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Abstract

Analogy is at the heart of human thinking that an individual can usually apply when he/she
is confronted with new situations. Analogical reasoning helps to address unknown situ-
ations based on what we already know. It has been proven that this type of reasoning is
mostly naturally applied by a child to approach what he does not know.

Analogical reasoning in AI consists to develop analogical learning systems (AAS) that
mimic humans’ ability to learn by analogy. Closely related to analogical reasoning, the
idea of analogical proportions makes a comparison between pairs of situations. Analogical
proportions are relations of the form ”A is to B as C is to D”, denoted as A: B :: C: D.
Such a proportion expresses that ”A differs from B as C differs from D”. In other words,
the pair (A, B) is analogous to the pair (C, D). Analogical proportions are a special case
of a more general case which are the logical proportions.

Several classification methods based on logical proportions have been proposed in the
last decade. Given an object D to be classified, the basic idea of such classifiers is to look
for triples of examples (A, B, C), in the learning set, that form a logical proportion with
D, on a maximum set of attributes. In this context, we assume that objects or situations A,
B, C, D are represented by a vector of attribute values.

In this habilitation, we investigate the possibility of applying logical proportions as
a basic tool to address two well-known problems in machine learning: classification and
user’s preferences learning. On the first hand, we studied logical proportions as a basic
tool for solving classification problems. We have proposed two families of classifiers
based on logical proportions and dealing with different types of data for this purpose:
the first family, using homogeneous proportions (known as analogical proportions), is
based on the idea of searching for triples of examples in the training set that form a valid
analogical proportion with the new example to be classified. These classifiers are denoted
AP -classifiers. The second family, using rather heterogeneous proportions, is based on
the idea that an example should be added to the class where it is the least at odds w.r.t. the
elements already in the class. We evaluate the index of oddness of an item with regard to
all items of the class for this effect. The experimentation of such classifiers shows their
efficiencies in terms of classification of nominal and numerical data.
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On the other hand, we study the problem of preferences learning in which we also
make predictions as in case of classification. However, in this case, the goal is to predict a
user’s preference between two given choices. For this end, we propose and compare two
approaches based on analogical proportions: the first one uses triples of pairs of items for
which preferences are known and which make analogical proportions, altogether with the
new pair to be predicted while making sure that no contradictory trade-offs are created.
The second approach exploits pairs of compared items one by one: for predicting the
preference between two items, one looks for another pair of items for which the preference
is known such that, attribute by attribute, the change between the elements of the first pair
is the same as between the elements of the second pair. The reported experiments, both on
real data sets and on generated datasets suggest the effectiveness of these approaches.

Key words: Analogical Proportions, Logical Proportions, Classification, Analogy-based
classification, Oddness-based classification, Evenness-based classification, Oddness, Even-
ness, Preference Learning, Analogy-based Preference Learning, Weighted sum, Sugeno
Integral.
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Chapter 1

Introduction and background on logical
proportions

1.1 Introduction

Knowledge reasoning is the basic component for developing intelligent learning systems
(ILSs) in different domains. An intelligent system inquires knowledge from the environ-
ment that may be represented in a particular way such as a set of facts, symbols, or rela-
tionships. This knowledge needs to be stored, organized and analyzed in a pre-processing
phase by ILSs.

Once a knowledge base is built, such system must also be able to acquire new knowl-
edge by interacting again with the environment and then to infer new knowledge based on
previously stored facts in the knowledge base. This inference process is useful for solving
problems and making decisions regarding new situations. Although, a computer is not
always able to think as a human expert can, the process of producing new knowledge, by
inferring known facts, may be considered as a kind of creating intelligence that allows to
the computer to make reasoning and judgments in a similar way as human do.

A panoply of artificial intelligence techniques has been developed in order to imitate
intelligent human behaviour. Using the available knowledge on a given problem, these
techniques try to reproduce the process of human reasoning as close as possible. The gen-
eral issue of simulating intelligence has been applied in a number of specific sub-problems
such as: deduction, learning, reasoning, decision making, and knowledge representation.

Machine Learning is one of the most central branches of AI. It consists in the devel-
opment of programs that can process data and learn on their own, without our continuous
supervision. There are many popular ML applications that concern a variety of fields. For
example, we can cite the pattern recognition, such as text and voice recognition, videos
surveillance, fraud detection and game programs. In machine learning, there are different

1



CHAPTER 1. INTRODUCTION AND BACKGROUND ON LOGICAL PROPORTIONS

domains of interest, especially supervised, unsupervised and semi-supervised learning de-
pending on whether outputs (for the given problem) are given or not for the learner when
accomplishing the learning task. Among these domains we are interested to supervised
learning and especially to two topics of interest Classification and Preference learning.
The crossing point between these two domains is in the prediction power: in classifica-
tion, the goal is to predict the label of the class while in preference learning the goal is to
predict the preference relation between two items.

In the last decade, analogical reasoning has received increasing attention within the
community of AI-based learning systems as a tool for problem solving, deduction and
learning. Analogy is at the heart of human thinking that every one may apply when he/she
is faced to new situations. Analogical reasoning helps to approach unknown situations
from what we already know [61]. It has been proven that this is the most natural way
children make reasoning about what they don’t know. For example in psychology, many
reasoning tests are based on analogy for evaluating intelligence. The main interest of
analogical reasoning in AI is on developing analogical learning systems (ALSs) that mimic
the ability of humans to learn by analogy. Closely related to analogical reasoning, the
idea of analogical proportions establishes a parallel between pairs of situations. These
proportions are a special case of a more general logical proportions.

In this habilitation, we focus on studying logical proportions that are the basic ingredi-
ents of all approaches that we propose as a solution to tackle classification and preference
learning problems. Logical proportions are Boolean formulas involving 4 variables. They
have been deeply investigated in [53]. In this chapter, we first recall the background on
logical proportions and we mainly focus on the proportions that we will use as a tool for
classification and preference learning solving problems. Then we introduce the two re-
search axes developed in this habilitation thesis. The first axe tackles the use of logical
proportions as a suitable tool for classification. Similarly to analogical reasoning, regarded
as useful for drawing conclusions, we expect that analogical proportions may help to clas-
sify examples using an analogical inference that we define in the next chapter. The second
axe is related to preference learning in which we still make prediction as in case of classi-
fication, however, the goal in this case is to predict user preferences between two items or
examples.

This chapter is organized as follows. The next section recall the basic definitions and
main properties of logical proportions. We distinguish two types of these proportions, the
homogeneous and heterogeneous proportions and we discuss the characteristics of each of
them. In Section 3, we describe the research axes achieved in this habilitation thesis.

2



CHAPTER 1. INTRODUCTION AND BACKGROUND ON LOGICAL PROPORTIONS

1.2 Background on logical proportions

A logical proportion states a relation between 4 items that is expressed in terms of com-
parisons between pairs of items, each item being represented as a set of Boolean features.
Considering 2 Boolean variables a and b corresponding to the same feature attached to 2
items A and B, a∧ b and a∧ b indicate that A and B behave similarly w.r.t. the given fea-
ture (they are called “similarity” indicators), a ∧ b and a ∧ b indicate that A and B behave
differently (they are called “dissimilarity” indicators). When we have 4 items A,B,C,D,
for comparing their respective behavior in a pairwise manner, we are led to consider logi-
cal equivalences between similarity, or dissimilarity indicators, such as a ∧ b ≡ c ∧ d for
instance. This enables us to define a logical proportion [53]:

Definition 1 A logical proportion T (a, b, c, d) is the conjunction of two equivalences be-
tween indicators for (a, b) on one side and indicators for (c, d) on the other side.

For instance, ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) is a logical proportion. It has been
established that there are 120 syntactically and semantically distinct logical equivalences.
There are two ways for distinguishing remarkable subsets among the 120 proportions:
either by investigating their structure, or by investigating their semantics (i.e. their truth
table). In this section, we shall see that both investigations lead to the same conclusion:
there is a class of 8 proportions which stands out of the crowd. This class can be subdivided
into 2 sub-groups of 4 proportions.

Indeed a property that appears to be paramount in many reasoning tasks is code inde-
pendency: there should be no distinction when encoding information positively or nega-
tively. In other words, encoding truth (resp. falsity) with 1 or with 0 (resp. with 0 and 1)
is just a matter of convention, and should not impact the final result. When dealing with
logical proportions, this property is called code independency and can be expressed as

T (a, b, c, d)→ T (a, b, c, d)

From a structural viewpoint, remember that a proportion is built up with a pair of equiv-
alences between indicators chosen among 16 equivalences. So, to ensure code indepen-
dency, the only way to proceed is to first choose an equivalence then to pair it with its
counterpart where every literal is negated: for instance a∧ b ≡ c∧d should be paired with
a ∧ b ≡ c ∧ d in order to get a code independent proportion. This simple reasoning shows
that we have only 16/2 = 8 code independent proportions whose logical expressions are
given below.

A:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

R:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

3



CHAPTER 1. INTRODUCTION AND BACKGROUND ON LOGICAL PROPORTIONS

P:((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

I: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H1: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H2: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H3: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

H4: ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Only 4 among these proportions make use of similarity and dissimilarity indicators
without mixing these types of indicators inside one equivalence: for this reason, these
4 proportions A,R, P, I are called homogeneous proportions. For instance, an informal
reading ofAwould be: “a differs from b as c differs from d and vice versa.” This expresses
the meaning of an analogical proportion, i.e., a statement of the form “a is to b as c is to
d”. We can considerA as a Boolean counterpart to the idea of numerical proportion, either
geometric, i.e., a

b
= c

d
, or arithmetic a− b = c− d.

The idea of a proportion suggests that some stability properties hold w.r.t. permu-
tations. Indeed, we can permute variables and check, for instance, if a given propor-
tion still holds when permuting the 2 first variables. We denote pij the permutation of
variable in position i with variable in position j. For instance, p14 permutes the vari-
ables in extreme positions 1 and 4, while p23 permutes variables in mean positions. And
p12(a) = b, p12(b) = a, p12(c) = c, p12(d) = d.

Definition 2 A proportion T is stable w.r.t. permutation pij iff

T (a, b, c, d)→ T (pij(a), pij(b), pij(c), pij(d))

It can be checked that A is stable w.r.t. the extremes p14 or the means p23 permutations.
P is stable for p12 and p34 permutations, while R is stable for p13 and p24. Moreover
A,R, P, I are symmetrical (i.e. T (a, b, c, d) → T (c, d, a, b)). This is observable on their
truth tables: See the top part of Table 1.1, where only the 6 patterns that make the logical
proportions true appear). Besides, I is the only logical proportion that is stable w.r.t. any
permutation of two of its variables. This noticeable result is proved in [51].

Moreover, R and P are closely related to A via permutations. Namely we have

A(a, b, c, d) ≡ P (c, b, a, d) ≡ R(b, a, c, d)
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In fact, when d is fixed, exchanging the variables a, b, c amounts to move from one
homogeneous proportion to another, or to remain stable (A(a, b, c, d) = A(a, c, b, d);
P (c, b, a, d) = P (b, c, a, d); R(b, a, c, d) = R(c, a, b, d)), with I remaining an excep-
tion. Thus A,R, P collectively maintain a form of exchangeability property with respect
to a, b, c, while I ensures it by itself. These exchangeability properties are of particular
interest when applying homogeneous logical proportions to classification.

The 4 remaining code independent logical proportions H1, H2, H3, H4 are called het-
erogeneous proportions: it is clear from their logical expression that they mix similarity
and dissimilarity indicators inside each equivalence. Their truth tables are shown in the
bottom part of Table 1.1, where only the 6 patterns that make them true appear. The index
i in Hi refers to a position inside the formula Hi(a, b, c, d). Namely, as can be checked,
in each of these 6 patterns there is a minority value (i.e., the value having the smallest
number of occurrences in the pattern, then this value is like an intruder among the other
values), and i is the only position where the minority value never appears among the 6
4-tuples of values that make Hi true.

Table 1.1: Homogeneous/heterogeneous proportions valid patterns

A R P I
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

H1 H2 H3 H4

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

By examining the truth table of the heterogeneous proportions in Table 1.1, we get the
following properties:

A(a, b, c, d) ∧R(a, b, c, d) ∧ P (a, b, c, d) ∧ I(a, b, c, d) = ⊥

together with

(A(a, b, c, d) ∧R(a, b, c, d) ∧ P (a, b, c, d)) ≡ Eq(a, b, c, d)

where Eq(a, b, c, d) = 1 if a = b = c = d and Eq(a, b, c, d) = 0 otherwise. Similarly, for
heterogeneous proportions, we have

H1(a, b, c, d) ∧H2(a, b, c, d) ∧H3(a, b, c, d) ∧H4(a, b, c, d) = ⊥

which implies:

(H1(a, b, c, d) ∧H2(a, b, c, d) ∧H3(a, b, c, d))→ ¬H4(a, b, c, d) (1.1)
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CHAPTER 1. INTRODUCTION AND BACKGROUND ON LOGICAL PROPORTIONS

Obviously, we have similar properties by permuting the indexes of the Hi’s. The
meaning of the conjunction H1(a, b, c, d)∧H2(a, b, c, d)∧H3(a, b, c, d) will be discussed
in the following section, devoted to heterogeneous proportions.

1.2.1 Specificity of Heterogeneous proportions

In order to get a clear understanding of the heterogeneous proportions and to extract rele-
vant properties, we now investigate their truth tables.

Heterogeneity and exchangeability

Still within Table 1.1, an obvious semantics appears: Hi holds when there are exactly 3
parameters with identical Boolean values (=1 for example) and the parameter in position
i is one of these identical values.

Definition 3 Given 4 Boolean values a, b, c, d in this order such that 3 of them are iden-
tical and the remaining one is different, the position i ∈ [1, 4] of this remaining value is
called the intruder position or the intruder for brevity.

Then,Hi holds iff there is an intruder among the 4 values a, b, c, d and the intruder position
is not i. This suggests that Hi should be stable w.r.t. the permutations which do not affect
position i. In fact a little bit more can be established:

Property 1 Apart from I , Hi are the only logical proportions stable w.r.t any permutation
which does not affect position i.

The special case of I stable w.r.t. any permutation has been already proved in [53]. Table
1.1 allows to check that the Hi’s are stable w.r.t. the permutations which do not affect
position i. Showing that they are the only ones among the 120 logical properties stable
w.r.t. these permutations requires a tedious checking procedure that cannot be summarized
here.

Property 1 is quite satisfactory and confirms the informal semantics of Hi. At this point,
we see that heterogeneous proportions allow to single out a particular position among an
ordered list of 4 values. This position targets the value which is definitely not an intruder
among the multiset of 4 items. For instance, when Hi is valid, the value in position i is not
an intruder. We shall see in the following section that this property can be used to check
the oddness of a given item w.r.t. a multiset of elements. This will be useful when using
heterogeneous proportions to classification. More importantly, this gives a clear semantics
to the conjunction H1(a, b, c, d) ∧ H2(a, b, c, d) ∧ H3(a, b, c, d) above: H1(a, b, c, d) ∧
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H2(a, b, c, d)∧H3(a, b, c, d) holds iff among the 4 values a, b, c, d, there is an intruder and
this intruder is d. This will be the basis of our oddness measure.

In the next subsection, we establish some results about the parity of the number of 1 or
0 in truth tables for heterogeneous proportions, which are contrasted with homogeneous
proportions. This leads to a model of oddness of a given value, among a multiset of 4
values.

Parity of the number of 1 or 0 in tables

Since logical proportions are Boolean formulas involving 4 variables, their truth tables
have 16 rows, where only 6 lead to 1 (see [53] for a complete investigation). One could
ask if any truth table having 6 lines leading to 1 and 10 lines leading to 0 corresponds to a
logical proportion. A simple numbering argument shows that this is not the case. On top
of that, we can build classes of patterns which cannot be valid for any proportion:

Property 2 There is no logical proportion that is true for the four elements of the set of
valuations {0111, 1011, 1101, 1110}. The same holds for {1000, 0100, 0010, 0001}.

Proof: An equivalence between indicators is of the form l1∧l2 ≡ l3∧l4. If this equivalence
is valid for {0111, 1011}, it means that its truth value does not change when we switch the
truth value of the 2 first literals from 0 to 1: there are only 2 indicators for a and b satisfying
this requirement: a ∧ b and a ∧ b. If this equivalence is still valid for {1101, 1110}, its
truth value does not change when we switch the truth value of the 2 last literals from 0

to 1: there are only 2 indicators for c and d satisfying this requirement: c ∧ d and c ∧ d.
Then the equivalence l1 ∧ l2 ≡ l3 ∧ l4 is just a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d
or a ∧ b ≡ c ∧ d. None of these equivalences is true for the four elements of the set of
valuations {0111, 1011, 1101, 1110}. The same reasoning is still applicable for the other
class. 2

Applying a similar reasoning, we can build other set of valuations which cannot make
simultaneously true a logical proportion.

Property 3 A logical proportion cannot be made true by a set of 4 valuations including
3 valuations of one of the classes appearing in Property 2 and where the 4th valuation is
just the negation componentwise of the remaining valuation of the class.

For instance, there is no logical proportion true for {0111, 1011, 1101, 0001} or for {0111, 0100, 1101, 1110}.
This remark helps establishing the following result:

Property 4 Heterogeneous proportions are the only proportions whose all valid patterns
have an odd number of 1.

7



CHAPTER 1. INTRODUCTION AND BACKGROUND ON LOGICAL PROPORTIONS

Proof: From the truth tables, we observe that only valid patterns for heterogeneous propor-
tions have an odd number of 1. Let us now consider a proportion whose 6 valid patterns
carry an odd number of 1. As there are exactly 8 patterns with an odd number of 1,
and thanks to the previous property, this proportion includes necessarily 3 patterns from
each of the previous classes. If the valid patterns in one class are obtained from the valid
patterns from the other class just by negating all the variables, the proportion is code in-
dependent and then, it is a heterogeneous proportion. In the opposite case, it means that
we have at least one pattern in the first class with no negated counterpart in the other
class: for instance, 1110, 1101, 1011 are valid but 0001 is not a valid pattern, leaving only
1000, 0100, 0010 to complete the truth table of a logical proportion. Then property 3 tells
that there is no proportion valid for 1110, 1101, 1011, 1000. 2

A similar property holds for homogeneous proportions:

Property 5 Homogeneous proportions are the only proportions whose all valid patterns
have an even number of 1.

1.2.2 Specificity of Analogical proportions

As stated before, an analogical proportion is a statement of the form “a is to b as c is to
d” (usually denoted a : b :: c : d and where the type of a, b, c, d is not specified for now),
expressing informally that “a differs from b as c differs from d” and vice versa. As it is
the case for numerical proportions, this statement is supposed to still hold when the pairs
(a, b) and (c, d) are exchanged, or when the mean terms b and c are permuted (see [51]
for a detailed discussion). When a, b, c, d are numbers, arithmetical (resp. geometrical)
numerical proportions assert equality between two differences: a − b = c − d (resp.
ratios: a

b
= c

d
). They are at the root of the idea of analogical proportions. In the following

subsections, we shall only focus on the case where a, b, c, d are Boolean truth variables, i.e.
taking their values in B = {0, 1}. In Chapter 2, we will show how analogical proportions
can be extended to graded truth values when variables take their values in [0, 1] and we
also discuss the case of nominal attributes. This will enable us to deal with all kind of
attributes.

Case of Boolean attributes

When considering Boolean variables, a simple way to abstract the symbolic counterpart
of numerical proportions has been given in [50] by focusing on indicators that capture the
ideas of “similarity” and “dissimilarity”. Namely, for a pair (a, b) of Boolean variables,
four indicators are associated to such a pair, namely the Boolean functions:

− a ∧ b and ¬a ∧ ¬b : they are respectively positive similarity and negative similarity
indicators ; a ∧ b (resp. ¬a ∧ ¬b) is true iff only both a and b are true (resp. false);
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− a ∧ ¬b and ¬a ∧ b : they are dissimilarity indicators ; they are true iff only one of a
or b is true and the other is false.

As introduced before, a logical proportion is a conjunction of two equivalences be-
tween such indicators, and the best “clone” of numerical proportions among logical pro-
portions is the analogical proportion [51], defined as:

a : b :: c : d = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) (1.2)

This logical expression of an analogical proportion, using only dissimilarities, could
be informally read as what is true for a and not for b is exactly what is true for c and not
for d, and vice versa. It perfectly fits with the reading “a differs from b as c differs from d

and vice versa”. As such, a logical proportion is a Boolean formula involving 4 variables
and it can be easily checked on its truth table (Table 1.2) that the logical expression of
a : b :: c : d satisfies symmetry (a : b :: c : d ⇒ c : d :: a : b) and central permutation
(a : b :: c : d ⇒ a : c :: b : d), which are key properties of an analogical proportion,
acknowledged for a long time, while a : b :: a : b (and consequently a : a :: b : b,
thanks to the central permutation property) always hold true. Thus, in terms of generic
patterns, we see that analogical proportion always holds for the three following patterns:
s : s :: s : s, s : s :: t : t and s : t :: s : t where s and t are distinct values. Table
1.2 exhibits the six Boolean patterns (among 24 = 16 possible ones), which make true an
analogical proportion. Another remarkable property of analogical proportion that can be
observed on Table 1.2 is the independence with respect to the positive or negative encoding
of properties, namely we have a : b :: c : d ⇒ ¬a : ¬b :: ¬c : ¬d. Moreover, with this
definition, the analogical proportion is transitive in the following sense:

(a : b :: c : d) ∧ (c : d :: e : f)⇒ a : b :: e : f

Table 1.2: Valuations where a : b :: c : d is true

a b c d a : b :: c : d
0 0 0 0 1
1 1 1 1 1
0 0 1 1 1
1 1 0 0 1
0 1 0 1 1
1 0 1 0 1

Thanks to properties of Boolean algebra, it can be easily seen that formula (1) is equiv-
alent to:

((a→ b) ≡ (c→ d)) ∧ ((b→ a) ≡ (d→ c)) (1.3)
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but also, which is less obvious, that (1) is equivalent to:

((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c))

and thus to

((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (1.4)

where there is no negation operator [47]. Formula 1.4 can be viewed as the logical coun-
terpart of a well-known property of geometrical proportions: the product of the means is
equal to the product of the extremes.

Note that the last two expressions now refer to similarity indicators. Moreover, the
analogical proportion “a is to b as c is to d” now reads “what a and d have in common, b
and c have it also (both positively and negatively)”, which is a less straightforward reading
of the idea of analogy than the one associated with 1.2 or 1.3.

One of the side product of geometrical proportions is the well-known “rule of three”
allowing to compute a suitable 4th item x = d in order to complete a proportion a

b
= c

x
.

This property has a counterpart in the Boolean case where the problem can be stated as
follows. Given a triple (a, b, c) of Boolean values, does it exist a Boolean value x such that
a : b :: c : x = 1, and in that case, is this value unique? It is easy to see that there are cases
where the equation has no solution since the triple a, b, c may take 23 = 8 values, while
a : b :: c : d is true only for 6 distinct 4-tuples. Indeed, the equations 1 : 0 :: 0 : x = 1

and 0 : 1 :: 1 : x = 1 have no solution. It is easy to prove that the analogical equation
a : b :: c : x = 1 is solvable iff (a ≡ b) ∨ (a ≡ c) holds true. In that case, the unique
solution is given by x = a ≡ (b ≡ c).

It is worth mentioning that a notion closely related to analogical proportion, but intro-
duced before their Boolean formalization, namely Analogical Dissimilarity denoted AD,
has been defined in [2]. Roughly speaking, AD(a, b, c, d) is just the number of Boolean
values which have to be switched to make a : b :: c : d a valid proportion. For in-
stance, AD(0, 1, 1, 0) = 2, AD(0, 1, 1, 1) = 1, and AD(a, b, c, d) = 0 iff a : b :: c : d

holds. So AD(a, b, c, d) ∈ {0, 1, 2}. AD can be extended in a straightforward manner to
Boolean vectors as follows: Σn

i=1AD(ai, bi, ci, di) ∈ [0, 2n]. Then for Boolean vectors,
AD(a, b, c, d) = 0 iff a : b :: c : d holds.

Extension to Boolean vectors

Representing objects with a single Boolean value is not generally sufficient and we have to
consider situations where items are represented by vectors of Boolean values, each com-
ponent being the value of a binary attribute. A simple extension of the previous definitions
to Boolean vectors in Bn of the form ~a = (a1, · · · , an) can be done as follows:

~a : ~b :: ~c : ~d iff ∀i ∈ [1, n], ai : bi :: ci : di (1.5)
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Obviously, all the basic properties (symmetry, central permutation) still hold for vec-
tors. On top of that, the equation solving process is still valid and provides a new insight
about analogical proportion: analogical proportions are creative. Indeed, let us consider
the following example where:

~a = (1, 0, 0)

~b = (0, 1, 0)

~c = (1, 0, 1)

Solving the analogical equation ~a : ~b :: ~c : ~x yields

~x = (0, 1, 1)

which is a new vector different from ~a,~b and ~c.

We now show the specificity of heterogeneous (and homogeneous) proportions from a
reasoning point of view.

1.2.3 Inference and univocal proportions

There is a way to infer unknown properties of a partially known object D starting from
the knowledge we have about its other specified properties, and assuming that a logical
proportion T holds componentwise with three other objects A, B, C, also represented in
terms of the same n Boolean features. This can be done via an induction principle that can
be stated as follows (where J is a subset of [1, n], and xi denotes the truth value of feature
i for object X ∈ {A,B,C,D}):

∀i ∈ [1, n] \ J, T (ai, bi, ci, di)

∀i ∈ J, T (ai, bi, ci, di)

This can be seen as a continuity principle assuming that if it is known that a proportion
holds for some attributes, this proportion should still hold for the other attributes. It gen-
eralizes the inference principle used with the analogical proportion [63, 51] for prediction
and classification purposes. From a strict logical viewpoint, this inference rule is unsound
as there is no guarantee that the conclusion holds when the premisses hold. Nevertheless,
specially when the ratio |J |

n
is close to 1, which means that proportions hold on a large

number of attributes, it is natural to consider that such a proportion may also hold on the
small number of remaining attributes.

This principle requires the unicity of the solution of equation T (a, b, c, x) = 1 where x
is unknown, when it exists. Namely, given 3 Boolean values a, b, c, we want to determine
for what logical proportion T the equation T (a, b, c, x) = 1 is solvable, and in such a case,
if the solution is unique.
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Definition 4 If, when the equation T (a, b, c, x) = 1 is solvable, the solution is unique, then
the proportion T is said to be 4-univocal. In a similar manner, one may define proportions
that are 1, 2, or 3-univocal. T is univocal when it is i-univocal for every i ∈ [1, 4].

First of all, it is easy to see that there are always cases where the equation T (a, b, c, x)

= 1 has no solution, whatever the proportion T . Indeed, the triple a, b, c may take 23 = 8

values, while any proportion T is true only for 6 distinct valuations, leaving at least 2
cases with no solution. For instance, when we deal with H4, the equations H4(0, 0, 0, x)

and H4(1, 1, 1, x) have no solution.

We have the following result:

Property 6 The homogeneous and the heterogeneous proportions are the only propor-
tions which are univocal.

Proof: From the truth tables, we see that the 2 types of proportions satisfy the property.
Now, a proportion which is not i-univocal is necessarily valid both for a pattern with an
odd number of 1, and for a pattern with an even number of 1. Then, properties 4 and 5
exclude homogeneous and heterogeneous proportions. 2

1.3 Research axes

1.3.1 Principal contributions

This habilitation thesis contributes mainly in the two following axes:

• Research axe 1: Logical proportions-based classification: This axe includes our
principal contributions in this thesis in which we study logical proportions as a basic
tool for solving classification problems. We propose two families of classification
approaches based on logical proportions and dealing with different types of data for
this purpose. We have developed principally two kind of classifiers based on logical
proportions and applying the above inference principle: the first family (using ho-
mogeneous proportions) proposes two new Analogical proportions-based classifiers
denoted AP -Classifiers. The second family, using heterogeneous proportions and
applying the inference process in different way, are called Oddness-based classi-
fiers.

1. Analogical proportions-based classification: In this context, the three follow-
ing main contributions have been achieved:

– Deal with numerical and nominal data: We have extended the use of ana-
logical proportions to handle numerical or nominal data. We propose new
definitions in this context.
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– AP -Classifier: using triples of items, we have build up a valid propor-
tion with the new item to be classified. Based on this principle, we have
developed a new analogical proportion-based classification algorithm.

– A rule-based AP-classifier: using pairs of items, we first build a set of
inference rules (in a preliminary step) to be used for classification purpose.

2. Oddness/Evenness-based classification:

– Oddness and evenness indexes: Based on heterogeneous proportions,
we first develop new Oddness and Evenness indexes that measure the
extent to which an item may be seen as an intruder in a subset of items
first in case of Boolean data. Then these new indexes have been extended
to deal with numerical data, vectors, subset of different sizes and also
missing data.

– Oddness-Classifier: Based on the oddness index, we have proposed a
generic algorithm able to deal with Boolean, nominal or numerical data.

– Optimized Oddness classifiers: To reduce the cubic complexity of the
Oddness classifiers and starting from the observed results, we propose
two options to improve Oddness classifiers using pairs rather than triples
of items with more constrained pairs:

* Odd2 using a remote element.

* Odd2 using two nearest neighbors.

– Evenness classifier: using the evenness index, we propose a new algo-
rithm dealing with Boolean data.

• Research axe 2: Analogical proportions-based preference learning: Observing
the success of Analogical Proportions to solve classification problems for a variety
of datasets types, has led us to investigate more its ability to solve other kind of
problems. In this second axe, we are especially interested to Preference Learning
problem and we study the efficiency of Analogical inference principle for making
preference prediction. If compared to the classification datasets, preferences are
more structured in the sense that they are expected not to exhibit contradictory trade-
offs and to be monotone, which has to be taken into account in the learning process.

In this axe, two basic contributions have been achieved:

– In the context of Boolean setting, we apply a vertical reading of Analogical
Proportions when applying the analogical-based inference principle. We have
developed two algorithms for predicting preferences that exploits triples of
pairs of preferences picked from a training set. The first algorithm only ex-
ploits the given set of examples, the second one completes this set with prefer-
ences deducible from this set under a monotony assumption.

– Next, we extend the previous Analogical preference learning to the multi-
valued setting where Analogical Proportions valuations are just a matter of
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degree in [0, 1] instead of {0, 1}. In this context, we apply either a vertical or
horizontal reading of proportions and we propose three new algorithms either
using triples of pairs of preferences or simply exploiting these preference pairs
one by one.

1.3.2 Research collaboration

This habilitation thesis has been achieved through a collaboration and contributions of
many researchers from different domains either graduate students or international experts
related to the two research axes. The following Table summarizes the degree of involve-
ment of each of these collaborators in each research axe.

Table 1.3: Collaborators and their involvements in the two research axes

Collaborator University Axes
Pr. Henri Prade University Paul Sabatier, France 1,2
Pr. Gilles Richard University Paul Sabatier, France 1
Pr. Marc Pirlot Mons University, Belgium 2
Dr. Mathieu Serrurier University Paul Sabatier, France 1
Dr. Olivier Sobrie Mons University , Belgium 2
Toumather Nsibi (Master student) University of Tunis 2
Marouane Essid (Master student) University of Tunis 1

1.4 Conclusion

This chapter is devoted to provide the necessary background on logical proportions as a
basic tool used to design several approaches in this thesis. Especially, we have explained
the specificity of heterogeneous and homogeneous logical proportions. Then, we have
shortly introduced a summary on the two basic research axes developed in this thesis:
designing new approaches for classification using both analogical and heterogeneous pro-
portions and proposing new algorithms for user preference prediction based on analogical
proportions.

In next chapters, a detail regarding each of the previously introduced contributions will
be provided.
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Chapter 2

Analogy-based classification

2.1 Introduction

Numerical proportions play an important role in our perception and understanding of re-
ality. Indeed proportions are a matter of comparisons expressed by differences or ratios
that are equated to other differences or ratios. Two centuries ago, Gergonne [30, 31] was
the first to explicitly relate numerical (geometric) proportions to the ideas of interpolation
and regression. In fact, geometrical proportions exhibit a simple but effective extrapola-
tion power since, knowing 3 elements a, b, c, we can easily compute a last one d such that
a
b

= c
d

(known as the rule of three).

Numerical proportions may be considered as particular instances of the so-called “ana-
logical proportions” which are statements of the form “a is to b as c is to d”, often denoted
a : b :: c : d. This supposes that a, b, c, d refer to the same category of items, which can
thus be described in the same terms. Such a proportion expresses that “a differs from b as
c differs from d”, as well as “b differs from a as d differs from c” [47]. In other words,
the pair (a, b) is analogous to the pair (c, d) [33]. More recently, diverse formal views of
analogical proportions have been developed in algebraic or logical settings [63, 43, 44], in
such a way that the essential properties of numerical proportions still hold, and especially
their extrapolation power. For instance, when analogical proportions are defined in terms
of subsets of properties that hold true in a given situation, each variable a, b, c and d refers
to a situation described by a vector of feature values [39, 46, 47, 50].

Based on such formal approaches, analogical proportions have proved to be a valu-
able tool in morphological linguistic analysis [64, 38], in solving IQ tests such as Raven
progressive matrices [58, 21] as well as in classification tasks where results competitive
with the ones of classical machine learning methods have been first obtained by [2, 45].
In this chapter, we focus on this specific type of machine learning application, namely
classification and we show how analogical proportions can be useful for building a family
of classifiers named: Analogical Proportions-based classifiers.
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CHAPTER 2. ANALOGY-BASED CLASSIFICATION

This chapter is organized as follows: In Section 2.2, we first establish the basis for
AP-classification. Then, we propose a generic algorithm (AP -classifier) that covers all
types of data and looks for triples of items to build up a valid proportion with the new
item to be classified. To predict the class for this new item, the algorithm computes an
analogical score for each triple in the training set and cumulates these scores for each
possible class. In Section 2.3, we show that there exists an alternative method to build
analogical proportion based-learners by statically building a set of inference rules during
a preliminary training step. This gives birth to a new classification algorithm that deals
with pairs rather than with triples of examples.

2.2 AP-Classification

2.2.1 Motivation

The purpose of this section is twofold. First, we make precise the link between the ana-
logical jump that characterizes usual analogical inference and an analogical proportion-
based pattern of inference. Second, we provide some examples where the analogical
proportion-based inference pattern can be successfully used for classification or inter-
polation. This will motivate the design of analogical proportion-based classifiers (AP
classifiers for short) in the next sub-section.

Analogical jump and analogical proportion

In its simplest form, analogical reasoning, without any reference to the notion of propor-
tion, is usually viewed as a way to infer some new fact on the basis of a single observation.
Analogical reasoning has been mainly formalized in the setting of first order logic [23, 41].
A basic pattern for analogical reasoning is then to consider 2 terms s and t, to observe that
they share a property P , and knowing that another property Q also holds for s, to infer
that it holds for t as well. This is known as the “analogical jump” and can be described
with the following simplified inference pattern, leading (possibly) to a wrong conclusion:

P (s) P (t) Q(s)

Q(t)
(AJ)

Making such an inference pattern valid would require the implicit hypothesis that P
determines Q inasmuch as 6 ∃u P (u) ∧ ¬Q(u). This may be ensured if there exists an
underlying functional dependency, or more generally, if it is known for instance that when
something is true for an object of a certain type, then it is true for all objects of that type.
Otherwise, without such guarantees, the result of an analogical inference may turn to be
definitely wrong.

16



CHAPTER 2. ANALOGY-BASED CLASSIFICATION

P Q s t
~a 1 0 1 0 P (s)
~b 1 0 0 1 P (t)
~c 0 1 1 0 Q(s)

−−− −−− −−− −−− −−− −−−
~d 0 1 0 1 Q(t)

Table 2.1: A syntactic view of analogical jump

In the Boolean case, to link the above analogical pattern with the concept of analogical
proportion, it is tempting to write something like: P (s) : P (t) :: Q(s) : Q(t) since we
have 4 terms which obey, at least from a syntactic viewpoint, the structure of an analogical
proportion. Indeed, it is sufficient to encode each piece of information in a binary way
according to the presence or the absence of P , Q, s, or t in the corresponding term, and
we get the encoding d of Q(t) via the equation solving process as in Table 2.1.

In that case, ~a = P (s),~b = P (t),~c = Q(s), ~d = Q(t) are encoded as Boolean vectors
where the semantics carried by the predicate symbols P and Q is not considered.

In [69, 2], the authors take a similar inspiration where, starting from Boolean datasets
and focusing on binary classification problem, they apply the following inference princi-
ple:

~a : ~b :: ~c : ~d

cl(~a) : cl(~b) :: cl(~c) : cl(~d)
AP 1

It means that if 4 Boolean vectors build a valid analogical proportion, then it should
be true that their classes build also a valid proportion. Starting from this viewpoint, in the
case where ~a,~b,~c are in a sample set, i.e., their classes are known, and ~d being the object to
be classified, if the equation cl(~a) : cl(~b) :: cl(~c) : x = 1 is solvable (in that case, we say
that the triple (~a,~b,~c) is class solvable), they allocate its solution to cl(~d) just by applying
the previous principle. Their experience highlight the predictive power of this principle.
In [15] has been shown that AP principle is just a particular instance of (AJ).

In the pattern AP , we transfer the identity of differences pertaining to pairs (~a,~b)

and (~c, ~d) to the relation between their classes. This enables us to predict the missing
information about ~d, using AP as an extrapolation principle. This is obviously a form of
reasoning that is not sound, but which may be useful for trying to guess unknown values.

1From now on, we denote AP -classifier, any classifier derived from the AP rule
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Some arguments in favor of the study of AP -classifiers

The previous subsection has shown that the AP -inference just corresponds to the usual
view of analogical inference, and as such, its conclusion are brittle. Still, we now provide
some arguments or clues showing that AP may make sense for classification.

Some experimental evidences First of all, it should be reminded that the authors of
[2, 45] have been the first to design classifiers for Boolean data based on an AP principle.
For this purpose, they define what they call the Analogical Dissimilarity AD over Boolean
values: this can be viewed as a way to measure how far is a Boolean proportion from
being a valid analogical proportion, since AD(~a,~b,~c, ~d) = 0 iff ~a : ~b :: ~c : ~d holds, as
recalled in Chapter 1. Then adding AD component-wise allows the authors to extend AD
to Boolean vectors, leading to a flexible implementation of AP principle by minimizing
the cumulated AD. On a set of Boolean UCI benchmarks, this implementation has led to
very good quality results in terms of accuracy and outperforms standard classifiers on some
benchmarks such as Monk2 (Monk2 is a two-classes dataset defined by the constraint that
the sum of the components of a nominal data vector is equal to 2, before binarisation takes
place). This work has provided the first empirical validation of the AP principle applied
to classification.

Analogical classification and exclusive or In a two-classes classification problem
with Boolean data, the class of a given vector is a function f of its components. If we deal
with vectors in Bn, we have exactly 22n such functions. It is worth pointing out that the
AP principle always leads to a correct answer in case of some particular functions such as
constants, projections, and the exclusive or (see [15] for details).

The fact thatAP always yields a good result for the exclusive or has been first observed
experimentally [20, 34]. A similar, simpler reasoning indicate that the application of AP
cannot lead to a wrong result for projections. In fact, it has been recently formally proved
[22] that the AP principle is sound as soon as the labeling function is an affine Boolean
function (this means in practice that the function is a constant, a projection, xor function
or ≡ function over some subsets of the n attributes). Moreover it can be shown that there
is no other Boolean function for which this is true [22]. These results make clear that what
we have explicitly shown for a two-dimensional XOR is valid for any dimension [15].

An example with a non affine Boolean function As soon as the labeling function is
not a Boolean affine function, we are sure there exist some triples that will induce wrong
prediction. Nevertheless, it is still possible to get good results with the AP principle for
non affine functions. Indeed, it is sufficient that in most situations, the candidate triples
majoritarily yield correct answers. We now provide an example of such function f (where
⊕ denotes the xor operator):

f(x1, . . . , xn) = x1 ⊕ x2 if Σn
i=1xi < n− 1
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and f(x1, . . . , xn) = min(x1, . . . , xn) otherwise.

With n = 7, the first condition covers 120 inputs while the second one covers only
8 inputs. It can be computed that the number of non trivial triples (i.e. where a 6= b or
a 6= c) for which analogy is solvable componentwise is 2.064.512, among which only
187.620 are class solvable. Among these 187.620 triples (~a,~b,~c), 160.224 are such that
the solution of the class equation f(~a) : f(~b) :: f(~c) : x = 1 is exactly f(~d), where ~d

is such that ~a : ~b :: ~c : ~d holds componentwise and only a small minority (27.396) leads
to the wrong label. As expected, when running AP classifier on this artificial dataset,
we get an average accuracy of 97%, while k-NN yields only 93%. This illustrates the
fact that good performance are still possible for functions which are not affine strictly
speaking. A phenomenon of this type may take place in the case of Monk2 dataset of the
UCI repository where excellent results were reported for AP -classifier as recalled above.

Analogical proportion and interpolation Analogy-based inference applies to any
type of data. The arithmetical proportion view of analogy (already mentioned in Chapter
1) applies to real numbers and can be easily extended componentwise to real-valued vector
spaces. In that case, ~a : ~b :: ~c : ~d simply means that the 4 items are the vertices of a
parallelogram. The existence of such a parallelogram in a linguistic dataset have been
early pointed out in [60].

Besides, the relation between analogical proportion and interpolation, in the numerical
case, is also worth mentioning. Indeed, let us consider the multiple-valued modeling of
the analogical proportion (that will be defined in the next sub-section). It has been shown
that an analogical proportion agrees with the idea of linear interpolation and extrapolation,
since, in particular, the solution of a : x :: x : b = 1 is x = a+b

2
in the numerical case.

More generally, the following result proved and discussed in [25], is noticeable:

Proposition : if ~a, ~d are the coordinates of points in a n-dimensional space, i.e. ~a =

(a1, · · · , an), ~d = (d1, · · · , dn), the solution of the analogical proportion equation ~a :

~x ::A ~x : ~d = 1 is the midpoint ~x = ((a1 + d1)/2, · · · , (an + dn)/2) of the segment ~a~d in
the n-dimensional space.

Indeed for each component, the equation reads : xi − ai = di − xi, which yields
xi = (ai + di)/2. The solution of equation ~a : ~x ::A ~x : ~d = 1 is thus obtained by a linear
interpolation. This points out that AP , when applied to rescaled numerical data, performs
a linear extrapolation.

In the next section, we discuss different methodologies for the implementation of AP -
classifiers. First, we present a brute force method then we propose an optimized algorithm
that reduces the search space of triples.
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2.2.2 Contribution

In this Section, we aim to show how analogical proportions may be useful for building
analogical-based classifiers that will be described at the end of this section. To be able
to deal with all kind of attributes (Boolean, nominal or numerical), we first provide nec-
essarily definitions and extensions of analogical proportion, defined for Boolean case in
Chapter 1, to graded truth values when variables take their values in [0, 1]. The we will
also discuss the case of nominal attributes.

Extension to Real-valued attributes

When dealing with a real-valued attribute with domains [m,m], it is always possible to
rescale these attributes such as the new value xnew associated to a current value x is com-
puted as follows:

xnew =
x−m
m−m

and as such, can be viewed as a truth value. If we consider the Boolean expression of
the analogical proportion given by formula (1), one may think of many possible multiple-
valued extensions, depending on the choice of the connectives associated to ¬, ∧ and
≡. Then, it is important to make proper choices that are in agreement with the intended
meaning of analogical proportion. Some properties seem very natural to preserve, such as

• i) the independence with respect to the positive or negative encoding of properties
(one may describe a price as the extent to which it is cheap, as well as it is not
cheap), which leads to require that ¬a : ¬b :: ¬c : ¬d holds if a : b :: c : d holds (as
it is already the case with Boolean truth values);

• ii) the definition should agree with the Boolean definitions in the limit case where
a, b, c, d take their values in {0, 1}.

A careful analysis of these requirements, ensuring that the value of b can be retrieved from
the value of a and the ones of a∧¬b and ¬a∧b, leads to choose (for the sake of simplicity,
we keep the same notation for a variable and its truth value) [56, 25, 52]:

• negation: ¬a = 1− a;

• Łukasiewicz implication: a → b = min(1, 1 − a + b) (or equivalently a ∧ ¬b =

max(0, a− b));

• conjunction: a ∧ b = min(a, b);

• equivalence: a ≡ b = min(a→ b, b→ a) = 1− |a− b|.
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When starting from formula (2), this leads to the following expression which both gen-
eralizes the Boolean case to multiple-valued entries and introduces a graded view of the
analogical proportion:

a : b :: c : d = 1− |(a− b)− (c− d)| if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

a : b :: c : d = 1−max(|a− b|, |c− d|) otherwise (A)

This is appropriate for a numerical setting, and clearly agrees with the difference-based
semantics of analogical proportions. As can be seen under definition (A), a : b :: c : d = 1

if and only if (a− b) = (c− d). We thus recognize the arithmetical proportion.2

When starting from definition (3), involving the operator ∨ defined as

a ∨ b = ¬(¬a ∧ ¬b) = 1−min(1− a, 1− b) = max(a, b)

we get another expression:

a : b :: c : d = min(1− |min(a, d)−min(b, c)|, 1− |max(a, d)−max(b, c)|)

which can be rewritten as:

a : b :: c : d = 1−max(|min(a, d)−min(b, c)|, |max(a, d)−max(b, c)|) (A∗)

It can be checked that a : b :: c : d = (1 − a) : (1 − b) :: (1 − c) : (1 − d) for
both (A) and (A∗). Unfortunately, the equivalence between the 2 definitions A and A∗

is no longer valid in the multiple-valued case. Roughly speaking, for A∗ to hold (i.e.,
to have value 1), the pair (a, d) and the pair (b, c) should have the same min and max,
so A∗(0, 0.5, 0.5, 1) has the value 0.5 and then does not hold at degree 1. Indeed under
definition (A∗), a : b :: c : d = 1 if and only if a = b and c = d, or if a = c and
b = d. But applying the definition of A shows that A(0, 0.5, 0.5, 1) = 1. Note that,
A∗(a : x :: x : b) = 1 has no solution if a 6= b.

Nevertheless, when a, b, c, d are restricted to {0, 1}, the 2 definitionsA andA∗ coincide
with definition (1) for the Boolean case, which highlights the agreement between these
extensions and the original idea of analogical proportion.

In fact, A∗ provides a more restrictive view of analogical proportion than A: For in-
stance, in the case of a tri-valued semantics where the domain of the variables is reduced to

2The geometrical proportion could be retrieved as well, choosing Goguen implication s → t =
min(1, t/s) and s→ t = 1 if s = 0, product conjunction s∧t = s·t, and equivalence s ≡ t = min(s/t, t/s)
[47]. It yields

a : b :: c : d = min

(
min(1, b

a )

min(1, d
c )

,
min(1, d

c )

min(1, b
a )

)
.min

(
min(1, a

b )

min(1, c
d )

,
min(1, c

d )

min(1, a
b )

)
.

with the convention 0/0 = 1. Clearly, a : b :: c : d = 1 if and only if a/b = c/d. In spite of this nice property,
it can be checked that 1/2 : 0 :: 1 : 0 = 1, which is not satisfactory, since we expect here a value less than 1
[56]. For this reason, we do not consider this option further in this paper.
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{0, 0.5, 1}, the truth table of A has 19 lines leading to 1 among 34 = 81 possible patterns,
but A∗ has only 15 such lines [52].

Moreover, as can be checked from its definition, that on [0, 1], A∗(a, b, c, d) = 1 only
for the 3 patterns (a, b, c, d) = (s, s, s, s) or (s, t, s, t), or (s, s, t, t). This contrasts with
A(a, b, c, d) which is equal to 1 as soon as a− b = c− d.

Lastly, we can extend the notion of “valid” proportion to vectors in [0, 1]n as in the
Boolean model with (where P denotes A or A∗):

P (~a,~b,~c, ~d) = 1 iff ∀i ∈ [1, n], P (ai, bi, ci, di) = 1 (2.1)

In the frequent case where P (ai, bi, ci, di) ∈]0, 1[ for some index i, P (~a,~b,~c, ~d) is not
defined, and we have different options to allocate a truth value to the whole proportion.
Obviously, a standard option is to compute their mean value Σn

i=1P (ai,bi,ci,di)

n
. Let us observe

that Σn
i=1P (ai,bi,ci,di)

n
= 1 if and only if the analogical proportion holds perfectly on every

component. We will use this definition to design AP -classifiers.

Inference in the numerical Case In the numerical case, we consider 4 real-valued
vectors ~a,~b,~c, ~d over [0, 1]n (the numerical values are previously rescaled in the unit inter-
val as explained before, but still with discrete classes). Then, we interpret the value of an
attribute as a truth value (corresponding to the extent to which the property underlying the
attribute holds): thus the value of P (ai, bi, ci, di) (where P refers to A or A∗) can always
be computed using either the extension A or the extension A∗, and belongs also to [0, 1].
So the following inference principle strictly clones the Boolean case :

P (~a,~b,~c, ~d) = 1

cl(~a) : cl(~b) :: cl(~c) : cl(~d)

Actually, the resulting truth value P (~a,~b,~c, ~d) is rarely equal to 1 but can be close to 1.
So, as we shall see, has to be adapted for a proper implementation. The idea is to compute
a kind of truth value attached to ~a : ~b :: ~c : ~d as explained above (using min or a mean),
and then to associate this value to the statement that cl(~a) : cl(~b) :: cl(~c) : cl(~d) would
hold. We indicate in the following how we take advantage of this value in the algorithms.

Extension to nominal attributes

When it comes to nominal attributes whose domains are finite sets of values without a
particular meaningful ordering, both definitions A and A∗ no longer applies since they
involve min and max operators. However, it can be noticed that the 3 patterns making
A∗(a, b, c, d) = 1 may be regarded as the universal patterns of analogy whatever the do-
main V to which a and b belong. This leads to a natural definition of analogical proportion
for nominal values as follows:
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a : b :: c : d = 1 iff (a, b, c, d) ∈ {(s, s, s, s), (s, t, s, t), (s, s, t, t)‖ s, t ∈ V}
and a : b :: c : d = 0 otherwise

(2.2)

For instance, for an attribute such as color whose values belong to

V = {red, green, blue, yellow}

we have red : green :: red : green = 1, but red : yellow : red : green = 0. Note
that, in the above definition, there is no longer intermediary value as given by A∗ when
a, b, c, d ∈ [0, 1]3.

It is quite common, in the case of nominal attributes, to binarize their values. This case
can be handled as easily as the binary case. Indeed, consider an attribute i whose values
belong to domain V = {v1, · · · , vm}, it can be straightforwardly binarized by means of m
attributes αj, j ∈ [1,m] with the following semantics:

αj = 1 iff attribute i has value vj and 0 otherwise

This amounts to replace a nominal attribute taking m values by the m Boolean attributes
αj and to have a function bin defined as:

bin : V → Bm with bin(vj) = (0, . . . , 0, 1, 0, . . . , 0) where 1 is in position j

As an illustration, let us consider the previous color attribute: it is binarized via a bin
function as follows:

bin(red) = 1000, bin(green) = 0100, bin(blue) = 0010, bin(yellow) = 0001

Let us now consider 4 vectors a, b, c, d such that attribute i is nominal, taking its values
in V = {v1, · · · , vm}. Moreover, assume without loss of generality that:

ai = v1, bi = v2, ci = v1, di = v2

Since bin(v1) = (1, 0, . . . , 0) and bin(v2) = (0, 1, 0, . . . , 0), the situation is pictured in
Table 2.2 .

As can be seen on this table, an analogical proportion holds true between the four
objects for each binary attribute αj . This is clearly equivalent to the compact encoding
in terms of nominal values namely here: v1 : v2 :: v1 : v2. This expresses the following
property:

~a : ~b :: ~c : ~d (with def. 2.2) iff bin(~a) : bin(~b) :: bin(~c) : bin(~d) (with def. 1.5)
3Note that in the nominal case, a : b :: c : d = 0 iff (a, b, c, d) ∈

{(s, t, t, s), (s, s, s, t), (s, s, t, s), (s, t, s, s), (t, s, s, s)‖ s, t ∈ V}, while A∗(a, b, c, d) = 0 only for the
patterns of the form (1, 0, s, 1) or (0, 1, s, 0), ∀s ∈ [0, 1] (and the other patterns obtained from these two by
symmetry and central permutation) [25]. As expected, when s, t ∈ {0, 1}, the two sets of patterns coincide.
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. . . α1 α2 α3 · · · αm . . .
~a . . . 1 0 0 · · · 0 . . . | v1

~b . . . 0 1 0 · · · 0 . . . | v2

~c . . . 1 0 0 · · · 0 . . . | v1

~d . . . 0 1 0 · · · 0 . . . | v2

Table 2.2: Handling non binary attributes

This means that binarizing does not change the status of a proportion. Thus it is not
necessary to binarize a nominal attribute to evaluate if an analogical proportion holds.

In many applications and datasets, nominal features may be somehow mid-way be-
tween nominal and numerical data, inducing a notion of ordering and/or a notion of prox-
imity. A good instance of this is coming from systems where the user has to grade items
with assessments of the type 1,2,3,4,5 stars. This problem should be addressed here by
using the A∗ definition, rather than the A definition, since A∗ allows to keep track of such
a graded assessment in the same way as the handling of nominal values.

So given 4 hybrid vectors involving binary, nominal and rescaled real-valued attributes,
we have two options to check if together they make an analogical proportion component-
wise:

1. Either we use A∗ (covering both Boolean and numerical attributes) and its nominal
counterpart for nominal attributes (formula 2.2), which provides a rather homoge-
neous treatment (since A∗ returns ‘1’ in the same situations as formula 2.2 does),

2. Or if we want to acknowledge that the distance between real-values is meaningful,
we use A, keeping formula 2.2 for nominal attributes.

Analogical Proportion-based classifiers

In the context of classification, we assume that objects or situations A,B,C,D are rep-
resented by vectors of attribute values, denoted ~a,~b,~c, ~d. Applying the AP principle, we
propose a new analogical proportion-based approach to classification. This approach relies
on the idea that the unknown class x = cl(~d) of a new instance ~d may be predicted as the
solution of an equation expressing that the analogical proportion cl(~a) : cl(~b) :: cl(~c) : x

holds between the classes. This is done on the basis of triples (~a,~b,~c) of examples of the
sample set that are such that the analogical proportion ~a : ~b :: ~c : ~d holds componentwise
for all or for a large number of the attributes describing the items.

A simple option is to consider all triples (~a,~b,~c) in Solv(S3), then, for each of them,
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to compute a truth value P (~a,~b,~c, ~d) as the average of the truth values obtained in a com-
ponentwise manner as defined in the previous sub-section. Then we have to aggregate
these truth values in order to provide a label for the new item ~d to be classified. This brute
force method computing all the suitable triples is cubic and is prohibitive in terms of run-
time execution. Obviously, we may think of an offline pre-processing step to make easier
the retrieval of these triples (since all triples should be class solvable), as discussed in [8].
We may also think of significantly reducing the number of triples to be considered. This
is what we propose in the following.

Instead of systematically surveying Solv(S3), we restrict the search for suitable triples
(~a,~b,~c) by constraining ~c to be one of the k nearest neighbors of ~d w.r.t. Manhattan dis-
tance, for some chosen k. In that case, we apply the AP inference principle but restricted
to the subset of Solv(S3) where ~c is one of the nearest neighbours of ~d.

Past experiments [8],[10] have shown that this is not harmful for the results justifying
to follow this option which decrease the complexity of the algorithm (instead of being cu-
bic, the algorithm become quadratic). Moreover, the experiments reported in Section 2.2.3
show that the choice of ~c among nearest neighbours does not prevent to get competitive
results.

More formally, for each candidate label l, we compute the sum of the truth values
P (~a,~b,~c, ~d) for all triples (~a,~b,~c) whose solution of the corresponding class equation
cl(~a) : cl(~b) : cl(~c) : x = 1 is l and where ~c ∈ Nk(~d) the set of the k nearest neighbours of
~d. This sum can be viewed as the total credit for the label l. More formally, if we denote
Solv(S3)(l) the set of triples in Solv(S3) such that the solution of the class equation is l,
the total credit associated to l is just:

SumP (l) =
∑

~c∈Nk(~d), (~a,~b,~c)∈Solv(S3)(l)

P (~a,~b,~c, ~d)

We then allocate to ~d the label l having the highest credit.

label(l) = argmaxl(SumP (l))

In case of tie, we implement a majority vote. Let us note that, in the case of Boolean
or nominal attributes, applying blindly this rule will lead to consider triples where ana-
logical proportions may hold only on a strict subset of {1, . . . , n}: for such a triple
P (~a,~b,~c, ~d) = j

n
< 1 where j is the number of components where analogical propor-

tion holds. In practice, in the Boolean case, there are many triples whose P (~a,~b,~c, ~d) = 1

and adding values less than 1 does not bring any improvement. This is why, for Boolean
and nominal datasets, we further restrict the sum to those triples where P (~a,~b,~c, ~d) = 1.
In case where no triple (a,b,c) such that P(a,b,c,d)=1 can be found, we would select the
triple(s) for which P(a,b,c,d) is maximal.
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This leads to Algorithm 1. Up to the previous adjustment, this algorithm handles all
types of data: Boolean, nominal and numerical data.

It is quite clear that our procedure relies on the existence of class solvable triples
in the training set, which make an analogical proportion with the new item (at least to
some extent). In the opposite case, no classification can be suggested and the algorithm
returns ”unclassified”. This might happen in particular when the training set is very small.
However, this situation did not occur with the UCI benchmarks we consider. When there
are several candidate labels i.e. unique(maxi, SumP (l)) is not valid, we implement a
majority vote among the candidate labels. This situation, very unlikely with numerical
features, may happen with Boolean or nominal data.

Algorithm 1 AP -classifier

Input: k > 1, ~d /∈ S a new instance to be classified
For each label l do SumP (l) = 0 end For
for each ~c in Nk(~d) do

for each pair (~a,~b) in |S|2 do
if cl(~a) : cl(~b) :: cl(~c) : x has solution l then
SumP (l)+ = P (~a,~b,~c, ~d)

end if
end for

end for
maxi = max{SumP (l)}
if (maxi 6= 0) then

if (unique(maxi, SumP (l))) then
cl(~d) = argmaxl{SumP (l)}

else
Majority vote

end if
else

UNCLASSIFIED
end if
return cl(~d)

2.2.3 Experimental validation

We provide experimental results for the AP -classifier and we compare the results to other
ML classifiers. This experimental study is based on several datasets taken from the U.C.I.
machine learning repository [42]. A brief description of these data sets is given in Table
2.3. Since we have chosen to deal with both nominal or numerical features in this study, the
first part in this Table 2.3 includes datasets with categorical or Boolean attribute values and
the second part includes datasets with only numerical attributes. In order to apply multiple-
valued semantics framework, all numerical attributes are rescaled. More precisely, we just
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Table 2.3: Description of datasets
Datasets Instances Nominal Att. Binary Att. Numerical Att. Classes
Balance 625 4 20 - 3
Car 743 7 21 - 4
TicTacToe 521 9 - - 2
Monk1 432 6 15 - 2
Monk2 432 6 15 - 2
Monk3 432 6 15 - 2
Breast Cancer 286 9 - - 2
Spect 267 - 22 - 2
Voting 435 - 16 - 2
Hayes-Roth 132 5 15 - 3
Diabetes 768 - - 8 2
W. B. Cancer 699 - - 9 2
Heart 270 - - 13 2
Magic 1074 - - 11 2
Ionosphere 351 - - 35 2
Iris 150 - - 4 3
Wine 178 - - 13 3
Satellite Image 1090 - - 36 6
Segment 1500 - - 19 7
Glass 214 - - 9 7
Ecoli 336 - - 7 8
Letter 1076 - - 16 26

replace a real value r with r−rmin

rmax−rmin
. , where rmin and rmax respectively represent the

minimal and the maximal values for this attribute on this dataset.

In terms of protocol, we apply a standard 10 fold cross-validation technique. As usual,
the final accuracy is obtained by averaging the 10 different accuracies for each fold. How-
ever, we have to tune the parameters of the AP -classifier as well as ones of the classical
classifiers (with which we compare our approach) before performing this cross-validation.

In order to do that, we randomly choose a fold (as recommended by [68]), we keep
only the corresponding training set (i.e. which represents 90% of the full dataset). On
this training set, we again perform a 10-fold cross-validation with diverse values of the
parameters. We then select the parameter values providing the best accuracy. These tuned
parameters are then used to perform the initial cross-validation. As expected, these tuned
parameters change with the target dataset. To be sure that our results are stable enough, we
run each algorithm (with the previous procedure) 5 times so we have 5 different parameter
optimizations. The displayed β is the average value over the 5 different values (one for
each run). The results shown in Table 2.4 are the average values obtained from 5 rounds
of this complete process.
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Results of AP -classifier

In Table 2.4, we provide mean accuracies and standard deviations for Algorithm 1 in case
of nominal or numerical data. We also include testing results for other ML classifiers for
comparison. Each value given in this table is the average of 5 different runs.

For AP -classifier, we run our tests both for A and A∗ definitions of the graded ana-
logical proportion while Formula 2.2 is applied in case of nominal datasets. For each
classifier, the displayed results correspond to the optimal value of the parameter β (for
AP -classifier and k-NN, β being the number of nearest neighbors) obtained as a result of
the optimization step in the inner cross validation.

To compare our results to those of the brute force algorithm that considers all possible
triples (~a,~b,~c) in Solv(S3) when computing the sum of truth values P (~a,~b,~c), we also
tested the efficiency of this algorithm on some datasets. We get the following accuracies
for the three tested datasets: ”Iris” : 89.0 ± 8.62, ”Heart”: 66.01 ± 4.96 and ”Wine”:
39.16± 5.71.

Let us summarize and analyze the main facts that can be observed in Table 2.4:

1. If we compare the results of the three datasets given above in case of the brute force
algorithm to the results of AP -classifier given in Table 2.4, we note that the later
largely outperforms the brute force algorithm. This validates the use of a particular
set of triples, i.e. those where one of the items is among the k nearest neighbors of
the item to be classified. This means that there is no need to use all possible triples
in the dataset for classification.

2. Overall,AP -classifier exhibits good classification accuracies and is able to deal with
any type of data: Boolean, nominal or numerical.

3. The best accuracies are achieved for large values of parameter k for most of the
nominal datasets. In the numerical case and for half of the datasets, good accuracies
are obtained using only one nearest neighbor (k = 1).

4. AP -classifier seems to perform little better (if compared to the state of the art classi-
fiers) in the nominal case than in the numerical case. Remember that, in the nominal
case, only triples with P (a, b, c, d) = 1 are used in the summation, i.e: those hav-
ing analogical proportion holding on all components. So we may say that, using a
selected set of triples for classification, can improve the efficiency of the classifier
rather than blindly use all possible triples.

5. For numerical data, the proposed algorithm performs slightly better when we use
definition A for most datasets. It may be the case that A∗, providing a more restric-
tive view of analogical proportion than A, removes too many candidates from the
potential voting triples. It remains to investigate if there is a way to qualify a target
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dataset as being more suitable for classification usingA or usingA∗. This is an open
problem.

6. For nominal data, if we compare results of AP -classifier to those shown in [8], it is
clear that the two classifiers perform in the same way for the first 6 nominal datasets.

7. To investigate more this comparison, we also tested the previous algorithm [8], suit-
able for nominal data only, on the data sets ”Breast Cancer”, ”Voting” and ”Hayes-
Roth”. We observe thatAP -classifier is significantly better than the algorithm in [8].
In fact, when we have many nominal attributes with a large number of values, the
condition Dis(a, b) = Dis(c, d) in [8] is obviously more difficult to satisfy, since
it amounts to require the analogical proportion to perfectly hold on all attributes.
Otherwise the corresponding triple will be discarded. On the other hand, in AP -
classifier, in case no triples with P (a, b, c, d) = 1 could be found, we select the best
triple (with highest P ) and this allows for a relaxation of the requirement that the
analogical proportion should hold on any attribute: in fact, AP -classifier benefits
from the summation of elementary evaluations of analogical proportion on each at-
tribute. This explains why AP -classifier performs significantly better than that in
[8] for this kind of nominal data set.

Table 2.4: Results for AP -classifier and other ML classifiers obtained with the best pa-
rameter β

Datasets Algo1 KNN C4.5 JRIP SVM(RBFKernel) SVM(PolyKernel)
Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β

Balance 86.35±2.27 11 84.05±2.6 11 63.79±4.33 0.3 72.74±3.48 6 99,17±0,34 (32768,0.00195) 98,53±0,26 (128,1)
Car 94.16±4.11 11 92.38±2.51 1 90.84±3.61 0.5 86.58±3.67 8 99,37 ±0,12 (32768,0.03125) 99,19±0,19 (32768,2)
TicTac. 100 3 99.23±1.23 1 88.48±3.72 0.3 96.78±4.14 8 100 (32768,0.03125) 100 (32768,1)
Monk1 99.77±0.71 7 98.37±2.78 2 99.36±0.64 0.4 90.99±13.15 2 100 (32768,0.5) 100 (32768,6)
Monk2 99.77±0.7 11 65.29±1.74 11 67.13±0.61 0.1 64.64±3.69 4 100 (32768,0.03125) 100 (32768,2)
Monk3 99.63±0.7 9 99.14±1.49 1 99.82±0.18 0.2 98.95±1.48 2 100 (32768,0.5) 100 (32768,7)
Breast Cancer 73.68±6.36 10 72.81±7.65 9 71.58±6.55 0.2 70.11±8.59 2 72,86±1,15 (8192,0.00195) 74,19±1,20 (0.03125,2)
Voting 94.73±3.72 7 92.5±3.59 4 96.38±2.63 0.2 95.84±2.39 4 96,37±0,10 (32, 0.03125) 95,72±0,21 (0.03125,2)
Hayes-Roth 79.29±9.3 7 61.41±10.31 3 68.2±6.66 0.2 83.26±9.04 4 79,70±1,55 (32768,0.0078) 79,85±2,05 (32,1)

A A*
Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β

Diabetes 73.28±4.18 11 73.13±4.66 9 73.42±3.65 11 74.73±4.14 0.2 74.63±5.22 5 77,37±0,31 (8192,3.051E-5) 77,34 ±0,30 (0.5,1)
W. B. Cancer 97.01±3.35 4 96.87±1.51 4 96.7±1.73 3 94.79±3.19 0.2 95.87±2.9 4 96,74±0,12 (2,2) 96,92 ±0,23 (2,1)
Heart 81.9±7.64 10 81.75±3.31 9 82.23±10.1 11 78.34±7.05 0.2 78.52±7.32 4 79,98±0,73 (32,0.125) 83,77±0,55 (0.5,1)
Ionosphere 90.55±4.05 1 90.41±3.47 1 90.8±3.39 1 89.56±5.62 0.1 89.01±4.75 5 94,70±0,32 (2,2) 89,28±0,43 (0.03125,2)
Iris 94.89±6.4 5 94.55±5.44 7 94.88±6.4 3 94.28±5.19 0.2 93.65±5.24 6 94,13±1,28 (32768,0.5) 96,13±0,99 (512,1)
Wine 98.12±3.94 9 97.55±3.72 9 97.75±3.91 7 94.23±5.54 0.1 94.99±3.49 8 98,20±0,47 (32768,2) 98,53±0,75 (2,1)
Sat. Image 94.96±1.87 1 94.75±1.41 1 94.89±2.77 1 92.71±2.73 0.1 92.77±3.48 3 96,01±0,24 (8,2) 95,11±0,18 (0.5,4)
Glass 72.99±7.82 1 73.23±7.44 1 73.04±12.07 1 69.92±7.4 0.2 69.06±6.28 5 68,50±1,57 (2,8) 73,01±1,50 (2048,2)
Ecoli 86.32±5.59 7 86.78±5.25 9 85.37±6.58 5 82.6±6.39 0.2 81.56±6.04 5 87,50±0,30 (2,8) 87,50±0,30 (8,1)
Segment 96.84±0.78 1 96.84±1.27 3 96.76±1.11 1 95.77±1.77 0.2 94.55±1.96 6 96,98± 0,25 (2048,0.125) 97,14±0,17 (8,4)
Letter 76.29±3.51 1 75.83±3.16 1 75.93±2.35 1 63.38±4.04 0.2 62.6±5.42 9 83,59 ±0,55 (32768,0.5) 82,93±0,54 (0.5,3)
Average 89.52 89,45 86.36 83.79 84.35 91.05 91.25

Feature selection In order to study the sensitivity of analogical classifiers to irrele-
vant features, we apply feature selection to some datasets having high number of features
and reduced number of instances. For this purpose, we use the feature selection option:
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”CfsSubsetEval” provided by Weka that evaluates a subset of attributes by considering the
individual predictive ability of each feature along with the degree of redundancy between
them. In Table 2.5, we save results ofAP -classifier applied to these datasets after selecting
the most relevant features.

Table 2.5: Accuracies given as mean and standard deviation for AP -classifier applied to
datasets after feature selection

Datasets Nbr Features Relevant Features Using A Using A*
Heart 13 7 83.13±8.02 83.27±7.42
Ionosphere 34 12 92.78±3.8 92.65±3.56
Wine 13 11 98.01±3.81 98.92±2.17
Sat.Image 36 11 95.07±1.62 95.43±1.92
Segment 19 6 96.2±1.19 95.6±1.74

If we compare results in Table 2.5 after applying feature selection with those given in
Table 2.4 before feature selection, we observe (as expected) that the AP -classifier is more
efficient when applied to the dataset with only selected features, especially for definition
A∗ and for the two first datasets. For other datasets: “Wine” (in case of definition A),
“Sat.Image” and “Segment”, we cannot see a significant improvement in terms of accuracy
when we use a selected set of relevant features. We note that, for the “Wine” dataset, only
two features are removed while more than half of the features are removed for “Heart” and
“Ionosphere” datasets. This may explain the significant effect on results for the first two
datasets. Regarding “Sat.Image” and “Segment”, since the number of instances is high,
this helps the classifier to achieve good accuracy even with the original set of features.

Comparison with other classifiers

In order to evaluate the efficiency of theAP -classifier, we compare its accuracy to existing
classification approaches:

• IBk: a k-NN classifier, we use the Manhattan distance and we tune the classifier on
different values of the parameter k = 1, 2, ..., 11.

• C4.5: generating a pruned or unpruned C4.5 decision tree. We tune the classifier with
different confidence factor used for pruning C = 0.1, 0.2, ..., 0.5.

• JRip: propositional rule learner, Repeated Incremental Pruning to Produce Error Re-
duction(RIPPER), optimized version of IREP. We tune the classifier for different
number of optimization runs O = 2, 4, ...10 and we apply pruning.

• SVM: a sequential minimal optimization algorithm for training a support vector classi-
fier. We use two types of kernels: the RBF-Kernel and we tune its parameter γ (γ =

2−15, 2−13, ..., 23) and the Poly-Kernel and we tune its degree d(d = 1, 2, ...10)(also
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called exponent). We also tune the complexity parameterC = 2−5, 2−3, ..., 215 with
each type of kernel as recommended by [68].

Accuracy results for IBk, C4.5, JRIP and SVMs are obtained by using the free im-
plementation of Weka software to the datasets described in Table 2.3. To run IBk, C4.5
and JRIP, we first optimize the corresponding parameter for each classifier, using the meta
CVParameterSelection class provided by Weka. For SVM, since we have to tune both
the complexity C (independent of the type of the kernel) as well as the kernel parameter
γ for RBF-Kernel and the degree d for the Poly-Kernel, we use the GridSearch package
available with Weka suitable for tuning two parameters. Both CVParameterSelection and
GridSearch classes allow to perform parameter optimization by cross-validation applied
to the training set only. This enables to select the best value of the parameter for each
dataset, then we train and test the classifier using this selected value of this parameter.
Classification results for k-NN, C4.5, JRIP and SVMs, displayed in Table 2.4, correspond
to the best/optimized value of each tuned parameter (denoted β in this table, for SVM β

correspond to the best pair (C,γ) for RBF-kernel or (C,d) for Poly-kernel).

Evaluation of AP -classifier with regard to other ML classifiers

If we compare our results to those of the well known algorithms shown in Table 2.4,
we note that:

• The AP -classifier performs more or less in the same way as the best known algo-
rithms. Especially, Algorithm 1 outperforms all other classifiers Except SVM for 15
out of 20 datasets and performs similar to SVM for datasets “TicTac.”, “Monk1”,
“Monk2”, “Monk3” , “Hayes-Roth”, “W.B. Cancer” and “Glass”. Especially, we
note that Algorithm 1 largely outperforms the k-NN, C4.5 and JRip and performs
similar to SVM for the dataset “Monk2”. In fact our algorithm perfectly classifies
this dataset (as SVM) while other classifiers achieve maximum 67% of accuracy on
this dataset.

• The computed average accuracy over 20 datasets for each classifier, confirms our
observations and show that the AP -classifier is ranked the second just after SVM
classifier.

• The classification success of Algorithm 1 for “Sat.Image”, “Segent” “Glass”, “Ecoli”
and “Letter” (which have multiple classes) demonstrates its ability to deal with mul-
tiple class datasets.

• The analogy-based classifiers seem to be efficient when classifying data sets with
a large number of attributes as in the case of “Ionosphere” and “Sat.Image” for
example.
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• Although, our algorithms do not use the same order on S3 as the approach developed
in [57], we note that our results are better than the results obtained by the previous
approach for numerical data, for the tested data sets “Diabetes” and “Sat. Image”.

Statistical evaluation of AP -classifier The comparative studies with other classifiers
are first carried out through the Friedman test [27]. It is a non-parametric test used to detect
differences in n treatments groups with equal sample sizes across multiple test attempts.
The null hypothesis, H0 : F (1) = F (2) = · · · = F (n) states that there is no significant
difference between groups of algorithms against the alternative hypothesis: at least one
group is significantly different. In case the Friedman test indicates significance, a post-
hoc test after Conover [18] is applied to calculate the corresponding levels of significance.
The output of this test is simply the computed p-values corresponding to each pair of
compared groups saved in the lower triangle of the p-values matrix. For this test, we also
apply a Bonferroni-type adjustment of p-values.

Since the Friedman test, comparing AP -classifier (using definition A) and all other
ML classifiers, provided a significant p-value= 1.193e − 09, we then apply a post-hoc
test after Conover and we use Bonferroni-type adjustment of the p-values. In Table 2.6,
we provide the results of the computed p-values for each pair of compared classifiers.
Significant p-values (< 0.05) are given in bold. The computed p-values show that:

• The SVM using RBF and Poly-Kernel significantly outperforms the IBK, the C4.5
and the JRIP classifiers. It also outperforms AP -classifier.

• It is clear that AP -Classifier significantly outperforms the IBK, the C4.5 and the
JRIP classifiers.

Table 2.6: Results for the post-hoc test after Conover for ALL classifiers. The ∗ (resp.
∗) means that the classifier in the row (resp. in the column) is statistically better than the
classifier on the column (resp. on the raw)

IBK C4.5 JRIP SVM(RBFKernel) SVM(PolyKernel)
C4.5 0.14901 - - - -
JRIP 0.00016∗ 0.68692 - - -
SVM(RBFKernel) 1.4e-09∗ 3.7e-15∗ < 2e-16∗ - -
SVM(PolyKernel) 3.9e-12∗ < 2e-16∗ < 2e-16∗ 1.00000 -
AP -Classifier 0.00659∗ 1.6e-07∗ 1.1e-11∗ 0.00659∗ 7.0e-05∗

Nearest neighbors and AP -classifier

In this section, we focus more particularly on the links and differences between the AP
approach and the k-NN approach.
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First we would like to check if voting pairs (~a,~b) are close or not to the item to be
classified. For this purpose, we compute for AP -classifier, among all these voting pairs,
the frequency of those ones that are close to ~d (which is about the same as being close to
~c). In case this frequency is rather low, we can conclude that our algorithms are not just
another view of k-NN algorithms. From a practical point, we proceed as follows:

• In the nominal case, we compute the percentage of voting pairs (~a,~b) such that

max(H(~a,~c), H(~b,~c)) ≤ θ(n)

where n is the number of features, H denotes the Hamming distance and θ(n) is a
threshold depending on n. We consider 4 thresholds 1, 2, n

3
and n

2
. For instance,

θ(n) = 1 is a threshold telling that ~c differs from ~a and~b on maximum one feature,
which means ~c is very close to ~a and ~b. θ(n) = n

2
means that ~c differs from ~a and

~b on less than half of the features, which shows that ~c is relatively close to ~a and ~b.
If the percentage is low, it means the way we attribute a label to ~d is not by using its
nearest neighbors!

• In the numerical case, we adopt the same method but using the extended version of
Hamming distance, the l1 distance to deal with numerical values keeping the same
threshold:

max(l1(~a,~c), l1(~b,~c)) ≤ θ(n)

The results for the nominal case are shown in Table 2.7 and those for the numerical
case are in Table 2.8. Note that the Balance and Iris datasets contain only 4 attributes, this
is why we only provide results for the column n/2 (column 2 is clearly the same). In the
nominal case, we note that:

• The frequency of voting pairs (~a,~b) that are very close to ~c (the Hamming distance
is less or equal to one or two features) is very low. The highest frequency of voters
that differs from ~c on only one (resp. two) attribute(s) is around 0.2% (resp. 2%) on
all datasets.

• The frequency of voting pairs (~a,~b) differing from ~c on at least half of the features
(last column in Table 2.7) is maximum 3% for the three first datasets, 16% for next
three datasets, except for the Voting dataset for which the frequency is a bit higher.

These results show that voters (~a,~b) remain quite far from the item ~d to be classified in the
nominal case.

In the numerical case (in Table 2.8), we can see that:

• For some datasets, voting pairs (~a, ~b) seem relatively close to ~c. The frequency of
voting pairs differing from ~c up to one feature is about 30% for Iris, Glass, Ecoli and
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Table 2.7: Frequency of voters that are close to c in the nominal case
Datasets θ(n)

1 2 n/3 n/2
Balance 0.0007 - 0.0004 0.0336
Car 0.0003 0.011 0.011 0.011
TicTacToe 0 0.0011 0.0079 0.0075
Monk1 0.0006 0.0193 0.0191 0.160
Monk2 0.0006 0.0189 0.0189 0.159
Monk3 0.0006 0.0199 0.0202 0.162
Voting 0.0018 0.0126 0.1244 0.303

W.B. Cancer datasets. This may mean that, for these datasets, examples have often
relatively similar attribute values.

• For other datasets, the frequency of voters that are close to ~c on all features except
one or two is very low as in the case of Wine, Heart and Sat.Image. In Table 2.3, we
can see that these datasets include the largest numbers of features. As said before,
dataset examples are likely to be more dissimilar in presence of a large number of
attributes.

• At least 80% of the voting pairs differ from ~c on at least half of the features (last
column in Table 2.8) if we except W. B. Cancer (where it is about 60%) and Heart
(about 30%).

In the numerical case, the frequency of voters that are close to ~c is relatively high if com-
pared to the nominal case. This is due to the cumulative effect of the extended Hamming
distance that considers all features when computing the distance between pairs in case of
numerical data, while in the nominal case, only completely opposite attribute values are
considered in the Hamming distance.

Table 2.8: Frequency of voters that are close to c in the numerical case

Datasets θ(n)
1 2 n/3 n/2

Diabetes 0.126 0.857 0.857 0.999
W. B. Cancer 0.28 0.350 0.432 0.6025
Heart 0.0006 0.0152 0.326 0.321
Iris 0.341 - 0.341 0.813
Wine 0.0004 0.091 0.7836 0.999
Sat. Image 0.0001 0.044 0.523 0.894
Glass 0.352 0.727 0.341 0.990
Ecoli 0.295 0.939 0.938 0.998

Lastly, we want to check if the instance d is classified in the same way as the k-NN
classifier. For this purpose, we computed the frequency of the case where both Algorithm
1 and kNN predict the correct label for d (this case is noted TT ), the frequency of the
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case where both classifiers predict an incorrect label (noted FF ), the frequency where
AP -classifier’prediction is correct and kNN’prediction is wrong (TF ) and the frequency
where AP -classifier prediction is wrong and kNN prediction is correct (FT ). Results are
collected in Table 2.9.

Table 2.9: Frequency of correctly/incorrectly classified instances ~d classified same/not
same as the k-NN

Datasets TT FF TF FT
Balance 0.822 0.118 0.041 0.019
Car 0.911 0.045 0.03 0.015
TicTac. 0.992 0.0 0.008 0.0
Monk1 0.975 0.001 0.023 0.001
Monk2 0.652 0.001 0.346 0.001
Voting 0.909 0.036 0.039 0.017
Hayes-Roth 0.583 0.177 0.209 0.03
Diabetes 0.712 0.25 0.017 0.021
Cancer 0.964 0.024 0.008 0.004
Heart 0.795 0.166 0.02 0.02
Ionosphere 0.901 0.092 0.005 0.002
Iris 0.942 0.049 0.007 0.003
Wine 0.972 0.014 0.009 0.005
Glass 0.69 0.24 0.038 0.032
Ecoli 0.838 0.121 0.025 0.015

In this table, we note that:

• For most cases, AP -classifier and k-NN agree and classify instances in the same
way (the highest frequency is seen in column TT ).

• From Table2.4, we can see that the two classifiers achieve these results for different
values of the optimized parameter k. For most of the tested datasets, AP -classifier
uses larger number of nearest neighbors than the k-NN.

• This means that, for small values of k, we are still close to the logic of the classical k-
NN classifier. Analogical classifiers gain their benefits (through using voter triples)
when a largest variety of nearest neighbors are used.

• If we compare results in column TF and FT , we can see that the frequency of cases
where AP -classifier yields the correct prediction while k-NN not (column TF ) is
significantly better than the opposite case (column FT ). For example for ”Monk2”
and ”Hayes-Roth”, more than 20% of the total correctly classified instances are
classified differently from the k-NN.

• This may explain good classification accuracies obtained with AP -classifier for
these datasets which is significantly better than that obtained with the classical k-
NN. For the dataset ”Monk2” for example, if we compare results given in Table 2.4
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for IBK and for our Algorithm, we can see that AP -classifier achieves very good
results (99.77%) while IBK only performs 65%. In fact, we may think that good
accuracies for these datasets are due to the high number of instances NOT classified
in the same way as the nearby instance ~c.

In fact, AP -classifier benefits from two basic differences if compared to the classic
k-NN i) using large amount of voters for classification and ii) more complex calculation
of the sum of elementary truth values P for each voter.

While k-NN uses a simpler voting-based strategy that directly applies a vote on the
nearest neighbors classes to guess the class for ~d without any interest to the distance cal-
culation (in k-NN, what counts is the rank of the nearest neighbor not its exact distance
to ~d). These observations confirm the fact that AP -classifiers cannot be reduced to k-NN
classifiers. However, we have to acknowledge that small improvements could normally be
achieved using a weighted version of k-NN.

2.2.4 Scientific impact

This research work have been elaborated first on two conference papers respectively de-
voted to Boolean [8] and to numerical data [10]. A fully rewritten version of the confer-
ence papers, in particular, a deeper investigation of the ideas underlying the procedure,
new algorithms and new experiments on a large variety of datasets have been published in
a journal paper (see [15]).

2.3 AP-Rule-based Classification

2.3.1 Motivation

As introduced in the previous sections, many analogical proportion-based classification
methods have been introduced a few years ago. The amazing results (at least in terms
of accuracy) that have been obtained from such techniques are not easy to justify from
a theoretical viewpoint. These techniques look in the training set for suitable triples of
examples that are in an analogical proportion with the item to be classified, on a maximal
set of attributes. This can be viewed as a lazy classification technique since, like k-NN
algorithms, there is no static model built from the set of examples.

For this reason we suggest an alternative method to build analogical proportion-based
classifiers by statically building a set of inference rules during a preliminary training step.
This creates a new classification algorithm that deals with pairs rather than with triples of
examples. Our interest accorded to rule-based classification is motivated by the fact that
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symbolic rules of the form if-then rules are very useful in most of existing expert systems
in their knowledge representation. This is due to the naturalness and explanation ability
of such rules that can offer to knowledge representation and reasoning in expert systems.

2.3.2 Contribution

We claim here that analogical classifiers behave as if a set of rules was build inductively
during a pre-processing stage. To support intuition, we use an example inspired from the
Golf data set (UCI repository [42]). This data set involves 4 multiple-valued attributes:

1: Outlook: sunny or overcast or rainy. ; 2: Temperature: hot or mild or cool ;

3: Humidity: high or normal. ; 4: Windy: true or false.

Two labels are available: ‘Yes’ (play) or ‘No’ (don’t play).

Main assumptions. Starting from a finite set of examples, 2 main assumptions are
made regarding the behavior of the class cl:

• Since the target relation cl is assumed to be a function, when 2 distinct vectors ~x and
~y have different labels (cl(~x) 6= cl(~y)), the cause of the label switch is to be found
in the switches of the attributes that differ. Take ~x and ~y in the Golf data set, as:

~x = (overcast,mild, high, false) and cl(~x) = Y es

~y = (overcast, cool, normal, false) and cl(~y) = No

then the switch in attributes 2 and 3 is viewed as the cause of the ‘Yes’-‘No’ switch.

• When 2 distinct ~x and ~y are such that cl(~x) = cl(~y), this means that cl does not
preserve distinctness, i.e. cl is not injective. We may then consider that the label
stability is linked to the particular value arrangement of the attributes that differ.

Patterns. Let us now formalize these ideas. Given 2 distinct vectors ~x and ~y, they
define a partition of [1, n] as A(~x, ~y) = {i ∈ [1, n]|xi = yi} and D(~x, ~y) = [1, n] \
A(~x, ~y) = {i ∈ [1, n]|xi 6= yi}. Given J ⊆ [1, n], let us denote x|J the subvector of x
made of the xj , j ∈ J . Obviously, ~x|A(~x,~y) = ~y|A(~x,~y) and, in the binary case, when we
know ~x|D(~x,~y), we can compute ~y|D(~x,~y). In the binary case, the pair (~x, ~y) allows us to build
up a disagreement pattern Dis(~x, ~y) as a list of pairs (value, index) where the 2 vectors
differ. with n = 6, ~x = (1, 0, 1, 1, 0, 0), ~y = (1, 1, 1, 0, 1, 0), Dis(~x, ~y) = (02, 14, 05). It
is obvious that having a disagreement pattern Dis(~x, ~y) and a vector ~x (resp. ~y), we can
get ~y (resp. ~x). In the same way, the disagreement pattern Dis(~y, ~x) is deducible from
Dis(~x, ~y). For the previous example, Dis(~y, ~x) = (12, 04, 15).

In the categorical case, the disagreement pattern is a bit more sophisticated as we
have to store the changing values. Then the disagreement pattern Dis(~x, ~y) becomes a
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list of triple (value1, value2, index) where the 2 vectors differ, with value1 being the
attribute value for x and value2 being the attribute value for y. For instance, with the
previously described Golf dataset, for the pair of given examples ~x and ~y, Dis(~x, ~y) is
{(mild, cool)2, (high, normal)3}. Then we have two situations:

1. ~x and ~y have different labels, i.e. cl(~x) 6= cl(~y). Their disagreement pattern
Dis(~x, ~y) is called a change pattern. Then Dis(~y, ~x) is also a change pattern.

2. ~x and ~y have the same label cl(~x) = cl(~y). Their disagreement pattern Dis(~x, ~y) is
called a no-change pattern. Then Dis(~y, ~x) is also a no-change pattern.

To build up a change (resp. no-change) pattern, we have to consider all the pairs (~x, ~y)

such that cl(~x) 6= cl(~y) (resp. such that cl(~x) = cl(~y)). We then build 2 sets of patterns
Pch and Pnoch, each time keeping only one of the 2 patterns Dis(~x, ~y) and Dis(~y, ~x) to
avoid redundancy. As exemplified below, these 2 sets are not disjoint in general. Take
n = 6, and assume we have the 4 binary vectors ~x, ~y, ~z,~t in a training set TS:

- ~x = (1, 0, 1, 1, 0, 0), ~y = (1, 1, 1, 0, 1, 0) with cl(~x) = 1 and cl(~y) = 0. Then, for
(~x, ~y), the disagreement pattern is a change pattern, i.e., (02, 14, 05) ∈ Pch.

- ~z = (0, 0, 1, 1, 0, 1),~t = (0, 1, 1, 0, 1, 1) with cl(~z) = cl(~t). They have the same dis-
agreement pattern as ~x and ~y, which is now a no-change pattern (02, 14, 05) ∈ Pnoch.

Now, given an element ~x in TS whose label is known, and a new element to be classified
~y, if the disagreement pattern Dis(~x, ~y) belongs to Pch ∩ Pnoch, we do not get any hint
regarding the label of ~y. Then we remove the patterns from Pch ∩ Pnoch: the remaining
patterns are the valid patterns (still keeping the same notations for the resulting sets).

Rules. Thanks to the concept of pattern, it is an easy game to provide a formal
definition of the 2 above principles. We get 2 general classification rules, corresponding
to dual situations, for a new element ~y to be classified:

Change Rule:
∃~x ∈ TS,∃D ∈ Pch|(Dis(~x, ~y) = D) ∨ (Dis(~y, ~x) = D)

cl(~y) 6= cl(~x)

NoChange Rule:
∃~x ∈ TS,∃D ∈ Pnoch|(Dis(~x, ~y) = D) ∨ (Dis(~y, ~x) = D)

cl(~y) = cl(~x)

NoChange rules tell us when a new item ~y to be classified should get the class of its
associated example ~x, and Change rules tell the opposite. Let us note that if there is no
valid pattern, then we cannot build up any rule, then we cannot predict anything! This has
never been the case for the considered benchmarks.

It is straightforward to implement the previous ideas.

38



CHAPTER 2. ANALOGY-BASED CLASSIFICATION

1. Construct from TS the sets Pch and Pnoch of all disagreement patterns.

2. Remove from Pch and from Pnoch the patterns belonging to Pch∩Pnoch to get the set
of valid patterns.

The remaining change patterns in Pch and no-change patterns in Pnoch are used to build
up respectively the Change Rule Set Rch and No-Change Rule Set Rnoch. In this context,
we have implemented two different classifiers: the Change Rule based Classifier (CRC)
and the No Change Rule based Classifier (NCRC), which have the same principles in all
respect. The only difference is in the classification phase where the CRC only uses the
set Pch of pattern and applies the Change rules, whereas the second classifier NCRC uses
the no-change patterns Pnoch and applies the No-Change rules to classify new items.

Classification. The classification process for CRC and NCRC are detailed in the
following Algorithms 2 and 3, where the Boolean function Analogy(x, x′, y) is true if and
only if card({cl(x), cl(x′), cl(y)}) ≤ 2. For the NCRC, the Analogy(x, x′, y) always has
a solution since classes associated to any No-Change rule r in Rnoch are homogeneous. In
terms of complexity, the algorithms are still cubic in the size of TS since the disagreement
pattern sets have a maximum of n2 elements and we still have to check every element of
TS to build up a relevant pair with ~y.

Algorithm 2 Change Rule Classifier

Given a new instance ~y′ /∈ TS to be classified.
CandidateRules(cj) = 0, for each j ∈ [1, l] (in the binary class case, l = 2).
for each ~y in TS do

Construct the disagreement patterns D(~y, ~y′) and D(~y′, ~y)
for each change rule r ∈ Rch // r has a pattern D(~x, ~x′) do

if Analogy(x, x′, y) AND (D(~y, ~y′) = D(~x, ~x′) OR D(~y′, ~y) = D(~x, ~x′) ) then
if (cl(~x) = cl(~y)) then c∗ = cl(~x′) else c∗ = cl(~x) end if
CandidateRules(c∗) + +.

end if
end for

end for
cl(~y′) = argmaxcj CandidateRules(cj)

With our approach, contrary to k-nn approaches, we always deal with pairs of exam-
ples: i) to build up the rules, ii) to classify a new item, we just associate to this item another
one to build a pair in order to trigger a rule. Moreover, the two pairs of items involved in
an analogical proportion are not necessarily much similar as pairs, beyond the fact they
should exhibit the same dissimilarity. An analogical view of the nearest neighbor prin-
ciple could be “close/far instances are likely to have the same/possibly different class”,
making an assumption that the similarity of the classes is related to the similarity of the
instances. This does not fit, e.g., our No-Change rules where the similarity of the classes is
associated with dissimilarities of the instances. More generally, while k-nn-like classifiers
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Algorithm 3 No Change Rule Classifier

Given a new instance ~y′ /∈ TS to be classified.
CandidateRules(cj) = 0, for each j ∈ Dom(cj).
for each ~y in TS do

Construct the disagreement patterns D(~y, ~y′) and D(~y′, ~y)
for each no change rule r ∈ Rnoch // r has a pattern D(~x, ~x′) do

if Analogy(x, x′, y) AND (D(~y, ~y′) = D(~x, ~x′) OR D(~y′, ~y) = D(~x, ~x′)) then
c∗ = cl(~y)
CandidateRules(c∗) + +.

end if
end for

end for
cl(~y′) = argmaxcj CandidateRules(cj)

focus on the neighborhood of the target item, analogical classifiers “take inspiration” of
information possibly far from the immediate neighborhood.

Example. Let’s continue with the previous Golf example to show the classification
process in Algorithm 2. Given three change rules r1, r2 and r3:

r1(Y es−No) = {(sunny, overcast)1, (false, true)4}

r2(No−Y es) = {(cool,mild)2, (high, normal)3}

r3(No−Y es) = {(rainy, overcast)1, (false, true)4},

and a new instance ~y′ to be classified: ~y′ : overcast,mild, normal, true,→?

Assume that there are three training examples ~y1, ~y2 and ~y3 in Ts:

~y1 : sunny,mild, normal, false,→ Y es

~y2 : overcast, cool, high, true,→ No

~y3 : rainy,mild, normal, false,→ No

We note that disagreement patterns p1, p2 and p3 corresponding respectively to the pairs
(~y1, ~y′), (~y2, ~y′) and (~y3, ~y′) match respectively the change rules r1, r2 and r3. Inferring
the first rule predict a first candidate class “No” for ~y′. In the same manner the second
rule predict a class “Y es” and the third one also predict “Y es”. The rule-based inference
produces the following set of candidate classes for ~y′: Candidate = {No, Y es, Y es}. So
the most plausible class for ~y′ is “Y es”.
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2.3.3 Experimental validation

This section provides experimental results for the two proposed classifiers. The experi-
mental study is based on some data sets selected from the U.C.I. machine learning reposi-
tory [42]. A description of these data sets is in Table 2.3.

We note that for all classification results given in the following, only half of the training
set is used to extract patterns. We ensured that all class labels are represented in this
data set. The classification results for the CRC or NCRC are summarized in the first and
second columns of Table 2.10. We also tested a hybrid version of these classifiers called
Hybrid Analogical Classifier (HAC) based on the following process. Given an instance ~y′

to classify,

1. Merge the two rule subsets Rch and Rnoch into a single rule set Rchnoch.

2. Assign to y′ the class label with the highest number of candidate rules in Rchnoch.

Classification results for HAC are given in Table 2.10, where we also give the mean
number of Change (MeanCh) and No-Change rules (MeanNoCh) generated for each data
set.

Table 2.10: Classification accuracies: mean and standard deviation of 10 cross-validations

Datasets CRC NCRC HAC MeanCh MeanNoCh
Breast cancer 50.03 ± 8.03 74.03±7.48 73.39±8.44 6243.4 8738.5
Balance 82.82 ±5.8 91.02±4.44 90.51 ± 4.27 31736.2 20805.4
Tic tac toe 98.3±5.11 98.3±5.11 98.3±5.11 74391.9 86394.2
Car 79.54±4.23 95.02± 2.16 92.6 ±2.69 36526.6 20706.1
Monk1 90.52±6.16 100±0 99.54 ±1.4 9001.2 8644.6
Monk2 78.02 ±4.71 100±0 94.68 ± 4.38 7245.9 10607.8
Monk3 91.93±7.04 97.93±1.91 97.93±1.91 10588.0 10131.7

By analyzing classification performance in Table 2.10 we can see that:

• Overall, the analogical classifiers show good performance to classify test examples (at
least for one of CRC and NCRC), especially NCRC.

• If we compare classification results for the two analogical classifiers, CRC and NCRC,
we see that NCRC seems to be more efficient than CRC for almost all data sets, except the
case of “Tic tac toe” where the two classifiers have the same accuracy.

• HAC shows good performance if compared to CRC and very close accuracies to NCRC
for “Balance, Tic tac toe, Monk1 and Monk3”. For the remaining datasets, the lower
classification accuracy of Change rules may affect the efficiency of HAC.
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• The analogy-based classifiers seem to be very efficient when classifying data sets with
a limited number of attribute values and seems to have more difficulties for classifying
data sets with a large number of attribute values. In order to evaluate analogical classifiers
on such a dataset, we tested CRC and NCRC on “Cancer” (9 attributes, each of them
having 10 different labels). From this additional test, we note that analogical classifiers are
significantly less efficient on “Cancer” when compared to the state of the art algorithms.
By contrast, if we look at the 3 “Monks” and ”Balance” data sets, we note that these
data sets have a smaller number of attributes and more importantly all attributes have a
reduced number of possible values (the maximum number of possible attribute values in
“Balance” and “Monks” is 5, and most of attributes have only 3 possible labels). This
clearly departs from the “Cancer” situation. So we may say that this latter dataset is
closer to a data set with numerical rather than categorical data. The proposed classifiers
are basically designed for handling categorical attributes. We plan to extend analogical
rule-based classifiers in order to support numerical data in future.

• In Table 2.10 we see that a huge number of rules of the two kinds are generated. We
may wonder if a reduced subset of rules could lead to the same accuracy. This would mean
that there are some redundancy among each subset of rules, raising the question of how to
detect it. We might even wonder if all the rules have the same “relevance”, which may also
mean that some rules have little value in terms of prediction, and should be identified and
removed. This might also contribute to explain why CRC has results poorer than NCRC
in most cases.

• In the case of NCRC, we come apparently close to the principle of a k-NN classifier,
since we use nearest neighbors for voting, but here some nearest neighbors are disqualified
because there is no NoChange rule (having the same disagreement pattern) that supports
them.

2.3.4 Scientific impact

This contribution have been published in a conference paper (see [9]).

2.4 Conclusion and discussion

In this chapter, using analogical proportions, we have presented two new ways to classify
data, with Boolean, nominal or numerical attributes. We have first proposed a generic
algorithm that covers all types of data and looks for triples ~a,~b,~c to build up a valid pro-
portion with the new item ~d to be classified, where we take ~c as a neighbor of ~d in order
to reduce the search space. An alternative approach to build analogical proportion-based
learners is to statically build a set of inference rules during a preliminary training step.
This creates a new classification algorithm that deals with pairs rather than with triples of
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examples.

On the basis of the reported experiments, we may globally conclude that the AP -
classifier achieves a reduced complexity when compared to analogical classifiers taking
into account all triples, while maintaining an accuracy statistically better than the k-NN
and in many case equivalent to SVM. Nevertheless, the execution time of theAP -classifier
is still high. It would remain to find classes of problems where AP -classifiers are of
particular interest. It may be the case when we have relatively few data at hand. However,
it is worth pointing out that the AP -classifier relies on ideas quite different from the other
existing classifiers, while providing results of similar quality.
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Chapter 3

Oddness/evenness-based classification

3.1 Introduction

Analogical proportions, treated in Chapter 2, have recently been shown to belong to a
larger family of so-called logical proportions [50]. These later relate a 4-tuple of Boolean
variables, where the 8 code-independent logical proportions are of particular interest since
their truth status remain unchanged if a property is encoded positively or negatively. These
8 logical proportions divide into 4 homogeneous proportions, which include the analogical
proportion and 3 related proportions, and 4 heterogeneous proportions [54]. An hetero-
geneous proportion expresses the idea that there is an intruder among the 4 truth values,
which is forbidden to appear in a specific position. Intuitively speaking, an item properly
assigned to a class should not be (too much) an intruder in this class. It suggests that het-
erogeneous proportions can also be considered as a basis for classification by considering
that a new item can be added to a class only if its addition leaves the class as even/not odd
as possible.

In this chapter, we are rather interested to heterogeneous proportions as a counter part
to homogeneous proportions studied in Chapter 2 and we explain how such proportions
can be a useful tool for building a second family of classifiers named: Oddness-based
classifiers.

This chapter is organized as follows: In Section 3.2, based on heterogeneous propor-
tions, we first define a new oddness index that measures the extent to which an item may
be seen as an intruder in a subset of items. Then based on this index, we propose a simple
procedure to evaluate the oddness of an item with respect to a whole class in a local view,
where the new item, should not appear at odds with a maximum number of (small) sub-
sets of a considered class. In Section 3.3, starting from the results of Section 3.2 showing
the efficiency of the classifier using subset of pairs, a more optimized algorithm, focusing
especially on this type of subsets, have been proposed. In this later two options are inves-
tigated: in the first one, one of the two items of the subset is chosen among the k nearest
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neighbors and the other one among the most remote elements to the item to be classified.
In the second option, both items are selected among the k nearest neighbors keeping them
distinct to each other. In Section 3.4, we propose an evenness index which is not the exact
opposite of oddness index. As in the case of oddness-classification, an evenness-based
classifier has been proposed that estimates the evenness of an item with respect to a whole
class.

3.2 Oddness-based classification

3.2.1 Motivation

Many successful approaches have been proposed for classification purposes for a long
time. Quite surprisingly, it has been recently shown that it was also possible to build
another kind of classifiers based on analogical proportions. The fact that analogical pro-
portions belong to a larger class of formulas, namely logical proportions, including het-
erogeneous proportions, led us to wonder if this latter kind of proportions might also be
used with success to build classifiers. We have investigated this option in this work.

As introduced before, it is a commonsense principle to consider that a class cannot be
reasonably assigned to a new item if this item would appear to be odd with respect to the
known members of the class. On the contrary, the item should be even with respect to
these class members for entering the class. A particular implementation of this principle
has been recently explored in [12] by judging to what extent the item conforms with the
majority of elements in any triple of members of the class. The idea of considering triples
as a basis for estimating the evenness of the item with respect to the class has been moti-
vated by two facts. First, triples are the only subsets where when the new item conforms
with the minority, there is no longer any majority (with respect to a given feature) in the
triple augmented with the new item. Second, being odd with respect to three other ele-
ments is closely connected with the idea of heterogeneous logical proportions, themselves
dual of the homogeneous logical proportions where analogical proportion is a prominent
case [54] (also used successfully in classification [45, 8, 15]).

We propose an oddness measure which in the case of triples can still be related to
heterogeneous logical proportions, but may apply as well to subsets of any size, and can
be extended to numerical features in a straightforward manner. Thus in this work, the
evaluation of the oddness of an item with respect to a class relies on a local view, where
the new item, should not appear at odds with a maximum number of (small) subsets of a
considered class. This leads to a set of classifiers based on the oddness measure that we
proposed.
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3.2.2 Contributions

Based on heterogeneous proportions, we first define an index to evaluate the oddness of
an item (denoted x or d in the following) w.r.t. a multiset of Boolean values where the
multiset is a triple. Then, we extend this index to multi-valued logic, before generalizing
the extended oddness index to multisets of any size. Moreover, the values x or in S may be
thought of as the values of the same feature for different items. Then we build an oddness
measure from this index by cumulating them over features, and by considering collections
of multisets S within the examples describing the same class C in a training set. This
builds the basis for an Oddness-based classifier that is described at the end of this section.

Oddness index

The idea of oddness introduced below directly relies on the evaluation of the extent to
which a new item to be added to a subset reinforces its heterogeneity and so appears as an
intruder in it.

An oddness measure for Boolean data

Let us remember the meaning of Hi: Hi holds iff there is an intruder among a, b, c, d
and the parameter in position i is not this intruder. As shown in Table 3.1, each proportion
Hi provides a piece of knowledge on the intruder and when combined with other pieces,
we can pick out which one is the intruder among a, b, c and d. For example H1(a, b, c, d)

= H2(a, b, c, d) = H3(a, b, c, d) = 1 means that there is an intruder which is out of the
multiset {a, b, c}.

Then we define the oddness of d w.r.t. {a, b, c} by the following formula:

Odd({a, b, c}, d) =def H1(a, b, c, d) ∧H2(a, b, c, d) ∧H3(a, b, c, d) (3.1)

As an immediate consequence of equation 3.1, we have:

Odd({a, b, c}, d)→ ¬H4(a, b, c, d)

Due to the permutation properties of theHi’s, the right hand side of this definition is stable
w.r.t. any permutation of a, b, c, then the multiset notation on the left hand side is justified.
The truth table of Odd is given in Table 3.1.

It is clear that Odd holds only when the value of d is seen as odd among the other val-
ues: d is the intruder. MoreoverOdd does not hold in the opposite situation where there is a
majority among values in a, b, c, d and d belongs to this majority (e.g. Odd({0, 1, 0}, 0) =

0), or there is no majority at all (e.g. Odd({0, 1, 1}, 0) = 0).

A simple observation of Table 3.1 shows that the oddness index can be rewritten as

Odd({a, b, c}, d) ≡ ((a ∨ b ∨ c) 6≡ d) ∧ (a ∧ b ∧ c) 6≡ d)) (3.2)
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Table 3.1: H1, H2, H3 and Odd truth values

a b c d H1 H2 H3 Odd
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0

Given a multiset a, b, c of 3 identical Boolean values, Odd({a, b, c}, d) can then act as
a flag indicating if the 4th value d is different from the common value of a, b, c. Then the
value d is at odds w.r.t. the other values.

Extension to numerical data

It is possible to extend the previous oddness measure in order to handle variables
with graded values (i.e. variables whose values belong to [0, 1], after a suitable normal-
ization of numerical data). For now, this oddness is just 0 or 1 (i.e. the truth value of
Odd({a, b, c}, d)), but we would like to consider tuples such as (0.1, 0.2, 0.1, 0.8) and still
consider that the 4th value is somewhat odd w.r.t. the 3 other ones. Using the standard
counterpart of the logical connectives in the [0, 1]-valued Łukasiewicz logic [59], where:

• min extends the conjunction ∧, max the disjunction ∨,

• 1− (·) extends the negation ¬,

• 1− | · − · | extends the equivalence ≡.

Then, a direct translation of formula 3.2, is:

Odd({a, b, c}, d) =def min(|max(a, b, c)− d|, |min(a, b, c)− d|) (3.3)

It is easy to check that Odd remains code independent with graded values, i.e. chang-
ing values into their complement to 1.
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Note that the expression ofOdd given here is no longer the conjunction of the multiple-
valued extensions of H1, H2, H3 as given in [54], which would lead to a less satisfactory
measure of oddness. Indeed, we are here interested in the oddness of d w.r.t. a multiset
{a, b, c}, and not in picking out an intruder in the multiset {a, b, c, d} as in [54].

Oddness with respect to multisets of various size Since we are interested in checking
if d seems an intruder in a given multiset, we may consider multisets of any size when
defining the oddness index. Indeed, the previous oddness index is not limited to multisets
{a, b, c} with 3 elements, and can be easily generalized to an index of oddness Odd(S, x)

of an item x w.r.t. a multiset S of any size. In the Boolean case, the oddness of a given
Boolean value x with respect to a given multi-set of Boolean values S = {ai | i ∈ [1, n]}
is defined as follows:

Odd(S, x) = Odd({ai|i ∈ [1, n]}, x) =def ¬(
∨

i∈[1,n]

ai ≡ x) ∧ ¬(
∧

i∈[1,n]

ai ≡ x) (3.4)

Due to the commutativity of logical operators ∨ and ∧, the ordering of the ai’s is meaning-
less and we can simply keep a multi-set notation. In the particular case of three Boolean
variables (n = 2), this formula leads to the truth table in Table 3.2, in the case of four
Boolean variables (n = 3), to the truth table in Table 3.3

Table 3.2: odd({a1, a2}, x) truth values
a1 a2 x odd
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

It is clear that odd holds true only when the value of x is seen as being at odds among
the other values: roughly speaking, x is the intruder in the multi-set of values. In the
case n = 2, odd({a1, a2}, x) is 0 if and if the value of x is among the majority value in
the set {a1, a2, x}. When n = 3, odd({a1, a2, a3}, x) does not hold true in the situation
where there is a majority among values in a1, a2, a3, x and x belongs to this majority (e.g.
odd({0, 1, 0}, 0) = 0), or when there is no majority at all (e.g. odd({0, 1, 1}, 0) = 0).

In the numerical case, this definition can easily be extended to a multiset S of values
in [0, 1] as follows:
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Table 3.3: odd({a1, a2, a3}, x) truth values
a1 a2 a3 x odd
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Odd(S, x) =def min(|max(S)− x|, |min(S)− x|) (3.5)

When restricted to Boolean values, this formula reduces to formula 3.4. The use of
Łukasiewicz connectives for extending oddness to numerical values, even if many other
choices would be possible, is a natural option here since it leads to take into account ex-
tremal values (via min and max) and the absolute values of differences, easy to understand
as distances. It can be checked in the graded case that:

• odd({u, · · · , u}, v) = |u−v|. Indeed, if u = v, the last value is not an intruder. The
larger |u− v|, the more v is at odds w.r.t. the n values equal to u.

• odd({u, · · · , u, v, · · · , v}, v) = 0 which is consistent with the expected semantics
of odd since v belongs to the multi-set {u, · · · , u, v, · · · , v}.

• if mini∈[1,n] ai ≤ x ≤ maxi∈[1,n] ai, formula 3.5 implies that odd({ai|i ∈ [1, n]}, x)

≤ 0.5. This again agrees with our need since, in that case, odd should remain rather
small as long as x is in between elements of the multi-set. The oddness can be high
(> 0.5) only if x is outside the convex hull of the multi-set.

From these properties, we understand that the proposed definition fits with the intuition
and provides high truth values when x appears at odds w.r.t. the set {a1, · · · , an} and low
truth values in the opposite case where x is not too different from the other values. Let us
consider the particular cases when n = 1, n = 2 and n ≥ 3.
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• When n = 1, in the Boolean case, the formula odd({a1}, x) is just equivalent to
¬(a1 ≡ x). In that particular case, this is equivalent to ¬a1 ≡ x. In the multiple-
valued logic extension, the truth value of odd({a1}, x) = |x− a1|.

This is just the distance (in R) between the two values.

• When n = 2, formula 3.5 reduces to:
odd({a, b}, x) = min(|x−max(a, b)|, |x−min(a, b)|), i.e., odd({a, b}, x) = min(|x−
a|, |x− b|), i.e., the min of the distances between x and each of a and b. This is also
the classical distance between x and the set {a, b}.

• When n ≥ 3, it is worth noticing that odd({ai | i ∈ [1, n]}, x) is no longer always
equal to the distance of x to the subset {ai|i ∈ [1, n]}, i.e., d({ai|i ∈ [1, n]}, x) =

mini∈[1,n] |x − ai|. In fact, d({ai|i ∈ [1, n]}, x) ≤ odd({ai|i ∈ [1, n]}, x). In-
deed, as can be seen in formula 3.5 , odd is the minimum of 2 distances to ele-
ments in the multi-set {ai|i ∈ [1, n]}, while d({ai|i ∈ [1, n]}, x) is the minimum
of the distances to the n elements of the multi-set. For instance, in the case n = 3,
odd({0.2, 0.5, 0.8}, 0.6) = 0.2 and d({0.2, 0.5, 0.8}, 0.6) = 0.1.

This is a distinctive feature of singletons and pairs to be such that odd({ai|i ∈ [1, n]}, x)

= d({ai|i ∈ [1, n]}, x) for n = 1 and n = 2. In fact, for n ≥ 3, we have that odd({ai|i ∈
[1, n]}, ai) is not necessarily equal to 0. Values n ≥ 3 have to be investigated in the future.

As it may be the case for real datasets, we may have missing values. Obviously, when
there is a missing value in the multiset S of size n, then a simple option is to consider the
multiset S ′ of size n− 1 and to consider Odd(S, x) = Odd(S ′, x) where S ′ has no longer
any missing value.

Oddness measure for vectors

When it comes to real life application, it is not enough to represent individuals with a single
Boolean or real value. Generally, individuals are encoded by a set of features. Based on
the previously defined oddness measure, we have to define a new measure suitable for
vectors. When dealing with vectors −→x ∈ [0, 1]n, Boolean vectors are also covered as a
particular case. The Odd measure, defined respectively by equations (3.4) and (3.5) , are
used to estimate to what extent a value x can be considered as odd among a multiset S
of values. Thanks to the two latter formulas, assuming the independence of features, it is
natural to compute the oddness of a vector −→x as the sum of the oddness for each feature
xi ∈ −→x , as follows:

Odd(S,−→x ) =def Σn
i=1Odd(Si, xi) ∈ [0, n] (3.6)

where xi is the i-th component of −→x , Si is the multiset gathering the i-th components of
the vectors in S.
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If our aim is to measure oddness, high values of Odd(S,−→x ) (close to n) means that,
formany features,−→x appears as an intruder and may reduce the homogeneity when going
from S to the multiset S ∪ {−→x }. If Odd(S,−→x ) = 0, no feature indicates that −→x behaves
as an intruder and there is no obstacle for −→x to join the multiset S1.

Global oddness measure

Given a set C = {−→ai |i ∈ [1, n]} of vectors gathering the set of examples of the same
class, one might think of computing Odd(C,−→x ) as a way of evaluating how much −→x is
at odds with respect to C. An immediate classification algorithm would be to compute
Oodd(C,−→x ) for every class and to allocate to −→x the class which minimizes this number.
Nevertheless, as explained now, this number is not really meaningful when the size of C is
large, whatever the number of features.

Indeed, we have to be careful because then {−→ai |i ∈ [1, n]} is summarized by two
vectors made respectively by the minimum and the maximum of the feature values among
the examples of C (due to formulas 3.5 and 3.6). These two vectors have high chance
to be fictitious in the sense that, usually, they are not elements of C = {−→ai |i ∈ [1, n]}.
Approximating our knowledge of the set {−→ai |i ∈ [1, n]} using only the maximal ranges of
the feature values over the members of the set seems very crude.

The above remark tends to indicate that odd({−→ai |i ∈ [1, n]},−→x ) may not be a good
marker of the oddness of x w.r.t. {−→ai |i ∈ [1, n]} when n is large. We have to devise a
method allowing to overcome this issue.

An idea is then to consider small subsets S of the class C, then compute odd(S,−→x )

and finally add all these atomic oddness indices to get a global measure of oddness of −→x
w.r.t. C. This approach leads to the following definition for oddness:

ODDm(C,−→x ) =
1(|C|
m

)ΣS⊆Cs.t.|S|=mOdd(S,−→x )

Clearly, the number
(|C|
m

)
of subsets S ⊂ C of size m is an increasing function of |C|.

When C is large, this number is not far from |C|m.

As we consider only subsets S of small size (i.e., singletons, pairs or triples), the
previous formula becomes:

• For singletons:

ODD1(C,−→x ) =
1

|C|
Σ−→a ∈COdd({−→a },−→x )

1It is clear that when dealing with classification task, S is just a set of examples, without any repetition,
but obviously, its projections componentwise, the Si’s are multisets of Boolean or real values.
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Since Odd({−→a },−→x ) = ||−→a − −→x ||L1 , Odd is just the average L1 distance between
−→x and all the elements of the class C.

• For pairs:

ODD2(C,−→x ) =
1(|C|
2

)Σ−→a ,
−→
b ∈COdd({−→a ,

−→
b },−→x )

As already said, normalizing the summation aims to take into consideration the
relative size of different classes. As the size of the subsets S (equal to 2 here) do not
have any impact on classification in practice and as, for big classes,

(|C|
2

)
is more or

less equal to |C|2, in practice, we simply use a normalization factor equal to 1
C2 .

• For triples:

ODD3(C,−→x ) =
1(|C|
3

)Σ−→a ,
−→
b ,−→c ∈COdd({−→a ,

−→
b ,−→c },−→x )

In practice, we use 1
|C|3 as normalization factor.

In the above evaluation, we consider all the subsets of C of a given size. We first
explore this option. We might also imagine to deal only with particular subsets of a given
size as soon as we do not harm the performance. In the following we refer to the choice
of particular subsets, by the general term of ‘optimization’ when speaking of the proposed
classifiers.

Algorithm

In the context of classification, our aim is to avoid oddness when classifying a new item.
For this purpose, we first extend Odd index to deal with vectors instead of simple Boolean
or numerical values, and then, build up a global oddness of an item ~x w.r.t. a class C.

Let TS be a training set composed of instances (−→z , cl(−→z )), where −→z ∈ Bn or Rn,
cl(−→z ) is the label of −→z . Given a new instance −→x 6∈ TS without label, we have to allocate
a label to −→x by looking for the class that better maintains its homogeneity when −→x is
added to it. More formally, given the set C of instances in TS having the same label c, we
estimate to what extent C ∪ {−→x } is odd or even. Based on the oddness measure defined
before, the idea is then to assign to −→x the label corresponding to the class minimizing
the oddness when −→x is added.

The previous procedure can be described with the pseudo-code of Algorithm 4. Al-
gorithm 4 can deal with missing values thanks to the remark just before the extension to
vectors in Section 3.2.2.
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Algorithm 4 Oddness-based algorithm

Input: a training set TS of examples (−→z , cl(−→z ))
a non nul integer m
a new item −→x ,

Partition TS into sets C of examples having the same label c.
for each C do

Compute ODDm(C,−→x )
end for
cl(−→x ) = argminCODDm(C,−→x )
return cl(−→x )

3.2.3 Experimental validation

We provide experimental results obtained withOddness-based classifiers and we compare
them to other machine learning classifiers.

The experimental study is based on 19 datasets taken from the U.C.I. machine learning
repository [42]. A brief description of these data sets is given in Table 2.3 of Chapter 2.
Since an oddness-based classifier is able to deal with both Boolean or multi-valued fea-
tures in this study, we select from this Table 2.3, 8 datasets with categorical or Boolean at-
tribute values and 10 datasets with only numerical attributes. In order to apply the Boolean
and multiple-valued semantics framework, all categorical attributes are binarized and all
numerical attributes are rescaled.

In terms of protocol, we apply the same testing protocol described in Section 2.2.3
of Chapter 2. Each displayed parameter in Tables 3.5 and 3.6 (that we denote β) is the
average value over the 5 different values (one for each run). The results shown in Tables
3.5 and 3.6 are the average values obtained from 5 rounds of this complete process. In
case there is no parameter to be tuned (this is the case of Odd1, Odd2 and Odd3 in next
sub-section), we simply apply a standard 10 fold cross-validation still repeated 5 times to
get stable results.

Table 3.4 provides mean accuracies and standard deviations obtained with our imple-
mentations of Odd1, Odd2 and Odd3.

These preliminary results show that:

• Odd1 is globally less accurate than other classifiers for all datasets, having an aver-
age accuracy of 73% when Odd2 has 78% and Odd3 has 79%.

• For ten datasets, the accuracy increases when we use subsets of triples instead of
pairs (this is also true when we use subsets of pairs instead of singletons) (see for
example ”Car” and ”Spect.” datasets).

53



CHAPTER 3. ODDNESS/EVENNESS-BASED CLASSIFICATION

Table 3.4: Classification accuracies given as mean and standard deviation with Odd1,
Odd2 and Odd3

Datasets Odd1 Odd2 Odd3

Balance 83,67±3,82 58.19±6.04 61.42±7.08
Car 57,89±7,73 77.81±7.74 84.35±3.87
Monk1 75,01±6,53 74.92±6.11 74.91±4.71
Monk2 50,74±9,11 50.92±8.97 51.87±7.92
Monk3 97,23±1,78 97.23±2.02 97.22±2.67
Spect 44,02±6,63 72.99±9.34 84.32±4.77
Voting 89.13±5.34 89.42±4.79 88.78±4.7
Hayes-Roth 66.47±9.64 76.87±10.39 80.46±8.03
Diabetes 75.05±3.96 73.59±3.13 72.55±4.25
W. B. Cancer 94.17±3.8 96.16±2.89 97.01±1.74
Heart 83.17±6.77 82.53±7.64 81.8±6.33
Magic 61.48±2.41 73.22±2.96 71.79± 3.33
Ionosphere 69.38±3.87 87.83±4.28 86.6±6.47
Iris 94.53±7.28 94.98±6.1 95.08±4.51
Wine 94.95±5.4 95.49±5.34 95.92±4.86
Sat. Image 86.89±2.51 87.63±2.93 88.6±2.92
Segment 78.74±3.55 85.44±4.12 85.17±2.37
Glass 37.29±11.31 47.27±12.23 48.48±7.43
Letter 49.72±3.72 59.2±3.37 60.47±5.59
Average 73,13 77,98 79,31

• However, these results remain not satisfactory if compared to the well-known al-
gorithms such as SVM or IBK, not only in terms of accuracy, but also in terms of
complexity. In the next subsection, we apply different optimizations, focusing on
Odd2 classifier.

The rather poor performances of our oddness classifiers may be due to the huge number
of subsets considered in each class, having equal importance, while a lot of them blur the
accuracy of oddness measure through the summation. We may think of privileging subsets
including elements of particular interest such as nearest neighbors in the class.

On top of that, such a strategy will reduce the computational complexity of the algo-
rithms. An obvious option is to consider only subsets which contain one of the k nearest
neighbors of ~x in the class. In that case, we have to adjust the normalization factor which
becomes 1

k×|Cn−1| in the Oddn formula.

In Table 3.5, we provide mean accuracies and standard deviations for improved Odd1,
Odd2 and Odd3 in case of Boolean or numerical data. For each classifier, the displayed
results correspond to the optimal value of the parameter β (for all oddness-classifiers, β
being the number of nearest neighbors) obtained as a result of the optimization step in the
inner cross validation. We use an obvious notation for each classifier, Odd2(NN,Std) for
instance means that we use a nearest neighbor and any other element to build a pair.

As we can see in this Table 3.5, considering the average accuracy on all datasets, Odd2

is the best performer for most datasets if compared to other options using singletons or
triples, even if Odd1, and Odd3 remain quite close.
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Table 3.5: Classification accuracies given as mean and standard deviation with improved
Odd1(NN), Odd2(NN,Std) and Odd3(NN,Std, Std) obtained with the best parameter
β.

Datasets Odd1(NN) Odd2(NN,Std) Odd3(NN,Std, Std)
Acc. β Acc. β Acc. β

Balance 82.79±4.29 9 87.4±4.08 21 88.62±3.4 2
Car 91.95±3.31 8 92.04±4.04 7 90.93±4.03 5
Monk1 99.91±0.09 6 99.77±0.23 4 99.31±3.39 1
Monk2 66.54±2.1 20 64.45±3.1 19 60.93±4.16 17
Monk3 99.95±0.05 3 99.95±0.72 1 99.95±0.05 2
Spect 82.74±6.49 13 83.95±4.72 9 84.1±4.58 5
Voting 93.04±3.2 9 94.23±3.95 10 93.81±2.86 11
Hayes-Roth 63.17±12.41 14 78.35±11.94 3 79.37±9.74 7
Diabetes 75.06±3.25 17 76.28±3.83 17 75.91±4.58 15
Cancer 97.07±2.19 3 97.27±1.34 5 97.04±2.24 5
Heart 82.33±5.15 13 82.52±7.87 13 82.2±4.01 13
Magic 78.78±1.58 13 79.05±3.13 16 74.53±3.02 17
Ionosphere 90.61±3.84 1 92.09±3.32 8 90.55±4.05 14
Iris 94.56±4.11 9 94.97±4.41 9 94.64±5.32 7
Wine 97.55±3.07 11 98.47±2.52 5 97.16±4.76 5
Sat. Image 94.79±2.78 3 95.03±3.08 1 93.43±2.38 1
Segment 96.76±1.3 2 96.67±1.44 1 95.31±2.14 3
Glass 72.87±8.1 3 75.84±9.8 3 72.22±8.19 3
Letter 75.66±3.34 2 75.86±4.57 2 73.8±2.81 2
Average 86.11 87.59 86.52

For this reason, we now investigate Odd2 to get a better understanding of its behavior
and then we compare it smoothly to other classifiers.

Looking at the results of Odd2(NN,Std) in Table 3.5, we can draw the following
conclusions:

• It is clear that this optimized classifier is significantly more efficient than the basic
classifier Odd2 for most data-sets. The best accuracy for this option is noted for
datasets: “Balance”, “Car”, “Spect”, “Sat.Image”, “Wine” and “Glass” having large
number of attributes and/or classes. The average accuracy over all datasets is 87%

for the Odd2(NN,Std) and 78% for the basic Odd2.

• Regarding the optimized parameter k, we can see that the best results are obtained
with large values of k for some datasets such as: “Balance”, “Monk2” and “Dia-
betes”. For other datasets with large dimension such us “Sat.Image” “Segment” and
“Letter”, even very small values of k provide the best accuracies (k=1 or 2). Since
subsets of pairs are generally less informative than subsets of triples, it is better to
consider, for this option, large values of k to take advantage of a larger variety of
data [13] [16]. It remains to investigate what would be a suitable value for k leading
to the best accuracy for any dataset.

• It is quite clear that the proposed classifier, especially Odd2(NN,Std), performs
well to classify numerical as well as Boolean data sets. These results highlight that
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the proposed multi-valued oddness measure correctly extends the Boolean case.

To evaluate the efficiency of the oddness-classifiers, we compare their accuracy to ex-
isting classification approaches previously presented in Section 2.2.3 of Chapter 2: IBK,
C4.5, JRIP and SVM . We also keep the same tuned parameter, except for IBK we
extend the values of parameter k to k = 1, 2, ..., 21.

Table 3.6: Results for other machine learning classifiers obtained with the best parameter
β

Datasets IBk C4.5 JRIP SVM(RBFKernel) SVM(PolyKernel)
Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β

Balance 90.15±2.6 17 77.5±5.12 0.3 76.84±2.28 7 99,17±0,34 (32768,0.00195) 98,53±0,26 (128,1)
Car 91.84±3.51 2 95.53±2.02 0.2 91.54±3.21 6 99,37±0,12 (32768,0.03125) 99,19±0,19 (32768,2)
Monk1 99.95±0.05 3 97.77±2.95 0.1 94.63±9.29 3 100 (32768,0.5) 100 (32768,6)
Monk2 67.04±1.19 13 95.32±2.22 0.4 79.68±6.14 10 100 (32768,0.03125) 100 (32768,2)
Monk3 99.95±0.05 1 100.0±0.0 0.1 99.91±1.44 2 100 (32768,0.5) 100 (32768,7)
Spect 80.91±8.46 6 82.21±6.38 0.3 82.75±5.7 5 83,59±0,55 (5,8) 83,14±1,03 (0.5,1)
Voting 92.58±3.21 2 95.1±3.58 0.3 95.42±2.68 2 96,37±0,10 (32, 0.03125) 95,72±0,21 (0.03125,2)
Hayes-Roth 63.62±9.38 5 82.57±5.18 0.1 83.8±6.64 5 79,70±1,55 (32768,0.0078) 79,85±2,05 (32,1)
Diabetes 75.08±3.53 20 74.73±4.14 0.2 74.63±5.22 5 77,37±0,31 (8192,3.051E-5) 77,34 ±0,30 (0.5,1)
W. B. Cancer 96.66±2.97 4 94.79±3.19 0.2 95.87±2.9 4 96,74±0,12 (2,2) 96,92 ±0,23 (2,1)
Heart 82.06±8.82 10 78.34±7.05 0.2 78.52±7.32 4 79,98±0,73 (32,0.125) 83,77±0,55 (0.5,1)
Magic 78.4±2.53 13 75.73±2.55 0.3 76.69±3.44 5 82,06±0,23 (512,0.125) 81,89± 0,45 (32,3)
Ionosphere 90.83±3.83 1 89.56±5.62 0.1 89.01±4.75 5 94,70±0,32 (2,2) 89,28±0,43 (0.03125,2)
Iris 94.99±3.89 6 94.28±5.19 0.2 93.65±5.24 6 94,13±1,28 (32768,0.5) 96,13±0,99 (512,1)
Wine 98.06±2.81 8 94.23±5.54 0.1 94.99±3.49 8 98,20±0,47 (32768,2) 98,53±0,75 (2,1)
Sat. Image 94.9±2.04 1 92.71±2.73 0.1 92.77±3.48 3 96,01±0,24 (8,2) 95,11±0,18 (0.5,4)
Segment 96.46±1.44 2 95.77±1.77 0.2 94.55±1.96 6 96,98± 0,25 (2048,0.125) 97,14±0,17 (8,4)
Glass 72.87±5.38 1 69.92±7.4 0.2 69.06±6.28 5 68,50±1,57 (2,8) 73,01±1,50 (2048,2)
Letter 75.79±3.32 1 63.38±4.04 0.2 62.6±5.42 9 83,59 ±0,55 (32768,0.5) 82,93±0,54 (0.5,3)
Average 86.43 86,81 85,63 90,87 90,97

In Table 3.6, it has to be noted that, in the case of Boolean or nominal data, results of
ML classifiers slightly differ from those previously shown in Table 2.4 of Chapter 2 since
feature values, for these datasets, has been binarized in this case.

If we compare the results of Odd2(NN,Std) classifier to those of machine learning
algorithms in Table 3.6, we note that:

• The Odd2(NN,Std) classifier performs more or less in the same way as the best
known algorithms. Especially, this classifier outperforms all other classifiers Ex-
cept SVM for 13 out of 19 datasets. In particular, Odd2(NN,Std) is significantly
better than IBk and SVM based Poly-Kernel for datasets “Ionosphere”, “Spect”
and “Glass” and performs similar to SVM based Poly-Kernel for datasets “Monk1”,
“Monk3” , “W.B. Cancer”, “Wine” and “Sat.Image”.

• If compared to IBk classifier, we can observe that Odd2(NN,Std) significantly
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outperforms IBk on datasets “Spect”, “Voting”, “Hayes-Roth”, “Diabetes”, “Iono-
sphere”, “Magic” and “Glass” and has similar results for “Monk1”, “Monk3”, “Wine”,
“Sat.Image”, “Segment” and “Letter”.

• The computed average accuracy over 19 datasets for each classifier, confirms our
observations and shows that the Odd2(NN,Std) is ranked the second just after
SVM classifier.

• Odd2(NN,Std) has close classification results to those of analogy-based classi-
fier in the numerical case [10, 15] for most datasets. In the Boolean case, both
oddness-based and analogy-based classifiers [8, 15] achieve good results for “Bal-
ance”, “Car”, “Monk1” and “Monk3”. For “Monk2” dataset, Analogy-based clas-
sifier significantly outperforms Odd2(NN,Std) while for “Spect” and “Voting” the
converse is observed. However even if there is a path (through logical proportions,
in the Boolean case) relating the respective building blocks on which analogy-based
classifiers and the classifiers studied here are based, the two types of classifiers seem
to rely on different ideas: the control of the dissimilarity via the oddness measure,
and the fact of privileging linearity in the other case [22].

3.2.4 Publications

This research work have been published first in a conference paper (see [13]) then have
been gathered and substantially extended in a journal paper(see [16]).

3.3 Oddness-based classification using more constrained
pairs

3.3.1 Motivation

In Section 3.2, we have seen that selecting one element of a pair as a nearest neighbor in
the target class of the item to be classified leads to good accuracy rates. So, why not to
also carefully select the second element of the pair? This is what we do in the following
contribution, first by choosing a second element very far from the item to be classified,
then by choosing the second element as another nearest neighbor in the class.

3.3.2 Contributions

We have investigated two different options in this context:
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Odd2 using a remote element

A drastic option is to consider the second element of the pair as being among the Most
Remote Elements (MRE) to the item −→x . Indeed, we may think that pairs including an
MRE are more informative since they allow to sample a larger variety of data, which may
be of interest especially when the function underlying the classification is complex. The
intuition behind taking

−→
b as an MRE might be justified by the fact that, in this case,

the interval of values [ai, bi], i = 1, ...,m remains sufficiently large since vectors −→a and−→
b are very different (min and max are more informative here). This will guaranty to

get sufficiently high values of atomic odd(xi, {ai, bi}). Cumulating these elementary odd
values through pairs may contribute to quickly converge to the appropriate class. In that
case,Odd(−→x , C) is the sum of k×k′ atomic oddness values and then belong to the interval
[0, k × k′]. In the following, we denote NMRE, the classifier using this option.

The algorithm NMRE has 2 main parameters to be tuned: k the number of nearest
neighbors and k′ the number of most remote elements which are taken into account to
compute the oddness measure.

Odd2 using two nearest neighbors

After experimenting the first option, we are led to the idea of still choosing this second
element as one of the k nearest neighbors in the class, keeping it distinct from the first one.
And the normalization factor is chosen accordingly as 1

(k
2)

. This is also clearly beneficial

from a complexity viewpoint.

3.3.3 Experimental validation

Results

In Table 3.7 we provide the accuracy results ofNMRE-classifier (denoted: Odd2(NMRE)).
These results correspond to the optimal values of k and k′ obtained as a result of the op-
timization step in the inner cross validation. In Table 3.7, we also show classification
accuracy of Odd2 classifier, in which each pair element is among the k nearest neighbors
in the class. We denote this classifier Odd2(NN,NN).

From Table 3.7, we can draw the following comments:

• NMRE classifier provides good results for large values of k or k′ on most datasets.
This suggests that, for small values of k, there is not enough information allowing
to properly classify.
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Table 3.7: Classification accuracies given as mean and standard deviation with
Odd2(NMRE) and Odd2(NN,NN) obtained with the best parameter β.

Datasets Odd2(NMRE) Odd2(NN,NN)
Acc. β Acc. β

Balance 82.62±3.06 (16,13) 83.9±5.02 (-) 17
Car 91.19±2.68 (6,20) 92.45±3.88(.) 7
Monk1 99.43±0.79 (7,7) 99.81±0.67(.) 6
Monk2 65.42±3.27 (19,2) 67.46±3.25(+) 16
Monk3 99.37±1.4 (5,12) 100(.) 5
Spect 83.14±8.15 (14,16) 84.55±4.42(+) 16
Voting 93.45±4.99 (5,15) 95.33±2.84(+) 17
Hayes-Roth 74.59±8.93 (4,19) 77.73±9.62(-) 7
Diabetes 75.5±4.53 (16,11) 75.28±4.26(-) 18
Cancer 97.15±2.61 (4,9) 97.24±1.63(.) 12
Heart 83.41±7.04 (10,5) 82.54±5.06(.) 19
Magic 78.06±3.48 (14,18) 79.23±2.41(.) 18
Ionosphere 91.18±4.51 (1,18) 91.78±4.95(-) 15
Iris 94.94±4.33 (11,9) 94.57±4.11(-) 14
Wine 97.2±3.19 (3,15) 98.37±2.77(.) 9
Sat. Image 94.49±2.08 (2,12) 95.38±2.59(+) 5
Segment 96.67±1.25 (2,9) 96.79±1.17(+) 4
Glass 74.94±8.58 (3,5) 77.93±7.27(+) 3
Letter 75.1±2.77 (3,17) 78.04±3.76(+) 5
Average 86.73 87.81

• The average value of parameter k′ over all datasets is higher than that of parameter
k.

• NMRE is efficient to classify both Binary or numerical datasets as in the case of
Odd2 classifier.

• If compared to Odd2(NN,Std), the NMRE seems less efficient on almost all
datasets except for Monk2 for which it provides better results.

Results of Odd2(NN,NN) in Table 3.7 shows that:

• If we compare results of the classifier using pairs with two nearest neighbors to those
of the basic Odd2 classifier in Table 3.4, it is clear that this third optimized option
also performs largely better than the basic Odd2 classifier.

• In order to compare the Odd2(NN,NN) to the Odd2(NN,Std) classifier, in the
Odd2(NN,NN) column of Table 3.7 we assign a positive ′+′mark if theOdd2(NN,NN)

is better than the Odd2(NN,Std), a negative mark ′−′ in the opposite case and a
neutral mark ′.′ if they have equivalent accuracies. This comparison shows that the
two classifiers have close efficiency for many datasets. Especially, theOdd2(NN,NN)

is slightly better for 7 datasets and worst for 5 datasets.
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Table 3.8: Results for the Wilcoxon Matched-Pairs Signed-Ranks Test, The ∗ (resp. ∗)
means that the classifier in the row (resp. in the column) is statistically better than the
classifier on the column (resp. on the raw)

IBK C4.5 JRIP SVM(RBFKernel) SVM(PolyKernel) Odd2(NN,Std) Odd2(NMRE)
C4.5 1 - - - - - -
JRIP 0.09433 1 - - - - -
SVM(RBFKernel) 9.5e-08∗ 1.8e-11∗ 1.2e-14 ∗ - - - -
SVM(PolyKernel) 2.8e-09∗ 4.0e-13∗ 2.3e-16∗ 1 - - -
Odd2(NN,Std) 0.01172 ∗ 1.5e-05∗ 2.7e-08∗ 0.20023 0.02257∗ - -
Odd2(NMRE) 1 1 0.07757 1.3e-07∗ 3.9e-09 ∗ 0.01462∗ -
Odd2(NN,NN) 0.00011∗ 5.1e-08∗ 5.1e-11∗ 1 0.77887 1 0.00014∗

Statistical evaluation of Oddness-classifiers

As in case of Analogy-based Classifiers described in Chapter 2, we first carry out a Fried-
man test [27] then a post-hoc test after Conover [18] to calculate the corresponding levels
of significance.

In a preliminary step, we aim to compare between Oddness classifiers using single-
tons, pairs or triples to check our first observations in previous sections. For this reason, we
compare betweenOdd1,Odd2,Odd3,Odd1(NN),Odd2(NN,Std) andOdd3(NN,Std, Std).
This comparison confirms that Odd2(NN,Std) is significantly better than all other com-
pared classifiers using singletons or triples with a p-value at least equal to 0.00644 as a
result of the post-hoc test after Conover.

Since Oddness-classifiers using pairs are the best among other family of Oddness
classifiers, in the following we restrict our evaluation to the efficiency of Odd2(NN,Std),
Odd2(NMRE) and Odd2(NN,NN) and we compare their accuracy to that of other
machine learning classifiers. Since the Friedman test, provided a significant p-value=

1.295e − 9, we then apply a post-hoc test after Conover and we use Bonferroni-type ad-
justment of the p-values.

In Table 3.8, we provide the results of the computed p-values for each pair of compared
classifiers. Significant p-values (< 0.05) are given in bold.

The computed p-values are consistent with the following observations:

• The SVM using (RBF or Poly-Kernel) significantly outperforms the IBK, the C4.5
and the JRIP classifiers. It also outperforms Odd2(NMRE) classifier. While SVM
using Poly-Kernel seems better than Odd2(NN,Std).

• It is clear thatOdd2(NN,Std) significantly outperforms the IBK, the C4.5, the JRIP
classifiers and also Odd2(NMRE).
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• This demonstrates that the proposed first optimization not only reduces the complex-
ity which becomes linear, but also considerably improves the classification accuracy
if compared to the basic classifier without any optimization or to IBK classifier.

• The Odd2(NN,NN) classifier is largely better than IBK, the C4.5 and the JRIP.

• As in the case of the Odd2(NN,Std) classifier, the Odd2(NN,NN) is also statis-
tically better than the Odd2(NMRE) classifier.

• Since the computed p-value is not significant, no clear conclusion can be stated
regarding Odd2(NN,Std) and Odd2(NN,NN). This is obvious from Table 3.5
since they have close average accuracies other the 19 datasets.

The last results suggest that using subsets made of pairs of two nearest neighbors is
enough to achieve good results and there is no need to cross all the training set to construct
pairs as in the Odd2(NN,Std) classifier for example. In view of the accuracy results,
these pairs could be considered as representative of the training data for the considered
class.

Comparison of Oddness-based classifiers with the standard k-NN

Lastly, we study the difference between all proposed oddness classifiers and also the stan-
dard k-NN classifier in terms of procedure and complexity.

It is worth noticing that although we use k nearest neighbors, this leads to a method
that differs from the standard k-NN classifier at least in two sides. First, we use the nearest
neighbors in a given class, and we do it for each class. In fact, we consider local nearest
neighbors instead of global ones as in k-nn. It means that we are considering the same
number of nearest neighbors for each class, while the k-NN are not, in general, uniformly
distributed over the classes.

Second, oddness classifiers benefits from averaging the distance of −→x to its k nearest
neighbors in each class when selecting the best class, while standard k-NN method applies
directly a vote on the k nearest neighbors labels without computing the distance to these
nearest neighbors. It’s known that, the efficiency of the “majority voting” classifiers can be
significantly decreased in case there is a most frequent that may dominate the prediction of
the classified instances, since this class tends to be common among the k nearest neighbors
[19].

The experimental results given in the previous sections (see for example first column in
Table 3.5) confirm this difference since we observe that Odd1(NN) and Odd2(NN,NN)

perform quite differently than k-NN on some benchmarks even they have close complex-
ity.
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Table 3.9: Comparative study between oddness classifiers and IBk in terms of procedure
and complexity

Procedure Complexity
Odd3 - Compute the average distance to all possible triples of items in each class. O(| C |3)

- Assign to −→x the class with the shortest distance.
Odd3(NN,Std, Std) - Select the k-NN of −→x in each class. O(k∗ | C |2)

- Compute the average distance to all possible item triples in each class
where only one of the items is among the k-NN.
- Assign to −→x the class with the shortest distance.

Odd2 - Compute the average distance to all possible pairs of items in each class. O(| C |2)
- Assign to −→x the class with the shortest distance.

Odd2(NN,Std) - Select the k-nearest neighbors of −→x in each class. O(k∗ | C |))
- Compute the average distance to all possible pairs of items in each class
where only one of the items is among the k-nearest neighbors.
- Assign to −→x the class with the shortest distance.

Odd2(NN,NN) - Select the k-nearest neighbors of −→x in each class. O(k*(k-1)/2)
- Compute the average distance to all possible pairs of nearest neighbors
in each class.
- Assign to −→x the class with the shortest distance.

Odd1 - Compute the average distance to all items in each class. O(| C |)
- Assign to −→x the class with the shortest distance.

Odd1(NN) - Select the k-nearest neighbors of −→x in each class. O(k)
- Compute the average distance to each nearest neighbor in each class.
- Assign to −→x the class with the shortest distance.

IBk - Select the overall k-nearest neighbors of −→x in TS regardless of the class. O(k)
- Assign to −→x the most frequent class among its k-nearest neighbors.

In Table 3.9, we provide a comparative study by summarizing the basic logic behind
each proposed classifier and a detailed complexity evaluation.

It is clear that the complexity is significantly reduced when we useOdd3(NN,Std, Std)

instead of Odd3 and Odd2(NN,Std) instead of Odd2. This drop in complexity is more
achieved with Odd2(NN,NN) classifier if compared to Odd2(NN,Std) mainly for data
sets with large number of examples. Evidently, this has a considerable impact on the run
time. If we consider the case of Monk1 when C is equal to 90% of the whole data set in
each class, the total number of pairs that can be built from the used part of the data set for
each class is:

- more than 18000 for Odd2,

- Almost 2900 for the Odd2(NN,Std) with k=15,

- ONLY about 100 for Odd2(NN,NN) with k=15.
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3.3.4 Publications

This contribution have been achieved first in the context of a conference paper (see [14]).
This work have been extensively developed in a journal paper (see [17].

3.4 Evenness-based classification

3.4.1 Motivation

Similarly to the oddness index, and still based on heterogenous proportions, we consider
that a new item can be added to a class only if its addition leaves the class as even as
possible: the new item should rarely be an intruder with respect to any triple of items
known to be in the class.

In the evenness view, triples are the only subsets where when the new item conforms
with the minority for a given Boolean feature, there is no longer any majority (with respect
to this feature) in the triple augmented with the new item. Then one can estimate to what
extent a new item fits with the majority of elements in any triple of members of a class on
a set of features.

3.4.2 Contributions

In the following, we define a new Evenness index for Boolean data then extend it to deal
with feature vectors and finally propose a global evenness measure. This latter is useful
to build an evenness-based classifier. We also lay bare the relation between evenness and
oddness

Evenness index

Adopting a dual viewpoint, we may want to know if adding a new element to a given subset
of items keeps it as homogeneous as it is, i.e., the newcomer does not appear as an intruder
in this subset, and rather agrees with its majority. Homogeneity can be considered as a kind
of evenness of the newcomer w.r.t. the existing items of the subset. In this subsection,
we advocate a way of judging evenness on the basis of the majority, if any, inside the
triples. Contrary to the oddness definition, where all Hi, i = 1, 2, 3 are required to define
the oddness index, only H4 is needed for defining an evenness index, thus denoted Even4.

An evenness measure for Boolean data Since the idea is to agree with a majority, we
notice that the smallest multisets S of elements where majority makes sense are clearly
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triples. Let consider three Boolean values a, b, c in S. Then, in a Boolean world, there are
two possibilities, either a = b = c, or two of the three are equal. In both cases, a strict
majority takes place. Let m denote the majority value. Now consider the newcomer d,
either d = m, and m remains the majority value in {a, b, c, d}, or d 6= m, and there is no
longer any majority in {a, b, c, d} (two values are equal to 1 and two values to 0). Only
with the first case, d conforms to the majority.

Note that if we consider larger subsets S, even with only 4 elements rather than 3, it
becomes possible that the newcomer increases an existing minority, without changing the
majority. Indeed, the majority value that may be shared by 3 elements in the 4-elements
multiset will then remain unchanged in the 5-elements multiset resulting from the arrival
of a fifth element whatever its value. A similar phenomenon takes place if we start with
larger subsets S having 5 elements or more. So we are losing a distinctive property of
3-elements subsets which have a different majority behavior depending if d conforms or
not to the majority in the 3-elements subset. This means that triples are the only subsets
such that adding an item that conforms to the triple minority destroys the majority. Thus,
3-elements subsets are able to clearly discriminate, among different d those that conform
to the majority of the triple.

The idea of majority just described helps us to define a new evenness measure via
the heterogeneous proportions. Let us recall the semantics of Hi: Hi holds iff there is an
intruder among a, b, c, d and the parameter in position i is not this intruder. As a conse-
quence, Hi implies that there is a majority of values among (a, b, c, d) and the value in
position i conforms to the majority of values appearing among the 3 other positions (i.e.
the multiset of values {a, b, c, d} is more or less even). But the reverse implication does
not hold since when the 4 parameters have identical value, ∀i ∈ [1, 4], Hi(a, b, c, d) = 0.
Then, to have a concise Boolean definition for “there is a majority of values among the
parameters a, b, c, d and the parameter in position i belongs to this majority of values”, we
need to consider the case where all the values are identical by using the following formula:

Eveni(a, b, c, d) =def Hi(a, b, c, d) ∨ Eq(a, b, c, d) (3.7)

where Eq(a, b, c, d) =def (a ≡ b) ∧ (b ≡ c) ∧ (c ≡ d). Thus, with Eveni we take into
account the special case where all the values are equal. The truth table of Even4 is given
in Table 3.10. It is clear that Even4 holds only when the value of d belongs to a majority
of the parameter’s values. And Even4 does not hold in an opposite situation where there
is no majority of values as it is the case for Even4(0011) or Even4(0110).

The situations where Even4(a, b, c, d) = 1 exactly cover the two cases already men-
tioned where d is identical to the majority value in the triple {a, b, c} (is not the intruder),
namely either a = b = c, or two of the three are equal to d. So the fact that d joins {a, b, c},
when Even(a, b, c, d) = 1, leaves the resulting subset as even as it was, hence the name,
and in fact the majority is reinforced by the arrival of d. Note also that Even4(a, b, c, d) is
left unchanged by any permutation of {a, b, c}. This means that the ordering inside triples
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Table 3.10: H4, Eq and Even4 truth values

a b c d H4 Eq Even4

0 0 0 0 0 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 1
0 0 1 1 0 0 0
0 1 0 0 1 0 1
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 0 1
1 0 0 0 1 0 1
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 1 0 1
1 1 0 0 0 0 0
1 1 0 1 1 0 1
1 1 1 0 0 0 0
1 1 1 1 0 1 1

does not matter. Besides, Even4(a, b, c, d) = Even4(a, b, c, d) where x = 1 if x = 0 and
x = 0 if x = 1, expressing that Even4(a, b, c, d) does not depend on the way the informa-
tion is encoded. From now on, Even4 will be denoted Even as this is the only option we
use with i = 4.

Relation between oddness and evenness in the Boolean case The oddness and even-
ness Boolean functions have been built by truth tables inspection. However, these 2
functions exhibit noticeable links. Despite the fact that their name might suggest that
oddness and evenness capture dual concepts, it is not the case that Even(a, b, c, d) ≡
¬Odd({a, b, c}, d). In fact, the relations between the 2 measures are as follows (where I
denotes the inverse paralogy defined in Chapter1:

Property 7
Even(a, b, c, d) ≡ ¬Odd({a, b, c}, d) ∧ ¬I(a, b, c, d)

Odd({a, b, c}, d) ≡ ¬Even(a, b, c, d) ∧ ¬I(a, b, c, d)

I(a, b, c, d) ≡ ¬Even(a, b, c, d) ∧ ¬Odd({a, b, c}, d)

This can be easily checked on the truth tables. This reflects the fact that Odd and Even
and I are mutually exclusive. Let us note that Even(a, b, c, d)→ ¬Odd({a, b, c}, d), that
¬Even(a, b, c, d)→ ¬H4(a, b, c, d) and that Odd({a, b, c}, d)→ ¬H4(a, b, c, d) as well.

A more complete discussion of the relation between oddness and evenness can be
found in [55].

Dealing with missing values Missing information is quite common in real life datasets
and a way to extend the semantics of analogical proportion to deal with this issue has been
deeply investigated in [54] for instance. In fact, such an approach can be also applied here,
as explained now.

Still keeping a logical approach and considering that ‘?’ denotes a missing value (i.e. an
information is unknown), the idea is to extend the truth table of the Even formula as
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follows: Even(?, 0, 0, 0) = Even(0, ?, 0, 0) = Even(0, 0, ?, 0) = 1, Even(?, 1, 1, 1)

= Even(1, ?, 1, 1) = Even(1, 1, ?, 1) = 1, and Even(x, y, z, t) = 0 for any other pattern
including at least a missing value ‘?’. It is clear that, with the 6 first patterns, whatever
the candidate value of the missing feature, the 4th argument belongs to the majority and
cannot be an intruder. In all the remaining cases, where we have no certainty regarding
the status of d, we adopt a cautious behavior by considering that Even does not hold.

As in the case of Oddness measure, the evenness measure is extended to vectors as:

Even(S,−→x ) =def Σn
i=1Even(Si, xi) ∈ [0, n] (3.8)

where xi is the i-th component of −→x , Si is the multiset gathering the i-th components of
the vectors in S. Note that in the case of Even, the set S has exactly 3 elements, but we
keep the set notation for sake of notation uniformity.

Global Evenness measure

Our aim here is to maintain homogeneity or evenness inside each class C. Reasoning
similar to the previous oddness index leads to a definition of evenness as follows (since
we use only subsets of cardinality 3):

EV EN(C,−→x ) =
1(|C|
3

)ΣS⊆Cs.t.|S|=3Even(S,−→x ).

Exactly the same optimization process applies to EVEN measure, as in case of odd-
ness, leading to:

1

|C|2
Σk

j=1(ΣS⊆C\{−→yj}s.t.|S|=2Even(S ∪ {−→yj },−→x ))

We also apply the same Algorithm 4 described in Section 3.2.2 by replacing the ODD
measure by the EVEN measure and appropriately assigning the class maximizing Even-
ness.

3.4.3 Experimental validation

In order to better control the meaning ofEV EN(C,−→x ), we may focus on triples for which
−→x is an intruder for at most n− l features, where l = 0, 1, · · · . Instead of keeping all the
triples, we can just choose a threshold l ∈ [0, n], then consider Even(−→a ,

−→
b ,−→c ,−→x ) only

for the triples (−→a ,
−→
b ,−→c ) in C3 such that

Even(−→a ,
−→
b ,−→c ,−→x ) ≥ l,
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i.e. we want Even to hold over at least l features. We denote EV EN l(C,−→x ) this measure
where we just reduce the number of candidate triples by filtering over l. As a consequence,
the evenness-based algorithms have 2 parameters: k the number of considered nearest
neighbors and l the minimum number of features where the Even proportion should hold.

Results

Table 3.11 provides accuracies results for the evenness-based classifier obtained with a 10-
fold cross validation and for two values of k and l (k being the number of nearest neighbors
of ~x, l refers to the number of attributes j of ~x such that xj belongs to a majority). The
best results are in bold.

Table 3.11: Classification accuracies given as mean and standard deviation obtained with
Even

Datasets Even
Value of k 1 3 5 11
Balance l=n 67.29± 5.2 71.48±6.49 76.43±4.85 78.23±4.57

l=n-1 78.04±4.91 83.28±3.44 87.08±3.22 86.48±3.45
Car l=n 92.6±2.87 92.84±2.82 93.05±2.83 93.27±2.7

l=n-1 89.63±3.43 90.35±3.0 91.58±2.52 91.75±2.42
Spect l=n 81.53±6.67 81.86±7.93 82.61±8.16± 82.32±8.54

l=n-1 81.21±6.52 81.14±6.83 81.37±6.82 81.74±7.1
Voting l=n 94.29±3.67 94.99±3.96 94.94±3.96 95.12±3.71

l=n-1 94.25±3.94 94.95±4.24 94.9±4.24 94.99±3.93
Monk1 l=n 100 100 100 100

l=n-1 100 99.95±0.05 99.91± 0.64 99.95± 0.05
Monk2 l=n 38.31±4.09 41.37±4.66 45.54±5.04 50.68±4.3

l=n-1 30.87±5.85 34.14±4.46 37.46±4.91 42.61±5.23
Monk3 l=n 100 100 100 100

l=n-1 99.77±0.71 99.22±1.94 98.76±2.42 98.49±2.76

When we analyze results in Table 3.11, we can see that:

• In general, the best classification rates are obtained for l = n. This means that the
classifier is likely to be more accurate when the classification is made on the basis of triples
w.r.t. which −→x is not an intruder for any attributes. However, for some datasets such as
Balance and Monk2, the classifier needs to consider more levels l when it is difficult to
satisfy the constraint Even(−→a ,

−→
b ,−→c ,−→x ) ≥ l for l = n or even l = n − 1. Thus, we

also tested smaller levels of l and for ”Balance” data set, we get an accuracy equal to
89.25± 2.4 for l = n− 3.

• The classifier shows good classification results for data sets ”Balance”, and ”Car” (which
have multiple classes). This shows that evenness-based classifiers are able to deal with
multiple class data sets.

• If we compare results of the evenness-based classifier with machine learning algorithms
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in Table 3.6, we note that the proposed classifier is as good as the best known algorithms.
Especially, the basic classifier, with large k works as well as any other classifiers for data
sets ”Balance” (for l = n − 3), ”Spect.”, ”Monk1” and ”Monk3” (for l = n). Moreover,
evenness-based classifier outperforms IBK for all data sets except Monk2.

Comparison between oddness-and evenness-based classifiers

Although oddness and evenness indexes are not the exact opposite of each other, the results
obtained by minimization in oddness-based classifiers and by maximization in evenness-
based classifiers are quite close, as can be seen by comparing Table 3.5 with Table 3.11,
for Boolean features. However, the evenness index and measure have not been defined in
the case of numerical features.

3.4.4 Publications

This research work have been published first in two conference papers (see [12, 11]) then
extended in a journal paper (see [16]).

3.5 Conclusion

Starting from heterogeneous proportions, we have established a way to define an odd-
ness measure and an evenness measure in order to estimate to what extent a new item
does not conform, or conforms, to a candidate class. Then, testing on classical bench-
marks coming from UCI repository, we have compared an oddness-based classifier and an
evenness-based classifier with standards methods in classification, as well as with analogi-
cal proportion-based classifiers. Our experiments empirically highlight the good behavior
of heterogeneous logical proportion-based classifiers.

On the basis of the reported experiments, we have seen that, regarding oddness mea-
sure, Odd2 classifier (based on ODD2 measure) stands out of the crowd. In fact, if we
are back to the basic brick Odd2 of ODD2 measure, it is clear that, when |S| = 2,
Odd(S, ~x) = 0 as soon as ~x ∈ S. This is not generally the case as soon as |S| > 2.
This suggests that ODD2, built up on the sum of atomic Odd(S, ~x) with |S| = 2, may be
a better marker of the oddness of a given element ~x inside a class C than any other mea-
sure ODDi with i > 2. Still the global oddness and evenness measures have no obvious
remarkable properties. This question may be addressed in future works.

Apart from a formal investigation of the properties of oddness and evenness measures,
their merits would need to be studied in greater detail in order, for instance, to more
precisely assess the expected accuracy of oddness or evenness-based classifiers. Then,
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one might think to use them in conformal predictors [62, 67, 66], as first experimented in
[12] with an evenness-based classifier. Indeed the oddness measure may be considered as
a non conformity measure, while the evenness measure would be a conformity measure.
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Chapter 4

Analogy-based Preference learning

4.1 Introduction

A panoply of research works has been developed to deal with preference learning prob-
lems (see, e.g., [28]) that can be stated as the following. Given a set E of preferences
of the form xk � yk (k = 1, · · · ,m), representing what we know about the preferences
of an agent about some pairs of choices, can we predict its preference between two other
choices x and y? First, an idea is to make the assumption that the preferences of the agent
obey a weighted sum aggregation scheme, whose weights are unknown. Then, we might
think of finding a sampling of systems of weights summing to 1 that are compatible with
the constraints induced by E. But, enumerating the vertices of the polytope defined by the
system of inequations corresponding to the preferences in E is a NP hard problem that is
not easy at all to handle in practice [36]. That’s why we have chosen to explore another
route in this study, based on the exploitation of a pattern avoiding contradictory trade-offs,
and patterns expressing that preferences should go well with analogical proportions. This
idea which may sound fancy at first glance is based on the empirical evidence that analog-
ical proportion-based classifiers work well and the theoretical result that such classifiers
make no error in the Boolean case when the labeling function is affine [22]. A result of
the same nature might be conjectured when attributes are nominal rather then Boolean.

Analogical reasoning is reputed to be a valuable heuristic means for extrapolating plau-
sible conclusions on the basis of comparisons. A simple form of this idea is implemented
by case-based reasoning (CBR) [1], where conclusions known for stored cases are ten-
tatively associated to similar cases. A more sophisticated option relies on the idea of
analogical proportions. Given four items ~a,~b, ~c and ~d described by their vector of features
values for a considered set of features. As described in Chapter1, the inference process is
based on triples of vectors rather than taking vectors one by one as in case-based reason-
ing. The underlying idea is that if four items ~a,~b, ~c, ~d are making an analogical proportion
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on describing features, an analogical proportion may hold as well on another mark per-
taining to them, and then if this mark is known for ~a,~b and ~c, one may compute it for ~d in
such a way that the marks make an analogical proportion.

To the best of our knowledge, the only approach also aiming at predicting preferences
on an analogical proportion basis is the recent paper [26], which only investigates “the
horizontal reading” of preference relations. However, we are only intended to predict
preferences relations in this paper and not a total order on preferences.

This chapter is structured as follows. Section 4.2 introduces the basic background on
two analogical readings that are relevant for applying analogical proportion-based infer-
ence to preference prediction. Section 4.3 presents a variety of predicting methods either
exploiting a set of given examples or using an extension of this set relying on a monotony
assumption of the preferences. These methods exploits triples of pairs of items or takes
these pairs one by one for prediction and are first applied to the Boolean feature values
then extended to the multi-valued setting.

4.2 Analogy and linear utility

In the following, the items we consider are made of preferences between two vectors of
criteria values, of the form a1 � a2, b1 � b2, c1 � c2 and d1 � d2. Then the basic
analogical inference pattern applied to compared items is then, ∀i ∈ [[1, n]],

a1
i : b1

i :: c1
i : d1

i and a2
i : b2

i :: c2
i : d2

i

~a1 � ~a2

~b1 � ~b2

~c1 � ~c2

−−−−−−−−−−−−−−−

~d1 � ~d2.

where x � y expresses that y is preferred to x (equivalently y � x); other patterns
(equivalent up to some rewriting) exist where, e.g.,� is changed into� for i) pairs (b1, b2)

and (d1, d2), or in ii) pairs (c1, c2) and (d1, d2) (since a : b :: c : d is stable under central
permutation) [5].

Following [49], the above pattern corresponds to a vertical reading, while another
pattern corresponding to the horizontal reading can be stated as follows ∀i ∈ [[1, n]],

ai : bi :: ci : di
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~a � ~b,

−−−−−−

~c � ~d.

The intuition behind the second pattern is simple: since ~a differs from ~b as ~c differs
from ~d (and vice-versa), and~b is preferred to ~a, ~d should be preferred to ~c as well. The first
pattern, which involves more items and more preferences, states that since the pair of items
(~d1, ~d2) makes an analogical proportion with the three other pairs (~a1, ~a2), (~b1, ~b2), (~c1, ~c2),
then the preference relation that holds for the 3 first pairs should hold as well for the fourth
one.

Besides, the structure of the first pattern follows the axiomatics of additive utility func-
tions, for which contradictory trade-offs are forbidden, namely: if ∀i, j,

~a1−iα � ~a2−iβ

~a1−iγ � ~a2−iδ

~c1−jα � ~c2−jβ

one cannot have:
~c1−jγ ≺ ~c2−jδ

where ~x−i denotes the n-1-dimensional vector made of the evaluations of ~x on all criteria
except the ith one for which the Greek letter denotes the substituted value. This property
ensures that the differences of preference between α and β, on the one hand, and between
γ and δ, on the other hand, can consistently be compared.

Thus, when applying the first pattern, one may also make sure that no contradictory
trade-offs are introduced by the prediction mechanism. In the first pattern, analogical rea-
soning amounts here to finding triples of pairs of compared items (~a,~b,~c) appropriate for
inferring the missing value(s) in ~d. When there exist several suitable triples, possibly lead-
ing to different conclusions, one may use a majority vote for concluding.

Lastly, let us remark that the second, simpler, pattern agrees with the view that pref-
erences wrt each criterion are represented by differences of evaluations. This includes the
weighted sum, namely ~b � ~a iff

∑
i=1,nwi(bi − ai) ≥ 0, while analogy holds at degree

1 iff ∀i ∈ [[1, n]], bi − ai = di − ci. This pattern does not agree with more general mod-
els of additive utility functions, while the first pattern is compatible with more general
preference models.
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4.3 Analogy-based Preference Learning

4.3.1 Motivation

The notion of analogical proportions and their formalization has raised a trend of interest in
the last two decades [40, 70, 63, 47, 53]. Moreover analogical proportion-based classifiers
have been designed and experienced with success [2, 45, 15], first for Boolean and then for
nominal and numerical attributes. In this case, the predicted mark is the label of the class.
Although it is not intuitively obvious why analogical proportion-based inference may work
well, one may notice that such a proportion enforces a parallel between four situations in
such a way that the change between a and b is the same as the change between c and d. So
this inference exploits co-variations.

One may wonder if what is working in classification may also be applied to preference
prediction. The aim of work is to check whether analogical proportions may be a suitable
tool for predicting preferences. The problem considered is no longer to predict a class for
a new item, but a preference relation between two items on the basis of a set of examples
made of known comparisons applying to pairs of items. This set of examples plays the
role of a case base, where a case is just a pair of vectors describing the two items together
with information saying what item is preferred.

Preference learning has become a popular artificial intelligence topic [28, 24, 35, 29].
Preference learning often relies on the assumption that data sets are massively available.
Interestingly enough, analogical proportion-based inference may work with a rather small
amount of examples, as we shall see. Preference-learning approaches often rely on the
hypothesis that known preferences agree with a unique unknown aggregation function or
with a conditional preference structure that has to be identified. Analogical proportion-
based methods extrapolate predictions from known cases without looking for some under-
lying explanation model.

4.3.2 Contributions

In order to study the ability of analogical proportions to predict new preference relations
from a given set of such relations, while avoiding the generation of contradictory trade-
offs, we propose different “Analogy-based Preference Learning” algorithms (APL algo-
rithms for short). The criteria are assumed to be evaluated on a scale S = {1, 2, ..., k}.
Given a set E = {~ej : ~xj � ~yj} of preference examples, where � is a preference relation
telling us that choice ~xj is preferred to choice ~yj .

Given a new pair of items ~d /∈ E for which preference is to be predicted, we present
two types of algorithms for predicting preferences in the following, corresponding respec-
tively to the “vertical reading” (first pattern) that exploits triples of pairs of items, and to
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“horizontal reading” (second pattern) where pairs of items are taken one by one.

Analogy-based Preference Learning: Boolean setting

A first attempt to treat Analogy-based Preference Learning has been developed in [5] that
applies the vertical reading and focus only on the Boolean view of analogical Proportions.
In this contribution, two algorithms are proposed that look for triples of preferences appro-
priate for a prediction. The first one only exploits the given set of examples. The second
one completes this set with new preferences deducible from this set under a monotony
assumption. This completion is limited to the generation of preferences that are useful for
the requested prediction. The predicted preferences should fit with the assumption that
known preferences agree with a unique unknown weighted average.

Given a new item ~d : (~x, ~y) whose preference is to be predicted, the basic principle
of APL is to find the good triples (~a,~b,~c) of examples in E (or if possible in comp(E))
that form with ~d either the non-contradictory trade-offs pattern (considered in first), or one
of the three analogical proportion-based inference patterns (described in Section 1.2.2
of Chapter 1). Such triples, when applicable, will help to guess the preference of ~d by
applying a majority vote on the solutions provided by each of these triples.

Let us consider one of the basic patterns:

~a : x−iα � y−iβ

~b : x−iγ � y−iδ

~c : v−jα � w−jβ
~d : v−jγ ? w−jδ

where preference of ~d is unknown.

The APL can be described by this basic process:

• For a given ~d, search for good triples in E.

• In case no good triples could be found in E, search for such triples in comp(E).

• Apply a majority vote on the candidate solutions of these good triples to predict the
preference of ~d.

The process of searching for good triples can be summarized by the following 3 steps:

1. Find good ~c: In the basic pattern, we can see that the item ~c may be any example in
the set E which is identical to ~d except on one criterion that is denoted by its index
j. The intuitive idea of APL is to start by searching for the best examples ~c ∈ E
that fit the basic pattern considered. As j may be any index in the set of criteria,
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a loop on all possible criteria j ∈ {1, ..., n} should be executed in order to find j.
Once a candidate ~c is found, this helps to also fix parameters α, β, γ and δ for the
current candidate triple. We save such parameters as param = {α, β, γ, δ, j}.

2. Find good ~a: Once parameters α and β are fixed for each example ~c, it is easy
to find a good example ~a ∈ E in which α and β appears on the same criterion,
indexed by i. As in the case of ~c, a similar process is to be applied to find such
examples ~a. This helps to fix a new parameter i and update the set of parameters to
be param = {α, β, γ, δ, j, i}.

3. Find good ~b: As a result of the previous step, to each candidate pair (~a,~c) along
with ~d corresponds a set of candidate parameters param = {α, β, γ, δ, j, i}. The
last step is to find all good examples ~b ∈ E to enclose the triple (~a,~b,~c), i.e., those
that fit exactly the pattern: p : x−iγ, y−iδ regardless of the sign of the preference
relation.

The next step of the APL is to predict preference based on the selected good triples.
Each candidate triple helps to predict an atomic preference solution for ~d by inference
based on any of the previous patterns described in Section 1.2.2. A global preference
solution is computed through a majority vote applied on all atomic solutions and finally
assigned to ~d.

As expected, the proposed APL may fail in case no examples ~c (or ~a, or ~b) could be
found in the set E especially when E has a limited size. To overcome this problem, we
expand the set E and search for examples e in comp(E).

For any example e ∈ E s.t.: e : x−iα � y−iβ, one may produce a new valid preference
example by dominance (monotony) defined as:

newe ∈ comp(E) iff newe : newx−iα � newy−iβ

and newx−i ≥ x−i and y−i ≥ newy−i (4.1)

For any relation e with opposite preference sign corresponds a newe by reversing the
operators.

Algorithms

Based on the previous ideas, two different algorithms for predicting preferences are
proposed. The first alternative is to look at all good triples (~a,~b,~c) ∈ E that provide a
solution for the item ~d. This first option is described by Algorithm 5.

In case Algorithm 5 fails to find good triples, the second alternative (described by
Algorithm 6) aims at expanding the set of preference examples E by searching for good
triples (~a,~b,~c) in comp(E). In this set, examples are produced by applying dominance
(monotony) on elements found in E.
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Algorithm 5 APP with restricted set
Input: a training set E of examples with known preferences
a new item ~d /∈ E whose preference is unknown.
PredictedPref = false
Preprocess: S(~a,~b) = FindPairs(E).
CandidateVote(p)=0, for each p ∈ {�,�}
for each ~c ∈ E do

if IsGood(~c) then
for each (~a,~b) ∈ S(~a,~b) do

if IsGood(~a) AND IsGood(~b) then
p = Sol(~a,~b,~c, ~d)
CandidateV ote(p)++

end if
end for

end if
end for
maxi = max{CandidateV ote(p)}
if maxi 6= 0 AND unique(maxi, CandidateV ote(p)) then
Preference(~d) = argmaxp{CandidateV ote(p)}
PredictedPref = true

end if
if PredictedPref then

returnPreference(~d)
else

return (not predicted)
end if

Analogy-based Preference Learning: extension to the Multi-valued setting

The analogy-based Preference Learning approaches that handle nominal or numerical at-
tribute values and deals with the multi-valued setting of AP, defined in Chapter 2, are
presented in [6] . In this contribution, two approaches based on analogical proportions
are presented and compared to previous works. The first one uses triples of pairs of items
for which preferences are known and which make analogical proportions, altogether with
the new pair. These proportions express attribute by attribute that the change of values
between the items of the first two pairs is the same as between the last two pairs. This
provides a basis for predicting the preference associated with the fourth pair, also making
sure that no contradictory trade-offs are created. Moreover, we also consider the option
that one of the pairs in the triples is taken as a k-nearest neighbor of the new pair. The
second approach exploits pairs of compared items one by one: for predicting the prefer-
ence between two items, one looks for another pair of items for which the preference is
known such that, attribute by attribute, the change between the elements of the first pair
is the same as between the elements of the second pair. The two approaches agree with
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Algorithm 6 APP with a completion set
Input:a training set E of examples with known preferences
a new item ~d /∈ E whose preference is unknown.
Preprocess: S(~a,~b) = FindPairs(E).

if Algo1(~d, E) = not predicted then
CandidateVote(p)=0, for each p ∈ {�,�}
for each ~c ∈ E do
new~c = comp(~c)
for each (~a,~b) ∈ E × E do

if IsGood(~a) AND IsGood(~b) then
p = Sol(~a,~b, new~c, ~d)
CandidateV ote(p)++

end if
end for
if CandidateVote(p)=0, for each p ∈ {�,�} then

for each ~a ∈ E do
new~b = comp(~b)
if IsGood(~a) AND IsGood(new~b) then
p = Sol(~a, new~b, new~c, ~d)
CandidateV ote(p)++

end if
end for

end if
end for

end if
Preference(~d) = argmaxp{CandidateV ote(p)}
return Preference(~d)

the postulates underlying weighted averages and more general multiple criteria aggrega-
tion models. In this contribution, two new algorithms implementing these methods are
suggested and tested on a variety of datasets.

APL3: The basic principle of APL3 is to find triples t(~a,~b,~c) of examples in E3

that form with ~d either the non-contradictory trade-offs pattern (considered in first), or the
analogical proportion-based inference pattern. For each triple t(~a,~b,~c), we compute an
analogical score At(~a,~b,~c, ~d) that estimates the extent to which it is in analogy with the
item ~d using Formula 2.1 in Chapter 2, where P refers to definitionA of AP in this context.
Then to guess the final preference of ~d, for each possible solution, we first cumulate these
atomic scores provided by each of these triples in favor of this solution and finally we
assign to ~d the solution with the highest score. In case of ties, a majority vote is applied.

The APL3 can be described by this basic process:

• For a given ~d whose preference is to be predicted.
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• Search for solvable triples t ∈ E3 that make the analogical proportion, linking the
4 preference relations of the triple elements with ~d, valid (the preference relation
between the 4 items satisfy one of the vertical pattern given in Section 4.2).

• For each triple t, compute the analogical score At(~a,~b,~c, ~d).

• Compute the sum of these scores for each possible solution for ~d and assign to ~d,
the solution with the highest score.

APL1:

Applying the “horizontal reading” (second pattern), we consider only one item ~a at
a time and apply a comparison with ~d in terms of pairs of vectors rather than comparing
simultaneously 4 preferences, as with the first pattern. From a preference ~a : ~a1 � ~a2 such
that (~a1, ~a2, ~d1, ~d2) is in analogical proportion, one extrapolates that the same preference
still holds for ~d : ~d1 � ~d2. A similar process is applied in [26] that they called analogical
transfer of preferences.

Following this logic, for each item ~a in the training set, an analogical score A(~a1,
~a2, ~d1, ~d2) is computed. As in case of the vertical reading, these atomic scores are accu-
mulated for each possible solution for ~d (induced from items ~a). Finally, the solution with
the highest score is assigned to ~d.

The APL1 can be described by this basic process:

• For a given ~d : ~d1, ~d2 whose preference is to be predicted.

• For each item ~a ∈ E, compute the analogical score A(~a1, ~a2, ~d1, ~d2).

• Compute the sum of these scores for each possible solution for ~d and assign to ~d,
the solution with the highest score.

Algorithms

Based on the above ideas, we propose two different algorithms for predicting prefer-
ences. Let E be a training set of examples whose preference is known. Algorithms 7
and 8 respectively describe the two previously introduced procedures APL3 and APL1.
Note that in Algorithm 7, to evaluate the analogical score At(~a,~b,~c, ~d) for each triple
t, we choose to consider all the possible arrangements of items ~a, ~b and ~c, i.e., for
each item ~x, both ~x : ~x1 � ~x2 and ~x′ : ~x2 � ~x1 are to be evaluated. The function
FindCandidateTriples(t) helps to find such candidate triples. Since we are dealing with
triples in this algorithm, 23 candidate triples are evaluated for each triple t. The final score
for t is that corresponding to the best score among its candidate triples. In both Algorithms
7 and 8, P (~x) returns the preference sign of the preference relation for ~x.
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For APL3, we also consider another alternative in order to drastically reduce the num-
ber of triples to be investigated. This alternative follows exactly the same process de-
scribed by Algorithm 7 except one difference: instead of systematically surveying E3, we
restrict the search for solvable triples t(~a,~b,~c) by constraining ~c to be one of the k-nearest
neighbors of ~d w.r.t. Manhattan distance (k is a parameter to be tuned). This option allows
us to decrease the complexity of APL3 that become quadratic instead of being cubic. We
denote APL3(NN) the algorithm corresponding to this alternative.

Algorithm 7 APL3

Input: a training set E of examples with known preferences
a new item ~d /∈ E whose preference P (~d) is unknown.
SumA(p)=0 for each p ∈ {�,�}
BestAt=0, S = ∅, BestSol = ∅
for each triple t = (~a,~b,~c) in E3 do

S = FindCandidateTriples(t)
for each candidate triple ct = (~a′, ~b′, ~c′) in S do

if (P (~a′) : P (~b′) :: P (~c′) : x has solution p) then
At = Min(A(a′1, b

′
1, c
′
1, d1), A(a′2, b

′
2, c
′
2, d2))

if (At > BestAt) then
BestAt = At

BestSol = Sol(ct)
end if

end if
end for
SumA(BestSol)+ = BestAt

end for
maxi = max{SumA}
if (maxi 6= 0) then

if (unique(maxi, SumA)) then
P (~d) = argmaxp{SumA}

else
Majority vote

end if
else

No Prediction
end if
return P (~d)

4.3.3 Experimental validation

To evaluate the proposed APL algorithms in the Boolean or numerical setting, we have
developed an experimental study based on five datasets, the two first ones are synthetic
data generated from different functions: weighted average, Tversky’s additive difference
and Sugeno Integral described in the following.
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Algorithm 8 APL1

Input: a training set E of examples with known preferences
a new item ~d /∈ E whose preference P (~d) is unknown.
SumA(p)=0 for each p ∈ {�,�}
BestA=0, BestSol = ∅
for each ~a in E do
BestA = max(A(a1, a2, d1, d2), A(a2, a1, d1, d2))
if (A(a1, a2, d1, d2) > A(a2, a1, d1, d2)) then
BestSol = P (~a)

else
BestSol = notP (~a)

end if
SumA(BestSol)+ = BestA

end for
maxi = max{SumA}
if (maxi 6= 0) then

if (unique(maxi, SumA)) then
P (~d) = argmaxp{SumA}

else
Majority vote

end if
else

No Prediction
end if
return P (~d)

• Datasets 1: we consider only 3 criteria in each preference relation i.e., n = 3. We
generate different type of datasets:

1. Examples in this dataset are first generated using a weighted average function
(denoted WA in Table 4.1) with 0.6, 0.3, 0.1 weights respectively for criteria
1, 2 and 3.

2. The second artificial dataset (denoted TV in Table 4.1) is generated using a
Tversky’s additive difference model [65], i.e. an alternative a is preferred over
b if
∑n

i=1 Φi(ai − bi) ≥ 0, where Φi are increasing and odd real-valued func-
tions. For generating this dataset, we used the piecewise linear functions de-
scribed in [6].

3. Then, we generate this dataset using weighted max and weighted min which
are particular cases of Sugeno integrals, namely using the aggregation func-
tions defined as follows:

SMax =
n

max
i=1

(min(vi, wi)),

SMin =
n

min
i=1

(max(vi, 6− wi)),
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where vi refers to the value of criterion i and wi represents its weight. In this
case, we tried two different sets of weights : w1 = 5, 4, 2 and w2 = 5, 3, 3,
respectively for criteria 1, 2 and 3.

• Datasets 2: we expand each preference relation to support 5 criteria, i.e: n = 5.
We apply the weights 0.4, 0.3, 0.1, 0.1, 0.1 in case of weighted average function and
w1 = 5, 4, 3, 2, 1 andw2 = 5, 4, 4, 2, 2 in case of Sugeno integral functions. For gen-
erating the second dataset (TV), we used the following piecewise linear functions
given in [6]. For the two datasets, weights are fixed on a empirical basis, although
other choices have been tested and have led to similar results.

For both datasets, each criterion is evaluated on a scale with 5 levels, i.e., S =

{1, ..., 5}.

To check the applicability of APL algorithms, we also evaluate their efficiency on real
data. We consider the following three datasets.

• The Food dataset (https://github.com/trungngv/gpfm) contains 4036 user prefer-
ences among 20 food menus picked by 212 users. Features represent 3 levels of user
hunger; the study is restricted to 5 different foods.

• The University dataset (www.cwur.org) includes the top 100 universities from the
world for 2017 with 9 numerical features such as national rank, quality of education,
etc.

• The Movie-Lens dataset (https://grouplens.org) includes users responses in a sur-
vey on how serendipitous a particular movie was to them. It contains 2150 user
preferences among different movies picked by different users.

Results of the Boolean setting

Figures 4.1 and 4.2 show prediction accuracies of APL algorithms in case of Boolean
setting respectively for Datasets 1 and 2 for different sizes of each dataset and different
weights (see curves “Algo1 wi(E)” and “Algo2 wi(E)”; the used sets of weights and other
curves using InterE data are defined in [5]).

The previous results show the effectiveness of Algorithm 2 as preference predictor
which fits with a given weighted average used to produce the preference examples espe-
cially for small number of criteria.

It is worth pointing out that the predicted preferences have been evaluated as being
valid, or not, on the basis of 3 weighted averages, the ones used for generating the dataset
with its three versions. It is clear that a given set E of preference examples is compatible
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Figure 4.1: Prediction accuracies for Dataset 1 with 3 criteria and different sizes of subsets
of data.

Figure 4.2: Prediction accuracies for Dataset 2 with 5 criteria and different dataset sizes

with a more large collections of weights. Strictly speaking a prediction is valid if it is
correct with respect to at least one of the collections of weights compatible with E. As
already said, determining all the extreme points of the polytope of the weights compatible
with E is quite tricky. So in the above reported experiments, we have compared the
prediction to ones obtained by using the weighted averages used in the generation of the
training set, and thus the reported accuracies are lower bounds of the true accuracies.

Results of the multi-valued setting

Tables 4.1 and 4.2 provide prediction accuracies respectively for synthetic and real datasets
for the three proposed APL algorithms as well as Algorithm 1 described in [26] (denoted
here “FH18”) in the multi-valued setting. The best accuracies for each dataset size are
highlighted in bold.

Results in Table 4.1 and 4.2 show that:

• For synthetic data and in case of datasets generated from a weighted average, it is

82



CHAPTER 4. ANALOGY-BASED PREFERENCE LEARNING

Table 4.1: Prediction accuracies for Dataset 1 and Dataset 2
Data Size APL3 APL3(NN) k∗ APL1 FH18 N∗

D1 50 WA 92.4±11.94 89.0±12.72 22 92.9±11.03 90.6±12.61 14
TV 87.8±12.86 88.6±12.71 19 86.8±14.28 90.4±12.61 11
SMax-W1 90.0±12.24 88.8±12.01 19 90.2±11.66 88.0±13.02 15
SMax-W2 91.2±12.91 88.4±13.59 20 95.8±7.92 90.2±11.62 15
SMin-W1 90.0±13.24 89.4±11.97 17 88.6±13.18 86.4±13.76 16
SMin-W2 93.2±10.37 89.6±12.61 20 94.2±9.86 92.4±11.48 18

100 WA 94.75±6.79 91.55±8.51 24 93.85±7.51 93.5±7.09 15
TV 89.6±9.43 86.5±10.41 21 88.0±9.6 92.1±8.45 15
SMax-W1 93.4±6.5 91.2±9.31 25 93.2±6.98 91.2±9.14 17
SMax-W2 93.8±7.17 88.8±8.08 25 95.3±5.66 92.9±8.2 15
SMin-W1 90.4±9.66 89.6±8.57 19 90.6±9.43 89.4±8.73 16
SMin-W2 94.3±6.56 90.1±7.68 21 96.3±5.09 94.6±5.68 14

200 WA 95.25±4.94 92.25±6.28 23 95.4±4.33 94.55±5.17 13
TV 91.25±5.48 91.7±5.93 25 90.1±5.18 95.1±4.53 13
SMax-W1 90.0±5.98 89.3±6.73 24 90.2±6.24 89.4±6.38 14
SMax-W2 95.7±3.28 92.6±5.35 26 97.2±2.71 95.6±4.08 15
SMin-W1 92.0±7.17 91.1±5.86 24 92.0±5.82 90.3±6.38 18
SMin-W2 94.8±4.88 91.55±5.15 26 97.4±3.35 95.0±4.45 16

D2 50 WA 88.3±12.41 86.2±14.43 20 84.9±15.17 83.5±14.99 15
TV 89.4±15.08 86.0±16.46 17 89.2±14.85 87.6±14.44 17
SMax-W1 86.6±13.77 83.8±14.14 18 86.4±12.18 83.2±15.53 16
SMax-W2 85.8±15.77 82.4±15.44 20 87.0±14.58 81.2±15.7 14
SMin-W1 86.6±14.34 86.2±13.45 23 85.6±14.61 84.0±14.57 16
SMin-W2 88.8±11.5 86.2±14.29 22 89.0±11.94 83.6±14.78 17

100 WA 92.0±7.51 89.0±8.89 22 90.0±8.22 88.3±9.71 15
TV 90.2±8.18 88.1±8.93 18 91.4±8.03 86.8±9.06 15
SMax-W1 88.0±9.52 87.9±9.56 21 88.8±9.31 85.4±10.7 16
SMax-W2 87.7±9.17 86.1±9.77 24 90.1±9.73 85.1±9.86 17
SMin-W1 89.1±9.15 88.6±10.47 21 90.2±9.3 85.6±9.98 16
SMin-W2 87.4±9.7 83.2±11.99 24 89.2±9.27 84.8±10.06 16

200 WA 94.7±5.11 90.2±6.01 24 92.3±5.2 90.0±6.08 17
TV 91.1±6.33 89.0±6.54 27 91.9±6.06 89.65±6.81 16
SMax-W1 89.15±6.76 88.65±6.58 22 89.7±6.84 86.5±7.66 17
SMax-W2 89.4±6.45 88.15±6.77 27 91.7±5.65 86.65±6.71 16
SMin-W1 90.7±5.79 89.25±6.45 24 91.3±5.1 88.8±6.55 15
SMin-W2 89.75±5.64 88.0±6.33 23 91.55±5.68 87.8±6.68 16

clear that APL3 achieves the best performances for almost all dataset sizes. APL1

is just after. Note that these two algorithms record all triples/items analogical scores
for prediction. We may think that it is better to use all the training set for prediction
to be compatible with weighted average examples.

• In case of datasets generated from a Sugeno integral, APL1 is significantly better
than other algorithms for most datasets sizes and for the two weights W1 and W2.

• If we compare results of the three types of datasets: the one generated from a
weighted average, from Tversky’s additive difference or from a Sugeno integral,
globally, we can see that the accuracy obtained for a Sugeno integral dataset is the
best in case of datasets with 3 criteria (see for example APL1). For datasets with
5 criteria, results obtained on weighted average datasets are better than on the two
others. While results obtained for Tversky’s additive difference datasets seem less
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Table 4.2: Prediction accuracies for real datasets
Dataset Size APL3 APL3(NN) k∗ APL1 FH18 N∗

Food 200 61.3±8.32 63.0±9.64 15 61.05±9.34 57.55±10.41 13
1000 - 73.16±3.99 20 63.11±5.0 63.11±5.54 20

Univ. 200 73.6±9.67 80.0±8.03 14 73.6±8.47 75.7±8.29 12
1000 - 87.9±3.04 17 76.76±3.86 83.74±3.26 12

Movie 200 51.9±14.72 49.1±15.2 19 52.93±13.52 48.61±14.26 15
1000 - 55.06±4.51 23 54.48±4.7 53.38±5.32 10

accurate in most cases.

• For real datasets, it appears that APL3(NN) is the best predictor for most tested
datasets. To predict user preferences, rather than using all the training set for pre-
diction, we can select a set of training examples, those where one of them is among
the k-nearest neighbors.

• APL3(NN) seems less efficient in case of synthetic datasets. This is due to the
fact that synthetic data is generated randomly and applying the NN-approach is less
suitable in such cases.

• If we compare APL algorithms to Algorithm1 “FH18”, we can see that APL3 out-
performs the latter in case of synthetic datasets. Moreover, APL3(NN) is better
than “FH18” in case of real datasets.

• APL algorithms achieve the same accuracy as Algorithm 1 in [5] with a very small
dataset size (for the dataset with 3 criteria built from a weighted average, only 200
examples are used by APL algorithms instead of 1000 examples in [5] to achieve
the best accuracy: See the left side of Figure 4.1 for results without completion).
The two algorithms have close results for the Food dataset.

• Comparing vertical and horizontal approaches, there is no clear superiority of one
view (for the tested datasets).

In Tables 4.3 and 4.4, we compare the best results obtained with our algorithms to the
accuracies obtained by finding the weighted sum that best fits the data in the learning sets.
The weights are found by using linear programming as explained in [6].

Table 4.3 displays the results obtained using the synthetic datasets generated according
to Tverski’s model. The results for datasets generated by a weighted average or a Sugeno
integral are not reproduced in this table because the weighted sum (WSUM) almost al-
ways reaches an accuracy of 100%. Only in three cases on thirty, its accuracy is slightly
lower, with a worst performance of 97.5%. This is not unexpected for datasets generated
by means of a weighted average, since WSUM is the right model in this case. It is more
surprising for data generated by a Sugeno integral (even if we have only dealt here with
particular cases), but we get here some empirical evidence that the Sugeno integral can be
well-approximated by a weighted sum. The results are quite different for datasets gener-
ated by Tversky’s model. WSUM shows the best accuracy in two cases; APL1 and APL3,
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also in two cases each. Tversky’s model does not lead to transitive preference relations, in
general, and this may be detrimental to WSUM that models transitive relations.

Table 4.3: Prediction accuracies for artificial datasets generated by the Tverski model
Dataset Size APL3 APL1 WSUM
TV (3 features) 50 87.8± 12.86 86.8 ± 14.28 82.00± 17.41

100 89.6±9.43 88.0 ± 9.6 93.00 ± 8.23
200 81.25±5.48 90.1 ± 5.18 91.00 ± 6.43

TV (5 features) 50 89.4 ± 15.08 89.2 ± 14.85 84.00± 15.78
100 90.2 ± 8.18 91.4 ± 8.03 87.00± 9.49
200 91.1 ± 6.33 91.9 ± 6.06 85.50± 6.53

Table 4.4 compares the accuracies obtained with the real datasets. WSUM yields the
best results for all datasets except for the “Food” dataset, size 1000.

Table 4.4: Prediction accuracies for real datasets
Dataset Size APL3(NN) APL1 WSUM
Food 200 63.0±9.64 61.05±9.34 64.00 ± 20.11

1000 73.16±3.99 63.11±5.0 61.10± 10.19
Univ. 200 80.0±8.03 73.6±8.47 99.50 ± 1.58

1000 87.9±3.04 76.76±3.86 88.70 ± 21.43
Movie 200 49.1±15.2 52.93±13.52 69.50 ± 18.77

1000 55.06±4.51 54.48±4.7 77.60 ± 16.93

These examples suggest that analogy-based algorithms may surpass WSUM in some
cases. However, the type of datasets for which it takes place is still to be determined.

4.3.4 Scientific impact

This research has been carried out in the context of the Master thesis of Toumather Nesibi
and has been published in two international conferences (see [5, 6]).

4.4 Conclusion

The results presented in the previous section confirm the interest of considering analogical
proportions for predicting preferences, which was the primary goal of this work since such
an approach has been proposed only recently. We observed that analogical proportions
yield a better accuracy as compared to a weighted sum model for certain datasets (TV,
among the synthetic datasets and Food, as a real dataset). Determining for which datasets
this tends to be the case requires further investigation.

Analogical proportions may be a tool of interest for creating artificial examples that
are useful for enlarging a training set, see, e.g., [7]. It would be worth investigating to see
if such enlarged datasets could benefit to analogy-based preference learning algorithms as
well as to the ones based on weighted sum.
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Chapter 5

Discussions and future works

5.1 Introduction

Comparing objects or situations and identifying in what respects they are identical (or
similar) and in what respects they are different, is a basic type of operations at the core of
many intelligent activities. In particular, proportions are a matter of comparison between
pairs of objects or situations, where a comparison has already been done inside the pairs.

It is only in the last decade that analogical proportions, i.e., statements of the form a

is to b as c is to d, where each item refers to a situation described by a vector of feature
values, have been formalized first in terms of subsets of properties that hold true in a given
situation [40, 63], and then in a logical manner [47]. Quite early, it was shown that a formal
view of analogical proportions may be the basis of a new type of classifier that performs
well on some difficult benchmarks [2, 45]. This was confirmed by other implementations
directly based on a logical view of analogical proportions [8].

Besides, it was shown that analogical proportions belong to a larger family of so-
called logical proportions that relate a 4-tuple of Boolean variables [50], where the 8 code-
independent logical proportions are of particular interest since their truth status remain
unchanged if a property is encoded positively or negatively. These 8 logical proportions
divide into 4 homogeneous proportions, which include the analogical proportion and 3
related proportions, and 4 heterogeneous proportions [54]. An heterogeneous proportion
expresses the idea that there is an intruder among the 4 truth values, which is forbidden to
appear in a specific position.

This habilitation was devoted to study the merits of homogeneous (especially analogi-
cal) and heterogeneous proportions and their applications in two different domains in AI:
Classification and Preference Learning.

The rest of this chapter is organized as follows: Section 5.2 summarizes the main
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contributions related to classification and preference learning problems. A discussion re-
garding the proposed approaches as well as their limits are detailed in Section 5.3. Section
5.4, discusses the possible extensions and new applications of logical proportions in the
future works.

5.2 Main contributions

5.2.1 First application of Logical Proportions: Classification

This section summarizes our first contribution in this habilitation devoted to the first ap-
plication of logical proportions (homogeneous and heterogenous ones) to classification
problems.

Analogy-based classification

In the first part of this habilitation, we have investigated the study of Analogical Propor-
tions and their efficiency in the classification task. Analogical proportions have been, in
particular, formalized in Boolean, nominal and numerical settings. In all cases if the ana-
logical proportion holds, one of the fourth components of the proportion can be computed
from the three others.

Based on this analogical inference, we have proposed diverse classification approaches
in the first part of this habilitation. Analogical classifiers look for all triples of examples in
the sample set that are in analogical proportion with the item to be classified on a maximal
number of attributes and for which the corresponding analogical proportion equation on
the class has a solution. To classify a new item, we specially emphasize an approach where
the whole set of triples that can be built from the sample set is not considered. We just
focus on a small part of the candidate triples. Namely, in order to restrict the scope of
the search, we first look for examples that are as similar as possible to the new item to be
classified. We then only consider the pairs of examples presenting the same dissimilarity
as between the new item and one of its closest neighbors. Then the classification is made
on the basis of an additive aggregation of the truth values corresponding to the pairs that
can be analogically associated with the pairs made of the target item and one of its nearest
neighbors. We then only deal with pairs leading to a solvable analogical equation for the
class.

The proposed classification approach provides results as good as previous analogical
classifiers with a lower average complexity, both in nominal and numerical cases.
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Oddness-based classification

The classification of a new item may be viewed as a matter of associating it with the class
where it is the least at odds w.r.t. the elements already in the class.

In this second part of this habilitation, we first propose two viewpoints for estimating
to what extent a new item, described in terms of binary-valued features, fits with a set of
existing items. They are respectively based on an oddness index and an evenness index,
which in spite of their names, are not exactly the opposite of each other. Both indicators,
which refer to one feature, are built from heterogeneous logical proportions, and involve
four items, the new item and three others. Heterogeneous proportions express that there
is an intruder among four truth values, which is forbidden to appear in a specific position.
Global oddness and evenness functions of an item with respect to a set are built from
the corresponding indexes by taking all features into account, and then by considering all
triples of items in the set.

Moreover the oddness function naturally extends to numerical features and to subsets
of items of different sizes (pairs, triples, etc.). Simple classification procedures, based
on these global functions, have been developed: a new item is assigned to the class that
minimizes oddness or maximizes evenness.

The previous idea, dealing with pairs, have been then confirmed and refined in different
ways: First, rather than considering all the pairs in a class, one can only deal with the pairs
whose an element is one of the nearest neighbors of the item, in the target class. Second,
we choose the second element in the pair also as another nearest neighbor in the class.
Although the method relies on the notion of neighbors, the resulting algorithm is far from
being a variant of the classical k-nearest neighbors approach. The oddness with respect to
a class computed only on the basis of pairs made of two nearest neighbors leads to a low
complexity algorithm.

Experimental results of oddness-based classifiers on a set of UCI benchmarks show
that they are still competitive with regard to state of the art classifiers (k-N N, SVM) while
having drastically decreased the complexity.

5.2.2 Second application of Analogical Proportions: Preference Learn-
ing

In the last part of this habilitation, our interest was to study the ability of Analogical
Proportions as a tool for predicting user’s preference. Given a set of preferences between
items taken by pairs and described in terms of nominal or numerical attribute values,
Preference Learning aims to predict the preference between the items of a new pair.
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In this context, we have proposed and compared two basic preference learning ap-
proaches based on analogical proportions. The first one uses triples of pairs of items for
which preferences are known and which make analogical proportions, altogether with the
new pair. This provides a basis for predicting the preference associated with the fourth
pair, also making sure that no contradictory trade-offs are created. Moreover, we also
consider the option that one of the pairs in the triples is taken as a k-nearest neighbor of
the new pair. The second approach exploits pairs of compared items one by one: for pre-
dicting the preference between two items, one looks for another pair of items for which
the preference is known such that, attribute by attribute, the change between the elements
of the first pair is the same as between the elements of the second pair. As discussed in
Chapter 4, the two approaches agree with the postulates underlying weighted averages and
more general multiple criteria aggregation models. The reported experiments, both on real
data sets and on generated datasets suggest the effectiveness of the approaches.

5.3 Discussions

5.3.1 Logical Proportions-based Classification

On the basis of the investigation of AP -classifier or Oddness/Evenness-based classifiers,
we may globally derive the following conclusions:

On the first hand, the AP -classifier achieves a reduced complexity when compared to
previous analogical classifiers taking into account all triples, while maintaining an accu-
racy statistically better than the k-NN and in many case equivalent to SVM. Nevertheless,
the execution time of the AP -classifier remains still high due to the exploration of triples
of examples during the testing phase. It would remain to find classes of problems where
AP -classifiers are of particular interest. It may be the case when we have relatively few
data at hand. However, it is worth pointing out that the AP -classifier relies on ideas quite
different from the other existing classifiers, while providing results of similar quality.

As explained in Chapter 2, a rather small number of pair-based predictors are used to
classify. It remains to investigate if this is a general property and if it is possible to obtain
accurate results by focusing only on a still more restricted number of predictors. Such an
approach might be closer to a cognitive attitude where excellent human experts usually
focus directly on the few relevant pieces of information for making prediction.

This first work is quite experimental and a complete theoretical investigation has still
to be done. [34, 22] have started this investigation. Nevertheless, some questions re-
main unanswered: for instance, what kind of theoretical accuracy could be expected from
analogical classifiers? How well analogical classifiers deal with noise? Is it possible to
statically determine the relevant triples to be used for classification? Taking inspiration of
a similar work done for k-NN [48, 37], we may try to provide answers to some of these
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questions in the future.

On the second hand and apart from a formal investigation of the properties of oddness
and evenness measures, their merits would need to be studied in greater detail in order,
for instance, to more precisely assess the expected accuracy of oddness or evenness-based
classifiers. Then, one might think to use them in conformal predictors [62, 67, 66], as
first experimented in [12] with an evenness-based classifier. Indeed the oddness measure
may be considered as a non conformity measure, while the evenness measure would be a
conformity measure. Moreover, as datasets become bigger and bigger, the scalability of
analogy-based and oddness-based classifiers is paramount which has to be further investi-
gated in future works.

5.3.2 Analogical Proportions-based Preference Learning

The reported experiments, both on real and generated datasets suggest the effectiveness
of Analogical Proportions for Preference Learning in a similar way as in classification.
However, many remaining issues should be addressed; for example determining the char-
acteristic of the datasets for which Preference Learning approaches perform better requires
further investigation.

Moreover in the proposed Preference Learning approach, the experiments have been
on training sets generated by means of weighted sums, which is a quite standard aggrega-
tion function, and we have obtained good results for rather small subsets of examples. Still
it is known that the representation of multiple-criteria preferences may require more gen-
eral settings such as Choquet integrals [32] where the condition for avoiding contradictory
trade-offs is weaker. Adapting the proposed approach to guess preferences generated by
such more general settings is a topic for further research.

5.4 Research in progress and future works

Analogical proportions have proven to be a valuable tool for diverse application domains
in the last decade such as morphological linguistic analysis [64, 38], solving IQ tests such
as Raven progressive matrices [58, 21] as well as in classification and Preference Learning
tasks. It would be interesting to find new domains for which Analogical Proportions may
be suitably applied.

5.4.1 Future research axe 1: Data expansion

Analogical proportions are not only a tool for classification, but more generally for build-
ing up a fourth item starting from three others, thanks to the equation solving process.
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As we have seen, this fourth item could be entirely new. Thus, while classifiers like k-
NN focus on the neighborhood of the target item, analogical classifiers go beyond this
neighborhood, and rather than “copying” what emerges among close neighbors, “take in-
spiration” of relevant information possibly far from the immediate neighborhood.

Some previous works have considered, discussed and experimented the idea of an
analogical proportion-based enlargement of a training set, based on triples of examples.
In [3], the authors proposed an approach to generate synthetic data to tune a handwritten
character classifier. Couceiro et al. [22] presented a way to extend a Boolean sample set for
classification using the notion of “analogy preserving” functions that generate examples on
the basis of triples of examples in the training set. The authors only tested their approach
on Boolean data.

As an attempt to tackle such problem, we have recently developed a new idea of en-
larging a training set using analogical proportions [7] as the work in [22], with two main
differences: we only consider pairs of examples to predict new examples not in the training
set by using continuous analogical proportions which contribute to reduce the complex-
ity to be quadratic instead of cubic, and we test with ordered nominal datasets instead of
Boolean ones.

In this last work [7], results obtained by classical machine learning methods such as
k-NN on the enlarged training set generally improve those obtained by applying these
methods to the original training sets. On the other hand, these results, obtained with a
smaller level of complexity, are often not so far from those obtained by directly applying
the analogical proportion-based classification method on the original training set [15]. It
remains to extend this new method to enlarge a training set having numerical attribute
values which is a work in progress.

As discussed above, analogical proportions seems to be a tool of interest for creating
artificial examples that are useful for enlarging a training set. It would be worth investi-
gating to see if such enlarged datasets could benefit to analogy-based preference learning
algorithms as well as to the ones based on weighted sum. Especially in some domain for
which the available data remains scarce.

5.4.2 Future research axe 2: Continuous Analogy-based classification

As noted in sub-section 5.3.1, the overall complexity of AP -classifier is still cubic due
to the use of triples during the classification phase which requires more execution time in
case of large datasets. This is what motivates us to develop a new family of classifiers still
based on analogical proportions but in a different way.

Given a data set, described in terms of discrete, ordered attribute values, we are actually
studying the efficiency of simpler classifier that searches for pairs instead of triples during
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the classification phase by using contineous analogical proportions which are statements
of the form: a is b as b is to c, i.e: b can be seen as a midpoint of a and c. Let V =

{v1, · · · , vk} be an ordered set of nominal values, then, vi will be regarded as the midpoint
of vi−j and vi+j with j ≥ 1, provided that both vi−j and vi+j exist. For instance, if
V = {1, · · · , 5}, the analogical proportions 1 : 3 :: 3 : 5 or 2 : 3 :: 3 : 4 hold, while
2 : x :: x : 5 = 1 has no solution. In this work, we aim to show that there is an alternative
way for constructing analogical classifiers to handle discrete ordered data. The proposed
approach deals with pairs rather than triples of examples since only items a and c are
needed to predict b for example (which helps to significantly reduce the execution time).

This last idea has been recently studied and tested with success within the master thesis
of Marouane Essid who proposed a set of new AP classifiers that led to encouraging
results close to that of AP classifier [15] while reducing the complexity to be quadratic
instead of cubic.

5.4.3 Future research axe 3: Classification versus Preference Learn-
ing: a discussion

It is also interesting to study the relationship between classification and Preference Learn-
ing problems. This may help to develop a new formalism that take into consideration the
characteristics of both domains and generate a kind of generic approach able to tackle
both problems similarly. The intuition behind this statement starts by noting that Pref-
erence Learning may be viewed as just a particular case of classification. In fact, it can
easily be noticed that a preference relation, denoted x : x1 � x2 s.t: x1 = (x1

1, ..., x
1
n) and

x2 = (x2
1, ..., x

2
n), can be coded as a new instance x∗ for classification whose attributes

are simply the values of the two vectors x1 and x2 made in order and its class label is a
Boolean value equal to 1 (resp. 0) in case the preference relation is � (resp. �) namely:
x∗ = {x1

1, ..., x
1
n, x

2
1, ..., x

2
n, 1}. It remains to check if the new transformed dataset satisfy

the non-contradictory trade off property then evaluate the efficiency of any AP classifier
to classify such new transformed dataset.

5.4.4 Future research axe 4: Analogical Proportions and Information
retrieval

We have also recently investigated a preliminary study to apply analogy between queries
and documents for Information Retrieval (IR). For this end, we proposed a new analogi-
cal inference to evaluate document relevance for a given query. Based on this inference
process, a new matching model for Information Retrieval has been developed and dis-
cussed [4]. Experiments carried out on three IR Glasgow test collections highlight the
effectiveness of the model if compared to the known efficient Okapi IR model. A deeper
investigation on the merits of such matching model as well as its application on a variety
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of test collections have still to be performed.

5.4.5 Future research axe 5: Analogical Proportions and Arabic Text
Mining

Based on these preliminary results obtained in IR, we also aim to tackle new related-
application domains and we have just started a new project on Arabic Text Mining using
Analogical Proportions within a PHD proposal which is a work in progress.

Finally, one may think to extend such developed analogical models to support simi-
lar/close problems by adaptation. This process may be seen as a king of Transfer Learning
in which it is required to save the main conclusions or knowledge while solving one prob-
lem and then apply it to solve a new but related problem.
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proportions. In M. T. Cox, P. Funk, and S. Begum, editors, Proc. 26th Int. Conf.
on Case-Based Reasoning (ICCBR’18), Stockholm, July 9-12, volume 11156 of
LNCS, pages 515-531. Springer, 2018.
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formation retrieval. In Proceedings of the 11th International Conference on Agents
and Artificial Intelligence, ICAART 2019, Volume 2, Prague, Czech Republic, Febru-
ary 19-21, pages 496–505, 2019.

11. M. Bounhas, M. Pirlot, H. Prade, and O. Sobrie. Comparison of analogy-based
methods for predicting preferences. In N. BenAmor and M. Theobald, editors, Proc.
13th Int. Conf. on Scalable Uncertainty Management (SUM’19), Compiègne, Dec.
16-18, pages 339–354, LNCS. Springer, 2019.
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