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Résumé en français

Introduction

La robotique est un domaine en pleine expansion qui intègre de plus en plus de
multiples facettes de notre société moderne. Du monde industriel à l’exploration
spatiale, en passant par les domaines de la santé et de l’interaction sociale, les
robots deviennent des éléments essentiels de notre vie quotidienne.

Bien que les humains aient cherché à créer des machines intelligentes et des
artefacts à leur image depuis les toutes premières civilisations, la robotique au
sens moderne du terme a commencé à se développer dans les années 1950. La
première manifestation a été motivée par les besoins de l’industrie nucléaire [1].
Elle était constituée d’une paire de manipulateurs reliés mécaniquement permet-
tant à l’homme de manipuler des matières radioactives. Cependant, comme les
systèmes couplés mécaniquement ne peuvent fonctionner que sur une distance li-
mitée, Goertz a plus tard saisi l’intérêt des manipulateurs couplés électriquement
et a ainsi fondé les bases du domaine moderne de la télérobotique [2]. Les deux
systèmes sont présentés sur la Figure 1. De nombreux autres systèmes de téléopé-
ration ont suivi, avec des manipulateurs également contrôlés manuellement par
des opérateurs humains en l’absence de tout contrôle par ordinateur.

Les systèmes de téléopération comprennent deux parties : la partie maître,
qui est commandée par l’homme, et le robot à distance chargé d’exécuter la tâche
et d’interagir avec l’environnement. Les deux côtés sont reliés par un canal de
communication, et interagissent par l’intermédiaire d’un ensemble de capteurs
qui permettent la transmission de données sur les mouvements et les forces qui
s’exercent entre eux.

Ces dernières années, l’automatisation a connu un énorme développement,
rendu possible par les progrès technologiques et les hautes capacités des ordina-
teurs et des capteurs modernes. Les systèmes de contrôle autonomes ont évolué
rapidement compte tenu des progrès récents des architectures de hardware et de
software, notamment avec l’essor de l’apprentissage machine et de l’intelligence
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(a) Premier système de téléopération méca-
nique

(b) Premier système de téléopération élec-
trique

Figure 1 – (a) Le premier système maître-robot à liaisons mécaniques conçu par Goertz dans les
années 1950 [3], et (b) le premier système électrique (1954) construit par Goertz au Laboratoire
National d’Argonne [4].

artificielle. Et évidemment, les systèmes contrôlés par ordinateur ont conduit à de
nombreuses applications robotiques dans la société humaine moderne.

Cependant, bien que l’autonomie robotique ait été perfectionnée dans des en-
vironnements structurés et prévisibles, l’apport humain (et la télérobotique) est
encore nécessaire dans de nombreux cas, en particulier dans des environnements
variables. Par exemple, dans les contextes nucléaires, de recherche et de sauvetage,
et d’opérations sous-marines ou spatiales, l’homme ne peut pas être physiquement
présent sur site pour effectuer la tâche désirée vu les risques encourus dans ce type
d’environnement dangereux. En parallèle, malgré les développements de l’automa-
tisation ces dernières années, les systèmes autonomes sont toujours incapables de
faire face à des événements inconnus ou imprévisibles et ne disposent toujours pas
de la logique et des capacités humaines de résolution des problèmes. Dans d’autres
domaines comme la microchirurgie, l’homme peut être capable d’effectuer la tâche
par lui-même, mais la précision et la capacité d’adaptation d’échelle du robot sont
souvent souhaitées pour faciliter cette opération. La robotique médicale étant un
secteur très conservateur car en contact direct avec des patients humains, elle
ne fait toujours pas confiance au robot, dans son état actuel d’avancement, pour
effectuer les opérations chirurgicales de manière autonome. La téléopération per-
met donc de coordonner les compétences robotique et humaine pour effectuer des
tâches délicates dans de nombreux environnements. En revanche, la téléopération
directe est souvent trop pénible et fatigante pour l’homme. Ceci a mené au dé-
veloppement de nouvelles approches où le contrôle du système est partagé entre
l’opérateur et le robot, appelées architectures de contrôle partagé.
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Aperçu de la Thèse et Contributions

L’objectif de cette thèse est de concevoir de nouvelles architectures de contrôle
partagé pour une téléopération robotique sûre et intuitive, avec différents types
d’interaction et différents niveaux d’automatisation. Nous nous concentrons dans
ce travail sur l’utilisation de l’haptique comme moyen d’interaction, que ce soit
pour fournir des forces de contact en retour à l’utilisateur, ou comme moyen
de guider l’utilisateur dans l’exécution de la tâche. Nous soulignons également
le rôle de l’interaction haptique et de l’apport humain dans la conception
d’algorithmes de saisie autonomes. Ainsi, nous présentons différentes méthodes
d’interaction entre les composants humain et automatisé d’un système robotique
afin d’exécuter avec succès la tâche en question.

Les travaux de cette thèse se concentrent sur deux applications principales, la
saisie et la manipulation, et la découpe robotique. Les principales contributions
sont les suivantes :

• La conception de nouvelles méthodes haptiques de contrôle partagé appli-
quées à la préhension et à la manipulation robotique, ciblant à la fois les
phases pré- et post-préhension.

– Nous élaborons une nouvelle architecture de contrôle partagé qui vise
à minimiser la charge de travail humaine pendant la phase d’approche
vers l’objet à saisir, ainsi que dans la tâche post-saisie exécutée par
l’utilisateur dans ce cas.

– Pour la phase post-saisie, nous nous concentrons également sur la mi-
nimisation de l’effort exercé sur les articulations du manipulateur pen-
dant l’exécution d’une trajectoire autonome souhaitée après la saisie.

• La conception d’une nouvelle technique haptique de contrôle partagé pour
la découpe robotisée imposant des contraintes non holonomes motivées par
la tâche de découpe.

• L’utilisation de l’expérience humaine et des retours haptiques pour ap-
prendre des politiques de saisie autonome pour les objets conformes.

Plusieurs des travaux présentés ont déjà été publiés et présentés dans des
conférences internationales [5–8]. La section suivante décrit avec plus de détails
les différentes parties et les contributions présentées dans ce manuscrit.
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Structure de la Thèse

La thèse est divisée en quatre parties principales. La première partie présente les
notions principales utiles pour la compréhension de la thèse, et résume les travaux
les plus pertinents développés dans la littérature. Les deuxième et troisième parties
présentent le contenu original et les contributions de la thèse. Nous concluons
ensuite avec la quatrième partie en introduisant les remarques finales et les futures
directions possibles, ainsi que les questions à résoudre dans le domaine.

Partie I

La première partie est un bilan de l’état de l’art en rapport avec la thèse. Le Cha-
pitre 2 est divisé en deux parties. La première est une synthèse sur la télérobo-
tique - y compris les principaux avantages et défis des systèmes de téléopération
et l’utilisation de retours haptiques. La télérobotique peut en effet être perçue
comme un mode de commande manuel où l’utilisateur a le contrôle total du sys-
tème à distance. La deuxième partie, d’autre part, présente les travaux relatifs
à l’interaction homme-robot (HRI), l’autonomie partagée, et le rôle des retours
haptiques par rapport au contrôle partagé. Ces deux sujets sont importants pour
la suite de la thèse, qui présentera de nouvelles méthodes de contrôle partagé pour
la téléopération avec des degrés d’autonomie variables.

Partie II

Cette partie présente deux méthodes de contrôle partagé pour la saisie robotique
et la télémanipulation. Les architectures présentées visent à partager le contrôle
du système entre le système autonome et l’opérateur humain, afin d’améliorer
l’exécution des tâches en fonction d’un critère différent dans chaque cas. Le
premier travail vise à optimiser une fonction-objectif liée à la tâche, qui dans ce
cas inclut les couples exercés au niveau des articulations du robot distant pendant
la phase post-préhension. Le second est par ailleurs orienté vers l’utilisateur, et
vise à maximiser le confort de l’utilisateur pendant la téléopération. Dans les deux
travaux, l’utilisateur est guidé, grâce à des retours haptiques et/ou des données
visuelles, dans la direction de l’exécution de la tâche qui améliore l’objectif du
système. Cependant, l’utilisateur reste l’acteur en charge de la décision finale,
et peut choisir de suivre ou non les recommandations qui lui sont données. Par
conséquent, les méthodes de cette partie sont considérées comme des méthodes
avec autorité humaine.
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Le Chapitre 3 présente une nouvelle méthode de contrôle partagé pour
minimiser les efforts articulaires du manipulateur lors d’une téléopération
bilatérale. Ceci permet de réduire le coût de fonctionnement du système et élargit
la gamme des objets qu’il peut manipuler. L’architecture que nous proposons
génère, pendant la téléopération, un retour visuo-haptique de navigation pour
aider l’opérateur à choisir une configuration de saisie locale, minimisant l’effort
attendu dans la phase de post-préhension souhaitée. Nous démontrons également
l’efficacité de l’approche proposée à travers une série d’expériences représentatives
et une étude avec des sujets humains, où nous comparons les effets du guidage
visuel et haptique sur les performances de l’utilisateur.

Le Chapitre 4 présente une architecture de contrôle partagé visant à mini-
miser la charge de travail de l’utilisateur lors d’une tâche de télémanipulation. En
effet, les méthodes de contrôle partagé sont généralement utilisées dans différentes
applications - par exemple, pour suivre une trajectoire en minimisant l’effort du
manipulateur (voir Chapitre 3) ou pour éviter des zones potentiellement dange-
reuses de l’espace de travail - mais peu de travaux ont porté sur leur utilisation
pour tenir compte du confort de l’utilisateur. Nous avons réalisé des études sur
des sujets humains pour démontrer l’efficacité de l’approche proposée, et nous en
présentons les résultats à la fin du chapitre.

Partie III

Contrairement à la partie précédente où l’utilisateur était en contrôle total, et
pouvait toujours négliger l’aide qui lui est apportée par le système autonome,
dans cette partie de la thèse nous présentons deux systèmes où l’interaction
homme-robot est plus orientée vers l’autonomie du robot que vers le contrôle
humain. L’utilisateur est bien sûr toujours dans la boucle, et l’interaction
haptique est présente et utilisée pour aider à l’exécution de la tâche. Cependant,
l’utilisateur intervient de manière moins directe. Dans le premier travail, nous
ciblons une application de découpe robotique. Des contraintes faibles et fortes
sont imposées à l’utilisateur qui prennent en compte la spécificité de la tâche et
assurent l’application de la contrainte non holonome représentative d’une tâche
de découpe. Le second travail est encore plus sur le côté autonomie du spectre
HRI, et vise l’utilisation de données humaines et haptiques dans l’apprentissage
d’un algorithme de saisie autonome pour les objets souples.

Au Chapitre 5 nous présentons deux approches de contrôle partagé avec
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retours haptiques pour la découpe robotisée, conçues pour aider l’opérateur
humain en appliquant différentes contraintes non holonomes représentatives de
la cinématique de découpe. Pour valider notre approche, nous avons réalisé une
expérience avec des sujets humains dans un scénario de découpe réel, et nous
avons comparé nos techniques de contrôle partagé entre elles et avec un schéma
de téléopération haptique standard.

Au Chapitre 6, contrairement aux travaux précédents où les informations
haptiques sont fournies pour refléter les forces de contact ou pour guider l’utili-
sateur dans une tâche de téléopération, les données de téléopération avec retour
haptique sont utilisées comme moyen pour entraîner un algorithme de saisie auto-
nome. En effet, la manipulation robotique d’objets fragiles et conformes, tels que
des produits alimentaires, se heurte encore à de nombreux défis. Pour améliorer
les algorithmes autonomes existants, nous proposons une politique d’apprentis-
sage par la démonstration (LfD), centrée sur l’homme et basée sur l’haptique, qui
permet une saisie autonome des objets à l’aide d’un système robotique anthropo-
morphe. Cette politique intègre des données provenant de la téléopération et de la
manipulation humaine directe d’objets, incarnant l’intention humaine et les zones
d’interaction importantes avec l’objet. Nous évaluons enfin la solution proposée
par rapport à une politique de LfD récente ainsi que par rapport à deux méthodes
classiques de contrôle d’impédance.

Partie IV

Cette dernière partie est composée d’un chapitre (Chapitre 7), présentant une
conclusion et quelques remarques finales et points de discussion liés aux travaux
présentés dans cette thèse. Elle propose également quelques orientations futures à
prendre dans le domaine en général, et plus particulièrement en relation avec les
contributions de la thèse.
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Robotics is a fast-growing field that is integrating multiple facets of our
modern society. From the industrial world, to space exploration, healthcare, and
social interaction, robots are becoming essential components of our daily life.

The origin of the term “Robot” goes back to the 1920’s, when the concept was
created. It originates from the Czechoslovakian word robota – meaning “work”–
used for the first time in a play by Karel Chapek, Rossum’s Universal Robots.
While this modern definition of the concept appeared in the first half of the 20th
century, the notion of robot-like behaviour have existed for centuries in mythology,
religion, philosophy and fiction. Since the early civilizations, humans have been
trying to create intelligent machines and artifacts in their image. For example,
the legend of Talus, the bronze slave forged by Hephaestus in Greek Mythology
dates back to 3500 BC, and the Egyptians’ oracle statues hiding priests inside
(2500 BC) were some of the earliest forms of our modern thinking machines. In
the next centuries, human creativity led to the invention of many other devices
such as the automaton theatre of Hero of Alexandria (100 AD), the water-raising
and humanoid machines of Al-Jazari (1200), and Leonardo da Vinci’s multiple
designs such as the mechanical man (1495). The development of automata also
continued to flourish in the eighteen century as many complex mechanical systems
have been perfected to entertain the public (e.g. Jaquet Droz’s automata) [9].

After that, early robot implementations were remotely operated devices with
no or minimal autonomy. Examples are Nicola Tesla’s radio-controlled boat
from 1898, which he described as incorporating “a borrowed mind”, and the
Naval Research Laboratory’s “Electric Dog” robot from 1923. The first actual
manifestation of robotics was then built in the 1950s, driven by the needs of the
nuclear industry [1]. It consisted of a pair of mechanically linked manipulators
for humans to handle radioactive material. Many other teleoperation systems
followed, with more details on them in Sec. 2.1.1. However, all these manipulators
were also manually controlled by human operators without an overlaying logic
in the absence of any ‘computer-control’. The robots were insensitive to their
environment and there was no feedback loop from the robot to the operator that
could modify the control command.

It wasn’t until a decade later that the first ‘computer-controlled robot’ was
introduced by Heinrich Ernst [10]. Ernst removed the human intermediary and
gave the computer full command over the manipulator used, which was one of
the early electromechanical manipulators designed by Goertz and equipped with
tactile sensing. Using the sensors, the robot was able to autonomously search for a
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box on a table, to search for cubes, grasp them, and then place them inside the box
without any previous knowledge of their positions. In recent years, automation
has seen a huge development, made possible by the technological advancement
and the high capabilities of modern computers and sensors. Autonomous con-
trollers have evolved rapidly given the recent advances in hardware and software
architectures, namely with the rise of machine learning and AI. And of course,
computer-controlled systems led to many robotic applications in the modern hu-
man society.

However, while robotic autonomy has been perfected in structured and pre-
dictable environments, the human input is still needed in many cases, especially
in a variable setting. In addition, all robotic systems, including the most au-
tonomous ones, are directly or indirectly related to the human since they were
first and foremost created to fulfill a human need or accomplish a task desired by
the operator. As such, the interaction between robots and humans is unavoidable,
which brings us to the field of Human-Robot Interaction (HRI) under which this
thesis falls. The field of HRI has gained a lot of interest in the recent years. To
address the limited capabilities of autonomous robots in unpredictable settings,
many approaches fusing human intelligence with the precision and efficiency of
autonomous systems have been developed in the form of human-robot shared-
control architectures [1, 11], which is the main type of HRI that we focus on in
this thesis.

1.1 Thesis Overview and Contributions

The work presented in this thesis falls under the general HRI topic. More specifi-
cally, the thesis deals with remote interaction under the form of teleoperation. The
aim of the thesis is to design novel shared-control architectures for safe and intu-
itive robotic teleoperation, with various types of interaction and different levels of
automation. Shared-control algorithms have been investigated as one of the main
tools for designing effective yet intuitive robotic teleoperation systems, helping
operators in carrying out increasingly challenging tasks. This approach enables
to share the command of the system between the operator and an autonomous
controller.

We focus in this work on the use of haptics as a means of interaction, whether
for providing contact forces as a feedback to the user, or as a means of guiding
the user in the task execution. We also highlight the role of haptic interaction
and human input in the design of autonomous grasping algorithms. As such, we
present different ways the human and the automation components of a robotic
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system can interact to successfully perform the task at hand. We finally note
that, as the focus of this thesis is mostly on the design and evaluation of several
haptic shared control algorithms, we do not explicitly address stability issues
of the teleoperation systems presented in the next chapters. Indeed, in most
cases one can resort to one of the many passification algorithms presented in
the last years (e.g., tank-based approaches [12–16], PSPM [17], time-domain
passivity [18–21]) for including an additional stabilisation layer on top of any
bilateral teleoperation scheme. In the following we then assume that such a
passification layer is always implemented and active in the presented schemes.

The work presented in this thesis focuses on two main applications, robotic
cutting, and grasping and manipulation. The contributions of the thesis are in:

• Designing new haptic shared-control methods applied to robotic grasping
and manipulation, targeting both the pre-grasp and the post-grasp phases.

– For the post-grasp phase, we consider the manipulator dynamics and
focus on minimizing the torque effort in following a desired autonomous
trajectory after a grasp has been performed (Chapter 3).

– We also design a novel shared-control architecture that aims to mini-
mize the human workload during the approaching phase towards the
object to be grasped, as well as in the post-grasp task executed by the
user in this case. The system targets the human comfort as a goal,
instead of only focusing on the task or the robot performance alone
(Chapter 4).

• Designing a novel haptic shared-control technique for robotic cutting impos-
ing nonholonomic constraints motivated by the task (Chapter 5).

• Using the human experience and haptic feedback to learn autonomous grasp-
ing policies for compliant objects (Chapter 6).

1.2 Thesis Outline

The thesis is divided into four main parts. The first part starts by presenting the
main concepts used in the thesis, and summarizes the most relevant works devel-
oped in the literature. The second and third parts present the original content
and contributions of the thesis. We then end with the fourth section introducing
concluding remarks, possible future directions and open questions to be addressed
in the field.
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1.2.1 Part I

The first part is a review of the state of the art relevant for the thesis. Chapter
2 is divided into two parts. We start with a review on telerobotics – including the
main advantages and challenges of teleoperation systems and the use of haptic
feedback. In some way, telerobotics can be seen as a manual control where the
user is in full control of the remote system. We then introduce the works related to
HRI in teleoperation, shared autonomy, and the role of haptic feedback in shared
control. These two topics are important for the rest of the thesis, which will be
presenting new shared-control methods for teleoperation with variable degrees of
autonomy.

1.2.2 Part II

This part presents two haptic shared-control methods for robotic grasping and
telemanipulation. The architectures presented aim to share the control of the
system between the autonomy and the human operator, in order to improve the
task execution based on a different metric in each case. The first one aims to
optimize a task-related cost function, while the second one is oriented towards
the user comfort. In both chapters, the user is guided, through haptic guidance
and/or visual data, in the direction of task execution that improves these metrics
of interest. However, the user is the final decision maker in the system, and can
choose to follow or not the guidance that is given to him/her. As such, we refer
to the methods in this part as methods with “human authority”.

In Chapter 3, we present a haptic shared-control method for minimizing
the manipulator torque effort during bilateral teleoperation. Minimizing torque
is important because it reduces the operating cost of the system and extends
the range of objects it can manipulate. Our proposed architecture generates,
during teleoperation, visuo-haptic navigation feedback to help the operator in
choosing a grasping configuration locally minimizing the expected torque effort in
the desired post-grasp manipulative phase. We also demonstrate the effectiveness
of the proposed approach in a series of representative pick-and-place experiments
as well as in a human subjects study, and compare the effects of visual and haptic
guidance on the user performance.

In Chapter 4 we present a haptic-enabled shared-control approach aimed at
minimizing the user’s workload during a teleoperated manipulation task. In fact,
while haptic shared-control methods are usually used for different purposes, such
as navigating along paths minimizing the torques requested to the manipulator
(e.g., Chapter 3) or avoiding possibly dangerous areas of the workspace, few works
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have focused on using these ideas to account for the user’s comfort. We performed
studies with human subjects to show the effectiveness of the proposed approach,
and show the results in the end of this chapter.

1.2.3 Part III

Unlike in the previous part, where the user was in control and could still disregard
the “help” from the autonomous system, Part III presents two systems where
the human-robot authority is more shifted towards robot autonomy than human
control. The user is of course still in the loop, and haptic interaction is present
and used to help the task execution. However, the user intervenes in a less direct
way.

In Chapter 5 we present two haptic shared-control approaches for robotic
cutting, which are designed to assist the human operator in the cutting task. Soft
and hard constraints are imposed on the user that take into account the specificity
of the task and ensure the nonholonomic constraint representative of a cutting task
is applied. To validate our approach, we carried out a human-subject experiment
in a real cutting scenario, and we compared our shared-control techniques with
each other and with a standard haptic teleoperation scheme.

In Chapter 6, we shift towards autonomy even further. Unlike in previous
chapters, where haptic information is provided to reflect contact forces or to guide
the user in a teleoperation task, here we used teleoperation data with haptic feed-
back as a means to train an autonomous grasping algorithm. In fact, the robotic
manipulation of fragile and compliant objects, such as food items, still faces many
challenges. To improve existing autonomous algorithms, we propose a human-
centered, haptic-based, Learning from Demonstration (LfD) policy that enables
pre-trained autonomous grasping of food items using an anthropomorphic robotic
system. The policy combines data from teleoperation and direct human manip-
ulation of objects, embodying human intent and interaction areas of significance.
We finally evaluate the proposed solution against a recent state-of-the-art LfD
policy as well as against two standard impedance controller techniques.

1.2.4 Part IV

This last part is comprised of one chapter (Chapter 7), presenting concluding
remarks and discussion points related to the contributions presented in this thesis.
It also proposes some future directions to take in the field in general, and more
particularly in relation to the thesis contributions.
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(a) First mechanical teleoperation system (b) First electrical teleoperation system

Figure 2.1 – (a) The first mechanically linked teleoperation system designed by Goertz in the
1950s, photo courtesy of [3], and (b) the first (1954) electric one built by Goertz at Argonne
National Laboratory, photo taken from [4].

In this thesis, we are mainly interested in designing haptic based control al-
gorithms for robotic teleoperation, with variable degrees of autonomy. We start
in this chapter by a brief summary and related works on telerobotics, a specific
branch of human robot interaction which allows the user to command a robot at
a distance. We then explore shared autonomy and the different ways humans and
robots can interact to improve the task execution and make it more intuitive for
the user.

2.1 Telerobotics

2.1.1 History of Telerobotics

The term telerobotics - or alternatively teleoperation or telemanipulation - comes
in fact from the Greek “tele” which literally translates to “distant” [3]. Teleop-
eration was first introduced by Raymond C. Goertz in the late 1940s to answer
to the needs of the nuclear research, allowing the human operator to handle ra-
dioactive material from a safe place. Starting from an electrical system to control
the robot from behind a shielded wall, which proved to be slow and not easy to
operate, Goertz built the first mechanically linked teleoperation system, shown in
Fig. 2.1. This new system allowed the user to transmit motion more naturally,
and provided haptic feedback from the remote environment [22]. However, me-
chanically connected systems can only work within a limited distance, which led
to Goertz recognizing the value of electrically coupled manipulators and laying
the foundations of the modern telerobotics field [2].



13

In the next decades, many systems were developed, such as the bilateral servo-
manipulators for teleoperation developed by the french Commissariat à l’énergie
atomique (CEA) by Vertut and his team [23, 24], also inspired by nuclear appli-
cations. Another early example is the Central Research Laboratory model M2
(1982) which was the first telerobotic system to realize force feedback with sepa-
rate master and remote robot electronics and was used for different demonstration
tasks in military, space and nuclear applications [3].

In the 1980s and 1990s, the nuclear-related activities declined, and interest
shifted to other areas such as space, medical and underwater robotics, which was
also facilitated by the increased availability of computer power and the develop-
ment of haptic devices such as the PHANToM device [25]. Similarly to the case
of nuclear application, the use of telerobotics in other fields was motivated in
scenarios where the human operator cannot be physically present in the remote
environment, whether for safety purposes or because of the high cost incurred.
For example, telerobotics has been used in space and underwater applications. In
2001, the first transatlantic telesurgery was performed with the patient in Stras-
bourg, France and the surgeon in New York, USA, relying on visual feedback
only [26]. This successful experiment showcased many benefits of remote surgery,
from the removal of geographical constraints in access to healthcare – with pa-
tients in less advantaged communities or in an emergency situation having access
to surgeries by experienced surgeon – to surgical education, with surgeons teaching
the performance of an advanced or new technique with the possibility of real-time
intervention.

Beyond the constraint of the user’s presence in the remote environment, the
use of telerobotics is also motivated by the limited capabilities that the human
and the robots each have separately. For example, the human can benefit from
the robot precision and scaling of motion to accomplish micro or nano-level ma-
neuvers like in micro-surgeries. On the other hand, robots can also benefit from
the human capacities and high-level decision-making. In fact, while autonomous
robots have recently gained a lot of new capabilities, they are still far from the
reliability and safety required by many applications, such as medical robotics [27]
or hazardous waste management [28]. In these industries, robotic teleoperation is
an effective tool to combine the experience and cognitive capabilities of a human
operator with the precision, strength, and repeatability of a robotic system. Ex-
amples are in nuclear waste decommissioning [29], minimally-invasive surgery [30],
demolition [31], tissue palpation [32,33], and needle insertion [32].
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2.1.2 Teleoperation Systems

Teleoperation systems consist of two sides: the master side, which is commanded
by the human, and the slave or remote side, in charge of executing the task and
interacting with the environment, also referred to as teleoperator. The two sides
are connected through a communication channel, and they interact through a set
of sensors that allows the transmission of motion and force information between
them. Fig. 2.2 illustrates an example of a teleoperation system. The user, present
at the master level, commands the remote robot by actuating the master interface.
Sensors are present to measure this input and transmit it as a command to the
robot which performs the desired task. Actuators and sensors are also present at
the remote side, and feedback information (such as haptic and visual feedback) is
given back to the user to increase transparency.

In recent years, many systems with a virtual remote environment were imple-
mented. The virtual environment simulates the real setting in terms of interaction
with the operator, and could be used for training or testing a control scheme be-
fore implementation on the real hardware. This could be useful for example for
medical training [34, 35], or in space exploration settings, where training can be
performed in a flexible and safe environment which would lead to reduced costs
and time, and an increased success rate for future missions [36]. Virtual teleop-
eration is also an active field in microscale applications where it can be used for
education, training and system evaluation [37].

In the design of teleoperation systems, achieving telepresence is a very impor-
tant goal. Telepresence is the ideal situation where the user feels in a natural
way the interaction that happens with the environment, as if he/she is physically
present at the remote site [38, 39]. To allow this, the system should have enough
transparency, which could be defined as a correspondence between the master and
remote robot positions and forces, or a match between the impedance perceived
by the user and that of the environment [40]. However, transparency and stability
are usually conflicting conditions [41], and thus a trade-off needs to be done in
such a way that transparency is reduced to guarantee stable operation in the wide
range of environment impedance values [41,42].

This brings us to another important condition in the design of control architec-
tures for teleoperation, which is guaranteeing system stability. To ensure that this
condition is satisfied, many control methods have been presented in the literature,
especially to deal with time delay and its effect on stability. These methods are
summarized in [43]. Among these methods, passivity-based controllers are partic-
ularly popular. Simply put, a system is passive if and only if the system does not
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.
Figure 2.2 – General architecture of a teleoperation system.

generate energy, i.e. the energy output is bounded by the initial and accumulated
energy in the system. If the individual blocks of a system are passive, the entire
system is passive, and the human operator and the environment are usually con-
sidered as passive subsystems [3]. However, while passive systems are guaranteed
to be stable, they are usually overly conservative which often reduces the trans-
parency of the system and leads to a degraded performance. New methods, such
as energy tanks, have been implemented in the literature to achieve high system
performance while keeping a passive behavior (e.g. [12–16]). Other examples of
stability-imposing algorithms are Passive-Set-Position-Modulation (PSPM) [17],
and time-domain passivity algorithms [18–21]. Of course, the stability of the sys-
tem also depends on the technological development and the state of the hardware.
The time delay and jitter in the network, the robot capabilities and its sensor pre-
cision, as well as the haptic device characteristics all play a role in rendering the
system stable. An important factor is also the stiffness of the remote environment.
Since haptic feedback is an important element of telepresence but could also be a
source of instability in the system, more and more research is being done on the
topic of safely providing haptic information in teleoperation.

2.1.3 Haptic Feedback in Teleoperation

This thesis focuses on haptics and its use in robotic teleoperation. As such, in this
section, we briefly introduce the advances in the field, the different types of haptic
stimuli used in the literature, the challenges and limitations. The concentration
here is mainly on the use of haptics as feedback information from the environment
(e.g., contact forces). A later section (Sec. 2.2.2) will deal with the use of haptic
stimuli for shared control and user guidance.

The broad definition of haptics refers to the sense of touch of the human
being. Using both kinesthetic (force/position) and cutaneous (tactile) receptors,
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humans are capable of perceiving, interacting with, and manipulating objects
around them. Simple examples from everyday life demonstrate the importance
of this sense, for example, in writing, trying to reach an object in the dark, or
buttoning a shirt. Nonetheless, even more basic tasks would not be possible to
complete without haptic information. For instance, humans would not be able
to walk, move their limbs or grasp objects – even in broad daylight – without
the cutaneous sensations under their feet or in their fingertips. In the robotics
and virtual reality literature, haptics is defined as the various combinations of
real and simulated touch interactions between robots, humans, and real, remote,
or simulated environments. These interactions are made possible through haptic
interfaces, that allow human operators to experience the sense of touch in remote
(teleoperated) or simulated (virtual) environments [44].

As explained in Sec. 2.1.2, achieving telepresence relies on the transmission of
different types of information from the remote environment to the user executing
the task. This is achieved through different types of feedback, such as visual and
haptic feedback. Traditionally, teleoperation systems relied primarily on visual
feedback to the operator, which is implemented until now in many commercially
available systems, such as the da Vinci Surgical System, by Intuitive Surgical,
USA. However, relying on visual feedback alone results in a high cognitive load
on the operator [45], or could result in performance degradation in case of partial
occlusion of the view. Therefore, interest in haptic feedback started increasing and
led to the development of different types of haptic interfaces providing kinesthetic
feedback (such as the Omega developed by Force Dimension, Switzerland, the
Phantom by 3D Systems, USA, or the Virtuose 6D by Haption, France), and
cutaneous feedback. Kinesthetic feedback gives the human operator information
about the position and velocity of the neighboring objects, as well as applied
forces and torques through receptors in the skin, muscles and joints. Devices that
provide this type of feedback are usually called grounded haptic devices [46]. On
the other hand, cutaneous feedback provides information on the local properties
of objects by applying shear, vibratory, or indentation forces on the user’s skin to
induce local deformations, which are sensed by the mechanoreceptors in the skin.
While grounded haptic interfaces also provide cutaneous sensations, wearable (or
ungrounded) devices are usually used for this purpose, e.g. [47,48]. In teleoperation
scenarios, fingertips cutaneous devices are the most popular [33,49,50] as this part
of the body is usually the most involved in haptic interactions with objects. More
recently, there has been a growing interest in non-contact haptic devices that
can convey haptic information without hindering the user motion [51], such as
mid-air haptic devices that provide cutaneous feedback remotely through focused
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ultrasound phased arrays [52,53].
Previous works have shown the role of haptic feedback in improving different

parameters like completion time [54, 55], accuracy [54], and force applied by the
user [56]. In recent years, haptic feedback has gained considerable attention es-
pecially in the medical field, and it showed reduction in errors and decrease in
operation time and damage to the environment [45]. The combination of visual
and haptic feedback has also shown to improve the perfomance of the operator.
For example, in [57], the authors use a 3D virtual representation of the scene
and haptic information to help the user perform a microscale manipulation task
between Paris, France and Oldenburg, Germany.

Despite the proven benefits of adding haptic feedback in the loop, the actual
implementation of such feedback, especially through grounded haptic interfaces,
is still limited given the potential instability it could lead to, especially when go-
ing into contact with a stiff material, or in the case of communication delays. In
addition, other cons of using grounded haptic feedback is the high cost and the
encumbrance of the user motion. The use of ungrounded haptic devices has been
developed to tackle these issues, and as a means to decrease the instability by
decoupling the sensing and actuation on the master side. Designing the right con-
trol algorithm could of course ensure stability as explained in Sec. 2.1.2, however,
they lead to a reduced transparency of the system. In this respect, teleopera-
tion systems still present multiple challenges to marry stability and telepresence.
In [58], the authors propose to combine kinesthetic and cutaneous force feedback
by mixing the cutaneous-only approach of sensory subtraction with a time-domain
passivity control algorithm. This allows to preserve the performance by provid-
ing a suitable amount of cutaneous force when kinesthetic feedback needs to be
modulated.

2.2 Shared Autonomy

As we have explained in the first part of this chapter, telerobotics is still a relevant
and necessary field for many areas of application. In nuclear environments, search
and rescue missions, and deep sea or space operations, the human cannot be
physically present to perform the task given the hazardous type of the environment
and the risks incurred. At the same time, despite the developments in automation
in recent years, autonomous systems are still incapable of dealing with unseen
or unpredictable events and still lack the logic and problem solving capabilities
of humans. In other cases like micro-surgery, the human might be capable of
performing the task on his/her own, but the robot precision and scaling ability
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is often desired. Given that medical robotics is a very conservative field in direct
contact with human patients, the robot, in its current state of advancement, is
still not trusted to perform operations on its own. As such, teleoperation allows
to combine both competences of humans and robots to perform delicate tasks in
multiple settings. Having said that, direct teleoperation is often too challenging
and tiring for the human. This led to new approaches where the control of the
system is shared between the operator and the robot, referred to as shared-control
architectures. Early forms of HRI experiments, such as supervisory control, were
reported in [59]. They were followed by many contributions ranging from advanced
control theoretical methods to teleoperation-oriented software languages, visual
enhancements and hybrid representations [43, 60–62]. The field slowly evolved
over the years, and was established as an independent multi-disciplinary field in
the 1990s [11]. In the next part, we present a more in depth literature review
on shared autonomy, its position in the HRI spectrum, and the role of haptics in
shared-control architectures.

2.2.1 Human Robot Interaction

Although many of the early robotics works can be considered to be part of
HRI, this multi-disciplinary field gained its independence starting the mid 1990s
and early 2000s. HRI drew the attention of researchers from many disciplines:
robotics, psychology, cognitive science, human factors, natural language and hu-
man–computer interaction. They all helped in driving forward the advancements
in the area. As defined in [11], HRI is a field of study that is “dedicated to under-
standing, designing, and evaluating robotic systems for use by or with humans”.
As we have explained, every robotic system, even the most autonomous one, is
operated by humans or used to fulfill a certain human need. Therefore, a mini-
mal interaction between the human and the robot is necessary. However, HRI is
mainly related to a more direct and continuous interaction that could be remote
(as in teleoperation) or proximate (as in service robots).

Autonomy is thus for HRI a means rather than a goal in itself. Therefore, the
level of autonomy (LOA) describes the degree with which the robot can act by
itself, and varies depending on the application. While different representations
of these levels have been presented in the literature, the scale that was presented
by Sheridan [63] is still the most widely used to represent the different levels of
autonomy:

1. Computer offers no assistance; human does it all.
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2. Computer offers a complete set of action alternatives.

3. Computer narrows the selection down to a few choices.

4. Computer suggests a single action.

5. Computer executes that action if human approves.

6. Computer allows the human limited time to veto before automatic execution.

7. Computer executes automatically then necessarily informs the human.

8. Computer informs human after automatic execution only if human asks.

9. Computer informs human after automatic execution only if it decides to.

10. Computer decides everything and acts autonomously, ignoring the human.

The scale displays a continuum between direct manual command (or direct
teleoperation, which we have presented in the previous chapter), and complete
robot autonomy. Many other scales were also exposed in the literature (e.g. [64]),
and some authors noted that the scale should not be applied to the entire domain
but rather to each subtask of the problem alone [65].

In the context of telerobotics, control architectures have been classically di-
vided into three categories based on the level of automation: direct control, shared
control, and supervisory control [3]. Direct control involves no autonomy, and it
is represented by simple teleoperation systems that have been developed and pre-
sented in Sec. 2.1.2. Supervisory control, on the other hand, relies on a strong
local robot autonomy. The user commands high level goals for the system, while
the robot takes care of the low level execution details. For example, in the case
of a grasping scenario, the user could be in charge of choosing the final grasping
pose, but the path to arrive there could be automatically planned by the robot.
The human in this case is not in control of particular degrees of freedom of the
system, but chooses from a set of pre-defined subtasks that the system executes
autonomously. This type of control is useful for routines tasks such as handling
parts on manufacturing assembly lines or delivering packages, mail, or medicine
in warehouses, offices, and hospitals [1]. It is also common in remote environ-
ments where direct control is not possible due to long time delays [66–68]. For
example, the Mars Rovers are controlled in supervisory control mode because of
the large time delay between the Earth and Mars preventing any instantaneous
communication [69]. Teleprogramming [67, 70] is an extension to earlier super-
visory methods that deals with communication delays by automatically issuing
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a sequence of elementary motion commands, based on the operator’s action in a
simulated environment, to the remote robot [71]. In between the two endpoints,
shared control allows the human operator to be in full or partial control of the sys-
tem, while being assisted by the autonomy in the task execution. A good example
to illustrate shared control is the case of a dual-arm robotic system where one of
the robots is teleoperated by a human, while the other robot autonomously exe-
cutes a task in the same workspace. The human and the automation components
work together to perform the task at hand. For instance, the autonomous robot
could be in charge of keeping the object in the field of view using a camera [72–74],
while the human is in full (or partial) control of the other one, to perform the
grasping of the object.

In this thesis, we are interested in this latter type of HRI in particular. In
the next section, we describe in more details the types of assisted control that
exist, and focus on the role that haptic information can play in the design of such
systems.

2.2.2 Shared Control

Shared control is a type of assisted control where the human and the autonomy
interact while performing the task to decrease the cognitive load on the user, and
improve the performance and the task execution. In assisted control, different
types of autonomous assistance can be provided to the user, such as visual, hap-
tic or auditory feedback, as well as assistance in control [75]. While the focus
of this thesis is on shared control for the teleoperation of robotic manipulators,
shared-control systems have been used for a wide range of applications, from tele-
operating serial manipulators [76–81] to controlling wheelchairs [82–84], surgical
tools [85,86], vehicle guidance [87–89], Unmanned Aerial Vehicles (UAVs) [90–93],
and mobile robots [94,95].

Different types of shared-control methods have been treated in the literature,
and the fact is that nomenclature is not always clear, and in many cases these
methods are correlated to each other so it is hard to draw the line between them.

2.2.2.1 Virtual Fixtures

Virtual fixtures (VFs) are widely used in shared-control systems. They were in-
troduced in [79], and were metaphorically defined to act “Like a ruler guiding a
pencil in the real world”. In practice, VFs restrict the system state to a specific
space, adding constraints to the manipulability of the robot. VFs have been used
in many applications, e.g. [96–100], and previous works have proven that they sig-
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(a)
.

(b)

Figure 2.3 – (a) Forbidden region virtual fixtures and (b) Guidance virtual fixtures. Obstacles
are represented in gray and the constraints are shown in black. Photo courtesy of [103]

nificantly improve the task performance [79,101] and reduce the mental workload
experienced by the user [102].

VFs (also called active constraints) are characterized by the type of geometry-
related constraint, and the constraint enforcement method. The geometry con-
straint can be of any dimension, such as points, lines, curves, surfaces or volumes.
The enforcement method can also vary between Guidance Virtual Fixtures, where
the user is encouraged to move the robot along a specific pathway or towards
a specific target, and Forbidden-Regions Virtual Fixtures (FRVF) that limit the
robot to specific regions within its task or joint space [103]. These two types of
VFs are illustrated in Fig. 2.3. Depending on the type of constraint to apply,
we can also distinguish soft and hard VFs. In [104], the authors present a con-
troller for bilateral teleoperation that relies on hierarchical optimization to obtain
kinematic correspondence between the master robot and the remote manipulator,
while allowing the simultaneous definition of hard and soft virtual fixtures.

A main limitation of VFs relates to the fact that they are highly task-dependent
and usually cannot adapt to changes in the environment. For example, in [105], the
authors compare several FRVF constraints, on four different control architectures
using three different metrics: tracking, safety and submittance. Results have
shown that different FRVRs performed best for each of the three metrics, and
thus the choice of the best fixture is related to the application and task at hand.

Another limitation is the level of assistance that the virtual fixture should
provide the user with, or in other words, the right magnitude of the virtual spring
force. This choice depends on many factors, including the task, the capabilities of
the human operator (cognitive or neuromuscular), the quality of the automation
system etc.. And in fact it is not an easy choice to make. If the spring is too stiff,
the performance of the user improves, but the system is harder to overrule [106].
Some of the existing works on the choice of the level of assistance are discussed
in more details in Sec. 2.2.3.

VFs can be defined either on the master or on the remote robot side. In
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fact, these may consist of force cues, additional motion commands applied to
the manipulator itself, a restriction of the motion of the manipulator, or even
a graphical representation in the form of visual cues [97]. For example, in [79],
FRVFs were implemented as impedance surfaces on the master side for guiding
the user in a peg-in-hole task. In [96], FRVFs were implemented on the remote
robot by rejecting master commands into the forbidden region. In [97], virtual
fixtures were implemented on both the master and remote manipulators to guide
the remote manipulator to perform a predetermined task. In [105], the authors
present different control architectures for providing the user with efficient FRVFs
and compare whether implementing virtual fixtures on the master or the remote
side (or both) leads to the most desirable system behavior. Soft and hard virtual
fixtures are implemented and tested in a comprehensive user study.

When implemented on the master side, VFs can either be rendered using
information from the master or from the remote robot, and these two approaches
have been used in the literature, even though this choice is not always justified.
For instance, some works rendered the constraints on the master, e.g. [71,107,108],
while others rendered them based on the robot information, such as in [109–113].
The advantage of rendering the VFs on the master side is that the resulting system
is more stable, however, if the robot is not exactly following the master motion,
this could lead to the wrong application of the VFs on the remote robot side.
Therefore, VFs rendered on the remote side are more suitable for applications
requiring a precise robot motion.

2.2.2.2 Haptic Shared Control

The name Haptic Shared Control (HSC) was proposed by Abbink et al. in [114].
The work reviewed several implementations of haptic shared control, arguing that
it can be useful to meet common design guidelines for the interaction between
humans and autonomous controllers. According to the authors, virtual fixtures
are the first instances of HSC developed in the literature. Subsequently, many HSC
methods were developed for multiple applications such as car-following problems
[114,115] and teleoperation [101,116–118].

Haptic shared control is defined as a method of human-automation interaction
that “...allows both the human and the [automation] to exert forces on a control
interface, of which its output (its position) remains the direct input to the con-
trolled system.” As a result, in HSC, the human retains the final authority in
deciding on the command. The system can provide the user with haptic guidance
to inform them on the automation preference, but the operator can override this
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information.
HSC has been successfully used in a variety of applications. For example, it

has been employed to guide the human operator towards a reference position or
along a given path [119–122], avoid certain areas of the environment [123] or dan-
gerous configuration of the remote robot [124], learn a manual task [125], and ease
the grasp of irregularly-shaped objects [110]. Other applications of HSC include
surgical suturing [30], industrial pick-and-place [126], mobile robotics [127], and
industrial robotics [73].

More recently, Hong and Rozenblit [128] presented a haptic shared-control
approach for surgical training. The trainee is guided away from dangerous areas
of the environment using active constraints whose magnitudes change according
to the trainee’s proficiency level. Similarly, Ghalamzan et al. [129] presented a
haptic shared control for teleoperated grasping. The operators are in full control
of the robotic manipulator and capable of choosing any grasping pose they like.
At the same time, an active constraint guides them toward the direction that
optimizes the end-effector manipulability over the post-grasp trajectory.

Recently, machine learning techniques and intention estimation methods have
gained popularity, and they have allowed to develop new shared-control meth-
ods. For instance, Learning from Demonstration (LfD) was used to learn the task
model and to provide the user with the needed assistance in a structured man-
ner [130–132]. It has also been used to determine the desired level of autonomy
based on the confidence of the human and automation components [133, 134].
In [135], the authors present an LfD approach specifically designed to handle
inconsistent demonstrations from teleoperation, with large spatial and temporal
variations, which was tested with two shared-control architectures. Incremental
learning was also introduced to allow the user to modify the learnt model if a
change in the environment occurs. For instance, in [136], the learned distribu-
tions are autonomously refined through interactive task execution. In [137], the
authors propose an online incremental learning method which allows the operator
to partially modify a learned model through teleoperation, during the task exe-
cution. The system implements a shared-control method with dynamic authority
distribution and kinesthetic coupling between the user and the automation.

2.2.2.3 Semi-autonomous control

Depending on the partition of the control space between the human operator and
autonomy, assisted control methods can be divided into two groups:

• Partitioned space
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The control of the state variables is divided between the user and the au-
tomation system. An example is a task where the position and the orienta-
tion of the robot end-effector are shared between the two. For instance, the
user controls the position manually while the assistive system controls the
orientation.

This type of control is known as Semi-Autonomous Control.

• Shared space

The state variables are jointly controlled by the operator and the automa-
tion. As such, the degrees of freedom (DoF) of the system receive commands
from the two actors, and the command of each side can be modified or over-
ridden by the other. The weighting between the two inputs determines the
level of automation, which we will explain in more details in the next section.

Depending on their application, VFs can be either seen as a type of shared
control or semi-autonomous control [133].

2.2.2.4 Mixed Initiative Control

In addition to the categorization presented above that is based on the control
space partition, shared-control methods can also be divided depending on the
level at which the human and the automation intentions are mixed. As explained
in Sec. 2.2.2.2, HSC methods (and the majority of VFs which also fall under
this category) are designed such that the automation information is translated
through haptic interaction at the master side. The intentions are then mixed
at the operator level (e.g. [79, 96, 138, 139]). The advantage of such a method is
that the user is fully aware of the system behaviour, and of the information the
automation system is trying to provide. [133].

Alternatively, the user commands and the automation information could be
mixed directly at the robot level. This type of control is referred to as Mixed
Initiative Control [140] or State Shared Control, since the intentions of the human
and the automation are mixed at the state level. It was also given other names in
the literature, such as input-mixing shared control [141], input blending control
[142] or policy blending [143]. The two inputs to the robot are usually mixed
using a weighted combination, which allows to control the level of authority of the
automation component. More on this will be explained in the Sec. 2.2.3.
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2.2.3 Level of Authority

A main issue in the design of shared-control methods is the level of authority
to give to each of the human and the automation side. Authority allocation in
shared control is a challenging topic that has been extensively discussed in the
literature. The optimal degree of automation versus human input in a robotic
system is in fact not easy to determine. Traditionally, the level of automation was
constant in shared-control scenarios, then sliding autonomy, adjustable autonomy,
and sliding scale autonomy were introduced, where the robot shifts between pre-
defined discrete levels of autonomy. More recently, continuous change in autonomy
was introduced in a new definition of sliding scale autonomy [143]. Most works on
the topic are in the context of mixed initiative control, but authority allocation
has also been investigated in haptic shared-control scenarios.

In [114], Abbink et al. argue that haptic shared control is a promising approach
in human-automation interaction, especially in the automotive applications. In
the design guidelines proposed, they introduce the level of automation (LoA) as
an important factor to be properly chosen. They distinguish adaptive automation
which is an automation-intiated change in LoA, and adaptable automation where
the user has control on this switch in automation level. The advantage of haptic
shared-control methods is that they allow to design shifts in control authority
through physical interaction: the guiding force could be tuned to be high, low or
even absent (full automation) for the same error (between current and target angle
for example). So the human is always the one in control, in contrast to mixed
initiative shared control, as we have previously explained. The authors of [114]
then mention some implementations of haptic shared-control systems with fixed
(usually chosen by trial and error) and variable authority, introducing the level of
haptic authority (LoHA) metric [144].

Shifting between automation levels could be either through discrete levels
(ex: [120]), or in a continuous manner. In [120], the issue of distributing con-
trol among human and assistant in a haptic shared-control scenario is raised by
varying the amount of haptic support provided to the operator. While previously
designed assistance functions do not deal with unexpected events since assistance
is not updated using environmental information, what they propose is to tune
the assistance online to optimize task performance and human effort simultane-
ously. The assistance level should increase in known environment where human
and haptic assistance work together, but decrease in case unexpected events occur
so that the user can freely react and not be hindered by the assistant (causing
more human effort). To do this, [120] considers a 2D maze application and dis-
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tinguishes between the 2 scenarios above using a measure of interactive forces.
The optimal weight for the haptic assistance force is then chosen for each scenario
(from discrete values already fixed).

On the other hand, some works switch the variable assistance in a more contin-
uous fashion. The autonomous controller is typically the party in charge of switch-
ing between the levels of assistance, depending on the user performances [145],
potentially dangerous situations [115] or the robot confidence in the prediction of
the user motions and the difficulty of the task [146], [143].

In [143], a policy blending is introduced as an interpretation of shared control:
a formalism for the robot assistance as an arbitration of two policies, namely,
the user input and the robot prediction of the user intent. At any instant, the
robot combines the input and the prediction using a state-dependent arbitration
function. In terms of prediction the problem is formulated based on an inverse
reinforcement learning. Instead of using autonomy as a factor, this paper uses
aggressiveness; arbitration should be moderated by the robot confidence in the
prediction.

The paper [147] summarizes many of the previous works on the topic. In
addition, there are multiple recent works have presented methods with variable
authority allocation [133, 148–151]. For instance, Zeestraten et al. [133] present
a method to determine the level of automation online, by combining the confi-
dence of automation and that of the user. They implement their approach in
haptic shared control and in a mixed initiative control by using Programming by
Demonstration. However, determining the right authority level is still not easy to
answer, and remains one of the open questions in the shared control field. In fact,
an interesting question was raised by the authors of this paper when discussing
the confidence of the user input estimation: “... who has the final say in control
authority, the user or the assistive system?”.
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Part II

Haptic Shared-Control Methods
with Human Authority
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As explained in Chapter 2, teleoperating dexterous robotic manipulators can
be rather complicated and cognitively demanding for the human operator. There-
fore, shared-control methods have been designed and used in multiple applications
where teleoperation systems are still popular, such as in the remote handling of
hazardous material. In this part of the thesis, we are interested in designing new
haptic shared-control methods (see Sec. 2.2.2.2) for robotic grasping and ma-
nipulation, where we provide the user with haptic information to help him/her
performing the task. The haptic information is provided on the master interface
level, informing the operator of the desirable action to take in terms of minimizing
some task-related (Chapter 3) or human-related metric (Chapter 4). The human
is given the final authority despite this guidance information, as will be explained
in more details in the next two chapters.

In the context of this Part II, the task can be divided into three stages: the
pre-grasping phase, where the user teleoperates the robot in the direction of
the object to grasp, the grasping phase, and the post-grasping phase involving
lifting and manipulative movements related to the object grasped.

In this chapter, we are interested in the post-grasp phase of the task. Haptic
shared control in robotic teleoperation has been employed to, e.g., guide the hu-
man operator towards a reference position or along a given path, to avoid certain
areas of the robot workspace, to teach the operator a manual task, and to ease
the grasp of irregularly-shaped objects. However, shared control has rarely been
used to optimize a relevant metric over the future consequences of a local opera-
tor’s action, such as maximizing the robot workspace in a certain direction after
releasing an object, positioning the robot body so as to optimize the user’s view-
point on a future action, or choosing the best grasp pose to minimize the torque
exerted by the robot over a post-grasp trajectory. Targeting the future trajectory
in the design of the shared-control algorithm for the pre-grasp phase is important
in many applications. As an example, we can consider a nuclear decommissioning
site where the user should command the remote robot to grasp different objects
and move them to another location. The grasping action, in many cases, cannot
be automated. In fact, the human’s cognitive abilities are still needed in the cases
of cluttered environment, or even simply to judge the best grasping pose of an
object based on its physical properties. The grasping can thus be semi-automated,
with the system suggesting possible grasp poses automatically, and allowing the
user to make the final decision. On the other hand, the post-grasp trajectory of
the object is well-defined and can be computed based on the initial and final de-
sired pose using any modern trajectory planner. As such, it can be autonomously
executed by the robot. However, while the object trajectory is fixed, the grasping
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pose chosen by the operator decides on the trajectory performed by the robot in
the post-grasp phase. Since the user usually does not have an intuition about
the robot performance in the future trajectory based on the grasping pose, shared
control can be used to help the user in the choice of the grasp that would optimize
a future metric over the post-grasp task. This interesting problem was tackled
in a preliminary study by Ghalamzan et al. [126], where the authors proposed
a shared-control algorithm able to guide the human operator towards a grasping
pose that minimizes the proximity to robot singularities during the execution of
the object future trajectory. Although the preliminary results of [126] were quite
promising, it was noticed that directly providing the haptic cues may sometimes
result confusing for the human operator since the cues (that follow the gradient of
the chosen cost function w.r.t. the current pose) may end up guiding the operator
towards unfeasible grasping poses.

Therefore, this chapter improves on the previous work, and presents a haptic
shared-control method for minimizing the manipulator torque effort during the
post-grasp phase. Minimizing torque is important because it reduces the system
operating cost and extends the range of objects it can manipulate. In fact, the
robot has a limited control authority, e.g., in terms of maximum joint torques,
and carrying the object from the wrong grasping pose might lead to reaching the
joint torques limit in the future trajectory, thus leading to an unnecessary failure
of the manipulation task. In addition, unlike [126], our algorithm makes sure that
the cues will always guide towards a feasible grasping pose.

First, we use a geometric grasping algorithm to find all the feasible grasp
poses on the designated object. Then, for each feasible grasp pose, we evaluate
the (integral) torque the remote robot would exert to pick up the object and move
it along a desired pre-planned trajectory. We propose to convey this torque-related
information using haptic guidance, visual guidance, or a combination of the two.
We demonstrate the feasibility and effectiveness of the proposed approach in a
set of representative pick-and-place tasks as well as in a human subjects study,
where we compare the performance of the above three feedback modalities. The
contributions that we present in this chapter can be summarized as follows:

• present a shared-control technique selecting the best local grasping pose to
minimize the robot torque over a future post-grasp trajectory;

• devise three feedback techniques to guide the operator towards the best local
grasp pose: haptic-only, visual-only, and combined visuo-haptic guidance;

• carry out real-world trials using three representative objects having different
shape, dimension, and weight;
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Figure 3.1 – Teleoperation setup. The human operator uses a Virtuose 6D grounded haptic
interface (Haption, France) to control a 7-DoF Panda robotic manipulator (Franka Emika,
Germany), used as a 6-DoF manipulator. The user receives haptic feedback through the haptic
interface and visual feedback from an LCD screen.

• carry out a human subjects evaluation with 15 subjects, using statistical
tools to compare the considered feedback conditions over six metrics.

The proposed framework is compatible with any dexterous robotic teleoperation
system and it only requires the 3-dimensional model and inertia matrix of the tar-
get object(s). As a proof of concept, we consider a teleoperation system (Fig. 3.1)
composed of a 6-DoF grounded haptic interface and a 7-DoF robotic manipulator
equipped with a parallel jaw gripper, reduced to a 6-DoF manipulator by fixing
one of its joints.

This chapter includes work that was done in collaboration with the University
of Lincoln, UK, and submitted to IEEE Transactions on Robotics (TRO). A video
summarizing the chapter is available at https://youtu.be/vqDop2YRCzA.

3.1 Related Works

Robotic grasping and manipulative movements are key elements to build a re-
liable robotic solution. Simple robotic manipulation task can be classified in
two categories: (i) synthesizing grasp poses, and (ii) performing manipulative
movements. There is a bulk of research on synthesising grasp poses from given
single/multiple point clouds, e.g., by sim-to-real learning [152], deep learning via
domain randomization [153], deep learning that learns hand-eye coordination for
grasping unknown objects [154] and probabilistic generative models of grasping
configurations [155]. Other works, e.g. [156], reported improved performance in

https://youtu.be/vqDop2YRCzA
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synthesising grasping configuration for unknown objects by shape completion, e.g.,
via primitive shape fitting to point cloud [157]. Nonetheless, autonomous grasp-
ing approaches lack reliable robustness for conservative industries, such as nuclear
waste decommissioning. For instance, Kopicki et al. [158] propose an approach
to improve some of these shortcomings reported in [155] such that the approach
can partially generalize across different working conditions, unknown objects and
unknown environments. Although the improved performance reported in [158]
(i.e. < 25% improvement in the success w.r.t. the result reported in [155]) is sig-
nificant, the obtained success rate is still far away from 100% which is demanded
by conservative industries [29].

The works above are only concerned with (i) reach-to-grasp, (ii) forming grasp-
ing configuration on an object surface and (iii) lifting the object [159]. Nonetheless,
the robot may need to deliver complex manipulative movements after making a
stable grasp. Other lines of research studied the planning and control of manip-
ulative movements [28,160,161] to deliver complex (e.g. post-grasp) actions. For
instance, a robot may need to grasp an air paint spray gun and follow a specific
trajectory to deliver the quality painting. There is a range of different manipula-
tive movements, e.g., they can be a simple pick-and-place task [162], suturing with
a non-invasive surgical robot [30], robotic painting or robotic cutting [28]. The
optimization based manipulation planning algorithm [161, 163, 164] can encode
the environmental constraints into a cost function where it can be used to find
the optimum trajectory in a given environment. While the robot can optimally
perform a task using trajectories computed by optimization based approaches,
they are usually computationally very expensive [163] and may not be suitable if
the robot needs to quickly adapt to the changes in its environment. Robot learn-
ing from demonstrations (LfD) [165] was proposed to overcome this shortcoming
and quickly generalize demonstrated trajectories to different static and dynamic
environments [160].

These two lines of research, namely grasp synthesising and manipulative move-
ments planning, have been studied mostly in isolation. However, synthesized
grasping configurations may impose some constraints on feasible post-grasp ma-
nipulative movements. For example, a certain grasping configuration could lead to
reaching singularities or joint limits in the post-grasp task. Moreover, the desired
manipulative movements may limit the choice of suitable grasping configuration,
e.g., the screwing task determines a robot must form a stable grasp on the handle
of a screwdriver. In this regard, Detry et al. [166] select the grasping pose with
the maximum corresponding affordance utility value.

There are a few numbers of studies on jointly considering the problem of
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grasping an object, and delivering desired post-grasp manipulative movements.
For instance, [159, 162] studied how the choice of a grasp pose can be used to
avoid singularities and collision during manipulative movements. Two-phase opti-
mizations were used in [167] to generate the contact necessary for making a stable
grasp on an object and to find the optimal object path that can be followed, given
the optimal grasping configuration. In contrast, [168, 169] studied the optimal
grasps resulting in a maximum manipulability at initial grasping configuration.
Similarly, Mavrakis et al. [170, 171] studied the selection of the gasping config-
uration yielding the best safety value and torque efforts during the post-grasp
manipulative movements. These works, however, assume a reliable planner can
generate several precise/stable grasp poses where there does not yet exist a reliable
autonomous system fully trusted by conservative industries for different scenarios,
e.g., for an arbitrary object in a variety of lighting conditions, makes this an open
research challenge [172].

We propose to allow the human operator to be in charge of the grasping part of
the task through haptic-based teleoperation, and the autonomous system to per-
form the post-grasp manipulative actions. Several assisted teleoperation frame-
works have been proposed to tackle the problem of grasping or manipulation. For
example, Achibet et al. [173] introduced a paradigm for visual-haptic manipula-
tion of objects and [174] discussed the impact of different force-feedback-based
control strategies on the operator’s performance during grasping. Similar studies
for different manipulation tasks are presented in [175, 176]. In these works, the
haptic feedback provided to the operator aims at transmitting the forces, which
are sensed through tactile and/or force sensors of the robotic arm, to the opera-
tor. In contrast, Mason et al. [177] proposed an approach in which the operator
is informed about the feasibility of modifying an intended trajectory. However,
these assisted teleoperation approaches are used only for solving either reach-to-
grasp (RtG) or post-grasp manipulative movements (PGMM). Neither of those
facilitates planning jointly for both RtG and PGMM. Hence, a selected grasp by
a human may not be optimal for post-grasp motions. In other words, the human
operators are not informed about the consequences of their actions in a reced-
ing time horizon, i.e. about the quality of their preferred grasp pose in terms of
control effort or singularity over the post-grasp motions.

Haptic-guided shared control has recently caught the attention of the re-
searchers to improve the telemanipulation experience which helps joint solution of
RtG and PGMM. For instance, [30] computes the optimal grasping configuration
in a manifold of grasping configuration around a needle where the robot does not
face any singularities or joint limits.
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(a) Reach-to-grasp (b) Grasp

(c) Post-grasp

Figure 3.2 – Three phases of grasping an object: (a) reach-to-grasp–moving the robotic arm
towards the object to be grasped; local coordinate frames are attached to the end-effector (red),
centre of mass (CoM) of the object (blue) and the selected grasp pose (green); (b) grasping the
target object, and (c) performing the required post-grasp manipulation; the past local frames
attached to the CoM are shown with blue dashed lines. In this chapter, the first two phases
are carried out via teleoperation, while the last one is performed autonomously. During the
teleoperation, we provide visual-haptic feedback about the grasp poses minimizing the robot
torque during the future autonomous manipulation phase.
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However, the previous works do not consider the joint effort of the manipula-
tor during manipulative movements. Ghalamzan et al. [126] studied how the user
can benefit from the predictive singularity cost computation– based on a Task-
Oriented Velocity manipulability (TOV) cost function– and select a grasping con-
figuration so that the robot avoids singularities during manipulative movements.
However, this optimization was performed without accounting for whether the re-
sulting optimized end-effector pose was compatible with the main task of grasping
the object as the force cues based on TOV cost can disagree with the movements
toward the object to grasp. Moreover, neither of the works (i) use a combination
visual-haptic guidance, nor (ii) use a discretized grasping manifold to provide a
space of possible grasp poses. This chapter presents a shared-control system to
address the above shortcomings and inform the operator about the grasp choice
corresponding with the minimum torque effort – Task Oriented Torque Effort
(TOTE) – the robot will exert during the manipulative movements. A grasp pose
yielding the minimum joint effort is a very important factor as minimum joint
effort correlates with the minimum robots running cost. It may also yield a safe
distance to min/max joint effort limits imposed by the electrical motors at each
joint. This can also result in an extended lifetime of the joint motors.

3.2 Shared-Control Method

Whenever an operator grasps an object using a teleoperated robotic manipulator,
the grasping actions can be divided into three phases (see Fig. 3.2): (a) reach-
to-grasp, when the remote robot moves towards the object to be grasped; (b)
grasp, when the robot securely grasps the object with its end-effector; and (c)
post-grasp movements, when the manipulator carries out the desired manipulation
(e.g., moving the object towards a desired location).

As explained in Sec. 3.1, in this chapter, we decide to leave the human oper-
ators free to approach and grasp the target object according to their preferences
and to then switch to the robot autonomy as soon as the object is grasped. In
this way, the operator participates to the part of the task which is most de-
manding in terms of cognition while leaving more dull/easy parts to the robot
autonomy. While the operator approaches the object, we provide feedback infor-
mation about the torque necessary for the robot during delivering the object in
the post-grasp autonomous movement phase. In fact, as shown in Fig. 3.3, for the
same autonomous post-grasp manipulation defined for the object, two different
grasp poses lead to different robot configurations, resulting, in turn, to different
torques required by the motors.
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(a) (b)

(c) (d)

Figure 3.3 – Two choices of grasp pose shown in (a) and (c). The choice of grasp pose and the
corresponding robotic arm configuration determines the following joint space trajectory of the
robotic arm for the very same object trajectory. (b) and (d) show two shots of the robotic arm
(corresponding to the grasping choices shown in (a) and (c), respectively) for moving the object
to the predefined pose. The joint configurations during motion are different in the two cases, as
well as the torques exerted by the robot for moving the object (due to different gravity, Coriolis
and acceleration terms).
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Figure 3.4 – Block diagram summarizing the shared-control framework. A set of feasible grasps
{oxi} is generated by a grasping algorithm. Then, we calculate the torque cost function H(oxi)
at each of these poses to design the visuo-haptic feedback τhf to guide the human user. Finally,
the operator controls the robot in velocity using the grounded haptic interface.

We summarize the architecture of the control system in Fig. 3.4 and describe
it in details in the following sections. A grasping algorithm generates a dense
distribution of feasible grasp poses using the 3-dimensional model of the object.
Any data-driven grasping approaches, e.g. [158], can be employed for this purpose,
and we used GraspIt! [178] in our system. The torque-related metric is then cal-
culated for each grasp pose considering the object inertia matrix and the planned
post-grasp trajectory. Finally, this information is used at runtime to guide the
user towards the grasp poses locally minimizing the torque metric. Combining
this information with their own experience and perception of the environment,
the human operators can make the choice on how to grasp the object informed
about the future expected cost.

3.2.1 System details

In our teleoperation setup, we consider a 7-DoF manipulator–remote arm–and
a 6-DoF haptic device–master arm–(see Fig. 3.5). We fix joint-3 of the Panda
robot to reduce it to 6-DoF, as this allows us to avoid complexities of the inverse
kinematics of redundant robots in Sec. 3.2.2. As such, the robot acts and is
referred to as a 6-DoF serial manipulator.

Let us define three reference frames (see Fig. 3.5): Fg ∈ SE(3), attached to
the robot end-effector, Fo ∈ SE(3), attached to the object centre of mass, and
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the robot base frame Fr ∈ SE(3). These frames are also shown in Fig. 3.2,
along with Fgr representing the robot end-effector frame at the chosen grasping
configuration. Fm ∈ SE(3) is the base frame of the master device, without loss
of generality taken parallel to the robot base frame Fr ∈ SE(3), and Fw ∈ SE(3)
is the world frame.

The configuration of the haptic interface and its Cartesian velocity are defined
in Fw by xm ∈ R6 and vm ∈ R6, respectively. The device is modelled as a gravity
pre-compensated generic mechanical system,

M(xm)v̇m +C(xm, vm)vm = τhf + τhu −Bvm, (3.1)

where M (xm) ∈ R6×6 is the positive-definite symmetric inertia matrix,
C(xm, vm) ∈ R6×6 are the Coriolis/centrifugal terms, τhf , τhu ∈ R6 are the
haptic feedback and the human operator’s forces, respectively; B ∈ R6×6 is a
damping matrix for stabilizing the system.

The velocity of the robot is defined as vg ∈ R6, and a velocity-to-velocity
coupling between the master and the remote robot is implemented by setting
vg = vm.

We let oxg = {otg, oRg} ∈ SE(3) represent the grasp pose, which is defined
as the relative pose between the gripper and the object to grasp.

As we have already mentioned, we consider the post-grasp trajectory to be
assigned and carried out autonomously after the user grasps the object. For
instance, considering a pick-and-place task, we generate this trajectory based on
the initial position of the object and a given target location. It is defined in the
world frame as wxo(t) = {wto(t), wRo(t)} ∈ SE(3), 0 ≤ t ≤ 1, with t being
a time parametrization such that t = 0 is the starting point and t = 1 is the
endpoint of the trajectory. From the planned post-grasp trajectory, we calculate
the corresponding trajectory for the robot end-effector w.r.t. Fw,

wRg(t) = wRo(t)oRg

wtg(t) = wto(t) + wRo(t)otg
. (3.2)

Using the inverse kinematics (IK) solver we then obtain the joint space tra-
jectory θ(t, oxg) ∈ R6 , which is function of the object trajectory over time wxo(t)
and the grasp pose oxg. We want to inform the human operator about the quality
of a candidate grasp pose oxg w.r.t. the torque that the robot would exert when
moving the object after the grasp. We call this metric Task-Oriented Torque
Effort (TOTE), and it is function of the previously calculated desired joint trajec-
tory. Our shared-control system provides the operators with feedback information
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Figure 3.5 – We consider several coordinate frames including (i) the world reference frame,
and coordinate frames attached to (ii) the handle of master-arm, (iii) the end-effector of the
remote-arm, base of the remote-arm, and (iv) the object.

guiding them towards poses that minimize the TOTE index and are also feasible
grasp poses.

3.2.2 Manipulator Dynamics Under Load

To evaluate Task Oriented Torque Effort (TOTE) for a given grasp pose, we need
to calculate an augmented equation of motion which accounts for the grasped
object as well as the dynamics of the manipulator.

We present our approach for a non redundant manipulator. The extension to
redundant manipulators provides us with one extra degree of freedom which can
be, e.g., used to further optimize a secondary objective [179]. Following [180], the
joint space dynamic model of a 6-DoF manipulator is defined as

M(θ)θ̈ +C(θ̇,θ)θ̇ +N (θ) = τ , (3.3)

where θ ∈ R6 and τ ∈ R6 are the vectors of joint positions and torques, re-
spectively, and M(θ) is the manipulator inertia matrix. On the other hand, the
Coriolis and centrifugal force terms are defined by

Cij(θ̇,θ) = 1
2

n∑
k=1

(
∂Mij

∂θk
+ ∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k, (3.4)

while
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N (θ, θ̇) = ∂V

∂θ
(3.5)

defines a gravitational force term where V (θ) is the gravitational potential energy
of the system.

We are interested in determining the joint space dynamic equations of motion
while also incorporating the dynamics of the grasped object. LetMobj denote the
generalized inertia matrix of the object to be grasped, which we treat as a single
rigid body,

Mobj =
mI3x3 0

0 ICoM

 ,
where m ∈ R and ICoM ∈ R3×3 indicate the object mass and inertia tensor w.r.t.
the object Centre of Mass (CoM), respectively. Assuming a secure and steady
grasp, the inertia tensor can then be expressed in a frame attached to the robot
end-effector, as follows:

Mo(oxg) = E−T (oxg)MobjE
−1(oxg), (3.6)

where E(oxg) ∈ R6×6 is the matrix transforming the linear and angular velocities
of the object CoM to generalized velocities in the frame Fg attached to the end-
effector. We can then compute the grasped object inertia matrix and, hence, the
governing equation of motion of the augmented robot and grasped object in the
joint space is:

Mo(oxg,θ) =
[
JT (θ)Mo(oxg)J(θ)

]
, (3.7)

where J(θ) ∈ R6×6 is the the robot Jacobian. Next, we compute the effect of the
object on the Coriolis and gravitational term of the robot dynamic equation of
motion in eq. (3.3). From eq. (3.4), (3.6), and (3.7), the following holds

Co(oxg,θ, θ̇) = 1
2

n∑
k=1

(
∂Mo,ij

∂θk
+ ∂Mo,ik

∂θj
− ∂Mo,kj

∂θi

)
θ̇. (3.8)

Finally, the gravitational term of the dynamics of the grasped object in the robot
joint space can be defined using eq. (3.5),

No(oxg,θ) = ∂Vo(oxg,θ)
∂θ

, (3.9)

where Vo(oxg,θ) = mgho(oxg,θ) and ho(oxg,θ) can be computed using the for-
ward kinematics of the robot. The resulting equation of motion accounting for
the dynamics of the system can then be written as

M̄(oxg,θ)θ̈ + C̄(oxg, θ̇,θ) + N̄ (oxg,θ) = τ̄ (oxg,θ, θ̇, θ̈), (3.10)
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where τ̄ (oxg,θ, θ̇, θ̈) ∈ R6 represents the joint torques needed to perform the
target manipulative action while

M̄(oxg,θ) = Mo(oxg,θ) +M (θ),

C̄(oxg,θ, θ̇) = Co(oxg,θ, θ̇) +C(θ, θ̇),

and
N̄ (oxg,θ, θ̇) = No(oxg,θ, θ̇) +N (θ, θ̇).

3.2.3 Task Oriented Torque Effort (TOTE) Cost Function

The grasp pose oxg specifies the joint space trajectory of the robot needed to
perform the post-grasp manipulation (see eq. (3.2)) and affects the dynamics of
the post-grasp manipulative motions, which includes the robot and the grasped
object. As a consequence, the grasp pose ultimately affects the robot joint torques,
τ̄ (oxg,θ, θ̇, θ̈) (hereafter referred to by τ̄ (oxg) for simplicity), needed to move the
robot (and the object) over the desired trajectory. Torques τ̄ (t, oxg) expected at
each time t of the trajectory are defined following (3.10) as

τ̄ (t, oxg) = M̄
(
oxg,θ(t, oxg), θ̈(t, oxg)

)
+C̄

(
oxg, θ̇(t, oxg),θ(t, oxg)

)
+ N̄ (oxg,θ(t, oxg)) .

(3.11)

Let H(oxg) be a cost function defining the torque effort the robot exerts to
perform the post-grasp manipulation, i.e., moving the object along a pre-defined
trajectory in our case. Of course, this cost function can be defined for any other
type of post-grasp manipulation, depending on the task at hand. Given an object
and a desired trajectory to follow wxo(t), we can finally define task oriented torque
effort (TOTE) cost function H(oxg) as

H (oxg) =
∫ 1

0
||τ̄ (t, oxg)||dt, (3.12)

where ||τ̄ (t, oxg)|| is the L2 norm of the joint torques over the post-grasp trajec-
tory.

3.3 Navigation Information

During reach-to-grasp, we would like to guide the operator towards grasp poses
locally minimizing the TOTE index (which corresponds with the minimum torque
effort during post-grasp manipulative motions), using a combination of haptic and
visual navigation feedback.
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3.3.1 Haptic Navigation Guidance

The objective of our haptic navigation cues τhf is to guide the user towards the
direction minimizing the TOTE metric H(oxg). A first approach to achieve this
objective would be to provide force cues along the negative gradient of H(oxg)
w.r.t. optimization variable oxg, as in [126]. However, this method might lead
to undesired behaviours, as it does not consider where the feasible grasp poses
are, e.g., it could lead to a pose having a low value for H(oxg) but from which
it is impossible to grasp the object. In our system, we combine this gradient
descent approach with knowledge regarding the feasible grasp poses. From the
3-dimensional model of the object, we use GraspIt! to retrieve a dense set of grasp
poses. Then, for each pose, we calculate the corresponding end-effector and joint
post-grasp trajectories, excluding those for which no feasible inverse kinematic
solution exists. This step leaves us with a set of n feasible grasp poses oxi where
0 ≤ i ≤ n. Finally, we compute the TOTE for each feasible grasp pose oxi, called
Hi(oxi). This information is used to inform the user about the direction to follow
so as to minimize the robot effort during the post-grasp action.

The most straightforward way to provide the user with a meaningful feed-
back may be to drive her/him towards the grasp pose corresponding with the
minimum cost. However, the operator may still consider that the grasping pose
corresponding to the minimum value of TOTE is not the best choice because of
other constraints important to task completions (or her/his own judgment). In
general, robotic grasping/manipulation may involve different application specific
objectives, e.g., the manipulation may be subject to a suitable affordance of the
object or collision-free movements. The goal is then to provide the users with a
local, continuous and informative guidance such that they get informed on how
to move in the vicinity of their current gripper pose so as to minimize the torques
needed for the post-grasp action. To achieve this, we do not rely on the cost func-
tion value alone in the design of the haptic cues, but also take into consideration
the distance of each proposed grasp pose to the current gripper pose.

To this end, we define the roto-translational distance between any grasp can-
didate oxi and the current gripper pose oxg, similarly to [110], as

|oxi − oxg| = ||opi − opg||+ µ |gθi|, (3.13)

where gθi ∈ [−180, +180] is the angular part of the angle-axis representation of
gRi = gRo

oRi, and µ > 0 is used to properly scale the angular component of
the distance with respect to the linear one (µ = π/180 in our experiments). This
measure allows us to compute the distance between the current grasping pose
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(a) Object WO (b) Object LA

(c) Object LS

Figure 3.6 – Feasible grasps and TOTE cost H(oxg) for the three objects used in our exper-
iments. The grasping candidates are colour-coded according to the corresponding cost value.
Lighter green corresponds to a lower cost function.

and any candidate grasping pose, accounting for both translation and rotation
components.

Finally, the force cues are calculated as the weighted average of multiple force
vectors guiding the user towards nearby grasp poses having a low cost. The lower
Hi(oxi), the stronger the force guidance; moreover, each force vector is weighted
inversely to the distance between its grasp pose oxi and the current gripper pose
oxg, i.e.,

τhf = 1
n

n∑
i=1

H(oxg)−Hi(oxi)
1 + k|oxi − oxg|m


opi − opg
||opi − opg||

g∆i


if H(oxg) > Hi(oxi)

(3.14)

where g∆i is the axis part of the angle-axis representation of gRi = gRo
oRi, and

k and m are positive control gains (k = 6 and m = 8 in our experiments).

3.3.2 Visual Navigation Guidance

In addition to the haptic feedback described above, we provide the user with a
visual representation of the different possible grasping poses to give them a pre-
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Figure 3.7 – Objects used in our grasping experiments. From left to right, an L-shaped wooden
object (LS), a lamp (LA), and a b-shaped wooden object (WO). These objects have been chosen
following a discussion within the European H2020 project “Robotic Manipulation for Nuclear
Sort and Segregation” (RoMaNS), which considered them as good representatives for the sort
and segregation of nuclear waste.

liminary idea of how “good" the different grasps are, and allow them to plan ahead
their grasping pose in a way to make the post-grasping manipulation more effi-
cient for the robot. This is achieved by color coding the grasping configurations,
as shown in Fig. 3.6, where grasps are represented with different shades of green
depending on their TOTE cost values. In Sec. 3.5, we study the impact of haptic,
visual and visuo-haptic feedback on the human performance in an comprehen-
sive human subject tests, and the effect of combining them together on the user
performance.

3.4 Pick-and-Place Experiment

To test the effectiveness of our proposed shared-control approach, we carried out
a first pick-and-placement experiment on three different objects.

3.4.1 Experimental Setup

The experimental setup is shown in Fig. 3.1. The master side is composed of
a 6-DoF grounded haptic interface (Virtuose 6D, Haption, France); while the
remote side is composed of a 7-DoF robotic manipulator (Panda manufactured by
Franka Emika) with one joint fixed, and therefore used as a 6-DoF manipulator.
An LCD screen is placed in front of the human operator (i.e. subjects). The
master interface is placed next to the remote robotic manipulator to provide the
subjects with a direct view on the remote workspace. This simplifies our study
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as we avoid any complexities caused by the choice of camera views and screens
showing the remote workspace.

The environment is composed of three different objects placed on a table in
front of the robot:

WO: a wooden object made of 10×2.6×4 cm and 11×2.6×9 cm rectangles, 275 g
(right of Fig. 3.7).

LA: a 11×11×15 cm rectangular lamp of 1958 g with an handle (center of
Fig. 3.7);

LS: an L-shaped object made of two 14×1.2×6.5 cm rectangles, with a mass of
228 g (left in Fig. 3.7);

They were chosen for their similarity with common objects used in nuclear de-
commissioning scenarios [110].

3.4.2 Task and Methods

One expert operator carried out the pick-and-place task. The operator was asked
to control the robotic manipulator with the grounded haptic interface to grasp
the considered objects. We visualize the post-grasp trajectory before the start of
the experiment and describe it the subjects that the aim of the experiments is to
choose a grasping pose minimizing the overall torque exerted by the robot during
autonomous post-grasp motions. Once the object was grasped, the autonomous
system moves the remote robot to pick the object up and deliver it at the planned
pose, following a pre-planned autonomous trajectory.

We employed the shared-control method described in Sec. 3.2. We used
velocity-to-velocity mapping for commanding the master-remote robot system.
Since the workspace of the master device is smaller than that of the remote robot,
we used a clutch button on the master interface to decouple the motion of the
master and remote systems, allowing the user to reposition the haptic device in
a comfortable position before controlling again the robot [110]. We considered
two navigation feedback modalities: (T) standard human-in-the-loop teleopera-
tion, where the operator receives no guidance about suitable grasp poses; (H)
our haptic shared-control teleoperation approach, where the subject receives hap-
tic guidance toward grasps minimizing H(oxg), as described in Sec. 3.3.1. The
post-grasp trajectory was designed to include both a translational and rotational
component and is different for each of the 3 objects, as shown in the video available
at https://youtu.be/vqDop2YRCzA.

https://youtu.be/vqDop2YRCzA 
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Table 3.1 – Average error between the measured joint torques τg and the calculated ones using
eq. 3.11 (with and without the effect of velocity and acceleration) for a sample task for our
experiments.

Calculated (eq. 3.11) Calculated (no accelera-
tion)

Calculated ( no acceler-
ation or velocity)

0.479 N.m 0.475 N.m 0.480 N.m

The haptic feedback is computed according to the TOTE cost value calculated
as per eq. 3.11. We observe that at low velocities, the torques on the robot joints
τ̄ (t, oxg) could be approximated solely using the gravity vector, N̄(oxg,θ(t, oxg)),
as the other two components were negligible. To test this observation, we move
an object of 1 Kg, grasped by the gripper of the Panda robot, along a sample pre-
defined trajectory with low velocity similar to the ones we used in our experiments.
We compare the measured torques over the post-grasp trajectory to the calculated
torques using eq. 3.11, with and without the effect of the velocity and acceleration
components. The results are summarized in Table 3.1, and show that the effect
of adding these terms is negligible. We thus used this approximation to simplify
the calculation of the TOTE. Higher velocity tasks should of course include the
dynamics components in the calculations.

The human operators started by grasping “WO”. As described in Sec. 3.2, the
system generated the set of feasible grasp poses, calculating for each of them the
TOTE cost H(oxg) over the post-grasp trajectory. Then, haptic feedback guides
the user towards the pose locally minimizing the cost, in case of H. Fig. 3.6a
shows H(oxg) for the feasible grasps on the object used in our experiments. The
feasible grasping candidates are colour coded where the darker the green colour
of the grasping candidate, the higher the corresponding cost value. The user,
then, grasps object LA, receiving the same type of guiding feedback. This object
represented a particular challenge for the system, as it is quite heavy and, if not
handled correctly, might require torques too high for the robot to exert during the
post-grasp trajectory. Again, Fig. 3.6b illustrates H(oxg) for the feasible grasps
on this object using different shades of green. Finally, the user grasped object LS
and Fig. 3.6c shows H(oxg) for the feasible grasps on this object.

It is important to highlight that the navigation feedback guides the opera-
tor towards the pose locally minimizing H(oxg). This behaviour still enables
the human operator to decide from where to approach the object, combining the
knowledge of the system about H(oxg) with the experience and additional envi-
ronmental information brought by the operator. For example, from Fig. 3.6c, we
can see that H(oxg) is equally low if grasping the object from its right or left hand
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side. The user might prefer one or the other considering information unavailable
to the system, e.g., one part looks damaged/corroded or it is too close to other
objects.

(a) condition T, object WO (b) condition H, object WO

(c) condition T, object LS (d) condition H, object LS

(e) condition T, object LA (f) condition H, object LA

Figure 3.8 – Grasp poses teleoperated in T (fully teleoperated) and H (haptic-guided shared-
control teleoperated) modes of the control system: (a), (c) and (e) are grasp poses for WO, LS,
and LA chosen by the user in T control mode; (b), (d) and (f) are grasp poses for WO, LS, and
LA chosen by the user in H control mode;
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3.4.3 Results

We registered the grasp pose chosen by the operator and the torques exerted by
the robot over the post-grasp trajectory in the two different control modalities (T
vs. H–full teleoperation and the haptic shared control) for the three considered
objects (WO vs. LA vs. LS).

As expected, the grasp pose chosen by the user differed between the T and
H modalities. In condition T, the operator chose the most intuitive grasp poses,
shown in Figs. 3.8a, 3.8c, 3.8e, which are usually along top edge/surface line of
the object.

(a) Object WO (b) Object LS

(c) Object LA

Figure 3.9 – Norm of the joint torques τg [Nm] vs. time [s] during the post-grasp trajectory
for T and H control mode and three objects: (a) WO (corresponding with Figs. 3.8a and 3.8b),
(b) LS (corresponding with Figs. 3.8c and 3.8d), and (c) LA (corresponding with Figs. 3.8e and
3.8f)

However, the robot may require a large amount of torque effort to deliver de-
sired manipulative movements during the corresponding post-grasp manipulative
movements and those grasps are not the ones with the corresponding minimum
H(oxg). In condition H, the shared-control algorithm guides the user to grasp
poses shown in Figs. 3.8b, 3.8d, 3.8f, which are less intuitive but more efficient in
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terms of H(oxg).
After forming successful grasps, the operators stop teleoperating the remote

robot and an autonomous controller picks up the object and moves it along a
planned trajectory. Fig. 3.9 shows the evolution of the L2 norm of the joint
torques ‖τg‖ over time during the post-grasp trajectory, for the three objects in
case of H and T control mode. As expected, torques are minimized when the user
is guided towards grasps with low H(oxg).

It is interesting to see that our haptic-guided shared control allow the operator
to freely choose different local optimal solution– it is shown in Fig. 3.9b that the
operator can chose left and right hand side grasp pose, shown with H left and
H right, which have H(oxg) value lower than the intuitively selected grasp pose,
shown with T.

3.5 Human-Subjects Study

The experiments above showcase the features of our proposed haptic-guided
shared control. To further illustrate the efficiency of our approach, we present a
series of human subject tests showing the effectiveness of our approach to minimize
the TOTE cost in comparison with the basic teleoperation setup. We consider
again the robotic system described in Secs. 3.2, 3.4.1 and shown in Fig. 3.1.

In this section, we only consider object WO (right hand side of Fig. 3.7)
because it does not present any handling risk for novice users–the lamp mass,
e.g., may be dropped by novice and damaging the experimental setup– and also
provide a larger area of grasp choices for the user. This provides a good example
to compare the use of basic teleoperation and our proposed haptic-guided shared-
control teleoperation setups.

3.5.1 Task and Feedback Conditions

Similar to the experiments in Sec. 3.4, participants were asked to control the
motion of the robotic manipulator to grasp the object, following the guidance
information provided by the system. We describe the experiments and the task
for the user, i.e. the users need to teleoperate reach-to-grasp and form a stable
grasp where the post-grasp movements are performed autonomously. They were
also informed that we would ideally like to have the minimum joint torque efforts
during the entire experiments including post-grasp movements. The task started
when the manipulator moved for the very first time, and it was considered suc-
cessful completion when the robot completed the planned post-grasp trajectory.
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We consider four different ways of enabling the user to control the system for
completing the grasping task,

T: basic teleoperation, where the subject receives no haptic guidance about suit-
able grasp poses.

H: our proposed haptic shared-control approach, where the subject receives hap-
tic guidance toward grasp poses locally minimizing H(oxg), i.e., the torque
the robot needs to exert along the post-grasp trajectory.

V: visual guidance, where the subject is shown a graphical representation of the
scene indicating the value of H(oxg) for each grasp pose using a colour scale
(see Fig. 3.6a). In this case, the users were informed about the relationship
between the color of the grasps and their corresponding cost function value.
They were also given time to explore the figure, rotate it, and decide before
starting the experiment on the best grasping configuration. The figure was
also kept available to support the user throughout the grasping task.

HV: a combination of H and V, where the subject receives haptic guidance toward
grasp poses minimizing H(oxg) and is shown a graphical representation of
the scene indicating the value of H(oxg) for each grasp pose using a colour
scale.

Conditions T and H are the same already employed in Sec. 3.4. In all condi-
tions, the user controls all the DoF of the robotic manipulator through the haptic
interface, as described in Secs. 3.2 and 3.4.1.

A video showing trials in all experimental conditions is available at https:
//youtu.be/vqDop2YRCzA.

3.5.2 Participants

Fifteen right-handed subjects (average age 27.6, 12 males, 3 females) participated
in the study. Seven of them had previous experience with haptic interfaces. The
experimenter explained the procedures and spent about two minutes adjusting the
setup to be comfortable before the subject began the experiment. Each subject
then spent about three minutes practising the control of the system before starting
the experiment.

3.5.3 Results

To evaluate the effectiveness of our telemanipulation system and the usefulness
of the proposed shared-control approach, we recorded (i) the completion time,

https://youtu.be/vqDop2YRCzA 
https://youtu.be/vqDop2YRCzA 
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(f) Perceived effectiveness.

Figure 3.10 – Human subjects experiments: Mean and 95% confidence interval of (a) com-
pletion time, (b) mean torque and (c) peak torque over the post-grasp trajectory, (d) linear
trajectory and (e) angular motion of the end effector for the four conditions (T, H, V, HV).

(ii) the mean torque exerted by the manipulator joints during the post-grasp
phase, (iii) the peak torque exerted by the manipulator joints during the post-
grasp phase, (iv) the linear trajectory followed by the robotic end-effector, and
(v) the angular motion of the robotic end-effector. Moreover, immediately after
the experiment, subjects were also asked to report (vi) the effectiveness of each
feedback condition in completing the given task using bipolar Likert-type eleven-
point scales.

To compare the different metrics, we ran one-way repeated-measures ANOVA
tests (first five metrics) and Friedman tests (last metric) on the data. Four con-
trol modalities (standard teleoperation vs. our haptic shared control vs. visual
guidance vs. visuo-haptic shared control–T vs. H vs. V vs. HV) were considered.
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Data from the first five metrics (i)− (v) passed the Shapiro-Wilk normality test.
Table 3.2 summarizes this experiment.

Fig. 3.10a shows the average task completion time. One user took significantly
more time than any other to grasp in the H condition (41.96 s, five times the
average of the other users). We did not consider this outlier in calculating the
mean and 95% confidence interval showed in the figure. However, we considered
it in the following statistical analysis. Mauchly’s Test of Sphericity indicated that
the assumption of sphericity had been violated (χ2(5) = 16.255, p = 0.006). The
one-way ANOVA test with a Greenhouse-Geisser revealed a statistically significant
change in the task completion time across the conditions (F(1.868, 26.148) =
3.572, p = 0.045, a = 0.05). Post hoc analysis with Bonferroni adjustments
revealed a statistically significant difference between conditions T vs. V (p =
0.004) and T vs. HV (p = 0.012). The Bonferroni correction is used to reduce
the chances of obtaining false-positive results when multiple pair-wise tests are
performed on a single set of data.

Fig. 3.10b shows the mean torque applied by the manipulators’ joints along
the post-grasp trajectory. Data passed the Mauchly’s Test of Sphericity. The
one-way ANOVA test revealed a statistically significant change in the task mean
torque across the conditions (F(3, 42) = 160.778, p < 0.001, a = 0.05). Post hoc
analysis with Bonferroni adjustments revealed a statistically significant difference
between all conditions, as summarized in table 3.2.

Fig. 3.10c shows the peak torque applied by the manipulators’ joints along
the post-grasp trajectory. Data passed the Mauchly’s Test of Sphericity. The
one-way ANOVA test revealed a statistically significant change in the task peak
torque across the conditions (F(3, 42) = 108.291, p < 0.001, a = 0.05). Post
hoc analysis with Bonferroni adjustments also revealed a statistically significant
difference between all conditions.

Fig. 3.10d shows the linear trajectory described by the robot end-effector
during the task. Mauchly’s Test of Sphericity indicated that the assumption
of sphericity had been violated (χ2(5) = 11.728, p = 0.039). The one-way
ANOVA test with a Greenhouse-Geisser correction revealed no statistically signif-
icant change in the task linear trajectory across the conditions (F(2.085, 29.187)
= 0.677, p > 0.05, a = 0.05).

Fig. 3.10e shows the summed angular motion described by the robot end-
effector during the task. Data passed the Mauchly’s Test of Sphericity, and the
one-way ANOVA test also revealed no statistically significant change in the an-
gular trajectory across the conditions (F(3,42) = 2.203, p > 0.05, a = 0.05).

At the end of the experiment, we asked the participants to rate the perceived
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Table 3.2 – Summary of the experiment

Task Control the haptic teleoperation system to
grasp and lift an object.

Participants 15 subjects (12 males, 3 females)

Conditions T (standard teleoperation), H (haptic shared
control), V (visual guidance), HV (haptic
shared control and visual guidance)

Statistical analysis (one-way rm ANOVA or Friedman test)
Completion timeCompletion time

T vs. V p = 0.004 T vs. HV p = 0.012
Mean torqueMean torque

T vs. H p < 0.001 T vs. V p < 0.001
T vs. HV p < 0.001 H vs. V p = 0.002
H vs. HV p < 0.001 V vs. HV p < 0.001

Peak torquePeak torque
T vs. H p < 0.001 T vs. V p < 0.001
T vs. HV p < 0.001 H vs. V p = 0.002
H vs. HV p = 0.004 V vs. HV p < 0.001

Linear trajectoryLinear trajectory
No statistically significant difference between conditions.

Angular motionAngular motion
No statistically significant difference between conditions.

Perceived effectivenessPerceived effectiveness
H vs. HV p = 0.004 V vs. HV p = 0.032

Most effective condition (chosen by subjects)
Thirteen subjects out of fifteen chose HV, two chose V.
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effectiveness of the three conditions in guiding them (H vs. V vs. HV). The
responses were given using bipolar Likert-type scales that ranged from 0 to 10,
where a score of 0 meant “very low” and a score of 10 meant “very high” [181,182].
Fig. 3.10f shows the perceived effectiveness of the four experimental conditions.
A Friedman test showed a statistically significant difference between the means of
the three feedback conditions (χ2(2) = 13.192, p = 0.001). The Friedman test is
the non-parametric equivalent of the more popular repeated-measures ANOVA.
The latter is not appropriate here since the dependent variable was measured
at the ordinal level. Post hoc analysis with Bonferroni adjustments revealed a
statistically significant difference between H vs. HV (p = 0.004) and V vs. HV
(p = 0.032).

Finally, thirteen subjects out of fifteen found condition HV to be the most
effective at completing the grasping task. Two subjects preferred condition V.
Quite surprisingly, no subject indicated H as their preferred condition.

3.6 Discussion

Shared control is becoming a popular technique to improve the performance and
intuitiveness of robotic telemanipulation systems. This chapter aims at improv-
ing the human operator’s awareness of some future manipulation related metrics,
which might be non-intuitive or difficult to predict at the master side during tele-
operation. As a proof of concept, we evaluated the torques exerted by the robot
over a future trajectory set to be autonomously executed after the object is grasped
via teleoperation. This scenario is relevant, e.g., in the sort and segregation of
dangerous waste, where it is important to leave operators free to choose which
object and how to grasp while providing them as much information as possible
on the constraints and objectives relevant to the remote system and environment.
Minimizing the torque expenditure is not only relevant because it reduces the
energy used by the robot–hence reduces the operation cost– but also because it
extends the range of objects the system can manipulate. Indeed, as the robotic
system can only provide limited torque, knowing where and how to grasp enables
the manipulator to handle, e.g., heavier objects. It might be argued that expert
operators know well the system dynamics and therefore can already estimate how
the robot torques will evolve over a given post-grasp trajectory. However, espe-
cially when handling dangerous waste, operators do not have a direct and clear
view of the environment and it might be rather difficult to estimate such a complex
metric just from looking at the system from a distant window. Even if the oper-
ator has a good view of the environment, as in our experimental setup, receiving
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intuitive haptic cues can significantly reduce the cognitive load and speed up the
process, which is already an important result. For example, the Sellafield (UK)
nuclear site stores 140 tonnes of civil plutonium and 90,000 tonnes of radioac-
tive graphite [183]. The robotic systems in use provide teleoperation capabilities
through primitive master consoles (e.g., passive joystick or teach pendants), mak-
ing the process too slow for processing the material in a reasonable time, hence
the need for faster-teleoperation solutions. Finally, increasing the intuitiveness
of these robotic systems is expected to flatten the learning curve, enabling more
operators to become proficient in a shorter time (subjects in Sec. 3.5 were all
novices).

Of course, our framework can be adapted to consider different metrics of pre-
dicted costs, e.g., relevant for the post-grasp phase, such as cost of maximising
the robot workspace in a certain direction at the end of the manipulation or po-
sitioning the robot body to optimize the user’s viewpoint on future actions. As
long as the set of feasible grasp poses can be assigned with relevant cost values,
our approach can be adapted with very little efforts.

First, we evaluated our shared-control technique in a preliminary pick-and-
place experiment on three different objects. We asked experienced users to grasp
each object using classic teleoperation (T) in which they received no guidance
about suitable grasp poses, and our haptic shared control (H) in which they re-
ceived haptic feedback towards poses locally minimizing H(oxg). Shared control
H takes into account all the feasible grasp poses evaluated by the grasping algo-
rithm, weighted by their distance to the current pose of the robot. In this way,
the feedback is never abrupt and is gently updated as the robot moves around the
object. This characteristic enables the user to always know where the best local
grasp is, while still being able to move away if needed, which is paramount for
many applications. We want to leave operators free to ultimately choose where to
grasp because they might pick up on some information unknown to the system.
Results of this first experiment show that robot torques during the autonomous
part of the task are lower when using the haptic shared-control approach.

After this preliminary experiment, we carried out a human subject study en-
rolling fifteen human subjects. We tested the performance of four experimental
conditions: classic teleoperation (T), haptic shared control (H), visual guidance
(V), where each grasp pose is color-coded to indicate its H(oxg) value, and com-
bined visuo-haptic guidance (HV), which provides both haptic and visual feedback
as in H and V. As a measure of performance, we evaluated the time-to-completion
for each experiment, robot mean and peak torque, end-effector trajectory length
and angular motion, as well as users’ perceived effectiveness. Results showed
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that, in all the considered metrics but three (time-to-completion, linear and an-
gular motion), the proposed visuo-haptic guidance HV outperformed more classic
teleoperation T. Moreover, the great majority of subjects preferred HV over the
other approaches. Results also show that in the two most relevant metrics, mean
and peak torque, both haptic approaches (H and HV) perform significantly bet-
ter than any other, proving the effectiveness of haptic guidance in optimizing the
robot torque during telemanipulation. However, as expected, providing users with
this type of guidance led to a longer time-to-completion, which, of course, needs
to be taken into consideration. In this respect, it is interesting to notice that
condition H requires 12% and 31% less time than V and HV, respectively. At the
same time, it requires 8% less torque than V and only 9% more torque than HV.
In some scenarios, such an improvement in time-to-completion might be worth
a small increase in torque demands. Finally, the role of visual guidance merits
special attention. While it clearly makes the task longer to complete (both V
and HV), it is very well appreciated by users, who chose HV and V as the most
preferred conditions. This preference is not unexpected, as humans are generally
rather used to follow visual navigation feedback (e.g., turn-by-turn car navigation
systems based on road signs), while they are not used to follow haptic navigation
cues at all. For this reason, we expect more training to significantly improve the
performance of the haptic modality in all the considered metrics.

We also want to highlight that our approach is independent from the grasping
algorithm. Although here we used GraspIt! to generate the grasp poses, our
framework is capable to work on top of any other similar approach. For the same
reason, as long as the algorithm can generate feasible grasp poses, our framework
is expected to work on objects of any shape which are, e.g., sensed by rgb-d
sensors.

Limitations of our approach include the need for the 3-dimensional model of
the object and inertia matrix, which might not always be easily available. The
former can be acquired at runtime using depth cameras mounted on the robot
end-effector, as was done in [110], while the latter could be estimated using robot
pushing actions [184], vision-based (e.g., recognising the material) or force-based
(e.g., palpating the object) techniques. Finally, as in our target application most
waste consists of single rigid bodies, the proposed framework currently does not
support the handling of deformable objects. This feature could be added by
considering the uncertainty on the relative pose of the robot hand w.r.t. the
object surface.
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In the previous chapter, we presented a haptic shared-control architecture that
aimed to minimize the torques on the robot joints over the post-grasp trajectory.
The haptic and visual information guided the user, during the pre-grasping phase,
to perform the grasping task, with the goal to optimize the joint torques over the
post-grasping manipulative phase, completely autonomous in that case.

In this chapter, we target a grasping and manipulation application where the
task is to be solely performed by the user, from pre-grasp to post-grasp. The main
difference with the previous chapter is in the metric to optimize, as we shift our
attention from the task to the user himself/herself. In fact, in this contribution,
we use haptic shared control to account for the user’s comfort in addition to
minimizing a robot-related metric. The method presented aims at minimizing the
user’s workload during a teleoperated manipulation task, while accomplishing the
task at hand.

This chapter introduces a haptic shared-control technique minimizing the
user’s workload during robotic teleoperation. Using an inverse kinematic model of
the human arm and an online implementation of the Rapid Upper Limb Assess-
ment (RULA) tool [185], the proposed approach starts by estimating the current
user’s discomfort at runtime. Then, this metric is combined with some knowledge
of the target task and system (e.g., direction to follow, target position to reach,
effort demanded to the robot) to generate dynamic active constraints guiding the
user towards a successful completion of the task along directions that require a
reduced workload. The user is nevertheless always in control of the robot motion
through the master interface and can deviate from the proposed path if needed,
similarly to [126]. As such, the human has the final authority, same as in the
previous chapter. This approach is compatible with any robotic teleoperation
framework and can be combined with as many additional pieces of information
on the task and system as needed. As a proof of concept in this thesis, we use a
similar setup as the one used in the previous chapter, shown in Fig. 4.1, however
without reducing the robot to 6-DoF. To demonstrate the validity of the proposed
approach, we carried out a bilateral telemanipulation experiment with 15 partic-
ipants, evaluating the effect of our approach in the task performance and in the
workload perceived by the users.

This chapter includes work that was accepted and presented in two interna-
tional venues [6,7]. A video is also available at https://youtu.be/DodGI4wMRFA.

https://youtu.be/DodGI4wMRFA


61

Figure 4.1 – The experimental setup for the pick and place task. On the master side, a Haption
Virtuose 6-DoF haptic device, on the remote side a 7-DoF Franka Emika Panda robot. The
user shoulder is assumed to be fixed.

4.1 Related Works

Haptic shared control has been successfully used to perform different tasks, e.g., to
guide the operator toward a reference position [103,119–122], to avoid certain ar-
eas of the environment [33,103,123,186], and for learning manual tasks [125,187].
However, researchers have rarely focused on the user’s comfort during robotic tele-
manipulation, and never – to the best of our knowledge – has haptic shared control
been designed for this specific purpose. Nonetheless, this is a very important is-
sue, as operators in many high-impact scenarios use the robotic teleoperation
system for long uninterrupted time periods (e.g., a robotic prostatectomy gener-
ally takes 2-4 hours). To our knowledge, a few examples are available in the field
of human-robot direct interaction. For example, Busch et al. [188] used a sim-
plified human model to calculate the user’s body configuration in human-robot
collaboration. They derived a continuous cost function based on the Rapid Entire
Body Assessment score (REBA) and used it to choose the robot position optimiz-
ing the human joint angles (and thus the ergonomic comfort). Marin et al. [189]
optimized the ergonomics of an HRI task where subjects are asked to drill on a
board carried by the robot. They relied on musculoskeletal simulations to train a
Contextual Ergonomics Model through a probabilistic supervised learning Gaus-
sian process. Chen et al. [190] modeled the human arm as a 7-degrees-of-freedom
(7-DoF) robotic manipulator, and its muscular effort was derived based on the
estimated value of the joint torques. Similarly, Peternel et al. [191] estimated
muscular effort from torques during co-manipulation tasks.

In this chapter, we were inspired from these human-robot collaboration ap-
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plications to design a haptic shared-control method for teleoperation scenarios
taking the human comfort into account. The method proposed will be explained
in more details in the next section.

4.2 System Details

4.2.1 System Model

The master side is composed of the 6-DoF haptic interface, while the remote side
consists of the Franka Panda 7-DoF manipulator equipped with a gripper. Fig. 4.2
gives an overview of the entire system architecture.

We consider four reference frames in our system (see Fig. 4.1): Fr:
{Or,xr,yr, zr} is the robot frame attached to the gripper; Fm: {Om,xm,ym, zm}
is the frame attached to the end-effector of the master interface;
Fs: {Os,xs,ys, zs} is the frame attached to the shoulder of the user, which
is assumed to be fixed; and FW : {OW ,xW ,yW , zW} is the world frame. Let
xm = (pm,Rm) ∈ R3 × SO(3) be the pose of the master interface end-
effector, xr = (pr,Rr) ∈ R3 × SO(3) the pose of the robot end-effector, and
xs = (ps,Rs) ∈ R3 × SO(3) the pose of the user’s shoulder, all expressed in
the common world frame FW . The linear/angular velocities of the master and
robot in FW are denoted by vm = (ṗTm,ωTm)T ∈ R6 and vr = (ṗTr ,ωTr )T ∈ R6,
respectively.

The master device is modeled as a generic, gravity pre-compensated, mechan-
ical system

Mm(xm)v̇m +Cm(xm, vm)vm = fm + fh, (4.1)

where M (xm) ∈ R6×6 is the positive-definite and symmetric inertia matrix,
C(xm, vm) ∈ R6×6 represents the Coriolis/centrifugal terms, fh ∈ R6 is the spa-
tial force applied by the human operator to the master interface, and fm ∈ R6 the
feedback forces provided to the operator. On the other hand, the remote robot is
controlled in velocity,

vr = vm + λ

 pr,d − pr
Rr

r(θu)r,d

 , (4.2)

where λ is a gain parameter, pr,d = (pm−pm0) + pr0 is the desired robot position
calculated from the current master position pm, and pm0 and pr0 are the initial
poses of the master and the remote robot. For the angular velocity term, we rely
instead on r(θu)r,d, the angle-axis representation of the relative rotation between
the desired and the current robot orientations [192].
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Figure 4.2 – Block diagram summarizing the system architecture and the shared-control algo-
rithm presented in Secs. 4.2 and 4.3.

4.2.2 Human Arm Model

To estimate the user’s discomfort due to arm posture in real-time, we need an
estimate of the configuration of his/her arm throughout the teleoperation task. In
fact, we decided to rely on a non-invasive technique for estimating the ergonomic
comfort, using only the joint angles of the arm. We will consider other approaches
in the future (see Sec. 4.5).

For this purpose, the human arm is modeled as a 7-DoF robotic arm, similarly
to the work of Shimizu et al. [193]. A spherical joint is used for representing
the shoulder and the wrist, while the elbow is represented by a revolute joint
(Fig. 4.3a). We use an XYZ Euler convention to represent the spherical joints, to
be consistent with the RULA metric which will be introduced in Sec. 4.2.3. Given
that the operator is asked to keep the shoulder at a fixed position throughout the
task, we can estimate the joint values of the user’s arm qarm = [q1, ..., q7]T using
solely the position of the master end-effector, which coincides with the user’s palm,
using inverse kinematics (details in Sec. 4.2.4).

4.2.3 User Workload Parametrization

Human posture is often used to estimate and prevent work-related musculoskeletal
risks, as posture is indeed one of the risk factors for workers. In this respect, the
Rapid Upper Limb Assessment (RULA) method [185] is a discrete metric in which
a score is given for each upper limb configuration. Depending on the range of each
angle in the human arm, a score can be extracted from the RULA table, and the
sum of these scores represents the overall workload experienced by the user. The
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(a) (b)

Figure 4.3 – (a) The joints for the human arm. (b) Definition of the arm angle ψ.

RULA table includes other parameters besides the arm angles, however we focus in
our system on the arm and wrist as they are the most involved in the teleoperation
task.

In our system, the load or discomfort estimate needs to be continuously up-
dated as a function of the user arm configuration throughout the teleoperation
task. To do so, we derive a RULA-inspired continuous metric, which increases as
the deviation from the resting and most comfortable position of each joint angle in
the arm increases. We calculate, at each time step, qs = [q1, q2, q3]T the shoulder
angles, qe = q4 the elbow angle, and qw = [q5, q6, q7]T the wrist angles. As such,
qarm = [qTs , qe, qTw]T (see Fig. 4.3a). The workload W is then defined as the sum
of the squared differences between the angles and their rest positions (π/2 for the
elbow angle, and 0 for the others),

W = qTs qs + (qe − π/2)2 + qTwqw. (4.3)

This workload calculation behaves similarly to the RULA metric. W is low when
the arm angles are close to their resting position, and increases when the user
moves to a less comfortable position. Of course, the RULA-inspired ergonomic
metric is just one example of methods to calculate the human workload during
teleoperation. Other methods exist, e.g. EMG data, but as we have mentioned in
Sec. 4.2.2, we chose a non-invasive method that does not require any additional
sensors on the user’s arm.

4.2.4 Inverse Kinematics and Solving the Redundancy

Calculating the workload W assumes that the joint angles qarm of the user arm
are known at each time step. However, given that the arm is represented with a
7-DoF kinematic model, the inverse kinematics is not straightforward. Similarly
to [194], we define an arm angle ψ ∈ [0, π], which represents the swivel angle of
the arm around a virtual line connecting the shoulder to the wrist, as shown in
Fig. 4.3b. If ψ is known, the redundancy is resolved, since the shoulder and wrist
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angles can be parametrized using it, and the elbow angle qe can be computed
solely based on geometry.

At each time step, we calculate the inverse kinematics result qarm from the user
hand position, using all possible values of ψ (discrete values with increments of
0.01 in the [0, π] range). Then, we compute the corresponding W value assuming
that the user naturally chooses the most comfortable configuration of the elbow
when presented with a set of options. To do so, we choose the inverse kinematics
solution corresponding to the ψ value leading to the least discomfort between
the possible solutions (lowest W), similarly to what was done in [190]. This
assumption only affects the swivel angle of the elbow and no other joint angle.
Additional techniques that we will use in the future to improve this pose estimation
are mentioned in Sec. 4.5. Finally, a condition is added to ensure that the resulting
angles are close to the previous configuration of the arm, so that no abrupt changes
occur.

4.3 Shared-Control Architecture

This section describes the shared-control algorithm used to guide the human oper-
ator during the teleoperation task. The main goal of this architecture is not only
to account for task-related requirements, but to also target the maximization of
the user’s comfort during the task. We thus divide our haptic feedback force into
two components: a human-related component, fW , and a robot/task-related one,
fr.

4.3.1 Human Workload Cost Function

We want to minimize the muscular discomfort experienced during the task ex-
ecution. This is obtained by minimizing the cost function HW = W , i.e., the
workload. A comfortable arm configuration is thus defined as one with a small
value for the workload cost W .

4.3.2 Task-Related Cost Function

The second component of the haptic feedback is related to the task itself, as in
more traditional shared-control architectures. A second cost function Hr is thus
introduced to represent this task-related metric to be optimized. The cost Hr

can be related to maximizing, e.g., the distance from joint limits, singularities, or
obstacles. It could also be related to the distance from a target, or to the robot
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joint velocities or torques (like in the previous chapter), in which case it should
be minimized. While this cost function is general, we choose for our application
to minimize the Euclidean distance to the target object pose, similarly to [195],
by defining

Hr =
pr,g − pr
r(θu)r,g

T pr,g − pr
r(θu)r,g

 , (4.4)

where pr and pr,g are the current and goal positions of the robot end-effector,
and r(θu)r,g is the angle-axis representation of the relative rotation between the
current and target robot poses. The same approach can be easily extended to any
similar task-related metric.

4.3.3 Haptic Feedback

We design the haptic feedback to guide the user during teleoperation, such that
both task- and human-comfort-inspired cost functions are minimized. To achieve
this goal, the forces applied at the master end-effector are defined as

fm = αfW + βfr −Dvm, (4.5)

where fW is the force vector instantaneously guiding the user towards the position
with the highest comfort, and vector fr is the force minimizing the task cost
function, which in our case is related to the distance from the target release
position. α and β are weights to be tuned depending on the importance to be
given to each cost function (α+ β = 1). Finally, D is a diagonal damping matrix
to improve the bilateral stability of the system [5,110]. We chose a damping value
of 2 Ns/m in translation and 0.07 Nms/rad in rotation.

The feedback component related to HW is designed to be proportional to
a desired velocity of the master device in a direction that minimizes the cost
function,

fW = KWvm,dW , (4.6)

where KW is a proportional constant, and vm,dW is the desired velocity of the
master device end-effector, based on the metric maximizing the comfort. It is
calculated from the desired joint velocities of the human arm, q̇arm,d, as follows:
vm,dW = TJq̇arm,d, where T is a transformation matrix to take the desired velocity
calculated from the shoulder frame Fs to Fm, and J is the Jacobian of the human
arm. The velocity q̇arm,d is chosen for ensuring that HW is minimized, or, in other
words, ḢW(qarm) = (∂HW/∂qarm)q̇arm ≤ 0. We thus choose the desired angular
velocity of the arm angles to be in the negative direction of the gradient of the



67

human-related cost function,

q̇arm,d = − ∂HW
∂qarm

. (4.7)

Null values for fW in eq. (4.6), caused by the algorithm being stuck in a singular
configuration q̄ (where N (J(q̄)) 6= 0) different from the target one associated
with the minimum RULA and where q̇arm,d ∈ N (J(q̄)), are very unlikely due to
the quite limited range of motion of the user’s arm.

The feedback component related to Hr is designed similarly,

fr = Krvm,dr
. (4.8)

Since our haptic feedback is applied at the master side, and assuming no significant
delays or communication issues occur between the master and the remote system,
we start by defining a new cost function,Hm, which encodes the difference between
the master device pose and its target pose, computed from the target robot pose
using a transformation matrix:

Hm =
pm,g − pm
m(θu)m,g

T pm,g − pm
m(θu)m,g

 , (4.9)

where pm and pm,g are the current and target positions of the haptic device end-
effector. m(θu)m,g is the angle-axis representation of the relative rotation between
the current and the target master poses. The desired velocity of the haptic device
is finally chosen such that it minimizes the distance to the target

vm,dr =
ṗm,dr

ωm,dr

 =
pm,g − pm
m(θu)m,g

, (4.10)

as also done in, e.g., [192].
To avoid having one of the two components of the force (fr and fW) masking

the other one due to their difference in scale, we scale each of the forces to the
same range before adding them in eq. (4.5). The linear and torque components of
each spatial force vector are scaled to a norm of 2.5 N and 0.25 N.m, respectively.
A similar technique was used in [196] to scale the 19 components of a biomimetic
sensor so as to be able to combine and compare them. This choice allowed us
to make sure the user receives the two types of feedback all the time, but along
the direction decided by the weights as in eq. 4.5. The resulting force guides the
users towards the pose minimizing the composite metrics, but it is always gentle
enough to enable them to deviate from the suggested path, if needed. Additional
feedback techniques for providing this guidance information will be discussed in
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Chapter 7. Finally, once the user is within a threshold distance from the target
position, we scale the two force components proportionally to the distance to the
goal. Decreasing the human-related component is important to allow the user
to reach the final goal, while decreasing the force feedback related to the task
parameter avoids strong forces and oscillations as the user gets closer to the goal,
similarly to [110].

4.4 Experimental Evaluation

4.4.1 Setup and Participants

The experimental setup is shown in Fig. 4.1 and described in Sec. 4.2. The
remote environment is composed of three different sets of objects to grasp, pick
up, and place on a target location, as detailed in the next section. To enable the
operator to see the environment, the master interface was placed next to the robot
manipulator.

Fifteen subjects participated in the study (10 males, 5 females). Each subject
spent about two minutes practicing the control of the telemanipulation system
before starting the experiment. At this moment, the pose of the user’s shoulder
was measured and kept fixed throughout the experiment. This latter point is
important because our workload parametrization and inverse kinematics assume
a fixed position of the shoulder (see Secs. 4.2.3 and 4.2.4).

4.4.2 Task and Conditions

Participants used the master interface to control the manipulator. The task con-
sisted in grasping the objects (first part of the task) and moving them to a target

(a) A0 (b) A20 (c) A40

Figure 4.4 – User trajectory for a reaching movement for the three weightings A0 (blue), A20
(red), and A40 (green). In A0, only Hr is considered, and the user trajectory is therefore almost
horizontal. As the contribution of HW to the haptic feedback increases, the trajectory tries to
minimize the user discomfort by moving the arm to a downward (more comfortable) position.



69

put-down location marked on the table (second part of the task). Participants
were asked to complete the task as precisely and fast as possible. The task started
when the manipulator moved for the first time, and it was considered completed
when the object was released on the target.

As explained in Sec. 4.3, we combine different cost functions to take into
account human-related metrics as well as robot- and task-related ones. In this
experiment, we consider the estimated human workload as our human-related
cost HW , and the distance from the target location (i.e., the grasping pose in the
first part of the task and the put-down location in the second part) as our task-
related cost Hr. These two functions are then properly weighted and combined to
generate the guiding feedback, as described in eq. (4.5). Of course, the proposed
approach can be used for any other set of cost functions.

We consider three different weighting schemes for the contribution of HW and
Hr to the haptic guidance fm:

(A0) α = 0, β = 1 (the human-centered metric is disregarded and the operator is
simply guided toward the target);

(A20) α = 0.2, β = 0.8 (weak human-centered guidance);

(A40) α = 0.4, β = 0.6 (strong human-centered guidance).

We only consider conditions with β > 0.5 to ensure that the guidance feedback
always brings the user towards the completion of the task. In fact, a hypothetical
human-centered-only condition with α = 1.0, β = 0 would simply guide the user
towards a comfortable arm position, with no information and guidance regarding
the task.

For each weighting condition A0, A20, A40, participants were asked to pick
and place three different sets of objects:

(B) an empty cardboard box of dimensions 14×4×4 cm;

(C) two cubes, each of dimensions 4.2×4.2×4.2 cm;

(L) the wooden letter “H” with outer dimensions 21×13×2.5 cm.

Each subject carried out eighteen randomized repetitions of the pick-and-place
task, two for each weighting condition and set of objects. These two repetitions
differed in the pick-up and put-down locations. A video is available at https:
//youtu.be/DodGI4wMRFA. Fig. 4.4 shows the effect of the weighting schemes in
a simple reaching movement between two fixed points. Our scenario involved a
pick and place task, in which the starting and target positions are placed on two

https://youtu.be/DodGI4wMRFA
https://youtu.be/DodGI4wMRFA
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Table 4.1 – Statistical analysis (two-way repeated-measure ANOVA)

Completion timeCompletion time
Main effect of weighting

A0 vs. A20 p = 0.020 A0 vs. A40 p < 0.001
Main effect of object

B vs. L p < 0.001 L vs. C p < 0.001
B vs. C p < 0.001

Placing errorPlacing error
Main effect of object

B vs. C p < 0.001 L vs. C p = 0.003
Average HWAverage HW

Main effect of weighting
A0 vs. A20 p = 0.048 A0 vs. A40 p < 0.001
A20 vs. A40 p = 0.028

Main effect of object
B vs. L p < 0.001 L vs. C p < 0.001

Maximum HWMaximum HW
Main effect of weighting

A0 vs. A20 p = 0.049 A0 vs. A40 p < 0.001
A20 vs. A40 p = 0.025

Main effect of object
B vs. L p < 0.001 L vs. C p = 0.002
B vs. C p = 0.012

NASA TLX workload indexNASA TLX workload index
Main effect of weighting

A0 vs. A20 p = 0.035 A0 vs. A40 p = 0.001
A20 vs. A40 p = 0.050

supports having different height. To avoid colliding with any of the supports and
make our approach viable for any trajectory, we designed our task-related feedback
by introducing an intermediate target point, xr,i = (pr,i,Rr,i), higher than both
supports. The user is first guided to this intermediate point. Then, once the robot
reaches its neighborhood, the guiding force smoothly switches toward a new target
pose, xr,g = (pr,g,Rr,g), which is the final release position for our object. This
approach can be easily used with any arbitrarily complex trajectory.

4.4.3 Results

To evaluate the effectiveness of the proposed human-centered shared-control ap-
proach, we recorded (i) the completion time, (ii) the error in placing the objects
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(a) Completion time (s). (b) Error placing the
objects (m).

(c) Average HW value (rad2).

(d) Maximum HW value (rad2). (e) NASA TLX load index.

Figure 4.5 – Human subjects experiment. Mean and standard error of the mean of (a) com-
pletion time, (b) error in placing the objects, (c) average HW , (d) maximum HW , and (e)
NASA TLX load index for the three control conditions (A0, A20, A40) and the three target
objects (B, L, C).

at the target, (iii-iv) the mean and maximum HW registered, and (v) the NASA
Task Load Index (NASA-TLX) [197]. To compare these metrics, we ran two-way
repeated-measures ANOVA tests. The three weightings (A0 vs. A20 vs. A40) and
the three sets of objects to move (B vs. C vs. L) were treated as within-subject
factors. Data were transformed using the arcsin transformation whenever nec-
essary to achieve normality. All data passed the Shapiro-Wilk normality test. A
Greenhouse-Geisser correction was used when the assumption of sphericity was
violated. Results of post hoc analysis with Bonferroni adjustments are reported
in Table 4.1 (only significant p values are shown).

Fig. 4.5a shows the completion time, averaged across trials. All data passed the
Mauchly’s Test of Sphericity. The two-way repeated-measure ANOVA revealed
a statistically significant change for this metric across weighting conditions (F(2,
28) = 14.898, p < 0.01) and objects (F(2,28) = 107.168, p < 0.001). Fig. 4.5b
shows the error in placing the objects, averaged across trials. It is calculated
as the distance between the target position and where the objects were actually
placed at the end of the task. All data passed the Mauchly’s Test of Sphericity.
The two-way repeated-measure ANOVA revealed a statistically significant change
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for this metric across objects only (F(2,28) = 16.118, p < 0.001). Fig. 4.5c shows
the mean HW , averaged across trials. It is calculated as the value of HW averaged
over the duration of the task. All data passed the Mauchly’s Test of Sphericity.
The two-way repeated-measure ANOVA revealed a statistically significant change
for this metric across weighting conditions (F(2,28) = 17.287, p < 0.001) and ob-
jects (F(2.28) = 58.534, p < 0.001). Fig. 4.5d shows the maximum HW , averaged
across trials. It is calculated as the maximum value of HW registered during the
task. All data passed the Mauchly’s Test of Sphericity. The two-way repeated-
measure ANOVA revealed a statistically significant change for this metric across
weighting conditions (F(2,28) = 16.594, p < 0.001) and objects (F(2.28) = 32.418,
p < 0.001). Fig. 4.5e shows the overall workload score of the NASA TLX, regis-
tered using the official NASA TLX app. All data passed the Mauchly’s Test of
Sphericity. The two-way repeated-measure ANOVA revealed a statistically signif-
icant change for this metric across weighting conditions only (F(2,28) = 13.340,
p < 0.001).

A linear regression was run to understand the effect of HW on the final NASA
TLX. To assess linearity, a scatterplot of mean HW against NASA TLX with
superimposed regression line was plotted. Visual inspection of these two plots
indicated a linear relationship between the variables. There was homoscedasticity,
independence, and normality of the residuals. Average HW accounted for 60.7%
of the variation in NASA TLX with adjusted R2 = 60.3%, and it statistically
significantly predicted NASA TLX, F(1,133) = 265.123, p < 0.001. A Pearson’s
product-moment correlation showed a statistically significant positive correlation
between mean HW and NASA TLX, r(135) = 0.779, p < 0.001.

Fig. 4.6 shows a representative evolution of both cost functions vs. time for
the A0 and A40 weighting schemes.

4.5 Discussion

Looking at the previous results, we can see that completion time showed a sig-
nificant degradation when adding our human-centered guidance (A20, A40) vs.
standard task-centered guided teleoperation (A0). This result is quite expected,
and it is the major drawback of our approach, as the additional guidance in-
evitably deviates the user from the shortest path. However, this (small) perfor-
mance degradation is compensated by a significant reduction of the estimated
muscular discomfort (mean and max HW) and measured workload (NASA TLX).
In fact, while the completion time and placing error degrade by 14% and 10%,
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(a) Weighting condition A0 vs. time (s)

(b) Weighting condition A40 vs. time (s)

Figure 4.6 – Representative evolution of the human workload metric W and the norm of
the translational error between the current and the desired robot pose, for the A0 and A40
weighing conditions. The user is faster in completing the task using A0; however, a lower W
is recorded using A40, especially in the second part of the task (after grasping the object and
moving towards the put-down location). The dashed line represents the moment the user grasps
the object and the target position changes.

respectively, the NASA TLX value is improved by 30%. It is also important to
highlight that we considered a rather short task (approx. 20 minutes in total),
and we expect that the effect and usefulness of our approach increase with the
duration of the task. Finally, we did not register any noticeable degradation of the
performance due to implementing the haptic shared control at the master side.
Indeed, where to implement haptic active constraints in robotic teleoperation is
still an open question. There are arguments for both. Implementing the active
constraint at the master side solves any issue related to the stability of the sys-
tem, but it opens to the risk of badly controlling the robot. On the other hand,
enforcing the active constraint at the remote side solves any issue related to the
commanding of the robot, but it exposes to the risks of instabilities. This issue
has been tackled in more details in Chapter 2, Sec. 2.2.2, and could open up the
possibility to an interesting study in the future.

It would also be interesting to test other techniques to either directly measure
the users’ muscle effort (e.g., using Electromyography EMG) or better estimate
their pose (e.g., using RGB-D cameras [198], machine-learning approaches [199],
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or spatial tracking [200,201]). Such approaches will solve the uncertainty related
to the redundancy of our arm kinematic model. Another goal would also be to
consider additional metrics (e.g. jerkiness of the motion, full-body kinematics,
workload over a long task and multiple sessions).
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Part III

Haptic Shared-Control Methods
with Partial Human Authority
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In Chapters 3 and 4, we presented haptic shared-control methods that are
both directed towards minimizing the torques on the robot joints and towards
maximizing the user comfort while performing the teleoperation task. In these
methods, soft constraints were applied in the form of haptic information to the
user on the master device side. These constraints could guide the operator while
giving him/her the freedom to choose whether to comply. As such, the user had the
final authority in commanding the robot. In this third part of the manuscript, we
present novel system architectures with more authority given to the automation.

We start in this chapter by targeting a cutting application. Robotic cutting
is a great example of applications where the specificity of the task could help us
design a shared-control method that would alleviate the cognitive load on the user
compared to simple teleoperation, while also improving the task execution. We
therefore present two haptic shared-control methods that take into account the
constraints particular to the cutting task. Given the nature of the constraints
applied, which are hard constraints, less authority is given to the user whose
motion is limited in space to some degrees of freedom. In the next chapter, we will
instead demonstrate an autonomous architecture for grasping soft objects. The
user input is in this case integrated in the learning data, providing the automation
system with a human perspective on the best way to grasp with the help of haptic
feedback.

The motivation behind this chapter stems from the fact that robot-assisted
cutting is considered an important task in several fields, such as robotic surgery,
nuclear decommissioning, waste management, and manufacturing. Despite the
complex dexterity requirements of cutting tasks, very simple mechanically-linked
master-remote manipulator systems still dominate many of the above fields (e.g.,
nuclear robotics). Moreover, even when more dexterous manipulators are available
(e.g., in robot-assisted surgery), the employed systems show little or no auton-
omy, delegating all control to the experience of the human operator. To amelio-
rate this situation, we present two haptic shared-control approaches for robotic
cutting. They are designed to assist the human operator by enforcing different
nonholonomic-like constraints representative of the cutting kinematics. We vali-
date our approach by carrying out a human-subject experiment in a real cutting
scenario, and by comparing our shared-control techniques with each other and
with a standard haptic teleoperation scheme.

This chapter contains work has been published and presented in [5, 8] and a
video of the experiments is available at https://youtu.be/DkW4OcjgX9M.

https://youtu.be/DkW4OcjgX9M


79

Figure 5.1 – Experimental setup and reference frames used for designing the shared-control
techniques. Their objective is to help the operator cut the clay safely and intuitively. To do
so, we enforced various nonholonomic-inspired constraints, limiting lateral motions, rotations in
place, and sharp turns of the scalpel.

5.1 Related Works

Robotic cutting is particularly interesting for shared control, as it requires high
dexterity and can have serious implications if it fails. It is in fact employed in
various sensitive applications which range from surgical cutting [202] to nuclear
decommissioning [78] and disaster response [203,204]. Moreover, cutting applica-
tions feature a variety of constraints which can have a high impact on the task.
For example, to avoid damaging the environment, the cutting tool should neither
perform pure lateral motion nor rotate in place. Accounting for these constraints
in the design of the control architecture can be key for a successful and safe task
execution. Indeed, unicycle and car-like kinematic models have been used for
modeling the cutting task to reflect its nonholonomic nature [205–207].

Several shared-control architectures have been proposed in the literature to
tackle different cutting applications. For example, Prada and Payandeh [208]
used geometric virtual fixtures for providing assistance during cutting. The user
was guided towards a particular path using haptic feedback complemented with
a visual interface. Experiments were performed in a virtual environment and no
specific nonholonomic constraints were considered. Early work towards enforcing
a nonholonomic behavior on robotic systems has also been proposed for cobots,
where nonholonomy was ensured by mechanically limiting the DoF as to prevent
any nonholonomic motion [209,210]. The cobots then followed the forces applied
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by the human operator along the available DoF. However, most scenarios require
more flexible and dexterous robots, capable of performing different tasks which
may not always be nonholonomic. Enforcing nonholonomic constraints on multi-
purpose robots through control has been tackled, for example, by Arai et al. [211].
The authors propose a robotic control architecture that helps a human operator
in handling long objects by imposing virtual nonholonomic constraints. More re-
cently, Li and Kazanzides [212] proposed a shared-control architecture for cutting
in satellite servicing scenarios under time delay. The task consisted of cutting a
straight line in multi-layer insulation (MLI) blankets (a thermal insulation patch
used to cover satellites). A semi-autonomous architecture helped the operator in
keeping the blade normal to the blanket. Vozar et al. [213] addressed a similar
problem by designing four shared-control approaches. The task again comprised
cutting straight lines into MLI blankets under a time delay. In the first control
approach, users were given control over all planar DoF. In the second one, lateral
motion (away from the desired straight line) was scaled down to reduce its im-
pact in comparison with the two other controlled DoF. In the third one, lateral
motion was completely disregarded, i.e., the remote robot was forced to abide
to nonholonomic constraints. In the fourth one, users were provided with visual
guidance towards the desired straight line. In all modes, the master interface
was free to move in any direction, and the constraints were implemented only at
the remote side. The authors carried out a user study in which they compared
the distance error over the trajectory, its “roughness,” and the completion time.
Results showed no significant differences between the four modalities.

While the approaches of [213] and [212] are promising, they mainly focus on
treating the time delay in the system rather than the cutting task itself. In fact,
they all consider rather simple cutting tasks (straight lines). In real scenarios, the
cutting trajectories might be significantly more complicated and the environment
considerably sturdier. Moreover, they provide the user with little information
about the constraints being enforced. While the robot was constrained to a non-
holonomic motion, this restriction was not reflected on the master interface, that
was free to move in all directions. This mismatch between remote robot and
master may create confusion and it might have been the reason for the limited
improvements shown by these modalities.

This chapter targets the limitations of the above-described architectures. It
presents the design and evaluation of two shared-control approaches for command-
ing a torque-controlled manipulator in a cutting scenario. These approaches are
designed to help the human operator complete the cutting task in an intuitive
and safe way, by enforcing the constraints associated with the task itself, e.g.,
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limiting lateral motions, rotations in place, and sharp turns of the tool. A key
contribution of our system is that the user is provided with information about
the enforced nonholonomic constraints (alongside contact forces) via haptic feed-
back on the master device. The constraints at the master’s side are imposed only
using information from the master position, limiting any unstable behavior due
to communication delays between master and remote robot. We believe that this
feedback is essential for the operator and can turn around the results of [213].

5.2 Methods

The robotic system is composed of the master 6-DoF haptic interface and the
7-DoF torque-controlled manipulator used in the previous chapters. In this setup,
the robot is however equipped with a scalpel. The environment is composed of a
planar object to cut, placed on a table.

We consider three reference frames, shown in Fig. 5.1: Fs : {Os,xs,ys, zs},
attached to the remote scalpel; Fm : {Om,xm,ym, zm}, attached to the end-
effector of the master interface; and Fb : {Ob,xb,yb, zb}, our base frame attached
to the environment, i.e., the object to cut. The environment is assumed to be
fixed and planar, with zb being the normal to this plane. The scalpel (Fs), as well
as the end-effector of the master device (Fm), are free to move along the three
translational directions. However, their orientation is constrained via control, such
that zs = zm = −zb. The system can thus only rotate around zb. This constraint
is enforced in all the three control modalities described below.

Let ps : (ts, αs) ∈ R4 define the pose of the scalpel expressed in Fb, where
ts ∈ R3 encodes the three translational directions and αs ∈ R the rotation around
zb. Similarly, let pm : (tm, αm) ∈ R4 define the pose of the master device expressed
in Fb. The master device is modeled as a generic (gravity pre-compensated)
mechanical system,

Mm(pm)p̈m +Cm(pm, ṗm)ṗm = τm + τh, (5.1)

where Mm(pm) ∈ R4×4 is the positive-definite and symmetric inertia matrix,
Cm(pm, ṗm) ∈ R4×4 accounts for Coriolis/centrifugal terms, and τm, τh ∈ R4 are
the control and operator forces, respectively. Similarly, at the remote side,

Ms(ps)p̈s +Cs(ps, ṗs)ṗs = τs + τe, (5.2)

where Ms(ps) ∈ R4×4 is the positive-definite and symmetric inertia matrix,
Cs(ps, ṗs) ∈ R4×4 accounts for Coriolis/centrifugal terms, and τs, τe ∈ R4 are
the control and external forces, respectively.
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We designed three different control approaches. The first one (T) is a sim-
ple human-in-the-loop teleoperation, with no added constraints related to the
specificity of the cutting task. While this is a rather standard approach, we still
deemed it important, as it still is the gold standard in many application scenarios,
including robotic surgery. The second one (U) is a unicycle approach. It adds
nonholonomic constraints to avoid any lateral motion of the knife tool, which may
severely damage both the tool and the environment. However, this approach does
not prevent the tool from rotating in place or performing sharp turns, which can
also be dangerous. For this reason, we consider an additional mode C, in which
the user has direct control over the radius of curvature of the trajectory, similar
to the steering mechanism of a car. In addition to all the constraints enforced
in U, this modality also ensures that the tool only rotates when a translation is
commanded at the same time.

The general architecture of the system is summarized in Fig. 5.2. More details
on each control mode are shown in Fig. 5.3 as well as in the video available at
https://youtu.be/DkW4OcjgX9M. We evaluated their performance against each
other in the human subject study described in Sec. 5.3.

5.2.1 Standard Haptic Teleoperation (Condition T)

In this modality, the pose of the robot is linked to the pose of the master so
as to replicate its motion. The manipulator receives torque commands that are
calculated as

τs = K (ps,d − ps) +D (ṗs,d − ṗs) , (5.3)

where ps,d = pm and ṗs,d = ṗm. K ∈ R4×4 is a proportional scaling term and
D ∈ R4×4 is the corresponding derivative term. In our case, we choose K and D
to be diagonal matrices withK = diag(500 N/m, 350 N/m, 150 N/m, 15 Nm/rad)
and D = diag(44 Ns/m, 50 Ns/m, 24 Ns/m, 2 Nms/rad).

The external forces applied by the environment on the remote robot are fed
back to the user through the master interface, such that

τm = τc + τnc, (5.4)

where τc represents the forces applied along the constrained directions, and τnc
the ones applied along the non-constrained directions. In this condition, since
no constraints are added to the system, τc = 0 and τnc = Sx(τe −Bṗm), where
Sx is a selection matrix projecting the force feedback on the non-constrained
directions (the identity matrix in this case), and B ∈ R4×4 is a damping
matrix which improves the bilateral stability of the system. We chose B =

https://youtu.be/DkW4OcjgX9M


83

diag(4 Ns/m, 4 Ns/m, 4 Ns/m, 0.05 Nms/rad) for a good trade-off between reac-
tivity and stability (similarly to [124]).

5.2.2 Unicycle Approach (Condition U)

While T guarantees high flexibility, considering a cutting scenario enables us to in-
troduce additional constraints which can make the teleoperation easier and safer.
In particular, any pure lateral motion of the scalpel during cutting can induce
significant damage on the material being cut (and even on the scalpel itself, if the
material is hard enough). To limit this undesired behavior, we impose nonholo-
nomic constraints on the robot motion, such that the scalpel is constrained to
move along two translational directions only: (i) its cutting direction us, and (ii)
its vertical direction along zb. The scalpel can always rotate around its axis zs.
In other words, it can move forward/backward, up/down, and rotate around its
vertical axis; however, it cannot translate laterally, along the direction perpendic-
ular to us and zs (see Fig. 5.1). In our scenario, the scalpel was always oriented
such that us = ys.

To achieve this desired behavior, we constrain the master device such that
the user is allowed to move along xm and zm in translation, as well as to rotate
around zm. The motion around ym is, however, blocked. To enforce this blockage,
we define a plane Sl,m(t) : (nl,m(t), tl,m(t)), in which the motion of the master is
constrained at any time t. nl,m(t) ∈ R3 is the normal vector to the plane, and
tl,m(t) ∈ R3 is a point in space through which the plane passes. We can easily
define nl,m(t) as nl,m(t) = [xm(t)]xzm, where [ ]x is the skew symmetric operator.
The definition of tl,m(t) ∈ R3 is, however, more tricky, as it is not only dependent
on the current pose of the master device but also on its previous pose and can
be defined as tl,m(t) = tl,m(t − 1) + (tm(t) − tm(t − 1))xm. Finally, the master
interface is constrained to remain in the plane Sl,m(t) by providing a linear force

τl,m = −Kl,mdl,m(t)nl,m(t)−Bl,m

(
ṫm · nl,m(t)

)
nl,m(t), (5.5)

where dl,m(t) = (tm − tl,m(t))nl,(t) is the distance between the current master
pose and the plane Sl,m(t), Kl,m ∈ R is a (high) stiffness parameter, and Bl,m ∈ R
is the corresponding damping term. For our application, Kl,m = 500 N/m and
Bl,m = 16 Ns/m.

The linear motion along xm is then mapped to the remote side as a motion
along the cutting direction of the scalpel us, defining the new desired pose of the
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Figure 5.2 – Block diagram detailing the control architecture. In U and C, the enforced
constraints intervene to account for the cutting task. In T, no constraint is enforced and therefore
τc = 0 and τl,s = 0. In all conditions, along the non-constrained directions, the user receives
haptic feedback reflecting the forces applied by the robot on the environment.

scalpel ps,d : (ts,d, αs,d) as

ts,d(t) =


tsx(t)
tsy(t)

0

+ dtot(t)us(t)

︸ ︷︷ ︸
planar motion

+


0
0

tmz(t)


︸ ︷︷ ︸

vertical motion

, (5.6)

where ts(t) = [tsx(t), tsy(t), tsz(t)]T , and tm(t) = [tmx(t), tmy(t), tmz(t)]T . More-
over, dtot(t) is the total desired distance to be traveled by the robot at time
t to match the change in position of the master. It is defined as dtot(t) =
dtot(t − 1) + di(t), where di(t) is the difference in the distance traveled by the
master and remote manipulator in their last loop iteration,

di(t) = (tm(t)− tm(t− 1))xm − (ts(t)− ts(t− 1))us. (5.7)

This definition of ts,d(t) ensures that the desired position of the robot is always
along the pointing direction of the scalpel us, guaranteeing the nonholonomic
nature of the motion.

Forces τs controlling the robot are then defined as

τs = K(ps,d − ps) +D(ṗs,d − ṗs) +
τl,s

0

 , (5.8)

where ps,d = [tTs,d(t), αm]T , ṗs,d = [((ṗmxm)us + (ṗmzm)zs)T , α̇m]T , and τl,s is a
lateral control force enforcing the nonholonomic motion constraints on the robot,
defined similarly to τl,m in (5.5),

τl,s = −Kl,sdl,s(t)nl,s(t)−Bl,s

(
ṫs · nl,s(t)

)
nl,s(t), (5.9)
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(T) Teleoperation. (U) Unicycle. (C) Car-like.

Figure 5.3 – Summary of the shared control modes. Black arrows are directions the user is
allowed to control, red arrows directions which are blocked, dashed red lines sample trajectories.
(T) Teleoperation. The user has control over all planar motions and the vertical movement.
(U) Unicycle. Pure lateral motions are blocked. (C) Car-like. In addition to blocking the
lateral motion, rotations in place and sharp turns are also avoided. The user controls the radius
of curvature of the steering. A spring informs the user about the master position corresponding
to a zero radius of curvature.

where Sl,s(t) : (nl,s(t), tl,s(t)) is the plane we want to constrain the robot in,
dl,s(t) = (ts − tl,s(t))nl,s(t) is the distance between the current robot pose and
the plane Sl,s(t), Kl,s ∈ R is a (high) stiffness parameter, and Bl,s ∈ R is the
corresponding damping term. In our application, Kl,s = 1000 N/m and Bl,s =
63 Ns/m.

In addition to τl,m imposing the constraints on the master interface (τc =
[τl,m, 0]T ), the user also receives haptic feedback τnc from the environment along
the directions not constrained by the control, similarly to (5.4).

5.2.3 Car-like Approach (Condition C)

The previous approach prevents the user from moving the scalpel laterally. How-
ever, the user is still free to rotate it in place, which may also lead to significant
damage of the tissue. Moreover, even when moving, it is important to limit the
rate of rotation of the scalpel, as to avoid very sharp turns. To limit these unde-
sired behaviors (i.e., rotating in place and hairpin bends), we impose additional
constraints w.r.t. the control discussed in Sec. 5.2.2, executing rotations only if
the robot moves along us. Moreover, in this approach, the user is given control
over the radius of curvature of the trajectory, Rd. Similarly to driving a car, the
user does not directly control the angular velocity of the robot but rather the
steering angle.

As in Sec. 5.2.2, we constrain the master interface such that the user is allowed
to move along xm and zm, with a hard spring blocking any lateral motion. Con-
sidering rotations, a soft spring is applied around zm so as to fix the orientation
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of the master device at a particular pivot angle αm,d (defined in the coming lines).
As the user drives the master device away from αm,d, this divergence (αm−αm,d)
is mapped as the desired radius of curvature of the trajectory Rd (i.e., the desired
steering rate), such that

Rd = k

(αm − αm,d)n
, (5.10)

where k ∈ R and n ∈ R are control gains which depend on the range of the
master device orientation, the tool attached to the remote robot, and the type of
trajectories to cut. In our system, after pilot tests, we empirically chose k = 1/40
and n = 2. These parameters allowed us to map the angular motion of the master
interface into a radius of curvature for the trajectory, with a suitable range.

Then, the angular velocity of the remote/slave robot, α̇s, is designed to ensure
that the curvature of the trajectory follows Rd when the user commands a linear
velocity along us, such that

α̇s,d = sgn(αm − αm,d)
|ṫm · xm|
Rd

. (5.11)

This technique ensures that the tool does not rotate in place, but it only rotates
when a linear motion is commanded. Moreover, it also ensures that the motion
of the robot follows the desired commanded radius of curvature, Rd.

The pivot master device angle αm,d is updated at every iteration to account
for α̇s and to ensure that the master and the remote robot are aligned at all times,

αm,d(t) = αm,d(t− 1) + α̇s,d∆t. (5.12)

A similar integrator is used to retrieve the desired orientation αs,d(t) of the
scalpel, which is then commanded as in (5.8), now with ps,d = [tTs,d(t), αs,d]T and
ṗs,d = [((ṫmxm)us + (ṫmzm)zs)T , α̇s,d]T .

As before, similarly to (5.4), the user receives τnc along the directions not
constrained by the control. And τc = [τl,m, 0]T + Kzm(αm,d − αm)[0 0 0 1]T −
Bzmα̇m[0 0 0 1]T , where Kzm = 1.2 Nm/rad is a stiffness constant and Bzm =
0.12 Nms/rad a damping constant.

5.3 Experimental Evaluation

To evaluate the effectiveness and viability of our shared-control approaches, we
carried out a human subject experiment.
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Figure 5.4 – Human subjects experiment. Objective metrics. Mean and standard error of the
mean of (a) completion time, (b) error in carving the target shape, (c) max lateral force, (d)
mean lateral force, and (e) roughness of the cut profile for the three control conditions (T, U,
C) and the three target shapes (L, B, S).

5.3.1 Setup

The experimental setup is shown in Fig. 5.1, and it is described at the begin-
ning of Sec. 5.2. The master side consisted of a Haption Virtuose 6-DoF haptic
grounded interface. The remote side consisted of a Franka Panda 7-DoF serial
manipulator equipped with a scalpel. The remote environment was composed of
a 25×17×1.5 cm surface made of modeling clay. To enable the operator to see
the environment, the master interface was placed next to the robot manipulator.

5.3.2 Task and Conditions

Participants used the master interface to control the motion of the manipulator.
The task consisted in cutting a target shape into the modeling clay. Participants
were asked to complete the cutting task as precisely and fast as possible. Before
each repetition, the experimenter used a pre-prepared plastic mold to draw the
target shape on the clay, to make it visible to the user but without introducing
any deformation to the material. The task started when the manipulator touched



88

the clay for the very first time and it was considered completed when the shape
was totally carved (i.e., when the scalpel reached the end of the drawn shape).
Participants were only allowed one pass on the shape. The task, environment,
and target shapes have been chosen following a discussion with clinicians, which
considered them as good representatives of surgical incisions [202]. The setup also
reminds scenarios of sort and segregation of radioactive waste [214], where tele-
operated robots are used to cut open old containers and sort the waste according
to its radioactivity level.

We consider different ways of commanding the motion of the robot through
the haptic interface: (T) standard teleoperation, (U) unicycle approach, and (C)
car-like approach. See Sec. 5.2 for details on these control techniques.

For each control condition, participants were asked to carve three different
shapes:

L: a straight line, resembling sternotomy or upper midline incisions;

B: a bent line, resembling Gibson, inguinal or femoral incisions;

S: a sinusoidal shape, resembling Clamshell or sinusoidal coronal incisions;

Each subject carried out twelve randomized repetitions of the cutting task,
one for each control condition and shape. Trials were randomized to avoid any
learning effect. A video presenting the experiment and showing representative
trials in the different conditions is available at https://youtu.be/DkW4OcjgX9M.

5.3.3 Participants

Twelve subjects (average age 26.6, 8 males, 4 females) participated in the study.
Four of them had previous experience with haptic interfaces. The experimenter
explained the procedures and spent about one minute adjusting the setup to make
it comfortable for the subject before beginning the experiment. Each subject then
spent about two minutes practicing the control of the telemanipulation system
before starting the experiment.

5.3.4 Results

To evaluate the effectiveness of our system in cutting the considered shapes and
the usefulness of the proposed shared-control approaches, we recorded (i) the com-
pletion time, (ii) the error in following the target trajectory, (iii-iv) the maximum
and mean lateral force applied by the scalpel on the environment, and (v) a mea-
sure of “roughness” of the cut profile. The latter indicates how clean the trajectory

https://youtu.be/DkW4OcjgX9M
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is from irregularities and bends. Details on the calculation of these metrics are
given below. To compare the metrics, we ran two-way repeated-measures ANOVA
tests on the data. The control modality (T vs. U vs. C) and target shape (L vs.
B vs. S) were treated as within-subject factors. All data passed the Shapiro-Wilk
normality test. A Greenhouse-Geisser correction was used when the assumption
of sphericity was violated. Results of post hoc analysis with Bonferroni adjust-
ments or simple main effects are reported in Table 5.1 (only significant p values
are shown).

Fig. 5.4a shows the completion time, tf − ti, averaged across user trials. It is
calculated as the time elapsed between the instant ti the manipulator touches the
clay for the first time and the instant tf the shape is completely carved. Mauchly’s
Test of Sphericity indicated that the assumption of sphericity had been violated
for the shape variable (χ2(2) = 8.242, p = 0.016). The two-way repeated-measure
ANOVA revealed no statistically significant change for this metric across control
conditions (F(2, 22) = 0.122, p > 0.05), but it showed a statistically significant
change across target shapes (F(1.281, 14.090) = 26.831, p < 0.001), with a higher
completion time for more complex shapes.

Fig. 5.4b shows the mean error in following the target shape, averaged across
trials. It is calculated as the mean distance between the profile cut by the user
and the target shape, i.e., (∑N

k=1 ts(k)− t∗s(k))/N , where t∗s(k) is the closest point
to ts(k) on the target shape and N is the number of sample points in the user-
cut trajectory. Mauchly’s Test of Sphericity indicated that the assumption of
sphericity had been violated for the control variable (χ2(2) = 6.843, p = 0.033)
and for the interaction between variables (χ2(9) = 30.031, p = 0.001). The two-
way repeated-measure ANOVA revealed statistically significant change for this
metric across control conditions (F(1.337, 14.710) = 16.556, p = 0.001) and target
shapes (F(2, 22) = 8.281, p = 0.002). The mean error decreased for conditions U
and C with respect to simple teleoperation T.

Fig. 5.4c shows the maximum lateral force, averaged across trials. It is cal-
culated as the maximum value of force sensed by the robot along the axis xs,
which is perpendicular to the scalpel motion. Since moving the scalpel laterally
with respect to its direction of motion can damage the tissue, this force should
be as small as possible. Data passed the Mauchly’s Test of Sphericity. The two-
way repeated-measure ANOVA revealed a statistically significant change for this
metric across control conditions (F(2, 22) = 23.131, p < 0.001) and target shapes
(F(2, 22) = 25.873, p < 0.001). There was also a statistically significant two-way
interaction between shapes and control conditions (F(4, 44) = 5.075, p = 0.002).

Fig. 5.4d shows the mean lateral force, averaged across trials. It is calculated
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Table 5.1 – Summary of the experiment

Task
Control the haptic-enabled teleoperation system to
cut a target shape into modeling clay (12 subjects
enrolled).

Conditions Control approachesControl approaches
T (standard teleop.), U (unicycle-like), C (car-like)

Target shapesTarget shapes
L (straight line), B (bent line), S (sinusoidal shape)

Statistical analysis (two-way repeated-measure ANOVA, a = 0.05)
Completion timeCompletion time

Main effect of target shape
L vs. B p = 0.001 B vs. S p = 0.006
L vs. S p < 0.001

ErrorError
Main effect of control approach

T vs. U p = 0.022 U vs. C p = 0.016
T vs. C p = 0.002

Main effect of target shape
L vs. S p = 0.002

Max. lateral forceMax. lateral force
Simple main effect of control approach (condition/shape)

T/B vs. C/B p = 0.040 T/S vs. C/S p < 0.001
T/S vs. U/S p = 0.025

Simple main effect of target shape (shape/condition)
L/T vs. S/T p = 0.001 L/U vs. S/U p < 0.001
B/T vs. S/T p = 0.014

Mean lateral forceMean lateral force
Main effect of control approach

T vs. C p = 0.004 U vs. C p = 0.003

Main effect of target shape
L vs. B p = 0.034 L vs. S p < 0.001

RoughnessRoughness
Main effect of control approach

T vs. U p = 0.001 T vs. C p = 0.025

Main effect of target shape
L vs. B p = 0.003 L vs. S p = 0.006
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as the mean value of force sensed by the robot along xs. As above, this force
should be as small as possible. Mauchly’s Test of Sphericity indicated that the
assumption of sphericity had been violated for the interaction between variables
(χ2(9) = 17.675, p = 0.042). The two-way repeated-measure ANOVA revealed a
statistically significant change for this metric across control conditions (F(2, 22)
= 10.208, p = 0.001) and target shapes (F(2, 22) = 14.085, p < 0.001).

Fig. 5.4e shows a measure of “roughness” of the cut, averaged across trials.
It is calculated as the mean difference between the profile carved by the user
and the same profile smoothed using a low-pass Butterworth zero-phase digital
filter [215], i.e., (∑N

k=1 ts(k) − tsfilt
(k))/N , where tsfilt

(k) is the closest point to
ts(k) on the filtered trajectory. Mauchly’s Test of Sphericity indicated that the
assumption of sphericity had been violated for the interaction between variables
(χ2(9) = 17.225, p = 0.048). The two-way repeated-measure ANOVA revealed a
statistically significant change for this metric across control conditions (F(2, 22)
= 14.233, p < 0.001) and target shapes (F(2,22) = 13.200, p < 0.001).

Finally, eight subjects out of twelve found control condition U to be the most
effective at completing the cutting task. Three subjects preferred condition T
while one preferred C.

5.4 Discussion

Results presented above show that the two proposed shared-control approaches
significantly outperform standard teleoperation in most metrics. Specifically, C
outperformed T in all metrics but completion time, and U outperformed T in
all metrics but completion time and mean lateral force. These results are sus-
tained across the three considered shapes (see Table 5.1). This proves our hy-
pothesis that shared control can be a viable and effective approach to improve
currently-available teleoperation systems for cutting tasks, which is in agreement
with previous results in the literature. Comparing performance among the pro-
posed shared-control techniques (U vs. C), we can see that limiting the maximum
radius of curvature and preventing rotations in place (C) significantly lowers the
lateral forces w.r.t. U, where these constraints were not enforced. Moreover, the
error metric shows significant differences among all pairs, ranking C first (low-
est error), followed by U and T (highest error). This latter result is partially in
contrast with that of Vozar et al. [213], where imposing a virtual nonholonomic
constraint on the end-effector motion did not significantly reduce the error in cut-
ting a target path. However, Vozar et al. [213] did not use haptic feedback to
inform the users about the constraints and carried out their experiment under a
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4s delay. Finally, comparing performance among the target shapes, we can see
that, as the shapes become more complex, their performance degrades. It is also
interesting to notice that, for most metrics, as the shapes become more complex,
the difference of T vs. U and C increases. This result is quite expected, as users
need more help when cutting more complex shapes.

Surprisingly, the subjective metrics did not always agree with the above results.
In fact, users preferred T and U over C. Indeed, the many constraints imposed in
the C modality created the impression of conditions difficult to use. A common
comment among subjects was that they often felt “limited” when using C, and
that T and U made them feel “more in control” of the remote robot. However,
it is important to notice that none of our subjects was experienced in using the
experimental setup. In fact, the recorded subjective results might change in the
presence of experienced users. This is something we plan to extensively study in
the future, since all the operators in our target scenarios are skilled and experi-
enced (e.g., surgeons). Another aspect to consider is the amount of information
provided to the users. Although we took time to explain the procedure and the
conditions, a more detailed explanation of how the shared control works and why
it is important for certain applications might have led to a deeper understanding
and acceptance by the users, who seemed reluctant to relinquish control.

Two sources of potential instability are present in the system, corresponding to
the two sources of force feedback: τc, which imposes the nonholonomic constraints,
and τnc, which reflects the interaction of the robot with the environment. However,
τc raises no concern, as the constraints enforced at the master side are evaluated
from the pose of the master interface only. This design allowed the use of high
stiffness parameters (Kl,m = 500 N/m). On the other hand, since we experienced
very small communication delays in our setup, a damping matrix was sufficient
to avoid any undesired oscillation resulting from τnc. However, in cases where
communication delays might be significant (e.g., space operations, remote robot-
assisted surgery), stability could be enforced via passivity [216]. In fact, proving
that the system is passive is sufficient to prove the stability of the system. Different
methods to ensure stability have been presented in Sec. 2.1.2. For instance, one
way to ensure stable behaviour of the system is through the use of energy tanks
[12]. We plan to study in the future the effect of time delays on the performance
of haptic shared-control techniques.

We also plan to carry out more human subject experiments in real scenarios,
tailored for specific applications (e.g., cutting real tissue) and considering changes
in other variables (e.g., different stiffness of the environment, communication de-
lays, quality of the visual feedback).
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In the previous chapter we presented a new shared-control system for a cut-
ting task where the user was still in control of the teleoperation, but with less
authority as some hard constraints were enforced on the user’s motion. In this
chapter, we present instead the design of an autonomous system for the grasping
of soft and deformable objects. Unlike the previous chapters in this thesis where
the haptic feedback is used as means of guidance, here the haptic feedback and
teleoperation trials are used to train the autonomous system through a Learning
from Demonstration (LfD) policy. As such, the user authority is more implicit in
the system, and it is used to train an autonomous algorithm.

Research on robotic manipulation of fragile, compliant objects, such as food
items, is gaining traction due to its game-changing potential within the food pro-
duction and retailing sectors, currently characterized by manually-intensive and
highly repetitive tasks. Food products exhibit high levels of frailness, biological
variation, and complex 3D shapes and textures. For these reasons, introducing
greater levels of robotic automation in the food and agricultural sectors remains
an important challenge. This chapter addresses this challenge by developing a
human-centred, haptic-based, Learning from Demonstration (LfD) policy that en-
ables pre-trained autonomous grasping of food items using an anthropomorphic
robotic system. The policy combines data from teleoperation and direct human
manipulation of objects, embodying human intent and interaction areas of signif-
icance. We evaluated the proposed solution against a recent state-of-the-art LfD
policy as well as against two standard impedance controller techniques. Results
show that the proposed policy performs significantly better than the other con-
sidered techniques, leading to high grasping success rates while guaranteeing the
integrity of the food at hand.

The work included in this chapter has been done in collaboration with Sin-
tef, Norway. It is published in IEEE Transactions on System, Man, and Cyber-
netics: Systems and a video of the material is available at https://youtu.be/
0LaDPbGwZlw.

6.1 Related Works

Autonomous food processing and handling is gaining attention among researchers
in the fields of robotics, automation, and machine learning. Reasons for this in-
terest are three-fold: (i) compelling scientific and technological challenges linked
to the handling of food, such as flexibility, frailness, friction, and high inter-object
variability, (ii) increasing interest from public and private investors, and (iii) the
possibility of impacting food quality and reducing waste. To address current chal-

https://youtu.be/0LaDPbGwZlw
https://youtu.be/0LaDPbGwZlw
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(a) The food objects. (b) The setup for the heat-map generation.

Figure 6.1 – Food items and Heat-map capturing. (a) The five food ob-
jects used in the experiments: average circumference 290 mm, height 75 mm.
(b) Heat-map generation set-up. A laptop connected to a camera, a lighting system, water paint
with a brush for application, and a cloth for wiping the subject’s hand after each trial.

lenges, the European Commission has recently funded the €7-million collaborative
research project “SoMa,” which looks at innovative soft robotic manipulation for
handling fragile objects such as fruits and vegetables [217]. Similarly, Amazon’s
$13.7-billion acquisition of the food retailer “Whole Foods” aims to promote an
automation revolution in the food delivery market. According to Bloomberg [218],
Amazon will soon introduce robots in Whole Food warehouses as a cost-cutting
initiative. However, not only distributors need to automate the manipulation of
delicate food items. Currently, food production, harvesting, and processing con-
tinue to be dominated by labour-intensive tasks. In addition, vital global suppliers
have a constant need for more efficient operations, and improved HSSEQ (Health,
Safety, Security, Environment, and Quality) practices linked to their workers and
the safe handling of food. To address these issues, researchers need to focus on
efficient and safe methods for the autonomous handling of food while preserving
their quality.

Nowadays, (purely) vision-based techniques are the most widely applied ap-
proaches for autonomous robotic grasping and manipulation, either requiring a
3D-model of the item in question or constructing models using 3D-vision infor-
mation, e.g. point clouds [219], [220], [221]. Although the knowledge of an object
model may often be sufficient [222], the lack of precise information concerning its
shape and mechanical properties may significantly affect the quality of the grasp-
ing [223, 224]. An issue of major importance when handling food is its frailness,
which is an even more predominant problem when objects are moving, or when
they are handled and grasped during harvesting, post-harvest processes, and on
production lines. A representative example is strawberry harvesting, where even
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the smallest excessive force can degrade and spoil the product.
Haptic sensations have been proven to play a key role in enhancing human

fine manipulation [225] and precision grasping [226]. In robotics, haptic feedback
is widely believed to be a valuable tool in teleoperation, and it has been shown to
enhance operators’ performance in a wide range of robotic applications, including
microrobotics [227–229], needle and catheter insertion [123,230], surgical knot ty-
ing [231], assembly [227], and palpation [123,232]. The benefits of haptic feedback
in this scenario include greater manipulation and perception accuracy, as well as
lower levels of peak and mean force applied to food objects, thus lowering the
impact on the food due to their handling.

A promising approach to autonomous grasping via robotic manipulators is
Learning from Demonstration (LfD) [233]. This technique involves a robot learn-
ing a target policy from examples, or demonstrations, provided by an experienced
human operator. LfD uses recorded datasets in the form of state-action pairs to
derive policies that reproduce target behaviours. This methodology is in stark con-
trast to other learning techniques, such as Reinforcement Learning, where robots
learn from direct self experience. The use of LfD to teach robots how to grasp
is quite popular among researchers who make use of visual and/or haptic infor-
mation to demonstrate tasks by means of teleoperation [133, 234–237] or direct
interaction [238–240]. However, all of the aforementioned works involve human
operators driving robots using non-intuitive and somewhat basic master interfaces
such as teach pendants, non-haptic joysticks, single-point haptic interfaces, or by
directly moving the robots around. It is our belief that, in order for robots to
learn correctly from humans how to grasp challenging, compliant, and fragile ob-
jects, it is necessary to provide an intuitive and natural tool for controlling the
remote manipulators. In other words, we believe that by achieving a high degree
of dexterity and telepresence, human operators will be able to approach and grasp
target objects in the same way as they would do if grasping barehanded.

6.2 Contribution and Motivation

This chapter presents a human-centered, haptic-based, LfD approach for teaching
autonomous robotic systems the action of grasping delicate, fragile, and compliant
food items.

First, five human subjects were asked to grasp five food items barehanded,
recording the contact area between the users’ hand and the objects’ surface us-
ing paint transfer and machine vision techniques (see Sec. 6.3.1 and Fig. 6.1b).
Paint-transfer approaches have already been used to detect contact areas when
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Figure 6.2 – Example of a heat-map generation (aubergine). The intensity of the RGB-image
is extracted, converted to binary, then mapped to a generic hand using Thin-Plate spline inter-
polation, creating an intensity image for accumulated binary images. Active areas in the hand
change with different objects.

humans grasp objects [241]. However, to the best of our knowledge, this is the
first time that this approach is used to learn an LfD policy. This first step en-
ables us to study how humans grasp the considered food items when they are
endowed with maximum dexterity and feedback. However, these data alone are
not sufficient to design an autonomous grasping policy for a robotic manipulator,
which has significantly lower sensing and actuation capabilities than a human. For
this reason, afterwards, we conducted teleoperated prehensile move experiments
involving the same food object types (see Sec. 6.3.2). All relevant data on the
grasping motion and exchanged forces were recorded. To achieve high levels of
dexterity and telepresence, we devised a haptic-enabled high-degrees-of-freedom
robotic teleoperation system, shown in Fig. 6.3a.

By using both direct interaction and teleoperation data, we then devised four
Support Vector Regression (SVR) algorithms based on LfD policies, enabling a
robotic manipulator to autonomously grasp a set of representative food items.

Finally, we validated our autonomous grasping policies by carrying out 2310
autonomous robotic grasping tasks on seven representative food items, not lim-
ited to those used during the training. We compared the proposed policies to
each other, as well as, to a recently published LfD-based approach [234] and two
standard impedance controllers. Misimi et al. [234] combines RGB-D images and
tactile data to learn the required pose of the gripper, the gripper finger config-
uration, and the exerted forces. However, unlike our approach, it neither uses
information derived from direct human interaction nor data supplied by high-
dexterity haptic-enabled teleoperation.

With reference to related published work [234, 242–245], our study heavily
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focuses on human input. By providing an intuitive and rich interface to control
the remote robot, we enabled human operators to carry out the tasks naturally and
intuitively, close to what they would do with their own hands. To the best of our
knowledge, this is the first time an LfD approach is applied to enable autonomous
grasping by making use of both (i) rich haptic-endowed teleoperation data and (ii)
the mapping of direct hand interaction. Moreover, this is also the first time that
such an approach is used for grasping raw food items. Our approach combines
teleoperation data with real human interaction to build a robust learning policy
based on LfD. This policy enables a continuous understanding of the interactions
taking place between the human and the robot during a grasping sequence.

We have focused our research and validation on food items because they are
excellent examples of 3D compliant objects that should not be degraded during
manipulation. Robotic manipulation of 3D compliant objects is indeed a research
field that still requires significant research input to achieve a robust manipulation
of such objects.

6.3 Grasping-Data Gathering

This section provides details on the two data gathering experiments we carried out
with the aim of building our LfD policies. In both cases, we asked our subjects
to grasp the five different food items shown in Fig. 6.1a: an aubergine, a bell
pepper, a lettuce, a navel orange, and a beef tomato. These items were selected
as representative examples of 3D compliant objects because of their difference
in size, shape, texture, and compliance properties, and as representatives of the
most common fruits and vegetables consumed in global food markets. According
to the Food and Agriculture Organization of the United Nations (FAO), tomatoes
are one of the most cultivated fruits in the world, with more than 180M metric
tonnes produced every year. Aubergines and oranges are also very popular, with
50M metric tonnes produced every year, bell peppers reach 35M metric tonnes,
and lettuce 25M metric tonnes. Another important constraint for our choice of
produce was the payload of our robotic system, which is only able to carry up to 2
kg. Employing a different robot could of course enlarge the set of food objects we
are able to handle. However, it is important to highlight that our machine learning
approach can easily be trained to handle any other type of compliant food objects,
regardless of the robotic system being employed A video of these experiments is
available at https://youtu.be/0LaDPbGwZlw. Table 6.1 summarizes the main
symbols and variables used in this chapter.

https://youtu.be/0LaDPbGwZlw
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Table 6.1 – List of main symbols and variables.

Symbol Definition/Description

∗m , ∗s related to the master or slave/remote robot, respectively
xm , xs end-effector pose
pm , ps end-effector position
Rm , Rs end-effector orientation

W world coordinate system
vm , vs end-effector linear velocity
ωm , ωs end-effector rotational velocity

∗MCP , ∗PIP related to the fingers’ metacarpophalangeal joint and
proximal-interphalangeal joint, respectively

θri angular command to the MCP robotic joint i
θei angular value of the MCP exoskeleton joint i

τMCP,i , τPIP,i haptic feedback applied to finger i
mpro,i,mdis,i average pressure on the proximal and distal phalanges of the

robot finger i, respectively

gpos pose of the gripper
fprs tactile readings from the robotic hand pressure sensors

fmot position of the motors of the robotic hand
fang joint angles of the exoskeleton

s observed robotic grasping action performed by the human
teacher

a action-state, including gripper pose and motor positions

α, β, γ discrete time-series steps
Hk
j heat-map values gathered during direct hand interaction for

object k and action vector feature j
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(a) Teleoperation system (b) Illustration of the control design

Figure 6.3 – Teleoperation set-up and control design. (a) The human operator teleoperates
the remote robot to grasp a tomato. (b) Master-slave control: [xs, ys, zs,qs

T ]T are the end-
effector coordinates defining the pose of the RHR hand. The difference between the previous
and current master position is used to evaluate the velocity command, which is then sent to the
remote manipulator. RHR finger movements are proportional to the positions registered by the
H-Glove fingers.

6.3.1 Direct Grasping by Hand

Five subjects (four male and one female) were asked to grasp the five sample
objects barehanded. Our objective was to understand how humans grasp objects
when they are endowed with maximum dexterity and feedback (i.e. during direct
hand interaction). Inspired by the work of Knopp et al. [241] and Kamakura et
al. [246], we used a paint-transfer approach to identify the parts of the hand that
are employed the most during this grasping.

Task and data gathering—Subjects were comfortably seated in front of a
table. The experimenter placed the first object on the table and covered it in non-
toxic water paint. Subjects were asked to grasp and lift the object as if they were
moving it from one table to another. Then, they were asked to release the object
and show their palm to a camera, which recorded the paint-transfer patterns (see
Fig. 6.1a). Finally, subjects washed their hands and a new object was prepared
for grasping. Each subject grasped each object ten times, yielding 50 grasps per
subject, 50 grasps per object, and 250 paint-transfer trials in total.

Heat-map generation—Images of paint-transfer patterns were taken us-
ing a Grasshopper 3 camera (FLIR Systems, Canada), and the contact area was
segmented using standard background subtraction and light intensity filtering.
We then mapped the resulting contact area and constructed a heat-map using
Thin-Plate Spline interpolation [247]. A heat-map is a graphical representation of
individual values contained within a 2D matrix represented by colours. Brighter
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colours indicate higher levels of accumulated contact, identifying which parts of
the hand most used by the subjects when grasping the object in question. Es-
tablishing a human-grasp signature inferring innate sensor contact importance.
An example of data derived from this heat-mapping process is shown in Fig. 6.2.
Heat-map data are used in Sec. 6.4 as a basis for our human-inspired LfD grasping
policy.

6.3.2 Teleoperated grasping by an expert operator

Although the heat-map data are interesting, they are not sufficient on their
own to define an autonomous grasping policy for a robotic manipulator. For
this reason, we gathered additional data from 250 teleoperated grasping trials
(50 grasps per food item) using our target robotic manipulator as the remote
robot of a haptic-enabled bilateral teleoperation system, shown in Fig. 6.3a.
The master interface is composed of a 9-degrees-of-freedom (9-DoF) haptic
hand exoskeleton (H-Glove by Haption), attached to the 6-DoF grounded haptic
interface Virtuose. The remote system is composed of the Panda 7-DoF robotic
manipulator endowed with a 4-DoF 3-fingered robotic hand equipped with matrix
pressure sensors on all fingers (ReFlex TakkTile by Right-Hand-Robotics). This
integrated system enables a human operator to grasp and manipulate compliant
objects while receiving compelling haptic feedback of the forces applied by the
remote system.

Teleoperation of the 7-DoF robotic manipulator—To achieve high mo-
tion fidelity, we mapped the velocity of the grounded haptic interface to that of
the robotic end-effector, using an approach similar to that employed in [6, 110].
Let xm = (pm,Rm) ∈ R3×SO(3) be the pose of the master interface end-effector,
and xs = (ps,Rs) ∈ R3 × SO(3) the pose of the remote/slave end-effector, both
expressed w.r.t. a common world frame W (see Fig. 6.3a). The velocity of the
remote robot [vs ωs]T is then calculated as a function of the master velocity
[vm ωm]T and the difference between the desired and current pose of the robot,
i.e. vs

ωs

 =
vm
ωm

+ λ

ps,d − ps
Rs

sθus,d

 , (6.1)

where λ is a gain parameter, and ps,d the desired robot position derived from
the current position of the haptic device, ps,d = (pm − pm0) + ps0, with pm0 and
ps0 as the initial poses of the master and remote robot, respectively. Similarly, to
establish orientation, sθus,d is the angle-axis representation of the relative rotation
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between the desired and current orientation of the manipulator, i.e. sRs,d =
s0RT

s
m0Rm, where s0Rs and m0Rm define the current orientation of the remote

robot and the master, respectively, w.r.t their orientation at the start of a given
experiment. Thus, the first term of eq. 6.1 ensures an adequate responsiveness of
the system, while the second prevents drifts.

Of course, there are other ways we can map the motion of the human operator
into that of the remote robot [73,122,248]. We chose a direct and straightforward
way to control the robotic manipulator, as one of our hypotheses states that a
human-like natural control can improve the quality of recorded data and, thus,
of the learning policies.

Teleoperation of the 4-DoF robotic hand—To control the robotic hand,
we mapped the positions of the exoskeleton fingers to the positions of the fingers
of the remote robot.

The robotic hand has four active DoF: one DoF for each finger’s metacarpopha-
langeal (MCP) joint, and one to control the abduction of the two neighbouring
fingers (see Fig. 6.3a). These fingers were chosen to correspond with the index
and middle finger of the exoskeleton, together with an opposing thumb. The po-
sition command θri

for the MCP joint in a robotic finger i is proportional to the
recorded position θei

of the MCP joint in the corresponding exoskeleton finger:

θri
= kiθei

+ θri,s, (6.2)

where ki is a proportional gain, and θri,s is a safety offset, ensuring that the
commanded position value is always within safe intervals.

Haptic feedback—The robotic hand is endowed with six matrix pressure
sensors (TakkTile, USA), located on the proximal and distal phalanges of the
three fingers. Force feedback at the MCP joint of the exoskeleton, τMCP,i, is
computed by summing the pressure stimuli registered by sensors located at the
proximal and distal phalanges in the corresponding remote manipulator fingers.
At the proximal-interphalangeal (PIP) joint, forces τPIP,i are computed only from
pressure stimuli on sensors located on the distal phalanx of the remote robot. The
total force feedback is computed as:

τi =
τMCP,i

τPIP,i

 = ui

mpro,i +mdis,i

mdis,i

 , (6.3)

where ui is a proportional gain, andmpro,i andmdis,i are average pressures recorded
on the proximal and distal phalanges of the slave finger i, respectively.
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Figure 6.4 – Generation of LfD policy from acquired data. Finger tactile values coming from
the RHR-hand were weighted according to heat-map data when generating the human-inspired
LfD-policy. Temporal variation was captured by implementing time-series, where n previous
values for the robot pose, finger configuration, and tactile stimuli were applied to the generation
of predictions.

Each finger of the master exoskeleton is modeled as a gravity-compensated
mechanical system with two active joints (MCP and PIP, see Fig. 6.3a), with
force feedback τi. This approach enables the human operator to feel, on each
finger, the forces exerted by the robotic hand on the environment.

Task and data collection—An expert operator used the teleoperation sys-
tem for grasping and lifting the same five food items described in Sec. 6.3.1 and
shown in Fig. 6.1a. Each item was placed on a table in front of the remote robot
and lifted 50 times as part of a total of 250 trials (see Fig. 6.3a). To enable the
operator to view the environment, the master interface was placed one metre in
front of the robot workspace. For each trial, both the pose of the remote system
and the forces exerted on the food items were saved. At the end of each task, the
operator rated the quality of the grasp on a continuous scale from 0 (worst) to 4
(best). Zero (0) indicates that the operator was not able to grasp the object in
the first place, while 4 means that the object was held firmly during the entire
grasp sequence (see Table 6.2). This information was used to select the successful
demonstration examples for training the LfD policy. The majority of the grasps
were rated between 3 and 4. We also asked the expert operator to rate the quality
of the food items after each grasp on a scale from 0 (worst) to 4 (best), carefully
looking for bruises, cuts, changes in shape, and any other sign of degradation (see
Table 6.2). The operator was gentle when handling the produce, resulting in
a consistent quality rating of 4, reflecting the rich feedback and dexterity capa-
bilities of the employed haptic teleoperation system. In comparison, Misimi et
al. [234] provided no haptic feedback during their teleoperation trials, and oper-
ators reported that it was very challenging to not damage the items when not
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Table 6.2 – Scales used in the evaluation of the teleoperated prehensile move and the quality
of the food after the move, inspired from [250, 251]. Scale runs continuously from 0 (worst) to
4 (best), enabling the operator to select values between those indicated below.

Prehensile move Food items

4 – Complete prehensile move 4 – No visible modifications
3 – Slips close to the landing 3 – Small, localized, light marks
2 – Slips mid-way 2 – Mid-sized, spread marks
1 – Slips right after lift-off 1 – Bruises, small tears in skin
0 – Robotic hand fails to clutch,

action aborted
0 – Heavy bruises, spread marks

and tears in skin

receiving any tactile information.
Finally, for each grasping repetition, we also registered the angle of approach,

any significant synergy between the fingers, and the forces applied by the robotic
hand on the object. The design of the robotic hand led to most grasps being
precision ball (enveloping) grasps [249]. This type of grasp enabled the operator
to receive haptic feedback to all the three fingers of the exoskeleton.

6.4 Machine Learning

Learning a task from scratch can be very challenging, even for humans. A good
strategy for learning how to perform a brand new task is to be provided with a set
of instructions by an expert, followed by a practical demonstration [252]. Indeed,
most forms of machine learning (ML) applied in robotics are based on super-
vised learning (SL), typically using manually-crafted features as key to learning
sought-after policies [234, 253]. Unsupervised learning methods, such as (deep)
reinforcement learning, achieve objective functions by enabling learning agents to
autonomously define actions that maximize specific reward functions [254]. Van
Hoof et al. [255] illustrate such an approach with their tactile in-hand manipula-
tion skills derived from reinforcement learning with tactile feedback. However, as
SL can reduce the number of trials needed for sufficient implementation, i.e. also
reducing food waste compared to a self-training algorithm, we opted for an LfD
approach.

In this work, the prediction of a time-varying sequence of grasping features
during the grasping task was performed using Support Vector Regression (SVR)
time series. In addition, we tested the SVRs’ response to the weighting of selected
variables, and demonstrate how the imposition of human-inspired interaction in-
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dicators (heat-map weights) affects performance. SVR is one of the most powerful
and popular machine learning techniques to deal with non-linear prediction prob-
lems. It has a strict, well understood mathematical description, and it is widely
used in various applications. Compared to recent NN-based methods, SVR is
significantly less data-greedy, meaning that it does not require huge amounts of
training data-sets to develop prediction models. Moreover, SVR is very robust
to local minima problems. These aspects led us to choose SVR as the machine
learning method for this application.

A detailed description of the proposed three variants of SVR techniques is
given in the following subsections. Fig. 6.4 summarizes the process of generating
these policies from the acquired data.

6.4.1 Standard SVR

Let gpos = [xs, ys, zs,qs
T ]T ∈ R3 × H represent the pose of the robotic gripper,

where qs is a unit quaternion. Each robotic finger has nine tactile sensors, five
on its proximal phalanx and four on the distal. Let fprs ∈ R27 be the vector
containing all these tactile readings, fmot ∈ R4 the position of the motors in the
robotic hand, and fang ∈ R7 the joint angles of the exoskeleton. We can now
define s ∈ S ⊆ R3 × H × R27 × R4 × R7 as an observed (demonstrated) robotic
grasping action performed by a human teacher for a given object. Furthermore,
let a ∈ A ⊆ R3 × H × R4 be the corresponding action-state, which consists of
a gripper pose and motor positions. We define the set of n demonstrations as
ordered pairs D = {(s, a)i : ∀i ∈ In, s ∈ S, a ∈ A}. The goal is to instruct a
policy function Π0(s; θ) : S → A, which is parameterized by θ ∈ Rd, using the
set of human demonstrations. Let l : A×A→ R be a loss function between two
action-states and Π? : S? → A? a robotic grasp policy demonstrated by a human.
The objective is to find the parameterization θ that minimizes the expected loss
across a set of human demonstrations, i.e. ∀(s, a) ∈ D?:

arg min
θ

E[l(Π0(s; θ),Π?(s))]. (6.4)

6.4.2 SVR with Time-Series

For the implementation of an LfD policy based on SVR modelling, we used Vap-
nik’s E-insensitive time-series [256], where the aim is to identify a policy Π0 by
minimization of an E-function. In our case, this function is defined as

lE(s, a) =
d∑

k=1
lEk(sk, ak

?). (6.5)
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An SVR with time-series was chosen to generate a policy able to predict grasp-
ing actions in the form of action vectors with use of memory,

âi(t+ ∆t) = f(ai(t− α), ai(t− β), ai(t− γ), . . . ), (6.6)

where âi is the predicted value of the action vector ai derived from its discrete
grasping time-series values, and α = 0, β = 2, γ = 5 are selected time-steps
brought into the prediction equation, i.e. action predictions use current time
sequence t together with shifted time sequences (t− 2) and (t− 5) as data input.

We organized and subdivided the data into predefined grasping stages: ap-
proach, grasp, lift, placement, and release (see [257, 258] for details). Then, we
shifted gpos to make it relative to the position of the grasped object prior to finally
normalizing all the data.

6.4.3 SVR with Heat-Map Weighting

We used heat-maps to represent action vector predictions by weighting the pre-
dicted tactile finger data using object-specific values generated by the heat-maps
themselves. For a given object, we found little variability among the ten grasps
performed by each subject (i.e. grasp practitioner). Although we registered a dif-
ference in heat-maps between subjects, this was negligible compared to the much
larger differences identified between objects (i.e. the produce). Fig. 6.2 shows
that the distal parts of the fingers experienced the most contact, whilst proximal
parts yielded higher inter-object variation. As expected, the palm was more ac-
tive in subjects with smaller hands, and when grasping larger objects such as the
aubergine. However, since the RHR hand is not equipped with sensors on the
palm, we did not use the palmar heat-map data.

In practice, we weighted each column of the sensor action vector (a for fprs ∈
R27) with its respective heat-map values, represented by the matrix H:

a?kij = Hk
j · akij, (6.7)

where k is the object type, i the sequence (row) values, and j a feature of the
action vector. As mentioned above, this heat-map weighting was performed only
on the sensor-covered area of the RHR hand, i.e., the RHR sensor placements
were overlaid to the generic human hand heat-map generated during direct grasp-
ing. The human hand heat-map was thereby segmented into parcels which were
averaged to create the matrix H (see also Fig. 6.4). This procedure enabled us to
create a map of human-weighted grasp actions. It privileges the activation of spe-
cific tactile sensors according to the areas of the hand most used by the operator
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during direct interaction with the objects. Of course, this mapping approach only
works if the structure of the remote system resembles that of the human hand.
Moreover, the more human-like the remote system is, the better we expect this
mapping to perform.

6.5 Experimental Evaluation

This section presents the experimental evaluation of our LfD policy for au-
tonomous grasping of compliant food. The execution-validation stage, conducted
after the LfD-ML policy is learned, is illustrated on the right-hand side of Fig. 6.4.

6.5.1 Setup

The setup is comprised of the same remote system described in Sec. 6.3.2 and
illustrated on the right-hand side of Fig. 6.3b, i.e. an RHR hand attached to a
Panda manipulator. However, in this case, the robot is autonomously controlled
by the learned LfD-ML policies and no human is involved in the loop. Feedback
data derived from the RHR and the manipulator, such as tactile forces, joint posi-
tions, and velocity are continuously provided to the controller. The environment
involves seven types of food objects: five (aubergine, bell pepper, lettuce, navel
orange, and beef tomato) from the same categories used during training, and two
(tangerine and plume tomato) which were not used in the training phase. These
two latter objects are significantly different in size, approximately 50% smaller
than the navel orange and beef tomato, respectively.

Food items were placed at a designated location within reachable working
space of the robot. The location was carefully marked to ensure repeatability.
The robot was placed in a starting position above the food item in question.
Then, the grasping, lifting, and placement sequences were generated entirely from
the autonomous LfD policy under consideration. While here we only focus on the
interaction phase, in the future we also plan to consider the approaching phase
by using, e.g., visual-servoing techniques to automatically reach the object from
any position.

6.5.2 Grasping Policies

We carried out grasping experiments taking into account ((i)) standard human-in-
the-loop teleoperation, ((ii)) standard SVR, ((iii)-(v)) three variants of our SVR-
based policies, ((vi)) a recently-published haptic LfD approach, and ((vii)-(viii))
two standard impedance controllers:
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(i) Human teleoperation (no automation). This approach considers the ground
truth grasping data recorded during human teleoperation with the haptic
interface (see Sec. 6.3.2). No machine learning is involved here.

(ii) SVR. This approach uses normalized data (i.e. forces, positions, velocities)
as input and directly maps them into grasping actions through a standard
Support Vector Regression algorithm (see Sec. 6.4.1).

(iii) SVR-W (weighted as in [234]). This approach is similar to the SVR above,
but it privileges specific RHR sensor data as a mean of improving on the
previous algorithm. The weighting is done as in the work of [234], not using
any human direct grasping data (i.e. the heat-maps).

(iv) SVR-WH (weighted using heat-maps). This approach is similar to the SVR-
W above, but it weights RHR sensor data according to our human-generated
heat-maps (see Secs. 6.4.1 and 6.4.3).

(v) SVR-WHT (weighted using both heat-maps and time-series). Same as SVR-
WH, but this approach takes into account the temporal variation in the
finger configuration and sensor pressure during the grasping sequence (see
Secs. 6.4.1, 6.4.2, and 6.4.3).

(vi) Misimi et al. [234] (state-of-the-art). This approach is a recent learning
policy for autonomous grasping, published in 2018. It uses data derived
from human teleoperation and tactile sensors on a robotic hand. It differs
from our approach because it uses a simple non-haptic joystick during the
teleoperation demonstrations, and it does not consider any human direct
grasping information when weighting the tactile data.

(vii) Impedance controller (gentle grasp). This approach implements a standard
impedance controller. The robotic hand increases the grasping force until
the average force sensed by the tactile sensors reaches a set threshold. We
set this threshold to the average value recorded during trials with haptic
teleoperation.

(viii) Impedance controller (strong grasp). This approach is the same as ((vii)),
but the threshold is here set to twice the average value recorded during trials
with haptic teleoperation.

Fig. 6.5 summarizes the internal relative weights applied in these policies, illus-
trating how the different sensory input is valued.
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Figure 6.5 – Weighting for each algorithm: How these values relate to each other defines the
SVRs work-space. Comparison of SVR weights gives an understanding of how they differ and
relate to action inputs. For the abbreviations, see Sec. 6.5.2.

6.5.3 Autonomous Grasping Task

The task consisted in autonomously grasping seven types of food items using
the learning policies cited above. We considered five food items (aubergine, bell
pepper, lettuce, navel orange, and beef tomato) coming from the same categories
of objects used during training, and two objects (tangerine and plume tomato)
significantly different in size.

From the 50 teleoperated grasps per produce (see Sec. 6.3.2), it was possible to
tailor our four grasping policies, ((ii)-(v)), for each produce used in Sec. 6.3.2, e.g.
aubergine-trained SVR-WHT, pepper-trained SVR-WHT, lettuce-trained SVR-
WHT, etc. This process yielded a total of 4 policies × 5 (trained) objects = 20
tailored policies.

Each (trained) produce was grasped 30 times with its tailored policies. E.g.,
when grasping the aubergine, we used the four learning policies (ii)-(v) trained
with data registered during the teleoperation of aubergines. To grasp the two food
items whose category was not considered during training (tangerine and plume
tomato), we used the four policies trained on navel orange and beef tomato, re-
spectively. This task yielded 30 grasps × 7 produce × 4 policies = 840 grasps. For
comparison, we also carried out the same task using the three standard controllers
((vi)-(viii)), yielding 30 grasps × 7 produce × 3 policies = 630 additional grasps.

In addition to the above grasping repetitions, we also wanted to study the
adaptability of the proposed approach for different objects. To do so, we ran a
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Figure 6.6 – Success rate of grasping tasks. Results are based on 30 grasp attempts per
condition per food item. Autonomous grasping using LfD was implemented for a variety of
SVRs. SVR with heat-map and time-series inputs had the best accuracy. We compared our
approach to a recent state-of-the-art LfD from 2018, and two impedance controller techniques.
Grasping variations and their abbreviations are described in Sec. 6.5.2.

second set of trials, using tailored SVR-WHT policies to grasp produce different
than the one it was designed for. We only considered SVR-WHT policies because
we expect them to be most effective. To avoid repeating grasps already considered
in our first set of trials, each tailored policy only grasped the items it was not
designed for, e.g., aubergine-trained SVR-WHT was used to autonomously grasp
all items but aubergine. Each food item was grasped 30 times per policy, yielding
30 grasps × 6 produce × 5 tailored SVR-WHT = 900 grasps.

In total, we carried out 2370 autonomous grasping actions.

6.5.4 Results and Discussion

Fig. 6.6 shows the average success rate for autonomous grasping actions for the
different food items and policies. On the left-hand side, we can find the results
of the first set of trials, which uses the four autonomous policies to grasp the
seven objects. In this case, each policy was tailored for each food item, using data
coming from grasping trials on the considered object only. For comparison, we
also included success rates from ((i))–human teleoperation, ((vi))–Misimi et al.,
and ((vii),(viii))–the two impedance controllers. On the right-hand side, we can
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find the results of the second set of trials, using SVR-WHT policies trained on
objects different than the one they grasped in the testing phase.

The left-hand side of Fig. 6.6 shows that, among the SVR-based approaches im-
plemented, the SVR-weighted policy using heat-map and time-series data (SVR-
WHT) was the one with the highest levels of accuracy. This confirmed our original
hypothesis: the addition of real human-interaction elements to the grasping poli-
cies increases the overall accuracy, which peaked at 100% for SVR-WHT with all
food items. We recall that this result was validated by 30 trial runs for each ap-
proach and food item. Both heat-map-based approaches ((iv)-(v)) outperformed
Misimi et al. in all cases, performing on average 35% better. For SVR-WHT
vs. Misimi et al., a related-samples Wilcoxon-signed-rank-test showed a signifi-
cant difference in the performance (z = 1.997 and p = 0.046). Considering [234]
uses tactile sensing and a recent LfD approach (work published in 2018), this re-
sult strongly supports our hypothesis that combining direct hand interaction and
high-dexterity haptic teleoperation is a winning technique (these are the two main
differences between our system and that in [234]). For further comparison, we also
included two standard impedance controllers. In this case, the robotic hand grasps
until a certain threshold force is reached. We considered as thresholds one and
two times the average force registered by the hand sensors during the teleoper-
ation trials. The first approach (gentle grasp) did not damage the food, but it
failed to successfully grasp the objects. On the other hand, the second approach
(strong grasp) showed very good grasping performance. However, the high force
applied severely damaged the considered food (see the red triangles in Fig. 6.6).
Although impedance control could provide acceptable results through fine tuning
(i.e. finding a custom force threshold for each item), we believe that LfD provides
a more effective (and elegant) solution. Indeed, a simple force threshold approach
still requires a significant amount of work from the human user, who needs to
program the robot for each different set of objects, defeating the main purpose of
our system: efficient non-programmatic automation for food processing.

After these first results, we carried out additional trials to study the adapt-
ability of our approaches for other objects. In these trials, we used SVR-WHT
to grasp food items different than the one used for the training, e.g. an SVR-
WHT trained on the aubergine was used for grasping all other objects. The large
difference between our food items enables us to evaluate the adaptability of our
SVR algorithms to different situations. As mentioned above, five objects were
in the same category as those used during training (aubergine, bell pepper, let-
tuce, orange, and beef tomato), while two were much smaller (tangerine and plum
tomato). The results on the right-hand side of Fig. 6.6 suggest that we cannot
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grasp heavy objects with an SVR policy trained with lighter ones, e.g. a policy
trained using lettuce data fails to grasp an aubergine. However, the opposite often
works quite well, e.g. a policy trained using aubergine data succeeds at grasp-
ing the lettuce. Of course, in general, results show that grasping objects using
policies trained on other objects only works to a certain extent. As expected, as
the difference between the target object and the training one increases, the suc-
cess rate decreases. This degradation happens faster when grasping heavy objects
with policies trained on lighter ones. However, even though it is possible to grasp
lighter items (e.g. lettuce) using policies trained on heavier ones (e.g. aubergine),
the higher force applied may risk to damage the object.

Finally, Fig. 6.6 shows that success rates for tangerines and plum tomatoes are
quite low in respect to the others, demonstrating that our approach struggles to
handle objects significantly smaller than those used during the training. As we are
using both the positions and forces of the robotic fingers to learn our policies (see
Fig. 6.5), this is an expected behaviour. In fact, while the combination of these
two prevents the hand from squeezing items too hard, it also limits the capability
of grasping objects with internally varying sizes (i.e. fruits or vegetables grown
with higher ecological diversity). Results show that, if we had the opportunity
to train LfD policies for each and every specific type of produce, this combined
approach of finger position and tactile force sensing works well (see the high
performance on the first five food objects Fig. 6.6). On the other hand, if we
plan to autonomously grasp objects where size and shape span a wider range (i.e.
produces is less uniformed/higher diversity) we need to make further adjustments,
such as using finger force only. However, finger positions seem important and
leaving this information out might not be viable, in regards to damages. Our
grasps have all been made blindly, picking up a produce at position X. Adding
further information about the produce through machine vision could be one way
to unify finger positioning and variations size and shape.

It is also interesting to notice that the success rate for the teleoperation trials
is not as high as one might expect (between 0.46 and 0.68). A grasping task
was deemed successful only when the user was able to successfully grasp, lift, and
move the object. Often the operator was able to grasp and lift the object, but
then it slipped during transport. Upon asking, the operator said that it was not
easy to always maintain the right amount of force needed for a robust grasp, as
she was afraid of damaging the produce.

As a conclusion, after comparing our four different LfD variants, the best
proposed approach combines (a) data collected during demonstrations using a
haptic-enabled high-dexterity teleoperation interface, and (b) heat-map knowl-
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edge acquired from humans directly grasping the items in question. Results in-
dicated that the use of tactile data, weighted according to experience gathered
during direct interaction trials, yielded the best performance. Compared to a
recent LfD method for grasping compliant objects and two standard impedance
controllers, results also showed that our approach performed better, proving our
hypothesis—that to properly learn from humans how to grasp challenging, com-
pliant, and fragile objects, it is beneficial to carry out the demonstrations using an
intuitive and natural tool for controlling the remote manipulator. A key aspect of
our approach is the inspiration from direct human grasping actions, represented
in the LfD model by the use of heat-maps as an input variable, privileging and
activating the “right” sensors on the robotic hand.

The proposed approach has a vast range of potential applications in the agri-
cultural and food sectors, as well as in other industries that deal with compliant
and fragile objects and where a knowledge of the applied tactile forces is crucial to
achieving successful grasping actions. Our system contributes to a better under-
standing of the input required during the development of grasping ML policies.
Furthermore, it is an added contribution to the topic of LfD through teleoperation,
which highlights (a) the necessity of improved operator interaction by means of
high-fidelity high-dexterity interfaces, and (b) the importance of combining these
teleoperation data with barehanded prehensile movements. These results have
the potential to advance the capabilities of robotic interaction, combining human
puppetry with inherent intentions. We also believe that in the future, a more
intuitive interaction system with strong learning capabilities can even avoid the
need of expert human operators pre-training the robots. If the interface is intu-
itive enough, anyone able to carry out the target task will be able to also train
the robot, allowing for an easier deployment.
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Conclusions and Future Work
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7.1 Discussion and Conclusions

In this thesis, we presented multiple shared-control architectures that utilize hap-
tic feedback to convey information to the user and interact with him/her. The
different results allowed us to showcase the advantages of shared autonomy versus
standard teleoperation, which is in many cases too cognitively demanding and
even physically tiring for the operator. In Part I, we started by introducing the
main existing works in the literature related to the thesis, mainly in the fields of
teleoperation and shared autonomy (Chapter 2), highlighting the current limita-
tions and potential for development. We then presented the main contributions
of this thesis in two separate parts, which will be summarized below.

7.1.1 Part II

In Part II, we presented two shared-control methods which provide the user with
haptic guidance while keeping him/her in control. As such, these are referred to
as shared-control methods with high human authority. In fact, the human and
the automation intentions were mixed at the level of the haptic interface. The
user then utilized this information to perform the task in a way that minimizes
the cost function at hand, always being in control of the final robot movement.

In Chapter 3, we presented a haptic shared-control technique for robotic
telemanipulation that provides the human operator with information on how to
grasp an object for optimizing some future metrics, which might be unintuitive
or difficult for the operator to predict. We specifically considered minimizing the
torques the manipulator will exert to carry out an autonomous manipulation on
the object after the grasp. This metric is important because it helps reducing the
system’s operating cost while extending the range of objects it can manipulate.

We demonstrated the effectiveness of the proposed approach in a series of rep-
resentative real-world experiments as well as a human subjects study enrolling
15 subjects. Results proved the effectiveness of our shared-control techniques vs.
standard human-in-the-loop teleoperation in most performance metrics. More-
over, haptic-only guidance performed better than visual-only guidance, although
combined visuo-haptic guidance led to the best overall results.

While this chapter focused on minimizing the expected torque, the framework
can be easily adapted to consider any other type of metric able to provide a
cost for the set of feasible grasps. Similarly, while our post-grasp manipulation
consisted in picking the object up and placing it somewhere else, the framework
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can be adapted to consider to any other type of manipulation action.
Automation is present in our system on different levels: First, the system

automatically identifies the feasible grasp poses from the object’s 3-dimensional
model. Second, the post-grasp manipulative action is defined, in our case, as
autonomously moving the grasped object along a pre-planned desired trajectory.
However, the human cognitive capabilities are still given the higher authority in
the pre-grasp and grasping phase. In fact, we believe that the human judgement is
necessary in this case to choose the grasp, even if the automation can successfully
accomplish the post-grasp task alone. As such, during the teleoperation, the
system provides the human operator with navigation guidance towards the grasp
locally minimizing the expected torque effort. The user is therefore free to grasp
the object from the side he/she wants, and the algorithm adapts by changing the
force cues towards the local optimal grasping pose.

In Chapter 4, we presented a haptic shared control for robotic teleoperation
that combines human-centered and task-centered cost functions, so as to consider
together the need of the human operator as well as the objective of the teleoper-
ation. First, we devised an innovative approach to estimate the user’s muscular
comfort during the task. Then, we combined this workload measure with a cost
function related to the task at hand or the status of the robotic system. As an
example, in our experiments, we considered a cost function indicating the distance
from a target position. However, it is important to highlight that the proposed
framework supports any other task- or system-related cost function (e.g., min-
imizing the joint torques as in Chapter 3, displacement, risks of encountering
singularities). The one used here was chosen because representative, effective,
and simple to implement. From the combination of both, we then generated a
dynamic active constraint guiding the user towards a successful completion of the
task along directions maximizing the user comfort.

To prove the effectiveness of the proposed approach, we carried out a robotic
telemanipulation experiment enrolling 15 participants. Subjects were asked to
pick and place three different sets of objects while receiving three different haptic
guidance profiles. We evaluated the performance of the task considering five
metrics, and the results showed that a small decrease in the task performance
in terms of completion time and error to the target has been accompanied by a
significant improvement in the NASA TLX test results, proving that our method
does increase the user’s perceived comfort.

This chapter sheds the light on how the automation component can act in the
benefit of the human user, improving the comfort during robotic teleoperation.
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While the operator can decide to override the haptic guidance provided, and thus
remains in final control of the remote robot motion, following the haptic cues
would decrease both the cognitive and the physical workload incurred.

7.1.2 Part III

In Part III, we presented two system designs with less control authority given to
the user. The first one (Chapter 5) was applied to robotic cutting, and falls under
the shared control category, while the second one (Chapter 6) suggested a new
type of human-robot interaction where the human demonstrations and haptic
interactions during teleoperation are used to learn the autonomous grasping of
deformable fragile objects.

In Chapter 5, we designed and evaluated two shared-control approaches for
assisting a human operator in various robot-assisted cutting tasks. The first
shared-control technique resembled the behavior of a unicycle. We imposed non-
holonomic constraints on the motion of the robotic system, such that the scalpel
translation was limited to its cutting direction (forward/backward) and its vertical
direction (up/down). These constraints prevented the operator from inadvertently
applying high lateral forces during the cutting, which would result in dangerous
ruptures of the environment. Although effective, in this condition the operator
was still able to rotate the scalpel in place, which could also lead to significant
damage. For this reason, we designed an additional shared-control technique, the
car-like method, enforcing an additional constraint on the unicycle motion that
ensured the scalpel rotation was coupled with a linear motion.

To validate our approach, we carried out a human-subject experiment in a
real cutting scenario, considering the two shared-control techniques as well as a
standard teleoperation approach. Results showed that shared-control methods
outperformed teleoperation in most metrics considered, which proves that shared
control improves the task execution compared to simple teleoperation.

However, as discussed in the chapter, subjective metrics showed that users
preferred teleoperation and the unicycle approach over the car-like method,
which had many constraints and made the users feel limited in action. In fact,
the nonholonomic constraints applied in this chapter were hard constraints, and
as such the user motion was limited along some directions.

In Chapter 6, we presented an extension to the work in previous chapters
where we proposed a new method of using haptic feedback and teleoperation to
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teach an autonomous system how to grasp. While the final objective is to achieve a
fully-autonomous system, the grasping policy is defined from human teleoperated
demonstrations. For this reason, we place this chapter under the partial authority
framework, similarly to the previous one.

In this chapter, we proposed a novel human-inspired, haptic-enabled learning
policy designed to handle compliant food items, originating from the agricultural
automation domain. Four LfD learning policies where presented which, after
training, were capable of gently and autonomously grasping a representative set
of compliant produce such as aubergines, bell peppers, lettuces, oranges, and
tomatoes without damaging them.

According to the experiments performed to test the different LfD methods
policies presented, the best approach was the one combining both teleoperation
data from human demonstrations performed with haptic feedback, and heat-map
data acquired from humans directly grasping the items in question. As such, the
use of tactile data improved the autonomous grasping, especially when weighted
according to the results of direct human interaction trials. Our method also
performed better than the state of the art methods, proving our hypothesis that
learning from the human is essential to perform the grasping of compliant objects
in an optimal way.

Unlike in the previous chapters, where the human is helped by the automation
component to optimize some measure, this system uses the human input to help
the autonomous system learn the right way to grasp. This automation of the
grasping process would have, on the long term, a beneficial effect to the human
operator since the robot would be able to replace the human in a highly repetitive
and tiring task.

7.2 Additional Remarks and Future Directions

Each chapter of this thesis presents a different way of dividing the authority
between the human and the automation system to successfully perform tasks
such as grasping, manipulation and robotic cutting.

Three chapters of the thesis present shared-control methods for robotic tele-
operation:

• a method with soft constraints, which focuses on the task execution. The
result is an improvement in the task execution as measured by the metric
of interest: the robot joint torques in the post-grasp trajectory.

• a method with soft constraints, which focuses both on the task execution
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and the user’s comfort. This human-oriented approach was appreciated by
the users even though it led to a decrease in the task performance.

• two methods employing both hard and soft constraints, which focus on the
task execution. While the architecture led to a better performance in terms
of task-related parameters, the subjective data showed the users preferred
the less constrained methods over the most constrained one, with a reluc-
tance from their side to hand over control to the automation.

These results are interesting from different perspectives, and raise many
questions which are still not fully answered despite the progress in the domain:

(1) Who should be the ultimate decision maker in a robotic system, the
human or the robot? And what is the desirable strength of haptic feedback to
apply so that the user follows the automation recommendation but does not feel
hindered or not in control?

(2) Can task-related parameters and human comfort both be optimized at the
same time, or does a compromise always has to be done to ensure satisfactory
results for both parameters?

As already mentioned in Chapter 2, question (1) is not easy to answer, and
the optimal distribution of authority between the human and the robot is far
from being achieved. The best combination depends on many factors that are
often unknown to the system engineer, such as the specificity of the task and
environment, or the experience of the operator. In addition, it is important to
combine the system performance with the user acceptance of the system. To
do this, a policy needs to be designed to deal with the cases where the human
and the automation components disagree. One way to tune the strength of
haptic feedback is through an adaptive system that takes the confidence of each
actor into account. For example, we could adapt the guidance strength to the
operator’s performance or experience, e.g., a system could use a stiff navigation
approach (i.e., less freedom for the operator) when operated by novices, while it
could employ a soft navigation approach (i.e., more freedom for the operator)
when operated by experts. This approach could be also useful when teaching
new operators, employing different levels of autonomy according to the operator’s
experience and learning process. This idea is an interesting extension to the
contribution presented in Chapter 5, which I have started during my short stay at
the Technical University of Munich, and it could lead to many interesting future
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works on finding the right authority allocation scheme in a shared control scenario.

Beyond the cognitive level, the user should also feel physical comfort while
operating the remote manipulator, and this brings us to question (2). A lot of the
previous works in the field of assisted control are focused on the task itself, and
they provide guidance information that would decrease the cognitive load on the
user while teleoperating the robot. However, very few works address the problem
of physical discomfort during teleoperation, even though this is an important
consideration is the field. We hope that our work in Chapter 4 encourages future
contributions where shared-control methods would compromise between task
execution and user comfort. We believe that this is particularly important in
long and repetitive tasks, as the user performance is often affected by the fatigue
they experience.

On this level, Chapter 6 presents an innovative approach to automate a task
that is still widely performed by human operators in a manual and repetitive
task, in an attempt to decrease the load on them. The system uses teleoperated
grasping actions, as well as barehanded human prehensile moves, to teach the
robot to grasp soft and fragile objects, which is still a problematic task to
execute autonomously given their sensitivity to the applied force by the robotic
hand. The haptic interaction information is integrated in the LfD policy, and
the results show that our system performs better than previous systems that are
less intuitive for the human and that do not fully utilize the human experience
in prehensile moves. Of course, the more naturally a human operator carries out
a task, the more useful the data will be, enabling effective and true learning of
the task in question. As such, it is important in the future to keep improving
the teleoperation system to provide the human operators with intuitive and
natural approaches to control the remote manipulator. As an example, one way
to do so is by designing a multisensory bi-manual teleoperation system that will
provide a wide range of haptic feedback features (kinesthetic, contact pressure,
skin stretch and vibratory), which would also extend the range of tasks that the
robotic system can perform. It would also be interesting to map the motion of
the human operator into that of the robotic manipulator, so as to understand
how different mapping techniques can affect the performance of the learning
policies. Another important point to further study is the type and amount of
information we need during the training, especially to understand what is most
important when it comes to grasping objects with a different size than those used
during the training. For this reason, it will be fundamental to also extend the
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evaluation that we did to a wider range of compliant objects. Furthermore, our
technique for heat-mapping, though functional for our small scale, should get a
simpler and faster interface in future works. Sundaram et al. [259] could be one
avenue to explore with a promising technique for collection of digital heat-maps
and human-object-interaction signatures, when their interface becomes available
for research use.

The work of this thesis opens the door to many other discussion points along
the same line of research. One such topic is related to the nature of the feedback
provided to the user. For instance, in the different systems we presented, haptic
interaction was essential to give the operator a feeling of telepresence by providing
contact forces from the environment. It was also used to convey guidance cues,
and inform the user of hard constraints in the case of the cutting scenario. We
would like, in the future, to explore the possibility of using both (wearable)
cutaneous feedback and kinesthetic force feedback. This could be used to provide
two pieces of information separately, to make it easier for the human operator to
differentiate the source of the guidance (for example, the human-related guidance
and the task-related guidance) such as in Chapter 4. It could also be used to give
the user guidance cues while allowing him/her to feel the environment without
limiting the control capabilities of the human users, who are not able to freely
move the robot wherever they prefer, such as in Chapter 5. Another option is to
provide all feedback information using wearable cutaneous feedback, to inform
users about which composite trajectory the system would like them to follow
while still leaving them completely free to move wherever they find suitable.
In addition to haptic feedback, our experiments in Chapter 3 showed that the
addition of visual feedback to the haptic guidance helped the user perform the
task. Therefore, the combination of different types of feedback (e.g., visual,
haptic or auditory) is another interesting topic to study.

Finally, the thesis also raises an important question concerning the point of
application of the virtual fixtures in shared-control methods. In our cutting system
(Chapter 5), we implemented both soft and hard constraints in the shared-control
architecture. The virtual fixtures related to the nonholonomic constraints were
applied on both the master and the remote sides. Virtual fixtures on the master
interface only used the master pose, which ensured that no instabilities occur
in the system due to this hard constraint. The same strategy was adopted in
Chapter 4 for defining the haptic feedback related to the task cost function. The
virtual fixtures were rendered on the master side, based on the master desired
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pose, assuming no significant error is present between the master and the remote
robot. Of course, implementing the constraints on each side separately can lead
to less precision in the tracking of the master motion by the remote manipulator,
reducing the performance in the task, which could be a problem in applications
that require high levels of precision. Previous works rarely targeted this issue.
As we have mentioned in Chapter 2, some works applied the constraints on the
master, while others applied them on the remote side. It would be interesting
to further study this issue in the future, by comparing the application of VF on
the master based on the slave or the master data, in terms of both precision and
stability.
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Résumé : L'interaction homme-robot est au 

cœur des développements de la robotique au fil 
des ans. En effet, même si l'autonomie robotique 
a été mise au point dans des environnements 
structurés et prévisibles, le recours à l'homme est 
encore nécessaire dans des environnements 
variables. Le travail présenté s'inscrit dans le 
cadre du thème général de l'interaction homme-
robot. Plus précisément, la thèse traite de 
l'interaction à distance sous forme de 
téléopération. Nous concevons de nouvelles 
architectures de contrôle partagé pour une 
téléopération robotique sûre et intuitive, avec 
divers types d'interaction (notamment des retours 
haptiques) et différents niveaux d'automatisation.  

Nous concevons d’abord de nouvelles 
architectures de contrôle partagé pour la saisie 
et la manipulation robotique avec retours 
haptiques, ciblant à la fois les phases de 
préhension et de post-préhension. La première 
vise à minimiser l’effort du robot en phase de 
post-préhension, tandis que la seconde se 
concentre sur la réduction de la charge de 
travail humaine pendant l'exécution de la tâche. 
Nous ciblons également une application de 
découpe robotique, et élaborons une nouvelle 
technique de contrôle partagé imposant des 
contraintes non holonomes motivées par la 
tâche de découpe. Enfin, nous mettons en 
évidence le rôle de l'interaction haptique dans la 
conception d'algorithmes de saisie autonome, 
en utilisant l'expérience humaine et les retours 
haptiques pour apprendre au robot la saisie 
autonome d’objets déformables. 

Title : Shared Control and Authority Distribution for Robotic Teleoperation 
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Abstract : Human robot interaction is at the core 
of the robotic developments over the years. In 
fact, while robotic autonomy has been perfected 
in structured and predictable environments, the 
human input is still needed in many cases, 
especially in a variable setting. This thesis falls 
under the general human robot interaction topic. 
More specifically, it deals with remote interaction 
under the form of teleoperation. We design novel 
shared control architectures for safe and intuitive 
robotic teleoperation, with various types of 
interaction and different levels of automation. We 
focus in this work on the use of haptics as a 
means of interaction, whether for providing 
contact forces as a feedback to the user, or as a 
means of guiding the user in the task execution.  

. 

Starting with a robotic grasping and 
manipulation application, we design new haptic 
shared control targeting both the pre-grasp and 
the post-grasp phases. One shared control 
architecture aims to minimize the robot torques 
in a post-grasp phase, while the other focuses 
on minimizing the human workload during task 
execution. We also target a robotic cutting 
application, and design a novel haptic shared 
control technique for robotic cutting imposing 
non-holonomic constraints motivated by the 
cutting task. We finally highlight the role of 
haptic interaction and human input in the design 
of autonomous grasping algorithms, using the 
human experience and haptic feedback to learn 
autonomous grasping policies for compliant 
objects. 
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