
HAL Id: tel-03282268
https://theses.hal.science/tel-03282268v2

Submitted on 9 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image-based methods for view-dependent effects in real
and synthetic scenes

Simon Rodriguez

To cite this version:
Simon Rodriguez. Image-based methods for view-dependent effects in real and synthetic scenes.
Graphics [cs.GR]. Université Côte d’Azur, 2020. English. �NNT : 2020COAZ4038�. �tel-03282268v2�

https://theses.hal.science/tel-03282268v2
https://hal.archives-ouvertes.fr

Méthodes basées image pour le rendu d’e�ets dépendants
du point de vue dans les scènes réelles et synthétiques

Simon Rodriguez
Inria Sophia Antipolis-Méditerranée

Présentée en vue de l’obtention du
grade de docteur en Informatique
d’Université Côte d’Azur
Dirigée par : George Dre�akis
Soutenue le : 8 Septembre 2020

Devant le jury composé de :
Pierre Alliez, Directeur de Recherche, Inria Sophia
Antipolis - Méditerranée
Tamy Boubekeur, Professeur, Telecom Paris, Adobe
3D&Immersive, et Ecole Polytechnique
George Dre�akis, Directeur de Recherche, Inria
Sophia Antipolis - Méditerranée
Elmar Eisemann, Professeur, TU Del�
Michael Goesele, Research Scientist, Facebook
Reality Labs

Méthodes basées image pour le rendu d’e�ets
dépendants du point de vue dans les scènes réelles

et synthétiques

Image-based methods for view-dependent e�ects in
real and synthetic scenes

Jury:

Président du jury / President of the jury
Pierre Alliez, Directeur de Recherche, Inria Sophia Antipolis - Méditerranée

Rapporteurs / Reviewers
Michael Goesele, Research Scientist, Facebook Reality Labs
Elmar Eisemann, Professeur, TU Del�

Examinateurs / Examiners
Tamy Boubekeur, Professeur, Telecom Paris, Adobe 3D&Immersive, et Ecole Polytechnique

Directeur de thèse / �esis supervisor
George Dre�akis, Directeur de Recherche, Inria Sophia Antipolis - Méditerranée

Acknowledgements

�is thesis would not exist without the trust and support of my advisor George Drettakis.
�ank you for your never-ending optimism, your guidance in my research and for helping
me �nd my way around academia.

I am eternally indebted to all my co-authors for the time and resources they brought
and their helpful advice. I more speci�cally want to thank Adrien Bousseau for his
guidance, Peter Hedman for his incredible enthusiasm – especially during deadlines –,
Chris Wyman and Peter Shirley for welcoming me to Sea�le.

I want to acknowledge the Université Côte d’Azur, Inria and the European Research
Council for �nancially supporting this thesis. I am also grateful to the anonymous
reviewers for their constructive feedback on submissions. I �nally want to thank the jury
of my thesis for accepting to review this manuscript and take part in the defense.

�e GraphDeco team has been a formidable group of people. �ank you to everyone for
the insightful discussions, whether it was around a computer screen or at a co�ee break.
I am grateful for the help many of you provided all along this thesis. I especially thank
Johanna Delanoy for being my older PhD sibling along with �éo �onat, who also
was my partner in graphics and programming crimes. Shout out to Bastien Wailly for
endless discussions and gaming nights. A special thanks to Julien Philip for facing the
doctoral studies together. �is also applies to Valentin Deschaintre, who additionally
had to share an o�ce – and jokes – with me for three years.

I am immensely grateful to my parents for always fostering my curiosity, supporting me
as I grew up and more generally being awesome. To my grandparents for their interest in
my studies and their support, to my uncle for welcoming me in the south of France, and
to my brother for always being there. �ank you also to my friend Gédéon Chevallier
for always lending an interested ear to my research progress.

Finally, I want to thank my partner Claire Li for her in�nite unwavering support. �ank
you for bearing with my musings and showing a genuine interest in them. Without your
love and care, I could not have made it.

Résumé

La création et le rendu interactif d’environnements réalistes est un problème complexe qui
requiert de nombreux réglages et ajustements manuels. Les méthodes basées-image visent
à simpli�er ces tâches en utilisant des vues existantes d’une scène réelle ou synthétique.
Ces points de vue peuvent être capturés dans le monde réel ou générés grâce à des
algorithmes de rendu hors-ligne très réalistes. Pour générer un nouveau point de vue sur
la scène, la géométrie et l’apparence associées sont estimées à partir de l’information des
vues existantes, perme�ant l’exploration de l’environnement en temps réel.

Lorsque les vues d’entrée ne couvrent la scène que partiellement, spatialement ou angu-
lairement, des artefacts apparaissent souvent ; utiliser un faible nombre d’images d’entrée
limite la qualité de la reconstruction des scènes réelles, tandis que les matériaux non-di�us
compliquent le rendu des scènes tant réelles que synthétiques. Nous proposons plusieurs
méthodes pour contourner ces limitations, en améliorant la façon dont l’information
est stockée et agrégée depuis les vues d’entrée tout en exploitant les redondances. Nous
décrivons aussi des outils géométriques a�n de reprojeter les e�ets dépendants du point
de vue pour la génération d’une nouvelle vue.

Pour les scènes tirées du monde réel, nous détectons la présence de matériaux et objets
grâce à de l’information sémantique. Nous présentons tout d’abord une méthode pour
reconstruire et rendre des éléments architecturaux à partir de quelques vues. Nous
exploitons la nature répétitive de ces éléments, extrayant et combinant leur information
d’apparence et de géométrie pour générer une représentation commune idéale qui peut
par la suite être réinsérée dans la scène initiale. Ce�e combinaison améliore l’estimation
des paramètres des vues d’entrée, la reconstruction de la géométrie de l’élément, et est
utile pour détecter les régions comportant des e�ets spéculaires dépendants du point de
vue.

Nous décrivons une deuxième méthode qui s’appuie aussi sur la sémantique de la
scène pour améliorer le rendu d’environnements urbains. Dans ces scènes, les voitures
présentent de nombreux e�ets dépendants du point de vue qui les rendent complexes
à reconstruire et rendre �dèlement. Nous détectons et extrayons ces éléments grâce à

une paramétrisation spéci�que à chaque instance, a�n de ra�ner leur géométrie, tout en
construisant une représentation simpli�ée des surfaces ré�ectives, telles que les fenêtres.
Pour rendre les e�ets dépendants du point de vue, nous séparons l’information spéculaire
de chaque vue d’entrée et utilisons notre représentation analytique des ré�ecteurs pour
reprojeter l’information dans la nouvelle vue, en respectant le déplacement des ré�exions.

En�n, bien que les scènes synthétiques fournissent une information exacte de la géométrie
et des matériaux présents, restituer �dèlement les e�ets non-di�us de façon interactive
reste di�cile. En nous inspirant de notre deuxième méthode, nous proposons une nouvelle
approche pour rendre ces e�ets en utilisant de l’illumination globale précalculée. Pour
un ensemble de points de vue prédé�nis dans la scène, nous précalculons l’information
spéculaire, stockée dans des images panoramiques. Grâce à une représentation simpli�ée
de la géométrie, nous pouvons estimer le déplacement des ré�exions de façon robuste,
accumulant dans la nouvelle vue l’information provenant des panoramas. Combinée avec
une paramétrisation adaptative des images panoramiques et un �ltre de reconstruction
préservant les matériaux, ce�e méthode restitue les e�ets de ré�exions pour di�érent
types de matériaux, de façon interactive.

Les résultats obtenus grâce à nos méthodes montrent une amélioration de la qualité du
rendu des e�ets dépendants du point de vue, que ce soit pour des données synthétiques
ou du monde réel. Ces travaux ouvrent la voie à de futures recherches sur les techniques
basées-image pour le rendu réaliste.

Mots-clés: rendu basé images - e�ets dépendants du point de vue - synthèse de ré�exions
- reconstruction de surface

Abstract

�e creation and interactive rendering of realistic environments is a time consuming
problem requiring human interaction and tweaking at all steps. Image-based approaches
use viewpoints of a real world or high quality synthetic scene to simplify these tasks.
�ese viewpoints can be captured in the real world or generated with accurate o�ine
techniques. When rendering a novel viewpoint, geometry and lighting information
are inferred from the data in existing views, allowing for interactive exploration of the
environment. But sparse coverage of the scene in the spatial or angular domain introduces
artifacts; a small number of input images is adversarial to real world scene reconstruction,
as is the presence of complex materials with view-dependent e�ects when rendering
both real and synthetic scenes. We aim at li�ing these constraints by re�ning the way
information is stored and aggregated from the viewpoints and exploiting redundancy.
We also design geometric tools to properly reproject view-dependent e�ects in the novel
view.

For real world scenes, we rely on semantic information to infer material and object
placement. We �rst introduce a method to perform reconstruction of architectural
elements from a set of three to �ve photographs of a scene. We exploit the repetitive nature
of such elements to extract them and aggregate their color and geometry information,
generating a common ideal representation that can then be reinserted in the initial scene.
Aggregation helps improve the accuracy of the viewpoint pose estimation, of the element
geometry reconstruction, and is used to detect locations exhibiting view-dependent
specular e�ects.

We describe a second method designed to similarly rely on semantic scene information
to improve rendering of street-level scenery. In these scenes cars exhibit many view-
dependent e�ects that make them hard to reconstruct and render accurately. We detect
and extract them, relying on a per-object view parameterization to re�ne their geometry,
including a simpli�ed representation of re�ective surfaces such as windows. To render
view-dependent e�ects we perform a specular layer separation and use our analytical
re�ector representation to reproject the information in the novel view following the �ow

of re�ections.

Finally, while synthetic scenes provide completely accurate geometric and material
information, rendering high quality view-dependent e�ects interactively is still di�cult.
Inspired by our second method, we propose a novel approach to render such e�ects
using precomputed global illumination. We can precompute specular information at a
set of prede�ned locations in the scene, stored in panoramic probes. Using a simpli�ed
geometric representation we robustly estimate the specular �ow, gathering information
from the probes at a novel viewpoint. Combined with an adaptive parameterization of
the probes and a material-aware reconstruction �lter, we render specular and glossy
e�ects interactively.

�e results obtained with our methods show an improvement in the quality of recreated
view-dependent e�ects, using both synthetic and real world data and pave the way for
further research in image-based techniques for realistic rendering.

Keywords: image-based rendering - view-dependent e�ects - re�ections synthesis -
surface reconstruction

Contents

Contents vii

1 Introduction 1
1.1 Rendering an environment . 1
1.2 Scene representation and creation . 3
1.3 Importance of view-dependent e�ects . 5
1.4 Contributions . 7
1.5 Funding and publications . 8

2 Related work 9
2.1 Image-based rendering . 11

2.1.1 General approaches . 11
2.1.2 Geometric scene representation 14
2.1.3 Blending techniques . 20
2.1.4 Synthetic data . 23

2.2 Extraction and rendering of view-dependent e�ects 27
2.2.1 Extracting view-dependent e�ects from real world data 28
2.2.2 Warping specular e�ects . 30
2.2.3 Generating specular e�ects . 34

2.2.3.1 Reprojecting re�ected objects 34
2.2.3.2 Finding re�ected points in the scene 36

2.3 Summary . 41
3 Repetitions for Image-Based Rendering of Facades 43

3.1 Introduction . 43
3.2 Related Work . 45
3.3 Overview . 47
3.4 Windows Extraction and Platonic Camera Calibration 50

3.4.1 Window extraction . 50
3.4.2 Platonic Camera Calibration . 51

3.5 Geometry Reconstruction . 53
3.5.1 Platonic Window . 53
3.5.2 Complete Facade . 55

3.6 Data Factorization and Augmentation . 57
3.6.1 View-Dependent Variations . 57

viii CONTENTS

3.6.2 Instance-Dependent Variations 59
3.6.3 Complete Facade . 61

3.7 Implementation and results . 63
3.7.1 Rendering . 63
3.7.2 Implementation . 63
3.7.3 Results . 64

3.8 Conclusion . 66
4 Image-Based Rendering of Cars with an Approximate Re�ection Flow 69

4.1 Introduction . 69
4.2 Related Work . 71
4.3 Overview . 72
4.4 Car Geometry Extraction and Re�nement 74

4.4.1 Isolating Cars with Semantic Labels 74
4.4.2 Smooth Car Hull Extraction and Semantic Mesh Re�nement . . . 75

4.5 Ellipsoid Approximation for Re�ection Flow Computation 78
4.5.1 Re�ection �ow computation . 79
4.5.2 Ellipsoid Fi�ing for Car Windows 80

4.6 Synthesizing Re�ection Layers . 81
4.6.1 Re�ection Layer Synthesis . 82

4.7 Rendering, Results and Comparisons . 83
4.7.1 Rendering and Implementation 83
4.7.2 Results . 85
4.7.3 Comparisons . 86

4.8 Conclusion . 86
5 Glossy Probes Reprojection for Global Illumination 89

5.1 Introduction . 89
5.2 Related Work . 91
5.3 Overview . 93
5.4 Probe generation and storage . 95

5.4.1 Per-probe Data . 95
5.4.2 Probe Parameterization . 96

5.4.2.1 Adaptive Resolution Map Computation 97
5.4.2.2 Adaptive Parameterization 98

5.4.3 Geometric Information . 99
5.5 Rendering Global Illumination . 99

5.5.1 On-the-�y Re�ection Position Estimation 100
5.5.2 Gathering View-dependent Color 101

5.6 Two-step Convolution for Accurate Warping of Glossy Probes 103
5.6.1 Filter Footprint Estimation . 104
5.6.2 Gloss Filtering . 105
5.6.3 E�cient Filter Approximation . 106

CONTENTS ix

5.7 Results, Evaluation and Comparisons . 107
5.7.1 Test Scenes . 107
5.7.2 Evaluation . 108
5.7.3 Results and Comparisons . 109

5.7.3.1 Comparisons with Baselines. 111
5.7.3.2 Comparisons with Prior Art. 111
5.7.3.3 �antitative Evaluation. 112
5.7.3.4 Statistics. 112

5.8 Conclusion . 114
6 Conclusion 117

6.1 Contributions . 117
6.2 Insights . 118
6.3 Future work . 120
6.4 Impact . 122

A Transformation from Platonic Scene to Input Scene 123

B Car Mesh Re�nement and Ellipsoid Fitting 125
B.1 Mesh Re�nement Minimization . 125
B.2 Isolating Car Objects using Semantic Labels 125
B.3 Ellipsoid ��ing algorithm . 126

C Choice of DCT for Parameterization Guiding 129

C h a p t e r 1

Introduction

For the last ��y years, computer graphics researchers have explored ways of creating,
editing and visualizing data through digital tools. �e exponential democratization
of computers combined with their compactness and their �exibility to display many
kinds of data has deeply impacted our society. An important part of the information
and entertainment we share and consume is delivered visually. Among the possibilities
brought by computer graphics, the ability to explore environments has impacted many
�elds – even if they do not exist in reality or are unreachable. Architecture, design,
healthcare, entertainment all bene�t from the capability of visualizing complex objects
and environments while interacting with them.

But creating and rendering such data is time-consuming, labor intensive and requires
signi�cant processing power. Creating scenes from nothing or acquiring them from the
real-world are arduous tasks. Displaying a scene to the user with the proper level of
detail and realism is another challenge, as humans rely constantly on the appearance and
visual behavior of objects to infer their properties and function [Fle14]. In this thesis,
we explore how existing or precomputed scene data can be leveraged to improve the
rendering of elements with complex appearance behavior while the user explores an
environment in real-time.

1.1 Rendering an environment

Rendering in computer graphics can be de�ned as the process of displaying existing data
onto a device screen. We focus on 3D rendering, where three-dimensional objects are
projected on the screen plane to generate an image. �e user point of view is modeled as
a simpli�ed camera, and the scene data is transformed so that the image faithfully shows
which objects would be visible to the user from the camera location.

Di�erent methods exist to determine which region of which object is visible in each part
of the image. ray tracing iterates over the image pixels; a ray originating at the viewer’s

2 Chapter 1. Introduction

virtual location and going through the pixel is shot in the scene, until it intersects an
object. Conversely, rasterization determines the footprint of each object on screen, and
updates the content of the covered pixels accordingly while keeping track of object depth
ordering.

Figure 1.1 – Le�: O�ine rendering from the Spring short movie (2019) 1. Right: real-time
rendering from the video game Control (2019) 2.

Rendering techniques relying on ray tracing can closely model the propagation of light in
a scene and support arbitrarily complex material behavior for increased physical accuracy
[PJH16]. But because it requires the ability to perform visibility queries that possibly
span the whole scene, memory and power requirements prevent it from being widely
used in real-time. Techniques such as path tracing have thus been mainly reserved to
tasks that favor accuracy over performance, such as movie visual e�ects [FHP+18] (see
for instance Fig. 1.1, le�) or architectural pre-visualization.

On the other hand, rasterization is the de facto method for interactive rendering, to the
extent that graphics processing units (GPU) have been specially designed to support it.
Care has to be taken to ensure that the proper object ordering and occlusions are respected,
but power and memory requirement are lower, making it amenable to performance critical
tasks (Fig. 1.1, right). In recent years commercial hardware support for ray tracing has
begun to appear, meaning that the strengths of both methods can be combined for
improved accuracy, depending on the task at hand.

1Blender Open projects, https://www.blender.org/about/projects/
2Remedy Entertainment, https://www.remedygames.com/games/control/

https://www.blender.org/about/projects/
https://www.remedygames.com/games/control/

Chapter 1. Introduction 3

1.2 Scene representation and creation

But determining visibility and object location is only the �rst step towards rendering an
environment. Each object appearance has to be determined based on its material proper-
ties and the scene lighting conditions. While we focus on natural-looking environments
in this thesis, rendering is not necessarily realistic per se; stylization and simpli�cation
can be used to great e�ect in animated movies or computer-assisted design for instance.

To generate a new viewpoint in a scene, multiple elements are required. �e geometry of
each object has to be represented, either as a surface mesh, a parameterized model, the
solution of an analytic equation, a 3D volumetric discretization or other ad hoc techniques.
�e way light interacts with a given surface is described by a bidirectional re�ectance
distribution function (BRDF); many models have been developed to synthesize materials
as diverse as skin, fabric, metal or hair in real-time. BRDF parameters can vary over an
object’s surface and are o�en stored in textures. Additional e�ects such as transmission
or sub-surface sca�ering can also be modeled. Light sources can similarly be represented
by analytical models or sample measurement-based pro�les. Additional data such as
environment panoramas can be used to help take into account all lighting contributions.

Figure 1.2 – Le�: Screenshot of a synthetic scene opened in Blender 3. Right: screenshot
of the photogrammetry tool Colmap 4.

All these elements can be created by artists in specialized so�ware (Fig. 1.2, le�), a task
that requires a high level of skill and is extremely time consuming. �is has a strong
impact on creativity, the democratization of content creation and the widespread adoption
of 3D graphics at large.

3Blender Foundation, https://www.blender.org/
4[SF16, SZPF16], https://colmap.github.io/

https://www.blender.org/
https://colmap.github.io/

4 Chapter 1. Introduction

Capturing real-world elements through various acquisition devices is now a viable al-
ternative used in production of �lms and games. BRDFs can be measured from material
samples using adequate sensors or inferred from photographs. Photogrammetry can
reconstruct the surface of an object from a set of pictures showing it under multiple
angles (Fig. 1.2, right). But the output of these techniques requires tedious cleanup to
be used in a real-time rendering engine since most solutions only provide approximate
geometry and texture, with no information on materials and with lighting “baked into”
the texture. Using this data for real-time rendering requires the artist to cleanup the errors
in geometry, manually de�ne material properties, and remove the lighting from textures,
typically involving painstaking manual steps. Furthermore, most lighting models used
for real-time have to simplify or even forego complex lighting e�ects to remain accessible
on a wide range of hardware.

Figure 1.3 – Image-based rendering samples and reprojects information from a set of
input views to the novel view, optionally using an intermediate scene representation.

Image-based rendering (IBR) pushes the idea of acquiring data from the real world to
the extreme limit, by trying to capture and directly use lighting information. Instead of
evaluating a simpli�ed BRDF model, why not use the real-world shading that is visible
in photographs of a scene? Multiple pictures of an object can be used to estimate not
only the geometry, but also the appearance of the material under di�erent viewpoints.
�is information can be aggregated and queried to generate a novel view (Fig. 1.3). Data
does not have to come from the real world, and can instead be precomputed using o�ine
techniques for synthetic content. It is thus possible to bene�t from more accurate lighting
than by only relying on real-time methods. Whichever data source is used, IBR replaces
lighting evaluation by a sampling and reprojection task: input information has to be
sampled and reprojected based on the user viewpoint. �is can be a complex problem for
e�ects such as re�ections or transparency.

Chapter 1. Introduction 5

While the behavior of di�use surfaces is now well handled by most rendering approaches,
view-dependent e�ects such as re�ections are more complex to synthesize accurately in
real-time (Fig. 1.4). As they depend on the user’s motion and involve surfaces that are
potentially far from each other in the scene, they can vary at a high temporal and spatial
frequency, whereas the human eye is very sensitive to them.

Figure 1.4 – Example of a synthetic scene. Le�: only di�use illumination is computed.
Right: all material e�ects are rendered, greatly improving the scene realism.

1.3 Importance of view-dependent e�ects

View-dependent e�ects visible at the surface of non-di�use objects are complex to render
while being paramount to scene realism. Indeed, humans are extremely sensitive to the
specular behavior of materials and can easily perceive inconsistencies [PFG00].

Re�ections for instance are omnipresent in any real world scene but exhibit complex
motion as soon as the surface or the material parameters are not simple (see Fig. 1.5).
Such e�ects depend on the geometry and material of multiple surfaces in di�erent parts
of the scene (the re�ector and re�ected elements for instance). Multiple intersections
have to be found and the lighting evaluated at each of these. For glossy e�ects, light
incoming from multiple directions has to be taken into account, involving even more
queries. Furthermore, compared to di�use global contribution, these cannot be easily
precomputed as they depend on the user viewpoint.

For image-based techniques, view-dependent e�ects have to be handled with speci�c
sampling and reprojection approaches. As already pointed out, their motion or �ow when

6 Chapter 1. Introduction

Figure 1.5 – Examples of real-world complex view-dependent behaviors in everyday life
scenes: re�ection, glossiness, refraction, transmission.

moving around is not the same as the one for di�use geometry. Di�erent �ows have
to be computed for di�erent e�ects and their data has to be reprojected separately. For
transparency e�ects, multiple surfaces contribute to the appearance visible at a given
pixel, each with a di�erent depth and motion. Inconsistent appearance also leads to
artifacts in most capture processes that rely on a simpli�ed di�use assumption (Fig. 1.6).
Finally the number of viewpoints required to capture high frequency e�ects on a given
surface can increase storage requirements drastically. At the same time all materials do
not exhibit e�ects at the same frequency, so space is wasted storing redundant information
in some regions.

Figure 1.6 – Artifacts introduced by re�ective and transparent surfaces: missing or
erroneous geometry caused by specularity or transparency (orange), duplicated or blurry
re�ections caused by an erroneous �ow (blue).

Chapter 1. Introduction 7

1.4 Contributions

�e issues discussed in the previous sections motivated our research. In this thesis, we
explore how to improve the rendering of view-dependent e�ects in scenes, both extracted
from real world environments and created synthetically by artists. To reach high visual
quality we leverage precomputation and thus use image-based techniques to reproject
existing information in novel views. We believe that interactive visualization of realistic
environments is a unique way to explore an original scene, whether it comes from the
real world or an artist’s mind.

�roughout the three projects presented in this thesis, we have iteratively rede�ned our
modeling of view-dependent e�ects depending on the type of scenes tackled. We thus
present:

• Chapter 3: a novel technique for reconstruction and rendering of facades from a
small set of input photographs. We exploit architectural repetitions to process the
most important scene elements in isolation, even if they exhibit view-dependent
behavior. By aggregating information from multiple elements, we are able to
improve on the reconstruction and rendering, while detecting regions that exhibit
specular e�ects. Additional re�ection e�ects can then be added.

• Chapter 4: a second technique that processes re�ective elements in isolation,
this time focusing on street-level regular capture. Here again, working on ele-
ments separately allows us to repair geometry reconstruction artifacts caused by
view-dependent e�ects. We build an analytic representation of re�ective semi-
transparent surfaces, using it to extract plausible re�ection layers. �is representa-
tion is also used at render time to compute the �ow of re�ections from the input
views and sample the layers accordingly, generating plausible re�ections in motion.

• Chapter 5: a third technique that, motivated by our previous re�ection �ow work,
generates realistic mirror and glossy re�ections in synthetic scenes. �e perfect
geometry is leveraged to warp precomputed specular information from a set of
parameterized probes to the novel view. Information is gathered in the novel view,
accumulating specular samples that are valid for the new location while respecting
occlusions and materials. An image-space reconstruction �lter ensures that glossy
surfaces are properly rendered.

8 Chapter 1. Introduction

1.5 Funding and publications

�is thesis has been funded by a PhD fellowship from the IT doctoral school of Université
Côte d’Azur and the ERC Advanced Grant No. 788065 FUNGRAPH5. It has led to two
publications in international venues ([RBDD18, RPHD20]) and a project currently under
review ([RLP+20]).

5http://fungraph.inria.fr

http://fungraph.inria.fr

C h a p t e r 2

Related work

As described in the introduction, this thesis focuses on the rendering of view-dependent
e�ects in both real and synthetic environments, by relying on image-based methods,
data precomputation and reprojection. We now introduce the concepts at the root of
rendering and scene reconstruction. We then review the literature on image-based
techniques, focusing on the real-time rendering of large scenes, and detail how view-
dependent e�ects are extracted, reconstructed or synthesized in the literature, both for
real and synthetic scenes.

x

nwo

f

wi

Ω

Figure 2.1 – �e rendering equation estimates the radiance exiting a point on the surface
of an object, taking into account the material properties and the radiance incident from
all directions.

To realistically render a new viewpoint in a 3D scene, light propagation has to be simulated.
�is simulation should model the way light propagates from sources to the viewpoint,
taking into account intermediate interactions with the materials present in the scene.

�e rendering equation [Kaj86] describes such interaction at a point x on the surface of
an object (see Fig. 2.1).

Lo(x, ωo, λ, t) = Le(x, λ, t) +

∫
Ω

f(x, λ, t, ωi, ωo)Li(x, ωi, λ, t)(ω · n)dωi

10 Chapter 2. Related work

For a given outgoing light direction ωo, the radiance Lo exiting the point is the sum of
the emissive behavior of the surface Le(x) and the accumulated incoming radiance Li
from all directions ωi covering the hemisphere Ω. �e incoming radiance is modulated by
the material based on its properties, described by a bidirectional re�ectance distribution
function (BRDF) [Nic65] f , and by a geometric term based on the normal n orientation.
�e rendering equation is given at a �xed time t and for a speci�c light wavelength
λ. Properties of the material are o�en spatially-varying and stored in texture maps for
convenience. Evaluating the rendering equation at a given point requires knowledge
of the radiance at all points in the scene that might contribute to the incoming radi-
ance for the current point. But these quantities might depend on the radiance we are
currently evaluating. �is makes solving the rendering equation for the whole visible
scene intractable. �us simplifying assumptions have to be put in place, especially for
real-time rendering. �e behavior of light emi�ers, of the BRDF and estimation of the
incoming radiance to a point can be approximated using di�erent techniques, for example
analytical representations or precomputed tables.

�e information required to represent and shade a scene can be created from scratch
using specialized so�ware, or be acquired in the real world. Capture relies on either
speci�c sensors for BRDF acquisition or commercial handheld cameras. Multi-view
stereo reconstruction techniques (MVS) combine information from a set of input RGB
images to automatically estimate a surface mesh of the scene [GSC+07, SZPF16]. �e
input camera poses and intrinsic parameters are �rst estimated using structure-from-
motion [SSS06]. Signi�cant features are extracted from each input images using scale and
rotation invariant descriptors [Low04, BTVG06]. �ey are matched between neighboring
views and the depth of the corresponding pixels estimated through triangulation. �is
initial sparse point cloud is then used to re�ne camera estimation and compute dense
depth maps. �ese are aggregated to form a dense point cloud, from which the mesh
surface is reconstructed (see Fig. 2.2, le�).

Erroneous feature matches introduce artifacts in the geometry, and are caused by view-
dependent e�ects, transmissive surfaces that present multiple depths for a given pixel, or
occlusion events that lead to noisy edges (Fig. 2.2, right). �is adds extra constraints to
the acquisition baseline, requiring redundant coverage between the input views.

For synthetic scenes, image-based techniques rely on the notion that high-quality shading

Chapter 2. Related work 11

Figure 2.2 – Le�: Calibrated cameras and scene geometry obtained by multi-view stereo
reconstruction (using [SZPF16]). Right: �e transparent window geometry is missing, as
is the car roof, highly re�ective at grazing angles.

for real-time rendering can be precomputed at the desired level of accuracy instead of
relying on on-the-�y approximate evaluation. Image-based rendering furthermore allows
for real-world lighting data to be used as-is, for increased realism at the cost of editability.
Because the novel viewpoint is unknown at precomputation or acquisition time, data
has to be queried and reprojected to generate the novel image. E�ects that are viewpoint
dependent thus require additional care as their motion can be hard to estimate. On the
other hand, image-based representations of the scene can be used to synthesize more
accurate visual e�ects in real-time, including re�ection and refraction that are particularly
important to achieve high levels of realism. �is thesis focuses on such techniques, both
in synthetic and real environments.

We now present a review of existing approaches in both image-based rendering and
view-dependent e�ect synthesis. We focus on interactive rendering of complete scenes.

2.1 Image-based rendering

2.1.1 General approaches

Plenoptic function. Image-based techniques rely on the pre-existence of scene informa-
tion such as shading and global illumination e�ects that would be expensive to compute
at runtime. In an ideal world, we would be able to store such information for all directions,
at all locations. More formally, the appearance visible from a point of view in the scene,
for a given direction is given by the plenoptic function [MB95] P (x, (θ, φ), λ, t) where x
is the view 3D position and (θ, φ) the normalized direction, λ the wavelength and t time

12 Chapter 2. Related work

(see Fig. 2.3).

x
ϕ

θ

Scene

Figure 2.3 – �e plenoptic function parameterizes the scene appearance observed from a
given viewpoint and direction as a 5-dimensional quantity (x, θ, φ) – at �xed time and
wavelength.

A perfect image of the scene from a given viewpoint could be generated if we had an
oracle that could return P for any set of input parameters. In our applications, we
consider temporally static scenes and use the standard collapse from the full spectrum to
a triplet of red, green, blue values. In practice, the plenoptic function of the scene can only
be sparsely sampled due to acquisition, computation and storage constraints [CTCS00].
When generating a novel viewpoint of the scene, existing samples have to be selected
and blended to approximate the missing plenoptic information. Di�erent resampling
and completion approaches put di�erent requirements on the quality and density of the
initial data acquisition. One has to ensure that enough information is captured to allow
for free-form exploration of the scene while limiting the storage usage for interactive
applications. Furthermore, resampling might be simpli�ed if additional scene information
is known, for instance geometry.

Panoramas. Historically, one of the �rst examples of image-based rendering is the
generation of interactive 360-degree panoramas and turntables [Che95]. In these setups,
the user position is either �xed or rotating around a �xed point of interest. For this
�xed location, a set of images covering all possible view angles is captured and stitched
together (see Fig. 2.4). �e plenoptic function is thus densely sampled in all directions
(θ, φ) for a �xed x. �e plenoptic data can originate from real world photographs or
synthetic images computed with accurate non-interactive methods. Panoramas can be

Chapter 2. Related work 13

created at di�erent locations and linked together, allowing for interactive exploration of
an environment by “jumping” from a panorama to another when clicking on prede�ned
areas of interest. Shade et al. [SLS+96] subdivide a synthetic scene into a hierarchy of
nodes; renderings of each node content can be cached for re-use while the user explores
the environment, by displaying them on quads in world space.

Input images Stitched panorama

Figure 2.4 – Multiple images taken at the same location can be combined to generate a
panorama. �e user can freely rotate around to visualize the scene.

Light �elds. To allow for more freedom in viewer motions while still limiting the dimen-
sionality of the problem, the Lumigraph [GGSC96] and Light �eld [LH96] techniques
designed a custom parameterization of the plenoptic function. �ey de�ne a region of
the scene contained between two parallel planes with limited extent (Fig. 2.5). Rays of
light that go through this region while intersecting both planes can be parameterized
by their intersections locations as two sets of 2D coordinates. �is parameterization has
fewer dimensions than the full plenoptic function while allowing for the generation of
views with di�erent orientations.

In the case of the Light �eld, images are captured on a regular grid on one of the two
planes, with the object of interest behind the other plane. Generating a novel view light
ray is then a ma�er of linearly interpolating between the nearby input rays based on
the two sets of planar coordinates of the new ray. �e Lumigraph supports unstructured
capture, but requires an additional resampling step to extract the light rays from the input
images. Both methods use high-density input data, allowing for the reconstruction of
complex view-dependent e�ects at the cost of high storage. In cases where the plenoptic
function cannot be sampled as densely, existing samples have to be warped and propagated
to generate novel viewpoints. For sparser setups it becomes necessary to have some
additional scene information available, such as depth, de�ned either locally for each input
view or globally for the scene.

14 Chapter 2. Related work

s

t

u

v

(s,t)

(u,v)

ray

Figure 2.5 – �e light �eld parameterization reduces the plenoptic function to a 4 dimen-
sional quantity for all rays intersecting a focal and a sensor planes. Le�: example of a
regular grid light �eld capture.

2.1.2 Geometric scene representation

Scene geometry information can be used to reproject plenoptic samples from an input
view to the novel view, while taking into account occlusions and simplifying render-
ing. Acquisition setups that use unstructured 2D images as input are compatible with
camera pose estimation, as well as depth and surface reconstruction techniques from
computer vision. Care needs to be taken when handling complex surfaces with re�ective
or transmissive elements, and when merging information from di�erent input views.

Global scene geometry An approximate scene representation can be provided by the
user through the use of interactive modeling so�ware. Texture information is then
reprojected from the input images onto the geometry [DTM96]. When multiple images
reproject on the same region, they can either be consistent if the surface is di�use, or
contain variations caused by view-dependent e�ects. To preserve this information, texture
data is blended between the input views closest to the novel viewpoint. Multi-directional
color information can be stored on each face of the geometry [DYB98] and blended at
runtime using graphics hardware, a process called view-dependent texture mapping
(Fig. 2.6, le�).

Heigl et al. [HKP+99] approximate the scene by a unique mean plane onto which input
color information is reprojected and blended based on the novel view location. Buehler
et al. [BBM+01] use a more complex scene representation. �ey tessellate the novel
view image plane into a grid of vertices, combined with a reprojected partial scene

Chapter 2. Related work 15

Figure 2.6 – Le�: view-dependent texture mapping project the input images as textures
onto the scene geometry. Right: �e Unstructured Lumigraph use a screen-space scene
tessellation (top right) as a support to evaluate blending weights between input images
(bo�om right) in the novel view (bo�om le�).

reconstruction (Fig. 2.6, right). At each vertex, blending weights between nearby input
views can be estimated based on their relative distance and orientation with respect to
the novel view currently generated. �e smooth camera blending �eld obtained is then
used to aggregate input image color information.

When the reprojection and blending process used to generate the novel view is known in
advance, it is possible to guide the user during the capture process [DLD12] to ensure
optimal quality of the result. Approximations in the global geometry lead to incorrect
reprojections from the input images to the novel view. Floating textures [EDDM+08]
compensate these by precomputing the optical �ow error obtained when reprojecting an
input image into another input view. �ese �ow �elds are queried at runtime to correct
the erroneous warping introduced by the geometry.

While a global mesh simpli�es the rendering process by making it amenable to regular
graphics hardware, extra geometric accuracy can be gained by skipping the �nal aggrega-
tion step and relying on per-view depth information. Indeed, the consensus required to
generate global geometry o�en leads to discarding per-view accurate information when
it is inconsistent between views.

Per-view geometry. Because global geometry is multi-view consistent at the cost of

16 Chapter 2. Related work

accuracy at each input view, several techniques have explored per-input view depth or
geometric representations. Per-view depth maps can be used directly to reproject and
select plenoptic samples; depending on the performance required, these depth maps can
be discretized and simpli�ed to a set of local planes [HKP+99].

Figure 2.7 – Le�: Input image segmented in almost-constant depth super-pixels based
on color information. Right: In [CDSHD13] 3D patches generated from the input views
super-pixels are warped to generate the novel view.

Zitnick et al. [ZKU+04] segment input images extracted from videos into super-pixels of
expected constant depth (example of segmentation in Fig 2.7). �e depth of each region is
re�ned and care is taken at discontinuities to separate foreground and background color
information. �e depth information is used to interpolate between the input images. By
accumulating reprojected information from multiple super-pixels, regions occluded in
one input view can be �lled in by another view’s super-pixels. Additional e�ects such
as depth of �eld or more complex camera motions can also be reproduced [ZCA+09].
Chaurasia et al. [CDSHD13] also estimate and re�ne depth for super-pixels in the input
views, but additionally build geometric patches for each region (Fig 2.7). �ese patches
can be warped and blended depending on the novel view location, while preserving the
shape of the surfaces covered by each patch.

Inside-out [HRDB16] combines RGBD input views with reconstructed global geometry
to generate re�ned per-view meshes (Fig. 2.8). �ese are then sliced on a regular grid
covering the scene. At runtime, slices of the per-view meshes are selected independently
for each grid region, depending on the viewpoint location. �e input texture data associ-
ated to the di�erent selected slices is blended together with a fuzzy depth test to generate
the �nal view.

Chapter 2. Related work 17

Input image Global geometryInput depth Per-view geometry

Figure 2.8 – Per-view meshes used in [HRDB16] be�er capture small details of the scene
geometry that are lost when generating a global consensus mesh.

Such surface representations enforce a single depth per input-view pixel, which is incom-
patible with transparent surfaces and partial pixel coverage at discontinuities. Layered-
depth images [SGHS98] decompose each input view into a set of partial images at di�erent
depths (Fig. 2.9). Each layer is warped to the novel view and alpha-blended back-to-front.
No additional depth testing is required, as regions that correspond to opaque foreground
objects will automatically occlude any background layer.

More recently, Tulsiani et al. [TTS18] generate layered depth images from a pair of
calibrated input views using a neural network trained by comparing novel viewpoints
generated from the predicted layers with a reference image. Mildenhall et al. [MSOC+19]
apply a similar technique to a set of input views placed on a regular grid. A set of planes
containing color and opacity information is extracted from each view. �e planes of
the neighboring input views are warped to the novel view and blended using bilinear
weights.

Layered representations require more storage but �t the classical alpha compositing
pipeline where successive layers are stacked and their colors blended based on the
associated opacity values. For scenes with intricate geometry or complex multi-layered
e�ects, many layers are required, and some approaches have opted for a fully volumetric
representation.

Volumetric representation. Volumetric representations extend the layered multi-plane

18 Chapter 2. Related work

p

Novel viewInput layered view

z1

z2

z3

Figure 2.9 – Le�: Layered depth images can store multiple (color, depth) samples for a
given pixel (example from [MSOC+19]). Right: When rendering the novel view, layers
stored for pixel p are at di�erent depths zi and reproject at di�erent locations in the new
image.

image approaches by slicing the scene in a 3D voxel grid, each containing information
related to the corresponding region of space. �ey o�er the possibility of storing non-
binary information in a more dense fashion than discretized surface representations.

Figure 2.10 – Volume generation process described in [PZ17], taking into account occlu-
sions and so� visibility.

So�3D [PZ17] generate a per-input view volumetric representation on the scene, estimat-
ing color and occupancy for each voxel of a grid aligned with the input view frustum. �e
estimation is performed using MVS without collapsing to a �nal surface representation.
When rendering a novel view, nearby input volumes are warped to the novel view volume
and aggregated based on the relative con�dence in each voxel data to build a consensus
representation (Fig. 2.10). For each pixel, a ray is cast through the volumes, accumulating
color information until the occupancy reaches saturation.

Chapter 2. Related work 19

Instead of storing explicit information such as color and occupancy, recent techniques
instead propose to store features extracted by a neural network [STH+19]. When gener-
ating a novel view, the features volume can be warped similarly to So�3D, before being
fed to a rendering neural network. End-to-end training ensures that the network learns
to generate plausible interpolated views (Fig. 2.11a). Alternatively, learned features can
be used as a compressed representation of the volumetric scene. Lombardi et al. [LSS+19]
extract a compact feature vector from a multi-view dataset. �e features are used as
input to a decoder that regenerates a regular volumetric representation from the novel
viewpoint (Fig. 2.11b).

Deep Voxels

Training

Input views Rendering path Novel viewpoints(a)

(b)

Figure 2.11 – (a) Each voxel of the volumetric representation described in [STH+19]
stores features extracted from the corresponding scene region. �e feature volume can
be resampled and decoded to generate the novel view. (b) In [LSS+19], a compressed
representation of the scene is learned and can be used to regenerate a full volumetric
grid containing color and occlusion information.

As described in this section, image-based rendering techniques rely on a set of di�erent
representations with varying space/rendering trade-o�s. �e warping and blending
applied to the plenoptic samples is usually tied to the scene representation, as some part
of the reconstruction can be performed at blending time. Dense representations su�er
from high storage requirement when treating large scenes, but surfaces are not always
able to represent all types of objects encountered. Per-view geometry captures �ner

20 Chapter 2. Related work

object details at the cost of global geometric consistency. Because scene reconstruction is
paramount to most image-based rendering techniques, our work also relies heavily on
computer vision solutions. In the following chapters we will focus on sparse input images
(chapter 3) or large scenes (chapter 4), and will try to address some of the shortcomings
of surface representations when it comes to view-dependent e�ects.

2.1.3 Blending techniques

Blending information from multiple input views to generate a novel image while preserv-
ing view-dependent e�ects is a complex problem. Multiple e�ects need to be accounted
for and the blending techniques o�en rely extensively on the underlying scene represen-
tation.

Geometric measures and optimization. Once plenoptic samples are selected or trans-
ferred to the novel view, it has to be blended depending on the signi�cance/contribution
of each input view for the novel view. Blending weights can be computed based on geo-
metric criteria. �e input view positions form a tessellation of the explorable space; some
approaches thus resort to interpolating between the closest input views using barycentric
interpolation [LH96, DLD12, MSOC+19]. Other methods o�er more complex weighting
schemes designed to measure the similarity between two views [DYB98, BBM+01]. For
instance, the Unstructured Lumigraph [BBM+01] computes a per-vertex, per-camera
weight that takes into account the relative distance of both input and novel views to the
vertex, their relative orientations and the projection of the vertex in the image plane
(Fig. 2.12).

θ

dn

di

Novel
view

V1
V2

Vk

...

Rendered view Blending weights

Figure 2.12 – �e ULR blending weights at a point on the surface take into account the
distances from that point to the input view di and novel view dn, along with their relative
incidence angle θ and the location in the input image space. �e best cameras are ranked
and their scores normalized.

Chapter 2. Related work 21

For o�ine rendering, optimization based techniques achieve seamless blending with
temporal stability. Hyperlapse [KCS14] generates the �nal image using a graph-cut on the
set of close input images while trying to minimize texture distortions (Fig. 2.13). A more
formal framework is proposed by Pujades et al. [PDG14], where both texture deformation
and the uncertainty introduced by the data resolution and geometry reconstruction are
taken into account. �ey are able to re-derive the weights used by view-dependent texture
mapping and the unstructured lumigraph.

Solving the general optimization problem remains infeasible in real-time, but these ap-
proaches provide a �rm grounding upon which other blending schemes can be validated.

Figure 2.13 – Hyperlapse: Le�: A texture deformation measure is used to compute
blending weights. Right: Selected images are stitched together by solving a labeling
problem o�ine.

Neural blending and rendering. Because the �nal blending is frequently performed
in the novel view image space, it can be cast as a convolutional neural network task.
DeepBlending [HPP+18] builds on InsideOut [HRDB16] by performing blending between
selected candidate samples using a compact neural network (Fig. 2.14). As the network is
trained on multiple scenes, it generalizes well to unseen datasets.

As mentioned in the previous section, learning-based volumetric methods usually have
a strong coupling between the representation and blending. Deep Voxels [STH+19]
generate the �nal image using a U-Net neural network that combines the reprojected
feature volume with the output of a secondary network estimating occlusions. �ies et
al. [TZN19] design a system where the scene appearance is learned as a set of features
parameterized in texture space (Fig. 2.15). UV coordinates are rendered for the novel
view and the neural texture is queried at those coordinates to obtain the �nal appearance.

22 Chapter 2. Related work

Top-ranked mosaic Second-ranked mosaic Reference image

Third-ranked mosaic Fourth-ranked mosaic Blended image

Figure 2.14 – DeepBlending [HPP+18] selects four candidate samples for each novel view
pixel. �ose colors are blended using weights predicted by a scene-agnostic network
trained in a leave-one-out fashion.

Figure 2.15 – [TZN19] build a texture space scene representation called a neural texture.
Scene UV coordinates visible in the novel view are used to sample that texture and pass
it to a network; the texture features are decoded to obtain the �nal color view.

NERF [MST+20] replaces the texture coordinates by a 3D space parameterization: a
network is trained to predict the radiance and occupancy at any given location in the
scene volume (Fig. 2.16). Radiance is queried regularly along view rays and accumulated
until occupancy saturates. In practice a two-level representation is used: a coarse network
is used for initial fast queries and a second, deeper network is evaluated to query �ner
details.

Techniques that build an internal representation speci�c to the scene are o�en limited
in the size and complexity of the scene that they can capture, while requiring a high
number of input images (from hundreds to thousands). In chapters 3 and 4, we focus on

Chapter 2. Related work 23

(x,y,z,θ,ϕ)

Network

(r,g,b,α)

Novel
viewpoint

Figure 2.16 – NERF train a network to predict the radiance for any 3D location and
direction in the scene volume. �e �nal view is generated by raymarching through this
volume.

scenes that are either large scale or captured with a very sparse baseline, and we thus
resort to using surface-based geometry combined with image-space blending weights.

2.1.4 Synthetic data

�e possibility of generating new viewpoints in a scene or on an object by combining
existing plenoptic samples also has advantages for rendering synthetic scenes created
by artists. Shading computation can be decoupled from novel view generation and
thus rely on more expensive approaches. Samples can also be temporally accumulated.
Precomputed radiance can be queried to generate re�ection e�ects more easily. Finally,
image-based rendering enables high quality interactive rendering of complex e�ects
or rendering on constrained hardware, as remote or precomputed information can be
warped to a novel viewpoint on the �y. In chapter 5, we present a novel technique
for realistic rendering of high-quality specular and glossy surfaces, motivated by the
applications of image-based rendering to synthetic scenes.

Sample reuse. In early works existing radiance samples can be reused to generate a novel
viewpoint on the scene. �e Holodeck [WS99] renders rays carrying radiance and store
them in a data structure; it is then queried to generate the novel view, by selecting the rays
closest to those needed for the novel image. �e Render Cache [WDP99] accumulates
ray-traced samples that are reprojected in the novel view in a depth-aware fashion.
Information is interpolated between samples to generate the �nal image (Fig. 2.17). New

24 Chapter 2. Related work

samples are requested to cover empty regions of the novel view. Frameless rendering
[BFMZ94, DWWL05] similarly reconstruct the �nal image from reprojected temporal
samples. Here, the ray-traced samples are stored in a set of 2D partial images. �e
temporal blending parameters are adjusted based on the presence of dynamic elements
in the scene.

Figure 2.17 – In the Render cache[WDP99], samples are reprojected in the novel view
(le�). Proper depth ordering is enforced (center) and samples information is propagated
in empty regions (right).

Instead of projecting samples from a cache to the novel view, the problem can be turned
in a gathering task, where scene points visible in the novel view are reprojected in the
previous frame rendering [NSL+07]. �e validity of cached samples is evaluated based
on disocclusions. Temporal accumulation of radiance samples from previous frames can
also be used for denoising and anti-aliasing [Kar14, SKW+17, YLS20].

Re�ection rendering. Re�ections are view-dependent e�ects that exhibit complex
non-linear behavior under motion. When shading a re�ective surface, elements that
are re�ected onto it have to be found in the scene and their radiance estimated. �is is
di�cult to perform accurately and interactively in rasterization-based frameworks.

Environment maps store the scene colors visible in all directions from a given location
and can be fetched to obtain the radiance incoming to a re�ective surface in a given
direction (see next section for more details). Lischinski et al. [LR98] extend this concept
by storing environment radiance as a set of layered depth images and auxiliary light �elds
for view-dependent e�ects. A similar approach replacing a regular environment cube-
map by six light-�elds covering the full sphere is also found in the literature [YYM05]
(Fig. 2.18).

Chapter 2. Related work 25

View 1 View 2 View 3

Light field

Light field

Li
gh

t f
ie

ld

Li
gh

t f
ie

ld

Figure 2.18 – [YYM05] surround the environment by light �elds on the six faces of a cube
surrounding the object. Parallax in the re�ections is properly reproduced.

Figure 2.19 – [LRR+14] warps a high quality frame to a new viewpoint. Separate optical
�ows for di�use, re�ection and refraction e�ects are computed before combining them.

A temporal reuse technique accounting for re�ection and refraction is described by
Lochmann et al. [LRR+14], where previous frames information – streamed from a server
– is warped separately following the �ow of di�use, re�ective and refractive surfaces
(Fig. 2.19). For refraction and re�ection, the optical �ow is estimated using an iterative
search in the previous frame image space.

Image-based techniques allow for realistic rendering of re�ections in synthetic scenes, by
either acting as an alternate scene representation that can be queried when estimating the
radiance incoming to a point, or by providing e�cient ways of reprojecting information
from existing views using the proper re�ection �ow. In chapters 4 and 5, we propose
two ways of generating re�ections into a novel view by relying on existing specular
information and speci�c geometry representations that make the real-time �ow estimation
feasible.

High quality interactive rendering. Beyond re�ections, precomputed rendering of
parts of a scene can be used to lower the cost of rendering intricate shaded geometry.

26 Chapter 2. Related work

Impostors [MS95, DDSD03] combine one or multiple renderings of a given object with
an extremely simpli�ed supporting geometry. Many distant objects can then be rendered
at a low runtime cost. �is is especially useful for vegetation, clouds and buildings.

Image-based rendering has recently been applied to remote rendering, where high quality
images are generated on a remote server and streamed to a device. A local two-view IBR
can be performed to allow user motion even when latency arises [RKR+16] (Fig. 2.20).
�is requires the remote server to send scene geometry and an auxiliary rendered view
and remains mainly limited to di�use surfaces. Lall et al. [LBR+18] precompute a mainly
di�use representation of a static scene for small motion VR exploration. From a high
quality path traced panorama and scene geometry, a set of �oating patches is optimized
to best capture the occlusion and parallax e�ects in the scene while minimizing overlap
and storing costs. Shading information is projected onto those patches in order to render
them as simple textured meshes (Fig. 2.20, second row).

Finally, high quality video light-�elds can be precomputed as a set of RGBD environment
maps and compressed for VR streaming [KKSM17], but the density requirement limits
possible motion in the scene, and a complex decompression scheme is required due to
the amount of per-frame data.

As shown in this section, image-based rendering concepts can be applied in many ways
to improve the appearance of synthetic scenes. �is motivates our approach described in
chapter 5 to render accurate re�ections in synthetic scenes, by warping precomputed
glossy information from a set of probes to the novel view.

Overall, image-based techniques provide a diverse set of solutions for multiple rendering
tasks on real and synthetic scenes. Di�erent scene representations allow di�erent types of
environments and e�ects to be rendered. Yet complex indirect behavior such as re�ection
and refraction on surfaces remain di�cult to both capture and synthesize for all types of
scenes.

Chapter 2. Related work 27

Figure 2.20 – First row: [RKR+16] combine a main view (orange) and an auxiliary view
(blue, inset) to perform local IBR, supporting user motions even in the case of latency.
Second row: [LBR+18] generate a patch-based representation of a high-quality panoramic
rendering for VR exploration.

2.2 Extraction and rendering of view-dependent e�ects

As pointed out in the previous section, image-base techniques are able to reproduce
complex view-dependent e�ects when the input capture is extremely dense. At the
same time, these e�ects are known to be extremely adversarial to traditional capture and
rendering approaches. �e non-consistency of re�ection and refraction when moving
between viewpoints makes classical surface reconstruction o�en fail on specular or
transparent surfaces. Furthermore, the apparent motion on such surfaces cannot be
explained by a unique depth; for re�ections the location of the re�ected object ma�ers, as
does the surface behind the current object for refraction and transmission. Each category
of e�ects will have its separate motion �ow, di�erent from the geometric �ow of di�use
surfaces. �ese e�ects are also very sensitive to the geometry of the surface, where
complex motions appear on non-�at objects. Finally, the appearance on such a surface is

28 Chapter 2. Related work

the result of multi-layer compositing, i.e. mixing the contributions of the surface itself
and the re�ected and/or transmi�ed surfaces. In real world scenes, the contributions
have to be extracted from the fused input data, while for synthetic scenes this separation
is o�en used to apply speci�c rendering algorithms for each contribution.

2.2.1 Extracting view-dependent e�ects from real world data

�e appearance of re�ective and transmissive surfaces results from the composition of
multiple e�ects, each with its own radiance and geometric information. For techniques
such as the light �eld and lumigraph, the sheer density of the capture allows those e�ects
to be interpolated as a whole without having to explicitly compute their �ow. For sparser
setups, speci�c approaches are required for each e�ect in order to compensate for the
lack of information; estimating and recreating each e�ect separately is then a more viable
solution. We now present a brief review of radiance and surface extraction techniques,
and build on these to render re�ective transparent surfaces in chapter 4.

Layer separation. Separating re�ective and transmissive layers from the background in
real world images is widely studied in computer vision and graphics [SAA00]. Because
the merging of multiple sources of information at a single pixel is a lossy process, solving
the problem for a unique image o�en requires user information [LW07] or extra capture
devices such as polarized �lters [WGGK18]. Multi-view setups provide more information
to help disambiguate the accumulated contributions. For each layer to extract, the motion
�ow of the e�ect between input views has to be estimated so that correspondences can
be established. Based on the color variations between matched pixels, the layer color
information can then be separated. In practice, multiple iterations of �ow estimation and
color separation are required [XRLF15] (Fig. 2.21).

�e �ow that should be estimated for layer separation is strongly linked to the underlying
geometry. �is is why it can be bene�cial to estimate the depth of each layer �rst. Sinha
et al. [SKG+12] estimate up to two depths per pixel of each input view using a custom
stereo matching technique (Fig. 2.22). �e obtained depth maps are then used to build
two geometric proxies of the scene, each composed of a set of local 3D planes. One proxy
encompasses surfaces directly visible (re�ectors and di�use elements), the second one
contains the geometry visible through transmission. Layers are then extracted using a
constrained approach similar to the one described by Szeliski et al.[SAA00], but using the
geometries to estimate accurate �ows. An additional regularization ensures robustness

Chapter 2. Related work 29

to noise and misalignments in the input views. To render the novel view, information
from each layer is reprojected using the corresponding proxy. Note that for the re�ection
layer, the depths estimated are virtual depths of the re�ected objects that produce the
proper parallax motion when moving around.

Instead of explicitly separating layers, Kopf et al. [KLS+13] interpret view-dependent
e�ects as motions of the input images gradients. Depth is only estimated for any input
view pixel with non-zero color gradients. Because those are sparse, each gradient implic-
itly comes from a unique layer, even if it is not modeled. Gradients and their depths will
be used to generate the novel view (see next subsection).

Figure 2.21 – Occlusion-free photography [XRLF15] extract a background and foreground
layer by iteratively estimating their optical �ows and separating their colors.

Figure 2.22 – In [SKG+12], up to two depths are estimated at each pixel using a custom
MVS algorithm. One is associated to the directly visible elements, the other locates the
re�ected scenery.

30 Chapter 2. Related work

Surface extraction. Alternatively, geometric reconstruction of transparent and re�ec-
tive objects can be handled using speci�c capture setups [WGL+18, WZQ+18]. Godard
et al. [GHLB15] iteratively re�ne the estimation of a re�ective object surface. At each
step, they re-generate re�ections synthetically using the current estimation, and compare
them to the input images. �e error in the generated re�ections guides the estimated
surface adjustments. Volumetric approaches can also be found in the literature [IKL+10]
to handle the multiple per-pixel depths in a more continuous fashion, but these are
o�en limited to speci�c set of objects or rely on complex acquisition hardware [IKL+08].
Surfaces recovered by these techniques only represent the re�ectors, and do not provide
enough information for a full re�ection reprojection.

2.2.2 Warping specular e�ects

If view-dependent e�ects have been extracted or synthesized from input data, they are
typically located in the input views and have to be warped into the novel view. To
properly perform this reprojection, the �ow of re�ection and refraction e�ects has to be
computed. Even if the layer color and geometric information were perfect – as is the
case for synthetic scenes – establishing correspondences between the novel view and the
input views is a non-invertible problem for view-dependent e�ects in the general case.
Indeed, while for planar re�ectors it can be solved by reprojecting the virtual image of
re�ected points into the novel view, it becomes intractable for curved re�ectors, even as
simple as a sphere.

Blending re�ection and transmission e�ects. If geometric layers with depth infor-
mation have been extracted [SKG+12], they can be used to achieve reprojection. Indeed,
the depth captured by each layer reproduces re�ected or transmi�ed parallax under
motion around the input views. Warping and blending is performed for each layer type
separately, along with a layer containing the blending factors between other layers. A
�nal hole-�lling and compositing step generates the �nal image (Fig. 2.23, �rst row).

In Gradient image-based rendering [KLS+13], gradients are spla�ed into the novel view.
Recall that the depth corresponding to each gradient has been estimated. Visibility
changes are detected, and occluded gradients discarded. �e projected shape of each
gradient input view pixel is also taken into account during warping for accuracy. In
parallel, an initial approximate color solution is generated using input colors, by applying
each gradient onto the region of the image it spans when moving from the input to the

Chapter 2. Related work 31

Figure 2.23 – First row: Sihna et al. [SKG+12] separately reproject a background and
a re�ection layers using distinct geometries. Second row: Kopf et al. [KLS+13] instead
reproject color gradients using their estimated depth and integrate to obtain the �nal
image. �ies et al. [TZT+20] rely on a neural network to generate a view-dependent
e�ects layer that is subtracted from input data and added a posteriori to the novel view.

novel view. �e �nal color image is obtained by Poisson integration of the generated
gradient �elds combined with the approximate solution as a weakly weighted data term
(Fig. 2.23, second row). �is method captures re�ection and transparency e�ects well,
but the assumptions used limit it to mainly planar re�ective surfaces.

In IGNOR [TZT+20], view-dependent e�ects are not directly extracted from the input
views. An encoder-decoder neural network is trained to predict view-dependent e�ects

32 Chapter 2. Related work

for any viewpoint based on the corresponding depth map – obtained by reconstructing
the geometry with MVS. For each selected input view, the e�ects layer predicted by the
network is subtracted, and the resulting di�use layers are then warped to the novel view
(Fig. 2.23c). �e network is evaluated again for the novel view parameters, generating
a new e�ects layer. �e reprojected di�use and the view-dependent layers are blended
using a second network. Training is performed on dense unstructured datasets; the loss
compares the obtained di�use images for pairs of views, as this layer is expected to be
view-invariant.

Specular path evaluation. Specular �ow can also be estimated without modeling
re�ected depth as a geometric layer. As previously described, e�ciently �nding specular
paths at each visible location is an expensive task, and matching re�ections between
two views is at least similarly complex. Multiple works have described approaches that
a�empt to use sparse specular information to solve one of these two problems on-the-�y.
For instance, if some light paths from a re�ected point p to a viewpoint q (as shown on
Fig. 2.24, le�) are known, they can be extrapolated to estimate paths at other viewpoints
or for other re�ected locations.

x x’

p
p’

q

Δx

Δp

x x’

p/p’
q

q’
θ

Figure 2.24 – Le�: When some specular paths (p, x, q) are known, the location x′ at which
nearby re�ected points p′ reproject can be estimated using path perturbation. Right: If
all specular paths (p, x, q) are known, it is possible to search for the point p/p′ that is
re�ected at a given x′ when seen from a novel viewpoint q′.

Chen and Arvo [CA00b] provide a formal framework for specular path perturbation
to perform such extrapolation. Following Fermat’s principle, valid light paths between
a re�ected point p and a viewpoint q minimize the optical path length [MH92]. For a
nearby re�ected point p′, valid paths are very similar – assuming they interact on the

Chapter 2. Related work 33

same re�ector. �ese paths can thus be obtained by a perturbation of the known re�ection
path (p, x, q). Let us de�ne Φ(p) = x the path function giving the re�ection point where
p is visible when the viewer is at q (�xed). �e following approximation can be derived:
Φ(p′) = Φ(p) + J∆p+ 1

2
∆pTH∆p+O(‖∆p‖3). Here, J and H depend on the re�ector

surface and capture its variations when moving in the neighborhood of x. Note that
these quantities can only easily be evaluated for surfaces with an analytic representation.

Instead of updating the re�ection position of a known re�ected point, Lochmann et
al. [LRR+14] �x the re�ection position and search for the new re�ected point. In their
use case, all re�ection paths are known for an input viewpoint q (see Fig. 2.24, right).
At a novel viewpoint q′ and for a given x′, they search for the visible re�ected point
p′. �e best p′ is such that the re�ection direction computed in the novel view q′ using
the normal at x′, and the re�ection direction in the input view q using the normal at x′,
coincide. If this is the case, the specular path (p′, x′, q′) is valid and the re�ected color
can be used. To search for this p′, a gradient descent is performed to maximize the dot
product of the input and novel view re�ection directions. To avoid having to express the
gradient analytically for all types of surfaces, they compute �nite di�erences using the
re�ected positions map generated at q. Because the baseline between q and q′ is small,
the search converges quickly under the condition of a good initialization. �ey use a
similar approach for the refraction �ow.

In chapter 4, we propose a simpli�ed �ow estimation method that searches for a valid
point on the surface of an ellipsoid re�ector, allowing for real-time re�ection reprojection
from a large set of input images. Similarly to Lochmann et al. we perform a gradient
descent guided by a geometric alignment criterion, but our search for the re�ection point
is constrained to the surface of the re�ector. Because we rely on an analytic surface
representation, the process is simpli�ed and doesn’t require additional position maps. In
chapter 5, we build upon the framework of Chen and Arvo to fetch precomputed specular
information in a set of panoramic probes. While the initial work was limited to surfaces
de�ned by implicit functions, here we generalize the approach to triangle meshes by
building a set of local implicit representations. While the goal of the techniques presented
in this section is to estimate the specular �ow, they address it in two very di�erent ways,
either solving for the re�ection or the re�ected location in the novel view. �ese two
approaches are also used for the generation of new specular e�ects, as we describe in the
next section.

34 Chapter 2. Related work

2.2.3 Generating specular e�ects

When rendering synthetic scenes in real-time, specular paths are o�en not known in
advance. In this case there is no existing color information to warp, and novel re�ections
have to be generated on the �y. Depending on the hardware constraints and the scene
setup, locating new specular e�ects in the scene can be cast as a spla�ing problem where
re�ected objects have to be projected on the re�ectors at the correct location, or as a
gathering task where for a given point on the re�ector, incoming contribution from the
environment has to be evaluated.

2.2.3.1 Reprojecting re�ected objects

T
p

x

p

n b

Figure 2.25 – Le�: from a �xed viewpoint, each triangle of a re�ector re�ects a given
region of the scene; this information can be precomputed and stored in an explosion map
[OR98]. Right: for a re�ection path to be valid, the bisector of the view and re�ection
directions b should coincide with the surface normal n. �e di�erence between the two
directions can be used to search for the proper re�ection point, as shown by Estalella et
al. [EMD+05].

Because current graphics hardware is optimized for rasterization, geometry transfor-
mation and reprojection, multiple methods a�empt to project the scene objects onto
the re�ectors. For each re�ector and for each potentially re�ected object, a copy of the
object geometry is created and spla�ed onto the re�ector surface. �is requires proper
handling of occlusions and a good tessellation of the re�ected geometry, as the projection
is performed on a per-vertex level on potentially curved re�ectors. Estimating the pro-
jected position is a complex problem, as described previously. If the re�ector is a triangle
mesh, each triangle can be treated as a small planar re�ector. For a given viewpoint, it

Chapter 2. Related work 35

is possible to precompute the region of the scene space that will be visible in a given
triangle and store it in an explosion map [OR98] (Fig. 2.25, le�). Re�ected vertices can
then query this information at runtime to determine onto which triangle they should
reproject. Shading of the re�ected surfaces can then be evaluated and blended with the
underlying di�use appearance of the re�ector. Because the map of each re�ector has to
be updated when the user moves in the scene, the interactivity of the method is limited.

Maps can also be used to store geometric information of re�ectors that can then be queried
arbitrarily at runtime using hardware support for textures. For instance, if the re�ector is
entirely convex or concave, surface positions and normals can be stored in cube-maps.
For a given re�ected vertex, Estalella et al. [EMD+05] determine a valid reprojection
location on the re�ector by searching in such maps. �e validity of a re�ection point is
evaluated based on the property that for a valid specular path, the bisector of the view
and re�ected directions coincides with the surface normal. Furthermore, when they do
not coincide, following the error direction is guaranteed to lower the error at the next
iteration (Fig. 2.25, right).

Specular path perturbation theory has been used to solve a similar task in real time
[CA00a]. For a given scene setup a set of re�ection rays between di�erent objects are
precomputed and stored in a fast query structure. When objects are moving in the scene,
nearby rays can be fetched and perturbed based on the novel object vertices location.
�e geometry is then projected at the updated location on the re�ector.

Roger et al. [RH06] also rely on Fermat’s principle to reproject geometry in a similar
fashion (Fig. 2.26). For a given vertex to be projected, they minimize the total optical path
length by �nding zeros of its gradient using the iterative secant method. �ree sample
points are picked on the re�ector, at each one the gradient of the path length is computed
and interpolated over the triangle. �e location with the smallest gradient norm is found
and replaces the sample with the largest gradient norm, and the process can be iterated
until the desired accuracy. In practice, the evaluation of the optical length gradient can
be complex for general surfaces; the re�ector is thus assumed to be star-shaped to limit
the number of parameters for the optical path length gradient that can be tabulated.

For reprojection of re�ected vertices the main limitation is thus the complexity of the
re�ector surface; most techniques described above are limited to very speci�c types of
objects. Furthermore, the need to handle a copy of each re�ected object for each re�ector

36 Chapter 2. Related work

[Roger06] Environment map

Figure 2.26 – Roger et al. [RH06] reproject re�ected vertices onto the re�ector, �nding
the proper location using the secant method. Compared to an environment placed at the
center of the re�ective sphere (right), their method properly displays re�ections of the
back of the green chair (le�), invisible in the environment map.

leads to a combinatorial explosion for large scenes.

2.2.3.2 Finding re�ected points in the scene

Determining the re�ected point(s) that contribute to a re�ection might seem like a simpler
way to tackle specular e�ects generation. But re�ected objects can be located arbitrarily far
from the re�ector in the scene, meaning that there is no locality to re�ection contribution
queries. While this is not an issue for ray tracing based approaches [Whi80] and recent
hardware support has brought new options for real-time specular e�ects, the most
commonly used rasterization pipelines struggle with the lack of locality. Many methods
have been designed to counter these constraints; we review the methods closely related
to our work and refer the reader to a more detailed review [SKUP+09] for additional
techniques.

Environment maps and light probes. To avoid querying the geometric scene rep-
resentation and having to shade re�ected points, an extremely simpli�ed image-based
representation of the scene can be used. An environment map is a 360-degree panorama
of the scene that captures incoming radiance from any direction at a speci�c location
in the scene. �ey can be precomputed o�ine or updated on-the-�y when the scene
is modi�ed. To estimate the radiance incoming from a given direction at a re�ector

Chapter 2. Related work 37

point, the environment map can be queried very e�ciently using hardware cube-maps
or other parameterizations. Because they do not store any geometric information, envi-
ronment maps are only valid at their initial location and lack parallax e�ects that would
be observed at other positions in the scene.

To alleviate this issue, a simpli�ed representation of the scene can be used to correct the
direction queried in the map. Brennan et al. [Bre02] rely on an analytic representation
of the surrounding geometry – such as a box or cylinder – to apply proper parallax
correction when fetching in the environment map. �e re�ected ray intersection with
this proxy is computed analytically, and the direction from the environment map location
to this intersection is used to query the incoming radiance. For additional accuracy, and
to support large scenes with di�erent lighting conditions, multiple environment maps
or probes can be generated at di�erent locations in the scene. For each re�ector point
the closest ones can be selected, queried and blended to estimate the incoming radiance
[SZ12]. �is has strong links to the irradiance volume approach [GSHG98], even if
lighting information is used there for di�use irradiance and thus stored at a much lower
resolution.

O

x d

d
d1

d2

p0

p1

p2

Reflector

Depth
envmap

Environment map [Szirmay05] Reference

Figure 2.27 – To obtain the incoming radiance at x in direction d, [SKALP05] iteratively
fetch into an environment map with depth (centered at O). At step i, the depth pi rad in
direction di and the previous depth pi−1 de�ne a plane that is intersected with the initial
ray (x, d). �e intersection de�nes a new direction di+1 to fetch into the map, and the
process is iterated. �e last estimated direction is �nally used to fetch the environment
incoming radiance.

More accurate re�ection e�ects can be obtained by storing a depth map along with
the environment map [SKALP05]. �is is used for parallax correction by successively
re�ning the direction fetched in the probe. As shown on Fig. 2.27, when the environment

38 Chapter 2. Related work

map is queried in an initial direction d, the surface visible in this direction is used to
approximate the scene geometry by a local plane. �e ray from point x in direction d is
intersected with this plane, and a new direction obtained as with the simpli�ed analytic
proxy approach. �e process can be iterated for additional accuracy.

Far environment

Generated environment map layer faces

Self-reflections and close objects

Environment map ReferenceParameterized environment map

Figure 2.28 – A parameterized environment map is generated from a 2D layered rendering
[HSL01]. Self-re�ections and close objects are stored in a �rst layer, the distant environ-
ment in a second. Missing regions are �lled in. Compared to a regular environment map,
self-re�ections – such as the re�ection of the spout – and parallax e�ects are replicated.

Parameterized environment maps [HSL01] are a set of environment maps used to generate
re�ections on a given object with self-re�ections (Fig.2.28). To simplify their generation,
each map is inferred from a precomputed layered 2D image instead of a full panorama.
Di�erent localized environment maps are picked as the viewpoint rotates around the
object. Each map contains two layers, each associated to an analytic proxy: one containing
self-re�ection and radiance information of close objects, and one containing the distant
environment. Because each map is generated from a 2D rendering, an optimization is

Chapter 2. Related work 39

applied to �ll-in regions of the background layer occluded by the close objects, or regions
of any layer that was not visible in the re�ected image.

Environment maps have been extensively used in research and production thanks to
their scalability and hardware support, even though they require a lot of storage to cover
large scenes and are costly to update in real-time. Inspired by their prevalence, existing
e�cient parameterizations and the possibility to store additional information such as
depth along with the radiance, in chapter 5 we rely on panoramic probes to directly
store precomputed specular information and reproject it at runtime on re�ector surfaces,
producing realistic re�ections on mirror and glossy surfaces. We also introduce a novel
adaptive parameterization that locally maximizes the information stored in the maps
based on the visible material properties.

Raymarching and ray tracing. While recent GPU hardware is now starting to allow
for ray tracing in real-time [WM19], performance remains constrained for complex light
paths such as glossy surface and multiple re�ection bounces. Indeed rays cast following
a glossy BRDF lobe can intersect any part of the scene, leading to low coherency when
shading a pixel. Furthermore the shading at each intersection point has to be evaluated,
introducing an extraneous evaluation cost which can be redundant for nearby re�ector
points. To alleviate this redundant work, [HSAS19] precompute environment maps as a
G-bu�er that can be shaded once per-frame at runtime, combined with ray tracing to
�nd the proper intersections in these maps for re�ection rays.

On the contrary, image space gathering [RS09] leverages this redundancy by only com-
puting perfect mirror re�ections for all re�ective surfaces using real-time ray tracing. An
image-space �lter is then applied to create plausible glossy re�ections. �e image-space
�lter exploits the fact that rays required to evaluate a glossy BRDF at two nearby points
are very similar (see Fig. 2.29). �e BRDF lobe convolution can thus be approximated by
an image-space blurring kernel based on the projection of the glossy lobe in the image
plane.

To avoid relying on speci�c hardware, a simpli�ed scene representation can be used
to answer intersection queries: voxel cone tracing [CNS+11] builds a low-resolution
volumetric representation of the scene that can be traversed to detect ray intersections
and fetch back the associated stored radiance. �is information can be used for perfect
re�ections and, through a volume mip-mapping scheme, for approximate glossy re�ection

40 Chapter 2. Related work

Figure 2.29 – Image-space gathering [RS09] approximates glossy re�ections by using
nearby perfect mirror rays (bo�om le�). Generated images using di�erent roughness
levels (right).

e�ects. McGuire et al. [MMNL17] and Wang et al. [WKKN19] compute radiance, surface
normal and depth for a set of local probes, creating a light-�eld-like scene representation.
When casting a ray from a surface for re�ections, it is projected into the closest probes,
performing ray-marching against stored depth (Fig. 2.30). Normal and discontinuities are
taken into account to detect occlusions. Multiple nearby probes are explored until an
intersection is found, the associated radiance is then fetched. Similarly to ray tracing,
glossy re�ections have a stark performance impact due to the lack of ray coherency, but
the technique is supported on a larger range of hardware.

A G-bu�er of the novel view can also be used as an approximate partial scene represen-
tation. Screen-space re�ections [MM14] are generated by marching a ray against the
visible scene depth bu�er. When an intersection is detected, shading information can be
fetched from an image bu�er containing the part of the shading already evaluated for
this frame, or the full shading from a previous – reprojected – frame. Disocclusions and
motion have to be tracked and detected to avoid spurious re�ection artifacts. Because only
screen-space information is used, this technique only supports re�ection of objects that
are visible, but combines well with other existing techniques such as local environment
maps.

Chapter 2. Related work 41

Figure 2.30 – [MMNL17] store visible surface information in a set of probes on a regular
grid (le�). When casting a ray, nearby probes are sampled along the ray to �nd the
surface intersection (center). �is can be used to trace re�ections (right).

2.3 Summary

In this chapter, we have shown that many image-based techniques exist for rendering of
real and synthetic scenes. Di�erent representations can be used depending on the type
of acquisition or generation setup, from regular grid of 2D images to individual samples
generated on the �y with di�erent capture densities. Reprojection of plenoptic data in
the novel view is simpli�ed when the input data is dense, as shown in Sec. 2.1.1. When
input data is sparser, geometric scene representations can be leveraged to reproject data
and generate the novel view (Sec. 2.1.2). We focus on this type of setup in the following
chapters, as multi-view stereo techniques have matured and the capture process does not
require speci�c rigs or sensors. Mesh-based approaches are additionally well-��ed to the
classical real-time rendering pipeline.

Meshes and Blending. In chapter 3, we explore rendering of real-world facades from a
small set of input images, improving the geometry by exploiting repetitions. Because
view-dependent e�ects are adversarial to most reconstruction techniques, in chapter
4, we detect problematic regions in street-level scenes and repair them, while using
simpli�ed surfaces to represent thin re�ectors. In both cases, we leverage existing
blending techniques, based on heuristics or learning (Sec. 2.1.3) depending on the type
of scene and e�ects. In chapter 5, we use additional material-aware sample selection
heuristics when accumulating specular information. Furthermore, the use of image-based

42 Chapter 2. Related work

techniques to render complex e�ects in synthetic scenes described in Sec. 2.1.4 inspired
us to explore how precomputed data could be leveraged for rendering specular light
paths in such scenes.

Re�ections and Flow. Re�ections and other view-dependent e�ects are paramount to
the perception of realistic environments. For real world scenes, specular e�ects have
to be extracted and warped to the novel view (Sec. 2.2.1). In chapter 3, we combine
information from the sparse input views to detect facade elements exhibiting specular
behavior. �is information is then used to apply additional re�ective e�ects. We also
build on existing layer separation techniques in chapter 4, where we separate the re�ected
and transmi�ed components for rendering of car windows. In both real and synthetic
scenes, specular e�ects have complex motion behaviors that require special treatment
depending on the geometric con�guration of the scene, as shown in Sec. 2.2.2. Inspired
by existing work, we describe a novel �ow computation approach for real world urban
scenes with prede�ned types of re�ectors in chapter 4. By using analytical surfaces we
are able to solve for the �ow of re�ections in real-time. In chapter 5, we apply the specular
path perturbation framework (Sec. 2.2.2) on general meshes to gather synthetic specular
information from a set of precomputed panoramic views and generate high-quality mirror
and glossy materials. Because of their indirect nature, specularities o�en have to be
generated from scratch in synthetic scenes. But computing exact light paths on the �y
is still too expensive for most current hardware. Simpli�ed scene representations, such
as environment maps with proxy geometry or depth maps (Sec. 2.2.3) can be used for
approximate specular e�ects. Inspired by the prevalence and convenience of environment
maps, in chapter 5 we store specular information in multiple panoramic views placed
in the scene, along with enough geometry information to reproject specular data in the
novel view in real-time. We also build on screen-space techniques to provide an accurate
rendering of glossy surfaces.

C h a p t e r 3

Repetitions for Image-Based Rendering of
Facades

(a) Input (b) Repetitive Window (c) 3D Mesh and
Reflection Mask

(d) Image-Based Rendering

Naive IBRNaive IBR

Our resultOur result

Figure 3.1 – Given a small number of pictures of a facade (a), we augment the number of
views of the repetitive windows by combining the di�erent views of each instance (b). We
place the augmented set of viewpoints into a common space, allowing us to generate �ner
3D geometry and to identify re�ective areas (c). Compared to an image-based rendering
of the input views, our solution produces sharper results and fewer popping artifacts.

3.1 Introduction

We focus on real world data in this chapter, and more speci�cally the rendering of building
facades. City-wide street level captures are now widely available (e.g., Google Streetview,
Microso� Bing StreetSide), but are acquired with a very sparse baseline. As discussed
in chapter 2, capture density is central in this context and such low densities hinder all
components of image-based rendering: camera calibration, geometric reconstruction, and
input image reprojection and blending for rendering, especially with view-dependent
e�ects. Recent IBR algorithms that rely on geometric scene representations (Sec. 2.1.2)
allow high-quality free-viewpoint navigation of cityscapes, but still require a relatively
high capture density – typically a high-resolution image every meter or so. In this

44 Chapter 3. Repetitions for Image-Based Rendering of Facades

chapter we propose a solution for IBR from a sparse street-level capture by leveraging
the repetitive nature of facades. �e key idea in our work is to extract an idealized or
platonic object corresponding to a given repetitive element, and use its multiple instances
present in the facade to perform data augmentation allowing us to perform high-quality
free-viewpoint IBR from sparse input. In particular, we focus on repetitive windows,
which exhibit rich geometric and photometric details.

E1 E2 E3

C1 C2

(a) Input scene (b) Platonic scene

C1,3
*

C1,2
* C1,1

* C2,3
* C2,2

* C2,1
*

E*

Figure 3.2 – A small number of views of similar – but physically distinct – elements Ei
can be seen as a larger number of views of a unique element E∗ if we align them into a
common coordinate system.

We start with a small number of views of a given facade (3-4 street-level pictures),
and approximate cameras calibrated using Structure-from-Motion (SfM). We then semi-
automatically extract cropped instances of the repetitive windows, which we call subviews.
Our idea is to consider that all these subviews represent the same platonic window, as
illustrated in Fig. 3.2. We use 3D information in all subviews during Structure-from-
Motion to provide �ner camera calibration in the common space, while running multi-
view stereo in this space gives us a dense, albeit noisy 3D mesh of the platonic window.
We re�ne this mesh by decomposing it into planar polygonal regions aligned with image
edges, which typically correspond to the window panels, frames and surrounding bricks.

While the multiple subviews provided by similar instances improve 3D reconstruction,
they include color variations that are view-dependent – such as re�ections on glass panels
– and instance dependent – such as di�erent color or shape of blinds –, which produce
severe popping artifacts if used directly in IBR. We extract view-dependent variations by
analyzing each instance separately, e�ectively removing re�ections from the pictures.
Aggregating the resulting re�ection layers over all instances gives us a unique re�ection
mask for the platonic element, which we use to composite environment re�ections during

Chapter 3. Repetitions for Image-Based Rendering of Facades 45

rendering. We treat instance-dependent variations by re-projecting each subview of
an instance into the subviews of all other instances, only mixing information between
di�erent instances in the presence of occlusions.

In summary, we describe in this chapter the idea of exploiting repetitions to augment
visual data in the context of image-based rendering of facades, and show how this aug-
mentation improves camera calibration, 3D reconstruction, and re�ection segmentation.
Our contributions are the following:

• A camera calibration process in platonic space that improve the accuracy of the
estimated poses.

• A geometric re�nement that leverages information from the multiple instances
and additional geometric priors.

• A data augmentation approach to extract view-dependent e�ects and locate re-
�ections while ensuring consistent rendering of the platonic elements in the �nal
scene.

�ese elements combined allow us to greatly improve visual quality for IBR of facades
captured with a small number of pictures.

3.2 Related Work

In this section, we discuss aspects of previous work that are more speci�cally relevant to
the research in this chapter, notably related to image-based rendering in a sparse context
using scene geometry (Sec. 2.1.2), the extraction and rendering of view-dependent e�ects
in real world scenes (Sec. 2.2.1) and the use of repetitions in computer graphics.

Image-Based Rendering. As presented in chapter 2, image-based rendering algorithms
can synthesize novel views by interpolating between photographs of a real scene. When
the acquisition density is very high – for instance in the Light �eld [LH96] and Lumigraph
[GGSC96] methods – this resampling process can be performed directly (Sec. 2.1.1). When
the input images are sparser, additional information such as a 3D mesh of the scene can
improve image interpolation (Sec.2.1.2). However, the baseline of the input images still
needs to be small enough to obtain good angular resolution, and avoid ghosting and
other rendering artifacts. Wide baselines also hinder automatic 3D reconstruction of
the mesh, which is particularly problematic along object silhoue�es where foreground

46 Chapter 3. Repetitions for Image-Based Rendering of Facades

and background should not be mixed. Recent methods address this la�er challenge by
generating per-view geometric information [CDSHD13, HRDB16] that be�er capture
occlusions and silhoue�es (Sec.2.1.2). In contrast, we exploit repetitions present in
facades to arti�cially augment the number of input views, which bene�ts both the 3D
reconstruction and image reprojection steps of Image-Based Rendering.

View-dependent E�ects. While dense IBR representations like light �elds naturally
handle view-dependent e�ects, wide-baseline methods based on 3D meshes o�en produce
strong popping in the presence of re�ections. Proper handling of such e�ects requires
speci�c multi-layer representations (Sec. 2.2.1) where the re�ected layer lies at a di�erent
depth than the re�ective surface [SKG+12, KLS+13]. While we extract re�ection layers
from our input images, we cannot recover the depth of the re�ected objects because they
are rarely visible in multiple images due to our wide baseline. Instead, we combine the
information provided by the re�ection layers of all instances of a repetitive window to
estimate a re�ection mask for that window, which we use to render plausible re�ections
using image-based lighting.

Repetitions. �e presence of repetitions in images has been exploited for numerous
applications in Computer Graphics. In particular, several methods build on the idea
that di�erent instances of a repetitive element can be seen as multiple views of the
same platonic element. For example, Xu et al. [XWL+08] take a single picture of a
�ock of animals to generate an animation of that animal, e�ectively turning spatial
repetition into temporal information. Ai�ala et al. [AWL+15] use repetitions in a �ash
picture of a material sample to extract patches of the material under di�erent lighting
conditions, recovering rich angular information for SVBRDF acquisition. Dekel et al.
[DMIF15] extract local di�erences between similar patches to a�enuate or accentuate
small variations in an image. Closer to our context is the work of Alhalawani et al.
[AYLM13], who rely on user interaction to detect window-speci�c details, such as blinds
and shu�ers. Since these details are present in di�erent states in the various instances,
they can be sorted and animated. We follow a similar strategy as the above approaches
by turning spatial repetition into angular information, although we target the di�erent
application domain of image-based rendering.

Our approach is also inspired by 3D reconstruction methods for urban scenes. In particular,
we build on the work by Wu et al. [WFP11], who detect repetitive facade elements inside

Chapter 3. Repetitions for Image-Based Rendering of Facades 47

a single image to estimate a depth map, and on the work by Xiao et al. [XFT+08],
who regularize noisy depth maps by decomposing facades into rectangular regions with
constant depth. We combine and extend these two ideas to reconstruct a detailed 3D mesh
from multiple images of a repetitive element. Our use of repetitions for 3D reconstruction
is also related to the work of Zheng et al. [ZSW+10] and Demir et al. [DAB15], who
aggregate information from repetitive pieces of a 3D point clouds to consolidate it. Heinly
et al. [HDF14] also use repetitions to improve camera calibration by detecting con�icting
observations between viewpoints.

Detecting repetitions can also be a step towards inference of procedural rules from
an existing building. Some methods extract repetitions and variations from a single
fronto-parallel image of a facade, as a set of tiles and rules [MRM+10, DRSVG13]. New
facade images can then be generated by following these procedural rules and mixing
the di�erent tiles. Starting from a single planar facade image, Muller et al. [MZWVG07]
factorize irreducible architectural elements. �ese tiles are matched to a bank of 3D
models (windows, doors, etc) that are inserted in the facade plane and textured. �e goal
of our method is similar, but does not rely on external 3D models.

Given a set of input images and 3D model of a building, Aliaga et al. [ARB07] propose a
user-assisted method to construct a procedural model of the building. �e procedural
grammar enables semantic edits, such as adding new �oors, while the input images
enable view-dependent texture mapping of each facade element. Jiang et al. [JTC09]
a�ain similar results using a unique input image and user-drawn strokes, estimating the
camera pose using the scene symmetries. Zhao et al. [ZYZQ12] also exploit repetitions to
segment window elements on a facade. Jiang et al. [JTC11] extract la�ice structures from
repetitive facades and improve an image-based modeling process. In contrast, we focus
on the components required for high-quality image based rendering of facade elements
– camera calibration, geometric reconstruction, and image interpolation – rather than
their use within a procedural modeling context. �is remains an interesting avenue for
future extensions of our work.

3.3 Overview

Figure 3.3 illustrates the main steps of our approach. Our input is a small set of images
(3-4) of a building, taken at street level alongside the facade. �e pictures are acquired

48 Chapter 3. Repetitions for Image-Based Rendering of Facades

Image-Based
Rendering

Platonic Element Extraction
and Camera Calibration

Geometric Reconstruction
of Platonic Element

Layer Extraction and
View Augmentation

Reconstruction

Variabilities Extraction

Views augmentation

Element
Extraction

Original Cameras
Calibration

Platonic Cameras
Estimation

U
se

r I
nt

er
ac

tio
n:

C
ro

ps
 &

 P
la

ne
 S

el
ec

tio
n

Input Images

Structure
From

Motion

Refinement

M
as

k

Vi
ew

-d
ep

en
de

nt

D
iff

us
e

Figure 3.3 – Overview. From the input images, we �rst segment and select repetitive
windows, followed by camera calibration of these subviews by a modi�ed SfM algorithm.
In the second step, we use the calibrated subviews to reconstruct a platonic mesh of
the window using multi-view stereo, and subsequently re�ne it to obtain a piece-wise
planar geometry. In the third step we extract re�ections from each subview and deduce a
re�ection mask of the window. We additionally generate images of all instances of the
window from all available viewpoints. We �nally re-insert the platonic geometry and
images of each instance into the complete facade for improved image-based rendering.

with a consumer camera, using �xed exposure.

We �rst automatically detect windows in the facade using a deep classi�cation network,
and ask the user to select the windows that are visually similar. We crop the input images
around each such instance to obtain a set of images that all represent the same platonic
window, under di�erent viewpoints. We will refer to these crops as subviews.

Due to the wide baseline of the input images, existing structure-from-motion methods
only produce an approximate calibration of the input cameras. We use this information to
compute an initial guess of the camera of each subview in a common platonic space, which
we update by running a structure-from-motion algorithm on all subviews. �e initial
guess allows us to reject erroneous correspondences that may occur when a subview not
only shows its central window, but also part of its neighboring windows. �is �ltering
process allows us to improve “platonic” camera calibration for each of the subviews.

A�er platonic camera calibration, we run a multi-view-stereo algorithm to reconstruct
a 3D mesh of the platonic element. All subviews represent a similar window, but they
o�en contain instance-speci�c details that disturb generic reconstruction algorithms,
resulting in noisy surfaces. We regularize this geometry to obtain a piece-wise planar
mesh composed of polygonal regions aligned with the dominant lines of the window.

Chapter 3. Repetitions for Image-Based Rendering of Facades 49

�e 3D mesh we obtain allows us to re-project any subview into any other one. We use
this feature to extract view-dependent variations between subviews of the same instance,
and to generate images of each instance as seen from the cameras of all subviews. While
the re�ections extracted from a single instance may be sparse, combining the information
provided by all instances allows us to estimate a re�ectionmask that indicates the re�ective
areas of the platonic window.

Given these preprocessing steps, we create a complete scene representation by inserting
the 3D mesh of the platonic window at the location of each of its instances over the
facade mesh. We composite each view of a given instance to be consistent with the
corresponding view of the entire facade, generating an enriched set of subviews by
combining views and instances via reprojection. We use the resulting mesh and images
in an image-based rendering algorithm, which we enhance with image-based re�ections
using our re�ection mask. An additional use of our method output data is the generation
of a multi-view textured mesh.

Terminology. In what follows, the term input scene refers to the original 3-4 photos of
the entire facade, along with calibrated cameras and a coarse 3D mesh computed using
multi-view stereo. �e platonic scene refers to the scene containing the calibrated cameras
and reconstructed geometry of the platonic element, computed from multiple subviews
of that element. All elements of the platonic scene are denoted with a superscript ∗. We
denote the initial images as Vi, and the input physical instances of the repetitive element
as Ej . �e cropped subviews Vi,j use a double-index notation, indicating the input view
i they were extracted from, and the physical instance j they contain. �e associated
cameras in the common platonic space are denoted C∗i,j and the platonic model itself E∗.
We illustrate these quantities in Fig. 3.4.

50 Chapter 3. Repetitions for Image-Based Rendering of Facades

(a) Input Scene (b) Platonic Scene
Vi Ci

Ej

Vi,j Ci,j

E *

*

Figure 3.4 – From given input views Vi of a facade and their associated cameras Ci (a),
we extract subviews Vi,j of similar windows Ej . From these, we can reconstruct a 3D
model of the platonic element E∗ along with platonic cameras C∗i,j (b) in a common space.

3.4 Windows Extraction and Platonic Camera Calibration

�e �rst step of our method consists in cropping repetitive windows in the facade to form
a multi-view dataset of the corresponding platonic window. Calibrating the cameras of
each crop within a common space then enables 3D reconstruction of the window with
higher accuracy than using solely the input images.

(a) Input Image (b) Rectified
Square Image

(c) Label Map (d) Smoothed
Map

(e) Rectangle
Detection

(f) Expanded
Reprojected Trapezoids

(g) Bounding Boxes
in GUI

Figure 3.5 – We rectify each input image (a,b) before feeding it to a deep classi�cation
network that detects window pixels (c). We smooth the label map (d) and compute the
bounding box of each connected component (e). We then expand these boxes to include
the surroundings of each window and project them back into the image (f). We ask users
to select the boxes corresponding to a group of similar windows (g).

3.4.1 Window extraction

We identify the repetitive windows in a semi-automatic manner, where we automatically
detect candidate windows and let the user select the ones that should be considered
similar (Fig. 3.5).

Chapter 3. Repetitions for Image-Based Rendering of Facades 51

We generate the candidate windows by running the recti�ed images through a deep
classi�cation network. We use a U-Net architecture [RFB15], trained on the CMP Facade
Database [RT13], containing 600 recti�ed images of facades with ground truth labels of
architectural elements. We only predict two labels – windows and background. We obtain
the recti�ed facade using the vanishing point method by Wu et al. [WFP10]. We then
process the classi�cation to extract its connected components, which should correspond
to individual windows. We compute the bounding box of each component and scale it
by a factor of 1.75 to include its surroundings, and re-project these boxes into the input
image to be shown to the user.

�is user interaction is very easy, and only takes a few seconds per dataset. Automating
this process should be possible but would require similarity metrics robust to di�erences
between instances of the same window while being sensitive to di�erences between
di�erent windows, e.g., top parts of the �rst and second row of windows in Fig. 3.5. We
leave the exploration of robust similarity detection, for instance based on deep features,
to future work.

3.4.2 Platonic Camera Calibration

We now have a list of cropped subviews, each representing an instance of the platonic
window seen from a di�erent viewpoint. However, our automatic crops sometimes contain
parts of neighboring windows on their sides, as shown in Fig. 3.6a. �ese duplicates
challenge structure-from-motion algorithms since points on the central window in one
subview may be matched to points in the side window in another subview.

We �lter out such erroneous matches by deriving an approximate camera for each subview,
which we compute from the known position and size of the corresponding crop in the
input image, as well as from the camera pose of that image. �is computation also requires
knowledge of the facade geometry in order to position the approximate cameras such
that they all point to the same element in platonic space. We approximate this geometry
as a plane, �t to the point cloud of the facade, computed by running multi-view-stereo
reconstruction on the input images (Fig. 3.7). In most cases, a RANSAC �t is su�cient;
when this fails we ask the user to specify the plane by selecting three points on the point
cloud.

Given these cameras, we modify an SfM algorithm [MMMO] to reject matches for which

52 Chapter 3. Repetitions for Image-Based Rendering of Facades

(a) Before filtering

(b) After filtering (c)

Vi,j Vk,l

Accept

Reject

Reproject

Figure 3.6 – (a) Candidate matches between two views using standard approaches. �e
two views represent a similar window: the �rst view contains parts of another window
on its side, which are matched to the central window of the second view. (b) We use an
approximate camera derived from the input scene to �lter these outliers. (c) We reproject
each pair of matched points into each other subview using the approximate cameras. If
both reprojections land close to their correspondences, the match is kept.

Figure 3.7 – �e estimated facade plane is displayed (blue) along with the input scene
sparse point cloud. Input and crop cameras are shown. �e yellow points are the
intersection of each crop subview with the plane.

a point, when reprojected into the other subview, lands further away than half the image
dimension from its correspondence. �is �ltering operation greatly improves the quality
of platonic camera calibration, as shown in Fig. 3.8.

Chapter 3. Repetitions for Image-Based Rendering of Facades 53

Figure 3.8 – Camera calibration using a standard approach (le�), and the result with our
approach (right). Note how in the standard approach, the rightmost camera does not see
the window, and that three cameras are incorrectly co-located.

3.5 Geometry Reconstruction

We �rst describe how to reconstruct a 3D mesh of the platonic window, before explaining
how we repeat it over the entire facade.

3.5.1 Platonic Window

�e platonic cameras estimated by our modi�ed SfM algorithm can now be used for
dense 3D reconstruction of the platonic window. However, we found that generic multi-
view stereo algorithms [Rea18] tend to produce noisy 3D point clouds on such input,
possibly due to the per-instance and per-view variations present in the cropped subviews.
Inspired by prior work on image-based facade modeling [XFT+08], we re�ne this noisy
reconstruction by decomposing it into �at polygonal regions parallel to the facade, and
aligned with image edges.

Our re�nement method operates in the subview for which the view direction is the most
orthogonal to the facade plane. We segment this subview into convex polygons aligned
with image edges using the recent algorithm of Bauchet and Lafarge [BL18], as shown in
Fig. 3.9. In a nutshell, this algorithm detects small line segments in the image and extends
them until they intersect other segments to form closed regions.

We then formulate an optimization that displaces each region along the facade normal.
Our formulation combines a data term, which seeks to keep the region close to the noisy

54 Chapter 3. Repetitions for Image-Based Rendering of Facades

Figure 3.9 – Le�: Input image. Right: Polygonal segmentation.

point cloud it covers, and a smoothness term, which encourages neighboring regions
to align if they share similar colors. Denoting r a polygonal region, dr its displacement
along the facade normal (dr = 0 at the facade plane), dref the average distance to the
facade plane of the reconstructed points covered by r, N (r) the two-ring neighborhood
of r, and cr the average color of r, we want to minimize

E(dr) = |dr − dref |+ λ
1

W

∑
n∈N (r)

e−‖cr−cn‖2|dr − dn| (3.1)

where W =
∑

n∈N(r) e
−‖cr−cn‖2 is a normalization factor and λ balances the two terms.

We set λ = 15 in all our experiments.

Given the small number of regions, we solve this optimization problem using a simple
mean �eld algorithm [ZC93], where we iteratively update the displacement of each
region to minimize Eq. 3.1 given the displacement of its neighbors. At each iteration,
we try to assign to a given region all displacements of its neighbors, as well as a regular
sampling of the depth interval of the noisy reconstruction with respect to the facade
plane. We initialize this optimization by se�ing dr = dref . At the end of the optimization,
we connect the displaced polygons by additional faces to handle depth discontinuities
between neighbors.

Figure 3.10 illustrates the result of this optimization on two 3D meshes, the �rst obtained
by running multi-view stereo on the input images, and the second obtained from all

Chapter 3. Repetitions for Image-Based Rendering of Facades 55

(a) MVS from
input views

(b) Refinement
of input MVS

(c) Platonic
MVS

(d) Final platonic
mesh

Figure 3.10 – From le� to right: noisy surface obtained by applying multi-view stereo on
the input images, re�nement of this noisy surface, noisy surface obtained by applying
multi-view stereo on the cropped subviews, re�nement of this noisy surface. �e cropped
subviews provide additional information that yield a more detailed mesh a�er re�nement.

subviews. �e best result is achieved with the la�er option, where our re�nement removes
bumps and captures well the �at parts of the window and wall.

3.5.2 Complete Facade

Given the reconstructed geometry of the platonic window, we generate a mesh for the
entire facade by replicating the platonic mesh on the facade plane at the positions of all
window instances. However, since the facade plane and the platonic mesh have been
generated by separate executions of the structure-from-motion algorithm, they are not
in the same coordinate system and do not have the same scale. We deduce the 3D rigid
transformations from the platonic scene back to the input scene by matching the platonic
cameras with the cropped cameras previously estimated in Sec. 3.4.2, as illustrated in
Fig. 3.11. For each match we compute a candidate transformation and make it independent
from the instance position. We average all match transformations to obtain the �nal one.
We provide the detailed computation of this transformation in Appendix A.

While the above process results in an improved 3D mesh of the facade (see Fig.3.12),
it is not perfectly aligned with the input images due to the numerous geometric trans-

56 Chapter 3. Repetitions for Image-Based Rendering of Facades

(a) Input Scene (b) Platonic Scene

Ej

Pi,j Pi,j

E

Ci,j

Ci

Ci,j
*

*

*

Ti,j

Figure 3.11 – For each platonic camera, we estimate the transformation to align it back to
the corresponding estimated camera in the input scene. We use this transformation to
copy the platonic mesh at each window occurrence in the facade.

Figure 3.12 – Visualization of the generated facade mesh (center) from the camera of an
input view (le�). We overlay the input image onto the mesh view to assess alignment.
Another viewpoint of the same mesh (right).

formations involved and to the approximate calibration of the input cameras. Such
misalignments produce signi�cant ghosting if the original images are used along the
re�ned mesh in an image-based rendering algorithm, as shown in Fig. 3.13. We next
describe how to improve rendering quality by leveraging the more precisely calibrated
subviews of the windows. We use these subview cameras, placed back into the input
scene, along with the approximate input cameras for the �nal rendering. �e subviews
also provide complementary information gathered from di�erent instances of the window,
allowing us to be�er handle re�ections than when using only the input images.

Chapter 3. Repetitions for Image-Based Rendering of Facades 57

Figure 3.13 – Misalignments introduce ghosting when performing image-based rendering
using the original images and the re�ned mesh.

3.6 Data Factorization and Augmentation

While the cropped subviews all represent the same platonic element, they each contain
view-dependent and instance-dependent variations which would yield signi�cant popping
artifacts if used directly for image-based rendering. We treat these two sources of
variations separately, as view-dependent variations mainly correspond to re�ections over
the window panels, while instance-dependent variations correspond to changes of shape
or color of the window frame.

3.6.1 View-Dependent Variations

Each instance of a window is seen in several of our input images. While window frames
are mostly di�use, the panels are typically re�ective and exhibit strong variations between
these input views. However, the input camera baseline is o�en too wide to observe any
overlap in re�ections, which prevents them from being rendered with existing solutions
based on 3D reconstruction of the re�ected scene [KLS+13]. Instead, we propose to
remove these view-dependent variations to later replace them by plausible re�ections
from an environment map.

Re�ection Separation. Given all the subviews V·,j of a given instance, we remove the
re�ections in each subview by reprojecting all other subviews onto it, and computing the
median gradient of the resulting image stack. We use the 3D mesh computed in Sec. 3.5
to perform this reprojection. As observed by Weiss in the context of shadow removal
[Wei01], the median gradient preserves the visual content shared by the aligned images,
while it discards content that only appears in one of the images. Integrating the resulting

58 Chapter 3. Repetitions for Image-Based Rendering of Facades

gradient �elds gives images where most re�ections have been removed, as shown in
Fig. 3.14. We refer to these images as di�use layers, and to the removed information as
view-dependent layers.

In practice, we only perform re�ection separation for pixels identi�ed as windows by the
deep classi�cation network (Sec. 3.4.1), since those are the most likely to be re�ective.
We noticed that median �ltering is also e�ective at removing occluders present in one of
the input images (trees, sign posts). Assuming that these occluders have a very di�erent
color than the scene they occlude, we also run the above process on pixels that exhibit a
high variance in hue over the images.

Figure 3.14 – From le� to right: input cropped image, extracted di�use layer, extracted
variation layer (intensity), reprojected re�ection mask.

Re�ection Mask. We are now equipped with one view-dependent layer per subview,
which gives us indications of which parts of the platonic window are re�ective. We
aggregate this information across subviews to generate a unique re�ection mask, which
we use at rendering time to composite the environment map re�ections over the window.
Since the extracted re�ections o�en only cover part of the window panels, we again
leverage the polygonal segmentation of the cropped subviews to obtain clean, regular
masks.

We �rst reproject all view-dependent layers into the subview from which the polygonal
segmentation has been computed (Sec. 3.5). We then count the number of pixels in
each region for which the reprojected layers have non-zero intensities, and we compute

Chapter 3. Repetitions for Image-Based Rendering of Facades 59

the sum of all such pixel intensities. We estimate the average value and variance of
these quantities over all regions. We consider that a region is in the re�ection mask
if both values di�er by more than 0.25 standard deviation from their average over all
regions. Intuitively, this approach selects regions that are well covered by intense view-
dependent e�ects. �e resulting re�ection mask (shown in Fig. 3.14) is then reprojected
to all subviews. �e entire view-dependent variations extraction process is illustrated in
Fig. 3.15.

E2

E1

C1,1
*

C2,1
*

C3,1
*

C1,2
*

C2,2*
C3,2

*

Diffuse
layer

View
dependent

layer

(x3) (x3)

Reflection
masks

(x6)

(x3) (x3)

Fronto
Parallel
mask

Segmentation

Figure 3.15 – For each instance, we decompose the associated cropped views into di�use
and view-dependent e�ects layers. All view-dependent layers are then combined to
estimate a fronto-parallel mask guided by the segmentation. �e resulting mask is then
reprojected in all views.

Re�ected Environment. �e re�ections present in the input images are too sparse to
be used directly for rendering, but they provide some information about the environment
surrounding the facade, see Fig. 3.16. In particular, we use the extracted re�ections to
construct an incomplete environment map, which we use to manually select a similar
environment map from a light probe library [XEOT12].

3.6.2 Instance-Dependent Variations

�e key idea behind our approach is to consider that a few views of di�erent instances
of a window can be seen as multiple views of a single platonic window. While we have
shown the potential of this idea to generate a precise platonic mesh and re�ection mask,
using all subviews Vi,j to render a single window yields severe popping of visual content

60 Chapter 3. Repetitions for Image-Based Rendering of Facades

Figure 3.16 – Input images (le�) and the resulting environment map a�er reprojection of
the extracted re�ections (center, zoom as inset). We use this incomplete environment
map to select a similar one from a light probe dataset (right).

speci�c to each instance. For instance, the window blinds may change height or color over
di�erent instances, producing distracting animations as we rotate around the window.
Each instance thus only has a subset of coherent subviews, which correspond to the crops
of that instance in the original images.

Our solution consists in augmenting the coherent set of each instance by reprojecting the
available subviews into their closest missing subviews. Since we only have a few available
subviews per instance, parts of the window may be occluded in other subviews. We �ll
in these parts using content from another instance for which this particular subview
is available. We introduce additional notation to indicate the target instance k: V k

i,j .
When the physical instance j is equal to the target instance k, all pixels are covered in
the sub-view, see Fig. 3.17. When the target instance k 6= j some pixels need to be
reprojected from other views to complete the cropped image.

Fig. 3.17 illustrates the resulting data augmentation on two window instances, each seen
in three subviews, yielding six coherent subviews for each instance. Note that this overall
process is similar in spirit to the re-projection performed at runtime by the image-based
rendering algorithm to generate novel virtual views. However, augmenting the subviews
in an o�ine preprocess allows us to employ a costly gradient-domain fusion [PGB03]
when combining parts from di�erent instances at occlusions. �e color coding in Fig. 3.17
indicates the source of the pixels in each subview: colored V k

i,j with outlined subviews
are cases where target and physical instance are the same, while those in black include
reprojection. Note that the colored pixels in the reprojected views correspond to the
source instance used; in the general case these can come from several instances. �e

Chapter 3. Repetitions for Image-Based Rendering of Facades 61

e�ect of this augmentation is shown in Fig. 3.18.

E1

E2

M
as

ks

...

...

V 1
1,1 V 1

3,1V 1
2,1 V 1

1,2 V 1
3,2V 1

2,2

V 2
1,1 V 2

3,1V 2
2,1 V 2

1,2 V 2
3,2V 2

2,2

...

...

...

Figure 3.17 – Each instance Ei of a window is only seen in a subset of subviews (images
with colored border). We augment this coherent subset by re-projecting the available
subviews in other viewpoints, and �ll-in occlusions and missing parts using the corre-
sponding subviews from another instance (colored areas in images with black border).
We also re-project the re�ection mask in all subviews.

3.6.3 Complete Facade

We now need to create a complete model of the facade, requiring us to make the window-
scale subviews compatible with the facade-scale input images. �e main challenge we face
at this stage is that the facade-scale images are not perfectly aligned with the subviews
and re�ned 3D mesh, which results in visible seams if the two sets of images are combined
naively during image-based rendering (see Fig. 3.19a). For each subview, our solution is to
project the closest input views into it, and stitch the two images such that the subview is
kept over the window, while the input image is used over the surrounding walls. We apply
Digital Photomontage [ADA+04a] to achieve a seamless composite, using the blurred

62 Chapter 3. Repetitions for Image-Based Rendering of Facades

ULR using
input views

ULR using instance
specific subviews

ULR using
reprojected subviews

Figure 3.18 – IBR comparison on our full scene mesh, using resp. the three input views,
each instance original subviews, and the reprojected subviews for each instance.

bounding box of the subview as the foreground/background unary term (see Fig. 3.19b).

(a) (d)(c)(b)

Figure 3.19 – (a) If the crop is blended naively, we observe visible seams. (b) Unary
terms weighting with distance from boundaries. (c) A�er the graph cut, visible seams are
eliminated. (d) Resulting cut.

Figure 3.20 – Our method allows for instances of the platonic element to be swapped
and reinserted in the �nal scene in a coherent manner. Le�: original facade, right: novel
facade.

Chapter 3. Repetitions for Image-Based Rendering of Facades 63

�is approach also helps with color di�erences between the subviews and the facade due
to exposure variations in the scene. As a result, subviews are seamlessly composited and
we can place the instances at di�erent locations on the facade, creating a novel facade
(see Fig. 3.20).

3.7 Implementation and results

�e �nal augmented dataset contains the matrix of augmented views, V k
i,j , the corre-

sponding cameras C∗i,j and the augmented geometry. In addition, we have the selected
environment map that will be used for synthesizing re�ections.

3.7.1 Rendering

We render the scene using an extension of the Unstructured Lumigraph Rendering (ULR)
method [BBM+01], that computes blending weights between input images for each pixel
of the desired output. Our expanded set of cameras C∗ and images V k

ij augment the image
data available for the regions in the windows. In the remaining areas of the facade plane,
it is equivalent to a ULR render using solely the three input images. In the regions of the
platonic elements, only the platonic cameras are used, to avoid any ghosting caused by
the unprocessed input images.

To restore plausible view-dependent e�ects that are important to the perceived accuracy
and realism of the scene, we overlay a re�ection layer over the output image, using the
environment map previously selected. For each pixel lying in one of the areas delimited
by the re�ection masks (Sec. 3.6.1), we re�ect the view-to-point vector with respect to
the facade plane normal and use the resulting direction to query the environment map.
�e resulting color is additively blended with the underlying di�use color.

3.7.2 Implementation

We implemented our method in our custom C++/OpenGL framework. For the individual
components we used the implementation of [WFP11] to rectify input images, and a Ten-
sor�ow implementation of the U-net for window segmentation. �e entire preprocessing
pipeline requires between 10 and 30 minutes for all our scenes; camera calibration and
reconstruction requires less than 5 minutes both for input and platonic scenes. All timings
are reported on an Intel Xeon 12 core 2.6GHz machine with 32Gb of memory. Rendering

64 Chapter 3. Repetitions for Image-Based Rendering of Facades

is real-time.

3.7.3 Results

We validate our results on �ve scenes, two with facades from London (3 input images
each, from Ceylan et al. [CMZP13]) and three from Paris (3 input images for Paris1 and 4
for the others). Scenes are processed as described in the previous sections. Scenes Paris2
and Paris3 required manual de�nition of the plane. In Fig. 3.22, for each scene we show
the input augmented geometry and compare our result to the baseline result rendered
with ULR rendering on the MVS reconstruction using the input images. �e resulting
improvement in quality is more clearly visible in videos, visible on the project web page 1.
Our contributions could also bene�t rendering algorithms based on a di�use textured
mesh. In particular, the re�ned mesh yields be�er alignment of the re-projected images,
which bene�t multi-view texturing. We present a comparison between textured meshes
generated from our data and our image-based rendering approach in Fig. 3.21. Additional
comparisons, illustrating the relative advantages of each part of our method can also be
found in the videos on the project page. As shown in Fig. 3.20, a novel facade can be
generated from an existing scene by swapping window instances.

Figure 3.21 – Multi-view texturing in this �gure was performed using the texturing
module of RealityCapture [Rea18]. From le� to right: textured mesh reconstructed using
the 3 input views, our re�ned mesh textured using the 3 input views, our re�ned mesh
textured with all our generated subviews, and our IBR solution for the same view.

1http://www-sop.inria.fr/reves/Basilic/2018/RBDD18/

http://www-sop.inria.fr/reves/Basilic/2018/RBDD18/

Chapter 3. Repetitions for Image-Based Rendering of Facades 65

Input images Mesh Masks Viewpoint 1 Viewpoint 2

Lo
nd

on
1

Lo
nd

on
2

Pa
ris

1
Pa

ris
2

Pa
ris

3

Figure 3.22 – Results on 2 scenes from London and 3 from Paris. Le� to right: input
images, augmented geometry, extracted re�ection masks, baseline rendering (ULR) and
our result on a �rst viewpoint, baseline rendering (ULR) and our result on a second
viewpoint.

66 Chapter 3. Repetitions for Image-Based Rendering of Facades

Figure 3.23 – On this scene where standard MVS reconstruction fails (middle row), we
obtain a usable result (right).

3.8 Conclusion

Limitations. We currently rely on user intervention for subview selection. A clustering
algorithm with a speci�c similarity metric that allows for minor di�erences between
instances of a group could be used. Our algorithm is sensitive to the precision of the
original calibration and reconstruction of the input images. In some cases, even though
the MVS reconstruction fails completely we are able to produce a usable result, albeit
with some artifacts (Fig. 3.23). Improved resolution street-side captures (e.g., [Eth17])
should provide su�cient quality that will allow our approach to be used. Eliminating the
manual steps of subview selection and plane extraction (when needed) would allow the
approach to be used at a much larger scale.

Future Work. In future work, it would be interesting to generalize our approach to
sub-blocks of a given platonic element, e.g., a pediment shared by a door and a window.
Such a generalization would allow our method to treat elements that are not necessarily
repetitive, e.g., a door that shares su�cient sub-elements with repetitive windows. �is
would also allow our approach to treat elements other than windows. Another interesting
avenue of future work would be the usage of our approach as a component for procedural
modeling and generation. Our augmented subviews could be used as part of a procedural
modeling system, allowing the generation of di�erent combinations of the di�erent
instances. Such a method would need to include a way to generate the rest of the facade
in a procedural manner, while being consistent with the requirements of IBR.

Summary. In this chapter, we have presented a novel approach to facade reconstruction
by leveraging repetitions. We aggregate information from multiple instances in platonic
space, performing improved camera calibration and geometry reconstruction. �ese

Chapter 3. Repetitions for Image-Based Rendering of Facades 67

are used to extract additional scene information, ensuring visual consistency between
viewpoints and locating view-dependent e�ects. At runtime the scene is rendered using
image-based rendering and the specular masks can be leveraged to synthesize novel
plausible re�ections. We also made two observations that motivated the work described
in the next chapter. Firstly, the use of semantic information to detect and correct speci�c
artifacts and IBR limitations could be extended to other elements in di�erent contexts.
Secondly, the user perception of a scene is greatly enhanced when re�ective e�ects are
properly rendered, i.e. using the proper color information and warping motion �ow.

In the next chapter we will describe how we leverage semantic information to detect
cars and car windows in urban scenes, allowing us to extract these elements that are
notoriously hard to reconstruct and render. Semantic information also helps us to syn-
thesize re�ection layers from the input views. �anks to an analytical approximation of
semi-transparent re�ectors, we compute on-the-�y a re�ection �ow to reproject these
layers, generating plausible re�ection motions.

C h a p t e r 4

Image-Based Rendering of Cars with an
Approximate Re�ection Flow

(b) Soft3D [Penner17](a) Textured Mesh (c) DeepBlending [Hedman18] (d) Ours

Figure 4.1 – We propose a new solution for rendering captured cars, and in particular
their re�ective, semi-transparent windows. A textured mesh from multi-view stereo
reconstruction (a) is missing the window geometry. Recent free-viewpoint Image-Based
Rendering algorithms (b, c) are not designed to handle the rendering of both the re�ection
of blue sky, green leaves and the transmissive content (car interior). Our method (d)
handles this by computing real-time re�ection �ows on an ellipsoid approximation of the
curved window surface, based on our estimate of a smooth hull of the car that exploit
semantic labels in the input images.

4.1 Introduction

In this chapter, we continue to explore free-viewpoint navigation at interactive rates in
cityscapes. While such scenes can be created synthetically with varying degree of realism,
image-based rendering techniques provide an interesting alternative. As described in
previous chapters, real world streets can be captured using cameras and the geometry
reconstructed, allowing input image information to be reprojected to generate novel
views. Yet urban scenes are complex, exhibiting di�erent types of objects with extremely
diverse materials and view-dependent behaviors. Even if the capture density is relatively
dense, complex specular e�ects are hard to synthesize in novel views.

Among them, car and car window rendering are arguably two of the main obstacles

70 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

for using IBR for free-viewpoint street navigation. Existing solutions have di�culty
with the poor reconstruction of shiny car bodies and the depth estimation ambiguity of
re�ections moving across curved semi-transparent windows. In this chapter, we provide
a �rst plausible solution, by improving the overall rendered appearance of car bodies
thanks to our estimation of smooth and �lled car geometry, the believable motion of
re�ections on car windows and our synthesized re�ection layers. We target a lightweight
capture process with a single commodity camera (e.g., a GoPro), typically in a “street-
side” fashion. In this context, recent IBR methods build on e�cient Multi-View Stereo
(MVS) algorithms [SZPF16, Rea18], that produce acceptable quality geometry for non-
re�ective/transmissive surfaces. �e reconstructed geometry is used to reproject input
images [BBM+01, HPP+18] in the novel view, allowing interactive, high-quality free
viewpoint navigation in these cases.

However, for re�ective car bodies these MVS algorithms produce inaccurate geometry
due to strongly view-dependent and texture-less appearance, and window surfaces are
most o�en missing. Most IBR algorithms (e.g., [CDSHD13, HPP+18]) are not designed to
handle the �ow of re�ections on a window which is di�erent from that of the interior
or background visible through that window. Previous speci�c solutions for IBR with
re�ections (Sec. 2.2.1) have di�culty with curved surfaces of car windows, and with the
novel views we target that are quite far from the input views, but quite common for
street-level navigation.

We chose to take inspiration from our previous work and propose an approach where
elements such as cars are detected and extracted from the scene using semantic segmenta-
tion as an input, their geometry corrected and additional re�ector surfaces approximated.
We use these surfaces to extract specular information from the input data, and reproject
it at runtime using an approximate re�ection �ow. We present in this chapter three main
contributions, providing a fully automatic solution for IBR of cars with view-dependent
e�ects:

• A new algorithm to provide a complete and smooth car body reconstruction suitable
for rendering in a casual capture context, as well as initial window surfaces.

• A re�ection �ow approximation for plausible interactive re�ection rendering and
an automatic ellipsoid ��ing algorithm that uses the initial window surfaces.

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 71

• A re�ection and background layer synthesis method building on our re�ection
�ow.

Our solution allows interactive rendering of plausible motion of re�ections in car windows,
and diminishes visual artifacts due to missing and incorrect car geometry. �is plausible
motion greatly improves perceived visual quality compared to previous methods (Fig. 4.10,
4.11) especially when moving around the scene.

4.2 Related Work

In chapter 2, we reviewed previous work in image-based rendering of scenes with complex
geometry (Sec. 2.1.2) and the rendering of view-dependent e�ects in that context (Sec. 2.1.3,
Sec. 2.2.2). We also covered the extraction and reconstruction of specular information
from real world data (Sec. 2.2.1). In this section we discuss some aspects of previous work
that are speci�c to the work described in this chapter. We also review techniques that
leverage semantic information for 3D reconstruction.

Image-based rendering. As already described in chapter 2, modern Image-based ren-
dering techniques frequently rely on multi-view stereo reconstruction (Sec. 2.1.2), but
su�er from their limitations. Despite recent progress, these methods still have di�culty
with scene coverage and are not designed to handle highly re�ective surface nor the depth
ambiguity of transparency. Recent unstructured methods alleviate reliance on global
geometry by combining re�ned view-dependent meshes with learning to improve blend-
ing [HPP+18]. We build on such ideas, and introduce a solution for semi-transparent,
re�ective surfaces (e.g., car windows) that were previously problematic.

Speci�c techniques exist for scenes with re�ective and transparent surfaces as described
in Sec. 2.2.1. �ese approaches are restricted to planar re�ectors and limited motion,
and are unsuitable in our context of curved windows. Volumetric approaches such as
So�3D (Sec. 2.1.2) allow multiple surfaces to be present at a given pixel; however,
artifacts can appear in non-transparent regions, especially far from the input cameras
poses. In contrast, we provide a larger space for free-viewpoint navigation, thanks to our
approximate re�ection rendering and layer synthesis.

Recent work on IBR exploits neural networks to improve rendering quality (Sec. 2.2.2).
�ies et a. [TZT+20] address the problem of moving highlights for isolated objects rather

72 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

than the full scenes we consider and do no handle semi-transparent, re�ective objects.
�ese works furthermore focus on much smaller camera baselines than ours [MSOC+19].
Nonetheless, these methods present many exciting ideas on using the power of deep
learning to improve IBR, and we consider these very promising avenues for future work.

Layering, Reconstruction, Rendering of Semi-Transparent and Re�ective Ob-
jects. Layer separation methods described in the literature (Sec. 2.2.1) require a su�-
ciently accurate initial �ow estimate to be successful; in our context of uncertain input
data, we opt to synthesize plausible re�ection layers instead. Nonetheless, our synthesis
method is inspired by the work of [SAA00], and their idea of min-composite.

Several methods address the challenge of reconstructing transparent and re�ective objects,
but typically require the use of custom acquisition devices [WGL+18, WZQ+18, GHLB15].
Volumetric approaches can also be found in the literature [IKL+10] to handle the multiple
depths per pixel present in images of non-opaque objects. �ese o�en focus on speci�c
object categories, or involve complex acquisition hardware setups [IKL+08]. We focus
on a casual capture setup, using a single consumer-level camera.

Numerous methods for the rendering of re�ections in real-time have been described for
synthetic scenes (Sec. 2.2.3). Our IBR context is di�erent, since we do not have access to
the full geometry, but our analytical surface approximation to curved windows allows us
to build on such approaches to compute re�ection �ow (e.g., [OR98, EMD+05]).

Semantic labeling. Semantic labeling has been used to detect class-speci�c properties,
allowing speci�c reconstruction processing. One common approach is the use of 3D
models of a given object class (e.g., cars) to train priors for reconstruction, o�en resulting
in good quality voxel reconstructions [HSP14] or meshes [YBCLS13]. While our object-
class-speci�c smoothing priors have similarities in spirit with e.g., the class-based normal
distributions of Häne et al. [HSP14], we focus on the use of a standard Structure-from-
Motion (SfM)/MVS reconstruction pipeline, without the need for training based on 3D
models.

4.3 Overview

IBR for re�ections on cars raises three challenges outlined in Fig 4.2a-c. We �rst need to
provide car geometry that is as complete and smooth as possible, including a window
surface. We then need to e�ciently compute �ow for re�ections on windows taking

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 73
 R
en
de
rin
g

Reflecon flow approximaon
 (in shader)Background & hull (DB+ULR) Car interior (ULR) Final composite

+ + =

Background
layer min-synthesis

Reflecon layer synthesis
(stching + filling)

(c)Reflecon flow
approximaon

Ellipsoid parameter
esmaon

(b)

Window geometry

Symmetrized car

Merged car
and background

Interleaved mesh
and semanc
mask refinement

Input images and semanc maps

Input scene geometry

Ca
r

ex
tr
ac
on

(a)Pr
ep
ro
ce
ss

Figure 4.2 – Overview of our method. Top: (a) We isolate cars and re�ne the car mesh
using a spherical projection, exploiting semantic labels to impose smoothing priors
in window regions. Mesh smoothing is iteratively interleaved with semantic mask
re�nement, and approximate surfaces for windows are produced (Sec. 4.4). �e second
step (b) automatically �ts an ellipsoid to the approximate window surface, which is used by
our re�ection �ow computation (Sec. 4.5). �e �ow is also used in our �nal preprocessing
step (c), together with the re�ned mesh to synthesize re�ection and background layers
(Sec. 4.6). Bo�om: the layers and mesh are used during interactive navigation to synthesize
novel viewpoints with plausible re�ections, by computing re�ection �ow on the �y using
the estimated parameters.

their curved nature into account. Finally, we need to separate layers for re�ections
and background so we can �ow them separately during free-viewpoint navigation. We
successively address each of these challenges in our method; each step produces the input
necessary to provide a solution for the next challenge.

For the �rst challenge we use semantic labels to identify cars and car windows in input im-
ages, using powerful modern machine learning-based segmentation. Unfortunately, these
semantic labels are inaccurate and not multi-view consistent. Our key ideas are to use a
spherical projection of the car and perform interleaved mesh smoothing and multi-view
consistent label re�nement in this spherical space. �is space �ts well with multi-view
consistency operations, and facilitates the use of powerful image-processing methods.
�is step produces a smoothed and complete car body, including a �rst estimation of the
window surface, see Fig. 4.2a and Sec. 4.4.

74 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

For the second challenge we introduce an e�cient re�ection �ow computation based on
analytic approximation of curved windows. We �t ellipsoids to each window by exploiting
the previously estimated window geometry and provide e�cient �ow computation by
gradient descent in the shader; Fig. 4.2b and Sec. 4.5.

For the third challenge, traditional layer separation algorithms (Sec. 2.2.1, [SAA00,
XRLF15]) are not designed for the curved window surfaces and the low quality of the
lightweight capture data we acquire. Instead, we introduce a plausible re�ection layer
synthesis algorithm. We use our approximate re�ection �ows as an initialization, and
then use image stitching to complete the synthesis; Fig. 4.2c and Sec. 4.6. We now detail
each of our solutions, starting with the geometry extraction and re�nement.

4.4 Car Geometry Extraction and Re�nement

To perform high quality rendering for cars including window re�ections, we need to
isolate the cars in the scene, re�ne their geometry, and estimate supporting geometry for
the windows.

4.4.1 Isolating Cars with Semantic Labels

We will use semantic labels to identify and isolate cars in the scene; the labels will
also be used to re�ne car geometry. We obtain 2D label maps for each input image,
using DeepLab-v2 [CPK+17], trained on a subset of the ADE20K dataset [ZZP+19,
ZZP+17], to recognize car objects, but also parts, namely car body, car wheel and car
window. Details of the training procedure are given in Appendix B.2. An example
training image and result obtained on one of our input images are shown in Fig. 4.3c,d.
We project the segmentation labels onto the geometry; ver-
tices where at least 40% of the input semantic maps agree
on the car label are considered as belonging to a car. We
group these vertices in connected components using mesh
and mask connectivity information. �is extraction is robust
due to the overlap between input images and the fact that
the cars are the focus. For each remaining component we
estimate a bounding box aligned with the main axes of the
car using PCA, and initialize the bounding sphere used for

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 75

the spherical projection (see �gure on the right).

(a) Training image (b) Training labels (c) Test image (d) Test labels

(e) Mask from �rst view (closeup) (f) Mask from second view (closeup)

Figure 4.3 – We train a deep-learning based segmentation classi�er. Example of a training
image (a) and associated hand-labeled segmentation map (b). Segmentation (d) obtained
for one of our input images (c). �e masks of two neighboring views (e) and (f) are not
consistent.

4.4.2 Smooth Car Hull Extraction and Semantic Mesh Re�nement

We want to estimate a smooth version of the car body with �lled holes, obtain an
initial approximation of the car window surfaces and improve overall car reconstruction.
Unfortunately, car bodies are badly reconstructed by state-of-the-art MVS reconstruction
algorithms, and car windows are o�en completely missing.

Semantic labels provide an indication of the location of the windows, and could serve as a
guide to re�ne geometry. �e segmentations sometimes contain errors, possibly because
our viewpoints are very di�erent from the training set images, e.g., close-ups where only
a small region of the car is visible. Another case concerns objects lacking features, e.g. a
black car in shadow, or with contradictory features caused by re�ections, lead to missing
regions in some predicted maps. In addition, labels are not always multi-view consistent,
see Fig. 4.3e,f.

A precise model of the car and windows could help improve multi-view consistency, but
this model is precisely what we are trying to obtain. To solve this dependency problem,
we iteratively estimate geometry, interleaving mesh smoothing with updates of semantic
mask probabilities, i.e., the probability that a pixel has a given label.

76 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

Smoothing the mesh in object space is di�cult, since semantic labels from input views
reproject incorrectly on the mesh through the window holes. However, we know that
cars have a spherical topology, and it is natural to use a spherical projection of each car
for multi-view consistent window segmentation. We choose to enforce spherical topology
as a prior in “spherical” image space, which allows the use of e�cient image-processing
algorithms and facilitates multi-view coherence.

We start by projecting the geometry assigned to the car onto the bounding sphere using
a spherical projection and create a depth map (Fig. 4.4a). We reproject the semantic “car
window” labels into the same space, estimating a semantic label probability map using
the reconstructed geometry (Fig. 4.4b). We next use the semantic labels to estimate a
smooth car hull, �ll the window holes and repair inaccurately reconstructed regions as
much as possible. �e semantic map is then re�ned by reprojecting the input view maps
using the updated geometry. Akin to an Expectation-Minimization approach, we iterate
in an interleaved fashion these two steps. Finally, we re�ne the semantic masks in a
multi-view coherent manner.

(a) Input depth map (b) Reprojected window
label map (initial)

(c) Smoothed depth
map

(d) Reprojected window
map (re�ned)

Figure 4.4 – From the input disparity map (a), we re�ne a smoothed and �lled disparity
map (c), using the reprojected semantic information as a constraint (b). Semantic labels
are then reprojected again (d).

Mesh Re�nement Step. To re�ne depth, regions of the depth map where reprojected
labels agree as “car window” are considered with low con�dence, while regions that are
seen by a high number of cameras without this label have a strong weight. Evidently, the
missing window surfaces result in incorrect label reprojection; we prefer and smooth
regions that are more likely to be correctly reconstructed car body, and �ll the other
regions with smooth propagation of the depth. A smoothness prior is thus applied to the

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 77

entire hull of the car, and a data term is added on the Laplacian of the depth to encourage
planar regions and counteract the tendency of the solver to pull the surface towards
the sphere. We use a conjugate gradient method to solve this constrained optimization;
details are provided in Appendix B.1. At the end of this step, we obtain a depth map with
smoothed re�ective surfaces and progressively �lled-in window surfaces, Fig. 4.4c.

Semantic Mask Probability Update Step. We can now use this smooth car hull geom-
etry to reproject the label maps with updated visibility. �is new label probability map
(Fig. 4.4d) is of much be�er quality than the reprojection using the original reconstructed
geometry (Fig. 4.4b). �e updated map is then used for the next mesh re�nement step.

Final semantic mask re�nement. A�er three interleaved iterations, we re�ne the
label probability map in spherical space, using a Markov Random Field (MRF) guided by
color similarity of input views reprojected onto the mesh and con�dence, based on label
probabilities and visibility. We also discourage well-reconstructed pixels to be labeled as
windows. Details of the MRF are provided in Appendix B.2.

Smooth Mesh Extraction & Symmetrization. �e �nal smooth depth map is used to
regenerate a car mesh with �lled windows and smoothed surfaces, Fig. 4.5b. Regions that
were previously holes and deformations caused by re�ections and transparent surfaces
(see Fig. 4.5a) now have much smoother supporting geometry.

(a) Input geometry (b) Re�ned geometry (c) Symmetrized

Figure 4.5 – Le� to right. (a) Original input geometry from the MVS reconstruction. (b)
Re�ned geometry a�er the iterative mesh smoothing step. (c) Result of symmetrization.
�e far side of the car not seen by input cameras in our “street-side” casual capture is
reconstructed by symmetry.

In all the examples presented, we have used “street side” capture, with no photographs on
the side of the car facing away from the street. We complete the missing information by

78 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

generating a symmetrized version of the re�ned geometry. A copy of the car geometry is
re�ected along its principal vertical plane, and automatically re-aligned with the initial
car mesh using an Iterative Closest Point approach. Both geometries are merged based
on visibility, i.e., in regions where the initial car is visible in less than 20% of the cameras,
we instead use the mirrored version. �e resulting re�ned and symmetrically completed
mesh is shown in Fig. 4.5c.

�e �nal label map (Fig. 4.6a) is then used to cut windows out of the smoothed mesh.
Speci�cally, the parts of the mesh that are labeled as windows are extracted separately
(Fig. 4.6b), and the remaining hull of the car is merged back with the initial scene geometry
(Fig. 4.6c). Vertices of the initial geometry too close to the smoothed mesh are discarded,
to avoid double surfaces. We refer to this windowless smoothed mesh (Fig. 4.6c) as the
re�ned mesh or geometry from now on.

(a) Final re�ned map (b) Extracted windows (c) Merged background and car hull

Figure 4.6 – At the end of the MRF step we obtain the �nal window mask (a, in red,
drawn over the reprojected texture). �is map is used to separate the window meshes (b)
from the merged background/interior and car hull meshes (c).

4.5 Ellipsoid Approximation for Re�ection Flow Computation

At a given pixel p in the novel view (Fig. 4.7a), we see a point Pr that is re�ected from
the background onto the re�ecting window at P . We need to �nd the pixel in a reference
input view that contains the re�ection of Pr. We propose an e�cient algorithm to
explicitly compute re�ection �ow between views. �is technique will be used both during
preprocess and during rendering. We achieve this using two simplifying assumptions: that
scene geometry is distant and that windows can be approximated by ellipsoid geometry.

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 79

4.5.1 Re�ection �ow computation

We assume that the scene geometry re�ected in the windows can be approximated by the
bounding sphere of the scene. Far-away geometry creates very small parallax when the
camera moves, and convex re�ectors further decrease the parallax. High quality geometry
of the re�ected objects is thus not required. Furthermore, each window is approximated
by an ellipsoid. �is representation will be key to making the problem tractable and
achieving real-time performance. At pixel p, we see a point P on the surface of a window.

re�ector

Input View

Background

Input View
Novel View

Background

Novel View

(b)

normal
half vectorP

p

(a)

p’

r
Pi

Pr

Pi

Pr

Pc

re�ectorP’

Figure 4.7 – (a) �e initial con�guration for the re�ection �ow computation. (b) Two
steps of the gradient descent. When the half-vector (green) is aligned with the normal
(red), we have found the point corresponding to the re�ection in the input view. �e
value of pixel p′ can be used to �ow the re�ection to the novel view.

We know the position, surface normal and window parameters at P . Knowing the novel
view position, we can compute the re�ected ray under a perfect mirror assumption, r.
�e intersection of this ray with the background at Pr (see Fig. 4.7a), can also be derived
analytically using our spherical world assumption.

We then search for the point P ′ on the ellipsoid re�ector surface such that Pr falls inside
the input view a�er being re�ected at this point. �is point has the property that the
normal at the surface and the half vector between the incoming and outgoing re�ected
rays coincide [EMD+05] (see Fig. 4.7b). We �nd this point using an approximate gradient
descent. At a given candidate point Pc, we compute the half-vector between PcPr and
PcPi (where Pi is the location of the input view). If Pc = P ′ this vector is equal to
the normal to the ellipsoid at Pc. Else we update the normal by shi�ing it toward the
half-vector. �anks to the bijection between ellipsoid positions and their normals, we
can easily convert this updated normal to the corresponding new Pc. We can iterate this

80 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

process until we �nd P ′ ; following this update procedure guarantees that we reach the
correct solution [EMD+05]. In practice, the algorithm requires fewer than 30 steps to
convergence, and can be performed very e�ciently in a shader (Algo. 1).

Algorithm 1 Iteratively compute P ′, assuming an axis-aligned ellipsoid for brevity
Input: Pi, P , Pr, ellipsoid center C and radii Re

Output: P ′
Pc ← P
n← normalize((Pc − C)/Re)
for i = 1 to 30 do
h← normalize(normalize(Pr − Pc) + normalize(Pi − Pc))
n← normalize(n+ 0.2(h− n))
Pc ← C +Re ∗ n

end for
P ′ ← Pc

Once the point P ′ is found, it can be reprojected in the input view. If it falls inside the
window label mask, the corresponding pixel p′ can be used as a source for re�ection
(Fig. 4.7). By doing this computation for all pixels of the novel view covering a window,
we can compute the re�ection �ow to the input view.

�is re�ection �ow computation will be used during the window ellipsoid parameter
estimation as described in the next subsection. At runtime we estimate the �ow of
re�ections of each window for a set of input views using the same algorithm.

4.5.2 Ellipsoid Fitting for Car Windows

Each window is approximated by an ellipsoid with longitudinal and vertical radii. Due
to shape and physical constraints, the range of admissible curvatures for car windows
is quite limited. We start from the “cut-out” window surface (Fig. 4.8a), use the average
normal of the window as the third ellipsoid axis, and the projection of the scene up vector
onto the window surface as a vertical axis. �e longitudinal axis is the cross product of
the two previous directions.

Our method is based on feature matching and estimates the radii from the motion of
re�ections between close-by views of the same window. We fall back to dense image
matching when such features are missing – re�ections such as the sky or a uniform
wall cause only a few moving lines to appear across the window. In both cases, a range

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 81

of parameters is swept and the set of radii that best explain the re�ection motion is
extracted. We use the same range of radii for all windows ([1m, 40m]) and sweep it using
quadratic steps to sample small values more densely, as small changes to the radii only
create noticeably di�erent re�ection motion if the radii are small (see Appendix. B.3 for
an illustration).

Every re�ection is mixed with transmi�ed colors from the car interior or the scene
background, making matching more complicated – yet we only need to estimate two
parameters per window. �e motion only has to be correctly estimated for a few pixels ;
this low dimensionality combined with the range prior make the problem tractable. A
detailed description of the method is provided in Appendix B.3.

While the ellipsoid �t is an approximation – since car windows can have small imper-
fections and normal variations [JHKP13] – the resulting �ow is su�ciently plausible in
our test scenes, and allows real-time performance. See Fig. 4.8b,c for an example of ��ed
ellipsoid. We experimented with a planar re�ector, but the �eld-of-view for the re�ector
is incorrect and results were signi�cantly worse (see Appendix. B.3).

Figure 4.8 – (a) �e extracted window surface (in green); (b) and (c) �e result of the
��ing process (in green).

4.6 Synthesizing Re�ection Layers

To render car windows, we need to combine a re�ection layer, and the background or
transmi�ed layer which corresponds to the car interior and the rest of the scene visible
through the window. �is layer is reprojected using the reconstructed geometry in the
scene. �e geometry is generally of good quality for the background, and very approxi-
mate for the car interior. We use the term background �ow to refer to the reprojection of

82 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

pixels using the re�ned geometry without windows. �e re�ection layer corresponds to
the re�ections on the windows, that move according to the �ow we compute using our
ellipsoid approximation.

Our data is insu�cient to achieve accurate re�ection layer decomposition; we thus
choose to synthesize a plausible re�ection layer that will be used at runtime. Inspired by
min/max compositing [SAA00], we use the min-composite of the re�ection �ows as a
�rst estimate of the re�ection layer, and synthesize a plausible layer by using a variant
of image stitching techniques. Consider l = 1..L layers over images Ii with i = 1...N .
For a given image Ik, the min-composite Ml,k for layer l is given as: minW l

i→k(Ii), ∀i,
whereW l

i→k is the warp or �ow of layer l from image i to k. Since light is additive, Ml,k

is an upper bound on the value of layer l in image Ik.

For the background layer, we use the min-composite of the background �ow directly, since
this tends to reduce artifacts by preferring darker pixels, Fig. 4.9a. Reliably reconstructing
car interiors would signi�cantly complicate the capture process: many images near the
car are needed, and the far side must most o�en be captured, breaking the “street-side”
capture context we target.

4.6.1 Re�ection Layer Synthesis

For a given input view, we use the ellipsoid approximation for each window to compute
re�ection �ow, reprojecting pixels from 25 neighboring views into it, to create the
min-composite of the re�ection layer, Fig. 4.9b. �is min composite has many visible
artifacts: misalignment errors due to inaccurate re�ection �ow, the presence of moving
objects (e.g., the photographer), artifacts due to errors in the mask reprojection and
color harmonization discontinuities. �e �ow of the background layer can be even more
approximate, since car interiors have very li�le reconstructed geometry. We thus see
that the standard layer separation approach [SAA00] cannot directly be applied in our
context.

Instead, we synthesize a plausible re�ection layer by applying standard image stitching
techniques [ADA+04b] on the min-composite, using a MRF formulation [KSE+03]. We
use the seam-hiding pairwise term described by Kwatra et al. and a custom per-pixel
data cost for each source image s:

ws(p) = Ls(p) +mins′ 6=s|Cs(p)− Cs′(p)|+ 2 ∗min(T,D(p)). (4.1)

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 83

where Ls(p) is the luminance of pixel p in image s, Cs(p) its color, D(p) its distance
to the border and T is set to 1% of the image diagonal. �e �rst term encourages
the solver to prefer the minimum value and to remove outliers, the second measures
photoconsistency as the smallest L1 distance to colors fetched from other images (s′),
and the third discourages using pixels close to image edges. �e resulting stitch is shown
in Fig. 4.9c. Sky re�ections o�en have color di�erences between the various input views,
resulting in remaining color harmonization boundaries that we remove with a �nal
automatic Poisson editing step (Fig. 4.9d). �e stitched image is used as a data term for
both colors and gradients (wgradient = 1, wdata = 0.01). However, seams are discouraged by
choosing the gradient closer to zero from the source images at both sides of the boundary.
�e �nal harmonized re�ection layers are then saved to be used for rendering.

Figure 4.9 – (a) �e min-composite for the background. (b) �e min-composite of initial
re�ection �ows from the 25 neighboring images to a given input view. Notice artifacts due
to (1) presence of the photographer, (2) errors due to incorrect masks, (3) imprecise �ows,
and (4) color harmonization edges. (c) Our MRF stitching reduces alignment, motion and
mask artifacts. (d) An additional Poisson image editing step reduces remaining composite
and harmonization artifacts.

4.7 Rendering, Results and Comparisons

4.7.1 Rendering and Implementation

Rendering of a novel view proceeds in two steps. First we render the background of
the scene, then we composite in the re�ections computed using the re�ection �ow
computation described above.

To render the background of the surrounding scene, we use Deep Blending [HPP+18],
and a per-pixel implementation of the ULR with a standard weighting scheme [BBM+01],

84 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

Figure 4.10 – Our scenes, top to bo�om: Vine, Carpenter, Narrow-Street and Corner-Street.
Le� to right: input images and semantic masks, scene geometry with the input viewpoints
(in blue) and output viewpoints (pink and green), two renderings of each scene using our
method. Note the distance from each novel view to the closest input viewpoint (displayed
in overlay)).

Figure 4.11 – Comparison with recent approaches. Note how our method maintains sharp
and complete re�ections.

reprojecting input images on the re�ned mesh. Since our scenes are large, we restrict the
per-view mesh voxel grid for Deep Blending to encompass the cars, and use the per-pixel
ULR for the rest of the scene.

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 85

We then render the interiors and background visible through the window regions, using
per-pixel ULR to project the transmission layers onto the interior geometry, overwriting
any previously rendered pixels

Finally, we render re�ections by warping colors from the re�ection layers using re�ection
�ow. We only warp a subset of the input views, selecting the 50% views closest to
the novel view, as re�ection layers further away won’t contribute signi�cantly to the
�nal re�ection. For each selected view, re�ection �ow is computed on the �y during
rendering in a shader for each novel view pixel where the supporting surface of the
window is visible. �e background intersection and gradient descent on the ellipsoid are
used to �nd the corresponding pixel in the input view. We additionally check that the
warped pixel falls inside the same window region in the input view (using the supporting
surface again). �e warped re�ection information of the selected views is blended, and
the result is composited with the background using an alpha value of 0.75, which we
found experimentally to work well with all scenes. We apply a small blending fallo� at
boundaries between the two regions.

We show results of our method with our unoptimized C++ and OpenGL implementation.
All tests reported here were run on an Intel Xeon 5118 (48 logical cores) with 96GB of
RAM and a NVIDIA GeForce RTX 2080 Ti.

4.7.2 Results

We present results on four scenes Vine, Carpenter, Narrow-Street, and the Corner-Street
(Fig. 4.10), with the la�er two containing two processed cars. �e number of photos
for each scene is respectively 177, 200, 360, and 330, captured using a GoPro (Hero 6)
in burst more, giving 2 photos per second, while the user walks around the car 4 times
at di�erent heights. Capturing a car takes about 5 minutes. �e input resolution (a�er
camera calibration) is respectively 2720x1607, 2768x1639, 2864x1695 and 2200x1305. Car
geometry extraction and ellipsoid estimation are performed using images resized to
1920px width.

Results are shown in Fig. 4.10, 4.11, and in the videos available on the project web page 1.
�e e�ect of re�ections is best perceived when moving the viewpoint. In the paths shown

1http://www-sop.inria.fr/reves/Basilic/2020/RPHD20/, https://repo-sam.inria.fr/
fungraph/ibr-cars-semantic/

http://www-sop.inria.fr/reves/Basilic/2020/RPHD20/
https://repo-sam.inria.fr/fungraph/ibr-cars-semantic/
https://repo-sam.inria.fr/fungraph/ibr-cars-semantic/

86 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

in the videos, our novel camera is on average at 0.75m from the closest input camera,
with a maximum at around 2.26m.

Our interactive renderer reaches 8Hz (120.0ms) at 1280x720 resolution. Rendering time is
distributed as follows on average: background rendering using DeepBlending and ULR:
108.0ms, car interior rendering using ULR on the interior min-images: 3.0ms, re�ection
rendering and compositing: 8.5ms. Preprocessing for our method on a scene with 200
images takes 10min for mesh and segmentation re�nement, 20min for the ellipsoid
parameter estimation, 1h10min for re�ection layer stitching and 10min for Poisson
editing, in addition to standard o�-the-shelf SfM/MVS (Colmap) and preprocessing for
DeepBlending.

4.7.3 Comparisons

We performed comparisons with the following alternative methods (see Fig. 4.11): a
textured mesh, generated by Colmap [SF16, SZPF16] and textured with RealityCapture
[Rea18], a per-pixel ULR method using the same mesh, So�3D [PZ17] and the Deep-
Blending [HPP+18] method. For fairness, we retrained DeepBlending with our scenes
to achieve the best possible results. We have included So�3D for the scenes Carpenter,
Corner-Street and Vine, while the other methods are provided for all scenes.

For the vast majority of cases, our method provides a much cleaner and plausible result
compared to previous methods. �e fact that windows are �lled and that re�ections move
in a plausible manner are key elements of realism for navigation in these scenes. So�3D
performs well when we are close to the input cameras, but degrades rapidly as we move
away from the input views. DeepBlending improves the overall result compared to ULR,
but still cannot completely recover from the lack of window geometry, and cannot infer
re�ection �ow.

4.8 Conclusion

Limitations. Our method only produces plausible renderings of re�ections and trans-
mission for car windows, especially for the car interior.

�e inaccuracy of the interior geometry is a limiting factor for the quality of rendering
we can achieve. �is is shown in Fig. 4.12(top row) and the video on the project web page
�e feature-based and dense ellipsoid estimations both require at least some re�ection

Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow 87

information; windows in scenes under very strong sunlight might not contain enough
re�ections for this step. In the speci�c con�guration where there is a strong discontinuity
in a highly transmissive area (typically dark car interior over a bright background with
some re�ections over the dark areas) our re�ective stitching method is not very successful,
resulting in rendering artifacts such as ghosting of the interior or duplicated car frames
(Fig. 4.12). �is is due to the ambiguity of the min composite in this con�guration.

Figure 4.12 – Top le�: novel view rendering with our method. Top right: crop of the
view; rendering artifacts are visible. Lower le�: closest input view; there is a strong dis-
continuity on a bright background with some re�ections present. Lower right: re�ection
layer min-composite in this case.

�e robustness of some steps (geometry re�nement, ellipsoid ��ing) could be improved
through learning-based approaches that could extract automatic features more resilient
to variability in the input data. Our method also inherits limitations from the rendering
algorithms used for the background and car bodies. �ose parts could bene�t from future
work on geometric and material priors to render broader specular e�ects with high �delity.
Despite these shortcomings, compared to all previous methods our plausible rendering,
and the reduction of the most visible artifacts is a major step forward to allowing usable
IBR in a cityscape navigation context.

Summary. We have presented a new method that allows plausible rendering of cars
with view-dependent e�ects, in a casual capture context using a single consumer camera.
Our method is based on the introduction of an e�cient re�ection �ow computation
that can be computed in real time in a shader, using an analytical approximation of

88 Chapter 4. Image-Based Rendering of Cars with an Approximate Re�ection Flow

curved car window surfaces. We create a smooth car hull, �lling the windows that are
missing in the MVS reconstruction, e�ciently enforcing spherical topology using image
processing operations. �e �rst approximation of the window surfaces is used to support
the ellipsoid �t for the car windows, enabling the e�cient re�ection �ow computation.
�e �nal component is the use of the re�ection �ow for a re�ection layer synthesis
algorithm, based on image stitching operations. To summarize, we have presented a
�rst solution allowing plausible IBR of cars and in particular car window re�ections.
Our method makes a signi�cant step forward in allowing applications requiring realistic
free-viewpoint navigation in cityscapes to use IBR.

�e results obtained also showed us that when the geometry is controlled – thanks to
approximations or in the case of synthetic scenes –, computing the �ow of re�ections
is a feasible task and greatly help user perception. �is motivated our study of view-
dependent e�ects in synthetic scenes and how to precompute and reproject them, that
lead to the work presented in the next chapter. We will show that by taking inspiration
from image-based rendering techniques, we are able to reproject precomputed complex
light paths in the scene by relying on an approximate re�ection �ow. Combined with a
reconstruction �lter, this results in high quality global illumination in static scenes.

C h a p t e r 5

Glossy Probes Reprojection for Global
Illumination

(f) Our method (g) Real-time baseline

(b) Adaptive parameterization

(d) Glossiness reconstruction

(c) Glossy gathering

(a) Scene with probes

(e) Ground truth

Figure 5.1 – Complex glossy light paths are hard to render interactively, even with
modern GPUs. We precompute a set of probes in a 3D grid (a) storing such light paths,
and reproject information in real-time to render novel views. We introduce: (b) An
adaptive parameterization of probes allocating resolution to glossy materials and complex
geometry; (c) A gathering algorithm based on path perturbation theory to accurately
reproject glossy re�ections to the novel view; (d) High quality glossiness reconstruction
to correctly treat re�ection occlusion boundaries. We achieve interactive walkthroughs
(f) for static scenes with opaque objects, with quality close to the path-traced ground
truth (e) and be�er than a real-time GPU ray tracing baseline (g).

5.1 Introduction

In the two previous chapters, we focused on captured scenes and treated view-dependent
e�ects such as re�ections. We now turn our a�ention to synthetic scenes, introducing a
new approach for precomputing and reprojecting complex view-dependent light paths,
inspired by image-based rendering.

Interactive global illumination has been a major goal of computer graphics since its
inception. �e introduction of GPU-accelerated ray tracing [Bur20, NVI18, WM19]
brings closer the prospect of real-time, physically-based global illumination. Current
hardware can create a G-bu�er [ST91] and trace specular paths very e�ciently. However,

90 Chapter 5. Glossy Probes Reprojection for Global Illumination

more complex, typically longer and glossy light paths are still very expensive: see for
example the path with multiple glossy bounces in Fig. 5.1e. As describe in chapter 2
(Sec. 2.2.3), numerous techniques have been proposed to estimate the contribution of such
paths in real-time. We now present a novel method where such view-dependent glossy
paths are precomputed at prede�ned scene locations and reprojected. When augmented
with view-independent paths stored in a traditional light map, our solution enables full
global illumination in interactive walkthroughs of static environments containing opaque
surfaces (Fig. 5.1).

Numerous real-time global illumination approximations have been explored [RDGK12],
o�en storing direct light or irradiance in light probes [MMNL17] and approximately
reconstructing a subset of light paths with various heuristics [RS09]. �ese methods
achieve impressive results, but can be less e�cient on more expensive, glossy light
paths. We take a di�erent approach inspired by image-based rendering techniques,
precomputing all light paths and carefully handling storage and reprojection for each
novel view.

Our approach relies on a simplifying assumption. We split light paths, treating view-
dependent and view-independent light di�erently. Separating paths has a long history in
graphics [CRMT91, WCG87, SSH+98], allowing signi�cant acceleration of illumination
computations. We focus on view-dependent paths, while for view-independent paths we
use traditional light maps.

For such view-dependent paths, i.e., paths from the eye through several glossy bounces,
we precompute a new kind of light probe to store them. While precomputing all light
paths can enable interactive rendering of realistic lighting, reprojecting this data into novel
views raises three main challenges. First, the dense angular sampling needed to capture
view-dependent e�ects can impose high memory requirements, since glossiness and
complex geometry imply the need for denser sample rates. Second, reprojecting glossy
probe samples into a novel view can be challenging and costly. �is is because complex
re�ector and re�ected geometry/materials make it hard to �nd the best samples in the
probes for a given novel view. �ird, directly reprojecting paths can cause sharpening
at glossy re�ections of occlusion boundaries, as parallax changes between the probe
position and the novel view can sharpen the precomputed blur.

Our work described in this chapter addresses these three challenges. Using Heckbert’s

Chapter 5. Glossy Probes Reprojection for Global Illumination 91

[Hec90] notation, we store L(S|D)∗DE in a light map and we store L(S|D)∗S∗E paths
in light probes (here S signi�es any non-di�use re�ection). Our approach has three main
contributions:

• An adaptive light probe parameterization to increase resolution depending on scene
geometry and material properties, reducing the overall memory footprint.

• An algorithm using e�cient re�ection estimation and on-the-�y search to gather
view-dependent texels from probes, providing high-quality interactive rendering
of glossy paths.

• To avoid sharpening at glossy occlusion boundaries, we introduce a new approach
that splits the convolution e�ect of the BRDF into two steps. First, we render the
probes using materials with lower roughness in precomputation, and second, during
rendering we apply e�cient, adaptive-footprint bilateral �ltering reproducing the
original material roughness.

Our algorithm plausibly approximates ground truth illumination, with complex light
paths, at interactive rates for scenes with opaque objects (Fig. 5.16-5.18). We compare to
modern hardware-accelerated ray tracing baselines: a light map with real-time glossy
ray casting and real-time path tracing. We also compare with light-probe based illumi-
nation [MMNL17] and image-space gathering [RS09]. Overall, we show be�er quality
compared to ground truth, when other methods run at the same framerate as ours.

5.2 Related Work

In chapter 2, we reviewed previous work on real-time re�ections and probe-based render-
ing (Sec. 2.2.3), and the reuse of existing shaded samples in synthetic scenes (Sec. 2.1.4).
We also investigated e�cient ways of estimating the �ow of re�ections (Sec. 2.2.2); in-
spired by our results from previous chapters, we leverage them here once again. In this
section we present the aspects of previous work that more closely relate to our novel
approach described in this chapter.

Light maps are used widely in games, and recent research e�orts have explored e�cient
light map approximations [LTH+13, LWS19]. Our work is largely orthogonal, and we
use di�use light maps computed o�ine with a modi�ed path tracer.

92 Chapter 5. Glossy Probes Reprojection for Global Illumination

Reusing Samples for Rendering. Several methods have been developed to precompute
and reuse samples for synthetic scenes (Sec. 2.1.4). Shading and �nal images generation
can be decoupled [WDP99, WS99, DWWL05], or samples from previous frames reused
to improve rendering quality [Kar14, SKW+17]. While our work relies on sample reuse,
our preprocessing is more exhaustive than these solutions.

Other methods have focused on reusing samples for view-dependent e�ects, under a
small baseline assumption [LR98, LRR+14]. In contrast, our work uses light probes for
specular and glossy e�ects, requiring a more involved approach to reproject these paths
to the novel view. Nonetheless, IBR techniques inspired our combination of precomputed
data feeding interactive rendering.

We additionally draw inspiration from image space gathering [RS09] (Sec. 2.2.3). to
overcome the sharpening our approach introduces at re�ected occlusions draws, but by
precomputing all paths – not just perfect re�ections – we simulate all lighting at a similar
cost to the original screen-space �lter.

Real-time Re�ection Rendering. Real-time rendering of synthetic re�ections has
been extensively explored, as we described in Sec. 2.2.3. �e computation of the �ow
of re�ections on a surface is a complex problem because of the numerous indirections
involved (Sec. 2.2.2). We leverage existing validity criteria for re�ection paths [EMD+05]
and the specular path perturbation framework [CA00b] when reprojecting information
from our glossy light probes to the novel view.

Recent ray tracing GPUs allow fast path tracing, especially when coupled with denoising
(e.g., [SKW+17]). Multiple-bounce glossy paths however require a high sample count to
evaluate the BRDF and each path vertex, and thus result in degraded performance, as
seen in our comparisons (Sec. 5.7.3.1). In addition, poor reconstruction of dynamic glossy
and specular re�ections from low-sample renderings is a known limitation of existing
denoisers.

Rendering with Light Probes. Precomputed environment maps are o�en used in
production to generate approximate real-time re�ections (Sec. 2.2.3). But environment
maps only work for mirror re�ections by default, and require additional assumptions to
support glossy e�ects. In contrast our approach handles general material properties. We
remain inspired by the prevalence and convenience of environment maps and leverage
them in our probe system. Light probe memory consumption can also be signi�cant. We

Chapter 5. Glossy Probes Reprojection for Global Illumination 93

minimize this with an adaptive parameterization, which relates to continuous magni�ca-
tion techniques to obtain spatially-varying resolution [FRS19]. Unlike our solution, they
magnify according to a simple foveation pa�ern, independent of the scene content.

While it is now possible to use probes with geometric data as an intermediate scene rep-
resentation to answer incoming light queries [MMNL17, WKKN19, HSAS19], handling
glossy re�ection paths in these methods also requires an increased sample count, degrad-
ing performance (see comparisons in Sec. 5.7.3.2). In contrast, thanks to our precomputed
probes containing all light paths, glossy re�ections are handled naturally by our solution.

5.3 Overview

We introduce a novel approach to interactive rendering of global illumination in static
synthetic scenes containing opaque objects, using light maps for di�use and probes for
glossy paths. Our approach is motivated by the results obtained with �ow estimation
techniques on real world scenes described in the previous chapter. We address three
challenges of probe-based glossy rendering: �rst, reducing memory footprint of the probes;
second, e�ciently and accurately reprojecting glossy path information to the novel view
and third, avoiding sharpening at glossy re�ection occlusion boundaries. Our method is
outlined in Fig. 5.2.

Diffuse Specular

(a) Lightmap
generation

(b) Adaptive
parameterization

(d) Glossy
renderings

(e) Curvature
estimation

Authored
synthetic scene

& probe grid

Preprocess Runtime

(f) Glossy gathering (g) Glossiness filter

(h) Diffuse textured mesh (i) Final composite

Probes
selection

(c) Geometric
information

Figure 5.2 – For a given synthetic scene, both di�use (a) and specular illumination are
computed. A series of environment probes are placed on a regular grid and parameterized
(b) to capture view-dependent e�ects. In preprocess, high quality renderings are generated
(d) along with additional geometric information for each probe (c, e). At render time, the
closest probes are selected and glossy information is gathered at the novel viewpoint (f) ;
glossy e�ects are then reconstructed (g). �e di�use scene is rendered separately (h) and
both layers are composited to generate the �nal image (i).

In preprocess (middle box in Fig. 5.2), we use a path-tracer to compute di�use global

94 Chapter 5. Glossy Probes Reprojection for Global Illumination

illumination stored in a light map (a), while the glossy component of radiance – i.e.,
L(S|D)∗S∗E paths – is precomputed (d) and stored in light probes placed in the scene,
far le� in �gure.

For the �rst challenge, we maximize the amount of information stored where glossy
surfaces are visible by computing a parameterization for each probe with more resolution
assigned to shinier surfaces and objects with higher geometric complexity (Fig. 5.2b). We
generate this parameterization using quasi-harmonic maps [ZRS05]. We also precompute
scene geometric curvature information which is used at runtime for gathering (Fig. 5.2e).
A visible geometry map is also generated along with a map containing the re�ected
positions visible in each direction of a probe (Fig. 5.2c).

Rendering is performed at runtime (right-hand box in Fig. 5.2). We �rst render the di�use
component as a surface textured by the light map.

For the second challenge, we e�ciently render accurate view-dependent paths by in-
troducing a hierarchical gathering approach. We �rst perform trilinear interpolation
between probes. We compute the perfect mirror re�ected position visible at each point
of the novel view, and reproject it into each selected probe while taking specular motion
into account (Fig. 5.2f). We base our approach on specular path perturbation [CA00b],
but generalize it to arbitrary geometry using curvature approximation. �is estimate
provides an initialization for a search process performed in probe space to gather the
probe texels best corresponding to the – possibly glossy – re�ection. We accumulate
these points from the probes and blend them according to the material properties at the
re�ector surface. �e gather process is critical to the success of our approach, since it
renders our method robust to inaccuracies in the reprojection process and �nds the best
available data in the probe.

�e third challenge occurs because naively reprojecting glossy re�ections from the
probes can create a sharpening e�ect at occlusion boundaries in the re�ections. To
overcome this issue, we introduce a new approach that separates the convolution e�ect
of BRDFs into two steps (Fig. 5.2g). We �rst reduce the roughness of materials in the
probe precomputation, and apply bilateral �ltering in screen space during rendering.
Importantly, we estimate a footprint for the screen-space �lter that closely reproduces
the overall glossiness of the original materials.

�e entire process is interactive, and reproduces all the light paths in our static scenes

Chapter 5. Glossy Probes Reprojection for Global Illumination 95

made of opaque objects.

5.4 Probe generation and storage

We store glossy paths in light probes, and reproject them to novel views when rendering.
We �rst describe the per-probe data and how we compute it. We then present our adaptive
parameterization that concentrates probe texels in important regions, reducing memory
usage at a given image quality. We also describe additional geometric information needed
as part of real-time rendering.

We place probes on a regular 3D grid in the scene [MMNL17]. A�er exploring various
adaptive probe placements [WKKN19], we found regular sampling gives the highest
quality at a given probe budget. �is is because our re�ection estimation (Sec. 5.5.1)
works best with minimal distance between probes and the novel view. Regular sampling
minimizes the maximum distance, while adaptive placement naturally samples some
areas sparsely. Yet, we believe that studying probe placement based on the material
content in the scene is an interesting topic for future work. Further insights could be
derived that might also help guide capture for reconstruction and rendering of real world
scenes. Additionally, synthetic scenes are a convenient way to test and validate choices
for reprojection and blending of input data in a general image-based rendering context.

5.4.1 Per-probe Data

(a) (b) (c)

Figure 5.3 – Per-probe data: (a) glossy color, (b) re�ector geometry information (triangle
IDs and barycentric coordinates), (c) re�ected positions (and re�ected material ID in the
alpha channel).

For each probe, we render a map storing surfaces visible from the probe (Fig. 5.3b); this
map stores triangle ID and barycentric coordinates used to reconstruct surface a�ributes
at runtime (e.g., position, normals or curvature). We then render an environment map
containing a 360◦ view from the probe location, storing only the glossy color at visible

96 Chapter 5. Glossy Probes Reprojection for Global Illumination

surfaces (Fig. 5.3a). We precompute this map with a modi�ed version of the Mitsuba path
tracer [Jak10] where we force all �rst-bounce rays to sample the glossy BRDF lobe and
take our adaptive parameterization into account. In practice any renderer can be used,
depending on desired probe quality. In a third map, we store the geometry seen with
one-bounce re�ection as if every surface acted as a perfect mirror (Fig. 5.3c).

5.4.2 Probe Parameterization

At a high level, we aim to allocate probe resolution preferentially to regions where it
is most needed. �ree requirements drive our texel allocation. (a) Smoother surfaces
require higher resolution for reprojected re�ections, while we can reconstruct rough
materials from fewer samples due to their lower frequencies. (b) Distant surfaces or those
seen at grazing angles have lower e�ective resolution. Probe queries may occur from
novel views with di�erent perspectives requiring higher resolution. (c) High frequency
geometric content exhibits lots of variation in re�ected radiance, which needs higher
resolution for reliable capture.

q

p

q

p

(a)

(b)
(e)

(d)

(c) (f)

(h)

(j)

(g) (i)

Figure 5.4 – Overview of our probe parameterization pipeline. Conventional content-
agnostic spherical parameterizations (a) of a glossy rendering allocate resolution budget
suboptimally. �is map is never rendered in our approach and shown here only for
illustrative purposes. Instead, we design an adaptive resolution map (b), combining local
information on surface parameters (c), foreshortening (d), and geometric complexity (e).
�e la�er is estimated by convolving a G-bu�er with DCT basis functions (f) – here
shown for N = 8 – which are then aggregated using a weighting scheme (g) to detect
high-frequency variation. We use quasi-harmonic maps to convert the adaptive resolution
map into a corresponding adaptive parameterization (h). �is induces an inverse �ow
�eld (i) – here 2D lookup coordinates are visualized using red and green channels – which
we use to steer rays, obtaining a probe with spatially varying resolution (j).

We start from a latitude-longitude (lat-long) parameterization (Fig. 5.4a) and modify it
driven by the requirements above. We could start from other panoramic parameterizations,
with few di�erences, but we chose lat-long as it allows easy lookups from ray directions

Chapter 5. Glossy Probes Reprojection for Global Illumination 97

and the map is a single image (i.e., not a cube-map). We proceed in two steps: �rst we
compute an adaptive resolution map m (Fig. 5.4b) to encode relative resolution needs of
various probe directions, then we use the map to compute an adaptive parameterization
(Fig. 5.4h).

5.4.2.1 Adaptive Resolution Map Computation

To construct the map, we render four low resolution bu�ers, via ray casting, containing:
(i) material smoothness mmat, (ii) depth mdepth, (iii) normal mnorm, and (iv) facing angle
mface, the dot product of incident ray and surface normal. We render these bu�ers at
256× 128 pixels.

�e adaptive resolution map m in Fig. 5.4b stores:

m = mmat
(
msize +mcomplexity

)
.

Here, mmat adapts resolution based on material smoothness (Fig. 5.4c), satisfying require-
ment (a), above. Di�use texels havemmat = 0 so no space is allocated for them, increasing
resolution for shiny surfaces. msize (Fig. 5.4d) considers distance and orientation (b) and
is computed as:

msize =
m2

depth

mface
cos
(
θlong

)
.

�is term converts probe area to actual object size, compensating for perspective and an-
gular foreshortening akin to a form factor. θlong is the longitude angle, which compensates
for size variations induced by the lat-long base parameterization.

Finally, requirement (c) calls for an estimate of local geometric complexity. Simple
gradient-based estimates on our bu�ers are not meaningful, as their response increases
around any discontinuity, including (curved) edges, which we do not consider “complex”
for requirement (c). �erefore, we perform a simple frequency analysis (Fig. 5.4e) as
follows:

mcomplexity =
1

N2

N−1∑
p=0

N−1∑
q=0

wp,q‖bp,q ∗mnorm‖1.

Here b are basis functions of the 2D discrete cosine transform (DCT) [ANR74], with
[p, q] integer 2D frequency vectors (Fig. 5.4f). See Appendix C for more on the choice of
DCT. Convolving the basis functions with the normal bu�er analyzes frequency content
of local neighborhoods, and the 1-norm sums absolute responses of the three normal

98 Chapter 5. Glossy Probes Reprojection for Global Illumination

map dimensions. We weight responses by wp,q = ‖[p, q]‖k to ensure higher frequencies
contribute heavily to our geometric complexity measure (Fig. 5.4g). In practice, we set
N = 16 and k = 5. We normalize both msize and mcomplexity by a per-probe mean to
ensure equal e�ective contribution. Subsequent steps behave more robustly a�er blurring
m with a small Gaussian (i.e., σ = 5).

5.4.2.2 Adaptive Parameterization

To turn our adaptive resolution map m into a parameterization with adapted resolution,
we use tensorial quasi-harmonic maps [ZRS05].

A quasi-harmonic map takes fh from the plane to the plane, following the quasi-harmonic
equation div (C∇fh) = 0. �e 2 × 2 matrix C is a requested �rst fundamental form,
which can vary spatially. In our case C = mI, where I is the identity matrix. �is
essentially imposes scaling proportional to m.

We use a regular quad mesh to discretize the domain, where each pixel of m corresponds
to a quad. We restrict motion of boundary vertices to the domain boundary. Since the
lat-long base parameterization naturally wraps, we force corresponding vertices at the
vertical boundaries to move in sync, ensuring parameterization smoothness. Following
Zayer et al. [ZRS05] we solve the resulting quasi-harmonic equation iteratively using a
sparse matrix solver.

�is quasi-harmonic map induces a forward �ow, telling us how to move our quad mesh
vertices to obtain the desired parameterization (Fig. 5.4h). To determine where to look up
directions in parameterized probes, we need to invert the mapping, essentially creating
an inverse �ow �eld f−1

h (Fig. 5.4i). We do this by rasterizing the deformed mesh with the
original vertex positions as colors. �is happens at full probe resolution. To render our
adaptively parameterized light probes, each pixel looks up its lat-long position using the
inverse �ow �eld and we trace a ray through the scene in the corresponding direction.
�is distorts the probe according to our magni�cation rules (Fig. 5.4j).

When rendering our glossy light probe, this inverse map speci�es each texel’s correct view
vector to initiate path tracing. At the �rst intersection, we only trace paths corresponding
to the glossy BRDF lobe, exploiting standard material models’ separation of di�use and
specular components. Both the forward and inverse maps are also used at runtime (see
Sec. 5.5) to render the view-dependent layer.

Chapter 5. Glossy Probes Reprojection for Global Illumination 99

5.4.3 Geometric Information

When gathering glossy light probe samples at runtime (Sec. 5.5), we build on Chen and
Arvo’s [CA00a] specular path perturbation. �is requires implicit representations of all
re�ector geometry and various derivatives. To avoid limiting scenes to implicit surfaces,
we need additional geometric data to support our approximation described in Sec. 5.5.1.

(a) (c)(b) (d)Low

High

Pl
an

ar
ity

Figure 5.5 – (a) �e triangle-based mesh and the estimate curvature vectors: minimal
(green) and maximal (red) directions. (b) Visualization of paraboloids ��ed using our esti-
mated parameters. (c, d) Maximal planarity estimated using the initial (c) and subdivided
(d) objects: the estimation improves.

For each scene vertex we �rst estimate principal curvature values and directions (Fig. 5.5a)
based on discrete neighborhood operators [MDSB03]. We do this separately on each
object. For best results, we tessellate large planar objects with only a few large triangles
(Fig. 5.5c,d). To get more robust estimation, we regularize curvatures between neighboring
vertices when normals deviate less than 40 degrees. We average curvatures by weighting
by the normal dot product and ignoring values from boundary vertices. �is reduces
issues at mesh boundaries (which do not have a full cycle to estimate curvature) and
�lters smaller, irrelevant curvature variations.

We transfer these values back from the tessellated geometry to each scene vertex, allowing
runtime interpolation of the curvature. �e principal curvatures allow us to locally
approximate the surface by a paraboloid (Fig. 5.5b), for which we can analytically compute
our required higher-order derivatives.

5.5 Rendering Global Illumination

To render a novel view, we handle di�use and glossy components separately, sampling
two forms of precomputed lighting (see Fig. 5.6). For di�use light, we render meshes
textured with a standard light map, which contains di�use global illumination.

100 Chapter 5. Glossy Probes Reprojection for Global Illumination

Figure 5.6 – Rendering of di�use (le�) and view-dependent (right) components occurs
separately. Both rely on precomputed illumination.

For glossy light paths, we reproject our light probes to the current view. To do reprojection,
we �rst rasterize a G-bu�er with position, normal, surface curvature, and material (ID
and roughness). With a ray caster, we then trace perfect mirror rays at specular pixels,
storing re�ected hit positions and material IDs. �is re�ection ray is real-time on modern
GPUs. We then compute per-pixel glossy lighting by gathering information from nearby
probes. �is gather relies on estimated specular �ow, but as we gather from glossy probes
it closely approximates a wide range of material properties. An exception are re�ected
occlusion boundaries, treated in Sec. 5.6.

For each output pixel containing a glossy surface, we use G-bu�er and ray data above plus
the probe data (see Fig. 5.3) to select relevant probe texels and merge their contributions.
Let p be the current camera position. A pixel sees point x, sampled by our G-bu�er, and
the mirror ray from x intersects re�ected point q (see Fig. 5.7a). To shade x using data
from probe P ′, we need to fetch the probe sample for x′ that re�ects point q as seen from
probe origin p′ (assuming such data exists in P ′).

5.5.1 On-the-�y Re�ection Position Estimation

First, we must determine x′ as the camera moves from p to p′. �e theory of specular
path perturbation [CA00b] allows us to approximate displacement ∆x = x′ − x given
displacement ∆p = p′ − p (see Fig. 5.7a). For any re�ector represented by implicit
function f , we can derive a second order approximation of the path function from
Fermat’s principle and the implicit function theorem. �en, there exists a Jacobian

Chapter 5. Glossy Probes Reprojection for Global Illumination 101

x x’

p
p’

q

Δx

Δp

rv

p

rp

Rv
Rp

p’

nv
np

(a) (b)

Figure 5.7 – �e geometry of path perturbations. (a) From a known specular path (q, x, p)
and a probe position p′, a new path (q, x′, p′) can be determined through local path
perturbation. (b) To assess probe samples, we compute a score based on ray information
(re�ector and re�ected positions, re�ector normal) associated with the sample (rp, np and
Rp) and the novel view pixel (rv, nv and Rv)

J(p, q, x, f), a 3x3 matrix, and Hessian H(p, q, x, f), a 3x3x3 tensor, such that

∆x = J∆p+ [∆p]TH[∆p],

where [∆p] is a 1x1x3 tensor replicating ∆p three times. We refer the reader to Chen et
al. [CA00a] for a detailed discussion. As we know p, p′, x, and q, this gives su�cient data
to lookup probe samples.

While Chen et al. [CA00a] require �rst, second and third order derivatives of f , we do not
want to limit scenes to implicit surfaces. We generalize to triangular meshes using our
local curvature approximation stored during precomputation (see Sec. 5.4.3) and G-bu�er
rendering. From these curvatures we estimate a paraboloid to locally �t the surface, and
use its analytical derivatives for path perturbation. We only keep points x′ that share the
same material as x, and reproject their probe samples.

5.5.2 Gathering View-dependent Color

Combining specular path perturbation with our estimated curvature only approximates
the specular motion between the novel view and our probe. To be robust to inaccuracies,
we explore a neighborhood in probe space before �nalizing our sample selection.

We use a two-level search on a grid of decreasing step size and radius, looking for a
texel with stored radiance valid at our novel location. �e two-level search ensures

102 Chapter 5. Glossy Probes Reprojection for Global Illumination

BRDF BRDF
Probe values

pre-convolved w/ BRDF
Naive post-process blur:

overblurring occurs

Probe Probe

(e) (f) (g)

Probes rendered w/
reduced roughness

(h)

Adaptive Gaussian
footprint

Post-process blur w/
better accuracy

(a) Ground truth (b) Reprojection (c) Ground truth (d) Reprojection

Figure 5.8 – (a) Path traced ground truth of unoccluded glossy re�ection where (b) naive
reprojection is accurate. (c) Reference re�ection with occlusion boundaries; (d) naive
reprojection sharpens these boundaries. (e) Ground truth: pixel colors integrate the BRDF
over samples from both yellow and blue surfaces. (f) Naively sampling precomputed
probes uses only samples from either side of the occlusion, sharpening the boundary. (g)
Naive post-process �ltering over blurs results. (h) By reducing roughness and estimating
the footprint of the post-process �lter, we improve accuracy.

thoroughness while maintaining e�ciency. Samples corresponding to re�ections on
other materials are ignored.

We seek to favor probe samples containing information closely corresponding to the
novel view surface. We achieve this by evaluating an energy function designed to favor
such samples. We use the following notation (see Fig. 5.7b): re�ector position rp, normal
np, and re�ected position Rp as seen in the light probe, and corresponding values rv , nv ,
and Rv from the novel view.

Our energy function considers four criteria. First, view and probe samples (Rv and Rp)
preferentially lie on the same surface; if their material IDs di�er, we strongly penalize
the total energy, multiplying it by sa = 10. We thus use mismatched samples only if
no others are available. Second, the re�ected hits Rv and Rp should be close; for this
we add a term sb = ‖Rv −Rp‖. �ird, using similar surface normals nv and np ensures
consistent lighting; the term sc = 1 − (nv · np) achieves this goal. Finally, the sample
should have a similar re�ected ray; we use the following term:

sd = 1− (Rv − rv) · (Rp − rp)
‖Rv − rv‖‖Rp − rp‖

.

Chapter 5. Glossy Probes Reprojection for Global Illumination 103

Combining these criteria, we use the following energy function:

E = sa · (min(sb, 1) + min(sc, 1) + min(sd, 1)). (5.1)

sa and sb have the most e�ect, but the other terms help �x issues in more uncommon
cases, such as non convex re�ectors.

Because we adaptively parameterize probes, searching probe neighborhoods with a
constant-sized regular grid risks missing details in compressed regions or insu�ciently
exploring magni�ed areas. We thus scale the search step size by

∣∣∣ δf−1
h

δx

∣∣∣−1

, where f−1
h is

the inverse �ow �eld (Sec. 5.4.2.2). In our two-level neighbor search, our coarse level uses
7x7 samples at 4 texel spacing (before compensation). �e �ne level searches 3x3 samples
with 2 texel spacing, centered at the minimal energy sample found by the coarse search.

To avoid popping during camera motion, we sample re�ections in the eight probes nearest
the novel view. Each probe selects its sample with minimal energy (Eq. 5.1). and the eight
probe samples are combined with trilinear weights ti into a �nal pixel color:

C =
1

Z

8∑
i=1

ti · exp(−φEi) · ci, (5.2)

where φ is a constant fallo� factor we set to 8, and Z is a normalizing constant ensuring
that weights sum to unity. When loading colors ci from the probes, we use bilinear
interpolation when this does not blend colors from di�erent re�ectors.

For pixels with no valid sample in any of the eight probes, we temporally reproject
information from last frame’s glossy layer. �e lowest error Ei among the eight probes is
also stored for our glossy �lter pass (see Sec. 5.6.2).

5.6 Two-step Convolution for Accurate Warping of Glossy Probes

For glossy materials, we can reuse samples representing any ray in the BRDF lobe, even
if they are not perfect specular re�ections; this is similar to Robison and Shirley [RS09].
Generally, gathered probe samples are nearly correct for the novel view, giving satisfactory
results (see Fig. 5.8a,b)

However, re�ected geometric occlusions o�en appear “sharpened” when gathered samples
straddle these boundaries. To understand why, consider Fig. 5.8. Fig. 5.8e shows that

104 Chapter 5. Glossy Probes Reprojection for Global Illumination

correct pixel values integrate the BRDF lobe, combining samples from both yellow and
blue surfaces. Naive probe reprojection gathers precomputed samples falling entirely on
either side of the occlusion, sharpening the blurry boundary (Fig. 5.8d). Simply applying a
post-process �lter overblurs (Fig. 5.8g), increasing apparent surface roughness. To reduce
overblurring, our solution separates the convolution e�ect of the BRDF into two steps.
We reduce the material roughnesses when precomputing probes and then adaptively blur
during lookups to approximate the desired glossiness (Fig. 5.8h). We �rst explain how to
estimate the �lter footprint so that we match the original material roughness in the �nal
image (Sec. 5.6.1). We then explain how to perform the �lter operation (Sec. 5.6.2) and
�nally our e�cient �lter approximation (Sec. 5.6.3).

(a) (c) BRDF Footprint
Gaussian Fit

x

dc
dr

Reflected
Point

x

(b)

Figure 5.9 – Filter footprint estimation. (a) �e setup for estimating our �lter footprint.
A camera observes a re�ected point (green) via a planar re�ector. We evaluate the BRDF
lobe (blue ellipses) at various positions x and corresponding viewing angles (blue points)
to obtain an image-space footprint. (b) �e footprint of the GGX specular lobe, for
ρ = 0.075, dc = 2m, dr = 5m. (c) A 1D slice of the specular lobe and our �t giving a
close approximation.

5.6.1 Filter Footprint Estimation

To estimate our �lter footprint, we use a simple con�guration (see Fig. 5.9a): a camera
looking at a plane of uniform isotropic roughness, with normal parallel to the view and
re�ected point colinear to the camera. We evaluate the GGX BRDF [WMLT07] for each
point under a �xed �eld-of-view, shown in Fig. 5.9b. �e parameters in�uencing the
BRDF footprint are the material roughness ρ, distance to the re�ector dc, and distance
to the re�ected light dr. Given this, we �t a Gaussian Gρ(x; ρ, dc, dr) with covariance
matrix Σρ to the image-space BRDF footprint. We can ignore the mean as the Gaussian
is centered at zero. We determine Σρ for speci�c parameters [ρ, dc, dr] by sampling the
BRDF footprint and evaluating spatial covariance numerically. Such a �t is shown in

Chapter 5. Glossy Probes Reprojection for Global Illumination 105

Fig. 5.9c along one scanline; we see this approximates the BRDF quite accurately.

We precompute and tabulate covariances in 32× 32× 32 bins with roughness varying
from 0 to 0.5 and distances from 0.01 to 10m, corresponding to typical values in our scenes.
We use a power sampling scheme and decrease the covariance for small dr (≤ 0.5m) as
we observed ��ing overestimated covariance in these cases.

Slanted re�ectors foreshorten the BRDF footprint along the slant direction. We dynami-
cally incorporate this when rendering: the projected surface normal in image space gives
the foreshortening direction. We then update Σρ by scaling the variance in this direction
by the dot product between view direction and surface normal.

Using Gaussian �ltering allows spli�ing our glossy �lter into two steps, relying on
properties of Gaussians. �e steps include Gρ, the re�ector BRDFs when precomputing
glossy light probes, and GI , the runtime image �lter. Final pixel values are given by the
convolution Gρ ∗ GI . We can reduce material roughness during precomputation, giving
a new Gaussian Gρ′ with covariance matrix Σρ′ corresponding to the new roughness ρ′.
Using the property:

Σ(G1 ∗ G2) = Σ(G1) + Σ(G2),

we �nd the covariance matrix ΣI of the image Gaussian GI such that the operation Gρ′ ∗GI
reproduces the e�ect of Gρ:

ΣI = Σρ − Σρ′ . (5.3)

In practice, we set ρ′ to ρ/2, and modify our preprocess probe rendering to account for
this at the �rst glossy vertex of each path.

During interactive rendering, for each pixel, we look up the values of Gρ′ for a given
initial roughness ρ and distances dc and dr. We compute ΣI using Eq. 5.3, compensate
for geometric foreshortening and apply the image �lter as detailed in the next section.

5.6.2 Gloss Filtering

Above, we estimated the image-space �lter footprint. Now, we �lter guided by the
geometric data used to estimate colors C in Eq. 5.2:

Ĉ(x) =
1

Z(x)

∑
xi∈N (x)

GI(xi − x)wr(x,xi)E−1(xi)C(xi). (5.4)

106 Chapter 5. Glossy Probes Reprojection for Global Illumination

10x Error
(d) Ours: 4 ms(c) Separable: 3 ms(a) Input

10x Error10x Error
(b) Full: 45 ms

Figure 5.10 – Comparing �lter alternatives. (a) Filter input is high-amplitude uniform
random noise, which is adversarial for anisotropic edge-stopping �lters. �e guide image
contains hard edges, with smoothly varying anisotropic covariance in each region. (b)
Applying a full 2D �lter, per Eq. 5.4, is highly ine�cient for large kernels. (c) A naive
separable implementation is fast, but su�ers from strong artifacts. (d) Our four-pass
implementation is almost as e�cient as the separable version, but reduces artifacts
signi�cantly.

Here, N (x) denotes the �lter footprint at x. E is the energy function in Eq. 5.1; the
inverse acts as a con�dence to limit propagation to pixels that match well [KW93]. �e
range weight

wr(x,xi) = 1n(x)·n(xi)>αn · 1|d(x)−d(xi)|<αd
· 1m(x)=m(xi),

acts as a cross-bilateral term, preventing �ltering across normal (n) or depth (d) discon-
tinuities or between di�erent re�ector material IDs (m). We deliberately use indicator
functions (1) instead of more canonical exponential cross-bilateral weights [TM98], since
the spatial �lter footprint already accounts for local geometry using GI . We set indicator
thresholds to αn = 0.8 and αd = 0.2 in our experiments. Finally, Z is the normalizing
partition function, ensuring �lter weights sum to unity.

5.6.3 E�cient Filter Approximation

Evaluating Eq. 5.4 is costly for large footprints (Fig. 5.10b), so we employ an approxi-
mation to maintain interactivity. A two-pass separable anisotropic �lter [GSVDW03]
reduces complexity from quadratic to linear, but is only accurate for spatially invariant
�lter kernels. We observe that within regions de�ned by wr the �lter parameters vary
smoothly, by construction. Naively implementing a separable edge-stopping �lter intro-
duces artifacts at edges that do not align with the �lter directions [PVV05] (Fig. 5.10c).
To mitigate this, we split the �lter into two passes, e�ectively using four 1D separable
�lters [GO11]. �e �rst and third pass �lter along the �rst principal direction of ΣI ,
whereas the others �lter along the second principal direction. In all cases, covariances

Chapter 5. Glossy Probes Reprojection for Global Illumination 107

must be halved to maintain the correct footprint. We observe this very closely matches
the full 2D �lter (Fig. 5.10d).

5.7 Results, Evaluation and Comparisons

We implemented our approach in our internal framework using C++ and OpenGL. We
will release the full source code, including all preprocessing and runtime components.

Specular layers and the di�use light map were generated with a modi�ed version of the
Mitsuba unidirectional path tracer at 2048 samples per-pixel. Each scene contains 252

probes placed on a regular grid, each generated at a 1024x512 resolution. We render the
novel view at 1920x1080.

To highlight their relative importance, we �rst evaluate di�erent aspects of our algorithm
on four test scenes. We then compare our results to �ve di�erent methods, including
some quantitative comparisons. Results are best appreciated in the videos provided on
the project web page 1.

5.7.1 Test Scenes

We evaluated our method on the scenes shown in Fig. 5.11: Bathroom, Livingroom,
Staircase and Small Kitchen, all from the Bi�erli [Bit16] model repository. �e �rst three
contain the original geometry, with some added elements to showcase glossy re�ections.
Small Kitchen contains only a portion of the repository’s scene; the high object count
in the original required a large di�use light map. Solutions for handling large, complex
light maps exist, but are orthogonal to our approach and we leave this as future work.

(a) (b) (c) (d)

Figure 5.11 – Our four test scenes: (a) Bathroom, (b) Livingroom, (c) Staircase and (d)
Small Kitchen.

1will be available at https://repo-sam.inria.fr/fungraph/synthetic-probes/ a�er publica-
tion

https://repo-sam.inria.fr/fungraph/synthetic-probes/

108 Chapter 5. Glossy Probes Reprojection for Global Illumination

5.7.2 Evaluation

We evaluate four aspects of our algorithm. All �gures in this subsection show only our
generated glossy layer. Speci�cally, we explore:

1. the e�ect of our probe parameterization,
2. the e�ect of gathering via our approximate path perturbation,
3. the e�ect of total probe count and the subset used at runtime,
4. and the e�ect of our glossiness �ltering.

Figure 5.12 – Comparing regular and adaptive parameterization when warping just a
single probe into the novel view. Le�: Bathroom scene, right: Small Kitchen. For clarity,
we do not apply our glossiness �lter.

Fig. 5.12 compares results using a standard lat-long probe parameterization and our
adaptive method when warping just the single closest probe into a novel view. Adding
resolution for re�ections viewed at a grazing angle (Bathroom) and on high-frequency
surfaces (Small Kitchen) clearly reduces aliasing and sub-sampling artifacts. �e additional
resolution improves warping, as geometric information is more accurate. For clarity,
renderings in Fig. 5.12 and 5.13 do not include our glossiness �ltering.

For gathering using our approximate path perturbation, Fig. 5.13 shows the e�ects of our
paraboloid approximation and using a single level search. We see that using a planar
approximation on curved objects leads to large regions where the corrective search fails,
while our paraboloid representation gives much improved results (Fig. 5.13 �rst row).
Using only the coarsest search level (Fig. 5.13 second row) we can select sub-optimal
probe samples, resulting in a larger number of incorrect samples.

Chapter 5. Glossy Probes Reprojection for Global Illumination 109

Figure 5.13 – Le� using a planar approximation and center-le� our paraboloid approx-
imation. Center-right: using a one level search, right our 2-level solution. Please note
that glossiness �ltering is not applied here.

Figure 5.14 – Le�, selecting 4 probes instead of 8; center-le�: our solution selecting 8
probes. Center-right: total of 126 probes; right our solution with 252. Fewer available
probes lead to missing information on some surfaces.

In Fig. 5.14 we show the e�ect of using fewer probes for reprojection and reducing the
number of precomputed probes. In both cases, the reduction prevents more pixels in
novel views from discovering relevant probe samples, creating discontinuities and other
inconsistencies on glossy surfaces.

Using probes containing full roughness materials, discontinuities are visible at re�ected
occlusion boundaries. In Fig. 5.15 we illustrate the e�ects of our two-step glossiness
convolution, using probes with halved material roughness. �is reproduces the desired
material glossiness without artifacts at occlusions.

5.7.3 Results and Comparisons

Fig. 5.16 shows frames from our videos camera paths, together with the corresponding
ground truth. We accurately capture complex glossy light paths at interactive frames
rates, including complex secondary glossy e�ects (e.g., the re�ection of the top of the
bin—row 1, le�; glossy re�ections of the table—row 4, right). Nonetheless, while our

110 Chapter 5. Glossy Probes Reprojection for Global Illumination

Figure 5.15 – Le�: glossy layered rendered by gathering from probes generated using
initial material roughness. �e re�ections are sharper. Right: our glossiness convolution
applied on halved roughness probes approximate the e�ect of the material full roughness.

Ours Ground Truth Ours Ground Truth

Figure 5.16 – Results of our method. For each scene we show two viewpoints rendered
with our method and the corresponding ground truth path traced image.

approximation is quite accurate overall, some di�erences remain (e.g., roughness levels
on the �oors).

We compare to three baselines and two previous methods, along with path-traced ground

Chapter 5. Glossy Probes Reprojection for Global Illumination 111

truth rendered with Mitsuba. Note: due to issues converting and loading model and
material formats, we only compare the Bathroom scene across all methods.

5.7.3.1 Comparisons with Baselines.

�e �rst baseline is an image-based rendering (IBR) approach akin to an unstructured
lumigraph (ULR) [BBM+01] rendering of our probes. We reproject the probes using the
scene geometry and use standard ULR weights per-pixel. Evidently, this naive IBR cannot
correctly capture re�ections, see Fig. 5.18.

�e second and third baselines use real-time ray tracing (RTRT) via NVIDIA’s Falcor
framework [BYC+20]. We compare to a real-time path tracer, denoised with the Optix
denoiser. We gave this path tracer the same compute budget as our prototype, resulting
in 2 paths per pixel. Even though this captures the general structure of light paths,
quality and stability are generally lower (e.g., in the re�ections on the sink, Fig. 5.17,
top right). We also compare to light map rendering augmented by BRDF-sampled rays.
Again using the same budget allows for 3 bounces, using 4 samples for the glossy lobes
(at the �rst path vertex) to obtain the best results. �is method also provides good results,
but misses secondary glossy e�ects from distant emi�ers that require a much higher
sample count (Fig. 5.17, bo�om le�). Note, for example, the missing glossy highlight on
the table. In contrast, our solution has overall good image quality, even though some
small inaccuracies remain in re�ections. �e quality is best appreciated over the entire
paths in the videos.

5.7.3.2 Comparisons with Prior Art.

We also compare to image-space gathering [RS09] and McGuire et al.’s [MMNL17] probe-
based method. We reimplemented the former in our framework, using Optix [PBD+10]
and fetching our light map to generate the perfect re�ection image. For McGuire et
al. [MMNL17], we adapted the publicly available implementation in the G3D frame-
work [MMM17]. For a fair comparison, we use Mitsuba to path-trace 128 regular light
probes using their octahedral parameterization at 1024x1024 resolution, giving the same
overall pixel count our probes used. We import these probes into G3D and use them for
all processing required, e.g., irradiance. We activate their glossy re�ections, which trace
8 additional rays in the probes. Both methods were given the same compute budget as

112 Chapter 5. Glossy Probes Reprojection for Global Illumination

ours. Again, the result is plausible, but glossy e�ects are missing (Fig. 5.17-5.18).

[RS09] [MMNL17] ULR Real-time Path Tracer

RTRT+light map Ours Ground Truth

Figure 5.17 – Comparisons with same frame rate for each method. Previous methods:
[RS09], [MMNL17]; baselines: unstructured lumigraph (ULR), real-time path tracing
using Falcor, RTRT with light map; ours and the path-traced ground truth.

5.7.3.3 �antitative Evaluation.

We performed a quantitative evaluation using both root mean square error (RMSE) and
structural dissimilarity (DSSIM) [LMCB06]. We compute the error between the generated
and ground truth glossy layers. Error is averaged over 12 frames sampled regularly along
the path recorded in the Bathroom scene. Table 5.1 summarizes the error for Robison and
Shirley [RS09], McGuire et al. [MMNL17], the RTRT with light map baseline, and our
method. �e error for our method is consistently much lower than the previous work
and baseline.

5.7.3.4 Statistics.

�e timings and memory consumption for our method, including preprocessing, are
shown in Table 5.2. Rendering times are averaged over the paths shown in the videos.
Interactive performance was measured on a computer with an Intel Core i7-7800X pro-
cessor, 64GB of RAM, and a NVIDIA Geforce RTX 2080Ti. We currently use the Mitsuba
renderer to precompute probes and di�use light maps on our cluster. A typical node has a
dual Intel Xeon Silver 4110 processor and 192GB of RAM. We could instead use a real-time

Chapter 5. Glossy Probes Reprojection for Global Illumination 113

[RS09] ULR RTRT+light map Ours Ground Truth

Figure 5.18 – Equal time comparisons for each method. Le� to right: [RS09], ULR, RTRT
with light map, ours and the path-traced ground truth.

Table 5.1 – �antitative error metrics, using both RGB and luminance, comparing Image
Space Gathering [RS09], the probe-based approach of McGuire et al. [MMNL17], the
RTRT with light map baseline, and our method. Lower is be�er.

RMSE DSSIM
Method RGB Lum. RGB Lum.
[RS09] .086 .084 .072 .064
[MMNL17] .093 .093 .087 .080
RTRT+light map .050 .050 .063 .056
Ours .027 .026 .046 .039

114 Chapter 5. Glossy Probes Reprojection for Global Illumination

Table 5.2 – Timings and memory consumption of our method. Rendering timings average
costs over frames in our videos.

Bathroom Kitchen Livingroom Staircase
Preprocess
Parameterization 9 min 6 min 8 min 8 min
Geom. Data 3 min 3 min 3 min 2 min
Light map 10 h 9 h 15 h 12 h
Probes 16 h 13 h 22 h 23 h
Runtime
Rasterization 0.9 ms 1.1 ms 0.9 ms 0.7 ms
Ray casting 6.3 ms 6.3 ms 6.3 ms 5.4 ms
Gathering 21 ms 27 ms 26 ms 18 ms
Filtering 10 ms 12 ms 11 ms 11 ms
Total 41 ms 47 ms 46 ms 36 ms
VRAM 5.6 GB 5.8 GB 5.7 GB 5.7 GB

path tracer, greatly accelerating this step, but we opted for Mitsuba’s mature pipeline
to handle the materials in our scene repository. Comparing with our Falcor path-tracer
implementation in Bathroom for example, for approximately the same quality one could
expect a 10x speedup in preprocessing. Our adaptive parameterization minimizes overall
memory use, especially when using half-precision probe textures. Our probe texels use
24 bytes: glossy color (6 bytes), re�ected positions and material ID (8 bytes), triangle
ID (4 bytes), barycentric coordinates (4 bytes), parameterization and its derivatives (8
bytes, stored at half resolution). Other geometric information is stored per-vertex and
interpolated at runtime.

5.8 Conclusion

Limitations and Future Work. Our method achieves plausible results with a satisfac-
tory accuracy in many cases (see Fig. 5.16-5.18); however it has some limitations.

�e computational cost and memory of the precomputation is the main drawback of
our approach, which also limits our solution to static scenes. An incremental approach
to building light probes and maps via hardware accelerated path tracing would be an
interesting way to li� this limit in future work.

Chapter 5. Glossy Probes Reprojection for Global Illumination 115

We are currently limited to opaque materials. Extending our approach to transparent
materials probably requires storing more information in the probes plus a new gathering
approach for reprojecting transmissive surfaces. Such a gathering solution is an exciting
future direction. A similar argument applies to extending the method to anisotropic
materials, though a simpler solution may be possible for this case.

Finally, our two-step convolution is approximate, as seen with the small di�erences
in glossiness in Figs. 5.16-5.18. A deeper study of error bounds and a more accurate
approximation are de�nitely worthy goals. Nonetheless, our current results are plausible
and provide convincing and quite accurate interactive renderings.

Summary. We presented a novel algorithm for real-time rendering of synthetic scenes
using glossy paths dynamically reprojected from probes and di�use lighting from a light
map. Our solution builds on three main contributions: an adaptive parameterization to
optimize probe memory usage, an accurate gathering algorithm for reprojecting glossy
paths into novel views, and a two-step solution to avoid re�ection boundary sharpening
that occurs when reprojecting naively.

Our solution allows interactive walkthroughs with global illumination for opaque scenes.
�e path we chose is based on precomputation: the advantage is that complex light paths
are precomputed at high quality and that our reprojection can accurately construct novel
views. However, this comes at the price of the computational overhead of precompu-
tation and the limitation to static scenes. On the other end of the spectrum are online
methods, such as a denoised real-time ray-tracer. Our results show the feasibility of
using precomputed data to render complex light paths interactively, and future methods
should build on the full spectrum of methods from fully online to precomputed. Our
solutions for memory optimization, accurate reprojection and occlusion-aware glossiness
will hopefully be useful building blocks to such solutions, moving towards the ultimate
goal of real-time global illumination for complex, dynamic scenes.

C h a p t e r 6

Conclusion

6.1 Contributions

In this thesis, we have presented three contributions leveraging image-based techniques
for the rendering of view-dependent e�ects in real and synthetic scenes. All projects
have tackled issues of sampling, resampling and reconstruction of di�erent e�ects from
the input data. Along the way, the main thread that arose linking our contributions
was the study of re�ective e�ects, how to extract them and reproject them using the
corresponding �ow.

By exploiting repetitions present on building facades, we were able to reconstruct the
main architectural elements even if the input image set is very small. By working in an
ideal space and combining information from multiple repetitive instances, we improved
camera calibration, geometry reconstruction and the �nal rendering. By combining
geometric priors with the sparse input view-dependent e�ects, specular regions can be
detected and re�ection e�ects re-rendered using external data.

In street-level scenes with a denser capture, we relied on semantic information to detect
elements – such as car hulls and windows – that are badly reconstructed because of their
materials. For each car geometry, missing and inaccurate data are �lled and smoothed
with the help of a custom parameterization. �rough a feature-based ��ing process,
re�ecting semi-transparent surfaces are approximated by analytic ellipsoids. From this
representation, the �ow of the re�ections between views can be e�ciently computed.
�is is used to extract layers containing plausible specular information from the input
images. At runtime, the same �ow computation is evaluated from the novel to the input
views, sampling the specular layers to generate proper re�ective e�ects.

Finally we focused on static synthetic scenes. Inspired by image-based rendering, we
precompute specular e�ects at a set of prede�ned locations and store them in probes
using an optimized parameterization. From a novel viewpoint, we perturb specular paths

118 Chapter 6. Conclusion

to determine where to sample information in the probes. Specular data is gathered in
the novel view and a �nal screen-space �lter ensures that glossiness e�ects are properly
reconstructed. We obtain high quality view-dependent e�ects in complex synthetic scenes
that can be explored in real time.

�rough these three projects, we have contributed to advancing the state of the art in
rendering of view-dependent e�ects for both synthetic and real scenes. We have extended
and built upon existing image-based rendering techniques, and tried to address multiple
challenges of both reconstruction and synthesis of re�ective elements.

6.2 Insights

Over the course of the presented projects, we have gained some insights related to the
topics explored in our work.

Semantically guided processing. While in synthetic scenes material parameters are
readily available, we have relied on semantic information as a proxy in real world scenes.
�is was used to detect and extract objects exhibiting reconstruction issues. We think
that this proxy approach has shown to be successful in chapter 3 and 4 even if not fully
explored yet. More classes of objects that are notoriously adversarial to image-based
rendering techniques could be isolated and treated with ad hoc solutions before being
reintegrated into the whole scene. Additionally, when semantic information is extracted
from each input view, care has to be taken to ensure consistency when fusing it in a multi-
view context. We faced this chicken-and-egg problem when reprojecting car semantic
labels obtained by a 2D convolutional neural network to extract incomplete geometry,
requiring an iterative approach. �is has also been an opportunity to explore di�erent
learning-based approaches to semantic segmentation of images and meshes. Finally, we
would have liked to explore how semantic could be used as an input to the rendering
phase and have conducted initial promising experiments.

Changing parameterization. By isolating elements in our scenes, we were able to use
per-object parameterizations to simplify processing of the available data. �e platonic
space in chapter 3 was used to fuse information from multiple instances while alleviating
sparsity, and was at the core of the method. Per-car spherical reprojection in chapter 4
allowed us to apply image-space smoothing and �lling techniques to repair geometry
and re�ne semantic information. �e probe parameterization in chapter 5 was designed

Chapter 6. Conclusion 119

to adapt to the properties of the visible objects. In all cases we maximized the quality
and amount of information stored and/or recovered in the scenes and these customized
parameterizations could be leveraged for other problems.

Importance of re�ections. �e presence of view-dependent e�ects and more speci�-
cally re�ections has proven to be crucial for the user perception in both real and synthetic
scenes. �is was initially observed when synthesizing re�ections on the facade windows
of chapter 3. Even in such sparse capture setup, partial input information could be used to
re-apply re�ections. While the background environment representation was not directly
extracted from the input data, applying re�ections at the proper locations provided an
increase in realism that was crucial to the �nal result.

�is motivated our study of street-level scenes where re�ective and transparent surfaces
are omnipresent and adversarial to both reconstruction and rendering. We thus focused
on extracting specular layers and reprojecting them following an estimated re�ection
�ow. �e analytical approximation we relied on also showed that while respecting the
general motion of re�ections was important, the second-order behaviors – the parallax
motion of the re�ected background for instance – could be simpli�ed without incurring
a high visual cost.

When investigating the intersection of image-based rendering and real-time exploration
of synthetic scenes, re�ections came up as one of the major challenges that would be
interesting to explore. Here again, we con�rmed that higher-order re�ections – especially
on glossy surfaces – had to be present but not necessarily accurate. �antifying the
required level of accuracy for di�erent orders of view-dependent e�ects would be an
insightful follow-up.

Geometric quality. Because image-based rendering techniques rely on preexisting shad-
ing, the expectations put on the scene geometry are di�erent than for classical rendering.
Techniques such as the Unstructured Lumigraph reproject input image information onto
the geometry, masking potential surface deformations. �is is exempli�ed in chapter
3, where strong priors are used to obtain the re�ned geometry of the platonic element.
While some details are lost, the general shape and sharp edges are preserved, ensuring
proper occlusions when reprojecting shading from the input images. In preparatory work
for chapter 4, we also observed how techniques such as Deep Blending can learn to repair
geometric inconsistencies, thanks to both per-view geometry and the learned blending

120 Chapter 6. Conclusion

network.

Our reliance on approximate surfaces in chapters 4 and 5 also proved to be insightful.
�e analytical representations used in both – ellipsoid and local paraboloid respectively –
were e�cient for the tasks at hand, although the ��ing of these approximations proved
to be more cumbersome than initially planed. In chapter 4, the automatic ellipsoid ��ing
required the combination of two di�erent approaches to overcome the lack of re�ection
features in the input data. In chapter 5, synthetic geometry had to undergo a cumbersome
cleanup; the ��ing process furthermore had to be made extremely robust to surfaces
with few triangles or incorrect normals.

6.3 Future work

While we have made progress for the rendering of view-dependent e�ects in multiple
types of scenes, we have also observed and obtained results that call for further investi-
gation. Furthermore, to make some of the tackled problems tractable we had to rely on
assumptions or simpli�cations that could be li�ed with further work. We now highlight
the avenues for future work that appear the most interesting and promising from our
point of view.

Leveraging semantic information. We have relied on semantic information obtained
automatically in chapter 3 and 4, in order to detect and extract regions of interest in our
scenes. We think that a more general approach exploiting multiple semantic classes for
both reconstruction and rendering would be an exciting �eld of future work. Segmentation
of scenes in the wild is now a computer vision topic that evolves quickly and highly
detailed training data is now available [CZP+18, ZZP+19]. Similar approaches exist for
geometry reconstruction [HZCP17] but semantic information could also be leveraged for
resampling and reprojection of input data when rendering the novel view, for instance by
learning to output class-speci�c blending weights or to synthesize per-class appearance
e�ects [WLZ+18]. Going further, more precise object properties could be extracted from
the input data; material acquisition of complete scenes would simplify both content
extraction and the rendering of complex view-dependent e�ects.

Isolating and reconstructing groups of semantic elements separately could also unlock the
possibility of mixing objects from di�erent scenes as explored by Nicolet et al. [NPD20].
Entire new scenes could be generated by combining our extracted elements with proce-

Chapter 6. Conclusion 121

dural generation rules. A few sets of components could be used to generate extremely
large scenes while keeping the capture process and storage requirement under control.
Modular approaches would also simplify the generation of realistic training data, for
instance for automotive learning tasks.

Viewpoint placement and selection. As pointed out in chapter 5, we think that
adaptive placement of input views – or probes – in a synthetic scene based on the
materials is an interesting avenue for future projects, especially as existing work focused
mainly on di�use surfaces [FCOL00]. Apart from minimizing memory use or allowing for
a be�er reconstruction of view-dependent e�ects, understanding placement criteria would
also be an initial step towards a �ner formalization of the camera selection process in real
world scenes. Existing works [DLD12, MSOC+19, HNH18] already provide prescriptive
guidelines for speci�c acquisition and rendering setups, but a more complete framework
could be built upon frequency analysis [CTCS00] and take into account estimated material
parameters. Synthetic scenes would be an important stepping stone to validate the
foundations of such a framework.

Learning for extraction and blending. In chapter 4, geometry and layer extraction
were performed in an ad hoc manner, and the �nal blending and compositing of view-
dependent e�ects with the rest of the scene was simpli�ed. Our custom parameterization
brings the extracted car geometry in a 2D image-like map, where correction of artifacts
could be performed by a convolutional neural network incorporating object priors. Simi-
larly, layer extraction has recently been cast as a learning task [WGGK18]. As learned
blending weights are already used for the background scene [HPP+18] in chapter 4,
additional color candidates could be given to the network, coming from the reprojected
specular layers or the transmi�ed background. Aggregating all view-dependent e�ects
present in the scene in a uni�ed way might allow for more complex compositing e�ects,
resulting in a more realistic �nal render. For both research paths, the question of gen-
erating exploitable training data has to be addressed by relying on synthetic or heavily
annotated scenes.

Precomputation for real-time rendering. We have shown in chapter 5 that reproject-
ing precomputed information allowed rendering of complex light paths interactively. �is
came at the cost of heavy preprocessing and storage requirements. By taking inspiration
from recent anti-aliasing and denoising techniques, the accumulation and blending of

122 Chapter 6. Conclusion

gathered samples could be expressed as a learning task. Results of a similar quality might
then be obtained with lower sample count and smaller probes. Recent real-time ray
tracing hardware could be leveraged to progressively generate shaded samples on-the-�y,
inspired by the Render Cache [WDP99] and frameless rendering [DWWL05]. �is could
be coupled with a temporal component to support dynamic objects or lighting, reusing
samples from previous frames under additional validity criteria. Refraction and other
complex light paths could be supported by applying a similar perturbation framework
and storing the appropriate data. Accuracy of the image-space glossiness reconstruction
�lter could also be improved thanks to a more accurate BRDF �t, potentially inferred
using machine learning. By supporting arbitrary combinations of o�ine precomputation
and on-the-�y ray tracing updates for all light paths, future approaches would allow for
accurate real-time global illumination of dynamic scenes at an adjustable power cost.

6.4 Impact

�e projects presented in this thesis have led to publications and presentations in interna-
tional conferences. �e content of chapter 3 has been presented to EGSR 2018, as an oral
presentation and journal publication. Chapter 4 has led to a publication in the Proceedings
of the ACM in Computer Graphics and Interactive Techniques and will be presented at
I3D 2020. It has also motivated an internship to explore neural extraction and rendering
of specular e�ects. �e project from chapter 5 is currently under review, and has led to
an internship on the formalization of camera placement in synthetic scenes. All three
projects have been integrated in a common code-base shared with the implementations
of other image-based rendering techniques, soon to be open sourced for reproducibility
and benchmarking.

Ap p e n d i x A

Transformation from Platonic Scene to Input
Scene

In chapter 3, we need to estimate a transformation T from the platonic frame to the input
scene frame, in order to place the platonic model and cameras back into the input scene
frame. We evaluate a series of candidate transformations Ti,j using each platonic camera
separately (see Fig. 3.11).

For each platonic camera C∗i,j , we estimate an approximate corresponding camera Ci,j in
the input scene frame. As in Sec. 3.4.2, we compute it from the input camera Ci and the
cropped image Vi,j location in Vi. We compute a transformation from camera C∗i,j to Ci,j
by aligning their positions, and their direction, up and right vectors. �is transformation
only characterizes a rotation and translation, leaving an unknown scaling factor between
the two frames.

To li� this ambiguity, we use the distances between the camera and the facade, in the
platonic and input frames (respectively d∗i,j and di,j).

Ci,j
*

E*

Pi,j
*

Figure A.1 – We cast rays from the borders of the view associated to C∗i,j , intersecting
the platonic model (red points). �ese samples can be used to estimate the facade plane
(do�ed gray line).

124 Appendix A. Transformation from Platonic Scene to Input Scene

�e optical center ofCi,j intersects the known facade plane (and thusEj) at Pi,j . Similarly
the optical center of C∗i,j intersects the platonic facade plane at P ∗i,j (Fig. A.1). �is point
does not necessarily belong to the platonic mesh, due to geometric details such as window
recess. We estimate the plane of the facade in the platonic frame by sampling pixels
near the borders of Vi,j , and casting rays towards the mesh. �e motivation is that such
intersection points will belong to the facade wall. From these points we can estimate the
facade plane. We intersect a central ray with it to obtain P ∗i,j .

�en, d∗i,j is the distance between P ∗i,j and C∗i,j , di,j the distance between Pi,j and Ci,j .
We estimate the scaling factor s from the ratio of these distances, taking into account the
�eld of view values of C∗i,j and Ci,j .

s =
di,j
d∗i,j

tan(fovCi,j
/2)

tan(fovC∗i,j/2)

In practice, we express the transformation from platonic scene space to C∗i,j image space,
then estimate the scaling factor; we compose this result with the transformation from Ci,j

image space to input scene space. �e candidate (Ti,j) transformations are centered (from
Ej to the origin) and averaged to obtain the �nal transformation T . �is transformation
is used to place the platonic mesh and cameras back into the input scene frame, before
duplicating and translating them at each Ej position using Pi,j .

Ap p e n d i x B

Car Mesh Re�nement and Ellipsoid Fitting

B.1 Mesh Re�nement Minimization

For mesh re�nement (Sec. 4.4.2), we use a conjugate gradient solver to minimize the
following penalty function:

E(d) =
∑
p

(
wu(p)

(
d(p)− d′(p)

)2

+ wb
∑
q∈N(p)

(
d(p)− d(q)

)2

+ wl

(
Ld(p)− αl

)2
)

(B.1)
where d(p) is the estimated depth at pixel p, d′(p) the initial depth at p (both expressed
in [0, 1]), N(p) is the set of pixels around p, Ld is the discrete Laplace operator on the
depth. We set the Laplacian prior αl = cos(3◦), and wb = wl = 0.33. We initialize the
unary weight with wu(p) = max(0,Pcar(p) − Pwin(p)), where the probabilities P for
car and window respectively are extracted from the segmentation map. In subsequent
iterations we set wu = 0 for outlier pixels, de�ned as pixels that have moved from their
initial 3D position more than 2% of the sphere radius (i.e. a few centimeters).

B.2 Isolating Car Objects using Semantic Labels

Semantic segmentation network training. We start with 2D label maps for each
input image, obtained with the DeepLab-v2 (Resnet-101) architecture [CPK+17]. We
train it on a subset of the ADE20K dataset [ZZP+19, ZZP+17], only selecting labels that
correspond to object categories that both exhibit the regions we want to detect and
are present in cityscapes. We select both object-level and part-level labels among the
available ADE20K labels: car, car wheel, car window. We merge all other car related
labels into a single “car” label. All other labels are considered as background. We �lter
images of this dataset to only keep examples containing instances of those labels. We
obtain a training set of 4000 images and a validation set of 500 images. We train our

126 Appendix B. Car Mesh Re�nement and Ellipsoid Fi�ing

network for 300K epochs 1.

Semantic Labeling MRF. For the �nal semantic mask re�nement, (end of Sec. 4.4.2),
we solve a labeling problem with graph cut, using the constant data cost 0.5 for “car”,
and an adaptive data cost for “window”. Pixels inside the window regions and outliers
get cost 0.0 (i.e., likely windows), while pixels outside dilated windows or pixels with
high photo-consistency are given cost 1.0. All remaining pixels are given cost 0.52 to
encourage smaller window regions. �e smoothness term is a color-gradient weighted
Po�s term, for neighboring pixels with di�erent labels.

B.3 Ellipsoid �tting algorithm

In this appendix, we present the details of the ellipsoid ��ing algorithm for windows
(Sec. 4.5.2). For each window, we choose 10 reference images where the window is
visible and as fronto-parallel as possible. We also ensure that each reference image
has neighboring images on all 4 sides. We compare each reference image to its 10
closest neighbors. We compute ORB features [RRKB11] for those images ; we use best
buddy matching [VLS+06] and Lowe thresholding [Low04] (th = 0.95) to establish
correspondences. We also discard correspondences whose motion can be explained by
the reconstructed window geometry, such as feature points on stickers or scratches on
the windows. If a feature point in the reference image is reprojected in a neighbor view
such that the distance to the matched point is smaller than 1.5 % of the image dimensions
(10px for our typical 4Mpixel images), the correspondence is discarded. We fall back to
dense image matching when the average number of successful matches is smaller than
0.1% of the window area (in pixels).

Feature point matching. We use a RANSAC inspired algorithm which computes the
total number of inlier feature point correspondences as our score. �at is, for each pair of
radii (rx, ry), we count how many matches can be explained by the predicted re�ection
�ow. A match between the reference and a neighbor image is an inlier if the �ow predicts
the location of the feature point in the neighbor view with no more than a 10px error
for our typical 4Mpixel input images. We observed that most side windows are very
anisotropic, with a larger curvature radius – nearly planar shape – around the vertical

1�e following hyper-parameters were used for training: batch size=4, learning rate 2.5e−4, momen-
tum=0.9, learning rate decay=0.9 and weight decay=0.0005.

Appendix B. Car Mesh Re�nement and Ellipsoid Fi�ing 127

axis. We encode this with a prior on the ratio between ry and rx:

p(rx, ry) = Nµ=8,σ=3.5(
ry
rx

) (B.2)

For windshields and rear windows, there is less anisotropic behavior and we use the
constant prior p(rx, ry) = 1. We pick the pair of radii which maximizes s(rx, ry) =

p(rx, ry)#inliers(rx, ry).

Dense image matching. We only use the top ranked reference image to compute our
score as this matching is slower. Images are also downscaled at 720p for speed and
robustness to outliers. For each (rx, ry), we compute the re�ection �ows and warp 25
neighboring images into the reference view. �e number of neighbors is increased as
median consistency is sensitive to noise. We use the median-based photo-consistency
from [VLS+06] to compute an error map for each warped image. A per-pixel median
error is extracted, and its mean value is computed over all pixels in the window mask.
�e parameter pair with the lowest error is selected.

E�ect of radii variations. Each window is approximated by an ellipsoid with longitu-
dinal and vertical radii. Due to shape and physical constraints, the range of admissible
curvatures for car windows is quite limited. We use the same range of radii for all win-
dows ([1m, 40m]) and sweep it using quadratic steps to sample small values more densely,
as small changes to the radii only create noticeably di�erent re�ection motion if the radii
are small. �is is illustrated in Fig. B.1, using both axes. A side window is almost planar
along an horizontal line, but quite curved along a vertical line. �e radius around the
vertical axis is thus quite large, and even large variations only cause minor shi�s. On the
other hand, the radius around the longitudinal axis is small, and even small variations can
lead to shi�s in the re�ections. �is motivates our choice of a quadratic sweep schedule,
while showing the accuracy required when estimating the radius around the longitudinal
axis.

Comparison with a planar re�ector. Instead of using the ellipsoid approximation, it
is possible to solve the re�ection �ow estimation problem directly for the case of a planar
re�ector. Each window is is then represented by a plane going through the centroid of
the window mesh and oriented by the window mean normal. �e intersection with the
background sphere is mirrored with respect to the plane before being reprojected in the
input view. �e planar surface does not manage to capture the speci�c re�ection �ow

128 Appendix B. Car Mesh Re�nement and Ellipsoid Fi�ing

(a) 0.5 (b) 1.0 (c) 2.0 (1.92) (d) 3.0 (e) 4.0

(f) 5.0 (g) 10.0 (h) 15.0 (15.98) (i) 20.0 (j) 30.0

Figure B.1 – Evolution of the generated re�ection when sweeping the horizontal axis
radius from 0.5 to 4.0 (top) and the radius around the vertical axis from 5.0 to 30.0 (bo�om).
�e parameters closest to the radii obtained using our automatic ��ing are in bold, the
estimated values in parenthesis. Details such as the white horizontal line are sharper
when the radii are properly estimated.

exhibited by slightly curved windows, leading to erroneous alignment between warped
specular layers (see Fig. B.2).

Figure B.2 – A comparison between a planar (le�) and ellipsoid (right) representation
for each window when computing the re�ection �ow. �e planar simpli�cation leads to
strong alignment artifacts and duplications.

Ap p e n d i x C

Choice of DCT for Parameterization Guiding

In Sec. 5.4.2.1, we use the DCT to identify probe regions requiring increased resolution
due to small features or high geometric complexity. While any frequency decomposition
could be used, we used the DCT for simplicity and its real-valued coe�cients. We could
have used image depths, rather than normals, as a representation of geometry. However,
due to the linearity of the convolution, larger depth di�erences naturally produce stronger
responses. To avoid this, we use the normal bu�er, which contains normalized values by
construction. A canonical DCT application subdivides the image into N ×N blocks and
treats blocks individually, resulting in one response per block. In contrast, we convolve
the image with the corresponding N ×N DCT basis functions, yielding an individual
response per pixel. Note that, therefore, our approach gives the same responses as the
block-based method, just at an N2 higher spatial resolution.

Bibliography

[ADA+04a] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker,
Alex Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive
digital photomontage. ACM Transactions on Graphics (ToG), 23(3):294–302,
2004.

[ADA+04b] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker,
Alex Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive
digital photomontage. In ACM Transactions on Graphics (TOG), volume 23,
pages 294–302. ACM, 2004.

[ANR74] Nasir Ahmed, T Natarajan, and Kamise�y R Rao. Discrete cosine trans-
form. IEEE Transactions on Computers, 100(1):90–93, 1974.

[ARB07] Daniel G Aliaga, Paul A Rosen, and Daniel R Bekins. Style grammars for
interactive visualization of architecture. IEEE transactions on visualization
and computer graphics, 13(4), 2007.

[AWL+15] Miika Ai�ala, Tim Weyrich, Jaakko Lehtinen, et al. Two-shot svbrdf capture
for stationary materials. ACM Trans. Graph., 34(4):110–1, 2015.

[AYLM13] Sawsan AlHalawani, Yong-Liang Yang, Han Liu, and Niloy J Mitra. Inter-
active facades analysis and synthesis of semi-regular facades. In Computer
Graphics Forum, volume 32, pages 215–224. Wiley Online Library, 2013.

[BBM+01] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and
Michael Cohen. Unstructured lumigraph rendering. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
pages 425–432. ACM, 2001.

[BFMZ94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J Scher Zagier.
Frameless rendering: Double bu�ering considered harmful. In Proceed-
ings of the 21st annual conference on Computer graphics and interactive
techniques, pages 175–176, 1994.

132 BIBLIOGRAPHY

[Bit16] Benedikt Bi�erli. Rendering resources, 2016. h�ps://benedikt-
bi�erli.me/resources/.

[BL18] Jean-Philippe Bauchet and Florent Lafarge. KIPPI: KInetic Polygonal Parti-
tioning of Images. In Proc. of the IEEE conference on Computer Vision and
Pa�ern Recognition (CVPR), Salt Lake City, US, 2018.

[Bre02] Chris Brennan. Accurate environment mapped re�ections and refractions
by adjusting for object distance. Shader X, 2002.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In European conference on computer vision, pages 404–417.
Springer, 2006.

[Bur20] J. Burgess. Rtx on the nvidia turing gpu. IEEE Micro, 40(2):36–44, 2020.

[BYC+20] Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit,
Tim Foley, Ma�hew Oakes, Conor Lavelle, and Chris Wyman. �e Falcor
rendering framework, 03 2020.

[CA00a] Min Chen and James Arvo. Perturbation methods for interactive specular
re�ections. IEEE Transactions on Visualization and Computer Graphics,
6(3):253–264, 2000.

[CA00b] Min Chen and James Arvo. �eory and application of specular path
perturbation. ACM Transactions on Graphics (TOG), 19(4):246–278, 2000.

[CDSHD13] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George
Dre�akis. Depth synthesis and local warps for plausible image-based
navigation. ACM Transactions on Graphics (TOG), 32(3):30, 2013.

[Che95] Shenchang Eric Chen. �icktime vr: An image-based approach to virtual
environment navigation. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 29–38, 1995.

[CMZP13] Duygu Ceylan, Niloy J. Mitra, Youyi Zheng, and Mark Pauly. Coupled
structure-from-motion and 3d symmetry detection for urban facades. ACM
Transactions on Graphics, 2013.

BIBLIOGRAPHY 133

[CNS+11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar
Eisemann. Interactive indirect illumination using voxel cone tracing. In
Computer Graphics Forum, volume 30, pages 1921–1930. Wiley Online
Library, 2011.

[CPK+17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. IEEE
Transactions on Pa�ern Analysis and Machine Intelligence, 40(4):834–848,
2017.

[CRMT91] Shenchang Eric Chen, Holly E Rushmeier, Gavin Miller, and Douglass
Turner. A progressive multi-pass method for global illumination. In ACM
SIGGRAPH Computer Graphics, volume 25, pages 165–174. ACM, 1991.

[CTCS00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum.
Plenoptic sampling. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 307–318, 2000.

[CZP+18] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schro�, and
Hartwig Adam. Encoder-decoder with atrous separable convolution for
semantic image segmentation. In Proceedings of the European conference
on computer vision (ECCV), pages 801–818, 2018.

[DAB15] Ilke Demir, Daniel G Aliaga, and Bedrich Benes. Procedural editing of 3d
building point clouds. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2147–2155, 2015.

[DDSD03] Xavier Décoret, Frédo Durand, François X Sillion, and Julie Dorsey. Bill-
board clouds for extreme model simpli�cation. In ACM SIGGRAPH 2003
Papers, pages 689–696. 2003.

[DLD12] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured light �elds. In
Computer Graphics Forum, volume 31, pages 305–314. Wiley Online Library,
2012.

134 BIBLIOGRAPHY

[DMIF15] Tali Dekel, Tomer Michaeli, Michal Irani, and William T Freeman. Reveal-
ing and modifying non-local variations in a single image. ACMTransactions
on Graphics (TOG), 34(6):227, 2015.

[DRSVG13] Dengxin Dai, Hayko Riemenschneider, Gerhard Schmi�, and Luc Van Gool.
Example-based facade texture synthesis. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1065–1072, 2013.

[DTM96] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Modeling and
rendering architecture from photographs: A hybrid geometry-and image-
based approach. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 11–20. ACM, 1996.

[DWWL05] Abhinav Dayal, Cli� Woolley, Benjamin Watson, and David Luebke. Adap-
tive frameless rendering. In ACM SIGGRAPH 2005 Courses, page 24. ACM,
2005.

[DYB98] Paul Debevec, Yizhou Yu, and George Borshukov. E�cient view-dependent
image-based rendering with projective texture-mapping. In Rendering
Techniques’ 98, pages 105–116. Springer, 1998.

[EDDM+08] Martin Eisemann, Bert De Decker, Marcus Magnor, Philippe Bekaert, Edil-
son De Aguiar, Naveed Ahmed, Christian �eobalt, and Anita Sellent.
Floating textures. In Computer graphics forum, volume 27, pages 409–418.
Wiley Online Library, 2008.

[EMD+05] Pau Estalella, Ignacio Martin, George Dre�akis, Dani Tost, Olivier Devillers,
and Frédéric Cazals. Accurate interactive specular re�ections on curved
objects. In Proceedings of Vision, Modeling and Visualization. Eurographics
Association, 2005.

[Eth17] Darrel Etherington. Google’s street view cameras get a high-res update fo-
cused on ai. https://techcrunch.com/2017/09/05/googles-street-
view-cameras-get-a-high-res-update-focused-on-ai/, 2017.

[FCOL00] Shachar Fleishman, Daniel Cohen-Or, and Dani Lischinski. Automatic
camera placement for image-based modeling. In Computer Graphics Forum,
volume 19, pages 101–110. Wiley Online Library, 2000.

https://techcrunch.com/2017/09/05/googles-street-view-cameras-get-a-high-res-update-focused-on-ai/
https://techcrunch.com/2017/09/05/googles-street-view-cameras-get-a-high-res-update-focused-on-ai/

BIBLIOGRAPHY 135

[FHP+18] Luca Fascione, Johannes Hanika, Rob Pieké, Ryusuke Villemin, Christophe
Hery, Manuel Gamito, Luke Emrose, and André Mazzone. Path tracing in
production. In ACM SIGGRAPH 2018 Courses, pages 1–79. 2018.

[Fle14] Roland W Fleming. Visual perception of materials and their properties.
Vision research, 94:62–75, 2014.

[FRS19] Sebastian Friston, Tobias Ritschel, and Anthony Steed. Perceptual raster-
ization for head-mounted display image synthesis. ACM Trans. Graph.
(Proc. SIGGRAPH 2019), 38(4), 2019.

[GGSC96] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen.
�e lumigraph. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 43–54. ACM, 1996.

[GHLB15] Clement Godard, Peter Hedman, Wenbin Li, and Gabriel J. Brostow. Multi-
view reconstruction of highly specular surfaces in uncontrolled environ-
ments. In International Conference on 3D Vision, pages 19–27. IEEE, 2015.

[GO11] Eduardo SL Gastal and Manuel M Oliveira. Domain transform for edge-
aware image and video processing. In ACM SIGGRAPH 2011 papers, pages
1–12. 2011.

[GSC+07] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and
Steven M. Seitz. Multi-view stereo for community photo collections. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1–8. IEEE, 2007.

[GSHG98] Gene Greger, Peter Shirley, Philip M Hubbard, and Donald P Greenberg.
�e irradiance volume. IEEE Computer Graphics and Applications, 18(2):32–
43, 1998.

[GSVDW03] J-M Geusebroek, Arnold WM Smeulders, and Joost Van De Weijer. Fast
anisotropic gauss �ltering. IEEE transactions on image processing, 12(8):938–
943, 2003.

[HDF14] Jared Heinly, Enrique Dunn, and Jan-Michael Frahm. Correcting for dupli-
cate scene structure in sparse 3d reconstruction. In European Conference
on Computer Vision, pages 780–795. Springer, 2014.

136 BIBLIOGRAPHY

[Hec90] Paul S Heckbert. Adaptive radiosity textures for bidirectional ray tracing.
ACM SIGGRAPH Computer Graphics, 24(4):145–154, 1990.

[HKP+99] Benno Heigl, Reinhard Koch, Marc Pollefeys, Joachim Denzler, and Luc
Van Gool. Plenoptic modeling and rendering from image sequences taken
by a hand-held camera. In Mustererkennung 1999, pages 94–101. Springer,
1999.

[HNH18] Benjamin Hepp, Ma�hias Nießner, and Otmar Hilliges. Plan3d: Viewpoint
and trajectory optimization for aerial multi-view stereo reconstruction.
ACM Transactions on Graphics (TOG), 38(1):1–17, 2018.

[HPP+18] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Dret-
takis, and Gabriel Brostow. Deep blending for free-viewpoint image-based
rendering. ACM Transactions on Graphics (TOG), 37(6), November 2018.

[HRDB16] Peter Hedman, Tobias Ritschel, George Dre�akis, and Gabriel Brostow.
Scalable inside-out image-based rendering. ACM Transactions on Graphics
(TOG), 35(6):231, 2016.

[HSAS19] An�i Hirvonen, A�e Seppälä, Maksim Aizenshtein, and Niklas Smal. Ac-
curate real-time specular re�ections with radiance caching. In Ray Tracing
Gems, pages 571–607. Springer, 2019.

[HSL01] Ziyad S Hakura, John M Snyder, and Jerome E Lengyel. Parameterized
environment maps. In Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 203–208, 2001.

[HSP14] Christian Hane, Nikolay Savinov, and Marc Pollefeys. Class speci�c 3d
object shape priors using surface normals. In Proceedings of the IEEE
Conference on Computer Vision and Pa�ern Recognition, pages 652–659.
IEEE, 2014.

[HZCP17] Christian Haene, Christopher Zach, Andrea Cohen, and Marc Pollefeys.
Dense semantic 3d reconstruction. IEEE Transactions on Pa�ern Analysis
and Machine Intelligence, 39(9):1730–1743, 2017.

BIBLIOGRAPHY 137

[IKL+08] Ivo Ihrke, Kiriakos N. Kutulakos, Hendrik P.A. Lensch, Marcus Magnor, and
Wolfgang Heidrich. State of the art in transparent and specular object re-
construction. In Eurographics State Of �e Art Report (STAR). Eurographics
Association, 2008.

[IKL+10] Ivo Ihrke, Kiriakos N. Kutulakos, Hendrik P.A. Lensch, Marcus Magnor,
and Wolfgang Heidrich. Transparent and specular object reconstruction.
In Computer Graphics Forum, volume 29, pages 2400–2426. Wiley Online
Library, 2010.

[Jak10] Wenzel Jakob. Mitsuba renderer, 2010.

[JHKP13] Bastien Jacquet, Christian Hane, Kevin Koser, and Marc Pollefeys. Real-
world normal map capture for nearly �at re�ective surfaces. In Proceedings
of the IEEE International Conference on Computer Vision, pages 713–720.
IEEE, 2013.

[JTC09] Nianjuan Jiang, Ping Tan, and Loong-Fah Cheong. Symmetric architecture
modeling with a single image. In ACM Transactions on Graphics (TOG),
volume 28, page 113. ACM, 2009.

[JTC11] Nianjuan Jiang, Ping Tan, and Loong-Fah Cheong. Multi-view repetitive
structure detection. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 535–542. IEEE, 2011.

[Kaj86] James T Kajiya. �e rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pages 143–150,
1986.

[Kar14] Brian Karis. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, SIGGRAPH Courses, 1:1–55, 2014.

[KCS14] Johannes Kopf, Michael F Cohen, and Richard Szeliski. First-person hyper-
lapse videos. ACM Transactions on Graphics (TOG), 33(4):1–10, 2014.

[KKSM17] Babis Koniaris, Maggie Kosek, David Sinclair, and Kenny Mitchell. Real-
time rendering with compressed animated light �elds. In Graphics Interface,
pages 33–40, 2017.

138 BIBLIOGRAPHY

[KLS+13] Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and
Michael Goesele. Image-based rendering in the gradient domain. ACM
Transactions on Graphics (TOG), 32(6):199, 2013.

[KSE+03] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. ACM
Transactions on Graphics (TOG), 22(3):277–286, 2003.

[KW93] Hans Knutsson and C-F Westin. Normalized and di�erential convolution. In
Proceedings of IEEE Conference on Computer Vision and Pa�ern Recognition,
pages 515–523. IEEE, 1993.

[LBR+18] Puneet Lall, Silviu Borac, Dave Richardson, Ma� Pharr, and Manfred Ernst.
View-region optimized image-based scene simpli�cation. Proceedings of
the ACM on Computer Graphics and Interactive Techniques, 1(2):26, 2018.

[LH96] Marc Levoy and Pat Hanrahan. Light �eld rendering. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques,
pages 31–42. ACM, 1996.

[LMCB06] Artur Loza, Lyudmila Mihaylova, Nishan Canagarajah, and David Bull.
Structural similarity-based object tracking in video sequences. In 2006 9th
International Conference on Information Fusion, pages 1–6. IEEE, 2006.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[LR98] Dani Lischinski and Ari Rappoport. Image-based rendering for non-di�use
synthetic scenes. In Rendering Techniques’ 98, pages 301–314. Springer,
1998.

[LRR+14] Gerrit Lochmann, Bernhard Reinert, Tobias Ritschel, Stefan Müller, and
Hans-Peter Seidel. Real-time re�ective and refractive novel-view synthesis.
In VMV, pages 9–16, 2014.

[LSS+19] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, An-
dreas Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic

BIBLIOGRAPHY 139

renderable volumes from images. ACM Transactions on Graphics (TOG),
38(4):65, 2019.

[LTH+13] Christian Luksch, Robert F Tobler, Ralf Habel, Michael Schwärzler, and
Michael Wimmer. Fast light-map computation with virtual polygon lights.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 87–94. ACM, 2013.

[LW07] Anat Levin and Yair Weiss. User assisted separation of re�ections from a
single image using a sparsity prior. IEEE Transactions on Pa�ern Analysis
and Machine Intelligence, 29(9):1647–1654, 2007.

[LWS19] Christan Luksch, Michael Wimmer, and Michael Schwärzler. Incrementally
baked global illumination. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, page 4. ACM, 2019.

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based
rendering system. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 39–46, 1995.

[MDSB03] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Dis-
crete di�erential-geometry operators for triangulated 2-manifolds. In
Visualization and mathematics III, pages 35–57. Springer, 2003.

[MH92] Don Mitchell and Pat Hanrahan. Illumination from curved re�ectors. In
SIGGRAPH, volume 92, pages 283–291. Citeseer, 1992.

[MM14] Morgan McGuire and Michael Mara. E�cient gpu screen-space ray tracing.
Journal of Computer Graphics Techniques (JCGT), 3(4):73–85, 2014.

[MMM17] Morgan McGuire, Michael Mara, and Zander Majercik. �e G3D innovation
engine, 01 2017. https://casual-effects.com/g3d.

[MMMO] Pierre Moulon, Pascal Monasse, Renaud Marlet, and Others. Openmvg. an
open multiple view geometry library. https://github.com/openMVG/

openMVG.

https://casual-effects.com/g3d
https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG

140 BIBLIOGRAPHY

[MMNL17] Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David Luebke.
Real-time global illumination using precomputed light �eld probes. In Pro-
ceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, page 2. ACM, 2017.

[MRM+10] Przemyslaw Musialski, Meinrad Recheis, Stefan Maierhofer, Peter Wonka,
and Werner Purgathofer. Tiling of ortho-recti�ed facade images. In Pro-
ceedings of the 26th Spring Conference on Computer Graphics, pages 117–126.
ACM, 2010.

[MS95] Paulo WC Maciel and Peter Shirley. Visual navigation of large environ-
ments using textured clusters. In Proceedings of the 1995 symposium on
Interactive 3D graphics, pages 95–�, 1995.

[MSOC+19] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi
Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light �eld
fusion: practical view synthesis with prescriptive sampling guidelines.
ACM Transactions on Graphics (TOG), 34(4), 2019.

[MST+20] Ben Mildenhall, Pratul P Srinivasan, Ma�hew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural
radiance �elds for view synthesis. arXiv preprint arXiv:2003.08934, 2020.

[MZWVG07] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based
procedural modeling of facades. ACM Transactions on Graphics (TOG),
26(3):85, 2007.

[Nic65] Fred E Nicodemus. Directional re�ectance and emissivity of an opaque
surface. Applied optics, 4(7):767–775, 1965.

[NPD20] Baptiste Nicolet, Julien Philip, and George Dre�akis. Repurposing a relight-
ing network for realistic compositions of captured scenes. In Symposium
on Interactive 3D Graphics and Games, pages 1–9, 2020.

[NSL+07] Diego Nehab, Pedro V Sander, Jason Lawrence, Natalya Tatarchuk, and
John R Isidoro. Accelerating real-time shading with reverse reprojection
caching. In Graphics hardware, volume 41, pages 61–62, 2007.

BIBLIOGRAPHY 141

[NVI18] NVIDIA. Nvidia turing gpu architecture: Graphics reinvented, 2018.

[OR98] Eyal Ofek and Ari Rappoport. Interactive re�ections on curved objects.
In Proceedings of the 25th annual conference on Computer Graphics and
Interactive Techniques, pages 333–342. ACM, 1998.

[PBD+10] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix: a general purpose ray tracing
engine. Acm transactions on Graphics (TOG), 29(4):1–13, 2010.

[PDG14] Sergi Pujades, Frédéric Devernay, and Bastian Goldluecke. Bayesian view
synthesis and image-based rendering principles. In Proceedings of the IEEE
Conference on Computer Vision and Pa�ern Recognition, pages 3906–3913,
2014.

[PFG00] Fabio Pellacini, James A Ferwerda, and Donald P Greenberg. Toward a
psychophysically-based light re�ection model for image synthesis. In Pro-
ceedings of the 27th annual conference on Computer graphics and interactive
techniques, pages 55–64, 2000.

[PGB03] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing.
In ACM Transactions on graphics (TOG), volume 22, pages 313–318. ACM,
2003.

[PJH16] Ma� Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

[PVV05] Tuan Q Pham and Lucas J Van Vliet. Separable bilateral �ltering for fast
video preprocessing. In 2005 IEEE International Conference on Multimedia
and Expo, pages 4–7. IEEE, 2005.

[PZ17] Eric Penner and Li Zhang. So� 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG), 36(6):235, 2017.

[RBDD18] Simon Rodriguez, Adrien Bousseau, Fredo Durand, and George Dre�akis.
Exploiting repetitions for image-based rendering of facades. In Computer
Graphics Forum, volume 37, pages 119–131. Wiley Online Library, 2018.

142 BIBLIOGRAPHY

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, �orsten Grosch, and Jan Kautz. �e
state of the art in interactive global illumination. In Computer Graphics
Forum, volume 31, pages 160–188. Wiley Online Library, 2012.

[Rea18] Capturing Reality. Realitycapture reconstruction so�ware. https://

www.capturingreality.com/Product, 2018.

[RFB15] Olaf Ronneberger, Philipp Fischer, and �omas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pages 234–
241. Springer, 2015.

[RH06] David Roger and Nicolas Holzschuch. Accurate specular re�ections in
real-time. In Computer Graphics Forum, volume 25, pages 293–302. Wiley
Online Library, 2006.

[RKR+16] Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo Cuervo, David
Chu, and Hans-Peter Seidel. Proxy-guided image-based rendering for
mobile devices. In Computer Graphics Forum, volume 35, pages 353–362.
Wiley Online Library, 2016.

[RLP+20] Simon Rodriguez, �omas Leimkhuler, Siddhant Prakash, Peter Shirley,
Chris Wyman, and George Dre�akis. Accurate warping of adaptive probes
for interactive global illumination. Currently under review, 2020.

[RPHD20] Simon Rodriguez, Siddhant Prakash, Peter Hedman, and George Dre�akis.
Image-based rendering of cars using semantic labels and approximate
re�ection �ow. Proceedings of the ACM onComputer Graphics and Interactive
Techniques, 3, 2020.

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an
e�cient alternative to si� or surf. In Proceedings of the IEEE International
Conference on Computer Vision, volume 11, pages 2564–2571. IEEE, 2011.

[RS09] Austin Robison and Peter Shirley. Image space gathering. In Proceedings
of the Conference on High Performance Graphics 2009, pages 91–98. ACM,
2009.

https://www.capturingreality.com/Product
https://www.capturingreality.com/Product

BIBLIOGRAPHY 143

[RT13] Radim Šára Radim Tyleček. Spatial pa�ern templates for recognition of
objects with regular structure. In Proc. GCPR, Saarbrucken, Germany, 2013.

[SAA00] Richard Szeliski, Shai Avidan, and P Anandan. Layer extraction from mul-
tiple images containing re�ections and transparency. In Computer Vision
and Pa�ern Recognition, 2000. Proceedings. IEEE Conference on, volume 1,
pages 246–253. IEEE, 2000.

[SF16] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
motion revisited. In IEEE Conference on Computer Vision and Pa�ern
Recognition (CVPR), 2016.

[SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered
depth images. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 231–242, 1998.

[SKALP05] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, and Mátyás Pre-
mecz. Approximate ray-tracing on the gpu with distance impostors. In
Computer graphics forum, volume 24, pages 695–704. Wiley Online Library,
2005.

[SKG+12] Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and
Richard Szeliski. Image-based rendering for scenes with re�ections. ACM
Trans. Graph., 31(4):100–1, 2012.

[SKUP+09] László Szirmay-Kalos, Tamás Umenho�er, Gustavo Patow, László Szécsi,
and Mateu Sbert. Specular e�ects on the gpu: State of the art. In Computer
Graphics Forum, volume 28, pages 1586–1617. Wiley Online Library, 2009.

[SKW+17] Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney,
Chakravarty R Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachs-
bacher, Aaron Lefohn, and Marco Salvi. Spatiotemporal variance-guided
�ltering: real-time reconstruction for path-traced global illumination. In
Proceedings of High Performance Graphics, pages 1–12. ACM, 2017.

[SLS+96] Jonathan Shade, Dani Lischinski, David H Salesin, Tony DeRose, and
John Snyder. Hierarchical image caching for accelerated walkthroughs

144 BIBLIOGRAPHY

of complex environments. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 75–82, 1996.

[SSH+98] Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich, J-C Popp, and
H-P Seidel. Composite lighting simulations with lighting networks. IEEE
Computer Graphics and Applications, 18(2):22–31, 1998.

[SSS06] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: explor-
ing photo collections in 3d. In ACM Siggraph 2006 Papers, pages 835–846.
2006.

[ST91] Takafumi Saito and Tokiichiro Takahashi. Nc machining with g-bu�er
method. In ACM SIGGRAPH Computer Graphics, volume 25, pages 207–216.
ACM, 1991.

[STH+19] Vincent Sitzmann, Justus �ies, Felix Heide, Ma�hias Nießner, Gordon
Wetzstein, and Michael Zollhöfer. Deepvoxels: Learning persistent 3d
feature embeddings. In Proc. Computer Vision and Pa�ern Recognition
(CVPR), IEEE, 2019.

[SZ12] Lagarde Sébastien and Antoine Zanu�ini. Local image-based lighting with
parallax-corrected cubemaps. In ACM SIGGRAPH 2012 Talks, page 36. ACM,
2012.

[SZPF16] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view
stereo. In European Conference on Computer Vision (ECCV), 2016.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral �ltering for gray and color
images. In Sixth international conference on computer vision (IEEE Cat. No.
98CH36271), pages 839–846. IEEE, 1998.

[TTS18] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-structured
3d scene inference via view synthesis. In Proceedings of the European
Conference on Computer Vision, pages 302–317. Springer, 2018.

[TZN19] Justus �ies, Michael Zollhöfer, and Ma�hias Nießner. Deferred neural
rendering: Image synthesis using neural textures. ACM Transactions on
Graphics (TOG), 38(4):1–12, 2019.

BIBLIOGRAPHY 145

[TZT+20] Justus �ies, Michael Zollhöfer, Christian �eobalt, Marc Stamminger, and
Ma�hias Nießner. Image-guided neural object rendering. In International
Conference on Learning Representations. ICLR. h�ps://openreview. net/forum,
2020.

[VLS+06] Vaibhav Vaish, Marc Levoy, Richard Szeliski, C. Lawrence Zitnick, and
Sing Bing Kang. Reconstructing occluded surfaces using synthetic aper-
tures: stereo, focus and robust measures. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pa�ern Recognition, volume 2, pages 2331–
2338. IEEE, 2006.

[WCG87] John R Wallace, Michael F Cohen, and Donald P Greenberg. A two-pass
solution to the rendering equation: A synthesis of ray tracing and radiosity
methods, volume 21. ACM, 1987.

[WDP99] Bruce Walter, George Dre�akis, and Steven Parker. Interactive rendering
using the render cache. In Rendering techniques’ 99, pages 19–30. Springer,
1999.

[Wei01] Yair Weiss. Deriving intrinsic images from image sequences. In Computer
Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, volume 2, pages 68–75. IEEE, 2001.

[WFP10] Changchang Wu, Jan-Michael Frahm, and Marc Pollefeys. Detecting large
repetitive structures with salient boundaries. Computer Vision–ECCV 2010,
pages 142–155, 2010.

[WFP11] Changchang Wu, Jan-Michael Frahm, and Marc Pollefeys. Repetition-
based dense single-view reconstruction. In Computer Vision and Pa�ern
Recognition (CVPR), 2011 IEEE Conference on, pages 3113–3120. IEEE, 2011.

[WGGK18] Patrick Wieschollek, Orazio Gallo, Jinwei Gu, and Jan Kautz. Separating
re�ection and transmission images in the wild. In Proceedings of the
European Conference on Computer Vision, pages 89–104. Springer, 2018.

[WGL+18] �omas Whelan, Michael Goesele, Steven J. Lovegrove, Julian Straub,
Simon Green, Richard Szeliski, Steven Bu�er�eld, Shobhit Verma, and

146 BIBLIOGRAPHY

Richard Newcombe. Reconstructing scenes with mirror and glass surfaces.
ACM Transactions on Graphics (TOG), 37(4):102, 2018.

[Whi80] Turner Whi�ed. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343–349, June 1980.

[WKKN19] Yue Wang, Sou�ane Khiat, Paul G Kry, and Derek Nowrouzezahrai. Fast
non-uniform radiance probe placement and tracing. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, page 5.
ACM, 2019.

[WLZ+18] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. High-resolution image synthesis and semantic
manipulation with conditional gans. In �e IEEE Conference on Computer
Vision and Pa�ern Recognition (CVPR), June 2018.

[WM19] Chris Wyman and Adam Marrs. Introduction to directx raytracing. In Ray
Tracing Gems, pages 21–47. Springer, 2019.

[WMLT07] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Tor-
rance. Microfacet models for refraction through rough surfaces. Rendering
techniques, 2007:18th, 2007.

[WS99] Gregory Ward and Maryann Simmons. �e holodeck ray cache: an interac-
tive rendering system for global illumination in nondi�use environments.
ACM Transactions on Graphics (TOG), 18(4):361–368, 1999.

[WZQ+18] Bojian Wu, Yang Zhou, Yiming Qian, Minglun Cong, and Hui Huang. Full
3d reconstruction of transparent objects. ACM Transactions on Graphics
(TOG), 37(4):1–11, 2018.

[XEOT12] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Recog-
nizing scene viewpoint using panoramic place representation. In Computer
Vision and Pa�ern Recognition (CVPR), 2012 IEEE Conference on, pages
2695–2702. IEEE, 2012.

[XFT+08] Jianxiong Xiao, Tian Fang, Ping Tan, Peng Zhao, Eyal Ofek, and Long
�an. Image-based façade modeling. In ACM transactions on graphics
(TOG), volume 27, page 161. ACM, 2008.

BIBLIOGRAPHY 147

[XRLF15] Tianfan Xue, Michael Rubinstein, Ce Liu, and William T Freeman. A com-
putational approach for obstruction-free photography. ACM Transactions
on Graphics (TOG), 34(4):79, 2015.

[XWL+08] Xuemiao Xu, Liang Wan, Xiaopei Liu, Tien-Tsin Wong, Liansheng Wang,
and Chi-Sing Leung. Animating animal motion from still. In ACM Trans-
actions on Graphics (TOG), volume 27, page 117. ACM, 2008.

[YBCLS13] Sid Yingze Bao, Manmohan Chandraker, Yuanqing Lin, and Silvio Savarese.
Dense object reconstruction with semantic priors. In Proceedings of the IEEE
Conference on Computer Vision and Pa�ern Recognition, pages 1264–1271.
IEEE, 2013.

[YLS20] Lei Yang, Shiqiu Liu, and Marco Salvi. A survey of temporal antialiasing
techniques. STAR, 39(2), 2020.

[YYM05] Jingyi Yu, Jason Yang, and Leonard McMillan. Real-time re�ection mapping
with parallax. In Proceedings of the 2005 symposium on Interactive 3D
graphics and games, pages 133–138. ACM, 2005.

[ZC93] Josiane Zerubia and Rama Chellappa. Mean �eld annealing using com-
pound gauss-markov random �elds for edge detection and image estima-
tion. IEEE Transactions on Neural Networks, 4(4):703–709, 1993.

[ZCA+09] Ke Colin Zheng, Alex Colburn, Aseem Agarwala, Maneesh Agrawala,
David Salesin, Brian Curless, and Michael F Cohen. Parallax photography:
creating 3d cinematic e�ects from stills. In Proceedings of Graphics Interface
2009, pages 111–118. 2009.

[ZKU+04] C Lawrence Zitnick, Sing Bing Kang, Ma�hew Uy�endaele, Simon Winder,
and Richard Szeliski. High-quality video view interpolation using a layered
representation. ACM transactions on graphics (TOG), 23(3):600–608, 2004.

[ZRS05] Rhaleb Zayer, Christian Rossl, and H-P Seidel. Discrete tensorial quasi-
harmonic maps. In International Conference on Shape Modeling and Appli-
cations 2005 (SMI’05), pages 276–285. IEEE, 2005.

148 BIBLIOGRAPHY

[ZSW+10] Qian Zheng, Andrei Sharf, Guowei Wan, Yangyan Li, Niloy J. Mitra, Daniel
Cohen-Or, and Baoquan Chen. Non-local scan consolidation for 3d urban
scenes. ACM Transactions on Graphics (Proc. SIGGRAPH), 29(4):94:1–94:9,
2010.

[ZYZQ12] Peng Zhao, Lei Yang, Honghui Zhang, and Long �an. Per-pixel transla-
tional symmetry detection, optimization, and segmentation. In Computer
Vision and Pa�ern Recognition (CVPR), 2012 IEEE Conference on, pages
526–533. IEEE, 2012.

[ZZP+17] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and
Antonio Torralba. Scene parsing through ade20k dataset. In Proceedings
of the IEEE Conference on Computer Vision and Pa�ern Recognition, pages
633–641. IEEE, 2017.

[ZZP+19] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Semantic understanding of scenes through the
ade20k dataset. International Journal of Computer Vision, 127(3):302–321,
2019.

	Contents
	Introduction
	Rendering an environment
	Scene representation and creation
	Importance of view-dependent effects
	Contributions
	Funding and publications

	Related work
	Image-based rendering
	General approaches
	Geometric scene representation
	Blending techniques
	Synthetic data

	Extraction and rendering of view-dependent effects
	Extracting view-dependent effects from real world data
	Warping specular effects
	Generating specular effects
	Reprojecting reflected objects
	Finding reflected points in the scene

	Summary

	Repetitions for Image-Based Rendering of Facades
	Introduction
	Related Work
	Overview
	Windows Extraction and Platonic Camera Calibration
	Window extraction
	Platonic Camera Calibration

	Geometry Reconstruction
	Platonic Window
	Complete Facade

	Data Factorization and Augmentation
	View-Dependent Variations
	Instance-Dependent Variations
	Complete Facade

	Implementation and results
	Rendering
	Implementation
	Results

	Conclusion

	Image-Based Rendering of Cars with an Approximate Reflection Flow
	Introduction
	Related Work
	Overview
	Car Geometry Extraction and Refinement
	Isolating Cars with Semantic Labels
	Smooth Car Hull Extraction and Semantic Mesh Refinement

	Ellipsoid Approximation for Reflection Flow Computation
	Reflection flow computation
	Ellipsoid Fitting for Car Windows

	Synthesizing Reflection Layers
	Reflection Layer Synthesis

	Rendering, Results and Comparisons
	Rendering and Implementation
	Results
	Comparisons

	Conclusion

	Glossy Probes Reprojection for Global Illumination
	Introduction
	Related Work
	Overview
	Probe generation and storage
	Per-probe Data
	Probe Parameterization
	Adaptive Resolution Map Computation
	Adaptive Parameterization

	Geometric Information

	Rendering Global Illumination
	On-the-fly Reflection Position Estimation
	Gathering View-dependent Color

	Two-step Convolution for Accurate Warping of Glossy Probes
	Filter Footprint Estimation
	Gloss Filtering
	Efficient Filter Approximation

	Results, Evaluation and Comparisons
	Test Scenes
	Evaluation
	Results and Comparisons
	Comparisons with Baselines.
	Comparisons with Prior Art.
	Quantitative Evaluation.
	Statistics.

	Conclusion

	Conclusion
	Contributions
	Insights
	Future work
	Impact

	Transformation from Platonic Scene to Input Scene
	Car Mesh Refinement and Ellipsoid Fitting
	Mesh Refinement Minimization
	Isolating Car Objects using Semantic Labels
	Ellipsoid fitting algorithm

	Choice of DCT for Parameterization Guiding

