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As a general note, random variables will be written with uppercase letters and there realizations
will be written in lowercase, except for notations from Reinforcement Learning where we accept
the notation use where variables and realizations are confounded. Caligraphed letters will be most
often reserved for spaces. Most-used symbols are reported in table 1 below.

Symbol Meaning
Supervised learning
Y,Y target variable, space
Ŷ , Ŷ predicted target variable, space
X,X contextual information variable, space
Z,Z unobservable (yet) contextual information variable, space
f,F prediction function variable, space
f̂ (data) fitted prediction function
X ∼ P X (a random variable), follows P (a distribution)
L,L′,L′′ losses
Decision process
M Markov Decision Process
S,S state variable, space
A,A action variable, space
T transition function
R,R reward variable, function
V state value function
Q state-action value function
π,Π policy, policy spaces
θ,Θ control variable, space
Miscellaneous
∆= definition
K kernel
N neighborhood function
card cardinal
Gaussian(µ, σ) Gaussian distribution with expectation µ, variance σ2

Uniform(.) Uniform distribution on either a closed space or a finite set

Table 1: Commony used notations. Indexing where omitted as they are multiple ways in which
indexes are used for a given notation, and clearly specified in the text.
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General

In this thesis, we focus on diverse decision-making problems grounded on real-world applications,
amongst which you will find: insulin management for type-I diabetics; an adaptive predictive-
questionnaire for more seamless user experience; proper next-day demand forecasts for running a
production unit.

Some of those applications require a single decision to be made, which we tackle with the task-
driven supervised learning, presented in part I of the thesis. The key idea is that the loss function
in the classic supervised setting is instanciated by the consequences of the forecast used to make
the decision under the context uncertainty. This first major contribution fulfills the thesis project’s
initial aim of going from predictive to prescriptive view.

Now, several problems initially stated in the project consisted in either irregular episodic
decision-making problems or quite cyclic decision-making problems. Both classes of problems
were investigated under the frame of Markov Decision Processes, a well-established mathemati-
cal model, even more so now that (Deep) Reinforcement Learning is trendy. Our second major
contribution, presented in part II, is to translate real-world problems into the vocabulary of Re-
inforcement Learning and Planning community, and build experiments, code and visualization to
those applications. Essentially, we show what the technology can bring to the table to problems
aside Atari games, albeit much less complicated, but of much more importance to the industry.

In the final part of this thesis, we explore special instances of Markov Decision Processes which do
not require agent-enforced exploration to obtain good regret behavior. This part really stands out
from the rest of the thesis, as it is not focused on real-world applications, but more on understanding
why and when exploration is really necessary.

Each part of the thesis is preceded by its own introduction and each chapter is preceded by a
short summary. For anyone interested in an overview of each parts, we provide summaries below.
Following those, we give an overview of the applications studied in the thesis, followed by a note
on the communications related to this project.

Converting predictions into action (part I)

The ability to predict different phenomenons has increased and gained a lot of attention outside
the statisticians / machine learner community. There seems to be this belief that when one is able
to predict this or that quantity, they will systematically have gained some advantage in taking
better decision or strategy. In reality, when prediction is used as a stepping stone for decision-
making, it is much more pertinent to incorporate the decision-making into the construction of the
prediction algorithm. That way, we can actually evaluate the consequences of using the prediction
as input for another program, which is the end goal. As we point out, the best approach, in terms
of performance, is to directly model the decision-making without the forecast module. However,
it is often the case that this would require to remake the decision-making module entirely, if it
would even be possible: imagine a complicated routing optimization program, to which you add
the stochasticity of customer demands.

In the first part of this manuscript, we use an extension of the classic supervised learning
setting to one where a custom loss function, which is provided by the user, comes in the problem
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to describe the consequences of making a prediction under certain circomstances. We call this new
setting the task-driven supervised learning approach, which allows us to describe one-step decision-
making problems i.e. we have some contextual elements available at a time, we make a prediction
and later some decisions based on such prediction, until we observe finally some loss (or reward,
equivalently).

This setting is developped in three different applications: medical wandering (chapter 2),
forecast-based optimisation (chapter 4) and nominations on electricity grid (chapter 3).

Essentially two supervised learning approaches were adapted for this particular setting: decision
trees, built with the custom loss, and function approximation methods in general, such as kernel
approaches and neural networks.

Optimizing action sequences (part II)

Making one decision with important consequences at bay is a difficult task on its own, so imagine
when you have to make decisions on a regular basis, as you would when piloting a production
facility with a storage unit. You have to decide of a production plan and a storage plan to handle
uncertainties related to your production, delivery system, and unexpected customer demands.
In this setting, we rely on Markov Decision Processes and classic algorithms from Planning and
Reinforcement Learning communities to attack our problem.

In the second part of this manuscript, we are interested in four different applications of Re-
inforcement Learning and Planning: two of those are for cyclic decision processes, see chapters 7
and 6, and the two others are for episodic decision processes, see chapters 8 and 9.

Exploration-free problems (part III)

The exploration-exploitation dilemma is a key topic in many decision-making problems where the
system’s behavior is only partially known and needs to be learnt in an efficient manner. This implies
that one needs to tradeoff decisions for exploration i.e. selecting decision with the best estimated
consequence and decisions for exploitation i.e. selecting decision to improve our knowledge as
efficiently as possible. Note that all decisions can be considered on a spectrum of the (exploitation,
exploration) grid, it is not one or the other. However, in specific processes we can show that
enforcing exploration is not necessary to reach good regret behavior, either via simulation of plays
or with regret analysis.

Details on applications

Let us expand on the applications of parts I and II.

Some single-step problems

Medical wandering (chapter 2) Rare disease are quite numerous and specialized centers ex-
ist, the difficulty lies in detecting issues in people’s lives. We propose a medical knowledge-based
approach joint with economic modeling of patient pathway to optimize overall balance between
sending everyone to a specialized center and no one.
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Nominations (chapter 3) On the electricity market, all suppliers nominate one day ahead the
quantity of electricity they are ready to provide, and the next day an operator handles the set-
tlement. Instead of nominating the actual quantity we believe we are going to produce (based on
forecasts), we are integrating directly the loss function (especially the prices involved) to propose
a pertinent nomination.

Forecast-based optimisation (chapter 4) It is quite common that in input of an optimisation
program quantities yet unknown are required and need be forecast. We challenge the classic ap-
proach of building seperately forecast and optimisation problem and rather calibrate the forecast
so as to optimize the final loss function.

Some multi-step cyclic problems

Forecast-based optimisation with storage unit (chapter 6) We re-investigate the problem
of tailoring a forecasting function to its later use in the case where time-dependency is involved:
the initial production facility is now equipped with a storage unit to allow for more flexibility. We
examine how the initial methodology still works and go further by simply by-passing the forecast
issue with an RL approach.

Diabetes (chapter 7) For bolus insulin injections, type I diabetes patients are often recom-
mended to follow a standard bolus rule, handling current excess glucose and meal carbohydrate
intake. This rule has not been justified other than from common sense and overall is very short-
sided as it does not take into consideration the meal and activity plan of the person. Relying on
a simulator and virtual patients, we investigate how to discover an optimal bolus advisor given a
meal plan and later try to propose other meal plans which, optimized jointly with insulin manage-
ment, bring lower glucose variability.

Some multi-step episodic problems

Protocol initial phase (chapter 8) We look at sequential milestones in the run-in of a device
usage: the milestones are there to improve service quality close to the installation such that, in
the long run, the device is used as much as possible by our user.

Intelligent Questionnaire (chapter 9) Acquiring data can be detrimental to user / patient
experience, and so limiting the number of questions asked whilst maximizing the information level
retrieved is an interesting goal for many areas. We develop a questionnaire, allowed a budget of
questions, asking for information in order to maximize predictive power of an unknown target, as
in the supervised learning setting.

Communications

The intelligent questionnaire work was partly presented at the UCAI’20 (User-Centered Artificial
Intelligence) workshop, in September 2020. This workshop aimed at bringing together people from
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the HCI (Human-Computer Interface) community and the Artificial Intelligence community.

The diabetes topic was presented at the Data Science for Health (DSHealth 2020) workshop
which is part of the KDD conference. This workshop focused essentially on research topics which
brought insights related to Health topics.

The medical wandering topic, done as a collaboration with R. Besson and S. Allassonnière, was
accepted to the Journées de Statistiques (JdS 2020), postponed to 2021.

The topics related to nominations and forecast-based optimisation (industry) as well as protocol
initial phase (health) where presented yet only internally at Air Liquide, with the objective of
showing what could be potentially achieved for those topics, and spark off conversations and
debate. Open contributions are in consideration.



Part I

One-step decision-making







Introduction

This part focuses on one-step decision-making problems where quantities are forecasted in order
to take a decision, and some direct feedback is received and the process is repeated a large number
of times. At the base of this chapter is the idea of combining supervised learning algorithms to
loss functions tailored to the subsequent decision-making problem.

There seems to be a belief that "if we are able to predict a target Y , then we can take appropriate
decisions". Appropriate, or even good decisions may be taken if target Y is perfectly known,
however in practice it is rarely the case that we can predict a variable perfectly. Therefore, how
we handle prediction errors i.e. how we define mathematically the cost of these errors plays an
essential role in the predictor algorithm that is built.

Although this a well-known fact from the research perspective, not many flexible alternatives
are proposed by the literature: typically, one might advise to use the mean absolute error instead
of the mean squared error or look at a balanced accuracy instead of its classic version. We aim at
letting the user define their own loss function, such that their predictor is a good predictor based
on their definition. We regard this to be an important contribution also because the topic of the
loss function is but rarely discussed in practice, even though it matters much more than the actual
learning algorithm used.

Three applications were studied in this particular setting. In our first application, we predict
whether somebody has a rare disease, and then choose whether or not we should send them to a
specialized medical facility and therefore we look at the actual consequence (the incurred cost in
that case) of our choice. In our second application, we consider the case where customer demand
is forecasted from the prior day demand and production levels are adjusted to reach minimal costs.
In the third application, we consider production nominations on the electricity market, taken into
consideration the uncertainty over our own renewables production as well as future imbalance and
day-ahead prices.

In all those cases, we look at the direct cost/reward of using a given prediction for a decision
which has no long-term consequence on the system/environment it is interacting with.

Regarding the outline of this part: we start by recalling the classic supervised learning setting,
talk about the importance of loss function choices and how to implement a supervised learning
algorithms with a custom loss function. Then we present the applications, each in their chapter.







Chapter 1

From classic to task-driven
supervised learning

Summary

In this first chapter, we recall the classic supervised learning setting (section 1.1), where
one tries to build a predictor of Y |X based on observed pairs (xi, yi)ni=1. Now, because
this conditional distribution is but rarely deterministic, one must either specify what char-
acteristic of this distribution is desired or choose a loss function, the two being sides of
the same coin. In regression for example, amongst the limited choice of loss functions in
available implementations, we often focus on the expectation (Mean-Squared Error), the
median (Mean Absolute Error) or a quantile (Quantile error). This choice, aside from
being intrinsically linked to the characteristic of Y |X we will learn, is seldom challenged
although it is what describes a predictor as good. We argue for the use of loss functions
which are problem-specific and (therefore) user-defined.
Logically, in section 1.2 we introduce an extension of this classic supervised setting to a
task-driven one, where the user specifies the loss function, which helps to quantify what is
a good prediction in a given context. We also take a look at the case where a prediction
is used as input of some black-box program and take the opportunity to introduce related
works from the literature.
In section 1.3 we provide different practical approaches to build such predictors, which will
be used throughout this part of the manuscript. The two first approaches are based on a
proper calibration of decision trees and the last one relies on surface approximation, which
we will perform using neural networks, although in small dimension it could be performed
by other supervised learning algorithms.
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1.1 Supervised learning and the role of the loss function

1.1.1 Classic supervised learning

Consider the couple (X,Y ) where X, a random vector of dimension p, contains information to
predict Y , a random variable. Often, Y will be reffered to as the target while X will be referred to
as the features or context or predictors. The supervised learning task focuses on learning to predict
Y based on X from a set of independent and identically distributed (i.i.d.) examples (xi, yi)ni=1

which come in batch. The term "supervised" refers to the fact that the target Y is observed, which
stands in opposition to the "unsupervised" setting, where only features X are observed. See chapter
14 of Hastie et al. [2009] for more details on unsupervised learning.

Let us consider the dataset D = (xi, yi)ni=1 i.i.d. realizations of (X,Y ) under P(X,Y ). We write
X and Y as the domains of X and Y respectively and we will assume that X is a p-dimensional
space and Y is a one-dimensional space. We shall write xij the j-th element of xi. Consider Ŷ the
target prediction space, which may match Y or something more complex related to this space.

Finally, consider a loss function L : Ŷ × Y → R+ a function such that L(ŷ, y) which indicates
how bad it is to give prediction ŷ ∈ Y when true value is y ∈ Y. When Y = R, the regression
case, it is common to take the squared error L(ŷ, y) = (ŷ − y)2. If Y = {0, 1}, the binary
classification case, it is common to predict P(Y = 1) and then the log-loss is more classic: L(p̂, y) =
y log(p̂) + (1− y) log(1− p̂).

A classic formulation of the supervised learning task is the following optimization problem:

f∗
∆= arg min

f∈F
E(X,Y )[L(f(X), Y )] (1.1.1)

where F is a family of prediction functions, which map X to Ŷ.
Unless P(X,Y ) is known, the previous equation is often replaced by its empirical version (with-

out learning P(X,Y )):

f̂∗
∆= arg min

f∈F

n∑
i=1

L(f(xi), yi). (1.1.2)

This classic setting is illustrated in figure 1.1. Please note that in this figure, and the ones
following as well, we do not represent the potential links, causal or not, between X and Y , as this
would just overcrowed the figure without adding much inside to it. Evidently, X and Y are not
independent quantities, otherwise the study of Y |X will be quite straightforward.

1.1.2 The loss function: regression case

A classic risk function is the squared prediction error L(ŷ, y) = ||ŷ − y||22, which, when averaged
over observations is termed Mean Squared Error (MSE). It is also common to take its square root
afterwards, leading to the Root Mean Squared Error (RMSE), which allows for comparisons on a
proper scale for the target.

This metric makes some general sense: (a) the best prediction is to get the target exactly, (b)
whether we diverge below or above, the risk is symmetric (without additional knowledge this is a
reasonable assumption) and (c) the risk gets quite high quite rapidly to avoid big deviations. This
choice is of high mathematical interest, as the squared function is convex, and in some parametric
models we can even derive closed-form expressions. It is recognized as one of the most convenient
and widely used metric for regression training.
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Figure 1.1: Classic supervised learning: based on X, a prediction Ŷ = f̂(X) is made. The
prediction is then compared with Y , through loss function L, giving L.

We have two points of contention:

1. it might be that the user, with the insight of how the predictions are later used, might want
to define their own loss function, tailored to their problem

2. it might be that the user considers a "good" predictor as the median of Y |X, or its 75%
quantile or something more complex as: if Y is positive, the focus is on the expectation of
Y |X and if Y is negative the focus is on 25% quantile for example (see illustration below).

Please note that in this work, we will focus on the first point of view, letting the
user define a loss function tailored to their problem.

In both cases, the default choice of MSE is not enough and although those points of view are
different they are intrinsically connected, for example: take

f∗ = arg min
f∈F

E(X,Y )[L(f(X), Y )] ∆= arg min
f∈F

E(X,Y )[(f(X)− Y )2] (1.1.3)

= arg min
f∈F

EX
[
EY |X [(f(X)− Y )2|X]

]
(1.1.4)

and so the optimal solution is to take, in every point x ∈ X :

f∗(x) = arg min
y∈Y

EY |X [(y − Y )2|X = x] = EY |X [Y |X = x] (1.1.5)

which is the conditional expectation of Y given X.

Illustration: we simulated some i.i.d. pairs of (X,Y ) under the following model: X ∼ Uniform([−10,+10])

Y |X ∼ Gaussian
(∑p

j=0 βjX
p, σ
) . (1.1.6)

Three different loss functions were considered, represented in figure 1.2 and defined as follows:
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for any couple (ŷ, y) ∈ (Ŷ,Y),

L(ŷ, y) =


(ŷ − y)2 (Mean Squared Error (Average))

max{.75(ŷ − y); .25(y − ŷ)} (Asymetric Absolute Error (.25 Quantile))

max{y − ŷ; 0}1{y > 0}+ max{ŷ − y; 0}1{y ≤ 0} (Y-dependent Error)

(1.1.7)

Mean Squared Error (Average) Asymetric Absolute Value Error 
 (0.25 Quantile) Y−dependent Error
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2.5

5.0

Y

Ŷ

0.00 0.25 0.50 0.75 1.00
Loss value, normalized by max value on grid

Loss functions depending on couple (Ŷ,Y)

Figure 1.2: Maps of the three losses considered over the grid (Y, Ŷ ).

The first two losses are quite common: the mean-squared error, which we mentionned earlier
and a quantile loss, which, as the name suggests, estimates a conditional quantile. The last loss,
taken arbitrarily, penalizes underestimating whenever Y is positive and penalizes overestimating
otherwise.

In figure 1.3 we plot the data points simulated under model from equation 1.1.6 and added
the predictors computed based on each loss function. The predictors were computed based on
neighbour approximation of the optimization problem, specifically: for a given loss L and a given
x ∈ [−10,+10], we take

f̂(x) ∆= arg min
ŷ∈Ŷ

∑
l∈N20(x)

L(ŷ, yl) (1.1.8)

where N20 maps any x ∈ [−10,+10] to the set of 20 observations from dataset D = (xi, yi)ni=1

which are the closest by comparing the x component in the euclidian sense.
Note that each predictor captures something radically different on the distribution of Y |X,

hence to the question what is a good predictor ? we answer: whatever the end-user declares it is.
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Figure 1.3: Three different predictors of Y |X, one per loss function, based on local approximations.
For the third loss, the predictor tries to estimate the minimum value of Y |X when Y |X tends to
take negative values and otherwise tends towards the maximum of Y |X.
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1.1.3 The loss function: binary classification case

Note that in binary classification, one "only" needs to predict P(Y = 1|X = x), which is a single
number and completely describes the distribution of the target. However, aside from small vari-
ants in loss functions, a classic issue comes from the class imbalance problem: depending on the
proportion of positive (Y = 1) cases in your data, the model trained will reproduce this given
percentage and it is often the case that a rare class is disregarded by the training procedure, unless
some corrections is brought to it. Typically, one can set weights to observations, upsample the rare
class data or downsample the dominant class data. In any case, it comes down to balancing out
the classes, but one can also see it through a different perspective. Suppose the data is balanced,
but the consequences of a false positive and a false negative are not equivalent in real-world appli-
cation. In that case, similar strategies, and others, should be considered such that the output of
the prediction function is aware of the consequences.

Illustration: we simulated i.i.d. sets (X,Y ) under the following model:
X ∼ Uniform([−20,+20]2)

Y |X ∼ Bernoulli(min{p(X); 1})

where p(X) ∆= .81{d2(X, (5, 5)) < 10}+ .71{d2(X, (−15, 0)) < 10}+ .15

(1.1.9)

where
d2 : R2 × R2 → R+

((x1, x2), (o1, o2)) 7→
√

(x1 − o1)2 + (x2 − o2)2.
(1.1.10)

The data generated is plotted in figure 1.4, with coordinates determined based on (X1, X2) and
the color indicative of the class Y . Using a 20-nearest neighbour voting approach, we established
the predictions presented in figure 1.5: for any x ∈ [−20,+20]2, take:

f̂(x) ∆= 1
20

∑
l∈N20(x)

yl. (1.1.11)

Now, from those predictions, one would like to classify a new data point in either class 0 or
1. The conversion from the probability estimated, f(X), to this class is done by thresholding
probability levels: the idea is to optimize in τ ∈ [0, 1]

E [(Cost False Negative)1{Y = 1, f(X) ≤ τ}+ (Cost False Positive)1{Y = 0, f(X) > τ}]
(1.1.12)

where (Cost False Negative) and (Cost False Positive) are positive constants specified by the user.
One can show that, locally, the solution is to take

Ŷ (X) = 1

{
f(X)

(1− f(X)) >
Cost False Positive
Cost False Negative

}
. (1.1.13)

In figure 1.6 we represent the final decisions made for different cost ratios.
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Figure 1.4: Data generated under model of equation 1.1.9.
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Figure 1.5: Predictions of P(Y = 1)
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Figure 1.6: Prediction of class 1 for Y : as the cost of false positives increases (with respect to false
negatives) we are progressively more conservative on our predictions of positive cases of Y .
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1.2 Task-driven supervised learning

1.2.1 Task definition

Considering the supervised learning task expressed above, where we want to build a predictor of
target Y based on X, we said that the risk function L : Ŷ × Y 7→ R measures the quality of
a prediction compared to the actual target. This risk supposedly embodies the consequence of
actually taking a given prediction, not for the sake of prediction itself, but to actually use the
prediction in a specific task, and the risk is then the incurred consequence faced with the reality
(target Y ).

Let Z ∈ Z denote information unavailable at the time of the prediction of Y but revealed jointly
with it and let us write L′ a loss/cost function indicating how bad predicting Y by Ŷ = f(X) under
context (X,Z),

L′ : Ŷ × Y × X × Z → R+. (1.2.1)

This function will be referred to as our custom loss function, which we expect the user to define.
An example of custom loss definition is the one where weights are assigned to observations

depending on observed values of (X,Y, Z) and the loss used is decomposed as:

L′(Ŷ , Y,X,Z) = w(Y,X,Z)L(Ŷ , Y ) (1.2.2)

where w : X × Y × Z → R+ is the weight function and L is a classic error function.
Now, we define our task-driven supervised learning algorithm f∗ as:

f∗
∆= arg min

f∈F
E(X,Y,Z) [L′(f(X), Y,X,Z)] (1.2.3)

where F is taken as family of prediction functions, mapping X to Y. Note the differences with the
classic supervised learning algorith framed in equation 1.1.1.

We assume that we have access to i.i.d. realizations of the triplet (X,Y, Z): (xi, yi, zi)ni=1.
We assume that L′ is known (e.g. user-designed) and we assume that for any subset I of

{1, . . . , n} the following optimization problem is tractable:

min
ŷ∈Ŷ

∑
i∈I

L′(ŷ, yi, xi, zi). (1.2.4)

No knowledge is assumed of the joint distribution P(X,Y, Z).
This new setting is illustrated in figure 1.7.

1.2.2 Special case: forecast as input of BBO

Consider the case illustrated in figure 1.8 where the predictor output is used as input for an
optimization program.

Associated to the optimization problem we consider loss

L′′ : Θ× Y × X × Z → R (1.2.5)

which outputs the cost incurred for true demand y in known context x and unknown context z
taking control parameter θ ∈ Θ, Θ being the control space. Assuming the optimization problem is
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Figure 1.7: Task-driven supervised learning: based on X, a prediction Ŷ = f̂(X) is made. The
prediction is then evaluated based on (X,Y, Z) through loss function L′, giving L.

Figure 1.8: Task-driven supervised learning, forecasting for optimization. Based on X, a prediction
Ŷ = f̂(X) is made, immediately used after by a Black-box program, outputting θ(Ŷ ). This final
output is then evaluated based on (X,Y, Z) through loss function L′′, giving L.
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tractable, we define
θ∗(ŷ, x) ∆= arg min

θ∈Θ
EZ|{X=x,Y=ŷ}[L′′(θ, ŷ, x, Z)]. (1.2.6)

Taking L′(ŷ, y, x, z) ∆= L′′(θ∗(ŷ, x), y, x, z) in equation 1.2.3, we are optimizing the full chain,
since:

arg min
f∈F

E(X,Y,Z) [L′(f(X), Y,X,Z)]

∆= arg,min
f∈F

E(X,Y,Z)

[
L′′
(

arg min
θ∈Θ

EZ|{X,Y=f(X)}[L′′ (θ, f(X), X, Z)], Y,X,Z
)]

.

Now, evidently, the best approach would be to remove the forecasting module and integrate
information X directly in input of the optimisation program. The disadvantage is, evidently, that
it requires changes to optimisation problem, which are generally complex enough as it is. Also,
even if we improve overall costs by integrating the two problems, we could loose flexibility when
new variables need to be considered and potentially much higher computational costs.

1.2.3 A baseline approach

A first approach to building a good predictor under a custom loss function L′ would be to build a
collection of K predictors (fk)Ki=1, focused on many different elements of Y |X e.g. taking standard
loss functions and built as independently as possible. From there, the problem is reduced either
to finding the best predictor:

arg min
k∈K

EX,Y,Z [L′(fk(X), X, Y, Z)]. (1.2.7)

or the best convex combination for example:

arg min
w∈R+
||w||1=1

EX,Y,Z

[
L′
(

K∑
k=1

wkfk(X), X, Y, Z
)]

. (1.2.8)

Evidently this won’t match the best possible predictor built using the loss function L′ but it’s
a first simple step to take into consideration this custom loss.

1.2.4 Related works

In several research communities there seems to be a growing on this research topic1.
In Donti et al. [2017], the authors demonstrate that neural networks can perform very well

when trained as predictors of optimization problems. The results where obtained on three different
operations research problems.

In Carriere and Kariniotakis [2019], the authors apply an end-to-end approach for the optimisa-
tion of their system which is composed of (a) the forecast of uncertain quantities and (b) a trading
problem. This approach requires to dig deep within the problem, for instance they rely on Particle
Swarm Optimization to solve the global problem, which is a much more complex thing to do than
what we propose here. Also, it seems that the forecast in itself cannot be trained seperately from
the final trading problem, which in our case could be.

1As of now, it seems no name has yet been coined on it: on our part, we will most often speak of task-driven
supervised learning.
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In Huang et al. [2019], the authors use a reinforcement learning framework to calibrate the
prediction algorithm as close as possible to evaluation metrics chosen. They manage to direct the
learning towards non-decomposable metrics such as Average Precision-Recall in the classification
setting. The overall procedure seems quite heavy, yet very adaptive.

In Bertsimas and Kallus [2020], the authors worked on a similar problem as defined in equation
1.2.3:

arg min
ŷ∈Ŷ

EY [L(ŷ, Y )|X = x] . (1.2.9)

They propose to adapt classic ML algorithms, notably kNN, CART and random forests to this
objective. This formulation is certainly the closest to ours, although we add the consideration of
unobserved contextual information Z in the loss function.

1.3 Methods

In this section we propose three approaches to approximate f∗ as defined in equation 1.2.3: the
first consists in tweaking the predictions from decision trees terminal nodes, the second consists
in rebuilding decision trees based on the custom loss, and the third consists in estimating the
expected loss for a given predictor, and then finding the appropriate predictor, which is a standard
practice in Reinforcement Learning (approximating Q-values).

1.3.1 Tweaking DTs terminal nodes prediction

Consider a decision tree built to predict Y given X using any approach available. This tree
partitions the space X and assigns to any element x of X a terminal node final_node(x).

For all terminal leaves of the tree, we can recalibrate the associated prediction based on the
training data within the leaf as

y∗
(
(xi, yi, zi)i∈leaf

) ∆= arg min
ŷ∈Ŷ

∑
i∈leaf

L′(ŷ, yi, xi, zi). (1.3.1)

From there, for any x ∈ X , one has the following predictor:

f∗(x) ∆= y∗
(

(xi, yi, zi)i∈final_node(x)

)
(1.3.2)

Note that, aside from changing the loss function and adding contextual information (x, z), this
is classic approach. Note that if we can build decision trees for a specified loss, we can also apply
aggregation methods, typically bagging (random forests).

1.3.2 Building tweaked decision trees

Building a decision tree with a specific loss function can be done following the steps in algorithm
1 as is done classically.
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Algorithm 1: Build Decision Tree with custom loss function
1 input initial data (xi, yi, zi)ni=1

2 input loss function L′

3 input required tree depth max_depth
4 input splitting parameters (e.g. number of data points per split)
5 for d = 0, . . . ,max_depth− 1 do
6 Get list of all leaves at depth d
7 Find best split for each leaves, following loss function L′

8 Save all leaves for the following depth
9 end

10 Compute prediction for each terminal leaves
11 return splits and final predictions

For a given leaf of the tree i.e. a subset of observations, the prediction based on the training
data within the leaf is defined as

y∗
(
(xi, yi, zi)i∈leaf

) ∆= arg min
ŷ∈Ŷ

∑
i∈leaf

L′(ŷ, yi, xi, zi) (1.3.3)

and the according minimal loss is defined as:

sum_losses∗
(
(xi, yi, zi)i∈leaf

) ∆= min
ŷ∈Ŷ

∑
i∈leaf

L′(ŷ, yi, xi, zi). (1.3.4)

Now, the best splitting criterion for a given leaf can be defined as

(j∗, τ∗)
(
(xi, yi, zi)i∈leaf

) ∆= arg min
(j,τ)

sum_losses∗
(

(xl, yl, zl){l∈leaf : xlj<τ}

)
+ sum_losses∗

(
(xl, yl, zl){l∈leaf : xlj≥τ}

) (1.3.5)

Of course, adjustments can be made to balance data size between child splits.
The predictor built is the same as the one previously expressed in equation 1.3.2, except of

course the terminal nodes are different as the tree is built differently.
As was mentionned in the previous case, if we erase (X,Z) from the loss metric, and if we

consider only classic loss metric, as quite often only those are available in implemented packages.
Also, if we can build decision trees for a specified loss, we can also apply aggregation methods,
typically bagging (random forests).

1.3.3 Learning expected loss

Finding f∗ is equivalent to find

∀x ∈ X f∗(x) = arg min
Ŷ ∈Y

E(Y,Z)|X=x[L′(Ŷ , Y,X,Z)]. (1.3.6)

To do so, we could start by approximating

∀(x, ŷ) ∈ X × Ŷ g(x, ŷ) ∆= E(Y,Z)|X=x[L′(ŷ, Y,X,Z)] (1.3.7)
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by a supervised learning algorithm and then solve

∀x ∈ X arg min
ŷ∈Ŷ

g(x, ŷ) =: f∗(x). (1.3.8)

This is presented in algorithm 2.

Algorithm 2: Learn expected loss
1 input initial data (xi, yi, zi)ni=1

2 input loss function L′

3 input J ≥ 1 number of simulated forecasts per observation
4 simulate augmented data (xi, ŷij , yi, zi)i=1,...n

j=1,..J
where ŷij ∼ Uniform[mini∈{1,...,n} yi,maxi∈{1,...,n} yi]

5 compute for each observation the loss L′(ŷij , yi, xi, zi)
6 train supervised learning model for target: loss vector, features: (xi, ŷij)

The choice of approximator can be left to the user, in this thesis we will use kernel methods
for low-dimension problems and neural networks. Kernel methods are reasonable choices as long
as sufficient data is available with respect to the dimension. Most often, it will require to have
dim(Y) + dim(X ) to be not larger than 3.

Note that this approach of learning the expected loss and then optimizing over it is akin to
what is done in reinforcement learning/planning with state-action value function approximations
in the case where immediate rewards matter. The prediction Ŷ corresponds then to the action
taken in state X. Those approaches will be presented in more detail in the second part of this
manuscript, as they will allow us to deal with multi-step decision-making i.e. settings where there
are not-immediate repercussions to our actions.





Chapter 2

Rare-disease patients Medical
Wandering †

Summary

Medical wandering is a frequent phenomenon, whether people have unexplained symptoms,
or actually suffer from a disease which requires a specialist to set a diagnosis. In this work,
we set a framework were an appropriate balance may be found between the wandering
costs and the use of specialized services. This framework is based on a precise degree of
knowledge of which symptoms tend to declare when a patients suffers from a given disease
and most importantly, when. We create an algorithm, which, following the digitalized
and regularly updated medical file of symptoms of a patient, generates an alarm when
the suspected probability of a rare disease is raised, such that the patient may be treated
appropriately and as early as possible.
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2.1 Context

The recent Erradiag1 report from the Rare Disease Alliance showed that in France a patient
suffering from a rare disease2 will have to wait an average of 2 years between the appearance
of the first symptoms and the diagnosis of his pathology. For more than a quarter of them, this
duration will be more than 5 years. This lapse of time, known as diagnostic wandering, is a scourge
for the healthcare system due to the additional economic (multiplication of unnecessary medical
examinations and treatments) and human costs generated (aggravation of the pathology due to
inadequate care).

Patients suffering from a rare disease are particularly affected by erroneous diagnosis due to
the multifactorial nature of these diseases: a rare disease often affects several different organs and
diagnosis therefore requires a multidisciplinary approach. Moreover, a practitioner not practicing
in an expert center will probably never observe most rare diseases during his career. However,
although rare diseases are by definition infrequent, there are many patients, with an estimated
3 million people affected in France and between 263 and 446 million worldwide [Nguengang and
al, 2019]. This is due to the very large number of rare diseases: no less than 9000 are listed in
OrphaNet3, the portal dedicated to rare diseases.

France is a pioneer in the fight against rare diseases, launching in 2005 the first National Plan
for Rare Diseases with the structuring of Centres of Reference for Rare Diseases. The aim of these
multidisciplinary centers is to provide better care for patients suffering from rare diseases. The
Erradiag report reminds us that, despite the progress made following the creation of these centers,
a still too large number of patients are still referred to a hospital structure very late. A quarter
of patients thus wait more than 4 years after the first symptoms appear before the search for a
diagnosis is finally initiated. A better orientation of patients in the healthcare system is therefore
necessary.

At the same time, medical data, in the form of an expert database such as Orphanet or patient
path data (consultations/reimbursements) with the advent of the electronic medical record, have
been structured and are now more accessible for research, making it possible to achieve the objective
of improving patient paths.

There are a number of expert databases for rare diseases, in particular OrphaNet. This database
references more than 9000 rare diseases, and associates them with their characteristic phenotypic
signs. This means that for each rare disease we know the symptoms generally associated and we
know the probability of presenting the symptom knowing the rare disease concerned. This database
is interoperable with HPO [Köhler and al, 2016] which provides a unified vocabulary of phenotypic
signs and associated ontology. Access to patient pathway data is more difficult since it is personal
data. The Rare Disease Plan foresees the deployment of the National Bank of Rare Diseases,
interoperable with HPO and Orphanet, to collect data on patient pathways within rare disease
centers. However, this data does not provide, or only partially, the medical path before entering
an expert center. Patient pathway data (Electronic Health Record in the literature or EHR) are
available online but the data are not labeled with an Orpha identifier for rare disease patients.
Some works such as [Colbaugh et al., 2018, Tremblay et al., 2018] circumvent this difficulty by
annotating the EHR database with expert information (for example if a drug has been taken it is

1L’errance de diagnostic : Erradiag résultats de l’enquête sur l’errance de diagnostic. 2016. 844 patients where
surveyed.

2Rare disease : disease whose prevalence is below the 1/2000 threshold (European standard).
3https://www.orpha.net/consor/cgi-bin/index.php. Accessed on [23/02/2020].



2.2. Modeling 41

probably a rare disease) but such an approach can only be limited to certain rare diseases.
The link between expert databases such as OrphaNet and patient pathway databases is not

easy to operate. Indeed, while OrphaNet associates symptoms (HPO identifiers) with rare diseases
(Orpha identifiers), the EHRs reflect the health pathway (drug reimbursement, general practi-
tioner/specialist consultation). A first challenge is to associate an HPO symptom to an EHR
health event. [Zhang et al., 2019] proposes an NLP approach to annotate the free text of EHRs
with HPO identifiers. We hypothesize here that such a link is possible and that it is thus possible
to combine expert data with clinical data, which is essential in the case of rare diseases where
clinical data alone are not sufficient but allow the introduction of a notion of temporality absent
from Orphanet.

In the section 2.2 we present our mathematical modelling of the decision making problem: to
send or not to send a patient to a specialized center. In the section 2.3 we present the application
of our approach on simulated patient pathways, for which the R code is freely available. We then
follow with a discussion of the results and a general conclusion.

2.2 Modeling

A patient suffering from a rare disease in France has to wait an average of two years before being
diagnosed. This medical wandering is highly detrimental both for the health system and for patients
whose pathology may worsen. There is an efficient network of specialized centers but patients are
only referred to these structures too late. We are considering a probabilistic modelling of the
patient pathway in order to create a simulator that will allow us to create an alert system that
detects wandering patients and refers them to a specialized center while considering the potential
additional costs associated with these decisions.

2.2.1 Patient pathway

We consider an individual to be at risk of contracting a syndrome4 on a given day and assume
that a most one syndrome declares itself during the time period. The patient only suspects the
presence of this syndrome through the onset of symptoms. We note then Si, i ∈ N, the set of
symptoms observed on the i-th day following the onset of the disease and Ht = {Si; 1 ≤ i < t} the
history of these observations until day t− 1. An example of a patient pathway is shown in figure
2.3, top graph.

2.2.2 Symptom types

We assume that the symptoms are divided into three groups:

• Latent symptoms, which are not observable without proper medical examination e.g. cardiac
or neurological malformations.

• Permanently visible symptoms e.g. external malformation.

• Recurrent and transient symptoms. These are symptoms that may recur and then disappear
and reappear e.g. migraines, ear infections.

4Syndrome is considered as a synonym of disease
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For this study we simulated a graph linking syndromes and symptoms, as well as the probability
of symptom occurrence over time, as shown in figure 2.2, top graph. We have assumed that the
times of occurrence follow a Gaussian law, truncated on the left by 0. For chronic type symptoms,
we assumed that the delays between presence/absence of symptoms follow an exponential law.

2.2.3 Decision-making

Based on the history of the individual, and following the onset of at least one symptom, we will
check whether it is relevant for the patient to go to a center specializing in rare diseases.

Specifically, we assume that we are able to establish a predictor f̂ of the probability that an
individual is affected by a rare disease based on his history Ht. More precisely, we will rely on two
fundamental indicators: for each symptom, has it already been observed or not and if it has, how
long ago.

From the onset of the first symptom, we check each day if, yes or no, this probability exceeds
a threshold τ, τ ∈ [0, 1], previously set. If the threshold is exceeded, the patient is sent to the
specialized center and his syndrome, rare or not, will be discovered. There will be a cost to the
specialist physicians and the tests performed. If the threshold is not exceeded, the patient will not
be sent to the specialized center and will be sent at the end of the period for a regular checkup.
We note πτ this procedure which to a history Ht associates the binary decision 1{f̂(Ht) > τ}, and
illustrate it in figure 2.1.

Figure 2.1: Schematic of the process

Consider the events E = "The patient has a rare disease" and A = "We referred him to a rare



2.3. Results 43

Name Label Value
costSpecializedMD cost of rare-disease-specialized MD 200 u
costNonSpecializedMD cost of non-rare-disease-specialized MD 75 u
costWanderingPerDay daily cost of wandering 0.08 u
meanTimeWandering average wandering time 1460 days
aveNbMDConsulted average number of MDs consulted 5

Table 2.1: Problem constants chosen (arbitrarily) for our simulations. The most important is that
a specialized MD is considered to cost much more than a non-specialized MD.

disease center". We can then define a cost for a patient pathway based on these two events:

cost(timeWandering) =



costWanderingPerDay · timeWandering

+costSpecializedMD if E ∩A

costWanderingPerDay ·meanTimeWandering

+costNonSpecializedMD · aveNbMDConsulted if E ∩ Ā

costWanderingPerDay · timeWandering

+costSpecializedMD if Ē ∩A

costWanderingPerDay · timeWandering

+costNonSpecializedMD if Ē ∩ Ā

(2.2.1)

where timeWandering is the time between the observation of the first symptom and the decision
making (if decision making, otherwise last day of the simulation). Detailed costs, listed in table
2.1 can be collected from medical experts.

Please note that by defining Y as 1{"The patient has a rare disease"} and considering the wan-
dering time as an element of X, aside from the transformations of Ht already mentionned (check
if symptom has been observed, if it is how long ago), one may rewrite the previous cost function
with the formalism of chapter 1.2.

Our objective is to determine, for a rare disease predictor f̂ the appropriate τ threshold to
optimize the cost defined in equation 2.2.1. Formally, we seek to find

τ∗ = arg max
τ∈[0,1]

Esyndrome∼ν [cost | syndrome] (2.2.2)

where ν is the probability distribution of the syndromes in the population.

2.3 Results

Full details on the results and simulations presented here can be obtained at github.com/FredericLoge/

patientPathway. Seeds have been carefully established in the code to ensure reproducibility.
To facilitate the study, we simulated a symptom-syndrome graph as well as the probabilities

of occurrence over time of the different symptoms as represented in figure 2.2. Four syndromes
were considered, including one RAS (Nothing to Report) and one belonging to the category of rare
diseases, the syndrome #1. A total of 10 symptoms were considered.

We generated for each syndrome 100 patient pathways over a four-year period, at daily time
steps. These data were used to calibrate a random forest predicting the likelihood that the patient

github.com/FredericLoge/patientPathway
github.com/FredericLoge/patientPathway
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being monitored has a rare disease based on which symptoms were observed, and how long it has
been since the first symptom appeared. Once the predictor is trained, we can estimate the objective
function expressed in the equation 2.2.2 on a fairly fine τ grid, as shown in Figure 2.3. On the
graph on the left, the last graph shows the predictor is action, used as an alarm system. On the
right graph, we can see the average cost as a function of the chosen threshold. As expected, there
is a balance to find between sending everyone in specialized center (τ =0, far left of the graph),
and sending no one (τ =1, far right of the graph).

2.4 Conclusion

In France, a patient suffering from a rare disease has to wait an average of two years before being
diagnosed. This medical wandering is associated with high economic and human costs, even though
expert centers for rare diseases have been set up in the country and give satisfaction when they
are called upon.

We have therefore proposed here a procedure for the creation of an alert system to detect in
databases of patient pathways patients suffering from rare diseases and needing to be referred to
expert centers. We take into account in these decisions the different costs generated by the various
possible actions. This alert system is trained by generating data from a patient pathway simulator
that we build from expert data and whose parameters will have to be calibrated with clinical data.
The first results, obtained on simulated data, appear promising. However, much work remains to
be done on the following points.

Calibrating the Symptom-SyndromeModel This model must eventually be calibrated using
a mixture of expert data and patient pathways. This data can be combined at the cost of significant
work. The aim is to build a module associating an HPO identifier to each health event of an EHR.
An expert annotation should also make it possible to better model the appearance of symptoms
over time: information on the typical age of appearance of a symptom, the typical durations, the
nature of the symptom.

Improve and validate modeling In our patient pathway model, the physician was present only
after the decision to go to a specialized center was made or the simulation time was over. In reality,
the occurrence of a symptom will likely prompt the person to consult a medical professional. It
is imperative that these agents be integrated into the patient pathway. Indicator-based validation
approaches such as the one developed in [Prodel, 2017] will be used.

The control problem We have considered here a particular strategy for redirection to expert
centers that performs a binary choice if a certain threshold of probability is exceeded that the
patient presents a rare disease. A future direction is to formulate the problem through a Markov
decision process where the strategy can be learned by reinforcement learning algorithms based on
simulator data and no longer necessarily having such a specific form.

Acknowledgements : This work has benefited from State aid managed by the French National
Research Agency under the Future Investments programme bearing the reference ANR-19-P3IA-
0001.
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Figure 2.2: (Top) Symptom-syndrome relations, the thickness of the arrow indicating the proba-
bilty that a symptom declare when the patient has the syndrome. Relations with lower than 15%
probability were not traced for readability purposes. (Bottom) Probability of occurence, in time,
of the different symptoms conditionnally to the considered syndrome, day 0 being the day wher
the syndrome settles in.
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Figure 2.3: (Top) Data simulated over 200 days, patient has declared syndrome #1 (a rare disease)
which leads often to symptoms 4 and 7, here symptoms 2 then 9 and finally 7 will be observed
(first three curves), symptom 4 being present but not observed as it is latent. The prediction
of rare disease risk, bottom curve in green, which started since the onset of the first symptom,
symptom #2, crosses threshold 0.5 when symptom #7, which is typical for this disease is observed.
(Bottom). By simulating large samples of patient pathways over different syndromes, we were able
to establish the average cost, as defined in section 2.2.3 conditioned on the actual threshold used
to decide whether or not to send the person in a rare disease center. In this bottom graph, the
cost is normalized on the [0;1] scale, since the values we used for simulation are arbitrary, hence
the nominal value is irrelevant. At the extreme left, we have the cost of sending all the patients in
rare disease center and at the extreme right, sending no one to the specialized center.
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This work was produced jointly with Rémi Besson and Stéphanie Allassonnière, accepted at the
Journées de Statistiques 2020. The code is available at github.com/FredericLoge/patientPathway.

github.com/FredericLoge/patientPathway






Chapter 3

Nominations on electricity
market†

Summary

In this application we consider the problem of nominations on electricity market, where
suppliers announce one day ahead how much they are going to produce. Then, the suppliers
get paid for the amounts announced as well as any surplus supplied. If the suppliers fail
to supply their announced level however they owe money. All those prices are unavailable
at the time of the decision-making, yet are at the heart of it : they correspond to the
unobserved context Z in our previous setting and so, in this application, we shall focus
into taking into consideration context elements in the loss function, and defining it customly
of course.
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3.1 Electricity markets

Let us describe briefly how electricity markets work: the central players are

• Electricity producers who sell the energy produced by their own power plants

• Suppliers who purchase electricity and sell it to customers

• Traders who buy to resell (or inversely)

• Consumers

Finally, the Transmission System Operator (TSO) is the agent responsible for ensuring the
security of the power grid. Typically, they will ensure that supply and demand match, so as to
avoid supply interruptions as much as possible.

In the electricity market, the notion of nomination is central: where nominating is the act
of strategically announcing a quantity of energy to be sold (or bought) on the Day-ahead, based
on a priori information on the Day-ahead price, forecast of electricity generation or consumption,
etc. Typically, each market player makes quarter-hourly forecasts of the amount of energy it
will generate or consume the next day. On this basis, these players will then make strategic
nominations: they submit generation and demand offers. Two parameters define this offer: the
quantity of energy and the purchase or sale price. The market is cleared once per predefined period
and a single market price is determined. This is called the day-ahead or spot market. The intraday
market allows the agents to readjust their positions.

Another very important phase of the electricity market is the imbalance market, where the
imbalances between nominated and supplied levels are cleared. The imbalance price can be seen
in two different ways:

• When the supply/demand ratio deviates, it generates costs because the system operator
(TSO) must ensure the stability of the system by activating operational reserves.

• From the point of view of the direct actors of the network, a production or consumption
different from the announced or necessary quantity, leads to a need to sell or buy back
electricity on the market. A simple example is the case of a producer who would generate a
quantity (say 2 Megawatts) greater than his forecasts. The predicted quantity is sold at the
day-ahead price, and the additional 2 MW is sold on the imbalance market at a price called
the imbalance price.

A simple illustration is provided in figure 3.1.
In here we focus on a simple prediction model, which would output the quantity to nominate,

taking into consideration the day-ahead prices as well the imbalance prices. Those prices will not
be used as features, but directly within the loss function. Note that we won’t consider a storage
facility in this problem and the continuous intraday market.

In the literature there has been many works, especially around Renewable Energy Systems, to
find strategies for the different electricity markets, most of which model the problem as a multi-
step stochastic decision problem, using stochastic programming, see [Corchero et al., 2011, Plazas
et al., 2005] or reinforcement learning approaches, see [Bertrand and Papavasiliou, 2020, Boukas
et al., 2020, Jiang and Powell, 2015].

Note that when working with renewables, there is increased uncertainty of production and
therefore supply, hence it complexifies the bidding strategies.
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Figure 3.1: Illustration of the electric market procedure: from 0:00 to 12:00, the day-ahead spot
market is opened for producers to nominate their selling quantities for the next day. The operating
day, there is also an intraday market where new trade operations can be made - ignord in our
applications. Once all the energy trades have been agreed, the Transmission System Operator
handles the market equilibrium ("Activation of balancing energy") and the imbalance settlement
is handled just afterwards.

In Meisel and Powell [2017], several instanciations of energy systems equipped with a storage
device and connected to markets are studied with different algorithms to find optimal policies.

3.2 Context

We consider that we are an electricity supplier, renewable-based, connected to the Belgian grid
market, for which data can be found at elia.be.

Every day d − 1, before 12 am, as any supplier does, we nominate a quantity which we aim
at producing for every hour of the next day. We write (nominationd,h; 1 ≤ h ≤ 24) the set of
nominations announced in unit u, (productiond,h,q; 1 ≤ h ≤ 24, 1 ≤ q ≤ 4) the set of production
levels in unit u over the quarters of the next day, which of course are not known with complete
certainty at day d− 1, 12 am.

The following day, the Transmission System Operator handles the equilibrium of the market
in terms of offer and demand to set the price of energy : the day ahead price and imbalance
costs. The day ahead price, written day_ahead_priced,h, is the energy price associated to day
ahead nominations. The imbalance costs are associated to differences between the nomination and
production levels: when we produce less energy than nominated, we have the obligation to buy
from the market the difference, at the negative imbalance price, written imbalance_negatived,h,q.
When we produce more energy than nominated, we can sell it at positive imbalance price, written
imbalance_positived,h,q.

The electric market procedure is illustrated in more details in figure 3.1.
Note that the difficulty in this problem lies in (a) the uncertainty over our production (consider

renewables) and (b) the uncertainty over future prices. Otherwise, if there were no uncertainty
within those elements, the decision-making problem is relatively simple and need not be framed in
a data-driven perspective.

We write Xd the set of information available at day d − 1, 12am max, in order to decide on

elia.be
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Name Label Time step
production Our production Quarter
production_forecast Forecasted production, available at 12am day prior Quarter
nomination Nomination, decided before 12am day prior Hour
day_ahead_price Energy price for day ahead nominations Hour
imbalance_positive Imbalance price for excess energy supplied Quarter
imbalance_negative Imbalance cost for energy not supplied Quarter

Table 3.1: Variables involved

nomination.
Finally, we consider the following loss function, for a chosen day d:

L′
(
Ŷ = (nominationd,h)h=1,...24, Y = (productiond,h,q)h=1,...24

q=1,...4
, X = Xd,

Z = (day_ahead_priced,h, imbalance_negatived,h,q, imbalance_positived,h,q)h=1,...24
q=1,...4

)
= −

24∑
h=1

(
day_ahead_priced,hnominationd,h︸ ︷︷ ︸
Amount received based on nominations

+
4∑
q=1

imbalance_positived,h,q max{productiond,h,q − nominationd,h/4; 0}︸ ︷︷ ︸
Amount received based on extra-production supplied

−
4∑
q=1

imbalance_negatived,h,q max{nominationd,h/4− productiond,h,q; 0}︸ ︷︷ ︸
Amount owed based on unsupplied nominations

)
.

3.3 Data and working assumptions

Retrieved data We retrieved the following data from elia.be for each day d, hour h and
quarter q from 2013-01-01 to 2020-02-29 :

• Wind production and day-ahead production forecast :
wind_productiond,h,q,wind_production_forecastd,h,q

• Solar production and day-ahead production forecast :
solar_productiond,h,q, solar_production_forecastd,h,q

• Imbalance costs : imbalance_negatived,h,q, imbalance_positived,h,q

• Day-ahead price : day_ahead_priced,h.

Features for decision-making We consider the following feature set, based on time information
and day-ahead renewables production forecasts:

Xd =
(
(wind_production_forecastd,h,q, solar_production_forecastd,h,q) 1≤q≤4

1≤h≤24
,

dayOfYear(d),dayOfWeek(d)
)

for day d, with dayOfYear() and dayOfWeek() extracting respectively the day of year and week
from day d.

elia.be
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Working assumption, related to production We assume that we hold a fixed percent p of the
wind production over Belgian territory, small enough such that our actions would not perturbate the dynamics of the grid regulation.
As such, our production, for any triplet (d, h, q) is

productiond,h,q = p · wind_productiond,h,q.

Now, from the definition of the loss function, L′ scales with the couple (nomination,production)
i.e. for any a ∈ R+,

L′(Ŷ = a · nomination, Y = a · production, . . .) = a · L′(Ŷ = nomination, Y = production, . . .).

As such, the value of p does not impact our analysis, as long as p is small enough that is does
not impact the dynamics of the market. To simplify further results and equations, we forget this
proportion, without loss of generality.

3.4 Results

Train-test split We split the available data by temporality : data strictly prior to 2018 was
used as training and as test we relied on the year 2018.

Algorithmic details We first build a classic random forest, trying to predict (productiond) tar-
get variable based on available features (Xd). Practically, we relied on the R package randomForest

to build the algorithm from the training data and the forest had the following hyperparameters :

• ntree, number of trees grown: 100,

• nodesize, minimum size of terminal nodes: 20,

• maxnodes, maximum number of terminal nodes: 10

• mtry, number of variables randomly sampled as candidates at each split: 3.

The obtained algorithm is termed afterwards "Agnostic random forest". The prediction of produc-
tion level of each terminal node of each tree grown within the random forest is then recalibrated
based on the protocol presented in section 1.3.2 taking as custom loss L′. The obtained algorithm
is termed afterwards "Task-driven random forest (a)". Growing completely the set of trees with
loss L′ as presented also in section 1.3.2, we obtain algorithm "Task-driven random forest (b)". All
preceding algorithms provide forecasts for production, which, in our usecase, are nominations.

Baseline We consider as a baseline the case where production level for next day is known at
current day and we nominate at that level. We call this the "Production-based oracle".

Result summary In table 3.2 we report summary statistics of losses L′, in kilo euros, when we
nominate based on the agnostic random forest, the task-driven random forest and the production-
based oracle. Two general observations:

1. the task-driven random forest (a) manages to reach almost the average level we would have
with the production-based oracle (-152.15 against -152.73 kilo euros) and highly improves
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upon distribution indicators: compared to either agnostic random forest or the production-
based oracle, Q1 and Q2 are better and Q3 is only slightly worse

2. the task-driven random forest (b) manages to beat the average level set by the production
oracle and it is an improvement in Q1, Q2, Q3 over either the production-based oracle and
agnostic random forest. However, it gets beaten by the task-driven random forest (a) over
Q1 and Q2.

From an application perspective, this means that in this case one can do as good as production-
based oracle with a relatively straightforward approach, as not much tuning of hyperparameters
was done.

Statistic Agnostic RF Task-driven RF (a) Task-driven RF (b) Production-based oracle
Min. -2210 -2431 -2236 -2186
1st Qu. -206 -300 -256 -217
Median -93 -169 -134 -100
3rd Qu. -39 -35 -44 -40
Max. 990 3235 2221 220
Mean -141.46 -152.15 -153.24 -152.73

Table 3.2: Summary statistics of losses, in kilo euros, rounded, when we nominate based on the
agnostic random forest, the task-driven random forest and the production-based oracle. Focusing
on the mean losses, we observe that task-driven random forests reach a level on-par with the
production-based oracle, and even slightly better when the custom loss is used as splitting criterion.

Detailed results A natural question is the following: when the random forest was tweaked, how
did the predictions change ? We answer this with the two graphs of figures 3.2 and 3.3. In the
first graph, we crossed the predictions made by the agnostic random forest, the task-driven random
forests and the production observed. On the second graph we crossed the losses incurred when using
predictions as nominations. The predictions from the agnostic random forest correlate strongly
and positively (0.93) to the true production, which is not surprising as it is what it is trained to
do. However, the predictions made by the task-driven random forest (a) are strongly negatively
correlated to the true production (-0.84) i.e. jointly the more we tend to produce electricity, the
less we should nominate. For the task-driven random forest (b), predictions are uncorrelated to
true production (-0.095). This simply takes into consideration the crucial factor: energy prices. On
the graph below are plotted the losses for each of the four nomination strategies. We can observe
that the loss distribution of the task-driven random forests are quite different than the others, it
is typically way less asymmetric and low concentration (there is more mass on negative values)

3.5 Conclusion

As we could witness in this application, simply changing the loss function used in the trees ter-
minal nodes allowed to recalibrate the forecasts such that the performance reached with those
forecasts matched the performance reached when perfect information is used. This is an empirical
demonstration of the fact that choosing a proper loss function matters much more than predicted
« perfectly » the target variable (and is, conveniently, a much more attainable goal!). Please note
that (a) no storage was involved and so no time dependencies are implicated here, which drastically
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Figure 3.2: Correlation between predictions made by our three methods and the oracle: the
agnostic random forest predictions are highly positively correlated with the actual production
(0.932). Interestingly enough, the task-driven random forests provide very different predictions
(only correlated at 0.222 between them): the first is highly negatively correlated with the actual
production (-0.837) and the second is quite decorrelated (-0.115). It is even more interesting seing
how the average losses observed are on-par between the two task-driven random forests-based
nominations and the oracle production-based nominations.
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Figure 3.3: Correlation between losses made by our three methods and the oracle. We can observe
that the losses between the two task-driven random forests are highly positively correlated (0.892)
although the correlation between their prediction was only 0.22. We can also observe, when
comparing the three random forests to the production oracle, that for the task-driven random
forests, the losses tend to be more represented for negative values and for high positive values,
which goes in the same way as the results presented in table 3.2.
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simplify the decision problem -> deep rl would be the way to go then and (b) the optimal strat-
egy is not to nominate your true production, although we used it as a baseline. This application
allowed us also to show the flexibility and limits of our task-driven approach.







Chapter 4

Forecast-based Optimization †

Summary

In this chapter, we focus on an application where the forecast is used as input of an
optimisation program, as we have introducted in section 1.2.2. We set aside contextual
information (X,Z) for simplicity. Specifically, we consider the case of setting production
plans one day ahead based on the forecast of customer demand, which is based on prior
day demand. The problem considered is instantiated 10 times, splitted in proper train-test
samples and the three approaches presented in section 1.3 were applied.
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4.1 Context

In this application, we consider a production unit which is expected to supply a customer with an
uncertain demand.

System details Consider a production unit, which at discrete time t:

• is operated at level θt ∈ [θmin; θmax], set by the operator

• takes in a quantity It = I(θt) = a · θt + b of energy (e.g. electricity) in order to satisfy the
level of operation required by the operator

• outputs a quantity Pt = P (It, θt) = c · I(θt) of product (e.g. oxygen).

We hope to match with production Pt the demand Yt of our customer (we consider an aggregated
customer for simplicity), unknown at the time of the decision of θt. The optimal decision would
be based on the actual demand Yt, but we don’t have access to it, so we will forecast this demand
based on prior demands. This system is illustrated in figure 4.1.

Figure 4.1: Illustration of the context considered in application 1: production plans require some
forecast of customer demand, which are revealed at the end of the day only, a classic setting in
real-world applications.

Cost function For control θ and demand y, we define the cost function as follows:

L′′(θ, y, x, z) = d · I(θ) Input cost

+ e ·max{y − P (I(θ), θ); 0} Unmet demand cost

− f ·min{y;P (I(θ), θ)} Revenue.

Note that in this simple setting, we did not consider any observed or unobserved context (x, z
respectively). Based on this definition of the cost function and prior information of I() and P ()
we have

θ∗(ŷ, x, z) = max
{

min
{
ŷ/c− b
a

; θmax

}
; θmin

}
.
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Writing ymax = c·(a·θmax+b), ymin = c·(a·θmin+b) and finally bounded : ŷ 7→ max {min {ŷ; ymax} ; ymin}
we have

L′(ŷ, y, x, z) =

(d/c− e− f) · bounded(ŷ) + e · y if bounded(ŷ) < y

(d/c) · bounded(ŷ) + (−f) · y if bounded(ŷ) ≥ y
.

This loss is represented in figure 4.2 for a given choice of (a, b, c, d, e, f).

Figure 4.2: Loss function L′′ representation: loss depending on control θ and actual demand. This
representation holds for our choice of parameters (a, b, c, d, e, f) = (300, 100, 0.9, 10, 100, 20).

Customer demand We assume that customer demand (Yt)t∈N follows an Auto-Regressive
model of order 1, AR(1), model with linear transformation:

∀t ∈ N, Zt = αZt−1 + σεt (4.1.1)

Yt = β0 + β1Zt, (4.1.2)

where εt|Yt is a standard gaussian noise. Note that the relationship between Yt−1 and Yt can be
directly expressed by:

Yt = αYt−1 + (1− α)β0 + β1σεt. (4.1.3)

The AR model is a basic econometric model, justified by the idea that from one day to another,
the customer demand depends linearly on itself and on external exogenous gaussian shocks in
demand. It is a special case of the (S)AR(I)MA model, but a classic to start with when no
seasonality and no particular trend is present.

Problem instantiation We took parameters (a, b, c, d, e, f) = (300, 100, 0.9, 10, 100, 20), α =
0.8, (β0, β1) = (238.5, 10.79) and σ2 = 5.
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4.2 Results for tweaked decision trees

We applied different learning algorithms to predict Yt+1 based on Yt: linear model (LM), CART
and random forest (RF). For the task-driven approaches we computed the linear model, which
was optimized using grid search analysis and is used here as baseline. We also considered the
random forest with tweaked decision trees. The objective here is to demonstrate the pertinence
of random forests for the task. The generative model presented in section 4.1 was simulated ten
different times, 2500 observations saved for training and testing each. In figure 4.3 we plotted for
each model the distribution of losses observed on the ten different instances and in figure 4.4 we
plotted, for one instance picked arbitrarily, the model predictions against true values, and drawn
over the points are their smooth versions to observe average behaviour.

Performances, figure 4.3 The graph of figure 4.3 shows normalized losses distributions over
the ten samples, in terms of RMSE (blue) and our specific function L′ (red, termed Task-Driven
in the graph) for the different models considered, which are color-coded by group. We tried
different versions of the algorithms, mainly either changing the optimization criterion, indicated
as Task pred, in the case of random forests changing the splitting rule, indicated as Task split,
and potentially adding constraints for regularization purposes, indicated by the term constr.. The
losses are normalized by loss category, subtracting the oracle performance (which is aware of true
demand) and dividing by the max of the category and we then sorted the algorithms by performance
over loss L′. From this figure, we learn three things.

(1) An overall look at the figure tells us that an unavoidable tradeoff occurs between a good
performance in RMSE versus L′; indeed one can observe that the losses correlate negatively.

(2) One may notice that, apart from the default random forest and the random forest with task
prediction, all the methods with default optimization criterion (models 5-9 counting from the left)
performed equally well on RMSE standard and all the methods with task specific optimization
criterion (models 1-3 counting from the left) performed equally well on the Task-Driven standard.
Those similar performances stand from the choice of the underlying model (linear) as well as the
choice of custom function L′.

(3) The reason the default random forest stands out is that on our model instances, the default
parametrization made the random forest overfit quite a bit. As such, constraining the sample size
and maximum number of nodes (relying on OOB error estimates ; models with mention constr.)
allows us to reach similar performance even without a specific task split procedure, which implies
that the splitting criterion does not impact much the performances over this specific problem. Note
that we could see that the RF was overfitting as it quite poorly performed under RMSE criterion,
which would seem odd in comparison with a CART algorithm.

Comparing predictions to true values Now, let us examine what actually happened to the
predictions themselves, plotted in figure 4.4. We considered one of ten instances of our experiment,
plotting the data points with a high transparency, because actual comparisons between the nine
models simultaneously are relatively impossible on this single graph, instead we added for each
model an interpolation, computed with LOESS, of the relationship between estimated and true
value, and one can observe that the models gather in essentially two clusters: the three lines above
the others are the methods calibrated using the custom loss, the task prediction methods. The
green line, representing model "RF w/ classic split, task prediction" is slightly under all others,
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Figure 4.3: RMSE and Task-Driven losses, in blue and red respectively, for different versions of
algorithms: linear model (LM), CART and random forest (RF). A color code allows the reader
to distinguish easily amongst the three types of algorithm. The scores were obtained on ten
replications of the experiment presented in section 4.1. To facilitate the reading of this graph, we
sorted models by their average performance with respect to the Task-Driven metric, exposing the
negative correlation with results obtained on RMSE metric. Please note that CART algorithm was
calibrated using package rpart and that the random forest "RF–" was calibrated using package
randomForest and was the basis to build "RF, Task pred -". All the other models were fully coded
by us.
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although it was built for task prediction as well. This model was built by recalibrating the random
forest computed by function randomForest of the same name package, which we found out from
the previous results it was largely overfitting on the data, as it had the poorest RMSE score,
even worse that CART, which is unlikely if properly parametrized. Hence this forest was actually
probably too deep and prone to overfitting, whatever the final prediction function used, which is
why it stands between the two clusters. The second cluster, which are the lines below, gathers all
the models built for the classic average squared error function. So overall, we can see that the shift
from a good-RMSE to a good-Task-Driven predictor happened essentially by an average upward
shift of the predictions in this particular case, which was expected from the loss function form.

4.3 Results for learned losses

Data samples, figure 4.5 Similarly to the preceding subsection, we rely on the generative
model presented in section 4.1 to generate ten times train and test data batches of 2500 points
each: (Yt−1, Yt)2500

t=1 which let us compute the batch L′(Yt−1, ŷ) for our (random) selection of
predictor ŷ as presented in figure 4.5. Overall 500 data batches were built based on the initial
training data, in order to explore forecast values.

Approximating the expected loss, figure 4.6 The challenge is then to approximate the ex-
pected loss from those data points, in order to find the best predictor in each case. We approximate
the loss using LOESS with three different window parameters (0.02, 0.1 and 1) and a feed-forward
neural network. The feed-forward neural network is composed of four hidden layers of 20 neurons
each, taking as input past demand and forecast of upcoming demand, and outputing the expected
loss. The neural network was calibrated using rmsprop optimizer and using early stopping based
on validation set (data was half-split between training and validation). The neural network was
fed all the data batches, but for LOESS, because it is so computationnally expensive, we fed it
only eight data batches. As we will see afterwards, it is not so detrimental to its performance.
In a particular instance out of the ten we present the predicted average loss in figure 4.6 based
on the four different methods. The optimal (in this case minimal) losses found by past demand
Yt−1 are represented by overlaying red points. One can easily notice that because of the shape of
the loss function, the kernel regressor approach tends to be less satisfying than the neural network
approach, because (a) its performance is overall poorer (b) the choice of bandwidth matters quite
a bit. This is mostly due to the fact that the kernel is radial, and that the bandwidth choice should
be adaptive to the function.

Performances, figure 4.7 The graph of figure 4.7 shows normalized losses distributions over
the ten samples, in terms of RMSE (blue) and our specific function L′ (red, termed Task-Driven in
the graph) for the different models considered, which are color-coded by group: the kernel approach
(kernel), for which different window parameters where tried, the neural network (nnet), and the
linear model (classic and with task loss). The losses are normalized by loss category, subtracting
the oracle performance (which is aware of true demand) and dividing by the max of the category
and we then sorted the algorithms by performance over loss L′, as previously.

The methods 2-4 counting from the left, which learnt the expected loss and then derived the
optimal prediction managed to match the linear model with task loss performances "LM, Task
pred". The kernel with a large window value managed to performed poorly on the Task-Driven
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Figure 4.4: Estimated versus true values to predict, on test set of one out of the ten instances of
the experiment presented in section 4.1. Because the test set is relatively large (n = 2500) and
so is the number of models, we plotted the (true value, estimated value) data points with a high
transparency value and added smoothed lines, to be compared with the first plane bissectrice. This
graph allows us to understand how, in average, predictions were tweaked to satisfy the custom loss
indicated.
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bandwidth has, as always, significant impact on the result obtained: if too small, the map obtained
clearly overfits the data points and if too large, it underfits too much, which is detrimental in
performance.



68 Chapter 4. Forecast-based Optimization †

loss (still better than the classic linear model) but quite worse on the RMSE loss. This shows that
for an appropriate approximation of the expected loss, this method performs quite well.
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Figure 4.7: Normalized scores, RMSE and Task-Driven, in blue and red respectively, for the
different approaches to learning the expected loss and thereby deriving the optimal forecast point:
the kernel approach (kernel) and neural network (nnet). The linear model with classic and task
prediction used in the preceding experiment served as baseline in this case. As previously, the
scores were obtained on ten replications of the experiment presented in section 4.1. To facilitate
the reading of this graph, we sorted models by their average performance with respect to the
Task-Driven metric. The neural network was calibrated using package keras and the kernel were
computed using loess method from package stats.

Comparing predictions to true values, figure 4.8 In order to complete the preceding result,
we plotted the predicted vs true value observed for the different techniques tried out, adding
smoothed lines of this bivariate relationship, in order to make comparisons easily. Unsurprisingly,
the methods which performed similarly to the agnostic linear model behaved similarly in average,
especially so for the neural network. The kernel with a large window (span = 1.0) clearly stands out
of the lot, suggesting quite large predictions because it oversmoothed the expected loss function.
This explains its poor performance in both RMSE and task metrics presented above. This graph
is a show of proof of the validity of the second approach presented in 1.3 to solve the task-driven
supervised learning problem.
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Figure 4.8: Estimated versus true values to predict, on test set of one out of the ten instances
of experiment presented in section 4.1. Because the test set is relatively large (n = 2500) and
so is the number of models, we plotted the (true value, estimated value) data points with a high
transparency value and added smoothed lines, to be compared with the first plane bissectrice. This
graph allows us to understand how, in average, predictions were tweaked to satisfy the custom loss
indicated. In order to compare those results to prior experiment, we kept the agnostic and task-
driven linear models as baseline elements.



70 Chapter 4. Forecast-based Optimization †

4.4 Conclusion

Under a basic auto-regressive model of customer demand, we have shown how the task-driven
approach we proposed earlier handles the non-quadratic loss function: basically, it considers a
linear predictor from past demand, but with a much higher intercept than its true value, which
helps to lower the risk of not supplying the customer, which costs much more than producing too
much product and venting. Indeed: the input cost is 10 units, the revenue is of 20 units and
the unmet demand cost is 100 units. Because we where in a simple setting, we where able to
compute the best linear coefficients for this particular function by grid search and saw that the
generic task-driven approach matched those predictors. It gives us confidence towards applying
such techniques for more complex system dynamics.



Part II

Multi-step decision-making







Introduction

In the first part, the decisions taken had no future impact, while in this part, they do.
Take for instance the insulin management problem for people with type-I diabetes who self-

inject insulin to regulate their Blood Glucose levels prior to meal times. Insulin dosage must take
into consideration not only the current BG levels and the carbohydrate intake during upcoming
meal, but also the future meals and activities planned.

Another cyclic problem is the forecast for optimisation problem, where the producer’s facility
has a storage unit available. As such, for a proper scaling, it is sometimes interesting to produce
slightly more and store to cover for higher demands which may come later and sometimes it is
interesting to produce less and rely on our storage to do the job. As a reminder, the difficulty of
this problem initially was that customer demand for a given day is only revealed at the end of the
day hence the storage can’t be used as an immediate compensator for prediction uncertainty.

In our third application of this part, we consider the installation of a home healthcare device
and follow the patients through a run-in phase. The challenge is to take proper actions at specific
milestones such that the device is increasingly well tailored to the patient : ideally, the patient
is comfortable, the device is adjusted and used in the best possible way. In comparison to the
previous applications, this is an episodic problem, in the sense that there is a defined end of the
run-in phase and we focus on a bounded time frame, whereas in the diabetes case for example we
do not limit ourselves in time (even though, adjustments can and should be made along the way
obviously).

Lastly, we focus on the process of acquiring data to make a specific prediction, and so we built
an intelligent questionnaire, which is provided a budget of question and decides sequentially which
question to ask next (based on already observed responses) in order to maximize predictive power
based on a subset of the features. This work was initially motivated by an alarm system used in
Healthcare, but can pretty much be applied in many different settings where user interaction can
be injured by too much questions and we want to predict something. This application is episodic
as well.

In all those applications, we will assume that we have at our disposal a simulator either built
from medical knowledge (diabetes) or by specifying arbitrarily the environment rule specifics. We
will focus on a planning approach: simulate data, model, find optimal policy. Only in the intelligent
questionnaire setting will we investigate the Reinforcement Learning approach, where the question
of exploration is truly brought up.

After presenting in the first subsection the basic modeling tool for such problems (Markov
Decision Process) and the different algorithms to derive optimal policies we will present the four
applications, starting with the two episodic problems and finishing with the cyclic problems.







Chapter 5

Markov Decision Processes and
algorithms

Summary

Markov Decision Processes have become an increasingly popularized with the rise of Deep
Reinforcement Learning to tackle sequential decision-making problems, as we are about
to unleash in this part of the thesis. They can be seen as a quite generic framework for
problems where actions are taken either at regular time intervals or at specific milestones.
They represent basic agent-system interaction where an agent takes an action, the system
returns some reward and some information on its state. In this chapter, we present this
mathematical model and the different algorithms we are going to use in our applications
to find proper decision-making approaches.



76 Chapter 5. Markov Decision Processes and algorithms

5.1 Markov Decision Process

Consider the Markov Decision Process Puterman [2014] M ∆= (S,A,T,R) which describes the
behavior of a system’s state with which we interact through actions and perceive rewards through
our interactions. The state-action-reward sequence shall be written (St, At, Rt; t ∈ N). The first
two defining elements ofM are respectively the state and action spaces. T denotes the transition
function:

∀(s, a, s′) ∈ S ×A× S T(s, a, s′) = P(S1 = s′|S0 = s,A0 = a) (5.1.1)

and R denotes the reward function:

∀(s, a, s′) ∈ S ×A× S R(s, a, s′) = E(R0|S1 = s′, S0 = s,A0 = a). (5.1.2)

We write Π the set of deterministic policies, where a policy π ∈ Π is defined as a function
mapping S to A.

We also write Πstochastic the set of stochastic policies, where a policy π ∈ Πstochastic is defined
as a function mapping S ×A to [0, 1] under the set of constraints:

∀s ∈ S
∫
a∈A

π(s, a) = 1. (5.1.3)

A Markovian model As the name of this class of mathematical models states, the transition
kernel and reward functions are defined by conditioning on present state and actions, basically
assuming that it contains the necessary information to sum up the past. Mathematically, it satisfies
the Markov property:

P(St+1|St, At) = P(St+1|At, St, At−1, St−1, . . . , A0, S0)

and
E(Rt+1|St, At) = E(Rt+1|At, St, At−1, St−1, . . . , A0, S0)

for any t ∈ N.
This assumption has the following implications. The state is the information summarizing your

history in order to know what actions are available and what subsequent states you might fall in for
a given action. As a consequence, it is considered as the minimum information needed for proper
decision-making. Let us give some extreme examples: consider the case of the insulin management
problem, where a proper prescription should actually depend on the actual level of blood glucose.
If this level is omitted, what happens to the problem ? well, we would basically prescribe a good
average insulin level, regardless of whether the patient is in hyper or hypo glycemia. The same
thing happens when we omit important variables in the feature set in supervised learning, our
predictions are simply incredibly bad. Here, we look at the consequences of such an overlook.
Note that the "let’s do the best with what we’ve got mentality" is common with Kaggle challenges
and such, but this is a reminder we should be weary of the data we should retrieve.

A time-homogeneous model Although not specified in its title, we assume that throughout
time, the transition and reward function is set once and for all. If time is an important factor,
such as the time of the day or the year, periodic element, this element should be included in the
state information, for the same reason as above. Also, we tend to look at how things evolve over a
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long period of time, but it stands to reason, especially in modern times, that things change with
time. As such one must be careful to choose a time window during which it is quite reasonable to
state that the environment dynamics are stable. Evidently, alarm strategies can be put in place in
order to check that such dynamics are stable, which we discuss in the last chapter of this thesis.

5.2 Classic examples

Let us give some classic examples of Markov Decision Processes.

Navigation problem: an episodic problem

The state represents your actual location, the actual can be a basic (north,south,west,east) or a
direction on a directed graph mapping intersections of the city (Djikstra algorithm uses the same
principle). In figure 5.1, we take the example of directions, where to each vertex is an associated
reward indicative of the cost of taking this road with a uniform unit measure (e.g. mileage). It is
common to choose one of the edges as a terminal city, to define when the tour ends. The objective
is, starting in any of the edges to choose the best possible sequence of vertices to take. In this case,
the problem is to be able to evaluate the best possible path out of an exponentially-growing list of
sequences when the graph gets larger. There is no uncertainty with respect to the transition, so
the transition kernel are dirac functions and the reward function can be stochastic if we consider
for example the time taken to go from this edge to another or deterministic if we consider the
number of kilometers.

Figure 5.1: Example of MDP: mobility on MAP

The cliff problem, a classic in RL literature, is somewhat similar to the above navigation problem
up to some minor changes. The scheme is represented in figure 5.2. The state still represents the
physical position, the action represents the four cardinal positions. The transitions are however
taken as stochastic, meaning that if we intend to go in a certain direction there is a non-zero
probability we might in another. The reward function is taken as deterministic and indicative of
the risk taken by the walking agent: the closer you walk to the cliff, there is more risk for you,
in this case falling; instead you can take a safer path. This is interesting because it points to the
problem of the multiobjective reward, combining two rewards with non-comparable scales: safety
of the person, their time.

Note that both problems end at some point (not too far in time i.e. not waiting death of the
agent), those are called episodic problems.



78 Chapter 5. Markov Decision Processes and algorithms

Figure 5.2: Example of MDP; mobility on cliff

Daily-life model: a cyclic problem

In figure 5.3 we propose a model for how we interact in our environment. In contrast with the
previous cases, this is not episodic, as we will continuously go back to the same setting, day after
day. As such we must take into consideration the long/mid-term rewards.

Figure 5.3: Example of MDP; daily decision-making

5.3 Value functions

Consider, for any given policy π ∈ Π, the state value function Vπ which is defined as

∀s ∈ S Vπ(s) ∆= Eπ

[+∞∑
t=0

γtRt

∣∣∣∣S0 = s

]
(5.3.1)

for any chosen γ ∈ [0; 1]. This γ parameter is called the discount parameter or factor, and is
essentially here to ensure that the value function is truly defined and does not diverge. It can be
interpreted as a parameter weighing the importance of long-term vs short term rewards, however
one must not forget that from this definition, short term is always favored to long-term (equal
term can be reached only in the case of episodic problems, in which case you can eventually tweak
the reward as you like, typically in games where big rewards are offered when you’ve won or very
bad if lost).

Objective: find the optimal policy

∀s ∈ S π∗(s) ∆= arg max
π∈Π

Vπ(s). (5.3.2)

Several other objectives exist, such as the limit average reward, albeit less classic ; see Sutton
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and Barto [2018]. The same reference provides a good overview of the different branches of Re-
inforcement Learning. Many communities have been working on those problems, an interesting
attempt to unify domains is proposed by Warren B Powell [Reinforcement Learning and Stochastic
Optimization: A unified framework for sequential decisions].

Notice the following Bellman equation: for any s ∈ S,

Vπ(s) ∆= Eπ

[+∞∑
t=0

γtRt
∣∣S0 = s

]
= Eπ

[
R0
∣∣S0 = s

]︸ ︷︷ ︸
reward at t = 0

+γ Eπ
[
Vπ(S1)

∣∣S0 = s
]︸ ︷︷ ︸

future rewards

=
∫
a∈A

π(s, a)
(∫

s′∈S
T(s, a, s′)R(s, a, s′)ds′

)
da+ γ

∫
a∈A

π(s, a)
(∫

s′∈S
T(s, a, s′)Vπ(s′)ds′

)
da.

This recursive expression is at the root of many resolution approaches of problem stated in
equation 5.3.2. The key principle here is termed dynamic programming and basically refers to the
fact that a decision problem can be decomposed subsequently in subproblems which span over
time.

Many algorithms focus on state-action value functions defined as follows: for any state-action
couple (s, a) ∈ S ×A, we take

Qπ(s, a) ∆= Eπ

[+∞∑
t=0

γtRt|S0 = s,A0 = a

]
. (5.3.3)

5.4 Value-based methods

We take our focus on algorithms used to find an optimal policy which are based on the value
functions.

We also discuss model-based elements and some basic approaches for exploitation/exploration
tradeoff when we are actively using a policy, acquiring new data and refining such policy in the
process. In all algorithms we will have to initially pick a discount factor γ, γ ∈ [0, 1], preferably
not at the bounds.

5.4.1 Value-iteration algorithm

Consider a discrete (or discretized) state space and an action space which may be either continuous
or discrete. By knowning/learning the transition and reward functions (T,R), one can optimize
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Vπ over π using the following value-iteration algorithm 3.

Algorithm 3: Value Iteration Algorithm
1 choose number of iterations K
2 input transition and reward functions T, R
3 initialize V0(s) = 0 ∀s ∈ S

/* note: Vk denotes the estimate of the value function at iteration k */

4 for k = 1, . . . ,K do
5 for s ∈ S do
6 Vk(s)← maxa∈A

∑
s′∈S T(s, a, s′)R(s, a, s′) + γ

∑
s′∈S T(s, a, s′)Vk−1(s′)

7 end
8 end
9 return VK(.)

Given an estimate VK(.) of the state value function Vπ∗(.), our approximation of the optimal
policy is given following:

∀s ∈ S π∗(s) ≈ arg max
a∈A

∑
s′∈S

T(s, a, s′)R(s, a, s′) + γ
∑
s′∈S

T(s, a, s′)VK(s′). (5.4.1)

5.4.2 Q-Learning algorithm

In the case of discrete state and action spaces, and assuming we have observed a set of state-action-
state-reward sets, we can estimate the state-action value functions using the tabular Q-learning
algorithm 4.

Algorithm 4: Q-Learning Algorithm, tabular case
1 initialize Q(s, a) = 0 ∀s ∈ S, a ∈ A
2 input state-action-state-reward sets (St, At, St+1, Rt; t = 1, . . . , T )
3 for t = 1, . . . , T do
4 Q(St, At)← Q(St, At) + η (Rt + γmaxa∈AQ(St+1, a)−Q(St, At))
5 end
6 return Q(., .)

With sufficiently enough data processed, the optimal policy is approximated as follows:

∀s ∈ S π∗(s) ≈ arg max
a∈A

Q(s, a). (5.4.2)

It is standard practice to provide in input a large number of independent sequences of state-
action-state-reward rather than a single trajectory, as this method requires theoretically infinite
exploration in terms of space and action spaces to provide convergence guarantees.

Now, suppose the state is continuous or high-dimensional, in which case the previous tabular
case does not properly treat the variable or is in practice difficult: the previous update rule must
be modified. Consider that the state-value function is actually parametrized by vector w (e.g.
neural network, linear basis), which we then write Qw. The corresponding algorithm 5 updates
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the weight with new data batches.

Algorithm 5: Batch Parametric updates
1 initialize w0 at random
2 pick learning rate η
3 choose number of iterations K
4 for k = 1, . . . ,K do
5 Collect batchk based on rule: At = arg maxa∈AQwk−1(St, a)

6 Update wk ← wk−1 + η
∂

∂w

[∑
t∈batchk (Rt + γQw(St+1, At+1)−Qw(St, At))2

]
7 end
8 return wK

Given an estimate of state-action value function QwK , we have the following approximation for
the best possible action:

∀s ∈ S π∗(s) ≈ arg max
a∈A

QwK (s, a). (5.4.3)

In some cases, it might be a good idea to freeze for a certain number of iterations the current
state-action value function estimate so as to not make this estimate diverge. This is a problem
typically referenced under the deadly triad term, making reference to the three elements which,
jointly lead to learning instabilities: bootstrapping, off-policy approach, function approximation.
Using a frozen set stabilizes target value and applying replay memory breaks temporal dependencies
between transitions. This strategy has shown good results for instance in Mnih et al. [2013] where
Deep Neural Networks were used as function approximators for Atari game controllers.

5.4.3 Backward algorithm

If states are somehow hierarchical and episodic (depth K) e.g. tic-tac-toe problem, we can iterately
learn the optimal value functions by starting with the last states, then the second to last states,
then the third to last states and so on and so forth.

We write Slayer:k the space of states of layer k, for any k ∈ {1, . . . ,K}.

Specifically, the procedure starts by solving

Vπ∗(sK) = max
aK∈A

E [RK |SK = sK , AK = aK ] (5.4.4)

and sequentially solve, for k ∈ {K − 1, . . . , 0}

Vπ∗(sk) = max
ak∈A

E [Rk + Vπ∗(Sk+1)|Sk = sk, Ak = ak] , (5.4.5)

substituting sequentially estimates of value functions for the following layer. In this case, one
can either directly solve those optimization problems via function approximation or by estimating
model components.

Algorithm 6 properly describes the process properly. Note that functions (fk)Kk=1 represent
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state-action value functions, indexed by layers.
Algorithm 6: Learning value functions

1 learn fK as f̂K , where

fK : Slayer:K ×A → R

(s, a) 7→ E[RK |SK = s,AK = a]

2 for k ∈ {K − 1,K − 2, . . . , 1} do
3 learn fk as f̂k, where

fk : Slayer:k ×A → R

(s, a) 7→ E

[
Rk + max

a′∈A
f̂k+1(Sk+1, a

′)|Sk = s,Ak = a

]

4 end
5 return set of networks : {f̂k, k ∈ {1, . . . ,K}}

Based on the set of networks, we have, for any layer k ∈ {1, . . . ,K}:

∀s ∈ Slayer:k π∗(s) ≈ max
a∈A

f̂k(s, a). (5.4.6)

5.5 Model-based methods

We provide here estimates of the transition and reward functions, stated in equations 5.1.1 and
5.1.2. Although in practice we often have access to multiple state-action-reward sequences, we
formulate the estimates with a single sequence, which keeps notations simple, without losing much
generality. This single sequence is written with initial notations (St, At, Rt; t ∈ {1, . . . , T}).

5.5.1 Discrete case

Assuming that state and action spaces are discrete, and that the number of transitions observed
T −1 is sufficiently large (and with sufficient diversity) with respect to card{S×A}, one can use a
counting estimate for transitions and a average estimate for rewards. Consider a state-action-state
set (s, a, s′) ∈ S ×A× S, the transition estimate would write:

T̂(s, a, s′) = card{t ∈ {1, . . . , T − 1} : St+1 = s′, St = s,At = a}
card{t ∈ {1, . . . , T − 1} : St = s,At = a}

(5.5.1)

and the reward estimate would write

R(s, a, s′) =
∑
t∈{1,...,T−1}Rt1{St+1 = s′, St = s,At = a}∑
t∈{1,...,T−1} 1{St+1 = s′, St = s,At = a}

. (5.5.2)

Such estimates, albeit straightforward suffer three linked disadvantages.
First, in a non-discrete setting, they would require the user to choose a discretization of the

state and action spaces. This is a non-trivial task as, with more precise states, you get closer to
the optimum model specification and therefore finding the optimal policy, but you would certainly
need a lot of data to make this very fine grid work. On the other hand if you take an imprecise grid,
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you will surely have enough data to produce precise enough estimates, but those will be highly
biased, and therefore lead to suboptimal policies.

Second, each cell of the grid is considered somewhat independently to the others. Indeed, the
model estimates for two cells (even adjacent) come from different data points. Surely there is a
way to leverage points on adjacent cells to make more precise estimates.

Third, rarely visited states suffer from poor estimates compared to others. Hence the grid should
actually depend on the behavior of the MDP if we want to estimate things in a homogeneous ways
(adaptive estimates in non-parametric regression). Augmenting the number of simulations is not
always sufficient e.g. if the state is a gaussian variable, then the extremes are always rarely visited,
whatever the number of observations is.

Now, a parametric, or at least semi-parametric, approach can help alleviate those issues, as
the structure hypothesized provides better convergence rates than any non-parametric approach
presented above.

Another classic extension of prior model estimates is to bring structure by relying on kernels
and neighborhood distances in order to quantify similarities between different states and between
different actions, such that when an observation is acquired, it brings information not only to a
specific state-action-state set, but to several ones.

5.5.2 Continuous case

Consider now that state and action spaces can be continuous. In this case, the kernel and neigh-
borhood function approach makes even much more sense than in the discrete setting.

Let us consider the transition estimate for example. Let NA and NS denote two neighborhood
measures which compare pairs of actions and states respectively. Now, for state-action-state set
(s, a, s′) ∈ S ×A× S, we would take the following estimate of the transition probability:

T̂(s, a, s′) =
∑
t∈{1,...,T−1}NS(St+1, s

′)NA(At, a)NS(St, s)∑
t∈{1,...,T−1}NA(At, a)NS(St, s)

. (5.5.3)

As was pointed out previously, instance-based approaches, such as kernels and neighborhood
functions suffer from the curse of dimensionality: the amount of data required grows exponen-
tially with the dimension and in particular, point-to-point comparisons in a high-dimension space
become meaningless since no point is particularly far or close to another. Thus, in the case of
high-dimension, one might want to impose some structure via (semi-)parametric models, so that
estimates are reliable.

5.6 Outside pure value-based methods

Previously, we have focused mainly on value-based (improved sometimes with model knowledge so
model-based too) approaches.

Another approach to find the optimal policy is to actually directly optimize the policy: policy-
based optimization, Pontryagin principle. The most famous algorithm to do so is REINFORCE,
see Sutton and Barto [2018]. The idea is to parametrize the policy and take the gradient over its
parameter vector, and perform gradient descent.

A few years ago, was proposed the idea to merge the two approaches of value and policy-based
methods to make a better algorithmic procedure: there was born the Actor-Critic.
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Around the same time there was the emergence of using neural networks as value-function
approximation, which helped tremendously for, at the time, complex tasks such as Atari Games,
game of Go, StarCraft, etc.

5.7 Going online

Let us assume that we are at iteration t of the algorithm, we dispose of estimates of the Q value
function, written Q̂t. We write s the current state and A the action we are going to pick. Let us
give a few adaptations of the strategies we have seen with bandits.

No exploration Note that playing greedy strategy is

A|s = arg max
a∈A

Q̂t(s, a). (5.7.1)

Uniform The simpler exploration strategy, is to pick at random, without any apriori a point in
the action space

A|s ∼ Uniform(A(s)). (5.7.2)

where we wrote A(s) as the action space acceptable for state s. Note that the famous ε-greedy
strategy consists in splitting the iteration times between not exploring and picking at random,
which is a legitimate approach.

Softmax Consider the action space discrete. There is the softmax strategy, which consists in
taking

A|s ∼ Multinomial
(

p̂(β)
||p̂(β)||11

)
(5.7.3)

where vector p̂(β) is defined as the following set of pseudo-probabilities:

p̂(β) ∆=
{
∀a ∈ A, exp{βQ̂t(s, a)}

}
(5.7.4)

with β ∈ R+ the softmax parameter. Depending on the value chosen for β, the strategy ranges
from picking actions uniformly at random, case β = 0, to the hardmax / greedy strategy, with
β → +∞.

In the continuous action space case, we can take similarly

P(A|s) ∝ exp{βQ̂t(s, .)}. (5.7.5)

The clear advantage of this technique is that, for a reasonable choice of β, we do not explore
on poorly performing state-action couples, but we do not center too much on best ones, unless
they very much distinguish themselves from the lot. However, it must be noted that estimate
uncertainty was not taken into account here. Which leads us to the Upper-Confidence Bound
approach (UCB).

Upper-Confidence Bound (UCB) Consider a discrete state-action space and let nt(s, a) be
a counting function of the number of cases where action a was taken in state s. Then, the UCB
criterion is defined as

Q̂t(s, a) + αB(nt(s, a), t) (5.7.6)
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where α is positive and indicates the balance between exploitation and exploration, as function
B is decreasing with its first argument and increases with its second one. A classic choice is the
following:

B(nt(s, a), t) =

√
log(1 + t)
nt(s, a) . (5.7.7)

The n−1/2 is the classic estimation error bound in statistical learning, and the log term helps slowly
increasing exploration with time, in case anything was missed.

Note that this approach, contrary to the softmax, is deterministic, hence might lead to less rapid
exploration, but this largely depends on the parameter choice, and at least when UCB discards an
action it is because it has been tested enough to be sure that it is not a potential best. Please note
also that one can combine the two approaches by substituting in the softmax pseudo-probabilities
the estimate by their upper-confidence bounds, in order to take into account our uncertainty upon
it.

Bayesian Closely related to UCB and softmax, the idea is that we have a prior on the distribution
of Q-values for example and we update it with data. Rather than picking some maximum, we draw
from each action posterior distribution and then pick the action with maximum output. Evidently,
the distributions which are superior, in the stochastic sense for example, will be more likely to be
chosen.







Chapter 6

Forecast-based Optimization,
involving a storage unit †

Summary

In chapter 4, we considered a production unit requiring us to predict customer demand
based on prior days. In this chapter we extend this application by adding a storage unit to
the production site, so that it may be used in low-demand days as a substitute for direct
production, and in high-demand days, where demand actually exceeds production capacity
of the site.
Two approaches are considered to tackle this problem: either optimizing the demand fore-
cast which comes as input of the proper optimisation program handling both production
and storage control or optimizing directly production and storage based on the prior day
demand.



88
Chapter 6. Forecast-based Optimization, involving a storage

unit †

6.1 Context

In this application, we consider a production unit, linked to a storage facility, which is expected
to supply a customer with an uncertain demand.

6.1.1 Bibliographical elements

Equipping a production unit with a storage device allows more flexibility: we can supply more at a
given time by unstoring, we can take advantage of variability in energy prices (when price is quite
low, tend to produce more and store; when price is quite high, tend to produce less and unswore
to fulfill supply). Of course, storing and unstoring comes at some cost. In any case, those possible
adjustments require a proper optimization problem. Note that in the energy sector, storage devices
are particularly interesting to handle uncertainties related to renewable generation.

In most cases, a clear knowledge of the system dynamics (storage include) is required to solve
this problem. Let us give a few examples. In Wang et al. [2009], authors study a Reservoir
Management problem combining in a smart way system information (model-based approach) and
data assimilation. In Sarma et al. [2006], the authors formulate the production optimization
problem following a constrained nonlinear programming problem, with the constraints computed
following a model for the system dynamics. In Haijema et al. [2007], the authors use MDP model
and simulation to provide simple rules to handle blood platelet production and storage, which are
precious and perishable.

Finally, the difficulty of using forecasts as input of an optimisation program has been studied
in the references mentioned in section 1.2.2.

6.1.2 Details

Let us extend the context presented in chapter 4.
Consider a supplier, which at discrete time t:

• chooses a production level θprodt ∈
[
θprodmin ; θprodmax

]
• buys input quantity It = I(θprodt ) = a · θprodt + b of energy (e.g. electricity) in order to satisfy

the level of production θprodt decided upon

• produces a quantity Pt = P (It, θprodt ) = c · I(θprodt ) of product (e.g. oxygen)

• chooses a storage plan θstoret ∈ {store, unstore, none} such that:

– if none is selected, the customer is supplied all the production Pt: Supplyt = Pt

– if store is selected, 10% of production Pt is stored (and vented if maximum capacity
is reached) and 90% is supplied to the customer: Supplyt = 0.9 · Pt

– if unstore is selected, we supply all the production Pt and 10% of current storage:
Supplyt = Pt + 0.1 · storaget

This context is overall illustrated in figure 6.1.
The objective of the supplier is to match the supply Supplyt to the demand Yt of our customer,

unknown at the time of the decision of θt = (θprodt , θstoret ), specifically, we consider the following
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Figure 6.1: In comparison with the initial forecast-based optimization problem introduced in part
I, we added a storage unit to the production facility. At each time step, we plan a production level
and whether we add / reduce storage or leave it be. To facilitate comparison with the previous case
the lines added are blue colored and we tried to seperate the entities with grey areas (customer
side, production facility, storage facility) and added a purple label to each area.
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loss function:

L′′(θ, y, supply) = d · I(θprod) Input cost

+ e ·max{y − supply; 0} Unmet demand cost

− f ·min{y; supply} Revenue

(6.1.1)

for the demand y, supply supply and control parameters θ. Note that in our case the amount
supplied directly depends on the current storage level and the couple of parameters θ.

As we only know demands up to time t − 1 included, hence we will consider a decision made
based on prior day demand Yt−1 and storage level at beginning of time t: storaget. The storage
unit should allow us to handle high-demand levels, higher than production capacity for a day, and
potentially low-demand days, allowing to lower production and simply unstore product.

6.1.3 Two approaches

Let γ ∈ (0, 1) denote a discount factor, a parameter left to the user to be chosen.

Forecast demand, then plan production

We consider the classic optimization problem, which assumes that demand at time t, written Yt
is known, and chooses how to best operate the industry (production level and storage decision) in
order to maximize overall returns in the long-term:

π∗1((y, s)) = arg min
π∈Π

E

[+∞∑
k=1

γk−1L′′(θk, Yk, Supplyk)|Y1 = y, storage1 = s

]
(6.1.2 (Model 1))

later used in conjonction with a prediction function of Yt based on its antecedent Yt−1 :

θ∗t
∆= π∗1((f̂(yt−1), storaget)). (6.1.3)

This model will be referenced afterwards as model 1 and will be tested in three cases:

1. perfect prediction (i.e. knowledge) of Yt,

2. an agnostic prediction based on Yt−1 and

3. a task-driven prediction based on Yt−1.

To simplify the experiments we will focus on the class of linear models for the prediction functions.

Integrate demand uncertainty in production plan

We will test a second model which takes directly in input the previous demand Yt−1, rather than
Yt, later substituted by its prediction. This model is defined as follows:

π∗2((y, s)) = arg min
π∈Π

E

[+∞∑
k=1

γk−1L′′(θk, Yk, Supplyk)|Y0 = y, storage1 = s

]
. (6.1.4 (Model 2))

and can be directly used to select control parameters:

θ∗t
∆= π∗2((yt−1, storaget)). (6.1.5)
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This approach, referenced as model 2 afterwards, consists in changing directly the optimization
problem rather than treating it as black-box and optimizing the input that is the forecast. Putting
optimization issues aside, the minimum reached by model 2 should be lower than the minimum
reached by model 1.

6.1.4 Process algorithm

The complete process described above and in figure 6.1 is unfolded in algorithm 7.
Algorithm 7: Process considered in this application.

/* choose between model 1 and model 2 for control parameters */

1 choose control approach using_forecast ∈ {false, true}
/* iterating over T time steps */

2 for t = 1, . . . , T do
/* select control parameters */

3 if using_forecast then
4 Ŷt = f̂(Yt−1)
5 θt = π∗1((Ŷt, storaget))
6 else
7 θt = π∗((Ŷt−1, storaget))
8 end

/* produce, (un)store and supply */

9 Pt = P (I(θprodt ), θprodt )
10 if θstoret == store then
11 Supplyt = 0.9 · Pt
12 storaget+1 = min{storaget + 0.1 · Pt,MAX_STORAGE}
13 else if θstoret == unstore then
14 Supplyt = Pt + 0.1 · storaget
15 storaget+1 = 0.9 · storaget
16 else
17 Supplyt = Pt

18 storaget+1 = storaget

19 end
/* observe loss */

20 Lt = L′′(θt, Yt, Supplyt)
21 end
22 return (storaget, θt, Supplyt, Yt, Lt)Tt=1

6.1.5 Demand scenario

We chose a demand scenario such that a storage unit would be justified i.e. on some days, the
demand exceeds daily production capacity and therefore would require us to anticipate and store
as much product as possible. On the other hand, the scenario allows for some low days also, such
that we can actually produce in excess and store the product. Specifically, we considered an AR(1)
demand model with auto-correlation 0.3 and bounded within [60 ; 400]. We considered a storage
of size 200 units, whilst we can produce within range [90 ; 360]. For the loss function, similar
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constants were used.

6.2 Result

To learn π∗1 and π∗2 we generated 5000 state-action-state-reward observations (in a random uniform
manner for a good coverage) and used a neural network as function approximator following the
generic Q-learning scheme, running it through 100 iterations, with γ = 0.95. The network is a
fully-connected feed-forward network of five layers of 30 neurons each, taking as input the state
and action (dimension 4: (storage, demand), (production decision, storage decision)) and outputing
the Q-value estimate (dimension 1). We start the learning with a learning rate of 1e-4, optimizer
rmsprop, 500 epochs maximum, and check for validation loss for early stopping (half of the data is
left for validation). To simplify the process, we considered that production levels where by quarter
(0%, 25%, etc). The test set initial state was generated randomly and for 1000 time steps.

In table 6.1 we present the average losses observed for the different models. Evidently the model
with the knowledge of the true demand is the best one and consists of our baseline. It appears that
once again using a task-driven approach for prediction is much more advantageous than taking an
agnostic prediction for a specified task. Here, we also tested model 2, which bypasses the forecast
task and directly changes the optimization problem. Such approach manages slight gains from the
initial model with task-driven prediction.

As means of comparison we added the case where no storage unit is actually available, which
corresponds to the application presented in part I. The resolution approach was also done using
a neural network, although it wasn’t ultimately necessary. Reproducing similar conditions allow
us here to observe that in cases where the demand is forecasted (model 1 with agnostic or task-
driven prediction) the average loss is higher when the storage is used than when it is never used,
although, when the demand is known, there is significant loss drop. This means that because the
optimization program was not built initially for a forecasted demand, the fact that we mis-use it
with respect to its training leads to poorer performance in the setting where more flexibility is
provided to the system, which is quite an interesting observation.

Three distinct points are to be made:

• comparing model 1 with perfect prediction performance with and without storage unit, we
can see what the storage unit flexibility allows to bring in terms of pure loss for long-term
demand

• comparing model 2 performance with and without storage unit, we can see what the flexibility
from the storage unit allows to bring regarding long-term demand but also in handling the
uncertainty of the prediction

• the models using forecasts performed better when no storage was involved

In figures 6.2 and 6.3 we present the production level and storage decision recommended by
model 1 and 2 respectively. We also added as illustration an example of data sequence observed
following model 1 under perfect information in figure 6.4.
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Figure 6.2: Model 1, providing the best production level and storage change couple considering
current storage level and current customer demand Yt. As one would expect, the higher the
demand the higher the production, with the current storage level having a quite small effect. At
each step where we choose to augment production we always store, then we don’t then we unstore.
The non-smoothness of this heatmap is due to the fact that we are using a neural network as
function approximation which is smoothness-free. However, we should check for proper parameter
convergence in order to finalize the approximation.
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Figure 6.3: Model 2, providing the best production level and storage change couple considering
current storage level and prior customer demand Yt−1. Aside from small artefacts, it is common to
produce at, at least, 75% of production capabilities. At the apparent frontier between producing
75% and 100% we see the same changes in storage decisions, yet much less smooth and relatively
unclear (see the ghost-like shape). When demand is quite low and storage is not high enough, we
exploit this situation by storing some product.
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Model Average loss on test set (StD)
with storage unit without storage unit

Model 1 with agnostic prediction 2426.6 2116.6
Model 1 with task-driven prediction 150.6 133.6
Model 2 111.7 125.7
Model 1 with perfect prediction -1266.5 -1183.0

Table 6.1: Average losses (and standard deviations) observed on test sets in models with sorage
unit and without. The case where there is no storage unit is the one presented in the first part,
although here the resolution approach is slightly different.
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Figure 6.4: Illustration of the system controlled under Model 1 with perfect information. This
allows us to see the dynamics of the storage unit imposed by the Model.
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6.3 Conclusion

Similarly to the no-storage setting we considered in the first part, using a prediction based on a
custom loss helps bridging the gap between the agnostic prediction performance and the perfect
prediction loss. Because we added a storage and therefore a temporal side to the problem, we
considered also not using a prediction module, but directly focusing on the joint storage and
production decision problem. This led to even better than a simple task-driven approach. However,
one should not forget that in practice, decision problems are already so complicated that building
them based on initial features might be complicated, especially when target dynamics are much
more complex e.g. large time dependencies, seasonality.
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Summary

In the past two decades, Reinforcement Learning (RL) approaches have been given a lot
of attention in many fields, often requiring substantial amounts of data. In [Kovatchev
et al., 2009], the authors developed the T1DM simulator of the gluco-insulin interaction
for diabetes management which was later approved by the FDA (Food and Drug Admin-
istration) as a substitute for preclinical trials (see The Epsilon Group [2017] for details on
the development timeline and general information).
In this study, we propose a model-free approach to leverage a pertinent bolus advisor i.e.
one which in the long-term performs well with regards to some reward function dependent
on blood glycemia. We find smooth but more complex rules than the bolus advisor, more
pertinent to a given meal scenario. Such result points to the idea that one could not only
use this tool for insulin dose recommendation to a patient, but also to nutritional and
potential physical activity program recommendation for an ideal blood glucose profile and
overall positive health.
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7.1 Context

Diabetes is a major disease in which the patient require insulin injection with adapted dosis via an
insulin pump or injection pens. In this study, we challenge the classical dosis rule for patients of
type I diabetes who do not have access to continuous monitoring. This corresponds to a patient
producing low (if any) insulin, which makes blood glucose regulation through external insulin
injection absolutely mandatory, in contrast with type II diabetes which is related to the progressive
degradation of pancreatic activity, often related to nutritional issues. Note that diabetes of type I
appears at a much younger age than diabetes of type II.

For those patients, the control of the blood glucose (BG) level is done with two type of injec-
tions: basal and bolus insulin. Basal insulin corresponds to a base level of external long-acting
insulin. This base level substitutes the deficient pancreatical insulin production. The second type
of injection, the bolus, are faster acting injections, made in order to help regulating carbohydrates
(CHO) ingestion during meals.

The bolus injections are often taken around 10 to 30 minutes, prior to meal consumption. The
amount of insulin should depend on the current blood glucose BG and the level of carbohydrates
CHO that is going to be ingested. The goal is to maintain the blood glucose in the normoglycemic
range [70 mg/dL; 180 mg/dL].

The most classical formula is given by the following piecewise linear formula : for a given
measure of blood glucose BGand an intake of carbohydrates CHO, one should take :

bolus(CHO,BG) = CHO
CIR + max(BG− BGtarget, 0)

CF ,

where the carbohydrate to insulin ratio (CIR) and the correction factor (CF) are specific to each
individual, can be evaluated by medical tests and usually are fluctuant during the day.

Such a rule makes sense, we compensate meal glycemic intake as well as excess of current
blood glucose, and is widely used in practice. However nothing is to attest for its performance in
a sequential decision-making problem : what happens when we follow this rule several days and
weeks ? Can’t we find a more specialized rule ? Around the artificial pancreas topic, there has been
multiple studies relying on proportional integrative derivative (PID) methods, model predictive
control (MPC), Optimal control and Fuzzy techniques [Bothe et al., 2013]. Reinforcement Learning
(RL) approaches progressively appeared in the early 2000s and more so in the following decade,
with different use cases.

Authors of Ngo et al. [2018] for example investigated through RL methods the optimal insulin
injection policy i.e. how to best deliver insulin to the body in order to have the best possible
impact on glycemia. This was based on Insulin-Glucose kinetics model and gave insight into how
to design a drug.

In Javad et al. [2019], authors apply Q-Learning algorithm on a cohort, aiming at finding an
appropriate range of insulin dose to prescribe. They aimed at personalizing the treatment by
representing each patient through some relevant information : Past Glycated Hemoglobin, BMI,
Activity level, Alcohol usage, all discretized. Reward is then expressed depending on how Glycated
Hemoglobin Evolved. One may note that the personalization is of course limited to the state
definition. Also, such studies are difficult to conduct for any researcher, since they are conducted
on real patient data and not simulated ones.

Based on a complex diabetes simulator, the authors of Daskalaki et al. [2013] proposed a double
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Actor-Critic algorithm in the case of continuous glucose monitoring. They controlled and updated
simultaneously the basal rate and the carbohydrate to insulin ratio, relying on the standard bolus
advisor to prescribe bolus insulin. A more recent study from Sun et al. [2018], based on the same
simulator investigated the update of the carbohydrate to insulin ratio between meals rather than
daily, as well as robustness of the policy to uncertainty regarding skipped meals, meal sizes and
times.

Here we propose to use a non parametric setting to show that this specific shape can be
challenged. Using the vocabulary of Reinforcement Learning, we show how to learn non parametric
policies, the function giving insulin dosis based on blood glucose readings and auxiliary information,
that outperforms the classical one for a given meal pattern.

7.2 Markov Decision Process, Simulation and Reward

Action, States and Markov Decision Process

Our goal is thus to define an action a, the insulin dosis INS, which is a continuous value, from a
state s described by two elements: one discrete ID_meal specifiying the meal time (and its known
content), here either 6am, 12am, 3pm or 8pm, and a continuous one BG specifying the blood
glucose level observed, a positive value, ranging from 20 mg/dLto 600 mg/dL.

To model our setting, we thus rely on a Markov Decision ProcessM = (S,A,R,T) as defined
in chapter 5, with the state being the couple (ID_meal,BG) and the action being INS. The
overall process is represented in figure 7.1.

In a first approximation, we may assume that our state perfectly defines the world so that an
action a starting from a state s always yield the same state s′, or at least such that the law of the
state s′ depends only on s and a. Such a transition law is assumed to be given by nature or at
least as simulator.

Last but not least, in order to optimize the actions, we need a measure of quality of the choice
i.e. we should obtain an information after our action measuring the quality of our solution. We
assume thus we are able to measure a reward r after the action that is large if we are compliant
to the blood glucose level and small if we are not. Note that, in our setting, there is no natural
reward so that we will rely on the one proposed in Kovatchev et al. [2000], presented in the next
subsection.

7.2.1 Reward definition

We propose to rely on a reward measure taking into account the whole trajectory from a given
meal to the next one.

More precisely, we will use a scoring function h mapping a blood glucose level in R+ to a score
in [0; 1] such that h increases for blood glucose levels from 0 to a centered value of reference, and
then decreases. For any meal i, consider Ti its time of occurrence and as such define the reward
as:

Ri =
∑

Ti<t≤Ti+1

h(BGt). (7.2.1)

Ideally, one would like to keep blood glycemia in a standard range such as [70 mg/dL; 180 mg/dL].
Yet, it is inevitable that glycemia varies and travels out of such bounds, hence the need to quantify
how good or bad is blood glucose level, acting as proxy for the patient’s health.
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Figure 7.1: Illustration of the diabetes problem we are considering: at time t, given a blood
glucose reading and a meal identifyer, (BGt, MealIDt), we propose a bolus insulin INSt (blue
lines: action). Then, we observe the next blood glucose state BGt+1 (black lines) and finally the
reward associated to the BG level reached (purple lines).

Authors of [Kovatchev et al., 2000] proposed a risk function on the [0;100] scale based on
symmetrization of the blood glucose levels and proper scaling proposed by [Kovatchev et al., 1997].
This reward function is illustrated in figure 7.2. Let us explain how it is built.

Consider a set of five (sorted) blood glucose reference levels

(BGlow,BGhypo_threshold,BGcenter,BGhyper_threshold,BGhigh), (7.2.2)

the authors [Kovatchev et al., 1997] define the following score function :

∀BG ∈ [BGlow;BGhigh], h(BG) = 1− f(BG)2 (7.2.3)

with f(BG) ∆= γ(log(BG)ν + β), where parameter set (γ, ν, β) is solution of the following set of
equations : 

f(BGcenter) = 0

−f(BGhypo_threshold) = f(BGhyper_threshold)

−f(BGlow) = f(BGhigh) = 1

. (7.2.4)

This parameterization implies that the risk function is at 0 (its minimal value) when blood
glucose hits target BGcenter, reaches its maximal value when it exceeds BGhigh or plummets below
BGlow and has equal value for BGhypo_threshold and BGhyper_threshold. The authors Kovatchev
et al. [2000] applied this log-transform for reference values (20, 70, 112.5, 180, 600) in mg/dLand
established that low blood glucose index (h(BG), BG < BGhypo_threshold) is predictive of severe
hypoglycemia episodes and high blood glucose index (h(BG), BG > BGhyper_threshold) is predic-
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Figure 7.2: Reward function considered, taken from [Kovatchev et al., 2000] adapted to outer
bounds (40 mg/dL, 350 mg/dL), rather than (20 mg/dL, 600 mg/dL), which where more appro-
priate for the patients we followed in the experiment section.
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tive of glycosylated hemoglobin which is interesting for patient follow-up.

7.2.2 FDA Approved Simulator

In our study, we do not have access to the transition function or the reward, we only have access to
a simulator of virtual diabetes patients that has been approved by the Federal Drug Administration
in the USA as a substitute for preclinical trials. The T1DM simulator (2008 version, which we used
here) is described in detail in Kovatchev et al. [2009]. It models the glucose and insulin dynamics
taking into account

• for glucose : endogenous production, rate of appearance, utilization and renal extraction

• for insulin : rate of appearance from the subcutaneous tissue and insulin degradation.

It allows to obtain the evolution of the blood glucose for a given meal scenario and any insulin
bolus policy with a sample rate of 20 observation per hour. It also provides good base values for
Carbohydrate to Insulin Ratio, Correction Factor and Basal Rate.

With a 2,5 GHz Intel Core i7 processor and relying on the Python implementation of the
simulator [Xie, 2018], it takes an hour to simulate a year of data which, sampled every three
minutes comes to 175 200 samples. For the problem we consider, where we focus on bolus injection
prior to meal times, this data will be reduced to a sequence of 1460 states and actions, as we will
explain in the algorithms 8 and 9.

The simulator requires indeed a controller, which we call throughout this paper a policy i.e. a
function mapping the state (meal and BG) to an action (Insulin level). Note that the behaviour
policy of the simulator may be different from the one we are going to obtain by Reinforcement
Learning.

In particular, it is known that we need to explore the state/action space to be able to derive
a good policy. We have therefore used a behaviour policy which is quite different from the deter-
ministic classical one. We will pick at random, quasi-uniformly the insulin level for a given state,
within a range deduced from the deterministic classical one. More precisely, from patient records,
one can find in the literature bounds for both scaling factors, as such we define, for any couple
(CHO, BG) the maxima for insulin intake :

b̄ := sup
CIRlow<CIR<CIRhigh
CFlow<CF<CFhigh

BGlow<BGtarget<BGhigh

CHO
CIR + max(BG− BGtarget, 0)

CF

with BGlow and BGhigh bounds for target glycemic levels which should sensibly be within the
normoglycemic range [70 mg/dL; 180 mg/dL]. Let b denote the infimum of the function, then we
can consider prescribing insulin following a uniform distribution :

πbehaviour((CHO,BG)) = Uniform([b, b̄]).

Basal insulin will be set to the level indicated by the simulator’s metadata on patients. In
our application we will assume that the patient takes long-action insulin once or twice per day
providing a quasi-constant insulin level.
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This generation process is summarized in algorithm 8.
Algorithm 8: Data generation process

1 instanciate simulator Sim based on meal_scenario
2 set basal rate basal_rate and behaviour policy πbehaviour ∈ Πstochastic

3 sample first observations O1 = (BG1,CHO1)
4 for t ∈ {1, . . . , T} do

/* pick insulin following policy πbehaviour */

5 if CHOt > 0 then
6 INSt = basal_rate+ πbehaviour((CHOt,BGt))
7 else
8 INSt = basal_rate
9 end

/* sample following observations */

10 Ot+1 = (BGt+1,CHOt+1) ∼ Sim(Ot, INSt)
11 end
12 return (Ot, INSt)Tt=1

As presented in algorithm 9, we reshape the data to match it to our problem : injection of
insulin prior to meals. We therefore extract information at meal times and apply a reward function
based on blood glucose levels (hence not directly observable in real life) which will characterize
how good or bad is the blood glucose profile on the continuous [0;1] segment.
Algorithm 9: Shaping the data by meal times

1 input generated dataset (Ot, INSt)Tt=1

2 input meal scenario used meal_scenario
3 pick reward function R, mapping set of BG levels to [0; 1]
4 identify (Ti)nb_mealsi=1 = {t ∈ {1, . . . , T} : CHOt > 0}
5 for i ∈ {1, . . . , nb_meals− 1} do
6 identify meal index ID_meali from meal_scenario, time

/* record state */

7 Si = (ID_meali,BGTi ,CHOTi)
/* record action taken */

8 Ai = INSTi
/* compute reward */

9 Ri = R(BGTi+1, . . . ,BGTi+1)
10 end
11 return (Si, Ai, Ri)nb_mealsi=1

7.2.3 Reinforcement Learning and Function Approximation

Optimization function We can now formalize our policy optimization goal. Let Π the set of
deterministic policies i.e. functions which assign to a state s ∈ S a single action a ∈ A. We
consider the following planification (policy optimization) problem :

π∗ = arg max
π∈Π

E

[+∞∑
t=0

γtRt

]
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where discount factor γ ∈ (0, 1) is chosen by the user. We define, for any couple (s, a) ∈ S × A,
state-action value functions Qπ(s, a) ∆= E

[∑+∞
t=0 γ

tRt|S0 = s,A0 = a
]
which allow us to write

π∗ = arg max
π∈Π,a∈A

Qπ(s, a).

Q-Learning, basis function approximation In the case where state and action spaces are
discrete, the preceding optimization problem can be solved via a tabular approach. One can use
for instance the well known Q-Learning algorithm in an off-policy setting i.e. where the behaviour
policy is not the optimized policy.

Considering that state and action spaces are continuous and might not be easily discretized
without considerable information loss, we propose thus to use a function approximation of the
state-action value function :

Qπ(s, a) ≈ Qᾱ(s, a) =
B∑
b=1

αbφb(s, a)

where φ̄ = (φb)Bb=1 is a set of functions mapping S × A to [0; 1]. Such a linear approximation
scheme is widely used in the RL literature, some details can be found in chapter 9 of Sutton and
Barto [2018].

The corresponding policy is defined implicitely through the parameter ᾱ using the best choice
strategy

πᾱ(s) = arg max
a∈A

Qᾱ(s, a).

We rely on the pseudo-gradient Q-Learning algorithm 10 to optimize vector ᾱ.
Algorithm 10: Q-Learning with linear basis function approximation

1 initialize ᾱ(frozen) = ᾱ(1) = ~0
2 input set of transitions D = {(St, At, Rt, St+1), t = 1, . . . , T}
3 pick basis functions φ̄
4 pick learning rate η, η > 0, and discount factor γ, γ ∈ (0; 1)
5 pick number of iterates before vector update u, u� 2
6 for k ∈ {1, . . . , nb_iteration} do
7 t ∼ U{1, . . . , T} ; // sample transition set

8 Yk = Rt + γmaxa′∈AQᾱ(frozen)(St+1, a
′) ; // compute target

9 ᾱ(k+1) ← ᾱ(k) − 2ηφ̄(St, At) (Qᾱ(k)(St, At)− Yk) ; // Pseudo-Gradient Descent

10 If kmodu = 0 : ᾱ(frozen) ← ᾱ(k+1) ; // update frozen vector

11 end
12 return ᾱ(K+1)

Gaussian Basis Function We propose to use the following linear decomposition of state-action
value functions for our problem : given state s = (ID_meal,BG) and action a = INS, we consider

Qᾱ (s, a) =
B∑
b

B∑
b′=1

α
(ID_meal)
(b,b′) φBGb (BG)φINSb′ (INS)
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which, by simple reindexing can be rewritten in the form presented previously. To distinguish
between meals we assigned different set of parameters ᾱ, which is a standard way of distinguishing
discrete values. Note that in our setting, the meal ID entirely controls the CHO level, hence it
does not appear in the previous formula.

The basis functions φBGb and φINSb are radial basis functions, centered uniformly on their re-
spective grids, as represented in figure 7.3. For the BG case (the INS is analogous), we consider,
for any b ∈ {1, . . . , B} :

∀x ∈ [BGlow;BGhigh], φBGb (x) = exp
{
−1

2

(
x− µBGb
hBG

)2}

where
µBGb = BGlow + b · (BGhigh − BGlow)

B

and
(hBG)2 = (BGhigh − BGlow)/B

2 log(1/(2pBG)) .

The set of expectation (µBGb )b is a uniformly-paced discrete grid of the range of BG values.
The variance term is chosen such that the area of φBGb overlapping below µBGb−1 is around pBG.

Indeed: consider Xb ∼ Gaussian(µb, h2) and Xb+1 ∼ Gaussian(µb+1, h
2), then

P(Xb+1 < µb) <
1
2 exp

{
−1

2

(
µb+1 − µb

h

)}
.

Bounding this probability by p set in (0, 1) yields the expression of h presented above.
Basis function set for insulin is defined in the same way.
Note that if we where to take this parameter too low we would only estimate the state-action

value function at the grid points (µBGb , µINSb′ )(b,b′) whilst if too high we would oversmooth the
state-action value function.

7.3 Numerical Experiments

For our experiments, we proceeded as follows :

• Step 0 : choose meal scenario of interest and virtual patient

• Step 1 : approximate optimal coefficients for the baseline bolus advisor via grid search (policy
πbaseline)

• Step 2 : simulate a large amount of data following this meal scenario and exploring randomly
the insulin intakes through meals with πbehaviour

• Step 3 : compute policy πᾱ∗ from simulated data via the Reinforcement Learning algorithm
presented in the preceding section

• Step 4 : simulate new data following respectively πbaseline and πᾱ∗ , compare reward distri-
bution and daily glycemic profiles and general glycemic indicators.

We chose the following meal scenario.
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Figure 7.3: Illustration of the radial basis functions used to approximate the state-action value
functions

Time of day Grams of CHO
6 am 50
12 am 60
3 pm 15
8 pm 80
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Simulation details The procedure above was applied to adults #001, #002 and #003 from
the T1DM simulator. We simulated for each of them around 8 years of data which amounts to
more than ten thousand transitions each. We based our grid search for πbaseline from the following
bounds : CIR ∈ [3; 30], CF ∈ [0.4; 2.8] and BGtarget ∈ [100 mg/dL; 150 mg/dL]. For the Q-
Learning algorithm, first we chose an 8 by 8 grid, and we set pBG = pINS = 0.2 which gave, from
our qualitative evaluation, satisfying result. Then, we set the discount factor γ = 0.75 and the
learning rate η = 0.5 for adults #001 and #002, we decreased it to 0.1 for the third patient because
of divergence issues.

The policies found based on the initial data generated where then tested for the same virtual
patients (separately, each adult has his/her policy) during 45 days, which is more than enough
since the blood glucose enters a stationary state because meal scenario was set deterministic.

Result disposition In table 7.1 we reported general BG and reward indicators for each adult
considered and for both policies. In figure 7.4 we present jointly the two policies for each pa-
tient, sorted by increasing index order. Because odd recommendations tend to arise in the policy
computed for excessively large blood glucose levels, we jointly plotted the policy and the data
which was used for its estimation procedure in figure 7.6 ; we show through this illustration that
such behaviour is solely consequence of insufficient amounts of data in some regions of the space
(BG, INS). In figure 7.5 we compare the average blood glucose behaviour between the two policies,
for each patient, in order to see the concrete changes the optimized policy πᾱ∗ brings.

Analysis of table 7.1 It appears that for adults #001 and #003, our policy chose to prescribe
overall less insulin since both patients are less in hypoglycemic levels following πᾱ∗ than πbaseline.
For adult #002, the policy found chose to prescribe a bit more insulin to regulate slightly closer
to the reference BGcenter = 112.5 mg/dL. What must also be noted is that jointly the reward
distribution was already quite excellent for adult #002 and we did not improve it according to the
criterion and the same issue arises for adult #003 for whom hypoglycemia phases with πbaseline

where traded-off with hyperglycemia phases with our policy. All those observations can be con-
firmed from the averaged daily blood glucose profiles comparing the two policies in figure 7.5.

Policies found, figure 7.4 First, with our method we find smooth yet quite different policies
than the baseline bolus advisor. Second, for a given blood glucose level, the recommended bolus
does not necessarily increase with CHO amount ; we tend to give more insulin at lunch rather than
at dinner, which impacts greatly the blood glucose profile. Typically the patient will be less at risk
from nocturnal hypoglycemia which is a well-known issue in the endocrinology community. The
policy we proposed properly took into consideration the meal scenario in its computations in order
to look at future time steps and prevent complications. One may also note that the bolus advisors
calibrated sometimes recommend decreasing amounts of insulin with increasing blood glucose level:
a great example of that is the lunch recommendations for adults #001 and #002 : when blood
glucose goes over 300 mg/dL the recommended insulin level drops. As is shown in figure 7.5 this
is actually due to the scarcity of the data collected within this area so it should be considered as
a numerical artefact.

Daily BG profile comparison, figure 7.5 Let us focus on Adult #001, whose data is rep-
resented in the upper graph. The baseline retained induces low blood glucose during the night
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Figure 7.4: Bolus advisor πbaseline (left) and πᾱ∗ found by Q-Learning with function approximation
(right) for each virtual patient (sorted by increasing number). One can observe essentially two
things from those graphs : first, it looks as if patient #001 and #002 are closer to each other than
to patient #003 in terms of physiology otherwise we would not find the result we did. However
the hope to get out a new generic rule seems difficult in this situation. Second, and this is what
shows the algorithm took into account sequentiality of the meals and injections : the meal with
most carbs does not necessarily require most insulin, which is a fundamental difference from the
baseline advisor.
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Figure 7.5: Average blood glucose profiles for the three virtual patients (sorted increasingly by
number) for each policy applied, πbaseline in red and πᾱ∗ in light blue. For all adults, the algorithm
basically learned to reduce insulin intake at last meal in order to reduce nightly hypoglycemia at
the cost of often minor hyperglycemia. The changes are minor in the case of Adult #002, but in
Adult #003 and #001 it centers the BGlevels around target 112.5 mg/dL.



110
Chapter 7. Meal-based insulin-dosage recommendation for type I

diabetes patients †

Figure 7.6: Focusing on adult #001, one can witness strange behaviours of the bolus advisor
occurring on the extremities. Confronting it here with the simulated data points it is clear that
such behaviours are due to insufficient amounts of data. In the context of simulation, since those
regions are rarely visited one can leaves such policies unchanged. However, in real-life application,
we should come up with a strategy to improve the quality of the policy in this region, or at least
correct it, be it manually.
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Indicator Adult #001 Adult #002 Adult #003
πbase πᾱ∗ πbase πᾱ∗ πbase πᾱ∗

Glycemia I
[40, 70) .07 .00 .00 .00 .08 .00
[70, 112.5) .35 .37 .53 .58 .18 .20
[112, 180) .39 .47 .47 .42 .35 .35
[180, 350) .19 .16 .00 .00 .35 .39
[350, 600] .00 .00 .00 .00 .04 .06
Glycemia II
Low mean 68 NA NA NA 58 70
High mean 201 209 190 186 264 271
Reward
Q1 .81 .88 .93 .95 .52 .48
Q2 .92 .96 .99 .98 .84 .88
Q3 .97 .99 1.00 .99 .97 .95
Mean .88 .91 .96 .97 .72 .70

Table 7.1: Metrics useful to compare the baseline and computed policy. Low mean corresponds to
the mean of glycemia level exclusively under the hypoglycemia threshold of 70 mg/dL and the high
mean, analogously corresponds to the mean of glycemia level exclusively high the hyperglycemia
threshold of 180 mg/dL. NA corresponds to non-applicable metrics e.g. if glycemia never drops
below the bar of 70 mg/dL, the low mean indicator will be filled as NA.

(ranging in 70 mg/dL to 100 mg/dL) whilst it stays quite higher than 112.5 mg/dL from 6am to
3pm. The policy we found (in blue) eliminates night hypoglycemia, traded-off for a 2h period in
mild hyperglycemia (<250 mg/dL) during dinner and a more smoothed out afternoon. For Adult
#002, the two policies seem quite equivalent. For Adult #003, we trade-off the night hypoglycemic
section by hyperglycemia on the three main meal times.

7.4 Optimizing jointly meal and insulin

Generating meal scenarios

1. Define an acceptable range for number of meals (2 to 6), meal times (between 6am and 10pm)
as well as a constraint on total meal amount (in total 205 grams of CHO).

2. Pick a number of meals uniformly at random

3. Pick meal times uniformly at random (on hours)

4. Distribute meal amounts under total constraint uniformly at random (almost, rounding is
applied)

For now, we assume that we don’t know how to share information between different meal
scenarios. We have seen that dynamic are linear, hence it would stand that for a given physiology
and number of meals, we could extend the hypothesis by adding a smooth function over the meal
time differences as well as meal amounts.

We found that the initial meal scenario we found rates third over the twenty random ones,
which is somewhat reassuring for the people commionly following the three-meals a day rule. Now,
although there is some issue with the scale apparently, it seems that one meal plan clearly stands
far above others and that is the scenario reported in table 7.2.



112
Chapter 7. Meal-based insulin-dosage recommendation for type I

diabetes patients †

Time of day Grams of CHO
7 am 85
4 pm 52
9 pm 25
10 pm 43

Table 7.2: Best-performing meal plan
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Figure 7.7: All meal scenarios considered ranked by overall performance in BG management (1 is
best, 20 is worst). As a general observation, it appears that spreading out meals during the day
overall helps in blood glucose management, as the first (best) nine meal plans tend to be spread
meals throughout the whole day more than the eleven others.
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Figure 7.8: BG distribution by meal scenario. This graph gives generic information to compare
the consequences of the different meal plans, for instance: meal plans 3-5 lead to BG essentially in
interval (180 mg/dL,350 mg/dL], whilst the first two are more spread around smaller values. In
fact the second meal plan is so spread it actually spends more time than the first one in interval
(40 mg/dL, 70 mg/dL] which is not great.
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Figure 7.9: Four best scenarios found. Quantitatively, the first meal plan really distinguishes itself
from the others.
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7.5 Discussion

7.5.1 Contributions

In most papers interested in Reinforcement learning for prescribing insulin injections, most of the
research is done for patients equipped with insulin pumps and the goal is generally to estimate
as quickly as possible the coefficients (CIR, CF) of the standard bolus advisor. In this paper, we
challenge this heuristic by using a model-free approach from Reinforcement Learning. It turns out
that we find policies which are (a) quite different from the baseline (b) are close-to parametric
functions, which is so by construction (c) not necessarily intuitive in the sense they do not respect
the following rule : insulin intake should increase with CHO amount. The policy for Adult #001
places for instance less insulin during dinner than on breakfast or lunch, although is the largest in
terms of CHO. That way nocturnal hypoglycemia is avoided, which is very positive for the patient.

The framework we propose is also quite flexible to tailor a reward function to a patient e.g. to
prevent hypoglycemia during a time window of the day, one can adjust the reward function for
meal i previously introduced as follows :

Ri =
∑

Ti<t≤Ti+1

h(BGt, t).

Evidently the reward can also depend on observable auxiliary information e.g. physical activity
which of course is highly relevant as we need to have proxys for patient’s well-being which are as
representative as possible.

Going further, we investigated a prescriptive approach where we tried different meal plans for
a given virtual patient. We have tried, by a random, but properly constrained search, to find meal
plans which allow easier blood glycemic control throughout the day. The best scenario seems to
be taking a heavy breakfast of 85 grams of CHO at 7am, followed by a late lunch of 52 grams of
CHO at 4pm and finally a dinner expanded on 9 and 10pm of 25 grams and 43 grams of CHO.

The code developed is available at https://github.com/FredericLoge/T1DM_qlearning.

7.5.2 Limitations & potential improvements

Simulator capabilities An important limitation lies with the simulator not taking into account
activity information. Also, we should rely on the improved simulator from 2013 that requires to
be in direct contact with Virginia Tech. Also, the Python implementation generates around 1500
observations in an hour, which is quite long. Hopefully the simulator from Virgina Tech works
faster.

Using neural networks as function approximators By using neural networks, we would get
surely much more precise results and we would be able to easily extend this approach in case other
factors should be included such as external static information or activity information.

Uncertainties on future meal intakes We assumed that meal times and amounts were con-
stant and strictly followed. This allowed us to see without adding noise from the randomness of
nutrition if the baseline bolus advisor could be challenged which it clearly can. It would be very
interesting to see how the policies we consider could adapt to the randomness in meal scenarios
e.g. uncertainty in the amounts of CHO, meal skipped.

https://github.com/FredericLoge/T1DM_qlearning
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A prescriptive approach: planning meals and activities We have investigated different
meal plans and focused on the blood glycemia control we could attain under those meal plans. We
could go further by integrating activities and therefore deriving basic rules to avoid out-of-range
periods.

BG uncertainty In the simulator measurement uncertainty is related to the installed machine.
Yet in our target application we look at insulin pens, as such, we should investigate the measure-
ment error from insulin pens to take it into consideration more neatly.

Reward personalization We relied on the log-transform reward because it is considered a
standard in the field to analyze blood glucose levels precisely. Now, many other reward functions
could be constructed.

- A two-sided radial basis functions with different scale parameter to equilibrate between hy-
perglycemia and hypoglycemia.

- As suggested in [Sun et al., 2019] and the authors prior work [Sun et al., 2018], one could
consider :

h(BGt) = chypo max(BGhypo − BGt; 0) + chyper max(BGhyper − BGt; 0).

- One could consider, in the spirit of the Control Variability Grid Analysis tool to take high and
low quantiles of between meals blood glucose levels and build a reward function such as a scaled
difference

- Another suggestion would be the maximum uninterrupted duration between meals where the
blood glucose is within acceptable range.

Many possibilities will have to be considered.

Learning in real-life Our approach was from a discovery perspective, as we generated years
of data with randomized policies in order to find what suited best a given physiology. This is
completely infeasible in practice asis. There is a clear need to investigate how to setup a framework
to find an appropriate policy from initial information, estimate required parameters as quickly as
possible.

7.6 Conclusion

In [Kovatchev et al., 2009], the authors developed the T1DM simulator of the gluco-insulin interac-
tion for diabetes management which was later approved by the FDA as a substitute for preclinical
trials (see The Epsilon Group [2017] for details on the development timeline and general informa-
tion).

The simulator takes into account meal times and amounts (in grams of carbohydrates) as well
as an insulin controller, parameterized by the user. Submitted to the FDA in 2008, it was approved
as a substitute for preclinical trials, which encouraged its use for PID, MPC and RL research of
insulin-based glucose management.

Several studies of RL have been done on this simulator, most of which focus on the following
bolus advisor :

bolus(CHO,BG) = CHO
CIR + max(BG− BGtarget, 0)

CF ,
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where CIR is a carbohydrate-to-insulin ratio and CF is a correction factor. Both parameters are
specific to each individual as they are dependent on physiology.

In this paper, we searched for a pertinent challenger to the baseline bolus advisor above with
a model-free approach from Reinforcement Learning mixing Q-Learning with linear function ap-
proximation. We found smooth but more complex rules than the bolus advisor, more pertinent to
a given meal scenario; in particular, the policy lowered the risk of nocturnal hypoglycemia.

If one could use his/her physiological constants to instanciate a simulator this would mean a
lot from the perspective of both insulin injection, nutritional knowledge and potentially more if the
simulator allows it, namely physical activity. In other words, one could not only use this tool for
insulin dose recommendation to a patient, but also to nutritional and potential physical activity
program recommendation for an ideal blood glucose profile and overall positive health.
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Summary

In this chapter we consider a two-phased problem, modeling the installation and use of
a device set up for a user, patient, customer. The first phase, relatively short, is the
running-in period, where several milestones are clearly defined, with specific actions. The
task tackled here consists in choosing appropriate actions so that, in the long-run, (a) the
service provided is of good quality and (b) it is adopted by the user. Evidently, its adoption
will depend in the ability to provide a personalized servicen hence the importance of such
actions, especially at the beginning of service.
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8.1 Generic problem

Because of confidentiality, we choose to speak of a quite general process, although we focused on
a very specific problem for Air Liquide.

The generic problem is presented in figure 8.1. The process of interest is played through two
periods: the first being a run-in period and the second being more stationary. The idea is that
decisions made during the first period set the frame for the second one e.g. setting up a device,
building a piece of software, meeting a customer.

Figure 8.1: Schematic of the process: two periods compose this process, the first one being a
run-in for the second, going from the installation of the device, through several milestones where
important adjustments can be made before entering the stationary period where the service is
supposedly then properly tailored to the patient.

We focus on the problem of setting up a device at a patient’s home. Two quantities are measure
during this process: observance and quality. Observance meaning how much the patient actually
uses the device, a quantity bounded in [0; max_observance]. Quality meaning the quality of the
service as a whole i.e. the device, its proper installation etc. Of course one wants to have a good
quality for everybody and a top-notch service, but you can’t help the fact that adjustments and
personalization are required to actually provide a proper service. The one size fits all approach
does not work. The idea is that such adjustments can be made at specific milestones, with an
incurred cost and the mathematical objective is to balance how observant patients are and how
much we invest in order to improve the quality of service i.e. finding policy

π∗
∆= arg max

π∈Π
Eπ

[
T∑
t=0

reward(observancet)− cost(actiont)
]

(8.1.1)

asssuming T is finite and the reward and cost functions map to a bounded interval of R. To
be specific, in the previous equation, the index t corresponds to a specific time unit of the problem,
and milestones have specific times (Ti, i = 0, . . . nb_milestones), all in {0, . . . , T}, T0 = 0.

Note that this of course one approach to characterize this balance between observance and
action-taking and other metrics could be of interest. In our approach, we equivalently consider the
following problem: finding policy
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π∗
∆= arg max

π∈Π
Eπ

nb_milestones∑
i=1

−cost(actionTi)︸ ︷︷ ︸
cost of action at milestone i

+ reward((observancet, Ti ≤ t < Ti+1))︸ ︷︷ ︸
reward for the period following milestone i

 .
(8.1.2)

Note that here we purposefully ignore the observance levels prior to the first action, since we
assume we will treat patients fairly and so no sense to compare values prior to the first action
taken.

The solution we propose is to model the system as a Markov Decision Process, running with
timesteps as the milestones of the problem and which will include in the state information: the
milestone, the past quality and the past observance. In the action we will have the action actually
taken ; supposedly, at each milestone we have different types of actions possible.

The application of interest here is a textbook case of multi-step decision-making, as analyzed in
Carpentier et al. [2015] and in episodic problems in Reinforcement Learning e.g. the cliff-walking
problem and the Gambler’s problem, see chapter 3.4 of Sutton and Barto [2018].

In order to solve either of those optimization problems, we will exploit the fact that the process
is episodic and sequentially estimate the Q-values for the last milestone up to the first one. We will
try both (1) discretizing the state space and (b) using a neural network for function approximation,
which does not require feature engineering for the state space. Note that, of course, if the action
space is continuous, it should also be discretized in case (1). In our setting we will assume a discrete
action space, although it does not incur much on the process. We will try to also present dummy
baselines for proper comparisons.

8.2 Instanciation

In order to present our approach, we have to add specifics to the problem: a simulator, determining
the dynamics of the system, a clear definition of states variables and finally proper reward and
cost functions.

The dynamics of the process are presented in algorithm 11 and the parameters in the algorithm
are taken as expressed in table 8.1. In summary: the initial quality level and observance levels
and drawn at random. Observance tends towards the point quality ·max_observance with a speed
defined by a parameter β and variations occur with additive gaussian noise of level σ. The quality
level is stable throughout time, unless an action is done, which may improve or worsen it. The
action effect is specified by function change, which is our case is defined such that

qualityt+1 ∼ TruncatedGaussian(mu = µ(qualityt, actiont, t), sd = 0.01,min = 0.05,max = 0.95)
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where

µ(qualityt, actiont, t) =



qualityt − 0.1 if t = T1 and actiont = 0

qualityt − 0.05 if t = T2 and actiont = 0

qualityt if t = T3 and actiont = 0

max{qualityt + 0.2, 0.5} if t = T1 and actiont = 1

max{qualityt + 0.1, 0.5} if t = T2 and actiont = 1

max{qualityt + 0.05, 0.5} if t = T3 and actiont = 1

such that, in average it is more interesting to take action than not, especially so at the first
milestones.

We will therefore consider that our state at a given milestone time Ti is the setTi, qualityTi , 1
Ti − Ti−1

∑
Ti−1<t≤Ti

observancet

 ,

the actions at each milestone or in {0, 1} encoding respectively no action / action. The cost
associated to an action is fixed to constant 50 and the reward is based on the average observance
of the patient, which is our indicator of how well the device has been adopted and how much useful
it has become in the patient’s daily life. The device is supposed to be used each day, up-to 8 hours,
hence the observance is bounded in [0, 8 hours].

8.3 Results

We considered two different approaches to solve our problem; first, discretizing the state space,
with 5 bins for quality and average observance, based on data distributions, built irrespective of the
milestone. Second, using a neural network for function approximation, with the following structure:
four neurons as input (three for state, one for action), one neuron as output, and between those 6
layers of 15 neurons, with ReLU activation function and as final activation leakyReLu, to prevent
problems due to unfortunate weight initialization. Optimizer rmsprop was used with learning rate
0.005 and a mean-squared error as loss function. To facilitate training we normalized the past
average observance as well as the reward minus cost variable.

The training data generated for those policies consisted of 10000 simulations.

Three baseline policies were considered: the deterministic policies where at each milestone
we pick action 0 or action 1 and the random policy where we choose action 0 or 1 with equal
probability.

The test data for the five policies was taken on 1000 simulations, with an initial seed to en-
courage proper comparisons.

We compare policies in two ways: in table 8.2 we look at the proportion of cases overall where
each method prescribes to take an action, to have an idea on how the two approaches of interest
behave in average. Then, in figures 8.2, 8.3 and 8.4 we look at the policies computed for both
approaches for milestones 1, 2 and 3 respectively. Specifically, we look at the evaluated difference
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Algorithm 11: Process dynamics
1 input parameter β observance rate of change between time steps
2 input function change which to a given quality level and a given action assigns a new

quality level stochastically
3 input policy π
4 quality0 ∼ Uniform([0; 1])
5 observance0 ∼ Uniform([0;max_observance])
6 action0 = 0
7 for t = 1, . . . , T do

/* update quality */
8 if t− 1 ∈ {T1, . . . , Tnb_milestones} then
9 qualityt = change(qualityt−1, actiont−1, t− 1)

10 else
11 qualityt = qualityt−1
12 end

/* measure observance */
13 observancet =

observancet−1 + β(qualitytmax_observance− observancet−1) + Gaussian(0, σ)
/* observe action */

14 if t ∈ {T1, . . . , Tnb_milestones} then
15 i ∈ {1, . . . , nb_milestones} : Ti = t

16 actiont = π

((
t, qualityt,

1
Ti − Ti−1

∑
Ti−1<t′≤Ti observancet′

))
17 else
18 actiont = 0
19 end
20 end
21 return (qualityt, observancet, actiont)Tt=0

Label Parameter Value
Time unit - day
Rate of change of observance β 0.01
Standard deviation for next observance σ 5
Maximum observance possible max_observance 480 (8 hours)
Number of observations T 270 days
Milestones T1, T2, T3 30, 60, 90 days
Action space, all milestones A {0, 1}
Cost of action A cost(A) 50 · 1{A = 1}

Table 8.1: Parameters and details
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Milestone 1 Milestone 2 Milestone 3
Random, A ∼ Bernoulli(0.5) 47.5 49.1 48.7
Deterministic, A = 0 0 0 0
Deterministic, A = 1 100 100 100
Discretized 100 46.1 0.0
Q-Network 95.2 51.8 0.0

Table 8.2: Proportion of cases where an action was taken, by step in the process

of taking versus not taking an action:

max
π

Qπ(s, a = 1)−max
π

Qπ(s, a = 0)

such that we see retain the information of how much estimated difference there is to take or not
the action at the current milestone. Hence, if the estimate is positive, it seems advantageous to
take the action, whereas if it is negative it seems advantageous to take no action at this particular
milestone. The upper graphs are the policies we have based on the discretized state space and
the lower graphs are the policies based on the neural network. Note that the differences in scale
between the two graphs are due to the normalizations operated in the neural network case. Note
also that because of data distribution, inherent to the system dynamics, some parts of the state
space are rarely explored. As such, some couples of quality and past average observance sometimes
have no estimates presented. We added data hexograms of the training data for each milestone
to emphasize this point, see figure 8.5. Note that for the neural network method, it can very
well provide predictions outside the bounds of the training sample space. As such, we took it
upon ourselves to get rid in our graphs of areas where very little training data is available (15
observations at least per tile plotted).

Looking at the proportions of actions taken it appears that both policies decided to act almost
always at the first step, half the time the second step and never the third step. Now, using the
neural network for evaluating our decisions, we tend to act slightly more at step 2 than 1 (6%
difference). Looking at the decision surfaces, it appears that, for this particular problem instance,
a simple linear decision boundary could be used. In a more complex setting however, one might
see the point of being able to represent decision boundaries at each milestone.

Now, let us look at the performances on the set of the two policies, and compare them to basic
baselines. When no action is taken ever, the average performance is 655, whilst it goes to 740 if
we always take action. Using the discretized approach, we reach an average performance of 781
and using the neural network approach, we reach 798, which is quite an improvement in relative
terms.

Method Mean (± std) Min. 1st Qu. Median 3rd Qu. Max.
Random, A ∼ Bernoulli(0.5) 704 (± 9) 47 509 702 891 1343
Deterministic, A = 0 655 (± 9) 30 450 648 861 1352
Deterministic, A = 1 740 (± 8) 175 570 734 920 1249
Discretized 781 (± 8) 227 586 775 964 1358
Q-Network 798 (± 8) 161 616 795 985 1380

Table 8.3: Performances of methods, including baselines, on test set
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Figure 8.2: Differences in estimated Q-values when taking an action at step 1 or not taking the
action, positive indicating it is favorable to take the action. Upper graph: the estimation is based
upon dynamic programming relying on a discretization of the state space. Lower graph: the
estimation is on neural network approximation.
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Figure 8.3: Differences in estimated Q-values when taking an action at step 2 or not taking the
action, positive indicating it is favorable to take the action. Upper graph: the estimation is based
upon dynamic programming relying on a discretization of the state space. Lower graph: the
estimation is on neural network approximation.
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Figure 8.4: Differences in estimated Q-values when taking an action at step 3 or not taking the
action, positive indicating it is favorable to take the action. Upper graph: the estimation is based
upon dynamic programming relying on a discretization of the state space. Lower graph: the
estimation is on neural network approximation.
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Figure 8.5: Data distribution under state space
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8.4 Conclusion

In this chapter we studied an episodic sequential decision-making problem, where at each mile-
stone, we could either take an action or not take it in hope of making our patient observant with
the equipment we have provided them with. The overall objective is to maximize the patient’s
observance and, if our efforts seem to not be working for a particular patient, or if the patient
is already quite observant, probably focus our attention on patients more in need of assistance.
In the instantiation considered, we showed how classic value-based approaches, either focusing on
a discretized state space or using a continuous function approximation, can take well-performing
decisions based on past observed data. This work was used for an internal Proof of Concept at Air
Liquide.







Chapter 9

Intelligent Questionnaire †

Summary

Data collection can be detrimental to user/customer/patient experience if not handled
properly. While many issues are posed during data collection, such as question framing
and ordering, we consider the construction of a questionnaire constrained in its length and
ideally adaptive to the user/customer/patient: out of a set of p informations we would hope
to retrieve, the algorithm will select sequentially q questions, adapting its choices based on
initial answers and potentially initial informations. Once retrieved, the partial information
X̃ will be used as predictor for unknown target Y and so the quality of this adaptive
questionnaire built will be judge on how accurately target Y can be predicted from the
partial information. Several works from the literature point to knowledge-based approaches
and a few to statistical approaches. We frame this sequential decision-making problem as
a Markov Decision Process where the state variable represents the partially-known vector,
the actions are the questions we ask and the reward represents the prediction performance
whenever we choose to stop asking our questions. Exploiting the hierarchical structure
of the problem, we apply (approximate) dynamic programming backward rule to find the
optimal result from fixed data batches. The effectiveness of the approach is demonstrated
on three toy models and three benchmark datasets (in supervised learning) against two
baselines: a constrained CART tree and a best q subset approach. The extension to the
online setting is experimented in detail for one of the toy models.
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9.1 Context

In user interaction, less is often more. When asking questions, it is desirable to ask as few questions
as possible or given a budget of questions asking the most interesting ones. We study the case
of smart questionnaire in which the questions asked may depend on the previous answers. More
precisely, we consider a set of p questions (asking for elements of X) in a prediction context (target
Y based on X). Given a budget of q questions, we design an algorithm choosing sequentially
the next question to be asked so that the predictive power is maximized after having q answers
assuming we have observed the whole set of answers on a first dataset. No prior knowledge is
available. An illustrative example of the expected result is given in figure 9.1.

Figure 9.1: Illustrative example of smart questionnaire obtained: without any apriori information,
we start by asking for the value of X1. Then, depending on the value obtained, we will either ask
for the value of X2 or X4. If X1 was high enough (cyan and pink cases) we stop the algorithm
and we have prediction function Ŷ1, resp. Ŷ2, based on the actual values of couple (X1, X4), resp.
(X1, X2). On the left side of the tree, blue and red cases, we ask for X2 and depending on the
values of couple (X1, X2) we will ask for the value of X3 or X4 and then give a prediction. One
can view it as a continuous version of the decision tree, where we ask for the value of a single
feature sequentially rather than applying univariate thresholds, which are much less informative.
Also, the final prediction is based on the features retrieved, and so exploits the complete dataset,
rather than only similar observations as decision trees do. In this example we went to a depth 3
maximum, and stopped the algorithm prior to maximum depth for nodes on the right.



9.1. Context 133

9.1.1 Motivation

We want to choose sequentially out of the p elements of X in order to give an accurate prediction of
Y whilst not collecting all the elements. This approach is relevant in cases where the cost of getting
the data is not negligeable in front of inaccurate predictions: either gathering the data requires a
lot of money, a lot of time or is tiring for the responder. Note that this is quite a different setting
than in classic supervised learning, where the data’s price is (almost completely) disregarded.

This setting is quite general and comprises for example:

• Patient follow-up. Consider a patient who is hospitalized at home and fills in a daily checkup
questionnaire asking for leg pain, a hurting chest or physical discomfort. The aim of the
questionnaire being to check the status of the patient, we would like to ask the most pertinent
questions as soon as possible and personalize the questions to their status.

• Prospective calls e.g. telemarketing. Instead of bluntly unrolling the same list of questions,
we could adapt our series of questions in order to know as fast as possible if the person called
would be interested or not.

• Cold start issue with new customer. When subscribing to a new service, it is not uncommon
to get asked some questions in order to personalize the service (e.g. Netflix, web service
provider). Assuming we already have a customer clustering at hand, we would like to find
the newcomer’s cluster with as little questions possible (so as to not "bore the patient out").

• Balancing acquisition cost/available information. Assuming the data is paid for (personal
data sold) we would choose which information to pay for for each people.

• Storing less data to make as good predictions. Considering that data storage has non-
negligeable cost (financially, facility-wise, environmentally), we wish to only keep data essen-
tial to the prediction, storing a sparse matrix would suffice.

9.1.2 Detailed context

Consider the pair of random variables (X,Y ) where :

• Y ∈ Y, dim(Y) ≥ 1 ; Y is a variable of interest

• X ∈ X = ⊗pj=1Xi, p > 1, dim(Xi) = 1 ; X is a variable which can be used to predict Y .

In supervised learning, the task is to build a predictor of Y given X e.g. its conditional
distribution, moment(s) or quantile(s). Here, we are interested in the way that vectorX is collected:
in a classic questionnaire, we would go through each element of X in a pre-specified order or at
random in order to avoid bias issues. Since we collect X in order to predict Y we would like to build
an intelligent questionnaire which would collect elements of X which are the most useful for the
prediction task. As such, this questionnaire will take into account the realizations of the elements
of X that were already requested and check which new feature could be the most useful for our
task. The questionnaire process is described in figure 12 and here below we introduce important
notations.

Consider X̃ full ∆= ⊗pj=1 (Xi ∪ {“unknown”}) the space of partially known feature vector X and
X̃ its version restricted to the vectors whose antecedents did not stop the questionnaire process,
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which in our case corresponds to the vectors where at most q elements are known:

X̃ ∆= {x̃ ∈ X̃ full : card{j ∈ {1, . . . , p} : x̃j 6= “unknown”} ≤ q}. (9.1.1)

Accordingly we define stop function as follows:

∀x̃ ∈ X̃ stop(x̃) =

true if card{j ∈ {1, . . . , p} : x̃j 6= “unknown”} ≥ q

false otherwise
.

We will design algorithm π which to any masked feature vector x̃ ∈ X̃ assigns a value in the set
A ∆= {1, . . . , p}, indicating which feature element should be recovered. This function will allow us
to ask questions in an adaptive, and hopefully, intelligent manner, quantified by the score function,
until our question budget is fully used. On the notations: the set of questions asked will be denoted
by At, t being the step of the questionnaire, starting at 0. The available knowledge at time t will
be written X̃t and its j-th element will be written X̃t,j .

We assume, without loss of generality, that the more available information on X the better.
Also, we assume when a question is asked, an element of X is revealed to us and we trust it to be
accurate. As such, the same question is never asked twice and we completely trust the response
given.

Algorithm 12: Generic intelligent questionnaire algorithm process. Depending on
whether we are collecting data with people volonteering to inform us of the whole in-
formation or not, we consider both returns.

1 Initialize X̃0 = “unknown”p

2 Interacting individual knows (X,Y ) ∈ X × Y
3 Input algorithm π : X̃ → {1, . . . , p}
4 Input stopping criterion stop : X̃ → {false, true}
5 Input scoring function score : X̃ × Y → R+

6 for j ∈ {1, . . . , q} do
/* Select most pertinent question to ask */

7 At = π(X̃t)
/* Observe response */

8 X̃t+1 = X̃t ; X̃t+1,At = XAt

/* Decide whether to stop */

9 if stop(X̃t+1) then
10 break
11 end
12 end
13 if full_information_mode then
14 return {X,Y, (Al)tl=0, score(X̃t+1, Y )}
15 else
16 return {(Al)tl=0, m̂(X̃t+1)}
17 end
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9.1.3 Mathematical objective

Let Π denote the set of functions mapping X̃ to A i.e. the set of acceptable questionnaire al-
gorithms. Note that, assuming more available information is better, we should only consider
algorithms which do not ask twice or more the same questions. In all generality, we focus on
solving the following optimization problem:

∀x̃ ∈ X̃ π∗(x̃) = arg max
π∈Π

Eπ,(X,Y )
[
score(X̃q, Y )|X̃ = x̃

]
(9.1.2)

where X̃q is the partially-known feature vector obtained when the algorithm is stopped (q questions
asked). The score function will typically take into consideration our ability to accurately predict
target Y based on the partial information retrieved. We propose the following score function:

∀x̃ ∈ X̃ , y ∈ Y score(x̃, y) = −L(m̂(x̃), y) (9.1.3)

where m̂ is a prediction function of the target based on partial information and L is an individual
risk measure, such as the squared error in regression or the log-loss in classification.

As π∗ depends on the final feature vector reached, one can immediately see that depending on
the stopping function implemented stop, the optimal solution of the problem above changes.

9.1.4 Available data

We assume that we have at our disposal a set of n, n� p, independent realizations (x(i), y(i))ni=1

of couple (X,Y ) following the, unknown to us, joint distribution P(X,Y ). This dataset will be
used to learn prediction function m̂ and policy π∗.

9.2 Bibliography

In this section we present baselines to learn π∗ (or less optimal version, if restrictions on Π are
applied), literature on adaptive questionnaires, decision trees, planning and reinforcement learning.

9.2.1 Baselines

All possible solution

Assuming we are in case 1 or case 2 (referring to the Three degrees of difficulty comment), we
could imagine that we could solve the problem by going through all possible trees (so an adaptive
solution). For case 1 it is quite straightforward, for case 2, we would just need to adapt estimates
based on the answer to the first question with continuous response. This brute force aproach, when
available i.e. computationnally tractable, serves as an important baseline.

Best variable subset selection

Another approach to solve the problem is to find the best subset of variables, without considering
an adaptive sequence of questions.

Let us write unmasked the function which to an element x of X and a subset s of {1, . . . , p}
maps its unmasked version x̃ = (x̃j)pj=1 such that x̃j = xj if j ∈ s and x̃j = “unknown” otherwise.
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For any choice of q ∈ {1, . . . , p−1}, let subsets(q) denote the complete set of subsets of q elements
from set {1, . . . , p}. If the dimension of subsets(q) allows it, one can attempt to solve:

subset∗
∆= arg max

s∈subsets(q)
E(X,Y ) [score(unmasked(X, s), Y )] . (9.2.1)

An alternative approach is to compute individual prediction scores for each of the p features
and rank the questions based on that score, such as one would get with variable importance
for examples. This approach, as it does not take into account the score function is clearly less
performant, and it is non adaptative to the user’s already filled answers, hence our approach will
be more generic.

In any case, fixed-subset is a straightforward and therefore important baseline.

9.2.2 Related works

Adaptive questionnaires have been investigated through knowledge-based approaches in several
fields amongst which we find e-learning Nokelainen et al. [2001] and healthcare Dunlop [2019]. In
Mwamikazi et al. [2014] the authors investigated an approach relying on association rules for the
prediction and question selection tasks and experimented their algorithm on Myers-Briggs tests.
Association rules only cover binary features unfortunately.

Decision tree algorithms such as CART Breiman et al. [1984] are by construction adaptive
questionnaires built for prediction. As we will further discuss, a tree of depth q provides a solution
but is optimized in a top-down manner (greedy optimization) and the "decisions" consists of single
coordinate thresholding which eases the computational aspect, but is evidently suboptimal.

This problem is a sequential decision-making problem and can therefore be represented by a
Markov Decision Process Puterman [2014] where the state is the information currently available,
actions are the questions we ask and as final rewards the prediction performance based on the final
partial information. Such a modeling has been used for instance in Chen et al. [2018] to tackle
the game of 20 questions relying on a smart matrix factorization and more recently in a health
diagnosis problem using a reinforcement learning approach Besson et al. [2018].

9.2.3 Association rules

A baseline for studying basket item relationships is association rules, the idea being to observe how
sets tend to appear with each other through different measures such as support, the proportion
of transactions containing both item A and B, the (directed) confidence, the proportion of cases
where B appears given that A does and the lift, ratioing the confidence with the proportion of
transaction containing item B. All those proportions and ratios are heuristics to help algorithms
either recommend new items or understand item relationships. As such, it can be adapted to
the supervised learning setting quite easily and to our problem in particular, as was proposed
for example in Mwamikazi et al. [2014]. Association rules only are used to cover binary features,
although, with a probabilistic model approach it could probably be extended.

9.2.4 Decision trees

Decision trees, as presented in part I, are built to ask binary questions in order to predict a
target variable e.g. Q1 = 1{X1 < τ}. There are several implementations of decision trees in
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R and Python languages, relatively straightforward to understand how they work and even to
recode them. Although it does not solve the problem we are interested in, they represent a proper
baseline for us to compare to. Also, compared to the variable importance approach presented
above, decision trees are at least adaptive to the answers revealed to them.

Below are the shortcomings.
First, from their construction, the decision tree asks whether a feature is below a threshold

or not, which is different from asking for the value of a feature, except in the binary case. This
implies that for every non-binary feature, we should consider that one the decision tree has asked a
question on it, it is known, and the following splitting can be done without cost of question. This
is a small code tweak, but it recalls that the construction of the decision tree does not exploit to
the full the knowledge from non-binary features.

Second, and related to the first issue, the decision trees are built by optimizing the split ahead.
The global hierarchy is not fully optimized for the final prediction accuracy, unless of course we
consider a tree of depth one.

Third, and last shortcoming (probably the least essential though), existing implementations do
not allow users to define their accuracy function themselves, which might be an inconvenience in
the case where Y or X aren’t categorical and we can’t simply assign some class weight.

One of the shortcomings of decision trees as stated previously is that classic algorithms such
as CART and C4.5 calibrate splits by solving local optimization problems and so the final tree
(independently of the pruning process) is likely suboptimal. Several efforts have been made in
order to optimize the decision tree at a global scale.

In Bennett [1995], the authors use Linear Programming with a fixed decision tree shape to learn
the tree parameters which optimize globally the decision tree, rather than local optimizations. It
seems that this approach is limited by the program complexity as well as the tree structure imposed.

Many other approaches to the greedy top-down approach have been tested, among which:
Integer Programming, as in Günlük et al. [2018], Constraint Programming, as in Verhaeghe et al.
[2019] and Evolutionary Algorithms, as in Barros et al. [2013].

More recently, in Nunes et al. [2020] the authors rely on Monte-Carlo Tree Search (MCTS), a
quite advanced technique to optimize the decision tree globally rather than locally. MCTS uses
Upper Confidence Tree algorithm combined with Monte-Carlo (rolling out the tree for several
iterations). Even more recently, in Aglin et al. [2020], the authors take an approach from Opera-
tions Research community (DL8 - using branch and bound) and combine it with an upper bound
estimate, similarly to the UCB approach.

9.2.5 Planning & Reinforcement Learning

The problem we present is a sequential decision-making problem, hierarchical as features are
throughout the steps unveiled and episodic as the number of steps is set to q. An appropriate math-
ematical model is a Markov Decision Process Puterman [2014], where the state variable describes
the available information, the actions are which information is asked for and the reward is the final
expected score as in the definition of π∗ (eq 9.1.2). The only remaining question is how to solve
this optimization problem from the large sample of techniques from the planning/Reinforcement
Learning literature, see for instance Sutton and Barto [2018] or Li [2018]. Note that Reinforcement
Learning methods are rooted on the same theory than the planning" methods, but extend to the
case where data does not come in a single batch, but are acquired sample after sample, and the
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cost of the data is considered not negligeable either from cost/time perspective or simply because
the space dimension is too large for full exploration. The Deep Reinforcement Learning methods,
combining Reinforcement Learning theory and the generalization power of deep neural networks
for function approximation allows to handle easily large and/or continuous state and action spaces.
As such, it is common in Reinforcement Learning to design an algorithm which balances (a) the
data collection (i.e. which states are visited, exploration) and (b) the actual task of interest -
exploitation. As related works linked to the adaptive questionnaire issue we may cite the works of
Chen et al. [2018], which tackle the game of 20 questions relying on a smart matrix factorization
and Besson et al. [2018] which study a health diagnosis problem using a reinforcement learning
approach.

9.3 Methodology

In this section we introduce Markov Decision Processes in more detail, we present Approximate Dy-
namic Programming, the approach we propose to solve 9.1.2, we talk about exploration approaches
for the Reinforcement Learning problem extension and discuss choices for function score.

9.3.1 Markov Decision Process

The questionnaire process can be modeled by a Markov Decision Process (MDP, Puterman [2014])
M = (X̃ ,A,T,R) where X̃ is the state space, where partially-known feature vector X̃ lives and
A = {1, . . . , p} is the action space, the indexes of feature elements we can collect. T is the transition
function mapping X̃ × A × X̃ to [0, 1] defined as

∀x̃ ∈ X̃ , j ∈ A, x̃′ ∈ X̃ T(x̃, j, x̃′) ∆= PX(Xj = x̃′j |
⋂

{l:x̃l 6=“unknown”}

{Xl = x̃l}) (9.3.1)

if x̃j = “unknown”, x̃′j 6= “unknown” and ∀l 6= j, x̃l = x̃′l. If however x̃j 6= “unknown” and ∀l ∈
{1, . . . , p}, x̃l = x̃′l, the question has already been asked so this probability is 1 and otherwise this
probability is 0 as it indicates some incompatibility between x̃ and x̃′. Finally, R is the reward
function, such that for any state x̃ such that stop(x̃) = true

R(x̃, ., .) ∼ P(X,Y )[score(x̃, Y )|X̃ = x̃] (9.3.2)

and equals 0 otherwise.

Start state The MDP starts with initial state X̃0 = “unknown”p, we then ask question A0,
coordinate A0 is revealed (state X̃1), we then ask question A1, reach state X̃2, and so on and so
forth, until a terminal state is reached (stop function).

Policy π is a function which, given a state x̃ ∈ X̃ assigns an action a ∈ A. Typically, we will
enforce to choose an action a such that x̃a = “unknown” in the idea that the more information the
better, and that priorly required information is to be trusted.

From (X,Y ) data to RL batches From the initial dataset (x(i), y(i))ni=1. From there we can
directly create the set of transitions and the set of rewards for terminal states, since we define
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function score: (1) the set of rewards for terminal states(
unmasked(x(i), s), score(unmasked(x(i), s), y(i))

)
i=1,...,n

s∈subsets(q)

which will be used to learn the reward function and (2) the set of transitions from state to state(
unmasked(x(i), s), j, unmasked(x(i), {s ∪ j})

)
i=1,...,n

s∈subsets(0,...,q−1)
.

to learn transition function. The score function will be defined by us so it is easy to get this data.

Approximate dynamic programming Because the problem is episodic and hierarchical, one
approach to solve equation 9.1.2 is to sequentially compute functions function approximations of
optimal state value functions at layers, going backwards, as presented in section REF. If the fea-
ture space X is discrete and let if n� support(X ), estimated functions can simply be conditional
means. Now, if the feature space is continuous, or mixed discrete-continuous, the most straightfor-
ward approach is to use neural networks as approximators (Approximate Dynamic Programming
Bertsekas et al. [1996]).

Non-greedy decision-making To handle exploration, we consider the softmax and upper-
confidence bound approaches presented in section ... For the ucb exploration bonus, we used the
count of previous couple or triplets already observed before.

9.3.2 Scoring

As we stated before, we consider the following score function:

∀x̃ ∈ X̃ , y ∈ Y, score(x̃, y) = −L(m̂(x̃), y)

where the prediction function m̂ takes as input a partially-known feature vector x̃ ∈ X̃ and outputs
a prediction of Y within Y and the loss function L takes as input the couple (ŷ, y) and outputs a
quantity indicating how bad is the prediction ŷ with respect to the value y.

Evidently, the prediction function m̂ should be learnt with a loss function similar to L, so that
their action is not antagonist, see part I for supervised learning algorithms and appropriate loss
functions.

Quantifying predictive power Please note that, for a relatively cheap price, we can build an
estimate of

E(X,Y )[L(m̂(x̃), Y )|X̃ = x̃] (9.3.3)

for any vector x̃ ∈ X . This quantity could be very useful in order to (a) provide information on the
final prediction provided (prediction quality) and (b) if we consider that what matters is getting
precise estimates, we could stop the algorithm when sufficiently accurate estimates are obtained,
relaxing the budget constraint.
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9.3.3 Construction of predictor m̂

We need to construct a prediction algorithm m̂ which takes as input an element of X̃ and outputs
some prediction of interest of Y |X̃ e.g. mean, distribution.

We consider four different approaches:

1. build a supervised learning algorithm for every possible q subset of answered questions

2. build a single supervised learning algorithm where unknown components have specific values
and as input we also have whether the component is missing or not : neural networks seem to
be appropriate, restricted random forests could also work (need to keep the mask information
at all times)

3. imputation of the yet unknown data with supervised learning algorithm on all features: based
on the available dataset, we could apply imputation scheme to retrieve potential full set of
information

4. instance-based approach: akin to the imputation approach, defining one dimensional kernels
to compare known components to the rest of the database

In general, we will focus on the first approach, building for each subset a specific supervised
learning algorithm. However in some cases, typically when the features are binary and n is suffi-
ciently large, the instance-based approach can be quite interesting relying on a kernel approach,
so let us give some more details.

Assuming m̂0 is a supervised learning algorithm mapping X → Y, we could define m̂ as

∀x̃ ∈ X̃ m̂(x̃) =
∑n
i=1 m̂0(x(i))N(x(i), x̃)∑n

i=1 N(x(i), x̃) (9.3.4)

where N : X × X̃ → R+ is a closeness measure e.g. radial function:

∀(x, x̃) ∈ X × X̃ N(x, x̃) = exp{−
p∑
j=1

(xj − x̃j)2

σ2
j

} (9.3.5)

where (σ1, . . . , σp) is a set of non-negative reals controlling the scaling of each dimension indepen-
dently.

9.3.4 Process summary

If we recapitulate the process of building the smart questionnaire, it leads to the following steps:

1. Collect data samples and prepare the state-action-next state triplets as well as final rewards
set

2. Choose supervised learning family F and calibrate m̂ based on the available data

3. Choose risk metric L (probably a good idea to think about it before calibration of m̂)

4. Choose stopping criterion stop depending on what is most important: limiting the number
of questions overall, stopping when we believe we have enough accuracy, etc

5. Learn π∗ based on score, m̂, stop with approximate dynamic programming.
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9.4 Experiments

To evaluate the performance of our approach, we built three toy models and considered three
benchmark datasets for the regression task. For each of those six problems, we built a smart
questionnaire algorithm with a budget of q = 3 features to uncover based on training data. The
training data was split in three equal parts: one to train the final predictor m̂, one to train the smart
questionnaire, and finally one to validate the smart questionnaire training. We used R package
keras to calibrate the feed-forward neural networks, relying on rmsprop optimizer, learning rate
reduction on plateau as well as early stopping. Problem specific details, such as network dimensions
can be found on the following Github repository github.com/FredericLoge/SmartQuestions.

In the first two subsections we present in details the six cases considered. Subsequently we
present the results obtained in the planning setting for each of those problems: the performances
of our approach (see table 9.4) compared to best subset and CART approaches, as well as to an
oracle, which has access to all p features. We also present some representations of the intelligent
questionnaire computed. Finally, we explore on one of the toy models the online version of the
algorithm, considering different exploration policies for data collection, evaluating the variability
of the approaches in terms of final as well as cumulative performances (one could mention regret).

9.4.1 Toy models

Three toy models were considered in order to test our approach. In each case we simulated in total
6000 samples, 67% of which are used for training and the rest for testing. As predictor functions,
we used random forests with 100 trees, as implemented in the R package randomForest. For models
#2 and #3, we will write ε a standard gaussian noise generated independently of features X. For
the first toy model we considered the inaccuracy score function and for the two models following
we used the absolute prediction error.

Model #1, set of rules with binary covariates

We consider p = 8 mutually independent binary features

Xj ∼ Bernoulli(0.5) ∀j ∈ {1, . . . , p}.

Let E(X) denote the union of arbitrarily chosen events:

E(X) ={X1 = X2 = X8 = 0} ∪ {X6 = 0, X2 = X3 = 1}

∪ {X8 = X1 = X3 = 1} ∪ {X4 = X5 = X6 = 0}

∪ {X3 = X4 = X2 = 1} ∪ {X4 = X8 = X1 = 1}

∪ {X3 = X5 = X7 = 0}.

Then, Y |X = 1{Ē(X)}.

Model #2, set of rules with binary and one continuous covariate

We consider p = 6 mutually independent features

∀j ∈ {1, . . . , p− 1} Xj ∼ Bernoulli(0.5), Xp ∼ U [0, 1].

github.com/FredericLoge/SmartQuestions
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Consider E1(X) and E2(X) the arbitrary set of events defined as follows:

E1(X) ={X1 = 0, {X2 = 0 ∪X6 > .7}} ∪ {X4 = X5 = 0, X6 > .4} ∪ {X1 = X3 = 0, X6 > .8},

E2(X) ={X1 = 1, {X3 = 1 ∪X6 > .7}} ∪ {X3 = X5 = 1, X6 > .6}.

Now,

Y = m(X) + .2ε where m(X) =


0 if Ē1(X) ∩ Ē2(X)

1 if E1(X) ∩ Ē2(X)

2 if E2(X)

.

Model #3: regression with continuous covariates

We consider p = 8 mutually independent random gaussians features

Xj ∼ Gaussian(0, 1) ∀j ∈ {1, . . . , p}.

The target variable is defined by the following model Y = m(X) + σε where

m(X) =

X1 +X2 if X3 < 0

X4 +X5 otherwise

and ε ∼ Gaussian(0, 1) is the noise random variable, independent of X. Parameter σ controls the
noise level in the model. The signal level is constant:

V((X1 +X2)1{X3 < 0}+ (X4 +X5)1{X3 ≥ 0}) = V((X1 +X2)1{X3 < 0}) + V((X4 +X5)1{X3 ≥ 0})

= V(X1 +X2)P{X3 < 0}+ V(X4 +X5)P{X3 ≥ 0}

= 2 · 1/2 + 2 · 1/2

= 2

hence for a given sound to noise ratio (snr = V(m(X))/V(σε) ), we can pick σ2 = 2/snr.
Assuming we are interested in estimating perfectly E[Y |X] = m(X), and we measure it by R2

metric, we would hope to get:

R2
high = V(m(X))

V(m(X) + σε) = snr
1 + snr

since V(m(X)) = σ2snr by definition of snr. In our planning experiments, we wil take snr = 1
and so σ =

√
2, which is a lower bound on prediction performance i.e. one would need to ask the

three right elements and have a perfect model.

9.4.2 Benchmark datasets

Three benchmark datasets where considered: the Boston Housing dataset Harrison Jr and Rubin-
feld [1978], the more recent AMES dataset De Cock [2011] and lastly a Coronary Heart Disease (ob-
tained from Kaggle: https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset,
initial source claimed: Framingham Heart Study: https://framinghamheartstudy.org). The
first two sets contain house prices and characteristics jointly. Because of the relatively low sam-

https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset
https://framinghamheartstudy.org
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ple sizes we relied on linear regression models as prediction functions, rather than non-parametric
models. For the Framingham dataset, we considered extreme gradient boosting as predictors, using
a validation sample to apply early stopping, avoiding overfitting in spite of not so large sample
size.

Boston Housing dataset [BH]

This data, available in R package mlbench, contains 506 observations (one per suburb) and 13
variables, amongst which: the median value of owner-occupied homes (the target), crime rate,
average number of rooms, pupil-teacher ratio. The complete list is provided in table 9.1. In order for
the reward distribution to be normal-shaped, we took score function score(x̃, y) = −|y − m̂(x̃)|1/2.

name label
target
medv median value of owner-occupied homes in USD 1000’s
features
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per USD 10,000
ptratio pupil-teacher ratio by town
b 1000(B − 0.63)2 where B is the proportion of blacks by town
lstat percentage of lower status of the population

Table 9.1: Boston Housing dataset variable description, obtained from R package mlbench docu-
mentation associated to dataset BostonHousing.

House prices dataset [AMES]

The AMES dataset, available at http://jse.amstat.org/v19n3/decock/AmesHousing.txt con-
sists of 2930 observations of house value, which we log-scaled, and 81 characteristics such as overall
quality, year of construction, surface information. The set of features was brought down to ten
continuous variables, listed in table 9.2. We used a mean squared error in our score function.

Coronary Heat Disease dataset [CHD]

Collected by Boston University through the Framingham Heart Study1, a dataset related two coro-
nary heart disease is available here: https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset.
The dataset has 15 attributes and class label and the patients were observed for 10 years on various
risk factors, which we categorize as demographic, behavioral and medical, see table 9.3.

Interestingly, this dataset allows us to slightly extend the framework we presented up to now: (a)
we will assume that some initial data, typically demographic, is available (b) there is not necessarily
a one-to-one relationship between actions and features. For (a) we will do an experiment where

1https://framinghamheartstudy.org

http://jse.amstat.org/v19n3/decock/AmesHousing.txt
https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset
https://framinghamheartstudy.org
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name label
target
SalePrice the property’s sale price in dollars
features
OverallQual Overall material and finish quality
GrLivArea Above grade (ground) living area square feet
YearBuilt Original construction date
GarageCars Size of garage in car capacity
TotalBsmtSF Total square feet of basement area
GarageArea Size of garage in square feet
1stFlrSF First Floor square feet
FullBath Full bathrooms above grade
YearRemodAdd Remodel date
LotArea Lot size in square feet

Table 9.2: AMES dataset variable description, obtained from Kaggle competition https://
www.kaggle.com/c/house-prices-advanced-regression-techniques/data, the original doc-
umentation Dean De Cock being available at http://jse.amstat.org/v19n3/decock/
DataDocumentation.txt which contains much more details on variables.

name label
target
TenYearCHD 10 year risk of coronary heart disease CHD (binary)
demographic
male is the patient male
age age at exam time
education education level (1-4)
behavior features
currentSmoker is currently a smoker
cigsPerDay number of cigarettes smoked per day
medical features
BPMeds is on blood pressure medications
prevalentStroke previously had a stroke or not
prevalentHyp prevalent hypertension or not
diabetes patient has diabetes
totChol total cholesterol in mg/dL
sysBP systolic blood pressure in mmHg
diaBP diastolic blood pressure in mmHg
BMI body mass index
heartRate heart rate in beats/min
glucose glucose level in mg/dL

Table 9.3: CHD dataset variable description obtained through Kaggle data description https:
//www.kaggle.com/amanajmera1/framingham-heart-study-dataset.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset
https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset
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the gender is available and one where all five demographic variables are available at the beginning
(action 0). For (b), we will consider a one-to-one relationship, except for systolic and diastolic
blood pressure, acquired simultaneously with a blood pressure measurement (max/min values).
Such relationship can be nicely represented with a feature-action relationship matrix as illustrated
in figure 9.2.

Figure 9.2: Feature-action relationship matrix for CHD dataset: demographic variables are as-
sumed to be available initially, associated to action 0, because those are considered to be zero cost
variables. Systolic and diastolic blood pressure are collected through a blood pressure measure-
ment (action 6), all the others are collected with their own specific measurement / question e.g.
blood glucose measurement for glucose, heart rate monitoring, asking for diabetes history.

In this case we chose to take the following score function:

score(x̃, y) = −m̂(x̃)(1− m̂(x̃)) (9.4.1)

which is the Gini index or entropy, ranges in [-0.5, 0], 0 indicating we have manage to properly
separate the two classes. Note that we do not consider the associated value y but solely the
predictor, which supposedly is calibrated on (X,Y ) ; supposedly this is a much easier target for
our neural network. As prediction function we used gradient boosting with early stopping as
regularizer, setting aside a portion of the training set to keep AUC criterion in check.
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9.4.3 Global performance

For each problem, we replicate the train/test split at random 10 times, calibrating our model as
well as three baselines on the training set and evaluating on the test set. Toy model #1 being a
classification problem we used the Area Under the Curve (AUC) metric for comparison, whilst we
used the Root Mean Squared Error (RMSE) for all other problems.

In table 9.4 we report the test set performance average and its standard deviation in parenthesis.
The approach we propose is labelled SmartQ in the table ; the oracle corresponds to the model
using all p features ; best q subset relies on the subset of features which performs best on the
training set ; CART q is a CART decision tree with depth q, calibrated using R package Rpart.
On all problems, whether it be toy models or benchmark datasets, SmartQ outperforms both best
q subset and the decision tree with maximum depth.

Problem Metric Bound Oracle SmartQ Best q subset CART q

Toy models
#1 AUC 1 1 (0) 0.87 (0.01) 0.75 (0.02) 0.81 (0.01)
#2 RMSE 0.2 0.3 (0.01) 0.37 (0.01) 0.46 (0.01) 0.41 (0.01)
#3 RMSE

√
2 1.56 (0.02) 1.57 (0.03) 1.83 (0.03) 1.84 (0.02)

Benchmark datasets
BH RMSE 4.99 (0.57) 4.92 (0.54) 5.33 (0.54) 5.16 (0.64)
AMES RMSE 4.3 (0.22) 4.56 (0.14) 4.67 (0.19) 5.62 (0.15)
CHD [1− 5] AUC 68.88 (2.01) 69.12 (1.85) 68.77 (1.76) 64.8 (2.89)
CHD [1] AUC 69.73 (1.92) 62.38 (3.2) 61.04 (4.35) 60 (3.41)

Table 9.4: Average and standard deviation of prediction performance on test sets, on 10 different
train/test splits. For the benchmark datasets, we sampled at random the train/test splits every
time, whilst for the toy models we simply generated new train/test datasets each time. For the
CHD dataset, we considered two versions: the case where variable 1 (male) is known initially
(problem label: CHD [1]) and the case where the five first variables, demographic and behavior
features, are initially known (problem label: CHD [1− 5]). On each problem, SmartQ performed
better than the best q subset and the CART decision tree, getting close to the oracle predictor. For
the toy models we added as indicator the best possible performance for the toy models considered,
based on their intrinsic variance.

9.4.4 Variable importance

We take a look at a particular instance of the application on AMES dataset. In this instance the
best linear model found (best q subset) relied on variables: OverallQual, GrLivArea, YearBuilt.

In figure 9.3 are represented the question sequences asked by the smart questionnaire on a
test set of the AMES problem. The thickness of the arrows indicate the proportions of cases
making the transitions. The variable found for the best q subset still matter a lot in the smart
questionnaire, but it seems to be more interesting for instance, depending on OverallQual observed
to ask for GarageArea or YearBuilt. Subsequently, GrLivArea is often asked for, but mostly when
GarageArea was queried, otherwise many other variables such as 1stFlrSF and FullBath are asked.
The questionnaire manages which information is more important to get depending on previously
recorded values, as expected.

In figure 9.4 we plot the normalized variable importance from random forest algorithm (red)
and alongside the pourcentage of cases, on the test set, where each variable was asked for. In this
instance it appears that a positive relationship does exist between the two quantities, albeit not
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perfect, which suggests these variable importance scores could be a heuristic for which variables
should appear in our smart questionnaire, which could be useful when dimension may come as an
issue.

Figure 9.3: Diagram showing the paths taken during the application of the smart questionnaire
on the test set on AMES dataset. Note: contrary to a decision tree which explicits the directions,
this graph is only a representation of which features where asked, not why.

Figure 9.4: AMES, variable importance from global random forest and pourcentage of cases each
variable is asked for.

9.4.5 Visualization

The question of how to visualize the smart questionnaire can be quite tricky, unless a large pro-
portion of the features are binary, which helps tremendously. We consider examples on the toy
models.
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Toy model #1

Because the features are binary, the usual decision tree representation can be applied. The decision
tree that serves as baseline is presented in figure 9.5 whilst the questionnaire algorithm we found
is presented in figure 9.6.

Figure 9.5: Decision tree baseline

Figure 9.6: Questionnaire: Yˆindicates the prediction assigned to each node, represented by squares
here (1/2 coding rather than 0/1 coding) and the error term is the predicted error.

Toy model #2

The intelligent questionnaire found started in the two first layers by asking for binary features, as
such the questionnaire can be summarized quite simply, as follows. First, element X1 was queried.
Then element X2 was asked for when X1 revealed to be 0, and element X3 was asked for when X1
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revealed to be 1. Then the final question was:

X1 = 0, X2 = 0→ X4

X1 = 0, X2 = 1→ X6

X1 = 1, X3 = 0→ X6

X1 = 1, X3 = 1→ X5.

The decision tree alternative is presented in figure 9.7.

Figure 9.7: Decision tree baseline

General visualization

In the case of toy model #3, we can visualize the questionnaire sequentially: first, question 3 was
systematically asked, because we were able to learn the importance of asking for it before any
other variable. Then, depending on the value of variable 3, we basically selected either 1 or 2 if
X3 > 0 and 4 or 5 otherwise, as shown in figure 9.8. We can observe that in the low extreme we
recommended to ask question 7, which is actually an unimportant variable, this is related to poor
estimations at the boundaries. Also, because in this setting there are several optimal solutions
for the questionnaire, the choice amongst 1/2 and 4/5 can seem quite bizarre. The lines added
are found by applying a CART prediction algorithm over which question to ask according to the
questionnaire, which can be seen as a surrogate model. Now, focusing for example on the case
where the revealed X3 would belong to interval [−2,−1], we would then proceed to ask question
4, and then, systematically, we asked for question 5, as figure 9.9 illustrates.

Going to the AMES dataset, which is much more interesting we consider an example which
starts by asking for GrLivArea, the second questions are presented in 9.10, and the third questions
are represented in figures 9.11, 9.12 and 9.13, depending on the actual value of GrLivArea.
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Figure 9.8: Visualizing smart questionnaire decision-making on toy model #3. X3 is known, what
second question should we ask ?
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Figure 9.9: Visualizing smart questionnaire decision-making on toy model #3. X3 is known to be
in [−2,−1], we asked for question 4, what third question should we ask ?
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Figure 9.10: Visualizing smart questionnaire decision-making on AMES dataset.
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Figure 9.11: Visualizing smart questionnaire decision-making on AMES dataset.
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Figure 9.12: Visualizing smart questionnaire decision-making on AMES dataset.
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Figure 9.13: Visualizing smart questionnaire decision-making on AMES dataset.
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9.5 RL on toy model

9.5.1 Specifics

We considered toy model #3 presented in preceding section: consider p = 8 mutually independent
random gaussians features

Xj ∼ Gaussian(0, 1) ∀j ∈ {1, . . . , p}.

The target variable is defined by the simple linear model

Y =

X1 +X2 + σε if X3 < 0

X4 +X5 + σε otherwise

where ε ∼ Gaussian(0, 1) is the noise random variable, independent of X. Parameter σ, which
controls the noise level in the model will be set to σ2 = 0.4 in order to have a Sound-to-Noise ratio
of 5. We consider the problem of gradually sampling data using the questionnaire i.e. gathering
only q = 3 elements of feature vector X at a time.

We start with 32 samples for each q-question combination and then at each iteration we sample
a total of 32 ·

(
p
q

)
= 1792 elements, accordingly with exploration policies. At every iteration, half of

the samples are kept for learning functionm and half for the neural networkQ-value approximation.
To approximate m we will rely on random forest algorithm. At each iteration, we will also follow
greedily the current questionnaire on a free-test dataset of 2000 samples. This will allow us to track
the performance improvements of the smart questionnaire constructed and see which exploration
method performs well and under which conditions.

We considered the softmax and ucb exploration policies, presented in the methodology section
earlier, setting, quite arbitrarily two different exploration parameters. For all but one of the softmax
approaches, we used the square root absolute prediction error instead of the squared error, because
the latter has a highly-skewed distribution towards zero, which seems to be causing issues in the
neural network training. It however may be that some parameters in the training on the neural
network should be changed for the approach to perform properly.

The template neural network used for layers 2 and 1 had the following characteristics: fully-
connected neural network, with four hidden layers of 24 neurons, input of size 24 (the first 16
representing the partially-known vector, the last 8 indicating which action is selected) and with
output size 1.

In order to obtain our results, we repeated each scenario i.e. exploration policy in 10 experi-
ments with set seed values.

9.5.2 Results

In order to analyze and compare the algorithms performances, we produced a few figures, which can
be categorized in two groups, the first providing insight into how well the intelligent questionnaire
computed performed on the test samples throughout the online learning process, tracking for
instance final regret in figure 9.14, checking what the first question selected was, figure 9.15, and if
overall the right questions were asked, figure 9.16, which we can very well do because we know the
form of the optimal questionnaire. The second group, which is a little larger, essentially focuses
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on the behaviour of the different exploration policies and that is: on the acquired samples, in
how many cases did we collect a (1,2,3) or (3,4,5) sample, figure 9.18, or a sample with a proper
couple i.e. in the set {(1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)}, figure 9.19 and finally the minimum
and maximum proportion of triplet sampled in figures 9.20 and 9.21 respectively.

Test results

Let us begin our analysis on focusing on the results from the test sets first. Examining figure 9.14,
which represents the RMSE distribution over time steps and for the different policies, we can make
several observations: (a) ucb methods take a longer time to reduce RMSE in contrast with softmax
exploration, (b) ucb methods also present overall more variability than softmax experiment do,
(c) the reward distribution matters, as the softmax policy relying on original squared errors is the
only on which seems to stuck to a floor level, two times larger than the lower bound (σ =

√
0.4).

One can note that, because of the particular parameters, in the case of softmax the less-
exploratory option (β = 12) is preferable to more exploratory one (β = 6), but if we would to
increase it too much, we would be in much trouble (purely greedy strategy); in the case of UCB,
we can see that in this case it was preferable to pick a larger exploration bonus in order to make
the solution converge faster.

Looking at which first action was selected from the learnt questionnaire throughout this process,
figure 9.15, we see again how the softmax approach allows to converge quickly to picking question
3 first for almost all experiments around step 15, whilst this proportion is around 75% for ucb(100)
and 50% for ucb (50), which accounts for the differences in RMSE scores observed previously. The
same reasoning can be applied for the softmax policy relying on squared errors, whose training
seems compromised after a given number of steps. Open question: did the data size had something
to do with the neural network training ?.

Akin to the first graph analyzed, figure 9.16 presents the percentage of cases where the right
questions were asked i.e. starting by 3, then (1,2) if 3 < 0, (4,5) otherwise. The behaviour is the
inverse as the one observed in the first graph unsurprisingly.

Acquired data results

Let us now focus on how the different exploration policies behaved. Examining plots 9.18 and
9.19 one can observe that only the softmax policies focus their exploration phase on the actual
important triplets, and consequently couples: for each softmax policy (aside the one with squared
errors), the percentage of relevant couples represent 50% of new samples and linearly increases
until the 100% ceiling is reached. The relevant triplets increase for those policies is even more
steep. For Ucb exploration policies however, the pertinent triplets are very rarely sampled (their
are some outliers i.e. good scenarios) and the pertinent couples are sampled in a very variable
manner across our experiments: this is clearly not robust throughout experiments. More expla-
nation on this phenomenon is provided by graphics 9.20 and 9.21 which the present the minimum
and maximum proportion of sampled triplet. It appears that for softmax policies, the minimum
percentage decreases slowly, until eventually being zero (so the triplet becomes ignored in the
sampling process), whilst the maximum percentage gradually increases up to around 50% because
those policies tend to finally draw triplet (1,2,3) and (3,4,5). In comparison, ucb methods tend to
focus on a few triplets, as in most cases the maximum percentage was largely higher than 50%,
which simply constitutes less exploration.
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Figure 9.14: RMSE on test samples (n = 2000) per iteration and policy



156 Chapter 9. Intelligent Questionnaire †

ucb (50)

softmax (6), squared error ucb (100)

softmax (12) softmax (6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Iteration (note: 32 * 56 data points / iteration)

F
irs

t a
ct

io
n 

se
le

ct
ed

0.00 0.25 0.50 0.75 1.00
Proportion

Distribution of first action selected per iteration and policy

Figure 9.15: Distribution of first action selected, per iteration and policy
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Figure 9.16: Percentage of right questions asked, per iteration and policy
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Figure 9.17: RMSE on acquired samples (n = 1792) per iteration and policy
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Figure 9.18: Percentage of (1,2,3) and (3,4,5) sampled triplets per iteration and policy
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9.5.3 Suggestions

In this experiment, it appears that the softmax exploration policy seems to be more easy to deal
with compared to ucb from an exploration perspective : it allows for much more exploration,
without waiting for next steps ; as such the learning happens more quickly and when we finally
differentiate in terms of Q-values it clearly states out, whereas in UCB it is not so clear, performs
poorly in comparison in terms of cumulative regret as well as final regret. Also it seems more
intuitive to compare Q-values amongst themselves rather than with an exploration bonus of a
completely different nature. Also, it seems that reward distribution (at the last layer of the
questionnaire) does matter, comparing the case where the squared error was taken instead of the
root absolute error.

Something we thoughtfully omitted, is that the reward function changes throughout iterations,
since it is defined based on our prediction m̂ of m, which is updated as more data is actually
available. We are fortunate enough, or in a sufficiently simple setting at least, for this approach
to be working. Now, it seems reasonable that we would have some idea of the variance of our
prediction, which opens the possibility to learn not the exact error but a lower upper bound on it
(optimism-based approach).

Finally, we could consider a more permissive version of the game, where we can actually ask
more than three questions, but are penalized for it. That way, we could potentially learn much
more, and it would open the way to more diverse exploration strategies.

9.6 Conclusion

In this work we built an adaptive predictive-questionnaire under constraint over the number of
questions, motivated by the important balance between data acquisition and user experience.

As this is a sequential decision-making problem we used a Markov Decision Process to model it.
Furthermore, its episodic and hierarchical structure allowed us to apply an approximate dynamic
programming approach to learn the best adaptive questionnaire based on available data on couple
(features, target), which is the standard setting in supervised learning. Finally, we have shown
on three toy models as well as two classic benchmark datasets that our approach outperforms (a)
a decision tree submitted to the same budget constraint of questions (b) classic models based on
the most informative subset of questions. Option (b) being non adaptive and option (a) being
limited to one-dimensional splits of data, our approach allows for much more flexibility. We have
also showed that this approach works online, trying classic exploration policies for one of the toy
models, which was not evident it would as the reward where are trying to learn is data-dependent.
As a continuation of this work we have a few ideas for further research.

Stopping criterion

In the algorithm constructed, we assumed a budget constraint over the features requested. This
approach makes sense in some applications as it reduces globally the number of requests from us
to the user and it simplifies some computational aspects.

We could also consider the case where we would stop asking questions as soon as we believe we
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have gathered enough information on X in order to predict Y to a satisfying level:

stop(x̃) =

true if Ê(X,Y )|{X̃=x̃}
[
score(X̃final, Y )

]
≥ τ

false otherwise
(9.6.1)

writing X̃final the terminal state reached by the algorithm. This criterion pre-supposes that
we would construct an estimate of the expected score given the information currently available.
Although it might complicate the resolution method, it could be of more interest for practical use.

Scaling with (p, q)

In our approach we relied on an approximation of state-value functions based on neural networks,
without considering much on the dimension parameters. It is apparent that the higher p and/or
q, the more difficult the problem in a blunt overall search. The exploration approaches from
active & reinforcement learning will surely be handy to help identify q-sized subsets which are
uninformative and handle this potential dimension issue. To set some ideas, we represent in figure
9.22 the dimensions in the binary features setting for a given tree depth q and feature vector size
p: very quickly the dimension explodes with p, unless q is systematically brought down to a very
low number to compensate.

Figure 9.22: Number of states N(p, q), assuming binary features, as a function of p, the dimension
of X and q allowed tree depth.

Truthful responses & more uncertainty

Throughout this work we assumed that when an element of X is asked for it is revealed exactly.
As such, the same element is never asked for twice and we completely trust the response given. In
some applications, the order and overall position of a question in a survey affects the answer given,
which can sometimes have very important consequences, see Magelssen et al. [2016]. Therefore, the
answer given should be treated as a noisy version of the truth, where the noise actually depends
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on the order followed and previous answers that were given. This would lead us to model the
interaction through a Partially Observable MDP Kaelbling et al. [1998] M(X × Y, X̃ ,A,T,R)
where

• X × Y is the state space, where couple (X,Y ) lives, which are partially known

• X̃ is the observable state space, where partially known random variable X̃ lives

• A = {1, . . . , p} is the action space, the indexes of feature elements we can collect

• T and R are the transition and reward functions.

This representation, with simple extensions, could allow for noise in the observation of X which
could be important if the assumption that question order matters does not hold. It is known that
in several usecases, question order can matter, see https://www.surveymonkey.com/curiosity/

question-order-matters/. The phenomenon is called "priming" and implies that the responses
to the questions gotten will be dependent on the order chosen. This is something which is not
handled here and could be quite difficult to handle.

Different data acquisition setting

In the planning experiments, we considered to have a complete dataset of couples (X,Y ), suffi-
ciently large to propose a proper solution. In the RL section, we considered that the data acquisition
part was constrained by the intended application: asking only q questions, only that in some cases
the individuals were nice/incented/paid enough to provide us with the target variable to train.
Several extensions could be considered, for example: rather than stopping at q questions online,
we could consider starting with all p questions, and gradually, building our estimates, starting to
progressively but surely lower the number of questions to ask, making sure our certainty level is
high enough. An interesting reference on the topic is Provost et al. [2007].

Facilitating online setting

On the online setting we have several ideas to explore, especially when the dimension will become
problematic.

Instead of recalibrating globally the predictors, the idea would be to rely on fully randomized
trees, which are built progressively and only the associated predictions are recomputed as new data
is brought in. With a proper implementation, this would integrate quite nicely with the setting.

Also, because we need to find the best action to take, we suggest that for at least the last layer
but potentially for the prior ones, we not learn the expected reward but actually two elements: (a)
the expected reward for an action compared to the optimal and (b) the expected reward of the
oracle. Open question: are the two equivalent ? Of course this is only possible in full information,
so in the planning approach.

Communication

This work was partly presented at the UCAI’20 (User-Centered Artificial Intelligence) workshop,
in September 2020. This workshop aimed at bringing together people from the HCI (Human-
Computer Interface) community and the Artificial Intelligence community.

https://www.surveymonkey.com/curiosity/question-order-matters/
https://www.surveymonkey.com/curiosity/question-order-matters/




Part III

Exploration for bandits and MDPs





Introduction

For any Markov Decision Process, if we fully know the transition kernel and reward function, then
it is relatively straightforward (assuming unlimited computing power) to find an optimal policy
and at least be able to rank policies amongst each other.

In the case where model specifications are learnt based on data (model-based), uncertainty on
our estimates must be dealt with appropriately, for example by acquiring more data on highly
uncertain regions (exploration). In a model-free approach, we still use data to approximate state
value or state-action value functions, hence uncertainty on our estimates must be properly taken
into consideration and so we need to explore to properly cover the state and action spaces.

Exploration is supposed to help us improve our knowledge of this environment in which the
system evolves, and it is considered to be done efficiently when only promising areas are explored
hence the exploration-exploitation tradeoff / dilemma.

To explore it is common to make decisions in a non-greedy manner, for instance: on some epochs
we pick actions at random (ε-greedy), we pick the actions with the highest upper confidence bound
(optimism, UCB, UCT, UCRL), we draw predicted returns from a stochastic belief and pick the
highest (bayesian). In all those cases, we look at actions estimated sub-optimal, often preferring
the ones with high reward estimate. See Lattimore and Szepesvári [2020] or Sutton and Barto
[2018] for more details on the different strategies, in the different contexts.

Here, we present some special instances of problems which have intrinsic stochasticity in their
dynamics, such that it may strongly help in learning rapidly without taking too much consideration
on the exploration issue.

The first problem, explored in Section 10 is a multi-armed bandit problem where at each time
instance, a random proportion of the bandits is unavailable to play. This leads to the same effect as
the ε-greedy policy, where we select an arm at random amongst suboptimal arms with probability
ε.

The second problem, studied in Section 11, is an MDP with as state information the position
of an object on a bounded segment, the reward function depends on the object position and is
deterministic. The action authorized is to move the object of maximum step ε, either left or right.
The next position is made stochastic with a simple gaussian perturbation, such that for a high
enough noise, the action decided is negligeable and we actually don’t control the system. There is,
in between, a sweet spot such that there is sufficient noise such that we automatically explore the
segment, whatever the action selected, but not so much that the system can’t even be controlled.

The third and last problem, analyzed in Section 12, is a contextual bandit where the context is
drawn from a fixed distribution at each epoch and the reward is a linear function of the context.
Assuming that the context is diverse enough throughout time, estimating the coefficients involved
in the reward function will go well whatever the behaviour policy. In this particular case we can
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specifically show that the regret has the right order with respect to the number of times the game
is played and with respect to the dimension of the features. Interestingly, a specific quantity
associated to the diversity assumption appears in the regret.



Chapter 10

Multi-Armed Bandit with
constrained action space

Summary

The Multi-Armed Bandit problem is a classic problem where an agent has to decide between
a fixed set of actions in order to optimize cumulative regret. In this chapter, we study a
small variation of the problem, where at each decision epoch one may only select from a
handful of the actions. An interesting consequence of this constraint is that we are forced to
explore new actions, and therefore leads to proper learning and hence good regret behavior,
even when our policy follows a greedy strategy.
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10.1 Context

In this chapter we consider an extension of the multi-armed bandit problem, as presented in
algorithm 13 below. During T time steps, we have to choose one arm amongst a handful and when
we play an arm we collect a reward associated to that arm. Supposedly, some arms have higher
rewards than others in average and so we would like to identify such arms and play them as fast as
possible. To do so, it is known that one must carefully try all the arms until statistical guarantees
are presented to ensure that they may be discarded. In the setting we study here, we assume that
at each time step, not all the arms are available to be selected: only Q out of K of the arms are
available.

Algorithm 13: Multi-Armed Bandit problem with constrained action space
1 initialize sum of rewards per arm s = (0 · · · 0)
2 initialize number of samples per arm n = (0 · · · 0)
3 input function policy which proposes an action based on prior rewards observed and

authorized actions
4 note : sample_from function embodies the say the system decides at a given time which

Q arms out of K are available
5 note : reward function maps to an arm an observation of reward. If rewards where

deterministic, then there would be no uncertainty as to which arm is the best, the agent
would need only to play them once and the problem would be settled

6 for t = 1, . . . , T do
/* environment specifies authorized list of arms */

7 At ← sample_from(set = {1, . . . ,K}, size = Q)
/* user chooses an action */

8 At ∼ policy(s, n,At)
/* observe reward */

9 Rt ∼ reward(At)
/* update estimates */

10 sAt ← sAt +Rt
11 nAt ← nAt + 1
12 end
13 return (At, Rt)Tt=0

From there, you will necessarily explore: as illustrated in figure 10.1 for different couples (K,Q),
you will pick with non-zero probability an arm presumed to be sub-optimal according to current
estimates.

This inherent stochasticity of the system has consequences similar to taking an ε-greedy strat-
egy, as with some probability we will not choose the estimated optimal arm. Now, there are
two majors distinctions to be made: first of all, here we assume that the system has intrinsic
stochasticity which basically constrains us to take some actions we would not otherwise, whilst
the ε-greedy strategy is a specific exploration-exploitation handling policy, and so pertains to the
decision-making of the user. Second major difference, although with some probability we do not
choose the estimated best arm, it remains to specify how we choose an arm amongst the the ones
which are available. If we play a greedy strategy for example, we will pick the arm which seems to
be the best amongst the ones remaining, and so depends on the quality of our current estimates,
so in a sense the exploration in that case would still be guided by our estimates, whilst adopting
an ε-greedy strategy leads to uniform random exploration.
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Figure 10.1: Probability of an arm being unavailable when a subset of Q arms out of K are picked.
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10.2 Simulations

Let us instanciate this problem as follows: we consider that the game is played during T = 1000
iterations, there is a total of K = 11 arms, with reward function

∀a ∈ {1, . . . ,K} reward(a) = Gaussian
(
a− 1
K − 1 , 0.5

)
(10.2.1)

such that the best-arm-sequence (considering average reward obtained) is Arm K, Arm K−1, . . . ,
Arm 1.

We consider that at each time step Q = 5 arms out of K are available, selected uniformly at
random. As a comparative baseline, we look at the same game with a ε-greedy procedure with ε
= 0.545 which is the probability that the best estimated action would be unavailable.

The game was played 50 times overall.
What is interesting to witness is the behavior of the learnt policies and how when the problem

is inherently stochastic (and so we are restrained to some actions) we learn equally well what the
good actions are, see figure 10.2. Note also the comparison with the greedy decision-making, which
fails half of the time to identify the best arm.
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Figure 10.2: Best action estimated. Example: after 1000 iterations, the .545-greedy strategy is
able to identify arm 11 as the optimal one in 94% of the simulations.

In figure 10.3 we plot the cumulative reward and regret for each policy, with the cumulative
regret up to time t being defined as:

T∑
t=1

max
a∈At

E[reward(a)]− E[reward(At)] =
T∑
t=1

max
a∈At

(
a− 1
K − 1

)
−
(
At − 1
K − 1

)

= 1
K − 1

T∑
t=1

max
a∈At

a−At (10.2.2)

with At the authorized set of arms at time t.
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Each line in figure 10.3 represents one simulation (so there are 50 lines per color) and one bold
line for each scenario is the smoothed average over time of each quantity, to compare easily average
behaviours.

One can note the classic unhomogenous behaviour associated to the greedy policy: depending
on the first estimates we can be strongly mislead to follow sub-optimal arms. On the other hand
the ε-greedy strategy and the constrained setting display a controlled average regret.
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Figure 10.3: Cumulative reward (left) and regret (right) observed for the three strategies. The
averages over simulations are the bold lines.

10.3 Conclusion

In this section, we have introduced a variant of the classic Multi-Armed Bandit problem, where at
each epoch the allowed action (equivalently decision) space is randomly constrained by the system
itself. This leads to natural exploration (even when following the greedy rule on the available
decision space) as it does in ε-greedy since with a certain probability the estimated optimal arm is
unavailable. Note however that it changes the definition of the regret as the oracle is not the same.
Experimentally, we have seen that exploration really does occur, and it shows on the cumulative
regret behavior. Finally, please note that if the environment is adversarial and not stochastic, we
could be in trouble when following such greedy decision-making.
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Object on a rule

Summary

The exploration-exploitation tradeoff is quite important in Reinforcement Learning as it
conditions the knowledge we receive on the system we are interacting with, or controlling
depending on the application. Yet, we could conceive of a system with dynamics random
enough that we would not need to specify an exploration strategy, and following a greedy
approach would be sufficient. Evidently, the dynamics must still be influenced somehow
by the agent’s actions (our actions), otherwise there is simply no problem to solve. We
investigate such a system in this chapter.
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11.1 Context

Consider an object with initial position 0.5 on segment [0;1] which may be moved in either direction
by a step of maximum range ε = 0.1 at every time step. At each step, a reward is perceived
depending on the state reached, accordingly with the reward function

R : [0; 1]→ [0; 2.5] (11.1.1)

and plotted in figure 11.1.
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Figure 11.1: Reward obtained, deterministic function of the state reached. The object’s initial
position is 0.5. The best position to reach is 0.9.

If the object’s moves were completely determined by the agent’s decisions, then the problem
would be to properly evaluate the reward function on the segment [0;1], for it is unknown to the
agent at the beginning.

Now, in this section, we are interested to see what happens when the object’s next position is
influenced by the agent’s decisions, but partly stochastic.
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We write St the object position at time t, t ∈ N; recall S0 = 0.5, and let At denote the agent’s
decision at time t, based on St. We consider the following transition rule:

∀t ∈ N St+1 = max{min{St +At + εt, 1}, 0}, εt ∼ Gaussian(0, σ), (11.1.2)

with σ, σ ∈ R+, is the level of displacement perturbation.
With σ = 0.2 for example, even trying to keep the object in the center position can lead with

high probability anywhere in the segment [0.1, 0.9] in just a few steps. This intrinsic stochasticity
is an advantage that must be exploited.

Note that, although we do not explicitly frame it as such, this process is indeed a Markov
Decision Process.

We consider the following greedy policy where we go in the direction of the state which is known
to us to yield the highest reward: after t steps, we have:

∀s ∈ [0; 1] πt(s) = max{min{(arg max
i∈{0,...,t}

R(Si))− s; +ε};−ε}. (11.1.3)

11.2 Simulations

To illustrate this, we generated 100 games of length T = 50 with different values of σ following
policy expressed in equation 11.1.3. The values of σ range from 0 to 0.4 with a step of 0.025, so
17 different values.

In figure 11.2, we plotted the couples of state reached and reward observed for different values
of σ and it appears that for σ ≥ 0.1 the reward function is properly explored. The view of this
particular figure overlays the 100 simulations, so we propose an alternative illustration in figure
11.3 where we plot the highest reward observed for our different runs. One can witness three levels
where the policy might get stuck, which correspond to the three modes of the reward functions at
positions 0.1, 0.5 and 0.9 and associated rewards 1.5, 0.5, 2 respectively.

In figure 11.4 we plot the cumulative average of rewards obtained throughout time for the
different levels of σ, defined as follows:

∀t ∈ N∗
1
t

t∑
i=1

R(Si). (11.2.1)

One can witness that by increasing σ there is a phase where only some runs manage to reach
higher reward levels and progressively the majority become better at it, which is coherent with
what we observed on the preceding illustration. Interestingly, the overall average cumulative reward
seems to reach its peak for σ around value 0.15. To gain more insight, we focus on the last step
cumulated rewards, illustrated in figure 11.5. To this boxplot visualization, we added the average
cumulative reward under the Oracle policy:

∀s ∈ [0; 1] πoracle(s) = max{min{0.9− s; +ε};−ε} (11.2.2)

and under the Keeping centered policy:

∀s ∈ [0; 1] πcentered(s) = max{min{0.5− s; +ε};−ε} (11.2.3)
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Figure 11.2: Couples (state reached, reward observed) for 50 different runs for different values of
σ. For a large enough σ, the system naturally explores the space even when we play greedily i.e.
try to keep the system on centered position 0.5
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Figure 11.3: Highest reward observed throughout steps and over different runs with different
parameters σ. Note that the three modes of the reward function (R(0.1) ≈ 1.5,R(0.5) ≈
0.5,R(0.9) ≈ 2) appear quite neatly on the graphs and as σ increases, we tend to focus on higher
values.
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Those two policies are basic references of how much reward we could receive, one in the case
the reward function were perfectly known and the other if we would focus on initial optimum point
known, a secure choice.

With this last visualization we can clearly identify three phases over the values of σ:

• for σ values up to 0.05: the local maximum is the initial position, hence for low values of
σ we should keep at this point, hence when σ grows, we just have some trouble keeping on
that point although we are trying to ;

• for σ values from 0.05 to 0.175: we are progressively exploring (forced by the randomness of
transitions still) the state space, and the cumulative reward rises quite rapidly - fast transition
between 0.075 and 0.1;

• for σ values above 0.175: although the average reward diminishes only slightly with σ, the
variance of the reward between different runs clearly diminishes.

11.3 Conclusion

This decision process is yet another example here intrinsic stochasticity of the system can take
care, at least partly, of the exploration issue. As such, even a greedy policy, often frowned upon,
performs reasonably well.

Specifically, there is a range of stochasticity level where the level is high enough that it allows
for natural exploration of the state space, yet low enough that the decision we take still impacts
the system.
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Figure 11.4: Cumulative average of rewards throughout 50 time steps for the greedy policy, depend-
ing on parameter σ. As σ increases, we can witness that we progressively reach more rewarding
states overall, especially up to σ = 0.175; for higher values it appears that the variance decreases
but the average effect seems constant and even potentially lowering.
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Figure 11.5: Cumulative reward after 50 time steps for the greedy policy, depending on parameter
σ. One can note the clear shift in performance of the greedy strategy for σ between 0.1 and 0.25
when compared to the two baseline policies: the system is sufficiently stochastic that we are able
to learn of states with higher rewards without explicit exploration but it is not so stochastic that
the control we have over the system is negligeable, which is what is starting to happen for σ = 0.4.



Chapter 12

Contextual Bandit with linear
reward function

Summary

Linear contextual bandits have been studied extensively for the past ten years. To handle
such problems, current state-of-art strategies provide high-probability regret bounds of
order Õ(

√
Td), where T is the number of rounds and d the context dimension. Recent

works showed that quasi-greedy strategies achieve those same bounds in specific instances
of this bandit problem Bastani et al. [2017], Kannan et al. [2018]. In here, we show that
those conclusions hold under a diversity assumption generalizing the one used in previous
works.
About notations within this section. For any n ∈ N∗, [n] ∆= {1, . . . , n}. Let x and y be
two d-dimensional vectors and M be a d× d matrix. The scalar product between x and y
will simply be written x′y. The Lp norm of x shall be written ||x||p and ||x||2M

∆= x′Mx.
For any matrix M , λmin(M) and λmax(M) will denote its lower and higher eigenvalues.
When introducing bounding constants, we shall use the notations ·̄ and ·

¯
. Lastly, 0n×p will

denote a zero-filled n× p matrix.
In section 12.2, after introducing the problem, the notion of regret and our assumptions,
we introduce the pillar assumption to this work and take the opportunity to specify the
distinctions from preceding works. Then we present our main contribution, that is high-
order bounds for cumulative regret and almost sure bounds for expected regret, in the
one-dimensional case, in section 12.3, and in the general case in section 12.4. In section
12.5, we present two key results on our model’s estimator, which are crucial to the regret
proofs. Technical details of the proofs are reported in section 12.6 and follows the conclusion
in section 12.7.
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12.1 Introduction

Consider the following game: an agent is presented with K ≥ 2 different options, picks one and
observes some feedback. This experiment is repeated for some time T , potentially random. In
linear contextual bandits, the options - arms - are characterized by a vector, the context. It is
assumed that the rewards - the feedback the agent receives - are linear in expectation with respect
to those context vectors.

Several strategies have been proposed to deal with those bandits, such as SupLinRel Auer et al.
[2002], SupLinUCB Chu et al. [2011] and OFUL Abbasi-Yadkori et al. [2011]. Those strategies
rely on the Optimism Under the Face of Uncertainty principle, which dictates playing arms with
high upper-confidence bounds i.e. where potentially there would be most reward. The Bayesian
approach has also been applied, see Agrawal and Goyal [2013]. Both streams of literature focus
on efficient exploration-exploitation balancing, which is at the core of online learning. This need
for a trade-off is easily demonstrated with the classic K-Arm Bandit problem, for which greedy
strategies lead with non-zero probability to linear regret.

Yet, several papers showed that a greedy policy can be competitive with state-of-art methods
in terms of regret bounds [see Bastani et al., 2017, Kannan et al., 2018]. In table 12.1 we reported
the order of high-probability regret bounds for UCB, Thompson Sampling and a Greedy approach.
Those orders are competitive.

However, in both papers [Bastani et al., 2017, Kannan et al., 2018] the authors added assump-
tions on the problem itself, which limit practical applications of such models. In this paper we try
to generalize their results to the generic linear contextual bandit problem. In particular, we prove
that a Greedy-like strategy achieves a high-probability bound of order Õ(

√
dT ).

Approach Bound Order

UCB Chu et al. [2011] Õ(
√
Td)

TS Agrawal and Goyal [2013] Õ(d2/ε
√
T 1+ε)

Greedy Kannan et al. [2018] Õ(
√
Td)

Table 12.1: Some high-probability bounds for cumulative pseudo-regret from the literature of
stochastic linear contextual bandits.

12.2 Context

Let us present more formally the bandit problem, the key assumption we make, define our perfor-
mance metrics, and finally our algorithm.

12.2.1 Linear contextual bandit

Let us give a description of the linear contextual bandit, following Chu et al. [2011].
Consider the following game. At time t ∈ [T ], the agent observes for each arm a ∈ [K], some

context Xta ∈ Rd, d ≥ 1. The context set Xt
∆= {Xta; a ∈ [K]} is generated from distribution

P with support X , a K × d space. Based on this contextual information, the agent chooses arm
At ∈ [K] and collects reward RtAt on which we impose the following linearity assumption.
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Assumption 1. ∃!β ∈ Rd \ {0d} : ∀t ∈ [T ], a ∈ [K],

E(Rta|Xta) = X ′taβ. (12.2.1)

The goal of this game is to maximize the cumulative sum of expected rewards

∑T
t=1X

′
tAt
β. (12.2.2)

Remark 1. The K-Arm Bandit problem is a specific instance of this problem, taking β to be the
vector of expected rewards of the arms and setting Xt = diag(K), which allows no information
transfer.

We write Xt
∆= XtAt and Rt

∆= RtAt . Let the σ-algebra

Ft+1
∆= σ{X1, A1, R1,X2, . . . , Rt,Xt+1} (12.2.3)

represent the knowledge of the agent right before his decision at time t+ 1.
Let us now add important assumptions for the rest of our paper.

Assumption 2. ∃σ ∈ (0; +∞) : ∀t ∈ [T ], a ∈ [K], εta
∆= Rta − E(Rta|Xta) is σ sub-Gaussian

conditionally to {Ft, (εkã; k ∈ [t− 1], ã ∈ [K])}.

Definition 1. A random variable X is σ sub-Gaussian if, for any γ > 0, E(exp(γX)) ≤ exp(σ2γ2/2).

Assumption 3. ∃λ̄ ∈ (0; +∞) :
sup
X1

sup
a∈[K]

||X1a||22 < λ̄. (12.2.4)

Remark 2. Please note that the dimension factor d is hidden within λ̄.

Let us make a few remarks on those assumptions, which are quite common in the contextual
bandit literature. The first one specifies how information is shared, the last two help us derive
statistical properties of our model estimator, which is introduced in section 2.4.

12.2.2 Bound on lower eigenvalue

Since the contexts are random variables and the final selected context Xt depends on previous
contexts via the policy followed, the sequence {Xt; t ∈ [T ]} is not independent and identically
distributed (iid).

Let us recall an important result regarding the convergence of the OLS estimate in a regression
model where the iid assumption is not fulfilled by the data.

Lemma 1 (Lai and Wei, 1982, Corollary 3). Consider the regression model Rk = X ′kβ+εk, k ∈ [t]
where {εk; k ∈ [t]} is a martingale difference sequence with respect to an increasing sequence of
σ-fields {Fk; k ∈ [t]} such that supk∈[t] E(ε2

k|Fk) < +∞ almost surely and Xk is Fk-measurable.
Writing Mt =

∑
k≤tX

′
kXk for any integer t, assume that

lim
t→+∞

λmin (Mt) = +∞ and

lim
t→+∞

(log λmax (Mt))1+α

λmin (Mt)
= 0 for some α > 0.

Then β̂t converges almost surely to β.
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Based on Assumption 2 the requirement on the error terms of the model is checked. To fulfill
the last two requirements, a sufficient condition would be to have λmin(Mt) of order (log(t))1+α

for some α > 0. Indeed, from Assumption 3, λmax(Mt) is upper bounded by tλ̄.
Consider, for a specific policy, the following scalar:

λ
¯

∆= inf
β̂∈Rd

λmin

(
E
[
X1X

′
1

∣∣∣β̂]) (12.2.5)

where X1 is the context vector selected following the policy, with our estimate β̂.

Assumption 4. Under the context distribution P, λ
¯
> 0.

This assumption ensures that λmin(Mt) is of order t with high-probability, based on concen-
tration results from random matrix theory, which we will detail in the following section. Those
results ensure the convergence of the OLS estimate but also control the order of the regret.

Assumption 4 and the Multi-Armed Bandit problem In the Multi-Armed Bandit Bandit
problem, there is no information sharing nor context diversity ; specifically, Xt = diag(K), β is a
vector of length K, where the a-th element is the expected reward of arm a, for any a ∈ [K].

Now, whatever the arm chosen At, we have

Xt =
( At

0 0 1 0
)

(12.2.6)

and therefore X ′tXt is a K ×K matrix filled with zeros everywhere but at coordinate (At, At):

X ′tXt =



At

0 0 0 0
0 0 0 0

At 0 0 1 0
0 0 0 0

 (12.2.7)

Whatever (K, a), the lowest eigenvalue of matrix X ′tXt (which is deterministic in the Multi-
Armed Bandit problem) is zero i.e. λ

¯
= 0.

This transcribes quantitatively the fact that when we draw an observation from an arm within
the Multi-Armed Bandit problem, we only learn on the reward distribution associated to this
particular arm. We will focus on linear contextual bandits where information sharing does occur,
hence the previous assumption.

Assumption 4 in the literature In the works of Bastani et al. [2017] and Kannan et al. [2018],
Assumption 4 is justified in two very different manners. In Bastani et al. [2017], the authors assume
that the contextual information is the same for all arms, but the coefficients of β are indexed over
the arms:

∀t ∈ [T ], a ∈ [K], Rta = X ′tβa + εta (12.2.8)

which is a special instance of the model we study. They justify Assumption 4 by stating that with
enough context variance, whatever the set of estimates (β̂a; a ∈ [K]) all are bound to be played
some time. In Kannan et al. [2018], the authors assume that the contexts are arm-dependent and
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chosen by an adversary up-to some independent random perturbations. The level of perturbation
introduced increases the value of λ

¯
and ensures that we learn properly.

Here, we consider the generalized setting without imposing a particular structure on the context
distribution and simply take the assumption that there is a positive lower bound on this quantity,
which is realistic as preceding works have illustrated.

12.2.3 Performance metrics

As the goal of the game is to maximize expected cumulative rewards, we may define the optimal
arm at time t by

A∗t
∆= arg maxa∈[K] X

′
taβ. (12.2.9)

To evaluate strategies, the bandit community uses regret as a standard metric. Regret measures
the discrepancy between the expected rewards obtained when picking arms {At; t ∈ [T ]} rather
than the oracle {A∗t ; t ∈ [T ]}.

Definition 2. The cumulative pseudo regret suffered up to time T is

regret(FT ) ∆=
T∑
t=1

max
a∈[K]

X ′taβ −X ′tAtβ. (12.2.10)

Definition 3. The cumulative expected pseudo regret suffered up to time T is

E(X1,...,XT ) [regret(FT )] . (12.2.11)

We note the supremum over the instantaneous regret

r̄
∆= sup

X1

sup
(a,ã)∈[K]2

X ′1aβ −X ′1ãβ. (12.2.12)

From Cauchy-Schwarz, r̄ < 2||β||2λ̄1/2.
In the main text we will directly write regret or expected regret and not mention cumula-

tive/pseudo prefixes.
In some cases, it will be interesting to directly look at the decision made, and check its opti-

mality:

correctAction(FT ) ∆= 1
T

T∑
t=1

1{At = A∗t }. (12.2.13)

12.2.4 ExploitASAP: a greedy algorithm

Given the definition of optimal arms (equation 12.2.9), a natural approach is to take

At = arg maxa∈[K] X
′
taβ̂t (12.2.14)

where β̂t is an estimate of β based on past data. Given Assumption 1, a natural choice for the
estimator is the Ordinary Least Squares (OLS) estimator defined as

β̂t = M−1
t

(∑
k=1

t− 1XkRk
)

(12.2.15)
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where
Mt

∆=
∑
k=1

t− 1XkX
′
k. (12.2.16)

Algorithm 14, ExploitASAP follows this greedy decision-making process. Now, there are two
situations which need to be handled.

First, ties might occur when evaluating our criterion, especially if X , the support of Xt is
discrete. We propose to draw uniformly at random from the pool of maximizers.

Second, the OLS estimator is defined only when Mt is invertible. As such, in the first time
steps of the game, we propose to rely on some prior β0 ∈ Rd which acts as temporary substitute.
If such prior is unavailable, then one can set β0 = 0d×1, in which case we will pick uniformly each
arm.

Note that when following this algorithm, the agent needs not know λ̄, σ or T : there is no
parameter tuning involved.

Unsurprisingly, this algorithm has similarities with many greedy algorithms introduced in the
literature, such as LinGreedy in Chou et al. [2015] which relies on a Ridge estimator. Interestingly,
the authors provided simulations results which concur that Greedy strategies are far from sub-
optimal compared to SupLinUCB or their approach, LinPRUCB.

Algorithm 14: ExploitASAP algorithm
1 Initialize: M1 ← 0d,d, U1 ← 0d,1, exploit← false
2 Choose: β0 ∈ Rd

3 for t = 1, . . . , T do
/* Observe set of contexts */

4 collect Xt

/* Choose arm At, if possible with running estimate of β */
5 if exploit == true then
6 β̂t ←M−1

t Ut

7 At ← arg maxa∈{1,...,K} X ′taβ̂t (†)
8 else
9 At ← arg maxa∈{1,...,K} X ′taβ0 (†)

10 end
/* Collect reward */

11 Rt ← X ′tAtβ + εt
/* Update estimates */

12 Mt+1 ←Mt +XtAtX
′
tAt

13 Ut+1 ← Ut +XtAtRt
/* Check invertibility of Mt */

14 if exploit == false and λmin(Mt) > 0 then
15 exploit← true
16 end
17 end
18 (†) in case of ties, pick uniformly amongst maximizers.
19 return (Xt, At, XtAt , Rt)Tt=1
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12.3 The one-dimensional case

12.3.1 Intuition

Let us consider the one-dimensional case of the bandit problem introduced above. The objective,
at any time t, is to pick the arm which maximizes the expected return i.e. find

A∗t
∆= arg max

a∈{1,...,K}
βXta (12.3.1)

which is equivalent to estimating the sign of unknown parameter β.
Writing β̂t−1 an estimate of β based on acquired data up to time t, we are interested in minimal

assumptions such that playing greedily based on estimate β̂t−1 is still guaranteed to have proper
regret bounds.

Let At denote the arm selected at time t, we consider the following quantity, which is a key
indicator of the diversity of the stochastic contexts:

λ
∆= inf
β̂∈R

E(X2
tAt |β̂) (12.3.2)

= min
{

E[(min
a
Xta)2]︸ ︷︷ ︸

if β̂<0

,E[(max
a

Xta)2]︸ ︷︷ ︸
if β̂>0

,

K∑
a=1

E(X2
ta)π(a)︸ ︷︷ ︸

if β̂=0

}
(12.3.3)

where π is the baseline set of probabilities of drawing the arms. A typical baseline is the uniform
distribution.

The quantity λ
¯
basically indicates that whatever the current estimate, the context observed

playing greedily will have minimal variance, and as long as λ is strictly positive, we will gain
information and improve on our estimate of β and therefore be able to make better decisions.
Before going on to proofs, let us consider the following case: imagine one of the arms has a fixed
value (highest negative or highest positive point). Then, if we are unlucky in our first estimates
(because of estimation error), we might get stuck into picking this arm (which is in fact the worst
one to pick) for all succeeding steps and we won’t know any better since we essentially don’t learn.

Let us illustrate this with two simple models:
Model 1: four arms, with independent distributions of context: for any t ∈ N,

∀a ∈ [4], Xta ∼ Gaussian(µa, ν) (12.3.4)

with µ = (−4, 0, 3, 4) and ν was tested for values in {0, 1, 5}. An example of sample distributions
for the context is given in figure 12.1. We take β = 5, σ = 500.

Model 2: two arms, with independent distributions of context: for any t ∈ N,

∀a ∈ [2], Xta ∼ Gaussian(µa, ν) (12.3.5)

with µ = (0, 1) and ν was tested for values in {0, 1, 5}. We took β = 5, σ = 50.
In the first model, following a greedy decision-making, we will almost surely pick the highest or

lowest context, depending on the sign of our estimate. Since contexts are non-zero almost surely,
the quantity

∑
tX

2
t grows and one can show it ensures convergence of the estimate. In the second

model however, we can fall in the trap where we pick the first arm (because we have been led to
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Figure 12.1: Samples from context marginal distributions for ν = 0.3. Note that for this variance
level, λ

¯
≈ 0.08.
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believe that β is negative although it is not) and we actually cannot update our estimate of β from
then on, since:

β̂t =
∑
j≤tXjYj∑
j≤tX

2
j

(12.3.6)

hence all observations where Xj is 0 are not used.
We experimented with both models, applying the greedy strategy as well as a Randomized

Draws strategy: assuming we know the noise terms are Gaussian, one may show that

β̂ = β + σ∑
j X

2
j

Gaussian(0, 1) (12.3.7)

in this one-dimensional case. As such, one could pick

At = arg max
a

Xtaβsample, (12.3.8)

where
βsample ∼ β̂ + σ∑

j X
2
j

Gaussian(0, 1). (12.3.9)

This would allow exploration part of the time, similarly to the e-greedy strategy, but at least
it is guided by our uncertainty levels.

Note that it is (almost) equivalent to picking the maxima of contexts with probability

P

(
β̂ + σ∑

j X
2
j

Gaussian(0, 1) > 0
)

(12.3.10)

and the minima of contexts otherwise.
For the first model we simulated 100 sequences of total length 5000, during which we focused on

the proportion of sequences where the proper sign was estimated (figure 12.2) and the cumulative
regret (figure 12.3).

It appears that drawing samples at random helps control the observed regret, as less sequences
tend to get high cumulative regret values following this strategy, compared to the greedy one.
However, performances are on par in average, whatever the variance level of the context values.

For the second model we simulated 50 sequences of total length 500, during which we focused on
the proportion of sequences where the proper sign was estimated (figure 12.4) and the cumulative
regret (figure 12.5).

As we have seen before, even with non-noisy observations, we are still learning. However, if we
systematically pick the context in 0, (ν = 0 setting), we observe data uninfluenced by β and only
pure noise ; as such our estimate of β cannot converge to its true value, which is why three out
of four of the sequences did not manage to retrieve the proper sign of β and get stuck on their
estimate. For those, a linear regret appears quite neatly on the cumulative regret graphs.
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12.3.2 Regret

We define, for all γ ∈ (0, 1),

h(γ) ∆= exp(−γ)
(1− γ)1−γ , (12.3.11)

for all γ ∈ (0, 1),

κ(γ) =

√
2 + log

(
1 + 2λ̄

λ
¯
(1− γ)

)
(12.3.12)

and for all δ2 ∈ (0, 1), γ ∈ (0, 1),

t0(δ2, γ) ∆= max
{
d; λ̄ log(d log(T/d)/(log(2)δ2))

λ
¯

log(1/h(γ))

}
. (12.3.13)

which will appear in several results.

Theorem 1. We take assumptions 1-4. Following algorithm 14 in the one-dimensional case, the
cumulative regret is at most

r̄max
{
t0(δ2, γ); σ

2

β2
λ̄

λ
¯

4κ(γ)2 log(1/δ1)
(1− γ)

}
(12.3.14)

with probability 1− (δ1 + δ2).

This bound is at least of the order log(log(T )) and if the ratio σ2/β2 is too large we might pay
more.

Proof sketch. The proof of this result essentially comes from two ingredients: first, realizing that
selecting the optimal arm in the one-dimensional case is equivalent to knowing the sign of β.
Second, we apply jointly lemmas 2 and 4 to get the desired result. The complete proof is in the
supplemental material.

Let us define, for d = 1,
r̃

∆= |β|EXt

[
max
a

Xta −min
a
Xta

]
. (12.3.15)

Evidently, r̃ is much lower than r̄.

Theorem 2. We take assumptions 1-4. Following algorithm 14 in the one-dimensional case, the
cumulative expected regret is at most

r̃

(
2 + max

{
t0 (1/T, γ) ; σ

2

β2
λ̄

λ
¯

2κ(γ) log(T )
(1− γ)

})
.

The proof relies on very similar arguments than that of theorem 1 and is given in the appendix.
Interestingly, when taking the expectation over all possible contexts, we get a higher bound than
in the worst case setting: it is essentially scaled up by a log(T ) factor.

12.4 The multi-dimensional case

12.4.1 Intuition

For anyone interested, we openly provide an R Shiny application which allows users to run linear
contextual bandits and compare regret and expected regret for ExploitASAP and LinUCB. The
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users can choose bandit parameters (K,T, σ, d, β). They can also pick context generation amongst
two cases: K-Arm Bandit or Independent Truncated Gaussians. In this second scenario, for all
a ∈ [K], t ∈ [T ], Xta follows distribution max{min{Gaussian(0, 1); +4};−4}. One can also pick
LinUCB exploration coefficient α and the simulation parameters: the seed, for reproducibility and
the number of simulations N .

To extend on the previous section on one-dimensional setting we considered two scenarios:
β = (5, 1, 0) and β = (3, 2, 1). We took the following parameters: K = d = 3, T = 200, σ = 10.
In figure 12.6, we plotted the cumulative regret for K-arm bandit problem with the two scenarios
on left and right graphs. In figure 12.7, we plotted the cumulative regret for the contextual bandit
problem assuming independent gaussian distributions for context, with β = (5, 1, 0) (left) and
β = (3, 2, 1) (right).

One can clearly observe that when contexts are stochastic, the regret has a very different
behavior than when contexts are deterministic, especially so when we picked β = (3, 2, 1), which
leads to linear regret in some instances because estimates are misleading and do not bring enough
information during the considered time frame. As a standard of comparison, we looked at UCB
strategy, which generally behaves quite well even under the K-arm bandit setting. We see that
this baseline strategy and the simple greedy strategy are undiscernable in terms of regret when
context is inherently stochastic.

Figure 12.6: Cumulative regret for K-arm bandit problem with β = (5, 1, 0) (left) and β = (3, 2, 1)
(right). Note that with the second instanciation of parameter vector β, in the right graph, the
cumulative regret is more often linear when following the greedy strategy, and gets higher values
under the UCB strategy than it did with the first instanciation of β. This is due to the fact that in
the second instanciation, it is less easy to distinguish which arm is the best than in the first one.
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Figure 12.7: Cumulative regret for the contextual bandit problem assuming independent gaussian
distributions for context, with β = (5, 1, 0) (left) and β = (3, 2, 1) (right). Note how cumulative
regret, whatever the instanciation and the policy, follows a log-like pattern, much different from
what we observed in the first figure.

12.4.2 Regret

Theorem 3. We take assumptions 1-4. Following algorithm 14, the cumulative regret is at most

r̄t0(δ2, γ) + 4κ(γ)σ

√
λ̄T log(T/δ1)

(1− γ)λ
¯

with probability 1− (δ1 + δ2).

Proof. First, let’s show that following a greedy strategy (i.e. At
∆= arg maxa∈[K]X

′
taβ̂t) implies

that the instantaneous regret is bounded by a specific estimation error.

{At
∆= arg maxa∈[K]X

′
taβ̂t}

⇒ {X ′tAt β̂t ≥ X
′
tA∗t

β̂t} (where A∗t
∆= arg maxa∈[K]X

′
taβ)

= {(XtAt −XtA∗t
)′(β̂t − β + β) ≥ 0}

⇒ {X ′tA∗t β −X
′
tAtβ ≤ |(XtAt −XtA∗t

)′(β̂t − β)|}

where one can identify in the left hand side of the last inequality the instantaneous regret.

Set γ ∈ (0, 1) and (δ1, δ2) ∈ (0, 1)2 such that δ1 + δ2 < 1 and consider that the inequalities in
Lemma 2 hold for the particular sequence (XtAt −XtA∗t

; t ∈ [T ]) and that the set of inequalities
in Lemma 4 hold.
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Then, with probability 1− (δ1 + δ2) :

∑T
t=t0(δ2,γ) |(XtAt −XtA∗t

)(β̂t − β)|

<
∑T
t=t0(δ2,γ) κ

′
tσ

√
2λ̄ log(T/δ1)
λmin(Mt)

< 2κ(γ)σ

√
λ̄ log(T/δ1)

(1− γ)λ
¯

∑T
t=t0(δ2,γ) t

−1/2.

For t ≤ t0(δ2, γ), we do not have bounds over estimation errors, hence the cumulative regret is at
most

r̄t0(δ2, γ) + 4κ(γ)σ

√
λ̄T log(T/δ1)

(1− γ)λ
¯

(12.4.1)

with probability 1− (δ1 + δ2).

In this last theorem, we showed an upper bound of order Õ(
√
dT ), since the left term is of

order d log(T ) and the second
√
dT log(T ), the factor d being hidden within constant λ̄. As such

it matches the state-of-art order for high-probability regret bounds introduced in table 12.1.
In K-Arm Bandits, the differences between expected rewards directly appear in the regret

bounds. The smaller the differences are, the larger the bound becomes, because it is more difficult
to detect rightly the best arm. Now, because context is stochastic in our model, this optimality
difference is expressed via the following margin condition.

Assumption 5. There exists a constant m such that, for all t ∈ [T ], (i, l) ∈ [K]2, i 6= l,

PXt
(|(Xtl −Xti)′β| < u) < mu. (12.4.2)

This assumption imposes a tail condition on arm pairwise optimality difference. The larger m,
the more difficult it is to pick the optimal arm at each time t.

Theorem 4. We take assumptions 1-5. Following algorithm 14, the cumulative expected regret is
at most

r̄d

1− h(γ)λ¯ /λ̄
+ C log(T )

(1− γ) (12.4.3)

with C = (K − 1)m8λ̄/λ
¯

(dσκ(γ))2(1 + 3/4
√
π).

Theorem 4 states that following algorithm 14 leads to a expected regret of order O(d3 log(T ))
at most. This order is coherent with Theorem 1 of Goldenshluger and Zeevi [2013] which rely on a
mostly-exploiting algorithm. You see very well how the expected regret explodes with λ

¯
(exponent

concentration on the right) and in the left term directly in the denominator. The dependence is
stronger than in the high-probability result for cumulative regret in theorem 3.

12.5 Results On OLS Estimator

12.5.1 Estimation error bound

In the following lemma we present a bound on the estimation error associated to the OLS estimator
β̂t.
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Lemma 2. We take assumptions 1-3. Set δ ∈ (0, 1) and t ∈ [T ] such that Mt is invertible. For
any x ∈ Rd, with probability at least 1 - δ,

|x′β̂t − x′β| ≤ κtσ

√
2||x||22 log(1/δ)
λmin(Mt)

with κt =
√

2 + log
(
1 + tλ̄/λmin(Mt)

)
.

This lemma is crucial to the proofs of the regret bounds presented in the sections above. It is
quite common in the bandit literature especially in UCB-like approaches where those estimation
errors help guide exploration. Below lies a proof sketch of this lemma, the full proof is in the
supplementary material.

Proof sketch. We follow the steps of Lemma B.4 of Rusmevichientong and Tsitsiklis [2010] for this
proof. We decompose the OLS estimate (equation 12.2.15) as:

β̂t = β +M−1
t ξt (12.5.1)

where Mt was defined in equation 12.2.16 and

ξt
∆=
∑
k∈[t−1]Xkεk. (12.5.2)

Fix x ∈ Rd, we apply lemma 5 (in supplementary material) on self-normalized processes for A =
x′ξt/σ and B =

√
x′Mtx. The condition on (A,B) is checked is verified (see complete proof). From

there, for any y > 0, a 1− δ upper bound on |x′ξt| is given by

σ

√
log
(

1
δ

)(
||x||2Mt

+ y
)(

2 + log
(

1 +
||x||2Mt

y

))
. (12.5.3)

Assuming that Mt is invertible, we take x′ = x̃′M−1
t , y = λmin(Mt)||x||22, which after rearrang-

ing and upper-bounding some quantities gives us the announced result.

Lemma 2 shows how controlling the confidence ball is a matter of controlling the lowest eigen-
value of Mt. In the next subsection, we rely on a concentration result for lowest eigenvalues from
matrix martingale theory.

12.5.2 Controlling lowest eigenvalue of Mt

Lemma 3 (Tropp, 2011, Theorem 3.1). Consider a finite adapted sequence {Uk; k ∈ [t]} of positive
semi-definite matrices of dimension d, and suppose that λmax(Uk) ≤ λ̄ almost surely. For all
µ ≥ 0, γ ∈ [0; 1), we have:

P
[
λmin

(∑t
k=1 Uk

)
≤ (1− γ)µ and

λmin

(∑t
k=1 Ek−1[Uk]

)
≥ µ

]
≤ dh(γ)µ/λ̄.

We adapt lemma 3 to our setting in the following lemma.



12.5. Results On OLS Estimator 203

Lemma 4. We take assumptions 1-3. Set γ ∈ (0, 1). With probability 1− δ,

⋂
t∈{t0(δ,γ),...,T}

{
λmin (1/tMt) >

(1− γ)λ
¯2

}
. (12.5.4)

Proof. Consider lemma 3, taking Uk = XkX
′
k for all k ∈ [t], for some fixed t ∈ [T ]. First of all:

λmin
(∑t

k=1 Ek−1[Uk]
)

= λmin
(∑t

k=1 E [XkX
′
k|X1, . . . , Xk−1]

)
>
∑t
k=1 λmin

(
E [XkX

′
k|X1, . . . , Xk−1]

)
by concavity

> λ
¯
t by definition 12.2.5.

Now, setting µ = λ
¯
t, we get:

P [λmin (1/tMt) ≤ (1− γ)λ
¯
] ≤ d(h(γ))λ¯t/λ̄.

Equivalently, pick t superior or equal to

max
{
d; λ̄ log(d/δ0)
λ
¯

log(1/h(γ))

}
(12.5.5)

and, with probability 1− δ0 at least

λmin (1/tMt) > (1− γ)λ
¯
. (12.5.6)

Now, consider S ∆= {d2k : d2k ≤ T, k ∈ N}. With probability at least 1− δ,⋂
t∈S
t≥t1

{
λmin (1/tMt) > (1− γ)λ

¯
}

(12.5.7)

setting t1 = max
{
d; λ̄ log(card(S)d/δ)

λ
¯

log(1/h(γ))

}
.

The cardinal of S is at most log(T/d)/ log(2) hence t1 ≥ t0(δ, γ).

Lastly, leveraging the fact that {XkX
′
k; k ∈ [t]} is a set of semi-definite positive matrices,

∀t ∈ {k ∈ S : k ≥ t1} :

{λmin(1/tMt) > (1− γ)λ
¯
}

⇒ {λmin(1/nMn) > (1− γ)λ
¯
/2 ; ∀n ∈ {t, . . . , 2t}}

which concludes the proof.

Under Assumption 4, the convergence of β̂t towards β is a direct consequence of lemma 4.
Please note that this result hold whatever the game sequence - and hence the policy. Given the
goal of the game, it makes sense to stick to a Greedy strategy.
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12.6 Technical details

12.6.1 Proof section of lemma 2

Proof. We follow the steps of Lemma B.4 of Rusmevichientong and Tsitsiklis [2010] for this proof.
We decompose the OLS estimate from equation 12.2.15 as:

β̂t = β +M−1
t ξt (12.6.1)

where Mt follows equation 12.2.16 and ξt
∆=
∑
k∈[t−1]Xkεk (we play with the indexes here). We

define Hk the following filtration, hidden to the player:

∀k ∈ [t− 1], Hk
∆= {X1, ε1, . . . , Xk−1, εk−1, Xk}. (12.6.2)

Consider the following result from de la Pena et al. [2004] on self-normalized processes.

Lemma 5 (de la Pena et al., 2004, Corollary 2.2). Let B ≥ 0 and A be two random variables
satisfying the inequality E[exp(γA− γ2/2B2)] ≤ 1 for all γ ∈ R. Then for all c ≥

√
2 and y > 0,

P(|A| ≥ c
√

(B2 + y)(1 + 1/2 log(B2/y + 1))) ≤ exp(−c2/2). (12.6.3)

Fix x ∈ Rd, we want to apply lemma 5 for A = x′ξt/σ and B =
√
x′Mtx. In order to apply it,

we must check that
∀γ ∈ R, E[exp(γA− γ2/2B2)] ≤ 1. (12.6.4)

Note, for any k ∈ [t], Ak = σ−1x′Xkεk and Bk =
√
x′XkX

′
kx.

We have that :

E[exp(γAk − γ2/2B2
k)|Hk] =

E
[
exp

(
γσ−1x′Xkεk

)∣∣Hk]
exp (γ2/2x′XkX

′
kx) since Xk is Hk-measurable

≤
exp

(
γ2
/2 x′XkX

′
kx
)

exp
(
γ2
/2 x′XkX

′
kx
) = 1

relying on the σ sub-Gaussian property of εk|Hk. Following a recursive argument:

E
[
exp

(
γA− γ2/2B2)] = E

[
exp

(∑t
k=1 γAk − γ2/2B2

k

)]
= E

[
E
[
exp

(∑t−1
k=1 γAk − γ2/2B2

k

)
exp(γAt − γ2/2B2

t )
∣∣∣Ht]]

= E
[
exp

(∑t−1
k=1 γAk − γ2/2B2

k

)
E
[
exp(γAt − γ2/2B2

t )|Ht
]]

since {(Ak, Bk); k ∈ [t− 1]} are Ht-measurable

≤ E
[
exp

(∑t−1
k=1 γAk − γ2/2B2

k

)]
because of the bound found above

≤ 1 by recursive reasoning.

The condition is now met, so, with probability 1− δ, for all y > 0,

|x′ξt| ≤ σ
√

2 log(1/δ)
√

(||x||2Mt
+ y)(1 + 1/2 log(1 + ||x||2Mt

/y)). (12.6.5)

Note that λmin(Mt)||x||22 ≤ ||x||2Mt
≤ tλ̄||x||22. Taking y = λmin(Mt)||x||22, we have that ||x||2Mt

+
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y ≤ 2||x||2Mt
and ||x||2Mt

/y ≤ tλ̄

λmin(Mt)
. Substituting the terms, we get:

|x′ξt| ≤ σ
√

2 log(1/δ)
√
||x||2Mt

(
2 + log

(
1 + tλ̄/λmin(Mt)

))
. (12.6.6)

Now, assume Mt is invertible and take x′ = x̃′M−1
t , then:

x′ξt = x̃′β̂t − x̃′β and ||x||2Mt
= x′Mtx = x̃′M−1

t MtM
−1
t x̃ = ||x̃||2

M−1
t

. (12.6.7)

Then, for any x̃ ∈ Rd, with probability 1− δ:

|x̃′β̂t − x̃′β| ≤ σ
√

2 log(1/δ)
√
||x̃||2

M−1
t

(
2 + log

(
1 + tλ̄/λmin(Mt)

))
. (12.6.8)

The final bound is found by upper-bounding ||x̃||2
M−1
t

by ||x̃||22/λmin(Mt).

12.6.2 Proof of theorem 1

Proof. Consider the bandit problem in the case where β is a scalar, i.e. d = 1. In this setting,
notice that:

At
∆= arg maxa∈[K](Xtaβ̂t) = arg maxa∈[K](Xtasign(β̂t)) (12.6.9)

and similarly
A∗t

∆= arg maxa∈[K](Xtaβ) = arg maxa∈[K](Xtasign(β)). (12.6.10)

As such:

regret(FT ) ∆=
T∑
t=1

max
a

Xtaβ −XtAtβ = β

T∑
t=1

max
a

(Xtasign(β))−max
a

(Xtasign(β̂t))

< |β|r̄′
T∑
t=1

1{sign(β̂t) 6= sign(β)}

where r̄′ ∆= maxa,ã |X1a − X1ã|. Please note that βr̄′ = r̄ for d = 1. Applying lemmas 2 and 4
jointly we have with probability 1− (δ1 + δ2) : ∀t ∈ (t0(δ2, γ), T ]

{sign(β̂t) 6= sign(β)} ⇒

|β| < κ′tσ

√
2λ̄ log(1/δ1)
λmin(Mt)

 ⇒

|β| < t−1/2κ(γ)σ

√
2λ̄ log(1/δ1)
λ
¯
(1− γ)/2

 = {t < t1}

where t1 = (2κ(γ)σ)2

β2
λ̄ log(1/δ1)
λ
¯
(1− γ) . From there, with probability 1− (δ1 + δ2):

T∑
t=1

1{sign(β̂t) 6= sign(β)} < t0(δ2, γ) +
T∑

t=t0(δ2,γ)

1{t < t1} < max{t0(δ2, γ), t1}

which concludes the proof.
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12.6.3 Proof of theorem 2

Proof. Focusing on the one-dimensional case, the expected regret is rewritten:

T∑
t=1

E(X1,...,Xt)

[
max
a

Xtaβ −XtAtβ
]
. (12.6.11)

Since one only needs to known the sign of β in order to find the optimal arm, we have

E(X1,...,Xt)

[
max
a

Xtaβ −XtAtβ
]

= E(X1,...,Xt)

[
max
a

Xtaβ −XtAtβ
∣∣∣sign(β) 6= sign(β̂t)

]
P(X1,...,Xt)

[
sign(β) 6= sign(β̂t)

]
= EXt

[
max
a

Xtaβ −XtAtβ
∣∣∣sign(β) 6= sign(β̂t)

]
P(X1,...,Xt−1)

[
sign(β) 6= sign(β̂t)

]
where the last equality stands from the fact that (XtA∗t

, XtAt) are independent of (X1, . . . ,Xt−1)
conditionally to Xt and β̂t is independent of Xt conditionally to (X1, . . . ,Xt−1). The first term is
bounded by r̃. Now, applying jointly lemmas 2 and 4, we have that with probability 1− (δ1 + δ2):

∀t ∈ (t0(δ2, γ);T ], {sign(β) 6= sign(β̂t)} ⇒

|β| < 2κ(γ)σ

√
λ̄ log(1/δ1)
tλ
¯
(1− γ)

 = {t < t1} (12.6.12)

where t1 = (2κ(γ)σ)2

β2
λ̄ log(1/δ1)
λ
¯
(1− γ) . As such:

T∑
t=1

P(X1,...,Xt−1)

[
sign(β) 6= sign(β̂t)

]
< (δ1 + δ2)(T −max{t0(δ2, γ); t1})+ + max{t0(δ2, γ); t1}

< 2 + max
{
t0 (1/T, γ) ; (2κ(γ)σ)2

β2
λ̄ log(T )
λ
¯
(1− γ)

}

where the last inequality comes from renormalizing probability risks (δ1, δ2) by 1/T . Rearranging
the terms provide the announced bound.

12.6.4 Proof of theorem 4

Proof. Consider the instantaneous regret at time t,

regret(Ft; t)
∆= max
a∈[K]

X ′taβ −X ′tAtβ.

In the interest of space, we will write in this proof Xt− for the set (X1, . . . ,Xt). In the following
we aim to control the expected instantaneous regret

EXt−
[regret(Ft; t)|E], (12.6.13)

when we have control over the lowest eigenvalue of Mt:

E ∆= {λmin(Mt) > tλ
¯
(1− γ)}. (12.6.14)
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To start we will condition this expectation on the optimal arm and to do so we define the
following pseudo-partition of support space X :

∀i ∈ [K], Ri
∆= {x ∈ X : x′i.β > x′j.β;∀j 6= i}.

Now, let us to condition the expected regret:

EXt−
[regret(Ft; t)|E] =

K∑
i=1

EXt−
[regret(Ft; t)|E,Xt ∈ Ri]P(Xt ∈ Ri)

≤
K∑
i=1

EXt−
[1{max

a
X ′taβ̂t ≥ X ′tiβ̂t}regret(Ft; t)|E,Xt ∈ Ri]P(Xt ∈ Ri)

≤
K∑
i=1

∑
l 6=i

EXt−
[1{X ′tlβ̂t ≥ X ′tiβ̂t}(Xti −Xtl)′β|E,Xt ∈ Ri]P(Xt ∈ Ri)

(12.6.15)

where the first equality comes from law of total probability, the first inequality is due to the fact
the fact that regret is a non-negative term and for i fixed we conditioned on the fact that i is
optimal. The last inequality comes also from law of total probability - some probabilities were put
away.

From now, fix (i, l) ∈ [K]2, i 6= l and focus on the expectation within the last inequality. We
are going to partition the random variable (Xti −Xtl)′β. Consider the intervals

∀h ∈ N, I(h) ∆= {x ∈ X : (Xti −Xtl)′β ∈ (Ch;C(h+ 1)]}

with constant C remaining to be chosen. Then:

EXt−

[
1{X ′tlβ̂t ≥ X ′tiβ̂t}(Xti −Xtl)′β

∣∣∣E,Xt ∈ Rl
]

=
∑
h∈N

EXt−

[
1{X ′tlβ̂t ≥ X ′tiβ̂t}(Xti −Xtl)′β

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

P[Xt ∈ I(h)]

≤
∑
h∈N

C(h+ 1)PXt−

[
X ′tlβ̂t ≥ X ′tiβ̂t

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

P[Xt ∈ I(h)]

≤
∑
h∈N

mC2(h+ 1)2PXt−

[
X ′tlβ̂t ≥ X ′tiβ̂t

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

(12.6.16)

where the first inequality comes from taking the upper bound of interval I(h) for (Xti −Xtl)′β
and the second inequality comes from Assumption 5.

From there, notice the following:

PXt−

[
X ′tiβ̂t ≥ X ′tlβ̂t

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

= PXt−

[
(Xtl −Xti)′(β̂t − β + β) ≤ 0

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

≤ PXt−

[
(Xtl −Xti)′(β̂t − β) ≤ −Ch

∣∣∣E,Xt ∈ Rl ∩ I(h)
]

≤ PXt−1−

[
|β̂t − β| ≥ Ch/(2

√
dλ̄)
∣∣∣E,Xt ∈ Rl ∩ I(h)

]
≤ exp

(
− (Ch)2tλ

¯
(1− γ)

8λ̄d2κ2σ2

)
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where the last inequality stands from lemma 2 and cashing in event E. Taking C2 = 8λ̄d2κ2σ2

tλ
¯
(1− γ)

and plugging (12.6.16) into (12.6.15) renders:

EXt−
[regret(Ft; t)|λmin(Mt) > tλ

¯
(1− γ)] ≤

∑
i∈[K]

 ∑
l∈[K]\{i}

∑
h∈N

mC2(h+ 1)2 exp(−h2)

 ≤ C ′/t
with C ′ = (K−1)m8λ̄d2κ2σ2(1+3/4

√
π)/(λ

¯
(1−γ)). This last inequality comes from the following

inequality:

∑
h∈N

(h+ 1)2 exp(−h2) ≤
∫ +∞

h=0
(h+ 1)2 exp(−h2)dh = 1 + 3/4

√
π (12.6.17)

with integration by parts. Those results are all conditional to the control over λmin(Mt). Let Ē
denote the complementary event to E, we have:∑

t∈[T ]

EXt−
[regret(Ft; t)] ≤

∑
t∈[T ]

EXt−
[regret(Ft; t)|E] + r̄ P(Ē|Ft)

≤
∑
t∈[T ]

C ′

t
+ r̄

∑
t∈[T ]

P(Ē|Ft)

≤ C ′ log(T ) + r̄d

1− h(γ)λ¯/λ̄
.

This gives us the desired bound.

12.7 Conclusion

In this work, we study a simple greedy algorithm for linear contextual bandits, under a realistic
assumption of context distribution. We showed that cumulative pseudo regret is upper bounded by
Õ(
√
dT ) and cumulative expected pseudo regret is upper bounded by O(d3 log(T )), where d is the

context dimension and T the number of rounds. Those results match state-of-art results in terms
of bound order. They were already established for greedy policies under specific instances of the
linear contextual bandit problem by Bastani et al. [2017] and Kannan et al. [2018]; we extended
their results to the generic problem.

Bound dependency on K The upper bound for cumulative regret for SupLinUCB from Chu
et al. [2011] has a log3 dependency in K.

Although the number of arms K has not naturally appeared in our bounds, it is hidden within
λ
¯
. Although an exact relationship is difficult to explicit, it is clear that augmenting K would tend

to diminish λ
¯
. Indeed, if we were to take Xt = Rd, we would have λ

¯
= 0 from the way it is defined:

only one point would be optimal and so a lower bound would not be properly set.

Non-stationary setting Although distribution P is not indexed over time or game history, we
can assume an adversarial setting as long as all the assumptions we made hold throughout the
game. For unbounded distributions, we can modify the definition of r̄ and update regret proofs
quite easily.
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Improving the λ
¯
constants In theorem 3, we can improve the second term of the bound.

Following algorithm 14, the lower bound on λmin(E[XtX
′
t]) is given by λ

¯
for all t < t0(δ2, γ). Now,

since we apply lemma 2 for all t ∈ {t0(δ2, γ), . . . , T}, we have that a lower bound on λmin(E[XtX
′
t])

is given by
λ
¯
′ ∆= inf

β̂∈B
λmin

(
E
[
X1X

′
1

∣∣∣β̂]) (12.7.1)

where

B ∆=
{
b ∈ Rd : ||b− β||1 < κ(γ)σ

√
2d log(1/δ)
t0(δ2, γ)λ

¯

}
. (12.7.2)

Since B ⊂ Rd, λ
¯
≤ λ

¯
′ by their definitions. As such, the regret bound from theorem 3 becomes:

r̄t0(δ2, γ) + 4κ(γ)σ

√
λ̄T log(T/δ1)

(1− γ)λ
¯
′ (12.7.3)

since one can show that

∑T
t=t0(δ2,γ)(t0(δ2, γ)λ

¯
+ (t− t0(δ2, γ))λ

¯
′)−1/2 < 2

√
T/λ

¯
′. (12.7.4)





Conclusion

In this part, we examined different decision processes, where the system we are interacting with has
enough stochasticity that enforces exploration in different ways: stochastic transitions, constrained
actions, specific assumptions on reward function between actions.

In the first application, we looked at constrained actions: whatever the action believed to be
the best, it will be sometimes unavailable and we will turn to the second best. This one might in
turn also be unavailable and so on. This process forces us to draw new actions (think about your
favorite restaurant that is closed, then you might try another one!)

In the second, we looked at constrained dynamics: even if we can direct the object in a given
direction, the system is a bit shaky and might land in different spots. As such, for a certain range
of stochastic dynamics, we are able to direct the object significantly, but also try new spots without
the explicit intent of doing so.

In the third and last application, we impose a key assumption on the relation between the set
of actions and the reward function encodes the passing of information through different actions.
Basically, whatever the arm drawn, we will learn on the reward function associated to every other
arm. In that setting, we recover proper theoretical regret bounds matching the order of UCB-analog
bounds (which focuses exactly on the exploration-exploitation dilemma).

As a consequence in general, this enforced exploration, when sufficiently high, is sufficient to
ensure that our behavior, focusing on exploitation does not hinder the process, looking at classic
regret metric for example. Let us give more details on the three model specifications which allowed
proper exploration.





Global conclusion
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Contributions

Dans cette thèse, nous avons étudié plusieurs applications où la prise de décision, qu’elle soit unique
ou séquentielle, est au cœur du problème.

Les trois premières applications ont été conçues comme un cadre d’apprentissage supervisé ori-
enté tâche, qui étend le cadre classique d’apprentissage supervisé Hastie et al. [2009] au cas où
une fonction de perte est définie explicitement par l’utilisateur, quantifiant la capacité à prédire
la cible Y comme Ŷ dans un contexte connu X et un contexte inconnu Z, par exemple la cible
est un niveau de demande, X est l’information temporelle (jour de la semaine, saison), Z est le
prix stochastique inconnu au moment de la prévision. Cette approche rapproche la prévision de la
présciption et d’un cadre décisionnel. Dans la littérature, nous avons trouvé plusieurs travaux se
concentrant sur la façon d’entraîner correctement un module de prévision qui vient en entrée d’un
module d’optimisation, typiquement un problème complexe de prise de décision. Dans Bertsimas
and Kallus [2020], les auteurs se concentrent sur la minimisation de la perte attendue condition-
nelle, la perte étant définie en fonction du problème. Les auteurs ont démontré la variabilité des
applications dans les problèmes de recherche opérationnelle. Dans l’article Huang et al. [2019], les
auteurs tentent de modifier le résultat de la prédiction afin d’obtenir une performance globale ap-
propriée sous une fonction de perte personnalisée. Dans Donti et al. [2017], les auteurs démontrent
sur trois problèmes de RO que les réseaux neuronaux peuvent être optimisés sans problème, tant
que le problème d’optimisation suivant a une perte convexe. Dans Carriere and Kariniotakis [2019],
les auteurs optimisent conjointement leurs modules de prévision et d’optimisation. Ce sujet prend
de plus en plus d’importance à mesure que la communauté et ses utilisateurs se rendent compte que
la prévision est une chose, agir sur elle en est une autre. Il existe de nombreuses façons d’aborder
la question, les méthodes que nous avons proposées sont assez légères computationnellement.

Notez que ce cadre est évidemment lié à la prise de décision séquentielle, puisqu’il équivaut à
se concentrer sur la première étape du problème ; c’est pourquoi une approche pour résoudre le
problème consiste en fait à utiliser un algorithme d’apprentissage par renforcement et à optimiser
la politique à une étape, qui à un état X attribue le meilleur prédicteur Ŷ . Il est intéressant de
noter que la modification des arbres de décision a permis d’obtenir d’assez bonnes performances
lors de nos tests, avec un net avantage en termes de calcul.

Les autres applications ont été abordées avec des approches d’apprentissage par renforcement
basées sur la valeur Sutton and Barto [2018], la contribution essentielle étant de montrer comment
formuler ces problèmes correctement pour trouver des politiques et analyser ces résultats. En
effet, les applications des chapitres 6 et 8 sont relativement simples car il s’agit de processus
simples. Cependant, le questionnaire intelligent (chapitre 9) et le problème de gestion de l’insuline
(chapitre 7) étaient des applications beaucoup plus étendues, nécessitant beaucoup plus de travail
sur la modélisation elle-même. Dans le questionnaire intelligent, nous avons essayé de construire
une version intelligente et continue de l’arbre de décision classique Breiman et al. [1984], avec la
tâche formulée comme posant séquentiellement la question la plus pertinente pour la prédiction de
la cible sur la base d’informations incomplètes. Ce projet serait très utile lorsque nous souhaitons
prédire une variable cible, mais que le coût de récupération des données n’est pas négligeable, ce
qui conduit à des compromis, comme par exemple l’interaction de l’utilisateur sur un site web.
L’arbre de décision est une base de référence naturelle, ainsi que le meilleur sous-ensemble fixe
de variables. Il existe plusieurs approches basées sur des règles, soit ancrées dans la connaissance
du domaine, voir [Dunlop, 2019, Nokelainen et al., 2001], soit basées sur l’exploration de données,
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voir [Mwamikazi et al., 2014]. Plus récemment, [Chen et al., 2018] s’est attaqué au problème des
20 questions et [Besson et al., 2018] à un problème d’évaluation de diagnostic de santé, tous deux
utilisant une approche d’apprentissage par renforcement.

Dans le problème de la gestion de l’insuline, nous avons axé notre application sur les patients
atteints de diabète de type I qui ne sont pas équipés d’une pompe à insuline et s’auto-injectent donc
de l’insuline avant les repas pour contrôler leur taux de glycémie. Il y a eu beaucoup de travaux
autour du sujet de la gestion de l’insuline, beaucoup se concentrant sur le pancréas artificiel.
Plus précisément, de nombreuses études se sont appuyées sur les méthodes PID (proportionnelle,
intégrative, dérivée), MPC (Model predictive control), contrôle optimal et techniques floues. Les
approches d’apprentissage par renforcement (RL) sont apparues progressivement au début des
années 2000 et plus encore dans la décennie suivante, avec des cas d’utilisation différents. Les
auteurs de Ngo et al. [2018] ont par exemple étudié par des méthodes RL la politique optimale
d’injection d’insuline, c’est-à-dire comment délivrer au mieux l’insuline à l’organisme afin d’avoir le
meilleur impact possible sur la glycémie. Cette étude, basée sur le modèle cinétique insuline-glycose,
a permis de mieux comprendre comment concevoir un médicament. Dans l’article Javad et al.
[2019], les auteurs appliquent l’algorithme Q-Learning sur une cohorte, dans le but de trouver une
gamme appropriée de doses d’insuline à prescrire. Ils ont cherché à personnaliser le traitement en
représentant chaque patient par des informations pertinentes : hémoglobine glyquée passée, IMC,
niveau d’activité, consommation d’alcool, toutes discrétisées. La récompense est ensuite exprimée
en fonction de l’évolution de l’hémoglobine glyquée. On peut noter que la personnalisation est
bien sûr limitée à la définition de l’état. De plus, de telles études sont difficiles à mener pour
tout chercheur, car elles sont réalisées sur des données réelles de patients et non sur des données
simulées. En se basant sur un simulateur complexe de diabète, les auteurs de Daskalaki et al.
[2013] ont proposé un double algorithme Acteur-Critique dans le cas de la surveillance continue du
glucose. Ils ont contrôlé et mis à jour simultanément le débit de base et le ratio glucides/insuline,
en s’appuyant sur le conseiller bolus standard pour prescrire l’insuline en bolus. Une étude plus
récente de Sun et al. [2018], basée sur le même simulateur, a examiné la mise à jour du ratio
glucides/insuline entre les repas plutôt que quotidiennement, ainsi que la robustesse de la politique
à l’incertitude concernant les repas sautés, la taille et l’heure des repas. Notre approche a consisté
à utiliser l’apprentissage par renforcement conjointement avec un simulateur de l’interaction gluco-
insuline pour différents patients virtuels et pour des plans de repas stricts. Nous avons ensuite pris
comme paramètre de la politique le plan de repas suivi, afin de trouver le meilleur plan de repas
en termes de variations de la glycémie.

Dans la dernière section, nous avons exploré des processus spécifiques qui ont été construits de
telle sorte que le dilemme exploitation-exploration Sutton and Barto [2018] est en quelque sorte
résolu : quelle que soit la décision prise, nous sommes assurés que l’exploration a lieu et que l’on
peut donc suivre une stratégie avide Bastani et al. [2017]. La connaissance de ce que l’on étudie
(approche basée sur un modèle, approche bayésienne, etc.) est toujours un avantage du point
de vue de l’information, même si elle est parfois plus difficile à modéliser, à résoudre numérique-
ment/exactement, etc. Cela nous permet de dire que ce que nous savons du système est complété
par les données d’une certaine manière. Dans nos expériences, nous avons analysé le comporte-
ment de systèmes assez particuliers, qui ne nécessitent pas que l’agent se préoccupe du problème
d’exploration-exploitation : quoi que fasse l’agent, tout se passera bien, pour diverses raisons,
parmi lesquelles des transitions très stochastiques. Ce type de connaissance a priori pourrait être
exploité pour réguler intelligemment le niveau d’exploration appliqué.
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Outre la connaissance du système, il y a plusieurs conditions à remplir pour appliquer une
approche d’apprentissage supervisé ou d’apprentissage par renforcement axée sur les tâches, que
nous présentons ci-dessous. Ensuite, nous discutons des avantages de la méthode ainsi que de leurs
risques inhérents, notamment lors du déploiement.

Conditions

Il y a deux exigences de base pour que ces approches (apprentissage supervisé orienté tâche et
apprentissage par renforcement) fonctionnent.

Premièrement, l’état et l’action doivent être très clairement définis : l’action appartenant à
l’ensemble des événements actionnables imposés par l’agent au système et l’état étant l’ensemble
des descripteurs du système, et supposément les informations suffisantes pour prendre des décisions
optimales. Le cadre temporel doit également être très clair. Dans la première partie de cette thèse,
nous devons définir correctement X, Y , Z et la fonction de perte, qui est l’équivalent dans le cadre
de la prise de décision en une étape.

Deuxièmement, l’idéal est de disposer d’un simulateur de données qui permet d’exécuter dif-
férentes actions à volonté ; les données d’observation peuvent être un gros piège si les actions
entreprises dépendent de caractéristiques observées, mais pas nécessairement rapportées. Pour la
première partie de cette thèse, si la perte n’est pas connue explicitement, nous avons besoin soit
d’un simulateur, soit de données d’observation avec une exploration aléatoire appropriée.

Maintenant, il y a le problème permanent de la source de données, lié à l’hypothèse sous-jacente
d’indépendance et de distribution identique (i.i.d.). Les données d’observation avec des actions
dépendantes des données sont un exemple typique. Le problème qui se pose est de décider quelles
données sont fournies en entrée : disons que vous avez généré des données pourN patients différents,
vous avez trois grandes options : soit combiner toutes les données, et certaines caractéristiques
individuelles en tant que caractéristiques, soit le faire uniquement pour des patients relativement
similaires (le regroupement vient à l’esprit), soit appliquer une approche individualisée. On peut
vouloir essayer plusieurs possibilités, tant que la quantité de données est suffisamment élevée pour
permettre de construire des estimations.

Avantages de ces méthodes

Le premier avantage évident est la polyvalence des applications qui peuvent être atteintes avec
des approches raisonnablement similaires. Il s’agit en effet de cadres assez directs pour la prise de
décisions (simples).

Ces approches sont également très flexibles :

• Dans l’apprentissage supervisé, les méthodes sont assez performantes et flexibles par rapport
à la taille des données d’entrée.

• Dans de nombreuses applications, nous avons dû instancier nous-mêmes un simulateur ou
nous appuyer sur un simulateur existant ; on peut donc souhaiter réutiliser tout cela mais en
ajoutant certains éléments dans le vecteur d’état ou autre ; le cadre est suffisamment flexible
pour que rien ne change ; maintenant, bien sûr, on peut avoir à simuler ou à observer un peu
plus de données en fonction du nombre de dimensions ajoutées.
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Ces méthodes, en plus de fournir des politiques performantes, donnent un aperçu de ce qu’est
une politique performante, dans le cadre de la fonction récompenses/pertes. On l’a vu par exemple
avec le développement d’AlphaGo Silver et al. [2018, 2017] qui, entre autres, a développé des
stratégies inconnues des meilleurs joueurs de Go.

Il y a aussi des développements inattendus. Par exemple, sortir des sentiers battus est payant
dans les problèmes de RL : dans le cas du diabète, on passe avant le problème de la quantité
d’insuline à prendre, mais on considère d’abord le moment où la personne prend ses repas, ce
qui peut être soit préjudiciable, soit plutôt utile pour équilibrer naturellement la glycémie. Il est
intéressant de noter qu’aux échecs, les variantes du jeu sont explorées à l’aide de l’apprentissage
par renforcement, afin d’accélérer la recherche de nouvelles variantes créatives, voir Tomašev et al.
[2020].

Notez également l’avantage évident de disposer d’un simulateur réaliste construit dans un do-
maine où les expériences réelles sont contraires à l’éthique, trop coûteuses, trop longues, etc. et
qui nous permet de poser des questions qui n’auraient pas été abordées autrement et à des coûts
opérationnels nuls : trouver un plan de repas régulier qui gère bien la dynamique de la glycémie
par lui-même, qui peut s’adapter aux repas manqués, aux changements d’activité, etc.

En pratique

Énumérons quelques vérifications classiques lorsqu’un modèle est destiné à être utilisé dans la vie
réelle :

• (Basic) Vérifier la validité de l’entrée (est-elle similaire aux entrées précédentes, n’y a-t-il pas
de valeurs anormalement grandes/faibles, y a-t-il des valeurs manquantes que nous n’avions
pas prévu de traiter, etc.)

• (Basic) Vérifier la validité de la sortie (si la sortie est une probabilité, vérifiez la plage [0,1],
comparez avec les versions précédentes de la politique, comparez également avec des lignes
de base simples)

• Non-stationnarité de la dynamique, ce qui rendrait le modèle antérieur sous-optimal et po-
tentiellement complètement erroné : on pourrait mettre à jour le modèle de temps en temps
comme cela a été fait dans Garivier and Moulines [2011], où les auteurs proposent une UCB
actualisée et une UCB à fenêtre glissante. Voir aussi Lecarpentier and Rachelson [2020] où
les auteurs proposent un algorithme pour obtenir des politiques robustes aux changements
dans un processus de décision de Markov.

• Changements soudains : systèmes d’alarme, détection des points de changement et tout (lié
aux deux premiers points bien sûr). Dans Lebarbier [2005], l’auteur étudie le problème de
la détection des points de changement dans la moyenne d’un signal corrompu par un bruit
gaussien additif sans aucune hypothèse sur le nombre de changements ou leur position. Pour
les revues, on peut s’intéresser à Lai [1995], Aminikhanghahi and Cook [2017] ou Truong et al.
[2020]. On peut noter le grand nombre de techniques rapportées. Notez que le problème est
parfois encadré hors ligne mais qu’il peut généralement être adapté au cadre en ligne ; voir
par exemple Chen et al. [2020], Tsechpenakis et al. [2006], Harchaoui et al. [2009].

• est le temps d’acquisition en quelque sorte prédictif ? vérifier par exemple avec l’importance
de la variable conditionnelle donnée par les forêts aléatoires par exemple, Strobl et al. [2008].
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• Apprentissage par renforcement robuste et sécurisé (eng: Safe Reinforcement Learning),
notez qu’en optimisant simplement la somme des récompenses, vous n’obtenez pas néces-
sairement une bonne politique à la fin ; voir Berkenkamp et al. [2017], Cowen-Rivers et al.
[2020], Derman et al. [2020], Garcıa and Fernández [2015].

Ce thème est particulièrement bien adapté à 2020, car de nombreuses applications basées sur
l’historicité ont mal fonctionné, voir Heaven [2020], McNellis [2020]. Une expérience amusante de
l’artiste Simon Weckert a été réalisée une fois à Berlin, avec un chariot de 100 téléphones sur la
route. Le service Google Maps a prédit un embouteillage en conséquence Weckert [2020].

Les algorithmes online ne sont pas facilement gérables, car on passe de l’absence de données et
d’une connaissance limitée à :

• Des données non-iid (puisqu’elles ont été sélectionnées séquentiellement) attention aux don-
nées d’observation, qui requièrent une attention particulière, voir par exemple dans Gottes-
man et al. [2018] comment les auteurs évaluent les algorithmes RL de manière impartiale et
dans Lu et al. [2018] comment les auteurs corrigent le problème des données d’observation
de telle sorte que l’algorithme RL construit ne soit pas tellement biaisé par la manière dont
les données ont été collectées

• Impossible de s’arrêter à mi-chemin pour pauser et essayer d’autres approches

L’approche classique de la prise de décision multi-étapes se concentre sur la somme cumulée
des récompenses, mais de nombreuses autres statistiques peuvent être pertinentes et différentes
fonctions de récompense peuvent être intéressantes (approche multi-objectifs) car, en fin de compte,
elle définit fondamentalement ce qu’est une bonne politique ; tout comme la fonction de perte décrit
un bon prédicteur. Voir par exemple Van Moffaert and Nowé [2014], Yang et al. [2019].

Il peut être utile de faire intervenir des experts du domaine pour qu’ils votent en faveur d’une
politique ou d’une autre, voir la référence sur l’apprentissage par renforcement inverse Ng et al.
[2000].
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Résumé : Cette thèse, motivée par des applications des secteurs de

l’industrie et de la santé, est un recueil d’études sur différents problèmes de

décision.

Dans la première partie, nous nous concentrons sur des problèmes de prise

de décision en une seule étape, où un modèle prédictif est utilisé en amont

de la prise de décision, et où un retour d’information explicite est reçu. Nous

proposons de laisser à l’utilisateur final la tâche de définir la fonction de perte

associée au modèle prédictif, de façon à encoder le coût réel de l’utilisa-

tion d’une prévision pour prendre une décision. Comme approche algorith-

mique, nous considérons les arbres de décisions, optimisés avec la fonction

de perte ajustée, et des méthodes d’approximation de fonction, liée à l’ap-

prentissage des Q-valeurs dans l’apprentissage par renforcement, dans le

cas où seule la récompense immédiate est d’intérêt. Trois applications sont

étudiées : le calibrage d’un système d’alarme pour lutter contre l’errance

médicale ; le problème de la nomination sur un marché de l’électricité, du

point de vue d’un fournisseur d’énergies renouvelables ; l’optimisation de la

production dans l’incertitude de la demande des clients.

Dans la deuxième partie, nous nous intéressons essentiellement à deux

problèmes spécifiques de prise de décision séquentielle, que nous abor-

dons à l’aide d’un cadre de processus décisionnel de Markov et d’algo-

rithmes d’apprentissage par renforcement. Dans la première application,

nous essayons d’optimiser les moment de repas et la gestion de l’insuline

pour les personnes souffrant de diabète de type I et qui comptent sur les

auto-injections. Pour ce faire, nous nous appuyons sur un simulateur de pa-

tient, lequel est basé sur la connaissance médicale de l’interaction entre glu-

cose et insuline et sur des paramètres physiologiques propres aux patients.

Dans la seconde application, nous essayons de construire un questionnaire

prédictif adaptatif pour des interactions lisses avec les utilisateurs. Pour des

données binaires, le questionnaire ressemble à un arbre de décision, opti-

misé de façon bottom-up. Pour des données non-binaires, ce nouveau ques-

tionnaire ne redemande des questions déjà posées, se souvient des valeurs

observées précédemment, et les exploite pleinement une fois arrivé dans un

noeud terminal, où une fonction de prédiction spécifique est disponible.

Dans notre dernière partie, nous nous intéressons à trois processus de

décision qui, par construction, n’exigent pas que l’agent explore l’environ-

nement. Par exemple, nous considérons un système dont la dynamique est

suffisamment stochastique pour que, quelle que soit notre action, nous ex-

plorions l’espace d’état, tout en ayant une certaine influence par nos actions.

Nous considérons également un système où certaines actions sont indispo-

nibles aléatoirement en fonction des epochs. Outre les résultats théoriques

trouvés, cette partie met l’accent sur l’importance de concentrer l’exploration

là où elle est nécessaire.

Title : Some contributions to decision-making problems

Keywords : Markov Decision Process, Loss function, Reinforcement Learning, Diabetes, Production Plans,
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Abstract : This thesis, motivated by applications in the industrial and

health sectors, is a collection of studies on different decision problems.

In the first part, we focus on single-step decision-making problems where a

predictive model is used upstream of the decision-making, and where explicit

feedback is received. We propose to leave the task of defining the loss func-

tion associated with the predictive model to the end-user, in order to encode

the real cost of using a forecast to make a decision. As an algorithmic ap-

proach, we consider decision trees, optimized with the adjusted loss function,

and function approximation methods, similar to Q-value function approxima-

tion in reinforcement learning, in case where only the immediate reward is of

interest. Three applications are studied : the calibration of an alarm system to

fight against medical wandering ; the problem of nomination in an electricity

market, from the point of view of a renewable energy supplier ; the optimiza-

tion of production in the uncertainty of customer demand.

In the second part, we focus on two specific problems of sequential decision-

making, which we address using a Markov decision-making framework and

reinforcement learning algorithms. In the first application, we try to optimize

meal timing and insulin management for people with type I diabetes who rely

on self-injections. To do so, we rely on a patient simulator, which is based

on medical knowledge of the interaction between glucose and insulin and on

physiological parameters specific to the patients. In the second application,

we try to build an adaptive predictive questionnaire for smooth interactions

with users. For binary data, the questionnaire looks like a decision tree, op-

timized in a bottom-up way. For non-binary data, this new questionnaire only

asks questions that have already been asked, remembers previously obser-

ved values, and exploits them fully once they arrive in a terminal node, where

a specific prediction function is available.

In our final section, we look at three decision processes that, by construction,

do not require the agent to explore the environment. For example, we consi-

der a system whose dynamics are sufficiently stochastic that, whatever our

action, we explore the state space, while having some influence through our

actions. We also consider a system where some actions are randomly una-

vailable depending on the epochs. In addition to the theoretical results found,

this part emphasizes the importance of focusing the exploration where it is

needed.
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