the constant filtration
(Ft = F)t≥0, and a random variable θ, such that the process (f(t, xt, θ))t≥0 is
sample path integrable and such that the following equality holds for all t ∈ R+

and for P-almost every ω ∈ Ω

xt(ω) = x0(ω) +

∫ t

0

f(s, xs(ω), θ(ω))ds (1.7)

As the choice of the initial random variable z0 = (x0, θ) fully determines the system
(in terms of sample path uniqueness), there exists a function (t, z) ∈ R+ × Z 7→
xz0(t, z) such that for P−almost every ω ∈ Ω, we have:

1. t ∈ R+ 7→ xz0(t, z0(ω)) is differentiable

2. ∀t ∈ R+, xz0(t, z0(ω)) = x0(ω) +

∫ t

0

f(s, xz0(s, z0(ω)), θ(ω))ds

When such a relationship between µ0 and f holds, we characterize the dynamics
of the system by the following notation:{

(x0, θ) ∼ µ0

∀t ∈ R+,
dxt

dt
= f(t, xt, θ)

(1.8)

As the initial condition is only characterized by its distribution, and as the choice of
a random variable of a given distribution is not unique, a solution process satisfying
(1.8) is not pathwise unique. However, the law of the solution processes, i.e., pro-
cesses satisfying equation (1.7), is uniquely defined in terms of finite-dimensional
distributions. In particular, if the processes (xt)t≥0 and (yt)t≥0 are two solution
processes, then for all t ≥ 0, xt ∼ yt. However, pathwise uniqueness holds condi-
tionally to the initial configuration of the population.

Example 1.1. distribution providing global solutions to a differential
equation
The probability measure µ0 of the uniform distribution U([−1; 1]) is compatible

6
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Figure 1.1: Density ft, defined in equation (1.11), for different values of t

with the differential equation y′ = 1− y2. For any y0 ∈ [−1; 1], the solution of the
initial value problem (0, y0) is given by

∀t ∈ R+, y(t) =
(1 + y0)e

t − 1 + y0
(1 + y0)et + 1− y0

(1.9)

A way to visualize the law of the solution processes of the system{
y0 ∼ U([−1; 1])
dyt
dt

= 1− y2t
(1.10)

is to represent the evolution of the density of any solution process (yt)t≥0 over time.
For any time t ≥ 0, the expression of the density is

ft : x ∈ R 7→ I{−1 ≤ x ≤ 1}. (e
t + 1)2 + (1− et)2

2(et + 1− x(et − 1))2
(1.11)

Figure 1.1 displays the graph of the density ft for different t. As the solutions of
the differential equation are time-increasing, the mass of the density is shifted to
the right.
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Individual trajectories of system (1.2) are therefore well-defined when µN
0 is

compatible with the vector field (giN)1≤i≤N . Under this guarantee of existence and
uniqueness (in process distribution), the system (1.2) is referred to as an individual-
based population with individual characteristics. This statement is recapped in
the following definition.
Definition 1.3. individual-based population system with individual pa-
rameters
Let N > 1 an integer, let Z = X ×Θ,

(
giN : R+ ×Z ×ZN−1 → X

)
1≤i≤N

a collec-
tion of functions. Let µN

0 ∈ P
(
ZN
)

providing global solutions to the differential
system (1.2). Such differential system with random initial condition is called an
individual-based population system with individual characteristics. A set of indi-
vidual trajectories is a stochastic process (xt

1:N)t≥0 = ((xt
i)t≥0)1≤i≤N such that there

exists a random variable θ1:N = (θi)1≤i≤N satisfying the following properties

(x0
i , θi)1≤i≤N ∼ µN

0

and for P-almost every ω ∈ Ω, ∀i ∈ {1, ..., N},

xt
i(ω) = x0

i (ω) +

∫ t

0

giN(s, x
s
i (ω), θi(ω), (x

s
j(ω), θj(ω))j ̸=i)ds

(1.12)

θ remains constant throughout the evolution of the system. It represents in-
dividual characteristics or constant state variables. In keeping with the terminol-
ogy used in mixed-effect models literature (Davidian and Giltinian, 1993,14 Baey,
20141), we refer to θ as the individual parameter, as opposed to x which is
the individual state. Depending on the context, some components of θ represent
some intrinsic features of individuals. The variability of θ from one individual to
another gives a heterogeneous population.
Definition 1.4. Marginal distribution
Let µ ∈ P(X × Y) a probability measure on the space on the Cartesian product
of two measurable spaces. Then the x-marginal distribution µx is the distribution
defined by its action on measurable and bounded functions:

∀h ∈Mb(X → R), E {h(x), x ∼ µx} =
∫
X×Y

h(x)µ(dx, dy) (1.13)

Definition 1.5. heterogeneous population system
An individual-based population system with individual parameters is said to be
heterogeneous if the marginal distribution µN,θ

0 is such that

P
{
θ1:N ∼ µN,θ

0 | ∃(i, j) ∈ J1;NK2, θi 6= θj

}
> 0 (1.14)

8
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Example 1.2. heterogeneous population system
Let x0 ∈ X , θ, θ′ ∈ Θ two distinct points. Let us consider the initial distribu-

tion µN
0 =

(
δx0 ⊗

δθ + δθ′

2

)⊗N

. Then the population system is heterogeneous.
Nevertheless, we have that

P
{
θ1:N ∼ µN,θ

0 | ∀(i, j) ∈ J1;NK2, θi = θj

}
=

1

2N−1
(1.15)

Definition 1.3 constitutes a restriction of the concept of individual-based model.15

In the literature, the concept of individual-based model encompasses a wide variety
of formal objects, such as cellular automata or multi-agent systems in a stochastic
environment. In this thesis, the scope is restricted to time-continuous dynamical
systems in a deterministic environment, and the only source of randomness is the
distribution of parameters and initial conditions, i.e., what monitors the diversity
of the population. A concern for simplicity mainly drives the choice of this re-
striction. The assumption of a known environment is not too restrictive in our
case, as we study statistical inference on data collected in the past. Indeed, we
can assume that if certain features in the environment are considered relevant to
explain the evolution of the system, they have been previously measured during
the experiment. Therefore, the environment is incorporated within the transition
function gN , more specifically in the time dependency of this function. If the
population does not evolve in a controlled environment, or if this environment is
only partially observed, a stochastic process (et)t≥0, modelling the variations of
the environmental features, needs to be added to the arguments of the transition
function, constituting another source of uncertainty for the statistical inference
problem. An example of such system for plant growth can be found in Della Noce
et al. (2019).17 Apart from the results related to statistical inference (chapter 2
and chapter 4), we postulate that most of the assertions concerning the dynamics
of the system can easily be generalized to the case of a stochastic environment.

Another source of uncertainty, often considered in the literature, is the mod-
elling noise, i.e., when dynamics are random. The population model is then a
system of stochastic differential equations (Lv et al., 2008,28 Bolley et al.,2011,5
Degond et al., 201416).

(x0
i , θi)1≤i≤N ∼ µN

0

∀i ∈ {1, ..., N}, xi
0 = x0

i

∀t ≥ 0, dxi
t = giN(t, x

i
t, θi, (x

j
t , θj)j ̸=i)dt+ σ(t, xi

t, (x
j
t , θj)j ̸=i)dB

i
t+

σe(t, x
i
t, (x

j
t , θj)j ̸=i)dBt

(1.16)

where ((Bi
t)t≥0)1≤i≤N , (Bt)t≥0 are dX−dimensional independent Wiener processes.

The design of the diffusion coefficients σi and σe has to be made wisely so that

9
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the individual trajectories remain within an acceptable domain of the phase space.
Modelling noises can constitute an alternative hypothesis to individual heterogene-
ity to account for the variability in the data collected in the population (Lv et al.,
2008,28 Trevezas and Cournède, 201339). In this thesis, we mainly focus on models,
whose randomness is due to the initial configuration of the population.

1.2.2 Symmetric population systems
A population model is said to be symmetric if the dynamics are invariant by permu-
tation of individual indices. This invariance is to be understood in the probabilistic
sense: for all σ : {1, ..., N} → {1, ..., N} a permutation, (xt

1, θ1, ..., x
t
N , θN)t≥0, a set

of individual trajectories, has the same distribution as (xt
σ(1), θσ(1), ..., x

t
σ(N), θσ(N)).

We can consider a less restrictive condition for the definition of a symmetric sys-
tem, consisting of a punctual equality in time of the processes’ distributions.
Definition 1.6. symmetric population system
An individual-based population system of size N is said to be symmetric if for all
bijection σ ∈ SN and for all time t ≥ 0

(xt
σ(1:N), θσ(1:N)) ∼ (xt

1:N , θ1:N) (1.17)

This definition is consistent with the definition of symmetric N -particle distri-
bution introduced in Golse (2013).21

notation: SN the set of bijective maps from {1, ..., N} to {1, ..., N}. For σ ∈
SN , we can consider the linear map consisting in permuting the order of compo-
nents of a list of element of XN

PXN

σ : x1:N ∈ XN 7→ xσ(1:N) = (xσ(i))1≤i≤N ∈ XN (1.18)

Example 1.3. symmetric population systems

1. Let µ0 ∈ P(R3 × R3 × R∗
+) and the system introduced in Cucker and Smale

(2007).13

∀i ∈ {1, ..., N},



(x0
i , v

0
i ,mi) ∼ µ0

dxi

dt
(t) = vi(t)

dvi
dt

(t) =
H

mi

N∑
j=1

vj(t)− vi(t)

(1 + |xi(t)− xj(t)|/σx)β

(1.19)

This system models the motion of animals of various masses, tending to align
their speeds with those of their congeners in the surrounding area. We can
check easily that this system is symmetric.

10
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2. Let µ0 ∈ P(R2 × R × R+) and the system referred to as Kuramoto-Vicsek
system in Degond et al. (2014).16

∀i ∈ {1, ..., N},



(x0
i , α

0
i , νi) ∼ µ0

dxi

dt
(t) = c(cos(αi(t)), sin(αi(t)))

dαi

dt
(t) =

νi
∑N

j=1 sin(αj(t)− αi(t))√(∑N
j=1 cos(αj(t))

)2
+
(∑N

j=1 sin(αj(t))
)2

(1.20)
The individuals move at a constant speed, and their directions tend to align
with the mean direction of the population. It is also easy to check that this
system is symmetric.

Example 1.4. a non-symmetric population system
Let λ 6= µ two real numbers.

(x0
1, x

0
2) ∼ U([0; 1])⊗2

x1(t) = x0
1e

λt

x2(t) = x0
2e

µt

(1.21)

It is clear that (x1(t), x2(t)) does not have the same distribution as (x2(t), x1(t)).
As a consequence, there is no way to estimate parameter λ if one only observes
the trajectory x2(t). This illustrates the fact that the information given by the
observation of a subgroup of a non-symmetric population depends on the choice of
the subgroup.

The symmetry of systems (1.19) and (1.20) is ensured by the initial distribu-
tion µN

0 = µ⊗N
0 , which is a factorized distribution, and by the invariance of the

transition function by indices’ permutation. The last invariance is ensured by the
relation linking the interaction and the empirical measure of the population, given
by the following definition.
Definition 1.7. empirical measure of a collection of points (from Mis-
chler, 2011,29 definition 1.2.4)
Let Z be a metric space and z1:N = (zi)1≤i≤N a collection of points in the space.
Then the probability distribution

µ[z1:N ] =
1

N

N∑
i=1

δzi ∈ P(Z) (1.22)

is the empirical measure of the collection of points. The set of empirical measures
of N masses is denoted

PN(Z) =

{
1

N

N∑
i=1

δzi , (z1, ..., zN) ∈ ZN

}
(1.23)

11
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The empirical measure is the probability measure corresponding to the uniform
distribution over the population at time t. Systems (1.19) and (1.20) can be written
more generally as

∀i ∈ {1, ..., N},


(x0

i , θi) ∼ µ0 ∈ P(X ×Θ)

dxi

dt
(t) = hN

(
t, xi(t), θi,

1

N

N∑
j=1

δ(xj(t),θj)

)
(1.24)

Indeed, system (1.19) depends on the empirical measure linearly.

H

mi

N∑
j=1

vj(t)− vi(t)

(1 + |xi(t)− xj(t)|)β
=

NH

mi

∫
R6

v − vi(t)

(1 + |xi(t)− x|)β
µ̂[t](dx, dv)

where µ̂[t] =
1

N

N∑
j=1

δ(xj(t),vj(t))

(1.25)

System (1.20), however, is nonlinearly dependent on the empirical measure.

νi
∑N

j=1 sin(αj(t)− αi(t))√(∑N
j=1 cos(αj(t))

)2
+
(∑N

j=1 sin(αj(t)
)2

=

νi

∫
R
sin(α− αi(t))µ̂[t](dα)√(∫

R
cos(α)µ̂[t](dα)

)2

+

(∫
R
sin(α)µ̂[t](dα)

)2

where µ̂[t] =
1

N

N∑
j=1

δαj(t)

(1.26)

The generic expression (1.24) leads us to consider a specific class of population
systems whose dynamics are functions of the empirical measure. The following
propositions give the proof that systems of the form (1.24) are symmetric.
Proposition 1.1. relation between empirical measure and permutation-
invariant class
Let N ≥ 1, Z a metric space. We consider the quotient set ZN/SN associated
with the equivalence relation

∀z1:N , z′1:N ∈ ZN , z1:NRz′1:N ⇔ ∃σ ∈ SN , z1:N = z′σ(1:N) = (z′σ(i))1≤i≤N (1.27)

Then the map z̄1:N ∈ ZN/SN 7→ µ[z1:N ] ∈ PN(Z) is a bijection.

12
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Proof. The map is clearly surjective. Let z1:N , y1:N ∈ ZN such that µ[z1:N ] =
µ[y1:N ]. Let us consider the equivalence relation over the set {1, ..., N}

∀j1, j2 ∈ {1, ..., N}, j1Rj2 ⇔ zj1 = zj2 (1.28)

The associated partition is denoted {1, ..., N} = Cz
1 ∪ ... ∪ Cz

r for some r ≥ 1. Let
k ∈ {1, ..., r} and ℓ ∈ Cz

k , we can define the set Cy
k = {j ∈ {1, ..., N}|yj = zℓ}

independently of the choice of ℓ. Then for all k ∈ {1, ..., r} and ℓ ∈ Cz
k , we have

Card(Cz
k) = Nµ[z1:N ]({zℓ}) = Nµ[y1:N ]({zℓ}) = Card(Cy

k ) (1.29)

It follows that Cz
k and Cy

k are in bijection. Let us choose for all k ∈ {1, ..., r}
γk : C

z
k → Cy

k a bijection. We then define the map σ by

σ : i ∈ {1, ..., N} 7→ γk(i) with k such that i ∈ Cz
k (1.30)

Let i1 ∈ Cz
k1

and i2 ∈ Cz
k2

such that σ(i1) = σ(i2). Then k1 = k2, since Cy
k1

and
Cy

k2
are either disjoint or equal, and i1 = i2 by injectivity of γk1 . So σ is injective

and therefore bijective, and we have z1:N = yσ(1:N) by construction.

That means that we can represent graphically an empirical distribution as
a cloud of points, where the points are undifferentiated, of the same colour for
instance.
Proposition 1.2. specific class of symmetric population system
Let us consider the individual-based population system of initial configuration dis-
tribution µN

0 = µ⊗N
0 where µ0 ∈ P(X ×Θ) and of interaction function

gN : (t, x1, θ1, (xj, θj)2≤j≤N) ∈R+ ×X ×Θ× (X ×Θ)N−1

7→ hN

(
t, x1, θ1,

1

N

N∑
i=1

δ(xi,θi)

)
(1.31)

for some function hN : R+×X ×Θ×PN(X ×Θ)→ X . Then the individual-based
population system is symmetric.

Proof. Let (xt
1:N)t≥0 be a set of individual trajectories of the system. We note

HN : (t, x1:N , θ1:N) ∈ R+×XN ×ΘN 7→
(
hN(t, xi, θi,

1
N

∑N
j=1 δ(xj ,θj))

)
1≤i≤N

∈ XN .
By definition, we have for all t ≥ 0 and for P-almost every ω ∈ Ω

xt
1:N = x0

1:N +

∫ t

0

HN(s, x
s
1:N , θ1:N)ds (1.32)

13
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Let σ ∈ SN . By composing the previous relation by PXN

σ we obtain

PXN

σ (xt
1:N) = PXN

σ (x0
1:N) +

∫ t

0

PXN

σ (HN(s, x
s
1:N , θ1:N))ds

PXN

σ (xt
1:N) = PXN

σ (x0
1:N) +

∫ t

0

HN(s, P
XN

σ (xs
1:N), P

ΘN

σ (θ1:N))ds

(1.33)

It follows that the (PXN

σ (xt
1:N))t≥0 is a set of individual trajectories for the system

of initial configuration distribution P
(X×Θ)N

σ (µ⊗N
0 ) = µ⊗N

0 and having the same
interaction function. Therefore PXN

σ (xt
1:N) ∼ xt

1:N for all t ≥ 0 by uniqueness of
the distribution of solution processes.

The proposition also holds in the case of stochastic dynamics, i.e. for systems of
the form (1.16), if the diffusion coefficients (denoted σ and σe in equation (1.16))
can be expressed as functions depending only on (t, x, θ, µ̂N) where µ̂N is the
empirical measure of the population.

1.3 Simulation of individual-based population sys-
tems

The simulation of symmetric population systems taking the form

∀i ∈ {1, ..., N},


(x0

i , θi) ∼ µ0 ∈ P(X ×Θ)

dxi

dt
(t) = hN

(
t, xi(t), θi,

1

N

N∑
j=1

δ(xj(t),θj)

)
(1.34)

involves a numerical approximation of trajectories’ distribution (x1:N(t))t≥0. The
marginal distribution of a single individual state in the population, denoted by
µN :1
x [t], is particularly useful as it enables a visualization of the system evolution.

Definition 1.8. marginal distribution of a symmetric population system
Let us consider a symmetric population system of the form (1.24) and let µN [t] be
the distribution of (xt

i, θi)1≤i≤N where (xs
1:N)s≥0 is any set of individual trajectories

solution of the system. Let k ≤ N . The marginal distribution µN :k
x [t] is the one

defined by:

∀φ ∈ C0b (X k → R),
∫
Xk

φ(x1:k)µ
N :k
x [t](dx1:k) =

∫
(X×Θ)N

φ(x1:k)µ
N [t](dx1, dθ1, ..., dxN , dθN)

(1.35)
where C0b (X k → R) is the space of continuous and bounded functions defined over
X k and taking values in R.
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Because the considered systems are symmetric, marginal distributions µN :k
x [t]

represent the state variables of any group of size k in a population of size N . In
order to compute the distribution µN :1

x [t] numerically, a classical method consists
in approximating it by the empirical measure associated to independent and iden-
tically distributed (i.i.d.) samples (xt,1

1 , ..., xt,n
1 ) from µN :1

x [t]. Obtaining a single
simulation from µN :1

x [t] requires going through the following steps:

1. simulate from µ⊗N
0 an initial configuration of a population of size N ;

2. solve exactly the differential system (1.24) over the interval [0; t];

3. take a single individual in the population, e.g. x1(t).

The convergence of the empirical measure to the original distribution is a result
that can be found for instance in Legland and Oudjane (2004),24 expressed with a
weak convergence metric.

sup
φ∈C0

b (X ):∥φ∥∞=1

E

{∣∣∣∣∣ 1n
n∑

k=1

φ(xt,k
1 )−

∫
X
φ(x)µN :1

x [t](dx)

∣∣∣∣∣ , xt,1:n
1 ∼

(
µN :1
x [t]

)⊗n

}
≤ 1√

n

(1.36)
It is important to note that this convergence does not necessarily hold if the n-
sample is composed of individuals coming from the same simulations, because
of the correlation between the members of a given population. The bias due to
individuals’ interdependence can be seen when we consider the empirical measure

µ̂N,n
x [t] =

1

Nn

n∑
k=1

N∑
i=1

δxt,k
i

where xt,k
i is the state of individual i obtained at the kth

simulation. Then for any continuous and bounded function φ, we have

E


∣∣∣∣∣ 1

Nn

n∑
k=1

N∑
i=1

φ
(
xt,k
i

)
−
∫
X
φ(x)µN :1

x [t](dx)

∣∣∣∣∣
2

, xt,1:n
1:N ∼ (µN

x [t])
⊗n


=

1

N2n2

n∑
k1=1

n∑
k2=1

N∑
i1=1

N∑
i2=1

E
{(

φ(xt,k1
i1

)−
∫
X
φ(x)µN :1

x [t](dx)

)
×(

φ(xt,k2
i2

)−
∫
X
φ(x)µN :1

x [t](dx)

)
, xt,1:n

1:N ∼ (µN
x [t])

⊗n

}
=

1

Nn
Var

{
φ(x), x ∼ µN :1

x [t]
}
+

N − 1

Nn
Cov

{
φ(x1), φ(x2); (x1, x2) ∼ µN :2

x [t]
}

(1.37)
If it is not established that the covariance terms in equation (1.37) is zero or can
be neglected, then we need to simulate an entire population of size N to obtain a
single sample from µN :1

x [t].
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The convergence (1.36) also implies an exact resolution of system (1.24), which
is only possible in the event of an analytical differential system. In the general
case, we have to resort to numerical solvers. The error induced by the numerical
resolution has to be small enough so that the resulting n-sample can be serenely
considered as an n-sample from the original distribution. Moreover, if it is es-
tablished that the distribution µN :1

x [t] is absolutely continuous for the Lebesgue
measure, then the approximation of this distribution can be refined by computing
a kernel density estimate of its density.

The different simulations of the population can be carried out in parallel. Nev-
ertheless, the simulation of a single population of individuals in interaction can
be expensive in terms of computational time, especially when N is large. The
computation time varies according to the specific form of the interaction linking
each individual to the whole population.
Example 1.5. Cucker-Smale
In system (1.19), the computation time used to compute the velocity of all the
individuals in the population is proportional to N2.
Example 1.6. Spring Cloud
Let us consider a system composed of N punctual masses, mutually connected by
springs of stiffnesses κiκj, with κi and κj being individual parameters of particle i
and particle j respectively. The evolution of the system is given by the following
linear system of equations:

∀i ∈ {1, ..., N},


dxi

dt
(t) = vi(t)

dvi
dt

(t) =
1

mi

N∑
j=1

κiκj(xj(t)− xi(t))
(1.38)

It can be noticed that the location of the barycenter determines all the interactions
in the population:

d2xi

dt2
(t) = − κi

mi

(
N∑
j=1

κj

)
xi(t) +

κi

mi

N∑
j=1

κjxj(t) (1.39)

The computation time of the acceleration for all particles in the system is propor-
tional to N .

Parallelization of the computation is conceivable if the interactions between
individuals are short-range. This idea is commonly used for simulations of molec-
ular dynamics (Plimpton, 199334). A space discretization can be conducted, and
the cells’ sizes should not exceed the typical length of interaction (Harvey et al.,
2015,22 Cornell et al., 20199).

16



Simulations of symmetric and heterogeneous population systems

Another type of methodology to earn some efficiency in the computation con-
sists in freezing interactions over a short period, leaving the individuals to evolve
separately within a constant population. This approach is used in Li et al. (2019)26

for the simulation of a microbial population: higher scales are first simulated inde-
pendently of the lower scales, then lower scales are updated while keeping constant
the higher scales. In the case of system (1.24), two scales can be distinguished:
the population level, represented by the empirical measure, and the individual
level. Fixing the state of the population over some interval [t0; t1] boils down to
considering the following dynamical system

∀t ∈ [t0; t1],∀i ∈ {1, ..., N},


dxi

dt
(t) = hN(t, xi(t), θi, µ̂N [t0])

µN [t0] =
1

N

N∑
j=1

δ(xj(t0),θj)

(1.40)

If the transition function hN is smooth enough and if the length of the time interval
is small enough, then there are reasons to believe that system (1.40) constitutes
a good approximation of system (1.24). We can also consider a more accurate
approximation of the trajectory t 7→ µ̂N [t]. Instead of considering a piecewise
constant approximation of the trajectory, we can consider a piecewise polynomial
approximation t 7→ µ̃N [t] ∈ P(Z). This approximation is particularly useful from
the computational point of view when fixing the empirical measure leads to ana-
lytical differential systems.

Example 1.7. Spring-Cloud
The system obtained by fixing the empirical measure in population model (1.38) is

∀t ∈ [t0; t1],∀i ∈ {1, ..., N},
d2xi

dt2
(t) = − κi

mi

(
N∑
j=1

κj

)
xi(t) +

κi

mi

N∑
j=1

κjxj(t0)

xi(t) =

∑N
j=1 κjxj(t0)∑N

j=1 κj

(1− cos(ωi(t− t0))) + xi(t0) cos(ωi(t− t0)) +
vi(t0)

ωi

sin(ωi(t− t0))

where ωi =

√
κi

∑N
j=1 κj

mi

(1.41)
The motion of each particle is along an ellipse. Notice that this approximation
provides the exact dynamics of the system when the individual parameters κi,mi

are constant over the population (homogeneous population).

Example 1.8. Cucker-Smale
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Fixing the empirical measure in system (1.19) leads to

∀t ∈ [t0; t1],∀i ∈ {1, ..., N},


dxi

dt
(t) = vi(t)

dvi
dt

(t) =
H

mi

N∑
j=1

vj(t0)− vi(t)

(1 + |xi(t)− xj(t0)|)β
(1.42)

This nonlinear ODE can be solved in parallel for all individuals in the population.
The linearized version of the system can also be considered

∀t ∈ [t0; t1],∀i ∈ {1, ..., N},


dxi

dt
(t) = vi(t)

dvi
dt

(t) =
H

mi

N∑
j=1

vj(t0)− vi(t)

(1 + |xi(t0)− xj(t0)|)β
(1.43)

which leads to analytical solutions over [t0; t1].

∀t ∈ [t0; t1], vi(t) =
1

w̄0
i

N∑
j=1

w0
ijvj(t0)

(
1− exp

(
t− t0
τ 0i

))
+ vi(t0) exp

(
−t− t0

τ 0i

)

where w0
ij =

1

(1 + |xi(t0)− xj(t0)|)β
, w̄0

i =
N∑
j=1

w0
ij, and τ 0i =

Hw̄0
i

mi

xi(t) = xi(t0) +

∫ t

t0

vi(s)ds

(1.44)
The choice of the period length t1− t0 must take into account the dynamics of

the original model. The time step must be small if the system is in a transitional
regime, whereas it can be chosen large if the population is close to an eventual
stationary state or equilibrium. The section 1.4 applies this methodology for the
model of plant competition introduced by Schneider et al. (2006).36

1.4 The Schneider system
1.4.1 Context of the system
According to the simulation study mimicking natural selection in Eloy et al.
(2017),18 competition for light shapes the aerial part of woody plants. In agri-
culture, competition models are of prime importance to find the optimal density
within a crop and ensure a good yield. This type of interaction is better represented
in the plant modelling literature than collaboration-like interactions. Mutualistic
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Figure 1.2: Representation of the size variable s in Arabidopsis thaliana used in
Schneider et al. (2006).36

relationships, like the transfer of nitrogen from legume to cereals studied in Patra
et al. (1986),33 explain nevertheless the advantages of multispecific crops. We have
chosen to illustrate our methodology with a model of competition for light intro-
duced by Schneider et al. (2006),36 hoping that our approach could be generalised
to systems with positive interactions between plants.

Competition models for light can provide a more or less accurate description of
plant morphology, according to the objectives of modellers (Berger et al., 20083).
The estimation of the influence of plant organs and compartments over the local
light environment is necessary to account for the variability in the architecture
of the aerial parts (Clark and Bullock, 2007,7 Cournède et al., 2008,12 Beyer et
al., 20144). In the model considered here, designed initially to study competition
in a monospecific population of annual plants, arabidopsis (Arabidopsis thaliana),
the plant morphology is only described by a characteristic dimension, and this
considerably alleviates the experimental protocol to monitor the evolution of the
population. The inter-plants competition is expressed via an empirical potential,
which depends only on the observed individual features, referred to as a compe-
tition index (see Weigelt and Jollife, 2003,41 for a review of competition indices
used in forestry).

1.4.2 Description of the system
In this system, the plant state is uniquely described by its rosette’s diameter,
denoted by s, to which we also refer as the sizes of the plants (see figure 1.2). If
the competition exerted on an individual plant can be neglected, the evolution of
the size of the plant of label i through time is given by the following differential
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Figure 1.3: Evolution of the size of a plant without competition, according to
equation (1.46), with the configuration S = 1, γ = 2, s0 = 0.1.

equation, corresponding to a Gompertz growth function (Paine et al., 201232).

dsi
dt

(t) = γisi(t) (log (Si/sm)− log(si(t)/sm)) (1.45)

In the above equation, Si, γi are intrinsic parameters of the individual plant, rep-
resenting its asymptotic size and growth rate. The variation of these parameters
from one plant to another can be due to genetic variability or micro-variations of
the environment not covered by the experimental protocol. sm is the minimal size
of the plants, principally used as a normalisation constant. Notice that the differ-
ential equation (1.45) can be solved analytically for any given initial condition si0,
which has to be chosen, such as sm ≤ si0 ≤ Si.

∀t ≥ 0, si(t) = Si

(
si0
Si

)e−γit

(1.46)

The typical shape of the growth curve in the absence of competition is given in
figure 1.3. In the presence of neighbouring plants exerting competition on plant
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i, the growth equation (1.45) is modified by adding a time-dependent competition
factor to the asymptotic size Si, leading to the equation

dsi
dt

(t) = γisi(t)
(
log(Si/sm)(1− Ci

N(t))− log(si(t)/sm)
)

(1.47)

The competition index of plant i is a function of the surrounding plant states. In
Schneider et al. (2006)36 and in Lv et al. (2008),28 the following expression is
proposed for the competition index:

Ci
N(t) =

1

N − 1

∑
j ̸=i

C(si(t), sj(t), |xi − xj|)

with C(si(t), sj(t), |xi − xj|) =
log(sj(t)/sm)

2RM

(
1 +

|xi−xj |2
σ2
x

) (1 + tanh

(
1

σr

log(sj(t)/si(t))

))
(1.48)

The competition potential C(si, sj, dij) expresses the contribution of plant j to
the competition exerted on plant i at a distance dij = |xi − xj|. In this model,
competition is, therefore, just to be understood as a negative perturbation of
the development a plant would theoretically have in optimal conditions. The
competition index is composed of three factors that can be interpreted separately:

1. log(sj(t)/sm)/RM : the larger plant j, the stronger the competition it exerts
on plant i;

2. 1/2
(
1 + tanh

(
1
σr

log(sj(t)/si(t))
))

: the larger plant i in comparison with
plant j, the weaker the competition exerted on plant i by j, the parameter
σr monitors the effect of the relative size;

3. 1

1+
|xi−xj |2

σ2
x

: the further apart plants i and j are, the less competition there is.

The normalisation constant RM is chosen such that all competition indices in
the population remain in the interval [0; 1]. For instance, if we have the prior
knowledge that plant sizes cannot exceed some maximal size SM , we can set RM =
log(SM/sm).

In the system taking into account the competition, each individual i is described
by its size si, which is the only state variable, its position xi = (x1

i , x
2
i ) ∈ R2, and

its intrinsic parameters Si, γi. Using the notations in the previous section, the
individual parameter θ consists of four components (x1, x2, S, γ) and the state
variable s is univariate.
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1.4.3 Properties of the system
In this section, we shall establish some results to prove that the system defined
above leads to global solutions over R+. It is also essential to check whether the
differential equation’s behaviour is consistent with the biology of the system, i.e.,
sizes cannot be negative, and competition cannot have a positive effect on growth.
Let us first start by proving the existence of global solutions for the Schneider
system.

The existence of global solutions requires the following intuitive lemma, which
is a variation of Grönwall lemma.
Lemma 1.1. Variation of Grönwall lemma
Let y : [0;T ] → R a continuously differentiable function such that there exists
γ ∈ R and ȳ ∈ R such that ∀t ∈ [0;T ], − γy(t) ≤ y′(t) ≤ γ(ȳ − y(t)). Then
∀t ∈ [0;T ], y(0)e−γt ≤ y(t) ≤ ȳ − (ȳ − y(0))e−γt.

Proof. Let us consider the function ϕ+ : t ∈ [0;T ] 7→ (ȳ − y(t))eγt. The derivative
of the function is ∀t ∈ [0;T ], dϕ+

dt
(t) = (γ(ȳ − y(t)) − y′(t))eγt ≥ 0. So ϕ+ is

increasing over [0;T ]. In particular, we have for all t ∈ [0;T ]:

ϕ+(t) ≥ ϕ+(0)

(ȳ − y(t))eγt ≥ ȳ − y(0)

y(t) ≤ ȳ − (ȳ − y(0))e−γt

(1.49)

Similarly, we can prove that the function ϕ− : t ∈ [0;T ] 7→ y(t)eγt is increasing
over [0;T ] since dϕ−

dt
(t) = (y′(t) + γy(t))eγt ≥ 0. Therefore ∀t ∈ [0;T ], y(t) ≥

y(0)e−γt.

Proposition 1.3. sufficient condition for the existence of a global solution
to the Schneider system
Let us consider the system of N differential equations, with N > 1, defined by the
dynamics

∀i ∈ {1, ..., N},



si(0) = s0i

∀t ≥ 0,
dsi
dt

(t) = γisi(t)

×

(
log(Si/sm)

(
1− 1

N − 1

∑
j ̸=i

C(si(t), sj(t), |xi − xj|)

)
− log(si(t)/sm)

)
(1.50)

and by the constants (s0i , xi, Si, γi)1≤i≤N . The function C : R3
+ → R is defined in

equation (1.48) and sm, RM > 0. If ∀i ∈ {1, ..., N}, sm < s0i < Si, sm < Si <
sme

RM and γi > 0, then the system has a global solution, defined over R+.

22



Simulations of symmetric and heterogeneous population systems

Proof. Let us introduce the notation for the domain containing the initial config-
uration of the system

D = {(s, x, S, γ) ∈ Z | sm ≤ s ≤ S, sm ≤ S ≤ sme
RM , γ ≥ 0} (1.51)

with Z = R∗
+×R2×R+×R+. The set of individual parameters is Θ = R2×R+×R+

Let z01:N = (s0i , xi, Si, γi)1≤i≤N = (s0i , θi)1≤i≤N be an initial configuration of the
system chosen within the interior of the domain D, i.e. z01:N ∈ (D̊)N .

For a fixed initial configuration, the transition function of the system is

GN : (s1:N , θ1:N) ∈ (R∗
+)

N ×ZN 7→ 1

N − 1

(∑
j ̸=i

g(si, θi, sj, θj)

)
1≤i≤N

∈ RN

with g : (s1, (x1, S1, γ1), s2, (x2, S2, γ2)) ∈ R∗
+ ×Θ× R∗

+ ×Θ

7→ γ1s1(log(S1/sm)(1− C(s1, s2, |x1 − x2|))− log(s1/sm)) ∈ R
(1.52)

By Cauchy-Lipschitz theorem (1.1), as GN(., θ1:N) is continuously differentiable
with respect to s1:N , the system (1.50) has a unique maximal solution defined
over an interval [0; tm) with tm ∈ R∗

+. For all time t ∈ [0; tm), we note s1:N(t)
the maximal solution associated to the initial configuration z01:N , and z1:N(t) =
(si(t), xi, Si, γi)1≤i≤N . We consider the interval ID = {t ∈ [0; tm) | ∀τ ∈ [0; t], z1:N(t) ∈
(D̊)N}. This interval is not reduced to the singleton {0}, since t ∈ [0; tm) 7→ z1:N(t)
is continuous with z1:N(0) = z01:N ∈ D̊N and D̊N is an open set. Then t∗ = sup ID
is strictly positive. Let t ∈ [0; t∗) and i, j ∈ {1, ..., N}, we have the following
inequality on the competition index:
0 ≤ C(si(t), sj(t), |xi − xj|) ≤ 1

so − γi log(si(t)/sm) ≤
d

dt
log(si(t)/sm) ≤ γi(log(Si/sm)− log(si(t)/sm))

(1.53)

By applying lemma 1.1, we obtain that for all t ∈ [0; t∗) and for all i ∈ {1, ..., N}

sm(s
0
i /sm)

e−γit ≤ si(t) ≤ Si(s
0
i /Si)

e−γit (1.54)

If t∗ is finite, we have therefore for all t ∈ [0; t∗) and for all i, j ∈ {1, ..., N}∫ t

0

|g(si(τ), θi, sj(τ), θj)|dτ ≤ γiSi

∫ t

0

log

(
Si

sm
.

(
sm
s0i

)e−γit
)
dτ

≤ γiSit
∗ log(Si/sm) + Si log(sm/s

0
i )(1− e−γit

∗
)

(1.55)

so the integral
∫ t

0

g(si(τ), θi, sj(τ), θj)dτ is absolutely convergent at point t∗. It

follows that for all i ∈ {1, ..., N} lim
t→(t∗)−

si(t) = s0i +

∫ t∗

0

g(si(τ), θi, sj(τ), θj)dτ
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exists. As t ∈ [0; tm) 7→ s1:N(t) is the unique maximal solution, then t∗ < tm and
we can evaluate the s1:N at time t∗. If we do so, we can notice that sm < si(t

∗) < Si,
which is in contradiction with the definition of t∗ = sup ID. As a consequence
t∗ = tm = +∞.

This result shows that the evolution of the population model takes place with-
out finite-time blow-up, but it also shows that the dynamics are consistent with
the initial assumption on the competition indices, which must remain bounded
between 0 and 1. This sufficient condition on the existence of global solutions
directs us toward a choice for the initial configuration distribution support.
Definition 1.9. support of a probability distribution
Let Z be a metric space and µ ∈ P(Z) a probability measure. We consider the
set Sµ = {K ∈ B(Z) | K is closed and µ(K) = 1}. Then the support of the
distribution µ is supp(µ) =

⋂
K∈Sµ

K.

Corollary 1.1. The Schneider system is a symmetric population model
Let µ0 ∈ P(R5) such that supp(µ0) ⊂ D̊ and N > 1. Let us consider the differential
system with random initial configurations

(s0i , xi, Si, γi)1≤i≤N ∼ µ⊗N
0

∀i ∈ {1, ..., N}, dsi
dt

(t) =
1

N − 1

∑
j ̸=i

g(si(t), θi, sj(t), θj)
(1.56)

where g is the function defined in equation (1.52). Then the Schneider system is
a symmetric individual-based population models.

Proof. First, as a direct consequence of the proposition 1.3, µ⊗N
0 is compatible

with the differential system (1.50): for any random variable z01:N ∼ µ⊗N
0 , there

exists Ω′ ∈ F such that P(Ω′) = 1 and ∀ω ∈ Ω′, z01:N(ω) ∈ D̊N , and we can
apply the previous result on any z01:N(ω). Besides, we have for all t ∈ R+ and for
all i ∈ {1, ..., N}, along any set of individual trajectories s1:N(t),

1

N − 1

∑
j ̸=i

g(si(t), θi, sj(t), θj) =
N

N − 1

∫
Z
g(si(t), θi, s

′, θ′)
1

N

N∑
j=1

δ(sj(t),θj)(ds
′, dθ′)

− g(si(t), θi, si(t), θi)

N − 1
(1.57)

Therefore, according to proposition 1.2, the Schneider system is a symmetric pop-
ulation model.
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1.4.4 Definition of the initial configuration distribution
In this section, we choose a parametric expression for the initial configuration
distribution µ0. First of all, its support must guarantee that the distribution is
compatible with the Schneider system. This property can be verified if the support
meets the sufficient condition of proposition 1.3. The distribution must also be
parameterised in a way that it can generate a wide variety of initial configurations.
In our case, we are interested in a population having a spatial distribution of
individual parameters S and γ, meaning that these parameters are chosen with a
high correlation with the position variable x.

In keeping with Schneider et al.36 and Lv et al.,28 the initial sizes of the plants
are fixed to a constant s0 > sm over the population, and the positions of the plants
are uniformly distributed over a square domain [0;L]2 for some distance L. Lv et
al.28 also consider a Poisson point-process distribution of the plants over the plane,
which still leads to a symmetric population model, but it does not correspond to
a distribution of the form µ⊗N

0 .
The distribution of the individual parameters S and γ is determined by two

parametric surfaces x ∈ [0;L]2 7→ S̄(x) ∈ R+ and x ∈ [0;L]2 7→ γ̄(x) ∈ R+ defined
by

S̄(x) = S0 + (SM − S0) exp

(
−1

2
(x− xS

1 )
THS

1 (x− xS
1 )

)
− (S0 − Sm) exp

(
−1

2
(x− xS

2 )
THS

2 (x− xS
2 )

)
γ̄(x) = γ0 + (γM − γ0) exp

(
−1

2
(x− xγ

1)
THγ

1 (x− xγ
1)

)
− (γ0 − γm) exp

(
−1

2
(x− xγ

2)
THγ

2 (x− xγ
2)

)
(1.58)

In the above equations, the surfaces are parameterised by their offsets S0 or γ0, the
location of high values of the parameter xS

1 or xγ
1 , the location of low values of the

parameter xS
2 or xγ

2 , typical high values SM or γM , and typical low values Sm or
γm. The four matrices HS

1 , H
S
2 , H

γ
1 , H

γ
2 are symmetric positive and they monitor

the shape of the surface in the neighbourhoods of xS
1 , xS

2 , xγ
1 , xγ

2 respectively.
Individual parameters S and γ are chosen independent conditionally to the

position x, with the conditional distributions

S | x ∼ U([S̄(x)− σS; S̄(x) + σS])

γ | x ∼ U([γ̄(x)− σγ; γ̄(x) + σγ])
(1.59)

In particular, the conditional expectations E[S | x] and E[γ | x] are equal to S̄(x)
and γ̄(x) respectively.

Figure 1.4 represents a typical shape of the surface S̄ representing the mean
value of parameter S over the domain [0;L]2 for the following configuration of
parameters.
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Figure 1.4: Surface x ∈ [0;L]2 7→ S̄(x) ∈ R, defined in equation (1.58), with
parameters in table 1.1.

In summary, if a random variable (s0, x, S, γ) is of distribution µ0, then its
components satisfy the following relation:

s0 ∼ δs0 , x ∼ U([0;L]2), S | x ∼ U([S̄(x)−σS; S̄(x)+σS]), γ | x ∼ U([γ̄(x)−σγ; γ̄(x)+σγ])
(1.60)

Equivalently, the distribution is defined by its action on continuous and bounded
functions. Let h : Z → R be continuous and bounded, we have

E {h(s, x, S, γ), (s, x, S, γ) ∼ µ0} =
∫
[0;L]2

∫ S̄(x)+σS

S̄(x)−σS

∫ γ̄(x)+σγ

γ̄(x)−σγ

h(s0, x, S, γ)

4L2σSσγ

dγdSdx

(1.61)

1.4.5 Simulation of the Schneider system
Resolution using high-order numerical schemes

To approximate the distribution, we first need to solve numerically the differential
system (1.50) for fixed initial conditions. We have used a Runge-Kutta method
of 5th order with 4th order free interpolation (Tsitouras, 201140) implemented in
the package DifferentialEquations.jl of Julia language (Rackauckas and Nie,
201735).
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Parameters of µ0 Values
(L, σS, σγ) (1,0.1,0.1)

(S0, Sm, SM), (γ0, γm, γM) (0.9, 0.8, 1.0)
xS
1 , xS

2 (0.5,0.75), (0.5,0.25)
xγ
1 , x

γ
2 (0.75,0.5), (0.25,0.5)

HS
1 , H

S
2

(
21.3 26.7
26.7 133.3

)
,
(

21.3 26.7
−26.7 133.3

)
Hγ

1 , H
γ
2

(
133.3 26.7
26.7 21.3

)
,
(
133.3 −26.7
−26.7 21.3

)
s0 0.1

Table 1.1: Parameters of the initial distribution µ0

Competition Parameters Values
sm 5×10−2

RM 3.09
(σr, σx) (0.69, 1.0)

Table 1.2: Competition Parameters and their chosen values for the simulations

We consider solving the differential system of N equations

∀i ∈ {1, ..., N},


si(0) = s0i (ω)

∀t ≥ 0,
dsi
dt

(t) =
1

N − 1

∑
j ̸=i

g(si(t), θi(ω), sj(t), θj(ω))

(1.62)
where (s0i , θi) ∼ µ⊗N

0 is a random variable and ω ∈ Ω′ = {ω′ ∈ Ω | (s0i (ω′), θi(ω
′)) ∈

(D̊)N}. µ0 is the distribution defined in the previous section. Tables 1.1 and 1.2
give the values of the parameters used for the simulation. The accuracy of the
approximated solution is monitored by the relative tolerance (argument reltol
in the solver), which is used to adapt the time step throughout the simulation.
The smaller the tolerance, the more accurate the approximation, but of course the
longer the simulation. We did not investigate the relation between the tolerance ϵ
of the solver and eventual estimation of classical convergence metrics, such as

1

N

N∑
i=1

sup
0≤t≤T

|si(t)− ŝϵi(t)| =
1

N

N∑
i=1

‖si − ŝϵi‖∞ (1.63)

with ŝϵ1:N being the solution returned by the solver and s1:N being the true solution.
However, by considering a decreasing sequence of tolerances (ϵk = 10−k)1≤k≤K , we
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Figure 1.5: Evolution of the metric Jk, defined in equation (1.64), for decreasing
tolerance ϵk = 10−k.

can select the tolerance using the metric

Jk =
1

N

N∑
i=1

‖sϵki − sϵKi ‖∞ (1.64)

with K chosen large enough. We simulate the system over the interval [0;T ]
with T chosen larger than the time it takes for the slowest plant (of growth
rate γm) to reach 99% of the largest size SM in the absence of competition, i.e.

1

γm − σγ

log

(
log(s0/(SM + σS)

log(0.99)

)
= 7.82 in our case. T = 8 is our choice and the

population size is set to N = 50 individuals. The initial configuration is fixed for
the different simulations and the reference solution is the one obtained for a toler-
ance ϵ20 = 10−20. The sup in equation (1.63) is computed using a Brent univariate
optimisation method (Brent, 19736) implemented in the Julia package Optim.jl
(Mogensen and Riseth, 201830). The results are given in figure 1.5. We can observe
in figure 1.5 that the numerical solution obtained for the relative tolerance 10−2 is
close to the reference solution by 2.5×10−5. We therefore choose the value 10−2 for
the relative tolerance for the next simulations, which are carried out for different
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Figure 1.6: Set of individual trajectories t ∈ [0; 10] 7→ s1:N(t) obtained with Julia
package DifferentialEquations.jl35 for a population of size N = 50.

population sizes N , different initial configurations and different time horizons T .
Figure 1.6 represents the evolution of a population of size N = 50 individuals

over the time interval [0; 10] for a given initial configuration. We can notice by
looking at the final slopes of the growth curves that the sizes of the different plants
have, for a vast majority, reached stationary sizes at time T = 10, leading to think
that the whole population may have a stationary distribution. This intuition
is confirmed later by figure 1.8. The proof of the existence of this stationary
distribution has not yet been investigated.

By iterating the simulations, we can obtain an approximation of the distribu-
tion µN :1

s [t, .], corresponding to the marginal distribution of the individual trajec-
tory st1, or by symmetry, the marginal distribution of a single individual size in the
whole population. Figure 1.7 compares 100 different realisations of the individual
trajectory st1. By looking at this graph, we can speculate that the distribution
µN :1
s [t, .] is absolutely continuous for the Lebesgue measure for all time t > 0. This

graphical intuition can also be substantiated by the fact that the distribution of
the sizes in the absence of competition has a density for all time t > 0, having the
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Figure 1.7: 100 independent simulations of the evolution t ∈ [0; 10] 7→ s1(t) within
a population of size N = 50 using DifferentialEquations.jl.35

following expression

fnc
t : s ∈ R 7→ I{s0 < s} d

ds

[∫ +∞

s

F µ0
γ

(
−1

t
log

(
log(s/S)

log(s0/S)

))
pµ0

S (S)dS

]
(1.65)

with F µ0
γ being the cumulative distribution function of µγ

0 , the marginal distri-
bution of γ, and pµ0

S being the marginal density of S. To visualise the evolution
of size density, we carried out a kernel density estimation over the different real-
isations of st1, using KernelEstimation.jl package. A Gaussian kernel is used
for all density estimations and the support boundaries are specified, taking into
account the fact that the support of the density is included within the segment[
sm(s0/sm)

exp(−γM t);SM(s0/SM)exp(−γM t)
]
. As expected, figure 1.8 shows that the

variance of the size density increases with time. The distribution at time t = 10
has a mode around s = 0.3, which is far below the minimal value of the asymptotic
size Sm − σS = 0.7, meaning that inter-plant competition has a significant impact
on the development of the population.

We want now to consider the influence of the population size N on the shape of
the state distribution to assess the importance of this parameter graphically. This
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Figure 1.8: Kernel estimates of the densities fN :1
s (t, .) at times t = 1, 4, 10

from a sample of 1 000 realisations of st1, obtained by iterating the solver
DifferentialEquations.jl over a population of size N = 50.

analysis has to face the problem of the computational cost induced by the simu-
lation of large populations. Indeed, because of the pairwise interactions between
individuals, the evolution of the computational time is asymptotically quadratic,
as illustrated in figure 1.9. We can notice in figure 1.9 that the computation time
required to simulate a population of 1 000 individuals over this short period [0; 1]
is roughly 10 s, which begins to be problematically long if we want to approximate
the distribution of individual sizes. As we are especially interested in the system’s
behaviour for a large population, we need to find a more efficient approximation
strategy for the Schneider system.

Fixed competition simulation

The stationary behaviour of the population implies that the competition indices are
almost constant after some time. Lv et al. (2008)28 consider an approximation of
the system dynamics by fixing over sub-intervals of the simulation period, leading
to piecewise constant competition indices. We give the proof of the consistency of
this approximation, which does not figure in the original article, and we use the
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Figure 1.9: Evolution of the computation time for the simulation of the Schneider
system using DifferentialEquations.jl over the time interval [0; 1] for increas-
ing population size N .

proof to derive an adaptive time-step method.
Proposition 1.4. consistency of fixed competition approximation
Let T > 0 and (∆n)n∈N∗ a sequence of subdivisions of the interval [0;T ] with
∀n ∈ N∗ tn0 = 0, tn1 , ..., t

n
n = T such that max1≤k≤n(t

n
k − tnk−1) −−−→

n→∞
0 and such that

∀n ∈ N∗, nmax1≤k≤n(t
n
k − tnk−1) ≤M for some M > 0. Let z01:N = (s0i , θi)1≤i≤N =

(s0i , xi, Si, γi) ∈ (D̊)N , where D is defined by equation (1.51). Let s1:N : t ∈ [0;T ] 7→
(si(t))1≤i≤N ∈ (R∗

+)
N be the solution of the Schneider system (1.50) for the initial

configuration z01:N . Let us consider the function s̃n1:N : t ∈ [0;T ] 7→ (s̃ni (t))1≤i≤N ∈
(R∗

+)
N defined by, ∀i ∈ {1, ..., N},
s̃ni (0) = s0i

∀k ∈ {1, ..., n}, ∀t ∈ [tk−1; tk),
ds̃ni
dt

(t) = γis̃
n
i (t)(log(Si/sm)

(
1− C̃k−1

i

)
− log(s̃ni (t)/sm)) with C̃k−1

i =
1

N − 1

∑
j ̸=i

C(s̃ni (t
n
k−1), s̃

n
j (t

n
k−1), |xi − xj|)

(1.66)
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Then: 1

N

N∑
i=1

sup
0≤t≤T

|si(t)− s̃ni (t)| −−−→
n→∞

0.

The proof of this result uses the regularity of the transition function with
respect to the competition indices. An estimation of the error induced by keeping
the competition constant over a short period of time is derived by evaluating
C(s̃ni (t), s̃

n
j (t), |xi−xj|) and by using the fact that s̃ni (t) has analytical expressions

over all subintervals of the subdivision.

Proof. The function s̃n1:N is well-defined by the differential system (1.66) and has
the following expression
∀i ∈ {1, ..., N},∀k ∈ {1, ..., n},∀t ∈ [tnk−1; t

n
k ],

s̃ni (t) = sm exp
(
log(Si/sm)

(
1− C̃k−1

i

) (
1− e−γi(t−tnk−1)

)
+ log(s̃ni (t

n
k−1)/sm)e

−γi(t−tnk−1)
)

(1.67)
It can be proved by direct induction that C̃k

i ∈ [0; 1] for all k ∈ {1, ..., n} and
i ∈ {1, ..., N}, and that sm ≤ s̃ni ≤ Si.. Let k ∈ {1, ..., n} and t ∈ [tnk−1; t

n
k ], and

i ∈ {1, ..., N}. We have:

si(t) = si(t
n
k−1) +

∫ t

tnk−1

gC(si(τ), θi, C
i
N(τ))dτ

where gC(si(t), θi, C
i
N(t)) = γisi(t)(log(Si/sm)(1− Ci

N(t))− log(si(t)/sm))

and s̃ni (t) = s̃ni (t
n
k−1) +

∫ t

tnk−1

gC(s̃
n
i (τ), θi, C̃

k−1
i )dτ.

(1.68)

Thus: |si(t)− s̃ni (t)| ≤ |si(tnk−1)− s̃ni (t
n
k−1)|+

∫ t

tnk−1

(|gC(si(τ), θi, C i
N(τ))− gC(s̃

n
i (τ), θi, C

i
N(τ))|+

|gC(s̃ni (τ), θi, C i
N(τ))− gC(s̃

n
i (τ), θi, C̃

k−1
i )|)dτ

(1.69)
We then estimate the quantities |gC(si(t), θi, C i

N(t)) − gC(s̃
n
i (t), θi, C

i
N(t))| and

|gC(s̃ni (t), θi, C i
N(t)) − gC(s̃

n
i (t), θi, C̃

k−1
i )| as functions of |si(t) − s̃ni (t)| in order

to resort to Grönwall lemma. Concerning the first term,

|gC(si(t), θi, C i
N(t))− gC(s̃

n
i (t), θi, C

i
N(t))| =

∣∣∣∣∣
∫ s̃ni (t)

si(t)

∂sgC(s, θi, C
i
N(t))ds

∣∣∣∣∣ (1.70)

As the order relation between si(t) and s̃ni (t) is unknown, we consider all the
values in between these two variables as elements of their convex hull, denoted by
Conv({si(t), s̃ni (t)}). So, for any s ∈ Conv({si(t), s̃ni (t)}), we have:

∂sgC(s, θi, C
i
N(t)) = γi

[
log(Si/sm)(1− Ci

N(t))− log(s/sm)− 1
]

|∂sgC(s, θi, C i
N(t))| ≤ γi(1 + 2 log(Si/sm))

(1.71)
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thus: |gC(si(t), θi, C i
N(t))− gC(s̃

n
i (t), θi, C

i
N(t))| ≤ γi(1 + 2 log(Si/sm))|si(t)− s̃ni (t)|

(1.72)
For the second term, we have:

|gC(s̃ni (τ), θi, C i
N(τ))− gC(s̃

n
i (τ), θi, C̃

k−1
i )| = γi log(Si/sm)s̃

n
i (t)

∣∣∣Ci
N(t)− C̃k−1

i

∣∣∣∣∣∣Ci
N(t)− C̃k−1

i

∣∣∣ ≤ 1

N − 1

∑
j ̸=i

|C(si(t), sj(t), |xi − xj|)− C(s̃ni (t
n
k−1), s̃

n
j (t

n
k−1), |xi − xj|)|

(1.73)
We estimate the variation of the competition function by an upper-bound ex-
pressed as the sum of three terms. For any (i, j) ∈ {1, ..., N}2, we have

|C(si(t), sj(t), |xi − xj|)− C(s̃ni (t
n
k−1), s̃

n
j (t

n
k−1), |xi − xj|)|

≤ |C(si(t), sj(t), |xi − xj|)− C(s̃ni (t), sj(t), |xi − xj|)|+
|C(s̃ni (t), sj(t), |xi − xj|)− C(s̃ni (t), s̃

n
j (t), |xi − xj|)|+

|C(s̃ni (t), s̃
n
j (t), |xi − xj|)− C(s̃ni (t

n
k−1), s̃

n
j (t

k
n), |xi − xj|)|

(1.74)

For the first term in the majorization (1.74),

|C(si(t), sj(t), |xi − xj|)− C(s̃ni (t), sj(t), |xi − xj|)|

=

∣∣∣∣∣
∫ s̃ni (t)

si(t)

∂s1C(s1, sj(t), |xi − xj|)ds1

∣∣∣∣∣
∀s1 ∈ Conv({si(t), sni (t)}),
∂s1C(s1, sj(t), |xi − xj|)

= − log(sj(t)/sm)

2RMs1σr(1 + |xi − xj|2/σ2
x)

(
1− tanh

(
log(sj(t)/s1)

σr

)2
)

|∂s1C(s1, sj(t), |xi − xj|)| ≤
log(Sj/sm)

2RMσrsm(1 + |xi − xj|2/σ2
x)

|C(si(t), sj(t), |xi − xj|)− C(s̃ni (t), sj(t), |xi − xj|)|

≤ log(Sj/sm)

2RMσrsm(1 + |xi − xj|2/σ2
x)
|si(t)− s̃ni (t)|

(1.75)

For the second term in the majorization (1.74),

|C(s̃ni (t), sj(t), |xi − xj|)− C(s̃ni (t), s̃
n
j (t), |xi − xj|)|

=

∣∣∣∣∣
∫ s̃nj (t)

sj(t)

∂s2C(s̃ni (t), s2, |xi − xj|)ds2

∣∣∣∣∣ (1.76)
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and we have:
∀s2 ∈ Conv({sj(t), s̃nj (t)}),

∂s2C(sni (t), s2, |xi − xj|) =
σr + log(s2/sm)(1− tanh( 1

σr
log(s2/s̃

n
i (t))

2)) + σr tanh(
1
σr

log(s2/s̃
n
i (t))

2RMσrs2(1 + |xi − xj|2/σ2
x)

|∂s2C(sni (t), s2, |xi − xj|)| ≤
2σr + log(Sj/sm)

2RMσrsm(1 + |xi − xj|2/σ2
x)

|C(s̃ni (t), sj(t), |xi − xj|)− C(s̃ni (t), s̃
n
j (t), |xi − xj|)| ≤

2σr + log(Sj/sm)

2RMσrsm(1 + |xi − xj|2/σ2
x)
|sj(t)− s̃j(t)|

(1.77)
For the third term in the majorization (1.74),

|C(s̃ni (t), s̃
n
j (t), |xi − xj|)− C(s̃ni (t

n
k−1), s̃

n
j (t

n
k−1), |xi − xj|)| =

∣∣∣∣∣
∫ t

tnk−1

d

dτ

[
C(s̃ni (τ), s̃

n
j (τ), |xi − xj|)

]
dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

tnk−1

[
∂s1C(s̃ni (τ), s̃

n
j (τ), |xi − xj|)gC

(
s̃ni (τ), θi, C̃

k−1
i

)
+∂s2C(s̃ni (τ), s̃

n
j (τ), |xi − xj|)gC

(
s̃nj (τ), θj, C̃

k−1
j

)]
dτ
∣∣∣

We also that:

|gC
(
s̃ni (t), θi, C̃

k−1
i

)
| ≤ γiSi log(Si/sm)

and thus:
|C(s̃ni (t), s̃

n
j (t), |xi − xj|)− C(s̃ni (t

n
k−1), s̃

n
j (t

k
n), |xi − xj|)| ≤

(γiSi log(Si/sm) log(Sj/sm) + γjSj log(Sj/sm)(2σr + log(Sj/sm)))(t− tnk−1)

2RMσrsm(1 + |xi − xj|2/σ2
x)

(1.78)
We use all the inequalities from (1.71) to (1.78) to derive an upper-bound of
1

N

N∑
i=1

|si(t) − s̃ni (t)|. For this purpose, we introduce the following coefficients,

indexed by the individuals i, j ∈ {1, ..., N}
ai = γi(1 + 2 log(Si/sm))

bij =
γiSi log(Si/sm) log(Sj/sm)

2RMσrsm(1 + |xi − xj|2/σ2
x)

cij =
γiSi log(Si/sm)(2σr + log(Sj/sm))

2RMσrsm(1 + |xi − xj|2/σ2
x)

dij =
γiSi log(Si/sm)(γiSi log(Si/sm) log(Sj/sm) + γjSj log(Sj/sm)(2σr + log(Sj/sm)))

2RMσrsm(1 + |xi − xj|2/σ2
x)

(1.79)
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These coefficients enables an estimation of the error 1

N

N∑
i=1

|si(t)− s̃ni (t)| using the

error at time t = tnk−1 and the error integrated over the interval [tnk−1; t].

1

N

N∑
i=1

|si(t)− s̃ni (t)| ≤
1

N

n∑
i=1

|si(tnk−1)− s̃ni (t
n
k−1)|+

1

N

N∑
i=1

ai

∫ t

tnk−1

|si(τ)− s̃ni (τ)|dτ

+
1

N(N − 1)

N∑
i=1

∑
j ̸=i

bij

∫ t

tnk−1

|si(τ)− s̃ni (τ)|dτ +
1

N(N − 1)

N∑
i=1

∑
j ̸=i

cij

∫ t

tnk−1

|sj(τ)− s̃nj (τ)|dτ

+
1

N(N − 1)

∑
i=1

∑
j ̸=i

dij
(t− tnk−1)

2

2

(1.80)
Let us introduce the characteristic time τ1 and the constant Kγ2s, depending only
on the individuals parameters in the population

τ1 =

(
max
1≤i≤N

ai +
1

N − 1

(
max
1≤i≤N

∑
j ̸=i

bij + max
1≤j≤N

∑
i ̸=j

cij

))−1

Kγ2s =
1

N(N − 1)

∑
i=1

∑
j ̸=i

dij

We can write:

1

N

N∑
i=1

|si(t)− s̃ni (t)| ≤
1

N

N∑
i=1

|si(tnk−1)− s̃ni (t
n
k−1)|+

1

τ1

∫ t

tnk−1

1

N

N∑
i=1

|si(τ)− s̃ni (τ)|dτ+

Kγ2s

∫ t

tnk−1

(τ − tnk−1)dτ

(1.81)
We introduce the local errors on the subintervals [tnk−1; t

n
k ].

En
k =

1

N

N∑
i=1

sup
tnk−1≤t≤tnk

|si(t)− s̃ni (t)|

∆tn = max
1≤k≤n

(tnk − tnk−1)

En
k ≤ En

k−1 +
∆tn
τ1

En
k +Kγ2s∆t2n

(1.82)

As ∆tn −−−→
n→∞

0 there exists n0 ∈ N∗ such that ∀n ≥ n0, ∆tn < τ1. So for n ≥ n0,
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and for all k ∈ {1, ..., n},

En
k ≤

En
k−1 +Kγ2s∆t2n
1−∆tn/τ1

with En
0 = 0

therefore En
k ≤ Kγ2s∆tnτ1

1− (1−∆tn/τ1)
k

(1−∆tn/τ1)k
by induction

(1.83)

We can use the estimation on the local errors En
k to derive an upper-bound for the

global error over the whole interval [0;T ]:

1

N

N∑
i=1

sup
0≤t≤T

|si(t)− s̃ni (t)| ≤ max
0≤k≤n

En
k

≤ Kγ2s∆tnτ1
1− (1−∆tn/τ1)

n

(1−∆tn/τ1)n

≤ Kγ2s∆tnτ1

(
exp

(
M

τ1 −M/n

)
− 1

)
−−−→
n→∞

0

(1.84)

We can notice that the error estimate in inequality (1.78) can be improved by
replacing the fixed competition term by a Taylor expansion up to order p of the
competition potential C̃n

ij = C(s̃ni (t), s̃
n
j (t), |xi − xj|).

C̃n,k
ij (t) = C̃n

ij(t
n
k−1) +

dC̃n
ij

dt
(tnk−1)(t− tnk−1) + ...+

dpC̃n
ij

dtp
(tnk−1)

(t− tnk−1)
p

p!
(1.85)

If the competition term is a polynomial function of t, the trajectories of the system
(1.66) are still analytical. We have therefore a methodology to obtain arbitrarily
accurate approximation of the true solution of the system (1.50).

The choice of a subdivision of the interval [0;T ] before the system simulation
is problematic, as one does not know in advance the quality of approximation
consisting of fixing the competition for a while. That is why it is preferable to
build the subdivision dynamically by estimating whether we are in a phase where
the competition changes quickly or slowly. The proof of the proposition 1.4 involves
a quantity that gives the part of the total error that can be attributed to the action
of fixing competition. This is the quantity estimated in inequality 1.78. We can
also consider the following quantity:
Cfc(t0, t, s̃

0
1:N , θ1:N) =

1

N − 1

N∑
i=1

γiSi log(Si/sm)∑N
i′=1 γi′Si′ log(Si′/sm)

∑
j ̸=i

sup
t0≤τ≤t

|C(s̃ni (τ), s̃
n
j (τ), |xi − xj|)− C(s̃0i , s̃

0
j , |xi − xj|)|

(1.86)
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Intuitively, if the approximated trajectories s̃n1:N of the population evolve so that
there are substantial variations of the competition potentials for each individual
over the interval [t0; t], then the quantity (1.86) tends to be large, and this indi-
cates that the approximation of a constant competition over [t0; t] is poor. Each
variation of the competition potential is weighted by γ log(S/sm) in order to pay
particular attention to plants having faster growth rates and larger asymptotic
sizes. Similarly as in inequality (1.78), it can be shown that quantity (1.86) is
upper-bounded by a quadratic function of t, but this approximation is rather
rough, as the size remains bounded for all time.

Algorithm 1 describes the adaptive time step method we propose. It requires
the minimisation of a continuous and non convex function over a segment.

notation: Let f : K → R a continuous function over a compact set. We use the
notation

Argmin {f(x), x ∈ K} =
{
x ∈ K | f(x) = min

y∈K
f(y)

}
(1.87)

Algorithm 1 Adaptive time step simulation using piecewise constant
competition

Inputs: a tolerance ε > 0, the size of subpopulation Nsp ≤ N , a sample
(s0i , θi)1≤i≤N from the initial distribution µ0, time horizon T
Initialisation:

1. t = 0

2. compute competition indices for all individuals in the population (C0
i )1≤i≤N

3. initialisation of the individual sizes ∀i ∈ {1, ..., N}, s̃i = s0i

while t < T do
1. select a subpopulation of size Nsp by sampling a discrete uniform distri-

bution U({1, ..., N}) , the subpopulation obtained is denoted by (s̃′i, θ
′
i)1≤i≤Nsp .

2. compute the time update t′ given by the following formula

t∗ = maxArgmin
{
(Cfc(t, t

′, s̃′1:Nsp
, θ1:Nsp)− ε)2, t ≤ t′ ≤ T

}
(1.88)

3. update all individual sizes over the interval [t; t∗] with

∀τ ∈ [t; t∗], s̃i(τ) = sm exp
(
log(Si/sm)

(
1− Ct

i

) (
1− e−γi(τ−t)

)
+ log(s̃ti/sm)e

−γi(τ−t)
)

(1.89)
4. set t := t∗.
5. update the values of all competition indices (Ct

i )1≤i≤N .
end while
Outputs: set of individual trajectories (t ∈ [0;T ] 7→ s̃i(t))1≤i≤N .
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The consistency of the simulation method provided by algorithm 1 is a corollary
of the proposition 1.4.

Corollary 1.2. consistency of the adaptive method with piecewise con-
stant competition
Let T > 0. Let ε > 0 and (∆tn)n∈N∗ a sequence of strictly positive real numbers such
that ∆tn ≤M/n for some M > 0. Let z01:N = (s0i , θi)1≤i≤N = (s0i , xi, Si, γi) ∈ (D̊)N ,
where D is defined by equation (1.51). Let s1:N : t ∈ [0;T ] 7→ (si(t))1≤i≤N ∈ (R∗

+)
N

be the solution of the Schneider system (1.50) for the initial configuration z01:N .
We consider for all n ∈ N∗ the sequences (tnk)k∈N, (s̃n,k1:N)k∈N and (C̃n,k

1:N)k∈N defined
by

tn0 = 0, s̃n,01:N = s01:N , C̃n,0
1:N =

(
1

N − 1

∑
j ̸=i

C(s0i , s
0
j , |xi − xj|)

)
1≤i≤N

and ∀k ∈ N,∀i ∈ {1, ..., N},

tnk+1 = maxArgmin
{
(Cfc(t

n
k , t, s̃

n,k
1:N , θ1:N)− εn)

2, tnk ≤ t ≤ min(tnk +∆tn, T )
}

s̃n,k+1
i = sm exp

(
log(Si/sm)

(
1− C̃n,k

i

) (
1− e−γi(t

n
k+1−tnk )

)
+ log(s̃n,ki /sm)e

−γi(t
n
k+1−tnk )

)
C̃n,k+1

i =
1

N − 1

∑
j ̸=i

C(s̃n,k+1
i , s̃n,k+1

j , |xi − xj|)

(1.90)
Then for all n ∈ N∗, there exists Kn ∈ N∗ such that tnKn

= T (and therefore ∀k ≥
Kn, tnk = T ). Moreover, the sequence of functions (s̃n1:N)n∈N∗ defined by equation

(1.66) over the subdivision (tn0 , t
n
1 , ..., t

n
Kn

) is such that lim
n→∞

1

N

N∑
i=1

sup
0≤t≤T

|si(t)− s̃ni (t)| =

0.

Proof. To simplify the notations, we use the following abbreviation: Cfc(t
n
k , t) :=

Cfc(t
n
k , t, s̃

n,k
1:N , θ1:N). By construction of (tnk)k∈N, the sequence is non-decreasing

and ∀k ∈ N, tnk ≤ T . We want to prove that this sequence is stationary and
that it defines a subdivision of the interval [0;T ]. Because of the regularity of the
competition function, it is possible to prove that the time increment tnk+1 − tnk are
above a minimal value α > 0, until tnk + α > T . Using the upper-bound of the
function t ∈ [tnk ; t

n
k+1] 7→ Cfc(t

n
k , t, s̃

n,k
1:N , θ1:N) defined in inequalities (1.78)

∀t ∈ [tnk ; t
n
k+1], Cfc(t

n
k , t, s̃

n,k
1:N , θ1:N) ≤

Kγ2s(t− tnk)
1
N

∑N
i=1 γiSi log(Si/sm)

(1.91)
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From this inequality, we can deduce that if there exists t′ ∈ [tnk ; min(tnk +∆tn, T )]

such that Kγ2s(t
′ − tnk)

1
N

∑N
i=1 γiSi log(Si/sm)

= ε then we have that Cfc(t
n
k , t

′) ≤ Cfc(t
n
k , t

n
k+1).

Otherwise, if such time t′ does not exist, then the closest value to the tolerance
ε reached by t 7→ Cfc(t

n
k , t) is at the right boundary of the interval, i.e., either

at tnk + ∆tn or at T . Hence, we have the following minimal value for the time
increment.

∀k ∈ N, tnk+1 − tnk ≥ min

(
ε

NKγ2s

N∑
i=1

γiSi log(Si/sm),∆tn, T − tnk

)
(1.92)

Let us note ∆t =
ε

NKγ2s

N∑
i=1

γiSi log(Si/sm) and tn∞ = lim
k→∞

tnk , which exists since

the sequence (tnk)k∈N is non-decreasing and bounded. If tn∞ < T , then there exists
k0 such that ∀k ≥ k0

tn∞ − tnk ≤
min(∆t,∆tn, T − tn∞)

2
(1.93)

It follows that

tnk+1 − tn∞ = tnk+1 − tnk + tnk − tn∞ ≥ min(∆t,∆tn, T − tnk)−
min(∆t,∆tn, T − tn∞)

2

≥ min(∆t,∆tn, T − tn∞)

2
> 0

(1.94)
So, in particular, tnk0+1 > tn∞, which is in contradiction with the monotonicity of the
sequence (tnk)k∈N. As a consequence, the limit is tn∞ = T . We can then find k1 ∈ N

such that T − tnk1 ≤
min(∆t,∆tn)

2
, leading to tnk1+1 = T . Hence, the sequence is

stationary, and it is possible to build from this sequence a subdivision of the interval
[0;T ] by removing all the terms that are equal to T . The sequence of functions
(s̃n1:N)n∈N∗ , having each of its term associated with a subdivision extracted from
(tnk)k∈N, converges to s1:N by proposition (1.4).

Algorithm 1 and the one studied in corollary 1.2 exhibits some differences,
which aims at alleviating the computation cost of the adaptive algorithm.

1. the sup is removed from the expression of Cfc in (1.86); without the sup the
function is not necessarily increasing, which precludes the use of inequality
(1.92) in the previous proof.
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Figure 1.10: Evolution of the consistency error E
(
s, s̃1/k

)
defined in equation (1.95)

with the tolerance εk = 1/k and for 10 independent simulations at each value of k.
The size of all random subpopulations is Nsp = 10. All simulations are performed
with the same initial configuration z01:N , generated from distribution µ0 with the
values of parameters in table 1.1, and the competition parameters in table 1.2, for
a population of N = 50 individuals. The reference solution s is the one obtained
with the numerical solver described in subsection 1.4.5 with a relative tolerance of
10−2.

2. The computation of Cfc is done over a random sub-population, not on the
entire population; the method is, therefore, stochastic if Nsp < N . It can be
proved that consistency still holds in that case.

3. The minimisation procedure in (1.88) is not carried over a small segment
[t; t +∆tn] but over the whole time domain [t;T ]. This extension may con-
stitute a source of bias in the convergence of (s̃n)n∈N∗ , as the consistency is
mainly based on the fact that the time step of the subdivision can be chosen
arbitrarily small.

As a consequence, the consistency of algorithm 1 concerns rather a family of
functions (s̃ε1:N) indexed by the tolerance ε, and it is based on the postulate that
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Figure 1.11: Comparison of the computation time used to solve the Schneider
system (1.50) over the interval [0; 1] for different population sizes N using a nu-
merical ODE solver35,40 (ODE resolution) in the configuration described in sub-
section 1.4.5, and using the method described in algorithm 1 (piecewise constant
competition) with the configuration ε = 1/50 and Nsp = 10.

the smaller ε is, the smaller the time step is. Despite these differences, figure
1.10 shows that the consistency of the method corresponding to algorithm 1 seems
preserved, i.e.

E(s1:N , s̃ε1:N) =
1

N

N∑
i=1

sup
0≤t≤T

|si(t)− s̃εi (t)| −−→
ε→0

0 (1.95)

For ε = 1/50, the consistency error is around E
(
s1:N , s̃

1/50
1:N

)
≈ 2 × 10−2, which

can be considered as an acceptable level of error. We keep this configuration of
algorithm 1, i.e. ε = 1/50 and Nsp = 10 to simulate populations of increasing sizes
N , in order to assess the gain in computation efficiency induced by the piecewise
constant competition approximation.

Figure 1.11 shows that the computation time is reduced by a factor 10 for large
populations (N > 300) when the simulation is performed with algorithm 1, which
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is a significant improvement. The computation time evolution is as expected in
N2 asymptotically due to the pairwise interaction creating the system dynamics.
The methodology of approximating competition indices as a piecewise constant
process is therefore adopted to approximate the marginal density of the size s for
large populations.

Visualization of the marginal density of s

In this subsection, we use the methodology derived in subsection 1.4.5 to alleviate
the computation of the density of the distribution µN :1

s [t] for large values of N .
Figure 1.12 shows that there is very little difference between the densities corre-
sponding to populations of sizes N = 100 and N = 1 000, which may indicate that
the distribution has a limit with respect to parameter N . This question is dealt
with in detail in chapter 3. We can notice that the separability of the densities
depends on the observation time t: the marginal density at t = 1 is roughly the
same for all N , whereas density f 10:1

s (10, .) can be clearly distinguished from den-
sities f 100:1

s (10, .) and f 1000:1
s (10, .) at t = 10. Figure 1.12 shows that the Schneider

system exhibits a small population behaviour, where the size N may have an in-
fluence on the dynamics, and a large population behaviour, where the parameter
N does not have a significant impact on individual trajectories. The problem of
identifiability of parameter N is further discussed in chapter 2.

0.00 0.25 0.50 0.75 1.00

0

5

10

15

s

f
N
:1

s
(1
,s
)

N = 10

N = 100

N = 1000

(a) t = 1

43



Simulations of symmetric and heterogeneous population systems

0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

s

f
N
:1

s
(4
,s
)

N = 10

N = 100

N = 1000

(b) t = 4

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

s

f
N
:1

s
(1
0
,s
)

N = 10

N = 100

N = 1000

(c) t = 10

Figure 1.12: Kernel density estimation of the marginal density s 7→ fN :1
s (t, s)

from 1000 independent simulations of the Schneider system using algorithm 1 with
ε = 1/50 and Nsp = 10. The shapes of the densities are compared for different
values of the population size N . The values of the initial distribution parameters
are in table 1.1. The values of the competition parameters are in table 1.2. The
Julia package used for density estimation is KernelEstimation.jl, where it can
be specified that the support of density fN :1

s (t, .) is included within the segment[
sm(s0/sm)

exp(−γM t);SM(s0/SM)exp(−γM t)
]
.
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1.5 Conclusion
Chapter 1 introduced the notion of symmetric and heterogeneous population that
can be applied to many systems where individuals are in interaction. Particu-
lar attention has been paid to a specific class of population models, which are
necessarily symmetric because of their dependence with respect to the empirical
population measure. This specific expression led us to develop simulation method-
ologies based on piecewise polynomial approximations of the empirical measure’s
trajectories. These simulation methods allow us to distinguish a level of popula-
tion dynamics and a level of individual dynamics. They can be adapted to obtain
numerical schemes of an arbitrarily large order (but of increasing computational
cost), where the order is directly related to the degree of the polynomial approxi-
mation. This assertion has only been verified on the Schneider system, but it seems
relatively straightforward to generalize this approach to other equally smooth sys-
tems (in chapter 2, this numerical scheme is applied to the Spring Cloud system).
However, these methods’ efficiency is enhanced when isolating in the dynamics
population statistics summarizing the interaction between each individual and the
population: the barycentre in the Spring Cloud system, the competition potential
in the Schneider system, or the communication coefficients in the Cucker-Smale
system. However, such statistics are more difficult to find for less smooth systems,
e.g., Kuramoto-Vicsek, and an explicit Euler method seems to be more efficient in
this case.

The consistency of these methodologies related to symmetric population de-
serves to be further investigated. On the theoretical plan, it is necessary to write
a proof of consistency at a sufficiently generic level to be applied to a broader class
of systems and compare it with state-of-the-art numerical methods. A parallel im-
plementation should be carried out on the numerical plan to take full advantage
of the partially distributed aspect of the numerical scheme, which allows, at least
over a more or less short period, the individuals of a population in interaction to
evolve in parallel. Since the complexity of the scheme with respect to the size
of the population N is of the same order as an explicit Euler scheme (linear for
Spring Cloud, quadratic for Schneider, for an order one scheme), this scheme may
not present any computational advantage in situations where the time-step is too
small. Favorable situations seem to be related to the temporal stability of this
population statistic mentioned above. Nevertheless, the distinction between the
population scale and the individual scale provides a unified framework used in
chapter 3 to simulate the system’s mean-field limit.
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Chapter 2

Uncertainties in symmetric
population systems

Statistical uniformity is by no means a harmless scientific ideal; it is the no
longer secret political ideal of a society which, entirely submerged in the routine of

everyday living, is at peace with the scientific outlook inherent in its existence.
–Hannah Arendt, The Human Condition (1958)

2.1 Introduction
Symmetric population models, as defined in the previous chapter, have been used
extensively to model biological systems of great complexity. We have already men-
tioned the Cucker-Smale model (Cucker and Smale, 20078) or Kuramoto-Vicsek
model (Degond et al., 20149), which were applied to collective motions of social
animals. These biological populations are complex systems, since their elementary
building blocks, i.e., the individuals that constitute them are themselves complex
systems that still escape any theory or formalism1. Individuals interact with each
other, but they also interact with the environment outside the system, which is
seldom closed. As a consequence, any population model that is to be compared
with experimental data has to make a series of assumptions to account for the
sources of uncertainty that may disturb the primary mechanism under investiga-
tion. When experimental data are analysed at a global scale, one can assume that
uncertainties at the microscopic scale can be neglected when individual data are
aggregated at a macroscopic scale. In Ballerini et al. (2008),1 a simple alignment
model enabled to evidence the topological nature of interactions within a swarm
of starlings. Interactions are said to be topological when the behaviour of an in-
dividual is influenced by its k nearest neighbours, in contrast with a geometrical

1And maybe it should be left that way.
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influence coming from its conspecifics located in a disk of a given radius. The model
selected for individual motion only represents the alignment phenomenon, without
any other source of uncertainty, and it is left to the experimental data to deter-
mine whether interactions are topological or geometrical. Neglecting microscopic
uncertainty might be justified by the large size of the population observed in the
dataset, and by the remarkable accuracy of the experimental protocol used for data
collection (Ballerini et al., 20082). Mann (2011)19 noticed that many interaction
rules, although having singularly dissimilar expressions, lead to the emergence of
the same structure or patterns in the collective motion, such as global alignments
or rotating mills (studied qualitatively and numerically in Vecil et al., 201322).
This observation led the author to put forward the thesis that in order to precisely
identify the parameters of a specific model, or to decide between two competing
models, only observations made at individual scale and during a transitory regime
preceding a state of dynamic equilibrium, with potentially universal properties,
would be relevant. The author suggests a Bayesian methodology to discriminate
between topological or geometrical interaction laws, based on the observation of
individual trajectories. Uncertainties on the microscopic dynamics are represented
as Gaussian angular perturbations. The formalism of adding stochastic pertur-
bations to the state derivative is a standard modelling practice in the literature
(Bolley et al., 2011,4 Degond et al., 2014,9 Lv et al, 200818) to account for the po-
tentially unknown mechanism at the level of the individuals. A notable exception
is made in Carrillo et al. (2017)6 where the uncertainties on the trajectories result
from the uncertainty on parameters driving the interaction force.

Nevertheless, the uncertainties related to the shortcomings of the experimental
protocol seem to be overlooked in the literature on statistical inference of kinetic
systems and interacting population models in general. The complexity of the dy-
namics, the potentially large size of the population, makes an exact knowledge of
the system out of the reach of any data collection procedure. In the case of sym-
metric and heterogeneous population models, an exact knowledge of the system
presupposes the data of all the initial conditions and individual characteristics, as
well as a perfect knowledge of the transition function. Often, in many works, only
the parameters to be estimated are assumed to be unknown, while the rest of the
variables needed to simulate the system are fixed. For instance, in Bialek et al.
(2012),3 the velocities of all the individuals in the population are assumed to be
measured precisely at a high frequency. In Bongini et al. (2017),5 the interaction
kernel is learnt using a non-parametric method based on the exact trajectories of
the whole system. A similar type of data is required for the methodology used in
Lu et al. (2019).17 According to the context, such accuracy in observations might
be too costly to be achieved. It is thus necessary to include in the model latent
variables to complete the partial knowledge brought by the data (Dempster et
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al., 197710). Resorting to hierarchical models seem to be unavoidable in the case
of heterogeneous population models, where the individual characteristics are not
directly measurable, but only accessible through their influence on the overall dy-
namics (Schneider et al.,200620). In the Bayesian setting, the uncertainties related
to these latent variables naturally propagate into uncertainties in the estimation
of the parameters. In the case of symmetric population models, we can enumerate
the sources of uncertainty exhaustively:

• the uncertainty on the population size: if the experimental protocol only
concerns a subgroup of individuals, with very few information on the rest of
the population, the interaction network defining the dynamics cannot be fully
determined. It is worth noting that this uncertainty only affects parametric
identification if individuals interact.

• the uncertainty on the initial configuration of the population: this may be
related either to the initial conditions or to the individual characteristics.

• the uncertainty on individual identities: this uncertainty arises especially
when individuals are hard to distinguish and when the population is ob-
served with a low frequency, and it leads to difficulty in the reconstitution
of individual trajectories.

• the uncertainty due to the inexact integration of the system: in practice, the
simulation is carried via a numerical solver, whose deviation from the real
trajectories may increase over time. This uncertainty can hardly be neglected
in the case of large populations, for which accurate numerical integrations
have prohibitive computational costs.

The chapter is organised as follows: section 2.2 introduces the general prin-
ciple of Bayesian inference, and the next sections elaborates on the modelling of
the different sources of uncertainties, along with their consequences on parametric
identification. For each source of uncertainty, an illustration is made on different
configurations of Spring Cloud model, introduced in example 1.6. This linear sys-
tem enables exact visualizations of parameters uncertainties, without having to
resort to numerical methods for the inference. Moreover, it provides some insights
on the difficulties that are encountered when dealing with nonlinear systems. Be-
sides, the different sources of uncertainty are considered separately: when one
aspect of the model is assumed to be unknown, the rest of potentially latent vari-
ables are assumed to be known. This type of hypothetical situation can find a
practical justification in Gibbs’ sampler inference method (Geman and Geman,
199311).
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2.2 Bayesian inference
The general principle of Bayesian inference13 can be understood by the description
of its typical workflow. Initially, we want to carry out an experiment or a data
collection to identify the value of an unknown parameter ξ. Before the experiment,
i.e., before any data is acquired, we have a more or less clear idea of the possible
values that ξ can take. The assumption on the possible values of ξ is formalised
as a probability distribution Pξ, called the prior distribution, assigning to each
possible value a certain probability, which can be interpreted as a quantification
of the plausibility of that value. Besides, we have built a model explaining the
relation between the collected observations x and the parameter ξ. Such a relation
is represented by a collection of probability distributions Px|ξ, indexed by ξ, and
called the likelihood distribution. The observation of x may lead to favouring
specific values of ξ. The modification of the plausibility landscape of ξ by the
observation is formalised by the posterior distribution Pξ|x, which is a conditional
distribution (see definition 2.2), and whose expression is given by Bayes’ formula
(see theorem 2.1).
Definition 2.1. Transition kernel and Markov kernel (from Klenke, 2008,15

definition 8.24)
Let (X ,BX ) and (Y ,BY) two measurable spaces. A function ν : X × BY → R+ is
said to be a transition kernel if:

1. for all set B ∈ BY , the function x ∈ X 7→ ν(x,B) is measurable;

2. for all x ∈ X , the function B ∈ BY 7→ ν(x,B) is a σ-finite measure.

In addition, if a transition kernel is such that ∀x ∈ X , ν(x, .) is a probability
transition, then the transition kernel is said to be a Markov kernel.

The set of transition kernels associating an element of X to a σ-finite measure
over BY is denoted by T (X → BY).
Definition 2.2. Conditional distribution
Let P ∈ P(X × Y) with (X ,BX ) and (Y ,BY) being two measurable spaces. Let Py

be the y-marginal distribution:

∀h ∈Mb(Y → R), EPy [h(y)] =

∫
X×Y

h(y)P(dx, dy) (2.1)

A transition kernel ν ∈ T (Y → BX ) is said to be a x | y conditional distribution if
it satisfies the following relation

∀h ∈Mb(X × Y → R), EP[h(x, y)] =

∫
Y

∫
X
h(x, y)ν(y, dx)Py(dy) (2.2)
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It is important to notice in definition (2.2) that the conditional distribution
extracted from a given joint distribution may not be uniquely defined. In partic-
ular, if ν ∈ T (Y → BY) is a conditional distribution, then any other ν ′ such that
Py(ν

′(y, .) = ν(y, .)) = 1 is also a x | y conditional distribution. In other words,
a conditional distribution has constrained values over the support of the marginal
distribution of the remaining variables; elsewhere, it can take any value.
Theorem 2.1. Bayes’ formula (from Shao, 2003,21 theorem 4.1)
Let (X ,BX ) and (Y ,BY) two measurable spaces. Let νX and νY be two σ-finite
measures on X and Y respectively. Let Px ∈ P(X ) be a probability measure
absolutely continuous with respect to νX , with π : x ∈ X 7→ ∂Px

∂νX
(x) ∈ R+. Let

(x,B) ∈ X × BY 7→ Py|x(B|x) a Markov kernel in T (X → BY) such that for all
x ∈ X , the probability measure Py|x(. | x) is absolutely continuous with respect to

νY , with (x, y) ∈ X × Y 7→ f(y|x) =
∂Py|x(.|x)

∂νY
(y). We assume that the function

(x, y) ∈ (X × Y , σ(BX × BY)) 7→ f(y|x) ∈ (R+,BR+) is measurable. Then:

1. the distribution Py : B ∈ BY 7→
∫
X
Py|x(B|x)Px(dx) is absolutely con-

tinuous with respect to the measure νY . Let gy : y ∈ Y 7→ ∂Py

∂νY
(y) =∫

X
f(y|x)π(x)νX (dx).

2. the transition kernel

(y, A) ∈ Y × BX 7→ Px|y(A | y) =

 0 if gy(y) = 0
1

gy(y)

∫
A

f(y|x)π(x)νX (dx) otherwise

(2.3)
is a x | y conditional distribution of the distribution Px,y defined by its action
on measurable and bounded functions

∀h ∈Mb(X × Y → R), EPx,y [h(x, y)] =

∫
X

∫
Y
h(x, y)Py|x(dy|x)Px(dx)

(2.4)

We have now all the elements to define what a Bayesian inference problem
is. Let Pξ ∈ P(Ξ) be a probability distribution over a set of parameters Ξ. This
is the prior distribution, modelling the assumptions and the prior knowledge we
have on the system under study. Let ξ ∈ Ξ 7→ Px|ξ(. | ξ) ∈ P(X ) a Markov
kernel, i.e., the likelihood distributions defined over the space of observations X ,
giving the probability for a model parametrised by ξ to generate the observation
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x. The Bayesian inference problem consists of determining the posterior distri-
bution Pξ|x(. | x) given by equation (2.3) at the specific point x constituting the
data set of observations. In most cases, the posterior distribution cannot be ex-
actly determined, mainly because of the intractability of the integral defining the
marginal distribution Px(dx) =

∫
Ξ

Px|ξ(dx | ξ)Pξ(dξ), also called the evidence in
the Bayesian terminology (term gy in equation 2.3).

2.3 Application to a symmetric system: Spring
Cloud model with identical particles

Bayesian setting is particularly useful when dealing with models where the param-
eters are difficult to identify. Let us come back to the example 1.6 of the model
Spring Cloud. To simplify the system, let us assume for now that all the particles
have the same parameter κ and the same mass m. Our goal is to identify κ and
m from the observation of the trajectories of the different particles in the popu-
lation. Prior knowledge on the system tells us that the unknown variables of our
problem are within known intervals κ ∈ [κmin;κmax] and that m ∈ [mmin;mmax],
so a natural choice for prior distribution would be a uniform distribution over
[κmin;κmax]× [mmin;mmax] of density

pκ,m : (κ,m) ∈ R2 7→ I{κmin ≤ κ ≤ κmax}I{mmin ≤ m ≤ mmax}
(κmax − κmin)(mmax −mmin)

(2.5)

When the population system is homogeneous, i.e., when all the particles have the
same characteristics, the equation of motion (1.38) becomes

∀i ∈ J1;NK, d2xi

dt2
(t) = −Nκ2

m
xi(t) +

κ2

m

N∑
j=1

xj(t)

Besides d2

dt2

N∑
j=1

xj(t) =
κ2

m

N∑
j=1

N∑
k=1

(xk(t)− xj(t)) = 0

so
N∑
j=1

xj(t) =
N∑
j=1

x0
j + t

N∑
j=1

v0j

(2.6)
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We obtain that the trajectory of each particle is given by

∀i ∈ J1;NK, xi(t) =

(
x0
i −

1

N

N∑
j=1

x0
j

)
cos(ωN t) +

1

ωN

(
v0i −

1

N

N∑
j=1

v0j

)
sin(ωN t)+

1

N

N∑
j=1

x0
j +

t

N

N∑
j=1

v0j with ωN = κ

√
N

m

(2.7)
The trajectories of the particles are elliptic around the barycenter of the cloud,
following a uniform and rectilinear motion given by its initial speed. It can be
noticed in equation (2.7) that the size N of the population has a direct influence
on the pulsation ωN of the trajectories. The expression of the trajectory also shows
that, for any positive factor λ > 0, the configuration of parameters (λκ, λ2m) would
lead to the exact same trajectories as the configuration (κ,m). We are in the case
where the model is not identifiable with respect to the parameters (κ,m), in the
sense that Px|κ,m = Px|κ′,m′ does not imply that (κ,m) = (κ′,m′).

A common choice to model observation errors is the normal or Gaussian distri-
bution. For convenience, we do not distinguish regular and degenerate Gaussian
distribution.

Lemma 2.1. Square root of a positive semi-definite matrix (from Horn
and Johnson, 2012,14 theorem 7.2.6)
Let A ∈ Md(R) be a positive semi-definite matrix. Then there exists a unique
B ∈ Md(R) positive semi-definite such that B2 = A. We then use the notation
B = A1/2.

Definition 2.3. Gaussian distribution
The standard normal distribution over Rd is the probability measure N (0, Id) ab-
solutely continuous with respect to the Lebesgue measure, whose density is

∀x ∈ Rd,
∂N (0, Id)

∂λ
(x) =

1

(2π)d/2
exp

(
−|x|

2

2

)
(2.8)

where |x| is the canonical Euclidean norm over Rd. For any m ∈ Rd, and for any
symmetric matrix Σ ∈ Md(R) positive semi-definite, the distribution N (m,Σ) is
the law of m+Σ∗u, for any u ∼ N (0, Id) and for any square root Σ∗ of the matrix
Σ, i.e., satisfying (Σ∗)TΣ∗ = Σ.

In particular, any Dirac distribution is Gaussian δm = N (m, 0) and when the
covariance matrix Σ is positive definite, the distribution N (m,Σ) is absolutely
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continuous with respect to the Lebesgue measure, with the density

∀x ∈ Rd,
∂N (m,Σ)

∂λ
(x) =

1

(2π)d/2
√
det(Σ)

exp

(
−1

2
(x−m)TΣ−1(x−m)

)
(2.9)

Let us assume that we are able to observe all the initial positions of the particles at
time t = 0. We observe also the positions of all the particles at times t1, ..., tM , but
this time with some observation error modelled by a bivariate Gaussian variable of
covariance matrix σ2I2, where σ > 0 is known. The observation model, explaining
the relation between the parameters (κ,m) and the data x can be formulated as:

∀i ∈ J1;NK,∀j ∈ J1;MK, xij = xi(tj, κ,m) + ϵij where ϵij ∼ N (0, σ2I2) (2.10)

where xi(t, κ,m) is the trajectory of the particle i given by equation (2.7). It follows
that the density of the likelihood distribution is, for any (κ,m) ∈ [κmin;κmax] ×
[mmin;mmax].

∀x ∈ R2Nm, px|κ,m(x | κ,m) =
1

(2πσ2)NM
exp

(
− 1

2σ2

N∑
i=1

M∑
j=1

|xij − xi(tj, κ,m)|2
)

(2.11)
From Bayes’ formula (theorem 2.1), the posterior distribution Pκ,m|x has a proba-
bility density function pκ,m|x, known up to a normalisation factor.

pκ,m|x(κ,m | x) ∝ px|κ,m(x | κ,m)pκ,m(κ,m)

∝

 exp

(
− 1

2σ2

N∑
i=1

M∑
j=1

|xij − xi(tj, κ,m)|2
)

if (κ,m) ∈ [κmin;κmax]× [mmin;mmax]

0 otherwise
∝ p̃(κ,m | x)

(2.12)
We cannot compute the integral

∫ κmax

κmin

∫ mmax

mmin

p̃(κ,m)dmdκ exactly, but we

can represent the surface (κ,m) 7→ p̃(κ,m | x) to see how the data x refines
the knowledge modelled by the prior distribution of equation (2.5). Let us con-
sider a data set x corresponding to the observations of a population of 10 parti-
cles, having their initial positions in [0; 1]2 and their initial velocities in [−1; 1]2.
Their trajectories are generated using the parameters κ0 = 1 and m0 = 10,
and they are observed over a timeline constituted of 50 regularly space time
steps between t = 0 and t = 2π, which corresponds to a rotation period in
the barycentric referential. The observation error σ = 0.5 is chosen very large
to show the robustness of the inference. Figure 2.1 compares the trajectories
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Figure 2.1: (a) Representation of the trajectories without observation error (equa-
tion 2.7). (b) Scatter plot of the data set (with a large observation error, equation
2.10) 59
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Figure 2.2: Surface (κ,m) ∈ [κmin;κmax] × [mmin;mmax] 7→
p̃(κ,m | x)
p̃(κ0,m0 | x)

for σ =

0.5, where p̃(κ,m | x) is defined by the equation (2.12), and (κ0,m0) = (1, 10).

of the individual particles with their noisy observations. We can notice in fig-
ure (b) that the error completely break the structure of the motion, that clearly
appears in (a). However, despite a standard deviation of σ = 0.5, figure 2.2
shows that the posterior distribution is concentrated near (but not on) the curve{
(κ,m) ∈ [κmin;κmax]× [mmin;mmax] | κ

√
N
m

= κ0

√
N
m0

= 1
}

. For a fixed M , if σ
decreases, the posterior distribution converges to the uniform distribution over this
curve. The same convergence is observed when σ is fixed and when M , the number
of observations per individuals, increases. This last convergence in distribution is
yet to be proved.

2.4 Undifferentiated population
Let us come back to the example of subsection 2.3 and let us relax the assumption
on our ability to track the different individuals. At a given time, we observe a
cloud of points, and, when considering a point at a time t1 and another point at
a time t2, we are not able to say whether these points correspond to the different
positions of the same particle, or they do not represent the same particle. We
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Figure 2.3: Scatter plots of the population of particles at different observation
times. Data is generated by the Spring Cloud model (equation 2.10) for a popu-
lation of 10 particles.

do not have individual observations anymore; we only have observations of the
whole population. Figure 2.3 shows a visualization of the data set, consisting
of 10 particles following the same observation model as in equation (2.10), with
a superimposition of the cloud of points at different observation times. Such a
situation may occur when studying a population composed of individuals hard to
distinguish, which is the case for the data collected and studied in Ballerini et al.
(2008)1 displaying the evolution of a swarm of starlings. The absence of individual
trajectories in the data set constitutes a significant loss of information, impacting
the observation model itself. In the case of subsection 2.3, a square loss measures
the fit between the model and the data, appearing within the expression of the
likelihood function (equation 2.11). This loss function, adapted to the comparison
between two lists of points, corresponds to a Gaussian model on the observation
errors (equation 2.10). In the undifferentiated case, the pairing between model
points and observation points is no longer part of the problem. Let us introduce
an arbitrary indexing of the observation points so that the data have the form of
a collection of vector x = (xij)

1≤i≤N
1≤j≤M ∈ R2Nm as previously. As this indexing is

arbitrary, the model generating the data formulates it as a random permutation,
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chosen uniformly in SN , the set of permutations of J1;NK.
∀j ∈ J1;MK, τj ∼ U(SN) defined by ∀σ ∈ SN , P {τ ∼ U(SN) | τ = σ} = 1

N !
∀i ∈ J1;NK, xij = xτj(i)(tj, ω) + ϵij with ϵij ∼ N (0, σ2I2)

(2.13)
As we only focus on the uncertainty due to individual tracking, we parametrise
the problem by ω = κ

√
N/m. This new model does not have any structural

identification problem anymore. The observation model 2.13 implies the following
expression for the likelihood distribution.

∀x ∈ R2NM , px|ω(x | ω) =
1

(2πσ2)NM

M∏
j=1

(
1

N !

∑
τ∈SN

exp

(
− 1

2σ2

N∑
i=1

|xij − xτ(i)(tj, ω)|2
))

(2.14)
The posterior distribution is then the distribution having a density proportional
to p̃ω|x where p̃ω|x is defined by

p̃ω|x(ω | x) =
M∏
j=1

(
1

N !

∑
τ∈SN

exp

(
− 1

2σ2

N∑
i=1

|xij − xτ(i)(tj, ω)|2
))
× I{ωmin ≤ ω ≤ ωmax}

(2.15)
In the above expression, the prior on the parameter ω is chosen to be the uniform
distribution on the interval [ωmin;ωmax], with 0 < ωmin < ωmax. We represent in
figure 2.4 the posterior distribution in equation (2.15) in the case of a population
of 5 particles and for data generated with the parameter ω0 = 0.707. The choice
of a population with few particles is justified by the computational cost involved
in averaging over the set of permutations SN when N is higher than 10. We
can notice that the uncertainty due to the absence of individual tracking blurs
the knowledge of the pulsation ω. The region corresponding to the posterior’s
highest mode is wider in the undifferentiated case (ω | x has a larger variance)
than in the differentiated case. We can even see a second mode’s appearance in
the undifferentiated posterior graph, located around ω = 1.25, corresponding to a
faster motion of the particles. This last scenario emerges in the posterior because
of the low frequency of observations (10 observations over [0; 2π]), which does not
prevent to exclude this case.

2.5 Uncertainty on the initial condition
In the previous example, we have assumed an exact knowledge of the initial con-
figuration of the population. This assumption is unrealistic as there is no specific
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Figure 2.4: Comparison of the posterior densities in two cases: when the individu-
als are exactly tracked (red line) and when the individual trajectories are unknown
(blue line)

reason to believe that time t = 0 has such a singularity. What are the conse-
quences we can observe on the posterior distribution if we only assume a partial
knowledge of the initial conditions? Let x ∈ R2N(m+1) be our data set on Spring
Cloud system (equation 2.7), containing observations from the individual trajec-
tories (with distinguished individuals) and the observation of the initial position,
which is corrupted by the same observation error as in equation (2.10). The initial
velocities of the particles are not observed. The initial configuration of the popula-
tion is assumed to be generated from a known probability distribution µ0 ∈ P(R4)
such that (x0

i , v
0
i )1≤i≤N ∼ µ⊗N

0 . As an illustrative example, we can consider µ0 to
be a Gaussian distribution.

∀i ∈ J1;NK, x0
i ∼ N (µx,Σx), v0i ∼ N (0,Σv) (2.16)

We can write the observation model conditionally to the initial configuration
(x0

i , v
0
i )1≤i≤N ∼ µ⊗N

0

∀(i, j) ∈ J1;NK× J0;MK, xij = xi(tj, ω, x
0
1:N , v

0
1:N) + ϵij where ϵij ∼ N (0, σ2I2)

(2.17)
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and xi(tj, ω, x
0
1:N , v

0
1:N) is given by equation (2.7) and t0 = 0.

px|ω(x | ω) =
1

(2πσ2)N(M+1)

∫
R4N

exp

(
− 1

2σ2

N∑
i=1

M∑
j=0

|xij − xi(tj, ω, x
0
1:N , v

0
1:N)|2

)
× µ⊗N

0 (dx0
1:N , dv

0
1:N)

where µ⊗N
0 (dx0

1:N , dv
0
1:N) =

λ(dx0
1:N , dv

0
1:N)

(2π)2N(det(ΣxΣv))N/2

N∏
i=1

exp

(
−1

2
(x0

i − µx)
TΣ−1

x (x0
i − µx)

)
× exp

(
−1

2
(v0i )

TΣ−1
v v0i

)
(2.18)

The integral over R4N figuring in the expression (2.18) can be derived analytically
by using the formula given in the following lemma.

Lemma 2.2. Expectation of the exponential of a quadratic form with
respect to a normal distribution2

Let H ∈ Md(R) be a symmetric matrix positive semi-definite and y ∈ Rd. Let
N (m,Σ) be a normal distribution. Then

∫
Rd

exp

(
−1

2

(
xTHx− 2yTx

))
N (m,Σ)(dx)

=
exp

(
−1

2

(
mT(Hm− 2y)− (y −Hm)TΣ1/2(Id + Σ1/2HΣ1/2)−1Σ1/2(y −Hm)

))√
det(Id + Σ1/2HΣ1/2)

(2.19)

We can rewrite the integrand in (2.18) as an expectation with respect to some
normal distribution defined over R4N .

∫
R4N

exp

(
− 1

2σ2

N∑
i=1

M∑
j=0

|xij − xi(tj, ω, x
0
1:N , v

0
1:N)|2

)
µ⊗N
0 (dx0

1:N , dv
0
1:N)

=

∫
R4N

exp

(
− 1

2σ2

(
(X0

1:N)
TC(ω)X0

1:N − 2Y (ω, x)TX0
1:N + z(x)

))
N (mX ,ΣX)(dX

0
1:N)

(2.20)
The expressions of matrices C(ω),ΣX ∈ M4N(R), of the vectors Y (ω, x),mX ∈
R4N and of the scalar z(x) are given in the appendix, page 85. The direct applica-
tion of the formula of lemma 2.2 gives a closed-form expression for the likelihood

2The proof of lemma 2.2 can be found in the appendix, page 85.
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density for all x ∈ R2N(m+1

px|ω(x | ω) =
1

(2πσ2)N(m+1)

√
det

(
I4N +

ΣXC(ω)

σ2

)
× exp

(
− 1

2σ2

(
z(x) +mT

XC(ω)mX − 2Y (ω, x)TmX

− 1

σ2
(Y (ω, x)− C(ω)mX)

T
(
Σ−1

X +
C(ω)

σ2

)−1

(Y (ω, x)− C(ω)mX)

))
(2.21)

By applying the Bayes formula, we can obtain that the posterior distribution of
the pulsation ω, known up to a multiplicative factor.

pω|x(ω | x) ∝
pω(ω)√

det

(
I4N +

ΣXC(ω)

σ2

) exp

(
− 1

2σ2

(
mT

XC(ω)mX − 2Y (ω, x)TmX

− 1

σ2
(Y (ω, x)− C(ω)mX)

T
(
Σ−1

X +
C(ω)

σ2

)−1

(Y (ω, x)− C(ω)mX)

))
(2.22)

It is worth noting that the latent initial conditions have a Gaussian posterior
distribution conditionally to x and ω, thanks to the conjugacy property of the
normal distribution.

X0
1:N | x, ω ∼ N

[(
Σ−1

X +
C(ω)

σ2

)−1(
Σ−1

X mX +
Y (ω, x)

σ2

)
,

(
Σ−1

X +
C(ω)

σ2

)−1
]

(2.23)
For small observation standard deviation σ, a high weight is given to the obser-
vations, whereas for large σ, the prior mean mX has a higher weight. As individ-
uals are distinguished and labelled in the data set x, the posterior distribution of
X0

1:N | x, ω is not symmetric, i.e. a permutation of the components of vector X0
1:N

may not have the same distribution as the original vector.
We can notice on figure 2.5 that a partial knowledge of the initial condition

does not change the structure of the posterior distribution fundamentally. The
density remains unimodal, maxima are reached precisely at the same pulsation for
the cases with exact or partial knowledge, even when the standard deviation σ of
the observation is quite large. Of course, the variance of ω | x is larger when X0

1:N

is not known for sure. A third situation interesting for the variance of ω | x is
when the state of the whole population is known exactly at two different times.
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Figure 2.5: Comparison of the posterior densities for unknown and known initial
conditions (details on page 87).

By unicity of the trajectories, ω | x would then be a constant equal to ω0, and its
variance would be zero. In the specific case of Spring Cloud, determining p(ω | x) is
significantly simplified by the analytical integral over the latent variables (equation
2.20) and by the low dimensionality of the parameter space. In practice, however,
the expectation with respect to individual latent variables, such as heterogeneities,
does not have a closed-form expression.

2.6 Uncertainty on the population size
In the case of large populations, the exact number of individuals may not be known
for sure. This situation typically appears when studying plants in a large crop field.
In that case, we cannot have an exact knowledge of the number of individuals in
interaction with a given individual. In the model where N figures in the equation
of motion, we need to introduce it as a latent variable of the problem, with a
specific prior distribution representing the eventual prior knowledge on the range
of this variable. The prior distribution is absolutely continuous with respect to the
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counting measure
∑

n∈N δn and its density pN : N→ R+ is such that
+∞∑
n=0

pN(n) = 1.

Let us come back to the Spring Cloud example from subsection 2.3 and let us
assume that we have a data set x ∈ R2N0m, composed of N0 individual trajectories
observed at m observation times. We could have also considered a data set with
undifferentiated individuals, but let us focus on the uncertainty due to the pop-
ulation size only. Thus, as N0 distinct individuals have been observed, it seems
logical to assume that the support of the prior pN is included within JN0; +∞J, i.e.,
for all N ≤ N0, pN(N) = 0. Conditionally to N , the observed individuals evolve
in a population of size N , and we do not have any information on the remainder
N −N0 individuals. The observations are explained by the following hierarchical
model.

N ∼ pN prior on the population size
ω | N ∼ U([ωmin

√
N ;ωmax

√
N ]) prior on the parameter (the pulsation)

x0
N0+1:N ∼ µ⊗N−N0

0 initial condition of the unobserved individuals
∀i ∈ J1;N0K,∀j ∈ J1;MK, xij = xi(tj, ω, x

0
1:N , v

0
1:N) + ϵij observation error

with ϵij ∼ N (0, σ2I2)
(2.24)

In equation (2.24), the initial conditions of the first N0 individuals are known
exactly, i.e. x0

1:N0
and v01:N0

are known, and the remainder N −N0 individuals are
sampled from the initial distribution µ0. The joint distribution associated with
this situation is given by the density px,ω.

px,ω(x, ω) =
1

(2πσ2)N0m

+∞∑
N=N0+1

pN(N)pω|N(ω | N)

×
∫
R4(N−N0)

exp

(
− 1

2σ2

N0∑
i=1

M∑
j=1

|xij − xi(tj, ω, x
0
1:N , v

0
1:N)|2

)
µ⊗N−N0
0 (dx0

N0+1:N , dv
0
N0+1:N)

where pω|N(ω | N) =
I{ωmin ≤ ω/

√
N ≤ ωmax}

(ωmax − ωmin)
√
N

(2.25)
The expectation with respect to the initial conditions can be computed using the
formula of lemma 2.2. After application of the Bayes’ formula, we obtain that the
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posterior density of ω | x is proportional to the following expression.

pω|x(ω | x) ∝
+∞∑

N=N0+1

pN(N)pω|N(ω | N)√
det

(
I4(N−N0) +

Σ
N0,N
X CN

N0
(ω)

σ2

)
× exp

(
− 1

2σ2

(
zN(x, ω) + (mN0,N

X )TCN
N0
(ω)mN0,N

X − 2YN(x, ω)
TmN0,N

X

− 1

σ2
(YN(x, ω)− CN

N0
(ω)mN0,N

X )T
(
(ΣN0,N

X )−1 +
CN

N0
(ω)

σ2

)−1

(YN(x, ω)− CN
N0
(ω)mN0,N

X )

))

∝
+∞∑

N=N0+1

pN(N)p̃ω|N,x(ω | N, x)

(2.26)
The expressions of the scalar zN(x, ω), the vectors YN(x, ω),m

N0,N
X ∈ R4(N−N0)

and the matrices CN
N0
(ω),ΣN0,N

X ∈ M4(N−N0)(R) are given page 87. The graph of
the unnormalised posterior is given in figure 2.6. We can notice that the density
is not smooth, as it is the sum of piecewise continuous functions. The density is
unimodal and the mode of the density is close to the pulsation having generated
the data. The density may become discontinuous for small length of the prior
interval [ωmin;ωmax].

The computation of the posterior distribution p̃ω|x is simplified by the fact that
the latent variables have a Gaussian conditional distribution with respect to the
variables ω,N, x, which has an expression similar to the Gaussian distribution in
equation (2.23).

E[X0
N0+1:N |N,ω, x] =

(
(ΣN0,N

X )−1 +
CN

N0
(ω)

σ2

)−1(
(ΣN0,N

X )−1mN0,N
X +

YN(x, ω)

σ2

)
Cov

(
X0

N0+1:N |N,ω, x
)
=

(
(ΣN0,N

X )−1 +
CN

N0
(ω)

σ2

)−1

(2.27)
We can notice in the construction of the matrix CN

N0
(ω) on page 87 that the

conditional distribution of the latent variables X0
N0+1:N |N,ω, x is symmetrical, i.e.,

for any permutation σ ∈ S(JN0+1;NK), the vectors XN0+1:N and X0
σ(N0+1:N) have

the same distribution. This symmetry of the system is here preserved at the level
of the latent variables, as the unobserved individuals are not assigned to specific
labels.

We may also use the expression in equation (2.26) to derive the distribution
of N |x, to see whether the observations can help us guess the total number of
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Figure 2.6: Unnormalised posterior distribution p̃ω|x when the size of the popula-
tion is unknown (details on page 89). The true value of the parameter for the data
generation is ω = 1.

individuals in the population.

∀N ≥ N0 + 1, pN |x(N | x) ∝ pN(N)

∫ +∞

0

p̃ω|N,x(ω|N, x)dω (2.28)

The distribution of the variable N |x is represented in the figure 2.7. The mode of
this distribution is reached near the true size of the population.

2.7 Uncertainty due to the inexact simulation of
the system

Let us consider a more general setting for the Spring Cloud system, allowing the
particles to have respective values for parameters (κ,m). In this heterogeneous
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Figure 2.7: Density p(N |x) (with respect to the counting measure of the popula-
tion size conditionally to the observations (details on page 89). The size of the
population used for data generation is N = 25.

configuration, the expression of the trajectories

∀i ∈ J1;NK, xi(t) =

(
x0
i −

1

N

N∑
j=1

x0
j

)
cos(ωN t) +

1

ωN

(
v0i −

1

N

N∑
j=1

v0j

)
sin(ωN t)+

1

N

N∑
j=1

x0
j +

t

N

N∑
j=1

v0j with ωN = κ

√
N

m

(2.29)
is no longer valid. The equation of the motion of the particle i in a population of
size N is monitored by the system of equation

d2xi

dt2
(t) = − κi

mi

(
N∑
j=1

κj

)
xi(t) +

κi

mi

N∑
j=1

κjxj(t) (2.30)

In this section, we consider the situation where we want to infer the values of the
parameters κ1 associated with the particle 1, provided that we have observations
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of the whole population at different times, and an exact knowledge of the initial
condition of the system, and the parameters κ2, ..., κN and m1, ...,mN . We are in
fact in a situation quite similar to the one described in section 2.3, except that
the population is heterogeneous. In this section, we assume that we are not able
to solve exactly the system (1.39), which is not true, since the system is linear.
We are only able to simulate the dynamics using a consistent numerical method.
This rather unrealistic situation is here to illustrate a methodology to model the
uncertainty introduced by the discrete integration, which is unavoidable when the
system is nonlinear and does not have an analytical solution. Let us first set the
notations concerning the true dynamics of the Spring Cloud system. The matrix
associated with the differential system (1.38) is denoted by Cκ,m

N ∈ M4N(R), and
can be expressed with the parameters κ1:N and m1:N .

dX1:N(t)

dt
= Cκ,m

N X1:N(t)

where X1:N = (x1
1, ..., x

1
N , x

2
1, ..., x

2
N , v

1
1, ..., v

1
N , v

2
1, ..., v

2
N) ∈ R4N

(2.31)

Cκ,m
N =


0 0 IN 0
0 0 0 IN

Bκ,m
N 0 0 0
0 Bκ,m

N 0 0

 ∈M4N(R)

Bκ,m
N =


κ1

m1...
κN

mN

(κ1 ... κN

)
−

(
N∑
i=1

κi

)
κ1

m1

0 0

0
. . . 0

0 0
κN

mN

 ∈MN(R)

(2.32)

The exact solution of the system is obtained by computing the exponential of the
matrix Cκ,m

N .
X1:N(t) = exp(tCκ,m

N )X0
1:N (2.33)

The exponential of Cκ,m
N does not have a closed-form expression for N ≥ 3. Re-

alisations of exact trajectories associated with a heterogeneous population of 10
Spring Cloud particles is represented in figure 2.8. In the homogeneous case, the
barycentre xκ has a uniform rectilinear motion (see equation 2.7), whereas in the
heterogeneous case, the motion has a more complex structure. Recall that the
barycentre xκ constitutes the summary of the population effect on each individ-
ual, thanks to equation (1.39). At the level of the particles, the trajectories are no
longer ellipses.

If the observation of the system is made with a Gaussian error, as in (2.10) the
posterior distribution of parameter κ1 has an expression quite similar to equation
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Figure 2.8: Exact trajectories of Spring Cloud system for a population of size N =
10 individuals (detailed configuration of the graph on page 90). The trajectory of

the attractivity barycentre xκ =

∑N
j=1 κjxj∑N
j=1 κj

is represented in red.

of the homogeneous case.

pκ1|x(κ1 | x) ∝ pκ1(κ1) exp

(
− 1

2σ2

M∑
j=1

|xj −Ox exp(tjC
κ,m
N (κ1))X

0
1:N |2

)

where Ox =

(
IN 0 0 0
0 IN 0 0

)
∈M2N,4N(R)

and xj gathers the observed positions at time tj

(2.34)

2.7.1 Deterministic integrator
Let us assume that, in an analogy with the nonlinear case, we are not able to ap-
ply formula (2.33). Instead, we simulate the system using the numerical method
described in example 1.7, consisting in approximating the trajectory of the popula-
tion empirical measure by a piecewise constant function of time. The observation
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period [0;T ] (with T = tm) is subdivided into intervals [τ0; τ1], [τ1; τ2], ..., [τM−1; τM ]
with τ0 = 0 and τM = T . The numerical method returns a dense estimate X̂1:N(t)
of the true solution X1:N(t), given by an inductive equation.

∀i ∈ J1;NK, x̂0
i = x0

i , v̂0i = v0i

∀n ∈ J0;M − 1K, x̂n
κ =

∑N
j=1 κjx̂

n
j∑N

j=1 κj

∀t ∈ [0;T ], x̂n
i (t) = x̂n

κ(1− cos(ωi(t− τn))) + x̂n
i cos(ωi(t− τn))

+
v̂ni
ωi

sin(ωi(t− τn))

where ωi =

√
κi

∑N
j=1 κj

mi

v̂ni (t) =
dx̂n

i

dt
(t)

x̂n+1
i = x̂n

i (τn+1), v̂n+1
i = v̂ni (τn+1)

X̂1:N : t ∈ [0;T ] 7→
M−1∑
n=0

I{τn < t < τn+1}
(
x̂n
1:N(t)

v̂n1:N(t)

)
+

M∑
n=0

I{t = τn}
(
x̂n
1:N

v̂n1:N

)
(2.35)

The observation model associated with the numerical method replaces the actual
state of the population by its numerical approximation. Such type of observation
model is very often used when doing inference on a nonlinear system of differential
equations.

∀i ∈ J1;NK,∀j ∈ J1;MK, xij = x̂i(tj, κ1) + ϵij with ϵij ∼ N (0, σ2I2) (2.36)

The problem underlined by Conrad et al. (2015)7 is that such observation model
completely neglects the error introduced by the numerical method. This approxi-
mation may be valid if the step of the subdivision is sufficiently small, otherwise it
may introduce a systemic bias in the estimation of the parameters. In our case, we
can quantify the accumulation of the error over time by estimating the truncation
error of the numerical scheme.
Proposition 2.1. Truncation error of the numerical scheme3

Let x0
1:N , v

0
1:N , κ1:N ,m1:N be an initial configuration of the system (1.38). Let X̂1:N

be the function defined by
X̂1:N(t) =

(
x̂0
1:N(t)

v̂01:N(t)

)
(2.37)

3The proof of proposition 2.1 can be found on page 91
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Figure 2.9: Comparison of the trajectories obtained by numerical integration with
a large time step h = 2π/3 and small time step h = 0.01 for a given particle. The
exact trajectory of the particle is represented in green. Detailed configuration of
the graph on page 90.

where x̂0
1:N , v̂

0
1:N are defined in equation (2.35). Let X1:N be the solution of the

system (1.38). Then for any norm |.| over R4N , there exists a constant K > 0
such that

∀t ∈ [0;T ], |X1:N(t)− X̂1:N(t)| ≤ Kt2 (2.38)

Proposition 2.1 shows that the order of the numerical scheme (2.35) is 1. To
prove proposition (2.1), the conservation of the energy of the system is helpful to
obtain bounds on the motion of the particles (see lemmata 2.3 and 2.4). Simi-
larly as in the case of the Schneider system (see proposition 1.4), we can improve
the quality of the approximation by considering piecewise linear trajectory of the
barycentre, leading to a second order scheme.

∀t ∈ [τn; τn+1), x̂n
κ(t) =

1∑N
j=1 κj

N∑
j=1

κj

(
x̂n
j + v̂nj (t− τn)

)
(2.39)

To obtain an order 3, we need to compute the acceleration of the barycentre, which
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is given by

aκ(t) =
N∑
j=1

κ2
j

mj

(xκ(t)− xj(t)) (2.40)

For the sake of simplicity, we consider a piecewise constant barycentre trajectory
in what follows.

The trajectories obtained by numerical integration, for different time steps
are displayed on figure 2.9. We can notice that the numerical integrator fails
to reproduce the exact trajectories when the time step h is too large, but the
simulated trajectories remain stable. With an explicit Euler scheme, one could
expect a divergence to occur with such a level of discretisation. The numerically
simulated particles, even with rough h, seem to follow continuously differentiable
paths, although the continuity of velocities is not imposed at τn in the definition
of the scheme.

The accumulation of errors due to numerical integration can distort the Bayesian
inference by creating a discrepancy between the exact a posteriori density and the
density approximated by the numerical method. Such discrepancy appears on fig-
ure 2.10. In the case of a large time step, the observation model (2.36) is not
relevant for observation times far from the origin t = 0, as the numerical error can
significantly exceed the standard error σ. Therefore, the approximated posterior
density is concentrated in a region disjointed from the relevant region, i.e., the
region with high probability for the exact posterior density. In the case of a small
timestep, the true density is well approximated, but such a level of precision can be
challenging to achieve, for example, in situations where the population size is huge.
In practice, Bayesian inference needs a significant amount of model simulations.
To obtain a sort of trade-off between time-consuming accuracy and efficient but
rough simulations of the system, we introduce in the next subsection a model for
the numerical error, enabling to assign time-increasing variances to observations.

2.7.2 Stochastic integrator
We give here some general definitions related to Gaussian processes, that are used
in our case to model the uncertainty introduced by the deterministic integrator.
Definition 2.4. positive definite function
Let Σ : X 2 → Md(R) a function taking values in the space of matrices. The
function is said to be positive definite if

∀n ∈ N∗,∀x1, ..., xn ∈ X ,∀y1, ..., yn ∈ Rd,
n∑

i=1

n∑
j=1

yT
i Σ(xi, xj)yj ≥ 0 (2.41)
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Figure 2.10: Comparison between the exact posterior density and the approx-
imated densities obtained with the numerical method (2.35) for different time
steps. Detailed configuration of the graph on pages 90 and 93.

Definition 2.5. continuous Gaussian process
Let X : (Ω,F) → (C(K,Rd),B(C(K,Rd)) a random variable taking values in the
space of continuous functions defined over a compact metric space K. The space
C(K,Rd) is endowed with the uniform metric. Let mX ∈ C(K,Rd) and ΣX ∈
C(K2,Md(R)) a positive definite function. Then X is said to be a Gaussian
process of mean function mX and of covariance function ΣX if for all n ∈ N∗ and
for all x1, ..., xn ∈ X , the random vector ω ∈ Ω 7→ (X(ω, x1), ..., X(ω, xn)) ∈ Rdn

is distributed according to a Gaussian distribution N (mX(x1:N),ΣX(x1:N)), where
mX(x1:N) = (mX(x1), ...,mX(xn)) ∈ Rdn and ΣX(x1:n) = (ΣX(xi, xj))1≤i,j≤n ∈
Mdn(R).

A Gaussian process defines a distribution over mappings from a set Y to a
vector space Rd. In this section, we consider time-indexed Gaussian processes to
model the approximation error of the integrator, following a methodology described
in Conrad et al. (2015).7 We consider the following process, obtained by adding a
collection of Gaussian process to the deterministic integrator, defined in equation

76



Uncertainties in symmetric population systems

(2.35). The approximation method returns a stochastic process X̃1:N defined over
[0;T ].

∀i ∈ J1;NK, x̃0
i = x0

i , ṽ0i = v0i

∀n ∈ J0;M − 1K, x̃n
κ =

∑N
j=1 κjx̃

n
j∑N

j=1 κj

∀t ∈ [0;T ], x̃n
i (t) = x̃n

κ(1− cos(ωi(t− τn))) + x̃n
i cos(ωi(t− τn))

+
ṽni
ωi

sin(ωi(t− τn)) + ξx,ni (t− τn)

where ξx,ni : Ω 7→ C([0;T ],R2) is a Gaussian process.

ṽni (t) =
dx̃n

i

dt
(t)

x̃n+1
i = x̃n

i (τn+1), ṽn+1
i = ṽni (τn+1)

(2.42)

X̃1:N : t ∈ [0;T ] 7→
M−1∑
n=0

I{τn < t < τn+1}
(
x̃n
1:N(t)

ṽn1:N(t)

)
+

M∑
n=0

I{t = τn}
(
x̃n
1:N

ṽn1:N

)
(2.43)

The collection of Gaussian processes (ξx,ni )0≤n≤M−1
1≤i≤N are chosen to be independent

from one individual to another, and from one subdivision to another. The processes
must satisfy a series of conditions in order to be consistent with the analysis of
the deterministic integrator.

1. The variance of the processes must increase with time. At the initial time,
since the initial condition is known, we must have ξx,0i (0) = 0 for all i.
However, we expect the variance of the process X̃1:N(t) to increase over the
first subdivision [0; τ1] with the same order of magnitude as t2.

2. The processes ξx,ni must be smooth enough, so that their derivatives with
respect to time are defined in the classical sense. These derivatives appear
when computing the velocities ṽni .

3. The resulting stochastic integrator must be consistent in some sense. The
distribution of the process X̃1:N must concentrate on the true solution when
the time step of the subdivision gets close to zero.

The regularity of a Gaussian process is monitored by the smoothness of its mean
and covariance. As we want the integrator to be consistent, and as the determinis-
tic integrator is known to be consistent, we choose a null mean function for all the
processes. Concerning the existence of the derivative of ξx, we use the following
result.
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Theorem 2.2. Derivative of a Gaussian process (from Le Gall, 2013,16

exercise 1.1)
Let (X(t))t∈[a;b] be a real-indexed Gaussian process of zero mean function and of
covariance function KX : [a; b]2 → Md(R) being twice continuously differentiable
over [a; b]2. Then for any t ∈ [a; b], the limit X ′(t) = lim

δ→0

X(t+ δ)−X(t)

δ
exists

in L2, i.e.,

E
∣∣∣∣X(t+ s)−X(t)

s
− X(t+ u)−X(t)

u

∣∣∣∣2 −−−→s,u→0
0 (2.44)

and the process (X(t), X ′(t)) is Gaussian, of zero mean function and of covariance
function KX,X′ : [a; b]2 →∈M2d(R) defined by

∀(t1, t2) ∈ [a; b]2, KX,X′(t1, t2) =

 KX(t1, t2)
∂KX

∂t2
(t1, t2)

∂KX

∂t1
(t1, t2)

∂2KX

∂t1∂t2
(t1, t2)

 (2.45)

The expression of the covariance function in (2.45) is natural if you take for
granted the existence of the derivative of the Gaussian process.

Cov

(
X(t1),

X(t2 + δ)−X(t2)

δ

)
=

KX(t1, t2 + δ)−KX(t1, t2)

δ
(2.46)

In the case of the Spring Cloud system, we choose a Gaussian process ξx having
a covariance function of the form

∀t1, t2 ∈ R+, K
h
ξ (t1, t2) = σξ(t1t2)

β exp

(
−(t1 − t2)

2

2h2

)
I2 ∈M2(R) (2.47)

where σξ, β, h > 0. The condition (2.41) reflects the fact that the variance of the

random variable
n∑

i=1

yT
i ξ

x(ti) must be non-negative. The positive definiteness of

Kh
ξ is a consequence of the positive definiteness of the radial basis kernel and of

the positive definiteness of the kernel (t1, t2) 7→ (t1t2)
β. Notice that the covari-

ance function is not stationary, and that Kh
ξ (0, t) = 0, ensuring the absence of

uncertainty at t = 0. The meta-parameters σξ, β, h are chosen in such a way that
the process ξx is a plausible representation of the error evolution. h is the typical
time scale of the correlation, which is chosen to be equal to the time step of the
subdivivision h = max{τn+1−τn, n ∈ J0;M−1K}. There is no correlation between
the two components of the process ξx, as there are no coupling in the dynamics of
the components of vector x, and the covariance matrix is diagonal. The exponent
β monitors the rate of increase of the error. The following theorem, establishing
the consistency of the stochastic integrator leads to a specific choice for the value
of β.
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Figure 2.11: Comparison of trajectories samples for two different amplitudes of
variance σξ, along with the associated exact trajectory of the system (detailed
configuration of the graph on page 94)

Theorem 2.3. (adapted from Conrad et al., 2015,7 theorem 2.2)
Let X1:N : [0;T ]→ R4N be the solution of the system (1.50) and let X̃1:N : [0;T ]→
R4N be the output of the stochastic integrator (2.35), associated with the Gaussian
process of covariance function Kh

ξ . Then for any norm over R4N , there exist
constants ρ1, ρ2 > 0 such that

sup
0≤n≤M

E
∣∣∣X1:N(τn)− X̃1:N(τn)

∣∣∣2 ≤ ρ1h
min{2,2β−3}

sup
0≤t≤T

E
∣∣∣X1:N(t)− X̃1:N(t)

∣∣∣ ≤ ρ2h
min{1,(2β−3)/2}

(2.48)

It follows that the stochastic trajectories converge to the true trajectories in
L1 as the subdivision gets thinner. If β = 5/2, then the rate of convergence is
equal to the one obtained by the deterministic integration (2.35). More generally,
if the numerical method is of order p, then the choice of the exponent should be
β = (2p+ 3)/2.

So β exponent monitors the local error, at the neighbourhood of the times in
the subdivision. As for σξ, it monitors the error of the scheme from a more global
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perspective. We can see on figure 2.11 the graphical influence of the variance am-
plitude σξ. This graph shows the necessity to calibrate parameter σξ if we want
the process ξx to be a relevant model for the numerical error. A value of σξ too
small leads to a biased support of the stochastic solutions that remain concentrated
around the approximated deterministic trajectories. On the contrary, a value of
σξ too large may destructure the dynamics, and result in simulations that are not
sufficiently informative for parameter inference. A methodology for the calibration
of σξ is proposed in Conrad et al. (2015).7 It consists first in estimating the nu-
merical errors at the level of the points in the subdivision. The estimation of these
numerical errors is made by comparing a deterministic trajectory with a reference
solution, obtained with a thinner timestep, computed once. The parameter σξ is
then chosen so that the empirical variance of the stochastic solutions matches with
these error estimates. The metric chosen for this matching is the Bhattacharyya
distance.

Let t ∈ [0;T ] 7→ X̂h
1:N(t) be the deterministic trajectory for some time step h

and let t ∈ [0;T ] 7→ X̂
href

1:N (t) be a reference trajectory obtained with a thinner
time step href < h. The estimation of the error at the level of the subdivision is
then

∀n ∈ J1;MK, e2n =
1

N
|X̂h

1:N(τn)− X̂
href

1:N (τn)|2 (2.49)

We consider a normal distribution that is supposed to represent a kind of ideal
error distribution, that we would like to reproduce using the process ξ. This
normal distribution is centered at the the current deterministic trajectory and has
a diagonal covariance containing the error at the subdivision points.

νt =
M⊗
n=1

N (X̂h
1:N(τn), e

2
nI4N) (2.50)

We then approximate the distribution of the stochastic integrator by the following
Gaussian distribution, whose characteristics are computed using a sample of the
stochastic solutions (X̃

(k)
1:N(t))1≤k≤Nmc .

µ̃Nmc(σξ) =
M⊗
n=1

N (m̃Nmc(τn, σξ), σ̃Nmc(τn, σξ)
2I4N)

where m̃Nmc(τn, σξ) =
1

Nmc

Nmc∑
k=1

X̃
(k)
1:N(τn, σξ)

σ̃Nmc(τn, σξ)
2 =

1

NNmc

Nmc∑
k=1

|X̃(k)
1:N(τn, σξ)− m̃Nmc(τn, σξ)|2

(2.51)
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Figure 2.12: Variation of the Bhattacharyya distance according to the amplitude
of variance σξ (equation 2.53). The configuration used is detailed on page 94.

It is worth noting that the distribution of the stochastic integrator is indeed Gaus-
sian, as we are dealing with a linear system. The true characteristics of this distri-
bution are derived in the appendix, on page 94. We consider this approximation
here to simplify the calibration of σξ, and the true distribution of the stochastic
integrator is used later on for the inference.

The amplitude of variance σξ chosen for the process ξ is the one minimising
the Bhattacharyya distance between distribution (2.50) and (2.51).

σ∗
ξ = argmin

σξ>0
dB(νt, µ̃Nmc(σξ)) (2.52)

dB(νt, µ̃Nmc(σξ)) =
1

M

M∑
n=1

(
|X̂1:N(τn)− m̃Nmc(τn, σξ)|2

4N(e2n + σ̃Nmc(τn, σξ)2)
+

1

2
log

(
e2n + σ̃Nmc(τn, σξ)

2

2enσ̃Nmc(τn, σξ)

))
(2.53)

We can see on figure 2.12 that the minimal distance is reached for σξ around
2.36× 10−3, a value which is quite stable even when changing the sample and the
initial configuration of the population.
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After calibration of σξ, we can consider that the stochastic integrator takes
well into account the numerical error introduced by the scheme. The observation
model associated with the stochastic integrator is obtained by replacing the true
position of the particles by the stochastic trajectories.

xij = x̃i(tj, κ1) + ϵij with ϵij ∼ N (0, σ2I2) (2.54)

In comparison with the observation model (2.36), the accumulation of the error of
the numerical scheme is taken into account in the variance of the Gaussian process
ξx,n. The likelihood distribution of the data is expressed as an expectation with
respect to the distribution µ̃x̃[κ1] of (x̃i(tj, κ1))

1≤i≤N
1≤j≤M .

px|κ1(x | κ1) =
1

(2πσ2)Nm

∫
R2Nm

exp

(
− 1

2σ2

N∑
i=1

M∑
j=1

|xij − x̃ij|2
)
µx̃[κ1](dx̃)

(2.55)
Due to the linearity of the system (1.38), the distribution µx̃[κ1] is Gaussian, having
the deterministic trajectory x̂N,m(κ1) = (x̂i(tj, κ1))

1≤i≤N
1≤j≤M as mean and Σ̃N,m(κ1)

as covariance matrix. The components of the matrix are derived in the appendix
on page 94.

By applying formula (2.2) to the integral in (2.55) and Bayes’ formula, we can
obtain an expression of the posterior distribution of the parameter κ1.

p̃κ1|x(κ1 | x)

∝
pκ1(κ1) exp

(
−1

2
(x̂N,m(κ1)− x)T(σ2I2Nm + Σ̃(κ1))

−1(x̂N,m(κ1)− x)

)
√

det(σ2I2Nm + Σ̃N,m(κ1))

(2.56)

As expected, the covariance matrices associated with the two sources of error
add up because of their mutual independence. We can see on figure 2.13 that the
posterior density p̃κ1|x achieves a good trade-off between the exact density, which is
out of reach in practice, and the density associated to the deterministic integrator,
that can be biased by a too rough time-discretisation.
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Figure 2.13: Comparison of the posterior densities associated with the exact tra-
jectories, the deterministic and stochastic integrators.

2.8 Conclusion
Chapter 2 presents models of the different sources of uncertainty appearing on the
inference problems related to symmetric and heterogeneous populations. We have
illustrated these models on the Spring Cloud system, but it is clear that they are
formulated identically for any other symmetric systems. In non-linear systems,
posterior distributions are more challenging to access. Therefore, the central per-
spective of this chapter is to apply the research on Monte-Carlo algorithms, and
more generally on numerical Bayesian inference, to develop a method adapted to
the approximation of the posterior distribution. Within these numerical inference
methods, the principal limiting factor lies in the ease of simulating the system, or
at least a good approximation of it. Therefore, this factor depends on the consis-
tency results of the numerical method mentioned in chapter 1, particularly in the
choice of the time step, which must be selected optimally to guarantee the quality
of the approximation and the computational efficiency. Besides, the complexity of
some sources of uncertainty, especially the uncertainty on the size N of the popula-
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tion, opens up to inference problems that are particularly difficult in the non-linear
case, especially when the prior support of the variable N is infinite. This prob-
lem is treated in the literature by methods such as reversible-jump Markov Chain
Monte-Carlo (Green, 199512), and it still has many unresolved questions. It seems
a too high price to pay, mainly because the size N is only a secondary importance
variable. Chapter 3, therefore, aims to simplify these inference problems.
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2.9 Appendix of chapter 2
2.9.1 Uncertainty on the initial condition
proof of lemma 2.2
Proof.

E =

∫
Rd

exp

(
−1

2

(
xTHx− 2yTx

))
N (m,Σ)(dx)

=
1

(2π)d/2

∫
Rd

exp

[
−1

2

(
(m+ Σ1/2u)TH(m+ Σ1/2u)− 2yT(m+ Σ1/2u)

)]
× exp

(
−1

2
uTu

)
λ(du)

=
1

(2π)d/2

∫
Rd

exp

(
−1

2

(
uT(Id + Σ1/2HΣ1/2)u− 2(y −Hm)TΣ1/2u

+mTHm− 2yTm
))

λ(du)

(2.57)

Let us introduce the vector m̃ ∈ Rd defined by

m̃ =
(
Id + Σ1/2HΣ1/2

)−1
Σ1/2(y −Hm) (2.58)

Note that the inverse of the matrix Id +Σ1/2HΣ1/2is well defined since the matrix
Σ1/2HΣ1/2 is positive semi-definite, so -1 cannot be an eigenvalue of the matrix.
Then using the fact that∫

Rd

exp

(
−1

2
(u− m̃)T(Id + Σ1/2HΣ1/2)(u− m̃)

)
λ(du) =

(2π)d/2√
det (Id + Σ1/2HΣ1/2)

(2.59)
we obtain that

E =
exp

(
−1

2

(
mTHm− 2yTm− m̃T(Id + Σ1/2HΣ1/2)m̃

))√
det (Id + Σ1/2HΣ1/2)

(2.60)

which leads to the result.

Expression of the terms in equation (2.20) Let us first define the structure
of the vector X0

1:N ∈ R4N containing all the initial conditions. For any initial con-
ditions (x0

i , v
0
i ), the components of the two vectors are denoted by x0

i = (x0,1
i , x0,2

i )
and v0i = (v0,1i , v0,2i ).

X0
1:N = (x0,1

1 , ..., x0,1
N , x0,2

1 , ..., x0,2
N , v0,11 , ..., v0,1N , v0,21 , ..., v0,2N ) (2.61)
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Then we express the trajectories of the system as a linear function of the initial
conditions.

∀(i, j) ∈ J1;NK× J0;MK, xi(tj, ω, x
0
1:N , v

0
1:N) =

N∑
k=1

akij(ω)x
0
k +

N∑
k=1

bkij(ω)v
0
k

where ∀k ∈ J1;NK, akij(ω) =

(
I{k = i} − 1

N

)
cos(ωtj) +

1

N

bkij(ω) =

(
I{k = i} − 1

N

)
sin(ωtj)

ω
+

tj
N

(2.62)
These can be put into a matrix form.

xi(tj, ω, x
0
1:N , v

0
1:N) = Cij(ω)X

0
1:N

where Cij(ω) =
(
Aij(ω) Bij(ω)

)
∈M2,4N(R)

Aij(ω) =

(
a1ij(ω) ... aNij (ω) 0 ... 0

0 ... 0 a1ij(ω) ... aNij (ω)

)
∈M2,2N(R)

Bij(ω) =

(
b1ij(ω) ... bNij (ω) 0 ... 0
0 ... 0 b1ij(ω) ... bNij (ω)

)
∈M2,2N(R)

(2.63)

The expressions of the matrix C(ω), of vector Y (ω, x) and of the scalar z(x) are
then given by

C(ω) =
N∑
i=1

M∑
j=0

Cij(ω)
TCij(ω)

Y (ω, x) =
N∑
i=1

M∑
j=0

Cij(ω)
Txij

z(x) =
N∑
i=1

M∑
j=0

xT
ijxij

(2.64)

We derive an expression of the mean and the covariance of the Gaussian variable
X0

1:N . Let us introduce the components of the mean position µx = (µ1
x, µ

2
x) and

the matrices Oi
x, O

i
v ∈M2,4N(R) such that for all i ∈ J1;NK we have Oi

xX
0
1:N = x0

i

and Oi
vX

0
1:N = v0i .

mX =


µ1
x1N

µ2
x1N

µ1
v1N

µ2
v1N

 ∈ R4N where 1N = (1, ..., 1) ∈ RN

ΣX =

(
N∑
i=1

(Oi
x)

TΣ−1
x Oi

x + (Oi
v)

TΣ−1
v Oi

v

)−1

(2.65)
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Configuration of the graph 2.5 : The observations, associated with the case
where initial conditions are partially observed, are generated with the following
configuration.

mean initial position and speed: µx, µv 0
covariance of µ0: Σx,Σv I2

random number generator
(initial condition and observation noise)

MersenneTwister(123)
Julia package Random.jl

observation timeline (tj)0≤j≤M

(
2jπ
5

)
0≤j≤4

true value for pulsation: ω0 1.
prior parameters: (ωmin, ωmax) (0.5,1.5)

population size N 10
observation standard deviation: σ 1.

Table 2.1: Configuration of the Spring Cloud system used for the generation of
the graph 2.5

The curve of label unknown initial condition is obtained as follows:

1. we take the logarithm of the expression of the unormalised posterior in equa-
tion (2.22). We denote this function of ω by ℓ(ω | x).

2. We consider the following integral

ν =

∫ ωmax

ωmin

exp(ℓ(ω | x)− ℓ(ω0 | x))dω (2.66)

3. We compute the integral numerically using the Gauss-Konrod quadrature
formula implemented in the Julia package QaudGK.jl, with a relative toler-
ance of 10−8.

4. The estimation of the posterior density in equation (2.22) is then ω ∈

[ωmin;ωmax] 7→
exp(ℓ(ω | x)− ℓ(ω0 | x))

ν

For the curve with label known initial conditions, we use the same process to
represented the curve with label differentiated in figure 2.4.

2.9.2 Uncertainty on the population size
Expressions of the terms in the likelihood (equation 2.26) For all N ≥
N0, the latent variables are denoted by X0

N0+1:N . The initial conditions for the N0
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observed particles are gathered in a constant vector X0
1:N0

. Both vectors have the
same structure as in equation (2.61). The individual trajectories can be expressed
as an affine function of the latent variables.

∀(i, j) ∈ J1;NK× J1;MK, xN
i (tj, X

0
1:N) = CN0,N

ij (ω)X0
1:N0

+ CN0,N
j (ω)X0

N0+1:N

(2.67)
where CN0,N

ij (ω) = (AN0,N
ij (ω) BN0,N

ij (ω)) ∈M2,4N0(R) and
CN0,N

j (ω) = (AN0,N
j (ω) BN0,N

j (ω)) ∈ M2,4(N−N0)(R). The coefficients of the A,B
matrices have the same expressions as in equation (2.62).

∀k ∈ J1;N0K, ak,Nij (ω) =

(
I{k = i} − 1

N

)
cos(ωtj) +

1

N

aNj (ω) =
1

N
(1− cos(ωtj))

bk,Nij (ω) =

(
I{k = i} − 1

N

)
sin(ωtj)

ω
+

tj
N

bNj (ω) =
1

N

(
tj −

sin(ωtj)

ω

)
AN0,N

ij (ω) =

(
a1,Nij (ω) ... aN0,N

ij (ω) 0 ... 0

0 ... 0 a1,Nij (ω) ... aN0,N
ij (ω)

)
∈M2,2N0(R)

AN0,N
j (ω) = aNj (ω)

(
1

T
N−N0

0
0 1

T
N−N0

)
∈M2,2(N−N0)(R)

BN0,N
ij (ω) =

(
b1,Nij (ω) ... bN0,N

ij (ω) 0 ... 0

0 ... 0 b1,Nij (ω) ... bN0,N
ij (ω)

)
∈M2,2N0(R)

BN0,N
j (ω) = bNj (ω)

(
1

T
N−N0

0
0 1

T
N−N0

)
∈M2,2(N−N0)(R)

(2.68)
The expressions of the terms in the likelihood (2.26) are then

zN(x, ω) =

N0∑
i=1

M∑
j=1

|xij − CN0,N
ij (ω)X0

1:N0
|2

CN
N0
(ω) = N0

M∑
j=1

CN0,N
j (ω)TCN0,N

j (ω)

YN(x, ω) =
M∑
j=1

CN0,N
j (ω)T

N0∑
i=1

(
xij − CN0,N

ij (ω)X0
1:N0

)
(2.69)
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mN0,N
X =


µ1
x1N−N0

µ2
x1N−N0

µ1
v1N−N0

µ2
v1N−N0

 ∈ R4(N−N0)

ΣN0,N
X =

(
N−N0∑
i=1

(Oi,N−N0
x )TΣ−1

x Oi,N−N0
x + (Oi,N−N0

v )TΣ−1
v Oi,N−N0

v

)−1

(2.70)

where the matrices Oi,N−N0
x , Oi,N−N0

v ∈ M2,4(N−N0)(R) are such that for all i ∈J1;N −N0K, Oi
xX

0
N0+1:N = x0

N0+i and Oi
vX

0
N0+1:N = v0N0+i.

Configuration for the figures 2.6 and 2.7 The observations, associated with
the case where the population size is uncertain, are generated with the following
configuration.

means of µ0 µx, µv 0
covariances of µ0: Σx,Σv I2
random number generator

(initial condition and observation noise)
MersenneTwister(123)

(Julia package Random.jl)

observation timeline
(
2jπ

10

)
1≤j≤10

true size of the population: N 25
number of observed particles N0 10

prior parameters of pN : (Nmin, Nmax) (11,50)
true pulsation ω 1

prior parameters of pω|N : (ωmin, ωmax) (1/10,3/10)
observations error σ 1

The prior pN on the population size is chosen with a finite support JNmin;NmaxK
with Nmin ≥ N0 + 1. In our case, we have chosen a uniform distribution over the
discrete interval.

∀N ∈ JNmin;NmaxK, pN(N) =
1

Nmax −Nmin + 1
(2.71)

The unnormalised posterior density p̃ω|x, represented in graph 2.6, is computed as
follows:

1. for any ω ∈ [ωmin

√
Nmin;ωmax

√
Nmax], we compute the vector containing the

logarithms of the quantities p̃ω|N,x(ω|N, x) for all N ∈ JNmin;NmaxK.
ℓNmin:Nmax(ω) =

(
log(p̃ω|N,x(ω|N, x))

)
Nmin≤N≤Nmax

(2.72)
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2. To avoid underflow, the logarithm of p̃ω|x(ω|x) is computed as follows

ℓmax(ω) = max
Nmin≤N≤Nmax

[
log(p̃ω|N,x(ω|N, x) + log(pN(N))

]
log(p̃ω|x(ω|x)) = ℓmax(ω) + log

(
Nmax∑

N=Nmin

exp(log(pN(N)p̃ω|N,x(ω|N, x))− ℓmax(ω))

)
(2.73)

3. in figure 2.6, the function ω 7→ exp(log(p̃(ω|x))− log(p̃(ω0|x)) with ω0 is the
value of the pulsation having generated the observation data, i.e. ω0 = 1.

In figure 2.7, we compute for all N ∈ JNmin;NmaxK the integral

νN(x) = pN(N)

∫ ωmax

√
N

ωmin

√
N

p̃ω|N,x(ω|N, x)dω (2.74)

using Gauss-Konrod method, implemented in the package QuadGK.jl, with a rel-
ative tolerance of 10−8. The estimation of the probability pN |x(N |x) is then

pN |x(N |x) =
νN(x)∑Nmax

N ′=Nmin
νN ′(x)

(2.75)

2.9.3 Uncertainty due to the inexact simulation of the sys-
tem

Initial configuration of Spring Cloud system (figure 2.8) The initial con-
figuration of Spring Cloud heterogeneous is sampled from the distribution µ0 hav-
ing the following parameters.

initial positions and speeds µx
0 , µ

v
0 N (0, I2)

attractivities and masses of particles µκ
0 , µ

m
0 U([1; 2])

population size N 10
random number generator MersenneTwister(123)
true value of parameter κ1 1.5

observation interval [0; 2π]

Table 2.2: Parameters monitoring the initial configuration of Spring Cloud het-
erogeneous
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Proof of proposition 2.1
Lemma 2.3. Conservation of the energy
Let x1:N , v1:N be the solution of the system (1.38). Then the Hamiltonian of the

system

H : t ∈ [0;T ] 7→ 1

2

N∑
i=1

mi|vi(t)|2 +
1

2

∑
i<j

κiκj|xi(t)− xj(t)|2 (2.76)

is constant over time.

Proof. Let t ∈ [0;T ]

dH

dt
(t) =

N∑
i=1

κivi(t).
N∑
j=1

κj(xj(t)− xi(t)) +
∑
i<j

κiκj(xi(t)− xj(t)).(vi(t)− vj(t))

=
∑
i<j

κiκj [vi(t).(xj(t)− xi(t)) + vj(t).(xi(t)− xj(t)) + (xi(t)− xj(t)).(vi(t)− vj(t))]

= 0
(2.77)

A consequence of the energy conservation is that each particle remains at a
bounded distance from the barycentre of the cloud.
Lemma 2.4. Bound on the distance to the barycentre

Let x1:N be a solution of the system (1.38), let xκ =

∑N
j=1 κjxj∑N
j=1 κj

be the barycentre of

the cloud, and let H be the Hamiltonian of the system. Then for all time t ∈ [0;T ],
we have

N∑
j=1

κj|xκ(t)− xj(t)|2 ≤
4H∑N
j=1 κj

(2.78)

Proof. By conservation of the energy (lemma 2.3), we have for all time t ∈ [0;T ]∑
i<j

κiκj|xi(t)− xj(t)|2 ≤ 2H

N∑
i=1

N∑
j=1

κiκj|xi(t)− xj(t)|2 ≤ 4H

(2.79)

By Leibniz’s inequality, we have for all i ∈ J1;NK
N∑
j=1

κj|xκ(t)− xj(t)|2 ≤
N∑
j=1

κj|xi(t)− xj(t)|2 (2.80)
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(
N∑
i=1

κi

)
N∑
j=1

κj|xκ(t)− xj(t)|2 ≤ 4H (2.81)

We have now all the elements to estimate the truncation error of the numerical
scheme.

Proof. (of proposition 2.1) Let us consider the following norm over R4, defined by
|x, v| = |x|+τ∗|v| where |x|, |v| is the standard Euclidean norm over R2 and τ∗ > 0
is a caracteristic time. Then for t ∈ [0;T ], we have for all i ∈ J1;NK

|xi(t)− x̂i(t)| ≤
∫ t

0

|vi(s)− v̂i(s)|ds

|vi(t)− v̂i(t)| ≤

(
κi

mi

N∑
j=1

κj

)∫ t

0

[
|xi(s)− x̂i(s)|+ |xκ(s)− x0

κ|
]
ds

|xκ(t)− x0
κ| ≤

∫ t

0

∣∣∣∣dxκ

ds
(s)

∣∣∣∣ ds = ∫ t

0

|vκ(s)|ds

dvκ
dt

(t) =
N∑
j=1

κ2
j

mj

(xκ(t)− xj(t))

|vκ(t)| ≤ |v0κ|+
N∑
j=1

κ2
j

mj

∫ t

0

|xκ(s)− xj(s)|ds

(2.82)

By Cauchy-Schwarz inequality, we have

N∑
j=1

κ2
j

mj

|xκ(t)− xj(t)| ≤

√√√√∑
j=1

κ3
j

m2
j

×

√√√√ N∑
j=1

κj|xκ(t)− xj(t)|2 (2.83)

By lemma 2.4, we have

N∑
j=1

κ2
j

mj

|xκ(t)− xj(t)| ≤ 2

√√√√H
∑N

j=1 κ
3
j/m

2
j∑N

j=1 κj

= Aκ (2.84)

The last inequality can be seen as bound on the acceleration of the barycentre. It
implies a bound on the motion of the barycenter.

|xκ(t)− x0
κ| ≤ |v0κ|t+Aκ

t2

2
(2.85)
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|xi(t)− x̂i(t)|+ τ∗|vi(t)− v̂i(t)| ≤
∫ t

0

[|vi(s)− v̂i(s)|+ τ∗ω
2
i |xi(s)− x̂i(s)|]ds

+ τ∗ω
2
i |v0κ|

t2

2
+ τ∗ω

2
iAκ

t3

6

|Xi(t)− X̂i(t)| ≤ max

{
1

τ∗
, τ∗ω

2
i

}∫ t

0

|Xi(s)− X̂i(s)|ds+ τ∗ω
2
i |v0κ|

t2

2
+ τ∗ω

2
iAκ

t3

6
(2.86)

By Grönwall’s inequality, the upper bound of |Xi(t)− X̂i(t)| is solution of a linear
differential equation. ∀t ∈ [0;T ],

dy

dt
(t) =

y(t)

τi
+Bit+ Cit

2

y(0) = 0

where 1

τi
= max{ 1

τ∗
, τ∗ωi}, Bi = τ∗ω

2
i |v0κ|, Ci =

τ∗ω
2
iAκ

2

(2.87)

The solution of the differential equation (3.51) is
∀t ∈ [0;T ], y(t) = τi

[
Bi

((
et/τi − 1

)
− t
)
+ Ci

((
et/τi − 1

)
τ 2i − 2τit− t2

)]
(2.88)

By Taylor’s inequality, we have that, since y(0) = 0 and dy

dt
(0) = 0,

∀t ∈ [0;T ], y(t) ≤ max

{∣∣∣∣d2ydt2
(t)

∣∣∣∣ , 0 ≤ t ≤ T

}
t2

2

d2y

dt2
(t) = Bie

t/τi + 2Ciτi
(
et/τi − 1

)
y(t) ≤

(
Bie

T/τi + 2Ciτi
(
eT/τi − 1

)) t2
2

(2.89)

By defining over R4N the norm |X1:N | =
N∑
i=1

|Xi|, we obtain the estimate of the

truncation error.

Configuration for the data generation (figure 2.10) We consider the Spring
Cloud system with an initial configuration described in table 2.2. The parameters
monitoring the generation of the data are enumerated in the following table.

true value of parameters κ1 1.5
observation deviation σ 0.4

observation timeline (tj)1≤j≤M

(
2πj

10

)
1≤j≤10
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time step h 2π/3
sample size Nmc 100

random number generator MersenneTwister(123)

Table 2.3: Configuration of the graph 2.11. The initial configuration of the system
is given on table 2.2.

time step used for the reference solution href 10−3

time step of the integrator h 2π/3
sample size Nmc 100

Table 2.4: Configuration used for the figure 2.12. The seed of the random number
generator is reset to the same value MersenneTwister(123) for each σξ to ensure
smooth variations of the Bhattacharyya distance.

Characteristics of the Gaussian distribution associated with the stochas-
tic integrator Let us identify the characteristics of the distribution µx̃[κ1] by
first considering it as a marginal of the joint distribution µN,K

x̃ of the variables
(x̃i(τ̃1), ṽi(τ̃1), ..., x̃i(τ̃K), ṽi(τK))1≤i≤N where {τ̃1, ..., τ̃K} = {τ1, ..., τM}∪{t1, ..., tm}.

Let us first identify the mean of the stochastic integrator m̃1:N(t) = E
[
X̃1:N(t)

]
.

The stochastic integrator at the population level can be expressed in the following
matrix form

X̃0
1:N = X0

1:N

∀n ∈ J0;M − 1K, ∀t ∈ [τn; τn+1), X̃1:N(t) = A(t− τn)X̃
n
1:N + ξn1:N(t− τn)

X̃n+1
1:N = A(τn+1 − τn)X̃

n
1:N + ξn1:N(τn+1 − τn)

(2.90)
The coefficients of the matrix A are defined by the linear relation in equation
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(2.43).

X̃1:N(t) =
(
x̃1
1(t) ... x̃1

N(t) x̃2
1(t) ... x̃2

N(t) ṽ11(t) ...
)T ∈M4N,1(R)

∀t ∈ R+, ∀(i, j) ∈ J1;NK2, aij(t) =
κj(1− cos(ωit))∑N

ℓ=1 κℓ

+ I{i = j} cos(ωit)

a′ij(t) =
κjωi∑N
ℓ=1 κℓ

sin(ωit)− I{i = j}ωi sin(ωit)

bi(t) =
sin(ωit)

ωi

b′i(t) = cos(ωit)

a(t) = (aij(t))1≤i,j≤N

db(t) = diag((bi(t))1≤i≤N)

A(t) =


a(t) 0 db(t) 0
0 a(t) 0 db(t)

a′(t) 0 d′b(t) 0
0 a′(t) 0 d′b(t)

 ∈M4N(R)

(2.91)

The evolution of the mean function follows exactly the same inductive equation as
the deterministic integrator, and therefore the mean is equal to the deterministic
trajectory.

m̃0
1:N = X0

1:N

∀n ∈ J0;M − 1K,∀t ∈ [τn; τn+1), m̃1:N(t) = A(t− τn)m̃
n
1:N

m̃n+1
1:N = A(τn+1 − τn)m̃

n
1:N

(2.92)

Concerning the covariance of the process, we want to establish an expression
of Cov(X̃1:N(t1), X̃1:N(t2)) for t1, t2 ∈ [0;T ]. For this purpose, we introduce the
covariance matrix of the uncertainty process ξ1:N , which is computed using the
formula (2.45).

kx,x(t1, t2) = σξ(t1t2)
5/2 exp

(
−(t1 − t2)

2

2h2

)
kx,v(t1, t2) = σξt1(t1t2)

3/25h
2 + 2t2(t1 − t2)

2h2
exp

(
−(t1 − t2)

2

2h2

)
kv,v(t1, t2) = σξ(t1t2)

3/225h
4 − 4t1t2(t1 − t2)

2 − 2h2(5t21 − 12t1t2 + 5t22)

4h4
exp

(
−(t1 − t2)

2

2h2

)
(2.93)
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K(t1, t2) = Cov(ξn1:N(t1), ξ
n
1:N(t2))

=


kx,x(t1, t2)IN 0N kx,v(t1, t2)IN 0N

0N kx,x(t1, t2)IN 0N kx,v(t1, t2)IN
kx,v(t2, t1)IN 0N kv,v(t1, t2)IN 0N

0N kx,v(t2, t1)IN 0N kv,v(t1,2 )IN

 ∈M4N(R)

(2.94)
Let t1 ∈ [τn; τn+1) and t2 ∈ [τm; τm+1) for m,n ∈ J0;M − 1K. Let us expand the
expression of the covariance.

Cov(X̃1:N(t1), X̃1:N(t2))

= Cov(A(t1 − τn)X̃
n
1:N + ξn1:N(t1 − τn), A(t2 − τm)X̃

M
1:N + ξM1:N(t2 − τm))

= A(t1 − τn)Cn,mA(t2 − τm)
T +Kn:m(t1 − τn)A(t2 − τm)

T + A(t1 − τn)Km:n(t2 − τm)
T

+ I{m = n}K(t1 − τn, t2 − τn)

where Cn,m = Cov(X̃n
1:N , X̃

M
1:N), Kn:m(t) = Cov(ξn1:N(t), X̃

M
1:N)

(2.95)
The covariance terms Cn,m and Kn:m can be determined by inductive equations.
By independence of the collection (ξn1:N)0≤n≤M−1, we have for all n ∈ J0;M − 1K

∀k ≤ n,Kn:k(t) = 0

Kn:n+1(t) = K(t− τn, τn+1 − τn)

∀m ∈ Jn+ 1;M − 1K, Kn:m+1(t) = Kn:m(t)A(τm+1 − τm)
T

(2.96)

A double induction is necessary to compute all the covariances Cn,m.

C0,0 = 0

∀n,m ∈ J0;M − 1K,∀ϵ1, ϵ2 ∈ {0, 1},
Cn+ϵ1,m+ϵ2 = A(ϵ1(τn+1 − τn))Cn,mA(ϵ2(τm+1 − τm))

T

+Kn:m(ϵ1(τn+1 − τn))A(ϵ2(τm+1 − τm)) + A(ϵ1(τn+1 − τn))Km:n(ϵ2(τm+1 − τm))

+ I{m = n}K(τn+1 − τn, τn+1 − τn)
(2.97)

We use formulas (2.92) and (2.95) to obtain the distribution of the vector X̃N,K =(
X̃1:N(τ̃1)

T, ..., X̃1:N(τ̃K)
T
)T
∈ M4NK,1(R). We note X̃N,K = N

(
m̃N,K , Σ̃N,K

)
.

We consider the observation matrix ON,K extracting the observed states from
X̃N,K , such that

x̃N,m ∼ N
(
ON,Km̃N,K , O

T
N,KΣ̃N,KON,K

)
(2.98)
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Chapter 3

Mean-field approximated
inference

Disappear here.
–Bret Easton Ellis, Less Than Zero (1985)

3.1 Introduction
The previous chapter highlights the difficulties arising in the context of statistical
inference on symmetrical models. The uncertainty about the population’s size and
the unobserved individuals’ states leads to many latent variables. The individu-
als’ interdependence may hinder the scaling up of the inference algorithms for a
large population. This chapter considers the asymptotic analysis of symmetrical
population models when their sizes tend to infinity. This analysis aims to find an
approximation of the population’s overall motion when it is crowded enough. The
required approximation should be independent of the unknown size N , or at least
have a dependency with respect to N much simpler than in the microscopic case.
In symmetrical population models, such approximation is inevitably linked to the
notion of mean-field distribution. For some systems, it is possible to prove that
the empirical measure of population, which is a stochastic measure, depending on
the realization of the system’s initial configuration, converges to a deterministic
probability measure when the population becomes infinitely crowded. This deter-
ministic measure is referred to as the mean-field limit distribution or the mean-field
distribution. It can be interpreted from a mesoscopic perspective: it represents
the probability of finding at a given time an individual in a given state, and at
the same time, it represents the entire population, that is, the source of the in-
teractions governing the trajectories of each individual. Formally, the mean-field
limit appears as the solution of a partial differential equation of the hyperbolic
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type, whose velocity field is closely related to the underlying microscopic system’s
transition function.

The mean-field limit, when it is well-defined, seems to solve at the same time
the two statistical difficulties mentioned above. Under this regime, the popula-
tion dynamics do not depend on N , and all the latent variables related to the
unobserved individuals are naturally incorporated into this probability distribu-
tion representing the entire population. Besides, the interdependence between
individuals disappears since trajectories are now only a function of their respec-
tive initial conditions and this mean-field distribution following a deterministic
time-evolution.

This phenomenon of the evanescence of the correlation between individuals
was first noticed in systems derived from statistical physics. Kadanoff (2009)15

traces the idea back to the work of Weiss (1907)32 on the ferromagnetic properties
of some materials. As several formalisms traditionally used in statistical physics
have been extended to machine learning problems (Kindermann and Snell, 198016),
the notion of mean-field was integrated into the statistical lexicography, but with
a meaning a bit different from that previously defined. In the statistical literature,
in general, mean-field inference is a synonym of variational Bayes approximation,
which consists in replacing a complex distribution, that is too difficult to han-
dle within the inference process by a tractable and factorized distribution (Smidl
and Quinn, 200625). This methodology is applied both to inference on dynamical
systems, as in Vrettas et al. (2015)31 or Gorbach et al. (2017),13 and to inverse
problems without the notion of time, like for instance, image restoration (Marnissi
et al., 201722). Therefore, the link with the physical phenomenon is in the search
for an alternative probability distribution for which the model’s components are
independent, despite their total interdependence originally. Such a distribution
is generally obtained by projecting in the Kullback-Leibler sense the original dis-
tribution onto a class of factorized and tractable distributions. However, the gap
between the approximation space and the initial space is, up to our knowledge,
rarely investigated.

In parallel, the mean-field formalism has been extended to plasma physics by
Vlasov (1968)30 and more recently to macroscopic systems constituted by birds,
fishes, sheep, ..., including the aforementioned Cucker-Smale model (Carrillo et al.,
20104). Mean-field limits can also be found in kinetic equations evolving in phase
spaces other than position-velocity, notably in order to model the plasticity of
natural neural networks in Perthame et al. (2017),23 or the formation of opinions
in Boudin and Salvarini (2010).3 These systems are generally much smaller in size
than the systems studied in statistical physics, and the authors use the mean-field
approximation to obtain a qualitative intuition of the macroscopic dynamics of the
population.
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Up to our knowledge, the mean-field limit, in its native meaning, has never
been used for the simplification of inference problems on symmetrical population
models, at least in a Bayesian framework. In Bongini et al. (2017),2 as well as in Lu
et al. 2019)21 and Lu et al. (2020),20 the authors suggest non-parametric methods
for estimating the interaction kernel using trajectories that are exactly observed
over the entire population. The mean-field limit of the microscopic systems is used
to check the consistency and the well-posedness of the learning procedure. In other
words, the authors try to answer the question: “Does the sequence of estimators
formed by this method have the same limit as the microscopic system when the
size of the population tends towards infinity ?”

In this chapter, we wish to bridge the existing gap between, on the one hand,
a rigorous analysis of the asymptotic behavior of large populations, and on the
other hand, the approximations of inference allowing their efficient resolution.
Therefore, our problem is to study how symmetric population models’ asymptotic
analysis can provide consistent approximations to the Bayesian inference problems
we considered in chapter 2.

In section 2, we start by defining the notion of weak solutions for non-local
transport equations, and we prove that the dynamics of the symmetric population
can be equivalently written as a transport equation on the empirical population
measure. Section 3 deals with the existence and uniqueness of the mean-field limit,
defined in the case where the velocity field on the population’s empirical measure
has a pointwise limit when N → ∞. In the eventuality where this pointwise
limit is not defined, it is still possible in most cases to study the limit obtained
after the renormalization of the time and state variables of the system. Section 4
links the propagation of chaos, i.e., the convergence of the population’s empirical
measure towards the mean-field distribution and simplifying an inference problem
with unknown population size. In particular, we discuss how the mean-field limit
can provide consistent approximations in some cases, but we also notice that in
other cases, it is necessary to develop further (a bit like in the case of Taylor’s
expansion) to have an approximation with a simplified dependence with respect
to N . Nevertheless, the mean-field limit remains an essential step in simulating
large populations from a macroscopic perspective. The statistical approximations
suggested in section 4 are effectively simplifications only if the mean-field transport
equation’s solution is numerically attainable. This issue is addressed in section 5,
which gives a preliminary work to simulate the mean-field dynamics efficiently in
the Spring-Cloud and Schneider systems cases.
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3.2 Empirical measure and population distribu-
tion dynamics

Within symmetric populations, the labels of the individuals are arbitrary. There-
fore the evolution of the system can be described equivalently in the quotient space
ZN/SN or in PN(Z), the set of empirical measures with N Dirac masses (using
proposition 1.1). In PN(Z), we can describe the dynamics of empirical measures
using partial differential equations, satisfied in the weak sense. We need to define
a series of notions to characterize the continuity of trajectories taking place in
the set of probability measures. In keeping with the literature related to kinetic
equations theory (Golse, 2013,12 Bolley et al., 2011,1 Lagoutière and Vauchelet,
201718), this regularity is characterized in terms of Wasserstein distance.
Definition 3.1. Wasserstein distance (Villani, 2009,29 definition 6.1)
Let (Z, d) be a Polish metric space. For any probability measures µ, ν ∈ P(Z),
we define the set of couplings Π(µ, ν) as the set of probability measures over Z2

having their first marginal equal to µ and their second marginal equal to ν.

Π(µ, ν) =

{
π ∈ P(Z2) | µ(dz1) =

∫
Z
π(dz1, dz2), ν(dz2) =

∫
Z
π(dz1, dz2)

}
(3.1)

The Wasserstein distance of order p is then defined using the coupling minimizing
the expected distance to the power p ≥ 1.

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Z2

d(z1, z2)
pπ(dz1, dz2)

)1/p

(3.2)

The verification of the fact that this quantity satisfies the axioms of a distance
can be found in Villani (2009),29 page 106.
Example 3.1. When restricted to the set of empirical measures having the same
number of Dirac masses, the Wasserstein distance can be expressed as the solution
of an optimization problem over the set of permutations.

∀(xi, yi)1≤i≤N ∈ Z2N , Wp

(
1

N

N∑
i=1

δxi
,
1

N

N∑
i=1

δyi

)
=

(
1

N
inf

σ∈SN

N∑
i=1

d(xi, yσ(i))
p

)1/p

(3.3)
The distance is reached for the permutation transforming the cloud of points y into
x with minimal displacement. However, this intuition of the Wasserstein distance
is not true in general, as there are cases where a transformation T satisfying
T#µ = ν (the pushforward image of µ by T is ν) cannot exist. For instance, when
µ = δx and ν = δx1 + δx2, because we cannot have T (x) = x1 and T (x) = x2 if
x1 6= x2.
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The Wasserstein distance is associated with a convergence, which is a bit
stronger than the weak convergence.
Definition 3.2. Weak convergence, or convergence in distribution
Let Z be a Polish metric space, (µn)n∈N a sequence of probability measures in
P(Z), and µ ∈ P(Z). Then we say that the sequence (µn)n∈N converges to µ in
distribution or weakly if for all φ ∈ Cb(Z → R) continuous and bounded we have∫

Z
φ(z)µn(dz) −−−→

n→∞

∫
Z
φ(z)µ(dz) (3.4)

We then note µn
w−−−→

n→∞
µ.

Definition 3.3. Set of probability having moments of order p
Let (Z, d) be a Polish metric space, let z0 ∈ Z, and let p ≥ 0. The set Pp(Z) of
probability measures having moments of order p is defined by

Pp(Z) =
{
µ ∈ P(Z) |

∫
Z
d(z0, z)

pµ(dz) < +∞
}

(3.5)

By triangular inequality this definition is independent on the choice of the origin
z0.
Theorem 3.1. Convergence associated with the Wasserstein distance
(Villani, 2009,29 theorem 6.9)
Let (µn)n∈N be a sequence of probability measures in Pp(Z) and µ ∈ Pp(Z) defined
over a Polish metric space (Z, d). Then the two statements are equivalent:

(i) µn
w−−−→

n→∞
µ and

∫
Z
d(z0, z)

pµn(dz) −−−→
n→∞

∫
Z
d(z0, z)

pµ(dz)

and
(ii) Wp(µn, µ) −−−→

n→∞
0

The metric W1 is used especially used here, because of its dual formulation,
which is particularly convenient for proofs.
Theorem 3.2. Kantorovich-Rubinstein formula (Villani, 2009,29 partic-
ular case 5.16)
Let P1(Z) be the set of probability measures having first order moments, i.e. for
all µ ∈ P1(Z) and for some z0 ∈ Z (and therefore for any z0)∫

Z
d(z0, z)µ(dz) <∞ (3.6)
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Let CL(Z → R) be the space of Lipschitz-continuous functions over Z and let us
denote Lip(ϕ) the Lipschitz constant of any element ϕ ∈ CL(Z → R). Then, for
any µ1, µ2 ∈ P1(Z):

W1(µ1, µ2) = sup

{∣∣∣∣∫
Z
ϕ(z)µ1(dz)−

∫
Z
ϕ(z)µ2(dz)

∣∣∣∣ , ϕ ∈ CL(Z → R),Lip(ϕ) ≤ 1

}
(3.7)

The space of test functions used to define weak solutions of transport equations
is composed of maps differentiable with respect to time and with respect the state
variable x.

D(R+ ×X ×Θ) =

{
φ ∈ C0b (R+ ×X ×Θ→ R) |

∀(t, x, θ) ∈ R+ ×X ×Θ,
∂φ

∂t
(t, x, θ) and ∂φ

∂x
(t, x, θ) exists

and sup
(t,x,θ)∈R+×X×Θ

∣∣∣∣∂φ∂t (t, x, θ)
∣∣∣∣+ ∣∣∣∣∂φ∂x (t, x, θ)

∣∣∣∣ <∞
} (3.8)

Notice that we do not assume the test function to be differentiable with respect to
the individual parameter θ, as it remains constant through time. The dynamics
of the empirical measure in symmetric populations are given by the following
definition.

Definition 3.4. measure transport equation
Let µ0 ∈ Pp(X × Θ) for some p ≥ 1, t ∈ R+ 7→ µ(t) ∈ Pp(X × Θ) a trajectory
within the set of probability measures, and F : R+ × X × Θ× Pp(X × Θ) → X a
functional. Then we say that t 7→ µ(t) is a solution in Pp(X ×Θ) of the transport
equation of transition F and of initial condition (0, µ0), and we denote

{
∀t ≥ 0,

∂µ

∂t
(t, dx, dθ) + divx [µ(t, dx, dθ)F (t, x, θ, µ(t))] = 0

µ(0, dx, dθ) = µ0(dx, dθ)
(3.9)

if the following statements are true:

1. t 7→ µ(t) is continuous with respect to the metric Wp.

2. the function (t, x, θ) ∈ R+ × X × Θ 7→ F (t, x, θ, µ(t)) is continuous, and
t ∈ R+ 7→

∫
X×Θ

F (t, x, θ, µ(t))µ(t, dx, dθ) is also continuous.
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3. for all φ ∈ D(R+ ×X ×Θ) we have∫
X×Θ

φ(t, x, θ)µ(t, dx, dθ)−
∫
X×Θ

φ(0, x, θ)µ0(dx, dθ)

=

∫ t

0

∫
X×Θ

(
∂φ

∂s
(s, x, θ) +

∂φ

∂x
(s, x, θ).F (s, x, θ, µ(s))

)
µ(s, dx, dθ)ds

(3.10)

The expression of the partial differential equation (3.9) is the same as the one
being satisfied by the density of the measure, if the latter is smooth enough. This
statement can be derived by direct integration by part of equation (3.10). We
apply this formalism to describe the dynamics of the empirical measure of the
population.
Proposition 3.1. Transport of the empirical measure
Let (x0

i , θi)1≤i≤N be an initial configuration of the symmetric population system

∀i ∈ J1;NK,


xi(0) = x0
i

∀t ≥ 0,
dxi

dt
(t) = hN

(
t, xi(t), θi,

1

N

N∑
j=1

δ(xj(t),θj)

)
(3.11)

leading to a global and continuously differentiable t ∈ R+ 7→ x1:N(t). We assume
that the function HN : (t, x1, θ1, ..., xN , θN) ∈ R+ × (X ×Θ)N 7→

hN

(
t, x1, θ1,

1

N

∑
i=1

δ(xi,θi)

)
is continuous. Then the empirical measure of the

population t 7→ µ̂N(t) =
1

N

N∑
i=1

δ(xi(t),θi) is a solution in P1(X ×Θ) of the transport

equation
µ̂N(0) =

1

N

N∑
i=1

δ(x0
i ,θi)

∀t ≥ 0,
∂µ̂N

∂t
(t, dx, dθ) + divx(µ̂N(t, dx, dθ)hN(t, x, θ, µ̂N(t))) = 0

(3.12)

Proof. Let ϕ ∈ CL(X ×Θ→ R) a Lipschitz function. We have for all t1, t2 ∈ R+∣∣∣∣∫
X×Θ

ϕ(x, θ)µ̂N(t1, dx, dθ)−
∫
X×Θ

ϕ(x, θ)µ̂N(t2, dx, dθ)

∣∣∣∣
=

1

N

∣∣∣∣∣
N∑
i=1

(ϕ(xi(t1), θ)− ϕ(xi(t2), θ))

∣∣∣∣∣ ≤ Lip(ϕ)

N

N∑
i=1

|xi(t1)− xi(t2)|
(3.13)
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Therefore using theorem 3.2

W1(µ̂N(t1), µ̂N(t2)) ≤
1

N

N∑
i=1

|xi(t1)− xi(t2)| (3.14)

So the trajectory t ∈ R+ 7→ µ̂N(t) is continuous with respect to W1. Besides,
as the trajectories x1:N are continuously differentiable with respect to time, we

clearly have that (t, x, θ) 7→ hN(t, x, θ, µ̂N(t)) and t 7→ 1

N

N∑
i=1

hN(t, xi(t), θi, µ̂N(t))

are continuous. We also have that

d

dt

∫
X×Θ

φ(t, x, θ)µ̂N(t, dx, dθ) =
1

N

N∑
i=1

(
∂φ

∂t
(t, xi(t), θi) +

∂φ

∂x
(t, xi(t), θi).

dxi

dt
(t)

)
=

∫
X×Θ

(
∂φ

∂t
(t, x, θ) +

∂φ

∂x
(t, x, θ).hN(t, x, θ, µ̂N(t))

)
µ̂N(t, dx, dθ)

(3.15)

The existence of a global solution to the system implies a partial differential
equation on the empirical measure of the population. Thus, the equation (3.12)
can be seen as a rewriting of the differential system (3.11), but where the individual
labels are not taken into account. In the specific case of the Spring Cloud system
(example 1.6), the empirical measure satisfies the following partial differential
equation

∂µ̂N

∂t
(t, dx, dv, dκ, dm) + v.

∂µ̂N

∂x
(t, dx, dv, dκ, dm)

+
Nκ

m

∂µ̂N

∂v
(t, dx, dv, dκ, dm).

∫
R3

κ′(x′ − x)µ̂x,κ
N (t, dx′, dκ′) = 0

(3.16)

We can notice that the transport equation is nonlinear with respect to the measure
µ̂N , although the associated differential system is linear with respect to the state
variables. For the Schneider system, the dynamical equation of the empirical
measure has a slightly different structure. This dynamical equation can be derived
from equations (1.47) and (1.48).

∂µ̂N

∂t
(t, ds, dx, dS, dγ)

+
∂

∂s

(
µ̂N(t, ds, dx, dS, dγ)

∫
R+×R2

gN(s, x, S, γ, s
′, x′)µ̂s,x

N (t, ds′, dx′)

)
= 0

(3.17)
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where gN(s, x, S, γ, s
′, x′) =

N

N − 1
g(s, x, S, γ, s′, x′)− g(s, x, S, γ, s, x)

N − 1

g(s, x, S, γ, s′, x′) = γs(log(S/sm)(1− C(s, s′, |x− x′|))− log(s/sm))

(3.18)

The time evolution of the empirical measure, starting from a specific configuration
of the population must be distinguished from the time evolution of the population
distribution t ∈ R+ 7→ µ1:N(t) ∈ P

(
(X ×Θ)N

)
, which is a deterministic object.

µ1:N(t) is the joint distribution of the states and parameters of the individuals
in the population. When the population model is symmetric, this distribution is
invariant by permutation. It can be proved that this distribution satisfies also a
transport equation, with velocity field expressed with the transition function of
the system.
Proposition 3.2. Transport of the population distribution
Let µ0 ∈ P1(X × Θ) and hN : R+ × X × Θ × PN(X × Θ) → X be such that
(t, x1, θ1, ..., xN , θN) 7→ hN

(
t, x1, θ1,

1
N

∑N
i=1 δ(xi,θi)

)
is continuous. It is also as-

sumed that there exists K > 0 such that for all t, x1, θ1, ..., xN , θN , we have

hN

(
t, x1, θ1,

1

N

N∑
i=1

δ(xi,θi)

)
≤ K

(
1 +

N∑
i=1

|xi|

)
(3.19)

Then the population distribution t ∈ R+ 7→ µ1:N(t) is a solution in P1(X × Θ) of
the transport equation

∂µ1:N

∂t
(t, dx1:N , dθ1:N)

+
N∑
i=1

divxi

(
µ1:N(t, dx1:N , dθ1:N)hN

(
t, xi, θi,

1

N

N∑
j=1

δ(xj ,θj)

))
= 0

(3.20)

Proof. Let us start by proving that for all t ≥ 0, µ1:N(t) ∈ P1((X ×Θ)N). For any
initial configuration (x0

1:N , θ1:N) we have

|x1(t, x
0
1:N , θ1:N)| ≤ |x0

1|+K

∫ t

0

(
1 +

N∑
i=1

|xi(s, x
0
1:N , θ1:N)|

)
ds

therefore:
∫
(X×Θ)N

|x1(t, x
0
1:N , θ1:N)|µ⊗N

0 (dx1:N , dθ1:N) ≤
∫
X×Θ

|x|µ0(dx)

+K

∫ t

0

(
1 +N

∫
(X×Θ)N

|x1(s, x
0
1:N , θ1:N |µ⊗N

0 (dx1:N , dθ1:N)

)
ds

(3.21)

By Grönwall lemma, we obtain that∫
(X×Θ)N

|x1(t, x
0
1:N , θ1:N)|µ⊗N

0 (dx1:N , dθ1:N) ≤
1

N

((
N

∫
X
|x|µx

0(dx) + 1

)
eKt − 1

)
(3.22)
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Let ϕ ∈ CL((X ×Θ)N → R) a Lipschitz continuous function and let t1, t2 ∈ R+.∣∣∣∣∫
(X×Θ)N

ϕ(x1:N , θ1:N)µ1:N(t1, dx1:N , dθ1:N)−
∫
(X×Θ)N

ϕ(x1:N , θ1:N)µ1:N(t2, dx1:N , dθ1:N)

∣∣∣∣
≤ Lip(ϕ)

N∑
i=1

∫
(X×Θ)N

|xi(t1, x
0
1:N , θ1:N)− xi(t2, x

0
1:N , θ1:N)|µ⊗N

0 (dx1:N , dθ1:N)

thus: W1(µ1:N(t1), µ1:N(t2))

≤ N

∫
(X×Θ)N

|x1(t1, x
0
1:N , θ1:N)− x1(t2, x

0
1:N , θ1:N)|µ⊗N

0 (dx1:N , dθ1:N)

(3.23)
The above upper-bound tends to zero when t1 tends to t2 by dominated conver-
gence. It follows that t 7→ µ1:N(t) is continuous with respect to the metricW1. The
function (t, x1, θ1, ..., xN , θN) 7→ hN

(
t, x1, θ1,

1
N

∑N
i=1 δ(xi,θi)

)
is continuous by as-

sumption. The function t 7→
∫
(X×Θ)N

hN

(
t, x1, θ1,

1

N

N∑
i=1

δ(xi,θi)

)
µ1:N(t, dx1:N , dθ1:N)

is continuous by dominated convergence. Finally, we have for all t ∈ R+

d

dt

∫
XN×ΘN

φ(t, x1:N , θ1:N)µ1:N(t, dx1:N , dθ1:N) =

∫
XN×ΘN

(
∂φ

∂t
(t, x1:N(t, x

0
1:N , θ1:N), θ1:N)

+
N∑
i=1

∂φ

∂xi

(t, x1:N(t, x
0
1:N , θ1:N), θ1:N).hN(t, xi(t, x

0
1:N , θ1:N), θi, µ̂N(t, x

0
1:N , θ1:N))

)
× µ⊗N

0 (dx0
1:N , θ1:N)

(3.24)

In the case of the Spring Cloud system, when the initial distribution is such
that

∫
R+

κµκ
0(dκ) = +∞, the transport equation of the population is not defined.

However, if µ0 has compact support for the variables κ,m, with m ≥ mmin > 0,
and if µ0 has first order moment with respect to the variable x and v, then the
population distribution satisfies the following partial differential equation.

∂µ1:N

∂t
(t, dx1:N , dv1:N , dκ1:N , dm1:N) +

N∑
i=1

vi.
∂µ1:N

∂xi

(t, dx1:N , dv1:N , dκ1:N , dm1:N)

+
N∑
i=1

N∑
j=1

κiκj

mi

(xj − xi).
∂µ1:N

∂vi
(t, dx1:N , dv1:N , dκ1:N , dm1:N) = 0

(3.25)
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Thanks to the linearity of the equation, we can obtain the general expression of
the population distribution, by using the relation (2.33).

µ1:N(t, dx1:N , dv1:N , dκ1:N , dm1:N)

=

(
exp(tC(κ1:N ,m1:N))#

N⊗
i=1

µ
x,v|κ,m
0 (dxi, dvi|κi,mi)

)
N⊗
i=1

µκ,m
0 (dκi, dmi)

(3.26)
with the notation f#µ representing the pushforward measure of µ by the map f .
In particular, if the initial distribution is absolutely continuous with respect to the
Lebesgue measure, with the decomposition µ0(dx, dv, dκ, dm) = fx,v

0 (x, v)fκ,m
0 (κ,m)λ(dx, dv, dκ, dm),

then µ1:N(t) has also a density f .

f(t, x1:N , v1:N , κ1:N ,m1:N) =
N∏
i=1

fx,v
0

(
Oi

xe
−tC(κ1:N ,m1:N )

(
x1:N

v1:N

)
, Oi

ve
−tC(κ1:N ,m1:N )

(
x1:N

v1:N

))

×
∣∣det (e−tC(κ1:N,m1:N

)
)∣∣ N∏

i=1

fκ,m
0 (κi,mi)

where Oi
x

(
x1:N

v1:N

)
= xi and Oi

v

(
x1:N

v1:N

)
= vi

(3.27)
In general, the marginal distribution of the individual parameters remains un-
changed, while the distribution of the state variables conditionally to the indi-
vidual parameters is the pushforward measure of the initial distribution by the
semi-group of the system.

3.3 Existence and uniqueness of the mean-field
measure

In this section, we study the behaviour of symmetric systems when the number
of individuals tends to infinity. The dynamics being determined by the transition
functions hN : X ×Θ×PN(X ×Θ)→ X , we shall study the asymptotic properties
of this sequence of functions indexed by N ≥ 2. To simplify the analysis, we shall
extend the definition of hN from PN(X × Θ) to some set of probability measures
Ph(X ×Θ) such that the value of the function hN(t, x, θ, µ) is well defined for all
N ≥ 2 and all µ ∈ Ph(X ×Θ). For instance, in the case of the Schneider system,
we shall prove that having µ ∈ P1(R∗

+ × Θ) is enough to have well defined values
for the transition function, no matter the size of the population. This extension of
domain for transition functions enables to study this sequence of mappings over a
fixed domain, not depending on N .
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Let us consider the situation where the sequence of transition functions (hN)N≥2

admits a pointwise limit when N → ∞, which is the case, for instance, of the
Schneider system, where for all (s, x, S, γ, µ) ∈ X ×Θ× P1(X ×Θ)

hN(s, x, S, γ, µ) =

∫
R+×R2

(
N

N − 1
g(s, x, S, γ, s′, x′)− g(s, x, S, γ, s, x)

N − 1

)
µs,x(ds′, dx′)

hN(s, x, S, γ, µ) −−−→
N→∞

∫
R+×R2

g(s, x, S, γ, s′, x′)µs,x(ds′, dx′) = h(s, x, S, γ, µ)

(3.28)
We can then investigate under which conditions the transport equation associated
with the limit field h has a unique solution.{

∂µ

∂t
(t, ds, dS, dγ) +

∂

∂s
(µ(t, ds, dx, dS, dγ)h(s, x, S, γ, µ(t))) = 0

µ(0) = µ0

(3.29)

In the above equation, µ0 is some initial population distribution in P(X ×Θ). The
proof of existence and uniqueness of the measure solution for different types of
transition function is a well-documented question in the literature. We highlight
three categories of works for the theoretical resolution of this type of non-local
partial differential equation.

• Golse (2013):12 in this work, the transition function is expressed as the ex-
pectation of a globally-Lipschitz continuous field. The solution is obtained
by Picard iterations at the level of the characteristic flow equation.

• Bolley et al. (2011):1 the transition function is not globally Lipschitz con-
tinuous, but with variations that are at most quadratic (like in the case of
the Cucker-Smale model). The proof follows an iterative scheme, alternating
between a linear transport partial differential equation and the associated
characteristic flow equation, that converges towards the solution of the non-
linear partial differential equation.

• Carrillo et al. (2014),5 Lagoutière and Vauchelet (2017):18 the transition
function is expressed as the expectation of a force admitting a finite number
of discontinuities. The existence of the solution is obtained by first solving
the characteristic flow equation with initial condition being expressed as
discrete probability measures, convex combination of Dirac masses.

The structure of the proof suggested here is adapted specifically to the regularity
of the Schneider system, but we try to isolate the properties that make each step
works. In keeping with Golse (2013),12 existence and uniqueness are obtained as
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a generalization of Cauchy-Lipschitz to differential equations taking place in an
Euclidean space, with initial conditions being probability measures.

Let us start by introducing the Banach space in which the proof of existence
of the characteristic flow takes place.

Definition 3.5. Space of sublinear functions (Golse, 2013,12 page 18)
The space of continuous functions over X × Θ that are at most linear is denoted
by

SL(X ,Θ) = {ξ ∈ C0(X ×Θ→ X ) | sup
(x,θ)∈X×Θ

|ξ(x, θ)|
1 + |x|

<∞} (3.30)

SL(X ,Θ) endowed with the norm

ξ ∈ SL(X ,Θ) 7→ ‖ξ‖SL = sup
(x,θ)∈X×Θ

|ξ(x, θ)|
1 + |x|

(3.31)

is a Banach space.

Proof. Let (ξn)n∈N be a Cauchy sequence in SL(X ,Θ). Then for all (x, θ), the se-
quence (ξn(x, θ))n∈N is Cauchy, so it has a pointwise limit, since (X , |.|) is complete.
Let ξ be the pointwise limit of the sequence.

Let ϵ > 0. There exists n0 ∈ N such that for all p, q ≥ n0, we have for all
(x, θ) ∈ X ×Θ,

|ξp(x, θ)− ξq(x, θ)|
1 + |x|

≤ ϵ

lim
q→∞

|ξp(x, θ)− ξq(x, θ)|
1 + |x|

≤ ϵ

|ξp(x, θ)− ξ(x, θ)|
1 + |x|

≤ ϵ

so ‖ξn − ξ‖SL −−−→
n→∞

0

(3.32)

Besides, ξ is continuous at all points (x, θ), since we have for all R > |x| and for
all n ≥ n0,

sup{|ξn(x′, θ′)− ξ(x′, θ′)|, |x′| ≤ R} ≤ ϵ(1 +R) (3.33)

and ξ is sublinear as we have for all (x, θ)

|ξ(x, θ)|
1 + |x|

≤ |ξn0(x, θ)|
1 + |x|

+ ϵ ≤ ‖ξn0‖SL + ϵ (3.34)

113



Mean-field approximated inference

The following lemma gives conditions for the local existence of the character-
istic flow associated to the non-local partial differential equation. The flow of a
differential equation y′ = f(t, y) is the function y(t, y0) giving the value of the
solution at t starting from the initial condition (0, y0). In the case of transport
equation, the characteristic flow is the flow associated with the differential equation
x′ = h(t, x) where h is the velocity field of the transport equation.
Lemma 3.1. Local existence of the characteristic flow
Let g : (X ×Θ)2 → X be a continuous function such that:

• there exists K1 > 0 verifying for all (x, θ, x′, θ′) ∈ (X ×Θ)2,
|g(x, θ, x′, θ′)| ≤ K1(1 + |x|+ |x′|) (3.35)

• there exists K2 > 0 and p ∈ N verifying for all x1, x
′
1, x2, x

′
2 ∈ X and θ, θ′ ∈ Θ

|g(x1, θ, x
′
1, θ

′)− g(x2, θ, x
′
2, θ

′)| ≤ K2(1 + |x′
1|p + |x′

2|p)(|x1 − x2|+ |x′
1 − x′

2|)
(3.36)

Let µ0 ∈ P(X × Θ) be a probability measure having moments up to the order
1 + p with respect to the variable x. Then for all R > 1, there exists α > 0
and xα ∈ C1([−α;α] → SL(X ,Θ)) such that for all t ∈ [−α;α] and for all
(x, θ) ∈ X ×Θ

∂xα

∂t
(t, x, θ) =

∫
X×Θ

g(xα(t, x, θ), θ, xα(t, x
′, θ′), θ′)µ0(dx

′, dθ′)

xα(0, x, θ) = x

and sup
−α≤t≤α

‖xα(t, ., .)‖SL ≤ R

(3.37)

Proof. Let α > 0. We consider the Banach space SLα = C0([−α;α]→ SL(X ,Θ)),
endowed with the norm

∀ξ ∈ SLα, ‖ξ‖SLα = sup
−α≤t≤α

‖ξ(t, ., .)‖SL (3.38)

We consider the application Φα defined over SLα. For all ξ ∈ SLα and (t, x, θ) ∈
[−α;α]×X ×Θ

Φα(ξ, t, x, θ) = x+

∫ t

0

∫
X×Θ

g(ξ(s, x, θ), θ, ξ(s, x′, θ′), θ′)µ0(dx
′, dθ′)ds (3.39)

Let us first notice that the integral over X ×Θ is well-defined, since µ0 has finite
first moments, and∫

X×Θ

|g(ξ(t, x, θ), θ, ξ(t, x′, θ′), θ′)|µ0(dx
′, dθ′)

≤ K1

∫
X×Θ

(1 + ‖ξ‖SLα(2 + |x|+ |x′|))µ0(dx
′, dθ′) <∞

(3.40)
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This inequality also proves the continuity of the integral∫
X×Θ

g(ξ(t, x, θ), θ, ξ(t, x′, θ′), θ′)µ0(dx
′, dθ′) with respect to its arguments (t, x, θ).

Therefore, for any ξ ∈ SLα Φα(ξ) is continuous with respect to (x, θ) and contin-
uously differentiable with respect to t. Inequality (3.40) also proves that Φα(ξ) ∈
SLα for all ξ ∈ SLα, and we have

‖Φα(ξ)‖SLα ≤ max

(
K1α

(
1 + ‖ξ‖SLα

(
2 +

∫
X
|x|µx

0(dx)

))
, 1 +K1α‖ξ‖SLα

)
(3.41)

We consider the ball of radius R in SLα, Bα(0, R) = {ξ ∈ SLα | ‖ξ‖SLα ≤ R}.
Then for α small enough, Φα(ξ) ∈ Bα(0, R) for any ξ ∈ Bα(0, R). The threshold
for α has the following expression

α ≤ min

(
R

K1(1 +R(2 +
∫
X |x|µ

x
0(dx)))

,
R− 1

K1R

)
(3.42)

For any ξ1, ξ2 ∈ Bα(0, R)

‖Φα(ξ1)− Φα(ξ2)‖SLα ≤ K2α

(
1 + 2Rp

∫
X
(1 + |x|)p(2 + |x|)µ0(dx)

)
‖ξ1 − ξ2‖SLα

(3.43)
From this inequality, we can deduce that if α is chosen small enough, the map Φα

is a contraction over Bα(0, R). The threshold for α has the following expression

α < min

(
R

K1(1 +R(2 +
∫
X |x|µ

x
0(dx)))

,
R− 1

K1R
,

1

K2

(
1 + 2Rp

∫
X (1 + |x|)p(2 + |x|)µ0(dx)

)) (3.44)

For this range of α, Banach fixed-point theorem states that there exists a unique
xα ∈ Bα(0, R) such that Φα(xα) = xα.

The next step is to prove the local uniqueness of the solution of the differential
equation, which is done exactly as in the case of the classical Cauchy-Lipschitz
theorem.
Lemma 3.2. Local uniqueness of the characteristic flow
Let I be an interval of R containing 0 and xI : R+ × X × Θ → X satisfy the
functional equation, for all (x, θ) ∈ X ×Θ

∀t ∈ I,
∂xI

∂t
(t, x, θ) =

∫
X×Θ

g(xI(t, x, θ), θ, xI(t, x
′, θ′), θ′)µ0(dx

′, dθ′)

xI(0, x, θ) = x

(3.45)
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where g : (X × Θ)2 → X and µ0 satisfy the same assumptions as in lemma 3.1.
Let J be another interval R, also containing 0 and included in I. If xJ satisfies
the same functional equation than xI over J , then we have that xI|J = xJ .

Proof. Let us consider the interval T+ = {t ∈ J | t ≥ 0, ∀s ∈ [0; t], xI(s) = xJ(s)}.
We would like to prove that t∗ = sup(T+) = sup(J). Let us prove first that t∗ > 0.
Let R = min(2, supt∈I ‖xI(t)‖SL). By continuity of the norm ‖.‖SL and by lemma
3.1, there exists α1 > 0 such that for all t ∈ [0;α1], ‖xI(t)‖SL ≤ R, ‖xJ(t)‖SL ≤ R,
and Φα1 is a contraction over the ball Bα1(0, R). By uniqueness of the fixed point,
we have that xI|[−α1;α1] = xJ |[−α2;α2]. In particular, t∗ ≥ α1 > 0.

Let us assume that t∗ < sup(J), in particular t∗ has a finite value. Then for
all t ∈ [0; t∗), we have ‖xI(t) − xJ(t)‖SL = 0. By continuity of the norm, we
obtain that xI(t

∗) = xJ(t
∗). There exists δ > 0 such that for all t ∈ [t∗; t∗ + δ],

‖xI(t)‖SL ≤ ‖xI(t
∗)‖SL + 1 = Rt∗ and ‖xJ(t)‖SL ≤ Rt∗ . For all t ∈ [t∗; t∗ + δ], we

have the following inequality

‖xI(t)−xJ(t)‖SL ≤ K2

∫
X
(1 + 2Rp

t∗(1 + |x|)p) (2+|x|)µx
0(dx)

∫ t

t∗
‖xI(s)−xJ(s)‖SLds

(3.46)
By Grönwall lemma, we have for all t ∈ [t∗; t∗ + δ] that xI(t) = xJ(t), which is in
contradiction with the definition of t∗. Therefore, t∗ = sup(J). We use the same
reasoning to prove that

inf{t ∈ J |t ≤ 0, ∀s ∈ [t; 0], xI(s) = xJ(s)} = inf(J) (3.47)

Lemma 3.2 introduces a partial order relation amongst the solutions, based on
the inclusion. According to Zorn’s lemma, the partially ordered set of solutions
has at least one maximal solution. To prove that the maximal solution is in fact
global, defined over R+, we need to characterize the structure of the semi-group
associated with this kind of differential flow. First, it can be proved that the
properties of the initial distribution are preserved by the flow.
Lemma 3.3. Moments of the pushforward measure
Let g : (X × Θ)2 → X and µ0 satisfy the same assumptions in lemma 3.1. Let
(I, xI) be the maximal solution associated with the differential equation, where I
is an interval containing 0. For all t ∈ I, we define the pushforward measure
(xI(t), IdΘ)#µ0 as

∀φ ∈ Cb(X×Θ),

∫
X×Θ

φ(x, θ)[(xI(t), IdΘ)#µ0](dx, dθ) =

∫
X×Θ

φ(xI(t, x, θ), θ)µ0(dx, dθ)

(3.48)
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Then for all t ∈ I we have that∫
X×Θ

|x|1+p[(xI(t), IdΘ)#µ0](dx, dθ) <∞ (3.49)

Proof. Let t ∈ I and (x, θ) ∈ X ×Θ, we have, using equations (3.35) and (3.45).

|xI(t, x, θ)| ≤ |x|+K1

∫ t

0

(
1 + |xI(s, x, θ)|+

∫
X×Θ

|xI(s, x
′, θ′)|µ0(dx

′, dθ′)

)
ds

thus:
∫
X×Θ

|xI(t, x, θ)|µ0(dx, dθ) ≤∫
X
|x|µx

0(dx) +K1

∫ t

0

(
1 + 2

∫
X×Θ

|xI(s, x, θ)µ0(dx, dθ)

)
ds

(3.50)
By Grönwall lemma, we obtain that for all t ∈ I∫

X×Θ

|xI(t, x, θ)|µ0(dx, dθ) ≤
1

2

((
2

∫
X
|x|µ0(dx) + 1

)
e2K1t − 1

)
(3.51)

We can inject the expression of this upper-bound in the estimation of the state.

|xI(t, x, θ)| ≤ |x|+K1

∫ t

0

(
1 + |xI(s, x, θ)|+

1

2

((
2

∫
X
|x|µ0(dx) + 1

)
e2K1s − 1

))
ds

(3.52)
By a second application of Grönwall lemma, we obtain that for all (t, x, θ) ∈
I ×X ×Θ

|xI(t, x, θ)| ≤
1

2

(
eK1t

((
2

∫
X
|x′|µx

0(dx
′) + 1

)
eK1t − 2

∫
X
|x′|µx

0(dx
′) + 2|x|

)
− 1

)
(3.53)

This estimation proves that
∫
X×Θ

|xI(t, x, θ)|1+pµ0(dx, dθ) < +∞.

For any g : (X × Θ)2 → X and µ0 ∈ P1+p(X × Θ) satisfying the assumptions
of lemma 3.1, we introduce the notation (t, x, θ) → xt0(t, x, θ, µ0) to specify the
dependence with respect to the initial condition (t0, µ0) of the maximal solution.
This notation enables us to express the structure of the semi-group associated with
this kind of differential equation.
Lemma 3.4. Semi-group of the non-local flow
Let g : (X × Θ)2 → X and µ0 ∈ P1+p(X ) satisfying the same assumptions as in
lemma 3.1, and let (t, x, θ) ∈ I ×X ×Θ 7→ xt0(t, x, θ, µ0) be the maximal solution
associated with the initial condition (t0, µ0). Then for all t, t1 ∈ I we have

xt0(t, x, θ, µ0) = xt1(t, xt0(t1, x, θ, µ0), θ, (xt0(t1), IdΘ)#µ0) (3.54)
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Proof. Let us use the notation ξ(t, x, θ) = xt1(t, xt0(t1, x, θ, µ0), θ, (xt0(t1), IdΘ)#µ0).
We have that ξ(t1, x, θ) = xt0(t1, x, θ) for all (x, θ) ∈ X ×Θ. Besides for all t ∈ I,
we have

∂ξ

∂t
(t, x, θ)

=

∫
X×Θ

g(ξ(t, x, θ), θ, xt1(t, x
′, θ′, (xt0(t1), IdΘ)#µ0), θ

′)[(xt0(t1), IdΘ)#µ0](dx
′, dθ′)

=

∫
X×Θ

g(ξ(t, x, θ), θ, ξ(t, x′, θ′), θ′)µ0(dx
′, dθ′)

(3.55)
By uniqueness of the maximal solution of the characteristic flow equation (see
lemma 3.2), we have ξ(t, ., .) = xt0(t, ., .) for all t ∈ I.

The proof that the unique maximal solution is defined over R+ is then a con-
sequence of the boundedness of the state variable, that was established by lemma
3.3.
Lemma 3.5. Globality of the maximal solution
Let g, µ0 satisfy the assumptions in lemma 3.1. Let (I, xI) be the maximal solution
associated with the initial condition (0, µ0). Then R+ ⊂ I.

Proof. Let t∗ = sup(I). Let us assume by contradiction that t∗ < +∞. If t∗ ∈ I,
then we can consider the maximal solution associated with the initial condition
(t∗, (xI(t

∗), IdΘ)#µ0), which is defined over some interval J containing the segment
[t∗ − α; t∗ + α] for some α > 0. So t∗ cannot be in I. From the estimations (3.51)
and (3.53), we deduce that, for all t < t∗,∫ t

0

∣∣∣∣∂xI

∂t
(s, x, θ)

∣∣∣∣ ds
≤ K1

∫ t

0

eK1s

((
2

∫
X
|x′|µ0(dx

′) + 1

)
eK1s −

∫
X
|x′|µ0(dx

′) + |x|
)
ds

≤ 1

2

(
eK1t − 1

)((
2

∫
X
|x′|µ0(dx

′) + 1

)
eK1t + 2|x|+ 1

) (3.56)

In particular, the integral
∫ t

0

∣∣∣∣∂xI

∂t
(s, x, θ)

∣∣∣∣ ds is convergent when t→ t∗. We can

thus define x̃I(t
∗, x, θ) = x+

∫ t∗

0

∂xI

∂t
(t, x, θ)dt. Then we can consider the maximal

solution associated with the initial condition (t∗, (x̃I(t
∗), IdΘ)#µ0), which provides

once again an extension of the maximal solution, leading to a contradiction. There-
fore, t∗ = +∞.
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Now, that the characteristic flow is uniquely defined over R+, the measure solu-
tion of the transport equation can be expressed as the pushforward measure of the
initial distribution by the characteristic flow. We first prove that the pushforward
measure satisfies the transport equation, and afterwards, we prove that this is the
unique possible solution.

Lemma 3.6. The pushforward measure by the non-local flow is a solu-
tion of the transport equation
Let µ0 ∈ P1+p(X × Θ) be a probability measure and g satisfying the assumptions
in lemma 3.1. Let x0 : R+×X ×Θ→ X be the characteristic flow associated with
the initial condition (0, µ0). Then the measure trajectory t 7→ (x0(t), IdΘ)#µ0 is a
measure solution in P1+p(X ×Θ) of the transport equation

∀t ≥ 0,
∂µ

∂t
(t, dx, dθ) + divx

(
µ(t, dx, dθ)

∫
X×Θ

g(x, θ, x′, θ′)µ(t, dx′, dθ′)

)
= 0

µ(0, dx, dθ) = µ0(dx, dθ)
(3.57)

Proof. Let t1, t2 ∈ R+ and let us consider the distribution πt1,t2 defined over (X ×
Θ)2 by

πt1,t2(dx1, dθ1, dx2, dθ2) = (x0(t1), IdΘ, x0(t2), IdΘ)#
(
µ0(dx1, dθ1)δ(x1,θ1)(dx2, θ2)

)
(3.58)

This distribution is the law of the random variable (x0(t1, x, θ), x0(t2, x, θ)) with
(x, θ) being a random variable of distribution µ0. Therefore πt1,t2 is a coupling of
the distributions µ(t1) and µ(t2), or πt1,t2 ∈ Π(µ(t1), µ(t2)). So

W1+p(µ(t1), µ(t2))
1+p ≤

∫
X×Θ

|x0(t1, x, θ)− x0(t2, x, θ)|1+pµ0(dx, dθ) (3.59)

From lemma 3.3 and dominated convergence theorem, we have that the upper-
bound tends to 0 when t1 tends to t2. So t 7→ µ(t) is continuous for the metric
W1+p. By dominated convergence, we also obtain the continuity of the functions

(t, x, θ) 7→
∫
X×Θ

g(x, θ, x0(t, x
′, θ′), θ′)µ0(dx

′, dθ′) =

∫
X×Θ

g(x, θ, x′, θ′)µ(t, dx′, dθ′)

and t 7→
∫
X×Θ

∫
X×Θ

g(x0(t, x, θ), θ, x0(t, x
′, θ′), θ′)µ0(dx

′, dθ′)µ0(dx, dθ)

=

∫
X×Θ

∫
X×Θ

g(x, θ, x′, θ′)µ(t, dx, dθ)µ(t, dx′, dθ′)

(3.60)
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Besides for all test function φ ∈ D(R+ ×X ×Θ)

d

dt

∫
X×Θ

φ(t, x, θ)µ(t, dx, dθ)

=

∫
X×Θ

(
∂φ

∂t
(t, x, θ) +

∂φ

∂x
(t, x, θ).

∫
X×Θ

g(x, θ, x′, θ′)µ(t, dx′, dθ′)

)
µ(t, dx, dθ)

(3.61)

To prove the uniqueness of the solution, we need to have additional assumptions
on the transition function g to ensure the smoothness of the flow with respect to
the initial conditions.
Lemma 3.7. Differentiability of the flow with respect to its initial con-
dition
Let t ∈ R+ 7→ ν(t) ∈ P1+p(X ×Θ) be a continuous trajectory for the metric W1+p.
Let g satisfy the assumptions of lemma 3.1 and an additional regularity assump-
tion: (x1, θ1, x2, θ2) ∈ (X × Θ)2 7→ g(x1, θ1, x2, θ2) is continuously differentiable
with respect to x1 and there exists K3 > 0 such that for all x1, x2 ∈ X , for all
θ1, θ2 ∈ Θ∣∣∣∣ ∂g∂x1

(x1, θ1, x2, θ2)

∣∣∣∣ = sup
|x|=1

∣∣∣∣ ∂g∂x1

(x1, θ1, x2, θ2)x

∣∣∣∣ ≤ K3(1 + |x2|p) (3.62)

Let us define xν : R∗
+ ×X ×Θ→ X satisfying the differential equation:

xν(t0, t0, x, θ) = x

∂xν

∂t
(t, t0, x, θ) =

∫
X×Θ

g(xν(t, t0, x, θ), θ, x
′, θ′)ν(t, dx′, dθ′)

(3.63)

Then xν is globally defined for all (t, t0, x, θ) ∈ R2
+ × X × Θ and is continuously

differentiable with respect to t, t0, x.

Proof. Let us introduce the following notation for the transition function of the
differential equation

Gν : (t, x, θ) ∈ R+ ×X ×Θ 7→
∫
X×Θ

g(x, θ, x′, θ′)ν(t, dx′, dθ′) (3.64)

which is continuous by dominated convergence. Moreover, we have for all t ∈ R+

and for all x1, x2 ∈ X

|G(t, x1, θ)−G(t, x2, θ)| ≤ K2

(
1 +

∫
X×Θ

|x′|pν(t, dx′, dθ′)

)
|x1 − x2| (3.65)
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By continuity of the trajectory t 7→ ν(t) for the metric W1+p, we obtain that the
Lipschitz factor is bounded over all segment [0;T ] and therefore the solution of
the differential equation is globally defined.

The differentiability of the characteristic flow with respect to initial conditions
is a straightforward consequence of theorem 2.2.3 in Golse (2013).11

The uniqueness of the solution is then obtained by considering a specific class
of test functions, satisfying a conservative transport equation.
Lemma 3.8. Uniqueness of the solution of the transport equation
Let µ0 ∈ P1+p(X ×Θ) and g satisfy the assumptions of lemma 3.1 and assumption
(3.62). Let t ∈ R+ 7→ ν(t) ∈ P1+p(X × Θ) satisfy in P1+p(X × Θ) the transport
equation

∂ν

∂t
(t, dx, dθ) + divx

(
ν(t, dx, dθ)

∫
X×Θ

g(x, θ, x′, θ′)ν(t, dx′, dθ′)

)
= 0

ν(0) = µ0

(3.66)

Then for all t ∈ R+, ν(t) = (x0(t), IdΘ)#µ0.

Proof. Let φ0 ∈ C0b (X ×Θ) be a continuously differentiable with respect to x and
let φ : (t, x, θ) ∈ R+×X×Θ 7→ φ0(xν(0, t, x, θ)) ∈ R, where xν is the characteristic
flow associated with the differential equation (3.63). Then, according to theorem
2.2.4 in Golse (2013),11 φ is such that for all (t, x, θ) ∈ R+ ×X ×Θ

∂φ

∂t
(t, x, θ) +

∂φ

∂x
(t, x, θ).

∫
X×Θ

g(x, θ, x′, θ′)ν(t, dx′, dθ′) = 0 (3.67)

So for all t ∈ R+, we have∫
X×Θ

φ0(xν(0, t, x, θ), θ)ν(t, dx, dθ) =

∫
X×Θ

φ0(x, θ)µ0(dx, dθ)∫
X×Θ

φ0(x, θ)[(xν(0, t), IdΘ)#ν(t)](dx, dθ) =

∫
X×Θ

φ0(x, θ)µ0(dx, dθ)

(3.68)

As φ0 is arbitrary, we obtain that (xν(0, t), IdΘ)#ν(t) = µ0 and therefore that
ν(t) = (xν(t, 0), IdΘ)#µ0. By uniqueness of the non local flow, we obtain that
ν(t) = (x0(t), IdΘ)#µ0.

We can now apply the previous results to prove the existence and uniqueness
of the mean field limit distribution associated with the Schneider system. As in
the case where N is finite, we have chosen to fix some conditions on the initial
distribution in order to ensure that the behaviour of the system remains biologically
conceivable, in particular that the average competition remains between 0 and 1.
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Corollary 3.1. Existence and uniqueness of the mean-field distribution
associated with the Schneider system
Let sm > 0, RM > 0, sm < Sm < sm exp(RM), γM > 0 and Θ = R2×[sm; sm exp(RM)]×
[0; γM ] (x ∈ R2, S ∈ [Sm; sm exp(RM)], γ ∈ [0; γM ]). Let µ0 ∈ P(R∗

+×Θ) (s0 ∈ R∗
+)

be a probability distribution satisfying the following properties:

P
{
s0 ∼ µs

0 | smin
0 ≤ s0 ≤ smax

0

}
= 1 (3.69)

where sm < smin
0 and smax

0 . Then, there exists a unique measure solution in
P2(R∗

+ × Θ) satisfying for all t ∈ R+, s ∈ R∗
+, x ∈ R2, S ∈ [sm; sm exp(RM)], γ ∈

[0; γM ]

∂µ

∂t
(t, ds, dx, dS, dγ)

+
∂

∂s

(
γs

(
log(S/sm)

(
1−

∫
R+×R2

C(s, s′, |x− x′|)µs,x(t, ds′, dx′)

)
− log(s/sm)

)
µ(t, ds, dS, dγ)

)
= 0

µ(0, ds, dx, dS, dγ) = µ0(ds, dx, dS, dγ)

(3.70)

where C is defined in equation (1.48). Moreover, we have for all t ≥ 0 that

P
{
(st, S) ∼ µs,S(t) | sm < st < S

}
= 1

P{(st, x, s′t, x′) ∼ µs,x(t)⊗2 | 0 ≤ C(st, s
′
t, |x− x′|) ≤ 1} = 1

(3.71)

Proof. We consider the function gr : R×Θ→ R defined by

gr(r1, x1, S1, γ1, r2, x2) = γ1 (log(S1/sm)(1− Cr(r1, r2, |x1 − x2|)− r1)

Cr(r1, r2, |x1 − x2|) =
r2

2RM(1 + |x1 − x2|2/σ2
x)

(
1 + tanh

(
r2 − r1
σr

)) (3.72)

gr is sublinear with respect to the variables r. For all r1, r2 ∈ R and for all
x1, x2 ∈ R2, S1 ∈ [Sm; sm exp(RM)], γ1 ∈ [0; γM ] we have

|gr(r1, x1, S1, γ2, r2, x2)| ≤ γM(RM + |r1|+ |r2|) (3.73)
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The partial derivatives are also sublinear with respect to r:

∂gr
∂r1

(r1, x1, S1, γ1, r2, x2) = γ1

(
r2 log(S1/sm)(1− tanh2((r2 − r1)/σr))

2RMσr(1 + |x1 − x2|2/σ2
x)

− 1

)
∣∣∣∣∂gr∂r1

(r1, x1, S1, γ1, r1, x
′)

∣∣∣∣ ≤ γM

(
1 +

|r2|
2RMσr

)
∂gr
∂r2

(r1, x1, S1, γ1, r2, x2) = −
γ1σ

2
x log(S1/sm)(σr tanh(

r2−r1
σr

) + r2(1− tanh2( r2−r1
σr

)) + σr)

2RMσr(σ2
x + |x1 − x2|2)∣∣∣∣∂gr∂r2

(r1, x1, S1, γ1, r2, x2)

∣∣∣∣ ≤ γM

(
2 +
|r2|
2σr

)
(3.74)

We deduce from these inequalities an upper-bound on the variations of gr with
respect to variables r. For all r1, r

′
1, r2, r

′
2 ∈ R and for all x, x′ ∈ R2, S ∈

[Sm; sm exp(RM)], γ ∈ [0; γM ]

|gr(r1, x, S, γ, r′1, x′)− g(r2, x, S, γ, r
′
2, x

′)| ≤

γM

((
1 +

|r′1|
2RMσr

)
|r1 − r2|+

(
2 +
|r′1|+ |r′2|

2σr

)
|r′1 − r′2|

) (3.75)

We consider the distribution ν0 obtained by the change of variable ν0 = (log(./sm), IdΘ)#µ0.
Then ν0 has moments up to any order as it has a compact support. By ap-
plying the results from lemma 3.1 to lemma 3.8, we obtain that there exists
a unique measure trajectory t ∈ R+ 7→ ν(t) ∈ P(R × Θ) such that for all
r ∈ R, x ∈ R2, S ∈ [Sm; sm exp(RM)] and γ ∈ [0; γM ]

∂ν

∂t
(t, dr, dx, dS, dγ) +

∂

∂r

(
ν(t, dr, dx, dS, dγ)

∫
R+×R2

gr(r, x, S, γ, r
′, x′)νr,x(t, dr′, dx′)

)
= 0

ν(0) = ν0
(3.76)

By doing the reverse change of variable µ(t) = (sm exp(.), IdΘ)#ν(t), we obtain
the solution of the desired transport equation.

The characteristic flow associated with the measure trajectory satisfies the
following non-local differential equation for all t ∈ R+ and all s0, x, S, γ such that
sm < s0 < S and (x, S, γ) ∈ Θ

∂

∂t
log(s(t, s0, x, S, γ)/sm) = γ

(
log(S/sm)(

1−
∫
R∗
+×R2

C(s(t, s0, x, S, γ), s
′, |x− x′|)µs,x(t, ds′, dx′)

)
− log(s(t, s0, x, S, γ)/sm)

)
(3.77)
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Let us consider the interval

ID = {t ∈ R+ | ∀τ ∈ [0; t),∀(s0, x, S, γ) ∈ [smin
0 ; smax

0 ]×Θ, sm < s(t, s0, x, S, γ) < S}
(3.78)

and t∗ = sup(ID). By continuity of the characteristic flow, t∗ > 0. For all t ∈ [0; t∗)
we have

− γ log(s(t, s0, x, S, γ)/sm) ≤
∂

∂t
log(s(t, s0, x, S, γ)/sm) ≤ γ log(S/s(t, s0, x, S, γ))

sm(s0/sm)
e−γt ≤ s(t, s0, x, S, γ) ≤ S(s0/S)

e−γt

(3.79)
So, if t∗ < +∞, we obtain that sm < s(t∗, s0, x, S, γ) < S, which is in contradiction
with the definition of t∗. So t∗ = +∞.

In equation (3.77), the state variable s(t) represents the growth of a plant in
an infinitely crowded population. However, we have not proved yet the connection
between the evolution of an individual within a finite population and the mean-
field flow. That is the topic of the next section. This asymptotic behaviour of
the dynamics is well-defined in the case of the Schneider system, as the transition
function of the system has a pointwise limit when N tends to∞. But what can we
say about other symmetric systems, that may not have this asymptotic property
?

For instance, in the case of the Spring Cloud system, the transition function
has the following expression

hN(x, v, κ,m, µ) =

 v
Nκ

m

∫
R2×R+

κ′(x′ − x)µx,κ(dx′, dκ′)

 (3.80)

where µ can be taken in the set of probability distributions satisfying∫
R2×R+

κ|x|µx,κ(dx, dκ) < ∞. Here, the factor N causes the divergence of the

transition function. We can get rid of it by considering a change of time scale. Let
us consider the new time scale t′ ← t

√
N depending on the size of the population

and let us consider new state variables

x̂i(t) = xi(t/
√
N)

v̂i(t) =
vi(t/
√
N)√

N

(3.81)

The new system for these state variables is then, for all i ∈ J1;NK
d2x̂i

dt2
(t) =

κi

Nmi

N∑
j=1

κj(x̂j(t)− x̂i(t)) (3.82)
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and the divergent component of the transition function becomes
κ

m

∫
R2×R+

κ′(x′ − x)µx,κ(dx′, dκ′) and therefore the new system has a pointwise

limit. The exact same methodology as in the case of the Schneider system can be
used here to prove the existence and uniqueness of the mean-field distribution.
Corollary 3.2. Existence and uniqueness of the mean-field distribution
for the Spring Cloud system
Let 0 < κmin < κmax, 0 < mmin < mmax, Θ = [κmin;κmax] × [mmin;mmax] and
µ0 ∈ P1(R4 × Θ). Then there exists a unique solution in P1(R4 × Θ) of the
transport equation

∂µ

∂t
(t, dx, dv, dκ, dm) + v.

∂µ

∂x
(t, dx, dv, dκ, dm)

+
κ

m

∂µ

∂v
(t, dx, dv, dκ, dm).

∫
R2×R+

κ′(x′ − x)µx,κ(t, dx′, dκ′) = 0

µ(0) = µ0

(3.83)

This transport equation is associated with the following non-local characteristic
flow

∂2x

∂t2
(t, x0, v0, κ,m) =

κκ̄

m
(xκ(t)− x(t, x0, v0, κ,m))

where κ̄ =

∫
R+

κ′µκ
0(dκ

′) and xκ(t) =
1

κ̄

∫
R2×R+

κ′x′µx,κ(t, dx′, dκ′)
(3.84)

The mean-field characteristic flow in the case of Spring Cloud might be more
difficult to interpret than in the case of the Schneider system. Equation (3.84)
monitors the motion of a particle in interaction with infinitely many particles, but
whose motion is also slowed down with an infinite factor. When the size of the
population becomes larger, the particles goes faster but their trajectories tend to
have invariant shapes.

A similar phenomenon can be observed for the Cucker-Smale system (see equa-
tion 1.19), but with a different time scale. We consider the change of time scale
t← Nt and the state variables

x̂i(t) = xi(t/N)

v̂i(t) =
vi(t/N)

N

(3.85)

As proved in Bolley et al (2011),1 if the initial distribution µ0 is chosen in P2(R4×
[mmin;mmax]) with mmin > 0, then there exists a unique measure trajectory t ∈
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R+ 7→ µ(t) ∈ P2(R4 × [mmin;mmax]) solution of

∂µ

∂t
(t, dx, dv, dm) + v.

∂µ

∂x
(t, dx, dv, dm)

+
H

m

∂

∂v

(
µ(t, dx, dv, dm)

∫
R2d

v′ − v

(1 + |x− x′|/σx)β
µx,v(t, dx′, dv′)

)
= 0

(3.86)

3.4 Propagation of chaos and mean-field approx-
imation

This section gives the proofs associated with the convergence of the microscopic
system, represented by the empirical population measure µ̂N(t), to the macroscopic
system, represented by the solution of the non-local transport equation, whose
existence and uniqueness were established in the previous section. We also examine
how the mean-field limit can simplify the inference problems introduced in chapter
2. These proofs are carried out in the specific cases of the Schneider system and
of the Spring Cloud system.

The empirical measure’s convergence to the mean-field distribution is referred
to in the literature as the phenomenon of chaos propagation. The fundamentals
of this notion were introduced by Kac (1956)14 for gas kinetic equations. A com-
prehensive description of the different aspects of chaos propagation is provided
by Sznitman (1991).26 In this context, chaos describes the state of a symmetric
system containing an infinite number of independent and identically distributed
particles. In particular, the initial configuration of a system sampled from some
distribution µ0 constitutes the simplest example of chaotic systems. It is clear,
for any finite population of interacting particles, that the particles’ initial inde-
pendence is no longer valid for any t > 0. In some situations, we can nevertheless
say that the system is chaotic if the population distribution µ1:N(t), defined over
P
(
(X ×Θ)N

)
, behaves as a factorized distribution µ1:N(t) ≈ µ∞(t)⊗N asymptoti-

cally when N →∞. More formally, a sequence of symmetric distributions is called
chaotic if for any k ∈ N∗, the marginal distribution µ

(k)
1:N(t) converges weakly in

P((X × Θ)k) to some factorized distribution µ∞(t)⊗k. Here, µ(k)
1:N(t) denotes the

marginal distribution of any sub-group of k individuals within a population of size
N . As stated in proposition 2.2 of Sznitman (1991),26 chaos is equivalent to the
convergence of the empirical distribution to some distribution. We can intuitively
understand this equivalence for the symmetric empirical system having a transi-
tion function of the form hN(t, x, θ, µ̂N(t)). If the transition function hN converges
in some sense towards a function h(t, x, θ, µ(t)), where µ(t) is a deterministic prob-
ability distribution 1, then within this infinitely crowded population, any couple of

1oxymoron to be understood in opposition to a random probability measure, such as the
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particles x1, x2 would evolve according to the equations ẋ1(t) = h(t, x1(t), θ1, µ(t))
and ẋ2(t) = h(t, x2(t), µ(t)), so the two particles would be independent. This result
justifies the idea of propagation: the initial independence of the particles is some-
what propagated over time by the dynamics of the macroscopic system. Besides,
the marginal distributions of the two particles could only be the limit distribution
µ(t)⊗2, in keeping with the fact that, in the microscopic case, we can sample two
individuals in the population from µ̂N(t)

⊗2.
A simple methodology to prove the propagation of chaos, especially suited to

models with a certain degree of smoothness, is based on Dobrushin’s stability.10

The steps are clearly explained in Golse (2013).12 First, one starts from a classical
statistical result linking the initial distribution µ0 with the empirical measure asso-
ciated with an independent and identically distributed sample from µ0. Then, the
convergence µ̂N(0) → µ0 is propagated over time using consequences of Grönwall
lemma to establish that µ̂N(t) → µ(t), where µ(t) is the unique solution of the
non-local transport equation of initial condition µ0. Let us start by introducing
the result concerning the convergence of the initial conditions.
Theorem 3.3. Fundamental principle of statistics (Varadarajan, 195828)
Let µ ∈ Pp(Z) for some Polish metric space (Z, d), and let Wp be the Wasserstein
distance associated with d. We use the notation (zn)n∈N∗ ∼ µ⊗∞ for any sequence
of independent and identically distributed variables of distribution µ. Then we
have that

P

{
(zn)n∈N ∼ µ⊗∞ | lim

N→∞
Wp

(
1

N

N∑
n=1

δzi , µ

)
= 0

}
= 1 (3.87)

The distance used to quantify the propagation of chaos is the Wasserstein dis-
tance of some order. The propagation of chaos enables to prove thatWp(µ̂N(t), µ(t))
→ 0 almost surely even for empirical measures that are sums of non-independent
Dirac distributions (for t > 0). This result is possible because the initial conver-
gence is jointly transported by the flows associated with µ̂N(t) and µ(t).

3.4.1 Propagation of chaos in the case of the Schneider
system

In the following of this section, we consider the Schneider system. We first prove
that the empirical flow associated with µ̂N(t) is well-defined in the case of the
Schneider system.
Lemma 3.9. Well-posedness of the empirical flow associated with the
Schneider system
empirical population measure µ̂N (t)
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We use the same assumptions for the initial distribution µ0 ∈ P(R∗
+×Θ) as in corol-

lary 3.1. Let z01:N = (s0i , xi, Si, γi)1≤i≤N ∈ ([smin
0 ; smax

0 ]×R2×[Sm; sme
RM ]×[0; γM ])N

an initial configuration, and let t ∈ R+ 7→ µ̂N(t) be the empirical population mea-
sure associated with this initial configuration. Then for any (s0, θ) = (s0, x, S, γ) ∈
[smin

0 ; smax
0 ]×Θ, there exists a unique global solution of the differential equation

ŝN(0, s0, θ) = s0

∂ŝN
∂t

(t, s0, θ) = γ1ŝN(t, s0, θ)

(
log(S1/sm)

(
1− 1

N − 1

N∑
i=1

C(ŝN(t, θ1), si(t), |x1 − xi|)

+
C(ŝN(t, s0, θ1), ŝN(t, θ1), 0)

N − 1

)
− log

(
ŝN(t, s0, θ1)

sm

))
(3.88)

Moreover, we have for all i ∈ J1;NK: ŝN(t, s
0
i , xi, Si, γi) = si(t), the individual

trajectory associated with the initial configuration z01:N , and for all (s0, x, S, γ) ∈
[smin

0 ; smax
0 ] and t ∈ R+, we have the bounds

sNm = sm exp

(
− RM

2N − 3

)
≤ ŝN(t, s, x, S, γ) ≤ sm exp

(
log(S/sm)

1− log(S/sm)
2(N−1)RM

)
= ŜN(S)

(3.89)
In particular, the empirical flow ŝN determines the semi-group associated with

the empirical measure of the population.

(ŝN(t), IdΘ)#µ̂N(0, z
0
1:N) = µ̂N(t, z

0
1:N) (3.90)

Proof. We consider the function GN : R+ × R×Θ× R defined by

∀r ∈ R, (x, S, γ) ∈ Θ, GN(t, r, x, S, γ)

= γ

(
log(S/sm)

(
1− 1

N − 1

N∑
i=1

Cr(r, log(si(t)/sm), |x− xi|)

)

−
(
1− log(S/sm)

2(N − 1)RM

)
r

) (3.91)

where Cr is defined in equation (3.72). The function GN is continuously differen-
tiable, in particular locally Lipschitz continuous. Therefore, there exists a unique
maximal solution for any initial configuration (r0, θ) ∈ R×Θ. Moreover, according
to proposition 1.3, we can obtain an inequality enabling to prove that the maximal
solution is globally defined.

∀(t, r, θ) ∈ R+ × R×Θ, |GN(t, r, θ)| ≤ γM (RM + |r|) (3.92)
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By the change of variable r = log(s/sm), there exists a unique global solution of
the differential equation (3.88). For any time t ≥ 0, we have for all (s, x, S, γ) ∈
[smin

0 ; smax
0 ]×Θ

∂

∂t
log(ŝN(t, s, x, S, γ)/sm)

≥ γ

(
log(S/sm)

(
1− N

N − 1

)
−
(
1− log(S/sm)

2(N − 1)Rm

)
log(ŝN/sm)

) (3.93)

Similarly as in lemma 1.1, we can derive a lower bound for the empirical flow.

log(ŝN(t, s, x, S, γ)/sm) ≥ −
2RM log(S/sm)

2(N − 1)RM − log(S/sm)

+

(
log(s/sm) +

2RM log(S/sm)

2(N − 1)RM − log(S/sm)

)
exp

(
−γ
(
1− log(S/sm)

2(N − 1)Rm

)
t

)
(3.94)

We can derive a global lower bound by considering the inequality

− 2RM log(S/sm)

2(N − 1)RM − log(S/sm)
≥ − 2RM

2N − 3
(3.95)

As for the upper-bound, we have for the derivative of the empirical flow

∂

∂t
log(ŝN(t, s, x, S, γ)/sm)

≤ γ

(
log(S/sm)−

(
1− log(S/sm)

2(N − 1)RM

)
log(ŝN(t, s, x, S, γ)/sm)

)
Thus, by the Grönwall lemma,

log(ŝN(t, s, x, S, γ)/sm) ≤
log(S/sm)

1− log(S/sm)
2(N−1)RM

−

(
log(S/sm)

1− log(S/sm)
2(N−1)RM

− log(s/sm)

)
exp

(
−γ
(
1− log(S/sm)

2(N − 1)RM

)
t

)
(3.96)

Let us proceed to the proof of the propagation of chaos for the Schneider
system.
Proposition 3.3. Propagation of chaos for the Schneider system
We use the same assumption as in corollary 3.1 for the initial distribution µ0 ∈
P(R∗

+ × Θ). Moreover, we assume that the moment
∫
R2

|x|2µx
0(dx) is finite. For
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any initial configuration z01:N ∈ ([smin
0 ; smax

0 ] × Θ)N , µ̂N(t, z
0
1:N) is the empirical

population measure associated with this initial configuration. Then we have the
following almost sure convergence

P
{
(z0n)n∈N∗ ∼ µ⊗∞

0 | ∀t ≥ 0, lim
N→∞

W1(µ̂N(t, z
0
1:N), µ(t)) = 0

}
= 1 (3.97)

Proof. Let z01:N ∈ ([smin
0 ; smax

0 ]×Θ)N be an initial configuration. Let πs ∈ Π(µ̂s
N(0, z

0
1:N), µ

s
0),

πx ∈ Π(µ̂x
N(0, z

0
1:N), µ

x
0), πS ∈ Π

(
µ̂S
N(0, z

0
1:N), µ

S
0

)
and πγ ∈ Π(µ̂γ

N(0, z
0
1:N), µ

γ
0) be

a set of couplings associated with the marginal distributions of the empirical dis-
tribution and the initial distribution. From these couplings, we build the initial
coupling π0 = πs ⊗ πx ⊗ πS ⊗ πγ, which is in Π(µ̂N(0, z

0
1:N), µ0).

We consider the empirical flow ŝN associated with the empirical population
measure t 7→ µ̂N(t, z

0
1:N), whose properties are studied in lemma 3.9. The mean-

field flow associated with t 7→ µ(t) is denoted by s∞. For any t ≥ 0, we define
the coupling πt = (ŝN(t), IdΘ, s∞(t), IdΘ)#π0 ∈ Π(µ̂N(t, z

0
1:N), µ(t)). The space

R∗
+ ×Θ is endowed with the metric mZ defined by

mZ(s1, θ1, s2, θ2) =
|s1 − s2|+ |S1 − S2|

sm
+
|x1 − x2|

ℓ
+ τr|γ1 − γ2|

=
|s1 − s2|

sm
+mΘ(θ1, θ2)

(3.98)

where ℓ, τr > 0 are arbitrary constants. For this metric and for any time t ≥ 0,
the Wasserstein distance between distributions µ̂N(t, z

0
1:N) and µ(t) is expressed as

follows

W1(µ̂N(t, z
0
1:N), µ(t)) = inf

{∫∫
(R∗

+×Θ)2
mZ(s1, θ1, s2, θ2)π(ds1, dθ1, ds2, dθ2),

π ∈ Π
(
µ̂N(t, z

0
1:N), µ(t)

)}
(3.99)

The coupling πt provides an upper-bound of the Wasserstein distance at time t.

W1(µN(t, z
0
1:N), µ(t)) ≤

∫∫
(R∗

+×Θ)2

(
|s1 − s2|

sm
+mΘ(θ1, θ2)

)
πt(ds1, dθ1, ds2, dθ2)

≤ 1

sm

∫∫
(R∗

+×Θ)2
|ŝN(t, s1, θ1)− s∞(t, s2, θ2)|π0(ds1, dθ1, ds2, dθ2)

+

∫∫
Θ2

mΘ(θ1, θ2)π
θ
0(dθ1, dθ2)

(3.100)
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Let us focus on the first term of the upper-bound.

Dπ0
N (t) =

∫∫
(R∗

+×Θ)2
|ŝN(t, s1, θ1)− s∞(t, s2, θ2)|π0(ds1, dθ1, ds2, dθ2) (3.101)

As detailed in the appendix page 157, We can prove that

Dπ0
N (t) ≤ smax

0 eRMRM

N − 1
+

tA(µ̂N(0, z
0
1:N))

N − 1
+ eRM

∫∫
(R∗

+)2
|s1 − s2|πs

0(ds1, ds2)

+ tB(µ̂x
N(0, z

0
1:N), µ

x
0)

√∫∫
R4

|x1 − x2|2πx
0 (dx1, dx2)

+ αS

∫∫
[Sm;smeRM ]2

|S1 − S2|πS
0 (dS1, dS2)

+ αγt

∫∫
[0;γM ]2

|γ1 − γ2|πγ
0 (dγ1, dγ2) + βN

∫ t

0

Dπ0
N (τ)dτ

(3.102)
where the functionals A(µ), B(µ1, µ2) have the following expressions:

A(µ) =
1

2RM

∫
R∗
+×[Sm;smeRM ]×[0;γM ]

(
sS

sm
γ log(s/sm) + smax

0 eRMRMγ log(S/sm)

)
× µs,S,γ(ds, dS, dγ)

B(µ1, µ2) =
smax
0 eRMRMγM

σ2
x

(
2

∫
R2

|x|µ2(dx) +

√
2

∫
R2

|x|2µ2(dx) + 2

∫
R2

|x|2µ1(dx)

+

∫
R2

√
2

∫
R2

|x|2µ1(dx) + 2

∫
R2

|x|2µ1(dx)− 4x′.

(∫
R2

xµ1(dx) +

∫
R2

xµ2(dx)

)
µ1(dx

′)

)
(3.103)

and the coefficients αS, αγ, βN are

αS = (s0max/Sm)

αγ = s0max log

(
smax
0

sm

)
eRM + s0maxe

RMRM

βN =
smax
0 eRMRMγM

sNmσr

(1 + σr/RM + 1/2)

(3.104)

We can find in the appendix, page 157, the detailed derivation of the upper-bound
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of Dπ0
N (t) in inequation (3.102). By Grönwall lemma, we obtain that

Dπ0
N (t) ≤ 1

βN

(
A(µ̂N(0, z

0
1:N))

N − 1
+B(µ̂x

N(0, z
0
1:N), µ

x
0)

√∫∫
R4

|x1 − x2|2πx
0 (dx1, dx2)

+αγ

∫∫
[0;γM ]2

|γ1 − γ2|πγ
0 (dγ1, dγ2)

)(
eβN t − 1

)
+

(
smax
0 eRMRM

N − 1

+ eRM

∫∫
[smin

0 ;smax
0 ]2
|s1 − s2|πs

0(ds1, ds2) +αS

∫∫
[sm;smeRM ]2

|S1 − S2|πS
0 (dS1, dS2)

)
eβN t

(3.105)
By gathering the terms from inequalities (3.105) and (3.100), we obtain the follow-
ing upper-bound on the Wasserstein distance between the empirical distribution
and the mean-field distribution at time t

W1(µ̂N(t, z
0
1:N), µ(t)) ≤

eRM

sm
W1(µ̂

s
N(0, z

0
1:N), µ

s
0)e

βN t

+

(
B(µ̂x

N(0, z
0
1:N), µ

x
0)

smβN

(
eβN t − 1

)
+

1

ℓ

)
W2(µ̂

x
N(0, z

0
1:N , µ

x
0))

+

(
αSe

βN t + 1
)

sm
W1(µ̂

S
N(0, z

0
1:N), µ

S
0 ) +

(
αγ

sm

(
eβN t − 1

)
+ τr

)
W1(µ̂

γ
N(0, z

0
1:N), µ

γ
0)

+
1

sm(N − 1)

(
AN(µ̂N(0, z

0
1:N), µ0)

βN

(eβN t − 1) + smax
0 eRM+βN tRM

)
(3.106)

From the law of large numbers, we have the following almost sure convergences

P(ΩA) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

A(µ̂N(0, z
0
1:N)) = A(µ0)

}
= 1

P(ΩB) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

B(µ̂x
N(0, z

0
1:N), µ

x
0) = B(µx

0 , µ
x
0)
}
= 1

(3.107)

From Varadarajan’s theorem (theorem 3.3), we have also

P(Ωs) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

W1(µ̂
s
N(0, z

0
1:N), µ

s
0) = 0

}
= 1

P(Ωx) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

W2(µ̂
x
N(0, z

0
1:N , µ

x
0)) = 0

}
= 1

P(ΩS) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

W1(µ̂
S
N(0, z

0
1:N), µ

S
0 ) = 0

}
= 1

P(Ωγ) = P
{
z01:N ∼ µ⊗∞

0 | lim
N→∞

W1(µ̂
γ
N(0, z

0
1:N), µ

γ
0) = 0

}
= 1

(3.108)

As the intersection of all these events is of probability one, and as (βN)N≥1 is
convergent, we obtain the result we want to prove.
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In the previous proof, we have obtained estimations of the Wasserstein dis-
tance having exponential growth with respect to time. In practice however, the
discrepancy between the two distribution remains bounded in time, since all the
dynamics of the Schneider system take place in a compact region of the space.
Uniform bounds in time can be obtained, by adopting methodologies developed
in Salhi et al. (2018).24 Arguments specific to Maxwell kinetic model are used
in Cortez and Fontbona (2018)7 to obtain estimates contracting with times. In
the case of the Schneider system especially, these bounds can be refined by con-
sidering the differential system satisfied by the gradients of the empirical flow
and the mean-field flow. As for the dependency with respect to N , sharp esti-
mates are derived for the expectation EWp in Kac model by Cortez and Fontbona
(2016).8 In the situation where the propagation of chaos is proved by means of Do-
brushin’s stability, the dependency on N of the estimate is mainly monitored by
the quantification of the speed of convergence of the initial distributions, ensured
by Varadarajan’s theorem. For an estimation of the convergence’s speed, we can
refer to Lei (2020).19

It is worth noting that the proof of the propagation of chaos in the absence
of smoothness assumption can be done by resorting to Bogolioubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy, which studies the dynamics of the population
distributions µ1:N(t), and their convergence to some factorized distribution. This
is one of the ingredient of the proof of propagation of chaos for a system with
topological interactions in Degond and Pulvirenti (2019).9 One can also adopt
the approach used in Lagoutière and Vauchelet (2017),18 consisting in proving the
convergence of the empirical population measure by a compactness argument, and
thus prove the existence and uniqueness of the mean-field distribution.

Some properties of the macroscopic distribution t 7→ µ(t) have a statistical in-
terest. First of all, it enables to describe individual trajectories that do not depend
on the size N of the population, which constitutes a latent variable that may be
difficult to estimate, as mentioned in section 2.6. Moreover, all the other latent
variables associated with the unobserved part of the system are somehow sum-
marized by the distribution µ(t), and they do not need to be inferred in order to
access parameters of actual interest. Finally, the independence of the individuals
under the macroscopic regime opens up possibilities to distribute the inference cal-
culations more efficiently. Therefore, we are going to use µ(t) to build a consistent
approximation of an inference problem.

133



Mean-field approximated inference

3.4.2 Mean-field approximated inference in the case of the
Schneider system

In the Schneider system, let us assume that initially all plants have the size s0,
which is an unknown value in the interval [smin

0 ; smax
0 ]. The values of the compe-

tition parameters σx, σr are also unknown. We would like to infer η = (s0, σx, σr)
from the observations of N0 plants at times t1, ..., tM , with standard error σ. These
plants are assumed to be within a population of size N , which is also unknown.
The prior on the parameters is uniform, and the prior on the size of the population
is a shifted Poisson distribution N0 + Poisson(λ). Conditionally to the parameter
η, the likelihood of the observation s ∈ RN0M is

p(s|η) = 1

(2πσ2)
N0M

2

+∞∑
N=N0

pN(N)

∫
ΘN

N0∏
i=1

M∏
j=1

exp

(
−(sij − sNi (tj, η, θ1:N))

2

2σ2

)
× (µθ

0)
⊗N(dθ1:N)

(3.109)

p(s|η) =
+∞∑

N=N0

pN(N)ps|η,N(s|η,N) (3.110)

where pN(N) =
λN−N0

(N −N0)!
e−λ is the density of the Poisson distribution with

respect to the counting measure, and where sNi is the empirical flow.

sNi (t, η, θ1:N) = sm

(
s0
sm

)e−γit

exp

(
γie

−γit log(Si/sm)

∫ t

0

(
1− ĈN

i (τ, η, θ1:N)
)
eγiτdτ

)
ĈN

i (t, η, θ1:N) =
1

N − 1

∑
j ̸=i

C(sNi (t, η, θ1:N), s
N
j (t, η, θ1:N), |xi − xj|)

(3.111)
For N large enough, we can consider an approximation of the likelihood density
ps|η,N by replacing the empirical flow by the mean-field flow s∞.

s∞(t, η, θi) = sm

(
s0
sm

)e−γit

exp

(
γie

−γit log(Si/sm)

∫ t

0

(1− C∞(τ, η, θi)) e
γiτdτ

)
C∞(t, η, θi) =

∫
Θ

C(s∞(t, η, θi), s∞(t, η, θ′), |xi − x′|)µθ
0(dθ

′)

(3.112)
The approximation of ps|η,N by use of the mean-field flow is denoted by p∞s|η.

p∞s|η(s|η) =
1

(2πσ2)
N0M

2

N0∏
i=1

∫
Θ

M∏
j=1

exp

(
−(sij − s∞(tj, η, θi))

2

2σ2

)
µθ
0(dθi) (3.113)
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We can notice that the independence between the observed individuals is translated
by the fact that the integral and the product signs have permuted, and that there
is no latent variable associated with unobserved individual. The other level of
simplification concerns the latent variable N . If we consider that the mean-field
approximation is relevant above some threshold of the population size N∞, we can
consider the following approximation of the joint likelihood density p̂N∞

s|η .

p̂N∞
s|η (s|η) =

N∞∑
N=N0

pN(N)ps|η,N(s|η,N) +

(
+∞∑

N=N∞+1

pN(N)

)
p∞s|η(s|η) (3.114)

In the original problem (equation 3.110), the support of the latent variable N
is infinite, whereas in the approximated problem (equation 3.114) it has a finite
support. Let us prove the consistency of this approximation. For convenience, we
quantify the convergence of the the mean-field approximated density to the exact
density in terms of total variation distance.
Definition 3.6. Total variation distance (from definition 2.4 and lemma
2.1 in Tsybakov (2008)27)
Let (Z,BZ) be a measurable space. The total variation distance is the metric
defined over the set of probability measures P(Z) by

∀µ, ν ∈ P(Z), dTV (µ, ν) = sup{|µ(A)− ν(A)|, A ∈ BZ} (3.115)

Let µ, ν ∈ P(Z) be two probability measures being absolutely continuous with respect
to some σ−finite measure λ. Then we have

dTV (µ, ν) =
1

2

∫
Z

∣∣∣∣dµdλ(z)− dν

dλ
(z)

∣∣∣∣λ(dz) (3.116)

Lemma 3.10. Mean convergence of Wasserstein distance
Let (Z,mZ) be a Polish metric space and µ ∈ Pp(Z) for some p ≥ 1. Then:

• if p = 1 and if diam(Z) = sup{mZ(z1, z2), (z1, z2) ∈ (Z)2} <∞, we have

lim
N→∞

E

{
W1

(
1

N

N∑
n=1

δzn , µ

)
, z1:N ∼ µ⊗N

}
= 0 (3.117)

• if p > 1, we have

lim
N→∞

E

{
Wp

(
1

N

N∑
n=1

δzn , µ

)
, z1:N ∼ µ⊗N

}
= 0 (3.118)
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Proof. Let ε > 0. Let N ∈ N∗.

E
{
Wp(µ̂(z1:N), µ), z1:N ∼ µ⊗N

}
≤ ε

2
P
{
z1:N ∼ µ⊗N | Wp(µ̂N(z1:N), µ) ≤

ε

2

}
+ E

{
Wp(µ̂N(z1:N), µ)I

{
Wp(µ̂N(z1:N), µ) ≥

ε

2

}
, z1:N ∼ µ⊗N

}
(3.119)

By theorem 3.3, the Wasserstein distance between the empirical measure and the
sampling distribution converges in probability to 0. If p = 1 and if diam(Z) <∞,
there exists N0 ∈ N∗ such that for all N ≥ N0, we have

P
{
z1:N ∼ µ⊗N | W1(µ̂N(z1:N), µ) ≥

ε

2

}
≤ ε

2diam(Z) (3.120)

Then for any N ≥ N0

E
{
W1(µ̂N(z1:N), µ), z1:N ∼ µ⊗N

}
≤ ε (3.121)

If p > 1, there exists N1 ∈ N∗ such that for all N ≥ N1

P
{
z1:N ∼ µ⊗N | Wp(µ̂N(z1:N), µ) ≥

ε

2

}
≤ ε

2

(∫∫
Z2

mZ(z1, z2)
pµ⊗2(dz1, dz2)

)− 1
p

(3.122)
By Hölder’s inequality, we have that

E
{
Wp(µ̂N(z1:N), µ)I{Wp(µ̂N(z1:N), µ) ≥ ε}, z1:N ∼ µ⊗N

}
≤ E

{
Wp(µ̂N(z1:N), µ)

p, z1:N ∼ µ⊗N
}1/p P{Wp(µ̂N(z1:N), µ) ≥

ε

2

} (3.123)

Besides, we can obtain an upper-bound of the Wasserstein distance by considering
the independent coupling π̂ = µ̂N ⊗ µ.

Wp(µ̂N , µ)
p ≤ 1

N

N∑
n=1

∫
Z
mZ(zn, z

′)pµ(dz′)

E
{
Wp(µ̂N , µ)

p, z1:N ∼ µ⊗N
}
≤
∫∫

Z2

mZ(z1, z2)
pµ⊗2(dz1, dz2)

(3.124)

We conclude that for all N ≥ N1, we have that

E
{
Wp(µ̂N(z1:N), µ), z1:N ∼ µ⊗N

}
≤ ε (3.125)
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Proposition 3.4. Consistency of the mean-field approximation
Let H = [smin

0 ; smax
0 ] × [σmin

x ;σmax
x ] × [σmin

r ;σmax
r ] be the parameter space, endowed

with the prior distribution µη ∈ P(H). Let µ0(s0) = δs0⊗µθ be the initial distribu-
tion of the system, parameterized by the initial size of the plants s0 ∈ [smin

0 ; smax
0 ].

µθ ∈ P(Θ) is such that ∀s0 ∈ [smin
0 ; smax

0 ] the initial distribution µ0(s0) satisfies the
assumptions of corollary 3.1. Let pN be the prior density of the population size
N , with support included within JN0; +∞J. We consider the marginal distribution
of the observations s conditionally to the population size N , having a density with
respect to the Lebesgue measure of RN0M .

∀s ∈ RN0M , ps|N(s) =

∫
H
ps|η,N(s|η,N)µη(dη) (3.126)

where the density ps|η,N is defined in equations (3.109) and (3.110). We also
introduce the mean-field marginal density of the observation.

∀s ∈ RN0M , p∞s (s) =

∫
H
p∞s|η(s|η)µη(dη) (3.127)

where p∞s|η is defined in equation (3.113). Then we have

dTV

(
ps|N , p

∞
s

)
−−−→
N→∞

0 (3.128)

Proof. Let N ≥ N0. We have

dTV

(
ps|N , p

∞
s

)
=

1

2

∫
RN0M

∣∣ps|N(s)− p∞s (s)
∣∣λ(ds)

≤ 1

2(2πσ2)
N0M

2

∫
RN0M

∫
H

∫
ΘN

∣∣∣∣∣exp
(
− 1

2σ2

N0∑
i=1

M∑
j=1

(sij − sNi (tj, η, θ1:N))
2

)

− exp

(
− 1

2σ2

N0∑
i=1

M∑
j=1

(sij − s∞(tj, η, θi))
2

)∣∣∣∣∣µ⊗N
θ (dθ1:N)µη(dη)λ(ds)

(3.129)
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We consider the term between the absolute values.∣∣∣∣∣exp
(
− 1

2σ2

N0∑
i=1

M∑
j=1

(sij − sNi (tj, η, θ1:N))
2

)
− exp

(
− 1

2σ2

N0∑
i=1

M∑
j=1

(sij − s∞(tj, η, θi))
2

)∣∣∣∣∣
= exp

(
−|s|

2

2σ2

) ∣∣∣∣∣exp
(
− 1

2σ2

N0∑
i=1

M∑
j=1

(sNi (tj, η, θ1:N)
2 − 2sijs

N
i (tj, η, θ1:N))

)

− exp

(
− 1

2σ2

N0∑
i=1

M∑
j=1

(s∞(tj, η, θi)
2 − 2sijs∞(tj, η, θi))

)∣∣∣∣∣
≤ 1

2σ2
exp

(
−‖s‖

2

2σ2

) ∣∣∣∣∣
N0∑
i=1

M∑
j=1

(sNi (tj, η, θ1:N) + s∞(tj, η, θi)− 2sij)

× (sNi (tj, η, θ1:N)− s∞(tj, η, θi))

∣∣∣∣∣
(3.130)

Besides, we know from corollary 3.1 and proposition 1.3 that |sNi (tj, η, θ1:N)| ≤ Si

and |s∞(tj, η, θi))| ≤ Si.∣∣∣∣∣
N0∑
i=1

M∑
j=1

(sNi (tj, η, θ1:N) + s∞(tj, η, θi)− 2sij)(s
N
i (tj, η, θ1:N)− s∞(tj, η, θi))

∣∣∣∣∣
≤ 2

N0∑
i=1

M∑
j=1

(Si + |sij|) |sNi (tj, η, θ1:N)− s∞(tj, η, θi)|

(3.131)
By integrating with respect to θ1:N , we obtain

N0∑
i=1

M∑
j=1

∫
ΘN

(Si + |sij|) |sNi (tj, η, θ1:N)− s∞(t, η, θi)|(µθ
0)

⊗N(dθ1:N)

=
M∑
j=1

(
N0

∫
ΘN

S1|sN1 (tj, η, θ1:N)− s∞(tj, η, θ1)|(µθ
0)

⊗N(dθ1:N)

+

N0∑
i=1

|sij|
∫
ΘN

|sN1 (tj, η, θ1:N)− s∞(tj, η, θ1)|(µθ
0)

⊗N(dθ1:N)

) (3.132)

Let θ1:N ∈ ΘN and η ∈ H. We can estimate the discrepancy between the empirical
and the macroscopic flow by introducing the competition potentials.
|sN1 (t, η, θ1:N)− s∞(t, η, θ1)|

≤ s0

(
S1

sm

)
log

(
S1

sm

) ∣∣∣∣γ1 ∫ t

0

(
ĈN

1 (τ, η, θ1:N)− C∞(τ, η, θ1)
)
eγ1(τ−t)dτ

∣∣∣∣ (3.133)
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where the competition potentials ĈN
1 and C∞ are defined in equations (3.111) and

(3.112). By a similar approach than the one used in the proof of proposition 3.3,
we obtain the following inequality

|sN1 (t, η, θ1:N)− s∞(t, η, θ1)|

≤ 1

N − 1

(
ŝ1(η, θ1, µ̂N(0))e

β(η)t + ŝ2(η, θ1, µ̂N(0))e
t/τ(η,θ1)−γ1t + ŝ3(η, θ1, µ̂N(0))

)
+W2(µ̂

x
N(0), µ

x
0)
(
ax1(η, θ1, µ̂N(0))e

β(η)t + ax2(η, θ1, µ̂N(0))e
t/τ(η,θ1)−γ1t + ax3(η, θ1, µ̂N(0))

)
+W1(µ̂

γ
N(0), µ

γ
0)
(
aγ1(η, θ1)e

β(η)t + aγ2(η, θ1)e
t/τ(η,θ1)−γ1t + aγ3(η, θ1)

)
+W1(µ̂

S
N(0), µ

S
0 )
(
aS1 (η, θ1)e

β(η)t + aS2 (η, θ1)e
t/τ(η,θ1)−γ1t

)
(3.134)

The expressions of the coefficients ŝi, a
θ
i , along with their derivations, are given in

the appendix, page 162. It is also proved there that these coefficients are bounded.
We can therefore obtain by applying lemma 3.10 that for all η ∈ H and for all
s ∈ RN0M

lim
N→∞

N0∑
i=1

M∑
j=1

∫
ΘN

(Si + |sij|) |sNi (tj, η, θ1:N)− s∞(t, η, θi)|(µθ
0)

⊗N(dθ1:N) = 0

(3.135)
By dominated convergence, we can conclude that

lim
N→∞

∫
RN0M

∫
H

∣∣ps|η,N(s|η,N)− p∞s|η(s|η)
∣∣µη(dη)λ(ds) = 0 (3.136)

In the previous proof, we can notice that the critical size of the population,
the threshold above which we can consider that the mean-field limit is a relevant
approximation (for a given tolerance), depends not only on the dynamics of the
model, but also on the experimental conditions, on the way data were collected. To
clarify this, let us consider the upper-bound of the total variation of the marginal
distribution of the observations at time tj.

dTV (psj |N , p
∞
sj
) ≤ 1

2(2πσ2)N0/2

∫
RN0

∫
H

∫
ΘN

1

σ2
exp

(
−|s|

2

2σ2

)(
N0S1 +

N0∑
i=1

|si|

)
s0S1

sm

× log

(
S1

sm

) ∣∣∣∣γ1 ∫ tj

0

(
ĈN

1 (τ, η, θ1:N)− C∞(τ, η, θ1:N)
)
eγ1(τ−tj)dτ

∣∣∣∣µ⊗N
θ (dθ1:N)µη(dη)

× λ(ds)
(3.137)
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≤ N0

σ2

(
sme

RM + σ

√
2

π

)
smax
0 RMeRME

{
compN(tj, η, θ1:N), η ∼ µη, θ1:N ∼ µ⊗N

θ

}
where compN(tj, η, θ1:N) =

∣∣∣∣γ1 ∫ tj

0

(
ĈN

1 (τ, η, θ1:N)− C∞(τ, η, θ1)
)
eγ1(τ−tj)dτ

∣∣∣∣
(3.138)

As it was proved in equation (3.135), the expectation term tends to zero. We can
therefore have a qualitative idea of the relation between the critical size Nε, above
which we have dTV (psj |N , p

∞
sj
) ≤ ε, and the parameters related to the experimental

conditions N0, σ. We can see in particular that for all ε > 0, we can expect Nε

to be increasing with N0 and decreasing with σ. In a nutshell, the more accurate
the experimental conditions, the larger the size of the population that can be
approximated by the mean-field dynamics.

3.4.3 Second order approximation in the case of the homo-
geneous Spring Cloud system

What can be said about a system that has only a mean-field limit after normal-
ization ? This is the case, for instance, of the Spring Cloud and the Cucker-Smale
models, which require a change of the time scale and a renormalization of the
velocity variables to converge towards a dynamical system independent of the size
of the population. We can see in a simple example that the convergence in total
variation cannot be generalized in all cases.

Let us come back to the example of the homogeneous Spring Cloud system. We
assume that the initial conditions are normally distributed and that the parameters
κ,m are the same for all the N particles. It is shown in equation (2.7) that the
trajectories of the particles are elliptic around the barycenter, itself following a
rectilinear uniform motion.

x̂N
1 (t, x

0
1:N , v

0
1:N) =

1

N

N∑
i=1

x0
i +

t
√
N

N

N∑
i=1

v0i√
N

+

(
x0
1 −

1

N

N∑
i=1

x0
i

)
cos(ωt

√
N)

(3.139)

+

(
v01√
N
− 1

N

N∑
i=1

v0i√
N

)
sin(ωt

√
N)

ω
where ω =

κ√
m
,

vN1 (t, x0
1:N , v

0
1:N) =

1

N

N∑
i=1

v0i − ω
√
N

(
x0
1 −

1

N

N∑
i=1

x0
i

)
sin(ωt

√
N)

+

(
v01 −

1

N

N∑
i=1

v0i

)
cos(ωt

√
N).

(3.140)
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The velocity of a particle is all the more high as the population is large, with an
order of magnitude of

√
N if the cloud is not initially concentrated at a single

point. It seems therefore reasonable to assume that the initial distribution of the
variable v depends on N , with for instance a normal distribution like N (0, NΣv).
By the law of large numbers, we obtain an almost sure convergence towards the
mean-field flow after normalization of the time-scale and of the velocity variables.

P
{
(x0

n)n∈N∗ ∼ N (µx,Σx)
⊗∞, (v0n)n∈N∗ ∼ N (0,Σv)

⊗∞ |

∀t ≥ 0, lim
N→∞

xN
1 (t/
√
N, x0

1:N , v
0
1:N

√
N) = x∞(t, x0

1, v
0
1),

lim
N→∞

vN1 (t/
√
N, x0

1:N , v
0
1:N

√
N)√

N
= v∞(t, x0

1, v
0
1)

}
= 1,

with x∞(t, x0
1, v

0
1) = µx + (x0

1 − µx) cos(ωt) + v01
sin(ωt)

ω
,

v∞(t, x0
1, v

0
1) = −ω(x0

1 − µx) sin(ωt) + v01 cos(ωt).

(3.141)

In the inference problems we consider, the observation times are fixed, and they
therefore cannot change with the size of the population, which may be unknown.
By applying the reverse normalization, we project the mean-field dynamics onto
the temporality of the observer. Let us study the gap between the two flows within
the non-normalized temporality.

xN
1 (t, x

0
1:N , v

0
1:N)− x∞(t

√
N, x0

1, v
0
1/
√
N) =

(
1

N

N∑
i=1

x0
i − µx

)
(1− cos(ωt

√
N))

+
1

N

N∑
i=1

v0i√
N

(
t
√
N − sin(ωt

√
N)

ω

)
(3.142)

If the initial conditions are normally distributed, the distribution of this gap is
also Gaussian, with the following mean and variance

E
{
xN
1 (t, x

0
1:N , v

0
1:N)− x∞(t

√
N, x0

1, v
0
1/
√
N), x0

1:N ∼ N (µx,Σx)
⊗N ,

v01:N ∼ N (0, NΣv)
⊗N
}
= 0,

Cov
{
xN
1 (t, x

0
1:N , v

0
1:N)− x∞(t

√
N, x0

1, v
0
1/
√
N), x0

1:N ∼ N (µx,Σx)
⊗N ,

v01:N ∼ N (0, NΣv)
⊗N
}
= (1− cos(ωt

√
N))2

Σx

N
+

(
t
√
N − sin(ωt

√
N)

ω

)2
Σv

N
.

(3.143)
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If Σv 6= 0, we can notice that the approximation by x∞ is not consistent in L2. This
is due to the fact that the sequence of the empirical distributions of the velocities
is not tight. We need to have a higher order expansion to obtain a consistent
approximation. We have the following convergence in distribution

∀φ ∈ Cb(R2), E
{
φ
(√

N
(
xN
1 (t/
√
N, x0

1:N , v
0
1:N)− x∞(t, x0

1, v
0
1/
√
N)
))

,

x0
1:N ∼ N (µx,Σx)

⊗N , v01:N ∼ N (0, NΣv)
⊗N
}

−−−→
N→∞

E
{
φ

(
ux(1− cos(ωt)) + uv

(
t− sin(ωt)

ω

))
, ux ∼ N (0,Σx), uv ∼ N (0,Σv)

}
(3.144)

We can deduce from the above convergence a second order approximation of the
microscopic dynamics, where auxiliary variables ux and uv are introduced to rep-
resent the variance of the gap between the empirical flow and the mean-field flow.

ux, uv ∼ N (0, I2)

x0
1 ∼ N (µx,Σx), v01 ∼ N (0, NΣv)

x̂N
∞(t, x0

1, v
0
1, ux, uv) = x∞(t

√
N, x0

1, v
0
1/
√
N) + Σ1/2

x ux
1− cos(ωt

√
N)√

N

+ Σ1/2
v uv

(
t− sin(ωt

√
N)

ω
√
N

) (3.145)

To simulate a group of N0 individuals within a population of size N , we need first
to sample variables ux and uv and then to apply the equation (3.145) for N0 initial
conditions x0

i , v
0
i sampled independently. Under this approximated simulation, the

number of latent variables does not depend on the size of the population.
Such an approach cannot be applied straightforwardly in the case of a non-

linear system, such as the Cucker-Smale model, but the methodology seems to be
roughly the same.

1. First, we derive the normalizations of the time-scale and the state variables
to obtain a mean-field limit.

2. We then study the asymptotic distribution of the gap between the two flows
within the current temporality, after performing the reverse normalizations.

3. If the mean-field flow is not sufficient to provide a consistent approximation
for the inference problem, then we consider a higher order expansion by
deriving the speed of convergence of the microscopic flow to the mean-field
flow (in the previous example, the speed of convergence is

√
N).
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Thus, the derivation of the mean-field limit appears as an unavoidable step
in the simplification of microscopic dynamics. This simplification is effective in
the case of linear or analytical systems, but in the general case, it is strongly
conditioned by the numerical accessibility of the mean-field flow, the simulation of
which is an active subject of research.

3.5 Lagrangian simulations of the mean-field char-
acteristic flow: two case studies

In this section, we detail two methodologies to obtain numerical approximations
of the mean-field limit distribution in two specific cases: the Spring Cloud system
and the Schneider system. These preliminary results remain relatively dependent
on the properties of the underlying system, but they might open up the prospect of
being extended to more generalized situations. In both cases, an approximation of
the mean-field characteristic flow is built by estimating the population statistics,
which is the barycenter in the case of Spring Cloud, and the competition poten-
tial in the case of the Schneider system. The time-evolutions of these statistics
are approached by piecewise polynomial functions, exactly as in the microscopic
case, but in the macroscopic case, the coefficients might be spatially dependent.
The conditions of consistency of the numerical scheme are only considered quali-
tatively. Consistent numerical methods to solve non-local transport equations in
low dimensions can be found in Carrillo et al. (2008),6 Lafitte et al. (2016),17

Lagoutière and Vauchelet (2017),18 but these methods cannot be used directly in
our case, due to the high dimension of the phase space.

3.5.1 The Spring Cloud system

Let us come back to the expression of the mean-field characteristic flow of the
Spring Cloud system. Let µ0 be a probability measure in P1(R4 × Θ), with Θ =
[κmin;κmax] × [mmin;mmax] the space of masses and attractivenesses κ. Then the
mean-field characteristic defined in equation (3.84) can be expressed using the
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barycenter of the attractivenesses.

Let κ̄ = E{κ, κ ∼ µκ
0}, and ωκ,m =

√
κκ̄

m
.

We have:

x∞(t, x0, v0, κ,m) = x0 cos(ωκ,mt) + v0
sin(ωκ,mt)

ωκ,m

+

∫ t

0

ωκ,mx
∞
κ (τ) sin(ωκ,m(t− τ))dτ

v∞(t, x0, v0, κ,m) = −ωκ,mx0 sin(ωκ,mt) + v0 cos(ωκ,mt)

+

∫ t

0

ω2
κ,mx

∞
κ (τ) cos(ωκ,m(t− τ))dτ,

where x∞
κ (t) =

1

κ̄
E {κx∞(t, x0, v0, κ,m), (x0, v0, κ,m) ∼ µ0} .

(3.146)
We consider a piecewise linear approximation of the barycenter.

x̂∞
κ (t) =

M−1∑
k=0

(ak + bk(t− tk))I{tk ≤ t < tk+1} (3.147)

where the coefficients ak, bk ∈ R2 are to be determined and where {t0 = 0, ..., tM =
T} is a subdivision of the interval [0;T ]. In the microscopic case, such an ap-
proximation leads to a consistent numerical scheme of second order. Under this
approximation, the mean-field characteristic is a linear combination of sinusoidal
functions, with time-varying coefficients.

x̂∞(t, x0, v0, κ,m) = x0 cos(ωκ,mt) + v0
sin(ωκ,mt)

ωκ,m

+ δx̂(t, κ,m)

δx̂(t, κ,m) =
M−1∑
k=0

∫ t

0

ωκ,m(ak + bk(t
′ − tk))I{tk ≤ t′ < tk+1} sin(ωκ,m(t− t′))dt′

v̂∞(t, x0, v0, κ,m) = −ωκ,mx0 sin(ωκ,mt) + v0 cos(ωκ,mt) + δv̂(t, κ,m)

δv̂(t, κ,m) =
M−1∑
k=0

∫ t

0

ω2
κ,m(ak + bk(t

′ − tk))I{tk ≤ t′ < tk+1} cos(ωκ,m(t− t′))dt′

(3.148)
The coefficients ak, bk correspond to the position and the velocity of the barycenter
at the level of the time of the subdivision.

∀k ∈ J0;M − 1K, ak =
1

κ̄
E {κx̂∞(tk, x0, v0, κ,m), (x0, v0, κ,m) ∼ µκ

0}

bk =
1

κ̄
E
{
κ
∂x̂∞

∂t
(tk, x0, v0, κ,m), (x0, v0, κ,m) ∼ µ0

} (3.149)
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We can therefore obtain the coefficients by induction. Initially, the position and
the speed of the barycenter are a0 and b0.

a0 =
1

κ̄
E {κx0, (x0, κ) ∼ µx,κ

0 } , b0 =
1

κ̄
E {κv0, (v0, κ) ∼ µv,κ

0 } (3.150)

We have then an inductive equation to compute the position of the barycenter.
For all k ∈ J0;M − 2K

ak+1 = µκ
x,x(tk+1) + µκ

x,v(tk+1) +
k∑

ℓ=0

aℓ [c(tk+1 − tℓ+1)− c(tk+1 − tℓ)]

+
k∑

ℓ=0

bℓ [(tℓ+1 − tℓ)c(tk+1 − tℓ+1) + s(tk+1 − tℓ+1)− s(tk+1 − tℓ)]

µκ
x,x(t) =

1

κ̄

∫
R2×Θ

κx0 cos(ωκ,mt)µ
x,κ,m
0 (dx0, dκ, dm)

µκ
x,v(t) =

1

κ̄

∫
R2×Θ

κv0
sin(ωκ,mt)

ωκ,m

µv,κ,m
0 (dv0, dκ, dm)

c(t) =
1

κ̄

∫
Θ

κ cos(ωκ,mt)µ
κ,m
0 (dκ, dm)

s(t) =
1

κ̄

∫
Θ

κ
sin(ωκ,mt)

ωκ,m

µκ,m
0 (dκ, dm)

(3.151)

We have a similar inductive equation for the speed of the barycenter.

bk+1 =
dµκ

x,x

dt
(tk+1) +

dµκ
x,v

dt
(tk+1) +

k∑
ℓ=0

aℓ

(
dc

dt
(tk+1 − tℓ+1)−

dc

dt
(tk+1 − tℓ)

)

+
k∑

ℓ=0

bℓ

(
(tℓ+1 − tℓ)

dc

dt
(tk+1 − tℓ+1) + c(tk+1 − tℓ+1)− c(tk+1 − tℓ)

)
dµκ

x,x

dt
(t) = −1

κ̄
E {κωκ,mx0 sin(ωκ,mt), (x0, κ,m) ∼ µx,κ,m

0 }

dµκ
x,v

dt
(t) =

1

κ̄
E {κv0 cos(ωκ,mt), (v0, κ,m) ∼ µv,κ,m

0 }

dc

dt
(t) = −1

κ̄

∫
Θ

κωκ,m sin(ωκ,mt)µ
κ,m
0 (dκ, dm)

(3.152)
Once the coefficients are computed, we can derive the time-evolution of the terms
δx̂(t, κ,m) and δv̂(t, κ,m), the components of the particle trajectory that is related
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to the motion of the barycenter. For the position, we have

δx̂(t, κ,m) = ωκ,m

M−1∑
k=0

I{tk ≤ t < tk+1}
∫ t

tk

(ak + bk(t
′ − tk)) sin(ωκ,m(t− t′))dt′

+ ωκ,m

M−1∑
k=0

I{tk+1 ≤ t}
∫ tk+1

tk

(ak + bk(t
′ − tk)) sin(ωκ,m(t− t′))dt′

=
M−1∑
k=0

I{tk ≤ t < tk+1}
(
ak(1− cos(ωκ,m(t− tk)))− bk

sin(ωκ,m(t− tk))

ωκ,m

+ bk(t− tk)

)

+
M−1∑
k=0

I{tk+1 ≤ t} (ak (cos (ωκ,m(t− tk+1))− cos(ωκ,m(t− tk)))

+bk

(
(tk+1 − tk) cos(ωκ,m(t− tk+1)) +

sin(ωκ,m(t− tk+1))− sin(ωκ,m(t− tk))

ωκ,m

))
(3.153)

Similarly, for the velocity component, we have

δv̂(t, κ,m) =
M−1∑
k=0

I{tk ≤ t < tk+1} (bk(1− cos(ωκ,m(t− tk))) + akωκ,m sin(ωκ,m(t− tk)))

+
M−1∑
k=0

I{tk+1 ≤ t} (akωκ,m(sin(ωκ,m(t− tk))− sin(ωκ,m(t− tk+1))) + bk (cos(ωκ,m(t− tk+1))

− cos(ωκ,m(t− tk))− (tk+1 − tk)ωκ,m sin(ωκ,m(t− tk+1))))
(3.154)

The mean-field characteristic flows can be written as an linear transformation of
the initial conditions (x0, v0).(

x̂∞(t, x0, v0, κ,m)
v̂∞(t, x0, v0, κ,m)

)
= Ωκ,m(t)

(
x0

v0

)
+

(
δx̂(t, κ,m)
δv̂(t, κ,m)

)

Ωκ,m(t) =

 cos(ωκ,mt)I2
sin(ωκ,mt)

ωκ,m

I2

−ωκ,m sin(ωκ,mt)I2 cos(ωκ,mt)I2

 (3.155)

The expression of the inverse of the characteristic flow can be derived analytically
as the solution of a linear system. x0(t, x, v, κ,m) and v0(t, x, v, κ,m) gives the
initial condition of a particle located at (x, v) at time t, with the parameters
(κ,m).

x̂0(t, x, v, κ,m) = (x− δx(t, κ,m)) cos(ωκ,mt)− (v − δv(t, κ,m))
sin(ωκ,mt)

ωκ,m

v̂0(t, x, v, κ,m) = (x− δx(t, κ,m))ωκ,m sin(ωκ,mt) + (v − δv(t, κ,m)) cos(ωκ,mt)
(3.156)
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If the initial distribution µ0 is absolutely continuous with respect to the Lebesgue
measure, with density f0, it follows that the mean-field distributions is also abso-
lutely continuous for all time t ≥ 0, and is expressed using the reverse characteristic
flows.

f̂(t, x, v, κ,m) = f0(x0(t, x, v, κ,m), v0(t, x, v, κ,m), κ,m) (3.157)

Notice that the Jacobian of the reverse characteristic flow is constant and unitary
for all time, so it does not appear in the above equation. Equation (3.157) provides
a consistent approximation, when the time-step of the subdivision tends to zero,
of the strong solution of the non-local transport equation associated with Spring-
Cloud system.

∂f

∂t
(t, x, v, κ,m) + v.

∂f

∂x
(t, x, v, κ,m)

+
κ

m

∂f

∂v
(t, x, v, κ,m).

∫
R2×[κ1;κ2]

κ′(x′ − x)fx,κ(t, x′, κ′)λ(dx′, dκ′) = 0

f(0, x, v, κ,m) = f0(x, v, κ,m)

(3.158)

In practice however, none of the expectations used to expressed the coefficients
ak, bk, µx,x, µx,v are analytical, and one has to resort to Monte-Carlo integration to
compute them. Typically, for the coefficient c(t) for instance, we need a sample
(κj,mj)1≤j≤K from the distribution µκ,m

0 .

cK(t) =
1

Kκ̄

K∑
j=1

κj cos(ω(κj,mj)t) (3.159)

If we use the same sample size K for all the Monte-Carlo integrations, we need to
choose K jointly with the time-step ∆t of the subdivision. Indeed, if the time-step
is too small and if the Monte-Carlo approximation is too rough, the numerical
errors accumulate through time and this may result in a significant bias in the
simulation. The relationship between K and ∆t is still to be investigated.

Let us now illustrate the suggested numerical scheme in an example of Spring-
Cloud system with a bimodal initial distribution, with initial conditions normally
distributed.

µ0 =
1

2

2∑
i=1

N (xi, σ
2
xI2)⊗N (vi, σ

2
vI2)⊗U([κi−δκ;κi+δκ])⊗U([mi−δm;mi+δm])

(3.160)
From equation (3.155), we can derive the conditional distribution of the state
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variables at time t knowing the parameters (κ,m).

(xt, vt)|κ,m ∼
2∑

i=1

I{(κ,m) ∈ [κi ± δκ]× [mi ± δm]}N
((

x∞(t, xi, vi, κ,m)
v∞(t, xi, vi, κ,m)

)
,Σκ,m(t)

)
(3.161)

Σκ,m(t) = Ωκ,m(t)

(
σ2
xI2 0
0 σ2

vI2

)
Ωκ,m(t)

T

=


(
σ2
x cos(ωκ,mt)

2 + σ2
v

(
sin(ωκ,mt)

ωκ,m

)2
)
I2

(σ2
v − σ2

xω
2
κ,m) sin(2ωκ,mt)

2ωκ,m

I2

(σ2
v − σ2

xω
2
κ,m) sin(2ωκ,mt)

2ωκ,m

I2
(
σ2
xω

2
κ,m sin(ωκ,mt)

2 + σ2
v cos(ωκ,mt)

2
)
I2


(3.162)

So we can derive the marginal distribution of the x variable at time t:

fx(t, x) =
1

4π

2∑
i=1

E


exp

(
− |x−x∞(t,xi,vi,κ,m)|2

2

(
σ2
x cos(ωκ,mt)2+σ2

v
sin(ωκ,mt)2

ω2
κ,m

)
)

σ2
x cos(ωκ,mt)2 + σ2

v
sin(ωκ,mt)2

ω2
κ,m

, (κ,m) ∼ µκ,m
i


µκ,m
i = U([κi ± δκ])⊗ U([mi ± δm])

(3.163)
So the trajectories of the particles remain around their respective barycenters, with
a time varying variance. Figure (3.1) shows the trajectories of the mean position
vectors (for the conditional distribution). The two clouds are chosen to be non-
symmetric, the cloud initially on the left has lower κ,m in average, whereas the
cloud initially on the right has higher κ,m. The initial speeds are parallel to the
y−axis, with opposite directions. We can notice on the figure the motions of the
two centers do not correspond to the trajectories of two particles in interaction, in
other words the macroscopic systems cannot be summarized by two particles.

Simulating the marginal distribution fx(t, x) can be done efficiently by first
simulating a sample (κ,m) from µκ,m

i (i = 1, 2) and by applying the following
formula:

xt = x∞(t, xi, vi, κ,m) + ux

√
σ2
x cos(ωκ,mt)2 + σ2

v

sin(ωκ,mt)2

ω2
κ,m

, ux ∼ N (0, I2).

(3.164)
Figure 3.2 shows the time-evolution of the marginal density fx(t, x), reconstructed
by kernel density estimation. We can notice that the two clouds are initially well
separated, and that that at time t = 10 for instance, they are almost merged
together.
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Figure 3.1: Trajectories of the barycenter of the two initial clouds: x1
κ(t) =

x∞(t, x1, v1, κ1,m1) and x2
κ(t) = x∞(t, x2, v2, κ2,m2). These trajectories gives an

indication on the location of the centers of the two clouds. The detailed configu-
ration of this simulation is presented in the appendix, page 166.

3.5.2 The Schneider system
We now consider the case of the Schneider system, which is non-linear with respect
to the state variables, as opposed to the Spring Cloud system. The principle of
the methodology is roughly the same as in the previous section, i.e., it is based on
an approximation of the dynamics of the population statistics driving the motion
of the individuals. For the Schneider system, this population statistic is the com-
petition potential. It is therefore no longer a question of approaching the motion
of a point in phase space (as for the Spring Cloud barycenter), it is a question
of modelling the evolution of a function depending on time and state variables.
As previously done and in keeping with the numerical scheme developed in the
microscopic case, the time evolution of the competition potential is approximated
by a piecewise polynomial function, specifically piecewise constant in the following
example. In the macroscopic case, we additionally need to approximate the spa-
tial dependency of the interaction function, i.e. the competition potential in the
Schneider case. To this end, we consider a parametric family that is dense in the
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Figure 3.2: Evolution of the marginal density of the Spring Cloud system fx(t, x)
with time. The detailed configuration of this simulation can be found in the
appendix, page 166.

space of continuous and bounded functions defined over the phase space, namely
polynomial functions of nonlinear and bounded transformations of the variables
(s, x, S, γ).

Expression of the approximated flow with piecewise competition poten-
tial: Let us recall the expression of the mean-field flow as a function of the
competition potential. For any θ = (x, S, γ) ∈ Θ:

s∞(t, s, θ) = sm

(
s

sm

)e−γt

exp

(
γ log

(
S

sm

)∫ t

0

(1− C∞(τ, s, θ))eγ(τ−t)dτ

)
where C∞(t, s, θ) = E {C(s∞(t, s, θ), s∞(t, s′, θ′), |x− x′|), (s′, θ′) ∼ µ0}

(3.165)
Let {t0 = 0, t1, ..., tM = T} be a subdivision of the observation interval [0;T ]
with regular time-step ∆t. We consider a piecewise constant approximation of the
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competition potential.

ŝ∞(t, s, θ) = sm

(
s

sm

)e−γt (
S

sm

)1−e−γt−Ĉ∞(t,s,θ)

Ĉ∞(t, s, θ) = γ
M−1∑
k=0

∫ t

0

Ck(s, θ)I{tk ≤ t < tk+1}eγ(τ−t)dτ

(3.166)

The Ck(s, θ) are approximations of the competition potential exerted on a plant
of initial size s and of parameter θ at time tk.

Approximation of the initial competition potential: Let us build these
approximations step by step. We start by the initial competition potential, which
has the following expression.

C∞(0, s, θ) = E

 log(s′/sm)

2RM

(
1 + |x−x′|2

σ2
x

) (1 + tanh

(
1

σr

log(s′/s)

))
, (s′, x′) ∼ µs,x

0


(3.167)

In particular, we can notice that initially this potential does not depend on param-
eters S and γ. This expectation is not analytical in general, and a natural way to
obtain a consistent approximation of it is by resorting to Monte-Carlo integration.

C̃∞(0, s, x; s′1:N , x
′
1:N) =

1

N

N∑
i=1

C(s, s′i, |x− x′
i|) (3.168)

where s′1:N , x
′
1:N are sampled from µs,x

0 . This approximation is more or less equiv-
alent to simulating the microscopic dynamics that we know to tend towards the
mean-field dynamics. By doing so, there is not really any computational advan-
tage in the use of the mean-field flow, as it appears only as an individual trajectory
within a large enough population. One way to get rid of the dependency with re-
spect to the sample is to construct a parametric approximation of the map in
equation (3.168). We can consider the parametric family consisting of polynomial
functions of some bounded transformations of the variables s, x.

C0 =
{
(s, x, y, β) ∈ [smin

0 ; smax
0 ]× R2 × Rn(3,d) 7→ β.f 3

d (s, x, y), d ∈ N
}

where ∀d ∈ N, f 3
d (s, x, y) =

q3d

(
log(s/sm), arctan

(
x−µx

Lx

)
, arctan

(
y−µy

Ly

))
1 + (x−µx)2+(y−µy)2

σ2
x

(3.169)
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In the above equation q3d is the polynomial feature function of three variables and
of degree d. For instance, the polynomial feature function of degree 2 with two
variables is

q22(x1, x2) = (1, x1, x
2
1, x2, x1x2, x

2
2) ∈ R6 (3.170)

More generally, we denote by qkd the polynomial feature function with k variables
and of degree d.

qkd(x1:k) = (xα1
1 ...xαk

k )α1:k∈Ak
d

Ak
d =

{
α1:k ∈ Nk | α1 + ...+ αk ≤ d

} (3.171)

The cardinality of Ak
d is a classical result of combinatorics.

Card(Ak
d) =

d∑
ℓ=0

(
k + ℓ− 1

k − 1

)
= n(k, d) (3.172)

In equation (3.169), we have represented the position variable (x, y) by the bijec-

tive transformation
(
arctan

(
x− µx

Lx

)
, arctan

(
y − µy

Ly

))
where (µx, µy) can be

chosen as the mean position, and Lx, Ly are typical lengths, such as the standard
deviation of x and y, or the competition parameter σx. With this parametrization
of the variable, we can express the competition potential as a continuous func-
tion defined over a compact domain, that can be uniformly approximated by a
polynomial function thanks to the Stone-Weierstrass theorem. We also divide the
polynomial function by a factor 1

1 + (x−µx)2+(y−µy)2

σ2
x

to ensure that the approxima-

tion has roughly the same behaviour as the target function when |x| → ∞.
β is the vector of coefficients of the polynomial function at the numerator. We

can choose β so that it minimizes the quadratic risk between the target function
C̃∞(0, .) and the class C0 for a fixed degree d.

β∗
0 = argmin

β∈Rn(3,d)

E{(C̃∞(0, s, x; s1:N , x1:N)− β · f 3
d (s, x))

2, (s, x) ∼ µs,x
0 },

which is equivalent to find β∗
0 such that:

E
{
f 3
d (s, x)f

3
d (s, x)

T, (s, x) ∼ µs,x
0

}
β∗
0 = E{C̃∞(0, s, x)f 3

d (s, x), (s, x) ∼ µs,x
0 }
(3.173)

The above linear system is not necessarily invertible, according to the distribution
µ0: for instance, if µ0 is a Dirac distribution, the system is of rank 1. However, the
system always admits at least one solution2. In practice, we consider a solution of

2One can decompose the right hand side in the orthogonal sum formed by the image of the
matrix and the orthogonal of the image.
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the linear system(
K∑
k=1

f 3
d (sk, xk)f

3
d (sk, xk)

T

)
β∗
0 =

K∑
k=1

C̃∞(0, sk, xk)f
3
d (sk, xk) (3.174)

where s1:K , x1:K is a training set consisting in a sample of µs,x
0 independent of

s′1:N , x
′
1:N . The approximation of the initial competition potential is then

Ĉ0(s, x) = p[0;1](β · f 3
d (s, x))

where p[0;1](x) = max(min(1, x), 0)
(3.175)

We have incorporated in this reconstruction our knowledge on the boundedness of
the potential by simply projecting the values of the linear combination into [0; 1].
We can assess the relevance of this approximation by computing the coefficient of
determination over a testing set (st1:K , x

t
1:K , C̃

t
1:K).

R2 = 1−
∑K

k=1(C̃
t
k − Ĉ0(s

t
k, x

t
k))

2∑K
k=1(C̃

t
k −mC̃t)2

mC̃t =
1

K

K∑
k=1

C̃t
k

(3.176)

The coefficient of determination is used especially to calibrate the degree d of
the polynomial approximation, that need to be precise but also light in terms of
computation, as the dimension of the coefficient space n(k, d) increases like the
factorial function with d.

Approximation of the subsequent competition potentials: If the recon-
struction is accurate enough, and if the sample size is large enough, equation
(3.175) enables to sample ŝ∞(t, s, θ) for any t in the subinterval [0;∆t], that is
close to the actual mean-field flow s∞(t, s, θ). We then use the same methodology
to build the next approximation of the competition potential, but we need to in-
tegrate in the arguments of the approximation the parameters S, γ, that have an
influence on the competition potential at time ∆t.

ŝ∞(∆t, s, θ) = sm

(
s

sm

)e−γ∆t (
S

sm

)(1−e−γ∆t)(1−Ĉ0(s,x))

C̃∞(∆t, s, θ; s′1:N , θ
′
1:N) =

1

N

N∑
i=1

C(ŝ∞(∆t, s, θ), ŝ∞(∆t, s′i, θ
′
i), |x− x′

i|)
(3.177)
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The class of functions used to approximate the above competition potential has
the same structure as C0, but with additional arguments.

C1 =
{
(s, x, y, S, γ, β) ∈ [smin

0 ; smax
0 ]×Θ× Rn(5,d) 7→ β · f 5

d (s, x, y, S, γ), d ∈ N
}

f 5
d (s, x, y, S, γ) =

q5d

(
log(s/sm), arctan

(
x−µx

Lx

)
, arctan

(
y−µy

Ly

)
, log(S/sm), e

−γ∆t
)

1 + (x−µx)2+(y−µy)2

σ2
x

(3.178)
Other choices of transformations for the variables S and γ are possible. These
specific transformations log(S/sm) and e−γ∆t are used here because they better
describe the relationship between the competition potential and the parameters
S, γ.

The identification of the linear combination coefficient β is done exactly as
previously by minimization of the square loss between the empirical potential
C̃∞(∆t, ., .; s′1:N , θ

′
1:N) and the class C1 over a training set. The degree of the

polynomial approximation is calibrated by computing the coefficient of deter-
mination R2 over a testing set. We similarly learn by recurrence the functions
Ĉ1(s, θ), ..., ĈM−1(s, θ). To simplify the procedure, we choose the same value of
degree d for all the f 5

d at each time step ∆t, ..., T −∆t, that is potentially different
from the degree chosen for the function f 3

d , used to approximate the initial po-
tential. The final expression of the approximated mean-field characteristic flows
is obtained by computing the integral over the time defining the reconstructed
potential Ĉ∞(t, s, θ) in equation (3.166).

Ĉ∞(t, s, θ) =
M−1∑
k=0

Ck(s, θ)
[
I{tk ≤ t < tk+1}

(
1− eγ(tk−t)

)
+I{tk+1 ≤ t}

(
eγ(tk+1−t) − eγ(tk−t)

)] (3.179)

The consistency of this numerical scheme is yet to be proved, although we
have good reason to believe it holds. When the sample size N →∞, the empirical
potential converges to the mean-field potential uniformly and almost surely. This
empirical potential is well approximated by the functions of the families C0 or C1

if the degree d is chosen large enough. As it was noticed in the case of the Spring-
Cloud system, the sample size and the time-step must be chosen jointly, to avoid
an accumulation of numerical errors. In the Schneider case, we also have to choose
at the same time the degree d of the polynomial approximation that monitors the
accuracy of the reconstruction of the empirical potential.
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Example of a simulation: We applied this numerical scheme on the following
initial distribution

s ∼ U([smin
0 ; smax

0 ])

x ∼ N (0, L2I2)

S|x ∼ N[Sm;smeRM ](S̄(x), δS
2), γ|x ∼ N[0;γM ](γ̄(x), δγ

2)

(3.180)

where the functions S̄(x) and γ̄(x) are defined in equation (1.58) and N[a;b](µ, σ
2)

denotes a truncated Gaussian distribution over the segment [a; b]. The spatial
variations of functions S̄(x) and γ̄(x) are represented on figure 3.3. The config-
uration of the initial distribution is chosen in order to have four spatial regions
distinguishing the parameters: regions with high and low S, and regions with high
and low γ. In the absence of competition, we expect the mean size of plants at
a given position to converge to S̄(x). We can notice on figure 3.3 that, due to
the competition, the surface x 7→ ŝ∞(T, s̄, x, S̄(x), γ̄(x)) is quite different from
x 7→ S̄(x), and that the region where the plants remain small in average is wider
than in the case without competition.

3.6 Conclusion
The mean-field limit can be used to construct simplifications of inference problems
in the cases where the system variables do not need to be normalized to obtain a
tight sequence of empirical measure (µ̂N)n≥2. When the sequence is not tight, it
seems necessary to develop the analysis one order further by studying the asymp-
totic behavior of ϵNi (t, x1:N , θ1:N) = xN

i (t, x
0
1:N , θ1:N)−x∞(ρ−1

t (t, N), ρ−1
x (x0

i , N), θi)
where ρt, ρx are the normalization functions of the variables t, x respectively, which
are such that

xN
i (ρt(t, N), ρx(x

0
1:N , N), θ1:N) −−−→

N→∞
x∞(t, x0

i , θi) (3.181)

in distribution. It is then a matter of estimating the speed of convergence of the
sequence ϵNi , i.e., finding a sequence αN → ∞ such that the limit distribution of
the sequence αNϵ

N
i is not degenerated (equal to δ0). For the Spring Cloud system,

this speed of convergence is derived from the Central Limit Theorem, but this
argument does not seem to be generalizable directly to other systems. There are
several questions to be investigated about this second order development. How
to prove the existence of this non-degenerate distribution in a general setting ?
How to simulate this distribution ? What are the characteristics of the systems
for which the second order development is still not enough ?

Concerning the simulation of the mean-field limit, this chapter presents only
a preliminary work that needs to be supported by consistency proofs in a more
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Figure 3.3: Top: Mean values of the parameters S, γ according to the position of
the plant S̄(x) and γ̄(x). Bottom: Comparison with the values of the mean-field

flow at the final time ŝ∞(T, s̄, x, S̄(x), γ̄(x)) where s̄ =
smin
0 + smax

0

2
. The detailed

configuration of the simulation used to generate this graph can be found on page
167

general setting than in the case of the Schneider and the Spring Cloud systems.
Several qualitative arguments lead us to believe that the simulations displayed in
this chapter are consistent approximations, but prudence must be kept regarding
the mode of convergence of the numerical flow with respect to the different meta-
parameters of the scheme, especially to the relationship between the Monte-Carlo
sample size K and the time step ∆t, that may lead to a significant accumulation of
errors if K and ∆t are chosen independently. Finally, this numerical scheme needs
to be compared with other methods for non-local transport equations, especially
those that do not use a mesh over the state space.
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3.7 Appendix of chapter 3
Proof of inequality (3.102): Let us express the empirical flow and the mean-
field flow.

ŝN(t, s1, θ1) = sm(s1/sm)
e−γN (θ1)t

exp (γN(θ1) log(S1/sm)

×
∫ t

0

(
1− N

N − 1

∫
R∗
+×R2

C(ŝN(τ, s1, θ1), s
′
1, |x1 − x′

1|)µ̂
s,x
N (τ, ds′1, x

′
1)

)
eγN (θ1)(τ−t)dτ

)

where γN(θ) = γN(x, S, γ) = γ

(
1− log(S/sm)

2(N − 1)RM

)
s∞(t, s2, θ2) = sm(s2/sm)

e−γ2t exp

(
γ2 log(S2/sm)

×
∫ t

0

(
1−

∫
R∗
+×R2

C(s∞(τ, s2, θ2), s
′
2, |x2 − x′

2|)µs,x(t, ds′2, dx
′
2)

)
eγ2(τ−t)dτ

)
(3.182)

Let us consider the function

S : (t, s, γ, S, C) ∈ R+ × [smin
0 ; smax

0 ]× [0; γM ]× [Sm; sm exp(RM)]× [−1; 1]

7→ sm

(
s

sm

)e−γt (
S

sm

)C

(3.183)
We introduce additional notations for the competition terms. Let s1, s2 ∈ [smin

0 ; smax
0 ]

and θ1 = (x1, S1, γ1), θ2 = (x2, S2, γ2) ∈ Θ.

CN(t, s1, θ1)

= γN(θ1)

∫ t

0

(
1− N

N − 1

∫
R∗
+×R2

C(ŝN(τ, s1, θ1), s
′
1, |x1 − x′

1|)µ̂
s,x
N (τ, ds′1, x

′
1)

)
eγN (θ1)(τ−t)dτ

C∞(t, s2, θ2) = γ2

∫ t

0

(
1−

∫
R∗
+×R2

C(s∞(τ, s2, θ2), s
′
2, |x2 − x′

2|)µs,x(t, ds′2, dx
′
2)

)
eγ2(τ−t)dτ

(3.184)
We decompose the difference between the two flows into three terms.

ŝN(t, s1, θ1)− s∞(t, s2, θ2) = S(t, s1, γN(θ1), S1, CN(t, s1, θ1))− S(t, s1, γ1, S1, CN(t, s1, θ1))

+ S(t, s1, γ1, S1, CN(t, s1, θ1))− S(t, s2, γ2, S2, CN(t, s1, θ1))

+ S(t, s2, γ2, S2, CN(t, s1, θ1))− S(t, s2, γ2, S2, C∞(t, s2, θ2))
(3.185)
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Let us consider the first term.

S1 = |S(t, s1, γN(θ1), S1, CN(t, s1, θ1))− S(t, s1, γ1, S1, CN(t, s1, θ1))|

≤
∫ 1

0

∣∣∣∣∂S∂γ (t, s1, γ1 + α(γN(θ1)− γ1), S1, CN(t, s1, θ1))dα

∣∣∣∣ .|γN(θ1)− γ1|

∂S
∂γ

(t, s, γ, S, C) = −te−γtsm log(s/sm)

(
s

sm

)e−γt (
S

sm

)C

S1 ≤ γ1ts1 log(s1/sm)(S1/Sm)
log(S1/sm)

2(N − 1)RM

(3.186)

Let us consider the second term.

S2 = |S(t, s1, γ1, S1, CN(t, s1, θ1))− S(t, s2, γ2, S2, CN(t, s1, θ1))|
∂S
∂s

(t, s, γ, S, C) = e−γt(S/sm)
C(s/sm)

e−γt−1∣∣∣∣∂S∂s (t, s, γ, S, C)

∣∣∣∣ ≤ eRM

∂S
∂S

(t, s, γ, S, C) = C

(
s

sm

)e−γt (
S

sm

)C−1

∣∣∣∣∂S∂S (t, s, γ, S, C)

∣∣∣∣ ≤ smax
0

sm

S2 ≤ eRM |s1 − s2|+ ts0max log(s
max
0 /sm)e

RM |γ1 − γ2|+ (smax
0 /sm)|S1 − S2|

(3.187)
Let us consider the third term.

∂S
∂C

(t, s, γ, S, C) = sm

(
S

sm

)C

log

(
S

sm

)(
s

sm

)e−γt

∣∣∣∣∂S∂C (t, s, γ, S, C)

∣∣∣∣ ≤ smax
0 RMeRM

|S(t, s2, γ2, S2, CN(t, s1, θ1))− S(t, s2, γ2, S2, C∞(t, s2, θ2))| ≤
smax
0 eRMRM |CN(t, s1, θ1)− C∞(t, s2, θ2)|

(3.188)

Let us expand the difference of the competition terms:

cN(t, s1, θ1) =

∫
R∗
+×R2

C(ŝN(t, s1, θ1), s
′
1, |x1 − x′

1|)µ̂
s,x
N (t, ds′1, dx

′
1)

c∞(t, s2, θ2) =

∫
R∗
+×R2

C(s∞(t, s2, θ2), s
′
1, |x2 − x′

2|)µ(t, ds′2, dx′
2)

(3.189)
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|CN(t, s1, θ1)− C∞(t, s2, θ2)|

≤
∣∣∣∣∫ t

0

(
1− N

N − 1
cN(τ, s1, θ1)

)(
γN(θ1)e

γN (θ1)(τ−t) − γ1e
γ1(τ−t)

)
dτ

∣∣∣∣
+

∣∣∣∣∫ t

0

(
1− N

N − 1
cN(τ, s1, θ1)

)(
γ1e

γ1(τ−t) − γ2e
γ2(τ−t)

)
dτ

∣∣∣∣
+

γ2
N − 1

∣∣∣∣∫ t

0

cN(τ, s1, θ1)e
γ2(τ−t)dτ

∣∣∣∣+ γ2

∫ t

0

|cN(τ, s1, θ1)− c∞(τ, s2, θ2)| eγ2(τ−t)dτ

(3.190)
Let us consider the first term.

|1− N

N − 1
cN(τ, s1, θ1)| ≤ 1

∂

∂γ

(
γ

∫ t

0

(
1− N

N − 1
cN(τ, s1, θ1)

)
eγ(τ−t)dτ

)
=

∫ t

0

(
1− N

N − 1
cN(τ, s1, θ1)

)
(1 + γ(τ − t))eγ(τ−t)dτ∣∣∣∣ ∂∂γ

(
γ

∫ t

0

(
1− N

N − 1
cN(τ, s1, θ1)

)
eγ(τ−t)dτ

)∣∣∣∣ ≤ ∫ t

0

(1 + γ(t− τ))eγ(τ−t)dτ

=
2− e−γt(2 + γt)

γ
≤ t

(3.191)
We can deduce from the above inequality the following upper-bound on the com-
petition terms.

|CN(t, s1, θ1)− C∞(t, s2, θ2)| ≤ γ1t
log(S1/sm)

2RM(N − 1)
+ t|γ1 − γ2|+

1

N − 1

+ γ2

∫ t

0

∣∣∣∣∣
∫
R∗
+×Θ

C(ŝN(τ, s1, θ1), s
′
1, |x1 − x′

1|)µ̂
s,x
N (τ, ds′1, dx

′
1)

−
∫
R∗
+×Θ

C(s∞(τ, s2, θ2), s
′
2, |x2 − x′

2|)µ(τ, ds′2, dx′
2)

∣∣∣∣∣ eγ2(τ−t)dτ

(3.192)

We use the coupling π0 introduced at the beginning of the proof to express the
last term. ∣∣∣∣∣

∫
R∗
+×Θ

C(ŝN(t, s1, θ1), s
′
1, |x1 − x′

1|)µ̂
s,x
N (t, ds′1, dx

′
1)

−
∫
R∗
+×Θ

C(s∞(t, s2, θ2), s
′
2, |x2 − x′

2|)µ(t, ds′2, dx′
2)

∣∣∣∣∣
(3.193)
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≤
∫∫

(R∗
+×Θ)2

|C(ŝN(t, s1, θ1), ŝN(t, s
′
1, θ

′
1), |x1 − x′

1|)− C(s∞(t, s2, θ2), s∞(t, s2, θ
′
2), |x2 − x′

2|)|

× π0(ds
′
1, dθ

′
1, ds

′
2, dθ

′
2)

(3.194)
We compute the derivatives of the competition potential to obtain upper-bounds
of the variations. For any s̃1 ∈ [sNm; ŜN(S1)], any s̃2 ∈ [sm;S2], and δ ≥ 0, we have

∂C

∂s
(s̃1, s̃2, δ) = −

log(s̃2/sm)(1− tanh2( 1
σr

log(s̃2/s̃1)))

2RM s̃1σr(1 + δ2/σ2
x)∣∣∣∣∂C∂s (s̃1, s̃2, δ)

∣∣∣∣ ≤ 1

2sNmσr

∂C

∂s′
(s̃1, s̃2, δ) =

σ2
x(σr(1 + tanh( 1

σr
log(s̃2/s̃1)) + log(s̃2/s̃1)(1− tanh2( 1

σr
log(s̃2/s̃1))))

2RM s̃2σr(σ2
x + δ2)∣∣∣∣∂C∂s′ (s̃1, s̃2, δ)

∣∣∣∣ ≤ 2σr +RM

2RMsmσr

∂C

∂δ2
(s̃1, s̃2, δ) = −

log(s̃2/sm)(1 + tanh( 1
σr

log(s̃2/s̃1)))

2RMσ2
x(1 + δ2/σ2

x)
2∣∣∣∣∂C∂δ2 (s̃1, s̃2, δ)

∣∣∣∣ ≤ 1

σ2
x

(3.195)
It follows that∫∫

(R∗
+×Θ)2

|C(ŝN(t, s1, θ1), ŝN(t, s
′
1, θ

′
1), |x1 − x′

1|)

− C(s∞(t, s2, θ2), s∞(t, s2, θ
′
2), |x2 − x′

2|)|π0(ds
′
1, dθ

′
1, ds

′
2, dθ

′
2)

≤ |ŝN(t, s1, θ1)− s∞(t, s2, θ2)|
2sNmσr

+
2σr +RM

2RMsmσr

∫∫
(R∗

+×Θ)2
|ŝN(t, s′1, θ′1)− s∞(t, s′2, θ

′
2)|π0(ds

′
1, dθ

′
1, ds

′
2, dθ

′
2)

+
|x1 − x2|

σ2
x

∫
R2

|x1 + x2 − 2x′
2|µx

0(dx
′
2)

+
1

σ2
x

∫∫
R4

|x′
1 + x′

2 − 2x1|.|x′
1 − x′

2|πx
0 (dx

′
1, dx

′
2)

(3.196)

For the last terms relative to x, we have used the relation

|x1−x′
1|2−|x2−x′

2|2 = (x1+x2−2x′
2).(x1−x2)+(x′

1+x′
2−2x1).(x

′
1−x′

2) (3.197)
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Let us further consider the x terms.∫
R2

|x1 + x2 − 2x′
2|µx

0(dx
′
2) ≤ |x1 + x2|+ 2

∫
R2

|x′
2|µx

0(dx
′
2)∫∫

R4

|x′
1 + x′

2 − 2x1|.|x′
1 − x′

2|πx
0 (dx

′
1, dx

′
2)

≤

√∫∫
R4

|x′
1 + x′

2 − 2x1|2πx
0 (dx

′
1, dx

′
2).

√∫∫
R4

|x′
1 − x′

2|2πx
0 (dx

′
1, dx

′
2)∫∫

R4

|x′
1 + x′

2 − 2x1|2πx
0 (dx

′
1, dx

′
2)

≤ 2

∫
R2

|x′
1|2µ̂x

N(0, dx
′
1) + 2

∫
R2

|x′
2|2µx

0(dx
′
2)− 4x1.

(∫
R2

x′
1µ̂

x
N(0, dx

′
1) +

∫
R2

x′
2µ

x
0(dx

′
2)

)
= kx(x1, µ̂

x
N(0), µ

x
0)

2

(3.198)
We gather all the previous inequalities to obtain an upper-bound on the gap be-
tween the microscopic and the mean-field flows:

|ŝN(t, s1, θ1)− s∞(t, s2, θ2)| ≤
γ1ts1 log(s1/sm)(S1/sm) log(S1/sm)

2RM(N − 1)
+ eRM |s1 − s2|

+ ts0max log(s
max
0 /sm)e

RM |γ1 − γ2|+ (smax
0 /Sm)|S1 − S2|

+ smax
0 eRMRM

(
γ1t

log(S1/sm)

2RM(N − 1)
+ t|γ1 − γ2|+

1

N − 1

)
+ smax

0 eRMRMγM

∫ t

0

(
|ŝN(τ, s1, θ1)− s∞(τ, s2, θ2)|

sNmσr

+
2σr +RM

2RMsmσr

∫∫
(R∗

+×Θ)2
|ŝN(τ, s′1, θ′1)− s∞(τ, s′2, θ

′
2)|π0(ds

′
1, dθ

′
1, ds

′
2, dθ

′
2)

+
1

σ2
x

(
|x1 + x2|+

∫
R2

|x|µx
0(dx)

)
|x1 − x2|

+
kx(x1, µ̂

x
N(0), µ

x
0)

σ2
x

∫∫
R4

|x′
1 − x′

2|πx
0 (dx

′
1, dx

′
2)

)
dτ

(3.199)
Finally, we obtain the required inequality by integrating over π0.
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Proof of the inequality (3.134): Let us expand the expressions of the com-
petition potentials.

ĈN
1 (t, η, θ1:N)− C∞(t, η, θ1) =

∫
R∗
+×R2

C(sN1 (t, η, θ1:N), s
′
1, |x1 − x′

1|)µ̂
s,x
N (t, ds′1, dx

′
1)

−
∫
R∗
+×R2

C(s∞(t, η, θ1), s
′
2, |x1 − x′

2|)µ(t, ds′2, dx′
2)

+
1

N − 1

∫
R∗
+×R2

C(sN1 (t, η, θ1:N), s
′
1, |x1 − x′

1|)µ̂
s,x
N (t, ds′1, dx

′
1)

− C(sN1 (t, η, θ1:N), s
N
1 (t, η, θ1:N), 0)

N − 1
(3.200)

Let πt be a coupling between the distributions µ̂N(t, θ1:N) and µ(t). Then we have
the following upper-bound on the variations of the competition term.

|ĈN
1 (t, η, θ1:N)− C∞(t, η, θ1)| ≤

3

2(N − 1)
+

∫∫
(R∗

+×R2)2
|C(sN1 (t, η, θ1:N), s

′
1, |x1 − x′

1|)

− C(s∞(t, η, θ1:N), s
′
2, |x1 − x′

2|)|π
s,x
t (ds′1, dx

′
1, ds

′
2, dx

′
2)

(3.201)
From equation (3.195), we have the following inequalities for any s̃1 ∈ [sm;S1], s̃2 ∈
[sm;S2] and δ ≥ 0. ∣∣∣∣∂C∂s (s1, s2, δ)

∣∣∣∣ ≤ 1

2smσr∣∣∣∣∂C∂s′ (s1, s2, δ)
∣∣∣∣ ≤ 2σr +RM

2RMσrsm∣∣∣∣∂C∂δ2 (s1, s2, δ)
∣∣∣∣ ≤ 1

σ2
x

(3.202)

We deduce from these inequalities an estimation of the variation of the competition
potentials in function of the gap between the empirical and the mean-field flow.∫

(R∗
+×R2)2

|C(sN1 (t, η, θ1:N), s
′
1, |x1 − x′

1|)− C(s∞(t, η, θ1:N), s
′
2, |x1 − x′

2|)|π
s,x
t (ds′1, dx

′
1, ds

′
2, dx

′
2)

≤ |s
N
1 (t, η, θ1:N)− s∞(t, η, θ1:N)|

2smσr

+
2σr +RM

2RMsmσr

∫∫
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+)2
|s′1 − s′2|πs

t (ds
′
1, ds

′
2)

+
1

σ2
x

∫∫
R4

∣∣|x1 − x′
1|2 − |x1 − x′

2|2
∣∣ πx

t (dx
′
1, dx

′
2)

(3.203)
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Let us simplify the x terms:∣∣|x1 − x′
1|2 − |x1 − x′

2|2
∣∣ = |(x′

1 + x′
2 − 2x1).(x

′
1 − x′

2)|∫∫
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√∫∫
R4

|x′
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1, dx
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t (dx
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(3.204)

where kx(x1, µ̂
x
N(0), µ

x
0) is defined in equation (3.198). We deduce the following

inequality on the gap between the empirical flow and the mean-field flow.

|sN1 (t, η, θ1:N)− s∞(t, η, θ1)| ≤ s0

(
S1

sm

)
log

(
S1

sm

)
γ1

×
(

1

2smσr

∫ t

0

|sN1 (τ, η, θ1:N)− s∞(τ, η, θ1)|eγ1(τ−t)dτ

+
2σr +RM

2RMsmσr

∫ t

0

W1(µ̂
s
N(τ, z

0
1:N), µ

s(τ))eγ1(τ−t)dτ

+kx(x1, µ̂
x
N(0), µ

x
0)W2(µ̂

x
N(0), µ

x
0)
(
1− e−γ1t

))
(3.205)

From inequality (3.105), we have an estimation of W1(µ̂
s
N(t), µ

s(t)):

W1(µ̂
s
N(t, z

0
1:N), µ

s(t)) ≤ EN(µ̂N(0, z
0
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(
eβN t − 1
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0
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1
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s
N(0, z

0
1:N), µ

s
0) + αSW1(µ̂
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0
1:N), µ

S
0 )
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We can notice that in this particular case, since µs

0 = δs0 , thenW1(µ̂
s
N(0, z

0
1:N), µ

s
0) =

0 for all N .

|sN1 (t, η, θ1:N)− s∞(t, η, θ1)|eγ1t ≤ s0

(
S1
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)
log

(
S1
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)
γ1

×
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1

2smσr
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∫ t

0

(
EN
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e(βN+γ1)τ − eγ1τ

)
+FNe
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x
N(0), µ

x
0)
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0

W1(µ̂
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x
0)e
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(3.207)
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By Grönwall lemma, we obtain the following estimation.

|sN1 (t, η, θ1:N)− s∞(t, η, θ1)| ≤
τ(η, θ1)e

(1/τ(η,θ1)−γ1)t

(γ1τ(η, θ1)− 1)(τ(η, θ1)(βN(η) + γ1)− 1)

×
[
2σr +RM

RMτ(η, θ1)
EN(µ̂N(0), µ0)
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+
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x
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x
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x
N(0), µ

x
0)(τ(η, θ1)(βN(η) + γ1)− 1)

(
e(γ1−1/τ(η,θ1))t − 1

)]
(3.208)

where we have used the following notations

s̃(η, θ1) = s0

(
S1

sm

)
log

(
S1

sm

)
τ(η, θ1) =

2smσr

s̃(η, θ1)γ1

(3.209)

and βN(η) is defined in equation (3.104). By reordering the terms, we obtain the
expressions of the coefficients in inequality (3.134). For the 1

N−1
terms.

ŝ1(η, θ1, µ̂N(0)) =
2σr +RM

RM(β(η)τ(η, θ1) + γ1τ(η, θ1)− 1)

(
A(µ̂N(0))

β(η)
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0 RMeRM

)
ŝ2(η, θ1, µ̂N(0)) =

2σr +RM

RM(β(η)τ(η, θ1) + γ1τ(η, θ1)− 1)

(
A(µ̂N(0))τ(η, θ1)
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0 RMeRM

)
ŝ3(η, θ1, µ̂N(0)) = −

2σr +RM

RM(γ1τ(η, θ1)− 1)
.
A(µ̂N(0))

β(η)
(3.210)

For the W2(µ̂
x
N(0), µ

x
0) coefficients, we have

ax1(η, θ1, µ̂N(0)) =
B(µ̂N(0), µ

x
0)(2σr +RM)
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x
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)
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(3.211)
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As for the coefficients of W1(µ̂
γ
N(0), µ

γ
0),

aγ1(η, θ1) =
(2σr +RM)αγ

RMβ(η)(β(η)τ(η, θ1) + γ1τ(η, θ1)− 1)

aγ2(η, θ1) =
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RMβ(η)τ(η, θ1) + γ1τ(η, θ1)− 1)(γ1τ(η, θ1)− 1)

aγ3(η, θ1) = −
(2σr +RM)αγ

RMβ(η)(γ1τ(η, θ1)− 1)
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Finally, for the coefficients related to W1(µ̂
S
N(0), µ

S
0 ),

aS1 (η, θ1) =
αS

RM

.
2σr +RM

β(η)τ(η, θ1) + γ1τ(η, θ1)− 1

aS2 (η, θ1) = −aS1 (η, θ1)
(3.213)
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mean states of the first cloud x1 = (−2, 0), v1 = (0, 2)
mean parameters of the first cloud κ1 = 0.8, m1 = 0.8

mean states of the second cloud x2 = (2, 0), v2 = (0,−2)
mean parameter of the second cloud κ2 = 1.5, m2 = 1.5
variance parameter of the two clouds σx = 1, σv = 1, δκ = 0.2, δm = 0.2

sample size for Monte-Carlo integration M = 1000
time-step of the subdivision ∆t = 0.1

sample size for kernel density estimation M ′ = 10 000

Configuration of the simulation of the Spring Cloud mean-field flow
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Configuration of the simulation of the Schneider system .

Bounds of the initial size smin
0 = 0.1, smax

0 = 0.3
Extremal sizes sm = 5× 10−2, RM = 3

Position variance L = 1
Extremal values of S̄(x) Sm = 0.5, SM = 1.0, S0 = 0.75

Positions of S̄(x) extrema xS
max = (−L, 0), xS

min = (L, 0)
Spatial curvatures of S̄(x) HS

max = HS
min = I2/L

2

Standard deviation of S δS = 0.1
Extremal values of γ̄(x) γM = 2,γm = 0.1,γ0 = 1.05

Positions of γ̄(x) extrema xγ
min = (0,−L), xγ

max = (0, L)
Spatial curvature of γ̄(x) Hγ

max = Hγ
min = I2/L

2

Standard deviation of γ δγ = 0.1
Competition parameters σr = 1.32, σx = L/2

Time step and time horizon ∆t = 1, T = 10
sample size N = 1 000

size of training and testing sets K = 1 000
random number generator MersenneTwister(1234)
initial degree of polynomial deg(f 3

d ) = 5
other degree deg(f 5

d ) = 3

Time R2 associated with the potential reconstruction
0 0.993
1 0.976
2 0.978
3 0.980
4 0.980
5 0.980
6 0.980
7 0.981
8 0.981
9 0.981
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Conclusion

This is the end
– Jim Morrisson, The End (1967)

Our initial aim was to build population models derived from individual-based
models, with minimal loss of information. The three chapters of this thesis have
enabled us to clarify the main specifications of a macroscopic approximation of a
population formed by interacting individuals with potentially different character-
istics.

1. a macroscopic approximation of a population is a consistent approximation
of the probability distribution representing all the individuals composing the
population when the size N →∞.

2. this approximation should have dynamics only depending on the initial dis-
tribution µ0 and the transition function hN .

3. The numerical method’s computational cost to simulate this approximation
should be independent of the size N of the population.

Our focus on symmetric and heterogeneous differential equations systems has
led us to consider that such an approximation can be expressed using the system’s
mean-field limit when this limit is well-defined. By construction, the mean-field
limit of a population model does not depend on the population’s size, and this
property makes it meet the two last specifications. If the limit is not well-defined,
though, it still seems possible to find the proper normalization of the state and
time variables to obtain a mean-field limit when N → ∞. This statement, on
the existence of a proper normalization, needs to be checked on a broader class of
symmetric systems than the ones considered in this thesis, especially in the case
of systems with stochastic transitions (Bolley et al., 20113), where the expression
of the diffusion coefficient may also influence the normalization. Depending on the
behavior of the sequence of population empirical measures (µ̂N(t))N≥2, especially
its tightness property, the mean-field limit may or may not provide a consistent
approximation of the population, this nuanced result being discussed in sections
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3.4.2 and 3.4.3 in the specific cases of the Schneider and the Spring Cloud systems.
For the homogeneous Spring Cloud system, the mean-field limit only gives the
mean values of the state variables evolving in a large population. To obtain a more
comprehensive description of the population dynamics, we need to develop the
population’s asymptotic behavior at a higher order than the mean-field limit. For
now, we do not have any general methodology to derive a consistent approximation
of any symmetric population model, but the previous example gives us potential
directions to explore.

We hope that the main results of this thesis can be extended to less smooth
systems, in particular functional-structural plant models, having the requirement
of being symmetric, which is a widespread property in reference plant interaction
models, such as Cournède et al. (2008),4 Sievänen et al. (2008),12 Hemmerling et
al. (2008).8 Our hopes are fueled by the research carried out on propagation of
chaos (or asymptotic factorization) in non-smooth systems such as hard spheres,
in Gallagher et al. (2014),7 or topological interactions, in Degond and Pulvirenti
(2019).5

It is also necessary to check whether mean-field approximation, when it applies,
constitutes a simplification of the original global dynamics in practice. To this end,
we need to prove the consistency of the numerical schemes described in section 3.5
and quantify the spatial and temporal errors they induce to use this information
in the context of statistical inference. Modeling the uncertainty introduced by the
numerical resolution error has to be done as in section 2.7, but this time, with a
Gaussian process potentially depending on the variables (t, x, θ). For now, we do
not know whether the simulation of such an error model could be done efficiently.

The application of kinetic theory to agricultural model opens up the possibility
to use flocking control methodologies, such as the ones developed by Piccoli et al.
(2015),11 to address problems such as yield optimization with limited resources
in crops. To study crop optimal management, the crop is generally modeled at a
macroscopic level, and the interactions between the plants are neglected in com-
parison to the influence of the external environment (Della Noce et al., 2019).6
Controlling individual-based models allows the user to have much more flexibil-
ity, and the monitoring of the system is simplified, as the observation of a single
plant can constitute a feedback on the adopted strategy. If optimal control and
statistical inference are carried out at the same time, on-line, to deal with the
external sources of uncertainty, such as weather, we are dealing with partially ob-
served Markov decision processes (Krishnamurthy, 2016),9 which can be naturally
expressed within the Bayesian setting developed in chapter 2.

This thesis has always considered a population of constant size. We did not take
into account the eventuality for an individual to exit the system (death) or enter
the system (birth), which is of particular interest when studying populations from
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an ecological perspective. Modeling the mortality is proposed within the Schneider
system by Nakagawa et al. (2015),10 with a probability of death expressed as a non-
decreasing function of the competition potential exerted on the individual. One
could also have modeled the event of reproduction as a function of the individual
state (low competition, closeness to the asymptotic size) and the spatial process
associated with the dispersal of the offspring. Formally, when considering these
birth-death processes, the transport equations defining the population distribution
and the mean-field distribution are no longer conservative. A research direction
that may be explored consists in studying the population dynamics at the pace of
generations. In this context, we can follow the approach developed in Berestycki
et al. (2009)2 and in Barton et al. (2010)1 to derive an evolution process from an
individual-based model.
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Abstract: Collective motions describe populations
in which individuals’ interactions are the driving force behind
their displacements and their transformation over time. Un-
derstanding and controlling collective motions are significant
issues in many fields, especially for the study of ecosystems
(swarm dynamics), safety in large gatherings and buildings
(crowd movement), or agriculture (the study of plant growth).
The population models we consider are systems of differen-
tial equations with the property of being heterogeneous, i.e.,
made up of individuals with different characteristics influenc-
ing the dynamics. This assumption is motivated by the agri-
cultural application, to study interactions between plants of
different varieties or even different species. These systems are
also assumed to be symmetric, i.e., having dynamics invariant
by permutation of individuals’ labels, which is a widespread
property within collective motion models, enabling numer-
ous simplifications. However, several challenges remain to be
addressed before these models can be used in real-life appli-
cations. We focus on the problems related to statistical in-
ference, i.e., matching the model with experimental data and
observations made on the system under study.

The first level of difficulty is computational: the simulation of
a sizeable interacting population can be too costly in terms of
computing time, and, therefore, it is a first impediment to the
study of the population at a macroscopic scale. The second
level of difficulty relates to the quality of the data: because
of the complexity of the modeled system, experimental ob-
servations cannot characterize the system’s dynamics exactly,
in particular because they generally only concern a subset of
the population. It is necessary to quantify the uncertainties
related to the imperfections in the acquisition of such data.
In this thesis, we characterize all the uncertainty sources re-
lated to partial observations of symmetric and heterogeneous
systems in a Bayesian framework. Some sources of uncer-
tainty, notably the ones arising from inaccurate knowledge of
the population size, result in particularly complex inference
problems, which we propose to approach using a macroscopic
representations of the population. This statistical approxi-
mation of the global population motion is based on numerical
simulations of the mean-field limit distribution, i.e., a prob-
ability distribution expressed as the solution of a non-local
transport equation associated with the symmetric system.
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ulation et l’inférence statistique
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Résumé : Les mouvements collectifs décrivent des pop-
ulations dans lesquelles les interactions entre individus sont
le moteur de leurs déplacements dans l’espace et de leurs
transformations dans le temps. La compréhension et le con-
trôle des mouvements collectifs constituent des enjeux ma-
jeurs dans de nombreux domaines, notamment pour l’étude
des écosystèmes (dynamique des essaims d’animaux), la sécu-
rité dans les grands rassemblements et les bâtiments (mouve-
ment de foule), ou encore l’agriculture (étude de la croissance
des plantes). Les modèles de population que nous consid-
érons sont des systèmes d’équations différentielles ayant la
propriété d’être hétérogènes, i.e., constituées d’individus avec
des caractéristiques différentes, et ces caractéristiques ont une
influence sur la dynamique. Cette hypothèse est motivée par
l’application agricole, où il est question d’étudier les interac-
tions entre plantes de différentes variétés, voire de différentes
espèces. Ces systèmes sont également supposés symétriques,
i.e., ayant une dynamique invariante par permutation des in-
dividus, ce qui est une caractéristique largement répandue
au sein des modèles de mouvement collectif, et qui permet
de nombreuses simplifications. Un certain nombre de défis
restent toutefois à relever pour que ces modèles soient utilisés
dans des cas d’application concrets, et nous nous concentrons
en particulier sur les problèmes liés à l’inférence statistique,
i.e., la confrontation du modèle à des données expérimentales,

des observations réalisées sur le système réel étudié.
Un premier niveau de difficulté est d’ordre computationnel: la
simulation de grandes populations en interaction peut s’avérer
trop coûteuse en temps de calcul, et elle constitue ainsi un pre-
mier obstacle à l’étude de la population à une échelle macro-
scopique. Un second niveau difficulté a trait à la qualité des
données: du fait de la complexité du système modélisé, les
observations expérimentales ne peuvent permettre de carac-
tériser exactement la dynamique du système (en particulier
car elles ne portent généralement que sur une sous-partie de la
population), et il est nécessaire de quantifier les incertitudes
liées aux imperfections dans l’acquisition de ces données.
Dans cette thèse, nous caractérisons l’ensemble des sources
d’incertitude liées aux observations partielles des systèmes
symétriques et hétérogènes dans un cadre bayésien. Cer-
taines sources d’incertitude, notamment celle venant d’une
connaissance inexacte de la taille de la population et des pro-
priétés des individus non observés, donnent lieu à des prob-
lèmes d’inférence particulièrement difficiles, que nous nous
proposons d’approcher en utilisant des représentations macro-
scopiques de la population. Ces approximations statistiques
du mouvement global de la population sont basées sur des sim-
ulations numériques des distributions limites de champ moyen
associées au mouvement collectif, distribution s’exprimant
comme la solution d’une équation de transport non-locale.
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