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RÉSUMÉ

Les avancées récentes des infrastructures cloud et l’omniprésence des offres de ressouces
computationelles de genre "plug and play" ont abouti à un acroissement de la demande des
ressources cloud par les entreprieses qui tournent des tâches analytiques sur des données
massives. La plupart des fournisseures cloud, cependant, offrent les ressources computa-
tionnelles en mode "pay as you go" ou bien en mode prépayé, ce qui prend en compte
la durée de la réservation des machines cloud sans aucune garantie sur les performances
des jobs qui y tournent. Ceci oblige l’utilisateur à calibrer manuellement ces performances
et aboutit souvent à une sous-utilisation des ressources réservées puisque les utilisateurs
cloud ont toujours tendance à surprovisionner les ressources. D’où la nécessité de modifier le
business model des fournisseurs cloud d’une facturation basée sur la disponibilité des machines
vers une facturation qui se repose sur un accord sur les performances obtenues. Alors la
modélisation des différentes objectives devient assez importante à la fois pour les utilisateurs
ainsi que les fournisseurs cloud. Une bonne modélisation permettra aux fournisseurs cloud de
colocaliser des jobs de plusieurs utilisateurs sur l’infrastructure cloud ce qui permettra d’offrir
des machines computationnelles à des prix plus bas tout en satisfaisant les performances
requises. Ceci aussi permettra de converger vers un mode d’usage du cloud plus écologique
tout en maximisant l’utilisation des ressources des serveurs physiques au lieu de tourner de
nouveaux serveurs physiques avec une utilisation réduite.
Ça reste cependant non évident de modéliser les performances des jobs qui tournent sur

le cloud pour plusieurs raisons: (1) La diversités des jobs qui peuvent comprendre des
requêtes de type SQL, des tâches de machine learning, des pipelines d’analytiques mixtes, etc.
(2) La compléxité des systèmes d’execution distribués qui comprennent des comportements
dynamiques divers en matière de CPU, IO, mémoire, shuffling, etc. (3) Une pléthore de noeuds
de contrôle dans les systèmes d’execution distribués. Ces noeuds ont souvent des interactions
qui sont complexes aboutissant à des effets différents sur les perfomances bout à bout. Dans
cette thèse nous aborderons ces défis en proposant une approche "boîte noire" pour apprendre
de façon automatique les modèles de performance à partir de métriques collectées durant
l’exécution des jobs. On construit ainsi un modèle aussi complexe que nécessaire pour chaque
environnement d’exécution et on le calibre pour pour cet environnement. On explore alors
pour cette modélisation les techniques d’apprentissage les plus récentes, capables ainsi de
modéliser l’interaction complexe entre les différents noeuds.
Plus précisément, dans cette thèse nous tirons parti des avancées dans les techniques

d’apprentissage automatique et nous proposerons un optimiseur unifié qui automatise le tuning
des jobs d’analyses de données sur Spark comme système distribué. On focalise principalement
sur l’entraînement de modèles prédictifs qui prennent en compte les métriques collectées
durant l’exécution des jobs sous forme d’une boîte noire. Ces modèles là sont utilisés par
l’optimiseur qui va chercher dans l’espace des configurations possibles avant de recommander
une configuration qui satisfait la meilleur performance. Nos méthodes couvrent principalement
deux familles de techniques: (1) Les approches à bases de systèmes de recommendation
(2) Les approches à base de l’apprentissage des représentations (Representation learning).
Nous formulerons notre problème de tuning sous forme d’un système de recommendation
qui recommande de meilleurs configurations pour les jobs dans le cloud, et ceci basé sur une
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performance observée avec une configuration initiale. On présente une diversité de techniques
de recommendations, et on focalise en particulier sur la factorisation matricielle qui modélise
l’intéraction entre un job et une configuration particulière sous forme d’un produit scalaire.
On présente aussi deux techniques d’embeddings qui peuvent modéliser cette intéraction
avec un réseau de neurones. Les approches basés sur les systèmes de recommandation
apprennent implicitement un vecteur qui représente chacun des jobs, uniquement à partir
de l’objective qu’on souhaite optimiser. Ces méthodes aussi exigent un apprentissage de
façon incrémental du modèle, une fois qu’un nouveau job est admis par l’optimiseur. Pour
surmonter les limitations des approches basées sur les sytèmes de recommandation, on aborde
une deuxième famille de techniques, celle à base du representation learning afin d’apprendre
de façon explicite les embeddings des jobs tout en utilisant toutes les métriques collectées et
non seulement l’objective à optimiser. Ceci permet des prédictions plus précises sous forme
"zero-shot" (sans aucun apprentissage incrémental) et permet à l’optimiseur de recommender
des configurations au delà de celles déjà explorées dans les données d’apprentissage.
En résumé, cette thèse apporte les contributions suivantes:
• On introduit un ensemble d’exigences réelles inspirées des services cloud pour guider la
conception et l’architecture de notre optimiseur. On présente ensuite un ensemble de
propriétés afin de pouvoir caractériser les différents jobs à partir des embeddings extraits:
indépendence entre les facteurs génératifs, invariance par rapport à la configuration (et
similarité en tant que relaxation de cette propriété), ainsi que la capacité de reconstruction
des métriques à partir de l’embedding appris.
• Nous formulerons notre problème de tuning sous forme d’un système de recommendation

et explore deux paradigmes de méthodes de recommendation: les architectures à base de
filtrage collaboratif, et celles à base de contenu. On explique les limitations des différentes
approches et présenterons des résultats au niveau de la modélisation qui comparent une
architecture d’embedding à base de réseaux de neurones qu’on propose ainsi que Paragon [20]
et Quasar [21] (comme outils de factorisation de matrices) de la litérature des systèmes.
• On introduit des architectures de representation learning de 3 familles de techniques: (1)

architectures à base d’encodeurs/décodeurs (2) réseaux de neurones siamois (siamese neural
networks) (3) une famille qui combine les deux premières dans des architectures hybrides.
Ces techniques extraient de façon explicite des embeddings à partir des métriques collectées
pour ensuite les mettre en entrée d’un réseau de neurone dédié à la tâche de regression
sur la durée d’execution des jobs cloud. On couvre des auto-encodeurs deterministes ainsi
que des auto-encodeurs génératifs et propose des extensions pour satisfaire les différentes
propriétés désirées précedemment évoquées. On explique aussi pourquoi les réseaux de
neurones siamois (siamese neural networks) sont particulièrement intéressant une fois qu’un
job est admis avec une configuration arbitraire et on entraîne ces architectures en utilisant
deux types de fonction de coût: une fonction de coût type "Triplet" et une fonction de
coût type "soft nearest neighbor".
• On propose une extension d’un benchmark de workloads type streaming et on échantillonne

des traces de ces workloads ainsi que d’autres workloads du benchmark TPCx-bb [59]. On
utilise ces traces d’exécution dans l’évaluation des différentes techniques de modélisation.
On fournit ces traces ainsi que notre code de modélisation sous le lien: https://github.
com/udao-modeling/code
• On fournit un comparatif détaillé des différentes techniques de modélisation. Nos resultats
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montre que les architectures à base systèmes de recommendation constituent un très bon
choix de modélisation si on peut garantir que le nouveau workload a été profilé avec
une configuration déjà utilisée avec d’autres workloads. Par contre, ces architectures
restent incapables de recommander des configurations au delà de celles déjà vues dans les
données d’apprentissage. Elles exigent aussi une phase d’apprentissage incrémental avant
de pouvoir fournir des prédictions pour les nouveaux jobs. On montre d’autre part que les
architectures types representation learning surmontent ces deux problèmes et modélisent
le délai d’exécution des jobs Spark avec une erreur aux alentours de 10% pour les deux
benchmarks.
• On fournit un comparatif bout à bout avec Ottertune [61], l’état de l’art dans la modélisation

des performances des bases de données. On montre que les configurations recommandées
par notre optimiseur sont meilleures que celles recommandées par Ottertune. En effet,
notre optimiseur améliore le délai d’exécution des jobs Spark de 52.4% sur les deux
benchmarks alors que Ottertune les améliore seulement de 35.96% par rapport au benchmark
streaming et 43.19% par rapport au benchmark TPCx-BB quand les jobs sont admis
avec une configuration arbitraire et que les ressources computationnelles à disposition de
l’optimiseur sont élastiques. D’autre part, lorsque les ressources à disposition de l’optimiseur
sont fixées, notre optimiseur améliore le délai d’exécution des jobs Spark par seulement
30.68% et 7.48% respectivement pour les benchmarks streaming et TPCx-BB alors que
Ottertune reste incapable de fournir des meilleurs configurations en moyenne. En effet, les
nouvelles configurations recommandées par Ottertune sont en moyenne 41.01% pire que les
configurations initiales lorsqu’il s’agit du benchmark de streaming. Celles recommandées
sur les jobs du benchmark TPCx-BB améliorent le délai d’exécution de seulement de 0.13%.
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ABSTRACT

Recent advances in the cloud infrastructure and the widespread offering of plug and play
cloud instances led to a growing demand for cloud resources from enterprise businesses that
need to run critical analytical tasks on voluminous datasets. However, most cloud providers
lend the computing infrastructure within a pay as you go, or prepaid scheme that accounts
for the duration of the booking without any guarantees on the performance objectives of
workloads running in the cloud. This usually leads to tedious manual performance tuning
by the user, as well as underutilization of the resources as users tend to overprovision them
in order to run their workloads without violating their performance goals. Hence, there’s
a growing need to shift the business model of cloud providers from machine availability
to service level objectives. As such, modeling service level objectives of cloud applications
becomes crucial to both the cloud providers as well as the users. It paves the way for cloud
providers to colocate workloads of multiple users on the cloud infrastructure, and allows them
to offer instances at reduced prices while meeting user performance goals. Such modeling
can also help achieve “green computing” by maximizing the resource utilization of physical
servers already turned on instead of running more physical servers at reduced utilization.

It remains however nontrivial to model the performance of cloud workloads due to (1) di-
versity of workloads, including SQL queries, machine learning tasks, etc. mixed in analytics
pipelines; (2) complexity of the runtime systems, including diverse dynamic CPU, IO, mem-
ory, data shuffling behaviors; (3) a plethora of system knobs with complex interactions and
different effects on the end performance. This thesis addresses these challenges by taking
the following approaches. First, it takes a blackbox approach to automatically learn the
performance models by leveraging runtime metrics. Second, it builds a model for each
specific runtime environment, and tunes the model as complex as needed for that computing
environment. Third, it further explores advanced machine learning techniques as a modeling
tool due to their ability to model the complex interaction between the different knobs.

More specifically, in this thesis we leverage recent advances in machine learning and propose
a unified data analytics optimizer that automates the tuning of Spark cloud workloads. We
focus in particular on building accurate predictive models that leverage runtime metrics
collected during the execution of Spark workloads in a blackbox manner. These models are
used by the optimizer to search through the space of configurations before recommending a
configuration that achieves the best performance objective. Our methods cover two main
families of techniques: (1) Recommender based approaches (2) Representation learning based
approaches. We first cast our modeling problem into a recommender systems framework that
suggests better configurations for cloud workloads based on profiled performance with some
initial configuration. We present a broad perspective of recommendation techniques and
focus particularly on matrix factorization that models the interaction between a workload
and a particular knob configuration using a dot product. We also introduce two embeddings
approaches that model this interaction using a neural network. The recommender based
approaches implicitly learn a vector representation of each workload using solely the objective
to model and require incremental training upon the admission of a new workload. To overcome
the limitations of recommender approaches, we employ a second family of techniques, namely,

5



representation learning techniques, to explicitly learn different workload embeddings by
leveraging the full runtime metrics. This enables more accurate predictions in a zero-shot
learning scheme (i.e., without incremental training) and supports recommending configurations
beyond those already observed within training data.
In summary, this thesis makes the following contributions:
• We introduce a set of real world requirements from cloud services that inspire the design
of our performance tuning system architecture. We then outline a set of properties for
encodings we extract from runtime traces in order to characterize the different workloads:
independence between generating factors, invariance with respect to the generating config-
uration (and similarity as a relaxation of this property), and the reconstruction ability of
the learned encoding.
• We cast our tuning problem into a recommender systems framework and cover two

paradigms of collaborative and content based recommender architectures. We also explain
the limitations of the different existing approaches and provide comparative modeling
results between a neural embedding architecture we propose as well as Paragon [20] and
Quasar [21] (as matrix factorization tools) from the systems literature.
• We introduce representation learning architectures from three families of techniques:
(1) encoder/decoder architectures; (2) siamese neural networks; and (3) a new family
that combines the first two in hybrid architectures. These representation learning based
techniques explicitly extract encodings from runtime traces before feeding them to a
neural network dedicated for the end regression task on the runtime latency. We cover
deterministic and generative auto-encoders and propose extensions of them in order to
satisfy different desired encoding properties. We also explain why the siamese neural
networks are particularly interesting when a job is admitted with an arbitrary configuration
and we train these architectures using two types of losses: a triplet loss and a soft nearest
neighbor loss.
• We extend a previous benchmark of streaming workloads and sample traces from these
workloads as well as workloads from the TPCx-BB [59] benchmark. We use these traces
in order to evaluate the different modeling techniques. We make these traces available at
https://github.com/udao-modeling/code.
• We provide comparative results between different modeling techniques. Our results show
that recommender architectures are a good modeling choice if workloads are profiled
with a previously seen configuration. They remain incapable of generalizing to predict
the performances over unseen configurations and require incremental training prior to
prediction. On the other hand, representation learning based techniques overcome these
two main problems and achieve errors around 10% on both benchmarks.
• We provide end-to-end comparative results with Ottertune [61], a state of the art tuning tool,
and we demonstrate the superiority of the performance of configurations recommended
by our optimizer over those recommended by Ottertune. For instance, our optimizer
achieves latency improvements around 52.4% on both benchmarks while Ottertune achieves
latency improvements of 35.96% on the streaming benchmark and 43.19% on the TPCx-bb
benchmark when jobs are admitted with an arbitrary configuration and our optimizer
is allowed to scale out resources. In addition, in the setting of limited resources, our
optimizer achieves a latency improvement of 30.68% and 7.48% on the streaming and
TPCx-bb benchmarks respectively while Ottertune fails to provide better configurations.
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For instance, the configurations recommended by Ottertune yield latencies that are 41.01%
worse on average than the initial configurations (negative average latency improvement) on
the streaming benchmark, and yield a latency improvement of only 0.13% on the TPCx-bb
benchmark.
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1 Introduction
Today’s big data analytics systems are best effort only. While scalable analytics systems

such as Hadoop, Spark [66], Flink [22], Google Dataflow [9], and Scope [70] have gained
wide adoption, most of them lack the ability to take user performance goals and budgetary
constraints, collectively referred to as “objectives”, and automatically configure an analytic
job to achieve those objectives. Most cloud providers lend the computing infrastructure
within a pay as you go or an annual prepaid scheme that accounts for the duration of the
booking, without any guarantees on the performance objectives of user workloads. In practice
this often leads to tedious manual performance tuning by the user.
Consider an analytics user who aims to run a mix of SQL queries and machine learning

tasks using Spark over instances from AWS. The user needs to first choose from about 60
EC2 instance types that differ in the number of cores and memory available. This choice
significantly affects the performances achieved in analytics and depends on the workload,
performance goals, and budgetary constraints of the user, and is often made as a guess by
the user. After the cloud instance is chosen and to gain good performance, the user may
still need to tune many parameters of the runtime system, collectively referred to as a “job
configuration”, for each analytic task. Take Spark for example. The runtime parameters
include parallelism (for reduce-style transformations), Rdd compression (boolean), Memory
per executor, Memory fraction (of heap space), Batch interval (the size of each minibatch)
and Block interval (the size of data handled by each map process) in the streaming setting,
to name a few.
Choosing the right job configuration to meet user performance goals is a difficult task.

For example, Figure 1(a) shows that in Spark streaming, the effect of the block interval
on latency exhibits opposite trends under low and high input rates: a larger block interval
size reduces latency when the input rate is low, and increases latency when the input rate
is high. Figure 1(b) shows that under the fixed input rate and batch size, good and bad
configurations of parallelism give very different latencies. Although Spark recommends setting
parallelism to be 2-3 times the total number of cores, parallelism equals to the number of
cores achieves the lowest latency (2000ms) in this cluster settings, while a higher value in
the recommended range achieves a worse latency (4000ms). The complexity of finding the
right configuration grows quickly, e.g., given 10 or more parameters, due to joint effect and
correlation between the different parameters. Our observation is consistent with a recent
study [49] that shows that for HiveQL queries alone, even expert engineers most time could
not make the right choice between two cluster options and their estimated runtime ranged
from 20x under-estimation to 5x over-estimation.

Searching for the right configuration that suits the user objectives is largely a trial-and-error
process today, sometimes involving the change to a larger cloud instance. Even if the user
could find the right cluster and configuration through manual tuning, one day the user might
decide to slightly change his workload, e.g., by operating on a different window size for stream
analytics. The previous configuration that the user manually found might not achieve as low
latency as that of the previous window size. In this case, the user is left with no choice other
than repeating the tuning manually.
As can be seen, the lack of system support for configuring cloud analytics to meet user

objectives leads to tedious manual tuning by the user. In practice, it also leads to underuti-
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(a) Opposite trends in latency under different
input rates

(b) Wide range of latency values

Figure 1: Complexity of parameter tuning.

lization of the resources as users tend to overprovision them in order to run their workloads
without violating their performance goals. Such overprovisioning comes at the cost of the
user, and also incurs a waste of overall system resources. Shifting the business model of cloud
providers from machine availability to service level objectives will allow service providers
to colocate workloads of multiple users on the cloud infrastructure, and offer instances at
reduced prices while meeting user performance goals. This shift can also help achieve the
broad vision of “green computing” by maximizing the resource utilization of physical servers
already turned on instead of running more physical servers at reduced utilization.
In this work, we aim to take a step further towards building a unified data analytics

optimizer that can determine the job configuration in an automated manner based on user
objectives regarding latency, throughput, processing cost, etc. This new optimizer aims to
support broad analytics tasks including SQL queries, machine learning tasks, graph analytics,
etc., in the general paradigm of dataflow programs. Towards this vision, we put more focus
in this thesis on modeling service level objectives, i.e., building and serving accurate
models that the optimizer can use for recommending a better configuration for the submitted
workload. We detail in the next subsection the technical challenges for building accurate
models.

1.1 Technical challenges

It is nontrivial to model the performance of cloud workloads due to (1) diversity of
workloads, including SQL queries, machine learning (ML) tasks, etc. mixed in analytics
pipelines; (2) complexity of the runtime systems, including diverse dynamic CPU, IO, memory,
data shuffling behaviors; (3) a plethora of system knobs with complex interactions and different
effects on the end performance. We detail below each of these three challenges.
1. Diversity of workloads. Recent work in the database community [41, 43, 49] has

addressed the problem of performance modeling of SQL queries in Relational Database
Management Systems (RDBMS) by taking into account SQL query plans. Our work takes a
step towards modeling a more diverse set of workloads including native SQL queries, SQL
queries that make intensive use of user-defined functions (UDFs) and ML queries. Supporting
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these diverse workloads is challenging because there isn’t a fixed set of operators within the
distributed analytics system in contrast to SQL workloads that rely on relational algebra.
For instance, the cloud practitioner can import an arbitrary library into the distributed
system, and this library can be written in any programming language. Hence, we rely in
this work on runtime metrics collected during the execution of workloads so that we model
the performance in a blackbox manner. In order to characterize the workloads, we leverage
recent advances in deep neural networks, which are known for the power of representation
learning. This allows us to extract a numerical representation of each workload from runtime
traces to describe its characteristics even if the dataflow program is given as a blackbox.
2. Complexity of the runtime systems. The cost model has to characterize any

objective of interest to the user in a dynamic cluster computing environment where the
observed performance depends on the hardware, the software, and system behaviors involving
CPU, IO, shuffling, stragglers, fault tolerance, etc. Static models often fail to adapt to new
user objectives, new workloads, a different runtime system (or a new version of it), etc. To
do so, our work takes a new approach that learns a model for each user objective in the
same computing environment as the user job is being executed, which we refer to as in-situ
modeling. Given the complexity of system behaviors in scalable analytics, we explore neural
networks as a modeling tool for their expressiveness power: when the cost model of each
user objective is viewed as a continuous function, every such function can be approximated
arbitrarily closely by a three-layer neural network [30]. Such expressive power frees us from
worrying about if assumptions such as linear functions hold or not. We can further adapt the
expressive power, through hyper-parameter tuning, to learn models as complex as necessary
for a particular computing environment.
3. A plethora of knobs with complex interactions. The distributed analytics

systems usually have a large set of knobs that have complex interactions and that jointly
affect the performance of the distributed job. Without proper tuning, these knobs usually
yield a poor performance of the deployed job on cloud infrastructure. In our work, we first
select the most important knobs to tune, and then model the performance objective as
a function of the selected knobs alongside the extracted numerical representation of each
workload. We use ML methods to automatically capture this interaction while modeling the
performance objective.

1.2 Contributions and most significant results achieved

In this thesis, we address the aforementioned challenges by bringing advanced machine
learning (ML) techniques to bear on the process of performance modeling of cloud ana-
lytics. In particular, we propose modeling methods from two families of ML techniques:
(1) Recommender based approaches and (2) Representation learning based approaches.

We first cast our modeling problem into a recommender systems framework that suggests
better configurations for cloud workloads based on profiled performance with some initial
configuration. We present a broad perspective of recommendation techniques and focus
particularly on matrix factorization that models the interaction between a workload and
a particular knob configuration using a dot product. We also introduce two embeddings
approaches that model this interaction using a neural network. The recommender based
approaches implicitly learn a vector representation of each workload using solely the objective
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to model and require incremental training upon the admission of a new workload.
To overcome the limitations of recommender approaches, we explore a second family of

techniques, namely, recent representation learning techniques, to explicitly learn different
workload embeddings by leveraging the full runtime metrics. This enables more accurate
predictions in a zero-shot learning scheme (i.e., without incremental training) and supports
recommending configurations beyond those already observed within training data.
More specifically, this thesis makes the following contributions:
• We introduce a set of real world requirements from cloud services that inspire the design
of our performance tuning system architecture. We then outline a set of properties for
encodings we extract from runtime traces in order to characterize the different workloads:
independence between generating factors, invariance with respect to the generating config-
uration (and similarity as a relaxation of this property), and the reconstruction ability of
the learned encoding.
• We cast our tuning problem into a recommender systems framework and cover two

paradigms of collaborative and content based recommender architectures. We also explain
the limitations of the different existing approaches and provide comparative modeling
results between a neural embedding architecture we propose as well as Paragon [20] and
Quasar [21] (as matrix factorization tools) from the systems literature.
• We introduce representation learning architectures from three families of techniques:
(1) encoder/decoder architectures; (2) siamese neural networks; and (3) a new family
that combines the first two in hybrid architectures. These representation learning based
techniques explicitly extract encodings from runtime traces before feeding them to a
neural network dedicated for the end regression task on the runtime latency. We cover
deterministic and generative auto-encoders and propose extensions of them in order to
satisfy different desired encoding properties. We also explain why the siamese neural
networks are particularly interesting when a job is admitted with an arbitrary configuration
and we train these architectures using two types of losses: a triplet loss and a soft nearest
neighbor loss.
• We extend a previous benchmark of streaming workloads and sample traces from these
workloads as well as workloads from the TPCx-BB [59] benchmark. We use these traces
in order to evaluate the different modeling techniques. We make these traces available at
https://github.com/udao-modeling/code.
• We provide comparative results between different modeling techniques. Our results show
that recommender architectures are a good modeling choice if workloads are profiled
with a previously seen configuration. They remain incapable of generalizing to predict
the performances over unseen configurations and require incremental training prior to
prediction. On the other hand, representation learning based techniques overcome these
two main problems and achieve errors around 10% on both benchmarks.
• We provide end-to-end comparative results with Ottertune [61], a state of the art tuning tool,
and we demonstrate the superiority of the performance of configurations recommended
by our optimizer over those recommended by Ottertune. For instance, our optimizer
achieves latency improvements around 52.4% on both benchmarks while Ottertune achieves
latency improvements of 35.96% on the streaming benchmark and 43.19% on the TPCx-bb
benchmark when jobs are admitted with an arbitrary configuration and our optimizer
is allowed to scale out resources. In addition, in the setting of limited resources, our

16

https://github.com/udao-modeling/code


optimizer achieves a latency improvement of 30.68% and 7.48% on the streaming and
TPCx-bb benchmarks respectively while Ottertune fails to provide better configurations.
For instance, the configurations recommended by Ottertune yield latencies that are 41.01%
worse on average than the initial configurations (negative average latency improvement) on
the streaming benchmark, and yield a latency improvement of only 0.13% on the TPCx-bb
benchmark.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows:

Chapter 2.: This chapter outlines some of the recent related work that has had an impact
in terms of tuning cloud workloads.

Chapter 3.: This chapter presents real world requirements and challenges for building a
cloud optimizer. These requirements have guided the design of our system which we detail
and describe its different components. We also provide in this chapter the notation that we
adopt throughout the thesis alongside the formal description of the tuning problem that we
address. Finally, we list a set of properties that we find important to assess the quality of
different modeling techniques that we survey in this thesis.

Chapter 4.: This chapter explains how configuration recommendation for cloud workloads
can be casted into a recommender system framework. It surveys existing techniques widely
adopted within recommender systems covering both collaborative based and content based
methods and discusses the limitations and potentials of each of these techniques. It also
introduces a neural network alternative to dot-product based matrix factorization techniques
for modeling the runtime latency and also proposes a hybrid embedding architecture that
can be used to recommend configurations beyond those already existing within training data.

Chapter 5.: In this chapter, we first motivate the need for representation learning methods
before we introduce another paradigm of modeling methods that make use of a full runtime
metrics collected from a submitted workload before recommending a new configuration. We
survey auto-encoder based architectures explaining why traditional auto-encoders usually
fail to model accurately the runtime latency in our settings. We then introduce a custom
architecture that can help in extracting encodings with better disentanglement properties and
give a brief overview of variational auto-encoders which perform a similar task. We finally
propose to use siamese neural networks for solving our problem, explain two types of loss
functions that can be used to train such an architecture and describe some hybrid ways to
combine siamese neural networks with auto-encoders.

Chapter 6.: This chapter is dedicated to describing the workloads and traces that are used
for evaluating the different modeling techniques from Chapters 4 and 5. We cover in this
chapter our contribution which consists of an extension of streaming workloads from a prior
work. We then briefly describe batch workloads from the TPCx-BB benchmark on top of
which we evaluate this work as well. We also provide in this chapter details regarding the
heuristics that we have used for sampling traces from these workloads on our computing
infrastructure. We motivate the choice of the different knobs that we select to tune for Spark,
and give a brief overview of the metrics that we collect within each runtime trace.
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Chapter 7.: This chapter is dedicated for the experiments we conducted in order to compare
different modeling techniques. We first outline the experimental setup that is adopted in
terms of trace preprocessing, hyper-parameter tuning and implementation details. We start
by comparing between the most promising recommender approaches which we introduce in
Chapter 4 and we recall the need for representation learning approaches. We then provide
comparative results between different representation learning based techniques introduced in
Chapter 5 as well as a state of the art tuning tool, baseline methods and a hybrid embedding
approach we suggest at the end of Chapter 4. We conduct an ablation study in order to
understand how many configurations the cloud optimizer needs to afford to sample during an
offline runtime session period. We also conduct a scalability study which reveals interesting
insights regarding business critical decisions in terms of training time budget. Finally, we
conduct an end-to-end comparison between our best performing technique (triplet) and a
state of the art tuning tool.

Chapter 8.: This chapter provides an extended discussion of some of the technical issues
encountered throughout the thesis.

Chapter 9.: This chapter summarizes the contributions of this thesis and states some
research directions for future work.

So far, this work has led to the following contributions:

• Zaouk et al., 2020 : Neural-based Modeling for Performance Tuning of Spark Data
Analytics. Khaled Zaouk, Fei Song, Chenghao Lyu, Yanlei Diao. (To be submitted)
• Song et al., 2020 : Spark-based Cloud Data Analytics using Multi-Objective
Optimization. Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei
Diao, Prashant Shenoy. ICDE2021, accepted.
• Zaouk et al., 2019 : UDAO: A Next-generation Unified Data Analytics Optimizer.
Khaled Zaouk, Fei Song, Chenghao Lyu, Arnab Sinha, Yanlei Diao, Prashant Shenoy.
PVLDB 2019, accepted.
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2 Related Work
In this chapter we survey related systems that solve similar problems to our problem of

tuning cloud based workloads. In §2.1 we first introduce relevant work from the cloud resource
management community. Then in §2.2 we explain related work that uses representation
learning to characterize workloads. Finally, in §2.3 we cover three related systems from the
machine learning (ML) community that solve a similar problem when tuning hyper-parameters
of ML models. We discuss in the next subsections the similarities and differences between
these systems and our work.

2.1 Learning based cloud resource management systems

Ottertune. Ottertune [61, 68] is a state of the art tuning tool for database management
systems (DBMs) published in 2017. It offers a range of ML techniques with the purpose of
automating the tedious task of tuning the large database knobs and cutting the expensive
cost of manual tuning. We give a detailed description of Ottertune in this section, because
it’s the main relevant system to which we compare quantitatively our work on both modeling
performance and in an end-to-end manner in Chapter 7 (in particular under §7.6).
Ottertune goes beyond previous work in the literature that consists of heuristics and

practices for tuning and usually yields non-reusable configurations. The core idea in Ottertune
is centered around leveraging runtime traces from past workloads submitted to the DBMS,
and training ML models that allow better predictions on new workloads. It combines a set
of supervised and unsupervised machine learning techniques in its processing pipeline to
serve different purposes ranging from (1) selecting the important knobs it wants to tune, to
(2) deciding which metrics are relevant for characterizing the workloads, (3) training predictive
models for these retained metrics, and (4) mapping a new workload to a past workload and
then training a Gaussian Process (GP) model using profiling data from both the new workload
and the mapped workload. Finally, it uses its trained GP model to recommend a better
configuration after minimizing a lower-confidence-bound (LCB) acquisition function. In the
following we discuss these 4 main modeling components that are at the core of Ottertune’s
configuration recommendation pipeline:
1. Knob selection In order to determine which knobs to tune, Ottertune applies a Lasso

regression 1 on polynomial features generated from different knobs (so as to account for
the interaction between different knobs). Then, it applies the Lasso path algorithm on the
regression result. We have found that this approach is not convenient for selecting the knobs
for several reasons:
(a) Model discrepancy : There is a discrepancy between the type of the models used for training
the Lasso path algorithm and the type of the final model used for making predictions. For
instance, the final regression model that is used within Ottertune is not a linear regression on
top of polynomial features, but rather a GP model where the input features are the different
knobs (without any polynomial features). This discrepancy also makes it difficult to interpret
which features we need to keep or discard if the polynomial combination of features has

1Sections 3.4 and 3.8 of Chapter 3 of the book "Elements of statistical learning" [26] give a good explanation
of both the Lasso regression and the Lasso path algorithm
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for example a good ranking amongst all features while the two features from which this
polynomial feature was generated have separately lower contributions. In short, the feature
importance should be done and analyzed on the final algorithm used for the regression task
not using a different algorithm.
(b) Single vs global model training : Ottertune trains a global model when it performs the
Lasso knob selection, but when it comes to regression on the end target it trains separate
GP models, one per workload. If for some few workloads a particular subset of knobs have
an important effect on the regression target, but do not seem to affect the other remaining
majority of workloads, then these knobs won’t be selected by the algorithm. Hence, a tuning
session for a new workload similar to one of the workloads within the particular set, will
probably disregard important knobs that may hugely affect its performances.
(c) Characteristics of sampled traces : The knob selection procedure depends heavily on the
characteristics of the data collected for training such as how many knobs are tuned in total,
and how many distinct values per knob are sampled. For instance, increasing the number of
knobs to be tuned requires exponentially increasing the number of sampled traces in order
to cover the space of knobs in a fair manner. Since it’s difficult and expensive to afford for
sampling a lot of points for a particular workload, it is unlikely that the sampling procedure
will cover the different knobs in a fair manner as soon as the number of knobs increase. The
data skew will be directly reflected in an unfair feature selection which will immediately drop
the knobs for which only few values have been sampled across the trace dataset
2. Metric selection. Instead of using the full set of metrics collected while profiling

workloads, Ottertune first runs factor analysis to get factors representing the contribution of
each metric. Then in the space defined by the different factors, it tries to detect the clusters
that can be found among the different metrics by applying the k-means clustering algorithm
as shown in the diagram within Figure 2. Since the k-means algorithm requires setting the
number of clusters k, Ottertune resorts to a heuristic to automatically set this value. Then,
after the clustering is done, Ottertune retains one metric per cluster, and this metric is chosen
to be the closest to the cluster’s centroid. Thus, Ottertune retains in total a number metrics
equal to the number of clusters k.
3. Training models Using each of the different k retained metrics, and on top of each

training workload, Ottertune trains a GP model using data from available configurations.
Hence, if we have a total number n of training workloads and k retained metrics, the total
number of models trained by Ottertune is n ∗ k. This directly implies a scalability issue
as soon as the total number of workloads increases, because in order to maintain good
predictive power for models for which it has collected additional traces, Ottertune will have to
periodically retrain them. We show later in §4.2 of Chapter 4 how by training different models,
Ottertune can be seen as a workload-centered content based recommendation approach.
4. Workload mapping and tuning Upon the admission of a new workload under some

initial configurations, Ottertune tries to use the previously trained n ∗ k models in order
to predict the k retained metrics for each of the n training workloads with the same input
configurations observed for the new workload. It then tries to discretize the values of these
predictions (also called binning) before proceeding with mapping the new workload to its
nearest neighbor workload. We also explain in Chapter 4 that this mapping step allows us
to consider Ottertune as a memory based collaborative approach as well. Once the new
workload has been mapped to its nearest neighbor, Ottertune trains a GP model using traces
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Figure 2: Ottertune’s metric selection process.

collected for the mapped workload alongside the new traces observed for the new workload.
This GP model defines a predictive distribution that Ottertune uses for recommending a
configuration vector v̂ that minimizes a lower-confidence-bound (LCB) acquisition function
given by:

v̂ = argmin
v

λµ̃(v)− γσ̃(v) (1)

where µ̃(v) is the mean of the predicted distribution of target objective (for example runtime
latency) over the knobs v and σ̃(v) is the square root of the variance of the predicted
distribution. λ and γ are multiplier coefficients that are constants within Ottertune with
default values: λ = 1 and γ = 3. These parameters usually balance the exploration against
the exploitation over the course of optimization. Ottertune resorts to a simple gradient
descent in order to minimize this acquisition function.

This mapping scheme suffers from a major drawback of thrashing the precious information
other models built from training workloads maintain. We introduce in Chapter 5 another
paradigm for training/inference that makes use of recent advances in representation learning
and that focuses on training global models so that all traces from past training workloads
can be leveraged while doing inference. We then show later in our experiments in Chapter 7
of this manuscript how our paradigm achieves lower error rates on model prediction than
Ottertune. We also show how these better modeling results translate into better latency
improvements when it comes to end-to-end performance.
Paragon and Quasar. Paragon [20] and Quasar [21] cast the tuning problem into a
recommender system that uses matrix factorization techniques. These systems do not make
extensive use of the full trace of runtime metrics, and instead record the runtime latency as
the only interaction between configurations and different workloads. Upon the submission of
a new workload to the system, such techniques are not able to recommend configurations
beyond those seen within training data. The reason is that the underlying model learns an
embedding vector for the knob configuration alongside learning an embedding vector for
the workload, and thus does not allow to predict performances for a custom configuration
not present within training data. In our work, we propose instead a neural network based
recommender approach that allows exploring configurations beyond those observed within
training data by only learning an embedding vector for the workloads while representing
configurations by a vector of knob values.
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CDBTune. CDBTune [69] was the pioneer in casting the tuning problem into a reinforcement
learning framework. Although it leverages the runtime traces of the running workloads in
order to tune their knobs in a blackbox manner, it couples both the modeling and optimization
steps while formalizing the tuning problem. This is in contrast to our work that has these
two steps separated.

It considers the database system as the reinforcement learning agent and defines the state
of the agent by the runtime metrics collected for a past configuration. It also defines the
actions as a vector describing the amount by which each knob value should be increased or
decreased (if the knob value is numerical). The policy that consists of mapping from a state
to a particular action is modeled using a neural network. This type of modeling is effective
in multi-tenant environments in which an action consisting of setting a particular value of
knobs depends on the actual state of the system. In our use case of tuning workloads alone,
we don’t need to have a state, because no matter what is the current state of the system,
setting the knobs to a particular value will yield the same results. Finally, CDBTune doesn’t
leverage past workload information when a new job is submitted for a tuning session. This
makes this approach miss an opportunity of leveraging past traces when a new workload that
bears similarity to previously tuned workloads is admitted by the optimizer.
Resource Central. Resource Central [19] is a new system that aims at predicting the runtime
latency of virtual machines (VMs) running in private or public clouds. Accurately predicting
the lifetime of a VM helps in increasing utilization of physical machines and preventing the
exhaustion of physical resources by colocating VMs that are likely to terminate at the same
time. Such a modeling can also help the health management system to schedule non-urgent
server maintenance without producing VM unavailability or requiring live migration. The
core problem that this paper addresses is the scheduling of virtual machines. It consists
of a first step of assigning that requires making predictions before the VM can be profiled.
The early predictions can be made by taking as input information collected from the VM
booking such as the service name, the deployment time, the operating system, the VM size,
the VM roles (IaaS or PaaS), etc. This approach tries to classify workloads into interactive
or non-interactive workloads, then to further characterize the workloads it runs Fast Fourier
Transform (FFT) to extract features that account for periodicity and other temporal features.
We do not keep in our work any temporal information since we are interested in modeling
the average performances of Spark workloads.
PerfOrator. PerfOrator [49] is a system that focuses on finding the best hardware resources
for a given execution plan of a cloud query. It is a whitebox approach that builds a resource-
to-performance model after analyzing the query plan through operator overloading and query
rewriting. For instance, it collects data sizes at the input and output of each stage of the
query execution plan in order to train a non-linear regression model that relates the input
to output data size at each stage, and thus enables resource optimization. This is in sharp
contrast to our work which resorts to a blackbox modeling of the cloud workloads.
WiseDB. WiseDB [42,44] proposes learning-based techniques for cloud resource management.
A decision tree is trained on a set of performance and cost related features collected from
minimum cost schedules of sample workloads. Such minimum cost schedules are not available
in our problem setting.
Other work. Recent work has used neural networks to predict latency of SQL query

22



plans [43] or learn from existing query plans to generate better query plans [41]. These
methods, however, are applicable to SQL queries only. Finally, performance modeling
tools [37, 64] use handcrafted models, hence remain hard to generalize.

2.2 Workload characterization using representation learning

The Dacapo benchmarks. The work in [16] has used PCA as a way to validate diversity
in benchmarks for the Java programming language. The main contribution in this work
is introducing Java benchmarks and not characterization of different workloads introduced.
Nevertheless, this work uses PCA as a sanity check to visualize different modules within the
benchmark.

This work outlines that diversity in workloads is achieved because the workloads’ represen-
tations are scattered in the 2-dimensional space spanned by the first two components of the
PCA. Hence the benchmark can be adopted by researchers wishing to analyze Java programs.
Our work, in contrast, introduces representation learning methods in Chapter 5 in order to
learn meaningful encodings for an end regression task that serves to predict the runtime
latency of workloads. We also provide comparative results with PCA in Chapter 7.
The study in [16] reveals that trace results are not only sensitive to the benchmarks but

also to the underlying architecture, the choice of heap size, and the virtual machine that is
used for running the workloads. In our work, we don’t need to worry about the architecture
because we are running our workloads on identical hardware, and we are using the same
operating system and same Spark versions for our experiments.
Characterizing and subsetting big data workloads. A more recent study [32] on
characterizing big data workloads focused on inferring workloads properties from traces
collected from BigDataBench benchmark. The purpose of this study was twofold: to come
up with a way to do workload subsetting (selecting representative workloads from a set of
workloads) as well as to guide the design of future distributed systems architectures. The
study consists of collecting traces from different workloads on two big data software stacks
(Hadoop and Spark), and then it uses these collected traces in order to analyze the workloads
after doing PCA followed by a k-means clustering.

An interesting finding within this study is that PCA was unable to disentangle the algorithm
(the workload) from the softare stacks on which it was run. For instance, representations
learned from the same algorithm but on two different software stacks are not usually clusterd
together, while representations learned from two different algorithms on the same software
stack (either Spark or Hadoop) are close to each other. While in our study we focus on
modeling workloads on top of a single software stack (Spark), we have run our workloads
with different configurations on the same distributed infrastructure in order to study the
impact of the configuration on different workloads. We had a similar finding in our work
regarding PCA as a representation learning technique: PCA couldn’t disentangle the workload
characteristics (the algorithm) from the configuration with which the workload was submitted
(the configuration is determined by the number of cores and memory allocated for the
workload, the degree of parallelism, and other knobs introduced later in Table 2 of Chapter 6)

Hence, our work outlines in Chapter 3 different properties that could be satisfied within
workload encodings and that could help in the task of performance regression tuning. We
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also introduce in Chapter 5 more advanced representation learning techniques that go beyond
a simple dimensionality reduction (as is the case with PCA) and that add a little supervision
on encodings while training them from traces.

2.3 AutoML

Promising systems have emerged from the machine learning community to address a similar
problem: that of tuning the hyper-parameters of the machine learning algorithms. Among
the most successful systems were Hyperband [38], Spearmint [55], and then BOHB [23].
The underlying ideas governing these systems can be directly cast to tune Spark workloads
instead of tuning hyper-parameters of machine learning models. These methods are however
invasive and require several iterations of tuning before proposing a good configuration. In
the following, we discuss these different approaches in more detail.
Spearmint. Spearmint [25, 55, 56, 58] is a tuning package that emerged within the ML
community in 2012 as part of an effort to make ML accessible for everyone and is now
part of a large-scale project called AutoML. It focuses on automating the process of tuning
hyperparameters of ML models instead of leaving the tedious tuning task to the user and has
outperformed expert level performance while tuning the hyper-parameters of diverse set of ML
problems. Thus it became a widespread substitute for the naive bruteforce hyper-parameter
search (or so called grid search). Spearmint uses a Bayesian Optimization framework to
solve the tuning problem and models the performance of a ML algorithm using Gaussian
Processes. Bayesian Optimization is good at finding minima of blackbox functions (which are
most probably non-convex) while starting with few available evaluations. The problem we’re
trying to address in this thesis, automatically tuning Spark knobs, is similar to the problem
of tuning hyper-parameters of ML algorithms that Spearmint addresses. Spearmint resorts
to a proxy optimization algorithm since it can’t directly minimize the unknown blackbox
function f(v) (function of a hyper-parameter knobs vector v) that models the predictive
performance of ML algorithms. Hence, Spearmint maximizes the expected improvement
acquisition function which has a closed form under the GP prior and is given by:

aEI(v) = σ̃(v)(γ(v) Φ(γ(v)) +N (γ(v); 0, 1)) (2)

where Φ denotes the cumulative distribution function of the standard normal, γ(v) is given

by: γ(v) =
f(vbest)− µ̃(v)

σ̃(v)
, and vbest = argmin

vn
f(vn)

The expected improvement (EI) acquisition function does not require to tune its own
parameters in contrast to the LCB introduced earlier in equation 1 and which Ottertune uses
before recommending a configuration. That being said, the expected improvement expression
still has two components that implicitly capture the tradeoff between exploitation (evaluating
at points with low mean) and exploration (evaluating at points with high uncertainty) under
a GP prior. The expected improvement can be seen as a greedy procedure that always tries
to minimize further the objective in the next function evaluation.

While Spearmint focuses mainly on optimizing the predictive performance of ML algorithms
by minimizing the EI, we focus in this thesis on optimizing the runtime latency of workloads
deployed on Spark. Nevertheless, Spearmint has also introduced in the paper [55] another
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acquisition function called expected improvement per second which accounts for the wallclock
time while optimizing the predictive performance since different hyper-parameters within
different tuning sessions of the same ML algorithm yield different runtime latencies.

On the other side, the package code suffers from the cold start problem and doesn’t support
without any modification an assisted warmup from some initial traces. We have nevertheless
forked2 its implementation and modified it so that we can use it for sampling offline traces
with a focus on a single target objective.

Finally, Spearmint has already gained the attention of systems community, and Cherrypick
[11], a whole tuning system for cloud workloads, was built on top of it.
Hyperband. Hyperband [38] appeared in 2018 as a bandit based approach to hyper-
parameter optimization. This algorithm was intended to solve the same problem as Spearmint:
tuning the hyper-parameters of ML models with the aim of achieving the best predictive
performance. In contrast to Spearmint which uses a Bayesian Optimization framework for
addressing the problem, Hyperband uses a bandit based framework and focuses mainly on
speeding up random hyper-parameter search by exponentially allocating more resources to
more promising configurations. Thus it can be seen as a racing approach between different
candidate hyper-parameters with an early stopping mechanism that tracks a predefined
resource. It proceeds with sampling candidate hyper-parameters at random, and then runs
them with a small budget of resources (with a small number of iterations or a small number of
data samples or a small number of features, etc...) Then, the most promising candidate hyper-
parameters are rerun with a bigger budget. This repeats over many successive halving [31]
iterations that prune the less promising configurations and finally increase the fidelity of the
most promising configurations by allocating more resources for running them.
If we cast this approach to our use case of tuning Spark knobs, we have to keep in mind

that Hyperband does not make use of a pre-trained model that can quickly recommend a
better configurations for a submitted workload, and that such an approach will rely heavily on
exploring many configurations in order to yield better results. This approach will have to use
the computation time of the cloud user for running his workload with multiple configurations
before being able to recommend a new configuration that has the potential of achieving a
latency improvement with respect to the initial configuration with which the workload was
submitted. The tuning approach that we later discuss in this thesis does not make use of the
cloud computation time of the user before recommending a better configuration.
However, if we suppose that the cloud user can afford to have a fixed time budget for

tuning, then we can use Hyperband to tune Spark workloads, but we should choose first
the resource over which we fix a computation budget in the beginning. The duration of
the streaming workload seems a good choice. This is not to be confused with the runtime
latency (the time it takes to run analytics computation on a batch of streaming) which is
the objective that we’d like to optimize. Hence, we can use Hyperband to launch a few
configurations on a particular Spark Streaming workload for a short streaming period, and
then exponentially increase this streaming period for more promising configurations. So
we need to come up with a geometric distribution with an increasing average budget per
configuration. However, the maximum budget is 180 seconds (3 mins) because the trace data
we sampled on our workloads and which we later introduce in Section 6 have a streaming

2Our fork is available publicly at this URL: https://github.com/zaouk/Spearmint

25

https://github.com/zaouk/Spearmint


duration of 3 mins. Using this custom geometric distribution: {30, 60, 120, 180} (with η = 2
except for the last bracket) reveals a poor design choice for two reasons. First, according
to Hyperband’s algorithm this would allow us to start with only 6 configurations to run
with the shortest streaming duration (30seconds). It’s not very interesting to let Hyperband
explore only 6 configurations while it’s not a model based approach that can make use of
previous traces from other submitted workloads. Second, having a minimum budget equals
to 30 seconds is problematic since it does not yield predictable behavior under the same
configuration. In other words, if we run the streaming workload with the same configuration
but we limit the duration of streaming to 30 seconds then we don’t get consistent runtime
latency across the different runs. This observation is mainly due to the randomness in the
distributed workload behavior during the warmup phase. Hence, for these two reasons, we
don’t provide any end-to-end comparative results with Hyperband.
BOHB. BOHB [23] is a hybrid approach between Bayesian Optimization (BO) and bandit
based methods that aims to address the limitations of both worlds. Hyperband [38], the
bandit based method introduced earlier suffers from the lack of guidance problem because
it samples random configurations without learning from previously sampled configurations.
On the other hand, GPs dominate the BO literature (in particular Spearmint [55] which we
introduced earlier) and lead to computational infeasibility as soon as the number of data
points increase because of its cubic-time complexity. BOHB uses a model-based search at the
beginning of each iteration of Hyperband [38] instead of starting with random configurations.
The Bayesian Optimization part of BOHB also addresses the problem of computational
infeasibility by using a variant of a Tree Parzen Estimator (TPE) instead of using a GP.
Although this approach is interesting, we don’t consider it in our comparison since it requires
a budget for running configurations on the cloud infrastructure reserved by the cloud user
before recommending a better configuration for his/her Spark workloads.

2.4 Existing cloud offerings

Automatic tuning of resource allocation knobs has been part of what cloud service providers
started to offer. For instance, as part of their Elastic MapReduce (EMR) offerings, AWS has
always supported automatic scaling of the resources for jobs which fail for example when
Spark is launched with insufficient resources. AWS also supported [3] two profiling tools (Dr.
Elephant [39] and Sparklens [2]) for tuning Spark workloads, both of which are not learning
based tools but rather rule-based heuristics for tuning. They didn’t however address the
tuning of other important Spark knobs until recently as part of EMR 5.30 whose release
date coincides with the starting time of writing this thesis manuscript. The new version
addresses mainly Spark SQL related knobs while our contribution in this thesis covers mainly
Streaming workloads. That being said, whether we’re speaking of the new optimizations or
of the previous ones, the cloud service providers do not support a sort of repository of jobs
profiling data that can leverage information collected from past jobs runtime to recommend
better configurations for similar jobs, while this thesis does.
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3 Problem Settings, Environment and System Design
In this chapter, we first motivate the challenges for building tuning systems by looking at

real world requirements in §3.1, then in §3.2 we present the design of our system and describe
the different components that fulfill these requirements. Then, in §3.3 we provide the formal
description of our problem, and in §3.4 we introduce properties that deem to be essential for
learnining numerical vectors describing our workloads.

3.1 Real world requirements

Support for mixed workloads Analytics workloads running on production systems cover
today a broad range of tasks such as SQL queries, graph analytics, ML analytics, etc. Cloud
practitioners (developers and engineers) rarely write workloads using different distributed
systems when they want to analyze data at their disposal because it is both time consuming
and technically challenging. One has to be proficient in the programming framework for
each of these systems, understand the best practices for tuning its important knobs and then
spend a technical budget implementing workloads using each of these systems. The technical
debt grows even more if one has to implement his own tuner for the different systems. On the
other side, few are the distributed systems that natively support a mixed type of workloads
within the same framework. In particular, Spark [66] which emerged from AmpLab at Berkley
as a university project and is now maintained and supported by DataBricks, has the benefits
of supporting mixed workloads at these 2 levels: (1) streaming vs batch: Spark has a lambda
architecture, which means that the same instructions and operations can be applied to both
batch and streaming data ingested into its unified engine. (2) SQL-like vs non SQL queries:
Spark can process the database like type of analytics written in SQL as well as more recent
types of analytics that rely on data mining and machine learning algorithms. Hence, it is
natural to choose Spark as a target distributed system when building a cloud optimizer with
support for mixed workloads.

Non-invasive modeling Cloud users at startups and tech companies are more concerned
about privacy regarding the data and the workloads they run on a foreign cloud provider’s
infrastructure. Recent regulations such as the GDPR have been issued to protect the data
and the privacy of people in Europe in the age of the Big Data. Technology providers have
since started adapting their technologies to more privacy preserving paradigms. Hence if
a cloud provider is willing to develop a technology for tuning the distributed workloads of
its clients, privacy has to be a first class citizen within this technology. With this in mind,
our approach to modeling and tuning workloads should not be invasive with respect to the
cloud user’s data. So it should not have any access to the workload code written in plain text
nor to the datasets (or data streams) on top of which the workload is running. This implies
that the tuning and the optimization should be done in a blackbox manner. For instance,
Spark workloads written in Scala are usually submitted via the spark-submit command which
takes as arguments different configuration knobs as well as a jar file compiled by the cloud
user. Our tuning tool should not expect access to the code that was used for building the jar
file, but rather the only thing that it should be able to access is the meta-data used when
submitting the workload to Spark (containing the name of the jar file, the initial arguments
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chosen by the user, the class name of the workload that is submitted and that can be a unique
identifier for the workload). Nevertheless, with the consent of the cloud user telemetry data
can be collected from the infrastructure on top of which the workloads are run. Also, key
metrics from the distributed system (Spark in our case) are also collected and aggregated
during the runtime of the workload.

Online and offline runtime sessions We consider two types of runtime sessions for the
workloads: (1) online runtime sessions that start upon the submission of the workload to our
tuning system and which usually consists of a runtime with either a default initial configuration
or an intial arbitrary configuration selected by the user. We make the assumption that the
user can only afford to tune few traces (not more than 5) within the online runtime session.
This assumption is realistic because the cloud users usually pay for the uptime of the cloud
instances they’re booking and because the manual tuning process consumes machine time and
cpu cycles which are considered an overhead to pay on top of the actual cost of running the
workloads. (2) offline runtime sessions: These are sessions that should be launched by the
tuning system overnight in order to enrich the training with more data points. We can expect
for past training workloads to have them sampled for more than 5 different configurations.
The tuning system can sample these configurations independently using either a random
search assisted with best practices and heuristics from Spark, or it can use a task oriented
sampling using Spearmint [55], Hyperband [38] or BOHB [23] which we previously introduced
in §2.3. The former method allows the collection of general-purpose traces while the latter
can enrich the trace dataset for only a specific downstream task (such as minimizing the
runtime latency or maximizing the throughput.) Sampling more configurations overnight
for each training workload can help improve the performances of the models used for online
tuning up to a certain point as we later explain in our ablation study in §7.5.

Repeated workloads. Most workloads that are submitted to big data analytics platforms
today are workloads that exhibit similarities. For example, in some cases the workload is
repeatedly run with different ingested data points. Or in other cases, workloads are run by
modifying the selectivity of the filter at the end of the pipeline. We leverage this fact to
design a system that models the performances of Spark by solely taking into consideration
their runtime traces. This important property of workloads has also influenced the way we
have designed and extended benchmarks for evaluating our tuning system and which we
detail in Chapter 6.

3.2 System Design

The presented real-world requirements led to the design of our unified data analytics
optimizer UDAO shown within Figure 3. The left part of the diagram shows the online flow
upon the submission of the workload to the tuning system. The right part shows modules
that are active during the offline phase. These modules sample additional traces for past
workloads and use them to retrain the predictive ML models. We describe below the different
components of our system.
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Figure 3: UDAO’s System Design.

The controller (KnobTuner) We assume that the workload can be submitted to our
tuning system via an alternative command rather than spark-submit command. The controller
will receive the arguments of this command, and can in turn submit the workload to spark
distributed runtime via the spark-submit command. If the user has provided an initial
configuration when submitting his workload to the optimizer, then this configuration is
mirrored within the spark-submit command, otherwise the controller chooses an arbitrary
configuration for running the workload.

Trace collection module While the job is running, the trace collection module monitors
real-time metrics from both spark and the operating system. Once the workload execution is
done, this module first aggregates the trace over the runtime period and computes the average
metrics. It concatenates both types of metrics (os and distributed engine metrics) into a
single trace. It then feeds the trace to a model server and saves a copy within a database of
traces. Chapter 6 is dedicated for detailing the workloads used for benchmarking and traces
collected from these workloads.

Model Server The model server maintains global regression models trained using all
workloads. It uses these regression models at inference time upon the admission of a new
workload for which a prediction is needed quickly in order to recommend a better configuration.
We distinguish between two types of models: (1) implicit workload representation models:
these are regression models in which each workload is implicitly represented by an embedding
vector z that is learned while the regression model is being trained on predicting the target
objective using a knob configuration v (2) explicit workload representation models: these
are models with two main steps: (a) a representation learning step that extracts workload
encodings z out of runtime metrics x (b) a regression step that uses the extracted z alongside
knob configurations v to predict the target objective. This thesis focuses on studying effects
of different modeling choices on performance prediction from both families. The first family
of models is introduced in Chapter 4 while the second family of models is introduced in
Chapter 5.
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Symbol Description

vij ith knob configuration vector (of size sv) set for job j
ṽij approximation of ith knob configuration vector (of size sv) set for job j using encoder
xi
j runtime metrics vector observed (of size sx) for with ith configuration of job j

x̃ij approximation of runtime metrics xij using auto-encoder
zij partial latent encoding vector obtained (of size sz) for job j using configuration i
zj latent encoding vector (of size sz) for job j
yij runtime latency (scalar) observed with ith configuration of job j (regression target)
f regression function that maps knob configuration vij to an approximation of latency yij
F Multi-output regression function that maps knob configuration vij to

an approximation of runtime metrics xij

e encoder function used within encoding part of auto-encoder
d decoder function used within decoding part of auto-encoder
N Total number of training points for all workloads altogether.
n Total number of training workloads
m Total number of training configurations

Table 1: Notation.

Optimizer The optimizer is the driving component of the tuning system. It is responsible
for admitting the workload and then invoking the model server in order to probe it at different
points before recommending a configuration for the submitted workload. The optimizer
can be a single objective optimizer that focuses on a single performance objective or a
multi-objective optimizer that recommends configurations which achieve a certain tradeoff
between multiple service level objectives. Nevertheless, in the scope of this thesis, we focus
on optimizing a single objective (the runtime latency of distributed jobs).

Offline sampler Today’s cloud service providers put unused resources at very affordable
prices compared to traditional on-demand instances. These resources are provided as part
of some offers under the name of spot instances. The offline sampler can benefit from these
cheap resources in order to launch offline tuning sessions and boost the predictive performance
of the global models. It prioritizes workloads for which only few traces are available in the
training set. It then enriches the training data by sampling either general purpose traces
or traces dedicated for a particular downstream task (minimizing the latency, maximizing
throughput, etc...). In Chapter 6, we discuss in details the heuristics and best practices from
Spark that we used for sampling our general purpose traces.

Periodic retraining module After each session of offline sampling, the system periodically
retrains the global model maintained within the model server after incorporating the new
traces into training data. It then makes new models directly available for inference and
probing by the optimizer.

3.3 Problem Statement

We focus in this thesis on modeling the runtime latency of the jobs as a single service
level objective to tune. In other words, we are interested in predicting and then tuning how
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much time it takes for a workload to execute on Spark if it’s a batch workload, or how much
time it takes to execute a window of computation if the workload at hand is a streaming
workload. We model the runtime latency objective yij as a function of some latent workload
characteristics zj (to be learned) and a given configuration vi of the workload submitted to
cloud. Thus, our tuning problem boils down to finding both f ∗ and {zj} such that:

f ∗ = argmin
f

1

N

∑
i,j

(
f(zj,v

i)− yij
)2 (3)

where N is the number of training points, yij is the observed latency under configuration
vector vi, and zj is a latent embedding vector that needs to be learned from the observed
runtime metrics vector xij. We provide in Table 1 the notation adopted throughout this
manuscript.

The same logic applies if we replace the runtime latency with another service level objective.
For example, if we are interested in modeling the throughput of workloads (in terms of records
processed per second) instead of the runtime latency, we would opt for a similar optimization
problem where the target yij represents the throughput instead of the runtime latency. If we
are less interested in the exact value of the throughput, but rather interested in predicting
whether the configuration i alllows a low, medium or high throughput for the particular job
j then the mean squared error loss should be simply replaced by a cross-entropy loss and the
problem becomes a classification problem instead of a regression problem.

The main challenge that arises in our problem, whether being a regression on the runtime
latency or throughput, or a simple classification on throughput, is that workload characteristics
zj are unknown and we have to extract them from the runtime traces observed for the
workloads under past configurations. We explain in the next section some properties that are
inspired from the domain knowledge about the modeling problem and that help us extract
meaningful workload characteristics.
We decide to run our workloads on identical hardware types (see §6.2 within Chapter

6 for more details). Thus, we ignore the hardware characteristics when we introduce our
modeling function f . Nevertheless, this formalism allows an extension to include an additional
representation of the hardware parameters but we leave the modeling of the hardware
characteristics beyond the scope of this thesis. In the more general case, the modeling
function f would be a function of: (1) workload characteristics (2) resource allocation related
parameters (number of cores, memory size, etc..) (3) distributed engine (Spark in our case)
related parameters) (4) hardware specific parameters (number of cpus, cpu brand, number of
gpus, gpu brand, etc...). Our main contribution considers (1), (2) and (3), while (4) is left
out of the scope of this thesis because we choose identical hardware.

3.4 Workload embeddings properties

In this section, we introduce different properties that we would like to use in order to
drive the design of different modeling architectures and then assess the quality of embeddings
vector zj we would like to learn for each workload.
• Independence: This property describes the independence between the different factors

that contribute to the generative process of the observed runtime traces xij . We distinguish
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between two types of independence: (1) Independence between the workload descriptors to
be extracted (so called encodings or embeddings) and the knob configuration: Since the
runtime latency is affected by both the configuration of the distributed system vi and the
workload submitted to the cloud, then it is reasonable to assume that the workload encodings
zj we are trying to learn and the system knobs vi should be orthogonal and independent
of each other. (2) Independence between different workload descriptors themselves: This
type of independence is optional but can be seen as a way to regularize encodings by
ensuring that we don’t have a dependency between different learned components for the
workload encoding vector zj. It can also help us simplify complex mathematical modeling
assumptions (for example within variational auto-encoders later introduced in §5.3).
The independence property is highly dependent on the ability of the representation learning
technique to disentangle the factors that are responsible for the generation of the observed
runtime metrics (such as parametrization of the workload, knob configuration) or the
design of the architecture that can force such a separation.
• Invariance: This property implies that the modeling tool should provide one encoding
vector zj that is invariant with respect to how many and which are the configurations
whose traces were used for its generation. In other words, no matter which configuration(s)
generated some given trace(s), the extracted encoding zj vector for a particular workload j
should be unique. On the other hand, usually running a workload on a distributed system
does not yield deterministic behavior even if the same configuration is run twice unless we
assume fixed data characteristics. Hence, it becomes more reasonable to speak of invariance
assuming that the data characteristics of a particular workload are fixed across different
runs and are inherent to the workload.
• Similarity: This property is a relaxation of the invariance property and is meant to

tighten together encodings extracted from traces originating from different configurations
run over the same workload. It implies that the encoding function should map semantically
similar runtime metrics vectors xij from the runtime trace data manifold onto metrically
close embedding points zij. We consider two points to be semantically similar if they come
from the same job.
• Reconstruction: The reconstruction property reflects the ability of the workload encoding
zj of reconstructing runtime metrics xij given a particular configuration vi. This is a defacto
property that is automatically ensured within auto-encoder architectures we later introduce
in Chapter 5. It implies that the bottleneck layer from which the workload encoding should
be extracted has this reconstruction ability.
The reconstruction property is especially helpful when it comes to learning a generic
encoding that can be used for modeling multiple performance objectives provided as
separate components of runtime vectors x. In other words, this property is useful as soon
as the encoding needs to be used with multiple downstream tasks.
Throughout Chapters 4 and 5, we will introduce different modeling architectures and we

will explain how difficult it is to satisfy simultaneously all of these properties due to either
(1) architectural limitations or (2) tradeoffs between the different properties when they are
reflected within separate terms in a particular loss function.
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3.5 Summary

In this chapter, we have covered real world requirements from cloud services that led to
the design of our tuning system and then described the different components of our system.
We gave a particular importance to the model server component which we study in detail
throughout this thesis. We have then formalized the problem of modeling runtime latency of
distributed workloads and explained that this problem is a non trivial one because of the lack
of numerical descriptors for workload embeddings. Finally, we have listed a set of properties
that we would like to use in order to compare different architectural choices for learning
meaningful workload embeddings and see their impact on modeling accurately the runtime
latency.

33



4 Recommender based architectures
In this chapter, we show how it’s possible to cast the workload tuning problem into a

recommender systems framework after we notice that our tuning problem exhibits similarity
with the recommendation problem. Indeed, recommender systems have gained widespread
adoption within e-commerce portals and online streaming services in order to increase sales by
recommending new items for a user based on a past purchase/watching list. In the context of
tuning workloads, a configuration recommender system is a system that recommends better
configurations for a particular workload based on performance observed for this workload
under some intial configuration(s). Thus, if we make the analogy to existing recommender
systems used in e-portals, the workload here takes the role of the user while the configuration
takes the role of the item that needs to be recommended. However, the overall objective of
the recommendation in our use case is to reduce the runtime latency of a given job.

There exists three main families of recommender systems within the literature: (1) collabo-
rative filtering methods, (2) content based methods and more recently (3) hybrid methods that
mix the first two. While the collaborative filtering methods rely heavily on the interactions
between users and items, content based methods focus on recorded features for both the users
and the items. Throughout this chapter, we survey state-of-the-art techniques from these
families while listing existing work in the database and systems literature that make use of
these techniques in the context of tuning workload configurations. We start with collaborative
filtering methods in §4.1 and go over both memory and model based methods. We explain
in §4.1.2 how matrix factorization techniques are used as tuning tools within Paragon [20]
and Quasar [21] which we briefly introduced earlier in the related work section in §2.1. Our
contribution consists of providing a formulation of the tuning problem that takes into account
both workload and configuration biases in §4.1.2 as well as another trick that allows workload
encodings and configuration encodings to have different latent dimensions. We also propose in
the same paragraph a neural network based architecture which we call Dual Embeddings and
explain why it is interesting to explore it in our problem settings. We next briefly introduce
in §4.2 the family of content based methods and explain how Ottertune [61] can be seen as
such a technique. Finally, we give examples of hybrid methods in §4.3 and propose a Hybrid
Embeddings architecture which is obtained from a slight modification to the Dual Embeddings
approach in such a way that we provide the configuration vector as input instead of learning
latent embedding for it. This latter architecture enables making predictions for arbitrary
configuration (not necessarily seen previously for some of the existing workloads) and hence
allows the recommendation to go beyond existing configurations within training data.

4.1 Collaborative filtering methods

The basic building block of collaborative based methods, widely used in the context of
item recommendation for users, is having an interaction matrix that contains ratings users
gave to previously watched movies. This matrix is usually sparse, as users can’t watch all
movies. Similarly, in the context of tuning workloads, the interaction matrix should contain
workload runtime latencies under different knob configurations. This matrix is also sparse
because it’s impossible to evaluate each workload on every single knob configuration. Solving
the recommendation problem boils down to first providing estimates for the runtime latency
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across all missing fields within the interaction matrix, then recommending configurations
that yield the minimum estimated runtime latency for the current workload.

Within the collaborative filtering family, there exists two types of methods for recommen-
dation: (1) memory based methods and (2) model based methods.

4.1.1 Memory based methods

Figure 4: Memory based nearest neighbor mapping.

Memory based methods apply a nearest neighbor strategy before recommending a new
configuration to a workload. There are two ways for doing so: an example of workload-workload
mapping is provided in the left part of the diagram in Figure 4 and a configuration-configuration
mapping is provided to the right. We further explain these two ways of mapping below:
• 1) workload-workload A newly admitted workload n+1, described by a sparse vector of run-
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is first mapped to the most similar workload represented by a row within the interaction
matrix (after imputing the missing values within both the matrix and the new vector).
Then, the most performing configuration of the mapped workload (the configuration that
yields the lowest runtime latency on the mapped workload) is generally recommended to
the original workload.
• 2) configuration-configuration When a new job is admitted with some previously seen

configuration(s) within training data, then the most performing configuration i among those
observed, and which can be described by a column within the interaction matrix (as a vector
of runtime objectives across the different jobs yi = (yi1, y

i
2, ?, ...y

i
j, ...y

i
n)T is first mapped to

its nearest neighbor configuration within the interaction matrix. This nearest neighbor
configuration is then recommended to the new workload. The configuration-configuration
memory based mapping does not take into consideration an order relationship and may
hence return a configuration that is worse in terms of runtime latency.

There are mainly three issues with memory-based methods: (1) They require the recommender
system to sample a lot of shared configurations and run them across all workloads so that
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nearest neighbor mappings become meaningful. (2) They require mapping a vector to its
nearest neighbor in a high dimensional space because both n and m are on the order of
thousands in real-world datasets. The mapping step hence unfortunately suffers from the curse
of dimensionality and won’t work properly as explained in [28]. (3) They have a scalability
issue: the nearest neighbor search (whose complexity is O(nmk) with n:#of workloads m:#
of configurations and k:#neighbors) becomes intractable as soon as the number of workloads
or configurations increase.

4.1.2 Model based methods

The model based methods rely on the assumption that a latent model for workloads
and configurations exist and such a model can explain the interactions between workloads
and configurations. There are several choices for modeling the interaction between the
workload and the configuration. The dot product between two vectors is a common way for
representing this interaction, and we explain it under the Matrix factorization paragraph.
Then we explain under Advanced Matrix Factorization paragraph how we introduce
another matrix variable in order to allow more degrees of freedom while training the matrix
factorization loss function. Finally, within the last paragraph of this section (§ on Dual
Embeddings) we propose yet another alternative. Instead of representing the interaction
between a workload and a particular configuration by a dot product, the two learned
representations are concatenated and then fed to several fully connected layers that estimate
the runtime latency.

Matrix factorization The matrix factorization technique, also known as QP factorization,
became popular after it won the Netflix Prize competition [35], demonstrating the superiority
of model based methods on memory based methods for building recommender systems.
Under this framework, we assume that the sparse workload-configuration interaction matrix
Y can be approximated by a product of 2 dense matrices3 whose representations are in a
D-dimensional latent space: (1) a workload-factor matrix Z and (2) a factor-configuration
matrix V .

Consider J the set of the jobs that we have in our training set, I the set of configurations
sampled across the different workloads. For each couple (j, i), either the job j hasn’t been
run on configuration i, so we don’t have a data point for it, or, we have recorded the
average runtime latency yij for running this job under the configuration i. Y denotes the
interaction matrix where an element of this matrix Yji at the j-th row and i-th column
(thus corresponding to the j-th workload and i-th configuration) corresponds to the recorded
runtime latency yij. In other words, Yji ≡ yij
We hypothesize that there exists a D−dimensional latent space of joint characteristics

of workloads and configurations such that the interactions between the workloads and the
configurations are dot-products within this space. According to this model, we should have:

Yji ≈
∑
d∈D

ZjdVdi = zTj v
i (4)

3We use Z and V instead of Q and P in order to avoid confusing with earlier introduced notation.
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where zTj = Zj,: (j-th row of the Z matrix) is a representation of job j in the D−dimensional
latent space and vi = V:,i (i-th column of the V matrix) is a representation of the configuration
i in this same dimensional space.

The factor matrices Z and V are first initialized by running an SVD decomposition of the
initial interaction matrix Y . Then, Z and V are updated by minimizing a regularized least
squares loss function:

(Ẑ, V̂ ) = argmin
Z,V

1

2

∑
(j,i)∈K

(Yji −
∑
d∈D

ZjdVdi)
2 +

λ

2
(
∑

j∈J,d∈D

Z2
jd +

∑
i∈I,d∈D

V 2
di)

(Ẑ, V̂ ) = argmin
Z,V

1

2
||1K ◦ (Y − ZV )||2F +

λ

2
||Z||2F +

λ

2
||V ||2F (5)

where K is the set of couples for which Lj,i is known. ||.||F is the Frobenius norm, (1K)j,i = 0
if (j, i) /∈ K and (1K)j,i = 1 if (j, i) ∈ K. (X ◦ Y )j,i = XjiYji and λ > 0 is a regularization
parameter.

Paragon [20] and Quasar [21] from the system literature use the same matrix factorization
techniques in order to recommend better configurations for cloud workloads. Paragon [20],
in particular, minimizes the same loss function that we provided in Eq. 5. The authors
provide the iterative formulas for learning and updating the encodings for both the workloads
and configurations. They rely mainly on optimizing the loss function using alternating
least squares which fixes one variable while minimizing the other. This allows having a
convex function and thus guarantees convergence towards a minimum. The derivations from
the loss function we provided in Eq. 5 and that lead to the iterative updates mentioned
within Paragon paper are straightforward. We defer them to §A within the appendix for the
interested reader.
Instead of manually implementing the gradient descent updates on vectors zj and vi, we

have resorted to automatic differentiation tools and thus implemented a solver for the loss
function in Eq 5 in Tensorflow 2.0 [7, 8].
Quasar [21], on the other side, extends this loss function to account for the user bias

- workload bias in our context. The matrix factorization original paper [35] goes beyond
this extension and also accounts for the item bias - bias that is due to configurations in
our context. We therefore implement a more general version that covers both biases. The
approximation of runtime latency for a job j under configuration i is not anymore given by a
simple dot product between zj and vi as in Eq.4, but is rather given by:

Yji ≈ zTj v
i − µ− aj − bi (6)

where µ is the average runtime latency across all collected data, aj is the intercept (bias) for
job j and bi is the intercept for configuration i.
µ, aj and bi are given by:

µ =
1

|K|
∑

(j,i)∈K

(1K ◦ Y )ji

aj =

∑m
i=1(1K ◦ Y )ji∑m
i=1(1K)ji
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bi =

∑n
j=1(1K ◦ Y )ji∑n
j=1(1K)ji

The extension we brought on top of Quasar can be written in its matrix form as:

L =
1

2
||1K ◦ (Y − ZV +M + A+B)||2F +

λ

2
||Z||2F +

λ

2
||V ||2F (7)

The matrices M,A and B are given by:

M = µ ∗ 1n,m

A = a1Tm

B = 1nb
T

1n,m is a matrix of ones with n rows and m columns, 1n and 1m are column vectors of
ones of size n and m respectively.
a and b are vectors representing jobs and configurations biases and are defined by:

a = (a1, a2, ...aj, ..., an)T

b = (b1, b2, ..., bi, ..., bm)T

Advanced Matrix factorization The collaborative filtering approach proposed so far
can be modified to go beyond a simple matrix factorization. Indeed, instead of representing
the interaction between workload j and configuration i as a simple dot product between zj
and vi zTj vi, we can think of introducing a matrix S in the middle, so that the interaction is
approximated by zTj Svi. Although the introduced matrix S can be seen as a simple linear
transformation of the configurations, its elements remain as degrees of freedoms while learning
the factorization. Hence, Y can be approximated by Y ≈ ZSV . This allows us to have a
different latent dimension for Z and V so that the shapes become (n, dz) for Z, (dz, dv) for S
and (dv,m) for V .

Yji ≈
dv∑
k=1

dz∑
t=1

ZjtStkVki

The loss function we minimize in this case is given by:

L =
1

2
||1K ◦ (Y − ZSV + γ(M + A+B))||2F +

λ

2
||Z||2F +

λ

2
||V ||2F (8)

where γ is a hyper-parameter that takes values in {0, 1} and is used in order to take into
consideration or not the terms that account for bias.
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In contrast to the normal matrix factorization where Z and V are initialized using the
results of the SVD decomposition, we randomly initialize all three matrices Z, S and V
before solving the factorization problem.

Upon the admission of a new workload profiled with few previously seen configurations, a
new randomly initialized row zn+1 is inserted within the matrix Z and incremental training
is trigerred to update this row. Both matrices S and V are frozen during the incremental
training step.

We leave as part of our future work exploring another generalization of the matrix factoriza-
tion approach that leverages the kernel trick instead of the dot product and we briefly explain
it later in section 9.2. The next paragraph introduces an alternative to the dot product that
makes use of neural networks to represent the interaction between zj and vi.

Dual-Embeddings Deep learning Architecture We propose a neural network archi-
tecture that is more general than matrix factorization approaches since it learns a non-linear
model on top of the representation vectors for both workloads and configurations. Since
we don’t represent the interaction here by a simple dot product, then there is no need that
the configuration and workload embedding vectors share the same number of dimensions.
The interaction can thus be represented by the output of several fully connected layers with
potentially non-linear activations which take as input a concatenation of both vectors (zj
and vi). This architecture is shown in Figure 5.

Figure 5: Dual Embeddings Deep Learning Architecture. Both zj and vi are updated by
backpropagation.

Within this architecture, both the workload encoding vector zj and the configuration
encoding vector vi are learned while training the architectures. These vectors are randomly
initialized at first, and then their values are updated through backpropagation. The architec-
ture is trained on minimizing the mean squared error between the true value of the runtime
latency yij, and its neural based approximation f(zj,vij) ≡ f(j, i)

L =
1

N

∑
i,j

(f(j, i)− yij)2
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Before we train this architecture we need to organize our training data into tuples of (j, i,
yij) where j denotes the job id, i denotes the configuration id and yij is the true value of the
runtime latency obtained with job j under configuration i. The architecture requires the ids
at the input so that the corresponding vectors can be fed to the fully connected layers.

Similarly to matrix factorization techniques, this architecture requires additional incremen-
tal training upon the admission of a new workload n + 1 with few profiled configurations
among existing configurations profiled for training workloads. A new randomly initialized
row vector zn+1 is appended to the embeddings matrix, and then this row, which represents
the embeddings vector of the new workload, is updated by backpropagation while doing the
incremental training. The other fully connected layers of the embedding architecture and the
embedding layer of the configurations are frozen during the incremental training step. In the
next section we’ll introduce methods that make use of additional information while learning
the interaction model between workloads and configurations.

4.2 Content based methods

The content based methods enhance models by making use of additional information
collected from the interactions between configurations and workloads (other than the objective
yij that we are trying to approximate). They suffer far less from the cold start problem,
compared to the collaborative filtering method, since new workloads and configurations can
be described by their characteristics.

A content based method can be either (1) workload centered (2) configuration centered or
(3) neither configuration nor workload centered. We provide a brief overview of these different
content based methods.
1. Workload centered approaches. A workload centered approach builds for each

workload a model that takes as input configuration knob features outputs an approximation
of the runtime latency. Thus, with n workloads in our training data, this approach builds n
separate models f1, f2, ..., fn. The underlying model can be any type of regressor (a neural
network, a random forest regressor, a GP regressor, etc..).
fj(vi) has to approximate yij, and thus fj(vi) ≈ yij. In contrast to previously introduced

methods within the collaborative filtering family, the configuration vector vi components
consist here of the values of different knobs (as specified earlier in Table 2 of §6.3.1) for a
particular configuration i. In collaborative filtering, a vector vi was a latent representation of
the configuration that doesn’t hold direct semantics about the configuration knobs. To give
an example, in content based methods, a vector vi = (1, 50, 36, 48, 43, 1, 3, 4, 6553, 660000)
denotes a particular knob configuration i, where the different knobs take these values: v1 = 1s;
v2 = 50ms; v3 = 36; v4 = 48MB; v5 = 43; v6 =True; v7 = 3; v8 = 4; v9 = 6553MB;
v10 = 660000. In other words, here vi = (v1, v2, v3, ...v10) where each vk represents a value for
a knob introduced in Table 2.
This method does not usually work well if the admitted workload is new and is profiled

with only few configurations. Ottertune [61, 68] on the other hand, which we previously
introduced in the related work under §2 can be seen as a recommender system that falls in
the category of workload centered approaches since it builds one separate model for each
single job. However, it works better than a simple workload centered approach when the new
admitted workload has few configurations. This is because Ottertune’s inference pipeline
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consists of mapping the new admitted workload to one of the past workloads and then using a
past model for making predictions on top of the new workload. With this mapping extension,
Ottertune can be seen as a mix between a workload-centered content based method and a
memory-based collaborative approach. We leave the comparison to Ottertune to Chapter 7.
2. Configuration centered approaches. A configuration centered approach builds for

each configuration a model based on workloads features. Thus, with m configurations in our
training data, this approach builds m separate models, one for each configuration: f 1, f 2, ...
fm. In this case, f i(zj) has to approximate yij and thus f i(zj) ≈ yij.

This approach is limited because: (1) on one side, most configurations are run over one or
very few workloads, and (2) on the other side, the approach doesn’t allow to make predictions
over a new combination of knobs never seen before with any of the training workloads, and
thus doesn’t allow exploration while recommending new configurations.
The workload descriptors zj should be unique for the workload j even if the workload is run
with several configurations vi so that it complies with the invariance and independence proper-
ties outlined in §3.4. A configuration centered approach requires the workload characteristics
zj to be known in advance before training the models. On one hand, we can’t simply use the
runtime metrics collected for the workload j under a configuration i over which we want to
make predictions because we don’t have these metrics before running the workload with this
particular configuration. On the other hand, since we opt for a non-invasive modeling, we
also can’t represent the workload by its graph embedding extracted from the dataflow graph.
Therefore we leave the graph embedding representation as a future direction to explore, while
we discuss in the next chapter how we learn an invariant embedding zj from runtime metrics
{xij}
3. Neither workload nor configuration centered approaches. Under this category,

a model that stacks features from both workloads and configurations is trained, and thus
the model is represented by a function f that approximates the runtime latency: f(zj,vi) ≈
yij. While this model considers at its input the vector vi defined by the different knobs
(v1, v2, ...v10), this model also poses a major challenge regarding what features to use as
input for the function f when it comes to representing the workload j. The next chapter
is dedicated to further elaborating this direction while exploring different representation
learning architectures that extract a meaningful representation zj for each workload.

Approaches (1) and (3) have the benefits of allowing the model to make predictions over new
configurations that haven’t been necessarily seen while training. This allows the optimizer to
explore interesting regions that can’t be explored by other methods.

4.3 Hybrid methods

Hybrid approaches between collaborative and content based filtering can be obtained by
either building separately one collaborative based model and another content based model,
and then mixing their outputs, or they can be conceived within the same architecture. In
this section, we propose a hybrid embedding model whose architecture is identical to the one
we already proposed under Figure 5 with the exception this time that configurations vi are
given as input to the architecture instead of being learned alongside other weights of the
neural network. Hence by providing the configurations vectors vi as input, we are enriching
the previous collaborative filtering approach with explicit content about the configurations
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instead of implicitly learning a representation for the configurations. This also allows making
predictions over new knob configurations (combinations of knob values which were not among
the training points) possible.

Figure 6: Embeddings Deep Learning Architecture. Only embeddings vectors zj are updated
by backpropagation, while configuration vectors vi are provided as input.

This architecture is depicted in Figure 6 and is an example of a hybrid approach: on one
side it is collaborative because it learns the interactions between configurations and workloads,
and learns an inherent latent model for workload embeddings, and on another side it is
content based because it accepts as input a vector describing the configuration.

This architecture consists of three parts: (1) An embedding layer with a weight matrix
Z denoting the latent space. Each row zj of this matrix represents a particular workload
j as its embedding vector, randomly initialized first. (2) A concatenation layer that for a
particular job j, concatenates the embedding vector zj with an input (ith) configuration
vi into, (zj||vi). (3) Several fully connected (FC) layers that take (zj||vi) as the input and
produce f(vi, j) ≡ f(vi, zj) as the final output. The architecture is trained by minimizing
the MSE between the predicted latency f(vij) and the actual latency yij, that is:

L =
1

N

∑
i,j

(f(vi, j)− yij)2 (9)

The embedding approach requires incremental training every time a new job is submitted:
when the trace of a new job becomes available, we add a random row to the embedding
matrix, freeze the weights of the neural network (except those at the embedding layer) and
run incremental training using the trace of the new workload and backpropagate to update
the embeddings.

4.4 Summary

In this chapter we have surveyed diverse methods used within recommender systems and
explained how matrix factorization approaches in particular have been previously casted

42



for solving the configuration recommendation problem for cloud workloads. We have then
provided an extension of the matrix factorization introduced within the work [20,21] after
adding biases for both configurations and workloads while solving our problem (in eq 7). We
have also proposed two neural network based recommender approaches and explained how
the hybrid embedding approach allows to make recommendations beyond already observed
configurations. The recommender architectures introduced within this chapter have coupled
both the encoding extraction as well as the regression task. They have ensured both the
independence and invariance properties while extracting the encodings z for the workloads.
They have also partially satisfied the reconstruction property since the interaction matrix
(used within matrix factorizations) as well as the neural networks introduced in embeddings
approaches aim to reconstruct only the runtime latency while minimizing the loss function.
In the next chapter, we will focus on incorporating more content by leveraging the full
runtime metrics x while extracting the encodings. We will attempt to separately extract
the workload encoding z using advanced representation learning techniques and then train
regression models using these extracted encodings. Finally, in Chapter 7 we will provide
comparative results between the different recommender approaches we have surveyed and
extended as well as other encoding/decoding architectures which we will introduce in the
next chapter.
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5 Representation learning based architectures
In this chapter, we introduce different representation learning techniques that serve for

the task of modeling the runtime latency of distributed workloads. We show throughout this
chapter how each of these techniques satisfy the different desired properties that we have
introduced for the workload encoding.
We start this chapter by motivating the need for representation learning in §5.1 and

then outline the architectures overview in §5.2. Then, we introduce a basic representation
learning architecture consisting of a vanilla auto-encoder in §5.3. Then, we gradually increase
the degree of complexity by proposing a domain knowledge driven design for a custom
autoencoder, and then we augment it with an additional contractive term. We then introduce
variational auto-encoders in §5.3, and explain how such generative auto-encoders compare
to the previously introduced deterministic autoencoders in terms of quality of extracted
encodings. Finally, we propose techniques from metric learning in §5.4 and then introduce
some hybrid architectures combining both auto-encoders and siamese neural networks in §5.5.

We provide a qualitative comparison between the different methods by taking into consid-
eration how well each of the different properties is satisfied.

5.1 The need for representation learning

State of the art tuning tools in the database community (such as Ottertune [61]) do not
consider representing different workloads by a numerical vector. Hence such tools are forced
to train multiple separate models (one model per workload) and miss the opportunity of
training a single global model on the runtime latency.

Maintaining separate models is a burden because as soon as additional traces are periodically
collected from multiple workloads, hyper-parameter tuning and model re-training need to be
triggerred for corresponding workloads for which additional traces were profiled.

Furthermore, training a separate model for each workload doesn’t allow to learn patterns
across behaviors of different workloads. For instance, workloads submitted by the same cloud
user tend to exhibit similarities when the user is working on the same dataset. The user would
often repeat some analytics tasks by changing the selectivity for example. Having to map
the new workload to one of the previous workloads (as is done in Ottertune [61]) prevents
keeping a gradient information about that workload. A typical example would consist of a
workload that is half-way similar to two other workloads, but far away from another third
workload. Forcing the mapping to one of these two close workloads leads to a waste in the
use of the information known about this workload.

In order to train a global model, we need to find a numerical way to describe each workoad.
If we consider each workload as a separate category, then we can use a trivial encoding for
representing the workloads: the one-hot encoding (or so called dummy variables). Such a
representation is not optimal for several reasons. On one hand, one-hot encoding doesn’t
allow an online prediction scheme and requires retraining the regressor from scratch each
time a new workload is observed. This is problematic since retraining models from scratch
incurs an important delay overhead, while tuning Spark knobs for an admitted workload
should be done quickly on the fly (as in the zero-shot learning scheme).

On the other hand, a onehot encoding scheme considers all workloads as equi-distant (there
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are no difference in distance between any two workload vectors). Knowing in advance that
workloads we are trying to model are parametrizations from some templates, it is natural
for these workloads to have some similarities, and thus we don’t expect a one-hot encoding
scheme to work properly.
Moreover, we can’t consider raw metrics xij as encodings zij (zij ← xij) assigned for

configuration vij, without directly violating both the independence and invariance properties
earlier introduced in the problem statement in §3.3. The independence property violation
stems from the fact that the different collected metrics are correlated, while the invariance
property stems from the fact that raw metrics from the same workload are not the same
under different configurations. We later explain in §7.4 why the violation of these properties
leads to an inferior performance on the task of modeling the runtime latency. Hence the need
for a representation learning step.

5.2 Architectures overview

In this section, we first introduce our modeling pipeline that allows accurate estimation
of the runtime latency. It is depicted in Figure 7 and consists of 3 different stages: (1) a
representation learning module (2) an encodings aggregator (3) a regression module

Figure 7: Main components within modeling.

The representation learning component first receives the runtime metrics xij at its input and
then outputs an encoding vector zij . This component is usually an encoder but a decoder can
be coupled to the encoder during the training phase (for example if the chosen representation
learning module is an auto-encoder). The aggregator extracts a unique encoding vector zj for
each workload j, from several traces {xij} (yielded by several configurations {vij}). It is an
attempt to force the invariance property regardless of the representation learning technique
that has been deployed.
Thus, from multiple {zij} at the input of the aggregator, it generates a single output zj.
Finally, a trained regressor can take an encoding vector zj and any configuration vector vi

at its input and predict the runtime latency ỹij induced by this configuration. The regressor
can be of any type: a neural network, a random forest regressor, a gradient boosting regressor,
etc. In this work, we choose to use a neural network in order to get a regression function
with continuous output so that gradient based optimization can be done using the same
predictive function. The same pipeline applies if we’re interested in modeling the throughput
of workloads instead of the runtime latency, with the only requirement to swap the last
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regression module with a classification module that can predict which class of throughputs
the (job, configuration) combination belongs to.
The loss function used when training the regressor is the mean squared error:

L =
1

N

∑
i,j

(f(vi, zj)− yij)2

When the architectures used for representation learning and regression are homogeneous
(for example when both are implemented as neural networks if the representation learning is
an auto-encoder and the regressor is a simple feed-forward neural network), we can fine-tune
the layers of the representation learning architecture while minimizing the regressor’s loss
function.

We focus on studying different architectures for the representation learning module while
keeping the regressor as a simple feed forward neural network.

5.3 Encoder-decoder architectures

Auto-encoders have seen a large body of work in recent years, especially with the ubiquity
of powerful hardware infrastructure that enabled faster training of neural networks using
back-propagation and new emerging automatic differentiation tools (such as Tensorflow [7, 8],
Theano [10] and Pytorch [46]).

We start this section with a simple auto-encoder, and highlight its limitations in satisfying
important properties known about our workloads from the domain knowledge. We then
introduce a customization of such a deterministic auto-encoder in an attempt to disen-
tangle generating factors within the bottleneck layer. Then, we introduce more advanced
auto-encoders from the literature such as the contractive auto-encoder [50] which is also
a deterministic auto-encoder and the variational auto-encoder [33, 34] from the family of
generative models. We discuss the assumptions and limitations of each approach and propose
an adjustment on the contractive auto-encoder to incorporate the domain knowledge again.

Original auto-encoder The auto-encoder was first introduced as a dimensionality reduc-
tion technique that makes use of neural networks. It has the advantage of supporting both
linear and non-linear activations.
We can use the auto-encoder in order to learn a more compact representation instead

of using the full runtime metrics as a representative encoding for each workload. Figure
8 is an example of the abstract diagram we earlier introduced in Figure 7. It shows the
auto-encoder as an example of a concrete choice of representation learning technique followed
by an aggregator that represents each workload by its centroid vector and a neural network
regressor.

The bottleneck layer of the auto-encoder in Figure 8 consists of a latent encoding zij that
contains digested information from the runtime metrics vector xij provided at the input. This
auto-encoder architecture minimizes the reconstruction loss given by:

J =
1

N

∑
i,j

||x̃ij − xij||2 (10)

46



Figure 8: Runtime latency estimation pipeline with a simple auto-encoder as representation
learning technique.

where x̃ij obtained at the output of the fourth layer of the auto-encoder denotes the approxi-
mation of the runtime metrics xij (as depicted in Figure 8). If we use e to denote the encoding
function, d the decoding function, then in this case zij = e(xij) and x̃ij = d(e(xij)).
The auto-encoder in this form focuses solely on the reconstruction property without

providing any guarantees on the remaining properties. For instance, by uniquely having the
workload encoding within the bottleneck layer, we can’t guarantee that the encoding itself
doesn’t contain knob information since it is trained on approximating the whole vector of
runtime metrics. So we can’t guarantee the independence between the learned encodings
and the knob vector yielding these encodings. We also didn’t force an independence between
different components that form the basis of the latent space. Furthermore, once the auto-
encoder is trained, its weights are fixed, and thus for a different runtime metrics at the
input xkj of the same job j we get a different latent representation zkj . This means that the
invariance property is violated due to architectural reasons, and this can explain why we
have attempt to fix this violation upfront by introducing the aggregator in Figure 7.

Custom auto-encoder Traditional autoencoders are not meant for explicitly disentangling
trace generation factors within a simple bottleneck layer. There are indeed five different
types of factors that jointly yield a runtime trace vector, 3 of which are invariant with respect
to the workload while the remaining two are variant. These factors are: (1) the workload
descriptors (descriptors of the dataflow graph) (2) the data characteristics that depend on the
data ingested within the system during the runtime of the workload. These are considered
as constant across different executions of the same workload in our experimental setup as
the same data is ingested across different runs. (3) the hardware parameters that depend
on the type of the machines on which the workload is run (how many CPUs with how
many cores and from which brand, how much memory, etc...). The hardware parameters
are constant across all workloads since we’re collecting the traces on identical hardware.
(4) the distributed system’s knob configuration that control the resources allocated for the
workload as well as the partitioning and the shuffle behavior. (5) random noise that is due to
the distributed environment. For simplicity reasons, we consider (1), (2) and (3) to jointly
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Figure 9: Runtime latency estimation pipeline with custom auto-encoder as representation
learning technique.

describe a particular workload since all of these 3 factors remain invariant for different runs
of the same workload within our experiments.
With this in mind, we attempt to design a customized auto-encoder that breaks the

bottleneck layer into two parts and we present the architecture of this custom auto-encoder
within the Figure 9.

The intuition here is to force the encoding function to extract a variant part ev(xij) = ṽij
and isolate it in a separated block of the bottleneck layer (lower part colored in yellow within
left diagram in Figure 9). This variant block has to approximate the main variant factors: the
knob configuration vij that is fed to the input of the neural network. Since we can’t perfectly
approximate the knob configuration while training, we suppose that the error that remains
in this approximation corresponds to the random noise that is due to distributed system
behavior. Then, presumably, the other part of the bottleneck layer, eiv(xij) = zij, tend to
become less variant for traces belonging to the same workload, and could thus be considered
as the workload characteristics that we aim to extract. Such separation within the bottleneck
layer favors the independence between the knob configurations and the workload descriptors.
After adding this little supervision, the loss function of the custom auto-encoder now

becomes:
J =

1

N

∑
i,j

(||x̃ij − xij||2 + γ||ṽi − vi||2) (11)

where γ is a regularization coefficient and ṽi represents the approximation of the configuration
provided within the bottleneck layer of the custom auto-encoder architecture when the input
is xij . In this setting, the encoder function e is broken into two parts, e(xij) = (ev(xij)||eiv(xij)),
where ev(xij) = ṽi is an approximation of the generating configuration,
eiv(xij) = zij is the workload encoding, and d(e(xij)) = x̃ij. Note that the part of the

bottleneck layer designated to be invariant extracts dataflow descriptors, hardware parameters
and data characteristics altogether defining our workload characteristics encoding vector.
While this architecture favors the independence between the knob configuration and the

workload descriptor by forcing the separation between the two within the bottlneck layer, it
doesn’t provide any guarantees as to whether the encodings are indeed invariant for the same
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workload. Hence in practice, we keep the aggregator as a preliminary step for regression.

Custom contractive auto-encoder In an attempt to reduce the variance within learned
workoad encodings, we try to further augment our custom auto-encoder by borrowing ideas
from the contractive auto-encoder in the literature [50]. The contractive auto-encoder adds
a contraction term to the reconstruction loss function of the original auto-encoder. The
contraction term is simply the Frobenius norm of the Jacobian matrix of encoder activations.
Our intuition is to force the designated invariant part of the encoding eiv(xij) to become

less variant to input perturbations by adding the contraction term. Hence, we use the same
architecture depicted in Figure 9 but minimize this loss function instead:

J =
1

N

∑
i,j

(
||xij − x̃ij||2 + γ||vi − ṽi||2 + λ||Jeiv(xij)||2F

)
(12)

where Jeiv is the Jacobian of the encoding output zij = eiv(xij) with respect to the input xij.
The original paper introducing contractive auto-encoders [50] provide the expression of the
Jacobian term when the encoder contains one layer with a sigmoid activation. We provide in
the Appendix E extensions of the Jacobian term computed up to two hidden layers with both
sigmoid and reLu activations. However, when no activation is added on top of the encoder,
the Jacobian term becomes equivalent a simple weight decay regularization.

Variational auto-encoder The so-far introduced auto-encoders are all deterministic. This
means that for a particular vector of runtime traces xij at the input of the auto-encoder,
one encoding vector zij is associated to it. The customizations we brought on top of these
deterministic auto-encoders were essentially driven by the need to disentangle different
generating factors from the runtime metrics so that the independence property is ensured
alongisde the invariance property.
There is however another family of auto-encoders that learn distributions of encodings

instead. These are called generative auto-encoders and are known to be good at the automatic
disentanglement of generating factors according to a recent survey [60]. Among generative
auto-encoders, we are particularly interested in variational auto-encoders [33,34] (β-VAE [27]
more precisely).

The central idea that governs variational auto-encoders is starting with a prior distribution
for the encodings, and then updating the distribution using bayesian inference methods (in
particular variational inference, hence the name variational autoencoders).

The diagram of a variational auto-encoder is depicted in Figure 10. The loss function that
is usually minimized while training a β-variational auto-encoder is given by:

L(β) = −Ez∼qφ(z|x)logpθ(x|z) + βDKL(qφ(z|x)||p(z))

More in depth insights about this loss function are deferred to the appendix within section
C. This loss balances between minimizing a reconstruction term and minimizing the KL
divergence between the posterior distribution and the prior distribution. The reconstruction
term indicates how much the distribution of encodings should trust the observed data, while
the KL divergence term indicates how much this distribution of encodings should mimic the
prior imposed on these encodings.
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Figure 10: Variational auto-encoder diagram [60].

5.4 Siamese Neural Networks

Figure 11: Diagram from [65] showing LMNN effect on local neighborhood. Points belonging
to the same class are tightened and those belonging to different classes are further separated
in the embedding space.

Earlier introduced auto-encoders focused mainly on both the reconstruction and the
independence properties. We also attempted to fix the invariance property by adding an
unsupervised jacobian term within the loss function of the custom contractive auto-encoder.
In an attempt to better control similarities between the learned encodings so that the

encodings coming from the same workload become less variant to the input configuration,
we resort to supervised methods from the metric learning family. The seminal work of
Weinberger et al. [65] in the field of metric learning introduced the large margin nearest
neighbor (LMNN) loss function. The central idea governing this approach consists of learning
a distance function that preserves class similarity such that points belonging to the same
class become closer in the new embedding space, and those that belong to different classes
are separated by a certain margin as shown in Figure 11. If we consider each workload as a
separate class, then we can apply this idea in order to learn more tightened encodings {zij}
from traces {xij} belonging to the same workload j.

Recent advances in neural networks led to the conception of better architectures for metric
learning. In particular, siamese neural networks have been widely used and had interesting
applications in fingerprint detection and face verification for example [54]. All of these
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Figure 12: Siamese neural network architecture trained with a triplet loss function.

problems bear similarity to our use case where predictions over new data points is required
within a zero-shot learning scheme.

There are multiple ways for training such networks and we focus in particular on two
promising loss functions that help in learning encodings less variant to input configurations:
(1) The triplet loss [54] (2) The soft nearest neighbor loss (SNN) [24,51]

We first introduce the triplet loss by applying it on an encoder architecture, and then we
present the soft nearest neighbor loss as part of a hybrid architecture in §5.5
Triplet Loss Training a triplet loss based architecture consists of organizing the data into

triplets of:
• Anchor point: xia which denotes the runtime metrics observed for an anchor job a when

the knob configuration is set to a particular value vi.
• Positive observation point: xka which denotes the runtime metrics observed for the same

anchor job a but with a different knob configuration vk, instead of vi.
• Negative observation point: xij which denotes the runtime metrics observed for a different
job j 6= a when the knob configuration was set to vi, the same as the one used in the
anchor point.
Figure 12 shows an example of how the points are organized into triplets.
At the input of the architecture, we provide 3 runtime metrics vectors: xia, xka, xij. The

same fully connected layers are applied to get the embeddings from the different observations,
and we obtain their respective embeddings: zia, zka, zij. The loss function on this instance of
triplets is LT (xia,xka,xij) and is given by:

LT (xia,x
k
a,x

i
j) = max(0, ||e(xia)− e(xka)||2 − ||e(xia)− e(xij)||2 + α)

The final loss to be optimized is the sum over all the instances of triplets:

J =
n∑
a=1

Is∑
i=1

∑
j 6=a

LT (xia,x
k
a,x

i
j) (13)
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Where α is a margin hyper-parameter that is tuned alongside other hyper-parameters. The
training of this loss function requires Is shared configurations across all training workloads.
However, an arbitrary configuration can be observed for the new workload at inference time.

5.5 Hybrid architectures

In this section, we propose hybrid architectures that add decoders on top of Siamese neural
networks.
Hybrid1. We start by augmenting the previous architecture with a decoder in order

to add to the triplet loss, additional terms related to our customized disentanglement and
reconstruction. We thus minimize this loss function:

J =
n∑
a=1

Is∑
i=1

∑
j 6=a

LT (xia,x
k
a,x

i
j) + γLR(xia,x

k
a,x

i
j) + λLC(via,v

k
a,v

i
j) (14)

with LT as provided in Section 5.4, LR is the reconstruction of the anchor, positive, and
negative terms, and LC corresponds to the configuration approximation for the 3 terms as
well:

LR(xia,x
k
a,x

i
j) = ||x̃ia − xia||2 + ||x̃ka − xka||2 + ||x̃ij − xij||2

LC(via,v
k
a,v

i
j) = ||ṽia − via||2 + ||ṽka − vka||2 + ||ṽij − vij||2

with via = vij ≡ vi and vka ≡ vk 6= vi

Hybrid2. In contrast to the triplet loss that samples one positive and one negative point
for each anchor point in a batch of data, the Soft Nearest Neighbor (SNN) loss [24,51]
uses all the points in the batch to measure the separation between classes. We apply this loss
to an encoder layer of the autoencoder so that the joint loss that we minimize has both the
reconstruction term and the SNN term.

J =
1

N

∑
i,j

||x̃
i
j − xij||2 − λ log


∑
k 6=i

e−
||zij−zkj ||

2

T

∑
k,l

(k,l)6=(i,j)

e−
||zij−zkl ||

2

T




where λ is a regularization coefficient and T is a temperature hyperparameter.

The soft nearest neighbor term for one training point (whose corresponding configuration
is indexed by i and whose corresponding job is indexed by j) is given by (assuming T = 1 for
now):

− log

∑
k 6=i

exp(−||zij − zkj ||2)∑
k,l

(k,l)6=(i,j)

exp(−||zij − zkl ||2)
= − log

numerator

denominator
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The numerator is a sum of negative exponentials of distances between the encoding zij of
the current job j with the current configuration i and all other encodings zkj for the same
job j within the same batch but obtained under a configuration k different than the initial
configuration i (hence k 6= i). So it’s a sum of distances between all "positive pairs". The
denominator is a sum of negative of exponentials of distances between the encoding zij and all
other encodings zkl coming from different jobs l (hence l 6= j) and under different configuration
from the current i (hence k 6= i).

Minimizing the soft nearest neighbor term requires minimizing the denominator within the
logarithm of the above equation and maximizing the numerator within this same equation.
The numerator is a sum of positive terms so it can be maximized by maximizing each of its
term. Maximizing each exp(−||zij − zkj ||2 is equivalent to minimizing each distance within
the exponential term. So we are trying to minimize the distance between encodings coming
from the same workload (zij and zkj ). On the other hand, the denominator is as well a sum
of positive terms, and minimizing the denominator requires minimizing each of its terms.
Each term is minimized if the distance inside the negative exponential is maximized. So this
corresponds to maximizing the distance between the current encoding zij and other encodings
zkl coming from different workloads under a different configuration within the embedding
space.

As for the temperature parameter T , it controls the sensitivity to distances between different
embeddings obtained for points within the same batch. If T is very high (close to infinity),
then the values of the distances will not be taken into account. Instead, the numerator will
be the number of points within the same batch that belong to the same workload, and the
denominator will be the number of points within the same batch that belong to a different
workload. In other words, under high values of T, this loss function does not ensure tightening
encodings obtained with input traces xij that belong to the same workload j, and thus we
shouldn’t consider high values of T for our use case. On the other side, if T is very low, then
the loss becomes extremely sensitive to distances between the points and a small change
in the distance can make a big difference in the value of the SNN function. We tune the
temperature T parameter just like any other hyper-parameter while minimizing the loss
function.

5.6 Summary

This chapter introduced representation learning architectures from two families of techniques
both of which explicitly extract encodings from runtime traces before feeding them to a
neural network dedicated for the end regression task on the runtime latency. We have covered
different auto-encoders starting with deterministic autoencoders and explained why the
basic auto-encoder violates both the independence and invariance properties. We have then
added edits on top of the architecture and augmented the loss function with supervised and
unsupervised terms as an attempt to favor these properties while training the auto-encoders
which natively satisfy the reconstruction property. We also briefly covered the variational
auto-encoder from the generative family of auto-encoders because it’s known for its capacity
of automatic disentanglement of generative factors within the bottleneck layer. Furthermore,
we have also introduced another paradigm of extracting encodings that relies on siamese
neural networks instead of auto-encoders, and explained how to train such networks that
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satisfy a relaxation of the invariance property. Finally, we also gave examples of designs of
hybrid architectures that combine auto-encoders and siamese neural networks. In chaper
7 we will show how the different introduced representation learning techniques can help in
revealing interesting insights from the data that we have collected. We also compare the
different approaches quantitatively within this Chapter 7 after we introduce in the next
chapter the workloads and traces used for benchmarking.
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6 Workloads, Runtime Environment, Sampling and Traces
In this chapter, we present the benchmark of Spark workloads that we use for comparing

different modeling techniques. We then introduce important Spark knobs that we tune while
sampling traces from these workloads. We also explain Spark heuristics and best practices
we resort to while sampling the trace datasets and we finally give a brief overview of the
collected runtime metrics within these traces.

6.1 Workloads description

We have developed two benchmarks of traces while running heterogeneous workloads on
top of Spark [66]. The two benchmarks of traces were collected while running (1) streaming
workloads that cover parametrized variations of workloads from a prior work [37] and (2)
batch workloads which consist of parametrized variations of TPCx-BB workloads [59]. We
collected the traces after developing a trace generation system that orchestrates dedicated
Spark clusters for profiling. We present the details regarding the streaming trace dataset, and
provide only a brief overview of the TPCx-BB traces collected by a colleague who extended
our sampling code.

6.1.1 Streaming benchmark

The streaming workloads are parametrized variations from 7 templates: 5 templates cover
SQL-like workloads with user defined functions and 2 other templates are variations of ML
workloads. The SQL-like workloads operate on top of a clickstream dataset downloaded
from the 1998 world cup website [36] while the ML workloads operate on top of synthetic
streaming datasets.

SQL-like templates Most of the SQL-like workloads consist of windowed aggregates, so a
natural way to parametrize such workloads consists of changing the streaming window size w.
We also vary the selectivity δ of the filter at the end of the computation pipeline and add an
artificial cpu pressure with a controllable degree π. We provide below the Scala code of the
function that simulates the artificial cpu pressure:

1 protected def cpuPressure(pressure: Int): Unit = {
2 var x: Double = -4;
3 (1 to pressure).foreach(i => x = x + Math.pow(-1, (i + 1)) * 4 / (2 * i
4 - 1))
5 }

This function iteratively computes an approximation of the mathematical constant Π (not
to be confused with π the parameter equivalent to pressure within the function). It is called
while processing the data within each window of the streaming session.

We provide within this thesis the CQL representation [13] of the streaming SQL-like
workloads since this representation is more compact than the full Scala code. Though, this
representation doesn’t allow us to include the call to the cpuPressure function.
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• Template A consists of windowed aggregate workloads with selectivity δ, window size w
and artificial cpu pressure π control.

1 SELECT userId, COUNT(*) as counts
2 FROM UserClicks [range w slide 10s]
3 GROUP BY userId
4 HAVING counts > δ

From this template, we generate 12 workloads with different parameter values.
• Template B consists of windowed aggregate workloads with window size w and artificial

cpu pressure π control.

1 SELECT userId
2 FROM UserClicks [range w slide 10s]
3 GROUP BY userId

From this template, we generate 4 workloads with different parameter values.
• Template C consists of global aggregate workloads with selectivity δ and artificial cpu

pressure π control.

1 SELECT URL, COUNT(*) as counts
2 FROM UserClicks
3 GROUP BY URL
4 HAVING counts > δ

From this template, we generate 6 workloads with different parameter values.
• Template D consists of windowed aggregate workloads with selectivity δ, window size w

and artificial cpu pressure π control.

1 SELECT URL, COUNT(*) as counts
2 FROM UserClicks [Range w slide 10s]
3 GROUP BY URL
4 HAVING counts > δ

From this template, we generate 12 workloads with different parameter values.
• Template E consists of windowed aggregate workloads with a join operator to a static
dataset. The workloads allow selectivity δ, window size w and artificial cpu pressure π
control.

1 SELECT userId, SUM(pageRank)
2 FROM Rankings and UserClicks [Range w slide 10]
3 WHERE Rankings.pageURL = Userclicks.URL
4 GROUP BY userId
5 HAVING SUM(pageRank) > δ

From this template, we generate 12 workloads by varying the window size w, the pressure
π and the selectivity δ.

Details regarding specific values of the parameters for these workloads are provided within
the appendix.
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ML templates We extended the streaming benchmark with 2 additional ML templates:
• Template F: a template for classification workloads based on the library streamDM [15].
All of the workloads within this template operate on top of the same synthetic dataset
but differ in the choice of the hyper-parameters. The workloads have been parametrized
by changing four main hyper-parameters: the learning rate of the classifier, the loss type
(logistic or hinge), the regularizer, and the regularization coefficient. More details about the
12 parametrized workloads from this template are provided in Table 10 in the appendix.
• Template G: a template of workloads running the clustering k-means algorithm [12]. The
workloads are written in Scala using the library MLlib [45]. The workloads have been
parametrized by changing the value of the hyper-parameter k of the K-means algorithm.
We also parametrize the workloads by streaming at the receivers either a 3D or 4D synthetic
datasets. Details about workloads from this template are provided in Table 11 within the
appendix.

We recall that we tune both the SQL-like and ML workloads with the same goal in mind:
to reduce the runtime latency of the workloads so that we get computation results as quickly
as possible while the data is ingested into the system. That being said, we must shed the
light on the fact that the current tuning context differs from the familiar context in which ML
workloads are tuned for the only purpose of getting more accurate models regardless of the
runtime latency. In this work, however, tuning the ML workloads doesn’t refer to changing
their hyper-parameters but rather changing the parameters of the distributed system on top
of which these workloads are running (the parameters we tune in this work are Spark knobs
later introduced in Table 2). The moment we change the hyper-parameters of a ML workload,
it is considered a different workload within the same template. This is clarified within the
appendix in Tables 10 and 11 which illustrate the parametrizations of the ML workloads.
Our current parametrization of ML workloads within the same template is realistic as soon
as we consider that the cloud user is submitting the same ML subroutine but with different
hyper-parameters for example if he found better hyper-parameters and decided to submit the
job with the new hyper-parameters. The cloud user’s goal remains though to maintain a low
runtime latency even if the new hyper-parameters increase the complexity of his ML model.

6.1.2 TPCx-BB workloads

The TPCx-BB benchmark specification includes 30 templates of workloads for batch
analytics which can be divided into 14 SQL tasks, 11 SQL with UDFs and 5 ML workloads.
From these 30 templates, 1160 parametrized workloads are generated and used for evaluating
the modeling techniques introduced in earlier chapters. The orchestration tool which we
developed to collect traces from streaming workloads has been extended to sample traces as
well from the batch workloads. Since the parametrization of these batch workloads is not our
main contribution but rather a contribution of another collaborator, we don’t detail it within
this thesis.
In the next section, we describe the distributed infrastructure on top of which we have

deployed our workloads and collected runtime traces.
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6.2 Distributed environment

We have set up 6 Spark clusters on 18 identical compute nodes with exactly the same
hardware properties. A cluster spans 3 nodes and has Spark 2.3.1 installed alongside Hadoop
2.9.1. Each node has 2x Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz processors (with 16
cores per processor) and 754 GB of RAM. Note however that we change the resource allocation
knobs of Spark while tuning the workloads without changing the underlying hardware. This
means that we don’t use the full node’s capacity when we don’t assign the full number of
cores and the full memory to the current Spark job.

While running our workloads, we deploy the driver in client mode using Hadoop YARN [1,63].
This means that the driver is deployed locally as an external client not on the worker nodes.
Thus, one node gets reserved for the driver, while Spark executors run on the two other
remaining nodes of each spark cluster.

The workloads are implemented in Scala, and are submitted to Spark using the command
spark-submit. This command takes as arguments both: (1) the name of the jar file containing
compiled binaries of the workload code as well as (2) knob parameter values.

6.3 Trace datasets

6.3.1 Sampling heuristics and knob selection

After discussing with a Spark expert, we have selected the 10 most relevant knobs and we
have tuned these knobs while sampling our traces. We provide the list of knobs within Table
2. These knobs cover 3 main categories:
• Parallelism related knobs : These are the knobs that dictate the level of parallelism at both

mappers and reducers sides. In particular, we tune batch interval denoted as v1 and block
interval (spark.streaming.blockInterval, denoted as v2). v1 and v2 jointly dictate the level of
parallelism at the mappers side. We also tune the parallelism (spark.default.parallelism,
denoted as v3) which refers to the parallelism at the reducers side.
• Granularity of Scheduling related knobs : This category comprises nodes controlling: the max-

imum size of map outputs to be fetched from reduce tasks (spark.reducer.maxSizeInFlight,
denoted as v4), the maximum number of reduce partitions that represent the threshold for
bypassing mergesort algorithm within the sort-based shuffle manager
(spark.shuffle.sort.bypassMergeThreshold, denoted as v5), whether or not to compress map
output files prior to shuffling (spark.shuffle.compress, denoted as v6).
• Resource allocation knobs : These are knobs that imply the choice of the resources booked
for the spark application. For instance, when running a spark in cluster mode and not
in standalone mode (which is used for debugging), we need to specify how many cores
on the cluster and how much memory should be dedicated to the spark application.
In spark terminology, the smallest unit of worker is defined as executor and resources
should be specified per executor. We tune in particular these knobs: (1) number of
executors (spark.executor.instances, denoted as v7), (2) number of cores per executor
(spark.executor.cores, denoted as v8) (3) memory per executor (spark.executor.memory,
denoted as v9).
These knobs are of particular importance because they also imply the dollar cost for
reserving equivalent amount of computation resources in the cloud. We have restricted
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Abbreviation Knob Technical Name
v1 Batch interval -
v2 Block interval spark.streaming.blockInterval
v3 Parallelism spark.default.parallelism
v4 Maximum size in flight spark.reducer.maxSizeInFlight
v5 Bypass merge threshold spark.shuffle.sort.bypassMergeThreshold
v6 RDD Shuffle compress spark.shuffle.compress
v7 Number of executors spark.executor.instances
v8 Number of cores per executor spark.executor.cores
v9 Memory per executor spark.executor.memory
v10 Input rate* -

Table 2: Spark knob abbreviations and names.

A B C D E F G
660000 880000 480000 600000 1200000 1100000 900000

Table 3: Input rate values (records/second) across different templates.

sampling values for these knobs from the choices presented within Table 4. This table
provides a mapping from resource choices to candidate EC2 instances (from the compute
optimized C5 family) that can fulfill the required resources. The mapping is given as
an example so that we can have an idea of a cloud setup that can match the resource
configuration. Nevertheless, let’s recall that our real deployment of Spark cluster makes
use of 2 worker nodes even though we sometimes map the resource configurations to 3 EC2
instances so that we get a sufficient # of cores (see choices 5,6,7,10,11, and 12 in Table 4).
We also control the input rate (denoted as v10) at the level of the source before streaming

the datasets into Spark engine, and we choose to fix the value of input rate across workloads
within the same template so that we fix the data characteristics. However, across different
templates we choose different values of input rate as detailed in Table 3. This knob is not
tuned during the optimization process, but is fed as additional information to our models.
Thus the dimension of the vector vi is 10 within the streaming benchmark.

The TPCx-BB trace tunes the same knobs that we’ve introduced in Table 2 (except
knobs v1, v2 and v10 which are reserved for streaming workloads). It also tunes 5 addi-
tional knobs, 4 of which are specific to batch SQL-like workloads: spark.memory.fraction,
spark.sql.inMemoryColumnarStorage.batchSize, spark.sql.files.maxPartitionBytes,
spark.sql.autoBroadcastJoinThreshold, and spark.sql.shuffle.partitions. Hence, vi is of dimen-
sion 12 within the TPCx-BB trace.

Heuristics for sampling values for the different knobs. We adopt the following
heuristics when it comes to sampling traces for streaming workloads:
• We always set the parallelism (v3) after choosing first the resources on which we’d like to
run the workload (knobs v7, v8 and v9). We set the parallelism as 2 or 3 * total number
of cores according to Spark best practices [4]. We denote below by β the parallelism
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choice n_exec nc/exec exec_mem(GB) n_ec2_instances ec2_type $cost/hour
1 2 2 4 2 c5.large 0.17
2 3 2 4 3 c5.large 0.255
3 2 4 8 2 c5.xlarge 0.34
4 4 2 4 2 c5.xlarge 0.34
5 3 4 8 3 c5.xlarge 0.51
6 4 3 6 3 c5.xlarge 0.51
7 6 2 4 3 c5.xlarge 0.51
8 4 4 8 2 c5.2xlarge 0.68
9 8 2 4 2 c5.2xlarge 0.68
10 6 4 8 3 c5.2xlarge 1.02
11 8 3 6 3 c5.2xlarge 1.02
12 12 2 4 3 c5.2xlarge 1.02
13 8 4 8 2 c5.4xlarge 1.36
14 16 2 4 2 c5.4xlarge 1.36
15 18 4 8 2 c5.9xlarge 3.06
16 24 3 6 2 c5.9xlarge 3.06
17 36 2 4 2 c5.9xlarge 3.06

Table 4: Mappings between executor resources and EC2 resource pricing.

coefficient. The total number of cores is equal to the number of excecutors multiplied by
the number of cores per executor (total_cores = v7 ∗ v8).
• Batch interval (v1) values are randomly sampled from {1s, 2s, 5s, 10s} for workloads from

templates {A, B, D, E} (because of constraints regarding window interval and slide interval
within these templates). For the remaining templates, batch interval values are sampled
from {1s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s}.
• Block interval (v2) is set after choosing the value for batch interval and the resources allo-

cated for the workload. The ratio of batch interval/block interval determines approximately
the number of tasks per receiver per batch [57]. Thus, we choose to set the block interval
as:

v2 ← α ∗ v1
v7 ∗ v8

where α is uniformly sampled at random from {0.5, 1, 2}.
Similar batch-specific heuristics have been adopted when sampling traces from the TPCx-
BB workloads.

Shared vs arbitrary pool of configurations We distinguish between two pools of knob
configurations that we wish to sample for our different workloads. The first pool is a pool
that contains traces coming from a common (shared) set of configurations and thus is denoted
by the shared pool. The second pool on the other side, samples arbitrary configurations for
each workload and is thus denoted by arbitrary pool. We need both pools of configurations in
order to better explain the differences between diverse modeling techniques earlier introduced
in previous chapters. The two pools allow us to closely examine the performances of different
models given data specific assumptions.
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Shared pool : We sample traces from a set of 32 common configurations across all workloads
in the streaming benchmark. Some of the configurations fail while running on a subset of the
workloads, so we end up with only 16 common configurations across all workloads.

Arbitrary pool : For each of the streaming workloads, we sample traces from 128 arbitrary
configurations. Some of these configurations fail as well for some workloads, and we end up
with fewer configurations.
Pseudo-codes 1 and 2 explain the sampling procedure for both pools. The pseudo-code
assume the existence of these predefined functions:
• get_inputrate_for_job: given a job id, this function returns the corresponding input rate
value as provided in Table 3.
• get_template: is a function that takes as input the job id and returns the template id of

the corresponding job.
• uniformly_sample_from: is a function that takes as input a set of values, a number of

points to sample and a boolean parameter indicating whether or not to replace a sampled
value (if n > 1)
• sample_resource_choices: is a function that takes a parameter n as input and samples n

resource choices out of the 17 possible resource choices given within Table 4
• sample_v4_values: is a special sampling function that first samples one of 4 different

buckets, each with a different sampling probability, and then uniformly samples one value
from within the sampled bucket. The buckets and their corresponding probabilities are:
– Bucket #1: v4 ∈ {k|k ∈ N ∧ k ≥ 12 ∧ k ≤ 36} with probability 0.2
– Bucket #2: v4 ∈ {48} with probability 0.5 (because this is the default value)
– Bucket #3: v4 ∈ {k|k ∈ N ∧ k ≥ 64 ∧ k ≤ 192} with probability 0.2
– Bucket #4: v4 ∈ {k|k ∈ N ∧ k ≥ 192 ∧ k ≤ 480} with probability 0.1
• sample_v5_values: is a function that given a particular value of parallelism, uniformly

samples a value between -11 and 11 and add it to parallelism (so that v5 sampled values at
the end are between 4 and 105).
We have open-sourced the dataset of traces collected and put them on: https://github.

com/udao-modeling/code.

6.3.2 Collected metrics and preprocessing

We profile the workloads by collecting two types of metrics: (1) Spark related metrics (2)
OS metrics collected using Nmon and parsed using PyNmonAnalyzer [48].

Since we are interested in modeling average performances of distributed workloads over the
whole running period, we need to aggregate the traces by taking the mean of the metrics over
the execution period. But for some metrics (such as counters), this mean isn’t meaningful
without additional feature engineering. We provide below a quick overview of the metrics
collected from both Spark and Nmon and then we give details regarding the aggregation and
additional feature engineering done on top of these metrics.

Spark metrics The online Spark documentation at the moment of writing this manuscript
distinguishes between 5 different types of metrics yielded by csv sinks:
• (1) Gauges that represent instantaneous measurements of some values.
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Pseudocode 1: Sampling configurations for the shared pool
Data: job_ids
Result: all_shared_configurations

1 shared_configurations = [] #shared across all workloads
2 #samples 4 joint values of resource allocation knobs (v7, v8, v9) from Table 4
3 #(out of 17 total);
4 resource_choices← sample_resource_choices(n=4);
5 for resource_choice in resource_choices do
6 v7, v8, v9 ← resource_choice;
7 β ← uniformly_sample_from({2,3}, n=1);
8 v3 ← β ∗ v7 ∗ v8; # (Parallelism = β * total cores);
9 v1_choices← uniformly_sample_from({1, 2, 5, 10}, n=8, replace=True);

10 v2_choices← []; # empty list
11 for v1 in v1_choices do
12 α← uniformly_sample_from({0.5, 1, 2}, n=1, replace=True);
13 v2_choices.append((α ∗ v1)/(v7 ∗ v8)) ;
14 end
15 v4_choices← sample_v4_choices(n=8, replace=True);
16 v5_choices← sample_v5_choices(n=8, parallelism=v3, replace=True);
17 v6_choices← uniformly_sample_from([True, False], n=8, replace=True);
18 for i in [0, 1, 2, ..., 7] do
19 v1 ← v1_choices[i] ;
20 v2 ← v2_choices[i] ;
21 v4 ← v4_choices[i] ;
22 v5 ← v5_choices[i] ;
23 v6 ← v6_choices[i] ;
24 config ← [v1, v2, v3, v4, v5, v6, v7, v8, v9];
25 shared_configurations.append(config)

26 end
27 end
28 all_shared_configurations = [];
29 for job in job_ids do
30 v10 ← get_inputrate_for_job(job) ;
31 for config in shared_configurations do
32 all_shared_configurations.append([job] + config + [v10]);
33 end
34 end
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Pseudocode 2: Sampling configurations for the arbitrary pool
Data: job_ids
Result: configurations

1 configurations← []; # empty list
2 for job in job_ids do
3 v10 ← get_inputrate_for_job(job) ;
4 v4_choices← sample_v4_values(n=4, replace=True);
5 v5_choices← sample_v5_values(n=4, replace=True);
6 v6_choices← uniformly_sample_from([True, False], n=4, replace=True);
7 if get_template(job) in ["A", "B", "D", "E"] then
8 v1_choices← [1,2,5,10]; #restricted choices of batch interval
9 else

10 v1_choices← uniformly_sample_from({1,2, ..., 10}, n=4, replace=False);
11 end
12 #samples 8 joint values of resource allocation knobs (v7, v8, v9) from Table 4
13 #(out of 17 total);
14 resource_choices← sample_resource_choices(n=8);
15 for resource_choice in resource_choices do
16 v7, v8, v9 ← resource_choice;
17 # Calculates the total number of cores for this resource choice
18 β ← uniformly_sample_from({2,3}, n=1);
19 v3 ← β ∗ v7 ∗ v8;
20 for v1 in v1_choices do
21 α← uniformly_sample_from({0.5, 1, 2}, n=1, replace=True);
22 v2 ← (α ∗ v1)/ (v7 ∗ v8) ;
23 for i in [0, 1, 2, 3] do
24 v4 ← v4_choices[i] ;
25 v5 ← v5_choices[i] ;
26 v6 ← v6_choices[i] ;
27 config ← [job, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10];
28 configurations.append(config)

29 end
30 end
31 end
32 end
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• (2) Counters whose values are usually monotonically increasing or decreasing throughout
the execution of the workload
• (3) Histograms that provide statistics for the values obtained within the stream of mea-

surements.
• (4) Meters that describe the rate of events over time.
• (5) Timers containing the rate of calling a particular subroutine as well as statistics

concerning its duration.
Metrics we collected with our older version of Spark (version 2.3.1) are already covered

in the recent documentation as of Spark 3.0.0 (see [5] as well as the page provided by
Dropwizard [6] for more details)

We group Spark metrics into 3 main categories according to how we addressed its prepro-
cessing. We distinguish between:
• Normal metrics that include gauge and meters metrics. At each timestamp, the value
of the metric can be arbitrary during the whole execution period. For these metrics,
we simply take the average across the execution period. An example of such metric is:
driver.StreamingMetrics.streaming.lastCompletedBatch_processingDelay
• Counters : In this category, we are particularly interested in counters that are monotonically

increasing or decreasing throughout the execution period. For such counters, we engineer 3
features instead of taking the average value like we did for the so called Normal metrics.
The features calculated from the data are:
(1) average increase, which is computed as such: we first calculate the differences between
values of consecutive timestamps and then we take out the mean of these differences across
the whole execution period.
(2) rate of increase, computed as such: we calculate on average how many timestamps it
takes for the value to change throughout the whole execution period.
(3) n_unique: This represents the number of distinct values for the original metric across
the whole execution of the workload. This feature is useful because accumulators do not
change every single timestamp but rather every couple of timestamps.
An example of such type of metrics is:
driver.StreamingMetrics.streaming.totalCompletedBatches
• Statistics: these include both the timers and histograms. For most of these metrics, we get
15 statistics from csv sinks for each timestamp. The statistics cover the mean, the min,
max, std dev as well as some quantiles and moving averages. Right now, we only consider
the mean out of these statistics and take its average value across the whole execution
period. An example of such type of metrics is :
driver.LiveListenerBus.listenerProcessingTime.org.apache.spark.HeartbeatReceiver (timer)
An interesting direction to explore in the future would be to consider each of these statistics
as a separate features for the modeling problem. This will inflate the dimension of the
runtime trace vector x which may force us not to bypass the representation learning step
prior to regression, so that we avoid doing the regression in very high dimensions.

After aggregating the metrics provided for each executor across the runtime period, we
combine metrics from different executors and calculate the average across all executors. By
doing so, we make sure we have a uniform set of metrics no matter how many executors were
allocated (when the user puts an arbitrary value for the knob spark.executor.instances) prior
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to running the workload. We end up with 111 executors related metrics as well as 148 driver
metrics, so in total we have 259 Spark related metrics.

Nmon Metrics We first run the PyNmonAnalyzer [48] in order to parse Nmon logs and
get grouped metrics within csv files. We end up with 336 Nmon metrics per worker node
covering 5 CPU metrics per core (idle, steal, sys, user, wait) as well as other metrics covering
memory and disk. Since we have 2 worker nodes, we have in total 672 Nmon metrics.
So for each configuration vi run on a streaming workload j, the collected runtime trace

vector xij comprises 931 metrics in total (672 Nmon metrics for the 2 worker nodes and 259
spark metrics). We further preprocess the traces by metrics which take constant values or
metrics for which some traces yield Nan (Not a number). We end up with 561 metrics for
each of the streaming workloads. Hence the dimension of each runtime trace vector xij is 561.

A slightly different preprocessing (in terms of metrics aggregation and feature engineering)
for TPCx-bb trace yields 572 metrics before any trimming. We end up with 286 metrics after
trimming metrics whose values remain constant.
Our profiling approach can be easily extended if we use newer computing infrastructure

that have a GPU for example. For instance, if the GPU vendor is NVIDIA, then additonal
metrics can be collected using the command nvidia-smi. An example of the GPU metrics
that can reflect the behavior of the workloads are: processor and memory clocks (in Mhz),
memory usage in percentage, power usage (in Watts), etc... In this case, new models can then
be trained using all 3 types of metrics: (1) Spark metrics (2) Os metrics (3) GPU metrics.

6.4 Summary

This chapter has covered 3 main contributions: (1) extending a previous benchmark of
streaming workloads with more parametrizations and more workloads (2) Developing a trace
generation orchestration tool that runs and profiles workloads from the streaming benchmark
as well as TPCx-BB benchmark (3) Using best practices and heuristics from Spark and
sampling traces by running spark workloads on our distributed computing infrastructure.
In the next chapter, we will use these traces in order to evaluate the different modeling
approaches we earlier presented in Chapters 4 and 5.
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7 Experiments
In this chapter, we provide experimental results with recommender modeling approaches

from chapter 4 and representation learning modeling approaches we outlined in chapter 5
after running them on traces collected from workloads introduced in the previous chapter.

We start by providing details regarding the experimental setup for the different experiments
in §7.1. Then in §7.2 we explain our evaluation methodology, the metric we use to compare
different models and how we validate different models before evaluating them on the test set.
In §7.3 we compare collaborative filtering methods introduced in Chapter 4 with the aim of
understanding whether representing the interaction between workloads and configurations as
a simple dot product (with or without biases) is a better choice than representing it using a
neural network. We then recall the limitations of the different collaborative recommender
architectures and their inability to recommend configurations beyond those already observed
within training data and motivate the need for a hybrid embedding approach which we
compare in §7.4 to other representation learning based approaches from chapter 5. Then in
order to assess the robustness of each method, we conduct an ablation study in §7.5 and we
try to gradually reduce the number of configurations available for training and we track its
effect on the prediction errors while keeping the same evaluation set for test workloads. We
also record the fitting time of each representation learning technique under different number
of training points so that we report in the same subsection results on the scalability of each
approach and the range of errors that it yields. We conclude this subsection with an analysis
regarding how scalability can affect critical business decisions such as how many times our
system can afford to retrain a global model. Within the same paragraph (§7.5), we briefly
explain that a workload mapping step (similar to the one that is used within Ottertune) is
not needed with our tuning system. Finally, in §7.6 we conduct an end-to-end experiment in
which we compare between our best performing modeling technique and Ottertune [61]. This
experiment reveals that our modeling approach can provide better latency improvement than
configurations recommended by Ottertune under different scenarios.

7.1 Experimental setup

Traces. We use the two benchmarks of Spark workloads (streaming and TPCx-BB) earlier
introduced in the previous chapter in order to conduct our modeling exepriments. We recall
that we collected a trace for each workload under a particular configuration, covering two
types of metrics: (i) Spark related metrics and (ii) OS related metrics.
The streaming benchmark controls 10 knobs (dv = 10 for this benchmark) and the

traces cover 70 workloads including 53 training workloads and 17 test workloads (whose
parametrizations are available in the appendix within tables 9, 10, and 11) with 128 traces
each sampled from the arbitrary pool and 16 traces sampled from the shared pool. The
TPCx-BB benchmark tunes 12 knobs (dv = 12 for this benchmark) and includes 30 templates,
from which we generated 1160 parametrized workloads. Among them, 928 are used as
training workloads including (i) 58 intensively sampled workloads with around 316 traces
each arbitrarily sampled (ii) 870 sparsely sampled workloads with around 30 arbitrary traces
each. Furthermore, 232 workloads are left for evaluation and each has 30 arbitrary traces.
Finally, we have also sampled 15 shared configurations for all TPCx-BB workloads (covering
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training and evaluation workloads).
Further preprocessing. We further preprocess the traces by adding a Min-Max scaling

layer so that both the knob configuration vectors vi and the runtime metrics xij vector
components get scaled between 0 and 1 before being fed to neural networks. This can help in
faster convergence and better training of our neural network based architectures [14].

7.2 Evaluation methodology

Evaluation metric. We use the Mean Absolute Percentage Error (MAPE) metric for
reporting results for the different modeling methods.
Hyper-parameter tuning. For the encoder/decoder based architectures as well as

the neural networks we tune topology, optimization and other hyperparameters (such as
coefficients within loss functions) by using a 5 fold cross validation scheme that simulates the
same training settings as in practical cases (observing few configurations for workloads in the
left out fold). More details about hyper-parameter tuning are provided within section D of
the appendix.
Fine tuning representations. With our best performing representation learning tech-

nique, fine-tuning the weights of the encoder while trainnig the regressor on the end task
didn’t bring improvements over training the regressor separately without further fine tuning.
Implementation and hardware details. We have implemented the recommender based

architectures (matrix factorization and advanced matrix factorization), all encoder/decoder
based architectures as well as the neural network regressor using Tensorflow [7, 8]. We adopt
the tied-weights case implementation of auto-encoders as recommended by [14]. We have
implemented the embeddings approach (dual embeddings and hybrid embedding approach)
using Keras [18]. We use open source implementations from scikit-learn [47] for the baseline
representation learning techniques (PCA and KPCA [53]) to which we compare.

We have a dedicated cluster of 20 nodes for training our models. Each node has 2 x Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz processors (with 16 cores per processor) and 754 GB of
RAM.

7.3 Comparative results of recommender architectures

Streaming Trace TPCx-BB Trace

Matrix Factorization 40.17 ± 18.08 8.16 ± 7.73
Advanced Matrix Factorization 21.12 ± 8.98 7.53 ± 7.63

Dual Embeddings 24.74 ± 20.52 13.26 ± 7.44
Hybrid Embeddings 49.71 ± 21.90 10.26 ± 6.78

Table 5: Runtime latency MAPE with different recommender approaches averaged over 10
runs. The comparison so far is limited to previously seen configurations.
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Streaming Trace TPCx-BB Trace

Matrix Factorization 1.001s 3.568s
Advanced Matrix Factorization 1.163s 3.667s

Dual Embeddings 0.9503s 6.602s
Hybrid Embeddings 1.159s 9.154s

Table 6: Incremental training average ovearhead (averaging over 10 runs for each test job).

In this section, we focus on comparing performances of two promising recommender systems
approaches from the collaborative filtering family of methods we introduced earlier in Chapter
4, namely the matrix factorization which uses the dot product as a way to account for the
interaction between the workload and the configuration, as well as neural based recommender
architecture (called dual embeddings) which models the interaction using a neural network after
concatenating both latent representations. For this specific study, we train the approaches
while using all configurations from shared and arbitrary pools corresponding to our training
workloads. However, for each test workload, we only observe 5 shared configurations and
trigger incremental training using these 5 configurations. We evaluate the results on top of
the 10 other remaining not observed shared configurations for each test workload.

While training our models, we found that the matrix factorization version that adds biases
to the dot product (γ = 1 within equation 8) gave better results on top of the streaming trace,
while for TPCx-bb trace, we got the best results with the matrix factorization approach
without adding biases. When admitting a new workload we experimented with the folding-
in [52] technique but we found that randomly initializing a new latent representation and
then incrementally training the matrix factorization and updating the representations worked
better in our use case.

The results are shown within Table 5 and reveal that matrix factorization techniques work
better than more complex neural network architectures when it comes to recommending
one of the previously seen configurations. We attribute this finding to the fact that our
traces have right now limited number of configurations. For instance, we have 6026+16
unique configurations for the streaming workloads and 6272+15 unique configurations for
the tpcx-bb trace, whereas large scale recommender systems where more complex models
(such as neural networks) yield better results than traditional matrix factorization techniques,
usually have much more items to recommend (configurations in our context). Moreover, we
found that allowing more degrees of freedom while training the matrix factorization approach
(introducing a middle matrix S) and randomly initializing all 3 matrices Z, S and V instead
of initializing them using SVD decomposition gave better results than the original version of
matrix factorization.

Table 6 presents the time it takes to trigger incremental training required as soon as a new
workload is admitted into our system. We can see that the incremental training time incurs
a small overhead since it’s on the order of few seconds for a workload from the TPCx-bb
benchmark and nearly 1 second for a workload from the streaming benchmark.

We have also tried to replace the dual embeddings architecture with a hybrid collaborative-
content based embedding architecture (the one shown in Figure 6) and we’ve observed
that this has yielded lower errors on the TPCx-BB trace (10.26 ± 6.78) than the dual
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Streaming Trace TPCx-BB Trace
Shared Pool Arbitrary Pool Shared Pool Arbitrary Pool
5 obs 1 ob 5 obs 1 ob 5 obs 1 ob 5 obs 1 ob

All metrics (scaled) 11.9 10.9 34.8 34.9 7.2 7.6 8.6 29.6
PCA 11.4 11.3 24.4 60.7 11.9 16.4 70.1 50.8
KPCA 8.5 9.9 17.9 21.3 35.2 42.8 59.0 58.8

Hybrid Embedding 32.8 - 22.5 - 14.7 - 12.4 -

Custom AE 16.0 13.0 20.2 21.4 16.9 22.2 19.2 49.9
Custom contractive AE 10.6 12.2 13.0 19.7 9.7 14.3 28.9 53.0

VAE 8.5 11.2 17.7 18.7 11.4 14.6 28.4 37.5
Siamese Network (triplet) 10.6 12.6 9.6 11.6 7.7 7.9 6.5 9.5

Hybrid1 11.4 12.0 27.0 11.9 7.6 8.2 6.2 9.7
Hybrid1(λ = 0) 10.3 11.5 10.5 12.6 7.6 7.6 6.3 9.6

Hybrid2 9.9 12.4 11.2 12.8 7.9 8.3 6.8 10.7

Ottertune (default) 83.7 84.0 67.6 95.5 52.1 44.6 42.2 61.2
Ottertune (tuned) 50.8 63.8 36.8 67.8 41.0 33.5 35.2 38.2

Table 7: Runtime latency MAPE computed over test sets and averaged over 10 runs.

embeddings architecture but couldn’t find hyper-parameters that allow better performances
on the streaming trace. Nevertheless, this hybrid architecture allows us to make predictions
over new unseen configurations and allows us to make predictions if the new job is admitted
with an arbitrary configuration, while matrix factorization and the dual embeddings technique
fail to provide any prediction if the configuration is new and never seen before within our
training data. As such, we adopt the hybrid embeddings approach in the next section when
we compare recommender based approaches to other modeling approaches that explicitly
learn an encoding from runtime metrics before training a neural network regressor on the
runtime latency estimation task.

7.4 Comparative results of representation learning based techniques

We provide the main comparative results between different modeling techniques in Table 7.
We start with results from a baseline called "all metrics" that bypasses representation learning
and uses the whole vector of trace xij as the encoding for the workload (zij = xij in this case).
Then, we introduce two other baseline methods from the early literature of representation
learning: Principal Component Analysis (PCA) and Kernel PCA [53] and use them as an
encoding extraction tool instead of neural based auto-encoders. Then, we list the results
obtained with the previously introduced neural network modeling techniques: (1) Hybrid
Embedding architecture introduced in §4.3 (2) Custom autoencoder, (3) Custom contractive
autoencoder and (4) Variational autoencoder from §5.3, and (5) the siamese neural network
from §5.4. We also list results from the 2 hybrid representation learning methods introduced
in §5.5. Finally, we compare to the state of the art tuning tool, Ottertune [61, 68] earlier
introduced in the related work in §2.1 and which doesn’t learn any workload encoding, but
instead trains a separate model for each workload and then maps the test workload to one of
the training workloads before making predictions.
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Encoding Extraction Scheme. We consider two schemes for extracting encodings from
configurations: (a) shared scheme: zj is extracted from traces coming from a shared pool of
configurations (averaging {zij}i with i selected from the shared pool). (b) arbitrary scheme:
zj is extracted from traces coming from an arbitrary pool of configurations (averaging {zij}i
with i selected from the arbitrary pool).

We also distinguish between extracting the encoding for test workloads with either 1 or 5
observations, under each of the above (a) and (b) schemes, as shown in the header of Table 7.

It is worth noting that the arbitrary scheme is more practical than the shared scheme since
a cloud optimizer must expect receiving an arbitrary configuration for a newly submitted
job. The modeling problem becomes even harder when only 1 trace is observed for the test
workload. Nevertheless, we explicitly make the comparison between the two schemes in Table
7 to better understand which modeling technique works best under different job admission
settings, and we color the most practical case (arbitrary, 1 ob) in Table 7

We make the following observations from Table 7 and profiling results in Fig. 13 (different
colors within this figure represent different templates of workloads):
1. Baseline Methods. If we bypass representation learning techniques and directly

train a global regressor model on the runtime metrics xij (but taking their job centroid xj)
alongside the input configuration(s) vij, then we can get low errors on the latency estimation
if we guarantee having seen a job configuration from the shared pool. Similarly, PCA and
KPCA, two basic representation learning techniques, also work well under the same shared
scheme. These baseline methods, however, fail to work when a job is admitted by the system
under an arbitrary configuration. A closer look at the encodings obtained with KPCA
applied on raw metrics xij in Figure 13 shows how encodings from different job templates are
scattered in the 2D space and thus clearly violate the invariance property. This behavior is
actually expected from PCA based methods since a PCA consists of projecting the data on
axis such that the variance is maximized across all training points. We have nevertheless
considered comparing both PCA and KPCA to our proposed neural based architectures,
since both can be considered as particular cases of auto-encoders and are widely used as
baseline representation learning techniques.
2. Autoencoders. The custom autoencoder fails to provide better performances than

baseline methods under the different schemes. Its design, which mainly focuses on recon-
structing the variant part by adding a supervision term to the reconstruction loss function,
fails to offer the invariance property in the other designated part of the bottleneck layer.
This insight is verified in Figure 13: while encodings learned from the custom autoencoder
have better clustering properties, according to different jobs, than those learned from a basic
autoencoder or KPCA, they are still scattered and not tight enough along each job’s centroid.

Further adding a contractive term on top of our custom autoencoder provides consistently
better results across all encoding schemes for the streaming trace, but only under shared
scheme for the TPCx-BB trace. The contraction is induced by adding the Frobenius norm of
the Jacobian matrix in Eq. 12. This additional unsupervised term hence doesn’t condition the
invariance of encodings according to each specific workload, but rather affects all workloads
encodings by contracting them at once as seen in Figure 13. We attempted to overcome
this problem by sharding the training data into batches of traces coming from the same
workload and then training the architecture on these custom batches. The intuition here is
to constraint the contraction of the encodings and only apply contraction if encodings come
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Figure 13: 2D encodings obtained with different encoding/decoding techniques using the streaming
trace dataset.

from the same job. This however didn’t improve the results, and we got similar clustering
properties for the learned encodings as the ones learned while training on randomly sampled
batches out of the training data. The reason is that our loss function still didn’t include a
term that forces separating encodings extracted from traces of different jobs.

On the other hand, the variational autoencoder further improves the errors on the streaming
trace, but doesn’t bring improvements on the TPCx-bb trace, especially when it comes to the
arbitrary scheme. By examining the encodings obtained from this approach we see similar
clustering properties as the one induced by our custom disentanglement in Figure 13.
Within the subplot corresponding to variational auto-encoder within Figure 13, each dot
represents an encoding obtained for a particular workload with a particular configuration.
Although we’re learning a distribution of encodings, we have considered the mean of the
distribution that is learned for a particular workload under a particular configuration as
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zij = Ez∼qφ(z|xij)(z|x
i
j, φ) where φ are the parameters of the neural network that approximates

the posterior distribution qφ(z|x). An interesting insight from the encodings learned for the
variational auto-encoder is that the prior structure is still reflected on the obtained encodings
which appear within a circle centered at the origin and having a radius equals to 3 (equivalent
to 3 times the standard deviation of the normal distribution of the prior).

3. Siamese neural networks focus on a relaxation of the invariance property and achieve
drastic improvements on the errors obtained in the most constrained (challenging) setting of
observing 1 arbitrary configuration for an admitted job, under both streaming and TPCx-BB
datasets. The success of this architecture is attributed to its capacity not only to tighten
encodings from traces of the same workload but also to separate encodings of different
workloads, and thus focusing on learning a more invariant encoding for each workload.

4. Hybrid methods. Augmenting the triplet loss function with a reconstruction term
and a custom disentanglement didn’t bring improvements beyond those achieved with the
siamese neural network alone. Indeed, while tuning the hyperparameters of the loss function
in Hybrid1, we found that γ was assigned a small value for the best hyperparameters chosen,
which indicates that the loss function puts less emphasize on the reconstruction term. Further,
by closely examining the results obtained with Hybrid1 and Hybrid1 (λ = 0), we can conclude
that the invariance property subsumed independence in our problem settings across the two
datasets. The supervised triplet loss function gave indeed consistent results on the test sets
no matter how many (1 or 5) and from which pool (arbitrary or shared) configurations were
sampled. The second hybrid loss function, which combines a soft nearest neighbor term (a
more recent metric learning method) and a reconstruction term, provides error on the same
scale as the first hybrid loss function when λ is set to 0.

5.Ottertune [61,68], the state-of-the-art tuning tool for RDBMS previously introduced in
Related Work under §2 does not leverage traces from different workloads or use representation
learning techniques to train a single model. In contrast to our approaches, it trains one
model per workload and then forces mapping each test workload to one of the past training
workloads in order to model its performances. This leads to higher errors across the different
training settings under both datasets using the default hyper-parameters from Ottertune.
Even when we tried to tune the length-scale, magnitude and ridge parameters of GP models
within Ottertune, the error order with Ottertune remains high compared to other approaches.

6. Hybrid Embedding. The hybrid embedding approach (hybrid between collaborative
based and content based methods) we introduced in Figure 6 under §4.3 doesn’t fully use the
raw metrics xij to extract an encoding upon the admission of a new job. Instead, it learns
an embedding by backpropagating the least squares loss that focuses solely on the actual
runtime latency yij to learn a unique encoding zj. While experimenting with this approach,
we have tried to pretrain the weights of the architecture alongisde the embeddings by first
trying to approximate all the runtime metrics at the output, and then trimming the last layer
and refitting on the runtime latency uniquely (by fine-tuning the layers that are kept and
updating the new layers using backpropagation) but this didn’t bring improvements on the
current results.

Although this approach fully satisfies the invariance property, it remains inferior to other
neural based approaches grounded in representation learning. This is because it leverages
less information while learning the workload encoding. Despite that fact, it still outperforms
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Ottertune. Since the embedding approach requires incremental training before being able to
predict, we train it with a number of observed data points at least equal to the degrees of
freedom (the number of components) of the embedding vector. Therefore, we don’t apply this
approach when having only 1 observation since we consider it will have a poor performance.

7.5 Ablation, Scalability and Mapping studies

Ablation. We further add another experiment in order to understand how robust each of
the different methods is with respect to the number of training configurations per workload.

We recall that in a real tuning system, we don’t expect the user to tune many configurations,
and this is the reason for having only 1 or 5 observations for each test workload prior to
making prediction, as shown within Table 7. That being said, we have previously assumed
that our optimizer has collected more configurations for training workloads in the offline
runtime session (as explained in §3.1) and the errors we reported previously are calculated by
taking into consideration that we have 128 traces per training workload within the streaming
trace, and 30 traces per workload for the TPCx-BB (except a few intensively sampled
training workloads for which we have 316 traces). We would like to understand the impact
of decreasing the number of training configurations per training workload on the prediction
errors if we don’t change the evaluation set for test workloads. Such insights could help us
decide whether sampling additional configurations for our training workloads can help in
making better predictions on the test workloads.
The main results are within Figures 14 and 15 for both the streaming and TPCx-BB

workloads respectively. In both Figures, the x-axis refers to the number of training points
per workload 4 while the y-axis refers to the errors obtained on the test set. We use the same
evaluation metric (MAPE) as before.
For the streaming trace, reducing the number of configurations per workload below 120

configurations yields higher errors on the test set across different representation learning
approaches and for different encoding schemes. Generally speaking, and across the different
representation learning techniques, reducing the number of training points per workload
yields gradually higher errors. Despite that fact, the triplet encoder and the SNN remain
the best two approaches among representation learning based architectures up to 40 training
points per workload. Below this value, we notice a difference in the behavior as the error
with the triplet encoder slightly increase while the errors under SNN are much higher under
20 and 10 training points. This observation is directly linked to the way we feed the data
to these 2 architectures. While for the siamese neural network we prepare the data into
triplets before training, within the auto-encoder trained with SNN, we compute the positive
pairs and the negative pairs within each batch. This has led to instabilities while training
the SNN auto-encoder under few training points per workload. In particular, by inspecting
the different auto-encoders trained on both the reconstruction and the SNN loss with only
10 or 20 training points per workload, we noticed that the representation learning model
architecture has failed to start because of exploding gradients. The encodings that have been
later on fed to the neural network regressor are hence the encodings that were randomly

4The 316 x-tick for TPCx-bb workloads in Figure 15,refers to the number of training points for the few
offline workloads that are intensively sampled, while for the remaining workloads we still have only 30 points.
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initialized before attempting to train the SNN autoencoder. This explains the higher errors
that we obtain with SNN under few training points per workload. Hence, when we need to
consider whether to train a triplet loss or a SNN loss within our system, we need to pay
attention to how many training points do we expect to sample per workload. We’ll see in
the next paragraph (same section §7.5 but paragraph scalability.) that the more stability
guaranteed by the triplet loss (and how we fed the data to the network) comes at the cost
of a higher fitting time: the triplet loss is 1-2 orders of magnitude slower than its SNN
counterpart.

Figure 14: Ablation study on different modeling techniques over the streaming trace dataset.
Number of arbitrary configurations per workload has been decreased from 120 to 10.

For TPCx-BB ablation plots within Figure 15, the trends are different. On one side, and in

74



contrast to what we expected, reducing the number of training points of intensively sampled
workloads with 316 configurations to 30 points per workload led to lower errors with KPCA
and the custom auto-encoder. By closely inspecting the trained models, we noticed that the
more training points, the more models get underfitted (meaning the models could not fit the
training data and have as such high training error) and the higher test errors. So decreasing
the number of training points led to a decrease in the test errors because the models were
able to better fit fewer data points where the encodings do not characterize well the complex
behaviors of the workloads.

Figure 15: Ablation study on different modeling techniques over the TPCx-BB trace dataset.
Number of arbitrary configurations per workload has been decreased from 316* to 10.

On the other side, further reducing the number of training points across each training
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Figure 16: Scalability plots for models trained for 1 arbitrary configuration admission scheme.

workload (so that we have below 30 configurations per training workload) does not yield
to remarkably higher test errors across different modeling techniques under different job
admission schemes on workloads from the TPCx-BB dataset. Moreover, with our best
performing techniques (triplet encoder and autoencoder trained with SNN), no difference is
noticed if we further reduce the number of training points to 10 configurations per training
workload. We didn’t perceive these trends within the streaming trace. We attribute this
observation to the fact that we have much more parametrized workloads within TPCx-BB
dataset rather than the streaming dataset. Moreover, we also notice that our best performing
techniques reduce the gap between the most challenging job admission scheme (observing 1
arbitrary configuration) and the remaining other schemes even under small number of training
points. While the SNN had some issues within the streaming trace under few training points,
we didn’t have the same problem because even under few training points per workload, we
already have a large number of workloads within the TPCx-BB trace.
As for Ottertune, we notice that across both datasets and under fewer training points, it

still maintains high errors compared to our best techniques.
Finally, this ablation study has revealed that having around 5000 or above data points (#

of training workloads * # of configurations per workload) results start to get consistent if
we fix the test datasets. This is because under the streaming dataset which has 53 training
workloads, as of 80 configurations per workload start to give as good results as using the
full data points (128 per workload). Similarly for TPCx-BB dataset which has 928 training
workloads, we have noticed that increasing the number of configurations per workload beyond
10 doesn’t improve the prediction power of our best modelling method.
Scalability. We recall that adding a representation learning step is crucial whenever the

system needs to admit a job with an arbitrary configuration. However, we have clarified
previously that our optimizer should be able to make predictions in a zero-shot scheme. This
means that at inference time, no retraining is required and we should directly use already
fitted architectures to make predictions. That being said, it’s important to analyze the
overhead that the representation learning step incurs so that we can take critical design
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decisions such as: (1) with which frequency the models need to be retrained and updated
throughout the day (2) which models are best suited when the optimizer admits a lot of
transactional workloads throughout the day vs only few analytical long running workloads,
etc. Such an analysis also should allows us to understand the computation budget that needs
to be spent for keeping the models up to date.
Plots provided within Figure 16 show the MAPE of the different models vs the fitting

time of the representation learning step. Each representation learning method is represented
with a different color, and each dot within the scatter plots appears alongside a number that
refers to the # of training points per workload that are kept while fitting the representation
learning architecture.

Furthermore and as expected, the more number of training points we have, the more time
it takes to fit the same architecture across both datasets. However, different modelling choices
span different ranges of fitting time. We notice that across both datasets, the fitting time of
different models is not related to the errors obtained (if we don’t consider the particular case
of the triplet encoder). In other words, if a particular model is complex so that it takes a
lot of time to fit, this does not guarantee that this model ensures lower errors. For example,
the custom auto-encoder takes more time to fit than the SNN auto-encoder, and yet the
errors obtained with representations extracted from the SNN auto-encoder are lower than
their custom autoencoder counterparts. Also, despite the fact that our best performing tools,
the triplet encoder and the SNN autoencoder, are on par with respect to the modeling error
across both datasets, they have 1-2 orders of magnitude of difference in terms of fitting time.

These insights are interesting because if the tuning system admits a lot of new jobs through-
out the day and thus requires more frequent retraining, we may favor a SNN autoencoder
training rather than training a triplet encoder. On the other side, if we know upfront that
the system will only admit few workloads (with probably few data points), then it becomes
better to train a triplet encoder to avoid having gradient problems as explained earlier within
the first part of §7.5 (under paragraph entitled Ablation.)
Workload mapping. Across the different proposed methods that learn an encoding zn+1

for a new admitted workload, we have attempted to add a mapping step right after the
aggregator (which we introduced previously in Figures 7, 8 and 9). The inspiration of this idea
came from Ottertune which applies as well a mapping step but uses a different procedure for
doing so. Our mapping consists of calculating the distances between the current workload’s
encoding zn+1 and all other encodings zj of training workloads, and then borrow encoding
from the nearest workload j′ (the workload that minimizes j′ = argmin

j∈{1..n}
||zj − zn+1||2) and

feed zj′ to the regression function instead of feeding zn+1 prior to prediction.
Figure 17 shows how workload mapping and encoding borrowing works. We have found

that the workload mapping step does not improve the prediction accuracy across the different
methods, and thus we have dismissed it and do not consider any workload mapping step in
our tuning system.

7.6 End-to-End experiments

In this section, we conduct an end-to-end experiment in order to compare our tuning system
with the state of the art tuning tool Ottertune [61]. We use our best modeling technique
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Figure 17: Mapping the new workload n+1 to its closest neighbor j′.

(siamese neural network) in order to drive this end-to-end experiment while observing a
single arbitrary configuration for each test job. This initial arbitrarily set configuration
is not necessarily the same across different test workloads, because we assume in a real
world scenario it should correspond to an arbitrary configuration initially set by the engineer
running the analytics on top of Spark.
Since in this thesis we are mainly interested in studying the impact of our modeling

techniques on the end-to-end performances we simply consider an exhaustive search optimizer
(which is a naive way for doing optimization) that make use of our models in order to predict
the value of the latency. The exhaustive search optimizer enumerates combinations of different
knob choices, then runs them through the neural network regressor after feeding a workload
encoding extracted for each test job using the siamese neural network. The optimizer then
recommends, for each test job, the configuration that minimizes its runtime latency.
In the next paragraphs, we explain two ways for conducting our end-to-end experiments:

in the first experiment, we allow both our optimizer and Ottertune to freely control all knobs
(including the knobs v7, v8 and v9 that control the resources allocated as shown in Table
2). In the second experiment, we consider a scenario in which the user has a fixed cloud
computation budget, and can’t afford to upgrade the resource, hence we fix the resource
knobs and allow the optimizer to tune only the remaining knobs.
In both experiments, we record the runtime latency for the recommended configuration5,

and then compute the average of latency improvement over the initial configuration, (1−
new latency

initial latency), across the different workloads.
Expt1: Freely upgrading resources. Figure 18 gives us direct insights on the distri-

bution of speedup recorded for the runtime latency of workloads from both benchmarks.
The two leftmost plots show histograms for average speedups with our optimizer on test
workloads from both streaming and TPCx-BB datasets respectively. The two rightmost plots
show histograms for average speedups recorded with Ottertune as an end-to-end comparative
system.
On average, we achieve a latency improvement of 52.4% on streaming workloads and
5The optimizer’s recommendation is sometimes too optimistic due to extrapolation in a sparse search

space. If the job fails to be launched with the recommended configuration, the optimizer recommends another
one.
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Figure 18: End to end performances and comparison to Ottertune with resource upgrade option.

52.44% on TPCx-BB workloads, compared to 35.96% and 43.19% for Ottertune, respectively.
After closely examining the configurations recommended by our method and Ottertune,

we noticed that both methods aggresively increase the amount of resources allocated in most
of the test workloads. Increasing the amount of resources allocated for a workload (such as
the total number of cores and the memory per executor) yields in general better runtime
latencies regardless of the choice of the remaining knobs. This explains why the gap is not
very big between both methods when it comes to end-to-end performances. However, in some
of our test workloads, where initial configurations are already assigned the biggest resource
capacity, and where both optimization methods keep the resource allocation knobs intact but
change other knobs, our method tends to recommend better configurations than Ottertune.
Hence this gave us the motivation to conduct a second end-to-end experiments in which we
fix the choice of the resources allocated in the initial configuration.
Expt2: Fixing resource allocation knobs. We repeat the end-to-end experiments this

time but without allowing neither our optimizer nor Ottertune to upgrade the resources (so
we have frozen the values of the resource knobs v7, v8 and v9). The main results are shown
within Figure 19. Our optimizer achieves, on average a latency improvement of 30.68% on
streaming jobs and an improvement of 7.48% on TPCx-bb jobs without changing the resource
knobs. This is an interesting finding because it means that with a fixed cloud computation
budget, our optimizer can still recommend better configurations in terms of runtime latency.
On the other side, Ottertune recommends configurations that are 41.01% worse than the
initial configuration on the streaming trace (negative average latency improvement) and
fails to provide noticeable improvements on TPCx-BB workloads after scoring only 0.13% of
improvement on average.

7.7 Summary

This chapter has covered experiments for modeling architectures introduced in previ-
ous chapters as well as an and end-to-end comparison to a state of the art tuning tool,
Ottertune [61], using our own trace datasets.

Experiments with recommender modeling architectures with implicit encoding extraction
revealed that a dot product based modeling (such as the one in matrix factorization approaches)
works better than modeling the runtime latency using a neural network based recommender
approach if we guarantee to sample 5 shared configurations for a newly admitted workload.
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Figure 19: End to end performances and comparison to Ottertune under fixed resources.

We explained that these methods have the limitation of not supporting a zero-shot learning
scheme and thus require an incremental training step prior to prediction. They also suffer
from not being able to support prediction over arbitrary combinations of configurations.

We then outlined results from the other modeling methods that explicitly extract encodings
from runtime metrics before training a neural network regressor. We found that the siamese
neural networks which satisfy a relaxation of the invariance property are the best at modeling
the runtime latency when jobs are admitted in the most practical case with a single arbitrary
configuration. This architecture provided modeling errors 4-5x lower than state of the art
tuning tool Ottertune and 3x lower than bypassing the representation learning step under a
single arbitrary configuration admission scheme. The ablation and scalability studies revealed
that the triplet loss from the siamese networks family is 1-2x slower in training than its SNN
counterpart, but is more robust to fewer training points per workload.
The better modeling results with the siamese network translated into better end-to-end

improvements than a state of the art tuning tool, Ottertune. For instance, our optimizer
achieves latency improvements around 52.4% on both benchmarks while Ottertune achieves
latency improvements of 35.96% on the streaming benchmark and 43.19% on the TPCx-bb
benchmark when jobs are admitted with an arbitrary configuration and our optimizer is
allowed to scale out resources. In addition, in the setting of limited resources, our optimizer
achieves a latency improvement of 30.68% and 7.48% on the streaming and TPCx-bb
benchmarks respectively while Ottertune fails to provide better configurations. For instance,
the configurations recommended by Ottertune yield latencies that are 41.01% worse on average
than the initial configurations (negative average latency improvement) on the streaming
benchmark, and yield a latency improvement of only 0.13% on the TPCx-bb benchmark.
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8 Extended Discussions
In this section, we present an extended discussion of some of the technical issues.

Lack of open source trace datasets that support replication. In order to assess the
performance of the unified data analytics optimizer whose modeling component is detailed in
this thesis, we have ensured that it’s possible to conduct end to end comparative results with
state of the art tuning tools and explain in which scenarios our optimizer would work better.
However, the database community’s lack of open source datasets of workload traces has made
it harder to do such a comparison. Even if there were some open source datasets, it could
have been the case that the optimizer recommended a configuration that is not within the
existing collected traces, and thus no comparative results could be reported because it is hard
to replicate the same computing environment from which open source traces were sampled in
order to sample additional configurations. Hence, this required us to deploy the benchmarks
on our distributed computing environment and this is why we collected ourselves traces from
different workloads within these benchmarks. These traces have been used to train different
machine learning based predictive models which were an essential component probed by the
optimizer prior to making a recommendation. Then, the recommended configurations were
run on the same computing environment from which the first initial traces were collected.
A substantial amount of engineering work has been employed in order to run the traces,
collect their outputs and then rerun them in case of failures. We made the traces available at
https://github.com/udao-modeling/code.
That being said, we must clarify here that the comparison that we’ve done with respect

to Ottertune [61] uses our own dataset of traces and not Ottertune’s trace datasets which
have not been made available yet by the authors of the paper at the moment of writing this
manuscript.

Difficulty of training under 1 arbitrary configuration and the need to support
this admission scheme. In the previous chapters, we’ve explained that admitting a job
profiled with a single arbitrary configuration is the most challenging use case to handle
because less information is available to modeling. Most representation learning methods
we’ve surveyed have failed to reduce the gap on test errors between this challenging admission
scheme and other remaining schemes (admitting a job with 5 arbitrary configurations or with
1 or 5 shared configurations). These high test errors found with other representation learning
techniques are in fact due to underfitted regressors when encodings are not extracted from a
siamese neural network based architecture.

Yet, we need to support this admission scheme within our tuning system for Spark workloads.
This is because we can’t force the cloud user of not choosing his first initial configuration
with which he’d like to run his workload. We should also take into consideration that some
jobs can’t be run with a particular configuration. To give an example, consider a streaming
workload parametrized from Template A as in §6.1.1. Spark requires the value of the batch
interval knob (knob v1) to be a divider for both the window size and the slide interval. In
other words, the window size and slide interval have to be a always a multiple of batch interval
as per the requirements of DStreams [67] implemented within Spark. The slide interval in this
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template is set to 10, and if we consider the value of window size equal to 30 seconds (w = 30),
then v1 can’t take values outside {1, 2, 5, 10}. Suppose that we’ve added this workload to our
system which had previously some shared configurations where v1 had values in {3, 6, 9, ...},
there is no way for us to run this workload with the same shared configuration. Hence the
need for admitting a workload under an arbitrary configuration.

Hyperparam tuning of ML models. So far we have been interested in tuning knobs of
Spark, but we haven’t discussed that our tuning system itself requires tuning. Indeed, the
machine learning methods used to model runtime latency of Spark workloads have been tuned
before they could give the performances we reported. In this thesis, we have resorted, to a
random search for tuning hyper-parameters of the ML architectures we introduced. While
we have presented AutoML tools in Chapter 2 (such as Spearmint [55], Hyperband [38] and
BOHB [23]) as systems that can be used to tune Spark workloads (and we explained that in
our use case these systems require actually setting the configuration several times before they
yield good predictions), we could have used these tools in order to tune the hyper-parameters
of the ML architectures we have proposed. The tuning problem in this case appears to be a
recursive problem (any tuning tool itself needs to be tuned). We recall that it’s fine to tune
our machine learning architectures overnight, but the problem of tuning spark workloads that
we are addressing in this thesis needs to be on the fly in a zero-shot learning scheme.

Qualitative Comparison to Ottertune Our proposed modeling pipeline introduced in
Figure 7 of §5.2 focused particularly on the representation learning step that learns encodings
from the traces and where each component can be considered as a combination of several
metrics, in sharp contrast to Ottertune which resorts to reducing the dimension of runtime
metrics by selecting a subset of metrics as representative metrics. This representation learning
step is a core component of our tuning system and is responsible of characterizing different
workloads according to the properties we outlined in the beginning of the thesis in §3.4:
reconstruction, independence, invariance, and similarity. Learning encodings of different
workloads allowed us to train a single global regression model that allows predicting the
runtime latency accurately for test workloads in a zero-shot scheme. Such global models
bypass a workload mapping step which remains required within Ottertune’s modeling pipeline
because it doesn’t represent a workload by a numerical vector. Our experiments revealed a
particular interest in focusing on the similarity property while characterizing the workloads
and the superior performance of our best techniques with respect to Ottertune in the most
practical and yet the most challenging job admission scenario that consists of observing
a unique arbitrary configuration. This job admission scenario poses major concerns for
Ottertune as soon as a new workload is admitted with a configuration that is incompatible
with existing training workloads as explained in the previous paragraph. While Ottertune
fails to map the workload to a past workload in such a scenario, our method will still be able
to handle such a particular case.
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9 Conclusions
In this chapter, we summarize the contributions we made in this thesis, discuss some of

the challenges encountered, and state some research directions for future work.

9.1 Contributions of this thesis

In this thesis, we presented our solution to performance modeling for cloud data analytics,
including (i) a system design that suits the constraints in real world applications, (ii) a notion
of learning workload embeddings with desired properties for different jobs, thereby enabling
performance prediction when used together with job configurations; (iii) an in-depth study
of different modeling choices that meet our requirements. Results of extensive experiments
show the strengths and limitations of different modeling methods, reveal the best performing
technique to be the one that can best approximate the invariance property of workload
embeddings, and demonstrate our superior performance over a state-of-the-art modeling
technique for cloud analytics.

9.1.1 Recommender systems architectures

We have surveyed diverse methods used within recommender systems and explained how
matrix factorization approaches in particular have been previously used in Paragon [20] and
Quasar [21] for solving the configuration recommendation problem for cloud workloads. We
have provided an extension of the matrix factorization approach and proposed two neural
network based recommender approaches. We explained how the hybrid embedding approach,
in particular, allows to make recommendations beyond already observed configurations and
hence generalize by recommending new configurations. We outlined that recommender
architectures have an implicit encoding learning step since they couple both the workload
encoding learning step as well as the regression step within the same architecture. We have
explained that these methods have the limitation of not supporting a zero-shot learning
scheme and thus require an incremental training step prior to prediction. They also suffer
from not being able to support prediction over arbitrary combinations of configurations.

9.1.2 Representation learning based architectures

We have introduced representation learning methods as a solution to the limitations
of existing recommender architectures. We explained that representation learning based
methods incorporate more content by leveraging the full runtime metrics while extracting the
encodings. They explicitly extract encodings from runtime traces before feeding them to a
neural network dedicated for the end regression task on the runtime latency. We have covered
different auto-encoders starting with deterministic autoencoders and explained why the
basic auto-encoder violates both the independence and invariance properties. We have then
added edits on top of the architecture and augmented the loss function with supervised and
unsupervised terms as an attempt to favor these properties while training the auto-encoders
which natively satisfy the reconstruction property. We also briefly covered the variational
auto-encoder from the generative family of auto-encoders because it’s known for its capacity
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of automatic disentanglement of generative factors within the bottleneck layer. Furthermore,
we have also introduced another paradigm of extracting encodings that relies on siamese
neural networks instead of auto-encoders, and explained how to train such networks that
satisfy a relaxation of the invariance property. Finally, we also gave examples of designs of
hybrid architectures that combine auto-encoders and siamese neural networks.

9.1.3 Comparative results for modeling

Embedding Autoencoder Siamese Neural Network

Independence X Depends x
Invariance X x x
Similarity - x X

Reconstruction Partially X x
Zero-shot learning x X X

Table 8: Properties of the different families of approaches.

Tradeoffs between different properties across modeling techniques. While pre-
senting the different modeling approaches we have listed the workload encodings properties
satisfied by each of these methods. We summarize in the Table 8 the different families of
techniques as well as the different properties satisfied by each of these techniques. Both
embedding architectures (Dual embeddings and Hybrid embeddings) satisfy both the inde-
pendence and invariance properties by design. These architectures learn embeddings while
minimizing the mean squared error loss between the approximation of the runtime latency
and its ground truth value. Hence they also partially satisfy the reconstruction property. The
auto-encoder based architectures however do not satisfy by default the independence property
if we don’t break the bottleneck layer for example as we did with the custom auto-encoder,
or if we don’t start with prior assumptions as this is the case with variational auto-encoders.
By default, all of the auto-encoder architectures satisfy the reconstruction property but are
likely to violate the invariance property when it comes to learning encodings. It is because
these two properties can’t be achieved at the same time due to the architectural design of
the auto-encoder. On the other hand, when we introduced siamese networks, we explained
that these networks focus on a relaxation of the invariance property, which we denoted by
similarity. For both the auto-encoder based architectures and siamese neural networks, we
have forced an invariant encoding by adding an aggregator before training the neural network
regressor (see Figure 7).

Experiments comparing recommender architectures. Experiments with recommender
modeling architectures revealed that a dot product based modeling (such as the one in matrix
factorization approaches) works better than modeling the runtime latency using a neural
network based recommender approach if we guarantee to sample 5 shared configurations for
a newly admitted workload.
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Experiments comparing modeling architectures Throughout experiments covering
representation learning techniques, we’ve observed that (1) the invariance property subsumes
the independence property, and (2) focusing on a relaxation of the invariance property while
leveraging all the runtime metrics within explicit based encoding extraction techniques worked
much better than implicit encoding extraction, which, although learns an invariant encoding,
does not leverage the full runtime trace vector during training and inference. We found that
the siamese neural networks which satisfy a relaxation of the invariance property are the best
at modeling the runtime latency when jobs are admitted in the most practical case with a
single arbitrary configuration. This architecture provided modeling errors around 10% on
both benchmarks of runtime traces. These modeling errors are 4-5x lower than a state of the
art tuning tool, Ottertune [61], and 3x lower than bypassing the representation learning step
under a single arbitrary configuration admission scheme. Hybrid architectures that combined
both the auto-encoder and the siamese neural networks didn’t provide better modeling errors
than pure siamese networks on the regression task on the runtime latency.

The ablation and scalability studies revealed that the triplet loss from the siamese networks
family is 1-2x slower in training than its SNN counterpart, but is more robust to fewer
training points per workload.

9.1.4 End-to-end comparison to Ottertune

The better modeling results with the siamese network translated into better end-to-end
improvements than a state of the art tuning tool, Ottertune [61]. For instance, our optimizer
achieves latency improvements around 52.4% on both benchmarks while Ottertune achieves
latency improvements of 35.96% on the streaming benchmark and 43.19% on the TPCx-bb
benchmark when jobs are admitted with an arbitrary configuration and our optimizer is
allowed to scale out resources. In addition, in the setting of limited resources, our optimizer
achieves a latency improvement of 30.68% and 7.48% on the streaming and TPCx-bb
benchmarks respectively while Ottertune fails to provide better configurations. For instance,
the configurations recommended by Ottertune yield latencies that are 41.01% worse on average
than the initial configurations (negative average latency improvement) on the streaming
benchmark, and yield a latency improvement of only 0.13% on the TPCx-bb benchmark.

9.2 Future directions

As part of our future work, we propose some extensions to recommender based approaches
that leverage the kernel trick to replace the dot product, then we provide an extension to
the hybrid embedding approach that leverages additional meta-information available upon
the submission of the workload, and finally we explain how to extend the current modeling
approach to predict time series of the target objective instead of mean performance modeling.
We detail below the different extensions we propose.

Kernel Matrix Factorization The collaborative filtering approach proposed so far can
be generalized to go beyond simple matrix factorization. Indeed, instead of representing the
interaction between workload j and configuration i as the dot product between zj and vi

in the euclidean space (zTj vi), we can think of the kernel trick in order to substitute the
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simple dot product by a dot product of embeddings in a higher dimensional space. If φ is
some implicit feature mapping defined as: φ : X → H where X is the original space and H is
the Hilbert feature space, then the embedding of zj in H can be written as φ(zj) and the
embedding of vi in H can be written as φ(vi). The interaction between the configuration and
the workload can be then modeled by k(zj,vi) = φ(zj)Tφ(vi) instead of a simple dot product.
The paper [40] gives a closed form solution for the kernel matrix factorization problem but
requires solving n+m separate optimization problems. An interesting direction to explore is
understanding which types of kernels would model well the interaction between the workloads
and the configurations, and hence we leave it as part of a future work.

Leveraging workload meta-data within hybrid recommender approach. Although
our optimizer tunes spark workloads in a blackbox manner, it can leverage the meta-data
that is submitted alongside the workload for extracting some additional workload embeddings
so that the workload at the end can be described by two kind of embeddings: (1) embeddings
extracted from runtime trace vectors (as we did in this thesis) (2) embeddings extracted from
the submit command arguments. Take the following spark-submit command as an example.

spark-submit --class org.apache.spark.streamdm.streamDMJob \
--master yarn --deploy-mode client \
--conf spark.executor.cores=3 \
--conf spark.default.parallelism=6 \
--conf spark.streaming.blockInterval=50 \
--conf spark.executor.instances=8 \
--conf spark.reducer.maxSizeInFlight=170m \
--conf spark.executor.memory=4915m \
--conf spark.shuffle.sort.bypassMergeThreshold=1 \
--conf spark.shuffle.compress=false \
--conf spark.metrics.conf=/home/repo/hsc1/metrics.properties \
~/trace-generation-system/jars/spark-benchmark-streamdm.debug.jar \
inputRate=1100000 \
batchInterval=1 \
jobId=67 \
receiverPort2=10453 \
receiverPort3=10454 \
receiverPort1=10452 \
receiverPort6=10457 \
receiverPort4=10455 \
receiverPort5=10456 \
receiveFromHostname3=node1 \
sdmParams="EvaluatePrequential -s (SocketTextStreamReader) -l (SGDLearner -l 0.1 \
-o HingeLoss -r L2Regularizer -p 0.01 -f 3)" \
NumReceivers=6 \
receiveFromHostname4=node1 \
outputPath=hdfs://10.0.0.1:8020/user/hsc1/benchmark/data \
sparkLogDir=/mnt/disk5/khaled/hsc1/logs/spark \
receiveFromHostname2=node1 \
receiveFromHostname1=node1 \
receiveFromHostname6=node1 \
receiveFromHostname5=node1 \
checkpointDir=hdfs://10.0.0.1:8020/user/hsc1/benchmark/checkpoint \
signature=hsc1_1585646953
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Additional information regarding the name of the class that is being executed by the
workload, as well as other non configuration related arguments (such as the name of the
jar file, sparkLogDir, outputPath, NumReceivers, sdmParams) could be used to extract a
text-based embedding for the workload, and hence use it alongside other embeddings extracted
from the runtime trace in order to predict the runtime latency. We leave this as a future
direction to explore.

Relational Embeddings for incorporating more data related content The intro-
duced approaches within this thesis have focused on learning workload specific embeddings
which assumed that the inherent data characteristics are part of the workload itself. If we
consider the subset of analytics that operate on top of structured datasets, such as relational
queries which operate on well defined relational schemas, then we can isolate learning the
data characteristics from the workload defined on top of these data. For example, the recent
work in [17] learns embebddings from relational datasets for a data integration task. We can
use the underlying ideas to learn data embeddings for relational workloads and use these
embeddings alongside other workload embeddings we introduced for the end regression task.

Time series performance tuning instead of average performance tuning. We’ve
been so far interested in predicting on average the performances of Spark workloads during
a short period of time for streaming workloads. The same modeling techniques that we
covered in this thesis can be coupled with sequential or recurrent neural networks (such as
LSTMs [29] or Transformers [62]) in order to train a time series that can predict instantaneous
performances instead of average performances. This can be interesting in applications where
the workload behaviors are constantly changing throughout the execution of the workload.
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A Equivalence between the matrix factorization formula-
tion and iterative updates within Paragon

In this section, we show that minimizing the loss function we previously introduced in
equation 5 in its matrix form is equivalent to the iterative update formulas provided in scalar
form within Paragon [20]. We recall that the loss function we earlier introduced can be
written as:

(Ẑ, V̂ ) = argmin
Z,V

1

2
||1K ◦ (Y − ZV )||2F +

λ

2
||Z||2F +

λ

2
||V ||2F

Let’s rewrite the same loss function in scalar form this time:

L =
∑
j,i

Lji

where

Lji =
1

2
ε2ji +

λ

2
||zj||2 +

λ

2
||vi||2

with εji is given by:
εji = yji − zTj v

i

If we compute the gradient of Lji with respect to both vectors zj and vi, we get:

∇zjLji = −εjivi + λzj

∇viLji = −εjizj + λvi

Thus, the update on zj can be written as:

zj ← zj − η∇zjLji

zj ← zj + η(εjivi − λzj)

And the update on vi can be written as:

vi ← vi − η∇viLji

vi ← vi + η(εjizj − λvi)

These updates are equivalent to the updates provided within Paragon [20] on page 3 (but
by taking into consideration of course the different notations).

B Workloads dataset details
Details regarding parametrization of the streaming workloads are provided withinn Tables

9, 10 and 11. Test jobs have their rows prefixed with a *.
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job id w π δ job id w π δ

* A.1 10 35 0 * D.2 10 35 500
A.2 10 35 300 D.3 10 35 10000
A.3 10 35 1000 D.4 10 70 0
A.4 10 70 0 D.5 10 70 500
A.5 10 70 300 D.6 10 70 10000

* A.6 10 70 1000 * D.7 30 35 0
A.7 30 35 0 D.8 30 35 500
A.8 30 35 300 D.9 30 35 10000
A.9 30 35 1000 D.10 30 70 0
A.10 30 70 0 D.11 30 70 500

* A.11 30 70 300 * D.12 30 70 10000
A.12 30 70 1000 E.1 10 35 0

* B.1 10 35 N/A E.2 10 35 107

B.2 10 70 N/A * E.3 10 35 2.107

B.3 30 35 N/A E.4 10 70 0
B.4 30 70 N/A E.5 10 70 107

C.1 N/A 35 0 E.6 10 70 2.107

C.2 N/A 35 1800 * E.7 30 35 0
C.3 N/A 35 80000 E.8 30 35 107

C.4 N/A 70 0 E.9 30 35 2.107

* C.5 N/A 70 1800 E.10 30 70 0
C.6 N/A 70 80000 E.11 30 70 107

D.1 10 35 0 * E.12 30 70 2.107

Table 9: Parametrizations of SQL-like jobs.

job id learning rate Loss Regularizer Regularization Coefficient

∗ F.1 0.01 Logistic - -
F.2 0.01 Hinge L1 1
F.3 0.01 Logistic L2 1
F.4 0.01 Hinge - -

∗ F.5 0.01 Logistic L1 1
F.6 0.01 Hinge L2 1
F.7 0.1 Logistic - -
F.8 0.1 Hinge L1 0.01
F.9 0.1 Logistic L2 0.01
F.10 0.1 Hinge - -
F.11 0.1 Logistic L1 0.01

∗ F.12 0.1 Hinge L2 0.01

Table 10: Parametrizations of ML classification jobs (template F).
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job id K Input Dataset

G.1 2 3D
G.2 4 3D

∗ G.3 8 3D
G.4 10 3D
G.5 20 3D
G.6 100 4D
G.7 2 4D
G.8 4 4D
G.9 8 4D

∗ G.10 10 4D
G.11 20 4D

∗ G.12 100 4D

Table 11: Parametrizations of ML clustering jobs (template G).

C Details on the variational auto-encoder

Figure 20: Variational auto-encoder diagram [60].

The loss of the variational autoencoder is given by:

L(β) = −Ez∼qφ(z|x)logpθ(x|z) + βDKL(qφ(z|x)||p(z))

where p(z) represents the prior distribution on the encodings (usually the prior p(z) =
N (0, I)), qφ(z|x) represents the family (parametrized by φ) of the approximate posterior
distribution and pθ(x|z) represents the likelihood of x given z when z is sampled from qφ(z|x).

A trick that is commonly used in order to get an easy formulation of the problem consists
of choosing a normal distribution for the posterior distribution of the encoding z as well. The
encoder part of the auto-encoder then predicts the parameters (mean and co-variance matrix)
of the distribution that corresponds to a particular input point. The co-variance matrix of
this distribution is assumed to be always a diagonal matrix no matter what input point is fed
to the architecture. This leads to simplifications and ensures ensures getting an easy closed
form solution of the KL-divergence term.
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For an encoding of size sz, the output of the encoder layer should be 2sz. The first sz
dimensions are reserved for the mean of the distribution, and the second sz dimensions
correspond to the diagonal of the covariance matrix.

D Hyper-parameter tuning of different models
For the encoder/decoder based architectures as well as the neural networks we tuned: (1)

topology hyper-parameters : (number of layers, number of hidden units per layer, activations)
(2) optimization hyper-parameters (learning rate, number of epochs, patience (for early
stopping) (3) loss related hyper-parameters (regularization coefficients balacing different terms
within a loss function, temperature, etc...)

We tuned the hyper-parameters by random sampling from a pool of hyper-parameters.
We use a 5-fold cross validation scheme for tuning our workloads. We try to simulate the
same conditions on the test set when we do cross validation, thus we consider observing only
few (1 or 5 traces) for training workloads within the left out fold during the cross validation
procedure.

It may appear that we are casting tuning Spark workloads to tuning hyper-parameters of
machine learning models. It is important to emphasize though that the machine learning
solution we are proposing to modeling performances of spark workloads can be tuned overnight
(and not at the time of the execution of the Spark workload). Having a robust global model
that allows us to predict performances of a new submitted Spark job from a unique (or few)
trace(s) in a zero-shot scheme makes the tuning of Spark workload non-invasive to the user,
and much faster.

E Extensions of the contraction term with more layers
and activations

The original paper describing the contractive auto-encoder provides the calculations for the
Jacobian term under a single layer with a sigmoid activation. We provide extensions while
implementing the contractive auto-encoder and calculate the Jacobian in addition under:
• 2 layers of sigmoid non linearity
• 1 layer of ReLu non linearity
• 2 layers of ReLu non linearity

In order not to abuse the notation while providing the extensions, let’s apply the contractive
loss on a simple auto-encoder instead of the custom auto-encoder as in §5.3. The extension
to our custom auto-encoder is straightforward.
The original loss function introduced within the contractive autoencoders paper [50] can

be written in our notation as:

J =
∑
x∈Dn

(
L(x, d(e(x)) + λ||Je(x)||2F

)
where e is the encoding function, g is the decoding function and L is the MSE in our case

and Dn is the set of all training points.
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||Je(x)||2F =
∑
i,j

(
∂zi
∂xj

)2

zi is the i-th component of the encoding vector z and xj is the j-th component of the input
vector x.

E.1 1 layer of sigmoid activation

z = f(x) = sigmoid(Wx + b)

with:
• x = [x1, x2, ..., xdx]

T

• z = [z1, z2, ..., zdz]
T

• b = [b1, b2, ..., bdz]
T is the intercept vector of the encoder layer of the neural network.

• W, of shape [dz, dx], is the weights matrix of the first layer of the neural network.

||Je(x)||2F =
dz∑
i=1

z2i (1− zi)2
dx∑
j=1

w2
ij

E.2 2 layers of sigmoid activations

h = h(x) = sigmoid(W (1)x + b(1))

z = e(x) = e(h(x)) = sigmoid(W (2)h + b(2))

with:
• x = [x1, x2, ..., xdx]

T

• h = [x1, x2, ..., xdh]
T

• z = [z1, z2, ..., zdz]
T

• b(1) = [b
(1)
1 , b

(1)
2 , ..., b

(1)
dh ]T

• b(2) = [b
(2)
1 , b

(2)
2 , ..., b

(2)
dz ]T

• dz: number of hidden dimensions of the encoding layer
• dh: number of hidden dimensions of the first layer
• dx: number of input dimensions
• W (1) is of shape [dh, dx]
• W (2) is of shape [dz, dh]
∂zi
∂xj

=?

Applying the chain rule, we get:
∂zi
∂xj

=
∑
k

∂zi
∂hk

∂hk
∂xj

∂zi
∂hk

= zi(1− zi)w(2)
ik
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∂hk
∂xj

= hk(1− hk)w(1)
kj

∂zi
∂xj

= zi(1− zi)
∑
k

hk(1− hk)w(1)
kj w

(2)
ik

||Je(x)||2F =
∑
i,j

(
∂zi
∂xj

)2

||Je(x)||2F =
dz∑
i=1

z2i (1− zi)2
dx∑
j=1

(
dh∑
k=1

hk(1− hk)w(1)
kj w

(2)
ik

)2

E.3 1 layer of ReLu activation

Using the same notation as in the case of 1 layer of sigmoid activation, we can write:

z = e(x) = relu(Wx + b)

If we denote by z̃ the pre-activation of z, then we can write:

z = relu(z̃) = relu(Wx + b)

∂zi
∂xj

= wij1z̃i>0

||Je(x)||2F =
dz∑
i=1

1z̃i>0

dx∑
j=1

w2
ij

E.4 2 layers of ReLu activations

h = h(x) = relu(W (1)x + b(1))

z = e(x) = e(h(x)) = relu(W (2)h + b(2))

Let’s denote by z̃ the pre-activation of z and h̃ the pre-activation of h
By applying again the chain rule, we get:

∂zi
∂xj

=
∑
k

∂zi
∂hk

∂hk
∂xj

∂zi
∂hk

= w
(2)
ik 1z̃i>0
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∂hk
∂xj

= w
(1)
kj 1h̃k>0

∂zi
∂xj

= 1z̃i>0

dh∑
k=1

1h̃k>0w
(1)
kj w

(2)
ik

||Je(x)||2F =
dz∑
i=1

1z̃i>0

dx∑
j=1

(
dh∑
k=1

1h̃k>0w
(1)
kj w

(2)
ik

)2
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Titre : Modélisation à Base de Réseaux de Neurones des Performances des Plateformes Cloud
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Résumé : L’analyse des données en utilisant des
ressources cloud est désormais omniprésente dans
l’activité des entreprises qui s’engagent dans une
transformation digitale pour mieux comprendre les
données volumineuses dont elles disposent.
La modélisation des performances des plateformes
cloud utilisées dans ce contexte est une nécessité
pour pouvoir garantir une bonne performance des
requettes réparties (appelées jobs) ainsi qu’une
meilleure gestion des ressources cloud. Les tech-
niques de modélisation traditionnelles ne s’adaptent
ni à la diversité de ces jobs ni aux différents com-
portements des systèmes distribués. Dans cette
thèse, nous proposons des techniques récentes
de Deep Learning pour pouvoir automatiser cette
tâche de modélisation avec un focus en particu-
lier sur la plateforme Spark utilisée pour les cal-
culs distribués. Au coeur de nos travaux de re-
cherche, on présente la notion d’apprentissage d’em-
beddings, vecteurs capables de décrire de façon
compacte les caractéristiques fondamentales des
différents jobs. Nous montrerons dans cette thèse

comment ces embeddings permettent une meilleure
prédiction des performances des jobs sous différentes
configurations du système de calculs répartis. Nous
aborderons aussi une étude de différents choix
de modélisation à base de réseaux de neurones
répondant à nos besoins.
En premier temps, nous présenterons des méthodes
d’apprentissage d’embeddings de la famille des
systèmes de recommandation avec un focus en par-
ticulier sur les méthodes de filtrage collaboratif. En-
suite nous présenterons des techniques d’aprentis-
sage d’embeddings basés sur des auto-encodeurs et
des réseaux de neurones siamois qui prennent en
compte plus d’informations profilés lors de l’exécution
des jobs cloud.
Les résultats de nos expériences révèlent les forces
et les limites des différents choix de modélisation.
Nos expériences dévoilent aussi des performances
supérieures d’une méthode qu’on propose par rapport
à l’état de l’art dans la modélisation des systèmes de
gestion de base de données.

Title : Neural-Based Modeling for Performance Tuning of Cloud Data Analytics

Keywords : Apache Spark, Cloud computing, Deep Learning, Databases, Data Analytics, Representation
Learning, Recommender systems.

Abstract : Cloud data analytics has become an in-
tegral part of enterprise business operations for data-
driven insight discovery.
Performance modeling of cloud data analytics is cru-
cial for performance tuning and other critical opera-
tions in the cloud. Traditional modeling techniques fail
to adapt to the high degree of diversity in workloads
and system behaviors in this domain. In this thesis,
we bring recent Deep Learning techniques to bear on
the process of automated performance modeling of
cloud data analytics, with a focus on Spark data ana-
lytics as representative workloads. At the core of our
work is the notion of learning workload embeddings
(with a set of desired properties) to represent funda-
mental computational characteristics of different jobs,
which enable performance prediction when used to-
gether with job configurations that control resource al-

location and other system knobs. Our work provides
an in-depth study of different modeling choices that
suit our requirements.
Throughout this manuscript, we first go over me-
thods that learn job embeddings by mapping our pro-
blem to a recommender systems framework. We fo-
cus particularly on the family of collaborative filte-
ring techniques. Afterwards, we present autoencoders
and siamese neural networks from the representation
learning family that leverages more content collected
while cloud jobs are being profiled during their execu-
tion.
Results of extensive experiments reveal the strengths
and limitations of different modeling methods, as well
as superior performance of our best performing me-
thod over a state-of-the-art modeling tool for cloud
analytics.
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