
HAL Id: tel-03284370
https://theses.hal.science/tel-03284370

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dissecting call-by-need by customizing multi type
systems

Maico Leberle

To cite this version:
Maico Leberle. Dissecting call-by-need by customizing multi type systems. Symbolic Computation
[cs.SC]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAX023�. �tel-03284370�

https://theses.hal.science/tel-03284370
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

X
02

3

Dissecting call-by-need
by customizing multi type systems

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 7 mai 2021, par

LEBERLE, MAICO CARLOS

Composition du Jury :

HERBELIN, Hugo
Directeur de recherche, Université de Paris (IRIF) Président

RONCHI DELLA ROCCA, Simona
Professeure émérite,
Università di Torino (Dipartimento di Informatica) Rapporteure

MAZZA, Damiano
Directeur de recherche, CNRS Rapporteur

BONELLI, Eduardo Augusto
Professor, Stevens Institute of Technology (Schaefer School of
Engineering and Science) Examinateur

KESNER, Delia
Professeure, Université de Paris (IRIF) Examinateur

MILLER, Dale
Directeur de recherche, École Polytechnique (LIX) Directeur de thèse

ACCATTOLI, Beniamino
Chargé de recherche, École Polytechnique (LIX) Co-directeur de thèse

Index

1 Introduction 5
1.1 Background and objectives . 5
1.2 Tools . 6
1.3 Development and outcomes . 8
1.4 Considerations . 9

2 Preliminaries 12
2.1 The λ-calculus . 12
2.2 The Linear Substitution Calculus . 17
2.3 Usefulness . 21
2.4 Multi types . 24

3 A bird’s eye view 27
3.1 Properties of evaluation strategies . 28
3.2 Properties of multi type systems. 28
3.3 Case study: CbNeed . 32
3.4 Case study: Open CbNeed . 33
3.5 Case study: Useful Open CbNeed . 34
3.6 Case study: Strong CbV . 36
3.7 Design principles for multi type systems . 36

4 CbN, CbV and CbNeed 43
4.1 Duplication and erasure . 43
4.2 CbN = silly duplication + wise erasure . 44
4.3 CbV = wise duplication + silly erasure . 45
4.4 CbNeed = wise duplication + wise erasure . 47
4.5 Erasing steps . 49
4.6 Characterizing closed normal forms . 49

5 Multi types for CbN, CbV and CbNeed 51
5.1 Different flavors of multi types . 51
5.2 Multi type system for CbN . 53
5.3 Multi type system for CbV . 60
5.4 Multi type system for CbNeed . 66
5.5 CbN and CbNeed are termination-equivalent . 73
5.6 CbNeed is as efficient as CbV . 74

3

6 Open CbNeed 76
6.1 The Open CbNeed evaluation strategy . 78
6.2 Characterizing Open CbNeed-normal forms . 83
6.3 Determinism . 84

7 Multi types for Open CbNeed 86
7.1 Multi type system for Open CbNeed . 86
7.2 Counting techniques for exponential steps . 98

8 Useful Open CbNeed 100
8.1 The Useful Open CbNeed evaluation strategy . 100
8.2 Characterizing Useful Open CbNeed-normal forms 108
8.3 Determinism . 111

9 Multi types for Useful Open CbNeed 113
9.1 Multi type system for Useful Open CbNeed . 113

10 Strong CbV 126
10.1 Variants of Open CbV . 127
10.2 The Value Substitution Calculus . 128
10.3 The Strong CbV strategy . 131

11 Multi types for Strong CbV 133
11.1 Shrinkingness . 134
11.2 Multi type system for Strong CbV . 135
11.3 A semantical proof of VSC-normalization via Strong CbV 146

12 Conclusion 149

13 Technical appendix 151
13.1 Proofs of Chapter 4 (CbN, CbV and CbNeed) . 151
13.2 Proofs of Chapter 5 (Multi types for CbN, CbV and CbNeed) 156
13.3 Proofs of Chapter 6 (Open CbNeed) . 204
13.4 Proofs of Chapter 7 (Multi types for Open CbNeed) 221
13.5 Proofs of Chapter 8 (Useful Open CbNeed) . 262
13.6 Proofs of Chapter 9 (Multi types for Useful Open CbNeed 308
13.7 Proofs of Chapter 10 (Strong CbV) . 371
13.8 Proofs of Chapter 11 (Multi types for Strong CbV) 387

Bibliography 421

4

Chapter 1

Introduction

1.1 Background and objectives
The λ-calculus is a model of computation underlying a variety of technological tools. While it is
mostly known for being the backbone of functional programming languages, it is also used to model
higher-order logic programming as well as the computational device in numerous proof assistants.
Generally speaking, the λ-calculus is a perfect fit for formalizing higher-order computations, those
where functions are considered values themselves; this even includes the imperative programming
languages which implement higher-order functions.

As far as expressiveness is concerned, it is well-known that the λ-calculus is as expressive as
Turing machines; we say that the λ-calculus is Turing complete. This result was obtained during
the 1930s, around the time the λ-calculus was introduced to the community.

On the contrary, stating a similar property with respect to the efficiency of the λ-calculus was
considerably more difficult to prove: while there exists an evident way to measure the computa-
tional effort required to run a program from beginning to end in a Turing machine, doing so with
respect to a program in the λ-calculus is not at all self-evident. The main reason is that the syntax
and computational rules of the λ-calculus are very simple and high-level. This implies that run-
ning a program in the λ-calculus requires first providing an implementation schema for a concrete
target computer architecture—that is, providing a specification of the computational process suf-
ficiently fine-grained and tuned to be suited for running on said computer architecture. Once the
implementation schema has been established, one then needs to find the right way to measure its
computational effort, which is also extremely delicate and has historically amounted to considerable
work.

Indeed, it was only in 2014 that Accattoli and Dal Lago proved in their [AL16] that the λ-
calculus can be fully simulated in Turing machines with a polynomially bounded overhead in time.
This is called the invariance result for the λ-calculus, and implies that all the (super-)polynomial
complexity classes of the λ-calculus match exactly those of Turing machines—where the latter are
taken to be the standard for defining complexity classes.

As a matter of fact, there existed prior results concerning the invariance of the λ-calculus, like
Accattoli and Dal Lago’s “On the Invariance of the Unitary Cost Model for Head Reduction”[AD12].
However, it is only in [AL16] that the most general case of the λ-calculus is targeted. This is
achieved in [AL16] by targeting in particular the standard evaluation strategy of the λ-calculus,
called leftmost-outermost.

Proving this invariance result required adapting the reduction relation to implement an efficiency

5

technique that the authors call usefulness. Roughly speaking, a useful reduction relation only
substitutes those variable occurrences whose substitution contributes to the creation of a β-redex,
and are thus necessary for the execution of the program to reach the corresponding normal form.

The main objective of this thesis is to provide results in the theory of useful reductions. In this
sense, our setting of choice for studying usefulness is call-by-need. Recently, Balabonski, Barenbaum,
Bonelli and Kesner presented in their [Bal+17] a reduction relation which they call “Strong Call
by Need”, which performs strong reduction while being conservative with respect to the original
call-by-need reduction1. Thus, we take a significant portion of the reduction relation in [Bal+17]
and adapt it to satisfy the usefulness criterion.

1.2 Tools
Multi types

We shall give a type-theoretical presentation of the normalization process of our useful call-by-need
reduction relation. Given the intrinsically complex nature of the subject, we shall first cover several
related cases before attaining the final one. Thus, in the process of deriving the type system for the
useful call-by-need relation, we shall study several other reduction relations and derive a separate
type system for each one of them, in a well-principled and incremental manner.

All of these type systems fall into the category of multi type systems. Multi types were introduced
as non-idempotent intersection types in Philippa Gardner’s “Discovering Needed Reductions Using
Type Theory”[Gar94]. The reasons for which multi type systems have recently become trending
are numerous; our interest in them lies particularly in that each of them are designed specifically
to characterize a certain notion of normalization. Moreover, type derivations shall provide upper
bounds on the consumption of resources in the corresponding normalization process. These upper
bounds may be obtained in such a precise way that some of them are even exact bounds, or simply
measures of the normalization process. For this reason, multi types are said to be resource aware,
as they allow us to reason about resources from a type-theoretical standpoint.

Multi types were first used to give precise measurements on operational quantities in de Car-
valho’s “Execution Time of lambda-Terms via Denotational Semantics and Intersection Types”
[Car09]. The starting point therein is a multiset-based relational model of Linear Logic2, called
System R, which induces a relational semantics of the type-free λ-calculus. De Carvalho then
proves that the size of type derivations and the size of types in System R are closely related to the
execution time of λ-terms in Krivine’s machine.

Since then, [Car09] has inspired numerous lines of research, and its results have been re-
fined and extended to encompass different normalization processes as well as different operational
measurements—this thesis intends to be one of such recent works.

Unlike de Carvalho, however, abstract machines are not our operational semantics of reference.
Instead, when defining our reduction relations we shall resort to the Linear Substitution Calculus—
or LSC for short3—a calculus which may be seen as intermediate in between the λ-calculus and
abstract machines.

1As introduced by Wadsworth[Wad71]
2The relational semantics of Linear Logic is arguably its simplest denotational semantics.
3The LSC is a calculus implementing sharing mechanisms and bearing significant connections to environment-

based abstract machines, like Krivine’s—an in depth study of said connections is given in [ABM14].

6

Operational semantics

Among the different kinds of argument-passing styles that reduction relations may adopt, we shall
be concerned with the three that we dim central to the theory of the λ-calculus: call-by-name,
call-by-value and call-by-need:

• Since call-by-name is by far the most studied one—from a theoretical and foundational point
of view—we shall not present novel results about it, and just use the ones from the literature
to build upon. Call-by-name is the argument-passing technique implemented by the standard
evaluation strategy of the λ-calculus, called leftmost-outermost reduction.

• Call-by-value has been relatively neglected when compared to the theoretical foundations
given to call-by-name. Despite that, it is probably the most implemented argument-passing
style among programming languages.

• Call-by-need, is probably the least studied one, theoretically-wise. In practice, call-by-need
has nevertheless received considerable attention since its inception; however, this has always
been restricted to technological implementations—like the Haskell programming language, or
the Coq proof assistant—or theoretical foundations that only covered the most basic case—of
weak reduction on closed λ-terms. This work intends to revert this, by providing results that
might expand its theoretical understanding and foundational solidity beyond the usual weak
and closed settings.
We shall begin our study of call-by-need by realizing that it may be understood (in the weak
and closed setting) as a combination of call-by-name and call-by-value. Hence, some of the
results given for call-by-name or call-by-value shall contribute to our understanding of call-
by-need.

Our operational results are based on three recent and important advances in the operational
theory of the λ-calculus, namely:

• Firstly, the publishing in 2017 of Balabonski, Barenbaum, Bonelli and Kesner’s “Foundations
of Strong Call by Need” [Bal+17], where the authors propose a first-ever, call-by-need strategy
computing strong normal forms and acting on potentially open terms. This is a call-by-need
strategy in the sense that it guarantees that arguments are only reduced once and only if—and
when—needed4.

• Secondly, the publishing of Accattoli and Dal Lago’s “(Leftmost-outermost) Beta Reduction
is Invariant, Indeed” [AL16] in 2016, where the authors provide a unitary time cost model
of the λ-calculus and show it is polynomially related to that of Turing machines or random
access machines.
As explained above, it required implementing useful reduction on leftmost-outermost reduc-
tion. In addition, it requires defining the useful variant of leftmost-outermost in a formalism
implementing some notion of sharing, like the LSC.

• Finally, Accattoli and Guerrieri isolated the so called Open Call-by-Value calculus in [AG16],
a setting halfway between the most basic and restricted variant of the call-by-value λ-calculus
and the most general one: respectively, they are the Weak Call-by-Value—which only acts on
closed λ-terms—and the Strong Call-by-Value—which may act on open λ-terms. The value
of this result is that Strong Call-by-Value may be seen as the Open Call-by-Value iterated
under λ-abstractions.

4Remarkably, they use techniques involving multi types in [Bal+17] to prove that their strategy is complete with
respect to β-reduction to strong normal forms.

7

1.3 Development and outcomes
The starting point of this thesis are the multi type systems given in the literature for the weak
and closed variants of CbN—that is, System R given by de Carvalho—and of CbV—see Ehrhard’s
call-by-value variant of System R in [Ehr12]. Since multi types model CbN and CbV well, it was
only natural to try to apply this technique to CbNeed, more so considering the fact that CbNeed
may be seen as a combination of CbN and CbV—in the particular way we shall explain in Chapter 4
(CbN, CbV and CbNeed).

We believe that the understanding of Useful Open CbNeed, both operationally and
type-theoretically, is likely the most interesting result in our work. It is presented in Chapter 8

(Useful Open CbNeed) and intends to connect two of the recent advances in the operational
theory of the λ-calculus—that we listed in Subsect. 1.2 (Operational semantics): we begin by taking
a reduction sub-relation from [Bal+17]—which we call Open CbNeed—then we take the notion of
usefulness as presented in [AL16], and we finally use it to adapt Open CbNeed to perform useful
reduction, thus obtaining Useful Open CbNeed.

As we shall see in Chapter 6 (Open CbNeed), Open CbNeed is itself interesting, in particular
because it happens to be the natural way to factor the difficulties faced in the development of a
theory of strong reduction in a call-by-need setting. Moreover, it constitutes the natural setting
where the restriction to useful reductions may be implemented and studied, as it is a significantly
simpler scenario compared to variants of call-by-need implementing strong reduction.

Another natural intermediate step to achieving the results for Useful Open CbNeed is under-
standing Open Call-by-Value, for which a multi type system with a class of type derivations pro-
viding exact bounds is given in [AG18]. Here, we shall extend the reduction relation of Open
Call-by-Value to define the more general Strong Call-by-Value relation—which encompasses Open
Call-by-Value—and then provide a multi type system whose notion of typability matches that of
normalization in Strong Call-by-Value. As a matter of fact, the multi type system for Strong Call-
by-Value served as inspiration for the one for Useful Open CbNeed during the preparation of this
work. Nevertheless, we shall not merely present it as an intermediate step towards the latter—unlike
all other multi type systems—but rather as a separate case study, interesting in itself.

We would also like to remark the importance of studying strong reduction in a call-by-value set-
ting, both operationally and type-theoretically. This is a previous and necessary step to attaining
the final goal of producing a multi type system characterizing and providing measurements for a
strong and useful call-by-need reduction relation. Unfortunately, this final goal remains unachieved
by the time we write these lines.

With intention to keep matters as simple as possible, all the case studies in this work shall
morally follow the same structure, methodologically speaking:

• We begin by defining the reduction relation and proving that it enjoys some kind of deter-
minism.

• Next, we provide a set of predicates that characterize the normal forms of said reduction
relation. This may be extremely intricate, in particular in the cases of Open CbNeed and
Useful Open CbNeed.

• We then move on to define the multi type system meant to characterize normalization in
the reduction relation. To attain this, we must prove that the type system is sound and

8

complete with respect to normalizing terms. Needless to say, proving this requires an ex-
tremely detailed understanding of the operational aspects of the reduction relation from a
type-theoretical perspective. An overview of the way in which we prove this—which is con-
sistently applied to every case study—is presented in upcoming Chapter 3 (A bird’s eye view).

Turning now to the features of the multi type systems, we hope that the reader may find them
quite simple. They are derived in a principled way, following an incremental approach:

• The multi type system for Strong CbV is obtained almost effortlessly from the one given by
Ehrhard for the weak and closed variant of CbV.

• The multi type system for Open CbNeed is obtained by adding a few typing rules to the one
for CbNeed.

• Finally, the multi type system for Useful Open CbNeed is obtained from the one for
Open CbNeed by refining the axioms. We believe this is quite remarkable, and was in fact our
first intuition for understanding useful reduction from a (multi) type-theoretical perspective
in the Open CbNeed setting.

Unfortunately, the same level of simplicity was not found at the rewriting-theoretical level. That is,
while designing the multi type systems turned out to be relatively simple, conducting the operational
studies of most of our case studies was not as easy as expected. For instance, the Open CbNeed
and Useful Open CbNeed cases turned out to be extremely subtle, requiring in particular very long
proofs for the characterization of their normal forms via predicates. This was somewhat surprising.

1.4 Considerations
Each one of the four case studies have two dedicated chapters, one where we study its operational
aspects and another one where we study its multi type system. The distribution of contents goes
as follows:
• In Chapter 4 (CbN, CbV and CbNeed) we develop an operational account on the weak and

closed versions of call-by-name (CbN), call-by-value (CbV) and call-by-need (CbNeed).
• In Chapter 5 (Multi types for CbN, CbV and CbNeed) we analyze the multi type systems for

CbN and for CbV given in the literature, and use them to derive the one for CbNeed.
• In Chapter 6 (Open CbNeed) we present the Open CbNeed evaluation strategy, which extends

the CbNeed one by including reduction on (possibly) open terms, and reducing on arguments.
• In Chapter 7 (Multi types for Open CbNeed) we present the multi type system for the

Open CbNeed evaluation strategy.
• In Chapter 8 (Useful Open CbNeed) we refine the Open CbNeed evaluation strategy to make

it useful.
• In Chapter 9 (Multi types for Useful Open CbNeed) we present the multi type system for the

Useful Open CbNeed evaluation strategy.
• In Chapter 10 (Strong CbV) we present the Strong CbV evaluation strategy.
• Finally, in Chapter 11 (Multi types for Strong CbV) we present the multi type system for the

Strong CbV evaluation strategy.

With respect to the other chapters:
• Chapter 2 (Preliminaries) gives a relatively detailed presentation of topics. Although they

are probably known to the reader, the purpose of this chapter is to agree on notation and

9

definitions.
• Chapter 3 (A bird’s eye view) intends to extend the intuitions that we just gave here by

incorporating some of the technical details introduced in Chapter 2 (Preliminaries). We also
use Chapter 3 to show that the technical development in each of the case studies—in particular
what concerns the multi type systems—follows the exact same structure, thus heightening the
value of our approach.

• Chapter 12 (Conclusion) reviews the results attained throughout this work, and provides a
list of some future lines of research that might derive from this work.

Proofs and appendices. We have made the presentation choice of keeping explanations and
technical proofs apart. Thus, Chapter 4 (CbN, CbV and CbNeed) to Chapter 11 (Multi types for
Strong CbV) mostly provide definitions, analyses and examples, while Chapter 13 mostly provides
proofs.

In Chapter 13 (Technical appendix) we provide all the proofs for for this work. Of course, this
excludes Chapter 2 (Preliminaries), Chapter 3 (A bird’s eye view) and Chapter 12 (Conclusion).
All other chapters, from Chapter 4 (CbN, CbV and CbNeed) to Chapter 11 (Multi types for
Strong CbV), have numerous links to Chapter 13. Indeed, the complete technical development of
each one of these chapters appears in Chapter 13 in the form of a dedicated section. In addition,
every statement appearing in chapters from Chapter 4 (CbN, CbV and CbNeed) to Chapter 11
(Multi types for Strong CbV) is followed by links taking the reader back and forth Chapter 13
(Technical Appendix). Conversely, some (less important) statements only appear in Chapter 13,
as they are considered to be relevant only as part of the technical development, and not for any
meaningful conceptual understanding. We believe this should help the reader study a proof whenever
he or she sees fit, while keeping matters as split as possible.

Abstract machines. The development of this thesis was considerably accompanied by a large
amount of work on abstract machines. For both of Open CbNeed and Useful Open CbNeed, we
simultaneously worked on them on three different levels: the operational semantics, the multi type
system, and the derivation of an abstract machine.

The intention was to design these abstract machines in such a way that they would distill their
respective evaluation strategies—in the sense presented in “Distilling Abstract Machines” [ABM14].
Additionally, they would be bilinear with respect to the evaluation strategy. For instance, given an
Open CbNeed-normalizing term t, the number of transitions in an execution in the Open CbNeed
abstract machine would have to be bilinearly related to the size of t and the number of multiplicative
steps in the Open CbNeed-normalizing sequence starting in t. Similarly, the Useful Open CbNeed
abstract machine would also have to satisfy a bilinear relation with respect to the evaluation strategy.

However, designing such abstract machines was too technically demanding, and so we had to
focus our time on the development of the multi type systems, leaving the completion of the devel-
opment of the abstract machines for future work. Despite that, let us stress the fact that the work
on abstract machines was a valuable set of guiding principles both for the operational semantics
and the design of the multi type systems in this work.

Contributions. This thesis contains results from two separate but connected worlds, namely
the theory of operational semantics and the theory of types. Let us briefly list our contributions,
especially the novelties of this work:

10

• Operational semantics: In this respect, the novelties in this work are Open CbNeed,
Useful Open CbNeed and Strong CbV; the weak and closed evaluation strategies presented
in Chapter 4 (CbN, CbV and CbNeed) are prior to this thesis.
Open CbNeed is the result of joint work between my supervisor, Beniamino Accattoli, and
myself. We should however say that it is actually an adaptation of the Strong Call by Need
evaluation strategy from “Foundations of Strong Call by Need” [Bal+17]. Basically, the
Open CbNeed evaluation strategy is a restriction of Strong Call by Need to the weak setting,
where we have adjusted the derivation of its evaluation contexts in such a way as to match
our needs for the design of the multi type system.
Moreover, the development of Open CbNeed was carefully done as to, simultaneously, prepare
the elements for the useful variant, the Useful Open CbNeed evaluation strategy. The isolation
of needed variables is an example of this: they are presented for Open CbNeed and refined
for Useful Open CbNeed.
The latter, the Useful Open CbNeed evaluation strategy, was mostly my invention. But I had
the expert and tireless help of my supervisor without whom I would not have succeeded.
Finally, the development of the Strong CbV evaluation strategy is the result of joint work
between Beniamino Accattoli, Giulio Guerrieri and myself. Andrea Condoluci and Claudio
Sacerdoti Coen also contributed in the design Strong CbV, but they were mostly concerned
in connecting the strategy to a bilinear abstract machine distilling it.

• Multi type systems: The multi type systems given for CbN and for CbV are not a novelty
of our work, as we took them from “Execution time of λ-terms via denotational semantics
and intersection types” [Car18] and “Collapsing non-idempotent intersection types” [Ehr12],
respectively.
On the contrary, all the other multi type systems in this work are novel. That is,

– The CbNeed multi type system, presented in Chapter 5 (Multi types for CbN, CbV and
CbNeed), was jointly developed by Beniamino Accattoli, Giulio Guerrieri and myself.

– Both the Open CbNeed multi type system presented in Chapter 7 (Multi types for
Open CbNeed), and the Useful Open CbNeed multi type system presented in Chap-
ter 9 (Multi types for Useful Open CbNeed), were mostly developed by myself. My
supervisor’s close guidance was greatly helpful.

– Finally, the Strong CbV multi type system, presented in Chapter 11 (Multi types for
Strong CbV), was jointly developed by Accattoli, Guerrieri and myself.

• Finally, the work on abstract machines for Open CbNeed and for Useful Open CbNeed was
done as a collaboration with Bruno Barras and Beniamino Accattoli. Although it has not
made its way into this thesis, we believe the considerable effort we made on designing ab-
stract machines shall soon bear its fruits.

11

Chapter 2

Preliminaries

2.1 The λ-calculus
The syntax of the λ-calculus is given by the following context-free grammar:

Λ-terms (Λ) t, u, s,m ::= Var | λx.t | (tu)

where Var is taken to be any countably infinite set of syntactic objects, which we call variables and
note x, y, z, x̃, The same set of variables is silently used throughout the present work.

For any given t ∈ Λ, we define the set of its free and bound variables, respectively noted fv(t)
and bv(t), as follows:

Free variables Bound variables
fv(x) := {x} bv(x) := ∅
fv(tu) := fv(t) ∪ fv(u) bv(tu) := bv(t) ∪ bv(u)

fv(λx.t) := fv(t) \ {x} bv(λx.t) := bv(t) ∪ {x}
A Λ-term with no free variables is called a closed term; dually, a Λ-term with free variables is called
open.

Definition 1 (α-equivalence).
Let t, u ∈ Λ. We say that t and u are “α-equivalent” if they only differ in the choice of bound

variable names while remaining syntactically equal in any other aspect.

Remark 1 (Identifying α-equivalent terms).
Throughout this work, we shall identify terms up to α-equivalence. This is a standard practice

in the literature—except, of course, when α-conversion of terms is the object of study in itself—and
is also known as Barendregt’s variable convention.

That is, we shall always assume that the name of bound variables in a given term are all pairwise
distinct, and that they are different from the names used for free variables. For example, λx.x and
λy.y are α-equivalent terms and are thus identified as morally representing the same term, while
λx.x and λx.x x are not.

Note that this identification concerns only the name of bound variables, and free variables are
never identified unless they share the same name. Thus, we do not identify xx and y y—since they
are not α-equivalent. Nor do we identify λx.y and λy.y, since in the former y is a free variable
while in the latter the rightmost occurrence of y is bound by the leftmost occurrence, thus morally
representing a different term.

12

2.1.1 β-reduction
The computational rule in the λ-calculus is β-reduction, whose base case is the following

Definition 2 (β-contraction).
The smallest binary relation between Λ-terms satisfying

(λx.t)u 7→β t{x←u}

is called the β-reduction root step. Here, t{x←u} represents the capture-avoiding, syntactic and
simultaneous substitution of each occurrence of x in t by copies of u. We call this kind of substitution
of variables as “meta-level” substitution.

Λ-terms of the form (λx.t)u are called β-redexes and we say that (λx.t)u 7→β-reduces to, or that
it 7→β-contracts to t{x←u}. We may also say that t{x←u} is the 7→β-reduct of (λx.t)u.

The following are examples of β-contraction

(λx.x)u 7→β x{x←u} = u
(λx.(xx))u 7→β (xx){x←u} = (uu)

(λx.y)u 7→β y{x←u} = y
(λx.(λy.x))y 7→β (λy.x){x←y} =α λz.y

In order to avoid capturing free variables, note that the last example implements α-renaming (of
fresh variable z for bound variable y) before proceeding with the meta-level substitution.

Now, we would like to allow root step 7→β to be performed in any position of a Λ-term where
there is a β-redex. For instance, we would like to have that x((λx.t)u) β-reduces to x(t{x←u}).
One simple way to do this is by means of evaluation contexts, which are nothing other than Λ-terms
where one of its subterms is a context hole, noted ⟨·⟩. This context holes play the role of placeholders
for the subterms to which we perform the rewriting step 7→β.

Evaluation contexts in the λ-calculus, called general contexts or simply contexts, are given in
the form of a context-free grammar, much like the syntax of the λ-calculus itself:

C,C ′ ::= ⟨·⟩ | Ct | tC | λx.C

The definitions of free and bound variables of a general context are extended from the ones for
Λ-terms as expected:

Free variables Bound variables
fv(⟨·⟩) := ∅ bv(⟨·⟩) := ∅
fv(Ct) := fv(C) ∪ fv(t) bv(Ct) := bv(C) ∪ bv(t)
fv(tC) := fv(t) ∪ fv(C) bv(tC) := bv(t) ∪ bv(C)

fv(λx.C) := fv(C) \ {x} bv(λx.C) := bv(C) ∪ {x}

We write C⟨t⟩ for the Λ-term obtained by replacing the hole ⟨·⟩ in C by t. This plugging oper-
ation may capture variables—as it is usual with contexts in the literature. For instance, consider
(λx.(t⟨·⟩))⟨x⟩ = λx.(tx). Conversely, we write C⟨⟨t⟩⟩ when we want to stress that the context C
does not capture the free variables of t.

13

Remark 2 (α-equivalence and evaluation contexts). Since contexts may capture free variables, we
do not consider them up to α-equivalence. However, once a context C has been plugged with a
t ∈ Λ, and potential captures have been established, then C⟨t⟩ ∈ Λ; consequently, α-equivalence
considerations apply on C⟨t⟩ as for any other Λ-term.

We now have all the needed concepts to finally define the operational semantics for the λ-calculus:

Definition 3 (β-reduction).
The reduction relation →β between Λ-terms, called β-reduction, is defined as follows:

t 7→β u

C⟨t⟩ →β C⟨u⟩

for all t, u ∈ Λ and general context C.
Alternatively, we may write →β:= C⟨7→β⟩, saying that →β is the contextual closure of 7→β.

When C⟨t⟩ →β C⟨u⟩, we say that C⟨u⟩ is the result of contracting the β-redex t in the evaluation
context C.

Finally, we write t −→∗β u to express that there exists a (potentially empty)→β-reduction sequence
from t to u. That is, t →β-reduces to u if there exists n ≥ 0 such that

t →β ... →β︸ ︷︷ ︸
n

u

In particular, when n = 0 we have that t = u.

2.1.2 Normalization in the λ-calculus
As is standard, we say that t ∈ Λ is in→β-normal form, or that t is a →β-normal form, when there
exists no other u ∈ Λ such that t→β u.

Normal forms in the λ-calculus are known to be unique, and we say that it is confluent. As
proven by Church and Rosser, if t −→∗β u and t −→∗β s, where both u and s are →β-normal forms,
then u = s.

The notion of normal forms is not exclusive to the λ-calculus, as it may be generalized to any
rewriting system. Thus, the following notions, defined in terms of the λ-calculus, may also be
defined for every reduction relation in this work:

Definition 4 (Weakly normalizing, strongly normalizing and diverging Λ-terms).
Let t ∈ Λ. Then,
• We say that t is →β-weakly normalizing if there exists u ∈ Λ such that t −→∗β u and u is in
→β-normal form.

• We say that t is →β-strongly normalizing if all →β-reduction sequences starting in t reach a
→β-normal form.

• We say that t is →β-diverging if it is not →β-weakly normalizing. That is, if there exists no
u ∈ Λ such that t −→∗β u and u is in →β-normal form1.

1Although it is not used in this work, there exists a further refinement on the notion of →β-divergence—akin to
the refinement defined for →β-normalization: we say that t is →β-weakly diverging if there exists a →β-reduction
sequences that diverges, and that t is →β-strongly diverging if all →β-reduction sequences diverge. Note that the
notion of →β-divergence described above matches that of →β-strong divergence described here.

14

The typical example of a →β-diverging term is Ω := δδ, with δ := λx.(xx). Note that Ω can
only →β-reduce to itself—i.e., Ω →β Ω—and so there cannot be →β-reduction sequences
starting in Ω and reaching a →β-normal form.

2.1.3 Evaluation strategies
As we can see in the definition of general contexts, given (tu) ∈ Λ we can proceed to contract a
β-redex either in t or in u. In this respect, the λ-calculus does not force redexes to be contracted
in any particular order, thus making it a non-deterministic model of computation.

The ordinary, non-deterministic λ-calculus enjoys many interesting properties by itself, and
serves as a common framework and foundational background to all of its variants. However, we
shall not work directly on the λ-calculus here. Instead, we shall be interested in some of its evalu-
ation strategies, which are variants satisfying a relaxed notion of determinism called the diamond
property:

Definition 5 (Diamond property).
Let→ is a sub-relation of→β composed of→1, ...,→n. That is, let→1 ∪ . . . ∪ →n=:→ ⊆→β.
We say that → satisfies the diamond property if for every t, u, s ∈ Λ and 1 ≤ i, j ≤ n, the fact

that s j← t →i u implies the existence of m ∈ Λ such that s →i m j← u.

The diamond property implies uniform normalization: if there is a normalizing sequence from t,
then there are no diverging sequences from t. Additionally, it implies the random descent property:
all normalizing sequences from t have the same length and, in our current case, the diamond diagram
preserves also the kind of step (and so all normalizing sequences have the same number of each kind
of steps).

Definition 6 (Evaluation strategies).
Given→⊆→β, we say that→ is an evaluation strategy of→β if it satisfies the diamond property.

While Definition 6 shall be adapted to formalisms other than the λ-calculus when considering
our different case studies, its essence shall remain the same.

Let us stress the fact that considering sub-relations that satisfy the diamond property is enough
to cover our purposes2. Indeed, if we consider all possible reduction sequences starting at a given
term, we see that if any one of them reaches a normal form, then all of them do, because the
diamond property is a strong form of confluence. This property also ensures that the number and
kind of steps among the reduction sequences starting at a given term are exactly the same.

Thus, and since our quantitative results shall only concern the number and kind of steps in
normalizing reduction sequences, it is enough that the reduction relations in this work satisfy the
diamond property.

2In the theory of the λ-calculus, evaluation strategies are usually defined as deterministic sub-relations of β-
reduction. Hence, our definition of evaluation strategies is a more relaxed one, where we replace determinism for the
diamond property.

15

2.1.4 Different flavors of evaluation strategies
As explained in Chapter 1 (Introduction), all our evaluation strategies fall into one of the following
three categories, depending on the conditions imposed on arguments:

Evaluation strategies implementing call-by-value are such that, upon encountering a β-redex,
they first evaluate the argument until reaching a (partial or full) normal form before contracting
the redex. Thus, we say that call-by-value only contracts redexes when the argument is a value,
hence the name.

Evaluation strategies implementing call-by-name do not impose any conditions on the shape
of the argument of a redex, and proceed directly to contract the redex. Because of this lack of
restriction on arguments, call-by-name is known to reach a normal form more often than call-by-
value.

Finally, evaluation strategies implementing call-by-need do not impose restrictions on arguments
either, and are thus said to be termination-equivalent to their call-by-name versions. But unlike call-
by-name, arguments needed in call-by-need reduction sequences are reduced only once. Moreover,
while call-by-value also reduces arguments only once, it does so even if the argument is not needed.
Hence, call-by-need is said to be a “call-by-value-like efficient implementation of call-by-name”, and
is thus placed in between the two worlds. We shall extensively explore this feature of call-by-need
in Chapter 4 (CbN, CbV and CbNeed).

2.1.5 Degrees of generality in β-reduction
Recall that →β-reduction is defined as the contraction of a β-redex in any subterm of the overall
Λ-term, including under λ-abstraction. This degree of generality and non-determinism is sometimes
too much, especially in technological applications, which require a deterministic reduction relation
to perform their computations. Moreover, the different technological applications that use the
λ-calculus to model their computations may have quite different needs in terms of generality.

For example, functional programming languages take closed terms as initial programs, proceed
with their computations in a deterministic fashion, and stop evaluating a program when it reaches
the form of a λ-abstraction.

On the one hand, and regarding free variables, note that since β-reduction does not create new
free variables3, we note that the hypothesis of closed terms suffices to model functional programming
languages.

On the other hand, and regarding which subterms may be reduced, we say that functional pro-
gramming languages perform weak reduction, as they stop execution upon reaching a λ-abstraction,
even if the latter contains β-redexes in its body. For example, take t := λx.Ω, where Ω is the usual
diverging Λ-term, and note that while t is not in →β-normal form—and could never be so, because
Ω diverges—it is in normal form when considering weak reduction.

On the opposite side, proof assistants impose no restrictions on the set of free variables of a
term. Moreover, they contract each and all of the β-redexes, even those contained in the body of a
λ-abstraction. Following our running example, proof assistants would continue reducing t := λx.Ω—
indefinitely.

3That is, if t →β u, then fv(u) ⊆ fv(t). This is trivially provable by induction on the evaluation context C such
that t = C⟨s⟩ →β C⟨s′⟩ = u, with s 7→β s′.

16

These features may be expressed in the form of two separate axes, and used to categorize
reduction relations as follows4:

1. A reduction relation that does not reduce under λ-abstractions is called weak, while one that
does is called strong.

2. A reduction relation defined for closed terms is called closed. Conversely, one that is defined
for (possibly) open terms is called open.

Remark 3 (Weakly/strongly normalizing terms and weak/strong reduction are not to be confused).
Since there is a clash in the names to express these concepts, it should be remarked here that weakly
and strongly normalizing are properties of terms, while weak and strong refer to reduction relations.

2.2 The Linear Substitution Calculus
2.2.1 Syntax
The Linear Substitution Calculus, or LSC for short, plays a central role throughout this work and
is used to define virtually all of our evaluation strategies. Its syntax is given by extending the one
for the λ-calculus with a fourth production, as follows:

(ΛL) t, u, s,m ::= Var | λx.t | (tu) | t[x←u]

Note that every Λ-term is also a ΛL-term—i.e., Λ ⊂ ΛL. The production t[x←u] should be taken
to be a simple syntactic sugar presentation of the traditional let x = u in t from the literature. We
call [x←u] an explicit substitution, or ES for short.

As for let-constructs, ESs are a form of binding: variable x is bound in t in closure t[x←u].
Given a t ∈ ΛL, the set of its free and bound variables, respectively noted fv(t) and bv(t), are
defined as expected:

Free variables Bound variables
fv(x) := {x} bv(x) := ∅
fv(tu) := fv(t) ∪ fv(u) bv(tu) := bv(t) ∪ bv(u)

fv(λx.t) := fv(t) \ {x} bv(λx.t) := bv(t) ∪ {x}
fv(t[x←u]) := (fv(t) \ {x}) ∪ fv(u) bv(t[x←u]) := bv(t) ∪ {x} ∪ bv(u)

The concept of closed and open ΛL-terms is defined as expected as well.

2.2.2 Where do explicit substitutions come from?
Explicit substitutions, as the name suggests, make the process of substitution explicit. Recall

that the process of substitution, central to β-reduction—see Subsect. 2.1.1 (β-reduction)—relies
on a kind of substitution that we call implicit substitution: t{x←u} represents the result of the
syntactical and simultaneous substitution of every occurrence of x in t by copies of u.

The definition of meta-level substitutions is in fact unsuited for technology-related applications
(whose procedures need to be concrete enough in order to perform computations). Thus, explicit

4In Chapter 3 (A bird’s eye view), we shall explain how each of the evaluation strategies in this work combines
these axes in a meaningful way.

17

substitutions may be considered a tool bridging the gap between the formal presentation of the
λ-calculus and its concrete applications.

Historically, this has been achieved via the implementation of abstract machines. Peter J. Landin
designed the first-ever abstract machine—called SECD [Lan64]—intended as a target for functional
programming languages compilers—i.e., for the λ-calculus and its higher-order evaluation. Since
then, a considerable number of abstract machines have been studied, all of which are more or less
explicit in how the substitution process should be carried out.

Abstract machines are, evidently, implementation-oriented, so their specific incarnation of the
substitution process is somewhat ad-hoc rather than fundamental to the theory of substitutions.
To address this theoretical lack, an alternative is resorting to an operational-semantics approach,
consisting in defining the substitution process via some notion of a sharing mechanism.

A first such notion was proposed by de Bruijn, dating back to as far as the 1970’s. In his
[Bru72], he proposed the use of terms with indices, introducing his famous “de Bruijn notation” to
the community. He later defined, in his [Bru78], a set of reduction rules that depend themselves on
the indices of terms.

De Bruijn’s work eventually evolved to what we know today as explicit substitutions. Many
formulations of explicit substitutions were conceived and adapted to a considerable number of λ-
calculi. For example, in their “Explicit Substitutions”[Aba+91] Abadi, Cardelli, Curien and Lévy
define a so-called λσ-calculus which is presented as a “useful bridge between ordinary λ-calculus
and concrete implementations” [Aba+91].

2.2.3 Origin of the LSC

While the LSC is yet another calculus with explicit substitutions, among many other, there
actually are certain subtle features that made it our formalism of choice for defining reduction rela-
tions. In particular, the LSC provides a sharing mechanism suitable for the call-by-need reduction
relations defined in this work while, at the same time, keeping syntax bookkeeping (arguably) to a
minimum of complexity. Let us now emphasize what we consider to be the two main operational
features of the LSC:

• Linear substitutions. The LSC is particularly appropriate for making the substitution mecha-
nism fine-grained enough to allow for substitutions for single variable occurrences. Note that
this is in contrast with meta-level substitutions, where all variable occurrences get simulta-
neously replaced.
Substitutions for a single variable occurrence—originally called partial substitutions but un-
surprisingly called “linear substitutions” in the LSC—were envisioned by de Bruijn in his
[Bru87], and then by Severi and Poll in their [SP87]. Robin Milner then took the idea of par-
tial substitutions and derived the λsub-calculus [Mil06]. Milner’s λsub-calculus is particularly
relevant to the LSC because the latter may be seen as an extension of the former with the
added notion of distance β.

• Distance β. As it was later shown by Accattoli [Acc18], the LSC is operationally isomorphic
to (an abstract variant of) Linear Logic proof nets [Gir87].
This property of the LSC is partly due to the fact that the cut-elimination process defined on
proof nets acts “at a distance”. Said property is embodied by the LSC in the way it contracts (a
generalization of) β-redexes, where the λ-abstraction and its corresponding argument may be

18

separated by a (possibly empty and) finite sequence of explicit substitutions. Said differently,
the notion of β-redex in the λ-calculus gets generalized in the LSC into redexes of the following
form:

(λx.t) [y1←u1] . . . [yb←un]s

noting in particular that if n = 0 then (λx.t)u is just a β-redex from the λ-calculus.
Originally known as “distance β”, the first reduction rules contracting this generalized kind
of redexes were used in Accattoli and Kesner’s structural λ-calculus [AK10].

Historically speaking, the LSC was derived by Accattoli and Kesner as the evolution of the
structural λ-calculus combined with Milner’s λsub-calculus, thus obtaining a calculus with explicit
substitutions implementing both linear substitutions and distance β.

The LSC has been proven to enjoy interesting rewriting properties, including (but not limited
to) having a residual system and a theory of standardization —see e.g. [Acc12; Acc18; Acc+14].
Additionally, we claim that the LSC has a closer resemblance with environment-based abstract
machines5 than other calculi with sharing mechanisms. This can be justified by Accattoli, Baren-
baum and Mazza’s [ABM14], where they prove that certain evaluation strategies formalized in the
LSC and their corresponding environment-based abstract machines can simulate each other; even
more remarkably, they do so while proving that the length of a given reduction sequence and the
associated time-complexity in its abstract machine are linearly related.

Before we conclude, let us stress again the connections between the LSC and Linear Logic proof
nets. Linear Logic, introduced by Jean-Yves Girard in his famous “Linear Logic” [Gir87] consti-
tutes a useful tool for performing fine resource-consumption analyses of higher-order evaluation. In
other words, Linear Logic can be thought of as a kind of resource-refinement applied to different
proof systems, which therefore can be exploited to obtain a finer-grained cut-elimination process—
particularly in terms of resources.

For all these reasons, we use the LSC to define our evaluation strategies. The only exception is
the Open CbNeed evaluation strategy—and its useful variant; see Chapter 6 (Open CbNeed) and
Chapter 8 (Useful Open CbNeed), respectively—which we formalize in a variant of the LSC.

2.2.4 The λ-calculus as a LSC
Just like β-reduction for the λ-calculus was defined by using general evaluation contexts based on
Λ-terms, we now define the LSC evaluation contexts, with which we define the reduction relation
in the LSC setting. LSC evaluation contexts are based on ΛL, and are obtained via the following
context-free grammar:

LSC evaluation contexts D,D′ ::= ⟨·⟩ | Dt | tD | λx.D | D[x←t] | t[x←D]

That is, LSC evaluation contexts are an extension to the notion of general evaluation contexts,
where we add two productions to encompass the presence of ESs in the calculus.

In addition, we adapt the definition of free and bound variables of LSC evaluation contexts as
expected; namely, by extending the one for general contexts with the following equations regarding
ESs:

5Landin’s SECD: in their [ABM14], Accattoli, Barenbaum and Mazza carry out an interesting approach to pairing
the reduction relation in several evaluation strategies are formalized as LSC-calculi

19

Free variables Bound variables
fv(D[x←t]) := (fv(D) \ {x}) ∪ fv(t) bv(D[x←t]) := bv(D) ∪ {x} ∪ bv(t)
fv(t[x←D]) := (fv(t) \ {x}) ∪ fv(D) bv(t[x←D]) := bv(t) ∪ {x} ∪ fv(D)

Moreover, the following subclass of LSC evaluation contexts is used in almost every evaluation
strategy:

Substitution contexts S, S ′ ::= ⟨·⟩ | S[x←t]

That is, substitution contexts are nothing but a context hole followed by a possibly empty list of
ESs.

We can now define the reduction relation for the λ-calculus in this LSC setting, which follows
the same definition schema as for β-reduction. A major difference between the ordinary λ-calculus
and its LSC variant is that the root-step 7→β used in the ordinary λ-calculus gets split in two6:

Multiplicative root-step S⟨λx.t⟩u 7→m S⟨t[x←u]⟩
Exponential root-step D⟨⟨x⟩⟩[x←t] 7→e D⟨⟨t⟩⟩[x←t]

where the double angle-bracketing on the definition of exponential root-steps means that x /∈ bv(D),
as explained above.

Note that in multiplicative root-steps we perform distance β as explained above, while in expo-
nential root-steps we perform linear substitutions. Moreover, note that performing a multiplicative
root-step does not involve performing the meta-level substitution that would be triggered in the
ordinary λ-calculus setting upon contraction of a β-redex. Instead, we simply add the explicit sub-
stitution [x←u], delaying the substitutions. In this way, the LSC implements distance β and linear
substitutions as separate “components” of the reduction relation.

Remark 4 (α-renaming of bound variables).
As explained in Remark 1 (Identifying α-equivalent terms), in this text we consider terms up

to α-equivalence. This affects in particular the duplication mechanism in the exponential root step
defined above, where the bound variables of the duplicated term t become different from the ones
in the original term inside the explicit substitution.

Technically speaking, the exponential root step should rather be defined as
D⟨⟨x⟩⟩[x←t] 7→e D⟨⟨tα⟩⟩[x←t]

where tα represents term t after its bound variables have been changed for new ones.
That said, it turns out that this implementation is not completely necessary, since Barendregt’s

variable convention lets us assume that the bound variables in each of the copies of t are different
from each other.

We shall however use the tα notation in the remainder of the thesis when we want to stress
the fact that the bound variables of a given duplicated term are not the same as the ones in the
original term. This is particularly relevant in the proofs of the multi type systems, where we must
meticulously consider the membership of a given variable to the domain of a given type context.

Let us define the reduction relation →L of the LSC variant of the λ-calculus as the contextual
closure of the multiplicative and exponential root-steps by LSC evaluation contexts. Formally,

→L := D⟨7→m ∪ 7→e⟩ = D⟨7→m⟩ ∪D⟨7→e⟩
6The terminology “multiplicative” and “exponential” is taken from Linear Logic—see e.g. [Acc15].

20

Given a →L-reduction sequence d : t −→∗L u, we note with |d| the length of d, and with |d|m and
|d|e the number of multiplicative and exponential steps in d, respectively.

When using the LSC as the base formalism for the definition of an evaluation strategy, we shall
say that we are giving it a “micro-step semantics”. This expression is in opposition to the usual
notion of small-steps semantics that one usually gives to sub-relations of the ordinary λ-calculus.
Micro-step semantics should be considered as a decomposition of small-steps semantics consisting
in linearly substituting variable occurrences; that is, substituting variables one at a time, instead of
performing meta-level substitution like in small-steps semantics.

2.3 Usefulness
Let us shortly discuss what we call usefulness, a property about the substitution process of a given
sub-relation. To understand the value of usefulness, we first need to overview how the λ-calculus
relates to the complexity theory branch of mathematics. That is, we need to discuss reasonability
of cost models.

2.3.1 Reasonable time cost models of the λ-calculus
For each one of the case studies in this work, we shall present an operational semantics in the form
of an evaluation strategy, and a multi type system characterizing its normalization. Furthermore,
type derivations shall contain quantitative information regarding the normalization process of their
subject. We then say that the quantitative information of each one of the normalization processes
admits a type-theoretical representation. However, what does this information really mean, in the
broader sense? In particular, how does any of the quantitative results in this work relate to more
general notions of time complexity?

In the Complexity Theory community, the standard is to define complexity classes in terms of
more machine-oriented models of computation, like Turing machines or random access machines.
Indeed, most complexity classes consist on decision problems solvable by a Turing machine. These
complexity classes are differentiated by the time or space a Turing machine consumes to solve the
decision problem. For instance, the time complexity class P of polynomially decidable problems
consists, precisely, of all those decision problems which can be decided by a Turing machine in
polynomial time with respect to the size of the input.

The λ-calculus being a rather abstract model of computation, it is not clear how a reduction
relation defined in the λ-calculus may be implemented in a Turing machine, in particular regarding
its overhead. In terms of complexity, may reduction sequences in the λ-calculus be related with a
polynomial overhead in time in a Turing machine? In fact, this problem is known to have been
an arduous task. The complication came from the fact that it was not evident at all that β-steps,
which are called the unitary cost model of the λ-calculus, were polynomially related to transition
steps in Turing machines.

A positive answer to the question of the polynomial relation between the λ-calculus and Turing
machines, expressed by saying that β-reduction is a reasonable, or invariant, time cost model of the
λ-calculus, would mean that polynomial and super-polynomial complexity classes may be defined
model-independently. That is, that they do not depend on the model of computation to be defined.
On the other hand, a negative answer would somewhat severely undermine the relevance of the

21

λ-calculus as a model of computation, since the cost of computing programs whose base formalism
is the λ-calculus could thus be too big to be worth using the λ-calculus at all.

In their 1984 paper [SE84], Slot and van Emde Boas introduced a complexity-theoretical version
of the Church-Turing thesis, which they called the invariance thesis:

Invariance thesis: Reasonable computational models simulate each other with
polynomially bounded overhead in time, and constant factor overhead in space.

and gave a space-agnostic version to it:
Weak invariance thesis: Reasonable computational models

simulate each other with polynomially bounded overhead in time.
If the weak invariance thesis holds, then, as far as the λ-calculus is concerned, one should be

able to prove that the λ-calculus has a unitary time cost model which is polynomially related to the
unitary time cost model of a reasonable model of computation, like Turing machines. More precisely,
and since in its most general case the λ-calculus is a non-deterministic model of computation, proving
its invariance requires fixing a deterministic reduction sub-relation and proving the invariance result
for its unitary time cost model. Of course, it cannot be a randomly-picked evaluation strategy;
rather, it should be one that always reaches the normal form if there exists one—which means that
it is a normalizing evaluation strategy, in particular because of the confluence of λ-calculus. The
natural candidate for this is the standard evaluation strategy of the λ-calculus, leftmost-outermost
reduction.

2.3.2 The size-explosion problem in the λ-calculus
Recently, Accattoli and Dal Lago gave, in their “(Leftmost-outermost) Beta Reduction is Invariant,
Indeed”[AL16], a positive result for the reasonability of the unitary time cost model of leftmost-
outermost reduction. Of course, results similar to those in [AL16] had been given before. For
example, Blelloch and Greiner’s “Parallelism in sequential functional languages” [BG95] is the very
first publication on the topic, where they prove the reasonability of a weak and closed evaluation
strategy in the λ-calculus performing call-by-value reduction; Sands, Gustavsson and Moran prove
a similar result in their “Lambda Calculi and Linear Speedups” [SGM02]. Other examples include
Dal Lago and Martini’s “Derivational Complexity is an Invariant Cost Model” [DM09], where the
invariance of innermost and of outermost reduction in orthogonal term rewriting systems is proven.

The result in [AL16] was a somewhat unexpected result. In fact, the community used to be-
lieve that strong evaluation strategies in the λ-calculus did not have a unitary time cost model,
especially considering Asperti and Mairson’s result that Lèvy’s optimal strategy—which performs
strong reduction—is not reasonable. Moreover, it is relatively easy to derive counter-examples of
invariance for the unitary time cost model for virtually any evaluation strategy of the λ-calculus.
In particular in its original formulation, where the substitution process is realized via meta-level
substitutions and so there is no sharing of subterms.

A typical such counter-example is the one known as the size-explosion problem, which consists
of a family of Λ-terms whose normalizing sequence involves substituting subterms that do not
contribute in any way to the creation of β-redexes, but whose substitution increases the size of the
term at each β-step, thus producing an exponentially-large gap between the size of the initial term
and the size of the normal form.

We now turn to present the size-explosion problem as given in [AL16], using the notation intro-
duced therein. We begin by formalizing some of the basic notions involved in its presentation:

22

• The size of a Λ-term t, noted |t|, is defined by the following set of equations:

|x| := 1
|u s| := |u|+ |s|+ 1
|λx.u| := |u|

• A variable tree of height n, noted x@n, is given by the following set of equations:

x@0 := x
x@(n+1) := x@nx@n

Remark. By a simple induction on n, we obtain that |x@n| = 2n+1 − 1.

Proposition 2.3.1 (Size-explosion in the λ-calculus).
Let {tn}n≥1 be inductively defined by the following equations:

t1 := λx1.(x1 x1) = λx1.x
@1
1

tn+1 := λxn+1.(tn (xn+1 xn+1)) = λxn+1.x
@1
n+1

noting that |tn| = 4n− 1, for every n. Moreover, let y ∈ Var and m ∈ N.
Then, |tn ym| = O(n+ 2m) and tn y

@m →n
β y@(n+m), where |y@(n+m)| = Ω(2n 2m).

Proof. First, recall that |xn| = 2n+1 − 1. Then, for every n and m we have that |y@(n+m)| =
2n+m+1 − 1 = 2 2n 2m − 1 = Ω(2n 2m).

Next, we prove that |tn ym| = O(n+ 2m) by induction on n:
• Base case: Let n := 1. Then,

|t1 y@m| = |t1|+ |y@m|+ 1 = (4n− 1) + (2m+1 − 1) + 1 = O(n+ 2m).

• Inductive case: Let n > 1. Then,

|tn+1 y
@m| = |tn+1|+ |ym|+ 1 = (4(n+ 1)− 1) + (2m+1 − 1) + 1 = O(n+ 2m).

Finally, we prove by induction on n the part concerning the reduction sequence:
• Base case: Let n := 1. Then,

t1 y
@m = (λx1.x1 x1) y

@m →β y@m y@m = y@(1+m) = y@(n+m)

• Induction case: Let tn y
@m →n

β y@(n+m). Then,

tn+1 y
@m = (λxn+1.(tn (xn+1

@1))) y@m

→β tn

(
(y@m)

@1
)

= tn (y
@(m+1))

→n
β y@(n+m+1)

= y@((n+1)+m)

23

That is, Proposition 2.3.1 shows that there exists a family {tj}j≥1 of Λ-terms such that tj y
@m

reduces in j →β-steps to the →β-normal form y@(j+m) whose size is exponentially larger than size
of the initial term tj y

m.

This would seem to be a counter-example to the weak invariance thesis, namely because the
output term takes an exponential time to be written down, thus seemingly canceling any possibilities
for the λ-calculus to be polynomially related to Turing machines. Furthermore, the size-explosion
problem is known to be adaptable to virtually every reduction relation in the λ-calculus.

However, there exists a unitary cost model for the λ-calculus which is polynomially related to
the one for Turing machines. As shown in [AL16], the number of reduction steps in the useful
variant of leftmost-outermost reduction is both polynomially related to the number of β-steps in
the λ-calculus and polynomially related to the time cost model for Turing machines. This result may
seem counter-intuitive when one considers the size-explosion problem, but it can be decomposed in
two simple elements that explain the success in [AL16], namely:

• The leftmost-outermost reduction is defined in [AL16] in the form of an evaluation strategy
in the LSC, where it is moreover shown to be polynomially related to the λ-calculus.

• The substitution process in the leftmost-outermost strategy is restricted to be useful, and this
useful variant is shown to be polynomially related to Turing machines.

Thus, usefulness is the key novelty used in [AL16] to achieve the invariance result for the λ-
calculus. But the LSC is not the only formalism where usefulness is shown to be the key element in
proving the invariance result for the most general case of the λ-calculus. For instance, in his “The
Useful MAM, a Reasonable Implementation of the Strong λ-Calculus”[Acc16] Accattoli provides an
abstract machines performing useful substitutions.

Needless to say, usefulness need not be restricted to a particular notion of reduction relation,
as it may be applied to other settings. An interesting example of such an application is Yoshida’s
[Yos93], where she defines a weak λ-calculus with explicit substitutions morally implementing useful
sharing.

Following this same vein—that is, extending usefulness to other reduction relations—the goal
of the Useful Open CbNeed evaluation strategy presented in Chapter 8 (Useful Open CbNeed)
is to study usefulness in a call-by-need setting. Additionally, in Chapter 9 (Multi types for
Useful Open CbNeed) we study a type-theoretical interpretation of usefulness in this same call-
by-need setting.

2.4 Multi types
In the early 90’s, the scientific community became interested in non-idempotent variants to inter-
section types. One such case is Philippa Gardner’s [Gar94] (Discovering Needed Reductions Using
Type Theory), where she adapts intersection types to make them incorporate explicit information
about resources, thus allowing her to identify all needed redexes. This work by Gardner is consid-
ered the first envisioning of what was latter known as non-idempotent intersection types. We shall
call them “multi types” instead, to avoid the long name.

Since the publication of [Gar94], numerous other results involving multi types have emerged,
including (but not limited to)
• Several strong normalization[BR13; BG13] and head and weak-normalization[Car07] results

of the λ-calculus.

24

• The synthesis of a resource-aware semantics for the λ-calculus[BCL99].
• The proof of an exact correspondence between the size of type derivations—in a suitable non-

idempotent intersection type system—and the execution time in head and weak-normalizing
Λ-terms [Car07]. This work in particular has had a big influence in ours.

For a more general survey on multi types, we suggest Bucciarelli, Kesner and Ventura’s [BKV17]
(Non-idempotent intersection types for the Lambda-Calculus) to the reader. As thoroughly ex-
plained in [BKV17], there exists a technical improvement over idempotent intersection types when
proving normalization results via the non-idempotent variants: while the idempotent ones tradi-
tionally make use of a reducibility technique [Kri93], the quantitative information present in multi
type derivations is enough to prove the adequacy of the resulting denotational semantics via a sim-
ple combinatorial argument, as pioneered by [Ehr12]. Thus, although still somewhat technically
involved, all the proofs of adequacy of our non-idempotent intersection type systems make use of a
combinatorial argument.

Multi types and multiset notation. In this work, we shall use multi type systems as a con-
siderably flexible tool that allows us to characterize normalization in a given reduction relation.
Consequently, we shall be able to infer an interpretation specific to each reduction relation.

Multi types enjoy such a high degree of flexibility, that even the very notion of types depends on
the corresponding reduction relation that the multi type system is meant to characterize normal-
ization of. These differences in the definitions of multi types is thoroughly explained in Chapter 5
(Multi types for CbN, CbV and CbNeed).

In spite of that, let us momentarily resort to the CbNeed evaluation strategy—properly intro-
duced in Chapter 4 (CbN, CbV and CbNeed)—for the sake of presenting a definition of multi types
that may help the unacquainted reader get a first grasp of multi types. Thus, CbNeed multi types
are defined mutually inductively as follows

CbNeed linear types L,L′ ::= norm |M ⊸ N

CbNeed multi types M,N ::= [Li]i∈I (with I finite)

That is, CbNeed linear types are either the constant base type norm or a linear arrow type of the
form M ⊸ N , where M and N are multi types. Moreover CbNeed multi types are finite collections
of CbNeed linear types7.

Note that we may safely represent multi types using the multi set notation, and hence the name
multi types. Then, we may adapt the multi set union operator ⊎ to multi types as expected. For
example, [L1, L2] ⊎ [L1] = [L1, L2, L1].

Finally, the empty multi type [] is noted with the special symbol 0, and plays a remarkably
important role in many of our case studies. This is analyzed, for example, in Chapter 5 (Multi
types for CbN, CbV and CbNeed).

7Keep in mind that in Chapter 5 we shall see that CbN and CbV have specific definitions for their notions of linear
and multi types. Nevertheless, the common point among all of them is that multi types are always finite collections
of (the appropriate notion of) linear types, and that linear types are either a constant base type, or are built using
the linear arrow ⊸ type constructor and a pair of types.

25

Type contexts and type judgements. As usual in Gentzen-style type systems, our multi type
systems implement the notion of type contexts and of type judgements. Let us first define the
former, again in terms of the CbNeed multi type system:

Definition 7 (Type contexts).
A type context Γ for the CbNeed multi type system is a total function, from Var to the class

of CbNeed multi types, such that only finitely many variables are not mapped to the empty multi
type 0. The domain of type context Γ is then defined as dom(Γ) := {x | Γ(x) ̸= 0}, and we write
Γ = ∅ when dom(Γ) = ∅.

The multiset union operator ⊎ is extended to type contexts point-wise and noted
⊎

. That is,(
Γ
⊎

Π
)
(x) := Γ(x) ⊎ Π(x)

for each x ∈ Var. This can then be further extended to a finite family of type contexts as expected,
so that

⊎
i∈JΓi denotes a finite union of type contexts, with the convention that

⊎
i∈JΓi = ∅ when

J = ∅.
Moreover, a type context Γ is written as x1 :M1; . . . ;xn :Mn, with n ∈ N, if dom(Γ) = {x1, . . . , xn}

and Γ(xi) = Mi for all 1 ≤ i ≤ n.
Finally, given type contexts Γ and Π such that dom(Γ) ∩ dom(Π) = ∅, we define type context

Γ;Π as follows

(Γ;Π)(x) :=

Γ(x) x ∈ dom(Γ)

Π(x) x ∈ dom(Π)

0 otherwise

As a minor remark, note that we do not need to resort to ⊥ to express that a type context Γ is
undefined on a particular variable x. Instead, we may write have that Γ(x) = 0; that is, 0 is the
uniform way in which we represent that Γ(x) = ⊥.

Last, let us define the notion of type judgement, again for the CbNeed type system:

Definition 8 (Type judgements in the CbNeed type system).
Given type context Γ and multi type or linear type T , the syntactic object Γ ⊢(i1,...,in) t :T is

called a type judgement, where Γ is the type context of the type judgement, T is the type, and
(i1, ..., in) is a vector of natural numbers called the indices.

The quantitative information contained in type derivations shall be represented by the indices
of the final type judgement in a type derivation. Since the quantitative information for each of the
case studies may vary, the cardinality and interpretation of indices shall only be considered when
presenting each of the multi type systems.

We do not give further details or insights about multi types here. Like we did with respect to
CbNeed, we believe that this is better done when considering a concrete case. Indeed, many of the
details of the multi type systems unavoidably depend on the operational features of the reduction
relation that they characterize.

26

Chapter 3

A bird’s eye view

We have concluded the preliminary studies and covered the required base concepts to be able to
give a general view of what this work is about. This chapter intends to summarize the results
we obtained in the preparation of this thesis, hopefully allowing the reader to comprehend the
motivations and developments of the upcoming chapters.

We refrain from going into deep technical details here. Instead, insights, further arguments on
the motivation for certain technical choices, examples and explanations shall be separately presented
in due time—that is, in the appropriate chapter where each of these technicalities are relevant.

In any case, this chapter serves as a common ground where we discuss about the differences and
similarities between the case studies presented here. We recommend the reader to revisit it after
reading the other chapters, to get a more panoramic perspective on the overall subject.

Introduction

Using type derivations for quantitative analyses. Throughout this work, we present several
evaluation strategies, each one of them associated with a different multi type system. We also use
these multi type systems to provide quantitative information about the normalization process in
the evaluation strategy.

But, in which way exactly do multi types provide the tools for quantitative analyses of typed
expressions? The answer may be stated in general terms as follows: given a multi type system
X , associated to an evaluation strategy →X , and a type derivation Φ for an expression e, then
the indices of Φ contain quantitative information regarding a →X -normalizing reduction sequence
starting at e. Conversely, given a →X -normalizing reduction sequence starting at expression e,
we are able to derive a type derivation Φ in X for e such that the indices of Φ contain precise
quantitative information regarding the →X -normalizing reduction sequence starting at expression
e.

A natural follow-up questions arises: what kind of quantitative information do the indices of
type derivations contain? Unfortunately, this cannot be answered here in full detail, as we lack the
technical details of each of the multi type systems. Nevertheless, we can say that the nature of the
quantitative information contained in indices falls into one of the two following categories:
• The number of reduction steps from the typed expression to its normal form in the corre-

sponding evaluation strategy. This in turn is split in the different kinds of reduction steps
that said evaluation strategy is composed of. Thus, every evaluation strategy performing lin-
ear substitutions—see Sect. 2.2 (The Linear Substitution Calculus)—has a multiplicative and
an exponential index, respectively counting multiplicative and exponential reduction steps.

27

• The size of the normal form in the corresponding evaluation strategy.
Furthermore, there exists a direct correspondence between indices appearing in a final type

judgement of a type derivation, and the number of applications of the different typing rules in said
type derivation. More specifically, each index appearing at the end of a type derivation actually
counts the number of applications of a certain typing rule in said type derivation. Hence, indices
are a concise representation of the quantitative information in a type derivation.

Lax or tight upper bounds. Generally speaking, however, not every index provides exact quan-
titative information. In fact, the general rule is that indices provide upper bounds to the different
measures of interest.

In order to obtain exact quantitative information, we shall define a class of type derivations,
specific to each one of the multi type systems, providing exact upper bounds, or simply measures.
These classes of type derivations providing measures on the normalization process shall all be de-
fined in terms of the final type judgement of type derivations.

3.1 Properties of evaluation strategies
The evaluation strategies that we cover in this work are all based on some kind of explicit-
substitutions formalism, either on the LSC or on some derivative. There are some common features
among them that we would like to sketch now, where→X represents any given evaluation strategy:
• →X is given by a combination of the appropriate notions of evaluation contexts and of →X -

root steps.
• →X -normal forms are characterized by syntactically-driven predicates, which are invaluable

in the connection between the →X and its multi type system.
• We prove that →X enjoys a relaxed form of determinism, either by showing that it is deter-

ministic or that it satisfies the diamond property.

3.2 Properties of multi type systems.
Our study of multi types mimics Accattoli, Graham-Lengrand and Kesner’s “Tight Typings and
Split Bounds”[AGK20]. In particular, because all our multi type systems characterize normalization
in a certain evaluation strategy, because the indices in type derivations provide upper bounds on
the normalization process, and because for each of the multi type systems we characterize a class
of type derivations whose indices give exact quantitative information.

Tight constants. Some of our multi type systems adapt moreover a technique from [AGK20]
that we call tightness technique.

This technique has very recently been rephrased in Kesner and Vial’s “Consuming and persistent
types for Classical Logic” [KV20], where persistent types morally represent the category of our tight
types. The intuition is that consuming types are used to type constructors involved in redexes and
consumed when said redexes are fired, while persistent types are used to type those subterms that
are never consumed and shall end up in the normal form of the expression. Thus, consuming types

28

are represented by an arrow type M → N , while persistent types are represented by a set of linear
constant types—in our case, the tight constants.

This distinction between consuming and persistent types has later been applied to calculi ex-
tending the λ-calculus. An example of this is Alves, Kesner and Ventura’s [AKV19], where a type
system with consistent and persistent types is derived for head reduction with pattern matching,
proving this technique to be also relevant in variants of the λ-calculus with added features.

When the goal is to obtain a class of type derivations giving exact bounds, the tight types
technique is known to be much simpler than those which do not use constants at all. For instance,
the analysis of the leftmost-outermost reduction in [AGK20] first considers the design of a multi
type system implementing the tight types technique, and only then extend it to isolate a class of
type derivations giving exact bounds without using the tight types technique—namely, by using the
shrinking types technique, which shall be thoroughly explained in due time.

In this text, we derive two multi type systems based on the tight types technique, namely the
Open CbNeed and for Useful Open CbNeed ones. The justification for this is two-fold:

• Implementing usefulness in the call-by-need setting is significantly complex. Consequently,
deriving a multi type system for it is also very complex. But the type-theoretical analy-
ses in Chapter 9 (Multi types for Useful Open CbNeed) are considerably simplified by the
use of tight constants. Therefore, we claim that our multi type-theoretical presentation of
Useful Open CbNeed should be considered as a highly complex, but absolutely necessary,
intermediate step towards a more general type system1.

• The original motivation for the development of the Useful Open CbNeed system came from
[AGK20], as we realized that tight constants were a natural candidate for establishing the
difference, in terms of characterization, between the useful and non-useful variants of a given
evaluation strategy—like the Useful Open CbNeed and Open CbNeed ones, for example.

Semantical properties. Additionally, we shall infer semantics specific to each one of the multi
type systems. Roughly speaking, given a multi type system X , the semantics of an expression e
given by X is noted [[e]]X , and shall be given by the following equation:

[[e]]X := {(Γ,M) : ∃Φ ▷X Γ ⊢ e :M}

We shall prove the invariance and adequacy of the semantics provided by the multi type systems
in this work2. Moreover, and although we shall not explicitly study it, some of our type systems also
satisfy compositionality. Let us briefly discuss these three concepts, taking as reference a generic
evaluation strategy →X and its corresponding multi type system X :
• Invariance: Typability in X is invariant by →X -reduction and by →X -expansion.

This is proven, respectively, by showing that the Subject Reduction and Subject Expansion
properties hold for X . In fact, we shall give quantitative versions of Subject Reduction and
Subject Expansion, showing how the quantitative information contained in indices changes
by reduction or expansion.
• Adequacy: This property states that typability in X equals →X -normalizability. Formally,

[[e]]X ̸= ∅ if and only if e is →X -normalizable.
1This claim is further reinforced by the fact that the shrinking types technique might need to be adapted to

Useful Open CbNeed.
2Unfortunately, some of our systems shall satisfy these properties provided that we restrict the semantics to a

certain class of type derivations. Each case is different, and shall be covered in due time.

29

One of the directions of the proof is given by the Correctness theorem for X , showing that
typability in X implies →X -normalizability. In fact, we shall refine the Correctness theorems
with quantitative information, showing specifically how indices in type derivations relate to
the quantities of →X -reduction sequences.
Similarly, the other direction of the proof is given by the Completeness theorem for X , showing
that →X -normalizability implies typability in X . Again, we shall refine the Completeness
theorems with quantitative information, showing how we can derive a type derivation in X
whose indices measure precisely the quantities of the →X -reduction sequence.
• Compositionality: This third property is usually considered when studying a given semantics.

We do not explicitly do so in this work, as the proofs of invariance and adequacy are already
complex enough. Nonetheless, let us give some remarks about it.
Although compositionality can have many definitions, the basic way in which one would like
to compose programs is by modus ponens. That is, given a pair of type derivations whose final
type judgements are Γ ⊢ t :N ⊸ M and Π ⊢ u :N , we would like to obtain type derivation
whose final type judgement is Γ

⊎
Π ⊢ t u :M .

Moreover, note that since [[t]]X and [[u]]X are sets of type derivations, then this kind of com-
positionality can be easily extended to the interpretations of t and u. In our multi type
systems where type derivations provide upper bounds, this extension to interpretations be-
comes particularly interesting when tu is a redex in →X , because the compositionality of the
interpretation then allows us to reason quantitatively about tu by means of the interpretations
of [[t]]X and of [[u]]X , recalling that the type derivations in [[t]]X (resp. [[u]]X) contain upper
bounds on the →X -normalization process for t (resp. u).
Regarding the systems in this thesis, the semantics inferred from the multi type systems in
Chapter 5 (Multi types for CbN, CbV and CbNeed) satisfy compositionality.
The case of the semantics inferred from the multi type system in Chapter 11 (Multi types
for Strong CbV) is slightly different, in that invariance, adequacy and, in particular, compo-
sitionality are only satisfied by a subset of the type derivations.
On the contrary, compositionality of the semantics inferred from the Open CbNeed and
Useful Open CbNeed multi type systems is incompatible with the way in which we prove
their adequacy and invariance. In fact, the interpretations [[e]]X , with X ∈ {Open CbNeed,
Useful Open CbNeed}, shall be restricted to final type judgements composed only of tight
constants. That is, we shall exclude, from the semantics given by the Open CbNeed and
Useful Open CbNeed systems, those type derivations whose type contexts assign variables to
multi types containing linear types of the form N ⊸ M , as well as those whose right-hand
side types are of the form N ⊸ M .
Although this clearly affects compositionality of these semantics, the reason for giving these
restricted semantics for the Open CbNeed and Useful Open CbNeed systems is that the Sub-
ject Reduction and Subject Expansion properties—used to prove invariance—only hold under
these restricted conditions. In addition, since the Correctness and Completeness theorems—
used to prove adequacy—depend, respectively, on the Subject Reduction and Subject Expan-
sion properties, then they also only hold under the same conditions.

Proof technique. Let us now turn to a more concrete analysis on the proof technique used to
prove the Correctness and Completeness theorems. Once again, X represents any given multi type
system in this work and →X represents the corresponding evaluation strategy associated with X .

30

Moreover, we use the expression “minimal” to represent the specific class of type derivations in X
which should contain minimal quantitative information3

Let us begin by analyzing the proof technique used in the Correctness theorems:
• First, we prove that the indices in minimal type derivations for →X -normal forms are exact.

The propositions concerning this property are called “Typing properties of→X -normal forms”.
• Recall that X is an evaluation strategy based on the LSC formalism, and as such its definition

contains an exponential part implementing the substitution of variables. For this reason, we
then need to prove that X mimics →X -exponential steps at the level of type derivations, and
that this produces the expected quantitative information. These lemmas are called “(Linear)
Substitution for →X ”4.
• Next, we prove the quantitative version of the Subject Reduction property—called “(Shrink-

ing) Quantitative Subject Reduction for →X ”5.
The proof is split between multiplicative and exponential →X -steps, where the exponential
base case requires the “(Linear) Substitution for →X ” lemma. Typically, Subject Reduction
holds if for every time that e →X e′ and there exists type derivation Φ whose final type
judgement is Γ ⊢(i1,...,in) e :T , then there exists type derivation Ψ whose final type judgement
is Γ ⊢(i′1,...,i′n) e′ :T . While the exact relation between (i1, ..., in) and (i′1, ..., i

′
n) strongly

depends on the operational specifics, the general property is that there is a certain index in
(i′1, ..., i

′
n) that is strictly smaller than the corresponding one in (i1, ..., in).

• Finally, we prove the Correctness theorem. This is done by induction on the sum of the indices
of type derivation Φ, where the base case is given by the “Typing properties of →X -normal
forms” proposition, and the inductive case is given by the “(Shrinking) Quantitative Subject
Reduction for →X ” proposition.
We also prove that if the type derivation is minimal, then the indices in Φ provide exact
quantitative information.

Let us analyze now the proof technique used in the Completeness theorems. Keep in mind that
although it should be regarded as the dual of the Correctness theorem, there exist subtle differences
between one another.
• We begin by showing that every→X -normal form has a minimal type derivation, whose indices

contain exact quantitative information. These propositions are called “(Tight/Shrinking)
typability of →X -normal forms”.
• Next, we turn to prove the dual of the “(Linear) Substitution for →X ” lemma, namely the

“(Linear) Removal for →X ” lemma.
• The quantitative version of the Subject Expansion property, called the “(Shrinking) Quanti-

tative Subject Expansion for →X ” propositions, is the dual of the “(Shrinking) Quantitative
Subject Reduction for→X ” proposition. Their proofs follow a very similar but dual structure.
In particular, the exponential base case requires the “(Linear) Removal for →X ” lemma.
Typically, Subject Expansion holds if for every time that e →X e′ and there exists type
derivation Ψ whose final type judgement is Γ ⊢(i′1,...,i′n) e′ :T , then there exists type derivation

3By “minimal” type derivations we mean those whose indices provide minimal upper bounds with respect to a
certain operational quantity. As a matter of fact, the minimality is such that the indices actually match the corre-
sponding operational quantity. Thus, we may also talk of type derivations providing exact quantitative information
or even measurements.

4The only case study with a non-linear Substitution lemma is covered in Chapter 11 (Multi types for Strong CbV).
5“Shrinking” makes reference to a typing technique which is only implemented in Chapter 11 (Multi types for

Strong CbV).

31

Φ whose final type judgement is Γ ⊢(i1,...,in) e :T . Quantitatively speaking, there is a certain
index in (i1, ..., in) that is strictly larger than the corresponding one in (i′1, ..., i

′
n).

• Finally, the Completeness theorem. It states that if d : e →∗X e′ where e′ is a →X -normal
form, then there exists a minimal type derivation Φ for e. Moreover, the indices in the final
type judgement of Φ provide exact quantitative information concerning d. This is done by
induction on the the length of d, where the base case is given by the ‘(Tight/Shrinking) ty-
pability of →X -normal forms” proposition, and the inductive case is obtained expanding to e
by the “(Shrinking) Quantitative Subject Expansion for →X ” proposition.

This concludes the analysis of the general proof technique. Let us now turn to give a short
description of each of the case studies in this thesis.

3.3 Case study: CbNeed
We begin by covering a well-known evaluation strategy, namely the weak and closed version of the
“call-by-need” evaluation strategy—or “CbNeed” for short. For the original formulation of weak and
closed CbNeed, see [AF97; MOW98].

Unlike in the original formulations, however, our choice has been to formalize CbNeed as an
evaluation strategy in the LSC, as first proposed in [ABM14]. There are several arguments in favor of
this choice, one of them being the close connections the LSC bears to the abstract machines world—
as analyzed in depth in [ABM14]. But most importantly, we chose the LSC because reduction
relations defined in this setting need to present multiplicative and exponential reduction steps in
a separate way. It is precisely this feature of LSC that allows us to disentangle the notions of
duplication and erasure.

We give a proper analysis of these two features in Chapter 4 (CbN, CbV and CbNeed). Nonethe-
less, we would like to mention here that the weak and closed variant of CbN and CbV—when given
in the LSC setting—are dual with respect to duplication and erasure. Efficiency wise, both evalu-
ation strategies have drawbacks, either in the way they handle erasure or in the way they handle
duplication. Moreover, we shall see that CbNeed takes the best of both worlds. We present these
facts in the form of the following slogans:

CbN = silly duplication + wise erasure,
CbV = wise duplication + silly erasure, and
CbNeed = wise duplication + wise erasure

With these insights in mind, we face our first major goal in this work: namely, deriving a
multi type system characterizing CbNeed-normalization, containing moreover a subclass of type
derivations that provide exact measures of the CbNeed-normalization process.

Such a goal requires first covering the operational account of all three evaluation strategies—that
is, of CbN, CbV and CbNeed. This is done in Chapter 4 (CbN, CbV and CbNeed) by formalizing
them as evaluation strategies in the LSC. It is precisely the separate treatment of multiplicative and
exponential reduction steps in a LSC setting that allows us to define CbNeed as the combination
of CbV duplication and CbN erasure, namely by picking the right notions of multiplicative and
exponential root steps, together with the right notion of CbNeed evaluation context.

Having established the relations CbNeed has with CbN and CbV from the operational stand-
point, we present in Chapter 5 (Multi types for CbN, CbV and CbNeed) a specific multi type
system for each of these three evaluation strategies. On the one hand, the CbN multi type system is

32

essentially a reformulation into the LSC setting of de Carvalho’s system R[Car18]. In turn, system
R is itself a type-based presentation of the relational model of the CbN λ-calculus, which is in-
duced by the relational model of Linear Logic via the CbN translation of the λ-calculus into Linear
Logic. On the other hand, the CbV multi type system is essentially a reformulation into the LSC
setting of Ehrhard’s CbV multi type system[Ehr12]. Similarly, Ehrhard’s CbV multi type system
is itself a type-based presentation of the relational model of the CbV λ-calculus, which is induced
by the relational model of Linear Logic via the CbV translation of the λ-calculus into Linear Logic.
Thus, we obtain the CbNeed by carefully combining the right typing rules from the CbN and CbV
type systems, chosen in such a way as to match the operational presentation given for CbNeed, in
particular in its management of duplication and erasure.

Next, we give separate semantics for each of CbN, CbV and CbNeed. The interpretations are
given directly in terms of type derivations.

Finally, we provide a proof that “CbNeed is as efficient as CbV, namely by showing that the
normalization bounds given by the CbV multi type system also apply to CbNeed. This is all
achieved via a type-theoretical approach, constituting a novelty of our work6. From the perspective
of duplication and erasure, the slogan we give to this result is that “CbNeed duplicates as wisely as
CbV”.

3.4 Case study: Open CbNeed
When modelling programming languages, it is natural to take an evaluation strategy that performs
weak reduction on closed terms as the underlying model of computation. For this purpose, the weak
and closed evaluation strategies studied in Chapter 4 (CbN, CbV and CbNeed) suffice.

But in some technological applications, the weak and closed restrictions are not enough as
underlying model of computation. Take, for instance, proof assistants based on dependent types—
like Coq or Agda—whose modeling requires a strong evaluation strategy acting on (possibly) open
terms. Unfortunately, it is well-known that the operational semantics of most evaluation strategies
gets considerably more complex when going from weak reduction on closed terms to strong reduction
on (possibly) open terms.

In their [GL02], Grégoire and Leroy propose implementing strong reduction by iterating a kind
of intermediate reduction under λs. Said intermediate reduction is placed somewhere between weak
reduction on closed terms and strong reduction on (possibly) open terms. Many technicalities need
to be considered to give the right definition of such an intermediate reduction relation; details aside,
what is important to remark here is that this intermediate reduction may act on open terms, while
remaining weak.

With a similar goal in mind, in Chapter 6 (Open CbNeed), we study an evaluation strategy
placed between the weak and closed CbNeed , and a strong evaluation strategy implementing call-
by-need that acts on (possibly) open terms. Following the terminology used in “Open Call-by-
Value”[AG16]7 we call this evaluation strategy “Open CbNeed ”.

The reason why Open CbNeed is relevant is that it presents most of the subtleties appearing
in the strong case, while remaining simpler than the latter. We shall give further, more concrete

6A dual result to this is given in [Kes16], where CbNeed is shown to be termination-equivalent to CbN, also via
the use of a multi type system. From the perspective of duplication and erasure, this result can be read as “CbNeed
erases as wisely as CbN”.

7Where a similar evaluation strategy implementing call-by-value on open terms is studied.

33

reasons as to why Open CbNeed is valuable in Sect. 3.5 (Case study: Useful Open CbNeed) below,
specifically concerning the reasonability of the strong variant of call-by-need.

As far as relations to the literature is concerned, in Balabonski, Barenbaum, Bonelli and Kesner
present in their “Foundations of Strong Call by Need’ [Bal+17] a strong evaluation strategy im-
plementing call-by-need. As it turns out, our Open CbNeed evaluation strategy takes considerable
inspiration from the Strong Call by Need strategy appearing therein, and might even be shown to
represent a sub-relation of Strong Call by Need, one where reduction does not enter λ-abstractions.
We do not prove such result here. Instead, we isolate the weak reduction sub-relation in [Bal+17]
and adapt it to our purposes, obtaining our Open CbNeed evaluation strategy.

To finish, let us see some of the proofs and concepts that are required for the open case:
• Determinism: Being a variant of the Strong Call by Need strategy in [Bal+17] and having

no other point of reference in the literature to the best of our knowledge, the determinism of
Open CbNeed needs proving.
• Characterizing normal forms: While the set of CbNeed-normal forms is (absurdly) easy to

characterize, the one of Open CbNeed-normal forms requires a delicate treatment.
• Needed variables: The theory of Open CbNeed is highly centered on the notion of needed

variables. Roughly put, the needed variables of an expression are the set of its free variables
restricted to those that appear out of all λ-abstractions. For example, x is a needed variable
of xλy.z, while z is a free variable but not a needed one.
We believe that our Open CbNeed theory would not have been so easily proven without the
isolation of the notion of needed variables. Just to give an example of the centrality of needed
variables in the type theory of Open CbNeed, we show in the Correctness and Completeness
theorems for Open CbNeed in Chapter 7 (Multi types for Open CbNeed) that the domain of
the type context is exactly the set of needed variables of the typed expression. This was an
unexpected result, and it showed us that the approach we followed was consistent all along.
• Size of normal forms: Type judgements in the Open CbNeed multi type system contains a

new index, which is not present in the CbNeed multi type system. This index provides an
upper bound to the size of Open CbNeed-normal forms—or an exact measure of the normal
form, if the type derivation is minimal. This index is unnecessary in the (weak and closed)
CbNeed case because all CbNeed-normal forms has morally the same size.

3.5 Case study: Useful Open CbNeed
In Sect. 2.3 (Usefulness), we stressed the importance of refraining from performing useless substitutions—
that is, exponential steps that do not contribute to a future multiplicative step down the reduction
sequence—if one is to attain reasonability of the proposed time cost model. Said differently, and as
far as the results in the literature are concerned, the size-explosion problem—which may be stated
in virtually every calculus—cannot be overcome unless substitutions for variables are only triggered
in a smart way: namely, by only performing useful substitutions.

In Chapter 8 (Useful Open CbNeed), we explore a useful variant of Open CbNeed. Let us give
a general explanation of the importance of and roles played by the call-by-need variants we have
presented so far, noting in particular that they are increasingly demanding in terms of techniques
for reasonable implementations:

• Weak and Closed: This variant of call-by-need—which we call CbNeed—only requires micro-
step evaluation (that is, performing linear substitutions) for it to be polynomially related to
Turing machines. Hence, it is enough to use the LSC definition of CbNeed that we provide in

34

Chapter 4 (CbN, CbV and CbNeed). Since this property is required in each one of the cases
below, let us assume that they are all implemented as evaluation strategy in the LSC and
hence have a multiplicative and exponential part.

• Weak and open: In order to prove that this variant of call-by-need—called Open CbNeed—
is polynomially related to Turing machines, we also need to apply one of the two useful
optimizations required in the strong case. Namely, Open CbNeed should not substitute Λ-
terms in normal form if they are not a λ-abstraction. These kind of normal forms do not exist
in the weak and closed case, but are an intrinsic characteristic of the open setting. They are
called in the literature as neutral or inert terms—we chose the latter for our work—and their
substitution is easily shown to not contribute in the creation of new multiplicative steps.

• Weak, open and useful: In order to prove that the strong and open variant of call-by-need
is invariant, we need to further restrict Open CbNeed by implementing the second useful
optimization, which consists in avoiding the substitution of λ-abstractions that do not con-
tribute to the creation of new multiplicative steps. This is the evaluation strategy we present
in Chapter 8 (Useful Open CbNeed), where knowing which variable occurrences should be
substituted and which should not requires the notions of applied and unapplied occurrences
or positions.

• Strong and open: Although it has not yet been proven in the literature, we believe that
the invariance result for a call-by-need evaluation strategy may be obtained by taking the
Useful Open CbNeed as basis and, once a Useful Open CbNeed-normal form has been reached,
iterating the same evaluation strategy under λ-abstractions.
Note that, regarding reasonability of strong call-by-need, we may then say that isolating a
fully-useful, weak and open version of call-by-need—namely, our Useful Open CbNeed evalu-
ation strategy—is likely the hardest part in the road down to a reasonable and strong variant
for call-by-need. We believe this would be a remarkable achievement in the theory of the
λ-calculus.

Adapting the base formalism. As we just hinted, implementing the Useful Open CbNeed eval-
uation strategy involves defining applied and unapplied positions. For some technical reasons that
we shall only consider in Chapter 8 (Useful Open CbNeed), this is more easily achievable in a variant
of the LSC that we call the split LSC. Since Open CbNeed serves as basis for Useful Open CbNeed,
both of them shall be formalized as evaluation strategies in the split LSC.

Refining needed variables. We saw in Sect. 3.4 (Case study: Open CbNeed) that the notion
of needed variables is of remarkable importance in the operational and type-theoretical studies of
Open CbNeed. Switching to the Useful Open CbNeed evaluation strategy implies an even deeper
understanding of the needed variables of an expression. In this sense, we shall refine the notion of
needed variables, discriminating between needed variable appearing in applicative positions, which
we call applied variables, from the needed variables which appear in non-applicative positions, which
we call unapplied variables.

These two new notions of applied and unapplied variables provide us with the right tools needed
to prove the operational and type-theoretical properties of Useful Open CbNeed, much like the
notion of needed variables was the key element in the theory of Open CbNeed. Therefore, we would
like to stress here the fact that the study of Open CbNeed and Useful Open CbNeed are done
in a remarkably consistent way, and switching from the former to the latter requires refining the
central concept of the theory, namely switching from needed to applied and unapplied variables,

35

and analyzing the consequences both from the operational and type-theoretical perspectives.

3.6 Case study: Strong CbV
In Accattoli, Graham-Lengrand and Kesner’s ‘Tight Typings and Split Bounds’[AGK20], the au-
thors present a multi type system providing exact measures on the normalization process of the
standard evaluation strategy in the λ-calculus; namely, leftmost-outermost reduction.

It is well-known that leftmost-outermost reduction implements substitutions in a call-by-name
fashion; that is, it imposes no restrictions on the arguments of β-redexes. A consequence of the
lack of restrictions on arguments in the call-by-name setting is that turning from weak reduction
on closed terms to strong reduction on open terms is harmless.

On the contrary, doing turning to strong reduction in a call-by-value setting is delicate. While
some fundamental properties such as confluence and standardization still hold—as shown by Plotkin
in his [Plo75]—others break as soon as one considers open terms—these properties are typically of
a semantical nature.

In Chapter 10 (Strong CbV), we define strong reduction in a call-by-value setting, which we
call “Strong CbV”. For such purpose, we adopt the “Value Substitution Calculus”8, and endow it
with the Strong CbV evaluation strategy, satisfying the diamond property. Although not present
here, our study of Strong CbV is actually complementary to the work of co-authors—namely, Beni-
amino Accattoli, Claudio Sacerdoti Coen and Andrea Condolucci—on a bilinear9 abstract machine
implementing →s. These results for Strong CbV, ranging from operational semantics, to (multi)
type-theoretical interpretations and abstract machines, are all connected at the quantitative level,
and have not yet been published.

Then, we give a multi type system characterizing Strong CbV-normalization in Chapter 11
(Multi types for Strong CbV). As usual, we characterize a class of type derivations that provide
exact measures with respect to the corresponding Strong CbV -normalization sequence. Remark-
ably, we do so by using a standard typing technique in the literature, expressed in terms of what
are known as “shrinking types”.

Finally, we use the Strong CbV multi type system to show that the Strong CbV evaluation
strategy is normalizing for the VSC.

3.7 Design principles for multi type systems
The understanding of Useful Open CbNeed from the operational and type-theoretical perspectives
is, in our opinion, the major contribution of this work. Furthermore, we believe that there exists
an additional main contribution in this work, namely the collection of reasonings by which we
have obtained the multi type systems. In particular, considering their capability to provide exact
normalization measures for several evaluation strategies having varied operational features.

Of course, proving the desired properties for each of these multi type systems requires corre-
lating operational and type-theoretical features in a highly technical way. Nonetheless, we have
followed some general design principles throughout this work that we would like to remark here. As
a whole, they form a consistent approach to designing multi type systems providing exact measures.

8This calculus has a clean Linear Logic background and was first presented in Accattoli and Paolini’s [AP12]
9See e.g. [ABM14] for a definition of bilinearity.

36

As starting point, we would like to mention the fact that our multi type systems have a significant
control over the use of the weakening and contraction structural rules, much like what happens in
Linear Logic[Gir87]. More concretely, in our multi type systems,

• The weakening rule is disallowed altogether in our multi type systems. This is expressed by
the fact that, in the conclusion of a typing rule, the type context is the result of collecting
the type contexts of the premises; that is, no new variables are added. The sole exception to
this are the axiom rules, which create type contexts containing only the subject variable of
the conclusion.

• Conversely, the contraction rule in our multi type systems is implemented by applying the sum
operator—namely, ⊎ for multi types and

⊎
for type contexts—to collect the types appearing

in the premises of a typing rule into the conclusion.

We believe this management of the structural rules to be crucial points in the design of the multi
type systems, in particular regarding the exact measures that we would like to extract from type
derivations. The reason is simply that the multi type system should be designed to be as tight as
possible in its management of resources/types. Moreover, some of the case studies—see Chapter 7
(Multi types for Open CbNeed) and Chapter 9 (Multi types for Useful Open CbNeed) below—
require delicate analyses on the variables appearing in the domain of type contexts, and so many
of our results concerning Open CbNeed and Useful Open CbNeed would not hold if we allowed
weakening, for example.

Each of our multi type systems contains a key typing rule that we call the many rule. Roughly,
its shape is as follows

(Γi ⊢(i1,...,in) e :Li)i∈I⊎
i∈I Γi ⊢(

∑
i∈I i1,...,

∑
i∈I in) e : [Li]i∈I

many

Note that the indices in the conclusion are the sum of the indices in the premises, that the type
context in the conclusion is the sum of the type contexts in the premises, and that the linear types
assigned to e in the premises are all collected in a single multi type [Li]i∈I in the conclusion. Thus,
the many rule is used to give controlled access to the multiplicities of linear types when collected
into multi types. This suggests that the many rule acts analogously to the promotion rule of the !
connective in Linear Logic.

The many rule is a key typing rule for managing multiplicative redexes in the LSC. Therefore,
in each case study we shall apply appropriate and precise restrictions to the many rule, thus im-
plementing central operational features of the corresponding evaluation strategy at the level of its
multi type system. These restrictions act on the syntactic shape of the expression as well as on the
set of indices I:
• Syntactic shape of the subject expression: In the multi type systems of any of the three call-

by-need variants, as well as the multi type systems of any of the two call-by-value variants,
we only allow the subject of the many-rule to be a λ-abstraction. This is in accordance with
the fact that these evaluation strategies only substitute λ-abstractions.
Instead, the CbN multi type system imposes no restrictions on the subject of the many-rule, in
accordance with the fact that all call-by-name variants impose no restrictions on arguments.
• Note that if I = ∅, then the many rule takes no premises:

∅ ⊢ e :0
many

37

This special case may pose a series of problems, especially depending on what the impact of
the empty multi type 0 is in each of the multi type systems. Generally speaking, 0 represents
the type of erasable expressions, which are handled differently depending on the evalua-
tion strategy under consideration. We thoroughly explore erasure—and duplication, its dual
concept—in Chapter 4 (CbN, CbV and CbNeed) from an operational perspective, and from
a type-theoretical perspective in Chapter 5 (Multi types for CbN, CbV and CbNeed), where
the role of the many rule is made explicit with respect to these concepts.

Linear Logic as inspiration for the linear arrow. We briefly mentioned in Sect. 2.4 (Multi
types) that the CbNeed linear type M ⊸ N is made of a pair of CbNeed multi types, M and N .

But this is not the case for every type system in this work. Indeed, CbN linear and multi types
are defined as follows:

CbN linear types L,L′ ::= norm |M ⊸ L

CbN multi types M,N ::= [Li]i∈J (with I finite)

While the CbN linear arrow type M ⊸ L take a multi type on the left, it differs with respect
to the CbNeed definition in that it takes a linear type on the right. This is purposeful, since the
approach that we have taken in this respect comes from Girard’s call-by-name and call-by-value
translations of Intuitionistic Propositional Logic into Linear Logic:

• On the one hand, the call-by-name translation maps (A⇒ B)CbN to !(ACbN) ⊸ BCbN; hence,
linear arrow types of evaluation strategies implementing call-by-name are of the form M ⊸ L.

• On the other hand, the call-by-value translation maps (A ⇒ B)CbV = (!ACbV) ⊸ (!BCbV);
hence, the linear arrow types of evaluation strategies implementing call-by-value are of the
form M ⊸ N . Consequently, evaluation strategies implementing call-by-need—which du-
plicate arguments in the same way as those implementing call-by-value, as we shall see in
Chapter 4 (CbN, CbV and CbNeed)—also has linear arrow types of the form M ⊸ N .

3.7.1 Axes-based analysis of the multi type systems
Now that each of the case studies has been introduced, and that the more general commonalities
between the multi type systems have been made explicit, let us move on to the more specific design
principles determining the shape of the multi type systems.

We give here an axes-based presentation of said design principles. Each one of the axes proposes
a categorization of the multi type systems, either according to the operational features of the
evaluation strategy it is associated with—and the impact this has at the level of the type system—
or according to the particular way in which the quantitative information is extracted from its type
derivations.
• Base formalism. On one hand, the CbN, CbV, CbNeed, and Strong CbV are all based on the

LSC. Hence, their multi type systems have ES-dedicated typing rules.
On the other hand, Open CbNeed and Useful Open CbNeed are both formulated in terms of
the split LSC. This means their multi type systems have a lifting rule, that turns Λ-terms into
programs with an empty environment, as well as ES-dedicated typing rules, that append ESs
to the environment.

38

• Family of evaluation strategies. In this work, we chose to study only evaluation strategies
implementing either call-by-name, call-by-value or call-by-need. This precise categorization
of our evaluation strategies is actually reflected in the design of multi type systems as follows:

- The empty multi type: The role played by 0 in the CbV system is central. In fact, it is
the type used to characterize CbV-normalization.
On the contrary, the use of 0 is deliberately restricted in each of the multi type systems
that we give for the CbNeed, Open CbNeed and for Useful Open CbNeed cases. As one
of the consequences of this, the axiom rules in these systems shall only involve non-empty
multi types.
The case of Strong CbV is more delicate, as the use of 0 is neither restricted nor does it
characterize normalization.

- Mixing CbN and CbV: We mentioned above that CbNeed, both as an evaluation strat-
egy and as a multi type system, is defined as an explicit combination of CbN and CbV
features, by implementing the erasure mechanisms from CbN and the duplication mech-
anisms from CbV.
These operational traits are implemented at the level of the CbN and CbV multi type
systems as follows:

∗ CbV duplication: Once again, the many rule in the CbV multi type system is re-
stricted to λ-abstractions, as CbV only duplicates this kind of terms.
In addition, the many rule applies with zero premises, thus taking into account the
fact that CbV only erases normal forms. This is because erasable and duplicable
terms are the same in the weak and closed variant of call-by-value.

∗ CbN erasure: CbN duplicates terms of any shape, and so the many rule in its multi
type system assumes no restrictions on the kind of term being typed.
In addition, the many rule is applicable with zero premises, thus taking into account
the fact that CbN erases any kind of term, even diverging or untypable ones.

The CbNeed multi type system should be considered as a combination of the CbN and
CbV ones, modulo some technicalities. For instance, the many rule in the CbNeed type
system is also restricted to λ-abstractions. Unfortunately, we shall see in Chapter 5
(Multi types for CbN, CbV and CbNeed) the handling of erasure in the CbNeed multi
type system is delicate and requires dedicated typing rules. We present in Chapter 5 the
principles followed in the derivation of the CbNeed multi type system, in particular with
respect to erasure.

• Reduction depth. The evaluation strategies we consider in this work range from weak and
closed ones, to weak and open ones, to strong ones. Recalling that multi type systems are
meant to characterize normalization of a certain evaluation strategy, note that the multi type
systems targeting a weak strategy should allow us to type λ-abstractions without having to
type their bodies. The CbN, CbNeed, Open CbNeed and Useful Open CbNeed multi type
systems achieve this via the use of a dedicated typing rule, called norm:

∅ ⊢ λx.t : norm
norm

where norm is a linear constant type serving precisely this purpose.
Similarly, the CbV multi type system uses the empty multi type 0 to achieve this, covered in
the case where the many rule has zero premises:

∅ ⊢(0,0) λx.t :0
many

39

This is a possibility in the CbV multi type system because, as we explained above, 0 is used
to characterize both normalizable and erasable terms in CbV. This is in sheer contrast with
the CbN and CbNeed cases, where normalizable terms are those typable with a type different
from 0.
Of course, since Strong CbV is a strong evaluation strategy, its multi type system does not
have a norm linear constant or typing rule. Additionally, normalizable terms in Strong CbV
do not equal erasable ones. Therefore, proving normalization of a λ-abstraction in the
Strong CbV system unavoidably requires typing its body.

The reduction depth of the evaluation strategy characterized by the type system has another
important interesting consequence. Namely, that the conditions under which the Subject
Reduction property is proven to hold in each of the case studies depends on the reduction
depth of the strategy as follows:

– No conditions required. In Chapter 5 (Multi types for CbN, CbV and CbNeed), we shall
see that weak and closed evaluation strategies do not assume anything in particular on
the final type judgement for the corresponding Subject Reduction property to hold.

– Only the type context. As we shall see in Chapter 7 (Open CbNeed) and Chapter 9
(Useful Open CbNeed), weak and open evaluation strategies require the type context
of the final type judgement to satisfy certain properties in order for the the Subject
Reduction property to hold. However, no conditions on the right-hand side type of the
final type judgement are required.

– Both the type context and the right-hand side type. The strong setting, being the more
general one, requires both the type context and the right-hand side type of the final type
judgement to satisfy certain conditions in order for the Subject Reduction property to
hold. This is thoroughly analyzed in Chapter 11 (Multi types for Strong CbV)10.

• Counting technique for exponential steps. The Open CbNeed and Useful Open CbNeed sys-
tems make use of an exponential-steps counting technique based on the types appearing in
axioms.
To the best of our knowledge, this simple technique is the only one that seems to work. In
Sect. 7.2 (Counting techniques for exponential steps) we explore the possibility of applying
a different technique to count exponential steps, namely one in “Tight Typings and Split
Bounds”[AGK20] used to count exponential steps in the Linear Head reduction case. We then
arrive at the conclusion that said technique only works for evaluation strategies implementing
call-by-name.
In fact, we shall see that the Open CbNeed and Useful Open CbNeed type systems dif-
fer only in their axioms, precisely because switching from (non-useful) Open CbNeed to
Useful Open CbNeed requires analyzing the different (typed) variable occurrences and dis-
tinguishing between applied and unapplied ones. We believe this to be a simple and elegant
type-theoretical distinction between useful and non-useful exponential-steps.
Furthermore, by adding the axioms of the CbNeed system to this comparison, we get three
different ways of counting exponential steps in call-by-need, corresponding to the reasonability
requirements for the three different levels described above:

– Weak and closed: In this setting, proving the reasonability of evaluation strategies re-
10In addition, we claim that this reasoning should also apply to an eventual multi type system for a strong call-

by-need evaluation strategy.

40

quires implementing sharing mechanisms. Regarding the substitution process, we shall
see that exponential steps are shared in call-by-need and in call-by-value, and are not
shared in call-by-name. This gets reflected, for example, in the difference between ax-
ioms in the multi type systems in Chapter 5 (Multi types for CbN, CbV and CbNeed):
typing a variable with a multi type [L1, . . . , Ln] in the CbN system takes the following
form (

x :Li ⊢(0,1) x :Li

ax
)n

i=1

x : [L1, . . . , Ln] ⊢(0,n) x : [L1, . . . , Ln]
many

while the same final type judgement may be obtained in the CbV and CbNeed systems
by a single application of the axiom rule, as follows:

x : [L1, . . . , Ln] ⊢(0,1) x : [L1, . . . , Ln]
ax

Note the difference in the exponential indices in the final type judgements of these type
derivations.

– Weak and open: Besides implementing sharing mechanisms, attaining reasonability in the
weak and open setting additionally requires avoiding substitutions of non-value normal
forms. In Open CbNeed, these are the inert terms. For this reason, axioms in the
Open CbNeed are split as follows:

M ̸= [inert, . . . , inert]

x :M ⊢(0,1) x :M
ax

M := [inert, . . . , inert]

x :M ⊢(0,0) x :M
axI

To be consistent with these axioms, we shall see that λ-abstractions are not typable in the
Open CbNeed system with the inert constant. This means that a variable is substituted
(by a λ-abstraction) in an Open CbNeed-reduction sequence only if it is typed with a
multi type containing at least a non-inert type.

– Strong: Besides the two features explained above, proving the reasonability of a strong
evaluation strategy requires that it avoids substitutions of λ-abstractions for unapplied
variable occurrences. This last point is better implemented first in the weak and open
setting and then incorporated into the strong setting, as explained above; this is our
Useful Open CbNeed evaluation strategy.
Therefore, axioms in the Useful Open CbNeed system are as follows

M ̸= [tight, . . . , tight]

x :M ⊢(0,1) x :M
ax

M := [tight, . . . , tight]

x :M ⊢(0,0) x :M
axT

where tight := inert | abs.
To see why this is correct, let us first say that Useful Open CbNeed linear types are
either one of the tight constants or the linear arrow type N ⊸ O. Thus, only axioms
typed with a multi type containing at least a linear arrow type are part of an exponential
step. Indeed, while λ-abstractions shall be typable both with abs and with types of the
form N ⊸ O, the intuition is that abs is the type of unapplied variable occurrences
(which are not substituted for in Useful Open CbNeed), while N ⊸ O is the type of
applied variable occurrences (which are substituted, as they contribute to the creation
of a multiplicative redex).

41

• Granularity. Except for Strong CbV, all the other evaluation strategies in this work implement
linear substitutions—that is, the substitution of variable occurrences one at a time. This fact
gets reflected in their type-theoretical theories by the presence of a Linear Substitution lemma,
required to prove the Subject Reduction property, and the presence of a Linear Removal
lemma, required to prove the Subject Expansion property.
Conversely, Strong CbV performs meta-level substitutions—which are of a non-linear nature—
and so the Strong CbV multi type system requires a (non-linear) Substitution lemma to
prove its Subject Reduction property, and a (non-linear) Removal lemma to prove its Subject
Expansion property.
• Tightness technique vs the unitary shrinkingness technique. In Chapter 10 (Strong CbV), we

use the “unitary shrinkingness” technique to characterize a class of type derivations whose
indices provide minimal quantities with respect to the corresponding Strong CbV-normalizing
sequence. The unitary shrinkingness technique has been successfully used to produce exact
measures in other works in the literature, such as [Car18] or [AGK20].

Conversely, we use a technique called “tightness” to achieve the same kind of characteriza-
tion in each one of the other multi type systems in this work. That is, we take the constant
linear types and use them to characterize a class of type derivations whose indices provide
minimal quantities with respect to the corresponding normalizing sequence. The tightness
technique is explained in detail in [AGK20], which we took inspiration from.

Since the publishing of [AGK20], the tightness technique has been applied to multiple
settings. It has been proven to be a useful and consistent tool for distinguishing, in a given
expression, the (syntactic) constructors that are consumed along a reduction sequence from
the constructors that persist along the reduction sequence and make their way to the normal
form. In some of these systems, this ability to distinguish constructors has even been used to
provide exact upper bounds for the different reduction steps and for the size of the normal
form in a split fashion—i.e., type derivations provide exact and separate upper bounds for
each kind of reduction steps as well as for the size of the normal form. In particular, this is
the approach adopted in [AGK20].

Among the multi type systems for which the tightness technique has been used to implement
this distinction between consuming and persistent constructors, we would like to mention the
following:

- Bucciarelli, Kesner and Viso’s “The Bang Calculus Revisited” [Buc+20], where the au-
thors derive a multi type system U characterizing normalization in the Call-by-Push-
Value paradigm—which subsumes the call-by-name and call-by-value operational
semantics—and then refine it into a system E by implementing the tightness technique,
thus distinguishing consuming and persistent constructors.

- Kesner and Viso’s unpublished work called “The Power of Tightness for Call-by-Push-
Value” [KV21], where the authors take system E from [Buc+20] and derive a system
N and a system V , respectively characterizing normalization for head reduction (i.e., a
call-by-name reduction relation) and for open call-by-value reduction [AG16]. Needless
to say, these systems distinguish consuming and persistent constructors by implementing
the tightness technique.

42

Chapter 4

CbN, CbV and CbNeed

4.1 Duplication and erasure
The multiplicity of substitutions of a function argument—i.e., given a β-redex (λx.t)u, the number
of times x is going to be replaced by u—has always been considered one of the key phenomena in the
λ-calculus. Indeed, many interesting results have historically been attained by imposing (partial)
restrictions on the multiplicities of function arguments. To explain what some of these restrictions
are, let us first note that, in λ-abstraction λx.t, variable x may appear in t

• 0 times, in which case we say that λx.t erases the function argument.
• exactly once, in which case we say that λx.t is linear on x.
• more than once, in which case we say that λx.t duplicates the function argument.

Thus, duplication refers to the way in which a particular evaluation strategy treats function argu-
ments needed more than once, while erasure corresponds to the way it deals with unneeded function
arguments.

There are interesting examples regarding this notion of partial restrictions on duplication and
erasure. Take, for instance, the family of Λ-terms (tiI)i∈N defined in Sect. 2.3.2—whose duplication
induces the so-called size-explosion. Or the λI-calculus [Bar84; Kri93]—which disallows erasure by
only taking into consideration λ-abstractions λx.t where x ∈ fv(t); i.e., λx.xz is a λI-term while
λy.xz is not. Among all possible restrictions on duplication and erasure, the notion of linearity
corresponds to disallowing both duplication and erasure; that is, in the linear λ-calculus we only
take under consideration λ-abstractions of the form λx.t where x ∈ fv(t) and x appears exactly once
in t.

Unsurprisingly, restricting these very basic features of the λ-calculus comes at a high price,
especially in terms of expressive power. Nonetheless, these restrictions are interesting per se. For
example, partial recursive functions—a Turing-complete model of computation equivalent to the
λ-calculus according to the Church-Turing thesis—can be defined using only λI-terms[Bar84].

As another example along these lines, consider the fact that every linear Λ-term t strongly
→β-normalizes in linear time on |t|. We believe that, although the expressiveness of the linear
λ-calculus is seriously restricted compared to the one of the λ-calculus, having such a control over
the complexity of the normalization process is undoubtedly valuable.

The advent of Linear Logic [Gir87] has given duplication and erasure a prominent logical status.
It has reintroduced duplication and erasure into the linear λ-calculus via the non-linear modality
!, recovering the full expressive power of cut-elimination while allowing a fine-grained analysis of
resource consumption. One could argue that duplication and erasure are then key ingredients for

43

logical expressiveness, and—via the Curry-Howard correspondence—for the expressiveness of the
λ-calculus.

Evaluation strategies may also be seen from a multiplicities point of view. Arguably the most
natural evaluation strategies—and probably the most implemented in real-world programming
languages—are CbN and CbV evaluation strategies in their weak and closed versions. We call
them from now on simply CbN and CbV, and see that they have a dual behavior with respect to
duplication and erasure.

We shall cover a third weak and closed evaluation strategy, implementing call-by-need reduction
and which we call CbNeed. It can be seen as a combination of CbN and CbV, in that it takes the
best of both worlds with respect to duplication and erasure.

Let us see how all these evaluation strategies can be factored in terms of duplication and erasure.

4.2 CbN = silly duplication + wise erasure
CbN never evaluates function arguments of β-redexes before the redexes themselves. As a con-
sequence of this, it never reduces subterms that are erased; that is, when a function argument is
simply discarded. This is what we call wise erasure, and makes CbN a normalizing strategy: it
reaches a result whenever one exists1.

A second consequence of prioritizing contracting β-redexes over evaluating the function argu-
ments is that, if the argument of the redex should be duplicated, then it is evaluated more than
once. We call this silly duplication, as it repeats work already done.

The definition of all three evaluation strategies in this chapter follows a remarkably uniform
approach, which we took from Accattoli, Barenbaum and Mazza’s “Distilling Abstract Machines”
[ABM14]. Since we use the weak restriction of LSC evaluation contexts as the common framework,
and use substitution contexts to define the exponential parts of the evaluation strategies, let us
recall the definitions:

Weak LSC evaluation contexts DW , D′W ::= ⟨·⟩ | DW t | tDW | DW [x←t] | t[x←DW]
Substitution contexts S, S ′ ::= ⟨·⟩ | S[x←t]

Note that since they are given in terms of the LSC, the CbN, CbV and CbNeed defined here
are said to have a micro-step semantics.

Let us begin by formalizing the CbN evaluation contexts:

CbN evaluation contexts C ::= ⟨·⟩ | C t | C [x←t]

Similarly to the definition given in Subsect. 2.2.4 (The λ-calculus as a LSC), we need to define
the root-steps of the CbN evaluation strategy. Namely, its notion of multiplicative and exponential
root-steps:

CbN multiplicative root-step S⟨λx.t⟩u 7→m S⟨t [x←u]⟩
CbN exponential root-step C⟨⟨x⟩⟩ [x←t] 7→eCbN C⟨⟨t⟩⟩ [x←t]

such that in 7→m, if S := ⟨·⟩[y1←s1]...[yn←sn], with n ∈ N, then y1, ..., yn and fv(u) are all pairwise
disjoint. Note that this condition can always be fulfilled by α-equivalence2.

1If a term t admits both converging and diverging evaluation sequences in the ordinary λ-calculus, we can see
that the diverging sequences occur in erasable subterms of t, which is what CbN avoids reducing.

2We also assume this for CbV and CbNeed, as they share the same notion of multiplicative root-step.

44

The CbN evaluation strategy, which we note →CbN, is defined as the closure of the CbN root-
steps by CbN evaluation contexts. That is,→CbN is defined by (any of the two following alternative
ways):

→CbN:= C⟨7→m ∪ 7→eCbN⟩ = C⟨7→m⟩ ∪ C⟨7→eCbN⟩

Similarly to the LSC presentation of the λ-calculus, given an evaluation sequence d : t −→∗CbNu,
we note with |d| the length of d, with |d|m the number of multiplicative steps in d, and with |d|e the
number of exponential steps in d.

4.2.1 Comparative example of reduction sequences - CbN

Let us present an example of reduction in the CbN evaluation strategy that we shall later
recover for the CbV and CbNeed cases. Let t := ((λx.λy.xx)(II))(II) where I := λz.z is the
identity combinator. In CbN, t evaluates with 5 multiplicative steps and 5 exponential steps to its
→CbN-normal form, as follows:

t→mCbN (λy.xx)[x←II](II) →mCbN (xx)[y←II][x←II]

→eCbN ((II)x)[y←II][x←II] →mCbN (z[z←I]x)[y←II][x←II]

→eCbN (I[z←I]x)[y←II][x←II] →mCbN x̃[x̃←x][z←I][y←II][x←II]

→eCbN x[x̃←x][z←I][y←II][x←II] →eCbN (II)[x̃←x][z←I][y←II][x←II]

→mCbN x′[x′←I][x̃←x][z←I][y←II][x←II]→eCbN I[x′←I][x̃←x][z←I][y←II][x←II]

We shall put these quantities in perspective when considering the CbV and CbNeed reduction
sequences.

4.3 CbV = wise duplication + silly erasure
On the other hand, CbV always evaluates function arguments before contracting the β-redex. Con-
sequently, arguments are evaluated exactly once, be it to be duplicated, copied only once, or erased
in the contraction of the β-redex. For instance, CbV evaluation diverges on t := (λx.λy.y)Ω—where
Ω is the famous looping Λ-term—as it keeps evaluating Ω unsuccessfully. This is in sheer contrast
with CbN , as t reduces to λy.y in one single step—simply erasing Ω. We call the way CbV treats
erasure silly erasure, as it makes it a non-normalizing strategy. But the way CbV treats duplication
is called wise duplication, as it avoids having to reduce the function argument every time it is needed
thereafter.

Like we did in the case of CbN, the CbV is defined as a weak sub-relation of the LSC. Let us
begin with its notion of evaluation contexts:

CbV evaluation contexts V, V ′ ::= ⟨·⟩ | V t | tV | V [x←t] | t[x←V]

That is, CbV evaluation contexts are nothing but the weak restriction of LSC evaluation contexts.
Before seeing how this affects the determinism of CbV, let us continuing defining the evaluation
strategy.

45

The CbV multiplicative and exponential root-steps are defined as follows:

CbV multiplicative root-step S⟨λx.t⟩u 7→m S⟨t [x←u]⟩
CbV exponential root-step V ⟨⟨x⟩⟩ [x←S⟨v⟩] 7→eCbV S⟨V ⟨⟨v⟩⟩ [x←v]⟩

Note that CbV multiplicative root-steps are defined exactly as the CbN ones.
Finally, the CbV evaluation strategy, which we note →CbV, is defined as the closure of the CbV

root-steps by CbV evaluation contexts. That is, →CbV is defined by (any of the two following
alternative ways):

→CbN:= V ⟨7→m ∪ 7→eCbV⟩ = V ⟨7→m⟩ ∪ V ⟨7→eCbV⟩

Given an evaluation sequence d : t −→∗CbV u, the definitions of |d|, |d|m and |d|e are analogous to
the CbN case.

4.3.1 Non-determinism of CbV
The only difference between the version of CbV we present here and the one in “Distilling Abstract
Machines”[ABM14] is that ours subsumes both the left-to-right and right-to-left versions of CbV
therein. This is harmless, because the CbV evaluation strategy enjoys the diamond property:

Proposition 4.3.1 (Diamond property for CbV).
→CbV is diamond.

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on t.

4.3.2 Comparative example of reduction sequences - CbV

Let us come back to the example studied in Sect. 4.2 (CbN = silly duplication + wise erasure).
Recall that t := ((λx.λy.xx)(II))(II) takes 5 multiplicative steps and 5 exponential steps to reach
its →CbN-normal form. As it turns out, it also takes 5 multiplicative steps and 5 exponential steps
to reach its →CbV-normal form:

t→mCbV (λx.λy.xx)(II)(z[z←I]) →eCbV (λx.λy.xx)(II)(I[z←I])

→mCbV (λx.λy.xx)(x̃[x̃←I])(I[z←I]) →eCbV (λx.λy.xx)(I[x̃←I])(I[z←I])

→mCbV (λy.xx)[x←I[x̃←I]](I[z←I]) →mCbV (xx)[y←I[z←I]][x←I[x̃←I]]

→eCbV (xI)[y←I[z←I]][x←I][x̃←I] →eCbV (II)[y←I[z←I]][x←I][x̃←I]

→mCbV x′[x′←I][y←I[z←I]][x←I][x̃←I]→eCbV I[x′←I][y←I[z←I]][x←I][x̃←I]

However, it should clear that the fact that CbN and CbV take the same number of steps is by
chance, as they reduce different redexes: CbN never reduces the unneeded redex II associated to
y, but it reduces twice the needed II redex associated to x, while CbV reduces both, but each one
only once.

46

4.4 CbNeed = wise duplication + wise erasure
We think that the “silly erasure” mechanism implemented in CbV is as much of a drawback to
CbV as the “silly duplication” mechanism is to CbN. One would like to have an evaluation strategy
providing a combination of the advantages of CbN and CbV, discarding their drawbacks. We present
here a weak and closed call-by-need evaluation strategy, which we call CbNeed for short and was
first introduced by Wadsworth [Wad71].

Despite being at the core of Haskell, one of the most-used functional programming languages,
and being at work as a strong evaluation strategy in the kernel of Coq as designed by Bruno Barras
[Bar99], the theory of CbNeed is much less developed than that of CbN or CbV. We believe one
of the reasons for this is that it cannot be defined inside the λ-calculus without some hacking.
Manageable presentations of CbNeed indeed require first-class sharing and micro-step operational
semantics.

Another reason is the less natural logical interpretation. We refer the interested reader to the
comparison among CbN, CbV and CbNeed from a Curry-Howard perspective presented in “Call-
by-name, Call-by-value, Call-by-need, and the Linear Lambda Calculus”[Mar+99]. Therein, the
authors interpret the CbN and CbV evaluation orders via the so-called Girard’s CbN and CbV
translations3 of Intuitionistic Propositional Logic into Linear Logic. They then use the results for
CbN and CbV to design a CbNeed translation of Intuitionistic Propositional Logic into an affine
calculus. That is, CbNeed can be seen from a logical perspective as the application of Girard’s
CbV translation of Intuitionistic Logic into an affine calculus, where duplication is controlled and
erasure is allowed unrestrictedly—that is, not only on the terms under the scope of a ! modality.
Hence, CbNeed can be considered to be a sort of affine CbV. This interpretation, however, is rather
unusual, given that the CbNeed translation does not provide as exact a match between CbNeed
evaluation and cut-elimination in the target affine calculus, as for CbN evaluation (resp. CbV eval-
uation) and cut-elimination in Linear Logic via Girard’s CbN translation (resp. CbV translation).

The reader should keep in mind that, while we present all three evaluation strategies simulta-
neously in this chapter, it is the CbNeed one that the majority of this work is centered around.
Indeed, we only presented the CbN and CbV evaluation strategies—as well as their respective multi
type systems in Chapter 5 (Multi types for CbN, CbV and CbNeed), for that matter—in order to
develop the CbNeed theory. In particular, considering that CbNeed may be seen as the result of
combining features from CbN and CbV.

Let us define the CbNeed evaluation strategy now. First, we require the notion of evaluation
contexts:

Definition 9 (CbNeed evaluation contexts).
The class of CbNeed evaluation contexts is given by the following grammar:

CbNeed evaluation contexts E,E ′ ::= ⟨·⟩ | E t | E [x←t] | E⟨⟨x⟩⟩ [x←E ′]

The fourth production, namely E⟨⟨x⟩⟩ [x←E ′], is of particular interest in the CbNeed evaluation
strategy, as it implements the neededness part of the evaluation strategy. This concept of neededness

3The CbN translation (.)CbN maps (A ⇒ B)CbN to (!ACbN) ⊸ BCbN , while the CbV one, (.)CbV , maps (A ⇒
B)CbV to !ACbV ⊸ !BCbV or, equivalently, to !(ACbV ⊸ BCbV).

47

may be related to the concept of erasure in that they are opposite. That is, an argument is erasable
if it is never needed4.

Typically, note that if x /∈ fv(t) then there cannot exist an evaluation context E such that we
may write t = E⟨⟨x⟩⟩. Then, even if (λx.t)u CbNeed-reduces to t[x←u], the latter cannot CbNeed-
reduce to E⟨⟨x⟩⟩[x←u], which is the only way in which reduction on argument u may be triggered.

Coming back to the definition of the CbNeed evaluation strategy, let us define its root-steps:

Definition 10 (CbNeed root-steps).
The multiplicative and exponential root-steps for the CbNeed evaluation strategies are

CbNeed multiplicative root-step S⟨λx.t⟩u 7→m S⟨t [x←u]⟩
CbNeed exponential root-step E⟨⟨x⟩⟩ [x←S⟨v⟩] 7→eCbNeed S⟨E⟨⟨v⟩⟩ [x←v]⟩

Finally,

Definition 11 (CbNeed evaluation strategy).
The CbNeed evaluation strategy, which we note→CbNeed, is defined as the closure of the CbNeed

root-steps by CbNeed evaluation contexts. That is, →CbNeed is defined by (any of the two following
alternative ways):

→CbNeed:= E⟨7→m ∪ 7→eCbNeed⟩ = E⟨7→m⟩ ∪ E⟨7→eCbNeed⟩

Given an evaluation sequence d : t −→∗CbNeed u, the definitions of |d|, |d|m and |d|e are analogous
to the CbN and CbV cases.

4.4.1 Comparative example of reduction sequences - CbNeed

Let us come back to the example studied in the CbN and CbV cases. Recall that t :=
((λx.λy.xx)(II))(II) takes 5 multiplicative steps and 5 exponential steps to reach its→CbN-normal
form or its→CbV-normal form. CbNeed thus presents an improvement over each of these evaluation
strategies, since it takes 4 multiplicative steps and 4 exponential steps to reach is →CbNeed-normal
form:

t→mCbNeed (λy.xx)[x←II](II) →mCbNeed (xx)[y←II][x←II]

→mCbNeed (xx)[y←II][x←z[z←I]] →eCbNeed (xx)[y←II][x←I[z←I]]

→eCbNeed (Ix)[y←II][x←I][z←I] →mCbNeed (x̃[x̃←x])[y←II][x←I][z←I]

→eCbNeed x̃[x̃←I][y←II][x←I][z←I]→eCbNeed I[x̃←I][y←II][x←I][z←I]

Such an improvement comes from the fact that CbNeed never reduces the unneeded redex II
associated to y, while it also reduces the needed redex II associated to x only once.

4The converse does not hold as simply as that. That is, while needed arguments are not erased right after the
multiplicative step, they are erasable after the last substitution has been performed. More on this in the following
Sect. 4.5 (Erasing steps).

48

4.4.2 Different flavors of weak linear head reduction
In the next Chapter 5 (Multi types for CbN, CbV and CbNeed), we shall see that there are important
semantical connections between the three evaluation strategies introduced above and (the relational
semantics given to) Linear Logic; such connections serve as a logical foundation for the evaluation
strategies we study in this work.

But, from a rewriting-theoretic point of view, there exists also a remarkable logical foundation
to our weak and closed evaluation strategies. Let us first point out that our presentation of CbNeed
was first studied by Accattoli, Barenbaum and Mazza in their [ABM14], with the intention of giving
a uniform presentation of several evaluation strategies within the LSC framework. They also prove
that these evaluation strategies correspond to the executions of certain abstract machines—or rather
distill said abstract machines, following their terminology—both in a qualitative and quantitative
way5.

The authors in [ABM14] claim that these LSC versions of CbN, CbV and CbNeed are the call-
by-name, call-by-value and call-by-need versions (respectively) of weak linear head reduction. They
cite Danos and Regnier [DR04] as the first who ever realized this connection6.

4.5 Erasing steps
The reader may be surprised by our evaluation strategies, as none of them includes erasing steps,
despite the absolute relevance of erasures pointed out previously. There are no contradictions: in
the LSC—in contrast to the λ-calculus—erasing steps can always be postponed, and so they are
often omitted—see e.g. “An abstract factorization theorem for explicit substitutions”[Acc12].

This is actually close to programming language practice, as the garbage collector acts asyn-
chronously with respect to the evaluation flow. For the sake of clarity, let us spell out the erasing
rules—they are nonetheless ignored in the remainder of the work. In CbN and CbNeed every Λ-term
is erasable, so the erasing root-step takes the following form

t[x←u] 7→gc t if x /∈ fv(t)

and it is then closed by weak evaluation contexts.
Since only values are erasable in CbV , the root erasing step in CbV is:

t[x←S⟨v⟩] 7→gc S⟨t⟩ if x /∈ fv(t)

and it is then closed by weak evaluation contexts.

4.6 Characterizing closed normal forms
Throughout this work, we give syntactic characterizations of normal forms in each of the evaluation
strategies. There are two alternative ways of doing this: either by giving a context-free grammar—
which should correspond exactly to the normal forms in a particular evaluation strategy—or by

5Qualitatively, the strategies are sound and complete with respect to the abstract machines. Quantitatively, the
number and kind of transitions of executions in each of these abstract machines have a bilinear relation with the
evaluation strategies that distill them.

6In particular, they proved an exact correspondence between the KAM abstract machine and weak head reduction,
which we here present in its linear variant as CbN.

49

defining predicates—satisfiable by the normal forms and not satisfied by any other Λ-term. For
CbN, CbV and CbNeed we have decided to use predicates, mainly to avoid including yet another
syntactic category and especially due to the simple characterizations that these weak and close
evaluation strategies have.

It is known that call-by-name and call-by-need reduction relations are termination-equivalent.
That is, their sets of normal forms are exactly the same. Hence, we only need two predicates: one
for CbV and another one both for CbN and CbNeed.

The difference between these two predicates is that the terms that satisfy the one for CbN and
CbNeed may contain any Λ-term inside the ESs, while the terms satisfying the CbV predicate may
only contain CbV-normal forms inside the ESs. That is,

norm(λx.t)

norm(t)

norm(t[x←u]) normCbV(λx.t)

normCbV(t) normCbV(u)

normCbV(t[x←u])

Proposition 4.6.1 (Syntactic characterization of closed normal forms).
Let t be a closed term.

1. CbN and CbNeed: For r ∈ {CbN,CbNeed}, t is r-normal if and only if norm(t).
2. CbV: t is CbV-normal if and only if normCbV(t).

Proof. (Click here to see the complete proof in the Technical Appendix)
• CbN and CbNeed: Given t in →CbN-normal form (resp. →CbNeed-normal form), the proof of

norm(t) is by structural induction on t, proceeding by case analysis on its shape. Conversely,
if norm(t), then we prove that t is in →CbN-normal form (resp. →CbNeed-normal form) by
induction on the derivation of norm(t).

• CbV: This proof follows the same structure as the one used for the →CbN and →CbNeed cases.

It follows immediately from Proposition 4.6.1 and from the definition of the predicates that
normal forms for CbN and CbNeed coincide, while normal forms for CbV are a subset of them.
Additionally, this is a proper inclusion since, for instance, the closed term I[x←δδ], where I := λz.z
and δ := λy.yy, is normal for CbN and CbNeed but not for CbV.

In any case, note that the normal forms of all three evaluation strategies are of the form S⟨v⟩,
where S is a substitution context and v is a λ-abstraction. This kind of ΛL-terms is called answers.

50

Chapter 5

Multi types for CbN, CbV and CbNeed

Introduction

In this chapter, we give separate multi type systems for CbN, CbV and CbNeed. Moreover, from
each of these type systems we infer an invariant, adequate and compositional semantics for its corre-
sponding evaluation strategy. The systems are designed to reflect the characteristics of the strategies
that we studied in Chapter 4 (CbN, CbV and CbNeed)—in particular, their implementations of
duplication and erasure.

The systems are so finely adjusted to the strategies, that we are able to extract exact quantitative
information regarding the typed term from (a particular class of) its type derivations. Such a
degree of exactness was first accomplished by de Carvalho in 2007 [Car07], when he separately
obtained exact bounds for the length of head-normalizing reduction sequences and weak-normalizing
reduction sequences. Needless to say, obtaining exact bounds requires a delicate treatment of the
features of the systems; our type systems are a proof of this.

Therefore, a thorough presentation for each one of them is necessary. With that being said, we
suggest the reader to go through the section on the CbN multi type system first, as many of the
intuitions presented therein are useful guidelines for understanding the CbV and CbNeed ones, as
well as other type systems in the remainder of the work. Moreover, the proof technique used for
the CbN system is, roughly speaking, the same we use throughout.

5.1 Different flavors of multi types
As is the case for each one of our evaluation strategies, the concept of multi types is based on two
layers of types, defined in a mutually recursive way: the linear types L, and the multi types M ,
which are represented as finite multisets of linear types—as explained in Sect. 2.4 (Multi types).
With the idea of gaining useful insights on these notions, let us give intuitive interpretations:

• Linear types correspond to a single use of a term.
• Multi types correspond to the maximum number of times a function argument is going to be

needed in the body of the function it is an argument of: Suppose we have a type derivation
for S⟨λx.t⟩u in the CbN type system, in such a way that the sub-type derivation for u assigns
multi type M = [L1, ..., Ln] as the type of u. Then we can be sure that, after contracting
S⟨λx.t⟩u in a CbN reduction sequence, u is going to end up (at most) n times in evaluation
position.

51

In Sect. 2.4 (Multi types) on page 24, we presented the definition of linear and multi types
for CbNeed, with the intention of introducing the reader to their general structure. But, as we
mentioned there, there are subtle differences in the definitions of linear and multi types for each of
the case studies. Let us present the definitions corresponding to the CbN, CbV and CbNeed cases:

Definition 12 (Linear and multi types for CbN, CbV and CbNeed).
Let us first recall the definitions of linear and multi types for CbNeed

CbNeed linear types L,L′ ::= norm |M ⊸ N

CbNeed multi types M,N ::= [Li]i∈I (with I finite)

and the CbV linear and multi types, mutually recursively defined as follows:

CbV linear types L,L′ ::= M ⊸ N

CbV multi types M,N ::= [Li]i∈I (with I finite)

While these definitions are structurally the same as the one for CbNeed, one should keep in mind
that CbV linear and multi types are with respect to one another, and not with respect to the
CbNeed ones.

Finally, linear and multi types for CbN are defined as follows:

CbN linear types L,L′ ::= norm |M ⊸ L

CbN multi types M,N ::= [Li]i∈I (with I finite)

That is, CbN multi types are finite collections of CbN linear types, while the latter are either the
constant type norm or a linear arrow type M ⊸ L. Note that this last production takes a CbN
multi type on the left and a CbN linear type on the right, which is structurally different than the
linear arrow type defined for CbNeed or for CbV. This particular form of the linear arrow type is
known in the literature as strict types—and was introduced by van Bakel in his [Bak92].

As pioneered in [Car07] by de Carvalho, the size of type derivations in certain multi type systems
represent (exact) measurements regarding (or related to) the typed term.

Since each of our multi type systems is designed to characterize termination of a corresponding
evaluation strategy, type derivations in our multi type systems provide quantitative information on
the size of the normal form of the typed term and the length of the normalizing reduction sequence.
This information takes the form of upper bounds, which are represented as indices in the final type
judgement of a type derivation.

Nonetheless, all three weak and closed evaluation strategies have a very particularly simple kind
of normal forms. That is, their normal forms are answers, as we saw in Sect. 4.6 (Characterizing
closed normal forms) on page 49. And since reduction does not go under λs in weak settings, the
size of normal forms in any of these strategies is always the same. Hence, type derivations in the
CbN, CbV and the CbNeed multi type systems do not provide any information regarding the size
of normal forms.

On the contrary, the length of the normalizing reduction sequence is of great value, and we
extract indeed this information from type derivations, presenting it in the form of 2 indices of

52

natural numbers, namely (m, e), where m provides information about the number of multiplicative
steps and e provides information about the number of exponential steps in the normalizing reduction
sequence.

Thus,

Definition 13 (Type judgements).
For every X ∈ {CbN,CbV,CbNeed}, we write Φ▷XΓ ⊢(m,e) t :M to express that type derivation

Φ in multi type system X ends in type judgement Γ ⊢(m,e) t :M , where indices m and e are
intended to count the number of multiplicative and exponential steps from t to its X-normal form,
respectively.

The same is defined for when the type derivation ends in a type judgement Γ ⊢(m,e) t :L instead.

5.2 Multi type system for CbN
Here we introduce the CbN multi type system, together with general intuitions about multi types
for the three evaluation strategies of this chapter. We also prove that derivations provide exact
bounds on CbN evaluation sequences, and finally induce a semantics.'

&

$

%

x : [L] ⊢(0,1) x :L
ax

∅ ⊢(0,0) λx.t : norm
norm

Γ;x :M ⊢(m,e) t :L

Γ ⊢(m,e) λx.t :M ⊸ L
fun

(
Γi ⊢(mi,ei) t :Li

)
i∈I I : finite⊎

i∈I Γi ⊢(
∑

i∈I mi,
∑

i∈I ei) t : [Li]i∈I
many

Γ ⊢(m,e) t :M ⊸ L Π ⊢(m′,e′) u :M
Γ
⊎

Π ⊢(m+m′+1,e+e′) tu :L
app

Γ;x :M ⊢(m,e) t :L Π ⊢(m′,e′) u :M

Γ
⊎
Π ⊢(m+m′,e+e′) t[x←u] :L

ES

Figure 5.1: Type system for CbN evaluation

5.2.1 CbN types
The typing rules of the CbN type system are in Fig. 5.1. It is essentially a reformulation of de
Carvalho’s system R [Car18], itself being a type-based presentation of the relational model of the CbN
λ-calculus induced by the relational model of Linear Logic via the CbN translation of Intuitionistic
Propositional Logic into Linear Logic—which, given the Curry-Howard correspondence, means the
CbN translation of the λ-calculus into Linear Logic.

Let us overview some subtleties and easy facts about our presentation of the type system:
• Recall that CbN linear and multi types are defined as follows:

CbN linear types L,L′ ::= norm |M ⊸ L

CbN multi types M,N ::= [Li]i∈J (with I finite)

In particular, note that the linear constant norm is used to type abstractions, which are in
CbN-normal form, via typing rule norm it plays a crucial role in our quantitative analysis of
CbN evaluation.

53

• The many has as many premises as the elements in the (possibly empty) set of indices I; when
I = ∅, the rule has no premises, and it types t with the empty multi type 0.
This rule is needed to derive the right-hand-side premises of rules app and ES, that have a
multi type M on their right-hand side.
Essentially, it corresponds to the promotion rule of Linear Logic, that, in the CbN represen-
tation of the λ-calculus, is indeed used for typing the right subterm of applications and the
content of explicit substitutions.

• Introduction and destruction of multisets. Multisets are introduced on the right by the many
rule and on the left by ax. Moreover, they are summed on the left by app and ES.

• Vacuous abstractions. The abstraction rule fun can always abstract a variable x; note that if
M = 0, then Γ;x :M is equal to Γ.

• Relevance. No weakening is allowed in axioms. An easy induction on type derivations shows
that
Lemma 5.2.1 (Relevance of the CbN type system).
Let t ∈ ΛL and let Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).
(Click here to see the complete proof in the Technical Appendix)
Note that Lemma 5.2.1 implies that derivations of closed terms have empty type context.
Note that there can be free variables of t not in dom(Γ): the ones occurring only in subterms
not touched by the evaluation strategy.

• Erasable terms and 0. The empty multi type 0 is the type of erasable terms. Indeed, abstrac-
tions that erase their argument—whose paradigmatic example is λx.y—can only be typed
with 0 ⊸ L, because of Lemma 5.2.1 (Relevance of the CbN type system). Note that in CbN
every term—even diverging ones—can be typed with 0 by rule many (taking 0 premises),
because, correctly, in CbN every term can be erased.

• Adequacy and linear types. All CbN typing rules except for many assign linear types. And
many is used only as right premise of the rules app and ES, to derive M . It is with respect
to linear types, in fact, that the adequacy of the system is going to be proved: a term is
CbN normalizing if and only if it is typable with a linear type, given by Theorem 5.2.5 (Tight
Correctness for CbN) and Theorem 5.2.9 (Tight Completeness for CbN) below.

5.2.2 Tight type derivations
A ΛL-term may have several derivations in the CbN type system, indexed by different pairs (m, e).
The latter always provide upper bounds on CbN evaluation lengths; specifically, m and e provide
bounds on the number of multiplicative and exponential steps, respectively, from the typed term to
its CbN-normal form.

One of the interesting aspects of the type systems in this chapter is that there is a simple
description of a class of type derivations that provide exact upper bounds for these quantities, as
we shall show. Their definition relies on the norm type constant.
Definition 14 (Tight derivations for CbN).

A derivation Φ ▷CbN Γ ⊢(m,e) t :L is tight if L = norm and Γ is empty.

5.2.3 Comparative example - derivation in the CbN type system
Let us return to the term t := ((λx.λy.xx)(II))(II), for which a CbN normalizing sequence is given
in Sect. 4.2 (CbN: silly duplication + wise erasure). Let us give a derivation for it in the CbN type

54

system:
First, let us shorten norm to n. Then, we define Φ as the following derivation for the subterm

λx.λy.xx of t:

x : [[n] ⊸ n] ⊢(0,1) x : [n] ⊸ n
ax

x : [n] ⊢(0,1) x : n
ax

x : [n] ⊢(0,1) x : [n]
many

x : [n, [n] ⊸ n] ⊢(1,2) xx : n
app

x : [n, [n] ⊸ n] ⊢(1,2) λy.xx :0 ⊸ n
fun

∅ ⊢(1,2) λx.λy.xx : [n, [n] ⊸ n] ⊸ (0 ⊸ n)
fun

Now, we need two derivations for II, one of type n, given by Ψ as follows

z : [n] ⊢(0,1) z : n
ax

∅ ⊢(0,1) λz.z : [n] ⊸ n
fun

∅ ⊢(0,0) λx̃.x̃ : n
norm

∅ ⊢(0,0) λx̃.x̃ : [n]
many

∅ ⊢(1,1) II : n
app

and one of type [n] ⊸ n, given by Ξ as follows

z : [[n] ⊸ n] ⊢(0,1) z : [n] ⊸ n
ax

∅ ⊢(0,1) λz.z : [[n] ⊸ n] ⊸ ([n] ⊸ n)
fun

x̃ : [n] ⊢(0,1) x̃ : n
ax

∅ ⊢(0,1) λx̃.x̃ : [n] ⊸ n
fun

∅ ⊢(0,1) λx̃.x̃ : [[n] ⊸ n]
many

∅ ⊢(1,2) II : [n] ⊸ n
app

Finally, we put Φ, Ψ and Ξ together in the following derivation Θ for t = (u(I))(I), where u :=
λx.λy.xx:

.... Φ
∅ ⊢(1,2) λx.λy.xx : [n, [n] ⊸ n] ⊸ (0 ⊸ n)

.... Ψ
∅ ⊢(1,1) II : n

.... Ξ
∅ ⊢(1,2) II : [n] ⊸ n

many
∅ ⊢(2,3) II : [n, [n] ⊸ n]

app
∅ ⊢(4,5) (λx.λy.xx)(II) :0 ⊸ n

many
∅ ⊢(0,0) II :0

app
∅ ⊢(5,5) ((λx.λy.xx)(II))(II) : n

Note that Θ is a tight derivation and the indices (5, 5) correspond to the number of mCbN-steps
and eCbN-steps, respectively, from t to its CbN-normal form, as shown in Sect. 4.2 (CbN: silly
duplication + wise erasure).

Forthcoming Theorem 5.2.5 (Tight Correctness for CbN) shows that this is not by chance: tight
derivations for CbN are minimal and provide exact bounds to evaluation lengths in CbN.

The next two subsections prove the two halves of the properties of the CbN type system, namely
correctness and completeness.

5.2.4 CbN correctness
Correctness is the fact that every typable term is CbN-normalizing. In our setting it comes with
additional quantitative information: the indices m and e of a derivation Φ▷CbNΓ ⊢(m,e) t : L provide
bounds for the length of the CbN evaluation of t, which are proved to be exact when the derivation
is tight.

55

The proof technique we use is standard. Moreover, the correctness theorems for all the other
evaluation strategies follow exactly the same structure. The proof relies on a Quantitative Subject
Reduction property showing that the m index decreases by exactly one at each mCbN-step, and that
there exists an analogous relation between e and eCbN-steps.

In turn, Quantitative Subject Reduction relies on a Linear Substitution lemma. Last, while
correctness in itself could be proved without anything else, proving the tight part—that is, proving
that the indices in tight type derivations provide exact bounds—requires a further property satisfied
by tight type derivations of CbN-normal forms.

Let us point out that correctness is stated with respect to closed terms only, but the auxiliary
results have to deal with open terms, since they are proved by induction (over predicates defined
by induction) over the structure of terms.

Tightness and Normal Forms. Since indices are (non-negative) natural numbers, note that the
decrease in the indices in the Subject Reduction property implies that evaluation must terminate.

Thus, indices are upper bounds to evaluation lengths. But these bounds need not be exact, as
evidenced, for example, by the fact that derivations of CbN-normal forms can have strictly positive
indices. Consider for instance the following type derivation for λx.x, which does not eCbN-reduce
but still the e index is greater than 0:

x : [L] ⊢(0,1) x :L
ax

∅ ⊢(0,1) λx.x : [L] ⊸ L
fun

On the contrary, if a type derivation in the CbN system is tight, then it is indexed by (0, 0), as
stated in:

Proposition 5.2.2 (Typing properties of CbN-normal forms).
Let t ∈ ΛL be such that norm(t), and Φ ▷CbN Γ ⊢(m,e) t : norm be a type derivation. Then Γ = ∅

and (m, e) = (0, 0).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of norm(t).

Linear Substitution. The Linear Substitution lemma states that substituting over a variable
occurrence as in the exponential rule consumes exactly one linear type and decreases of one the
exponential index e.

Lemma 5.2.3 (Linear Substitution for CbN).
Let ΦC⟨⟨x⟩⟩ ▷CbN Γ;x :M ⊢(m,e) C⟨⟨x⟩⟩ :L be a type derivation. Then e ≥ 1 and there exists a

splitting M = [L′] ⊎N such that for every derivation Ψ ▷CbN Π ⊢(m′,e′) t :L′ there is a derivation

ΦC⟨⟨t⟩⟩ ▷CbN (Γ
⊎

Π);x :N ⊢(m+m′,e+e′−1) C⟨⟨t⟩⟩ :L

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on the CbN evaluation context C.

56

Quantitative Subject Reduction. A key point of multi types is that the size of type derivations
shrinks after every evaluation step, which is what allows to bound evaluation lengths. If we take the
size of a type derivation to be the sum of the indices in the final type judgement, then this shrinking
is obtained by the Quantitative Subject Reduction property, where one of the indices decreases by
exactly 1; the index decreased depends on the kind of reduction step.

Proposition 5.2.4 (Quantitative Subject Reduction for CbN).
Let Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation.

1. Multiplicative: If t→mCbN u, then m ≥ 1 and there exists a derivation

Ψ ▷CbN Γ ⊢(m−1,e) u :L

2. Exponential: If t→eCbN u, then e ≥ 1 and there exists a derivation

Ψ ▷CbN Γ ⊢(m,e−1) u :L

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proved by induction on the CbN evaluation context C such that

t = C⟨s⟩ →mCbN C⟨s′⟩ = u. The exponential case is proven by induction on the CbN evaluation
context C such that t = C⟨s⟩ →eCbN C⟨s′⟩ = u, using Lemma 5.2.3 (Linear Substitution for CbN)
for the root-step.

Finally,

Theorem 5.2.5 (Tight Correctness for CbN).
Let t ∈ ΛL be closed and Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation. Then there exists u ∈ ΛL such

that
1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the sum m+ e, and proceeding by case analysis on whether t →CbN-reduces or

not:
• If t is in →CbN-normal form, then we only need to prove the case where Φ is tight, which

follows by Proposition 5.2.2 (Typing properties of CbN-normal forms).
• If t→CbN u, then the statement follows by application of Proposition 5.2.4 (Quantitative Sub-

ject Reduction for CbN), distinguishing whether t →CbN u is a multiplicative or exponential
step, and then by application of the i.h. on the type derivation for u giving by Proposi-
tion 5.2.4. Note that the “Moreover” part follows by the fact that Proposition 5.2.4 preserves
the type context and the right-hand side type.

Note that Theorem 5.2.5 implicitly states that tight type derivations have minimal indices among
all derivations.

57

5.2.5 CbN completeness
Completeness is the fact that every CbN-normalizing ΛL-term has a (tight) type derivation. As
for correctness, the completeness theorems are always obtained via three intermediate steps, dual
to those for correctness: Roughly, one first shows that every normal form has a (tight) derivation.
Typability is then extended to CbN-normalizing terms by pulling it back through CbN-evaluation
using a Quantitative Subject Expansion property, itself based on a Linear Removal lemma.

Normal Forms. We must first prove that each CbN-normal form is typable; in fact, it is typable
with a tight type derivation.
Proposition 5.2.6 (Tight typability of CbN-normal forms).

Let t ∈ ΛL be such that norm(t). Then there exists a tight type derivation Φ ▷CbN ∅ ⊢(0,0) t : norm.
Proof. (Click here to see the complete proof in the Technical Appendix)

By induction on the derivation of norm(t).

Linear Removal. In order to prove the Quantitative Subject Expansion property, we have to
first show that typability can also be pulled back along substitutions—i.e., eCbN-steps—via a Linear
Removal lemma dual to the Linear Substitution lemma:
Lemma 5.2.7 (Linear Removal for CbN).

Let Φ ▷CbN Γ;x :M ⊢(m,e) C⟨⟨u⟩⟩ :L be a type derivation, where x /∈ fv(u). Then there exist type
derivations

Ψ ▷CbN Π ⊢(m′,e′) u :L′

Θ ▷CbN ∆;x : (M ⊎ [L′]) ⊢(m′′,e′′) C⟨⟨x⟩⟩ :L
such that Γ = Π

⊎
∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on the CbN evaluation context C.

Quantitative Subject Expansion. This property is dual to Proposition 5.2.4 (Quantitative
Subject Reduction for CbN):
Proposition 5.2.8 (Quantitative Subject Expansion for CbN).

Let Φ ▷CbN Γ ⊢(m,e) u :L be a type derivation.
1. Multiplicative: If t→mCbN u, then there exists a derivation

Ψ ▷CbN Γ ⊢(m+1,e) t :L

2. Exponential: If t→eCbN u, then there exists a derivation
Ψ ▷CbN Γ ⊢(m,e+1) t :L

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on the CbN evaluation context C such that

t = C⟨s⟩ →mCbN C⟨s′⟩ = u. The exponential case is proven by induction on the CbN evaluation
context C such that t = C⟨s⟩ →eCbN C⟨s′⟩ = u, using Lemma 5.2.7 (Linear Removal for CbN) for
the root-step.

58

The Tight Completeness Theorem. The theorem is proved by a straightforward induction
on the evaluation length relying on Proposition 5.2.8 (Quantitative Subject Expansion for CbN)
for the inductive case, and Proposition 5.2.6 (Tight typability of CbN-normal forms) for the base
case—via Proposition 4.6.1.1 (Syntactic characterization of closed normal forms - CbN).

Theorem 5.2.9 (Tight Completeness for CbN).
Let t ∈ ΛL be closed. If there exists d : t −→∗CbNu for some u ∈ ΛL in →CbN-normal form, then

there exists a type derivation Φ ▷CbN ∅ ⊢(|d|m,|d|e) t : norm.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of reduction sequences starting in t:
• Base case: By Proposition 4.6.1.1 (Syntactic characterization of closed normal forms - CbN),

we have that norm(t). We then get Φ by application of Proposition 5.2.6 (Tight typability of
CbN-normal forms) on t.

• Inductive case: Let t→mCbN u. By i.h., we get the expected type derivation for u. We may then
obtain the one for t by an application of Proposition 5.2.8 (Quantitative Subject Expansion
for CbN), taking into account the kind of reduction step in t →mCbN u—i.e., whether it is
exponential or multiplicative.

5.2.6 Counting erasing steps in the CbN type system
Our system can be easily adapted to measure also garbage collection steps—the CbN erasing rule is
shown in Sect. 4.5 (Erasing steps) on page 49. We first extend the quantitative information in type
judgements to include a third index g. Second, one needs to distinguish the erasing cases from the
non-erasing ones in typing rules app and ES. This is done by splitting each of them in 2, say app
into appgc and app¬gc, and ES into ESgc and ES¬gc. The discriminating element between these new
split rules is the empty multi type 0. In the case of the app, we should split it into the following:

Γ ⊢(m,e,g) t :0 ⊸ L
Γ
⊎

Π ⊢(m,e,g+1) tu :L
appgc

Γ ⊢(m,e,g) t :M ⊸ L Π ⊢(m′,e′,g′) u :M M ̸= 0

Γ
⊎

Π ⊢(m+m′+1,e+e′,g+g′) tu :L
app¬gc

while the ES rule should be split into the following:
Γ ⊢(m,e,g) t :L Γ(x) = 0

Γ
⊎

Π ⊢(m,e,g+1) t[x←u] :L
ESgc

Γ;x :M ⊢(m,e,g) t :L Π ⊢(m′,e′,g′) u :M M ̸= 0

Γ
⊎

Π ⊢(m+m′,e+e′,g+g′) t[x←u] :L
ES¬gc

The remaining typing rules—i.e., ax, norm, fun and many—should be extended with a third index,
all of them simply adding together the third indices of the premises into the third index of the
conclusion. In other words, just like the ax rule is the only typing rule incrementing the e index
and the (original) app rule is the only typing rule incrementing the m index, it should be that rules
appgc and ESgc are the only ones incrementing the g index.

59

Note that the right premise of rules appgc and ESgc have been removed. This is because the only
way to introduce 0 in the CbN type system is via a many rule with no premises, whose conclusion
has an empty type context and is indexed by (0, 0, 0).

Given a type derivation Φ ▷CbN Γ ⊢(m,e,g) t :L in the CbN type system with extended indices, g
happens to be an upper bound on the number of erasing steps. While this upper bound may not
be exact in general terms, we believe their analysis here is justified by the fact that these typing
rules are a significant part of the CbNeed type system—presented in Sect. 5.4 (Multi type system
for CbNeed) on 66.

5.2.7 CbN semantics
The idea used to build the semantics from the multi type system is that the interpretation of a term
is simply the set of its type assignments; that is, the set of its derivable types together with their
type contexts.

Let t ∈ ΛL and x1, . . . , xn (with n ≥ 0) be pairwise distinct variables. If fv(t) ⊆ {x1, . . . , xn},
we say that the list x⃗ = (x1, . . . , xn) is suitable for t. Given a suitable list x⃗ = (x1, . . . , xn) for t,
the semantics of t for x⃗ with respect to the CbN type system is

[[t]]CbN
x⃗ := {((M1, . . . ,Mn), L) | ∃Φ ▷CbN x1 :Mn; . . . ;xn :Mn ⊢(m,e) t :L}

Note that Proposition 5.2.4 (Quantitative Subject Reduction for CbN) and Proposition 5.2.8 (Quan-
titative Subject Expansion for CbN) guarantee that the semantics [[t]]CbN

x⃗ of t—for any term t,
possibly open—is invariant by CbN evaluation.

Theorem 5.2.5 (Tight Correctness for CbN) and Theorem 5.2.9 (Tight Completeness for CbN)
guarantee that given a closed t ∈ ΛL, its interpretation [[t]]CbN

x⃗ is non-empty if and only if t is
CbN-normalizable. That is, Theorem 5.2.5 and Theorem 5.2.9 guarantee that the semantics is
adequate.

In fact, adequacy also holds with respect to open ΛL-terms. The issue in that case is that the
characterization of tight derivations is more involved—see for example Accattoli, Graham-Lengrand
and Kesner’s “Tight Typings and Split Bounds” [AGK20]. Said differently, weaker correctness and
completeness theorems without exact bounds also hold in the open case, but the exactness of bounds
requires the ΛL-term to be closed; the same applies in the CbV and CbNeed type systems introduced
below.

Just to give a superficial explanation as to why the class of tight type derivations defined for the
CbN the multi type system needs to be refined for the open setting, consider the fact that assuming
that the type context is empty does not provide a complete characterization anymore. Indeed, take
any type derivation for x ∈ Var and notice that the type context must contain x in its domain.

Finally, note that the CbN semantics is compositional, as explained in Sect. 3.2 (Properties of
multi type systems).

5.3 Multi type system for CbV
Here we present Ehrhard’s CbV multi type system [Ehr12]—adapted to our presentation of CbV
in the LSC—and prove its properties. The system is similar, and yet in many aspects dual, to the
CbN one. In particular, their grammars of types is different; recall that CbV linear and multi types

60

are defined mutually recursively as follows:

CbV linear types L,L′ ::= M ⊸ N

CbV multi types M,N ::= [Li]i∈J (for any finite set J)

Note that CbV linear types have a multi type both as source and as target of the linear arrow ⊸,
and that the norm constant is absent. This is purposeful, as the role of the norm constant in CbN
is played in CbV by the empty multi type 0.

The typing rules are in Fig. 5.2. It is an adaptation—to our version of CbV in the LSC —of
the type-based presentation of the relational model of the CbV λ-calculus induced by the relational
model of Linear Logic via the CbV translation of Intuitionistic Propositional Logic into Linear
Logic; i.e., via the Curry-Howard correspondence, the CbV translation of the λ-calculus into Linear
Logic.'

&

$

%

x :M ⊢(0,1) x :M
ax

Γ;x :N ⊢(m,e) t :M

Γ ⊢(m,e) λx.t :N ⊸ M
fun

(
Γi ⊢(mi,ei) λx.t :Li

)
i∈I I : finite⊎

i∈I Γi ⊢(
∑

i∈I mi,
∑

i∈I ei) λx.t : [Li]i∈I
many

Γ ⊢(m,e) t : [N ⊸ M] Π ⊢(m′,e′) u :N

Γ
⊎
Π ⊢(m+m′+1,e+e′) tu :M

app
Γ;x :N ⊢(m,e) t :M Π ⊢(m′,e′) u :N

Γ
⊎
Π ⊢(m+m′,e+e′) t[x←u] :M

ES

Figure 5.2: Type system for CbV evaluation

Let us consider some remarks:
• Right-hand types. All rules but fun assign a multi type to the term on the right-hand side,

and not a linear type as in the CbN system.
• Abstractions and many. The many rule has a restricted form with respect to the CbN one:

it can only be applied to abstractions, which happen to be the only terms that can be typed
with a linear type.

• Indices. Note that the indices are incremented—in rules ax and app—and summed—in rules
many and ES—exactly as in the CbN system.

Just like in the CbN case, the CbV multi type system satisfies the following property:

Lemma 5.3.1 (Relevance of the CbV type system).
Let t ∈ ΛL and let Φ ▷CbV Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on Φ ▷CbV Γ ⊢(m,e) t :M and proceeding by case analysis on the last

derivation rule of Φ.

5.3.1 Intuitions: The Empty Type 0

The empty multi type 0 plays a special role in CbV. As in CbN, it is the type of terms that can be
erased, but, in contrast to CbN, not every term is erasable in CbV.

61

In the CbN multi type system every term, even a diverging one, is typable with 0. On the
one hand, this is correct, because in CbN every term can be erased, and erased terms can also
be divergent, because they are never evaluated. On the other hand, adequacy is formulated with
respect to the norm constant linear type: a ΛL-term CbN-normalizes if and only if it is typable with
norm—which, needless to say, is different from 0.

Instead, terms in CbV have to be normalized before being erased. Thus, CbV-normalizing terms
and erasable terms coincide. Since the multi type system is meant to characterize CbV-normalizing
ΛL-terms, a ΛL-term is typable in the CbV system if and only if it is typable with 0, as we shall
prove below. Thus, the empty type is not a degenerate type excluded for adequacy from the relevant
types of a term, as in CbN: it rather is the type, characterizing (adequate) typability altogether.
This is in fact the reason for the absence of constant norm; an (informal) way to see it is that, in
CbV, norm = 0.

Note that, in particular, in the CbV system, a type judgement like Γ ⊢(m,e) t :M may be such
that the type context Γ assigns the empty type to a variable x occurring in t, as for instance in
the axiom x :0 ⊢(0,1) x :0. Although this may seem very strange to people familiar with CbN multi
types, we hope that, according to the provided intuition that 0 is the type of CbV-normalization,
it would rather seem natural instead.

Definition 15 (Tight derivations for CbV).
A derivation Φ ▷CbV Γ ⊢(m,e) t :M is tight if M = 0 and Γ is empty.

5.3.2 Comparative example - derivation in the CbV type system
Let us consider again the term t := ((λx.λy.xx)(II))(II). A CbV reduction sequence for it was given
in Sect. 4.3 (CbV: wise duplication + silly erasure), and putting it in perspective with the CbN
and CbNeed reduction sequences, and it was typed in the CbN system with a tight derivation—on
page 54. We now proceed to type it with a tight type derivation in the CbV system.

First, let us give the derivation Φ1 for the subterm λx.λy.xx of t:

x : [0 ⊸ 0] ⊢(0,1) x : [0 ⊸ 0]
ax

x :0 ⊢(0,1) x :0
ax

x : [0 ⊸ 0] ⊢(1,2) xx :0
app

x : [0 ⊸ 0] ⊢(1,2) λy.xx :0 ⊸ 0
fun

x : [0 ⊸ 0] ⊢(1,2) λy.xx : [0 ⊸ 0]
many

∅ ⊢(1,2) λx.λy.xx : [0 ⊸ 0] ⊸ [0 ⊸ 0]
fun

∅ ⊢(1,2) λx.λy.xx : [[0 ⊸ 0] ⊸ [0 ⊸ 0]]
many

Note that [0 ⊸ 0]⊎ 0 = [0 ⊸ 0], which explains the shape of the type context in the conclusion of
the app rule. Next, we define the derivation Φ2 as follows

z : [0 ⊸ 0] ⊢(0,1) z : [0 ⊸ 0]
ax

∅ ⊢(0,1) λz.z : [0 ⊸ 0] ⊸ [0 ⊸ 0]
fun

∅ ⊢(0,1) λz.z : [[0 ⊸ 0] ⊸ [0 ⊸ 0]]
many

x̃ :0 ⊢(0,1) x̃ :0
ax

∅ ⊢(0,1) λx̃.x̃ :0 ⊸ 0
fun

∅ ⊢(0,1) λx̃.x̃ : [0 ⊸ 0]
many

∅ ⊢(1,2) II : [0 ⊸ 0]
app

62

and the derivation Φ3 as follows

ỹ :0 ⊢(0,1) ỹ :0
ax

∅ ⊢(0,1) λỹ.ỹ :0 ⊸ 0
fun

∅ ⊢(0,1) λỹ.ỹ : [0 ⊸ 0]
many

∅ ⊢(0,0) I :0
many

∅ ⊢(1,1) II :0
app

Finally, we put Φ1, Φ2 and Φ3 together in the following derivation Φ for t
..... Φ1

∅ ⊢(1,2) λx.λy.xx : [[0 ⊸ 0] ⊸ [0 ⊸ 0]]

..... Φ2

∅ ⊢(1,2) II : [0 ⊸ 0]
app

∅ ⊢(3,4) (λx.λy.xx)(II) : [0 ⊸ 0]

..... Φ3

∅ ⊢(1,1) II :0
app

∅ ⊢(5,5) ((λx.λy.xx)(II))(II) :0
Note that Φ is a tight derivation and the indices (5, 5) correspond to the number of mCbV-steps
and eCbV-steps, respectively, from t to its CbV-normal form, as shown in Sect. 4.3 (CbV: wise
duplication + silly erasure). We shall prove that this is not by chance, as tight derivations for CbV
are minimal and provide exact bounds to evaluation lengths in CbV.

Correctness—i.e., that typability in the CbV system implies CbV -normalizability—and com-
pleteness—i.e., that CbV -normalizability implies typability in the CbV system—follow exactly the
same pattern of the CbN case, mutatis mutandis. They include quantitative information about the
CbV-normalizing reduction sequence of the typed ΛL-terms.

5.3.3 CbV correctness
The technical development in this section follows the same structure as that of Subsect. 5.2.4 (CbN
correctness) on page 55, mutatis mutandis. Let us see the main statements for the CbV multi type
system:

Proposition 5.3.2 (Typing properties of CbV-normal forms).
Let t ∈ ΛL be such that normCbV(t), and Φ ▷CbV Γ ⊢(m,e) t :0 be a type derivation. Then Γ = ∅

and (m, e) = (0, 0).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of normCbV(t).

Lemma 5.3.3 (Linear Substitution for CbV).
Let Φ ▷CbV Γ;x :M ⊢(m,e) V ⟨⟨x⟩⟩ :N be a type derivation and let v ∈ Val. Then e ≥ 1 and there

exists a splitting M = O ⊎ P such that for every type derivation Ψ ▷CbV Π ⊢(m′,e′) v :O, there exists
type derivation

Θ ▷CbV

(
Γ
⊎

Π
)
;x :P ⊢(m+m′,e+e′−1) V ⟨⟨v⟩⟩ :N

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on V .

63

Proposition 5.3.4 (Quantitative Subject Reduction for CbV).
Let Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation.

1. Multiplicative: If t→mCbV u, then m ≥ 1 and there exists a derivation

Ψ ▷CbV Γ ⊢(m−1,e) u :M

2. Exponential: If t→eCbV u, then e ≥ 1 and there exists a derivation

Ψ ▷CbV Γ ⊢(m,e−1) u :M

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on the CbV evaluation context V such that

t = V ⟨s⟩ →mCbV V ⟨s′⟩ = u. The exponential case is proven by induction on the CbV evaluation
context V such that t = V ⟨s⟩ →eCbV V ⟨s′⟩ = u, using Lemma 5.3.3 (Linear Substitution for CbV)
for the root-step.

Theorem 5.3.5 (Tight correctness for CbV).
Let t ∈ ΛL be closed and Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation. Then there exists u ∈ ΛL

such that
1. normCbV(u),
2. there exists a reduction sequence d : t −→∗CbVu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the sum m+ e, and proceeding by case analysis on whether t →CbV-reduces or

not:
• If t is in →CbV-normal form, then we only need to prove the case where Φ is tight, which

follows by Proposition 5.3.2 (Typing properties of CbV -normal forms).
• If t →CbV u, then the statement follows by application of Proposition 5.3.4 (Quantitative

Subject Reduction for CbV), distinguishing whether t →CbV u is a multiplicative or ex-
ponential step, and then by application of the i.h. on the type derivation for u giving by
Proposition 5.3.4. Note that the “Moreover” part follows by the fact that Proposition 5.3.4
preserves the type context and the right-hand side type.

Note that Theorem 5.3.5 implicitly states that tight type derivations have minimal indices among
type derivations.

5.3.4 CbV completeness
Proposition 5.3.6 (Tight typability of CbV -normal forms).

Let t ∈ ΛL be such that normCbV(t). Then there exists tight type derivation Φ ▷CbV ∅ ⊢(0,0) t :0.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of normCbV(t).

64

Lemma 5.3.7 (Linear Removal for CbV).
Let Φ ▷CbV Γ;x :M ⊢(m,e) V ⟨⟨v⟩⟩ :N be a type derivation, where v ∈ Val and x /∈ fv(v). Then

there exist type derivations

Ψ ▷CbV Π ⊢(m′,e′) v :O
Θ ▷CbV ∆;x : (M ⊎O) ⊢(m′′,e′′) V ⟨⟨x⟩⟩ :N

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on V .

Proposition 5.3.8 (Quantitative Subject Expansion for CbV).
Let Φ ▷CbV Γ ⊢(m,e) u :M be a type derivation.

1. Multiplicative: If t→mCbV u, then there exists a derivation

Ψ ▷CbV Γ ⊢(m+1,e) t :M

2. Exponential: If t→eCbV u, then there exists a derivation

Ψ ▷CbV Γ ⊢(m,e+1) t :M

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on the CbV evaluation context V such that

t = V ⟨s⟩ →mCbV V ⟨s′⟩ = u. The exponential case is proven by induction on the CbV evaluation
context V such that t = V ⟨s⟩ →eCbV V ⟨s′⟩ = u, using Lemma 5.3.7 (Linear Removal for CbV) for
the root-step.

Theorem 5.3.9 (Tight Completeness for CbV).
Let t ∈ ΛL be closed. If there exists d : t −→∗CbVu for some u in →CbV-normal form, then there

exists a type derivation Φ ▷CbV ∅ ⊢(|d|m,|d|e) t :0.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of reduction sequences starting in t:
• Base case: By Proposition 4.6.1.1 (Syntactic characterization of closed normal forms - CbV),

we have that normCbV(t). We then get Φ by application of Proposition 5.3.6 (Tight typability
of CbV -normal forms) on t.

• Inductive case: Let t →mCbV u. By i.h., we get the expected type derivation for u. We
may then obtain the one for t by an application of Proposition 5.3.8 (Quantitative Subject
Expansion for CbV), taking into account the kind of reduction step in t →mCbV u—i.e.,
whether it is exponential or multiplicative.

65

5.3.5 CbV semantics
The interpretation of ΛL-terms with respect to the CbV system is quite similar—mutatis mutandis—
to the interpretation of ΛL-terms with respect to the CbN system:

Given a suitable list of variables x⃗ = (x1, . . . , xn) for t ∈ ΛL, the semantics of t for x⃗ with respect
to the CbV system is

[[t]]CbV
x⃗ := {((M1, . . . ,Mn), N) | ∃Φ ▷CbV x1 :M1; . . . ;xn :Mn ⊢(m,e) t :N}

Note that the interpretation of t is given only for type derivations in the CbV system that assign
it a multi type N . Hence, type derivations for t whose final typing rule is fun are discarded; this is
harmless, as we can always extend them via a many rule without modifying none of the (quantitative
or qualitative) information in it.

In addition, the invariance and the adequacy (and the compositionality) of the interpretation
[[t]]CbV

x⃗ with respect to CbV evaluation are obtained exactly as for the CbN case.

5.4 Multi type system for CbNeed
5.4.1 CbNeed and denotational semantics
Since CbN and CbNeed are termination-equivalent—see Subsect. 2.1.4 (Different flavors of evalua-
tion strategies)—then every denotational model of CbN is also a model of CbNeed, and vice versa.
Moreover, adequacy—i.e., the fact that the denotation of a ΛL-term is not degenerated if and only
if CbNeed-normalizes—transfers from CbN to CbNeed. Analogously, every adequate denotational
model of CbNeed is also an adequate model of CbN.

Given that denotational semantics are invariant by evaluation, then they are insensitive to
evaluation lengths by definition. It could then seem that denotational semantics cannot distinguish
between CbN and CbNeed. Remarkably enough, and somewhat counter-intuitively, we are able to
separate CbN and CbNeed semantically.

We do this by designing a multi type system finely tuned for CbNeed evaluation, such that for
every given t ∈ ΛL, all the type derivations for t in the system provide upper bounds for CbNeed
evaluation. Some of these type derivations, called tight type derivations, even provide exact bounds.
Thus, and since CbN evaluation is, generally speaking, less-efficient than CbNeed, while tight type
derivations for a ΛL-term in the multi type system for CbNeed provide exact upper bounds for
CbNeed, they do not necessarily provide upper bounds with respect to CbN evaluation.

Unsurprisingly, the design of the type system requires a delicate mix of erasure and duplication
and builds on the Linear Logic understanding of CbN and CbV.

5.4.2 CbNeed as a blend of CbN and CbV
The multi type system for CbNeed is obtained by carefully blending ingredients from the CbN and
CbV ones:

• Wise erasures from CbN. In CbN, wise erasures are induced by the fact that the empty multi
type 0—i.e., the type of erasable terms—and the linear type norm—i.e., the type of CbN-
normalizable terms—are distinct. Every ΛL-term is typable with 0—by using the many rule

66

'

&

$

%

x :M ⊢(0,1) x :M
ax

Γ ⊢(m,e) t : [N ⊸ M] Π ⊢(m′,e′) u :N

Γ
⊎

Π ⊢(m+m′+1,e+e′) tu :M
app

∅ ⊢(0,0) t :0
many0

(
Πi ⊢(mi,ei) λx.t :Li

)
i∈I I ̸= ∅ I : finite⊎

i∈I Πi ⊢(
∑

i∈I mi,
∑

i∈I ei) λx.t : [Li]i ∈ I
many>0

Γ;x :N ⊢(m,e) t :M

Γ ⊢(m,e) λx.t :N ⊸ M
fun

Γ;x :N ⊢(m,e) t :M Π ⊢(m′,e′) u :N

Γ
⊎
Π ⊢(m+m′,e+e′) t[x←u] :M

ES

∅ ⊢(0,0) λx.t : norm
norm

Figure 5.3: Naïve type system for CbNeed evaluation

with 0 premises—while only the CbN-normalizable ones are typable with norm1. Adequacy is
then formulated with respect to (non-empty) linear types.

• Wise duplications from CbV. In CbV, wise duplications are due to two aspects. First, only
λ-abstractions can have their linear types collected in multi types by rule many. This fact
accounts for the evaluation of arguments to CbV-normal form before being substituted: even
if CbV-normal forms are answers—i.e., λ-abstractions in substitution contexts; see Sect. 4.6
(Characterizing closed normal forms)—it is only λ-abstractions that are substituted in CbV.
Second, ΛL-terms are typed with multi types instead of linear types. Roughly, this second
fact allows the first one to actually work, because the function argument is reduced once for
a whole multi set of types, and not once for each element of the multi set, as in CbN.

It seems then that a type system for CbNeed can easily be obtained by basically adopting the CbV
system plus

• Separating 0 and norm, that is, adding norm to the system.
• Modifying the many rule by distinguishing two cases: if there are no premises, it can assign 0

to whatever term, as in the CbN system; otherwise, it is forced to work on λ-abstractions, as
in CbV.

• Restricting adequacy to non-empty right multi types, to reflect CbN adequacy into the CbV
style of types.

These are the reasons why the grammar of CbNeed linear and multi types, as previously introduced,
is:

CbNeed linear types L,L′ ::= norm |M ⊸ N

CbNeed multi types M,N ::= [Li]i∈I (for any finite set I)

5.4.3 The Naïve CbNeed type system
In view of the foregoing, we would, as a first attempt, propose the type system in Fig. 5.3 to
characterize CbNeed-normalization. Unfortunately, the naïve system does not work, and needs to
be re-adjusted. The problem is that tight derivations in this system—defined as expected: empty

1This is given by the contrapositive of Theorem 5.2.9 (Tight Completeness for CbN): if t ∈ ΛL is not typable with
norm, then t does not CbN-normalize.

67

type context and the term typed with [norm]—do not provide exact bounds. This is due to the fact
that the naïve blend of ingredients in the system in Fig. 5.3 allows for derivations of 0 with strictly
positive indices m, and e. Instead, derivations of 0 should always have 0 in both indices—as is the
case when they are derived with a many0 rule with 0 premises, as they correspond to terms to be
erased, which are not evaluated in CbNeed. For any t ∈ ΛL, indeed, one can for instance derive the
following type derivation Φ:

∅ ⊢(0,0) x :0
many0

∅ ⊢(0,0) λx.x :0 ⊸ 0
fun

∅ ⊢(0,0) λx.x : [0 ⊸ 0]
many>0

∅ ⊢(0,0) t :0
many0

∅ ⊢(1,0) (λx.x)t :0
app

noting that Φ does not have the expected indices, namely (0, 0). Additionally, introducing ∅ ⊢(0,1)
x :0 with rule ax rather than via many0 would give a type derivation with final judgement ∅ ⊢(1,1)
(λx.x)t :0. That is, the system can give inexact information in both the multiplicative and the
exponential indices, if the inferred type is 0.

These cases are not a problem per se, because in CbNeed one expects correctness and com-
pleteness to hold only for derivations of non-empty right multi types. However, they also affect the
quantitative information in some type derivations whose right type is not 0, in particular when they
appear inside tight derivations—that is, as sub-derivations of sub-terms to be erased. Consider for
instance:

norm
∅ ⊢(0,0) I : norm

many>0
∅ ⊢(0,0) I : [norm]

fun
∅ ⊢(0,0) λy.I :0 ⊸ [norm]

many>0
∅ ⊢(0,0) λy.I : [0 ⊸ [norm]]

.... Φ
∅ ⊢(1,0) (λx.x)t :0

app
∅ ⊢(2,0) (λy.I)((λx.x)t) : [norm]

Despite it being a tight type derivation, note that the term →CbNeed-normalizes in just 1 mCbNeed-
step to I[y←(λx.x)t] while the multiplicative index of the derivation is 2. The mismatch is due
to an undesired derivation of 0 used as right-hand side premise of an application of the app rule.
Similarly, the induced typing of I[y←(λx.x)t] is an example of an undesired derivation used as right
premise of an application of the ES rule:

norm
∅ ⊢(0,0) I : norm

many>0
∅ ⊢(0,0) I : [norm]

.... Φ
∅ ⊢(1,0) (λx.x)t :0

ES
∅ ⊢(1,0) I[y←(λx.x)t] : [norm]

5.4.4 The (actual) type system for CbNeed
Our solution to the issue in the type system in Fig. 5.3 is to modify it as to avoid altogether
derivations of 0 to appear as right-hand side premises of rules app and ES. For this purpose, we
follow the schema of the typing rules for counting erasing steps sketched in Sect. 4.5 (Erasing steps).

We therefore add two dedicated rules, called appgc and ESgc, while constraining rules app and
ES to be applicable only when the right-hand side type derivation premise has a non-empty right

68

multi type. This system, whose typing rules appear in Fig. 5.4, is based on the same grammar of
linear and multi types of the naïve system. Note that rules many and ax can still introduce 0; this,
however, does no longer have the undesired effects on the indices of tight derivations, as we are
going to show.'

&

$

%

x :M ⊢(0,1) x :M
ax

∅ ⊢(0,0) λx.t : norm
norm

Γ;x :N ⊢(m,e) t :M

Γ ⊢(m,e) λx.t :N ⊸ M
fun

(
Γi ⊢(mi,ei) λx.t :Li

)
i∈I⊎

i∈I Γi ⊢(
∑

i∈I mi,
∑

i∈I ei) λx.t : [Li]i∈I
many

Γ ⊢(m,e) t : [0 ⊸ M]

Γ ⊢(m+1,e) tu :M
appgc

Γ ⊢(m,e) t : [N ⊸ M] Π ⊢(m′,e′) u :N N ̸= 0

Γ
⊎

Π ⊢(m+m′+1,e+e′) tu :M
app

Γ ⊢(m,e) t :M Γ(x) = 0

Γ ⊢(m,e) t[x←u] :M
ESgc

Γ;x :N ⊢(m,e) t :M Π ⊢(m′,e′) u :N N ̸= 0

Γ
⊎
Π ⊢(m+m′,e+e′) t[x←u] :M

ES

Figure 5.4: Type system for CbNeed evaluation

Note that the indices m and e are incremented and summed exactly as in the CbN and CbV
type systems.

Let us stress the fact that our approach for designing the CbNeed multi type system having
dedicated typing rules to treat the case of the empty multi type is not an ad hoc one, since many
multi type systems in the literature implement similar solutions. For instance, the multi type sys-
tem in [Gar94] has two typing rules for applications, namely APP1 and APP2, where the second
one morally covers the case where the type of the function of the β-redex is 0 ⊸ M .

Just like in the CbN and CbV cases, the CbNeed multi type system satisfies the following:
Lemma 5.4.1 (Relevance of the CbNeed type system).

Let t ∈ ΛL and let Φ ▷CbNeed Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).
Proof. (Click here to see the complete proof in the Technical Appendix)

By structural induction on Φ ▷CbNeed Γ ⊢(m,e) t :M and proceeding by case analysis on the last
derivation rule of Φ.

The notion of minimal type derivations for the CbNeed type system is a combination of the
ones for the CbN and CbV systems, where the type is a multi type—like in the CbV case—whose
content is the norm constant—this corresponds to the CbN case.
Definition 16 (Tight derivations for CbNeed).

A derivation Φ ▷CbNeed Γ ⊢(m,e) t :M is tight if M = [norm] and Γ is empty.

5.4.5 Comparative example - derivation in the CbNeed type system
We return to the term t := ((λx.λy.xx)(II))(II). Let us give a tight type derivation for it in the
CbNeed type system to provide the final, missing part of our running example, putting in contrast
CbN, CbV and CbNeed from both operational and type-theoretic points of view.

69

For the sake of graphical conciseness, let us shorten norm to n and [n] ⊸ [n] to [n][n]. We define
Ψ as

x : [[n][n]] ⊢(0,1) x : [[n][n]]
ax

x : [n] ⊢(0,1) x : [n]
ax

x : [n, [n][n]] ⊢(1,2) xx : [n]
app

x : [n, [n][n]] ⊢(1,2) λy.xx :0 ⊸ [n]
fun

x : [n, [n][n]] ⊢(1,2) λy.xx : [0 ⊸ [n]]
many

∅ ⊢(1,2) λx.λy.xx : [n, [n][n]] ⊸ [0 ⊸ [n]]
fun

∅ ⊢(1,2) λx.λy.xx : [[n, [n][n]] ⊸ [0 ⊸ [n]]]
many

and Θ as
ax

z : [n, [n][n]] ⊢(0,1) z : [n, [n][n]]
fun

∅ ⊢(0,1)λz.z : [n, [n][n]] ⊸ [n, [n][n]]
many

∅ ⊢(0,1)λz.z : [[n, [n][n]] ⊸ [n, [n][n]]]

norm
∅ ⊢(0,0)λx̃.x̃ : n

ax
x̃ : [n] ⊢(0,1) x̃ : [n]

fun
∅ ⊢(0,1)λx̃.x̃ : [n][n]

many
∅ ⊢(0,1)λx̃.x̃ : [n, [n][n]]

app
∅ ⊢(1,2) II : [n, [n][n]]

Finally, we put Ψ and Θ together in the following derivation Φ for t
.... Ψ

∅ ⊢(1,2) λx.λy.xx : [[n, [n][n]] ⊸ [0 ⊸ [n]]]

.... Θ
∅ ⊢(1,2) II : [n, [n][n]]

app
∅ ⊢(3,4) (λx.λy.xx)(II) : [0 ⊸ [n]]

appgc
∅ ⊢(4,4) ((λx.λy.xx)(II))(II) : [n]

Note that the indices (4, 4) correspond exactly to the number of mCbNeed-steps and eCbNeed-steps,
respectively, from t to its CbNeed-normal form—as shown in Sect. 4.4 (CbNeed: wise duplication
+ wise erasure)—and that Φ is a tight derivation. We shall see that this is not by chance, as tight
type derivations in the CbNeed multi type system are supposed to provide minimal indices.

5.4.6 CbNeed correctness
Remarkably, the technical development to prove correctness and completeness of the CbNeed type
system with respect to CbNeed evaluation follows smoothly along the same lines of the two other
systems, mutatis mutandis:
Proposition 5.4.2 (Typing properties of CbNeed-normal forms).

Let t ∈ ΛL be such that norm(t), and Φ▷CbNeed Γ ⊢(m,e) t : [norm] be a type derivation. Then Γ = ∅
and (m, e) = (0, 0).
Proof. (Click here to see the complete proof in the Technical Appendix)

By induction on the derivation of norm(t).

Lemma 5.4.3 (Linear Substitution for CbNeed).
Let Φ ▷CbNeed Γ;x :M ⊢(m,e) E⟨⟨x⟩⟩ :N be a type derivation and let v ∈ Val. Then e ≥ 1 and

there exists a splitting M = O ⊎ P such that for every derivation Ψ ▷CbV Π ⊢(m′,e′) v :O there is a
derivation

Θ ▷CbV

(
Γ
⊎

Π
)
;x :P ⊢(m+m′,e+e′−1) V ⟨⟨v⟩⟩ :N

70

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on the CbNeed evaluation context E.

Proposition 5.4.4 (Quantitative Subject Reduction for CbNeed).
Let Φ ▷CbNeed Γ ⊢(m,e) t :M be a type derivation such that M ̸= 0.

1. Multiplicative: If t→mCbNeed u, then m ≥ 1 and there exists a derivation

Ψ ▷CbNeed Γ ⊢(m−1,e) u :M

2. Exponential: If t→eCbNeed u, then e ≥ 1 and there exists a derivation

Ψ ▷CbNeed Γ ⊢(m,e−1) u :M

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on the CbNeed evaluation context E such that

t = E⟨s⟩ →mCbN E⟨s′⟩ = u. The exponential case is proven by induction on the CbNeed evaluation
context E such that t = E⟨s⟩ →eCbN E⟨s′⟩ = u, using Lemma 5.4.3 (Linear Substitution for CbNeed)
for the root-step.

Note the condition M ̸= 0 in the statement of Proposition 5.4.4. This comes from the fact that
erasable and normalizable terms do not coincide in CbNeed evaluation—akin to the CbN system
and contrary to the CbV one. It is due to the way multi types are used as arguments, via rules
ESgc and appgc. This restriction is necessary; consider for instance the following type derivation in
the CbNeed type system

x :0 ⊢(0,1) x :0
ax

Γ(x) = 0

∅ ⊢(0,1) x [x←δ δ] :0
ES

where x[x←δδ] is not CbNeed-normalizing. This is an expected feature of the system, as it amounts
to the fact that adequacy holds only with respect to non-empty right multi types—as for CbN—
which was stressed when introducing the CbNeed type system. The same restriction appears in
Theorem 5.4.5, Proposition 5.4.8 and Theorem 5.4.9 below, all for the same reason.

Finally,

Theorem 5.4.5 (Tight Correctness for CbNeed).
Let t ∈ ΛL be closed and Φ ▷CbNeed Γ ⊢(m,e) t :M be a type derivation such that M ̸= 0. Then

there exists u ∈ ΛL such that
1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNeedu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the sum m+ e, and proceeding by case analysis on whether t →CbNeed-reduces

or not:
• If t is in →CbNeed-normal form, then we only need to prove the case where Φ is tight, which

follows by Proposition 5.4.2 (Typing properties of CbNeed-normal forms).

71

• If t →CbNeed u, then the statement follows by application of Proposition 5.4.4 (Quantitative
Subject Reduction for CbNeed), distinguishing whether t →CbNeed u is a multiplicative or
exponential step, and then by application of the i.h. on the type derivation for u giving by
Proposition 5.4.4. Note that the “Moreover” part follows by the fact that Proposition 5.4.4
preserves the type context and the right-hand side type.

As previously announced, Theorem 5.4.5 is stated with respect to non-empty right multi types.
Note that, as for all the other cases, Theorem 5.2.5 implicitly states that tight type derivations have
minimal indices among derivations.

5.4.7 CbNeed completeness
Proposition 5.4.6 (Tight typability of CbNeed-normal forms).

Let t ∈ ΛL be such that norm(t). Then there exists tight type derivation

Φ ▷CbNeed ∅ ⊢(m,e) t : [norm]

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of norm(t).

Lemma 5.4.7 (Linear Removal for CbNeed).
Let Φ ▷CbNeed Γ;x :M ⊢(m,e) E⟨⟨v⟩⟩ :N be a type derivation, where v ∈ Val and x /∈ fv(v). Then

there exist type derivations

Ψ ▷CbNeed Π ⊢(m′,e′) v :O
Θ ▷CbNeed ∆;x : (M ⊎O) ⊢(m′′,e′′) E⟨⟨x⟩⟩ :N

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on the CbNeed evaluation context E.

Proposition 5.4.8 (Quantitative Subject Expansion for CbNeed).
Let Φ ▷CbNeed Γ ⊢(m,e) u :L be a type derivation such that M ̸= 0.

1. Multiplicative: If t→mCbNeed u, then there exists a derivation

Ψ ▷CbNeed Γ ⊢(m+1,e) t :M

2. Exponential: If t→eCbNeed u, then there exists a derivation

Ψ ▷CbNeed Γ ⊢(m,e+1) t :M

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on the CbNeed evaluation context E such that

t = E⟨s⟩ →mCbNeed E⟨s′⟩ = u. The exponential case is proven by induction on the CbNeed evaluation
context E such that t = E⟨s⟩ →eCbNeed E⟨s′⟩ = u, using Lemma 5.4.7 (Linear Removal for CbNeed)
for the root-step.

72

Once again, Proposition 5.4.8 is valid only for type derivations of non-empty right multi types,
like what happened in Proposition 5.4.4 (Quantitative Subject Reduction for CbNeed).

Theorem 5.4.9 (Tight Completeness for CbNeed).
Let t ∈ ΛL be closed. If there exists d : t −→∗CbNeed u for some u in →CbNeed-normal form, then

there exists a type derivation Φ ▷CbNeed ∅ ⊢(|d|m,|d|e) t : [norm].

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of reduction sequences starting in t:
• Base case: By Proposition 4.6.1.1 (Syntactic characterization of closed normal forms - CbNeed),

we have that norm(t). We then get Φ by application of Proposition 5.4.6 (Tight typability of
CbNeed-normal forms) on t.

• Inductive case: Let t →mCbNeed u. By i.h., we get the expected type derivation for u. We
may then obtain the one for t by an application of Proposition 5.4.8 (Quantitative Subject
Expansion for CbNeed), taking into account the kind of reduction step in t→mCbNeed u—i.e.,
whether it is exponential or multiplicative.

5.4.8 CbNeed semantics
The interpretation of ΛL-terms with respect to the CbNeed system is quite similar to the interpre-
tations of ΛL-terms with respect to the CbN system and with respect to the CbV system:

Given a suitable list of variables x⃗ = (x1, . . . , xn) for a t ∈ ΛL, the semantics of t for x⃗ with
respect to the CbNeed system is

[[t]]CbNeed
x⃗ := {((M1, . . . ,Mn), N) | ∃Φ ▷CbNeed x1 :M1; . . . ;xn :Mn ⊢(m,e) t :N and N ̸= 0}

Note that each of the type derivations in the interpretation of t is required to have a non-empty
right multi type, in correspondence with the explanations above.

In addition, the invariance and adequacy (and compositionality) of [[t]]CbNeed
x⃗ with respect to

CbNeed evaluation are obtained exactly as for the CbN and CbV cases.

5.5 CbN and CbNeed are termination-equivalent
In the literature, the theorem about CbNeed is the fact that it is operationally equivalent to CbN;
that is, on a fixed term, CbNeed evaluation terminates if and only if CbN evaluation terminates.
Moreover, they essentially produce the same result—up to some technical details that are irrelevant
here. This result was first proven independently by two groups, Maraist, Odersky, and Wadler
[MOW98], and Ariola and Felleisen [AF97], in the 1990s, using intricate rewriting techniques.

Recently, Kesner gave a much simpler proof via CbN multi types [Kes16]. She uses multi types
to first show termination-equivalence of CbN and CbNeed, from which she then infers operational
equivalence. Termination-equivalence means that a given term terminates in CbN if and only if
terminates in CbNeed, and it is a consequence of our slogan that CbN and CbNeed both erase
wisely.

With our terminology and notations, Kesner’s result takes the following form.

73

Theorem 5.5.1 (Kesner [Kes16]).
Let t ∈ ΛL be closed.

1. Correctness: If Φ ▷CbN Γ ⊢(m,e) t :L, then there exists u ∈ ΛL such that
(a) norm(u),
(b) there exists a reduction sequence d : t −→∗CbNeedu, and
(c) |d|e ≤ e and |d|m ≤ m.

2. Completeness: If d : t −→∗CbNeedu and norm(u), then there exists Φ ▷CbN ∅ ⊢(m,e) t : norm for
some indices (m, e).

Note that, unlike the other similar Theorems we gave above, the result does not cover tight type
derivations nor does it provide exact bounds. In fact, the CbN system cannot provide exact bounds
for CbNeed—as explained in Sect. 5.4 (Multi type system for CbNeed)—because it does provide
them for CbN evaluation, that in general is less efficient than CbNeed.

For instance, consider the tight CbN type derivation of term t = ((λx.λy.xx)(II))(II) in Sub-
sect. 5.2.3 (Comparative example - derivation in the CbN type system): the derivation provides
indices (5, 5) for t—and so t CbN-normalizes in 10 steps—while it CbNeed-normalizes in 8 steps—as
shown in Sect. 4.4 (CbNeed = wise duplication + wise erasure). Closing such a gap is precisely the
main motivation behind Sect. 5.4 (Multi type system for CbNeed).

5.6 CbNeed is as efficient as CbV
The fact that CbN and CbNeed are termination-equivalent—as just showed in Sect. 5.5 (CbN
and CbNeed are termination-equivalent)—is due to the fact that both strategies avoid divergent
sequences that reduce function arguments which are only going to be erased later on in the reduction
sequence, such as reducing Ω in (λx.λy.y)Ω.

In this sense, termination-equivalence is an abstract theorem stating that CbNeed erases as
wisely as CbN. Curiously, in the literature there are no abstract theorems reflecting the dual fact:
that CbNeed duplicates as wisely as CbV. One of the reasons for this lack is that it is a theorem
that does not admit a simple formulation such as operational or termination-equivalence, given
that CbNeed and CbV are not in such relationships. Morally, this is subsumed by the logical
interpretation according to which CbNeed corresponds to an affine variant of the Linear Logic
representation of CbV. Yet, it would be nice to have a precise, formal statement establishing that
CbNeed duplicates as wisely as CbV—we provide it here.

Our result is relies on the CbV multi type system being correct with respect to CbNeed eval-
uation. In particular, the indices (m, e) provided by a CbV type derivation provide upper bounds
for the length of a CbNeed-normalizing reduction sequence. Before proceeding with the formal
statement, let us give two important remarks:

• Bounds are not exact. The indices of a CbV derivation do not generally provide exacts bounds
for CbNeed, not even in the case of tight derivations. The reason is that CbNeed does not
evaluate unneeded function arguments—which morally correspond to those typed with 0—
while CbV does. In this sense, CbNeed is even more efficient than CbV. Consider again term
t = ((λx.λy.xx)(II))(II), which CbNeed-normalizes in 8 steps—as shown in Sect. 4.4 (CbNeed:
wise duplication + wise erasure)—but whose tight type derivation in the CbV system has
indices (5, 5)—and so t CbV-normalizes in 10 steps; see Sect. 4.3 (CbV: wise duplication +
silly erasure).

74

• Completeness cannot hold. We prove correctness but not completeness simply because the
CbV system is not complete with respect to CbNeed evaluation. That is, there are CbNeed-
normalizing ΛL-terms that cannot be typed in the CbV system, as typability in that system
implies CbV-normalizability by Theorem 5.3.5 (Tight Correctness for CbV). For instance,
consider (λx.I)Ω, which cannot be typed in the CbV system and yet is CbNeed-normalizable.

Corollary 5.6.1 (Correctness for CbNeed in the CbV type system).
Let t ∈ ΛL be closed and let Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation. Then there exists u ∈ ΛL

such that
1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNeed u, and
3. |d|m ≤ m and |d|e ≤ e.

Proof. (Click here to see the complete proof in the Technical Appendix)
Morally, the proof follows the same schema as the proof of Theorem 5.3.5 (Tight Correctness

for CbV), as →CbNeed can be easily seen to be a sub-relation of →CbV.

It is pleasant to notice that our presentations of CbV and CbNeed make the proof of Corol-
lary 5.6.1 straightforward. It is enough to observe that, since we do not consider garbage collection
and we adopt a non-deterministic formulation of CbV, CbNeed is a subsystem of CbV. Formally, if
t →CbNeed u then t →CbV u, which is in fact easily seen from the definitions: CbNeed reduces only
some subterms of applications and ESs, while CbV allows for reduction on all subterms. Corol-
lary 5.6.1 is thus a corollary of the general part in Theorem 5.3.5 (Tight Correctness for CbV).

Finally, since the CbNeed system provides exact bounds—see Theorem 5.4.5 (Tight Correctness
for CbNeed)—we get that CbNeed duplicates as wisely as CbV. Note that this comparison can only
be considered when it makes sense; that is, only on CbV-normalizable ΛL-terms:

Corollary 5.6.2 (CbNeed duplicates as wisely as CbV).
Let t, s ∈ ΛL be such that d : t −→∗CbV s and normCbV(s). Then there exist u ∈ ΛL such that

norm(u), and reduction sequence d′ : t −→∗CbNeed u such that |d′|m ≤ |d|m and |d′|e ≤ |d|e.

Proof. (Click here to see the proof in the Technical Appendix)
By Theorem 5.3.9 (Tight Completeness for CbV), there exists type derivation

Φ ▷CbV ∅ ⊢(m,e) t :0

such that m = |d|m and e = |d|e. Then Corollary 5.6.1 (Correctness for CbNeed in the CbV
type system) yields reduction sequence d′ : t −→∗CbNeedu such that norm(u), |d′|m ≤ m = |d|m and
|d′|e ≤ e = |d|e.

75

Chapter 6

Open CbNeed

Introduction

Weak reduction on closed terms is the standard model of computation in virtually every functional
programming language, like OCaml or Haskell. But other settings sometimes require going further,
reducing inside the bodies of λ-abstractions. This is mostly the case in the type checking (resp.
proof checking) routines in type systems (resp. logics) based on dependent types. Examples of
such systems are the Agda programming language and the Coq proof assistant. As their name
hints, dependent types depend on terms, in such a way that comparing/establishing the equality of
dependent types involves comparing the underlying terms up to full β-equivalence. This means β-
reducing them to a strong β-normal form and then checking that they are equal, up to α-equivalence.

Evidently, if β-equivalence is to be checked efficiently, then it should at least be implemented
by means of a reasonable model of computation—revisit Subsect. 2.3.1 (Reasonable cost models of
the λ-calculus) on page 21. This is because models of computation which have not yet been proven
reasonable are unsuited to efficiency comparisons, as the quantitative relation between their cost
model and those of other models of computation has not yet been established.

Furthermore, we are interested in implementing an efficient model of computation, among all
possible reasonable ones. Recall, for instance, Corollary 5.6.2 (CbNeed duplicates as wisely as CbV)
in Sect. 5.6 (CbNeed is as efficient as CbV), which quantitatively compares the two evaluation
strategies and concludes that the former is at least as efficient as the latter. Similarly, we may be
interested in replacing the call-by-name nature of a reduction relation to a call-by-need one, where
function arguments are reduced only once; this is the usual lazy tweak most implementations of the
λ-calculus go through to speed up execution. The idea would thus be to propose a “wise-erasing”
version for a reduction relation implementing call-by-name, following the terminology in Chapter 4
(CbN, CbV and CbNeed).

Generally speaking, and regarding the foundation of a resource and efficiency-aware theory of
β-reduction, an important goal would be to attain a complete study of a call-by-need calculus,
performing strong reduction and suitable for defining a useful evaluation strategy in. This would
consist in providing denotational and operational semantics, as well as providing design principles
for an abstract machine implementing it. Ideally, we would even provide an actual implementation
in the form of a compiler, an interpreter, or a β-equivalence checker.

It is in this respect that we now turn to study a less restricted version of the weak and closed
call-by-need strategy. We propose the Open CbNeed variant, whose features are:

• Open terms: Unlike the weak and closed setting assumed for CbNeed, reduction in Open CbNeed

76

is also defined for open terms—while remaining conservative with respect to CbNeed on closed
terms.

• Reducing arguments: Arguments are also evaluated in Open CbNeed. For example, x (I I) is
not in Open CbNeed-normal form, as reduction should continue on multiplicative redex I I.

• Two kinds of normal forms: Since Open CbNeed operates on open terms, its normal forms
are split in two disjoint categories, namely the one of values and the one of inert terms. For
example, (x I) is inert, as it is normal but it is not a value. Note that this situation cannot
not happen in CbNeed because normal forms are closed.

• Partially useful: Open CbNeed does not substitute any kind of normal forms, but only values.
This is enough to prove the reasonability of Open CbNeed1.

• Weakness: The Open CbNeed is not a strong evaluation strategy.

Let us further develop the last point, namely that Open CbNeed is a weak evaluation strategy,
as one may wonder how exactly is Open CbNeed an intermediate step towards a strong evaluation
strategy. The starting insight is that going from a weak and closed to a strong reduction relation
acting on open terms requires two extensions, namely: going under λs, and reducing on arguments
of open terms. Of course, these extensions may be applied in any order.

Historically, going under λs is usually considered first, motivated by the semantic relevance of
head reduction. That is, one starts from weak head reduction, extends it to strong head reduction,
and then to full strong reduction by iterating strong head reduction on arguments. One of the
main problems with this approach is that going from weak head to strong head reduction is quite
trivial, while most of the difficulties are only dealt with when going from strong head to full strong
reduction.

In addition, this issue has historically made it difficult to analyze the complexity of full strong
implementations, since going from strong head to full strong reduction then requires simultaneously
switching to the open setting, reducing on arguments, avoiding the substitution of inert terms, and
avoiding the substitution of values which do not contribute to the creation of new multiplicative
redexes. We claim that this may not be the best factorization of the difficulties.

Conversely, we claim that, from an implementative point of view, it is wiser to first cover the
reduction-on-arguments extension by iterating weak head reduction on arguments, and only then
considering going under λs. This also makes it easier to implement the two useful optimizations
required in the strong setting2:

• We first extend the weak head reduction by reducing on arguments. In this setting, it is natural
to avoid the substitution of inert terms—which constitutes the first useful optimization.

• We may then avoid substituting values which do not contribute to the creation of multiplicative
redexes—this is the second useful optimization. While it is not needed in the weak and open
setting, this optimization is better studied in this scenario as it may then be smoothly extended
to the strong case.

• The full strong and reasonable variant of the reduction relation may then be obtained by
iterating the one in the previous item under λs. This also comprises many subtleties, but is
radically simpler than going from strong head to full strong reduction.

Finally, let us mention that the evaluation strategy introduced in this section considerably
1The strong setting, on the other hand, requires a further constraint on the substitution process, which is studied

in depth in Chapter 8 (Useful Open CbNeed).
2This was explained in Sect. 3.5 (Case study: Useful Open CbNeed) on page 34.

77

builds on the strong call-by-need evaluation strategy defined in Balabonski, Barenbaum, Bonelli
and Kesner’s “Foundation of Strong Call by Need” [Bal+17]. Nevertheless, our results here are
valuable in that we specifically target a type-theoretical interpretation of the consumption of re-
sources, while simultaneously setting the foundation for the useful variant presented in Chapter 8
(Useful Open CbNeed) below.

6.1 The Open CbNeed evaluation strategy
As a starting point to the operational study of the Open CbNeed evaluation strategy, the term
syntax of the underlying calculus needs adjusting. This new syntax, which is used to define both
the Open CbNeed and the Useful Open CbNeed evaluation strategies, is called the split LSC and
is a split presentation of the LSC syntax, where (plain) Λ-terms are separated from its ESs.

Instead of being directly based on the LSC, the split LSC takes the λ-calculus as basis, building
a slightly more complex structure from it. More concretely, we shall define our evaluation strategies
in terms of programs, which are pairs of the form (t, [x1←t1] . . . [xn←tn]), with n ≥ 0 and such that
t, t1, . . . tn are all Λ-terms3:

Definition 17 (Terms, environments and programs).
We recall some of the basic categories of Λ-terms, and present the ones of inert, non-variable

inert and normal terms:

Terms (Λ) t, u, s,m ::= Var | λx.t | t u
Values (Val) v, w, v′ ::= λx.t

Inert terms i, j, k, i′ ::= Var | i n
Non-variable inert terms i+, j+, k+, i′

+ ::= i n

Normal terms n,m, n′ ::= Val | i

With them, we can define the notion of environment as follows:

Environments E,E ′ ::= ϵ | E[x←t]

and finally obtain the grammar on which the reduction relations are defined:

Programs (PR) p, q, r, p′ ::= (t, E)

Expressions e, e′ := Λ ∪ PR

Needless to say, evaluation contexts should also be adapted to a split formulation, allowing the
(only) context hole to be placed on either one of the components of the pair. To differentiate these
contexts from the λ-calculus/LSC evaluation contexts presented in Chapter 2 (Preliminaries), we
shall call them “program contexts”.

Definition 18 (Λ-contexts, term contexts and program contexts).
Just like PR is based on Λ-terms, program contexts are based on Λ-contexts as given by

Λ-contexts C,C ′ ::= ⟨·⟩ | C t | t C
Program contexts P,Q,R, S ::= (C,E) | (t, E [x←C]E ′)

3Note that these pairs more closely resemble the structure of environment-based abstract machines than standard
LSC terms.

78

The Open CbNeed reduction relation is defined by means of a proper subclass of Λ-contexts, which
we dub term contexts and are defined as follows:

Term contexts H,J , I,H′ ::= ⟨·⟩ | iH | H t

The intuition behind term contexts is that subterms on the left of the context hole correspond
to a certain (adapted) notion of normal, while the subterms on the right are unrestricted. Roughly
speaking, this matches the left-to-right evaluation order followed by the Open CbNeed evaluation
strategy.

Definition 19 (Domain of programs and program contexts).
The domain of a program or a program context is simply the set of (distinct) variables in the

ESs of the environment. Formally, for programs

domPR(t, ϵ) := ∅
domPR(t, E[x←t]) := domPR(t, E) ∪ {x}

and for program contexts

dom(C, ϵ) := ∅
dom(C,E[x←t]) := dom(C,E) ∪ {x}

dom(t, E[y←C]E ′[x←u]) := dom(t, E[y←C]E ′) ∪ {x}
dom(t, E[x←C]) := domPR(t, E) ∪ {x}

Note that the definition for program contexts uses the one for programs once the ES containing the
context hole has been removed.

The complementary notion to that of domain is the mapping into Λ-terms provided by the
domain of an environment. Formally,

Definition 20 (Look ups).
1. Let p ∈ PR. The look up given by p is defined as the (partial) mapping from Var into Λ-terms

given by:

p(x) :=

{
t , if p = (u,E [x←t]E ′)

undefined , otherwise
2. Let P be a program context. The look up given by P is defined as the (partial) mapping from

Var into Λ-terms given by:

P (x) :=

t , if P = (C,E [x←t]E ′)

or P = (u,E1 [x←t]E2 [y←C]E ′)

or P = (u,E [y←C]E ′1 [x←t]E ′2)

undefined , otherwise

Given that we are presenting a new grammar of terms, defining evaluation strategies as contex-
tual closure—of some root-steps by a proper notion of evaluation contexts—requires defining how
programs should be plugged into program contexts.

79

Definition 21 (Plugging of programs into program contexts).
Given (t, E) ∈ PR and program context P , we define the plugging of (t, E) into P , noted

P ⟨t, E⟩, as follows:

P ⟨t, E⟩ :=

{
(C⟨t⟩, EE ′) if P = (C,E ′)

(u,E ′[x←C⟨t⟩]EE ′′) if P = (u,E ′[x←C]E ′′)

where EE ′ is the environment resulting from concatenating E and E ′ as expected, and the same
applies to the other concatenations in the definition. For simplicity, we write P ⟨t⟩ for P ⟨t, ϵ⟩—note
the empty environment.
Definition 22 (Appending explicit substitutions to program contexts).

Given a program context P := (t, E) and an explicit substitution [x←u], we write P@[x←u] to
denote program context (t, E[x←u]).

6.1.1 Needed variables
Our whole analysis of the Open CbNeed evaluation strategy, both from an operational and seman-
tical point of view, is structured around a particular subset of the free variables of an expression
that we call the needed variables of the expression. The definition is given first for Λ-terms, upon
which the one for programs builds.
Definition 23 (Needed variables of terms and programs).

Let us first define the base case for the needed variables of programs—namely, the needed vari-
ables of Λ-terms, which are morally the free variables that have occurrences out of all λ-abstractions:

nv(x) := {x}
nv(λx.t) := ∅
nv(t u) := nv(t) ∪ nv(u)

The needed variables of programs are then defined as follows:
nv(t, ϵ) := ∅

nv(t, E [x←u]) :=

{
nv(t, E) if x /∈ nv(t, E)

(nv(t, E) \ {x}) ∪ nv(u) if x ∈ nv(t, E)

Thus, the needed variables of programs are an extrapolation of the notion of needed variables
of Λ-terms: given (t, E[x←u]), the principle is that the needed variables of u are included in those
of (t, E) if and only if x ∈ nv(t, E). In other words, needed variables are obtained hereditarily,
replacing needed variables of subexpressions bound by ESs by the needed variables of the term in
said ES. For example, x is not considered to be a needed variable in (x, [x←yz]), as it is bound by
[x←yz] and is then replaced by y and z.

In order to define the program contexts at play in the Open CbNeed reduction relation, we need
to extend needed variables to programs contexts, starting with Λ-contexts.
Definition 24 (Needed variables of Λ-contexts).

The set of needed variables of Λ-contexts is given by the following equations:
nv(⟨·⟩) := ∅
nv(C t) := nv(C)
nv(t C) := nv(t) ∪ nv(C)

80

6.1.2 Evaluation strategy
Before formally defining the Open CbNeed evaluation strategy, let us give some examples showing
what it should look like, using symbol →ond for the reduction relation. We believe these intuitions
may guide the reader in the definitions given below, since the latter are rather technical.

• Reducing arguments: This feature is implemented by term contexts, which allow us to switch
focus to arguments when a head normal form has been reached. For instance, note that x ⟨·⟩
is a term context, and so the following multiplicative step should apply:

(x((λz.z)I), [y←t]) = (x⟨·⟩, [y←t])⟨(λz.z)I⟩ →ond (x⟨·⟩, [y←t])⟨z, [z←I]⟩ = (xz, [z←I][y←t])

Similarly, the following exponential step should apply:

(xz, [z←I][y←t]) = (x⟨·⟩, [z←I][y←t])⟨z⟩ →ond (x⟨·⟩, [z←I][y←t])⟨Iα⟩ = (xIα, [z←I][y←t])

• Hereditary reduction: Similarly to the E1⟨⟨x⟩⟩[x←E2] production for CbNeed evaluation con-
texts defined on page 47, the typical hereditary reduction performed in call-by-need is im-
plemented by means of term contexts. For instance, since (⟨·⟩t) and (y⟨·⟩) are both term
contexts, then the following multiplicative step should apply:

(xt, [x←y((λz.z)I)]) = (xt, [x←y⟨·⟩])⟨(λz.z)I⟩ →ond (xt, [x←y⟨·⟩])⟨z, [z←I]⟩ = (xt, [x←yz][z←I])

and so the following exponential step should apply as well:

(xt, [x←yz][z←I]) = (xt, [x←y⟨·⟩][z←I])⟨z⟩ →ond (xt, [x←y⟨·⟩][z←I])⟨Iα⟩ = (xt, [x←yIα][z←I])

• Weakness: Since reduction in Open CbNeed is weak, then (λx.y, [y←II]) is in normal form.
• Two kinds of normal forms: On the one hand, note that for any given value v and environ-

ment E, (v, E) is in Open CbNeed-normal form. This class of normal forms shall be called
abstraction programs.
On the other hand, the class of normal forms that shall be called inert programs do not have
such a simple structure. For instance, note that if t contains multiplicative redexes, then
program (xt, ϵ) is not in normal form; conversely, if t has no multiplicative redexes, then
(xt, ϵ) is indeed an inert program. However, verifying the first coordinate of a program does
not suffice to establish the Open CbNeed-normality of a program, since some free variable in
it may be associated in the environment to a reduction step.
For instance, note that no inert term i has multiplicative redexes, and so (i, ϵ) is always an
Open CbNeed-normal form. However, if x ∈ nv(i), then p = (i, [x←II]) is not in Open CbNeed-
normal form. In fact, we shall be able to write i = H⟨x⟩, which lets us rewrite p as
p = (H⟨x⟩, [x←⟨·⟩])⟨II⟩.

• Partially useful: As explained in the Introduction, only values are substituted. Hence,
(x, [x←y]) is in Open CbNeed-normal form, even if x is associated in the environment to
a term without multiplicative redexes—namely y, which is morally a “normal” term.

Now that we have explored some intuitions on what the evaluation strategy should look like,
let us proceed to define the (proper) subclass of program contexts used in the contextual closure
definition of the Open CbNeed evaluation strategy. These contexts are defined via a parameteriza-
tion by sets of variables, noted V , W , Σ. In other words, for each set of variables V we define the
subclass of program contexts EV parameterized by it.

81

#

"

!

(H, ϵ) ∈ Env(H)
OAX

P ∈ EV x ∈ V
P@[x←i] ∈ E(V\{x})∪nv(i)

OI

P ∈ EV x /∈ V
P@[x←t] ∈ EV

OGC
P ∈ EV x /∈ V

P ⟨x⟩@[x←H] ∈ EV∪nv(H)
OHER

Figure 6.1: Derivation rules for open evaluation contexts

Morally, these sets of variables allow us to inductively restrict the Λ-terms contained in the
ESs. This is achieved by extending the notion of needed variables of inert terms and term contexts.
Before discussing alternatives to the use of sets of variables, let us first present the derivation rules.

Definition 25 (Open evaluation contexts).
The subclass of program contexts that we call open evaluation context is given by the derivation

rules in Fig. 6.1.

For the sake of preciseness, let us say that our approach does not implement parameterization
of sets of variables in the exact same fashion as appears in “Foundations of Strong Call byNeed’
’[Bal+17]. Beyond the fact that ours is a split calculus, the difference lies in that we implement a
somewhat tighter parameterization. That is, while there may be different sets of variables Φ such
that C ∈ EΦ—adopting the terminology in [Bal+17]—there is only one set of variables V for every
open evaluation context P in our definition such that P ∈ EV . In fact, given a derivation of C ∈ EΦ
from [Bal+17], there are infinitely many sets of variables Ψ ⊃ Φ such that also C ∈ EΨ, because sets
of variables are not necessarily minimal. On the contrary, our derivation rules are parameterized
by minimal sets of variables, and are unique.

Lemma 6.1.1 (Unique derivation parameterization of open evaluation contexts).
Let P ∈ EV and P ∈ EW . Then V =W.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of P ∈ EV , proceeding by case analysis on the last applied

derivation rule.

The (unique) set of variables parameterizing a given open evaluation context is called its needed
variables. Much like the needed variables of terms, programs or term contexts, the concept of
needed variables of open evaluation contexts is of the utmost importance in the extraction of exact
quantitative information from type derivations in the Open CbNeed multi type system—as we shall
see in Chapter 7 (Multi types for Open CbNeed).

Definition 26 (Needed variables of open evaluation contexts).
Given an open evaluation context P derived as P ∈ EV , the set of variables V are called the

needed variables of P .

We finally have the needed elements to define the evaluation strategy.

Definition 27 (Open CbNeed evaluation strategy).
Consider the following reduction relations

82

�
�

�
�

P ⟨(λx.t)u⟩ →om P ⟨t, [x←u]⟩

P ⟨x⟩ →oe P ⟨vα⟩ if P (x) = v

where v ∈ Val in the definition of →oe.
The Open CbNeed evaluation strategy →ond is defined as the union of →om and →oe, which are

called its multiplicative and exponential sub-relations, respectively. That is, given p, q ∈ PR, we
say that p reduces in the Open CbNeed evaluation strategy to q, and note it p →ond q, if p →om q
or if p→oe q.

6.2 Characterizing Open CbNeed-normal forms
In order to prove the operational and semantical properties of Open CbNeed, it is helpful to have a
concise, sound and complete predicate characterizing the set of programs in Open CbNeed-normal
form, preferably in such a way that analyzing the structure of a Open CbNeed-normal form can be
done by analyzing the inductive structure of its characterization.

Like we did while analyzing the weak and close evaluation strategies in Chapter 4 (CbN, CbV
and CbNeed), we present here a syntactic characterization of Open CbNeed-normal forms in the
form of predicate onorm, which is nothing but the union of other two (disjoint) predicates, inert and
abs.

Definition 28 (The inert, abs and onorm predicates).
Predicates inert and abs on PR are derived by the rules in Fig. 6.2.'

&

$

%

inert(i, ϵ)
IAX

inert(p) x ∈ nv(p)

inert(p@[x←i])
II

inert(p) x /∈ nv(p)

inert(p@[x←t])
IGC

abs(v, ϵ)
AAX

abs(p)

abs(p@[x←t])
AGC

Figure 6.2: Predicates meant to characterize Open CbNeed-normal forms

Finally, predicate onorm on PR is defined as the union of inert and abs. That is, onorm(p) if
and only if inert(p) or abs(p).

Let us point out a few details:
• Rule ILift (resp. ALift) takes an inert term (resp. a value) and simply lifts/promotes it to the

category of programs.
• Rule II requires the appended Λ-term to be inert, hence the notation i instead of a generic t.
• Rules IGC and AGC do not impose any constraint on the appended t ∈ Λ.

83

The intention is that the onorm predicate should characterize programs in Open CbNeed-normal
form. Proving this is, however, quite involved. Firstly, let us give a basic property used pervasively
in the study of Open CbNeed:

Lemma 6.2.1 (Redex in non-normal terms).
Let t ∈ Λ. Then, t is not a normal term if and only if there exist term context H, and terms

λx.u and s such that t = H⟨(λx.u)s⟩.

Proof. (Click here to see the complete proof in the Technical Appendix)
The ⇒ direction is proven by structural induction on t, and proceeding by case analysis on the

shape of t.
The ⇐ direction is proven by structural induction on H.

We now give the characterization of Open CbNeed-normal forms by means of predicate onorm(.).
Its development is extremely subtle and we avoid it here altogether. The interested reader may re-
fer to Sect. 13.3 (Proofs of Open CbNeed) in the Technical Appendix for further details—see in
particular Subsect. 13.3.1 (Characterizing Open CbNeed-normal forms), where the proof of Propo-
sition 6.2.2 is presented in its complete form.

Proposition 6.2.2 (Syntactic characterization of Open CbNeed-normal forms).
Let p ∈ PR. Then p is in →ond-normal form if and only if onorm(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of the environment of p.

We would like to stress the fact that Proposition 6.2.2 is of great help in the type-theoretical
studies of the Open CbNeed evaluation strategy. The main reason is that we can then analyze the
typing properties of programs in Open CbNeed-normal form simply proceeding by induction on the
derivation rules of onorm(p).

6.3 Determinism
To prove determinism of Open CbNeed, we need to prove that for every p ∈ PR, if p = P1⟨t1⟩ =
P2⟨t2⟩ for some P1 ∈ EV1 , P2 ∈ EV2 , t1, t2 ∈ Λ, and p →ond-reduces, then P1 = P2 and t1 = t2.

While multiplicative redexes in Open CbNeed are simply given by the β-redex in the Λ-term
plugged into the open evaluation context, note that exponential redexes are instead defined in terms
of the variable occurrence to be substituted and the ES in the environment of the open evaluation
context that binds that variable. Take, for example, (x, [x←I]) = ((⟨·⟩, ϵ)⟨x⟩)@[x←I], which contains
an exponential redex, but whose sub-program (x, ϵ) = (⟨·⟩, ϵ)⟨x⟩ does not.

Therefore, the first thing to do to prove determinism of Open CbNeed consists in generalizing
the notion of multiplicative and exponential redexes, via what are called reduction places, thus
devising the kind of induction required in the proof of determinism.

Definition 29 (Reduction places in Open CbNeed).
Let t ∈ Λ, H be a term context, and let S ⊇ nv(H). We say that t is a S-reduction place of H⟨t⟩

if one of the following conditions hold:

84

• Multiplicative redex: t = (λx.u)s;
• New needed variable: t = x, x /∈ S.
Let t ∈ Λ, P ∈ EV be an open evaluation context, and let S ⊇ V . We say that t is a S-reduction

place of P ⟨t⟩ if one of the following conditions hold:
• Multiplicative redex: t = (λx.u)s;
• Exponential redex: t = x, x ∈ dom(P) and P (x) = v;
• New needed variable: t = x, x /∈ S and x /∈ dom(P).
The notion of reduction place is enough to prove that given t ∈ Λ, we can single out the “first”

multiplicative redex—if there is any—relative to the Open CbNeed evaluation strategy. We believe
that this vague notion of a first multiplicative redex in the strategy—meant to serve as a guiding in-
tuition to understanding determinism of Open CbNeed—becomes clearer when considering Λ-terms
with a total order in their multiplicative redexes. For instance, if we consider (...(xt1)...tn−1)tn ∈ Λ,
then we note that Open CbNeed proceeds to reduce ((...(xt1)...tn−1)tn, ϵ) by reducing every ti in a
left-to-right fashion, first reducing t1 to a normal Λ-term (if necessary), then reducing t2 to a normal
Λ-term (again, only if necessary), and so on until finally reducing tn to a normal Λ-term. Thus, we
can say that the “first” multiplicative redex in ((...(xt1)...tn−1)tn, ϵ) is the smallest i such that ti is
not a normal term.

In this sense, the following Lemma implies that for every term context H and (λx.t)u ∈ Λ, the
Open CbNeed evaluation strategy reduces (H⟨(λx.t)u⟩, ϵ) by contracting (λx.t)u.
Lemma 6.3.1 (Unique decomposition of Λ-terms).

Let H1⟨t1⟩ = H2⟨t2⟩, with H1,H2 term contexts, let S ⊇ (nv(H1) ∪ nv(H2)), and let ti be a
S-reduction place of Hi⟨ti⟩, for i = 1, 2.

Then t1 = t2 and H1 = H2.
Proof. (Click here to see the complete proof in the Technical Appendix)

By structural induction on any one of the term contexts.

With Lemma 6.3.1 serving as the base case, we can now prove that there exists a “first” multi-
plicative or exponential redex in a program (provided it →ond-reduces), in the sense that it is the
only reduction step defined in the Open CbNeed reduction relation:
Theorem 6.3.2 (Unique decomposition of programs).

Let P1⟨t1⟩ = P2⟨t2⟩, with P1 ∈ EV1, P2 ∈ EV2, S ⊇ (V1 ∪ V2), and ti be a S-reduction place of
Pi⟨ti⟩ for i = 1, 2.

Then t1 = t2 and P1 = P2.
Proof. (Click here to see the complete proof in the Technical Appendix)

By structural induction on any one of the open evaluation contexts.

Finally,
Corollary 6.3.3 (Determinism of Open CbNeed).

Let p, q, r ∈ PR. If p→ond q and p→ond r, then q = r.
Proof. (Click here to see the complete proof in the Technical Appendix)

Straightforward application of Theorem 6.3.2.

85

Chapter 7

Multi types for Open CbNeed

Introduction

We now provide a multi type system where typability characterizes Open CbNeed-termination and
whose type derivations provide exact bounds on the normalization process. In addition, and un-
like the weak and closed strategies in Chapter 5 (Multi types for CbN, CbV and CbNeed), type
derivations of this multi type system also provide exact quantitative information on the size of
Open CbNeed-normal forms—which, by the way, are of a non-trivial nature as observed in Chap-
ter 6 (Open CbNeed).

Our starting point consists in adapting the multi type system given for (the weak and closed)
CbNeed in Chapter 5 to a setting where characterization is given for programs instead of terms. Of
course, properly adjusting the type system to the new evaluation strategy also requires several many
tweaks, in several many different aspects, all of which have an impact on typability. Let us first
present the Open CbNeed type system in its final form, and then give a list of general guidelines to
understanding the rationale behind it.

7.1 Multi type system for Open CbNeed
Specific notions of linear and multi types are required for the Open CbNeed type system—as for
the weak and closed ones in Chapter 5 (Multi types for CbN, CbV and CbNeed):

Definition 30 (Open CbNeed linear and multi types).
Open CbNeed linear and multi types are defined mutually recursively as follows

Open CbNeed linear types L,L′ ::= abs | inert |M ⊸ N

Open CbNeed multi types M,N ::= [Li]i∈I , I a finite set
Tight types tight ::= abs | inert

We shall define the tight type derivations—a class of minimal type derivations—for the
Open CbNeed system via the tight constants. Hence, the following categories of multi types

shall be extensively used hereafter:

Definition 31 (Multi types of tight constants).

86

We write Inert for the class of non-empty multisets of inert. Similarly, we write Abs for the class
of non-empty multisets of abs and we write Tight for the class of non-empty multisets of inert and
abs.

Definition 32 (The Open CbNeed multi type system).
The typing rules of the Open CbNeed type system appear in Fig. 7.1.
We write Φ ▷O Γ ⊢(m,e,r) e :M to express that type derivation Φ in the Open CbNeed multi type

system ends in type judgement Γ ⊢(m,e,r) e :M .

Let us provide now some general guidelines for the Open CbNeed type system:
• A new index. Besides the multiplicative and exponential indices in the CbNeed type system,

the Open CbNeed system includes a third one accounting for the size of the normal form.
• Axioms count exponential steps. Every call-by-need evaluation strategy in the literature only

performs substitutions on λ-abstractions—or similar syntactic objects—and Open CbNeed is
not the exception: Definition 27 (Open CbNeed evaluation strategy) defines substitutions to
act exclusively on λ-abstractions. Moreover, note that the only linear types derivable for
λ-abstractions are abs and arrow types of the form M ⊸ N , verifiable by the syntax-driven
nature of typing rules abs and fun.
In other words, no λ-abstraction is Inert-typable. This is why introducing a variable occurrence
via the axI rule means that the index counting the →ond-exponential steps to normal form—
the second one—should be 0, as that particular variable occurrence cannot take part in a
substitution of a λ-abstraction for it. Complementarily, introducing a variable occurrence via
an ax rule means that the second index should be 1.

• Splitting the constant. Recall that in the (weak and closed) CbNeed type system, we relied on
the use of a constant linear type norm to isolate a class of minimal type derivations—in that
they provide exact bounds on the normalization process, instead of only upper bounds. This
was enough in the weak and closed case because every CbNeed-normal form is an answer and
hence they all have the same structure—see the explanation below Proposition 4.6.1, on page
50.
But this no longer holds in the open case, a sign of this being the fact that we have two disjoint
predicates to characterize Open CbNeed-normality—namely inert and abs—unlike the single
norm predicate that characterizes all of Open CbNeed-normal forms. Hence, a first tweak to be
made is splitting the constant norm from Chapter 5 (Multi types for CbN, CbV and CbNeed)
in two new constant linear types, noted inert and abs. The intention behind these constants
is that when a program is typed with inert (resp. abs) then the Open CbNeed-normal form of
said program satisfies the inert predicate (resp. the abs predicate).

• Typing inert applications. All the systems in this work are designed to characterize termination
by means of typability. Particularly regarding the CbNeed type system, note that certain
sub-derivations allow some of the sub-terms not to be typed—consider e.g. the body of a
λ-abstraction typed with typing rule norm in Fig. 5.4 (Type system for CbNeed evaluation);
rules many, appgc and ESgc do not impose typability on all of the terms involved either.
In the Open CbNeed type system, the minimality of certain type derivations for Open CbNeed-
normal forms is partly achieved by forcing all sub-terms of inert programs to be typed. In
particular, this means typing both sub-terms involved in an application of an inert Λ-term:
if we are to type an application of the form i n, with i an inert term and n a normal term,
in such a way that the type derivation provides the exact size of i n, then we need to add a

87

'

&

$

%

M ∈ Inert

x : M ⊢(0,0,0) x :M
axI

M /∈ Inert M ̸= 0

x :M ⊢(0,1,0) x :M
ax

Γ;x : N ⊢(m,e,r) t :M

Γ ⊢(m,e,r) λx.t :N ⊸ M
fun ⊢(0,0,0) λx.t : abs abs

(Γi ⊢(mi,ei,ri) λx.t :Li)i∈I⊎
i∈I Γi ⊢(

∑
i∈I mi,

∑
i∈I ei,

∑
i∈I ri) λx.t : [Li]i∈I

many

Γ ⊢(m,e,r) t : [N ⊸ M] Π ⊢(m′,e′,r′) u :N N ̸= 0

Γ
⊎
Π ⊢(m+m′+1,e+e′,r+r′) tu :M

app

Γ ⊢(m,e,r) t : [inert]j∈J Π ⊢(m′,e′,r′) u : [tight] J ̸= ∅
Γ
⊎

Π ⊢(m+m′,e+e′,r+r′+1) tu : [inert]j∈J
appi

Γ ⊢(m,e,r) t : [0 ⊸ M]

Γ ⊢(m+1,e,r) tu :M
appgc

Γ ⊢(m,e,r) t :M
Γ ⊢(m,e,r) (t, ϵ) :M

Lift

Γ;x : N ⊢(m,e,r) (t, E) :M Π ⊢(m′,e′,r′) u :N N ̸= 0

Γ + Π ⊢(m+m′,e+e′,r+r′) (t, E[x←u]) :M
ES

Γ ⊢(m,e,r) (t, E) :M Γ(x) = 0

Γ ⊢(m,e,r) (t, E[x←u]) :M
ESgc

Figure 7.1: Type system for Open CbNeed evaluation

88

new typing rule whose premises are the typing of i with inert and the typing of n with inert
or abs—see typing rule appi in Fig. 7.1.

• Lifting typability of Λ-terms to programs. Since we no longer have a single-classed syntax on
which the reduction relation is defined, we have specific rules for Λ-terms and specific rules
for programs, as well as a Lift rule for lifting the former category to the latter. Unsurprisingly,
typing rules ES and ESgc only have programs as subject of the judgement, because only
programs have an environment to append ESs to.

• Characterizing a class of minimal type derivations. Unlike the weak and closed cases, iso-
lating a class of minimal type derivations in the Open CbNeed case must involve some type
derivations whose type contexts are non-empty. This is due to the fact that every applicant
of an inert term must, as previously noted, be typed either with inert or abs, one of whose
direct consequences is that the head variable of inert terms are always typed.
For example, consider ((xy)z, ϵ), which is in Open CbNeed-normal form and satisfies that
inert((xy)z, ϵ). Since both x and xy need to be typed with inert in order to be able to type
xy and (xy)z, respectively, then a minimal type derivation of ((xy)z, ϵ) must at least include
x in the domain of its type context.
We give a proper definition isolating a class of minimal type derivations in the Open CbNeed
type system in due time, extending the intuitions just given to programs with a non-trivial
environment. Nonetheless, we would like to refer the reader to [AGK20], in particular to the
semantical studies of an evaluation strategy that the authors call Linear Head evaluation.
Therein, every type derivation for a neutral ΛL-term—a kind of term playing a role analogous
to the one played by inert Λ-terms here—must include the head variable of the neutral term
in the domain of the type context. This fact regarding Linear Head evaluation has, in fact,
been our starting point to understanding what type contexts should be like in order to isolate
a class of minimal type derivations for the Open CbNeed type system.

In order to relate the third index in type judgements of the Open CbNeed type system to the
size of Open CbNeed-normal forms, we first need to provide a meaningful notion of size of programs.
The following serves our purposes:
Definition 33 (Needed size of terms and programs).

Let us first define the base case for the needed size of programs—namely, the needed size of
Λ-terms:

|x|nd := 0
|λx.t|nd := 0
|t u|nd := 1 + |t|nd + |u|nd

The needed size of programs is then defined as follows:
|(t, ϵ)|nd := |t|nd

|(t, E [x←u])|nd :=

{
|(t, E)|nd + |u|nd , if x ∈ nv(t, E)

|(t, E)|nd , otherwise

Let us isolate a class of type derivations meant to provide exact quantitative information.
Namely, the class of
Definition 34 (Tight derivations for Open CbNeed).

89

A derivation Φ ▷O Γ ⊢(m,e,r) e :M is tight if M = [tight] and Γ(x) ∈ Inert for every x ∈ dom(Γ).

We could, in principle, extend the definition of tight type derivations to additionally encompass
those whose type contexts assign any kind of Tight types. This would seem to be a more natural
definition, in particular because domains of type contexts may be thought of as the (types) interface
between the typed expression and (potential) other computational components. That is, a definition
of tight type derivations for the Open CbNeed system where type contexts can assign any kind of
Tight types—in the form of unrestricted combinations of inert’s and abs’s—would imply a higher
degree of compositionality between tight type derivations.

For example, in the derivation of Φ below, note that Ψ is not a tight type derivation in the
Open CbNeed sense—in particular because the type context assigns y to [abs]:

x : [inert] ⊢(0,0,0) x : [inert]
axI

y : [abs] ⊢(0,1,0) y : [abs]
axI

x : [inert]; y : [abs] ⊢(0,1,1) xy : [inert]
appi

Ψ ▷ x : [inert]; y : [abs] ⊢(0,1,1) (xy, ϵ) : [inert] Lift
∅ ⊢(0,0,0) v : abs abs

Θ ▷ ∅ ⊢(0,0,0) v : [abs]
many

Φ ▷ x : [inert]; y : [abs] ⊢(0,1,1) (xy, [y←v]) : [inert]
ES

Note that if we extended the definition of tight type derivation as just proposed, then Ψ would
be tight and Φ would be obtained by composing two tight type derivations, namely Ψ and Θ.

However convenient having such an extended notion of tight type derivations may seem, building
the alternate theory requires intricate and delicate technical developments that are just not natural
to this formulation of Open CbNeed. It is certainly possible to do so, but the outcome does not
justify the considerable increase in technical effort.

In fact, what Open CbNeed is missing in the current formulation, to be suitable for an extended
notion of tight type derivations, is the study of applied and unapplied needed variables of an ex-
pression. Roughly, the distinction provided by these categories of needed variables allows us to
tell precisely which variables can be safely and unrestrictedly assigned by type contexts to a Tight
type—while maintaining the minimality of the type derivation—and which variables cannot.

We study these issues in depth in Chapter 9 (Multi types for Useful Open CbNeed), where the
concepts of useful substitutions and the distinction between applied and unapplied needed variables
are naturally linked.

Having explained why tight type derivations in the Open CbNeed case are limited in the way
they are, we now turn to a relaxation on the definition of tight type derivations that proves to be
immensely useful for many inductions to go through in the technical development:

Definition 35 (Inert restriction of type contexts).
Given a type context Γ, we say that the restriction of Γ to some set of variables S ⊆ Var is inert,

and note it inertΓ(S), when every variable in S ∩ dom(Γ) is assigned by Γ to some Inert type.

That is, instead of checking if a whole type context assigns nothing but Inert types to the variables
in its domain, it sometimes is enough to check if it does so with respect to a particular subset of its
domain. The reason why this works is that assigning some of the variables of an expression to Inert
types forces the rest of the type context to be minimal—i.e., to be tight. This technique is pervasive
in our study of Open CbNeed semantics, although the particular subset of variables that we check
type contexts against is determined by the different technical tools we require in the development
of the theory.

90

7.1.1 Open CbNeed correctness
The study of Correctness for Open CbNeed is structured just like for the previous systems. Let us
overview it, pointing out the intrinsic particularities that distinguish this case from the others.

First, a property common to all our systems

Lemma 7.1.1 (Relevance of the Open CbNeed type system).
Let e be an expression and Φ ▷O Γ ⊢(m,e,r) e :M be a type derivation. If x ̸∈ fv(e) then x /∈ dom(Γ).

Next, we show that tight type derivations—which are meant to be simultaneously minimal in
each of the indices—are as expected. For this purpose, we have extracted the following base case

Lemma 7.1.2 (Typing properties of normal terms).
1. Values: Let Φ ▷O Γ ⊢(m,e,r) v :M . If M = [tight], then dom(Γ) = nv(v) and (m, e, r) =

(0, 0, |t|nd).
2. Inert terms: Let Φ ▷O Γ ⊢(m,e,r) i :M , with inertΓ(nv(i)). Then M = [inert]i∈I with I ̸= ∅,

dom(Γ) = nv(i) and (m, e, r) = (0, 0, |i|nd).

Proof. (Click here to see the complete proof in the Technical Appendix)
Point (1) is trivial—given the trivial structure of values in this weak setting—while Point (2) is

proven by structural induction on i.

Note that Lemma 7.1.2.2 makes reference to the domain of the type context, stating that it
matches exactly the set of needed variables of inert term i. Remarkably, this is obtained by only
making the restricted assumption that inertΓ(nv(i)), and may be extended to programs, as shown
below.

Proposition 7.1.3 (Typing properties of Open CbNeed-normal forms).
Let p ∈ PR be such that onorm(p), and let Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation for it.
Then (m, e, r) = (0, 0, |p|nd) and dom(Γ) = nv(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
The proof is split into abs(p) and inert(p), proving the following statement—which together

imply the original one:
1. If abs(p) and M = [tight], then dom(Γ) = nv(p) and (m, e, r) = (0, 0, |p|nd).
2. If inert(p) and inertΓ(nv(p)), then dom(Γ) = nv(p) and (m, e, r) = (0, 0, |p|nd).

Both items are proven by induction on the derivation of the corresponding predicate.

The usual substitution lemma requires to be proven in two separate parts, as we first need to
prove it for term contexts before being able to prove it for open evaluation contexts—the latter
building on the former.

Moreover, this lemma requires a key extra condition to hold, namely that the restriction of the
type context to a certain set of variables is inert. The set of variables to check the type context
against depends on the kind of contexts we are proving the lemma for: in the case of a term context
we require the restriction of the type context to the needed variables of said term context to be inert,
whereas in the case of an open evaluation context we require the restriction of the type context to

91

the set of variables parameterizing the derivation of said open evaluation context to be inert—note
that this is independent of the particular derivation of the open evaluation context, by Lemma 6.1.1
(Unique derivation parameterization of open evaluation contexts).

Lemma 7.1.4 (Linear Substitution for Open CbNeed).
Let x ∈ Var and v ∈ Val such that x /∈ fv(v).

1. Let H be such that x /∈ nv(H), and let

ΦH⟨x⟩ ▷O Γ;x :M ⊢(m,e,r) H⟨x⟩ :N

be such that M,N ̸= 0 and inertΓ(nv(H)).
Then there exists splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every

Ψ ▷O Π ⊢(m′,e′,r′) v :M1

there exists
ΦH⟨v⟩ ▷O

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) H⟨v⟩ :N

2. Let P ∈ EV be such that x /∈ dom(P) and x /∈ V, and let

ΦP ⟨x⟩ ▷O Γ;x :M ⊢(m,e,r) P ⟨x⟩ :N

be such that M,N ̸= 0 and inertΓ(V).
Then there exists splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every type derivation

Ψ ▷O Π ⊢(m′,e′,r′) v :M1

there exists
ΦP ⟨v⟩ ▷O

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) P ⟨v⟩ :N

Proof. (Click here to see the complete proof in the Technical Appendix)
1. By structural induction on H.
2. By structural induction on P .

In turn, the usual Subject Reduction property also needs to be split in two: one proof for
term contexts and another one for open evaluation contexts—the latter building on the former.
This is due to the fact that multiplicative redexes always take place, at the base level, inside a
term context—as one can infer from a single inspection of the derivation rules for open evaluation
contexts.

As what happened in the term context case in Lemma 7.1.4 (Linear Substitution for Open CbNeed),
we require the restriction of the type context to the needed variables of the term context in question
to be inert.

Lemma 7.1.5 (Quantitative Subject Reduction for →om in term contexts).
Let Φ ▷O Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M , with inertΓ(nv(H)). Then m ≥ 1 and there exists Φ′ ▷O

Γ ⊢(m−1,e,r) (H⟨u⟩, [x←s]) :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on H.

92

Proposition 7.1.6 (Quantitative Subject Reduction for Open CbNeed).
Let Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation.

1. Multiplicative: If p →om p′, then m ≥ 1 and there exists a type derivation Φ′ ▷O Γ ⊢(m−1,e,r)
p′ :M .

2. Exponential: If p→oe p
′, then e ≥ 1 and there exists a type derivation Φ′ ▷O Γ ⊢(m,e−1,r) p′ :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on P ∈ EV such that p = P ⟨s⟩ →om P ⟨s′⟩ = p′,

using Lemma 7.1.5 (Quantitative Subject reduction for →om in term contexts) for the base case.
The exponential case is proven by induction on P ∈ EV such that p = P ⟨x⟩ →oe P ⟨vα⟩ = p′ and

p(x) = v, using Lemma 7.1.4 (Linear Substitution for Open CbNeed) for the base case.

Conditions for the Subject Reduction property. In the complete proof of Proposition 7.1.6
given in the Technical Appendix on page 239, the reader may notice that the statement is relaxed
by only assuming that the restriction of the type context to a certain set of variables is inert,
while completely disregarding the right-hand side type. This relaxed statement allows the inductive
hypothesis to smoothly go through, and coincides with the way previous properties are stated.

We would like to stress the fact that, rather than being a minor and inconsequential technical
detail, this is an important result obtained in this work, as explained in Subsect. 3.7.1 (Axes-based
analysis of the multi type systems) when discussing how the reduction depth of the evaluation
strategies impacts the multi type system and its properties.

Indeed, in the Open CbNeed case, if the type context is not tight, then the type derivation
provided by Subject Reduction may not see its multiplicative (resp. exponential) index decrease as
expected after a multiplicative step (resp. after an exponential step). Nevertheless, we claim that
a non-quantitative—or qualitative—version of Proposition 7.1.6 holds, although we do not provide
a proof here.

Let us give a concrete example in which a non-quantitative version of the Subject Reduction
property is satisfied, while absolutely neglecting the quantitative information appearing in the
indices. Let p = (x((λy.y)(λz.z)), ϵ) ∈ PR. Note that p reduces to its Open CbNeed-normal form
as follows

p = (x((λy.y)(λz.z)), ϵ)→om (xy, [y←λz.z])→oe (x(λz
′.z′), [y←λz.z])

Hence, let us define q := (xy, [y←λz.z]) and r := (x(λz′.z′), [y←λz.z]), and give type derivations
for all three programs, in such a way that the type context and right-hand side type are preserved
but whose indices are not modified by reduction. First, let Φp be a type derivation for p of the
following form:

x : [0 ⊸ [inert]] ⊢(0,1,0) x : [0 ⊸ inert]
ax

x : [0 ⊸ [inert]] ⊢(1,1,0) x((λy.y)(λz.z)) : [inert]
appgc

x : [0 ⊸ [inert]] ⊢(1,1,0) (x((λy.y)(λz.z)), ϵ) : [inert] Lift

93

Next, let Φq be a type derivation for q of the following form:

x : [0 ⊸ [inert]] ⊢(0,1,0) x : [0 ⊸ inert]
ax

x : [0 ⊸ [inert]] ⊢(1,1,0) xy : [inert]
appgc

x : [0 ⊸ [inert]] ⊢(1,1,0) (xy, ϵ) : [inert] Lift

x : [0 ⊸ [inert]] ⊢(1,1,0) (xy, [y←λz.z]) : [inert]
ESgc

Finally, let Φr be a type derivation for r of the following form:

x : [0 ⊸ [inert]] ⊢(0,1,0) x : [0 ⊸ inert]
ax

x : [0 ⊸ [inert]] ⊢(1,1,0) x(λz′.z′) : [inert]
appgc

x : [0 ⊸ [inert]] ⊢(1,1,0) (x(λz′.z′), ϵ) : [inert] Lift

x : [0 ⊸ [inert]] ⊢(1,1,0) (x(λz′.z′), [y←λz.z]) : [inert]
ESgc

As we can appreciate, not only do the multiplicative and exponential indices not get updated
as expected upon reduction of the subject, but also the size index does not even provide an upper
bound to the size of the Open CbNeed-normal form: note that |(x(λz′.z′), [y←λz.z])|nd = 1.

Even more problematic, note that (λy.y)(λz.z) is not typed in the type derivation Φ for p,
because x is applied to (λy.y)(λz.z) via an application of the appgc rule. This means that we could
obtain a similar result for any given term applied to x, even the diverging term Ω, as shown in:

x : [0 ⊸ [inert]] ⊢(0,1,0) x : [0 ⊸ inert]
ax

x : [0 ⊸ [inert]] ⊢(1,1,0) xΩ : [inert]
appgc

x : [0 ⊸ [inert]] ⊢(1,1,0) (xΩ, ϵ) : [inert] Lift

noting that (xΩ, ϵ) does not normalize in Open CbNeed. Needless to say, this is completely wrong
from a Correctness point of view.

Therefore, the Subject Reduction property in the Open CbNeed case only holds for tight type
derivations, thus making correctness also only hold for tight type derivations.

Finally,

Theorem 7.1.7 (Tight Correctness for Open CbNeed).
Let p ∈ PR and Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation. Then there exists q ∈ PR such

that
1. q is in →ond-normal form,
2. there exists a reduction sequence d : p −→∗ond q,
3. (m, e, r) = (|d|m, |d|e, |q|nd), and
4. dom(Γ) = nv(q).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the sum m+ e, and proceeding by case analysis on whether p →ond-reduces or

not:
• If p is in →ond-normal form, then we only need to prove the case where Φ is tight, which

follows by Proposition 7.1.3 (Typing properties of Open CbNeed-normal forms).

94

• If p→ond q, then the statement follows by first applying Proposition 7.1.6 (Quantitative Sub-
ject Reduction for Open CbNeed) on Φ—distinguishing whether p →ond q is a multiplicative
or exponential step—thus obtaining a type derivation Ψ for q. Note that, by what is given in
Proposition 7.1.6, the sum of multiplicative and exponential indices in Ψ are strictly smaller
than m+ e. Thus, we may finally apply the i.h. on Ψ to prove the statement.

7.1.2 Open CbNeed completeness
Particular technicalities aside, most features of the completeness section for Open CbNeed are ei-
ther already present in Sect. 5.4 (Multi type system for Open CbNeed) or introduced and explained
in the correctness section above. We therefore simply sketch out the general proof schema of com-
pleteness for Open CbNeed and deal with the technical details in the Appendix.

Somewhat similar to what happens for Correctness, proving that programs in Open CbNeed-
normal form are (tightly) typable requires first to prove the following base case regarding (normal)
Λ-terms. As in the correctness section, note that the domain of the type context matches exactly
the set of needed variables of the term.

Lemma 7.1.8 (Tight typability of normal terms).
1. Values: For every v ∈ Val there exists a type derivation Φ ▷O Γ ⊢(0,0,|v|nd) v : [abs] such that

dom(Γ) = nv(v).
2. Inert terms: For every inert Λ-term i and J ̸= ∅, there exists a tight type derivation

Φ ▷O Γ ⊢(0,0,|i|nd) i : [inert]j∈J such that dom(Γ) = nv(i).

Proof. (Click here to see the complete proof in the Technical Appendix)
1. Trivial.
2. By structural induction on i.

We can now use Lemma 7.1.8 as base case for the following

Proposition 7.1.9 (Tight typability of Open CbNeed-normal forms).
Let p ∈ PR be such that onorm(p). Then there exists a tight type derivation Φ ▷O Γ ⊢(0,0,|p|nd) p :M

such that dom(Γ) = nv(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
Note that either abs(p) or inert(p). The statement is proven by induction on the derivation of

said predicates, proceeding by case analysis on the last derivation rule in each case.

The removal Lemma takes the expected form, somewhat allowing us to revert substitution in the
exact way required within the proof of the Subject Expansion property, taking into consideration
every technicality appearing therein.

Lemma 7.1.10 (Linear Removal for Open CbNeed).
Let x ∈ Var and v ∈ Val such that x /∈ fv(v).

95

1. Let H be such that x /∈ nv(H), and let

Φ ▷O Γ;x :M ⊢(m,e,r) H⟨v⟩ :N

be such that N ̸= 0, and inertΓ(nv(H)).
Then there exist type derivations

Ψ ▷O Π ⊢(m′,e′,r′) v :O
Θ ▷O ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) H⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).
2. Let P ∈ EV be such that x /∈ (V ∪ dom(P)) and that fv(v) ∩ dom(P) = ∅. Let, moreover,

Φ ▷O Γ;x :M ⊢(m,e,r) P ⟨v⟩ :N

be such that N ̸= 0, and inertΓ(V).
Then there exist

• multi type O,
• type derivation Ψ ▷O Π ⊢(m′,e′,r′) v :O, and
• type derivation Θ ▷O ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) P ⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).

Proof. (Click here to see the complete proof in the Technical Appendix)
1. By structural induction on the term context H.
2. By structural induction on the open evaluation context P ∈ EV .

The Subject Expansion property requires no extra explanation with respect to its correctness
counterpart. Even the conditions assumed for Proposition 7.1.6 (Quantitative Subject Reduction
for Open CbNeed)—analyzed on page 93—need to hold for the Subject Expansion property as well,
as we can appreciate:

Lemma 7.1.11 (Quantitative Subject Expansion for →om in term contexts).
Let Φ ▷O Γ ⊢(m,e,r) (H⟨u⟩, [x←s]) :M such that inertΓ(nv(H)). Then there exists Φ′ ▷O Γ ⊢(m+1,e,r)

H⟨(λx.u)s⟩ :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on H.

Proposition 7.1.12 (Quantitative Subject Expansion for Open CbNeed).
Let Φ′ ▷O Γ ⊢(m,e,r) p′ :M be a tight type derivation.

1. Multiplicative: If p→om p′, then there exists a type derivation Φ ▷O Γ ⊢(m+1,e,r) p :M .
2. Exponential: If p→oe p

′, then there exists a type derivation Φ ▷O Γ ⊢(m,e+1,r) p :M .

96

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on P ∈ EV such that p = P ⟨s⟩ →om P ⟨s′⟩ = p′,

using Lemma 7.1.11 (Quantitative Subject Expansion for →om in term contexts) for the base case.
The exponential case is proven by induction on P ∈ EV such that p = P ⟨x⟩ →oe P ⟨vα⟩ = p′ and

p(x) = v, using Lemma 7.1.10 (Linear Removal for Open CbNeed) for the base case.

Finally,

Theorem 7.1.13 (Tight Completeness for Open CbNeed).
Let p ∈ PR. If there exists d : p −→∗ond q for some q ∈ PR in →ond-normal form, then there

exists a tight type derivation Φ ▷O Γ ⊢(|d|m,|d|e,|q|nd) p :M such that dom(Γ) = nv(q).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of the →ond-normalizing sequence starting in p:
• Base case: By Proposition 6.2.2 (Syntactic characterization of closed normal forms - CbNeed),

we have that onorm(p). We then get Φ by application of Proposition 7.1.9 (Tight typability
of Open CbNeed-normal forms) on p.

• Inductive case: Let p→ond r. By i.h., we get the expected type derivation for r. We may then
obtain the one for p by an application of Proposition 7.1.12 (Quantitative Subject Expansion
for Open CbNeed), taking into account the kind of reduction step in p→ond r—i.e., whether
it is exponential or multiplicative.

7.1.3 Open CbNeed semantics
First, let us adapt the notion of a suitable list of variables to the split LSC. Let p ∈ PR and
x1, . . . , xn (with n ≥ 0) be pairwise distinct variables. If fv(p) ⊆ {x1, . . . , xn}, we say that the list
x⃗ = (x1, . . . , xn) is suitable for p.

Now, following the analyses for the weak and closed evaluation strategies, we might be tempted
to define the semantics of p for x⃗ with respect to the Open CbNeed type system as

[[t]]Open CbNeed
x⃗ := {((M1, . . . ,Mn),M) | ∃Φ ▷O x1 :Mn; . . . ;xn :Mn ⊢(m,e,r) p :M} (7.1)

However, this semantics is not adequate. In particular, note that (xΩ, ϵ) is not→ond-normalizable
but it is typable in the Open CbNeed system, as proven by the following type derivation:

x : [0 ⊸ M] ⊢(0,1,0) x : [0 ⊸ M]
ax

x : [0 ⊸ M] ⊢(0,1,1) xΩ :M
appgc

x : [0 ⊸ M] ⊢(0,1,1) (xΩ, ϵ) :M Lift

On the bright side, the definition in 7.1 is invariant: it suffices to prove a non-quantitative
version of the Subject Reduction and Subject Expansion properties. We do not prove this here, as
we are mostly interested in defining a semantics that is both invariant and adequate.

Therefore, let us redefine the semantics of p for x⃗ with respect to the Open CbNeed type system
as

[[t]]Open CbNeed
x⃗ := {((M1, . . . ,Mn),M) | ∃Φ ▷O x1 :Mn; . . . ;xn :Mn ⊢(m,e,r) p :M , with Φ tight}

97

This restricted semantics is indeed adequate, by Theorem 7.1.7 (Tight Correctness for Open CbNeed)
and Theorem 7.1.13 (Tight Completeness for Open CbNeed). However, it comes at the price of
breaking compositionality, as explained in Sect. 3.2 (Properties of multi type systems, page 28).

7.2 Counting techniques for exponential steps
Let us provide justifications for the choice we have made regarding axioms in the Open CbNeed
system, namely splitting them between ax and axI , which stems from a combination of specific
operational features of the Open CbNeed evaluation strategy.

Originally, our main sources of inspiration were Accattoli, Graham-Lengrand and Kesner’s
[AGK20] and Accattoli, Guerrieri and Leberle’s [AGL19], where the latter was itself inspired by
the former. None of them worked, and in the end we had to devise a new counting technique
altogether, the one that made its way into this thesis. Nevertheless, both publications had to be
analyzed in order to understand the situation in the Open CbNeed setting.

On the one hand, [AGL19] presents the CbNeed type system we thoroughly discussed in Chap-
ter 5 (Multi types for CbN, CbV and CbNeed), one of the building blocks for the type system for
Open CbNeed given in this Section.

On the other hand, [AGK20] presents an evaluation strategy dubbed “Linear head evaluation”,
formalized in the LSC, and a multi type system characterizing its termination and providing exact
bounds is given for it. Roughly put, Linear head evaluation—see [MP94] and [DR04]—performs
reduction following the well-known head reduction schema and order, while performing substitution
of terms for variables in a linear way, one at a time. To the best of our knowledge, [AGK20] is the
first-ever presentation of a multi type system targeting an open LSC evaluation strategy in which a
class of derivations providing exact bounds on the normalization process is isolated.

Hence, the counting technique for exponential steps presented in [AGK20] had to be considered
for the Open CbNeed system. In the end, it did not apply to our Open CbNeed multi type system,
thus forcing us to resort to a completely different and novel technique.

Let us briefly explain the technique used for the Open CbNeed multi type system. The basic
intuition is that

• In the weak and closed case of CbNeed, every typed variable occurrence takes part in an
exponential step, which explains why indices in axioms are always (0, 1).

• Conversely, not every typed variable occurrence in Open CbNeed takes part in an exponential
step, and so we need to discriminate between these two categories of variable occurrences to
properly assign indices in Open CbNeed axioms. This is done precisely by having two axiom
rules, namely ax and axI .

Let us see this with an example. Consider program p := (x y, [y←v]). Note that any type
derivation Φ for p must be such that x belongs to the domain of the type context in the final type
judgement. Moreover, if Φ is tight, then it is easy to see that Φ must be of the following form

M ∈ Inert

x :M ⊢(0,0,0) x :M
axI

y : [abs] ⊢(0,1,0) y : [abs]
axI

x :M ; y : [abs] ⊢(0,1,1) x y : [inert]
appi

x :M ; y : [abs] ⊢(0,1,1) (x y, ϵ) : [inert] Lift Ψ ▷O ∅ ⊢(0,0,0) v : [abs]
x :M ⊢(0,1,1) (x y, [y←v]) :M

ES

98

where Lemma 7.1.2.1 (Typing properties of normal terms - Values) justifies the facts that y is typed
with [abs]—instead of the alternative [inert]—and that Ψ has indices (0, 0, 0).

Therefore, we notice that
• Since x appears in the Open CbNeed-normal form (x vα, [y←v]) of p, which means that it

does not take part in any exponential step and so it is correct to type it with indices (0, 0, 0).
• Since y takes part in an exponential step in the reduction sequence, then it is correct to type

it with indices (0, 1, 0).

99

Chapter 8

Useful Open CbNeed

Introduction

In Chapter 6 we presented the Open CbNeed evaluation strategy, formalized in a setting derived
from the LSC, that we called the split LSC. As we explained at the end of the Introduction to
Chapter 6, this non-standard framework serves the purpose of paving the way for designing a
derivative of the Open CbNeed evaluation strategy, one that only performs useful substitutions.
That is, only substitutions that lead to the creation of multiplicative redexes are performed, while
the ones that do not are left undone.

We present here such a strategy, which we call the Useful Open CbNeed evaluation strategy.
Just like Open CbNeed, Useful Open CbNeed is formalized in the split LSC; as a matter of fact,
both these strategies were designed as being the useful and non-useful counterpart of each other.
Useful Open CbNeed refines the key concept of needed variables in Open CbNeed in such a way that
each program has both applied and unapplied sets of variables, both of them covering exactly the
set of its needed variables. In other words, the sets of applied and unapplied variables of a program
are not a partition of its set of needed variables, but rather separate refinements of the needed
variables of the program. As what happened in the Open CbNeed case, applied and unapplied sets
of variables are defined first for Λ-terms and then extended to cover programs.

Interestingly enough, and much like the fact that needed variables are crucial to the operational
and type-theoretical analyses of Open CbNeed, Useful Open CbNeed relies on the sets of applied
and unapplied variables of expressions both for its operational and type-theoretical analyses. It
should be remarked as well that the technical complexity of this part of the work is remarkably
bigger than the one of Open CbNeed; we believe this to be unavoidable, as Open CbNeed constitutes
the very ground upon which Useful Open CbNeed was developed.

8.1 The Useful Open CbNeed evaluation strategy
Applied and Unapplied Variables. As we just mentioned, the definition of the system is based
on two subsets of the set nv(·) of needed variables of Λ-terms and programs, namely the sets of
applied and unapplied variables a(·) and u(·).

We prove that the two sets cover nv(t) exactly—that is, nv(t) = a(t) ∪ u(t)—and similarly
for programs. Applied and unapplied variables, however, are not a partition of needed variables;
that is, in general a(t) ∩ u(t) ̸= ∅ because a variable can have both applied and unapplied needed
occurrences, as does x in xx—the same holds for programs.

100

The notion of applied variables for programs is subtle, the key, potentially confusing point being
the non-local applicative constraint: the occurrence of a variable x may not be itself applied but, if
it is meant to replace an applied variable y, then x has to be considered itself applied—this is the
case, for instance, of x in (yz, [y←x]). The non-local applicative constraint shall raise a number of
technicalities in the technical development of the operational study of Useful Open CbNeed, but is
transparent when dealing with its type-theoretical interpretation. Similarly, the fact that a variable
occurrence is unapplied also has a non-local quality to it, and we take care of it in the technical
development.

We believe that this issue is an unavoidable ingredient of usefulness in a call-by-need scenario,
and not an ad-hoc point of our study. Indeed, if instead we considered x to be unapplied in
(yz, [y←x]), we would be giving rise to a notion of evaluation that does not seem to be measur-
able via the multi type system, and would even (incorrectly) lead us to consider programs like
(yz, [y←x][x←λx̃.u]) to be in Useful Open CbNeed-normal form.

Let us start with applied variables:

Definition 36 (Applied variables).
The set of applied variables for Λ-terms is given by the following equations:

a(λx.t) := ∅
a(x) := ∅

a(tu) :=

{
{x} ∪ a(u), if t = x ∈ Var

a(t) ∪ a(u), if t /∈ Var

The set of applied variables for PR is based on the one for Λ-terms as follows:
a(t, ϵ) := a(t)

a(t, E[x←u]) :=

a(t, E), if x /∈ nv(t, E)

(a(t, E) \ {x}) ∪ a(u), if x ∈ nv(t, E) ∧ (u /∈ Var ∨ x /∈ a(t, E))

(a(t, E) \ {x}) ∪ {y}, if x ∈ nv(t, E) ∧ u = y ∈ Var ∧ x ∈ a(t, E)

At first sight, the definition of applied variables of programs may seem a bit cryptic to the
unacquainted reader. For instance, and having in mind that a(p) ⊆ nv(p), condition
x ∈ nv(t, E) ∧ u = y ∈ Var ∧ x ∈ a(t, E) in the definition of a(t, E[x←u]) would simply be
x ∈ a(t, E) ∧ u = y ∈ Var. However, we have not proved yet that a(p) ⊆ nv(p), which is why the
definition is given in this more general form.

Let us give a few examples explaining these three possibilities in the definition of applied variables
for programs:

• Being applied is hereditary: Let p = (t, E). Given that the applied variables of p should be
contained in its needed variables, we follow the approach used for Open CbNeed and discard
applied variables in E that are not (hereditarily) linked to a needed variable in t.
For example, z is not an applied variable of (x, [y←z]). Thus, the apparent exponential step
in q := (x, [y←z][z←v]) should not be triggered, as q is in Useful Open CbNeed-normal form.

• Adding the applied variables linked to a needed variable: Contrary to the previous point, given
a program p := (t, E[x←u]) such that x ∈ nv(t), then the applied variables of u are included
in those of p even if x is not applied in (t, E). Morally, this feature corresponds to the fact

101

that the unfolding1 of p would only unfold ESs (hereditarily) linked to the needed variables
of t, and the result of the unfolding should not contain any β-redexes.
For example, y is an applied variable of p := (x1 x2, [x2←y z]), even if x2 is not an applied
variable of (x1 x2, ϵ). Thus, the Useful Open CbNeed evaluation strategy shall be defined to
include exponential steps like (x1 x2, [x2←y z][z←v])→und (x1 x2, [x2←vα z][y←v]).

• Adding the variables that are non-locally applied: Let p := (t, E[x←y]), noting that y is not
applied in itself. Nonetheless, if y ∈ a(t, E), then z ∈ a(p). This corresponds to the non-local
applicative constraint explained above.
For instance, if p := (xt, [x←y]), then y ∈ a(p). With →und being the symbol representing
the Useful Open CbNeed evaluation strategy, note that the fact that y ∈ a(p) is correct, in
particular considering that the following two exponential steps should apply:

(xt, [x←y][y←v])→und (xt, [x←vα][y←v])→und (v
αt, [x←vα][y←v])

Note that these two exponential steps should be followed by a multiplicative step, morally
contracting the vαt β-redex.

Definition 37 (Unapplied variables).
The set of unapplied variables for Λ-terms is given by the following equations:

u(λx.t) := ∅
u(x) := {x}

u(tu) :=

{
u(u) t ∈ Var

u(t) ∪ u(u) t /∈ Var

The set of unapplied variables for programs is based on the one for terms as follows:
u(t, ϵ) := u(t)

u(t, E[x←u]) :=

{
u(t, E) x /∈ u(t, E) ∧ (x /∈ nv(t, E) ∨ u = y ∈ Var)

(u(t, E) \ {x}) ∪ u(u) x ∈ u(t, E) ∨ (x ∈ nv(t, E) ∧ u /∈ Var)

Two remarks. First, if we assume the property given in Lemma 8.1.1.2 below—namely that
nv(p) = a(p)∪u(p)—then note that in the definition of u(t, E[x←u]) the side condition x ∈ u(t, E)∨
(x ∈ nv(t, E)∧u /∈ Var) may be rewritten as x ∈ u(t, E)∨ (x ∈ a(t, E)∧u /∈ Var), which is arguably
a more intuitive formulation. The same may be done for the alternative condition.

Second, and perhaps counter-intuitively, note that y ∈ a(p) and y ∈ u(p) with respect to
p := (xx, [x←y]). That is, y is both applied and unapplied in p. This proves to be in accordance
with the multi types view: y has only one syntactic occurrence in p but it is needed twice, and any
tight type derivation of p types y twice, as we shall see below.

Let us explain the intuitions guiding the recursive definition of unapplied variables for programs
by showing some examples:

• Being unapplied is hereditary: Similar to applied ones, unapplied variables are needed vari-
ables. Hence, if x /∈ nv(t, E), then the unapplied variables of u are not added to those of

1Unfoldings are not studied in this thesis because they do not play any role in our theory of Useful Open CbNeed.
However, they may be simply defined as a mapping from ΛL-terms to Λ-terms which removes ESs by applying
meta-level substitutions.

102

(t, E) in (t, E[x←u]). This case is contemplated in the first line in the definition of unapplied
variables for programs given above. For example, z is not an unapplied variable of (x, [y←z]).

• Adding unapplied variables linked to any needed variable: We shall prove that nv(p) =
u(p)∪a(p). Therefore, z is an unapplied variable both in (x1 x2, [x2←y z])—since it is linked to
an unapplied variable—as well as in (x1 x2, [x1←y z])—since it is linked to an applied variable.

As mentioned above, the following holds:

Lemma 8.1.1 (Unapplied, applied, and needed variables).
1. Terms: nv(t) = u(t) ∪ a(t) for every t ∈ Λ.
2. Programs: nv(p) = u(p) ∪ a(p) for every p ∈ PR.

Proof. (Click here to see the complete proof in the Technical Appendix)
The statement for terms is proven by structural induction on t, while in the one for programs

we proceed by induction on the length of the environment of p.

In an attempt to simplify the technical development while providing a separate definition for
one of the key concepts in Useful Open CbNeed, let us give the following

Definition 38 (Useless variables). Given t ∈ Λ, we define the set of its useless variables as ul (t) :=
u(t) \ a(t).

Similarly, the set of useless variables of p ∈ PR is given by ul (p) := u(p) \ a(p).

The notion of useless variables is intuitively very simple but technically complex. Let us give
some examples:

• Note that ul (xx, ϵ) = ∅.
• The previous example may be extended to a hereditary setting, noting that ul (y, [y←xx]) = ∅.
• However, all these reasonings only apply under the assumption of a hereditary link to the first

coordinate of the program. For example, note that x ∈ ul (z x, [y←xx]) , as ES [y←xx] is not
linked to z x.

The notion of useless variables plays a decisive role in differentiating Open CbNeed from
Useful Open CbNeed, considering that the set of useless variables of a program is comprised ex-
actly by the needed variables of the program that may be bound by explicit substitutions contain-
ing values—that is, λ-abstractions—without creating an exponential redex in the process. In other
words, we should be able to verify that if p is in Useful Open CbNeed-normal form and x ∈ ul (p),
then p@[x←v] is also in Useful Open CbNeed-normal form.

Applied and unapplied variables of term contexts. Much like what we did for Open CbNeed
when defining needed variables, we can extend the definition of applied and unapplied sets of
variables for Λ-terms to term contexts. To avoid complicating things more than necessary, we
define them directly for term contexts—instead of defining them for Λ-contexts first, like we did in
the Open CbNeed case.

Definition 39 (Applied and unapplied variables of term contexts).

103

The set of applied variables for term contexts is given by the following equations:
a(⟨·⟩) := ∅
a(Ht) := a(H)

a(iH) :=

{
{x} ∪ a(H) i = x ∈ Var

a(i) ∪ a(H) i /∈ Var

The set of unapplied variables for term contexts is given by the following equations:
u(⟨·⟩) := ∅
u(Ht) := u(H)

u(iH) :=

{
u(H) t ∈ Var

u(i) ∪ u(H) t /∈ Var

Note that these definitions are a relatively simple extension of the ones given above for Λ-terms.
The difference lies in that the sets are computed in a syntactic left-to-right fashion and up to the
context hole; that is, note that a(Ht) = a(H) and similarly for u(Ht).

The properties that hold for Λ-terms and programs also hold for term contexts, as expected:

Lemma 8.1.2 (Term contexts: Unapplied, applied and needed variables).
Let H be a term context. Then nv(H) = u(H) ∪ a(H).

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on H.

Useful Open CbNeed evaluation contexts. The definition of evaluation contexts is partic-
ularly subtle in the useful case. We actually need to define two different notions of evaluation
contexts, a more permissive one called multiplicative evaluation contexts, and a more restrictive one
called exponential evaluation contexts. Multiplicative evaluation contexts are used to express the
multiplicative redexes of the strategy, while the exponential evaluation contexts are used to express
the exponential redexes, where the variable occurrence to be replaced has to be in an applicative
context—that is, it has to be in an applied position, in accordance with the non-local applicative
constraint explained above.

Both multiplicative and exponential evaluation contexts are each parameterized by a pair of sets
of variables: the first one, noted A, B or C, is meant to extend the notion of applied variables of
the underlying components of the evaluation context; the second one, noted U , V or W , is meant
to extend the notion of unapplied variables. These “underlying components” we talk about are of
varied nature, including Λ-terms or term contexts in explicit substitutions and the like.

Thus, given sets of variables U and A, we write EU ,A to represent the class of multiplicative eval-
uation contexts parameterized by U and A, and we write E@U ,A to represent the class of exponential
evaluation contexts parameterized by U and A, where the @ symbol is a mnemonic for “applied”.

Like for Open CbNeed evaluation contexts, we do not provide an explicit definition of applied
and unapplied variables of multiplicative and exponential evaluation contexts. In fact, P ∈ EU ,A
and A and U are defined mutually recursively, and it is only in that sense that we may call A and
U the sets of applied and unapplied variables of P , respectively.

104

Definition 40 (Multiplicative evaluation contexts).
We say that a program context P is a multiplicative evaluation context if it is derived using the

following rules:'

&

$

%

(H, ϵ) ∈ Eu(H),a(H)
MAX

P ∈ EU ,A x ∈ (U ∪ A)
P@[x←y] ∈ Eupd(U ,x,y),upd(A,x,y)

MVAR

P ∈ EU ,A x ∈ (U ∪ A)
P@[x←i+] ∈ E(U\{x})∪u(i+),(A\{x})∪a(i+)

MI

P ∈ EU ,A x /∈ (U ∪ A)
P@[x←t] ∈ EU ,A

MGC

P ∈ EU ,A x ∈ (U \ A)
P@[x←v] ∈ EU\{x},A

MU

P ∈ EU ,A x /∈ (U ∪ A)
P ⟨x⟩@[x←H] ∈ EU∪u(H),A∪a(H)

MHER

Figure 8.1: Derivation rules for multiplicative evaluation contexts

Note that multiplicative evaluation contexts are, roughly speaking, defined similarly to Open CbNeed
evaluation contexts except for rule

P ∈ EV x ∈ V
P@[x←i] ∈ E(V\{x})∪nv(i)

OI

which is refined into 3 different rules for multiplicative evaluation contexts, depending on the kind of
Λ-term contained in the explicit substitution. That is, given P ∈ EU ,A and x ∈ (U ∪A), constraints
to extend P with explicit substitution [x←t] are as follows:

• Rule MI: there are no constraints if t is an inert Λ-term. Note that MI and MGC together imply
that we can always append explicit substitutions containing inert Λ-terms to multiplicative
evaluation contexts, without altering the Useful Open CbNeed order of reduction.

• Rule MVAR: This rule covers the case where t ∈ Var. It is used to handle the non-local
applicative constraint for variables. The sets of variables in the conclusion of this rule are
updated similarly to rule MI.

• Rule MU: It covers the case where t ∈ Val, requiring that x /∈ A. In other words, we can derive
that P@[x←t] is a multiplicative evaluation context only if x ∈ (U \ A), meaning that x is a
“useless” variable of P , because otherwise extending P with [x←t] introduces an exponential
redex.

Regarding the non-local applicative constraint, note that it impacts on multiplicative evaluation
contexts only for the updating of sets U and A. This is precisely what happens in rule MVAR,
where the unapplied and applied set of variables are updated as upd(U , x, y) and as upd(A, x, y),
respectively.

For exponential evaluation contexts, instead, it also impacts on the position of the hole, which
must be located in such a way that it isolates an applied occurrence. This is implemented by intro-
ducing a notion of applicative term context and using it to further refine the notion of multiplicative
evaluation context to take the applicativity of the context hole into consideration:

Definition 41 (Applicative term contexts).

105

A term context H is called an applicative term context if it is derived using the following rules:

H@,J @, I@ ::= ⟨·⟩t | H@t | iH@

Note that every applicative term context is a (plain) term context, but the converse does not
hold.

Let us first give the definition of exponential evaluation contexts, and discuss the role played by
applicative term contexts right below:

Definition 42 (Exponential evaluation contexts).
We say that a program context P is an exponential evaluation context if it is derived with the

rules in Fig. 8.2, where upd is defined as follows

upd(S, x, y) :=

{
S x /∈ S

(S \ {x}) ∪ {y} x ∈ S

'

&

$

%

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

P ∈ EU ,A x /∈ (U ∪ A)
P ⟨x⟩@[x←H@] ∈ E@

(U\{x})∪u(H@),A∪a(H@)

EAX2

P ∈ E@U ,A x ∈ (U ∪ A)
P@[x←y] ∈ E@upd(U ,x,y),upd(A,x,y)

EVAR

P ∈ E@U ,A x ∈ (U ∪ A)
P@[x←i+] ∈ E@(U\{x})∪u(i+),(A\{x})∪a(i+)

EI

P ∈ E@U ,A x /∈ (U ∪ A)
P@[x←t] ∈ E@U ,A

EGC

P ∈ E@U ,A x ∈ (U \ A)
P@[x←v] ∈ E@U\{x},A

EU

P ∈ E@U ,A x /∈ A
P ⟨x⟩@[x←⟨·⟩] ∈ E@U\{x},A

ENL

Figure 8.2: Derivation rules for exponential evaluation contexts

Coming back to applicative term contexts, note that they play a role both in the base and
hereditary cases of exponential evaluation contexts:

1. Rule EAX1 is akin to rule MHER except that it requires the term context to be applicative.
2. The plugging-based rule MHER for multiplicative evaluation contexts gets split in two: rule

EAX2 , which also serves as base case for exponential evaluation contexts and which simply
plugs an applicative term context into a multiplicative evaluation context, and ENL, which
handles the special case of non-local applicative constraint.

Let us see the differences between rules EAX2 and ENL with some examples:
• Consider program p := (x t, [x←z]), where z is in applied position due to the non-local applica-

tive constraint, as it substitutes x which is applied to t. Hence, we may derive an exponential

106

evaluation context P that focuses on z in such a way that P ⟨z⟩ = p as follows:

(⟨·⟩ t, ϵ) ∈ E@∅,∅
EAX1

x /∈ ∅
P := ((⟨·⟩ t, ϵ)⟨x⟩)@[x←⟨·⟩] ∈ E@∅,∅

ENL

noting that P = ((⟨·⟩ t, ϵ)⟨x⟩)@[x←⟨·⟩] = (x t, [x←⟨·⟩]), and so p = P ⟨z⟩ as expected. Hence,
the fact that variable z is applied in p only because it is linked to x (which is itself applied)
translates to exponential evaluation context P in that the premise of derivation rule ENL

requires the sub-program context to be applied.
• Conversely, the EAX2 derivation rule requires the term context to be applicative, while the

sub-program context is in fact a multiplicative evaluation context. Since we shall prove
that exponential evaluation contexts are also multiplicative evaluation contexts, this means
that rule EAX2 imposes a relaxed condition on the sub-program context in the premise when
compared to rule ENL.
For example, consider p := (x, [x←z t]), for which z is an applied variable because it is itself
applied and is linked to needed variable x in the first coordinate of the program. Let us derive
an exponential evaluation context P focusing on z in such a way that P ⟨z⟩ = p as follows:

(⟨·⟩, ϵ) ∈ E∅,∅
OAX x /∈ (∅ ∪ ∅)

P := ((⟨·⟩, ϵ)) ⟨x⟩@[x←⟨·⟩ t] ∈ E@∅,∅
EAX2

noting that P = ((⟨·⟩, ϵ)) ⟨x⟩@[x←⟨·⟩ t] = (x, [x←⟨·⟩ t]), and so p = P ⟨z⟩ as expected. Hence,
the fact that z is applied in p translates to exponential evaluation context P in that term
context ⟨·⟩ t is applicative, while the sub-program context is only used to focus on variable x.

Let us finally define the evaluation strategy:

Definition 43 (Useful Open CbNeed evaluation strategy).
The reduction rules for the Useful Open CbNeed evaluation strategy are defined as follows:�
�

�
�

P ⟨(λx.t)u⟩ →um P ⟨t, [x←u]⟩ if P ∈ EU ,A

P ⟨x⟩ →ue P ⟨vα⟩ if P ∈ E@U ,A and P (x) = v

Note that→um is defined with respect to multiplicative evaluation contexts, while→ue is defined
with respect to exponential evaluation contexts.

Moreover, we say that p reduces in the Useful Open CbNeed strategy to q, and write p→und q,
if p→um q or p→ue q.

8.1.1 The usefulness criterion
The study of Useful Open CbNeed would be baseless if we did not prove that each exponential step
invariably leads to a multiplicative step down the reduction sequence. That is, the following is of
absolute importance:

107

Proposition 8.1.3 (Usefulness of exponential steps).
Let p = P ⟨x⟩ →ue P ⟨vα⟩ = q with P ∈ E@U ,A and P (x) = v. Then there exists r ∈ PR and

reduction sequence d : q →k
ue→um r such that

1. the evaluation context of each →ue steps in d is in E@U ,A, and the one of →um is in EU ,A.
2. k ≥ 0 is the number of ENL rules in the derivation of P ∈ E@U ,A.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of P ∈ E@U ,A. The proof relies significantly on a characteriza-

tion of exponential evaluation contexts that we explore in Chapter 13 (Technical appendix)—see
Lemma 13.5.1 (Characterization of exponential evaluation contexts) on page 262.

8.2 Characterizing Useful Open CbNeed-normal forms
As in any of the other cases, the Useful Open CbNeed one also requires concise, syntax-directed
gadgets to reason about normal forms. Unfortunately, restricting Open CbNeed to perform useful
substitutions implies a much more complex shape of the normal forms at play. This can be ap-
preciated in Fig. 8.3 below, where we define the unorm predicate which is meant to characterize
Useful Open CbNeed-normal forms, as well as other three predicates that unorm is defined in terms
of: genVar, uabs and uinert.'

&

$

%

genVarx(x, ϵ)
GVAX

genVarx(p)

genVary(p@[x←y])
GVHER

genVarx(p) z ̸= x

genVarx(p@[z←t])
GVGC

uabs(v, ϵ)
ALift

genVarx(p)

uabs(p@[x←v])
AGV

uabs(p)

uabs(p@[x←t])
AGC

uinert(i+, ϵ)
ILift

genVarx(p)

uinert(p@[x←i+])
IGV

uinert(p) x ∈ nv(p)

uinert(p@[x←i])
II

uinert(p) x ∈ u(p) x /∈ a(p)

uinert(p@[x←v])
IU

uinert(p) x /∈ nv(p)

uinert(p@[x←t])
IGC

uinert(p) ∨ uabs(p) ∨ genVar#(p)

unorm(p)
unormP

Figure 8.3: Predicates characterizing Useful Open CbNeed-normal forms

Given uinert(p) (resp. uabs(p)), we say that p is a useful inert program (resp. a useful abstraction
program). Additionally, we define generalized variables as follows

Definition 44 (Generalized variables).

108

Given p ∈ PR such that genVarx(p), we say that p is a generalized variable having x as its
(hereditary) head variable. Moreover, we write genVar#(p) to state that there exists x ∈ Var such
that genVarx(p).

Note that useful inert programs and useful abstraction programs in Useful Open CbNeed may
be seen as adaptations of inert programs and abstraction programs in Open CbNeed, respectively.
But the isolation of the concept of generalized variables is a major, conceptual difference between
the two evaluation strategies. Let us give some examples of generalized variables:

• The base cases for generalized variables are programs of the form (x, ϵ), for some x ∈ Var.
• The fact of being a generalized variable may be extended by substituting the hereditary head

variable with another variable. For example, since x is the head variable of (x, ϵ), then y is
the head variable of (x, [x←y]), and so z is the head variable of (x, [x←y][y←z]).

• We may change head variables of generalized variables, like we did in the previous item,
while interspersing the program with ESs binding other variables (which should morally be
garbage-collected). Thus, since x is the head variable of (x, ϵ), then y is the head variable of
(x, [x̃←I I][x←y]), and so z is the head variable of (x, [x̃←I I][x←y][ỹ←Ω][y←z]). Note that
the ESs which do not affect the head variable of the generalized variable may contain any
term, even I I and Ω, while the overall program remains a generalized variables.

Therefore, we may say that generalized variables are variables up to unfolding2. The interest in
generalized variables is that they serve as a building block for both useful inert programs and useful
abstraction programs.

To clarify this point, consider the two following derivations:

genVarz(z, [z←x])

uinert(z, [z←x][x←i+])

genVarz(z, [z←x])

uabs(z, [z←x][x←v])

each of them taking p = (z, [z←x]) as base sub-program. Said differently, every generalized variable
has the potential to become a useful inert program or a useful abstraction program, the difference
lying in the kind of term we use to bound the hereditary head variable. We believe this is not an
ad-hoc feature of our system, but rather something present and to be taken into consideration in
the design of every presentation of usefulness.

Further below, we shall see that generalized variables have typing properties of their own, and
that splitting the category of inert programs in Open CbNeed into the categories of useful inert
programs and generalized variables in Useful Open CbNeed also makes sense at the level of types.

As the Lemma below shows, predicates genVar, uinert and uabs are meant to characterize disjoint
categories of Useful Open CbNeed-normal forms. We shall see in the following chapter that having a
disjoint partition of normal forms eases up considerably the types analysis of Useful Open CbNeed-
normal forms.

Lemma 8.2.1 (Disjointness of generalized variables, useful abstraction programs and useful inert
programs).

For every p ∈ PR, at most one of the following holds:
i) genVar#(p),

2Once again, we do not define an unfolding function in this thesis, so this claim should be merely taken as an
intuition for the reader.

109

ii) uabs(p), or
iii) uinert(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of the environment of p.

Let us begin proving the syntactic characterization of Useful Open CbNeed-normal forms by
considering the syntactic properties of programs satisfying the genVar, uinert and uabs predicates.
As expected, these syntactic properties are proven in an incremental way, extending the syntactic
properties of Λ-terms into properties of programs. Before doing that, let us recall the following
lemma—first presented in Chapter 6 (Open CbNeed) and used repeatedly throughout this chapter:

Lemma 8.2.2 (Redex in non-normal terms).
Let t ∈ Λ. Then, t is not a normal term if and only if there exist term context H, and terms

λx.u and s such that t = H⟨(λx.u)s⟩.

We may now proceed to present the properties satisfied by normal terms. Clearly, variables and
values are too simple to state anything valuable about, so we directly move on to what we call useful
inert terms, which are simply non-variable inert Λ-terms. That is, we prove that the size of useful
inert terms is not null, and that their set of applied variables is non-empty.

Lemma 8.2.3 (Properties of useful inert terms).
Let i+ be a non-variable inert term. Then |i+|nd ≥ 1 and a(i+) ̸= ∅.

(Click here to see the complete proof in the Technical Appendix)
Let us now give the properties regarding each category of programs. The properties of generalized

variables form the base case:

Lemma 8.2.4 (Properties of generalized variables).
Let genVarx(p). Then |p|nd = 0, nv(p) = u(p) = {x} and a(p) = ∅.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of genVarx(p).

The properties of useful abstraction programs rely on Lemma 8.2.4:

Lemma 8.2.5 (Properties of useful abstraction programs).
Let uabs(p). Then |p|nd = 0 and nv(p) = u(p) = a(p) = ∅.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of uabs(p).

The properties of useful inert programs also rely on Lemma 8.2.4:

Lemma 8.2.6 (Properties of useful inert programs).
Let uinert(p). Then |p|nd ≥ 1 and a(p) ̸= ∅.

110

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of uinert(p).

This concludes the list of syntactic properties satisfied by Useful Open CbNeed-normal forms
that we wanted to present in this chapter. However, Proposition 8.2.7 relies on a non-trivial series
of other lemmas that we considered too technical to even be mentioned in this chapter. We refer
the reader to Subsect. 13.5.2 in the Technical Appendix, starting on page 264, to see all that is
required for Proposition 8.2.7.

Proposition 8.2.7 (Syntactic characterization of Useful Open CbNeed-normal forms).
Let p ∈ PR. Then p is in →und-normal form if and only if unorm(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of the environment of p.

8.3 Determinism
Another important property Useful Open CbNeed should satisfy is determinism. This is simply
proven in a way analogous to that of Open CbNeed, following the same proof schema.

First, we define what a reduction place in the Useful Open CbNeed case is:

Definition 45 (Reduction places in Useful Open CbNeed).
Let t ∈ Λ, H be a term context, and let S ⊆ Var. We say that t is a S-reduction place of H⟨t⟩

if one of the following conditions holds:
• Multiplicative redex: t = (λx.u)s;
• New hereditary jump: t = x and x /∈ S ⊇ nv(H).
• New applied variable: t = x, H is applicative, and x /∈ S ⊇ a(H).
Let t ∈ Λ and P be a program context, and let S ⊆ Var. We say that t is a S-reduction place of

P ⟨t⟩ if one of the following conditions hold:
• Multiplicative redex: P ∈ EU ,A and t = (λx.u)s;
• Exponential redex: t = x, P ∈ E@U ,A, x ∈ dom(P) and P (x) = v;
• New hereditary jump: t = x, P ∈ EU ,A, x /∈ S ⊇ (U ∪ A), and x /∈ dom(P).
• New applied variable: t = x, P ∈ E@U ,A, x /∈ S ⊇ A, and x /∈ dom(P).

Note that the conditions in the New applied variable item for term contexts above are included
in the conditions of New hereditary jump for term contexts. In spite of this, we state it as a separate
category of reduction places, since the former serves as base case for New applied variable—for
exponential evaluation contexts)—while the latter serves as base case for New hereditary jump—for
multiplicative evaluation contexts.

The following is a direct consequence of Lemma 6.3.1 (Unique decomposition of Λ-terms) in the
Determinism subsection of Open CbNeed—Sect. 6.3—and Lemma 8.1.2 (Term contexts: Unapplied,
applied and needed variables).

111

Lemma 8.3.1 (Unique decomposition of Λ-terms).
Let H1⟨t1⟩ = H2⟨t2⟩, with H1,H2 term contexts, let S ⊇ (a(H1) ∪ a(H2)), and let ti be an

S-reduction place of Hi⟨ti⟩, for i = 1, 2.
Then t1 = t2 and H1 = H2.

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on any one of the term contexts.

Lemma 8.3.2 (Unique decomposition of programs).
Let P1⟨t1⟩ = P2⟨t2⟩, with P1 ∈ (EU1,A1 ∪ E@U1,A1

) and P2 ∈ (EU2,A2 ∪ E@U2,A2
) such that S ⊇

(U1 ∪ A1 ∪ U2 ∪ A2), and ti be an S-reduction place of Pi⟨ti⟩ for i = 1, 2.
Then t1 = t2 and P1 = P2.

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on any one of the open evaluation contexts.

Finally,

Corollary 8.3.3 (Determinism of Useful Open CbNeed).
If p→und q and p→und r then q = r.

Proof. (Click here to see the complete proof in the Technical Appendix)
Straightforward application of Lemma 8.3.2.

112

Chapter 9

Multi types for Useful Open CbNeed

Introduction

Technicalities aside, this chapter provides what other ones in this work provide for their correspond-
ing evaluation strategies: a multi type system in which typability is equal to Useful Open CbNeed-
normalization, together with a class of type derivations—in said multi type system—which contain
quantitative information regarding the Useful Open CbNeed-normalization process.

That being said, it cannot be denied that the operational aspects of Useful Open CbNeed make
the entire study harder and trickier to tackle, forcing the study of the multi type system to meet
the new challenges arising from the operational side. Fortunately, the Open CbNeed case serves as
a remarkably helpful base tool with which we can deal with Useful Open CbNeed, particularly in
the type-theoretical aspects.

We shall see that a very minor change to the Open CbNeed type system is required to get a multi
type system that gives exact bounds on the Useful Open CbNeed-normalization process. Although
proving that this is the case shall show to require complex reasoning on the sets of applied and
unapplied variables of expressions, the type system is designed in such a way that reasoning about
these sets of variables comes out naturally and consistently with the other systems in this work.

Let us begin by deriving a multi type system for Useful Open CbNeed following a very simple
reasoning about axioms/variable occurrences.

9.1 Multi type system for Useful Open CbNeed
9.1.1 Changing quantitative information in axioms.
Let us go back to the Open CbNeed type system for a moment. Recall that Open CbNeed is
an evaluation strategy that performs linear substitutions, and so counting exponential steps in a
Open CbNeed-normalizing sequence means counting the number of variable occurrences substituted
by a value, along said normalizing sequence, until reaching the Open CbNeed-normal form. The
Open CbNeed type system captures this by counting 1 for every typed variable occurrence whose
type is not in Inert, and counting 0 for every variable occurrence which is not typed or which is
typed with a multi type in Inert. Typed variable occurrences are thus split in:

M /∈ Inert M ̸= 0

x :M ⊢(0,1,0) x :M
ax M ∈ Inert

x : M ⊢(0,0,0) x :M
axI

113

The set Inert of multi types was proven to be a correct type-theoretical discriminant between
an exponential step and a variable occurrence that is not be substituted—in the Open CbNeed-
normalizing sequence of a program containing said variable occurrence—in Chapter 7 (Multi types
for Open CbNeed), when we show that exponential steps are correctly counted in tight type deriva-
tions. The intuition is simple: we only substitute values in Open CbNeed, and since values are not
typable with the inert linear constants, then variables typed with a multi type in Inert cannot be
substituted by values.

Then, a natural follow up question arises: since values are typable both with abs and types of the
form M ⊸ N , then what is the semantical difference between these linear types? To answer this, let
us consider a subset of applications of the ax rule, namely those of the form Φ ▷O x :M ⊢(0,1,0) x :M
where M ∈ Abs. Note that, among all three typing rules used to type application Λ-terms—namely
app, appi and appgc—it is impossible to place Φ as left-hand side premise of any of these typing
rules. That is, it seems that if Φ is used to type a larger Λ-term or program, then the particular
occurrence of x in Φ can never end up in an applied position.

All this gives us the intuition that the variable occurrences which end up being substituted in
a Useful Open CbNeed-normalizing sequence are those typed with a multi type containing at least
one linear arrow type, while any other variable occurrence—be it typed with any multi type in
Tight, or not typed at all—are not be substituted along the sequence.

The intuition above led us to derive a multi type system for Useful Open CbNeed simply by
changing the way we count exponential steps in axioms:
Definition 46 (The Useful Open CbNeed type system).

The typing rules of the Useful Open CbNeed type system appear in Fig. 9.1.
We write Φ ▷U Γ ⊢(m,e,r) e :M to express that type derivation Φ in the Useful Open CbNeed

multi type system ends in type judgement Γ ⊢(m,e,r) e :M .
Note that the axioms rules are the only difference between the Open CbNeed type system—see

Fig. 7.1 in Chapter 7 (Multi types for Open CbNeed)—and the Useful Open CbNeed type system
in Fig. 9.1, using Inert to discriminate between axiom cases in the former and using Tight to dis-
criminate between axioms cases in the latter. All the other typing rules are the same in both systems.

As a first requirement of our Useful Open CbNeed type system, the following must hold
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system).

Let e be an expression and Φ▷UΓ ⊢(m,e,r) e :M be a type derivation. If x ̸∈ fv(e) then x /∈ dom(Γ).
Let us now present our notion of tight type derivations, constituting a class of type derivations

in the Useful Open CbNeed system which we shall prove to provide minimal indices.
Definition 47 (Tight type derivations for Useful Open CbNeed).

A derivation Φ ▷U Γ ⊢(m,e,r) p :M is said to be tight if M = [tight] and Γ(x) = Tight for every
x ∈ dom(Γ).

Note that this definition covers the one given for Open CbNeed—namely, those whose type
contexts only assign multi types in Inert. As explained right after Definition 34 (Tight derivations
for Open CbNeed, page 90), the definition of tight type derivations we are presenting here is more
natural than the one given for Open CbNeed. But it is only within the Useful Open CbNeed
evaluation strategy that we have all the elements needed to make the notion of applied and unapplied
positions explicit enough, thus allowing for this extended and more natural isolation of a class of
minimal type derivations.

114

'

&

$

%

M ∈ Tight

x : M ⊢(0,0,0) x :M
axT

M /∈ Tight M ̸= 0

x :M ⊢(0,1,0) x :M
ax

Γ;x : N ⊢(m,e,r) t :M

Γ ⊢(m,e,r) λx.t :N ⊸ M
fun ⊢(0,0,0) λx.t : abs abs

(Γi ⊢(mi,ei,ri) λx.t :Li)i∈I⊎
i∈I Γi ⊢(

∑
i∈I mi,

∑
i∈I ei,

∑
i∈I ri) λx.t : [Li]i∈I

many

Γ ⊢(m,e,r) t : [N ⊸ M] Π ⊢(m′,e′,r′) u :N N ̸= 0

Γ
⊎
Π ⊢(m+m′+1,e+e′,r+r′) tu :M

app

Γ ⊢(m,e,r) t : [inert]j∈J Π ⊢(m′,e′,r′) u : [tight] J ̸= ∅
Γ
⊎

Π ⊢(m+m′,e+e′,r+r′+1) tu : [inert]j∈J
appi

Γ ⊢(m,e,r) t : [0 ⊸ M]

Γ ⊢(m+1,e,r) tu :M
appgc

Γ ⊢(m,e,r) t :M
Γ ⊢(m,e,r) (t, ϵ) :M

Lift

Γ;x : N ⊢(m,e,r) (t, E) :M Π ⊢(m′,e′,r′) u :N N ̸= 0

Γ + Π ⊢(m+m′,e+e′,r+r′) (t, E[x←u]) :M
ES

Γ ⊢(m,e,r) (t, E) :M Γ(x) = 0

Γ ⊢(m,e,r) (t, E[x←u]) :M
ESgc

Figure 9.1: Type system for Useful Open CbNeed evaluation

115

9.1.2 Useful Open CbNeed correctness
Refining the typing properties of inert expressions: spreading tightness within the
type context. Here, we proceed to prove a Correctness theorem for Useful Open CbNeed: if
Φ ▷U Γ ⊢(m,e,r) p :M is tight, then there exists a reduction sequence d : p →∗und q such that q is in
→und-normal form and (m, e, r) = (|d|m, |d|e, |q|nd).

As a base case for this, we need to prove that if p is itself in →und-normal form, then (m, e, r) =
(0, 0, |p|nd). In order to do so, a weaker hypothesis on Φ is assumed, namely for the induction to go
through, thus allowing us to prove the Correctness theorem in a modular—that is, inductive—way.
The reason for this is subtle, and hopefully better explained with the following example:

Let p := (t, E ′[x←v]) be a program in Useful Open CbNeed-normal form, with v ∈ Val. By
Proposition 8.2.7 (Syntactic characterization of Useful Open CbNeed-normal forms), we get that
either genVar#(p) or uabs(p) or uinert(p). Say uinert(p), derived as follows

uinert(t, E ′) x ∈ ul (t, E ′)

uinert(t, E ′[x←v])
IU

Note that |(t, E ′[x←v])|nd = |(t, E ′)|nd, since |v|nd = 0.
Moreover, let Φ ▷U Γ ⊢(m,e,r) (t, E ′[x←v]) :M be a tight type derivation of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) (t, E ′) :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎
∆ ⊢(m′+m′′,e′+e′′,r′+r′′) (t, E ′[x←v]) :M

ES

Since we want to prove that (m′ +m′′, e′ + e′′, r′ + r′′) = (0, 0, |(t, E ′[x←v])|nd), and given that
|(t, E ′)|nd = r′, we should be able to prove in particular that r′′ = 0. However, if N /∈ Tight then we
cannot ensure this. For example, let v = λy.yy, N = [[inert, inert] ⊸ [inert]] and Θ ▷U ∆ ⊢(m′′,e′′,r′′)

λy.yy :N be derived as

y : [inert] ⊢(0,0,0) y : [inert]
axT

y : [inert] ⊢(0,0,0) y : [inert]
axT

y : [inert, inert] ⊢(0,0,1) yy : [inert]
appi

∅ ⊢(0,0,1) λy.yy : [inert, inert] ⊸ [inert]
fun

∅ ⊢(0,0,1) λy.yy : [[inert, inert] ⊸ [inert]]
many

where r′′ = 1 ̸= 0.
Nevertheless, we shall show that this is impossible under the assumption that Φ is tight, which

forces N ∈ Tight. This is because we can infer the tightness of the useless variables in the type
context from the tightness of the applied variables, while showing that no other variable can appear
in the domain of the type context. In our running example, the tightness of the useless variable x
(i.e., that N ∈ Tight) is given by the tightness of the variables appearing in the intersection of the
domain of Π and the applied variables of (t, E ′) in Ψ ▷U Π;x :N ⊢(m′,e′,r′) (t, E ′) :M .

In a more general sense, we can say that given a tight type derivation for a Useful Open CbNeed-
normal form, there exists a kind of spreading of tightness from the applied variables into the unap-
plied ones. Although this property could be proven to hold for Open CbNeed, it is only stated for
Useful Open CbNeed because it requires having refined the definition of needed variables into that
of applied and unapplied ones. These are not relevant concepts in Open CbNeed, and so we have
skipped this analysis therein.

Moreover, the spreading of tightness studied in the open case—that is, the inert spreading of
tightness from the type context to the right-hand type—happens to be relevant also in the useful

116

case, and are therefore included in the typing properties of useful inert expressions.

Like it happened in the Open CbNeed, we first need to provide typing properties of values before
being able to prove the typing properties of useful inert terms:

Lemma 9.1.2 (Typing properties of values).
Let Φ ▷U Γ ⊢(m,e,r) v :M with M ∈ Tight.
Then (m, e, r) = (0, 0, |v|nd), dom(Γ) = nv(v), and M ∈ Abs.

(Click here to see the complete proof in the Technical Appendix)

Tight type derivations for useful inert terms and useful inert programs satisfy the exact same
typing properties—namely, the one discussed above; we prove it first for useful inert terms given
that useful inert programs build on them:

Lemma 9.1.3 (Typing properties of useful inert terms).
Let Φ ▷U Γ ⊢(m,e,r) i+ :M such that tightΓ(a(i+)).
Then (m, e, r) = (0, 0, |i+|nd), dom(Γ) = nv(i+), tight(Γ), and M ∈ Inert.

(Click here to see the complete proof in the Technical Appendix)

What do types say about generalized variables? In the study of the operational properties
of Useful Open CbNeed, we defined generalized variables separately from useful inert expressions.
Remarkably, this is coherent with our type-theoretical study of Useful Open CbNeed: we shift from
having hypotheses on the type derivations defined in terms of the needed variables in the open case,
to defining them in terms of the applied variables in the useful case. This shift in the assumptions
of the type derivations can be successfully applied precisely because generalized variables have been
separated from the characterization by the uinert predicate: on the one hand, Lemma 8.2.4 (Prop-
erties of generalized variables) shows that generalized variables have no applied variables; on the
other hand, useful inert expressions always do, as their hereditary head variables are applied—by
Lemma 8.2.3 (Properties of useful inert terms) and Lemma 8.2.6 (Properties of useful inert pro-
grams). Therefore, we study the typing properties of generalized variables separately:

Lemma 9.1.4 (Typing properties of generalized variables).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that genVarx(p).
Then dom(Γ) = nv(p) = {x} and Γ(x) = M . Moreover, if M ∈ Tight then (m, e, r) = (0, 0, |p|nd).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of genVarx(p).

Typing properties of useful inert programs and of useful abstraction programs, when
they are based on generalized variables. Let us explain the consequences of Lemma 9.1.4
with a few of examples:

117

First, let us take p := (x, [x←y][y←zz]), which satisfies that uinert(p) by the following derivation:

genVary(x, [x←y])
GVAX

uinert(x, [x←y][y←zz])
IGV

Say, moreover, that Φ ▷U Γ ⊢(m,e,r) (x, [x←y][y←zz]) :M is a tight type derivation obtained as
follows:

Ψ ▷U Π; y :O ⊢(m′,e′,r′) (x, [x←y]) :M Θ ▷U z :N ⊢(m′′,e′′,r′′) zz :O

Π; z :N ⊢(m′+m′′,e′+e′′,r′+r′′) (x, [x←y][y←zz]) :M
ES

where Γ = Π; z :N and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
As explained above, we are faced here with the challenge of proving that the indices in Φ are

the expected ones—i.e., that (m, e, r) = (0, |(x, [x←y][y←zz])|nd, 0)—under the assumption that
Γ is tight. This requires proving that (m′, e′, r′) = (0, 0, |(x, [x←y])|nd), on the one hand, and
(m′′, e′′, r′′) = (0, 0, |zz|nd), on the other hand. How do we succeed in proving this?

First, by noting that Lemma 9.1.4 (Typing properties of generalized variables) on Ψ gives
that Π = ∅, that O = M ∈ Tight—by the assumption that Φ is tight—and that (m′, e′, r′) =
(0, 0, |(x, [x←y])|nd). Thus, refining Φ with these new conclusions, we see that it is derived as
follows:

Ψ ▷U y :M ⊢(0,0,|(x,[x←y])|nd) (x, [x←y]) :M Θ ▷U z :N ⊢(m′′,e′′,r′′) zz :M

z :N ⊢(m′′,e′′,|(x,[x←y])|nd+r′′) (x, [x←y][y←zz]) :M
ES

Finally, we need to prove that Θ is minimal as well. For this, note that z ∈ a(x, [x←y][y←zz])
and that zz is a useful inert term. Moreover, note that tightΓ(a(p))—since tight(Γ) by assumption—
and so tightz :N(a(zz)), allowing us to apply Lemma 9.1.3 (Typing properties of useful inert terms)
on Θ to conclude that (m′′, e′′, r′′) = (0, 0, |zz|nd).

This example represents roughly how the minimality of a tight type derivation is proven for
useful inert programs built from generalized variables. But, what happens when the program under
consideration is instead a useful abstraction program, also built from a generalized variable?

Let us take now q := (x, [x←y][y←λz.t]), for which we can derive:

genVary(x, [x←y])
GVAX

uinert(x, [x←y][y←λz.t])
IGV

Following a similar reason to the one used for p above—i.e., applying Lemma 9.1.4 (Typing
properties of generalized variables)—a type derivation for q must be of the following form:

Ψ ▷U y :M ⊢(0,0,|(x,[x←y])|nd) (x, [x←y]) :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) λz.t :M

∆ ⊢(m′′,e′′, |(x,[x←y])|nd+r′′) (x, [x←y][y←λz.t]) :M
ES

This time, inferring the minimality of Φ under the assumption that it is tight requires a dif-
ferent reasoning on sub-type derivation Θ: since we know that M ∈ Tight, we can conclude
that Θ is minimal by application of Lemma 9.1.2 (Typing properties of values), getting that
(m′′, e′′, r′′) = (0, 0, |λz.t|nd).

Now that we have explained more concretely what the set of hypotheses in each case should be,
given the technicalities at play in each of them, let us proceed to present the properties. Building
on Lemma 9.1.4, we now give the typing properties of useful abstraction programs:

118

Lemma 9.1.5 (Typing properties of useful abstraction programs).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that
• uabs(p), and
• M ∈ Tight.

Then (m, e, r) = (0, 0, |p|nd), dom(Γ) = nv(p), and M ∈ Abs.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of genVarx(p).

Finally, the one for useful inert programs, which also builds on Lemma 9.1.4. Note that the
typing properties of useful inert terms and useful inert programs are morally the same, where the
one for programs is based on the one for terms:

Lemma 9.1.6 (Typing properties of useful inert programs).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that
• uinert(p),
• tightΓ(a(p)).
Then (m, e, r) = (0, 0, |p|nd), dom(Γ) = nv(p), tight(Γ), and M ∈ Inert.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of uinert(p).

Having proven separate typing properties for each of the three predicates that characterize
Useful Open CbNeed-normal forms—under the assumption that Proposition 8.2.7 (Syntactic char-
acterization of Useful Open CbNeed-normal forms) holds—we can finally prove the following

Proposition 9.1.7 (Typing properties of Useful Open CbNeed-normal forms).
Let p ∈ PR be such that unorm(p), and let Φ ▷U Γ ⊢(m,e,r) p :M be a tight type derivation for it.
Then (m, e, r) = (0, 0, |p|nd) and dom(Γ) = nv(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By case analysis on whether genVar#(p), uabs(p) or uinert(p), according to what is given by

Lemma 8.2.1 (Disjointness of generalized variables, useful abstraction programs and useful inert
programs).

Linear Substitution. Let us consider the Substitution property in the Useful Open CbNeed. We
only provide the statement here, and proceed to prove this entire part in the Appendix.

Once again, we first need to cover the term contexts cases before lifting the properties to program
contexts. As expected, we only study linear substitution concerning applicative term contexts
and exponential evaluation contexts, namely because it is inside those contexts that values are
substituted for variables in the useful case.

The approach used here is consistent with the rest of this chapter: we assume that term contexts
and exponential contexts satisfy certain conditions regarding only their sets of applied variables.

119

Lemma 9.1.8 (Linear Substitution for Useful Open CbNeed).
1. Let H@ be such that x /∈ a(H@), and let

Φ ▷U Γ;x :M ⊢(m,e,r) H@⟨x⟩ :N

be such that M,N ̸= 0, and tightΓ(a(H@)).
Then there exists a splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every Ψ ▷U Π ⊢(m′,e′,r′)

v :M1 there exists

Θ ▷U

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) H@⟨v⟩ :N

2. Let P ∈ E@U ,A such that x /∈ A and x /∈ dom(P), and let

Φ ▷U Γ;x :M ⊢(m,e,r) P ⟨x⟩ :N

be such that M,N ̸= 0, and tightΓ(A).
Then there exists a splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every type derivation
Ψ ▷U Π ⊢(m′,e′,r′) v :M1 there exists a type derivation

Θ ▷U

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) P ⟨v⟩ :N

Proof. (Click here to see the complete proof in the Technical Appendix)
1. By structural induction on H.
2. By structural induction on P .

By Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system), it is safe to assume, in
both items of Lemma 9.1.8 (Linear substitution for Useful Open CbNeed) above, that x /∈ dom(Π)
in Ψ ▷U Π ⊢(m′,e′,r′) v :M1. The reason is that Lemma 9.1.8 is only used when proving Proposi-
tion 9.1.10.2 (Quantitative Subject Reduction for Useful Open CbNeed). That is, the context in
which Lemma 9.1.8 is used is when we consider the substitution of a variable x bound by an explicit
substitution of the form [x←v]. Thus, α-conversion allows us to safely assume that x /∈ nv(v), while
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system) gives us that x /∈ dom(Π).

Next, we move on to prove the required Subject Reduction property. Once again, we first prove
the properties for term contexts and then prove them for program contexts on top of the ones for
term contexts.

Lemma 9.1.9 (Quantitative Subject Reduction for →um in term contexts).
Let Φ ▷U Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M such that tightΓ(a(H)). Then m ≥ 1 and there exists Φ′ ▷U

Γ ⊢(m−1,e,r) (H⟨u⟩, [x←s]) :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on H.

Proposition 9.1.10 (Quantitative Subject Reduction for Useful Open CbNeed).
Let Φ ▷U Γ ⊢(m,e,r) p :M be a tight type derivation.

120

1. Multiplicative: if p →um p′, then m ≥ 1 and there exists a type derivation Φ′ ▷U Γ ⊢(m−1,e,r)
p′ :M .

2. Exponential: if p→ue p
′, then e ≥ 1 and there exists a type derivation Φ′ ▷U Γ ⊢(m,e−1,r) p′ :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on P ∈ EU ,A such that p = P ⟨s⟩ →um P ⟨s′⟩ = p′,

using Lemma 9.1.9 (Quantitative Subject reduction for →um in term contexts) for the base case.
The exponential case is proven by induction on P ∈ E@U ,A such that p = P ⟨x⟩ →ue P ⟨vα⟩ = p′

and p(x) = v, using Lemma 9.1.8 (Linear Substitution for Useful Open CbNeed) for the base case.

It is interesting to remark here that the proof of both items in Proposition 9.1.10 is obtained
by weakening the assumptions on Φ, namely by only assuming that tightΓ(A) instead of tight(Γ).
This is similar to what we did in the proof of Proposition 7.1.6 (Quantitative Subject Reduction
for Open CbNeed)—where we only assume that inertΓ(V), with Γ ∈ EV .

Finally,

Theorem 9.1.11 (Tight Correctness for Useful Open CbNeed).
Given p ∈ PR and a tight type derivation Φ ▷U Γ ⊢(m,e,r) p :M , there exists q ∈ PR such that

1. q is in →und-normal form,
2. there exists a reduction sequence d : p −→∗und q, and
3. (m, e, r) = (|d|m, |d|e, |q|nd).
4. dom(Γ) = nv(q).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the sum m+ e, proceeding by case analysis on whether p →und-reduces or not.

If it is in →und-normal form, then the statement follows by Proposition 9.1.7 (Typing properties
of Useful Open CbNeed-normal forms). Instead, if p →und-reduces, then the statement follows by
Proposition 9.1.10 (Quantitative Subject Reduction for Useful Open CbNeed) and then by applica-
tion of the i.h..

9.1.3 Useful Open CbNeed completeness
Tight typability of programs in Useful Open CbNeed-normal form. As we noticed in
Chapter 8 (Useful Open CbNeed), usefulness induces a very delicate and technical notion of normal
forms. This gets especially reflected at the level of the type system in the completeness part, where
many technicalities show up.

The goal for the completeness part is to show that, for every program which Useful Open CbNeed-
normalizes there exists a tight type derivation. As a base case for this, we need to prove that every
program in Useful Open CbNeed-normal form can be given a tight type derivation; this is proven
separately for each category of Useful Open CbNeed-normal forms. But proving the tight typability
of useful inert programs requires a delicate treatment on the variables in the domain of the type
context.

To understand why, let us first recall that tight type derivations in the Open CbNeed multi
type system are, in particular, defined to have a type context that only assigns variables to multi

121

types in the Inert class. For example, consider an inert program p, and note that the tight type
derivation Φ ▷O Γ ⊢(m,e,r) p :M given for it in Proposition 7.1.9 (Tight typability of Open CbNeed-
normal forms) is such that dom(Γ) = nv(p) and Γ is inert. That is, if nv(p) = {x1, . . . , xn} then
Γ = {x1 :M1; . . . ;xn :Mn}, where M1, ..,Mn ∈ Inert. Hence, while the precise cardinality of each
one of M1, ...,Mn may vary, the structure remains the same: they are all in Inert.

This shall not be the case for Useful Open CbNeed. Namely, if q is a useful inert program, then
we shall give it a tight type derivation Ψ▷UΠ ⊢(m

′,e′,r′) q :N such that dom(Π) = nv(q) and Π is tight.
This means that, if nv(q) = {y1, . . . , yn} then Π = {y1 :N1; . . . ; yn :Nn}, where N1, .., Nn ∈ Tight.
In fact, we shall see that type contexts are a bit more limited than this: while indeed Γ(x) ∈ Tight
for every x ∈ ul (p), it happens that every x ∈ a(p) shall be proven to satisfy that Γ(x) ∈ Inert1.

In this sense, the useless variables enjoy a greater degree of freedom with respect to applied
ones. And this shall be incarnated in the form of what we call choice functions, which are functions
of the form f : V → {Inert,Abs}, where V is a set of variables. Thus, given a useful inert program
p, we shall use choice functions to generalize the tight type derivation that we give for p. That
is, for every f : ul (p) → {Inert,Abs}, we shall give a tight type derivation Θ ▷U ∆ ⊢(m′′,e′′,r′′) p :O
satisfying that ∆(x) ∈ Tight for every x ∈ ul (p), and that ∆(x) ∈ Inert for every x ∈ a(p).

To conclude, let us consider an example of the way choice functions are used when deriving tight
type derivations for useful inert programs. First, let p := (x y, [y←z z]) and q := (x y, [y←λz.z]).
Note that y is bound in p to inert term z z, while it is bound in q to value λz.z; these are two
significantly distinct categories of normal terms. Next, note that a tight type derivation for p must
be of the following form

M ∈ Inert

x :M ⊢(0,0,0) x :M
axT

y : [inert] ⊢(0,0,0) y : [inert]
axT

x :M ; y : [inert] ⊢(0,0,1) x y :M
appi

x :M ; y : [inert] ⊢(0,0,1) (x y, ϵ) :M
Lift

z : [inert] ⊢(0,0,0) z : [inert]
axT

O ∈ {[inert], [abs]}
z :O ⊢(0,0,0) z :O

axT

z : ([inert] ⊎O) ⊢(0,0,1) z z : [inert]
appi

x :M ; z : ([inert] ⊎O) ⊢(0,0,2) (x y, [y←z z]) :M
ES

while a tight type derivation for q must be of the following form
M ∈ Inert

x :M ⊢(0,0,0) x :M
axI

y : [abs] ⊢(0,0,0) y : [abs]
axI

x :M ; y : [abs] ⊢(0,0,1) x y :M
appi

x :M ; y : [abs] ⊢(0,0,1) (x y, ϵ) :M Lift
∅ ⊢(0,0,0) λz.z : abs abs

∅ ⊢(0,0,0) λz.z : [abs]
many

x :M ⊢(0,0,2) (x y, [y←z z]) :M
ES

It is particularly interesting to notice that both sub-type derivations for (x y, ϵ), namely those end-
ing in type judgements x :M ; y : [inert] ⊢(0,0,1) (x y, ϵ) :M and x :M ; y : [abs] ⊢(0,0,1) (x y, ϵ) :M , are
tight type derivations, but that their type contexts are different. And most importantly, they are
both needed: one to provide a tight type derivation for p, and the other one to provide a tight type
derivation for q.

Let us now present the Lemmas, leaving further technicalities for the Appendix.

Lemma 9.1.12 (Tight typability of values).
Let v ∈ Val and M ∈ Abs. Then there exists tight type derivation Φ ▷U Γ ⊢(0,0,|v|nd) v :M such

that dom(Γ) = nv(v).
1Recall that nv(p) = u(p) ∪ a(p), by Lemma 8.1.1 (Unapplied, applied and needed variables), which may be

rewritten as nv(p) = ul (p) ∪ a(p).

122

(Click here to see the complete proof in the Technical Appendix)

Lemma 9.1.13 (Tight typability of useful inert terms).
Let i+ be a useful inert term, M ∈ Inert, and f : ul (i+) → {Inert,Abs} be a choice function.

Then there exists
• type context Γ such that dom(Γ) = a(i+) and inert(Γ);
• type context Π such that dom(Π) = ul (i+) and Π(z) ∈ f(z), for every z ∈ dom(Π);
• tight type derivation Φ ▷U Γ;Π ⊢(0,0,|i+|nd) i+ :M .

(Click here to see the complete proof in the Technical Appendix)

Lemma 9.1.14 (Tight typability of generalized variables).
Let p ∈ PR be such that genVar#(p) and M ∈ Tight. Then there exists tight type derivation

Φ ▷U Γ ⊢(0,0,|p|nd) p :M such that dom(Γ) = nv(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of genVar#(p).

Lemma 9.1.15 (Tight typability of useful abstraction programs).
Let p ∈ PR be such that uabs(p). Then there exists tight type derivation Φ▷U Γ ⊢(0,0,|p|nd) p : [abs]

such that dom(Γ) = nv(p).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of uabs(p).

Lemma 9.1.16 (Tight typability of useful inert programs).
Let p ∈ PR be such that uinert(p), and let f : ul (p) → {Inert,Abs} be a choice function. Then

there exists
• type context Γ such that dom(Γ) = a(p) and inert(Γ);
• type context Π such that dom(Π) = ul (p) and Π(z) = f(z), for every z ∈ dom(Π);
• tight type derivation Φ ▷U Γ;Π ⊢(0,0,|p|nd) p : [inert].

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the derivation of uinert(p).

Finally, we get the desired

Proposition 9.1.17 (Tight typability of Useful Open CbNeed-normal forms).
Let p ∈ PR be such that unorm(p). Then there exists a tight type derivation Φ▷UΓ ⊢(0,0,|p|nd) p :M

such that dom(Γ) = nv(p).

123

Proof. (Click here to see the complete proof in the Technical Appendix)
By Lemma 8.2.1 (Disjointness of generalized variables, useful abstraction programs and useful

inert programs), either genVar#(p), uabs(p) or uinert(p). The statement follows by induction on the
derivation of each of these predicates, proceeding by case analysis on the last derivation rule.

The removal Lemma takes the expected shape:

Lemma 9.1.18 (Linear Removal for Useful Open CbNeed).
Let x ∈ Var and v ∈ Val such that x /∈ fv(v).

1. Let H@ be such that x /∈ a(H@), and let

Φ ▷U Γ;x :M ⊢(m,e,r) H@⟨v⟩ :N

be such that N ̸= 0, and tightΓ(a(H@)).
Then there exist type derivations

Ψ ▷U Π ⊢(m′,e′,r′) v :O
Θ ▷U ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) H@⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).
2. Let P ∈ E@U ,A be such that x /∈ (A ∪ dom(P)) and fv(v) ∩ dom(P) = ∅, and let

Φ ▷U Γ;x :M ⊢(m,e,r) P ⟨v⟩ :N

be such that N ̸= 0, and tightΓ(A).
Then there exist multi type O ̸= 0 and type derivations

Ψ ▷U Π ⊢(m′,e′,r′) v :O
Θ ▷U ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) P ⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).

Proof. (Click here to see the complete proof in the Technical Appendix)
1. By structural induction on the applicative term context H@.
2. By structural induction on the exponential evaluation context P ∈ E@U ,A.

Unsurprisingly, it is first required to prove a subject expansion Lemma regarding term con-
texts before lifting the result to the general →und case. This is analogous to what happens in the
Subject Expansion for Open CbNeed2 and what happens in the Subject Reduction property for
Useful Open CbNeed3.

2See Proposition 7.1.12 (Quantitative Subject Expansion for Open CbNeed), which builds on Lemma 9.1.19
(Quantitative Subject Expansion for →om in term contexts).

3See Proposition 9.1.10 (Quantitative Subject Reduction for Useful Open CbNeed), which builds on Lemma 9.1.9
(Quantitative Subject Reduction for →um in term contexts).

124

Lemma 9.1.19 (Quantitative Subject Expansion for →um in term contexts).
Let Φ ▷U Γ ⊢(m,e,r) (H⟨u⟩, [x←s]) :M such that tightΓ(a(H)). Then there exists Φ′ ▷U Γ ⊢(m+1,e,r)

H⟨(λx.u)s⟩ :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on H.

Proposition 9.1.20 (Quantitative Subject Expansion for Useful Open CbNeed).
Let Φ′ ▷U Γ ⊢(m,e,r) p′ :M be a tight type derivation.

1. Multiplicative: if p→um p′, then there exists a type derivation Φ ▷U Γ ⊢(m+1,e,r) p :M .
2. Exponential: if p→ue p

′, then there exists a type derivation Φ ▷U Γ ⊢(m,e+1,r) p :M .

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative case is proven by induction on P ∈ EU ,A such that p = P ⟨s⟩ →um P ⟨s′⟩ = p′,

using Lemma 9.1.19 (Quantitative Subject Expansion for →um in term contexts) for the base case.
The exponential case is proven by induction on P ∈ E@U ,A such that p = P ⟨x⟩ →ue P ⟨vα⟩ = p′

and p(x) = v, using Lemma 9.1.18 (Linear Removal for Useful Open CbNeed) for the base case.

Finally,

Theorem 9.1.21 (Tight Completeness for Useful Open CbNeed).
Given p ∈ PR such that d : p −→∗und q for some q in →und-normal form, there exists a tight type

derivation Φ ▷U Γ ⊢(|d|m,|d|e,|q|nd) p :M where dom(Γ) = nv(q).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the length of the →und-normalizing sequence starting in p. The base case is

covered by Proposition 9.1.17 (Tight typability of Useful Open CbNeed-normal forms), while the
inductive one is given by application of the i.h. followed by Proposition 9.1.20 (Quantitative Subject
Expansion for Useful Open CbNeed).

9.1.4 Useful Open CbNeed semantics
Following the reasonings given in Subsect. 7.1.3 (Open CbNeed semantics, page 97), let us define
the semantics of p for x⃗ with respect to the Useful Open CbNeed type system as

[[t]]Useful Open CbNeed
x⃗ := {((M1, . . . ,Mn),M) | ∃Φ ▷U x1 :Mn; . . . ;xn :Mn ⊢(m,e,r) p :M , with Φ tight}

Note that this restricted version of the Useful Open CbNeed semantics is such that:
• It is invariant, by Proposition 9.1.10 (Quantitative Subject Reduction for Useful Open CbNeed)

and Proposition 9.1.20 (Quantitative Subject Expansion for Useful Open CbNeed).
• It is also adequate, by Theorem 9.1.11 (Tight Correctness for Useful Open CbNeed)

and Theorem 9.1.21 (Tight Completeness for Useful Open CbNeed).
• Unfortunately, it is not compositional, as explained in Sect. 3.2 (Properties of multi type

systems, page 28).

125

Chapter 10

Strong CbV

Introduction

Plotkin’s call-by-value λ-calculus [Plo75] is at the heart of programming languages such as OCaml
and proof assistants such as Coq. In the study of (functional) programming languages, call-by-value
evaluation is usually weak and closed. In previous chapters, we took both these constraints and
presented an elegantly framed version of a weak and closed CbV evaluation strategy, which we
simply called “CbV”—revisit Chapter 4 (CbN, CbV and CbNeed) for the operational account of
CbV, and Sect. 5.3 (Multi type system for CbV) for its type-theoretical account. Other names have
been given to our CbV, like “Closed CbV” in [AG16].

Despite the utility this seemingly ideal setting of CbV may have—in particular in the functional
programming languages world—one often needs to go beyond it. For instance, we may extend the
definition of the reduction relation by including open terms. This has been called many different
names; we use “Open CbV” here, following again the terminology in [AG16] where the authors
present four different proposals for a CbV evaluation strategy working on open terms, all of which
are shown to be “slightly different incarnations of the same immaterial setting”, namely Open CbV,
given that they are all termination-equivalent and all their normalizing reduction sequences have
the same number of steps. The strategies they relate are the following

1. Accattoli and Paolini’s Value Substitution Calculus [AP12], which is a term syntax for the
proof-nets representation of Λ-terms according to the CbV translation to Linear Logic.

2. Carraro and Guerrieri’s shuffling calculus [CG14], used to provide the first semantical char-
acterization of solvable terms in a relational model.

3. Paolini and Ronchi Della Rocca’s (unnamed) reduction relation extending call-by-value to a
setting where terms may have free variables [PR99]. It was later reintroduced by Accattoli
and Sacerdoti Coen as the fireball calculus in their [AS15] and used to study cost models.
Furthermore, Grégoire and Leroy rediscovered it when improving the implementation of the
Coq proof assistant in [GL02].

4. The value sequent calculus, the intuitionistic and CbV sub-calculus of Curien and Herbelin’s
λµµ̃-calculus [CH00].

It should be remarked here that Open CbV remains a weak strategy, as reduction does not take
place under λ-abstractions. One may then go a step further and define the reduction relation on
possibly open terms and under λ-abstractions—i.e., strong reduction, as discussed in Subsect. 2.1.5
(Degrees of generality in β-reduction)—which we here present as “Strong CbV”. It is a carefully
designed extension of (weak and close) CbV to strong reduction acting on possibly open ΛL-terms,

126

bearing an exact quantitative correspondence with its semantics—as we shall see in Chapter 11
(Multi types for Strong CbV).

The need for Strong CbV arises, most notably, when describing the implementation model of the
Coq proof assistant—as done by Grégoire and Leroy in [GL02]—but also from other motivations,
such as denotational semantics [AP12; CG14; PR99; RP04], monad and continuation-passing style
translations [DL07; HZ09; Mog89; SF93; SW97], bisimulations [Las05], partial evaluation [JGS93],
Linear Logic proof nets [AG17], or cost models [AS15].

Unfortunately, it is well known that Plotkin’s call-by-value λ-calculus has issues when reduction
can take place under λ-abstractions and terms may be open. In this chapter, we give an operational
account of Strong CbV, which turns out to be a successful embodiment of such an extension of
Plotkin’s call-by-value λ-calculus to possibly open terms and reduction going under λ-abstractions;
the semantical studies of Strong CbV are left for next chapter.

More concretely put, we present here a Strong CbV-normalizing evaluation strategy →s, in the
sense that →s reaches a Strong CbV-normal form whenever there exists one. Moreover, our pre-
sentation of Strong CbV happens to be a conservative extension of Open CbV—that is, Open CbV
reduction is a subset of Strong CbV, and the properties proven for the latter hold also for the
former.

Let us clarify a point before continuing. A (weak) value is a λ-abstraction. In CbV, β-redexes
can be fired only when the argument is a value, and values are CbV-normal forms; close CbV
can thus be seen as a call-by-normal-form strategy. A similar property can be recovered also in
Open CbV, although doing so is considerably delicate; this is discussed in the following Sect. 10.1
(Variants of Open CbV). In Strong CbV, however, such an essence is lost. To see why, let Ω denote
the well-known diverging Λ-term, and note that

• Not all λ-abstractions are Strong CbV-normal forms. For instance, λx.Ω diverges in
Strong CbV, as it keeps reducing Ω indefinitely.

• (λy.z) Ω is Strong CbV-weakly normalizing but not Strong CbV-strongly normalizing: there
exists a Strong CbV-normalizing reduction sequence consisting in reducing the outermost β-
redex1, and a Strong CbV-divergent reduction sequence consisting in constantly reducing the
function argument Ω.

In other words, in a strong setting, the function argument need not be fully Strong CbV-normalized,
but only reduced to a (weak) value. This feature is mandatory to be conservative over CbV and
Open CbV.

10.1 Variants of Open CbV
In the call-by-name case, defining the reduction relation on possibly open terms and going under
λ-abstractions is harmless, the reason being that CbN does not impose function arguments of β-
redexes to have any special form.

On the contrary, in the case of CbV-like strategies, even only turning to open terms—that is,
even without going into strong reduction—is already delicate, in particular due to the fact that
function arguments need to be reduced before contracting a β-redex. For instance, let us denote the
extension of Plotkin’s call-by-value λ-calculus to open Λ-terms by the reduction relation →βOCbV

,
1As a matter of fact, there exist infinitely many, different Strong CbV-reduction sequences reaching a normal

form. Namely, the ones reducing Ω a finite number of steps and then finally reducing the outermost β-redex to z.

127

and consider (λx.x)(y(λz.z)) ∈ Λ: the function argument (y(λz.z)) possesses no β-redexes and is
thus in normal form, but since it is an application instead of a λ-abstraction, then →βOCbV

is not
defined for β-redexes like (λx.x)(y(λz.z)). This extension is in fact dubbed “naïve” by the authors
in [AG16]; they replace the naïve extension by the more general (and correct) Open CbV, giving an
operational account of it2. The same authors provide a semantical account of Open CbV in their
[AG18], using the same approach we use throughout this work: multi type systems.

Needless to say, correctly extending Open CbV in [AG16] to strong reduction is even harder
to achieve. While some fundamental properties, such as confluence and standardization, hold also
in such cases—as showed by Plotkin’s himself [Plo75]—others break as soon as one considers open
terms. As pointed out by Paolini and Ronchi Della Rocca [Pao01; PR99; RP04], denotational
semantics that are adequate3 for (weak and close) CbV are no longer adequate for the extended set-
tings. Roughly, there are terms that are semantically divergent—that is, terms whose interpretation
is the bottom of the domain, which represents the divergent terms of the strategy—while they are
normal forms with respect to Plotkin’s rules—and should thus have a non-bottom interpretation.

The discrepancy can be seen from a logical viewpoint. These terms diverge also if seen as
(recursively typed) Linear Logic proof nets, as pointed out by Accattoli [Acc15], or as terms in the
computational interpretation of sequent calculus due to Curien and Herbelin [CH00]. One may even
trace the problems of CbV to Plotkin’s seminal paper, where he points out an asymmetry between
CbN and CbV with respect to continuation-passing style translations. This fact led to a number of
studies [DL07; HZ09; Mar+99; Mog89; SF93; SW97] that introduced many proposals of improved
calculi for CbV.

It is interesting to comment here that the operational and semantical accounts given by Accattoli
and Guerrieri in [AG16] and semantical [AG18], respectively, is complemented by the implementative
studies in [AG17] studies given by the same authors. All these different way of looking at Open CbV
have, moreover, been successfully connected at a quantitative level:

• The size of (a class of) type derivations in the multi type system in [AG18] matches exactly
the length of Open CbV-normalizing reduction sequences, and

• The GLAMOUr abstract machine in [AG17] is reasonable with respect to Open CbV.

10.2 The Value Substitution Calculus
Here we define the Accattoli and Paolini’s Value Substitution Calculus [AP12] (shortened to VSC)
and a new evaluation strategy, defined with the VSC as its framework, called the Strong CbV evalu-
ation strategy. The idea of the Value Substitution Calculus, as any other LSC, is that β-contraction
is decomposed via ESs—that is, the multiplicative step—and that the by-value restriction on eval-
uation is on the substitution rule—that is, the exponential step. This is an alternative to what we
discussed above with respect to the implementation of the by-value restriction: if the restriction
were instead imposed on β-contraction—as is the case in (weak and close) CbV, where function ar-
guments have to be λ-abstractions—then we would encounter the same problems as in Open CbV:
stuck β-redexes.

2Therein, the authors call β-redexes like (λx.x)(y(λz.z))—for which the reduction relation is not defined—stuck
β-redexes.

3Recall that a semantics is adequate when the interpretation of an expression is not the bottom of the domain
if and only if the term normalizes. Note that for a CbV semantics, adequacy is somewhat mandatory, as any
semantics for CbN provides a non-adequate semantics for CbV—interpreting a term with its CbN-interpretation if
it CbV-normalizes and with bottom if it does not CbV-normalize—which does not model the CbV behavior.

128

The VSC has a strong connection with Linear Logic proof nets, from which some of the termi-
nology is taken [Acc15], and induces a peculiar use of evaluation contexts in the rewriting rules.

A delicate point is whether to consider variables as values. If they are not, abstract machines are
faster—see [AS14]. We treat both cases, excluding variables from values but adding a postponable
rule for substituting variables.

10.2.1 Terms and rewriting rules
As expected, the syntax for terms is simply the ΛL-terms. Let us recall the definition of LSC and
substitution evaluation contexts, with which we provide a definition for the VSC :

LSC evaluation contexts D,D′ ::= ⟨·⟩ | Dt | tD | λx.D | D[x←t] | t[x←D]
Substitution contexts S, S ′ ::= ⟨·⟩ | S[x←t]

As usual, the rewriting rules are first defined at top level in the form of multiplicative and exponential
root-steps, and then closed by (LSC) evaluation contexts. Much like (weak and close) CbV, both
root-steps work up to a substitution context S—in other words, up to sharing.

One big difference with respect to CbV, however, is that in the VSC we distinguish two
exponential—that, substitution—rules, one for values and one for variables. This corresponds to
the fact that in the VSC the substitution process applies both for variables and values. These are
known in the literature as theoretical values4:

Theoretical values vT, wT := Var ∪ Val

Let us now give the reduction relations of the VSC :

Multiplicative S⟨λx.t⟩u 7→m S⟨t[x←u]⟩
Exponential steps for values t[x←S⟨v⟩] 7→eλ S⟨t{x←v}⟩

Exponential steps for variables t[x←S⟨y⟩] 7→evar S⟨t{x←y}⟩

Contextual closure
t 7→a t

′
a ∈ {m, eλ, evar}

D⟨t⟩ →a D⟨t′⟩

Notations →e := →eλ ∪ →evar

→vscλ := →m ∪ →eλ

→vsc := →vscλ ∪ →evar = →m ∪ →e

It is important to notice that the substitution process in Strong CbV is implemented in a meta-level
fashion, and separately for variables in →evar and for λ-abstractions in →eλ .

Conforming to all the previous definitions of sizes for reduction sequences, given d : t→vsc u we
write |d| for the length of d and |d|a for the number of →a steps in d, for every a ∈ {m, eλ, evar}.

The split in the exponential reduction relation into →eλ and →evar is motivated by the following
postponement property, and by the fact that →evar is trivially strongly normalizing.

4For more on theoretical values, see for example Accattoli and Sacerdoti Coen’s [AS14]. The authors provide
therein a comparison of the impact on efficiency when defining the substitution process in terms of theoretical values—
that is, Var ∪ Val—or with respect to practical values—which are simply Val and for which we may sometimes avoid
the word practical altogether. Note that we have defined the substitution processes of all our evaluation strategies
in this work, except for the one for VSC , to only act on practical values.

129

Proposition 10.2.1 (Irrelevance of →evar).
Let d : t −→∗vscu. Then there is d′ : t −→∗vscλ −→

∗
evaru with |d′|m = |d|m.

Moreover, →vscλ is weakly normalizing (resp. strongly normalizing) on t if and only if →vsc is
weakly normalizing (resp. strongly normalizing) on t.

(Click here to see the complete proof in the Technical Appendix)

The following is due to Accattoli and Paolini [AP12]:

Theorem 10.2.2 (Confluence of →vsc).
→vsc is confluent.

VSC -normal forms are similar to normal forms of the LSC, except that they can only have ES
containing strong inert terms:

Strong inert terms is ::= x | isfs | is[x←js]
strong values vs ::= λx.fs

Strong fireballs fs ::= is | vs | fs[x←is]

A strong inert term is compound if it is of the form S⟨isfs⟩, and a strong fireball is super if its
ESs only contain compound strong inert terms. Note that strong inert terms can be written as
(. . . ((xt1)t2) . . .)tn, with n ≥ 0; we call x the head variable of the term. Finally, let us point out one
of the key properties of strong inert terms: the application ist of any t ∈ ΛL to is does not create
any new multiplicative-redexes other than the ones in t.

Proposition 10.2.3 (Syntactic characterization of VSC-normal forms).
Let t ∈ ΛL. t is in →vscλ-normal form (resp. →vsc-normal form) if and only if t is a strong

fireball (resp. strong super fireball).

Proof. (Click here to see the complete proof in the Technical Appendix)
All the proofs of this proposition proceed by structural induction on t.

10.2.2 Structural Equivalence
The theory of the VSC comes with a notion of structural equivalence ≡, that equates terms differing
only for the position of ES. The basic idea is that the action of an ES taking part in an exponential
step depends on the position of the ES itself only for inessential details—as long as the scope
of binders is respected—and can thus be abstracted away. A strong justification comes from the
Linear Logic interpretation of the VSC, in which structurally equivalent terms translate to the same
(recursively typed) proof net—see [Acc15].

Structural equivalence ≡ is defined as the least equivalence relation on ΛL-terms closed by all
LSC evaluation contexts and generated by the following root cases:

t[y←s][x←u] ≡com t[x←u][y←s] if y /∈ fv(u) and x /∈ fv(s)
t s[x←u] ≡@r (ts)[x←u] if x ̸∈ fv(t)
t[x←u]s ≡@l (ts)[x←u] if x ̸∈ fv(s)

t[x←u[y←s]] ≡[·] t[x←u][y←s] if y ̸∈ fv(t)

Extending the VSC with ≡ results in a smooth system, as ≡ commutes with evaluation, and can
thus be postponed. Additionally, the commutation is strong, as it preserves the number and kind

130

of steps: we say that it is a strong bisimulation with respect to →vsc. In particular, the equivalence
is not needed to compute and it does not break, or make more complex, any property of the VSC.
Proposition 10.2.4 (Strong Bisimulation of ≡ and →vsc).

Let a ∈ {m, eλ, evar, sm, seλ, sevar}. If t ≡ u and t →a t′, then there exists u′ ∈ Λvsc such that
u→a u

′ and t′ ≡ u′.
(Click here to see the complete proof in the Technical Appendix)

Generally speaking, strong bisimulations interact very well with the underlying rewriting system:
they preserve normal forms and can be postponed at the end of an evaluation, without affecting
the number and the kind of steps.

10.3 The Strong CbV strategy
Similarly to the ordinary λ-calculus, the VSC is non-deterministic but confluent—its confluence is
proved in [AP12]. We now proceed to define the “strong” evaluation strategy→s in the setting of the
VSC that we show to be normalizing—that, a ΛL-term→s-reduces to its→vsc-normal form whenever
there exists one. Its role is analogous to the leftmost-outermost strategy of the λ-calculus—see
[AL16]. A notable difference, however, is that the strategy is itself non-deterministic, but in a
harmless way, as it is diamond. Something similar happens with the weak and closed CbV evaluation
strategy: it is defined as a non-deterministic reduction relation, which satisfies the diamond property,
in a Weak LSC setting—where reduction can take place anywhere except under λ-abstractions.

Our evaluation strategy relies heavily on rigid ΛL-terms, which are just like strong inert terms—
defined in Subsect. 10.2.1 (Terms and rewriting rules)—in that their shape is also (. . . ((xt1)t2) . . .)tn,
with n ≥ 0, except that there are no restrictions on t1, . . . , tn. Rigid terms are defined as follows:

Rigid terms r, r′ ::= x | rt | r[x←r′]

Note that strong inert terms are rigid. This fact is necessary in the technical development. Of
course, the converse does not hold: take for instance y (λx.δδ).

We now need the right notion of evaluation contexts for the Strong CbV evaluation strategy
→s. First, we define a notion of Open CbV evaluation context, that is used to define the open
evaluation strategy5. The Strong CbV evaluation strategy is finally obtained as the contextual
closure of the open evaluation strategy under strong evaluation contexts, the latter being defined by
mutual induction with rigid contexts:

Term evaluation contexts
Open D,D′ ::= ⟨·⟩ | Dt | tD | D[x←t] | t[x←D]

Strong S, S′ ::= ⟨·⟩ | λx.S | t[x←R] | S[x←r] | R
Rigid R,R′ ::= rS | Rt | R[x←r] | r[x←R]

Open strategy
t 7→a t

′

D⟨t⟩ →wa D⟨t′⟩
a ∈ {m, eλ, evar}

Strong strategy
t→wa t

′

S⟨t⟩ →sa S⟨t′⟩
a ∈ {m, eλ, evar}

5The Open CbV evaluation contexts in this chapter are not to be confused with the open evaluation contexts
from Chapter 6 (Open CbNeed), and similarly for the open evaluation strategy and the Open CbNeed one.

131

Notations →wλ
:= →wm ∪ →weλ →sλ := →sm ∪ →seλ

→w := →wλ
∪ →wevar →s := →sλ ∪ →sevar

→we := →weλ ∪ →wevar →se := →seλ ∪ →sevar

Given a reduction sequence d : t −→∗su, we note by |d| the length of d, with |d|λ the number of →sλ

in d, and by |d|m the number of →sm in d.

A crucial fact about the Strong CbV evaluation strategy is that →s is defined using →w, both
because the →w is the basis for →s and because the first production of strong evaluation contexts
is the context hole ⟨·⟩. Hence, all properties of→s are built over properties of→w. Nonetheless, we
omit statements specifically targeting →w, as they are taken from [AG16].

Another evident fact is that Strong CbV is non-deterministic. However, it enjoys the diamond
property:

Proposition 10.3.1 (Diamond property for Strong CbV).
→s is diamond.

(Click here to see the complete proof in the Technical Appendix)

With I the identity combinator, let us give a few examples showing what the →s evaluation
strategy is like:

1. Since →s is based on →w, then
• (I I)(I I)→s (z[z←I])(I I),
• (I I)(I I)→s (I I)(z[z←I]),
• (I I)[x←I I]→s (z[z←I])[x←I I], and
• (I I)[x←I I]→s (I I)[x←(z[z←I])].

2. Since x(I I) is a rigid term and λy.⟨·⟩ is a strong evaluation context, then (x(I I))(λy.⟨·⟩) is a
rigid evaluation context. Then it is also a strong evaluation context and so

(x(I I))(λy.I I)→s (x(I I))(λy.(z[z←I]))

3. Extending the previous example, note that t[x̃←(x(I I))(λy.⟨·⟩)] is a strong evaluation context.
Hence,

t[x̃←(x(I I))(λy.I I)]→s t[x̃←(x(I I))(λy.(z[z←I]))]

4. Since x̃x̃ is a rigid term, then (x(I I))(λy.⟨·⟩)[ỹ←x̃x̃] is a strong evaluation context. Then,

(x(I I))(λy.(I I))[ỹ←x̃x̃]→s (x(I I))(λy.(z[z←I]))[ỹ←x̃x̃]

Finally, in order to prove the normalization property of Strong CbV with respect to the VSC,
we need the following property:

Proposition 10.3.2 (Fullness of Strong CbV).
Let t ∈ ΛL. If t is in →sλ-normal form (resp. →s-normal form) then it is a strong fireball (resp.

a strong super fireball).

(Click here to see the complete proof in the Technical Appendix)

132

Chapter 11

Multi types for Strong CbV

Introduction

We now present a Linear Logic-based multi type system for Strong CbV, from which we obtain an
adequate and invariant semantics. We build on different type systems for call-by-value evaluation,
as well as standard typing techniques in the literature.

The very basis of a multi type system for Strong CbV is the CbV multi type system we presented
in Sect. 5.3 (Multi type system for CbV), which corresponds to the type system in Ehrhard’s [Ehr12],
where he provides an adaptation to Plotkin’s CbV λ-calculus of de Carvalho’s System R for CbN
[Car07; Car18]1.

Other works crucially contributing to the foundation of our Strong CbV system are Guerrieri’s
[Gue18] and Accattoli and Guerrieri’s [AG18]. Therein, the authors show that the same multi type
system presented by Ehrhard in [Ehr12] for weak and close call-by-value evaluation can be used to
characterize termination of Open CbV. In addition, it induces an adequate semantics, thus solving
the inadequacy issue of the naïve extension of Plotkin’s CbV λ-calculus to the open setting—see
the Introduction to Chapter 10 (Strong CbV).

Besides providing exact bounds to the number of steps to Open CbV-normal forms, Accattoli
and Guerrieri further use multi types type derivations to provide the exact size of Open CbV-normal
forms. This is a novel feature of the Open CbV system with respect to the system for (weak and
close) CbV, considering that the normal forms in the latter have a trivial size—since they are all
answers, as proven in Proposition 4.6.1.2 (Syntactic characterization of closed normal forms - CbV).

As far as typing techniques are concerned, we use the shrinking typing technique, following
the presentation given in [AGK20] for leftmost-outermost evaluation2, adapted to the Strong CbV
system. This technique is different from the notion of tight type derivations given for all of the
previous cases, and has proved to be useful in the lifting of the semantical study of Open CbV in
[AG18] into strong reduction. The name “shrinking” is due to the fact that we can ensure that type
derivations satisfying the shrinking constraint indeed shrink—that is, they decrease in size—at each
Strong CbV-step.

Furthermore, we use multi types to give our main operational result: the normalization of the
1More concretely, Ehrhard’s system is the one obtained by translating the CbV λ-calculus—in its Intuitionistic

Propositional Logic form, via de Curry-Howard correspondence—into Linear Logic, and then interpreting it according
to the relational semantics of Linear Logic. It is also strongly related to other denotational semantics for CbV based
on Linear Logic, such as Scott domains and coherent semantics.

2In fact, shrinking types have been extensively used in the literature to characterize leftmost evaluation; see for
instance [BKV17; Car18; Kri93].

133

→s strategy with respect to the Value Substitution Calculus.

11.1 Shrinkingness
We begin by giving the mutually recursive definition of linear and multi types adapted for the
Strong CbV multi type system:

Strong CbV linear types L,L′ ::= X |M ⊸ N

Strong CbV multi types M,N ::= [Li]i∈I (with I finite)

where X is any constant serving as a base or atomic type—besides the empty multi type 0, that is.
We can already see a key differentiating point between our linear and multi types and the ones for

Open CbV in [AG18; Gue18], namely the presence of the ground type X in ours. This is not to be
confused with the unavoidable role that tight constants play in the systems characterizing CbN, CbV
and CbNeed-normalization—see Chapter 5 (Multi types for CbN, CbV and CbNeed)—because the
class of type derivations isolated in the Strong CbV case is expressed in terms of shrinking types
instead, as announced in the Introduction to this chapter. The reason then for the presence of
constant X is that:

1. Any definition of shrinking types requires a type different from 0 to be used as a base/atomic
type, in particular for the positive atomic occurrences; see Definition 49 (Shrinkingness and
co-shrinkingness) below.

2. In Open CbV, normalizable and erasable terms coincide, and are all characterized by being
typable with 0. But this is not the case in Strong CbV—see the explanations on λx.Ω and
(λy.z)(λz.Ω) in the Introduction of Chapter 10 (Strong CbV).

Type systems which do not rely at all on constants in the isolation of a class of minimal type
derivations—that is, type derivations providing exact bounds on the normalization process—are
called “traditional”. The Strong CbV system in this chapter is one such system.

Of course, once we go beyond the idealistic setting of weak and close reduction, the isolation
of a class of type derivations providing minimal quantitative information in their indices becomes
considerably more difficult. We now proceed to give one for the Strong CbV system, which is based
on the idea that the empty multi type 0 should be restricted via a notion of polarity—namely,
positive and negative occurrences of types.

Definition 48 (Positive and negative occurrences of types).
Let A be a linear type, a multi type, or a type context. The sets Occ+(A) and Occ−(A) of

positive and negative occurrences in A are defined by mutual induction by (where L is a linear or a
multi type, ⊙,⊙ ∈ {+,−} and ⊙ ̸= ⊙):

L ∈ Occ+(L)
L ∈ Occ⊙(Li)

L ∈ Occ⊙([L1, . . . , Li, . . . , Ln])

L ∈ Occ⊙(M) or L ∈ Occ⊙(N)

L ∈ Occ⊙(M ⊸ N)

L ∈ Occ⊙(M) or L ∈ Occ⊙(Γ)

L ∈ Occ⊙(x :M,Γ)

Let us now define the class of type derivations providing minimal indices

134

Definition 49 (Shrinkingness and co-shrinkingness).
Let M be a multi type. Then
1. M is shrinking (resp. unitary shrinking) if |N | ≥ 1 (resp. |N | = 1) for all multi types

N ∈ Occ+(M);
2. M is co-shrinking (resp. unitary co-shrinking) if |N | ≥ 1 (resp. |N | = 1) for all multi types

N ∈ Occ−(M).
Additionally, type context Γ := x1 :M1; . . . ;xn :Mn is co-shrinking (resp. unitary co-shrinking)

if each Mi is co-shrinking (resp. unitary co-shrinking).
Finally, type derivation Φ ▷S Γ ⊢ t :M is shrinking (resp. unitary shrinking) if Γ is co-shrinking

(resp. unitary co-shrinking) and M is shrinking (resp. unitary shrinking).

For examples of (co-)shrinkingness, consider the following:
• 0 ∈ Occ−(0 ⊸ N) and N ∈ Occ+(0 ⊸ N). Hence, 0 ∈ Occ−([L1, . . . ,0 ⊸ N, . . . , Ln]) and

N ∈ Occ+([L1, . . . ,0 ⊸ N, . . . , Ln])
• M = [0 ⊸ [X,X], [X]] is a shrinking multi type. However, it is not unitary shrinking, because

[X,X] ∈ Occ+(M) but |[X,X]| = 2. And it is not co-shrinking either, because 0 ∈ Occ−(M)
but |0| = 0. Consequently, for any given shrinking type context Γ, we have that Γ

⊎
{x :M}

is shrinking, but it is not unitary (because M is not unitary) nor is it co-shrinking (because
M is not co-shrinking).

• Let Γ be co-shrinking but not unitary, M be non-shrinking, and N be unitary shrinking. Then,
Φ ▷S Γ ⊢(m,s) t :M is not shrinking (because M is not shrinking), and Ψ ▷S Γ ⊢(m′,s′) u :N is
shrinking but not unitary (because Γ is not unitary).

Finally, notice that unitary shrinkingness (resp. unitary co-shrinkingness) implies shrinkingness
(resp. co-shrinkingness), but the converse is false. Moreover, note that [X] is both unitary shrinking
and unitary co-shrinking, while 0 is unitary co-shrinking but not shrinking, and [0 ⊸ [X]] is unitary
shrinking but not co-shrinking.

While the most important notion to retain from Definition 49 is the one of (unitary) shrinking
type derivations, sometimes we shall relax this definition in order for inductions to go through
in proofs. For example, we shall see that while the Subject Reduction and Subject Expansion
properties for the Strong CbV multi type system always assume a co-shrinking type context, they
do not always assume that the inferred type—that is, the type on the right of the type judgement—is
a unitary shrinking one.

11.2 Multi type system for Strong CbV
Let us proceed to the definition of the Strong CbV multi type system:

Definition 50 (The Strong CbV multi type system).
The typing rules for the Strong CbV multi type system are in Fig. 11.1. As done for previous

systems, we use a specific notation, in this case of the form

Φ ▷S Γ ⊢(m,s) t :M

to express that type derivation Φ, formed with the rules in Fig. 11.1, ends in type judgement
Γ ⊢(m,s) t :M . The same notation applies for when the inferred type is a Strong CbV linear type.

135

'

&

$

%

x : [L] ⊢(0,1) x :L
ax

(
Γi ⊢(mi,si) x :Li

)
i∈I I : finite⊎

i∈I Γi ⊢(
∑

i∈I mi,
∑

i∈I si) x : [Li]i∈I
manyVAR

Γ;x :M ⊢(m,s) t :N

Γ ⊢(m+1,s+1) λx.t :M ⊸ N
fun

(
Γi ⊢(mi,si) λx.t :Li

)
i∈I I : finite⊎

i∈I Γi ⊢(
∑

i∈I mi,
∑

i∈I si) λx.t : [Li]i∈I
manyλ

Γ ⊢(m,s) t : [N ⊸ M] Π ⊢(m′,s′) u :N

Γ
⊎
Π ⊢(m+m′+1,s+s′+1) tu :M

app
Γ;x :N ⊢(m,s) t :M Π ⊢(m′,s′) u :N

Γ
⊎

Π ⊢(m+m′,s+s′+1) t[x←u] :M
ES

Figure 11.1: Type system for Strong CbV evaluation.

The typing rules in Fig. 11.1 are actually the same as in [Ehr12], up to the fact that they are
extended to encompass the use of ESs in the calculus, and adapted to a split formulation of values,
typing variables and λ-abstractions separately.

Indices in the Strong CbV multi type system. Given type derivation Φ ▷S Γ ⊢(m,s) t :M , we
say that m is the multiplicative index of type judgement Γ ⊢(m,s) t :M and of type derivation Φ. It
provides information on the number of multiplicative steps of Strong CbV-normalizing sequences
starting at t and on the size of the corresponding Strong CbV-normal form.

More concretely, given Φ ▷S Γ ⊢(m,s) t :M , the Correctness theorem shows that m ≥ 2|d|m+ |u|S,
where d : t −→∗su and u is in →s-normal form. The presence of factor 2 multiplying |d|m comes from
the fact that both typing rules fun and app increase the multiplicative index. This is contrast with
the Open CbNeed and Useful Open CbNeed multi type systems, where the multiplicative index
was only increased by the app and appgc typing rules, while the size index was only increased by
typing rule appi. This disentangled presentation of the number of reduction steps and the size of the
normal form in the Open CbNeed and Useful Open CbNeed system cannot be so easily achieved in
the Strong CbV multi type system for two reasons:

• The presence of the tight constants in the Open CbNeed and Useful Open CbNeed systems
help us neatly separate applications that contribute to the number of multiplicative steps from
those that contribute to the size of the normal form.

• The Strong CbV strategy performs strong reduction, and so the size of λ-abstractions must
depend on its body. For instance, |λx.x|S = 1 and |λx.λy.y|S = 2, while in Open CbNeed or
in Useful Open CbNeed both expressions have null size.

On the other side, we say that s is the general size index of Γ ⊢(m,s) t :M and of Φ. Instead
of providing quantitative information on Strong CbV-reduction sequences starting at t, the general
size index serves the unique purpose of keeping count of all the typing rules, except for manyVAR
and manyλ. This count is used in the proof of the Correctness theorem for Strong CbV, which is
proven by induction on the general size index of the type derivation in question3.

3The manyVAR and manyλ being of a rather structural nature, we do not need to count them to provide the general
size index needed in the Correctness theorem.

136

11.2.1 Strong CbV measurements
The correctness theorem for Strong CbV follows roughly the same schema as for the previous sys-
tems.

In particular, we prove that any →s-reduction sequence starting in a typable ΛL-term must be
finite by showing that the general size index decreases at each →s-step, as we just explained. Such
decrement is proven in the Subject Reduction property, just like we did in all the other case studies
with respect to some of the indices in the corresponding type derivations. This, however, provides a
possibly lax upper bound on the→s-normalization process, but we are in fact interested in attaining
the highest level of adjustment of the type system with respect to the strategy: we would like to
obtain exact bounds on the →s-normalization process.

Regarding the weak and close strategies, we achieved this by identifying a class of type deriva-
tions (separately for each of the type systems) giving exact bounds on the normalization process.
Recall, for instance, Proposition 5.2.2 (Typing properties of CbN-normal forms), which states that
any type derivation for a →CbN-normal form with norm as the right type gives null indices, corre-
sponding precisely to the number of remaining →CbN-steps to normal form.

We would therefore like an analogous Proposition for the Strong CbV case. Unfortunately, this
cannot be achieved as simply as it was for the weak and close strategies. The reason is that the
technique by which we count →sm-steps, on the one hand, and the technique used to measure the
size of→s-normal forms, on the other hand, is the same. That is, there is no neat way to differentiate
them:

• First, note that if t ∈ ΛL is in →s-normal form, then by Proposition 10.3.2 (Fullness of
Strong CbV) it must be a strong super fireball. This means that →s-normal forms are of an
arbitrarily high complexity; in particular, strong inert terms have an arbitrarily big number
of applicants. In contrast, recall that weak and close normal forms are answers.
Now, since applications are only typable via the app rule, then the multiplicative index of any
type derivation for t must be greater or equal to the number of application sub-terms in t.
For example, any type derivation for (x1x2)x3 ∈ ΛL must have a multiplicative index that is
greater or equal to 2, just like any type derivation for (x1x2)[x1←(x3x4)].
Once again, this is in sheer contrast with what happens in the weak and close systems, where
there exists a dedicated typing rule for typing any λ-abstraction without having to type the
body of the abstraction: the norm typing rule.

• Second, note that each →sm-step can be decomposed in a corresponding strong evaluation
context and a 7→m-redex of the form S⟨λx.t⟩u at its base. Since such a 7→m-redex is morally
an application ΛL-term, it can only be typed via an application of the app rule4.

Summing up, the multiplicative index of a type derivation counts both the number of→sm-steps
and the number of application sub-terms of the →s-normal form, and this information cannot be
split in our type system.

Therefore, we shall not have null indices in (some) typings of →s-normal forms, as we did in
the weak and close cases. Instead, we shall have the quantitative information associated to the
→s-normal form5. That is, a notion of size, as given in the following:

Definition 51 (Strong CbV size of terms).
4This is because the typing rules of the Strong CbV type system are syntactically-driven: only rule app is applicable

to build an application ΛL-term.
5Note that this is what happens also in the Open CbNeed and the Useful Open CbNeed cases.

137

The Strong CbV size |t|S of a t ∈ ΛL is the number of applications and λ-abstractions in t.
Formally, |t|S is given by

|x|S := 0 |tu|S := |t|S + |u|S + 1
|λx.t|S := |t|S + 1 |t[x←u]|S := |t|S + |u|S

11.2.2 The right amount of typing
Let us consider some examples that might clarify the role played by (co-)shrinkingness and unitary
(co-)shrinkingness on the multiplicative and general size indices.

Let us begin by defining the shrinkingness criterion, crucial in proving that the general size index
decreases by reduction—analogously, that it increases by expansion. A type derivation Φ▷S Γ ⊢(m,s)

t :M is said to satisfy the shrinkingness criterion if Γ is co-shrinking and if t is an answer6 then M
is shrinking7.

For example, consider t := x(λy.(λz.z)y) and u := x(λy.z[z←y]), noting that t→sm u. Now, let
Φ be a type derivation for t of the following form

x : [0 ⊸ [X]] ⊢(0,1) x :0 ⊸ [X]
ax

x : [0 ⊸ [X]] ⊢(0,1) x : [0 ⊸ [X]]
manyVAR

∅ ⊢(0,0) λy.(λz.z)y :0
manyλ

x : [0 ⊸ [X]] ⊢(1,2) x(λy.(λz.z)y) : [X]
app

Since the Subject Reduction property is meant to provide a type derivation Ψ for u, with the exact
same type context and right-hand side type, then it easy to show that the only possibility is that
Ψ be of the following form:

x : [0 ⊸ [X]] ⊢(0,1) x :0 ⊸ [X]
ax

x : [0 ⊸ [X]] ⊢(0,1) x : [0 ⊸ [X]]
manyVAR

∅ ⊢(0,0) λy.z[z←y] :0
manyλ

x : [0 ⊸ [X]] ⊢(1,2) x(λy.z[z←y]) : [X]
app

As we can appreciate, the indices in Ψ have not decreased at all with respect to Φ. This has deep
consequences in the overall proof technique, since the Correctness theorem is proven by induction on
the general size index of type derivations. Therefore, the type context is assumed to be co-shrinking
in the Subject Reduction property.

Unfortunately, this is not all that is needed in the Subject Reduction property. As expressed
in the shrinkingness criterion, the right-hand side type must be shrinking as well. To see why,
consider the diverging term Ω, which is not typable in the Strong CbV multi type system because
normalizability equals typability in the Strong CbV multi type system. The only possibility for
typing λy.Ω is the following type derivation Θ:

∅ ⊢(0,0) λy.Ω :0
manyλ

6That is, if it is a λ-abstraction up to ESs
7If Φ is shrinking then it satisfies the shrinkingness criterion, but the converse does not hold. The shrinkingness

criterion is a relaxed form of shrinkingness, and is used to show that the general size index in the type derivation
provided by the Subject Reduction property decreases. The latter, in turn, is used to prove the Correctness theorem
by induction on the general size index of the type derivation.

138

But then the type derivation given by the Subject Reduction property can only be Θ itself, which
implies that there is no decrement in the general size index. Once again, this would mean that we
would not be able to prove the Correctness theorem by induction on the general size index.

Conversely, if we take Φ ▷S Γ ⊢(m,s) s :M and assume that M is shrinking—which entails that
0 /∈ Occ+(M) and so M ̸= 0—then s must be typed at least once. Therefore, type derivations must
satisfy both conditions in the shrinkingness criterion for us to be able to prove the Correctness
theorem by induction on the general size index.

Nevertheless, we are not merely interested in providing a Correctness theorem for the Strong CbV
multi type system, but also in extracting quantitative information from type derivations. Unfor-
tunately, the shrinkingness criterion does not suffice for such a purpose. Consider, for instance,
type derivation Φ for t and Ψ for u: the multiplicative index does not decrease, even though it is
supposed to measure multiplicative steps in Strong CbV-reduction sequences.

For this reason, we need to refine the shrinkingness criterion into the unitary shrinkingness one.
We say that type derivation Φ ▷S Γ ⊢(m,s) t :M satisfies the unitary shrinkingness criterion if Γ is
unitary co-shrinking and if t is an answer then M is unitary shrinking8.

To see how this affects the multiplicative index, let X := [X] ⊸ [X], and let Ω′ be a type
derivation for λy.(λz.z)y of the following form:

z : [X] ⊢(0,1) z :X
ax

z : [X] ⊢(0,1) z : [X]
manyVAR

∅ ⊢(1,2) λz.z :X
fun

y : [X] ⊢(0,1) y :X
ax

y : [X] ⊢(0,1) y : [X]
many

y : [X] ⊢(2,4) (λz.z)y : [X]
app

∅ ⊢(3,5) λy.(λz.z)y :X
fun

z : [X] ⊢(0,1) z :X
ax

z : [X] ⊢(0,1) z : [X]
manyVAR

∅ ⊢(1,2) λz.z :X
fun

y : [X] ⊢(0,1) y :X
ax

y : [X] ⊢(0,1) y : [X]
many

y : [X] ⊢(2,4) (λz.z)y : [X]
app

∅ ⊢(3,5) λy.(λz.z)y :X
fun

∅ ⊢(6,10) λy.(λz.z)y : [X,X]
manyλ

Next, let Ω be a type derivation for t obtained by combining Ω′ as follows:

x : [[X,X] ⊸ [X]] ⊢(0,1) x : [X,X] ⊸ [X]
ax

x : [[X,X] ⊸ [X]] ⊢(0,2) x : [[X,X] ⊸ [X]]
manyVAR

Ω′

x : [[X,X] ⊸ [X]] ⊢(7,13) x(λy.(λz.z)y) : [X]
app

Note that X ∈ Occ−([[X,X] ⊸ [X]]) and that |X| = 2, and so the type context is not unitary
co-shrinking. That is, because of the non-unitary co-shrinking type given to x, the multiplicative
redex (λz.z)y must be typed twice in Ω′, and then the multiplicative index coming from Ω′ is not
as expected: reducing the redex decreases the multiplicative index by 4 instead of by 2.

To see this, take Z ′ as follows:

z : [X] ⊢(0,1) z : [X]
ax

y : [X] ⊢(0,1) y : [X]
ax

y : [X] ⊢(0,3) z[z←y] : [X]
ES

∅ ⊢(1,4) λy.z[z←y] :X
fun

z : [X] ⊢(0,1) z : [X]
ax

y : [X] ⊢(0,1) y : [X]
ax

y : [X] ⊢(0,3) z[z←y] : [X]
ES

∅ ⊢(1,4) λy.z[z←y] :X
fun

∅ ⊢(2,8) λy.z[z←y] : [X,X]
manyλ

8Once again, note the unitary shrinkingness of Φ implies that it satisfies the unitary shrinkingness criterion, but
the converse does not hold.

139

We can then use Z ′ to derive Z ▷S x : [[X,X] ⊸ [X]] ⊢(3,11) x(λy.z[z←y]) : [X] as follows

x : [[X,X] ⊸ [X]] ⊢(0,1) x : [X,X] ⊸ [X]
ax

x : [[X,X] ⊸ [X]] ⊢(0,2) x : [[X,X] ⊸ [X]]
manyVAR

Z ′

x : [[X,X] ⊸ [X]] ⊢(3,11) x(λy.z[z←y]) : [X]
app

As explained above, the Correctness theorem for the Strong CbV system proves that the relation
between the multiplicative index and the number of multiplicative steps in a normalizing sequence
is exactly 2 in unitary shrinking type derivations. Thus, this excessive decrement stems from the
fact that we over-type λy.(λz.z)y in Ω′.

Therefore, we see that the type context must be unitary co-shrinking in order for the Subject
Reduction property to provide a type derivation whose multiplicative index is decreased exactly by
2 by each multiplicative step.

Finally, to see why the right-hand side type must also be unitary shrinking, let us consider the
following simple example. Let λx.t ∈ ΛL be such that t →sm u. If |N | = 1, say M = [L], then any
type derivation Φ ▷S Γ ⊢(m,s) λx.t :M must be of the following form:

Ψ ▷S Γ ⊢(m,s) λx.t :L

Γ ⊢(m,s) λx.t : [L]
manyλ

Note that there is exactly one premise to typing rule manyλ. If all the other conditions hold, we
may then obtain a type derivation Ψ ▷S Γ ⊢(m′,s′) λx.u :L such that m′ = m − 2 by application of
the Subject Reduction property9.

11.2.3 Strong CbV correctness
We can finally proceed to show the Strong CbV incarnation of the correctness sections that we
saw for previous systems. Although it roughly follows the same general schema, there are certain
subtleties to be considered given the open and strong setting of Strong CbV. Along the way, we may
even encounter some strange statements that require short explanations to be properly understood,
which the reader may find in the Technical Appendix. Nevertheless, we hope that the “Strong CbV
measurements” and “The right amount of typing” sections have given the reader an intuitive idea
of the interplay between the Strong CbV strategy, the Strong CbV type system and the class of
(unitary) shrinking types.

As a starting point, let us show the Strong CbV type system enjoys relevance:

Lemma 11.2.1 (Relevance of the Strong CbV type system).
Let t ∈ ΛL and Φ ▷S Γ ⊢(m,s) t :M be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).

(Click here to see the complete proof in the Technical Appendix)

The following is the base case in the proof of the Correctness theorem for Strong CbV:

Proposition 11.2.2 (Typing properties of Strong CbV-normal forms).
Let fs be a strong fireball and let Φ ▷S Γ ⊢(m,s) fs :M be a type derivation for it, with Γ a

co-shrinking (resp. unitary co-shrinking) type context and such that if fs is an answer then M is
shrinking (resp. unitary shrinking). Then |fs|S ≤ m (resp. |fs|S = m).

9Moreover, the Subject Reduction property guarantees that s′ < s, as explained above.

140

Proof. (Click here to see the complete proof in the Technical Appendix)
The proof is by structural induction on fs.

Note that if Φ is unitary shrinking, then not only does Proposition 11.2.2 explicitly give the
exact Strong CbV size of fs, it also shows how to neatly separate this datum from the quantitative
information on the →s-normalization process. In other words, it is at this level that we can extract
the Strong CbV size of fs, and then be sure that the decrease by 1 in the multiplicative index in
Proposition 11.2.5.1 (Shrinking Quantitative Subject Reduction for Strong CbV - →sm-step) only
corresponds to the →s-normalization process.

Let us continue now with the usual Substitution lemma required for the proof of the Subject
Reduction property:

Lemma 11.2.3 (Substitution for Strong CbV).
Let vT be a theoretical value and let

Φt ▷S Γ;x :N ⊢(m,s) t :M
Ψ ▷S Π ⊢(m

′,s′) vT :N

Then there exists type derivation Φt{x←vT} ▷SΓ
⊎

Π ⊢(m′′,s′′) t{x←vT} :M such that m′′ = m+m′

and s′′ ≤ s+ s′.

Proof. (Click here to see the complete proof in the Technical Appendix)
The proof is by structural induction on t.

The main difference between this and the other substitutions lemmas in any of the previous
systems is that Lemma 11.2.3 does not concern a linear substitution process, simply because in the
VSC substitutions are realized via the meta-level substitution mechanism, which substitutes every
occurrence of the variable at once. As a direct consequence of this, one may note the absence of any
notion of splitting of the multi type assigned by the type context to the variable being substituted.
This is because every occurrence of variable x in t—accounted for by the multi type N resulting
from collecting every typed occurrence of x in Φ—must be simultaneously substituted by value v,
morally being left with x :0 after the substitution has taken place.

We are now able to prove the Subject Reduction property. The novelty in this system is that,
since Strong CbV is defined as the contextual closure by strong evaluation contexts of the open
strategy →w, we first give a proof of Subject Reduction for →w. We then build on it to give the
desired proof of the Subject Reduction property for the whole →s strategy in Proposition 11.2.5
(Shrinking Quantitative Subject Reduction for Strong CbV) below.

Lemma 11.2.4 (Open Quantitative Subject Reduction for Strong CbV).
Let Φ ▷S Γ ⊢(m,s) t :M be a type derivation.

1. Multiplicative: If t→wm u, then there exists a derivation Ψ ▷S Γ ⊢(m−2,s−1) u :M .
2. Exponential: If t→we u, then there exists a derivation Ψ ▷S Γ ⊢(m

′,s′) u :M such that m′ = m
and s′ < s.

141

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative part is proven by induction on the open evaluation context W such that

t = W ⟨s⟩ →wm W ⟨s′⟩ = u.
The exponential part is proven by induction on the open evaluation context W such that t =

W ⟨s⟩ →we W ⟨s′⟩ = u, using Lemma 11.2.3 (Substitution for Strong CbV) for the base case.

Proposition 11.2.5 (Shrinking Quantitative Subject Reduction for Strong CbV).
Let Φ ▷S Γ ⊢(m,s) t :M be a type derivation, with Γ a co-shrinking (resp. unitary co-shrinking)

type context. Moreover, suppose that if t is an answer then M is shrinking (resp. unitary shrinking).
1. Multiplicative: If t→sm t′, then m ≥ 2, s ≥ 1, and there exists type derivation Φ ▷S Γ ⊢(m

′,s′)

t′ :M such that m′ ≤ m− 2 and s′ < s (resp. m′ = m− 2 and s′ = s− 1).
2. Exponential: If t→se t

′, then s ≥ 1 and there exists type derivation Φ ▷S Γ ⊢(m
′,s′) t′ :M such

that m′ = m and s′ < s.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the strong evaluation context S such that t = S⟨s⟩ →s S⟨s′⟩ = u, with s→wm s′

or s →we s′. The base case is given by Lemma 11.2.4 (Open Quantitative Subject Reduction for
Strong CbV).

With all of this, we can now prove the desired Correctness result.

Theorem 11.2.6 (Shrinking Correctness for Strong CbV).
Let Φ▷S Γ ⊢(m,s) t :M be a shrinking (resp. unitary shrinking) type derivation. Then there exists

u ∈ ΛL such that
1. u is in →s-normal form,
2. there exists a reduction sequence d : t −→∗su, and
3. m ≥ 2|d|m + |u|S (resp. m = 2|d|m + |u|S).

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the general size index of Φ, s. Case analysis on whether t→s-reduces or not:
• If t is in →s-normal form, then Proposition 10.3.2 (Fullness of Strong CbV) gives that t is

a strong super fireball. The statement follows, both if Φ is unitary shrinking as well as if
it is non-unitary shrinking, by Proposition 11.2.2 (Typing properties of Strong CbV-normal
forms).

• Let t →s u. The proof is split between multiplicative and exponential steps. Let us consider
the multiplicative one here; i.e., let t→sm u. By Proposition 11.2.5.1 (Shrinking Quantitative
Subject Reduction for Strong CbV), there exists type derivation Ψ▷SΓ ⊢(m

′,s′) u :M such that
if Φ is non-unitary (resp. unitary), then m′ ≤ m − 2 (resp. m′ = m − 2) and s′ < s (resp.
s′ = s− 1). The statement finally follows by application of the i.h. on Ψ.

Note that Theorem 11.2.6 implicitly states that unitary shrinking type derivations have minimal
indices among all shrinking type derivations.

142

11.2.4 Strong CbV completeness
Let t, u ∈ ΛL be such that d : t −→∗su is a normalizing sequence. The idea of proving a quantitative
completeness theorem for Strong CbV is materialized into proving that every →s-normalizing ΛL-
term t is typable with a type derivation whose multiplicative index is the Strong CbV size of u plus
twice the number of →sm-steps from t to u.

Again, this is proved following the standard schema applied to the previous systems: a Quan-
titative Subject Expansion property stating that typability can be pulled back along →s-steps—
increasing the general size index (by an arbitrary number) while also increasing the multiplicative
index by exactly 2 units when it is a →sm-step—and a lemma stating that every →s-normal form
has a type derivation whose multiplicative index is equal to the Strong CbV size of such normal
form:

Proposition 11.2.7 (Shrinking typability of Strong CbV-normal forms).
1. Inert: For every strong inert term is and co-shrinking (resp. unitary co-shrinking) multi type

M , there exists type derivation Φ ▷S Γ ⊢(m,s) is :M for some s ≥ 1, such that Γ is co-shrinking
(resp. unitary co-shrinking) and m ≥ |is|S (resp. m = |is|S).

2. Fireball: For every strong fireball fs, there exists a unitary shrinking type derivation Φ ▷S
Γ ⊢(m,s) fs :M such that m = |fs|S and s ≥ 1.

Proof. (Click here to see the complete proof in the Technical Appendix)
Both points are proved by mutual structural induction on the definition of strong inert terms and

strong fireballs. Note that Proposition 11.2.7.1—only valid for strong inert terms and not strong
fireballs in general—is required to make the induction go through in Proposition 11.2.7.2—which is
the general case, covering both kinds of Strong CbV-normal forms.

We would like to stress here that this presentation of Proposition 11.2.7—where a kind of sub-
property is first given for inert expressions before the more general case is covered—is analogous
to the separate treatment of the so-called “normal terms” as appearing in Lemma 7.1.8 (Tight
typability of normal terms)—see Sect. 7.1 (Multi type system for Open CbNeed).

As usual, Subject Expansion requires a Removal lemma at its base exponential case:

Lemma 11.2.8 (Removal for Strong CbV).
Let t ∈ ΛL, let vT be a theoretical value such that x /∈ fv(vT), and let

Φt{x←vT} ▷S Γ ⊢(m,s) t{x←v} :M

Then there exist type derivations

Φt ▷S Π;x :N ⊢(m
′,s′) t :M

Θ ▷S ∆ ⊢(m
′′,s′′) v :N

such that Γ = Π
⊎
∆, m = m′ +m′′ and s ≤ s′ + s′′.

Proof. (Click here to see the complete proof in the Technical Appendix)
By structural induction on t.

143

As what happened in Lemma 11.2.3 (Substitution for Strong CbV), the fact that substitutions
in the VSC are realized via the meta-level substitution mechanism impacts the shape that the Re-
moval lemma for Strong CbV takes.

Following an argument symmetrical to the one for Correctness, the fact that Strong CbV is
defined as the contextual closure by strong evaluation contexts of the open strategy →w allows us
to prove Subject Expansion by first covering the (simpler) open case.
Lemma 11.2.9 (Open Quantitative Subject Expansion for Strong CbV).

Let Ψ ▷S Γ ⊢(m,s) u :M be a type derivation.
1. Multiplicative: If t →wm u, then there exists type derivation Φ ▷S Γ ⊢(m+2,s′) t :M such that

s′ > s.
2. Exponential: If t→we u, then there exists type derivation Φ ▷S Γ ⊢(m,s′) t :M such that s′ > s.

Proof. (Click here to see the complete proof in the Technical Appendix)
The multiplicative part is proven by induction on the open evaluation context W such that

t = W ⟨s⟩ →wm W ⟨s′⟩ = u.
The exponential part is proven by induction on the open evaluation context W such that t =

W ⟨s⟩ →we W ⟨s′⟩ = u, using Lemma 11.2.3 (Substitution for Strong CbV) for the base case.

Proposition 11.2.10 (Shrinking Quantitative Subject Expansion for Strong CbV).
Let Ψ▷SΓ ⊢(m

′,s′) t′ :M be a type derivation, with Γ a unitary co-shrinking type context. Moreover,
suppose that if u is an answer, then M is unitary shrinking.

1. Multiplicative: If t→sm t′, then there exists type derivation Φ ▷S Γ ⊢(m+2,s+1) t :M .
2. Exponential: If t→se t

′, then there exists type derivation Φ▷SΓ ⊢(m
′,s′) t :M such that m′ = m

and s′ > s.
Proof. (Click here to see the complete proof in the Technical Appendix)

By induction on the strong evaluation context S such that t = S⟨s⟩ →s S⟨s′⟩ = u, with s→wm s′

or s →we s′. The base case is given by Lemma 11.2.9 (Open Quantitative Subject Expansion for
Strong CbV).

Theorem 11.2.11 (Shrinking Completeness for Strong CbV).
Let t ∈ ΛL. If there exists d : t −→∗s u such that u in →s-normal form, then there exists a unitary

shrinking type derivation Φ ▷S Γ ⊢(2|d|m+|u|S,s) t :M , for some s ≥ 0.
Proof. (Click here to see the complete proof in the Technical Appendix)

By induction on the length |d| of the reduction sequence d : t −→∗su:
• If |d| = 0, then t is a strong super fireball by Proposition 10.3.2 (Fullness of Strong CbV). The

statement follows by Proposition 11.2.7 (Shrinking typability of Strong CbV-normal forms).
• If |d| > 0, then d is of the following form

d : t →s s →k−1
s u︸ ︷︷ ︸
d′

We can apply the i.h. with respect to d′, getting unitary shrinking type derivation Θ ▷S
Γ ⊢(2|d′|+|u|S,s′) s :M . The statement follows by application of Proposition 11.2.10 (Shrink-
ing Quantitative Subject Expansion for Strong CbV) on Ψ, yielding a an appropriate type
derivation for t whose exact indices depend on whether t→sm s or t→se s.

144

11.2.5 Size of Strong CbV-normal forms via multi types
In every previous system, we extracted quantitative information on the normalization process or
on the structure of normal forms in a rather simple way: each index in these systems only gets
incremented upon applications of particular typing rules—besides adding up the indices of the
premises, that is. For instance, the multiplicative index in type derivations of the CbN system gets
incremented only in applications of the app rule, and so this index represents exactly the number
of app rules in the type derivation—see Sect. 5.2 (Multi type system for CbN).

We now give an alternative way of extracting the quantitative information regarding the
Strong CbV size of →s-normal forms from a type derivation, namely from the type context and

the right type of the final type judgement.
To do so, we first need to define the size of multi types and type contexts, which can be seen

simply as counting the number of occurrences of ⊸. Formally, the size of linear and multi types is
defined mutually inductively as follows

|X| = 0 |M ⊸ N | = 1 + |M |+ |N | |[L1, . . . , Ln]| =
∑n

i=1|Li|

Clearly, |L| ≥ 0 and |M | = 0 if and only if M = [X, n∈N. . . , X].
Given a type context Γ := x1 :M1; . . . ;xn :Mn, we denote the list of its types by Γ̂ := (M1; . . . ;Mn).

Note that, since any list of multi types (M1, . . . ,Mn) can be seen as extracted from a type context
Γ := {x′1 :M1; . . . ;x

′
n :Mn} for some list of variables (x′1, . . . , x

′
n), we use the notation Γ̂ for lists of

multi types.
The size of a list of multi types Γ̂ := (M1, . . . ,Mn) is given by

|Γ̂| :=
n∑

i=1

|Mi|

Clearly, dom(Γ) = ∅ implies |Γ̂| = 0.

Proposition 11.2.12 (Shrinking types bound the size of Strong CbV-normal forms).
Let t ∈ ΛL be in →s-normal form and let Φ ▷S Γ ⊢(m,s) t :M be a type derivation, with Γ a

co-shrinking type context.
1. Inert: If t is a strong inert term, then |M |+ |t|S ≤ |Γ̂|.
2. Fireball: If t is a strong fireball and M is shrinking, then |t|S ≤ |M |+ |Γ̂|

Proof. (Click here to see the complete proof in the Technical Appendix)
Both points are proved by mutual structural induction on the definition of strong inert terms

and strong fireballs.

Proposition 11.2.13 (Strong CbV-normal forms have a minimal unitary shrinking type).
Let t ∈ ΛL be in →s-normal form.

1. Inert: If t is a strong inert term, then for every co-shrinking (resp. unitary co-shrinking)
multi type M there exists a type derivation Φ ▷S Γ ⊢(m,s) t :M such that Γ is a co-shrinking
(resp. unitary co-shrinking) type context and |M |+ |t|S = |Γ̂|.

2. Fireball: If t is a strong fireball, then there exists a unitary shrinking derivation Φ ▷S Γ ⊢(m,s)

t :M such that m = |t|S = |M |+ |Γ̂|. Moreover,

m = min{m′ | ∃Ψ ▷S Π ⊢(m
′,s′) t :N , with Π co-shrinking

and if t is an answer then N is shrinking}

145

Proof. (Click here to see the complete proof in the Technical Appendix)
Both points are proven by mutual induction on the definition of strong inert terms and of strong

fireballs. Additionally, the minimality part of point (2) is a direct corollary of Proposition 11.2.2
(Typing properties of Strong CbV-normal forms).

11.2.6 Types and structural equivalence in the VSC
As closure for the Correctness and Completeness parts for the Strong CbV system, let us prove
that typability in the theory of the Value Substitution Calculus is considered up to the structural
equivalence ≡ between ΛL-terms:
Proposition 11.2.14 (Structural equivalence preserves typability and indices).

Let t, u ∈ ΛL be such that t ≡ t′.
Then there exists type derivation Φ ▷S Γ ⊢(m,s) t :M if and only if there exists type derivation

Φ′ ▷ Γ ⊢(m,s) t′ :M .
Proof. (Click here to see the complete proof in the Technical Appendix)

By structural induction on the LSC evaluation context D such that t = D⟨u⟩ ≡ D⟨u′⟩ = t′,
with u ≡a u

′ and a ∈ {≡com,≡@r,≡@l,≡[·]}.

Note that both the multiplicative and the size indices are preserved via structural equivalence
as shown in Proposition 11.2.14. This is a crucial point regarding the (minimal) bounds provided
by type derivations for ΛL-terms modulo structural equivalence.

11.3 A semantical proof of VSC-normalization via Strong
CbV

Here we extend the Subject Reduction and Subject Expansion properties of multi types to encompass
the whole VSC, not just the Strong CbV strategy →s. There are two reasons for this:

1. The first is that, in this way, we smoothly obtain a normalization theorem for→s, by exploiting
an elegant proof technique used in de Carvalho, Pagani and Tortora de Falco’s [CPT11] and
Mazza, Pellisier and Vial’s [MPV18]. That is, we prove that if a fixed ΛL-term is →vsc-
normalizable, then it is →s-normalizable—see Theorem 11.3.3 (→s is normalizing) below. As
a direct corollary, →vsc-normalizability and →s-normalizability are equivalent.

2. The second is to show that the Strong CbV type system provides an adequate semantics for
the whole of the VSC, not just the strategy.
We shall see that the extended properties are not of a quantitative nature, but rather of a
qualitative one. This is because VSC-steps other than those of →s do not in general decrease
the size index of type derivations.

The following result is only used for proving the invariance of the semantics presented below,
but plays no role in proving Theorem 11.3.3 (→s is normalizing).
Proposition 11.3.1 (Qualitative Subject Reduction for VSC).

Let t, u ∈ ΛL be such that t →vsc u, and let Φ ▷S Γ ⊢(m,s) t :M be a type derivation. Then there
exists type derivation Ψ ▷S Γ ⊢(m

′,s′) u :M such that m′ ≤ m and s′ ≤ s.

146

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the LSC evaluation context D such that t = D⟨s⟩ →vsc D⟨s′⟩ = u, with s 7→m s′

or s 7→e s
′.

Unlike its ‘Reduction’ counterpart, the following is crucial in proving Theorem 11.3.3 (→s is
normalizing). Essentially, it is used to “pull back” the type derivation given by Proposition 11.2.7
(Shrinking typability of Strong CbV-normal forms).

Proposition 11.3.2 (Qualitative Subject Expansion for VSC).
Let t, u ∈ ΛL be such that t→vsc u, and let Ψ ▷S Γ ⊢(m

′,s′) u :M be a type derivation. Then there
exists type derivation Φ ▷S Γ ⊢(m,s) t :M such that m′ ≤ m and s′ ≤ s.

Proof. (Click here to see the complete proof in the Technical Appendix)
By induction on the LSC evaluation context D such that t = D⟨s⟩ →vsc D⟨s′⟩ = u, with s 7→m s′

or s 7→e s
′.

Finally,

Theorem 11.3.3 (→s is normalizing).
Let t ∈ ΛL. If there exists a reduction sequence d : t −→∗vsc u for some u in →vsc-normal form,

then there exists d′ : t −→∗s u.

Proof. (Click here to see the complete proof in the Technical Appendix)
The proof starts by taking the unitary shrinking type derivation Φu for u given by Proposi-

tion 11.2.7 (Shrinking typability of Strong CbV-normal forms), qualitatively expanding from Φu to
a unitary shrinking type derivation Φt for t—via Proposition 11.3.2 (Qualitative Subject Expansion
for VSC)—applying Theorem 11.2.6 (Shrinking Correctness for Strong CbV) to get a normaliz-
ing reduction sequence d′ : t −→∗s s. Note that s is a super strong fireball—by Proposition 10.3.2
(Fullness of Strong CbV)—and so s is also in →vsc-normal form—by Proposition 10.2.3 (Syntactic
characterization of VSC-normal forms). Theorem 10.2.2 (Confluence of →vsc) finally gives that
s = u.

11.3.1 VSC semantics
Firstly, let us suppose we defined the semantics (of t ∈ ΛL for x⃗ given by the Strong CbV system)
as follows

[[t]]Strong CbV
x⃗ := {((M1, . . . ,Mn),M) | ∃Φ ▷S x1 :Mn; . . . ;xn :Mn ⊢(m,s) t :M} (11.1)

This semantic is invariant by→vsc-reduction, by Proposition 11.3.1 (Qualitative Subject Reduction
for VSC) and Proposition 11.3.2 (Qualitative Subject Expansion for VSC). However, it is not
adequate, which can be appreciated by easily adapting the counterexample given for Open CbNeed
in Subsect. 7.1.3 (Open CbNeed semantics, page 97). Indeed, note that while x (λy.Ω) is not →vsc-
normalizing, it is typable in the Strong CbV system:

x : [0 ⊸ M] ⊢(0,1) x : [0 ⊸ M]
ax
∅ ⊢(0,0) λy.Ω :0

manyλ

x : [0 ⊸ M] ⊢(1,2) x (λy.Ω) :M
app

147

Therefore, let us adapt the semantics to our results. We define the semantics of t for x⃗ given
by the Strong CbV system as

[[t]]Strong CbV
x⃗ := {((M1, . . . ,Mn),M) | ∃Φ ▷S x1 :Mn; . . . ;xn :Mn ⊢(m,s) t :M

such that Φ is shrinking}

Being a restriction to the semantics defined in 11.1, this new semantics is also invariant with
respect to →vsc—and so invariant with respect to →s⊆→vsc. But most importantly, it is adequate
with respect to→s, as proven by Theorem 11.2.6 (Shrinking Correctness for Strong CbV) and The-
orem 11.2.11 (Shrinking Completeness for Strong CbV).

Remarkably, the adequacy of the semantics with respect to →s-normalization can be extended
to →vsc-weak normalization as follows:

• Typability implies weak normalization. Let t be typable in the Strong CbV system. By
Theorem 11.2.6 (Shrinking Correctness for Strong CbV), t is →s-normalizing. Since →s is a
sub-relation of →vsc, we have that t is →vsc-weakly normalizing.

• Weak normalization implies typability. Let t be→vsc-weakly normalizing. By Theorem 11.3.3,
t is→s-normalizing. Hence, t is typable in the Strong CbV system, given by Theorem 11.2.11
(Shrinking Completeness for Strong CbV).

Finally, note that since shrinking type derivations may contain arrow types, then the semantics
also satisfies compositionality. This is a remarkable feature of the Strong CbV semantics, since the
Open CbNeed and Useful Open CbNeed ones only satisfy invariance and adequacy, while lacking
compositionality.

148

Chapter 12

Conclusion

As pioneered by Accattoli and Dal Lago in their “(Leftmost-outermost) Beta Reduction is Invariant,
Indeed” [AL16], deriving a reasonable time cost model for the λ-calculus—that is, one proven to be
polynomially related to the time cost model of Turing machines—requires implementing a series of
key adaptations to the substitution process. Among them, the so-called “useful optimizations” are
absolutely necessary in the case of strong reduction, where reduction goes under λs.

This work aimed at understanding how the reasonability arguments analyzed in [AL16] for
the leftmost-outermost evaluation strategy may be adapted to the call-by-need setting, in par-
ticular by implementing the useful optimizations. We began by the most restricted/less gen-
eral case and extended it following a principled and incremental approach, finally arriving at the
Useful Open CbNeed evaluation strategy.

For all the evaluation strategies thus produced, we provided a multi type system characterizing
normalization of the evaluation strategy. Additionally, these type systems are finely tuned to
produce quantitative information about the normalization process in the form of upper bounds. In
other words, we gave a multi type-theoretical presentation of qualitative and quantitative features
of the normalization process of each of the evaluation strategies.

Our starting point was the adaptation in “Distilling Abstract Machines” [ABM14] of the weak,
closed and head version of call-by-need to the “Linear Substitution Calculus”—or LSC for short—
calling it the CbNeed evaluation strategy. We then study the operational differences and similarities
between CbNeed and its call-by-name and call-by-value variants, which we here call CbN and CbV.
We conclude that CbNeed may be seen as wisely combining erasure and duplication mechanisms
from CbN and CbV.

These operational traits, namely duplication and erasure, can also be found in the multi type
systems given for CbN and CbV in the literature. We combined them to derive the first multi type
system for CbNeed which not only characterizes its normalization and provides upper bounds, but
also gives precise quantitative information about it. We moreover prove an efficiency result relating
CbNeed and CbV at the level of the multi type systems.

Next, we extend the CbNeed evaluation strategy to our novel Open CbNeed. This evaluation
strategy should be seen as a well-balanced intermediate step between CbNeed and the (most general)
strong version of call-by-need—e.g., the one introduced in “Foundations of Strong Call by Need”
[Bal+17].

Open CbNeed is in particular necessary in the reasonability study of strong call-by-need, as
the useful optimizations are more naturally implemented in this setting and then extended to the
strong setting. Following this reason, we take Open CbNeed and derive our Useful Open CbNeed

149

evaluation strategy. The useful optimizations rely heavily on the notions of applied and unapplied
variable occurrences, so both Open CbNeed and Useful Open CbNeed are in fact formalized in the
split LSC—a variant of the LSC where applicativity has a more local taste.

Regarding the multi type systems for these evaluation strategies, we first take the CbNeed
one and extend it to the Open CbNeed multi type system by refining the ground types—which
we call “tight types”—and adding the necessary typing rules to deal with them. The axioms in
the Open CbNeed system are then slightly refined to produce a multi type system characterizing
normalization of Useful Open CbNeed. The quantitative relations between these two type systems
and their corresponding evaluation strategies are essentially the same as the ones in the CbNeed
case.

By lack of time, we were unable to achieve the final goal of producing a reasonable and strong
version of call-by-need, and a multi type system characterizing its normalization and providing
quantitative information. Nonetheless, we did produce a further evaluation strategy, the so-called
Strong CbV, which is a normalizing strategy of the “Value Substitution Calculus”—or VSC for
short—introduced in [AP12]. Finally, we derived a multi type system for Strong CbV, which not
only considerably contributes to the general quantitative understanding of strong reduction via
multi type systems, but also allows us to produce interesting normalization results for the VSC.

Future work. During the preparation of this thesis, our main guiding principle was to attain
a consistent and resource-aware formulation of a reasonable and strong version of call-by-need.
Ideally, this would have been comprised of operational-semantical, (multi) type-theoretical and
implementative analyses. We are still far behind this goal, even if the technical development of the
results in this work are significantly lengthy.

Consequently, there are several lines of work that might be interesting to pursue, namely:
• The design of a reasonable and strong call-by-need strategy, taking Useful Open CbNeed as

basis. Roughly put, this would mostly consist in iterating Useful Open CbNeed under λs.
• The derivation of a multi type system characterizing the reasonable and strong call-by-need

strategy. This is probably attainable by extending the Useful Open CbNeed multi type system
to produce one characterizing the reasonable and strong call-by-need.

• As explained in Sect. 1.4 on page 10, we have (partial) results on abstract machines imple-
menting Open CbNeed and Useful Open CbNeed. Then, a next step could consist in finishing
implementing them, proving that they are bilinearly related to their corresponding evalua-
tion strategy, and using them to derive an abstract machine for the reasonable and strong
call-by-need, satisfying the same properties of bilinearity.

• Finally, recall that CbNeed may be expressed as a combination of the (wise) erasure mechanism
in CbN and the (wise) duplication mechanism in CbV. We believe that by making the inverse
choices—namely, by picking the erasure mechanism in CbV and the duplication mechanism
in CbN—one ends up with a maximal evaluation strategy. We could then derive a multi type
system providing precise bounds for the maximal strategy by making the inverse choices of
the ones made for the derivation of the CbNeed system from the CbN and CbV ones. Besides
closing the diagram between the four strategies, this complementary result would also extend
the understanding of erasure and duplication at the types level, which would be helpful in the
derivation of a multi type system for the reasonable and strong call-by-need.

150

Chapter 13

Technical appendix

13.1 Proofs of Chapter 4 (CbN, CbV and CbNeed)
Let us begin by giving some basic properties that shall be used repeatedly in the upcoming proofs
for this chapter:

Lemma 13.1.1 (Syntactic properties of CbN, CbV and CbNeed).
Let t ∈ ΛL.

1. Shape of CbN and CbNeed-normal forms: norm(t) if and only if t is an answer; i.e., if and
only if there exist substitution context S and v ∈ Val such that t = S⟨v⟩.

2. Shape of CbV-normal forms: normCbV(t) if and only if t = v[x1←u1]...[xn←un] for some n ≥ 0
and such that normCbV(ti) for every 1 ≤ i ≤ n.

3. Focusing through CbN evaluation contexts: There exists exactly one way to rewrite t = C⟨u⟩,
with C a CbN evaluation context and u either in Var or in Val. Similarly, there exists exactly
one way to rewrite t = E⟨u⟩, with E a CbNeed evaluation context and u either in Var or in
Val.

4. Every CbN evaluation context is also a CbV evaluation context and a CbNeed evaluation con-
text.

Proof.
1. Shape of CbN and CbNeed-normal forms: Trivial by a simple induction on predicate norm(.)
2. Shape of CbV-normal forms: Trivial by a simple induciton on predicate normCbV(.).
3. Focusing through CbN evaluation contexts: Follows easily by induction on CbN and CbNeed

evaluation contexts.
4. It is clear that every grammar production for CbN evaluation contexts is contained among

the ones for CbV and CbNeed evaluation contexts.

Proposition 13.1.2 (Diamond property for CbV).
→CbV is diamond.

Proof. (Click here to go back to main chapter.)
Let t→CbV u and t→CbV s. We proceed by induction on the shape of t:
• Variable: Impossible, since variables are in →CbV-normal form.
• Abstraction: Impossible too, given that →CbV is defined in terms of weak LSC evaluation

contexts, and so reduction does not enter the bodies of λ-abstractions.

151

• Application: Let t := t1t2. We proceed by case analysis on the subterm reduced by t→CbV u
and t→CbV s:

– Left-left: The statement follows by application of the i.h. on t1 in the case where

u = t′1t2 CbV← t1t2 →CbV t′′1t2 = s

– Right-right: The statement follows by application of the i.h. on t2 in the case where

u = t1t
′
2 CbV← t1t2 →CbV t1t

′′
2 = s

– Left-right: Let

u = V1⟨m′1⟩t2 CbV← V1⟨m1⟩t2 = t1t2 = t1V2⟨m2⟩ →CbV t1V2⟨m′2⟩ = s

Then, we can close the diagram by taking

u = V1⟨m′1⟩V2⟨m2⟩ →CbV V1⟨m′1⟩V2⟨m′2⟩ CbV← V1⟨m1⟩V2⟨m′2⟩ = s

where m = V1⟨m′1⟩V2⟨m′2⟩.
– Right-left: The case where t →CbV u reduces t2 and t →CbV s reduces t1 is proven

analogous to the previous case.
• Appended ES: Let t = t1[x←t2]. We proceed by case analysis on the subterm reduced by

t→CbV u and t→CbV s:
– Left-left: The statement follows by application of the i.h. on t1 in the case where

u = t′1[x←t2] CbV← t1[x←t2]→CbV t′′1[x←t2] = s

– Right-right: The statement follows by application of the i.h. on t2 in the case where

u = t1[x←t′2] CbV← t1[x←t2]→CbV t1[x←t′′2] = s

– Left-right: Let

u = V1⟨m′1⟩[x←t2] CbV← V1⟨m1⟩[x←t2] = t1[x←t2] = t1[x←V2⟨m2⟩]→CbV t1[x←V2⟨m′2⟩] = s

Then, we can close the diagram by taking

u = V1⟨m′1⟩[x←V2⟨m2⟩]→CbV V1⟨m′1⟩[x←V2⟨m′2⟩] CbV← V1⟨m1⟩[x←V2⟨m′2⟩] = s

where m = V1⟨m′1⟩[x←V2⟨m′2⟩].
– Right-left: The case where t →CbV u reduces t2 and t →CbV s reduces t1 is proven

analogous to the previous case.

(Click here to go back to main chapter.)

Proposition 13.1.3 (Syntactic characterization of closed normal forms).
Let t be a closed term.

1. CbN and CbNeed: For r ∈ {CbN,CbNeed}, t is r-normal if and only if norm(t).
2. CbV: t is CbV-normal if and only if normCbV(t).

Proof. (Click here to go back to main chapter.)

152

1. First, we prove that t ∈ ΛL is in →CbN-normal form if and only if norm(t).
⇒: Let t be a closed →CbN-normal form. We prove the statement by structural induction on

t, proceeding by case analysis on its shape:
• Variable: Impossible, because t is closed by hypothesis.
• Abstraction: If t = λy.u, then we can derive that norm(t).
• Application: Suppose t = us. Then u would be closed and in→CbN-normal form—or

else t would not be so—and hence application of the i.h. would give that norm(u)
by i.h.. However, Lemma 13.1.1.1 (Shape of CbN and CbNeed-normal forms) would
then give that u = S⟨λy.m⟩, and so t = S⟨λy.m⟩s. Absurd, because t is in mCbN-
normal form.

• Explicit substitution: Let t = u[x←s]. Note that since t is in →CbN-normal form,
then so must be u. There are four possible cases:

– If u = S⟨v⟩, then application of Lemma 13.1.1.1 (Shape of CbN and CbNeed-
normal forms) gives that norm(u). Hence, norm(u[x←s]).

– If u is closed, then we can apply the i.h. on it and get that norm(u). Hence,
norm(u[x←s]).

– Suppose u := C⟨⟨y⟩⟩. But then it must be—since t is closed—that
t = D⟨·⟩C⟨⟨y⟩⟩[y←m], for some CbN context D and term m, which would finally
give that t is not in eCbN-normal form. This is absurd.

– Suppose none of the cases above holds. By Lemma 13.1.1.3 (Focusing through
CbN and CbNeed evaluation contexts), we would have that u = C⟨λy.m⟩, for
some CbN evaluation context that is not a substitution context—the case where
Cis a substitution context is covered above. But then Lemma 13.1.1.1 (Shape
of CbN and CbNeed-normal forms) would imply that u is not in →CbN-normal
form, thus giving us that neither is t = u[x←s]. This is absurd.

⇐: We prove this statement by induction on the derivation of norm(t), dropping the hypoth-
esis that t is closed; thus, we prove a stronger statement. We proceed by case analysis
on the last derivation rule in norm(t):

• Abstraction: This case is trivial, as CbN does not reduce under λ-abstractions.
• Explicit substitution: Let norm(t) be derived as follows:

norm(u)

norm(u[x←s])

where t = u[x←s]. By i.h., u is in →CbN-normal form. By Lemma 13.1.1.1 (Shape
of CbN and CbNeed-normal forms), there exists substitution context S and v ∈ Val
such that u = S⟨v⟩. We can thus conclude that t = u[x←s] = (S[x←s])⟨v⟩ is in
mCbN-normal form.
Moreover, note that Lemma 13.1.1.3 (Focusing through CbN and CbNeed evaluation
contexts) proves that there cannot exist any CbN evaluation context D—including
substitution contexts—such that u = D⟨x⟩, as we already have that u = S⟨v⟩.
Hence, we can also conclude that t = u[x←s] is in eCbN-normal form.

Next, we turn to prove that t ∈ ΛL is in →CbNeed-normal form if and only if norm(t).
⇒: Let t be a closed →CbNeed-normal form. We prove the statement by structural induction

on t that norm(t), proceeding by case analysis on the shape of t:
• Variable: Impossible, because t is closed by hypothesis.
• Abstraction: If t = λy.u, then we can derive that norm(t).

153

• Application: Suppose t = us. Then u would be closed and in→CbNeed-normal form—
or else t would not be so—and hence application of the i.h. would give that norm(u)
by i.h.. However, Lemma 13.1.1.1 (Shape of CbN and CbNeed-normal forms) would
then give that u = S⟨λy.m⟩, and so t = S⟨λy.m⟩s. Absurd, because t is in mCbN-
normal form.

• Explicit substitution: Let t = u[x←s]. Note that since t is in →CbNeed-normal form,
then so must be u. There are four possible cases:

– If u = S⟨v⟩, then application of Lemma 13.1.1.1 (Shape of CbN and CbNeed-
normal forms) gives that norm(u). Hence, norm(u[x←s]).

– If u is closed, then we can apply the i.h. on it and get that norm(u). Hence,
norm(u[x←s]).

– Suppose u := E⟨⟨y⟩⟩. But then it must be—since t is closed—that

t = E ′⟨⟨·⟩⟩E⟨⟨y⟩⟩[y←m]

for some CbNeed context E ′ and m ∈ ΛL, which would finally give that t is not
in eCbNeed-normal form. This is absurd.

– Suppose none of the cases above holds. By Lemma 13.1.1.3 (Focusing through
CbN and CbNeed evaluation contexts), we would have that u = C⟨λy.m⟩, for
some CbN evaluation context that is not a substitution context—the case where
Cis a substitution context is covered above. But then Lemma 13.1.1.1 (Shape
of CbN and CbNeed-normal forms) would imply that u is not in →CbN-normal
form. Say u = E⟨t̃⟩ →CbN E⟨t̃′⟩. But since E is also a CbNeed evaluation
context—by Lemma 13.1.1.4—then u would not be in →CbNeed-normal form,
thus giving us that neither is t = u[x←s]. This is absurd.

⇐: We prove this statement by induction on the derivation of norm(t), dropping the hypoth-
esis that t is closed; thus, we are proving a stronger statement. We proceed by case
analysis on the last derivation rule in norm(t):

• Abstraction: This case is trivial, as CbN does not reduce under λ-abstractions.
• Explicit substitution: Let norm(t) be derived as follows:

norm(u)

norm(u[x←s])

where t = u[x←s]. By i.h., u is in→CbNeed-normal form. By Lemma 13.1.1.1 (Shape
of CbN and CbNeed-normal forms), there exists substitution context S and v ∈ Val
such that u = S⟨v⟩. We can thus conclude that t = u[x←s] = (S[x←s])⟨v⟩ is in
mCbNeed-normal form.
Moreover, note that Lemma 13.1.1.3 (Focusing through CbN and CbNeed evaluation
contexts) proves that there cannot exist any CbN evaluation context E’—including
substitution contexts—such that u = E ′⟨x⟩, as we already have that u = S⟨v⟩.
Hence, we can also conclude that t = u[x←s] is in eCbNeed-normal form.

2. Finally, we prove that t is in →CbV-normal form if and only if normCbV(t).
⇒: Let t be a closed →CbV-normal form. We prove that normCbV(t) proceeding by induction

on the shape of t:
• Variable: Impossible, because t is closed by hypothesis.
• Abstraction: If t = λy.u, then we can derive normCbV(t).

154

• Application: Suppose t = us. Then u would be closed and in→CbV-normal form—or
else t would not be so—and hence application of the i.h. would give that normCbV(u)
by i.h.. However, Lemma 13.1.1.2 (Shape of CbV-normal forms) would then give
that u = S⟨λy.m⟩—with some irrelevant restrictions on S in this analysis—and so
t = S⟨λy.m⟩s. Absurd, because t is in mCbV-normal form.

• Explicit substitution: Let t = u[x←s]. Note that since t is in→CbV-normal form, then
so must be u and s. In addition, s must be closed—since t is—and so normCbV(s).
There are four possible cases:

– If u = v[x1←t1]...[xn←tn], for some n ≥ 0, then it must be that each ti, for
0 ≤ i ≤ n is in →CbV-normal form—since u is—thus giving that normCbV(ti).
We can then derive normCbV(t) since t = u[x←s] = v[x1←t1]...[xn←tn][x←s].

– If u is closed, then we can apply the i.h. on it and get that normCbV(u). Hence,
normCbV(u[x←s]).

– Suppose u := V ⟨⟨y⟩⟩. But then it must be—since t is closed—that
t = V ′⟨⟨V ⟨⟨y⟩⟩[y←m]⟩⟩, for some CbV context V ′ and term m ∈ Λ, which would
finally give that t is not in eCbV-normal form—because normCbV(s) implies, via
Lemma 13.1.1.2 (Shape of CbV-normal forms), that s is an answer. This is
absurd.

– Suppose none of the cases above holds. By Lemma 13.1.1.3 (Focusing through
CbN and CbNeed evaluation contexts), we would have that u = C⟨λy.m⟩, for
some CbN evaluation context that is not a substitution context—the case where
Cis a substitution context is covered above. Note that Lemma 13.1.1.4 gives
that Cis also a CbV evaluation context.
But then Lemma 13.1.1.1 (Shape of CbN and CbNeed-normal forms) would im-
ply that u is not in →CbN-normal form. Say u = E⟨t̃⟩ →CbN E⟨t̃′⟩. But since E
is also a CbV evaluation context—by Lemma 13.1.1.4—then u would not be in
→CbV-normal form, thus giving us that neither is t = u[x←s]. This is absurd.

⇐: We prove this statement by induction on the derivation of normCbV(t), dropping the
hypothesis that t is closed; thus, we prove a stronger statement. We proceed by case
analysis on the last derivation rule in normCbV(t):

• Abstraction: This case is trivial, as CbV does not reduce under λ-abstractions.
• Explicit substitution: Let normCbV(t) be derived as follows:

normCbV(u) normCbV(s)

normCbV(u[x←s])

where t = u[x←s]. By i.h., u is in →CbV-normal form. By Lemma 13.1.1.1 (Shape
of CbV-normal forms), t = v[x1←t1]...[xn←tn][x←s], for some n ≥ 0 such that
normCbV(ti) for every 0 ≤ i ≤ n. By i.h., ti is in →CbV-normal form. Hence, it is
clear that t = v[x1←t1]...[xn←tn][x←s][x←s] is in mCbV-normal form.
Moreover, t ̸= V ⟨⟨x⟩⟩ for any CbV context V , and so t is also in eCbV-normal form.

(Click here to go back to main chapter.)

155

13.2 Proofs of Chapter 5 (Multi types for CbN, CbV and
CbNeed)

13.2.1 CbN correctness
Lemma 13.2.1 (Relevance of the CbN type system).

Let t ∈ ΛL and let Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).
Proof. (Click here to go back to main chapter.)

By structural induction on Φ ▷CbN Γ ⊢(m,e) t :L and proceeding by case analysis on the last
derivation rule of Φ. The cases of rules ax, norm, many and app are all trivial. The only two
(relatively) interesting cases are those of rules fun and ES; we only cover the first one here:

Let Φ be derived as follows:
Ψ ▷CbN Γ;x :M ⊢(m,e) u :L′

Γ ⊢(m,e) λx.u :M ⊸ L′
fun

where t = λx.u and L = M ⊸ L′. By i.h. on Ψ, dom(Γ;x :M) ⊆ fv(u).
On the one hand, if M = 0, then dom(Γ) ⊆ fv(u). Then, if x /∈ fv(u) we have that dom(Γ) ⊆

fv(u) = fv(t), and if x ∈ fv(u) we have that dom(Γ) = dom(Γ;x :M) \ {x} ⊆ fv(u) \ {x} = fv(λx.u).
On the other hand, if M ̸= 0, then dom(Γ)∪{x} ⊆ fv(u), and so dom(Γ) = dom(Γ;x :M)\{x} =

fv(u) \ {x} = fv(λx.u)

(Click here to go back to main chapter.)
Proposition 13.2.2 (Typing properties of CbN-normal forms).

Let t ∈ ΛL be such that norm(t), and Φ ▷CbN Γ ⊢(m,e) t : norm be a type derivation. Then Γ = ∅
and (m, e) = (0, 0).
Proof. (Click here to go back to main chapter.)

By induction on the derivation of norm(t):
• Base case: Let t := λx.u, with norm(λx.u). Thus, Φ can only be derived as follows

∅ ⊢(0,0) λx.u : norm
norm

which satisfies the statement.
• Inductive case: Let norm(t) be derived as follows

norm(u)

norm(u[x←s])

with t = u[x←s]. Thus, Φ has the following shape.

Ψ ▷CbN Π;x :M ⊢(m′,e′) u : norm Θ ▷CbN ∆ ⊢(m′′,e′′) s :M M ̸= 0

Π
⊎

∆ ⊢(m+m′,e+e′) u[x←s] : norm
ES

with Γ = Π⊎∆ and (m, e) = (m+m′, e+ e′). By i.h. on Ψ, Γ;x :M = 0 and (m′, e′) = (0, 0).
Since M = 0, then Θ must be of the following form

∅ ⊢(0,0) s :0
many

Therefore, Π
⊎

∆ = ∅ and (m+m′, e+ e′) = (0, 0).

156

(Click here to go back to main chapter.)

Lemma 13.2.3 (Linear Substitution for CbN).
Let ΦC⟨⟨x⟩⟩ ▷CbN Γ;x :M ⊢(m,e) C⟨⟨x⟩⟩ :L be a type derivation. Then e ≥ 1 and there exists a

splitting M = [L′] ⊎N such that for every derivation Ψ ▷CbN Π ⊢(m′,e′) t :L′ there is a derivation

ΦC⟨⟨t⟩⟩ ▷CbN (Γ
⊎

Π);x :N ⊢(m+m′,e+e′−1) C⟨⟨t⟩⟩ :L

Proof. (Click here to go back to main chapter.)
By proceed by induction on C.
• Empty context: Let C := ⟨·⟩. Then ΦC⟨⟨x⟩⟩ must be of the following form

x : [norm] ⊢(0,1) x :L
ax

That is, Γ = ∅ and N = 0. Hence, the statement holds with respect to ΦC⟨⟨t⟩⟩ := Ψ.
• Left on an application: Let C := Du. The last rule of Φ can only be app, and so ΦC⟨⟨x⟩⟩ has

the form:
x : M∆; ∆ ⊢(m∆,e∆) D⟨⟨x⟩⟩ :N ⊸ L x : MΣ; Σ ⊢(mΣ,eΣ) u :N

x : (M∆

⊎
MΣ); (∆

⊎
Σ) ⊢(m∆+mΣ+1,e∆+eΣ) D⟨⟨x⟩⟩u :L

app

where Γ = ∆
⊎

Σ, ∆(x) = Σ(x) = 0, M∆ ⊎MΣ = M , m = m∆ +mΣ + 1, and e = e∆ + eΣ.
By i.h., there exists a splitting M∆ = [L′]⊎O such that for every derivation Ψ ▷CbN Π ⊢(m′,e′)

t : L′ there exists a derivation

ΦD⟨⟨t⟩⟩ ▷CbN x : O; ∆
⊎

Π ⊢(m∆+m′,e∆+e′−1) D⟨⟨t⟩⟩ : N ⊸ L

By applying an app rule we obtain:

x : O; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) D⟨⟨t⟩⟩ : N ⊸ L x : MΣ; Σ ⊢(mΣ,eΣ) u :N

ΦC⟨⟨t⟩⟩ ▷CbN x : (O ⊎MΣ); (∆ ⊎ Π ⊎ Σ) ⊢(m∆+m′+mΣ+1,e∆+e′+eΣ−1) D⟨⟨t⟩⟩u :L
app

Now, by defining N := O ⊎MΣ, we obtain M = M∆ ⊎MΣ = [L′] ⊎ O ⊎MΣ = [L′] ⊎ N .
Therefore by applying the equalities on the type context the last obtained judgement is in
fact:

x : N ; (Γ ⊎ Π) ⊢(m∆+m′+mΣ+1,e∆+e′+eΣ−1) D⟨⟨t⟩⟩u :L

and by applying those on the indices we obtain:

x : N ; (Γ ⊎ Π) ⊢(m+m′,e+e′−1) D⟨⟨t⟩⟩u :L

as required.
• Left of a substitution: Let C := D[y←u]. Note that x ̸= y, because the hypothesis C⟨⟨x⟩⟩

implies that C does not capture x.
The last rule of ΦC⟨⟨x⟩⟩ can only be ES, and so Φ has the form:

x : M∆; y : M
′; ∆ ⊢(m∆,e∆) D⟨⟨x⟩⟩ :L x : MΣ; Σ ⊢(mΣ,eΣ) u :M ′

x : (M∆ ⊎MΣ); (∆ ⊎ Σ) ⊢(m∆+mΣ,e∆+eΣ) D⟨⟨x⟩⟩[y←u] :L
ES

157

where Γ = ∆ ⊎ Σ, ∆(x) = Σ(x) = 0, M∆ ⊎MΣ = M , m = m∆ +mΣ, and e = e∆ + eΣ.
By i.h., there exists a splitting M∆ = [L′]⊎O such that for every derivation Ψ ▷CbN Π ⊢(m′,e′)

t : L′ there exists a derivation

ΦD⟨⟨t⟩⟩ ▷CbN x : O; y : M ′; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) D⟨⟨t⟩⟩ : L

Note that by Lemma 5.2.1 and the fact that we are working up to α-equivalence, we can prove
that y /∈ dom(Π). By applying a rule ES we obtain

x :O; y : M ′; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) D⟨⟨t⟩⟩ : L x : MΣ; Σ ⊢(mΣ,eΣ) u :M ′

ΦC⟨⟨x⟩⟩ ▷CbN x :O ⊎MΣ; ∆ ⊎ Π ⊎ Σ ⊢(m∆+m′+mΣ,e∆+e′+eΣ−1) D⟨⟨t⟩⟩[y←u] :L
ES

Now, by defining N := O ⊎MΣ, we obtain M = M∆ ⊎MΣ = [L′] ⊎ O ⊎MΣ = [L′] ⊎ N .
Therefore by applying the equalities on the type context the last obtained judgement is in
fact:

x : N ; (Γ ⊎ Π) ⊢(m∆+m′+mΣ,e∆+e′+eΣ−1) D⟨⟨t⟩⟩[y←u] :L

and by applying those on the indices we obtain:

x : N ; (Γ ⊎ Π) ⊢(m+m′,e+e′−1) D⟨⟨t⟩⟩[y←u] :L

as required.

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.2.3 (Linear Substitution for CbN) in the proof of

Proposition 5.2.4.2 (Quantitative Subject Reduction for CbN - exponential case) to obtain the right
indices.

Lemma 13.2.4 (Splitting multi types of CbN type derivations).
Let t ∈ Λ, M := N

⊎
O, and let Φ ▷CbN Γ ⊢(m,e) t :M be a type derivation. Then there exist type

derivations
Ψ ▷CbN Π ⊢(m′,e′) t :N
Θ ▷CbN ∆ ⊢(m′′,e′′) t :O

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M .

Proposition 13.2.5 (Quantitative Subject Reduction for CbN).
Let Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation.

1. Multiplicative: If t→mCbN u, then m ≥ 1 and there exists a derivation

Ψ ▷CbN Γ ⊢(m−1,e) u :L

2. Exponential: If t→eCbN u, then e ≥ 1 and there exists a derivation

Ψ ▷CbN Γ ⊢(m,e−1) u :L

158

Proof. (Click here to go back to main chapter.)
1. Multiplicative steps: By induction on t→mCbN u. Cases:

• Step at top level: Let t := S⟨λx.s⟩m →mCbN S⟨s[x←m]⟩ =: u. This case is itself by
induction on S. Two sub-cases:

– Empty substitution context: Let S := ⟨·⟩. By construction the derivation Φ is of the
form:

x : M ; Γs ⊢(ms,es) s : L

Γs ⊢(ms,es) λx.s : M → L
fun

Γm ⊢(mm,em) m : M

Γs ⊎ Γm ⊢(ms+mm+1,es+em) (λx.s)m : L
app

where Γ = Γs ⊎ Γm, m = ms +mm, and e = es + em. Note that m ≥ 1 as required.
We can derive Ψ, satisfying the statement, as follows:

x : M ; Γs ⊢(ms,es) s : L Γm ⊢(mm,em) m : M

Γs ⊎ Γm ⊢(ms+mm,es+em) s[x←m] : L
ES

– Non-empty substitution context: Let S := S ′[y←t̃]. Then Φ has the following form:

y : N ; Γs ⊢(ms,es) S ′⟨λx.s⟩ : M → L Γt̃ ⊢(mt̃,et̃) t̃ : N

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) S ′⟨λx.s⟩[y←t̃] : M → L
ES

Γm ⊢(mm,em) m : M

Γs ⊎ Γt̃ ⊎ Γm ⊢(ms+mt̃+mm+1,es+et̃+em) S ′⟨λx.s⟩[y←t̃]m : L
app

where Γ = Γs ⊎ Γt̃ ⊎ Γm, m = ms +mt̃ +mm + 1, and e = es + et̃ + em. Note that
m ≥ 1 as required.
Let us consider now the following derivation, obtained by removing the last appli-
cation of rule ES from Φ:

y : N ; Γs ⊢(ms,es) S ′⟨λx.s⟩ : M → L Γm ⊢(mm,em) m : M

y : N ; Γs ⊎ Γm ⊢(ms+mm+1,es+em) S ′⟨λx.s⟩m : L
app

By i.h., there exists type derivation

Θ ▷ y : N ; Γs ⊎ Γm ⊢(ms+mm,es+em) S ′⟨s[x←m]⟩ : L

Then, we apply rule ES with respect to y and t̃, obtaining the following derivation
Ψ, satisfying the statement:

y : N ; Γs ⊎ Γm ⊢(ms+mm,es+em) S ′⟨s[x←m]⟩ : L Γt̃ ⊢(mt̃,et̃) t̃ : N

Γs ⊎ Γt̃ ⊎ Γm ⊢(ms+mt̃+mm,es+et̃+em) S ′⟨s[x←m]⟩[y←t̃] : L
ES

• Contextual closure: Let t := C⟨s⟩ →mCbN C⟨m⟩ =: u. Cases of C:
– Left on an application: Let C := Dt̃. The last typing rule in Φ is necessarily app

and Φ is of the form

Γs ⊢(ms,es) D⟨s⟩ :M ⊸ L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃+1,es+et̃) D⟨s⟩t̃ :L
app

With Γ = Γs ⊎ Γt̃, m = ms +mt̃ + 1, and e = es + et̃.

159

By i.h., ms ≥ 1 and there exists a derivation Γs ⊢(ms−1,es) D⟨m⟩ :M ⊸ L, thus
allowing us to construct Ψ as follows:

Γs ⊢(ms−1,es) D⟨m⟩ :M ⊸ L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) D⟨m⟩t̃ :L
app

Note that (ms +mt̃, es + et̃) = (m− 1, e).
– Let C := D[x←t̃]. The last typing rule in Φ is necessarily ES and Φ is of the form

Γs, x : M ⊢(ms,es) D⟨s⟩ :L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) D⟨s⟩[x←t̃] :L
ES

With Γ = Γs ⊎ Γt̃, m = ms +mt̃, and e = es + et̃.
By i.h., ms ≥ 1, and so m ≥ 1, and there exists a derivation Γs, x : M ⊢(ms−1,es)

D⟨m⟩ :L, thus allowing us to construct Ψ as follows:

Γs, x : M ⊢(ms−1,es) D⟨m⟩ :L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃−1,es+et̃) D⟨s⟩[x←t̃] :L
ES

Note that (ms +mt̃ − 1, es + et̃) = (m− 1, e).
2. Exponential steps: By induction on t→eCbN u.

• Step at top level: Let t := C⟨⟨x⟩⟩[x←s] →eCbN C⟨⟨s⟩⟩[x←s] =: u. The last typing rule in
Φ is necessarily ES and Φ is of the form

ΦC⟨⟨x⟩⟩ ▷ ΓC , x : M ⊢(mC ,eC) C⟨⟨x⟩⟩ :L Π ⊢(m′,e′) s :M

ΓC ⊎ Π ⊢(mC+ms,eC+es) C⟨⟨x⟩⟩[x←s] :L
ES

where Γ = ΓC ⊎ Π, m = mC +m′, and e = eC + e′.
Let M = [L′] ⊎N be the splitting of M given by Lemma 5.2.3 (Linear Substitution for
CbN) applied to ΦC⟨⟨x⟩⟩. By Lemma 13.2.4 (Splitting multi types of CbN type deriva-
tions), there exist type derivations

ΨL′ ▷CbN ΠL′ ⊢(m′
L′ ,e

′
L′) s : L′

ΨN ▷CbN ΠN ⊢(m
′
N ,e′N) s : N

such that Π = ΠL′ ⊎ ΠN , m′ = m′L′ +m′N , and e′ = e′L′ + e′N .
Now, by Lemma 5.2.3 (Linear Substitution for CbN) on ΦC⟨⟨x⟩⟩ with respect to ΨL′ , we
obtain type derivation

ΦC⟨⟨s⟩⟩ ▷CbN x : N ; ΓC ⊎ ΠL′ ⊢(mC+m′
L′ ,eC+e′

L′−1) C⟨⟨s⟩⟩ : L

Then, Ψ can be derived as follows:

x : N ; ΓC ⊎ ΠL′ ⊢(mC+m′
L′ ,eC+e′

L′−1) C⟨⟨s⟩⟩ : L ΠN ⊢(m
′
N ,e′N) s : N

ΓC ⊎ ΠL′ ⊎ ΠN ⊢(mC+mL′+mN ,eC+eL′+eN−1) C⟨⟨s⟩⟩[x←s] :L
ES

Now, note that the last type judgement is in fact

ΓC ⊎ Π ⊢(mC+m′,eC+e′−1) C⟨⟨s⟩⟩[x←s] :L

which in turn is
Γ ⊢(m,e−1) C⟨⟨s⟩⟩[x←s] :L

as required.

160

• Contextual closure: As in the →mCbN case. Note that indeed those cases do not depend
on the details of the step itself, but only on the context enclosing it.

(Click here to go back to main chapter.)

Theorem 13.2.6 (Tight Correctness for CbN).
Let t ∈ ΛL be closed and Φ ▷CbN Γ ⊢(m,e) t :L be a type derivation. Then there exists u ∈ ΛL such

that
1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).

Proof. (Click here to go back to main chapter.)
By induction on m + e, and proceeding by case analysis on whether t →CbN-reduces or not.

Note that if t is in →CbN-normal form, then we only have to prove the moreover part, that states
that if Φ is tight then (m, e) = (0, 0), which follows from Proposition 5.2.2 (Typing properties of
CbN-normal forms).

Otherwise, if t→CbN s for some s ∈ ΛL, then there are two cases:
1. Multiplicative steps: Let t→mCbN s. By Proposition 5.2.4.1 (Quantitative Subject Reduction

for CbN - multiplicative steps), there exists Ψ ▷CbN Γ ⊢(m−1,e) s : L. By i.h. on Ψ, there exist
u and d′ such that norm(u) and d′ : s −→∗CbNu, |d′|m ≤ m − 1 and |d′|e ≤ e. Just note that
t→m s and so, if d : t −→∗CbNu is d′ preceeded by such a step, we have |d|m ≤ m and |d|e ≤ e.
If Φ is tight, then so is Ψ. Then |d′|m = m − 1 and |d′|e = e by i.h., that give |d|m = m and
|d|e = e.

2. Exponential steps: Let t→eCbN s. By Proposition 5.2.4.2 (Quantitative Subject Reduction for
CbN - exponential steps), there exists Ψ ▷CbN Γ ⊢(m,e−1) s : L. By i.h., there exist u and d′

such that norm(u) and d′ : s −→∗CbNu, |d′|m ≤ m and |d′|e ≤ e − 1. Just note that t →e s and
so, if d : t −→∗CbNu is d′ preceeded by such a step, we have |d|m ≤ m and |d|e ≤ e.
Finally, if Φ is tight, then so is Ψ. Then |d′|m = m and |d′|e = e−1 by i.h., that give |d|m = m
and |d|e = e.

(Click here to go back to main chapter.)

13.2.2 CbN completeness
Proposition 13.2.7 (Tight typability of CbN-normal forms).

Let t ∈ ΛL be such that norm(t). Then there exists a tight type derivation Φ ▷CbN ∅ ⊢(0,0) t : norm.

Proof. (Click here to go back to main chapter.)
By induction on the derivation of norm(t):
• Base case: Let t := λx.u, with norm(λx.u). Then, we can derive Φ as follows:

⊢(0,0) λx.u : norm
norm

161

• Inductive case: Let norm(t) be derived as follows

norm(u)

norm(u[x←s])

where t = u[x←s]. By i.h., there exists tight type derivation Ψ ▷CbN ⊢(0,0) u : norm. Then,
we can derive Φ as follows:

Ψ ▷ ⊢(0,0) u : norm ⊢(0,0) s : 0
many

⊢(0,0) u[x←s] : norm
ES

(Click here to go back to main chapter.)

Lemma 13.2.8 (Linear Removal for CbN).
Let Φ ▷CbN Γ;x :M ⊢(m,e) C⟨⟨u⟩⟩ :L be a type derivation, where x /∈ fv(u). Then there exist type

derivations
Ψ ▷CbN Π ⊢(m′,e′) u :L′

Θ ▷CbN ∆;x : (M ⊎ [L′]) ⊢(m′′,e′′) C⟨⟨x⟩⟩ :L

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to go back to main chapter.)
By induction on C:
• Empty context: Let C := ⟨·⟩. Then Φ ▷CbN Γ;x :M ⊢(m,e) u : L. By Lemma 5.2.1 (Relevance

of the CbN type system), x /∈ fv(u) implies M = 0. Then we simply take
– Φu := Φ, that implies L′ := L, Γu := Γ, mu := m, and eu := e, and
– Φx defined as the axiom

x : [L] ⊢(0,1) x : L
ax

and for which Γ′ is empty, m′ = 0, and e′ = 1.
Then the statement holds:

– Type contexts: Γ = ∅ ⊎ Γ = ∅ ⊎ Γu = Γ′ ⊎ Γu and
– Indices: (m, e) = (mu, eu) = (0 +mu, 1 + eu − 1) = (m′ +mu, e

′ + eu − 1).
• Left of an application: Let C := Ds. Then Φ has the form

ΦD⟨u⟩ ▷ ΓD⟨u⟩;x :M ⊢(mD⟨u⟩,eD⟨u⟩) D⟨u⟩ : N ⊸ L Γs ⊢(ms,es) s : N

ΓD⟨u⟩ ⊎ Γs;x :M ⊢(mD⟨u⟩+ms+1,eD⟨u⟩+es) D⟨u⟩s : L
app

where x /∈ dom(Γs), by Lemma 5.2.1 (Relevance of the CbN type system), because x /∈ fv(s)
by hypothesis), Γ = ΓD⟨u⟩ ⊎ Γs, m = mD⟨u⟩ +ms + 1, and e = eD⟨u⟩ + es.
Applying the i.h. to ΦD⟨u⟩ provides a type L′ and derivations:

Φu ▷CbN Γu ⊢(mu,eu) u : L′

ΦD⟨⟨x⟩⟩ ▷CbN Γ′′;x :M ⊎ [L′] ⊢(m′′,e′′) D⟨⟨x⟩⟩ : N ⊸ L

such that ΓD⟨u⟩ = Γ′′ ⊎ Γu and (mD⟨u⟩, eD⟨u⟩) = (m′′ +mu, e
′′ + eu − 1).

162

Then ΦC⟨⟨x⟩⟩ is given by:

ΦD⟨⟨x⟩⟩ ▷CbN Γ′′;x :M ⊎ [L′] ⊢(m′′,e′′) D⟨⟨x⟩⟩ : N ⊸ L Γs ⊢(ms,es) s : N

(Γ′′ ⊎ Γs);x :M ⊎ [L′] ⊢(m′′+ms+1,e′′+es) D⟨x⟩s : L
app

that, by taking Γ′ := Γ′′ ⊎ Γs, m′ = m′′ + ms + 1, and e′ = e′′ + es, verifies the statement
because:

– Type contexts: Γ = ΓD⟨u⟩ ⊎ Γs = Γ′′ ⊎ Γu ⊎ Γs = Γ′ ⊎ Γu, and
– Indices: (m, e) = (mD⟨u⟩ +ms + 1, eD⟨u⟩ + es) = (m′′ +mu +ms + 1, e′′ + eu − 1 + es) =

(m′ +mu, e
′ + eu − 1).

• Left of a substitution: Let C := D[y←s]. Then Φ has the form

ΦD⟨u⟩ ▷ ΓD⟨u⟩;x :M ; y :N ⊢(mD⟨u⟩,eD⟨u⟩) D⟨u⟩ : L Γs ⊢(ms,es) s : N

ΓD⟨u⟩ ⊎ Γs;x :M ⊢(mD⟨u⟩+ms,eD⟨u⟩+es) D⟨u⟩[y←s] : L
ES

where x /∈ dom(Γs), by Lemma 5.2.1 (Relevance of the CbN type system), because x /∈ fv(s)
by hypothesis), Γ = ΓD⟨u⟩ ⊎ Γs, m = mD⟨u⟩ +ms, and e = eD⟨u⟩ + es.
Applying the i.h. to ΦD⟨u⟩ provides a type L′ and derivations:

Φu ▷CbN Γu ⊢(mu,eu) u : L′

ΦD⟨⟨x⟩⟩ ▷CbN Γ′′;x :M ⊎ [L′]; y :N ⊢(m′′,e′′) D⟨⟨x⟩⟩ : L

such that ΓD⟨u⟩ = Γ′′ ⊎ Γu and (mD⟨u⟩, eD⟨u⟩) = (m′′ +mu, e
′′ + eu − 1).

Then ΦC⟨⟨x⟩⟩ is given by:

ΦD⟨⟨x⟩⟩ ▷CbN Γ′′;x :M ⊎ [L′]; y :N ⊢(m′′,e′′) D⟨⟨x⟩⟩ : L Γs ⊢(ms,es) s : N

(Γ′′ ⊎ Γs);x :M ⊎ [L′] ⊢(m′′+ms,e′′+es) D⟨x⟩[y←s] : L
ES

that, by taking Γ′ := Γ′′ ⊎ Γs, m′ = m′′ +ms, and e′ = e′′ + es, verifies the statement because:
– Type contexts: Γ = ΓD⟨u⟩ ⊎ Γs = Γ′′ ⊎ Γu ⊎ Γs = Γ′ ⊎ Γu, and
– Indices: (m, e) = (mD⟨u⟩ +ms, eD⟨u⟩ + es) = (m′′ +mu +ms, e

′′ + eu − 1 + es) = (m′ +
mu, e

′ + eu − 1).

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.2.7 (Linear Removal for CbN) in the proof of

Proposition 5.2.8.2 (Quantitative Subject Expansion for CbN - exponential case) to obtain the right
indices.

Lemma 13.2.9 (Merging multi types of CbN type derivations).
Let t ∈ ΛL. For any two type derivations

ΦN ▷CbN ΓN ⊢(mN ,eN) t :N
ΦO ▷CbN ΓO ⊢(mO,eO) t :O

there exists type derivation

ΦN⊎O ▷CbN ΓN ⊎ ΓO ⊢(mN+mO,eN+eO) t :N ⊎O

163

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case N and O.

Proposition 13.2.10 (Quantitative Subject Expansion for CbN).
Let Φ ▷CbN Γ ⊢(m,e) u :L be a type derivation.

1. Multiplicative: If t→mCbN u, then there exists a derivation

Ψ ▷CbN Γ ⊢(m+1,e) t :L

2. Exponential: If t→eCbN u, then there exists a derivation

Ψ ▷CbN Γ ⊢(m,e+1) t :L

Proof. (Click here to go back to main chapter.)
1. Multiplicative steps: By induction on t→mCbV u:

• Step at top level: Let t := S⟨λx.s⟩m →mCbN S⟨s[x←m]⟩ = u. This case is itself by
induction on S. Two sub-cases:

– Empty substitution context: Let S := ⟨·⟩. By construction the derivation Φ is of the
form:

x : M ; Γs ⊢(ms,es) s : L

Γs ⊢(ms,es) λx.s : M → L
fun

Γm ⊢(mm,em) m : M

Γs ⊎ Γm ⊢(ms+mm+1,es+em) (λx.s)m : L
app

With Γ = Γs ⊎ Γm, m = ms +mm, and e = es + em. Note that m ≥ 1 as required.
We construct the following derivation Ψ, verifying the statement:

x : M ; Γs ⊢(ms,es) s : L Γm ⊢(mm,em) m : M

Γs ⊎ Γm ⊢(ms+mm,es+em) s[x←m] : L
ES

– Non-empty substitution context: Let S := S ′[y←t̃]. Then Φ has the following struc-
ture:

y : N ; Γs ⊢(ms,es) S ′⟨λx.s⟩ : M → L Γt̃ ⊢(mt̃,et̃) t̃ : N

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) S ′⟨λx.s⟩[y←t̃] : M → L
ES

Γm ⊢(mm,em) m : M

Γs ⊎ Γt̃ ⊎ Γm ⊢(ms+mt̃+mm+1,es+et̃+em) S ′⟨λx.s⟩[y←t̃]m : L
app

With Γ = Γs ⊎ Γt̃ ⊎ Γm, m = ms +mt̃ +mm + 1, and e = es + et̃ + em. Note that
m ≥ 1 as required.
Consider the following derivation, obtained by removing the rule ES:

y : N ; Γs ⊢(ms,es) S ′⟨λx.s⟩ : M → L Γm ⊢(mm,em) m : M

y : N ; Γs ⊎ Γm ⊢(ms+mm+1,es+em) S ′⟨λx.s⟩m : L
app

By i.h., we obtain type derivation

Θ ▷ y : N ; Γs ⊎ Γm ⊢(ms+mm,es+em) S ′⟨s[x←m]⟩ : L

164

Now, we apply a rule ES with respect to y and t̃, obtaining the following derivation
Ψ, satisfying the statement:

y : N ; Γs ⊎ Γm ⊢(ms+mm,es+em) S ′⟨s[x←m]⟩ : L Γt̃ ⊢(mt̃,et̃) t̃ : N

Γs ⊎ Γt̃ ⊎ Γm ⊢(ms+mt̃+mm,es+et̃+em) S ′⟨s[x←m]⟩[y←t̃] : L
ES

• Contextual closure: We have t := C⟨s⟩ →mCbN C⟨m⟩ = u. Cases of C:
– Left on an application: Let C := Dt̃. The last typing rule in Φ is necessarily app

and Φ is of the form

Γs ⊢(ms,es) D⟨s⟩ :M ⊸ L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃+1,es+et̃) D⟨s⟩t̃ :L
app

With Γ = Γs ⊎ Γt̃, m = ms +mt̃ + 1, and e = es + et̃.
By i.h., ms ≥ 1 and there exists a derivation Γs ⊢(ms−1,es) D⟨m⟩ :M ⊸ L, thus
allowing us to construct Ψ as follows:

Γs ⊢(ms−1,es) D⟨m⟩ :M ⊸ L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) D⟨m⟩t̃ :L
appb

Note that (ms +mt̃, es + et̃) = (m− 1, e).
– Let C = D[x←t̃]. The last typing rule in Φ is necessarily ES and Φ is of the form

Γs, x : M ⊢(ms,es) D⟨s⟩ :L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃,es+et̃) D⟨s⟩[x←t̃] :L
ES

With Γ = Γs ⊎ Γt̃, m = ms +mt̃, and e = es + et̃.
By i.h., ms ≥ 1, and so m ≥ 1, and there exists a derivation Γs, x : M ⊢(ms−1,es)

D⟨m⟩ :L, thus allowing us to construct Ψ as follows:

Γs, x : M ⊢(ms−1,es) D⟨m⟩ :L Γt̃ ⊢(mt̃,et̃) t̃ :M

Γs ⊎ Γt̃ ⊢(ms+mt̃−1,es+et̃) D⟨s⟩[x←t̃] :L
ES

Note that (ms +mt̃ − 1, es + et̃) = (m− 1, e).
2. Exponential steps: By induction on t→eCbV u.

• Step at top level: Let t := C⟨⟨x⟩⟩[x←s] →eCbN C⟨⟨s⟩⟩[x←s] = u. The last typing rule in
Φ is necessarily ES and Φ is of the form

ΦC⟨⟨x⟩⟩ ▷ ΓC , x : M ⊢(mC ,eC) C⟨⟨x⟩⟩ :L Π ⊢(m′,e′) s :M

ΓC ⊎ Π ⊢(mC+ms,eC+es) C⟨⟨x⟩⟩[x←s] :L
ES

With Γ = ΓC ⊎ Π, m = mC +m′, and e = eC + e′.
Let M := [L′] ⊎ N be the splitting of M given by application of Lemma 5.2.7 (Lin-
ear Removal for CbN) on ΦC⟨⟨x⟩⟩. By Lemma 13.2.9 (Merging multi types of CbN type
derivations), there exist type derivations

ΨL′ ▷CbN ΠL′ ⊢(m′
L′ ,e

′
L′) s : L′

ΨN ▷CbN ΠN ⊢(m
′
N ,e′N) s : N

165

such that Π = ΠL′ ⊎ ΠN , m′ = m′L′ +m′N , and e′ = e′L′ + e′N .
Now, by applying again the linear substitution lemma to ΦC⟨⟨x⟩⟩ with respect to ΨL′ , we
obtain a derivation

ΦC⟨⟨s⟩⟩ ▷CbN x : N ; ΓC ⊎ ΠL′ ⊢(mC+m′
L′ ,eC+e′

L′−1) C⟨⟨s⟩⟩ : L
Then Ψ is built as follows:

x : N ; ΓC ⊎ ΠL′ ⊢(mC+m′
L′ ,eC+e′

L′−1) C⟨⟨s⟩⟩ : L ΠN ⊢(m
′
N ,e′N) s : N

ΓC ⊎ ΠL′ ⊎ ΠN ⊢(mC+mL′+mN ,eC+eL′+eN−1) C⟨⟨s⟩⟩[x←s] :L
ES

Now, note that the last judgement is in fact
ΓC ⊎ Π ⊢(mC+m′,eC+e′−1) C⟨⟨s⟩⟩[x←s] :L

which in turn is
Γ ⊢(m,e−1) C⟨⟨s⟩⟩[x←s] :L

as required.
• Contextual closure: As in the →mCbN case. Note that indeed those cases do not depend

on the details of the step itself, but only on the context enclosing it.

(Click here to go back to main chapter.)
Theorem 13.2.11 (Tight Completeness for CbN).

Let t ∈ ΛL be closed. If there exists d : t −→∗CbNu for some u ∈ ΛL in →CbN-normal form, then
there exists a type derivation Φ ▷CbN ∅ ⊢(|d|m,|d|e) t : norm.
Proof. (Click here to go back to main chapter.)

By induction on the length |d| of the reduction sequence d : t −→∗CbNu:
• Base case: Let k := 0. Then t = u and t is in →CbN-normal form. By Proposition 4.6.1.1

(Syntactic characaterization of closed normal forms - CbN), we have that norm(t). In addition,
Proposition 5.2.6 (Tight typability of CbN-normal forms) yields tight type derivation Φ ▷CbN
∅ ⊢(0,0) t : norm, which satisfies the statement—in particular, because |d|m = |d|e = 0.

• Inductive case: Let k > 0; i.e., t→CbN s→k−1
CbN u. Let d′ be the evaluation s→k−1

CbN u. By i.h.,
there exists tight type derivation

Ψ ▷CbN∅ ⊢(|d
′|m,|d′|e) s : norm

Case analysis on the kind of reduction step in t→CbN s:
– Multiplicative step: Let t→mCbN s. By Proposition 5.2.8.1 (Quantitative Subject Expan-

sion for CbN - Multiplicative), there exists (tight) type derivation
Ψ′ ▷CbN∅ ⊢(|d

′|m+1,|d′|e) s : norm

which satisfies the statement—in particular, because |d|m = |d′|m + 1 and |d|e = |d′|e.
– Exponential step: Let t→eCbN s. By Proposition 5.2.8.2 (Quantitative Subject Expansion

for CbN - Exponential), there exists (tight) type derivation
Ψ′ ▷CbN∅ ⊢(|d

′|m,|d′|e+1) s : norm

which satisfies the statement—in particular, because |d|m = |d′|m and |d|e = |d′|e + 1.

(Click here to go back to main chapter.)

166

13.2.3 CbV correctness
Lemma 13.2.12 (Relevance of the CbV type system).

Let t ∈ ΛL and let Φ ▷CbV Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).

Proof. (Click here to go back to main chapter.)
By structural induction on Φ ▷CbV Γ ⊢(m,e) t :M and proceeding by case analysis on the last

derivation rule of Φ.

(Click here to go back to main chapter.)

Proposition 13.2.13 (Typing properties of CbV-normal forms).
Let t ∈ ΛL be such that normCbV(t), and Φ ▷CbV Γ ⊢(m,e) t :0 be a type derivation. Then Γ = ∅

and (m, e) = (0, 0).

Proof. (Click here to go back to main chapter.)
By Proposition 4.6.1.2 (Syntactic characterization of closed normal forms - CbV), normCbV(t).

We proceed by case analysis on the derivation of normCbV(t):
• Base case: Let t = λx.u, with normCbV(λx.u). Note that Φ can only be derived as follows

∅ ⊢(0,0) λx.u :0
many

which satisfies the statement.
• Inductive case: Let normCbV(t) be derived as follows

normCbV(u) normCbV(s)

norm(u[x←s])

with t = u[x←s]. Thus, Φ has the following shape.

Ψ ▷CbV Π;x :M ⊢(m′,e′) u : norm Θ ▷CbV ∆ ⊢(m′′,e′′) s :M M ̸= 0

Π
⊎

∆ ⊢(m+m′,e+e′) u[x←s] : norm
ES

with Γ = Π⊎∆ and (m, e) = (m+m′, e+ e′). By i.h. on Ψ, Γ;x :M = 0 and (m′, e′) = (0, 0).
Since M = 0, we can also apply the i.h. on Θ, obtaining that it must be of the following form

∅ ⊢(0,0) s :0
many

Therefore, Π
⊎

∆ = ∅ and (m+m′, e+ e′) = (0, 0).

(Click here to go back to main chapter.)

Lemma 13.2.14 (Linear Substitution for CbV).
Let Φ ▷CbV Γ;x :M ⊢(m,e) V ⟨⟨x⟩⟩ :N be a type derivation and let v ∈ Val. Then e ≥ 1 and there

exists a splitting M = O ⊎ P such that for every type derivation Ψ ▷CbV Π ⊢(m′,e′) v :O, there exists
type derivation

Θ ▷CbV

(
Γ
⊎

Π
)
;x :P ⊢(m+m′,e+e′−1) V ⟨⟨v⟩⟩ :N

167

Proof. (Click here to go back to main chapter.)
By induction on V :
• Context hole: Let V := ⟨·⟩. Then V ⟨⟨v⟩⟩ = v and V ⟨⟨x⟩⟩ = x. Hence Φ consists of only

an application of rule ax, and so N = M and dom(Γ) = ∅, with m = 0 and e = 1. Let
O := M and P := 0. Thus, every Ψ ▷CbV Π ⊢(m′,e′) v : O coincides with type derivation
Φ′ ▷CbV Γ

⊎
Π;x :P ⊢(m+m′,e+e′−1) V ⟨⟨v⟩⟩ : N , since Γ

⊎
Π;x :P = Γ and N = O and (m +

m′, e+ e′ − 1) = (m′, e′).
• Left of an application: Let V := V ′t. Then, Φ has the following form

x :M1,Γ1 ⊢(m1,e1) V ′⟨⟨x⟩⟩ : [N ′ ⊸ N] x :M2,Γ2 ⊢(m2,e2) t : N ′

x :M,Γ ⊢(m,e) V ′⟨⟨x⟩⟩t : N
app

where M = M1 ⊎M2, Γ = Γ1

⊎
Γ2, m = m1 +m2 + 1 and e = e1 + e2. By i.h., there exists

a splitting M1 = O ⊎ P ′ such that, for every derivation Ψ ▷CbV Π ⊢(m′,e′) v : O, there exists a
type derivation with conclusion (Γ1

⊎
Π);x :P ′ ⊢(m1+m′,e1+e′−1) V ′⟨⟨v⟩⟩ : [N ′ ⊸ N].

Thus, we can derive Φ′ as follows:

(Γ1

⊎
Π);x :P ′ ⊢(m1+m′,e1+e′−1) V ′⟨⟨v⟩⟩ : [N ′ ⊸ N] x :M2; Γ2 ⊢(m2,e2) t : N ′

x : (M2 ⊎ P ′); Γ
⊎

Π ⊢(m+m′,e+e′−1) V ′⟨⟨v⟩⟩t : N
app

where P = M2 ⊎ P ′ and M = M1 ⊎M2 = O ⊎ P ′ ⊎M2 = O ⊎ P .
• Right of an application: Let V := tV ′. Then, Φ has the form

x :M1,Γ1 ⊢(m1,e1) t : [N ′ ⊸ N] x :M2; Γ2 ⊢(m2,e2) V ′⟨⟨x⟩⟩ : N ′

x :M,Γ ⊢(m,e) t V ′⟨⟨x⟩⟩ : N
app

where M = M1 ⊎M2, Γ = Γ1

⊎
Γ2, m = m1 +m2 + 1 and e = e1 + e2. By i.h., there exists

a splitting M2 = O ⊎ P ′ such that, for every derivation Ψ ▷CbV Π ⊢(m′,e′) v : O, there exists a
derivation with conclusion Γ2

⊎
Π;x :P ′ ⊢(m2+m′,e2+e′−1) V ′⟨⟨v⟩⟩ : N ′. So, we can derive Φ′ as

follows:
x :M1; Γ1 ⊢(m1,e1) t : [N ′ ⊸ N] Γ2

⊎
Π, ;x :P ′ ⊢(m2+m′,e2+e′−1) V ′⟨⟨v⟩⟩ : N ′

x : (M1 ⊎ P ′); Γ
⊎

Π ⊢(m+m′,e+e′−1) tV ′⟨⟨v⟩⟩ : N
app

where P = M1 ⊎ P ′ and M = M1 ⊎M2 = M1 ⊎O ⊎ P ′ = O ⊎ P .
• Left of an ES: Let V := V ′[y←t]. We can suppose—without loss of generality—that y /∈

fv(t) ∪ fv(v) ∪ {x}, and hence y /∈ dom(Π) by Lemma 5.3.1 (Relevance of the CbV type
system). Hence, Φ has the form:

x :M1; y :N
′; Γ1 ⊢(m1,e1) V ′⟨⟨x⟩⟩ : N x :M2,Γ2 ⊢(m2,e2) t : N ′

x :M,Γ ⊢(m,e) V ′⟨⟨x⟩⟩[y←t] : N
ES

where M = M1 ⊎M2, Γ = Γ1

⊎
Γ2, m = m1 + m2 and e = e1 + e2. By i.h., there exists a

splitting M1 = O ⊎ P ′ such that, for every derivation Ψ ▷CbV Π ⊢(m′,e′) v : O, there exists a
derivation of Γ1

⊎
Π, x :P ′, y :N ′ ⊢(m1+m′,e1+e′−1) V ′⟨⟨v⟩⟩ : N .

Therefore, we can construct the following derivation Φ′

Γ1

⊎
Π;x :P ′; y :N ′ ⊢(m1+m′,e1+e′−1) V ′⟨⟨v⟩⟩ : N x :M2; Γ2 ⊢(m2,e2) t : N ′

x : (M2 ⊎ P ′); Γ
⊎

Π ⊢(m+m′,e+e′−1) V ′⟨⟨v⟩⟩[y←t] : N
ES

where P = M2 ⊎ P ′ and M = M1 ⊎M2 = O ⊎ P ′ ⊎M2 = O ⊎ P .

168

• Right of an ES: Let V := t[y←V ′]. We can suppose—without loss of generality—that y /∈
fv(v)∪{x}, and hence y /∈ dom(Π) by Lemma 5.3.1 (Relevance of the CbV type system).Hence,
Φ has the following form:

x :M1, y :N
′,Γ1 ⊢(m1,e1) t : N x :M2,Γ2 ⊢(m2,e2) V ′⟨⟨x⟩⟩ : N ′

x :M,Γ ⊢(m,e) t[y←V ′⟨⟨x⟩⟩] : N
ES

where M = M1 ⊎M2, Γ = Γ1

⊎
Γ2, m = m1 + m2 and e = e1 + e2.By i.h., there exists a

splitting M2 = O ⊎P ′ such that, for every derivation Ψ ▷CbV Π ⊢(m′,e′) v : O, there exists type
derivation Γ2

⊎
Π, x :P ′ ⊢(m2+m′,e2+e′−1) V ′⟨⟨v⟩⟩ : N ′.

Hence, we can derive Φ′ as follows:

x :M1, y :N
′,Γ1 ⊢(m1,e1) t : N Γ2

⊎
Π, x :P ′ ⊢(m2+m′,e2+e′−1) V ′⟨⟨v⟩⟩ : N ′

x :M1 ⊎ P ′; Γ
⊎

Π ⊢(m+m′,e+e′−1) t[y←V ′⟨⟨v⟩⟩] : N
ES

where P = M1 ⊎ P ′ and M = M1 ⊎M2 = M1 ⊎O ⊎ P ′ = O ⊎ P .

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.3.3 (Linear Substitution for CbV) in the proof of

Proposition 5.3.4.2 (Quantitative Subject Reduction for CbV - exponential case) to obtain the right
indices.

Lemma 13.2.15 (Splitting multi types of CbV type derivations). Let v ∈ Val, M := N
⊎

O, and
let Φ ▷CbV Γ ⊢(m,e) v :M be a type derivation. Then there exist type derivations

Ψ ▷CbV Π ⊢(m′,e′) v :N
Θ ▷CbV ∆ ⊢(m′′,e′′) v :O

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Proposition 13.2.16 (Quantitative Subject Reduction for CbV).
Let Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation.

1. Multiplicative: If t→mCbV u, then m ≥ 1 and there exists a derivation

Ψ ▷CbV Γ ⊢(m−1,e) u :M

2. Exponential: If t→eCbV u, then e ≥ 1 and there exists a derivation

Ψ ▷CbV Γ ⊢(m,e−1) u :M

Proof. (Click here to go back to main chapter.)
1. Multiplicative steps: By induction on t→mCbV u. Cases:

169

• Step at top level: Let t := S⟨λx.s⟩m 7→mCbV S⟨s[x←m]⟩ =: u. This case is itself by
induction on S. Two sub-cases:

– Empty substitution context: Let S := ⟨·⟩. Then t = S⟨λx.s⟩m = (λx.s)m and
t′ = S⟨s[x←m]⟩ = s[x←m]. Hence, Φ has the following form

Ψ ▷CbV Π, x :O ⊢(m′,e′) s :M

Π ⊢(m′,e′) λx.s :O ⊸ M
fun

Π ⊢(m′,e′) λx.s : [O ⊸ M]
many

Θ ▷CbV ∆ ⊢(m′′,e′′) m :O

Π ⊎∆ ⊢(1+m′+m′′,e′+e′′) (λx.s)m :M
app

where Γ := Π ⊎∆, m := 1 +m′ +m′′ and e := e′ + e′′.
Therefore, m ≥ 1. We can then Φ′ as follows:

Ψ ▷CbV Π, x :O ⊢(m′,e′) s :M Θ ▷CbV ∆ ⊢(m′′,e′′) m :O

Γ ⊢(m′+m′′,e′+e′′) s[x←m] :M
ES

where (m′ +m′′, e′ + e′′) = (m− 1, e).
– Non-empty substitution context: Let S ′ := [y1←u1] . . . [yn−1←un−1]. Then, t =

S⟨λx.s⟩m = S ′⟨λx.s⟩[yn←un]m and t′ = S⟨s[x←m]⟩ = S ′⟨s[x←m]⟩[yn←un]. Hence,
Φ has the following form:

Ψ′′ ▷CbV Π, yn :Nn ⊢(m
′′,e′′) S′⟨λx.s⟩ : M Ψn ▷CbV Γn ⊢(mn,en) un : Nn

Π ⊎ Γn ⊢(m
′′+mn,e

′′+en) S⟨λx.s⟩ : M
ES

Θ ▷CbV Γ′0 ⊢(m
′
0,e

′
0) m : O

Π ⊎ Γn ⊎ Γ′0 ⊢(m
′′+mn+m′

0+1,e′′+en+e′0) S⟨λx.s⟩m : M
app

where Γ := Π ⊎ Γn ⊎ Γ′0 and (m, e) := (m′′ +mn +m′0 + 1, e′′ + en + e′0). Note that
m ≥ 1 as required.
Let us consider now the following type derivation, which we call Ψ:

Ψ′′ ▷CbV Π, yn :Nn ⊢(m
′′,e′′) S ′⟨λx.s⟩ : M Θ ▷CbV Γ′0 ⊢(m

′
0,e

′
0) m : O

Π ⊎ Γ′0, yn :Nn ⊢(m
′′+m′

0+1,e′′+e′0) S ′⟨λx.s⟩m : M
app

By i.h. on Ψ—since S ′⟨λx.s⟩m 7→m S ′⟨s[x←m]⟩—there exists type derivation

Ψ′ ▷CbV Π ⊎ Γ′0, yn :Nn ⊢(m
′,e′) S ′⟨s[x←m]⟩ : M

where (m′, e′) = (m′′ +m′0, e
′′ + e′0).

We can then derive Φ′ as follows:

Ψ′ ▷CbV Π ⊎ Γ′0, yn :Nn ⊢(m
′,e′) S ′⟨s[x←m]⟩ : M Ψn ▷CbV Γn ⊢(mn,en) un : Nn

Γ ⊢(m′+mn,e′+en) S ′⟨s[x←m]⟩[yn←un] : M
ES

where (m′ +mn, e
′ + en) = (m′′ +m′0 +mn, e

′′ + e′0 + en) = (m− 1, e).
• Contextual closure: Let t := V ⟨t′⟩ →mCbV V ⟨u′⟩ =: u, with t 7→mCbV t′. We proceed by

induction on V :
– Left of an application: Let V := V ′s. Then, t = V ′⟨t′⟩s→mCbV V ′⟨u′⟩s = t′. Hence,

Φ has the following form:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) u : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

170

where Γ = Γ1 ⊎ Γ2 and m = m1 +m2 + 1 and e = e1 + e2.
By application of the i.h. on Ψ1, there exists type derivation Ψ ▷CbV Γ1 ⊢(m1−1,e1)

u′ : [N ⊸ M] where m′ := m1 − 1 and e′ := e1.
Thus, we can derive Φ′ as follows:

Ψ ▷CbV Γ1 ⊢(m
′,e′) u′ : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1−1+m2+1,e1+e2) t′ :M
app

– Right of an application: Let V := sV ′. Then, t = sV ′⟨t′⟩ →mCbV sV ′⟨u′⟩ = u. Hence,
Φ is of the following form:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) u :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 + 1 and e := e1 + e2.
By application of the i.h. on Ψ2, there exists type derivation Ψ ▷CbV Γ2 ⊢(m2−1,e2)

u′ :N .
Thus, we can derive Φ′ as follows:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ ▷CbV Γ2 ⊢(m
′,e′) u′ :N

Γ1 ⊎ Γ2 ⊢(m1+m2−1+1,e1+e2) t′ :M
app

– Left of an ES: Let V := V ′[x←s]. Then, t = V ′⟨t′⟩[x←s] →mCbV V ′⟨u′⟩[x←s] = u.
Hence, Φ has the following form:

Γ1, x :N ⊢(m1,e1) u :M Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 and e := e1 + e2.
By application of the i.h. on Ψ1, there exists type derivation Ψ▷CbVΓ1, x :N ⊢(m1−1,e1)

u′ :M .
Thus, we can derive Φ′ as follows:

Ψ ▷CbV Γ1, x :N ⊢(m
′,e′) u′ :M Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1−1+m2,e1+e2) t′ :M
ES

– Right of an ES: Let V := sV ′. Then, ts[x←V ′⟨t′⟩]→mCbV s[x←V ′⟨u′⟩] = u. Hence,
Φ has the following form:

Γ1, x :N ⊢(m1,e1) u :M Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 and e := e1 + e2.
By application of the i.h. on Ψ2, there exists type derivation Ψ ▷CbV Γ2 ⊢(m2−1,e2)

s′ :N .
Thus, we can derive Φ′ as follows:

Ψ1 ▷CbV Γ1, x :N ⊢(m1,e1) u :M Ψ ▷CbV Γ2 ⊢(m
′,e′) s′ :N

Γ1 ⊎ Γ2 ⊢(m1+m2−1,e1+e2) t′ :M
ES

171

2. Exponential steps: By induction on t→eCbV u. Cases:
• Step at top level: Let t := V ⟨⟨x⟩⟩[x←S⟨v⟩] 7→eCbV S⟨V ⟨⟨v⟩⟩[x←v]⟩ =: t′ with S :=

[y1←u1] . . . [yn←un] for some n ≥ 0. This case is itself by induction on S. Two sub-
cases:

– Empty substitution context: Let S := ⟨·⟩ and so t = V ⟨⟨x⟩⟩[x←v] and t′ = V ⟨⟨v⟩⟩[x←v].
Hence, Φ has the following form

Ψ ▷CbV Π, x :O ⊢(m′,e′) V ⟨⟨x⟩⟩ :M Θ ▷CbV Γ0 ⊢(m0,e0) v :O

Π ⊎ Γ0 ⊢(m
′+m0,e′+e0) V ⟨⟨x⟩⟩[x←v] :M

ES

where Γ := Π ⊎ Γ0, and m := m′ +m0 and e := e′ + e0.
Let O = O′ ⊎ O′′ be the splitting of O given by Lemma 5.3.3 (Linear Substitution
for CbV). By Lemma 13.2.15 (Splitting multi types of CbV type derivations), there
exist a splitting Γ0 = Γ′0 ⊎ Γ′′0 and the derivations Θ′ ▷CbV Γ′0 ⊢(m

′
0,e

′
0) v :O′ and

Θ′′ ▷CbV Γ′′0 ⊢(m
′′
0 ,e

′′
0) v : O′′, with m0 = m′0 +m′′0 and e0 = e′0 + e′′0.

Moreover, note that, by Lemma 5.3.3 (Linear Substitution for CbV), there exists
type derivation Ψ′ ▷CbV Π ⊎ Γ′0, x :O

′′ ⊢(m′+m′
0,e

′+e′0−1) V ⟨⟨v⟩⟩ :M . We can then derive
Φ′ as follows:
Ψ′ ▷CbV Π ⊎ Γ′0, x :O

′′ ⊢(m′+m′
0,e

′+e′0−1) V ⟨⟨v⟩⟩ :M Θ′′ ▷CbV Γ′′0 ⊢(m
′′
0 ,e

′′
0) v :O′′

Π ⊎ Γ′0 ⊎ Γ′′0 ⊢(m
′+m′

0+m′′
0 ,e

′+e′0+e′′0−1) V ⟨⟨v⟩⟩[x←v] :M
ES

where Π⊎Γ′0⊎Γ′′0 = Π⊎Γ0 = Γ and (m′+m′0+m′′0, e
′+ e′0+ e′′0−1) = (m′+m0, e

′+
e0 − 1) = (m, e− 1).

– Non-empty substitution context: Let S ′ := [y1←u1] . . . [yn−1←un−1]: then, S⟨v⟩ =
S ′⟨v⟩[yn←un] and so t = V ⟨⟨x⟩⟩[x←S ′⟨v⟩[yn←un]] and t′ = S⟨V ⟨⟨v⟩⟩[x←v]⟩ =
S ′⟨V ⟨⟨v⟩⟩[x←v]⟩[yn←un]. Hence, Φ has the following form

Θ ▷CbV Γ′
0, x :N ⊢(m

′
0,e

′
0) V ⟨⟨x⟩⟩ : M

Θ′′ ▷CbVyn :Nn,Γ′′
0 ⊢(m

′′
0 ,e′′0) S′⟨v⟩ : N Θn ▷CbVΓn ⊢(mn,en) un : Nn

Γ′′
0 ⊎ Γn ⊢(m

′′
0 +mn,e′′0 +en) S⟨v⟩ : N

ES

Γ′
0 ⊎ Γ′′

0 ⊎ Γn ⊢(m
′
0+m′′+mn,e′0+e′′+en) V ⟨⟨x⟩⟩[x←S⟨v⟩] :M

ES

where Γ := Γ′0 ⊎ Γ′′0 ⊎ Γn and (m, e) := (m′0 +m′′ +mn, e
′
0 + e′′ + en).

Let us consider now the following derivation Ψ

Θ ▷CbV Γ′0, x :N ⊢(m
′
0,e

′
0) V ⟨⟨x⟩⟩ : M Θ′′ ▷CbVyn :Nn,Γ

′′
0 ⊢(m

′′
0 ,e

′′
0) S ′⟨v⟩ : N

Γ′0 ⊎ Γ′′0, yn :Nn ⊢(m
′
0+m′′,e′0+e′′) V ⟨⟨x⟩⟩[x←S ′⟨v⟩] :M

ES

By application of the i.h. on Ψ—since V ⟨⟨x⟩⟩[x←S ′⟨v⟩] 7→eCbV S ′⟨V ⟨⟨v⟩⟩[x←v]⟩—one
has e′0 + e′′ ≥ 1 and there exists type derivation

Ψ′ ▷CbV Γ′0 ⊎ Γ′′0, yn :Nn ⊢(m
′,e′) S ′⟨V ⟨⟨v⟩⟩[x←v]⟩ : M

where (m′, e′) := (m′0 +m′′, e′0 + e′′ − 1).
Hence, we can derive Φ′ as follows:

Ψ′ ▷CbV Γ′0 ⊎ Γ′′0, yn :Nn ⊢(m
′,e′) S ′⟨V ⟨⟨v⟩⟩[x←v]⟩ : M Θn ▷CbVΓn ⊢(mn,en) un : Nn

Γ ⊢(m′+mn,e′+en) S ′⟨V ⟨⟨v⟩⟩[x←v]⟩[yn←un] : M
ES

where (m′ +mn, e
′ + en) = (m′0 +m′′ +mn, e

′
0 + e′′ − 1 + en) = (m, e− 1).

172

• Contextual closure: Let t := V ⟨t′⟩ →eCbV V ⟨u′⟩ =: u, with t 7→mCbV t′. We proceed by
induction on V :

– Left of an application: Let V := V ′s. Then, t = V ′⟨t′⟩s →eCbV V ′⟨u′⟩s = t′. Hence,
Φ has the following form:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) u : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

where Γ = Γ1 ⊎ Γ2 and m = m1 +m2 + 1 and e = e1 + e2.
By application of the i.h. on Ψ1, there exists type derivation Ψ ▷CbV Γ1 ⊢(m1,e1−1)

u′ : [N ⊸ M].
Thus, we can derive Φ′ as follows:

Ψ ▷CbV Γ1 ⊢(m
′,e′) u′ : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1−1+e2) t′ :M
app

– Right of an application: Let V := sV ′. Then, t = sV ′⟨t′⟩ →eCbV sV ′⟨u′⟩ = u. Hence,
Φ is of the following form:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) u :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 + 1 and e := e1 + e2.
By application of the i.h. on Ψ2, there exists type derivation Ψ ▷CbV Γ2 ⊢(m2,e2−1)

u′ :N .
Thus, we can derive Φ′ as follows:

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ ▷CbV Γ2 ⊢(m
′,e′) u′ :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2−1) t′ :M
app

– Left of an ES: Let V := V ′[x←s]. Then, t = V ′⟨t′⟩[x←s] →eCbV V ′⟨u′⟩[x←s] = u.
Hence, Φ has the following form:

Γ1, x :N ⊢(m1,e1) u :M Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 and e := e1 + e2.
By application of the i.h. on Ψ1, there exists type derivation Ψ▷CbVΓ1, x :N ⊢(m1,e1−1)

u′ :M .
Thus, we can derive Φ′ as follows:

Ψ ▷CbV Γ1, x :N ⊢(m
′,e′) u′ :M Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1−1+e2) t′ :M
ES

– Right of an ES: Let V := sV ′. Then, ts[x←V ′⟨t′⟩]→mCbV s[x←V ′⟨u′⟩] = u. Hence,
Φ has the following form:

Γ1, x :N ⊢(m1,e1) u :M Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

173

where Γ := Γ1 ⊎ Γ2 and m := m1 +m2 and e := e1 + e2.
By application of the i.h. on Ψ2, there exists type derivation Ψ ▷CbV Γ2 ⊢(m2,e2−1)

s′ :N .
Thus, we can derive Φ′ as follows:

Ψ1 ▷CbV Γ1, x :N ⊢(m1,e1) u :M Ψ ▷CbV Γ2 ⊢(m
′,e′) s′ :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2−1) t′ :M
ES

(Click here to go back to main chapter.)

Theorem 13.2.17 (Tight correctness for CbV).
Let t ∈ ΛL be closed and Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation. Then there exists u ∈ ΛL

such that
1. normCbV(u),
2. there exists a reduction sequence d : t −→∗CbVu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).

Proof. (Click here to go back to main chapter.)
By induction on m + e, and proceeding by case analysis on whether t →CbV-reduces or not.

Note that if t is in →CbV-normal form, then we only have to prove the moreover part, that states
that if Φ is tight then (m, e) = (0, 0), which follows from Proposition 5.3.2 (Typing properties of
CbN-normal forms).

Otherwise, if t→CbV s for some s ∈ ΛL, then there are two cases:
1. Multiplicative steps: Let t→mCbV s. By Proposition 5.3.4.1 (Quantitative Subject Reduction

for CbV - multiplicative steps), there exists Ψ ▷CbV Γ ⊢(m−1,e) s : M . By i.h., there exist u
and d′ such that normCbV(u) and d′ : s −→∗CbVu, |d′|m ≤ m − 1 and |d′|e ≤ e. Just note that
t→m s and so, if d : t −→∗CbVu is d′ preceeded by such a step, we have |d|m ≤ m and |d|e ≤ e.
If Φ is tight, then so is Ψ. Then |d′|m = m − 1 and |d′|e = e by i.h., that give |d|m = m and
|d|e = e.

2. Exponential steps: Let t→eCbV s. By Proposition 5.3.4.2 (Quantitative Subject Reduction for
CbV - exponential steps), there exists Ψ ▷CbV Γ ⊢(m,e−1) s : M . By i.h. on Ψ, there exist u
and d′ such that normCbV(u) and d′ : s −→∗CbVu, |d′|m ≤ m and |d′|e ≤ e − 1. Just note that
t→e s and so, if d : t −→∗CbVu is d′ preceeded by such a step, we have |d|m ≤ m and |d|e ≤ e.
Finally, if Φ is tight, then so is Ψ. Then |d′|m = m and |d′|e = e−1 by i.h., that give |d|m = m
and |d|e = e.

(Click here to go back to main chapter.)

13.2.4 CbV completeness
Proposition 13.2.18 (Tight typability of CbV -normal forms).

Let t ∈ ΛL be such that normCbV(t). Then there exists tight type derivation Φ ▷CbV ∅ ⊢(0,0) t :0.

174

Proof. (Click here to go back to main chapter.)
By Proposition 4.6.1.2 (Syntactic characterization of closed normal forms - CbV), we have that

normCbV(t). The statement is then proven by induction on the derivation of normCbV(t), proceeding
by case analysis on the last derivation rule:

• Abstraction: Let normCbV(t) derived as follows:

normCbV(λx.u)

where t = λx.u. Then, we can derive Φ as follows:

∅ ⊢(0,0) λx.u :0
many

• ES: Let normCbV(t) be derived as follows:

normCbV(u) normCbV(s)

normCbV(u[x←s])

where t = u[x←s]. By separate applications of the i.h. on normCbV(u) and normCbV(s), there
exist type derivations

Ψ ▷CbV ∅ ⊢(0,0) u :0
Θ ▷CbV ∅ ⊢(0,0) s :0

We can then derive type derivation Φ for t as follows:

Ψ ▷CbV ∅;x :0 ⊢(0,0) u :0 Θ ▷CbV ∅ ⊢(0,0) s :0
∅ ⊢(0,0) u[x←s] :0

ES

(Click here to go back to main chapter.)

Lemma 13.2.19 (Linear Removal for CbV).
Let Φ ▷CbV Γ;x :M ⊢(m,e) V ⟨⟨v⟩⟩ :N be a type derivation, where v ∈ Val and x /∈ fv(v). Then

there exist type derivations

Ψ ▷CbV Π ⊢(m′,e′) v :O
Θ ▷CbV ∆;x : (M ⊎O) ⊢(m′′,e′′) V ⟨⟨x⟩⟩ :N

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to go back to main chapter.)
By induction on V :
• Context hole: Let V := ⟨·⟩; that is, V ⟨⟨x⟩⟩ = x and V ⟨⟨v⟩⟩ = v.

Note that since x /∈ fv(v), then Lemma 5.3.1 (Relevance of the CbV type system) gives that
M = 0. Thus, let O := N and Π := Γ and ∆ := 0–noting that Γ = Π ⊎ ∆. The statement
holds by taking Ψ := Φ and deriving Θ as follows:

x :O ⊢(0,1) x :O
ax

175

• Left of an application: Let V = V ′t; that is, V ⟨⟨x⟩⟩ = V ′⟨⟨x⟩⟩t and V ⟨⟨v⟩⟩ = V ′⟨⟨v⟩⟩t. Hence, Φ
has the following form

Φ1 ▷CbV Γ1, x :M1 ⊢(m1,e1) V ′⟨⟨v⟩⟩ : [O ⊸ N] Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) t : O

Γ, x :M ⊢(m,e) V ′⟨⟨v⟩⟩t : N
app

where Γ := Γ1⊎Γ2 and M := M1⊎M2 and (m, e) := (m1+m2+1, e1+e2). By i.h., there exist
multi type M ′, two type contexts Γ′1 and Π1, and two derivations Ψ1▷CbVΠ1, x :M1 ⊎M ′ ⊢(m′′

1 ,e
′′
1)

V ′⟨⟨x⟩⟩ : [O ⊸ N] and Φ′ ▷CbV Γ′ ⊢(m′,e′) v : M ′ such that Γ1 = Γ′ ⊎ Π1 ad (m1, e1) =
(m′ +m′′1, e

′ + e′′1 − 1). We can then construct the following derivation Ψ

Ψ1 ▷CbV Π1, x :M1 ⊎M ′ ⊢(m′′
1 ,e

′′
1) V ′⟨⟨x⟩⟩ : [O ⊸ N] Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) t : O

Π1 ⊎ Γ2, x :M1 ⊎M ′ ⊎M2 ⊢(m
′′
1+m2+1,e′′1+e2) V ′⟨⟨x⟩⟩t : N

app

where M1⊎M ′⊎M2 = M ⊎M ′. If we set Π := Π1⊎Γ2 and (m′′, e′′) := (m′′1 +m2+1, e′′1 + e2),
then we have Γ′ ⊎ Π = Γ′ ⊎ Π1 ⊎ Γ2 = Γ1 ⊎ Γ2 = Γ and (m′ +m′′, e′ + e′′ − 1) = (m′ +m′′1 +
m2 + 1, e′ + e′′1 + e2 − 1) = (m1 +m2 + 1, e1 + e2) = (m, e), as required.

• Right application, i.e. V = tV ′: then, V ⟨⟨x⟩⟩ = tV ′⟨⟨x⟩⟩ and V ⟨⟨v⟩⟩ = tV ′⟨⟨v⟩⟩. So, Φ has the
form

Φ1 ▷CbV Γ1, x :M1 ⊢(m1,e1) t : [O ⊸ N] Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) V ′⟨⟨v⟩⟩ : O
Γ, x :M ⊢(m,e) tV ′⟨⟨v⟩⟩ : N

app

where Γ := Γ1 ⊎ Γ2 and M := M1 ⊎ M2 and (m, e) := (m1 + m2 + 1, e1 + e2). By i.h.,
there exist a multi type M ′, two type contexts Γ′2 and Π2, and two derivations Ψ2 ▷CbV
Π2, x :M2 ⊎M ′ ⊢(m′′

2 ,e
′′
2) V ′⟨⟨x⟩⟩ : O and Φ′ ▷CbV Γ′ ⊢(m′,e′) v : M ′ such that Γ2 = Γ′ ⊎ Π2 ad

(m2, e2) = (m′ +m′′2, e
′ + e′′2 − 1). We can then construct the following derivation Ψ

Φ1 ▷CbV Γ1, x :M1 ⊢(m1,e1) t : [O ⊸ N] Ψ2 ▷CbV Π2, x :M2 ⊎M ′ ⊢(m′′
2 ,e

′′
2) V ′⟨⟨x⟩⟩ : O

Π2 ⊎ Γ1, x :M2 ⊎M ′ ⊎M1 ⊢(m
′′
2+m1+1,e′′2+e1) V ′⟨⟨x⟩⟩t : N

app

where M1⊎M ′⊎M2 = M ⊎M ′. If we set Π := Π2⊎Γ1 and (m′′, e′′) := (m′′2 +m1+1, e′′2 + e1),
then we have Γ′ ⊎ Π = Γ′ ⊎ Π2 ⊎ Γ1 = Γ1 ⊎ Γ2 = Γ and (m′ +m′′, e′ + e′′ − 1) = (m′ +m′′2 +
m1 + 1, e′ + e′′2 + e1 − 1) = (m1 +m2 + 1, e1 + e2) = (m, e), as required.

• Left explicit substitution, i.e. V = V ′[y←t]: then, V ⟨⟨x⟩⟩ = V ′⟨⟨x⟩⟩[y←t] and V ⟨⟨v⟩⟩ =
V ′⟨⟨v⟩⟩[y←t] where y /∈ fv(v) ∪ {x}. We can suppose without loss of generality that y /∈ fv(t).
So, Φ has the form

Φ1 ▷CbV Γ1, x :M1, y :O ⊢(m1,e1) V ′⟨⟨v⟩⟩ : N Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) t : O

Γ, x :M ⊢(m,e) V ′⟨⟨v⟩⟩[y←t] : N
ES

where Γ := Γ1 ⊎ Γ2 and M := M1 ⊎ M2 and (m, e) := (m1 + m2, e1 + e2). By i.h.,
there exist a multi type M ′, two type contexts Γ′1 and Π1, and two derivations Ψ1 ▷CbV
Π1, x :M1 ⊎M ′, y :O ⊢(m′′

1 ,e
′′
1) V ′⟨⟨x⟩⟩ : N and Φ′ ▷CbV Γ′ ⊢(m′,e′) v : M ′ such that Γ1 = Γ′ ⊎ Π1

ad (m1, e1) = (m′+m′′1, e
′+e′′1−1) (note that y /∈ dom(Γ′) because of Lemma 5.3.1 (Relevance

of the CbV type system), since y /∈ fv(v)). We can then construct the following derivation Ψ

Ψ1 ▷CbV Π1, x :M1 ⊎M ′, y :O ⊢(m′′
1 ,e

′′
1) V ′⟨⟨x⟩⟩ : N Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) t : O

Π1 ⊎ Γ2, x :M1 ⊎M ′ ⊎M2 ⊢(m
′′
1+m2,e′′1+e2) V ′⟨⟨x⟩⟩t : N

ES

176

where M1 ⊎M ′ ⊎M2 = M ⊎M ′. If we set Π := Π1 ⊎ Γ2 and (m′′, e′′) := (m′′1 +m2, e
′′
1 + e2),

then we have Γ′ ⊎ Π = Γ′ ⊎ Π1 ⊎ Γ2 = Γ1 ⊎ Γ2 = Γ and (m′ +m′′, e′ + e′′ − 1) = (m′ +m′′1 +
m2, e

′ + e′′1 + e2 − 1) = (m1 +m2, e1 + e2) = (m, e), as required.
• Right explicit substitution, i.e. V = t[y←V ′]: then, V ⟨⟨x⟩⟩ = t[y←V ′⟨⟨x⟩⟩] and V ⟨⟨v⟩⟩ =

t[y←V ′⟨⟨v⟩⟩]. So, Φ has the form

Φ1 ▷CbV Γ1, x :M1, y :O ⊢(m1,e1) V ′′⟨⟨y⟩⟩ : N Φ2 ▷CbV Γ2, x :M2 ⊢(m2,e2) V ′⟨⟨v⟩⟩ : O
Γ, x :M ⊢(m,e) t[y←V ′⟨⟨v⟩⟩] : N ES

where Γ := Γ1 ⊎ Γ2 and M := M1 ⊎ M2 and (m, e) := (m1 + m2, e1 + e2). By i.h.,
there exist a multi type M ′, two type contexts Γ′2 and Π2, and two derivations Ψ2 ▷CbV
Π2, x :M2 ⊎M ′, y :O ⊢(m′′

2 ,e
′′
2) V ′⟨⟨x⟩⟩ : O and Φ′ ▷CbV Γ′ ⊢(m′,e′) v : M ′ such that Γ2 = Γ′ ⊎ Π2

ad (m2, e2) = (m′+m′′2, e
′+e′′2−1) (note that y /∈ dom(Γ′) because of Lemma 5.3.1 (Relevance

of the CbV type system), since y /∈ fv(v)). We can then construct the following derivation Ψ

Φ1 ▷CbV Γ1, x :M1, y :O ⊢(m1,e1) t : N Ψ2 ▷CbV Π2, x :M2 ⊎M ′ ⊢(m′′
2 ,e

′′
2) V ′⟨⟨x⟩⟩ : O

Π2 ⊎ Γ1, x :M2 ⊎M ′ ⊎M1 ⊢(m
′′
2+m1+1,e′′2+e1) t[y←V ′⟨⟨x⟩⟩] : N

ES

where M1 ⊎M ′ ⊎M2 = M ⊎M ′. If we set Π := Π2 ⊎ Γ1 and (m′′, e′′) := (m′′2 +m1, e
′′
2 + e1),

then we have Γ′ ⊎ Π = Γ′ ⊎ Π2 ⊎ Γ1 = Γ1 ⊎ Γ2 = Γ and (m′ +m′′, e′ + e′′ − 1) = (m′ +m′′2 +
m1, e

′ + e′′2 + e1 − 1) = (m1 +m2, e1 + e2) = (m, e), as required.

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.3.7 (Linear Removal for CbV) in the proof of

Proposition 5.3.8.2 (Quantitative Subject Expansion for CbV - exponential case) to obtain the right
indices.

Lemma 13.2.20 (Merging multi types of CbV type derivations).
Let v ∈ Val. For any two type derivations

ΦN ▷CbV ΓN ⊢(mN ,eN) v :N
ΦO ▷CbV ΓO ⊢(mO,eO) v :O

there exsits type derivation

ΦN⊎O ▷CbV ΓN

⊎
ΓO ⊢(mN+mm′′ ,eN+eO) v :N

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Proposition 13.2.21 (Quantitative Subject Expansion for CbV).
Let Φ ▷CbV Γ ⊢(m,e) u :M be a type derivation.

1. Multiplicative: If t→mCbV u, then there exists a derivation

Ψ ▷CbV Γ ⊢(m+1,e) t :M

177

2. Exponential: If t→eCbV u, then there exists a derivation

Ψ ▷CbV Γ ⊢(m,e+1) t :M

Proof. (Click here to go back to main chapter.)
By induction on the reduction relation →CbV, with the root rules 7→m and 7→eCbV as the base

case, and the closure by CbV contexts of 7→CbV := 7→m ∪ 7→eCbV as the inductive one.
• Root step for →mCbV i.e. t := S⟨λx.s⟩m 7→m S⟨s[x←m]⟩ =: t′ where S := [y1←u1] . . . [yn←un]

for some n ≥ 0. We proceed by induction on n ∈ N.
If n = 0 then S = ⟨·⟩ and so t = S⟨λx.s⟩m = (λx.s)m and t′ = S⟨s[x←m]⟩ = s[x←m].
Hence, Φ′ has the form

Ψ ▷CbV Π, x :O ⊢(m′,e′) s :M Θ ▷CbV ∆ ⊢(m′′,e′′) m :O

Γ ⊢(m′+m′′,e′+e′′) s[x←m] :M
ES

where Γ := Π ⊎∆ and m := m′ +m′′ and e := e′ + e′′. We can then construct the following
type derivation Φ:

Ψ ▷CbV Π, x :O ⊢(m′,e′) s :M

Π ⊢(m′,e′) λx.s :O ⊸ M
fun

Π ⊢(m′,e′) λx.s : [O ⊸ M]
many

Θ ▷CbV ∆ ⊢(m′′,e′′) m :O

Γ ⊢(1+m′+m′′,e′+e′′) (λx.s)m :M
app

where (1 +m′ +m′′, e′ + e′′) = (m+ 1, e).
Suppose now n > 0. Let S ′ := [y1←u1] . . . [yn−1←un−1]: then, t = S⟨λx.s⟩m = S ′⟨λx.s⟩[yn←un]m
and t′ = S⟨s[x←m]⟩ = S ′⟨s[x←m]⟩[yn←un]. Hence, Φ′ has the form

Ψ′ ▷CbV Γ′, yn :Nn ⊢(m
′,e′) S ′⟨s[x←m]⟩ : M Ψn ▷CbV Γn ⊢(mn,en) un : Nn

Γ ⊢(m,e) S ′⟨s[x←m]⟩[yn←un] : M
ES

where Γ := Γ′⊎Γn and (m, e) := (m′+mn, e
′+en). By i.h. applied to Ψ′ (since S ′⟨λx.s⟩m 7→m

S ′⟨s[x←m]⟩), there exists a derivation with conclusion Γ′, yn :Nn ⊢(m
′+1,e′) S ′⟨λx.s⟩m : M ,

which necessarily has the form (as yn /∈ dom(Γ′0) by Lemma 5.3.1 (Relevance of the CbV type
system), since yn /∈ fv(m))

Ψ ▷CbV Π, x :O, yn :Nn ⊢(m
′′,e′′) S ′⟨λx.s⟩ : M Θ ▷CbV Γ′0 ⊢(m

′
0,e

′
0) m : O

Γ′, yn :Nn ⊢(m
′,e′) S ′⟨λx.s⟩m : M

ES

where Γ′ := Π⊎Γ′0 and (m′, e′) = (m′′+m′0, e
′′+e′0). Therefore, we can construct the following

derivation Φ:
Ψ ▷CbV Π, x :O, yn :Nn ⊢(m

′′,e′′) S′⟨λx.s⟩ : M Ψn ▷CbV Γn ⊢(mn,en) un : Nn

Π ⊎ Γn, x :O ⊢(m
′′+mn,e

′′+en) S⟨λx.s⟩ : M
ES

Θ ▷CbV Γ′0 ⊢(m
′
0,e

′
0) m : O

Π ⊎ Γn ⊎ Γ′0 ⊢(m
′′+mn+m′

0+1,e′′+en+e′0) S⟨λx.s⟩m : M
app

where Π⊎Γn⊎Γ′0 = Γ′⊎Γn = Γ and (m′′+mn+m′0+1, e′′+en+e′0) = (m′+mn+1, e′+en+1) =
(m+ 1, e).

178

• Root step for→eCbVi.e. t := V ⟨⟨x⟩⟩[x←S⟨v⟩] 7→eCbV S⟨V ⟨⟨v⟩⟩[x←v]⟩ =: t′ with S := [y1←u1] . . .
[yn←un] for some n ≥ 0. We proceed by induction on n ∈ N.
If n = 0 then S = ⟨·⟩ and so t = S⟨v⟩ = v and t′ = S⟨V ⟨⟨v⟩⟩[x←v]⟩ = V ⟨⟨v⟩⟩[x←v]. Hence, Φ′
has the form

Ψ0 ▷CbV Γ0, x :N ⊢(m0,e0) V ⟨⟨v⟩⟩ : M Θ1 ▷CbV Γ1 ⊢(m1,e1) v : N

Γ ⊢(m,e) V ⟨⟨v⟩⟩[x←v] :M
ES

where Γ := Γ0 ⊎ Γ1, and m := m0 +m1 and e := e0 + e1. By Lemma 5.3.7 (Linear Removal
for CbV), there are a multi type N ′, two type contexts Γ′0 and Π and two derivations Θ′ ▷CbV
Γ′0 ⊢(m

′
0,m

′
0) v : N ′ and Ψ ▷CbV Π, x :N ⊎N ′ ⊢(m′′,e′′) V ⟨⟨v⟩⟩ : M such that Γ0 = Γ′0 ⊎ Π and

(m0, e0) = (m′0 + m′′, e′0 + e′′ − 1). Note that x /∈ dom(Γ′0) by Lemma 5.3.1 (Relevance of
the CbV type system), since x /∈ fv(v). By Lemma 13.2.20 (Merging multi type of CbV type
derivations), there is a derivation Θ ▷CbV Γ′0 ⊎ Γ1 ⊢(m

′
0+m1,e′0+e1) v : N ⊎N ′. We can construct

the following derivation Φ:

Ψ ▷CbV Π, x :N ⊎N ′ ⊢(m′′,e′′) V ⟨⟨x⟩⟩ : M Θ ▷CbV Γ′0 ⊎ Γ1 ⊢(m
′
0+m1,e′0+e1) v : N ⊎N ′

Π ⊎ Γ′0 ⊎ Γ1 ⊢(m
′′+m′

0+m1,e′′+e′0+e1) V ⟨⟨x⟩⟩[x←S⟨v⟩] :M
ES

where Π⊎Γ′0 ⊎Γ1 = Γ0 ⊎Γ1 = Γ and (m′′+m′0 +m1, e
′′+ e′0 + e1) = (m0 +m1, e0 +1+ e1) =

(m, e+ 1).
Suppose now n > 0. Let S ′ := [y1←u1] . . . [yn−1←un−1]: then, t = S⟨v⟩ = S ′⟨v⟩[yn←un] and
t′ = S⟨V ⟨⟨v⟩⟩[x←v]⟩ = S ′⟨V ⟨⟨v⟩⟩[x←v]⟩[yn←un]. Hence, Φ′ has the form

Ψ′ ▷CbV Γ0, yn :Nn ⊢(m0,e0) S ′⟨V ⟨⟨v⟩⟩[x←v]⟩ : M Θn ▷CbV Γn ⊢(mn,en) un : Nn

Γ ⊢(m,e) S⟨V ⟨⟨v⟩⟩[x←v]⟩ :M ES

where Γ := Γ0⊎Γn and (m, e) = (m0+mn, e0+en). By i.h. applied to Ψ′ (since V ⟨⟨x⟩⟩[x←S ′⟨v⟩]
7→eCbV S ′⟨V ⟨⟨v⟩⟩[x←v]⟩), there exists a derivation with conclusion
Γ0, yn :Nn ⊢(m0,e0+1) V ⟨⟨x⟩⟩[x←S ′⟨v⟩] : M , which necessarily has the form (as yn /∈ dom(Γ′0)
by Lemma 5.3.1 (Relevance of the CbV type system), since yn /∈ fv(V ⟨⟨x⟩⟩))

Ψ ▷CbV Γ′0, x :N ⊢(m
′
0,e

′
0) V ⟨⟨x⟩⟩ : M Ψ′′ ▷CbV yn :Nn,Γ

′′
0 ⊢(m

′′
0 ,e

′′
0) S ′⟨v⟩ : N

Γ0, yn :Nn ⊢(m0,e0+1) V ⟨⟨x⟩⟩[x←S ′⟨v⟩] :M ES

where Γ0 = Γ′0 ⊎ Γ′′0 and (m0, e0 + 1) = (m′0 +m′′0, e
′
0 + e′′0). Therefore, we can construct the

following derivation Φ:

Ψ ▷CbV Γ′0, x :N ⊢(m
′
0,e

′
0) V ⟨⟨x⟩⟩ : M

Ψ′′ ▷CbVyn :Nn,Γ
′′
0 ⊢(m

′′
0 ,e

′′
0) S′⟨v⟩ : N Θn ▷CbVΓn ⊢(mn,en) un : Nn

Γ′′0 ⊎ Γn ⊢(m
′′
0 +mn,e

′′
0 +en) S⟨v⟩ : N

ES

Γ′0 ⊎ Γ′′0 ⊎ Γn ⊢(m
′
0+m′′+mn,e

′
0+e′′+en) V ⟨⟨x⟩⟩[x←S⟨v⟩] :M

ES

where Γ′0⊎Γ′′0 ⊎Γn = Γ0⊎Γn = Γ and (m′0+m′′0+mn, e
′
0+e′′0+en) = (m0+mn, e0+1+en) =

(m, e+ 1).
• Application left, i.e. t := us →r u

′s =: t′ with u →r u
′ and r ∈ {mCbV, eCbV}. So, Φ′ has the

form
Ψ1 ▷CbV Γ1 ⊢(m

′,e′) u′ : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m
′+m2+1,e′+e2) t′ :M

app

where Γ := Γ1 ⊎ Γ2 and m := m′ +m2 + 1 and e := e′ + e2. By i.h. applied to Ψ1, there is a
derivation Ψ ▷CbV Γ1 ⊢(m1,e1) u : [N ⊸ M] where

179

– m1 := m′ + 1 and e1 := e′ if r = mCbV,
– m1 := m1 and e1 := e′ + 1 if r = eCbV.

Thus, we have the derivation Φ

Ψ ▷CbV Γ1 ⊢(m1,e1) u : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

where
– m1 +m2 + 1 = m′ + 1 +m2 + 1 = m+ 1 and e1 + e2 = e′ + e2 = e if r = mCbV,
– m1 +m2 + 1 = m′ +m2 + 1 = m and e1 + e2 = e′ + 1 + e2 = e+ 1 if r = eCbV.

• Application right, i.e. t := su→r su
′ =: t′ with u→r u

′ and r ∈ {mCbV, eCbV}. So, Φ′ has the
form

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ2 ▷CbV Γ2 ⊢(m
′,e′) u′ :N

Γ1 ⊎ Γ2 ⊢(m1+m′+1,e1+e′) t′ :M
app

where Γ := Γ1 ⊎ Γ2 and m := m1 +m′ + 1 and e := e1 + e′. By i.h. applied to d′2, there is a
derivation Ψ ▷CbV Γ2 ⊢(m2,e2) u :N where

– m2 := m′ + 1 and e2 := e′ if r = mCbV,
– m2 := m′ and e2 := e′ + 1 if r = eCbV.

Thus, we have the derivation Φ

Ψ1 ▷CbV Γ1 ⊢(m1,e1) s : [N ⊸ M] Ψ ▷CbV Γ2 ⊢(m2,e2) u :N

Γ1 ⊎ Γ2 ⊢(m1+m2+1,e1+e2) t :M
app

where
– m1 +m2 + 1 = m1 +m′ + 1 + 1 = m+ 1 and e1 + e2 = e1 + e′ = e if r = mCbV,
– m1 +m2 + 1 = m1 +m′ + 1 = m and e1 + e2 = e1 + e′ + 1 = e+ 11 if r = eCbV.

• Left explicit substitution, i.e. t := u[x←s]→r u
′[x←s] =: t′ with u→r u

′ and r ∈ {mCbV, eCbV}.
So, Φ′ has the form

Ψ1 ▷CbV Γ1, x :N ⊢(m
′,e′) u′ :M Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m
′+m2,e′+e2) t′ :M

ES

where Γ := Γ1 ⊎ Γ2 and m := m′ + m2 and e := e′ + e2. By i.h. applied to Ψ1, there is a
derivation Ψ ▷CbV Γ1, x :N ⊢(m1,e1) u :M where

– m1 := m′ + 1 and e1 := e′ if r = mCbV,
– m1 := m′ and e1 := e′ + 1 if r = eCbV.

Thus, we have the derivation Φ

Ψ ▷CbV Γ1, x :N ⊢(m1,e1) u :M Ψ2 ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

where
– m1 +m2 = m′ + 1 +m2 = m+ 1 and e1 + e2 = e′ + e2 = e if r = mCbV,
– m1 +m2 = m′ +m2 = m and e1 + e2 = e′ + 1 + e2 = e+ 1 if r = eCbV.

• Right explicit substitution, i.e. t := u[x←s] →r u[x←s′] =: t′ with s →r s′ and r ∈
{mCbV, eCbV}. So, Φ′ has the form

Ψ1 ▷CbV Γ1, x :N ⊢(m1,e1) u :M Ψ2 ▷CbV Γ2 ⊢(m
′,e′) s′ :N

Γ1 ⊎ Γ2 ⊢(m1+m′,e1+e′) t′ :M
ES

180

where Γ := Γ1 ⊎ Γ2 and m := m1 + m′ and e := e1 + e′. By i.h. applied to Ψ2, there is a
derivation Ψ ▷CbV Γ2 ⊢(m2,e2) s :M where

– m2 := m′ + 1 and e2 := e′ if r = mCbV,
– m2 := m′ and e2 := e′ + 1 if r = eCbV.

Thus, we have the derivation Φ

Ψ1 ▷CbV Γ1, x :N ⊢(m1,e1) u :M Ψ ▷CbV Γ2 ⊢(m2,e2) s :N

Γ1 ⊎ Γ2 ⊢(m1+m2,e1+e2) t :M
ES

where
– m1 +m2 = m1 +m′ + 1 = m+ 1 and e1 + e2 = e1 + e′ = e if r = mCbV,
– m1 +m2 = m1 +m′ = m and e1 + e2 = e1 + e′ + 1 = e+ 1 if r = eCbV.

(Click here to go back to main chapter.)

Theorem 13.2.22 (Tight Completeness for CbV).
Let t ∈ ΛL be closed. If there exists d : t −→∗CbVu for some u in →CbV-normal form, then there

exists a type derivation Φ ▷CbV ∅ ⊢(|d|m,|d|e) t :0.

Proof. (Click here to go back to main chapter.)
By induction on the length |d| of the reduction sequence d : t −→∗CbVu:
• Base case: Let k := 0. Then t = u and t is in →CbV-normal form. By Proposition 4.6.1.1

(Syntactic characaterization of closed normal forms - CbV), we have that normCbV(t). In
addition, Proposition 5.3.6 (Tight typability of CbV-normal forms) yields tight type derivation
Φ ▷CbV∅ ⊢(0,0) t : 0, which satisfies the statement—in particular, because |d|m = |d|e = 0.

• Inductive case: Let k > 0; i.e., t→CbV s→k−1
CbV u. Let d′ be the evaluation s→k−1

CbV u. By i.h.,
there exists tight type derivation

Ψ ▷CbV∅ ⊢(|d
′|m,|d′|e) s : 0

Case analysis on the kind of reduction step in t→CbV s:
– Multiplicative step: Let t→mCbV s. By Proposition 5.3.8.1 (Quantitative Subject Expan-

sion for CbV - Multiplicative), there exists (tight) type derivation

Ψ′ ▷CbV∅ ⊢(|d
′|m+1,|d′|e) s : 0

which satisfies the statement—in particular, because |d|m = |d′|m + 1 and |d|e = |d′|e.
– Exponential step: Let t→eCbV s. By Proposition 5.3.8.2 (Quantitative Subject Expansion

for CbV - Exponential), there exists (tight) type derivation

Ψ′ ▷CbV∅ ⊢(|d
′|m,|d′|e+1) s : 0

which satisfies the statement—in particular, because |d|m = |d′|m and |d|e = |d′|e + 1.

(Click here to go back to main chapter.)

181

13.2.5 CbNeed correctness
As for the CbN and CbV cases, the CbNeed multi type system satisfying the following

Lemma 13.2.23 (Relevance of the CbNeed type system).
Let t ∈ ΛL and let Φ ▷CbNeed Γ ⊢(m,e) t :L be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).

Proof. (Click here to go back to main chapter.)
By structural induction on Φ ▷CbNeed Γ ⊢(m,e) t :M and proceeding by case analysis on the last

derivation rule of Φ. The cases of rules ax, norm, many and app are all trivial; the case of rule appgc
follows easily from the i.h.. Let us consider only the ones appending ESs:

• Let Φ be derived as follows:

Ψ ▷CbNeed Γ ⊢(m,e) u :M Γ(x) = 0

Γ ⊢(m,e) u[x←s] :L
ESgc

where t = u[x←s]. By i.h. on Ψ, dom(Γ) ⊆ fv(u). Then, if x /∈ fv(u) we have that
dom(Γ) = fv(u) = fv(u[x←s]), and if x ∈ fv(u) then dom(Γ) = dom(Γ) \ {x} = fv(u) \ {x} ⊆
(fv(u) \ {x}) ∪ fv(s) = fv(u[x←s]).

• Let Φ be derived as follows:

Ψ ▷CbNeed Π;x :N ⊢(m′,e′) u :M Θ ▷CbNeed ∆ ⊢(m′′,e′′) s :N

Π
⊎

∆ ⊢(m′+m′′,e′+e′′) u[x←s] :M
ES

where t = u[x←s] and Γ = Π
⊎

∆. By i.h. on Ψ, dom(Π;x :M) = dom(Γ) ∪ {x} ⊆ fv(u),
and by i.h. on Θ, dom(∆) ⊆ fv(s). Hence, dom(Γ) = dom(Π

⊎
∆) ⊆ (fv(u) \ {x}) ∪ fv(s) =

fv(u[x←s]).

(Click here to go back to main chapter.)
Besides Lemma 5.4.1 (Relevance of the CbNeed type system), the CbNeed type system also

requires the following property ensuring that the last typing rule applied in a type derivation of a
hereditary reduction step—i.e., ΛL-terms of the form E⟨⟨x⟩⟩[x←E ′⟨t⟩] ∈ ΛL—can only be ES.

Lemma 13.2.24 (Plugged variables and domain of type contexts).
Let x ∈ Var, E be a CbNeed evaluation context, and let Φ ▷CbNeed Γ ⊢(m,e) E⟨⟨x⟩⟩ :M be a type

derivation such that M ̸= 0.
Then Γ(x) ̸= 0.

Proof.
By induction on the construction of E:
• Let E = ⟨·⟩. Then t = x and so Φ is of the form

x : M ⊢(m,e) x :M
ax

Clearly, if M ̸= 0 then x ∈ dom(Γ).
• If E = E1u, then t = E1⟨⟨x⟩⟩u. Then Φ can only have either app or appgc as the last typing

rule.

182

– Let Φ be of the form (with Γ = Π ⊎∆ and N ̸= 0)
..... ΦE1⟨⟨x⟩⟩

Π ⊢(m′,e′) E1⟨⟨x⟩⟩ : [N ⊸ M]

...
∆ ⊢(m′′,e′′) u :N

app
Π ⊎∆ ⊢(m′+m′′+1,e′+e′′) E1⟨⟨x⟩⟩u :M

Then by application of i.h. on ΦE1⟨⟨x⟩⟩ we obtain that x ∈ dom(Π), and hence x ∈ dom(Γ).
– If Φ has appgc as its last rule instead, then x ∈ dom(Γ) simply by i.h..

• If E = E1[y←u], then t = E⟨⟨x⟩⟩ = E1⟨⟨x⟩⟩[y←u], with x ̸= y. Then Φ can only have either
ES or ESgc as the last typing rule.

– Let Φ be of the form (with Γ = Π ⊎∆ and N ̸= 0)
..... ΦE1⟨⟨x⟩⟩

Π, y :N ⊢(m′,e′) E1⟨⟨x⟩⟩ :M

...
∆ ⊢(m′′,e′′) u :N

ES
Π ⊎∆ ⊢(m′+e′′,e′+e′′) E1⟨⟨x⟩⟩[y←u] :M

Then by application of i.h. on ΦE1⟨⟨x⟩⟩ we obtain that x ∈ dom(Π, y :N), which implies
that x ∈ dom(Π) (since y ̸= x) and so x ∈ dom(Γ).

– If Φ has ESgc as its last rule instead, then x ∈ dom(Γ) simply by i.h..
• Let E = E1⟨⟨y⟩⟩[y←E2], and so t = E⟨⟨x⟩⟩ = E1⟨⟨y⟩⟩[y←E2⟨⟨x⟩⟩], with x ̸= y because x is a free

variable of t while y is a bound variable of t, and we are working up to α-equivalence. Suppose
now that ESgc was the last typing rule of Φ. This means that Φ is of the form (with Γ(y) = 0)

..... ΦE1⟨⟨y⟩⟩

Γ ⊢(m,e) E1⟨⟨y⟩⟩ :M
ESgc

Γ ⊢(m,e) E1⟨⟨y⟩⟩[y←E2⟨⟨x⟩⟩] :M
However, by applying i.h. on ΦE1⟨⟨y⟩⟩ we obtain that y ∈ dom(Γ), which is in contradiction
with the constraint Γ(y) = 0 of rule ESgc.
Hence, Φ can only have ES as the last typing rule. Thus, Φ is of the form

...
Π, y :N ⊢(m′,e′) E1⟨⟨y⟩⟩ :M

..... ΦE2⟨⟨x⟩⟩

∆ ⊢(m′′,e′′) E2⟨⟨x⟩⟩ :N
ES

Π ⊎∆ ⊢(m′+m′′,e′+e′′) E1⟨⟨y⟩⟩[y←E2⟨⟨x⟩⟩] :M
with Γ = Π ⊎∆ and N ̸= 0. We can then apply i.h. on ΦE2⟨⟨x⟩⟩ to obtain that x ∈ dom(∆)
and so x ∈ dom(Γ).

Thus, Lemma 13.2.24 (Plugged variables and domain of type contexts) ensures that the following
application of typing rule ESgc is impossible—provided that M ̸= 0:

Φ ▷CbNeed Γ ⊢(m,e) E⟨⟨x⟩⟩ :M Γ(x) = 0

Γ ⊢(m,e) E⟨⟨x⟩⟩[x←E ′⟨t⟩] :M
ESgc

183

Hence, typing E⟨⟨x⟩⟩[x←E ′⟨t⟩] requires an application of typing rule ES, as follows:

Φ ▷CbNeed Γ;x :N ⊢(m,e) E⟨⟨x⟩⟩ :M Ψ ▷CbNeed Π ⊢(m′,e′) E ′⟨t⟩ :N N = 0

Γ
⊎

Π ⊢(m+m′,e+e′) E⟨⟨x⟩⟩[x←E ′⟨t⟩] :M
ES

Thus, this property helps us in ensuring that the reduction quantitities corresponding to E ′⟨t⟩ are
included in a type derivation for E ′′⟨E⟨⟨x⟩⟩[x←E ′⟨t⟩]⟩1.

Proposition 13.2.25 (Typing properties of CbNeed-normal forms).
Let t ∈ ΛL be such that norm(t), and Φ▷CbNeed Γ ⊢(m,e) t : [norm] be a type derivation. Then Γ = ∅

and (m, e) = (0, 0).

Proof. (Click here to go back to main chapter.)
By Proposition 4.6.1.1 (Syntactic characterization of closed normal forms - CbNeed), norm(t).

We proceed by case analysis on the derivation of norm(t):
• Base case: Let t = λx.u, with norm(λx.u). Thus, Φ can only be derived as follows

∅ ⊢(0,0) λx.u : norm
norm

∅ ⊢(0,0) λx.u : [norm]
many

which satisfies the statement.
• Inductive case: Let norm(t) be derived as follows

norm(u)

norm(u[x←s])

with t = u[x←s]. We proceed by case analysis on the last typing rule in Φ:
– Suppose Φ were of the following form

Ψ ▷CbNeed Π;x :M ⊢(m′,e′) u : norm Θ ▷CbNeed ∆ ⊢(m′′,e′′) s :M M ̸= 0

Π
⊎

∆ ⊢(m+m′,e+e′) u[x←s] : norm
ES

with Γ = Π ⊎ ∆ and (m, e) = (m + m′, e + e′). However, application of the i.h. on Ψ
would give that M = 0; absurd.

– Let Φ be of the following form

Ψ ▷CbNeed Γ ⊢(m′,e′) u : norm Γ(x) = 0

Π ⊢(m,e) u[x←s] : norm
ESgc

By i.h. on Ψ, Γ = 0 and (m′, e′) = (0, 0).

(Click here to go back to main chapter.)
1In Chapter 7 (Multi types for Open CbNeed) and Chapter 9 (Multi types for Useful Open CbNeed), where we

study multi type systems for different extensions to (weak and closed) CbNeed, we extend Lemma 13.2.24 (Plugged
variables and domain of type contexts) to encompass the typing properties required for said extensions to CbNeed.

184

Lemma 13.2.26 (Linear Substitution for CbNeed).
Let Φ ▷CbNeed Γ;x :M ⊢(m,e) E⟨⟨x⟩⟩ :N be a type derivation and let v ∈ Val. Then e ≥ 1 and

there exists a splitting M = O ⊎ P such that for every derivation Ψ ▷CbV Π ⊢(m′,e′) v :O there is a
derivation

Θ ▷CbV

(
Γ
⊎

Π
)
;x :P ⊢(m+m′,e+e′−1) V ⟨⟨v⟩⟩ :N

Proof. (Click here to go back to main chapter.)
We prove this by induction on E:
• Empty context, i.e. E = ⟨·⟩. Then Γ = ∅, O = M , and ΦE⟨⟨x⟩⟩ is of the form

x : M ⊢(0,1) x :M
ax

Therefore, by defining M1 := M and M2 := 0, the statement holds for every Ψ▷CbNeedΠ ⊢(m
′,e′)

v :M1 by taking ΦE⟨⟨v⟩⟩ := Ψ, since E⟨⟨v⟩⟩ = v. In particular, note that (m+m′, e+ e′ − 1) =
(0 +m′, 1 + e′ − 1) = (m′, e′).

• Left of an application, i.e. E = E1u. There are two possible last rules in ΦE⟨⟨x⟩⟩, namely app
or appgc.

– Let ΦE⟨⟨x⟩⟩ be of the form

x : M∆; ∆ ⊢(m∆,e∆) N1⟨⟨x⟩⟩ : [O′ ⊸ O] x : MΣ; Σ ⊢(mΣ,eΣ) u :O′

x : (M∆ ⊎MΣ); (∆ ⊎ Σ) ⊢(m∆+mΣ+1,e∆+eΣ) E1⟨⟨x⟩⟩u :O
app

where Γ = ∆ ⊎ Σ, ∆(x) = Σ(x) = 0 and M = M∆ ⊎MΣ.
By applying the i.h. on the left-hand side premise we obtain that there exists a splitting
M∆ = M∆,1⊎M∆,2 such that for every derivation Ψ▷CbNeedΠ ⊢(m

′,e′) v :M∆,1 there exists
a derivation ΦE1⟨⟨v⟩⟩ ▷CbNeed x : M∆,2; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) E1⟨⟨v⟩⟩ : [O′ ⊸ O]. We can
then construct ΦE⟨⟨v⟩⟩ for such a Ψ as follows

x : M∆,2; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) E1⟨⟨v⟩⟩ : [O′ ⊸ O] x : MΣ; Σ ⊢(mΣ,eΣ) u :O′

x : M∆,2 ⊎MΣ; ∆ ⊎ Π ⊎ Σ ⊢(m∆+m′+mΣ+1,e∆+e′−1+eΣ) E1⟨⟨v⟩⟩u :O
app

Note that ΦE⟨⟨v⟩⟩ is as desired by splitting M into M1 := M∆,1 and M2 := M∆,2 ⊎MΣ.
– Let ΦE⟨⟨x⟩⟩ be of the form

ΦE1⟨⟨x⟩⟩ ▷CbNeedx : M ; Γ ⊢(m−1,e) E1⟨⟨x⟩⟩ : [0 ⊸ O]

x : M ; Γ ⊢(m,e) E1⟨⟨x⟩⟩u :O
appgc

By applying the i.h. on ΦE1⟨⟨x⟩⟩ we obtain that there exists a splitting M = M1⊎M2 such
that for every derivation Ψ ▷CbNeed Π ⊢(m

′,e′) v :M1 there is a derivation ΦE1⟨⟨v⟩⟩ ▷CbNeed
x : M2; Γ ⊎ Π ⊢(m−1+m′,e+e′−1) E1⟨⟨v⟩⟩ : [0 ⊸ O]. We can then construct ΦE⟨⟨v⟩⟩ for such a
Ψ as follows

x : M2; Γ ⊎ Π ⊢(m−1+m′,e+e′−1) E1⟨⟨v⟩⟩ : [0 ⊸ O]

x : M2; Γ ⊎ Π ⊢(m+m′,e+e′−1) E1⟨⟨v⟩⟩u :O
appgc

• Left of a substitution; i.e. E = E1[y←u]. Note that x ̸= y, because the hypothesis E⟨⟨x⟩⟩
implies that E does not capture x. There are two possible last rules in ΦE⟨⟨x⟩⟩, namely ES and
ESgc.

185

– Let ΦE⟨⟨x⟩⟩ be of the form

x : M∆; ∆ ⊢(m∆,e∆) E1⟨⟨x⟩⟩ :O x : MΣ; Σ ⊢(mΣ,eΣ) u : ∆(y) ∆(y) ̸= 0

x : (M∆ ⊎MΣ); (∆ \\ y) ⊎ Σ ⊢(m∆+mΣ,e∆+eΣ) E1⟨⟨x⟩⟩[y←u] :O
ES

where M = M∆ ⊎MΣ and Γ = (∆ \\ y) ⊎ Σ.
By applying the i.h. on the leftmost premise we obtain a splitting M∆ = M∆,1⊎M∆,2 such
that for every derivation Ψ▷CbNeedΠ ⊢(m

′,e′) v :M∆,1 there exists a derivation ΦE1⟨⟨v⟩⟩▷CbNeed
x : M∆,2; ∆ ⊎ Π ⊢(m∆+m′,e∆+e′−1) E1⟨⟨v⟩⟩ :O. Note however that if y ∈ dom(Π), then
Lemma 5.4.1 (Relevance of the CbNeed type system) applied on Ψ would imply that
y ∈ fv(v), which contradicts the hypothesis that E does not capture the free variables of
v; i.e., y /∈ dom(Π), and so (Π ⊎∆)(y) = ∆(y). We can then construct ΦE⟨⟨v⟩⟩ for such a
Ψ as follows

x : M∆,2;∆ ⊎Π ⊢(m∆+m′,e∆+e′−1) E1⟨⟨v⟩⟩ :O x : MΣ; Σ ⊢(mΣ,eΣ) u :∆(y) ∆(y) ̸= 0

x : M∆,2 ⊎MΣ; ((∆ ⊎Π) \\ y) ⊎ Σ ⊢(m∆+m′+mΣ,e∆+e′−1+eΣ) E1⟨⟨v⟩⟩[y←u] :O
ES

by splitting M into M1 := M∆,1 and M2 := M∆,2 ⊎ MΣ. Since y /∈ dom(Π), then
((∆ ⊎ Π) \\ y) ⊎ Σ = (∆ \\ y) ⊎ Π ⊎ Σ = Γ ⊎ Π.

– Let ΦE⟨⟨x⟩⟩ be of the form

x : M ; Γ ⊢(m,e) E1⟨⟨x⟩⟩ :O Γ(y) = 0

x : M ; Γ ⊢(m,e) E1⟨⟨x⟩⟩[y←u] :O
ESgc

By applying i.h. on the premise we obtain a splitting M = M1 ⊎M2 such that for every
derivation Ψ ▷CbNeedΠ ⊢(m

′,e′) v :M1 there exists a derivation

ΦE1⟨⟨v⟩⟩ ▷CbNeedx : M2; Γ ⊎ Π ⊢(m+m′,e+e′−1) E1⟨⟨v⟩⟩ :O

Note that y /∈ dom(Π), because applying Lemma 5.4.1 (Relevance of the CbNeed type
system) on Ψ would otherwise imply that y ∈ fv(v), which contradicts the hypothesis
that E does not capture the free variables of v. Hence, we can then construct ΦE⟨⟨v⟩⟩ for
such a Ψ as follows

x : M2; Γ ⊎ Π ⊢(m+m′,e+e′−1) E⟨⟨v⟩⟩ :O (Γ ⊎ Π)(y) = Γ(y) = 0

x : M2; Γ ⊎ Π ⊢(m+m′,e+e′−1) E1⟨⟨v⟩⟩[y←u] :O
ESgc

• Let E = E1⟨⟨y⟩⟩[y←E2]. We can safely assume that x ̸= y, since we are working up to
α-equivalence. By Lemma 13.2.24 (Plugged variables and domain of type contexts), y ∈
dom(x : M ; Γ), and so ΦE⟨⟨x⟩⟩ can only have ES as last rule and be of the form

x : M∆; ∆ ⊢(m∆,e∆) E1⟨⟨y⟩⟩ :O x : MΣ; Σ ⊢(mΣ,eΣ) E2⟨⟨x⟩⟩ : ∆(y) ∆(y) ̸= 0

x : (M∆ ⊎MΣ); (∆ \\ y) ⊎ Σ ⊢(m∆+mΣ,e∆+eΣ) E1⟨⟨y⟩⟩[y←E2⟨⟨x⟩⟩] :O
ES

where M = M∆ ⊎MΣ, Γ = (∆ \\ y) ⊎ Σ, and (m, e) = (m∆ +mΣ, e∆ + eΣ).
We can then apply the i.h. on the premise in the middle to obtain a splitting MΣ = MΣ,1⊎MΣ,2

such that for any derivation Ψ ▷CbNeed Π ⊢(m
′,e′) v :MΣ,1 there is a derivation ΦE2⟨⟨v⟩⟩ ▷CbNeed

186

x :MΣ,2; Σ ⊎ Π ⊢(mΣ+m′,eΣ+e′−1) E2⟨⟨v⟩⟩ : ∆(y). We can then construct ΦE⟨⟨v⟩⟩ for such Ψ as
follows

x : M∆;∆ ⊢(m∆,e∆) E1⟨⟨y⟩⟩ :O x : MΣ,2; Σ ⊎Π ⊢(mΣ+m′,eΣ+e′−1) E2⟨⟨v⟩⟩ :∆(y) ∆(y) ̸= 0

x : (M∆ ⊎MΣ,2); (∆ \\ y) ⊎ Σ ⊎Π ⊢(m∆+mΣ+m′,e∆+eΣ+e′−1) E1⟨⟨y⟩⟩[y←E2⟨⟨v⟩⟩] :O
ES

where we take M1 := MΣ,1 and M2 := M∆ ⊎MΣ,2.

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.4.3 (Linear Substitution for CbNeed) in the proof

of Proposition 5.4.4.2 (Quantitative Subject Reduction for CbNeed - exponential case) to obtain the
right indices.

Lemma 13.2.27 (Splitting multi types of CbNeed type derivations).
Let t ∈ Λ, M := N

⊎
O, and let Φ ▷CbNeed Γ ⊢(m,e) v :M be a type derivation. Then there exist

type derivations
Ψ ▷CbNeed Π ⊢(m′,e′) v :N
Θ ▷CbNeed ∆ ⊢(m′′,e′′) v :O

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Proposition 13.2.28 (Quantitative Subject Reduction for CbNeed).
Let Φ ▷CbNeed Γ ⊢(m,e) t :M be a type derivation such that M ̸= 0.

1. Multiplicative: If t→mCbNeed u, then m ≥ 1 and there exists a derivation

Ψ ▷CbNeed Γ ⊢(m−1,e) u :M

2. Exponential: If t→eCbNeed u, then e ≥ 1 and there exists a derivation

Ψ ▷CbNeed Γ ⊢(m,e−1) u :M

Proof. (Click here to go back to main chapter.)
By induction on the reduction relation→CbNeed, with 7→mCbNeed and r →eCbNeed as the base cases,

and the closure by CbNeed contexts of 7→mCbNeed ∪ 7→eCbNeed as the inductive one.
• Root step for →mCbNeed. Let us assume that t = S⟨λx.s⟩m 7→m S⟨s[x←m]⟩ = u, and proceed

by induction on S:
– Let S = ⟨·⟩. Then t = (λx.s)m and so the last rule of Φ is either app or appgc, because

they are the only rules whose term in the conclusion type judgement is an application.
∗ If app is the last rule of Φ, then the latter is of the form

Π ⊢(m′,e′) s :M
Π \\ x ⊢(m′,e′) λx.s : Π(x) ⊸ M

fun

Π \\ x ⊢(m′,e′) λx.s : [Π(x) ⊸ M]
many

∆ ⊢(m′′,e′′) m : Π(x) Π(x) ̸= 0

(Π \\ x)
⊎

∆ ⊢(m′+m′′+1,e′+e′′) (λx.s)m :M
app

187

Therefore, m ≥ 1. Since Π(x) ̸= 0, then we can construct Φ′ as follows:

Π ⊢(m′,e′) s :M ∆ ⊢(m′′,e′′) m : Π(x) Π(x) ̸= 0

(Π \\ x)
⊎

∆ ⊢(m′+m′′,e′+e′′) s[x←m] :M
ES

Note that (m′ +m′′, e′ + e′) = (m− 1, e).
∗ If appgc is the las typing rule of Φ, then the latter is of the form

Π ⊢(m′,e′) s :M
Π ⊢(m′,e′) λx.s :0 ⊸ M

fun

Π ⊢(m′,e′) λx.s : [0 ⊸ M]
many

Π ⊢(m′+1,e′) (λx.s)m :M
appgc

with (m, e) = (m′+1, e′) and Γ = Π \\ x. Note that x /∈ dom(Π), because s is typed
with M and λx.s is typed with 0 ⊸ M , so we can construct Φ′ as follows:

Π ⊢(m′,e′) s :M Π(x) = 0

Π ⊢(m′,e′) s[x←m] :M
ESgc

– Let S = S ′[y←t̃]. Then t = S⟨λx.s⟩m = ((S ′⟨λx.s⟩)[y←t̃])m 7→m (S ′⟨s[x←m]⟩)[y←t̃] =
S⟨s[x←m]⟩ = u. Since we are working up to α-equivalence, it is safe to assume that
y /∈ fv(t̃) and y /∈ fv(m). There are several possible forms of Φ, namely:

∗ If the last rule is appgc and [y←t̃] is appended through rule ESgc, then Φ is of the
form

Γ ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ N] Γ(y) = 0

Γ ⊢(m′,e′) S⟨λx.s⟩ : [0 ⊸ N]
ESgc

Γ ⊢(m′+1,e′) S⟨λx.s⟩m :N
appgc

We then construct the following derivation

Γ ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ N]

Γ ⊢(m′+1,e′) S ′⟨λx.s⟩m :N
appgc

and apply i.h. on it to obtain m = m′ + 1 ≥ 1. Moreover, the i.h. also yields a
derivation Φ′′ ▷CbNeedΓ ⊢(m

′,e′) S ′⟨s[x←m]⟩ :N , with which we can then construct Φ′
as follows:

Φ′′ ▷CbNeedΓ ⊢(m
′,e′) S ′⟨s[x←m]⟩ :N Γ(y) ̸= 0

Γ ⊢(m′,e′) S⟨s[x←m]⟩ :N
ESgc

Finally, note that (m′, e′) = (m− 1, e).
∗ If the last rule is appgc and [y←t̃] is appended through rule ES, then Φ is

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ M] ∆ ⊢(m′′,e′′) m :N Π(y) = N ̸= 0

(Π \\ y) ⊎∆ ⊢(m′+m′′,e′+e′′) S⟨λx.s⟩ : [0 ⊸ M]
ES

(Π \\ y) ⊎∆ ⊢(m′+m′′+1,e′+e′′) S⟨λx.s⟩m :M
appgc

We can then construct the following derivation

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ M]

Π ⊢(m′+1,e′) S ′⟨λx.s⟩m :M
appgc

188

Applying i.h. on it yields a derivation Φ′′ ▷CbNeed Π ⊢(m
′,e′) S ′⟨s[x←m]⟩ :M and

implies the fact that m = m′ + m′′ + 1 ≥ m′ + 1 ≥ 1. Finally, we construct Φ′ as
follows:

Φ′′ ▷CbNeedΠ ⊢(m
′,e′) S ′⟨s[x←m]⟩ :M ∆ ⊢(m′′,e′′) m :N Π(y) = N ̸= 0

(Π \\ y) ⊎∆ ⊢(m′+m′′,e′+e′′) S⟨s[x←m]⟩ :M
ES

Note that (m′ +m′′, e′ + e′′) = (m− 1, e).
∗ If the last rule is app and [y←t̃] is appended through rule ESgc, then Φ is

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [M ⊸ N] Π(y) = 0

Π ⊢(m′,e′) S⟨λx.s⟩ : [M ⊸ N]
ESgc

∆ ⊢(m′′,e′′) m :M M ̸= 0

Π ⊎∆ ⊢(m′+m′′+1,e′+e′′) S⟨λx.s⟩m :N
app

We are now able to give the following derivation

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [M ⊸ N] ∆ ⊢(m′′,e′′) m :M

Π ⊎∆ ⊢(m′+m′′+1,e′+e′′) S ′⟨λx.s⟩m :N
app

on which application of i.h. gives that m = m′+m′′+1 ≥ 1, and yields a derivation
Φ′′ ▷CbNeedΠ ⊎∆ ⊢(m′+m′′,e′+e′′) S ′⟨s[x←m]⟩ :N , thus allowing us to construct Φ′ as
follows:

Φ′′ ▷CbNeedΠ ⊎∆ ⊢(m′+m′′,e′+e′′) S ′⟨s[x←m]⟩ :N (Π ⊎∆)(y) = 0

Φ′′ ▷CbNeedΠ ⊎∆ ⊢(m′+m′′,e′+e′′) S⟨s[x←m]⟩ :N
ESgc

Note that y /∈ fv(t̃) and so via Lemma 5.4.1 (Relevance of the CbNeed type system)
we know that ∆(y) = 0; hence, the use of rule ESgc in Φ′ is correct. Moreover, note
that (m′ +m′′, e′ + e′′) = (m, e).

∗ If the last rule is app and [y←t̃] is appended through rule ES, then Φ is

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [M ⊸ N] ∆ ⊢(m′′,e′′) t̃ : Π(y) Π(y) ̸= 0

(Π \\ y) ⊎∆ ⊢(m′+m′′,e′+e′′) S⟨λx.s⟩ : [M ⊸ N]
ES

Σ ⊢(m′′′,e′′′) m :M

((Π \\ y) ⊎∆) ⊎ Σ ⊢((m′+m′′)+m′′′+1,(e′+e′′)+e′′′) S⟨λx.s⟩m :N
app

Since y /∈ fv(m) ∪ fv(t̃) then we know through Lemma 5.4.1 (Relevance of the
CbNeed type system) that y /∈ dom(∆) and y /∈ dom(Σ). Now, applying i.h. on
the following derivation

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [M ⊸ N] Σ ⊢(m′′′,e′′′) m :M

Π ⊎ Σ ⊢(m′+m′′′+1,e′+e′′′) S ′⟨λx.s⟩m :N
app

yields a derivation Φ′′ ▷CbNeedΠ ⊎ Σ ⊢(m′+m′′′,e′+e′′′) S ′⟨s[x←m]⟩ :N and implies m =
(m′ +m′′) +m′′′ + 1 ≥ m′ +m′′′ + 1 ≥ 1. Finally, given that (Π ⊎Σ)(y) = Π(y), we
can finally construct Φ′ as follows:

Φ′′ ▷CbNeedΠ ⊎ Σ ⊢(m′+m′′′,e′+e′′′) S ′⟨s[x←m]⟩ :N ∆ ⊢(m′′,e′′) t̃ : Π(y) Π(y) ̸= 0

((Π ⊎ Σ) \\ y) ⊎∆ ⊢((m′+m′′′)+m′′,(e′+e′′′)+e′′) S⟨s[x←m]⟩ :N
ES

Note that ((m′ +m′′′) +m′′, (e′ + e′′′) + e′′) = (m− 1, e), and that since y /∈ dom(Σ)
then ((Π ⊎ Σ) \\ y) ⊎∆ = ((Π \\ y) ⊎∆) ⊎ Σ.

189

All other typing rules are not possible as the final rule in Φ. In particular, rule many
is not possible because the term in its final judgement has to be an abstraction, not an
application term.

• Root step for →eCbNeed. Let t = E⟨⟨x⟩⟩[x←S⟨v⟩] 7→eCbNeed S⟨E⟨⟨v⟩⟩[x←v]⟩. We can infer from
Lemma 5.4.1 (Relevance of the CbNeed type system) that Φ can only have ES as its last typing
rule, and so can only be of the form

ΦE⟨⟨x⟩⟩ ▷CbNeedx : O; Π ⊢(m′,e′) E⟨⟨x⟩⟩ :M ΦS⟨v⟩ ▷CbNeed∆ ⊢(m
′′,e′′) S⟨v⟩ :O O ̸= 0

Π ⊎∆ ⊢(m′+m′′,e′+e′′) E⟨⟨x⟩⟩[x←S⟨v⟩] :M
ES

Note that x /∈ dom(∆), because otherwise Lemma 5.4.1 (Relevance of the CbNeed type system)
would imply x ∈ fv(S⟨v⟩) and this cannot be the case, given that we are working up to α-
equivalence.
We now proceed to prove by induction on S that whenever we have ΦE⟨⟨x⟩⟩ and ΦS⟨v⟩ we can
derive Φ′ ▷CbNeedΠ ⊎∆ ⊢(m′+m′′,e′+e′′−1) S⟨E⟨⟨v⟩⟩[x←v]⟩ :M .

– Let S := ⟨·⟩. First of all, applying Lemma 5.4.3 (Linear Substitution for CbNeed) on
ΦE⟨⟨x⟩⟩ yields a splitting O = O1 ⊎O2 such that for every derivation Ψ ▷CbNeedΣ ⊢(m

′′′,e′′′)

v :O1 there exists a derivation x : O2; Π ⊎ Σ ⊢(m′+m′′′,e′+e′′′−1) E⟨⟨v⟩⟩ :M . In particular, if
O2 = 0, then we can construct the desired derivation Φ′ as follows

x : O; Π ⊢(m′,e′) E⟨⟨x⟩⟩ :M ∆ ⊢(m′′,e′′) v :O

Π ⊎∆ ⊢(m′+m′′,e′+e′′−1) E⟨⟨v⟩⟩ :M
Lemma 5.4.3

Π ⊎∆ ⊢(m′+m′′,e′+e′′−1) E⟨⟨v⟩⟩[x←v] :M
ESgc

On the other hand, if O2 ̸= 0, we can then apply Lemma 13.2.27 (Splitting multi types
of CbNeed type derivations) on ΦS⟨v⟩ to yield derivations ΦO1 ▷CbNeed∆O1 ⊢

(m′′
O1

,e′′O1
) v :O1

and ΦO2 ▷CbNeed∆O2 ⊢
(m′′

O2
,e′′O2

) v :O2 such that ∆ = ∆O1 ⊎∆O2 and (m′′, e′′) = (m′′O1
+

m′′O2
, e′′1 + e′′O2

). Thus, we are now able to combine all these derivations to construct Φ′

as follows

x : O; Π ⊢(m′,e′) E⟨⟨x⟩⟩ :M ∆O1 ⊢
(m′′

O1
,e′′O1

) v :O1

x : O2; Π ⊎∆O1 ⊢
(m′+m′′

O1
,e′+e′′O1

−1) E⟨⟨v⟩⟩ :M
L.5.4.3

∆O2 ⊢
(m′′

O2
,e′′O2

) S⟨v⟩ :O2

Π ⊎∆O1 ⊎∆O2 ⊢
(m′+m′′

O1
+m′′

O2
,e′+e′′O1

−1+e′′O2
) E⟨⟨v⟩⟩[x←v] :M

ES

– Let S := S ′[y←t]. There are two possible final typing rules in ΦS⟨v⟩, namely ES and ESgc.
∗ Let ΦS⟨v⟩ be of the form

∆ ⊢(m′′,e′′) S ′⟨v⟩ :O ∆(y) = 0

∆ ⊢(m′′,e′′) S⟨v⟩ :O
ESgc

Note that since we are working up to α-equivalence we can safely assume that
y /∈ fv(E⟨⟨x⟩⟩), and so via Lemma 5.4.1 (Relevance of the CbNeed type system) we
have that y /∈ dom(Π). We can then construct Φ′ by application of the i.h. as follows

x :O; Π ⊢(m′,e′) E⟨⟨x⟩⟩ :M ∆ ⊢(m′′,e′′) S ′⟨v⟩ :O
Π ⊎∆ ⊢(m′+m′′,e′+e′′) S ′⟨E⟨⟨v⟩⟩[x←v]⟩ :M

i.h.

Π ⊎∆ ⊢(m′+m′′,e′+e′′) S⟨E⟨⟨v⟩⟩[x←v]⟩ :M
ESgc

190

∗ Let ΦS⟨v⟩ be of the form

y : P ; ∆1 ⊢(m
′′
1 ,e

′′
1) S ′⟨v⟩ :O ∆2 ⊢(m

′′
2 ,e

′′
2) t :P P ̸= 0

∆1 ⊎∆2 ⊢(m
′′
1+m′′

2 ,e
′′
1+e′′2) S⟨v⟩ :O

ES

where ∆ = ∆1⊎∆2 and (m′′, e′′) = (m′′1+m′′2, e
′′
1+e′′2). Note that y /∈ fv(E⟨⟨x⟩⟩), and

so via Lemma 5.4.1 (Relevance of the CbNeed type system) we have that y /∈ dom(Π).
We can then construct Φ′ by application of the i.h. and a rearranging of Φ as follows

x :O; Π ⊢(m′,e′) E⟨⟨x⟩⟩ :M y :P ; ∆1 ⊢(m
′′
1 ,e

′′
1) S ′⟨v⟩ :O

y :P ; Π ⊎∆1 ⊢(m
′+m′′

1 ,e
′+e′′1−1) S ′⟨E⟨⟨v⟩⟩[x←v]⟩ :M

i.h.
∆2 ⊢(m

′′
2 ,e

′′
2) t :P

Π ⊎∆1 ⊎∆2 ⊢(m
′+m′′

1+m′′
2 ,e

′+e′′1−1+e′′2) S⟨E⟨⟨v⟩⟩[x←v]⟩ :M
ES

• Contextual closure. We proceed by induction on the derivation of t = E⟨t1⟩ →CbNeed E⟨t2⟩ =
u:

– If E = ⟨·⟩, then t 7→m u or t 7→eCbNeed u, and the statement holds as we have just proved.
– Let E = E1s. This implies that the last typing rule in Φ is either appgc or app. We only

cover the case where E⟨t1⟩ →mCbNeed E⟨t2⟩ and Φ ends in rule app, leaving the rest of the
(analogous) cases to the reader.
Now, Φ is of the form

Π ⊢(m′,e′) E1⟨t1⟩ : [N ⊸ M] ∆ ⊢(m′′,e′′) s :N

Π ⊎∆ ⊢(m′+m′′+1,e′+e′′) E1⟨t1⟩s :M
app

Then we apply i.h. on the left premise of the last rule, obtaining a type derivation whose
final judgement is Π ⊢(m′−1,e′) E1⟨t2⟩ : [N ⊸ M], thus allowing us to construct Φ′ as
folows:

Π ⊢(m′−1,e′) E1⟨t2⟩ : [N ⊸ M] ∆ ⊢(m′′,e′′) s :N

Π ⊎∆ ⊢(m′+m′′,e′+e′′) E1⟨t2⟩s :M
appb

Note that (m′ +m′′, e′ + e′′) = (m− 1, e).
– Let E = E1[x←s]. This implies that the last typing rule in Φ is either ESgc or ES. We

only cover the case where E⟨t1⟩ →mCbNeed E⟨t2⟩ and Φ ends in rule ES, leaving the rest
of the (analogous) cases to the reader.
Now, Φ is of the form

Π ⊢(m′,e′) E1⟨t1⟩ :M ∆ ⊢(m′′,e′′) s : Π(x) Π(x) ̸= 0

(Π \\ x) ⊎∆ ⊢(m′+m′′,e′+e′′) E1⟨t1⟩[x←s] :M
ES

Applying i.h. on the left premise of the last rule yields a derivation whose final judgement
is Π ⊢(m′−1,e′) E1⟨t2⟩ :M , thus allowing us to construct Φ′ as follows:

Π ⊢(m′−1,e′) E1⟨t2⟩ :M ∆ ⊢(m′′,e′′) s : Π(x) Π(x) ̸= 0

(Π \\ x) ⊎∆ ⊢(m′−1+m′′,e′+e′′) E1⟨t2⟩[x←s] :M
ES

Note that (m′ − 1 +m′′, e′ + e′′) = (m− 1, e)

191

– Let E = E1⟨⟨x⟩⟩[x←E2]. We only consider the case where
E1⟨⟨x⟩⟩[x←E2⟨t1⟩]→mCbNeed E1⟨⟨x⟩⟩[x←E2⟨t2⟩]

leaving the other (analogous) case to the reader.
First of all, Lemma 5.4.1 (Relevance of the CbNeed type system) implies that the last
rule in Φ is ES; i.e., Φ is of the form

Π ⊢(m′,e′) E1⟨x⟩ :M ∆ ⊢(m′′,e′′) E2⟨t1⟩ : Π(x) Π(x) ̸= 0

(Π \\ x) ⊎∆ ⊢(m′+m′′,e′+e′′) E1⟨⟨x⟩⟩[x←E2⟨t1⟩] :M
ES

Applying now the i.h. on the premise in the middle of the last rule yields a derivation
with conclusion ∆ ⊢(m′′−1,e′′) E2⟨t2⟩ : Π(x), thus allowing us to construct Φ′ as follows

Π ⊢(m′,e′) E1⟨⟨x⟩⟩ :M ∆ ⊢(m′′−1,e′′) E2⟨t2⟩ : Π(x) Π(x) ̸= 0

(Π \\ x) ⊎∆ ⊢(m′+m′′−1,e′+e′′) E1⟨⟨x⟩⟩[x←E2⟨t2⟩] :M
ES

verifying that (m′ +m′′ − 1, e′ + e′′) = (m− 1, e).

(Click here to go back to main chapter.)
Theorem 13.2.29 (Tight Correctness for CbNeed).

Let t ∈ ΛL be closed and Φ ▷CbNeed Γ ⊢(m,e) t :M be a type derivation such that M ̸= 0. Then
there exists u ∈ ΛL such that

1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNeedu, and
3. |d|m ≤ m and |d|e ≤ e.

Moreover, if Φ is tight then (m, e) = (|d|m, |d|e).
Proof. (Click here to go back to main chapter.)

By induction on m + e, and proceeding by case analysis on whether t →CbNeed-reduces or not.
Note that if t is in→CbNeed-normal form, then we only have to prove the moreover part, that states
that if Φ is tight then (m, e) = (0, 0), which follows from Proposition 5.4.2 (Typing properties of
CbNeed-normal forms).

Otherwise, if t→CbNeed s for some s ∈ ΛL, then there are two cases:
1. Multiplicative steps: Let t→mCbNeed s. By Proposition 5.4.4.1 (Quantitative Subject Reduction

for CbNeed - multiplicative steps), there exists Ψ ▷CbN Γ ⊢(m−1,e) s :M . By i.h. on Ψ, there
exist u and d′ such that norm(u) and d′ : s −→∗CbNeedu, |d′|m ≤ m− 1 and |d′|e ≤ e. Just note
that t →mCbNeed s and so, if d : t −→∗CbNeedu is d′ preceeded by such a step, we have |d|m ≤ m
and |d|e ≤ e.
If Φ is tight, then so is Ψ. Then |d′|m = m − 1 and |d′|e = e by i.h., that give |d|m = m and
|d|e = e.

2. Exponential steps: Let t →eCbNeed s. By Proposition 5.4.4.2 (Quantitative Subject Reduction
for CbNeed - exponential steps), there exists Ψ ▷CbNeed Γ ⊢(m,e−1) s :M . By i.h., there exist
u and d′ such that norm(u) and d′ : s −→∗CbNeedu, |d′|m ≤ m and |d′|e ≤ e − 1. Just note that
t→e s and so, if d : t −→∗CbNeedu is d′ preceeded by such a step, we have |d|m ≤ m and |d|e ≤ e.
Finally, if Φ is tight, then so is Ψ. Then |d′|m = m and |d′|e = e−1 by i.h., that give |d|m = m
and |d|e = e.

(Click here to go back to main chapter.)

192

13.2.6 CbNeed completeness
Proposition 13.2.30 (Tight typability of CbNeed-normal forms).

Let t ∈ ΛL be such that norm(t). Then there exists tight type derivation

Φ ▷CbNeed ∅ ⊢(m,e) t : [norm]

Proof. (Click here to go back to main chapter.)
By Proposition 4.6.1 (Syntactic characterization of closed normal forms - CbNeed), We can easily

prove by induction on predicate norm(.) that if norm(t) then t = S⟨λx.u⟩, for some abstraction λx.u
and substitution context S = ⟨·⟩[x1←t1]...[xn←tn], with n ≥ 0.

Therefore, we can derive Φ as follows

⊢(0,0) λx.u : norm
norm

⊢(0,0) λx.u : [norm]
many

⊢(0,0) λx.u[x1←t1] : [norm]
ESgc

...
ESgc

⊢(0,0) λx.u[x1←t1][xn←tn] : [norm]
ESgc

(Click here to go back to main chapter.)

Lemma 13.2.31 (Linear Removal for CbNeed).
Let Φ ▷CbNeed Γ;x :M ⊢(m,e) E⟨⟨v⟩⟩ :N be a type derivation, where v ∈ Val and x /∈ fv(v). Then

there exist type derivations

Ψ ▷CbNeed Π ⊢(m′,e′) v :O
Θ ▷CbNeed ∆;x : (M ⊎O) ⊢(m′′,e′′) E⟨⟨x⟩⟩ :N

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′ − 1).

Proof. (Click here to go back to main chapter.)
We prove this by induction on the context E:
• Let E = ⟨·⟩. By taking Γv := Γ, Γ′ := ∅, M := O, (mv, ev) := (m, e), and (m′, e′) := (0, 1), we

can then take Φv := Φ and construct ΦE⟨⟨x⟩⟩ as follows:

x : M ⊢(0,1) x :M
ax

verifying that (m, e) = (mv, ev) = (0+mv, 1+ ev−1) = (m′+mv, e
′+ ev−1) and Γ = ∅⊎Γ =

Γ′ ⊎ Γv.
• Let E = E1t, and so E⟨⟨v⟩⟩ = E1⟨⟨v⟩⟩t. There are two possible last rules in Φ, namely app or

appgc.
Let us assume Φ is of the form

ΦE1⟨⟨v⟩⟩ ▷CbNeedΠ ⊢(mΠ,eΠ) E1⟨⟨v⟩⟩ : [O′ ⊸ O] ∆ ⊢(m∆,e∆) t :O′ O′ ̸= 0

Π ⊎∆ ⊢(mΠ+m∆+1,eΠ+e∆) E1⟨⟨v⟩⟩t :O
app

193

Then we can apply the i.h. on ΦE1⟨⟨v⟩⟩ to obtain a type M and type derivations

Φv ▷CbNeedΠv ⊢(mv ,ev) v :M

and
ΦE1⟨⟨x⟩⟩ ▷CbNeedΠ

′ ⊎ {x : M} ⊢(m′′,e′′) E1⟨⟨x⟩⟩ : [O′ ⊸ O]

such that Π = Π′ ⊎ Πv and (mΠ, eΠ) = (m′′ +mv, e
′′ + ev − 1).

Thus, we are able to construct ΦE⟨⟨x⟩⟩ as follows

ΦE1⟨⟨x⟩⟩ ▷CbNeedΠ
′ ⊎ {x : M} ⊢(m′′,e′′) E1⟨⟨x⟩⟩ : [O′ ⊸ O] ∆ ⊢(m∆,e∆) t :O′ O′ ̸= 0

Π′ ⊎ {x : M} ⊎∆ ⊢(m′′+m∆+1,e′′+e∆) E1⟨⟨x⟩⟩t :O
app

and, by taking Γ′ := Π′ ⊎∆, Γv := Πv, and (m′, e′) := (m′′ +m∆ + 1, e′′ + e∆), then we verify
that

Γ = Π ⊎∆ = Π′ ⊎ Πv ⊎∆ = Γ′ ⊎ Γv

and

(m, e) = (mΠ+m∆+1, eΠ+e∆) = (m′′+mv+m∆+1, e′′+ev−1+e∆) = (m′+mv, e
′+ev−1)

Now, let us assume Φ is of the form

ΦE1⟨⟨v⟩⟩ ▷CbNeedΓ ⊢(m−1,e) E1⟨⟨v⟩⟩ : [0 ⊸ O]

Γ ⊢(m,e) E1⟨⟨v⟩⟩t :O
appgc

We then apply the i.h. on ΦE1⟨⟨v⟩⟩ to obtain type M and type derivations

Φv ▷CbNeedΓv ⊢(mv ,ev) v :M

and
ΦN1⟨⟨x⟩⟩ ▷CbNeedΓ

′ ⊎ {x :M} ⊢(m′′,e′′) N1⟨⟨x⟩⟩ : [O′ ⊸ O]

such that Γ = Γ′ ⊎ Γv and (m− 1, e) = (m′′ +mv, e
′′ + ev − 1).

Thus, we are able to construct ΦE⟨⟨x⟩⟩ as follows

ΦE1⟨⟨x⟩⟩ ▷CbNeedΓ
′ ⊎ {x : M} ⊢(m′′,e′′) E1⟨⟨x⟩⟩ : [O′ ⊸ O]

Γ′ ⊎ {x :M} ⊢(m′′+1,e′′) E1⟨⟨x⟩⟩t :O
appgc

and, by taking (m′, e′) = (m′′ + 1, e′′), then verify that

(m, e) = (m′′ +mv + 1, e′′ + ev − 1) = (m′ +mv, e
′ + ev − 1)

• Let E = E1[y←t], and so E⟨⟨v⟩⟩ = E1⟨⟨v⟩⟩[y←t]. Note that we can safely assume that
x ̸= y, since we are working up to α-equivalence and y has a binding occurrence in E while x
represents a free variable. Moreover, note that y /∈ fv(v), since otherwise E⟨⟨v⟩⟩ would not be
well-defined.
There are two possible last rules in Φ, namely ES or ESgc.
Let Φ be of the form

ΦE1⟨⟨v⟩⟩ ▷CbNeedΠ ⊢(mΠ,eΠ) E1⟨⟨v⟩⟩ :O ∆ ⊢(m∆,e∆) t : Π(y) Π(y) ̸= 0

(Π \\ y) ⊎∆ ⊢(mΠ+m∆,eΠ+e∆) E1⟨⟨v⟩⟩[y←t] :O
ES

194

where Γ = (Π \\ y) ⊎∆, (m, e) = (mΠ +m∆, eΠ + e∆).
Then we can apply the i.h. on ΦE1⟨⟨v⟩⟩ to obtain type M and type derivations

Φv ▷CbNeedΠv ⊢(mv ,ev) v :M

and
ΦE1⟨⟨x⟩⟩ ▷CbNeedΠ

′ ⊎ {x : M} ⊢(m′′,e′′) E1⟨⟨x⟩⟩ :O

such that Π = Π′ ⊎ Πv and (mΠ, eΠ) = (m′′ +mv, e
′′ + ev − 1).

Moreover, since y ̸= x and y /∈ dom(Πv)—otherwise Lemma 5.4.1 (Relevance of the CbNeed
type system) would imply that y ∈ fv(v), which we already know not to be the case—then
(Π′ ⊎ {x : M})(y) = Π(y) and so we are able to construct ΦE⟨⟨x⟩⟩ as follows

ΦE1⟨⟨x⟩⟩ ▷CbNeedΠ
′ ⊎ {x : M} ⊢(m′′,e′′) E1⟨⟨x⟩⟩ :O ∆ ⊢(m∆,e∆) t : Π(y) Π(y) ̸= 0

((Π′ ⊎ {x :M}) \\ y) ⊎∆ ⊢(m′′+m∆,e′′+e∆) E1⟨⟨x⟩⟩[y←t] :O
ES

Now, by taking Γ′ := (Π′ \\ y)⊎∆, Γv := Πv, and (m′, e′) := (m′′+m∆, e
′′+ e∆), we can verify

that
Γ = (Π \\ y) ⊎∆ = ((Π′ ⊎ Πv) \\ y) ⊎∆ = (Π′ \\ y) ⊎ Πv ⊎∆ = Γ′ ⊎ Γ

and

(m, e) = (mΠ +m∆, eΠ + e∆) = ((m′′ +mv) +m∆, (e
′′ + ev − 1) + e∆) = (m′ +mv, e

′ + ev)

If Φ is instead of the form

ΦE1⟨⟨v⟩⟩ ▷CbNeedΓ ⊢(m,e) E1⟨⟨v⟩⟩ :O Γ(y) = 0

Γ ⊢(m,e) E1⟨⟨v⟩⟩[y←t] :O
ESgc

then we can apply the i.h. on ΦE1⟨⟨v⟩⟩ to obtain a type M and type derivations

Φv ▷CbNeedΠv ⊢(mv ,ev) v :M

and
ΦE1⟨⟨x⟩⟩ ▷CbNeedΓ

′ ⊎ {x : M} ⊢(m′,e′) E1⟨⟨x⟩⟩ :O

such that Γ = Γ′ ⊎ Γv and (m, e) = (m′ +mv, e
′ + ev − 1). Note that this type context and

these indices are exactly as desired, and so we can finally construct ΦE⟨⟨x⟩⟩ as follows:

ΦE1⟨⟨x⟩⟩ ▷CbNeedΓ
′ ⊎ {x : M} ⊢(m′,e′) E1⟨⟨x⟩⟩ :O

Γ′ ⊎ {x :M} ⊢(m′,e′) E1⟨⟨x⟩⟩[y←t] :O
ESgc

• Let E = E1⟨⟨y⟩⟩[y←E2], and so E⟨⟨v⟩⟩ = E1⟨⟨y⟩⟩[y←E2⟨⟨v⟩⟩]. Once again, we assume x ̸= y.
By Lemma 13.2.24 (Plugged variables and domain of type contexts), there is only one possible
form of Φ, namely:

Π ⊢(mΠ,eΠ) E1⟨⟨y⟩⟩ :O ΦE2⟨⟨v⟩⟩ ▷CbNeed∆ ⊢(m∆,e∆) E2⟨⟨v⟩⟩ : Π(y) Π(y) ̸= 0

(Π \\ y) ⊎∆ ⊢(mΠ+m∆,eΠ+e∆) E1⟨⟨y⟩⟩[y←E2⟨⟨v⟩⟩] :O
ES

where Γ = (Π \\ y) ⊎∆, (m, e) = (mΠ +m∆, eΠ + e∆).

195

Then we can apply the i.h. on ΦE2⟨⟨v⟩⟩ to obtain type M and type derivations

Φv ▷CbNeed∆v ⊢(mv ,ev) v :M

and
ΦE2⟨⟨x⟩⟩ ▷CbNeed∆

′ ⊎ {x : M} ⊢(m′′,e′′) E2⟨⟨x⟩⟩ : Π(y)

such that ∆ = ∆′ ⊎∆v and (m∆, e∆) = (m′′ +mv, e
′′ + ev − 1).

We can then construct ΦE⟨⟨x⟩⟩ as follows

Π ⊢(mΠ,eΠ) E1⟨⟨y⟩⟩ :O ΦE2⟨⟨x⟩⟩ ▷CbNeed∆
′ ⊎ {x : M} ⊢(m′′,e′′) E2⟨⟨x⟩⟩ : Π(y) Π(y) ̸= 0

(Π \\ y) ⊎∆′ ⊢(mΠ+m′′,eΠ+e′′) E1⟨⟨y⟩⟩[y←E2⟨⟨x⟩⟩] :O
ES

and, by taking Γ′ := (Π \\ y) ⊎∆′, Γv := ∆v, (m′, e′) = (mΠ +m′′, eΠ + e′′), then verify that

Γ = (Π \\ y) ⊎∆ = (Π \\ y) ⊎ (∆′ ⊎∆v) = Γ′ ⊎ Γv

and

(m, e) = (mΠ +m∆, eΠ + e∆) = (mΠ + (m′′ +mv), eΠ + (e′′ + ev − 1)) = (m′ +mv, e
′ + ev − 1)

(Click here to go back to main chapter.)
The following is required to apply Lemma 5.4.7 (Linear Removal for CbNeed) in the proof of

Proposition 5.4.8.2 (Quantitative Subject Expansion for CbNeed - exponential case) to obtain the
right indices.

Lemma 13.2.32 (Merging multi types of CbNeed type derivations).
Let v ∈ Val. For any two type derivations

ΦN ▷CbNeed ΓN ⊢(mN ,eN) v :N
ΦO ▷CbV ΓO ⊢(mO,eO) v :O

there exsits type derivation

ΦN⊎O ▷CbNeed ΓN

⊎
ΓO ⊢(mN+mm′′ ,eN+eO) v :N

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Proposition 13.2.33 (Quantitative Subject Expansion for CbNeed).
Let Φ ▷CbNeed Γ ⊢(m,e) u :L be a type derivation such that M ̸= 0.

1. Multiplicative: If t→mCbNeed u, then there exists a derivation

Ψ ▷CbNeed Γ ⊢(m+1,e) t :M

196

2. Exponential: If t→eCbNeed u, then there exists a derivation

Ψ ▷CbNeed Γ ⊢(m,e+1) t :M

Proof. (Click here to go back to main chapter.)
By induction on the derivation t →nd u, with the root rules 7→m and 7→e as the base case, and

the closure by CbNeed contexts of 7→nd as the inductive one.
• Root step for →m: Let t = S⟨λx.s⟩m 7→m S⟨s[x←m]⟩ = u, and proceed by induction on S:

– Let S := ⟨·⟩. Then t = (λx.s)m and u = s[x←m], and so Φ has either ES or ESgc as its
last typing rule.

∗ If Φ is of the form
Γ ⊢(m,e) s :M Γ(x) = 0

Γ ⊢(m,e) s[x←m] :M
ESgc

then we can construct Φ′ as follows

Γ ⊢(m,e) s :M
Γ ⊢(m,e) λx.s :0 ⊸ M

fun

Γ ⊢(m,e) λx.s : [0 ⊸ M]
!

Γ ⊢(m+1,e) (λx.s)m :M
appgc

∗ Let Φ be of the form

x : O; Π ⊢(m′,e′) s :M ∆ ⊢(m′′,e′′) m :O O ̸= 0

Π
⊎
∆ ⊢(m′+m′′,e′+e′′) s[x←m] :M

ES

where Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).
We can then construct Φ′ as follows

x : O; Π ⊢(m′,e′) s :M

Π ⊢(m′,e′) λx.s :O ⊸ M
fun

Π ⊢(m′,e′) λx.s : [O ⊸ M]
!

∆ ⊢(m′′,e′′) m :O

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′) (λx.s)m :M
appb

– Let S := S ′[y←t̃]. Then t = (S ′⟨λx.s⟩[y←t̃])m and u = S ′⟨s[x←m]⟩[y←t̃]. Note that
since we are working up to α-equivalence, y /∈ fv(m). There are two possible last typing
rules of Φ, namely ES and ESgc.

∗ Let Φ be of the form

y : O; Π ⊢(m′,e′) S ′⟨s[x←m]⟩ :M ∆ ⊢(m′′,e′′) t̃ :O O ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′) S ′⟨s[x←m]⟩[y←t̃] :M
ES

where Γ = Π
⊎

∆ and (m, e) = (m′ + m′′, e′ + e′′). We can then apply the i.h.
on the leftmost premise to obtain a type derivation Φ′i.h. ▷CbNeed y : O; Π ⊢(m′+1,e′)

S ′⟨λx.s⟩m :M . We then analyze the two possibilities of the last typing rule in Φ′i.h.,
namely appb or appgc

197

· Let Φ′i.h. be of the form

y : O; Π1 ⊢(m
′
1,e

′
1) S ′⟨λx.s⟩ : [P ⊸ M] Π2 ⊢(m

′
2,e

′
2) m :P P ̸= 0

y : O; Π ⊢(m′+1,e′) S ′⟨λx.s⟩m :M
appb

where (m′, e′) = (m′1 + m′2, e
′
1 + e′2), Π = Π1

⊎
Π2, and y /∈ dom(Π2), since

otherwise Lemma 5.4.1 (Relevance of the CbNeed type system) would imply
y ∈ fv(m).
We can then construct Φ′ as follows

y : O; Π1 ⊢(m
′
1,e

′
1) S ′⟨λx.s⟩ : [P ⊸ M] ∆ ⊢(m′′,e′′) t̃ :O

∆
⊎

Π1 ⊢(m
′
1+m′′,e′1+e′′) S⟨λx.s⟩ : [P ⊸ M]

ES
Π2 ⊢(m

′
2,e

′
2) m :P

∆
⊎

Π1

⊎
Π2 ⊢(m

′
1+m′′+m′

2+1,e′1+e′′+e′2) S⟨λx.s⟩m :M
appb

· Let Φ′i.h. be of the form

y : O; Π ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ M]

y : O; Π ⊢(m′+1,e′) S ′⟨λx.s⟩m :M
appgc

We can then construct Φ′ as follows

y : O; Π ⊢(m′,e′) S ′⟨λx.s⟩ : [0 ⊸ M] ∆ ⊢(m′′,e′′) t̃ :O

Π
⊎
∆ ⊢(m′+m′′,e′+e′′) S⟨λx.s⟩ : [0 ⊸ M]

ES

Π
⊎
∆ ⊢(m′+m′′+1,e′+e′′) S⟨λx.s⟩m :M

appgc

∗ Let Φ be of the form

Γ ⊢(m,e) S ′⟨s[x←m]⟩ :M Γ(y) = 0

Γ ⊢(m,e) S ′⟨s[x←m]⟩[y←t̃] :M
ESgc

We then apply the i.h. on the leftmost premise to obtain a type derivation Φ′i.h.▷CbNeed
Γ ⊢(m+1,e) S ′⟨λx.s⟩m :M for which there are two possible last typing rules, namely
appb and appgc.
· Let Φ′i.h. be of the form

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [O ⊸ M] ∆ ⊢(m′′,e′′) m :O O ̸= 0

Γ ⊢(m+1,e) S ′⟨λx.s⟩m :M
appb

where Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).
We can then construct Φ′ as follows

Π ⊢(m′,e′) S ′⟨λx.s⟩ : [O ⊸ M]

Π ⊢(m′,e′) S⟨λx.s⟩ : [O ⊸ M]
ESgc

∆ ⊢(m′′,e′′) m :O

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′) S⟨λx.s⟩m :M
appb

· Let Φ′i.h. be of the form

Γ ⊢(m,e) S ′⟨λx.s⟩ : [0 ⊸ M]

Γ ⊢(m+1,e) S ′⟨λx.s⟩m :M
appgc

198

We can then construct Φ′ as follows

Γ ⊢(m,e) S ′⟨λx.s⟩ : [0 ⊸ M]

Γ ⊢(m,e) S⟨λx.s⟩ : [0 ⊸ M]
ESgc

Γ ⊢(m+1,e) S⟨λx.s⟩m :M
appgc

• Root step for →e: Let t = E⟨⟨x⟩⟩[x←S⟨v⟩] 7→e S⟨E⟨⟨v⟩⟩[x←v]⟩ = u, and proceed by induction
on S:

– Let S := ⟨·⟩.Then t = E⟨⟨x⟩⟩[x←v] 7→e E⟨⟨v⟩⟩[x←v] = u, and so Φ has either ES or ESgc
as its last typing rule.

∗ Let Φ be of the form

ΦE⟨⟨v⟩⟩ ▷CbNeed Γ ⊢(m,e) E⟨⟨v⟩⟩ :M Γ(x) = 0

Γ ⊢(m,e) E⟨⟨v⟩⟩[x←v] :M
ESgc

We apply Lemma 5.4.7 (Linear Removal for CbNeed) on ΦE⟨⟨v⟩⟩ to obtain type deriva-
tions Φv▷CbNeed Γv ⊢(mv ,ev) v :O and ΦE⟨⟨x⟩⟩▷CbNeed Γ

′⊎{x : O} ⊢(m′,e′) E⟨⟨x⟩⟩ :M such
that Γ = Γ′

⊎
Γv and (m, e) = (m′+mv, e

′+ ev− 1). We can then construct Φ′ with
such derivations as follows

Γ′
⊎
{x : O} ⊢(m′,e′) E⟨⟨x⟩⟩ :M Γv ⊢(mv ,ev) v :O

Γ′
⊎

Γv ⊢(m
′+mv ,e′+ev) E⟨⟨x⟩⟩[x←v] :M

ES

In particular, note that (m′ +mv, e
′ + ev) = (m, e+ 1).

∗ Let Φ be of the form

x : O; Π ⊢(m′,e′) E⟨⟨v⟩⟩ :M ∆ ⊢(m′′,e′′) v :O O ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′) E⟨⟨v⟩⟩[x←v] :M
ES

We can then apply Lemma 5.4.7 (Linear Removal for CbNeed) on the leftmost
premise with respect to x to obtain a multi type P and type derivations Φv ▷CbNeed
Πv ⊢(mv ,ev) v :P and ΦE⟨⟨x⟩⟩ ▷CbNeed ΠE⟨⟨x⟩⟩

⊎
{x : P} ⊢(mE⟨⟨x⟩⟩,eE⟨⟨x⟩⟩) E⟨⟨x⟩⟩ :M such

that x : O; Π = Πv

⊎
ΠE⟨⟨x⟩⟩ and (m′, e′) = (mE⟨⟨x⟩⟩ +mv, eE⟨⟨x⟩⟩ + ev − 1). Note how

Lemma 5.4.1 (Relevance of the CbNeed type system) implies that x /∈ dom(Πv)—
given that x /∈ fv(v)—and so ΦE⟨⟨x⟩⟩ can be rewritten as

ΦE⟨⟨x⟩⟩ ▷CbNeed x : O
⊎

P ; Π′E⟨⟨x⟩⟩ ⊢(mE⟨⟨x⟩⟩,eE⟨⟨x⟩⟩) E⟨⟨x⟩⟩ :M

where ΠE⟨⟨x⟩⟩ = x : O; Π′E⟨⟨x⟩⟩ and so Π = Π′E⟨⟨x⟩⟩
⊎

Πv.
Furthermore, we can apply Lemma 13.2.32 (Merging multi types of CbNeed type
derivations) on ∆ ⊢(m′′,e′′) v :O and Φv to obtain a type derivation ΦO

⊎
P ▷CbNeed

∆
⊎
Πv ⊢(m

′′+mv ,e′′+ev) v :O
⊎
P .

Finally, we can construct Φ′ as follows

x : O
⊎

P ; Π′E⟨⟨x⟩⟩ ⊢(mE⟨⟨x⟩⟩,eE⟨⟨x⟩⟩) E⟨⟨x⟩⟩ :M ∆
⊎
Πv ⊢(m

′′+mv ,e′′+ev) v :O
⊎

P

Π′E⟨⟨x⟩⟩
⊎

∆
⊎

Πv ⊢(mE⟨⟨x⟩⟩+m′′+mv ,eE⟨⟨x⟩⟩+e′′+ev) E⟨⟨x⟩⟩[x←v] :M
ES

Note that (mE⟨⟨x⟩⟩ +m′′ +mv, eE⟨⟨x⟩⟩ + e′′ + ev) = (m′ +m′′, e′ + 1+ e′′) = (m, e+ 1).

199

– Let S := S[y←m]. Then t = E⟨⟨x⟩⟩[x←S ′⟨v⟩[y←m]] 7→e S ′⟨E⟨⟨v⟩⟩[x←v]⟩[y←m] = u.
Note that y /∈ fv(E⟨⟨x⟩⟩), since y is bound in S⟨v⟩ and we are working up to α-equivalence.
Then, Φ has either ES or ESgc as its last typing rule.

∗ Let Φ be of the form

Γ ⊢(m,e) S ′⟨E⟨⟨v⟩⟩[x←v]⟩ :M Γ(y) = 0

Γ ⊢(m,e) S ′⟨E⟨⟨v⟩⟩[x←v]⟩[y←m] :M
ESgc

We can then apply the i.h. on the premise to obtain a type derivation Φ′i.h. ▷CbNeed
Γ ⊢(m,e+1) E⟨⟨x⟩⟩[x←S ′⟨v⟩] :M . Moreover, note that Φ′i.h. can only have ES as its last
typing rule, by application of Lemma 5.4.1 (Relevance of the CbNeed type system).
Φ′i.h. is hence of the form

x : O; Π ⊢(mE⟨⟨x⟩⟩,eE⟨⟨x⟩⟩) E⟨⟨x⟩⟩ :M ΦS′⟨v⟩ ▷CbNeed ∆ ⊢(mS′⟨v⟩,eS′⟨v⟩) S′⟨v⟩ :O O ̸= 0

Γ ⊢(m,e+1) E⟨⟨x⟩⟩[x←S′⟨v⟩] :M
ES

where Π
⊎

∆ = Γ and (m, e+ 1) = (mE⟨⟨x⟩⟩ +mS′⟨v⟩, eE⟨⟨x⟩⟩ + eS′⟨v⟩).
Since Γ(y) = 0 then ∆(y) = 0 and we can construct Φ′ as follows

x : O; Π ⊢(mE⟨⟨x⟩⟩,eE⟨⟨x⟩⟩) E⟨⟨x⟩⟩ :M
∆ ⊢(mS′⟨v⟩,eS′⟨v⟩) S ′⟨v⟩ :O ∆(y) = 0

∆ ⊢(mS′⟨v⟩,eS′⟨v⟩) S ′⟨v⟩[y←m] :O
ESgc

Π
⊎

∆ ⊢(mE⟨⟨x⟩⟩+mS′⟨v⟩,eE⟨⟨x⟩⟩+eS′⟨v⟩) E⟨⟨x⟩⟩[x←S ′⟨v⟩[y←m]] :M
ES

∗ Let Φ be of the form

y : O; Π ⊢(m1,e1) S ′⟨E⟨⟨v⟩⟩[x←v]⟩ :M ∆ ⊢(m2,e2) m :O

Π
⊎

∆ ⊢(m1+m2,e1+e2) S ′⟨E⟨⟨v⟩⟩[x←v]⟩[y←m] :M
ES

where Π
⊎
∆ = Γ and (m1 + m2, e1 + e2) = (m, e). We can then apply the i.h.

on the leftmost premise to obtain a type derivation Φ′i.h. ▷CbNeed y : O; Π ⊢(m1,e1+1)

E⟨⟨x⟩⟩[x←S ′⟨v⟩] :M which has to have ES as its last typing rule—via Lemma 5.4.1
(Relevance of the CbNeed type system)—as follows

x : P ; Π1 ⊢(m1,1,e1,1) E⟨⟨x⟩⟩ :M y : O; Π2 ⊢(m1,2,e1,2) S ′⟨v⟩ :P
y : O; Π1

⊎
Π2 ⊢(m1,1+m1,2,e1,1+e1,2) E⟨⟨x⟩⟩[x←S ′⟨v⟩] :M

ES

where Π1

⊎
Π2 = Π, (m1,1 +m1,2, e1,1 + e1,2) = (m1, e1 + 1). We then construct Φ′

as follows

x : P ; Π1 ⊢(m1,1,e1,1) E⟨⟨x⟩⟩ :M
y : O; Π2 ⊢(m1,2,e1,2) S ′⟨v⟩ :P ∆ ⊢(m2,e2) m :O

Π2

⊎
∆ ⊢(m1,2+m2,e1,2+e2) S ′⟨v⟩[y←m] :P

ES

Π1

⊎
Π2

⊎
∆ ⊢(m1,1+m1,2+m2,e1,1+e1,2+e2) E⟨⟨x⟩⟩[x←S ′⟨v⟩[y←m]] :M

ES

Note that Π1

⊎
Π2

⊎
∆ = Π

⊎
∆ = Γ and (m1,1 + m1,2 + m2, e1,1 + e1,2 + e2) =

(m1 +m2, e1 + e2) = (m, e+ 1).
• Contextual closure: We proceed by induction on the derivation of t = E⟨t′⟩ →nd E⟨u′⟩ = u:

– Let E = ⟨·⟩. Then t 7→m u or t 7→e u and in either case the statement holds, as we have
just proved.

200

– Let E = E1s. Then Φ ▷CbNeed Γ ⊢(m,e) E1⟨u′⟩s :M and its last typing rule is either appb
or appgc. We only cover the case where E⟨t′⟩ →m E⟨u′⟩ and Φ ends in rule appb, leaving
the rest of the (analogous) cases to the reader.
Let Φ be of the form

ΦE1⟨u⟩ ▷CbNeed Π ⊢(m′,e′) E1⟨u′⟩ : [O ⊸ M] ∆ ⊢(m′′,e′′) s :O

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′) E1⟨u′⟩s :M
appb

where Γ = Π
⊎

∆, (m′ +m′′ + 1, e′ + e′′) = (m, e), and O ̸= 0.
We can then apply the i.h. on ΦE1⟨u⟩ to obtain a type derivation Φ′i.h. ▷CbNeed Π ⊢(m+1,e)

E1⟨t′⟩ : [O ⊸ M] with which we construct Φ′ as follows

Π ⊢(m+1,e) E1⟨t′⟩ : [O ⊸ M] ∆ ⊢(m′′,e′′) s :O

Π
⊎

∆ ⊢(m′+1+m′′+1,e′+e′′) E1⟨t′⟩s :M
appb

Note that (m′ + 1 +m′′ + 1, e′ + 1 + e′′) = (m+ 1, e).
– Let E = E1[x←s]. Then Φ ▷CbNeed Γ ⊢(m,e) E1⟨u′⟩[x←s] :M and its last typing rule is

either ES or ESgc. We only cover the case where E⟨t1⟩ →m E⟨u1⟩ and Φ ends in rule
ES, leaving the rest of the (analogous) cases to the reader.
Let Φ be of the form

ΦE1⟨u′⟩ ▷CbNeed x : O; Π ⊢(m′,e′) E1⟨u′⟩ :M ∆ ⊢(m′′,e′′) s :O

Π
⊎

∆ ⊢(m′+m′′,e′+e′′) E1⟨u′⟩[x←s] :M
ES

where Π
⊎

∆ = Γ, (m′ +m′′, e′ + e′′) = (m, e), and O ̸= 0.
We can then apply the i.h. on ΦE1⟨u′⟩ to obtain a type derivation

Φ′i.h. ▷CbNeed x : O; Π ⊢(m′+1,e′) E1⟨t′⟩ :M

with which Φ′ goes as follows

x : O; Π ⊢(m′+1,e′) E1⟨t′⟩ :M ∆ ⊢(m′′,e′′) s :O

Π
⊎

∆ ⊢(m′+1+m′′,e′+e′′) E1⟨t′⟩[x←s] :M
ES

Note that (m′ + 1 +m′′, e′ + e′′) = (m+ 1, e).
– Let E = E1⟨⟨x⟩⟩[x←E2]. We only consider the case where

t = E⟨t′⟩ = E1⟨⟨x⟩⟩[x←E2⟨t′⟩]→m E1⟨⟨x⟩⟩[x←E2⟨u′⟩] = E⟨u′⟩ = u

leaving the (analogous) case when t→e u to the reader.
Therefore, Φ is of the form

Π ⊢(m′,e′) E1⟨⟨x⟩⟩ :M ΦE2⟨u′⟩ ▷CbNeed ∆ ⊢(m′′,e′′) E2⟨u′⟩ :O
Π
⊎

∆ ⊢(m′+m′′,e′+e′′) E1⟨⟨x⟩⟩[x←E2⟨u′⟩] :M
ES

where Π
⊎

∆ = Γ, (m′ +m′′, e′ + e′′) = (m, e), and O ̸= 0.
We can then apply the i.h. on ΦE2⟨u′⟩ to obtain a type derivation Φ′i.h.▷CbNeed ∆ ⊢(m

′′+1,e′′)

E2⟨t′⟩ :O, with which we can finally construct Φ′ as follows

Π ⊢(m′,e′) E1⟨⟨x⟩⟩ :M ∆ ⊢(m′′+1,e′′) E2⟨t′⟩ :O
Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′) E1⟨⟨x⟩⟩[x←E2⟨t′⟩] :M
ES

Note that (m′ +m′′ + 1, e′ + e′′) = (m+ 1, e).

201

(Click here to go back to main chapter.)

Theorem 13.2.34 (Tight Completeness for CbNeed).
Let t ∈ ΛL be closed. If there exists d : t −→∗CbNeed u for some u in →CbNeed-normal form, then

there exists a type derivation Φ ▷CbNeed ∅ ⊢(|d|m,|d|e) t : [norm].

Proof. (Click here to go back to main chapter.)
By induction on the length |d| of the reduction sequence d : t→CbNeed u:
• Base case: Let k := 0. Then t = u and t is in →CbNeed-normal form. By Proposi-

tion 4.6.1.1 (Syntactic characaterization of closed normal forms - CbNeed), we have that
norm(t). In addition, Proposition 5.4.6 (Tight typability of CbNeed-normal forms) yields
tight type derivation Φ ▷CbNeed ∅ ⊢(0,0) t : [norm], which satisfies the statement—in particular,
because |d|m = |d|e = 0.

• Inductive case: Let k > 0; i.e., t→CbNeed s→k−1
CbNeed u. Let d′ be the evaluation s→k−1

CbNeed u.
By i.h., there exists tight type derivation

Ψ ▷CbNeed ∅ ⊢(|d
′|m,|d′|e) s : [norm]

Case analysis on the kind of reduction step in t→CbNeed s:
– Multiplicative step: Let t →mCbNeed s. By Proposition 5.4.8.1 (Quantitative Subject

Expansion for CbNeed - Multiplicative), there exists (tight) type derivation

Ψ′ ▷CbNeed ⊢(|d
′|m+1,|d′|e) : [norm]

which satisfies the statement—in particular, because |d|m = |d′|m + 1 and |d|e = |d′|e.
– Exponential step: Let t→eCbNeed s. By Proposition 5.4.8.2 (Quantitative Subject Expan-

sion for CbNeed - Exponential), there exists (tight) type derivation

Ψ′ ▷CbNeed ⊢(|d
′|m,|d′|e+1) : [norm]

which satisfies the statement—in particular, because |d|m = |d′|m and |d|e = |d′|e + 1.

(Click here to go back to main chapter.)

13.2.7 CbNeed is as efficient as CbV
Corollary 13.2.35 (Correctness for CbNeed in the CbV type system).

Let t ∈ ΛL be closed and let Φ ▷CbV Γ ⊢(m,e) t :M be a type derivation. Then there exists u ∈ ΛL

such that
1. norm(u),
2. there exists a reduction sequence d : t −→∗CbNeed u, and
3. |d|m ≤ m and |d|e ≤ e.

202

Proof. (Click here to go back to main chapter.)
By induction on m+ e and case analysis on whether t reduces or not. Note that if norm(t) then

the statement holds with u := t and d the empty evaluation, so that |d|m = 0 = |d|e.
Otherwise ¬norm(t). Then, by Proposition 4.6.1.1 (Syntactic characterization of closed normal

forms - CbNeed), there exists s ∈ ΛL such that t→CbNeed s.
As t →CbNeed s means either t →mCbNeed s or t →eCbNeed s, that in turn means either t →mCbV s

or t→eCbV s, because, according to our presentations, the CbNeed rewriting relations are subsets of
the CbV ones. Then, by Proposition 5.3.4 (Quantitative Subject Reduction for CbV), there exists
Ψ ▷CbVΓ ⊢(m

′,e′) s :M such that:
• m′ := m− 1 and e′ = e if t→mCbNeed s,
• m′ := m and e′ = e− 1 if t→eCbNeed s.
By i.h. (since m′ + e′ = m + e − 1), there is a term u such that d′ : s −→∗CbNeedu and norm(u),

with |d′|m ≤ m′ and |d′|e ≤ e′.
The evaluation d : t −→∗CbNeedu obtained by prefixing d′ with the step t→CbNeed s verifies |d|m ≤ m

and |d|e ≤ e because:
• if t→mCbNeed s then |d|m = |d′|m + 1 ≤ m′ + 1 = m and |d|e = |d′|e ≤ e′ = e,
• if t→eCbNeed s then |d|m = |d′|m ≤ m′ = m and |d|e = |d′|e + 1 ≤ e′ + 1 = e.

(Click here to go back to main chapter.)

Corollary 13.2.36 (CbNeed duplicates as wisely as CbV).
Let t, s ∈ ΛL be such that d : t −→∗CbV s and normCbV(s). Then there exist u ∈ ΛL such that

norm(u), and reduction sequence d′ : t −→∗CbNeed u such that |d′|m ≤ |d|m and |d′|e ≤ |d|e.

Proof. (Click here to go back to main chapter.)
By Theorem 5.3.9 (Tight Completeness for CbV), there exists type derivation

Φ ▷CbV ∅ ⊢(m,e) t :0

such that m = |d|m and e = |d|e. Then Corollary 5.6.1 (Correctness for CbNeed in the CbV type
system) yields reduction sequence d′ : t −→∗CbNeedu such that norm(u), |d′|m ≤ m = |d|m and
|d′|e ≤ e = |d|e.

(Click here to go back to main chapter.)

203

13.3 Proofs of Chapter 6 (Open CbNeed)
Lemma 13.3.1 (Unique derivation parameterization of open evaluation contexts).

Let P ∈ EV and P ∈ EW . Then V =W.

Proof. (Click here to go back to main chapter.)
By induction on the derivation of P ∈ EV , proceeding by case analysis on the last applied

derivation rule. The case where P = (H, ϵ) for some term context H is trivial, since nv(.) is a
function. The statement follows in the cases of derivation rules OI and OGC from the i.h., and by
definition of nv(.) in the case of OI. As an example, let us prove the case of OHER:

Let P ∈ EV be derived as follows:

Q ∈ EW x /∈ W
Q⟨x⟩@[x←H] ∈ EW∪nv(H)

OHER

where P = Q⟨x⟩@[x←H] and V = W ∪ nv(H). Let us assume that P = Q⟨x⟩@[x←H] ∈ EV ′ for
some set of variables V ′. Given the shape of P , it could only be derived as follows

Q ∈ EW ′ x /∈ W ′

Q⟨x⟩@[x←H] ∈ EW ′∪nv(H)
OHER

for some W ′ such that V ′ = W ′ ∪ nv(H). The statement then follows by application of i.h. on
Q ∈ EW ′ , yielding that W ′ =W .

13.3.1 Characterizing Open CbNeed-normal forms.
Lemma 13.3.2 (Redex in non-normal terms).

Let t ∈ Λ. Then, t is not a normal term if and only if there exist term context H, and terms
λx.u and s such that t = H⟨(λx.u)s⟩.

Proof. (Click here to go back to main chapter.)
⇒ Let t ∈ Λ be a non-normal term. We proceed by induction on the structure of t, noting that

t is neither a variable nor a value.
Let t = t1t2 such that t1 is not inert or t2 is not a normal term.
If t1 is not a normal term, then by i.h. t1 = H1⟨(λx1.u1)s1⟩ and so by defining H := H1t2 we
have that t = H⟨(λx1.u1)s1⟩.
Let t1 be a normal term. If t1 = v1, then by defining H := ⟨·⟩ we have that t = H⟨v1t2⟩. Let
t1 = i1 and t2 be a non-normal term. Then by i.h. t2 = H2⟨(λx2.u2)s2⟩ and so by defining
H := i1H2 we have that t = H⟨(λx2.u2)s2⟩.

⇐ By induction on the structure of H.
– If H = ⟨·⟩ then t = (λx.u)s, which does not correspond to any term derivable from the

grammar of inert terms.
– If H = Jm, then t = J ⟨(λx.u)s⟩m. By i.h. J ⟨(λx.u)s⟩ is not a normal term, therefore

nor is J ⟨(λx.u)s⟩m = t.
– If H = iJ , then t = iJ ⟨(λx.u)s⟩. By i.h. J ⟨(λx.u)s⟩ is not a normal term, therefore

nor is iJ ⟨(λx.u)s⟩ = t.

204

(Click here to go back to main chapter.)

Before proving the characterization of Open CbNeed-normal forms by means of predicate onorm(.),
we first need to give a series of properties. The first set concerns term contexts, and revolves around
the notion of needed variables:

Lemma 13.3.3 (Rewriting: term contexts).
1. Term contexts give needed variables: For every x ∈ Var and term context H, x ∈ nv(H⟨x⟩).
2. Focusing inert terms on needed variables: Let i be an inert term and x ∈ nv(i). Then there

exists a term context Hx such that x /∈ nv(Hx) ⊂ nv(i) and that Hx⟨x⟩ = i.
3. Focusing term contexts on needed variabless: Let x ∈ nv(H). Then for every t ∈ Λ there

exists a term context Ht such that x /∈ nv(Ht) ⊂ nv(H) and that Ht⟨x⟩ = H⟨t⟩.

Proof.
1. Term contexts give needed variables: By structural induction on H:

• Context hole: If H = ⟨·⟩, then it holds trivially.
• Left of an application: Let H = J t. By i.h., x ∈ nv(J ⟨x⟩). Hence,

x ∈ nv(J ⟨x⟩) = nv(J ⟨x⟩t) = nv(H⟨x⟩)

• Right of an application: Let H = iJ . By i.h., x ∈ nv(J ⟨x⟩). Hence,

x ∈ nv(J ⟨x⟩) ⊆ nv(i) ∪ nv(J ⟨x⟩) = nv(H⟨x⟩)

2. Focusing inert terms on needed variables: By structural induction on i:
• If i = x then the statement holds by defining H := ⟨·⟩.
• Let i = jf . If x ∈ nv(j), then applying the i.h. on j yields term context Hj such that

x /∈ nv(Hj) ⊂ nv(j) and such that Hj⟨x⟩ = j. Thus, the statement holds by defining
H := Hjf .
If x /∈ nv(j) then x ∈ nv(f), implying in turn that f is an inert term—since values have
no needed variable. Then, applying the i.h. on f yields term context Hf such that
x /∈ nv(Hf) ⊂ nv(f) and Hf⟨x⟩ = f . Thus, the statement holds by defining H := jHf .

3. Focusing term contexts on needed variables: Let t ∈ Λ. We proceed by structural induction
on H:

• Context hole: This case is impossible, because nv(⟨·⟩) = ∅.
• Left of an application: Let H = J s. Then x ∈ nv(J) = nv(H). By i.h., there exists term

context Jt such that x /∈ nv(Jt) ⊂ nv(J) and Jt⟨x⟩ = J ⟨t⟩. Therefore, the statement
holds by defining Ht := Jts.

• Right of an application: Let H = iJ . Case analysis on whether x ∈ nv(i):
– Let x ∈ nv(i). By Lemma 13.3.3.2 (Focusing inert terms on needed variables), there

exists term context Jx such that x /∈ nv(Jx) ⊂ nv(i) and i = Jx⟨x⟩. The statement
follows by defining Ht := JxJ ⟨t⟩, verifying that x /∈ nv(Jx) = nv(JxJ ⟨t⟩) = nv(Ht),
that nv(Ht) = nv(JxJ ⟨t⟩) = nv(Jx) ⊂ nv(i) ⊆ nv(i) ∪ nv(J) = nv(H) and that
Ht⟨x⟩ = Jx⟨x⟩J ⟨t⟩ = iJ ⟨t⟩ = t.

– Let x /∈ nv(i). Then x ∈ nv(J). By i.h., there exists Jt such that x /∈ nv(Jt) ⊂
nv(J) and that Jt⟨x⟩ = J ⟨t⟩. The statement follows by definingHt := iJt, verifying
that x /∈ nv(i) ∪ nv(Jt) = nv(Ht), that nv(Ht) = nv(i) ∪ nv(Jt) ⊂ nv(i) ∪ nv(J) =
nv(H), and that Ht⟨x⟩ = iJt⟨x⟩ = iJ ⟨t⟩ = H⟨t⟩.

205

Next, we proceed to lift Lemma 13.3.3.1 and Lemma 13.3.3.3 to open evaluation contexts, as
follows

Lemma 13.3.4 (Rewriting open evaluation contexts).
1. Open evaluation contexts give needed variables: Let P ∈ EV and x /∈ dom(P). Then x ∈

nv(P ⟨x⟩).
2. Focusing open evaluation contexts on needed variables: Let P ∈ EV and x ∈ V. Then for

every t ∈ Λ there exists an open evaluation context Pt ∈ EVt such that Pt⟨x⟩ = P ⟨t⟩ and
x /∈ Vt ⊂ V.

Proof.
1. By induction on the derivation of P ∈ EV :

• Rule OAX: Let P = (H, ϵ) ∈ Env(H). By Lemma 13.3.3.1 (Term contexts give needed
variables), x ∈ nv(H⟨x⟩). Hence, x ∈ nv(P ⟨x⟩) = nv(H⟨x⟩).

• Rule OGC: Let P ∈ EV be derived as follows

Q ∈ EV y /∈ V
Q@[y←t] ∈ EV

OGC

where P = Q@[y←t]. By hypothesis, x ̸= y and x /∈ dom(Q⟨x⟩). By i.h., x ∈ nv(Q⟨x⟩).
Case analysis on whether y ∈ nv(Q⟨x⟩):

– Let y /∈ nv(Q⟨x⟩). The statement follows because then nv(P ⟨x⟩) = nv(Q⟨x⟩).
– Let y ∈ nv(Q⟨x⟩). Since x ̸= y, then

x ∈ (nv(Q⟨x⟩) \ {y}) ⊆ (nv(Q⟨x⟩) \ {y}) ∪ nv(t) = nv(P ⟨x⟩)

• Rule OI: Let P ∈ EV be derived as follows

Q ∈ EW y ∈ W
Q@[y←i] ∈ E(W\{y})∪nv(i)

OI

where P = Q@[y←i] and V = (W \ {y}) ∪ nv(i). By i.h., we have that x ∈ nv(Q⟨x⟩).
Case analysis on whether y ∈ nv(Q⟨x⟩):

– Let y /∈ nv(Q⟨x⟩). The statement follows because then x ∈ nv(Q⟨x⟩) = nv(P ⟨x⟩).
– Let y ∈ nv(Q⟨x⟩). Since x ̸= y, then

x ∈ nv(Q⟨x⟩) \ {y} ⊆ (nv(Q⟨x⟩) \ {y}) ∪ nv(i) = nv(P ⟨x⟩)

• Rule OHER: Let P ∈ EV be derived as follows:

Q ∈ EW y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

where P = Q⟨y⟩@[y←H] and V = W ∪ nv(H). By α-conversion, we may safely assume
that y /∈ dom(Q). By i.h., we have that y ∈ nv(Q⟨y⟩). Moreover, Lemma 13.3.3.1 (Term
contexts give needed variables) gives that x ∈ nv(H⟨x⟩). Hence,

x ∈ nv(H⟨x⟩) ⊆ (nv(Q⟨y⟩) \ {y}) ∪ nv(H⟨x⟩)
= nv((Q⟨y⟩@[y←H])⟨x⟩)
= nv(P ⟨x⟩)

206

2. Let t ∈ Λ. We proceed by induction on the derivation of P ∈ EV :
• Rule OAX: Let P = (H, ϵ) ∈ Env(H), with x ∈ nv(H). By Lemma 13.3.3.3 (Focusing term

contexts on needed variables), there exists a term context Ht such that x /∈ nv(Ht) ⊂
nv(H) and that Ht⟨x⟩ = H⟨t⟩. Thus, the statement holds by defining Pt := (Ht, ϵ).

• Rule OGC: Let P ∈ EV be derived as follows

Q ∈ EV y /∈ V
Q@[y←u] ∈ EV

OGC

where P = Q@[y←u]. By i.h. with respect to x and Q, there exists Qt ∈ EVt such that
x /∈ Vt ⊂ V and Qt⟨x⟩ = Q⟨t⟩. We may then derive Pt ∈ EVt as follows

Qt ∈ EVt y /∈ Vt
Qt@[y←u] ∈ EVt

OGC

where Pt = Qt@[y←u], noting that Pt⟨x⟩ = (Qt⟨x⟩)@[y←u] = (Q⟨t⟩)@[y←u] = P ⟨t⟩.
• Rule OI: Let P ∈ EV be derived as

Q ∈ EW y ∈ W
Q@[y←i] ∈ E(W\{y})∪nv(i)

OI

where P = Q@[y←i] and V = (W\{y})∪nv(i). Case analysis on whether x ∈ (W\{y}):
– Let x ∈ (W \{y}). Note that then x /∈ y. By application of the i.h. with respect to

x and Q, there exists Qt ∈ EWt such that x /∈ Wt ⊂ W and Qt⟨x⟩ = Q⟨t⟩. Now, if
y /∈ Wt, then the statement holds by deriving Pt as follows

Qt ∈ EWt y /∈ Wt

Qt@[y←i] ∈ EWt

OGC

where Pt = Qt@[y←i]. If y ∈ Wt instead, we proceed by case analysis on whether
x ∈ nv(i):
(a) Let x /∈ nv(i). The statement then holds by deriving Pt as follows

Qt ∈ EWt y ∈ Wt

Qt@[y←i] ∈ E(Wt\{x})∪nv(i)
OI

where Pt = Qt@[y←i]. Thus, and since x ̸= y and x /∈ Wt, we have that

x /∈ Wt \ {y} ⊂ W \ {y} ⊆ (W \ {y}) ∪ nv(i) = V

(b) Let x ∈ nv(i). By application of the i.h. with respect to y and Qt, there exists
Qx ∈ EWx such that y /∈ Wx ⊂ Wt ⊂ W , and that Qx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩.
Moreover, by Lemma 13.3.3.2 (Focusing inert terms on needed variables), there
exists a term context Hx such that x /∈ nv(Hx) ⊂ i and that Hx⟨x⟩ = i. Thus,
we may derive Pt ∈ EVt

Qx ∈ EWx y /∈ Wx

Qx⟨y⟩@[y←Hx] ∈ EWx∪nv(Hx)
OHER

where Pt = Qx⟨y⟩@[y←Hx] and Vt =Wx ∪ nv(Hx).

207

– Let x /∈ (W \{y}). Since x ∈ V = (W \{y})∪ nv(i), then it must be that x ∈ nv(i).
By application of the i.h. with respect to y and Q, there exists Qt ∈ EWt such that
y /∈ Wt ⊂ W and Qt⟨y⟩ = Q⟨t⟩. Moreover, by Lemma 13.3.3.2 (Focusing inert terms
on needed variables), there exists term context Hx such that x /∈ nv(Hx) ⊂ nv(i)
and Hx⟨x⟩ = i. Thus, we may derive Pt ∈ EVt as follows

Qy ∈ EWy y /∈ Wy

Qy⟨y⟩@[y←Hx] ∈ EWy∪nv(Hx)
OHER

where Pt = Qy⟨y⟩@[y←Hx], verifying in particular that

Px⟨x⟩ = (Qy⟨y⟩)@[y←Hx⟨x⟩] = Q⟨t⟩@[y←i] = P ⟨t⟩

• Rule OHER: Let P ∈ EV be derived as

Q ∈ EW y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

where P = Q⟨y⟩@[y←H] and V =W ∪ nv(H). We do case analysis on whether x ∈ W :
– Let x ∈ W . By application of the i.h. with respect to x and Q, there exists Qy ∈ EWy

such that x /∈ Wy ⊂ W and Qy⟨x⟩ = Q⟨y⟩. Since y /∈ W ⊃ Wx, we can then derive
Pt ∈ EVt as follows

Qy ∈ EWy y /∈ Wy

Qy@[y←H⟨t⟩] ∈ EWy

OGC

where Pt = Qy@[y←H⟨t⟩], verifying in particular that

Pt⟨x⟩ = (Qy⟨x⟩)@[y←H⟨t⟩] = (Q⟨y⟩)@[y←H⟨t⟩] = P ⟨t⟩

– Let x /∈ W . Since x ∈ V = W ∪ nv(H), then it must be that x ∈ nv(H). By
Lemma 13.3.3.3 (Focusing term contexts on needed variables), there exists term
context Ht such that x /∈ nv(Ht) ⊂ nv(H) and Ht⟨x⟩ = H⟨t⟩. Thus, we can derive
Pt ∈ EVt as follows

Q ∈ EW y /∈ W
Q⟨y⟩@[y←Ht] ∈ EW∪nv(Ht)

OHER

where Pt = Q⟨y⟩@[y←Ht].

Given that programs are structured inductively with respect to the length of their environ-
ments, we shall later see how the proof that the onorm(.) predicate characterizes the Open CbNeed-
normal forms requires appending or removing ESs while preserving the→ond-normality or the→ond-
reducibility of programs. More concretely, we need the following

Lemma 13.3.5 (Properties of Open CbNeed-normal forms and ESs).
1. Removing ESs does not create →ond-redexes: if (t, E[x←u]) is →ond-normal, then (t, E) is
→ond-normal.

2. Appending ESs that do not create →ond-redexes: let (t, E) be a →ond-normal form such that
if x ∈ nv(t, E) then u is inert. Then (t, E[x←u]) is also in →ond-normal form.

Proof.

208

1. Removing ESs does not create →ond-redexes: We prove the contrapositive statement, that is,
If (t, E) is not in →ond-normal form

then
(t, E[x←u]) is not in →ond-normal form.

We proceed by case analysis on the kind of →ond-reduction step in (t, E); namely, whether it
is a multiplicative or exponential step:

• Multiplicative step: Let (t, E) = P ⟨(λy.s)m⟩ →om P ⟨s, [y←m]⟩, with P ∈ EV . Case
analysis on whether x ∈ V :

– Let x /∈ V . Then we may derive P@[x←u] ∈ EV via the application of the OGC rule,
getting that

(t, E[x←u]) = (P@[x←u])⟨(λy.s)m⟩ →om (P@[x←u])⟨s, [y←m]⟩

– Let x ∈ V . Case analysis on the shape of u:
∗ Let u be inert. Then we can derive

P ∈ EV x ∈ V
P@[x←u] ∈ E(V\{x})∪nv(u)

OI

to obtain that

(t, E[x←u]) = (P@[x←u])⟨(λy.s)m⟩ →om (P@[x←u])⟨s, [y←m]⟩

∗ Let u be a non-inert Λ-term. First, let s̃ := (λy.s)m, and note that by an
application of Lemma 13.3.4.2 (Focusing open evaluation contexts on needed
variables) with respect to x and P , there exists Ps̃ ∈ EVs̃ such that x /∈ Vs̃ ⊂ V ,
and that Ps̃⟨x⟩ = P ⟨s̃⟩. Two sub-cases:

(a) Let u ∈ Val. Then we can derive
Ps̃ ∈ EVs̃ x /∈ Vs̃
Ps̃@[x←u] ∈ EVs̃

OGC

to obtain that
(t, E[x←u]) = P ⟨(λy.s)m⟩@[x←u]

= Ps̃⟨x⟩@[x←u]
= (Ps̃@[x←u])⟨x⟩
→oe (Ps̃@[x←u])⟨uα⟩

(b) Let u /∈ Val. Since u is also not an inert term, then we may conclude that u
is a non-normal term. By Lemma 6.2.1 (Redex in non-normal terms), there
exist term context Hu and ((λz.t̃)ũ) ∈ Λ such that u = Hu⟨(λz.t̃)ũ⟩. Then
we can derive

Ps̃ ∈ Vs̃ x /∈ Vs̃
Ps̃⟨x⟩@[x←Hu] ∈ EVs̃∪nv(Hu)

OHER

to obtain that
(t, E[x←u]) = P ⟨(λy.s)m⟩@[x←u]

= Ps̃⟨x⟩@[x←u]
= Ps̃⟨x⟩@[x←Hu⟨(λz.t̃)ũ⟩]
= (Ps̃⟨x⟩@[x←Hu])⟨(λz.t̃)ũ⟩
→om (Ps̃⟨x⟩@[x←Hu])⟨t̃, [z←ũ]⟩

209

• Exponential step: Let (t, E) = P ⟨y⟩ →oe P ⟨vα⟩, with P ∈ EV , y ∈ dom(P), P (y) = v.
By α-conversion, we may safely assume that y ̸= x. We now consider two sub-cases,
depending on whether x ∈ V :

– If x /∈ V , then we can derive
P ∈ EV x /∈ V
P@[x←u] ∈ EV

OGC

to obtain that (t, E[x←u]) = (P@[x←u])⟨y⟩ →oe (P@[x←u])⟨vα⟩.
– Let x ∈ V . Case analysis on the shape of u:

∗ Let u be inert. Then we can derive
P ∈ EV x ∈ V

P@[x←u] ∈ E(V\{x})∪nv(u)
OI

to obtain that (t, E[x←u]) = (P@[x←u])⟨y⟩ →oe (P@[x←u])⟨vα⟩.
∗ Let u be a non-inert Λ-term. First, let s̃ := (λy.s)m, and note that by an

application of Lemma 13.3.4.2 (Focusing open evaluation contexts on needed
variables) with respect to x and P , there exists Ps̃ ∈ EVs̃ such that x /∈ Vs̃ ⊂ V ,
and that Ps̃⟨x⟩ = P ⟨s̃⟩. There are two sub-cases, depending on the shape of u:

(a) If u ∈ Val, then we can derive

Ps̃ ∈ EVs̃ x /∈ Vs̃
Ps̃@[x←u] ∈ EVs̃

OGC

to obtain that
(t, E[x←u]) = P ⟨y⟩@[x←u]

= Ps̃⟨x⟩@[x←u]
= (Ps̃@[x←u])⟨x⟩
→oe (Ps̃@[x←u])⟨uα⟩

(b) Let u ∈ Val. Since u is also not an inert term, then we may conclude that u
is a non-normal term. By Lemma 6.2.1 (Redex in non-normal terms), there
exist term context Hu and ((λz.s)m) ∈ Λ such that Hu⟨(λz.s)m⟩. Then we
can derive

Ps̃ ∈ EVs̃ x /∈ Vs̃
Ps̃⟨x⟩@[x←Hu] ∈ EVs̃∪nv(Hu)

OHER

to obtain that
(t, E[x←u]) = P ⟨y⟩@[x←u]

= Ps̃⟨x⟩@[x←u]
= Ps̃⟨x⟩@[x←Hu⟨(λz.s)m⟩]
= (Ps̃⟨x⟩@[x←Hu])⟨(λz.s)m⟩
→om (Ps̃⟨x⟩@[x←Hu])⟨s, [z←m]⟩

2. Adding ESs that do not create →ond-redexes: We prove the contrapositive statement; that
is, that for all x ∈ Var and u ∈ Λ satisfying that either x /∈ nv(t, E) or that u is inert, the
following holds

If (t, E[x←u]) is not in →ond-normal form
then

(t, E) is not in →ond-normal form

210

Let us assume that x /∈ nv(t, E) or that u is inert. We proceed by case analysis on the kind
of →ond-reduction step in (t, E[x←u]); namely, whether it is a multiplicative or exponential
step:

• Let (t, E[x←u]) = P ⟨(λx.s)m⟩ →om P ⟨s, [x←m]⟩, with P ∈ EV . We proceed by induc-
tion on the derivation of P ∈ EV :

– Rule OAX: This case is clearly not possible.
– Rule OGC: Let P ∈ EV be derived as

Q ∈ EV x /∈ V
Q@[x←u] ∈ EV

OGC

with P = Q@[x←u]. Then (t, E) = Q⟨(λx.s)m⟩ →om Q⟨s, [x←m]⟩.
– Rule OI: Let P ∈ EV be derived as

Q ∈ EV x ∈ V
Q@[x←u] ∈ E(W\{x})∪nv(u)

OI

with P = Q@[x←u], V = (W \ {x}) ∪ nv(u) and u inert. Then (t, E) = Q⟨(λx.s)m⟩
→om Q⟨s, [x←m]⟩.

– Rule OHER: Suppose P ∈ EV were derived as

Q ∈ EW x /∈ W
Q⟨x⟩@[x←H] ∈ EW∪nv(H)

OHER

with P = Q⟨x⟩@[x←H], V = W ∪ nv(H) and u = H⟨(λx.s)m⟩. By Lemma 6.2.1
(Redex in non-normal terms), u could not be inert, thus implying by hypothesis that
x /∈ nv(t, E). However, by Lemma 13.3.4.1 (Open evaluation contexts give needed
variables), we have that x ∈ nv(Q⟨x⟩) = nv(t, E). Hence, this case is absurd.

• Let (t, E[x←u]) = P ⟨y⟩ →oe P ⟨vα⟩, with P ∈ EV , x ∈ dom(P) and P (x) = v. We
proceed by case analysis on the last rule applied in P ∈ EV :

– Rule OAX: This case is clearly not possible.
– Rule OGC: Let P ∈ EV be derived as

Q ∈ EV x /∈ V
Q@[x←u] ∈ EV

OGC

with P = Q@[x←u].
Suppose y = x, and so u = v. That is, suppose u is not inert, which would
imply that x /∈ nv(t, E). We would then have that (t, E[x←u]) = (t, E)@[x←u] =
Q⟨x⟩@[x←u]; that is, (t, E) = Q⟨x⟩. However, this would imply by Lemma 13.3.4.1
(Open evaluation contexts give needed variables) that x ∈ nv(t, E), which would
contradict the hypothesis.
Therefore, it must be that y ̸= x, which implies that y ∈ dom(Q) and Q(y) = v, and
so (t, E) = Q⟨y⟩ →oe Q⟨vα⟩.

– Rule OI: Let P ∈ EV be derived as
Q ∈ EV x ∈ V

Q@[x←u] ∈ E(V\{x})∪nv(u)
OI

with P = Q@[x←u] and u inert. This means that u /∈ Val, and so we have that
y ∈ dom(Q) and Q(y) = v. That is, (t, E) = Q⟨y⟩ →oe Q⟨vα⟩.

211

– Rule OHER: Suppose P ∈ EV were derived as

Q ∈ EV x ∈ V
Q⟨x⟩@[x←H] ∈ EV∪nv(H)

OHER

with P = Q⟨x⟩@[x←H] and u = H⟨y⟩. But then y /∈ dom(P), and so this case is
absurd.

In particular, note that the contrapositive of Lemma 13.3.5.1 and Lemma 13.3.5.2 show how
→ond-reducibility—i.e., the property of not being a→ond-normal form—is preserved when appending
or removing an ES.

With Lemma 13.3.5 (Properties of Open CbNeed-normal forms), we can now lift Lemma 13.3.3.2
(Focusing inert terms on needed variables) to program contexts as follows

Lemma 13.3.6 (Open CbNeed-normal forms and needed variables).
Let p ∈ PR be in →ond-normal form and let x ∈ nv(p). Then there exists P ∈ EV such that

P ⟨x⟩ = p, x /∈ V ⊂ nv(p) and x /∈ dom(P).

Proof.
Let p = (t, E). We proceed by induction on the length of E.
• Let E = ϵ. That is, p = (t, ϵ). First, let us suppose that t were a non-normal term. By

Lemma 6.2.1 (Redex in non-normal terms), there would exist term contextH and ((λy.s)m) ∈
Λ such that t = H⟨(λy.s)m⟩. But then (H, ϵ) ∈ Env(H) and so p = (H, ϵ)⟨(λy.s)m⟩ →om

(H, ϵ)⟨s, [y←m]⟩, which is absurd.
Thus, t must be a normal term. Moreover, if t ∈ Val, then nv(t) and the statement holds
trivially.
Finally, let t be an inert term and x ∈ nv(t). By Lemma 13.3.3.2 (Rewriting term contexts),
there exists a term context Hx such that x /∈ nv(Hx) ⊂ nv(t) and Hx⟨x⟩ = t. The statement
follows by taking Px := (Hx, ϵ) ∈ Env(Hx) verifies the statement, since x /∈ nv(Hx) ⊂ nv(t) =
nv(p) and (Hx, ϵ)⟨x⟩ = (Hx⟨x⟩, ϵ) = (t, ϵ) = p.

• Let E = E ′[y←u]. Note that x ̸= y, because x ∈ nv(p) and nv(p) ∩ dom(p) = ∅—easily
provable for every p ∈ PR.
We proceed by case analysis on whether x ∈ nv(p):

– Let x ∈ nv(t, E ′). By Lemma 13.3.5.1 (Properties of Open CbNeed-normal forms and
ESs), (t, E ′) is in→ond-normal form, and so we can apply the i.h. on it to obtain Q ∈ EW
such that Q⟨x⟩ = (t, E ′), x /∈ W ⊂ nv(t, E ′), and x /∈ dom(Q).
Note that if y /∈ W then we may derive P ∈ EV as

Q ∈ EW y /∈ W
Q@[y←u] ∈ EW

OGC

where V =W ⊂ nv(t, E ′) = nv(t, E ′[y←u]).
Let us now consider the case where y ∈ W . By Lemma 13.3.4.2 (Focusing open evaluation
contexts on needed variables), there exists Qx ∈ EWx such that y /∈ Wx ⊂ W and
Qx⟨y⟩ = Q⟨x⟩ = (t, E ′). We proceed by case analysis on the shape of u:

∗ Let u be inert. Case analysis on whether x ∈ nv(u):

212

1. x ∈ nv(u): by Lemma 13.3.3.2 (Rewriting term contexts), there exists a term
context Hx such that x /∈ nv(Hx) ⊂ nv(u) and Hx⟨x⟩ = u. We may then derive
P ∈ EV as follows:

Qx ∈ EWx y /∈ Wx

Qx⟨y⟩@[y←Hx] ∈ EWx∪nv(Hx)
OHER

where V =Wx ∪ nv(Hx). We thus verify that
V = Wx ∪ nv(Hx)
⊂ nv(t, E ′) ∪ nv(u)
= nv(t, E ′[y←u])

Moreover, since x /∈ Wx and x /∈ nv(Hx), then x /∈ V .
2. Let x /∈ nv(u). Then, we may derive P ∈ EV as follows

Q ∈ EW y ∈ W
Q@[y←u] ∈ E(W\{y})∪nv(u)

OI

where V = (W \ {y}) ∪ nv(u), and verifying that
V = (W \ {y}) ∪ nv(u)
⊂ (nv(t, E ′) \ {y}) ∪ nv(u)
⊆ nv(t, E ′[y←u])

Note that the last inequality holds regardlessly of whether y ∈ nv(t, E ′) or not.
Moreover, since x /∈ W and x /∈ nv(u), then x /∈ V .

∗ Suppose u ∈ Val. Then we would be able to derive

Qy ∈ EWy y /∈ Wy

Qy@[y←u] ∈ EWy

OGC

and thus obtain that p = (Q@[y←u])⟨y⟩ →oe (Q@[y←u])⟨uα⟩, which is absurd.
∗ Suppose u were not a normal term. Then, by Lemma 6.2.1 (Redex in non-normal

terms), there would exist term H and ((λz.s)m) ∈ Λ such that H⟨(λz.s)m⟩ = u.
But then we would be able to derive

Q ∈ EW y /∈ W
Q⟨y⟩@[y←Hu] ∈ EW∪nv(Hu)

OHER

and thus obtain that

p = (Q⟨y⟩@[y←H])⟨(λz.s)m⟩ →om (Q⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd.
– Let x /∈ nv(t, E ′). Note that since x ∈ nv(t, E ′[y←u]) by hypothesis, then it must be

that y ∈ nv(t, E ′), thus having that nv(t, E ′[y←u]) = (nv(t, E ′) \ {y}) ∪ nv(u) and so
x ∈ nv(u).
By application of the i.h. on y and (t, E ′), there exists Q ∈ EW such that Q⟨y⟩ = (t, E ′),
y /∈ W ⊂ nv(t, E ′), and y /∈ dom(Q). We proceed by case analysis on the shape of u:

213

∗ Let u be inert. By Lemma 13.3.3.2 (Term contexts and needed variables), there
exists term context Hx such that x /∈ nv(Hx) ⊂ nv(u) and Hx⟨x⟩ = u. We may then
derive P ∈ EV as follows

Q ∈ EW y /∈ W
Q⟨y⟩@[y←Hx] ∈ EW∪nv(Hx)

OHER

where P = Q⟨y⟩@[y←Hx] and V =W ∪ nv(Hx), and verifying that
V = W ∪ nv(Hx)

= (W \ {y}) ∪ nv(Hx)
⊂ (nv(t, E ′) \ {y}) ∪ nv(u)
= nv(t, E ′[y←u])

Moreover, since x /∈ W—because W ⊂ nv(t, E ′) and x /∈ nv(Hx) either, then x /∈ V .
∗ Suppose u ∈ Val. We would then be able to derive

Q ∈ EW y /∈ W
Q@[y←u] ∈ EW

OGC

and thus obtain that

p = (Q@[y←u])⟨y⟩ →oe (Q@[y←u])⟨uα⟩

which is absurd.
∗ Suppose u were not a normal term. By Lemma 6.2.1 (Redex in non-normal terms),

there would exist term context H and ((λz.s)m) ∈ Λ such that H⟨(λz.s)m⟩ = u.
But then we would be able to derive

Q ∈ EW y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

and thus obtain that

p = (Q⟨y⟩@[y←H])⟨(λz.s)m⟩ →om (Q⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd.

Proposition 13.3.7 (Syntactic characterization of Open CbNeed-normal forms).
Let p ∈ PR. Then p is in →ond-normal form if and only if onorm(p).

Proof. (Click here to go back to main chapter.)
⇒ : Let p = (t, E) be in →ond-normal form. We prove that onorm(p) proceeding by induction on
the length of E:

• Let E = ϵ. That is, p = (t, E) = (t, ϵ). First, note that if we suppose that t is non-normal term,
then an application of Lemma 6.2.1 (Redex in non-normal terms) would yield the existence
of term context H and (λx.u)s ∈ Λ such that t = H⟨(λx.u)s⟩ and so obtain that

p = (t, E)
= (H⟨(λx.u)s⟩, ϵ)
= (H, ϵ)⟨(λx.u)s⟩
→ond (H, ϵ)⟨u, [x←s]⟩

214

which is absurd. Hence, t must be a normal term. Thus, if t is an inert term we may derive

inert(t, ϵ)
IAX

and if t is a value we may derive
abs(t, ϵ)

AAX

In either case, we conclude that onorm(t, ϵ).
• Let E = E ′[y←u]. That is, p = (t, E) = (t, E ′[y←u]). Note that (t, E ′) is itself in→ond-normal

form—by Lemma 13.3.5.1 (Properties of Open CbNeed-normal forms and ESs). Hence, there
exists a derivation of onorm(t, E ′)—by i.h.
First, note that if abs(t, E ′), then we may derive

abs(t, E ′)

abs(t, E ′[y←u])
AGC

and conclude that onorm(t, E ′).
Let us now consider the case of inert(t, E ′), and prove the statement by case analysis on
whether y ∈ nv(t, E ′):

– Let y /∈ nv(t, E ′). Thus, we may derive inert(t, E ′[y←u]) as follows

inert(t, E ′) y /∈ nv(t, E ′)

inert(t, E ′[y←u])
IGC

concluding that onorm(t, E).
– Let y ∈ nv(t, E ′). By Lemma 13.3.6 (Open CbNeed-normal forms and needed variables),

there exists an P ∈ EV such that P ⟨y⟩ = (t, E ′), y /∈ V ⊂ W , and y /∈ dom(P). We now
proceed by case analysis on the shape of u:

∗ If u is an inert term, then we may derive inert(t, E ′[y←u]) as follows

inert(t, E ′) y ∈ nv(t, E ′)

inert(t, E ′[y←u])
II

concluding that onorm(t, E ′[y←u]).
∗ Suppose u were a value. We would then be able to derive

P ∈ EV y /∈ V
P@[y←u] ∈ EV

OGC

to obtain that

(t, E ′[y←u]) = P@[y←u]⟨y⟩ →oe P@[y←u]⟨uα⟩

which is absurd.
∗ Suppose u were not a normal term. Then there would exist term context H and
((λz.s)m) ∈ Λ such that H⟨(λz.s)m⟩—by Lemma 6.2.1 (Redex in non-normal
terms). But then we would be able to derive

P ∈ EV y /∈ V
P ⟨y⟩@[y←H] ∈ EV∪nv(H)

OHER

215

and obtain that

(t, E ′[y←u]) = (P ⟨y⟩@[y←H])⟨(λz.s)m⟩ →om (P ⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd.
⇐ : Let onorm(p). Case analysis on the predicate from which we derive onorm(p):

• Inert predicate: We proceed by induction on the derivation of inert(p), proceeding by case
analysis on the last applied derivation rule:

– Rule IAX: Let inert(t, E) be derived as follows

inert(i, ϵ)
IAX

where p = (i, ϵ). Note that p is in →oe-normal form because the environment is empty.
By Lemma 6.2.1 (Redex in non-normal terms), we also have that p is in →om-normal
form. Therefore, p is in →ond-normal form.

– Rule II: Let inert(t, E) be derived as follows
inert(t, E ′) y ∈ nv(t, E ′)

inert(t, E ′[y←u])
II

where p = (t, E ′[y←u]) and u is an inert term. By i.h., (t, E ′) is in →ond-normal form.
Firstly, since u /∈ Val, note that there cannot exist P@[y←u] ∈ EV—for some V—with
which we would have that

p = (P@[y←u])⟨y⟩ →oe (P@[y←u])⟨uα⟩

Said differently, p is in →oe-normal form.
Secondly, by Lemma 6.2.1 (Redex in non-normal terms), there cannot exist P ⟨y⟩@[y←H] ∈
EV—for some V—such that u = H⟨(λz.s)m⟩—for some ((λz.s)m) ∈ Λ—which would give
that

p = P ⟨y⟩@[y←H⟨(λz.s)m⟩]
= (P ⟨y⟩@[y←H])⟨(λz.s)m⟩
→om (P ⟨y⟩@[y←H])⟨s, [z←m]⟩

Said differently, p is also in →om-normal form. We may thus conclude that p is in
→ond-normal form.

– Rule IGC: Let inert(t, E) be derived as follows
inert(t, E ′) y /∈ nv(t, E ′)

inert(t, E ′[y←u])
IGC

where p = (t, E ′[y←u]). By i.h., (t, E ′) is in →ond-normal form. Let us separately
consider the →ond-reducibility of p:

∗ Suppose there existed P@[y←u] ∈ EV—for some V—such that (t, E ′[y←u]) =
P ⟨y⟩@[y←u] which would gives us that

p = P ⟨y⟩@[y←u]
= (P@[y←u])⟨y⟩
→oe (P@[y←u])⟨uα⟩

with u ∈ Val. However, Lemma 13.3.4.2 (Open evaluation contexts give needed vari-
ables) would then give that y ∈ nv(t, E ′) = P ⟨y⟩, which contradicts the hypothesis
that y /∈ nv(t, E ′). Therefore, this case is impossible.

216

∗ Suppose there existed P ⟨y⟩@[y←H] ∈ EV—for some V—such that (t, E ′[y←u]) =
P ⟨y⟩@[y←H⟨(λz.s)m⟩]—i.e., with u = H⟨(λz.s)m⟩—which would give us that

p = P ⟨y⟩@[y←u]
= P@[y←H⟨(λz.s)m⟩]
= (P@[y←H])⟨(λz.s)m⟩
→oe (P@[y←H])⟨s, [z←m]⟩

However, Lemma 13.3.4.2 (Open evaluation contexts give needed variables) would
then give that y ∈ nv(t, E ′) = P ⟨y⟩, which contradicts the hypothesis that y /∈
nv(t, E ′). Therefore, this case is also impossible.

We may thus conclude that (t, E ′[y←u]) = p is in →ond-normal form.
• Abstraction predicate: We proceed by induction on the derivation of abs(p), proceeding by

case analysis on the last applied derivation rule:
– Rule AAX: Let abs(t, E) be derived as follows

abs(v, ϵ)
AAX

where p = (v, ϵ). Note that p is in →oe-normal form because the environment is empty.
By Lemma 6.2.1 (Redex in non-normal terms), we also have that p is in →om-normal
form. Therefore, (v, ϵ) = p is in →ond-normal form.

– Rule AGC: Let abs(t, E) be derived as follows
abs(t, E ′)

abs(t, E ′[y←u])
AGC

where p = (t, E ′[y←u]). By i.h., (t, E ′) is in →ond-normal form. Let us separately
consider the →ond-reducibility of p:

∗ Suppose there existed P@[y←u] ∈ EV—for some V—such that (t, E ′[y←u]) =
P ⟨y⟩@[y←u] which would gives us that

p = P ⟨y⟩@[y←u]
= (P@[y←u])⟨y⟩
→oe (P@[y←u])⟨uα⟩

with u ∈ Val. However, Lemma 13.3.4.2 (Open evaluation contexts give needed
variables) would then give that y ∈ nv(t, E ′) = P ⟨y⟩, which is absurd because ab-
straction programs do not have needed variables. Therefore, this case is impossible.

∗ Suppose there existed P ⟨y⟩@[y←H] ∈ EV—for some V—such that (t, E ′[y←u]) =
P ⟨y⟩@[y←H⟨(λz.s)m⟩]—i.e., with u = H⟨(λz.s)m⟩—which would give us that

p = P ⟨y⟩@[y←u]
= P@[y←H⟨(λz.s)m⟩]
= (P@[y←H])⟨(λz.s)m⟩
→oe (P@[y←H])⟨s, [z←m]⟩

However, Lemma 13.3.4.2 (Open evaluation contexts give needed variables) would
then give that y ∈ nv(t, E ′) = P ⟨y⟩, which is absurd because abstraction programs
do not have needed variables. Therefore, this case is also impossible.

(Click here to go back to main chapter.)

217

13.3.2 Determinism.
Lemma 13.3.8 (Unique decomposition of Λ-terms).

Let H1⟨t1⟩ = H2⟨t2⟩, with H1,H2 term contexts, let S ⊇ (nv(H1) ∪ nv(H2)), and let ti be a
S-reduction place of Hi⟨ti⟩, for i = 1, 2.

Then t1 = t2 and H1 = H2.

Proof. (Click here to go back to main chapter.)
By induction on H1. Cases:
• Empty: H1 = ⟨·⟩. If t1 is a multiplicative redex then H2 = ⟨·⟩ and t2 = t1. The same is true

if t1 is a variable not in S.
• Left of an application: H1 = J1u. Cases of H2:

– Empty: H2 = ⟨·⟩, then t2 is a multiplicative redex, implying that J1 is empty and t1 is
a value, which is absurd. Therefore, this case is impossible.

– Left of an application: H2 = J2u. Then J1⟨t1⟩ = J2⟨t2⟩ and ti is a S-reduction places of
Hi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2 and J1 = J2, and then H1 = H2.

– Right of an application: H2 = iJ2. Then J1⟨t1⟩ = i, and—by Lemma 6.2.1 (Redex in
non-normal terms)—t1 can only be a free variable x such that x /∈ S. Note however,
that x ∈ fv(i) ⊆ nv(H2) ⊆ S, which is absurd. Therefore, this case is impossible.

• Right of an application: H1 = iJ1. Cases of H2:
– Empty: H2 = ⟨·⟩, then t2 is an application that is not a multiplicative redex, absurd.

Therefore, this case is impossible.
– Left of an application: H2 = J2u. This case is identical to the case where the hole of H1

is on the left of the application while the one of H2 is on the right, treated above.
– Right of an application: H2 = iJ2. Then J1⟨t1⟩ = J2⟨t2⟩ and ti is a S-reduction places

of Hi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2 and J1 = J2, and then H1 = H2.

(Click here to go back to main chapter.)

Theorem 13.3.9 (Unique decomposition of programs).
Let P1⟨t1⟩ = P2⟨t2⟩, with P1 ∈ EV1, P2 ∈ EV2, S ⊇ (V1 ∪ V2), and ti be a S-reduction place of

Pi⟨ti⟩ for i = 1, 2.
Then t1 = t2 and P1 = P2.

Proof. (Click here to go back to main chapter.)
By induction on P1. Cases:
• Rule OAX: then P1 = (H1, ϵ). Then P2 = (H2, ϵ). By Lemma 6.3.1 (Unique decomposition of

Λ-terms), we obtain t1 = t2 and H1 = H2, and then also P1 = P2.
• Rule OI: Let P1 ∈ EV1 be derived as

Q1 ∈ EW1 x ∈ W1

Q1@[x←i] ∈ E(W1\{x})∪nv(i)
OI

with P1 = Q1@[x←i] with V1 = (W1 \ {x}) ∪ nv(i). Cases of P2 ∈ EV2 :
– Rule OAX: impossible.
– Rule OI: Let P2 ∈ EV2 be derived as

Q2 ∈ EW2 x ∈ W2

Q2@[x←i] ∈ E(W2\{x})∪nv(i)
OI

218

with P2 = Q2@[x←i] with V2 = (W2 \ {x}) ∪ nv(i).
Then Q1⟨t1⟩ = Q2⟨t2⟩ and ti is a S-reduction place of Qi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2
and Q1 = Q2, and then P1 = P2.

– Rule OGC: Let P2 ∈ EV2 be derived as

Q2 ∈ EW2 x /∈ W2

Q2@[x←i] ∈ EW2

OGC

with P2 = Q2@[x←i] and V2 = (W2 \ {x}) ∪ nv(i). Note that ti ̸= x for i = 1, 2 because
x is bound by P1 and P2 but not associated to a value. Note that Q1⟨t1⟩ = Q2⟨t2⟩ and
ti is a S-reduction place of Qi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2 and Q1 = Q2. This is
absurd, because by Lemma 6.1.1 (Unique derivation parameterization of open evaluation
contexts) we would have that W1 = W2, although we know that x ∈ W1 and x /∈ W2.
Therefore, this case is impossible.

– Rule OHER: Let P2 ∈ EV2 be derived as

Q2 ∈ EW2 x /∈ W2

Q2⟨x⟩@[x←H] ∈ EW2∪nv(H)
OHER

with P2 = Q2⟨x⟩@[x←H] and V2 =W2 ∪ nv(H).
Note that t2 cannot be a bound variable, because it occurs in the rightmost ES of
the program, nor a β-redex, otherwise by Lemma 6.2.1 (Redex in non-normal terms)
H⟨t2⟩ = i would not be an inert term. Thus, it can only be that t2 = y ∈ Var and
y ∈ nv(i). But then y ∈ nv(i) ⊆ V1 ⊆ W , implying that t2 is not a S-reduction place of
P2⟨t2⟩; absurd. Therefore, this case is impossible.

• Rule OGC: Let P ∈ EV1 be derived as

Q1 ∈ EV1 x /∈ V1
Q1@[x←u] ∈ EV1

OGC

with P1 = Q1@[x←t]. Cases of P2 ∈ EV2 :
– Rule OAX: impossible.
– Rule OI: this case follows an identical but inversed analysis to that of the case of rule OI

for P1 ∈ EV1 and OGC for P2 ∈ EV2 , treated above.
– Rule OGC: Let P2 ∈ EV2 be derived as

Q2 ∈ EV2 x /∈ V2
Q2@[x←u] ∈ EV2

OGC

where P2 = Q2@[x←t].
Then Q1⟨t1⟩ = Q2⟨t2⟩ and ti is a S-reduction place of Qi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2
and Q1 = Q2, and then P1 = P2.

– Rule OHER: Let P2 ∈ EV2 be derived as

Q2 ∈ EW2 x /∈ W2

Q2⟨x⟩@[x←H] ∈ EW2∪nv(H)
OHER

where P2 = Q2⟨x⟩@[x←H] and V2 =W2 ∪ nv(H).

219

Then Q1⟨t1⟩ = Q2⟨x⟩. Note we can assume that x /∈ W , since x was a bound name.
Note also that Q1⟨t1⟩ is aW-reduction place and that Q2⟨x⟩ is also aW-reduction place,
because x /∈ W . By i.h., t1 = x, Q1 = Q2, and V ′1 = V ′2.
Now, let us look at the reduction places t1 = x and t2. The fact that t1 = x is a
reduction place in P1 implies that u is a value. Then H is the empty context ⟨·⟩ and t2
is a value, which is absurd, since values cannot be reduction places. Therefore, this case
is impossible.

• Rule OHER: Let P1 ∈ EV1 be derived as

Q1 ∈ EW1 x /∈ W1

Q1⟨x⟩@[x←H1] ∈ EW1∪nv(H1)
OHER

where P1 = Q1⟨x⟩@[x←H1] and V1 =W1 ∪ nv(H1). Cases of P2 ∈ EV2 :
– Rule OAX: impossible.
– Rule OI: this case follows an identical but inversed analysis to that of the case of rule OI

for P1 ∈ EV1 and rule OHER for P2 ∈ EV2 , treated above.
– Rule OGC: this case follows an identical but inversed analysis to that of the case of rule

OGC for P1 ∈ EV1 and rule OHER for P2 ∈ EV2 , treated above.
– Rule OHER: Let P2 ∈ EV2 be derived as

Q2 ∈ EW2 x /∈ W2

Q2⟨x⟩@[x←H2] ∈ EW2∪nv(H2)
OHER

where P2 = Q2⟨x⟩@[x←H2] and V2 =W2 ∪ nv(H2).
Then Q1⟨x⟩ = Q2⟨x⟩ and ti is a S-reduction place of Qi⟨ti⟩ for i = 1, 2. By i.h., Q1 = Q2.
Moreover, note that H1⟨t1⟩ = H2⟨t2⟩ and that ti is a S-reduction place of Hi⟨ti⟩. Hence,
by Lemma 6.3.1 (Unique decomposition of Λ-terms), we have that t1 = t2 and H = J .
The latter allows us to finally conclude that P1 = P2.

(Click here to go back to main chapter.)

Corollary 13.3.10 (Determinism of Open CbNeed).
Let p, q, r ∈ PR. If p→ond q and p→ond r, then q = r.

Proof. (Click here to go back to main chapter.)
Let t1, t2 ∈ Λ, P1 ∈ EV1 and P2 ∈ EV2 be such that p = P1⟨t1⟩ = P2⟨t2⟩. Let moreover

S := V1 ∪ V2, noting that t1 is a S-reduction place of P1⟨t1⟩ and t2 is a reduction place of S-
reduction place of P2⟨t2⟩. By Theorem 6.3.2 (Unique decomposition of programs), P1 = P2 and
t1 = t2. Therefore, q = r.

(Click here to go back to main chapter.)

220

13.4 Proofs of Chapter 7 (Multi types for Open CbNeed)
13.4.1 Open CbNeed correctness
Lemma 13.4.1 (Relevance of the Open CbNeed type system).

Let e be an expression and Φ ▷O Γ ⊢(m,e,r) e :M be a type derivation. If x ̸∈ fv(e) then x /∈ dom(Γ).

Proof. (Click here to go back to main chapter.)
The Open CbNeed multi type system being mostly based on the CbNeed one, this is trivially

provable by induction on the number of typing rules applied in Φ, like we do for the CbNeed type
system.

(Click here to go back to main chapter.)

Lemma 13.4.2 (Typing properties of normal terms).
1. Values: Let Φ ▷O Γ ⊢(m,e,r) v :M . If M = [tight], then dom(Γ) = nv(v) and (m, e, r) =

(0, 0, |t|nd).
2. Inert terms: Let Φ ▷O Γ ⊢(m,e,r) i :M , with inertΓ(nv(i)). Then M = [inert]i∈I with I ̸= ∅,

dom(Γ) = nv(i) and (m, e, r) = (0, 0, |i|nd).

Proof. (Click here to go back to main chapter.)
1. By a simple inspection of the typing rules, it must be that M = [tight] and that Φ is as follows:

∅ ⊢(0,0,0) v : abs abs

∅ ⊢(0,0,0) v : [abs]
many

2. By structural induction on t:
• If i = x ∈ Var, then Φ can only be of the form

M = Inert
x :M ⊢(0,0,0) x :M

axI

The statement clearly holds.
• Let i = us, for some inert Λ-term u and some normal term s. We proceed by case

analysis on the last rule in Φ:
– If Φ is of the form

Ψ ▷O Π ⊢(m′,e′,r′) u : [N ⊸ M] ∆ ⊢(m′′,e′′,r′′) s :N

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) us :M
app

then—by applying i.h. (1) on Ψ—we get that [N ⊸ M] = Inert, which is absurd.
– Let Φ be of the form

Ψ ▷O Π ⊢(m′,e′,r′) u : [inert]j∈J Θ ▷O ∆ ⊢(m′′,e′′,r′′) s : [tight]

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) us : [inert]j∈J
appi

First of all, note that
Ψ ▷O Π ⊢(0,0,|u|nd) u : [inert]j∈J

221

with dom(Π) = nv(u)—by i.h. (1) on Ψ.
Now, if s is an inert Λ-term, then—by i.h. (1) on Θ—we have that

Θ ▷O ∆ ⊢(0,0,|s|nd) s : [inert]

with dom(∆) = nv(s), and thus we can conclude that Φ is of the form

Ψ ▷O Π ⊢(0,0,|u|nd) u : [inert]j∈J Θ ▷O ∆ ⊢(0,0,|s|nd) s : [inert]
Π
⊎

∆ ⊢(0,0,|u|nd+|s|nd+1) us : [inert]j∈J
appi

with
dom(Π

⊎
∆) = dom(Π) ∪ dom(∆) = nv(u) ∪ nv(s) = nv(i)

If s ∈ Val instead, then Θ must be of the following form:

Θ ▷O ∆ ⊢(m′′,e′′,r′′) s : [abs]

and so—by Lemma 7.1.2.1 (Typing properties of normal terms - values) on Θ—we
have that

Θ ▷O ∅ ⊢(0,0,|s|nd) s : [abs]

Thus, we can conclude that Φ is of the form

Ψ ▷O Π ⊢(0,0,|u|nd) u : [inert]j∈J Θ ▷O ∅ ⊢(0,0,|s|nd) s : [abs]
Π ⊢(0,0,|u|nd+|s|nd+1) us : [inert]j∈J

appi

with
dom(Π) = nv(u) = nv(u) ∪ nv(s) = nv(i)

– If Φ is of the form
Ψ ▷O Π ⊢(m′,e′,r′) u : [0 ⊸ M]

Π ⊢(m,e,r) us :M
appgc

then—by applying i.h. (1) on Ψ—we get that [0 ⊸ M] = Inert, which is absurd.

(Click here to go back to main chapter.)

Proposition 13.4.3 (Typing properties of Open CbNeed-normal forms).
Let p ∈ PR be such that onorm(p), and let Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation for it.
Then (m, e, r) = (0, 0, |p|nd) and dom(Γ) = nv(p).

Proof. (Click here to go back to main chapter.)
We split the statement as follows
1. If abs(p) and M = [tight], then dom(Γ) = nv(p) and (m, e, r) = (0, 0, |p|nd).
2. If inert(p) and inertΓ(nv(p)), then dom(Γ) = nv(p) and (m, e, r) = (0, 0, |p|nd).
Note that both items imply the statement. We prove them separately:

1. By induction on the derivation of abs(p).

222

• Let p = (v, ϵ), noting that |(v, ϵ)|nd = |v|nd, and let

abs(v, ϵ)
ALift

Moreover, Φ must be of the form

Φ′ ▷O Γ ⊢(m,e,r) v : [tight]

Γ ⊢(m,e,r) (v, ϵ) : [tight]
Lift

By Lemma 7.1.2.1 (Typing properties of normal terms - values) on Φ′, we have that

Φ′ ▷O Γ ⊢(0,0,|v|nd) v : [abs]

with dom(Γ) = nv(v)
Thus, Φ is of the form

Φ′ ▷O Γ ⊢(0,0,|v|nd) v : [abs]
Γ ⊢(0,0,|v|nd) (v, ϵ) : [abs] Lift

• Let p = q@[x←t] and let
abs(q)

abs(q@[x←t])
AGC

We proceed by case analysis on the last rule in Φ
– Suppose Φ is of the form

Ψ ▷O Π;x :N ⊢(m′,e′,r′) q : [tight] Θ ▷O ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] : [tight]
ES

However, application of the i.h. on Ψ would make us conclude that dom(Π;x :N) =
nv(q) = ∅, and so we would have that N = 0, which is a contradiction.

– Let Φ be of the form

Φ′ ▷O Γ ⊢(m,e,r) q : [tight] Γ(x) = 0

Γ ⊢(m,e,r) q@[x←t] : [tight]
ESgc

By i.h. on Φ′, we have that

Φ′ ▷O Γ ⊢(0,0,|q|nd) q : [tight]

with dom(Γ) = nv(q). Since nv(q) = ∅—provable by a simple induction on predicate
abs(.)—we can derive Φ as follows

Φ′ ▷O ∅ ⊢(0,0,|q|nd) q : [tight] Γ(x) = 0

∅ ⊢(0,0,|q|nd) q@[x←t] : [tight]
ESgc

Note that nv(q) = ∅ = dom(Γ)—easily provable by induction on the derivation of
abs(q). Thus, |q@[x←t]|nd = |q|nd.

2. By induction on the derivation of inert(p).

223

• Let p = (i, ϵ), noting that nv(i, ϵ) = nv(i) and |(i, ϵ)|nd = |i|nd, and let

inert(i, ϵ)
ILift

Moreover, Φ is of the form
Φ′ ▷O Γ ⊢(m,e,r) i :M

Γ ⊢(m,e,r) (i, ϵ) :M
Lift

By Lemma 7.1.2.2 (Typing properties of normal terms - inert terms) on Φ′, we have that

Φ′ ▷O Γ ⊢(0,0,|i|nd) i :M

with dom(Γ) = nv(i). Thus, Φ is of the form

Φ′ ▷O Γ ⊢(0,0,|i|nd) i :M
Γ ⊢(0,0,|i|nd) (i, ϵ) :M Lift

• Let p = q@[x←i] and
inert(q) x ∈ nv(q)

inert(q@[x←i])
II

We proceed by case analysis on the last rule in Φ.
– Let Φ be of the form

Ψ ▷O Π;x :N ⊢(m′,e′,r′) q :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) i :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←i] :M
ES

Note that if x /∈ nv(q), then we can apply i.h. on Ψ to conclude that N = 0,
which is absurd. Therefore, nv(q@[x←u]) = (nv(q)\{x})∪nv(u) and |q@[x←u]|nd =
|q|nd + |u|nd. Moreover, inertΠ⊎

∆(nv(q@[x←u])) implies that inert∆(nv(u)). This
allows us to apply Lemma 7.1.2.2 (Typing properties of normal terms - inert terms)
on Θ to obtain that

Θ ▷O ∆ ⊢(0,0,|i|nd) i :N
with dom(∆) = nv(i) and N ∈ Inert. This, in turn, allows us to apply i.h. on Ψ to
obtain that

Ψ ▷O Π;x :N ⊢(0,0,|q|nd) q :M
with dom(Π;x :N) = nv(t, E). Finally, we see that Φ is of the form

Π;x : Inert ⊢(0,0,|q|nd) q : Inert ∆ ⊢(0,0,|i|nd) i : Inert
Π
⊎

∆ ⊢(0,0,|q|nd+|i|nd) q@[x←i] : Inert
ES

– Let Φ be of the form
Φ′ ▷O Γ ⊢(m,e,r) (t, E) :M Γ(x) = 0

Γ ⊢(m,e,r) (t, E[x←u]) :M
ESgc

By i.h. on Φ′,
Φ′ ▷O Γ ⊢(0,0,|q|nd) q :M

with dom(Γ) = nv(q). Since x /∈ dom(Γ) then x /∈ nv(q), thus having that
nv(q@[x←u]) = nv(q) and |q@[x←u]|nd = |q|nd. Finally, we see that Φ is of the form

Γ ⊢(0,0,|q|nd) q : Inert Γ(x) = 0

Γ ⊢(0,0,|q|nd) q@[x←u] : Inert
ESgc

224

• Let p = q@[x←t] and
inert(q) x /∈ nv(q)

inert(q@[x←t])
IGC

We proceed by case analysis on the last rule in Φ.
– Suppose Φ is of the form

Ψ ▷O Π;x :N ⊢(m′,e′,r′) q :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] :M
ES

Since x /∈ nv(q), then inertΠ⊎
∆(nv(q@[x←t])) implies inertΠ;x :N(nv(q)), allowing us

to apply i.h. on Ψ to conclude that dom(Π;x :N) = nv(q), and thus N = 0, which
is a contradiction.

– Let Φ be of the form

Φ′ ▷O Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←u] :M
ESgc

By i.h., we have that Φ′ is of the form

Φ′ ▷O Γ ⊢(0,0,|q|nd) q :M

with dom(Γ) = nv(q). Since x /∈ dom(Γ), then nv(q@[x←t]) = nv(q) and
|q@[x←t]|nd = |q|nd. Finally, we see that Φ is of the form

Φ′ ▷O Γ ⊢(0,0,|q|nd) q :M Γ(x) = 0

Γ ⊢(0,0,|q|nd) q@[x←t] :M
ESgc

(Click here to go back to main chapter.)

Linear Substitution for Open CbNeed. Proving Linear Substitution for the Open CbNeed
case requires extending the analysis of plugged variables and domain of type contexts in the
CbNeed case—see Lemma 13.2.24 (Plugged variables and domain of type contexts) in Chapter 5
(Multi types for CbN, CbV and CbNeed)—to the Open CbNeed case. As a matter of fact, the
required, analogous result can be obtained for the Open CbNeed type system assuming that the
needed variables of the term context (resp. open evaluation context) are assigned to a multi type
in Inert, as follows:

Lemma 13.4.4 (Plugged variables and domain of type contexts).
1. Let H be a term context such that x /∈ nv(H), and let Φ ▷O Γ ⊢(m,e,r) H⟨x⟩ :M be such that

inertΓ(nv(H)).
Then x ∈ dom(Γ).

2. Let P ∈ EV be such that x /∈ V and x /∈ dom(P), and let Φ ▷O Γ ⊢(m,e,r) P ⟨x⟩ :M be such that
inertΓ(V).

Then x ∈ dom(Γ).

Proof.

225

1. By structural induction on H:
• Let H := ⟨·⟩. Trivial, because x ∈ dom(Γ) by the fact that Φ is either an ax or an axI

rule.
• Let H := J t. Note that nv(H) = nv(J). Since all three typing rules app, appi and appgc

are proven rather similarly, we only proceed to prove the statement for rule app:
Let Φ be of the form

Ψ ▷U Π ⊢(m′,e′,r′) J ⟨x⟩ : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) J ⟨x⟩t :M
app

with Γ = Π
⊎
∆. Since Π ⊆ Γ, then inertΠ(nv(J)) and we may apply the i.h. on Ψ to

obtain that x ∈ dom(Π) ⊆ dom(Γ).
• Let H := iJ . Note that nv(H) = nv(i)∪ nv(J). We proceed by case analysis on the last

typing rule in Φ.
– Suppose Φ is of the form

Ψ ▷U Π ⊢(m′,e′,r′) i : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨x⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) iJ ⟨x⟩ :M
app

with Γ = Π
⊎

∆. However, inertΓ(nv(H)) implies that inertΓ(nv(i)), then we would
be able to apply Lemma 7.1.2.2 (Typing properties of normal terms - Inert terms)
on Ψ to obtain that [N ⊸ M] ∈ Inert—which is also absurd. Therefore, this case is
impossible.

– The case where appgc is the last typing rule in Φ is ruled out as we did for the
previous case.

– Let Φ be of the form

Ψ ▷U Π ⊢(m′,e′,r′) i : [inert]j∈J Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨x⟩ : [tight] J ̸= ∅
Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) iJ ⟨x⟩ : [inert]j∈J
appi

with Γ = Π
⊎
∆. Since ∆ ⊆ (Π

⊎
∆), then we can apply the i.h. on Θ to obtain

that x ∈ dom(∆) ⊆ dom(Γ).
2. By induction on the derivation of P ∈ EV :

• Let P ∈ EV be derived as
(H, ϵ) ∈ Env(H)

OAX

where P = (H, ϵ) and V = nv(H). Then Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) H⟨x⟩ :M
Γ ⊢(m,e,r) (H⟨x⟩, ϵ) :M Lift

and the statement is proven by Lemma 13.6.8.1 (Plugged variables and domain of type
contexts) on Ψ.

• Let P ∈ EV be derived as
Q ∈ EW z ∈ W

Q@[z←i] ∈ E(W\{z})∪nv(i)
OI

with P = Q@[z←i] and V = (W \ {z}) ∪ nv(i). Note that x ̸= z because x /∈ dom(P).
We proceed by case analysis on the last typing rule in Φ:

226

– Let Φ be of the form

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←i] :M
ES

There are two cases concerning z andW . On the one hand, if z /∈ W , then inertΓ(V)
implies that inertΠ;z :N(W), thus allowing us to apply the i.h. on Ψ to conclude that
x ∈ dom(Π) ⊆ dom(Γ). On the other hand, if z ∈ W , and since inertΓ(V) implies
that inert∆(nv(i)), then we can obtain that N ∈ Inert—by Lemma 7.1.2.2 (Typing
properties of normal terms - Inert terms). Therefore, inertΠ;z :N(W), and so we are
able to apply the i.h. on Ψ to obtain that x ∈ dom(Π) ⊆ dom(Γ).

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←i+] :M
ESgc

Since z /∈ dom(Γ), then inertΓ(V) implies that inertΓ(W). By i.h. on Ψ, we conclude
that x ∈ dom(Γ).

• Let P ∈ EV be derived as
Q ∈ EV x /∈ V
Q@[z←t] ∈ EV

OGC

with P = Q@[z←t]. Note that x ̸= z because x /∈ dom(P). We proceed by case analysis
on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←t] :M
ES

Note that since z /∈ W , then inertΠ⊎
∆(V) implies that inertΠ;z :N(W). We may then

apply the i.h. on Ψ to prove the statement, concluding that x ∈ dom(Π) ⊆ dom(Γ).
– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←t] :M
ESgc

The statement holds by i.h. on Ψ.
• Let P ∈ EV be derived as

Q ∈ EW z /∈ W
Q⟨z⟩@[z←H] ∈ EW∪nv(H)

OHER

where P = Q⟨z⟩@[z←H] and V = W ∪ nv(H). We may safely assume that x ̸= z—by
α-conversion. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be derived as

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨z⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) H⟨x⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨z⟩@[z←H⟨x⟩] :M
ES

By Lemma 13.4.4.1 (Plugged variables and domain of type contexts), we then have
that x ∈ dom(∆) ⊆ dom(Γ).

227

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨z⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨z⟩@[z←H⟨x⟩] :M
ESgc

However, inertΓ(V) would imply that inertΓ(W). Thus, we would be able to apply
the i.h. on Ψ to conclude that z ∈ dom(Γ); this makes this case absurd.

Lemma 13.4.5 (Linear Substitution for Open CbNeed).
Let x ∈ Var and v ∈ Val such that x /∈ fv(v).

1. Let H be such that x /∈ nv(H), and let

ΦH⟨x⟩ ▷O Γ;x :M ⊢(m,e,r) H⟨x⟩ :N

be such that M,N ̸= 0 and inertΓ(nv(H)).
Then there exists splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every

Ψ ▷O Π ⊢(m′,e′,r′) v :M1

there exists
ΦH⟨v⟩ ▷O

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) H⟨v⟩ :N

2. Let P ∈ EV be such that x /∈ dom(P) and x /∈ V, and let

ΦP ⟨x⟩ ▷O Γ;x :M ⊢(m,e,r) P ⟨x⟩ :N

be such that M,N ̸= 0 and inertΓ(V).
Then there exists splitting M = M1 ⊎M2, with M1 ̸= 0, such that for every type derivation

Ψ ▷O Π ⊢(m′,e′,r′) v :M1

there exists
ΦP ⟨v⟩ ▷O

(
Γ
⊎

Π
)
;x :M2 ⊢(m+m′,e+e′−1,r+r′) P ⟨v⟩ :N

Proof. (Click here to go back to main chapter.)
1. By induction on the shape of H:

• Let H = ⟨·⟩. Then ΦH⟨x⟩ is either an ax or an axI rule. If ΦH⟨x⟩ is of the form
M ̸= Inert

x :M ⊢(0,1,0) x :M
ax

then Γ = ∅ and N = M . We then define M1 := M and M2 := 0, noting that for every
Ψ ▷O Π ⊢(m′,e′,r′) v :M1 the statement holds by taking ΦH⟨v⟩ := Ψ. In particular, note
that

(m′, e′, r′) = (m+m′, e+ e′ − 1, r + r′)

If ΦH⟨x⟩ is of the form
M = Inert

x :M ⊢(0,0,0) x :M
axI

then Γ = ∅ and N = M = Inert. Note then that the statement holds trivially for any
splitting of M , considering that values are not typable with inert—verifiable by a simple
inspection of the typing rules.

228

• Let H = J t. We consider the different cases corresponding to the last typing rule in
ΦH⟨x⟩.

– Let ΦH⟨x⟩ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨x⟩ : [O ⊸ N] Σ; x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) J ⟨x⟩t :N

app

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

By applying the i.h. on the left-hand side premise, there exists a splitting M∆ =
M∆,1 ⊎M∆,2, with M∆,1 ̸= 0, such that for every Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1 there
exists

ΦJ ⟨v⟩ ▷O (∆
⊎

Π);x :M∆,2 ⊢(m
′′
1+m′,e′′1+e′−1,r′′1+r′) J ⟨v⟩ : [O ⊸ N]

We then propose splitting M in M1 := M∆,1 and M2 := M∆,2 ⊎MΣ, verifying that,
for every Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1, ΦH⟨v⟩ is given by

ΦJ ⟨v⟩ Σ;x :MΣ ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) t :O

(∆
⊎

Π
⊎

Σ);x : (M∆,2 ⊎MΣ) ⊢(m
′′
1+m′+m′′

2+1,e′′1+e′−1+e′′2 ,r
′′
1+r′+r′′2) J ⟨v⟩t :N

app

In particular, note that
(m′′1 +m′ +m′′2 + 1, e′′1 + e′ − 1 + e′′2, r

′′
1 + r′ + r′′2)

= ((m′′1 +m′′2 + 1) +m′, (e′′1 + e′′2) + e′ − 1, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let ΦH⟨x⟩ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨x⟩ : ⊎j∈J [inert] Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t : [tight]

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) J ⟨x⟩t : ⊎j∈J [inert]

appi

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

The statement holds by i.h. on the left-hand premise and then deriving ΦH⟨v⟩ via
the appi rule.

– Let ΦH⟨x⟩ be of the form

Γ;x :M ⊢(m,e,r) J ⟨x⟩ : [0 ⊸ N]

Γ;x :M ⊢(m,e,r) J ⟨x⟩t :N
appgc

The statement holds by i.h. on the premise and then deriving ΦH⟨v⟩ via the appgc
rule.

• Let H = iJ . We consider the different cases corresponding to the last typing rule in
ΦH⟨x⟩:

229

– Let ΦH⟨x⟩ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : [O ⊸ N] Σ; x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) J ⟨x⟩ :O

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) iJ ⟨x⟩ :N

app

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

By applying the i.h. on the right-hand side premise, there exists a splitting MΣ =
MΣ,1 ⊎MΣ,2, with |MΣ,1| ̸= 0, such that for every Ψ ▷O Π ⊢(m′,e′,r′) v :MΣ,1 there
exists

ΦJ ⟨v⟩ ▷O Σ;x :MΣ,2 ⊢(m
′′
2+m′,e′′2+e′−1,r′′2) J ⟨v⟩ :O

Let M be split in M1 := MΣ,1 and M2 := M∆ ⊎MΣ,2. We then derive ΦH⟨v⟩ as

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : [O ⊸ N] ΦJ ⟨v⟩

(∆
⊎

Σ);x : (M∆ ⊎MΣ,2) ⊢(m
′′
1+m′′

2+m′+1,e′′1+e′′2+e′−1,r′′1+r′′2+r′) iJ ⟨v⟩ :N
app

noting that
(m′′1 +m′′2 +m′ + 1, e′′1 + e′′2 + e′, r′′1 + r′′2 + r′)

= ((m′′1 +m′′2 + 1) +m′, (e′′1 + e′′2) + e′, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let ΦH⟨x⟩ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : ⊎j∈J [inert] Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) J ⟨x⟩ : [tight]

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2+1) iJ ⟨x⟩ : ⊎j∈J [inert]

appi

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2 + 1)

The statement holds by i.h. on the right-hand side premise and then deriving ΦH⟨v⟩
via the appi rule.

– Suppose ΦH⟨x⟩ is of the form

Φi ▷O Γ;x :M ⊢(m′′,e′′,r′′) i : [0 ⊸ N]

Γ;x :M ⊢(m′′+1,e′′,r′′) iJ ⟨x⟩ :N
appgc

where (m, e, r) = (m′′+1, e′′, r′′). Note that x /∈ nv(H) ⊇ nv(i), and then inertΓ(nv(i)).
However, this implies—by Lemma 7.1.2.2 (Typing properties of normal terms - inert
terms)—that [0 ⊸ N] = Inert, which is absurd.

2. By induction on the derivation of P ∈ EV :
• Let P = (H, ϵ) ∈ Env(H). The statement holds by Lemma 7.1.4.1 (Linear Substitution

for Open CbNeed).
• Let P ∈ EV be derived as

Q ∈ EV y /∈ V
Q@[y←t] ∈ EV

OGC

where P = Q@[y←t]. Note that y ̸= x—given that x /∈ dom(P). We consider the
different cases corresponding to the last typing rule in ΦP ⟨x⟩.

230

– Let ΦP ⟨x⟩ be of the form

∆;x :M∆; y :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t :O O ̸= 0

(∆
⊎

Σ) ; x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) Q⟨x⟩@[y←t] :N

ES

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

Since y /∈ V , then inert∆;y :O(V) and so—by application of the i.h. on the left-hand
side premise—there exists a splitting M∆ = M∆,1 ⊎M∆,2, with M∆,1 ̸= 0, such that
for every type derivation Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1 there exists

ΦQ⟨v⟩ ▷O

(
∆
⊎

Π
)
;x :M∆,2; y :O ⊢(m

′′
1+m′,e′′1+e′−1,r′′1+r′) Q⟨v⟩ :N

Note that y /∈ dom(Π) because y /∈ fv(v)—by α-conversion and Lemma 7.1.1 (Rele-
vance of the cbneed type system). We then propose splitting M in M1 = M∆,1 and
M2 = M∆,2 ⊎MΣ, verifying that for every Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1, ΦP ⟨v⟩ is given
by

ΦQ⟨v⟩ Σ;x :MΣ ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) t :O

(∆
⊎

Σ) ; x : (M∆,2 ⊎MΣ) ⊢(m
′′
1+m′+m′′

2 ,e
′′
1+e′−1+e′′2 ,r

′′
1+r′+r′′2) Q⟨v⟩@[y←t] :N

ES

noting that
(m′′1 +m′ +m′′2, e

′′
1 + e′ − 1 + e′′2, r

′′
1 + r′ + r′′2)

= ((m′′1 +m′′2) +m′, (e′′1 + e′′2) + e′ − 1, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let ΦP ⟨x⟩ be of the form

Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←t] :N
ESgc

The statement holds by i.h. on the premise and then deriving ΦP ⟨v⟩ via rule ESgc.
• Let P ∈ EV be derived as

Q ∈ EW y ∈ W
Q@[y←i] ∈ E(W\{y})∪nv(i)

OI

where P = Q@[y←i]. Note that y ̸= x—since x /∈ dom(P). We consider the different
cases corresponding to the last typing rule in ΦP ⟨x⟩.

– Let ΦP ⟨x⟩ be of the form

∆;x :M∆; y :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) i :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) Q⟨x⟩@[y←i] :N

ES

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2)

231

Note that x /∈ nv(i) ⊆ nv(P), allowing us to apply Lemma 7.1.2.2 (Typing properties
of normal terms - inert terms) and conclude that O = Inert. Therefore, inert∆;y :O(W)
and so there exists—by i.h. on the left-hand side premise—a splitting M∆ = M∆,1⊎
M∆,2, with M∆,1 ̸= 0, such that for every type derivation Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1

there exists

ΦQ⟨v⟩ ▷O (∆
⊎

Π);x :M∆2 ; y :O ⊢(m
′′
1+m′,e′′1+e′−1,r′′1+r′) Q⟨v⟩ :N

Note that y /∈ dom(Π) because y /∈ fv(v)—by α-conversion and Lemma 7.1.1 (Rele-
vance of the Open CbNeed type system). We then propose splitting M in M1 = M∆,1

and M2 = M∆,2 ⊎MΣ, verifying that for every Ψ ▷O Π ⊢(m′,e′,r′) v :M∆,1, ΦP ⟨v⟩ is
given by

ΦQ⟨v⟩ Σ;x :MΣ ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) i :O

(∆
⊎

Σ);x : (M∆,2 ⊎MΣ) ⊢(m
′′
1+m′+m′′

2 ,e
′′
1+e′−1+e′′2 ,r

′′
1+r′+r′′2) Q⟨v⟩@[y←i] :N

ES

noting that
(m′′1 +m′ +m′′2, e

′′
1 + e′ − 1 + e′′2, r

′′
1 + r′ + r′′2)

= ((m′′1 +m′′2) +m′, (e′′1 + e′′2) + e′ − 1, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let ΦP ⟨x⟩ be of the form

Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←i] :N
ESgc

Note that since y /∈ dom(Γ), then inertΓ(W). Then the statement holds by i.h. on
the premise and then deriving ΦP ⟨v⟩ via rule ESgc.

• Let P ∈ EV be derived as
Q ∈ EW y /∈ W

Q⟨y⟩@[y←H] ∈ EW∪nv(H)
OHER

where P = Q⟨y⟩@[y←H] and V =W ∪ nv(H). Note that y ̸= x—since x /∈ dom(P). We
consider the different cases corresponding to the last typing rule in ΦP ⟨x⟩.

– Let ΦP ⟨x⟩ be of the form

∆;x :M∆; y :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) Q⟨y⟩ :N Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) H⟨x⟩ :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) Q⟨y⟩@[y←H⟨x⟩] :N

ES

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2)

First, note that since x /∈ V then x /∈ nv(H). Thus, inertΣ(nv(H)) and so MΣ ̸= 0—
by Lemma 13.4.4.2 (Plugged variables and domain of type contexts with respect to
term contexts).
Thus, by application of Lemma 7.1.4.1 (Linear Substitution for Open CbNeed in
term contexts) on the right-hand side premise, there exists a splitting MΣ = MΣ,1 ⊎
MΣ,2 such that for every type derivation Ψ ▷O Π ⊢(m′,e′,r′) v :MΣ,1 there exists

ΦH⟨v⟩ ▷O (Σ
⊎

Π);x :MΣ,2 ⊢(m
′′
2+m′,e′′2+e′−1,r′′2+r′) H⟨v⟩ :O

232

We then propose splitting M in M1 := MΣ,1 and M2 := M∆ ⊎MΣ,2, verifying that,
for every Ψ ▷O Π ⊢(m′,e′,r′) v :MΣ,1, ΦP ⟨v⟩ is given by

∆;x :M∆; y :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) Q⟨y⟩ :N ΦH⟨v⟩

(∆
⊎

Σ
⊎

Π);x : (M∆ ⊎MΣ,2) ⊢(m
′′
1+m′′

2+m′,e′′1+e′′2+e′−1,r′′1+r′′2+r′) Q⟨y⟩@[y←H⟨v⟩] :N
ES

noting that
(m′′1 +m′′2 +m′, e′′1 + e′′2 + e′ − 1, r′′1 + r′′2 + r′)

= ((m′′1 +m′′2) +m′, (e′′1 + e′′2) + e′ − 1, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Suppose ΦP ⟨x⟩ is of the form

Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←H⟨x⟩] :N
ESgc

Since x /∈ W then inertΓ;x :M(W) and so—by Lemma 7.1.1 (Relevance of the
Open CbNeed type system)—y ∈ dom(Γ), making this case absurd.

(Click here to go back to main chapter.)
The following is required to apply Lemma 7.1.4 (Linear Substitution for Open CbNeed) in the

proof of Proposition 7.1.6.2 (Quantitative Subject Reduction for Open CbNeed - exponential case)
to obtain the right indices.

Lemma 13.4.6 (Splitting multi types of Open CbNeed type derivations).
Let v ∈ Val, M := N

⊎
O, and let Φ ▷O Γ ⊢(m,e) v :M be a type derivation. Then there exist

type derivations
Ψ ▷O Π ⊢(m′,e′) v :N
Θ ▷O ∆ ⊢(m′′,e′′) v :O

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Lemma 13.4.7 (Quantitative Subject Reduction for →om in term contexts).
Let Φ ▷O Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M , with inertΓ(nv(H)). Then m ≥ 1 and there exists Φ′ ▷O

Γ ⊢(m−1,e,r) (H⟨u⟩, [x←s]) :M .

Proof. (Click here to go back to main chapter.)
By structural induction on H:
• Empty context; i.e., H = ⟨·⟩. We do case analysis on the last typing rule in Φ:

233

– Let Φ be of the form

Θ ▷O Π;x :N ⊢(m′,e′,r′) u :M

Π ⊢(m′,e′,r′) λx.u :N ⊸ M
fun

Π ⊢(m′,e′,r′) λx.u : [N ⊸ M]
many

Ξ ▷O ∆ ⊢(m′′,e′′,r′′) s :N

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) (λx.u)s :M
app

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′+1, e′+ e′′, r′+ r′′). Note that m ≥ 1. We can
then derive Φ′ as

Θ
Π;x :N ⊢(m′,e′,r′) (u, ϵ) :M

Lift
Ξ

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) (u, [x←s]) :M
ES

– Note that appi is ruled out as the last typing rule in Φ by the fact that the only linear
type assignable to values are of the form M ⊸ N and abs.

– Let Φ be of the form

Θ ▷O Γ ⊢(m′,e′,r′) u :M Γ(x) = 0

Γ ⊢(m′,e′,r′) λx.u :0 ⊸ M
fun

Γ ⊢(m′,e′,r′) λx.u : [0 ⊸ M]
many

Γ ⊢(m′+1,e′,r′) (λx.u)s :M
appgc

with (m, e, r) = (m′ + 1, e′, r′). Note that m ≥ 1. We can then derive Φ′ as

Θ
Γ ⊢(m′,e′,r′) (u, ϵ) :M

Lift
Γ(x) = 0

Γ ⊢(m′,e′,r′) (u, [x←s]) :M
ESgc

• Application left; i.e., H = J t. We do case analysis on the last typing rule in Ψ:
– Let Ψ be of the form

Ψ ▷O Π ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : [N ⊸ M] Θ ▷O ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) J ⟨(λx.u)s⟩t :M
app

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′+1, e′+e′′, r′+r′′). Note that inertΠ⊎
∆(nv(H))

implies inertΠ(nv(J)). By i.h. on Ψ, we have that m′ ≥ 1 and there exists Ψ′ ▷O
Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [N ⊸ M]. We do case analysis on the last typing rule in
Ψ′:

∗ Let Ψ′ be of the form

Ω ▷O Π1;x :O ⊢(m
′
1,e

′
1,r

′
1) J ⟨u⟩ : [N ⊸ M]

Π1;x :O ⊢(m
′
1,e

′
1,r

′
1) (J ⟨u⟩, ϵ) : [N ⊸ M]

Lift
Z ▷O Π2 ⊢(m

′
2,e

′
2,r

′
2) s :O O ̸= 0

Π1

⊎
Π2 ⊢(m

′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : [N ⊸ M]

ES

with Π = Π1

⊎
Π2 and (m′ − 1, e′, r′) = (m′1 + m′2, e

′
1 + e′2, r

′
1 + r′2). We can then

derive Φ′ as follows
Ω Θ

(Π1

⊎
∆) ; x :O ⊢(m′

1+m′′+1,e′1+e′′,r′1+r′′) J ⟨u⟩t :M
app

Z

Π1

⊎
∆
⊎

Π2 ⊢(m
′
1+m′′+1+m′

2,e
′
1+e′′+e′2,r

′
1+r′′+r′2) (J ⟨u⟩t, [x←s]) :M

ES

234

noting that Π1

⊎
∆
⊎

Π2 = Π
⊎

∆ = Γ and that

(m′1 +m′′ + 1 +m′2, e
′
1 + e′′ + e′2, r

′
1 + r′′ + r′2)

= (m′ − 1 +m′′ + 1, e′ + e′′, r′ + r′′)
= (m− 1, e, r)

∗ Let Ψ′ be of the form
Ω ▷O Π ⊢(m′−1,e′,r′) J ⟨u⟩ : [N ⊸ M]

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : [N ⊸ M]
Lift

Π(x) = 0

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [N ⊸ M]
ESgc

We can then derive Φ′ as follows
Ω Θ

Π
⊎

∆ ⊢(m′−1+m′′+1,e′+e′′,r′+r′′) J ⟨u⟩t :M
app

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′−1+m′′+1,e′+e′′,r′+r′′) (J ⟨u⟩t, [x←s]) :M
ESgc

noting that (m′ − 1 +m′′ + 1, e′ + e′′, r′ + r′′) = (m− 1, e, r).
– Let Φ be of the form

Ψ ▷O Π ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : ⊎j∈J [inert] Θ ▷O ∆ ⊢(m′′,e′′,r′′) t : [tight] J ̸= ∅
Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) J ⟨(λx.u)s⟩t : ⊎j∈J [inert]
appi

with Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′ + 1). Note that x /∈ dom(∆)—
because of Lemma 7.1.1 (Relevance of the Open CbNeed type system) and the fact that
x /∈ fv(t), due to the variable convention. Moreover, note that inertΠ⊎

∆(nv(H)) implies
inertΠ(nv(J)). Hence, by i.h. on Ψ, m′ ≥ 1 and there exists

Ψ′ ▷O Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : ⊎j∈J [inert]

We do case analysis on the last typing rule in Ψ′:
∗ Let Ψ′ be of the form

Ξ ▷O Π1;x :O ⊢(m
′
1,e

′
2,r

′
1) J ⟨u⟩ : ⊎j∈J [inert]

Π1;x :O ⊢(m
′
1,e

′
2,r

′
1) (J ⟨u⟩, ϵ) : ⊎j∈J [inert]

Lift
Ω ▷O Π2 ⊢(m

′
2,e

′
2,r

′
2) s :O O ̸= 0

Π1
⊎
Π2 ⊢(m

′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : ⊎j∈J [inert]

ES

with Π = Π1

⊎
Π2 and

(m′ − 1, e′, r′) = (m′1 +m′2, e
′
1 + e′2, r

′
1 + r′2)

We can then derive Φ′ as follows
Ξ Θ

(Π1

⊎
∆) ; x :O ⊢(m′

1+m′′,e′1+e′′,r′1+r′′+1) J ⟨u⟩t : ⊎j∈J [inert]
appi

Ω

Π1

⊎
∆
⊎

Π2 ⊢(m
′
1+m′′+m′

2,e
′
1+e′′+e′2,r

′
1+r′′+1+r′2) (J ⟨u⟩t, [x←s]) : ⊎j∈J [inert]

ES

Note that Π1

⊎
∆
⊎

Π2 = Π
⊎

∆ = Γ and that

(m′1 +m′′ +m′2, e
′
1 + e′′ + e′2, r

′
1 + r′′ + 1 + r′2)

= (m′ − 1 +m′′, e′ + e′′, r′ + r′′ + 1)
= (m− 1, e, r)

235

∗ Let Ψ′ be of the form
Ξ ▷O Π ⊢(m′−1,e′,r′) J ⟨u⟩ : ⊎j∈J [inert]

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : ⊎j∈J [inert]
Lift

Π(x) = 0

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : ⊎j∈J [inert]
ESgc

We can then derive Φ′ as follows
Ξ Θ

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) J ⟨u⟩t : ⊎j∈J [inert]
appi

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) (J ⟨u⟩t, ϵ) : ⊎j∈J [inert]
Lift

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) (J ⟨u⟩t, [x←s]) : ⊎j∈J [inert]
ESgc

noting that
(m′ − 1 +m′′, e′ + e′′, r′ + r′′ + 1) = (m− 1, e, r)

– Let Ψ be of the form
Ψ ▷O Γ ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : [0 ⊸ M]

Γ ⊢(m′+1,e′,r′) J ⟨(λx.u)s⟩t :M
appgc

with (m, e, r) = (m′+1, e′, r′). Note that inertΓ(nv(H)) implies inertΓ(nv(J)). Hence, by
i.h. on Ψ, m′ ≥ 1 and there exists Ψ′ ▷O Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [0 ⊸ M]. We do
case analysis on the last typing rule in Ψ′:

∗ Let Ψ′ be of the form
Θ ▷O Π;x :N ⊢(m′

1,e
′
1,r

′
1) J ⟨u⟩ : [0 ⊸ M]

Π;x :N ⊢(m′
1,e

′
1,r

′
1) (J ⟨u⟩, ϵ) : [0 ⊸ M]

Lift
Ξ ▷O ∆ ⊢(m′

2,e
′
2,r

′
2) s :N

Π
⊎

∆ ⊢(m′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : [0 ⊸ M]

ES

with Π
⊎

∆ = Γ and (m′1 +m′2, e
′
1 + e′2, r

′
1 + r′2) = (m′− 1, e′, r′). We can then build

Φ′ as
Θ

Π;x :N ⊢(m′
1+1,e′1,r

′
1) J ⟨u⟩t :M

appgc
Ξ

Π
⊎

∆ ⊢(m′
1+1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩t, [x←s]) :M

ES

noting that

(m′1 + 1 +m′2, e
′
1 + e′2, r

′
1 + r′2) = (m′, e′, r′) = (m− 1, e, r)

∗ Let Ψ′ be of the form
Θ ▷O Γ ⊢(m′−1,e′,r′) J ⟨u⟩ : [0 ⊸ M]

Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : [0 ⊸ M]
Lift

Π(x) = 0

Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [0 ⊸ M]
ESgc

We can then build Φ′ as
Θ

Π ⊢(m′,e′,r′) J ⟨u⟩t :M
appgc

Π(x) = 0

Π
⊎

∆ ⊢(m′,e′,r′) (J ⟨u⟩t, [x←s]) :M
ESgc

noting that (m′, e′, r′) = (m− 1, e, r).

236

• Application right; i.e., H = iJ : We do case analysis on the last typing rule in Φ.
– Let Φ be of the form

Ψ ▷O Π ⊢(m′,e′,r′) i : [N ⊸ M] Θ ▷O ∆ ⊢(m′′,e′′,r′′) J ⟨(λx.u)s⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) iJ ⟨(λx.u)s⟩ :M
app

with Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′ + 1, e′ + e′′, r′ + r′′). Note that x /∈ dom(Π)
because x /∈ fv(i)—by α-conversion and Lemma 7.1.1 (Relevance of the Open CbNeed
type system).
Moreover, note that inertΠ⊎

∆(nv(H)) implies inert∆(nv(J)). Hence, by i.h. on Θ, m′′ ≥ 1
(hence, m ≥ 1) and there exists Θ′ ▷O ∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) :N . We do case
analysis on the last typing rule in Θ′:

∗ Let Θ′ be of the form

Ξ ▷O ∆1 ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ :N

∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (J ⟨u⟩, ϵ) :N

Lift
Ω ▷O ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) s :O

∆1

⊎
∆2 ⊢(m

′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) (J ⟨u⟩, [x←s]) :N

ES

with ∆ = ∆1

⊎
∆2 and (m′′ − 1, e′′, r′′) = (m′′1 +m′′2, e

′′
1 + e′′2, r

′′
1 + r′′2). We can then

derive Φ′ as follows

Ψ Ξ
(Π
⊎

∆1) ; x :O ⊢(m
′+m′′

1+1,e′+r′′1 ,r
′+r′′1) iJ ⟨u⟩ :M

app

(Π
⊎
∆1) ; x :O ⊢(m

′+m′′
1+1,e′+r′′1 ,r

′+r′′1) (iJ ⟨u⟩, ϵ) :M
Lift

Z

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+1+m′′

2 ,e
′+r′′1+e′′2 ,r

′+r′′1+r′′2) (iJ ⟨u⟩, [x←s]) :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ and that

(m′ +m′′1 + 1 +m′′2, e
′ + r′′1 + e′′2, r

′ + r′′1 + r′′2)
= (m′ + (m′′ − 1) + 1, e′ + e′′, r′ + r′′)
= (m− 1, e, r)

∗ Let Θ′ be of the form

Ω ▷O ∆ ⊢(m′′−1,e′′,r′′) J ⟨u⟩ :N
∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, ϵ) :N

Lift
∆(x) = 0

∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) :N
ESgc

We can then derive Φ′ as follows

Ψ Ω
Π
⊎

∆ ⊢(m′+m′′−1+1,e′+e′′,r′+r′′) iJ ⟨u⟩ :M
app

Π
⊎

∆ ⊢(m′+m′′−1+1,e′+e′′,r′+r′′) (iJ ⟨u⟩, ϵ) :M
Lift

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′−1+1,e′+e′′,r′+r′′) (iJ ⟨u⟩, [x←s]) :M
ESgc

noting that (m′ +m′′ − 1 + 1, e′ + e′′, r′ + r′′) = (m− 1, e, r).

237

– Let Φ be of the form

Ψ ▷O Π ⊢(m′,e′,r′) i : ⊎i∈I [inert] Θ ▷O ∆ ⊢(m′′,e′′,r′′) J ⟨(λx.u)s⟩ : [tight]
Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) iJ ⟨(λx.u)s⟩ : ⊎i∈I [inert]
appi

with Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′ + 1). Note that x /∈ dom(Π)
because x /∈ fv(i)—by α-conversion and Lemma 7.1.1 (Relevance of the Open CbNeed
type system).
Moreover, note that inertΠ⊎

∆(nv(H)) implies inert∆(nv(J)). Hence, by i.h. on Θ, m′′ ≥ 1
(hence, m ≥ 1) and there exists Θ′ ▷O ∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) : [tight]. We do case
analysis on the last typing rule in Θ′:

∗ Let Θ′ be of the form

Ξ ▷O ∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ :N

∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (J ⟨u⟩, ϵ) :N

Lift
Ω ▷O ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) s :O

∆1

⊎
∆2 ⊢(m

′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) (J ⟨u⟩, [x←s]) :N

ES

with ∆ = ∆1

⊎
∆2 and (m′′ − 1, e′′, r′′) = (m′′1 +m′′2, e

′′
1 + e′′2, r

′′
1 + r′′2). We can then

derive Ψ′ as follows

Ψ Ξ
(Π
⊎
∆1) ; x :O ⊢(m

′+m′′
1 ,e

′+r′′1 ,r
′+r′′1+1) iJ ⟨u⟩ :M

appi

(Π
⊎

∆1) ; x :O ⊢(m
′+m′′

1 ,e
′+r′′1 ,r

′+r′′1+1) (iJ ⟨u⟩, ϵ) :M
Lift

Ω

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+r′′1+e′′2 ,r

′+r′′1+1+r′′2) (iJ ⟨u⟩, [x←s]) :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ and that

(m′ +m′′1 +m′′2, e
′ + r′′1 + e′′2, r

′ + r′′1 + 1 + r′′2)
= (m′ + (m′′ − 1), e′ + e′′, r′ + r′′ + 1)
= (m− 1, e, r)

∗ Let Θ′ be of the form

Ξ ▷O ∆ ⊢(m′′−1,e′′,r′′) J ⟨u⟩ : [tight]
∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, ϵ) : [tight]

Lift
∆(x) = 0

∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) : [tight]
ESgc

We can then derive Φ′ as follows

Ψ Ξ
Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) iJ ⟨u⟩ :M
appi

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) (iJ ⟨u⟩, ϵ) :M
Lift

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) (iJ ⟨u⟩, [x←s]) :M
ESgc

noting that
(m′ +m′′ − 1, e′ + e′′, r′ + r′′ + 1) = (m− 1, e, r)

238

– Suppose Φ is of the form
Ψ ▷O Γ ⊢(m′,e′,r′) i : [0 ⊸ M]

Γ ⊢(m′+1,e′,r′) iH⟨(λx.u)s⟩ :M
appgc

with (m, e, r) = (m′ + 1, e′, r′). But then Lemma 7.1.2.2 (Typing properties of normal
terms - inert terms) together with the fact that inertΓ(nv(J))—given by inertΓ(nv(H))—
would imply that [0 ⊸ M] = [inert]—absurd.

(Click here to go back to main chapter.)
Proposition 13.4.8 (Quantitative Subject Reduction for Open CbNeed).

Let Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation.
1. Multiplicative: If p →om p′, then m ≥ 1 and there exists a type derivation Φ′ ▷O Γ ⊢(m−1,e,r)

p′ :M .
2. Exponential: If p→oe p

′, then e ≥ 1 and there exists a type derivation Φ′ ▷O Γ ⊢(m,e−1,r) p′ :M .

Proof. (Click here to go back to main chapter.)
1. We prove this by means of a weaker statement:

Let p = P ⟨(λx.u)s⟩ →om P ⟨u, [x←s]⟩ = p′ with P ∈ EV , and let Φ ▷O Γ ⊢(m,e,r) P ⟨(λx.u)s⟩ :M
be a type derivation such that inertΓ(V). Then m ≥ 1 and there exists Φ′ ▷O Γ ⊢(m−1,e,r)
P ⟨u, [x←s]⟩ :M .
We proceed by induction on the derivation of P ∈ EV .

• Empty environment. Let P = (H, ϵ). Note that V = nv(H). Then Φ is of the form

Ψ ▷O Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M
Γ ⊢(m,e,r) (H⟨(λx.u)s⟩, ϵ) :M Lift

The statement holds by application of Lemma 7.1.5 (Quantitative Subject Reduction for
→om in term contexts) on Ψ, giving us that m ≥ 1 and the existence of Ψ′ ▷O Γ ⊢(m−1,e,r)
(H⟨u⟩, [x←s]) :M .

• Let
Q ∈ EV y /∈ V
Q@[y←t] ∈ EV

OGC

We proceed by case analysis on the last typing rule in Φ.
– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←t] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note that since y /∈ V ,
then inertΠ⊎

∆(V) implies inertΠ;y :N(V). Hence, by i.h. on Ψ, m′ ≥ 1—thus, m ≥ 1—
and there exists Ψ′ ▷O Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M . We can simply derive Φ′

as follows
Ψ′ Θ

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←t] :M
ES

noting that (m′ − 1 +m′′, e′ + e′′, r′ + r′′) = (m− 1, e, r)

239

– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←t] :M
ESgc

By i.h. on Ψ, m ≥ 1 and there exists Ψ′ ▷O Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M . We can
simply derive Φ′ as follows

Ψ′ Γ(y) = 0

Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩@[y←t] :M
ESgc

• Let
Q ∈ EW y ∈ W

Q@[y←i] ∈ E(W\{y})∪nv(i)
OI

where V = (W \ {y}) ∪ nv(i). We proceed by case analysis on the last typing rule in Φ.
– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) i :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←i] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
First, note that inertΠ⊎

∆((W \ {y}) ∪ nv(i)) implies that inert∆(nv(i)), and so we
have that N is Inert—by Lemma 7.1.2.2 (Typing properties of normal terms - inert
terms) on Θ.
Thus, we have that inertΠ;y :N(Q) and we can apply the i.h. on Ψ to get that m′ ≥ 1—
thus, m ≥ 1—and the existence of Ψ′ ▷O Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M . We
can simply derive Φ′ as follows

Ψ′ Θ
Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←i] :M
ES

– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←i] :M
ESgc

Since inertΓ((W \ {y}) ∪ nv(i)) and the fact that y /∈ dom(Γ) imply that inertΓ(W),
then applying i.h. on Ψ gives us that m ≥ 1 and the existence of Ψ′ ▷O Γ ⊢(m−1,e,r)
Q⟨u, [x←s]⟩ :M . We can simply derive Φ′ as follows

Ψ′ Γ(y) = 0

Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩@[y←i] :M
ESgc

• Let
Q ∈ EW y /∈ W

Q⟨y⟩@[y←H] ∈ EW∪nv(H)
OHER

where V =W ∪ nv(H). Note that x ̸= y. We proceed by case analysis on the last typing
rule in Φ.

240

– Let Φ be of the form
Ψ ▷O Π; y :N ⊢(m′,e′,r′) Q⟨y⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) H⟨(λx.u)s⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨y⟩@[y←H⟨(λx.u)s⟩] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ + m′′, e′ + e′′, r′ + r′′). Note that x /∈
dom(Π) because x /∈ fv(Q⟨y, ϵ⟩)—by α-conversion and Lemma 7.1.1 (Relevance of
the Open CbNeed type system).
Note that, by Lemma 7.1.5 (Quantitative Subject Reduction for →om in term con-
texts), m′′ ≥ 1—thus, m ≥ 1—and there exists Θ′ ▷O ∆ ⊢(m′′−1,e′′,r′′) H⟨u⟩[x←s] :N .
We now proceed by case analysis on the last typing rule in Θ′:

∗ Let Θ′ be of the form
Ξ ▷O ∆1;x :O ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) H⟨u⟩ :N

∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (H⟨u⟩, ϵ) :N

Lift
Ω ▷O ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) s :O

∆1

⊎
∆2 ⊢(m

′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) (H⟨u⟩, [x←s]) :N

ES

with ∆1

⊎
∆2 = ∆ and

(m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2) = (m′′ − 1, e′′, r′′)

We can then derive Φ′ as follows
Ψ Ξ

(Π
⊎
∆1) ; x :O ⊢(m

′+m′′
1 ,e

′+e′′1 ,r
′+r′′1) Q⟨y⟩@[y←H⟨u⟩] :M

ES
Ω

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+e′′1+e′′2 ,r

′+r′′1+r′′2) (Q⟨y⟩@[y←H⟨u⟩]) @[x←s] :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ, that

(Q⟨y⟩@[y←H⟨u⟩]) @[x←s] = (Q⟨y⟩@[y←H]) ⟨u, [x←s]⟩ = P ⟨u, [x←s]⟩

and that
(m′ +m′′1 +m′′2, e

′ + e′′1 + e′′2, r
′ + r′′1 + r′′2)

= (m′ +m′′ − 1, e′ + e′′, r′ + r′′)
= (m− 1, e, r)

∗ Let Θ′ be of the form
Ξ ▷O ∆ ⊢(m′′−1,e′′,r′′) H⟨u⟩ :N
∆ ⊢(m′′−1,e′′,r′′) (H⟨u⟩, ϵ) :N

Lift
∆(x) = 0

∆ ⊢(m′′−1,e′′,r′′) (H⟨u⟩, [x←s]) :N
ESgc

We can then derive Φ′ as follows
Ψ Ξ

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′) Q⟨y⟩@[y←H⟨u⟩] :M
ES

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′) (Q⟨y⟩@[y←H⟨u⟩]) @[x←s] :M
ESgc

noting that

(Q⟨y, ϵ⟩@[y←H⟨u⟩]) @[x←s] = (Q⟨y⟩@[y←H]) ⟨u, [x←s]⟩ = P ⟨u, [x←s]⟩

and that (m′ +m′′ − 1, e′ + e′′, r′ + r′′) = (m− 1, e, r).

241

– Suppose Φ is of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←H⟨(λx.u)s⟩] :M
ESgc

Note that inertΓ(W ∪ nv(H)) implies that inertΓ(W), recalling that Q ∈ EW .
But then Lemma 7.1.1 (Relevance of the Open CbNeed type system) on Ψ gives
that y ∈ dom(Γ)—absurd.

2. We prove this by means of a weaker statement:
Let p = P ⟨x⟩ →oe P ⟨vα⟩ = q, with P ∈ EV and x ∈ dom(P), and let Φ ▷O Γ ⊢(m,e,r) P ⟨x⟩ :M

such that inertΓ(V). Then e ≥ 1 and there exists Φ′ ▷O Γ ⊢(m,e−1,r) P ⟨vα⟩ :M .
We proceed by induction on the derivation of P ∈ EV .

• The case where P = (H, ϵ) is impossible because x /∈ dom(P) = ∅.
• Let

Q ∈ EV y /∈ V
Q@[y←t] ∈ EV

OGC

We proceed by case analysis on the last typing rule in Φ and on whether x = y or x ̸= y.
– Let x ̸= y and Φ be of the form

Ψ ▷O Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←t] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note that inertΠ⊎
∆(P)

together with the fact that y /∈ W imply inertΠ;y :N(W). Moreover, note that x ∈
dom(Q), because x ∈ dom(P) and x ̸= y. Hence, we can apply the i.h. on Ψ to get
that e′ ≥ 1 (hence e ≥ 1) and get

Ψ′ ▷O Π; y :N ⊢(m′,e′−1,r′) Q⟨vα⟩ :M

We can then derive Φ′ as follows

Ψ′ Θ
Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨vα⟩@[y←t] :M
ES

noting that (m′ +m′′, e′ + e′′ − 1, r′ + r′′) = (m, e− 1, r).
– Let x ̸= y and Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←t] :M
ESgc

Note that x ∈ dom(Q). Since inertΓ(V), we can apply the i.h. on Ψ to obtain that
e ≥ 1 and that there exists Ψ ▷O Γ ⊢(m,e,r) Q⟨x⟩ :M .

– Let x = y and Φ be of the form

Ψ ▷O Π;x :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ES

242

with Γ = Π
⊎
∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note that N ̸= 0, that

M ̸= 0—because Φ is tight—that x /∈ dom(Q)—because of the variable convention—
that x = y /∈ V , and that inertΓ(V). Hence, we can apply Lemma 7.1.4.2 (Linear
Substitution for Open CbNeed) on Ψ to obtain a splitting of the form N = N1⊎N2,
with N1 ̸= 0 such that for every Ξ ▷O Σ ⊢(m′′′,e′′′,r′′′) v :N1 there exists

Ω ▷O (Π
⊎

∆1);x :N2 ⊢(m
′+m′′′,e′+e′′′−1,r′+r′′′) Q⟨vα⟩ :M

We now apply Lemma 13.4.6 (Splitting multi types of Open CbNeed type deriva-
tions) on Θ with said splitting, obtaining type derivations Θ1 ▷O ∆1 ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) v :N1

and Θ2 ▷O ∆2 ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) v :N2.

Therefore, by what is given by Lemma 7.1.4.2 (Linear Substitution for Open CbNeed),
there exists

Ω ▷O (Π
⊎

∆1);x :N2 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨vα⟩ :M

We finally do case analysis on whether N2 = 0 or not:
∗ Let N2 = 0. By Lemma 13.4.6 (Splitting multi types of Open CbNeed type

derivations), this means that ∆1 = ∆, ∆2 = 0, (m′′1, e′′1, r′′1) = (m′′, e′′, r′′) and
(m′′2, e

′′
2, r
′′
2) = (0, 0, 0). We can then derive Φ′ as follows

Ω (Π
⊎
∆1)(x) = 0

Π
⊎

∆1 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨vα⟩@[x←v] :M

ESgc

noting that Π
⊎

∆1 = Π
⊎

∆ = Γ, that Q⟨vα⟩@[x←v] = P ⟨vα, ϵ⟩ and that

(m′ +m′′1, e
′ + e′′1 − 1, r′ + r′′1)

= (m′ +m′′, e′ + e′′ − 1, r′ + r′′)
= (m, e− 1, r)

∗ Let N2 ̸= 0. We can then derive Φ′ as follows

Ω Θ2 N2 ̸= 0

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+e′′1−1+e′′2 ,r

′+r′′1+r′′2) Q⟨vα⟩@[x←v] :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ, that Q⟨vα⟩@[x←v] = P ⟨vα⟩ and that

(m′ +m′′1 +m′′2, e
′ + e′′1 − 1 + e′′2, r

′ + r′′1 + r′′2)
= (m′ +m′′, e′ + e′′ − 1, r′ + r′′)
= (m, e− 1, r)

– Suppose x = y and Φ is of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←t] :M
ESgc

But then Lemma 13.4.4.2 (Plugged variables and domain of type contexts) on Ψ
gives that y ∈ dom(Γ)—absurd.

243

• Let
Q ∈ EW y ∈ W

Q@[y←i] ∈ E(W\{y})∪nv(i)
OI

where V = (W \ {y}) ∪ nv(i). Note that x ̸= y, because values are not inert terms. We
proceed by case analysis on the last typing rule in Φ.

– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷O ∆ ⊢(m′′,e′′,r′′) i :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←i] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Note that N = Inert—by Lemma 7.1.2.2 (Typing properties of normal terms - in-
ert terms). Hence, inertΠ⊎

∆((W \ {y}) ∪ nv(i)) implies inertΠ;y :N(W), and so we
can apply the i.h. on Ψ to get that e′ ≥ 1 (hence e ≥ 1) and obtain Ψ′ ▷O
Π; y :N ⊢(m′,e′−1,r′) Q⟨x⟩ :M .
We can then derive Φ′ as follows

Ψ′ Θ
Π
⊎

∆ ⊢(m′+m′′,e′−1+e′′,r′+r′′) Q⟨vα⟩@[y←i] :M
ES

noting that Π
⊎
∆ = Γ, that Q⟨vα⟩@[y←i] = P ⟨vα⟩ and that (m′ + m′′, e′ − 1 +

e′′, r′ + r′′) = (m, e− 1, r).
– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←i] :M
ESgc

Note that since y /∈ dom(Γ) and inertΓ((W \ {y}) ∪ nv(i)) then inertΓ(W). Thus, we
can apply the i.h. on Ψ, getting that m ≥ 1 and the existence of Ψ′ ▷O Γ ⊢(m,e−1,r)

Q⟨vα⟩ :M . We can then derive Φ′ as follows

Ψ′ Γ(y) = 0

Γ ⊢(m,e−1,r) Q⟨vα⟩@[y←i] :M
ESgc

noting that Q⟨vα⟩@[y←i] = P ⟨vα⟩.
• Suppose Φ is of the form

Q ∈ EW y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

where V =W ∪ nv(H). Then, x /∈ dom(P) by the variable convention—absurd.

(Click here to go back to main chapter.)

Theorem 13.4.9 (Tight Correctness for Open CbNeed).
Let p ∈ PR and Φ ▷O Γ ⊢(m,e,r) p :M be a tight type derivation. Then there exists q ∈ PR such

that
1. q is in →ond-normal form,
2. there exists a reduction sequence d : p −→∗ond q,

244

3. (m, e, r) = (|d|m, |d|e, |q|nd), and
4. dom(Γ) = nv(q).

Proof. (Click here to go back to main chapter.)
By induction on m+ e, and proceeding by case analysis on whether p →ond-reduces or not.
First, note that if p is in →ond-normal form, then we can apply Proposition 7.1.3 (Typing

properties of Open CbNeed-normal forms) to get that (m, e, r) = (0, 0, |p|nd) and dom(Γ) = nv(p).
Otherwise, if p→ond q for some q ∈ PR, then there are two sub-cases to consider:
1. Multiplicative steps: Let p →om r. By Proposition 7.1.6.1 (Quantitative Subject Reduction

for Open CbNeed - multiplicative steps), there exists Ψ ▷O Γ ⊢(m−1,e,r) r :M . By i.h. on Ψ,
there exists q ∈ PR such that
(a) q is in →ond-normal form,
(b) there exists a reduction sequence d′ : r −→∗ondq,
(c) (m− 1, e, r) = (|d′|m, |d′|e, |q|nd), and
(d) dom(Γ) = nv(q).

Since p→om r, we see that there exists→ond-normalizing reduction sequence d given as follows

d : p −→∗ond q = p→om r −→∗ond q︸ ︷︷ ︸
d′

and so the statement is satisfied. In particular, note that

(m, e, r) = (|d′|m + 1, |d′|e, |q|nd) = (|d|m, |d|e, |q|nd)

2. Exponential steps: Let p →oe r. By Proposition 7.1.6.2 (Quantitative Subject Reduction for
Open CbNeed - exponential steps), there exists Ψ ▷O Γ ⊢(m,e−1,r) r :M . By i.h. on Ψ, there
exists q ∈ PR such that
(a) q is in →ond-normal form,
(b) there exists a reduction sequence d′ : r −→∗ondq,
(c) (m, e− 1, r) = (|d′|m, |d′|e, |q|nd), and
(d) dom(Γ) = nv(q).

Since p→oe r, we see that there exists→ond-normalizing reduction sequence d given as follows

d : p −→∗ond q = p→oe r −→∗ond q︸ ︷︷ ︸
d′

and so the statement is satisfied. In particular, note that

(m, e, r) = (|d′|m, |d′|e + 1, |q|nd) = (|d|m, |d|e, |q|nd)

(Click here to go back to main chapter.)

13.4.2 Open CbNeed completeness
Lemma 13.4.10 (Tight typability of normal terms).

245

1. Values: For every v ∈ Val there exists a type derivation Φ ▷O Γ ⊢(0,0,|v|nd) v : [abs] such that
dom(Γ) = nv(v).

2. Inert terms: For every inert Λ-term i and J ̸= ∅, there exists a tight type derivation
Φ ▷O Γ ⊢(0,0,|i|nd) i : [inert]j∈J such that dom(Γ) = nv(i).

Proof. (Click here to go back to main chapter.)
1. Values: Simply take Φ as follows:

∅ ⊢(0,0,0) v : abs abs

∅ ⊢(0,0,0) v : [abs]
many

2. Inert Λ-terms: By structural induction on i:
• If i = x, take Φ to be

x : [inert]j∈J ⊢(0,0,0) x : [inert]j∈J
axI

• Let i = tu for some inert Λ-term t and normal term u. Note that |i|nd = |t|nd + |u|nd + 1
and that nv(i) = nv(t) ∪ nv(u). By i.h. on t, there exists a tight type derivation of the
form ΨJ ▷O ΠJ ⊢(0,0,|t|nd) t : [inert]j∈J such that dom(ΠJ) = nv(t), for every set of indices
J . There are two possible cases for the shape of u:

– If u is an inert Λ-term, then we can apply ih on u and any singleton set of indices
K to obtain a tight type derivation Θ ▷O ∆ ⊢(0,0,|u|nd) u :M such that M = [inert]
and dom(∆) = nv(u).

– If u ∈ Val, then we can apply Lemma 7.1.8.1 (Tight typability of normal terms -
values) on it to obtain a tight type derivation Θ ▷O ∆ ⊢(0,0,|u|nd) u :M such that
M = [abs] and dom(∆) = nv(u).

Therefore, in either case, we can derive Φ for i as follows:

ΨJ ▷O ΠJ ⊢(0,0,|t|nd) t : [inert]j∈J Θ ▷O ∆ ⊢(0,0,|u|nd) u :M
ΠJ

⊎
∆ ⊢(0,0,|t|nd+|u|nd+1) tu : [inert]j∈J

appi

(Click here to go back to main chapter.)

Proposition 13.4.11 (Tight typability of Open CbNeed-normal forms).
Let p ∈ PR be such that onorm(p). Then there exists a tight type derivation Φ ▷O Γ ⊢(0,0,|p|nd) p :M

such that dom(Γ) = nv(p).

Proof. (Click here to go back to main chapter.)
We split the analysis on whether abs(p) or inert(p):
• Abstraction programs: We proceed by induction on the derivation of abs(p):

– If p = (v, ϵ), then the statement holds by Lemma 7.1.8.1 (Tight typability of normal
terms - values) and then obtaining Φ via typing rule Lift.

– Let p = q@[x←t] and
abs(q)

abs(q@[x←t])
AGC

246

By i.h. on abs(q), there exists a tight type derivation Ψ ▷O Π ⊢(0,0,|q|nd) q : [abs] such that
dom(Π) = nv(q). Since nv(q) = ∅—easily provable by induction on the derivation of
abs(q)—then we can derive Φ for p as follows

Ψ ▷O Π ⊢(0,0,|q|nd) q : [abs] Π(x) = 0

Π ⊢(0,0,|q|nd) q@[x←t] : [abs]
ESgc

• Inert programs: We proceed by induction on the derivation of inert(p):
– Let p = (i, ϵ) for some inert Λ-term i. The statement holds by taking any singleton set

of indices J , applying Lemma 7.1.8.2 (Tight typability of normal terms - inert terms) on
i and J , and then applying typing rule Lift to obtain Φ for p.

– Let p = q@[x←i] and
inert(q) x ∈ nv(q)

inert(q@[x←i])
II

Note that |q@[x←i]|nd = |q|nd+ |i|nd and nv(q@[x←i]) = (nv(q)\{x})∪nv(i) By i.h. on q,
there exists a tight type derivation Ψ ▷O Π ⊢(0,0,|p|nd) q : [inert] such that dom(Π) = nv(q).
Note that x ∈ nv(q) = dom(Π). Next, take Π(x) as the set of indices J and apply
Lemma 7.1.8.2 (Tight typability of normal terms - inert terms) on i to obtain a tight
type derivation Θ ▷O ∆ ⊢(0,0,|i|nd) i : [inert]j∈J such that dom(∆) = nv(i).
Therefore, we can derive Φ for p as follows:

Ψ ▷O (Π \\ {x});x : Π(x) ⊢(0,0,|p|nd) q : [inert] Θ ▷O ∆ ⊢(0,0,|i|nd) i : [inert]j∈J
(Π \\ {x})

⊎
∆ ⊢(0,0,|q|nd+|i|nd) q@[x←i] : [inert]

ES

– Let p = q@[x←t] and
inert(q) x /∈ nv(q)

inert(q@[x←t])
IGC

Note that |q@[x←t]|nd = |q|nd and nv(q@[x←t]) = nv(q). By i.h. on inertV(q), there
exists a tight type derivation Ψ ▷O Π ⊢(0,0,|q|nd) q : [inert] such that dom(Π) = nv(q).
Hence, x /∈ dom(Π) and so we can derive Φ for p as follows

Ψ ▷O Π ⊢(0,0,|q|nd) q : [inert] Π(x) = 0

Ψ ▷O Π ⊢(0,0,|q|nd) q@[x←t] : [inert]
ESgc

(Click here to go back to main chapter.)
Lemma 13.4.12 (Linear Removal for Open CbNeed).

Let x ∈ Var and v ∈ Val such that x /∈ fv(v).
1. Let H be such that x /∈ nv(H), and let

Φ ▷O Γ;x :M ⊢(m,e,r) H⟨v⟩ :N

be such that N ̸= 0, and inertΓ(nv(H)).
Then there exist type derivations

Ψ ▷O Π ⊢(m′,e′,r′) v :O
Θ ▷O ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) H⟨x⟩ :N

such that

247

• Γ = Π
⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).
2. Let P ∈ EV be such that x /∈ (V ∪ dom(P)) and that fv(v) ∩ dom(P) = ∅. Let, moreover,

Φ ▷O Γ;x :M ⊢(m,e,r) P ⟨v⟩ :N

be such that N ̸= 0, and inertΓ(V).
Then there exist

• multi type O,
• type derivation Ψ ▷O Π ⊢(m′,e′,r′) v :O, and
• type derivation Θ ▷O ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) P ⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).

Proof. (Click here to go back to main chapter.)
1. By induction on the shape of H:

• Let H := ⟨·⟩. Since N is a multi type, then Φ must be of the following form(
Φi ▷O Γi ⊢(mi,ei,ri) v :Li

)
i∈I⊎

i∈I Γi ⊢(
∑

i∈I mi∈I ,
∑

i∈I ei,
∑

i∈I ri) v : [Li]i∈I
many

where Γ =
⊎

i∈I Γi, N = [Li]i∈I and (m, e, r) = (
∑

i∈I mi∈I ,
∑

i∈I ei,
∑

i∈I ri). Note that
since values are not inert-typable, then we have that [Li]i∈I /∈ Inert.
The statement follows by taking Ψ := Φ and Θ as follows

[Li]i∈I /∈ Inert

x : [Li]i∈I ⊢(0,1,0) x : [Li]i∈I
ax

• Let H := J t. We proceed by case analysis on the last typing rule in Φ:
– Let Φ be derived as

Γ1;x :M1 ⊢(m1,e1,r1) J ⟨v⟩ : [P ⊸ N] Γ2;x :M2 ⊢(m2,e2,r2) t :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2+1,e1+e2,r1+r2) J ⟨v⟩t :N

app

with Γ = Γ1

⊎
Γ2, M = M1 +M2 and (m, e, r) = (m1 +m2 + 1, e1 + e2, r1 + r2).

Since nv(H) = nv(J), then we can infer from inertΓ(nv(H)) that inertΓ1(nv(J)).
Hence, we can apply the i.h. on Ψ to obtain type derivations Ψ′ ▷O Π′ ⊢(m′

1,e
′
1,r

′
1) v :O′

and Θ′ ▷O ∆′;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) J ⟨x⟩ : [P ⊸ N] such that Γ1 = Π′

⊎
∆′ and

(m′1 +m′′1, e
′
1 + e′′1, r

′
1 + r′′1) = (m1, e1 + 1, r1).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

∆′;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) J ⟨x⟩ : [P ⊸ N] Γ2;x :M2 ⊢(m2,e2,r2) t :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2+1,e′′1+e2,r′′1+r2) J ⟨x⟩t :N

app

verifying that
∗ Γ = Γ1

⊎
Γ2 = (Π′

⊎
∆′)

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

248

∗ (m′+m′′, e′+ e′′, r′+ r′′) = (m′1 +(m′′1 +m2 +1), e′1 +(e′′1 + e2), r
′
1 +(r′′1 + r2)) =

(m1 +m2 + 1, e1 + e2 + 1, r1 + r2) = (m, e+ 1, r).
– The case where appi is the last typing rule in Φ can be proven similarly to app.
– The case where appgc is the last typing rule in Φ can be proven similarly to the two

previous cases.
• Let H = iJ . We proceed by case analysis on the last typing rule in Φ:

– Suppose Φ were derived as follows:
Ξ ▷O Γ1;x :M1 ⊢(m1,e1,r1) i : [P ⊸ N] Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) J ⟨v⟩ :P P ̸= 0

(Γ1 ⊎ Γ2);x : (M1 ⊎M2) ⊢(m1+m2+1,e1+e2,r1+r2) iJ ⟨v⟩ :N
app

with Γ = (Γ1

⊎
Γ2). But since x /∈ nv(H), then we would have that x /∈ nv(i).

Hence, inertΓ(nv(H)) would imply that inertΓ1;x :M1(nv(i)). However, we would now
be able to apply Lemma 7.1.2.2 (Typing properties of normal terms - Inert terms) on
Ξ to obtain that [P ⊸ N] ∈ Inert, which is absurd. Hence, this case is impossible.

– Let Φ be derived as
Ξ ▷O Γ1;x :M1 ⊢(m1,e1,r1) i : [inert]i∈I Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) J ⟨v⟩ : [tight] I ̸= ∅

(Γ1 ⊎ Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2+1) iJ ⟨v⟩ : [inert]i∈I
appi

with Γ = (Γ1

⊎
Γ2) and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2 + 1).

Note that x /∈ nv(H), and so x /∈ nv(J). This allows us to infer from inertΓ(nv(H))
that inertΓ2;x :M2(nv(J)). Hence, we can apply the i.h. on Ω to obtain type deriva-
tions

Ψ′ ▷O Π′ ⊢(m′
2,e

′
2,r

′
2) v :O′

Θ′ ▷O ∆′;x : (M2 ⊎O′) ⊢(m′′
2 ,e

′′
2 ,r

′′
2) J ⟨x⟩ : [tight]

such that Γ2 = Π′
⊎

∆′ and (m′2 +m′′2, e
′
2 + e′′2, r

′
2 + r′′2) = (m2, e2 + 1, r2).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows
Ξ ▷O Γ1;x :M1 ⊢(m1,e1,r1) i : [inert]i∈I Θ′ ▷O ∆′;x : (M2 ⊎O′) ⊢(m′′

2 ,e
′′
2 ,r

′′
2) J ⟨x⟩ : [tight]

(Γ1 ⊎∆′);x : (M1 ⊎M2 ⊎O′) ⊢(m1+m′′
2 ,e1+e′′2 ,r1+r′′2+1) iJ ⟨x⟩ : [inert]i∈I

appi

verifying that
∗ Γ = Γ1

⊎
Γ2 = Γ1

⊎
(Π′
⊎

∆′) = (Γ1

⊎
∆′)

⊎
Π′ = ∆

⊎
Π, and

∗ (m′+m′′, e′+ e′′, r′+ r′′) = (m′2 +(m1 +m′′2), e
′
2 +(e1 + e′′2), r

′
2 +(r1 + r′′2 +1)) =

(m1 +m2, e1 + e2 + 1, r1 + r2 + 1) = (m, e+ 1, r).
– The case where appgc is the last typing rule in Φ is impossible, which can be proven

similarly to the case of app.
2. By induction on the derivation of P ∈ EV :

• Let P ∈ EV be derived as
(H, ϵ) ∈ Env(H)

OAX

where P = (H, ϵ) and V = nv(H). Then Φ must be of the form

Φ′ ▷O Γ;x :M ⊢(m,e,r) H⟨v⟩ :N
Γ;x :M ⊢(m,e,r) (H⟨v⟩, ϵ) :N Lift

and we can apply Lemma 7.1.10.1 (Linear Removal for Open CbNeed) on Φ′ to obtain
type derivations

Ψ′ ▷O Π′ ⊢(m′
1,e

′
1,r

′
1) v :O′

Θ′ ▷O ∆′;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) H⟨x⟩ :N

249

such that Γ = Π′
⊎

∆′ and (m′1 +m′′1, e
′
1 + e′′1, r

′
1 + r′′1) = (m, e+ 1, r).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷O ∆′;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) H⟨x⟩ :N

∆′;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) H⟨x⟩ :N

Lift

• Let P ∈ EV be derived as
Q ∈ EV y ∈ V

Q@[y←i] ∈ E(V\{y})∪nv(i)
OI

where P = Q@[y←i] and V = (V \ {y}) ∪ nv(i). Note that x ̸= y—since x /∈ dom(P)—
and that fv(v) ∩ dom(P) = ∅—by hypothesis—yielding that y /∈ fv(v). We proceed by
case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ξ ▷O Γ1; y :P ;x :M1 ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) i :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←i] :N

ES

where Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).

Note that x /∈ V , and so inertΓ(V) implies that inertΓ2;x :M2(nv(i)). Hence, we can
apply Lemma 7.1.2.2 (Typing properties of normal term - Inert terms) on Ω to obtain
that P ∈ Inert. In turn, this allows us to infer from inertΓ(V) that inertΓ1;y :P (W).
Thus, we can apply the i.h. on Ξ to obtain type derivations

Ψ′ ▷O Π′ ⊢(m′
1,e

′
1,r

′
1) v :O′

Θ′ ▷O ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Γ1; y :P = Π′
⊎
(∆′; y :P) and (m′1 +m′′1, e

′
1 + e′′1, r

′
1 + r′′1) = (m1, e+1, r1).

Note that x /∈ dom(Π′)—by Lemma 7.1.1 (Relevance of the Open CbNeed type
system) and given that x /∈ fv(v).
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷O ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) i :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←i] :N

ES

verifying that
∗ M1 ⊎O′ ⊎M2 = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :P)) \\ {y})

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Φ′ ▷O Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←i] :N
ESgc

Since hypothesis inertΓ(V) and fact y /∈ dom(Γ;x :M) togther imply that inertΓ(W),
then we can apply the i.h. on Φ′ and easily prove the statement.

250

• Let P ∈ EV be derived as
Q ∈ EV y /∈ V
Q@[y←t] ∈ EV

OGC

where P = Q@[y←t]. Note that x ̸= y—since x /∈ dom(P)—and that fv(v) ∩ dom(P) =
∅—by hypothesis—yielding that y /∈ fv(v). We proceed by case analysis on the last
typing rule in Φ:

– Let Φ be of the form
Ξ ▷O Γ1; y :P ;x :M1 ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) t :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←t] :N

ES

where Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).

Note that the facts that inertΓ(V) and that y /∈ V together imply that inertΓ1;y :P (V).
Hence, we can apply the i.h. on Ξ to obtain type derivations

Ψ′ ▷O Π′ ⊢(m′
1,e

′
1,r

′
1) v :O

Θ′ ▷O ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Γ1; y :P = Π′
⊎
(∆′; y :P) and (m′1+m′′1, e

′
1+ e′′1, r

′
1+ r′′1) = (m1, e1+1, r1).

Note that y /∈ dom(Π′)—by Lemma 7.1.1 (Relevance of the Open CbNeed type
system) and by the fact that y /∈ fv(v).
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷O ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷O Γ2;x :M2 ⊢(m2,e2,r2) t :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←t] :N

ES

verifying that
∗ M1 ⊎O′ ⊎M2 = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :P)) \\ {y})

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Φ′ ▷O Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←t] :N
ESgc

We can apply the i.h. on Φ′ and easily prove the statement.
• Let P ∈ EV be derived as

Q ∈ EV y /∈ V
Q⟨y⟩@[y←⟨·⟩] ∈ EV

OHER

where P = Q⟨y⟩@[y←⟨·⟩]. We may safely assume that x ̸= y—by α-conversion. We
proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form
Ξ ▷O Γ1;x :M ; y :P ⊢(m1,e1,r1) Q⟨y⟩ :N Ω ▷O Γ2 ⊢(m2,e2,r2) v :P P ̸= 0

(Γ1

⊎
Γ2);x :M ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←v] :N

ES

where Γ = Γ1

⊎
Γ2 and (m, e, r) = (m1+m2, e1+e2, r1+r2). Note that x /∈ dom(Γ2),

because x /∈ fv(v)—and applying Lemma 7.1.1 (Relevance of the Open CbNeed type
system). Note that, since values are not inert-typable, then P /∈ Inert.

251

Therefore, the statement follows by taking Ψ := Ω and deriving Θ as follow:

Θ′ ▷O Γ1;x :M ; y :P ⊢(m1,e1,r1) Q⟨y⟩ :N
P /∈ Inert

x :P ⊢(0,1,0) x :P
ax

Γ1;x : (M ⊎ P) ⊢(m1,e1+1,r1) Q⟨y⟩@[y←x] :N
ES

verifying that
∗ M ⊎ P = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = Π

⊎
∆

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m2 +m1, e2 + e1 + 1, r2 + r1) = (m, e+ 1, r)
– Suppose Φ is of the form

Φ′ ▷O Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←v] :N
ESgc

However, since x /∈ V = W , then inertΓ(V) would imply that inertΓ(W), and so
we would be able to apply Lemma 13.4.4.2 (Plugged variables and domain of type
contexts) on Φ′ to obtain that y ∈ dom(Γ;x :M). Since that is absurd, then so is
this case.

(Click here to go back to main chapter.)
The following is required to apply Lemma 7.1.10 (Linear Removal for Open CbNeed) in the proof

of Proposition 7.1.12.2 (Quantitative Subject Expansion for Open CbNeed - exponential case) to
obtain the right indices.

Lemma 13.4.13 (Merging multi types of Open CbNeed type derivations).
Let v ∈ Val. For any two type derivations

ΦN ▷O ΓN ⊢(mN ,eN ,rN) v :N
ΦO ▷O ΓO ⊢(mO,eO,rO) v :O

there exists type derivation

ΦN ▷O ΓN

⊎
ΓO ⊢(mN+mO,eN+eO,rN+rO) v :N ⊎O

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Lemma 13.4.14 (Quantitative Subject Expansion for →om in term contexts).
Let Φ ▷O Γ ⊢(m,e,r) (H⟨u⟩, [x←s]) :M such that inertΓ(nv(H)). Then there exists Φ′ ▷O Γ ⊢(m+1,e,r)

H⟨(λx.u)s⟩ :M .

Proof. (Click here to go back to main chapter.)
By structural induction on H:
• Empty context: Let H := ⟨·⟩. We proceed by case analysis on the last typing rule in Φ:

252

– Let Φ be of the form
Ψ ▷O Π;x :N ⊢(m1,e1,r1) u :M

Π;x :N ⊢(m1,e1,r1) (u, ϵ) :M
Lift

Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (u, [x←s]) :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). We can then derive Φ′ as
follows

Ψ ▷O Π;x :N ⊢(m1,e1,r1) u :M

Π ⊢(m1,e1,r1) λx.u :N ⊸ M
fun

Π ⊢(m1,e1,r1) λx.u : [N ⊸ M]
many

Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2+1,e1+e2,r1+r2) (λx.u)s :M
app

verifying that (m1 +m2 + 1, e1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) u :M

Γ ⊢(m,e,r) (u, ϵ) :M
Lift

Γ(x) = 0

Γ ⊢(m,e,r) (u, [x←s]) :M
ESgc

We can then derive Φ′ as follows
Ψ ▷O Γ ⊢(m,e,r) u :M

Γ ⊢(m,e,r) λx.u :0 ⊸ M
fun

Γ ⊢(m,e,r) λx.u : [0 ⊸ M]
many

Γ ⊢(m+1,e,r) (λx.u)s :M
appgc

• Application left: Let H := J t. We proceed by case analysis on the last typing rule in Φ:
– Let Φ be of the form

Ψ ▷O Π;x :N ⊢(m1,e1,r1) J ⟨u⟩t :M
Π;x :N ⊢(m1,e1,r1) (J ⟨u⟩t, ϵ) :M Lift

Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (J ⟨u⟩t, [x←s]) :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). We proceed by case analysis
on the last typing rule in Ψ:

∗ Let Ψ be of the form
Ξ ▷O Σ;x :N ⊢(m′,e′,r′) J ⟨u⟩ : [P ⊸ M] Ω ▷O T ⊢(m′′,e′′,r′′) t :P

(Σ
⊎

T) ; x :N ⊢(m′+m′′,e′+e′′,r′+r′′) J ⟨u⟩t :M
app

with Π = Σ
⊎

T and (m′ +m′′, e′ + e′′, r′ + r′′) = (m1, e1, r1). By alpha-conversoin,
we may safely assume that x /∈ fv(t), and then we may safely assume as well that
x /∈ dom(T)—by Lemma 7.1.1 (Relevance of the Open CbNeed type system).
We can now derive an auxiliary type derivation Z as follows

Ξ ▷O Σ;x :N ⊢(m′,e′,r′) J ⟨u⟩ : [P ⊸ M]

Σ;x :N ⊢(m′,e′,r′) (J ⟨u⟩, ϵ) : [P ⊸ M]
Lift

Θ ▷O ∆ ⊢(m2,e2,r2) s :N

Σ
⊎

∆ ⊢(m′+m2,e′+e2,r′+r2) (J ⟨u⟩, [x←s]) : [P ⊸ M]
ES

253

on which we can apply the i.h. to obtain

Z ′ ▷O Σ
⊎

∆ ⊢(m′+m2+1,e′+e2,r′+r2) J ⟨(λx.u)s⟩ :M

We can finally derive Φ′ as follows

Z ′ ▷O Σ
⊎
∆ ⊢(m′+m2+1,e′+e2,r′+r2) J ⟨(λx.u)s⟩ : [P ⊸ M] Ω ▷O T ⊢(m′′,e′′,r′′) t :P

Σ
⊎
∆
⊎

T ⊢(m′+m2+1+m′′,e′+e2+e′′,r′+r2+r′′) J ⟨(λx.u)s⟩ : [P ⊸ M]
app

verifying that
· Σ

⊎
∆
⊎

T = Π
⊎

∆ = Γ, and
· (m′ +m2 + 1 +m′′, e′ + e2 + e′′, r′ + r2 + r′′) = (m1 +m2 + 1, e1 + e2, r1 + r2) =

(m+ 1, e, r).
∗ Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) J ⟨u⟩t :M
Γ ⊢(m,e,r) (J ⟨u⟩t, ϵ) :M Lift

Γ(x) = 0

Γ ⊢(m,e,r) (J ⟨u⟩t, [x←s]) :M
ESgc

We proceed by case analysis on the last typing rule in Φ. The cases where appi and
appgc are proven similarly, and are left to the reader: Let Ψ be derived as

Θ ▷O Γ1 ⊢(m1,e1,r1) J ⟨u⟩ : [P ⊸ M] Ξ ▷O Γ2 ⊢(m2,e2,r2) t :P

Γ1

⊎
Γ2 ⊢(m1+m2+1,e1+e2,r1+r2) J ⟨u⟩t :M

app

with Γ = Γ1

⊎
Γ2 and (m, e, r) = (m1 +m2 + 1, e1 + e2, r1 + r2).

We can now derive an auxiliary type derivation Z as follows

Θ ▷O Γ1 ⊢(m1,e1,r1) J ⟨u⟩ : [P ⊸ M]

Γ1 ⊢(m1,e1,r1) (J ⟨u⟩, ϵ) : [P ⊸ M]
Lift

Γ1(x) = 0

Γ1 ⊢(m1,e1,r1) (J ⟨u⟩, [x←s]) : [P ⊸ M]
ESgc

on which we can apply the i.h. to obtain Z ′ ▷O Γ1 ⊢(m1+1,e1,r1) J ⟨(λx.u)s⟩ : [P ⊸ M],
and finally derive Φ′ as follows

Z ′ ▷O Γ1 ⊢(m1+1,e1,r1) J ⟨(λx.u)s⟩ : [P ⊸ M] Ω ▷O Γ2 ⊢(m2,e2,r2) t :P

Γ1

⊎
Γ2 ⊢(m1+1+m2+1,e1+e2,r1+r2) J ⟨(λx.u)s⟩t :M

app

verifying that (m1 + 1 +m2 + 1, e1 + e2, r1 + r2) = (m+ 1, e, r).

–• Application right: Let H := iJ . By α-conversion may safely assume that x /∈ fv(i). We
proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷O Π;x :N ⊢(m1,e1,r1) iJ ⟨u⟩ :M
Π;x :N ⊢(m1,e1,r1) (iJ ⟨u⟩, ϵ) :M Lift

Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (iJ ⟨u⟩, [x←s]) :M
ES

254

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). By proceeding by case
analysis on the last typing rule in Φ, it is easy to verify that the sub-type derivation
corresponding to t can be applied with Lemma 7.1.2.2 (Typing properties of normal
terms - Inert terms) to infer that M ∈ Inert. Thus, let M = [inert]i∈I , and note that Ψ
must be of the form

Ξ ▷O Π1 ⊢(m
′
1,e

′
1,r

′
1) i : [inert]i∈I Ω ▷O Π2;x :N ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ : [tight]

(Π1

⊎
Π2);x :N ⊢(m

′
1+m′′

1 ,e
′
1+e′′1 ,r

′
1+r′′1+1) iJ ⟨u⟩ : [inert]i∈I

appi

where Π = Π1

⊎
Π2 and (m1, e1, r1) = (m′1 + m′′1, e

′
1 + e′′1, r

′
1 + r′′1 + 1). Note that x /∈

dom(Π1) because x /∈ fv(t)—and by an application of Lemma 7.1.1 (Relevance of the
Open CbNeed type system).
We can now derive an auxiliary type derivation Z as follows

Ω ▷O Π2;x :N ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ : [tight]

Π2;x :N ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (J ⟨u⟩, ϵ) : [tight]

Lift
Θ ▷O ∆ ⊢(m2,e2,r2) s :N

(Π2

⊎
∆);x :N ⊢(m′′

1+m2,e′′1+e2,r′′1+r2) (J ⟨u⟩, [x←s]) : [tight]
ES

on which we can apply the i.h. to obtain a type derivation

Z ′ ▷O (Π2

⊎
∆);x :N ⊢(m′′

1+m2+1,e′′1+e2,r′′1+r2) J ⟨(λx.u)s⟩ : [tight]

and finally derive Φ′ as follows

Ξ ▷O Π1 ⊢(m
′
1,e

′
1,r

′
1) i : [inert]i∈I Z ′

(Π1

⊎
Π2

⊎
∆);x :N ⊢(m′

1+m′′
1+m2+1,e′1+e′′1+e2,r′1+r′′1+r2+1) iJ ⟨u⟩ : [inert]i∈I

appi

verifying that
∗ Π1

⊎
Π2

⊎
∆ = Π

⊎
∆ = Γ, and

∗ (m′1 +m′′1 +m2 + 1, e′1 + e′′1 + e2, r
′
1 + r′′1 + r2 + 1) = (m1 +m2 + 1, e1 + e2, r1 + r2) =

(m+ 1, e, r).
– The case where Φ ends in the application of an ESgc rule is proven very similarly to the

previous case, where ES is replaced with ESgc both in the analysis of the shape of Φ and
of Z, and changes are made accordingly.

(Click here to go back to main chapter.)

Proposition 13.4.15 (Quantitative Subject Expansion for Open CbNeed).
Let Φ′ ▷O Γ ⊢(m,e,r) p′ :M be a tight type derivation.

1. Multiplicative: If p→om p′, then there exists a type derivation Φ ▷O Γ ⊢(m+1,e,r) p :M .
2. Exponential: If p→oe p

′, then there exists a type derivation Φ ▷O Γ ⊢(m,e+1,r) p :M .

Proof. (Click here to go back to main chapter.)
1. Multiplicative case: We prove this by means of a weaker statement:

255

Let p = P ⟨(λx.t)u⟩ →om P ⟨t, [x←u]⟩ = p′, with P ∈ EV , and let

Φ ▷O Γ ⊢(m,e,r) p′ :M

be a type derivation such that inertΓ(V). Then there exists

Φ′ ▷O Γ ⊢(m+1,e,r) p :M

We proceed by induction on the derivation of P :
• Let P = (H, ϵ). Note that then Φ ▷O Γ ⊢(m,e,r) (H⟨t⟩, [x←u]) :M . Note that inertΓ(nv(H)),

and so the statement follows by application of Lemma 7.1.11 (Quantitative Subject Ex-
pansion for →om in term contexts) on Φ.

• Let P be derived as
Q ∈ EV y ∈ V

Q@[y←i] ∈ E(V\{x})∪nv(i)
OI

where P = Q@[y←i] and V = (V \ {x})∪ nv(i). We proceed by case analysis on the last
typing rule in Φ:

– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷O ∆ ⊢(m2,e2,r2) i :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←i] :M
ES

where Γ = Π
⊎
∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that inertΓ(V)

implies that inertΠ(nv(i)), and so we can apply the Lemma 7.1.2.2 (Typing properties
of normal terms - Inert terms) on Θ to obtain that N ∈ Inert. Thus, inertΓ(V) implies
that inertΠ;y :N(W), and so we can apply the i.h. on Ψ to obtain type derivation
Ψ′ ▷O Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u⟩ :M . The statement follows by taking Ψ′ and
Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←i] :M
ESgc

Note that since y /∈ dom(Γ), then inertΓ(V) implies that inertΓ(W). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷O Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M . The statement
follows by deriving Φ′ as follows

Ψ′ ▷O Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←i] :M
ESgc

• Let P be derived as
Q ∈ EW y /∈ W
Q@[y←s] ∈ EW

OGC

where P = Q@[y←s] and V = W . We proceed by case analysis on the last typing rule
in Φ:

– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←s] :M
ES

256

where Γ = Π
⊎

∆ and (m, e, r) = (m1+m2, e1+ e2, r1+ r2). Note that since y /∈ W ,
then inertΓ(V) implies that inertΠ;y :N(W). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷O Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u⟩ :M . The statement
follows by taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form
Ψ ▷O Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←s] :M
ESgc

Note that inertΓ(V) implies that inertΓ(W). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷O Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M . The statement follows by deriving Φ′ as
follows:

Ψ ▷O Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←s] :M
ESgc

• Let P be derived as
Q ∈ EW y /∈ W

Q⟨y⟩@[y←H] ∈ EW∪nv(H)
OHER

where P = Q⟨y⟩@[y←H] and V =W∪nv(H). Note that then p = Q⟨y⟩@[y←H⟨(λx.t)u⟩]
→om (Q⟨y⟩@[x←H⟨t⟩])@[x←u] = p′. Moreover, since x is bound in λx.t, then note that
x /∈ fv(Q⟨y⟩).
We proceed by case analysis on the shape of Φ:

– Let Φ be of the form
.... Ψ

Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

.... Θ
∆;x :O ⊢(m2,e2,r2) H⟨t⟩ :N

ES
(Π
⊎

∆);x :O ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H⟨t⟩] :M

.... Ξ
Σ ⊢(m3,e3,r3) u :O

ES
Π
⊎
∆
⊎
Σ ⊢(m1+m2+m3,e1+e2+e3,r1+r2+r3) (Q⟨y⟩@[x←H⟨t⟩])@[x←u] :M

where Γ = Π
⊎

∆
⊎

Σ and (m, e, r) = (m1 + m2 + m3, e1 + e2 + e3, r1 + r2 + r3).
Note that since x /∈ fv(Q⟨y⟩), then x /∈ dom(Π)—by Lemma 7.1.1 (Relevance of the
Open CbNeed type system).
Let us now derive an auxiliary type derivation Z as follows

Θ ▷O ∆;x :O ⊢(m2,e2,r2) H⟨t⟩ :N
∆;x :O ⊢(m2,e2,r2) (H⟨t⟩, ϵ) :N Lift

Ξ ▷O Σ ⊢(m3,e3,r3) u :O

∆
⊎

Σ ⊢(m2+m3,e2+e3,r2+r3) (H⟨t⟩, [x←u]) :N
ES

We can apply Lemma 7.1.11 (Quantitative Subject Expansion for→om in term con-
texts) on Z to obtain type derivation Z ′ ▷O ∆

⊎
Σ ⊢(m2+m3+1,e2+e3,r2+r3) H⟨(λx.t)u⟩ :N .

Therefore, the statement follows by deriving Φ′ as follows
.... Ψ

Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

..... Z
′

∆
⊎

Σ ⊢(m2+m3+1,e2+e3,r2+r3) H⟨(λx.t)u⟩ :N
ES

Π
⊎
∆
⊎

Σ ⊢(m1+m2+m3+1,e1+e2+e3,r1+r2+r3) Q⟨y⟩@[y←H⟨(λx.t)u⟩] :M

noting that Q⟨y⟩@[y←H⟨(λx.t)u⟩] = P ⟨(λx.t)u⟩.

257

– We can proceed analogously to the previous case to prove the statement for the case
where Φ is of the following form

.... Ψ
Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

.... Θ
∆ ⊢(m2,e2,r2) H⟨t⟩ :N

ES
Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H⟨t⟩] :M (Π
⊎
∆)(x) = 0

ESgc
Π
⊎
∆ ⊢(m1+m2,e1+e2,r1+r2) (Q⟨y⟩@[x←H⟨t⟩])@[x←u] :M

– Suppose Φ were of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←H⟨t⟩] :M
ESgc

Γ(x) = 0

Γ ⊢(m,e,r) (Q⟨y⟩@[y←H⟨t⟩])@[x←u] :M
ESgc

However, we would have that y /∈ fv(Q⟨y⟩)—by Lemma 7.1.1 (Relevance of the
Open CbNeed type system) on Ψ—which contradicts the fact that y ∈ fv(Q⟨y⟩)
given by Lemma 13.4.4 (Plugged variables and domain of type contexts). Hence,
this case is impossible.

– Suppose Φ were of the form
.... Ψ

Π;x :O ⊢(m1,e1,r1) Q⟨y⟩ :M Π(y) = 0
ESgc

Π;x :O ⊢(m1,e1,r1) Q⟨y⟩@[y←H⟨t⟩] :M

.... Ξ
Σ ⊢(m3,e3,r3) u :O O ̸= 0

ES
Π
⊎

Σ ⊢(m,e,r) (Q⟨y⟩@[y←H⟨t⟩])@[x←u] :M
But then x ∈ fv(Q⟨y⟩)—by Lemma 7.1.1 (Relevance of the Open CbNeed type
system) on Ψ—which is absurd.

2. Exponential case: We prove this by means of a weaker statement:

Let p = P ⟨x⟩ →oe P ⟨v⟩ = p′, with P ∈ EV and P (x) = v ∈ Val, and let Φ ▷O Γ ⊢(m,e,r) p′ :M
be a type derivation such that inertΓ(V). Then there exists Φ′ ▷O Γ ⊢(m,e+1,r) p :M

We proceed by induction on the derivation of P :
• The case where P = (H@, ϵ) is impossible, since it would be that dom(P) = ∅.
• Let P be derived as

Q ∈ EW y ∈ V
Q@[y←i] ∈ E(W\{x})∪nv(i)

OI

where P = Q@[y←i] and V = (W \ {x}) ∪ nv(i). Note that since i /∈ Val, then x ̸= y
and then x ∈ dom(Q). We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷O ∆ ⊢(m2,e2,r2) i :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←i] :M
ES

where Γ = Π
⊎
∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that inertΓ(V)

implies that inertΠ(nv(i)), and so we can apply the Lemma 7.1.2.2 (Typing properties
of normal terms - Inert terms) on Θ to obtain that N ∈ Inert. Thus, inertΓ(V) implies

258

that inertΠ;y :N(W) and so we can apply the i.h. on Ψ to obtain type derivation
Ψ′ ▷O Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement follows by taking Ψ′ and Θ as
premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←i] :M
ESgc

Note that since y /∈ dom(Γ), then inertΓ(V) implies that inertΓ(W). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷O Γ ⊢(m,e+1,r) Q⟨x⟩ :M . The statement follows by
deriving Φ′ as follows

Ψ′ ▷O Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←i] :M
ESgc

• Let P be derived as
Q ∈ EW y /∈ W
Q@[y←s] ∈ EW

OGC

where P = Q@[y←s] and V =W .
We distinguish two cases, namely the one where x = y and s = v—i.e., when p′ =
Q⟨v⟩@[x←v]—and one where x ̸= y. Let us first assume that x ̸= y and proceed by case
analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷O Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷O ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←s] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that since y /∈ B,
then inertΓ(V) implies that inertΠ;y :N(W). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷O Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement follows
by taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷O Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←s] :M
ESgc

Note that inertΓ(V) implies that inertΓ(W). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷O Γ ⊢(m,e+1,r) Q⟨x⟩ :M . The statement follows by deriving Φ′ as follows:

Ψ ▷O Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←s] :M
ESgc

This completes the case where x ̸= y. Let us now assume that x = y and s = v. That is,

p = Q⟨x⟩@[x←v]→oe Q⟨vα⟩@[x←v] = p′

We proceed by case analysis on the last typing rule in Φ:

259

– Let Φ be of the form
Ψ ▷O Π;x :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷O ∆ ⊢(m2,e2,r2) v :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that x /∈ W and
x /∈ dom(Q) because x = y, and that we can safely assume that fv(v)∩ dom(Q) = ∅.
Hence, we can apply Lemma 7.1.10.2 (Linear Removal for Open CbNeed - exponen-
tial case) on Ψ to obtain multi type O and type derivations

Ξ ▷O Π′ ⊢(m′
1,e

′
1,r

′
1) v :O

Ω ▷O Π′′;x : (N ⊎O) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :M

such that Π = Π′
⊎

Π′′ and (m′1 +m′′1, e
′
1 + e′′1, r

′
1 + r′′1) = (m1, e1 + 1, r1). Next, we

apply Lemma 13.4.13 (Merging multi types of Open CbNeed type derivations) on Ξ
and Θ to obtain

Z ▷O Π′
⊎

∆ ⊢(m′
1+m2,e′1+e2,r′1+r2) v :N ⊎O

Finally, the statement follows by deriving Φ′ as follows:

Ω Z (N ⊎O) ̸= 0

Π′′
⊎

Π′
⊎

∆ ⊢(m′′
1+m′

1+m2,e′′1+e′1+e2,r′′1+r′1+r2) Q⟨x⟩@[x←v] :M
ES

where Π′′
⊎
Π′
⊎
∆ = Π

⊎
∆ = Γ and

(m′′1 +m′1 +m2, e′′1 + e′1 + e2, r
′′
1 + r′1 + r2)

= (m1 +m2, r1 + r2, (e1 + 1) + e2)
= (m, r, e+ 1)

– Let Φ be of the form
Ψ ▷O Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(x) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[x←v] :M
ESgc

By application of Lemma 7.1.10.2 (Linear Removal for Open CbNeed - exponential
case) on Ψ, there exist multi type O ̸= 0 and type derivations

Θ ▷O Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M
Ξ ▷O ∆ ⊢(m′′,e′′,r′′) v :O

such that Γ = Π
⊎

∆ and (m, e+ 1, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Therefore, we can derive Φ′ as follows:

Θ ▷O Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M Ξ ▷O ∆ ⊢(m′′,e′′,r′′) v :O O ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ESgc

• Suppose P is derived as

Q ∈ EW y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

where P = Q⟨y⟩@[y←H] and V =W ∪ nv(H). But then x /∈ dom(P), which is absurd.

260

(Click here to go back to main chapter.)

Theorem 13.4.16 (Tight Completeness for Open CbNeed).
Let p ∈ PR. If there exists d : p −→∗ond q for some q ∈ PR in →ond-normal form, then there

exists a tight type derivation Φ ▷O Γ ⊢(|d|m,|d|e,|q|nd) p :M such that dom(Γ) = nv(q).

Proof. (Click here to go back to main chapter.)
By induction on the length |d| of the reduction sequence d : p −→∗ond q:
• Base case: Let k := 0. Then p is in →ond-normal form and p = q. The statement follows

by application of Proposition 7.1.9 (Tight typability of Open CbNeed-normal forms), which
yields a tight type derivation Φ ▷O Γ ⊢(0,0,|p|nd) t :M such that dom(Γ) = nv(p).

• Inductive case: Let k > 0. That is, d is of the following form

d : p →ond r →k−1
ond q︸ ︷︷ ︸
d′

By i.h., there exists tight type derivation

Ψ ▷O Γ ⊢(|d′|m,|d′|e,|q|nd) r :M

such that dom(Γ) = nv(p). We proceed by case analyis on the kind of reduction step in
p→ond r:

– Multiplicative step: Let p→om r. By Proposition 7.1.12.1 (Quantitative Subject Expan-
sion for Open CbNeed - Multiplicative), there exists (tight) type derivation

Ψ′ ▷O Γ ⊢(|d′|m+1,|d′|e,|q|nd) p :M

Therefore, the statement follows by taking Φ := Ψ′, noting in particular that

(|d′|m + 1, |d′|e, |q|nd) = (|d|m, |d|e, |q|nd)

– Exponential step: Let p→oe r. By Proposition 7.1.12.2 (Quantitative Subject Expansion
for Open CbNeed - Exponential), there exists (tight) type derivation

Ψ′ ▷O Γ ⊢(|d′|m,|d′|e+1,|q|nd) p :M

Therefore, the statement follows by taking Φ := Ψ′, noting in particular that

(|d′|m, |d′|e + 1, |q|nd) = (|d|m, |d|e, |q|nd)

(Click here to go back to main chapter.)

261

13.5 Proofs of Chapter 8 (Useful Open CbNeed)
13.5.1 The usefulness criterion
For proving Proposition 8.1.3 (Usefulness of exponential steps), we first need to characterize the
shape of exponential in a very practical way, in the specific terms required for proving Proposi-
tion 8.1.3. That is, we need the following

Lemma 13.5.1 (Characterization of exponential evaluation contexts).
Let P ∈ E@U ,A be an exponential evaluation context. Then P has one of the following three forms:

1. P = (H, E), where
(a) H = J ⟨⟨·⟩ u⟩ is an applicative term context, for some term context J and u ∈ Λ.
(b) Q = (J , E) ∈ EU ,A.
(c) The derivation of P ∈ E@U ,A has no applications of rule ENL.

2. P = (t, E [z←H]E ′), where
(a) H = J ⟨⟨·⟩ u⟩ is an applicative term context, for some term context J and u ∈ Λ.
(b) Q = (t, E [z←J]E ′) ∈ EU ,A.
(c) The derivation of P ∈ E@U ,A has no applications of rule ENL.

3. P = (t, E [z←⟨·⟩]E ′), where
(a) There exists exponential evaluation context Q ∈ E@V,B such that (t, E) = Q⟨z⟩ and such

that for every v ∈ Val, R := Q@[z←v]E ′ ∈ E@U ,A.
(b) The number of applications of rule ENL in the derivation of P ∈ E@U ,A is the number of

applications of rule ENL in the derivation of Q ∈ E@V,B plus 1. The same relation holds
between the derivations of P ∈ E@U ,A and of R ∈ E@U ,A.

Proof.
By induction on P ∈ E@U ,A. Cases:
• Base rule EAX1 : then we are in the first case.
• Base rule EAX2 : then we are in the second case.
• Inductive rules EI, EVAR, EGC, and EU: they simply preserve the case given by the i.h..
• Inductive rule ENL: then P = P1⟨x⟩@[x←⟨·⟩] and it is derived as follows:

P1 ∈ E@U ,A x /∈ (U ∪ A)
P1⟨x⟩@[x←⟨·⟩] ∈ E@U ,A

ENL

By i.h., P1 has one of the 3 shapes in the statement. If it is the first or the second then we
end up in the third case (details similar to the next case, that is the more interesting one).
If it is the third case, then P1 = (t, E1[z←⟨·⟩]E ′1) and (t, E1) = Q1⟨z⟩ for some Q1 ∈ E@V,B
such that R1 := Q1@([z←v]E ′1) ∈ E@U ,A for every value v. Now note that by taking Q := P1,
E := E1[z←x]E ′1, and E ′ := ϵ we do satisfy the statement because we have

Q ∈ E@U ,A x /∈ (U ∪ A)
Q@[x←v] ∈ E@U ,A

EGC

as required, and that the number of ENL in the derivation of P ∈ E@U ,A is 1 plus the number in
the derivation of Q ∈ E@U ,A.

262

Proposition 13.5.2 (Usefulness of exponential steps).
Let p = P ⟨x⟩ →ue P ⟨vα⟩ = q with P ∈ E@U ,A and P (x) = v. Then there exists r ∈ PR and

reduction sequence d : q →k
ue→um r such that

1. the evaluation context of each →ue steps in d is in E@U ,A, and the one of →um is in EU ,A.
2. k ≥ 0 is the number of ENL rules in the derivation of P ∈ E@U ,A.

Proof. (Click here to go back to main chapter.)
Let p = P ⟨x⟩ →ue P ⟨vα⟩ = q with P ∈ E@U ,A and P (x) = v. The proof is by induction on the

derivation of P ∈ E@U ,A. Cases:
• Rules EAX1 ,EAX2 , and ENL: impossible, because if P = (H, ϵ), P = Q⟨x⟩@[x←H], or P =

Q⟨x⟩@[x←⟨·⟩] then P (x) = ⊥, against hypothesis.
• Rule EI: then P = Q@[y←t] and it is derived as follows:

Q ∈ E@V,B y ∈ (V ∪ B) uinert(t)

Q@[y←t] ∈ E@(V\{y})∪u(t),(B\{y})∪a(t)
EI

with U = (V\{y}) ∪ u(t) and A = (B\{y}) ∪ a(t). Note that x ̸= y because P (x) is not
an inert term. Let q′ := Q⟨x⟩. By i.h., there exists d′ : q′ →k

ue→um r′ as in the statement.
Let the evaluation context of each →ue-step in d′ be Que,1, ..., Que,k ∈ E@V,B, and let the →um-
step in d′ be Qum ∈ EV,B. We can derive the evaluation contexts of each →ue-step in d, say
Pue,1, ..., Pue,1 ∈ E@V,B, and the evaluation context of the →um in d, Pum by applying the EI rule
obtaining a derivation d′ : q = q′@[x←t]→k

ue→um r′@[x←t] as in the statement.
• Rule EVAR: exactly as the previous one.
• Rule EGC: then P = Q@[y←t] and it is derived as follows:

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←t] ∈ E@U ,A

EGC

If x ̸= y then it goes as in the previous case. Otherwise, t = v and q = Q⟨vα⟩@[x←v]. By
Lemma 13.5.1, Q has one of the following three forms:

1. Q = (H, E), where H is applicative, that is H = J ⟨⟨·⟩u⟩ for some term u, and
R := (J , E) ∈ EU ,A. Then q = Q⟨vα⟩ = R⟨vαt⟩ is a multiplicative redex in a useful
multiplicative context, and so q →um r for some r. As required by the statement, the
lemma gives also that there are no ENL rules in Q, and thus in P .

2. Q = (t, E[z←H]E ′), where H is applicative. It goes as in the previous case.
3. Q = (t, E[z←⟨·⟩]E ′) and (t, E) = R⟨z⟩ for some R ∈ E@V,B having one less ENL rule than

Q and such that C ′′1 := Q@([z←w]E ′) ∈ E@U ,A for every value w. Now, consider taking w
as vα and note that

q′ := Q⟨vα⟩ = R⟨z⟩@([z←vα]E ′)→ue R⟨vα⟩@([z←vα]E ′) =: q′′

By i.h., there exists d′ : q′′ →k′
ue→um r′ for some r′, where k′ is the number of ENL in

Q and the evaluation contexts satisfy the statement. Then we can apply rule EGC to
all these evaluation contexts, and to Q as well, obtaining the following derivation, that
satisfies the statement.

d : q = q′@[x←v] →ue q′′@[x←v] →k′

ue→um r′@[x←v]

• Rule EU: exactly as the previous one.

(Click here to go back to main chapter.)

263

13.5.2 Characterizing Useful Open CbNeed-normal forms.
Lemma 13.5.3 (Unapplied, applied, and needed variables).

1. Terms: nv(t) = u(t) ∪ a(t) for every t ∈ Λ.
2. Programs: nv(p) = u(p) ∪ a(p) for every p ∈ PR.

Proof. (Click here to go back to main chapter.)
1. Terms: By induction on the shape of t:

• Let t = x. Then nv(t) = {x} = {x} ∪ ∅ = u(t) ∪ a(t).
• Let t = λx.u. Then nv(t) = ∅ = u(t) ∪ a(t).
• Let t = sm. We do case analysis on the shape of s:

– Let s = x. Then nv(t) = nv(s) ∪ nv(m) = {x} ∪ nv(m) =i.h. {x} ∪ (u(m) ∪ a(m)) =
u(m) ∪ ({x} ∪ a(m)) = u(t) ∪ a(t).

– Let s ̸= x. Then nv(t) = nv(s) ∪ nv(m) =i.h. (u(s) ∪ a(s)) ∪ (u(m) ∪ a(m)) =
(u(s) ∪ u(m)) ∪ (a(s) ∪ a(m)) = u(t) ∪ a(t).

2. Programs: Let p = (t, E). We proceed by induction on the lenght of E:
• Let E = ϵ. By Lemma 8.1.1.1 (Unapplied, applied and needed variabless), we have that

nv(t) = u(t) ∪ a(t), and so nv(t, ϵ) = nv(t) = u(t) ∪ a(t) = u(t, ϵ) ∪ a(t, ϵ).
• Let E = E ′[x←u]. We proceed by case analysis on x ∈ nv(t, E ′):

– Let x ∈ nv(t, E ′). Then, nv(t, E ′[x←u]) = (nv(t, E ′) \ {x}) ∪ nv(u), nv(t, E ′) =
u(t, E ′)∪ a(t, E ′)—by i.h.—and nv(u) = u(u)∪ a(u)—by Lemma 8.1.1.1 (Unapplied,
applied and needed variables). That is,

nv(t, E ′[x←u]) = ((u(t, E ′) ∪ a(t, E ′)) \ {x}) ∪ (u(u) ∪ a(u))

We proceed by case analysis on the shape of u and on how x ∈ nv(t, E ′) = u(t, E ′)∪
a(t, E ′):

∗ Let u = y and x ∈ (u(t, E ′) \ a(t, E ′)). Then x /∈ a(t, E ′) and a(u) = ∅, so that
((u(t, E ′) ∪ a(t, E ′)) \ {x}) ∪ (u(u) ∪ a(u))

= ((u(t, E ′) \ {x}) ∪ u(u)) ∪ a(t, E ′)
= u(t, E ′[x←u]) ∪ a(t, E ′[x←u])

∗ Let u = y and x ∈ (a(t, E ′) \ u(t, E ′)). Then x /∈ u(t, E ′), u(u) = {y}, and
a(u) = ∅, so that

((u(t, E ′) ∪ a(t, E ′)) \ {x}) ∪ (u(u) ∪ a(u))
= u(t, E ′) ∪ ((a(t, E ′) \ {x}) ∪ {y})
= u(t, E ′[x←u]) ∪ a(t, E ′[x←u])

∗ Let u = y, x ∈ u(t, E ′) and x ∈ a(t, E ′). Then,
((u(t, E ′) ∪ a(t, E ′)) \ {x}) ∪ (u(u) ∪ a(u))

= (u(t, E ′) \ {x}) ∪ (a(t, E ′) \ {x}) ∪ {y}
= ((u(t, E ′) \ {x}) ∪ {y}) ∪ ((a(t, E ′) \ {x}) ∪ {y})
= u(t, E ′[x←u]) ∪ a(t, E ′[x←u])

∗ Let u ̸= y. Then by definition u(t, E ′[x←u]) = (u(t, E ′) \ {x}) ∪ u(u) and
a(t, E ′[x←u]) = (a(t, E ′) \ {x}) ∪ a(u). Thus,

((u(t, E ′) ∪ a(t, E ′)) \ {x}) ∪ (u(u) ∪ a(u))
= ((u(t, E ′) \ {x}) ∪ u(u)) ∪ ((a(t, E ′) \ {x}) ∪ a(u))
= u(t, E ′[x←u]) ∪ a(t, E ′[x←u])

264

– Let x /∈ nv(t, E ′). The i.h. gives nv(t, E ′) = u(t, E ′) ∪ a(t, E ′) and by definition
a(t, E ′[x←u]) = a(t, E ′) and u(t, E ′[x←u]) = u(t, E ′). Hence,

nv(t, E ′[x←u]) = nv(t, E ′)
=i.h. u(t, E ′) ∪ a(t, E ′)
= u(t, E ′[x←u]) ∪ a(t, E ′[x←u])

(Click here to go back to main chapter.)

Lemma 13.5.4 (Term contexts: Unapplied, applied and needed variables).
Let H be a term context. Then nv(H) = u(H) ∪ a(H).

Proof. (Click here to go back to main chapter.)
By structural induction on H: the base case is trivial, while the inductive ones easily follow

from the i.h. and Lemma 8.1.1.1 (Unapplied, applied and needed variables).

(Click here to go back to main chapter.)

Lemma 13.5.5 (Disjointness of generalized variables, useful abstraction programs and useful inert
programs).

For every p ∈ PR, at most one of the following holds:
i) genVar#(p),

ii) uabs(p), or
iii) uinert(p).

Proof. (Click here to go back to main chapter.)
Let p = (t, E). We proceed by induction on |E|:
• Base case: Let E := ϵ. The statement follows by the fact that the base derivation rules for

genVar.(), uabs(.) and uinert(.) can only be applied to pairwise syntactically distinct Λ-terms.
• Inductive case: Let E := E ′[y←u]. By i.h., (t, E ′) can satisfy at most one of the three

predicates. The proof proceeds by assuming that genVart(E
′[y←u],) (resp. uabs(t, E ′[y←u])

; uinert(t)E ′[y←u]), and then proving that the other predicates cannot hold for (t, E ′[y←u]).
We avoid the repetitive work here, since every case follows from the i.h. and the fact that each
derivation rule for each of the predicates takes as premise the specific syntactical category of
u.

(Click here to go back to main chapter.)

Lemma 13.5.6 (Properties of useful inert terms).
Let i+ be a non-variable inert term. Then |i+|nd ≥ 1 and a(i+) ̸= ∅.

Proof. (Click here to go back to main chapter.)
The fact that a(i+) ̸= ∅ can be easily proven by induction on the structure of i+, while |i+|nd ≥ 1

simply follows by the fact that i+ is an application Λ-term.

(Click here to go back to main chapter.)

265

Lemma 13.5.7 (Properties of generalized variables).
Let genVarx(p). Then |p|nd = 0, nv(p) = u(p) = {x} and a(p) = ∅.

Proof. (Click here to go back to main chapter.)
We proceed by induction on the derivation of genVarx(p):
• If p = (x, ϵ) then the statement clearly follows.
• Let genVarx(p) be derived as follows

genVary(q)

genVarx(q@[y←x])
GVHER

By i.h. on q, nv(q) = u(q) = {y}, a(q) = ∅ and |q|nd = 0. The statement follows easily.
• Let genVarx(p) be derived as follows

genVarx(q) y ̸= x

genVarx(q@[y←t])
GVGC

By i.h. on q, nv(q) = u(q) = {x}, a(q) = ∅ and |q|nd = 0. The statement follows easily.

(Click here to go back to main chapter.)

Lemma 13.5.8 (Properties of useful abstraction programs).
Let uabs(p). Then |p|nd = 0 and nv(p) = u(p) = a(p) = ∅.

Proof. (Click here to go back to main chapter.)
By induction on the derivation of uabs(p):
• The statement holds trivially if p = (v, ϵ).
• Let uabs(p) be derived as

genVarx(q)

uabs(q@[x←v])
AGV

with p = q@[x←v]. Note that nv(q@[x←v]) = nv(v)—by Lemma 8.2.4 (Properties of gener-
alized variables)—and so |q@[x←v]|nd = |q|nd + |v|nd. We do case analysis on the last typing
rule in Φ:

– Let Φ ▷U Γ ⊢(m,e,r) p :M be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). By application of the i.h.
on Ψ, it must be that Φ is of the form

Ψ ▷U x :M ⊢(0,0,|q|nd) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :M

∆ ⊢(m′′,e′′,|q|nd+r′′) q@[x←v] :M
ES

Since M ∈ Tight by hypothesis, we can apply the i.h. on Θ to obtain that Θ▷U∆ ⊢(0,0,|t|nd)
v :M , with dom(∆) = nv(v) and tight(∆). Thus, Φ satisfies the statement.

266

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←v] :M
ESgc

However, an application of the i.h. on Ψ followed by an application of Lemma 8.2.4
(Properties of generalized variables) would yield that x ∈ dom(Γ), which makes this case
absurd.

• Let uabs(p) be derived as
uabs(q)

uabs(q@[x←t])
GVGC

with p = q@[x←t]. Note that nv(q@[x←t]) = nv(q) and so |q@[x←t]|nd = |q|nd. We proceed
by induction on the last typing rule in Φ:

– Suppose Φ is of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] :M
ES

However, an application of the i.h. on Ψ together with an application of Lemma 8.2.5
(Properties of useful abstraction programs) would yield that y /∈ dom(Π;x :N) = ∅. This
would mean that N = 0, making this case absurd.

– Let Φ be derived as
Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←t] :M
ESgc

The statement then holds by i.h. on Ψ.

(Click here to go back to main chapter.)

Lemma 13.5.9 (Properties of useful inert programs).
Let uinert(p). Then |p|nd ≥ 1 and a(p) ̸= ∅.

Proof. (Click here to go back to main chapter.)
We proceed by induction on the derivation of uinert(p):
• If uinert(p) is derived as

uinert(i+, ϵ)
ILift

with p = (i+, ϵ), then the statement follows by application of Lemma 8.2.3 (Properties of
useful inert terms) on i+.

• Let uinert(p) be derived as
uinert(q) x ∈ nv(q)

uinert(q@[x←i])
II

with p = q@[x←i]. By i.h. on q, a(q) ̸= ∅ and |q|nd ≥ 1. Note that then |p|nd ≥ |q|nd ≥ 1.
Note that if i ∈ Var, then the statement follows easily. Let i be a non-variable inert Λ-term.
Recall that x ∈ nv(q), and so by application of Lemma 8.2.3 (Properties of useful inert terms),
we can conclude that a(p) = a(q) ∪ a(i) ⊇ a(i) ̸= ∅, |p|nd = |q|nd + |i|nd ≥ |i|nd ≥ 1.

267

• Let uinert(p) be derived as
genVarx(q)

uinert(q@[x←i+])
IGV

with p = q@[x←i+]. By Lemma 8.2.4 (Properties of generalized variables) on q, nv(q) =
u(q) = {x}, a(q) = ∅ and |q|nd = 0. By Lemma 8.2.3 (Properties of useful inert terms) on i+,
a(i+) ̸= ∅, |i+|nd ≥ 1, and i+ is a non-variable inert Λ-term.
Therefore, the statement holds for p by noting that a(p) = (a(q) \ {x}) ∪ a(t) ≥ a(t) ̸= ∅,
|p|nd = |q|nd + |t|nd ≥ |t|nd ≥ 1.

• Let uinert(p) be derived as
uinert(q) x ∈ ul (q)

uinert(p@[x←v])
IU

with p = q@[x←v]. Note that x ∈ nv(q)—by Lemma 8.1.1.2 (Unapplied, applied and needed
variables). By i.h. on q, a(q) ̸= ∅, |q|nd ≥ 1.
Therefore, we have that a(p) = (a(q) \ {x})∪ a(v) = a(q) ̸= ∅, |p|nd = |q|nd + |v|nd ≥ |q|nd ≥ 1.

• Let uinert(p) be derived as
uinert(q) x /∈ nv(q)

uinert(q@[x←t])
IGC

with p = q@[x←t]. By i.h. on q, a(q) ̸= ∅ and |q|nd ≥ 1. Thus, a(p) = a(q) ̸= ∅, |p|nd =
|q|nd ≥ 1.

(Click here to go back to main chapter.)

Lemma 13.5.10 (Rewriting: term contexts).
1. Focusing inert terms on unapplied variables: Let i be an inert term and let x ∈ u(i). Then

there exists term context Hx such that Hx⟨x⟩ = i, with x /∈ u(Hx) ⊂ u(i) and a(Hx) ⊆ a(i).
2. Focusing term contexts on unapplied varables: Let H be a term context and x ∈ u(H). Then

for every t ∈ Λ there exists a term context Ht such that Ht⟨x⟩ = H⟨t⟩, with x /∈ u(Ht) ⊂ u(H)
and x /∈ a(Ht) ⊆ a(H).

Proof.
1. Focusing inert terms on unapplied variables: By structural induction on i:

• Variable: The statement holds by taking H := ⟨·⟩.
• Application: Let i = jn. If x ∈ j then the i.h. gives a term context J such that
J ⟨x⟩ = i, with x /∈ u(J) ⊂ u(j) and x /∈ a(J) ⊆ a(j). The statement thus holds by
taking H := J n.
If instead x /∈ j, then x ∈ n. This means that n is itself an inert Λ-term, allowing us to
apply the i.h. to get a term context J such that J ⟨x⟩ = n, with x /∈ u(J) ⊂ u(i) and
x /∈ a(J) ⊆ a(i). The statement thus holds by taking H := jJ .

2. Focusing term contexts on unapplied variables: Let t ∈ Λ. We proceed by structural induction
on H:

• Empty context: This case is impossible.
• Application left: Let H := J u. Then x ∈ u(J) and so application of the i.h. gives a

term context Jt such that Jt⟨x⟩ = J ⟨t⟩, with x /∈ u(Jt) ⊂ u(J) and x /∈ a(Jt) ⊆ a(J).
The statement then holds by taking Ht := Jtu.

• Application right: Let H := iJ . Case analysis on whether x ∈ nv(i):

268

– Let x ∈ nv(i). Then Lemma 13.5.10.1 (Focusing inert terms on unapplied variables)
gives a term context Ix such that Ix⟨x⟩ = i, with x /∈ u(Ix) ⊂ u(i) and x /∈ a(Ix) ⊆
a(i). The statement thus holds by taking Ht := IxJ ⟨t⟩, noting that Ht⟨x⟩ =
Ix⟨x⟩J ⟨t⟩ = iJ ⟨t⟩ = H⟨t⟩, x /∈ u(Ix) ⊂ u(Ht), and x /∈ a(Ix) ⊆ a(Ht).

– Let x /∈ nv(i). Then it must be that x ∈ nv(J), and so we can apply the i.h.
to get a term context Jt such that Jt⟨x⟩ = J ⟨t⟩, with x /∈ u(Jt) ⊂ u(J) and
x /∈ a(Jt) ⊆ a(J). The statement thus holds by taking Ht := iJt, noting that
Ht⟨x⟩ = iJt⟨x⟩ = iJ ⟨t⟩ = H⟨t⟩, x /∈ u(Ht) = u(i) ∪ u(Jt) ⊂ u(i) ∪ u(J) = u(H),
and x /∈ a(Ht) = a(i) ∪ a(Jt) ⊆ a(i) ∪ a(J) = a(H).

Lemma 13.5.11 (Rewriting: applicative term contexts).
1. Applicative term contexts give applied variables: Let H@ be an applicative term context and

x ∈ Var. Then x ∈ a(H@⟨x⟩).
2. Focusing useful inert terms on applied variables: Let i+ be a useful inert term and x ∈ a(i+).

Then there exists an applicative term context H@
x such that H@

x ⟨x⟩ = i+, with u(H@
x) ⊆ u(i+)

and x /∈ a(H@
x) ⊂ a(i+).

3. Focusing term contexts on applied variables: Let x ∈ a(H). Then for every t ∈ Λ there
exists an applicative term context H@

t such that H@
t ⟨x⟩ = H⟨t⟩, with u(H@

t) ⊆ u(H) and
x /∈ a(H@

t) ⊂ a(H).

Proof.
1. Applicative term contexts give applied variables: By structural induction on H@:

• Base case: If H@ = ⟨·⟩t then x ∈ ({x} ∪ a(t)) = a(xt) = a(H@⟨x⟩).
• Application left: Let H@ := J @t. By i.h., x ∈ a(J @⟨x⟩) and so x ∈ a(J @⟨x⟩) ∪ a(t) =

a(H⟨x⟩).
• Application right: Let H@ := iJ @. By i.h., x ∈ a(J @⟨x⟩) and so x ∈ a(i) ∪ a(J @⟨x⟩) =

a(H⟨x⟩).
2. Focusing useful inert terms on applied variables: By structural induction on i+ := jn. Note

that if j = x then the statement holds by taking H@ := ⟨·⟩n. Let j be a useful inert Λ-term.
We proceed by case analysis on whether x ∈ a(i+):

• If x ∈ a(j), then j is a useful inert term. By application of the i.h., we obtain an
applicative term context J @

x such that j = J @
x ⟨x⟩, with u(J @

x) ⊆ u(j) and x /∈ a(J @
x) ⊂

a(j); thus, the statement holds by taking H@ := J @n.
• Let x /∈ a(j). This means that x ∈ a(n), which in turn means that n is a useful inert

term. By i.h., there exists an applicative term context J @ such that n = J @
x ⟨x⟩, with

u(J @
x) ⊆ u(n) and x /∈ a(J @

x) ⊆ a(n); thus, the statement holds by taking H@
x := jJ @

x ,
since H@

x ⟨x⟩ = jJ @
x ⟨x⟩ = jn = i+, u(H@

x) = u(j) ∪ u(J @
x) ⊆ u(j) ∪ u(n) = u(i+),

x /∈ a(j) ∪ a(J @
x) = a(H@

x) ⊂ a(j) ∪ a(n) = a(i+).
3. Focusing term contexts on applied variables: Let t ∈ Λ. We proceed by structural induction

on H:
• Context hole: Impossible.
• Application left: Let H := J u. Since then x ∈ a(H) = a(J), we can apply the i.h.

and get an applicative term context J @
t such that J @

t ⟨x⟩ = J ⟨t⟩, with u(J @
t) ⊆ u(J)

and x /∈ a(J @
t) ⊂ a(J). The statement holds by taking H@ := J @u, and noting that

H@
t ⟨x⟩ = J @

t ⟨x⟩t = J ⟨t⟩u = H⟨t⟩, u(H@
t) = u(J @

t) ⊆ u(J) = u(H), and x /∈ a(J @
t) =

a(H@
t) ⊂ a(J) = a(H).

269

• Application right: Let H := iJ . We proceed by case analysis on whether x ∈ a(i):
– If x ∈ a(i), then i is a useful inert term. By application of Lemma 13.5.11.2 (Focusing

useful inert terms on applied variables) on i, we get an applicative term context J @
x

such that J @
x ⟨x⟩ = i, with u(J @

x) ⊆ u(i) and x /∈ a(J @
x) ⊂ a(i). The statement

holds by taking H@
t := J @

x J ⟨t⟩, since then H@
t ⟨x⟩ = (J @⟨x⟩)J ⟨t⟩ = iJ ⟨t⟩ = H⟨t⟩,

u(H@
t) = u(J @

x) ⊆ u(i) ⊆ u(i) ∪ u(J) = u(H) and x /∈ a(J @
x) = a(H@

t) ⊆ a(i) ⊂
a(i) ∪ a(J) = a(H).

– Let x /∈ a(i). Then it must be that x ∈ a(J) and so the i.h. gives an ap-
plicative term context J @

t such that J @
t ⟨x⟩ = J ⟨t⟩, with u(J @

t) ⊆ u(J) and
x /∈ a(J @

t) ⊂ a(J). The statement holds by taking H@
t := iJ @

x , since then
H@

t ⟨x⟩ = iJ @
x ⟨x⟩ = iJ ⟨t⟩ = H⟨t⟩, u(H@

t) = u(i) ∪ u(J @
x) ⊆ u(i) ∪ u(J) = u(H) and

x /∈ a(i) ∪ a(J @
x) = a(H@

t) ⊂ a(i) ∪ a(J) = a(H).

Lemma 13.5.12 (Rewriting evaluation contexts: base cases).
1. Multiplicative evaluation contexts give needed variables: Let P ∈ EU ,A and x /∈ dom(P).

Then x ∈ nv(P ⟨x⟩).
2. Exponential evaluation contexts give applied variables: Let P ∈ E@U ,A and x /∈ dom(P). Then

x ∈ a(P ⟨x⟩).
3. Focusing multiplicative evaluation contexts on unapplied variables: Let P ∈ EU ,A and x ∈ U .

Then for every t ∈ Λ there exists multiplicative evaluation context Pt ∈ EUt,At such that
Pt⟨x⟩ = P ⟨t⟩, x /∈ Ut ⊂ U , and x /∈ At ⊆ A.

4. Exponential evaluation contexts are multiplicative: Let P ∈ E@U ,A. Then P ∈ EV,B, for some
V ⊆ U and B ⊆ A.

Proof.
1. Easily provable by induction on P ∈ E@U ,A. The only cases that are not provable by direct

application of the i.h. are the following:
• If P = (H@, ϵ) ∈ E@u(H@),a(H@)

, then the statement holds by application of Lemma 13.5.11.1
(Applicative term contexts give applied variables).

• Let P ∈ E@U ,A be derived as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

where P = Q⟨y⟩@[y←H@], U = V ∪ u(H@) and A = B ∪ a(H@). First, note that
y ∈ a(Q⟨y⟩)—by i.h.—and so y ∈ nv(Q⟨y⟩)—by Lemma 8.1.1.2 (Unapplied, applied and
needed variables). Moreover, note that x ∈ a(H@⟨x⟩)—by Lemma 13.5.11.1 (Applicative
term contexts give applied variables). Therefore, Definition 36 (Applied variables) gives
that x ∈ a(P ⟨x⟩) = (a(Q⟨y⟩) \ {y}) ∪ a(H@⟨x⟩).

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,A x /∈ A
Q⟨y⟩@[y←⟨·⟩] ∈ E@V\{y},A

ENL

where P = Q⟨y⟩@[y←⟨·⟩] and U = V \ {y}. By i.h., y ∈ a(Q⟨y⟩), and so y ∈ nv(Q⟨y⟩)—
by Lemma 8.1.1.2 (Unapplied, applied and needed variables). Therefore, Definition 36
(Applied variables) gives that x ∈ a(P ⟨x⟩) = (a(Q⟨y⟩) \ {y}) ∪ {x}.

270

2. Let x ∈ U and t ∈ Λ. We proceed by case analysis on the last derivation rule in P ∈ EU ,A:
• Let P ∈ EU ,A be derived as follows

(H, ϵ) ∈ Eu(H),a(H)
MAX

with P = (H, ϵ), U = u(H) and A = a(H). Since x ∈ u(H) ⊆ nv(H)—by Lemma 8.1.2
(Term contexts: Unapplied, applied and needed variables)—then by Lemma 13.5.10.2
(Focusing term contexts on unapplied variables) there exists Ht such that Ht⟨x⟩ = H⟨t⟩,
with x /∈ u(Ht) ⊂ u(H) and x /∈ a(Ht) ⊆ a(H). The statement then follows by taking
Pt = (Ht, ϵ).

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←z] ∈ Eupd(V,y,z),upd(B,z,x̃)

MVAR

with P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). The statement follows by
i.h. on Q, yielding a Qt ∈ EUt,At and finally deriving Pt by an application of MVAR (resp.
MGC) if y ∈ (Ut ∪ At) (resp. if y /∈ (Ut ∪ At)).

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←i+] ∈ E(V\{y})∪u(i+),(B\{y})∪a(i+)

MI

with P = Q@[y←i+], U = (V \ {y}) ∪ u(i+) and A = (B \ {y}) ∪ a(i+). The statement
follows by i.h. on Q, yielding a Qt ∈ EUt,At and finally deriving Pt by an application of
MI (resp. MGC) if y ∈ (Ut ∪ At) (resp. if y /∈ (Ut ∪ At)).

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q@[y←s] ∈ EU ,A

MGC

with P = Q@[y←s]. The statement follows by i.h. on Q and finally deriving Pt by an
application of MGC.

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V \ B)
Q@[y←v] ∈ EV\{y},B

MU

with P = Q@[y←v], U = V \ {y} and A = B. The statement follows by i.h. on Q,
yielding a Qt ∈ EUt,At and finally deriving Pt by an application of MU (resp. MGC) if
y ∈ (Ut \ At) (resp. if y /∈ (Ut \ At)).

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨z⟩@[y←H] ∈ EV∪u(H),B∪a(H)

MHER

with P = Q⟨z⟩@[y←H], U = V ∪ u(H) and A = B ∪ a(H). The statement follows by
Lemma 13.5.10.2 (Focusing term contexts on unapplied variables) on H, yielding a term
context Ht and finally deriving Pt by an application of MHER combining Q and Ht.

271

3. Exponential evaluation contexts are multiplicative: By induction on the derivation of P ∈ E@U ,A:
• Let P ∈ E@U ,A be derived as

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

with P = (H@, ϵ), U = u(H@) and A = a(H@). The statement simply follows by the
fact that H@ is a term context.

• Let P ∈ E@U ,A be derived as

Q ∈ EW,C x /∈ (W ∪ C)
Q⟨x⟩@[x←H@] ∈ E@W∪u(H@),C∪a(H@)

EAX2

where P = Q⟨x⟩@[x←H@], U = W ∪ u(H@) and A = C ∪ a(H@). Since H@ is a term
context, we get that

Q ∈ EW,C x /∈ (W ∪ C)
Q⟨x⟩@[x←H@] ∈ EW∪u(H@),C∪a(H@)

MHER

• Let P ∈ E@U ,A be derived as

Q ∈ E@W,C x ∈ (W ∪ C)
Q@[x←y] ∈ E@upd(W,x,y),upd(C,x,y)

EVAR

where P = Q@[x←y], U = upd(W , x, y) and A = upd(C, x, y). By i.h., Q ∈ EW̃,C̃ for
some W̃ ⊆ W and C̃ ⊆ C. Case analysis on whether x ∈ (W̃ ∪ C̃):

– Let x ∈ (W̃ ∪ C̃). Then we can derive Q@[x←y] ∈ Eupd(W̃,x,y),upd(C̃,x,y) via rule MVAR.
– Let x /∈ (W̃ ∪ C̃). Then we can derive Q@[x←y] ∈ EW̃,C̃ via rule MGC.

• Let P ∈ E@U ,A be derived as

Q ∈ E@W,C x ∈ (W ∪ C)
Q@[x←i+] ∈ E@(W\{x})∪u(i+),(C\{x})∪a(i+)

EI

where P = Q@[x←i+], U = (W \ {x}) ∪ u(i+) and A = (C \ {x}) ∪ a(i+). By i.h.,
Q ∈ EW̃,C̃ for some W̃ ⊆ W and C̃ ⊆ C. Case analysis on whether x ∈ (W̃ ∪ C̃):

– Let x ∈ (W̃ ∪ C̃). Then we can derive Q@[x←i+] ∈ E(Ṽ\{x})∪u(i+),(B̃\{x})∪a(i+) via rule
MI.

– Let x /∈ (W̃ ∪ C̃). Then we can derive Q@[x←i+] ∈ EW̃,C̃ via rule MGC. Note that
W̃ = W̃ \ {x} ⊆ (W \ {x}) ⊆ (W \ {x}) ∪ u(i+) = U and, similarly, C̃ ⊆ A.

• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A x /∈ (U ∪ A)
Q@[x←t] ∈ E@U ,A

EGC

where P = Q@[x←t]. By i.h., Q ∈ E@Ũ ,Ã for some Ũ ⊆ U and Ã ⊆ A, and we can derive
Q@[x←t] ∈ EŨ ,Ã via rule MGC.

272

• Let P ∈ E@U ,A be derived as

Q ∈ E@W,C x ∈ (W \ C)
Q@[x←v] ∈ E@W\{x},C

EU

where Q = P@[x←v], U = W \ {x} and A = C. By i.h., Q ∈ EW̃,C̃ for some W̃ ⊆ W
and C̃ ⊆ C . Case analysis on whether x ∈ (W̃ \ C̃):

– Let x ∈ (W̃ \ C̃). Then we can derive Q@[x←t] ∈ EW̃\{x},C̃ via rule MU.
– Let x /∈ (W̃ \ C̃). Then we can derive Q@[x←t] ∈ EW̃,C̃ via rule MGC.

• Let P ∈ E@U ,A be derived as

P ∈ E@W,C x /∈ C
P ⟨x⟩@[x←⟨·⟩] ∈ E@W\{x},C

ENL

where P = P ⟨x⟩@[x←⟨·⟩], U =W \{x} and A = C. By i.h., P ∈ EW̃,C̃ for some W̃ ⊆ W
and C̃ ⊆ C. Case analysis on whether x ∈ W̃ :

– Let x ∈ W̃ . By Lemma 13.5.12.3 (Focusing multiplicative evaluation contexts on
unapplied variables), there exists Px ∈ EW̃ ′,C̃′ such that Px⟨x⟩ = P ⟨x⟩, with x /∈
W̃ ′ ⊂ W̃ and x /∈ C̃ ′ ⊆ C̃. Hence, we can derive

Px ∈ EW̃ ′,C̃′ x /∈ (W̃ ′ ∪ C̃ ′)
Px⟨x⟩@[x←⟨·⟩] ∈ EW̃ ′,C̃′

MHER

noting in particular that Px⟨x⟩@[x←⟨·⟩] = P ⟨x⟩@[x←⟨·⟩].
– Let x /∈ W̃ . Then we can derive P ⟨x⟩@[x←⟨·⟩] ∈ EW̃,C̃ via rule MHER.

Lemma 13.5.13 (Rewriting evaluation contexts).
1. Focusing multiplicative evaluation contexts on applied variables: Let P ∈ EU ,A and x ∈ A.

Then for every normal term n, there exists exponential evaluation context Pn ∈ E@Un,An
such

that Pn⟨x⟩ = P ⟨n⟩, with Un ⊆ U and x /∈ An ⊂ A.
2. Focusing exponential evaluation contexts on unapplied variables: Let P ∈ E@U ,A and x ∈ U .

Then for every normal term n, there exists exponential evaluation context Pn ∈ EUn,An such
that Pn⟨x⟩ = P ⟨n⟩, with x /∈ Un ⊂ U and An ⊆ A.

3. Focusing exponential evaluation contexts on applied variables: Let P ∈ E@U ,A and x ∈ A.
Then for every normal term n, there exists exponential evaluation context Pn ∈ E@Un,An

such
that Pn⟨x⟩ = P ⟨n⟩, with Un ⊆ U and x /∈ An ⊂ A.

Proof. All three statements are proven by mutual induction on the derivation of P ∈ EU ,A or
P ∈ E@U ,A:

1. Focusing multiplicative evaluation contexts on applied variables:
Let x ∈ A and t be normal. We proceed by case analysis on the last derivation rule in
P ∈ EU ,A:

• Let P ∈ EU ,A be derived as follows

(H, ϵ) ∈ Eu(H),a(H)
MAX

273

with P = (H, ϵ), U = u(H) and A = a(H). By application of Lemma 13.5.11.3 (Focusing
term contexts on applied variables) on H, we get an applicative term context J @

t such
that J @

t ⟨x⟩ = H⟨t⟩, with u(J @
t) ⊆ u(H) and x /∈ a(J @

t) ⊂ a(H). The statement then
follows by taking Pt := (J @

t , ϵ).
• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←z] ∈ Eupd(V,y,z),upd(B,y,z)

MVAR

with P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). We proceed by case analysis
on whether y ∈ B:

– Let y /∈ B. Since then B = upd(B, y, z) ∋ x, application of the i.h. (Focusing
multiplicative evaluation contexts on applied variables) gives us Qt ∈ E@Vt,Bt such
that Qt⟨x⟩ = Q⟨t⟩, with Vt ⊆ V and x /∈ Bt ⊂ B. We can then derive Pt :=
Qt@[y←z] ∈ E@upd(Vt,y,z),upd(Bt,y,z) (resp., Pt := Qt@[y←z] ∈ E@Vt,Bt) via rule EVAR

(resp., rule EGC) if y ∈ (Vt ∪ Bt) (resp., if y /∈ (Vt ∪ Bt)).
– Let y ∈ B. Note that then then upd(B, y, z) = (B \ {y}) ∪ {z}. We do case analysis

on whether x ∈ B:
∗ If x ∈ B, then we can prove the statement similarly to how we proved it for

when y /∈ B.
∗ If x /∈ B, then it must be that x = z. By i.h. (Focusing multiplicative evaluation

contexts on applied variables) with respect to y ∈ B, there exists Qt ∈ E@Vt,Bt
such that Qt⟨y⟩ = Q⟨t⟩, with Vt ⊆ V and y /∈ Bt ⊂ B. We can then derive
Pt := Qt⟨y⟩@[y←⟨·⟩] ∈ E@Vt\{y},Bt via rule ENL.

• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←i+] ∈ E(V\{y})∪u(i+),(B\{y})∪a(i+)

MI

with P = Q@[y←i+], U = (V \ {y})∪ u(i+) and A = (B \ {y})∪ a(i+). Case analysis on
whether x ∈ B:

– Let x ∈ B. By i.h. (Focusing multiplicative evaluation contexts on applied vari-
ables), there exists Qt ∈ E@Vt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with Vt ⊆ V and x /∈ Bt ⊂ B.
First, note that if y /∈ (Vt ∪ Bt), then we can derive Pt := Qt@[y←i+] ∈ E@Vt,Bt via
rule EGC.
Second, if y ∈ (Vt ∪ Bt) and x /∈ a(i+), then we can derive Pt := Qt@[y←i+] ∈
E@(Vt\{y})∪u(i+),(Bt\{y})∪a(i+) via rule EI.
Finally, let us consider the case where y ∈ (Vt ∪ Bt) and x ∈ a(i+). Notice that
the latter implies—by Lemma 13.5.11.2 (Focusing useful inert terms on applied
variables)—the existence of an applicative term context H@

x such that H@
x ⟨x⟩ = i+,

with u(H@
x) ⊆ u(i+) and x /∈ a(H@

x) ⊂ a(i+). We now proceed by case analysis on
how exactly y ∈ (Vt ∪ Bt):

∗ Let y ∈ Vt. By i.h. (Focusing exponential evaluation contexts on unapplied
variables), there exists Rx ∈ EWx,Cx such that Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with
y /∈ Wx ⊂ Vt ⊆ V and Cx ⊆ Bt ⊂ B. Case analysis on whether y ∈ Cx:
· If y /∈ Cx, then we can apply rule EAX2 to derive

Pt := Rx⟨y⟩@[y←H@
x] ∈ E@Wx∪u(H@

x),Cx∪a(H@
x)

274

· Let y ∈ Cx. By i.h. (Focusing multiplicative evaluation contexts on applied
variables), there exists Sy ∈ E@Xy ,Dy

such that Sy⟨y⟩ = Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩,
with Xy ⊆ Wx ⊂ Vt ⊆ V and y /∈ Dy ⊂ Cx ⊆ Bt ⊂ B. In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives
that Sy ∈ EX̃y ,D̃y

for some X̃y ⊆ Xy and D̃y ⊆ Dy. We can then derive
Pt := Sy⟨y⟩@[y←H@

x] ∈ E@X̃y∪u(H@
x),D̃y∪a(H@

x)
via rule ENL.

∗ Let y /∈ Vt. Then y ∈ Bt, and by i.h. (Focusing exponential evaluation contexts
on applied variables) there exists Rx ∈ E@Wx,Cx such that Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩,
with Wx ⊆ Vt ⊆ V and y /∈ Cx ⊂ Bt ⊂ B. In addition, Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative) gives that Rx ∈ EW̃x,C̃x
for some W̃x ⊆ Wx and C̃x ⊆ Cx. We can then derive Pt := Rx@[y←H@

x] ∈
E@W̃x∪u(H@

x),C̃x∪a(H@
x)

via rule EAX2 .
– Let x /∈ B. Then it must be that x ∈ a(i+), which implies—by Lemma 13.5.11.2

(Focusing useful inert terms on applied variables)—the existence of an applicative
term contextH@

x such thatH@
x ⟨x⟩ = i+, with u(H@

x) ⊆ u(i+) and x /∈ a(H@
x) ⊂ a(i+).

We proceed by case analysis on whether y ∈ V :
∗ If y ∈ V , then i.h. (Focusing multiplicative evaluation contexts on applied

varibales) gives the existence of Qt ∈ EVt,Bt such that Qt⟨y⟩ = Q⟨t⟩ such that
x /∈ Vt ⊂ V and Bt ⊆ B. Case analyss on whether y ∈ Bt:
· If y /∈ Bt, then application of the i.h. (Focusing multiplicative evaluation

contexts on applied variables) gives Ry ∈ E@Wy ,Cy such that Ry⟨y⟩ = Qt⟨y⟩ =
Q⟨t⟩, with Wy ⊆ Vt ⊂ V and y /∈ Cy ⊂ Bt ⊆ B. In addition, Ry ∈ EW̃y ,C̃y for
some W̃y ⊆ Wy and C̃y ⊆ Cy. We can then derive Pt := Ry⟨y⟩@[y←H@

x] ∈
E@W̃y∪u(H@

x),C̃y∪a(H@
x)

via rule EAX2 .
· If y ∈ Bt, then we can derive Pt := Qt⟨y⟩@[y←H@

x] ∈ E@Vt∪u(H@
x),Bt∪a(H@

x)
via

rule EAX2 .
∗ Let y /∈ V . Then it must be that y ∈ B, and so applying the i.h. gives
Rt ∈ E@Wt,Ct such that Rt⟨y⟩ = Q⟨t⟩, with Wt ⊆ V and y /∈ Ct ⊂ B. Moreover,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) proves
that Rt ∈ EX ,D such that X ⊆ Wt and D ⊆ Ct. Thus, we can derive Pt :=
Rt⟨y⟩@[y←H@

x] ∈ E@X∪u(H@
x),D∪a(H@

x)
via rule EAX2 .

• Let P ∈ EU ,A be derived as follows

Q ∈ EU ,A y /∈ (U ∪ A)
Q@[y←u] ∈ EU ,A

MGC

with P = Q@[y←u]. By i.h. (Focusing multiplicative evaluation contexts on applied
variables), there exists Qt ∈ E@Ut,At

such that Qt⟨x⟩ = Q⟨t⟩, with Ut ⊆ U and x /∈ At ⊂ A.
We can then derive Pt := Qt@[y←u] ∈ E@Ut,At

via rule EGC.
• Let P ∈ EU ,A be derived as follows

Q ∈ EV,B y ∈ (V \ B)
Q@[y←v] ∈ EV\{y},B

MU

with P = Q@[y←v], U = V\{y} and A = B. By i.h. (Focusing multiplicative evaluation
contexts on applied variables), there exists Qt ∈ E@Vt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with

275

Vt ⊆ V and x /∈ Bt ⊂ B. We can then derive Pt := Qt@[y←t] ∈ E@Vt\{y},Bt (resp.
Pt := Qt@[y←t] ∈ E@Vt,Bt) via rule EU (resp. rule EGC) if y ∈ Vt (resp. if y /∈ Vt).

• Let P ∈ EU ,A be derived as follows

Q ∈ EU ,A y /∈ (U ∪ A)
Q⟨y⟩@[y←⟨·⟩] ∈ EU ,A

MHER

with P = Q⟨y⟩@[y←⟨·⟩]. By i.h. (Focusing multiplicative evaluation contexts on applied
variables), there exists Qy ∈ E@Uy ,Ay

such that Qy⟨x⟩ = Q⟨y⟩, with Uy ⊆ U and x /∈ Ay ⊂
A. We can then derive Pt := Qy@[y←t] ∈ E@Uy ,At

via rule EGC.
2. Focusing exponential evaluation contexts on unapplied variables: Let x ∈ U and t ∈ Λ be

normal. We proceed by case analysis on the last derivation rule in P ∈ E@U ,A:
• Let P ∈ E@U ,A be derived as follows

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

with P = (H@, ϵ), U = u(H@) and A = a(H@). The statement is given by applying
Lemma 13.5.10.2 (Focusing terms contexts on unapplied variables) on H@, yielding a
term context Ht such that Ht⟨x⟩ = H@⟨t⟩, with x /∈ u(Ht) ⊂ u(H@) and a(Ht) ⊆ a(H@),
and finally taking Pt := (Ht, ϵ).

• Let P ∈ E@U ,A be derived as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

with P = Q⟨y⟩@[y←H@], U = V ∪u(H@) and A = B∪a(H@). Case analysis on whether
x ∈ V :

– Let x ∈ V . By Lemma 13.5.12.3 (Focusing multiplicative evaluation contexts on
unapplied variables), there exists Qy ∈ EVy ,By such that Qy⟨x⟩ = Q⟨y⟩, with x /∈
Vy ⊂ V and By ⊆ B. We can then derive Pt ∈ EUt,At as follows

Qy ∈ EVy ,By y /∈ (Vy ∪ By)
Qy@[y←H@⟨t⟩] ∈ EVy ,By

MGC

– Let x /∈ V . Then x ∈ u(H@). By Lemma 13.5.10.2 (Focusing term contexts on
unapplied variables), there exists term context Ht such that Ht⟨x⟩ = H@⟨t⟩, with
x /∈ u(Ht) ⊂ u(H@) and a(Ht) ⊆ a(H@). We can then derive Pt ∈ EUt,At as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←Ht] ∈ E@V∪u(Ht),B∪a(Ht)

EAX2

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)

EVAR

with P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). We proceed by case analysis
on whether y ∈ V :

276

– Let y /∈ V . Then V = upd(V , y, z) ∋ x and so application of the i.h. (Focusing expo-
nential evaluation contexts on unapplied variables) yields multiplicative evaluation
context Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with x /∈ Vt ⊂ V and Bt ⊆ B. Case
analysis on whether y ∈ Bt:

∗ Let y ∈ Bt. Then we can derive Pt := Qt@[y←z] ∈ Eupd(Vt,y,z),upd(Bt,y,z) via rule
EVAR.

∗ Let y /∈ Bt. Then we can derive Pt := Qt@[y←z] ∈ EVt,Bt via rule EVAR.
– Let y ∈ V . Then U = (V \ {y}) ∪ {z}. Case analysis on whether x ∈ (V \ {y}) and

on whether x = z:
∗ Let x ̸= z. Then x ∈ (V\{y}). By i.h. (Focusing exponential evaluation contexts

on unapplied variables), there exists Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with
x /∈ Vt ⊂ V and Bt ⊆ B.
Finally, if y ∈ (Vt∪Bt), then we can derive Pt := Qt@[y←z] ∈ Eupd(Vt,y,z),upd(Bt,y,z)
via rule MVAR. If instead y /∈ (Vt ∪ Bt), then we can derive Pt := Qt@[y←z] ∈
EVt,Bt .

∗ Let x = z and x /∈ (V \ {y}). By i.h. (Focusing exponential evaluation contexts
on unapplied variables), there exists Qt ∈ EVt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with
y /∈ Vt ⊂ V and Bt ⊆ B. Case analysis on whether y ∈ Bt:
· Let y ∈ Bt. By i.h. (Focusing multiplicative evaluation contexts on applied

variables), there exists Ry ∈ E@Wy ,Cy such that Ry⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with
Wy ⊆ Vt ⊂ V and y /∈ Cy ⊂ Bt ⊆ B. Moreover, by Lemma 13.5.12.4 (Expo-
nential evaluation contexts are multiplicative), Ry ∈ EW̃y ,C̃y for some W̃y ⊆ Wy

and C̃y ⊆ Cy. We can finally derive Pt := Ry⟨y⟩@[y←⟨·⟩] ∈ EW̃y\{y},C̃y via rule
MHER.

· Let y /∈ Bt. Then we can derive Pt := Qt⟨y⟩@[y←⟨·⟩] ∈ EVt\{y},Bt via rule
MHER.

∗ Let x = z and x ∈ (V \ {y}). By i.h. (Focusing exponential evaluation contexts
on unapplied variables), there exists Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with
x /∈ Vt ⊂ V and Bt ⊆ B. Cases analysis on whether y ∈ Bt:
· Let y ∈ Bt. By i.h. (Focusing multiplicative evaluation contexts on applied

variables), there exists Rx ∈ E@Wx,Cx such that Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with
Wx ⊆ Vt ⊂ V and y /∈ Cx ⊂ Bt ⊆ B. Moreover, by Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative), Rx ∈ EṼx,B̃x for some
Ṽx ⊆ Wx and B̃x ⊆ Cx.
Finally, if y ∈ Ṽx, then Lemma 13.5.12.3 (Focusing multiplicative evaluation
contexts on unapplied variables) gives multiplicative evaluation context Sy ∈
EXy ,Dy such that Sy⟨y⟩ = Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with y /∈ Xy ⊂ Wx ⊆ Vt ⊂ V
and Dy ⊆ Cx ⊂ Bt ⊆ B; we can derive Pt := Sy⟨y⟩@[y←⟨·⟩] ∈ EXy\{y},Dy via
rule MHER. If instead y /∈ Ṽx, then we can derive Pt := Rx⟨y⟩@[y←⟨·⟩] ∈
EṼx\{y},B̃x via rule MHER.

· Let y /∈ Bt. If y /∈ Vt, then we can simply derive Qt@[y←z] ∈ EVt\{y},Bt via
rule MHER. If y ∈ Vt instead, then application of Lemma 13.5.12.3 (Focusing
mutliplicative evaluation contexts on unapplied varibales) gives the existence
of Rx ∈ EWx,Cx such that Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with y /∈ Wx ⊂ Vt ⊂ V and
Cx ⊆ Bt ⊆ B; we can derive Pt := Rx⟨y⟩@[y←⟨·⟩] ∈ EWx\{y},Cx via rule MHER.

277

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←i+] ∈ E@(V\{y})∪u(i+),(B\{y})∪a(i+)

EI

with P = Q@[y←i+], U = (V \ {y})∪ u(i+) and A = (B \ {y})∪ a(i+). Case analysis on
whether x ∈ V :

– Let x ∈ V . By i.h. (Focusing exponential evaluation contexts on unapplied vari-
ables), there exists Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with x /∈ Vt ⊂ V and Bt ⊆ B.
Case analysis on whether x ∈ u(i+):

∗ Let x /∈ u(i+). If y ∈ (Vt ∪ Bt), then we can derive P := Qt@[y←i+] ∈
E(Vt\{y})∪u(i+),(Bt\{y})∪a(i+) via rule MI. If y /∈ (Vt ∪ Bt), then we can derive
Pt := Qt@[y←i+] ∈ EVt,Bt via rule MGC.

∗ Let x ∈ u(i+). By Lemma 13.5.10.2 (Focusing inert terms on unapplied vari-
ables) gives the existence of a term context Hx such that Hx⟨x⟩ = i+, with
x /∈ u(Hx) ⊂ u(i+) and a(Hx) ⊆ a(i+). Case analysis on whether y ∈ Vt and on
whether y ∈ Bt:
· Let y /∈ (Vt ∪Bt). Then we can derive Pt := Qt@[y←i+] ∈ EVt,Bt via rule MGC.
· Let y ∈ Vt and y /∈ Bt. By Lemma 13.5.12.3 (Focusing multiplicative eval-

uation context on unapplied variables), there exists Rx ∈ EWx,Cx such that
Rx⟨y⟩ = Qt⟨x⟩ = Q⟨t⟩, with y /∈ Wx ⊂ Vt ⊆ V and Cx ⊆ Bt ⊆ B. We can
finally derive Pt := Rx⟨y⟩@[y←Hx] ∈ EWx∪u(Hx),Cx∪a(Hx) via rule MHER.

· Let y ∈ Bt. By i.h. (Focusing multiplicative evaluation contexts on applied
variables), there exists Rx ∈ E@Wx,Cx such that Rx⟨y⟩ = Qt⟨y⟩ = Q⟨t⟩, with
Wx ⊆ Vt ⊂ V and y /∈ Cx ⊂ Bt ⊆ B. Moreover, Lemma 13.5.12.4 (Exponential
evaluation contexts are multiplicative) gives that Rx ∈ EW̃x,C̃x for some W̃x ⊆
Wx and C̃x ⊆ Cx.
Finally, if y /∈ W̃x, then we can derive Pt := Rx⟨y⟩@[y←Hx] ∈ EW̃x∪u(Hx),C̃x∪a(Hx)

via rule MHER. If y ∈ W̃x instead, then Lemma 13.5.12.3 (Focusing multiplica-
tive evaluation contexts on unapplied variables) gives Sy ∈ EXy ,Dy such that
Sy⟨y⟩ = Rx⟨x⟩ = Qt⟨x⟩ = Q⟨t⟩, with y /∈ Xy ⊂ W̃x ⊆ Wx ⊆ Vt ⊂ V and Dy ⊆
C̃x ⊂ Bt ⊆ V ; we can then derive Pt := Sy⟨y⟩@[y←Hx] ∈ EXy∪u(Hx),Dy∪a(Hx)

via rule MHER.
– Let x /∈ V . Then x ∈ u(i+). Note that Lemma 13.5.10.1 (Focusing inert terms on

unapplied variables) gives the existence of term context Hx such that Hx⟨x⟩ = i+,
with x /∈ u(Hx) ⊂ u(i+) and a(Hx) ⊆ a(i+). Case analysis on whether y ∈ V and on
whether y ∈ B:

∗ Let y ∈ V and y /∈ B. By i.h. (Focusing exponential evaluation contexts on
unapplied variables), there exists Qt ∈ EVt,Bt such that y /∈ Vt ⊂ V and Bt ⊆ B.
We can then derive Pt := Qt⟨y⟩@[y←Hx] ∈ EVt∪u(Hx),B∪a(Hx) via rule MHER.

∗ Let y /∈ V and y ∈ B. By i.h. (Focusing exponential evaluation contexts on
applied variables), there exists Qt ∈ E@Vt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with Vt ⊆ V
and y /∈ Bt ⊂ B. Moreover, Lemma 13.5.12.4 (Exponential evaluation contexts
are multiplicative) gives that Qt ∈ EṼt,B̃t for some Ṽt ⊆ Vt and B̃t ⊆ B. We can
finally derive Pt := Qt⟨y⟩@[y←Hx] ∈ EṼt∪u(Hx),B̃t∪a(Hx)

via rule MHER.
∗ Let y ∈ V and y ∈ B. By i.h. (Focusing exponential evaluation contexts on

278

applied variables), there exists Qt ∈ E@Vt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with Vt ⊆ V
and y /∈ Bt ⊂ B. Case analysis on whether x ∈ Vt:
· Let y ∈ Vt. By i.h. (Focusing exponential evaluation contexts on unapplied

variables), there exists Ry ∈ EWy ,Cy such that Ry⟨y⟩ = Qt⟨y⟩ = Q⟨t⟩, with y /∈
Wy ⊂ Vt ⊆ V and Cy ⊆ Bt ⊂ B. We can then derive Pt := Ry⟨y⟩@[y←Hx] ∈
EWy∪u(Hx),Cy∪a(Hx) via rule MHER.

· Let y /∈ Vt. By Lemma 13.5.12.4 (Exponential evaluation contexts are multi-
plicative) gives that Qt ∈ EṼt,B̃t for some Ṽt ⊆ Vt and B̃t ⊆ B. We can then
derive Pt := Qt⟨y⟩@[y←Hx] ∈ EṼt∪u(Hx),B̃t∪a(Hx)

.
• Let P ∈ E@U ,A be derived as follows

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←u] ∈ E@U ,A

EGC

with P = Q@[y←u]. By i.h. (Focusing exponential evaluation contexts on unapplied
variables), there exists Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, x /∈ Ut ⊂ U and At ⊆ A. We
can then derive Pt := Qt@[y←u] ∈ E@Ut,At

via rule EGC.
• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V \ B)
Q@[y←v] ∈ E@V\{y},B

EU

with P = Q@[y←v], U = V \ {y} and A = B. By i.h. (Focusing exponential evaluation
contexts on unapplied variables), there exists Qt ∈ EVt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with
x /∈ Vt ⊂ V and Bt ⊆ B.
We can then derive Pt := Qt@[y←v] ∈ EVt\{y},Bt (resp. Pt := Qt@[y←v] ∈ EVt,Bt) via rule
MU (resp. via rule MGC) if y ∈ Vt (resp. if y /∈ Vt).

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y /∈ B
Q⟨y⟩@[y←⟨·⟩] ∈ E@V\{y},B

ENL

with P = Q⟨y⟩@[y←⟨·⟩], U = V \ {y} and A = B. By i.h. (Focusing exponential
evaluation contexts on unapplied variables) on x and Q, there exists Qy ∈ EVy ,By such
that Qy⟨x⟩ = Q⟨y⟩, with x /∈ Vy ⊂ V and By ⊆ B.
If y /∈ Vt, then we can derive Pt := Qy@[y←t] ∈ E@Vy ,Bt via rule MGC.
Else, we proceed by case analysis on the shape of t:

– Let t ∈ Var. Then we can derive Pt := Qt@[y←t] ∈ Eupd(Vt,y,t),upd(Bt,y,t) via rule MVAR.
– Let t be a useful inert term. Then we apply rule MI to derive

Pt := Qt@[y←t] ∈ E(Vt\{y})∪u(t),(Bt\{y})∪a(t)

– Let t ∈ Val. Then we can derive Pt := Qt@[y←t] ∈ EVt\{y}),Bt via rule MU.
3. Focusing exponential evaluation contexts on applied variables:

Let x ∈ A and t ∈ Λ be normal. We proceed by case analysis on the last derivation rule in
P ∈ E@U ,A:

279

• Let P ∈ E@U ,A be derived as follows

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

with P = (H@, ϵ), U = u(H@) and A = a(H@). The statement is given by apply-
ing Lemma 13.5.11.3 (Focusing term contexts on applied variables) on H@, yielding
an applicative term context J @

t such that J @
t ⟨x⟩ = H@⟨t⟩, with u(J @

t) ⊆ u(H@) and
x /∈ a(J @

t) ⊂ a(H@), and finally taking Pt := (J @
t , ϵ).

• Let P ∈ E@U ,A be derived as follows

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

with P = Q⟨y⟩@[y←H@], U = V ∪ u(H@) and A = B ∪ a(H@). Case analyis on whether
x ∈ B:

– Let x ∈ B. By i.h. (Focusing multiplicative evaluation contexts on applied vari-
ables), there exists Qy ∈ E@Vy ,By such that Qy⟨x⟩ = Q⟨y⟩, with Vy ⊆ V and x /∈ B ⊂
By. We can then derive Pt := Qy@[y←t] ∈ E@Vy ,By via rule EGC.

– Let x /∈ B. Then it must be that x ∈ a(H@). By Lemma 13.5.11.3 (Focusing term
contexts on applied variables), there exists an applicative term context H@

t such that
H@

t ⟨x⟩ = H@⟨t⟩, with u(H@
t) ⊆ u(H@) and x /∈ a(H@

t) ⊂ a(H@). We can then derive
Pt := Q⟨y⟩@[y←H@

t] ∈ E@V∪u(H@
t),By∪a(H@

t)
via rule EAX2 .

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)

EVAR

with P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). We proceed by case analysis
on whether y ∈ B:

– Let y /∈ B. Since then B = upd(B, y, z) ∋ x, then we can apply the i.h. (Focusing
exponential evaluation contexts on applied variables) to obtain a Qt ∈ E@Bt,Vt such
that Qt⟨x⟩ = Q⟨t⟩, with Vt ⊆ V and x /∈ Bt ⊂ B. Then we can derive Pt :=
Qt@[y←z] ∈ E@upd(V,y,z),upd(B,y,z) (resp., Pt := Qt@[y←z] ∈ E@V,B) via rule EVAR (resp.,
EGC) if y ∈ (Bt ∪ Vt) (resp., y /∈ (Bt ∪ Vt)).

– Let y ∈ B. Note that then upd(B, y, z) = (B \ {y}) ∪ {z}. We do case analysis on
whether x ∈ B:

∗ If x ∈ (B \ {y}), then we can prove the statement similarly to how we proved it
in the case above where y /∈ B.

∗ If x /∈ B, then it must be that x = z. By i.h. (Focusing exponential eval-
uation contexts on applied variables) with respect to y and Q, there exists
Qt ∈ E@Vt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with Vt ⊆ V and y /∈ Bt ⊂ B. More-
over, Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives
that Qt ∈ EW,C for some W ⊆ Vt and C ⊆ Bt. We can then derive Pt :=
Qt⟨y⟩@[y←⟨·⟩] ∈ E@W,C via rule EAX2 .

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←i+] ∈ E@(V\{y})∪u(i+),(B\{y})∪a(i+)

EI

280

with P = Q@[y←i+], U = (V \ {y})∪ u(i+) and A = (B \ {y})∪ a(i+). Case analysis on
whether x ∈ B:

– Let x ∈ B. By i.h. (Focusing exponential evaluation contexts on applied variables),
there exists Qt ∈ E@Vt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with Vt ⊆ V and x /∈ Bt ⊂ B. Case
analysis on whether x ∈ a(i+):

∗ Let x /∈ a(i+). We can then derive

Pt := Qt@[y←i+] ∈ E@(Vt\{y})∪u(i+),(Bt\{y})∪a(i+)

(resp. Pt := Qt@[y←i+] ∈ E@Vt,Bt) via rule EI (resp. EGC) if y ∈ (Vt ∪Bt) (resp. if
y /∈ (Vt ∪ Bt)).

∗ Let x ∈ a(i+). Note that if y /∈ (Vt ∪Bt) then we can derive Pt := Qt@[y←i+] ∈
E@Vt,Bt via rule EGC. Let us now consider the case of y ∈ (Vt ∪Bt), proceeding by
case analysis:
· Let y ∈ Vt and y /∈ Bt. By i.h. (Focusing exponential evaluation contexts

on unapplied variables), there exists Rx ∈ EWx,Cx such that Rx⟨y⟩ = Qt⟨x⟩,
with y /∈ Wx ⊂ Vt ⊆ V and Cx ⊆ Bt ⊆ B. We can then derive Pt :=
Rx⟨y⟩@[y←H@

x] ∈ E@Wx∪u(H@
x),Cx∪a(H@

x)
via rule EGC.

· Let y ∈ Bt. By i.h. (Focusing exponential evaluation contexts on applied
variables), there exists Rx ∈ E@Wx,Cx such that Rx⟨y⟩ = Qt⟨t⟩ = Q⟨t⟩, with
Wx ⊆ Vt ⊆ V and y /∈ Cx ⊂ Bt ⊂ B. In addition, Lemma 13.5.12.4 (Exponen-
tial evaluation contexts are multiplicative) gives that Rx ∈ EW̃x,C̃x for some
W̃x ⊆ Wx and C̃x ⊆ Cx.
Finally, if y /∈ W̃x, then we can derive Pt := Rx⟨y⟩@[y←H@

x] via rule EAX2 .
If y ∈ W̃x instead, then Lemma 13.5.12.3 (Focusing multiplicative evaluation
contexts on unapplied variables) gives Sy ∈ EXy ,Dy such that Sy⟨y⟩ = Rx⟨y⟩ =
Qt⟨x⟩ = Q⟨t⟩, with y /∈ Xy ⊂ Wx ⊆ Vt ⊆ V and Dy ⊆ Cx ⊂ Bt ⊂ B; we can
then derive Pt := Sy⟨y⟩@[y←H@

x] ∈ E@Xy∪u(H@
x),Dy∪a(H@

x)
via rule EAX2 .

– Let x /∈ B. Then x ∈ a(i+). By Lemma 13.5.11.2 (Focusing useful inert terms on
applied variables), there exists applicative term context H@

x such that H@
x ⟨x⟩ = i+,

with u(H@
x) ⊆ u(i+) and x /∈ a(H@

x) ⊂ a(i+). Case analysis on whether y ∈ V and
on whether y ∈ B:

∗ Let y ∈ V and y /∈ B. By i.h. (Focusing exponential evaluation contexts on un-
applied variables), there exists Qt ∈ EVt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with y /∈ Vt ⊂
V and Bt ⊆ B. We can then derive Pt := Qt⟨y⟩@[y←H@

x] ∈ E@Vt∪u(H@
x),Bt∪a(H@

x)

via rule EAX2 .
∗ Let y /∈ V and y ∈ B. By i.h. (Focusing exponential evaluation contexts on

applied variables), there exists Qt ∈ E@Vt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with Vt ⊆ V
and y /∈ Bt ⊂ B. In addition, Lemma 13.5.12.4 (Exponential evaluation contexts
are multiplicative) gives that Qt ∈ EṼt,B̃t , for some Ṽt ⊆ Vt and B̃t ⊆ Bt. We can
then derive Pt := Qt⟨y⟩@[y←H@

x] ∈ E@Ṽt∪u(H@
x),B̃t∪a(H@

x)
via rule EAX2 .

∗ Let y ∈ V and y ∈ B. By i.h. (Focusing exponential evaluation contexts on
unapplied variables), there exists Qt ∈ EVt,Bt such that Qt⟨y⟩ = Q⟨t⟩, with
y /∈ Vt ⊂ V and Bt ⊆ B. Case analysis on whether y ∈ Bt:
· If y /∈ Bt, then we can derived Pt := Qt⟨y⟩@[y←H@

x] ∈ E@Vt∪u(H@
x),Bt∪a(H@

x)
via

rule EAX2 .

281

· Let y ∈ Bt. By i.h. (Focusing multiplicative evaluation contexts on applied
variables), there exists Ry ∈ E@Wy ,Cy such that Ry⟨y⟩ = Qt⟨y⟩ = Q⟨t⟩, with
Wy ⊆ Vt ⊂ V and y /∈ Cy ⊂ Bt ⊆ B. In addition, Lemma 13.5.12.4 (Ex-
ponential evaluation contexts are multiplicative) gives that Ry ∈ EW̃y ,C̃y , for
some W̃y ⊆ Vt and C̃y ⊆ Bt. We can then derive P := Ry⟨y⟩@[y←H@

x] ∈
E@W̃y∪u(H@

x),C̃y∪a(H@
x)

via rule EAX2 .
• Let P ∈ E@U ,A be derived as follows

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←u] ∈ E@U ,A

EGC

with P = Q@[y←u]. By i.h. (Focusing exponential evaluation contexts on applied
variables), there exists Qt ∈ E@Ut,At

such that Qt⟨x⟩ = Q⟨t⟩. We can then derive Pt :=
Qt@[y←u] ∈ E@Ut,At

via rule EGC.
• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y ∈ (V \ B)
Q@[y←v] ∈ E@V\{y},B

EU

with P = Q@[y←v], U = V \ {y} and A = B. By i.h. (Focusing exponential evaluation
contexts on applied variables), there exists Qt ∈ E@Vt,Bt such that Qt⟨x⟩ = Q⟨t⟩, with
Vt ⊆ V and x /∈ Bt ⊂ B. We can then derive Pt := Qt@[y←v] ∈ E@Vt\{y},Bt (resp.
Pt := Qt@[y←v] ∈ E@Vt,Bt) via rule EU (resp. EGC) if y ∈ Vt (resp. if y /∈ Vt).

• Let P ∈ E@U ,A be derived as follows

Q ∈ E@V,B y /∈ B
Q⟨y⟩@[y←⟨·⟩] ∈ E@V\{y},B

ENL

with P = Q⟨y⟩@[y←⟨·⟩], U = V \ {y} and A = B. By i.h. (Focusing exponential
evaluation contexts on applied variables) on x and Q, there exists Qy ∈ E@Vy ,By such that
Qy⟨x⟩ = Q⟨y⟩, with Vy ⊆ V and x /∈ By ⊂ B. Case analysis on whether y ∈ Vy:

– Let y ∈ Vy. Case analysis on the shape of t:
∗ Let t ∈ Var. We can then use EVAR to derive

P := Qy@[y←t] ∈ E@upd(Vy ,y,t),upd(By ,y,t)

∗ Let t be a useful inert term. We can then apply rule EI to derive

P := Qy@[y←t] ∈ E@(Vy\{y})∪u(t),(By\{y})∪a(t)

∗ Let t ∈ Val. We can then derive P := Qy@[y←t] ∈ E@Vy\{y},By via rule EU.
– Let y /∈ Vy. We can then derive Pt := Qy@[y←t] ∈ E@Vy ,By via rule EGC.

Lemma 13.5.14 (Focusing for Useful Open CbNeed-normal forms).
Let p ∈ PR be in →und-normal form.

282

1. Focusing Useful Open CbNeed-normal forms on unapplied variables: Let x ∈ u(p). Then
there exists P ∈ EU ,A such that p = P ⟨x⟩, with x /∈ U ⊂ u(p) and A ⊆ u(p).

2. Focusing Useful Open CbNeed-normal forms on applied variables: Let x ∈ a(p). Then there
exists P ∈ E@U ,A such that p = P ⟨x⟩, with U ⊆ u(p) and x /∈ A ⊂ u(p).

Proof.
Both statements are proven simultaneously by mutual induction:
1. Focusing→und-normal forms on unapplied variables: Let p = (t, E) and x ∈ u(p). We proceed

by induction on |E|:
• Let p = (t, ϵ). Then u(t). Suppose t is not a normal term. Then there would exist

term context H and (λz.s)m ∈ Λ such that t = H⟨(λz.s)m⟩—by Lemma 8.2.2 (Redex in
non-normal terms). But then we would be able to derive (H, ϵ) ∈ Eu(H),a(H), getting that
p = (H, ϵ)⟨(λz.s)m⟩ →um (H, ϵ)⟨s, [z←m]⟩, which is absurd. Therefore, t is a normal
term. Moreover, if t ∈ Val then u(t) = ∅; absurd as well.
Hence, t is an inert term. By Lemma 13.5.10.1 (Focusing inert terms on unapplied
variables), there exists term context Hx such that Hx⟨x⟩ = t, with x /∈ u(Hx) ⊂ u(t) and
a(Hx) ⊆ a(t). We can then derive P := (Hx, ϵ) via rule MAX.

• Let p = (t, E ′)@[y←u]. Case analysis on whether x ∈ u(t, E ′):
– Let x ∈ u(t, E ′). By i.h. (Focusing→und-normal forms on unapplied variables), there

exists Q ∈ EV,B such that Q⟨x⟩ = (t, E ′), with x /∈ V ⊂ u(t, E ′) and B ⊆ a(t, E ′).
Note that if y /∈ (V ∪ B), then we can derive P := Q@[y←u] ∈ EV,B via rule MGC.
Let us now consider the case where y ∈ (V ∪ B), and proceed by case analysis on
whether y ∈ V .

∗ Let y ∈ V . By Lemma 13.5.12.3 (Focusing multiplicative evaluation contexts
on unapplied variables), there exists Rx ∈ EWx,Cx such that Rx⟨y⟩ = Q⟨x⟩, with
y /∈ Wx ⊂ u(t, E ′) and Cx ⊆ a(t, E ′).
Now, suppose u were not a normal term. By Lemma 8.2.2 (Redex in non-
normal terms), there would exist term contextH and (λz.s)m ∈ Λ such that u =
H⟨(λz.s)m⟩. Note that if u /∈ Cx, then we would be able to derive Rx⟨y⟩@[y←H]
via rule MGC and get that

p = (t, E ′)@[y←H]
= (Rx⟨y⟩@[y←H])⟨(λz.s)m⟩
→um (Rx⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd. If u ∈ Cx instead, then there would exist Sy ∈ E@Xy ,Dy
such

that Sy⟨y⟩ = Rx⟨y⟩, with Xy ⊆ Wx and y /∈ Dy ⊂ Cx—by Lemma 13.5.13.1
(Focusing multiplicative evaluation contexts on applied variables). In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) would give
that Sy ∈ EX̃y ,D̃y

, for some X̃y ⊆ Xy and D̃y ⊆ Dy. But then we would be able
to derive Sy@[y←H] ∈ EX̃y∪u(H),D̃y∪a(H) and get that

p = (t, E ′)@[y←u]
= (Rx⟨y⟩@[y←H])⟨(λz.s)m⟩
→um (Rx⟨y⟩@[y←H])⟨s, [z←m]⟩

which is also absurd.
Therefore, u must be a normal term. We proceed by case analysis on the shape
of u as a normal term, and on whether x ∈ u(u):

283

· Let x = u ∈ Var. If y /∈ Cx, then we can derive P := Rx⟨y⟩@[y←⟨·⟩] ∈ EWx,Cx
via rule MHER. If y ∈ Cx instead, then Lemma 13.5.13.1 (Focusing multiplica-
tive evaluation contexts on applied variables) gives the existence of Sy ∈ E@Xy ,Dy

such that Sy⟨y⟩ = Rx⟨y⟩, with Xy ⊆ Wx and y /∈ Dy ⊂ Cx. In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives
that Sy ∈ EX̃y ,D̃y

, for some X̃y ⊆ Xy and D̃y ⊆ Dy. We can then derive
P := Sy⟨y⟩@[y←⟨·⟩] ∈ EX̃y ,D̃y

via rule MHER.
· Let x ̸= u ∈ Var. Then we can derive

P := Rx⟨y⟩@[y←u] ∈ Eupd(Wx,y,u),upd(Cx,y,u)

via rule MVAR.
· Let u be an inert term, with x ∈ u(u). By Lemma 13.5.10.1 (Focusing inert

terms on unapplied variables), there exists term contextHx such thatHx⟨x⟩ =
u, with x /∈ u(Hx) ⊂ u(u) and a(Hx) ⊆ a(u).
Now, if u /∈ Cx, then we can derive

P := Rx⟨y⟩@[y←Hx] ∈ EWx∪u(Hx),Cx∪a(Hx)

via rule MHER. If y ∈ Cx instead, then Lemma 13.5.13.1 (Focusing multiplica-
tive evaluation contexts on applied variables) gives the existence of Sy ∈ E@Xy ,Dy

such that Sy⟨y⟩ = Rx⟨y⟩, with Xy ⊆ Wx and y /∈ Dy ⊂ Cx. In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives
that Sy ∈ EX̃y ,D̃y

, for some X̃y ⊆ Xy and D̃y ⊆ Dy. We can then derive
P := Sy⟨y⟩@[y←Hx] ∈ EX̃y∪u(Hx),D̃y∪a(Hx)

via rule MHER.
· Let u be an inert term, with x /∈ u(u). We can then derive P := Q@[y←u] ∈
E(V\{y})∪u(u),(B\{y})∪a(u) via rule MI.

· Let u ∈ Val. Suppose that y ∈ Cx. By Lemma 13.5.13.1 (Focusing multiplica-
tive evaluation contexts on applied variables), there would exist Sy ∈ E@Xy ,Dy

such that Sy⟨y⟩ = Rx⟨y⟩, with Xy ⊆ Wx and y /∈ Dy ⊂ Cx. But then we would
be able to derive Sy⟨y⟩@[y←u] ∈ E@Xy ,Dy

via rule MGC and get that

P = (t, E ′)@[y←u] = (Sy@[y←u])⟨y⟩ →ue (Sy@[y←u])⟨uα⟩

which is absurd.
Therefore, y /∈ Cx ⊆ B. Since y ∈ V , then we can then derive P := Q@[y←u] ∈
EV,B via rule MU.

∗ Let y /∈ V . Then y ∈ B. Following an analogous reasoning to the one above—
where y ∈ V—we can conclude that u must be a normal term. Similarly, it must
be that u /∈ Val. The statement follows by proceeding by case analysis on the
shape of u, and on whether x ∈ u(u), analogously to what we did in the case
above—where y ∈ V .

– Let x /∈ u(t, E ′). Then x ∈ u(u), and—by Definition 37 (Unapplied variables)—it
must be that either y ∈ u(t, E ′) or (y ∈ nv(t, E ′) and u /∈ Var)—note that these are
not mutually exclusive proposition.
Moreover, following a similar reasoning to the case above—where x ∈ u(t, E ′)—we
can see that u must be an inert term. By Lemma 13.5.10.1 (Focusing inert terms
on unapplied variables), there exists term context Hx such that Hx⟨x⟩ = u, with
x /∈ u(Hx) ⊂ u(u) and a(Hx) ⊆ a(u).
Case analysis on whether y /∈ u(t, E ′).

284

∗ Let y ∈ u(t, E ′). By i.h. (Focusing →und-normal forms on unapplied varibles),
there exists Q ∈ EV,B such that Q⟨y⟩ = (t, E ′), with y /∈ V ⊂ u(t, E ′) and
B ⊆ a(t, E ′).
Now, if y /∈ B, then we can derive P := Q⟨y⟩@[y←Hx] ∈ EV∪u(Hx),B∪a(Hx) via
rule MHER. If y ∈ B instead, then Lemma 13.5.13.1 (Focusing multiplicative
evaluation contexts on applied variables), there exists Ry ∈ E@Wy ,Cy such that
Ry⟨y⟩ = Q⟨y⟩, with Wy ⊆ V and Cy ⊆ B. In addition, Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative) gives that Ry ∈ EW̃y ,C̃y , for
some W̃y ⊆ Wy and C̃y ⊆ Cy. We can finally derive P := Ry⟨y⟩@[y←Hx] ∈
EW̃y∪u(Hx),C̃y∪a(Hx)

via rule MHER.
∗ Let y /∈ u(t, E ′). Then u /∈ Var and y ∈ nv(t, E ′), the latter implying that
y ∈ a(t, E ′)—by Lemma 8.1.1.2 (Unapplied, applied and needed variables). By
i.h. (Focusing →und-normal forms on applied variables), there exists Q ∈ E@V,B
such that Q⟨y⟩ = (t, E ′), with V ⊆ u(t, E ′) and y /∈ B ⊂ a(t, E ′). In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives that
Q ∈ EṼ,B̃, for some Ṽ ⊆ V and B̃ ⊆ B. Note that y /∈ u(t, E ′) ⊇ V ⊇ Ṽ . Hence,
we can derive P := Q⟨y⟩@[y←Hx] ∈ EṼ∪u(Hx),B̃∪a(Hx)

via rule MHER.
2. Focusing →und-normal forms on applied variables: Let p = (t, E) and x ∈ a(p). We proceed

by induction on |E|:
• Let p = (t, ϵ). Note that if t ∈ (Var ∪ Val) then a(P) = ∅—absurd. Thus, if t is not a

useful inert Λ-term, then it is not a normal term either and so Lemma 8.2.2 (Redex in
non-normal terms) gives a term context H and (λz.s)m ∈ Λ such that t = H⟨(λz.s)m⟩.
Since all this implies that p = (H, ϵ)⟨(λz.s)m⟩ →um (H, ϵ)⟨s, [z←m]⟩—which is absurd—
we can conclude that t is a useful inert term. Therefore, by Lemma 13.5.11.2 (Focusing
useful inert terms on applied variables) there exists an applicative term context H@

x such
that t = Hx⟨x⟩, with u(H@

x) ⊆ u(t) and x /∈ a(H@
x) ⊂ a(t). The statement then follows

by taking P := (H@
x , ϵ) ∈ Eu(H@

x),a(H@
x).

• Let p = (t, E ′)@[y←u]. Case analysis on whether x ∈ a(t, E ′):
– Let x ∈ a(t, E ′). By i.h. (Focusing →und-normal forms on applied variables), there

exists Q ∈ E@V,B such that Q⟨t⟩ = (t, E ′), with V ⊆ u(t, E ′) and x /∈ B ⊂ a(t, E ′).
Note that if y /∈ (V ∪ B), then we can derive P := Q@[y←u] via rule EGC. Let us
assume now that y ∈ (V ∪ B), and proceed by case analysis on whether y ∈ B:

∗ Let y ∈ B. By Lemma 13.5.13.3 (Focusing exponential evaluation contexts
on applied variables), there exists Rx ∈ E@Wx,Cx such that Rx⟨y⟩ = Q⟨x⟩, with
Wx ⊆ V and y /∈ Cx ⊂ B.
Suppose now that u were not a normal term. By Lemma 8.2.2 (Redex in non-
normal terms), there would exist term context H and (λz.s)m ∈ Λ such that
u = H⟨(λz.s)m⟩. Case analysis on whether y ∈ Wx:
· Let y /∈ Wx. Then note that Rx ∈ EW̃x,C̃x , for some W̃x ⊆ Wx and C̃x ⊆ Cx—

by Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative—and
so we would be able to derive Rx⟨y⟩@[y←H] ∈ EW̃x∪u(H),C̃x∪a(H) via rule EAX2

and get that
p = (t, E ′)@[y←u]

= (Rx⟨y⟩@[y←H])⟨(λz.s)m⟩
→um (Rx⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd.

285

· Let y ∈ Wx. By Lemma 13.5.13.2 (Focusing exponential evaluation contexts
on unapplied variables), there exists Sy ∈ EXy ,Dx such that Sy⟨y⟩ = Rx⟨y⟩,
with y /∈ Xy ⊂ Wx and Dy ⊆ Cx. But then we would be able to derive
Sy⟨y⟩@[y←H] ∈ EXy∪u(H),Dy∪a(H) via rule EAX2 and get that

p = (t, E ′)@[y←u]
= (Sy⟨y⟩@[y←H])⟨(λz.s)m⟩
→um (Sy⟨y⟩@[y←H])⟨s, [z←m]⟩

which is absurd.
Therefore, u must be a normal term. Moreover, note that if u ∈ Val, then we
would be able to derive Rx@[y←u] ∈ E@Wx\{y},B via rule EU and get that

p = (t, E ′)@[y←u]
= (Rx⟨y⟩@[y←H])⟨y⟩
→ue (Rz⟨y⟩@[y←H])⟨uα⟩

which is absurd as well. Therefore, u must be an inert term.
Finally, we proceed by case analysis on the shape of u:
· Let u ∈ Var. If u ̸= x, then we can derive P := Q@[y←u] ∈ E@upd(V,y,u),upd(B,y,u)

via rule EVAR. If u = x instead, then we can derive P := Rx⟨y⟩@[y←⟨·⟩] ∈
E@Wx\{y},Cx via rule ENL.

· Let u /∈ Var. Then t is a useful inert term. First, note if x /∈ a(u), then we
can simply derive P := Q@[y←u] ∈ E@(V\{y})∪u(u),(B\{y})∪a(u) via rule EI.
Let us consider now the case where x ∈ a(u). Note that there exists ap-
plicative term context H@

x such that H@
x ⟨x⟩ = u, with u(H@

x) ⊆ u(u) and
x /∈ a(H@

x) ⊂ a(u)—by Lemma 13.5.11.2 (Focusing useful inert terms on
applied variables). Moreover, by Lemma 13.5.12.4 (Exponential evaluation
contexts are multiplicative), it happens that Rx ∈ EW̃x,C̃x , for some W̃x ⊆ Xx

and C̃x ⊆ Dx.
Now, if y /∈ W̃x, then we can simply apply rule EAX2 to derive

P := Rx⟨y⟩@[y←H@
x] ∈ E@Wx∪u(H@

x),Cx∪a(H@
x)

If y ∈ W̃x instead, then Lemma 13.5.12.3 (Focusing multiplicative evaluation
contexts on unapplied varibales) gives Sy ∈ EXy ,Dy such that Sy⟨y⟩ = Rx⟨x⟩,
with y /∈ Xy ⊂ Wx and Dy ⊆ Cx; we can finally derive P := Sy⟨y⟩@[y←H@

x] ∈
E@Xy∪u(H@

x),Dy∪a(H@
x)

via rule EAX2 .
∗ Let y /∈ B. Then y ∈ V . By Lemma 13.5.13.2 (Focusing exponential evaluation

contexts on unapplied variables), there exists Rx ∈ EWx,Cx such that Rx⟨y⟩ =
Q⟨x⟩, with y /∈ Wx ⊂ V and Cx ⊆ B.
We can now proceed by an analogous reasoning to the case above—where y ∈
B—to obtain that u must be an inert term. Moreover, we can proceed by case
analysis on the shape of u—following an analogous reasoning to the case above
as well—to derive P .

– Let x /∈ a(t, E ′). By Definition 36 (Applied variables), there are two (mutually
exclusive) possibilities, namely x = u ∈ Var or x ∈ a(u):

286

∗ Let x = u ∈ Var, with y ∈ nv(t, E ′) and y ∈ a(t, E ′)—by Definition 36 (Applied
variables). Hence, we can apply the i.h. (Focusing→und-normal forms on applied
variables) to get Q ∈ E@V,B such that Q⟨y⟩ = (t, E ′), with V ⊆ u(t, E ′) and
y /∈ B ⊂ a(t, E ′). We can finally derive P := Q⟨y⟩@[y←⟨·⟩] ∈ E@V\{y},B via rule
ENL.

∗ Let x ∈ a(u), with y ∈ nv(t, E ′)—by Definition 36 (Applied variables).
Note that x /∈ (Var∪Val). We can infer that u must be a useful inert term, based
on what is given by Lemma 8.2.2 (Redex in non-normal terms) and following an
analogous reasoning to the ones given above. Therefore, there exists applicative
term context H@

x such that H@
x ⟨x⟩ = u, with u(H@

x) ⊆ u(u) and x /∈ a(H@
x) ⊂

a(u)—by Lemma 13.5.11.2 (Focusing useful inert terms on applied variables).
Moreover, note that y ∈ nv(t, E ′) = u(t, E ′) ∪ a(t, E ′)—by Lemma 8.1.1 (Unap-
plied, applied and needed variables). We proceed by case analysis on whether
y ∈ u(t, E ′):
· Let y ∈ u(t, E ′). By i.h. (Focusing →und-normal forms on unapplied vari-

ables), there exists Q ∈ EV,B such that Q⟨y⟩ = (t, E ′), with y /∈ V ⊂ u(t, E ′)
and B ⊆ a(t, E ′).
Now, if y /∈ B, then we can derive P := Q⟨y⟩@[y←H@

x] ∈ E@V∪u(H@
x),B∪a(H@

x)

via rule EAX2 . If y ∈ B instead, then there exists Ry ∈ E@Wy ,Cy such that
Ry⟨y⟩ = Q⟨y⟩, with Wy ⊆ V and y /∈ Cy ⊂ B—by Lemma 13.5.13.1 (Focusing
multiplicative evaluation contexts on applied variables); we can then apply
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) to get
that Ry ∈ EW̃x,C̃x for some W̃x ⊆ Wx and C̃x ⊆ Cx, and finally derive P :=

Ry⟨y⟩@[y←H@
x] ∈ E@W̃y∪u(H@

x),C̃y∪a(H@
x)

via rule EAX2 .
· Let y /∈ u(t, E ′). Then it must be that y ∈ a(t, E ′). By i.h. (Focusing
→und-normal forms on applied variables), there exists Q ∈ E@V,B such that
Q⟨y⟩ = (t, E ′), with V ⊆ u(t, E ′) and y /∈ B ⊂ a(t, E ′). By Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative), Q ∈ EṼ,B̃, for some Ṽ ⊆
V and B̃ ⊆ B.
Now, if y /∈ Ṽ , then we can derive P := Q⟨y⟩@[y←H@

x] ∈ E@V∪u(H@
x),B∪a(H@

x)

via rule EAX2 . If y ∈ Ṽ instead, then Lemma 13.5.12.3 (Focusing multi-
plicative evaluation contexts on unapplied variables) gives Ry ∈ EWy ,Cy such
that Ry⟨y⟩ = Q⟨y⟩, with y /∈ Wy ⊂ Ṽ and Cy ⊆ B̃; we can then derive
P := Ry⟨y⟩@[y←H@

x] ∈ E@Wy∪u(H@
x),Cy∪a(H@

x)
via rule EAX2 .

Lemma 13.5.15 (Properties of Useful Open CbNeed-normal forms and ESs).
1. Removing ESs does not create →und-redexes: if (t, E[y←u]) is in →und-normal form, then

(t, E) is in →und-normal form.
2. Appending ESs that do not create →und-redexes: Let (t, E) be a →und-normal form such that

if y ∈ nv(t, E) then u is a normal term, and, moreover, if y ∈ a(t, E) then u is an inert
Λ-term.
Then (t, E[y←u]) is in →und-normal form.

Proof.
1. Removing ESs does not create →und-redexes: We prove the contrapositive statement:

287

If (t, E) is not in →und-normal form
then

(t, E[y←u]) is not in →und-normal form

Case analysis on the kind of redex in (t, E):
• Let (t, E) = P ⟨(λx.s)m⟩ →um P ⟨s, [x←m]⟩, with P ∈ EU ,A. Note that if y /∈ (U ∪ A),

then we can derive P@[y←u] ∈ EU ,A via rule MGC and get that

(t, E[y←u]) = (P@[y←u])⟨(λx.s)m⟩ →um (P@[y←u])⟨s, [x←m]⟩

Let us now consider the case where y ∈ (U ∪ A) and proceed by case analysis on the
shape of u:

– Let u ∈ Var. We can then derive P@[y←u] ∈ Eupd(U ,y,u),upd(A,y,u) via rule MVAR and
get that

(t, E[y←u]) = (P@[y←u])⟨(λx.s)m⟩ →um (P@[y←u])⟨s, [x←m]⟩

– Let u be a useful inert term. We can then derive P@[y←u] ∈ E(U\{y})∪u(u),(A\{y})∪a(u)
via rule MI and get that

(t, E[y←u]) = (P@[y←u])⟨(λx.s)m⟩ →um (P@[y←u])⟨s, [x←m]⟩

– Let u ∈ Val. Case analysis on whether y ∈ A:
∗ Let y ∈ A. By Lemma 13.5.13.1 (Focusing multiplicative evaluation contexts

on applied variables), there exists Qy ∈ E@Vy ,By such that Qy⟨y⟩ = P ⟨(λx.s)m⟩,
with Vy ⊆ U and y /∈ By ⊂ A. Finally, case analysis on whether y ∈ Vy
· Let y ∈ Vy. We can then derive Qy@[y←u] ∈ EVy\{y},B via rule EU and get

that
(t, E[y←u]) = (Qy@[y←u])⟨y⟩ →ue (Qy@[y←u])⟨uα⟩

· Let y /∈ Vy. We can then derive Qy@[y←u] ∈ EVy ,B via rule EGC and get that

(t, E[y←u]) = (Qy@[y←u])⟨y⟩ →ue (Qy@[y←u])⟨uα⟩

∗ Let y /∈ A. Then it must be that y ∈ U . We can then derive P@[y←u] ∈ EU\{y},A
via rule MU and get that

(t, E[y←u]) = (P@[y←u])⟨(λx.s)m⟩ →um (P@[y←u])⟨s, [x←m]⟩

– Let u be a non-normal term. By Lemma 8.2.2 (Redex in non-normal terms), there
exist term context J and (λx̃.ũ)s̃ ∈ Λ such that u = H⟨(λx̃.ũ)s̃⟩. Case analysis on
whether y ∈ U :

∗ Let y ∈ U . By Lemma 13.5.12.3 (Focusing multiplicative evaluation contexts on
unapplied variables), there exists Qy ∈ EVy ,By such that Qy⟨y⟩ = P ⟨(λx.s)m⟩,
with y /∈ Vy ⊂ U and By ⊆ A.
Now, if y /∈ By, then we can derive Qy@[y←J] ∈ EVy∪u(J),By∪a(J) via rule MHER

and get that

(t, E)@[y←u] = (Qy⟨y⟩@[y←J])⟨(λx̃.ũ)s̃⟩ →um (Qy⟨y⟩@[y←J])⟨ũ, [x̃←s̃]⟩

288

Let y ∈ By instead. By Lemma 13.5.13.1 (Focusing multiplicative evaluation
contexts on applied variables), there exists Ry ∈ E@Wy ,Cy such that Ry⟨y⟩ = Qy⟨y⟩,
with Wy ⊆ Vy and y /∈ Cy ⊂ By. In addition, Lemma 13.5.12.4 (Exponential
evaluation contexts are multiplicative) gives that Ry ∈ EW̃y ,C̃y , for some W̃y ⊆
Wy and C̃y ⊆ Cy. We can then derive Ry⟨y⟩@[y←J] ∈ EW̃y∪u(J),C̃y∪a(J) such that

(t, E)@[y←u] = (Ry⟨y⟩@[y←J])⟨(λx̃.ũ)s̃⟩ →um (Ry⟨y⟩@[y←J])⟨ũ, [x̃←s̃]⟩

∗ Let y /∈ U . Then it must be that y ∈ A. By Lemma 13.5.13.1 (Focusing
multiplicative evaluation contexts on applied variables), there exists Qy ∈ E@Vy ,By
such that Qy⟨y⟩ = P ⟨(λx.s)m⟩, with Vy ⊆ U and y /∈ By ⊂ A. In addition,
Lemma 13.5.12.4 (Exponential evaluation contexts are multiplicative) gives that
Qy ∈ EṼy ,B̃y , for some Ṽy ⊆ Vy and B̃y ⊆ By. We can then derive Qy⟨y⟩@[y←J] ∈
EṼy∪u(J),B̃y∪a(J) such that

(t, E)@[y←u] = (Qy⟨y⟩@[y←J])⟨(λx̃.ũ)s̃⟩ →um (Qy⟨y⟩@[y←J])⟨ũ, [x̃←s̃]⟩

• Let (t, E) = P ⟨x⟩ →ue P ⟨sα⟩, with P ∈ E@U ,A. Note then x ̸= y—because x ∈ dom(t, E)—
and that if y /∈ (U ∪ A), then we can derive P@[y←u] ∈ E@U ,A via rule EGC and get that

(t, E[y←u]) = (P@[y←u])⟨x⟩ →um (P@[y←u])⟨sα⟩

Let us now consider the case where y ∈ (U ∪ A) and proceed by case analysis on the
shape of u:

– Let u ∈ Var. We can then derive P@[y←u] ∈ E@upd(U ,y,u),upd(A,y,u) via rule EVAR and
get that

(t, E[y←u]) = (P@[y←u])⟨x⟩ →um (P@[y←u])⟨sα⟩
– Let u be a useful inert term. We can then derive P@[y←u] ∈ E@(U\{y})∪u(u),(A\{y})∪a(u)

via rule EI and get that

(t, E[y←u]) = (P@[y←u])⟨x⟩ →um (P@[y←u])⟨sα⟩

– Let u ∈ Val. If x /∈ A, we can then derive P := P@[y←u] ∈ E@U ,A via rule EGC and
get that

(t, E[y←u]) = (P@[y←u])⟨x⟩ →um (P@[y←u])⟨sα⟩
Let x ∈ A instead. By Lemma 13.5.13.3 (Focusing exponential evaluation contexts
on applied variables), there exists Qy ∈ E@Vy ,By such that Qy⟨y⟩ = P ⟨x⟩, with Vy ⊆ U
and y /∈ By ⊂ A.
Now, if y /∈ Vy, then we can derive Qy@[y←u] ∈ E@Vy ,By via rule EGC and get that

(t, E[y←u]) = (Qy@[y←u])⟨y⟩ →um (Qy@[y←u])⟨uα⟩

Finally, if y ∈ Vy instead, then we can derive Qy@[y←u] ∈ E@Vy\{y},By via rule EU and
get that

(t, E[y←u]) = (Qy@[y←u])⟨y⟩ →um (Qy@[y←u])⟨uα⟩
– Let u be a non-normal term. By Lemma 8.2.2 (Redex in non-normal terms), there

exist term context H and (λz.s)m ∈ Λ such that u = H⟨(λz.s)m⟩. We proceed by
case analysis on whether y ∈ U :

289

∗ Let y ∈ U . By Lemma 13.5.13.2 (Focusing exponential evaluation contexts on
unapplied variables), there exists Qy ∈ EVy ,By such that Qy⟨y⟩ = P ⟨x⟩, with
y /∈ Vy ⊂ U and Bu ⊆ A.
Now, if y /∈ By, then we can derive Qy⟨y⟩@[y←H] ∈ E@Qy⟨y⟩,[y←H] via rule MHER

and get that

(t, E[y←u]) = (Qy⟨y⟩@[y←H])⟨(λz.s)m⟩ →um (Qy⟨y⟩@[y←H])⟨s, [z←m]⟩

Let y ∈ By instead. By Lemma 13.5.13.1 (Focusing multiplicative evaluation
contexts on applied variables), there exists Ry ∈ E@Wy ,Cy such that Ry⟨y⟩ = Qy⟨y⟩,
with Wy ⊆ Vy and y /∈ Cy ⊂ By. In addition, Lemma 13.5.12.4 (Exponential
evaluation contexts are multiplicative) gives that Ry ∈ EW̃y ,C̃y , for some W̃y ⊆
Wy and C̃y ⊆ Cy. We can then derive Ry⟨y⟩@[y←H] ∈ EW̃y∪u(H),C̃y∪a(H) via rule
MHER and get that

(t, E[y←u]) = (Qy⟨y⟩@[y←H])⟨(λz.s)m⟩ →um (Qy⟨y⟩@[y←H])⟨s, [z←m]⟩

∗ Let y /∈ U . Then it must be that y ∈ A. By Lemma 13.5.13.3 (Focusing expo-
nential evaluatioun contexts on applied variables), there exists Qy ∈ E@Vy ,By such
that Qy⟨y⟩ = P ⟨x⟩, with Vy ⊆ U and y /∈ By ⊂ A. In addition, Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative) gives that Qy ∈ EṼy ,B̃y , for
some Ṽy ⊆ Vy and B̃y ⊆ By.
Now, if y /∈ Ṽy then we can derive Qy⟨y⟩@[y←H] ∈ EṼy∪u(H),B̃y∪a(H) via rule
MHER and get that

(t, E[y←u]) = (Qy⟨y⟩@[y←H])⟨(λz.s)m⟩ →um (Qy⟨y⟩@[y←H])⟨s, [z←m]⟩

Finally, let y ∈ Ṽy instead. By Lemma 13.5.12.3 (Focusing multiplicative eval-
uation contexts on unapplied variables), there exists Ry ∈ EWy ,Cy such that
Ry⟨y⟩ = Qy⟨y⟩, with y /∈ Wy ⊂ Ṽy and Cy ⊆ B̃y. In addition, Lemma 13.5.12.4
(Exponential evaluation contexts are multiplicative) gives that Qy ∈ EW̃y ,C̃y , for
some W̃y ⊆ Wy and C̃y ⊆ Cy. We can derive Qy⟨y⟩@[y←H] ∈ EW̃y∪u(H),C̃y∪a(H)

via rule MHER and get that

(t, E[y←u]) = (Qy⟨y⟩@[y←H])⟨(λz.s)m⟩ →um (Qy⟨y⟩@[y←H])⟨s, [z←m]⟩

2. Appending ESs that do not create →und-redexes: We prove the contrapositive statement:

Let u be such that if y ∈ nv(t, E) then u is a normal term and if y ∈ a(t, E) then u is an
inert term. Moreover, let (t, E[y←u]) not be in →und-normal form

then
(t, E) is not in →und-normal form

Case analysis on the kind of redex in (t, E[y←u]):
• Let (t, E[y←u]) = P ⟨(λx.s)m⟩, with P ∈ EU ,A. We proceed by case analysis on the last

derivation rule in P ∈ EU ,A:
– Rule MAX: The case where P = (H, ϵ) is impossible.

290

– Rule MVAR: Let
Q ∈ EV,B y ∈ (V ∪ B)

Q@[y←u] ∈ Eupd(V,y,u),upd(B,y,u)
MVAR

where P = Q@[y←u], u ∈ Var, U = upd(V , y, u) and A = upd(B, y, u). Then
(t, E) = Q⟨(λx.s)m⟩ →um Q⟨s, [x←m]⟩.

– Rule MI: Let
Q ∈ EV,B y ∈ (V ∪ B)

Q@[y←u] ∈ E(V\{y})∪u(u),(B\{y})∪a(u)
MI

where P = Q@[y←u], u is a useful inert term, U = (V \ {y}) ∪ u(u) and A =
(B \ {y}) ∪ a(u). Then (t, E) = Q⟨(λx.s)m⟩ →um Q⟨s, [x←m]⟩.

– Rule MGC: Let
Q ∈ EU ,A y /∈ (U ∪ A)

Q@[y←u] ∈ EU ,A
MGC

where P = Q@[y←u]. Then (t, E) = Q⟨(λx.s)m⟩ →um P ⟨s, [x←m]⟩.
– Rule MU: Let

Q ∈ EV,B y ∈ (V \ B)
Q@[y←u] ∈ EV\{y},B

MU

where P = Q@[y←u], u ∈ Val, U = V \ {y} and A = B. Then (t, E) = Q⟨(λx.s)m⟩
→um Q⟨s, [x←m]⟩.

– Rule MHER: Suppose

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H] ∈ EV∪u(H),B∪a(H)

MHER

with P = Q⟨y⟩@[y←H], u = H⟨(λx.s)m⟩, U = V ∪ u(H) and A = B ∪ a(H). Since
u is not normal—by Lemma 8.2.2 (Redex in non-normal terms)—then it would
have to be that y /∈ nv(t, E) = nv(Q⟨y⟩), by hypothesis. But Lemma 13.5.12.1
(Multiplicative evaluation contexts give needed variables) gives that y ∈ nv(Q⟨y⟩).
Hence, this case is impossible.

• Let (t, E) = P ⟨x⟩, with P ∈ E@U ,A. We proceed by case analysis on the last derivation
rule in P ∈ E@U ,A:

– Rule EAX1 : The case where P = (H@, ϵ) is impossible.
– Rule EAX2 : The case where P = Q⟨y⟩@[y←H@], for some applicative term context
H@, is impossible, as it would then be that x /∈ dom(P); absurd.

– Rule EVAR: Let
Q ∈ E@V,B y ∈ (V ∪ B)

Q@[y←u] ∈ E@upd(V,y,u),upd(B,y,u)
EVAR

where P = Q@[y←u], u ∈ Var, U = upd(V , y, u) and A = upd(B, y, u). Note that
x ̸= y, because u /∈ Val. Hence, x ∈ dom(Q), and so we have that (t, E) = Q⟨x⟩ →ue

Q⟨uα⟩.
– Rule EI: Let

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←u] ∈ E@(V\{y})∪u(u),(B\{y})∪a(u)

EI

291

where P = Q@[y←u], u is a useful inert term, U = (V \ {y}) ∪ u(u) and A =
(B \ {y}) ∪ a(u). Note that x ̸= y, because u /∈ Val. Hence, x ∈ dom(Q), and so we
have that (t, E) = Q⟨x⟩ →ue Q⟨uα⟩.

– Rule EGC: Let
Q ∈ E@U ,A y /∈ (U ∪ A)

Q@[y←u] ∈ E@U ,A
EGC

where P = Q@[y←u]. Note that if x ̸= y, then x ∈ dom(Q), giving that (t, E) =
Q⟨x⟩ →ue Q⟨uα⟩. Suppose x = y instead. Then it would have to be that u ∈ Val and
that (t, E) = Q⟨y⟩—by Definition 43 (Useful Open CbNeed evaluation strategy).
But then Lemma 13.5.12.2 (Exponential evaluation contexts give applied variables)
gives that y ∈ a(Q⟨y⟩) and so it should be that u is an inert term, by hypothesis;
absurd.

– Rule EU: Let
Q ∈ E@V,B y ∈ (V \ B)
Q@[y←u] ∈ E@V\{y},B

EU

where P = Q@[y←u], u ∈ Val, U = V \ {y} and A = B. Note that if x ̸= y, then
x ∈ dom(Q), giving that (t, E) = Q⟨x⟩ →ue Q⟨uα⟩. Suppose x = y instead. Then it
would have to be that u ∈ Val and that (t, E) = Q⟨y⟩. But then Lemma 13.5.12.2
(Exponential evaluation contexts give applied variables) gives that y ∈ a(Q⟨y⟩) and
so it should be that u is an inert term, by hypothesis; absurd.

– Rule ENL: The case where P = Q⟨y⟩@[y←⟨·⟩] is impossible: it would then be that
x /∈ dom(P); absurd.

Proposition 13.5.16 (Syntactic characterization of Useful Open CbNeed-normal forms).
Let p ∈ PR. Then p is in →und-normal form if and only if unorm(p).

Proof. (Click here to go back to main chapter.)
⇒ : Let p = (t, E) be in →und-normal form. By induction on the length of E:

– Let E = ϵ. Note that if t ∈ Var or t ∈ Val then unorm(t, ϵ).
Let t = t1t2. Case analysis on the shape of t1:

∗ Suppose t1 ∈ Val, say t1 = λx.u. But then we would get that

p = (⟨·⟩, ϵ)⟨(λx.u)t2⟩ →um (⟨·⟩, ϵ)⟨u, [x←t2]⟩

which is absurd.
∗ Let t1 be an inert term. Case analysis on whether t2 is a normal term:

· Suppose t2 is not a normal term. By Lemma 8.2.2 (Redex in non-normal terms),
there exist term context H and (λy.s)m ∈ Λ such that t2 = H⟨(λy.s)m⟩. But
then (t1H, ϵ) ∈ Eu(t1H),a(t1H), and so

p = (t1H1, ϵ)⟨(λy.s)m⟩ →um (t1H1, ϵ)⟨s, [y←m]⟩

which is absurd.

292

· Let t2 be a normal term. Then t1t2 is a useful inert term, giving that

uinert(t1t2, ϵ)
IAX

unorm(t1t2, ϵ)
unormP

∗ Suppose t1 is not a normal term. By Lemma 8.2.2 (Redex in non-normal terms),
there exist term context H and (λy.s)m ∈ Λ such that t1 = H⟨(λy.s)m⟩. But then
(t1H, ϵ) ∈ Eu(t1H),a(t1H), and so

p = (H, ϵ)⟨(λy.s)m⟩ →um (H, ϵ)⟨s, [y←m]⟩

which is absurd.
– Let E = E ′[y←u]—i.e., (t, E) = (t, E ′[y←u]). By Lemma 13.5.15.1 (Removing ESs

does not create →und-redexes), (t, E ′) is in →und-normal form. By i.h., unorm(t, E ′). We
proceed by case analysis on the predicate derivation of unorm(t, E):

∗ Let genVarx(t, E
′). Case analysis on the last whether y = x:

· Let y ̸= x. We can then derive
genVarx(t, E

′) y ̸= x

genVarx(t, E
′[y←u])

GVGC

unorm(t, E ′[y←u])
unormP

· Let y = x.
Now, if u ∈ Var, then we can derive

genVarx(t, E
′)

genVaru(t, E
′[y←u])

GVHER

unorm(u,E ′[y←u])
unormP

If u is a useful inert term instead, then we can derive
genVarx(t, E

′)

uinert(u, t)E ′[y←u]
IGV

unorm(u,E ′[y←u])
unormP

Next, if u ∈ Val, then we can derive
genVarx(t, E

′)

uinert(u, t)E ′[y←u]
AGV

unorm(u,E ′[y←u])
unormP

Finally, suppose u is not a normal term. By Lemma 8.2.2 (Redex in non-normal
terms), there would exist term context H and (λy.s)m ∈ Λ such that u =
H⟨(λy.s)m⟩. In addition, note that x ∈ nv(t, E ′)—by Lemma 8.2.4 (Properties
of generalized variables). Thus, x ∈ (u(t, E ′)∪a(t, E ′))—by Lemma 8.1.1.2 (Un-
applied, applied and needed variables). Case analysis on whether x ∈ u(t, E ′):
If x ∈ u(t, E ′), then there would exist P ∈ EU ,A such that P ⟨x⟩ = (t, E ′), with
x /∈ U ⊂ u(t, E ′) and A ⊆ a(t, E ′). However, if x /∈ A, then we would be able to
derive P ⟨x⟩@[x←H] ∈ EU∪u(H),A∪a(H) via rule MHER and get that

(t, E ′[y←u]) = (P ⟨x⟩@[x←H])⟨(λy.s)m⟩ →um (P ⟨x⟩@[x←H])⟨s, [y←m]⟩

293

which is absurd. But if x ∈ A instead, then there would exist—by Lemma 13.5.13.1
(Focusing multiplicative evaluation contexts on applied variables)—Qx ∈ E@Vx,Bx
such that Qx⟨x⟩ = P ⟨x⟩, with Vx ⊆ U and x /∈ Bx ⊂ A. In addition, Qx ∈ EṼx,B̃x
for some Ṽx ⊆ Vx and B̃x ⊆ Bx. However, we would then be able to derive
Qx⟨x⟩@[x←H] ∈ EṼx∪u(H),B̃x∪a(H) via rule MHER and get that

(t, E ′[y←u]) = (P ⟨x⟩@[x←H])⟨(λy.s)m⟩ →um (P ⟨x⟩@[x←H])⟨s, [y←m]⟩

which is also absurd.
Therefore, it would have to be that x /∈ u(t, E ′) instead, forcing that x /∈ a(t, E ′).
Then, by Lemma 13.5.14.1 (Focusing Useful Open CbNeed-normal forms on ap-
plied variables), there would exist P ∈ E@U ,A such that P ⟨x⟩ = (t, E ′), with
U ⊆ u(t, E ′) and x /∈ A ⊂ a(t, E ′). In addition, P ∈ EŨ ,Ã, for some Ũ ⊆ U and
Ã ⊆ A. However, we would then be able to derive P ⟨x⟩@[x←H] ∈ EŨ∪u(H),Ã∪a(H)

via rule MHER and get that

(t, E ′[y←u]) = (P ⟨x⟩@[x←H])⟨(λy.s)m⟩ →um (P ⟨x⟩@[x←H])⟨s, [y←m]⟩

which is also absurd.
Therefore, the case where u is not a normal term is impossible.

∗ Let uabs(t, E ′). Note that nv(t, E ′) = ∅—by Lemma 8.2.5 (Properties of useful
abstraction programs)—and so we can derive unorm(t, E ′[y←u]) as follows:

uabs(t, E ′)

uabs(t, E ′[y←u])
AGC

unorm(t, E ′[y←u])
unormP

∗ Let uinert(t, E ′). If y /∈ nv(t, E ′) then we can derive unorm(t, E ′[y←u]) as follows:

uinert(t, E ′) y /∈ nv(t, E ′)

uinert(t, E ′[y←u])
IGC

unorm(t, E ′[y←u])
unormP

Let y ∈ nv(t, E ′) = (u(t, E ′) ∪ a(t, E ′))—the last equality given by Lemma 8.1.1.2
(Unapplied, applied and needed variables). We proceed by case analysis on the
shape of u:
· First, note that if u is an inert term then we can simply derive unorm(t, E ′[y←u])

as follows:
uinert(t, E ′) y ∈ nv(t, E ′)

uinert(t, E ′[y←u])
II

unorm(t, E ′[y←u])
unormP

· Let u ∈ Val. On the one hand, note that if y /∈ a(t, E ′) then it must be that
y ∈ u(t, E ′) and so we can derive unorm(t, E ′[y←u]) as follows:

uinert(t, E ′) y ∈ ul (t, E ′)

uinert(t, E ′[y←u])
IU

unorm(t, E ′[y←u])
unormP

294

On the other hand, let us suppose that y ∈ a(t, E ′). Then there would exist—
by Lemma 13.5.14.2 (Focusing Useful Open CbNeed-normal forms on applied
variables)—P ∈ E@U ,A such that P ⟨y⟩ = (t, E ′), with U ⊆ u(t, E ′) and y /∈ A ⊂
a(t, E ′). However, this leads to a contradiction. To see why, note that if y /∈ U
then would be able to derive

P ∈ E@U ,A y /∈ (U ∪ A)
P@[y←u] ∈ E@U ,A

EGC

and if y ∈ U then we would be able to derive

P ∈ E@U ,A y ∈ (U \ A)
P@[y←u] ∈ E@U\{y},A

EGC

having in both cases that

(t, E ′) = (P@[y←u])⟨y⟩ →ue (P@[y←u])⟨uα⟩

which is absurd. Therefore, the case where y ∈ a(t, E ′) is impossible.
· Finally, suppose u is not a normal term. By Lemma 8.2.2 (Redex in non-

normal terms), there would exist term context H and (λz.s)m ∈ Λ such that
u = H⟨(λx.s)m⟩. Moreover, note that y ∈ nv(t, E ′) = (u(t, E ′) ∪ a(t, E ′))—
the equality given by Lemma 8.1.1.2 (Unapplied, applied and needed variables).
Case analysis on whether y ∈ u(t, E ′):
Let y ∈ u(t, E ′). By Lemma 13.5.14.1 (Focusing Useful Open CbNeed-normal
forms on unapplied variables), there would exist P ∈ EU ,A such that P ⟨x⟩ =
(t, E ′), with x /∈ U ⊂ u(t, E ′) and A ⊂ a(t, E ′). But if x /∈ A, then we would be
able to derive P ⟨x⟩@[x←H] ∈ EU∪u(H),A∪a(H) via rule MHER and get that

(t, E ′[x←u]) = (P ⟨x⟩@[x←H])⟨(λx.s)m⟩ →um (P ⟨x⟩@[x←H])⟨s, [x←m]⟩

which is absurd. Moreover, if x ∈ A, then Lemma 13.5.13.1 (Focusing multi-
plicative evaluation contexts on applied variables) would give Qx ∈ E@Vx,Bx such
that Qx⟨x⟩ = P ⟨x⟩, with Vx ⊆ U and x /∈ Bx ⊂ A; by Lemma 13.5.12.4 (Expo-
nential evaluation contexts are multiplicative), Qx ∈ EṼx,B̃x , for some Ṽx ⊆ Vx
and B̃x ⊆ Bx. However, we would then be able to derive Qx⟨x⟩@[x←H] ∈
EṼx∪u(H),B̃x∪a(H) via rule MHER and get that

(t, E ′[x←u]) = (Q⟨x⟩@[x←H])⟨(λx.s)m⟩ →um (Q⟨x⟩@[x←H])⟨s, [x←m]⟩

which is absurd.
Let y /∈ u(t, E ′) instead, forcing that y ∈ a(t, E ′). It is easy to see that this case
also leads to a contradiction, wrongfully proving that (t, E ′[x←u])→um-reduces.
Therefore, the case where u is not a normal term is impossible.

⇐ : We proceed by case analysis on the derivation of unorm(p). We first prove the statement for
genVar#(p), and then prove it for uinert(p) and uabs(p), both of which rely on the former:

– Generalized variables: We proceed by induction on the derivation of genVar#(p):
∗ Rule GVAX: If p = (x, ϵ) then the statement clearly holds.

295

∗ Rule GVHER: Let genVar#(p) be derived as

genVary(q)

genVarx(q@[y←x])
GVHER

where p = q@[y←x]. By i.h., q is in →und-normal form. Then,
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [x←m]⟩, for some P ∈ EU ,A. But then, since

x cannot be rewritten as a multiplicative redex, it must be that q = Q⟨(λz.s)m⟩,
with P = Q@[y←x]; absurd, because q is in →um-normal form. Hence, p is in
→um-normal form.

· Since neither x /∈ dom(P) nor x ∈ Val, then p = P ⟨z⟩ →ue P ⟨sα⟩, for some
P ∈ E@U ,A, only if P = Q@[y←u], for some Q ∈ E@V,B such that x ∈ dom(Q).
Absurd, since then it would be that q = Q⟨x⟩ →ue Q⟨sα⟩. Hence, p is in →ue-
normal form.

We conclude that p is in →und-normal form.
∗ Rule GVGC: Let genVar#(p) be derived as

genVarx(q) y ̸= x

genVarx(q@[y←t])
GVGC

where p = q@[y←t]. By i.h., q is in →und-normal form. Then
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A. Note that if

P = Q@[y←t], for some Q ∈ EV,B, then it would be that q = Q⟨(λz.s)m⟩ →um

Q⟨s, [z←m]⟩; absurd. Hence, it should be that p = (R⟨y⟩@[y←H])⟨(λz.s)m⟩
with q = R⟨y⟩ and t = H⟨(λz.s)m⟩. In addition, Lemma 13.5.12.1 (Multiplica-
tive evaluation contexts give needed variables) would give that y ∈ nv(R⟨y⟩) =
nv(q). However, Lemma 8.2.4 (Properties of generalized variables) gives that
nv(q) = {x}. Since y ̸= x, then this case is impossible, and so p is in →um-
normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩ for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[y←t], for some Q ∈ E@V,B
such that q = Q⟨z⟩.
Now, let us suppose that y = z and that p = q@[y←t] = (Q@[y←t])⟨y⟩ →ue

(Q@[y←t])⟨tα⟩. Then Lemma 13.5.12.2 (Exponential evaluation contexts give
applied variables) would give that y ∈ a(Q⟨y⟩) = a(q). This is absurd, by
Lemma 8.2.4 (Properties of generalized variables).
Hence, it should be that y ̸= z ∈ dom(Q). However, this would in turn imply
that q = Q⟨z⟩ →ue Q⟨sα⟩; absurd. Hence, p is in →ue-normal form.

We conclude that p is in →und-normal form.
– Useful abstraction programs: We proceed by induction on the derivation of uabs(p):

∗ Rule ALift: Let uabs(p) be derived as

uabs(v, ϵ)
ALift

where p = (v, ϵ). Note that E = ϵ discards the possibility that p were not in
→ue-normal form. Moreover, v discards the possibility that p were not in →um—by
Lemma 8.2.2 (Redex in non-normal terms). Hence, p is in →und-normal form.

296

∗ Rule AGV: Let uabs(p) be derived as

genVarx(q)

uabs(q@[x←v])
AGV

where p = q@[x←v]. By i.h., q is in →und-normal form. Then
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←v], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and v = H⟨(λz.s)m⟩.
The latter is impossible, by Lemma 8.2.2 (Redex in non-normal terms). Hence,
p is in →um-normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P),
which is absurd. That is, it should be that P = Q@[y←t], for some Q ∈ E@V,B
such that q = Q⟨z⟩.
Now, let us suppose that y = z and that p = q@[y←t] = (Q@[y←t])⟨y⟩ →ue

(Q@[y←t])⟨tα⟩. Then Lemma 13.5.12.2 (Exponential evaluation contexts give
applied variables) would give that y ∈ a(Q⟨y⟩) = a(q). This is absurd, by
Lemma 8.2.4 (Properties of generalized variables).
Hence, it should be that y ̸= z and that z ∈ dom(Q). However, this would in
turn imply that q = Q⟨z⟩ →ue Q⟨sα⟩. This is absurd, and so p is in →ue-normal
form.

We conclude that p is in →und-normal form.
∗ Rule AGC: Let uabs(p) be derived as

uabs(q)

uabs(q@[x←t])
AGC

where p = q@[x←t]. By i.h., q is in →und-normal form. Then
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←v], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and t = H⟨(λz.s)m⟩.
However, by Lemma 13.5.12.1 (Multiplicative evaluation contexts give needed
variables), we would have that x ∈ nv(Q⟨x⟩) = nv(q), which is absurd by
Lemma 8.2.5 (Properties of useful abstraction programs). Hence, p is in →um-
normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[x←t], for some Q ∈ E@V,B
such that q = Q⟨z⟩.
Now, let us suppose that x = z and that p = q@[x←t] = (Q@[x←t])⟨z⟩ →ue

(Q@[x←t])⟨tα⟩. Then Lemma 13.5.12.2 (Exponential evaluation contexts give
applied variables) would give that y ∈ a(Q⟨y⟩) = a(q). This is absurd, by
Lemma 8.2.5 (Properties of useful abstraction programs).
Hence, it should be that x ̸= z ∈ dom(Q). However, this would in turn imply
that q = Q⟨z⟩ →ue Q⟨sα⟩. This is absurd, and so p is in →ue-normal form.

297

We conclude that p is in →und-normal form.
– Useful inert programs: We proceed by induction on the derivation of uinert(p):

∗ Rule ILift: Let uinert(p) be derived as

uinert(i+, ϵ)
ILift

where p = (i+, ϵ). Note that E = ϵ discards the possibility that p were not in →ue-
normal form. Moreover, i+ discards the possibility that p were not in →um-normal
form—by Lemma 8.2.2 (Redex in non-normal terms). Hence, p is in →und-normal
form.

∗ Rule II: Let uinert(p) be derived as
uinert(q) x ∈ nv(i)

uinert(q@[x←i])
II

where p = q@[x←i]. By i.h., q is in →und-normal form. Then,
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←i], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and i = H⟨(λz.s)m⟩.
However, this is also absurd, by Lemma 8.2.2 (Redex in non-normal terms).
Hence, p is in →und-normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[x←i], for some Q ∈ E@V,B
such that q = Q⟨z⟩. Moreover, note that since i /∈ Val, then it must be that x ̸= z
and that z ∈ dom(Q). However, this would imply that q = Q⟨z⟩ →ue Q⟨sα⟩;
absurd. Hence, p is in →ue-normal form.

We conclude that p is in →und-normal form.
∗ Rule IGV: Let uinert(p) be derived as

genVarx(q)

uinert(q@[x←i+])
IGV

where p = q@[x←i+]. By i.h., q is in →und-normal form. Note that q is in →und-
normal form—as we proved it above for every generalized variable. Then,
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←i], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and i = H⟨(λz.s)m⟩.
However, this is also absurd, by Lemma 8.2.2 (Redex in non-normal terms).
Hence, p is in →und-normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[x←i], for some Q ∈ E@V,B
such that q = Q⟨z⟩ and z ∈ dom(Q)—the latter because i+ /∈ Val. However,
Lemma 13.5.12.2 (Exponential evaluation contexts give applied variables) would
give that x ∈ a(Q⟨x⟩) = a(q), which is absurd—by Lemma 8.2.4 (Properties of
generalized variables). Hence, p is in →ue-normal form.

298

We conclude that p is in →und-normal form.
∗ Rule IU: Let uinert(p) be derived as

uinert(q) x ∈ u(q) x /∈ a(q)

uinert(q@[x←v])
IU

where p = q@[x←v]. By i.h., q is in →und-normal form. Then,
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←v], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and v = H⟨(λz.s)m⟩.
However, this is also absurd, by Lemma 8.2.2 (Redex in non-normal terms).
Hence, p is in →und-normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[x←v], for some Q ∈ E@V,B
such that q = Q⟨z⟩. But then Lemma 13.5.12.2 (Exponential evaluation contexts
give applied variables) would give that x ∈ a(Q⟨x⟩) = a(q); absurd. Hence, p is
in →ue-normal form.

We conclude that p is in →und-normal form.
∗ Rule IGC: Let uinert(p) be derived as

uinert(q) x /∈ nv(q)

uinert(q@[x←t])
IGC

where p = q@[x←t]. By i.h., q is in →und-normal form. Then,
· Suppose p = P ⟨(λz.s)m⟩ →um P ⟨s, [z←m]⟩, for some P ∈ EU ,A.

Note that if P = Q@[x←t], for some Q ∈ EU ,A, then we would have that
q = Q⟨(λz.s)m⟩ →um Q⟨s, [z←m]⟩; absurd.
Hence, it should be that P = Q⟨x⟩@[x←H], with q = Q⟨x⟩ and t = H⟨(λz.s)m⟩.
However, Lemma 13.5.12.1 (Multiplicative evaluation contexts give needed vari-
ables) would give that x ∈ nv(Q⟨x⟩) = nv(q). Hence, p is in →und-normal form.

· Suppose p = P ⟨z⟩ →ue P ⟨sα⟩, for some P ∈ E@U ,A. Note that the variable
occurrence to be substituted must appear within q; otherwise, x /∈ dom(P)
which is absurd. That is, it should be that P = Q@[x←v], for some Q ∈ E@V,B
such that q = Q⟨z⟩. But then Lemma 13.5.12.2 (Exponential evaluation contexts
give applied variables) would give that x ∈ a(Q⟨x⟩) = a(q), with a(q) ⊆ nv(q)—
by Lemma 8.1.1.2 (Unapplied, applied and needed variables); absurd. This is
absurd, and so p is in →ue-normal form.

We conclude that p is in →und-normal form.

(Click here to go back to main chapter.)

13.5.3 Determinism.
Lemma 13.5.17 (Unique decomposition of Λ-terms).

299

Let H1⟨t1⟩ = H2⟨t2⟩, with H1,H2 term contexts, let S ⊇ (a(H1) ∪ a(H2)), and let ti be an
S-reduction place of Hi⟨ti⟩, for i = 1, 2.

Then t1 = t2 and H1 = H2.

Proof. (Click here to go back to main chapter.)
By induction on H1. Cases:
• Empty: H1 = ⟨·⟩. If t1 is a multiplicative redex then it must be that H2 = ⟨·⟩ and t2 = t1.

The same is true if t1 is a variable not in S.
• Left of an application: H1 = J1u. Cases of H2:

– Empty: If H2 = ⟨·⟩, then t2 is a multiplicative redex, implying that J1 is empty and t1
is a value, which is absurd. Therefore, this case is impossible.

– Left of an application: Let H2 = J2u. Then J1⟨t1⟩ = J2⟨t2⟩ and ti is a S-reduction
places of Hi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2 and J1 = J2, and then H1 = H2.

– Right of an application: If H2 = iJ2, then i = J1⟨t1⟩. Two cases:
∗ If i ∈ Var, then it should be that J1 = ⟨·⟩ and t1 ∈ Var. But since J1 is not

applicative, then t1 cannot be an S-reduction place of H1⟨t1⟩, which contradicts the
hypothesis.

∗ Suppose i = j+. Then it should be that t1 ∈ Var—by Lemma 8.2.2 (Redex in
non-normal terms)—and so that J1 is applicative. However, this would imply that
t1 ∈ a(i)—by Lemma 13.5.11.1 (Applicative term contexts give applied variables)—
which gives that t ∈ a(H2) ⊂ S; absurd.

Therefore, this case is impossible.
• Right of an application: H1 = iJ1. Cases of H2:

– Empty: If H2 = ⟨·⟩, then t2 is an application that is not a multiplicative redex; absurd.
Therefore, this case is impossible.

– Left of an application: H2 = J2u. This case is identical to the case where the hole of H1

is on the left of the application while the one of H2 is on the right, treated above.
– Right of an application: H2 = iJ2. Then J1⟨t1⟩ = J2⟨t2⟩ and ti is a S-reduction places

of Hi⟨ti⟩ for i = 1, 2. By i.h., t1 = t2 and J1 = J2, and then H1 = H2.

(Click here to go back to main chapter.)

Lemma 13.5.18 (Unique decomposition of programs).
Let P1⟨t1⟩ = P2⟨t2⟩, with P1 ∈ (EU1,A1 ∪ E@U1,A1

) and P2 ∈ (EU2,A2 ∪ E@U2,A2
) such that S ⊇

(U1 ∪ A1 ∪ U2 ∪ A2), and ti be an S-reduction place of Pi⟨ti⟩ for i = 1, 2.
Then t1 = t2 and P1 = P2.

Proof. (Click here to go back to main chapter.)
We split the analysis in two, namely when P1 ∈ EU1,A1 and P1 ∈ E@U1,A1

:
• Let P1 ∈ EU1,A1 . We further split the analysis in whether P2 ∈ EU2,A2 or P2 ∈ E@U2,A2

:
– Let P2 ∈ EU2,A2 . We proceed by induction on the derivation of P1 ∈ EU1,A1 . Case analysis

on the last derivation rule:
∗ Rule MAX: Let P1 be derived via an application of rule MAX. Then P1 := (H1, ϵ)

for some term context H1 and so, in addition, it must be that P2 = (H2, ϵ) for
some term context H2—i.e., P2 ∈ EU2,A2 is derived via an application of MAX. The
statement follows by Lemma 8.3.1 (Unique decomposition of Λ-terms).

300

∗ Rule MHER: Let P1 be derived as follows

Q1 ∈ EV1,B1 x /∈ (V1 ∪ B1)
Q1⟨x⟩@[x←H1] ∈ EV1∪u(H1),B1∪a(H1)

MHER

where P1 = Q1⟨x⟩@[x←H1], U1 = V1 ∪ u(H1) and A1 = B1 ∪ a(H1). There are two
possibilities: either t1 ∈ Var and t1 /∈ (V1 ∪ B1) or t1 = (λx1.u1)s1—by Definition 45
(Reduction places in Useful Open CbNeed). We shall only cover the case of t1 =
(λx1.u1)s1, while leaving the other case for the reader.
As a starting point, note that x is a S-reduction place of Q1⟨x⟩, since V1 ∪ B1 ⊆ S.
We now proceed by case analysis on the last derivation rule applied in P2 ∈ EU2,A2 .
· The case of rule MAX is impossible.
· The statement in the case of rule MHER follows by i.h..
· Suppose P2 := Q2@[x←y] ∈ EU2,A2 is derived via an application of rule MVAR.

But then we would have thatH1⟨t1⟩ = H1⟨(λx1.u1)s1⟩ = y; absurd by Lemma 8.2.2
(Redex in non-normal terms).

· The cases where P2 is derived via an application of rule MI or an application of
rule MU are ruled out analogously to the previous case, given that non-variable
inerts and values are normal Λ-terms—just like y is in the previous case.

· Suppose P2 ∈ EU2,A2 is derived as follows

Q2 ∈ EU2,A2 x /∈ (U2 ∪ A2)

Q2@[x←s̃] ∈ EU2,A2

MGC

with P2 = Q2@[x←s̃]. Then there are two possibilities: either t2 = y ̸= x, or
t2 = (λx2.u2)s2—by Definition 45 (Reduction places in Useful Open CbNeed).
On the one hand, if t2 = y, then the i.h. on Q1⟨x⟩ = Q2⟨y⟩ gives that x = u = y;
absurd. On the other hand, if t2 = (λx2.u2)s2, then the i.h. on Q1⟨x⟩ and
Q2⟨(λx2.u2)s2⟩ with respect to S := (V1 ∪ U2 ∪ B1 ∪ A2) to get that x = t1 =
t2 = (λx2.u2)s2; absurd.

· In the case where P2 is derived via an application of rule MHER, the statement
follows by Lemma 8.3.1 (Unique decomposition of Λ-terms).

∗ Rule MGC: Let P1 be derived as follows

Q1 ∈ EU1,A1 x /∈ (U1 ∪ A1)

Q1@[x←s̃1] ∈ EU1,A1

MGC

where P1 = Q1@[x←s̃1]. Case analysis on the last derivation rule in P2 ∈ EU2,A2 :
· The case of rule MAX is impossible.
· The cases of rules MGC, MVAR, MI and MU are given by the i.h..
· Suppose P2 ∈ EU2,A2 is derived as follows:

Q2 ∈ EV2,B2 x /∈ (V2 ∪ B2)
Q2⟨x⟩@[x←H2] ∈ EV2∪u(H2),B2∪a(H2)

MHER

with P2 = Q2⟨x⟩@[x←H2], U2 = V2 ∪ u(H2) and A2 = B2 ∪ a(H2). But since t1
is a S-reduction place of Q1⟨t1⟩ and x is a S-reduction place of Q2⟨x⟩, we would
then be able to apply the i.h. on Q1⟨t1⟩ and Q2⟨x⟩ to get that that t1 = x,
which is absurd by Definition 45 (Reduction places in Useful Open CbNeed).

301

∗ Rule MVAR: Let P1 be derived as follows
Q1 ∈ EV1,B1 x ∈ (V1 ∪ B1)

Q1@[x←z] ∈ Eupd(V1,x,z),upd(B1,x,z)
MVAR

where P1 = Q1@[x←z], U1 = upd(V1, x, z) and A1 = upd(B1, x, z). Case analysis on
the last derivation rule in P2 ∈ EU2,A2 :
· The case of rule MAX is impossible.
· The case of rule MGC was covered above, when P1 was derived by an application

of rule MGC and P2 was derived by an application of rule MVAR.
· The case of rule MHER was covered above, when P1 was derived by an application

of rule MHER and P2 was derived by an application of rule MVAR.
· The case of rule MVAR is given by a simple application of the i.h..
· The case of rules MI and MU are impossible, because the set of variables is

pairwise disjoint with the set of values and with the set of non-variale inert
Λ-terms.

∗ Rule MI: This case can be analyzed analogously to the previous case.
∗ Rule MU: Same as previous item.

– Let P2 ∈ E@U2,A2
. We now proceed by induction on the derivation of P1 ∈ EU1,A1 . Case

analysis on the last derivation rule:
∗ Rule MAX: Let P1 be derived via an application of rule MAX. Then P1 := (H1, ϵ) for

some term context H1 and so, in addition, it must be that P2 = (H@
2 , ϵ) for some

term context H2—i.e., P2 ∈ E@U2,A2
is derived via an application of rule EAX1 . The

statement follows by Lemma 8.3.1 (Unique decomposition of Λ-terms).
∗ Rule MHER: Let P1 be derived as follows

Q1 ∈ EV1,B1 x /∈ (V1 ∪ B1)
Q1⟨x⟩@[x←H1] ∈ EV1∪u(H1),B1∪a(H1)

MHER

where P1 = Q1⟨x⟩@[x←H1], U1 = V1 ∪ u(H1) and A1 = B1 ∪ a(H1). Note that x is
a S-reduction place of Q1⟨x⟩. There are two possibilities: either t1 = (λx1.u1)s1 or
t1 ∈ Var—by Definition 45 (Reduction places in Useful Open CbNeed). We consider
the former case, and leave the latter for the reader.
We now proceed by case analysis on the last derivation rule applied in P2 ∈ E@U2,A2

.
· The case of rule EAX1 is impossible.
· Let P2 ∈ E@U2,A2

be derived as follows
Q2 ∈ EV2,B2 x /∈ (V2 ∪ B2)

Q2⟨x⟩@[x←H@
2] ∈ E@(V2\{x})∪u(H@

2),(B2\{x})∪a(H@
2)

EAX2

where P2 = Q2⟨x⟩@[x←H@
2], U2 = (V2 \ {x}) ∪ u(H@

2) and A2 = (B2 \ {x}) ∪
a(H@

2).
The statement follows trivially by application of the i.h. on Q1⟨x⟩ and Q2⟨x⟩
and by Lemma 8.3.1 (Unique decomposition of Λ-terms) on H1⟨t1⟩ and H@

2 ⟨t2⟩.
· The case of rules EVAR, EI and EU are all ruled out by Lemma 8.2.2 (Redex in

non-normal terms).
· Suppose P2 ∈ E@U2,A2

is derived as follows

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←s̃2] ∈ E@U2,A2

EGC

302

with P2 = Q2@[x←s̃2]. Given Definition 45 (Reduction places in Useful Open
CbNeed), if t2 = y ̸= x then by i.h. we would get that Q1 = Q2 and that
x = t1 = t2 = y; absurd. Moreover, if t2 = x then s̃2 ∈ Val but also H1⟨t1⟩ =
s̃2 ∈ Val; absurd by Lemma 8.2.2 (Redex in non-normal terms). Therefore, it
could only be that t2 = (λx2.u2)s2—again, by Definition 45 (Reduction places
in Useful Ppen CbNeed). However, applying the i.h. on Q1⟨x⟩ and Q2⟨t2⟩ gives
that x = t2; absurd. Therefore, this case is impossible.

· Let P2 ∈ E@U2,A2
be derived as follows

Q2 ∈ E@V2,A2
x /∈ B2

Q2⟨x⟩@[x←⟨·⟩] ∈ E@V2\{x},A2

ENL

where P2 = Q2⟨x⟩@[x←⟨·⟩] and U2 = V2 \ {x}. We can apply the i.h. on Q1⟨x⟩
and Q2⟨x⟩ taking S := B1 ∪ B2 to obtain that Q1 = Q2. Finally, we can apply
Lemma 8.3.1 (Unique decomposition of Λ-terms) to obtain that H = ⟨·⟩—and
so P1 = P2—and t1 = t2.

∗ Rule MVAR: Let P1 ∈ EU1,A1 be derived as follows
Q1 ∈ EV1,B1 x ∈ (V1 ∪ B1)

Q1@[x←z] ∈ Eupd(V1,x,z),upd(B1,x,z)
MVAR

where P1 = Q1@[x←z], U1 = upd(V1, x, z) and A1 = upd(B1, x, z). Case analysis on
the last derivation rule in P2 ∈ E@U2,A2

:
· The case of rule EAX1 is impossible.
· The case of rule EAX2 is impossible because z cannot be rewritten as an applica-

tive term context with t2 plugged into it.
· The case of rule EVAR is given simply by i.h..
· The cases of rules EI and EU are ruled out by the fact that non-variable inert

Λ-terms and values cannot be rewritten as z.
· Let P2 ∈ E@U2,A2

be derived as follows:

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←z] ∈ E@U2,A2

EGC

with P2 = Q2@[x←z]. By application of the i.h. on Q1⟨t1⟩ and Q2⟨t2⟩, we have
that Q1 = Q2—and so P1 = P2—and t1 = t2.

· Suppose P2 is derived as follows
Q2 ∈ E@V2,A2

x /∈ B2
Q2⟨x⟩@[x←⟨·⟩] ∈ E@V2\{x},A2

ENL

with P2 = Q2⟨x⟩@[x←⟨·⟩] and U2 = V2 \ {x}. But then application of the i.h.
gives that Q1 = Q2 and t1 = x, and so by Definition 45 (Reduction places in
Useful Open CbNeed) it must be that z ∈ Val; absurd.

∗ Rule MI: Let P1 ∈ EU1,A1 be derived as follows:
Q1 ∈ EV1,B1 x ∈ (V1 ∪ B1)

Q1@[x←i+1] ∈ E(V1\{x})∪u(i+),(B1\{x})∪a(i+)

MI

where P1 = Q1@[x←i+1], U1 = (V1 \ {x}) ∪ u(i+), A1 = (A1 \ {x}) ∪ a(i+). Case
analysis on the last derivation rule in P2 ∈ E@U2,A2

:

303

· The case of rule EAX1 is impossible.
· Suppose P2 ∈ E@U2,A2

is derived as follows

Q2 ∈ EV2,B2 x /∈ (V2 ∪ B2)
Q2⟨x⟩@[x←H@

2] ∈ E@(V2\{x})∪u(H@
2),(B2\{x})∪a(H@

2)

EAX2

with P2 = Q2⟨x⟩@[x←H@
2], U2 = (V2\{x})∪u(H@

2) and A2 = (B2\{x})∪a(H@
2).

Note that if t1 = x then it should be that i+1 ∈ Val—by Definition 45 (Reduction
places in Useful Open CbNeed); absurd. Moreover, if t1 = y ̸= x or if t1 =
(λx1.u1)s1, then application of the i.h. on Q1⟨t1⟩ and Q2⟨x⟩ gives that t1 = x;
absurd in either case. Therefore, this case is impossible.

· The cases of rules EVAR and EU are impossible because i+ cannot be rewritten
as a variable or a value.

· The case of EI follows by application of the i.h..
· Let P2 ∈ E@U2,A2

be derived as follows

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←i+1] ∈ E@U2,A2

EGC

where P2 = Q2@[x←i+1]. Note that t1 ̸= x—otherwise i+ ∈ Val; absurd. More-
over, t2 ̸= x—otherwise application of the i.h. on Q1⟨t1⟩ and Q2⟨t2⟩ would give
that t1 = t2 = x; absurd. If t1, t2 ̸= x, we can apply the i.h. on Q1⟨t1⟩ and
Q2⟨t2⟩ to get that Q1 = Q2—and so P1 = P2—and t1 = t2.

· Suppose P2 ∈ E@U2,A2
is derived as follows

Q2 ∈ E@V2,A2
x /∈ A2

Q2⟨x⟩@[x←⟨·⟩] ∈ E@V2\{x},A2

ENL

with P2 = Q2⟨x⟩@[x←⟨·⟩] and U2 = V2\{x}. However, application of the i.h. on
Q1⟨t1⟩ and Q2⟨x⟩ would give that t1 = x, which would imply that i+1 ∈ Val—by
Definition 45 (Reduction places in Useful Open CbNeed); absurd.

∗ Rule MU: Let P1 ∈ EU1,A1 be derived as follows:

Q1 ∈ EV1,A1 x ∈ (V1 \ A1)

Q1@[x←v1] ∈ EV1\{x},A1

MU

where P1 = Q1@[x←v1] and U1 = V1 \ {x}. Case analysis on the last derivation rule
in P2 ∈ E@U2,A2

:
· The case of rule EAX1 is impossible.
· Suppose P2 ∈ E@U2,A2

is derived as follows

Q2 ∈ EV2,B2 x /∈ (V2 ∪ B2)
Q2⟨x⟩@[x←H@

2] ∈ E@(V2\{x})∪u(H@
2),(B2\{x})∪a(H@

2)

EAX2

with P2 = Q2⟨x⟩@[x←H@
2], U2 = (V2\{x})∪u(H@

2) and A2 = (B2\{x})∪a(H@
2).

Note that by Definition 45 (Reduction places in Useful Open CbNeed) it would
be that t2 = (λx2.u2)s2. This is absurd, because v1 cannot be rewritten as
H@

2 ⟨(λx2.u2)s2⟩—Lemma 8.2.2 (Redex in non-normal terms).

304

· The cases of rules EVAR and EI are impossible because v1 cannot be rewritten as
a variable or a value.

· The case of EI follows by application of the i.h..
· Let P2 ∈ E@U2,A2

be derived as follows

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←i+2] ∈ E@U2,A2

EGC

where P2 = Q2@[x←i+]. Note that t1 ̸= x—otherwise i+ ∈ Val; absurd. By
application of the i.h. on Q1⟨t1⟩ and Q2⟨t2⟩ gives that Q1 = Q2—and so P1 =
P2—and t1 = t2.

· In the case where P2 ∈ E@U2,A2
is derived via an application of rule EU, the

statement follows by i.h. like in the previous item.
· Suppose P2 ∈ E@U2,A2

is derived as follows

Q2 ∈ E@V2,A2
x /∈ A2

Q2⟨x⟩@[x←⟨·⟩] ∈ E@V2\{x},A2

ENL

with P2 = Q2⟨x⟩@[x←⟨·⟩] and U2 = V2 \ {x}. However, note that it should be
that v1 = t2. By Lemma 8.2.2 (Redex in non-normal terms), this is absurd.

∗ Rule MGC: Let P1 ∈ EU1,A1 be derived as follows:

Q1 ∈ EU1,A1 x /∈ (V1 ∪ A1)

Q1@[x←s̃1] ∈ EU1,A1

MGC

where P1 = Q1@[x←s̃1]. Case analysis on the last derivation rule in P2 ∈ E@U2,A2
:

· The case of rule EAX1 is impossible.
· Suppose P2 ∈ E@U2,A2

is derived as follows

Q2 ∈ EV2,B2 x /∈ (V2 ∪ B2)
Q2⟨x⟩@[x←H@

2] ∈ E@(V2\{x})∪u(H@
2),(B2\{x})∪a(H@

2)

EAX2

with P2 = Q2⟨x⟩@[x←H@
2], U2 = (V2\{x})∪u(H@

2) and A2 = (B2\{x})∪a(H@
2).

However, by application of the i.h. on Q1⟨t1⟩ and Q2⟨x⟩ we would have that
t1 = x, forcing s̃1 = H@

2 ⟨t2⟩ to be a value—by Definition 45 (Reduction places in
Useful Open CbNeed); absurd—by Lemma 8.2.2 (Redex in non-normal terms).

· Let P2 ∈ E@U2,A2
be derived as follows

Q2 ∈ E@V2,B2
Q2@[x←z2] ∈ E@upd(V2,x,z2),upd(B2,x,z2)

EVAR

where P2 = Q2@[x←z2], U2 = upd(V2, x, z2) and A2 = upd(B2, x, z2). We can
then apply the i.h. on Q1⟨t1⟩ and Q2⟨t2⟩ to obtain that Q1 = Q2—and so
P1 = P2—and t1 = t2.

· In the cases where P2 ∈ E@U2,A2
s derived via an application of rules EI, EU or

EGC, the statement follows by i.h..
· Finally, the case where P2 ∈ E@U2,A2

is derived via an application of rule ENL is
ruled out as the case where it is derived via an application of rule EAX2 .

305

• Let P1 ∈ E@U1,A1
. The case where P2 ∈ EU2,A2 was already covered when we took P1 to be

a multiplicative evaluation context and P2 to be an exponential one. Let P2 ∈ E@U2,A2. We
proceed by induction on the derivation of P1 ∈ E@U1,A1

. Case analysis on the last derivation
rule:

– Rule EAX1 : Let P1 ∈ E@U1,A1
be derived as follows

(H@
1 , ϵ) ∈ E@u(H@

1),a(H@
1)

EAX1

where P1 = (H@
1 , ϵ), U1 = and A1 = a(H@

1). Then it must be that P2 = (H@
2 , ϵ), and so

Lemma 8.3.1 (Unique decomposition of Λ-terms) gives us that H@
1 = H@

2 and so P1 = P2

and t1 = t2.
– Rule EAX2 : Let P1 ∈ E@U1,A1

be derived as follows

Q ∈ EV1,B1 x /∈ (V1 ∪ B1)
Q1⟨x⟩@[x←H@

1] ∈ E@(V1\{x})∪u(H@
1),(B1\{x})∪a(H@

1)

EAX2

where P1 = Q1⟨x⟩@[x←H@
1], U1 = (V1 \ {x}) ∪ u(H@

1) and A1 = a(H@
1). By proceeding

by case analysis on the last derivation rule in P2 ∈ E@U2,A2
, we find that

∗ Rule EAX1 is impossible.
∗ In the case where EAX2 is the last derivation rule in P2 ∈ E@U2,A2

, the statement follows
by i.h. and by application of Lemma 8.3.1 (Unique decomposition of Λ-terms).

∗ Rules EVAR, EI and EU are impossible, because normal terms cannot be rewritten as
H@

1 ⟨t1⟩—by Lemma 8.2.2 (Redex in non-normal terms).
∗ Suppose P2 ∈ E@U2,A2

was derived as follows

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←s̃2] ∈ E@U2,A2

EGC

where P2 = Q2@[x←s̃2]. But then application of the i.h. gives that x = t2, implying
thatH@

1 ⟨t1⟩ = s̃2 ∈ Val; by application of Lemma 8.2.2 (Redex in non-normal terms),
this is absurd.

∗ Rule ENL is impossible because ⟨·⟩ is not applicative—Lemma 8.3.1 (Unique decom-
position of Λ-terms) would otherwise give that H@

1 = ⟨·⟩.
– Rule EVAR: Let P1 ∈ E@U1,A1

be derived as follows

Q ∈ EV1,B1 x ∈ (V1 ∪ B1)
Q1@[x←z1] ∈ E@upd(V1,x,z1),upd(B1,x,z1)

EVAR

where P1 = Q1@[x←z1], U1 = upd(V1, x, z1) and A1 = upd(B1, x, z1). By proceeding by
case analysis on the last derivation rule in P2 ∈ E@U2,A2

, we find that
∗ Rule EAX1 is impossible.
∗ Rules EAX2 and ENL are ruled out by application of the i.h. on the underlying

exponential evaluation contexts.
∗ In the cases where P2 ∈ E@U2,A2

is derived via an application of rule EVAR or an
application of rule EGC, the statement follows by i.h..

∗ Rules EI and EU are impossible because z is not a non-variable inert Λ-term nor is
it a value.

306

– Rule EI, Rule EU, Rule EGC: This cases are treated analogously to rule EVAR.
– Rule ENL: Let P1 ∈ E@U1,A1

be derived as follows

Q1 ∈ E@V1,A1
x /∈ A1

Q1⟨x⟩@[x←⟨·⟩] ∈ E@V1\{x},A1

ENL

where P1 = Q1⟨x⟩@[x←⟨·⟩] and U1 = V1\{x}. Note that t1 = (λx1.u1)s1. By proceeding
by case analysis on the last derivation rule in P2 ∈ E@U2,A2

, we find that
∗ Rule EAX1 is impossible.
∗ Rule EAX2 is impossible because ⟨·⟩ is not applicative—Lemma 8.3.1 (Unique decom-

position of Λ-terms) would otherwise give that H@
2 = ⟨·⟩.

∗ By application of the i.h., rules EVAR (resp. EI ; EU) is excluded from the last possible
derivation rule in P2 ∈ E@U2,A2

because variables (resp. useful inert terms ; values)
cannot be rewritten as t1 = (λx1.u1)s1.

∗ Suppose P2 ∈ E@U2,A2
is derived as follows

Q2 ∈ E@U2,A2
x /∈ (U2 ∪ A2)

Q2@[x←s̃2] ∈ E@U2,A2

EGC

where P2 =. But then application of the i.h. on Q1⟨x⟩ and Q2⟨t2⟩ give that x = t2
and so it should be that s̃2 ∈ Val. But then s̃2 = t1 = (λx1.u1)s1; absurd by
Lemma 8.2.2 (Redex in non-normal terms).

∗ In the case where ENL is the last derivation rule in P2 ∈ E@U2,A2
, the statement follows

by i.h..

(Click here to go back to main chapter.)

Corollary 13.5.19 (Determinism of Useful Open CbNeed).
If p→und q and p→und r then q = r.

Proof. (Click here to go back to main chapter.)
Let P1 ∈ (EU1,A1∪E@U1,A1

) be such that p = P1⟨t1⟩ →und P1⟨m1⟩ = q, and let P2 ∈ (EU2,A2∪E@U2,A2
)

be such that p = P2⟨t2⟩ →und P2⟨m2⟩ = r.
First, note that if p = P1⟨t1⟩ →um P1⟨m1⟩ = q, then it must be that t1 is a β-redex. Similarly,

if p = P1⟨t1⟩ →ue P1⟨m1⟩ = q, then it must be that t1 ∈ Var, t1 ∈ dom(P1), and P (t1) ∈ Val.
This implies that t1 is a S-reduction place of P1⟨t1⟩ for any S. Similarly, we can prove that t2 is a
S-reduction place P2⟨t2⟩ for any S.

Thus, if we take S := Var, we may apply Lemma 8.3.2 (Unique decomposition of programs) to
obtain that P1 = P2 and t1 = t2. That is, q = r.

(Click here to go back to main chapter.)

307

13.6 Proofs of Chapter 9 (Multi types for Useful Open
CbNeed

13.6.1 Useful Open CbNeed correctness.
Lemma 13.6.1 (Relevance of the Useful Open CbNeed type system).

Let e be an expression and Φ▷UΓ ⊢(m,e,r) e :M be a type derivation. If x ̸∈ fv(e) then x /∈ dom(Γ).

Proof. (Click here to go back to main chapter.)
The Open CbNeed multi type system being mostly based on the CbNeed one, this is trivially

provable by induction on the number of typing rules applied in Φ.

(Click here to go back to main chapter.)

Lemma 13.6.2 (Typing properties of values).
Let Φ ▷U Γ ⊢(m,e,r) v :M with M ∈ Tight.
Then (m, e, r) = (0, 0, |v|nd), dom(Γ) = nv(v), and M ∈ Abs.

Proof. (Click here to go back to main chapter.)
Since values cannot be inert-typed, then Φ must be of the form(

∅ ⊢(0,0,0) λx.u : abs abs
)

i∈I

∅ ⊢(0,0,0) λx.u : [abs]i∈I
many

(Click here to go back to main chapter.)

Lemma 13.6.3 (Typing properties of useful inert terms).
Let Φ ▷U Γ ⊢(m,e,r) i+ :M such that tightΓ(a(i+)).
Then (m, e, r) = (0, 0, |i+|nd), dom(Γ) = nv(i+), tight(Γ), and M ∈ Inert.

Proof. (Click here to go back to main chapter.)
Note that i+ may only be an application ΛL-term. Say i+ = us. We proceed by structural

induction on i+, proceeding by case analysis on the shape of u:
• Let u = x ∈ Var. Then |i+|nd = |s|nd + 1. Moreover, a(i+) = {x} ∪ a(s), implying that

tightΓ(a(i
+)) and so Γ(x) ∈ Tight. Hence, Φ must be of the form

J ̸= ∅
x : [inert]j∈J ⊢(0,0,0) x : [inert]j∈J

axT
Θ ▷U ∆ ⊢(m′′,e′′,r′′) s : [tight]

{x : [inert]j∈J}
⊎

∆ ⊢(m′′,e′′,r′′+1) us : [inert]j∈J
appi

We proceed by case analysis on the shape of s:
– The statement follows easily if s ∈ Var.
– Let s = j+ for some non-variable inert Λ-term j+. The statement follows by i.h. on Θ,

applicable because tightΓ(a(i
+)) implies that tight∆(a(j

+)).

308

– Let s ∈ Val. The statement follows by application of Lemma 9.1.2 (Typing properties of
values) on Θ.

• Let u = j+. It is easily shown by i.h. on the sub-type derivation corresponding to u that
M ∈ Inert. Thus, Φ can only be of the following form

Ψ ▷U Π ⊢(m′,e′,r′) u : [inert]j∈J Θ ▷U ∆ ⊢(m′′,e′′,r′′) s : [tight] J ̸= ∅
Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) us : [inert]j∈J
appi

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′ + 1). By application of the i.h. on
Ψ, we have that Ψ▷U Π ⊢(0,0,|u|nd) u : [inert]j∈J , with dom(Π) = nv(u) and tight(Π). We proceed
by case analysis on the shape of s:

– The statement follows easily if s ∈ Var.
– Let s = k+. The statement follows by i.h. on Θ, applicable because tightΓ(a(i

+)) implies
that tight∆(a(s)).

– Let s ∈ Val. The statement follows by Lemma 9.1.2 (Typing properties of values) on Θ.

(Click here to go back to main chapter.)

Lemma 13.6.4 (Typing properties of generalized variables).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that genVarx(p).
Then dom(Γ) = nv(p) = {x} and Γ(x) = M . Moreover, if M ∈ Tight then (m, e, r) = (0, 0, |p|nd).

Proof. (Click here to go back to main chapter.)
Let genVarx(p). By Lemma 8.2.4 (Properties of generalized variables), we have that nv(p) = x.

We proceed by induction on the derivation of genVarx(p):
• The case where p = (x, ϵ) is trivial.
• Let genVarx(p) be derived as

genVary(q)

genVarx(q@[y←x])
GVHER

with p = q@[y←x]. It is easy to prove by i.h. that y is on the type context of the sub-type
derivation corresponding to q, and so ESgc cannot be the last typing rule in Φ. Hence, the
latter must be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) x :N

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[y←x] :M
ES

By i.h. on Ψ, note that Φ must in fact be of the form

Ψ ▷U y :M ⊢(m′,e′,r′) q :M Θ ▷U x :M ⊢(m′′,e′′,r′′) x :M
{ax, axT}

{x :M} ⊢(m′+m′′,e′+e′′,r′+r′′) q@[y←x] :M
ES

The ‘Moreover’ part follows easily, in particular by the fact that y ∈ nv(q)—by Lemma 8.2.4
(Properties of generalized variables)—and so |p|nd = |q|nd + |x|nd = |q|nd.

309

• Let genVarx(p) be derived as
genVarx(q) y ̸= x

genVarx(q@[y←t])
GVGC

with p = q@[y←t]. It is easy to prove by i.h. that y is not in the domain of the type context
of the sub-type derivation corresponding to q, and so ES cannot be the last typing rule in Φ.
Hence, the latter must be of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(y) = 0

Γ ⊢(m,e,r) q@[x←y] :M
ESgc

By i.h. on Ψ, we have that Ψ▷U {x :M} ⊢(m,e,r) q :M . The ‘Moreover’ part follows by the fact
that y /∈ nv(q)—by Lemma 8.2.4 (Properties of generalized variables)—and so |p|nd = |q|nd.

(Click here to go back to main chapter.)

Lemma 13.6.5 (Typing properties of useful abstraction programs).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that
• uabs(p), and
• M ∈ Tight.

Then (m, e, r) = (0, 0, |p|nd), dom(Γ) = nv(p), and M ∈ Abs.

Proof. (Click here to go back to main chapter.)
By induction on the derivation of uabs(p):
• The statement holds by Lemma 9.1.2 (Typing properties of values) if p = (v, ϵ).
• Let uabs(p) be derived as

genVarx(q)

uabs(q@[x←v])
AGV

with p = q@[x←v]. Note that nv(q@[x←v]) = nv(v)—by Lemma 8.2.4 (Properties of gener-
alized variables)—and so |q@[x←v]|nd = |q|nd + |v|nd. We do case analysis on the last typing
rule in Φ:

– Let Φ ▷U Γ ⊢(m,e,r) p :M be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). By application of the i.h.
on Ψ, it must be that Φ is of the form

Ψ ▷U x :M ⊢(0,0,|q|nd) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :M

∆ ⊢(m′′,e′′,|q|nd+r′′) q@[x←v] :M
ES

Since M ∈ Tight by hypothesis, we can apply the i.h. on Θ to obtain that Θ▷U∆ ⊢(0,0,|t|nd)
v :M , with dom(∆) = nv(v) and tight(∆). Thus, Φ satisfies the statement.

310

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←v] :M
ESgc

However, an application of the i.h. on Ψ followed by an application of Lemma 8.2.4
(Properties of generalized variables) would yield that x ∈ dom(Γ), which makes this case
absurd.

• Let uabs(p) be derived as
uabs(q)

uabs(q@[x←t])
GVGC

with p = q@[x←t]. Note that nv(q@[x←t]) = nv(q) and so |q@[x←t]|nd = |q|nd. We proceed
by induction on the last typing rule in Φ:

– Suppose Φ is of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] :M
ES

However, an application of the i.h. on Ψ together with an application of Lemma 8.2.5
(Properties of useful abstraction programs) would yield that y /∈ dom(Π;x :N) = ∅. This
would mean that N = 0, making this case absurd.

– Let Φ be derived as
Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←t] :M
ESgc

The statement then holds by i.h. on Ψ.

(Click here to go back to main chapter.)

Lemma 13.6.6 (Typing properties of useful inert programs).
Let Φ ▷U Γ ⊢(m,e,r) p :M such that
• uinert(p),
• tightΓ(a(p)).
Then (m, e, r) = (0, 0, |p|nd), dom(Γ) = nv(p), tight(Γ), and M ∈ Inert.

Proof. (Click here to go back to main chapter.)
By induction on the derivation of uinert(p):
• If ILift is the last rule in uinert(p), then the statement holds by Lemma 9.1.3 (Typing properties

of useful inert terms).
• Let uinert(p) be derived as

uinert(q) x ∈ nv(q)

uinert(q@[x←i])
II

with q = q@[x←i]. Note that nv(p) = (nv(q)\{x})∪nv(i) and |p|nd = |q|nd+ |i|nd. We proceed
by case analysis on whether x ∈ a(q):

– Let x /∈ a(q). We proceed by case analysis on the last typing rule in Φ:

311

∗ Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note then tightΓ(a(q))
implies that tightΠ;x :N(a(q)). We can thus apply the i.h. on Ψ to obtain that
Ψ ▷U Π;x :N ⊢(0,0,|q|nd) q :M , with dom(Π;x :N) = nv(q), tight(Π;x :N) and M ∈
Inert. In particular, this means that N ∈ Tight, so if i ∈ Var then the statement
follows easily.
Moreover, if i /∈ Var then we can apply the i.h. on Θ—since tightΓ(a(p)) implies
that tight∆(a(i))—to obtain that Θ ▷U ∆ ⊢(0,0,|i|nd) i :N with dom(∆) = nv(i) and
tight(∆). Thus, we conclude that Φ satisfies the statement, in particular noting that
dom(Γ) = dom(Π) ∪ dom(∆) = (dom(Π;x :N) \ {x}) ∪ dom(∆) = (nv(q) \ {x}) ∪
nv(i) = nv(q@[x←i]).

∗ Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←i] :M
ESgc

But since x /∈ a(q) then tightΓ(a(p)) implies that tightΓ(a(q)) and so we would be
able to apply the i.h. on Ψ to obtain that x ∈ nv(q) = dom(Γ). Thus, this case is
absurd.

– Let x ∈ a(q). We proceed by case analysis on the last typing rule in Φ:
∗ Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←i] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ + m′′, e′ + e′′, r′ + r′′). We proceed by case
analysis on the shape of i:
· Let i = y ∈ Var. Note that then |i|nd = 0 and a(p) = (a(q) \ {x}) ∪ {y}, and so

tightΓ(a(p)) implies that ∆(y) ∈ Tight. This means that Θ▷Uy :N ⊢(0,0,|t|nd) y :N ,
with N ∈ Tight. Thus, we have that tightΓ(a(p)) implies that tightΠ;x :N(a(q)),
and we can apply the i.h. on Ψ to obtain that Ψ ▷U Π;x :N ⊢(0,0,|q|nd) q :M ,
dom(Π;x :N) = nv(q), tight(Π;x :N) and M ∈ Inert. Thus, we conclude that Φ
satisfies the statement, in particular noting that dom(Γ) = dom(Π)∪ dom(∆) =
(dom(Π;x :N) \ {x}) ∪ dom(∆) = (nv(q) \ {x}) ∪ nv(i) = nv(q@[x←i]).

· Let i /∈ Var. Note that then a(p) = (a(q) \ {x})∪ a(i), meaning that tightΓ(a(p))
implies that tight∆(a(i)). Thus, we can apply the i.h. on Θ to obtain that
Θ ▷U ∆ ⊢(0,0,|i|nd) i :N , dom(∆) = nv(i), tight(∆), and N ∈ Inert. The last
conclusion allows us to infer from tightΓ(a(p)) that tightΠ;x :N(a(q)). Thus, we can
apply the i.h. on Ψ to obtain that Ψ ▷U Π;x :N ⊢(0,0,|q|nd) q :M , dom(Π;x :N) =
nv(q), tight(Π;x :N) and M ∈ Inert.

∗ Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←i] :M
ESgc

312

But since x /∈ dom(Γ) then tightΓ(a(p)) implies that tightΓ(a(q)) and so we would be
able to apply the i.h. on Ψ to obtain that x ∈ nv(q) = dom(Γ). Thus, this case is
absurd.

• Let uinert(p) be derived as
genVarx(q)

uinert(q@[x←i+])
IGV

with q = q@[x←i+]. Note that nv(q) = {x}—by Lemma 8.2.4 (Properties of generalized
variables)—and so nv(p) = nv(i) and |p|nd = |q|nd + |i|nd. Moreover, note that a(p) = (a(q) \
{x}) ∪ a(t). We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←i+] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ + m′′, e′ + e′′, r′ + r′′). Since tightΓ(a(p)) implies
that tight∆(a(i

+)), we can apply Lemma 9.1.3 (Typing properties of useful inert terms)
to obtain that Θ ▷U ∆ ⊢(0,0,|i+|nd) i+ :N , dom(∆) = nv(i+), tight(∆), and N ∈ Inert.
Application of Lemma 9.1.4 (Typing properties of generalized variables) on Ψ thus gives
us that Ψ ▷U x :M ⊢(0,0,|q|nd) q :M , with M ∈ Inert. Therefore, the statement holds by
noting that Φ is of the form

Ψ ▷U x :M ⊢(0,0,|q|nd) q :M Θ ▷U ∆ ⊢(0,0,|i+|nd) i+ :M

∆ ⊢(0,0,|q|nd+|i+|nd) q@[x←i+] :M
ES

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←i+] :M
ESgc

But then Lemma 9.1.4 (Typing properties of generalized variables) on Ψ gives us that
dom(Γ) = {x}. Hence, this case is absurd.

• Let uinert(p) be derived as
uinert(q) x ∈ ul (q)

uinert(q@[x←v])
IU

with q = q@[x←v]. Note that nv(p) = (nv(q) \ {x}) ∪ nv(v) and |p|nd = |q|nd + |t|nd. We
proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′, e′+e′′, r′+r′′). Note that since x /∈ a(q) then
tightΓ(a(p)) implies that tightΠ;x :N(a(q)). Hence, we can apply the i.h. on Ψ to obtain
that Ψ ▷U Π;x :N ⊢(0,0,|q|nd) q :M , dom(Π;x :N) = nv(q), tight(Π;x :N) and M ∈ Inert.
Moreover, since we have that N ∈ Tight, we can apply Lemma 9.1.2 (Typing properties
of values) to obtain that Θ ▷U ∆ ⊢(0,0,|v|nd) v :N and dom(∆) = nv(v). The statement
clearly holds.

313

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←v] :M
ESgc

But then tightΓ(a(p)) together with the fact that x /∈ dom(Γ) (or that x /∈ a(q)) imply
that tightΓ(a(q)). Thus, we would be able to apply the i.h. on Ψ to obtain that x ∈
nv(q) = dom(Γ). This makes this case absurd.

• Let uinert(p) be derived as
uinert(q) x /∈ nv(q)

uinert(q@[x←t])
IGC

with q = q@[x←t]. Note that nv(p) = nv(q), a(p) = a(q), and |p|nd = |q|nd. We proceed by
case analysis on the last typing rule in Φ:

– Suppose Φ is of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) q :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) q@[x←t] :M
ES

But then we would be able to infer from tightΓ(a(p)) that tightΠ;x :N(a(q)), since x /∈ a(q).
Thus, we would be able to apply the i.h. on Ψ to obtain that nv(q) = dom(Π;x :N) =
dom(Π) ∪ {x}. But x /∈ nv(q), and so this case is absurd.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) q :M Γ(x) = 0

Γ ⊢(m,e,r) q@[x←t] :M
ESgc

Since a(p) = a(q), we can apply the i.h. on Ψ to get that (m, e, r) = (0, 0, |q|nd),
dom(Γ) = nv(q) = nv(p), tight(Γ) and M ∈ Inert.

(Click here to go back to main chapter.)

Proposition 13.6.7 (Typing properties of Useful Open CbNeed-normal forms).
Let p ∈ PR be such that unorm(p), and let Φ ▷U Γ ⊢(m,e,r) p :M be a tight type derivation for it.
Then (m, e, r) = (0, 0, |p|nd) and dom(Γ) = nv(p).

Proof. (Click here to go back to main chapter.)
Let p be in →und-normal form. We proceed by case analysis according to what is given in

Proposition 8.2.7 (Syntactic characterization of Useful Open CbNeed-normal forms):
• If genVar#(p), then the statement follows from Lemma 9.1.4 (Typing properties of generalized

variables).
• If uabs(p), then the statement follows from Lemma 9.1.5 (Typing properties of useful abstrac-

tion programs) on Φ.
• Let uinert(p). Since tight(Γ) implies that tightΓ(a(p)), then the statement follows from

Lemma 9.1.6 (Typing properties of useful inert programs).

(Click here to go back to main chapter.)

314

Linear Substitution for Useful Open CbNeed. Proving Linear Substitution for the Useful
Open CbNeed case requires adapting the analysis of plugged variables in the Open CbNeed case—
see Lemma 13.4.4 (Plugged variables and domain of type contexts) in Chapter 7 (Multi types
for Open CbNeed)—to the Useful Open CbNeed case. This is achieved simply by switching from
checking the tightness of needed variables of the subject expression, to only checking the tightness
of its applied variables, as follows:

Lemma 13.6.8 (Plugged variables and domain of type contexts).
1. Let H be a term context such that x /∈ a(H), and let Φ ▷U Γ ⊢(m,e,r) H⟨x⟩ :M be such that

tightΓ(a(H)).
Then x ∈ dom(Γ). Moreover, if H is applicative then Γ(x) /∈ Abs.

2. Let P ∈ EU ,A be such that x /∈ A and x /∈ dom(P), and let Φ ▷U Γ ⊢(m,e,r) P ⟨x⟩ :M be such
that tightΓ(A).

Then x ∈ dom(Γ). Moreover, if P ∈ E@U ,A then Γ(x) /∈ Abs.

Proof.
1. By structural induction on H.

• Let H := ⟨·⟩ be a term context. Then x ∈ dom(Γ), because Φ is either an ax or an axT
rule. Since this ⟨·⟩ is not an applicative term context, the moreover part holds trivially.

• Let H := J t. Note that a(H) = a(J). Since all three typing rules app, appi and appgc
are proven rather similarly, we only proceed to prove the statement for rule app:
Let Φ be of the form

Ψ ▷U Π ⊢(m′,e′,r′) J ⟨x⟩ : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) J ⟨x⟩t :M
app

with Γ = Π
⊎

∆. Since Π ⊆ Γ, then tightΠ(a(J)) and we can apply the i.h. on Ψ to
obtain that x ∈ dom(Π) ⊆ dom(Γ).
Let H be an applicative term context. The moreover part is proven by considering two
sub-cases:

– Let J := ⟨·⟩. Then Ψ ▷U x : [N ⊸ M] ⊢(0,1,0) x : [N ⊸ M], and so Γ(x) = [N ⊸
M] ⊎∆(x) /∈ Abs.

– Let J be itself applicative. Then the i.h. on Ψ yields that Π(x) /∈ Abs, in turn
implying that Γ(x) /∈ Abs.

• Let H := iJ . Note that a(H) = a(i) ∪ a(J). We proceed by case analysis on the last
typing rule in Φ.

– Suppose Φ is of the form

Ψ ▷U Π ⊢(m′,e′,r′) i : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨x⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) iJ ⟨x⟩ :M
app

with Γ = Π
⊎

∆. However, note that i ̸= y ∈ Var or else we could infer that
Π = {y : [N ⊸ M]}, contradicting the assumption that tight(Π

⊎
∆). But if i /∈ Var,

and since tightΓ(a(H)) implies that tightΓ(a(i)), then we would be able to apply
Lemma 9.1.3 (Typing properties of useful inert terms) on Ψ to obtain that [N ⊸
M] ∈ Inert—which is also absurd. Therefore, this case is impossible.

– The case where appgc is the last typing rule in Φ is ruled out as we did for the
previous case.

315

– Let Φ be of the form
Ψ ▷U Π ⊢(m′,e′,r′) i : [inert]j∈J Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨x⟩ : [tight] J ̸= ∅

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) iJ ⟨x⟩ : [inert]j∈J
appi

with Γ = Π
⊎
∆. Since ∆ ⊆ (Π

⊎
∆), then we can apply the i.h. on Θ to obtain

that x ∈ dom(∆) ⊆ dom(Γ).
Moreover, if H is applicative then so is J and then ∆(x) /∈ Abs by i.h. on Θ,
implying that Γ(x) /∈ Abs.

2. By induction on the derivation of P ∈ EU ,A.
• Let P ∈ EU ,A be derived as

(H, ϵ) ∈ Ea(H),u(H)
MAX

with P = (H, ϵ). Note that A = a(H). Then Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) H⟨x⟩ :M
Γ ⊢(m,e,r) (H⟨x⟩, ϵ) :M Lift

and the statement is proven by Lemma 13.6.8.1 (Plugged variables and domain of type
contexts) on Ψ.

• Let P ∈ EU ,A be derived as
Q ∈ EV,B z ∈ (V ∪ B)

Q@[z←y] ∈ Eupd(V,z,y),upd(B,z,y)
MVAR

with P = Q@[z←y], U = upd(V , z, y) and A = upd(B, z, y). Note that x ̸= z, because
x /∈ dom(P). We do case analysis on the last typing rule in Φ.

– Let Φ be of the form

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U y :N ⊢(m′′,e′′,r′′) y :N
{ax, axT}

N ̸= 0

Π
⊎
{y :N} ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←y] :M

ES

There are two cases concerning z and B. On the one hand, if z /∈ B, then we can apply
the i.h. on Ψ to conclude that x ∈ dom(Π) ⊆ dom(Π

⊎
{y :N}). On the other hand,

if z ∈ B, then A = upd(B, z, y) = (B \ {z}) ∪ {y}, and so N ∈ Tight by hypothesis.
Hence, we can apply the i.h. on Ψ to conclude that x ∈ dom(Π) ⊆ dom(Γ).
In either case, the moreover part holds by the fact that x ̸= z: if P ∈ E@U ,A, then
Q ∈ E@U ,A, so Π(x) /∈ Abs by i.h., and then Γ(x) /∈ Abs.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←y] :M
ESgc

Note that tightΓ(B), and so we can conclude that x ∈ dom(Γ) by i.h. on Ψ. The
moreover part holds by i.h. as well.

• Let P ∈ EU ,A be derived as
Q ∈ EV,B z ∈ (V ∪ B)

Q@[z←i+] ∈ E(V\{z})∪u(i+),(B\{z})∪a(i+)
MI

with P = Q@[z←i+], U = (V \ {z}) ∪ u(i+) and A = (B \ {z}) ∪ a(i+). Note that x ̸= z
because x /∈ dom(P). We proceed by case analysis on the last typing rule in Φ:

316

– Let Φ be of the form
Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←i+] :M
ES

There are two cases concerning z and B. On the one hand, if z /∈ B, then tightΓ(A)
implies that tightΠ;z :N(B), thus allowing us to apply the i.h. on Ψ to conclude that
x ∈ dom(Π) ⊆ dom(Γ). On the other hand, if z ∈ B, and since tightΓ(A) implies that
tight∆(a(t)), then we can obtain that N ∈ Inert—by Lemma 9.1.3 (Typing properties
of useful inert terms). Therefore, tightΠ;z :N(B), and so we are able to apply the i.h.
on Ψ to obtain that x ∈ dom(Π) ⊆ dom(Γ). The moreover part holds by i.h. on Ψ.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←i+] :M
ESgc

Since z /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). By i.h. on Ψ, we conclude
that x ∈ dom(Γ). The moreover part also holds by i.h. on Ψ.

• Let P ∈ EU ,A be derived as
Q ∈ EU ,A x /∈ (U ∪ A)

Q@[z←t] ∈ EU ,A
MGC

with P = Q@[z←t]. Note that x ̸= z because x /∈ dom(P). We proceed by case analysis
on the last typing rule in Φ:

– Let Φ be of the form
Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←t] :M
ES

Note that since z /∈ B, then tightΠ⊎
∆(A) implies that tightΠ;z :N(B). We are thus

allowed to apply the i.h. on Ψ to prove the statement, concluding that x ∈ dom(Π) ⊆
dom(Γ). The moreover part follows from applying the i.h. on Ψ as well.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←t] :M
ESgc

The statement holds by i.h. on Ψ.
• Let P ∈ EU ,A be derived as

Q ∈ EV,B x ∈ (V \ B)
Q@[z←v] ∈ EV\{x},B

MU

with P = Q@[z←v], U = V \ {z}, A = B, and x ̸= z. We proceed by case analysis on
the last typing rule in Φ:

– Let Φ be derived as
Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[z←v] :M
ES

Note that since z /∈ B, then tightΓ(A) implies that tightΠ;z :N(B). Thus, we can apply
the i.h. on Ψ to obtain that x ∈ dom(Π) ⊆ dom(Γ). The moreover part follows from
applying the i.h. on Ψ as well.

317

– Let Φ be derived as

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[z←v] :M
ESgc

The statement holds by i.h. on Ψ.
• Let P ∈ EU ,A be derived as

Q ∈ EV,B z /∈ (V ∪ B)
Q⟨z⟩@[z←H] ∈ EV∪u(H),B∪a(H)

MHER

with P = Q⟨z⟩@[z←H], U = V ∪ u(H), A = B ∪ a(H), and x ̸= z —by the variable
convention. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be derived as

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨z⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) H⟨x⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨z⟩@[z←H⟨x⟩] :M
ES

Then by Lemma 13.6.8.1 (Plugged variables and domain of type contexts), we have
that x ∈ dom(∆) ⊆ dom(Γ). To prove the moreover part, we further split the
analysis on the shape of H:

∗ Let H ̸= ⟨·⟩. Then P ∈ E@U ,A has been derived as follows

Q ∈ EV,B z /∈ (V ∪ B)
Q⟨z⟩@[z←H@]

EAX2

and the moreover part holds by the moreover part in Lemma 13.6.8.1 (Plugged
variables and domain of type contexts).

∗ Let H = ⟨·⟩. Then P ∈ E@U ,A has been derived as follows

Q ∈ E@V,B z /∈ (V ∪ B)
Q⟨z⟩@[z←⟨·⟩] ENL

and we can further refine the shape of Φ as follows

Ψ ▷U Π; z :N ⊢(m′,e′,r′) Q⟨z⟩ :M Θ ▷U x :N ⊢(m′′,e′′,r′′) x :N N ̸= 0

Π
⊎
{x :N} ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨z⟩@[z←x] :M

ES

Thus, the moreover part holds by i.h., noting that (Π; z :N)(z) = N /∈ Abs
implies that (Π

⊎
{x :N})(x) /∈ Abs.

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨z⟩ :M Γ(z) = 0

Γ ⊢(m,e,r) Q⟨z⟩@[z←H⟨x⟩] :M
ESgc

However, tightΓ(A) would imply that tightΓ(B). Thus, we would be able to apply
the i.h. on Ψ to conclude that z ∈ dom(Γ); this makes this case absurd.

318

Proof. (Click here to go back to main chapter.)
1. By induction on the derivation of H@:

• Let H = (⟨·⟩ t). We proceed by case analysis on the last typing rule in Φ:
– Let Φ be derived as

Ξ ▷U x : [O ⊸ N] ⊢(0,1,0) x : [O ⊸ N] Ω ▷U ∆ ⊢(m′′,e′′,r′′) t :O O ̸= 0

(∆ \\ {x});x : ([O ⊸ N] ⊎∆(x)) ⊢(m′′+1,e′′+1,r′′) x t :N
app

with Γ = (∆ \\ {x}) and M = [O ⊸ N] ⊎∆(x) and (m, e, r) = (m′′ + 1, e′′ + 1, r′′).
We then propose splitting M into M1 := [O ⊸ N] and M2 := ∆(x). Now, for every
Ψ ▷U Π ⊢(m′,e′,r′) v :M1, we can derive Θ as follows

Ψ ▷U Π ⊢(m′,e′,r′) v :M1 Ξ ▷U ∆ ⊢(m′′,e′′,r′′) t :O

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) v t :N
app

verifying that
∗ Π

⊎
∆ = (Π

⊎
(∆ \\ {x}));x : ∆(x), and

∗ (m′ +m′′ + 1, e′ + e′′, r′ + r′′) = (m+m′, e+ e′ − 1, r + r′).
– It is easy to verify that if Φ has appi as its last typing rule, then the statement holds

trivially, as values are not inert-typable.
– Let Φ be derived as

x : [0 ⊸ N] ⊢(0,1,0) x : [0 ⊸ N]
ax

x : [0 ⊸ N] ⊢(1,1,0) x t :N
appgc

with Γ = ∅, M = [0 ⊸ N] and (m, e, r) = (1, 1, 0). Let M be split into M1 := [0 ⊸
N] and M2 := 0. Now, for every Ψ ▷U Π ⊢(m′,e′,r′) v :M1, we can derive Θ as

Ψ ▷U Π ⊢(m′,e′,r′) v : [0 ⊸ N]

Π ⊢(m′+1,e′,r′) v t :N
appgc

verifying that
∗ Π = (∅

⊎
Π);x :0 = (Γ

⊎
Π);x :M2, and

∗ (m′ + 1, e′ + 1, r′) = (m+m′, e+ e′ − 1, r + r′).
• Let H@ = J @t. Case analysis on the last typing rule in Φ:

– Let Φ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J @⟨x⟩ : [O ⊸ N] Σ; x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) H@⟨x⟩t :N

app

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

By applying the i.h. on the left-hand side premise, there exists a splitting M∆ =
M∆,1 ⊎M∆,2, with M∆,1 ̸= 0, such that for every Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there
exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2 ⊢(m
′′
1+m′,e′′1+e′−1,r′′1+r′) J @⟨v⟩ : [O ⊸ N]

319

We then propose splitting M in M1 := M∆,1 and M2 := M∆,2 ⊎MΣ, verifying that,
for every such Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1, we can derive Θ as follows

Θ′ ▷U (∆
⊎
Π);x :M∆,2 ⊢(m

′′
1 +m′,e′′1 +e′−1,r′′1 +r′) J @⟨v⟩ : [O ⊸ N] Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t :O

(∆
⊎
Π
⊎
Σ);x : (M∆,2 ⊎MΣ) ⊢(m

′′
1 +m′+m′′

2 +1,e′′1 +e′−1+e′′2 ,r
′′
1 +r′+r′′2) J @⟨v⟩t :N

app

In particular, note that
(m′′1 +m′ +m′′2 + 1, e′′1 + e′ − 1 + e′′2, r

′′
1 + r′ + r′′2)

= ((m′′1 +m′′2 + 1) +m′, (e′′1 + e′′2) + e′ − 1, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let Φ be of the form

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J @⟨x⟩ : [inert]j∈J Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) t : [tight]

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) J @⟨x⟩t : [inert]j∈J

appi

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

The statement holds by i.h. on the left-hand premise and then deriving Θ via the
appi rule.

– Let Φ be of the form

Γ;x :M ⊢(m,e,r) J @⟨x⟩ : [0 ⊸ N]

Γ;x :M ⊢(m,e,r) J @⟨x⟩t :N
appgc

The statement holds by i.h. on the premise and then deriving Θ via the appgc rule.
• Let H@ = iJ @. We consider the different cases corresponding to the last typing rule in

Φ:
– Let Φ be of the form

Φi ▷U ∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : [O ⊸ N] ΦJ@⟨x⟩ ▷U Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) J @⟨x⟩ :O

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m
′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2) iJ @⟨x⟩ :N

app

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2 + 1, e′′1 + e′′2, r
′′
1 + r′′2)

By applying the i.h. on ΦJ@⟨x⟩, there exists a splitting MΣ = MΣ,1 ⊎MΣ,2, with
|MΣ,1| ̸= 0, such that for every Ψ ▷U Π ⊢(m′,e′,r′) v :MΣ,1 there exists

ΦJ@⟨v⟩ ▷U Σ;x :MΣ,2 ⊢(m
′′
2+m′,e′′2+e′−1,r′′2) J ⟨v⟩ :O

Let M be split in M1 := MΣ,1 and M2 := M∆ ⊎MΣ,2. We then derive Θ as

∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : [O ⊸ N] ΦJ@⟨v⟩ ▷U Σ;x :MΣ,2 ⊢(m

′′
2+m′,e′′2+e′−1,r′′2) J @⟨v⟩ :O

(∆
⊎
Σ);x : (M∆ ⊎MΣ,2) ⊢(m

′′
1+m′′

2+m′+1,e′′1+e′′2+e′−1,r′′1+r′′2+r′) iJ @⟨v⟩ :N
app

noting that

320

(m′′1 +m′′2 +m′ + 1, e′′1 + e′′2 + e′, r′′1 + r′′2 + r′)
= ((m′′1 +m′′2 + 1) +m′, (e′′1 + e′′2) + e′, (r′′1 + r′′2) + r′)
= (m+m′, e+ e′ − 1, r + r′)

– Let Φ be of the form

Φi ▷U ∆;x :M∆ ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) i : [inert]j∈J ΦJ@⟨x⟩ ▷U Σ;x :MΣ ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) J @⟨x⟩ : [tight]

(∆
⊎
Σ);x : (M∆ ⊎MΣ) ⊢(m

′′
1+m′′

2+1,e′′1+e′′2 ,r
′′
1+r′′2+1) iJ @⟨x⟩ : [inert]j∈J

appi

where Γ = ∆
⊎
Σ, M = M∆ ⊎MΣ and

(m, e, r) = (m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2 + 1)

The statement holds by i.h. on ΦJ@⟨x⟩ and then deriving Θ via the appi rule.
– Suppose Φ is of the form

Φi ▷U Γ;x :M ⊢(m′′,e′′,r′′) i : [0 ⊸ N]

Γ;x :M ⊢(m′′+1,e′′,r′′) iJ @⟨x⟩ :N
appgc

where (m, e, r) = (m′′+1, e′′, r′′). Note that x /∈ nv(H@) ⊇ a(i), and then tightΓ(a(H@))
implies that tightΓ(a(i)). However, this implies —by Lemma 9.1.3 (Typing properties
of useful inert terms) on Φi— that [0 ⊸ N] = Inert, making this case absurd.

2. By induction on the derivation of P ∈ E@U ,A:
• Let P ∈ E@U ,A be derived as

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

with U = u(H@), A = a(H@). Then Φ is of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) H@⟨x⟩ :N
Γ;x :M ⊢(m,e,r) (H@⟨x⟩, ϵ) :N Lift

and the statement holds by application of Lemma 9.1.8.1 (Linear Substitution for Useful
Open CbNeed in applicative term contexts) on Φ′ and then deriving Φ via the Lift rule.

• Let P ∈ E@U ,A be derived as

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

with P = Q⟨y⟩@[y←H@], U = V ∪ u(H@), and A = B ∪ a(H@). Note that x ̸= y —by
α-conversion. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be derived as

Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) Q⟨y⟩ :N Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) H@⟨x⟩ :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H@⟨x⟩] :N
ES

with Γ = ∆
⊎

Σ, M = M∆ ⊎MΣ, and

(m, e, r) = (m1 +m2, e1 + e2, r1 + r2)

321

Note that x /∈ A implies that x /∈ a(H@), and that tightΓ(A) implies that tightΣ(a(H@)).
All this means in turn that x ∈ dom(Σ;x :MΣ); i.e., MΣ ̸= 0—by Lemma 13.6.8.1
(Plugged variables and domain of type contexts). Therefore, we can apply Lemma 9.1.8.1
(Linear Substitution for Useful Open CbNeed in applicative term contexts) on Φ′′

to obtain a splitting MΣ := MΣ,1 ⊎ MΣ,2, with MΣ,1 ̸= 0 such that for every
Φ ▷U Π ⊢(m′,e′,r′) v :MΣ,1 there exists

Θ′ ▷U (Σ
⊎

Π);x :MΣ,2 ⊢(m2+m′,e2+e′−1,r2+r′) H@⟨v⟩ :O

Consequently, we propose splitting M into M1 = MΣ,1 and M2 = M∆ ⊎MΣ,2, and
can then derive Θ as follows
Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) Q⟨y⟩ :N Θ′ ▷U (Σ

⊎
Π);x :MΣ,2 ⊢(m2+m′,e2+e′−1,r2+r′) H@⟨v⟩ :O

(∆
⊎
Σ
⊎
Π);x : (M∆ ⊎MΣ,2) ⊢(m1+m2+m′,e1+e2+e′−1,r1+r2+r′) Q⟨y⟩@[y←H@⟨v⟩] :N

ES

verifying in particular that (m1 + m2 + m′, e1 + e2 + e′ − 1, r1 + r2 + r′) = (m +
m′, e+ e′ − 1, r + r′).

– Suppose Φ is derived as

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←H@⟨x⟩] :N
ESgc

However, since y /∈ dom(Q) —by the variable convention and the way in which
P ∈ E@U ,A has been derived— and tightΓ;x :M(A), then we could apply Lemma 13.6.8.2
(Plugged variables and domain of type contexts) on Φ′ to obtain that y ∈ dom(Γ;x :M).
Therefore, this case is not possible.

• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)

EVAR

with P = Q@[y←z], U = upd(V , y, z), and A = upd(B, y, z). Note that x ̸= y, since
x /∈ dom(Γ) by hypothesis. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be derived as

Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) P ⟨x⟩ :N z :O ⊢(m2,e2,r2) z :O O ̸= 0

(∆;x :M∆)
⊎
{z :O} ⊢(m1+m2,e1+e2,r1+r2) P ⟨x⟩@[y←z] :N

ES

with (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). To determine the shape of Γ, let us
consider the shape of z:

∗ Let z ̸= x. Then Γ = (∆
⊎
{z :O}) and M = M∆. Note that if y ∈ B then z ∈ A

and so O ∈ Tight by hypothesis. Thus, we can safely infer from tightΓ(A) that
tight(∆⊎

{y :O})(B). Hence, we can apply the i.h. on Φ′ to obtain a splitting of
M∆ into M∆,1 ̸= 0 and M∆,2 such that for every Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there
exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′,r1+r′) Q⟨v⟩ :N

322

We then propose splitting M into M1 := M∆,1 and M2 := M∆,2 and derive Θ for
such Ψ as

Θ′ ▷U (∆
⊎
Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′−1,r1+r′) Q⟨v⟩ :N z :O ⊢(m2,e2,r2) z :O

(∆
⊎
Π
⊎
{z :O});x :M∆,2 ⊢(m1+m′+m2,e1+e′−1+e2,r1+r′+r2) P ⟨v⟩@[y←z] :N

ES

∗ Let z = x. Then Γ = ∆ and M = M∆ ⊎O. Note that then y /∈ B—or otherwise
it would be that x ∈ A, contradicting the hypothesis. We can apply the i.h.
on Φ′ to obtain a splitting of M∆ into M∆,1 ̸= 0 and M∆,2 such that for every
Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′−1,r1+r′) Q⟨v⟩ :N

noting that y /∈ dom(Π)—by the variable convention and Lemma 9.1.1 (Rele-
vance of the Useful Open CbNeed type system). We then propose splitting M
into M1 := M∆,1 and M2 := M∆,2 ⊎O and derive Θ for such Ψ as

Θ′ ▷U (∆
⊎
Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′−1,r1+r′) Q⟨v⟩ :N z :O ⊢(m2,e2,r2) z :O

(∆
⊎
Π);x : (M∆,2 ⊎O) ⊢(m1+m′+m2,e1+e′−1+e2,r1+r′+r2) P ⟨v⟩@[y←z] :N

ES

– Let Φ be derived as

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←z] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ) imply that tightΓ(B), we can apply the i.h. on Φ′

and prove the statement easily.
• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←i+] ∈ E@(V\{y})∪u(i+),(B\{y})∪a(i+)

EI

with P = Q@[y←i+], U = (V \{y})∪u(i+), and A = (B \{y})∪ a(i+). Note that x ̸= y,
since x /∈ dom(Γ). We proceed by case analysis on the last typing rule of Φ:

– Let Φ be derived as
Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) Q⟨x⟩ :N Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) i+ :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m1+m2,e1+e2,r1+r2) Q⟨x⟩@[y←i+] :N
ES

with Γ = ∆
⊎

Σ, M = M∆ ⊎MΣ, and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note
that x /∈ A, and so tightΓ(A) implies that tightΣ;x :MΣ

(a(i+)). Since i+ /∈ Var then
we can apply Lemma 9.1.3 (Typing properties of useful inert terms) on Φ′′ to obtain
that O ∈ Inert. Thus, we can infer that tight∆;x :M∆;y :O(B) due to tightΓ(A). Next,
we apply the i.h. on Φ′ to obtain a splitting of M∆ into M∆,1 ̸= 0 and M∆,2 such
that for every Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′,r1+r′) Q⟨v⟩ :N

323

We then propose splitting M into M1 := M∆,1 and M2 := M∆,2 ⊎MΣ, and are able
to derive Θ as

Θ′ Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) i+ :O

(∆
⊎

Π
⊎
Σ);x : (M∆,2 ⊎MΣ) ⊢(m1+m′+m2,e1+e′−1+e2,r1+r′+r2) P ⟨v⟩@[y←i+] :N

ES

– Let Φ be derived as
Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←i+] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ) imply that tightΓ(B), we can apply the i.h. on Φ′

and prove the statement easily.
• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←t] ∈ E@U ,A

EGC

with P = Q@[y←t]. Note that x ̸= y, since x /∈ dom(Γ). We proceed by case analysis
on the last typing rule in Φ:

– Let Φ be derived as
Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) Q⟨x⟩ :N Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) t :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m1+m2,e1+e2,r1+r2) Q⟨x⟩@[y←t] :N
ES

with Γ = ∆
⊎

Σ, M = M∆ ⊎MΣ, and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).
Since y /∈ A, then tightΓ(A) implies that tight∆;y :O(A). Hence, we can apply the
i.h. on Φ′ to obtain a splitting of M∆ into M∆,1 ̸= 0 and M∆,2 such that for every
Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′,r1+r′) Q⟨v⟩ :N

We then propose splitting M into M1 := M∆,1 and M2 := M∆,2 ⊎MΣ, and are able
to derive Θ as

Θ′ Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) t :O

(∆
⊎
Π
⊎

Σ);x : (M∆,2 ⊎MΣ) ⊢(m1+m′+m2,e1+e′−1+e2,r1+r′+r2) P ⟨v⟩@[y←t] :N
ES

– Let Φ be derived as
Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←t] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ) imply that tightΓ(B), we can apply the i.h. on Φ′

and prove the statement easily.
• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V \ B)
Q@[y←w] ∈ E@V\{y},B

EU

with P = Q@[y←w], U = V \ {y}, and A = B. Note that x ̸= y, since x /∈ dom(Γ). We
proceed by case analysis on the last typing rule in Φ:

324

– Let Φ be derived as
Φ′ ▷U ∆;x :M∆; y :O ⊢(m1,e1,r1) Q⟨x⟩ :N Φ′′ ▷U Σ;x :MΣ ⊢(m2,e2,r2) w :O O ̸= 0

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m1+m2,e1+e2,r1+r2) Q⟨x⟩@[y←w] :N
ES

with Γ = ∆
⊎

Σ, M = M∆ ⊎MΣ, and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).
Since y /∈ B, then tightΓ(A) implies that tight∆;y :O(B). We can then apply the
i.h. on Φ′ to obtain a splitting of M∆ into M∆,1 ̸= 0 and M∆,2 such that for every
Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 there exists

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′−1,r1+r′) Q⟨v⟩ :N

We propose splitting M into M1 := M∆,1 and M2 := M∆,2 ⊎MΣ, and are then able
to derive Θ as

Θ′ ▷U (∆
⊎

Π);x :M∆,2; y :O ⊢(m1+m′,e1+e′−1,r1+r′) Q⟨v⟩ :N Φ′′

(∆
⊎

Π
⊎

Σ);x : (M∆,2 ⊎MΣ) ⊢(m1+m′+m2,e1+e′−1+e2,r1+r′+r2) Q⟨v⟩@[y←w] :N
ES

– Let Φ be derived as
Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨x⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨x⟩@[y←w] :N
ESgc

Since tightΓ(B), we can apply the i.h. on Φ′ and prove the statement easily.
• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y /∈ (U ∪ A)
Q⟨y⟩@[y←⟨·⟩] ∈ E@U ,A

ENL

with P = Q⟨y⟩@[y←⟨·⟩]. Note that we may assume that x ̸= y—by α-conversion. We
proceed by case analysis on the last typing rule in Φ:

– Let Φ be derived as
Φ′ ▷U ∆;x :M∆; y :MΣ ⊢(m1,e1,r1) Q⟨y⟩ :N Φ′′ ▷U x :MΣ ⊢(m2,e2,r2) x :MΣ

(∆
⊎

Σ);x : (M∆ ⊎MΣ) ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←x] :N
ES

with Γ = ∆
⊎

Σ, M = M∆ ⊎MΣ, and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).
Note that tightΓ(A) and the fact that x, y /∈ A imply that tight∆;x :M∆;y :MΣ

(A).
Consequently, we can apply Lemma 13.6.8.2 (Plugged variables and domain of type
contexts) on Φ′ to obtain that MΣ ̸= 0 and, moreover, MΣ /∈ Abs. Two sub-cases:

∗ Let MΣ /∈ Inert. Then we can conclude that MΣ /∈ Tight and so Φ′′ is of the form

MΣ /∈ Tight

x :MΣ ⊢(0,1,0) x :MΣ

ax

with (m2, e2, r2) = (0, 1, 0).
We propose splitting M into M1 := MΣ and M2 := M∆, noting that for every
Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1 we can derive Θ as

Φ′ ▷U ∆;x :M∆; y :MΣ ⊢(m1,e1,r1) Q⟨y⟩ :N Ψ ▷U Π ⊢(m′,e′,r′) v :M∆,1

(∆
⊎

Π);x :MΣ ⊢(m1+m′,e1+e′,r1+r′) Q⟨y⟩@[y←x] :N
ES

325

In particular, we verify that

(m1 +m′, e1 + e′, r1 + r′) = (0 +m1 +m′, 1 + e1 + e′ − 1, 0 + r1 + r′)
= (m2 +m1 +m′, e2 + e1 + e′ − 1, r2 + r1 + r′)
= (m+m′, e+ e′ − 1, r + r′)

∗ Let MΣ ∈ Inert. We propose splitting M into M1 := MΣ and M2 := M∆, noting
that the statement holds trivially because values are not typable with types in
Inert.

– Suppose Φ is of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←x] :N
ESgc

Note that y /∈ dom(Q) —by the variable convention and the way in which P ∈ E@U ,A
has been derived— and that tightΓ;x :M(A) by hypothesis. However, we would then
be able to apply Lemma 13.6.8 (Plugged variables and domain of type contexts) to
obtain that y ∈ dom(Γ;x :M), making this case absurd.

(Click here to go back to main chapter.)
The following is required to apply Lemma 7.1.4 (Linear Substitution for Open CbNeed) in the

proof of Proposition 7.1.6.2 (Quantitative Subject Reduction for Open CbNeed - exponential case)
to obtain the right indices.

Lemma 13.6.9 (Splitting multi types of Open CbNeed type derivations).
Let v ∈ Val, M := N

⊎
O, and let Φ ▷U Γ ⊢(m,e) v :M be a type derivation. Then there exist type

derivations
Ψ ▷U Π ⊢(m′,e′) v :N
Θ ▷U ∆ ⊢(m′′,e′′) v :O

such that Γ = Π
⊎

∆ and (m, e) = (m′ +m′′, e′ + e′′).

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Lemma 13.6.10 (Quantitative Subject Reduction for →um in term contexts).
Let Φ ▷U Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M such that tightΓ(a(H)). Then m ≥ 1 and there exists Φ′ ▷U

Γ ⊢(m−1,e,r) (H⟨u⟩, [x←s]) :M .

Proof. (Click here to go back to main chapter.)
By structural induction on H:
• Empty context; i.e., H = ⟨·⟩. We do case analysis on the last typing rule in Φ:

– Let Φ be of the form
Θ ▷U Π;x :N ⊢(m′,e′,r′) u :M

Π ⊢(m′,e′,r′) λx.u :N ⊸ M
fun

Π ⊢(m′,e′,r′) λx.u : [N ⊸ M]
many

Ξ ▷U ∆ ⊢(m′′,e′′,r′′) s :N

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) (λx.u)s :M
app

326

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′+1, e′+ e′′, r′+ r′′). Note that m ≥ 1. We can
then derive Φ′ as

Θ ▷U Π;x :N ⊢(m′,e′,r′) u :M

Π;x :N ⊢(m′,e′,r′) (u, ϵ) :M
Lift

Ξ ▷U ∆ ⊢(m′′,e′′,r′′) s :N

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) (u, [x←s]) :M
ES

– appi is ruled out as the last typing rule in Φ by the fact that values are not typed with
inert.

– Let Φ be of the form

Θ ▷U Γ ⊢(m′,e′,r′) u :M x /∈ dom(Γ)

Γ ⊢(m′,e′,r′) λx.u :0 ⊸ M
fun

Γ ⊢(m′,e′,r′) λx.u : [0 ⊸ M]
many

Γ ⊢(m′+1,e′,r′) (λx.u)s :M
appgc

with (m, e, r) = (m′ + 1, e′, r′). Note that m ≥ 1. We can then derive Φ′ as

Θ ▷U Γ ⊢(m′,e′,r′) u :M

Γ ⊢(m′,e′,r′) (u, ϵ) :M
Lift

Γ(x) = 0

Γ ⊢(m′,e′,r′) (u, [x←s]) :M
ESgc

• Application left; i.e., H = J t. We do case analysis on the last typing rule in Ψ:
– Let Ψ be of the form

Ψ ▷U Π ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) J ⟨(λx.u)s⟩t :M
app

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′+1, e′+e′′, r′+r′′). Note that tightΓ(a(H)) im-
plies tightΠ(a(J)). By i.h. on Ψ, we have that m′ ≥ 1 and there exists Ψ′▷UΠ ⊢(m

′−1,e′,r′)

(J ⟨u⟩, [x←s]) : [N ⊸ M]. We do case analysis on the last typing rule in Ψ′:
∗ Let Ψ′ be of the form

Ω ▷U Π1;x :O ⊢(m
′
1,e

′
1,r

′
1) J ⟨u⟩ : [N ⊸ M]

Π1;x :O ⊢(m
′
1,e

′
1,r

′
1) (J ⟨u⟩, ϵ) : [N ⊸ M]

Lift
Z ▷U Π2 ⊢(m

′
2,e

′
2,r

′
2) s :O O ̸= 0

Π1

⊎
Π2 ⊢(m

′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : [N ⊸ M]

ES

with Π = Π1

⊎
Π2 and (m′ − 1, e′, r′) = (m′1 + m′2, e

′
1 + e′2, r

′
1 + r′2). We can then

derive Φ′ as follows
Ω Θ

(Π1

⊎
∆) ; x :O ⊢(m′

1+m′′+1,e′1+e′′,r′1+r′′) J ⟨u⟩t :M
app

Z

Π1

⊎
∆
⊎

Π2 ⊢(m
′
1+m′′+1+m′

2,e
′
1+e′′+e′2,r

′
1+r′′+r′2) (J ⟨u⟩t, [x←s]) :M

ES

noting that Π1

⊎
∆
⊎

Π2 = Π
⊎
∆ = Γ and that

(m′1 +m′′ + 1 +m′2, e
′
1 + e′′ + e′2, r

′
1 + r′′ + r′2)

= (m′ − 1 +m′′ + 1, e′ + e′′, r′ + r′′)
= (m− 1, e, r)

327

∗ Let Ψ′ be of the form

Ω ▷U Π ⊢(m′−1,e′,r′) J ⟨u⟩ : [N ⊸ M]

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : [N ⊸ M]
Lift

Π(x) = 0

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [N ⊸ M]
ESgc

We can then derive Φ′ as follows
Ω Θ

Π
⊎

∆ ⊢(m′−1+m′′+1,e′+e′′,r′+r′′) J ⟨u⟩t :M
app

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′−1+m′′+1,e′+e′′,r′+r′′) (J ⟨u⟩t, [x←s]) :M
ESgc

noting that (m′ − 1 +m′′ + 1, e′ + e′′, r′ + r′′) = (m− 1, e, r).
– Let Φ be of the form

Ψ ▷U Π ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : [inert]j∈J Θ ▷U ∆ ⊢(m′′,e′′,r′′) t : [tight] J ̸= ∅
Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) J ⟨(λx.u)s⟩t : [inert]j∈J
appi

with Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′ + 1). Note that tightΓ(a(H))
implies tightΠ(a(J)). Hence, by i.h. on Ψ, m′ ≥ 1 and there exists

Ψ′ ▷U Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [inert]j∈J

We do case analysis on the last typing rule in Ψ′:
∗ Let Ψ′ be of the form

Ξ ▷U Π1;x :O ⊢(m
′
1,e

′
2,r

′
1) J ⟨u⟩ : [inert]j∈J

Π1;x :O ⊢(m
′
1,e

′
2,r

′
1) (J ⟨u⟩, ϵ) : [inert]j∈J

Lift
Ω ▷U Π2 ⊢(m

′
2,e

′
2,r

′
2) s :O O ̸= 0

Π1

⊎
Π2 ⊢(m

′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : [inert]j∈J

ES

with Π = Π1

⊎
Π2 and

(m′ − 1, e′, r′) = (m′1 +m′2, e
′
1 + e′2, r

′
1 + r′2)

We can then derive Φ′ as follows
Ξ Θ

(Π1

⊎
∆) ; x :O ⊢(m′

1+m′′,e′1+e′′,r′1+r′′+1) J ⟨u⟩t : ⊎j∈J [inert]
appi

Ω

Π1

⊎
∆
⊎

Π2 ⊢(m
′
1+m′′+m′

2,e
′
1+e′′+e′2,r

′
1+r′′+1+r′2) (J ⟨u⟩t, [x←s]) : ⊎j∈J [inert]

ES

Note that Π1

⊎
∆
⊎

Π2 = Π
⊎

∆ = Γ and that

(m′1 +m′′ +m′2, e
′
1 + e′′ + e′2, r

′
1 + r′′ + 1 + r′2)

= (m′ − 1 +m′′, e′ + e′′, r′ + r′′ + 1)
= (m− 1, e, r)

∗ Let Ψ′ be of the form

Ξ ▷U Π ⊢(m′−1,e′,r′) J ⟨u⟩ : [inert]j∈J
Π ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : [inert]j∈J

Lift
Π(x) = 0

Π ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [inert]j∈J
ESgc

328

We can then derive Φ′ as follows
Ξ Θ

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) J ⟨u⟩t : [inert]j∈J
appi

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) (J ⟨u⟩t, ϵ) : [inert]j∈J
Lift

(Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′+1) (J ⟨u⟩t, [x←s]) : [inert]j∈J
ESgc

noting that
(m′ − 1 +m′′, e′ + e′′, r′ + r′′ + 1) = (m− 1, e, r)

– Let Ψ be of the form

Ψ ▷U Γ ⊢(m′,e′,r′) J ⟨(λx.u)s⟩ : [0 ⊸ M]

Γ ⊢(m′+1,e′,r′) J ⟨(λx.u)s⟩t :M
appgc

with (m, e, r) = (m′ + 1, e′, r′). Since tightΓ(a(H)) implies tightΓ(a(J)), then, by i.h. on
Ψ, m′ ≥ 1 and there exists

Ψ′ ▷U Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [0 ⊸ M]

We do case analysis on the last typing rule in Ψ′:
∗ Let Ψ′ be of the form

Θ ▷U Π;x :N ⊢(m′
1,e

′
1,r

′
1) J ⟨u⟩ : [0 ⊸ M]

Π;x :N ⊢(m′
1,e

′
1,r

′
1) (J ⟨u⟩, ϵ) : [0 ⊸ M]

Lift
Ξ ▷U ∆ ⊢(m′

2,e
′
2,r

′
2) s :N

Π
⊎

∆ ⊢(m′
1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩, [x←s]) : [0 ⊸ M]

ES

with Π
⊎

∆ = Γ and (m′1 +m′2, e
′
1 + e′2, r

′
1 + r′2) = (m′− 1, e′, r′). We can then build

Φ′ as
Θ

Π;x :N ⊢(m′
1+1,e′1,r

′
1) J ⟨u⟩t :M

appgc
Ξ

Π
⊎

∆ ⊢(m′
1+1+m′

2,e
′
1+e′2,r

′
1+r′2) (J ⟨u⟩t, [x←s]) :M

ES

noting that

(m′1 + 1 +m′2, e
′
1 + e′2, r

′
1 + r′2) = (m′, e′, r′) = (m− 1, e, r)

∗ Let Ψ′ be of the form

Θ ▷U Γ ⊢(m′−1,e′,r′) J ⟨u⟩ : [0 ⊸ M]

Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, ϵ) : [0 ⊸ M]
Lift

Γ(x) = 0

Γ ⊢(m′−1,e′,r′) (J ⟨u⟩, [x←s]) : [0 ⊸ M]
ESgc

We can then build Φ′ as
Θ

Γ ⊢(m′,e′,r′) J ⟨u⟩t :M
appgc

Γ(x) = 0

Γ ⊢(m′,e′,r′) (J ⟨u⟩t, [x←s]) :M
ESgc

noting that (m′, e′, r′) = (m− 1, e, r).

329

• Application right; i.e., H = iJ : We do case analysis on the last typing rule in Φ.
– Suppose Φ is of the form

Ψ ▷U Π ⊢(m′,e′,r′) i : [N ⊸ M] Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨(λx.u)s⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′+1,e′+e′′,r′+r′′) iJ ⟨(λx.u)s⟩ :M
app

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′+1, e′+ e′′, r′+ r′′). Since tightΓ(a(H)) implies
that tightΓ(a(i)), we would then be able to apply Lemma 9.1.3 (Typing properties of
useful inert terms) on Ψ to conclude that [0 ⊸ M] ∈ Inert. This is absurd, and then so
is this case.

– Let Φ be of the form
Ψ ▷U Π ⊢(m′,e′,r′) i : [inert]j∈J Θ ▷U ∆ ⊢(m′′,e′′,r′′) J ⟨(λx.u)s⟩ : [tight]

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′+1) iJ ⟨(λx.u)s⟩ : [inert]j∈J
appi

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′, e′+ e′′, r′+ r′′+1). Note that tightΠ⊎
∆(a(H))

implies tight∆(a(J)). Hence, by i.h. on Θ, m′′ ≥ 1 (hence, m ≥ 1) and there exists
Θ′ ▷U ∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) : [tight]. We do case analysis on the last typing rule
in Θ′:

∗ Let Θ′ be of the form
Ξ ▷U ∆1;x :O ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ :N

∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (J ⟨u⟩, ϵ) :N

Lift
Ω ▷U ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) s :O

∆1

⊎
∆2 ⊢(m

′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) (J ⟨u⟩, [x←s]) :N

ES

with ∆ = ∆1

⊎
∆2 and (m′′ − 1, e′′, r′′) = (m′′1 +m′′2, e

′′
1 + e′′2, r

′′
1 + r′′2). We can then

derive Ψ′ as follows
Ψ Ξ

(Π
⊎
∆1) ; x :O ⊢(m

′+m′′
1 ,e

′+r′′1 ,r
′+r′′1+1) iJ ⟨u⟩ :M

appi

(Π
⊎

∆1) ; x :O ⊢(m
′+m′′

1 ,e
′+r′′1 ,r

′+r′′1+1) (iJ ⟨u⟩, ϵ) :M
Lift

Ω

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+r′′1+e′′2 ,r

′+r′′1+1+r′′2) (iJ ⟨u⟩, [x←s]) :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ and that

(m′ +m′′1 +m′′2, e
′ + r′′1 + e′′2, r

′ + r′′1 + 1 + r′′2)
= (m′ + (m′′ − 1), e′ + e′′, r′ + r′′ + 1)
= (m− 1, e, r)

∗ Let Θ′ be of the form
Ξ ▷U ∆ ⊢(m′′−1,e′′,r′′) J ⟨u⟩ : [tight]
∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, ϵ) : [tight]

Lift
∆(x) = 0

∆ ⊢(m′′−1,e′′,r′′) (J ⟨u⟩, [x←s]) : [tight]
ESgc

We can then derive Φ′ as follows
Ψ Ξ

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) iJ ⟨u⟩ :M
appi

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) (iJ ⟨u⟩, ϵ) :M
Lift

(Π
⊎

∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′+1) (iJ ⟨u⟩, [x←s]) :M
ESgc

330

noting that
(m′ +m′′ − 1, e′ + e′′, r′ + r′′ + 1) = (m− 1, e, r)

– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m′,e′,r′) i : [0 ⊸ M]

Γ ⊢(m′+1,e′,r′) iH⟨(λx.u)s⟩ :M
appgc

with (m, e, r) = (m′ + 1, e′, r′). Since tightΓ(a(H)) implies that tightΓ(a(i)), we can
apply Lemma 9.1.3 (Typing properties of useful inert terms) on Ψ to conclude that
[0 ⊸ M] ∈ Inert. This is absurd, and then so is this case.

(Click here to go back to main chapter.)

Proposition 13.6.11 (Quantitative Subject Reduction for Useful Open CbNeed).
Let Φ ▷U Γ ⊢(m,e,r) p :M be a tight type derivation.

1. Multiplicative: if p →um p′, then m ≥ 1 and there exists a type derivation Φ′ ▷U Γ ⊢(m−1,e,r)
p′ :M .

2. Exponential: if p→ue p
′, then e ≥ 1 and there exists a type derivation Φ′ ▷U Γ ⊢(m,e−1,r) p′ :M .

Proof. (Click here to go back to main chapter.)
1. We prove this by means of a weaker statement:

Let p = P ⟨(λx.u)s⟩ →um P ⟨u, [x←s]⟩ = p′ with P ∈ EU ,A, and let

Φ ▷U Γ ⊢(m,e,r) P ⟨(λx.u)s⟩ :M

be a type derivation such that tightΓ(A). Then m ≥ 1 and there exists

Φ′ ▷U Γ ⊢(m−1,e,r) P ⟨u, [x←s]⟩ :M

We proceed by induction on the derivation of P ∈ EV .
• Let P ∈ EU ,A be of the form

(H, ϵ) ∈ Eu(H),a(H)
MAX

where P = (H, ϵ), U = u(H) and A = a(H). Then Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) H⟨(λx.u)s⟩ :M
Γ ⊢(m,e,r) (H⟨(λx.u)s⟩, ϵ) :M Lift

The statement holds by application of Lemma 9.1.9 (Quantitative Subject Reduction for
→um in term contexts) on Ψ, giving us that m ≥ 1 and the existence of Ψ′ ▷U Γ ⊢(m−1,e,r)
(H⟨u⟩, [x←s]) :M , and allowing us to the latter as premise for an application of the Lift
rule.

331

• Let P ∈ EU ,A be derived as

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←z] ∈ Eupd(V,y,z),upd(B,y,z)

MVAR

where P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). We proceed by case
analysis on the last typing rule in Φ.

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷U z :N ⊢(m′′,e′′,r′′) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←z] :M

ES

with Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note that if y ∈ B then
tightΓ(A) implies that tight{z :N}({z}); i.e., N ∈ Tight. Hence, tightΓ(A) implies
that tightΠ;y :N(B) and we can apply the i.h. on Ψ to get that m′ ≥ 1 (hence m ≥ 1)
to obtain Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M . Therefore, we can derive Φ′ as

Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M Θ ▷U z :N ⊢(m′′,e′′,r′′) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←z] :M

ES

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←z] :M
ESgc

Note that since y /∈ dom(Γ), we can apply the i.h. on Ψ to get that m ≥ 1 to obtain
Ψ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M . Therefore, we can derive Φ′ as

Ψ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨u, [x←s]⟩@[y←z] :M
ESgc

• Let P ∈ EU ,A be derived as

Q ∈ EV,B y ∈ (V ∪ B)
Q@[y←t] ∈ E(V\{y})∪u(t),(B\{y})∪a(t)

MI

where P = Q@[y←i+], U = (V \ {y})∪ u(i+) and A = (B \ {y})∪ a(i+). We proceed by
case analysis on the last typing rule in Φ.

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←i+] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Note that tightΓ(A) implies that tight∆(a(i

+)). Consequently, we have that N ∈
Inert—by Lemma 9.1.3 (Typing properties of useful inert terms) on Θ. Thus, we
also have that tightΠ;y :N(B), and so we can apply the i.h. on Ψ to get that m′ ≥ 1

(hence, m ≥ 1) and the existence of Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M . We
can simply derive Φ′ as follows

Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i+ :N

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←i+] :M
ES

332

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←i+] :M
ESgc

Since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). We can apply the i.h. on
Ψ to get that m ≥ 1 to obtain Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M . We can simply
derive Φ′ as follows

Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M Γ(y) = 0

Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩@[y←i+] :M
ESgc

• Let P ∈ EU ,A be derived as

Q ∈ EU ,A y /∈ (U ∪ A)
Q@[y←t] ∈ EU ,A

MGC

where P = Q@[y←t]. We proceed by case analysis on the last typing rule in Φ.
– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←t] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′). Note that since y /∈ B,
then tightΓ(A) implies tightΓ;y :N(B). Hence, by i.h. on Ψ, m′ ≥ 1 (hence, m ≥ 1)
and there exists Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M . We can simply derive Φ′

as follows

Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←t] :M
ES

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←t] :M
ESgc

By i.h. on Ψ, m ≥ 1 and there exists Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M . We can
simply derive Φ′ as follows

Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M Γ(y) = 0

Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩@[y←t] :M
ESgc

• Let P ∈ EU ,A be derived as

Q ∈ EV,B y ∈ (V \ B)
Q@[y←v] ∈ EV\{y},B

MU

where P = Q@[y←v], U = V \ {y} and A = B. We proceed by case analysis on the last
typing rule in Φ:

333

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨(λx.u)s⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨(λx.u)s⟩@[y←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Since y /∈ B, then tightΓ(A) implies that tightΠ;y :N(B). We can then apply the
i.h. on Θ to get that m′ ≥ 1 (hence m ≥ 1) to obtain Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′)

Q⟨u, [x←s]⟩ :M . Therefore, we can derive Θ as

Ψ′ ▷U Π; y :N ⊢(m′−1,e′,r′) Q⟨u, [x←s]⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨u, [x←s]⟩@[y←v] :M
ES

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨(λx.u)s⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨(λx.u)s⟩@[y←v] :M
ESgc

By i.h. on Ψ, m ≥ 1 and there exists Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M . We can
simply derive Φ′ as follows

Ψ′ ▷U Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩ :M Γ(y) = 0

Γ ⊢(m−1,e,r) Q⟨u, [x←s]⟩@[y←v] :M
ESgc

• Let P ∈ EU ,A be derived as

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H] ∈ EV∪u(H),B∪a(H)

MHER

where P = Q⟨y⟩@[y←H], U = V ∪u(H) and A = B∪a(H). We proceed by case analysis
on the last typing rule in Φ.

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨y⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) H⟨(λx.u)s⟩ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨y⟩@[y←H⟨(λx.u)s⟩] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ + m′′, e′ + e′′, r′ + r′′). Note that x /∈
dom(Π; y :N), since x ∈ dom(Π; y :N) would imply that x ∈ fv(Q⟨y⟩)—by
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system)—and so this case
may be discarded by α-conversion.
Moreover, note that tightΓ(A) implies that tightΓ(a(H)). We can then apply
Lemma 9.1.9 (Quantitative Subject Reduction for →um in term contexts) on Θ to
get that m′′ ≥ 1 (hence, m ≥ 1) to obtain Θ′ ▷U ∆ ⊢(m′′−1,e′′,r′′) H⟨u⟩[x←s] :N . We
now proceed by case analysis on the last typing rule in Θ′:

∗ Let Θ′ be of the form

Ξ ▷U ∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) H⟨u⟩ :N

∆1;x :O ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (H⟨u⟩, ϵ) :N

Lift
Ω ▷U ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) s :O

∆1

⊎
∆2 ⊢(m

′′
1+m′′

2 ,e
′′
1+e′′2 ,r

′′
1+r′′2) (H⟨u⟩, [x←s]) :N

ES

334

with ∆1

⊎
∆2 = ∆ and (m′′1 + m′′2, e

′′
1 + e′′2, r

′′
1 + r′′2) = (m′′ − 1, e′′, r′′). We can

then derive Φ′ as follows

Ψ Ξ
(Π
⊎

∆1) ; x :O ⊢(m
′+m′′

1 ,e
′+e′′1 ,r

′+r′′1) Q⟨y⟩@[y←H⟨u⟩] :M
ES

Ω

Π
⊎

∆1

⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+e′′1+e′′2 ,r

′+r′′1+r′′2) (Q⟨y⟩@[y←H⟨u⟩]) @[x←s] :M
ES

noting that Π
⊎

∆1

⊎
∆2 = Π

⊎
∆ = Γ, that

(Q⟨y⟩@[y←H⟨u⟩]) @[x←s] = (Q⟨y⟩@[y←H]) ⟨u, [x←s]⟩
= P ⟨u, [x←s]⟩

and that

(m′ +m′′1 +m′′2, e
′ + e′′1 + e′′2, r

′ + r′′1 + r′′2) = (m′ +m′′ − 1, e′ + e′′, r′ + r′′)
= (m− 1, e, r)

∗ Let Θ′ be of the form

Ξ ▷U ∆ ⊢(m′′−1,e′′,r′′) H⟨u⟩ :N
∆ ⊢(m′′−1,e′′,r′′) (H⟨u⟩, ϵ) :N

Lift
∆(x) = 0

∆ ⊢(m′′−1,e′′,r′′) (H⟨u⟩, [x←s]) :N
ESgc

Since y /∈ dom(Π), we can then derive Φ′ as follows

Ψ Ξ
Π
⊎

∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′) Q⟨y⟩@[y←H⟨u⟩] :M
ES

(Π
⊎
∆)(x) = 0

Π
⊎
∆ ⊢(m′+m′′−1,e′+e′′,r′+r′′) (Q⟨y⟩@[y←H⟨u⟩]) @[x←s] :M

ESgc

noting that

(Q⟨y⟩@[y←H⟨u⟩]) @[x←s] = (Q⟨y⟩@[y←H]) ⟨u, [x←s]⟩
= P ⟨u, [x←s]⟩

and that (m′ +m′′ − 1, e′ + e′′, r′ + r′′) = (m− 1, e, r).
– Suppose Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←H⟨(λx.u)s⟩] :M
ESgc

But since y /∈ dom(Π) and tightΓ(A) implies that tightΓ(B), then we can apply
Lemma 13.6.8 (Plugged variables and domain of type contexts) on Ψ to obtain that
y ∈ dom(Γ), which makes this case absurd.

2. We prove this by means of a weaker statement:
Let p = P ⟨x⟩ →ue P ⟨vα⟩ = q, with P ∈ E@U ,A, x ∈ dom(P) and P (x) = v, and let

Φ ▷U Γ ⊢(m,e,r) P ⟨x⟩ :M such that tightΓ(A). Then e ≥ 1 and there exists Φ′ ▷U Γ ⊢(m,e−1,r)

P ⟨v⟩ :M .
We proceed by induction on the derivation of P ∈ E@U ,A.

335

• Note that the case where P ∈ E@U ,A is derived as

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

where P = (H@, ϵ) is impossible, because it contradicts the hypothesis that x ∈ dom(P).
• Note that P ∈ E@U ,A cannot be derived as

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

because then x /∈ dom(Γ), contradicting the hypothesis.
• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)

EVAR

where P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). Note that since z is not a
value, then x ̸= y and x ∈ dom(Q). We proceed by case analysis on the last typing rule
in Φ:

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U z :N ⊢(m′′,e′′,r′′) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←z] :M

ES

where Γ = Π
⊎
{z :N} and (m, e, r) = (m′+m′′, e′+ e′′, r′+ r′′). Note that if y ∈ B,

then tightΓ(A) implies that N ∈ Tight. Thus, we can apply the i.h. on Ψ and get
that m′ ≥ 1 (hence m ≥ 1) to obtain Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M . We can
then derive Φ′ as

Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M Θ ▷U z :N ⊢(m′′,e′′,r′′) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m′−1+m′′,e′+e′′,r′+r′′) Q⟨v⟩@[y←z] :M

ES

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←z] :M
ESgc

Since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B) and so we can apply the
i.h. on Ψ to get that m ≥ 1 to obtain Ψ ▷U Γ ⊢(m,e−1,r) Q⟨v, ϵ⟩ :M . We can then
derive Φ′ as

Ψ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←z] :M
ESgc

• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←t] ∈ E@(V\{y})∪u(t),(B\{y})∪a(t)

EI

where P = Q@[y←i+], U = (V \{y})∪u(i+) and A = (B\{y})∪a(i+). Note that x ̸= y,
because values are not inert terms, and so x ∈ dom(Q). We proceed by case analysis on
the last typing rule in Φ.

336

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←i+] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Note that tightΓ(A) implies that tight∆(a(i

+)), and so we can apply Lemma 9.1.3
(Typing properties of useful inert terms) on Θ to infer that N ∈ Inert. Hence,
tightΓ(A) implies that tightΠ;y :N(B) and we can apply the i.h. on Ψ to get that
e′ ≥ 1 (hence e ≥ 1) to obtain Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M . We can derive Φ′

as

Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′−1+e′′,r′+r′′) Q⟨v⟩@[y←t] :M
ES

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←t] :M
ESgc

Since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). Thus, we can apply the
i.h. on Ψ, getting that e ≥ 1 to obtaining a Ψ′ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M . We can then
derive Φ′ as follows

Ψ′ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e−1,r) Q⟨v⟩@[y←t] :M
ESgc

• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←t] ∈ E@U ,A

EGC

We proceed by case analysis on the last typing rule in Φ and on whether x = y or x ̸= y.
– Let x ̸= y and Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←t] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Note that tightΓ(A) together with the fact that y /∈ W imply tightΠ;y :N(A). Hence,
we can apply the i.h. on Ψ to get that e′ ≥ 1 (hence e ≥ 1) to obtain Ψ′ ▷U
Π; y :N ⊢(m′,e′−1,r′) Q⟨vα⟩ :M . We can then derive Φ′ as follows

Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨v⟩@[y←t] :M
ES

– Let x ̸= y and Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←t] :M
ESgc

337

We can apply the i.h. on Ψ to get that e ≥ 1 to obtain Ψ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M .
We can then derive Φ′ as

Ψ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e−1,r) Q⟨v⟩@[y←t] :M
ESgc

– Let x = y, t = v (i.e., t is a value) and let Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′, e′+e′′, r′+r′′). Note that x = y /∈ A, that
we may assume that x /∈ dom(Q) by α-conversion, and that M,N ̸= 0. Moreover,
note that tightΓ(A) implies that tightΓ;x :N(A). Hence, we can apply Lemma 9.1.8.2
(Linear Substitution for Useful Open CbNeed) on Ψ to obtain a splitting of the form
N = N1 ⊎N2, with N1 ̸= 0 such that for every Ξ ▷U Σ ⊢(m′′′,e′′′,r′′′) v :N1 there exists

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′′,e′+e′′′−1,r′+r′′′) Q⟨v⟩ :M

We now apply Lemma 13.6.9 (Splitting multi types of Useful Open CbNeed type
derivations) on Θ with said splitting, obtaining type derivations Θ1 ▷U ∆1 ⊢(m

′′
1 ,e

′′
1 ,r

′′
1)

v :N1 and Θ2 ▷U ∆2 ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) v :N2 such that ∆ = ∆1

⊎
∆2 and (m′′, e′′, r′′) =

(m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2).

Therefore, by what is given by Lemma 9.1.8.2 (Linear Substitution for Useful Open
CbNeed), there exists

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨v⟩ :M

We finally do case analysis on whether N2 = 0:
∗ Let N2 = 0. By Lemma 13.6.9 (Splitting multi types of Useful Open CbNeed

type derivations), this means that ∆1 = ∆, ∆2 = 0, (m′′1, e′′1, r′′1) = (m′′, e′′, r′′)
and (m′′2, e

′′
2, r
′′
2) = (0, 0, 0). We can then derive Φ′ as follows

Ω ▷U Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨v⟩ :M (Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨v⟩@[x←v] :M
ESgc

∗ Let N2 ̸= 0. We can then derive Φ′ as follows

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨v⟩ :M Θ2 ▷U ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) v :N2

Π
⊎

∆1
⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+e′′1−1+e′′2 ,r

′+r′′1+r′′2) Q⟨v⟩@[x←v] :M
ES

– Suppose x = y and Φ is of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←t] :M
ESgc

But then Lemma 13.6.8 (Plugged variables and domain of type contexts) on Ψ gives
that y ∈ dom(Γ)—absurd.

338

• Let P ∈ E@U ,A be derived as

Q ∈ E@V,A y ∈ (V \ A)
Q@[y←v] ∈ E@V\{y},A

EU

where P = Q@[y←v] and U = V \ {y}. We proceed by case analysis on the last typing
rule in Φ and on whether x = y or x ̸= y:

– Let x ̸= y and Φ be of the form

Ψ ▷U Π; y :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) w :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[y←w] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Since y /∈ A, then tightΓ(A) implies that tightΠ;y :N(A). Hence, we can apply the i.h.
on Ψ to get that e′ ≥ 1 (hence e ≥ 1) to obtain Ψ′ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M .
We can derive Φ′ as

Ψ ▷U Π; y :N ⊢(m′,e′−1,r′) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) t :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′−1+e′′,r′+r′′) Q⟨v⟩@[y←t] :M
ES

– Let x ̸= y and Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨x⟩@[y←w] :M
ESgc

We can apply the i.h. on Ψ to get that e ≥ 1 to obtain Ψ′ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M .
We can derive Φ′ as

Ψ′ ▷U Γ ⊢(m,e−1,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e−1,r) Q⟨v⟩@[y←t] :M
ESgc

– Let x = y, t = v and Φ be of the form

Ψ ▷U Π;x :N ⊢(m′,e′,r′) Q⟨x⟩ :M Θ ▷U ∆ ⊢(m′′,e′′,r′′) v :N N ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m′+m′′, e′+e′′, r′+r′′). Note that x = y /∈ A, that
we may assume that x /∈ dom(Q) by α-conversion, and that M,N ̸= 0. Moreover,
note that tightΓ(A) implies that tightΓ;x :N(A). Hence, we can apply Lemma 9.1.8.2
(Linear Substitution for Useful Open CbNeed) on Ψ to obtain a splitting of the form
N = N1 ⊎N2, with N1 ̸= 0 such that for every Ξ ▷U Σ ⊢(m′′′,e′′′,r′′′) v :N1 there exists

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′′,e′+e′′′−1,r′+r′′′) Q⟨v⟩ :M

We now apply Lemma 13.6.9 (Splitting multi types of Useful Open CbNeed type
derivations) on Θ with said splitting, obtaining type derivations Θ1 ▷U ∆1 ⊢(m

′′
1 ,e

′′
1 ,r

′′
1)

v :N1 and Θ2 ▷U ∆2 ⊢(m
′′
2 ,e

′′
2 ,r

′′
2) v :N2 such that ∆ = ∆1

⊎
∆2 and (m′′, e′′, r′′) =

(m′′1 +m′′2, e
′′
1 + e′′2, r

′′
1 + r′′2).

339

Therefore, by what is given by Lemma 9.1.8.2 (Linear Substitution for Useful Open
CbNeed), there exists

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨v⟩ :M

We finally do case analysis on whether N2 = 0:
∗ Let N2 = 0. By Lemma 13.6.9 (Splitting multi types of Useful Open CbNeed

type derivations), this means that ∆1 = ∆, ∆2 = 0, (m′′1, e′′1, r′′1) = (m′′, e′′, r′′)
and (m′′2, e

′′
2, r
′′
2) = (0, 0, 0). We can then derive Φ′ as follows

Ω ▷U Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨v⟩ :M (Π
⊎
∆)(x) = 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′−1,r′+r′′) Q⟨v⟩@[x←v] :M
ESgc

∗ Let N2 ̸= 0. We can then derive Φ′ as follows

Ω ▷U (Π
⊎

∆1);x :N2 ⊢(m
′+m′′

1 ,e
′+e′′1−1,r′+r′′1) Q⟨v⟩ :M Θ2 ▷U ∆2 ⊢(m

′′
2 ,e

′′
2 ,r

′′
2) v :N2

Π
⊎

∆1
⊎
∆2 ⊢(m

′+m′′
1+m′′

2 ,e
′+e′′1−1+e′′2 ,r

′+r′′1+r′′2) Q⟨v⟩@[x←v] :M
ES

– Suppose x = y and Φ is of the form

Ψ′ ▷U Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←w] :M
ESgc

But then Lemma 13.6.8 (Plugged variables and domain of type contexts) on Ψ gives
that y ∈ dom(Γ)—absurd.

• Finally, note that P ∈ E@U ,A cannot be derived as

Q ∈ E@W, y /∈ W
Q⟨y⟩@[y←H] ∈ EW∪nv(H)

OHER

because then x /∈ dom(P), contradicting the hypothesis.

(Click here to go back to main chapter.)

Theorem 13.6.12 (Tight Correctness for Useful Open CbNeed).
Given p ∈ PR and a tight type derivation Φ ▷U Γ ⊢(m,e,r) p :M , there exists q ∈ PR such that

1. q is in →und-normal form,
2. there exists a reduction sequence d : p −→∗und q, and
3. (m, e, r) = (|d|m, |d|e, |q|nd).
4. dom(Γ) = nv(q).

Proof. (Click here to go back to main chapter.)
By induction on m+ e, and proceeding by case analysis on whether p →und-reduces or not.
First, note that if p is in →und-normal form, then we can apply Proposition 9.1.7 (Typing

properties of Useful Open CbNeed-normal forms) to get that (m, e, r) = (0, 0, |p|nd) and dom(Γ) =
nv(p).

Otherwise, if p→und q for some q ∈ PR, then there are two sub-cases to consider:

340

1. Multiplicative steps: Let p →um r. By Proposition 9.1.10.1 (Quantitative Subject Reduction
for Useful Open CbNeed - multiplicative steps), there exists Ψ ▷U Γ ⊢(m−1,e,r) r :M . By i.h.
on Ψ, there exist q ∈ PR such that
(a) q is in →und-normal form,
(b) there exists a reduction sequence d′ : r −→∗undq,
(c) (m− 1, e, r) = (|d′|m, |d′|e, |q|nd), and
(d) dom(Γ) = nv(q).

Since p→um r, we see that there exists→und-normalizing reduction sequence d given as follows

d : p −→∗und q = p→um r −→∗und q︸ ︷︷ ︸
d′

and so the statement is satisfied. In particular, note that

(m, e, r) = (|d′|m + 1, |d′|e, |q|nd) = (|d|m, |d|e, |q|nd)

2. Exponential steps: Let p→ue r. By Proposition 9.1.10.2 (Quantitative Subject Reduction for
Useful Open CbNeed - exponential steps), there exists Ψ ▷U Γ ⊢(m,e−1,r) r :M . By i.h. on Ψ,
there exist q ∈ PR such that
(a) q is in →und-normal form,
(b) there exists a reduction sequence d′ : r −→∗undq,
(c) (m, e− 1, r) = (|d′|m, |d′|e, |q|nd), and
(d) dom(Γ) = nv(q).

Since p→ue r, we see that there exists→und-normalizing reduction sequence d given as follows

d : p −→∗und q = p→ue r −→∗und q︸ ︷︷ ︸
d′

and so the statement is satisfied. In particular, note that

(m, e, r) = (|d′|m, |d′|e + 1, |q|nd) = (|d|m, |d|e, |q|nd)

(Click here to go back to main chapter.)

13.6.2 Useful Open CbNeed completeness.
Lemma 13.6.13 (Tight typability of values).

Let v ∈ Val and M ∈ Abs. Then there exists tight type derivation Φ ▷U Γ ⊢(0,0,|v|nd) v :M such
that dom(Γ) = nv(v).

Proof. (Click here to go back to main chapter.)
Let n := |M |, noting that n ≥ 1. The statement holds by taking Φ to be(

∅ ⊢(0,0,0) λx.u : abs abs
)n

i=1

∅ ⊢(0,0,0) λx.u : [abs]ni=1

many

341

(Click here to go back to main chapter.)

Lemma 13.6.14 (Tight typability of useful inert terms).
Let i+ be a useful inert term, M ∈ Inert, and f : ul (i+) → {Inert,Abs} be a choice function.

Then there exists
• type context Γ such that dom(Γ) = a(i+) and inert(Γ);
• type context Π such that dom(Π) = ul (i+) and Π(z) ∈ f(z), for every z ∈ dom(Π);
• tight type derivation Φ ▷U Γ;Π ⊢(0,0,|i+|nd) i+ :M .

Proof. (Click here to go back to main chapter.)
Let i+ = us, M ∈ Inert and f : ul (i+)→ {Inert,Abs}. We proceed by case analysis on the shape

of u:
• Let u = x ∈ Var. Then a(t) = {x} ∪ a(s), u(t) = u(s), and |t|nd = |s|nd + 1. We proceed by

case analysis on the shape of s:
– Let s = y ∈ Var. Then a(t) = {x}, and u(t) = {y} and |t|nd = 1.

On one hand, if y = x, then ul (i+) = ∅ and the statement holds by taking any N ∈ Inert,
and defining Γ := {x : (M ⊎N)}, Π := ∅, and Φ as follows

x :M ⊢(0,0,0) x :M
axT

x :N ⊢(0,0,0) x :N
axT

x : (M ⊎N) ⊢(0,0,1) xx :M
appi

On the other hand, if y ̸= x, then u(t) \ a(t) = {y} and the statement holds by taking
N ∈ f(y) and defining Γ := {x :M}, Π = {y :N}, and Φ as follows:

x :M ⊢(0,0,0) x :M
axT

N ∈ f(y)

y :N ⊢(0,0,0) y :N
axT

{x :M}; {y :N} ⊢(0,0,1) xy :M
appi

– Let s = j+. Then a(t) = {x} ∪ a(j+), and u(t) = u(j+) and |t|nd = |j+|nd + 1. Let
N := [inert] and define g as

g : ul (j+) → {Inert,Abs}

z →

{
f(z) z ∈ dom(f)

Inert otherwise

By i.h. there exists a tight type derivation Θ▷U T ; Υ ⊢(0,0,|j+|nd) j+ :N such that inert(T),
dom(T) = a(j+), dom(Υ) = ul (j+) and Υ(y) ∈ g(z) for every z ∈ dom(Υ). Finally, if
x ∈ dom(Υ), then we can derive Φ as follows:

x :M ⊢(0,0,0) x :M
axT

Θ ▷U T ; Υ ⊢(0,0,|j+|nd) j+ :N

(T
⊎
{x : (M ⊎Υ(x))}); (Υ \\ {x}) ⊢(0,0,|j+|nd+1) xj+ :M

appi

and if x /∈ dom(Υ), then we can derive Φ as follows:

x :M ⊢(0,0,0) x :M
axT

Θ ▷U T ; Υ ⊢(0,0,|j+|nd) j+ :N

(T
⊎
{x :M}); Υ ⊢(0,0,|j+|nd+1) xj+ :M

appi

342

– Let s ∈ Val. Then a(t) = {x}, u(t) = ∅ and |t|nd = 1. Moreover, note that dom(f) = ∅.
Let N := [abs]. By Lemma 9.1.12 (Tight typability of values), there exists a tight type
derivation Θ ▷U T ⊢(0,0,|s|nd) s :N such that dom(T) = nv(s). Since nv(s) = ∅ then the
statement holds by defining Γ := {x :M}, Π := ∅, and Φ as follows

x :M ⊢(0,0,0) x :M
axT

Θ ▷U T ⊢(0,0,|s|nd) s :N
x :M ⊢(0,0,1) xs :M

appi

• Let u = k+. Since k+ /∈ Var then a(t) = a(k+) ∪ a(s), u(t) = u(k+) ∪ u(s), and |t|nd =
|k+|nd + |s|nd + 1. Let g be defined as

g : ul (k+) → {Inert,Abs}

z →

{
f(z) z ∈ dom(f)

Inert otherwise

We can apply the i.h. on k+, M and g to obtain a tight type derivation Ψ ▷U ∆;Σ ⊢(0,0,|k+|nd)
k+ :M such that dom(∆) = a(k+), inert(∆), dom(Σ) = ul (k+), and Σ(z) ∈ g(z) for every
z ∈ dom(Σ).
We now proceed by case analysis on the shape of s:

– Let s = y ∈ Var. Then a(k+) = a(u), u(t) = u(k+) ∪ {y} and |t|nd = |k+|nd + 1.
Let

N :=

{
[abs] y ∈ dom(f) and f(y) = Abs

[inert] otherwise
The statement follows by defining

Γ :=

{
∆ y /∈ a(u)

∆
⊎
{y :N} y ∈ a(y)

Π :=

{
Σ
⊎
{y :N} y /∈ a(u)

Σ y ∈ a(y)

and Φ as follows

Ψ ▷U ∆;Σ ⊢(0,0,|k+|nd) k+ :M y :N ⊢(0,0,0) y :N
axT

Γ;Π ⊢(0,0,|k+|nd+1) k+y :M
appi

– Let s = j+. Let h be defined as

h : ul (j+) → {Inert,Abs}

z →

{
f(z) z ∈ dom(f)

Inert otherwise

We can then apply the i.h. on j+, N := [inert] and h to obtain a tight type derivation
Θ ▷U T ; Υ ⊢(0,0,|j+|nd) j+ :N such that dom(T) = a(j+), inert(T), dom(Υ) = ul (j+),
and Υ(z) ∈ h(z) for every z ∈ dom(Υ). Therefore, the statement holds by defining
Π := (Σ \\ T)

⊎
(Υ \\∆),

Γ := ∆
⊎
T⊎

{Σ(x) : x ∈ (dom(Σ) ∩ dom(T))}⊎
{Υ(x) : x ∈ (dom(Υ) ∩ dom(∆))},

343

and Φ as follows
Ψ ▷U ∆;Σ ⊢(0,0,|k+|nd) k+ :M Θ ▷U T ; Υ ⊢(0,0,|j+|nd) j+ :N

Γ;Π ⊢(0,0,|k+|nd+|j+|nd+1) k+j+ :M
appi

– Let s ∈ Val. Then a(t) = a(k+), u(t) = u(k+) and |t|nd = |k+|nd + 1. Moreover, we
can apply Lemma 9.1.12 (Tight typability of values) to obtain a tight type derivation
Θ ▷U Σ ⊢(0,0,|s|nd) s : [abs] such that dom(Σ) = nv(s) = ∅. Therefore, the statement follows
by defining Γ := ∆, Π := Σ and Φ as follows

Ψ ▷U ∆;Σ ⊢(0,0,|k+|nd) k+ :M Θ ▷U ∅ ⊢(0,0,|s|nd) s : [abs]
Π; Σ ⊢(0,0,|k+|nd+|s|nd+1) us :M

appi

(Click here to go back to main chapter.)
Lemma 13.6.15 (Tight typability of generalized variables).

Let p ∈ PR be such that genVar#(p) and M ∈ Tight. Then there exists tight type derivation
Φ ▷U Γ ⊢(0,0,|p|nd) p :M such that dom(Γ) = nv(p).
Proof. (Click here to go back to main chapter.)

We proceed by induction on the derivation of genVarx(p):
• Let p = (x, ϵ) and M ∈ Tight. Then the statement holds by simply deriving Φ as follows:

x :M ⊢(0,0,0) x :M
axT

x :M ⊢(0,0,0) (x, ϵ) :M Lift

• Let genVarx(p) be derived as
genVary(q)

genVarx(q@[y←x])
GVHER

where p = q@[y←x]. By Lemma 8.2.4 (Properties of generalized variables), nv(q) = {y},
nv(p) = {x} and |p|nd = |q|nd + |x|nd = |q|nd. In additition, by i.h. on genVary(q), for every
M ∈ Tight there exists a tight type derivation Ψ ▷U Π ⊢(0,0,|q|nd) q :M such that dom(Π) =
nv(q) = {y}. Moreover, Lemma 9.1.4 (Typing properties of generalized variables) gives us
that Π(y) = M . Therefore, we can derive Φ as follows

Ψ ▷U y :M ⊢(0,0,|q|nd) q :M x :M ⊢(0,0,0) x :M
axT

x :M ⊢(0,0,|q|nd) q@[y←x] :M
ES

• Let genVarx(p) be derived as
genVarx(p) y ̸= x

genVarx(p@[y←t])
GVGC

where p = p@[y←t]. By Lemma 8.2.4 (Properties of generalized variables), nv(q) = {x},
nv(p) = {x} and |p|nd = |q|nd. In additition, by i.h. on genVarx(q), for every M ∈ Tight
there exists a tight type derivation Ψ ▷U Π ⊢(0,0,|q|nd) q :M such that dom(Π) = nv(q) = {x}.
Therefore, we can derive Φ as follows

Ψ ▷U Π ⊢(0,0,|q|nd) q :M Π(y) = 0

Π ⊢(0,0,|q|nd) q@[y←x] :M
ESgc

344

(Click here to go back to main chapter.)

Lemma 13.6.16 (Tight typability of useful abstraction programs).
Let p ∈ PR be such that uabs(p). Then there exists tight type derivation Φ▷U Γ ⊢(0,0,|p|nd) p : [abs]

such that dom(Γ) = nv(p).

Proof. (Click here to go back to main chapter.)
We proceed by induction on the derivation of uabs(p):
• Let uabs(p) be derived as

uabs(v, ϵ)
ALift

where p = (v, ϵ). The statement follows from Lemma 9.1.2 (Typing properties of values).
• Let uabs(p) be derived as

genVarx(q)

uabs(q@[x←v])
AGV

where p = q@[x←v]. Note that nv(q) = {x}—by Lemma 8.2.4 (Properties of generalized
variables)—that nv(p) = nv(t), and that |p|nd = |q|nd+ |t|nd. Let M := [abs]. By Lemma 9.1.14
(Tight typability of generalized variables), there exists a tight type derivation Ψ▷U Π ⊢(0,0,|q|nd)
q :M such that dom(Π) = nv(q); by Lemma 9.1.4 (Typing properties of generalized variables),
Π(x) = M . Moreover, by Lemma 9.1.12 (Tight typability of values) there exists a tight type
derivation Θ ▷U ∆ ⊢(0,0,|t|nd) t :M such that dom(∆) = nv(t). Therefore, we can derive Φ as
follows

Ψ ▷U {x :M} ⊢(0,0,|q|nd) q :M Θ ▷U ∆ ⊢(0,0,|t|nd) t :M
∆ ⊢(0,0,|q|nd+|t|nd) q@[x←t] :M

ES

• Let uabs(p) be derived as
uabs(q)

uabs(q@[x←t])
AGC

where p = q@[x←t]. By Lemma 8.2.5, we have that nv(q) = nv(p) = ∅, hence |p|nd = |q|nd.
Moreover, by i.h., there exists a tight type derivation Ψ ▷U Π ⊢(0,0,|q|nd) q : [abs] such that
dom(Π) = nv(q). Note that by Lemma 8.2.5 (Properties of useful abstraction programs),
∅ = nv(q) = dom(Π). Therefore, we can derive Φ as follows

Ψ ▷U ∅ ⊢(0,0,|q|nd) q : [abs]
∅ ⊢(0,0,|q|nd) q@[x←t] : [abs]

ESgc

(Click here to go back to main chapter.)

Lemma 13.6.17 (Tight typability of useful inert programs).
Let p ∈ PR be such that uinert(p), and let f : ul (p) → {Inert,Abs} be a choice function. Then

there exists
• type context Γ such that dom(Γ) = a(p) and inert(Γ);
• type context Π such that dom(Π) = ul (p) and Π(z) = f(z), for every z ∈ dom(Π);
• tight type derivation Φ ▷U Γ;Π ⊢(0,0,|p|nd) p : [inert].

345

Proof. (Click here to go back to main chapter.)
Let f : ul (p)→ {Inert,Abs}. We proceed by induction on the derivation of uinert(p):
• Let uinert(p) be derived as

uinert(i+, ϵ)
ILift

where p = (i+, ϵ). Note that u(p) = u(i+) and a(p) = a(i+). The statement holds by taking
the type derivation yielded by applying Lemma 9.1.13 (Tight typability of useful inert terms)
on i+, with respect to f and M := [inert], and using it as a premise for typing rule Lift.

• Let uinert(p) be derived as
uinert(q) x ∈ nv(q)

uinert(q@[x←i])
II

where p = q@[x←i]. Moreover, let us define

g : ul (q) → {Inert,Abs}

z →

{
f(z) z ∈ dom(f)

Inert otherwise

By i.h. on uinert(q), there exists a tight type derivation Ψ▷U ∆;Σ ⊢(0,0,|q|nd) q : [inert] such that
dom(∆) = a(q), inert(∆), dom(Σ) = ul (q) and Υ(z) ∈ g(z) for every z ∈ dom(Υ). We proceed
by case analysis on the shape of i:

– Let i = y ∈ Var. If x ∈ a(q), then the statement follows by defining Γ := (∆ \\
{x})

⊎
{y : ∆(x)}, Π := Σ and Φ as follows

Ψ ▷U (∆ \\ {x});x : ∆(x); Σ ⊢(0,0,|q|nd) q : [inert] y : ∆(x) ⊢(0,0,0) y : ∆(x)
axT

((∆ \\ {x})
⊎
{y : ∆(x)}); Σ ⊢(0,0,|q|nd) q@[x←y] : [inert]

ES

On the other hand, if x /∈ a(q), then the statement follows by defining Γ := ∆, Π :=
(Σ \\ {x})

⊎
{y : Σ(x)} and Φ as follows:

Ψ ▷U ∆; (Σ \\ {x});x : Σ(x) ⊢(0,0,|q|nd) q : [inert] y : Σ(x) ⊢(0,0,0) y : Σ(x)
axT

∆; ((Σ \\ {x})
⊎
{y : Σ(x)}) ⊢(0,0,|q|nd) q@[x←y] : [inert]

ES

– Let i /∈ Var, and let
h : ul (i) → {Inert,Abs}

z →

{
f(z) z ∈ dom(f)

Inert otherwise

We further split the analysis on whether x ∈ a(q):
∗ Let x ∈ a(q). We can apply Lemma 9.1.13 (Tight typability of useful inert terms)

on i, M := ∆(x) and h, to obtain a tight type derivation Θ ▷U T ; Υ ⊢(0,0,|i|nd) i :M
such that dom(T) = a(i), inert(T), dom(Υ) = ul (i), and Υ(z) ∈ h(z) for every
z ∈ dom(Υ). The statement then follows by defining Γ := (∆\\{x})

⊎
T , Π := Σ

⊎
Υ

and Φ as follows:

Ψ ▷U (∆ \\ {x});x : ∆(x); Σ ⊢(0,0,|q|nd) q : [inert] Θ ▷U T ; Υ ⊢(0,0,|i|nd) i :M
(∆ \\ {x})

⊎
T ; Σ

⊎
Υ ⊢(0,0,|q|nd+|i|nd) q@[x←i] : [inert]

ES

346

∗ Let x /∈ a(q). Then it must be that x ∈ ul (q). We can apply Lemma 9.1.13 (Tight
typability of useful inert terms) on i, M := Σ(x) and h, to obtain a tight type
derivation Θ ▷U T ; Υ ⊢(0,0,|i|nd) i :M such that dom(T) = a(i), inert(T), dom(Υ) =
ul (i) and Υ(z) ∈ h(z) for every z ∈ dom(Υ). The statement then follows by defining
Γ := ∆

⊎
T , Π := (Σ \\ {x})

⊎
Υ and Φ as follows:

Ψ ▷U ∆; (Σ \\ {x});x : Σ(x) ⊢(0,0,|q|nd) q : [inert] Θ ▷U T ; Υ ⊢(0,0,|i|nd) i :M
∆
⊎

T ; (Σ \\ {x})
⊎

Υ ⊢(0,0,|q|nd+|i|nd) q@[x←i] : [inert]
ES

• Let uinert(p) be derived as
genVarx(q)

uinert(q@[x←i+])
IGV

where p = q@[x←i+]. By Lemma 8.2.4 (Properties of generalized variables), we have that
{x} = nv(q), and so nv(p) = nv(i+) and |p|nd = |q|nd + |i+|nd.
Let M := [inert]. By Lemma 9.1.14 (Tight typability of generalized variables) on genVarx(q)
and M , there exists a type derivation Ψ ▷U x :M ⊢(0,0,|q|nd) q :M .
Moreover, it is easy to verify that ul (p) = ul (i+). Hence, we can apply Lemma 9.1.13 (Tight
typability of useful inert terms) on i+, M and f , to obtain a tight type derivation Θ ▷U
T ; Υ ⊢(0,0,|i+|nd) i+ :M such that dom(T) = a(i+), inert(T), dom(Υ) = ul (i+) and Υ(z) ∈ f(z)
for every z ∈ dom(Υ). Therefore, the statement follows by defining Γ := T , Π := Υ and Φ as
follows

Ψ ▷U x :M ⊢(0,0,|q|nd) q :M Θ ▷U T ; Υ ⊢(0,0,|i+|nd) i+ :M

T ; Υ ⊢(0,0,|q|nd+|i+|nd) q@[x←i+] :M
ES

• Let uinert(p) be derived as
uinert(q) x ∈ ul (q)

uinert(q@[x←v])
IU

where p = q@[x←v]. Note that |p|nd = |q|nd + |v|nd. In addition, since u(v) = a(v) = ∅, then
it is easy to show that ul (p) = ul (q) \ {x}. Let

g : ul (q) → {Inert,Abs}

z →

{
f(z) z ̸= x and z ∈ dom(f)

Abs z = x

Then we can apply the i.h. on uinert(q) and g to get a tight type derivation Ψ▷U∆;Σ ⊢(0,0,|q|nd)
q : [inert] such that dom(∆) = a(q), inert(∆), dom(Σ) = ul (q) and Σ(z) ∈ g(z) for every
z ∈ dom(Σ). Note that we can rewrite Σ = (Σ \\ {x}); (x : Σ(x)).
Moreover, by Lemma 9.1.12 (Tight typability of values), there exists a tight type derivation
Θ ▷U T ⊢(0,0,|v|nd) v : Σ(x) such that dom(T) = nv(v) = ∅.
The statement then follows by defining Γ := ∆, Π := Σ and Φ as follows:

Ψ ▷U ∆; (Σ \\ {x}); (x : Σ(x)) ⊢(0,0,|q|nd) q : [inert] Θ ▷U ∅ ⊢(0,0,|v|nd) v : Σ(x)
∆; (Σ \\ {x}) ⊢(0,0,|q|nd+|v|nd) p@[x←v] : [inert]

ES

• Let uinert(p) be derived as

uinert(q) x /∈ (u(q) ∪ a(q))

uinert(q@[x←t])
IGC

347

where p = q@[x←t]. Note that |p|nd = |q|nd, u(p) = u(q) and a(p) = a(q), and so dom(f) =
ul (q). Thus, we can apply the i.h. on uinert(q) with respect to f to obtain a tight type
derivation Ψ ▷U ∆;Σ ⊢(0,0,|q|nd) q : [inert] such that dom(∆) = a(q), inert(∆), dom(Σ) = ul (q)
and Σ(z) ∈ f(z) for every z ∈ dom(Σ). Therefore, the statement holds by defining Γ := ∆,
Π := Σ, and Φ as follows:

Ψ ▷U ∆;Σ ⊢(0,0,|q|nd) q : [inert] (∆;Σ)(x) = 0

∆;Σ ⊢(0,0,|q|nd) q@[x←t] : [inert]
ESgc

(Click here to go back to main chapter.)

Proposition 13.6.18 (Tight typability of Useful Open CbNeed-normal forms).
Let p ∈ PR be such that unorm(p). Then there exists a tight type derivation Φ▷UΓ ⊢(0,0,|p|nd) p :M

such that dom(Γ) = nv(p).

Proof. (Click here to go back to main chapter.)
Let p be in →und-normal form. We proceed by case analysis according to what is given by

Proposition 8.2.7 (Syntactic characterization of Useful Open CbNeed-normal forms):
• If genVar#(p), then the statement follows by Lemma 9.1.14 (Tight typability of generalized

variables).
• If uabs(p), then the statement follows by Lemma 9.1.15 (Tight typability of useful abstraction

programs).
• Let uinert(p) and let f : ul (p) → {Inert,Abs} be any given choice function. Then by

Lemma 9.1.16 (Tight typability of useful inert programs) on uinert(p) with respect to f ,
there exists a tight type derivation Φ ▷U Γ;Π ⊢(0,0,|p|nd) p : [inert] such that dom(Γ) = a(p),
inert(Γ), dom(Π) = ul (p) and Π(z) ∈ f(z). The statement follows by noting that dom(Γ;Π) =
dom(Γ) ∪ dom(Π) = a(p) ∪ ul (p) = u(p) ∪ a(p) = nv(p).

(Click here to go back to main chapter.)

Lemma 13.6.19 (Linear Removal for Useful Open CbNeed).
Let x ∈ Var and v ∈ Val such that x /∈ fv(v).

1. Let H@ be such that x /∈ a(H@), and let

Φ ▷U Γ;x :M ⊢(m,e,r) H@⟨v⟩ :N

be such that N ̸= 0, and tightΓ(a(H@)).
Then there exist type derivations

Ψ ▷U Π ⊢(m′,e′,r′) v :O
Θ ▷U ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) H@⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).

348

2. Let P ∈ E@U ,A be such that x /∈ (A ∪ dom(P)) and fv(v) ∩ dom(P) = ∅, and let

Φ ▷U Γ;x :M ⊢(m,e,r) P ⟨v⟩ :N

be such that N ̸= 0, and tightΓ(A).
Then there exist multi type O ̸= 0 and type derivations

Ψ ▷U Π ⊢(m′,e′,r′) v :O
Θ ▷U ∆;x : (M ⊎O) ⊢(m′′,e′′,r′′) P ⟨x⟩ :N

such that
• Γ = Π

⊎
∆, and

• (m′ +m′′, e′ + e′′, r′ + r′′) = (m, e+ 1, r).

Proof. (Click here to go back to main chapter.)
1. By induction on the shape of H@:

• Let H = (⟨·⟩ t). We proceed by case analysis on the last typing rule in Φ:
– Let Φ be derived as

Ξ ▷U Γ1 ⊢(m1,e1,r1) v : [P ⊸ N] Ω ▷U Γ2;x :M ⊢(m2,e2,r2) t :P P ̸= 0

(Γ1 ⊎ Γ2);x :M ⊢(m1+m2+1,e1+e2,r1+r2) v t :N
app

with Γ = (Γ1

⊎
Γ2) and (m, e, r) = (m1 + m2 + 1, e1 + e2, r1 + r2). Note that

x /∈ dom(Γ1)—because of the fact that x /∈ fv(v) and by Lemma 9.1.1 (Relevance of
the Useful Open CbNeed type system).
The statement follows by taking Ψ := Ξ and deriving Θ as follows

[P ⊸ N] /∈ Tight

x : [P ⊸ N] ⊢(0,1,0) x : [P ⊸ N]
ax

Ω ▷U Γ2;x :M ⊢(m2,e2,r2) t :P

Γ2;x : (M ⊎ [P ⊸ N]) ⊢(m2+1,e2+1,r2) x t :N
app

verifying in particular that

(m′ +m′′, e′ + e′′, r′ + r′′) = (m1 +m2 + 1, e1 + e2 + 1, r1 + r2) = (m, e+ 1, r)

– It is easy to verify that if Φ cannot have appi as its last typing rule, since values are
not inert-typable.

– Let Φ be derived as
Ξ ▷U Γ ⊢(m1,e1,r1) v : [0 ⊸ N]

Γ ⊢(m1+1,e1,r1) v : [0 ⊸ N]
appgc

with M = [0 ⊸ N] and (m, e, r) = (m1 + 1, e1, r1). Note that x /∈ dom(Γ)—by
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system), recalling that
x /∈ fv(v).
The statement follows by taking Ψ := Ξ and deriving Θ as follows

[0 ⊸ N] /∈ Tight

x : [0 ⊸ N] ⊢(0,1,0) x : [0 ⊸ N]
ax

x : [0 ⊸ N] ⊢(1,1,0) x t :N
appgc

with ∆ = ∅ and (m′′, e′′, r′′) = (1, 1, 0) verifying that

349

∗ Γ = ∅
⊎

Γ = ∆
⊎

Π, and
∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m1 + 1, e1 + 1, r1) = (m, e+ 1, r).

• Let H@ = J @t. We proceed by case analysis on the last typing rule in Φ:
– Let Φ be derived as

Γ1;x :M1 ⊢(m1,e1,r1) J @⟨v⟩ : [P ⊸ N] Γ2;x :M2 ⊢(m2,e2,r2) t :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2+1,e1+e2,r1+r2) J @⟨v⟩t :N

app

with Γ = Γ1

⊎
Γ2, M = M1 +M2 and (m, e, r) = (m1 +m2 + 1, e1 + e2, r1 + r2).

Since a(H@) = a(J @), then we can infer from tightΓ(a(H@)) that tightΓ1
(a(J @)).

Hence, we can apply the i.h. on Ψ to obtain type derivations Ψ′▷UΠ′ ⊢(m
′
1,e

′
1,r

′
1) v :O′

and Θ′ ▷U ∆′;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) J @⟨x⟩ : [P ⊸ N] such that Γ1 = Π′

⊎
∆′ and

(m′1 +m′′1, e
′
1 + e′′1, r

′
1 + r′′1) = (m1, e1 + 1, r1).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

∆′;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) J @⟨x⟩ : [P ⊸ N] Γ2;x :M2 ⊢(m2,e2,r2) t :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2+1,e′′1+e2,r′′1+r2) J @⟨x⟩t :N

app

verifying that
∗ Γ = Γ1

⊎
Γ2 = (Π′

⊎
∆′)

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′+m′′, e′+ e′′, r′+ r′′) = (m′1 +(m′′1 +m2 +1), e′1 +(e′′1 + e2), r
′
1 +(r′′1 + r2)) =

(m1 +m2 + 1, e1 + e2 + 1, r1 + r2) = (m, e+ 1, r).
– The case where appi is the last typing rule in Φ can be proven similarly to app.
– The case where appgc is the last typing rule in Φ can be proven similarly to the two

previous cases.
• Let H@ = iJ @. We proceed by case analysis on the last typing rule in Φ:

– Suppose Φ is derived as follows:
Ξ ▷U Γ1;x :M1 ⊢(m1,e1,r1) i : [P ⊸ N] Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) J @⟨v⟩ :P P ̸= 0

(Γ1 ⊎ Γ2);x : (M1 ⊎M2) ⊢(m1+m2+1,e1+e2,r1+r2) iJ @⟨v⟩ :N
app

with Γ = (Γ1

⊎
Γ2). Note that since x /∈ a(H@), then x /∈ a(i) and so tightΓ(a(H@))

would imply that tightΓ(a(i)). However, we would now be able to apply Lemma 9.1.3
(Typing properties of useful inert terms) on Ξ to obtain that [P ⊸ N] ∈ Inert, which
is absurd. Hence, this case is impossible.

– Let Φ be derived as
Ξ ▷U Γ1;x :M1 ⊢(m1,e1,r1) i : [inert]i∈I Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) J @⟨v⟩ : [tight] I ̸= ∅

(Γ1 ⊎ Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2+1) iJ @⟨v⟩ : [inert]i∈I
appi

with Γ = (Γ1

⊎
Γ2) and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2 + 1).

Note that tightΓ(a(H@)) implies that tightΓ2
(a(J @)). Hence, we can apply the i.h. on

Ω to obtain type derivations Ψ′▷UΠ′ ⊢(m
′
2,e

′
2,r

′
2) v :O′ and Θ′▷U∆

′;x : (M2 ⊎O′) ⊢(m′′
2 ,e

′′
2 ,r

′′
2)

J @⟨x⟩ : [tight] such that Γ2 = Π′
⊎

∆′ and (m′2+m′′2, e
′
2+e′′2, r

′
2+r′′2) = (m2, e2+1, r2).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Ξ ▷U Γ1;x :M1 ⊢(m1,e1,r1) i : [inert]i∈I Θ′ ▷U ∆′;x : (M2 ⊎O′) ⊢(m′′
2 ,e

′′
2 ,r

′′
2) J @⟨x⟩ : [tight]

(Γ1 ⊎∆′);x : (M1 ⊎M2 ⊎O′) ⊢(m1+m′′
2 ,e1+e′′2 ,r1+r′′2+1) iJ @⟨x⟩ : [inert]i∈I

appi

verifying that

350

∗ Γ = Γ1

⊎
Γ2 = Γ1

⊎
(Π′
⊎

∆′) = (Γ1

⊎
∆′)

⊎
Π′ = ∆

⊎
Π, and

∗ (m′+m′′, e′+ e′′, r′+ r′′) = (m′2 +(m1 +m′′2), e
′
2 +(e1 + e′′2), r

′
2 +(r1 + r′′2 +1)) =

(m1 +m2, e1 + e2 + 1, r1 + r2 + 1) = (m, e+ 1, r).
– The case where appgc is the last typing rule in Φ is impossible, which can be proven

similarly to the case of app.
2. By induction on the derivation of P ∈ E@U ,A:

• Let P ∈ E@U ,A be derived as

(H@, ϵ) ∈ E@u(H@),a(H@)

EAX1

where P = (H@, ϵ), U = u(H@) and A = a(H@). Then Φ must be of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) H@⟨v⟩ :N
Γ;x :M ⊢(m,e,r) (H@⟨v⟩, ϵ) :N Lift

and we can apply Lemma 9.1.18.1 (Useful linear removal for term contexts) on Φ′ to
obtain type derivations Ψ′ ▷U Π′ ⊢(m′

1,e
′
1,r

′
1) v :O′ and Θ′ ▷U ∆′;x : (M ⊎O′) ⊢(m′′

1 ,e
′′
1 ,r

′′
1)

H@⟨x⟩ :N such that Γ = Π′
⊎
∆′ and (m′1 +m′′1, e

′
1 + e′′1, r

′
1 + r′′1) = (m, e+ 1, r).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) H@⟨x⟩ :N

∆′;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) H@⟨x⟩ :N

Lift

• Let P ∈ E@U ,A be derived as

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

where P = Q⟨y⟩@[y←H@], U = V ∪ u(H@) and A = B ∪ a(H@). We may safely assume
that x ̸= y—by α-conversion. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ξ ▷U Γ1;x :M1; y :P ⊢(m1,e1,r1) Q⟨y⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) H@⟨v⟩ :P P ̸= 0

(Γ1
⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H@⟨v⟩] :N

ES

with Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).

Note that tightΓ(A) implies that tightΠ(B). Thus, we can apply the Lemma 9.1.18.1
(Useful linear removal for term contexts) on Ω to obtain type derivations Ψ′ ▷U
Π′ ⊢(m′

2,e
′
2,r

′
2) v :O′ and Θ′ ▷U ∆′;x : (M2

⊎
O′) ⊢(m′′

2 ,e
′′
2 ,r

′′
2) H@⟨x⟩ :P such that Γ2 =

Π′
⊎

∆′ and (m′2 +m′′2, e
′
2 + e′′2, r

′
2 + r′′2) = (m2, e2 + 1, r2).

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Ξ ▷U Γ1;x :M1; y :P ⊢(m1,e1,r1) P ⟨y⟩ :N Θ′ ▷U ∆′;x : (M2
⊎
O′) ⊢(m′′

2 ,e
′′
2 ,r

′′
2) H@⟨x⟩ :P

(Γ1
⊎

∆′);x : (M1 ⊎M2 ⊎O′) ⊢(m1+m′′
2 ,e1+e′′2 ,r1+r′′2) Q⟨y⟩@[y←H@⟨v⟩] :N

ES

verifying that
∗ M = M1 ⊎M2 ⊎O′ = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = Γ1

⊎
(Π′
⊎

∆′) = (Γ1

⊎
∆′)

⊎
Π′ = ∆

⊎
Π, and

351

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′2 + (m1 +m′′2), e
′
2 + (e1 + e′′2), r

′
2 + (r1 + r′′2)) =

(m1 +m2, e1 + e2 + 1, r1 + r2) = (m, e+ 1, r).
– Suppose Φ is of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←H@⟨v⟩] :N
ESgc

However, an application of Lemma 13.6.8.2 (Plugged variables and domain of type
contexts) on Φ′ would gives us that y ∈ dom(Γ;x :M), making this case absurd.

• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B y ∈ (V ∪ B)
Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)

EVAR

where P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). Note that x ̸= y—since
x /∈ dom(P)—and that fv(v)∩dom(P) = ∅—by hypothesis. We proceed by case analysis
on the last typing rule in Φ:

– Let Φ be of the form

Ξ ▷U Γ1;x :M1; y :P ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) z :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←z] :N

ES

with Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Two

further determine the content of Φ, we need to split the analysis into two sub-cases:
∗ Let z = x. Then Φ is of the form

Ξ ▷U Γ1;x :M1; y :M2 ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U x :M2 ⊢(m2,e2,r2) x :M2

Γ1;x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←x] :N
ES

with P = M2 and Γ2 = ∅. Note that if y ∈ B, then A = (B \ {y}) ∪ {x} and so
M2 ∈ Tight by hypothesis. Thus, tightΓ(A) implies that tightΓ1;x :M1;y :M2

(B) and
then we can apply the i.h. on Ξ to obtain type derivations Ψ′ ▷U Π′ ⊢(m′

1,e
′
1,r

′
1)

v :O′ and Θ′▷U∆
′;x : (M1 ⊎O′); y :M2 ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N such that Γ1; y :M2 =

Π′
⊎
(∆′; y :M2) and (m′1+m′′1, e

′
1+e′′1, r

′
1+r′′1) = (m1, e1, r1). Note that y /∈ fv(v)

by hypothesis, and so y /∈ dom(Π′) ⊆ fv(v)—by Lemma 9.1.1 (Relevance of the
Useful Open CbNeed type system).
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′;x : (M1 ⊎O′); y :M2 ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷U x :M2 ⊢(m2,e2,r2) x :M2

∆′;x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←x] :N

ES

verifying that
· M = M1 ⊎O′ ⊎M2 = M ⊎O,
· Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :M2)) \\ {y})

⊎
∅ = (Π′

⊎
∆′) = Π

⊎
∆, and

· (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + e2 + 1, r1 + r2) = (m, e+ 1, r).

352

∗ Let z ̸= x. Then Φ is of the form

Ξ ▷U Γ′1; z :Q; y :P ;x :M ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U z :P ⊢(m2,e2,r2) z :P

Γ′1; z : (Q ⊎ P);x :M ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←z] :N
ES

That is, Γ1 = Γ′1; z : (Q ⊎ P), Γ2 = {z :P}, M1 = M and M2 = 0.
Note that if y ∈ B, thenA = (B\{y})∪{z} and so (Q⊎P) ∈ Tight by hypothesis.
Thus, tightΓ(A) implies that tightΓ1;x :M1;y :P ;z :Q(B) and then we can apply the
i.h. on Ξ to obtain type derivations Ψ′ ▷U Π′; z :Q1 ⊢(m

′
1,e

′
1,r

′
1) v :O and

Θ′ ▷U ∆′; z :Q2; y :P ;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Q = Q1 ⊎ Q2, Γ′1; z :Q; y :P = (Π′; z :Q1)
⊎
(∆′; z :Q2; y :P) and

(m′1 +m′′1, e
′
1 + e′′1, r

′
1 + r′′1) = (m1, e1 + 1, r1). Note that y /∈ dom(Π′; z :Q1)—by

Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system) and the fact
that fv(v) ∩ dom(P) = ∅.
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′; z :Q2; y :P ;x : (M ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷U z :P ⊢(m2,e2,r2) z :P

∆′; z : (Q2 ⊎ P);x : (M ⊎O′) ⊢(m′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←z] :N

ES

verifying that
· M ⊎O′ = M ⊎O,
· Γ = Γ1

⊎
Γ2 = (Γ′1; z : (Q ⊎ P))

⊎
∅ = ((Γ′1; z :Q; y :P) \\ {y})

⊎
{z :P} =

(((Π′; z :Q1)
⊎
(∆′; z :Q2; y :P)) \\ {y})

⊎
{z :P} = (Π′; z :Q1)

⊎
(∆′; z : (Q2 ⊎

P)) = Π
⊎

∆, and
· (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e

′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←z] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ;x :M) imply that tightΓ(B), then we can apply the
i.h. on Φ′ and easily prove the statement.

• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y ∈ (U ∪ A)
Q@[y←i+] ∈ E@(U\{y})∪u(i+),(A\{y})∪a(i+)

EI

where P = Q@[x←i+], U = (U \ {x}) ∪ u(i+) and A = (A \ {x}) ∪ a(i+). Note that
x ̸= y—since x /∈ dom(P)—and that fv(v) ∩ dom(P) = ∅—by hypothesis—yielding that
y /∈ fv(v). We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ξ ▷U Γ1; y :P ;x :M1 ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) i+ :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←i+] :N

ES

353

with Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).

Note that x /∈ A, and so tightΓ(A) implies that tightΓ2;x :M2
(a(i+)). Hence, we can

apply Lemma 9.1.3 (Typing properties of useful inert terms) on Ω to obtain that
P ∈ Inert. In turn, this allows us to infer from tightΓ(A) that tightΓ1;y :P (B). Thus,
we can apply the i.h. on Ξ to obtain type derivations Ψ′ ▷U Π′ ⊢(m′

1,e
′
1,r

′
1) v :O′ and

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Γ1; y :P = Π′
⊎
(∆′; y :P) and (m′1 +m′′1, e

′
1 + e′′1, r

′
1 + r′′1) = (m1, e+1, r1).

Note that x /∈ dom(Π′)—by Lemma 9.1.1 (Relevance of the Useful Open CbNeed
type system) and given that x /∈ fv(v).
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) i+ :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←i+] :N

ES

verifying that
∗ M1 ⊎O′ ⊎M2 = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :P)) \\ {y})

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←i+] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ;x :M) imply that tightΓ(B), then we can apply the
i.h. on Φ′ and easily prove the statement.

• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y /∈ (U ∪ A)
Q@[y←t] ∈ E@U ,A

EGC

where P = Q@[y←t]. Note that x ̸= y—since x /∈ dom(P)—and that fv(v) ∩ dom(P) =
∅—by hypothesis—yielding that y /∈ fv(v). We proceed by case analysis on the last
typing rule in Φ:

– Let Φ be of the form
Ξ ▷U Γ1; y :P ;x :M1 ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) t :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←t] :N

ES

with Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2).

Note that the fact that tightΓ(A) and that y /∈ A imply that tightΓ1;y :P (A). Hence,
we can apply the i.h. on Ξ to obtain type derivations Ψ′ ▷U Π′ ⊢(m′

1,e
′
1,r

′
1) v :O and

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Γ1; y :P = Π′
⊎
(∆′; y :P) and (m′1+m′′1, e

′
1+ e′′1, r

′
1+ r′′1) = (m1, e1+1, r1).

Note that y /∈ dom(Π′)—by Lemma 9.1.1 (Relevance of the Useful Open CbNeed
type system), and given that y /∈ fv(v).

354

Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) t :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←t] :N

ES

verifying that
∗ M1 ⊎O′ ⊎M2 = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :P)) \\ {y})

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).
– Let Φ be of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←t] :N
ESgc

We can apply the i.h. on Φ′ and easily prove the statement.
• Let P ∈ E@U ,A be derived as

Q ∈ E@V,B x ∈ (V \ B)
Q@[y←w] ∈ E@V\{x},B

EU

where P = Q@[y←w], U = V \ {x} and A = B. Note that x ̸= y—since x /∈ dom(P).
We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ξ ▷U Γ1;x :M1; y :P ⊢(m1,e1,r1) Q⟨v⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) w :P P ̸= 0

(Γ1

⊎
Γ2);x : (M1 ⊎M2) ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←w] :N

ES

with Γ = Γ1

⊎
Γ2, M = M1

⊎
M2 and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note

that the facts that tightΓ(A) and that y /∈ A imply that tightΓ1;y :P (A). Hence, we
can apply the i.h. on Ξ to obtain type derivations Ψ′ ▷U Π′ ⊢(m′

1,e
′
1,r

′
1) v :O and

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N

such that Γ1; y :P = Π′
⊎
(∆′; y :P) and (m′1+m′′1, e

′
1+ e′′1, r

′
1+ r′′1) = (m1, e1+1, r1).

Note that y /∈ dom(Π′)—by Lemma 9.1.1 (Relevance of the Useful Open CbNeed
type system) and given that y /∈ fv(v).
Therefore, the statement follows by taking Ψ := Ψ′ and deriving Θ as follows

Θ′ ▷U ∆′; y :P ;x : (M1 ⊎O′) ⊢(m′′
1 ,e

′′
1 ,r

′′
1) Q⟨x⟩ :N Ω ▷U Γ2;x :M2 ⊢(m2,e2,r2) w :P

(∆′
⊎

Γ2);x : (M1 ⊎O′ ⊎M2) ⊢(m
′′
1+m2,e′′1+e2,r′′1+r2) Q⟨x⟩@[y←w] :N

ES

verifying that
∗ M1 ⊎O′ ⊎M2 = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = ((Π′

⊎
(∆′; y :P)) \\ {y})

⊎
Γ2 = Π′

⊎
(∆′

⊎
Γ2) = Π

⊎
∆, and

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m′1 + (m′′1 +m2), e
′
1 + (e′′1 + e2), r

′
1 + (r′′1 + r2)) =

(m1 +m2, e1 + 1 + e2, r1 + r2) = (m, e+ 1, r).

355

– Let Φ be of the form
Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨v⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨v⟩@[y←w] :N
ESgc

Since tightΓ(A) and y /∈ dom(Γ;x :M) imply that tightΓ(B), then we can apply the
i.h. on Φ′ and easily prove the statement.

• Let P ∈ E@U ,A be derived as

Q ∈ E@U ,A y /∈ (U ∪ A)
Q⟨y⟩@[y←⟨·⟩] ∈ E@U ,A

ENL

where P = Q⟨y⟩@[y←⟨·⟩]. We may assume that x ̸= y—by α-conversion. We proceed
by case analysis on the last typing rule in Φ:

– Let Φ be of the form
Ξ ▷U Γ1;x :M ; y :P ⊢(m1,e1,r1) Q⟨y⟩ :N Ω ▷U Γ2 ⊢(m2,e2,r2) v :P P ̸= 0

(Γ1

⊎
Γ2);x :M ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←v] :N

ES

with Γ = Γ1

⊎
Γ2 and (m, e, r) = (m1+m2, e1+ e2, r1+ r2). Note that x /∈ dom(Γ2),

because x /∈ fv(v)—and applying Lemma 9.1.1 (Relevance of the Useful Open CbNeed
type system).
Moreover, since x, y /∈ A, then tightΓ(A) implies that tightΓ1;x :M ;y :P (A). Con-
sequently, we can apply Lemma 13.6.8.2 (Plugged variables and domain of type
contexts) on Ξ to obtain that

(Γ1;x :M ; y :P)(y) = P /∈ Abs

Given that values cannot be inert-typed, then P /∈ Tight.
Note that we can rewrite Ω ▷U Γ2;x :0 ⊢(m2,e2,r2) v :P and can thus make the state-
ment follow by taking Ψ := Ψ′ ▷U Π′ ⊢(m′

2,e
′
2,r

′
2) v :O′, with Π′ = Γ2, (m′2, e′2, r′2) =

(m2, e2, r2) and O′ = P , and deriving Θ as follow:

Θ′ ▷U Γ1;x :M ; y :O′ ⊢(m1,e1,r1) Q⟨y⟩ :N
O′ /∈ Tight

x :O′ ⊢(0,1,0) x :O′
ax

Γ1;x : (M ⊎O′) ⊢(m1,e1+1,r1) Q⟨y⟩@[y←x] :N
ES

verifying that
∗ M ⊎O′ = M ⊎O,
∗ Γ = Γ1

⊎
Γ2 = Π

⊎
∆

∗ (m′ +m′′, e′ + e′′, r′ + r′′) = (m2 +m1, e2 + e1 + 1, r2 + r1) = (m, e+ 1, r)
– Suppose Φ is of the form

Φ′ ▷U Γ;x :M ⊢(m,e,r) Q⟨y⟩ :N Γ(y) = 0

Γ;x :M ⊢(m,e,r) Q⟨y⟩@[y←v] :N
ESgc

However, since x /∈ A = B, then tightΓ(A) would imply that tightΓ(B), and so
we would be able to apply Lemma 13.6.8.2 (Plugged variables and domain of type
contexts) on Φ′ to obtain that y ∈ dom(Γ;x :M). Since that is absurd, then so is
this case.

356

(Click here to go back to main chapter.)
The following is required to apply Lemma 9.1.18 (Linear Removal for Useful Open CbNeed)

in the proof of Proposition 9.1.20.2 (Quantitative Subject Expansion for Useful Open CbNeed-
exponential case) to obtain the right indices.

Lemma 13.6.20 (Merging multi types of Useful Open CbNeed type derivations).
Let v ∈ Val. For any two type derivations

ΦN ▷U ΓN ⊢(mN ,eN ,rN) v :N
ΦO ▷U ΓO ⊢(mO,eO,rO) v :O

there exists type derivation

ΦN ▷U ΓN

⊎
ΓO ⊢(mN+mO,eN+eO,rN+rO) v :N ⊎O

Proof.
Trivial, given that the many typing rule is the only one that can derive a multi type on the

right—i.e., the derived type of the subject, in this case M—for values.

Lemma 13.6.21 (Quantitative Subject Expansion for →um in term contexts).
Let Φ ▷U Γ ⊢(m,e,r) (H⟨u⟩, [x←s]) :M such that tightΓ(a(H)). Then there exists Φ′ ▷U Γ ⊢(m+1,e,r)

H⟨(λx.u)s⟩ :M .

Proof. (Click here to go back to main chapter.)
By structural induction on H:
• Empty context; i.e., H = ⟨·⟩. We proceed by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m1,e1,r1) u :M

Π;x :N ⊢(m1,e1,r1) (u, ϵ) :M
Lift

Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (u, [x←s]) :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). We can then derive Φ′ as
follows

Ψ ▷U Π;x :N ⊢(m1,e1,r1) u :M

Π ⊢(m1,e1,r1) λx.u :N ⊸ M
fun

Π ⊢(m1,e1,r1) λx.u : [N ⊸ M]
many

Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2+1,e1+e2,r1+r2) (λx.u)s :M
app

verifying that (m1 +m2 + 1, e1 + e2, r1 + r2) = (m, e+ 1, r).

357

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) u :M

Γ ⊢(m,e,r) (u, ϵ) :M
Lift

Γ(x) = 0

Γ ⊢(m,e,r) (u, [x←s]) :M
ESgc

We can then derive Φ′ as follows

Ψ ▷U Γ ⊢(m,e,r) u :M

Γ ⊢(m,e,r) λx.u :0 ⊸ M
fun

Γ ⊢(m,e,r) λx.u : [0 ⊸ M]
many

Γ ⊢(m+1,e,r) (λx.u)s :M
appgc

• Application left; i.e., H = J t. We proceed by case analysis on the last typing rule in Φ:
– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m1,e1,r1) J ⟨u⟩t :M
Π;x :N ⊢(m1,e1,r1) (J ⟨u⟩t, ϵ) :M Lift

Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (J ⟨u⟩t, [x←s]) :M
ES

with Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). We proceed by case analysis
on the last typing rule in Ψ:

∗ Let Ψ be of the form

Ξ ▷U Σ;x :N ⊢(m′,e′,r′) J ⟨u⟩ : [P ⊸ M] Ω ▷U T ⊢(m′′,e′′,r′′) t :P

Π;x :N ⊢(m′+m′′,e′+e′′,r′+r′′) J ⟨u⟩t :M
app

with Π = Σ
⊎

T and (m′ +m′′, e′ + e′′, r′ + r′′) = (m1, e1, r1). Since we may assume
that x /∈ fv(t) by α-conversion, then we may assume as well that x /∈ dom(T)—by
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system).
We can now derive an auxiliary type derivation Z as follows

Ξ ▷U Σ;x :N ⊢(m′,e′,r′) J ⟨u⟩ : [P ⊸ M]

Σ;x :N ⊢(m′,e′,r′) (J ⟨u⟩, ϵ) : [P ⊸ M]
Lift

Θ ▷U ∆ ⊢(m2,e2,r2) s :N

Σ
⊎

∆ ⊢(m′+m2,e′+e2,r′+r2) (J ⟨u⟩, [x←s]) : [P ⊸ M]
ES

on which we can apply the i.h. to obtain

Z ′ ▷U Σ
⊎

∆ ⊢(m′+m2+1,e′+e2,r′+r2) J ⟨(λx.u)s⟩ :M

We can finally derive Φ′ as follows

Z ′ ▷U Σ
⊎
∆ ⊢(m′+m2+1,e′+e2,r′+r2) J ⟨(λx.u)s⟩ : [P ⊸ M] Ω ▷U T ⊢(m′′,e′′,r′′) t :P

Σ
⊎

∆
⊎

T ⊢(m′+m2+1+m′′,e′+e2+e′′,r′+r2+r′′) J ⟨(λx.u)s⟩ : [P ⊸ M]
app

verifying that
· Σ

⊎
∆
⊎

T = Π
⊎

∆ = Γ, and
· (m′ +m2 + 1 +m′′, e′ + e2 + e′′, r′ + r2 + r′′) = (m1 +m2 + 1, e1 + e2, r1 + r2) =

(m+ 1, e, r).

358

∗ Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) J ⟨u⟩t :M
Γ ⊢(m,e,r) (J ⟨u⟩t, ϵ) :M Lift

Γ(x) = 0

Γ ⊢(m,e,r) (J ⟨u⟩t, [x←s]) :M
ESgc

We proceed by case analysis on the last typing rule in Φ. The cases where appi and
appgc are proven similarly, and are left to the reader: Let Ψ be derived as

Θ ▷U Γ1 ⊢(m1,e1,r1) J ⟨u⟩ : [P ⊸ M] Ξ ▷U Γ2 ⊢(m2,e2,r2) t :P

Γ1

⊎
Γ2 ⊢(m1+m2+1,e1+e2,r1+r2) J ⟨u⟩t :M

app

with Γ = Γ1

⊎
Γ2 and (m, e, r) = (m1 +m2 + 1, e1 + e2, r1 + r2).

We can now derive an auxiliary type derivation Z as follows

Θ ▷U Γ1 ⊢(m1,e1,r1) J ⟨u⟩ : [P ⊸ M]

Γ1 ⊢(m1,e1,r1) (J ⟨u⟩, ϵ) : [P ⊸ M]
Lift

Γ1(x) = 0

Γ1 ⊢(m1,e1,r1) (J ⟨u⟩, [x←s]) : [P ⊸ M]
ESgc

on which we can apply the i.h. to obtain Z ′▷U Γ1 ⊢(m1+1,e1,r1) J ⟨(λx.u)s⟩ : [P ⊸ M],
and finally derive Φ′ as follows

Z ′ ▷U Γ1 ⊢(m1+1,e1,r1) J ⟨(λx.u)s⟩ : [P ⊸ M] Ω ▷U Γ2 ⊢(m2,e2,r2) t :P

Γ1

⊎
Γ2 ⊢(m1+1+m2+1,e1+e2,r1+r2) J ⟨(λx.u)s⟩t :M

app

verifying that (m1 + 1 +m2 + 1, e1 + e2, r1 + r2) = (m+ 1, e, r).

–• Application right; i.e., H = iJ . We may assume that x /∈ fv(i) by α-conversion. We proceed
by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m1,e1,r1) iJ ⟨u⟩ :M
Π;x :N ⊢(m1,e1,r1) (iJ ⟨u⟩, ϵ) :M Lift

Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) (iJ ⟨u⟩, [x←s]) :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). By proceeding by case
analysis on the last typing rule in Φ, it is easy to verify that the sub-type derivation
corresponding to t can be applied with Lemma 9.1.3 (Typing properties of useful inert
terms) to infer that M ∈ Inert. Thus, let M = [inert]i∈I , and note that Ψ must be of the
form

Ξ ▷U Π1 ⊢(m
′
1,e

′
1,r

′
1) i : [inert]i∈I Ω ▷U Π2;x :N ⊢(m

′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ : [tight]

(Π1

⊎
Π2);x :N ⊢(m

′
1+m′′

1 ,e
′
1+e′′1 ,r

′
1+r′′1+1) iJ ⟨u⟩ : [inert]i∈I

appi

where Π = Π1

⊎
Π2 and (m1, e1, r1) = (m′1 + m′′1, e

′
1 + e′′1, r

′
1 + r′′1 + 1). Note that x /∈

dom(Π1) because x /∈ fv(t)—and by an application of Lemma 9.1.1 (Relevance of the
Useful Open CbNeed type system).

359

We can now derive an auxiliary type derivation Z as follows

Ω ▷U Π2;x :N ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) J ⟨u⟩ : [tight]

Π2;x :N ⊢(m
′′
1 ,e

′′
1 ,r

′′
1) (J ⟨u⟩, ϵ) : [tight]

Lift
Θ ▷U ∆ ⊢(m2,e2,r2) s :N

(Π2

⊎
∆);x :N ⊢(m′′

1+m2,e′′1+e2,r′′1+r2) (J ⟨u⟩, [x←s]) : [tight]
ES

on which we can apply the i.h. to obtain a type derivation

Z ′ ▷U (Π2

⊎
∆);x :N ⊢(m′′

1+m2+1,e′′1+e2,r′′1+r2) J ⟨(λx.u)s⟩ : [tight]

and finally derive Φ′ as follows

Ξ ▷U Π1 ⊢(m
′
1,e

′
1,r

′
1) i : [inert]i∈I Z ′

(Π1

⊎
Π2

⊎
∆);x :N ⊢(m′

1+m′′
1+m2+1,e′1+e′′1+e2,r′1+r′′1+r2+1) iJ ⟨u⟩ : [inert]i∈I

appi

verifying that
∗ Π1

⊎
Π2

⊎
∆ = Π

⊎
∆ = Γ, and

∗ (m′1 +m′′1 +m2 + 1, e′1 + e′′1 + e2, r
′
1 + r′′1 + r2 + 1) = (m1 +m2 + 1, e1 + e2, r1 + r2) =

(m+ 1, e, r).
– The case where Φ ends in the application of an ESgc rule is proven very similarly to the

previous case, where ES is replaced with ESgc both in the analysis of the shape of Φ and
of Z, and changes are made accordingly.

(Click here to go back to main chapter.)

Proposition 13.6.22 (Quantitative Subject Expansion for Useful Open CbNeed).
Let Φ′ ▷U Γ ⊢(m,e,r) p′ :M be a tight type derivation.

1. Multiplicative: if p→um p′, then there exists a type derivation Φ ▷U Γ ⊢(m+1,e,r) p :M .
2. Exponential: if p→ue p

′, then there exists a type derivation Φ ▷U Γ ⊢(m,e+1,r) p :M .

Proof. (Click here to go back to main chapter.)
1. We prove this by means of a weaker statement:

Let p′ = P ⟨(λx.t)u⟩ →um P ⟨t, [x←u]⟩ = p, with P ∈ EU ,A, and let

Φ ▷U Γ ⊢(m,e,r) p :M

be a type derivation such that tightΓ(A). Then there exists

Φ′ ▷U Γ ⊢(m+1,e,r) p′ :M

We proceed by induction on the derivation of P :
• Let P = (H, ϵ). Note that then Φ▷U Γ ⊢(m,e,r) (H⟨t⟩, [x←u]) :M . Note that tightΓ(a(H)),

and so the statement follows by application of Lemma 9.1.19 (Quantitative Subject
Expansion for →um in term contexts) on Φ.

360

• Let P be derived as
Q ∈ EV,B y ∈ (V ∪ B)

Q@[y←z] ∈ Eupd(V,y,z),upd(B,y,z)
MVAR

where P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). We proceed by case
analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷U z :N ⊢(m2,e2,r2) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←z] :M

ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1+m2, e1+e2, r1+r2). Note that if y ∈ B, then
A = (B \ {y}) ∪ {z} and so tightΓ(A) implies that N ∈ Tight. Hence, we can apply
the i.h. on Ψ to obtain Ψ′ ▷U Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u, ϵ⟩ :M . The statement
follows by deriving Φ′ as an application of the ES rule with Ψ′ and Θ as premises.

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←z] :M
ESgc

Note that since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u, ϵ⟩ :M . The statement
follows by deriving Φ′ as follows

Ψ′ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←z] :M
ESgc

• Let P be derived as

Q ∈ EU ,A y ∈ (U ∪ A)
Q@[y←i+] ∈ E(U\{x})∪u(i+),(A\{x})∪a(i+)

MI

where P = Q@[y←i+], U = (U \ {x}) ∪ u(i+), and A = (A \ {x}) ∪ a(i+). We proceed
by case analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←i+] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that tightΓ(A)
implies that tightΠ(a(i+)), and so we can apply the Lemma 9.1.3 (Typing properties
of useful inert terms) on Θ to obtain that N ∈ Inert. Thus, tightΓ(A) implies
that tightΠ;y :N(B) and so we can apply the i.h. on Ψ to obtain type derivation
Ψ′ ▷U Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u⟩ :M . The statement follows by taking Ψ′ and
Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←i+] :M
ESgc

361

Note that since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M . The statement
follows by deriving Φ′ as follows

Ψ′ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←i+] :M
ESgc

• Let P be derived as
Q ∈ EV,B y /∈ (V ∪ B)

Q@[y←s] ∈ EV,B
MGC

where P = Q@[y←s], U = V and A = B. We proceed by case analysis on the last typing
rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←s] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that since y /∈ B,
then tightΓ(A) implies that tightΠ;y :N(B). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷U Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u⟩ :M . The statement
follows by taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←s] :M
ESgc

Note that tightΓ(A) implies that tightΓ(B). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M . The statement follows by deriving Φ′ as
follows:

Ψ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←s] :M
ESgc

• Let P be derived as
Q ∈ EV,B y ∈ (V \ B)
Q@[y←v] ∈ EV\{x},B

MU

where P = Q@[y←v], U = V \ {x} and A = B. We proceed by case analysis on the last
typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨t, [x←u]⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) v :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨t, [x←u]⟩@[y←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that since y /∈ B,
then tightΓ(A) implies that tightΠ;y :N(B). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷U Π; y :N ⊢(m1+1,e1,r1) Q⟨(λx.t)u⟩ :M . The statement
follows by taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

362

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨t, [x←u]⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨t, [x←u]⟩@[y←s] :M
ESgc

Note that tightΓ(A) implies that tightΓ(B). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M . The statement follows by deriving Φ′ as
follows:

Ψ ▷U Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩ :M Γ(y) = 0

Γ ⊢(m+1,e,r) Q⟨(λx.t)u⟩@[y←s] :M
ESgc

• Let P be derived as
Q ∈ EV,B y /∈ (V ∪ B)

Q⟨y⟩@[y←H] ∈ EV∪u(H),B∪a(H)
MHER

where P = Q⟨y⟩@[y←H], U = V ∪ u(H) and A = B ∪ a(H). Note that then p′ =
Q⟨y⟩@[y←H⟨(λx.t)u⟩] →um (Q⟨y⟩@[x←H⟨t⟩])@[x←u] = p. Moreover, since x is bound
in λx.t, then note that x /∈ fv(Q⟨y⟩).
We proceed by case analysis on the shape of Φ:

– Let Φ be of the form
.... Ψ

Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

.... Θ
∆;x :O ⊢(m2,e2,r2) H⟨t⟩ :N

ES
(Π
⊎

∆);x :O ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H⟨t⟩] :M

.... Ξ
Σ ⊢(m3,e3,r3) u :O

ES
Π
⊎
∆
⊎
Σ ⊢(m1+m2+m3,e1+e2+e3,r1+r2+r3) (Q⟨y⟩@[x←H⟨t⟩])@[x←u] :M

where Γ = Π
⊎

∆
⊎

Σ and (m, e, r) = (m1 + m2 + m3, e1 + e2 + e3, r1 + r2 + r3).
Note that since x /∈ fv(Q⟨y⟩), then x /∈ dom(Π)—by Lemma 9.1.1 (Relevance of the
Useful Open CbNeed type system).
Let us now derive an auxiliary type derivation Z as follows

Θ ▷U ∆;x :O ⊢(m2,e2,r2) H⟨t⟩ :N
∆;x :O ⊢(m2,e2,r2) (H⟨t⟩, ϵ) :N Lift

Ξ ▷U Σ ⊢(m3,e3,r3) u :O

∆
⊎

Σ ⊢(m2+m3,e2+e3,r2+r3) (H⟨t⟩, [x←u]) :N
ES

We can apply Lemma 9.1.19 (Quantitative Subject Expansion for→um in term con-
texts) on Z to obtain type derivation Z ′▷U∆

⊎
Σ ⊢(m2+m3+1,e2+e3,r2+r3) H⟨(λx.t)u⟩ :N .

Therefore, the statement follows by deriving Φ′ as follows

.... Ψ
Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

..... Z
′

∆
⊎

Σ ⊢(m2+m3+1,e2+e3,r2+r3) H⟨(λx.t)u⟩ :N
ES

Π
⊎
∆
⊎

Σ ⊢(m1+m2+m3+1,e1+e2+e3,r1+r2+r3) Q⟨y⟩@[y←H⟨(λx.t)u⟩] :M

noting that Q⟨y⟩@[y←H⟨(λx.t)u⟩] = P ⟨(λx.t)u⟩.

363

– The case where Φ is of the form
.... Ψ

Π; y :N ⊢(m1,e1,r1) Q⟨y⟩ :M

.... Θ
∆ ⊢(m2,e2,r2) H⟨t⟩ :N

ES
Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨y⟩@[y←H⟨t⟩] :M (Π
⊎
∆)(x) = 0

ESgc
Π
⊎
∆ ⊢(m1+m2,e1+e2,r1+r2) (Q⟨y⟩@[x←H⟨t⟩])@[x←u] :M

with Γ = Π
⊎

∆ and (m, e, r) = (m1+m2, e1+e2, r1+r2), can be proven analogously
to the previous case.

– Suppose Φ were of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨y⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨y⟩@[y←H⟨t⟩] :M
ESgc

Γ(x) = 0

Γ ⊢(m,e,r) (Q⟨y⟩@[y←H⟨t⟩])@[x←u] :M
ESgc

However, we would have that y /∈ fv(Q⟨y⟩)—by Lemma 9.1.1 (Relevance of the
Useful Open CbNeed type system) on Ψ—which contradicts the fact that y ∈ fv(Q⟨y⟩)
given by Lemma 13.6.8 (Plugged variables and domain of type contexts). Hence,
this case is impossible.

– Suppose Φ were of the form
.... Ψ

Π;x :O ⊢(m1,e1,r1) Q⟨y⟩ :M Π(y) = 0
ESgc

Π;x :O ⊢(m1,e1,r1) Q⟨y⟩@[y←H⟨t⟩] :M

.... Ξ
Σ ⊢(m3,e3,r3) u :O O ̸= 0

ES
Π
⊎

Σ ⊢(m,e,r) (Q⟨y⟩@[y←H⟨t⟩])@[x←u] :M
However, since x ∈ dom(Π;x :O), then we would have that x ∈ fv(Q⟨y⟩)—by
Lemma 9.1.1 (Relevance of the Useful Open CbNeed type system) on Ψ—which
is absurd.

2. We prove this by means of a weaker statement:

Let p′ = P ⟨x⟩ →ue P ⟨v⟩ = p, with P ∈ E@U ,A and P (x) = v ∈ Val, and let Φ ▷U Γ ⊢(m,e,r) p :M

be a type derivation such that tightΓ(A). Then there exists Φ′ ▷U Γ ⊢(m,e+1,r) p′ :M

We proceed by induction on the derivation of P :
• The case where P = (H@, ϵ) is impossible, since it would be that dom(P) = ∅.
• Suppose P is derived as

Q ∈ EV,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H@] ∈ E@V∪u(H@),B∪a(H@)

EAX2

where P = Q⟨y⟩@[y←H@], U = V ∪ u(H@) and A = B ∪ a(H@). But then x /∈ dom(P),
which is absurd.

• Let P be derived as
Q ∈ E@V,B y ∈ (V ∪ B)

Q@[y←z] ∈ E@upd(V,y,z),upd(B,y,z)
EVAR

where P = Q@[y←z], U = upd(V , y, z) and A = upd(B, y, z). Note that x ∈ dom(Q),
since z /∈ Val. We proceed by case analysis on the last typing rule in Φ:

364

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U z :N ⊢(m2,e2,r2) z :N N ̸= 0

Π
⊎
{z :N} ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←z] :M

ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that if y ∈ B,
then A = (B \ {y}) ∪ {z} and so tightΓ(A) implies that N ∈ Tight. Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷U Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement
follows by deriving Φ′ as an application of the ES rule having Ψ′ and Θ as premises.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←z] :M
ESgc

Note that since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷U Γ ⊢(m,e+1,r) Q⟨x, ϵ⟩ :M . The statement follows
by deriving Φ′ as follows

Ψ′ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←z] :M
ESgc

• Let P be derived as
Q ∈ E@U ,A y ∈ (U ∪ A)

Q@[y←i+] ∈ E@(U\{x})∪u(i+),(A\{x})∪a(i+)

EI

where P = Q@[y←i+], U = (U \ {x}) ∪ u(i+), and A = (A \ {x}) ∪ a(i+). Note that
since i+ /∈ Val, then x ̸= y and x ∈ dom(Q). We proceed by case analysis on the last
typing rule in Φ:

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) i+ :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←i+] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that tightΓ(A)
implies that tightΠ(a(i+)), and so we can apply the Lemma 9.1.3 (Typing properties
of useful inert terms) on Θ to obtain that N ∈ Inert. Thus, tightΓ(A) implies
that tightΠ;y :N(B) and so we can apply the i.h. on Ψ to obtain type derivation
Ψ′ ▷U Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement follows by taking Ψ′ and Θ as
premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←i+] :M
ESgc

Note that since y /∈ dom(Γ), then tightΓ(A) implies that tightΓ(B). Hence, we can
apply the i.h. on Ψ to obtain Ψ′ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M . The statement follows by
deriving Φ′ as follows

Ψ′ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←i+] :M
ESgc

365

• Let P be derived as
Q ∈ E@V,B y /∈ (V ∪ B)

Q@[y←s] ∈ E@V,B
EGC

where P = Q@[y←s], U = V and A = B.
We distinguish two cases, namely the one where x = y and s = v—i.e., when p =
Q⟨v⟩@[x←v]—and one where x ̸= y. Let us first assume that x ̸= y and proceed by case
analysis on the last typing rule in Φ:

– Let Φ be of the form
Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) s :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←s] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that since y /∈ B,
then tightΓ(A) implies that tightΠ;y :N(B). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷U Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement follows by
taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form
Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←s] :M
ESgc

Note that tightΓ(A) implies that tightΓ(B). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M . The statement follows by deriving Φ′ as follows:

Ψ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←s] :M
ESgc

This completes the case where x ̸= y. Let us now assume that x = y and s = v. That is,

p′ = Q⟨x⟩@[x←v]→ue Q⟨vα⟩@[x←v] = p

We proceed by case analysis on the last typing rule in Φ:
– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) v :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 + m2, e1 + e2, r1 + r2). Note that x /∈
(B ∪ dom(Q)) because x = y, and that we can safely assume that fv(v) ∩ dom(Q) =
∅. Hence, we can apply Lemma 9.1.18.2 on Ψ to obtain multi type O and type
derivations

Ξ ▷U Π′ ⊢(m′
1,e

′
1,r

′
1) v :O

and
Ω ▷U Π′′;x : (N ⊎O) ⊢(m′′

1 ,e
′′
1 ,r

′′
1) Q⟨x⟩ :M

such that Π = Π′
⊎

Π′′ and (m′1+m′′1, e
′
1+e′′1, r

′
1+r′′1) = (m1, e1+1, r1). Next, we apply

Lemma 13.6.20 (Merging multi types of Useful Open CbNeed type derivations) on
Ξ and Θ to obtain

Z ▷U Π′
⊎

∆ ⊢(m′
1+m2,e′1+e2,r′1+r2) v :N ⊎O

366

Finally, the statement follows by deriving Φ′ as follows:

Ω Z (N ⊎O) ̸= 0

Π′′
⊎

Π′
⊎

∆ ⊢(m′′
1+m′

1+m2,e′′1+e′1+e2,r′′1+r′1+r2) Q⟨x⟩@[x←v] :M
ES

where Π′′
⊎
Π′
⊎
∆ = Π

⊎
∆ = Γ and

(m′′1 +m′1 +m2, e′′1 + e′1 + e2, r
′′
1 + r′1 + r2)

= (m1 +m2, r1 + r2, (e1 + 1) + e2)
= (m, r, e+ 1)

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(x) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[x←v] :M
ESgc

By application of Lemma 9.1.18.2 on Ψ, there exist multi type O ̸= 0 and type
derivations

Θ ▷U Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M

and
Ξ ▷U ∆ ⊢(m′′,e′′,r′′) v :O

such that Γ = Π
⊎

∆ and (m, e+ 1, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Therefore, we can derive Φ′ as follows:

Θ ▷U Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M Ξ ▷U ∆ ⊢(m′′,e′′,r′′) v :O O ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ESgc

• Let P be derived as
Q ∈ E@V,B y ∈ (V \ B)
Q@[y←w] ∈ E@V\{x},B

EU

where P = Q@[y←w], U = V \ {x} and A = B.
We distinguish two cases, namely the one where x = y and s = v—i.e., when p =
Q⟨v⟩@[x←v]—and one where x ̸= y. Let us first assume that x ̸= y and proceed by case
analysis on the last typing rule in Φ:

– Let Φ be of the form

Ψ ▷U Π; y :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) w :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[y←w] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). Note that since y /∈ B,
then tightΓ(A) implies that tightΠ;y :N(B). Hence, we can apply the i.h. on Ψ to
obtain type derivation Ψ ▷U Π; y :N ⊢(m1,e1+1,r1) Q⟨x⟩ :M . The statement follows by
taking Ψ′ and Θ as premises for the ES rule, thus deriving Φ′.

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(y) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[y←s] :M
ESgc

367

Note that tightΓ(A) implies that tightΓ(B). Hence, we can apply the i.h. on Ψ to
obtain Ψ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M . The statement follows by deriving Φ′ as follows:

Ψ ▷U Γ ⊢(m,e+1,r) Q⟨x⟩ :M Γ(y) = 0

Γ ⊢(m,e+1,r) Q⟨x⟩@[y←s] :M
ESgc

This completes the case where x ̸= y. Let us now assume that x = y and s = v. That is,

p′ = Q⟨x⟩@[x←v]→ue Q⟨vα⟩@[x←v]

We proceed by case analysis on the last typing rule in Φ:
– Let Φ be of the form

Ψ ▷U Π;x :N ⊢(m1,e1,r1) Q⟨v⟩ :M Θ ▷U ∆ ⊢(m2,e2,r2) v :N N ̸= 0

Π
⊎

∆ ⊢(m1+m2,e1+e2,r1+r2) Q⟨v⟩@[x←v] :M
ES

where Γ = Π
⊎

∆ and (m, e, r) = (m1 +m2, e1 + e2, r1 + r2). We may assume that
x /∈ (B∪dom(Γ)) and that fv(v)∩dom(Γ) = ∅—by α-conversion. We can then apply
Lemma 9.1.18.2 on Ψ to obtain multi type O and type derivations

Ξ ▷U Π′ ⊢(m′
1,e

′
1,r

′
1) :O

and
Ω ▷U Π′′;x : (N ⊎O) ⊢(m′′

1 ,e
′′
1 ,r

′′
1) :M

such that Π = Π′
⊎

Π′′ and (m′1+m′′1, e
′
1+e′′1, r

′
1+r′′1) = (m1, e1+1, r1). Next, we apply

Lemma 13.6.20 (Merging multi types of Useful Open CbNeed type derivations) on
Ξ and Θ to obtain

Z ▷U Π′
⊎

∆ ⊢(m′
1+m2,e′1+e2,r′1+r2) v :N ⊎O

Finally, the statement is verified by the following derivation of Φ′

Ω Z (N ⊎O) ̸= 0

Π′′
⊎

Π′
⊎

∆ ⊢(m′′
1+m′

1+m2,e′′1+e′1+e2,r′′1+r′1+r2) Q⟨x⟩@[x←v] :M
ES

where Π′′
⊎
Π′
⊎
∆ = Π

⊎
∆ = Γ and

(m′′1 +m′1 +m2, e′′1 + e′1 + e2, r
′′
1 + r′1 + r2)

= (m1 +m2, r1 + r2, (e1 + 1) + e2)
= (m, r, e+ 1)

– Let Φ be of the form

Ψ ▷U Γ ⊢(m,e,r) Q⟨v⟩ :M Γ(x) = 0

Γ ⊢(m,e,r) Q⟨v⟩@[x←v] :M
ESgc

By application of Lemma 9.1.18.2 on Ψ, there exist multi type O ̸= 0 and type
derivations

Θ ▷U Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M

368

and
Ξ ▷U ∆ ⊢(m′′,e′′,r′′) v :O

such that Γ = Π
⊎

∆ and (m, e+ 1, r) = (m′ +m′′, e′ + e′′, r′ + r′′).
Therefore, we can derive Φ′ as follows:

Θ ▷U Π;x :O ⊢(m′,e′,r′) Q⟨x⟩ :M Ξ ▷U ∆ ⊢(m′′,e′′,r′′) v :O O ̸= 0

Π
⊎

∆ ⊢(m′+m′′,e′+e′′,r′+r′′) Q⟨x⟩@[x←v] :M
ESgc

• Suppose P is derived as

Q ∈ E@V,B y /∈ (V ∪ B)
Q⟨y⟩@[y←H] ∈ E@V∪u(H),B∪a(H)

ENL

where P = Q⟨y⟩@[y←H], U = V ∪ u(H) and A = B ∪ a(H). But then x /∈ dom(P),
which is absurd.

(Click here to go back to main chapter.)

Theorem 13.6.23 (Tight Completeness for Useful Open CbNeed).
Given p ∈ PR such that d : p −→∗und q for some q in →und-normal form, there exists a tight type

derivation Φ ▷U Γ ⊢(|d|m,|d|e,|q|nd) p :M where dom(Γ) = nv(q).

Proof. (Click here to go back to main chapter.)
By induction on the length |d| of the reduction sequence d : p −→∗und q:
• Base case: Let k := 0. Then p is in →und-normal form and p = q. The statement follows

by application of Proposition 9.1.17 (Tight typability of Useful Open CbNeed-normal forms),
which yields a tight type derivation Φ ▷U Γ ⊢(0,0,|p|nd) t :M such that dom(Γ) = nv(p).

• Inductive case: Let k > 0. That is, d is of the following form

d : p →und r →k−1
und q︸ ︷︷ ︸
d′

By i.h., there exists tight type derivation

Ψ ▷U Γ ⊢(|d′|m,|d′|e,|q|nd) r :M

such that dom(Γ) = nv(p). We proceed by case analyis on the kind of reduction step in
p→und r:

– Multiplicative step: Let p→um r. By Proposition 9.1.20.1 (Quantitative Subject Expan-
sion for Useful Open CbNeed - Multiplicative), there exists (tight) type derivation

Ψ′ ▷U Γ ⊢(|d′|m+1,|d′|e,|q|nd) p :M

Therefore, the statement follows by taking Φ := Ψ′, noting in particular that

(|d′|m + 1, |d′|e, |q|nd) = (|d|m, |d|e, |q|nd)

369

– Exponential step: Let p→ue r. By Proposition 9.1.20.2 (Quantitative Subject Expansion
for Useful Open CbNeed - Exponential), there exists (tight) type derivation

Ψ′ ▷U Γ ⊢(|d′|m,|d′|e+1,|q|nd) p :M

Therefore, the statement follows by taking Φ := Ψ′, noting in particular that

(|d′|m, |d′|e + 1, |q|nd) = (|d|m, |d|e, |q|nd)

(Click here to go back to main chapter.)

370

13.7 Proofs of Chapter 10 (Strong CbV)
The Value Substitution Calculus

Irrelevance of →evar.

Lemma 13.7.1 (Strong normalization of →evar).
The reduction relation →evar is strongly normalizing.

Proof.
Trivial, since each →evar-step strictly decreases the number of ESs.

Lemma 13.7.2 (→evar preserves →vscλ-normal forms).
Let t, u ∈ ΛL be such that t →evar u. Then, t is in →vscλ-normal form if and only if u is in

→vscλ-normal form.

Proof.
Trivial, by induction on the definition of t→evar u.

Lemma 13.7.3 (Swaps: Rewriting properties of →evar).
1. Swapping with respect to →m: →evar→m⊆→m→evar

2. Swapping with respect to →eλ: →evar→eλ⊆→eλ→∗evar ∪ →eλ→eλ

3. Swapping with respect to →+
eλ

: →∗evar→+
eλ
⊆→+

eλ
→∗evar

Proof.
The only non trivial point is the third one, that we now prove. The hypothesis is t→k

evar→
h
eλ

u
for some k ≥ 0, h ≥ 1. We recall that →eλ ∪ →evar is strongly normalizing. The proof is by
lexicographic induction on (n, k), where n is the length of the longest →eλ ∪ →evar sequence from
t. Now the case k = h = 1 is given by the second point. Then consider t→k

evar→evar→eλ→h
eλ

u, and
apply the swap of the second point to the central pair. There are two cases:

1. →evar→eλ⊆→eλ→∗evar , and so t →k
evar→eλ→∗evar→

h
eλ

u. Now by i.h. (on k) applied to the prefix
→k

evar→eλ we obtain t →+
eλ
→∗evar→

∗
evar→

h
eλ

u. By i.h. (on the longest sequence), the suffix
→∗evar→

∗
evar→

h
eλ

turns into →+
eλ
→∗evar , giving t→+

eλ
→+

eλ
→∗evar u, that is, the statement holds.

2. →evar→eλ⊆→eλ→eλ , and so t →k
evar→eλ→eλ→h

eλ
u. Now by i.h. (on k) applied to the whole

sequence, we obtain t→+
eλ
→∗evar u.

Proposition 13.7.4 (Irrelevance of →evar).
Let d : t −→∗vscu. Then there is d′ : t −→∗vscλ −→

∗
evaru with |d′|m = |d|m.

Moreover, →vscλ is weakly normalizing (resp. strongly normalizing) on t if and only if →vsc is
weakly normalizing (resp. strongly normalizing) on t.

Proof. (Click here to go back to main chapter.)
• Postponement: By induction on the length |d| of the evaluation d : t→∗vsc u, using Lemma 13.7.3

(Swaps: Rewriting properties of →evar).

371

• Termination: Clearly, if →vscλ ∪ →evar is strongly normalizing on t then →vscλ is strongly
normalizing on t, since →vscλ⊆→vscλ ∪ →evar .
Conversely, suppose that →vscλ ∪ →evar is not strongly normalizing on t. Then, there is an
infinite sequence of terms (ti)i∈N such that ti (→vscλ ∪ →evar) ti+1 and t = t0. Hence, for any
n ∈ N there is an evaluation dn : t (→vscλ ∪ →evar)

∗ tn with |dn|m = n and, by postponement
irrelevance, there is an evaluation d′n : t →∗vscλ un with |d′n|m = n. Thus →vscλ is not strongly
normalizing on t (by Konig’s lemma).
If →vscλ ∪ →evar is weakly normalizing on t then t (→vscλ ∪ →evar)

∗ u for some u normal for
→vscλ ∪ →evar . By postponement irrelevance, t →∗vscλ s →∗evar u where s is →vscλ-normal—by
Lemma 13.7.2 (→evar preserves →vscλ-normal forms). Therefore, →vscλ is weakly normalizing
on t.
If→vscλ is weakly normalizing on t then t→∗vscλ s for some s that is→vscλ-normal. Since→evar

is strongly normalizing—by Lemma 13.7.2 (→evar preserves →vscλ-normal forms)—s →∗evar u
for some u that is →evar-normal. By Lemma 13.7.2 (→evar preserves →vscλ-normal forms), u is
also →vscλ-normal. Therefore, →vscλ ∪ →evar is weakly normalizing on t.

(Click here to go back to main chapter.)

Syntactic characterization of VSC -normal forms.

Lemma 13.7.5 (Shape of strong fireballs).
Let t ∈ ΛL be a strong fireball. Then exactly one of the following holds:
• Either t is a strong inert term, or
• t is a value fireball.

Proof.
Proving that at least one of the two holds is left for the reader. We now prove that only one of

them holds:
• Let t be a strong inert term. We prove that t is not a value fireball by structural induction

on t:
– Variable: Trivial.
– Application: Trivial.
– ES; i.e., t = is[x←js]: Then is is not a value fireball —by i.h.—, and so neither is t.

• Let t = S⟨λx.fs⟩, with S = [x1←is,1] . . . [xn←is,n], with n ≥ 0. We prove that t is not a strong
inert term by induction on n:

– Empty substitution context; i.e., S = ⟨·⟩: Trivial.
– Non-empty substitution context; i.e., S = S ′[x←is,n+1]: Since S ′⟨λx.f⟩ is not a strong

inert term —by i.h.—, then neither is S ′⟨λx.f⟩[x←is,n+1] = t.

Lemma 13.7.6 (Substitution of strong inert terms preserves strong fireballs).
Let fs be a strong fireball. Then for every strong inert term is, fs{x←is} is a strong fireball.

Proof.
Trivial, by induction on the syntactic structure of fs.

372

Proposition 13.7.7 (Syntactic characterization of VSC-normal forms).
Let t ∈ ΛL. t is in →vscλ-normal form (resp. →vsc-normal form) if and only if t is a strong

fireball (resp. strong super fireball).

Proof. (Click here to go back to main chapter.)
• Let t be in →vscλ-normal form. We prove that t is a strong fireball by structural induction on

t:
– Variable. Trivial.
– Abstraction; Let t := λx.u. Since t is→vscλ-normal, so is u. By i.h., u is a strong fireball,

and then so is t.
– Application: t := t1t2. Since t is →vscλ-normal, so are t1 and t2. By i.h., t1 and t2 are

strong fireballs. Note that t1 ̸= S⟨λx.u⟩, otherwise t 7→m S⟨u[x←t2]⟩ which contradicts
→vscλ-normality of t. Thus, t1 is a strong inert term—by Lemma 13.7.5 (Shape of strong
fireballs)—and so t is a strong fireball.

– Explicit substitution: Let t := t1[x←t2].Since t is →vscλ-normal, then so are t1 and
t2. By i.h., t1 and t2 are strong fireballs. Note that t2 ̸= S⟨v⟩, otherwise t 7→eλ

S⟨t1{x←v}⟩ which contradicts the→vscλ-normality of t. Thus t2 is a strong inert term—
by Lemma 13.7.5 (Shape of strong fireballs)—and so t is a strong fireball.

• Let t be a strong fireball. We prove that t is in →vscλ-normal form by structural induction on
the definition of strong fireball.

– Variable. Trivial.
– Abstraction: Let t := λx.fs. By i.h., fs is →vscλ-normal, and hence so is t.
– Application: Let t := isfs. By i.h., is and fs are→vscλ-normal. By Lemma 13.7.5 (Shape

of strong fireballs), note that is is not of the form S⟨λx.u⟩, and so t is also in→vscλ-normal
form.

– Explicit substitution: Let t := fs[x←is] (it includes the case when fs is a strong inert
term). By i.h., both fs and is are →vscλ-normal. By Lemma 13.7.5 (Shape of strong
fireballs), is is not of the form S⟨v⟩, and so t is also in →vscλ-normal form.

• Let t be in→vsc-normal form. We prove that t is a strong super fireball by structural induction
on t. The proof is analogous to the case where t is in→vscλ-normal form, but for the following
case.

– Explicit substitution: Let t := t1[x←t2]. Since t is→vsc-normal, so are t1 and t2. By i.h., t1
and t2 are strong super fireballs. Note that t2 ̸= S⟨v⟩, otherwise t 7→eλ S⟨t1{x←v}⟩ which
contradicts the →vsc-normality of t. Moreover, t2 ̸= S⟨y⟩, otherwise t 7→evar S⟨t1{x←y}⟩
which contradicts the→vsc-normality of t. Thus, t2 is a compound strong inert term and
so t is a strong super fireball

• Let t be a strong super fireball. We prove that t is in→vsc-normal form by structural induction
on the definition of strong fireball. The proof is analogous to the one where we proved that
strong fireballs are normals, except for the following case:

– Explicit substitution: Let t := fs[x←is] (it includes the case when fs is a strong inert
term), where fs and is are super and is is also compound (as t is a strong super fire-
ball). By i.h., fs and is are →vsc-normal. Since is is not of the form either S⟨v⟩—by
Lemma 13.7.5 (Shape of strong fireballs)—or S⟨y⟩ (as it is compound), t is also →vsc-
normal.

(Click here to go back to main chapter.)

373

Strong bisimulation of ≡ and →vsc

Proposition 13.7.8 (Strong Bisimulation of ≡ and →vsc).
Let a ∈ {m, eλ, evar, sm, seλ, sevar}. If t ≡ u and t →a t′, then there exists u′ ∈ Λvsc such that

u→a u
′ and t′ ≡ u′.

Proof. (Click here to go back to main chapter.)
The proof that ≡ is a strong bisimulation is an easy adaptation of the proof of [AP12].
Irrelevance of ≡ follows from Lemma 13.7.9.1 (Postponement of ≡s) below. This, in turn, relies

on the fact that ≡ is a strong bisimulation, although the proof of Lemma 13.7.9.1 does not use
irrelevance.

(Click here to go back to main chapter.)

Lemma 13.7.9 (Properties of ≡).
1. Postponement: if d : t(≡→vsc≡)∗u then there are s ≡ u and d′ : t →∗vsc s such that |d| = |d′|

and |d|a = |d′|a for a ∈ {m, eλ, evar, om, oeλ, oevar, sm, seλ, sevar}. .
2. Normal forms: if t ≡ u then t is a-normal iff u is a-normal.
3. Confluence: ≡→vsc≡ is confluent and ≡→s≡ is diamond.

Proof.
All points are standard and follow immediately from the fact that ≡ is a strong bisimulation—

by the first part of Proposition 10.2.4 (Strong bisimulation of ≡ and →vsc)—proofs are easy, see
[Acc11](pp. 86-87).

The Strong CbV strategy

Lemma 13.7.10 (Properties of rigid terms).
1. Given t ∈ Λvsc and a rigid context R, R⟨t⟩ is a rigid term.
2. Let r be a rigid term and t ∈ Λvsc such that r →w t. Then t is rigid.
3. Let r be a rigid term and t ∈ Λvsc such that r →s t. Then t is rigid.
4. Let t ̸= S⟨λx.u⟩ be in →w-normal form. Then t is rigid.
5. Let r be a rigid term not in →sλ-normal form (resp. →s-normal form). Then there exists a

rigid context R and u, u′ ∈ Λvsc such that r = R⟨u⟩ →sλ R⟨u′⟩ (resp. R⟨u⟩ →s R⟨u′⟩), with
u→wλ

u′ (resp. u→w u′).

Proof.
1. By induction on the definition of R.
2. Let O be an open evaluation context such that r = O⟨u⟩ →w O⟨u′⟩ = t, with u 7→m u′,

u 7→eλ u′ or u 7→evar u
′. We prove this for →wm by structural induction on O; the proofs for

→weλ and →wevar follow the same schema and are left for the reader.
• Empty context; i.e., O = ⟨·⟩. This case is not possible, because it would imply that

r = u = S⟨λx.s⟩m, which is not a rigid term.
• Application right; i.e., O = mO′. Since r = mO′⟨u⟩, then m is a rigid term, and so

mO′⟨u′⟩ = t is rigid too.

374

• Application left; i.e., O = O′m. Since r = O′⟨u⟩m and O′⟨u′⟩ is rigid by i.h., then
O′⟨u′⟩m = t is rigid too.

• ES left; i.e., O = O′[x←m]. Since r = O′⟨u⟩[x←m], then both O′⟨u⟩ and m are rigid.
Moreover, O′⟨u′⟩ is rigid by i.h., and so O′⟨u′⟩[x←m] = t is rigid too.

• ES right; i.e., O = m[x←O′]. Since r = m[x←O′⟨u⟩], then both m and O′⟨u⟩ are rigid.
Moreover, O′⟨u′⟩ is rigid by i.h., and so m[x←O′⟨u′⟩] = t is rigid too.

3. Let S be a strong evaluation context such that r = S⟨u⟩ →s S⟨u′⟩ = t, with u →wm u′,
u→weλ u′ or u→wevar u

′. We prove this for u→wm u′ by structural induction on S; the proofs
for →weλ and →wevar follow the same schema.

• Empty context; i.e., S = ⟨·⟩. Then r = u →wm u′ = t and the statement holds by
Lemma 13.7.10.2.

• Under λ-abstraction right; i.e., S = λx.S ′. This case is not possible, because it would
imply that r = λx.S ′⟨u⟩, which is not a rigid term.

• Strong context, ES right; i.e., S = m[x←R]. Since r = m[x←R⟨u⟩], then both m and
R⟨u⟩ are rigid terms. Moreover, R⟨u′⟩ is rigid by i.h., and so m[x←R⟨u′⟩] = s is rigid
too.

• Strong context, ES left; i.e., S = S ′[x←m], with m a rigid term. Since r = S ′⟨u⟩[x←m],
then S ′⟨u⟩ is rigid. Moreover, S ′⟨u′⟩ is rigid by i.h., and so S ′⟨u′⟩[x←m] = s is rigid too.

• Rigid context, application right; i.e., S = mS ′, with m a rigid term. Then mS ′⟨u′⟩ = s
is rigid too.

• Rigid context, application left; i.e., S = Rm. Since r = R⟨u⟩m, then R⟨u⟩ is rigid.
Moreover, R⟨u′⟩ is rigid by i.h., and so R⟨u′⟩m is rigid too.

• Rigid context, ES left; i.e., S = R[x←m], with m a rigid term. Since r = R⟨u⟩[x←m],
then R⟨u⟩ is rigid. Moreover, R⟨u′⟩ is rigid by i.h., and so R⟨u′⟩[x←m] = s is rigid too.

• Rigid context, ES right; i.e., S = m[x←R], with m a rigid term. Since r = m[x←R⟨u⟩],
then R⟨u⟩ is rigid. Moreover, R⟨u′⟩ is rigid by i.h., and so m[x←R⟨u′⟩] = s is rigid too.

4. By structural induction on t:
• Variable. Trivial.
• λ-abstraction. Trivial.
• Application; i.e., t = t1t2. If t1 is not in →w-normal form, then neither is t. Moreover, if

t1 is a λ-abstraction in a substitution context, then t is not in 7→m-normal form —which
is absurd. Thus, t1 is rigid —by i.h.— and then so is t.

• ES; i.e., t = t1[x←t2]. First of all, if t1 is a λ-abstraction in a substitution context then so
is t —which is absurd—, and if t1 is not in→w-normal form then neither is t. Therefore,
t1 is a rigid term —by i.h.. Second, if t2 is an abstraction in a substitution context then
t is not in 7→e-normal form —which is absurd—, and if t2 is not in→w-normal form then
neither is t. Therefore, t2 is a rigid term —by i.h.. Thus, t is a rigid term as well.

5. We shall leave the respective proof for →s to the reader, and proceed by structural induction
on r to prove the one for →sλ :

• Variable. Trivial.
• Application; i.e., t = t1t2, with t1 a rigid term. Note that t1 is not a λ-abstraction in a

substitution context.
Let t1 be not in →sλ-normal form. Then by i.h. there exists a rigid context R′ and
terms s, s′ ∈ Λvsc such that t1 = R′′⟨u⟩ →sλ R′⟨s′⟩. Thus, the statement holds by taking
R := R′t2, u := s and u′ := s′.
Let t1 be in→sλ-normal form. Then t2 is not in→sλ-normal form, implying the existence

375

of a strong context S and terms s, s′ ∈ Λvsc such that t2 = S⟨s⟩ →sλ S⟨s′⟩ and s→wλ
s′,

and so the statement holds by taking R := t1S.
• ES; i.e., t = t1[x←t2], with both t1 and t2 rigid terms. If t1 is not in →sλ-normal

form, then there exist —by i.h.— rigid context R′ and terms s, s′ ∈ Λvsc such that
t1 = R′⟨s⟩ →sλ R′⟨s′⟩. Thus, the statement holds by taking R := R′[x←t2], u := s and
u′ := s′.
If t1 is in →sλ-normal form, then t2 is not in →sλ-normal form and so there exist rigid
context R′ and terms s, s′ ∈ Λvsc such that t2 = R′⟨s⟩ →sλ R′⟨s′⟩. Thus, the statement
holds by taking R := t1[x←R′], u := s and u′ := s′.

Lemma 13.7.11 (Properties of the VSC).
1. →m and →e are strongly normalizing (separately).
2. →wm and →we are diamond (separately).
3. →wm and →we strongly commute.
4. →w is diamond.
5. →sm and →se are diamond (separately).
6. →sm and →se strongly commute.
7. →s is diamond, and all vsc-normalizing reduction sequences d from t∈Λvsc (if any) have the

same length |d|, the same number |d|e of e-steps, and the same number |d|m of m-steps.

Proof.
1. See [AP12].
2. We prove that →wm is diamond, i.e. if u wm← t→wm s with u ̸= s then there exists t′ ∈ Λvsc

such that u →wm t′ wm← s. The proof is by induction on the definition of →wm. Since there
t→wm s ̸= u and the reduction →wm is weak, there are only eight cases:

• Step at the Root for t→wm u and Application Right for t→wm s, i.e. t := S⟨λx.t̃⟩m 7→m

S⟨t̃[x←m]⟩ =: u and t 7→mS⟨λx.t̃⟩m′=: s with m→wmm′: then, u→wmS⟨t̃[x←m′]⟩wm←s;
• Step at the Root for t→wm u and Application Left for t→wm s, i.e., for some n > 0,

t := (λx.t̃)[x1←t1] . . . [xn←tn]m 7→m t̃[x←m][x1←t1] . . . [xn←tn] =: u

whereas t →wm (λx.t̃)[x1←t1] . . . [xj←t′j] . . . [xn←tn]m =: s with tj →wm t′j for some
1 ≤ j ≤ n: then,

u→wm t̃[x←m][x1←t1] . . . [xj←t′j] . . . [xn←tn] wm← s;

• Application Left for t→wm u and Application Right for t→wm s, i.e. t := mt̃→wm m′t̃ =:
u and t→wm mt̃′ =: s with m→wm m′ and t̃→wm t̃′: then, u→wm m′t̃′ wm← s;

• Application Left for both t →wm u and t →wm s, i.e. t := mt̃ →wm m′t̃ =: u and
t →wm m′′t̃ =: s with m′ wm← m →wm m′′: by i.h., there exists m0 ∈ Λvsc such that
m′ →wm m0 m← m′′, hence u→wm m0t̃ m← s;

• Application Right for both t →wm u and t →wm s, i.e. t := t̃m →wm t̃m′ =: u and
t →wm t̃m′′ =: s with m′ wm← m →wm m′′: by i.h., there exists m0 ∈ Λvsc such that
m′ →wm m0 wm← m′′, hence u→wm t̃m0 wm← s;

• ES left for t →wm u and ES right for t →wm s, i.e. t := m[x←t̃] →wm m′[x←t̃] =: u and
t→wm m[x←t̃′] =: s with m→wm m′ and t̃→wm t̃′: then,

u→wm m′[x←t̃′]wm← s

376

• ES left for both t →wm u and t →wm s, i.e. t := m[x←t̃] →wm m′[x←t̃] =: u and
t→wm m′′[x←t̃] =: s with m′ wm← m→wm m′′: by i.h., there exists m0 ∈ Λvsc such that
m′ →wm m0 wm← m′′, hence u→sm m0[x←t̃] wm← s;

• ES right for both t →wm u and t →wm s, i.e. t := t̃[x←m] →wm t̃[x←m′] =: u and
t→wm t̃[x←m′′] =: s with m′ wm← m→sm m′′: by i.h., there exists m0 ∈ Λvsc such that
m′ →wm m0 wm← m′′, hence u→sm t̃[x←m0] wm← s.

We prove that →we is diamond, i.e. if u we← t →we s with u ̸= s then there exists m ∈ Λvsc

such that u →we t′ e← s. The proof is by induction on the definition of →we. Since there
t→we s ̸= u and the reduction →we is weak, there are only eight cases:

• Step at the Root for t →we u and ES left for t →we s, i.e. t := m[x←S⟨v⟩] 7→e

S⟨m{x←v}⟩ =: u and t 7→em
′[x←S⟨v⟩]=: s with m→wem

′: then,

u→weS⟨m′[x←v]⟩we← s

• Step at the Root for t →we u and ES right for t →we s, i.e., for some n > 0, t :=
m[x←v[x1←t1] . . . [xn←tn]] 7→e m{x←v}[x1←t1] . . . [xn←tn] =: u whereas

t→we m[x←v[x1←t1] . . . [xj←t′j] . . . [xn←tn]] =: s

with tj →we t
′
j for some 1 ≤ j ≤ n: then,

u→we m{x←v}[x1←t1] . . . [xj←t′j] . . . [xn←tn] we← s;

• Application Left for t→we u and Application Right for t→we s, i.e. t := mt̃→we m
′t̃ =: u

and t→we mt̃′ =: s with m→we m
′ and t̃→we t̃

′: then, u→we m
′t̃′ we← s;

• Application Left for both t →we u and t →we s, i.e. t := mt̃ →we m′t̃ =: u and t →we

m′′t̃ =: s with m′ we← m →we m′′: by i.h., there exists m0 ∈ Λvsc such that m′ →we

m0 we← m′′, hence u→we m0t̃ we← s;
• Application Right for both t →we u and t →we s, i.e. t := t̃m →we t̃m′ =: u and

t →we t̃m′′ =: s with m′ we← m →we m′′: by i.h., there exists m0 ∈ Λvsc such that
m′ →we m0 we← m′′, hence u→we t̃m0 we← s;

• ES left for t →we u and ES right for t →we s, i.e. t := m[x←t̃] →we m
′[x←t̃] =: u and

t→we m[x←t̃′] =: s with m→we m
′ and t̃→we t̃

′: then, u→we m
′[x←t̃′]we← s;

• ES left for both t →e u and t →e s, i.e. t := m[x←t̃] →e m′[x←t̃] =: u and t →e

m′′[x←t̃] =: s with m′ e← m →e m′′: by i.h., there exists m0 ∈ Λvsc such that m′ →e

m0 e← m′′, hence u→e m0[x←t̃] e← s;
• ES right for both t →e u and t →e s, i.e. t := t̃[x←m] →e t̃[x←m′] =: u and t →e

t̃[x←m′′] =: s with m′ e← m →e m′′: by i.h., there exists m0 ∈ Λvsc such that m′ →e

m0 e← m′′, hence u→e t̃[x←m0] e← s.
Note that in [AP12] it has just been proved the strong confluence of →vsc, not of →m or →e.

3. We show that →we and →wm strongly commute, i.e. if u we← t→wm s, then u ̸= s and there
is t′ ∈ Λvsc such that u→wm t′ we← s. The proof is by induction on the definition of t→we u.
The proof that u ̸= s is left to the reader. Since the →e and →m cannot reduce under λ’s, all
vsc-values are m-normal and e-normal. So, there are the following cases.

• Step at the Root for t →we u and ES left for t →wm s, i.e. t := m[z←S⟨v⟩] →we

S⟨m{z←v}⟩ =: u and t→wm m′[z←S⟨v⟩] =: s with m→wm m′: then

u→wm S⟨m′{z←v}⟩ we← u

377

• Step at the Root for t→we u and ES right for t→wm s, i.e.

t := m[z←v[x1←t1] . . . [xn←tn]]

→we m{z←v}[x1←t1] . . . [xn←tn] =: u

and t →wm m[z←v[x1←t1] . . . [xj←t′j] . . . [xn←tn]] =: s for some n > 0, and tj →wm t′j
for some 1 ≤ j ≤ n: then, u→wm m{z←v}[x1←t1] . . . [xj←t′j] . . . [xn←tn] we← s;

• Application Left for t→e u and Application Right for t→sm s, i.e. t := mt̃→we m
′t̃ =: u

and t→wm mt̃′ =: s with m→e m
′ and t̃→wm t̃′: then, t→wm m′t̃′ we← u;

• Application Left for both t →we u and t →wm s, i.e. t := mt̃ →we m′t̃ =: u and
t →wm m′′t̃ =: s with m′ we← m →wm m′′: by i.h., there exists ũ ∈ Λvsc such that
m′ →wm ũ we← m′′, hence u→wm ũt̃ we← s;

• Application Left for t→we u and Step at the Root for t→wm s; i.e.,

t := (λx.t̃)[x1←t1] . . . [xn←tn]m→we (λx.t̃)[x1←t1] . . . [xj←t′j] . . . [xn←tn]m =: u

with n > 0 and tj →we t
′
j for some 1 ≤ j ≤ n, and

t→wm t̃[x←m][x1←t1] . . . [xn←tn] =: s

Then,
u→wm t̃[x←m][x1←t1] . . . [xj←t′j] . . . [xn←tn] we← s;

• Application Right for t→we u and Application Left for t→sm s, i.e. t := t̃m→we t̃m
′ =: u

and t→wm t̃′m =: s with m→we m
′ and t̃→wm t̃′: then, u→wm t̃′m′ we← s;

• Application Right for both t →we u and t →wm s, i.e. t := t̃m →we t̃m′ =: u and
t →wm t̃m′′ =: s with m′ we← m →wm m′′: by i.h., there exists ũ ∈ Λvsc such that
m′ →wm ũ we← m′′, hence u→wm t̃ũ we← s;

• Application Right for t→we u and Step at the Root for t→wm s, i.e. t := S⟨λx.t̃⟩m→we

S⟨λx.t̃⟩m′ =: u with m→we m
′, and t→wm S⟨t̃[x←m]⟩ =: s: then,

u→wm S⟨t̃[x←m′]⟩ we← s

• ES left for t →we u and ES right for t →wm s, i.e. t := m[x←t̃] →we m
′[x←t̃] =: u and

t→wm m[x←t̃′] =: s with m→e m
′ and t̃→wm t̃′: then, u→wm m′[x←t̃′] we← s;

• ES left for both t →we u and t →wm s, i.e. t := m[x←t̃] →e m′[x←t̃] =: u and t →wm

m′′[x←t̃] =: s with m′ we← m →wm m′′: by i.h.,there is ũ ∈ Λvsc such that m′ →wm

ũ we← m′′, hence u→wm ũ[x←t̃] we← s;
• ES right for t →we u and ES left for t →wm s, i.e. t := t̃[x←m] →we t̃[x←m′] =: u and

t→wm t̃′[x←m] =: s with m→we m
′ and t̃→wm t̃′: then, u→wm t̃′[x←m′] we← s;

• ES right for both t →we u and t →wm s, i.e. t := t̃[x←m] →we t̃[x←m′] =: u and
t →wm t̃[x←m′′] =: s with m e← m′ →wm m′′: by i.h., there is ũ ∈ Λvsc such that
m→wm ũ we← m′′, hence u→wm t̃[x←ũ] we← s.

4. It follows immediately from Lemma 13.7.11.5 (diamond property for →wm and →we),
Lemma 13.7.11.2 (strong commutation of→wm and→we), and Hindley-Rosen ([Bar84, p. 3.3.5]).

5. We prove that →sm is diamond, i.e. if u sm← t →sm s with u ̸= s then there exists t′ ∈ Λvsc

such that u →sm t′ sm← s (the proof that →se is diamond is analogue). The proof is by
structural induction on t, doing case analysis on t→sm u and t→sm s:

378

• Under λ-abstraction for both t →sm u and t →sm s; i.e., t = λx.m →sm λx.t̃ = u and
t = λx.m→sm λx.ũ = s, with m→sm t̃ and m→sm ũ. By i.h. there exists m′ such that
t̃→sm m′ sm← ũ and so u = λx.t̃→sm λx.m′ sm← λx.ũ = s.

• Application right for t→sm u and application left for t→sm s; i.e., t = mt̃→sm mt̃′ = u
and t = mt̃→sm m′t̃ = s. There are several sub-cases to this:

– Let t = mt̃ = mO⟨˜̃t⟩ →wm mO⟨ ˜̃′t⟩ = u, with ˜̃t 7→m
˜̃′
t, and t = R⟨m̃⟩t̃ →sm R⟨m̃′⟩t̃,

with m̃→wm m̃′. Let t′ := R⟨m̃′⟩O⟨ ˜̃′t⟩, having that

u = R⟨m̃⟩O⟨ ˜̃′t⟩ →sm t′ sm← R⟨m̃′⟩O⟨˜̃t⟩ = s

Note that u→sm t′ holds because every rigid context is an open context.
– Let t = mt̃ = mO1⟨˜̃t⟩ →wm mO1⟨ ˜̃

′
t⟩ = u, with ˜̃t 7→m

˜̃′
t, and t = O2⟨m̃⟩t̃ →wm

O2⟨m̃′⟩t̃, with m̃ 7→m m̃′. Then the statement holds by Lemma 13.7.11.5 (Properties
of the VSC).

– Let t = mS⟨˜̃t⟩ →sm mS⟨ ˜̃′t⟩ = u, with m a rigid term and ˜̃t →wm
˜̃′
t, and t =

R⟨m̃⟩t̃→sm R⟨m̃′⟩t̃ = s, with m̃→wm m̃′. Let t′ := R⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = R⟨m̃⟩S⟨ ˜̃′t⟩ →sm t′ sm← R⟨m̃′⟩S⟨˜̃t⟩ = s

Note that t′ sm← s holds because R⟨m̃′⟩ is a rigid term —by Lemma 13.7.10.1
(Properties of rigid terms).

– Let t = mS⟨˜̃t⟩ →sm mS⟨ ˜̃′t⟩ = u, with m a rigid term and ˜̃t →wm
˜̃′
t, and t =

O⟨m̃⟩t̃→sm O⟨m̃′⟩t̃, with m̃ 7→m m̃′. Let t′ := O⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = O⟨m̃⟩S⟨ ˜̃′t⟩ →sm t′ sm← O⟨m̃′⟩S⟨˜̃t⟩ = s

Note that t′ sm← s holds because the fact that m is a rigid term and that m =
O⟨m̃⟩ →wm O⟨m̃′⟩ imply that O⟨m̃′⟩ is a rigid term —by Lemma 13.7.10.2 (Proper-
ties of rigid terms).

• Application right for both t →sm u and t →sm s; i.e., t = mt̃ →sm mt̃′ = u and
t = mt̃ →sm mt̃′′ = s. By i.h. there exists ũ ∈ Λvsc such that t̃′ →sm ũ sm← t̃′′. The
analysis of the sub-cases, depending on the open/strong/rigid type contexts involved in
t→sm u and t→sm s, follows the same schema as for the previous item, all showing that

u = mt̃′ →sm mũ sm← mt̃′′ = s

• Application left for both t→sm u and t→sm s; i.e., t = mt̃→sm m′t̃ = u and t = mt̃→sm

m′′t̃ = s. By i.h. there exists ũ ∈ Λvsc such that m′ →sm ũ sm← m′′. The analysis of the
sub-cases, depending on the open/strong/rigid type contexts involved in t →sm u and
t→sm s, follows the same schema as for the previous item, all showing that

u = m′t̃→sm ũt̃ sm← m′′t̃ = s

• ES right for t →sm u and ES left for t →sm s; i.e., t = m[x←t̃] →sm m[x←t̃′] = u and
t = m[x←t̃]→sm m′[x←t̃]. There are several sub-cases to this:

379

– Let t = m[x←O⟨˜̃t⟩] →sm m[x←O⟨ ˜̃′t⟩] = u, with ˜̃t 7→m
˜̃′
t, and t = O⟨m̃⟩[x←t̃] →sm

O⟨m̃′⟩[x←t̃] = s, with m̃ 7→m m̃′. Then the statement holds by Lemma 13.7.11.2
(Properties of the VSC).

– Let t = m[x←O⟨˜̃t⟩] →sm m[x←O⟨ ˜̃′t⟩] = u, with ˜̃t 7→m
˜̃′
t, and t = S⟨m̃⟩[x←t̃] →sm

S⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := S⟨m̃′⟩[x←O⟨ ˜̃′t⟩],
having that

u = S⟨m̃⟩[x←O⟨ ˜̃′t⟩]→sm t′ sm← S⟨m̃′⟩[x←O⟨˜̃t⟩] = s

Note that u→sm t′ holds because the fact thatt̃ is a rigid term and that t̃ = O⟨˜̃t⟩ →sm

O⟨ ˜̃′t⟩ imply that O⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties of rigid
terms).

– Let t = m[x←O⟨˜̃t⟩] →sm m[x←O⟨ ˜̃′t⟩] = u, with ˜̃t 7→m
˜̃′
t, and t = R⟨m̃⟩[x←t̃] →sm

R⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := R⟨m̃′⟩[x←O⟨ ˜̃′t⟩],
having that

u = R⟨m̃⟩[x←O⟨ ˜̃′t⟩]→sm t′ sm← R⟨m̃′⟩[x←O⟨˜̃t⟩] = s

Note that u →sm t′ holds because the fact that t̃ is a rigid term and that t̃ =

O⟨˜̃t⟩ →sm O⟨ ˜̃′t⟩ imply O⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.2 (Properties of
rigid terms).

– Let t = m[x←R⟨˜̃t⟩] →sm m[x←R⟨ ˜̃′t⟩] = u, with ˜̃t →wm
˜̃′
t, and t = O⟨m̃⟩[x←t̃] →sm

O⟨m̃′⟩[x←t̃] = s, with m̃ 7→m m̃′. Let t′ := O⟨m̃′⟩[x←R⟨ ˜̃′t⟩], having that

u = O⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ sm← O⟨m̃′⟩[x←R⟨˜̃t⟩] = s

– Let t = m[x←R⟨˜̃t⟩] →sm m[x←R⟨ ˜̃′t⟩] = u, with ˜̃t →wm
˜̃′
t, and t = S⟨m̃⟩[x←t̃] →sm

S⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := S⟨m̃′⟩[x←R⟨ ˜̃′t⟩],
having that

u = S⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ sm← S⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that u →sm t′ holds because the fact that t̃ is a rigid term and that t̃ =

R⟨˜̃t⟩ →sm R⟨ ˜̃′t⟩ imply that R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties
of rigid terms).

– Let t = m[x←R1⟨˜̃t⟩]→sm m[x←R1⟨ ˜̃
′
t⟩] = u, with ˜̃t→wm

˜̃′
t, and t = R2⟨m̃⟩[x←t̃]→sm

R2⟨m̃′⟩[x←t̃] = s, with m̃→wm m̃′ and t̃ is a rigid term. Let t′ := R2⟨m̃′⟩[x←R1⟨ ˜̃
′
t⟩],

having that

u = R2⟨m̃⟩[x←R1⟨ ˜̃
′
t⟩]→sm t′ sm← R2⟨m̃′⟩[x←R1⟨˜̃t⟩] = s

Note that u →sm t′ holds because the fact that t̃ is a rigid term and that t̃ =

R1⟨˜̃t⟩ →sm R1⟨ ˜̃
′
t⟩ imply that R1⟨ ˜̃

′
t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties

of rigid terms).

380

– Let t = m[x←R⟨˜̃t⟩]→sm m[x←R⟨ ˜̃′t⟩] = u, with ˜̃t→wm
˜̃′
t and m is a rigid term, and

t = O⟨m̃⟩[x←t̃] →sm O⟨m̃′⟩[x←t̃] = s, with m̃ 7→m m̃′. Let t′ := O⟨m̃′⟩[x←R⟨ ˜̃′t⟩],
having that

u = O⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ sm← O⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that s sm← t′ holds because the fact that t̃ is a rigid term and that t̃ =

R⟨˜̃t⟩ →sm R⟨ ˜̃′t⟩ imply that R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties
of rigid terms).

– Let t = m[x←R⟨˜̃t⟩]→sm m[x←R⟨ ˜̃′t⟩] = u, with ˜̃t→wm
˜̃′
t and m is a rigid term, and

t = S⟨m̃⟩[x←t̃] →sm S⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let
t′ := S⟨m̃′⟩[x←R⟨ ˜̃′t⟩], having that

u = S⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ sm← S⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that u →sm t′ holds because the fact that t̃ is a rigid term and that t̃ =

R⟨˜̃t⟩ →sm R⟨ ˜̃′t⟩ imply that R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties
of rigid terms). Moreover, note that t′ sm← s holds because the fact that m is a
rigid term and that m = S⟨m̃⟩ →sm S⟨m̃′⟩ imply that S⟨m̃′⟩ is a rigid term —by
Lemma 13.7.10.3 (Properties of rigid terms).

– Let t = m[x←R⟨˜̃t⟩]→sm m[x←R⟨ ˜̃′t⟩] = u, with ˜̃t→wm
˜̃′
t and m is a rigid term, and

t = R⟨m̃⟩[x←t̃] →sm R⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let
t′ := R⟨m̃′⟩[x←R⟨ ˜̃′t⟩], having that

u = R⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ sm← R⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that u →sm t′ holds because the fact that t̃ is a rigid term and that t̃ =

R⟨˜̃t⟩ →sm R⟨ ˜̃′t⟩ imply that R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Properties
of rigid terms). Moreover, note that t′ sm← s holds because the fact that m is a
rigid term and that m = R⟨m̃⟩ →sm R⟨m̃′⟩ imply that R⟨m̃′⟩ is a rigid term —by
Lemma 13.7.10.3 (Properties of rigid terms).

• ES right for both t →sm u and t →sm s; i.e., t = m[x←t̃] →sm m[x←t̃′] = u and
t = m[x←t̃]→sm m[x←t̃′′] = s. By i.h. there exists ũ ∈ Λvsc such that t̃′ →sm ũ sm← t̃′′.
The analysis of the sub-cases, depending on the open/strong/rigid type contexts involved
in t →sm u and t →sm s, follows the same schema as for the previous item, all showing
that

u = m[x←t̃′]→sm m[x←ũ] sm← m[x←t̃′′] = s

• ES left for both t →sm u and t →sm s; i.e., t = m[x←t̃] →sm m′[x←t̃] = u and t =
m′′[x←t̃]. By i.h. there exists ũ ∈ Λvsc such that m′ →sm ũ sm← m′′. The analysis of the
sub-cases, depending on the open/strong/rigid type contexts involved in t →sm u and
t→sm s, follows the same schema as for the previous item, all showing that

u = m′[x←t̃]→sm ũ[x←t̃] sm← m′′[x←t̃] = s

The proof that →se is diamond (i.e., if u se← t →se s with u ̸= s then there exists t′ ∈ Λvsc

such that u→se t
′
se← s) follows the same schema as for →sm.

381

6. We show that →se and →sm strongly commute; i.e., if u se← t →sm s, then u ̸= s and there
is t′ ∈ Λvsc such that u →sm t′ se← s. The proof is by structural induction on t, doing case
analysis on t se← u and t→sm s:

• Under λ-abstraction for both t se← u and t →sm s; i.e., t = λx.t̃ se← λx.m = u and
t = λx.m →sm λx.ũ = s, with t̃ we← m →wm ũ. By Lemma 13.7.11.5 (Properties of the
VSC), there exists m′ such that t̃→sm m′ se← ũ, and so u = λx.t̃→wm λx.m′ we← λx.ũ.

• Application right for u se← t and application left for t →sm s; i.e., u = mt̃′ se← mt̃ = t
and t = mt̃→sm m′t̃ = s. There are several sub-cases to this:

– Let u = mO⟨ ˜̃′t⟩ se← mO⟨˜̃t⟩ = t, with ˜̃′
t we← ˜̃t, and t = R⟨m̃⟩t̃ →sm R⟨m̃′⟩t̃ = s,

with m̃→wm m̃′. Let t′ = R⟨m̃′⟩O⟨ ˜̃′t⟩, having that

u = R⟨m̃⟩O⟨ ˜̃′t⟩ →sm t′ se← R⟨m̃′⟩O⟨˜̃t⟩ = s

– Let u = mO1⟨ ˜̃
′
t⟩ se← mO1⟨˜̃t⟩ = t, and t = O2⟨m̃⟩t̃ →sm O2⟨m̃′⟩t̃ = s, with m̃ →sm

m̃′. Then the statement holds by Lemma 13.7.11.6 (Properties of the VSC)
– Let u = mS⟨ ˜̃′t⟩ se←mS⟨˜̃t⟩ = t, with m a rigid term and ˜̃′

t we← ˜̃t, and t = R⟨m̃⟩t̃→sm

R⟨m̃′⟩t̃ = s, with m̃→wm m̃′. Let t′ = R⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = R⟨m̃⟩S⟨ ˜̃′t⟩ →sm t′ se← R⟨m̃′⟩S⟨˜̃t⟩ = s

Note that t′ se← s holds because R⟨m̃′⟩ is a rigid term —by Lemma 13.7.10.3
(Properties of rigid terms).

– Let u = mS⟨ ˜̃′t⟩ se←mS⟨˜̃t⟩ = t, with m a rigid term and ˜̃′
t we← ˜̃t, and t = O⟨m̃⟩t̃→sm

O⟨m̃′⟩t̃ = s, with m̃ 7→m m̃′. Let t′ = O⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = O⟨m̃⟩S⟨ ˜̃′t⟩ →sm t′ se← O⟨m̃′⟩S⟨˜̃t⟩ = s

Note that t′ se← s holds because O⟨m̃′⟩ is rigid —by Lemma 13.7.10.2 (Properties
of rigid terms).

• Application left for u se← t and application right for t →sm s; i.e., u = m′t̃ se← mt̃ = t
and t = mt̃→sm mt̃′ = s. There are several sub-cases to this:

– Let u = R⟨m̃′⟩t̃ se← R⟨m̃⟩t̃ = t, with m̃′ we← m̃, and t = mO⟨˜̃t⟩ →sm mO⟨ ˜̃′t⟩ = s,
with ˜̃t 7→m

˜̃′
t. Let t′ = R⟨m̃′⟩O⟨ ˜̃′t⟩, having that

u = R⟨m̃′⟩O⟨˜̃t⟩ →sm t′ se← R⟨m̃⟩O⟨ ˜̃′t⟩ = s

– Let u = O1⟨m̃′⟩t̃ se← O1⟨m̃⟩t̃ = t, with m̃′ we← m̃, and t = mO2⟨˜̃t⟩ →sm mO2⟨ ˜̃
′
t⟩ =

s, with ˜̃t 7→m
˜̃′
t. Then the statement holds by Lemma 13.7.11.6 (Properties of the

VSC).
– Let u = R⟨m̃′⟩t̃ se← R⟨m̃⟩t̃ = t, with m̃′ we← m̃, and t = mS⟨˜̃t⟩ →sm mS⟨ ˜̃′t⟩ = s,

with ˜̃t→wm
˜̃′
t and m a rigid term. Let t′ = R⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = R⟨m̃′⟩S⟨˜̃t⟩ →sm t′ se← R⟨m̃⟩S⟨ ˜̃′t⟩ = s

Note that u →sm t′ holds because R⟨m̃′⟩ is a rigid term —by Lemma 13.7.10.3
(Properties of rigid terms).

382

– Let u = O⟨m̃′⟩t̃ se← O⟨m̃⟩t̃ = t, with m̃′ we← m̃, and t = mS⟨˜̃t⟩ →sm mS⟨ ˜̃′t⟩ = s,
with m a rigid term and ˜̃t→wm

˜̃′
t. Let t′ = O⟨m̃′⟩S⟨ ˜̃′t⟩, having that

u = O⟨m̃′⟩S⟨˜̃t⟩ →sm t′ se← O⟨m̃⟩S⟨ ˜̃′t⟩ = s

Note that u→sm t′ holds because O⟨m̃′⟩ is rigid —by Lemma 13.7.10.2 (Properties
of rigid terms).

• Application right for both u se← t and t→sm s; i.e., u = mt̃′ se← mt̃ = t and t = mt̃→sm

mt̃′′ = s. By i.h., there exists ũ ∈ Λvsc such that t̃′ →sm ũ se← t̃′′. The analysis of the
sub-cases, depending on the open/strong/rigid type contexts involved in u se← t and
t→sm s follows the same schema as for the previous item, all showing that

u = mt̃′ →sm mũ se← mt̃′′ = s

• Application left for both u se← t and t→sm s; i.e., u = m′t̃ se← mt̃ = t and t = mt̃→sm

m′′t̃ = s. By i.h., there exists ũ ∈ Λvsc such that m′ →sm ũ se← m′′. The analysis of
the sub-cases, depending on the open/strong/rigid type contexts involved in u se← t and
t→sm s follows the same schema as for the previous item, all showing that

u = m′t̃→sm ũt̃ se← m′′t̃ = s

• ES right for u se← t and ES left for t →sm s; i.e., u = m[x←t̃′] se← m[x←t̃] = t and
t = m[x←t̃]→sm m′[x←t̃] = s. There are several sub-cases to this:

– Let u = m[x←O⟨ ˜̃′t⟩] se← m[x←O⟨˜̃t⟩] = t, with ˜̃′
t e←[˜̃t, and t = O⟨m̃⟩[x←t̃] →sm

O⟨m̃′⟩[x←t̃] = s, with m̃ 7→m m̃′. Then the statement holds by Lemma 13.7.11.6
(Properties of the VSC).

– Let u = m[x←O⟨ ˜̃′t⟩] se← m[x←O⟨˜̃t⟩] = t, with ˜̃′
t e←[˜̃t, and t = S⟨m̃⟩[x←t̃] →sm

S⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := S⟨m̃′⟩[x←O⟨ ˜̃′t⟩],
having that

u = S⟨m̃⟩[x←O⟨ ˜̃′t⟩]→sm t′ →sm S⟨m̃′⟩[x←O⟨˜̃t⟩] = s

Note that u→sm t′ holds because O⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.2 (Prop-
erties of rigid terms).

– Let u = m[x←O⟨ ˜̃′t⟩] se← m[x←O⟨˜̃t⟩] = t, with ˜̃′
t e←[˜̃t, and t = R⟨m̃⟩[x←t̃] →sm

R⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := R⟨m̃′⟩[x←O⟨ ˜̃′t⟩],
having that

u = R⟨m̃⟩[x←O⟨ ˜̃′t⟩]→sm t′ →sm R⟨m̃′⟩[x←O⟨˜̃t⟩] = s

Note that u→sm t′ holds because O⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.2 (Prop-
erties of rigid terms).

– Let u = m[x←R⟨ ˜̃′t⟩] se← m[x←R⟨˜̃t⟩] = t, with t̃′ we← t̃, and t = O⟨m̃⟩[x←t̃] →sm

O⟨m̃′⟩[x←t̃] = s, with ˜̃t→sm
˜̃′
t. Let t′ := O⟨m̃′⟩[x←R⟨t̃′⟩], having that

u = O⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ se← O⟨m̃′⟩[x←R⟨˜̃t⟩] = s

383

– Let u = m[x←R⟨ ˜̃′t⟩] se← m[x←R⟨˜̃t⟩] = t, with ˜̃′
t we← ˜̃t, and t = S⟨m̃⟩[x←t̃] →sm

S⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let t′ := S⟨m̃′⟩[x←R⟨ ˜̃′t⟩],
having that

u = S⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ se← S⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that u→sm t′ holds because R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Prop-
erties of rigid terms).

– Let u = m[x←R1⟨ ˜̃
′
t⟩] se← m[x←R1⟨˜̃t⟩] = t, with ˜̃′

t we← ˜̃t, and t = R2⟨m̃⟩[x←t̃]→sm

R2⟨m̃′⟩[x←t̃], with m̃→wm m̃′ and t̃ is a rigid term. Let

t′ := R2⟨m̃′⟩[x←R1⟨ ˜̃
′
t⟩]

having that
u = R2⟨m̃⟩[x←R1⟨ ˜̃

′
t⟩]

→sm t′ se← R2⟨m̃′⟩[x←R1⟨˜̃t⟩]
Note that u →sm t′ holds because R1⟨ ˜̃

′
t⟩ is a rigid term —by Lemma 13.7.10.3

(Properties of rigid terms).
– Let u = m[x←R⟨ ˜̃′t⟩] se← m[x←R⟨˜̃t⟩] = t, with ˜̃′

t we← ˜̃t and m is a rigid term, and
t = O⟨m̃⟩[x←t̃] →sm O⟨m̃′⟩[x←t̃] = s, with m̃ 7→m m̃′. Let t′ := O⟨m̃′⟩[x←R⟨ ˜̃′t⟩],
having that

u = O⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ se← O⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that t′ se← s holds because O⟨m̃′⟩ is a rigid term —by Lemma 13.7.10.2
(Properties of rigid terms).

– Let t = m[x←R⟨ ˜̃′t⟩] se← m[x←R⟨˜̃t⟩] = t, with ˜̃′
t we← ˜̃t and m is a rigid term, and

t = S⟨m̃⟩[x←t̃]→sm S⟨m̃′⟩[x←t̃], with m̃→wm m̃′ and t̃ is a rigid term. Let

t′ := S⟨m̃′⟩[x←R⟨ ˜̃′t⟩]

having that

u = S⟨m̃⟩[x←R⟨ ˜̃′t⟩]→sm t′ se← S⟨m̃′⟩[x←R⟨˜̃t⟩] = s

Note that u→sm t′ holds because R⟨ ˜̃′t⟩ is a rigid term —by Lemma 13.7.10.3 (Prop-
erties of rigid terms)—, and that t se← s holds because S⟨m̃′⟩ is a rigid term —by
Lemma 13.7.10.3 (Properties of rigid terms).

– Let u = m[x←R1⟨ ˜̃
′
t⟩] se← m[x←R1⟨˜̃t⟩] = t, with ˜̃′

t we← ˜̃t and m is a rigid term, and
t = R2⟨m̃⟩[x←t̃] →sm R2⟨m̃′⟩[x←t̃] = s, with m̃ →wm m̃′ and t̃ is a rigid term. Let
t′ := R2⟨m̃′⟩[x←R1⟨ ˜̃

′
t⟩], having that

uR2⟨m̃⟩[x←R1⟨ ˜̃
′
t⟩]→sm t′ se← R2⟨m̃′⟩[x←R1⟨˜̃t⟩] = s

Note that u →sm t′ holds because R1⟨ ˜̃
′
t⟩ is a rigid term —by Lemma 13.7.10.3

(Properties of rigid terms)—, and that t′ se← s because R2⟨m̃′⟩ is a rigid term —by
Lemma 13.7.10.3 (Properties of rigid terms).

384

• ES left for u se← t and ES right for t →sm s; i.e., u = m′[x←t̃] se← m[x←t̃] = t and
t = m[x←t̃] →sm m[x←t̃′] = s. There are several sub-cases to this, all of which follow
the same kind of reasoning as for the case ES right for u se← t and ES left for t→sm s.
Therefore, we leave this case for the reader.

• ES right for both u se← t and t→sm s; i.e.,

u = m[x←t̃′] se← m[x←t̃] = t

and
t = m[x←t̃]→sm m[x←t̃′′] = s

By i.h. there exists ũ ∈ Λvsc such that t̃′ →sm t̃ se← t̃′′. The analysis of the sub-cases,
depending on the open/strong/rigid type contexts involved in t →sm u and t →sm s,
follows the same schema as for the previous item, all showing that

u = m[x←t̃′]→sm m[x←ũ] se← m[x←t̃′′] = s

• ES left for both u se← t and t→sm s; i.e.,

u = m′[x←t̃] se← m[x←t̃] = t

and
t = m[x←t̃]→sm m′′[x←t̃] = s

By i.h. there exists ũ ∈ Λvsc such that t̃′ →sm t̃ se← t̃′′. The analysis of the sub-cases,
depending on the open / strong / rigid type contexts involved in t →sm u and t →sm s,
follows the same schema as for the previous item, all showing that

u = m′[x←t̃]→sm ũ[x←t̃] se← m′′[x←t̃] = s

7. It follows immediately from Lemma 13.7.11.5 (Properties of the VSC - diamond property for
→sm and →se), from Lemma 13.7.11.5 (Properties of the VSC - strong commutation of →sm

and →se) and Hindley-Rosen ([Bar84, p. 3.3.5]).

Proposition 13.7.12 (Diamond property for Strong CbV).
→s is diamond.

Proof. (Click here to go back to main chapter.)
By Lemma 13.7.11.7 (Properties of the VSC).

Proof. (Click here to go back to main chapter.)
We first prove the statement concerning →sλ . To have the right i.h., we prove simultaneously,

by induction on t, the following stronger statements (we recall that all strong inert terms are strong
fireballs):

1. Fireball property: If t is →sλ-normal, then t is a strong fireball.
2. Non-value property: If t is→sλ-normal and not a value up to ES, then t is a strong inert term.
Cases:

385

• Variable, i.e., t = x: both properties trivially hold, since t is a strong inert term and so a
strong fireball.

• Abstraction, i.e., t = λx.u:
1. Non-value property: vacuously true, as t is an abstraction.
2. Fireball property: Since t is→sλ-normal, so is u. By i.h. applied to u (fireball property),

u is a strong fireball and hence so is t (as a strong value).
• Application; i.e., t = t1t2 (which is not a value up to ES):

1. Non-value property: Since t is →sλ-normal, so are t1 and t2. Moreover, t1 is not a value
up to ES (otherwise t would be a→sm-redex). By i.h. applied to t1 (non-value property)
and to t2 (fireball property), t1 is a strong inert term and t2 is a strong fireball. Thus, t
is a strong inert term.

2. Fireball property: We have just proved that t is a strong inert term, which implies that
it is a strong fireball.

• Explicit substitutions, i.e., t = t1[x←t2]:
1. Fireball property: Since t is →sλ-normal, so are t1 and t2. Moreover, t2 is not a value up

to ES (otherwise t would be a →seλ-redex). By i.h. applied to t1 (fireball property) and
to t2 (non-value property), t1 is a strong fireball and t2 is a strong inert term. Thus, t is
a strong fireball.

2. Non-value property: We have just proved that t is a strong fireball. If moreover t is
not a value up to ES, then t1 is not a value up to ES and hence, by i.h. applied to t1
(non-value property), t1 is a strong inert term. Therefore, t is a strong inert term.

Concerning →s, to have the right i.h., we prove simultaneously, by induction on t, the following
stronger statements (we recall that all super strong inert terms are super strong fireballs):

1. Fireball property: If t is →s-normal, then t is a super strong fireball.
2. Non-value property: If t is→s-normal and neither a value up to ES nor of the form S⟨x⟩, then

t is a compound super strong inert term.
The proof is analogous to the proof concerning →sλ , except for the following cases:

• Variable, i.e., t = x:
1. Fireball property: it trivially holds since x is a super strong fireball.
2. Non-value property: vacuously true, because t is of the form S⟨x⟩.

• Explicit substitutions, i.e., t = t1[x←t2]:
1. Fireball property: Since t is→sλ-normal, so are t1 and t2. Moreover, t2 is neither a value

up to ES (otherwise t would be a→seλ-redex) nor of the form S⟨x⟩ (otherwise t would be
a →sevar-redex). By i.h. applied to t1 (fireball property) and to t2 (non-value property),
t1 is a super strong fireball and t2 is a compound super strong inert term. Thus, t is a
super strong fireball.

2. Non-value property: We have just proved that t is a super strong fireball. If moreover t
is neither a value up to ES nor of the form S⟨x⟩, then t1 is neither a value up to ES nor
of the form S⟨x⟩ and hence, by i.h. applied to t1 (non-value property), t1 is a compound
super strong inert term. Therefore, t is a compound super strong inert term.

(Click here to go back to main chapter.)

386

13.8 Proofs of Chapter 11 (Multi types for Strong CbV)
13.8.1 Strong CbV correctness
Lemma 13.8.1 (Relevance of the Strong CbV type system).

Let t ∈ ΛL and Φ ▷S Γ ⊢(m,s) t :M be a type derivation. If x ̸∈ fv(t) then x /∈ dom(Γ).

Proof. (Click here to go back to main chapter.)
Trivial, by induction on the number of typing rules applied in Φ.

(Click here to go back to main chapter.)

Typing properties of Strong CbV-normal forms. Providing the right typing properties that
Strong CbV-normal forms satisfy requires, first, proving that type derivations for Strong CbV-
normal forms satisfy a kind of “spreading of co-shrinkingness” from type contexts into the derived
(right-hand side) multi type.

This is achieved by proving that a rigid terms satisfy this property, noting that strong inert terms
are also rigid. The reason why we have to express this property in terms of rigid terms—while a
presentation of it in terms of strong inert terms is also feasible—become clearer when dealing with
the Subject Reduction and Subject Expansion properties; in particular, it helps us ensure that the
conditions under which the i.h. can be applied indeed hold.
Remark 5 (Spreading properties in some call-by-need variants).

Before we continue, let us recall some spreading properties studied for previous cases:
• In Chapter 7 (Multi types for Open CbNeed), we saw that the assuming that the needed

variables of an expression are assigned to some Inert-type was enough to obtain that the
derived (right-hand side) multi type was in Inert too—see Lemma 7.1.2.2 (Typing properties
of normal terms).
• Similarly, in Chapter 9 (Multi types for Useful Open CbNeed), we saw that the assuming that

the applied variables of an expression are assigned to some Tight-type was enough to obtain
that the derived (right-hand side) multi type was in Inert—see Lemma 9.1.3 (Typing properties
of useful inert terms) and Lemma 9.1.6 (Typing properties of useful inert programs).

Lemma 13.8.2 (Spreading of co-shrinkingness).
Let r be a rigid term and Φ ▷S Γ ⊢(m,s) r :M be a type derivation for it. If Γ is co-shrinking

(resp. unitary co-shrinking), then M is a co-shrinking (resp. unitary co-shrinking) multi type.

Proof.
By induction on the definition of the s term r. Cases:
• Variable: Let r := x. Then necessarily, for some n ∈ N, Φ is of the following form(

x : [Li] ⊢(0,1) x :Li

)n
i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where M = [Li]
n
i=1 and Γ = x :M . Note that since Γ is a co-shrinking (resp. unitary co-

shrinking) context, then M is a co-shrinking (resp. unitary co-shrinking) multi type.

387

• Application: Let r := r′t where r′ is a rigid term. Then Φ must be of the following form:

Ψ ▷S Π ⊢(m
′,s′) r′ : [Q ⊸ P] Θ ▷S ∆ ⊢(m

′′,s′′) t :Q

Π
⊎

∆ ⊢(m′+m′′+1,s′+s′′+1) r′t :P
app

where Γ = Π
⊎

∆, with Π and ∆ co-shrinking (resp. unitary co-shrinking) type contexts. By
i.h., [Q ⊸ P] is a co-shrinking (resp. unitary co-shrinking) multi type, in turn implying that
P is a co-shrinking (resp. unitary co-shrinking) multi type.

• Explicit substitution: Let r := r′[x←r′′] where r′ and r′′ are rigid terms. Then Φ must be of
the following form:

Ψ ▷S Π;x :Q ⊢(m
′,s′) r′ :P Θ ▷S ∆ ⊢(m

′′,s′′) r′′ :Q

Π
⊎

∆ ⊢(m′+m′′,s′+s′′+1) r′r′′ :P
ES

where Γ = Π ⊎∆, with Π and ∆ co-shrinking (resp. unitary co-shrinking) type contexts. By
application of the i.h. on Θ—since r′′ is a rigid term—Q is a co-shrinking (resp. unitary co-
shrinking) multi type, and hence Π, x :Q is a co-shrinking (resp. unitary co-shrinking) context.
By i.h. applied to Ψ (as r′ is a rigid term), P is a co-shrinking (resp. unitary co-shrinking)
multi type.

In addition, the following are used repeatedly:

Lemma 13.8.3 (Typing properties of theoretical values).
Let t ∈ (Var ∪ Val)—i.e., t is a theoretical value—and let Φ ▷S Γ ⊢(m,s) t :M be a type derivation

for it. If M = 0, then Γ = ∅ and (m, s) = (0, 0).

Proof. Trivial.

Finally, we use Lemma 13.8.2 (Spreading of co-shrinkingness) to prove the following:

Proposition 13.8.4 (Typing properties of Strong CbV-normal forms).
Let fs be a strong fireball and let Φ ▷S Γ ⊢(m,s) fs :M be a type derivation for it, with Γ a

co-shrinking (resp. unitary co-shrinking) type context and such that if fs is an answer then M is
shrinking (resp. unitary shrinking). Then |fs|S ≤ m (resp. |fs|S = m).

Proof. (Click here to go back to main chapter.)
By structural induction on fs. Cases:
• Variable: Let fs := x. Then Φ must be of the following form:(

x : [Li] ⊢(0,1) x :Li

)n
i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where M = [Li]
n
i=1 and Γ = x :M . Then, |fs|S = 0 = m.

• Application: Let fs := isgs. Then Φ must be of the following form

Ψ ▷S Π ⊢(m
′,s′) is : [N ⊸ M] Θ ▷S ∆ ⊢(m

′′,s′′) gs :N

Π
⊎

∆ ⊢(m′+m′′+1,s′+s′′+1) isgs :M
app

388

where Γ = Π
⊎

∆ and (m, s) = (m′ +m′′ + 1, s′ + s′′ + 1). By hypothesis, Γ is co-shrinking
(resp. unitary co-shrinking), and then so are Π and ∆.
Now, since is is a rigid term, we can apply Lemma 13.8.2 on Ψ and so [Q ⊸ P] is co-shrinking
(resp. unitary co-shrinking), which entails that Q is shrinking (resp. unitary shrinking).
Note that is is not a value up to ESs, so we can apply i.h. on both premises, obtaining that
m′ ≤ |is|S and m′′ ≤ |gs|S (resp. m′ = |is|S and m′′ = |gs|S). Hence, |fs|S = |is|S + |gs|S + 1 ≤
m′ +m′′ + 1 = m (resp. |fs|S = |is|S + |gs|S + 1 = m′ +m′′ + 1 = m).

• Explicit substitution on inert: Let fs := is[x←js]. Then Φ must be of the following form:

Ψ ▷S Π;x :N ⊢(m
′,s′) is :M Θ ▷S ∆ ⊢(m

′′,s′′) js :N

Π
⊎

∆ ⊢(m′+m′′,s′+s′′+1) is[x←js] :M
ES

where Γ = Π
⊎
∆ and (m, s) = (m′ + m′′, s′ + s′′ + 1). Note that since Γ is co-shrinking

(resp. unitary co-shrinking), and then so are Π and ∆.
Now, since js is a rigid term, we can apply Lemma 13.8.2 on Θ, obtaining that Q is co-shrinking
(resp. unitary co-shrinking), which in turn entails that Π;x :Q is co-shrinking (resp. unitary
co-shrinking).
Next, note that neither is nor js are abstractions up to ES. We can then apply i.h. on both
premises, obtaining that m′ ≤ |is|S and m′′ ≤ |js|S (resp. m′ = |is|S and m′′ = |js|S). Hence,
|fs|S = |is|S + |js|S ≤ m′ +m′′ = m (resp. |fs|S = |is|S + |js|S = m′ +m′′ = m).

• Explicit substitution on fireball: Let fs := gs[x←is]. Then Φ must be of the following form:

Ψ ▷S Π;x :N ⊢(m
′,s′) gs :M Θ ▷S ∆ ⊢(m

′′,s′′) is :N

Π
⊎

∆ ⊢(m′+m′′,s′+s′′+1) gs[x←is] :M
ES

where where Γ = Π
⊎

∆ and (m, s) = (m′+m′′, s′+ s′′+1). Note that since Γ is co-shrinking
(resp. unitary co-shrinking), and then so are Π and ∆.
Now, since is is a rigid term, we can apply Lemma 13.8.2 on Θ to obtain that Q is co-shrinking
(resp. unitary co-shrinking), which in turn entails that Π;x :Q is co-shrinking (resp. unitary
co-shrinking).
Next, note that is is not a value up to ESs, while gs is a value up to ESs if and only if so is
fs = gs[x←i], hence if gs is a value up to ESs then P is shrinking (resp. unitary shrinking).
We can then apply i.h. to both premises: m′ ≤ |gs|S and m′′ ≤ |is|S (resp. m′ = |gs|S and
m′′ = |is|S). Therefore, |fs|S = |gs|S + |is|S ≤ m′ + m′′ = m (resp. |fs|S = |gs|S + |is|S =
m′ +m′′ = m).

• Abstraction: Let fs := λx.gs. Then, Φ must be of the following form: Ψi ▷S Γi;x :Oi ⊢(mi,si) gs :Ni

Γi ⊢(mi+1,si+1) λx.gs :Oi ⊸ Ni
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λx.gs : [Oi ⊸ Ni]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi, (m, s) = ((
∑n

i=1 mi) + n, (
∑n

i=1 si) + n) and M = [Oi ⊸ Ni]
n
i=1.

First, note that since M is shrinking (resp. unitary shrinking) by hypothesis, then it must be
that n ≥ 1 (resp. n = 1), that O is co-shrinking (resp. unitary co-shrinking) and that N is
shrinking (resp. unitary shrinking). In turn, the latter entails that Γ;x :R is a co-shrinking
(resp. unitary co-shrinking) type context. We can then apply the i.h. on Ψi for all 1 ≤ i ≤ n,

389

obtaining that |gs|S ≤ mi (resp. |gs|S = mi). Therefore, |fs|S = |gs|S + 1 ≤ n(|gs|S + 1) ≤
(
∑n

i=1mi) + n = m, where the first inequality holds because n ≥ 1 (resp. |fs|S = |gs|S + 1 =
m1 + 1 = m, all of which holds because n = 1).

(Click here to go back to main chapter.)

Substitution for Strong CbV. The Strong CbV not performing substitutions one at a time—
like all the other cases in this work—the version of the Substitution property that we present
here for Strong CbV is of a considerably simpler nature than, for example, the Open CbNeed and
Useful Open CbNeed cases:

Lemma 13.8.5 (Substitution for Strong CbV).
Let vT be a theoretical value and let

Φt ▷S Γ;x :N ⊢(m,s) t :M
Ψ ▷S Π ⊢(m

′,s′) vT :N

Then there exists type derivation Φt{x←vT} ▷SΓ
⊎

Π ⊢(m′′,s′′) t{x←vT} :M such that m′′ = m+m′

and s′′ ≤ s+ s′.

Proof. (Click here to go back to main chapter.)
By structural induction on the t. Cases:
• Variable. Let t ∈ Var. There are two sub-cases:

1. Let t := x. That is, t{x←v} = x{x←v} = v. Hence, Φt must be of the following form:(
x :Li ⊢(0,1) x :Li

ax
)n

i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where Γ = ∅ and M = [L1, . . . , Ln] = N . The statement holds by taking Φt{x←v} := Ψ,
noting that m′′ = m′ = m+m′ and s′′ = s′ ≤ n+ s′ = s+ s′.

2. Let t := z ̸= x. That is, t{x←vT} = z{x←vT} = z. Then Φt must be of the following
form: (

z :Li ⊢(0,1) z :Li

ax
)n

i=1

z : [Li]
n
i=1 ⊢(0,n) z : [Li]

n
i=1

manyVAR

where M = [Li]
n
i=1, Γ = {z : [Li]

n
i=1}. This means that N = 0, and so Ψ must be of the

following form:
∅ ⊢(0,0) vT :0

manyλ

if vT ∈ Val, or of the following form:

∅ ⊢(0,0) vT :0
manyVAR

if vT ∈ Var. In either case, we have that Γ
⊎

Π = Γ and (m′, s′) = (0, 0).
The statement then follows by taking Θt{x←vT} := Φt, noting that m′′ = m = m + m′

and s′′ = s ≤ s+ 0 = s+ s′.

390

• Application: Let t := sm. That is, t{x←vT} = s{x←vT}m{x←vT}. Then Φt must be of the
following form

Φs ▷S Γs;x :Ns ⊢(ms,ss) s : [O ⊸ M] Φm ▷S Γm;x :Nm ⊢(mm,sm) m :O

Γs

⊎
Γm;x :Ns ⊎Nm ⊢(ms+mm+1,ss+sm+1) sm :M

app

where Γ = Γs

⊎
Γm, N = Ns ⊎Nm and (m, s) = (ms +mm + 1, ss + sm + 1).

By application of Lemma 13.8.6 (Splitting multi types of Strong CbV type derivations) with
respect to Ψ and the splitting N = Ns ⊎ Nm, there exist type contexts Π1 and Π2 and type
derivations

Ψs ▷S Π1 ⊢(m
′
1,s

′
1) vT :Ns

Ψm ▷S Π2 ⊢(m
′
2,s

′
2) vT :Nm

where Π = Π1

⊎
Π2, (m′, s′) = (m′1 +m′2, s

′
1 + s′2).

Then, we may apply the i.h. on Φs and Ψs to obtain type derivation

Φs{x←vT} ▷S Γs

⊎
Π1 ⊢(m

′′
1 ,s

′′
1) s{x←vT} : [O ⊸ M]

such that m′′1 = ms +m′1 and s′′1 ≤ ss + s′1. Moreover, we may apply the i.h. on Φm and Φm

to obtain type derivation

Φm{x←vT} ▷S Γm

⊎
Π2 ⊢(m

′′
2 ,s

′′
2) m{x←vT} :O

such that m′′2 = mm +m′2 and s′′2 ≤ sm + s′2.
Finally, and since

Γ
⊎

Π = (Γs

⊎
Γm)

⊎
(Π1

⊎
Π2) = (Γs

⊎
Π1)

⊎
(Γm

⊎
Π2)

we may derive Φt{x←vT} as follows

Φs{x←vT} ▷S Γs
⊎

Π1 ⊢(m
′′
1 ,s

′′
1) s{x←vT} : [O ⊸ M] Φm{x←vT} ▷S Γm

⊎
Π2 ⊢(m

′′
2 ,s

′′
2) m{x←vT} :O

Γs
⊎
Π1
⊎
Γm
⊎
Π2 ⊢(m

′′
1+m′′

2+1,s′′1+s′′2+1) s{x←vT} :M
app

noting in particular that

m′′1 +m′′2 + 1 = ms +m′1 +mm +m′2 + 1 = m+m′

s′′1 + s′′2 ≤ ss + s′1 + sm + s′2 = s+ s′

• Abstraction: Let t := λy.s. Note that we may safely assume that y /∈ (fv(vT) ∪ {x})—by
α-equivalence. Hence, t{x←vT} = λy.s{x←vT} and Φ must be of the following form: Φi ▷S Γi;x :Ni; y :Oi ⊢(mi,si) s :Pi

Γi;x : ⊎ni=1 Ni ⊢(mi+1,si+1) λy.s :Oi ⊸ Pi
fun

n

i=1

(
⊎n

i=1 Γi) ; x : (⊎ni=1Ni) ⊢((
∑n

i=1 mi)+n,(
∑n

i=1 si)+n) λy.s : [Oi ⊸ Pi]
n
i=1

manyλ

where Γ =
⊎n

i=1 Γi, N = ⊎ni=1Ni, M = [Oi ⊸ Pi]
n
i=1 and (m, s) = ((

∑n
i=1 mi) + n, (

∑n
i=1 si) +

n).
By Lemma 11.2.1 (Relevance of the Strong CbV type system), we have that y /∈ dom(Π), and
so Ψ ▷S Π; y :0 ⊢(m

′,s′) vT : ⊎ni=1 Ni. Case analysis on whether n > 0:

391

– Let n := 0. Then, if vT ∈ Val then Ψ must be of the following form:

∅ ⊢(0,0) vT :0
manyλ

and if vT ∈ Var instead, then Ψ must be of the following form:

∅ ⊢(0,0) vT :0
manyVAR

In either case, it is easy to see that the statement holds by taking Φt{x←vT} as follows:

∅ ⊢(0,0) λy.z{x←vT} :0
manyλ

– Let n > 0. We may repeatedly apply Lemma 13.8.6 (Splitting multi types of type
derivations) to obtain the following type derivation for all 1 ≤ i ≤ n:

Φi ▷S Πi; y :0 ⊢(m
′
i,s

′
i) vT :Ni

such that Π =
⊎n

i=1Πi and (m′, s′) = (
∑n

i=1 m
′
i,
∑n

i=1 s
′
i).

Next, for all 1 ≤ i ≤ n, we may apply the i.h. with respect to Φi and Ψi to obtain type
derivation

Φ′i ▷S

(
Γi

⊎
Πi

)
; y :Oi ⊢(m

′′
i ,s

′′
i) s{x←vT} :Pi

such that m′′i = mi +m′i and s′′i ≤ si + s′i. We may finally derive Φt{x←vT} as follows: Φ′i ▷S (Γi

⊎
Πi) ; y :Oi ⊢(m

′′
i ,s

′′
i) s{x←vT} :Pi

(Γi

⊎
Πi) ⊢(m

′′
i +1,s′′i +1) λy.(s{x←vT}) :Oi ⊸ Pi

fun

n

i=1⊎n
i=1 (Γi

⊎
Πi) ⊢((

∑n
i=1 m

′′
i)+n,(

∑n
i=1 s

′′
i)+n) λy.(s{x←vT}) : [Oi ⊸ Pi]

n
i=1

manyλ

• Explicit substitution: Let t := s[y←m]. We may safely assume that y /∈ (fv(vT) ∪ {x})—by
α-equivalence—which entails that t{x←vT} = (s{x←vT})[y←m{x←vT}]. Then Φ must be
of the following form:

Φs ▷S Γs;x :Ns; y :O ⊢(ms,ss) s :M Φm ▷S Γm;x :Nm; y :0 ⊢(mm,sm) m :O

(Γs

⊎
Γm) ; x : (Ns ⊎Nm) ⊢(ms+mm+1,ss+sm+1) s[y←m] :M

ES

where Γ = Γs

⊎
Γm, N = Ns ⊎Nm and (m, s) = (ms +mm + 1, ss + sm + 1).

By Lemma 13.8.6 (Splitting multi types of Strong CbV type derivations), from the splitting
N = Ns ⊎Nm we may infer the existence of the following type derivations:

Ψs ▷S Πs ⊢(m
′
s,ss) vT :Ns

Ψm ▷S Πm ⊢(m
′
m,sm) vT :Nm

Thus, we may apply the i.h. on Φs and Ψs to get the following type derivation:

Φs{x←vT} ▷S

(
Γs

⊎
Πs

)
; y :O ⊢(m′′

s ,s
′′
s) s{x←vT} :M

where m′′s = ms +m′s and s′′s ≤ ss + ss.

392

Similary, an application of the i.h. on Φm and Ψm gives the following type derivation:

Φm{x←vT} ▷S Γm

⊎
Πm ⊢(m

′′
m,s′′m) m{x←vT} :O

where m′′m = mm +m′m and s′′m ≤ sm + sm.
Therefore, and since

Γ
⊎

Π = (Γs

⊎
Γm)

⊎
(Πs

⊎
Πm) = (Γs

⊎
Πs)

⊎
(Γm

⊎
Πm)

the statement holds by deriving Φt{x←vT} as follows

Φs{x←vT} ▷S (Γs

⊎
Πs) ; y :O ⊢(m

′′
s ,s

′′
s) s{x←vT} :M Φm{x←vT} ▷S Γm

⊎
Πm ⊢(m

′′
m,s′′m) m{x←vT} :O

Γs

⊎
Πs

⊎
Γm

⊎
Πm ⊢(m

′′
s +m′′

m+1,s′′s +s′′m+1) s{x←vT}[x←m{x←vT}] :M
ES

(Click here to go back to main chapter.)

Subject Reduction for Strong CbV. This is obtained by first studying the weak case—i.e.,
the Open evaluation strategy →w—and then building on it to obtain the result for the strong case.

Fistly, the following is required to apply Lemma 11.2.3 (Substitution for Strong CbV) in the
proofs of Lemma 11.2.4.2 (Open Quantitative Subject Reduction for Strong CbV - exponential case)
and Proposition 11.2.5.2 (Shrinking Quantitative Subject Reduction for Strong CbV - exponential
case) to obtain the right indices.

Lemma 13.8.6 (Splitting multi types of Strong CbV type derivations).
Let t ∈ (Var ∪ Val)—i.e., t is a theoretical value—and let Φ ▷S Γ ⊢(m,s) t :N

⊎
O be a type

derivation. Then there exist type derivations

Ψ ▷S Π ⊢(m
′,s′) t :N

Θ ▷S ∆ ⊢(m
′′,s′′) t :O

such that Γ = Π
⊎

∆ and (m, s) = (m′ +m′′, s′ + s′′).

Proof.
Trivial, considering how the only typing rules deriving a multi type for theoretical values—i.e.,

for variables and values—are manyVAR and manyλ, whose premises can be split at will.

Lemma 13.8.7 (Open Quantitative Subject Reduction for Strong CbV).
Let Φ ▷S Γ ⊢(m,s) t :M be a type derivation.

1. Multiplicative: If t→wm u, then there exists a derivation Ψ ▷S Γ ⊢(m−2,s−1) u :M .
2. Exponential: If t→we u, then there exists a derivation Ψ ▷S Γ ⊢(m

′,s′) u :M such that m′ = m
and s′ < s.

Proof. (Click here to go back to main chapter.)
1. Multiplicative steps: By induction on the open evaluation context O such that t = O⟨s⟩ →wm

O⟨s′⟩ = u, with s 7→wm s′:

393

• Context hole: Let O := ⟨·⟩. Then t = s = S⟨λx.m⟩t̃ and u = S⟨m[x←t̃]⟩. We proceed
by induction on the length of S:

– Base case: Let S := ⟨·⟩. Then Φ is of the following form:

Φm ▷S Γm;x :N ⊢(mm,sm) m :M

Γm ⊢(mm+1,sm+1) λx.m :N ⊸ M
fun

Γm ⊢(mm+1,sm+1) λx.m : [N ⊸ M]
many

Φt̃ ▷S Γt̃ ⊢(mt̃,st̃) t̃ :N

Γm

⊎
Γt̃ ⊢(mm+mt̃+2,sm+st̃+2) (λx.m)t̃ :M

app

The statement holds by deriving Ψ as follows

Φm ▷S Γm;x :N ⊢(mm,sm) m :M Φt̃ ▷S Γt̃ ⊢(mt̃,st̃) t̃ :N

Γs

⊎
Γm ⊢(mm+mt̃,sm+st̃+1) :M

ES

noting in particular that (mm +mt̃, sm + st̃ + 1) = (m− 2, s− 1).
– Inductive case: Let S := S ′[y←ũ]. Then Φ is of the following form

ΦS⟨λx.m⟩ ▷ Γ1 ⊢(m
′,s′) S⟨λx.m⟩ : [N ⊸ M] Φt̃ ▷S Γ2 ⊢(m

′′,s′′) t̃ :N

Γ1

⊎
Γ2 ⊢(m

′+m′′+1,s′+s′′+1) (S⟨λx.m⟩)t̃ :M
app

where, moreover, ΦS⟨λx.m⟩ is of the following form:

Φ1 ▷S Π1; y :O ⊢(m
′
1,s

′
1) S ′⟨λx.m⟩ : [N ⊸ M] Φũ ▷S Π2 ⊢(m

′
2,s

′
2) ũ :O

Π1

⊎
Π2 ⊢(m

′
1+m′

2+1,s′1+s′2+1) S⟨λx.m⟩ : [N ⊸ M]
ES

with Γ1 = Π1

⊎
Π2, (m′, s′) = (m′1 +m′2 + 1, s′1 + s′2 + 1).

In order to apply the i.h., let us derive an auxiliary type derivation Φind as follows:

Φ1 ▷S Π1; y :O ⊢(m
′
1,s

′
1) S ′⟨λx.m⟩ : [N ⊸ M] Φt̃ ▷S Γ2 ⊢(m

′′,s′′) t̃ :N

(Π1

⊎
Γ2); y :O ⊢(m

′
1+m′′+1,s′1+s′′+1) (S ′⟨λx.m⟩)t̃ :M

app

Note that we can now apply the i.h. on Φind and obtain type derivation

Ψind ▷S

(
Π1

⊎
Γ2

)
; y :O ⊢(m′

1+m′′−1,s′1+s′′) S ′⟨m[x←t̃]⟩ :M

We can finally derive Ψ ▷S Γ ⊢(m−2,s−1) u :M as follows
Ψind ▷S (Π1

⊎
Γ2) ; y :O ⊢(m

′
1+m′′−1,s′1+s′′) S′⟨m[x←t̃]⟩ :M Φũ ▷S Π2 ⊢(m

′
2,s

′
2) ũ :O

Π1

⊎
Γ2

⊎
Π2 ⊢(m

′
1+m′′+m′

2,s
′
1+s′′+s′2+1) S⟨m[x←t̃]⟩ :M

app

Note that Γ = Γ1

⊎
Γ2 = (Π1

⊎
Π2)

⊎
Γ2 and that

(m′1 +m′′ +m′2, s
′
1 + s′′ + s′2 + 1) = ((m′ − 1) +m′′, s′ + s′′) = (m− 2, s− 1)

• Left of an application: Let O := O′m. Then Φ is of the following form:

ΦO′⟨s⟩ ▷S Γ1 ⊢(m1,s1) O′⟨s⟩ : [N ⊸ M] Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) O′⟨s⟩m :M

app

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

394

• Right of an application: Analogous to the previous case.
• Left of an ES: Let O := O′[x←m]. Then Φ is of the following form:

ΦO′⟨s⟩ ▷S Γ1;x :N ⊢(m1,s1) O′⟨s⟩ :M Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) O′⟨s⟩[x←m] :M

ES

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

• Inside of an ES: Analogous to the previous case.
2. Exponential steps: By induction on the open evaluation context O such that t = O⟨u⟩ →we

O⟨u′⟩ = s, with u = u′′[x←S⟨vT⟩] 7→we S⟨u′′{x←vT}⟩ = u′:
• Context hole: Let O := ⟨·⟩. Then t = u′′[x←S⟨vT⟩] 7→we S⟨u′′{x←vT}⟩ = s. We proceed

by induction on the length of S:
– Base case: Let S := ⟨·⟩. Then Φ is of the following form

Φu′′ ▷S Γ1;x :N ⊢(m1,s1) u′′ :M ΦvT ▷S Γ2 ⊢(m2,s2) vT :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) u′′[x←vT] :M

ES

where Γ = Γ1

⊎
Γ2 and (m, s) = (m1+m2, s1+ s2+1). We can apply Lemma 11.2.3

(Substitution for Strong CbV) on Φu′′ and ΦvT to obtain type derivation

Φu′′{x←vT} ▷S Γ1

⊎
Γ2 ⊢(m

′′,s′′) u′′{x←vT} :M

where m′′ = m1 + m2 and s′′ ≤ s1 + s2. The statement holds by taking Ψ :=
Φu′′{x←vT}, noting in particular that m′ = m1+m2 = m and s′ ≤ s1+s2 < s1+s2+1.

– Inductive case: Let S := S ′[y←m]. Then Φ must be of the following form

Φu′′ ▷S Γ1;x :N ⊢(mu′′ ,su′′) u′′ :M ΦS⟨vT⟩ ▷S ∆ ⊢(m
′′,s′′) S⟨vT⟩ :N

Γ1

⊎
Γ2 ⊢(m,s) u′′[x←S⟨vT⟩] :M

ES

where, moreover, ΦS⟨vT⟩ ▷S ∆ ⊢(m
′′,s′′) S⟨vT⟩ :N takes the following form

Φ ▷S Π1; y :O ⊢(m1,s1) S ′⟨vT⟩ :N Φ ▷S Π2 ⊢(m2,s2) m :O

Π1

⊎
Π2 ⊢(m1+m2,s1+s2+1) S⟨vT⟩ :N

ES

with ∆ = Π1

⊎
Π2 and (m′′, s′′) = (m1 +m2, s1 + s2 + 1).

In order to apply the i.h., let us derive an auxiliary type derivation Φind as follows:

Φu′′ ▷S Γ1;x :N ⊢(mu′′ ,su′′) u′′ :M Φ ▷S Π1; y :O ⊢(m1,s1) S ′⟨vT⟩ :N
(Γ1

⊎
Π1) ; y :O ⊢(mu′′+m1,su′′+s1+1) u′′[x←S ′⟨vT⟩] :M

ES

Note that we can then apply the i.h. on Φind ▷S (Γ1

⊎
Π1) ; y :O ⊢(mu′′+m1,su′′+s1+1)

u′′[x←S ′⟨vT⟩] :M to obtain type derivation

Ψind ▷S

(
Γ1

⊎
Π1

)
; y :O ⊢(mu′′+m1,su′′+s1) S ′⟨u′′{x←vT}⟩ :M

Therefore, we may derive Ψ as follows
Ψind ▷S (Γ1

⊎
Π1) ; y :O ⊢(mu′′+m1,su′′+s1) S′⟨u′′{x←vT}⟩ :M Φ ▷S Π2 ⊢(m2,s2) m :O

Γ1
⊎
Π1
⊎
Π2 ⊢(mu′′+m1+m2,su′′+s1+s2+1) S⟨u′′{x←vT}⟩ :M

ES

395

• Left of an application: Let O := O′m. Then Φ is of the following form:

ΦO′⟨s⟩ ▷S Γ1 ⊢(m1,s1) O′⟨s⟩ : [N ⊸ M] Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) O′⟨s⟩m :M

app

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

• Right of an application: Analogous to the previous case.
• Left of an ES: Let O := O′[x←u]. Then Φ is of the following form:

ΦO′⟨s⟩ ▷S Γ1;x :N ⊢(m1,s1) O′⟨s⟩ :M Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) O′⟨s⟩[x←m] :M

ES

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

• Inside of an ES: Analogous to the previous case.

(Click here to go back to main chapter.)

We may now prove the following

Proposition 13.8.8 (Shrinking Quantitative Subject Reduction for Strong CbV).
Let Φ ▷S Γ ⊢(m,s) t :M be a type derivation, with Γ a co-shrinking (resp. unitary co-shrinking)

type context. Moreover, suppose that if t is an answer then M is shrinking (resp. unitary shrinking).
1. Multiplicative: If t→sm t′, then m ≥ 2, s ≥ 1, and there exists type derivation Φ ▷S Γ ⊢(m

′,s′)

t′ :M such that m′ ≤ m− 2 and s′ < s (resp. m′ = m− 2 and s′ = s− 1).
2. Exponential: If t→se t

′, then s ≥ 1 and there exists type derivation Φ ▷S Γ ⊢(m
′,s′) t′ :M such

that m′ = m and s′ < s.

Proof. (Click here to go back to main chapter.)
First, we prove the unitary shrinking version of the statement, under the hypothesis that Γ is

unitary co-shrinking and if t is a value up to ESs then M is unitary shrinking. The proof is by
induction on the evaluation strong context S such that t = S⟨u⟩ →s S⟨u′⟩ = t′ with u →wm u′ or
u′ →we u

′. Cases for S:
• Hole: Let S := ⟨·⟩ and t→wa t′ with a ∈ {m, e}.

By Lemma 11.2.4 (Open Quantitative Subject Reduction for Strong CbV), we have that
– if t→wm t′ then there exists type derivation Φ′ ▷S Γ ⊢(m−2,s−1) t′ :M ;
– if t→we t

′ then there is type derivation Φ′▷SΓ ⊢(m
′,s′) t′ :M such that m′ = m and s′ < s.

Note that, in this case, we do not use the hypothesis that Γ is a (unitary) co-shrinking context
and that M is a (unitary) shrinking multi type if t is an abstraction up to ES.

• Abstraction: Let S := λx.S ′. Then t = S⟨u⟩ = λx.S ′⟨u⟩ →sa λx.S ′⟨u′⟩ = S⟨u′⟩ = t′ with
u →wa u′ and a ∈ {m, e}. Since t is an abstraction, M is a unitary shrinking multi type by
hypothesis and hence it has the form M = [O ⊸ N] where O is unitary co-shrinking and N
is unitary shrinking. Thus, the derivation Φ is necessarily

Φ1 ▷S Γ;x :O ⊢(m1,s1) S ′⟨u⟩ :N
Γ ⊢(m1+1,s1+1) λx.S ′⟨u⟩ :O ⊸ N

fun

Γ ⊢(m1+1,s1+1) λx.S ′⟨u⟩ : [O ⊸ N]
manyλ

396

Since Γ;x :O is a unitary co-shrinking type context and N2 is a unitary shrinking multi type,
application of the i.h. on Φ1 yields type derivation Ψ1 ▷S Γ;x :O ⊢(m

′
1,s

′
1) S ′⟨u⟩ :N such that

1. if u→wm u′, then m′1 = m1 − 2 and s′1 = s1 − 1,
2. if u→we u

′, then m′1 = m1 and s′1 < s1.
We can then derive Ψ as follows

Ψ1 ▷S Γ;x :O ⊢(m
′
1,s

′
1) S ′⟨u⟩ :N

Γ ⊢(m′
1+1,s′1+1) λx.S ′⟨u⟩ :O ⊸ N

fun

Γ ⊢(m′
1+1,s′1+1) λx.S ′⟨u⟩ : [O ⊸ N]

manyλ

• Explicit substitution of rigid context: Let S := s[x←R]. Then, t = S⟨u⟩ = s[x←R⟨u⟩] →sa

s[x←R⟨u′⟩] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Φ must be of the following
form

Φ1 ▷S Γ1;x :N ⊢(m1,s1) s :M Φ2 ▷S Γ2 ⊢(m2,s2) R⟨u⟩ :N
Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) s[x←R⟨u⟩] :M

ES

where Γ = Γ1

⊎
Γ2 is unitary co-shrinking—implying that so are Γ1 and Γ2—and (m, s) =

(m1 +m2, s1 + s2 + 1).
By i.h. on Φ2, there exists Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) R⟨u′⟩ :N such that

1. if u→wm u′, then m′2 = m2 − 2 and s′2 = s2 − 1.
2. if u→we u

′, then m′2 = m2 and s′2 < s2.
We may then derive Ψ as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) s :M Φ2 ▷S Γ2 ⊢(m
′
2,s

′
2) R⟨u⟩ :N

Γ1

⊎
Γ2 ⊢(m1+m′

2,s1+s′2+1) s[x←R⟨u′⟩] :M
ES

• Strong context with explicit substitution of rigid term: Let S := S ′[x←r]. That is, t = S⟨u⟩ =
S ′⟨u⟩[x←r]→sa S ′⟨u′⟩[x←r] = S⟨u′⟩ = t′ with u→wa u′ and a ∈ {m, e}. Then Φ must be of
the following form

Φ1 ▷S Γ1;x :N ⊢(m1,s1) S ′⟨u⟩ :M Φ2 ▷S Γ2 ⊢(m2,s2) r :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) S ′⟨u⟩[x←r] :M

ES

where Γ = Γ1

⊎
Γ2 is unitary co-shrinking—implying that so are Γ1 and Γ2—and (m, s) =

(m1 +m2, s1 + s2 + 1).
First, note that since Γ2 is unitary co-shrinking and r is a rigid term, then application of
Lemma 13.8.2 (Spreading of co-shrinkingness) on Φ2 gives that N is unitary co-shrinking.
Hence, Γ1;x :N is unitary co-shrinking too. Moreover, note that S ′⟨u⟩[x←r] is an answer if
and only if S ′⟨u⟩ is an answer.
We may then apply the i.h. on Φ1, obtaining type derivation Ψ1 ▷S Γ1;x :N ⊢(m

′
1,s

′
1) S ′⟨u′⟩ :M

such that
1. if u→wm u′, then m′1 = m1 − 2 and s′1 = s1 − 1.
2. if u→we u

′, then m′1 = m1 and s′1 < s1.
We may then derive Ψ as follows

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) S ′⟨u′⟩ :M Φ2 ▷S Γ2 ⊢(m2,s2) r :N

Γ1

⊎
Γ2 ⊢(m

′
1+m2,s′1+s2+1) S ′⟨u′⟩[x←r] :M

ES

397

• Rigid term applied to strong context: Let S := rS ′. Then, t = S⟨u⟩ = rS ′⟨u⟩ →sa rS ′⟨u′⟩ =
S⟨u′⟩ = t′ with u→wa u′ and a ∈ {m, e}. Moreover, Φ must be of the following form

Φ1 ▷S Γ1 ⊢(m1,s1) r : [N ⊸ M] Φ2 ▷S Γ2 ⊢(m2,s2) S ′⟨u⟩ :N
Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) rS ′⟨u⟩ :M

app

where Γ = Γ1

⊎
Γ2and (m, s) = (m1 +m2 + 1, s1 + s2 + 1).

First, by Lemma 13.8.2 (Spreading of co-shrinkingness)—given that Γ1 is a unitary co-
shrinking type context and that r is a rigid term—we have that [N ⊸ M] is unitary co-
shrinking. Hence, N is unitary shrinking.
Next, since Γ1 being unitary co-shrinking implies that both Γ1 and Γ2 are unitary co-shrinking,
then we may apply the i.h. on Φ2 to obtain type derivation Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) S ′⟨u′⟩ :N such

that
1. if u→wm u′, then m′2 = m2 − 2 and s′2 = s2 − 1.
2. if u→we u

′, then m′2 = m2 and s′2 < s2.
We may then derive Ψ as follows:

Φ1 ▷S Γ1 ⊢(m1,s1) r : [N ⊸ M] Ψ2 ▷S Γ2 ⊢(m
′
2,s

′
2) S ′⟨u′⟩ :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) rS ′⟨u⟩ :M

app

• Rigid context applied to term: Let S := Rs. Then, t = S⟨u⟩ = R⟨u⟩s→sa R⟨u′⟩s = S⟨u′⟩ = t′

with u→wa u′ and a ∈ {m, e}. Moreover, Φ must be of the following form

Φ1 ▷S [N ⊸ M] ⊢(m1,s1) R⟨u⟩ : Φ2 ▷S Γ2 ⊢(m2,s2) s :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) R⟨u⟩s :M

app

where Γ = Γ1

⊎
Γ2 and (m, s) = (m1 + m2 + 1, s1 + s2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
Since R⟨u⟩ is not an answer, we may directly apply the i.h. on Φ2 and obtain type derivation
Φ2 ▷S Γ2 ⊢(m

′
2,s

′
2) s :N such that

1. if u→wm u′, then m′2 = m2 − 2 and s′2 = s2 − 1.
2. if u→we u

′, then m′2 = m2 and s′2 < s2.
We may then derive Ψ as follows:

Φ1 ▷S [N ⊸ M] ⊢(m1,s1) R⟨u⟩ : Φ2 ▷S Γ2 ⊢(m
′
2,s

′
2) s :N

Γ1

⊎
Γ2 ⊢(m1+m′

2+1,s1+s′2+1) R⟨u⟩s :M
app

• Rigid context with explicit substitution of rigid term: Let S := R[x←r]. That is, t = S⟨u⟩ =
R⟨u⟩[x←r] →sa R⟨u′⟩[x←r] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Φ must be of
the following form

Φ1 ▷S Γ1;x :N ⊢(m1,s1) R⟨u⟩ :M Φ2 ▷S Γ2 ⊢(m2,s2) r :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) R⟨u⟩[x←r] :M

ES

where Γ = Γ1

⊎
Γ2 and (m, s) = (m1 + m2, s1 + s2 + 1). Note that since Γ is unitary co-

shrinking, then so are Γ1 and Γ2.
First, note that since Γ2 is unitary co-shrinking and r is a rigid term, then application of
Lemma 13.8.2 (Spreading of co-shrinkingness) on Φ2 gives that N is unitary co-shrinking.
Hence, Γ1;x :N is unitary co-shrinking too.
By i.h. on Φ1, there exists Ψ1 ▷S Γ1;x :N ⊢(m

′
1,s

′
1) R⟨u′⟩ :M such that

398

1. if u→wm u′, then m′2 = m2 − 2 and s′2 = s2 − 1.
2. if u→we u

′, then m′2 = m2 and s′2 < s2.
We may then derive Ψ as follows

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) R⟨u′⟩ :M Φ2 ▷S Γ2 ⊢(m2,s2) r :N

Γ1

⊎
Γ2 ⊢(m

′
1+m2,s′1+s2+1) R⟨u′⟩[x←r] :M

ES

• Rigid term with explicit substitution of rigid context: Let S = r[x←R]. That is, t = S⟨u⟩ =
r[x←R⟨u⟩] →sa r[x←R⟨u′⟩] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Φ must be of
the following form

Φ1 ▷S Γ1;x :N ⊢(m1,s1) r :M Φ2 ▷S Γ2 ⊢(m2,s2) R⟨u⟩ :N
Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) r[x←R⟨u⟩] :M

ES

where Γ = Γ1

⊎
Γ2 and (m, s) = (m1 +m2, s1 + s2 + 1). Note that Γ is unitary co-shrinking,

and then so are Γ1 and Γ2.
Then, by i.h. on Φ2—noting that R⟨u⟩ is not an answer—there exists type derivation Ψ2 ▷S
Γ2 ⊢(m

′
2,s

′
2) R⟨u′⟩ :N such that

1. if u→wm u′, then m′2 = m2 − 2 and s′2 = s2 − 1.
2. if u→we u

′, then m′2 = m2 and s′2 < s2.
We may then derive Ψ as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) r :M Ψ2 ▷S Γ2 ⊢(m
′
2,s

′
2) R⟨u′⟩ :N

Γ1

⊎
Γ2 ⊢(m1+m′

2,s1+s′2+1) r[x←R⟨u′⟩] :M
ES

This completes the proof for the unitary (co-)shrinking case. In the (non-unitary) shrinking
case—under the weaker hypothesis that Γ is a co-shrinking context and if t is an abstraction up
to ES then M is shrinking—the proof is analogous to the one for unitary shrinking, except for the
Abstraction case. Indeed, while in the base case—i.e., when the context is empty—the unitary (co-
)shrinkingness property does not play any role, in the other (inductive) cases cases the statement
follows by i.h. in a way analogous to when we assumed the unitary shrinkingness property. Let us
see the only substantially different case:

• Abstraction: Let S := λx.S ′. That is, t = S⟨u⟩ = λx.S ′⟨u⟩ →sa λx.S ′⟨u′⟩ = S⟨u′⟩ = t′ with
u→wa u

′ and a ∈ {m, e}. Since t is an answer, M is a shrinking multi type by hypothesis, and
hence it has the form M = [O1 ⊸ N1, . . . , On ⊸ Nn] for some n > 0, where Oi is co-shrinking
and Ni is shrinking for all 1 ≤ i ≤ n. Therefore, Φ is of the following form: Φi ▷S Γi;x :Oi ⊢(mi,si) S⟨u⟩ :Ni

Γi ⊢(mi+1,si+1) λx.S⟨u⟩ :Oi ⊸ Ni
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λx.S⟨u⟩ : [Oi ⊸ Ni]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi, (m, s) = ((
∑n

i=1 mi) + n, (
∑n

i=1 si) + n) and M = [Oi ⊸ Ni]
n
i=1.

Now, for all 1 ≤ i ≤ n, we have that Γi;x :Oi is a co-shrinking type context, by hypothe-
sis. Moreover, Ni is shrinking, by hypothesis—because M = [Oi ⊸ Ni]

n
i=1 is shrinking by

hypothesis, since t is an answer.
Hence, for all 1 ≤ i ≤ n, application of the i.h. on Φi gives the existence of type derivation
Ψi ▷S Γi;x :Oi ⊢(m

′
i,s

′
i) S⟨u′⟩ :Ni such that

399

1. if u→wm u, then m′i = mi − 2 and s′i = si − 1.
2. if u→we u

′, then m′i = mi and s′i < si.
We may then derive Ψ as follows: Ψi ▷S Γi;x :Oi ⊢(m

′
i,s

′
i) S⟨u′⟩ :Ni

Γi ⊢(m
′
i+1,s′i+1) λx.S⟨u′⟩ :Oi ⊸ Ni

fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 m

′
i)+n,(

∑n
i=1 s

′
i)+n) λx.S⟨u⟩ : [Oi ⊸ Ni]

n
i=1

manyλ

(Click here to go back to main chapter.)

Correctness for Strong CbV. Finally,

Theorem 13.8.9 (Shrinking Correctness for Strong CbV).
Let Φ▷S Γ ⊢(m,s) t :M be a shrinking (resp. unitary shrinking) type derivation. Then there exists

u ∈ ΛL such that
1. u is in →s-normal form,
2. there exists a reduction sequence d : t −→∗su, and
3. m ≥ 2|d|m + |u|S (resp. m = 2|d|m + |u|S).

Proof. (Click here to go back to main chapter.)
By induction on index s, and proceeding by case analysis on whether t →s-reduces or not.
First, if t is in →s-normal form, then t = u is in →s-normal form. By Proposition 10.3.2

(Fullness of Strong CbV), u is a strong super fireball. By Proposition 11.2.2 (Typing properties of
Strong CbV-normal forms), we have that m ≥ |t|S = |u|S+ |d|m. Moreover, if Φ is unitary shrinking,
then Proposition 11.2.2 gives that m = |t|S = |u|S + |d|m.

Otherwise, if t→s s for some s ∈ ΛL, then there are two sub-cases to consider:
1. Multiplicative steps: Let t →sm s. By Proposition 11.2.5.1 (Shrinking Quantitative Subject

Reduction for Strong CbV - multiplicative steps), there exists Ψ ▷S Γ ⊢(m
′,s′) s :M such that

- If Φ is shrinking, then m′ ≤ m− 2 (entailing that m ≥ m′ + 2) and s′ < s.
- If Φ is unitary shrinking, then m′ = m− 2 (entailing that m = m′ + 2) and s′ = s− 1.

noting that Ψ is shrinking (resp. unitary shrinking) if and only if Φ is shrinking (resp. unitary
shrinking).
Then, by i.h. on Ψ, there exist u ∈ ΛL such that
(a) u is in →s-normal form,
(b) there exists a reduction sequence d′ : s −→∗s u,
(c) index m′ is such that

- if Ψ is shrinking, then m′ ≥ 2|d′|m + |u|S.
- if Ψ is unitary shrinking, then m′ = 2|d′|m + |u|S.

Finally, we have that
• if Φ is shrinking, then

m ≥ m′ + 2 ≥ (2|d′|m + |u|S) + 2 = 2(|d′|m + 1) + |u|S = 2|d|m + |u|S

• if Φ is unitary shrinking, then

m = m′ + 2 = (2|d′|m + |u|S) + 2 = 2(|d′|m + 1) + |u|S = 2|d|m + |u|S

400

2. Exponential steps: Let t →se s. By Proposition 11.2.5.2 (Shrinking Quantitative Subject
Reduction for Strong CbV - exponential steps), there exists Ψ ▷S Γ ⊢(m′,s′) s :M such that
m′ = m and s′ < s, noting that Ψ is shrinking (resp. unitary shrinking) if and only if Φ is
shrinking (resp. unitary shrinking). Then, by i.h. on Ψ, there exist u ∈ ΛL such that
(a) u is in →s-normal form,
(b) there exists a reduction sequence d′ : s −→∗su,
(c) index m′ is such that

- if Ψ is shrinking, then m′ ≥ 2|d′|m + |u|S.
- if Ψ is unitary shrinking, then m′ = 2|d′|m + |u|S.

Finally, we have that
• if Φ is shrinking, then

m = m′ ≥ 2|d′|m + |u|S = 2|d|m + |u|S
• if Φ is unitary shrinking, then

m = m′ = 2|d′|m + |u|S = 2|d|m + |u|S

(Click here to go back to main chapter.)

13.8.2 Strong CbV completeness
Typability of Strong CbV-normal forms.
Lemma 13.8.10 (Minimal typability of theoretical values).

Let vT be a theoretical value. There exists type derivation Φ ▷S ∅ ⊢(0,0) t :0.
Proof. Trivial.

Proposition 13.8.11 (Shrinking typability of Strong CbV-normal forms).
1. Inert: For every strong inert term is and co-shrinking (resp. unitary co-shrinking) multi type

M , there exists type derivation Φ ▷S Γ ⊢(m,s) is :M for some s ≥ 1, such that Γ is co-shrinking
(resp. unitary co-shrinking) and m ≥ |is|S (resp. m = |is|S).

2. Fireball: For every strong fireball fs, there exists a unitary shrinking type derivation Φ ▷S
Γ ⊢(m,s) fs :M such that m = |fs|S and s ≥ 1.

Proof. (Click here to go back to main chapter.)
Both points are proved by mutual induction on the definition of strong inert terms is and strong

fireballs fs. Cases:
• Variable: Let is := x =: fs. Let M = [L1, . . . , Ln] be a co-shrinking (resp. unitary co-

shrinking) multi type for some n ∈ N. We can build Φ as follows(
x : [Li] ⊢(0,1) x :Li

ax
)n

i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where Γ = {x :M} is a co-shrinking (resp. unitary co-shrinking) context, with M = [Li]
n
i=1.

Note that if M = [X] then M is both a unitary shrinking and a unitary co-shrinking multi
type, and so Γ is a unitary co-shrinking context.

401

• Inert application: Let is := jsfs. Let M be a co-shrinking (resp. unitary co-shrinking) multi
type. By i.h., there is a derivation Ψ ▷S Π ⊢(m1,s1) fs :N where Π is unitary co-shrinking and
N is unitary shrinking. Hence, [N ⊸ M] is co-shrinking (resp. unitary co-shrinking). By
i.h. (inert), there exists Θ ▷S ∆ ⊢(m2,s2) is : [N ⊸ M] where ∆ is co-shrinking (resp. unitary
co-shrinking). We can then derive

Ψ ▷S Π ⊢(m1,s1) fs :N Θ ▷S ∆ ⊢(m2,s2) is : [N ⊸ M]

Π
⊎

∆ ⊢(m1+m2,s1+s2+1) isfs :M
app

where Γ = Π
⊎

∆ is a co-shrinking (resp. unitary co-shrinking) context. Moreover, if M = [X]
then M is both a unitary shrinking and a unitary co-shrinking multi type, hence Γ is a unitary
co-shrinking context (by i.h.).

• Explicit substitution on inert: Let is := js[x←ks]. Let M be a co-shrinking (resp. unitary
co-shrinking) multi type.
By i.h. (inert), there exists Ψ ▷S Π;x :N ⊢(m1,s1) js :M where Π;x :N is a co-shrinking
(resp. unitary co-shrinking) context; in particular, N is a co-shrinking (resp. unitary co-
shrinking) multi type . By i.h. (2), there exists Θ▷S∆ ⊢(m2,s2) ks :N where ∆ is a co-shrinking
(resp. unitary co-shrinking) context and N is a co-shrinking (resp. unitary co-shrinking) multi
type.
We may then derive Φ as follows:

Ψ ▷S Π;x :N ⊢(m1,s1) js :M Θ ▷S ∆ ⊢(m2,s2) ks :N

Π
⊎

∆ ⊢(m1+m2,s1+s2+1) js[x←s] :M
ES

where Γ = Π
⊎

∆ is a co-shrinking (resp. unitary co-shrinking) context. Moreover, if M = [X]
then M is both a unitary shrinking and a unitary co-shrinking multi type, hence Γ is a unitary
co-shrinking context (by i.h.).

• Abstraction: Let fs := λx.gs. By i.h., there exists Ψ ▷S Π;x :O ⊢(m1,s1) gs :N where Γ;x :O
is a unitary co-shrinking context and N is a unitary shrinking multi type. Note that then
M := [O ⊸ N] is a unitary co-shrinking multi type. We may then derive Φ as follows

Ψ ▷S Π;x :O ⊢(m1,s1) gs :N

Π ⊢(m1+1,s1+1) λx.gs :O ⊸ N
fun

Π ⊢(m1+1,s1+1) λx.gs : [O ⊸ N]
manyλ

noting that Π is a unitary co-shrinking context.
• Explicit substitution on fireball: Let fs := gs[x←is].

By i.h., there exists Ψ ▷S Π;x :N ⊢(m1,s1) gs :M where M is a unitary co-shrinking multi type
and Π;x :N is a unitary co-shrinking context; in particular, N is a unitary co-shrinking multi
type.
By i.h., there exists Θ ▷S ∆ ⊢(m2,s2) is :N where ∆ is a unitary co-shrinking context and N is
a unitary co-shrinking multi type.
We may then derive Φ as follows:

Ψ ▷S Π;x :N ⊢(m1,s1) gs :M Θ ▷S ∆ ⊢(m2,s2) is :N

Π
⊎

∆ ⊢(m1+m2,s1+s2+1) gs[x←is] :M
ES

where Γ = Π
⊎

∆ is a unitary co-shrinking context.

402

w

(Click here to go back to main chapter.)

Removal for Strong CbV.

Lemma 13.8.12 (Removal for Strong CbV).
Let t ∈ ΛL, let vT be a theoretical value such that x /∈ fv(vT), and let

Φt{x←vT} ▷S Γ ⊢(m,s) t{x←v} :M

Then there exist type derivations

Φt ▷S Π;x :N ⊢(m
′,s′) t :M

Θ ▷S ∆ ⊢(m
′′,s′′) v :N

such that Γ = Π
⊎
∆, m = m′ +m′′ and s ≤ s′ + s′′.

Proof. (Click here to go back to main chapter.)
By structural induction on the t. Cases:
• Variable: Let t ∈ Var. There are two sub-cases:

1. Let t := x. That is, t{x←vT} = x{x←vT} = vT. Case analysis on whether vT ∈ Var or
vT ∈ Val:

– Let vT = y ∈ Var. We may safely assume that y ̸= x. Then Φt{x←vT} must be of the
following form: (

y :Li ⊢(0,1) y :Li

ax
)n

i=1

y : [Li]
n
i=1 ⊢(0,n) y : [Li]

n
i=1

manyVAR

where Γ = ∅ and M = [L1, . . . , Ln] = N .
The statement holds by deriving Φt as(

x :Li ⊢(0,1) x :Li

ax
)n

i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

and taking Θ := Φt{x←vT}.
– The case where vT ∈ Val is analogous to the case where vT ∈ Var, except that the

role played by manyVAR is now played by manyλ.
2. Let t := z ̸= x. That is, t{x←vT} = z{x←vT} = z. Then Φt{x←vT} must be of the

following form: (
z :Li ⊢(0,0) z :Li

ax
)n

i=1

z : [Li]
n
i=1 ⊢(0,0) z : [Li]

n
i=1

manyVAR

where M = [Li]
n
i=1, Γ = {z : [Li]

n
i=1}. The statement holds by taking Φt := Φt{x←vT} and

deriving Θ depending on whether vT ∈ Var or vT ∈ Val:

403

– If vT ∈ Var, then we derive Θ as

∅ ⊢(0,0) vT :0
manyVAR

– If vT ∈ Val, then we derive Θ as

∅ ⊢(0,0) vT :0
manyλ

• Application: Let t := sm. That is, t{x←vT} = s{x←vT}m{x←vT}. Then Φt{x←vT} must be
of the following form

Φs ▷S Γs ⊢(ms,ss) s{x←vT} : [O ⊸ M] Φm ▷S Γm ⊢(mm,sm) m{x←vT} :O
Γs

⊎
Γm ⊢(ms+mm+1,ss+sm+1) s{x←vT}m{x←vT} :M

app

where Γ = Γs

⊎
Γm, N = Ns ⊎Nm and (m, s) = (ms +mm + 1, ss + sm + 1).

By i.h. on Φs, there exist type derivations

Φs ▷S Πs;x :Ns ⊢(m
′
s,s

′
s) s : [O ⊸ M]

Θs ▷S ∆s ⊢(m
′′
s ,s

′′
s) vT :O

such that Γs = Πs

⊎
∆s, ms = m′s +m′′s and ss ≤ s′s + s′′s .

Similarly, an application of the i.h. on Φm gives the existence of type derivations

Φm ▷S Πm;x :Nm ⊢(m
′
m,s′m) m :O

Θm ▷S ∆m ⊢(m
′′
m,s′′m) vT :O

such that Γm = Πm

⊎
∆m, mm = m′m +m′′m and sm ≤ s′m + s′′m.

By application of Lemma 13.8.13 (Merging multi types of Strong CbV type derivations) on
Θs and Θm, we take Φ to be

Θ ▷S ∆s

⊎
∆m ⊢(m

′′
s+m′′

m,s′′s+s′′m) vT :Ns ⊎Nm

Finally, we may derive Φt as follows

Φs ▷S Πs;x :Ns ⊢(m
′
s,s

′
s) s : [O ⊸ M] Φm ▷S Πm;x :Nm ⊢(m

′
m,s′m) m :O

Πs

⊎
Πm ⊢(m

′
s+m′

m+1,s′s+s′m+1) sm :M
app

• Abstraction: Let t := λy.s, implying that t{x←vT} = λy.(s{x←vT}). Note that we may safely
assume that y /∈ (fv(vT) ∪ {x})—by α-equivalence. Then Φt{x←vT} must be of the following
form: Φi ▷S Γi; y :Oi ⊢(mi,si) s{x←vT} :Pi

Γi ⊢(mi+1,si+1) λy.s{x←vT} :Oi ⊸ Pi
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λy.s{x←vT} : [Oi ⊸ Pi]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi, M = [Oi ⊸ Pi]
n
i=1 and (m, s) = ((

∑n
i=1 mi) + n, (

∑n
i=1 si) + n). Case

analysis on whether n > 0:

404

– Let n := 0. We may then derive Φt as

∅ ⊢(0,0) λy.s :0
manyλ

where the type context may be rewritten as ∅;x :0. We may then derive Θ as

∅ ⊢(0,0) vT :0
manyVAR

if vT ∈ Var, or as
∅ ⊢(0,0) vT :0

manyλ

if vT ∈ Val.
– Let n > 0. We apply the i.h. on each of the premises Φi. Thus, for all 1 ≤ i ≤ n, there

exist type derivations
Φi ▷S Πi; y :Oi;x :Ni ⊢(m

′
i,s

′
i) s :Pi

Θi ▷S ∆i ⊢(m
′′
i ,s

′′
i) vT :Ni

where Γi = Πi

⊎
∆i, mi = m′i + m′′i and si ≥ s′i + s′′i . Note that ∆i(y) = 0 for all

1 ≤ i ≤ n, by Lemma 11.2.1 (Relevance of the Strong CbV type system) and the fact
that y /∈ fv(vT).
We may then obtain Θ by repeated applications of Lemma 13.8.13 (Merging multi types
of type derivations), giving us type derivation:

Θ ▷S

(
n⊎

i=1

∆i

)
⊢(

∑n
i=1 m

′′
i ,
∑n

i=1 s
′′
i) vT : (⊎ni=1Ni)

Finally, we may obtain Φt as follows Φi ▷S Πi; y :Oi;x :Ni ⊢(m
′
i,s

′
i) s :Pi

Πi;x :Ni ⊢(mi+1,si+1) λy.s :Oi ⊸ Pi
fun

n

i=1

(
⊎n

i=1Πi) ; x : (⊎ni=1Ni) ⊢((
∑n

i=1 mi)+n,(
∑n

i=1 si)+n) λy.s : [Oi ⊸ Pi]
n
i=1

manyλ

• Explicit substitution: Let t := s[y←m], implying that t{x←vT} = s{x←vT}[y←m{x←vT}].
We may safely assume that y /∈ (fv(vT) ∪ {x})—by α-equivalence. Then Φt{x←vT} must be of
the following form:

Φs ▷S Γs; y :O ⊢(ms,ss) s{x←vT} :M Φm{x←vT} ▷S Γm; y :0 ⊢(mm,sm) m{x←vT} :O
(Γs

⊎
Γm) ⊢(ms+mm,ss+sm+1) (s{x←vT})[y←m{x←vT}] :M

ES

where Γ = Γs

⊎
Γm and (m, s) = (ms +mm + 1, ss + sm + 1).

By i.h. on Φs, there exist type derivations

Φs ▷S (Πs; y :O) ; x :Ns ⊢(m
′
s,s

′
s) s :M

Θs ▷S ∆s ⊢(m
′′
s ,s

′′
s) vT :Ns

such that Γs = (Πs; y :O)
⊎

∆s, ms = m′s +m′′s and ss ≤ s′s + s′′s . Note that ∆s(y) = 0 by the
fact that y /∈ fv(vT) and by Lemma 11.2.1 (Relevance of the Strong CbV type system).

405

Similarly, an application of the i.h. on Φm gives the existence of type derivations

Φm ▷S Πm;x :Nm ⊢(m
′
m,s′m) m :O

Θm ▷S ∆m ⊢(m
′′
m,s′′m) vT :O

such that Γm = Πm

⊎
∆m, mm = m′m +m′′m and sm ≤ s′m + s′′m.

We may then obtain Θ by repeated applications of Lemma 13.8.13 (Merging multi types of
Strong CbV type derivations), yielding type derivation

Θ ▷S ∆s

⊎
∆m ⊢(m

′′
s+m′′

m,s′′s+s′′m) :Ns ⊎Nm

Finally, we may derive Φt as follows

Φs ▷S Πs;x :Ns ⊢(m
′
s,s

′
s) s : [O ⊸ M] Φm ▷S Πm;x :Nm ⊢(m

′
m,s′m) m :O

Πs

⊎
Πm ⊢(m

′
s+m′

m+1,s′s+s′m+1) sm :M
ES

(Click here to go back to main chapter.)

Subject Expansion for Strong CbV. Analogously to the study of the Subject Reduction prop-
erty, Subject Expansion for Strong CbV is obtained by first studying the weak case—i.e., the Open
evaluation strategy →w—and then building on it to obtain the result for the strong case.

Firstly, the following is required to apply Lemma 11.2.8 (Removal for Strong CbV) in the proofs
of Lemma 11.2.9.2 (Open Quantitative Subject Expansion for Strong CbV - exponential case) and
Proposition 11.2.10.2 (Shrinking Quantitative Subject Expansion for Strong CbV - exponential case)
to obtain the right indices.

Lemma 13.8.13 (Merging multi types of Strong CbV type derivations).
Let t ∈ (Var ∪ Val)—i.e., t is a theoretical value. For any two type derivations

ΦN ▷S ΓN ⊢(mN ,sN) t :N
ΦO ▷S ΓO ⊢(mO,sO) t :O

there exists type derivation
ΦN⊎O ▷S ΓN ⊢(mN+mO,sN+sO) t :N

Proof.
Trivial, considering how the only typing rules deriving a multi type for theoretical values—i.e.,

for variables and values—are manyVAR and manyλ, whose premises can be joined at will.

Lemma 13.8.14 (Open Quantitative Subject Expansion for Strong CbV).
Let Ψ ▷S Γ ⊢(m,s) u :M be a type derivation.

1. Multiplicative: If t →wm u, then there exists type derivation Φ ▷S Γ ⊢(m+2,s′) t :M such that
s′ > s.

2. Exponential: If t→we u, then there exists type derivation Φ ▷S Γ ⊢(m,s′) t :M such that s′ > s.

Proof. (Click here to go back to main chapter.)

406

1. Multiplicative steps: By induction on the open evaluation context O such that t = O⟨s⟩ →wm

O⟨s′⟩ = u, with s 7→wm s′. Cases:
• Context hole: Let O := ⟨·⟩. Then t = s = S⟨λx.m⟩t̃ and u = s′ = S⟨m[x←t̃]⟩. We

proceed by induction on the length of S:
– Base case: Let S := ⟨·⟩. Then Ψ is of the following form:

Φm ▷S Γm;x :N ⊢(mm,sm) m :M Φt̃ ▷S Γt̃ ⊢(mt̃,st̃) t̃ :N

Γs

⊎
Γm ⊢(mm+mt̃,sm+st̃+1) :M

ES

The statement holds by deriving Ψ as follows

Φm ▷S Γm;x :N ⊢(mm,sm) m :M

Γm ⊢(mm+1,sm+1) λx.m :N ⊸ M
fun

Γm ⊢(mm+1,sm+1) λx.m : [N ⊸ M]
many

Φt̃ ▷S Γt̃ ⊢(mt̃,st̃) t̃ :N

Γm

⊎
Γt̃ ⊢(mm+mt̃+2,sm+st̃+2) (λx.m)t̃ :M

app

– Inductive case: Let S := S ′[y←ũ]. Then Φ′ is of the following form

ΦS′⟨m[x←t̃]⟩ ▷S Γ1; y :N ⊢(m1,s1) S ′⟨m[x←t̃]⟩ :M Φũ ▷S Γ2 ⊢(m2,s2) ũ :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) S⟨m[x←t̃]⟩ :M

ES

By i.h. on ΦS′⟨m[x←t̃]⟩, we get type derivation

Φind ▷S Γ1; y :N ⊢(m1+2,s′) S ′⟨λx.m⟩t̃ :M

such that s′ > s. Note that Φind must must be of the following form

Φ1 ▷S Π1; y :N ⊢(m
′′
1 ,s

′′
1) S ′⟨λx.m⟩ : [O ⊸ M] Φ2 ▷S Π2 ⊢(m

′′
2 ,s

′′
2) t̃ :O

Π1

⊎
Π2 ⊢(m

′′
1+m′′

2+1,s′′1+s′′2+1) S ′⟨λx.m⟩t̃ :M
app

such that Γ1; y :N = (Π1; y :N)
⊎
Π2, m1 + 2 = m′′1 +m′′2 + 1 and s′ = s′′1 + s′′2 + 1.

Therefore, the statement holds by deriving Φ as follows
Φ1 Φũ

Π1

⊎
Γ2 ⊢(m

′′
1+m2,s′′1+s2+1) S⟨λx.m⟩ : [O ⊸ M]

ES
Φ2 ▷S Π2 ⊢(m

′′
2 ,s

′′
2) t̃ :O

Π1

⊎
Γ2

⊎
Π2 ⊢(m

′′
1+m2+m′′

2+1,s′′1+s2+1+s′′2+1) (S⟨λx.m⟩)t̃ :M
app

• Left of an application: Let O := O′m. Then Ψ is of the following form:

ΦO′⟨s′⟩ ▷S Γ1 ⊢(m1,s1) O′⟨s′⟩ : [N ⊸ M] Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) O′⟨s′⟩m :M

app

The statement follows easily by application of the i.h. on ΦO′⟨s′⟩ and then deriving Φ by
combining the result of the i.h. with Φm.

• Right of an application: Analogous to the previous case.
• Left of an ES: Let O := O′[x←m]. Then Ψ is of the following form:

ΦO′⟨s′⟩ ▷S Γ1;x :N ⊢(m1,s1) O′⟨s⟩ :M Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) O′⟨s′⟩[x←m] :M

ES

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Φ by
combining the result of the i.h. with Φm.

407

• Inside of an ES: Analogous to the previous case.
2. Exponential steps: By induction on the open evaluation context O such that t = O⟨s⟩ →we

O⟨s′⟩ = u, with s = s′′[x←S⟨vT⟩] 7→we S⟨s′′{x←vT}⟩ = s′:
• Context hole: Let O := ⟨·⟩. Then t = s = s′′[x←S⟨vT⟩] and u = s′ = S⟨s′′{x←vT}⟩. We

proceed by induction on the length of S:
– Base case: Let S := ⟨·⟩. Then Ψ ▷S Γ ⊢(m′,s′) s′′{x←vT} :M . By Lemma 11.2.8

(Removal for Strong CbV), there exist

Φs′ ▷S Γ1;x :N ⊢(m
′
1,s

′
1) s′′ :M

ΦvT ▷S Γ2 ⊢(m
′
2,s

′
2) vT :N

such that Γ = Γ1

⊎
Γ2 and m′ = m′1 +m′2 and s′ ≤ s′1 + s′2.

The statement holds by deriving Φ as follows:

Φs′ ▷S Γ1;x :N ⊢(m
′
1,s

′
1) s′′ :M ΦvT ▷S Γ2 ⊢(m

′
2,s

′
2) vT :N

Γ1

⊎
Γ2 ⊢(m

′
1+1,s′1+s′2+1) s′′[x←vT] :M

ES

– Inductive case: Let S := S ′[y←m]. Then Ψ must be of the following form

ΦS′⟨s′′{x←vT}⟩ ▷S Γ1; y :N ⊢(m1,s1) S ′⟨s′′{x←vT}⟩ :M Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) (S ′[y←m])⟨s′′{x←vT}⟩ :M

ES

By i.h. on ΦS′⟨s′′{x←vT}⟩, there exist type derivation

Φind ▷S Γ1; y :N ⊢(m1,s′1) s′′[x←S ′⟨vT⟩] :M

such that s′1 > s′. Moreover, note that Φind must be of the following form

Ψ1 ▷S Π1;x :N ⊢(m
′′
1 ,s

′′
1) s′′ :M Ψ2 ▷S Π2 ⊢(m

′′
2 ,s

′′
2) S ′⟨vT⟩ :N

Π1

⊎
Π2 ⊢(m

′′
1+m′′

2 ,s
′′
1+s′′2+1) s′′[x←S ′⟨vT⟩] :

ES

where Γ1; y :N = Π1

⊎
Π2 and (m1, s

′
1) = (m′′1 +m′′2, s

′′
1 + s′′2 + 1).

The statement then holds by deriving Φ as follows

Ψ1

Ψ2 Φm

Π2

⊎
Γ2 ⊢(m

′′
2+m2,s′′2+s′+1) S⟨vT⟩ :N

ES

Π1

⊎
Π2

⊎
Γ2 ⊢(m

′′
1+m′′

2+m2,s′′1+s′′2+s′+2) s′′[x←S⟨vT⟩] :M
ES

• Left of an application: Let O := O′m. Then Φ is of the following form:

ΦO′⟨s′⟩ ▷S Γ1 ⊢(m1,s1) O′⟨s⟩ : [N ⊸ M] Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) O′⟨s′⟩m :M

app

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

• Right of an application: Analogous to the previous case.

408

• Left of an ES: Let O := O′[x←u]. Then Φ is of the following form:

ΦO′⟨s′⟩ ▷S Γ1;x :N ⊢(m1,s1) O′⟨s′⟩ :M Φm ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) O′⟨s′⟩[x←m] :M

ES

The statement follows easily by application of the i.h. on ΦO′⟨s⟩ and then deriving Ψ by
combining the result of the i.h. with Φm.

• Inside of an ES: Analogous to the previous case.

(Click here to go back to main chapter.)
We can now prove the following

Proposition 13.8.15 (Shrinking Quantitative Subject Expansion for Strong CbV).
Let Ψ▷SΓ ⊢(m

′,s′) t′ :M be a type derivation, with Γ a unitary co-shrinking type context. Moreover,
suppose that if u is an answer, then M is unitary shrinking.

1. Multiplicative: If t→sm t′, then there exists type derivation Φ ▷S Γ ⊢(m+2,s+1) t :M .
2. Exponential: If t→se t

′, then there exists type derivation Φ▷SΓ ⊢(m
′,s′) t :M such that m′ = m

and s′ > s.

Proof. (Click here to go back to main chapter.)
By induction on the evaluation context S in the step t = S⟨u⟩ →s S⟨u′⟩ = t′ with u→wm u′ or

u→we u
′. Cases for S:

• Hole context: Let S := ⟨·⟩ and t→wa t
′ with a ∈ {m, e}. By Lemma 11.2.4 (Open Quantitative

Subject Reduction for Strong CbV) on Ψ, we have that
– if t→wm t′, then there exists Φ ▷S Γ ⊢(m

′+2,s′+1) t :M .
– if t→we t

′, then there exists Φ ▷S Γ ⊢(m,s) t :M such that m = m′ and s > s′.
Note that, in this case, we do not use the hypothesis that Γ is a unitary co-shrinking context
and that M is a unitary shrinking multi type if t′ is an answer.

• Abstraction: Let S := λx.S ′. Then, t = S⟨u⟩ = λx.S ′⟨u⟩ →sa λx.S ′⟨u′⟩ = S⟨u′⟩ = t′ with
u →wa u′ and a ∈ {m, e}. Since t′ is an abstraction, M is a unitary shrinking multi type by
hypothesis and hence it has the form M = [O ⊸ N] where O is unitary co-shrinking and N
is unitary shrinking. Then Ψ must be of the following form

Ψ1 ▷S Γ;x :O ⊢(m
′
1,s

′
1) S ′⟨u′⟩ :N

Γ ⊢(m′
1+1,s′1+1) S ′⟨u′⟩ :O ⊸ N

fun

Γ ⊢(m′
1+1,s′1+1) S ′⟨u′⟩ : [O ⊸ N]

manyλ

where (m′, s′) = (m1 + 1, s1 + 1).
Since Γ;x :O is a unitary co-shrinking type context, then we may apply the i.h. on Ψ1 to get
type derivation Φ1 ▷S Γ;x :O ⊢(m1,s1) S ′⟨u⟩ :N such that

1. if u→wm u′, then m1 = m′1 + 2 and s1 = s′1 + 1.
2. if u→we u

′, then m1 = m′1 and s1 < s′1.
We may then derive Φ as follows

Φ1 ▷S Γ;x :O ⊢(m1,s1) S ′⟨u′⟩ :N
Γ ⊢(m1+1,s1+1) S ′⟨u′⟩ :O ⊸ N

fun

Γ ⊢(m1+1,s1+1) S ′⟨u′⟩ : [O ⊸ N]
manyλ

409

• Explicit substitution of rigid context: Let S := s[x←R]. That is, t = S⟨u⟩ = s[x←R⟨u⟩] →sa

s[x←R⟨u′⟩] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Ψ must be of the following
form

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) s :M Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) R⟨u′⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2,s
′
1+s′2+1) s[x←R⟨u′⟩] :M

ES

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2, s

′
1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
By i.h. on Ψ2—noting that R⟨u′⟩ is not an answer—there exists type derivation Φ2▷SΓ2 ⊢(m2,s2)

R⟨u⟩ :N such that:
1. if u→wm u′, then m2 = m′2 + 2 and s2 = s′2 + 1.
2. if u→we u

′, then m2 = m′2 and s2 < s′2.
We may then derive Φ as follows

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) s :M Φ2 ▷S Γ2 ⊢(m2,s2) R⟨u⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m2,s′1+s2+1) s[x←R⟨u⟩] :M

ES

• Explicit substitution on strong: Let S := S ′[x←r]. That is, t = S⟨u⟩ = S ′⟨u⟩[x←r] →sa

S ′⟨u′⟩[x←r] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Ψ must be of the following
form:

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) S ′⟨u′⟩ :M Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) r :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2,s
′
1+s′2+1) S ′⟨u′⟩[x←r] :M

ES

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2, s

′
1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
First, note that since r is a rigid term and Γ2 is unitary co-shrinking, we may apply
Lemma 13.8.2 (Spreading of co-shrinkingness) on Ψ2 obtaining that N is unitary co-shrinking.
Hence, Γ1;x :O is unitary co-shrinking. Moreover, note that S ′⟨u′⟩[x←r] is an answer if and
only if S ′⟨u⟩ is an answer. Hence, we may apply the i.h. on Ψ1 to obtain type derivation
Φ1 ▷S Γ1;x :N ⊢(m1,s1) S ′⟨u⟩ :M such that

1. if u→wm u′, then m1 = m′1 + 2 and s1 = s′1 + 1.
2. if u→we u

′, then m1 = m′1 and s1 < s′1.
We may then derive Φ as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) S ′⟨u⟩ :M Ψ2 ▷S Γ2 ⊢(m
′
2,s

′
2) r :N

Γ1

⊎
Γ2 ⊢(m1+m′

2,s1+s′2+1) S ′⟨u⟩[x←r] :M
ES

• Application to strong: Let S := rS ′. That is, t = S⟨u⟩ = rS ′⟨u⟩ →sa rS ′⟨u′⟩ = S⟨u′⟩ = t′ with
u→wa u′ and a ∈ {m, e}. Then Ψ must be of the following form

Ψ1 ▷S Γ1 ⊢(m
′
1,s

′
1) r : [N ⊸ M] Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) S ′⟨u′⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2+1,s′1+s′2+1) rS ′⟨u′⟩ :M
app

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2 + 1, s′1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
By Lemma 13.8.2(Spreading of co-shrinkingness) on Ψ1—given that Γ1 is unitary co-shrinking
and that r is a rigid term—we have that [N ⊸ M] is unitary co-shrinking, implying that N
is unitary shrinking.
Hence, we may apply the i.h. on Ψ2 obtaining type derivation Φ2 ▷S Γ2 ⊢(m2,s2) S ′⟨u⟩ :N such
that

410

1. if u→wm u′, then m2 = m′2 + 2 and s2 = s′2 + 1.
2. if u→we u

′, then m2 = m′2 and s2 < s′2.
We may then build Φ as follows

Ψ1 ▷S Γ1 ⊢(m
′
1,s

′
1) r : [N ⊸ M] Φ2 ▷S Γ2 ⊢(m2,s2) S ′⟨u⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m2+1,s′1+s2+1) rS ′⟨u′⟩ :M

app

• Application of inert: Let S := Rs. That is, t = S⟨u⟩ = R⟨u⟩s →sa R⟨u′⟩s = S⟨u′⟩ = t′ with
u→wa u′ and a ∈ {m, e}. Then Ψ must be of the following form

Ψ1 ▷S Γ1 ⊢(m
′
1,s

′
1) R⟨u′⟩ : [N ⊸ M] Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) S ′⟨s⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2+1,s′1+s′2+1) R⟨u′⟩s :M
app

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2 + 1, s′1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
Since R⟨u′⟩ is not an answer, we may directly apply the i.h. on Ψ1 obtaining type derivation
Φ1 ▷S Γ1 ⊢(m1,s1) R⟨u⟩ : [N ⊸ M] such that

1. if u→wm u′, then m1 = m′1 + 2 and s1 = s′1 + 1.
2. if u→we u

′, then m1 = m′1 and s1 < s′1.
We may finally derive Φ as follows

Φ1 ▷S Γ1 ⊢(m1,s1) R⟨u⟩ : [N ⊸ M] Ψ2 ▷S Γ2 ⊢(m
′
2,s

′
2) S ′⟨s⟩ :N

Γ1

⊎
Γ2 ⊢(m1+m′

2+1,s1+s′2+1) R⟨u⟩s :M
app

• Explicit substitution on inert: Let S := R[x←r]. That is, t = S⟨u⟩ = R⟨u⟩[x←r] →sa

R⟨u′⟩[x←r] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Ψ must be of the following
form

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) R⟨u′⟩ :M Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) r :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2,s
′
1+s′2+1) R⟨u′⟩[x←r] :M

ES

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2, s

′
1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
First, by Lemma 13.8.2 (Spreading of co-shrinkingness) on Ψ2—given that r is a rigid term—
we have that N is a unitary co-shrinking multi type. Hence, Γ1;x :N is a unitary co-
shrinking type context. We may then apply the i.h. on Ψ1, obtaining type derivation
Φ1 ▷S Γ1;x :N ⊢(m1,s1) R⟨u⟩ :M such that

1. if u→wm u′, then m1 = m′1 + 2 and s1 = s′1 + 1.
2. if u→we u

′, then m1 = m′1 and s1 < s′1.
We may finally derive Φ as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) R⟨u⟩ :M Ψ2 ▷S Γ2 ⊢(m
′
2,s

′
2) r :N

Γ1

⊎
Γ2 ⊢(m1+m′

2,s1+s′2+1) R⟨u⟩[x←r] :M
ES

• Explicit substitution of inert on rigid: Let S := r[x←R]. That is, t = S⟨u⟩ = r[x←R⟨u⟩]→sa

r[x←R⟨u′⟩] = S⟨u′⟩ = t′ with u →wa u′ and a ∈ {m, e}. Then Ψ must be of the following
form

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) r :M Ψ2 ▷S Γ2 ⊢(m

′
2,s

′
2) R⟨u′⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m′

2,s
′
1+s′2+1) R⟨u′⟩[x←r] :M

ES

411

where Γ = Γ1

⊎
Γ2 and (m′, s′) = (m′1 + m′2, s

′
1 + s′2 + 1). Note that since Γ is unitary

co-shrinking, then so are Γ1 and Γ2.
By i.h. applied to Ψ2—directly applicable because R⟨u⟩ is not an answer—there exists type
derivation Φ2 ▷S Γ2 ⊢(m2,s2) R⟨u⟩ :N such that

1. if u→wm u′, then m2 = m′2 + 2 and s2 = s′2 + 1.
2. if u→we u

′, then m2 = m′2 and s2 < s′2.
We may then derive Φ as follows:

Ψ1 ▷S Γ1;x :N ⊢(m
′
1,s

′
1) r :M Φ2 ▷S Γ2 ⊢(m2,s2) R⟨u⟩ :N

Γ1

⊎
Γ2 ⊢(m

′
1+m2,s′1+s2+1) r[x←R⟨u⟩] :M

ES

(Click here to go back to main chapter.)

Completeness for Strong CbV. Finally,
Theorem 13.8.16 (Shrinking Completeness for Strong CbV).

Let t ∈ ΛL. If there exists d : t −→∗s u such that u in →s-normal form, then there exists a unitary
shrinking type derivation Φ ▷S Γ ⊢(2|d|m+|u|S,s) t :M , for some s ≥ 0.
Proof. (Click here to go back to main chapter.)

By induction on the length of |d| of the reduction sequence d : t −→∗su:
• Base case: Let k := 0. Then t is in→s-normal form and t = u. By Proposition 10.3.2 (Fullness

of Strong CbV), t is a strong super fireball. The statement then holds by Proposition 11.2.7
(Shrinking typability of Strong CbV-normal forms).

• Inductive case: Let k > 0. That is, d is of the following form
d : t →s s →k−1

s u︸ ︷︷ ︸
d′

By i.h. on d′ : s −→∗s u, there exists unitary shrinking type derivation
Ψ ▷S Γ ⊢(2|d

′|m+|u|S,s′) s :M

for some s′ ≥ 0. We proceed by case analysis on the kind of reduction step in t→s s:
– Multiplicative step: Let t →sm s. By Proposition 11.2.10.1 (Shrinking Quantitative

Subject Expansion for Strong CbV - multiplicative steps), there exists type derivation
Θ ▷S Γ ⊢(2|d

′|m+|u|S+2,s′+1) s :M

noting that
2|d′|m + |u|S + 2 = 2(|d′|m + 1) + |u|S = 2|d|m + |u|S

and that s′ ≥ 0. The statement follows by taking Φ := Θ.
– Exponential step: Let t→se s. By Proposition 11.2.10.2 (Shrinking Quantitative Subject

Expansion for Strong CbV - exponential steps), there exists type derivation
Θ ▷S Γ ⊢(2|d

′|m+|u|S,s′′) s :M

for some s′′ > s′ ≥ 0. Note that 2|d′|m + |u|S = 2|d|m + |u|S. The statement follows by
taking Φ := Θ.

(Click here to go back to main chapter.)

412

13.8.3 Size of Strong CbV-normal forms via multi types
Proposition 13.8.17 (Shrinking types bound the size of Strong CbV-normal forms).

Let t ∈ ΛL be in →s-normal form and let Φ ▷S Γ ⊢(m,s) t :M be a type derivation, with Γ a
co-shrinking type context.

1. Inert: If t is a strong inert term, then |M |+ |t|S ≤ |Γ̂|.
2. Fireball: If t is a strong fireball and M is shrinking, then |t|S ≤ |M |+ |Γ̂|

Proof. (Click here to go back to main chapter.)
By mutual induction on the definition of strong inert term and strong fireball. Note that the

statement for strong inert terms implies the one for strong fireballs, and so it is enough to prove
Point 1 for strong inert terms. Cases:

• Variable: Let t := x ∈ Var. Then Φ must be of the following form(
x : [Li] ⊢(0,1) x :Li

ax
)n

i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where Γ = {x :M} and M = [Li]
n
i=1. Since |t|S = 0, we have that |M |+ |t|S = |Γ̂|.

• Application: Let t := isfs. Then Φ must be of the following form:

Ψ ▷S Γ1 ⊢(m1,s1) is : [N ⊸ M] Θ ▷S Γ2 ⊢(m2,s2) fs :N

Γ1

⊎
Γ2 ⊢(m1+m2+1,s1+s2+1) isfs :M

app

where Γ = Γ1

⊎
Γ2. Note that since Γ is co-shrinking, then so are Γ1 and Γ2.

First, note that since is is a rigid term and Γ1 is co-shrinking, we have that [N ⊸ M] is co-
shrinking, by Lemma 13.8.2 (Spreading of co-shrinkingness). This entails that N is shrinking.
By i.h. (1) on Ψ, we have that |[N ⊸ M]|+ |is|S ≤ |Γ̂1|.
By i.h. (2) on Θ, we have that |fs|S ≤ |N |+ |Γ̂2|.
Then

|M |+ |isfs|S = |M |+ |is|S + |fs|S + 1

≤ |M |+ |is|S + (|N |+ |Γ̂2|) + 1

= |Γ̂2|+ |[N ⊸ M]|+ |is|S
≤ |Γ̂1|+ |Γ̂2|
= |Γ̂|

Since t is a strong inert term, Point 2 follows from Point 1.
• Explicit substitution on inert: Let t := is[x←js]. Then Φ must be of the following form:

Ψ ▷S Γ1;x :N ⊢(m1,s1) is :M Θ ▷S Γ2 ⊢(m2,s2) fs :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) is[x←fs] :M

ES

Note that since Γ is co-shrinking, then so are Π and ∆.
First, since js is a rigid term, we can apply Lemma 13.8.2 (Spreading of co-shrinkingness) to
Θ, getting that N is co-shrinking. This entails that Π;x :N is a co-shrinking type context.
By i.h. (1) on Ψ, we get that |M |+ |is|S ≤ | ˆ(Γ1;x :N)| = |Γ̂1|+ |N |.
By i.h. (2) on Θ, we get that |N |+ |js|S ≤ |Γ̂2|.

413

Then

|M |+ |t|S = |M |+ |is|S + |js|S ≤ (|Γ̂1|+ |N |) + |js|S ≤ |Γ̂1|+ |Γ̂2| = |Γ̂|

Since t is a strong inert term, Point 2 follows from Point 1.
• Explicit substitution on fireball: Let t := fs[x←is]. Then Φ must be of the following form

Ψ ▷S Γ1;x :N ⊢(m1,s1) fs :M Θ ▷S Γ2 ⊢(m2,s2) is :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) fs[x←is] :M

ES

Note that since Γ = Π
⊎

∆ is co-shrinking, then so are Π and ∆.
First, and since is is a rigid term, we have that N is co-shrinking, by Lemma 13.8.2 (Spreading
of co-shrinkingness) on Θ. This entails entails that Π;x :N is co-shrinking too.
By i.h. (2) on Ψ, we have that |fs|S ≤ |M |+ | ˆ(Γ1;x :N)|.
By i.h. (1) on Θ, we have that |N |+ |is|S ≤ |Γ̂2|.
Thus, we have that

|t|S = |fs|S + |is|S
≤

(
|M |+ | ˆ(Γ1;x :N)|

)
+ |is|S

= |M |+ |Γ̂1|+ |N̂ |+ |is|S
≤ |M |+ |Γ̂1|+ |Γ̂2|
= |M |+ |Γ̂|

• Abstraction: Let t := λx.fs. Then Φ must be of the following form Φi ▷S Γi;x :Ni ⊢(mi,si) fs :Mi

Γi ⊢(mi+1,si+1) λx.fs :Ni ⊸ Mi
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λx.fs : [Ni ⊸ Mi]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi and M = [Ni ⊸ Mi]
n
i=1. Since t is not a strong inert term, then we only

prove Point 2, for which we assume that M is shrinking, in turn implying that M ̸= 0 and
n ≥ 1.
By i.h. (2) on Φi, we have that |fs|S ≤ |Mi|+ | ˆ(Γi;x :Ni)| = |Mi|+ |Γ̂i|+ |Ni|.
We then have that

|t| = |fs|+ 1
≤ n(|fs|+ 1)

≤
∑n

i=1

(
|Mi|+ |Γ̂i|+ |Ni|+ 1

)
=

∑n
i=1 (|Ni ⊸ Mi|) +

∑n
i=1

(
|Γ̂i|
)

= |M |+ |Γ̂|

(Click here to go back to main chapter.)

Proposition 13.8.18 (Strong CbV-normal forms have a minimal unitary shrinking type).
Let t ∈ ΛL be in →s-normal form.

414

1. Inert: If t is a strong inert term, then for every co-shrinking (resp. unitary co-shrinking)
multi type M there exists a type derivation Φ ▷S Γ ⊢(m,s) t :M such that Γ is a co-shrinking
(resp. unitary co-shrinking) type context and |M |+ |t|S = |Γ̂|.

2. Fireball: If t is a strong fireball, then there exists a unitary shrinking derivation Φ ▷S Γ ⊢(m,s)

t :M such that m = |t|S = |M |+ |Γ̂|. Moreover,

m = min{m′ | ∃Ψ ▷S Π ⊢(m
′,s′) t :N , with Π co-shrinking

and if t is an answer then N is shrinking}

Proof. (Click here to go back to main chapter.)
First of all, we do not prove that

m = min{m′ | ∃Ψ▷SΠ ⊢(m
′,s′) t :N , with Π co-shrinking and if t is an answer then N is shrinking}

because it is a direct consequence of all the other facts in the statement, together with Proposi-
tion 11.2.2 (Typing properties of Strong CbV-normal forms). Point 1 and Point 2—except for the
part on m being the minimum of such set—is proven by mutual induction on the definition of strong
inert terms and of strong fireballss. Cases:

• Variable: Let t := x ∈ Var. Let M be co-shrinking, with Φ of the following form(
x : [Li] ⊢(0,1) x :Li

ax
)n

i=1

x : [Li]
n
i=1 ⊢(0,n) x : [Li]

n
i=1

manyVAR

where Γ = {x :M} and M = [Li]
n
i=1. Since |t|S = 0, we have that |M |+ |t|S = |M | = |Γ̂|.

Now, note that the shrinkingness (resp. unitary shrinkingness) of M implies that of Γ. hence,
if we takes M := [X], then Φ is a unitary shrinking type derivation satisfying that

|t|S = 0 = |M |+ |Γ̂|

• Inert application: Let t := isfs. Note that |t|S = |is|S + |fs|S +1. First, let us define M := [X].
By i.h. (2) on fs, there exists unitary shrinking type derivation Φ2 ▷ Γ2 ⊢(m2,s2) fs :N such
that Γ2 is unitary co-shrinking, N is unitary shrinking, and m2 = |fs|S = |N |+ |Γ̂|.
Next, note that since N is unitary shrinking and M is unitary co-shrinking, then [N ⊸ M] is
unitary co-shrinking. By i.h. (1) on is with respect to [N ⊸ M], there exists type derivation
Φ1▷SΓ1 ⊢(m1,s1) is : [N ⊸ M] such that Γ1 is unitary co-shrinking and |[N ⊸ M]|+|is|S = |Γ1|.
We may then derive Φ

Φ1 ▷S Γ1 ⊢(m1,s1) is : [N ⊸ M] Φ2 ▷ Γ2 ⊢(m2,s2) fs :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2) isfs :M

app

noting that
1.

|M |+ |t|S = |M |+ |is|S + |fs|S + 1

= |M |+ (|Γ̂1| − |[N ⊸ M]|) + (|N |+ |Γ̂2|) + 1

= |M |+ |Γ̂1| − (|N |+ |M |+ 1) + |N |+ |Γ̂2|+ 1

= |Γ̂1|+ |Γ̂2|
= |Γ̂|

and that

415

2.
|t|S = |is|S + |fs|S + 1

= (|Γ̂1| − |[N ⊸ M]|) + (|N |+ |Γ̂2|) + 1

= |Γ̂1| − (|N |+ |M |+ 1) + |N |+ |Γ̂2|+ 1

= |Γ̂1|+ |Γ̂2|+ |M |
= |Γ̂|+ |M |

• Explicit substitution on inert: Let t := is[x←js]. Note that |t|S = |is|S + |js|S.
By i.h. (1) on is with respect to co-shrinking multi type M , there exists unitary shrinking
type derivation Φ1 ▷S Γ1;x :N ⊢(m1,s1) is :M such that Γ1 is a co-shrinking type context, and
that |M |+ |is|S = |Γ̂|.
Note that N is co-shrinking. Hence, we can apply i.h. (1) on js with respect to N , yielding type
derivation Φ2 ▷SΓ2 ⊢(m2,s2) js :N such that Γ2 is a co-shrinking type context, and |N |+ |js|S =
|Γ̂2|.
We may then derive Φ as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) is :M Φ2 ▷S Γ2 ⊢(m2,s2) js :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) is[x←js] :M

ES

noting that
1.

|M |+ |t|S = |M |+ |is|S + |fs|S
= |M |+ (| ˆΓ1;x :N | − |M |) + (|Γ̂2| − |N |) + 1

= |M |+ |Γ̂1|+ |N | − |N | − |M | − 1 + |N |+ |Γ̂2|+ 1

= |Γ̂1|+ |Γ̂2|
= |Γ̂|

2. Finally, if we take Φ1 to be unitary shrinking, then Φ1 is such that |is|S = |M | +
| ˆ(Γ1;x :N)|. Then,

|t|S = |is|S + |js|S
= (|M |+ | ˆΓ1;x :N |) + (|Γ̂2| − |N |)
= |M |+ |Γ̂1|+ |N |+ |Γ̂2| − |N |
= |M |+ |Γ̂1|+ |Γ̂2|
= |M |+ |Γ̂|

• Abstraction: Let fs := λx.gs. By i.h. (2) on fs, there exists unitary shrinking type derivation
Ψ ▷S Π;x :N ⊢(m′,s′) fs :O such that m′ = |f |S = |O| + | ˆΠ;x :N |. We derive Φ ▷S Γ ⊢(m,s)

λx.fs :M as follows
Ψ ▷S Π;x :N ⊢(m

′,s′) fs :O

Π ⊢(m′+1,s′+1) fs :N ⊸ O
fun

Π ⊢(m′+1,s′+1) fs : [N ⊸ O]
manyλ

noting that
|t|S = |fs|S + 1

= |O|+ | ˆΠ;x :N |+ 1

= |O|+ |Π̂|+ |N |+ 1

= |[N ⊸ O]|+ |Π̂|

416

• Explicit substitution on fireball: Let t := fs[x←is]. Note that |t| = |fs| + |is|. Since t is a
non-inert strong fireball, we only prove Point 2:
By i.h. (2) on fs, there exists unitary shrinking type derivation Φ1 ▷S Γ1;x :N ⊢(m1,s1) fs :M
such that m1 = fs = |M |+ | ˆΓ1;x :N | = |M |+ |Γ̂1|+ |N |.
Note that N is unitary co-shrinking. By i.h. (1) on is with respect to N , there exists
Φ2 ▷S Γ2 ⊢(m2,s2) is :N such that Γ2 is unitary co-shrinking and |N |+ |is|S = |Γ̂|.
We may then derive Φ ▷S Γ ⊢(m,s) t :M as follows

Φ1 ▷S Γ1;x :N ⊢(m1,s1) fs :M Φ2 ▷S Γ2 ⊢(m2,s2) is :N

Γ1

⊎
Γ2 ⊢(m1+m2,s1+s2+1) fs[x←is] :M

ES

noting that
|t|S = |fs|S + |is|S

= (|M |+ | ˆΓ1;x :N |) + (|Γ̂2| − |N |)
= |M |+ |Γ̂1|+ |N |+ |Γ̂2| − |N |
= |M |+ |Γ̂1|+ |Γ̂2|
= |M |+ |Γ̂|

(Click here to go back to main chapter.)

13.8.4 Types and structural equivalence in the VSC
Proposition 13.8.19 (Structural equivalence preserves typability and indices).

Let t, u ∈ ΛL be such that t ≡ t′.
Then there exists type derivation Φ ▷S Γ ⊢(m,s) t :M if and only if there exists type derivation

Φ′ ▷ Γ ⊢(m,s) t′ :M .

Proof. (Click here to go back to main chapter.)
By structural induction on the context C such that t = C⟨u⟩ ≡ C⟨u′⟩ = t′. In all cases, showing

that the indices of Φ and Ψ are the same is trivial, and is hence not explicitly done. Moreover, note
that by symmetry of ≡, it is enough to prove only one implication of the equivalence. Cases of C:

• Empty context: Let C := ⟨·⟩. There are several sub-cases to this:
– Let t = u = s[y←m][z←t̃] ≡com s[z←t̃][y←m] = u′ = t′, with y /∈ fv(t̃) and z /∈ fv(m).

By α-equivalence, we may also assume that y /∈ fv(m) and z /∈ fv(t̃).Then Φ is of the
form

Ψ ▷S Γ1; y :N ; z :O ⊢(m1,s1) s :M Θ ▷S Γ2 ⊢(m2,s2) m :N

(Γ1

⊎
Γ2) ; z :O ⊢(m1+m2,s1+s2+1) s[y←m] :M

ES
Ξ ▷S Γ3 ⊢(m3,s3) t̃ :O

Γ1

⊎
Γ2

⊎
Γ3 ⊢(m1+m2+m3,s1+s2+s3+2) s[y←m][z←t̃] :M

ES

Note that Γ2(y) = Γ2(z) = 0, by Lemma 11.2.1 (Relevance of the Strong CbV type) and
the fact that y, z /∈ fv(m). Similarly, Γ3(y) = Γ3(z) = 0.
We may then derive Φ′ as follows

Ψ ▷S Γ1; y :N ; z :O ⊢(m1,s1) s :M Ξ ▷S Γ3 ⊢(m3,s3) t̃ :O

(Γ1

⊎
Γ3) ; y :N ⊢(m1+m3,s1+s3+1) s[z←t̃] :M

ES
Θ ▷S Γ2 ⊢(m2,s2) m :N

Γ1

⊎
Γ2

⊎
Γ3 ⊢(m1+m2+m3,s1+s2+s3+2) s[z←t̃][y←m] :M

ES

417

– Let t = u = s(m[y←t̃])≡@r(sm)[y←t̃] = u′ = t′, where y /∈ fv(s). By α-equivalence, we
may assume that y /∈ fv(t̃). Then Φ must be of the following form

Ψ ▷S Γ1 ⊢(m3,s3) s : [N ⊸ M]

Θ ▷S Γ2; y :O ⊢(m1,s1) m :N Ξ ▷S Γ3 ⊢(m2,s2) t̃ :O

Γ2
⊎
Γ3 ⊢(m1+m2,s1+s2+1) m[y←t̃] :N

ES

Γ1
⊎
Γ2
⊎
Γ3 ⊢(m1+m2+m3+1,s1+s2+s3+2) s(m[y←t̃]) :M

app

noting that Γ1(y) = Γ3(y) = 0—by Lemma 11.2.1 (Relevance of the Strong CbV type).
We may then derive Φ′ as follows:

Ψ ▷S Γ1 ⊢(m3,s3) s : [N ⊸ M] Θ ▷S Γ2; y :O ⊢(m1,s1) m :N

(Γ1
⊎
Γ2) ; y :O ⊢(m1+m3+1,s1+s3+1) sm :N

app
Ξ ▷S Γ3 ⊢(m2,s2) t̃ :O

Γ1
⊎
Γ2
⊎

Γ3 ⊢(m1+m2+m3+1,s1+s2+s3+2) (sm)[y←t̃]) :M
ES

– The case where t = u = (s[y←m])t̃ ≡@l (st̃)[y←m] = u′ = t′, with y /∈ fv(t̃), follows a
similar reasoning to the previous case and is left for the reader.

– Let t = u = s[y←m[z←t̃]] ≡[·] s[y←m][z←t̃] = u′ = t′, with z /∈ fv(s). By α-equivalence,
we may assume that y /∈ fv(m) and y, z /∈ fv(t̃). Then Φ must be of the following form

Ψ ▷S Γ1; y :N ⊢(m1,s1) s :M

Θ ▷S Γ2; z :O ⊢(m2,s2) m :N Ξ ▷S Γ3 ⊢(m3,s3) t̃ :O

Γ2

⊎
Γ3 ⊢(m2+m3,s2+s3+1) m[z←t̃] :N

ES

Γ1

⊎
Γ2

⊎
Γ3 ⊢(m1+m2+m3,s1+s2+s3+2) s[y←m[z←t̃]] :M

ES

noting that Γ1(z) = Γ2(y) = Γ3(y) = Γ3(z) = 0, by Lemma 11.2.1 (Relevance of the
Strong CbV type system).
We may then derive Φ′ as follows

Ψ ▷S Γ1; y :N ⊢(m1,s1) s :M Θ ▷S Γ2; z :O ⊢(m2,s2) m :N

(Γ1

⊎
Γ2) ; z :O ⊢(m1+m2,s1+s2+1) s[y←m] :M

ES
Ξ ▷S Γ3 ⊢(m3,s3) t̃ :O

Γ1

⊎
Γ2

⊎
Γ3 ⊢(m1+m2+m3,s1+s2+s3+2) s[y←m][z←t̃] :M

ES

– The case where t = u = u[y←m][z←t̃] ≡[·] s[y←m[z←t̃]] = u′ = t′, with z /∈ fv(s),
follows a similar reasoning to the previous case and is left for the reader.

• Non-empty context: For every case where C ̸= ⟨·⟩, the statement follows easily by application
of i.h.. The details are left for the reader

(Click here to go back to main chapter.)

13.8.5 A semantical proof of VSC -normalization via Strong CbV
Proposition 13.8.20 (Qualitative Subject Reduction for VSC).

Let t, u ∈ ΛL be such that t →vsc u, and let Φ ▷S Γ ⊢(m,s) t :M be a type derivation. Then there
exists type derivation Ψ ▷S Γ ⊢(m

′,s′) u :M such that m′ ≤ m and s′ ≤ s.

Proof. (Click here to go back to main chapter.)
By induction on the evaluation context C in the step t = C⟨s⟩ →vsc C⟨s′⟩ = u, with s 7→m s′ or

s 7→e s
′. The proof is analogous to the one for Lemma 11.2.4 (Open Quantitative Subject Reduction

for Strong CbV), except that now there is one more case:

418

• Abstraction: Let C := λx.C ′. That is, t = C⟨s⟩ = λx.C ′⟨s⟩ →a λx.C ′⟨s′⟩ = C⟨s′⟩ = u with
s 7→a s

′ and a ∈ {m, e}. Then, Φ ▷S Γ ⊢(m,s) t :M must be of the following form: Ψi ▷S Γi;x :Ni ⊢(mi,si) C ′⟨s⟩ :Mi

Γi ⊢(mi+1,si+1) λx.C ′⟨s⟩ :Ni ⊸ Mi
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λx.C ′⟨s⟩ : [Ni ⊸ Mi]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi and M = [Ni ⊸ Mi]
n
i=1.

By i.h. on Ψi for all 1 ≤ i ≤ n, there exist Θi ▷SΓi;x :Ni ⊢(m
′
i,s

′
i) C ′⟨s′⟩ :Mi such that m′i ≤ mi

and s′i ≤ si.
We may then derive Ψ ▷S Γ ⊢(m

′,s′) u :M as follows Θi ▷S Γi;x :Ni ⊢(m
′
i,s

′
i) C ′⟨s′⟩ :Mi

Γi ⊢(m
′
i+1,s′i+1) λx.C ′⟨s′⟩ :Ni ⊸ Mi

fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 m

′
i)+n,(

∑n
i=1 s

′
i)+n) λx.C ′⟨s′⟩ : [Ni ⊸ Mi]

n
i=1

manyλ

(Click here to go back to main chapter.)

Proposition 13.8.21 (Qualitative Subject Expansion for VSC).
Let t, u ∈ ΛL be such that t→vsc u, and let Ψ ▷S Γ ⊢(m

′,s′) u :M be a type derivation. Then there
exists type derivation Φ ▷S Γ ⊢(m,s) t :M such that m′ ≤ m and s′ ≤ s.

Proof. (Click here to go back to main chapter.)
By induction on the evaluation context C in the step t = C⟨s⟩ →vsc C⟨s′⟩ = u, with s 7→m s′ or

s 7→e s
′. The proof is analogous to the one for Lemma 11.2.9 (Open Quantitative Subject Expansion

for Strong CbV), except that now there is one more case:
• Abstraction: Let C := λx.C ′. That is, t = C⟨s⟩ = λx.C ′⟨s⟩ →a λx.C ′⟨s′⟩ = C⟨s′⟩ = u with

s 7→a s
′ and a ∈ {m, e}. Then, Ψ ▷S Γ ⊢(m

′,s′) u :M must be of the following form: Ψi ▷S Γi;x :Ni ⊢(m
′
i,s

′
i) C ′⟨s′⟩ :Mi

Γi ⊢(m
′
i+1,s′i+1) λx.C ′⟨s′⟩ :Ni ⊸ Mi

fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 m

′
i)+n,(

∑n
i=1 s

′
i)+n) λx.C ′⟨s′⟩ : [Ni ⊸ Mi]

n
i=1

manyλ

where Γ =
⊎n

i=1 Γi and M = [Ni ⊸ Mi]
n
i=1.

By i.h. on Ψi for all 1 ≤ i ≤ n, there exist Θi ▷S Γi;x :Ni ⊢(mi,si) C ′⟨s⟩ :Mi such that mi ≥ m′i
and si ≥ s′i.
We may then derive Φ ▷S Γ ⊢(m,s) t :M as follows Θi ▷S Γi;x :Ni ⊢(mi,si) C ′⟨s⟩ :Mi

Γi ⊢(mi+1,si+1) λx.C ′⟨s⟩ :Ni ⊸ Mi
fun

n

i=1⊎n
i=1 Γi ⊢((

∑n
i=1 mi)+n,(

∑n
i=1 si)+n) λx.C ′⟨s⟩ : [Ni ⊸ Mi]

n
i=1

manyλ

419

(Click here to go back to main chapter.)

Theorem 13.8.22 (→s is normalizing).
Let t ∈ ΛL. If there exists a reduction sequence d : t −→∗vsc u for some u in →vsc-normal form,

then there exists d′ : t −→∗s u.

Proof. (Click here to go back to main chapter.)
Since →s is a sub-relation of →vsc, then every →vsc-normal form u has a unitary shrinking type

derivation Φ ▷S Γ ⊢(|u|S,s) u :M , by Proposition 11.2.7 (Shrinking typability of Strong CbV-normal
forms).

Next, by repeated applications of Proposition 11.3.2 (Qualitative Subject Expansion for VSC)
iterated along t →∗vsc u, we get unitary shrinking type derivation Ψ ▷S Γ ⊢(m′,s′) t :M such that
m′ ≥ |u|S and s′ ≥ s.

Moreover, by Theorem 11.2.6 (Shrinking Correctness for Strong CbV), there exists d : t →∗s s
with s in →s-normal form.

Now, s is a super strong fireball—by Proposition 10.3.2 (Fullness of Strong CbV)—and so s is
also in→vsc-normal form—by Proposition 10.2.3 (Syntactic characterization of VSC-normal forms).
Theorem 10.2.2 (Confluence of →vsc) finally gives that s = u.

(Click here to go back to main chapter.)

420

Bibliography

[Aba+91] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. “Explicit
Substitutions”. In: J. Funct. Program. 1.4 (1991), pp. 375–416.

[Acc11] Beniamino Accattoli. “Jumping around the box: graphical and operational studies on
λ-calculus and Linear Logic”. PhD thesis. La Sapienza University of Rome, Feb. 2011.

[Acc12] Beniamino Accattoli. “An Abstract Factorization Theorem for Explicit Substitutions”.
In: 23rd International Conference on Rewriting Techniques and Applications (RTA’12).
Vol. 15. LIPIcs. 2012, pp. 6–21. doi: 10.4230/LIPIcs.RTA.2012.6.

[Acc15] Beniamino Accattoli. “Proof nets and the call-by-value λ-calculus”. In: Theor. Comput.
Sci. 606 (2015), pp. 2–24. doi: 10.1016/j.tcs.2015.08.006. url: https://doi.
org/10.1016/j.tcs.2015.08.006.

[Acc16] Beniamino Accattoli. “The Useful MAM, a Reasonable Implementation of the Strong
λ-Calculus”. In: WoLLIC 2016. 2016, pp. 1–21.

[Acc18] Beniamino Accattoli. “Proof Nets and the Linear Substitution Calculus”. In: Theoretical
Aspects of Computing (ICTAC 2018), 15th International Colloquium. Vol. 11187. Lec-
ture Notes in Computer Science. 2018, pp. 37–61. doi: 10.1007/978-3-030-02508-
3_3.

[ABM14] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. “Distilling Abstract Ma-
chines”. In: Proceedings of the 19th ACM SIGPLAN international conference on Func-
tional programming (ICFP 2014). 2014, pp. 363–376. doi: 10.1145/2628136.2628154.

[Acc+14] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. “A nonstan-
dard standardization theorem”. In: The 41st Annual Symposium on Principles of Pro-
gramming Languages (POPL ’14). ACM, 2014, pp. 659–670. doi: 10.1145/2535838.
2535886.

[AD12] Beniamino Accattoli and Ugo Dal Lago. “On the Invariance of the Unitary Cost Model
for Head Reduction”. In: RTA’12. Ed. by Ashish Tiwari. Vol. 15. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2012, pp. 22–37.

[AGK20] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. “Tight typings
and split bounds, fully developed”. In: J. Funct. Program. 30 (2020), e14. doi: 10.
1017/S095679682000012X. url: https://doi.org/10.1017/S095679682000012X.

[AG16] Beniamino Accattoli and Giulio Guerrieri. “Open Call-by-Value”. In: APLAS 2016.
2016, pp. 206–226.

[AG17] Beniamino Accattoli and Giulio Guerrieri. “Implementing Open Call-by-Value”. In:
FSEN 2017, Tehran, Iran, April 26-28, 2017, Revised Selected Papers. 2017, pp. 1–
19.

421

[AG18] Beniamino Accattoli and Giulio Guerrieri. “Types of Fireballs”. In: Programming Lan-
guages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand,
December 2-6, 2018, Proceedings. 2018, pp. 45–66. doi: 10.1007/978-3-030-02768-
1_3. url: https://doi.org/10.1007/978-3-030-02768-1%5C_3.

[AGL19] Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. “Types by Need (Extended
Version)”. In: CoRR abs/1902.05945 (2019).

[AK10] Beniamino Accattoli and Delia Kesner. “The Structural λ-Calculus”. In: CSL’10. 2010,
pp. 381–395.

[AL16] Beniamino Accattoli and Ugo Dal Lago. “(Leftmost-outermost) Beta Reduction is In-
variant, Indeed”. In: LMCS 12.1 (2016).

[AP12] Beniamino Accattoli and Luca Paolini. “Call-by-value solvability, revisited”. In: FLOPS.
2012, pp. 4–16.

[AS14] Beniamino Accattoli and Claudio Sacerdoti Coen. “On the Value of Variables”. In:
WoLLIC 2014. 2014, pp. 36–50.

[AS15] Beniamino Accattoli and Claudio Sacerdoti Coen. “On the Relative Usefulness of Fire-
balls”. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015. IEEE Computer Society, 2015, pp. 141–155. doi: 10.1109/LICS.2015.23.

[AKV19] Sandra Alves, Delia Kesner, and Daniel Ventura. “A Quantitative Understanding of
Pattern Matching”. In: 25th International Conference on Types for Proofs and Pro-
grams, TYPES 2019, June 11-14, 2019, Oslo, Norway. Ed. by Marc Bezem and Assia
Mahboubi. Vol. 175. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
3:1–3:36. doi: 10.4230/LIPIcs.TYPES.2019.3. url: https://doi.org/10.4230/
LIPIcs.TYPES.2019.3.

[AF97] Zena M. Ariola and Matthias Felleisen. “The Call-By-Need lambda Calculus”. In: J.
Funct. Program. 7.3 (1997), pp. 265–301.

[Bak92] Steffen van Bakel. “Complete Restrictions of the Intersection Type Discipline”. In:
Theor. Comput. Sci. 102.1 (1992), pp. 135–163. doi: 10.1016/0304-3975(92)90297-S.
url: https://doi.org/10.1016/0304-3975(92)90297-S.

[Bal+17] Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. “Founda-
tions of strong call by need”. In: PACMPL 1.ICFP (2017), 20:1–20:29. doi: 10.1145/
3110264.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics. Vol. 103.
North-Holland, 1984.

[Bar99] Bruno Barras. “Auto-validation d’un système de preuves avec familles inductives”. PhD
thesis. Université Paris 7, 1999.

[BR13] Erika De Benedetti and Simona Ronchi Della Rocca. “Bounding normalization time
through intersection types”. In: 6th Workshop on Intersection Types and Related Systems
(ITRS) (2013), pp. 48–57.

[BG13] Alexis Bernadet and Stéphane Graham-Lengrand. “Non-idempotent intersection types
and strong normalisation”. In: Logical Methods in Computer Science 9.4 (2013). doi:
10.2168/LMCS-9(4:3)2013.

422

[BG95] Guy E. Blelloch and John Greiner. “Parallelism in Sequential Functional Languages”.
In: FPCA’95. Ed. by John Williams. ACM, 1995, pp. 226–237.

[BCL99] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. “A semantics for lambda
calculi with resources”. In: Mathematical Structures in Computer Science, 9 (1999),
pp. 437–483.

[Bru72] Nicolaas G. de Bruijn. “Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem”. In:
(1972).

[Bru78] Nicolaas G. de Bruijn. “A namefree lambda calculus with facilities for internal definition
of expressions and segments”. In: (1978).

[Bru87] Nicolaas G. de Bruijn. “Generalizing Automath by Means of a Lambda-Typed Lambda
Calculus”. In: (1987).

[Buc+20] Antonio Bucciarelli, Delia Kesner, Alejandro Rı́os, and Andrés Viso. “The Bang Cal-
culus Revisited”. In: Functional and Logic Programming - 15th International Sympo-
sium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings. Ed. by Keisuke
Nakano and Konstantinos Sagonas. Vol. 12073. Lecture Notes in Computer Science.
Springer, 2020, pp. 13–32. doi: 10.1007/978- 3- 030- 59025- 3_2. url: https:
//doi.org/10.1007/978-3-030-59025-3%5C_2.

[BKV17] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. “Non-idempotent intersection
types for the Lambda-Calculus”. In: Logic Journal of the IGPL 25.4 (2017), pp. 431–464.
doi: 10.1093/jigpal/jzx018.

[CG14] Alberto Carraro and Giulio Guerrieri. “A Semantical and Operational Account of Call-
by-Value Solvability”. In: Foundations of Software Science and Computation Structures
- 17th International Conference (FoSSaCS 2014). Vol. 8412. Lecture Notes in Computer
Science. 2014, pp. 103–118. doi: 10.1007/978-3-642-54830-7_7.

[Car07] Daniel de Carvalho. “Sémantiques de la logique linéaire et temps de calcul”. PhD thesis.
Université Aix-Marseille II, 2007.

[Car09] Daniel de Carvalho. “Execution Time of lambda-Terms via Denotational Semantics and
Intersection Types”. In: CoRR abs/0905.4251 (2009).

[Car18] Daniel de Carvalho. “Execution time of λ-terms via denotational semantics and inter-
section types”. In: Mathematical Structures in Computer Science 28.7 (2018), pp. 1169–
1203. doi: 10.1017/S0960129516000396.

[CPT11] Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. “A semantic measure
of the execution time in linear logic”. In: Theoretical Computer Science 412.20 (2011),
pp. 1884–1902. doi: 10.1016/j.tcs.2010.12.017.

[CH00] Pierre-Louis Curien and Hugo Herbelin. “The duality of computation”. In: ICFP. 2000,
pp. 233–243.

[DM09] Ugo Dal Lago and Simone Martini. “Derivational Complexity Is an Invariant Cost
Model”. In: FOPARA 2009. 2009, pp. 100–113.

[DR04] Vincent Danos and Laurent Regnier. Head Linear Reduction. Tech. rep. 2004.
[DL07] Roy Dyckhoff and Stéphane Lengrand. “Call-by-Value lambda-calculus and LJQ”. In:

J. Log. Comput. 17.6 (2007), pp. 1109–1134.

423

[Ehr12] Thomas Ehrhard. “Collapsing non-idempotent intersection types”. In: Computer Science
Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL.
Vol. 16. LIPIcs. 2012, pp. 259–273. doi: 10.4230/LIPIcs.CSL.2012.259.

[Gar94] Philippa Gardner. “Discovering Needed Reductions Using Type Theory”. In: Theoretical
Aspects of Computer Software (TACS ’94). Vol. 789. Lecture Notes in Computer Science.
1994, pp. 555–574. doi: 10.1007/3-540-57887-0_115.

[Gir87] Jean-Yves Girard. “Linear Logic”. In: Theoretical Computer Science 50 (1987), pp. 1–
102. doi: 10.1016/0304-3975(87)90045-4.

[GL02] Benjamin Grégoire and Xavier Leroy. “A compiled implementation of strong reduction”.
In: (ICFP ’02). 2002, pp. 235–246.

[Gue18] Giulio Guerrieri. Towards a Semantic Measure of the Execution Time in Call-by-Value
lambda-Calculus. to appear in the proceedings of ITRS 2018. 2018.

[HZ09] Hugo Herbelin and Stéphane Zimmermann. “An Operational Account of Call-by-Value
Minimal and Classical lambda-Calculus in ”Natural Deduction” Form”. In: TLCA. 2009,
pp. 142–156.

[JGS93] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993. isbn: 0-13-020249-
5.

[Kes16] Delia Kesner. “Reasoning about call-by-need by means of types”. In: Foundations of
Software Science and Computation Structures - 19th International Conference (FOS-
SACS 2016). Vol. 9634. Lecture Notes in Computer Science. 2016, pp. 424–441. doi:
10.1007/978-3-662-49630-5_25.

[KV20] Delia Kesner and Pierre Vial. “Consuming and Persistent Types for Classical Logic”.
In: LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020. 2020, pp. 619–632. doi: 10.1145/3373718.
3394774.

[KV21] Delia Kesner and Andrés Viso. “The Power of Tightness for Call-By-Push-Value”. In:
CoRR abs/2105.00564 (2021). arXiv: 2105.00564. url: https://arxiv.org/abs/
2105.00564.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in com-
puters and their applications. Masson, 1993. isbn: 978-0-13-062407-9.

[Lan64] Peter John Landin. “The Mechanical Evaluation of Expressions”. In: The Computer
Journal 6.4 (Jan. 1964), pp. 308–320.

[Las05] Søren B. Lassen. “Eager Normal Form Bisimulation”. In: 20th IEEE Symposium on
Logic in Computer Scienc, LICS 2005. IEEE Computer Society, 2005, pp. 345–354.
doi: 10.1109/LICS.2005.15.

[Mar+99] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. “Call-by-name,
Call-by-value, Call-by-need and the Linear lambda Calculus”. In: Theor. Comput. Sci.
228.1-2 (1999), pp. 175–210. doi: 10.1016/S0304-3975(98)00358-2.

[MOW98] John Maraist, Martin Odersky, and Philip Wadler. “The Call-by-Need Lambda Calcu-
lus”. In: J. Funct. Program. 8.3 (1998), pp. 275–317.

424

[MP94] Gianfranco Mascari and Marco Pedicini. “Head Linear Reduction and Pure Proof Net
Extraction”. In: Theoretical Computer Science 135.1 (1994), pp. 111–137.

[MPV18] Damiano Mazza, Luc Pellissier, and Pierre Vial. “Polyadic approximations, fibrations
and intersection types”. In: PACMPL 2.POPL (2018), 6:1–6:28. doi: 10.1145/3158094.

[Mil06] Robin Milner. “Local bigraphs and confluence: two conjectures”. In: (2006).
[Mog89] Eugenio Moggi. “Computational λ-Calculus and Monads”. In: LICS ’89. 1989, pp. 14–

23.
[Pao01] Luca Paolini. “Call-by-Value Separability and Computability”. In: ICTCS. 2001, pp. 74–

89.
[PR99] Luca Paolini and Simona Ronchi Della Rocca. “Call-by-value Solvability”. In: ITA 33.6

(1999), pp. 507–534.
[Plo75] Gordon D. Plotkin. “Call-by-Name, Call-by-Value and the lambda-Calculus”. In: Theor.

Comput. Sci. 1.2 (1975), pp. 125–159.
[RP04] Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus. Springer

Berlin Heidelberg, 2004.
[SF93] Amr Sabry and Matthias Felleisen. “Reasoning about Programs in Continuation-Passing

Style”. In: Lisp and Symbolic Computation 6.3-4 (1993), pp. 289–360.
[SW97] Amr Sabry and Philip Wadler. “A Reflection on Call-by-Value”. In: ACM Trans. Pro-

gram. Lang. Syst. 19.6 (1997), pp. 916–941.
[SGM02] David Sands, Jörgen Gustavsson, and Andrew Moran. “Lambda Calculi and Linear

Speedups”. In: The Essence of Computation. 2002, pp. 60–84.
[SP87] Paula Severi and Erik Poll. “Pure type systems with definitions”. In: (1987).
[SE84] Cees F. Slot and Peter van Emde Boas. “On Tape Versus Core; An Application of

Space Efficient Perfect Hash Functions to the Invariance of Space”. In: STOC 1984.
1984, pp. 391–400.

[Wad71] Christopher P. Wadsworth. “Semantics and pragmatics of the lambda-calculus”. Chap-
ter 4. PhD Thesis. University of Oxford, 1971.

[Yos93] Nobuko Yoshida. “Optimal Reduction in Weak-λ-calculus with Shared Environments”.
In: Proceedings of the conference on Functional programming languages and com-
puter architecture, FPCA 1993, Copenhagen, Denmark, June 9-11, 1993. Ed. by John
Williams. ACM, 1993, pp. 243–254. doi: 10.1145/165180.165217. url: https://
doi.org/10.1145/165180.165217.

425

Résumé
Dans cette thèse, on présente une étude quantitative du lambda calcul en appel-par-nécessité,

particulièrement en reliant certaines quantités de sa sémantique opérationnelle avec des quantités
extraites des systèmes de types.

En ce qui concerne la théorie de types, on dérive plusieurs systèmes de multi types—un vari-
ant non-idempotent des types d’intersection. Chacun de ces systèmes cible une certaine définition
de l’appel-par-nécessité, de telle façon que le typage équivaut à la normalisation dans la version
correspondante de l’appel-par-nécessité. Dans chaque cas, la caractérisation de la normalisation
est tellement raffinée que l’on est capable, à partir d’une dérivation de type donnée, d’extraire
d’informations quantitatives concernant plusieurs aspects du processus de normalisation. Typique-
ment, on extraira le nombre de pas de réduction vers la forme normale dans la version de réduction
pour laquelle le système a été conçu, ainsi que la taille de cette forme normale.

En ce qui concerne les différents variants de l’appel-par-nécéssité, on définit la sémantique opéra-
tionnelle en suivant une approche incrémentale. Le cas de base est la version faible et fermée de
l’appel-par-nécessité—le cadre habituel pour modeler le calcul dans les langages de programmation
fonctionnelle—formalisée dans un calcul avec des substitutions explicites—le Linear Substitution
Calculus—permettant un traitement subtil des substitutions.

En visant le cas le plus général—c’est-à-dire le modèle de calcul requis pour les assistants de
preuves—on étend le cas de base d’abord vers le cadre de la réduction faible et ouverte—où les
termes sont potentiellement ouverts mais la réduction reste faible. On appelle cette stratégie l’Open
CbNeed.

Ensuite, on présente un variant utile de l’Open CbNeed, que l’on appelle Useful Open Cb-
Need. Cette stratégie est conçue comme un variant de l’Open CbNeed où l’on n’effectue que les
substitutions d’arguments qui contribuent à la création de nouveaux pas de réduction—les dites
substitutions utiles—tandis que l’on évite les autres pas de substitutions. De cette manière, l’Useful
Open CbNeed réduit les expressions jusqu’à l’obtention de formes normales dite partagées.

L’intérêt pour ce variant utile de l’appel-par-nécessité provient de la théorie de la complexité du
lambda calcul, notamment pour la preuve de l’existence d’un modèle de coût de temps raisonnable
pour le lambda calcul dans le cadre fort—où la réduction peut aller au-dessous des abstractions
lambdas. On sait que l’existence d’un tel modèle de coût de temps raisonnable pour le cadre fort
requiert la mise en œuvre des substitutions utiles. Plus important encore, elle implique une relation
polynomiale entre le lambda calcul fort et les modèles de calcul raisonnable (comme les machines
de Turing), en ce qui concerne le nombre de pas de réduction et d’exécution, respectivement.

Jusqu’ici, la littérature ne contient d’analyses sur les substitutions utiles que pour la stratégie
d’évaluation leftmost-outermost—la stratégie d’évaluation standard du lambda calcul, appartenant
à la famille de l’appel-par-nom. La présentation de l’Useful Open CbNeed est donc la toute première
analyse des substitutions utiles pour le lambda calcul en appel-par-nécessité. Présentées comme un
élément clé dans la sémantique opérationnelle de l’Useful Open CbNeed, les substitutions utiles sont
ensuite représentées dans le système de multi types de l’Useful Open CbNeed comme une simple
modification sur le système de l’Open CbNeed.

Finalement, et dans le but de mieux comprendre les relations quantitatives entre les systèmes
de multi types et le cadre fort du lambda calcul en appel-par-nécéssité, on dérive une stratégie
d’évaluation pour le lambda calcul fort en appel-par-valeur, ainsi qu’un système de multi types qui
lui correspond. Ce résultat ne contribue pas qu’à la théorie quantitative de l’appel-par-valeur, il
concerne aussi à celle de l’appel-par-nécessité en tant qu’il est un pas nécessaire pour la

mise en œuvre d’un variant fort de l’Useful Open CbNeed—ainsi que d’un système de multi
types caractérisant sa normalisation et ayant les propriétés quantitatives désirées.

Titre: Une dissection de l’appel-par-nécessité par la personnalisation des systèmes de multi
types
Mots clés: Système de multi types, lambda calcul, appel-par-nécessité, réduction utile
Résumé:
De nombreuses applications technologiques
sont modélisées avec le lambda calcul, allant
des langages de programmation fonctionnelle
aux assistants de preuves.

Dans cette thèse, on part du variant appel-
par-nécessité du lambda calcul mis en œuvre
dans les langages de programmation fonction-
nelles, et procède à l’étendre de plus en plus
jusqu’à atteindre le cas le plus général. Cha-
cun de ces variants étend le prédécesseur avec
une nouvelle caractéristique, requise pour la

preuve de sa complexité. De cette façon, la
dernière version de l’appel-par-nécessité a la
complexité espérée.

Simultanément, chacun de ces variants est ac-
compagné d’un système de types, où le typage
est égal à la terminaison d’exécution dans ce
variant. Cette caractérisation de la terminai-
son par les systèmes de types est tellement
serrée que l’on peut extraire d’informations
quantitatives pertinentes sur l’exécution des
programmes (typiquement, le nombre de pas
d’exécution).

Title: Dissecting call-by-need by customizing multi type systems
Keywords: Multi type systems, λ-calculus, call-by-need, useful reduction
Abstract:
The lambda-calculus is used to model the com-
putational content of several technological ap-
plications, ranging from the least general case
of functional programming languages to the
most general one of proof assistants.

We begin by taking the call-by-need variant
of the lambda-calculus implemented in func-
tional programming languages and increas-
ingly extend it, targeting the most general one
implemented in proof assistants. Each of these
versions extends the previous one by adding

a single feature, required for proving its com-
plexity behavior. Thus, we end with a well-
behaved version of the call-by-need lambda
calculus, complexity-wise.

Simultaneously, we develop type systems for
each of these variants, such that typability
equals termination in the variant. This char-
acterization of termination via type systems
is tightened to such an extent that we are
able to extract relevant quantitative informa-
tion about the execution of programs (typi-
cally, the number of execution steps).

Institut Polytechnique de Paris
91120 Palaiseau, France

