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Les résultats obtenus grâce à nos méthodes montrent une amélioration de la qualité du rendu des e ets dépendants du point de vue, que ce soit pour des données synthétiques ou du monde réel. Ces travaux ouvrent la voie à de futures recherches sur les techniques basées-image pour le rendu réaliste.
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Résumé

La création et le rendu interactif d'environnements réalistes est un problème complexe qui requiert de nombreux réglages et ajustements manuels. Les méthodes basées-image visent à simpli er ces tâches en utilisant des vues existantes d'une scène réelle ou synthétique.

Ces points de vue peuvent être capturés dans le monde réel ou générés grâce à des algorithmes de rendu hors-ligne très réalistes. Pour générer un nouveau point de vue sur la scène, la géométrie et l'apparence associées sont estimées à partir de l'information des vues existantes, perme ant l'exploration de l'environnement en temps réel.

Lorsque les vues d'entrée ne couvrent la scène que partiellement, spatialement ou angulairement, des artefacts apparaissent souvent ; utiliser un faible nombre d'images d'entrée limite la qualité de la reconstruction des scènes réelles, tandis que les matériaux non-di us compliquent le rendu des scènes tant réelles que synthétiques. Nous proposons plusieurs méthodes pour contourner ces limitations, en améliorant la fac ¸on dont l'information est stockée et agrégée depuis les vues d'entrée tout en exploitant les redondances. Nous décrivons aussi des outils géométriques a n de reprojeter les e ets dépendants du point de vue pour la génération d'une nouvelle vue.

Pour les scènes tirées du monde réel, nous détectons la présence de matériaux et objets grâce à de l'information sémantique. Nous présentons tout d'abord une méthode pour reconstruire et rendre des éléments architecturaux à partir de quelques vues. Nous exploitons la nature répétitive de ces éléments, extrayant et combinant leur information d'apparence et de géométrie pour générer une représentation commune idéale qui peut par la suite être réinsérée dans la scène initiale. Ce e combinaison améliore l'estimation des paramètres des vues d'entrée, la reconstruction de la géométrie de l'élément, et est utile pour détecter les régions comportant des e ets spéculaires dépendants du point de vue.

Nous décrivons une deuxième méthode qui s'appuie aussi sur la sémantique de la scène pour améliorer le rendu d'environnements urbains. Dans ces scènes, les voitures présentent de nombreux e ets dépendants du point de vue qui les rendent complexes à reconstruire et rendre dèlement. Nous détectons et extrayons ces éléments grâce à une paramétrisation spéci que à chaque instance, a n de ra ner leur géométrie, tout en construisant une représentation simpli ée des surfaces ré ectives, telles que les fenêtres. Pour rendre les e ets dépendants du point de vue, nous séparons l'information spéculaire de chaque vue d'entrée et utilisons notre représentation analytique des ré ecteurs pour reprojeter l'information dans la nouvelle vue, en respectant le déplacement des ré exions.

En n, bien que les scènes synthétiques fournissent une information exacte de la géométrie et des matériaux présents, restituer dèlement les e ets non-di us de fac ¸on interactive reste di cile. En nous inspirant de notre deuxième méthode, nous proposons une nouvelle approche pour rendre ces e ets en utilisant de l'illumination globale précalculée. Pour un ensemble de points de vue prédé nis dans la scène, nous précalculons l'information spéculaire, stockée dans des images panoramiques. Grâce à une représentation simpli ée de la géométrie, nous pouvons estimer le déplacement des ré exions de fac ¸on robuste, accumulant dans la nouvelle vue l'information provenant des panoramas. Combinée avec une paramétrisation adaptative des images panoramiques et un ltre de reconstruction préservant les matériaux, ce e méthode restitue les e ets de ré exions pour di érent types de matériaux, de fac ¸on interactive.

Introduction

For the last y years, computer graphics researchers have explored ways of creating, editing and visualizing data through digital tools.

e exponential democratization of computers combined with their compactness and their exibility to display many kinds of data has deeply impacted our society. An important part of the information and entertainment we share and consume is delivered visually. Among the possibilities brought by computer graphics, the ability to explore environments has impacted many elds -even if they do not exist in reality or are unreachable. Architecture, design, healthcare, entertainment all bene t from the capability of visualizing complex objects and environments while interacting with them.

But creating and rendering such data is time-consuming, labor intensive and requires signi cant processing power. Creating scenes from nothing or acquiring them from the real-world are arduous tasks. Displaying a scene to the user with the proper level of detail and realism is another challenge, as humans rely constantly on the appearance and visual behavior of objects to infer their properties and function [START_REF]Visual perception of materials and their properties[END_REF]. In this thesis, we explore how existing or precomputed scene data can be leveraged to improve the rendering of elements with complex appearance behavior while the user explores an environment in real-time.

Rendering an environment

Rendering in computer graphics can be de ned as the process of displaying existing data onto a device screen. We focus on 3D rendering, where three-dimensional objects are projected on the screen plane to generate an image. e user point of view is modeled as a simpli ed camera, and the scene data is transformed so that the image faithfully shows which objects would be visible to the user from the camera location.

Di erent methods exist to determine which region of which object is visible in each part of the image. ray tracing iterates over the image pixels; a ray originating at the viewer's virtual location and going through the pixel is shot in the scene, until it intersects an object. Conversely, rasterization determines the footprint of each object on screen, and updates the content of the covered pixels accordingly while keeping track of object depth ordering. Rendering techniques relying on ray tracing can closely model the propagation of light in a scene and support arbitrarily complex material behavior for increased physical accuracy [START_REF] Pharr | Physically based rendering: From theory to implementation[END_REF]. But because it requires the ability to perform visibility queries that possibly span the whole scene, memory and power requirements prevent it from being widely used in real-time. Techniques such as path tracing have thus been mainly reserved to tasks that favor accuracy over performance, such as movie visual e ects [FHP + 18] (see for instance Fig. 1.1, le ) or architectural pre-visualization.

On the other hand, rasterization is the de facto method for interactive rendering, to the extent that graphics processing units (GPU) have been specially designed to support it. Care has to be taken to ensure that the proper object ordering and occlusions are respected, but power and memory requirement are lower, making it amenable to performance critical tasks (Fig. 1.1, right). In recent years commercial hardware support for ray tracing has begun to appear, meaning that the strengths of both methods can be combined for improved accuracy, depending on the task at hand.

Scene representation and creation

But determining visibility and object location is only the rst step towards rendering an environment. Each object appearance has to be determined based on its material properties and the scene lighting conditions. While we focus on natural-looking environments in this thesis, rendering is not necessarily realistic per se; stylization and simpli cation can be used to great e ect in animated movies or computer-assisted design for instance.

To generate a new viewpoint in a scene, multiple elements are required. e geometry of each object has to be represented, either as a surface mesh, a parameterized model, the solution of an analytic equation, a 3D volumetric discretization or other ad hoc techniques.

e way light interacts with a given surface is described by a bidirectional re ectance distribution function (BRDF); many models have been developed to synthesize materials as diverse as skin, fabric, metal or hair in real-time. BRDF parameters can vary over an object's surface and are o en stored in textures. Additional e ects such as transmission or sub-surface sca ering can also be modeled. Light sources can similarly be represented by analytical models or sample measurement-based pro les. Additional data such as environment panoramas can be used to help take into account all lighting contributions. All these elements can be created by artists in specialized so ware (Fig. 1.2, le ), a task that requires a high level of skill and is extremely time consuming. is has a strong impact on creativity, the democratization of content creation and the widespread adoption of 3D graphics at large.

Capturing real-world elements through various acquisition devices is now a viable alternative used in production of lms and games. BRDFs can be measured from material samples using adequate sensors or inferred from photographs. Photogrammetry can reconstruct the surface of an object from a set of pictures showing it under multiple angles (Fig. 1.2, right). But the output of these techniques requires tedious cleanup to be used in a real-time rendering engine since most solutions only provide approximate geometry and texture, with no information on materials and with lighting "baked into" the texture. Using this data for real-time rendering requires the artist to cleanup the errors in geometry, manually de ne material properties, and remove the lighting from textures, typically involving painstaking manual steps. Furthermore, most lighting models used for real-time have to simplify or even forego complex lighting e ects to remain accessible on a wide range of hardware.

Figure 1.3 -Image-based rendering samples and reprojects information from a set of input views to the novel view, optionally using an intermediate scene representation.

Image-based rendering (IBR) pushes the idea of acquiring data from the real world to the extreme limit, by trying to capture and directly use lighting information. Instead of evaluating a simpli ed BRDF model, why not use the real-world shading that is visible in photographs of a scene? Multiple pictures of an object can be used to estimate not only the geometry, but also the appearance of the material under di erent viewpoints. is information can be aggregated and queried to generate a novel view (Fig. 1.3). Data does not have to come from the real world, and can instead be precomputed using o ine techniques for synthetic content. It is thus possible to bene t from more accurate lighting than by only relying on real-time methods. Whichever data source is used, IBR replaces lighting evaluation by a sampling and reprojection task: input information has to be sampled and reprojected based on the user viewpoint. is can be a complex problem for e ects such as re ections or transparency.

While the behavior of di use surfaces is now well handled by most rendering approaches, view-dependent e ects such as re ections are more complex to synthesize accurately in real-time (Fig. 1.4). As they depend on the user's motion and involve surfaces that are potentially far from each other in the scene, they can vary at a high temporal and spatial frequency, whereas the human eye is very sensitive to them. 

Importance of view-dependent e ects

View-dependent e ects visible at the surface of non-di use objects are complex to render while being paramount to scene realism. Indeed, humans are extremely sensitive to the specular behavior of materials and can easily perceive inconsistencies [START_REF] Pellacini | Toward a psychophysically-based light re ection model for image synthesis[END_REF].

Re ections for instance are omnipresent in any real world scene but exhibit complex motion as soon as the surface or the material parameters are not simple (see Fig. 1.5). Such e ects depend on the geometry and material of multiple surfaces in di erent parts of the scene (the re ector and re ected elements for instance). Multiple intersections have to be found and the lighting evaluated at each of these. For glossy e ects, light incoming from multiple directions has to be taken into account, involving even more queries. Furthermore, compared to di use global contribution, these cannot be easily precomputed as they depend on the user viewpoint.

For image-based techniques, view-dependent e ects have to be handled with speci c sampling and reprojection approaches. As already pointed out, their motion or ow when Figure 1.5 -Examples of real-world complex view-dependent behaviors in everyday life scenes: re ection, glossiness, refraction, transmission. moving around is not the same as the one for di use geometry. Di erent ows have to be computed for di erent e ects and their data has to be reprojected separately. For transparency e ects, multiple surfaces contribute to the appearance visible at a given pixel, each with a di erent depth and motion. Inconsistent appearance also leads to artifacts in most capture processes that rely on a simpli ed di use assumption (Fig. 1.6). Finally the number of viewpoints required to capture high frequency e ects on a given surface can increase storage requirements drastically. At the same time all materials do not exhibit e ects at the same frequency, so space is wasted storing redundant information in some regions. 

Contributions

e issues discussed in the previous sections motivated our research. In this thesis, we explore how to improve the rendering of view-dependent e ects in scenes, both extracted from real world environments and created synthetically by artists. To reach high visual quality we leverage precomputation and thus use image-based techniques to reproject existing information in novel views. We believe that interactive visualization of realistic environments is a unique way to explore an original scene, whether it comes from the real world or an artist's mind.

roughout the three projects presented in this thesis, we have iteratively rede ned our modeling of view-dependent e ects depending on the type of scenes tackled. We thus present:

• Chapter 3: a novel technique for reconstruction and rendering of facades from a small set of input photographs. We exploit architectural repetitions to process the most important scene elements in isolation, even if they exhibit view-dependent behavior. By aggregating information from multiple elements, we are able to improve on the reconstruction and rendering, while detecting regions that exhibit specular e ects. Additional re ection e ects can then be added.

• Chapter 4: a second technique that processes re ective elements in isolation, this time focusing on street-level regular capture. Here again, working on elements separately allows us to repair geometry reconstruction artifacts caused by view-dependent e ects. We build an analytic representation of re ective semitransparent surfaces, using it to extract plausible re ection layers. is representation is also used at render time to compute the ow of re ections from the input views and sample the layers accordingly, generating plausible re ections in motion.

• Chapter 5: a third technique that, motivated by our previous re ection ow work, generates realistic mirror and glossy re ections in synthetic scenes. e perfect geometry is leveraged to warp precomputed specular information from a set of parameterized probes to the novel view. Information is gathered in the novel view, accumulating specular samples that are valid for the new location while respecting occlusions and materials. An image-space reconstruction lter ensures that glossy surfaces are properly rendered.

Funding and publications
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C h a p t e r 2

Related work

As described in the introduction, this thesis focuses on the rendering of view-dependent e ects in both real and synthetic environments, by relying on image-based methods, data precomputation and reprojection. We now introduce the concepts at the root of rendering and scene reconstruction. We then review the literature on image-based techniques, focusing on the real-time rendering of large scenes, and detail how viewdependent e ects are extracted, reconstructed or synthesized in the literature, both for real and synthetic scenes. To realistically render a new viewpoint in a 3D scene, light propagation has to be simulated.

is simulation should model the way light propagates from sources to the viewpoint, taking into account intermediate interactions with the materials present in the scene. e rendering equation [START_REF] James | e rendering equation[END_REF] describes such interaction at a point x on the surface of an object (see Fig. 2.1).

L o (x, ω o , λ, t) = L e (x, λ, t) + Ω f (x, λ, t, ω i , ω o )L i (x, ω i , λ, t)(ω • n)dω i
For a given outgoing light direction ω o , the radiance L o exiting the point is the sum of the emissive behavior of the surface L e (x) and the accumulated incoming radiance L i from all directions ω i covering the hemisphere Ω. e incoming radiance is modulated by the material based on its properties, described by a bidirectional re ectance distribution function (BRDF) [START_REF] Nicodemus | Directional re ectance and emissivity of an opaque surface[END_REF] f , and by a geometric term based on the normal n orientation. e rendering equation is given at a xed time t and for a speci c light wavelength λ. Properties of the material are o en spatially-varying and stored in texture maps for convenience. Evaluating the rendering equation at a given point requires knowledge of the radiance at all points in the scene that might contribute to the incoming radiance for the current point. But these quantities might depend on the radiance we are currently evaluating. is makes solving the rendering equation for the whole visible scene intractable. us simplifying assumptions have to be put in place, especially for real-time rendering. e behavior of light emi ers, of the BRDF and estimation of the incoming radiance to a point can be approximated using di erent techniques, for example analytical representations or precomputed tables.

e information required to represent and shade a scene can be created from scratch using specialized so ware, or be acquired in the real world. Capture relies on either speci c sensors for BRDF acquisition or commercial handheld cameras. Multi-view stereo reconstruction techniques (MVS) combine information from a set of input RGB images to automatically estimate a surface mesh of the scene [GSC + 07, SZPF16]. e input camera poses and intrinsic parameters are rst estimated using structure-frommotion [START_REF] Snavely | Photo tourism: exploring photo collections in 3d[END_REF]. Signi cant features are extracted from each input images using scale and rotation invariant descriptors [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Bay | Surf: Speeded up robust features[END_REF]. ey are matched between neighboring views and the depth of the corresponding pixels estimated through triangulation. is initial sparse point cloud is then used to re ne camera estimation and compute dense depth maps. ese are aggregated to form a dense point cloud, from which the mesh surface is reconstructed (see Fig. 2.2, le ).

Erroneous feature matches introduce artifacts in the geometry, and are caused by viewdependent e ects, transmissive surfaces that present multiple depths for a given pixel, or occlusion events that lead to noisy edges (Fig. 2.2, right). is adds extra constraints to the acquisition baseline, requiring redundant coverage between the input views.

For synthetic scenes, image-based techniques rely on the notion that high-quality shading Figure 2.2 -Le : Calibrated cameras and scene geometry obtained by multi-view stereo reconstruction (using [START_REF] Lutz Schönberger | Pixelwise view selection for unstructured multi-view stereo[END_REF]). Right: e transparent window geometry is missing, as is the car roof, highly re ective at grazing angles.

for real-time rendering can be precomputed at the desired level of accuracy instead of relying on on-the-y approximate evaluation. Image-based rendering furthermore allows for real-world lighting data to be used as-is, for increased realism at the cost of editability. Because the novel viewpoint is unknown at precomputation or acquisition time, data has to be queried and reprojected to generate the novel image. E ects that are viewpoint dependent thus require additional care as their motion can be hard to estimate. On the other hand, image-based representations of the scene can be used to synthesize more accurate visual e ects in real-time, including re ection and refraction that are particularly important to achieve high levels of realism. is thesis focuses on such techniques, both in synthetic and real environments.

We now present a review of existing approaches in both image-based rendering and view-dependent e ect synthesis. We focus on interactive rendering of complete scenes.

Image-based rendering

General approaches

Plenoptic function. Image-based techniques rely on the pre-existence of scene information such as shading and global illumination e ects that would be expensive to compute at runtime. In an ideal world, we would be able to store such information for all directions, at all locations. More formally, the appearance visible from a point of view in the scene, for a given direction is given by the plenoptic function [MB95] P (x, (θ, φ), λ, t) where x is the view 3D position and (θ, φ) the normalized direction, λ the wavelength and t time (see Fig. 2.3).

x ϕ θ Scene Figure 2.3 -e plenoptic function parameterizes the scene appearance observed from a given viewpoint and direction as a 5-dimensional quantity (x, θ, φ) -at xed time and wavelength.

A perfect image of the scene from a given viewpoint could be generated if we had an oracle that could return P for any set of input parameters. In our applications, we consider temporally static scenes and use the standard collapse from the full spectrum to a triplet of red, green, blue values. In practice, the plenoptic function of the scene can only be sparsely sampled due to acquisition, computation and storage constraints [START_REF] Chai | Plenoptic sampling[END_REF].

When generating a novel viewpoint of the scene, existing samples have to be selected and blended to approximate the missing plenoptic information. Di erent resampling and completion approaches put di erent requirements on the quality and density of the initial data acquisition. One has to ensure that enough information is captured to allow for free-form exploration of the scene while limiting the storage usage for interactive applications. Furthermore, resampling might be simpli ed if additional scene information is known, for instance geometry.

Panoramas. Historically, one of the rst examples of image-based rendering is the generation of interactive 360-degree panoramas and turntables [START_REF] Eric | icktime vr: An image-based approach to virtual environment navigation[END_REF]. In these setups, the user position is either xed or rotating around a xed point of interest. For this xed location, a set of images covering all possible view angles is captured and stitched together (see Fig. 2.4). e plenoptic function is thus densely sampled in all directions (θ, φ) for a xed x.

e plenoptic data can originate from real world photographs or synthetic images computed with accurate non-interactive methods. Panoramas can be created at di erent locations and linked together, allowing for interactive exploration of an environment by "jumping" from a panorama to another when clicking on prede ned areas of interest. Shade et al. [SLS + 96] subdivide a synthetic scene into a hierarchy of nodes; renderings of each node content can be cached for re-use while the user explores the environment, by displaying them on quads in world space.

Input images

Stitched panorama Light elds. To allow for more freedom in viewer motions while still limiting the dimensionality of the problem, the Lumigraph [START_REF] Steven J Gortler | e lumigraph[END_REF] and Light eld [START_REF] Levoy | Light eld rendering[END_REF] techniques designed a custom parameterization of the plenoptic function. ey de ne a region of the scene contained between two parallel planes with limited extent (Fig. 2.5). Rays of light that go through this region while intersecting both planes can be parameterized by their intersections locations as two sets of 2D coordinates. is parameterization has fewer dimensions than the full plenoptic function while allowing for the generation of views with di erent orientations.

In the case of the Light eld, images are captured on a regular grid on one of the two planes, with the object of interest behind the other plane. Generating a novel view light ray is then a ma er of linearly interpolating between the nearby input rays based on the two sets of planar coordinates of the new ray. e Lumigraph supports unstructured capture, but requires an additional resampling step to extract the light rays from the input images. Both methods use high-density input data, allowing for the reconstruction of complex view-dependent e ects at the cost of high storage. In cases where the plenoptic function cannot be sampled as densely, existing samples have to be warped and propagated to generate novel viewpoints. For sparser setups it becomes necessary to have some additional scene information available, such as depth, de ned either locally for each input view or globally for the scene. 

Geometric scene representation

Scene geometry information can be used to reproject plenoptic samples from an input view to the novel view, while taking into account occlusions and simplifying rendering. Acquisition setups that use unstructured 2D images as input are compatible with camera pose estimation, as well as depth and surface reconstruction techniques from computer vision. Care needs to be taken when handling complex surfaces with re ective or transmissive elements, and when merging information from di erent input views.

Global scene geometry An approximate scene representation can be provided by the user through the use of interactive modeling so ware. Texture information is then reprojected from the input images onto the geometry [START_REF] Paul E Debevec | Modeling and rendering architecture from photographs: A hybrid geometry-and imagebased approach[END_REF]. When multiple images reproject on the same region, they can either be consistent if the surface is di use, or contain variations caused by view-dependent e ects. To preserve this information, texture data is blended between the input views closest to the novel viewpoint. Multi-directional color information can be stored on each face of the geometry [START_REF] Debevec | E cient view-dependent image-based rendering with projective texture-mapping[END_REF] and blended at runtime using graphics hardware, a process called view-dependent texture mapping (Fig. 2.6, le ). reconstruction (Fig. 2.6, right). At each vertex, blending weights between nearby input views can be estimated based on their relative distance and orientation with respect to the novel view currently generated. e smooth camera blending eld obtained is then used to aggregate input image color information.

When the reprojection and blending process used to generate the novel view is known in advance, it is possible to guide the user during the capture process [START_REF] Davis | Unstructured light elds[END_REF] to ensure optimal quality of the result. Approximations in the global geometry lead to incorrect reprojections from the input images to the novel view. Floating textures [EDDM + 08] compensate these by precomputing the optical ow error obtained when reprojecting an input image into another input view. ese ow elds are queried at runtime to correct the erroneous warping introduced by the geometry.

While a global mesh simpli es the rendering process by making it amenable to regular graphics hardware, extra geometric accuracy can be gained by skipping the nal aggregation step and relying on per-view depth information. Indeed, the consensus required to generate global geometry o en leads to discarding per-view accurate information when it is inconsistent between views.

Per-view geometry. Because global geometry is multi-view consistent at the cost of accuracy at each input view, several techniques have explored per-input view depth or geometric representations. Per-view depth maps can be used directly to reproject and select plenoptic samples; depending on the performance required, these depth maps can be discretized and simpli ed to a set of local planes [HKP + 99]. ). e depth of each region is re ned and care is taken at discontinuities to separate foreground and background color information. e depth information is used to interpolate between the input images. By accumulating reprojected information from multiple super-pixels, regions occluded in one input view can be lled in by another view's super-pixels. Additional e ects such as depth of eld or more complex camera motions can also be reproduced [ZCA + 09]. Chaurasia et al. [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] also estimate and re ne depth for super-pixels in the input views, but additionally build geometric patches for each region (Fig 2 .7). ese patches can be warped and blended depending on the novel view location, while preserving the shape of the surfaces covered by each patch.

Inside-out [START_REF] Hedman | Scalable inside-out image-based rendering[END_REF] combines RGBD input views with reconstructed global geometry to generate re ned per-view meshes (Fig. 2.8). ese are then sliced on a regular grid covering the scene. At runtime, slices of the per-view meshes are selected independently for each grid region, depending on the viewpoint location. e input texture data associated to the di erent selected slices is blended together with a fuzzy depth test to generate the nal view.

Input image Global geometry Input depth

Per-view geometry Such surface representations enforce a single depth per input-view pixel, which is incompatible with transparent surfaces and partial pixel coverage at discontinuities. Layereddepth images [START_REF] Shade | Layered depth images[END_REF] decompose each input view into a set of partial images at di erent depths (Fig. 2.9). Each layer is warped to the novel view and alpha-blended back-to-front.

No additional depth testing is required, as regions that correspond to opaque foreground objects will automatically occlude any background layer.

More recently, Tulsiani et al. [START_REF] Tulsiani | Layer-structured 3d scene inference via view synthesis[END_REF] generate layered depth images from a pair of calibrated input views using a neural network trained by comparing novel viewpoints generated from the predicted layers with a reference image. Mildenhall et al. [MSOC + 19] apply a similar technique to a set of input views placed on a regular grid. A set of planes containing color and opacity information is extracted from each view. e planes of the neighboring input views are warped to the novel view and blended using bilinear weights.

Layered representations require more storage but t the classical alpha compositing pipeline where successive layers are stacked and their colors blended based on the associated opacity values. For scenes with intricate geometry or complex multi-layered e ects, many layers are required, and some approaches have opted for a fully volumetric representation. As described in this section, image-based rendering techniques rely on a set of di erent representations with varying space/rendering trade-o s.

Volumetric representation. Volumetric representations extend the layered multi-plane

e warping and blending applied to the plenoptic samples is usually tied to the scene representation, as some part of the reconstruction can be performed at blending time. Dense representations su er from high storage requirement when treating large scenes, but surfaces are not always able to represent all types of objects encountered. Per-view geometry captures ner object details at the cost of global geometric consistency. Because scene reconstruction is paramount to most image-based rendering techniques, our work also relies heavily on computer vision solutions. In the following chapters we will focus on sparse input images (chapter 3) or large scenes (chapter 4), and will try to address some of the shortcomings of surface representations when it comes to view-dependent e ects.

Blending techniques

Blending information from multiple input views to generate a novel image while preserving view-dependent e ects is a complex problem. Multiple e ects need to be accounted for and the blending techniques o en rely extensively on the underlying scene representation.

Geometric measures and optimization. Once plenoptic samples are selected or transferred to the novel view, it has to be blended depending on the signi cance/contribution of each input view for the novel view. Blending weights can be computed based on geometric criteria. e input view positions form a tessellation of the explorable space; some approaches thus resort to interpolating between the closest input views using barycentric interpolation [LH96, DLD12, MSOC + 19]. Other methods o er more complex weighting schemes designed to measure the similarity between two views [DYB98, BBM + 01]. For instance, the Unstructured Lumigraph [BBM + 01] computes a per-vertex, per-camera weight that takes into account the relative distance of both input and novel views to the vertex, their relative orientations and the projection of the vertex in the image plane (Fig. 2.12).
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Figure 2.12 -e ULR blending weights at a point on the surface take into account the distances from that point to the input view d i and novel view d n , along with their relative incidence angle θ and the location in the input image space. e best cameras are ranked and their scores normalized.

For o ine rendering, optimization based techniques achieve seamless blending with temporal stability. Hyperlapse [START_REF] Kopf | First-person hyperlapse videos[END_REF] generates the nal image using a graph-cut on the set of close input images while trying to minimize texture distortions (Fig. 2.13). A more formal framework is proposed by Pujades et al. [START_REF] Sergi Pujades | Bayesian view synthesis and image-based rendering principles[END_REF], where both texture deformation and the uncertainty introduced by the data resolution and geometry reconstruction are taken into account. ey are able to re-derive the weights used by view-dependent texture mapping and the unstructured lumigraph.

Solving the general optimization problem remains infeasible in real-time, but these approaches provide a rm grounding upon which other blending schemes can be validated. Neural blending and rendering. Because the nal blending is frequently performed in the novel view image space, it can be cast as a convolutional neural network task. DeepBlending [HPP + 18] builds on InsideOut [START_REF] Hedman | Scalable inside-out image-based rendering[END_REF] by performing blending between selected candidate samples using a compact neural network (Fig. 2.14). As the network is trained on multiple scenes, it generalizes well to unseen datasets.

As mentioned in the previous section, learning-based volumetric methods usually have a strong coupling between the representation and blending. Deep Voxels [STH + 19] generate the nal image using a U-Net neural network that combines the reprojected feature volume with the output of a secondary network estimating occlusions. ies et al. [START_REF] Justus Ies | Deferred neural rendering: Image synthesis using neural textures[END_REF] design a system where the scene appearance is learned as a set of features parameterized in texture space (Fig. 2.15). UV coordinates are rendered for the novel view and the neural texture is queried at those coordinates to obtain the nal appearance. NERF [MST + 20] replaces the texture coordinates by a 3D space parameterization: a network is trained to predict the radiance and occupancy at any given location in the scene volume (Fig. 2.16). Radiance is queried regularly along view rays and accumulated until occupancy saturates. In practice a two-level representation is used: a coarse network is used for initial fast queries and a second, deeper network is evaluated to query ner details.

Techniques that build an internal representation speci c to the scene are o en limited in the size and complexity of the scene that they can capture, while requiring a high number of input images (from hundreds to thousands). In chapters 3 and 4, we focus on scenes that are either large scale or captured with a very sparse baseline, and we thus resort to using surface-based geometry combined with image-space blending weights.

Synthetic data

e possibility of generating new viewpoints in a scene or on an object by combining existing plenoptic samples also has advantages for rendering synthetic scenes created by artists. Shading computation can be decoupled from novel view generation and thus rely on more expensive approaches. Samples can also be temporally accumulated. Precomputed radiance can be queried to generate re ection e ects more easily. Finally, image-based rendering enables high quality interactive rendering of complex e ects or rendering on constrained hardware, as remote or precomputed information can be warped to a novel viewpoint on the y. In chapter 5, we present a novel technique for realistic rendering of high-quality specular and glossy surfaces, motivated by the applications of image-based rendering to synthetic scenes. Sample reuse. In early works existing radiance samples can be reused to generate a novel viewpoint on the scene. e Holodeck [START_REF] Ward | e holodeck ray cache: an interactive rendering system for global illumination in nondi use environments[END_REF] renders rays carrying radiance and store them in a data structure; it is then queried to generate the novel view, by selecting the rays closest to those needed for the novel image. e Render Cache [START_REF] Walter | Interactive rendering using the render cache[END_REF] accumulates ray-traced samples that are reprojected in the novel view in a depth-aware fashion. Information is interpolated between samples to generate the nal image (Fig. 2.17). New samples are requested to cover empty regions of the novel view. Frameless rendering [START_REF] Bishop | Frameless rendering: Double bu ering considered harmful[END_REF][START_REF] Dayal | Adaptive frameless rendering[END_REF] similarly reconstruct the nal image from reprojected temporal samples. Here, the ray-traced samples are stored in a set of 2D partial images. e temporal blending parameters are adjusted based on the presence of dynamic elements in the scene. Re ection rendering. Re ections are view-dependent e ects that exhibit complex non-linear behavior under motion. When shading a re ective surface, elements that are re ected onto it have to be found in the scene and their radiance estimated. is is di cult to perform accurately and interactively in rasterization-based frameworks.

Environment maps store the scene colors visible in all directions from a given location and can be fetched to obtain the radiance incoming to a re ective surface in a given direction (see next section for more details). Lischinski et al. [START_REF] Lischinski | Image-based rendering for non-di use synthetic scenes[END_REF] extend this concept by storing environment radiance as a set of layered depth images and auxiliary light elds for view-dependent e ects. A similar approach replacing a regular environment cubemap by six light-elds covering the full sphere is also found in the literature [START_REF] Yu | Real-time re ection mapping with parallax[END_REF] (Fig. 2.18). ). For refraction and re ection, the optical ow is estimated using an iterative search in the previous frame image space.

Image-based techniques allow for realistic rendering of re ections in synthetic scenes, by either acting as an alternate scene representation that can be queried when estimating the radiance incoming to a point, or by providing e cient ways of reprojecting information from existing views using the proper re ection ow. In chapters 4 and 5, we propose two ways of generating re ections into a novel view by relying on existing specular information and speci c geometry representations that make the real-time ow estimation feasible.

High quality interactive rendering. Beyond re ections, precomputed rendering of parts of a scene can be used to lower the cost of rendering intricate shaded geometry.

Impostors [START_REF] Paulo | Visual navigation of large environments using textured clusters[END_REF][START_REF] Décoret | Billboard clouds for extreme model simpli cation[END_REF] combine one or multiple renderings of a given object with an extremely simpli ed supporting geometry. Many distant objects can then be rendered at a low runtime cost. is is especially useful for vegetation, clouds and buildings.

Image-based rendering has recently been applied to remote rendering, where high quality images are generated on a remote server and streamed to a device. A local two-view IBR can be performed to allow user motion even when latency arises [RKR + 16] (Fig. 2.20). is requires the remote server to send scene geometry and an auxiliary rendered view and remains mainly limited to di use surfaces. Lall et al. [LBR + 18] precompute a mainly di use representation of a static scene for small motion VR exploration. From a high quality path traced panorama and scene geometry, a set of oating patches is optimized to best capture the occlusion and parallax e ects in the scene while minimizing overlap and storing costs. Shading information is projected onto those patches in order to render them as simple textured meshes (Fig. 2.20, second row).

Finally, high quality video light-elds can be precomputed as a set of RGBD environment maps and compressed for VR streaming [START_REF] Koniaris | Realtime rendering with compressed animated light elds[END_REF], but the density requirement limits possible motion in the scene, and a complex decompression scheme is required due to the amount of per-frame data.

As shown in this section, image-based rendering concepts can be applied in many ways to improve the appearance of synthetic scenes. is motivates our approach described in chapter 5 to render accurate re ections in synthetic scenes, by warping precomputed glossy information from a set of probes to the novel view.

Overall, image-based techniques provide a diverse set of solutions for multiple rendering tasks on real and synthetic scenes. Di erent scene representations allow di erent types of environments and e ects to be rendered. Yet complex indirect behavior such as re ection and refraction on surfaces remain di cult to both capture and synthesize for all types of scenes. 

Extraction and rendering of view-dependent e ects

As pointed out in the previous section, image-base techniques are able to reproduce complex view-dependent e ects when the input capture is extremely dense. At the same time, these e ects are known to be extremely adversarial to traditional capture and rendering approaches. e non-consistency of re ection and refraction when moving between viewpoints makes classical surface reconstruction o en fail on specular or transparent surfaces. Furthermore, the apparent motion on such surfaces cannot be explained by a unique depth; for re ections the location of the re ected object ma ers, as does the surface behind the current object for refraction and transmission. Each category of e ects will have its separate motion ow, di erent from the geometric ow of di use surfaces.

ese e ects are also very sensitive to the geometry of the surface, where complex motions appear on non-at objects. Finally, the appearance on such a surface is the result of multi-layer compositing, i.e. mixing the contributions of the surface itself and the re ected and/or transmi ed surfaces. In real world scenes, the contributions have to be extracted from the fused input data, while for synthetic scenes this separation is o en used to apply speci c rendering algorithms for each contribution.

2.2.1 Extracting view-dependent e ects from real world data e appearance of re ective and transmissive surfaces results from the composition of multiple e ects, each with its own radiance and geometric information. For techniques such as the light eld and lumigraph, the sheer density of the capture allows those e ects to be interpolated as a whole without having to explicitly compute their ow. For sparser setups, speci c approaches are required for each e ect in order to compensate for the lack of information; estimating and recreating each e ect separately is then a more viable solution. We now present a brief review of radiance and surface extraction techniques, and build on these to render re ective transparent surfaces in chapter 4.

Layer separation. Separating re ective and transmissive layers from the background in real world images is widely studied in computer vision and graphics [START_REF] Szeliski | Layer extraction from multiple images containing re ections and transparency[END_REF]. Because the merging of multiple sources of information at a single pixel is a lossy process, solving the problem for a unique image o en requires user information [START_REF] Levin | User assisted separation of re ections from a single image using a sparsity prior[END_REF] or extra capture devices such as polarized lters [START_REF] Wieschollek | Separating re ection and transmission images in the wild[END_REF]. Multi-view setups provide more information to help disambiguate the accumulated contributions. For each layer to extract, the motion ow of the e ect between input views has to be estimated so that correspondences can be established. Based on the color variations between matched pixels, the layer color information can then be separated. In practice, multiple iterations of ow estimation and color separation are required [START_REF] Xue | A computational approach for obstruction-free photography[END_REF] (Fig. 2.21). e ow that should be estimated for layer separation is strongly linked to the underlying geometry. is is why it can be bene cial to estimate the depth of each layer rst. Sinha et al. [SKG + 12] estimate up to two depths per pixel of each input view using a custom stereo matching technique (Fig. 2.22). e obtained depth maps are then used to build two geometric proxies of the scene, each composed of a set of local 3D planes. One proxy encompasses surfaces directly visible (re ectors and di use elements), the second one contains the geometry visible through transmission. Layers are then extracted using a constrained approach similar to the one described by Szeliski et al. [START_REF] Szeliski | Layer extraction from multiple images containing re ections and transparency[END_REF], but using the geometries to estimate accurate ows. An additional regularization ensures robustness to noise and misalignments in the input views. To render the novel view, information from each layer is reprojected using the corresponding proxy. Note that for the re ection layer, the depths estimated are virtual depths of the re ected objects that produce the proper parallax motion when moving around.

Instead of explicitly separating layers, Kopf et al. [KLS + 13] interpret view-dependent e ects as motions of the input images gradients. Depth is only estimated for any input view pixel with non-zero color gradients. Because those are sparse, each gradient implicitly comes from a unique layer, even if it is not modeled. Gradients and their depths will be used to generate the novel view (see next subsection). 

Chapter 2. Related work

Surface extraction. Alternatively, geometric reconstruction of transparent and re ective objects can be handled using speci c capture setups [WGL + 18, WZQ + 18]. Godard et al. [START_REF] Godard | Multiview reconstruction of highly specular surfaces in uncontrolled environments[END_REF] iteratively re ne the estimation of a re ective object surface. At each step, they re-generate re ections synthetically using the current estimation, and compare them to the input images. e error in the generated re ections guides the estimated surface adjustments. Volumetric approaches can also be found in the literature [IKL + 10] to handle the multiple per-pixel depths in a more continuous fashion, but these are o en limited to speci c set of objects or rely on complex acquisition hardware [IKL + 08]. Surfaces recovered by these techniques only represent the re ectors, and do not provide enough information for a full re ection reprojection.

Warping specular e ects

If view-dependent e ects have been extracted or synthesized from input data, they are typically located in the input views and have to be warped into the novel view. To properly perform this reprojection, the ow of re ection and refraction e ects has to be computed. Even if the layer color and geometric information were perfect -as is the case for synthetic scenes -establishing correspondences between the novel view and the input views is a non-invertible problem for view-dependent e ects in the general case. Indeed, while for planar re ectors it can be solved by reprojecting the virtual image of re ected points into the novel view, it becomes intractable for curved re ectors, even as simple as a sphere.

Blending re ection and transmission e ects. If geometric layers with depth information have been extracted [SKG + 12], they can be used to achieve reprojection. Indeed, the depth captured by each layer reproduces re ected or transmi ed parallax under motion around the input views. Warping and blending is performed for each layer type separately, along with a layer containing the blending factors between other layers. A nal hole-lling and compositing step generates the nal image (Fig. 2.23, rst row).

In Gradient image-based rendering [KLS + 13], gradients are spla ed into the novel view.

Recall that the depth corresponding to each gradient has been estimated. Visibility changes are detected, and occluded gradients discarded. e projected shape of each gradient input view pixel is also taken into account during warping for accuracy. In parallel, an initial approximate color solution is generated using input colors, by applying each gradient onto the region of the image it spans when moving from the input to the novel view. e nal color image is obtained by Poisson integration of the generated gradient elds combined with the approximate solution as a weakly weighted data term (Fig. 2.23, second row). is method captures re ection and transparency e ects well, but the assumptions used limit it to mainly planar re ective surfaces.

In IGNOR [TZT + 20], view-dependent e ects are not directly extracted from the input views. An encoder-decoder neural network is trained to predict view-dependent e ects for any viewpoint based on the corresponding depth map -obtained by reconstructing the geometry with MVS. For each selected input view, the e ects layer predicted by the network is subtracted, and the resulting di use layers are then warped to the novel view (Fig. 2.23c). e network is evaluated again for the novel view parameters, generating a new e ects layer. e reprojected di use and the view-dependent layers are blended using a second network. Training is performed on dense unstructured datasets; the loss compares the obtained di use images for pairs of views, as this layer is expected to be view-invariant.

Specular path evaluation. Specular ow can also be estimated without modeling re ected depth as a geometric layer. As previously described, e ciently nding specular paths at each visible location is an expensive task, and matching re ections between two views is at least similarly complex. Multiple works have described approaches that a empt to use sparse specular information to solve one of these two problems on-the-y.

For instance, if some light paths from a re ected point p to a viewpoint q (as shown on Fig. 2.24, le ) are known, they can be extrapolated to estimate paths at other viewpoints or for other re ected locations.

x x' p p' q Δx Δp x x' p/p' q q' θ Figure 2
.24 -Le : When some specular paths (p, x, q) are known, the location x at which nearby re ected points p reproject can be estimated using path perturbation. Right: If all specular paths (p, x, q) are known, it is possible to search for the point p/p that is re ected at a given x when seen from a novel viewpoint q .

Chen and Arvo [START_REF] Chen | eory and application of specular path perturbation[END_REF] provide a formal framework for specular path perturbation to perform such extrapolation. Following Fermat's principle, valid light paths between a re ected point p and a viewpoint q minimize the optical path length [START_REF] Mitchell | Illumination from curved re ectors[END_REF]. For a nearby re ected point p , valid paths are very similar -assuming they interact on the same re ector. ese paths can thus be obtained by a perturbation of the known re ection path (p, x, q). Let us de ne Φ(p) = x the path function giving the re ection point where p is visible when the viewer is at q ( xed). e following approximation can be derived:

Φ(p ) = Φ(p) + J∆p + 1 2 ∆p T H∆p + O( ∆p 3 ).
Here, J and H depend on the re ector surface and capture its variations when moving in the neighborhood of x. Note that these quantities can only easily be evaluated for surfaces with an analytic representation.

Instead of updating the re ection position of a known re ected point, Lochmann et al. [LRR + 14] x the re ection position and search for the new re ected point. In their use case, all re ection paths are known for an input viewpoint q (see Fig. 2.24, right). At a novel viewpoint q and for a given x , they search for the visible re ected point p . e best p is such that the re ection direction computed in the novel view q using the normal at x , and the re ection direction in the input view q using the normal at x , coincide. If this is the case, the specular path (p , x , q ) is valid and the re ected color can be used. To search for this p , a gradient descent is performed to maximize the dot product of the input and novel view re ection directions. To avoid having to express the gradient analytically for all types of surfaces, they compute nite di erences using the re ected positions map generated at q. Because the baseline between q and q is small, the search converges quickly under the condition of a good initialization. ey use a similar approach for the refraction ow.

In chapter 4, we propose a simpli ed ow estimation method that searches for a valid point on the surface of an ellipsoid re ector, allowing for real-time re ection reprojection from a large set of input images. Similarly to Lochmann et al. we perform a gradient descent guided by a geometric alignment criterion, but our search for the re ection point is constrained to the surface of the re ector. Because we rely on an analytic surface representation, the process is simpli ed and doesn't require additional position maps. In chapter 5, we build upon the framework of Chen and Arvo to fetch precomputed specular information in a set of panoramic probes. While the initial work was limited to surfaces de ned by implicit functions, here we generalize the approach to triangle meshes by building a set of local implicit representations. While the goal of the techniques presented in this section is to estimate the specular ow, they address it in two very di erent ways, either solving for the re ection or the re ected location in the novel view. ese two approaches are also used for the generation of new specular e ects, as we describe in the next section.

Generating specular e ects

When rendering synthetic scenes in real-time, specular paths are o en not known in advance. In this case there is no existing color information to warp, and novel re ections have to be generated on the y. Depending on the hardware constraints and the scene setup, locating new specular e ects in the scene can be cast as a spla ing problem where re ected objects have to be projected on the re ectors at the correct location, or as a gathering task where for a given point on the re ector, incoming contribution from the environment has to be evaluated. Because current graphics hardware is optimized for rasterization, geometry transformation and reprojection, multiple methods a empt to project the scene objects onto the re ectors. For each re ector and for each potentially re ected object, a copy of the object geometry is created and spla ed onto the re ector surface. is requires proper handling of occlusions and a good tessellation of the re ected geometry, as the projection is performed on a per-vertex level on potentially curved re ectors. Estimating the projected position is a complex problem, as described previously. If the re ector is a triangle mesh, each triangle can be treated as a small planar re ector. For a given viewpoint, it is possible to precompute the region of the scene space that will be visible in a given triangle and store it in an explosion map [OR98] (Fig. 2.25, le ). Re ected vertices can then query this information at runtime to determine onto which triangle they should reproject. Shading of the re ected surfaces can then be evaluated and blended with the underlying di use appearance of the re ector. Because the map of each re ector has to be updated when the user moves in the scene, the interactivity of the method is limited.

Reprojecting re ected objects

Maps can also be used to store geometric information of re ectors that can then be queried arbitrarily at runtime using hardware support for textures. For instance, if the re ector is entirely convex or concave, surface positions and normals can be stored in cube-maps. For a given re ected vertex, Estalella et al. [EMD + 05] determine a valid reprojection location on the re ector by searching in such maps. e validity of a re ection point is evaluated based on the property that for a valid specular path, the bisector of the view and re ected directions coincides with the surface normal. Furthermore, when they do not coincide, following the error direction is guaranteed to lower the error at the next iteration (Fig. 2.25, right).

Specular path perturbation theory has been used to solve a similar task in real time [START_REF] Chen | Perturbation methods for interactive specular re ections[END_REF]. For a given scene setup a set of re ection rays between di erent objects are precomputed and stored in a fast query structure. When objects are moving in the scene, nearby rays can be fetched and perturbed based on the novel object vertices location. e geometry is then projected at the updated location on the re ector.

Roger et al. [START_REF] Roger | Accurate specular re ections in real-time[END_REF] also rely on Fermat's principle to reproject geometry in a similar fashion (Fig. 2.26). For a given vertex to be projected, they minimize the total optical path length by nding zeros of its gradient using the iterative secant method. ree sample points are picked on the re ector, at each one the gradient of the path length is computed and interpolated over the triangle. e location with the smallest gradient norm is found and replaces the sample with the largest gradient norm, and the process can be iterated until the desired accuracy. In practice, the evaluation of the optical length gradient can be complex for general surfaces; the re ector is thus assumed to be star-shaped to limit the number of parameters for the optical path length gradient that can be tabulated.

For reprojection of re ected vertices the main limitation is thus the complexity of the re ector surface; most techniques described above are limited to very speci c types of objects. Furthermore, the need to handle a copy of each re ected object for each re ector leads to a combinatorial explosion for large scenes.

Finding re ected points in the scene

Determining the re ected point(s) that contribute to a re ection might seem like a simpler way to tackle specular e ects generation. But re ected objects can be located arbitrarily far from the re ector in the scene, meaning that there is no locality to re ection contribution queries. While this is not an issue for ray tracing based approaches [START_REF] Whi | An improved illumination model for shaded display[END_REF] and recent hardware support has brought new options for real-time specular e ects, the most commonly used rasterization pipelines struggle with the lack of locality. Many methods have been designed to counter these constraints; we review the methods closely related to our work and refer the reader to a more detailed review [SKUP + 09] for additional techniques.

Environment maps and light probes. To avoid querying the geometric scene representation and having to shade re ected points, an extremely simpli ed image-based representation of the scene can be used. An environment map is a 360-degree panorama of the scene that captures incoming radiance from any direction at a speci c location in the scene. ey can be precomputed o ine or updated on-the-y when the scene is modi ed. To estimate the radiance incoming from a given direction at a re ector point, the environment map can be queried very e ciently using hardware cube-maps or other parameterizations. Because they do not store any geometric information, environment maps are only valid at their initial location and lack parallax e ects that would be observed at other positions in the scene.

To alleviate this issue, a simpli ed representation of the scene can be used to correct the direction queried in the map. Brennan et al. [START_REF] Brennan | Accurate environment mapped re ections and refractions by adjusting for object distance[END_REF] rely on an analytic representation of the surrounding geometry -such as a box or cylinder -to apply proper parallax correction when fetching in the environment map. e re ected ray intersection with this proxy is computed analytically, and the direction from the environment map location to this intersection is used to query the incoming radiance. For additional accuracy, and to support large scenes with di erent lighting conditions, multiple environment maps or probes can be generated at di erent locations in the scene. For each re ector point the closest ones can be selected, queried and blended to estimate the incoming radiance [START_REF] Sébastien | Local image-based lighting with parallax-corrected cubemaps[END_REF]. is has strong links to the irradiance volume approach [GSHG98], even if lighting information is used there for di use irradiance and thus stored at a much lower resolution. More accurate re ection e ects can be obtained by storing a depth map along with the environment map [START_REF] Szirmay-Kalos | Approximate ray-tracing on the gpu with distance impostors[END_REF]. is is used for parallax correction by successively re ning the direction fetched in the probe. As shown on Fig. 2.27, when the environment map is queried in an initial direction d, the surface visible in this direction is used to approximate the scene geometry by a local plane. e ray from point x in direction d is intersected with this plane, and a new direction obtained as with the simpli ed analytic proxy approach. e process can be iterated for additional accuracy.

Far environment

Generated environment map layer faces

Self-reflections and close objects

Environment map Reference Parameterized environment map Parameterized environment maps [START_REF] Ziyad S Hakura | Parameterized environment maps[END_REF] are a set of environment maps used to generate re ections on a given object with self-re ections (Fig. 2.28). To simplify their generation, each map is inferred from a precomputed layered 2D image instead of a full panorama. Di erent localized environment maps are picked as the viewpoint rotates around the object. Each map contains two layers, each associated to an analytic proxy: one containing self-re ection and radiance information of close objects, and one containing the distant environment. Because each map is generated from a 2D rendering, an optimization is applied to ll-in regions of the background layer occluded by the close objects, or regions of any layer that was not visible in the re ected image.

Environment maps have been extensively used in research and production thanks to their scalability and hardware support, even though they require a lot of storage to cover large scenes and are costly to update in real-time. Inspired by their prevalence, existing e cient parameterizations and the possibility to store additional information such as depth along with the radiance, in chapter 5 we rely on panoramic probes to directly store precomputed specular information and reproject it at runtime on re ector surfaces, producing realistic re ections on mirror and glossy surfaces. We also introduce a novel adaptive parameterization that locally maximizes the information stored in the maps based on the visible material properties.

Raymarching and ray tracing. While recent GPU hardware is now starting to allow for ray tracing in real-time [START_REF] Wyman | Introduction to directx raytracing[END_REF], performance remains constrained for complex light paths such as glossy surface and multiple re ection bounces. Indeed rays cast following a glossy BRDF lobe can intersect any part of the scene, leading to low coherency when shading a pixel. Furthermore the shading at each intersection point has to be evaluated, introducing an extraneous evaluation cost which can be redundant for nearby re ector points. To alleviate this redundant work, [START_REF] An I Hirvonen | Accurate real-time specular re ections with radiance caching[END_REF] precompute environment maps as a G-bu er that can be shaded once per-frame at runtime, combined with ray tracing to nd the proper intersections in these maps for re ection rays.

On the contrary, image space gathering [START_REF] Robison | Image space gathering[END_REF] leverages this redundancy by only computing perfect mirror re ections for all re ective surfaces using real-time ray tracing. An image-space lter is then applied to create plausible glossy re ections. e image-space lter exploits the fact that rays required to evaluate a glossy BRDF at two nearby points are very similar (see Fig. 2.29). e BRDF lobe convolution can thus be approximated by an image-space blurring kernel based on the projection of the glossy lobe in the image plane.

To avoid relying on speci c hardware, a simpli ed scene representation can be used to answer intersection queries: voxel cone tracing [CNS + 11] builds a low-resolution volumetric representation of the scene that can be traversed to detect ray intersections and fetch back the associated stored radiance. is information can be used for perfect re ections and, through a volume mip-mapping scheme, for approximate glossy re ection When casting a ray from a surface for re ections, it is projected into the closest probes, performing ray-marching against stored depth (Fig. 2.30). Normal and discontinuities are taken into account to detect occlusions. Multiple nearby probes are explored until an intersection is found, the associated radiance is then fetched. Similarly to ray tracing, glossy re ections have a stark performance impact due to the lack of ray coherency, but the technique is supported on a larger range of hardware.

A G-bu er of the novel view can also be used as an approximate partial scene representation. Screen-space re ections [START_REF] Mcguire | E cient gpu screen-space ray tracing[END_REF] are generated by marching a ray against the visible scene depth bu er. When an intersection is detected, shading information can be fetched from an image bu er containing the part of the shading already evaluated for this frame, or the full shading from a previous -reprojected -frame. Disocclusions and motion have to be tracked and detected to avoid spurious re ection artifacts. Because only screen-space information is used, this technique only supports re ection of objects that are visible, but combines well with other existing techniques such as local environment maps.

Figure 2.30 -[MMNL17] store visible surface information in a set of probes on a regular grid (le ). When casting a ray, nearby probes are sampled along the ray to nd the surface intersection (center). is can be used to trace re ections (right).

Summary

In this chapter, we have shown that many image-based techniques exist for rendering of real and synthetic scenes. Di erent representations can be used depending on the type of acquisition or generation setup, from regular grid of 2D images to individual samples generated on the y with di erent capture densities. Reprojection of plenoptic data in the novel view is simpli ed when the input data is dense, as shown in Sec. 2.1.1. When input data is sparser, geometric scene representations can be leveraged to reproject data and generate the novel view (Sec. 2.1.2). We focus on this type of setup in the following chapters, as multi-view stereo techniques have matured and the capture process does not require speci c rigs or sensors. Mesh-based approaches are additionally well-ed to the classical real-time rendering pipeline.

Meshes and Blending. In chapter 3, we explore rendering of real-world facades from a small set of input images, improving the geometry by exploiting repetitions. Because view-dependent e ects are adversarial to most reconstruction techniques, in chapter 4, we detect problematic regions in street-level scenes and repair them, while using simpli ed surfaces to represent thin re ectors. In both cases, we leverage existing blending techniques, based on heuristics or learning (Sec. 2.1.3) depending on the type of scene and e ects. In chapter 5, we use additional material-aware sample selection heuristics when accumulating specular information. Furthermore, the use of image-based techniques to render complex e ects in synthetic scenes described in Sec. 2.1.4 inspired us to explore how precomputed data could be leveraged for rendering specular light paths in such scenes.

Re ections and Flow. Re ections and other view-dependent e ects are paramount to the perception of realistic environments. For real world scenes, specular e ects have to be extracted and warped to the novel view (Sec. 2.2.1). In chapter 3, we combine information from the sparse input views to detect facade elements exhibiting specular behavior. is information is then used to apply additional re ective e ects. We also build on existing layer separation techniques in chapter 4, where we separate the re ected and transmi ed components for rendering of car windows. In both real and synthetic scenes, specular e ects have complex motion behaviors that require special treatment depending on the geometric con guration of the scene, as shown in Sec. 2.2.2. Inspired by existing work, we describe a novel ow computation approach for real world urban scenes with prede ned types of re ectors in chapter 4. By using analytical surfaces we are able to solve for the ow of re ections in real-time. In chapter 5, we apply the specular path perturbation framework (Sec. 2.2.2) on general meshes to gather synthetic specular information from a set of precomputed panoramic views and generate high-quality mirror and glossy materials. Because of their indirect nature, specularities o en have to be generated from scratch in synthetic scenes. But computing exact light paths on the y is still too expensive for most current hardware. Simpli ed scene representations, such as environment maps with proxy geometry or depth maps (Sec. 2.2.3) can be used for approximate specular e ects. Inspired by the prevalence and convenience of environment maps, in chapter 5 we store specular information in multiple panoramic views placed in the scene, along with enough geometry information to reproject specular data in the novel view in real-time. We also build on screen-space techniques to provide an accurate rendering of glossy surfaces.

C h a p t e r 3

Repetitions for Image-Based Rendering of Facades 

Introduction

We focus on real world data in this chapter, and more speci cally the rendering of building facades. City-wide street level captures are now widely available (e.g., Google Streetview, Microso Bing StreetSide), but are acquired with a very sparse baseline. As discussed in chapter 2, capture density is central in this context and such low densities hinder all components of image-based rendering: camera calibration, geometric reconstruction, and input image reprojection and blending for rendering, especially with view-dependent e ects. Recent IBR algorithms that rely on geometric scene representations (Sec. 2.1.2) allow high-quality free-viewpoint navigation of cityscapes, but still require a relatively high capture density -typically a high-resolution image every meter or so. In this chapter we propose a solution for IBR from a sparse street-level capture by leveraging the repetitive nature of facades. e key idea in our work is to extract an idealized or platonic object corresponding to a given repetitive element, and use its multiple instances present in the facade to perform data augmentation allowing us to perform high-quality free-viewpoint IBR from sparse input. In particular, we focus on repetitive windows, which exhibit rich geometric and photometric details.

E 1 E 2 E 3 C 1 C 2 (a) Input scene (b) Platonic scene C 1,3 * C 1,2 * C 1,1 * C 2,3 * C 2,2 * C 2,1 * E * Figure 3.2 -A
small number of views of similar -but physically distinct -elements E i can be seen as a larger number of views of a unique element E * if we align them into a common coordinate system.

We start with a small number of views of a given facade (3-4 street-level pictures), and approximate cameras calibrated using Structure-from-Motion (SfM). We then semiautomatically extract cropped instances of the repetitive windows, which we call subviews.

Our idea is to consider that all these subviews represent the same platonic window, as illustrated in Fig. 3.2. We use 3D information in all subviews during Structure-from-Motion to provide ner camera calibration in the common space, while running multiview stereo in this space gives us a dense, albeit noisy 3D mesh of the platonic window. We re ne this mesh by decomposing it into planar polygonal regions aligned with image edges, which typically correspond to the window panels, frames and surrounding bricks.

While the multiple subviews provided by similar instances improve 3D reconstruction, they include color variations that are view-dependent -such as re ections on glass panels -and instance dependent -such as di erent color or shape of blinds -, which produce severe popping artifacts if used directly in IBR. We extract view-dependent variations by analyzing each instance separately, e ectively removing re ections from the pictures. Aggregating the resulting re ection layers over all instances gives us a unique re ection mask for the platonic element, which we use to composite environment re ections during rendering. We treat instance-dependent variations by re-projecting each subview of an instance into the subviews of all other instances, only mixing information between di erent instances in the presence of occlusions.

In summary, we describe in this chapter the idea of exploiting repetitions to augment visual data in the context of image-based rendering of facades, and show how this augmentation improves camera calibration, 3D reconstruction, and re ection segmentation.

Our contributions are the following:

• A camera calibration process in platonic space that improve the accuracy of the estimated poses. • A geometric re nement that leverages information from the multiple instances and additional geometric priors. • A data augmentation approach to extract view-dependent e ects and locate reections while ensuring consistent rendering of the platonic elements in the nal scene.

ese elements combined allow us to greatly improve visual quality for IBR of facades captured with a small number of pictures.

Related Work

In this section, we discuss aspects of previous work that are more speci cally relevant to the research in this chapter, notably related to image-based rendering in a sparse context using scene geometry (Sec. 2.1.2), the extraction and rendering of view-dependent e ects in real world scenes (Sec. 2.2.1) and the use of repetitions in computer graphics.

Image-Based Rendering. As presented in chapter 2, image-based rendering algorithms can synthesize novel views by interpolating between photographs of a real scene. When the acquisition density is very high -for instance in the Light eld [START_REF] Levoy | Light eld rendering[END_REF] and Lumigraph [START_REF] Steven J Gortler | e lumigraph[END_REF] methods -this resampling process can be performed directly (Sec. 2.1.1). When the input images are sparser, additional information such as a 3D mesh of the scene can improve image interpolation (Sec.2.1.2). However, the baseline of the input images still needs to be small enough to obtain good angular resolution, and avoid ghosting and other rendering artifacts. Wide baselines also hinder automatic 3D reconstruction of the mesh, which is particularly problematic along object silhoue es where foreground and background should not be mixed. Recent methods address this la er challenge by generating per-view geometric information [CDSHD13, HRDB16] that be er capture occlusions and silhoue es (Sec.2.1.2). In contrast, we exploit repetitions present in facades to arti cially augment the number of input views, which bene ts both the 3D reconstruction and image reprojection steps of Image-Based Rendering.

View-dependent E ects. While dense IBR representations like light elds naturally handle view-dependent e ects, wide-baseline methods based on 3D meshes o en produce strong popping in the presence of re ections. Proper handling of such e ects requires speci c multi-layer representations (Sec. 2.2.1) where the re ected layer lies at a di erent depth than the re ective surface [SKG + 12, KLS + 13]. While we extract re ection layers from our input images, we cannot recover the depth of the re ected objects because they are rarely visible in multiple images due to our wide baseline. Instead, we combine the information provided by the re ection layers of all instances of a repetitive window to estimate a re ection mask for that window, which we use to render plausible re ections using image-based lighting.

Repetitions. e presence of repetitions in images has been exploited for numerous applications in Computer Graphics. In particular, several methods build on the idea that di erent instances of a repetitive element can be seen as multiple views of the same platonic element. For example, Xu et al. [XWL + 08] take a single picture of a ock of animals to generate an animation of that animal, e ectively turning spatial repetition into temporal information. Ai ala et al. [AWL + 15] use repetitions in a ash picture of a material sample to extract patches of the material under di erent lighting conditions, recovering rich angular information for SVBRDF acquisition. Dekel et al. [START_REF] Dekel | Revealing and modifying non-local variations in a single image[END_REF] extract local di erences between similar patches to a enuate or accentuate small variations in an image. Closer to our context is the work of Alhalawani et al. [START_REF] Alhalawani | Interactive facades analysis and synthesis of semi-regular facades[END_REF], who rely on user interaction to detect window-speci c details, such as blinds and shu ers. Since these details are present in di erent states in the various instances, they can be sorted and animated. We follow a similar strategy as the above approaches by turning spatial repetition into angular information, although we target the di erent application domain of image-based rendering.

Our approach is also inspired by 3D reconstruction methods for urban scenes. In particular, we build on the work by Wu et al. [START_REF] Wu | Repetitionbased dense single-view reconstruction[END_REF], who detect repetitive facade elements inside a single image to estimate a depth map, and on the work by Xiao et al. [XFT + 08], who regularize noisy depth maps by decomposing facades into rectangular regions with constant depth. We combine and extend these two ideas to reconstruct a detailed 3D mesh from multiple images of a repetitive element. Our use of repetitions for 3D reconstruction is also related to the work of Zheng et al. [ZSW + 10] and Demir et al. [START_REF] Demir | Procedural editing of 3d building point clouds[END_REF], who aggregate information from repetitive pieces of a 3D point clouds to consolidate it. Heinly et al. [START_REF] Heinly | Correcting for duplicate scene structure in sparse 3d reconstruction[END_REF] also use repetitions to improve camera calibration by detecting con icting observations between viewpoints.

Detecting repetitions can also be a step towards inference of procedural rules from an existing building. Some methods extract repetitions and variations from a single fronto-parallel image of a facade, as a set of tiles and rules [MRM + 10, DRSVG13]. New facade images can then be generated by following these procedural rules and mixing the di erent tiles. Starting from a single planar facade image, Muller et al. [START_REF] Müller | Image-based procedural modeling of facades[END_REF] factorize irreducible architectural elements.

ese tiles are matched to a bank of 3D models (windows, doors, etc) that are inserted in the facade plane and textured. e goal of our method is similar, but does not rely on external 3D models.

Given a set of input images and 3D model of a building, Aliaga et al. [START_REF] Daniel G Aliaga | Style grammars for interactive visualization of architecture[END_REF] propose a user-assisted method to construct a procedural model of the building. e procedural grammar enables semantic edits, such as adding new oors, while the input images enable view-dependent texture mapping of each facade element. Jiang et al. [START_REF] Jiang | Symmetric architecture modeling with a single image[END_REF] a ain similar results using a unique input image and user-drawn strokes, estimating the camera pose using the scene symmetries. Zhao et al. [START_REF] Zhao | Per-pixel translational symmetry detection, optimization, and segmentation[END_REF] also exploit repetitions to segment window elements on a facade. Jiang et al. [START_REF] Jiang | Multi-view repetitive structure detection[END_REF] extract la ice structures from repetitive facades and improve an image-based modeling process. In contrast, we focus on the components required for high-quality image based rendering of facade elements -camera calibration, geometric reconstruction, and image interpolation -rather than their use within a procedural modeling context. is remains an interesting avenue for future extensions of our work. From the input images, we rst segment and select repetitive windows, followed by camera calibration of these subviews by a modi ed SfM algorithm. In the second step, we use the calibrated subviews to reconstruct a platonic mesh of the window using multi-view stereo, and subsequently re ne it to obtain a piece-wise planar geometry. In the third step we extract re ections from each subview and deduce a re ection mask of the window. We additionally generate images of all instances of the window from all available viewpoints. We nally re-insert the platonic geometry and images of each instance into the complete facade for improved image-based rendering.

Overview

with a consumer camera, using xed exposure.

We rst automatically detect windows in the facade using a deep classi cation network, and ask the user to select the windows that are visually similar. We crop the input images around each such instance to obtain a set of images that all represent the same platonic window, under di erent viewpoints. We will refer to these crops as subviews.

Due to the wide baseline of the input images, existing structure-from-motion methods only produce an approximate calibration of the input cameras. We use this information to compute an initial guess of the camera of each subview in a common platonic space, which we update by running a structure-from-motion algorithm on all subviews. e initial guess allows us to reject erroneous correspondences that may occur when a subview not only shows its central window, but also part of its neighboring windows. is ltering process allows us to improve "platonic" camera calibration for each of the subviews.

A er platonic camera calibration, we run a multi-view-stereo algorithm to reconstruct a 3D mesh of the platonic element. All subviews represent a similar window, but they o en contain instance-speci c details that disturb generic reconstruction algorithms, resulting in noisy surfaces. We regularize this geometry to obtain a piece-wise planar mesh composed of polygonal regions aligned with the dominant lines of the window. e 3D mesh we obtain allows us to re-project any subview into any other one. We use this feature to extract view-dependent variations between subviews of the same instance, and to generate images of each instance as seen from the cameras of all subviews. While the re ections extracted from a single instance may be sparse, combining the information provided by all instances allows us to estimate a re ection mask that indicates the re ective areas of the platonic window.

Given these preprocessing steps, we create a complete scene representation by inserting the 3D mesh of the platonic window at the location of each of its instances over the facade mesh. We composite each view of a given instance to be consistent with the corresponding view of the entire facade, generating an enriched set of subviews by combining views and instances via reprojection. We use the resulting mesh and images in an image-based rendering algorithm, which we enhance with image-based re ections using our re ection mask. An additional use of our method output data is the generation of a multi-view textured mesh.

Terminology.

In what follows, the term input scene refers to the original 3-4 photos of the entire facade, along with calibrated cameras and a coarse 3D mesh computed using multi-view stereo. e platonic scene refers to the scene containing the calibrated cameras and reconstructed geometry of the platonic element, computed from multiple subviews of that element. All elements of the platonic scene are denoted with a superscript * . We denote the initial images as V i , and the input physical instances of the repetitive element as E j . e cropped subviews V i,j use a double-index notation, indicating the input view i they were extracted from, and the physical instance j they contain. e associated cameras in the common platonic space are denoted C * i,j and the platonic model itself E * . We illustrate these quantities in Fig. 3.4.

(a) Input Scene (b) Platonic Scene V i C i E j V i,j C i,j E * * Figure 3
.4 -From given input views V i of a facade and their associated cameras C i (a), we extract subviews V i,j of similar windows E j . From these, we can reconstruct a 3D model of the platonic element E * along with platonic cameras C * i,j (b) in a common space.

Windows Extraction and Platonic Camera Calibration

e rst step of our method consists in cropping repetitive windows in the facade to form a multi-view dataset of the corresponding platonic window. Calibrating the cameras of each crop within a common space then enables 3D reconstruction of the window with higher accuracy than using solely the input images. We then expand these boxes to include the surroundings of each window and project them back into the image (f). We ask users to select the boxes corresponding to a group of similar windows (g).

Window extraction

We identify the repetitive windows in a semi-automatic manner, where we automatically detect candidate windows and let the user select the ones that should be considered similar (Fig. 3.5).

We generate the candidate windows by running the recti ed images through a deep classi cation network. We use a U-Net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], trained on the CMP Facade Database [START_REF] Šára | Spatial pa ern templates for recognition of objects with regular structure[END_REF], containing 600 recti ed images of facades with ground truth labels of architectural elements. We only predict two labels -windows and background. We obtain the recti ed facade using the vanishing point method by Wu et al. [START_REF] Wu | Detecting large repetitive structures with salient boundaries[END_REF]. We then process the classi cation to extract its connected components, which should correspond to individual windows. We compute the bounding box of each component and scale it by a factor of 1.75 to include its surroundings, and re-project these boxes into the input image to be shown to the user.

is user interaction is very easy, and only takes a few seconds per dataset. Automating this process should be possible but would require similarity metrics robust to di erences between instances of the same window while being sensitive to di erences between di erent windows, e.g., top parts of the rst and second row of windows in Fig. 3.5. We leave the exploration of robust similarity detection, for instance based on deep features, to future work.

Platonic Camera Calibration

We now have a list of cropped subviews, each representing an instance of the platonic window seen from a di erent viewpoint. However, our automatic crops sometimes contain parts of neighboring windows on their sides, as shown in Fig. 3.6a.

ese duplicates challenge structure-from-motion algorithms since points on the central window in one subview may be matched to points in the side window in another subview.

We lter out such erroneous matches by deriving an approximate camera for each subview, which we compute from the known position and size of the corresponding crop in the input image, as well as from the camera pose of that image. is computation also requires knowledge of the facade geometry in order to position the approximate cameras such that they all point to the same element in platonic space. We approximate this geometry as a plane, t to the point cloud of the facade, computed by running multi-view-stereo reconstruction on the input images (Fig. 3.7). In most cases, a RANSAC t is su cient; when this fails we ask the user to specify the plane by selecting three points on the point cloud.

Given these cameras, we modify an SfM algorithm [MMMO] to reject matches for which Figure 3.8 -Camera calibration using a standard approach (le ), and the result with our approach (right). Note how in the standard approach, the rightmost camera does not see the window, and that three cameras are incorrectly co-located.

Geometry Reconstruction

We rst describe how to reconstruct a 3D mesh of the platonic window, before explaining how we repeat it over the entire facade.

Platonic Window

e platonic cameras estimated by our modi ed SfM algorithm can now be used for dense 3D reconstruction of the platonic window. However, we found that generic multiview stereo algorithms [Rea18] tend to produce noisy 3D point clouds on such input, possibly due to the per-instance and per-view variations present in the cropped subviews. Inspired by prior work on image-based facade modeling [XFT + 08], we re ne this noisy reconstruction by decomposing it into at polygonal regions parallel to the facade, and aligned with image edges.

Our re nement method operates in the subview for which the view direction is the most orthogonal to the facade plane. We segment this subview into convex polygons aligned with image edges using the recent algorithm of Bauchet and Lafarge [START_REF] Bauchet | KIPPI: KInetic Polygonal Partitioning of Images[END_REF], as shown in Fig. 3.9. In a nutshell, this algorithm detects small line segments in the image and extends them until they intersect other segments to form closed regions.

We then formulate an optimization that displaces each region along the facade normal. Our formulation combines a data term, which seeks to keep the region close to the noisy where W = n∈N (r) e -cr-cn 2 is a normalization factor and λ balances the two terms.

We set λ = 15 in all our experiments.

Given the small number of regions, we solve this optimization problem using a simple mean eld algorithm [START_REF] Zerubia | Mean eld annealing using compound gauss-markov random elds for edge detection and image estimation[END_REF], where we iteratively update the displacement of each region to minimize Eq. 3.1 given the displacement of its neighbors. At each iteration, we try to assign to a given region all displacements of its neighbors, as well as a regular sampling of the depth interval of the noisy reconstruction with respect to the facade plane. We initialize this optimization by se ing d r = d ref .

At the end of the optimization, we connect the displaced polygons by additional faces to handle depth discontinuities between neighbors. subviews. e best result is achieved with the la er option, where our re nement removes bumps and captures well the at parts of the window and wall.

Complete Facade

Given the reconstructed geometry of the platonic window, we generate a mesh for the entire facade by replicating the platonic mesh on the facade plane at the positions of all window instances. However, since the facade plane and the platonic mesh have been generated by separate executions of the structure-from-motion algorithm, they are not in the same coordinate system and do not have the same scale. We deduce the 3D rigid transformations from the platonic scene back to the input scene by matching the platonic cameras with the cropped cameras previously estimated in Sec. 3.4.2, as illustrated in Fig. 3.11. For each match we compute a candidate transformation and make it independent from the instance position. We average all match transformations to obtain the nal one. We provide the detailed computation of this transformation in Appendix A.

While the above process results in an improved 3D mesh of the facade (see Fig. 3.12), it is not perfectly aligned with the input images due to the numerous geometric trans- Figure 3.12 -Visualization of the generated facade mesh (center) from the camera of an input view (le ). We overlay the input image onto the mesh view to assess alignment. Another viewpoint of the same mesh (right).

formations involved and to the approximate calibration of the input cameras. Such misalignments produce signi cant ghosting if the original images are used along the re ned mesh in an image-based rendering algorithm, as shown in Fig. 3.13. We next describe how to improve rendering quality by leveraging the more precisely calibrated subviews of the windows. We use these subview cameras, placed back into the input scene, along with the approximate input cameras for the nal rendering. e subviews also provide complementary information gathered from di erent instances of the window, allowing us to be er handle re ections than when using only the input images.

Figure 3.13 -Misalignments introduce ghosting when performing image-based rendering using the original images and the re ned mesh.

Data Factorization and Augmentation

While the cropped subviews all represent the same platonic element, they each contain view-dependent and instance-dependent variations which would yield signi cant popping artifacts if used directly for image-based rendering. We treat these two sources of variations separately, as view-dependent variations mainly correspond to re ections over the window panels, while instance-dependent variations correspond to changes of shape or color of the window frame.

View-Dependent Variations

Each instance of a window is seen in several of our input images. While window frames are mostly di use, the panels are typically re ective and exhibit strong variations between these input views. However, the input camera baseline is o en too wide to observe any overlap in re ections, which prevents them from being rendered with existing solutions based on 3D reconstruction of the re ected scene [KLS + 13]. Instead, we propose to remove these view-dependent variations to later replace them by plausible re ections from an environment map.

Re ection Separation. Given all the subviews V •,j of a given instance, we remove the re ections in each subview by reprojecting all other subviews onto it, and computing the median gradient of the resulting image stack. We use the 3D mesh computed in Sec. 3.5 to perform this reprojection. As observed by Weiss in the context of shadow removal [START_REF] Weiss | Deriving intrinsic images from image sequences[END_REF], the median gradient preserves the visual content shared by the aligned images, while it discards content that only appears in one of the images. Integrating the resulting gradient elds gives images where most re ections have been removed, as shown in Fig. 3.14. We refer to these images as di use layers, and to the removed information as view-dependent layers.

In practice, we only perform re ection separation for pixels identi ed as windows by the deep classi cation network (Sec. 3.4.1), since those are the most likely to be re ective.

We noticed that median ltering is also e ective at removing occluders present in one of the input images (trees, sign posts). Assuming that these occluders have a very di erent color than the scene they occlude, we also run the above process on pixels that exhibit a high variance in hue over the images. We rst reproject all view-dependent layers into the subview from which the polygonal segmentation has been computed (Sec. 3.5). We then count the number of pixels in each region for which the reprojected layers have non-zero intensities, and we compute the sum of all such pixel intensities. We estimate the average value and variance of these quantities over all regions. We consider that a region is in the re ection mask if both values di er by more than 0.25 standard deviation from their average over all regions. Intuitively, this approach selects regions that are well covered by intense viewdependent e ects. e resulting re ection mask (shown in Fig. 3.14) is then reprojected to all subviews. e entire view-dependent variations extraction process is illustrated in Fig. 3.15. Re ected Environment. e re ections present in the input images are too sparse to be used directly for rendering, but they provide some information about the environment surrounding the facade, see Fig. 3.16. In particular, we use the extracted re ections to construct an incomplete environment map, which we use to manually select a similar environment map from a light probe library [START_REF] Xiao | Recognizing scene viewpoint using panoramic place representation[END_REF].
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Instance-Dependent Variations

e key idea behind our approach is to consider that a few views of di erent instances of a window can be seen as multiple views of a single platonic window. While we have shown the potential of this idea to generate a precise platonic mesh and re ection mask, using all subviews V i,j to render a single window yields severe popping of visual content Figure 3.16 -Input images (le ) and the resulting environment map a er reprojection of the extracted re ections (center, zoom as inset). We use this incomplete environment map to select a similar one from a light probe dataset (right). speci c to each instance. For instance, the window blinds may change height or color over di erent instances, producing distracting animations as we rotate around the window. Each instance thus only has a subset of coherent subviews, which correspond to the crops of that instance in the original images.

Our solution consists in augmenting the coherent set of each instance by reprojecting the available subviews into their closest missing subviews. Since we only have a few available subviews per instance, parts of the window may be occluded in other subviews. We ll in these parts using content from another instance for which this particular subview is available. We introduce additional notation to indicate the target instance k: V k i,j . When the physical instance j is equal to the target instance k, all pixels are covered in the sub-view, see Fig. 3.17. When the target instance k = j some pixels need to be reprojected from other views to complete the cropped image. Fig. 3.17 illustrates the resulting data augmentation on two window instances, each seen in three subviews, yielding six coherent subviews for each instance. Note that this overall process is similar in spirit to the re-projection performed at runtime by the image-based rendering algorithm to generate novel virtual views. However, augmenting the subviews in an o ine preprocess allows us to employ a costly gradient-domain fusion [START_REF] Pérez | Poisson image editing[END_REF] when combining parts from di erent instances at occlusions. e color coding in Fig. 3.17 indicates the source of the pixels in each subview: colored V k i,j with outlined subviews are cases where target and physical instance are the same, while those in black include reprojection. Note that the colored pixels in the reprojected views correspond to the source instance used; in the general case these can come from several instances. e e ect of this augmentation is shown in Fig. 3.18.

E 1 E 2 Masks ... ... V 1 1,1 V 1 3,1 V 1 2,1 V 1 1,2 V 1 3,2 V 1 2,2 V 2 1,1 V 2 3,1 V 2 2,1 V 2 1,2 V 2 3,2 V 2 2,2 ... ... ... Figure 3
.17 -Each instance E i of a window is only seen in a subset of subviews (images with colored border). We augment this coherent subset by re-projecting the available subviews in other viewpoints, and ll-in occlusions and missing parts using the corresponding subviews from another instance (colored areas in images with black border). We also re-project the re ection mask in all subviews.

Complete Facade

We now need to create a complete model of the facade, requiring us to make the windowscale subviews compatible with the facade-scale input images. e main challenge we face at this stage is that the facade-scale images are not perfectly aligned with the subviews and re ned 3D mesh, which results in visible seams if the two sets of images are combined naively during image-based rendering (see Fig. 3.19a). For each subview, our solution is to project the closest input views into it, and stitch the two images such that the subview is kept over the window, while the input image is used over the surrounding walls. We apply Digital Photomontage [ADA + 04a] to achieve a seamless composite, using the blurred is approach also helps with color di erences between the subviews and the facade due to exposure variations in the scene. As a result, subviews are seamlessly composited and we can place the instances at di erent locations on the facade, creating a novel facade (see Fig. 3.20).

Implementation and results

e nal augmented dataset contains the matrix of augmented views, V k i,j , the corresponding cameras C * i,j and the augmented geometry. In addition, we have the selected environment map that will be used for synthesizing re ections.

Rendering

We render the scene using an extension of the Unstructured Lumigraph Rendering (ULR) method [BBM + 01], that computes blending weights between input images for each pixel of the desired output. Our expanded set of cameras C * and images V k ij augment the image data available for the regions in the windows. In the remaining areas of the facade plane, it is equivalent to a ULR render using solely the three input images. In the regions of the platonic elements, only the platonic cameras are used, to avoid any ghosting caused by the unprocessed input images.

To restore plausible view-dependent e ects that are important to the perceived accuracy and realism of the scene, we overlay a re ection layer over the output image, using the environment map previously selected. For each pixel lying in one of the areas delimited by the re ection masks (Sec. 3.6.1), we re ect the view-to-point vector with respect to the facade plane normal and use the resulting direction to query the environment map. e resulting color is additively blended with the underlying di use color.

Implementation

We implemented our method in our custom C++/OpenGL framework. For the individual components we used the implementation of [START_REF] Wu | Repetitionbased dense single-view reconstruction[END_REF] to rectify input images, and a Tensor ow implementation of the U-net for window segmentation. e entire preprocessing pipeline requires between 10 and 30 minutes for all our scenes; camera calibration and reconstruction requires less than 5 minutes both for input and platonic scenes. All timings are reported on an Intel Xeon 12 core 2.6GHz machine with 32Gb of memory. Rendering is real-time.

Results

We validate our results on ve scenes, two with facades from London (3 input images each, from Ceylan et al. [START_REF] Ceylan | Coupled structure-from-motion and 3d symmetry detection for urban facades[END_REF]) and three from Paris (3 input images for Paris1 and 4 for the others). Scenes are processed as described in the previous sections. Scenes Paris2 and Paris3 required manual de nition of the plane. In Fig. 3.22, for each scene we show the input augmented geometry and compare our result to the baseline result rendered with ULR rendering on the MVS reconstruction using the input images. e resulting improvement in quality is more clearly visible in videos, visible on the project web page1 . Our contributions could also bene t rendering algorithms based on a di use textured mesh. In particular, the re ned mesh yields be er alignment of the re-projected images, which bene t multi-view texturing. We present a comparison between textured meshes generated from our data and our image-based rendering approach in Fig. 3.21. Additional comparisons, illustrating the relative advantages of each part of our method can also be found in the videos on the project page. As shown in Fig. 3.20, a novel facade can be generated from an existing scene by swapping window instances.

Figure 3.21 -Multi-view texturing in this gure was performed using the texturing module of RealityCapture [Rea18]. From le to right: textured mesh reconstructed using the 3 input views, our re ned mesh textured using the 3 input views, our re ned mesh textured with all our generated subviews, and our IBR solution for the same view. 

Conclusion

Limitations. We currently rely on user intervention for subview selection. A clustering algorithm with a speci c similarity metric that allows for minor di erences between instances of a group could be used. Our algorithm is sensitive to the precision of the original calibration and reconstruction of the input images. In some cases, even though the MVS reconstruction fails completely we are able to produce a usable result, albeit with some artifacts (Fig. 3.23). Improved resolution street-side captures (e.g., [START_REF] Etherington | Google's street view cameras get a high-res update focused on ai[END_REF]) should provide su cient quality that will allow our approach to be used. Eliminating the manual steps of subview selection and plane extraction (when needed) would allow the approach to be used at a much larger scale.

Future Work. In future work, it would be interesting to generalize our approach to sub-blocks of a given platonic element, e.g., a pediment shared by a door and a window. Such a generalization would allow our method to treat elements that are not necessarily repetitive, e.g., a door that shares su cient sub-elements with repetitive windows. is would also allow our approach to treat elements other than windows. Another interesting avenue of future work would be the usage of our approach as a component for procedural modeling and generation. Our augmented subviews could be used as part of a procedural modeling system, allowing the generation of di erent combinations of the di erent instances. Such a method would need to include a way to generate the rest of the facade in a procedural manner, while being consistent with the requirements of IBR.

Summary. In this chapter, we have presented a novel approach to facade reconstruction by leveraging repetitions. We aggregate information from multiple instances in platonic space, performing improved camera calibration and geometry reconstruction. ese are used to extract additional scene information, ensuring visual consistency between viewpoints and locating view-dependent e ects. At runtime the scene is rendered using image-based rendering and the specular masks can be leveraged to synthesize novel plausible re ections. We also made two observations that motivated the work described in the next chapter. Firstly, the use of semantic information to detect and correct speci c artifacts and IBR limitations could be extended to other elements in di erent contexts. Secondly, the user perception of a scene is greatly enhanced when re ective e ects are properly rendered, i.e. using the proper color information and warping motion ow.

In the next chapter we will describe how we leverage semantic information to detect cars and car windows in urban scenes, allowing us to extract these elements that are notoriously hard to reconstruct and render. Semantic information also helps us to synthesize re ection layers from the input views. anks to an analytical approximation of semi-transparent re ectors, we compute on-the-y a re ection ow to reproject these layers, generating plausible re ection motions.

C h a p t e r 4

Image-Based Rendering of Cars with an Approximate Re ection Flow 

Introduction

In this chapter, we continue to explore free-viewpoint navigation at interactive rates in cityscapes. While such scenes can be created synthetically with varying degree of realism, image-based rendering techniques provide an interesting alternative. As described in previous chapters, real world streets can be captured using cameras and the geometry reconstructed, allowing input image information to be reprojected to generate novel views. Yet urban scenes are complex, exhibiting di erent types of objects with extremely diverse materials and view-dependent behaviors. Even if the capture density is relatively dense, complex specular e ects are hard to synthesize in novel views.

Among them, car and car window rendering are arguably two of the main obstacles for using IBR for free-viewpoint street navigation. Existing solutions have di culty with the poor reconstruction of shiny car bodies and the depth estimation ambiguity of re ections moving across curved semi-transparent windows. In this chapter, we provide a rst plausible solution, by improving the overall rendered appearance of car bodies thanks to our estimation of smooth and lled car geometry, the believable motion of re ections on car windows and our synthesized re ection layers. We target a lightweight capture process with a single commodity camera (e.g., a GoPro), typically in a "streetside" fashion. In this context, recent IBR methods build on e cient Multi-View Stereo (MVS) algorithms [START_REF] Lutz Schönberger | Pixelwise view selection for unstructured multi-view stereo[END_REF]Rea18], that produce acceptable quality geometry for nonre ective/transmissive surfaces. e reconstructed geometry is used to reproject input images [BBM + 01, HPP + 18] in the novel view, allowing interactive, high-quality free viewpoint navigation in these cases.

However, for re ective car bodies these MVS algorithms produce inaccurate geometry due to strongly view-dependent and texture-less appearance, and window surfaces are most o en missing. Most IBR algorithms (e.g., [CDSHD13, HPP + 18]) are not designed to handle the ow of re ections on a window which is di erent from that of the interior or background visible through that window. Previous speci c solutions for IBR with re ections (Sec. 2.2.1) have di culty with curved surfaces of car windows, and with the novel views we target that are quite far from the input views, but quite common for street-level navigation.

We chose to take inspiration from our previous work and propose an approach where elements such as cars are detected and extracted from the scene using semantic segmentation as an input, their geometry corrected and additional re ector surfaces approximated. We use these surfaces to extract specular information from the input data, and reproject it at runtime using an approximate re ection ow. We present in this chapter three main contributions, providing a fully automatic solution for IBR of cars with view-dependent e ects:

• A new algorithm to provide a complete and smooth car body reconstruction suitable for rendering in a casual capture context, as well as initial window surfaces.

• A re ection ow approximation for plausible interactive re ection rendering and an automatic ellipsoid ing algorithm that uses the initial window surfaces.

• A re ection and background layer synthesis method building on our re ection ow.

Our solution allows interactive rendering of plausible motion of re ections in car windows, and diminishes visual artifacts due to missing and incorrect car geometry. is plausible motion greatly improves perceived visual quality compared to previous methods (Fig. 4.10, 4.11) especially when moving around the scene.

Related Work

In chapter 2, we reviewed previous work in image-based rendering of scenes with complex geometry (Sec. 2.1.2) and the rendering of view-dependent e ects in that context (Sec. 2.1.3, Sec. 2.2.2). We also covered the extraction and reconstruction of specular information from real world data (Sec. 2.2.1). In this section we discuss some aspects of previous work that are speci c to the work described in this chapter. We also review techniques that leverage semantic information for 3D reconstruction.

Image-based rendering. As already described in chapter 2, modern Image-based rendering techniques frequently rely on multi-view stereo reconstruction (Sec. 2.1.2), but su er from their limitations. Despite recent progress, these methods still have di culty with scene coverage and are not designed to handle highly re ective surface nor the depth ambiguity of transparency. Recent unstructured methods alleviate reliance on global geometry by combining re ned view-dependent meshes with learning to improve blending [HPP + 18]. We build on such ideas, and introduce a solution for semi-transparent, re ective surfaces (e.g., car windows) that were previously problematic.

Speci c techniques exist for scenes with re ective and transparent surfaces as described in Sec. 2.2.1. ese approaches are restricted to planar re ectors and limited motion, and are unsuitable in our context of curved windows. Volumetric approaches such as So 3D (Sec. 2.1.2) allow multiple surfaces to be present at a given pixel; however, artifacts can appear in non-transparent regions, especially far from the input cameras poses. In contrast, we provide a larger space for free-viewpoint navigation, thanks to our approximate re ection rendering and layer synthesis. Nonetheless, these methods present many exciting ideas on using the power of deep learning to improve IBR, and we consider these very promising avenues for future work.

Recent work on

Layering, Reconstruction, Rendering of Semi-Transparent and Re ective Objects. Layer separation methods described in the literature (Sec. 2.2.1) require a suciently accurate initial ow estimate to be successful; in our context of uncertain input data, we opt to synthesize plausible re ection layers instead. Nonetheless, our synthesis method is inspired by the work of [START_REF] Szeliski | Layer extraction from multiple images containing re ections and transparency[END_REF], and their idea of min-composite.

Several methods address the challenge of reconstructing transparent and re ective objects, but typically require the use of custom acquisition devices [WGL + 18, WZQ + 18, GHLB15]. Volumetric approaches can also be found in the literature [IKL + 10] to handle the multiple depths per pixel present in images of non-opaque objects. ese o en focus on speci c object categories, or involve complex acquisition hardware setups [IKL + 08]. We focus on a casual capture setup, using a single consumer-level camera.

Numerous methods for the rendering of re ections in real-time have been described for synthetic scenes (Sec. 2.2.3). Our IBR context is di erent, since we do not have access to the full geometry, but our analytical surface approximation to curved windows allows us to build on such approaches to compute re ection ow (e.g., [OR98, EMD + 05]).

Semantic labeling. Semantic labeling has been used to detect class-speci c properties, allowing speci c reconstruction processing. One common approach is the use of 3D models of a given object class (e.g., cars) to train priors for reconstruction, o en resulting in good quality voxel reconstructions [START_REF] Hane | Class speci c 3d object shape priors using surface normals[END_REF] or meshes [START_REF] Yingze | Dense object reconstruction with semantic priors[END_REF]. While our objectclass-speci c smoothing priors have similarities in spirit with e.g., the class-based normal distributions of Häne et al. [START_REF] Hane | Class speci c 3d object shape priors using surface normals[END_REF], we focus on the use of a standard Structure-from-Motion (SfM)/MVS reconstruction pipeline, without the need for training based on 3D models.

Overview

IBR for re ections on cars raises three challenges outlined in Fig 4 .2a-c. We rst need to provide car geometry that is as complete and smooth as possible, including a window surface. We then need to e ciently compute ow for re ections on windows taking ). e ow is also used in our nal preprocessing step (c), together with the re ned mesh to synthesize re ection and background layers (Sec. 4.6). Bo om: the layers and mesh are used during interactive navigation to synthesize novel viewpoints with plausible re ections, by computing re ection ow on the y using the estimated parameters.

R e n d e r i n g R e fl e c o n fl o w a p p r o x i ma o n ( i n s h a d e r ) B a c k g r o u n d & h u l l ( D B + U L R ) C a r i n t e r i o r ( U L R ) F i n a l c o mp o s i t e + + = B a c k g r o u n d l a y e r mi n -s y n t h e s i

their curved nature into account. Finally, we need to separate layers for re ections and background so we can ow them separately during free-viewpoint navigation. We successively address each of these challenges in our method; each step produces the input necessary to provide a solution for the next challenge.

For the rst challenge we use semantic labels to identify cars and car windows in input images, using powerful modern machine learning-based segmentation. Unfortunately, these semantic labels are inaccurate and not multi-view consistent. Our key ideas are to use a spherical projection of the car and perform interleaved mesh smoothing and multi-view consistent label re nement in this spherical space. is space ts well with multi-view consistency operations, and facilitates the use of powerful image-processing methods. is step produces a smoothed and complete car body, including a rst estimation of the window surface, see Fig. 4.2a and Sec. 4.4.

For the second challenge we introduce an e cient re ection ow computation based on analytic approximation of curved windows. We t ellipsoids to each window by exploiting the previously estimated window geometry and provide e cient ow computation by gradient descent in the shader; Fig. 4.2b and Sec. 4.5.

For the third challenge, traditional layer separation algorithms (Sec. 2.2.1, [SAA00, XRLF15]) are not designed for the curved window surfaces and the low quality of the lightweight capture data we acquire. Instead, we introduce a plausible re ection layer synthesis algorithm. We use our approximate re ection ows as an initialization, and then use image stitching to complete the synthesis; Fig. 4.2c and Sec. 4.6. We now detail each of our solutions, starting with the geometry extraction and re nement.

Car Geometry Extraction and Re nement

To perform high quality rendering for cars including window re ections, we need to isolate the cars in the scene, re ne their geometry, and estimate supporting geometry for the windows.

Isolating Cars with Semantic Labels

We will use semantic labels to identify and isolate cars in the scene; the labels will also be used to re ne car geometry. We obtain 2D label maps for each input image, using DeepLab-v2 [CPK + 17], trained on a subset of the ADE20K dataset [ZZP + 19, ZZP + 17], to recognize car objects, but also parts, namely car body, car wheel and car window. Details of the training procedure are given in Appendix B.2. An example training image and result obtained on one of our input images are shown in Fig. 4.3c,d. We project the segmentation labels onto the geometry; vertices where at least 40% of the input semantic maps agree on the car label are considered as belonging to a car. We group these vertices in connected components using mesh and mask connectivity information. is extraction is robust due to the overlap between input images and the fact that the cars are the focus. For each remaining component we estimate a bounding box aligned with the main axes of the car using PCA, and initialize the bounding sphere used for the spherical projection (see gure on the right). 

Smooth Car Hull Extraction and Semantic Mesh Re nement

We want to estimate a smooth version of the car body with lled holes, obtain an initial approximation of the car window surfaces and improve overall car reconstruction.

Unfortunately, car bodies are badly reconstructed by state-of-the-art MVS reconstruction algorithms, and car windows are o en completely missing.

Semantic labels provide an indication of the location of the windows, and could serve as a guide to re ne geometry. e segmentations sometimes contain errors, possibly because our viewpoints are very di erent from the training set images, e.g., close-ups where only a small region of the car is visible. Another case concerns objects lacking features, e.g. a black car in shadow, or with contradictory features caused by re ections, lead to missing regions in some predicted maps. In addition, labels are not always multi-view consistent, see Fig. 4.3e,f.

A precise model of the car and windows could help improve multi-view consistency, but this model is precisely what we are trying to obtain. To solve this dependency problem, we iteratively estimate geometry, interleaving mesh smoothing with updates of semantic mask probabilities, i.e., the probability that a pixel has a given label.

Smoothing the mesh in object space is di cult, since semantic labels from input views reproject incorrectly on the mesh through the window holes. However, we know that cars have a spherical topology, and it is natural to use a spherical projection of each car for multi-view consistent window segmentation. We choose to enforce spherical topology as a prior in "spherical" image space, which allows the use of e cient image-processing algorithms and facilitates multi-view coherence.

We start by projecting the geometry assigned to the car onto the bounding sphere using a spherical projection and create a depth map (Fig. 4.4a). We reproject the semantic "car window" labels into the same space, estimating a semantic label probability map using the reconstructed geometry (Fig. 4.4b). We next use the semantic labels to estimate a smooth car hull, ll the window holes and repair inaccurately reconstructed regions as much as possible. e semantic map is then re ned by reprojecting the input view maps using the updated geometry. Akin to an Expectation-Minimization approach, we iterate in an interleaved fashion these two steps. Finally, we re ne the semantic masks in a multi-view coherent manner. Mesh Re nement Step. To re ne depth, regions of the depth map where reprojected labels agree as "car window" are considered with low con dence, while regions that are seen by a high number of cameras without this label have a strong weight. Evidently, the missing window surfaces result in incorrect label reprojection; we prefer and smooth regions that are more likely to be correctly reconstructed car body, and ll the other regions with smooth propagation of the depth. A smoothness prior is thus applied to the entire hull of the car, and a data term is added on the Laplacian of the depth to encourage planar regions and counteract the tendency of the solver to pull the surface towards the sphere. We use a conjugate gradient method to solve this constrained optimization; details are provided in Appendix B.1. At the end of this step, we obtain a depth map with smoothed re ective surfaces and progressively lled-in window surfaces, Fig. 4.4c.

Semantic Mask Probability Update

Step. We can now use this smooth car hull geometry to reproject the label maps with updated visibility. is new label probability map (Fig. 4.4d) is of much be er quality than the reprojection using the original reconstructed geometry (Fig. 4.4b). e updated map is then used for the next mesh re nement step.

Final semantic mask re nement. A er three interleaved iterations, we re ne the label probability map in spherical space, using a Markov Random Field (MRF) guided by color similarity of input views reprojected onto the mesh and con dence, based on label probabilities and visibility. We also discourage well-reconstructed pixels to be labeled as windows. Details of the MRF are provided in Appendix B.2. In all the examples presented, we have used "street side" capture, with no photographs on the side of the car facing away from the street. We complete the missing information by generating a symmetrized version of the re ned geometry. A copy of the car geometry is re ected along its principal vertical plane, and automatically re-aligned with the initial car mesh using an Iterative Closest Point approach. Both geometries are merged based on visibility, i.e., in regions where the initial car is visible in less than 20% of the cameras, we instead use the mirrored version. e resulting re ned and symmetrically completed mesh is shown in Fig. 4.5c. e nal label map (Fig. 4.6a) is then used to cut windows out of the smoothed mesh. Speci cally, the parts of the mesh that are labeled as windows are extracted separately (Fig. 4.6b), and the remaining hull of the car is merged back with the initial scene geometry (Fig. 4.6c). Vertices of the initial geometry too close to the smoothed mesh are discarded, to avoid double surfaces. We refer to this windowless smoothed mesh (Fig. 4.6c) as the re ned mesh or geometry from now on. 

Smooth Mesh

Ellipsoid Approximation for Re ection Flow Computation

At a given pixel p in the novel view (Fig. 4.7a), we see a point P r that is re ected from the background onto the re ecting window at P . We need to nd the pixel in a reference input view that contains the re ection of P r . We propose an e cient algorithm to explicitly compute re ection ow between views. is technique will be used both during preprocess and during rendering. We achieve this using two simplifying assumptions: that scene geometry is distant and that windows can be approximated by ellipsoid geometry.

Re ection ow computation

We assume that the scene geometry re ected in the windows can be approximated by the bounding sphere of the scene. Far-away geometry creates very small parallax when the camera moves, and convex re ectors further decrease the parallax. High quality geometry of the re ected objects is thus not required. Furthermore, each window is approximated by an ellipsoid. is representation will be key to making the problem tractable and achieving real-time performance. At pixel p, we see a point P on the surface of a window. We know the position, surface normal and window parameters at P . Knowing the novel view position, we can compute the re ected ray under a perfect mirror assumption, r. e intersection of this ray with the background at P r (see Fig. 4.7a), can also be derived analytically using our spherical world assumption.

We then search for the point P on the ellipsoid re ector surface such that P r falls inside the input view a er being re ected at this point. is point has the property that the normal at the surface and the half vector between the incoming and outgoing re ected rays coincide [EMD + 05] (see Fig. 4.7b). We nd this point using an approximate gradient descent. At a given candidate point P c , we compute the half-vector between P c P r and P c P i (where P i is the location of the input view). If P c = P this vector is equal to the normal to the ellipsoid at P c . Else we update the normal by shi ing it toward the half-vector. anks to the bijection between ellipsoid positions and their normals, we can easily convert this updated normal to the corresponding new P c . We can iterate this process until we nd P ; following this update procedure guarantees that we reach the correct solution [EMD + 05]. In practice, the algorithm requires fewer than 30 steps to convergence, and can be performed very e ciently in a shader (Algo. 1).

Algorithm 1 Iteratively compute P , assuming an axis-aligned ellipsoid for brevity Input: P i , P , P r , ellipsoid center C and radii R e Output:

P P c ← P n ← normalize((P c -C)/R e ) for i = 1 to 30 do h ← normalize(normalize(P r -P c ) + normalize(P i -P c )) n ← normalize(n + 0.2(h -n)) P c ← C + R e * n end for P ← P c
Once the point P is found, it can be reprojected in the input view. If it falls inside the window label mask, the corresponding pixel p can be used as a source for re ection (Fig. 4.7). By doing this computation for all pixels of the novel view covering a window, we can compute the re ection ow to the input view. is re ection ow computation will be used during the window ellipsoid parameter estimation as described in the next subsection. At runtime we estimate the ow of re ections of each window for a set of input views using the same algorithm.

Ellipsoid Fitting for Car Windows

Each window is approximated by an ellipsoid with longitudinal and vertical radii. Due to shape and physical constraints, the range of admissible curvatures for car windows is quite limited. We start from the "cut-out" window surface (Fig. 4.8a), use the average normal of the window as the third ellipsoid axis, and the projection of the scene up vector onto the window surface as a vertical axis. e longitudinal axis is the cross product of the two previous directions.

Our method is based on feature matching and estimates the radii from the motion of re ections between close-by views of the same window. We fall back to dense image matching when such features are missing -re ections such as the sky or a uniform wall cause only a few moving lines to appear across the window. In both cases, a range of parameters is swept and the set of radii that best explain the re ection motion is extracted. We use the same range of radii for all windows ([1m, 40m]) and sweep it using quadratic steps to sample small values more densely, as small changes to the radii only create noticeably di erent re ection motion if the radii are small (see Appendix. B.3 for an illustration).

Every re ection is mixed with transmi ed colors from the car interior or the scene background, making matching more complicated -yet we only need to estimate two parameters per window. e motion only has to be correctly estimated for a few pixels ; this low dimensionality combined with the range prior make the problem tractable. A detailed description of the method is provided in Appendix B.3.

While the ellipsoid t is an approximation -since car windows can have small imperfections and normal variations [JHKP13] -the resulting ow is su ciently plausible in our test scenes, and allows real-time performance. See Fig. 4.8b,c for an example of ed ellipsoid. We experimented with a planar re ector, but the eld-of-view for the re ector is incorrect and results were signi cantly worse (see Appendix. B.3). 

Synthesizing Re ection Layers

To render car windows, we need to combine a re ection layer, and the background or transmi ed layer which corresponds to the car interior and the rest of the scene visible through the window. is layer is reprojected using the reconstructed geometry in the scene. e geometry is generally of good quality for the background, and very approximate for the car interior. We use the term background ow to refer to the reprojection of pixels using the re ned geometry without windows. e re ection layer corresponds to the re ections on the windows, that move according to the ow we compute using our ellipsoid approximation.

Our data is insu cient to achieve accurate re ection layer decomposition; we thus choose to synthesize a plausible re ection layer that will be used at runtime. Inspired by min/max compositing [START_REF] Szeliski | Layer extraction from multiple images containing re ections and transparency[END_REF], we use the min-composite of the re ection ows as a rst estimate of the re ection layer, and synthesize a plausible layer by using a variant of image stitching techniques. Consider l = 1..L layers over images I i with i = 1...N . For a given image I k , the min-composite M l,k for layer l is given as: minW l i→k (I i ), ∀i, where W l i→k is the warp or ow of layer l from image i to k. Since light is additive, M l,k is an upper bound on the value of layer l in image I k .

For the background layer, we use the min-composite of the background ow directly, since this tends to reduce artifacts by preferring darker pixels, Fig. 4.9a. Reliably reconstructing car interiors would signi cantly complicate the capture process: many images near the car are needed, and the far side must most o en be captured, breaking the "street-side" capture context we target.

Re ection Layer Synthesis

For a given input view, we use the ellipsoid approximation for each window to compute re ection ow, reprojecting pixels from 25 neighboring views into it, to create the min-composite of the re ection layer, Fig. 4.9b. is min composite has many visible artifacts: misalignment errors due to inaccurate re ection ow, the presence of moving objects (e.g., the photographer), artifacts due to errors in the mask reprojection and color harmonization discontinuities. e ow of the background layer can be even more approximate, since car interiors have very li le reconstructed geometry. We thus see that the standard layer separation approach [SAA00] cannot directly be applied in our context. where L s (p) is the luminance of pixel p in image s, C s (p) its color, D(p) its distance to the border and T is set to 1% of the image diagonal. e rst term encourages the solver to prefer the minimum value and to remove outliers, the second measures photoconsistency as the smallest L 1 distance to colors fetched from other images (s ), and the third discourages using pixels close to image edges. e resulting stitch is shown in Fig. 4.9c. Sky re ections o en have color di erences between the various input views, resulting in remaining color harmonization boundaries that we remove with a nal automatic Poisson editing step (Fig. 4.9d). e stitched image is used as a data term for both colors and gradients (w gradient = 1, w data = 0.01). However, seams are discouraged by choosing the gradient closer to zero from the source images at both sides of the boundary.

e nal harmonized re ection layers are then saved to be used for rendering. 

Rendering, Results and Comparisons

Rendering and Implementation

Rendering of a novel view proceeds in two steps. First we render the background of the scene, then we composite in the re ections computed using the re ection ow computation described above.

To render the background of the surrounding scene, we use Deep Blending [HPP + 18], and a per-pixel implementation of the ULR with a standard weighting scheme [BBM + 01], reprojecting input images on the re ned mesh. Since our scenes are large, we restrict the per-view mesh voxel grid for Deep Blending to encompass the cars, and use the per-pixel ULR for the rest of the scene.

We then render the interiors and background visible through the window regions, using per-pixel ULR to project the transmission layers onto the interior geometry, overwriting any previously rendered pixels Finally, we render re ections by warping colors from the re ection layers using re ection ow. We only warp a subset of the input views, selecting the 50% views closest to the novel view, as re ection layers further away won't contribute signi cantly to the nal re ection. For each selected view, re ection ow is computed on the y during rendering in a shader for each novel view pixel where the supporting surface of the window is visible. e background intersection and gradient descent on the ellipsoid are used to nd the corresponding pixel in the input view. We additionally check that the warped pixel falls inside the same window region in the input view (using the supporting surface again). e warped re ection information of the selected views is blended, and the result is composited with the background using an alpha value of 0.75, which we found experimentally to work well with all scenes. We apply a small blending fallo at boundaries between the two regions.

We show results of our method with our unoptimized C++ and OpenGL implementation. All tests reported here were run on an Intel Xeon 5118 (48 logical cores) with 96GB of RAM and a NVIDIA GeForce RTX 2080 Ti.

Results

We present results on four scenes Vine, Carpenter, Narrow-Street, and the Corner-Street (Fig. 4.10), with the la er two containing two processed cars. e number of photos for each scene is respectively 177, 200, 360, and 330, captured using a GoPro (Hero 6) in burst more, giving 2 photos per second, while the user walks around the car 4 times at di erent heights. Capturing a car takes about 5 minutes. e input resolution (a er camera calibration) is respectively 2720x1607, 2768x1639, 2864x1695 and 2200x1305. Car geometry extraction and ellipsoid estimation are performed using images resized to 1920px width.

Results are shown in Fig. 4.10, 4.11, and in the videos available on the project web page 1 . e e ect of re ections is best perceived when moving the viewpoint. In the paths shown in the videos, our novel camera is on average at 0.75m from the closest input camera, with a maximum at around 2.26m.

Our interactive renderer reaches 8Hz (120.0ms) at 1280x720 resolution. Rendering time is distributed as follows on average: background rendering using DeepBlending and ULR: 108.0ms, car interior rendering using ULR on the interior min-images: 3.0ms, re ection rendering and compositing: 8.5ms. Preprocessing for our method on a scene with 200 images takes 10min for mesh and segmentation re nement, 20min for the ellipsoid parameter estimation, 1h10min for re ection layer stitching and 10min for Poisson editing, in addition to standard o -the-shelf SfM/MVS (Colmap) and preprocessing for DeepBlending.

Comparisons

We performed comparisons with the following alternative methods (see Fig. 4.11): a textured mesh, generated by Colmap [SF16, SZPF16] and textured with RealityCapture [Rea18], a per-pixel ULR method using the same mesh, So 3D [START_REF] Penner | So 3d reconstruction for view synthesis[END_REF] and the Deep-Blending [HPP + 18] method. For fairness, we retrained DeepBlending with our scenes to achieve the best possible results. We have included So 3D for the scenes Carpenter, Corner-Street and Vine, while the other methods are provided for all scenes.

For the vast majority of cases, our method provides a much cleaner and plausible result compared to previous methods. e fact that windows are lled and that re ections move in a plausible manner are key elements of realism for navigation in these scenes. So 3D performs well when we are close to the input cameras, but degrades rapidly as we move away from the input views. DeepBlending improves the overall result compared to ULR, but still cannot completely recover from the lack of window geometry, and cannot infer re ection ow.

Conclusion

Limitations. Our method only produces plausible renderings of re ections and transmission for car windows, especially for the car interior.

e inaccuracy of the interior geometry is a limiting factor for the quality of rendering we can achieve. is is shown in Fig. 4.12(top row) and the video on the project web page e feature-based and dense ellipsoid estimations both require at least some re ection information; windows in scenes under very strong sunlight might not contain enough re ections for this step. In the speci c con guration where there is a strong discontinuity in a highly transmissive area (typically dark car interior over a bright background with some re ections over the dark areas) our re ective stitching method is not very successful, resulting in rendering artifacts such as ghosting of the interior or duplicated car frames (Fig. 4.12). is is due to the ambiguity of the min composite in this con guration. e robustness of some steps (geometry re nement, ellipsoid ing) could be improved through learning-based approaches that could extract automatic features more resilient to variability in the input data. Our method also inherits limitations from the rendering algorithms used for the background and car bodies. ose parts could bene t from future work on geometric and material priors to render broader specular e ects with high delity. Despite these shortcomings, compared to all previous methods our plausible rendering, and the reduction of the most visible artifacts is a major step forward to allowing usable IBR in a cityscape navigation context. Summary. We have presented a new method that allows plausible rendering of cars with view-dependent e ects, in a casual capture context using a single consumer camera. Our method is based on the introduction of an e cient re ection ow computation that can be computed in real time in a shader, using an analytical approximation of curved car window surfaces. We create a smooth car hull, lling the windows that are missing in the MVS reconstruction, e ciently enforcing spherical topology using image processing operations. e rst approximation of the window surfaces is used to support the ellipsoid t for the car windows, enabling the e cient re ection ow computation.

e nal component is the use of the re ection ow for a re ection layer synthesis algorithm, based on image stitching operations. To summarize, we have presented a rst solution allowing plausible IBR of cars and in particular car window re ections. Our method makes a signi cant step forward in allowing applications requiring realistic free-viewpoint navigation in cityscapes to use IBR. e results obtained also showed us that when the geometry is controlled -thanks to approximations or in the case of synthetic scenes -, computing the ow of re ections is a feasible task and greatly help user perception. is motivated our study of viewdependent e ects in synthetic scenes and how to precompute and reproject them, that lead to the work presented in the next chapter. We will show that by taking inspiration from image-based rendering techniques, we are able to reproject precomputed complex light paths in the scene by relying on an approximate re ection ow. Combined with a reconstruction lter, this results in high quality global illumination in static scenes.

C h a p t e r 5

Glossy Probes Reprojection for Global Illumination We achieve interactive walkthroughs (f) for static scenes with opaque objects, with quality close to the path-traced ground truth (e) and be er than a real-time GPU ray tracing baseline (g).

Introduction

In the two previous chapters, we focused on captured scenes and treated view-dependent e ects such as re ections. We now turn our a ention to synthetic scenes, introducing a new approach for precomputing and reprojecting complex view-dependent light paths, inspired by image-based rendering.

Interactive global illumination has been a major goal of computer graphics since its inception. e introduction of GPU-accelerated ray tracing [Bur20, NVI18, WM19] brings closer the prospect of real-time, physically-based global illumination. Current hardware can create a G-bu er [START_REF] Saito | Nc machining with g-bu er method[END_REF] and trace specular paths very e ciently. However, more complex, typically longer and glossy light paths are still very expensive: see for example the path with multiple glossy bounces in Fig. 5.1e. As describe in chapter 2 (Sec. 2.2.3), numerous techniques have been proposed to estimate the contribution of such paths in real-time. We now present a novel method where such view-dependent glossy paths are precomputed at prede ned scene locations and reprojected. When augmented with view-independent paths stored in a traditional light map, our solution enables full global illumination in interactive walkthroughs of static environments containing opaque surfaces (Fig. 5.1).

Numerous real-time global illumination approximations have been explored [RDGK12],

o en storing direct light or irradiance in light probes [START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF] and approximately reconstructing a subset of light paths with various heuristics [START_REF] Robison | Image space gathering[END_REF].

ese methods achieve impressive results, but can be less e cient on more expensive, glossy light paths. We take a di erent approach inspired by image-based rendering techniques, precomputing all light paths and carefully handling storage and reprojection for each novel view.

Our approach relies on a simplifying assumption. We split light paths, treating viewdependent and view-independent light di erently. Separating paths has a long history in graphics [CRMT91, WCG87, SSH + 98], allowing signi cant acceleration of illumination computations. We focus on view-dependent paths, while for view-independent paths we use traditional light maps.

For such view-dependent paths, i.e., paths from the eye through several glossy bounces, we precompute a new kind of light probe to store them. While precomputing all light paths can enable interactive rendering of realistic lighting, reprojecting this data into novel views raises three main challenges. First, the dense angular sampling needed to capture view-dependent e ects can impose high memory requirements, since glossiness and complex geometry imply the need for denser sample rates. Second, reprojecting glossy probe samples into a novel view can be challenging and costly. is is because complex re ector and re ected geometry/materials make it hard to nd the best samples in the probes for a given novel view. ird, directly reprojecting paths can cause sharpening at glossy re ections of occlusion boundaries, as parallax changes between the probe position and the novel view can sharpen the precomputed blur.

Our work described in this chapter addresses these three challenges. Using Heckbert's [START_REF] Paul | Adaptive radiosity textures for bidirectional ray tracing[END_REF] notation, we store L(S|D) * DE in a light map and we store L(S|D) * S * E paths in light probes (here S signi es any non-di use re ection). Our approach has three main contributions:

• An adaptive light probe parameterization to increase resolution depending on scene geometry and material properties, reducing the overall memory footprint.

• An algorithm using e cient re ection estimation and on-the-y search to gather view-dependent texels from probes, providing high-quality interactive rendering of glossy paths.

• To avoid sharpening at glossy occlusion boundaries, we introduce a new approach that splits the convolution e ect of the BRDF into two steps. First, we render the probes using materials with lower roughness in precomputation, and second, during rendering we apply e cient, adaptive-footprint bilateral ltering reproducing the original material roughness.

Our algorithm plausibly approximates ground truth illumination, with complex light paths, at interactive rates for scenes with opaque objects (Fig. 5.16-5.18). We compare to modern hardware-accelerated ray tracing baselines: a light map with real-time glossy ray casting and real-time path tracing. We also compare with light-probe based illumination [START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF] and image-space gathering [START_REF] Robison | Image space gathering[END_REF]. Overall, we show be er quality compared to ground truth, when other methods run at the same framerate as ours.

Related Work

In chapter 2, we reviewed previous work on real-time re ections and probe-based rendering (Sec. 2.2.3), and the reuse of existing shaded samples in synthetic scenes (Sec. 2.1.4). We also investigated e cient ways of estimating the ow of re ections (Sec. 2.2.2); inspired by our results from previous chapters, we leverage them here once again. In this section we present the aspects of previous work that more closely relate to our novel approach described in this chapter.

Light maps are used widely in games, and recent research e orts have explored e cient light map approximations [LTH + 13, LWS19]. Our work is largely orthogonal, and we use di use light maps computed o ine with a modi ed path tracer.

Reusing Samples for Rendering. Several methods have been developed to precompute and reuse samples for synthetic scenes (Sec. 2.1.4). Shading and nal images generation can be decoupled [WDP99, WS99, DWWL05], or samples from previous frames reused to improve rendering quality [Kar14, SKW + 17]. While our work relies on sample reuse, our preprocessing is more exhaustive than these solutions.

Other methods have focused on reusing samples for view-dependent e ects, under a small baseline assumption [LR98, LRR + 14]. In contrast, our work uses light probes for specular and glossy e ects, requiring a more involved approach to reproject these paths to the novel view. Nonetheless, IBR techniques inspired our combination of precomputed data feeding interactive rendering.

We additionally draw inspiration from image space gathering [RS09] (Sec. 2.2.3). to overcome the sharpening our approach introduces at re ected occlusions draws, but by precomputing all paths -not just perfect re ections -we simulate all lighting at a similar cost to the original screen-space lter.

Real-time Re ection Rendering. Real-time rendering of synthetic re ections has been extensively explored, as we described in Sec. 2.2.3. e computation of the ow of re ections on a surface is a complex problem because of the numerous indirections involved (Sec. 2.2.2). We leverage existing validity criteria for re ection paths [EMD + 05] and the specular path perturbation framework [START_REF] Chen | eory and application of specular path perturbation[END_REF] when reprojecting information from our glossy light probes to the novel view.

Recent ray tracing GPUs allow fast path tracing, especially when coupled with denoising (e.g., [SKW + 17]). Multiple-bounce glossy paths however require a high sample count to evaluate the BRDF and each path vertex, and thus result in degraded performance, as seen in our comparisons (Sec. 5.7.3.1). In addition, poor reconstruction of dynamic glossy and specular re ections from low-sample renderings is a known limitation of existing denoisers.

Rendering with Light Probes. Precomputed environment maps are o en used in production to generate approximate real-time re ections (Sec. 2.2.3). But environment maps only work for mirror re ections by default, and require additional assumptions to support glossy e ects. In contrast our approach handles general material properties. We remain inspired by the prevalence and convenience of environment maps and leverage them in our probe system. Light probe memory consumption can also be signi cant. We minimize this with an adaptive parameterization, which relates to continuous magni cation techniques to obtain spatially-varying resolution [START_REF] Friston | Perceptual rasterization for head-mounted display image synthesis[END_REF]. Unlike our solution, they magnify according to a simple foveation pa ern, independent of the scene content.

While it is now possible to use probes with geometric data as an intermediate scene representation to answer incoming light queries [MMNL17, WKKN19, HSAS19], handling glossy re ection paths in these methods also requires an increased sample count, degrading performance (see comparisons in Sec. 5.7.3.2). In contrast, thanks to our precomputed probes containing all light paths, glossy re ections are handled naturally by our solution.

Overview

We introduce a novel approach to interactive rendering of global illumination in static synthetic scenes containing opaque objects, using light maps for di use and probes for glossy paths. Our approach is motivated by the results obtained with ow estimation techniques on real world scenes described in the previous chapter. We address three challenges of probe-based glossy rendering: rst, reducing memory footprint of the probes; second, e ciently and accurately reprojecting glossy path information to the novel view and third, avoiding sharpening at glossy re ection occlusion boundaries. Our method is outlined in Fig. 5.2.

Diffuse Specular In preprocess (middle box in Fig. 5.2), we use a path-tracer to compute di use global illumination stored in a light map (a), while the glossy component of radiance -i.e., L(S|D) * S * E paths -is precomputed (d) and stored in light probes placed in the scene, far le in gure.

For the rst challenge, we maximize the amount of information stored where glossy surfaces are visible by computing a parameterization for each probe with more resolution assigned to shinier surfaces and objects with higher geometric complexity (Fig. 5.2b). We generate this parameterization using quasi-harmonic maps [START_REF] Zayer | Discrete tensorial quasiharmonic maps[END_REF]. We also precompute scene geometric curvature information which is used at runtime for gathering (Fig. 5.

2e).

A visible geometry map is also generated along with a map containing the re ected positions visible in each direction of a probe (Fig. 5.2c).

Rendering is performed at runtime (right-hand box in Fig. 5.2). We rst render the di use component as a surface textured by the light map.

For the second challenge, we e ciently render accurate view-dependent paths by introducing a hierarchical gathering approach. We rst perform trilinear interpolation between probes. We compute the perfect mirror re ected position visible at each point of the novel view, and reproject it into each selected probe while taking specular motion into account (Fig. 5.2f). We base our approach on specular path perturbation [START_REF] Chen | eory and application of specular path perturbation[END_REF], but generalize it to arbitrary geometry using curvature approximation. is estimate provides an initialization for a search process performed in probe space to gather the probe texels best corresponding to the -possibly glossy -re ection. We accumulate these points from the probes and blend them according to the material properties at the re ector surface. e gather process is critical to the success of our approach, since it renders our method robust to inaccuracies in the reprojection process and nds the best available data in the probe.

e third challenge occurs because naively reprojecting glossy re ections from the probes can create a sharpening e ect at occlusion boundaries in the re ections. To overcome this issue, we introduce a new approach that separates the convolution e ect of BRDFs into two steps (Fig. 5.2g). We rst reduce the roughness of materials in the probe precomputation, and apply bilateral ltering in screen space during rendering. Importantly, we estimate a footprint for the screen-space lter that closely reproduces the overall glossiness of the original materials. e entire process is interactive, and reproduces all the light paths in our static scenes made of opaque objects.

Probe generation and storage

We store glossy paths in light probes, and reproject them to novel views when rendering. We rst describe the per-probe data and how we compute it. We then present our adaptive parameterization that concentrates probe texels in important regions, reducing memory usage at a given image quality. We also describe additional geometric information needed as part of real-time rendering.

We place probes on a regular 3D grid in the scene [START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF]. A er exploring various adaptive probe placements [WKKN19], we found regular sampling gives the highest quality at a given probe budget.

is is because our re ection estimation (Sec. 5.5.1) works best with minimal distance between probes and the novel view. Regular sampling minimizes the maximum distance, while adaptive placement naturally samples some areas sparsely. Yet, we believe that studying probe placement based on the material content in the scene is an interesting topic for future work. Further insights could be derived that might also help guide capture for reconstruction and rendering of real world scenes. Additionally, synthetic scenes are a convenient way to test and validate choices for reprojection and blending of input data in a general image-based rendering context. For each probe, we render a map storing surfaces visible from the probe (Fig. 5.3b); this map stores triangle ID and barycentric coordinates used to reconstruct surface a ributes at runtime (e.g., position, normals or curvature). We then render an environment map containing a 360 • view from the probe location, storing only the glossy color at visible surfaces (Fig. 5.3a). We precompute this map with a modi ed version of the Mitsuba path tracer [START_REF] Wenzel | Mitsuba renderer[END_REF] where we force all rst-bounce rays to sample the glossy BRDF lobe and take our adaptive parameterization into account. In practice any renderer can be used, depending on desired probe quality. In a third map, we store the geometry seen with one-bounce re ection as if every surface acted as a perfect mirror (Fig. 5.3c).

Per-probe Data

Probe Parameterization

At a high level, we aim to allocate probe resolution preferentially to regions where it is most needed. ree requirements drive our texel allocation. (a) Smoother surfaces require higher resolution for reprojected re ections, while we can reconstruct rough materials from fewer samples due to their lower frequencies. (b) Distant surfaces or those seen at grazing angles have lower e ective resolution. Probe queries may occur from novel views with di erent perspectives requiring higher resolution. (c) High frequency geometric content exhibits lots of variation in re ected radiance, which needs higher resolution for reliable capture. e la er is estimated by convolving a G-bu er with DCT basis functions (f ) -here shown for N = 8 -which are then aggregated using a weighting scheme (g) to detect high-frequency variation. We use quasi-harmonic maps to convert the adaptive resolution map into a corresponding adaptive parameterization (h). is induces an inverse ow eld (i) -here 2D lookup coordinates are visualized using red and green channels -which we use to steer rays, obtaining a probe with spatially varying resolution (j).

We start from a latitude-longitude (lat-long) parameterization (Fig. 5.4a) and modify it driven by the requirements above. We could start from other panoramic parameterizations, with few di erences, but we chose lat-long as it allows easy lookups from ray directions and the map is a single image (i.e., not a cube-map). We proceed in two steps: rst we compute an adaptive resolution map m (Fig. 5.4b) to encode relative resolution needs of various probe directions, then we use the map to compute an adaptive parameterization (Fig. 5.4h).

Adaptive Resolution Map Computation

To construct the map, we render four low resolution bu ers, via ray casting, containing: (i) material smoothness m mat , (ii) depth m depth , (iii) normal m norm , and (iv) facing angle m face , the dot product of incident ray and surface normal. We render these bu ers at 256 × 128 pixels.

e adaptive resolution map m in Fig. 5.4b stores:

m = m mat m size + m complexity .
Here, m mat adapts resolution based on material smoothness (Fig. 5.4c), satisfying requirement (a), above. Di use texels have m mat = 0 so no space is allocated for them, increasing resolution for shiny surfaces. m size (Fig. 5.4d) considers distance and orientation (b) and is computed as:

m size = m 2 depth m face cos θ long .
is term converts probe area to actual object size, compensating for perspective and angular foreshortening akin to a form factor. θ long is the longitude angle, which compensates for size variations induced by the lat-long base parameterization.

Finally, requirement (c) calls for an estimate of local geometric complexity. Simple gradient-based estimates on our bu ers are not meaningful, as their response increases around any discontinuity, including (curved) edges, which we do not consider "complex" for requirement (c).

erefore, we perform a simple frequency analysis (Fig. 5.4e) as follows:

m complexity = 1 N 2 N -1 p=0 N -1 q=0 w p,q b p,q * m norm 1 .
Here b are basis functions of the 2D discrete cosine transform (DCT) [START_REF] Ahmed | Discrete cosine transform[END_REF], with

[p, q] integer 2D frequency vectors (Fig. 5.4f). See Appendix C for more on the choice of DCT. Convolving the basis functions with the normal bu er analyzes frequency content of local neighborhoods, and the 1-norm sums absolute responses of the three normal map dimensions. We weight responses by w p,q = [p, q] k to ensure higher frequencies contribute heavily to our geometric complexity measure (Fig. 5.4g). In practice, we set N = 16 and k = 5. We normalize both m size and m complexity by a per-probe mean to ensure equal e ective contribution. Subsequent steps behave more robustly a er blurring m with a small Gaussian (i.e., σ = 5).

Adaptive Parameterization

To turn our adaptive resolution map m into a parameterization with adapted resolution, we use tensorial quasi-harmonic maps [START_REF] Zayer | Discrete tensorial quasiharmonic maps[END_REF].

A quasi-harmonic map takes f h from the plane to the plane, following the quasi-harmonic equation div (C∇f h ) = 0. e 2 × 2 matrix C is a requested rst fundamental form, which can vary spatially. In our case C = mI, where I is the identity matrix. is essentially imposes scaling proportional to m.

We use a regular quad mesh to discretize the domain, where each pixel of m corresponds to a quad. We restrict motion of boundary vertices to the domain boundary. Since the lat-long base parameterization naturally wraps, we force corresponding vertices at the vertical boundaries to move in sync, ensuring parameterization smoothness. Following Zayer et al. [START_REF] Zayer | Discrete tensorial quasiharmonic maps[END_REF] we solve the resulting quasi-harmonic equation iteratively using a sparse matrix solver. is quasi-harmonic map induces a forward ow, telling us how to move our quad mesh vertices to obtain the desired parameterization (Fig. 5.4h). To determine where to look up directions in parameterized probes, we need to invert the mapping, essentially creating an inverse ow eld f -1 h (Fig. 5.4i). We do this by rasterizing the deformed mesh with the original vertex positions as colors. is happens at full probe resolution. To render our adaptively parameterized light probes, each pixel looks up its lat-long position using the inverse ow eld and we trace a ray through the scene in the corresponding direction.

is distorts the probe according to our magni cation rules (Fig. 5.4j).

When rendering our glossy light probe, this inverse map speci es each texel's correct view vector to initiate path tracing. At the rst intersection, we only trace paths corresponding to the glossy BRDF lobe, exploiting standard material models' separation of di use and specular components. Both the forward and inverse maps are also used at runtime (see Sec. 5.5) to render the view-dependent layer.

Geometric Information

When gathering glossy light probe samples at runtime (Sec. 5.5), we build on Chen and Arvo's [START_REF] Chen | Perturbation methods for interactive specular re ections[END_REF] specular path perturbation. is requires implicit representations of all re ector geometry and various derivatives. To avoid limiting scenes to implicit surfaces, we need additional geometric data to support our approximation described in Sec. 5.5.1. For each scene vertex we rst estimate principal curvature values and directions (Fig. 5.5a) based on discrete neighborhood operators [START_REF] Meyer | Discrete di erential-geometry operators for triangulated 2-manifolds[END_REF]. We do this separately on each object. For best results, we tessellate large planar objects with only a few large triangles (Fig. 5.5c,d). To get more robust estimation, we regularize curvatures between neighboring vertices when normals deviate less than 40 degrees. We average curvatures by weighting by the normal dot product and ignoring values from boundary vertices. is reduces issues at mesh boundaries (which do not have a full cycle to estimate curvature) and lters smaller, irrelevant curvature variations.

We transfer these values back from the tessellated geometry to each scene vertex, allowing runtime interpolation of the curvature. e principal curvatures allow us to locally approximate the surface by a paraboloid (Fig. 5.5b), for which we can analytically compute our required higher-order derivatives.

Rendering Global Illumination

To render a novel view, we handle di use and glossy components separately, sampling two forms of precomputed lighting (see Fig. 5.6). For di use light, we render meshes textured with a standard light map, which contains di use global illumination. For glossy light paths, we reproject our light probes to the current view. To do reprojection, we rst rasterize a G-bu er with position, normal, surface curvature, and material (ID and roughness). With a ray caster, we then trace perfect mirror rays at specular pixels, storing re ected hit positions and material IDs. is re ection ray is real-time on modern GPUs. We then compute per-pixel glossy lighting by gathering information from nearby probes. is gather relies on estimated specular ow, but as we gather from glossy probes it closely approximates a wide range of material properties. An exception are re ected occlusion boundaries, treated in Sec. 5.6.

For each output pixel containing a glossy surface, we use G-bu er and ray data above plus the probe data (see Fig. 5.3) to select relevant probe texels and merge their contributions. Let p be the current camera position. A pixel sees point x, sampled by our G-bu er, and the mirror ray from x intersects re ected point q (see Fig. 5.7a). To shade x using data from probe P , we need to fetch the probe sample for x that re ects point q as seen from probe origin p (assuming such data exists in P ).

On-the-y Re ection Position Estimation

First, we must determine x as the camera moves from p to p . e theory of specular path perturbation [START_REF] Chen | eory and application of specular path perturbation[END_REF] allows us to approximate displacement ∆x = x -x given displacement ∆p = p -p (see Fig. 5.7a). For any re ector represented by implicit function f , we can derive a second order approximation of the path function from Fermat's principle and the implicit function theorem.

en, there exists a Jacobian J(p, q, x, f ), a 3x3 matrix, and Hessian H(p, q, x, f ), a 3x3x3 tensor, such that

∆x = J∆p + [∆p] T H[∆p],
where [∆p] is a 1x1x3 tensor replicating ∆p three times. We refer the reader to Chen et al. [START_REF] Chen | Perturbation methods for interactive specular re ections[END_REF] for a detailed discussion. As we know p, p , x, and q, this gives su cient data to lookup probe samples.

While Chen et al. [START_REF] Chen | Perturbation methods for interactive specular re ections[END_REF] require rst, second and third order derivatives of f , we do not want to limit scenes to implicit surfaces. We generalize to triangular meshes using our local curvature approximation stored during precomputation (see Sec. 5.4.3) and G-bu er rendering. From these curvatures we estimate a paraboloid to locally t the surface, and use its analytical derivatives for path perturbation. We only keep points x that share the same material as x, and reproject their probe samples.

Gathering View-dependent Color

Combining specular path perturbation with our estimated curvature only approximates the specular motion between the novel view and our probe. To be robust to inaccuracies, we explore a neighborhood in probe space before nalizing our sample selection.

We use a two-level search on a grid of decreasing step size and radius, looking for a texel with stored radiance valid at our novel location. e two-level search ensures We seek to favor probe samples containing information closely corresponding to the novel view surface. We achieve this by evaluating an energy function designed to favor such samples. We use the following notation (see Fig. 5.7b): re ector position r p , normal n p , and re ected position R p as seen in the light probe, and corresponding values r v , n v , and R v from the novel view.

Our energy function considers four criteria. First, view and probe samples (R v and R p ) preferentially lie on the same surface; if their material IDs di er, we strongly penalize the total energy, multiplying it by s a = 10. We thus use mismatched samples only if no others are available. Second, the re ected hits R v and R p should be close; for this we add a term s b = R v -R p . ird, using similar surface normals n v and n p ensures consistent lighting; the term s c = 1 -(n v • n p ) achieves this goal. Finally, the sample should have a similar re ected ray; we use the following term:

s d = 1 - (R v -r v ) • (R p -r p ) R v -r v R p -r p .
Combining these criteria, we use the following energy function: E = s a • (min(s b , 1) + min(s c , 1) + min(s d , 1)).

(5.1) s a and s b have the most e ect, but the other terms help x issues in more uncommon cases, such as non convex re ectors.

Because we adaptively parameterize probes, searching probe neighborhoods with a constant-sized regular grid risks missing details in compressed regions or insu ciently exploring magni ed areas. We thus scale the search step size by

δf -1 h δx -1
, where f -1 h is the inverse ow eld (Sec. 5.4.2.2). In our two-level neighbor search, our coarse level uses 7x7 samples at 4 texel spacing (before compensation). e ne level searches 3x3 samples with 2 texel spacing, centered at the minimal energy sample found by the coarse search.

To avoid popping during camera motion, we sample re ections in the eight probes nearest the novel view. Each probe selects its sample with minimal energy (Eq. 5.1). and the eight probe samples are combined with trilinear weights t i into a nal pixel color:

C = 1 Z 8 i=1 t i • exp(-φE i ) • c i , (5.2) 
where φ is a constant fallo factor we set to 8, and Z is a normalizing constant ensuring that weights sum to unity. When loading colors c i from the probes, we use bilinear interpolation when this does not blend colors from di erent re ectors.

For pixels with no valid sample in any of the eight probes, we temporally reproject information from last frame's glossy layer. e lowest error E i among the eight probes is also stored for our glossy lter pass (see Sec. 5.6.2).

Two-step Convolution for Accurate Warping of Glossy Probes

For glossy materials, we can reuse samples representing any ray in the BRDF lobe, even if they are not perfect specular re ections; this is similar to Robison and Shirley [START_REF] Robison | Image space gathering[END_REF]. Generally, gathered probe samples are nearly correct for the novel view, giving satisfactory results (see Fig. 5.8a,b) However, re ected geometric occlusions o en appear "sharpened" when gathered samples straddle these boundaries. To understand why, consider Fig. 5.8. Fig. 5.8e shows that correct pixel values integrate the BRDF lobe, combining samples from both yellow and blue surfaces. Naive probe reprojection gathers precomputed samples falling entirely on either side of the occlusion, sharpening the blurry boundary (Fig. 5.8d). Simply applying a post-process lter overblurs (Fig. 5.8g), increasing apparent surface roughness. To reduce overblurring, our solution separates the convolution e ect of the BRDF into two steps. We reduce the material roughnesses when precomputing probes and then adaptively blur during lookups to approximate the desired glossiness (Fig. 5.8h). We rst explain how to estimate the lter footprint so that we match the original material roughness in the nal image (Sec. 5.6.1). We then explain how to perform the lter operation (Sec. 5.6.2) and nally our e cient lter approximation (Sec. 5.6.3). 

Filter Footprint Estimation

To estimate our lter footprint, we use a simple con guration (see Fig. 5.9a): a camera looking at a plane of uniform isotropic roughness, with normal parallel to the view and re ected point colinear to the camera. We evaluate the GGX BRDF [START_REF] Walter | Microfacet models for refraction through rough surfaces[END_REF] for each point under a xed eld-of-view, shown in Fig. 5.9b. e parameters in uencing the BRDF footprint are the material roughness ρ, distance to the re ector d c , and distance to the re ected light d r . Given this, we t a Gaussian G ρ (x; ρ, d c , d r ) with covariance matrix Σ ρ to the image-space BRDF footprint. We can ignore the mean as the Gaussian is centered at zero. We determine Σ ρ for speci c parameters [ρ, d c , d r ] by sampling the BRDF footprint and evaluating spatial covariance numerically. Such a t is shown in Fig. 5.9c along one scanline; we see this approximates the BRDF quite accurately.

We precompute and tabulate covariances in 32 × 32 × 32 bins with roughness varying from 0 to 0.5 and distances from 0.01 to 10m, corresponding to typical values in our scenes. We use a power sampling scheme and decrease the covariance for small d r (≤ 0.5m) as we observed ing overestimated covariance in these cases.

Slanted re ectors foreshorten the BRDF footprint along the slant direction. We dynamically incorporate this when rendering: the projected surface normal in image space gives the foreshortening direction. We then update Σ ρ by scaling the variance in this direction by the dot product between view direction and surface normal.

Using Gaussian ltering allows spli ing our glossy lter into two steps, relying on properties of Gaussians. e steps include G ρ , the re ector BRDFs when precomputing glossy light probes, and G I , the runtime image lter. Final pixel values are given by the convolution G ρ * G I . We can reduce material roughness during precomputation, giving a new Gaussian G ρ with covariance matrix Σ ρ corresponding to the new roughness ρ . Using the property:

Σ(G 1 * G 2 ) = Σ(G 1 ) + Σ(G 2 ),
we nd the covariance matrix Σ I of the image Gaussian G I such that the operation G ρ * G I reproduces the e ect of G ρ :

Σ I = Σ ρ -Σ ρ .
(5.3)

In practice, we set ρ to ρ/2, and modify our preprocess probe rendering to account for this at the rst glossy vertex of each path.

During interactive rendering, for each pixel, we look up the values of G ρ for a given initial roughness ρ and distances d c and d r . We compute Σ I using Eq. 5.3, compensate for geometric foreshortening and apply the image lter as detailed in the next section.

Gloss Filtering

Above, we estimated the image-space lter footprint. Now, we lter guided by the geometric data used to estimate colors C in Eq. 5.2:

Ĉ(x) = 1 Z(x) x i ∈N (x) G I (x i -x)w r (x, x i )E -1 (x i )C(x i ).
(5.4) Here, N (x) denotes the lter footprint at x. E is the energy function in Eq. 5.1; the inverse acts as a con dence to limit propagation to pixels that match well [START_REF] Knutsson | Normalized and di erential convolution[END_REF]. e range weight w r (x,

x i ) = 1 n(x)•n(x i )>αn • 1 |d(x)-d(x i )|<α d • 1 m(x)=m(x i ) ,
acts as a cross-bilateral term, preventing ltering across normal (n) or depth (d) discontinuities or between di erent re ector material IDs (m). We deliberately use indicator functions (1) instead of more canonical exponential cross-bilateral weights [START_REF] Tomasi | Bilateral ltering for gray and color images[END_REF], since the spatial lter footprint already accounts for local geometry using G I . We set indicator thresholds to α n = 0.8 and α d = 0.2 in our experiments. Finally, Z is the normalizing partition function, ensuring lter weights sum to unity.

E cient Filter Approximation

Evaluating Eq. 5.4 is costly for large footprints (Fig. 5.10b), so we employ an approximation to maintain interactivity. A two-pass separable anisotropic lter [START_REF] Geusebroek | Fast anisotropic gauss ltering[END_REF] reduces complexity from quadratic to linear, but is only accurate for spatially invariant lter kernels. We observe that within regions de ned by w r the lter parameters vary smoothly, by construction. Naively implementing a separable edge-stopping lter introduces artifacts at edges that do not align with the lter directions [PVV05] (Fig. 5.10c). To mitigate this, we split the lter into two passes, e ectively using four 1D separable lters [START_REF] Eduardo | Domain transform for edgeaware image and video processing[END_REF]. e rst and third pass lter along the rst principal direction of Σ I , whereas the others lter along the second principal direction. In all cases, covariances must be halved to maintain the correct footprint. We observe this very closely matches the full 2D lter (Fig. 5.10d).

Results, Evaluation and Comparisons

We implemented our approach in our internal framework using C++ and OpenGL. We will release the full source code, including all preprocessing and runtime components. Specular layers and the di use light map were generated with a modi ed version of the Mitsuba unidirectional path tracer at 2048 samples per-pixel. Each scene contains 252 probes placed on a regular grid, each generated at a 1024x512 resolution. We render the novel view at 1920x1080.

To highlight their relative importance, we rst evaluate di erent aspects of our algorithm on four test scenes. We then compare our results to ve di erent methods, including some quantitative comparisons. Results are best appreciated in the videos provided on the project web page1 .

Test Scenes

We evaluated our method on the scenes shown in Fig. 5.11: Bathroom, Livingroom, Staircase and Small Kitchen, all from the Bi erli [Bit16] model repository. e rst three contain the original geometry, with some added elements to showcase glossy re ections.

Small Kitchen contains only a portion of the repository's scene; the high object count in the original required a large di use light map. Solutions for handling large, complex light maps exist, but are orthogonal to our approach and we leave this as future work. 

Evaluation

We evaluate four aspects of our algorithm. All gures in this subsection show only our generated glossy layer. Speci cally, we explore:

1. the e ect of our probe parameterization, 2. the e ect of gathering via our approximate path perturbation, 3. the e ect of total probe count and the subset used at runtime, 4. and the e ect of our glossiness ltering.

Figure 5.12 -Comparing regular and adaptive parameterization when warping just a single probe into the novel view. Le : Bathroom scene, right: Small Kitchen. For clarity, we do not apply our glossiness lter.

Fig. 5.12 compares results using a standard lat-long probe parameterization and our adaptive method when warping just the single closest probe into a novel view. Adding resolution for re ections viewed at a grazing angle (Bathroom) and on high-frequency surfaces (Small Kitchen) clearly reduces aliasing and sub-sampling artifacts. e additional resolution improves warping, as geometric information is more accurate. For clarity, renderings in Fig. 5.12 and 5.13 do not include our glossiness ltering.

For gathering using our approximate path perturbation, Fig. 5.13 shows the e ects of our paraboloid approximation and using a single level search. We see that using a planar approximation on curved objects leads to large regions where the corrective search fails, while our paraboloid representation gives much improved results (Fig. 5.13 rst row). Using only the coarsest search level (Fig. 5.13 second row) we can select sub-optimal probe samples, resulting in a larger number of incorrect samples.

Figure 5.13 -Le using a planar approximation and center-le our paraboloid approximation. Center-right: using a one level search, right our 2-level solution. Please note that glossiness ltering is not applied here. In Fig. 5.14 we show the e ect of using fewer probes for reprojection and reducing the number of precomputed probes. In both cases, the reduction prevents more pixels in novel views from discovering relevant probe samples, creating discontinuities and other inconsistencies on glossy surfaces.

Using probes containing full roughness materials, discontinuities are visible at re ected occlusion boundaries. In Fig. 5.15 we illustrate the e ects of our two-step glossiness convolution, using probes with halved material roughness. is reproduces the desired material glossiness without artifacts at occlusions.

Results and Comparisons

Fig. 5.16 shows frames from our videos camera paths, together with the corresponding ground truth. We accurately capture complex glossy light paths at interactive frames rates, including complex secondary glossy e ects (e.g., the re ection of the top of the bin-row 1, le ; glossy re ections of the table-row 4, right). Nonetheless, while our approximation is quite accurate overall, some di erences remain (e.g., roughness levels on the oors).

We compare to three baselines and two previous methods, along with path-traced ground truth rendered with Mitsuba. Note: due to issues converting and loading model and material formats, we only compare the Bathroom scene across all methods.

Comparisons with Baselines.

e rst baseline is an image-based rendering (IBR) approach akin to an unstructured lumigraph (ULR) [BBM + 01] rendering of our probes. We reproject the probes using the scene geometry and use standard ULR weights per-pixel. Evidently, this naive IBR cannot correctly capture re ections, see Fig. 5.18.

e second and third baselines use real-time ray tracing (RTRT) via NVIDIA's Falcor framework [BYC + 20]. We compare to a real-time path tracer, denoised with the Optix denoiser. We gave this path tracer the same compute budget as our prototype, resulting in 2 paths per pixel. Even though this captures the general structure of light paths, quality and stability are generally lower (e.g., in the re ections on the sink, Fig. 5.17, top right). We also compare to light map rendering augmented by BRDF-sampled rays. Again using the same budget allows for 3 bounces, using 4 samples for the glossy lobes (at the rst path vertex) to obtain the best results. is method also provides good results, but misses secondary glossy e ects from distant emi ers that require a much higher sample count (Fig. 5.17, bo om le ). Note, for example, the missing glossy highlight on the table. In contrast, our solution has overall good image quality, even though some small inaccuracies remain in re ections. e quality is best appreciated over the entire paths in the videos.

Comparisons with Prior Art.

We also compare to image-space gathering [START_REF] Robison | Image space gathering[END_REF] and McGuire et al. 's [START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF] probebased method. We reimplemented the former in our framework, using Optix [PBD + 10] and fetching our light map to generate the perfect re ection image. For McGuire et al. [START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF], we adapted the publicly available implementation in the G3D framework [START_REF] Mcguire | e G3D innovation engine[END_REF]. For a fair comparison, we use Mitsuba to path-trace 128 regular light probes using their octahedral parameterization at 1024x1024 resolution, giving the same overall pixel count our probes used. We import these probes into G3D and use them for all processing required, e.g., irradiance. We activate their glossy re ections, which trace 8 additional rays in the probes. Both methods were given the same compute budget as ours. Again, the result is plausible, but glossy e ects are missing (Fig. 5.17-5.18). We performed a quantitative evaluation using both root mean square error (RMSE) and structural dissimilarity (DSSIM) [START_REF] Loza | Structural similarity-based object tracking in video sequences[END_REF]. We compute the error between the generated and ground truth glossy layers. Error is averaged over 12 frames sampled regularly along the path recorded in the Bathroom scene. e timings and memory consumption for our method, including preprocessing, are shown in Table 5.2. Rendering times are averaged over the paths shown in the videos. Interactive performance was measured on a computer with an Intel Core i7-7800X processor, 64GB of RAM, and a NVIDIA Geforce RTX 2080Ti. We currently use the Mitsuba renderer to precompute probes and di use light maps on our cluster. A typical node has a dual Intel Xeon Silver 4110 processor and 192GB of RAM. We could instead use a real-time 

Conclusion

Limitations and Future Work. Our method achieves plausible results with a satisfactory accuracy in many cases (see Fig. 5.16-5.18); however it has some limitations. e computational cost and memory of the precomputation is the main drawback of our approach, which also limits our solution to static scenes. An incremental approach to building light probes and maps via hardware accelerated path tracing would be an interesting way to li this limit in future work.

We are currently limited to opaque materials. Extending our approach to transparent materials probably requires storing more information in the probes plus a new gathering approach for reprojecting transmissive surfaces. Such a gathering solution is an exciting future direction. A similar argument applies to extending the method to anisotropic materials, though a simpler solution may be possible for this case.

Finally, our two-step convolution is approximate, as seen with the small di erences in glossiness in Figs. 5.16-5. 18. A deeper study of error bounds and a more accurate approximation are de nitely worthy goals. Nonetheless, our current results are plausible and provide convincing and quite accurate interactive renderings.

Summary. We presented a novel algorithm for real-time rendering of synthetic scenes using glossy paths dynamically reprojected from probes and di use lighting from a light map. Our solution builds on three main contributions: an adaptive parameterization to optimize probe memory usage, an accurate gathering algorithm for reprojecting glossy paths into novel views, and a two-step solution to avoid re ection boundary sharpening that occurs when reprojecting naively.

Our solution allows interactive walkthroughs with global illumination for opaque scenes.

e path we chose is based on precomputation: the advantage is that complex light paths are precomputed at high quality and that our reprojection can accurately construct novel views. However, this comes at the price of the computational overhead of precomputation and the limitation to static scenes. On the other end of the spectrum are online methods, such as a denoised real-time ray-tracer. Our results show the feasibility of using precomputed data to render complex light paths interactively, and future methods should build on the full spectrum of methods from fully online to precomputed. Our solutions for memory optimization, accurate reprojection and occlusion-aware glossiness will hopefully be useful building blocks to such solutions, moving towards the ultimate goal of real-time global illumination for complex, dynamic scenes.

C h a p t e r 6 Conclusion 6.1 Contributions

In this thesis, we have presented three contributions leveraging image-based techniques for the rendering of view-dependent e ects in real and synthetic scenes. All projects have tackled issues of sampling, resampling and reconstruction of di erent e ects from the input data. Along the way, the main thread that arose linking our contributions was the study of re ective e ects, how to extract them and reproject them using the corresponding ow.

By exploiting repetitions present on building facades, we were able to reconstruct the main architectural elements even if the input image set is very small. By working in an ideal space and combining information from multiple repetitive instances, we improved camera calibration, geometry reconstruction and the nal rendering. By combining geometric priors with the sparse input view-dependent e ects, specular regions can be detected and re ection e ects re-rendered using external data.

In street-level scenes with a denser capture, we relied on semantic information to detect elements -such as car hulls and windows -that are badly reconstructed because of their materials. For each car geometry, missing and inaccurate data are lled and smoothed with the help of a custom parameterization. rough a feature-based ing process, re ecting semi-transparent surfaces are approximated by analytic ellipsoids. From this representation, the ow of the re ections between views can be e ciently computed.

is is used to extract layers containing plausible specular information from the input images. At runtime, the same ow computation is evaluated from the novel to the input views, sampling the specular layers to generate proper re ective e ects.

Finally we focused on static synthetic scenes. Inspired by image-based rendering, we precompute specular e ects at a set of prede ned locations and store them in probes using an optimized parameterization. From a novel viewpoint, we perturb specular paths to determine where to sample information in the probes. Specular data is gathered in the novel view and a nal screen-space lter ensures that glossiness e ects are properly reconstructed. We obtain high quality view-dependent e ects in complex synthetic scenes that can be explored in real time. rough these three projects, we have contributed to advancing the state of the art in rendering of view-dependent e ects for both synthetic and real scenes. We have extended and built upon existing image-based rendering techniques, and tried to address multiple challenges of both reconstruction and synthesis of re ective elements.

Insights

Over the course of the presented projects, we have gained some insights related to the topics explored in our work.

Semantically guided processing. While in synthetic scenes material parameters are readily available, we have relied on semantic information as a proxy in real world scenes.

is was used to detect and extract objects exhibiting reconstruction issues. We think that this proxy approach has shown to be successful in chapter 3 and 4 even if not fully explored yet. More classes of objects that are notoriously adversarial to image-based rendering techniques could be isolated and treated with ad hoc solutions before being reintegrated into the whole scene. Additionally, when semantic information is extracted from each input view, care has to be taken to ensure consistency when fusing it in a multiview context. We faced this chicken-and-egg problem when reprojecting car semantic labels obtained by a 2D convolutional neural network to extract incomplete geometry, requiring an iterative approach. is has also been an opportunity to explore di erent learning-based approaches to semantic segmentation of images and meshes. Finally, we would have liked to explore how semantic could be used as an input to the rendering phase and have conducted initial promising experiments.

Changing parameterization. By isolating elements in our scenes, we were able to use per-object parameterizations to simplify processing of the available data. e platonic space in chapter 3 was used to fuse information from multiple instances while alleviating sparsity, and was at the core of the method. Per-car spherical reprojection in chapter 4 allowed us to apply image-space smoothing and lling techniques to repair geometry and re ne semantic information. e probe parameterization in chapter 5 was designed to adapt to the properties of the visible objects. In all cases we maximized the quality and amount of information stored and/or recovered in the scenes and these customized parameterizations could be leveraged for other problems.

Importance of re ections. e presence of view-dependent e ects and more specically re ections has proven to be crucial for the user perception in both real and synthetic scenes. is was initially observed when synthesizing re ections on the facade windows of chapter 3. Even in such sparse capture setup, partial input information could be used to re-apply re ections. While the background environment representation was not directly extracted from the input data, applying re ections at the proper locations provided an increase in realism that was crucial to the nal result. is motivated our study of street-level scenes where re ective and transparent surfaces are omnipresent and adversarial to both reconstruction and rendering. We thus focused on extracting specular layers and reprojecting them following an estimated re ection ow. e analytical approximation we relied on also showed that while respecting the general motion of re ections was important, the second-order behaviors -the parallax motion of the re ected background for instance -could be simpli ed without incurring a high visual cost.

When investigating the intersection of image-based rendering and real-time exploration of synthetic scenes, re ections came up as one of the major challenges that would be interesting to explore. Here again, we con rmed that higher-order re ections -especially on glossy surfaces -had to be present but not necessarily accurate.

antifying the required level of accuracy for di erent orders of view-dependent e ects would be an insightful follow-up.

Geometric quality. Because image-based rendering techniques rely on preexisting shading, the expectations put on the scene geometry are di erent than for classical rendering. Techniques such as the Unstructured Lumigraph reproject input image information onto the geometry, masking potential surface deformations. is is exempli ed in chapter 3, where strong priors are used to obtain the re ned geometry of the platonic element. While some details are lost, the general shape and sharp edges are preserved, ensuring proper occlusions when reprojecting shading from the input images. In preparatory work for chapter 4, we also observed how techniques such as Deep Blending can learn to repair geometric inconsistencies, thanks to both per-view geometry and the learned blending network.

Our reliance on approximate surfaces in chapters 4 and 5 also proved to be insightful. e analytical representations used in both -ellipsoid and local paraboloid respectivelywere e cient for the tasks at hand, although the ing of these approximations proved to be more cumbersome than initially planed. In chapter 4, the automatic ellipsoid ing required the combination of two di erent approaches to overcome the lack of re ection features in the input data. In chapter 5, synthetic geometry had to undergo a cumbersome cleanup; the ing process furthermore had to be made extremely robust to surfaces with few triangles or incorrect normals.

Future work

While we have made progress for the rendering of view-dependent e ects in multiple types of scenes, we have also observed and obtained results that call for further investigation. Furthermore, to make some of the tackled problems tractable we had to rely on assumptions or simpli cations that could be li ed with further work. We now highlight the avenues for future work that appear the most interesting and promising from our point of view.

Leveraging semantic information. We have relied on semantic information obtained automatically in chapter 3 and 4, in order to detect and extract regions of interest in our scenes. We think that a more general approach exploiting multiple semantic classes for both reconstruction and rendering would be an exciting eld of future work. Segmentation of scenes in the wild is now a computer vision topic that evolves quickly and highly detailed training data is now available [CZP + 18, ZZP + 19]. Similar approaches exist for geometry reconstruction [START_REF] Haene | Dense semantic 3d reconstruction[END_REF] but semantic information could also be leveraged for resampling and reprojection of input data when rendering the novel view, for instance by learning to output class-speci c blending weights or to synthesize per-class appearance e ects [WLZ + 18]. Going further, more precise object properties could be extracted from the input data; material acquisition of complete scenes would simplify both content extraction and the rendering of complex view-dependent e ects.

Isolating and reconstructing groups of semantic elements separately could also unlock the possibility of mixing objects from di erent scenes as explored by Nicolet et al. [START_REF] Nicolet | Repurposing a relighting network for realistic compositions of captured scenes[END_REF]. Entire new scenes could be generated by combining our extracted elements with proce-dural generation rules. A few sets of components could be used to generate extremely large scenes while keeping the capture process and storage requirement under control. Modular approaches would also simplify the generation of realistic training data, for instance for automotive learning tasks.

Viewpoint placement and selection. As pointed out in chapter 5, we think that adaptive placement of input views -or probes -in a synthetic scene based on the materials is an interesting avenue for future projects, especially as existing work focused mainly on di use surfaces [START_REF] Fleishman | Automatic camera placement for image-based modeling[END_REF]. Apart from minimizing memory use or allowing for a be er reconstruction of view-dependent e ects, understanding placement criteria would also be an initial step towards a ner formalization of the camera selection process in real world scenes. Existing works [DLD12, MSOC + 19, HNH18] already provide prescriptive guidelines for speci c acquisition and rendering setups, but a more complete framework could be built upon frequency analysis [START_REF] Chai | Plenoptic sampling[END_REF] and take into account estimated material parameters. Synthetic scenes would be an important stepping stone to validate the foundations of such a framework.

Learning for extraction and blending. In chapter 4, geometry and layer extraction were performed in an ad hoc manner, and the nal blending and compositing of viewdependent e ects with the rest of the scene was simpli ed. Our custom parameterization brings the extracted car geometry in a 2D image-like map, where correction of artifacts could be performed by a convolutional neural network incorporating object priors. Similarly, layer extraction has recently been cast as a learning task [START_REF] Wieschollek | Separating re ection and transmission images in the wild[END_REF]. As learned blending weights are already used for the background scene [HPP + 18] in chapter 4, additional color candidates could be given to the network, coming from the reprojected specular layers or the transmi ed background. Aggregating all view-dependent e ects present in the scene in a uni ed way might allow for more complex compositing e ects, resulting in a more realistic nal render. For both research paths, the question of generating exploitable training data has to be addressed by relying on synthetic or heavily annotated scenes.

Precomputation for real-time rendering. We have shown in chapter 5 that reprojecting precomputed information allowed rendering of complex light paths interactively. is came at the cost of heavy preprocessing and storage requirements. By taking inspiration from recent anti-aliasing and denoising techniques, the accumulation and blending of gathered samples could be expressed as a learning task. Results of a similar quality might then be obtained with lower sample count and smaller probes. Recent real-time ray tracing hardware could be leveraged to progressively generate shaded samples on-the-y, inspired by the Render Cache [START_REF] Walter | Interactive rendering using the render cache[END_REF] and frameless rendering [START_REF] Dayal | Adaptive frameless rendering[END_REF]. is could be coupled with a temporal component to support dynamic objects or lighting, reusing samples from previous frames under additional validity criteria. Refraction and other complex light paths could be supported by applying a similar perturbation framework and storing the appropriate data. Accuracy of the image-space glossiness reconstruction lter could also be improved thanks to a more accurate BRDF t, potentially inferred using machine learning. By supporting arbitrary combinations of o ine precomputation and on-the-y ray tracing updates for all light paths, future approaches would allow for accurate real-time global illumination of dynamic scenes at an adjustable power cost.

Impact

e projects presented in this thesis have led to publications and presentations in international conferences. e content of chapter 3 has been presented to EGSR 2018, as an oral presentation and journal publication. Chapter 4 has led to a publication in the Proceedings of the ACM in Computer Graphics and Interactive Techniques and will be presented at I3D 2020. It has also motivated an internship to explore neural extraction and rendering of specular e ects. e project from chapter 5 is currently under review, and has led to an internship on the formalization of camera placement in synthetic scenes. All three projects have been integrated in a common code-base shared with the implementations of other image-based rendering techniques, soon to be open sourced for reproducibility and benchmarking.

A p p e n d i x A

Transformation from Platonic Scene to Input Scene

In chapter 3, we need to estimate a transformation T from the platonic frame to the input scene frame, in order to place the platonic model and cameras back into the input scene frame. We evaluate a series of candidate transformations T i,j using each platonic camera separately (see Fig. 3.11).

For each platonic camera C * i,j , we estimate an approximate corresponding camera C i,j in the input scene frame. As in Sec. 3.4.2, we compute it from the input camera C i and the cropped image V i,j location in V i . We compute a transformation from camera C * i,j to C i,j by aligning their positions, and their direction, up and right vectors. is transformation only characterizes a rotation and translation, leaving an unknown scaling factor between the two frames.

To li this ambiguity, we use the distances between the camera and the facade, in the platonic and input frames (respectively d * i,j and d i,j ).

C i,j * E * P i,j * e optical center of C i,j intersects the known facade plane (and thus E j ) at P i,j . Similarly the optical center of C * i,j intersects the platonic facade plane at P * i,j (Fig. A.1). is point does not necessarily belong to the platonic mesh, due to geometric details such as window recess. We estimate the plane of the facade in the platonic frame by sampling pixels near the borders of V i,j , and casting rays towards the mesh. e motivation is that such intersection points will belong to the facade wall. From these points we can estimate the facade plane. We intersect a central ray with it to obtain P * i,j .

en, d * i,j is the distance between P * i,j and C * i,j , d i,j the distance between P i,j and C i,j . We estimate the scaling factor s from the ratio of these distances, taking into account the eld of view values of C * i,j and C i,j .

s = d i,j d * i,j
tan(fov C i,j /2) tan(fov C * i,j /2) In practice, we express the transformation from platonic scene space to C * i,j image space, then estimate the scaling factor; we compose this result with the transformation from C i,j image space to input scene space. e candidate (T i,j ) transformations are centered (from E j to the origin) and averaged to obtain the nal transformation T . is transformation is used to place the platonic mesh and cameras back into the input scene frame, before duplicating and translating them at each E j position using P i,j .

axis. We encode this with a prior on the ratio between r y and r x : p(r x , r y ) = N µ=8,σ=3.5 ( r y r x ) (B.2)

For windshields and rear windows, there is less anisotropic behavior and we use the constant prior p(r x , r y ) = 1. We pick the pair of radii which maximizes s(r x , r y ) = p(r x , r y )#inliers(r x , r y ).

Dense image matching. We only use the top ranked reference image to compute our score as this matching is slower. Images are also downscaled at 720p for speed and robustness to outliers. For each (r x , r y ), we compute the re ection ows and warp 25 neighboring images into the reference view. e number of neighbors is increased as median consistency is sensitive to noise. We use the median-based photo-consistency from [VLS + 06] to compute an error map for each warped image. A per-pixel median error is extracted, and its mean value is computed over all pixels in the window mask. e parameter pair with the lowest error is selected.

E ect of radii variations. Each window is approximated by an ellipsoid with longitudinal and vertical radii. Due to shape and physical constraints, the range of admissible curvatures for car windows is quite limited. We use the same range of radii for all windows ([1m, 40m]) and sweep it using quadratic steps to sample small values more densely, as small changes to the radii only create noticeably di erent re ection motion if the radii are small. is is illustrated in Fig. B.1, using both axes. A side window is almost planar along an horizontal line, but quite curved along a vertical line. e radius around the vertical axis is thus quite large, and even large variations only cause minor shi s. On the other hand, the radius around the longitudinal axis is small, and even small variations can lead to shi s in the re ections. is motivates our choice of a quadratic sweep schedule, while showing the accuracy required when estimating the radius around the longitudinal axis.

Comparison with a planar re ector. Instead of using the ellipsoid approximation, it is possible to solve the re ection ow estimation problem directly for the case of a planar re ector. Each window is is then represented by a plane going through the centroid of the window mesh and oriented by the window mean normal. e intersection with the background sphere is mirrored with respect to the plane before being reprojected in the input view. e planar surface does not manage to capture the speci c re ection ow
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 1 Figure 1.1 -Le : O ine rendering from the Spring short movie (2019) 1 . Right: real-time rendering from the video game Control (2019) 2 .

Figure 1

 1 Figure 1.2 -Le : Screenshot of a synthetic scene opened in Blender 3 . Right: screenshot of the photogrammetry tool Colmap 4 .
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 1 Figure 1.4 -Example of a synthetic scene. Le : only di use illumination is computed. Right: all material e ects are rendered, greatly improving the scene realism.
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 16 Figure 1.6 -Artifacts introduced by re ective and transparent surfaces: missing or erroneous geometry caused by specularity or transparency (orange), duplicated or blurry re ections caused by an erroneous ow (blue).
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 2 Figure 2.1 -e rendering equation estimates the radiance exiting a point on the surface of an object, taking into account the material properties and the radiance incident from all directions.
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 2 Figure 2.4 -Multiple images taken at the same location can be combined to generate a panorama. e user can freely rotate around to visualize the scene.
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 2 Figure 2.5 -e light eld parameterization reduces the plenoptic function to a 4 dimensional quantity for all rays intersecting a focal and a sensor planes. Le : example of a regular grid light eld capture.
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 2 Figure 2.6 -Le : view-dependent texture mapping project the input images as textures onto the scene geometry. Right: e Unstructured Lumigraph use a screen-space scene tessellation (top right) as a support to evaluate blending weights between input images (bo om right) in the novel view (bo om le ).
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 2 Figure 2.7 -Le : Input image segmented in almost-constant depth super-pixels based on color information. Right: In [CDSHD13] 3D patches generated from the input views super-pixels are warped to generate the novel view.
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 2 Figure 2.8 -Per-view meshes used in [HRDB16] be er capture small details of the scene geometry that are lost when generating a global consensus mesh.
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 2 Figure 2.9 -Le : Layered depth images can store multiple (color, depth) samples for a given pixel (example from [MSOC + 19]). Right: When rendering the novel view, layers stored for pixel p are at di erent depths z i and reproject at di erent locations in the new image.

Figure 2 . 10 -Figure 2

 2102 Figure 2.10 -Volume generation process described in [PZ17], taking into account occlusions and so visibility.

Figure 2 .

 2 Figure 2.13 -Hyperlapse: Le : A texture deformation measure is used to compute blending weights. Right: Selected images are stitched together by solving a labeling problem o ine.

Figure 2

 2 Figure 2.14 -DeepBlending [HPP + 18] selects four candidate samples for each novel view pixel. ose colors are blended using weights predicted by a scene-agnostic network trained in a leave-one-out fashion.

Figure 2 .

 2 Figure 2.15 -[TZN19] build a texture space scene representation called a neural texture. Scene UV coordinates visible in the novel view are used to sample that texture and pass it to a network; the texture features are decoded to obtain the nal color view.

  Figure 2.16 -NERF train a network to predict the radiance for any 3D location and direction in the scene volume. e nal view is generated by raymarching through this volume.

Figure 2 . 17 -

 217 Figure 2.17 -In the Render cache[WDP99], samples are reprojected in the novel view (le ). Proper depth ordering is enforced (center) and samples information is propagated in empty regions (right).

Figure 2

 2 Figure 2.18 -[YYM05] surround the environment by light elds on the six faces of a cube surrounding the object. Parallax in the re ections is properly reproduced.

Figure 2 .

 2 Figure 2.19 -[LRR + 14] warps a high quality frame to a new viewpoint. Separate optical ows for di use, re ection and refraction e ects are computed before combining them.

Figure 2 . 20 -

 220 Figure 2.20 -First row: [RKR + 16] combine a main view (orange) and an auxiliary view (blue, inset) to perform local IBR, supporting user motions even in the case of latency. Second row: [LBR + 18] generate a patch-based representation of a high-quality panoramic rendering for VR exploration.

Figure 2 .

 2 Figure 2.21 -Occlusion-free photography [XRLF15] extract a background and foreground layer by iteratively estimating their optical ows and separating their colors.

Figure 2 .

 2 Figure 2.22 -In [SKG + 12], up to two depths are estimated at each pixel using a custom MVS algorithm. One is associated to the directly visible elements, the other locates the re ected scenery.

Figure 2 .

 2 Figure 2.23 -First row: Sihna et al. [SKG + 12] separately reproject a background and a re ection layers using distinct geometries. Second row: Kopf et al. [KLS + 13] instead reproject color gradients using their estimated depth and integrate to obtain the nal image. ies et al. [TZT + 20] rely on a neural network to generate a view-dependent e ects layer that is subtracted from input data and added a posteriori to the novel view.

Figure 2

 2 Figure 2.25 -Le : from a xed viewpoint, each triangle of a re ector re ects a given region of the scene; this information can be precomputed and stored in an explosion map [OR98]. Right: for a re ection path to be valid, the bisector of the view and re ection directions b should coincide with the surface normal n. e di erence between the two directions can be used to search for the proper re ection point, as shown by Estalella et al. [EMD + 05].

Figure 2

 2 Figure 2.26 -Roger et al.[START_REF] Roger | Accurate specular re ections in real-time[END_REF] reproject re ected vertices onto the re ector, nding the proper location using the secant method. Compared to an environment placed at the center of the re ective sphere (right), their method properly displays re ections of the back of the green chair (le ), invisible in the environment map.

Figure 2

 2 Figure2.27 -To obtain the incoming radiance at x in direction d,[START_REF] Szirmay-Kalos | Approximate ray-tracing on the gpu with distance impostors[END_REF] iteratively fetch into an environment map with depth (centered at O). At step i, the depth p i rad in direction d i and the previous depth p i-1 de ne a plane that is intersected with the initial ray (x, d). e intersection de nes a new direction d i+1 to fetch into the map, and the process is iterated. e last estimated direction is nally used to fetch the environment incoming radiance.

Figure 2 .

 2 Figure 2.28 -A parameterized environment map is generated from a 2D layered rendering [HSL01]. Self-re ections and close objects are stored in a rst layer, the distant environment in a second. Missing regions are lled in. Compared to a regular environment map, self-re ections -such as the re ection of the spout -and parallax e ects are replicated.

Figure 2 .

 2 Figure2.29 -Image-space gathering[START_REF] Robison | Image space gathering[END_REF] approximates glossy re ections by using nearby perfect mirror rays (bo om le ). Generated images using di erent roughness levels (right).

Figure 3

 3 Figure 3.1 -Given a small number of pictures of a facade (a), we augment the number of views of the repetitive windows by combining the di erent views of each instance (b). We place the augmented set of viewpoints into a common space, allowing us to generate ner 3D geometry and to identify re ective areas (c). Compared to an image-based rendering of the input views, our solution produces sharper results and fewer popping artifacts.

Figure 3 .Figure 3

 33 Figure3.3 illustrates the main steps of our approach. Our input is a small set of images (3-4) of a building, taken at street level alongside the facade. e pictures are acquired

Figure 3

 3 Figure3.5 -We rectify each input image (a,b) before feeding it to a deep classi cation network that detects window pixels (c). We smooth the label map (d) and compute the bounding box of each connected component (e). We then expand these boxes to include the surroundings of each window and project them back into the image (f). We ask users to select the boxes corresponding to a group of similar windows (g).

Figure 3

 3 Figure 3.6 -(a) Candidate matches between two views using standard approaches. e two views represent a similar window: the rst view contains parts of another window on its side, which are matched to the central window of the second view. (b) We use an approximate camera derived from the input scene to lter these outliers. (c) We reproject each pair of matched points into each other subview using the approximate cameras. If both reprojections land close to their correspondences, the match is kept.

Figure 3

 3 Figure 3.7 -e estimated facade plane is displayed (blue) along with the input scene sparse point cloud. Input and crop cameras are shown. e yellow points are the intersection of each crop subview with the plane.

Figure 3

 3 Figure 3.9 -Le : Input image. Right: Polygonal segmentation.

Figure 3 .

 3 Figure 3.10 illustrates the result of this optimization on two 3D meshes, the rst obtained by running multi-view stereo on the input images, and the second obtained from all

Figure 3 . 11 -

 311 Figure3.11 -For each platonic camera, we estimate the transformation to align it back to the corresponding estimated camera in the input scene. We use this transformation to copy the platonic mesh at each window occurrence in the facade.

Figure 3 .

 3 Figure 3.14 -From le to right: input cropped image, extracted di use layer, extracted variation layer (intensity), reprojected re ection mask.

Figure 3 . 15 -

 315 Figure 3.15 -For each instance, we decompose the associated cropped views into di use and view-dependent e ects layers. All view-dependent layers are then combined to estimate a fronto-parallel mask guided by the segmentation. e resulting mask is then reprojected in all views.

Figure 3

 3 Figure 3.18 -IBR comparison on our full scene mesh, using resp. the three input views, each instance original subviews, and the reprojected subviews for each instance.

Figure 3

 3 Figure 3.19 -(a) If the crop is blended naively, we observe visible seams. (b) Unary terms weighting with distance from boundaries. (c) A er the graph cut, visible seams are eliminated. (d) Resulting cut.

Figure 3 . 20 -

 320 Figure 3.20 -Our method allows for instances of the platonic element to be swapped and reinserted in the nal scene in a coherent manner. Le : original facade, right: novel facade.

Figure 3

 3 Figure 3.22 -Results on 2 scenes from London and 3 from Paris. Le to right: input images, augmented geometry, extracted re ection masks, baseline rendering (ULR) and our result on a rst viewpoint, baseline rendering (ULR) and our result on a second viewpoint.

Figure 3 .

 3 Figure 3.23 -On this scene where standard MVS reconstruction fails (middle row), we obtain a usable result (right).

Figure 4 . 1 -

 41 Figure 4.1 -We propose a new solution for rendering captured cars, and in particular their re ective, semi-transparent windows. A textured mesh from multi-view stereo reconstruction (a) is missing the window geometry. Recent free-viewpoint Image-Based Rendering algorithms (b, c) are not designed to handle the rendering of both the re ection of blue sky, green leaves and the transmissive content (car interior). Our method (d) handles this by computing real-time re ection ows on an ellipsoid approximation of the curved window surface, based on our estimate of a smooth hull of the car that exploit semantic labels in the input images.
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  Figure 4.2 -Overview of our method. Top: (a)We isolate cars and re ne the car mesh using a spherical projection, exploiting semantic labels to impose smoothing priors in window regions. Mesh smoothing is iteratively interleaved with semantic mask re nement, and approximate surfaces for windows are produced (Sec. 4.4). e second step (b) automatically ts an ellipsoid to the approximate window surface, which is used by our re ection ow computation (Sec. 4.5). e ow is also used in our nal preprocessing step (c), together with the re ned mesh to synthesize re ection and background layers (Sec. 4.6). Bo om: the layers and mesh are used during interactive navigation to synthesize novel viewpoints with plausible re ections, by computing re ection ow on the y using the estimated parameters.

  Figure 4.3 -We train a deep-learning based segmentation classi er. Example of a training image (a) and associated hand-labeled segmentation map (b). Segmentation (d) obtained for one of our input images (c). e masks of two neighboring views (e) and (f) are not consistent.

  Figure 4.4 -From the input disparity map (a), we re ne a smoothed and lled disparity map (c), using the reprojected semantic information as a constraint (b). Semantic labels are then reprojected again (d).

  Extraction & Symmetrization. e nal smooth depth map is used to regenerate a car mesh with lled windows and smoothed surfaces, Fig. 4.5b. Regions that were previously holes and deformations caused by re ections and transparent surfaces (see Fig. 4.5a) now have much smoother supporting geometry.

Figure 4

 4 Figure 4.5 -Le to right. (a) Original input geometry from the MVS reconstruction. (b) Re ned geometry a er the iterative mesh smoothing step. (c) Result of symmetrization.e far side of the car not seen by input cameras in our "street-side" casual capture is reconstructed by symmetry.

  Figure 4.6 -At the end of the MRF step we obtain the nal window mask (a, in red, drawn over the reprojected texture). is map is used to separate the window meshes (b) from the merged background/interior and car hull meshes (c).

Figure 4

 4 Figure 4.7 -(a) e initial con guration for the re ection ow computation. (b) Two steps of the gradient descent. When the half-vector (green) is aligned with the normal (red), we have found the point corresponding to the re ection in the input view. e value of pixel p can be used to ow the re ection to the novel view.

Figure 4

 4 Figure 4.8 -(a) e extracted window surface (in green); (b) and (c) e result of the ing process (in green).

  Instead, we synthesize a plausible re ection layer by applying standard image stitching techniques [ADA + 04b] on the min-composite, using a MRF formulation [KSE + 03]. We use the seam-hiding pairwise term described by Kwatra et al. and a custom per-pixel data cost for each source image s: w s (p) = L s (p) + min s =s |C s (p) -C s (p)| + 2 * min(T, D(p)).(4.1)

Figure 4

 4 Figure 4.9 -(a) e min-composite for the background. (b) e min-composite of initial re ection ows from the 25 neighboring images to a given input view. Notice artifacts due to (1) presence of the photographer, (2) errors due to incorrect masks, (3) imprecise ows, and (4) color harmonization edges. (c) Our MRF stitching reduces alignment, motion and mask artifacts. (d) An additional Poisson image editing step reduces remaining composite and harmonization artifacts.

Figure 4 . 10 -

 410 Figure 4.10 -Our scenes, top to bo om: Vine, Carpenter, Narrow-Street and Corner-Street.Le to right: input images and semantic masks, scene geometry with the input viewpoints (in blue) and output viewpoints (pink and green), two renderings of each scene using our method. Note the distance from each novel view to the closest input viewpoint (displayed in overlay)).

Figure 4. 11 -

 11 Figure 4.11 -Comparison with recent approaches. Note how our method maintains sharp and complete re ections.

Figure 4 .

 4 Figure 4.12 -Top le : novel view rendering with our method. Top right: crop of the view; rendering artifacts are visible. Lower le : closest input view; there is a strong discontinuity on a bright background with some re ections present. Lower right: re ection layer min-composite in this case.

Figure 5

 5 Figure 5.1 -Complex glossy light paths are hard to render interactively, even with modern GPUs. We precompute a set of probes in a 3D grid (a) storing such light paths, and reproject information in real-time to render novel views. We introduce: (b) An adaptive parameterization of probes allocating resolution to glossy materials and complex geometry; (c) A gathering algorithm based on path perturbation theory to accurately reproject glossy re ections to the novel view; (d) High quality glossiness reconstruction to correctly treat re ection occlusion boundaries. We achieve interactive walkthroughs (f) for static scenes with opaque objects, with quality close to the path-traced ground truth (e) and be er than a real-time GPU ray tracing baseline (g).

Figure 5

 5 Figure 5.2 -For a given synthetic scene, both di use (a) and specular illumination are computed. A series of environment probes are placed on a regular grid and parameterized (b) to capture view-dependent e ects. In preprocess, high quality renderings are generated (d) along with additional geometric information for each probe(c, e). At render time, the closest probes are selected and glossy information is gathered at the novel viewpoint (f) ; glossy e ects are then reconstructed (g). e di use scene is rendered separately (h) and both layers are composited to generate the nal image (i).

Figure 5

 5 Figure 5.3 -Per-probe data: (a) glossy color, (b) re ector geometry information (triangle IDs and barycentric coordinates), (c) re ected positions (and re ected material ID in the alpha channel).

Figure 5

 5 Figure 5.4 -Overview of our probe parameterization pipeline. Conventional contentagnostic spherical parameterizations (a) of a glossy rendering allocate resolution budget suboptimally.is map is never rendered in our approach and shown here only for illustrative purposes. Instead, we design an adaptive resolution map (b), combining local information on surface parameters (c), foreshortening (d), and geometric complexity (e).e la er is estimated by convolving a G-bu er with DCT basis functions (f ) -here shown for N = 8 -which are then aggregated using a weighting scheme (g) to detect high-frequency variation. We use quasi-harmonic maps to convert the adaptive resolution map into a corresponding adaptive parameterization (h). is induces an inverse ow eld (i) -here 2D lookup coordinates are visualized using red and green channels -which we use to steer rays, obtaining a probe with spatially varying resolution (j).

Figure 5

 5 Figure 5.5 -(a) e triangle-based mesh and the estimate curvature vectors: minimal (green) and maximal (red) directions. (b) Visualization of paraboloids ed using our estimated parameters. (c, d) Maximal planarity estimated using the initial (c) and subdivided (d) objects: the estimation improves.

Figure 5

 5 Figure 5.6 -Rendering of di use (le ) and view-dependent (right) components occurs separately. Both rely on precomputed illumination.

Figure 5

 5 Figure5.7 -e geometry of path perturbations. (a) From a known specular path (q, x, p) and a probe position p , a new path (q, x , p ) can be determined through local path perturbation. (b) To assess probe samples, we compute a score based on ray information (re ector and re ected positions, re ector normal) associated with the sample (r p , n p and R p ) and the novel view pixel (r v , n v and R v )

Figure 5

 5 Figure 5.8 -(a) Path traced ground truth of unoccluded glossy re ection where (b) naive reprojection is accurate. (c) Reference re ection with occlusion boundaries; (d) naive reprojection sharpens these boundaries. (e) Ground truth: pixel colors integrate the BRDF over samples from both yellow and blue surfaces. (f) Naively sampling precomputed probes uses only samples from either side of the occlusion, sharpening the boundary. (g) Naive post-process ltering over blurs results. (h) By reducing roughness and estimating the footprint of the post-process lter, we improve accuracy.

Figure 5

 5 Figure 5.9 -Filter footprint estimation. (a) e setup for estimating our lter footprint. A camera observes a re ected point (green) via a planar re ector. We evaluate the BRDF lobe (blue ellipses) at various positions x and corresponding viewing angles (blue points) to obtain an image-space footprint. (b) e footprint of the GGX specular lobe, for ρ = 0.075, d c = 2m, d r = 5m. (c) A 1D slice of the specular lobe and our t giving a close approximation.

Figure 5 . 10 -

 510 Figure 5.10 -Comparing lter alternatives. (a) Filter input is high-amplitude uniform random noise, which is adversarial for anisotropic edge-stopping lters. e guide image contains hard edges, with smoothly varying anisotropic covariance in each region. (b) Applying a full 2D lter, per Eq. 5.4, is highly ine cient for large kernels. (c) A naive separable implementation is fast, but su ers from strong artifacts. (d) Our four-pass implementation is almost as e cient as the separable version, but reduces artifacts signi cantly.

Figure 5 . 11 -

 511 Figure 5.11 -Our four test scenes: (a) Bathroom, (b) Livingroom, (c) Staircase and (d) Small Kitchen.

Figure 5 .

 5 Figure 5.14 -Le , selecting 4 probes instead of 8; center-le : our solution selecting 8 probes. Center-right: total of 126 probes; right our solution with 252. Fewer available probes lead to missing information on some surfaces.

Figure 5 . 15 -

 515 Figure 5.15 -Le : glossy layered rendered by gathering from probes generated using initial material roughness. e re ections are sharper. Right: our glossiness convolution applied on halved roughness probes approximate the e ect of the material full roughness.

Figure 5 . 17 -

 517 Figure 5.17 -Comparisons with same frame rate for each method. Previous methods: [RS09], [MMNL17]; baselines: unstructured lumigraph (ULR), real-time path tracing using Falcor, RTRT with light map; ours and the path-traced ground truth.

Figure 5 . 18 -

 518 Figure 5.18 -Equal time comparisons for each method. Le to right: [RS09], ULR, RTRT with light map, ours and the path-traced ground truth.

Figure A. 1 -

 1 Figure A.1 -We cast rays from the borders of the view associated to C * i,j , intersecting the platonic model (red points). ese samples can be used to estimate the facade plane (do ed gray line).

  

  

  

  Heigl et al. [HKP + 99] approximate the scene by a unique mean plane onto which input color information is reprojected and blended based on the novel view location. Buehler et al. [BBM + 01] use a more complex scene representation. ey tessellate the novel view image plane into a grid of vertices, combined with a reprojected partial scene

  IBR exploits neural networks to improve rendering quality (Sec. 2.2.2). ies et a. [TZT + 20] address the problem of moving highlights for isolated objects rather Chapter 4. Image-Based Rendering of Cars with an Approximate Re ection Flow than the full scenes we consider and do no handle semi-transparent, re ective objects. ese works furthermore focus on much smaller camera baselines than ours [MSOC + 19].

  Table 5.1 summarizes the error for Robison and Shirley [RS09], McGuire et al.[START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF], the RTRT with light map baseline, and our method. e error for our method is consistently much lower than the previous work and baseline.

	5.7.3.4 Statistics.

Table 5 .

 5 1 -antitative error metrics, using both RGB and luminance, comparing Image Space Gathering[START_REF] Robison | Image space gathering[END_REF], the probe-based approach of McGuire et al.[START_REF] Mcguire | Real-time global illumination using precomputed light eld probes[END_REF], the RTRT with light map baseline, and our method. Lower is be er. Table5.2 -Timings and memory consumption of our method. Rendering timings average costs over frames in our videos.

		RMSE	DSSIM
	Method	RGB Lum. RGB Lum.
	[RS09]	.086 .084 .072 .064
	[MMNL17]	.093 .093 .087 .080
	RTRT+light map .050 .050 .063 .056
	Ours	.027 .026 .046 .039

Blender Open projects, https://www.blender.org/about/projects/

Remedy Entertainment, https://www.remedygames.com/games/control/

Blender Foundation, https://www.blender.org/

[START_REF] Lutz | Structure-frommotion revisited[END_REF][START_REF] Lutz Schönberger | Pixelwise view selection for unstructured multi-view stereo[END_REF], https://colmap.github.io/

http://fungraph.inria.fr

http://www-sop.inria.fr/reves/Basilic/2018/RBDD18/

http://www-sop.inria.fr/reves/Basilic/2020/RPHD20/, https://repo-sam.inria.fr/ fungraph/ibr-cars-semantic/

will be available at https://repo-sam.inria.fr/fungraph/synthetic-probes/ a er publication
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A p p e n d i x B

Car Mesh Re nement and Ellipsoid Fitting

B.1 Mesh Re nement Minimization

For mesh re nement (Sec. 4.4.2), we use a conjugate gradient solver to minimize the following penalty function:

where d(p) is the estimated depth at pixel p, d (p) the initial depth at p (both expressed in [0, 1]), N (p) is the set of pixels around p, L d is the discrete Laplace operator on the depth. We set the Laplacian prior α l = cos(3 • ), and w b = w l = 0.33. We initialize the unary weight with w u (p) = max(0, P car (p) -P win (p)), where the probabilities P for car and window respectively are extracted from the segmentation map. In subsequent iterations we set w u = 0 for outlier pixels, de ned as pixels that have moved from their initial 3D position more than 2% of the sphere radius (i.e. a few centimeters).

B.2 Isolating Car Objects using Semantic Labels

Semantic segmentation network training. We start with 2D label maps for each input image, obtained with the DeepLab-v2 (Resnet-101) architecture [CPK + 17]. We train it on a subset of the ADE20K dataset [ZZP + 19, ZZP + 17], only selecting labels that correspond to object categories that both exhibit the regions we want to detect and are present in cityscapes. We select both object-level and part-level labels among the available ADE20K labels: car, car wheel, car window. We merge all other car related labels into a single "car" label. All other labels are considered as background. We lter images of this dataset to only keep examples containing instances of those labels. We obtain a training set of 4000 images and a validation set of 500 images. We train our network for 300K epochs 1 . Semantic Labeling MRF. For the nal semantic mask re nement, (end of Sec. 4.4.2), we solve a labeling problem with graph cut, using the constant data cost 0.5 for "car", and an adaptive data cost for "window". Pixels inside the window regions and outliers get cost 0.0 (i.e., likely windows), while pixels outside dilated windows or pixels with high photo-consistency are given cost 1.0. All remaining pixels are given cost 0.52 to encourage smaller window regions. e smoothness term is a color-gradient weighted Po s term, for neighboring pixels with di erent labels.

B.3 Ellipsoid tting algorithm

In this appendix, we present the details of the ellipsoid ing algorithm for windows (Sec. 4.5.2). For each window, we choose 10 reference images where the window is visible and as fronto-parallel as possible. We also ensure that each reference image has neighboring images on all 4 sides. We compare each reference image to its 10 closest neighbors. We compute ORB features [START_REF] Rublee | Orb: an e cient alternative to si or surf[END_REF] for those images ; we use best buddy matching [VLS + 06] and Lowe thresholding [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] (th = 0.95) to establish correspondences. We also discard correspondences whose motion can be explained by the reconstructed window geometry, such as feature points on stickers or scratches on the windows. If a feature point in the reference image is reprojected in a neighbor view such that the distance to the matched point is smaller than 1.5 % of the image dimensions (10px for our typical 4Mpixel images), the correspondence is discarded. We fall back to dense image matching when the average number of successful matches is smaller than 0.1% of the window area (in pixels).

Feature point matching. We use a RANSAC inspired algorithm which computes the total number of inlier feature point correspondences as our score. at is, for each pair of radii (r x , r y ), we count how many matches can be explained by the predicted re ection ow. A match between the reference and a neighbor image is an inlier if the ow predicts the location of the feature point in the neighbor view with no more than a 10px error for our typical 4Mpixel input images. We observed that most side windows are very anisotropic, with a larger curvature radius -nearly planar shape -around the vertical 1 e following hyper-parameters were used for training: batch size=4, learning rate 2.5e -4 , momen-tum=0.9, learning rate decay=0.9 and weight decay=0.0005. 

A p p e n d i x C

Choice of DCT for Parameterization Guiding In Sec. 5.4.2.1, we use the DCT to identify probe regions requiring increased resolution due to small features or high geometric complexity. While any frequency decomposition could be used, we used the DCT for simplicity and its real-valued coe cients. We could have used image depths, rather than normals, as a representation of geometry. However, due to the linearity of the convolution, larger depth di erences naturally produce stronger responses. To avoid this, we use the normal bu er, which contains normalized values by construction. A canonical DCT application subdivides the image into N × N blocks and treats blocks individually, resulting in one response per block. In contrast, we convolve the image with the corresponding N × N DCT basis functions, yielding an individual response per pixel. Note that, therefore, our approach gives the same responses as the block-based method, just at an N 2 higher spatial resolution.