N

N

Dissecting call-by-need by customizing multi type
systems
Maico Leberle

» To cite this version:

Maico Leberle. Dissecting call-by-need by customizing multi type systems. Symbolic Computation
[cs.SC]. Institut Polytechnique de Paris, 2021. English. NNT': 2021IPPAX023 . tel-03284370

HAL Id: tel-03284370
https://theses.hal.science/tel-03284370

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03284370
https://hal.archives-ouvertes.fr

1 e
D > .
E P ECOLE

INSTITUT POLYTECHNIQUE
POLYTECHNIQUE
DE PARIS

%2 IP PARIS

Dissecting call-by-need
by customizing multi type systems

Theése de doctorat de I'Institut Polytechnique de Paris
préparée a I'Ecole Polytechnigue

2021IPPAX023

Ecole doctorale n°626 Ecole doctorale de I'Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

NNT

Thése présentée et soutenue a Palaiseau, le 7 mai 2021, par
LEBERLE, MAico CARLOS

Composition du Jury :

HERBELIN, Hugo
Directeur de recherche, Université de Paris (IRIF) Président

RONCHI DELLA ROCCA, Simona
Professeure émérite,
Universita di Torino (Dipartimento di Informatica)

Rapporteure
MAZZA, Damiano
Directeur de recherche, CNRS

Rapporteur
BONELLI, Eduardo Augusto
Professor, Stevens Institute of Technology (Schaefer School of
Engineering and Science) Examinateur

KESNER, Delia

Professeure, Université de Paris (IRIF) Examinateur

MILLER, Dale

Directeur de recherche, Ecole Polytechnique (LIX) Directeur de thése

ACCATTOLI, Beniamino

Chargé de recherche, Ecole Polytechnique (LIX) Co-directeur de these

fo
-
ke,
O
O
e
©
e
©
)
O
- -
I—

Index

1 Introduction

1.1
1.2
1.3
1.4

Background and objectiveso
Tools e
Development and outcomes
Considerations L

2 Preliminaries

2.1 The A-calculus
2.2 The Linear Substitution Calculus
2.3 Usefulness
2.4 Multi types e
3 A bird’s eye view
3.1 Properties of evaluation strategieso Lo
3.2 Properties of multi type systems. oL
3.3 Casestudy: CbNeed
3.4 Case study: Open CbNeed
3.5 Case study: Useful Open CbNeed
3.6 Case study: Strong CbV
3.7 Design principles for multi type systems00
4 CbN, CbV and CbNeed
4.1 Duplication and erasure
4.2 CbN = silly duplication + wise erasure L.
4.3 CbV = wise duplication + silly erasure
4.4 CbNeed = wise duplication 4 wise erasure
4.5 FErasing steps
4.6 Characterizing closed normal forms

5 Multi types for CbN, CbV and CbNeed

5.1
2.2
2.3
0.4
2.5
2.6

Different flavors of multi types
Multi type system for CbN
Multi type system for CbV
Multi type system for CbNeed
CbN and CbNeed are termination-equivalent
CbNeed is as efficient as CbVo

© o O ot G

6 Open CbNeed 76

6.1 The Open CbNeed evaluation strategy 78
6.2 Characterizing Open CbNeed-normal forms 83
6.3 Determinism Lo 84
7 Multi types for Open CbNeed 86
7.1 Multi type system for Open CbNeed 86
7.2 Counting techniques for exponential steps 98
8 Useful Open CbNeed 100
8.1 The Useful Open CbNeed evaluation strategy 100
8.2 Characterizing Useful Open CbNeed-normal forms 108
8.3 Determinism Lo 111
9 Multi types for Useful Open CbNeed 113
9.1 Multi type system for Useful Open CbNeed 113
10 Strong CbV 126
10.1 Variants of Open CbV 127
10.2 The Value Substitution Calculus 128
10.3 The Strong CbV strategy 131
11 Multi types for Strong CbV 133
11.1 Shrinkingness 134
11.2 Multi type system for Strong CbV 135
11.3 A semantical proof of VSC-normalization via Strong CbV 146
12 Conclusion 149
13 Technical appendix 151
13.1 Proofs of Chapter 4 (CbN, CbVand CbNeed) 151
13.2 Proofs of Chapter 5 (Multi types for CbN, CbVand CbNeed) 156
13.3 Proofs of Chapter 6 (Open CbNeed) 204
13.4 Proofs of Chapter 7 (Multi types for Open CbNeed) 221
13.5 Proofs of Chapter 8 (Useful Open CbNeed) 262
13.6 Proofs of Chapter 9 (Multi types for Useful Open CbNeed 308
13.7 Proofs of Chapter 10 (Strong CbV) 371
13.8 Proofs of Chapter 11 (Multi types for Strong CbV) 387
Bibliography 421

Chapter 1

Introduction

1.1 Background and objectives

The A-calculus is a model of computation underlying a variety of technological tools. While it is
mostly known for being the backbone of functional programming languages, it is also used to model
higher-order logic programming as well as the computational device in numerous proof assistants.
Generally speaking, the A-calculus is a perfect fit for formalizing higher-order computations, those
where functions are considered values themselves; this even includes the imperative programming
languages which implement higher-order functions.

As far as expressiveness is concerned, it is well-known that the A-calculus is as expressive as
Turing machines; we say that the A-calculus is Turing complete. This result was obtained during
the 1930s, around the time the A-calculus was introduced to the community.

On the contrary, stating a similar property with respect to the efficiency of the A-calculus was
considerably more difficult to prove: while there exists an evident way to measure the computa-
tional effort required to run a program from beginning to end in a Turing machine, doing so with
respect to a program in the A-calculus is not at all self-evident. The main reason is that the syntax
and computational rules of the A-calculus are very simple and high-level. This implies that run-
ning a program in the A-calculus requires first providing an implementation schema for a concrete
target computer architecture—that is, providing a specification of the computational process suf-
ficiently fine-grained and tuned to be suited for running on said computer architecture. Once the
implementation schema has been established, one then needs to find the right way to measure its
computational effort, which is also extremely delicate and has historically amounted to considerable
work.

Indeed, it was only in 2014 that Accattoli and Dal Lago proved in their [AL16] that the A-
calculus can be fully simulated in Turing machines with a polynomially bounded overhead in time.
This is called the invariance result for the A-calculus, and implies that all the (super-)polynomial
complexity classes of the A-calculus match exactly those of Turing machines—where the latter are
taken to be the standard for defining complexity classes.

As a matter of fact, there existed prior results concerning the invariance of the A-calculus, like
Accattoli and Dal Lago’s “On the Invariance of the Unitary Cost Model for Head Reduction”[AD12].
However, it is only in [AL16] that the most general case of the A-calculus is targeted. This is
achieved in [AL16] by targeting in particular the standard evaluation strategy of the A-calculus,
called leftmost-outermost.

Proving this invariance result required adapting the reduction relation to implement an efficiency

technique that the authors call usefulness. Roughly speaking, a useful reduction relation only
substitutes those variable occurrences whose substitution contributes to the creation of a S-redex,
and are thus necessary for the execution of the program to reach the corresponding normal form.

The main objective of this thesis is to provide results in the theory of useful reductions. In this
sense, our setting of choice for studying usefulness is call-by-need. Recently, Balabonski, Barenbaum,
Bonelli and Kesner presented in their [Bal+17] a reduction relation which they call “Strong Call
by Need”, which performs strong reduction while being conservative with respect to the original
call-by-need reduction’. Thus, we take a significant portion of the reduction relation in [Bal+17]
and adapt it to satisfy the usefulness criterion.

1.2 Tools

Multi types

We shall give a type-theoretical presentation of the normalization process of our useful call-by-need
reduction relation. Given the intrinsically complex nature of the subject, we shall first cover several
related cases before attaining the final one. Thus, in the process of deriving the type system for the
useful call-by-need relation, we shall study several other reduction relations and derive a separate
type system for each one of them, in a well-principled and incremental manner.

All of these type systems fall into the category of multi type systems. Multi types were introduced
as non-idempotent intersection types in Philippa Gardner’s “Discovering Needed Reductions Using
Type Theory”[Gar94]. The reasons for which multi type systems have recently become trending
are numerous; our interest in them lies particularly in that each of them are designed specifically
to characterize a certain notion of normalization. Moreover, type derivations shall provide upper
bounds on the consumption of resources in the corresponding normalization process. These upper
bounds may be obtained in such a precise way that some of them are even exact bounds, or simply
measures of the normalization process. For this reason, multi types are said to be resource aware,
as they allow us to reason about resources from a type-theoretical standpoint.

Multi types were first used to give precise measurements on operational quantities in de Car-
valho’s “Execution Time of lambda-Terms via Denotational Semantics and Intersection Types”
[Car09]. The starting point therein is a multiset-based relational model of Linear Logic?, called
System R, which induces a relational semantics of the type-free A-calculus. De Carvalho then
proves that the size of type derivations and the size of types in System R are closely related to the
execution time of A-terms in Krivine’s machine.

Since then, [Car09] has inspired numerous lines of research, and its results have been re-
fined and extended to encompass different normalization processes as well as different operational
measurements—this thesis intends to be one of such recent works.

Unlike de Carvalho, however, abstract machines are not our operational semantics of reference.
Instead, when defining our reduction relations we shall resort to the Linear Substitution Calculus—
or LSC for short®—a calculus which may be seen as intermediate in between the A-calculus and
abstract machines.

L As introduced by Wadsworth[Wad71]

2The relational semantics of Linear Logic is arguably its simplest denotational semantics.

3The LSC is a calculus implementing sharing mechanisms and bearing significant connections to environment-
based abstract machines, like Krivine’s—an in depth study of said connections is given in [ABM14].

Operational semantics

Among the different kinds of argument-passing styles that reduction relations may adopt, we shall
be concerned with the three that we dim central to the theory of the A-calculus: call-by-name,
call-by-value and call-by-need:

« Since call-by-name is by far the most studied one—from a theoretical and foundational point
of view—we shall not present novel results about it, and just use the ones from the literature
to build upon. Call-by-name is the argument-passing technique implemented by the standard
evaluation strategy of the A-calculus, called leftmost-outermost reduction.

o (Call-by-value has been relatively neglected when compared to the theoretical foundations
given to call-by-name. Despite that, it is probably the most implemented argument-passing
style among programming languages.

o Call-by-need, is probably the least studied one, theoretically-wise. In practice, call-by-need

has nevertheless received considerable attention since its inception; however, this has always
been restricted to technological implementations—Ilike the Haskell programming language, or
the Cog proof assistant—or theoretical foundations that only covered the most basic case—of
weak reduction on closed A-terms. This work intends to revert this, by providing results that
might expand its theoretical understanding and foundational solidity beyond the usual weak
and closed settings.
We shall begin our study of call-by-need by realizing that it may be understood (in the weak
and closed setting) as a combination of call-by-name and call-by-value. Hence, some of the
results given for call-by-name or call-by-value shall contribute to our understanding of call-
by-need.

Our operational results are based on three recent and important advances in the operational

theory of the A-calculus, namely:

« Firstly, the publishing in 2017 of Balabonski, Barenbaum, Bonelli and Kesner’s “Foundations
of Strong Call by Need” [Bal+17], where the authors propose a first-ever, call-by-need strategy
computing strong normal forms and acting on potentially open terms. This is a call-by-need
strategy in the sense that it guarantees that arguments are only reduced once and only if—and
when—needed®.

 Secondly, the publishing of Accattoli and Dal Lago’s “(Leftmost-outermost) Beta Reduction
is Invariant, Indeed” [AL16] in 2016, where the authors provide a unitary time cost model
of the A-calculus and show it is polynomially related to that of Turing machines or random
access machines.

As explained above, it required implementing useful reduction on leftmost-outermost reduc-
tion. In addition, it requires defining the useful variant of leftmost-outermost in a formalism
implementing some notion of sharing, like the LSC.

 Finally, Accattoli and Guerrieri isolated the so called Open Call-by-Value calculus in [AG16],
a setting halfway between the most basic and restricted variant of the call-by-value A-calculus
and the most general one: respectively, they are the Weak Call-by-Value—which only acts on
closed A-terms—and the Strong Call-by-Value—which may act on open A-terms. The value
of this result is that Strong Call-by-Value may be seen as the Open Call-by-Value iterated
under A-abstractions.

4Remarkably, they use techniques involving multi types in [Bal+17] to prove that their strategy is complete with
respect to B-reduction to strong normal forms.

1.3 Development and outcomes

The starting point of this thesis are the multi type systems given in the literature for the weak
and closed variants of CbN—that is, System R given by de Carvalho—and of CbV—see Ehrhard’s
call-by-value variant of System R in [Ehr12]. Since multi types model CbN and CbV well, it was
only natural to try to apply this technique to CbNeed, more so considering the fact that CbNeed
may be seen as a combination of CbN and CbV—in the particular way we shall explain in Chapter 4
(CbN, CbV and CbNeed).

We believe that the understanding of Useful Open CbNeed, both operationally and
type-theoretically, is likely the most interesting result in our work. It is presented in Chapter 8

(Useful Open CbNeed) and intends to connect two of the recent advances in the operational
theory of the A-calculus—that we listed in Subsect. 1.2 (Operational semantics): we begin by taking
a reduction sub-relation from [Bal+4-17]—which we call Open CbNeed—then we take the notion of
usefulness as presented in [AL16], and we finally use it to adapt Open CbNeed to perform useful
reduction, thus obtaining Useful Open CbNeed.

As we shall see in Chapter 6 (Open CbNeed), Open CbNeed is itself interesting, in particular
because it happens to be the natural way to factor the difficulties faced in the development of a
theory of strong reduction in a call-by-need setting. Moreover, it constitutes the natural setting
where the restriction to useful reductions may be implemented and studied, as it is a significantly
simpler scenario compared to variants of call-by-need implementing strong reduction.

Another natural intermediate step to achieving the results for Useful Open CbNeed is under-
standing Open Call-by-Value, for which a multi type system with a class of type derivations pro-
viding exact bounds is given in [AG18]. Here, we shall extend the reduction relation of Open
Call-by-Value to define the more general Strong Call-by-Value relation—which encompasses Open
Call-by-Value—and then provide a multi type system whose notion of typability matches that of
normalization in Strong Call-by-Value. As a matter of fact, the multi type system for Strong Call-
by-Value served as inspiration for the one for Useful Open CbNeed during the preparation of this
work. Nevertheless, we shall not merely present it as an intermediate step towards the latter—unlike
all other multi type systems—but rather as a separate case study, interesting in itself.

We would also like to remark the importance of studying strong reduction in a call-by-value set-
ting, both operationally and type-theoretically. This is a previous and necessary step to attaining
the final goal of producing a multi type system characterizing and providing measurements for a
strong and useful call-by-need reduction relation. Unfortunately, this final goal remains unachieved
by the time we write these lines.

With intention to keep matters as simple as possible, all the case studies in this work shall

morally follow the same structure, methodologically speaking:

o We begin by defining the reduction relation and proving that it enjoys some kind of deter-
minism.

o Next, we provide a set of predicates that characterize the normal forms of said reduction
relation. This may be extremely intricate, in particular in the cases of Open CbNeed and
Useful Open CbNeed.

o We then move on to define the multi type system meant to characterize normalization in
the reduction relation. To attain this, we must prove that the type system is sound and

complete with respect to normalizing terms. Needless to say, proving this requires an ex-
tremely detailed understanding of the operational aspects of the reduction relation from a
type-theoretical perspective. An overview of the way in which we prove this—which is con-
sistently applied to every case study—is presented in upcoming Chapter 3 (A bird’s eye view).

Turning now to the features of the multi type systems, we hope that the reader may find them
quite simple. They are derived in a principled way, following an incremental approach:

The multi type system for Strong CbV is obtained almost effortlessly from the one given by
Ehrhard for the weak and closed variant of CbV.

The multi type system for Open CbNeed is obtained by adding a few typing rules to the one
for CbNeed.

Finally, the multi type system for Useful Open CbNeed is obtained from the one for

Open CbNeed by refining the axioms. We believe this is quite remarkable, and was in fact our
first intuition for understanding useful reduction from a (multi) type-theoretical perspective
in the Open CbNeed setting.

Unfortunately, the same level of simplicity was not found at the rewriting-theoretical level. That is,
while designing the multi type systems turned out to be relatively simple, conducting the operational
studies of most of our case studies was not as easy as expected. For instance, the Open CbNeed
and Useful Open CbNeed cases turned out to be extremely subtle, requiring in particular very long
proofs for the characterization of their normal forms via predicates. This was somewhat surprising.

1.4 Considerations

Each one of the four case studies have two dedicated chapters, one where we study its operational
aspects and another one where we study its multi type system. The distribution of contents goes
as follows:

In Chapter 4 (CbN, CbV and CbNeed) we develop an operational account on the weak and
closed versions of call-by-name (CbN), call-by-value (CbV) and call-by-need (CbNeed).

In Chapter 5 (Multi types for CbN, CbV and CbNeed) we analyze the multi type systems for
CbN and for CbV given in the literature, and use them to derive the one for CbNeed.

In Chapter 6 (Open CbNeed) we present the Open CbNeed evaluation strategy, which extends
the CbNeed one by including reduction on (possibly) open terms, and reducing on arguments.
In Chapter 7 (Multi types for Open CbNeed) we present the multi type system for the
Open CbNeed evaluation strategy.

In Chapter 8 (Useful Open CbNeed) we refine the Open CbNeed evaluation strategy to make
it useful.

In Chapter 9 (Multi types for Useful Open CbNeed) we present the multi type system for the
Useful Open CbNeed evaluation strategy.

e In Chapter 10 (Strong CbV) we present the Strong CbV evaluation strategy.
e Finally, in Chapter 11 (Multi types for Strong CbV) we present the multi type system for the

Strong CbV evaluation strategy.

With respect to the other chapters:

Chapter 2 (Preliminaries) gives a relatively detailed presentation of topics. Although they
are probably known to the reader, the purpose of this chapter is to agree on notation and

definitions.

o Chapter 3 (A bird’s eye view) intends to extend the intuitions that we just gave here by
incorporating some of the technical details introduced in Chapter 2 (Preliminaries). We also
use Chapter 3 to show that the technical development in each of the case studies—in particular
what concerns the multi type systems—follows the exact same structure, thus heightening the
value of our approach.

o Chapter 12 (Conclusion) reviews the results attained throughout this work, and provides a
list of some future lines of research that might derive from this work.

Proofs and appendices. We have made the presentation choice of keeping explanations and
technical proofs apart. Thus, Chapter 4 (CbN, CbV and CbNeed) to Chapter 11 (Multi types for
Strong CbV) mostly provide definitions, analyses and examples, while Chapter 13 mostly provides
proofs.

In Chapter 13 (Technical appendix) we provide all the proofs for for this work. Of course, this
excludes Chapter 2 (Preliminaries), Chapter 3 (A bird’s eye view) and Chapter 12 (Conclusion).
All other chapters, from Chapter 4 (CbN, CbV and CbNeed) to Chapter 11 (Multi types for
Strong CbV), have numerous links to Chapter 13. Indeed, the complete technical development of
each one of these chapters appears in Chapter 13 in the form of a dedicated section. In addition,
every statement appearing in chapters from Chapter 4 (CbN, CbV and CbNeed) to Chapter 11
(Multi types for Strong CbV) is followed by links taking the reader back and forth Chapter 13
(Technical Appendix). Conversely, some (less important) statements only appear in Chapter 13,
as they are considered to be relevant only as part of the technical development, and not for any
meaningful conceptual understanding. We believe this should help the reader study a proof whenever
he or she sees fit, while keeping matters as split as possible.

Abstract machines. The development of this thesis was considerably accompanied by a large
amount of work on abstract machines. For both of Open CbNeed and Useful Open CbNeed, we
simultaneously worked on them on three different levels: the operational semantics, the multi type
system, and the derivation of an abstract machine.

The intention was to design these abstract machines in such a way that they would distill their
respective evaluation strategies—in the sense presented in “Distilling Abstract Machines” [ABM14].
Additionally, they would be bilinear with respect to the evaluation strategy. For instance, given an
Open CbNeed-normalizing term ¢, the number of transitions in an execution in the Open CbNeed
abstract machine would have to be bilinearly related to the size of t and the number of multiplicative
steps in the Open CbNeed-normalizing sequence starting in ¢. Similarly, the Useful Open CbNeed
abstract machine would also have to satisfy a bilinear relation with respect to the evaluation strategy.

However, designing such abstract machines was too technically demanding, and so we had to
focus our time on the development of the multi type systems, leaving the completion of the devel-
opment of the abstract machines for future work. Despite that, let us stress the fact that the work
on abstract machines was a valuable set of guiding principles both for the operational semantics
and the design of the multi type systems in this work.

Contributions. This thesis contains results from two separate but connected worlds, namely
the theory of operational semantics and the theory of types. Let us briefly list our contributions,
especially the novelties of this work:

10

e Operational semantics: In this respect, the novelties in this work are Open CbNeed,
Useful Open CbNeed and Strong CbV; the weak and closed evaluation strategies presented
in Chapter 4 (CbN, CbV and CbNeed) are prior to this thesis.
Open CbNeed is the result of joint work between my supervisor, Beniamino Accattoli, and
myself. We should however say that it is actually an adaptation of the Strong Call by Need
evaluation strategy from “Foundations of Strong Call by Need” [Bal+17]. Basically, the
Open CbNeed evaluation strategy is a restriction of Strong Call by Need to the weak setting,
where we have adjusted the derivation of its evaluation contexts in such a way as to match
our needs for the design of the multi type system.
Moreover, the development of Open CbNeed was carefully done as to, simultaneously, prepare
the elements for the useful variant, the Useful Open CbNeed evaluation strategy. The isolation
of needed variables is an example of this: they are presented for Open CbNeed and refined
for Useful Open CbNeed.
The latter, the Useful Open CbNeed evaluation strategy, was mostly my invention. But I had
the expert and tireless help of my supervisor without whom I would not have succeeded.
Finally, the development of the Strong CbV evaluation strategy is the result of joint work
between Beniamino Accattoli, Giulio Guerrieri and myself. Andrea Condoluci and Claudio
Sacerdoti Coen also contributed in the design Strong CbV, but they were mostly concerned
in connecting the strategy to a bilinear abstract machine distilling it.

o Multi type systems: The multi type systems given for CbN and for CbV are not a novelty
of our work, as we took them from “Execution time of A\-terms via denotational semantics
and intersection types” [Carl8] and “Collapsing non-idempotent intersection types” [Ehr12],
respectively.

On the contrary, all the other multi type systems in this work are novel. That is,

— The CbNeed multi type system, presented in Chapter 5 (Multi types for CbN, CbV and
CbNeed), was jointly developed by Beniamino Accattoli, Giulio Guerrieri and myself.

— Both the Open CbNeed multi type system presented in Chapter 7 (Multi types for
Open CbNeed), and the Useful Open CbNeed multi type system presented in Chap-
ter 9 (Multi types for Useful Open CbNeed), were mostly developed by myself. My
supervisor’s close guidance was greatly helpful.

— Finally, the Strong CbV multi type system, presented in Chapter 11 (Multi types for
Strong CbV), was jointly developed by Accattoli, Guerrieri and myself.

e Finally, the work on abstract machines for Open CbNeed and for Useful Open CbNeed was
done as a collaboration with Bruno Barras and Beniamino Accattoli. Although it has not
made its way into this thesis, we believe the considerable effort we made on designing ab-
stract machines shall soon bear its fruits.

11

Chapter 2

Preliminaries

2.1 The A-calculus

The syntax of the A-calculus is given by the following context-free grammar:
A-terms (A) t,u,s,m == Var|z.t| (tu)

where Var is taken to be any countably infinite set of syntactic objects, which we call variables and
note x,vy, z, Z, The same set of variables is silently used throughout the present work.

For any given t € A, we define the set of its free and bound variables, respectively noted fv(t)
and bv(t), as follows:

FREE VARIABLES BOUND VARIABLES
fv(z) = {z} bv(z) = 0
fv(tu) = fv(t)Ufv(u) bv(tu) = bv(t)Ubv(u)
fv(Az.t) = fv(t)\ {z} bv(Ax.t) = bv(t)U{z}

A A-term with no free variables is called a closed term; dually, a A-term with free variables is called
open.

Definition 1 (a-equivalence).
Let t,u € A. We say that t and u are “«a-equivalent” if they only differ in the choice of bound
variable names while remaining syntactically equal in any other aspect.

Remark 1 (Identifying a-equivalent terms).

Throughout this work, we shall identify terms up to a-equivalence. This is a standard practice
in the literature—except, of course, when a-conversion of terms is the object of study in itself—and
is also known as Barendregt’s variable convention.

That is, we shall always assume that the name of bound variables in a given term are all pairwise
distinct, and that they are different from the names used for free variables. For example, Ax.x and
Ay.y are a-equivalent terms and are thus identified as morally representing the same term, while
Ax.x and Az.z z are not.

Note that this identification concerns only the name of bound variables, and free variables are
never identified unless they share the same name. Thus, we do not identify z z and y y—since they
are not a-equivalent. Nor do we identify Az.y and Ay.y, since in the former y is a free variable
while in the latter the rightmost occurrence of y is bound by the leftmost occurrence, thus morally
representing a different term.

12

2.1.1 B-reduction

The computational rule in the A-calculus is S-reduction, whose base case is the following

Definition 2 (/5-contraction).
The smallest binary relation between A-terms satisfying

(Az.t)u —p t{ru}

is called the B-reduction root step. Here, t{x<—u} represents the capture-avoiding, syntactic and
simultaneous substitution of each occurrence of x in ¢ by copies of u. We call this kind of substitution
of variables as “meta-level” substitution.

A-terms of the form (Az.t)u are called -rederes and we say that (Ax.t)u — g-reduces to, or that
it —g-contracts to t{x<—u}. We may also say that t{z<u} is the — g-reduct of (A\z.t)u.

The following are examples of S-contraction

Az.x)u 5 a{r<u} = u
Az (zz))u —p5 (zz){ru} = (uu)
Aeyu =g ylaecup =y
(Az.(A\y.x))y 5 (Ayx){zey} =a A2y

In order to avoid capturing free variables, note that the last example implements a-renaming (of
fresh variable z for bound variable y) before proceeding with the meta-level substitution.

Now, we would like to allow root step 4 to be performed in any position of a A-term where
there is a f-redex. For instance, we would like to have that x((Az.t)u) S-reduces to x(t{z<u}).
One simple way to do this is by means of evaluation contexts, which are nothing other than A-terms
where one of its subterms is a context hole, noted (-). This context holes play the role of placeholders
for the subterms to which we perform the rewriting step 3.

Evaluation contexts in the A-calculus, called general contexts or simply contexts, are given in
the form of a context-free grammar, much like the syntax of the A-calculus itself:

C,C" == ()| Ct|tC | \x.C

The definitions of free and bound variables of a general context are extended from the ones for
A-terms as expected:

FREE VARIABLES BOUND VARIABLES
() = 0 bv(()) = 0
fv(Ct) = fv(C)Ufv(t) bv(Ct) : bv(C) U bv(t)
fv(tC) = fv(t)Ufv(C) bv(tC) = bv(t)Ubv(C)
fv(\z.C) fv(C)\ {x} bv(Az.C') = bv(C)U{z}

We write C'(t) for the A-term obtained by replacing the hole (-) in C by t. This plugging oper-
ation may capture variables—as it is usual with contexts in the literature. For instance, consider
(Az.(t(-))){xz) = Az.(tx). Conversely, we write C'((t)) when we want to stress that the context C'
does not capture the free variables of t.

13

Remark 2 (a-equivalence and evaluation contexts). Since contexts may capture free variables, we
do not consider them up to a-equivalence. However, once a context C' has been plugged with a
t € A, and potential captures have been established, then C(t) € A; consequently, a-equivalence
considerations apply on C(t) as for any other A-term.

We now have all the needed concepts to finally define the operational semantics for the A-calculus:

Definition 3 (fS-reduction).
The reduction relation — 3 between A-terms, called B-reduction, is defined as follows:

tl—>5 U
C(t) =3 C{u)

for all t,u € A and general context C.

Alternatively, we may write —g:= C(—3), saying that —z is the contextual closure of —g.
When C(t) —5 C(u), we say that C'(u) is the result of contracting the S-redex t in the evaluation
context C.

Finally, we write { — u to express that there exists a (potentially empty) — g-reduction sequence
from t to u. That is, t —g-reduces to u if there exists n > 0 such that

t—)g e R U
————

n

In particular, when n = 0 we have that ¢t = u.

2.1.2 Normalization in the)\-calculus

As is standard, we say that t € A is in —g-normal form, or that t is a —z-normal form, when there
exists no other u € A such that t =5 u.

Normal forms in the A-calculus are known to be unique, and we say that it is confluent. As
proven by Church and Rosser, if { —5u and ¢ —% s, where both u and s are —g-normal forms,
then u = s.

The notion of normal forms is not exclusive to the A-calculus, as it may be generalized to any
rewriting system. Thus, the following notions, defined in terms of the A-calculus, may also be
defined for every reduction relation in this work:

Definition 4 (Weakly normalizing, strongly normalizing and diverging A-terms).

Let t € A. Then,

« We say that t is —g-weakly normalizing if there exists u € A such that ¢ —%u and u is in
—rg-normal form.

« We say that ¢ is —g-strongly normalizing if all — s-reduction sequences starting in ¢ reach a
—g-normal form.

o We say that t is —g-diverging if it is not —g-weakly normalizing. That is, if there exists no
u € A such that ¢ —%w and u is in —g-normal form?.

! Although it is not used in this work, there exists a further refinement on the notion of — g-divergence—akin to
the refinement defined for —g-normalization: we say that ¢ is —g-weakly diverging if there exists a — g-reduction
sequences that diverges, and that t is —g-strongly diverging if all —g-reduction sequences diverge. Note that the
notion of — g-divergence described above matches that of —g-strong divergence described here.

14

The typical example of a —-diverging term is € == §6, with 6 = Az.(xz). Note that {2 can
only —g-reduce to itself—i.e., 2 —3 (2—and so there cannot be — s-reduction sequences
starting in 2 and reaching a — g-normal form.

2.1.3 Evaluation strategies

As we can see in the definition of general contexts, given (tu) € A we can proceed to contract a
[-redex either in ¢ or in u. In this respect, the A-calculus does not force redexes to be contracted
in any particular order, thus making it a non-deterministic model of computation.

The ordinary, non-deterministic A-calculus enjoys many interesting properties by itself, and
serves as a common framework and foundational background to all of its variants. However, we
shall not work directly on the A-calculus here. Instead, we shall be interested in some of its evalu-
ation strategies, which are variants satisfying a relaxed notion of determinism called the diamond

property:

Definition 5 (Diamond property).
Let — is a sub-relation of — 3 composed of =1, ..., —,. Thatis,let =; U ... U =, = — C —3.
We say that — satisfies the diamond property if for every t,u,s € A and 1 < 7,5 < n, the fact
that s j<— ¢t —; wu implies the existence of m € A such that s —; m ;< w.

The diamond property implies uniform normalization: if there is a normalizing sequence from ¢,
then there are no diverging sequences from t. Additionally, it implies the random descent property:
all normalizing sequences from ¢ have the same length and, in our current case, the diamond diagram
preserves also the kind of step (and so all normalizing sequences have the same number of each kind
of steps).

Definition 6 (Evaluation strategies).
Given —C— g3, we say that — is an evaluation strategy of — g if it satisfies the diamond property.

While Definition 6 shall be adapted to formalisms other than the A-calculus when considering
our different case studies, its essence shall remain the same.

Let us stress the fact that considering sub-relations that satisfy the diamond property is enough
to cover our purposes®. Indeed, if we consider all possible reduction sequences starting at a given
term, we see that if any one of them reaches a normal form, then all of them do, because the
diamond property is a strong form of confluence. This property also ensures that the number and
kind of steps among the reduction sequences starting at a given term are exactly the same.

Thus, and since our quantitative results shall only concern the number and kind of steps in
normalizing reduction sequences, it is enough that the reduction relations in this work satisfy the
diamond property.

2In the theory of the A-calculus, evaluation strategies are usually defined as deterministic sub-relations of 8-
reduction. Hence, our definition of evaluation strategies is a more relaxed one, where we replace determinism for the
diamond property.

15

2.1.4 Different flavors of evaluation strategies

As explained in Chapter 1 (Introduction), all our evaluation strategies fall into one of the following
three categories, depending on the conditions imposed on arguments:

Evaluation strategies implementing call-by-value are such that, upon encountering a (-redex,
they first evaluate the argument until reaching a (partial or full) normal form before contracting
the redex. Thus, we say that call-by-value only contracts redexes when the argument is a value,
hence the name.

Evaluation strategies implementing call-by-name do not impose any conditions on the shape
of the argument of a redex, and proceed directly to contract the redex. Because of this lack of
restriction on arguments, call-by-name is known to reach a normal form more often than call-by-
value.

Finally, evaluation strategies implementing call-by-need do not impose restrictions on arguments
either, and are thus said to be termination-equivalent to their call-by-name versions. But unlike call-
by-name, arguments needed in call-by-need reduction sequences are reduced only once. Moreover,
while call-by-value also reduces arguments only once, it does so even if the argument is not needed.
Hence, call-by-need is said to be a “call-by-value-like efficient implementation of call-by-name”, and
is thus placed in between the two worlds. We shall extensively explore this feature of call-by-need
in Chapter 4 (CbN, CbV and CbNeed).

2.1.5 Degrees of generality in S-reduction

Recall that —s-reduction is defined as the contraction of a -redex in any subterm of the overall
A-term, including under A-abstraction. This degree of generality and non-determinism is sometimes
too much, especially in technological applications, which require a deterministic reduction relation
to perform their computations. Moreover, the different technological applications that use the
A-calculus to model their computations may have quite different needs in terms of generality.

For example, functional programming languages take closed terms as initial programs, proceed
with their computations in a deterministic fashion, and stop evaluating a program when it reaches
the form of a A-abstraction.

On the one hand, and regarding free variables, note that since S-reduction does not create new
free variables®, we note that the hypothesis of closed terms suffices to model functional programming
languages.

On the other hand, and regarding which subterms may be reduced, we say that functional pro-
gramming languages perform weak reduction, as they stop execution upon reaching a A-abstraction,
even if the latter contains [-redexes in its body. For example, take t := \z.Q), where €2 is the usual
diverging A-term, and note that while ¢ is not in —g-normal form—and could never be so, because
Q) diverges—it is in normal form when considering weak reduction.

On the opposite side, proof assistants impose no restrictions on the set of free variables of a
term. Moreover, they contract each and all of the S-redexes, even those contained in the body of a
M-abstraction. Following our running example, proof assistants would continue reducing t := A\z.Q2—
indefinitely.

3That is, if ¢ =5 u, then fv(u) C fv(t). This is trivially provable by induction on the evaluation context C' such
that t = C(s) —p C(s') = u, with s 3 5.

16

These features may be expressed in the form of two separate axes, and used to categorize
reduction relations as follows®:
1. A reduction relation that does not reduce under A-abstractions is called weak, while one that
does is called strong.
2. A reduction relation defined for closed terms is called closed. Conversely, one that is defined
for (possibly) open terms is called open.

Remark 3 (Weakly/strongly normalizing terms and weak/strong reduction are not to be confused).
Since there is a clash in the names to express these concepts, it should be remarked here that weakly
and strongly normalizing are properties of terms, while weak and strong refer to reduction relations.

2.2 The Linear Substitution Calculus

2.2.1 Syntax

The Linear Substitution Calculus, or LSC for short, plays a central role throughout this work and
is used to define virtually all of our evaluation strategies. Its syntax is given by extending the one
for the A-calculus with a fourth production, as follows:

(AL) tyu,s,m = Var|Az.t| (tu) | tfr<u]

Note that every A-term is also a Aj-term—i.e., A C A_. The production ¢[x<u] should be taken
to be a simple syntactic sugar presentation of the traditional let x = w in ¢ from the literature. We
call [z<—u| an ezplicit substitution, or ES for short.

As for let-constructs, ESs are a form of binding: variable = is bound in t in closure t[x<u].
Given a t € A(, the set of its free and bound variables, respectively noted fv(¢) and bv(t), are
defined as expected:

FREE VARIABLES BOUND VARIABLES
fv(z) = {x} bv(z) = 0
fu(tu) = fv(t) Ufv(u) bv(tu) = bv(t)Ubv(u)
fv(Ax.t) = fv(t)\ {=} bv(Az.t) = bv(t)U{z}
fv(tlzeu]) = (fv(t) \ {z}) Ufv(u) bv(t[z<u]) = bv(t)U{z} Ubv(u)

The concept of closed and open AL -terms is defined as expected as well.

2.2.2 Where do explicit substitutions come from?

Explicit substitutions, as the name suggests, make the process of substitution explicit. Recall
that the process of substitution, central to [-reduction—see Subsect. 2.1.1 (S-reduction)—relies
on a kind of substitution that we call émplicit substitution: t{x<u} represents the result of the
syntactical and simultaneous substitution of every occurrence of x in ¢ by copies of w.

The definition of meta-level substitutions is in fact unsuited for technology-related applications
(whose procedures need to be concrete enough in order to perform computations). Thus, explicit

4In Chapter 3 (A bird’s eye view), we shall explain how each of the evaluation strategies in this work combines
these axes in a meaningful way.

17

substitutions may be considered a tool bridging the gap between the formal presentation of the
A-calculus and its concrete applications.

Historically, this has been achieved via the implementation of abstract machines. Peter J. Landin
designed the first-ever abstract machine—called SECD [Lan64]—intended as a target for functional
programming languages compilers—i.e., for the A-calculus and its higher-order evaluation. Since
then, a considerable number of abstract machines have been studied, all of which are more or less
explicit in how the substitution process should be carried out.

Abstract machines are, evidently, implementation-oriented, so their specific incarnation of the
substitution process is somewhat ad-hoc rather than fundamental to the theory of substitutions.
To address this theoretical lack, an alternative is resorting to an operational-semantics approach,
consisting in defining the substitution process via some notion of a sharing mechanism.

A first such notion was proposed by de Bruijn, dating back to as far as the 1970’s. In his
[Bru72], he proposed the use of terms with indices, introducing his famous “de Bruijn notation” to
the community. He later defined, in his [Bru78], a set of reduction rules that depend themselves on
the indices of terms.

De Bruijn’s work eventually evolved to what we know today as explicit substitutions. Many
formulations of explicit substitutions were conceived and adapted to a considerable number of A-
calculi. For example, in their “Explicit Substitutions”[Aba+91] Abadi, Cardelli, Curien and Lévy
define a so-called Ao-calculus which is presented as a “useful bridge between ordinary A-calculus
and concrete implementations” [Aba+91].

2.2.3 Origin of the LSC

While the LSC is yet another calculus with explicit substitutions, among many other, there
actually are certain subtle features that made it our formalism of choice for defining reduction rela-
tions. In particular, the LSC provides a sharing mechanism suitable for the call-by-need reduction
relations defined in this work while, at the same time, keeping syntax bookkeeping (arguably) to a
minimum of complexity. Let us now emphasize what we consider to be the two main operational
features of the LSC:

o Linear substitutions. The LSC is particularly appropriate for making the substitution mecha-

nism fine-grained enough to allow for substitutions for single variable occurrences. Note that
this is in contrast with meta-level substitutions, where all variable occurrences get simulta-
neously replaced.
Substitutions for a single variable occurrence—originally called partial substitutions but un-
surprisingly called “linear substitutions” in the LSC—were envisioned by de Bruijn in his
[Bru87], and then by Severi and Poll in their [SP87]. Robin Milner then took the idea of par-
tial substitutions and derived the Ag-calculus [Mil06]. Milner’s A -calculus is particularly
relevant to the LSC because the latter may be seen as an extension of the former with the
added notion of distance .

o Distance B. As it was later shown by Accattoli [Acc18], the LSC is operationally isomorphic
to (an abstract variant of) Linear Logic proof nets [Gir87].

This property of the LSC is partly due to the fact that the cut-elimination process defined on
proof nets acts “at a distance”. Said property is embodied by the LSC in the way it contracts (a
generalization of) f-redexes, where the A-abstraction and its corresponding argument may be

18

separated by a (possibly empty and) finite sequence of explicit substitutions. Said differently,
the notion of S-redex in the A-calculus gets generalized in the LSC into redexes of the following
form:

(Ax.t) [y1uq] ... [yps—unls

noting in particular that if n = 0 then (Az.t) u is just a S-redex from the A-calculus.
Originally known as “distance 57, the first reduction rules contracting this generalized kind
of redexes were used in Accattoli and Kesner’s structural A-calculus [AK10].

Historically speaking, the LSC was derived by Accattoli and Kesner as the evolution of the
structural A-calculus combined with Milner’s Ag,;-calculus, thus obtaining a calculus with explicit
substitutions implementing both linear substitutions and distance 3.

The LSC has been proven to enjoy interesting rewriting properties, including (but not limited
to) having a residual system and a theory of standardization —see e.g. [Accl2; Accl8; Acc+14].
Additionally, we claim that the LSC has a closer resemblance with environment-based abstract
machines® than other calculi with sharing mechanisms. This can be justified by Accattoli, Baren-
baum and Mazza’s [ABM14], where they prove that certain evaluation strategies formalized in the
LSC and their corresponding environment-based abstract machines can simulate each other; even
more remarkably, they do so while proving that the length of a given reduction sequence and the
associated time-complexity in its abstract machine are linearly related.

Before we conclude, let us stress again the connections between the LSC and Linear Logic proof
nets. Linear Logic, introduced by Jean-Yves Girard in his famous “Linear Logic” [Gir87] consti-
tutes a useful tool for performing fine resource-consumption analyses of higher-order evaluation. In
other words, Linear Logic can be thought of as a kind of resource-refinement applied to different
proof systems, which therefore can be exploited to obtain a finer-grained cut-elimination process—
particularly in terms of resources.

For all these reasons, we use the LSC to define our evaluation strategies. The only exception is
the Open CbNeed evaluation strategy—and its useful variant; see Chapter 6 (Open CbNeed) and
Chapter 8 (Useful Open CbNeed), respectively—which we formalize in a variant of the LSC.

2.2.4 The M-calculus as a LSC

Just like pB-reduction for the A-calculus was defined by using general evaluation contexts based on
A-terms, we now define the LSC evaluation contexts, with which we define the reduction relation
in the LSC setting. LSC evaluation contexts are based on AL, and are obtained via the following
context-free grammar:

LSC evaluation contexts D,D" == ()| Dt|tD | x.D | D[x<t] | t{x<D]

That is, LSC evaluation contexts are an extension to the notion of general evaluation contexts,
where we add two productions to encompass the presence of ESs in the calculus.

In addition, we adapt the definition of free and bound variables of LSC evaluation contexts as
expected; namely, by extending the one for general contexts with the following equations regarding
ESs:

°Landin’s SECD: in their [ABM14], Accattoli, Barenbaum and Mazza carry out an interesting approach to pairing
the reduction relation in several evaluation strategies are formalized as LSC-calculi

19

FREE VARIABLES BOUND VARIABLES
fv(Dlz«t]) = (fv(D)\ {x}) Ufv(t) bv(D[z<+t]) = bv(D)U{z} Ubv(¢)
fv(t[z<D]) (fv(t) \ {z}) Ufv(D) bv(t[z<D]) = bv(t)U{z} Ufv(D)

Moreover, the following subclass of LSC evaluation contexts is used in almost every evaluation
strategy:

Substitution contexts S8 u= ()| Slz<t]

That is, substitution contexts are nothing but a context hole followed by a possibly empty list of
ESs.

We can now define the reduction relation for the A-calculus in this LSC setting, which follows
the same definition schema as for g-reduction. A major difference between the ordinary A-calculus
and its LSC variant is that the root-step — 5 used in the ordinary A-calculus gets split in two®:

Multiplicative root-step S(Az.t)u +—y S(tlr<u))
Exponential root-step D{x)[z+t] —e D{t)[r<t]

where the double angle-bracketing on the definition of exponential root-steps means that = ¢ bv(D),
as explained above.

Note that in multiplicative root-steps we perform distance S as explained above, while in expo-
nential root-steps we perform linear substitutions. Moreover, note that performing a multiplicative
root-step does not involve performing the meta-level substitution that would be triggered in the
ordinary A-calculus setting upon contraction of a S-redex. Instead, we simply add the explicit sub-
stitution [x<—ul, delaying the substitutions. In this way, the LSC implements distance 8 and linear
substitutions as separate “components” of the reduction relation.

Remark 4 (o-renaming of bound variables).

As explained in Remark 1 (Identifying a-equivalent terms), in this text we consider terms up
to a-equivalence. This affects in particular the duplication mechanism in the exponential root step
defined above, where the bound variables of the duplicated term ¢ become different from the ones
in the original term inside the explicit substitution.

Technically speaking, the exponential root step should rather be defined as

D{z)[ws=t] =e D) [x4]

where t* represents term t after its bound variables have been changed for new ones.

That said, it turns out that this implementation is not completely necessary, since Barendregt’s
variable convention lets us assume that the bound variables in each of the copies of t are different
from each other.

We shall however use the t* notation in the remainder of the thesis when we want to stress
the fact that the bound variables of a given duplicated term are not the same as the ones in the
original term. This is particularly relevant in the proofs of the multi type systems, where we must
meticulously consider the membership of a given variable to the domain of a given type context.

Let us define the reduction relation —;, of the LSC variant of the A-calculus as the contextual
closure of the multiplicative and exponential root-steps by LSC evaluation contexts. Formally,

== D{(—m Ure) = D{—>n) UD()

6The terminology “multiplicative” and “exponential” is taken from Linear Logic—see e.g. [Accl5].

20

Given a —-reduction sequence d : t —7} u, we note with |d| the length of d, and with |d|,, and
|d|e the number of multiplicative and exponential steps in d, respectively.

When using the LSC as the base formalism for the definition of an evaluation strategy, we shall
say that we are giving it a “micro-step semantics”. This expression is in opposition to the usual
notion of small-steps semantics that one usually gives to sub-relations of the ordinary A-calculus.
Micro-step semantics should be considered as a decomposition of small-steps semantics consisting
in linearly substituting variable occurrences; that is, substituting variables one at a time, instead of
performing meta-level substitution like in small-steps semantics.

2.3 Usefulness

Let us shortly discuss what we call usefulness, a property about the substitution process of a given
sub-relation. To understand the value of usefulness, we first need to overview how the A-calculus
relates to the complexity theory branch of mathematics. That is, we need to discuss reasonability
of cost models.

2.3.1 Reasonable time cost models of the A\-calculus

For each one of the case studies in this work, we shall present an operational semantics in the form
of an evaluation strategy, and a multi type system characterizing its normalization. Furthermore,
type derivations shall contain quantitative information regarding the normalization process of their
subject. We then say that the quantitative information of each one of the normalization processes
admits a type-theoretical representation. However, what does this information really mean, in the
broader sense? In particular, how does any of the quantitative results in this work relate to more
general notions of time complexity?

In the Complexity Theory community, the standard is to define complexity classes in terms of
more machine-oriented models of computation, like Turing machines or random access machines.
Indeed, most complexity classes consist on decision problems solvable by a Turing machine. These
complexity classes are differentiated by the time or space a Turing machine consumes to solve the
decision problem. For instance, the time complexity class P of polynomially decidable problems
consists, precisely, of all those decision problems which can be decided by a Turing machine in
polynomial time with respect to the size of the input.

The A-calculus being a rather abstract model of computation, it is not clear how a reduction
relation defined in the A-calculus may be implemented in a Turing machine, in particular regarding
its overhead. In terms of complexity, may reduction sequences in the A-calculus be related with a
polynomial overhead in time in a Turing machine? In fact, this problem is known to have been
an arduous task. The complication came from the fact that it was not evident at all that S-steps,
which are called the unitary cost model of the A-calculus, were polynomially related to transition
steps in Turing machines.

A positive answer to the question of the polynomial relation between the A-calculus and Turing
machines, expressed by saying that S-reduction is a reasonable, or invariant, time cost model of the
A-calculus, would mean that polynomial and super-polynomial complexity classes may be defined
model-independently. That is, that they do not depend on the model of computation to be defined.
On the other hand, a negative answer would somewhat severely undermine the relevance of the

21

A-calculus as a model of computation, since the cost of computing programs whose base formalism
is the A\-calculus could thus be too big to be worth using the A-calculus at all.

In their 1984 paper [SE84], Slot and van Emde Boas introduced a complexity-theoretical version
of the Church-Turing thesis, which they called the invariance thesis:

Invariance thesis: Reasonable computational models simulate each other with
polynomially bounded overhead in time, and constant factor overhead in space.

and gave a space-agnostic version to it:

Weak invariance thesis: Reasonable computational models
simulate each other with polynomially bounded overhead in time.

If the weak invariance thesis holds, then, as far as the A-calculus is concerned, one should be
able to prove that the A-calculus has a unitary time cost model which is polynomially related to the
unitary time cost model of a reasonable model of computation, like Turing machines. More precisely,
and since in its most general case the A-calculus is a non-deterministic model of computation, proving
its invariance requires fixing a deterministic reduction sub-relation and proving the invariance result
for its unitary time cost model. Of course, it cannot be a randomly-picked evaluation strategy:;
rather, it should be one that always reaches the normal form if there exists one—which means that
it is a mormalizing evaluation strategy, in particular because of the confluence of A-calculus. The
natural candidate for this is the standard evaluation strategy of the A-calculus, leftmost-outermost
reduction.

2.3.2 The size-explosion problem in the A-calculus

Recently, Accattoli and Dal Lago gave, in their “(Leftmost-outermost) Beta Reduction is Invariant,
Indeed”[ALL16], a positive result for the reasonability of the unitary time cost model of leftmost-
outermost reduction. Of course, results similar to those in [AL16] had been given before. For
example, Blelloch and Greiner’s “Parallelism in sequential functional languages” [BG95] is the very
first publication on the topic, where they prove the reasonability of a weak and closed evaluation
strategy in the A-calculus performing call-by-value reduction; Sands, Gustavsson and Moran prove
a similar result in their “Lambda Calculi and Linear Speedups” [SGMO02]. Other examples include
Dal Lago and Martini’s “Derivational Complexity is an Invariant Cost Model” [DM09], where the
invariance of innermost and of outermost reduction in orthogonal term rewriting systems is proven.

The result in [AL16] was a somewhat unexpected result. In fact, the community used to be-
lieve that strong evaluation strategies in the A-calculus did not have a unitary time cost model,
especially considering Asperti and Mairson’s result that Levy’s optimal strategy—which performs
strong reduction—is not reasonable. Moreover, it is relatively easy to derive counter-examples of
invariance for the unitary time cost model for virtually any evaluation strategy of the A-calculus.
In particular in its original formulation, where the substitution process is realized via meta-level
substitutions and so there is no sharing of subterms.

A typical such counter-example is the one known as the size-explosion problem, which consists
of a family of A-terms whose normalizing sequence involves substituting subterms that do not
contribute in any way to the creation of S-redexes, but whose substitution increases the size of the
term at each (-step, thus producing an exponentially-large gap between the size of the initial term
and the size of the normal form.

We now turn to present the size-explosion problem as given in [AL16], using the notation intro-
duced therein. We begin by formalizing some of the basic notions involved in its presentation:

22

« The size of a A-term ¢, noted [t|, is defined by the following set of equations:

lz|] = 1
lus| = |u|+|s|+1
Az.u| = |ul

« A wvariable tree of height n, noted ", is given by the following set of equations:

%0 = g

x@(n+1) — x@nx@n

Remark. By a simple induction on n, we obtain that [2@"| = 27+l — 1.

Proposition 2.3.1 (Size-explosion in the A-calculus).
Let {t,}n>1 be inductively defined by the following equations:
t1 =)\1‘1.(1‘1 $1) =)\271.11(1@1
tny1 =)\anrl'(tn (anrl anrl)) =)\$n+1.1’7<?_~1_1

noting that |t,| = 4n — 1, for every n. Moreover, let y € Var and m € N.
Then, |t,y™| = O(n+2™) and t, y*™ =%y where [y = Q(272m).

Proof. First, recall that |z"| = 2"*! — 1. Then, for every n and m we have that |y®"™)| =
ntmtl 1 =22n9m 1 = Q2" 2™).

Next, we prove that |t, y™| = O(n + 2™) by induction on n:
e Base case: Let n = 1. Then,

[ty = 0]+ [y + 1= (4n = 1) + 2" = 1) + 1= O(n +27).
o Inductive case: Let n > 1. Then,
a1 YO = gt + [y™] + 1= (4(n+1) = 1) + 2™ = 1) + 1= O(n +2™).

Finally, we prove by induction on n the part concerning the reduction sequence:
e Base case: Let n = 1. Then,

t y@m _ ()\301-301 .131) y@m — 3 y@m y@m _ y@(l—l-m) _ y@(n+m)
 Induction case: Let t, y®™ —% y®(+m) Then,
tn—i—l y@m = (Axn-&-l-(tn (mn-l-l@l))) y@m
=gt (o)™
= tn (y@(m+1))
_>g y@(n+m+1)
Q((n+1)+m)

= Y

23

That is, Proposition 2.3.1 shows that there exists a family {¢;};>1 of A-terms such that ¢;y*™
reduces in j —g-steps to the —g-normal form y®U+™) whose size is exponentially larger than size
of the initial term ¢; y™.

This would seem to be a counter-example to the weak invariance thesis, namely because the
output term takes an exponential time to be written down, thus seemingly canceling any possibilities
for the A-calculus to be polynomially related to Turing machines. Furthermore, the size-explosion
problem is known to be adaptable to virtually every reduction relation in the A-calculus.

However, there exists a unitary cost model for the A-calculus which is polynomially related to
the one for Turing machines. As shown in [AL16], the number of reduction steps in the useful
variant of leftmost-outermost reduction is both polynomially related to the number of S-steps in
the A-calculus and polynomially related to the time cost model for Turing machines. This result may
seem counter-intuitive when one considers the size-explosion problem, but it can be decomposed in
two simple elements that explain the success in [AL16], namely:

o The leftmost-outermost reduction is defined in [AL16] in the form of an evaluation strategy

in the LSC, where it is moreover shown to be polynomially related to the A-calculus.

o The substitution process in the leftmost-outermost strategy is restricted to be useful, and this

useful variant is shown to be polynomially related to Turing machines.

Thus, usefulness is the key novelty used in [AL16] to achieve the invariance result for the -
calculus. But the LSC is not the only formalism where usefulness is shown to be the key element in
proving the invariance result for the most general case of the A-calculus. For instance, in his “The
Useful MAM, a Reasonable Implementation of the Strong A-Calculus”[Acc16] Accattoli provides an
abstract machines performing useful substitutions.

Needless to say, usefulness need not be restricted to a particular notion of reduction relation,
as it may be applied to other settings. An interesting example of such an application is Yoshida’s
[Yos93], where she defines a weak A-calculus with explicit substitutions morally implementing useful
sharing.

Following this same vein—that is, extending usefulness to other reduction relations—the goal
of the Useful Open CbNeed evaluation strategy presented in Chapter 8 (Useful Open CbNeed)
is to study usefulness in a call-by-need setting. Additionally, in Chapter 9 (Multi types for
Useful Open CbNeed) we study a type-theoretical interpretation of usefulness in this same call-
by-need setting.

2.4 Multi types

In the early 90’s, the scientific community became interested in non-idempotent variants to inter-
section types. One such case is Philippa Gardner’s [Gar94] (Discovering Needed Reductions Using
Type Theory), where she adapts intersection types to make them incorporate explicit information
about resources, thus allowing her to identify all needed redexes. This work by Gardner is consid-
ered the first envisioning of what was latter known as non-idempotent intersection types. We shall
call them “multi types” instead, to avoid the long name.

Since the publication of [Gar94], numerous other results involving multi types have emerged,
including (but not limited to)

e Several strong normalization[BR13; BG13] and head and weak-normalization[Car07] results

of the A-calculus.

24

e The synthesis of a resource-aware semantics for the A-calculus[BCL99].

e The proof of an exact correspondence between the size of type derivations—in a suitable non-
idempotent intersection type system—and the execution time in head and weak-normalizing
A-terms [Car07]. This work in particular has had a big influence in ours.

For a more general survey on multi types, we suggest Bucciarelli, Kesner and Ventura’s [BKV17]
(Non-idempotent intersection types for the Lambda-Calculus) to the reader. As thoroughly ex-
plained in [BKV17], there exists a technical improvement over idempotent intersection types when
proving normalization results via the non-idempotent variants: while the idempotent ones tradi-
tionally make use of a reducibility technique [Kri93], the quantitative information present in multi
type derivations is enough to prove the adequacy of the resulting denotational semantics via a sim-
ple combinatorial argument, as pioneered by [Ehr12]. Thus, although still somewhat technically
involved, all the proofs of adequacy of our non-idempotent intersection type systems make use of a
combinatorial argument.

Multi types and multiset notation. In this work, we shall use multi type systems as a con-
siderably flexible tool that allows us to characterize normalization in a given reduction relation.
Consequently, we shall be able to infer an interpretation specific to each reduction relation.

Multi types enjoy such a high degree of flexibility, that even the very notion of types depends on
the corresponding reduction relation that the multi type system is meant to characterize normal-
ization of. These differences in the definitions of multi types is thoroughly explained in Chapter 5
(Multi types for CbN, CbV and CbNeed).

In spite of that, let us momentarily resort to the CbNeed evaluation strategy—properly intro-
duced in Chapter 4 (CbN, CbV and CbNeed)—for the sake of presenting a definition of multi types
that may help the unacquainted reader get a first grasp of multi types. Thus, CbNeed multi types
are defined mutu