
HAL Id: tel-03281795
https://theses.hal.science/tel-03281795v1

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration of reconfigurable tiles of
computing-in-memory architecture for data-intensive

applications
Roman Gauchi

To cite this version:
Roman Gauchi. Exploration of reconfigurable tiles of computing-in-memory architecture for data-
intensive applications. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes
[2020-..], 2021. English. �NNT : 2021GRALT015�. �tel-03281795�

https://theses.hal.science/tel-03281795v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES
Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES

Arrêté ministériel : 25 mai 2016

Présentée par

Roman GAUCHI

Thèse dirigée par Henri-Pierre CHARLES, CEA, UGA
et codirigée par Pascal VIVET, CEA, UGA
et Subhasish MITRA, Stanford University

préparée au sein du Laboratoire CEA LIST
dans l’École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Exploration d'une architecture tuilée
reconfigurable de mémoire calculante pour
les applications gourmandes en données

Exploration of reconfigurable tiles of
computing-in-memory architecture for data-
intensive applications

Thèse soutenue publiquement le 22 mars 2021,
devant le jury composé de :

Monsieur Ian O'CONNOR
PROFESSEUR, Ecole Centrale de Lyon, Rapporteur
Monsieur Gilles SASSATELLI
PROFESSEUR, LIRMM, CNRS, Rapporteur
Monsieur Frédéric ROUSSEAU
PROFESSEUR, TIMA, UGA, Président du jury
Madame Edith BEIGNE
INGENIEUR HDR, Facebook, Examinatrice
Monsieur Alexandre LEVISSE
INGENIEUR DOCTEUR, EPFL, Examinateur
Monsieur Subhasish MITRA
PROFESSEUR, Stanford University, Co-directeur de thèse
Monsieur Henri-Pierre CHARLES
INGENIEUR HDR, CEA, UGA, Co-directeur de thèse

Remerciements

Although this manuscript is written in English, I must thank the people who helped, sur-

rounded, inspired and supported me during these three years of thesis.

Me voilà arrivé à la �n, ou presque, ou plutôt au début de quelque chose de nouveau. La

thèse est un marathon de trois années, mais qui passe aussi vite qu’un sprint de quelques

secondes. Heureusement, j’ai appris à en apprécier chaque instant et chaque rencontre qui

se présentaient à moi. Plus qu’une expérience technique, j’ai vécu une expérience humaine.

Une sorte de voyage introspectif, qui m’a changé profondément, sur ma vision de la recherche,

mais aussi sur le monde qui m’entoure. Grâce à vos remarques, vos conseils et vos opinions,

j’ai commencé à bâtir modestement ma propre vision. Aujourd’hui, je suis empli de doutes,

mais je suis convaincu qu’on trouvera des solutions, je suis con�ant. Pour tout ce que vous

m’avez apporté, je me dois de vous remercier dans les paragraphes suivants. Je vous pris de

m’excuser, si par mégarde, j’ai oublié de vous citer, sachez que je vous remercie.

Pour commencer, je tiens à remercier Monsieur Ian O’Connor, professeur à l’École Cen-

trale de Lyon, et Monsieur Gilles Sassatelli, professeur à l’Université de Montpellier, pour

avoir pris le temps de revoir mon travail. J’aimerais aussi remercier Monsieur Frédéric
Rousseau, professeur à l’Université Grenoble Alpes, Madame Edith Beigné, ingénieure de

recherche chez Facebook, ainsi que Monsieur Alexandre Levisse, docteur à l’École Polytech-

nique Fédérale de Lausanne, pour avoir accepté d’examiner attentivement mon manuscrit.

Pascal, je ne sais comment te remercier pour ton implication sincère et tes remarques tou-

jours pertinentes. À nos discussions du vendredi soir et celles un peu plus tardives pour les

soumissions de papier, désolé Sonia. À nos voyages (professionnels) à Stanford, à nos parties

de bowling et nos ballades dans la nature américaine. Merci d’avoir pris de ton temps, merci

pour ton attention et merci pour ton exigence in�nie. Cette thèse n’aurait pas été la même sans

toi, merci in�niment du fond du cœur. Henri-Pierre, merci pour ton approche de la recherche

et de la vision logicielle. Merci pour avoir repris mon encadrement et de m’avoir conseillé tout

en me laissant le dernier mot. Je me souviendrais de nos échanges cordiaux, parfois engagés,

entre logiciel et matériel. De ces débats, j’en suis sorti grandi intellectuellement, pour cela, je

t’en suis reconnaissant. Edith, je tiens tout particulièrement à te remercier, pour m’avoir fait

con�ance, aussi bien humainement que scienti�quement. Tu m’as apporté beaucoup en peu

de temps et tu as su me guider et me faire ré�échir aux bonnes questions. Je me souviens de

nos sympathiques discussions à Stanford, merci pour ta jovialité, ton ouverture d’esprit et à

bientôt aux USA ! Subhasish, thank you for all your always relevant and thoughtful remarks

that you have brought to our discussions and my scienti�c �ourishing. Sorry for my often

inaccurate English, and thank you for all the opportunities you were able to o�er me during

our collaboration.

iii

Remerciements

Je remercie le CEA Grenoble pour m’avoir donné cette magni�que opportunité de thèse, merci

à l’ex-LETI et au nouveau LIST, à l’ex-DACLE et au nouveau DSCIN, à l’ex-LISAN et aux nou-

veaux LFIM, LIIM et LSTA. Merci Yvain T. et Jean-Fred C. pour leur goût de la personnali-

sation et des dot�les - Yvain, j’éteindrais la lumière en sortant ! Merci David C. pour tes

explications claires et tes goûts musicaux atypiques, Manu P. pour tes conseils avisés et nos

discussions de barbus à sandales (IPoAC), César F. T. pour ta sympathie et ton enseignement

sur les plateformes de simulation, Ivan M.-P. et Romain L. pour vos conseils et vos visions

architecturales, qui m’ont aidé à créer la mienne, SimoneM. et Marjorie G. pour votre écoute

attentive et humaine, et Andrea B. pour ces merveilleux moments passer avec toi au Pérou.

Merci à l’équipe mémoire pour m’avoir accueilli en cours de chemin, merci Jean-Phi N. et

BastienG. pour votre passion cinéphile d’OSS 117 et de Kaamelott, ainsi que des viennoiseries

légères : je suis prêt à vous dire au revoir un par un. Merci Maha K. pour ta patience, ton

écoute et ta gentillesse, Lorenzo C., notre Leonardo Da Vinci du design mémoire, et Valentin
G. pour nos avis échangés sur le monde de la recherche. Merci à tous mes co-bureaux pour

m’avoir supporté pendant ces trois longues années, Julie D. etRiyane S. L. pour votre amicale

compagnie et votre ouverture d’esprit (le code, c’est la vie !), et à l’inséparable équipe des

Neurouxnes, Capucine L. d. B. (aka Clémentine), François R. et Thomas M. pour m’avoir

accueilli comme l’un des vôtres et pour votre humour noir qui a su éclairer mes journées.

Un merci tout particulier pour Maxence B. et Valentin E., mes copains thésards et futurs

docteurs, avec qui j’ai partagé mes doutes et questionnements personnels tout au long de mon

parcours de thèse. Allez, c’est bientôt la �n ! Bon courage aussi à tous mes amis thésards,

Miguel S., Sota S., Eduardo E., Mona E., Kevin M., Stéphane B. et Manon D., la libération

se rapproche de jour en jour ! Bonne continuation à notre alternant préféré, Antoine P., et

merci à tout les thésards du LGECA, Nicolas G., Loïck L. G., Carlos A. B., Housseim E. D.,
Adrien M. et J-B, merci pour toutes nos discussions plus ou moins scienti�ques en salle café.

Un gros merci aux coupains, à la Kacoloc, Antoine et Tanguy (fraîchement docteur), autant

majestueux dans le A-clique que dans les régimes diététiques (on le fera un jour ce marathon !),

sans oublier notre quatrième coloc Piat, locataire à vie de la Belle Électrique. Merci Adrien,

avec qui j’ai pu refaire le monde, au moins un bon milliard de fois, bon courage pour ta thèse,

tu le mérites. Merci Amaury et Philippine pour cette colocation improvisée, vous êtes des

amours. MerciMaël, ex-protoss et nouveau terran, là on est bien ! Merci et félicitation à la nou-

velle petite familleZoé, Christophe etAstrid, merciRémi, Margot, Axel, Maëva, Hochard
S.,Vincent etLéo pour votre soutien. Une dernière dédicace aux artistes du blindtest,Amélie,

Emilie, JR, Agathe, Adrien, Mateo, Alexandre, nos petites soirées au métro me manquent.

Pour terminer, je tiens à remercier chaleureusement toute ma famille qui a su comprendre les

enjeux et discerner les di�cultés de la thèse. Je ne saurais comment remercier su�samment,

ma mère, pour son ouverture d’esprit, sa dextérité manuelle et sa pugnacité qu’elle m’a don-

née, mon père, pour sa persévérance de ré�exion et de questionnements qu’o�re le métier de

chercheur scienti�que, ma sœur, pour sa sympathie altruiste, sa créativité et son humour, et

mon frère, pour sa détermination et son goût de l’aventure, qui me pousse, aujourd’hui à partir

vers d’autres contrées lointaines.

iv

https://fr.wikipedia.org/wiki/IP_over_Avian_Carriers

Abstract

Exploration of Reconfigurable Tiles of Computing-in-Memory
Architecture for Data-intensive Applications

Current computing architectures for data-intensive applications are facing severe memory ac-

cess limitations. Power-hungry caches are not e�cient anymore, the memory available to the

cores is more and more limited in both capacity and bandwidth. Unfortunately, the trend in

memory technologies does not scale as fast as the computing performances, leading to the

so called memory wall. To address these challenges, the main directions followed in the re-

search community are both at the architecture level and technology level: new architecture

with computation immersed in memory, coupled to on-chip Non-Volatile Memory (NVM) for

increased density, and advanced 3D architectures for increased memory capacity while o�er-

ing more tightly coupled computing and memory. As a �rst step towards these directions, this

PhD thesis addresses the architectural study of computation immersed in memory architec-

ture with an increased memory sizing, scalability and recon�gurability using standard CMOS

technologies.

Recent techniques that bringing computing as close as possible to the memory array such as,

In-Memory Computing (IMC), Near-Memory Computing (NMC), are expected to address these

limitations, but are facing limitations such as, �xed vector size and total available memory ca-

pacity. To process data-intensive applications with larger datasets, in this thesis, I propose a

scalable and recon�gurable tile-based architecture composed of SRAM-based NMC tiles, each

enabling arithmetic and logic operations within the memory. The combination of a horizontal

scalability scheme and a vertical data communication o�ers an adaptive vector size for max-

imum performance onto the NMC tiles. In terms of programming model, this architecture

can be programmed as an accelerator and executes vector-based kernels available on existing

SIMD engines. For architecture exploration, performance and energy of data-intensive ker-

nels are quanti�ed using an instruction-accurate simulation platform using SystemC/TLM,

calibrated on existing NMC SRAM tile designed in 22 nm FDSOI technology. Compared to

512-bit SIMD architecture, the proposed NMC architecture achieves an Energy-Delay Prod-

uct (EDP) reduction up to 52× and 71× for linear and quadratic computational complexity

kernels, respectively.

v

Abstract

Exploration d’une Architecture Tuilée Reconfigurable de Mémoire
Calculante pour les Applications Gourmandes en Données

Les architectures de calcul actuelles dédiées aux applications gourmandes en données sont

confrontées à de graves limitations d’accès à la mémoire. Les caches gourmands en énergie ne

sont plus e�caces et la mémoire disponible pour les processeurs est de plus en plus limitée en

termes de capacité et de latence. Malheureusement, l’évolution technologique des mémoires

ne s’adapte pas aussi rapidement que les performances de calcul, ce qui conduit à ce que l’on

appelle le "mur mémoire". Pour relever ces dé�s, les principaux axes de recherche suivies dans

la communauté se situent à la fois au niveau de l’architecture et au niveau technologique : des

nouvelles architectures avec du calcul immergé dans la mémoire, couplée à une mémoire non-

volatile (NVM) sur puce pour une densité accrue, et des architectures 3D pour une capacité de

mémoire accrue tout en o�rant un couplage étroit entre le calcul et la mémoire. A�n d’avancer

vers ces directions, cette thèse de doctorat porte sur l’étude architecturale du calcul immergé

dans la mémoire, de son dimensionnement, son extensibilité et sa recon�gurabilité en utilisant

des technologies CMOS standard.

Les techniques récentes qui rapprochent le plus possible le calcul de la matrice mémoire, telles

que le calcul en-mémoire (IMC) et le calcul proche-mémoire (NMC), devraient permettre de

résoudre ces problèmes, mais sont confrontées à des limitations telles que la taille �xe des

vecteurs et la capacité totale de mémoire disponible. Pour traiter des applications avec des

ensembles de données plus importants, je propose dans cette thèse, une architecture modulable

et recon�gurable basée sur des tuiles NMC à base de SRAM, chacune permettant des opérations

arithmétiques et logiques au sein de la mémoire. La combinaison d’un schéma d’extensibilité

horizontale et d’une communication de données verticale o�re une taille de vecteur adaptable

pour des performances maximales sur les tuiles NMC. En termes de modèle de programmation,

cette architecture peut être programmée comme un accélérateur et exécute les applications

vectorisées disponibles sur les accélérateurs SIMD existants. Pour l’exploration architecturale,

les performances et l’énergie des applications à forte intensité de données sont quanti�ées à

l’aide d’une plateforme de simulation précise à l’instruction, utilisant le langage SystemC/TLM

et calibrée sur une implémentation de la tuile NMC en SRAM conçue avec la technologie FDSOI

22 nm. Par rapport à l’architecture SIMD 512 bits, l’architecture NMC proposée permet une

réduction énergétique et des délais (EDP) allant jusqu’à 52× et 71× pour les applications à

complexité de calcul linéaire et quadratique, respectivement.

vi

Contents

Remerciements iii

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

List of Listings xiii

Introduction 1

1 Energy Efficient Computing Architecture Challenges 7
1.1 Introduction . 8
1.2 Neural Network Applications . 9

1.2.1 Image Classification . 10
1.2.2 Quantized Neural Network . 11

1.3 Other Data-intensive Applications. 12
1.3.1 Image Processing . 12
1.3.2 Database Searching . 13

1.4 Conventional Architectures . 13
1.4.1 Memory Hierarchy . 13
1.4.2 The Memory Wall in Micro-Architectures . 15

1.5 Conclusion . 15

2 State-of-the-Art on Energy Efficient Distributed Emerging Architectures 17
2.1 Optimized Accelerators using Standard Computing Paradigm . 18

2.1.1 Software Paradigm for Vector Architectures . 18
2.1.2 Reconfigurable Architectures . 20

2.2 Emerging Memory-based Computing Technologies . 21
2.2.1 Classification of Emerging Memories . 21
2.2.2 In-Memory-Computing . 23
2.2.3 Near-Memory-Computing . 24

2.3 3D Implementation Opportunities . 25
2.3.1 3D Stacked Memories . 25
2.3.2 Processing-In-Memory . 26
2.3.3 Coarse Grain to Fine Grain . 27

2.4 Conclusion . 28

vii

Contents

3 A Dream: a 3D Stacked Distributed Computing Architecture 31
3.1 Architecture Vision Overview . 32
3.2 Architecture Challenges and Associated Research Topics . 33
3.3 Summary of the PhD Contributions . 36

4 A Reconfigurable Memory-based Computing Architecture Proposal 39
4.1 METEOR: a Reconfigurable Memory-based Computing Cluster . 40

4.1.1 Inter-tiles Reconfiguration and Communication . 41
4.1.2 Overview of Vertical Transfers in the Pipeline Flow . 42
4.1.3 Interleaved Instructions and Memory Accesses . 42
4.1.4 Vertical Transfers Detailed Implementation . 43

4.2 Design Specifications . 45
4.2.1 IMC/NMC Tile Unit . 45
4.2.2 Vertical Transfer Unit . 46
4.2.3 Tile Address Mapper Unit . 47
4.2.4 Global Pipeline Dispatcher Unit . 48

4.3 System Integration Overview . 49
4.3.1 Tightly Coupled Memory of a Processor . 49
4.3.2 Loosely Coupled Co-processing Unit . 50

4.4 Conclusion . 51

5 Software Integration for Scalable Vector Computing 53
5.1 Software Integration Overview . 54

5.1.1 Programmer’s View . 54
5.1.2 Layout Configuration Parameters . 55
5.1.3 Instruction Set Formats . 56

5.2 Instruction Set Architecture . 57
5.2.1 System Bus Integration . 57
5.2.2 Control Interface Memory Mapping. 58

5.3 Programming Model for Scalable Vector Processing . 59
5.3.1 Vector Processing Capability . 60

5.4 Vector Data-centric Kernels . 61
5.4.1 Shared Data Memory . 61
5.4.2 Reduction Operations . 62

5.5 Conclusion . 64

6 Design Space Exploration of the Memory Interconnect 65
6.1 Interconnect Overview . 66

6.1.1 SRAM Organization . 67
6.1.2 Performance and Power Impacts . 68

6.2 Evaluation Methodology. 68
6.2.1 Physical Design Flow . 68
6.2.2 Static Timing Analysis . 69
6.2.3 Multiple Memory Tile Exploration . 70

6.3 Experimental Results . 70
6.3.1 Performance, Power and Area Trade-offs . 71
6.3.2 Wiring Interconnect Model . 72

6.4 Conclusion . 73

viii

Contents

7 ArchSim: an IMC-NMC Software-Hardware Simulation Platform 75
7.1 Introduction . 76

7.1.1 ArchSim Platform Overview . 77
7.2 Software Layer: a Macro Cross Compiler . 78

7.2.1 Cross Compiler Tool Chain . 78
7.2.2 ISA Integration Proposal, using PyISAGen . 79

7.3 Hardware Layer: a Module-based Platform . 79
7.3.1 Approximately-Timed Interconnect . 80
7.3.2 ISS-based Core Modules . 81
7.3.3 METEOR SystemC/TLM model . 81

7.4 Launchers and Performance Metrics . 82
7.4.1 Cross-layer Simulation Launchers . 83
7.4.2 Hardware Counters, Timings and Power Statistics . 83

7.5 Simulation Platform Calibration . 84
7.5.1 Single Core RISC-V System . 85
7.5.2 Memory Interconnect Model . 85
7.5.3 In and Near Memory Computing RTL Simulations. 85

7.6 Conclusion . 86

8 Architectural Exploration Results 87
8.1 Application Kernels with Scalable Vectorization . 88

8.1.1 Architecture Benchmarking Set-up . 89
8.1.2 Impacts of Cycle Accuracy Effects . 91

8.2 Architecture Benchmarking . 93
8.2.1 Evaluation of the Vector Width Scalability . 93
8.2.2 Evaluation of the Dynamic Reconfiguration . 94
8.2.3 Simulation Results . 96

8.3 Discussions . 97
8.3.1 Efficient Data Placement . 97
8.3.2 Memory Allocation . 98

8.4 Conclusion . 98

General Conclusion 99
Toward a 3D Architecture . 101
Perspectives and Future Works . 102

A Résumé en Français A-1

Glossary I

List of Publications VII

References XVI

ix

Contents

x

List of Figures

1 Artificial intelligence, data science, machine and deep learning overview. 1
2 Growth in processor and memory performance over 35 years. 2
3 Slow down of the scaling era, based on transistor dimension predictions over time. 3

1.1 Landscape of data-intensive applications. 8
1.2 Simple neural network layer example and terminology.. 9
1.3 A typical Convolutional Neural Network (CNN) for image classification. 10
1.4 Energy and area costs of arithmetic operations and accesses to SRAM and DRAM. 12
1.5 Memory hierarchy of a conventional computer architecture. 14

2.1 The basic structure of a vector architecture. 19
2.2 FPGA architecture overview. 20
2.3 On-chip data-centric memory-based computing solutions classification. 23
2.4 Modified SRAM architecture to enable In-Memory Computing (IMC). 24
2.5 Hybrid Memory Cube (HMC) adapted for Processing-In-Memory (PIM). 27
2.6 Monolithically integrated 3D system enabled by N3XT. 28

3.1 A 3D dream architecture to break the "memory wall". 32

4.1 METEOR cluster architecture. 40
4.2 Physical and logical views for 3 layout configurations of METEOR. 41
4.3 5-stage pipeline flow views for 1 instruction in 4 stacked tiles (A1, B1, C1, D1) 42
4.4 Global Pipeline Dispatcher view of a 5-stage pipeline with interleaved SRAM accesses . 43
4.5 Global Pipeline Dispatcher view of a full 5-stage pipeline for 6 instructions. 44
4.6 Vertical Transfer Interconnect hazards between instructions and reconfiguration. 44
4.7 METEOR generic external interface (all signals are external to METEOR). 45
4.8 METEOR tile unit implementing IMC and NMC. 45
4.9 METEOR Vertical Transfer Unit and Tile interfacing. 46
4.10 METEOR Tile Address Mapper unit. 47
4.11 METEOR Global Pipeline Dispatcher unit. 48
4.12 Standard processor architecture with METEOR on a TCM interface. 49
4.13 Standard processor architecture with METEOR as a co-processing unit. 50

5.1 METEOR programmer’s view of data accesses and vector handling . 54
5.2 Layout configuration parameters. 55
5.3 Instruction formats of IMC/NMC instructions with internal register support. 56
5.4 IMC/NMC ISA integrated on a standard 32-bit system bus. 57
5.5 METEOR control interface integrated in a standard system memory map.. 58
5.6 Fully Connected (FC) kernel. 62
5.7 Convolution kernel. 62

xi

List of Figures

5.8 8-bit integer addition reduction of 2048-bit vectors (A and B) with results in C. 63

6.1 Memory interconnect: H-tree distribution interconnect and clock tree network. 66
6.2 SRAM tile architecture (6-Transistor bit-cells). 67
6.3 Evaluation methodology based on a standard physical design flow. 68
6.4 Static timing analysis (STA) of the Flip-Flop (FF) to Flip-Flop path. 69
6.5 Multiple memory tile exploration: write (TAC) and read (TCE) timing paths. 70
6.6 Floorplans of different multiple tile design circuits. 70
6.7 Multi-tile (read) timing performance versus memory size for various multi-tile designs. . . 71
6.8 Total energy and area for a sweep of the number of cuts composing a 32-kB memory. . . 72
6.9 Multi-tile performance and energy trade-offs. 73

7.1 ArchSim: an hardware/software simulation platform. 77
7.2 ArchSim software layer: the cross-compile tool chain. 78
7.3 PyISAGen tool: a Python ISA generator tool. 79
7.4 ArchSim hardware layer: basic example of a top module.. 80
7.5 TLM message sequence chart using approximately-time coding style. 80
7.6 SytemC/TLM model of the METEOR architecture coupled to a RISC-V core. 82
7.7 ArchSim cross-layer hardware and software simulation launchers. 83
7.8 Module hardware counters for architecture explorations. 84
7.9 Example of VCD power profiles generated by the TLM Power library (GTKWave). 84

8.1 Speed up trends of linear, quadratic and cubic time complexity kernels . 89
8.2 Architecture benchmarking set-up.. 89
8.3 Cycles Per Instruction (CPI) ratio of the BP-CS-SV (without registers) by vector width . . . 91
8.4 Cycles Per Instruction (CPI) ratio of the BP-CS-SV-R (with registers) by vector width. . . . 92
8.5 Vector width impacts on a linear time complexity kernel . 93
8.6 Vector width impacts on a quadratic time complexity kernel . 94
8.7 Dynamic vector reconfiguration impact on the atax kernel (quadratic complexity) 95
8.8 Dynamic vector reconfiguration impact on the gemm kernel (cubic complexity) 95
8.9 Execution speed up of NMC architectures compared to the 512-bit SIMD architecture. . . 96
8.10 Energy reduction gains of NMC architectures compared to the 512-bit SIMD architecture. 96

9 Toward a 3D METEOR architecture proposal. 102
10 A 3D dream architecture to break the "memory wall" from Chapter 3. 103

xii

List of Tables

2.1 Characteristics of NVMs according to state-of-the-art studies. 22

4.1 Vertical Transfer Unit control and interactions (Up: 1, Down: 0). 47

5.1 Layout configuration parameter summary of METEOR (CSRs).. 55
5.2 Instruction summary of METEOR (54 instructions in total). 57

7.1 Overview of virtual simulators and hardware platforms for architectural explorations. 76
7.2 RISC-V and its instruction memory numbers in 22 nm FDSOI used for simulations. 85
7.3 Additional wiring cost of a 4-kB SRAM in a multi-tile architecture. 85
7.4 C-SRAM design numbers versus a 2-Port SRAM (2RW) in GF 22 nm FDSOI. 86

8.1 Overview of studied kernels . 88
8.2 Naming of NMC architectures used in our evaluation. 91
8.3 Summary of best NMC architecture results compared to 512-bit SIMD architecture 97

List of Listings

5.1 Operation vmul8: C macro of 8-bit chunk multiply operation on a C-SRAM vector. 59
5.2 SIMD and CSRAM vector types. 60
5.3 Example of N×N matrix product written in C language . 61
5.4 Operation vreduce_add8: sum of 256 8-bit words of a 2048-bit vector width. 63

xiii

List of Listings

xiv

Introduction

Flow of data are created every day by millions of people through computers, smart phones,

autonomous cars or medical devices. The quantitative explosion of digital data, known as "Big

Data", challenges us to �nd innovative approaches to capture, share, store and analyze such

data. Data Science is an inter-disciplinary �eld that combines scienti�c methods, statistics and

mathematics analysis to extract relevant and valuable information based on large amount of

data rather than computation. Such applications require a strong data accessibility constraint

compared to the data processing locality.

As shown in Figure 1, the combination of this data knowledge with Arti�cial Intelligence (AI)

applications has improved the interpretation and accuracy of predictions but mainly the inter-

action with the physical world, closer to human behavior in robotics, expert systems or com-

puter vision applications. Furthermore, the massive data processing by Machine Learning (ML)

algorithms, provides the ability to make predictions or take decisions, di�cult (or even impos-

sible) to obtain with conventional algorithms, such as medical diagnosis, speech recognition

or natural language processing applications. The ML methods of classi�cation or clustering

allow the prediction of data groupings based on the extraction of the main features by a mas-

sive database pre-processing. Di�erently from the ML, the Deep Learning (DL) applications

directly exploit the raw data to learn these key features by successive training, without pre-

�ltering or human interactions. To complete human-like tasks, arti�cial Neural Networks (NN)

Artificial
Intelligence

Artificial Intelligence (AI)
Programming systems to perform tasks which usually
require human intelligence.

Machine Learning (ML)
A subset of AI, in which machines learn how to complete
a certain task without being explicitly programmed to
solve it.

Deep Learning (DL)
A subset of ML, in which the tasks are distributed onto
ML algorithms that are organized in consecutive layers.
Each layer builds upon the output from the previous
layer. Together the layers constitute an artificial Neural
Network (NN) that mimics the distributed approach to
problem-solving carried out by neurons in a human brain.

Machine
Learning

Pattern
searching

Clustering

Classification

Regression

Expert
systems

Robotics

Computer
vision Deep

Learning

Neural Networks
(CNN, RNN, …)

Data
Science

Knowledge
Bases

Big Data
Data Science
An inter-disciplinary field that combines scientific
methods, statistics, mathematics and domain knowledge
to extract meaningful insights based on large amounts of
complex data (big data).

Figure 1: Artificial intelligence, data science, machine and deep learning overview.

1

Introduction

1

10

100

1 000

10 000

100 000

1980 1985 1990 1995 2000 2005 2010 2015

P
er

fo
rm

an
ce

 [
lo

g
]

Year

Processor-Memory
Performance Gap

(~4700x)

On-chip

Off-chip

Figure 2: Growth in processor and memory performance over 35 years [2]. Processor performance
is measured by the SPEC’s benchmark suite and compared to the VAX 11/780 architecture (1980).
On-chip memory performance depends on the processor memory requests and external memory per-
formance depends on the DRAM access latency.

are used in a wide range of applications to perform contextual object recognition (e.g. Convo-

lutional Neural Network (CNN)), natural language interpretation (e.g. Recurrent Neural Net-

work (RNN)), medical image analysis, bio-informatics, Computer-Generated Imagery (CGI),

and so on. Recently, a major breakthrough in protein structure prediction is achieved by

DeepMind using the AlphaFold neural network to determine the three-dimensional shape of a

protein from its amino acid sequence [1]. The scope of big data applications is wide and the

impacted domains are diverse, from climate predictions to autonomous driving, but the cost of

processing this large amount of data is becoming more and more challenging for computers.

Today’s conventional computer architectures are struggling to satisfy the performance and

energy requirements for these data-intensive applications. The evolution of modern architec-

tures has moved towards High Performance Computing (HPC) and distributed systems in or-

der to explore new ideas in the architecture of massively parallel machines and software, such

as the Blue Gene project developed by IBM [3] or modern Graphics Processing Units (GPUs).

However, the cost of transferring data from the external o�-chip memory to the processor is

still very high compared to the cost of the computation itself. This processor-memory perfor-

mance gap is called the "Memory Wall" [4], as presented in Figure 2. Until 2005, architectural

solutions such as DMA units and high-speed on-chip memory Cache close to the processor

bridged the gap between external o�-chip memory and processor speeds. Thus, two challenges

must be addressed by modern architectures to reduce these gaps: by integrating new mem-

ory technologies to solve the o�-chip memory wall, and computation immersed in memory to

solve the on-chip memory wall.

Moreover, technological advances have improved the performance of the processor architec-

ture. The trend of these evolutions is closely related to Moore’s law [5] (1965) which, through

observation of the silicon electronics industry, observed that the number of transistor devices

on a chip doubled each year. This steady growth is driven by three factors: larger chips, smaller

devices that allow more devices per unit area and design cleverness innovations that making

better use of available space on a chip. In 2020, this law is still veri�ed in the design of con-

ventional architectures. Regarding the scaling aspects of the technology, Dennard’s law [6]

2

Introduction

2013 2015 2017 2019 2021 2023 2025 2027 2029 2031
0

2

4

6

8

10

12

14

16

18

20

22

Expected manufacturing year

P
h

ys
ic

al
 g

at
e

le
n

g
th

 (
n

m
)

Planar scaling limit

2020 IRDS predictions

2017 IRDS predictions

2013 ITRS predictions5 years

9 years

Figure 3: Slow down of the scaling era, based on transistor dimension predictions over time. These
numbers are extracted from ITRS (International Technology Roadmap for Semiconductors) [7] and IRDS
(International Roadmap for Devices and Systems) [8] reports.

(1974) refers as the proportional relationship between the area dimensions of the transistor

in relation to its power density. As the transistor size shrunk and the voltage is reduced, the

circuits could operate at a higher frequency with the same power. However, around 2005, this

observation ends because the law ignores the impact of static energy (leakage) and transistor

threshold voltage. Thus, the scaling of the transistor faces the so-called "Power Wall", imply-

ing the limitation of processor frequency to 4 GHz since 2005. As a side e�ect, the processor

frequency limits the on-chip memory bandwidth, leading to an on-chip processor-memory

performance gap as shown in Figure 2.

The trends of circuit technologies is followed up and forecasted by the ITRS (International
Technology Roadmap for Semiconductors) [7] and IRDS (International Roadmap for Devices and
Systems) [8] roadmaps. Due to the complexity of upcoming technologies, the roadmap pre-

dicts and inquires not only devices, but also circuits, systems, and di�erentiating technologies.

In Figure 3, the optimistic predictions of 2013 are becoming harder and harder to achieve and

the expectations of technology nodes are slowly approaching the physical limits of the tran-

sistor. Indeed, transistor shrinkage is due to the physical gate length of the transistor and the

scaling slows down to a physical limit around 12 nm for planar transistors such as MOSFET

(Metal-Oxide-Semiconductor Field-E�ect Transistor). Indeed, this "Scaling Wall" is pushed back

thanks to recent technological design breakthroughs, such as FinFET (Fin Field-E�ect Transis-
tor) process technology to build non-planar transistors.

Tomorrow’s applications will become more and more data intensive, especially to solve prob-

lems by learning from a large knowledge base but also general-purpose applications. Un-

fortunately, due to the memory, the power and the scaling walls, conventional computer ar-

chitectures are limited in performance and energy-e�ciency, and technologies are more and

more constrained by physical limitations. Many solutions have been proposed but emerging

architectures and technologies must be considered to reverse these paradigms. Architectural

challenges are expected to increase the connectivity density such as advanced 3D architectures

3

Introduction

or bringing the computation closer to memory in order to limit memory transfers and increase

the bandwidth. Application-speci�c and recon�gurable architectures are promising opportu-

nity to increase energy-e�ciency by dynamically recon�guring the data �ows. New memory

breakthroughs are also being explored to develop dense on-chip memories, using non-planar

transistors to store more and more data.

This PhD thesis addressed the memory wall problem by proposing an new architectural and

technological vision. In this context, I developed a recon�gurable architecture composed of

memory-based computing tiles to reduce the on-chip memory wall impact. Each tile can per-

form computations with data stored in the attached memory. To evaluate the performance

and energy gains of this architecture, I studied and modeled the interconnect memory scal-

ability and proposed transfer mechanisms to move data and computation between di�erent

tiles. At the software level, this memory architecture is con�gured by a processor that sup-

ports the instructions to be executed by each tile as well as its interconnect recon�guration

mechanisms. In addition, this architecture is simulated at the hardware and software levels

through a in-house simulator to explore di�erent data-intensive kernels used in the scope of

image processing, database searching and neural networks applications.

4

Introduction

Outline of the Thesis

This thesis manuscript is composed of eight chapters, not including the introduction and the

conclusion:

• Chapter 1 - Energy E�cient Computing Architecture Challenges, presents the background

and motivation of this work and the context of big data applications and computer trends.

Moreover, this chapter provides an application-driven approach to size data-intensive ar-

chitectures and identify conventional computer system bottlenecks.

• Chapter 2 - State-of-the-Art on Energy E�cient Distributed Emerging Architectures, discusses

about the state-of-the-art in emerging architectures for data-intensive applications. Vector

architectures, memory-based computing technologies and 3D implementation opportuni-

ties will be studied to assess the impact of these distributed architectures.

• Chapter 3 - A Dream: a 3D Stacked Distributed Computing Architecture, proposes a archi-

tectural vision in order to break the memory wall paradigm, enhanced by the technologies

presented above. This chapter summarizes the contributions of this thesis and which ques-

tions this work intends to answer in the context of a more comprehensive 3D architecture

that still an going research topic.

• Chapter 4 - A Recon�gurable Memory-based Computing Architecture Proposal, presents a

scalable and recon�gurable and scalable memory-based computing architecture. To in-

crease the available memory space and associated computing capability, we propose to

assemble a set of memory-based computing tiles in a con�gurable fashion. This allows to

extend computing vector in two manners: either a horizontal memory extension allowing

larger vectors, or a vertical memory extension allowing more vectors.

• Chapter 5 - Software Integration for Scalable Vector Computing, presents software and system

integration of speci�c instructions for near-memory operation accelerators’ implementa-

tion. In order to address kernels with larger dataset and real applications, it is required to

scale up the architecture with more memory, while proposing the adequate programming

model allowing vector acceleration.

• Chapter 6 - Design Space Exploration of the Memory Interconnect, explores trade-o� of the

wiring interconnect cost in multiple memory tile designs in terms of power, performance

and area. This design space exploration are performed with a standard digital integration

�ow to extract low-level performance numbers for accurate architectural explorations.

• Chapter 7 - ArchSim: an IMC-NMC Software-Hardware Simulation Platform, presents an

hardware/software simulation platform to evaluate emerging technologies and architec-

tures onto standard systems. All transaction events are considered between hardware com-

ponents and its integration into a standard software tool chain.

• Chapter 8 - Architectural Exploration Results, discusses the results of the proposed architec-

ture evaluated with the proposed simulation platform. The proposed scalable vectorization

scheme allows to directly re-use existing vector application kernels to explore the execution

speed up, the energy reduction and the energy delay product onto di�erent architectures.

5

Introduction

6

Chapter 1

Energy Efficient Computing
Architecture Challenges

Contents
1.1 Introduction . 8

1.2 Neural Network Applications . 9

1.2.1 Image Classification . 10

1.2.2 Quantized Neural Network . 11

1.3 Other Data-intensive Applications. 12

1.3.1 Image Processing . 12

1.3.2 Database Searching . 13

1.4 Conventional Architectures . 13

1.4.1 Memory Hierarchy . 13

1.4.2 The Memory Wall in Micro-Architectures . 15

1.5 Conclusion . 15

In this chapter, I discuss the application background and motivation of this thesis. Hence, I pro-

pose an overview of data-intensive applications, their algorithmic dimensioning constraints

and their impact on conventional memory architecture. This application-driven approach pro-

vides key parameters to identify the conventional architecture bottlenecks and limitations.

Finally, I detail the context of the "memory wall" problem caused by the growing disparity

between the speed of the processor and the memory latency.

7

Chapter 1. Energy Efficient Computing Architecture Challenges

1.1 Introduction

Data-intensive applications, often referred to Big Data applications, involves a number of dis-

ciplines, including statistics, machine learning, neural networks, signal processing, pattern

recognition, optimization methods and visualization approaches. These are classes of applica-

tions containing a large set of data (usually terabytes or petabytes) and various types of data,

for which it becomes di�cult to integrate into a conventional system. Today’s architectures

face many challenges and di�culties related to the capture, storage, sharing and analysis of

this large amount of data [9]. Moreover, most architectures are agnostic to the data-intensive

application requirements. In fact, processors are optimized in latency and throughput for a

set of generic functions to execute all types of operations for the largest range of applications.

Conventional architectures are computationally e�cient but are limited due to data access,

which is called the memory wall problem [4].

Thus, an application-driven approach should be proposed to identify the application require-

ments of these applications to evaluate the architecture data path �exibility [10]. It is appro-

priate to determine the computational precision (operation bit width), the computational com-

plexity (type of operations) and the amount and data locality of the workload (data accesses).

Figure 1.1 provides a high-level overview of the main data-intensive applications grouped by

classes, speci�c to signal processing, optimization, machine learning and scienti�c computing.

Computational precision
High degree
of precision

Low degree
of precision

Deep learning
training

Principal
component
analysis

Solving linear
and partial

differential equations

Data accesses

Low High

Compressed
sensing

C
om

pu
ta

tio
na

l c
om

pl
ex

ity

Unclonable
functions

Random
number

generation

Reservoir
computing

Associative
memory

Image
filtering and
compression

Combinatorial
optimization

Deep learning
inference

Spiking neural
networks

Sparse
coding

Stochastic
computing

and security Signal processing, optimization and machine learning

Scientific
computing

Deep learning

Figure 1.1: Landscape of data-intensive applications, according to computational complexity, precision
and data accesses [10].

Signal processing applications are used to extract, modify and manipulate signals such as

sounds, images or sensor measurements to improve analysis, transmission or storage e�-

ciency. As a subset of this category, image processing is based on 8-bit precision arithmetic

operators per colour channel for image �ltering and compression, as detailed in Section 1.3.1.

8

Chapter 1. Energy Efficient Computing Architecture Challenges

Associative memory is used in several database search applications to save searching time.

Also known as Content Addressable Memory (CAM), it is a special type of memory that is op-

timized to perform searches through data, as opposed to simply accessing data directly based

on the address. Other search algorithms are used in bio-informatic applications for pattern

matching in a DNA sequence, as detailed in Section 1.3.2. Deep learning is a subset of ma-

chine learning applications for neural network inference (low-complexity and low-precision)

and training (high-complexity and high-precision), as detailed in Section 1.2. Quantized Neu-

ral Networks (QNN) is a promising alternative to reduce data movement and computational

complexity, as detailed in Section 1.2.2.

Finally, scienti�c computing applications involve a compute-intensive approach where a mas-

sive amount of complex computations, usually high-precision �oating-point operations, are

executed by supercomputers on HPC platforms. These applications still have a rather high

computation ratio compared to memory accesses, which reduces the memory wall impact but

does not solve the problem. This type of compute-intensive applications has not been evalu-

ated in this PhD thesis but the proposed long-term architectural vision would bring signi�cant

advantages in terms of performance and energy reduction.

1.2 Neural Network Applications

The purpose of arti�cial Neural Networks (NNs) is to mimic the human brain behavior in order

to solve problems by learning without being explicitly programmed to solve them [11]. The

model of the arti�cial neuron, initially called the perceptron (1958), is organized in successive

layers, the output of one layer being the input of another, as shown in Figure 1.2. The inputs

xn of each neuron are weighted by weights wn, called synapses, and then summed in yn, this

operation is called dot-product. From the result yn, an activation function could be applied to

each layer. The NN topology, de�ning the connectivity between the layers, allows applications

such as recognition, detection, interpretation or classi�cation of image, text or audio language.

The main advantages of NNs compared to conventional applications relate to (1) the learning

of new tasks by training and (2) no pre-processing steps are required to extract the main data

components (features), which are analyzed by hand in conventional applications.

Figure 1.2: Simple neural network layer examples and terminology. (a) Convolution kernel representa-
tion. (b) Fully connected kernel representation.

9

Chapter 1. Energy Efficient Computing Architecture Challenges

In the topology of NNs, the data �ow moves from layer to layer, from input to output, also

called the forward propagation or inference. When learning new inputs, the training dataset

is successively forward-propagated, then back-propagated in order to update the network

weights according to the quality of the output score. To speed up the learning process on

current architectures, the input data is stacked in a batch to process more than one input data

in parallel, the so-called batch size. As the learning step requires a lot of energy, power, pro-

cess time and memory resources, di�erent architectures are used for training and inference,

respectively. As both processes could use independent architectures, the updated weights of

the training are transferred to the target architecture, in this thesis we will mainly focus on

the inference stage.

A wide range of Deep Neural Network (DNN) (NN with more than three layers) topologies

exist, using custom activation functions to solve speci�c tasks. CNNs are most often used to

process and analyze images. They are mainly composed of a convolutional kernel layer, shown

in Figure 1.2(a), and a fully-connected kernel layer, shown in 1.2(b), are detailed Section 1.2.1.

For text or audio recognition, Recurrent Neural Network (RNN) topologies, of which Long

Short-Term Memory (LSTM) is a popular variant, are more suitable for processing temporal

information [12]. They use di�erent connectivity at the layer level and have looped synapses

on the neurons, allowing an intermediate state to be maintained to store past events. The main

di�erence between CNN and RNN is in the speci�city of the activation functions, while both

NN use weighted sums between layers.

1.2.1 Image Classification

Computer vision competitions such as ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [13] evaluates algorithms for object detection and image classi�cation by annota-

tion. In 2012, a CNN model, named AlexNet [14], won this competition by a large margin.

Since then, many DNN architectures based on this model have been studied to perform im-

age classi�cation, such as a typical representation is shown in Figure 1.3. Input layer data

are images, representable by pixel arrays consisting of three 8-bit channels, red, green and

blue. The pixel arrays go through many kernel convolution layers and activation functions

such as non-linearity (e.g. sigmoid, Recti�ed Linear Unit (ReLU), ...), normalization and pool-

Input Image

Convolution Non-Linearity Normalization Pooling Fully Connected Non-Linearity

Optional

Modern Deep Convolutional Neural Network (CNN): 5 ~ 1000 Layers 1 ~ 3 Layers

Class
Scores

Low-Level
Features

Mid-Level
Features

High-Level
Features

× ×

CONV
Layer

CONV
Layer

CONV
Layer

FC
Layer

Figure 1.3: A typical Convolutional Neural Network (CNN) for image classification [11].

10

Chapter 1. Energy Efficient Computing Architecture Challenges

ing (down-sampling the activation maps), up to 1000 layers for some models. These layers

extract the main features contained in the images, such as the distinctive shapes of objects,

as far as identifying the object itself. Finally, the last Fully-Connected (FC) layers classify the

object in the image by giving it a label and a score (accuracy). Main operation of the CNN con-

sists in executing the matrix-vector Multiply-ACcumulate (MAC) operation during inference

(for a single image) and matrix-matrix operation during training (for a set of images). Today,

frameworks such as TensorFlow (Google), Torch (Facebook), Scikit-learn (Inria) integrate a set

of tools and functions which optimize the program execution according to the hardware re-

sources available on the Central Processing Unit (CPU) (vector units) and the GPU (tensor

units), involving the MAC operation. To improve NN application execution, the basic MAC

operation is integrated into the instruction set of our proposed architecture in Chapter 5.

Moreover, the principal metric for comparing NNs is the quality of the results, de�ned as the

percentage of accuracy. At the architectural level, other metrics matter, such as (1) throughput,

crucial for real-time systems, (2) latency is used to evaluate application interactivity, crucial

for autonomous driving applications, (3) energy and power, crucial for embedded systems,

(4) architecture �exibility, to maintain e�ciency whatever the type of DNN models, and (5)

scalability, to maintain the performance scale with increasing memory resources [11]. All

these metrics depend on the number of Processing Element (PE), the number of MACs exe-

cuted in parallel, the distribution of the PE but also on the amount of memory reusable in the

computations according to the memory hierarchy of the architecture. Although optimizations

to reuse data exist on GPUs [15], they require a huge amount of data compared to standard

applications, and still present a memory wall inside the memory hierarchy (see Section 1.4).

1.2.2 Quantized Neural Network

Quantized Neural Networks (QNNs) use a reduced numerical data representation to encode

weight values, activations and partial sums in order to reduce data movement and thus min-

imize the impact of the memory wall. For the same architecture, the memory bandwidth is

increased and the memory size used to store the weights is reduced according to the quanti�ca-

tion step. Obviously, there are trade-o�s between the computation precision and the accuracy

of the result in relation to the bit width of the data. Many challenges and research topics exist

around the hardware and the architecture because the systems developed are custom and for a

dedicated problem [16]. The observation of the weight values in the di�erent neuronal layers

shows a non-uniform distribution (close to a Gaussian) in relation to the depth of the layer in

the network. A non-uniform quantization (logarithmic or with lookup tables) may be used to

represent the weight values [17].

Moreover, system power consumption is reduced due to reduced memory resources and low

computational precision to perform MAC operations. As shown in Figure 1.4, the energy

cost of data access is 50× to 6,400× more costly than a 32-bit addition for on-chip and o�-

chip access, respectively. Thus, operation bit width is a critical factor to reduce the energy

consumption of the architecture. By changing from a 32-bit �oating addition to an 8-bit �xed

addition, the energy consumption of the operation is reduced by 30×, and the transfer of this

data is reduced by 4×. Binary Neural Networks (BNNs) reduce computational precision up to

1 bit resolution, enabling bitwise operators to be used instead of arithmetic operators, further

reducing data transfer by 32×, such as XNOR-Net topology [18]. These Quantized Neural

Networks (QNNs) are slower to train and could have additional hardware cost, but they are

11

Chapter 1. Energy Efficient Computing Architecture Challenges

Relative energy cost

1

Energy numbers are from Mark Horowitz *Computing’s Energy problem (and what we can do about it)*. ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.

10 100 1000 10000 1 10 100 1000

Relative area cost
Operation:

8b Add 0.03

0.05

0.1

0.4

0.9

0.2

3.1

1.1

3.7

5

640

16b Add

16b FP Add

32b FP Add

32b Add

8b Mult

32b Mult

16b FP Mult

32b FP Mult

32b SRAM Read (8KB)

32b DRAM Read

Energy (pJ) Area (µm2)

36

67

137

1360

4184

282

3495

1640

7700

N/A

N/A

Figure 1.4: Energy and area costs of arithmetic operations and accesses to SRAM and DRAM [2]. Area
is for TSMC (Taiwan Semiconductor Manufacturing Company) 45 nm technology node.

nearly as accurate as CNNs related to the quanti�cation step. They demonstrated a 5% loss of

accuracy with a 5-bit �xed-point resolution compared to a 32-bit �oating-point resolution on

the ImageNet dataset [16], by using a smaller memory footprint to store weights, reducing the

impact of the memory wall.

1.3 Other Data-intensive Applications

1.3.1 Image Processing

Digital image processing is the extraction and the manipulation of digitized images through

an algorithm to obtain enhanced images or to extract meaningful information from them.

It involves a wide range of algorithms, including edge detection, noise reduction, geometric

transform, �ltering (interpolation), segmentation, compression and restoration. Images can be

de�ned as a two-dimensional matrix of pixels arranged in row and columns. Pixels are whole

elements de�ned by three 8-bit RGB (Red, Blue, Green) channels for colour images, a single

8-bit channel for black and white images or a single binary value (0 and 1) for binary images.

Operation type varies according to the images properties or the algorithm, such as divisions,

multiplications, arithmetic (addition, subtraction), logarithmic or cosine.

Lookup tables are used in image �ltering, such as Fast Fourier Transform (FFT), and data com-

pression, such as JPEG’s lossy compression [19], to replace the cosine function with a table

of pre-calculated values stored in a static program to save computing time or when there is

no dedicated hardware mathematical unit (e.g. FPU). Compression algorithms apply matrix

transforms and quantizations to take advantage of the sparsity of the output matrix and thus

compress the null values. Thus, to speed up image processing applications, a reduced set of

arithmetic instructions can be used to bene�t from the vector acceleration available in con-

ventional architectures.

To facilitate image manipulation, the applications include dedicated software libraries such

as OpenCV (Computer Vision) or OpenBLAS (Basic Linear Algebra Subroutines) for CPU or

cuBLAS for GPU. By studying the library’s contents, the most relevant processing methods are:

12

Chapter 1. Energy Efficient Computing Architecture Challenges

vector addition, scalar-vector multiplication, vector-matrix multiplication and matrix multi-

plications. These libraries are optimized to speed up processing through vectorization and

parallelization (e.g. loop unrooling, instruction reordering, ...). Instruction scheduling and

data accesses are optimized to minimize the number of memory requests. Despite this, the

scalability and the �exibility of digital image processing are constrained by the hardware re-

sources and the memory hierarchy. Consequently, there are many speci�c software imple-

mentations (Strassen, Winograd, im2col [20], ...) and compilation challenges to reduce this

memory-overhead depending on the structure of the matrix and data access patterns.

1.3.2 Database Searching

The amount of genetic DNA data obtained by next-generation sequencers doubles almost ev-

ery year, leading to more sophisticated data structures for big data. Database searching is a

fundamental problem in computational biology to �nd patterns in DNA sequences, but also

in data servers to return the address location of matching words. Speci�c hardware architec-

tures, such as associative memories (e.g. CAM) [21], are used to improve access latency to data

servers but lack �exibility for pattern matching applications in bio-informatic.

Search algorithms, also known as exact pattern matching [22], return match for all occur-

rences found in a DNA sequence, composed of a �nite alphabet (e.g. A, T, G, C) that could

be changed according to the applications. Other algorithms, such as Hamming Distance, re-

turn a distance value corresponding to the number of di�erent symbols present between two

strings having the same length. Used to compare two DNA sequences, this algorithm is also

used for error detecting and error correcting codes in coding theory. These algorithms use bit-

wise and logical operators and bene�ts from the bit-parallelism of the architecture to improve

searching performances [23]. Hardware vector processor accelerators, such as SIMD (Single

Instruction Multiple Data), have speci�c instructions to speed up the long pattern searching,

but are physically limited by the maximum SIMD vector size (128-bit up to 512-bit on Xeon

processors) and the data bandwidth between the on-chip memory and the SIMD units.

1.4 Conventional Architectures

Performance limitations of modern computer architectures mostly come from memory ac-

cesses, commonly named as the memory wall. One of the architectural solutions is to de�ne a

memory hierarchy using smaller high-speed on-chip memory closer to the processor to bridge

the gap between external o�-chip memory and processor speeds.

1.4.1 Memory Hierarchy

The aim of computer circuit architects is to create a design trade-o� between memory ca-

pacity, memory performance and energy consumption whatever the application’s hardware

resources, according to technological constraints. As an introduction, we recall the main prin-

ciple of memory hierarchy in computers, in order to separate the data and program memory

into layers in order to minimize the access time and power activity and maximize the capacity.

As shown in Figure 1.5, the memory hierarchy is composed of high-speed on-chip memories

and high-capacity o�-chip memories. Memories are becoming larger and larger in terms of

capacity, but slower and slower in terms of performance relative to the proximity of the pro-

13

Chapter 1. Energy Efficient Computing Architecture Challenges

Remote Storage
Cloud, Web Servers, Magnetic Tapes

Local Storage
Flash Drive, SSD, Magnetic Disks (HDD)

Main Memory
Random Access Memory (RAM)

Level 3 (L3) Cache

Level 2 (L2) Cache

Level 1 (L1) Cache

Core
Registers

Core

P
E

R
F

O
R

M
A

N
C

E

C
A

P
A

C
IT

Y Volatile
Memory

Off-Chip
Memory Non-Volatile

Memory

On-Chip
Memory

KB

MB

GB

TB

PB

3 ~ 10 ns

< 1 ns

10 ~ 30 ns

~ 1 ms

~ 100 ms

CPU

Figure 1.5: Memory hierarchy of a conventional computer architecture.

cessor. In this context, the chip refers to the processor or the CPU, which includes the cache

memory hierarchy.

On-chip memories are composed of: core registers and the cache memory, divided into three

levels: L1, L2 and L3/LLC (Last Level Cache), up to four levels in some multi-core architectures.

The core is de�ned by its registers and L1 memory, which operate at the same frequency and

store intermediate results, program loop counters or memory addresses. Additionally, the L1

cache is separated into two parts for instructions and program data. The Cache memory is

a very high-speed memory which prevent from redundant data transfers. It is an extremely

fast memory type that acts as a bu�er between the main memory (or RAM) and the processor

in order to reduce the average time to access o�-chip data. It stores copies of data and holds

frequently requested data and instructions so that they are immediately available to the CPU

when needed. However, the sizing of these on-chip memories constrains the performance of

the processor, thus limiting the maximum size of these memories. Current technologies no

longer provide enough performance to minimize access times, mainly due to the scaling wall.

O�-chip memories are composed of: the main memory, also known as RAM (Random-Access

Memory), the local Storage Class Memory (SCM), such as Hard Disk Drive (HDD) or Solid-

State Drive (SSD), and the remote storage memory, often decentralized from the computer

(Cloud). The main memory is used as a large bu�er (today a few gigabytes) to transfer data

from the external o�-board storage memories to the processor. When a �le is processed by

the processor, this bu�er contains the whole contents of the �le. Storage memories (local and

remote) are high-capacity non-volatile memories that are much slower than the processor, but

whose non-volatility keeps the information even when the system is switched o�. The mem-

ory wall problem occurs between the main memory and the processor [4]. As data-intensive

applications can use �les larger than the main memory, a memory wall between the external

storage and the main memory remains.

Besides the data access latency, the bandwidth between these memories also has a signi�cant

impact. The transfer bus width between on-chip memories are 512-bit large, while the main

memory is 64-bit large. In modern computer architectures, the evolution of SSD, whose band-

width reaches speeds in the GB/s range. Most recently, new generations of SSD, mounted di-

14

Chapter 1. Energy Efficient Computing Architecture Challenges

rectly on wide ports, such as PCI (Peripheral Component Interconnect), are greatly improving

the overall performance of applications, even non-data-intensive applications. After recall-

ing the main principle of memory hierarchy, o�ering large memory capacity to local and fast

cores, one can observe two main memory challenges : how to bring more memory on chip,

and how to bring more memory to the local cores.

1.4.2 The Memory Wall in Micro-Architectures

The Cache memory is designed to hide the memory latency from the processor in order to

minimize the impact of the on-chip memory wall. Hardware mechanisms of the Cache partly

satisfy the core data requests. During a 32-bit data access, the Cache transfers continuous

amounts of data per 512-bit line, to reduce the number of successive memory accesses when

working on local data. Depending on the available data, memory requests are propagated to

the upper layers of the Cache if the data is not present in the lower layers. Some data may be

duplicated or updated between layers depending on the program’s data work�ow.

Furthermore, the cache placement policies determines where a memory line can be placed to

prevent the overwriting of recent or reusable data. The hardware implementation and dimen-

sioning of the cache is decisive for the execution of the application, as well as the writing of

the application program. An application that performs irregular memory accesses will not

bene�t from the hardware mechanisms of the Cache [24]. Cache mechanisms satisfy general-

purpose applications, but data-intensive applications su�er from the lack of connectivity be-

tween cache levels due to their small memory size and replacement policy.

1.5 Conclusion

Conventional architectures, such as CPU, are designed for general purpose applications but

not overcome massive data movements in their memory hierarchy for data-intensive appli-

cations. These applications, such as NN and image processing, mostly involve MAC and

vector-matrix multiplication and addition operations and speci�c data access could be op-

timized thanks to dedicated software libraries. By reducing the computational precision, QNN

and database searching applications can bene�t from bitwise and logical computing to increase

the system energy-e�cient and speed up their processing time. Moreover, all these applica-

tions presents little locality in computing, and reduced data reuse with very large datasets,

for which standard memory hierarchy are ine�cient. Cache memory aims to break down

the on-chip memory wall but lack of �exibility and scalability caused by the placement poli-

cies and internal interconnect connectivity. Since the on-chip memory is designed for high-

performance computing and the o�-chip memory is designed for high-capacity storage, the

memory wall problem remains. To solve this problem, new energy-e�cient architectures must

be designed by analyzing computing application requirements and optimizing data access re-

sources. Emerging memory technologies and distributed computing are new opportunities to

continue to break down the memory wall.

15

Chapter 1. Energy Efficient Computing Architecture Challenges

16

Chapter 2

State-of-the-Art on Energy Efficient
Distributed Emerging Architectures

Contents
2.1 Optimized Accelerators using Standard Computing Paradigm 18

2.1.1 Software Paradigm for Vector Architectures . 18

2.1.2 Reconfigurable Architectures . 20

2.2 Emerging Memory-based Computing Technologies . 21

2.2.1 Classification of Emerging Memories . 21

2.2.2 In-Memory-Computing . 23

2.2.3 Near-Memory-Computing . 24

2.3 3D Implementation Opportunities . 25

2.3.1 3D Stacked Memories . 25

2.3.2 Processing-In-Memory . 26

2.3.3 Coarse Grain to Fine Grain . 27

2.4 Conclusion . 28

Performance limitations of conventional architectures mostly come from memory accesses,

power and delay, commonly named as the memory wall problem. Hardware cache mech-

anisms and traditional memory hierarchy are obsolete to e�ciently address modern data-

intensive applications. Moreover, transistor scaling and technology trends are slowed due

to the power wall, which limits the frequency of the system and thus the memory perfor-

mance. Instead of increasing processor frequency, more and more processors are integrating

domain-speci�c accelerators to improve the energy e�ciency of redundant task processing.

For instance, vector accelerators provide massive data parallelism that reduce the processing

time. Another architectural solution to break the memory wall consists of pushing the pro-

cessing units as close as possible to the memory to optimize data movement, also known as

data-centric architectures. In this chapter, I present the state-of-the-art of vector accelerators,

emerging memory technologies capable of computation, and dense 3D memory architectures

in order to reduce the o�-chip memory wall and increase the on-chip memory connectivity.

17

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

2.1 Optimized Accelerators using Standard Computing Paradigm

In the search for higher performance and energy e�ciency, computing architectures are mov-

ing towards the use of specialized accelerators, to improve complex and repetitive tasks. Con-

ventional architectures integrate many domain-speci�c accelerators, such as co-processors

like SIMD, FPU, Digital Signal Processing (DSP) or dedicated NN accelerators, to perform op-

erations optimized in performance and energy. Speci�c instructions from these co-processors

are integrated into the core’s extended instruction set and executed directly in the core’s in-

struction �ow. Computer systems also have accelerators external to the processor, such as

GPU, which become processor-independent chip when hardware resources become more sub-

stantial. Thus, image processing and database searching applications would bene�t from these

vector accelerators (e.g. SIMD, GPU, ...) that support redundant tasks on massive amounts of

data, contributing to improve energy e�ciency, as detailed in Section 2.1.1.

Furthermore, the evolution of data-intensive applications exceeds the hardware performance

of current architecture. As hardware struggles to adapt to new software challenges, program-

ming �exibility become an important consideration in integrated circuit design. Thanks to

custom hardware design, Application-Speci�c Integrated Circuits (ASICs) achieve the best en-

ergy e�ciency for a dedicated task compared to CPU or GPU architectures. However, the lack

of programming �exibility of ASIC leads to a short lifetime and expensive design costs. Re-

con�gurable architectures, such as Field-Programmable Gate Array (FPGA) or Coarse-Grained

Recon�gurable Architecture (CGRA), provide a trade-o� between programming �exibility and

system energy e�ciency, as detailed in Section 2.1.2. Thus, NN topologies are better suited to

recon�gurable architectures as compared to conventional architectures that lack of memory

communication �exibility due to the static Cache architecture.

2.1.1 Software Paradigm for Vector Architectures

Parallel computing techniques, such as data, instruction and task parallelism, are used to im-

prove computing performance and energy e�ciency of conventional architectures. Data-Level

Parallelism (DLP) consists of executing the same instruction on a set of data at the same time,

which is common for vector accelerators (e.g. SIMD). Instruction-Level Parallelism (ILP) arises

because multiple instructions could be executed simultaneously during the program execu-

tion. It exploits DLP at hardware level, where the processor decides to execute instruction in

parallel (pipelining, superscalar, out-of-order execution, ...), and at software level, where the

compiler decides to execute instruction in parallel (speculative execution, branch prediction,

...). For example, Very Long Instruction Word (VLIW) processors exploit ILP by using one long

instruction to explicitly execute several operations in parallel.

Finally, Thread or Task-Level Parallelism (TLP) refers to executing many instructions at the

same time on the same or di�erent set of data. General purpose GPU architectures exploit

TLP and DLP through multiple stream processing unit integrating multiple SIMD engines.

Several GPUs are implemented with this Single Instruction Multiple Threads (SIMT) execution

model, where SIMD is combined with multi-threading. With this distributed vector computing

approach, GPUs optimize data throughput at the cost of data latency, suitable for applications

that tolerate high latencies, such as deep learning training applications.

18

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

Main memory

Vector
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load/store

Scalar
registers

Vector functional units

Figure 2.1: The basic structure of a vector architecture. A set of crossbar switches (vertical thick gray
lines) connects these ports to the inputs and outputs of the vector functional units. Reprinted from
"Computer Architecture: A Quantitative Approach" (p. 284), by J. Hennessy, D. Patterson, 2017 [2].

Vector architectures, GPUs and multimedia instruction sets exploit DLP by applying a single

instruction to large dataset in parallel. As shown in Figure 2.1, vector architecture capture sets

of data elements scattered in the main memory with its load/store unit, place them into large

vector registers, operate on data with vector functional units, and then write back to their

registers or scatter the results back into memory. A single instruction operates on data vec-

tors, resulting in multiple register-to-register operations on independent data elements. The

load/store unit is a key element of the vector architecture to �ll data vector and scalar registers

in order to hide memory latency and to leverage memory bandwidth. Current research topic

are addressed at the compilation level to optimize access to the adequate data-structure by

considering the application memory-access pattern and the hardware memory hierarchy [25].

In conventional architectures, vector programs strive to keep the memory busy but cache

mechanisms stall the load/store unit when data is missing. GPU architectures achieve a high

TLP and high throughput but exhibit high latency due to shared memory resources. Such as

stream or systolic architectures provide high throughput but low execution latency, by trans-

ferring data between neighbours. Besides, distributed vector architectures provide new pro-

gramming models to reduce latency impact between SIMD vector units by integrating speci�c

vector memory instructions [26]. However, these architectures under exploits data structures

with irregular patterns, such as strided-vector or stencil, due to the continuous data accesses

of vector units [27], and the communication network between vector units does not scale

according to the number of units [28, 29]. Vector architectures provide an e�cient memory

throughput, but remain limited by the latency of their communication network between neigh-

bors and struggle to access speci�c patterns due to their vector register semantics, which are

not suitable for irregular patterns. This lack of �exibility in communication networks di�er-

entiates vector architectures from recon�gurable architectures, whose interconnect resolves

this lack of communication between neighbors.

19

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

2.1.2 Reconfigurable Architectures

Recon�gurable architectures are bridging the gap in performance and �exibility between

ASICs and conventional processor-based architectures (CPU and GPU). Early FPGA archi-

tectures introduced a high degree of architectural �exibility through a �ne-grained hardware

recon�gurability [30]. A generic FPGA design is mainly composed of Con�gurable Logic Block

(CLB), block of memory (BRAM), DSP block for highly speci�c computation and Input/Output

(IO) blocks (IOB), as presented in Figure 2.2. The architectural behavior is re-programmable

after manufacturing using a Hardware Description Language (HDL), thus con�guring the in-

terconnect hierarchy and the spatial layout of the components by con�guring the Switch Box

(SB) and Connection Box (CB). Therefore, the application is executed "physically", whereas

conventional architectures have �xed hardware functions.

B
R
A
MD
S
P

D
S
P

D
S
P

B
R
A
M

B
R
A
M

B
R
A
M

Legend

Input-Output Block (IOB)

Configurable Logic Block (CLB)

Block RAM (BRAM)

DSP Block

Switch Box (SB)

Connection Box (CB)

Figure 2.2: FPGA architecture overview.

Coarse-Grained Recon�gurable Architectures (CGRAs) were invented to solve FPGA limita-

tions by trading some of their �exibility [31]. They increased the level of granularity, for larger

and more complex units, including Con�gurable Function Block (CFB) and word-level inter-

connect recon�gurability. To improve the CGRA performance, the interconnect topologies are

�exible but pre-de�ned [32] according to: (1) mesh-based architecture, such as 2D array with

horizontal and vertical connections (e.g. Network-on-Chip (NoC)), (2) architecture based on

linear arrays, using recon�gurable pipelined data paths to connect to the nearest neighbour,

and (3) crossbar-based architecture, using a reduced switch network at word-level. There is

a strong revival for CGRAs, especially for NN applications that bene�t from their regularity

properties and the recon�guration of connections according to NN topologies.

CGRAs increase the performance and energy e�ciency of data-intensive applications through

dynamic recon�guration of data paths and better management of memory resources [33]. The

on-chip memory hierarchy is directly controlled by the application, providing more memory

scalability and �exibility compared to the traditional cache memory. However, these archi-

tectures lack a general-purpose programming model to e�ectively exploit inter TLP instead

of GPU architectures. Modern CGRAs address this problem by using simpli�ed programming

models to target speci�c applications [34], coarse-grained data�ow [35], or use a Domain-

Speci�c Language (DSL) to capture high-level parallel patterns (Map, Reduce, FlatMap, Fold,

...), data locality and parallelism across applications at software level [36]. For example, Plas-

ticine [37] achieves performance gains of up to 95× compared to an FPGA architecture, by

dedicating coarse-grain logic functions (MAC, DSP, FPU and DRAM controllers).

20

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

To conclude, CGRAs are among the promising architectures to address the challenges of NN

applications. However, they cannot easily manage vectors of con�gurable sizes and are speci�c

for pre-determined vector sizes. CGRAs allow solving the computing con�guration of such

applications, but do not solve the memory wall, either on-chip nor o�-chip.

2.2 Emerging Memory-based Computing Technologies

To break the memory wall, one architectural solution consists in bringing the processing units

as close as possible to the memory to reduce data movement between memory and comput-

ing, also known as data-centric architectures [38]. In 1969, early work [39], propose a "cellular

Logic-in-Memory" as a special programmable array to perform logic functions, suitable for as-

sociative memories (e.g. CAM), to speed up database searches. Other architectural work [40],

proposed to integrate this kind of computing memory as a "logic-enhanced cache memory ar-

ray" between the processor and the main memory, to perform logical and arithmetic operations

between two data sectors. Since, many approaches to computation immersed in memory have

been proposed using di�erent memory technologies, such as Non-Volatile Memory (NVM),

and Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM),

both volatile memories.

2.2.1 Classification of Emerging Memories

In this section, emerging memories are studied under two aspects: at the technological level,

due to the advances on emerging Non-Volatile Memories (eNVMs), and at the architectural

level, by enabling memory computing architecture paradigm based on eNVM but also SRAM

using current technologies. Emerging NVM focus on two kinds of applications: to increase

memory density versus SRAM to solve the on-chip memory wall by changing the memory

hierarchy paradigm, or to bring new computing paradigm with analog computing. According

to the di�erent memory properties, it is appropriate to classify these memories in relation to

the computation and integration potentials of each technology.

NVMs are among the high-density, low-power consumption memories used for long-term

Storage Class Memory (SCM), such as Flash memory (NAND, NOR), SSD or HDD. Thanks

to many technological breakthroughs, emerging Non-Volatile Memory (eNVM) provide an

adequate structure to enable computations within memory in various technology, such as

the Spin-Transfer Torque Random-Access Memory (STT-RAM), the Resistive Random-Access

Memory (RRAM), the Phase-Change Memory (PCM) and the Ferroelectric Random-Access

Memory (FRAM) [41]. Although the activation mechanisms vary, all of these memories oper-

ate on the same principle: data are stored in a bit-cell array (crossbar), composed of a physically

or magnetically alterable material, accessible vertically via Bit-Lines (BLs) and horizontally via

Word-Lines (WLs). The bit-cell information is encoded with a speci�c current, voltage and du-

ration pattern in order to write or read the data value. Values can be analog, binary (0 or 1) or

discrete with Multi-Level Cell (MLC). There are two methods to perform computation within

the bit-cell array between two memory words composed of horizontal lines of bit-cells. The

�rst is based on Kircho�’s law to perform analog dot-product between words by summing

the currents [42] and the second is to modify the memory array periphery according to the

bitwise logical operation to execute [43]. Other works have demonstrated the interest of these

emerging memories for image processing [44] or NN [45] applications, mostly by reducing the

21

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

Table 2.1: Characteristics of NVMs according to state-of-the-art studies [41].

SRAM DRAM NAND Flash STT-RAM ReRAM PCM FeRAM HDD
Cell size
(F²)

120-200 60-100 4-6 6-50 4-10 4-12 6-40 N/A

Write
Endurance

1016 >1015 104-105 1012-1015 108-1011 108-109 1014-1015 >1015

Read
Latency

∼0.2-2 ns ∼10 ns 15-35 µs 2-35 µs ∼10 ns 20-60 ns 20-80 ns 3-5 ms

Write
Latency

∼0.2-2 ns ∼10 ns 200-500 µs 3-50 ns ∼50 ns 20-150 ns 50-75 ns 3-5 ms

Leakage
Power

High Medium Low Low Low Low Low N/A

Dynamic
Energy (R/W)

Low Medium Low Low/High Low/High Medium/High Low/High N/A

Technology
Maturity

Mature Mature Mature Test chips Test chips Test chips Manufactured Mature

memory tra�c between memory and computation. Today, the number of operations available

with these memories is limited, without the need for additional peripheral hardware. Although

these memories have signi�cant energy and density advantages, the memory access time and

endurance are not su�cient to replace other memories, as presented in Table 2.1. With ac-

tual characteristics, these memories cannot be integrated close to the processor because of the

performance gap in memory access time.

SRAM volatile memories, are appropriate in terms of performance to align with the proces-

sor speed, as shown in Table 2.1. Recent works [10] have proved with minor changes of the

SRAM design, computing within the memory is possible to relax memory tra�c and energy

consumption to increase overall architecture performance. By changing the structure of the

bit-cell array, where data are stored, pre-computing abilities between memory words is pos-

sible to perform logical and arithmetical operations when the system accesses a data [46–49].

This concept in commonly called In-Memory Computing (IMC). Additional post-computations

are performed inside the memory periphery (e.g. arithmetic carry propagation) and then saved

without going through the processor. Those works show that IMC is commonly used as a bit-

wise vector-based accelerator and is a good pretender to mimic vector processing (e.g. SIMD).

Among all these technologies, trade-o�s exist between the area and energy cost of the modi-

�ed memory and the execution speed up according to the application.

To summarize, these emerging memory-based computing solutions could be classi�ed from the

computation locality in the memory and the instruction complexity point of view, as shown in

Figure 2.3. As a �rst level of integration, with the highest possible coupling, computations ben-

e�t from large vector width, as long as the operands are locally accessible inside the memory

array. This �rst level is called IMC, or also compute before the memory sense ampli�ers. More

complex computation can be achieved at large vector width by integrating additional logic in

the memory periphery after the sense ampli�ers, which are often more power-hungry. Usu-

ally this principle is called Near-Memory Computing (NMC) in the literature. Any hardware

accelerator (HW), such as CGRA or FPGA, bring speci�c-function to allow distributed paral-

lelism, but su�er from reduced interconnect communication between the memory tiles and the

processing elements. Finally, the CPU can perform any other complex operation by scatter-

ing data from the whole memory hierarchy (caches or dedicated Scratch-Pad Memory (SPM)).

Two problems arise from this classi�cation, which should be addressed to evaluate architec-

22

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

memory periphery

logic tight integration

system integration

bit-cells array

Implemented within: Type of Computing

FPU, branch,
control, …

MAC, CGRA,
Codecs, …

add, sub,
mult, …

nor,
nand

SRAM interface levels

D
SA

D D D
SA SA

@ Data

System Bus

SRAM

Type of Computing-In-Memory

IMC

NMC

HW

CPU

C
om

pu
ta

tio
n

im
m

er
se

d
in

 m
em

or
y

--

++

C
om

pu
tin

g
co

m
pl

ex
ity

--

++

Figure 2.3: On-chip data-centric memory-based computing solutions classification. Legend: IMC (In-
Memory Computing), NMC (Near-Memory Computing), HW (Hardware accelerator integrating SRAM).

tures using emerging memories: (1) hardware modi�cations and improvements are required

to bring computation closer to the memory, increasing the current system energy consump-

tion, (2) thus, an analysis of the type of operations to support across the memory hierarchy is

necessary to propose trade-o�s between Power, Performance and Area (PPA) design and the

application [50]. After this presentation of the di�erent levels of coupling between the com-

puting part and the memory part, the IMC and NMC are presented in the following sections

in more details.

2.2.2 In-Memory-Computing

In this section, we present in more details digital type of IMC based on SRAM, using exist-

ing technologies. Today, standard design tools allow to integrate the modi�ed SRAM into a

conventional architecture [46–49], in order to estimate the IMC performance gains with data-

intensive applications. Due to the initial lack of an abstract programming model, these �rst

approaches provide a custom IMC instruction set, to support basic logic operators (XOR, AND,

OR, NOT). IMC architecture [47] has achieved performance gains of 1.9× and energy gains of

2.4× compared to a cache memory hierarchy architecture on a data-intensive kernel applica-

tions, for only 8% area overhead. Another work [49] reports a reduction of 75% of the number

of memory accesses between the memory and the processor on cryptographic applications,

such as Advanced Encryption Standard (AES), by executing IMC instructions over multiple

cycles (Read-Compute-Store).

The Figure 2.4 presents how a logic IMC operation is performed inside the modi�ed SRAM be-

tween two memory operands (A and B). First, the control logic unit give the Word-Lines (WLs)

operand addresses to the row decoder unit, then additional precharge read Bit-Lines (BLs)

drive the voltage according to the operand values up to the selected operation in the column

decoder unit (OR, XOR, AND). Finally, the result can be stored in the memory array, often

requiring an additional clock cycle. Design changes involve two additional pre-charge read

BLs, the row decoder unit, for multiple WL selection, the control logic unit, including a Finite

State Machine (FSM) to select the operand addresses, and the column decoder unit to select

the logic operation. The pre-computation is performed inside the bit-cell array and the result

is post-computed in the column decoder unit.

The IMC approach is close to the CAM memory technology, already used and proven to speed

up the label search in databases [21], by selecting several WL (or all) in a modi�ed bit-cell

array. The standard memory interface (Address, Data) is maintained, thus data movements

23

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

R
ow

 D
ec

od
er

Sense amplifiers / Drivers

Data (Input/Output)

Control
Logic

Bit-line (BL)

Word-lines
(WL)

Column Decoder

I/O Buffers

Address, R/W

Bit-cell
Array

A

B

Write WL <i>

Read WL<i>

WWL<j>

RWL<j>

BL BL

A A

B B

SA SA

Precharge
Read BL

Precharge
Read BL

A OR B A XOR B A AND B

Bit-cell (10T)

Figure 2.4: Modified SRAM architecture to enable In-Memory Computing (IMC) [52].

with the processor are reduced to only the control part, the computing being done directly

within the memory array. Nevertheless, the memory operands must be located in the same

bit-cell array, also known as memory bank, and operands must be aligned to perform vector

processing. As the scope of type of operation is small, other works [46, 51] propose to imple-

ment an additional logic within the column decoder unit to extend the IMC instruction set in

order to support arithmetic instructions (ADD, SUB). However, these operations have higher

integration complexity (carry propagation, bit sign, ...) which impacts the energy consump-

tion and the memory tile surface. Other issues occurs when an application is scaled up and

the amount of memory is increased. In order to design larger memories, it is necessary to use

multiple memory banks, or multiple tiles, making IMC between tiles impossible.

2.2.3 Near-Memory-Computing

IMC architectures will never perform all type of computations within the memory array, be-

cause of its memory structure, and control data movements between multiple memory tiles.

The Near-Memory Computing (NMC) approach solves both of these problems by adding an

Arithmetic Logic Unit (ALU) and interconnect features in the memory periphery for data ma-

nipulation between the bit-cell array and the outside interface. Contrary to IMC, only the pe-

riphery of the SRAM tile is modi�ed, the bit-cell array is conserved, thus limiting the impact

of the modi�ed memory area overhead. Thus, NMC address a larger scope of data-intensive

applications, such as database searching [47] and neural networks, vision and graph process-

ing [53]. Combining IMC and NMC speci�c operations for security and cryptographic appli-

cations [52, 54] achieve gains up to 6.8× in performances and 12.8× in energy saving ver-

sus state-of-the-art cryptographic benchmarks running on hardware-accelerated implemen-

tations.

A speci�c IMC/NMC type, using the bit-serial scheme to perform a set of advanced instruction

(arithmetic and �oating-point operations) by computing the operation bit by bit at each clock

ticking. Similarly to the IMC, the structure of the bit-cell array is modi�ed, to shift horizon-

tally the data to the ALU at the periphery. The bit-serial architecture can improve NN infer-

ence latency by 18.3× over state-of-art multi-core CPU and 7.7× over server class GPU [55].

24

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

Nevertheless, this scheme requires a high DLP (all words active) to achieve high-performance

and the overall execution throughput depends on the type of operation. For example, it

achieves an energy e�ciency of 0.56 TOPS/W for 8-bit multiplication and 5.27 TOPS/W for

8-bit addition [51, 56].

Further system and architecture explore local data movements by integrating the NMC ap-

proach within a standard cache architecture [47, 57, 58]. The improved cache architecture

achieves gains of 6× and 3× in performance with image processing and NN applications, re-

spectively, compared an identical embedded processor including a SIMD co-processor [57].

However, the programming model is not explicit, partly because the cache involves hardware

mechanisms and the interconnect between memory tiles is limited to a width of 512 bits. For

larger memory, integration of multiple tiles of IMC or NMC has not been explored in a sys-

tematic way in terms of memory organization, local interconnect and performance trade-o�s.

To conclude, the IMC and NMC approaches enable complementary design and architecture

improvements to reduce memory tra�c on the conventional CPU system bus. Although these

architectures lack a general-purpose programming model, they o�er vector processing oppor-

tunities, such as SIMD units, but may work on larger, scalable and con�gurable vector sizes by

involving a recon�gurable memory interconnect. They provide a superior throughput by ex-

ploiting the DLP of data-intensive applications and should be compared to GPU architectures

that use a comparable model. The combination of these two schemes will allow �exibility of

the architecture according to application requirements. However, many software challenges

remains, such as cache coherency and dynamic data remapping support [59]. In addition, the

IMC/NMC scalability for data-intensive applications has not been studied except for cache

replacement. Thus, the existing programming model does not consider memory transfers be-

tween NMC tiles, it would be relevant to propose an evaluation of the internal data movements

through the memory tiling. Each additional functionality will necessarily impact the perfor-

mance of the complete system and determine the trade-o�s between energy consumption at

the application level, allowing a more accurate architectural assessment.

2.3 3D Implementation Opportunities

Emerging 3D-stacked memory technologies are among the solutions to break the memory

wall problem of high-performance computing systems [60]. These architectures provide high

bandwidth, low latency, high memory density and capacity through di�erent level of memory

coupling within the computing architecture, depending on the level of 3D integration. Stack-

ing memories on top of processing units increases interconnect connectivity and reduces data

transmission delay through shorter wire length with less capacitance. Recent non-volatile

3D-stacked memory technologies improve memory capacity and cost of storage class mem-

ory (SCM), such as SSD. With these three-dimensional structures, new challenges of hetero-

geneous architectures aim to mitigate the memory bottleneck of o�-chip memories.

2.3.1 3D Stacked Memories

Due to the growing memory demands of data-intensive applications, the main memory is

pushed to its physical limits. It has become more di�cult to increase memory density, reduce

latency, and reduce power consumption of DRAM memory. 3D-stacked memory technolo-

gies, such as Hybrid Memory Cube (HMC) [61] and High Memory Bandwidth (HBM) [62], help

25

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

overcome these limitations by integrating larger DRAM memory and thus within the package,

instead of having o�-chip DRAM. They consist of multiple layers of DRAM memory stacked

on top of each other and a logic layer at the bottom, in the same chip, as presented in Fig-

ure 2.5. These layers are connected vertically together with a wide Through-Silicon Via (TSV)

bus, to provide high bandwidth and low latency data transfers. Moreover, the logic base pro-

vides a surface to implement hardware accelerators that interact with the DRAM memory via

TSVs and the host CPU via a high-speed communication links. Manufacturers leave this slot

available to allow new opportunities for architects to implement design, such as Processing-

In-Memory (PIM) accelerators, as detailed in 2.3.2. A wide range of processing systems can be

added in the logic layer, such as hardware accelerators, general-purpose cores, recon�gurable

architectures, as long as the added logic complies with area, energy and thermal dissipation

constraints.

2.3.2 Processing-In-Memory

Although 3D-stacked architectures provide higher capacity and bandwidth compared to o�-

chip memories, they are still limited compared to the maximum internal bandwidth avail-

able inside a DRAM chip [63]. Similarly to the IMC, the processing-using-memory approach

can perform bulk bitwise operations (AND, OR, NOT) using the intrinsic properties and op-

erational principles of the memory bit-cell array exploiting analog DRAM operations [64].

However, bulk bitwise operation cannot be performed on less than one row at a time and

operand values could be modi�ed according to the computation. Due to limits in the amount

of instruction set that can be implemented inside the memory array, other works tend to im-

plement processing-near-memory approach by adding hardware accelerator as close as to the

DRAM chip [65]. In the rest of the thesis, the PIM refers to both processing-using-memory

and processing-near-memory approaches [66].

The HMC architecture is developed jointly by Samsung Electronics and Micron Technology in

2011 [61]. As described in the previous section, the HMC architecture supports dedicated

accelerators within the bottom logic layer, as shown in Figure 2.5. Recent works integrate

PIM-based processing engines for neural network (NN) [53, 67, 68] and common scienti�c ap-

plications [69]. These processing engines access the stacked DRAM, containing the network

weights, through a distribution interconnect (e.g. NoC, logarithmic interconnection, ...). 3D-

stacked DRAM is separated vertically by 3D vaults, connected to the distribution interconnect

by TSVs. Thus, all processing engines can address convolution computations on the whole

memory in parallel. The integration of the state-of-the-art CNN achieves a performance of

240 GFLOPS (Giga Floating-point Operations Per Second) which is 3.5× better than a GPU

architecture [70]. However, since the HMC architecture has limited space in the logic base,

trade-o�s exist between di�erent NN topologies, the number of processing engines, and en-

ergy e�ciency, as discussed in [53]. All these studies have show the interest of having local

computing within and below the DRAM memory cube for large datasets, such as NN.

Although, HMC and HBM technologies are becoming a manufacturing standard with 3D TSV

integration, many software and hardware challenges remains, such as a general-purpose pro-

gramming model, virtual memory support and thermal solutions to enhanced computing func-

tionality [59]. Also, due to the physical behavior of DRAM using a single transistor and ca-

pacitor (1T1C), the refresh rate of the memory slow down the performance of the overall ar-

chitecture. Furthermore, the processing-using-memory is rarely exploited in 3D technologies

26

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

Figure 2.5: Hybrid Memory Cube (HMC) adapted for Processing-In-Memory (PIM) [72].

due to design modi�cation impacts and the lack of programming models, limiting the maxi-

mum performance that such architectures could o�er. Today’s promising PIM architectures

with industrial maturity focus on the 2D version of the proposed near-processing approach,

as proposed by the UPMEM company [71].

2.3.3 Coarse Grain to Fine Grain

3D-stacked DRAM architectures provide high memory density available on a single chip and

reduce production costs by replicating memory masks. However, DRAM requires periodic

refreshes to maintain the stored data, which increases access latency and reduces performance

of the architecture. Moreover, the strong connectivity between the memory and computing

layers is a key element to improve the performance of data-intensive applications. Today, the

size of TSVs limits the connectivity of 3D architectures, due to the standard cell congestion

and wire lengths [73]. To solve these problems, heterogeneous 3D architectures propose to

jointly combine several types of memory (DRAM, SRAM or NVM) using Monolithic 3D (M3D)

integration [74]. It provides smaller vias and denser vertical integration, called Monolithic

Inter-tier Vias (MIVs) (around 50 nm), compared to the TSV (1-5 µm), allowing to increase the

number of connections between the di�erent layers. Designing the same circuit using M3D

integration reduces circuit area by 50% and power consumption by 22.3%, thanks to better wire

connectivity [75].

For very tight 3D integration, instead of using TSV with pitches in the order of 50 µm pitch, two

other kind of 3D technologies are possible. The �rst one, which is already mature, integrat-

ing multi-layer with aggressive pitch (1 µm range) using hybrid bonding technology, as used

currently for imagers [76]. A second technology, called M3D, builds transistors onto multiple

tiers, and establishing vertical cross connections between the tiers with nano-scale MIVs, as

presented in Figure 2.6. As an example of such ultimate technology integration, the heteroge-

neous 3D-stacked N3XT architecture [77] integrates several technology breakthroughs to en-

able the best energy-e�ciency systems for data-intensive applications. It is mainly composed

of: (1) high-performance and energy-e�cient Field-E�ect Transistors (FETs), (2) high-density

NVM to avoid o�-chip memory wall, (3) �ne-grained integration M3D for high connectiv-

ity between memory and logic tiers, (4) thermal dissipation solutions and (5) computation

immersed in memory to exploit large data parallelism (e.g. IMC). Combining all these im-

provements, architecture achieves gains of 37× in performance and 23× in execution speed

27

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

Figure 2.6: Monolithically integrated 3D system enabled by Nano-Engineered Computing Systems
Technology (N3XT) [77]. On the right are the five key N3XT components. On the left are images of
experimental technology demonstrations: (a) transmission electron microscopy (TEM) of a 3D resistive
RAM (RRAM) for massive storage, (b) scanning electron microscopy (SEM) of nanostructured materials
for efficient heat removal (left: microscale capillary advection; right: copper nanomesh with phase-
change thermal storage), and (c) SEM of a monolithic 3D chip for high-performance and energy-efficient
computation. CNTs: carbon nanotubes, FETs: field-effect transistors, and STT-MRAM: spin-transfer
torque magnetic RAM.

up compared to the baseline of PageRank benchmark. While stand-alone hardware acceler-

ators improve energy e�ciency of sub-parts of the application, a better data connectivity is

required to ensure that accelerators with low memory capacity do not slow down the overall

system. The N3XT architecture �ne-grained access to many memory arrays helps to overcome

these limitations while reducing the impact of the memory wall.

2.4 Conclusion

Modern data-intensive applications are limited due to the memory wall problem of conven-

tional architectures. On the one hand, the traditional cache is no longer energy-e�cient

enough to satisfy the requirements of vector architectures, on the other hand, dedicated ASIC

architectures lack architectural �exibility and generic programming models. As a result, nei-

ther of these architectures can achieve a satisfactory balance between the two criteria, which

creates an urgent demand for new architecture and technologies. At the architectural level,

CGRA architectures provide the needed �exibility and provide a wide recon�gurable design to

bring the calculation closer to the memories. Di�erent memory-based computing approaches

(IMC, NMC and PIM) can reduce memory tra�c of the system bus in order to reach high con-

nectivity, �exibility and scalability between memory tiles by computing on larger vectors. At

the technological level, 3D-stacked approaches can bridge the connectivity gap between mem-

28

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

ory and computing, furthering the memory and computing coupling as introduced by the IMC

and NMC. Emerging NVM continue to increase memory density, endurance and non-volatility,

for bringing larger memory capacity on-chip without costly o�-chip memory transfers. 3D-

staked architectures o�er many research opportunities, such as programming portability of

data-intensive applications, virtual memory management and thermal dissipation removal.

Hence, the Chapter 3 summarizes and combines the architectural and technological opportu-

nities to propose a long-term vision in order to reduce the memory wall impact in conventional

architectures and identify the state of current and future challenges of the associated research

topics.

29

Chapter 2. State-of-the-Art on Energy Efficient Distributed Emerging Architectures

30

Chapter 3

A Dream: a 3D Stacked Distributed
Computing Architecture

Contents
3.1 Architecture Vision Overview . 32

3.2 Architecture Challenges and Associated Research Topics 33

3.3 Summary of the PhD Contributions . 36

Due to the growing memory needs of modern applications and the limitations of conventional

computer architectures, data-centric architectures are becoming more and more necessary. In

this chapter, I propose a target architectural and technological vision to reach and a review of

the opportunities and research topics that remain. Therefore, I focus the problems exposed in

this thesis and the di�erent approaches studied in the state-of-the-art in order to reduce the

memory wall problem. The contributions of my thesis are addressing part of the architectural

and technological challenges of this dream architecture.

31

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

3.1 Architecture Vision Overview

Figure 3.1: A 3D dream architecture to break the "memory wall".

In the perspective of collaborative research, I propose a long-term vision of architecture to-

wards addressing a number of architectural and technological challenges to solve the problem

of the memory wall in conventional computer architectures. Considering the state-of-the-art

studied opportunities discussed in the previous chapter, this recon�gurable 3D-staked archi-

tecture enabling distributed computing is presented in the Figure 3.1.

This architecture combines on three layers the features needed to support data-intensive appli-

cations. Layer 1, contains multiple computing clusters tightly connected with a NoC intercon-

nect to move data from neighbor to neighbor. These clusters integrate a local recon�gurable

interconnect between Processing Elements (PE) associated with their local SRAM instruction

memory and its dedicated hardware accelerators, such as FPU and SIMD vector computing

units. Layer 2, contains SRAM memory clusters integrating the IMC (or NMC) approach to

perform wide vector logical and arithmetic operations. These clusters use large buses within

the layer to transfer data from one memory cluster to another through an on-chip Direct Mem-

ory Access (DMA) controller to move speci�c patterns at high bandwidth. IMC operations and

vertical data movements between layer 1 and 2 are driven by each PE of layer 1. Finally, layer

3 contains the dense storage memory provided by emerging NVM technologies that support

logical operations with ultra wide vector of data. Arithmetic operations are available in the

lower layers involving additional vertical transfers.

At the software level, memory transfers and distributed computations executed within the

memories are controlled at the PE level, with speci�c instructions according to the computa-

tion complexity and memory hierarchy. The programming model is based on Domain-Speci�c

Language (DSL) allowing the developer to describe the vector operations interleaved with the

32

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

common processing instruction according to proposed architecture functionalities. The DSL

needs also to support the high-level of parallelism of the proposed architecture, with both

data handling and synchronization. Instead of GPU architectures or standalone hardware ac-

celerators, operations on memory are executed in parallel to common instructions of the PE

clusters. Data �ow control and scheduling are supported through a compilation tool chain

and dedicated libraries to exploit this energy-e�cient architecture. At another software level,

architectural simulators allows to evaluate the activity of computing �ows in order to bal-

ance energy resources and heat dissipation in the architecture. The �nal perspective of this

architecture is to be scalable at software and hardware levels in order to adapt its structure

according to application memory requirements, to overcome the memory wall problems.

3.2 Architecture Challenges and Associated Research Topics

Today, the targeted 3D architecture is a proposal in which many technological barriers and

di�culties remain to be solved. Indeed, the proposed technologies are not mature enough to

be manufactured and as a �rst step, it is required to study and evaluate the architecture by

using software and hardware simulators. Following the state-of-the-art and current research

opportunities, di�erent research challenges need to be addressed:

1. 3D-stacked architecture – Thanks to 3D-stacked layers, di�erent technologies could be

implemented to provide a range of device characteristics with di�erent trade-o�s in terms of

performance, leakage power, and reliability. Beyond the simple combination of memory and

processor cores, various technology generations could be integrated, such as non-volatile

memories, power regulators, and other technologies into the 3D stack. The stacking of

two chips doubles the e�ective density of the device, but for heterogeneous architectures,

the manufacturer still has to pay the cumulated total silicon area, so 3D does not allow

strict economic scaling. 3D partitioning allows to choose the right technology for each

computing layer, according to the target compute and power density. It would be most

probably advanced Complementary Metal Oxide Semiconductors (CMOS) for the two �rst

layers, while the third layer would be fabricated with a more mature technology and inte-

grating the NVM. However, facing the scaling wall problem and following the technology

advances, once 3D integration reaches a signi�cant volume, tools and other design supports

will develop rapidly, making more aggressive 3D architectures much less risky and more

feasible.

2. 3D �ne-grained integration – Stacking multiple layers of chips together increases the

number of devices per unit area and the connectivity between devices, but using 3D in-

tegration to maintain Moore’s law for a few more generations is not without challenges.

Early attempts at multi-layer stacking involved connecting several chips using Through-

Silicon Via (TSV). However, the physical TSV size below 1 µm limited the possibility to have

a smooth interaction between the di�erent layers. The recent Monolithic 3D (M3D) tech-

nology enables integration of high-performance logic through dense �ne-grained vertical

interconnect between layers (or tiers) thanks to the Monolithic Inter-tier Via (MIV) (with

via pitches as low as 100 nm). To bene�t of this technology, it is required to solve funda-

mental challenges, such as the low-temperature process for the assembly of the layers (e.g.

CEA’s CoolCube technology proposal [78]) and the vertical chip alignment at transistor-

level accuracy in order to improve the process yield of the complete chip, and new Electronic

33

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

Design Automation (EDA) tools to design 3D chip [79]. More mature 3D technology with

less aggressive pitch (2-3 µm) using hybrid bonding are today available [80]. It is a research

problem to de�ne what is the required 3D interconnect density and corresponding technol-

ogy pitch to achieve the �ne-grain 3D connectivity of the proposed vertical interconnects.

3. E�cient heat dissipation – For the same technology node, using 3D integration doubles

the number of transistors per unit area, and also doubles the amount of power consumed

per unit area. At the physical level, the success of 3D architectures will depend on e�ective

thermal management to reduce the impact of heat dissipation. Placing the power-hungry

core layer closer to the heat sink could help alleviate the problem by bene�ting from the

thermal conductivity of the socket or the cold plate on the top of the chip. Architectural

challenges and advanced technologies, such as micro-�uidic cooling solutions inserted be-

tween layers [81], integration of site-speci�c heat sinks within the stacked architecture de-

sign, cluster computing power balancing and scheduling, and frequency adaptive methods

based on system resources can improve heat removal from the chip. Many opportunities

exist to create new memory organizations, structures, and interfaces to better match the

processor needs as well as power and thermal constraints.

4. High-density eNVM – As modern applications require more on-chip memory to avoid dis-

tant data transfers from external storage memories, eNVM (e.g. PCM, STT-RAM, RRAM)

provide higher density and endurance than conventional NAND �ash memory (e.g. SSD).

The eNVM devices are pushing the limits of silicon-based Complementary Metal Oxide

Semiconductors (CMOS) devices by promising highly scalable, cost-e�ective, low-voltage

and low-power operation capabilities, high-speed switching, long retention, and the pos-

sibility of three-dimensional integration for high-density architectures. As of today, none

of the existing eNVM technologies are able to address all of these challenges, some trade-

o�s must be achieved. Among these trade-o�s, eNVM devices need to solve: reliability

at cell-level and device-level, variability [82], increased memory density using multi-value

memory bit cells [83], high-yield manufacturing process, and optimization of operation for

di�erent kind of applications. The eNVM provides opportunities to replace the standard

CMOS memories to play the role of Storage Class Memory (SCM) in order to investigate

novel architecture.

5. On-chip in- and near-memory computing approaches – The conventional computer

architecture approach is to move data through the traditional memory hierarchy to perform

the computations. To reduce memory tra�c within this hierarchy, the IMC and NMC ap-

proaches are able to perform computations of medium complexity (logical and arithmetic)

directly within the memory layers where the data is stored. However, three main challenges

remain to be solved, such as (1) the vector programming support of IMC and NMC instruc-

tions and dynamic vector size con�guration through the standard memory interface, (2)

the scalability of the memory interconnect to distribute computations across the memory

tiling, and (3) the recon�gurable inter-tile communication to enable computations between

di�erent tiles. Moreover, few comprehensive architecture proposals o�er real solutions to

the challenges mentioned above, as well as hardware integration that allows interleaving

between memory accesses and IMC/NMC instructions.

34

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

6. Recon�gurable architectures – Compared to conventional computer architectures, so-

called recon�gurable architectures are able to adapt their �exible hardware structure to

optimize internal data movement and achieve high energy e�ciency. Embedded or stan-

dalone FPGA, CGRA and many ASIC architectures comply with this de�nition. However,

this domain-speci�c �exibility is also a key factor for the balance between energy e�ciency

and �exibility of these architectures. Such systems require further improvement and opti-

mization to avoid bottlenecks in data movement, by addressing the following challenges:

(1) improving the parallelism of distributed memory accesses through an e�cient memory

interface, (2) improving the �exibility of the memory interface with a programmable mem-

ory management unit, and (3) improving the bandwidth and latency between processing

elements and memory using 3D-stacked chip technology. Even so, to address data-intensive

applications, e�cient hardware must be proposed as accelerator engines, but these PE en-

gines must be able to cope with the wide variety of target applications, with still unknown

kernels. A solution would be to propose recon�gurable architecture, such as the METEOR

architecture, as presented in this PhD thesis. For the proposed architecture, we would like

to bene�t of e�cient IMC/NMC with some recon�guration features in terms of memory

assignment, computation locality, with a partially �xed data paths.

7. Distributed computing – The purpose of distributed systems is to integrate stand-alone

hardware and software systems into a larger, more comprehensive system. Since stand-

alone systems have often been developed independently of each other, they are based on

di�erent interface, programming and operating system technologies. This raises new chal-

lenges for the integration of heterogeneous technologies. Thus memory and computing

resources can be shared in a distributed system and there is a possibility that several pro-

cessing elements will attempt to access to the same memory at the same time, also known

as concurrency. Communication operations must be synchronized and scheduled in such

a way that its data remains consistent by using standard techniques such as semaphores,

provided by a high-level programming model commonly used in most operating systems.

Moreover, the resource scalability of the architecture must be supported according to appli-

cation requirements while maintaining performance and energy-e�ciency despite of the

number of resources available. Thus, the architecture must provide �ne-grained 3D com-

munication scheme to relax the synchronization constraints between the di�erent layers,

to preserve parallelism and distribution of the computation. Speci�c memory management

units, such as DMA units, are required to perform data transfer, between tiles of the same

layer, or between layers.

8. General-purpose programming model – Among all the challenges listed above, the de-

velopment of a generic programming model is a key challenge to be solved, in particular

to allow the portability of general-purpose applications to such distributed and dedicated

architectures. The programming model de�ne, at a high software level, the monitoring of

system calls as well as the distribution of processes on hardware resources and, at a low

level, the dedicated accelerator operations into the conventional instruction set of the pro-

cessor. Over time, the execution model of stand-alone accelerators have diverged from the

programming model, leading to a mismatch between software development expectations

and system abilities. Decades of compiler research have shown this problem is extremely

hard to solve. New opportunities such as data �ow programming have allowed GPU ar-

chitectures to emerge to satisfy the data-intensive application resources by o�ering better

35

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

throughput at the cost of increased latency. Finally, there are still many research prospects

for the development of emerging programming models to interleaved IMC and NMC ap-

proaches into the processor instruction �ow at �ne-grained level in order to exploit data-

level parallelism and reduce the overall execution latency for all types of applications. As

a �rst step for IMC/NMC architectures, the implementation of a dedicated Instruction Set

Architecture (ISA) and an interleaved programming model must be addressed.

3.3 Summary of the PhD Contributions

In order to tackle part of the challenges of the dream architecture proposed previously, I fo-

cused on the layer 2 of the overall system in my PhD: near-memory computing on a chip (chal-

lenge 5) within a recon�gurable and scalable memory architecture (challenge 6), allowing data

transfers between memory tiles, and software integration (challenge 8) for the development

of data-intensive applications.

I proposed an on-chip memory architecture composed of multiple smaller memory tiles, to

contain the maximum amount of data for data-intensive applications, as presented in Chap-

ter 4. This computing architecture is recon�gurable and scalable. Recon�gurability provides

the opportunity to con�gure data paths in order to move data between memory tiles without

overloading the processor system bus, and scalability allows the hardware interconnect’s func-

tionality and performance to match the memory requirements of the application. Similar to

a cache memory, or a standard memory, this architecture complies the conventional memory

interface for read and write accesses through the system bus or for tightly coupled interfaces

with the processor. The speci�c design of the architecture provides large data movement be-

tween high-bandwidth memory tiles to reduce tra�c between processor and memory. This

architectural study of memory recon�gurability and scalability has been published in an inter-

national conference [84], several workshops [85, 86] and a patent submitted by the CEA [87].

Moreover, each memory tiles integrate the IMC and NMC approaches to perform large vector

computations between tiles, supporting local data movements. An extended set of instruc-

tions is integrated into the processor in order to send instructions to the memory and also

to con�gure the architecture topology to perform vector operations with con�gurable vector

size given by the software developer. During my work, I propose a smooth software integra-

tion of this architecture with the objective of developing a future programming model that

interleaved processor and memory instructions. This architecture can �t in the layer 2 of the

overall system, it is considered as a slave memory but also as a co-processor unit from the

processor point-of-view, as detailed in Chapter 5.

The study of this architecture involves other aspects, including hardware and software eval-

uations. At the hardware level, I explored the Power, Performance and Area (PPA) trade-o�s

of the wiring cost and the interconnect of this currently single layer architecture composed

of small multiple memory tiles (multi-tiles), as presented in Chapter 6. Through a standard

design �ow, I established a methodology to choose the best memory topology according to

application parameters (total size of the working memory and data bus width) and physical

memory parameters (access time, energy, surface area). These observations led me to develop

a wiring model to �nd the best performing multi-tile architecture using the founders’ mem-

ory and considering all timing impacts of the interconnect. Indeed, there is always a topology

optimized in performance and energy between a single large memory tile and multiple tiles

36

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

for a given memory size. The conclusions of this hardware study have been published in an

international conference [88] and helped me to size the recon�gurable architecture according

to physical constraints.

At the software level, I proposed an architectural exploration platform to evaluate the di�er-

ent memory topologies, as well as the software integration in a conventional compilation tool

chain, as detailed in Chapter 7. Thanks to SystemC/TLM (Transaction-Level Modeling) ab-

straction, I could trace memory accesses, processor instructions and IMC/NMC instructions.

In order to align performance between data accesses and computations inside the memory

tiles, the architecture integrates a multi-cycle instruction pipeline. The modeling abstractions

provided by SystemC/TLM enable �ne-grained analysis of con�icts between data �ows and

memory instruction �ows. Finally, the memory, interconnect and processor models are cali-

brated on some hardware extractions and estimations, the wiring cost model and a physical

implementation of the RISC core, respectively. The impact of this architecture to accelerate

kernels of data-intensive applications (presented in Chapter 1) is studied in Chapter 8.

In addition to my PhD contributions about this recon�gurable architecture and its feasibility

study, I participated in collaborative work within the CEA team. I actively participated in the

development of SystemC/TLM models for the behavior validation of the �rst single tile IMC

integrated in a modi�ed SRAM [89]. This design is implemented on a silicon chip to achieve

gains up to 2× in energy reduction and 1.8× in speed-up compared to a 128-bit SIMD ar-

chitecture. Moreover, the design space exploration of NMC tightly coupled with SRAM [90]

contributed to re�ne the instruction set in order to identify trade-o�s between surface area and

energy. Based on these experiences around the NMC, towards the end of my PhD, I contributed

to the discussion and elaboration of innovative stacked architectures coupling the NMC ap-

proach to NVM at SCM level [91]. This architectural exploration highlights the bene�ts of

the NMC tightly coupled to the NVM, thus reducing memory write accesses and improving

the endurance of the NVM. Finally, to move towards our architectural vision, I participated

in the writing of a second patent involving a speci�c DMA unit to accelerate the data move-

ment between intra-layers and inter-layers of a memory hierarchy without overloading up the

processor system bus [92].

37

Chapter 3. A Dream: a 3D Stacked Distributed Computing Architecture

38

Chapter 4

A Reconfigurable Memory-based
Computing Architecture Proposal

Contents
4.1 METEOR: a Reconfigurable Memory-based Computing Cluster 40

4.1.1 Inter-tiles Reconfiguration and Communication . 41

4.1.2 Overview of Vertical Transfers in the Pipeline Flow . 42

4.1.3 Interleaved Instructions and Memory Accesses . 42

4.1.4 Vertical Transfers Detailed Implementation . 43

4.2 Design Specifications . 45

4.2.1 IMC/NMC Tile Unit . 45

4.2.2 Vertical Transfer Unit . 46

4.2.3 Tile Address Mapper Unit . 47

4.2.4 Global Pipeline Dispatcher Unit . 48

4.3 System Integration Overview . 49

4.3.1 Tightly Coupled Memory of a Processor . 49

4.3.2 Loosely Coupled Co-processing Unit . 50

4.4 Conclusion . 51

In this chapter, I propose a recon�gurable architecture to evaluate emerging technology gains

for IMC and NMC. METEOR (Matrix of Elementary Tiles Enabling Optimal Recon�gurability)

is a cluster architecture of computing tiles, recon�gurable in two manners: either a horizontal

memory extension allowing larger vectors, or a vertical memory extension allowing more

vectors. These computing tiles can use the IMC or/and NMC existing principle which consists

in performing computation within the memory tile. I propose to extend these concepts in a

scalable vectorization scheme allowing �exible parallelism directly in a vector format, detailed

in Chapter 5.

39

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

4.1 METEOR: a Reconfigurable Memory-based Computing Cluster

GPD

Tile
0,0

Transfer
response

TAM
Address,
data &
control VTU

Tile
1,0

VTU

Tile
K-1,0

VTU

Tile
0,P-1

VTU

Tile
1,P-1

VTU

Tile
K-1,P-1

VTU

TTC
TDI

Horizontal Scalability (P)

V
ertical S

calability (K
)

CSRs

Control

…

…

…

VTI-D

VTI-U

Legend

Tile IMC or/and NMC
VTU Vertical Transfer Unit
TAM Tile Address Mapper
CSRs Control and Status Registers
GPD Global Pipeline Dispatcher

TTC Tile and Transfer Control
TDI Tile Distribution Interconnect
VTI-U Vertical Transfer Interconnect Up
VTI-D Vertical Transfer Interconnect Down

Figure 4.1: METEOR cluster architecture.

The METEOR cluster architecture consists of multiple tiles arranged in a physical grid of di-

mension K by P, as shown in Figure 4.1. Each tile is a memory circuit able to load data, store

data and perform a number of logical and/or arithmetic operations using data stored in the

memory as operands, thus referring to IMC and NMC approaches as de�ned in Chapter 2. In

order to address kernels with larger dataset and real applications, it is necessary to enlarge

the architecture with more memory tiles, while proposing the adequate programming model

allowing vector acceleration and a communication scheme to perform computation between

di�erent tiles. Like any array of multiple memory architectures, the global Tile Distribution
Interconnect (TDI) provides a 32-bit (or 64-bit) address and data interconnect to access to a

32-bit (or 64-bit) data requested by an external processing element (e.g. CPU), as presented in

Section 4.1.2. To move large data vectors between tiles, these tiles are connected to a Vertical
Transfer Unit (VTU) that is interfaced an additional vertical interconnect (VTIU and VTID)

data paths. These transfers are globally managed by the Tile Address Mapper (TAM) with the

Tile and Transfer Control (TTC) signals.

For application mapping facility, the physical grid can be logically recon�gured: (1) for hor-

izontal vector extension to create larger vectors using the TAM and (2) for vertical memory

extension to create more vectors using the vertical connections and the VTU. These recon�g-

uration mechanisms are detailed in Section 4.1.1. For overall control at cluster level, the Global
Pipeline Dispatcher (GPD) resolves data hazards of incoming instructions to avoid future ad-

dress con�icts and interleaved SRAM accesses coming from an external processing element

(e.g. CPU). Thanks to this control, vertical data transfers can be coupled to the pipeline �ow,

all these mechanisms are explained in Section 4.1.3. Moreover, the GPD decodes dedicated

METEOR instructions to modify Control and Status Registers (CSRs) in order to con�gure the

tiling layout con�guration deployed by the TAM.

40

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

To adapt the scalability between tiles, a single internal register is integrated in each tile to

store intermediate results and avoid frequent read/write of the memory. In addition, coupled

with the GPD, these registers decouple the timings to relax communication constraints onto

the VTI, as presented in the Section 4.2.1.

4.1.1 Inter-tiles Reconfiguration and Communication

A1 A2 A3 A4 C1 C2 C3 C4

B1 B2 B3 B4 D1 D2 D3 D4

C1 C2 C3 C4

D1 D2 D3 D4

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

512 bits

1024 bits

A1 A2 A3 A4 C1 C2 C3 C4 B1 B2 B3 B4 D1 D2 D3 D4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Logical Vector Width = 2048 bits

3

2

1

[1x16]

[2x8]

[4x4]
Legend

Physical view

Logical vector width

Vertical data transfer,
between computing tiles
(through vertical multiplexers)

Horizontal vector extension,
composing a computing tile,
(through tile address mapper)

Figure 4.2: Physical and Logical views for 3 layout configurations of METEOR, with a logical vector size
of: Ê 512-bit, Ë 1024-bit and Ì 2048-bit wide.

Assembling these tiles horizontally permits to realize vectorized computation by distributing

the same instruction and computation to a set of row. For data-centric kernel, such as matrix

multiplication detailed in Chapter 5, data movement can be costly when computing on large

vectors. The proposed architecture can dynamically resize the vector width during execution

for each instruction to minimize this impact. For example, in Figure 4.2, the vector width is

scalable from 512 bits up to 2048 bits with a 128-bit step, thus o�ering an address range that

extends from 1024 vectors of 512 bits down to 256 vectors of 2048 bits. Thanks to this vector

approach, computations are performed in an aligned and vertical way.

Horizontal vector extension – is a feature of the architecture to create scalable vectors using

the TAM. These virtual vectors are composed of data stored in each physical memory tile,

whose physical accesses are dynamically remapped by the TAM, as shown in the Figure 4.2.

Therefore, in the con�guration Ê, read and write data accesses by the CPU are physically

aligned on the vector width of the architecture, in this case 64 bytes (512 bits). To broadcast

the instruction, the TAM sends the same instruction to every physical tile composing the

vector via the TDI. To save energy, the horizontal vector scalability is �ne-tuned in runtime

by activating only a subset of the tiles to work with a vector shorter than the maximum width.

Vertical memory extension – allows to access more vectors using the VTI, to use all the

physical memory in all available con�gurations. For instance, in con�guration Ë, the memory

41

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

is extended from A tiles to B tiles thanks to the VTU of each tile, vector operations between

data A and B remain possible. The tiling con�gurations are always a power of 2 (1, 2, 4, 8, ...)

which is proportional to the unit tile vector width. The tiling con�guration parameters to set

up the layout are detailed in the programmer’s view in Section 5.1.2.

4.1.2 Overview of Vertical Transfers in the Pipeline Flow

To maintain the instruction throughput, the Vertical Control Unit of the GPD determines verti-

cal data movement between tiles according to the instruction �ow, then send global controls to

the TAM in order to monitor the VTUs. For example, the implementation of a 5-stage pipeline

is proposed, through the following stages of (1) DEC: decode, (2) RD1: read left operand, (3) RD2:

read right operand, (4) EX: execute the operation and (5) WB: write back into the memory.

Tiles 1 2 3 4 5

A1 DEC RD1 RD2 EX WB

B1

C1

D1

Cycles

(a)

Tiles 1 2 3 4 5

A1 DEC RD1 - - -

B1 DEC - - - WB+T

C1

D1 DEC - RD2+T EX -

Cycles

(b)

Figure 4.3: 5-stage pipeline flow views for 1 instruction in 4 stacked tiles (A1, B1, C1, D1). (a) data
operands are located in 1 tile, (b) data operands are located in different tiles such as B1 = A1 <op> D1.

In Figure 4.3, we consider a tiling con�guration of 4 vertically stacked tiles of vectors (A1, B1,

C1 and D1), which received instructions, as the con�guration layout Ê in Figure 4.2. When

all the data of the operation are located in the same memory tile, as in example 4.3(a), the

instruction will be send only to this tile (A1). However, when operands are scattered across

multiple tiles, as in example 4.3(b), vertical data transfers are required and the instruction will

be broadcast among the tiles storing the data (A1, B1 and D1). On the �rst cycle, the instruction

decoding (DEC) is performed in A1, B1 and D1 - on the second cycle, the �rst operand is read

(RD1) in the tile A1 memory - on the third cycle, the �rst operand is transferred (T) to D1 and

the second operand is read (RD2) in D1 memory - on the fourth cycle, the operation is executed

(EX) between the operands - and on the �fth cycle the result is transferred (T) to B1 memory

to be written (WB). The direction of the read data transfer is always from the tile that reads the

left operand (RD1) to the tile that performs the operation (EX). Data transfer direction: data can

be transferred to upper or lower tiles via the two vertical interconnects called Vertical Transfer
Interconnect Up (VTIU) and Vertical Transfer Interconnect Down (VTID), as shown in Figure 4.1.

4.1.3 Interleaved Instructions and Memory Accesses

To ensure a constant instruction �ow while maintaining timing performance, a data pipeline

is embedded in each tile, as detailed in Section 4.2.1. A data pipeline is a sequence of stages

where the output of one stage is the input of the next one. The pipeline controller must ensure

the availability of data for each instruction passing through the pipeline. Data hazards occur

when instructions modify the same data at di�erent stages of the pipeline, listed in these three

situations:

42

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

• Read-After-Write (RAW) con�ict occurs when an instruction refers to a result that has not

yet been calculated,

• Write-After-Read (WAR) con�ict occurs when an instruction tries to write the destination

before it is read,

• Write-After-Write (WAW) con�ict occurs when an instruction tries to write an operand

before it is written by a previous instruction.

To eliminate these hazards in METEOR, several solutions has been proposed:

• The bubbling (or stalling) is physically implemented in the GPD to slow down the instruc-

tion �ow when con�ict occurs between operands. This feature is a basic pipeline mecha-

nism to avoid most of the data hazards at the cost of increased latency.

• The operand forwarding should be explicitly specify in the instruction by the compiler (or

the programmer) to transfer operands through the pipeline stages using internal registers.

This feature prevent from stalling mechanism and increase pipeline throughput thanks to

software adjustments or compiler’s optimizations.

• The reordering is not supported at hardware level because the GPD preserve the instruc-

tion order from the programmer’s perspective. This feature could be done at software level,

to achieve advanced optimizations of the instruction order in the execution �ow.

DEC 1 2 3 4 S S S S

RD1 1 2 3 4 5 6

RD2 1 2 3 4

EX 1 2 3 4

WB 1 2 3 4

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Read requests

(a)

DEC 1 2 3 4 S S S S

RD1 1 2 3 4

RD2 1 2 3 4

EX 1 2 3 4

WB 1 2 3 4 5 6

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Write requests

Stall
Conflict

s

(b)

Figure 4.4: Global Pipeline Dispatcher view of a 5-stage pipeline with interleaved SRAM accesses.
Legend: instructions are sorted by order of arrival in the pipeline, from 1 up to 6. (a) Read-After-Write
(RAW) data hazards, (b) Write-After-Write (WAW) data hazards.

The stalling solution is supported in our architecture and the operand forwarding solution

should be speci�ed by the software developer. The Data Hazard Unit of the GPD enables

the interleaving of standard memory requests without address or data con�icts. It avoids

these con�icts by stalling requests when the vector address of the instruction is equal to the

absolute address of the memory request, as presented in Figure 4.4. These �gures show RAW

and WAW data hazard con�icts occurring with previous instructions when read and write

access to the memory is requested, respectively. The GPD stalls the Processing Element (PE)

requests whenever there is a data con�ict during the write-back instruction stage.

4.1.4 Vertical Transfers Detailed Implementation

The pipeline throughput can be enhanced in several ways. If a dual-port memory is physi-

cally integrated, the read and write pipeline stages can be performed in parallel, increasing

the instruction throughput, as shown in [90]. With METEOR’s multiple tiles, we can optimize

throughput in two other ways, whatever the type of memory used: (1) by arranging the data

placement, as in Figure 4.5(b) and (2) by using the internal tile register. The register optimiza-

tions are detailed in the Section 4.2.1.

43

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

DEC 1 S S S 2 S S S 3 S S S 4

RD1 1 2 3

RD2 1 2 3

EX 1 2 3

WB 1 2 3

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

(a)

DEC 1 2 3 4 5 6

RD1 1 2 3 4 5 6

RD2 + T 1 2 3 4 5 6

EX 1 2 3 4 5 6

WB + T 1 2 3 4 5 6

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Avoided conflict

(b)

Figure 4.5: Global Pipeline Dispatcher view of a full 5-stage pipeline for 6 instructions. (a) data operands
are located in one tile, (b) data operands are located in different tiles using vertical transfers.

As introduced in Section 4.1.2, vertical transfers move data across multiple tiles, so this prin-

ciple is represented in a �ow of multiple instructions in Figure 4.5. It represent a �ow of six

instructions passing through the GPD, for checking data dependencies, where data operands

are located in the same tile in Figure 4.5(a) and where data operands are located in di�er-

ent tiles using vertical transfers as the previous �gures 4.3(a) and 4.3(b), respectively. Thanks

to the data operand scattering and the vertical communication scheme, a single memory tile

avoids concurrent read and write accesses, thus eliminating data hazards and increasing the

pipeline throughput.

DEC 1 2 3 4 5 S 6

RD1 1 2 3 4 5 6

RD2 + T 1 2 3 4 5 6

EX 1 2 3 4 5 6

WB + T 1 2 3 4 5 6

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

(a)

DEC 1 S S 2 S S 3 S S 4 S S 5

RD1 1 2 3 4

RD2 + T 1 2 3 4

EX 1 2 3 4

WB + T 1 2 3

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

(b)

Figure 4.6: Vertical Transfer Interconnect hazards between instructions and reconfiguration. (a) Up-Up
or Down-Down transfer hazards, (b) Tiling reconfiguration in the pipeline flow.

When executing a single instruction using vertical transfers, the read and write ports can be

used simultaneously and transactions never con�ict. However, when two instructions require

vertical transfers on the same cycle, as shown in Figure 4.6(a), con�icts occur if the read and

write requests must intersect in the same direction. For example, a Down-Down con�icts oc-

curs when a read transfer is made from A1 to D1 and a writing transfer is made from A1 to

B1. In these cases, the Vertical Control Unit of the GPD ensures that vertical transfers do not

con�ict between instructions and can stall the PE requests if this happens. Similarly, this unit

ensures that all vertical transfers are executed for each instruction before changing the global

tiling con�guration, as presented in Figure 4.6(b).

In conclusion, the TAM and the VTU provide an additional, scalable and recon�gurable com-

munication scheme between tiles, and the GPD prevents IMC/NMC instruction operand haz-

ards and standard memory access con�icts. These hardware mechanisms provide at the soft-

ware level an interleaved programming scheme to increase the overall throughput of the ar-

chitecture and alleviate the software development e�ort for vector processing. The impact of

pipeline latency and forwarding mechanism are evaluated using a cycle-accurate simulation

platform, as detailed the Section 8.1.2.

44

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

4.2 Design Specifications

In this section, each units of the overall METEOR architecture are detailed at the low-level to

make possible its physical implementation at register-transfer level (RTL). The architecture

is composed of four main units, detailed in the following sections, and local registers (CSRs)

to store the current tile layout con�gurations in order to remap addresses in the TAM. This

control interface is detailed in the Section 5.1.2.

CLK
RESET_N

RDATA[31:0]

ADDR[31:0]

WDATA[31:0]

BE[3:0]
WE

Global
signals

Data

Address
and control

METEOR
external
interface

REQ

RESP
READY
ERROR

Transfer
response

Data

Figure 4.7: METEOR generic external interface (all signals are external to METEOR).

This architecture has a generic memory slave interface that can be connected on a processing

element or a system bus, as detailed in Section 4.3. As shown in Figure 4.7, the master provides

address (ADDR), data (WDATA) and control signals (BE, WE, REQ) for reading and writing operations.

The slave provides the readout data (RDATA) and the status of the request (RESP), when the

transfer is completed (READY) and when an error occurs (ERROR). Conventional data accesses

and IMC/NMC instructions pass through this standard memory interface allowing smooth

hardware and software integrations.

4.2.1 IMC/NMC Tile Unit

Tile

Tile
control

TILE_RDATA[31:0]
TILE_WDATA[31:0]
TILE_ADDR[AW-1:0]

TILE_BE[3:0]
TILE_EN
TILE_WE

TILE_NMC_EN

CLK
RESET_N

TILE_NMC_VT_RD

Tile
Distribution
Interconnect

(TDI)

Vertical
Transfer

Unit
(VTU)

RD1DEC RD2
EX
NMC

WB

Local
FSM

Memory
IMC

VT_WDATA
[VTW-1:0]

VT_RDATA
[VTW-1:0]

TILE_NMC_VT_WR

Internal register

internal pipeline (5 stages)

Figure 4.8: METEOR tile unit implementing IMC and NMC.

To evaluate the bene�ts of the IMC and NMC approaches described in Sections 2.2.2 and 2.2.3,

the tile supports both logical (IMC) and arithmetic (NMC) operations to address data-intensive

applications, such as database searching, image processing and neural networks. As shown in

Figure 4.8, the proposed tile organization can support IMC and NMC approaches coupled with

a 5-stage pipeline for timing decoupling and vertical transfer synchronization. The IMC part

is able to perform operations between two operands, stored on two WLs, within the memory

array in a single clock cycle. Since the IMC is limited to internal logical operations, the NMC

provides an additional ALU integrated in the pipeline execute-stage, to perform arithmetic

operations. Hence, the other element of the tile are: the local FSM, the internal register and

the pipeline. The local FSM controls the pipeline �ow and the data redirection of the read and

write accesses to (1) the memory, (2) the internal register or (3) the VTU for inter-tile transfers.

45

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

The internal register is used to store intermediate results of operation (as an accumulation

register), to implement the operand forwarding solutions by forwarding the partial result to

the adequate pipeline read stage, and to reduce excessive memory accesses and associated

power consumption. The internal register proposal is a contribution of my PhD thesis, to

achieve e�cient data transfers between tiles at the multi-tile level. Moreover, to integrate this

tile in the METEOR grid and respect the global pipeline control, each tile has an 5-stage internal

pipeline to sequence each instruction, as discussed in Section 4.1.2. For design optimization

purposes, the pipeline data hazard control is implemented in the GPD at global level, saving

circuit surface area. A early implementation of the NMC design has been proposed in [90] with

a SRAM memory from Global Foundries 22 nm FD-SOI technology node, without including the

internal register control.

To exploit the maximum vectorization scheme, the memory interface is split into: (1) the 32-bit

standard memory interface (TDI), for regular memory accesses, (2) the internal communication

interface passing through the VTU, for data movement between di�erent tiles, and (3) the Tile
control interface to synchronize pipeline �ow at the global level. Thus, when an IMC/NMC

instructions are transferred through the TDI, the local FSM redirects the instructions to the

pipeline decode stage. The vector computations could be performed with internal memory

vectors, register vectors or external vectors of a Vector Tile Width (VTW) larger than 32-bit

words. Thus, the proposed vector programming scheme supports IMC and NMC instructions

and vector movements through di�erent memory tiles.

4.2.2 Vertical Transfer Unit

Tile

TILE_VT_DOWN_DATA_OUT [VTW-1:0]

TILE_VT_UP_DATA_OUT[VTW-1:0]TILE_VT_UP_DATA_IN[VTW-1:0]

TILE_VT_DOWN_DATA_IN[VTW-1:0]

VTU

VT_WDATA
[VTW-1:0]

VT_RDATA
[VTW-1:0]

Transfer
control

TILE_VT_RD_UD
TILE_VT_WR_EN
TILE_VT_WR_UD

TILE_VT_RD_EN

Figure 4.9: METEOR Vertical Transfer Unit and Tile interfacing.

The VTU provides three wide data interfaces (UP, DOWN, TILE) to perform vertical data

transfers in one cycle between other tiles and control signals derived from the TTC interface

as presented in Figure 4.9. All possible data movements driven by these control signals are

listed in Table 4.1. The VTU interactions enable access to VTIU and VTID when the tile needs

to process data from lower or upper tiles. By default, the VTU forwards the signals without

interfacing with them, which involves passing the data through a cascade of multiplexers.

In summary, the implementation of the METEOR architecture is physically constrained by:

the standard read access time through the TDI and the vertical transfer time through the VTI

using a series of VTU. This proposed communication scheme is partially �xed to achieve a

convenient tiling scalability for large systems, but further RTL implementation and circuit

measurement should be done.

46

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

Table 4.1: Vertical Transfer Unit control and interactions (Up: 1, Down: 0).

WR_EN RD_EN WR_UD RD_UD Description (related to the tile)
0 0 X X no tile interactions, vertical forwarding
0 1 X 0 Read data from the DOWN path
0 1 X 1 Read data from the UP path
1 0 0 X Write data to the DOWN path
1 0 1 X Write data to the UP path
1 1 0 0 Read data from the DOWN path, Write data to the DOWN path
1 1 0 1 Read data from the UP path, Write data to the DOWN path
1 1 1 0 Read data from the DOWN path, Write data to the UP path
1 1 1 1 Read data from the UP path, Write data to the UP path

4.2.3 Tile Address Mapper Unit

The TAM provides an external interface to perform the data transfers to or from a processing

element and four internal interfaces as:

• TDI, a distribution network to access to the memory tile where the data is stored,

• GPD, control signals to monitor overall NMC features,

• TTC, a distribution network to dispatch NMC control and transfer signals to each tiles,

• CSR, a set of local registers used for the global tile layout con�guration.

CLK
RESET_N

TILE_RDATA_<K-1,P-1>[31:0]

TILE_RDATA_<0,0>[31:0]

…

RDATA[31:0]

ADDR[31:0]
WDATA[31:0]

BE[3:0]
WE

TILE_WDATA[31:0]
TILE_ADDR[AW-1:0]
TILE_BE[3:0]
TILE_WE

TILE_EN_<0,0>

TILE_EN_<K-1,P-1>

…

TILE_VT_CTRL_<0>[3:0]

TILE_VT_CTRL_<K-1>[3:0]

…

Global
signals

Data

Address
and control

Tile
Distribution
Interconnect

(TDI)

TILE_NMC_CTRL_<0>[2:0]

TILE_NMC_CTRL_<K-1>[2:0]

… Tile and
Transfer
Control
(TTC)

CSR_IN[R*31:0]

NMC_CTRL[2:0]
VT_CTRL[3:0]

Tile
Address
Mapper
(TAM)

Global Pipeline
Dispatcher

Control

Figure 4.10: METEOR Tile Address Mapper unit.

The TAM operates in three modes: READ, WRITE and COMPUTE. The �rst READ mode

involves standard data reads: a request is received by the address and control interface (ADDR,

BE, WE), then the TAM creates an address relative to the tile memory size (TILE_ADDR) and it

selects the tile containing the data (TILE_EN) via the TDI. In the next cycle, the 32-bit data is

available and is returned by TILE_RDATA through a output read multiplexer leading to RDATA.

The second WRITE mode involves standard data writes: a request is received by the address
and control interface (WDATA, ADDR, BE, WE), then the TAM selects the tile where to write the

data, this operation takes also one clock cycle.

Finally, the third COMPUTE mode involves receiving an IMC/NMC instruction through the

address and control interface. This interface is used to send IMC/NMC instructions to the

memory tiles as explained in Section 5.2. The TDI distributes the instruction to the tiles and the

GPD controls address con�icts. The TAM con�gures the TTC interface (NMC_CTRL, VT_CTRL)

47

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

to select the tiles where the operation is performed. With this mechanism, the tiles receive the

operation and control signals in one cycle at the decode stage of the pipeline, then four more

cycles are required to complete the computation. The instruction �ow is synchronized by the

TTC signals, avoiding future data con�icts, as presented in the previous sections.

By partitioning a large memory into smaller tiles, the TDI allows to scale the cluster with some

limits: energy cost of individual accesses is inversely proportional to the read access time. In

terms of physical design, the TDI provides an energy and performance trade-o� as long as the

number of tiles is limited, as presented in Chapter 6. In addition, this inter-tile scheme enables

a large data movement and bandwidth between tiles to reduce the tra�c on the system bus,

its impact will be discussed in Chapter 8.

4.2.4 Global Pipeline Dispatcher Unit

The GPD provides an external interface to manage instruction transactions and to respond

to the processing element (PE) in case of con�icts, and two internal interfaces to control the

TAM and to modify CSRs, as presented in Figure 4.11. Its composed of three internal units:

• Data Hazard Unit checks data con�icts between instructions as explained in Section 4.1.3,

• Vertical Control Unit checks vertical transfers con�icts as explained in Section 4.1.4,

• CSR Control Unit manages the memory logical con�guration explained in Section 5.1.2.

CLK
RESET_N

ADDR[31:0]
WDATA[31:0]

BE[3:0]
WE

Global
signals

Address
and control

CSR_IN[R*31:0]

REQ

RESP
READY
ERROR

Transfer
response

CSR_OUT[R*31:0]

NMC_CTRL[2:0]
VT_CTRL[3:0]

GPD
control

Global Pipeline Dispatcher
(GPD)

RD1DEC RD2 EX WB

Data Hazard
Unit

Vertical Control
Unit

CSR Control
Unit

Figure 4.11: METEOR Global Pipeline Dispatcher unit.

The GPD stores the 5-stage instruction pipeline �ow of the computing tiles in order to de-

termine data movements (vertical and scalar) and instruction con�icts. Through the transfer
response interface, the GPD is able to stall the instruction �ow coming from the PE. Thanks

to this global approach, the tiles execute all instructions synchronously with minimum local

control, allowing the optimization of the multiple tiles at the global level.

In conclusion, these main elements of the METEOR architecture address the main challenges

of the on-chip IMC and NMC approaches at the hardware level. Thus, the vector programming

control of IMC and NMC instructions through a standard memory interface is supported by

the GPD to avoid instruction and data con�icts. The internal communication scheme, using

the VTUs, is scalable in order to build larger memories, but must be physically implemented

for accurate scalability estimates. Finally, the TAM provide control signals to dynamically re-

con�gure the inter-tile communication scheme and the vector size for large vector processing,

as presented in the Chapter 5.

48

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

4.3 System Integration Overview

The METEOR’s generic interface is composed of: an address, data and control buses for send-

ing an instruction, reading or writing data from or to the memory, as well as a transfer response

in case of address or instruction con�icts. These signals are necessary and su�cient to inte-

grate meteor into a standard scalar system processor as a slave memory. For example, it can

be integrated as:

• A low-latency Tightly-Coupled Memory (TCM) working at the processor frequency, di-

rectly connected to the processor and the main system bus, as presented in Section 4.3.1,

• A loosely-coupled co-processing unit connected to an hardware accelerator and operating

in parallel to the processor with its own frequency, as presented Section 4.3.2,

• A high-speed SPM connected to external sensors and an I/O system bus in order to pre-

process raw sensor data before the CPU’s post-processing, as presented in Section 4.3.2,

• A cache memory connected to a cache controller using a wide I/O interconnection, as pre-

sented in several state-of-the-art contributions [47, 55, 57].

4.3.1 Tightly Coupled Memory of a Processor

Legend

Tile IMC or/and NMC
VTU Vertical Transfer Unit
TAM Tile Address Mapper
CSRs Control and Status Registers
GPD Global Pipeline Dispatcher

TTC Tile and Transfer Control
TDI Tile Distribution Interconnect
VTI-U Vertical Transfer Interconnect Up
VTI-D Vertical Transfer Interconnect Down

TCPM Tightly-Coupled Program Memory
TCDM Tightly-Coupled Data Memory
CPU Central Processing Unit

C
P

U
 D

ata B
us (C

P
U

 m
aster)

CPU

Instruction
Memory

GPD

Tile
0,0

TAM

VTU

Tile
1,0

VTU

Tile
K-1,0

VTU

Tile
0,P-1

VTU

Tile
1,P-1

VTU

Tile
K-1,P-1

VTU

TTC
TDI

Horizontal Scalability (P)

V
e

rtica
l S

ca
la

b
ility (K

)

CSRs

Control

…

…

…

VTI-D

METEOR

T
C

D
M

interconnect
TCPM

VTI-U
32-bit slave

interface

TCDM
interface

Figure 4.12: Standard processor architecture with METEOR on a TCM interface.

METEOR’s external interface can be connected to a bus as a slave memory controlled by a

master processing element (e.g. CPU). Through this generic slave interface, data access re-

mains conventional for the master and speci�c NMC instructions are wrapped in address and

data signals, as detailed in 5.2.1. The master provides address, data and control information to

initiate read and write operations. The slave provides a response status of the transfer to the

master, a signal when the transfer is �nished and an error signal, as detailed in the standard

memory interface protocol of ARM [93].

49

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

In the Figure 4.12, the CPU executes its instruction �ow coming from the Instruction Memory
tightly connected via the Tightly-Coupled Program Memory (TCPM) interconnect. METEOR

has a Tightly-Coupled Data Memory (TCDM) interface with the CPU and a slave interface

with the CPU Data Bus. Through the TCDM interface, the CPU can (1) send NMC instructions

to METEOR, (2) read sequential data from METEOR and (3) write sequential data to METEOR.

Through the slave interface, METEOR operates as a memory addressable by any other on-chip

unit (CPU included) requesting data accesses.

4.3.2 Loosely Coupled Co-processing Unit

System-Level Interconnect

Slave
interface

Hardware
Accelerator

Local
Memory

Compute Node 1

Slave
interface

Hardware
Accelerator

METEOR

Compute Node 2
METEOR METEOR METEOR

Local Bus

Slave
interface

Hardware
Accelerator

Compute Node 3

Master
interface

Processor
(Host)

External
sensors

Main
Memory

Slave
interface

2

1

Figure 4.13: Standard processor architecture with METEOR as a co-processing unit.

In the Figure 4.13, the METEOR architecture is integrated as a co-processing unit in a standard

system composed of a host processor, its main memory for storing program and data and

several accelerators represented as compute nodes. These hardware accelerators are:

• Compute Node 1: a conventional hardware accelerator that can process speci�c tasks in

parallel of the host processor (e.g. FPU co-processors, graphic co-processors, ...),

• Compute Node 2: a single METEOR unit for low-power near-sensor applications,

• Compute Node 3: multiple METEOR units for distributed vector computing.

The compute node 2, is similar to the tightly-coupled memory integration proposal, where

the CPU is replaced by a hardware accelerator dedicated to stream the METEOR control �ow.

Through the system-level interconnect, the host processor send speci�c macro instructions to

the hardware accelerator in order to launch data processing workloads inside METEOR. Con-

nected to external sensors, METEOR allows pre-processing of the raw sensor data before the

accelerator or the CPU post-processing. In the compute node 3, multiple unit of METEOR are

connected on a local data bus driven by a hardware accelerator that increases the memory ca-

pacity (and the computing capacity). Thanks to this approach, speci�c kernels can be requested

to the accelerator to execute repetitive tasks in order to reduce the instruction tra�c on the

system-level interconnect. In addition, these co-processing units can also be represented as a

scratch-pad memory (SPM) from a system point of view (and host processor point of view).

In this case, the host processor can directly access the METEOR data as a conventional data

memory via path Ê and Ë.

50

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

To conclude, the METEOR architecture can be integrated as a memory as well as a vector

accelerator. In the following part of this thesis, the exploration of the tightly-coupled system

(compute node 2) will allow to evaluate the gains of the IMC/NMC concepts integrated in con-

ventional architectures. Thus, these systems integration proposals show the potential of the

architecture to be integrated into a more comprehensive and distributed computing system, as

proposed in Chapter 3. Integrating this architecture into a 3D-stacked architecture, whether

it is a memory or a vector accelerator, would increase the connectivity of communication

schemes between inter-tiles or intra-tiles, to increase performance and energy e�ciency of

data-intensive applications.

4.4 Conclusion

The proposed METEOR cluster is a scalable and recon�gurable tiles of IMC/NMC architec-

ture, each tile enables arithmetic and logic operations within the memory. The architecture

design provides the capacity to interleave standard memory accesses and compute between

the di�erent tiles with the IMC/NMC instruction �ow, avoiding possible con�icts. Thanks to

its generic memory interface, METEOR can be integrated as a tightly-coupled memory or as

a loosely-coupled co-processing unit into any conventional architecture. The combination of

a horizontal scalability scheme and a vertical data communication o�ers an adaptive vector

size for maximum performance onto the IMC/NMC tiles. Stalling mechanism and operand

forwarding solution are recommended to increase the pipeline throughput, thus reducing the

overall memory power consumption. Finally, this architecture is evaluated at the software

level in 5, and several performance and energy trade-o�s between the tile partitioning and the

standard memory interconnect are studied in Chapter 6.

51

Chapter 4. A Reconfigurable Memory-based Computing Architecture Proposal

52

Chapter 5

Software Integration for Scalable
Vector Computing

Contents
5.1 Software Integration Overview . 54

5.1.1 Programmer’s View . 54

5.1.2 Layout Configuration Parameters . 55

5.1.3 Instruction Set Formats . 56

5.2 Instruction Set Architecture . 57

5.2.1 System Bus Integration . 57

5.2.2 Control Interface Memory Mapping . 58

5.3 Programming Model for Scalable Vector Processing . 59

5.3.1 Vector Processing Capability. 60

5.4 Vector Data-centric Kernels . 61

5.4.1 Shared Data Memory . 61

5.4.2 Reduction Operations . 62

5.5 Conclusion . 64

Thanks to its generic communication interface, presented in the previous chapter, the

METEOR architecture can be integrated into a standard processor system. In this chapter,

I propose a programming model for its software integration and some examples of vector-

based kernels. The vector data types allow the same programming model to be used for both

METEOR and SIMD architectures, its integration in the compilation tool chain is detailed in

Chapter 7.

53

Chapter 5. Software Integration for Scalable Vector Computing

5.1 Software Integration Overview

Since each tile in the METEOR architecture performs computations in parallel, a parallelism

control over tiles should be used. The vector data type can manipulate large amounts of con-

tiguous data, provides a strong Data-Level Parallelism (DLP), and many compilers support its

format. The programmer’s view of these vectors allows to execute computations between two

vectors distributed over several memory tiles while still accessing the data sequentially.

According to a set of data-intensive applications, I propose an IMC/NMC instruction set oper-

ating in the IMC/NMC tiles of the proposed METEOR architecture. Thus, several instruction

format are detailed to specify the type of operation, the operands and the result or constants

to use in each vector instruction, as presented in the following sections.

5.1.1 Programmer’s View

The dynamic horizontal recon�guration and vertical transfers of METEOR allow to maintain

a vertical memory continuity between each tiles. Indeed, the data does not move physically

but logically with pointer remapping provided by the TAM, as described in Chapter 4. This

speci�c memory remapping can be represented in a programmer’s view, as a logical memory

layout which is addressed on a physical memory map, as shown in Figure 5.1. Since the vectors

can be dynamically reassigned per address vector, the programmer is able to choose the vector

distribution parameters in the logical memory layout, such as the vector size and the stride

pattern (for irregular memory accesses) of the vectors, as described in Section 5.1.2.

Legend

A1 A2 A3 A4 C1 C2 C3 C4

B1 B2 B3 B4 D1 D2 D3 D4

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A1 A2 A3 A4 C1 C2 C3 C4 B1 B2 B3 B4 D1 D2 D3 D4

Logical Layout
1024 vectors of 512 bits

Logical Layout
512 vectors of 1024 bits

Logical Layout
256 vectors of 2048 bits

0x0000

0x2000

0x4000

0x6000

0x0000

0x4000

0x0000

B
Y

T
E

A

D
D

R
E

S
S0x000

0x100

0x200

0x300

0x000

0x100

0x000

V
E

C
T

O
R

A

D
D

R
E

S
S 1

2

3

Sequential Accesses (32 bits)
Vector Accesses (512 bits)

One compute memory tile
256 vectors of 128 bits

Physical Layout

Logical Layout

A1

Figure 5.1: METEOR programmer’s view of data accesses and vector handling. Byte addressing is
used for sequential accesses (green), and the IMC/NMC instructions uses vector addresses (orange).

Figure 5.1 illustrates an implementation example of the METEOR architecture designed with

4×4 tiles with 256 vectors of 128 bits each. The data composing the vectors are stored and

arranged horizontally in each tile according to the vector size required by the program, corre-

sponding to a logical layout con�guration (512, 1024, 2048 bits). For example, the program can

assign 4 vector groups of 512 bits in A, B, C, D tiles, as in the logical layout Ê, and distribute

the same instruction in parallel by con�guring it to the layout Ë to operate on 2 vector groups

or to the layout Ì to operate on all 4 vector groups. Indeed, each tile executes a part of the

vector computation, and assembled horizontally, executes the whole computation on larger

vectors. Moreover, it is also possible to arrange the data in 2048-bit vectors from con�gura-

54

Chapter 5. Software Integration for Scalable Vector Computing

tion Ì to operate on smaller vectors of 512 bits. Processor scalar computations and 32-bit

data accesses are still possible using byte addressing. Besides its computing capabilities, the

METEOR architecture is still a data memory supporting standard load and store.

5.1.2 Layout Configuration Parameters

To con�gure the logical shape of the METEOR layout, the developer can use con�guration

parameters addressable through the control memory section and implemented in the Control

and Status Register (CSR) unit of the METEOR architecture, as presented in the Figure 4.1.

These parameters de�ne a virtual grid pattern represented in Figure 5.2 to ensure the memory

vector continuity. All parameters are listed in Table 5.1.

Grid Width

Grid
Height

Vector Size

Memory Size =Grid Height × Vector Size × Tile Size

Stride Patterns

Active Tile

Figure 5.2: Layout configuration parameters.

To achieve an expandable architecture and still have vectors aligned with each other, it is

necessary to have a number of tiles equal to a power of two. In Figure 5.2, this statement

refers to the Grid Width and Grid Height parameters, that shape a rectangle of tiles. The Grid
Width parameter de�nes the number of memory tiles arranged horizontally and the Grid Height
parameter de�nes the number of memory stacked vertically. With the Vector Size parameter,

the cluster can operate with vectors smaller or equal to the grid width, which saves energy

by disabling unnecessary tiles but reduces the size of the virtual vector memory available

(Memory Size parameter). The Stride Pattern parameter allows to write or read data vectors

with an interleaving vector step. With this parameter, continuous memory blocks are equally

distributed between several tiles, where the location of each vector is regularly alternated

across the entire memory.

Table 5.1: Layout configuration parameter summary of METEOR (CSRs).

Parameter Description Reg # Type RD flag
Setter

Grid Width set the physical vector size (multiple of tile vector size) 1 U 0
Vector Size set the logical active vector size (inferior to grid size) 2 U 0
Stride Pattern set the read/write address stride pattern 3 U 0

Getter
Grid Width get the physical vector size (multiple of tile vector size) 1 U 1
Vector Size get the logical active vector size (inferior to grid size) 2 U 1
Stride Pattern get the read/write address stride pattern 3 U 1
Memory Size get the total cluster active memory size 4 U 1
Grid Height get the physical number of tile available 5 U 1

55

Chapter 5. Software Integration for Scalable Vector Computing

To con�gure the layout, a library of functions associated to the parameters is provided to the

developer, to update the architecture (Setter) or to read the values of the layout parameters

(Getter), as shown in Table 5.1. Moreover, the Memory Size and Grid Height are determined

by hardware mechanisms of the GPD unit, as presented in Section 4.2.4. Thanks to these

features, the developer has the possibility to dynamically recon�gure the architecture during

the program execution with the vreg instruction, which is a part of the IMC/NMC instruction

set as presented in the next section.

5.1.3 Instruction Set Formats

The instruction set de�nes which registers and instructions are supported by the processor and

how these instructions and operands are represented in memory. The IMC/NMC instruction

formats, detailed in Figure 5.3, have a total length of 56 bits and groups all instructions in three

base formats (R/I/U), de�ned as follows:

• R-Type (Register Type): all instructions operating on two source vectors (S2, S1),

• I-Type (Immediate Type): all instructions operating on an immediate 16-bit (imm[15:0])

value and one source vector (S1),

• U-Type (Upper immediate Type): all instructions which load/store an immediate 32-bit

(imm[31:0]) value in one destination vector (D).

operationwidth cat. typ.
2 32 1

R-TypeR2 @S2 (RS2) @S1 (RS1)R1@D (RDT)opcode RD

48 15 047 163155 32 143046

I-Typeimm [15:0] @S1 (RS1)R1@D (RDT)opcode RD

U-Typeimm [31:0]@D (RDT)opcode RD
15 15 158 111

Figure 5.3: Instruction formats of IMC/NMC instructions with internal register support.

The 8-bit opcode �eld speci�es the instruction operation, depending on the operand width,

the operation category, the type format and the operation identi�er, as detailed in Table 5.2.

The 15-bit operands and destination �elds refers as memory addresses (@S1, @S2, @D) or register

numbers (RS1, RS2, RDT) according to their enable bits (R1, R2, RD). For example, when the RD
bit is enabled, the destination operand �eld will be a value corresponding to a register number

(RDT), else the destination operand �eld will a value corresponding to a memory address (@D).

These instruction formats enable to manage the internal tile register, as presented in the Sec-

tion 4.2.1, in order to store intermediate computation results and to optimize the pipeline

throughput. According to the logical layout con�gurations of the vertical and horizontal tiled

assembly presented previously, the METEOR architecture can access a register stack address-

able by its number according to the number of stacked tiles (Grid Height parameter). As the

internal registers have the same size as the memory vectors, the consistency between mem-

ory and register is preserved, and the number of available vector registers depends on the

layout con�guration, as presented in Figure 5.1. In the METEOR layout con�guration Ê, the

software developer can address from R0 to R3 registers, in the con�guration Ë, from R0 and

R1, and in the con�guration Ì only the R0 register. Moreover, this internal register enhances

56

Chapter 5. Software Integration for Scalable Vector Computing

complex instruction execution, such as multiply-accumulate (MAC). So, the program executes

the operations fxmul and fxadd sequentially to compute partial sums, which are stored in the

internal register (accumulation register), thus reducing the number of reads and writes in the

memory. This reduces the overall memory power consumption and increasing the pipeline

throughput, as explained in Section 4.1.3.

Table 5.2: Instruction summary of METEOR (54 instructions in total).

Category Type Width (bits) Operations (28)
I Line copy, hswap64, hswap128
R 8, 16, 32 copyeq, copygeq, copygt, copyleq, copylt, copyneqmemory
U 8, 16, 32 bcast
I 8, 16, 32 slli, srli
I Line not, redorlogical
R Line and, or, xor, nand, nor, xnor
I 8, 16, 32 abs
R 8, 16, 32 add, sub, cmparithmetical
R 8 fxadd, fxmul, mul

CSR U 32 vreg

After studying the requirements of data-intensive applications, the instruction set can be clas-

si�ed into four categories, as presented in Table 5.2. The categories are as follows: (1) mem-

ory: for data manipulations, (2) logical: for operations using binary data, (3) arithmetical: for

complex operations using integer and �xed-point data (fxmul), and (4) CSR: to con�gure the

METEOR layout through the CSR unit.

5.2 Instruction Set Architecture

The Instruction Set Architecture (ISA) serves as the boundary between software and hardware.

It describes the design of the basic operations that the system must support from the program-

mer’s perspective. Previous work [94] demonstrated the compatibility between a conventional

architecture and the IMC and NMC concepts, integrating the ISA on the system bus without

modifying the design of the processor. Indeed, the previous instruction formats proposed can

be integrated on the system bus to send instructions to a dedicated control interface mem-

ory section. In this thesis, the improved IMC/NMC ISA allows to extend this compatibility to

several computation tiles and to manage intermediate registers. Furthermore, this ISA will be

integrated in the software and hardware layer of a simulation platform to evaluate the impact

of the IMC/NMC at the system level, as presented in the Chapter 7.

5.2.1 System Bus Integration

R-TypeR2 @S2 (RS2) @S1 (RS1)R11000 00 @D (RDT)opcode 00RD

50 15 049 16315763 58 34 143048

I-Typeimm [15:0] @S1 (RS1)R11000 00 @D (RDT)opcode 00RD

U-Typeimm [31:0]1000 00 @D (RDT)opcode 00RD
6 15 15 158 2 111

ADDRESS[31:0] DATA[31:0] Instruction
Format

32

Figure 5.4: IMC/NMC ISA integrated on a standard 32-bit system bus.

57

Chapter 5. Software Integration for Scalable Vector Computing

To integrate the proposed instruction set into an architecture, there are di�erent solutions,

such as adding a control line between the CPU and the memory, or adding new instructions to

the CPU. To ensure a smooth integration and minimize system modi�cations, the instruction

formats are encoded using the actual address bus and data bus, as shown in 5.4. A 32-bit system

bus o�ers a total space of 64 bits. For bigger architectures, it is possible to integrate the ISA

on a 64-bit system bus, allowing larger system addressing. The 6 most signi�cant bits (MSB)

of the address de�ne the start address of the control interface memory section, detailed in the

following section. However, the load-store unit of the processor, responsible for the core’s

memory accesses, ensures that 8-bit and 16-bit words are aligned with 32-bit words. In order

to avoid automatic word alignment that modify the instruction sent, the 2 least signi�cant bits

(LSB) of the address are left at zero.

5.2.2 Control Interface Memory Mapping

From the execution perspective, sending a IMC/NMC instruction to the computing memories

is equivalent to writing a speci�c data to a speci�c address in a speci�c memory section.

According to the proposed ISA, the 6 MSB of the address bus de�nes the address range size

of 64 MB and starting at the address 0x80000000 for the control interface memory section. To

simplify the system integration, the vector operand bit �elds are encoded on 15 bits allowing

the manipulation of 32 k vectors. If the minimum vector size in the METEOR architecture

is 512 bits, this corresponds to a maximum addressable physical data memory size of 2 MB.

Thus, the physical addressable memory size depends on the control interface memory size.

This limitation can be overcome by using a 64-bit architecture.

IMC/NMC

Data

Program

Stack

Internal Registers

CSRs

System Memory Map

0x8000 0000

0x1000 0000

0x0001 0000

31 0

0xFFFF 0000

32-bit load/store

32-bit store

32-bit System Bus Memory Requests

Address Data
32 32

Standard memory accesses

1000 00 IMC/NMC instruction

6 58

1

2 3

METEOR
control

interfaces

Addressable
memory

1000 00 METEOR Layout

METEOR requests

Figure 5.5: METEOR control interface integrated in a standard system memory map. Request Ê is
used for standard memory accesses and request Ë is an IMC/NMC instruction or a layout parameter
send to the METEOR architecture then Ì to distribute to each tile or to configure a CSR.

Figure 5.5 illustrates the memory requests that the processor can perform with the METEOR

architecture. The processor can Ê access a data or internal register of the memory through

the standard access, from the address 0x10000000, where data is aligned according to the

METEOR vector size. When sending an IMC/NMC instruction, the request Ë passes through

the METEOR control interface to Ì dispatch the instruction to the IMC/NMC tiles, thus editing

the content of the physical memory. In the same way, the processor address a new METEOR

layout con�guration via the same control interface to write or read the parameter in the CSRs.

58

Chapter 5. Software Integration for Scalable Vector Computing

Listing 5.1: Operation vmul8: C macro of 8-bit chunk multiply operation on a C-SRAM vector.� �
1 #define vmul8(_result, _operA, _operB) do { \
2 uint64_t cm_word = _MAKE_ISA_RTYPE(OPC_MUL8, _result, _operA, _operB); \
3 volatile uintptr_t* cm_addr = (uintptr_t*)((uint32_t)(cm_word >> 32)); \
4 uintptr_t cm_data = (uint32_t)(cm_word); \
5 *cm_addr = cm_data; /* equivalent to a store instruction */ \
6 asm("" ::: "memory"); /* memory fence */ \
7 } while(0)� �

From the software-level perspective, the ISA de�nes IMC/NMC instructions as a set of C

macros to perform operations on data vectors, as proposed in Listing 5.1. On line 2, the bit

�elds of the IMC/NMC instruction is assembled onto a 64-bit word, as proposed in Figure 5.4,

to be assigned to a 32-bit address and 32-bit data on lines 3 and 4, respectively. Then, the in-

struction is sent to the control interface memory by writing the data to the address, on line 5. In

order to enforce an ordering constraint on memory operations, which would alter the behav-

ior of the program, on line 6, the memory fence instruction prevents the compiler to reorder

memory operations. To conclude, this IMC/NMC ISA proposal avoids any modi�cation of the

instruction set of the processor, hence the IMC/NMC instruction assembling and forwarding

to the control interface will be optimized by the compiler.

5.3 Programming Model for Scalable Vector Processing

The programming model acts as a bridge between algorithms and actual implementations in

software. Here, the parallel execution model of the IMC/NMC approaches must be interleaved

with the execution model of the processor, in order to distribute the computation to the mem-

ory tiles of the METEOR architecture. A �rst version is available using static C-macro for an

early evaluation of the IMC/NMC instructions at the software level. Further optimizations will

extend this model with dedicated instructions to support dynamic vector recon�guration and

micro-codes to assemble several IMC/NMC instructions in an optimized way.

In the following code listings, the tiles composing the METEOR architecture are de�ned as

CSRAM, for Compute SRAM, due to the IMC/NMC design implementations based on SRAM.

Vector/Matrix representation – To represent the matrices in the memory, each row of the

matrix is considered as a vector (or multiple vectors) containing the elements ordered by col-

umn. When the vector size is smaller than the number of columns in the matrix, then the

rows of the matrix are represented on multiple vectors. Depending on the METEOR layout

con�guration, it is possible to adjust the vector size (line 5: VECTOR_SIZE) to the size of the

matrix, as shown in 5.2. As described in the programmer’s view, the data can be accessed with

the appropriate scalar type (i8, i16, i32) and the vector computation can be performed with

the vector type (v).

Common vector format – Since the matrix dimensions are known, the maximum vector

size is �xed at compile time for the METEOR and SIMD architectures (128, 256 and 512 bits).

To compare these vector architectures, the proposed VectorLine type (line 17) is used for

the de�nition, the declaration and the allocation of the vector variables. The union (line 12)

feature allows to share the same memory location for di�erent data types (v, i8, i16, i32),

so the vector can be addressed with 8, 16 or 32-bit scalar accesses. Moreover, the data is

59

Chapter 5. Software Integration for Scalable Vector Computing

Listing 5.2: SIMD and CSRAM vector types.� �
1 /* Defined when 512-bit SIMD vectors are used */
2 #define VECTOR_SIZE 64
3 #define VECTOR_TYPE __m512i /* data type define in <avx512fintrin.h> */
4 /* Defined when 8192-bit CSRAM vectors are used */
5 #define VECTOR_SIZE 1024
6 #define VECTOR_TYPE __CSRAM_Line /* data type define below */
7
8 /* CSRAM data type as large as the vector (up to 8192 bits) */
9 typedef int __CSRAM_Line __attribute__((vector_size(VECTOR_SIZE)));
10
11 /* Common vector type for every benchmark evaluation, data are always aligned */
12 typedef union {
13 VECTOR_TYPE v; /* used for vector handling */
14 int8_t i8 [VECTOR_SIZE/sizeof(int8_t)]; /* used for 8-bit word accesses */
15 int16_t i16[VECTOR_SIZE/sizeof(int16_t)]; /* used for 16-bit word accesses */
16 int32_t i32[VECTOR_SIZE/sizeof(int32_t)]; /* used for 32-bit word accesses */
17 } VectorLine __attribute__((aligned(VECTOR_SIZE)));� �
automatically aligned to the vector size at allocation using the aligned attribute (line 17) and

vector_size attribute (line 9), which are supported by many C/C++ compilers (GCC).

Since the same data-level parallelism is targeted, this vector format allows to reuse directly low

level vectorized kernels already written for SIMD architecture for our METEOR architecture.

This avoids the tedious work of application mapping and parallelism extraction.

5.3.1 Vector Processing Capability

Beyond this vector format compatibility, the METEOR architecture can adjust the vector size

in run-time, referred as dynamic vector recon�guration. The data pointers are physically re-

addressed through the TAM to adapt each scalar or vector access and the vertical communica-

tion paths are re-mapped to perform operations between vectors at di�erent size, as presented

in Section 4.2.3. Thus, the proposed vreg instruction is wrapped in a C library providing

several functions, such as set_mvl for "set METEOR vector length", to properly con�gure the

METEOR layout according to the user program. Also, the METEOR internal registers are ad-

dressable during the recon�guration from the programmer’s perspective to compute between

intermediate vectors or to retrieve the �nal results (CRegs memory section), as presented in

Listing 5.4. These recon�guration mechanisms allow better manipulation of intermediate data

in memory, which is a challenge to implement in conventional vector accelerators. Indeed, the

�exibility of the interconnect in the memory allows complementary data management to the

vector accelerators.

Furthermore, to abstract recon�guration mechanisms for the developer, dedicated micro-codes

are implemented as complex instructions, assembling pure vector and scalar instructions.

Thus, in the Listing 5.3, the reduction operation (vreduce_add8) is a micro-code involving

METEOR’s recon�guration to avoid additional memory transfers to the processor, as detailed

in Section 5.4.2. The data of A, B and C matrices are stored in the vector memory (line 4),

aligned according to the given vector size (line 2). The rows of A matrix are multiplied by the

column of B matrix (line 11), then the elements of the tmp intermediate vector line are added

together (line 12) and the result is stored in the C matrix (line 14), element by element.

60

Chapter 5. Software Integration for Scalable Vector Computing

Listing 5.3: Example of N×N matrix product written in C language� �
1 /* Matrix data type, reshape according to the vector size */
2 typedef VectorLine Mat[N][N / VECTOR_SIZE];
3 /* All matrices will be stored aligned in the vector section (.csram) */
4 __attribute__((section(".csram"))) Mat A, B, C;
5
6 /* Example of 8-bit word NxN matrix multiplication for SIMD and C-SRAM architectures */
7 for(int i = 0; i < N; i++)
8 for(int j = 0; j < N; j++) {
9 int sum = 0; VectorLine tmp;
10 for(int k = 0; k < N / VECTOR_SIZE; k++) {
11 vmul8(tmp[k].v, A[i][k].v, B[j][k].v); /* vector instruction */
12 vreduce_add8(sum, tmp[k].v); /* dedicated micro-code */
13 }
14 C[i][j / VECTOR_SIZE].i8[j % VECTOR_SIZE] = sum;
15 }� �
This kernel can be compiled for SIMD architectures from 128 bits to 512 bits as well as the

METEOR architectures using larger vector sizes. These bene�ts are discussed in Chapter 8.

To conclude, a �rst version of the programming model for scalable vector processing is pro-

posed for ease of programming for any vector size, vector alignment and dynamic vector re-

con�guration. Although this is still a low-level ISA, which is implemented as a set of C macros

at the developer level, all translation work is supported by the compiler to generate optimized

IMC/NMC instructions. Moreover, internal registers and layout con�guration parameters are

tightly integrated to this ISA to provide user-friendly micro-code for �exible architecture re-

con�guration. Many software research opportunities are still needed to integrate IMC/NMC

ISA into the processor instruction set, as well as a seamless interlacing of the architecture

recon�guration mechanisms in a parallel programming model, for the development of data-

intensive applications.

5.4 Vector Data-centric Kernels

By analyzing data-intensive applications, some kernel (sub-parts of the application) can be

implemented using the proposed IMC/NMC programming model. In this section, I present

a few kernel examples integrating IMC/NMC instructions, operation reduction micro-code

and re�ned data placement to fully exploit METEOR recon�guration. Today, they serve as a

micro-benchmark for the development of complete data-intensive applications.

5.4.1 Shared Data Memory

Convolution and Fully-Connected (FC) kernels are mainly used in Convolutional Neural Net-

work (CNN) applications. These kernels use three groups of vectors to store input, output and

coe�cient data and arithmetic operations such as multiplication and addition. Thanks to the

METEOR architecture, these operations are performed with large vectors, thus increasing the

data parallelism. The vertical communication scheme of METEOR allows to transfer the inter-

mediate vector lines through the entire memory, where the operands are located, to maintain

the processing throughput, as presented in the Section 4.1.2. In addition, the horizontal vector

recon�guration allows to adapt the vector size according to the neuronal layer requirements.

61

Chapter 5. Software Integration for Scalable Vector Computing

Figure 5.6: Fully Connected (FC) kernel. (a) Neural network layer representation, (b) Vector represen-
tation, (c) Pseudo instruction flow representation.

The FC kernel is used in the �nal layers of CNN, using a low memory area for input data and

a high memory area for weight data. In the Figure 5.6, the data of the input layer (x1, x2, x3)

stored in the A tiles are multiplied by a large amount of weights (w11, w12,... w23) distributed

in tiles B, C, D tiles. The vertical transfers move the input data to the tiles containing the

weights to perform multiplications and additions, thus avoiding the input data duplication in

tiles B, C, D and reducing the memory footprint.

Figure 5.7: Convolution kernel. (a) Neural network layer representation, (b) Vector representation, (c)
Pseudo instruction flow representation.

The convolution kernel is used in the main layers of CNN, using a high memory area for input

data (image) and a low memory area for weight data (�lters). In the Figure 5.7, the weight data

(w1, w2, w3) are stored in the A, B, C tiles and input data are distributed in all tiles, thanks to

the stride pattern distribution. The vertical transfers move (up/down) the weight data to the

tiles containing the input data to perform multiplications and additions, thus allowing weight

data sharing between the B, C and D tiles and reducing the memory footprint.

5.4.2 Reduction Operations

The reduction operation consists in performing the same operation (e.g. an addition) between

all the elements composing a vector, as used in the previous code listings or in di�erent ma-

trix product kernels of the PolyBench suite [95]. The skeleton behavior of the 8-bit reduction

addition is shown in Figure 5.8 and the speci�c micro-code used by the METEOR architecture

is detailed in Listing 5.4.

62

Chapter 5. Software Integration for Scalable Vector Computing

Thus, after performing an 8-bit multiply (vmul8) between two vector of 2048 bits, the METEOR

architecture is able to perform the reduction addition (vreduce_add8) using the proposed

IMC/NMC instructions, the dynamic vector con�guration functions and the internal regis-

ters. The �rst part of the micro-code, involves successive vector downsizing using the set_mvl
functions (including vreg instruction), and compute 8-bit additions between sub-vectors using

the internal registers, in order to increase the pipeline throughput (line 3 to 7). The second

part of the micro-code, involves successive IMC/NMC instructions to horizontally swap the

sub-element of the vector, using internal registers, and compute 8-bit additions between the

swapped and the original vector (line 9 to 16). Finally, the last part of the micro-code is per-

formed by the CPU thanks to the internal register accessibility to perform the last 8-bit scalar

reduction (line 19). This micro-code is quite consequent, but it spares 256 scalar instructions,

when executed only on a single CPU, replaced by 18 meta-instructions.

Figure 5.8: 8-bit integer addition reduction of 2048-bit vectors (A and B) with results in C. (a) Adder tree
representation, (b) Vector representation (from 2048 bits down to 512 bits).

Listing 5.4: Operation vreduce_add8: sum of 256 8-bit words of a 2048-bit vector width. This version
uses METEOR dynamic vector reconfiguration and C-SRAM internal registers .� �
1 #define vreduce_add8(_8b_dest, _v_src) do { \
2 /* METEOR reconfiguration: dynamic vector and addition (2048 bits -> 512 bits) */ \
3 _cm_copy_rm(R0, _v_src); /* sum = vector_source[2047:0] */ \
4 set_mvl(1024); /* set METEOR vector length at 1024 bits */ \
5 _cm_add8_rrr(R0, R0, R1); /* sum = sum[2047:1024] + tmp[1023:0] */ \
6 set_mvl(512); /* set METEOR vector length at 512 bits */ \
7 _cm_add8_rrr(R0, R0, R2); /* sum = sum[1023:512] + tmp[511:0] */ \
8 /* CSRAM reduction: each tile operates a software adder tree (128 bits -> 8 bits)*/ \
9 _cm_hswap64_rr(R1, R0); /* tmp[63:0] = sum[127:64] */ \
10 _cm_add8_rrr(R0, R0, R1); /* sum[63:0] = sum[63:0] + tmp[63:0] */ \
11 _cm_hswap32_rr(R1, R0); /* tmp[31:0] = sum[63:32] */ \
12 _cm_add8_rrr(R0, R0, R1); /* sum[31:0] = sum[31:0] + tmp[31:0] */ \
13 _cm_srli32_rr(R1, R0, 16); /* tmp = sum >> 16 */ \
14 _cm_add8_rrr(R0, R0, R1); /* sum[15:0] = sum[15:0] + tmp[15:0] */ \
15 _cm_srli16_rr(R1, R0, 8); /* tmp = sum >> 8 */ \
16 _cm_add8_rrr(R0, R0, R1); /* sum[7:0] = sum[7:0] + tmp[7:0] */ \
17 set_mvl(2048); /* set METEOR vector length at 2048 bits */ \
18 /* CPU reduction: 5 memory accesses for the last reduction (4 reads, 1 write) */ \
19 _8b_dest = CRegs[0]->i8[0] + CRegs[0]->i8[16] + CRegs[0]->i8[32] + CRegs[0]->i8[48];\
20 } while(0)� �

63

Chapter 5. Software Integration for Scalable Vector Computing

In conclusion, the proposed micro-code bene�ts from the di�erent features proposed in the

METEOR architecture. At the hardware level, the dynamic recon�guration and the vertical

communication scheme enable computation between the di�erent IMC/NMC tiles, supporting

vector operand transfer, and the internal registers provide an intermediate energy-e�cient

bu�er and high pipeline throughput, as presented in the Chapter 4. At the software level,

the enhanced IMC/NMC instruction set allow to support scalable vector processing for any

vector size, vector alignment and vector allocation, and the early version of the programming

model allows seamless integration of the micro-code according to the METEOR architecture

execution model.

5.5 Conclusion

In order to execute vector-based kernels in our METEOR architecture, the integration of a dedi-

cated IMC/NMC instruction set and the METEOR layout parameters are proposed. Integrating

the internal register in the instruction format allows to optimize the instruction �ow in the

multi-tile architecture as well as the execution of dedicated micro-codes. This will be evalu-

ated by simulation at the system level in the Chapter 8. Moreover, the METEOR architecture is

compatible with standard architectures, without modifying the design of the processor, thanks

to the proposed programming model while ensuring support for other vector architectures.

However, this is still a low level ISA, which is implemented as a set of C macros, and resolved

at compile time. The current ISA and micro-code library allows to evaluate kernels of data-

intensive applications by exploiting a large data parallelism. In a long-term perspective, this

high-level library will be extended to explore complete data-intensive applications in order to

measure the bene�ts of IMC and NMC approaches on a larger scale.

64

Chapter 6

Design Space Exploration of the
Memory Interconnect

Contents
6.1 Interconnect Overview . 66

6.1.1 SRAM Organization . 67

6.1.2 Performance and Power Impacts. 68

6.2 Evaluation Methodology . 68

6.2.1 Physical Design Flow . 68

6.2.2 Static Timing Analysis . 69

6.2.3 Multiple Memory Tile Exploration . 70

6.3 Experimental Results . 70

6.3.1 Performance, Power and Area Trade-offs . 71

6.3.2 Wiring Interconnect Model . 72

6.4 Conclusion . 73

Since a unique large memory instance cannot satisfy the capacity and performance require-

ments of data-intensive applications, an architecture composed of multiple memory tiles

(multi-tile) is necessary to design larger memories. In this chapter, I have evaluated the low-

level constraints of multi-tile systems and developed a model of the interconnect between

memory tiles. Such a model facilitates the scaling of the METEOR architecture with the de-

sign constraints estimated for multi-tile architectures. These estimations serve as input to the

simulation platform, presented in Chapter 7, in order to improve the accuracy of architectural

explorations.

65

Chapter 6. Design Space Exploration of the Memory Interconnect

6.1 Interconnect Overview

The design of Integrated Circuits (ICs) or chips consists of many development steps, known

as the physical design �ow, necessary to ensure the required functioning of the components

and to build an error-free chip. This physical design is divided into two categories: full-custom

designs, in which the designer has full �exibility in layout design, and semi-custom designs, in

which the designer uses pre-designed library cells (standard cells) and has the �exibility in cell

placement and routing. Usually, the inputs to physical design steps are (1) a netlist, composed

of the design components and their connections, (2) standard cell libraries of each device com-

posing the design, and (3) a technology �le containing the manufacturing constraints. Finally,

this design �ow generates a layout �le containing planar geometrical shapes and patterns of

the metal, oxide and semiconductor layers of the chip to be manufactured on a silicon wafer.

Synchronous digital circuits are systems where data processing is coordinated by a clock sig-

nal. This clock signal is distributed globally to all the sequential elements of the circuit in

order to simultaneously synchronize the data processing through these elements. Large mem-

ory systems are composed of memory tiles (or memory cuts or memory instances) connected

together with a global distribution interconnect, mainly made up of the clock signal, data bus

(input and output), address and control signals specifying the reading or writing operations.

The larger the system, the more di�cult it becomes to synchronize the arrival times of the

same clock edge to di�erent sequential elements.

To synchronize data arrival times between elements, H-tree distribution interconnects are

commonly used in low power designs due to their cost e�ciency, as presented in Figure 6.1(a).

In this interconnect, the internal clock tree network achieves equal propagation delays to all

memory from the clock source signal to every memory thanks to clock bu�ers, as presented

in Figure 6.1(b). The clock bu�ers are placed between the clock source and along the clock

paths according to the arrival time requirements as detailed in Section 6.2.2.

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Distribution Interconnect

(a) (b)

Clock Source

M M M M M M M M

clock
buffer

clock path tim
e

Figure 6.1: Memory interconnect: (a) H-tree distribution interconnect and (b) clock tree network
.

The multi-tile METEOR architecture, presented in the previous chapters, o�ers a strong par-

allelism achieved by performing the computation in several tiles in parallel. To dispatch

IMC/NMC instructions to each tile, the same distribution interconnect (TDI) as the memory

interconnect is used, as described in the Chapter 5. Moreover, this e�ciency of this parallelism

on the vectorization width (i.e. vector size) which is proportional to the number of tiles used.

66

Chapter 6. Design Space Exploration of the Memory Interconnect

Unfortunately, by considering a realistic memory interconnect, the larger the vector, the lower

the timing performance will be, as presented in this chapter. This study focuses mainly on the

TDI of the METEOR architecture without considering the additional vertical communication

scheme (VTI). Nevertheless, the design constraints related to the memory interconnect of this

study, provide an overview of the performance limitations of this architecture.

The Design-Kit (DK) of SRAM provided by foundry allows to explore the performance of the

individual memory tiles (capacity, area, performance) to build a large system, but not their

memory interconnect between tiles. Hence, I propose to provide a generic memory intercon-

nect model of multiple SRAM using the standard physical design �ow.

6.1.1 SRAM Organization

R
ow

 D
ec

od
er

Sense amplifiers / Drivers

Data (Input/Output)

Control
Logic

Bit-line (BL)

Word-line
(WL)

Bit-cell (6T)

Column Decoder

I/O Buffers

Address, R/W

BL BL

WL

QQ

Bit-cell
Array

Figure 6.2: SRAM tile architecture (6-Transistor bit-cells).

The SRAM tile architecture, also called a memory cut or instance, as generated by foundry

generators is usually organized as in Figure 6.2. It is composed of an array of bit-cells, each bit-

cell retaining the value of a single bit (0 or 1), a row decoder and a column decoder responsible

for addressing the memory word in vertical and horizontal lines, senses ampli�ers and drivers

to digitally read or write the data in the bit-cells, input/output (I/O) bu�ers to interface with

external components and a control logic unit to drive the internal elements during memory

requests. According to the data location in the bit-cell array, the row decoder selects the Word-

Line (WL) and the column decoder selects the Bit-Lines (BLs) to access to the data. When

reading data, low-power signals coming from the bit-lines are ampli�ed to recognizable logic

levels by the sense ampli�ers before sending the data outside of the memory with the output

bu�er. When writing data, the input bu�er transfers the data through the drivers, which adapt

the current level to write each bit-cell value.

Other architecture parameters exist to optimize memory performance, such as the number

of transistors per bit-cells (4T, 6T, 8T,...) for multi-port SRAM, multiplexed memory bank

partitioning, clock gating to reduce energy consumption and read and write assist tech-

niques. These optimizations satisfy hardware constraints in order to have: dense memory

area (high-density), fast memory access time (high-performance) or energy e�cient memory

(low-power). In any implementation or technology, the size of the bit-cell array will de�nes

the trade-o�s between access time performance, power consumption and surface area.

67

Chapter 6. Design Space Exploration of the Memory Interconnect

6.1.2 Performance and Power Impacts

The performance of memory devices has a major impact on the overall performance of the

system architecture. To reduce the technological impact of scaling and to achieve higher per-

formance than the standard design �ow, memories are designed and optimized by foundries

and design companies. Indeed, during the design of integrated circuits, the Design Rule Check-

ing (DRC) step veri�es the spacing between the components (gates, transistors, ...) to ensure

the function of the circuit. The reliability of SRAM bit-cell is characterized by speci�c design

spacing rules de�ned by the founders, who sell memory cut libraries optimized for a given

technology node. The proposed design space exploration involves SRAM cuts optimized by

founders to target high-performance multi-tile designs.

6.2 Evaluation Methodology

Regarding the performance and power trade-o�s between SRAM tiles and the distribution

interconnect, a multi-tile interconnect exploration model is proposed to analyze the architec-

tural constraints of the wiring cost. This model is calibrated on a design space exploration

studying various SRAM designs implemented in a 28 nm FD-SOI technology node and uses

high-performance SRAM cuts provided by STMicroelectronics (ST). Although this model does

not include the IMC/NMC tiles proposed in previous chapters, the SRAM design mimics its

behavior and allows to extrapolate the memory interconnect impact.

6.2.1 Physical Design Flow

The proposed evaluation methodology is based on a standard physical design �ow used to

design digital integrated circuits, as shown in Figure 6.3. In this study, the design space explo-

ration parameters depend on the data-intensive application requirements (e.g. memory size)

presented in Section 8.1. The architecture of the memory system is implemented through

the standard design �ow made up of: Ê the description of the architecture behavior in RTL,

Ë the memory array netlist of each system elements (registers, gates, ...) through the logic

synthesis step, Ì the placing and routing (P&R) of components on multiple �oorplan con�gu-

Software Exploration Physical Design Flow Analysis & Modeling

Application
Specification

Behavior Model
(VHDL)

Logic Synthesis
(netlist)

Place & Route
(physical layout)

Power Analysis
(activity report)

Design parameters (inputs)
• total memory size
• number of tiles
• data bus width

P&R optimizations
• 75% area density
• WNS: read data path

extractions

inputs
1

2

3

4

Wiring Model
(Python)

Design Tools

ModelSim (Mentor Graphics)
Design Compiler (Synopsys)
Innovus (Cadence)
PrimeTime-PX (Synopsys)

1

2

3

4

Figure 6.3: Evaluation methodology based on a standard physical design flow.

68

Chapter 6. Design Space Exploration of the Memory Interconnect

rations through many circuit optimizations (clock tree synthesis, static timing analysis (STA),

...), Í the timing and power extractions according to the system activity traces. These ex-

tractions combine key parameters to create the wiring interconnect model using polynomial

regression algorithms.

To optimize system performance, the design is constrained by the memory tile placement on

a given �oorplan and the system frequency. The P&R optimization steps minimize the time

latency between circuit components still perform system functionality. In every designs, a

symmetrical memory tile placement - such as the H-tree interconnect, for a balanced latency

time distribution - and a design density of 75% are targeted. In addition, the frequency factor

constrains the latency of every path between the components until the critical path is mini-

mized. Static Timing Analysis (STA) method analyses each path of the system to �nd the criti-

cal path, as detailed in Section 6.2.2. As both physical design �ow and P&R optimization steps

require development work and time, the wiring interconnect model quickly estimates power

and performance with the same input parameters as the physical design �ow, as detailed in

Section 6.3.2. To enable fast analysis and iterations, the methodology has been automated on

various con�gurations using various scripts.

6.2.2 Static Timing Analysis

Clock

Data stableData

Data Arrival Setup Slack Hold Slack

Data Required

Combinational

Logic

clock tree buffers

FF1

D Q

FF2

Clock

Data Arrival
Time

Data Required
Time

clock path

data path
D Q

Setup Slack Time = Data Arrival Time – Data Required Time

Figure 6.4: Static timing analysis (STA) of the Flip-Flop (FF) to Flip-Flop path.

The P&R step has solver algorithms (e.g. timing optimizers) to optimize circuit timings accord-

ing to the clock frequency, arrival times and the data validity occurring at the clock edges. To

modify the arrival times, the solver adjusts the placement of standard cell (not the SRAM)

in the �oorplan and adds inverters (bu�er) along the data or clock path to slow down signal

propagation. The STA provides time metrics such as the register-to-register access time, also

represented by Flip-Flop (FF) in Figure 6.4. Such standard Flip-Flop (FF) model is used since

the SRAM memory is clocked and behaves as a register. The setup slack time is de�ned as the

amount of time when the data is stable before the active clock edge arrives. The hold slack

time is de�ned as the amount of time when the data is stable after the active clock edge. In

design exploration, the critical path is de�ned as the path with the worst setup slack time of

all paths in the circuit, also called the Worst Negative Slack (WNS) time.

69

Chapter 6. Design Space Exploration of the Memory Interconnect

6.2.3 Multiple Memory Tile Exploration

The multi-tile design space exploration is based on a system composed of multiple memories

and a FSM, in order to verify the functioning of the system after the Place and Route (P&R) step

for power analysis. This system is developed into a generic RTL and applied for various multi-

tile design con�gurations and various memory sizes. These designs have mirrored �oorplans

composed of tiles with the same memory size to achieve a balanced distribution interconnect,

such as H-trees.

During the exploration, the STA indicates that the WNS of each design is located between the

memory and the reading register (considering an external register to the multi-tile design). As

shown in Figure 6.5, to read data from the memory, an additional logic (readout multiplexer) is

implemented to select the tile storing the data. The critical path (or WNS) is composed of: the

memory internal delay (TCD), the net delay and the read logic delay (TDE). In this exploration,

the read access time serves to quantify the worst timing performance of each multi-tile design.

D Q

REG2M
U

X

SRAM
SRAM

SRAMSRAM

C

E

read net delay

read logic delay

write net delay

Total Write Access Time

B

write memory
internal delay

read memory
internal delay

D
D Q

REG1

A

Total Read Access Time

Figure 6.5: Multiple memory tile exploration: write (TAC) and read (TCE) timing paths.

6.3 Experimental Results

The design space exploration is a set of 22 di�erent multi-tile circuits composed of 10 SRAMs

tiles provided by the cut generator in ST 28 nm FD-SOI technology (for memory size of 64 Bytes

up to 32 kB). The multi-tile design parameters are the number of tiles (or cuts) and the total

memory size. The distribution interconnect width is �xed at 32 bits, as well as the memory

interface. A custom �oorplan is de�ned according to the memory cut size, as presented in

(a) (b) (c)

Figure 6.6: Floorplans of different multiple tile design circuits (not to scale). (a) 2 cuts of 8 kB, (b) 16
cuts of 1 kB, (c) 64 cuts of 1 kB. All pink objects surrounded by white is a memory cut, green nets are
wires on metal layer 4 (M4), yellow nets are wire on M5 and blue nets are wires on M6.

70

Chapter 6. Design Space Exploration of the Memory Interconnect

Figure 6.6. These �oorplans are placed and routed through the standard design �ow presented

previously for three architectures respectively composed of (a) 16 kB, (b) 16 kB and (c) 64 kB

total memory size.

6.3.1 Performance, Power and Area Trade-offs

The performance (read accesses) of designs composed of 1, 4, 16 and 64 memory cuts is pre-

sented in the Figure 6.7. These curves result from the timing extractions of the founder’s cut

generator (for the "no wiring" curves) and from the timing analysis of the implemented and

estimated designs (for the "wiring" curves). Each curve refers as a �xed number of memory

cuts for a given total memory size. For example, to obtain the red curve for a total memory

size of 64 kB, the architecture is composed of 16 memory cuts of 4 kB each.

1 2 4 8 16 32 64 128 256 512
0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
ea

d
 A

cc
es

s
T
im

e
(n

s)

wiring cost
(61%)

wiring cost
(43%)

wiring cost
(10%)

1 cut + wiring
1 cut + no wiring
4 cuts + wiring
4 cuts + no wiring
16 cuts + wiring
16 cuts + no wiring
64 cuts + wiring
64 cuts + no wiring wiring cost

(25%)

Total Memory Size (kB)

Zone A:
1 cut is better

Zone B:
4 cuts is better

Zone C:
16 cuts is better

-17%

Figure 6.7: Multi-tile (read) timing performance versus memory size for various multi-tile designs.

For small memory sizes (Zone A), the single cut architecture has better performance than

multi-tile architectures (Zone B and C) but for large memory sizes, the memory bit-cell access

time becomes signi�cant. Thus, three zones de�ne the multi-tile architectures with the best

performance according to memory size, such as: the 1-cut architecture for memories from

1 kB to 4 kB (Zone A), the 4-cut architecture for memories from 8 kB to 64 kB (Zone B) and

the 16-cut architecture for memories from 128 kB to 512 kB. In addition, for a total memory

size of 32 kB, switching from the single cut architecture to the 4-cut architecture provides a

timing performance gain of 17 %. In summary, memory interconnect must be considered when

designing large memory architectures because the founder’s cut generator does not re�ect the

performance of large multi-tile systems. This wiring cost is proportional to the number of cuts

(from 10 % up to 61% of the access time according to these architectures) and will be considered

for architectural exploration and model calibration in Section 7.5.2.

In Figure 6.8, the impact of increased tile fragmentation (increase the number of tiles for a

given memory size) is presented in terms of energy and area for a total memory size of 32 kB.

Compared to the same point as the performance results, by switching from a 1-cut to a 16-

cut architecture, the total energy access is reduced by 78%, but the surface area is increased

71

Chapter 6. Design Space Exploration of the Memory Interconnect

by 1.8×. Indeed, small memory cuts involve smaller BLs and WLs, which reduces bit-cell

access energy compared to a single large cut. Also, the total surface area of the multi-tile

architectures increases proportionally to the sum of each small memory periphery and the

additional interconnect (small compared to the surface area of the peripheries). Moreover,

in every architectures, only one memory cut is accessed at a time (single active memory cut
energy) and the other memory cut are in idle energy mode (memory idle energy). Splitting a

single cut architecture into a multiple cut architecture increases the SRAM’s periphery in terms

of surface area, but also the static leakage and idle energy related to the inactive memories.

In terms of energy ratio, 98 % is consumed by the memories (active or inactive) and 2 % is

consumed by the interconnect logic (all other gates).

1 2 4 8 16 32 64 128 256 512
Number of cuts

0

5

10

15

20

25

T
o
ta

l
E
n
er

g
y

(p
J)

memory idle energy
single active memory cut energy
memory leakage
all other gates (clock tree,...)
area (right axis)

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
(m

m
2
)

Figure 6.8: Total energy and area for a sweep of the number of cuts composing a 32-kB memory (lower
is better). X-axis: number of cuts needed to obtain a memory size of a 32 kB.

In conclusion, for this 32-kB memory architecture, the best energy is provided for a tiling

of 16 cuts while for performance it was 4 cuts. Hence, to highlight all trade-o�s between

performance and energy and design the suitable memory architecture, a wiring interconnect

model is proposed in the next section.

6.3.2 Wiring Interconnect Model

To compare multi-tile design architecture trade-o�s between them, I developed a wiring inter-

connect model according to the input design parameters. This model is based on a polynomial

regression between the design parameters and the experimental results in order to estimate

the timing performance, energy consumption and surface area (PPA) of a virtual multi-tile

architecture. Figure 6.9 presents performance and energy estimates of the wiring model based

on extracted timing and power analysis of 22 designs for various tiling memory con�gurations

composed of various memory cut size.

The 32-kB memory is represented by the green curve implies designs ranging from the single

tile to the multi-tile architectures. As discussed previously, the best energy point is achieved

with a 16-cut architecture composed of 16 small memory cuts of 2 kB each. Thus, the perfor-

mance is improved by 49% compare to a 128-cut architecture and the energy is reduced by

78% compared to a single tile. By analyzing the bottom left side of the �gure, where the best

performance and energy designs are achieved, it becomes clear that there is no optimal design

that combines the best performance and energy in a uni�ed architecture. Therefore, design

and architectural choices must be done.

72

Chapter 6. Design Space Exploration of the Memory Interconnect

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Performance (ns)

0

2

4

6

8

10

12

14

E
n
er

g
y

(p
J)

1

2
4 8 16

32

64

1

2

4

8
16

32

64

128

1

2

4

8
16

32

64

128

2

4

8

16
32

64

128

8

16

32 64

128

16
32

64

128

32 64 12878%

49%

Total memory size
512 kB
256 kB
128 kB
64 kB

32 kB
16 kB
4 kB

Each point label refers
to the number of cuts

Lower is Better (on both axes)

Figure 6.9: Multi-tile performance and energy trade-offs (lower is better on both axes). Each curve
refers to the total memory size and each point label refers to the number of cuts composing the design.

Since the energy cost of the interconnect logic is low compared to the memories energy con-

sumption (about 2%) and the timing cost depends of the number of tiles, this model is scal-

able for all types of memories (high-performance, high-density and low-power) according to

a given tiling con�guration. Furthermore, to explore other technological nodes, the wiring

model must be calibrated with the corresponding founder’s SRAM cut generator, as well as

the standard cell library related to technological constraints.

6.4 Conclusion

In order to propose an optimized on-chip memory architecture for data-intensive applications,

an accurate wiring interconnect model is required. The proposed model allows to size scalable

memory architecture according to power, performances and area trade-o�s, calibrated in a

ST 28 nm FD-SOI technology node. By fragmenting a large memory into smaller memory

tile, the memory architecture achieves a 49% performance improvement and reduces energy

consumption by 78% at a cost of 1.8× the surface area. This model is a useful tool for circuit

designers who want to have an accurate estimation of the wiring interconnect cost. However,

there is no optimal multi-tile design, so the designer must choose the best trade-o� between

performance and energy consumption according to the architecture speci�cations and the

application requirements.

Since the METEOR architecture brings performance gains through vectorization and paral-

lelism proportional to the number of memory tiles, the interconnect cost becomes limiting

when the number of tiles is excessive. Thus this model will be coupled with the system evalu-

ation of the proposed architecture, as presented in Chapters 7 and 8. Furthermore, the vertical

communication scheme proposed in Chapter 4, is not evaluated in this study, which would

have an impact on the critical path during the physical design implementation �ow.

73

Chapter 6. Design Space Exploration of the Memory Interconnect

74

Chapter 7

ArchSim: an IMC-NMC
Software-Hardware Simulation
Platform

Contents
7.1 Introduction . 76

7.1.1 ArchSim Platform Overview . 77

7.2 Software Layer: a Macro Cross Compiler . 78

7.2.1 Cross Compiler Tool Chain . 78

7.2.2 ISA Integration Proposal, using PyISAGen . 79

7.3 Hardware Layer: a Module-based Platform . 79

7.3.1 Approximately-Timed Interconnect . 80

7.3.2 ISS-based Core Modules . 81

7.3.3 METEOR SystemC/TLM model . 81

7.4 Launchers and Performance Metrics . 82

7.4.1 Cross-layer Simulation Launchers . 83

7.4.2 Hardware Counters, Timings and Power Statistics . 83

7.5 Simulation Platform Calibration . 84

7.5.1 Single Core RISC-V System . 85

7.5.2 Memory Interconnect Model . 85

7.5.3 In and Near Memory Computing RTL Simulations . 85

7.6 Conclusion . 86

Due to the trade-o�s on the memory interconnect, detailed in the previous chapter, and the

various implementations around the IMC and the NMC, it is relevant to provide a system

view. In this chapter, I present a software and hardware simulation platform to evaluate these

emerging concepts. The METEOR architecture and its programming model proposed in Chap-

ters 4 and 5 are integrated into this proposed exploration platform and the simulation results

produced are discussed in Chapter 8.

75

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

7.1 Introduction

In the area of emerging memories, a great diversity exists across the various types of tech-

nologies and innovative architectures provided. In order to compare all these architectures

between them, it is convenient to use a high level and �exible simulator for architectural

exploration, to �nd the sizing parameters and identify the trade-o�s of each solution. Unfor-

tunately, existing conventional simulators do not support these emerging technologies and

complicates the integration and evaluation of new models into their ecosystem. Moreover, in

the domain of near-memory computing, programming models and communication protocols

between memory and computing components are often poorly detailed to describe a hardware

implementation. To achieve these goals, our platform should evaluate the di�erent ISA pro-

posals, described in Section 5.2, at the hardware and software level. Lastly, it is necessary to

de�ne and size a scalable interconnect up to the micro-architectural level to respect the timing

constraints between the small memory tiles according to the model developed in Chapter 6.

Table 7.1: Overview of virtual simulators and hardware platforms for architectural explorations.

Gem5 Sniper SystemC
+ TLM LLVM ZSim

(Pin) QEMU

ISA support,
Intermediate Representation (IR)

x86, ARM,
RISC-V

x86,
RISC-V any virtual (IR) x86 x86, ARM,

RISC-V
Memory interfaces
(interoperability)

point-to-
point model none TLM

sockets none none callback
functions

Signal (SA), Cycle (CA), Instruction
(IA) Transaction (TA) Accuracy CA CA IA/TA IA IA IA

Development effort
(integration complexity) - - - - ++ +++ ++ -

Notes: memory interfaces referring to a conventional protocol in order to accurately simulate a data accesses (read or write).

In Table 7.1, I present a non-exhaustive overview of the di�erent architectural simulators

known and supported in our laboratory. The simulators must be able to model a high-level

memory topology down to the micro-architectural level, in order to study interactions between

memory and computing elements.

Previous works on IMC have used Low Level Virtual Machine (LLVM) as a high-level compiler

tool chain for high-level performance pro�ling of IMC architectures [94]. Nevertheless, this

software exploration platform lacks detailed modeling of instruction control �ow and memory

sizing related to application requirements. Multi-core simulators referenced as Gem5 [96] or

Sniper [97] work well on standard architectures, using conventional protocols, when you have

concise knowledge of the implementation and design parameters. However, cycle-accurate

(CA) simulators can slow down simulation time and Gem5 is based on point-to-point memory

modeling where memory accesses are simulated without modifying the data. ZSim [98] is

a fast simulator based on Intel’s Pin software [99] providing instruction instrumentation on

x86 architecture to generate execution statistics. Three techniques are used to accelerate the

simulation time, such as instruction-driven core models based on Dynamic Binary Translation

(DBT), virtualization of the Operating System (OS) and ISA for complex workload support,

and bound-weave algorithm, which is a custom protocol composed of two lock mechanisms

to catch or release memory accesses. Unfortunately these accesses are also simulated without

modifying the data. Similarly, QEMU [100] is a generic machine emulator and virtualizer that

integrates an equivalent high-level abstract memory model and DBT-based core models to

achieve fast simulation time.

76

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

These simulators are convenient for compilation purposes but lack of sharpness for archi-

tectural exploration. The SystemC [101] is a C++ library that provides high-level hardware

representation as C++ objects and the Transaction-Level Modeling (TLM) [102] library pro-

vides communication mechanism abstractions to simulate any transactions between memory

and computing elements. Thus, to provide a fast and �exible modeling platform, I developed

a virtual simulation platform using SystemC/TLM abstraction, compliant with all limitations

previously mentioned.

7.1.1 ArchSim Platform Overview

The ArchSim simulation platform is composed of Ê a software layer, Ë a hardware layer, Ì an

ISA layer and Í a simulation launchers, as shown in Figure 7.1. To evaluate the interoperabil-

ity between hardware and software layers, the PyISAGen tool allows to generate a dedicated

ISA communication interface used as an input parameter of the platform. To model hardware

components, each distinct event (memory accesses, core instructions, ...) is calibrated accord-

ing to hardware systems developed through a physical design �ow (post P&R analysis for early

explorations, circuit measurements for large-scale systems).

P&R / Silicon
extractions

(PPA)

C/C++ Applications (Kernels)

Neural Network
(CNN, FC, …)

Computer
Vision

Pattern
Matching

Instruction Set Architecture (ISA)

Tool chains (compilers)

riscv-gcc
(32 bits)

gcc / g++
(x86 - SIMD)

Libraries

C-Macros
(intrinsics)

SystemC/TLM architectures (SoC-level)

Baseline
(CPU + SRAM)

Arch-01
(CPU + C-SRAM)

Arch-42
(CPU + METEOR)

Debug/Trace

Waves (*.vcd)
Statistics (*.txt)
Traces (*.log)

IP models (low-level)

CPU
(ISS)

…C-SRAM
SRAM,
NVM,
DRAM

Multi-projects
(Makefile)

multi-simu.py

Benchmarks
settings

Architecture
settings

ArchSim
Environment

Results

LaunchersPyISAGen
(Tool)

ISA
(*.json)

instructions
opcodes

(*.csv)

1

2

3

4

H
ard

w
are L

ayer
S

o
ftw

are L
ayer

Figure 7.1: ArchSim: an hardware/software simulation platform.

The software layer is a collection of functional kernel applications that the user can compile

and execute on di�erent architectures, detailed in Section 7.2. The hardware layer simulates

the architecture behaviors and memory transactions between hardware components, thanks

to SystemC/TLM abstractions, and generate activity traces and synthesis reports regarding the

power and the timing events, detailed in Section 7.3. The ISA layer is described respectively in

the hardware and software layers of the platform using the input header �les generated by the

PyISAGen tool, detailed in Section 7.2.2. Finally, the simulation launchers provide a python

cockpit for building and executing the platform with lists of compilation options, kernel input

arguments and architectural parameters for the architectural space exploration. All results

are formatted to capture as many details about the processor, memories and interconnects as

possible.

77

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

7.2 Software Layer: a Macro Cross Compiler

To explore data-intensive applications on the METEOR architecture, the IMC/NMC ISA for

scalable vector processing (see Section 5.1) is implemented in the ArchSim software and hard-

ware layers, as shown in Figure 7.1. To avoid a misalignment of the communication between

layers and components, the PyISAGen tool generates ISA translation �les for a smooth inte-

gration on di�erent targets (design, compiler, simulators, ...). At the software level, C macro

�les are generated to describe the instruction set and the communication protocol, such as the

system bus integration and the control memory interface, as detailed in Section 5.2.2. When

exploring on vector architectures (e.g. SIMD), these C macros are replaced by intrinsics (by In-
tel for x86) in order to evaluate the user program on di�erent architectures without modifying

the initial application user program.

This solution enables the native compilation, the execution of the program directly on the

host machine (x86) and the functional veri�cation of the kernel. The application kernels are

written in C language and compiled with GCC 7.3.0 (c++17 standard). In addition, by using

cross-compilers, the platform can generate a binary for other architectures (such as RISC-V),

translated to Executable and Linkable Format (ELF), thus providing a bridge between the soft-

ware and hardware layers.

7.2.1 Cross Compiler Tool Chain

A cross-compilation tool chain is the most often used for embedded development. It is typically

compiled on the host architecture (x86) and generates code for the target architecture (ARM,

MIPS, PowerPC or RISC-V). In Figure 7.2, the tool chain is composed of a compilation step

to convert C �les into object �les and a linkage step to generate the ELF �le. It partitions

the binary into several memory segments (program, data, stack, C-SRAM control interface,

...) previously speci�ed in the memory layout of the Linker Descriptor (LD) script. Various

post-compile analysis tools provide information on the structure of the generated code, the

size and occupied memory segment locations, up to the disassembled code for �ne analysis.

C/C++
User

Program
(.c/.h)

C/C++
ISA

Library
(.c/.h)

C/C++
Standard
Library
(.c/.h)

Compile

Object
Files
(.o)

Linker
Script
(.ld)

Link

ELF

Memory Layout (.ld)

.text: 0x0001 0000

.sram: 0x1000 0000
.csram: 0x8000 0000
.stack: 0xFFFF 0000

Binary
Program

File
(.bin)

Disas-
sembled

Code
(.lst)

Figure 7.2: ArchSim software layer: the cross-compile tool chain.

78

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

As the software development on the RISC-V architecture and its RTL implementation is sup-

ported by the laboratory, we use its associated cross-compilation tool chain. Moreover, the

RISC-V architecture environment is maintained by a strong community (industrial, academic,

...) oriented open-source and open-hardware. In order to evaluate the IMC and NMC ap-

proaches, speci�c libraries and memory mapping are embedded in this tool chain. In the Fig-

ure 7.2, the ISA library consists of C macro de�nitions and in-lined functions to exploit a vector

format for scalable vector processing, involving IMC/NMC instructions for the METEOR ar-

chitecture and vector intrinsics for SIMD architectures. Finally, the LD script �le de�nes the

memory map of: the program (.text), the data (.sram) and speci�c virtual (.csram) sections,

as described in the Chapter 5.

7.2.2 ISA Integration Proposal, using PyISAGen

Opcodes
(.csv)

ISA
(.json)

PyISAGen
Core

Generate

--compiler

--models

C/C++
ISA

Library
(.c/.h)

C-SRAM
model

(.cpp/.h)

VHDL
Headers
(.vhdl)

--vhdl

Docs
(.tex/.pdf)

--docs

…

Figure 7.3: PyISAGen tool: a Python ISA generator tool.

The objective of the PyISAGen (for Python ISA Generator) tool is to explore and integrate into

the ArchSim platform various ISA proposals (instruction set and communication protocol)

while maintaining its integrity from the user program to the physical implementation. Thus,

two input �les are used, the ISA �le (*.json) de�nes the bit �eld scheme of the communication

protocol between the software and hardware layers and the Opcodes �le (*.csv) de�nes the

instruction set implemented in the IMC and NMC tiles, as shown in Figure 7.3. Depending

on the options, the tool can generate: the C macro �les for the software layer tool chain (-
compiler), the physical model �les written in SystemC/TLM for the hardware layer (-models),

as well as the VHDL �les for the physical implementation (-vhdl) and the speci�cations to be

satis�ed (-docs). This methodology helps to assess the bene�t of the new instructions, the

internal registers of the IMC/NMC tile or to minimize the footprint of the virtual memory

section (.csram) for sending instructions. This tool, written in Python, accepts new options to

keep consistency between new target �les. Although this tool has been applied to the METEOR

architecture, it is generic and can be adapted for further uses.

7.3 Hardware Layer: a Module-based Platform

The purpose of the hardware layer is to simulate the execution of the compiled program ac-

cording to the physical behavior of the system. The system components (memory, core, inter-

connect, ...), also called modules, describe a behavioral model of the real system interacting

with the input/output signals of the module. In order to reduce the simulation time, System-

C/TLM provides additional abstractions in the communication protocols between the modules.

Contrary to SystemC, where the behavioral models are pin-level sensitive (signals, clocks,...),

79

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

elements interact by socket transactions between modules. To evaluate energy and power

consumptions, the TLM Power library [103], developed in our laboratory, is included in the

hardware layer allowing to annotate power values of all elements, including idle state and

leakage values. Each module inherits a C++ class providing methods to update power states

according to events, its con�guration is detailed in Section 7.4.2.

Top module

MemoryCore

Backward path

Forward path

Initiator
socket

Target
socket

Inter-
connect

Backward path

Forward path

Initiator
socket

Target
socket

Figure 7.4: ArchSim hardware layer: basic example of a top module.

As shown in Figure 7.4, each system can be represented with a core module (initiator), a mem-

ory module (target) and an interconnect module (initiator and target) between them. The

transaction is generated by the core module through the forward path whose content (pay-

load) is modi�ed by the interconnect module, if the transaction is valid it will be transferred

to the memory module. With the Approximately-Timed (AT) protocol, the response of the

memory module can be returned directly or delayed into the future with a new socket sent

by the backward path, as detailed in 7.3.1. These transactions provide a performance metric

for the system according to the accuracy of the chosen behavioral model (at the signal, cycle,

instruction or event level).

7.3.1 Approximately-Timed Interconnect

In SystemC/TLM [102], "the Approximately-Timed (AT) coding style is supported by the non-
blocking transport interface, which is appropriate for architectural exploration and performance
analysis" (documentation). This coding style has a great versatility of communication protocol

thanks to the forward and backward methods providing multiple phase and timing points

during the lifetime of a transaction. Indeed, the target can respond with alternative requests

via the backward path, suitable for the future implementation of a DMA controller. The non-

blocking transport interfaces allow to manage multiple events coming from several initiators

Initiator Target

BEGIN_REQ (0 ns)

TLM_ACCEPTED (+30 ns)

BEGIN_REQ (0 ns)

TLM_UPDATED (0 ns)

BEGIN_RESP (0 ns)

TLM_ACCEPTED (0 ns)

BEGIN_REQ (0 ns)

TLM_COMPLETED (0 ns)

Simulation Time

100 ns

120 ns

130 ns

140 ns

1

2

3

Forward

Forward

Backward

Forward

Paths

Accepted

Delayed

Rejected

Transactions

Call

Return

Call

Return

Call

Return

Call

Return

Figure 7.5: TLM message sequence chart using approximately-time coding style.

80

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

(cores, DMA, peripherals, ...). For the simulation of the METEOR architecture, presented in

Chapter 5, the AT coding style is the most relevant for pipeline modeling in order to control

instructions and memory con�icts.

The Figure 7.5 is a message sequence representation of four transactions between an initiator

and a target. Request Ê is sent by the initiator at the simulation time of 100 ns. During this

lifetime the target accepts the transaction and starts its �rst process. Request Ë is sent by the

initiator at the simulation time of 120 ns and the transaction is updated by the target because

a process is still running. When the �rst process is completed, the target can start the second

process and notify its status by the backward path, accepted by the initiator. In request Ì,

the transaction sent by the initiator at the simulation time of 140 ns is not valid (according

to the model description) and the target returns a completed status corresponding to an er-

ror in our implementation. Moreover, transactions can support multiple phases (BEGIN_REQ,

END_REQ, BEGIN_RESP, END_RESP) and the content of the transaction (payload), can be modi�ed

accordingly.

7.3.2 ISS-based Core Modules

Since the program is compiled with the cross-compiler, the binary ELF �le can be interpreted

by an Instruction Set Simulator (ISS) that "read" the instructions to be executed on the target

processor without requiring the hardware core. It simulates the execution of the target pro-

cessor pipeline and provides instruction by instruction the status of the internal registers, the

stack pointer and the load/store accesses to the data memory. Any target architecture (ARM,

MIPS, PowerPC, or RISCV) can be simulated on our host architecture (x86) according to their

respective instruction set.

In the hardware layer, the core module consists of integrating a RISC-V ISS into a System-

C/TLM object in order to generate TLM socket for each memory access. These transactions

will be dispatched to speci�c memory sections by an interconnect module according to the ad-

dress contained in each payload of the transaction. Thus, I integrated the open-source RISC-V

ISS written in C/C++ [104] and developed by Western Digital for the functional veri�cation

of the RTL design of their open-hardware RISC-V SweRV core. This methodology provides

an instruction-accurate core module that is clocked at the actual frequency of the physical

processor. Although the core is instruction-accurate, it is possible to stall its execution if a

memory con�ict occurs, thanks to the AT protocol which will cause a bubble in the processor

pipeline. Therefore, the impact of memory con�icts can be assessed to evaluate the system in

an cycle-accurate approach.

7.3.3 METEOR SystemC/TLM model

Thanks to the memory modules, ISS-based core module and the AT interconnect protocol pro-

vided by SystemC/TLM, the METEOR architecture model is assembled in the hardware layer

of the ArchSim platform. Thus, each component is connected together with di�erent TLM

sockets, as shown in the Figure 7.6. According to the architecture speci�cations of Chapter 4,

the complete system is composed of: (1) C-SRAMs: a matrix of IMC/NMC tiles considered as

slave memory modules enabling computation inside each tile, (2) the TAM: a memory inter-

connect connecting the tiles for standard data access, distribution of IMC/NMC instructions

among the tiles and transfer of operands between di�erent tiles (such as the proposed VTU),

81

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

System Bus Interconnect (32 bits)

Section Name Start Address
.text 0x0001 0000
.sram 0x1000 0000
.csram 0x8000 0000
.stack 0xFFFF 0000

CSRAM
0

CSRAM
P

CSRAM
2P

CSRAM
3P

Tile
Address
Mapper
(TAM)

METEOR

RISC-V Core
(32 bits)

Instruction
memory

…

…

…

…

CSRAM
P-1

to TAM

from TAM

CSRAM
2P-1

CSRAM
3P-1

CSRAM
4P-1

Total number of tiles: 4xP

Global Pipeline
Dispatcher

(GPD)

CSRs

Legends

TLM sockets

Initiator Target

Configuration and
Status Registers

CSRs

Figure 7.6: SytemC/TLM model of the METEOR architecture coupled to a RISC-V core.

(3) the GPD: a global pipeline controller to solve con�icts between IMC/NMC instructions and

standard memory accesses, (4) the system bus: an interconnect system to dispatch TLM mem-

ory transactions between the processor and speci�c memory sections, (5) the RISC-V core: a

core module to execute the user program and send IMC/NMC instructions to METEOR.

The recon�gurability and scalability of the METEOR architecture model is provided by the

TAM. This TAM is an interconnect module that supports, the transfer of memory TLM trans-

actions to Compute SRAM (C-SRAM) tiles, and dynamically broadcasts multiple IMC/NMC

instruction transactions to tiles according to the computational vector size. Data memory

modi�cations (when writing or computing) are performed by each C-SRAM tile module re-

ceiving a memory or instruction transaction, including when operand transfer is required be-

tween di�erent tiles (because the memory is shared). For the GPD model implementation, each

TLM transaction payload is evaluated according to the IMC/NMC instruction pipeline status

and the vertical transfers between tiles, in order to accept the transaction to the TAM or to

con�gure a layout con�guration parameter through the CSRs, as proposed in the Section 5.1.2.

The system bus interconnect dispatches the TLM requests to the corresponding memory sec-

tions as de�ned in Section 5.2.2. For faster simulation and easier memory management, the

program (.text) and the stack (.stack) memories are simulated by the ISS, thus no memory

modules has been assigned to them. Nevertheless, their impact in terms of timing and power

consumption are included in the overall system evaluation, as discussed in the next section.

7.4 Launchers and Performance Metrics

In order to maintain interoperability between the layers of the ArchSim platform, I developed

a Python cockpit that drives the compilation and execution of user benchmarks, hardware

models for scalar, SIMD and METEOR architectures, and extracts relevant performance metrics

for software and architectural explorations, as presented in the Figure 7.1.

82

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

7.4.1 Cross-layer Simulation Launchers

As shown in Figure 7.7, the simulations are scheduled by; a hardware launcher that man-

ages the compilation of emulated architecture using �exible hardware con�gurations (both

static and dynamic) according to the architecture requirements, and a software launcher that

manages compilation and execution on virtual or native platforms on the target architectures.

These simulations are customizable by de�ning two exhaustive lists of parameters used for

the hardware layer loop A and the software layer loop B . Finally, the results from the di�er-

ent platforms are formatted with a Python parser library to analyze the performance metrics,

as detailed in the next section. This Python cockpit allows the evaluation of a large scope of

hardware architectures and various application parameters (using input arguments) with the

same user program. The data-intensive application benchmarks proposed in Section 8.1 are

evaluated using these launchers for scalar, SIMD and METEOR architectures.

Build
platform

Build
program

Execute
program

Program
parameters

Parse
outputs

Platform
parameters

Results

1

2 3 4

A

B

Legends

Hardware layer compilation: Build the METEOR hardware platform

Software layer compilation: Build the user program for Scalar and
SIMD (gcc), and METEOR (riscv-gcc) targets

Program execution: Pin software platform for SIMD, ArchSim (ISS-
based) for scalar and METEOR evaluations

Result parsing: Python parsers for result extractions

2

3

4

1 A

B

Hardware layer loop:
Reconfigure static parameters of
the METEOR architecture topology
Software layer loop:
Modify the target architecture
(SIMD or METEOR) and the input
program arguments

Figure 7.7: ArchSim cross-layer hardware and software simulation launchers.

Furthermore, the Pin software [99] is used to evaluate SIMD programs on Intel’s Xeon proces-

sors. This virtual platform is a dynamic binary instrumentation program developed by Intel.
Thanks to the set of analysis tools provided, all instructions and memory accesses are detailed

and sorted by data access width (from 32 bits up to 512 bits). Using this instruction level pro-

�ling, all standard memory accesses, SIMD and CPU instructions are aligned with the energy

numbers of equivalent memories and RISC-V for timing and power evaluations.

7.4.2 Hardware Counters, Timings and Power Statistics

To quantify the program execution performance, each hardware module includes counters to

measure the number of instructions executed, the number of memory accesses or the impact

of processor stalls. All statistics are summarized in a �le (*.txt) in order to explore and scale the

architecture. These counters are enabled or disabled directly in the user program (software

layer) using trigger variables (tocounter) to speci�cally evaluate a subset of the executed

program, as shown in Figure 7.8. The stdlib counters used for kernel debugging (printf,

...) are ignored for the evaluation of the kernel execution time. The total kernel time is the

sum of the number of executed instructions, the number of processor stalls, until the end

(tocounter=1) of the kernel and the end of the memory internal processes (last write).

83

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

Program
(variables)

tocounter = 1 tocounter = 0

Stdlib Core Time Stalls Core Time Stdlib

Core � C C C C C C M C C C C M C S S M C C C C C M C C C C

Memory � 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Kernel Time

Total Time

End Time = “wait until the last memory request is over”
Kernel Time = Core Time + Stall Time + End Time
Total Time = Core Time + Stall Time + Stdlib Time

Compute (CPU)
Memory Request
Pipeline Stall (CPU)

C
M
S

Simulation Time

Figure 7.8: Module hardware counters for architecture explorations.

Including the TLM Power library [103] in the platform allows to assign power states to each

hardware component according to the type of transaction. A con�guration �le de�nes multiple

power modes (ON, OFF, ...) and power phases (IDLE, COMPUTE, READ, WRITE, ...) according to

values measured on a physical circuit or a post P&R power analysis. This library produces

several summary �les (*.txt, *.vcd, ...) of kernel energy activity related to the execution time.

As shown in Figure 7.9, the energy pro�les of each module (RISC-V, CSRAM-0, ...) are simulated

independently, improving the debugging and the accuracy of the architectural evaluation.

Figure 7.9: Example of VCD power profiles generated by the TLM Power library (GTKWave).

To conclude, the Python cockpit provides simulation monitoring, extraction and formatting

of results to perform architectural space exploration across application benchmarks. Since

the METEOR architecture model is driven at software and hardware level, the next section

presents the calibration of these hardware modules.

7.5 Simulation Platform Calibration

For the exploration of the METEOR architecture (Chapter 4), integrating the NMC concept,

the modules of the ArchSim platform are calibrated on circuit measurements and P&R design

estimates. In the following sections we detail the calibration numbers for this example. This

platform is now supported in the laboratory and in the team to explore other architectures

integrating additional components (non-volatile memory, DMA, ...).

84

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

7.5.1 Single Core RISC-V System

As an applicative system, we catch all memory accesses of a 32-bit RISC-V core circuit related

to an existing design exploration as in [105]. The energy numbers are adapted for di�erent core

frequencies in the Global Foundries (GF) 22 nm FD-SOI technology node for di�erent processor

events. The program memory is integrated into the core module and instruction fetch events

are evaluated when a processor instruction is executed.

Table 7.2: RISC-V and its instruction memory numbers in 22 nm FDSOI used for simulations.

32-bit RISC-V core and SRAM instruction values Comments

Frequency (MHz) 60 120 240 480 720

Memory Leakage (µW) 34.56 50.40 73.50 106.40 155.40 Leakage (SRAM inst.)

Core Leakage (µW) 4.67 7.00 10.50 15.40 22.40 Leakage (Core)

Energy / instruction (pJ) 3.06 4.43 6.42 8.17 9.92 Compute

Fetch / instruction (pJ) 1.13 1.63 2.36 3.01 3.65 Fetch

NOP instruction (pJ) 1.85 2.68 3.88 4.94 6.00 Idle

Load instruction (pJ) 5.92 8.58 12.41 15.80 19.18 Fetch + Compute + Pop

Store instruction (pJ) 6.61 9.57 13.85 17.62 21.40 Fetch + Compute + Push

7.5.2 Memory Interconnect Model

Regarding the physical scalability of the multi-tile memory architecture, it is important to

evaluate the wiring cost and the correct trade-o� between memory tile size and performance.

The memory interconnect model and its hardware post P&R analysis studied in Chapter 6

is used to size a larger memory composed of 4 kB tiles, as shown in Table 7.3. As presented

in Figure 6.9, the model shows the scalability of multiple SRAM tiles: for a 256 kB of total

memory size, composing an 8×8 array of 4 kB tile, the wiring cost between tiles is increased

of 61 % in read access time and 42 % in read access dynamic energy, compared to a single 4-kB

SRAM tile. Thus these performance and energy numbers are integrated in the TAM memory

interconnect module of the ArchSim platform.

Table 7.3: Additional wiring cost of a 4-kB SRAM in a multi-tile architecture.

Total Memory
Size (kB) # of cut Timing (%) Dynamic Energy

(%) Leakage (×)

4 1 10 % +0.1 % 1.02×
8 2 17 % 1 % 2.02×

16 4 25 % 3 % 4.02×
32 8 34 % 7 % 8.02×
64 16 43 % 14 % 16.02×
128 32 53 % 26 % 32.02×
256 64 61 % 42 % 64.02×
512 128 71 % 61 % 128.02×

7.5.3 In and Near Memory Computing RTL Simulations

The METEOR architecture is composed of C-SRAM tiles, each enabling both IMC logic op-

erations and NMC arithmetic operations (add, mul). A single tile C-SRAM is designed by the

team with the GF 22 nm FD-SOI technology node, implemented with di�erent �oor-plans con-

�gurations up to �nal P&R and studied in [90]. The C-SRAM has been optimized to process

85

Chapter 7. ArchSim: an IMC-NMC Software-Hardware Simulation Platform

energy-e�cient vector data thanks to a additional digital wrapper decoding and executing the

instructions send through the standard 32-bit access port of the memory tile. The computing

capability of the C-SRAM performance impacts is presented in the Table 7.4, for a 4 kB SRAM

con�guration: the C-SRAM digital wrapper increases the memory tile size to 53 % in area and

73% in static power consumption. However, the read access energy only increases by 12 % on

average, whatever the memory size of the tile. Finally, energy costs measurements related to

each instruction are con�gured in the memory module, which receives by the same TLM port,

standard memory accesses and computing instructions.

Table 7.4: C-SRAM design numbers versus a 2-Port SRAM (2RW) in GF 22 nm FDSOI.

SRAM (2-Port) C-SRAM (versus baseline SRAM)

Size (kB) Leakage
(mW)

Dynamic
Energy (pJ)

Density
(Mb/mm²)

Leakage
(%)

Dynamic
Energy (%)

Density
(%)

Area
(%)

2 0.31 12.04 0.50 +81 % +14 % -38 % +62 %

4 0.34 13.10 0.87 +73 % +13 % -35 % +53 %

8 0.41 14.42 1.35 +57 % +11% -30 % +42 %

16 0.61 16.10 1.56 +48 % +11% -17 % +20 %

32 1.03 18.38 1.69 +32 % +11% -10 % +11%

64 1.56 22.80 2.17 +30 % +10 % -7 % +8 %

7.6 Conclusion

The Archsim architectural exploration platform facilitates the system parameters study in

order to size circuits before designing them. The hardware abstraction protocols provided

by SystemC/TLM allow the modeling of physical components on multiple levels of accuracy

(cycle-accurate up to transaction-accurate), that a�ects the simulation speed depending on the

model behavior complexity. The software layer integrates and explores di�erent con�gura-

tions of the ISA proposed in this thesis, thanks to PyISAGen tool that maintains the integrity

of the instruction set from the user program to the physical implementation. Coupled with a

physical design �ow, the platform evaluations can be used for functional validation and unit

testing of the studied design. Today, this platform is reused in the laboratory to extend the IMC

and NMC explorations into standard architectures in order to evaluate its performance capa-

bilities at system level. The results of the performance simulations evaluated with ArchSim

on the METEOR architecture are detailed in the following chapter.

86

Chapter 8

Architectural Exploration Results

Contents
8.1 Application Kernels with Scalable Vectorization . 88

8.1.1 Architecture Benchmarking Set-up . 89

8.1.2 Impacts of Cycle Accuracy Effects . 91

8.2 Architecture Benchmarking . 93

8.2.1 Evaluation of the Vector Width Scalability . 93

8.2.2 Evaluation of the Dynamic Reconfiguration . 94

8.2.3 Simulation Results . 96

8.3 Discussions . 97

8.3.1 Efficient Data Placement . 97

8.3.2 Memory Allocation . 98

8.4 Conclusion . 98

In this chapter, I propose to explore the performance aspects, including the execution speed

up, the energy reduction and the Energy Delay Product (EDP) gains of various kernels running

onto di�erent architectures. Thanks to the ArchSim platform, I can explore and compare

various IMC and NMC architectures between each other with a set of vector-based kernel

applications already compatible with existing SIMD engines. Early evaluations at the circuit

level have already shown that a single IMC tile integrated into a conventional architecture

achieves speed up gains of 1.8× and energy reduction of 2× compared to a 128-bit SIMD

architecture [89]. In this chapter, I will extend the analysis to the NMC approach and to the

multi-tile level with the METEOR architecture.

87

Chapter 8. Architectural Exploration Results

8.1 Application Kernels with Scalable Vectorization

In order to evaluate data-centric computing architectures, I propose to evaluate these archi-

tectures with small application kernels, easy to modify and vectorize. In fact, since there is no

advanced compiler yet, it is necessary to control the compilation and execution parameters to

understand the evaluation and the execution of the program.

Firstly, I converted two open-source programs, Hamming-Weight (hw) [22] and Shift-OR

(so) [22], to support vector processing using speci�c variable types and vectorized loops. Sec-

ondly, I used a set of known applications validated by the polyhedral compilation community

to study matrix, vector and scalar products, called PolyBench [95]. These kernels have the ad-

vantage of having been written in C language in a single �le using macros to customize the

types of variables, the variable declaration, the loop indices and the kernel instrumentation.

Thanks to this format, I was able to develop the same vectorized code for di�erent compila-

tion environments, such as ArchSim using the RISC-V compiler (version 7.2.0) and x86 Intel

architecture using the C compiler (GCC version 7.4.0), all compiled at optimization level 3.

For SIMD evaluation, vector intrinsics are forced by macros, which allow the main part of the

program to run on 128-bit (SSE), 256-bit (AVX2) and 512-bit (AVX-512) SIMD engines with

Intel’s Xeon processors.

Table 8.1: Overview of studied kernels. The problem size parameters are assumed to take the same
input value n, as presented in the PolyBench documentation [95].

Application
Scope

Kernel
Name Operations Memory

Footprint
Memory

Accesses Description

DNA pattern
searching Shift-OR (so) 41n n 2.5 % Match a pattern in a DNA sequence

Information
theory

Hamming
Weight (hw) 17n n 9.5 % Count the number of differences after perform a

XOR between two strings

Computer
Vision gesummv 4n2 + 3n 2n2 + 3n 21 % Scalar, Vector and Matrix Multiplication as:

y = alpha.A.x + beta.B.x

Numerical
Computing

atax 4n2 n2 + 3n 38 % Matrix Transpose and Vector Multiplication as:
y = AT (A.x)

2mm 5n3 + n2 4n2 26 % 2 Matrix Multiplications as:
(alpha.A.B.C + beta.D)

3mm 6n3 4n2 29 % 3 Matrix Multiplications as:
((A.B).(C.D))

Neural
Network gemm 3n3 + n2 3n2 60 % Matrix-multiply as:

C = alpha.A.B + beta.C

Kernel Complexity: Linear time Quadratic time Cubic time
Kernel Category: (<15%) compute-bound or (>15%) memory-bound

The Table 8.1 summarizes the collection of benchmarks that we will study in our architectural

explorations. Those seven kernels represent di�erent application pro�les in terms of mem-

ory patterns and computing requirement, extracted from operations in various application

domains (linear algebra computations, image processing, statistics). The problem size param-

eters of each kernels are assumed to take the same input value (n). The kernel complexity is

related to the number of nested loops that the kernel must execute (Operations), the memory

footprint will limit the dataset size according to the vector width and the memory access ra-

tio indicates whether the kernel will be limited by computation (compute-bound) or by the

memory accesses (memory-bound).

88

Chapter 8. Architectural Exploration Results

0

20

40

60

80

100

120

140

160

0 512 1 024 1 536 2 048 2 560 3 072 3 584 4 096

S
pe

ed
 U

p
(R

at
io

)

Vector Width (bits)

Linear

Quadratic

Cubic

Figure 8.1: Speed up trends of linear, quadratic and cubic time complexity kernels according to the
vector width (higher is better).

In order to represent the complexities of kernels (linear, quadratic and cubic), the Figure 8.1

illustrates the acceleration trends of the kernel complexity depending on the vector width. For

the cubic complexity, the kernel increases its execution speed when increasing the size of the

vector, but this acceleration reaches a plateau. Mainly because the number of loop interleaving

reduces vectorization potential and increases data dependencies.

8.1.1 Architecture Benchmarking Set-up

In order to evaluate these kernels, I simulate three types of architecture as presented in Fig-

ure 8.2. In all three architectures a 32-bit CPU runs the user program which uses a 32-bit bus

to access a 256 kB data memory used by the program. The CPU instruction memory and the

stack memory are not shown, but are considered in terms of power consumption. The scalar

architecture of Figure 8.2(a) runs the native kernel, used as a baseline in the exploration. As

the kernels are vector-based, we used the 512-bit SIMD to compare the execution onto a vector

CPU
32 bits

Data Memory

256 kB

32-BIT ON-CHIP INTERCONNECT

(SRAM Tiles)

(a)

32-BIT ON-CHIP INTERCONNECT

CPU
32 bits

Data Memory

256 kB

512-bit SIMD

(SRAM Tiles)

Wide SIMD/Memory
data accesses!
(up to 512 bits)

(b)

CPU
32 bits

32-BIT ON-CHIP INTERCONNECT

(C-SRAM Tiles)

Data Memory

256 kB

(u
p

 t
o

 8
19

2
b

it
s

)

(c)

Figure 8.2: Architecture benchmarking set-up. (a) 32-bit scalar CPU, (b) 512-bit SIMD and (c) NMC
architectures to explore. (a) and (b) are evaluated using ArchSim and (b) is evaluated using Pin software.

89

Chapter 8. Architectural Exploration Results

processor architecture (512 bits being the largest SIMD available). In a standard architecture,

the SIMD is a hardware accelerator close to the processor and tightly coupled to the L1 cache

memory using a 512-bit interconnect, as presented in the Figure 8.2(b). As described in Sec-

tion 7.4.1, SIMD programs are simulated on the Pin platform running on native Intel’s Xeon

processors. This instruction level pro�ling provides instruction and memory access counters

for CPU and SIMD engines. Thus, 512-bit SIMD programs fetch only one instruction from the

program memory but still access 16 words of 32 bits to perform the computation. All SIMD

requests including instruction control �ow and standard memory accesses are evaluated and

energy numbers are aligned with scalar and METEOR architectures for timing and power

evaluations. Finally, all the evaluated NMC architectures are considered as a compute mem-

ory matrix composed of multiple tiles of NMC using the METEOR architecture principles, as

shown in Figure 8.2(c).

Within the scope of our exploration, a few assumptions are used:

1. The 32-bit scalar CPU and the 512-bit SIMD are evaluated according to an instruction-

accurate method. Thus each instruction or memory accesses (load or store) require only one

clock cycle to be executed. For the CPU architecture, the RISC-V Instruction Set Simulator

(ISS) integrated in the ArchSim platform is an instruction-accurate simulator and the SIMD

is evaluated with the instruction-accurate Pin software developed by Intel [99]. Due to the

diversity of NMC technologies in the state-of-the-art from a system point of view (multiple

cycle per operation), it is necessary to use a cycle-accurate platform in order to compare

them with each other.

2. The horizontal recon�guration of the NMC architectures is the same as proposed in the

METEOR architecture described in the Chapter 4. In this exploration, for a total memory

size of 256 kB, the set-up is a 4×16 array of 4 kB tile (size often used in the state-of-the-art)

operating on a 128-bit vector, enabling horizontal scalability of 512-bit up to 8192-bit vector

width, performance impacts are presented in Table 7.3.

3. In these architecture proposals, we investigate the system feasibility of such technologies,

by sending basic instructions. The CPU has a controller function that can later be consid-

ered as part of an hardware accelerator (compute node). Eventually to be managed by a

host CPU, which will request the execution of the kernel program on our compute node.

4. For all architectures, all data are pre-loaded in their 256 kB associated data memory. For this

system exploration, we measure the gains without considering the data movement from an

external (o�-chip or on-chip) memory to our Data Memory. The purpose is to evaluate

this embedded architecture as a compute node within a larger architecture as presented

in Chapter 3. O�-chip memory accesses are still a concern, which will be addressed on a

larger scale in future work.

5. The frequency of the system (core and interconnect) will be at 480 MHz in order to compare

the performance impact of the pipeline in a multiple-tile architecture. This frequency is

aligned with the di�erent existing architectures listed in Table 8.2 and according to the

interconnect constraints between tiles, using the wiring model described in Chapter 6.

Facing the large scope of IMC and NMC approaches according to the state-of-the-art, Table 8.2

summarizes the di�erent architectures explored in our study. At the architectural level, bit-

serial (BS) schemes process bit-by-bit operations to support more complex operations (e.g.

�oating-point) at a cost of higher latency (up to thousands of cycles for serial multiplier),

90

Chapter 8. Architectural Exploration Results

Table 8.2: Naming of NMC architectures used in our evaluation.

BS|BP FC|CS SV|DV R? Architecture
Name Comments

Bit-Serial Full-
Custom

Static
Vector BS-FC-SV Multiple cycles per operations, no pipeline support [56]

Bit-Parallel

Full-
Custom

Static
Vector BP-FC-SV 3-cycle operations, no pipeline support,

shift-and-add algorithm for multiply operation (75 cycles) [89]

CSRAM

Static
Vector

BP-CS-SV 5-cycle per operations, no pipeline support,
8-bit digital multiplier [90]

Register BP-CS-SV-R 5-cycle per operations, pipeline support, 8-bit digital multiplier
(operand forwarding, memory access savings) [90]

Dynamic
Vector

BP-CS-DV 5-cycle per operations, no pipeline support,
8-bit digital multiplier, horizontal grid reconfiguration [90]

Register BP-CS-DV-R 5-cycle per operations, pipeline support, 8-bit digital multiplier
horizontal grid reconfiguration [90]

and bit-parallel (BP) schemes process larger vector data e�ciently but remain limited to arith-

metic operations for the moment (integer addition and multiplication). At the design level,

implementations of the IMC approach are moving towards full-custom (FC) designs in order

to modify the bit-cell array for both bit-serial [56] and bit-parallel [89] schemes, and the NMC

approach supports foundry memory cuts for semi-custom C-SRAM (CS) design, maintaining

a optimized and dense bit-cell array at the cost of a larger memory periphery area [90].

Thus, all these architectures are integrated and modeled in the ArchSim platform using the

generic PyISAGen tool to adapt the various ISA at hardware and software level and calibrating

the hardware models on the data extracted at circuit and post P&R level. Moreover, the NMC

coupled with the METEOR architecture enables to explore the dynamic vector (DV) recon�gu-

ration and the internal register (R?) due to their additional peripheral logic, while the IMC is

evaluated with static vector (SV) only.

8.1.2 Impacts of Cycle Accuracy Effects

Comparing these architectures can be complicated if di�erent simulators are used. With

ArchSim, we can measure kernel execution times in a cycle-accurate and instruction-accurate

method. These measurements allow to quantify the average Cycles Per Instruction (CPI) (of

2.02 2.02
1.95

1.79
1.66

1.57 1.62

2.6

128 256 512 1 024 2 048 4 096 8 192

C
P

I (
R

at
io

)

Vector Width (bits) [log]

shift-or 2mm 3mm gemm hamming-weight gesummv atax Average

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

Figure 8.3: Cycles Per Instruction (CPI) ratio of the BP-CS-SV (without registers) by vector width. Not
all kernels can be executed with a vector width of 8192 bits because of their memory footprint.

91

Chapter 8. Architectural Exploration Results

IMC/NMC instructions) during the program execution, which determines the average latency

of the workload. When a IMC/NMC instruction has an execution time of one CPU clock cycle,

then the CPI will be equal to one.

The evaluated NMC architecture (BP-CS-SV) does not have a pipeline to manage con�icts of

NMC instructions coming from the CPU. Therefore, to avoid possible data con�icts, the system

stalls the CPU, as presented in Section 4.1.3. This principle is standard, the memory returns

a control signal through the system bus, this signal is received by the Load-Store Unit (LSU)

of the processor. The control part of the processor inserts bubbles in its instruction pipeline

while waiting for data availability. Each NMC instruction in this architecture operates on 5

clock cycles. In Figure 8.3, for a 128-bit vector size, the average latency of the program set

execution has an average of 2 CPI, considering these con�icts. If we simulate this architecture

with an instruction-accurate simulator, the acceleration gains will have an optimistic error

that varies between 60% and 100%. Notice that not all applications can be evaluated with wide

vectors because they are limited by the kernel’s memory footprint.

To improve the performance and CPI at the system level, adding a pipeline for NMC instruc-

tions and an internal register to each memory tile is required. Indeed, the internal register

enables to forward operands to subsequent NMC instructions, avoiding memory con�icts, re-

ducing the CPU slowdown and saving memory energy accesses by reducing the read and write

interactions, as explained in Section 4.2.1. In Figure 8.4, this BP-CS-SV-R architecture achieves

an average of 1.15 CPI by increasing the NMC instruction pipeline throughput and reducing

latency by 40% for a 128-bit vector size compared to the previous BP-CS-SV architecture.

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

1.19 1.20 1.19 1.16 1.13
1.23

1.49

128 256 512 1 024 2 048 4 096 8 192

C
P

I (
R

at
io

)

Vector Width (bits) [log]

shift-or 2mm 3mm gemm hamming-weight gesummv atax Average

-40% -39% -38% -34% -30% -19% -7%

Figure 8.4: Cycles Per Instruction (CPI) ratio of the BP-CS-SV-R (with registers) by vector width.

Furthermore, if this architecture is simulated in an instruction-accurate simulator, the error of

the speed up gains will be an average 19% with this approach. Which means that if we com-

pare this architecture with instruction-accurate architectures (CPU and SIMD), the measured

performance will be pessimistic by about 19%.

In the recon�gurable architecture, the number of addressable internal registers depends on the

grid height of the METEOR architecture, as de�ned in Section 5.1.2. The smaller the vector,

the greater the number of internal registers available and vice versa. The 4096-bit and 8192-bit

vectors have 2 and 1 register respectively. Hamming-weight and shit-or kernels would require

at least 4 registers, which explains the increase in CPI average curve for large vectors.

92

Chapter 8. Architectural Exploration Results

8.2 Architecture Benchmarking

With a multi-tile architecture, the IMC and NMC approaches provide a strong Data-Level

Parallelism (DLP) by exploiting a scalable vector programming model, as discussed in the Sec-

tion 5.3. Moreover, the METEOR architecture enables dynamic vector recon�guration during

program execution by using the reduction-operation micro-code to enhance connectivity be-

tween tiles and reducing tra�c between processor and memory, as presented in Section 5.4.2.

In this section, the vector scalability and the recon�gurability of IMC and NMC approaches are

evaluated on the METEOR architecture by exploring linear, quadratic and cubic vector-based

kernels, as listed in Table 8.1.

8.2.1 Evaluation of the Vector Width Scalability

In this �rst experiment, we compare four IMC/NMC and 512-bit SIMD architectures to the

32-bit scalar CPU baseline by increasing the vector size of IMC/NMC architectures. As shown

in Figure 8.5(a), kernels of linear complexity (here shift-or) align perfectly according to the

vector size. For a 8192-bit vector size, the BP-FC-SV (IMC full-custom) achieves better speed

up performance than the BP-CS-SV-R (NMC with register) due to higher clock cycle latency

and a single register to store intermediate results. Despite this, with a 2048-bit vector size,

the total energy reduction is 2.9× better for BP-CS-SV-R compared to BP-FC-SV due to the

founder’s memory design, as shown in Figure 8.5(b).

Furthermore, the bit-serial approach follows the same trend, but multi-cycle operations have

a signi�cant impact on overall program acceleration. For large workloads (with wide vector

size), this scheme achieves an energy e�ciency of 0.56 TOPS/W for 8-bit multiplication [51].

Compared to the 512-bit SIMD architecture, all bit-parallel architectures achieve better speed

up performance and energy reduction for a vector size larger than 1024 bits, and 256 bits for

the BP-CS-SV-R architecture.

0

50

100

150

200

250

0 1024 2048 3072 4096 5120 6144 7168 8192

S
pe

ed
 U

p
(R

at
io

)

Vector Width (bits)

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

linear
scalability

(n)

(a)

0

20

40

60

80

100

120

140

0 1024 2048 3072 4096 5120 6144 7168 8192

E
ne

rg
y

R
ed

uc
tio

n
(R

at
io

)

Vector Width (bits)

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

2.9x

(b)

Figure 8.5: Vector width impacts on a linear time complexity kernel (shift-or) (higher is better). (a)
execution speed up and (b) energy reduction gains of the shift-or kernel for NMC and 512-bit SIMD
architectures compared to the 32-bit scalar CPU architecture.

In this second experiment, the kernel of quadratic complexity (here atax) uses more arith-

metic operations, such as additions and multiplications, nested in two loops. For full-custom

93

Chapter 8. Architectural Exploration Results

architectures, multiplication is an operation performed in several clock cycles in order to avoid

the signi�cant addition of a multiplier close to memory. These multipliers add a cost in sur-

face area and static power consumption, but achieves better performance compared to scalar

and 512-bit SIMD architectures, as shown in 8.6(a). However, This operation highly increases

the energy consumption compared to the baseline architectures, as shown in Figure 8.6(b).

Thus, NMC architectures achieve better performance and energy gains compared to IMC ar-

chitectures because of the reduced IMC instruction set. Thus, the performance bene�t of NMC

architectures is signi�cant despite the larger memory surface area (and also energy).

0

50

100

150

200

250

0 1024 2048 3072 4096 5120 6144 7168 8192

S
pe

ed
 U

p
(R

at
io

)

Vector Width (bits)

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

quadratic
scalability

(n²)

(a)

0

20

40

60

80

100

120

140

0 1024 2048 3072 4096 5120 6144 7168 8192

E
ne

rg
y

R
ed

uc
tio

n
(R

at
io

)

Vector Width (bits)

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

1.5x

(b)

Figure 8.6: Vector width impacts on a quadratic time complexity kernel (atax) (higher is better). (a)
execution speed up and (b) energy reduction gains of the atax kernel for NMC and 512-bit SIMD archi-
tectures compared to the 32-bit scalar CPU architecture.

Moreover, the internal register improves performance and CPI, as shown in Section 8.1.2, but

also reduces energy consumption by 1.5×, as shown in Figure 8.5(b). According to the results,

the data parallelism of kernels is improved as the vector size increases. The internal register

has a signi�cant impact both to speed up kernel execution and to reduce the energy cost of the

hardware. Furthermore, even if the digital multiplier is energy-intensive, it provides system

level gains that justify its implementation.

8.2.2 Evaluation of the Dynamic Reconfiguration

Since the METEOR architecture enables dynamic recon�guration between vectors inside the

memory, internal operations are possible between sub-vectors and between di�erent NMC

tiles during the program execution. Thus, this architecture supports the reduction operation

micro-code which bene�ts of various architectural features, such as internal transfer commu-

nication and operand forwarding to achieve high throughput, as described in Section 5.4.2.

As shown in Figure 8.7, this operation impact the quadratic kernel. Indeed, for large vectors,

the program must perform a high number of sequential memory accesses to compute the re-

duced sum in the CPU, which explains the speed up trend to reach a plateau. The proposed

reduction operation reduces this part of the program by a logarithmic factor. It changes from

a factor n, corresponding to sequential accesses, to a factor log n. Thus, the internal loop

of the kernel is replaced from quadratic complexity (n2) to linearithmic complexity (n log n).

This optimization works for very large vectors, but the additional instructions reduces the

94

Chapter 8. Architectural Exploration Results

0

50

100

150

200

250

0 1024 2048 3072 4096 5120 6144 7168 8192

S
pe

ed
 U

p
(R

at
io

)

Vector Width (bits)

BP-CS-DV-R

BP-CS-DV

BP-CS-SV-R

BP-CS-SV

512-bit SIMD

linearithmic
scalability
(n log n)

n²

2.1x

(a)

0

20

40

60

80

100

120

140

0 1024 2048 3072 4096 5120 6144 7168 8192

E
ne

rg
y

R
ed

uc
tio

n
(R

at
io

)

Vector Width (bits)

BP-CS-DV-R

BP-CS-DV

BP-CS-SV-R

BP-CS-SV

512-bit SIMD

1.6x

(b)

Figure 8.7: Dynamic vector reconfiguration impact on the atax kernel (quadratic complexity). (a) speed
up gains and (b) energy reduction gains compared to the 32-bit scalar CPU architecture.

performance for medium vector sizes (around of 2048 bits). Using the dynamic recon�gura-

tion (BP-CS-DV-R) improves performance by 2.1× and reduces energy consumption by 1.6×
compared to a static con�guration (BP-CS-SV-R).

However, the maximum vector size used in cubic kernel (here gemm) is limited by the kernel

memory footprint. Indeed, it is not possible to increase the vector width (in the inner loop)

relative to the available memory contained in the data Memory. To adapt our architecture to

our kernel, we can either (1) increase the memory of each tile composing the memory matrix,

or (2) reduce the size of the total (maximum) vector. As shown in Figure 8.8, the dashed curves

are measured for a larger memory size (512 kB), allowing the use of the 8192-bit vectors.

0

50

100

150

200

250

0 1024 2048 3072 4096 5120 6144 7168 8192

S
pe

ed
 U

p
(R

at
io

)

Vector Width (bits)

BP-CS-DV-R

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

n3

2.2x

(a)

0

20

40

60

80

100

120

140

0 1024 2048 3072 4096 5120 6144 7168 8192

E
ne

rg
y

R
ed

uc
tio

n
(R

at
io

)

Vector Width (bits)

BP-CS-DV-R

BP-CS-SV-R

BP-CS-SV

BP-FC-SV

BS-FC-SV

512-bit SIMD

1.8x

(b)

Figure 8.8: Dynamic vector reconfiguration impact on the gemm kernel (cubic complexity). (a) speed
up gains and (b) energy reduction gains compared to the 32-bit scalar CPU architecture.

Thus, to increase performance of algorithm with high operation complexity on the METEOR

architecture, it is required to extend the connectivity between tiles in order to compute on

very large vectors. The overall performance and energy gains are related to the inter-tile com-

munication scheme and the fast architecture recon�guration to support an e�cient scalable

vector processing.

95

Chapter 8. Architectural Exploration Results

8.2.3 Simulation Results

Figure 8.9 represents the performance extractions of seven kernels using the best vector width

(8192-bit when possible) of each architecture according to the memory footprint of their data.

For a complete overview between vector architectures with each other, the Figures 8.9 and 8.10

use the 512-bit SIMD architecture as a comparison baseline. All results greater than one are

therefore better than the 512-bit SIMD architecture.

2.7
2.1

1.4

0.4 0.6 0.4 0.4

10.4

6.0

2.2

0.6
1.0

0.6 0.7

8.3

5.5

3.8

1.4

2.3
1.6 1.4

9.3

6.3

4.1

2.0

2.9
2.2 2.0

9.3

6.3

8.5

2.0

4.0

2.2 2.0

0

1

2

3

4

5

6

7

8

9

10

11

12

so
8 192

hw
8 192

atax
8 192

gesummv
2 048

gemm
4 096

2mm
2 048

3mm
2 048

S
pe

ed
 U

p
(R

at
io

)

Kernel and best vector width available (bits)

BS-FC-SV BP-FC-SV BP-CS-SV BP-CS-SV-R BP-CS-DV-R

Linear Quadratic Cubic

Figure 8.9: Execution speed up of NMC architectures compared to the 512-bit SIMD architecture.

In these �gures, all NMC architectures increase its speed up and energy reduction gains using

large vectors, larger than 512 bits instead of the SIMD architecture, limited to 512 bits. Kernels

using the reduction operation (atax and gemm) bene�t from the dynamic vector recon�gura-

tion. For linear kernels (shift-or and hamming-weight) that do not have reduction operations,

the dynamic vector architecture provides the same performance and energy savings as static

vector architectures. As the memory footprint has an impact the cubic kernels, the vector size

limits the performance of the whole system, as discussed in the previous section.

1.1
0.7 0.5

0.2 0.3 0.2 0.2

3.9

2.1

0.8
0.3 0.4 0.3 0.3

4.7

3.4

4.3

1.8

2.9

2.0 1.9

5.6

4.2

5.1

2.9

4.1

3.0 2.8

5.6

4.2

8.3

2.9

5.1

3.0 2.8

0

1

2

3

4

5

6

7

8

9

10

11

12

so
8 192

hw
8 192

atax
8 192

gesummv
2 048

gemm
4 096

2mm
2 048

3mm
2 048

E
ne

rg
y

R
ed

uc
tio

n
(R

at
io

)

Kernel and best vector width available (bits)

BS-FC-SV BP-FC-SV BP-CS-SV BP-CS-SV-R BP-CS-DV-R

Linear Quadratic Cubic

Figure 8.10: Energy reduction gains of NMC architectures compared to the 512-bit SIMD architecture.

Although the speed up depends on the vector width, the energy reduction gains are com-

parable between the di�erent NMC categories (linear, quadratic and cubic) as presented in

Figure 8.10. Overall, full-custom architectures exhibit excessive power consumption due to

96

Chapter 8. Architectural Exploration Results

the modi�cation of their memory bit-cell array, which reduces performance at the system

level. Dynamic vector recon�guration increases connectivity and reduces the number of CPU

memory requests, highlighting the capability of NMC architectures to reduce data movement.

Table 8.3: Summary of best NMC architecture results compared to 512-bit SIMD architecture

Kernel Family
Speed Up Energy Reduction Energy Delay Product

W512 W2048 WBest W512 W2048 WBest W512 W2048 WBest

Linear 0.8 3.7 9.3 1.1 4.3 5.6 0.9 15.8 51.8

Quadratic 0.9 2.4 8.5 1.4 3.5 8.3 1.4 8.6 71.2

Cubic 0.9 2.2 4.0 1.4 3.1 5.1 1.3 6.7 20.2

W512 vector width of 512 bits
W2048 vector width of 2048 bits
WBest the largest vector width (up to 8192 bits)

The Table 8.3 summarizes the speed up gains, energy reduction and Energy Delay Product

(EDP) reduction of NMC architectures (BP-CS-SV-R and BP-CS-DV-R) compared to the 512-bit

SIMD architecture. For kernels with linear complexity, an EDP reduction of 52× is achieved,

while for kernels with quadratic complexity, where we increase the internal connectivity, an

EDP reduction of 71× is achieved compared to 512-bit SIMD architecture. The growing com-

plexity of kernels requires better connectivity, which signi�cantly increases power consump-

tion regardless of the execution time. Indeed, the energy reduction gains of cubic complexity

kernels are better than their speed up execution factor.

8.3 Discussions

The METEOR architecture allows wide vector processing for data-intensive applications by

enabling dynamic vector recon�guration within the memory architecture at the software and

hardware levels. In this section, I present some perspectives and opportunities to consider at

a higher system level.

8.3.1 Efficient Data Placement

The data placement in our data Memory has a major e�ect on the execution of the program

related to the vector acceleration. Structuring the data as vectors allows us to manipulate

(and move) the data in our tiled architecture while maintaining memory continuity. C lan-

guage provides mechanisms (attributes) to ensure the memory alignment of vector data types.

However, this language support is not applied automatically by compilers. In addition, the

programs produce intermediate results, often stored in the processor registers in the standard

architectures. Every proposed kernels need a memory bu�er (relative to the vector size) to

store all intermediate results. Of course, internal registers can assume this role in some vector

con�gurations, as presented previously. But for large vectors and compute bound kernel (rich

in intermediate results), it is necessary to reserve a large memory section to keep a correct

acceleration factor.

Nevertheless, data duplication or "memory overhead" is common in High Performance Com-

puting (HPC) applications and especially for neural network algorithms in order to keep high

97

Chapter 8. Architectural Exploration Results

speed up gains. Indeed, all known deep neural network frameworks include functions to ar-

range in a vector-format the data (im2col) to optimize the data parallelism of neural network

layers [20]. In future work, the exploration of these solutions applied to our architecture is a

promising approach.

8.3.2 Memory Allocation

By studying the feasibility of the software environment, we have explored applications using

only static data allocation, where the size of the memory positions is determined at the com-

pilation stage. This methodology is su�cient for many applications, including the majority of

applications using neural networks, because the topology and memory sizes of each layer are

known and �xed after the compilation. Dynamic allocation requires additional mechanisms

often linked to an Operating System (OS), but necessary in dynamic movement between data

in order to optimize the available memory space. These mechanisms have to be evaluated in

a future work as well as the space required for the program memory whose size also depends

on the complexity of these mechanisms.

8.4 Conclusion

This architectural exploration study provide key features of the scalable and recon�gurable

METEOR architecture composed of multiple NMC tiles. By evaluating kernels for data-

intensive applications, the METEOR architecture achieves an EDP reduction of 52× for linear

kernel and 71× for quadratic kernel compared to a 512-bit SIMD architecture. Thanks to the

internal register integrated in each NMC tile, pipeline throughput is increased due to operand

forwarding mechanism, many memory accesses are saved, and data transfers between di�er-

ent tiles are more e�cient. The register reduces the latency of the whole architecture by 40%,

and reduce energy consumption by 1.5× compared to the same architecture without register.

By combining the internal register and the dynamic recon�guration, the architecture contin-

ues to improve performance of quadratic and cubic kernels, using large in-memory vector

processing in order to reduce data movement between processor and memory. At application

level, the NMC approach delivers better performance due to the enhanced instruction set and

intermediate values scheduling compared to full-custom IMC approach.

98

General Conclusion

Due to the increasing memory needs of modern big data applications, conventional architec-

tures are becoming limited in order to overcome massive data movements in their memory

hierarchy, also known as the memory wall problem. The traditional memory cache is no

longer energy-e�cient enough to satisfy the memory requirements, with a lack of �exibility

and scalability caused by the data placement policies and limited connectivity. Moreover, these

data-intensive applications presents little locality in computing, and reduced data reuse with

very large datasets, for which standard memory hierarchy are ine�cient. Emerging energy-

e�cient data-centric architectures based on advanced technologies are becoming more and

more necessary to break down the memory wall.

Therefore, the envisioned architecture based on advanced technologies is proposed to explore

emerging research topics and opportunities. Many challenges still remain to be solved, such

as advanced 3D-stacked �ne-grain integration, e�cient thermal dissipation, high-density and

high-endurance on-chip emerging non-volatile memory, computation immersed within mem-

ory, distributed and recon�gurable architecture and general-purpose programming model. As

a �rst step towards these directions, the contributions of my PhD thesis addresses the explo-

ration of a recon�gurable and scalable tiles of near-memory computing (NMC) architecture

for data-intensive applications, presented as METEOR. Each tile enables arithmetic and logic

operations within the memory to reduce data movement on the system bus. Moreover, this

architecture combines horizontal scalability and vertical communication recon�gurability be-

tween tiles to support scalable vector processing in order to compute at the best vector size

for maximum performance. These schemes are con�gurable and programmable by software

to resize the memory tiling at run-time and send instructions to the tiles composing the vector.

Thus, the same scalable vector programming model is used to explore data-intensive kernels

available on existing SIMD engines onto the METEOR architecture.

Data-intensive applications, such as neural networks, machine learning, image processing and

database searching, mostly involve vector/matrix operations, reduction operations and spe-

ci�c data pattern accesses. At low-level software integration, I implemented a dedicated ISA

through the standard memory interface in order to support NMC instructions in a standard

compilation tool chain. Although it is a set of C macros statically adapted at compile time, such

proposal provides the ability to interleave processor and memory instructions in the same in-

struction �ow to program vector instructions at any vector size and vector alignment. The

same vector-based program proposed for the NMC is compatible for conventional SIMD unis

and CPU. This software compatibility is an important feature for adapting the proposed archi-

tecture, while allowing easier benchmarking for architecture performance exploration. This

study highlights the data movement choreography between NMC tiles, necessary to main-

99

General Conclusion

tain high bandwidth and reduce processor interaction. These mechanisms extend the total

distributed memory-computing capacity: using con�gurability and tile transfers with smaller

memory tiles to preserve local performance (frequency and energy), while increasing the over-

all memory capacity, and enabling computation within tiles and between tiles.

Thus, the proposed recon�gurable METEOR architecture would bene�t from this scalable vec-

tor processing model. By assembling these NMC tiles horizontally, the same NMC instruction

is distributed to the tiles where the data vectors are stored, thus performing vector processing.

The combination of a horizontal scalability scheme and a vertical data communication recon-

�gurability o�ers an �exible vector size for maximum computing performance and enhanced

inter-tile connectivity. In addition, the software integration provides speci�c processor in-

structions to con�gure the METEOR layout to enable computations between distant vectors,

while the intermediate vector transfers are supported at the hardware level. Moreover, this

architecture is able to interleave standard processor memory accesses and the vertical NMC

instruction �ow while avoiding data con�icts. Thus, METEOR can be integrated as a standard

on-chip high-speed memory and as a vector co-processing unit into any conventional archi-

tecture, thanks to its standard memory interface. The hardware memory layout is developed

in a scalable fashion, however, additional design challenges remain to ensure an adequate

memory architecture scalability to design larger memories. The standard interconnect and

the additional vertical communication are two hardware constraints to evaluate in order to

estimate the real performance and energy of the METEOR architecture.

Providing a large on-chip memory is a key features of data-centric architecture in order to

minimize the o�-chip memory wall impact. Large memories are made up of smaller memory

tiles to suit the technological trade-o�s of performance, power and area (PPA) according to

the required speci�cations. To size the METEOR architecture, I developed an accurate wiring

interconnect model to estimate PPA of multiple tile designs based on RTL implementations

through a physical design �ow, calibrated in a ST 28 nm FD-SOI technology node. The de-

sign space evaluation evaluates the scalability of multi-tile memory architectures for various

memory con�gurations and memory sizes in order to estimate the impact of the memory in-

terconnect cost. Thus, by fragmenting a single 32 kB memory into 16 smaller memory tiles,

the architecture achieves a 49% performance improvement and reduces energy consumption

by 78% at a cost of 1.8× the surface area. This wiring model is implemented and applied to the

METEOR architecture for larger tile con�gurations. However, as the METEOR architecture

provides performance gains through large vectorization and high parallelism proportional to

the number of memory tiles, the interconnect cost becomes limiting in access time and energy

consumption when the number of tiles is excessive. Since the logical interconnect depends

on the timing performance, it becomes necessary to evaluate memory architectures with 3D

vertical interconnect by developing an interconnect model for 3D technologies.

Due to the development and design time of a comprehensive architecture, the maturity of the

technologies used and the lack of programming model, I developed ArchSim, a hardware and

software simulator to evaluate the METEOR architecture running data-intensive applications.

ArchSim facilitates the architectural space exploration through three main layers. Firstly, the

hardware layer provides an SystemC/TLM abstraction protocol to allow the modeling of phys-

ical interconnect, memory and processor units on multiple levels of accuracy. The proposed

memory wiring model, NMC and CPU design implementations are integrated as hardware

models of the METEOR architecture. Secondly, the software layer integrates data-intensive

100

General Conclusion

benchmarks with scalar and SIMD compatibility and various ISA implementations, generated

with PyISAGen, an automatic tool to maintains the integrity of the instruction set develop-

ment from speci�cation to implementation. Finally, thanks to a Python work�ow cockpit,

this platform is reused in the laboratory to explore the IMC, NMC and PIM approaches into

standard architectures to evaluate performance capabilities at system and software levels.

The architectural exploration study of METEOR under the ArchSim simulator evaluates the

impact of the proposed scalable vector processing, involving the speci�c reduction operation.

Contrary to SIMD systems, the METEOR architecture still continue to increase its vector size

and reduces the CPU memory accesses thanks to the internal vertical data communication

between tiles and the reduction operation functionality. Thus, most of the system bus data

movements between processor and memory are avoided for vector-matrix and matrix-matrix

multiplication used in linear, quadratic and cubic complexity kernels. The METEOR architec-

ture improves the execution speed up by 200× for linear kernel, 240× for quadratic kernel, and

65× for cubic kernel compared to a scalar CPU architecture. By considering a 512-bit SIMD

accelerator with high-speed and large memory access, the METEOR architecture still achieves

an EDP reduction of 52× for linear kernel, 71× for quadratic kernel, and 20× for cubic kernel.

In conclusion of this study, the performance limitations of the cubic kernel are mainly due to

their large memory footprint implemented on a too small METEOR architecture. To solve this

problem, an architectural and technological 3D approach is required to increase memory ca-

pacity and connectivity between tiles. The METEOR architecture has lead to a patent, and the

detailed architecture exploration has been published in several international conferences [84,

88]. As perspective of future work, it is planned to implement the proposed METEOR archi-

tecture, validate and measure in details the hardware and software performance in a test-chip.

Toward a 3D Architecture

We have evaluated the advantage of providing an additional and recon�gurable wide intercon-

nect in a multiple memory tile system that can perform near-memory computation. Between

the standard distribution interconnect to access data from the processor and this proposed ver-

tical data communication, there are paradoxical constraints. Indeed, as lots of tiles are required

to achieve a high-level of data parallelism but limit the standard interconnect performance (for

best latency and energy), the 3D-stacked architecture can provide an optimized standard inter-

connect on 2D layer while 3D vertical connectivity is well suited for large vector processing.

As proposed in the Chapter 3, 3D-stacked technologies would solve this problem, by bridging

the connectivity gap between memory and computing while still maintaining �exibility and

scalability of the architecture.

With our 2D recon�guration architectural proposal, the implementation of the memory inter-

connect (TDI) is designed to the optimal performance on 2D layer, while the dynamic vertical

transfer interconnect (VTI) is implemented in 3D across 2D layers, as shown in Figure 9. The

3D METEOR architecture allows to organize the memory hierarchy by layer while provid-

ing a dense 3D connectivity, combined in the same 3D vault. At the software level, vector

manipulation can be performed between the di�erent memory layers without changing the

proposed programming model. This proposal, can remind the structures of HMC architec-

tures (using DRAM technologies) which are based on the concept of vertical vaults. The 3D

METEOR architecture has the same approach, where each vault transfers large amount of data

101

General Conclusion

METEOR

METEOR
DMA

IOs

CTRL
2D inter-cluster transfers
- via tile distribution interconnect (TDI)
- optimized for single data accesses

METEOR

METEORPE
PE

PE
PE

2D intra-cluster transfers
wide data bus

3D vertical transfers
- via vertical transfer

interconnect (VTI)
- dense connectivity

using TSVs
- optimized for

parallel computing

Level 3

METEOR

METEOR

METEOR

METEOR

L1i

L1i
L1i

L1i

External communication
IO interfaces and DMA

Level 2

Level 1

1D data transfers
PE system bus

3D internal communication
within 3D stacked architecture

PE instruction
memory

PE controls
a 3D vault

3D vault

Figure 9: Toward a 3D METEOR architecture proposal.

horizontally on 2D layers and performs vector (or tensor) computations vertically in 3D within

memory, driven by an additional control unit (CTRL). Such organized 3D vaults are able to work

in parallel (computation/data loading) scheduled by dedicated processing elements (PEs).

The contributions of this PhD focus on the on-chip architecture vision involving high-density

memories to minimize the o�-chip memory wall problem, however this problem is still a con-

cern. To propose a comprehensive architecture, I contributed to the development of a patent,

introducing a dedicated DMA, who is tightly-coupled to the IMC/NMC single tile or multiple

tiles, by using an internal and direct communication bus. Thus, data coming from o�-chip or

on-chip memories will be transferred to the METEOR memory tiles in parallel of the vector

processing �ow thanks to a dedicated wide data bus. This proposal is suitable for either 2D or

3D implementation. The next step will consist in integrating the DMA in the ArchSim plat-

form to quantify the impact on complete data-intensive applications. Finally, many research

opportunities and future works remain, such as architectural evaluation and the distributed

programming model, as discussed in the next section.

Perspectives and Future Works

In this section, I present a non-exhaustive list of research topics to address in order to achieve

the dream architecture, as proposed in Chapter 3. As a short-term perspective, the "2D" single

layer METEOR architecture should be implemented in a digital circuit for further design exper-

iments and measurements. Indeed, many questions remain, such as the accurate measurement

of slack time in this vertical communication scheme to ensure the proper scalability of the ar-

chitecture at interconnect level. The evaluation of instruction pipeline mechanisms is required

to measure the impact of interleaved standard data accesses and NMC instruction �ow at sys-

tem level. Moreover, a design space exploration would provide the best physical dimension

of the METEOR architecture according to data-intensive application requirements. As a long-

term perspective, there are still architectural and technological challenges to be solved, such

102

General Conclusion

Figure 10: A 3D dream architecture to break the "memory wall" from Chapter 3.

as e�cient heat removal in 3D-stacked architectures and the integration of on-chip emerging

non-volatile memory (eNVM) coupled with IMC and NMC approaches.

At the software level, many research opportunities lead to the elaboration of a general-purpose

programming model dedicated to data-centric architectures (such as METEOR) for both data-

and compute-intensive applications. Since my contributions are focused at kernel-level, an

application-level evaluation is required to estimate the real performance gains of a full data-

intensive workloads. Furthermore, other high-level functions, such as MapReduce, FlatMap or

Fold, signi�cantly improve the execution speed of data-intensive applications. For instance, in

the software implementation of a neural network application, many memory pattern accesses

can be estimated at compile time to improve the energy-e�ciency of the memory architec-

ture. At low-level software, the proposed NMC instruction set should be directly integrated

into the processor instead of C macros to minimize the impact of instruction preparation, as

well as seamless integration into a standard compilation �ow. This implies new hardware fea-

tures and optimization of the computing cores attached in the NMC architecture. During my

research work, I noticed the lack of data movement instruction support in processor instruc-

tion sets, which is required by the METEOR architecture, would be an opportunity to explore.

All these new proposals should be explored and validated using the architectural simulation

platform. As a last word, distributed memory-computing architecture are still are at their

premise, opening up many hardware, software, architecture and technology challenges and

research perspectives.

103

General Conclusion

104

Appendix A

Résumé en Français

Introduction

Chaque jour, des millions de personnes génèrent d’importants �ux de données par le biais

d’ordinateurs, de téléphones intelligents, de voitures autonomes ou d’appareils médicaux,

ce qui entraîne une explosion massive de données numériques appelée "Big Data". Ces ap-

plications gourmandes en données présentent une forte contrainte d’accessibilité aux don-

nées par rapport au traitement localisé de ces données. Malheureusement, les architectures

d’ordinateurs actuelles peinent à satisfaire les besoins en performance de ces applications en

raison des limitations architecturales et technologies des mémoires. Cet écart de performance

entre le processeur et la mémoire est appelé le "mur mémoire", comme illustré dans la Figure 2.

Au niveau architectural, la hiérarchie mémoire des architectures des ordinateurs actuels (e.g.

Cache mémoire) devient ine�cace en matière d’énergie et de performance pour satisfaire les

besoins des applications gourmandes en données. De plus, la mise à l’échelle des transistors

et les tendances technologiques sont ralenties pour des raisons physiques, marquant aux alen-

tours de 2004, la �n de la loi de Dennard [6]. Ainsi, pour limiter la consommation de puissance

excessive des processeurs, la fréquence de fonctionnement est limitée (mur de puissance), ré-

duisant en conséquence les performances des mémoires sur puce, proche du processeur. Les

architectures modernes doivent relever deux dé�s pour réduire ces écarts : en intégrant de

nouvelles technologies de mémoire pour résoudre le mur mémoire hors puce, et en intégrant

le calcul au sein de la mémoire pour résoudre le mur mémoire sur puce.

Ainsi, cette thèse de doctorat aborde le problème du mur mémoire en proposant une nou-

velle vision architecturale et technologique. Dans ce contexte, j’ai développé une architecture

mémoire recon�gurable composée de multiple tuiles permettant le calcul vectoriel extensible

a�n de réduire l’impact du mur mémoire sur puce, détaillée dans le chapitre 4. Chaque tu-

ile étant capable d’exécuter des calculs avec les données stockées dans sa mémoire attachée,

comme proposé dans les approches IMC et NMC, mais aussi entre di�érentes tuiles par le

biais d’un interconnect vertical supplémentaire. Pour simpli�er le travail du programmeur,

j’ai proposé une intégration logicielle souple de cette architecture dans le but de développer

un modèle de programmation qui entrelace les accès aux données classiques et les instruc-

tions à exécuter dans les tuiles mémoires calculantes, comme détaillée dans le chapitre 5. A�n

d’évaluer les performances et les gains énergétiques des architectures mémoires tuilées, j’ai

A-1

Appendix A. Résumé en Français

établi une méthodologie pour explorer et dimensionner e�cacement l’interconnect de distri-

bution à travers un �ot de conception standard en fonction des paramètres physiques des tuiles

mémoires, comme détaillée dans le chapitre 6. Devant le niveau de maturité et la �exibilité

d’intégration des technologies émergentes avec les simulateurs architecturaux existants, j’ai

développé une plateforme d’exploration architecturale au niveau matériel et logiciel, détaillée

dans le chapitre 7. Elle permet d’explorer di�érentes routines applicatives utilisées dans les

applications à forte intensité de données comme le traitement d’images, la recherche dans les

bases de données ou les applications de réseaux de neurones. En utilisant cette plateforme,

j’ai comparé les gains en matière d’accélération et de réduction d’énergie sur trois architec-

tures di�érentes utilisant un processeur, un accélérateur SIMD et l’architecture recon�gurable

proposée, comme décrit dans le chapitre 8.

Toutes ces contributions ont donné lieu à deux papiers dans des conférences internationales,

sur l’étude et la modélisation de l’interconnect de distribution mémoire [88], et sur l’étude de

la recon�gurabilité et l’extensibilité de l’architecture proposée [84]. J’ai aussi présenté deux

posters [85, 86] sur cette même architecture et déposé un brevet [87] sur les mécanismes de

recon�gurabilité décrits dans ce manuscrit. En�n, pour nous rapprocher de notre vision ar-

chitecturale, j’ai participé à la rédaction d’un second brevet [92] permettant d’accélérer le

déplacement des données entre les couches de la hiérarchie mémoire sans surcharger le bus

système du processeur. Par suite, ce résumé détaille les travaux et les contributions réalisés,

chapitre par chapitre.

Chapitre 1. Défis des Architectures Économes en Énergie

Le chapitre 1 présente la motivation des travaux de thèse, le contexte des applications gour-

mandes en données et l’évolution des architectures d’ordinateurs a�n d’identi�er les prob-

lèmes liés aux architectures actuelles. Ces architectures, telles que les CPU, sont conçues pour

des applications d’usage général, mais ne permettent pas de surmonter les mouvements mas-

sifs de données au sein de leur hiérarchie de mémoire, d’autant plus pour les applications à

forte intensité de données (Big Data). Ces applications, telles que le traitement des données et

des images, impliquent principalement des opérations de multiplication et d’addition (MAC)

et des produits matriciels, et les accès spéci�ques aux données pourraient être optimisés grâce

à des bibliothèques logicielles dédiées. De plus, en réduisant la précision de calcul, les appli-

cations de réseaux de neurones quanti�és (QNN) et de fouille de données peuvent béné�cier

d’opérations logiques et à largeur de bit réduit pour augmenter l’e�cacité énergétique du sys-

tème et leur temps de traitement.

En outre, les applications à forte intensité de données présentent peu de localité dans le cal-

cul et une réutilisation réduite des données pour lesquels la hiérarchie de mémoire standard

devient de plus en plus ine�cace. La mémoire cache vise à réduire le mur mémoire sur puce,

mais manque de �exibilité et de connectivité, notamment due à sa structure et à ses politiques

de placement des données. Comme la mémoire sur puce est conçue pour le calcul haute per-

formance (HPC) et la mémoire hors puce est conçue pour un stockage de grande capacité, le

problème du mur mémoire demeure. Pour résoudre ce problème, il faut concevoir de nouvelles

architectures e�caces énergiquement en analysant précisément les besoins applicatifs et en

optimisant les accès aux données. Les nouvelles technologies mémoire et le calcul distribué

sont de nouvelles opportunités pour continuer à repousser ce mur mémoire.

A-2

Appendix A. Résumé en Français

Chapitre 2. État de l’art des Architectures Émergentes Économes en Énergie

Le chapitre 2 décrit les solutions architecturales et technologiques proposées dans la littéra-

ture pour améliorer les performances des applications à forte intensité de données. Comme

le cache traditionnel n’est plus su�samment e�cace énergétiquement pour répondre aux exi-

gences des applications gourmandes en données, et que les architectures dédiées (ASIC) man-

quent de souplesse architecturale et de connectivité, il est nécessaire de trouver de nouvelles

architectures et technologies. Au niveau architectural, les architectures CGRA o�rent cette

�exibilité supplémentaire avec une conception rapidement recon�gurable pour intégrer des

accélérateurs dédiés et rapprocher le calcul des mémoires. En e�et, ces architectures intègrent

des accélérateurs spéci�ques pour le traitement des tâches redondantes, comme les accéléra-

teurs vectoriels, qui réduisent le temps de traitement à travers un parallélisme massif des don-

nées grâce à la vectorisation de l’application. Pour briser le mur mémoire, d’autres solutions

architecturales consistent à placer les unités de calcul le plus proche possible de la mémoire

a�n de réduire les mouvements des données entre le processeur et la mémoire. La plupart de

ces architectures centrées sur les données exploitent les approches du calcul dans la mémoire

(IMC) et du calcul proche mémoire (NMC), pour exécuter des calculs logiques et arithmétiques

directement dans l’unité (ou la tuile) mémoire.

Sur le plan technologique, les approches par empilement en trois dimensions (3D) peuvent

combler le fossé de connectivité entre la mémoire et le calcul, en favorisant le couplage entre

la mémoire et le calcul tel qu’il est introduit par l’IMC et le NMC. En outre, les mémoires

non-volatiles (NVM) émergentes permettraient d’augmenter la densité et l’endurance, pour

apporter une plus grande capacité de mémoire sur puce sans transferts mémoires coûteux

hors puce. De récents travaux démontrent la possibilité d’e�ectuer des calculs IMC dans ces

NVMs en utilisant le principe de la loi d’Ohm. Les architectures en 3D o�rent de nombreuses

possibilités de recherche, telle que la portabilité de la programmation des applications à forte

intensité de données, la gestion de la mémoire virtuelle et l’amélioration de la dissipation

thermique.

Chapitre 3. Un Rêve : une Architecture de Calcul Distribué Empilée en 3D

Dans le chapitre 3, une vision architecturale et technologique rêvée est proposée pour explorer

les nouveaux thèmes et les nouvelles possibilités de recherche, illustrée dans la Fig. 3.1. De

nombreux dé�s restent à résoudre, tels que l’intégration 3D avancée à grains �ns, la dissi-

pation thermique e�cace, les mémoires NVM émergentes sur puce à haute densité et haute

endurance, le calcul immergé dans la mémoire (IMC, NMC), les architectures recon�gurables

et distribuées, ainsi que leur modèle de programmation générique associé.

Pour aller vers ces directions, les contributions de ma thèse de doctorat abordent les sujets

architecturaux de la recon�gurabilité et de l’extensibilité des tuiles de calcul proche mémoire

utilisant les technologies CMOS standard. Au niveau architectural, les architectures recon�g-

urables compensent le manque de connectivité de la hiérarchie traditionnelle des mémoires,

ainsi que le manque de �exibilité des architectures ASIC grâce à leurs chemins de données

polyvalents. Ces architectures permettent une mise en œuvre souple et e�cace entre les ac-

célérateurs matériels hétérogènes et augmentent le couplage entre le calcul et la mémoire.

Ainsi, di�érentes approches de calcul proche mémoire (IMC et NMC) sont intégrées pour rap-

procher le calcul de la mémoire et réduire le tra�c de mémoire sur le bus système, grâce à la

A-3

Appendix A. Résumé en Français

�exibilité d’interconnexion de l’architecture. Actuellement, les architectures mémoires souf-

frent d’un manque de connectivité tant au niveau matériel que logiciel, et les accélérateurs de

calcul proche mémoire (ou mémoires calculantes) sont rarement adaptés aux applications à

forte intensité de données en raison d’un manque d’intégration logicielle.

Chapitre 4. METEOR : une Architecture Tuilée Reconfigurable de Mémoire Calculante

Dans le chapitre 4, je propose une architecture recon�gurable pour évaluer les gains du calcul

proche mémoire (IMC et NMC). METEOR est une architecture en grappe de tuiles de calcul,

recon�gurable de deux manières : soit par extension horizontale de la mémoire pour calculer

sur des vecteurs plus larges, soit par une extension verticale de la mémoire pour utiliser plus de

vecteurs. La recon�gurabilité o�re la possibilité de modi�er ces chemins de données internes

a�n de déplacer des vecteurs très larges entre les tuiles mémoires sans surcharger le bus sys-

tème du processeur, et l’extensibilité de l’interconnexion matérielle permet de satisfaire aux

exigences de l’application en matière de mémoire. Ces tuiles de calcul utilisent les approches

existantes de l’IMC et du NMC qui consiste à exécuter des calculs logiques et arithmétiques à

l’intérieur ou proche de la tuile mémoire, respectivement. Avec METEOR, ces approches sont

intégrées dans un schéma de vectorisation �exible permettant un fort parallélisme de données,

détaillé dans le chapitre suivant.

La conception de l’architecture permet d’entrelacer les accès mémoires standard et le �ux

d’instructions IMC/NMC par le biais d’un système de pipeline, pour calculer entre les dif-

férentes tuiles en évitant les con�its éventuels entre les données. Les mécanismes connus de

blocage et transfert des opérandes entre les étages du pipeline sont utilisés pour augmenter le

débit du pipeline, réduisant ainsi la consommation globale de l’architecture. Grâce à son inter-

face mémoire générique, METEOR peut être intégré comme une mémoire étroitement couplée

ou comme un co-processeur faiblement couplé dans n’importe quelle architecture convention-

nelle. En�n, cette architecture est évaluée au niveau logiciel dans le chapitre 5, et plusieurs

compromis de performance et d’énergie entre le partitionnement des tuiles et l’interconnexion

standard de la mémoire sont étudiés dans le chapitre 6.

Chapitre 5. Intégration Logicielle pour le Calcul Vectoriel Extensible

Le chapitre 5 décrit l’intégration logicielle du jeu d’instruction IMC/NMC dédié (ISA), ainsi les

paramètres de con�guration de l’architecture METEOR pour permettre le traitement vectoriel

extensible. La dé�nition d’un nouveau type de données vectorielles est proposée pour perme-

ttre au compilateur d’allouer, de placer et d’aligner les vecteurs de données dans l’architecture

METEOR et pour simpli�er le développement du programmeur logiciel. Du point de vue de

l’exécution, envoyer une instruction IMC/NMC aux mémoires calculantes est équivalent à

écrire une donnée à une adresse spéci�que dans une section de mémoire dédiée (une interface

de contrôle). Ainsi, le même bus système est utilisé pour l’accès aux données, pour l’envoi

d’instructions IMC/NMC et pour recon�gurer l’architecture à larges vecteurs.

En outre, le même programme vectorisé est utilisé pour l’architecture METEOR, les accéléra-

teurs SIMDs et les CPUs conventionnels grâce aux bibliothèques proposées qui s’adaptent au

modèle d’exécution de la cible. Cette compatibilité logicielle est une caractéristique impor-

tante pour intégrer l’architecture proposée, tout en permettant une évaluation comparative

A-4

Appendix A. Résumé en Français

plus facile pour l’exploration des performances de l’architecture. De plus, l’implémentation

de l’opération de réduction, utilisée dans de nombreuses applications gourmandes en don-

nées, pro�te des optimisations matérielles de l’architecture METEOR, tel que le calcul proche

mémoire, la �exibilité des chemins de données par la recon�gurabilité et l’extensibilité des

vecteurs de calcul. Bien qu’il s’agisse d’un ISA de bas niveau, qui est implémenté comme un

ensemble de macros C, et résolu durant l’étape de compilation, la bibliothèque actuelle permet

d’évaluer les routines d’applications à forte intensité de données en exploitant un parallélisme

important des données sans modi�er la conception du processeur, tout en assurant le support

d’autres architectures vectorielles. Dans une perspective à long terme, cette bibliothèque de

haut niveau sera étendue pour explorer des applications complètes à forte intensité de données

a�n de mesurer les avantages des approches IMC et NMC à une plus grande échelle.

Chapitre 6. Exploration de la Conception de L’Interconnect Mémoire

Dans le chapitre 6, j’ai évalué les contraintes matérielles des systèmes composés de multi-

ples tuiles mémoires (multi-tuile) et j’ai développé un modèle d’interconnect mémoire a�n

de dimensionner tout type d’architecture mémoire multi-tuile, comme METEOR. Étant donné

qu’une seule tuile mémoire de grande taille ne peut satisfaire les exigences en matière de capac-

ité et de performance des applications gourmandes en données, une architecture multi-tuile

est nécessaire pour concevoir des mémoires plus grandes. Les performances des temps d’accès,

les puissances consommées et la surface des circuits (PPA) sont mesurées pour plusieurs con-

�gurations et plusieurs types de mémoires extraits depuis un générateur mémoire construc-

teur pour un nœud technologique en 28 nm FD-SOI. Ces diverses architectures sont conçues

à travers un �ot de conception standard, puis les PPA sont extraites pour calibrer le modèle

d’interconnect mémoire proposé.

L’étude des résultats montre qu’il existe plusieurs topologies optimisées en matière de perfor-

mance et d’énergie entre une seule grande tuile et plusieurs petites tuiles pour une taille de

mémoire donnée, comme présenté dans la Figure 6.9. En fragmentant une grande mémoire en

plus petites tuiles mémoires, l’architecture multi-tuile permet d’améliorer les performances de

49% et de réduire la consommation d’énergie de 78%, pour un coût de ×1,8 la surface. Ces es-

timations servent à la calibration de la plateforme de simulation, présentée dans le chapitre 7,

a�n d’améliorer la précision des explorations architecturales. Comme l’architecture METEOR

apporte des gains de performance par vectorisation et parallélisme de manière proportion-

nel au nombre de tuiles mémoires, le coût de l’interconnect mémoire devient limitant lorsque

le nombre de tuiles est excessif. Ce modèle sera donc couplé à l’évaluation du système de

l’architecture proposée, telle que présentée dans le chapitre 8.

Chapitre 7. ArchSim : une Plateforme de Simulation Logiciel-Matériel pour l’IMC/NMC

Le chapitre 7 détaille la plateforme d’exploration architecturale Archsim qui facilite l’étude

des paramètres du système aux niveaux logiciel et matériel a�n de dimensionner le circuit de

l’architecture avant de le concevoir. Les protocoles d’abstraction matériels fournis par Sys-

temC/TLM permettent de modéliser des composants physiques à plusieurs niveaux de préci-

sion (au niveau du cycle processeur jusqu’aux transactions mémoires). Les accès mémoires, les

instructions processeurs et les instructions IMC/NMC envoyées aux mémoires calculantes sont

mesurées par le biais de compteurs matériels, calibrés par des mesures extraites de circuits in-

A-5

Appendix A. Résumé en Français

tégrés ou de premières évaluations RTL. La couche logicielle intègre et explore les di�érentes

con�gurations des ISA proposées dans cette thèse, grâce à l’outil PyISAGen qui maintient

l’intégrité du jeu d’instructions du programme utilisateur à la mise en œuvre physique. De

plus, un ensemble de routines vectorisées, décrites en langage C, sont utilisées dans les appli-

cations à forte intensité de données, pour évaluer l’impact architectural de METEOR et autres

architectures vectorielles (e.g. SIMD). Les résultats des simulations de performances évaluées

avec ArchSim sont détaillés dans le chapitre suivant.

Chapitre 8. Résultats de l’Exploration Architecturale

Le chapitre 8 expose l’étude complète de l’architecture METEOR pour un ensemble de sept

routines applicatives gourmandes en données, face à une architecture conventionnelle et une

architecture équipée d’un accélérateur vectoriel SIMD. Les sept routines peuvent être classées

selon leur complexité algorithmique (linéaire, quadratique et cubique), liée au nombre de

boucles imbriquées que la routine doit exécuter. L’architecture METEOR améliore la vitesse

d’exécution de 200× pour les routines de complexité linéaire, de 240× pour les routines de

complexité quadratique et de 65× pour les routines de complexité cubique par rapport à une

architecture CPU conventionnelle. Comparé à un accélérateur SIMD de 512 bits utilisant un ac-

cès mémoire large, l’architecture METEOR atteint une réduction de l’EDP (produit de l’énergie

par le délai) de 52× pour une routine linéaire, de 71× pour une routine quadratique, et 20×
pour une routine cubique.

Contrairement aux systèmes SIMD, l’architecture METEOR continue d’augmenter sa taille de

vecteur et réduit les accès à la mémoire CPU grâce à la communication interne supplémentaire

entre les tuiles et à la fonctionnalité de l’opération de réduction. Ainsi, la plupart des mouve-

ments de données du bus système entre le processeur et la mémoire sont évités pour la mul-

tiplication vecteur-matrice et matrice-matrice utilisées dans les noyaux à complexité linéaire,

quadratique et cubique. En conclusion, les limites de performance du noyau cubique sont prin-

cipalement dues à leur grande empreinte mémoire implémentée sur une architecture METEOR

trop petite. Pour résoudre ce problème, une approche architecturale et technologique 3D est

nécessaire pour augmenter la capacité de mémoire et la connectivité entre les tuiles.

Conclusion Générale et Perspectives

Dans la perspective de travaux futurs, il est prévu d’implémenter l’architecture METEOR pro-

posée, de valider et de mesurer en détail les performances matérielles et logicielles sur une

puce de test. Cette architecture est capable d’exploiter les béné�ces des technologies de calcul

proche mémoire (IMC et NMC) grâce au réseau de communication interne supplémentaire

et recon�gurable dans un système mémoire multi-tuile. Entre l’interconnect de distribution

mémoire standard pour accéder aux données du processeur et cette proposition de communi-

cation verticale des données, il existe des contraintes paradoxales. En e�et, étant donné que de

nombreuses tuiles sont nécessaires pour atteindre un niveau élevé de parallélisme de données

et que cela limite les performances de l’interconnect standard (pour une latence et une én-

ergie optimales), les architectures à empilement 3D sont capables de fournir un interconnect

standard optimisé sur les couches 2D tandis que la connectivité verticale 3D est bien adaptée

pour le déplacement interne des vecteurs larges, comme proposé dans la Figure A.1. Ainsi,

l’architecture METEOR en 3D permet d’organiser la hiérarchie de la mémoire par couche tout

A-6

Appendix A. Résumé en Français

METEOR

METEOR
DMA

IOs

CTRL
2D inter-cluster transfers
- via tile distribution interconnect (TDI)
- optimized for single data accesses

METEOR

METEORPE
PE

PE
PE

2D intra-cluster transfers
wide data bus

3D vertical transfers
- via vertical transfer

interconnect (VTI)
- dense connectivity

using TSVs
- optimized for

parallel computing

Level 3

METEOR

METEOR

METEOR

METEOR

L1i

L1i
L1i

L1i

External communication
IO interfaces and DMA

Level 2

Level 1

1D data transfers
PE system bus

3D internal communication
within 3D stacked architecture

PE instruction
memory

PE controls
a 3D vault

3D vault

Figure A.1: Vers une architecture METEOR en 3D comme proposé dans la conclusion.

en fournissant une connectivité verticale dense, combinée dans le même "pilier" vertical en

3D. De tels piliers 3D sont capables de travailler en parallèle (calcul/chargement de données)

et sont programmés par des éléments de traitement (PEs). Chaque tuile METEOR transfère

horizontalement une grande quantité de données sur des couches 2D et e�ectue des calculs

vectoriels (ou tenseurs) verticalement en 3D dans les mémoires, pilotés par l’unité de con-

trôle (CTRL). Au niveau du logiciel, la manipulation des vecteurs peut être e�ectuée entre les

di�érentes couches de la mémoire sans changer le modèle de programmation proposé.

Les contributions de ce doctorat se concentrent sur la vision d’une architecture sur puce impli-

quant des mémoires à haute densité pour minimiser le problème du mur mémoire hors puce,

mais ce problème reste préoccupant. Pour proposer une architecture complète, j’ai contribué

au développement d’un brevet, en introduisant un DMA dédié, qui est étroitement couplé à la

IMC/NMC tuile unique ou à plusieurs tuiles, en utilisant un bus de communication interne et

direct. Ainsi, les données provenant de mémoires hors puce ou sur puce seront transférées vers

les tuiles mémoires de METEOR en parallèle du �ux de traitement vectoriel grâce à un large

bus de données dédié. Cette proposition convient pour une implémentation en 2D ou en 3D.

La prochaine étape consistera à intégrer le DMA dans la plateforme ArchSim pour quanti�er

l’impact sur des applications complètes à forte intensité de données. Pour conclure, il reste de

nombreuses possibilités de recherche et des travaux futurs, tels que l’évaluation architecturale

et le modèle de programmation distribué.

A-7

Appendix A. Résumé en Français

A-8

Glossary

List of Abbreviations

ALU Arithmetic Logic Unit, referring to a combinational digital electronic circuit that

performs arithmetic and bitwise operations on integer binary numbers.

CPI Cycles Per Instruction, referring to the average number of clock cycles per in-

struction for a program (or program fragment) in order to evaluate the processor’s

performance. It is the multiplicative inverse of Instructions Per Cycle (IPC).

DMA Direct Memory Access (Controller), referring to a device that can transfer data

between system memory and other peripherals without involving the processor.

The processor is only interrupted at the end of the transfer, which reduces its

workload.

DRAM Dynamic Random Access Memory, referring to a type of memory which is ran-

domly accessible but whose content is lost over time. DRAM cells need to be re-

freshed periodically to keep its content.

DRC Design Rule Checking, referring to geometric constraints imposed on integrated

circuit designers to ensure their designs function properly, reliably, and can be

produced with acceptable yield.

FPGA Field-Programmable Gate Array, is an integrated circuit designed to be con�gured

by a customer or a designer after manufacturing.

FPU Floating-Point Unit, is a system specially designed to carry out operations on

�oating-point numbers. The �rst FPU were co-processors, but most are now inte-

grated into the CPU.

FSM Finite State Machine, referring to a machine that has states and transitions from

one state to another state. The transition in an FSM depends only on the type of

event and the current state.

ISA Instruction Set Architecture, referring to a hardware/software interface that de-

scribes the design of a computer in terms of the basic operations it must support

from the programmer’s perspective.

RAW Read-After-Write, referring to pipeline data hazard which occurs when an instruc-

tion tries to read a results that has not yet been calculated.

RISC Reduced Instruction Set Computer, referring to a computer with a small, optimized

set of instructions involving a large number of registers and a regular instruction

pipeline that can perform one operation in one instruction.

I

Glossary

RTL Register-Transfer Level, is a design abstraction used to create high-level represen-

tations of a circuit architecture.

SIMD Single Instruction Multiple Data, referring to a computing parallel architecture in

which a single instruction operates on multiple data simultaneously. SIMD is one

category of machines under the Flynn’s taxonomy.

SRAM Static Random Access Memory, referring to a type of memory that can be accessed

randomly with data persistence, but the data are lost when the memory is not

powered.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, is

a hardware description language used to describe the behaviour as well as the

architecture of a digital electronic system.

WAR Write-After-Read, referring to pipeline data hazard which occurs when an instruc-

tion tries to write the destination before it is read by a previous instruction.

WAW Write-After-Write, referring to pipeline data hazard which occurs when an instruc-

tion tries to write an operand before it is written by a previous instruction.

II

Glossary

List of Acronyms

AES Advanced Encryption Standard. 23

AI Arti�cial Intelligence. 1

ASIC Application-Speci�c Integrated Circuit. 18, 20, 28, 35, A-3

AT Approximately-Timed. 80, 81

BL Bit-Line. 21, 23, 67, 72

BNN Binary Neural Network. 11

C-SRAM Compute SRAM. 59, 81, 82, 85, 86, 91

CAM Content Addressable Memory. 9, 13, 21, 23

CGRA Coarse-Grained Recon�gurable Architecture. 18, 20–22, 28, 35, A-3

CMOS Complementary Metal Oxide Semiconductors. 33, 34, A-3

CNN Convolutional Neural Network. 2, 10–12, 26, 61, 62

CPU Central Processing Unit. 11, 12, 14, 15, 18, 20, 22, 25, 26, 49, 50, 58, 63, 83, 89, 90,

92–94, 97, 99–101, A-2

CSR Control and Status Register. 40, 45, 47, 48, 55, 57, 58, 82

DBT Dynamic Binary Translation. 76

DK Design-Kit. 67

DL Deep Learning. 1

DLP Data-Level Parallelism. 18, 19, 25, 54, 93

DNN Deep Neural Network. 10, 11

DSL Domain-Speci�c Language. 20, 32, 33

DSP Digital Signal Processing. 18, 20

EDA Electronic Design Automation. 33

EDP Energy Delay Product. 87, 97, 98, 101, A-6

ELF Executable and Linkable Format. 78

eNVM emerging Non-Volatile Memory. 21, 34, 103

FC Fully-Connected. 11, 61, 62

FD-SOI Fully Depleted Silicon On Insulator. 46, 68, 70, 73, 85, 100, A-5

FET Field-E�ect Transistor. 27

FF Flip-Flop. 69

FFT Fast Fourier Transform. 12

FinFET Fin Field-E�ect Transistor. 3

FLOPS Floating-point Operations Per Second. 26

FRAM Ferroelectric Random-Access Memory. 21

GCC GNU Compiler Collection. 60, 78, 88

GPD Global Pipeline Dispatcher. 40–44, 46–48, 56, 82

GPU Graphics Processing Unit. 2, 11, 12, 18–20, 24–26, 33, 35

HBM High Memory Bandwidth. 25, 26

HDD Hard Disk Drive. 14, 21

HDL Hardware Description Language. 20

HMC Hybrid Memory Cube. 25, 26, 101

III

Glossary

HPC High Performance Computing. 2, 9, 97, A-2

IC Integrated Circuit. 66

ILP Instruction-Level Parallelism. 18

IMC In-Memory Computing. 22–29, 32, 34–37, 39, 40, 44–48, 51, 54, 56–59, 61, 63, 64,

66, 68, 75, 76, 78, 79, 81, 82, 85–87, 90–94, 98, 101–103, A-5

IO Input/Output. 20

IPC Instructions Per Cycle. I

ISS Instruction Set Simulator. 81, 82, 90

LD Linker Descriptor. 78, 79

LLC Last Level Cache. 14

LLVM Low Level Virtual Machine. 76

LSB Least Signi�cant Bit. 58

LSTM Long Short-Term Memory. 10

LSU Load-Store Unit. 92

M3D Monolithic 3D. 27, 33

MAC Multiply-ACcumulate. 11, 15, 20, 57, A-2

METEOR Matrix of Elementary Tiles Enabling Optimal Recon�gurability. 35, 39, 40, 43, 45,

46, 48–51, 53–67, 73, 75, 78, 79, 81–87, 90–95, 97–103, A-4

MIV Monolithic Inter-tier Via. 27, 33

ML Machine Learning. 1

MLC Multi-Level Cell. 21

MOSFET Metal-Oxide-Semiconductor Field-E�ect Transistor. 3

MSB Most Signi�cant Bit. 58

NMC Near-Memory Computing. 22–25, 28, 29, 32, 34–37, 39, 40, 44–51, 54, 56–59, 61,

63, 64, 66, 68, 75, 78, 79, 81, 82, 84–87, 90–94, 96–103, A-6

NN Neural Network. 1, 9–11, 15, 18, 20, 21, 24–26

NoC Network-on-Chip. 20, 26, 32

NVM Non-Volatile Memory. 21, 27, 29, 32, 33, 37, A-3

OS Operating System. 76, 98

P&R Place and Route. 68–70, 77, 84, 85, 91

PCI Peripheral Component Interconnect. 15

PCM Phase-Change Memory. 21, 34

PE Processing Element. 11, 32, 33, 35, 43, 44, 48

PIM Processing-In-Memory. 26–28, 101

PPA Power, Performance and Area. 23, 36, 72, 100, A-5

QNN Quantized Neural Network. 9, 11, 15, A-2

RAM Random-Access Memory. 14

ReLU Recti�ed Linear Unit. 10

RNN Recurrent Neural Network. 2, 10

RRAM Resistive Random-Access Memory. 21, 34

SCM Storage Class Memory. 14, 21, 25, 34, 37

IV

Glossary

SIMT Single Instruction Multiple Threads. 18

SPM Scratch-Pad Memory. 22, 49, 50

SSD Solid-State Drive. 14, 21, 25, 34

STA Static Timing Analysis. 69, 70

STT-RAM Spin-Transfer Torque Random-Access Memory. 21, 34

TAM Tile Address Mapper. 40–42, 44, 45, 47, 48, 54, 60, 81, 82, 85

TCDM Tightly-Coupled Data Memory. 50

TCM Tightly-Coupled Memory. 49

TCPM Tightly-Coupled Program Memory. 50

TDI Tile Distribution Interconnect. 40, 41, 46–48, 66, 67, 101

TLM Transaction-Level Modeling. 37, 77, 80–82, 84, 86, 100, A-5

TLP Task-Level Parallelism. 18–20

TSV Through-Silicon Via. 26, 27, 33

TTC Tile and Transfer Control. 40, 46–48

VLIW Very Long Instruction Word. 18

VTI Vertical Transfer Interconnect. 41, 46, 67, 101

VTID Vertical Transfer Interconnect Down. 40, 42, 46

VTIU Vertical Transfer Interconnect Up. 40, 42, 46

VTU Vertical Transfer Unit. 40, 42, 44–46, 48, 81

WL Word-Line. 21, 23, 45, 67, 72

WNS Worst Negative Slack. 69, 70

V

Glossary

VI

List of Publications

Articles published in refereed international conference and journals

[1] V. Eglo�, J.-P. Noel, M. Kooli, B. Giraud, L. Ciampolini, R. Gauchi, et al. “Storage Class Memory

with Computing Row Bu�er: A Design Space Exploration”. Design, Automation & Test in Europe
Conference & Exhibition (DATE). accepted paper. 2021.

[2] J.-P. Noel, M. Pezzin, R. Gauchi, J.-F. Christmann, M. Kooli, H.-P. Charles, et al. “A 35.6TOP-

S/W/mm2 3-Stage Pipelined Computational SRAM with Adjustable Form Factor for Highly

Data-Centric Applications”. IEEE Solid-State Circuits Letters (L-SSC). 2020. doi: 10.1109/LSSC.
2020.3010377.

[3] R. Gauchi, V. Eglo�, M. Kooli, P. Vivet, J.-P. Noel, B. Giraud, et al. “Recon�gurable Tiles

of Computing-In-Memory SRAM Architecture for Scalable Vectorization”. ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design (ISLPED). 2020. doi: 10.1145/3370748.
3406550.

[4] J.-P. Noel, V. Eglo�, M. Kooli,R.Gauchi, J.-M. Portal, H.-P. Charles, et al. “Computational SRAM

Design Automation using Pushed-Rule Bitcells for Energy-E�cient Vector Processing”. Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2020. doi: 10.23919/DATE48585.
2020.9116506.

[5] R. Gauchi, M. Kooli, P. Vivet, J.-P. Noel, E. Beigné, S. Mitra, et al. “Memory Sizing of a Scalable

SRAM In-Memory Computing Tile Based Architecture”. IFIP/IEEE International Conference on
Very Large Scale Integration and System-on-Chip designs (VLSI-SoC). 2019. doi: 10.1109/VLSI-
SoC.2019.8920373.

Patents

[6] M. Kooli, R. Gauchi, and P. Vivet. “Module mémoire adapté à mettre en oeuvre des fonctions

de calcul”. FR2014174. 2020.

[7] R. Gauchi, P. Vivet, H.-P. Charles, and S. Mitra. “Module mémoire recon�gurable adapté à

mettre en oeuvre des opérations de calcul”. FR2008272. 2020.

Workshop and poster presentations

[8] R. Gauchi, V. Eglo�, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet, et al. “Exploration of a Scalable In-

Memory Computing SRAM-based Vector Architecture via a System-on-Chip Evaluation Frame-

work”. ACM/IEEE Design Automation Conference: Work-in-Progress (DAC-WiP). Poster session.

2020.

[9] R. Gauchi, V. Eglo�, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet, et al. “Exploration of a Scalable

Vector-Tile-based In-Memory Computing Architecture”. Design, Automation & Test in Europe
Conference & Exhibition (DATE). Computation-In-Memory Workshop (CIMW). 2020.

VII

https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.23919/DATE48585.2020.9116506
https://doi.org/10.23919/DATE48585.2020.9116506
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/VLSI-SoC.2019.8920373

List of Publications

VIII

References

[1] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, et al. “Improved protein

structure prediction using potentials from deep learning”. Nature. 2020. doi: 10.1038/s41586-
019-1923-7.

[2] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A Quantitative Approach”. Sixth

Edition. Morgan Kaufmann, 2017. isbn: 9780128119051. url: https://b-ok.cc/book/3423170/
795bf3.

[3] A. Gara, M. A. Blumrich, D. Chen, G. L. Chiu, P. Coteus, M. E. Giampapa, et al. “Overview

of the Blue Gene/L system architecture”. IBM Journal of Research and Development. 2005, doi:

10.1147/rd.492.0195.

[4] M. Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”. IEEE Interna-
tional Solid-State Circuits Conference (ISSCC). 2014. doi: 10.1109/ISSCC.2014.6757323.

[5] G. Moore. “Cramming More Components Onto Integrated Circuits”. Proceedings of the IEEE.

1998. Reprinted from Electronics, April 19, 1965. doi: 10.1109/JPROC.1998.658762.

[6] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc. “Design

of ion-implanted MOSFET’s with very small physical dimensions”. IEEE Journal of Solid-State
Circuits (JSSC). 1974. doi: 10.1109/JSSC.1974.1050511.

[7] “Executive Summary - Technology Trend Targets, 2013 Edition”. IEEE International Technology
Roadmap for Semiconductors (ITRS). 2013. url: http://www.itrs2.net/2013-itrs.html.

[8] “More Moore - Ground Rules Roadmap for Logic Devices, 2020 Edition”. IEEE International
Roadmap for Devices and Systems (IRDS). 2020. url: https://irds.ieee.org/images/files/
pdf/2020/2020IRDS_MM.pdf.

[9] C. Philip Chen and C.-Y. Zhang. “Data-intensive applications, challenges, techniques and tech-

nologies: A survey on Big Data”. Information Sciences. 2014. doi: 10.1016/j.ins.2014.01.015.

[10] A. Sebastian, M. Le Gallo, and R. Khaddam-Aljameh. “Memory devices and applications for

in-memory computing”. Nature Nanotechnology. 2020. doi: 10.1038/s41565-020-0655-z.

[11] V. Sze, Y. Chen, T. Yang, and J. S. Emer. “E�cient Processing of Deep Neural Networks: A

Tutorial and Survey”. Proceedings of the IEEE. 2017. doi: 10.1109/JPROC.2017.2761740.

[12] Z. C. Lipton, J. Berkowitz, and C. Elkan. “A Critical Review of Recurrent Neural Networks for

Sequence Learning”. ArXiv, Computer Science, Machine Learning. 2015. arXiv: 1506.00019.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al. “ImageNet Large Scale Visual

Recognition Challenge”. International Journal of Computer Vision. 2015. doi: 10.1007/s11263-
015-0816-y.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classi�cation with deep convolutional

neural networks”. Communications of the ACM . 2017. doi: 10.1145/3065386.

IX

https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://b-ok.cc/book/3423170/795bf3
https://b-ok.cc/book/3423170/795bf3
https://doi.org/10.1147/rd.492.0195
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JSSC.1974.1050511
http://www.itrs2.net/2013-itrs.html
https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/abs/1506.00019
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3065386

References

[15] H. Park, D. Kim, J. Ahn, and S. Yoo. “Zero and data reuse-aware fast convolution for deep neural

networks on GPU”. IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis. 2016, doi: 10.1145/2968456.2968476.

[16] X. Lin, C. Zhao, and W. Pan. “Towards Accurate Binary Convolutional Neural Network”. Ad-
vances in Neural Information Processing Systems (NIPS). 2017. url: http://papers.nips.cc/
paper/6638-towards-accurate-binary-convolutional-neural-network.pdf.

[17] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong. “LogNet: Energy-e�cient neural

networks using logarithmic computation”. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2017. doi: 10.1109/ICASSP.2017.7953288.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. “XNOR-Net: ImageNet Classi�cation Using

Binary Convolutional Neural Networks”. European Conference on Computer Vision (ECCV). 2016.

doi: 10.1007/978-3-319-46493-0_32.

[19] A. Skodras, C. Christopoulos, and T. Ebrahimi. “The JPEG 2000 still image compression stan-

dard”. IEEE Signal Processing Magazine. 2001. doi: 10.1109/79.952804.

[20] M. Cho and D. Brand. “MEC: memory-e�cient convolution for deep neural network”. JMLR
International Conference on Machine Learning (ICML). 2017, url: http://proceedings.mlr.
press/v70/cho17a/cho17a.pdf.

[21] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. “A 28 nm Con�gurable Memory (TCAM/B-

CAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. IEEE Journal of Solid-
State Circuits (JSSC). 2016. doi: 10.1109/JSSC.2016.2515510.

[22] S. Faro and T. Lecroq. “The Exact Online String Matching Problem: a Review of the Most Recent

Results”. ACM Computing Surveys (CSUR). 2013. doi: 10.1145/2431211.2431212.

[23] S. Faro and M. O. Külekci. “Fast Multiple String Matching Using Streaming SIMD Extensions

Technology”. International Symposium on String Processing and Information Retrieval (SPIRE).
2012. doi: 10.1007/978-3-642-34109-0_23.

[24] Y. Yu, C. Zhang, W. Wang, J. Zhang, and K. Letaief. “Towards Dependency-Aware Cache Man-

agement for Data Analytics Applications”. IEEE Transactions on Cloud Computing. 2019. doi:

10.1109/TCC.2019.2945015.

[25] R. S. Lakhdar, H.-P. Charles, and M. Kooli. “Data-layout optimization based on memory-access-

pattern analysis for source-code performance improvement”. ACM International Workshop on
Software and Compilers for Embedded Systems (SCOPES). 2020, doi: 10.1145/3378678.3391874.

[26] B. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, et al. “The Vector-Thread

Architecture”. IEEE Micro. 2004. doi: 10.1109/MM.2004.90.

[27] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, et al. “The ARM Scalable

Vector Extension”. IEEE Micro. 2017. doi: 10.1109/MM.2017.35.

[28] H. Fatemi, B. Mesman, H. Corporaal, T. Basten, and P. Jonker. “Run-time recon�guration of

communication in SIMD architectures”. IEEE International Parallel Distributed Processing Sym-
posium (IPDPS). 2006. doi: 10.1109/IPDPS.2006.1639470.

[29] H. Fatemi, B. Mesman, H. Corporaal, T. Basten, and R. Kleihorst. “RC-SIMD: Recon�gurable

communication SIMD architecture for image processing applications.” Journal of Embedded
Computing. 2006. url: http://content.iospress.com/articles/journal-of-embedded-
computing/jec00032.

[30] I. Kuon, R. Tessier, and J. Rose. “FPGA Architecture: Survey and Challenges”. Foundations and
Trends in Electronic Design Automation. 2007. doi: 10.1561/1000000005.

X

https://doi.org/10.1145/2968456.2968476
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network.pdf
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network.pdf
https://doi.org/10.1109/ICASSP.2017.7953288
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/79.952804
http://proceedings.mlr.press/v70/cho17a/cho17a.pdf
http://proceedings.mlr.press/v70/cho17a/cho17a.pdf
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1145/2431211.2431212
https://doi.org/10.1007/978-3-642-34109-0_23
https://doi.org/10.1109/TCC.2019.2945015
https://doi.org/10.1145/3378678.3391874
https://doi.org/10.1109/MM.2004.90
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/IPDPS.2006.1639470
http://content.iospress.com/articles/journal-of-embedded-computing/jec00032
http://content.iospress.com/articles/journal-of-embedded-computing/jec00032
https://doi.org/10.1561/1000000005

References

[31] R. Hartenstein. “A Decade of Recon�gurable Computing: a Visionary Retrospective”. Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2001. doi: 10.1109/DATE.2001.
915091.

[32] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, et al. “A Survey of Coarse-Grained Recon�gurable

Architecture and Design: Taxonomy, Challenges, and Applications”. ACM Computing Surveys.
2020. doi: 10.1145/3357375.

[33] A. Podobas, K. Sano, and S. Matsuoka. “A Survey on Coarse-Grained Recon�gurable Architec-

tures From a Performance Perspective”. IEEE Access. 2020. doi: 10.1109/ACCESS.2020.3012084.

[34] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. “Eyeriss: An Energy-E�cient Recon�gurable Ac-

celerator for Deep Convolutional Neural Networks”. IEEE Journal of Solid-State Circuits (JSSC).
2017. doi: 10.1109/JSSC.2016.2616357.

[35] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis. “TANGRAM: Optimized Coarse-Grained

Data�ow for Scalable NN Accelerators”. ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 2019. doi: 10.1145/3297858.
3304014.

[36] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. “Halide: a lan-

guage and compiler for optimizing parallelism, locality, and recomputation in image process-

ing pipelines”. ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 2013. doi: 10.1145/2491956.2462176.

[37] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, et al. “Plasticine: A Recon-

�gurable Architecture For Parallel Paterns”. ACM/IEEE International Symposium on Computer
Architecture (ISCA). 2017. doi: 10.1145/3079856.3080256.

[38] T. Agerwala and M. Perrone. “Data Centric Systems, The Next Paradigm in Computing”. Inter-
national Conference on Parallel Processing (ICPP). Keynote. 2014. url: http://icpp.cs.umn.
edu/agerwala.pdf.

[39] W. H. Kautz. “Cellular Logic-in-Memory Arrays”. IEEE Transactions on Computers. 1969. doi:

10.1109/T-C.1969.222754.

[40] H. S. Stone. “A Logic-in-Memory Computer”. IEEE Transactions on Computers. 1970. doi: 10.
1109/TC.1970.5008902.

[41] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. “Emerging NVM: A Survey on

Architectural Integration and Research Challenges”. ACM Transactions on Design Automation
of Electronic Systems. 2018. doi: 10.1145/3131848.

[42] A. Sha�ee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, et al. “ISAAC:

A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars”.

ACM/IEEE International Symposium on Computer Architecture (ISCA). ACM/IEEE International

Symposium on Computer Architecture (ISCA). 2016. doi: 10.1109/ISCA.2016.12.

[43] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. “Pinatubo: A processing-in-memory architec-

ture for bulk bitwise operations in emerging non-volatile memories”. ACM/EDAC/IEEE Design
Automation Conference (DAC). 2016. doi: 10.1145/2897937.2898064.

[44] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky. “IMAGING: In-Memory AlGo-

rithms for Image processiNG”. IEEE Transactions on Circuits and Systems I: Regular Papers. 2018.

doi: 10.1109/TCSI.2018.2846699.

[45] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, et al. “PRIME: A Novel Processing-in-Memory

Architecture for Neural Network Computation in ReRAM-Based Main Memory”. ACM/IEEE
International Symposium on Computer Architecture (ISCA). 2016. doi: 10.1109/ISCA.2016.13.

XI

https://doi.org/10.1109/DATE.2001.915091
https://doi.org/10.1109/DATE.2001.915091
https://doi.org/10.1145/3357375
https://doi.org/10.1109/ACCESS.2020.3012084
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3079856.3080256
http://icpp.cs.umn.edu/agerwala.pdf
http://icpp.cs.umn.edu/agerwala.pdf
https://doi.org/10.1109/T-C.1969.222754
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1145/3131848
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1109/TCSI.2018.2846699
https://doi.org/10.1109/ISCA.2016.13

References

[46] K. C. Akyel, H.-P. Charles, J. Mottin, B. Giraud, G. Suraci, S. Thuries, et al. “DRC2: Dynamically

Recon�gurable Computing Circuit based on memory architecture”. IEEE International Confer-
ence on Rebooting Computing (ICRC). 2016. doi: 10.1109/ICRC.2016.7738698.

[47] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. “Compute Caches”.

IEEE International Symposium on High Performance Computer Architecture (HPCA). 2017. doi:

10.1109/HPCA.2017.21.

[48] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, et al. “A 4 + 2T SRAM for

Searching and In-Memory Computing With 0.3-V VDDmin”. IEEE Journal of Solid-State Circuits
(JSSC). 2017. doi: 10.1109/JSSC.2017.2776309.

[49] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy. “X-SRAM: Enabling In-Memory Boolean Computa-

tions in CMOS Static Random Access Memories”. IEEE Transactions on Circuits and Systems I:
Regular Papers. 2018. doi: 10.1109/TCSI.2018.2848999.

[50] G. H. Loh, N. Jayasena, M. H. Oskin, M. Nutter, D. Roberts, M. Meswani, et al. “A Processing-

in-Memory Taxonomy and a Case for Studying Fixed-function PIM”. Workshop on Near-Data
Processing (WoNDP) at IEEE/ACM International Symposium on Microarchitecture (MICRO-46).
2013. url: https://www.cs.utah.edu/wondp/wondp2013-paper2-final.pdf.

[51] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, et al. “A 28-nm Compute

SRAM With Bit-Serial Logic/Arithmetic Operations for Programmable In-Memory Vector Com-

puting”. IEEE Journal of Solid-State Circuits (JSSC). 2019. doi: 10.1109/JSSC.2019.2939682.

[52] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester. “Recryptor: A Recon�gurable

Cryptographic Cortex-M0 Processor With In-Memory and Near-Memory Computing for IoT

Security”. IEEE Journal of Solid-State Circuits (JSSC). 2018. doi: 10.1109/JSSC.2017.2776302.

[53] F. Schuiki, M. Scha�ner, F. K. Gürkaynak, and L. Benini. “A Scalable Near-Memory Architec-

ture for Training Deep Neural Networks on Large In-Memory Datasets”. IEEE Transactions on
Computers. 2019. doi: 10.1109/TC.2018.2876312.

[54] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, et al. “Recryptor: A recon�gurable in-

memory cryptographic Cortex-M0 processor for IoT”. IEEE Symposium on VLSI Circuits. 2017.

doi: 10.23919/VLSIC.2017.8008501.

[55] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, et al. “Neural Cache: Bit-

Serial In-Cache Acceleration of Deep Neural Networks”. ACM/IEEE International Symposium on
Computer Architecture (ISCA). 2018. doi: 10.1109/ISCA.2018.00040.

[56] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, et al. “A Compute SRAM

with Bit-Serial Integer/Floating-Point Operations for Programmable In-Memory Vector Accel-

eration”. IEEE International Solid-State Circuits Conference (ISSCC). 2019. doi: 10.1109/ISSCC.
2019.8662419.

[57] W. A. Simon, Y. M. Qureshi, A. Levisse, M. Zapater, and D. Atienza. “BLADE: A BitLine Accel-

erator for Devices on the Edge”. ACM Great Lakes Symposium on VLSI (GLSVLSI). 2019. doi:

10.1145/3299874.3317979.

[58] M. Rios, W. Simon, A. Levisse, M. Zapater, and D. Atienza. “An Associativity-Agnostic in-Cache

Computing Architecture Optimized for Multiplication”. IFIP/IEEE International Conference on
Very Large Scale Integration and System-on-Chip designs (VLSI-SoC). 2019. doi: 10.1109/VLSI-
SoC.2019.8920317.

[59] G. Singh, L. Chelini, S. Corda, A. Javed Awan, S. Stuijk, R. Jordans, et al. “A Review of Near-

Memory Computing Architectures: Opportunities and Challenges”. Euromicro Conference on
Digital System Design (DSD). 2018. doi: 10.1109/DSD.2018.00106.

XII

https://doi.org/10.1109/ICRC.2016.7738698
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/TCSI.2018.2848999
https://www.cs.utah.edu/wondp/wondp2013-paper2-final.pdf
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2017.2776302
https://doi.org/10.1109/TC.2018.2876312
https://doi.org/10.23919/VLSIC.2017.8008501
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1109/ISSCC.2019.8662419
https://doi.org/10.1109/ISSCC.2019.8662419
https://doi.org/10.1145/3299874.3317979
https://doi.org/10.1109/VLSI-SoC.2019.8920317
https://doi.org/10.1109/VLSI-SoC.2019.8920317
https://doi.org/10.1109/DSD.2018.00106

References

[60] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi, et al. “A 3D-stacked logic-in-memory

accelerator for application-speci�c data intensive computing”. IEEE International 3D Systems
Integration Conference (3DIC). 2013. doi: 10.1109/3DIC.2013.6702348.

[61] J. T. Pawlowski. “Hybrid memory cube (HMC)”. IEEE Hot Chips 23 Symposium (HCS). 2011. doi:

10.1109/HOTCHIPS.2011.7477494.

[62] D. U. Lee, K. W. Kim, K. W. Kim, K. S. Lee, S. J. Byeon, J. H. Kim, et al. “A 1.2 V 8 Gb 8-Channel

128 GB/s High-Bandwidth Memory (HBM) Stacked DRAM With E�ective I/O Test Circuits”.

IEEE Journal of Solid-State Circuits (JSSC). 2015. doi: 10.1109/JSSC.2014.2360379.

[63] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. “Simultaneous Multi-Layer Access:

Improving 3D-Stacked Memory Bandwidth at Low Cost”. ACM Transactions on Architecture
and Code Optimization (TACO). 2016. doi: 10.1145/2832911.

[64] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, et al. “Gather-

Scatter DRAM: In-DRAM address translation to improve the spatial locality of non-unit strided

accesses”. IEEE/ACM International Symposium on Microarchitecture (MICRO). 2015. doi: 10 .
1145/2830772.2830820.

[65] Dominique Lavenier, Charles Deltel, David Furodet, and Jean-François Roy. “BLAST on UP-

MEM”. Research Report. INRIA Rennes - Bretagne Atlantique, 2016. url: https : / / hal .
archives-ouvertes.fr/hal-01294345.

[66] S. Ghose, A. Boroumand, J. S. Kim, J. Gomez-Luna, and O. Mutlu. “Processing-in-memory: A

workload-driven perspective”. IBM Journal of Research and Development. 2019. doi: 10.1147/
JRD.2019.2934048.

[67] E. Azarkhish, C. P�ster, D. Rossi, I. Loi, and L. Benini. “Logic-Base Interconnect Design for

Near Memory Computing in the Smart Memory Cube”. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2017. doi: 10.1109/TVLSI.2016.2570283.

[68] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis. “TETRIS: Scalable and E�cient Neural

Network Acceleration with 3D Memory”.ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 2017. doi: 10.1145/3037697.
3037702.

[69] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, et al. “Active Memory Cube:

A processing-in-memory architecture for exascale systems”. IBM Journal of Research and De-
velopment. 2015. doi: 10.1147/JRD.2015.2409732.

[70] E. Azarkhish, D. Rossi, I. Loi, and L. Benini. “Neurostream: Scalable and Energy E�cient Deep

Learning with Smart Memory Cubes”. IEEE Transactions on Parallel and Distributed Systems
(TPDS). 2017. doi: 10.1109/TPDS.2017.2752706.

[71] “UPMEM company website”. url: https://www.upmem.com/.

[72] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay. “Neurocube: A Programmable

Digital Neuromorphic Architecture with High-Density 3D Memory”. ACM/IEEE International
Symposium on Computer Architecture (ISCA). 2016. doi: 10.1109/ISCA.2016.41. url: https:
//iscaconf.org/isca2016/wp-content/uploads/2016/07/6-2.pdf.

[73] S. K. Samal, D. Nayak, M. Ichihashi, S. Banna, and S. K. Lim. “Monolithic 3D IC vs. TSV-based 3D

IC in 14nm FinFET technology”. IEEE SOI-3D-Subthreshold Microelectronics Technology Uni�ed
Conference (S3S). 2016. doi: 10.1109/S3S.2016.7804405.

[74] Y. Yu and N. K. Jha. “Energy-E�cient Monolithic 3D on-Chip Memory Architectures”. IEEE
Transactions on Nanotechnology. 2017. doi: 10.1109/TNANO.2017.2731871.

XIII

https://doi.org/10.1109/3DIC.2013.6702348
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/JSSC.2014.2360379
https://doi.org/10.1145/2832911
https://doi.org/10.1145/2830772.2830820
https://doi.org/10.1145/2830772.2830820
https://hal.archives-ouvertes.fr/hal-01294345
https://hal.archives-ouvertes.fr/hal-01294345
https://doi.org/10.1147/JRD.2019.2934048
https://doi.org/10.1147/JRD.2019.2934048
https://doi.org/10.1109/TVLSI.2016.2570283
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1147/JRD.2015.2409732
https://doi.org/10.1109/TPDS.2017.2752706
https://www.upmem.com/
https://doi.org/10.1109/ISCA.2016.41
https://iscaconf.org/isca2016/wp-content/uploads/2016/07/6-2.pdf
https://iscaconf.org/isca2016/wp-content/uploads/2016/07/6-2.pdf
https://doi.org/10.1109/S3S.2016.7804405
https://doi.org/10.1109/TNANO.2017.2731871

References

[75] K. Chang, D. Kadetotad, Y. Cao, J. s. Seo, and S. K. Lim. “Monolithic 3D IC designs for low-

power deep neural networks targeting speech recognition”.ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED). 2017. doi: 10.1109/ISLPED.2017.8009175.

[76] L. Millet, S. Chevobbe, C. Andriamisaina, L. Benaissa, E. Deschaseaux, E. Beigne, et al. “A 5500-

frames/s 85-GOPS/W 3-D Stacked BSI Vision Chip Based on Parallel In-Focal-Plane Acquisition

and Processing”. IEEE Journal of Solid-State Circuits. 2019, doi: 10.1109/JSSC.2018.2886325.

[77] M. M. S. Aly, M. Gao, G. Hills, C. S. Lee, G. Pitner, M. M. Shulaker, et al. “Energy-E�cient

Abundant-Data Computing: The N3XT 1,000x”. Computer . 2015. doi: 10.1109/MC.2015.376.

[78] L. Brunet, C. Fenouillet-Beranger, P. Batude, S. Beaurepaire, F. Ponthenier, N. Rambal, et

al. “Breakthroughs in 3D Sequential technology”. IEEE International Electron Devices Meeting
(IEDM). 2018, doi: 10.1109/IEDM.2018.8614653.

[79] S. Thuries, O. Billoint, S. Choisnet, R. Lemaire, P. Vivet, P. Batude, et al. “M3D-ADTCO: Mono-

lithic 3D Architecture, Design and Technology Co-Optimization for High Energy E�cient 3D

IC”. Design, Automation & Test in Europe Conference & Exhibition (DATE). 2020, doi: 10.23919/
DATE48585.2020.9116293.

[80] J. Jourdon, S. Lhostis, S. Moreau, J. Chossat, M. Arnoux, C. Sart, et al. “Hybrid bonding for 3D

stacked image sensors: impact of pitch shrinkage on interconnect robustness”. IEEE Interna-
tional Electron Devices Meeting (IEDM). 2018, doi: 10.1109/IEDM.2018.8614570.

[81] M. M. Sabry, A. K. Coskun, D. Atienza, T. Š. Rosing, and T. Brunschwiler. “Energy-E�cient

Multiobjective Thermal Control for Liquid-Cooled 3-D Stacked Architectures”. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems. 2011, doi: 10.1109/TCAD.
2011.2164540.

[82] D. R. B. Ly, J. Noel, B. Giraud, P. Royer, E. Esmanhotto, N. Castellani, et al. “Novel 1T2R1T

RRAM-based Ternary Content Addressable Memory for Large Scale Pattern Recognition”. IEEE
International Electron Devices Meeting (IEDM). 2019, doi: 10.1109/IEDM19573.2019.8993621.

[83] T. F. Wu, B. Q. Le, R. Radway, A. Bartolo, W. Hwang, S. Jeong, et al. “14.3 A 43pJ/Cycle Non-

Volatile Microcontroller with 4.7µs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM

and Resilience Techniques”. IEEE International Solid-State Circuits Conference (ISSCC). 2019. doi:

10.1109/ISSCC.2019.8662402.

[84] R. Gauchi, V. Eglo�, M. Kooli, P. Vivet, J.-P. Noel, B. Giraud, et al. “Recon�gurable Tiles of

Computing-In-Memory SRAM Architecture for Scalable Vectorization”. ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design (ISLPED). 2020. doi: 10.1145/3370748.
3406550.

[85] R. Gauchi, V. Eglo�, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet, et al. “Exploration of a Scalable

Vector-Tile-based In-Memory Computing Architecture”. Design, Automation & Test in Europe
Conference & Exhibition (DATE). Computation-In-Memory Workshop (CIMW). 2020.

[86] R. Gauchi, V. Eglo�, M. Kooli, J.-P. Noel, B. Giraud, P. Vivet, et al. “Exploration of a Scalable In-

Memory Computing SRAM-based Vector Architecture via a System-on-Chip Evaluation Frame-

work”. ACM/IEEE Design Automation Conference: Work-in-Progress (DAC-WiP). Poster session.

2020.

[87] R. Gauchi, P. Vivet, H.-P. Charles, and S. Mitra. “Module mémoire recon�gurable adapté à mettre

en oeuvre des opérations de calcul”. FR2008272. 2020.

[88] R. Gauchi, M. Kooli, P. Vivet, J.-P. Noel, E. Beigné, S. Mitra, et al. “Memory Sizing of a Scalable

SRAM In-Memory Computing Tile Based Architecture”. IFIP/IEEE International Conference on
Very Large Scale Integration and System-on-Chip designs (VLSI-SoC). 2019. doi: 10.1109/VLSI-
SoC.2019.8920373.

XIV

https://doi.org/10.1109/ISLPED.2017.8009175
https://doi.org/10.1109/JSSC.2018.2886325
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1109/IEDM.2018.8614653
https://doi.org/10.23919/DATE48585.2020.9116293
https://doi.org/10.23919/DATE48585.2020.9116293
https://doi.org/10.1109/IEDM.2018.8614570
https://doi.org/10.1109/TCAD.2011.2164540
https://doi.org/10.1109/TCAD.2011.2164540
https://doi.org/10.1109/IEDM19573.2019.8993621
https://doi.org/10.1109/ISSCC.2019.8662402
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/VLSI-SoC.2019.8920373

References

[89] J.-P. Noel, M. Pezzin, R. Gauchi, J.-F. Christmann, M. Kooli, H.-P. Charles, et al. “A 35.6TOP-

S/W/mm2 3-Stage Pipelined Computational SRAM with Adjustable Form Factor for Highly

Data-Centric Applications”. IEEE Solid-State Circuits Letters (L-SSC). 2020. doi: 10.1109/LSSC.
2020.3010377.

[90] J.-P. Noel, V. Eglo�, M. Kooli, R. Gauchi, J.-M. Portal, H.-P. Charles, et al. “Computational SRAM

Design Automation using Pushed-Rule Bitcells for Energy-E�cient Vector Processing”. Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2020. doi: 10.23919/DATE48585.
2020.9116506.

[91] V. Eglo�, J.-P. Noel, M. Kooli, B. Giraud, L. Ciampolini, R. Gauchi, et al. “Storage Class Memory

with Computing Row Bu�er: A Design Space Exploration”. Design, Automation & Test in Europe
Conference & Exhibition (DATE). accepted paper. 2021.

[92] M. Kooli, R. Gauchi, and P. Vivet. “Module mémoire adapté à mettre en oeuvre des fonctions de

calcul”. FR2014174. 2020.

[93] ARM, ed. “AMBA 3 AHB-Lite Protocol Speci�cation v1.0”. 2010. url: https://developer.arm.
com/docs/ihi0033/a/amba-3-ahb-lite-protocol-specification-v10.

[94] M. Kooli, H.-P. Charles, C. Touzet, B. Giraud, and J.-P. Noel. “Software Platform Dedicated for In-

Memory Computing Circuit Evaluation”. IEEE/ACM International Symposium on Rapid System
Prototyping (RSP). 2017. doi: 10.1145/3130265.3130322.

[95] L.-N. Pouchet. “PolyBench/C, the Polyhedral Benchmark suite”. 2015. url: http://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/.

[96] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, et al. “The Gem5 Simula-

tor”. ACM SIGARCH Computer Architecture News. 2011. doi: 10.1145/2024716.2024718.

[97] T. E. Carlson, W. Heirman, and L. Eeckhout. “Sniper: Exploring the Level of Abstraction for Scal-

able and Accurate Parallel Multi-Core Simulations”. International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC). 2011. doi: 10.1145/2063384.2063454.

[98] D. Sanchez and C. Kozyrakis. “ZSim: Fast and Accurate Microarchitectural Simulation of

Thousand-Core Systems”. ACM/IEEE International Symposium on Computer Architecture (ISCA).
2013. doi: 10.1145/2485922.2485963.

[99] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, et al. “Pin: Building Customized

Program Analysis Tools with Dynamic Instrumentation”. ACM SIGPLAN Notices. 2005. doi:

10.1145/1064978.1065034.

[100] M. Chiang, T. Yeh, and G. Tseng. “A QEMU and SystemC-Based Cycle-Accurate ISS for Per-

formance Estimation on SoC Development”. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD). 2011. doi: 10.1109/TCAD.2010.2095631.

[101] “IEEE Standard for Standard SystemC Language Reference Manual”. IEEE Standard 1666-2011.

2012. doi: 10.1109/IEEESTD.2012.6134619.

[102] J. Asynsley. “OSCI TLM-2.0 Language Reference Manual”. 2009. url: https://www.accellera.
org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf.

[103] H. Lebreton and P. Vivet. “Power Modeling in SystemC at Transaction Level, Application to a

DVFS Architecture”. IEEE Computer Society Annual Symposium on VLSI. 2008. doi: 10.1109/
ISVLSI.2008.71.

[104] Western Digital, ed. “Open Source RISC-V SweRV Instruction Set Simulator”. 2018. url: https:
//github.com/westerndigitalcorporation/swerv-ISS.

XV

https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.23919/DATE48585.2020.9116506
https://doi.org/10.23919/DATE48585.2020.9116506
https://developer.arm.com/docs/ihi0033/a/amba-3-ahb-lite-protocol-specification-v10
https://developer.arm.com/docs/ihi0033/a/amba-3-ahb-lite-protocol-specification-v10
https://doi.org/10.1145/3130265.3130322
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/TCAD.2010.2095631
https://doi.org/10.1109/IEEESTD.2012.6134619
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/TLM_2_0_LRM.pdf
https://doi.org/10.1109/ISVLSI.2008.71
https://doi.org/10.1109/ISVLSI.2008.71
https://github.com/westerndigitalcorporation/swerv-ISS
https://github.com/westerndigitalcorporation/swerv-ISS

References

[105] J.-F. Christmann, F. Berthier, D. Coriat, I. Miro-Panades, E. Guthmuller, S. Thuries, et al. “A 50.5

ns Wake-Up-Latency 11.2 pJ/Inst Asynchronous Wake-Up Controller in FDSOI 28 nm”. Journal
of Low Power Electronics and Applications (JLPEA). 2019. doi: 10.3390/jlpea9010008.

XVI

https://doi.org/10.3390/jlpea9010008

	Remerciements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	1 Energy Efficient Computing Architecture Challenges
	1.1 Introduction
	1.2 Neural Network Applications
	1.2.1 Image Classification
	1.2.2 Quantized Neural Network

	1.3 Other Data-intensive Applications
	1.3.1 Image Processing
	1.3.2 Database Searching

	1.4 Conventional Architectures
	1.4.1 Memory Hierarchy
	1.4.2 The Memory Wall in Micro-Architectures

	1.5 Conclusion

	2 State-of-the-Art on Energy Efficient Distributed Emerging Architectures
	2.1 Optimized Accelerators using Standard Computing Paradigm
	2.1.1 Software Paradigm for Vector Architectures
	2.1.2 Reconfigurable Architectures

	2.2 Emerging Memory-based Computing Technologies
	2.2.1 Classification of Emerging Memories
	2.2.2 In-Memory-Computing
	2.2.3 Near-Memory-Computing

	2.3 3D Implementation Opportunities
	2.3.1 3D Stacked Memories
	2.3.2 Processing-In-Memory
	2.3.3 Coarse Grain to Fine Grain

	2.4 Conclusion

	3 A Dream: a 3D Stacked Distributed Computing Architecture
	3.1 Architecture Vision Overview
	3.2 Architecture Challenges and Associated Research Topics
	3.3 Summary of the PhD Contributions

	4 A Reconfigurable Memory-based Computing Architecture Proposal
	4.1 METEOR: a Reconfigurable Memory-based Computing Cluster
	4.1.1 Inter-tiles Reconfiguration and Communication
	4.1.2 Overview of Vertical Transfers in the Pipeline Flow
	4.1.3 Interleaved Instructions and Memory Accesses
	4.1.4 Vertical Transfers Detailed Implementation

	4.2 Design Specifications
	4.2.1 IMC/NMC Tile Unit
	4.2.2 Vertical Transfer Unit
	4.2.3 Tile Address Mapper Unit
	4.2.4 Global Pipeline Dispatcher Unit

	4.3 System Integration Overview
	4.3.1 Tightly Coupled Memory of a Processor
	4.3.2 Loosely Coupled Co-processing Unit

	4.4 Conclusion

	5 Software Integration for Scalable Vector Computing
	5.1 Software Integration Overview
	5.1.1 Programmer's View
	5.1.2 Layout Configuration Parameters
	5.1.3 Instruction Set Formats

	5.2 Instruction Set Architecture
	5.2.1 System Bus Integration
	5.2.2 Control Interface Memory Mapping

	5.3 Programming Model for Scalable Vector Processing
	5.3.1 Vector Processing Capability

	5.4 Vector Data-centric Kernels
	5.4.1 Shared Data Memory
	5.4.2 Reduction Operations

	5.5 Conclusion

	6 Design Space Exploration of the Memory Interconnect
	6.1 Interconnect Overview
	6.1.1 SRAM Organization
	6.1.2 Performance and Power Impacts

	6.2 Evaluation Methodology
	6.2.1 Physical Design Flow
	6.2.2 Static Timing Analysis
	6.2.3 Multiple Memory Tile Exploration

	6.3 Experimental Results
	6.3.1 Performance, Power and Area Trade-offs
	6.3.2 Wiring Interconnect Model

	6.4 Conclusion

	7 ArchSim: an IMC-NMC Software-Hardware Simulation Platform
	7.1 Introduction
	7.1.1 ArchSim Platform Overview

	7.2 Software Layer: a Macro Cross Compiler
	7.2.1 Cross Compiler Tool Chain
	7.2.2 ISA Integration Proposal, using PyISAGen

	7.3 Hardware Layer: a Module-based Platform
	7.3.1 Approximately-Timed Interconnect
	7.3.2 ISS-based Core Modules
	7.3.3 METEOR SystemC/TLM model

	7.4 Launchers and Performance Metrics
	7.4.1 Cross-layer Simulation Launchers
	7.4.2 Hardware Counters, Timings and Power Statistics

	7.5 Simulation Platform Calibration
	7.5.1 Single Core RISC-V System
	7.5.2 Memory Interconnect Model
	7.5.3 In and Near Memory Computing RTL Simulations

	7.6 Conclusion

	8 Architectural Exploration Results
	8.1 Application Kernels with Scalable Vectorization
	8.1.1 Architecture Benchmarking Set-up
	8.1.2 Impacts of Cycle Accuracy Effects

	8.2 Architecture Benchmarking
	8.2.1 Evaluation of the Vector Width Scalability
	8.2.2 Evaluation of the Dynamic Reconfiguration
	8.2.3 Simulation Results

	8.3 Discussions
	8.3.1 Efficient Data Placement
	8.3.2 Memory Allocation

	8.4 Conclusion

	General Conclusion
	Toward a 3D Architecture
	Perspectives and Future Works

	A Résumé en Français
	Glossary
	List of Publications
	References

