
HAL Id: tel-03287903
https://theses.hal.science/tel-03287903v1

Submitted on 16 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New hardware platform-based deep learning co-design
methodology for CPS prototyping : Objects recognition

in autonomous vehicle case-study
Quentin Cabanes

To cite this version:
Quentin Cabanes. New hardware platform-based deep learning co-design methodology for CPS proto-
typing : Objects recognition in autonomous vehicle case-study. Other [cs.OH]. Université Paris-Saclay,
2021. English. �NNT : 2021UPASG042�. �tel-03287903�

https://theses.hal.science/tel-03287903v1
https://hal.archives-ouvertes.fr


 
 

 

New hardware platform-based deep 

learning co-design methodology for CPS 

prototyping: Objects recognition in  

autonomous vehicle case-study 
 

Nouvelle méthodologie de co-conception pour de l'apprentissage en 

profondeur basée sur une plate-forme matérielle pour le prototypage 

de SCP: reconnaissance d'objets dans une étude de cas de véhicule 

autonome 

 

Thèse de doctorat de l'université Paris-Saclay 
 

École doctorale n°580 : Sciences et Technologies de l’Information 

et de la Communication (STIC) 

Spécialité de doctorat : Informatique 

Unité de recherche : Université Paris-Saclay, UVSQ, LISV,  

78124, Vélizy -Villacoublay, France.  

Référent : Université de Versailles -Saint-Quentin-en-Yvelines 
 

Thèse présentée et soutenue à Paris-Saclay,  

le 07/06/2021, par 
 

 Quentin CABANES 

Composition du Jury   

El-Bey BOURENNANE 

Professeur des Universités, Université de 

Bourgogne 

 Président 

Dong Seog HAN 

Professeur, Kyungpook National University 
 Rapporteur & Examinateur 

Nicole LEVY 

Professeure des Universités, Conservatoire 

National des Arts et Métiers (CEDRIC) 

 Rapporteuse & Examinatrice 

Akash KUMAR 

Professeur, Technische Universität Dresden 
 Examinateur 

   

Direction de la thèse 
  

   

Amar RAMDANE-CHERIF 

Professeur, UVSQ (LISV) 
 Directeur de thèse 

Benaoumeur SENOUCI 

Maître de conférences, ECE Paris 
 Co-Encadrant T

h
è
se

 d
e
 d

o
c
to

ra
t 

N
N

T
 2

0
2
1
U

P
A

S
G

0
4
2
 





To my late grandfather Robert, and my family.





Acknowledgements

I would like to sincerely thank my supervisors, Dr Benaoumeur Senouci and Pr Amar

Ramdane-Cherif, for their help and contribution during this work.

I would also like to thank the members of the jury, who accepted to evaluate my work.

A big thanks to all the ECE Paris lab team for their help and support during this thesis.

I would like to thank Alain Houelle for his review and advices.

A special thanks to my partner, Anaïs, who was by my side during that tumultuous time,

and to Nikki, who proofread my thesis.

Finally, a big thanks to my family for believing in me all this time and helped me achieve

all these projects.

i



ii



Contents

1 General Introduction 11

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Problematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Cyber-physical systems and embedded artificial intelligence 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Cyber-physical systems design . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Hardware accelerators for smart cyber-physical systems . . . . . . . . . . . 24

2.4 Artificial intelligence in cyber-physical systems . . . . . . . . . . . . . . . . 25

2.5 3D object detection and recognition for CPS . . . . . . . . . . . . . . . . . 27

2.5.1 3D vision techniques using 2D/3D sensors . . . . . . . . . . . . . . 27

2.5.2 Software deep learning for 3D object detection and recognition . . . 28

2.5.3 Hardware acceleration of 3D object detection and recognition ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Design and prototyping time of a hardware accelerated object detection

and recognition application for CPS . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 An embedded Deep Learning methodology for hybrid CPU/FPGA-

1



based Cyber-Physical Systems platform design using a hardware Neural

Network Processor 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Hybrid CPU/FPGA platform . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 A standard process for HW/SW co-design prototyping . . . . . . . . . . . 38

3.4 HW/SW co-design methodology in the deep learning AI era . . . . . . . . 41

3.4.1 Understanding the standard workflow for deep learning algorithms . 41

3.4.2 Exploration of deep learning inside a HW/SW co-design application 43

3.4.3 Prototyping automation tools for hybrid CPU/FPGA platforms . . 46

3.5 Proposed embedded Deep Learning methodology around a FPGA-based

Neural Network Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 The methodology design flow . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Toward the automation of the design flow . . . . . . . . . . . . . . 53

3.6 Challenges of deep learning in hybrid CPU/FPGA-based CPS . . . . . . . 54

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A hardware Neural Network Processor: core of the methodology 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Neural Network Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Design and Architecture . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Validation of the NNP . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 NNP integration into the full prototype . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Embedded processing to improve performance . . . . . . . . . . . . 69

4.3.2 Control software for reconfiguration purposes . . . . . . . . . . . . . 70

4.3.3 Workflow of an application using the NNP . . . . . . . . . . . . . . 74

4.4 Experimentation and results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2



5 Implementation and validation: a smart LIDAR for pedestrian detec-

tion 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Autonomous Vehicle Case Study: Description . . . . . . . . . . . . . . . . 82

5.3 Design of the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Embedded processing algorithms . . . . . . . . . . . . . . . . . . . 87

5.4.2 Deep learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Implementation and results . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 General conclusion and future works 105

6.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A SystemC source code of the Neural Network Processor 113

B Tensorflow source code for Dense Neural Network topologies 123

C Tensorflow source code for SUOD dataset 129

D Résumé de thèse 133

3



List of Figures

1.2 Past and future evolution toward automated and cooperative driving . . . 14

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Cyber-physical systems architecture . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Methodology global view around embedded DL . . . . . . . . . . . . . . . 36

3.2 Hybrid CPU/FPGA platform with DRAM . . . . . . . . . . . . . . . . . . 38

3.3 HW/SW co-design prototyping for hybrid CPU/FPGA-based platform . . 39

3.4 V-model: HW/SW co-design prototyping based on hybrid CPU/FPGA

platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Deep learning classification standard steps . . . . . . . . . . . . . . . . . . 43

3.6 HW/SW co-design prototyping for a hybrid CPU/FPGA-based Deep learn-

ing application. Compared to the previous methodology (Figure 3.3): the

deep learning requirements are added inside the software requirements,

the data processing and feature calculation are added inside the hardware

requirements, the model training and testing is added between the host

application and host code compiler, and the model parameters are added

before the host executable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Design flow diagram for a hybrid CPU/FPGA-based HW/SW co-design

deep learning software application . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Application Tasks Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Prototype automated deployment . . . . . . . . . . . . . . . . . . . . . . . 47

4



3.10 Our methodology implementation. The differences with previous method-

ology (Figure 3.6) are: the addition of the NNP IP integration and the

removal of a host software development and compilation . . . . . . . . . . 50

4.1 Neuron in a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Dense Neural Network (DNN) . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Data and tasks representations of a NNP . . . . . . . . . . . . . . . . . . . 61

4.4 NNP data flow with 4 cores . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Neuron processing unit architecture. The weights, inputs and output ar-

rows represents 32-bit floating points. . . . . . . . . . . . . . . . . . . . . . 66

4.6 Vivado diagram of our NNP using the PS/PL with three DMA and the

scheduler connected to four neural processing unit . . . . . . . . . . . . . . 69

4.7 Splitting the weight matrix into sub-matrices with their size depending on

the number of cores. N is the number of neurons in the current layer. M

is the number of neurons in the next layer. K is the number of neuron

processing unit. K ′ is the size of the last sub-matrix, with K ′ ≤ K. . . . . 71

4.8 Hybrid CPU/FPGA-based smart CPS workflow . . . . . . . . . . . . . . . 74

4.9 DNN Topologies for each Dataset . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Tests results of the NNP, the execution time is for one feed forward sequence 78

4.11 Execution time per parameter with different number of cores and topologies 78

5.1 Smart LIDAR use-case task flow . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Smart LIDAR for object classification case study . . . . . . . . . . . . . . 85

5.3 Design flow for the embedded DL methodology . . . . . . . . . . . . . . . 86

5.4 Box simple overlapping hierarchical problem. The blue zone represents no

box overlapping, the red zone represents two boxes overlapping. . . . . . . 92

5.5 Box multiple overlapping hierarchical problem. The blue zone represents

no box overlapping, the red zone represents two boxes overlapping. The

green zone represents three boxes overlapping . . . . . . . . . . . . . . . . 93

5



5.6 DNN topology for SUOD dataset . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Comparison between software and hardware application execution times . . 98

5.8 Example of the occupancy grid task . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Example of the point filtering task results . . . . . . . . . . . . . . . . . . 100

5.10 Example of three sliding boxes on a pedestrian . . . . . . . . . . . . . . . . 100

5.11 Pedestrian extracted from a box . . . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Time performance and time per parameter for the SUOD neural network

topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6



List of Tables

4.1 Number of bits for each piece of data in instruction word . . . . . . . . . . 63

4.2 Hardware resource utilization of the scheduler module with a 10 ns clock

target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Hardware resource utilization of one neuron processing unit module with a

10 ns clock target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Direct register mode DMA registers [95] . . . . . . . . . . . . . . . . . . . 72

4.5 Description of the different steps to configure a DMA . . . . . . . . . . . . 73

4.6 Accuracy for each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Comparison of SW and HW Applications Execution Time . . . . . . . . . 98

5.2 Hardware “points to voxels” resource utilization . . . . . . . . . . . . . . . 101

5.3 Results from hardware "points to voxels" module . . . . . . . . . . . . . . 101

5.4 Accuracy results per dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7



Acronyms

ADAS Advanced Driver-Assistance System.

AI Artificial Intelligence.

AMBA Advanced Microcontroller Bus Architecture.

ANN Artificial Neural Network.

ASCII American Standard Code for Information Interchange.

ASIC Application-Specific Integrated Circuit.

AXI Advanced eXtensible Interface.

CD Continuous Deployment.

CI Continuous Integration.

CNN Convolutional Neural Network.

COTS Commercial Off-The Shelf.

CPS Cyber-Physical System.

CPU Central Processing Unit.

DL Deep Learning.

DMA Direct Memory Access.

8



DNN Dense Neural Network.

DRAM Dynamic Random Access Memory.

DSP Digital Signal Processor.

EEPROM Electrically-Erasable Programmable Read-Only Memory.

EXT4 4th EXTended file system.

FIFO First In First Out.

FPGA Field-Programmable Gate Array.

FSBL First Stage Boot Loader.

GPU Graphics Processing Unit.

HDL Hardware Description Language.

HLL High Level Language.

HLS High Level Synthesis.

HW HardWare.

IoT Internet of Things.

IP Intellectual Property.

JTAG Joint Test Action Group.

LIDAR LIght Detection And Ranging.

MM2S Memory-Mapped to Stream.

NNP Neural Network Processor.

9



NoC Network on Chip.

NPU Neural Processing Unit.

NTFS NT File System.

OS Operating System.

PE Processing Element.

PLD Programmable Logic Devices.

RADAR RAdio Detection And Ranging.

RAM Random Access Memory.

RGB Red Green Blue.

RGBD Red Green Blue Depth.

RNN Recurrent Neural Network.

RTL Register-Transfer Level.

S2MM Stream to Memory-Mapped.

SPP Single Purpose Processor.

SW SoftWare.

U-Boot Universal Boot Loader.

V2X Vehicle-to-Everything.

10



Chapter 1

General Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Problematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11



1.1 Introduction

This chapter introduces the thesis context with four parts: context and motivations, prob-

lematics, thesis contributions, and finally, the thesis outline. The context and motivation

explains the reason of this subject. The problematic is the expression of the problem

isolated in the motivation. The contribution outlines how this work can be useful for the

scientific community. Finally, the thesis outline details all chapters in the manuscript.

1.2 Context and Motivations

Embedded systems are a robust solution for many technological challenges in our so-

ciety and are able to deliver precise, predictable and robust behavior. Their evolution

gave birth to a new type of system called Cyber-Physical Systems (CPS) which combine

computation and physical processes. A CPS can be defined as a networked embedded

system that can analyze a physical environment and make decisions from its current state

to affect it toward a desired outcome. Such systems possess a great potential, because

the physical components of such systems introduce safety and reliability requirements,

different from those in general-purpose computing [1]. A large spectrum of fields can

benefit from the use of CPS, like smart city, smart mobility, smart health care, etc [2].

Fig 1.1 is an example of the evolution from early embedded systems adapted for the phys-

ical world (mechatronics) toward CPS and modern Internet of Things (IoT) systems [3].

Although CPS are a great solution for problems related to physical environment, they

are constrained with processing resources, real-time, prototyping, etc. In this work, we

are focusing on specific constraints: embedded AI implementation and prototyping time.

Because of the limited calculation resources available on such systems, the integration of

modern AI, particularly machine learning inference, is a tough problem. Mainly because

those types of algorithms are computational heavy when analyzing data to extract the

features related to the learnt pattern. For this purpose, lightweight and optimized algo-

rithms made their appearance, but because of modern sensors and new techniques, such

12



Figure 1.1 – Transition process from early Embedded Systems (Mechatronics) to CPS to
Internet of Things [3]

as data fusion, data size keeps increasing faster than the processing power of general pur-

pose systems. This is where Single Purpose Processors (SPP) come in handy. Designing

a digital circuit for one specific task has many advantages, such as faster computation,

lower power, or smaller memory footprint. However, the prototyping time of specific hard-

ware (also called hardware accelerators or hardware threads) to process AI algorithms is

longer than software solutions. This is where the use of reconfigurable digital circuits is

advantageous. Programmable Logic Devices (PLD), such as Field-Programmable Gate

Array (FPGA), decrease prototyping time compared to Application-Specific Integrated

Circuits (ASIC) because there is no need to produce a circuit board for each version of the

project. Moreover, using High Level Synthesis (HLS) software, which can translate high

level programming language to Hardware Description Language (HDL), further decreases

the prototyping time [4]. For all these reasons, this thesis is focused on a methodology for

AI applications in CPS based on hybrid CPU/FPGA platforms. In addition, a use case

13



is chosen, according to the lab thematic: the autonomous vehicle. Since the apparition

of vehicles as cheap transportation for individuals, a lot of progress has been made to

improve the comfort of the driver and the safety of vehicles. But the interesting part of

this evolution is the technologies used to implement such challenges. In most of today’s

approaches, the usage of AI in specific modules of the vehicle is one of the solutions to

make it smart. Moreover, functionalities in cars are approached as independent parts

that will analyze the environment and take decisions from the environmental state. In a

way, an autonomous vehicle is a CPS. A key example of the evolution of those challenges

is the development of vehicles and their evolution to smart vehicles thanks to Advanced

Driver-Assistance Systems (ADAS) as seen in Figure 1.2. In this work, to analyze the

Figure 1.2 – Past and future evolution toward automated and cooperative driving [5].

environment, Artificial Intelligence (AI) technologies are used. More specifically, the use

of Deep Learning (DL) with Neural Networks (NN). DL technologies became a hot topic

in solving problems such as data analytics and object recognition [6]. Since the late 20th

century, it has evolved in a substantial way and tends to be applied in many different

fields and applications related to computer science and engineering, such as CPSs [7] [8].

14



For this purpose, we are using a specific field of the DL spectrum: object recognition.

In the case of autonomous vehicles, object recognition is a way to make the vehicle rec-

ognize every object in its environment in order to smoothly pass across obstacles, obey

traffic laws and predict the behavior of other agents (pedestrians, cars, bicycles, ...). How-

ever, with the increased accuracy requirements and complexity of NN architectures, DL

technologies have been known to need a lot of computational power, mostly because of

their huge number of parameters [9]. Unlike distributed cloud computing, where a lot of

power processing is available, embedded systems impel some restrictions in the use of DL

technologies. Even when optimizing/compressing NN or using Graphics Processing Units

(GPU) for embedded systems, there is still some possible optimization through the usage

of specialized processing systems [10] [11]. Also, if we want to build an application using

specialized hardware processing for NN (ex: FPGA/ASIC based), we need a complete

design methodology for embedded DL inference in order to decrease prototyping time.

1.3 Problematics

Nowadays, CPS are a great solution to analyze a physical environment and interact with

it. Moreover, the use of DL algorithms increased the accuracy of such analysis. But

integrating DL applications in a CPS comes with many constraints that either conflict

with the calculation performances because of the needed calculation resources, or with

the prototyping time because of the use of a specific hardware. In the case of a specific

hardware, such as deep learning accelerators, we observed a lack of a defined methodology

in the context of hybrid CPU/FPGA-based CPS. NN accelerators have become a hot topic

since 2014+ [12] and many papers are proposed about it, such as Neuflow, DianNao,

etc. But methodologies are missing to integrate those NN accelerators in real-world

case studies using hybrid CPU/FPGA-based CPS. We feel this is a bummer because

combining NN accelerators with a suitable design methodology means a lot of possibilities

and solutions in the context of modern problematics. This is why we are trying to explore

15



a consistent way of mixing NN accelerators and CPS with the use of hybrid CPU/FPGA

platforms. This type of platform is able to bring an easy way to prototype hardware

threads specialized in NN calculation with the flexibility of software automation. Our

belief is that a methodology using hardware principles such as design re-use [13] and

design automation might decrease the prototyping time of DL-based CPS, while still

being able to optimize calculation time. In this thesis, we explore the problematic of

prototyping time for hardware platform-based deep learning in the context of CPS using

a co-design methodology. We also consider the use of software tools for automation in

our methodology. Nevertheless, we keep in mind the usage of specific purpose hardware

to speed up deep learning calculation, in order to decrease prototyping time and increase

CPS analysis performances.

1.4 Thesis Contributions

Our aim is to find a methodology to make CPS with DL algorithms hosted on hybrid

CPU/FPGA platform while decreasing prototyping time of such systems. This issue is

a real challenge, because of the constraints of CPS and the integration of AI in such

systems. In this work, AI conception is mainly about DL architectures and inference.

The contributions can be described as follows:

1. A methodology to develop DL applications for CPS using a hybrid CPU/FPGA

platform

2. A hardware Neural Network Processor (NNP) architecture, design and prototype

3. A configuration and benchmarking software for the NNP

4. A validation of the NNP with different configurations and results

5. An automation tool to setup a hybrid CPU/FPGA prototype board for embedded

DL applications

16



Step 1 - State-of-the-art and
problem definition
(Chapter 2)

Scientific literature
Embedded AI con-
straints

Research objective
State of the art
documents

Step 2 - Deep learning
methodology design using
hybrid CPU/FPGA-based
CPS prototyping
(Chapter 3)

Standard methodology

New methodology

Requirements

Step 3 - Hardware neural
network processor design
(Chapter 4)Technologies

NNP test
& validation

Step 4 - Experimentation on
use cases
(Chapter 5)

Results

Step 5 - Synthesis and con-
clusion
(Chapter 6 )

Discussion

Future works

Figure 1.3 – Thesis outline

6. Case study validation: pedestrian detection for autonomous vehicles with several

algorithms using a 3D PointCloud from a LIDAR

A thesis outline is described in Figure 1.3 and roughly describes the order of the chapters

and the link between each chapter. The figure represents all chapters of this thesis except

the context chapter (Chapter 1). This thesis outline presents a specific approach to

explore a problem and find a logical pathway to a solution through components. The

first step is the exploration of the scientific literature about embedded AI in order to

delimit the research objectives and extract all documents necessary in order to study the

problem. The second step will use the related works to extract from them the standard

methodology for designing a hybrid CPU/FPGA-based prototype using DL. From this

are inferred the requirements for a NNP and a new methodology is designed. The third

step is about the design of this NNP, from the methodology requirements and the current

17



technologies, a hardware NNP is designed and validated. The fourth step will use the

newly made NNP and the new methodology in order to experiment on a use case and get

results. The fifth step is the synthesis of this work, which will highlight out discussions and

future works. Embedded DL and hardware platform-based prototyping methodology are

tackled, because they are great tools to improve prototyping time in CPS. Embedded DL

is used as an analysis tool to infer an environmental state. The hardware platform-based

prototyping methodology serves as a support for embedded DL application by easing the

development and deployment. These domains are explored to find one solution among

many that will fit the problematic and this exploration is described in the coming chapters.

1.5 Thesis Outline

Chapter 2 presents a background exploration of the different domains tackled in this work:

hybrid CPU/FPGA-based design for CPS and their related prototyping methodology, DL

techniques for object recognition, neural networks design for FPGA hardware and a review

of the existing architectures. Those four domains are mixed together from a methodology

to the hardware and software development.

Chapter 3 describes an embedded DL methodology for hybrid CPU/FPGA-based CPS

platform design using a hardware NNP. Starting from the standard methodology for

CPU/FPGA platform-based design, this chapter explains the required modification of the

methodology to include DL applications and ease the development for implementing such

application. A dedicated hardware for DL computing is made as part of the methodology,

in order to simplify some development steps.

Chapter 4 provides the architecture and design of a hardware NNP. Those choices are

explained in detail in this chapter, in order to understand how it can be used. Then

is presented the NNP IP (Intellectual Property) architecture as hardware accelerators.

Finally, some experimentation and results on the NNP are presented in order to display

some performances. Experimentations are done to validate the NNP in standalone mode

18



in order to determine its limitation.

Chapter 5 explains how to use the methodology with a specific use case: a smart LI-

DAR for pedestrian detection. A first implementation of a hybrid CPU/FPGA-based DL

application is presented using this work’s methodology, and the already conceived NNP

is validated in this real world case study. A design flow is presented, made from the

methodology in chapter 3, in order to detail the different steps of prototyping.

Chapter 6 concludes this work with a synthesis of our contribution. The final solution is

discussed and future works are highlighted.

19



20



Chapter 2

Cyber-physical systems and embedded

artificial intelligence

“Prendre des p’tits bouts d’trucs et puis les assembler ensemble”

Stupeflip

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Cyber-physical systems design . . . . . . . . . . . . . . . . . . . 22

2.3 Hardware accelerators for smart cyber-physical systems . . . 24

2.4 Artificial intelligence in cyber-physical systems . . . . . . . . 25

2.5 3D object detection and recognition for CPS . . . . . . . . . . 27

2.5.1 3D vision techniques using 2D/3D sensors . . . . . . . . . . . . 27

2.5.2 Software deep learning for 3D object detection and recognition 28

2.5.3 Hardware acceleration of 3D object detection and recognition

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Design and prototyping time of a hardware accelerated ob-

ject detection and recognition application for CPS . . . . . . 30

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

21



2.1 Introduction

Nowadays, Cyber-Physical Systems (CPS) interact with the physical world by analyzing

their environment using a variety of sensors. For this purpose, a powerful analysis tool is

needed, such as Artificial Intelligence (AI), more precisely Deep Learning (DL) algorithms.

Since the late 20th century, DL algorithms have evolved in a substantial way, and tend

to be applied in many different fields and applications related to computer science and

engineering, such as CPSs [7] [8]. However, with the increased accuracy requirements and

complexity of Neural Networks (NN) architecture, DL technologies have been known to

need a lot of computational power, mostly because of their huge number of parameters.

Unlike distributed cloud computing where a lot of power processing is available, embedded

systems impel some restrictions for the use of DL technologies. Optimizing/compressing

NN or using Graphics Processing Units (GPU) for embedded systems is a great way to

embed DL algorithms, nevertheless the usage of single-purpose processing systems boast

great results [10] [11]. Moreover, if we want to build an application using single-purpose

hardware processing for NN (eg. FPGA or ASIC-based), we need a complete design

methodology for embedded DL in order to speed up the development. In this chapter, the

state of the art is presented in five main points: 1) techniques for cyber-physical systems

design in order to understand what a CPS is 2) the hardware used for CPSs and its

constraints for smartness, 3) the integration of AI in CPSs from a hardware point of view,

4) the evolution of object recognition techniques in deep learning and the computation

of such applications on specific hardware, 5) the prototyping time issues of a 3D object

recognition application for CPS.

2.2 Cyber-physical systems design

Cyber-physical systems (CPS) are mainly characterized as systems with a physical input

and output. Their goal is to analyze a physical environments from sensor data and de-

termine the correct action to perform to guide the environment into a desired state [1].

22



Figure 2.1 – Cyber-physical systems architecture

In this thesis, autonomous vehicles are represented as examples of networked CPS: the

environment contains physical objects such as pedestrians, signs and other vehicles, with

the sensors being cameras, RADARs, LIDARs, etc; and the actions to perform are about

controlling the vehicle, with the final goal being reaching its intended destination. Figure

2.1 describes the architecture of a CPS as three layers communicating with each other.

The physical layer is in charge of the interaction with the physical world: observing the

surrounding environment to turn it into data for the system with sensors and influencing

its environment to reach a desired state with actuators. The application layer is in charge

of the analysis of the physical data and the communication with other CPSs on the net-

work. This layer is composed of a general purpose hardware in charge of the software

stack, which executes the main application of the CPS, and of an optional specific purpose

hardware if some operations need to be accelerated (GPU, ASIC, FPGA, ...). The net-

work layer is simply in charge of the communication between CPSs in the network to share

data for a more resilient analysis of the physical world. In our context, the autonomous

vehicle, the physical layer is composed of 3D sensors such as LIDARs, RADARs, and 2D

sensors such as cameras. Actuators would be the vehicle movement such as braking, accel-

eration and controlling the wheel. The application layer would be composed of a software

dedicated to decision-making running on a general purpose hardware, and a hardware

23



deep learning application represented by the specific purpose hardware. Meanwhile, the

network layer would be represented as V2X (Vehicle-to-Everything) communications [14]

[15] [16].

However the design of such systems is a real issue because of its multidisciplinary approach

[17] [18]. The increasing complexity of such systems means the need for specific design

methodology, such as contract-based or model-based, in order to decrease the prototyping

time [19] [20] [3] [21]. In order to decrease the prototyping time in this thesis, we are

oriented toward a platform-based design methodology for our CPS prototype. Because

we are focusing the prototyping part of the design, full software solution would be the

first approach; however to tackle performance issue we need the possibility of hardware

accelerated solutions. What we have in mind in this work is to prototype on a hybrid

CPU/FPGA platform to benefit the flexibility of the software and the performance of the

hardware.

2.3 Hardware accelerators for smart cyber-physical sys-

tems

Hardware is an important constraint in CPS, because it will guide the development and

deployment of the applications toward the prototype. Subsequently, the choice of hard-

ware is an important decision to make. For all these reasons, FPGA-based chipsets are

valuable, because they can emulate any type of hardware with performances near ASIC

(Application Specific Integrated Circuit). Platform-based design and prototyping has

seen an increase in its relevance, because of today’s pressure on time-to-market and de-

sign costs. Techniques to design such systems have greatly progressed as explained by A.

Sangiovanni-Vincentelli [13] and Pinto et al. [22]. The overall methodology also evolved,

thanks to automation tools and design reuse. Platform-based design made evolve topics

such as cyber-physical systems as shown by Nuzzo et al. [23]. But our interest is specifi-

cally focused on the integration of neural network in FPGA-based methodology. Guo et

24



al. [24] demonstrated the resource utilization of neural network calculation in terms of

parameters and operations. Their survey shows that FPGA is a promising platform for

neural network acceleration because of speed and energy efficiency. Li et al. [25] proposed

a model-based design methodology involving deep neural network. They proposed an in-

tegrated set of tools and libraries alongside their methodology, in order to assist designers

of signal processing systems. Shawahna et al. [26] made a survey about FPGA-based ac-

celerators for deep learning networks, in particular convolutional neural network (CNN),

and tried to isolate a methodology for their conception. Their survey revealed a specific

pattern for FPGA-based accelerated neural network architecture, which is presented with

techniques to optimize design and specific tools to automate the design process. Now we

have a perspective for the design of a FPGA accelerator and specifically a NNP on FPGA

platform. But there is a lack of prototyping methodology including a NNP as a tool in

their design steps to prototype a fully functional embedded DL-based application.

2.4 Artificial intelligence in cyber-physical systems

In this work, we tackle the principle of smartness in embedded systems, especially embed-

ded CPSs. Our vision of smartness in this thesis is mainly based on the concept of learning

systems, because of their versatility toward analysing environments. Furthermore, as we

are mainly working on hybrid CPU/FPGA-based systems, we are trying to find a way to

compute neural networks with specialized hardware. Hardware accelerated neural network

is not a new topic, either as an analog chip with Säckinger et al. [27] [28] or in FPGA:

Botros et al. [29] who made a hardware implementation of an artificial neural network

(ANN) in 1994. With the rise of cyber-physical systems and the progress in performance

of deep learning, this topic soon became a hot one. Several FPGA implementations were

done like Ferrer et al. [30], Ormondi and Rajapakse [31] or Sahin et al. [32] even using

floating points arithmetic. Farabet et al [33] [34] [35] [36] [37] proposed several architec-

tures for the hardware implementation of convolutional neural networks (CNN) and even

25



a runtime reconfigurable architecture. Pham et al [38] designed an ASIC to accelerate

neural network with a DMA for configuration purposes from Farabet et al. FPGA-based

NeuFlow system. Esmaeilzadeh et al. [39] proposed a reconfigurable neural accelerators

architecture. Lozito et al. [40] proposed an FPGA implementation of a feed forward neu-

ral network with floating point arithmetic and presented their speed performance. Chen

et al. [41] proposed a high-throughput ASIC processor for CNN and DNN computation.

Architecture models for neural network have emerged and their optimization was tackled:

Zhang et al. [42] [43] [43] showed a way to optimize CNN accelerators as well as sparse

NN accelerators. Venkatesh et al. [44] showed a way to optimize sparse and low-precision

neural network. Wang et al. [10] proposed a scalable deep learning accelerator in order

to optimize performance and maintain low power cost for large neural network. Gokhale

et al. [45] proposed a CNN accelerator which is agnostic to CNN workload. Kreinar [46]

presented a C++ library for the Vivado HLS [47] software to deploy trained neural net-

work on FPGA. Zhou et al. [48] proposed a binary neural network on FPGA. Mittal [49]

did a survey for FPGA-based accelerators for CNNs to highlight the key ideas of several

dozens of works. Venieris et al. [50] proposed a survey of CNN-to-FPGA toolflows and

compared their characteristics and features. Wang et al. [51] presented a survey about

FPGA-based DL accelerators in order to demonstrate their advantages and disadvantage

for research purpose. Shawahna et al. [26] presented a survey of FPGA-based deep learn-

ing accelerators and introduced a table that compared 30 papers using, among others,

the precision, operations per second and power. FPGA-based accelerators for DL is a

rising topic, especially for CNN accelerators considering their accuracy. All those works

inspired us when conceiving our own NN accelerator but the main difference is that our

accelerator is made to be integrated in our prototyping methodology and focused on the

ease to prototype and use. Moreover, those work are mainly focused on CNN, while we

are working on DNN. Now we need to understand what type of DL architecture needs to

be studied in order to find the equilibrium between accuracy, power and computing time.

26



2.5 3D object detection and recognition for CPS

Object detection and recognition applications are a crucial part of navigation inside a

physical environment. The possibility to detect and understand a surrounding environ-

ment open doors to many opportunities in the scope of CPSs. In our case, 3D object

detection and recognition for CPS is a way to give an autonomous vehicle an understand-

ing of its surroundings to enforce traffic laws and reduce accidents. But in order to set

up object detection and recognition, three parts are needed: sensors, object recognition

algorithms and hardware capable of computing information in real time.

2.5.1 3D vision techniques using 2D/3D sensors

Nowadays, sensors boast improved accuracy and heterogeneous type of information per-

ceived. With the current state of technologies, autonomous vehicles are equipped with a

large variety of heterogeneous sensors. As such, it is needed to understand how those sen-

sors work, related to 3D vision techniques, to enhance 3D object detection and recognition

algorithms. Thus, in order to correctly design a 3D object detection and recognition ap-

plication for CPS, we need to choose the correct algorithm, as well as the correct sensors

and hardware, considering the whole system’s requirements.

2.5.1.1 2D sensors

Most of the 2D sensors in autonomous vehicles are cameras. Their primary function is

to convert light waves into a 2D images consisting of pixels (often a mix of the colors

Red Green and Blue [RGB]). The resolution (number of pixels in an image) of modern

cameras make it easier to detect and recognize objects in an image as well as increasing

the detection distance. But the main problem about 2D sensors in autonomous vehicles

is the lack of the depth dimension. This dimension is somewhat required for moving

vehicles, even if it can be determined using specific algorithms [52] [53], but this means

more calculations for the system. Hence, 2D sensors are often combined with 3D sensors

27



to improve the accuracy of the vehicle perception.

2.5.1.2 3D sensors

Autonomous vehicles are equipped with a large variety of 3D sensors like RADARs, LI-

DARs or 3D cameras. RADARs (RAdio Detection And Ranging) use radio waves in

predetermined directions to find an object when the original signal is reflected or scat-

tered back. LIDARs (LIght Detection And Ranging) use the same technique as a RADAR

but with laser light. 3D cameras can either be RGBD (Red Green Blue Depth) cameras,

a type of camera with a depth sensor embedded in it, or stereo camera, two or more lenses

to simulate human binocular vision and thus able to capture 3D images. Moreover, it

is possible to combine 2D and 3D sensor data (often called data fusion), to enhance the

quality of the vehicle’s vision [54]. Therefore, with such sensors, the capabilities of 3D

object detection and recognition is improved, but the computation time of those algo-

rithms is also increased because, with the addition of one more spacial dimension, data

size increases exponentially.

2.5.2 Software deep learning for 3D object detection and recog-

nition

3D object classification is a hot topic considering current sensors such as LIDAR or 3D

camera. The usage of deep learning applications may help reach great accuracy in clas-

sification of 3D objects. Maturana and Scherer [55] proposed a 3D convolutional neural

network (CNN) using voxels as input, and proposed a way to convert a point cloud to

a voxel model. Brock et al. [56] proposed a voxel-based autoencoder and convolutional

neural network to generate and classify 3D objects. Garcia-Garcia et al. [57], Hegde and

Zadeh [58] and Jing Huang and Suya You [59] proposed different 3D convolutional neural

networks (CNN) architectures using voxels as inputs to classify objects. Qi et al. [60] pro-

posed a deep learning architecture to directly classify and segmentate point cloud instead

of voxels. Zhi et al. [61] proposed a lightweight version of 3D convolutional network which

28



is interesting for embedded computation. Ioannidou et al. [62] proposed a residual neural

network (ResNet) for 3D object classification using voxels. So 3D volumetric binary grid

like voxels seems to be the way to process 3D data in order to make pattern prediction for

object classification. 3D object classification using deep learning is a hot topic, because

of today’s 3D sensors and the accuracy they can yield. But software deep learning 3D

object detection is heavy on computing power, especially for embedded systems.

2.5.3 Hardware acceleration of 3D object detection and recogni-

tion application

There are a lot of different hardware platforms available to accelerate 3D object detection

and recognition applications. In this work, we will look into GPU, ASIC and FPGA

hardware platforms and compare them. Birk et al [11] made a comparison between a GPU

and a FPGA on a reflection image reconstruction application for 3D ultrasound computer

tomography. Their results show that the GPU is 2.2 times faster, but with the estimated

power consumption of the FPGA board (estimated to a maximum of 40W), the FPGA-

based accelerator has a better performance per watts ratio (compared to the GPU using

250W). Nurvitadhi et al. [63] [64] [65] tried to answer the question about FPGAs beating

GPUs in accelerating deep neural networks and showed that the current trend in deep

learning algorithms may favor FPGAs, at least in term of performance/watts. FPGA-

based hardware accelerated neural network seems to be a promising ways to compete with

GPU in embedded approach such as CPS. The main conclusions about these comparisons

is that ASIC-based platforms are the best choice for acceleration, but the prototyping

time of such systems is the longest. GPU-based platforms are the easiest to prototype

because it is fully reprogrammable, but they have the greatest power consumption, which

means it is not always suitable in the context of CPS. FPGA-based platforms offer a

middle ground between ASIC and GPU. Coupled with the current progress in FPGA

design and the current hybrid CPU/FPGA platforms, it might become the best hardware

platform choice when prototyping CPS-based applications.

29



2.6 Design and prototyping time of a hardware accel-

erated object detection and recognition application

for CPS

Object detection and recognition applications are already difficult to develop and proto-

type because of the skill set needed, such as data processing and AI algorithms. If you

add a layer with hardware acceleration, the complexity of such systems is increased ex-

ponentially because of the new heterogeneous skills needed and the cooperation between

the software and hardware world. And if you add embedded system constraints such

as the ones in CPS, it becomes a real challenge. That is why the prototyping time of

those systems need to be tackled; in this thesis, we are specifically tackling the prototyp-

ing part and not the time to market. Andrews et al. [66] [67] is tackling the problem

with Commercial Off-The Shelf (COTS) components in order to reduce design costs and

time to market. Moreover, they are introducing hybrid CPU/FPGA chips with a thread-

oriented programming model for a faster development. One of the interesting parts is

about programming languages for reconfigurable architectures and the usage of high-level

languages for system-level design. From this, High Level Synthesis (HLS) software comes

into view. Inggs et al. [4] investigated into the maturity of HLS software for business.

They concluded that HLS tools can be reliable for industrial business but an expertise

into embedded systems and particularly FPGA systems is still needed to yield more per-

formance. Nane et al. [68] made a survey about the different HLS tools available, in

order to compare academic and commercial tools. They concluded that academic and

commercial HLS tools are not drastically far apart in terms of quality, but they may yield

different optimization depending the target application. If we now return to the CPSs

world, Hehenberger et al. [3] presented the importance of design, modelling, simulation

and integration of CPS, and particularly showed that it is still a multidisciplinary world.

So prototyping time of hardware accelerated object detection and recognition application

for CPS still needs to be improved with solutions such as the usage of COTS, design

30



re-use and specific methodologies. An example of COTS product for DL-application in

CPS would be industrial neural network accelerators such as the Google TPU [69], Apple

A12 Bionic [70], Intel Nervana NNP [71] or Intel Movidius [72].

2.7 Conclusion

In this chapter, we presented five main points: 1) techniques for CPSs design in order

to understand what a CPS is 2) the hardware used for CPSs and its constraints for

smartness, 3) the integration of AI in CPSs from a hardware point of view, 4) the evolution

of object detection and recognition techniques in deep learning and the computation

of such applications on specific hardware, 5) the prototyping time issues of an object

recognition application on a hybrid CPU/FPGA hardware in the CPS context. The lack

of methodologies for the integration of NN accelerators for hybrid CPU/FPGA-based CPS

applications built up our interest into developing a methodology for DL-based 3D object

detection and recognition applications accelerated on a hybrid CPU/FPGA hardware

platform. The next chapter starts to introduce the standard methodology for HW/SW

design and present how we achieved our methodology.

31



32



Chapter 3

An embedded Deep Learning

methodology for hybrid

CPU/FPGA-based Cyber-Physical

Systems platform design using a

hardware Neural Network Processor

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Hybrid CPU/FPGA platform . . . . . . . . . . . . . . . . . . . 37

3.3 A standard process for HW/SW co-design prototyping . . . . 38

3.4 HW/SW co-design methodology in the deep learning AI era 41

3.4.1 Understanding the standard workflow for deep learning algorithms 41

3.4.2 Exploration of deep learning inside a HW/SW co-design appli-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Prototyping automation tools for hybrid CPU/FPGA platforms 46

33



3.5 Proposed embedded Deep Learning methodology around a

FPGA-based Neural Network Processor . . . . . . . . . . . . . 49

3.5.1 The methodology design flow . . . . . . . . . . . . . . . . . . . 49

3.5.2 Toward the automation of the design flow . . . . . . . . . . . . 53

3.6 Challenges of deep learning in hybrid CPU/FPGA-based CPS 54

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

34



3.1 Introduction

In the previous chapter, we presented the state of the art and explained the need of a DL

methodology for hybrid CPU/FPGA-based CPSs. In this chapter, we will present our

work toward our embedded DL based methodology for CPU/FPGA-based CPS platform

design using a hardware NNP (Neural Network Processor). We will introduce Hardware/-

Software (HW/SW) co-design methods, their involvement in systems such as CPS and the

usefulness of hybrid CPU/FPGA platforms. Because of modern algorithms, the hardware

resources needed in order to reach a result are far more substantial than in the past. And

because of the constraints of embedded systems, a full software calculation system may

not have enough hardware resources to perform in a granted time. Using HW/SW co-

design allows a system to expand software calculations to specific hardware accelerators

in order to speed up computations. Because of this, HW/SW co-design methods have

become more and more popular in recent years, when designing embedded systems, and

thus CPS when designing modern systems. CPS comes from the evolution of embedded

systems in the 20th century. Over recent years, significant effort has been put into under-

standing the relationship of the individual with the physical environment. CPS are a great

base toward conceiving systems that interact with the physical environment but with an

analysis of the environment. The better the analysis, the better the understanding of the

environment, and thus, the better the interaction with the physical world. However, im-

proving the analysis comes from two main factors: better sensors and better algorithms.

One occurrence that greatly affected the CPS topic is the appearance of modern sensors

that were much more accurate and could detect a large choice of physical information.

In our case, we are mainly talking about 3D sensors such as RADAR, LIDAR and 3D

cameras. Those sensors improved the quantity of data available and enhanced the per-

formance of analysis algorithms. This is especially important when looking at modern

methods using deep learning. The current understanding of deep learning shows that the

more information available, the more accurate the result. Subsequently, the usage of deep

learning algorithms in CPS can improve the analysis of the physical environment, but at

35



the cost of resource-heavy computation. This is where HW/SW co-design methods can be

a great help toward the conception of smart CPS. That is why we are trying to embed DL

algorithms inside the system using a hybrid CPU/FPGA platform. The use of software

is an important part in CPS prototyping, and making a hardware deep neural network

accelerator as part of this system is a way to reduce the toll of the computation. From

this point, we want to describe our path toward a CPU/FPGA-based DL methodology

using a NNP as its core. The exploration to propose a new methodology starts with the

understanding of hybrid CPU/FPGA platform and the standard processes for HW/SW

co-design prototyping. Then, we present a simple methodology to develop a HW/SW co-

design application using deep learning software. Finally, we present a CPU/FPGA-based

DL methodology using a hardware deep neural network accelerator as its core. Figure

3.1 is a global view of our final methodology. It consists of four parts: the deep learn-

ing software represents the deep learning architecture design, its training and testing to

finally extract all trained weight matrices; the embedded processing is the design of the

different data processing algorithms and describing them as embedded system code; the

hardware acceleration transforms the embedded processing source code as HDL (Hard-

Hardware platform

Hardware
acceleration

Embedded
processing

Deep
learning
software

Source
code

Bitstream

Extract
weights

Figure 3.1 – Methodology global view around embedded DL

36



ware Description Language) either with HLS tools (High Level Synthesis) or manually;

finally, the hardware platform can be prepared with the extracted weights loaded inside

(using file systems, EEPROM, ...) and with the bitstream containing the FPGA archi-

tecture consisting of the hardware accelerated data processing and the NNP. In order to

describe this methodology, we will explain from where we started and the different steps

toward our goal.

3.2 Hybrid CPU/FPGA platform

Hybrid CPU/FPGA platforms are systems containing both CPU and FPGA components

communicating between themselves. The CPU and FPGA are either two different chips

or in the same chip such as the Xilinx Zynq, the Intel Altera Stratix and the MicroSemi

SmartFusion. This union enables many types of design by combining the flexibility of

software-driven development with the performance of a hardware-driven one. The main

purpose of such platforms is to design a platform with hardware application-specific com-

ponents to speed up performance-critical functions. Figure 3.2 presents a view of a simple

hybrid CPU/FPGA plaform with a DRAM (Dynamic Random-Access Memory). An

example of a simple application on this type of platform would be a software calling

FPGA application specific components as hardware threads while computing something

else. DRAM can be used here to exchange data between the software threads processed

by the CPU and the hardware threads on the FPGA. Such structure is a great way to

speed up performance-critical functions that require complex calculations. In this thesis,

we consider performance-critical functions as data processing and deep neural network

calculation. With application specific components computing inferences, the software

threads can focus on other tasks such as network communication or UI display. We con-

sider HW/SW co-design using hybrid CPU/FPGA platform a great way to speed up CPS

prototyping, because it merges software development with hardware performances and

enables prototype automation.

37



Figure 3.2 – Hybrid CPU/FPGA platform with DRAM

3.3 A standard process for HW/SW co-design proto-

typing

In order to make a new methodology using HW/SW co-design prototyping for hybrid

CPU/FPGA-based platform, it is necessary to understand how it works. Figure 3.3 is

a diagram representing a standard design flow for HW/SW co-design prototyping for

CPU/FPGA-based platform. We can consider the standard design flow as a V-model [73]

as seen in Figure 3.4. The system definition part is the first step to define and dissociate

the software and the hardware processes. The goal is to isolate the different processes in

the system in order to achieve the desired result. Once the processes defined, we need

to determine if it should be executed as software or hardware threads. In the case of

HW/SW co-design, hardware is mostly used for hardware acceleration, which means exe-

cuting tasks the software will be slow at processing, whereas software processing is about

controlling the hardware and manipulating data that hardware processing has trouble

with. In this work, we have two ways of deciding: either the function is determined as

performance-critical because we want it to be as fast as possible, thus a hardware thread

is chosen, or we make the function as a software thread and measure its performance;

38



Figure 3.3 – HW/SW co-design prototyping for hybrid CPU/FPGA-based platform

depending on the results we choose between software and hardware threads. Once the

requirements and architectures have been defined, the development part starts. This part

is one of the most time-consuming tasks because of the iterations done to stick with the

requirements set beforehand. Moreover, the need to separate software and hardware ap-

plications means that the skills required are heterogeneous, which mostly suggests two

teams of individuals working on those tasks: one team for the software and the other for

the hardware. Finally, the implementation and deployments are also key parts, and often

subject to going back to the development stage when the integration between software

39



Figure 3.4 – V-model: HW/SW co-design prototyping based on hybrid CPU/FPGA plat-
form

and hardware are not up to the system definition and requirements. Figure 3.4 represents

the HW/SW co-design prototyping for hybrid CPU/FPGA-based platform but as a V-

model. The system definition forks in two branches: one for software and the other for

hardware. In the software branch, the software requirements refers to defining the behav-

ior of the software and its constraints. The software architecture refers to designing the

interactions between software threads. The detailed development refers to programming

the functions. The target application is the compiled software adapted to the desired

host. The unit testing refers to testing each software thread individually to verify and

validate the detailed development. In the hardware branch, the hardware requirements

refers to defining the behavior of the hardware and its constraints. The hardware architec-

40



ture refers to designing the interactions between hardware threads. The IP (Intellectual

Property) design refers to describing the programmable logic of each hardware thread.

The hardware synthesis is the use of HLS tools or/then HDL to describe the hardware

architecture. The standalone IP testing is to verify the behavior of each IP individually.

Finally, the HW/SW integration is the fusion of the hardware and software with their

verification and validation toward the software and hardware architecture. The system

verification and validation is the final test, checking that the current system is compliant

with the requirements. Once this step has been cleared, the prototype can be started.

The goal of this thesis is to simplify and optimize the standard design flow for embedded

AI with the usage of specific constraints, dedicated hardware and automation tools.

3.4 HW/SW co-design methodology in the deep learn-

ing AI era

This section is about the first step of this work toward the final methodology. We want to

explore a simple methodology for HW/SW co-design using hybrid CPU/FPGA platform

and include a deep learning application for classification as a software. It is divided in two

parts: 1) the update of the standard methodologies to fit our goal, 2) a first methodology

with software deep learning and hardware accelerated data processing.

3.4.1 Understanding the standard workflow for deep learning al-

gorithms

In order to take a first step toward the wanted methodology, we want to modify the

standard methodology to our needs. But first, it is necessary to understand the stan-

dard workflow of a deep learning application for classification, so it can be fused with the

methodology. Figure 3.5 presents a standard workflow for a pre-trained deep learning-

based classifier application. There are three steps before the inference of an object cate-

41



gory:

1. Data processing is the action of filtering a signal (our input) in order to remove noise

or irrelevant pieces of information. This step is important to reveal meaningful

information used for pattern recognition. What is filtered out of the input will

depend on the nature of the input data and the pieces of information required to

determine a pattern.

2. Calculating the features for the deep learning inference. A feature can be defined

as a measurable property of an observed phenomenon. Ideally, a feature should

be unique to each category of object in order to easily determine a pattern. As

it is seldom possible to determine the category of an object with only one feature,

multiple features are used to find the pattern. Although those features should be

independent from each other. In the case of deep learning, those features are often

learnt inside the neural network. But in some cases, it is better to pre-process those

features to reduce the size of the neural network architecture.

3. Inferring the object class with the learnt model. It implies that training and testing

of the DL application is already done. The inference will use the value of each

feature to determine the category of the input corresponding to the pattern learned.

Of those three steps, the heaviest computations are the data processing and the feature

calculation. As the data processing task is making calculations from the raw input, it

means this is the part with the greatest amount of information. Moreover, the perfor-

mance greatly depends on how noisy the input is. The feature calculation is also resource

intensive depending on the number of features and the complexity of said features. This

means that those tasks are the ones we are most likely to hardware accelerate.

With the deep learning workflow in mind, Figure 3.6 presents an example of how to

prototype a deep learning application on top of a HW/SW co-design platform. The main

changes are: 1) the hardware architecture which is only about hardware accelerating data

processing and feature calculation algorithms, 2) the DL requirements, which refers to

42



Input data

Deep learning application

Data processing

Features calculation

Deep learning inference

Classified object

Figure 3.5 – Deep learning classification standard steps

determining the dataset to train and test the model, the algorithm to use for the learning,

and the target accuracy and error, 3) the model parameters that need to be embedded

either into the host executable or into the prototype hardware (File System, EPROM,

DRAM, ...), so the host software can use it.

3.4.2 Exploration of deep learning inside a HW/SW co-design

application

Now that we have a better understanding of the conception of a HW/SW co-design ap-

plication using deep learning, lets first make a design flow in order to describe the steps

before the final prototype. Our approach is oriented toward a platform-based design us-

ing a hybrid CPU/FPGA platform. Figure 3.7 shows the design flow of a co-design deep

learning system where preliminary data processing tasks are hardware accelerated and

the learning system is pure software. Some steps of this design flow have been automated

to accelerate the development, prototyping and validation of the HW/SW co-design ap-

plication, such as the configuration of the prototyped hardware co-design application [74].

There are four main steps toward the prototype phase: The Specification & Native

43



Figure 3.6 – HW/SW co-design prototyping for a hybrid CPU/FPGA-based Deep learning
application. Compared to the previous methodology (Figure 3.3): the deep learning
requirements are added inside the software requirements, the data processing and feature
calculation are added inside the hardware requirements, the model training and testing
is added between the host application and host code compiler, and the model parameters
are added before the host executable.

44



Deep Learning Software

Development

Compilation
& Linking

Debug

Profiling

Validation

Training

Specification & Native Soft-
ware

Algorithm
Specification

Compilation
& Linking Debug

ProfilingValidation

Hardware Accelera-
tion

HLS Software RTL Synthesis HDL In-
tegration

Validation
Bitstream
generation

Prototype

U-Boot FSBL

Kernel com-
pilation

Merge boot
and kernel

Ramdisk image

Generic
DeviceTree

Figure 3.7 – Design flow diagram for a hybrid CPU/FPGA-based HW/SW co-design deep
learning software application

Software part refers to the development of the data processing software on a native

platform in order to validate it. Once the software has been profiled and its results meet

requirements, the application source code is considered the input of the next step, the

Hardware Acceleration. The Hardware Acceleration part refers to transforming the

data processing software threads to hardware threads. The native software source code is

to be converted to Register-Transfer Level abstraction (RTL) with a High-Level Synthesis

(HLS) software, then to be implemented in any Hardware Description Language (HDL)

project. If simulation results meet the requirements, the final bitstream file that came

from the HDL project is deployed on the prototype. The Deep Learning Software part

refers to the development of the learning system which represents the smartness of the

45



Hardware acceleration Deep Learning

Sensors input

Acquisition Segmentation Box slicing Features
extraction Classification

Object detection
& recognition

Figure 3.8 – Application Tasks Graph

system. This part does not differ from traditional embedded deep learning development.

Once finished and compiled, the software is deployed on the prototype. The Prototype

part refers to the platform on which the hardware threads and the deep learning software

are deployed and tested. The prototype configuration and deployment are fully auto-

mated in our work (see Section 3.4.3). As an example of this design flow, let’s imagine a

simple application of pedestrian recognition using a LIDAR point cloud [75]. Figure 3.8

presents the task graph of this application, in red are the hardware threads and in yellow

is the software thread. If applying the design flow, in order to design this system, we

first need to define an algorithm that is validated through native software development.

Once this software has been defined, we can hardware accelerate it thanks to HLS tools.

Meanwhile we also need to develop the software deep learning and validate it correctly.

Once everything is done, we can deploy the hardware threads as well as the deep learning

software executable to the prototype.

3.4.3 Prototyping automation tools for hybrid CPU/FPGA plat-

forms

As seen beforehand, we automated the deployment of our prototype platform in order

to decrease prototyping time. We developed an automation software using GNU make

[76] available in our git repository [74]. GNU make is an automation software using a

46



U-Boot

Linux
kernel

Device
tree

FSBL

initramfs

Boot file

SD Card

Board

1. Download sources
2. Compile

1. Download sources
2. Configure kernel drivers
3. Compile kernel as image

1. Download generic device tree
for board
2. Compile device tree source file

1. Download generic FSBL file
for specific board

1. Generate initramfs and rootfs

1. Generate boot file from FSBL, U-
Boot, binary device tree, initramfs
image and kernel image

1. Format SD card
2. Make boot and root partitions
3. Copy files

1. Configure jumpers
2. Plug SD card

Figure 3.9 – Prototype automated deployment

Makefile to perform various actions. Figure 3.9 shows the different steps of our automation

software to deploy the prototype. It automates the build of the U-Boot and Linux kernel

by downloading the sources from their respective git repository and compiling them. U-

boot (Universal Boot Loader) is an open-source boot loader for embedded device which

contains instructions to boot the available operating system kernel. In our case, the kernel

is a Linux one. The Linux kernel is a free and open-source operating system kernel. It

is often deployed in embedded devices because of how light it is. The purpose of this

kernel is to run an operating system which will execute our NNP control software. A

generic device tree is available inside our repository in order to be compiled for the board

beforehand. For now, only a device tree for a Zedboard [77] has been made, because

47



it was the development board used during this work. A device tree is a data structure

describing the different hardware components available on our platform. Its purpose is

to enable the operating system kernel to use and manage those components (e.g. FPGA

and DRAM mostly in our case). A FSBL (First Stage Boot Loader) is also available, and

already compiled, inside our repository, but only a ZedBoard one. A FSBL is a specific

file responsible for loading the FPGA bitstream and configuring the Processing System

(PS) at boot time. There also is an already made initramfs (initial RAM file system)

image with necessary drivers and libraries for the OS and control software, in order to

get access to a read-only file system inside the DRAM. The initramfs is an image of a

temporary root file system loaded into memory (DRAM) that acts as a read-only file

system for the operating system. Then a boot file is generated from the FSBL, U-Boot

file, binary device tree, initramfs and kernel image. This boot file can be considered

as a compressed and executable version of the necessary files needed for the booting of

the kernel and the operating system. The FPGA bitstream can also be added to the

boot file in order to be loaded at boot by the FSBL. Finally, all files are placed inside a

folder to be copied into the SD card. The SD card needs to be correctly formated with

a NTFS (NT File System) boot partition for files generated by our script, and an EXT4

(4th EXTended filesystem) partition for persistent storage. A script available inside the

initramfs mounts the EXT4 partition to the /root folder at OS startup. This means the

embedded deep learning software is copied inside the EXT4 partition to be executed. It

also allows a better control of continuous integration/continuous deployment (CI/CD),

because it allows us to deploy our updated software through the network on which the

prototype was connected. Moreover, we also succeeded in deploying the FPGA bitstream

over a network thanks to the /dev/xdevcfg channel, which allowed us to reprogram the

FPGA at runtime by sending the bitstream to this FPGA device file.

48



3.5 Proposed embedded Deep Learning methodology

around a FPGA-based Neural Network Processor

In this section, we propose an embedded DL based methodology for FPGA-based CPSs

platform design using a hardware NNP. Furthermore, the automation of the methodology

is tackled to determine how to decrease prototyping time.

As seen in Chapter 2, there are already several proposed neural network processor archi-

tectures and implementations. So in a way, developing another NNP would not look like

a necessary part, at first glance, when considering it as a tool to be used. But in order

to develop a new methodology, we need to have a better understanding of NNP design

to find its advantages and constraints. The goals behind building our own NNP were to

have a better understanding of NNP design and the constraints associated to it, to hone

our skills toward hardware acceleration and be aware of all necessary hidden steps when

hardware accelerating an algorithm. Thus, even if the benefits seem limited at first, the

knowledge gained from this NNP design and implementation was a necessary part of this

thesis.

3.5.1 The methodology design flow

The first step of our methodology is the definition of the system with its requirements

and architecture. Then, different software algorithms are designed for data processing and

DL. Those algorithms are hardware accelerated using a High Level Synthesis (HLS) soft-

ware tool, or are described from scratch with a Hardware Description Language (HDL).

Finally, the hardware accelerators (hardware threads) are synthesized and uploaded on

a hardware platform to be tested. Considering those steps, several hidden tasks are

present from data processing to data management, and the configuration of the hard-

ware platform. The goal of our methodology is to mitigate those hidden tasks, either

with simplification or automation. Our approach toward making smart application for

CPSs is built around a FPGA-based DL methodology using a NNP. This methodology

49



Figure 3.10 – Our methodology implementation. The differences with previous method-
ology (Figure 3.6) are: the addition of the NNP IP integration and the removal of a host
software development and compilation

is divided in four parts (Figure 3.1): hardware platform, hardware acceleration, embed-

ded processing and DL software. The transition between each part is as follows: the DL

weight matrices are extracted and transferred to the hardware platform, the embedded

processing is hardware accelerated. The development and use of the NNP as a part of the

50



methodology is an important step, in order to handle the DL processing. The description

of the methodology is done with a top to bottom approach by disassembling the different

tasks to make a prototype and explaining our design process to share our experiences. A

design flow detailing the approach of our proposed methodology is presented in Figure 5.3.

It shows the different steps of the four parts of the methodology, and indicates how the

parts are connected to each other. Our proposed methodology for embedded DL differs

from standard ones because of its constraints. The differences mostly reside in the inte-

gration of the NNP and its associated configuration software. Figure 3.10 illustrates the

implementation of our methodology. Our DL is based on the NNP that is implemented

firstly in software and then migrated to a hardware accelerator using HLS tools. The

NNP is synthesized and integrated within the FPGA bitstream programming file. The

HW/SW architecture programmed on the top of the hybrid CPU/FPGA platform will

use the extracted weights, which come from the offline DL training. In order to present

the methodology in detail, lets split it into the four designed parts: Hardware platform,

hardware acceleration, embedded processing, deep learning software.

3.5.1.1 Hardware prototype

One contribution of this work is to develop a real prototype, by acquiring physical data

from the real world and processing them, in order to obtain an accurate analysis. This

analysis is done by transforming physical data into specific features that are used with

a DL approach to be classified. The hardware platform needs to host an embedded

processing application to transform physical data. Then, a DL application (NNP) will

classify that data. Configuring and deploying a prototype was simplified using the devel-

oped automation tools [74]. Also, the usage of a bootloader (U-Boot) and a First Stage

Bootloader (FSBL) helped to get the first stages of the platform. Moreover, platform

operating system configuration is simplified using a Unix kernel with its initial ramdisk,

preconfigured system files, and a generic devicetree to get access to all the components

on the hardware platform. In the case of an FPGA-based platform, hardware threads

51



communicate with each other through data transmission over the system bus. Lets first

consider the embedded processing thread: it needs to directly acquire data from sensors,

and prepare them for the NNP. The NNP will classify the adjusted input received from

the embedded processing application. With hindsight, the main goal for the embedded

processing is to filter the signals coming from the sensors in order to reduce the process-

ing needed by the NNP, because the NNP’s main constraint is data management of the

internal states, such as weight matrices and hidden unit communication. Thus, doing

more data processing means we can use a smaller deep neural network model and speed

up the NNP calculations. Finally, control software is needed to reconfigure the NNP.

This control software will load weight matrices (which are considered binary files) into

the external DRAM so the NNP can access it through Direct Memory Access (DMA)

transfer. The control software will also initialize the DMA registers to read and write the

correct DRAM addresses corresponding to the NNP data.

3.5.1.2 Hardware acceleration

Embedded processing is built as an FPGA hardware thread. Hardware accelerators de-

velopment is simplified using HLS software tools or HDL, but data management is still a

sensitive part of the development because of the FPGA’s constraints. In this methodol-

ogy, we consider that data is received and transmitted as a FIFO queue (First In, First

Out) in order to simplify data management, even if it may mean extra calculation for

processing tasks. This leads to the embedded processing application receiving data from

sensors and directly transmitting the processed information to the NNP. It also means

that the NNP is receiving its data (input vector and weight matrices) as a FIFO queue

and needs to compute the classification as data transmission progress. The embedded

processing algorithms need to be tweaked in order to compute FIFO transmitted data,

and use as little internal cache as possible. We mainly consider the usage of a HLS soft-

ware to synthesize NNP modules from a High Level Language (HLL) to Register-Transfer

Level (RTL). The generated HDL files are imported to the whole project to generate a

52



FPGA bitstream.

3.5.1.3 Embedded processing

Data perceived by the CPS should be processed so the NNP can use it correctly. It is

necessary for two main reasons: 1) the data needs to be transformed for the NN to handle

it, 2) to decrease the size of the neural network by computing some features beforehand.

The main constraint is data management. With data coming as a FIFO queue, most

algorithms need to be redesigned in order to use as little memory cache (BRAM) as

possible.

3.5.1.4 Deep learning software

The common method to make a DL application is by using specific tools to train and

test NN architectures with a dataset. In this work, we consider that the NN architecture

is already defined. We also consider the offline training as done. The weights are then

extracted to be used directly by the NNP embedded in the hardware platform. In this

methodology, we consider weights extracted as a binary file containing the weight matrices

between all layers.

3.5.2 Toward the automation of the design flow

Automating the methodology is an important issue toward a decreasing the time-to-

prototype. Moreover, automation can help reduce the required skills necessary for this

kind of tasks and thus make it more accessible. We believe that each part of the design

flow for the methodology (Figure 3.7) can be more or less automated. The deep learning

software is already simplified with the usage of either programming tools or visual editors

to develop a deep learning architecture. The embedded processing part is a complicated

process to automate, because it depends on the data processing algorithm’s complexity,

required performances, and the HLS software’s user friendliness. But the reusability of

IP for embedded processing might be a good start toward automation, because it means

53



that there is no need for hardware development. Moreover, with the Vivado Design Suite

[47], everything can be automated thanks to scripts that are interpreted by the Vivado

software, which means that the integration of the embedded processing hardware threads

with the NNP can be automated. The hardware platform part can be automated, either

in a generic way or for specific configuration, thanks to modern tools (U-Boot, Linux

kernel, Devicetree, ...).

3.6 Challenges of deep learning in hybrid CPU/FPGA-

based CPS

When creating this methodology and experimenting with it, we encountered many chal-

lenges and difficulties because of the hybrid CPU/FPGA-based CPS context. The context

we are talking about in this work mainly concerns the design of a deep learning applica-

tion on a hybrid CPU/FPGA platform using a hardware neural network accelerator and

hardware threads for data processing.

The first challenge pertains to the design and implementation of hardware threads, from

HDL to RTL. Creating and integrating hardware processes is one of the hardest tasks

in our design flow, especially when using an HDL. This is one of the reasons we used

SystemC models to simulate the different hardware threads on a software platform and

verify their behavior to ease the development. Then we used an HLS tool to convert

SystemC models to HDL ones, which sped up the prototyping process as well. The only

drawback of an HLS tool is whenever the optimization part comes. In the context of our

methodology, editing an HLS-generated HDL code and optimizing the RTL synthesis is

currently not so user friendly, and needs expert-level skills. By this, we do not mean it

is an impossible task, nevertheless the needed skills to optimize HLS-generated hardware

threads are separated from the skills needed for AI design. Which means, in the context

of our methodology, that the optimization of hardware threads needs specialized tools to

elevate low-level skills to high-level ones.

54



Another challenge is from the data transfer between the CPU and the FPGA. In our

context, we need a way to transfer data back and forth between the CPU and FPGA

while the CPU is not focused on data transfer instructions. This is mainly to enable

the CPU to control different hardware threads while not waiting for data transfer. For

this reason we chose a DMA-oriented approach. As known with DMA-based systems,

once the CPU has transferred the initial data to the DRAM, it can simply watch the

different DMA statuses and do something else while the data is being transferred between

the FPGA and the DRAM. But using a DMA approach also adds more challenges, such

as the system bus communication bottleneck due to the maximum data bandwidth and

throughput. This is particularly true in the context of deep learning algorithms, where

modern parameter matrices are in the MB scale because of the size of neural networks.

In the case of our experimentation with a DMA, using an AMBA system bus of 32-bit

running at 100 MHz, which meant that transferring one 32-bit floating point would take

around 10 ns. Hence, in the case of a neural network with 1 million 32-bit floating point

parameters, 10 ms are dedicated to the data transfer. And this time will increase if the

number of parameters increases. There are currently three solutions for this challenge: 1)

specific hardware with high-speed data transfer, 2) reducing the number of parameters

in the neural network architecture, 3) compressing the parameters as 16-bit fixed point

integers or even binary.

One more challenge comes from the HW/SW integration. The main problem in the

integration phase is the debugging. While it is easy to debug software, it is far more

complex to debug a hardware thread. The use of a JTAG (Joint Test Action Group)

connection allowed us to understand what is going on inside the FPGA with our hardware

threads and is a debugging tool, but it requires a JTAG port and the use of a JTAG library,

either with HLS or HDL. But JTAG has some limitations when debugging complex signals

and behaviors. Another solution we used for debugging was the creation of our own

debugger IP which was connected to a DMA for us to be able to send ASCII characters,

so we could print some kind of debugging logs from our hardware threads. While this

55



practice did not involve JTAG, it was longer to make because of the need to change our

hardware designs.

The last challenge we encountered was automation. Automating the prototyping phase

can be difficult because of the numerous constructors and standards. This is why we tried

to use open source technologies and generic configuration. But this also comes with some

disadvantages related to the optimization of our platform. While going bare-metal can be

the best way for a performance-oriented implementation, it also comes with the setback

of a longer prototyping time. Which is why we approach the automation with a generic

method, but at the loss of performances. In our vision, automation is a really important

part of this thesis because it brings hardware accelerated solutions to high-level skilled

users. Our final goal would be a full automation of the methodology so that AI designers

could simply deploy their prototype on a "ready-to-go" hardware accelerated platform.

3.7 Conclusion

We presented our work toward an embedded DL methodology for hybrid CPU/FPGA-

based CPSs platform design using a hardware NNP. The standard process for HW/SW

co-design prototyping is explained, then a first methodology to develop HW/SW co-

design applications using software deep learning is introduced. Finally, the FPGA-based

DL methodology using a NNP as its core is explained, in addition to a discussion toward

its automation. This new methodology shows another way to develop and deploy DL

applications on FPGA platforms. But to make this methodology completely functional,

the NNP needs to be designed following the methodology requirements.

56



Chapter 4

A hardware Neural Network Processor:

core of the methodology

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Neural Network Processor . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Design and Architecture . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Validation of the NNP . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 NNP integration into the full prototype . . . . . . . . . . . . . 69

4.3.1 Embedded processing to improve performance . . . . . . . . . . 69

4.3.2 Control software for reconfiguration purposes . . . . . . . . . . 70

4.3.3 Workflow of an application using the NNP . . . . . . . . . . . . 74

4.4 Experimentation and results . . . . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

57



4.1 Introduction

In the previous chapter, we introduced our DL-based methodology using a CPU/FPGA

hybrid platform. However, to easily prototype an application using this methodology,

a Neural Network Processor (NNP) is needed. The NNP is designed to simplify the

integration of DL in embedded CPS applications. The purpose is to create some kind

of single-purpose processor dedicated to the calculation of deep learning feed-forward

algorithms. To keep this processor simple, some constraints were defined: process the

simplest Neural Network (NN) architecture (fully connected NN without bias) with as few

activation functions as possible, process any number of sequential layers independently

of their depth and width, and be re-configurable at runtime. A no bias architecture is

chosen here because bias calculation needs more computational power, time and FPGA

resources.

4.2 Neural Network Processor

4.2.1 Definition

A NNP can be qualified as an Application Specific Instruction Processor (ASIP). Its

purpose is to compute neural network-based deep learning through processor instructions.

The most needed instructions are the weight matrices of the trained NN, its network

topology and activation functions for each layer. With this information, it should be

enough for computation once an input is loaded into the NNP. But it seldom is that a

NNP can compute any type of NN. For performance purposes, it is sometimes better to

limit it to a special case, like Dense Neural Network (DNN) in our case, or as often seen

in the literature, Convolutional Neural Network (CNN). This can be seen as one of the

limitation of NNP, but since it is mostly application specific, it is more of a constraints

set beforehand.

Now in terms of architecture, a NNP has several parts that are necessary. It needs at

58



least three buffers for the input, output and weight matrices. Those buffers can either be

directly in the FPGA cache, or in the DRAM and accessed through DMA (Direct Memory

Access). One or more module dedicated to NN calculation is also needed, it is often called

Processing Element (PE) or Neuron Processing Unit (NPU) in this work. The purpose of

PE is to access the input and weights buffer to make the layer calculations or part of the

layer calculations [78]. PE should either output its results in a specific buffer or directly

in the output buffer which will be swapped with the input buffer to compute the next

layer. The PE communication network can be either directly connected the system bus,

or as an access point in a Network on Chip (NoC) [36]. Lastly, a controller component is

needed in order to order the instructions between the different elements, like instructing

the PE what to process, making the swap between buffers, scheduling computation, etc.

4.2.2 Design and Architecture

In order to understand how to design a NNP, we first need to understand how a feed-

forward neural network without biases is computed [6], especially DNNs in our case. A

DNN can be defined as layers of neurons where each neuron in a layer is connected to all

other neurons in the next layer. A neuron, also called node, is defined in Figure 4.1 and

with the calculation model being y = f(
∑

i xi ·wi), where xi are the inputs of the neuron,

wi are the weights for each path to the neuron (sometimes called "synapse"), f() is the

activation function of the neuron which is a specific function associated to the neuron,

and y is the output of the neuron.

Neuron

x1 w1

x2
w2

x3

w3

y

Figure 4.1 – Neuron in a neural network

Now that we defined a neuron, Figure 4.2 represents a multi-layer perceptron without

biases, meaning a DNN, also called fully-connected neural network. There are three

59



types of layers: input layer, hidden layers and output layer. The input layer is the first

layer which receives external data. The output layer is the last layer from which results

the neural network calculation. And in-between those two layers are zero or more hidden

layers which make calculations from the input layer to the output layers. Each neuron in a

layer has the same activation function, but it is not always the same function in each layer.

The input layer does not have an activation function and just transmits external data to

the next layer. A layer can be mathematically modeled as Y L+1
n = fL+1(W

L/L+1
mn · Y L

m )

where Y L+1
n is the matrix of size n× 1 containing all neurons output from the L+1 layer,

Y L
m is the matrix of size m × 1 containing neurons output from the L layer, WL/L+1

mn is

the matrix of size m × n containing the weights between the layer L and L + 1, finally

f() is the activation function of the layer L+1 applied to all elements of the dot product

between W
L/L+1
mn and Y L

m e.g. if Cn = W
L/L+1
mn · Y L

m then f(Cn) = [f(c0), . . . , f(cn)]

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)

m(L)

y
(L+1)
1

y
(L+1)
2

...

y
(L+1)
C

input layer
1st hidden layer Lth hidden layer

output layer

Figure 4.2 – Dense Neural Network (DNN)

Computing a DNN is mainly about matrix calculation which means two problems arise

from the implementation: matrix calculation and data management. For the calcula-

tion part, two approaches are possible: calculating layer per layer, or each neuron per

layer. Whole layer calculation is interesting in the case of optimized hardware for ma-

trices calculation, but calculating each neuron individually can also be interesting when

using parallel operations or compressed neural networks such as binary neural networks.

60



But the biggest issue is about data management, nowadays neural networks have mil-

lions of parameters which make weight matrices using hundreds of megabytes[9]. Even

if optimizing neural networks by reducing the number of parameters, the size is still im-

portant enough to need to carefully design data management. First, we need to define

where data is stored, meaning weight matrices, input vector and instructions (layer size

and activation function). In most cases, parameters are loaded from an external memory

component such as DRAM, EEPROM, etc. There is several reasons for this: 1) because

of the limited FPGA memory cache compared to the size of today’s weight matrices if

not compressed, 2) to allow different configurations by updating the weight matrices and

instructions, 3) to have an interface between the FPGA and other components wanting

to use the NNP. Now that we know where data is stored and we know it is not stored

inside the FPGA memory cache, we need to determine which data is transmitted to avoid

congestion in the system bus. The main data is parameters inside the weight matrices,

this data is mandatory for the feed-forward calculation, and the instructions, layer size

and activation function. In the case of layer calculation, it is only needed to convey the

weight matrix between the current layer and the next layer with the input vector of the

(a) NNP calculating layers per
layers (b) NNP calculating each neuron of a layer

Figure 4.3 – Data and tasks representations of a NNP

61



next layer (which is the output vector of the current layer). Because of the often large

number of parameters, it is needed to take into account the data bus bandwidth to cor-

rectly estimate the performances. But in the case of individual neuron calculation, the

weight matrix might also need to be sorted considering the scheduling of the processing

engines in charge of the neuron’s output calculation. Instructions are lightweight direc-

tives to the processing engines in order to read the correct weight matrix and input vector.

Moreover we have volatile information such as the matrix resulting of the calculation of

a layer which is needed to calculate the next layer. In the case of the last layer, this

matrix is the NN output. We need this layer to be quickly read and written for the NPU

performance, so in order to optimize data transmission, each hidden layer output needs

to be kept in the FPGA cache to be used as inputs for the next layer. But in the case of

the last layer, it might be useful to convey the output vector to the external memory so

other components can have access to the results. Figure 4.3 represents the architecture of

a NNP when calculating whole layers as matrix dot products, or when calculating a layer

neuron per neuron. It represents all data needed for the calculations and the interactions

between the different tasks and data. Now that we have in mind the data management

and calculation inside the NNP, we need to determine the data precision.

4.2.2.1 Data precision and hardware performances

Data precision can really influence the performance of the NNP as well as the resources

used, but it will also reduce the accuracy of the processed neural network [79]. Floating

points are often used in NN because of their precision, but it requires a lot of hardware

resources to process them [80][81][82]. Fixed points are less precise than floating points,

but are better suited for FPGA since they use far less resources, which means there is more

space for parallelism [83]. Finally, the most compressed data type for NN is binarized

NN, which is really suited for FPGA using logic gates, but this method implies the most

precision loss [84][85]. Another way to deduce the correct data precision would be to

take a fully trained NN using floating-point or fixed-point arithmetic and reducing the

62



number of bits used until the behavior of the NN totally diverges from the original model

[86]. But this method only works for a specific NN model, which means, in our context,

that the NN accelerator would need a way to adapt the data precision at run time. Data

precision is a tough choice depending on the NNP application. Precision is an important

part in decision making in the case of CPSs, but performance and real-time calculation

might also be critical in some applications.

4.2.2.2 Hardware architecture design and constraints

First, we will detail the hardware architecture of our NNP and how it calculates layers

and neurons. Figure 4.4 represents the different part of the processor and the communi-

cation interfaces in-between. There are four communication channels with the NNP for

different data: the input vector which comes directly from another FPGA component (the

embedded processing), the instructions and weight matrices are loaded from the external

DRAM, and the output vector is loaded into the external DRAM. The data type used

for this prototype was 32-bit floating points, in order to easily use weights from an ex-

ternal deep learning training software. In the context of our prototype, data between the

external DRAM and the FPGA and the is using the same system bus, which is a 32-bit

AMBA AXI bus.

Scheduler module The scheduler module loads all instructions from the DRAM to

know how many weights and inputs should be loaded and the activation function to be

used for each layer. Each instruction represents information about one layer and is coded

by a 64-bit word containing three pieces of information: the number of neurons in the

previous layer (30 bits), the number of neurons in this layer (30 bits) and the activation

function of this layer (4 bits). As seen in Table 4.1.

Data type Previous layer size Current layer size Activation
Bits 30 bits 30 bits 4 bits

Table 4.1 – Number of bits for each piece of data in instruction word

63



Figure 4.4 – NNP data flow with 4 cores

Algorithm 4.1: Scheduler module algorithm
Data: Input vector, Instructions, Weight matrix
Result: Output vector
instructionsCache← read all from instructions;
inputV ectorCache← read all from input vector;
repeat

processedNeurons← 0;
while all neurons are not processed do

foreach core do
write instructions to core;

foreach input in inputV ectorCache do
foreach core do

write input to core;
weight← read one from weight matrix;
write weight to core;

foreach core do
outputV ectorCache← read output from core;
processedNeurons increment by 1;

inputV ectorCache← outputV ectorCache;
until all instructions are processed ;
write outputV ectorCache to output vector;

Once all instructions are loaded, the input vector is read from the embedded processing

IP (Intellectual Property) into a local cache and processing is started. For each layer,

64



each neuron is represented by a neuron processing unit, also called a core, and thus each

neuron is computed individually. The scheduler starts a processing unit by sending specific

instructions to it, which are not the same as the ones that the scheduler module receives.

Then each input and weight connected to the specific computed neuron is sent. Once

the processing unit has finished the calculation, the output is returned to the scheduler,

which stores it in the local cache to be used for the next layer. Once all neurons of the

layer are computed, the output vector is used as the input vector of the next layer and

the process starts again. Once the last layer is reached, the output vector of the NNP is

written to the external DRAM. Algorithm 4.1 describes in a shorter way the scheduler

module process.

Name BRAM_18K DSP48E FF LUT
Utilization 260 6 4462 4867

Table 4.2 – Hardware resource utilization of the scheduler module with a 10 ns clock
target

Because of the size of the number of neurons in the scheduler module instructions (30

bits), a layer should be able to have over 1 billion nodes. But there is a hard limit inside

the scheduler module cache for resource utilization purposes, which means a layer cannot

be larger than 65,536 nodes. The number of instructions that can be loaded in the

scheduler is set to 512, which makes the instructions buffer size 4,096 bytes. Thus, the

scheduler module uses at least 528,384 bytes of FPGA memory cache. The resources

used for the hardware scheduler component is showed in Table 4.2.

Neuron processing unit Each neuron processing unit calculates one neuron at a time.

It takes instructions from the scheduler module, each instruction is a 34-bit word con-

taining two pieces of information: the number of inputs and weights (30 bits) and the

activation function to be used (4 bits). When an instruction is received, the processing

engine module starts listening to weights and inputs. Each time a pair of inputs and

weights are received, they are multiplied and summed to previous results. Once all inputs

and weights for one neuron are received, the activation function is calculated and sent

65



to the output. Algorithm 4.2 describes in a shorter way the processing engine module

process.

Algorithm 4.2: Neuron processing unit algorithm
Data: Weights, Inputs, Instructions
Result: Output
instructionCache← read one from instruction;
sum← 0;
repeat

input← read weight from scheduler;
weight← read weight from scheduler;
sum← sum+ input ∗ weight;

until all weights and input are received ;
/* activation function is defined by instruction */
output← activationFunction(sum);
write output to scheduler;

Figure 4.5 – Neuron processing unit architecture. The weights, inputs and output arrows
represents 32-bit floating points.

As said before, the activation functions are limited to four activation functions: relu,

linear, sigmoid and softmax. Relu, linear and sigmoid activation functions are

computed directly inside the neuron processing unit. But in the case of the softmax

activation function, the exponential part is done in the neuron processing unit, and the

division by the sum of the output vector is done inside the scheduler module, because only

the scheduler has access to the whole output vector. Figure 4.5 present the architecture

66



of a neuron processing unit. All the source code for the NNP is written in SystemC and is

available online [87]. A testbench is available to load datasets and neural network models.

The synthesis for each of those components is done with Vivado HLS [47]. The resources

used for the hardware neuron processing component is showed in Table 4.3.

Name BRAM_18K DSP48E FF LUT
Utilization 0 48 3623 6115

Table 4.3 – Hardware resource utilization of one neuron processing unit module with a 10
ns clock target

4.2.2.3 Can DNN do the job?

DNN, specifically fully-connected NN in this work, is still used for a broad type of ap-

plications; either as the only type of layers or as a part of the network (e.g. CNN with

fully-connected NN as last layers for classification purposes). But above all, DNN is one

of the most hardware-friendly type of NN. Even though DNN are not as powerful as

CNN for feature extractions, they can still be efficient to a certain degree [88]. This main

difference comes from the way a DNN perceives input compared to CNN, but it can be

improved with the use of data processing.

4.2.3 Validation of the NNP

4.2.3.1 Software simulation with SystemC

In order to develop the NNP, a SystemC model is first made with the code available in

a git repository [87], as well as some parts of the source code in the Appendix A. The

SystemC code is then transformed to HDL thanks to Vivado HLS software [47]. Two

external libraries were used as cited in the repository: the CNPY library is a C++ library

to read Numpy files and the TQDM library is C++ library, coming from the Python

TQDM library, to display progress bar in a CLI (Command Line Interface) environment.

The repository is seperated in 4 folders: headers, sources, models and testbench. The

headers and sources folders contains the SystemC code for each component of the NNP

67



(scheduler and neuron processing unit), the top module is only necessary for the testbench,

but is not used for the hardware creation with Vivado HLS. The models folder contains

datasets and trained neural networks for the testbench to use with a compressed Numpy

format [89]. The datasets available are Cifar10, Cifar100 [90], MNIST [91], SUOD [92]

[93] and a simple XOR neural net. The testbench folder contains a SystemC main file

whose purpose is to test the simulated hardware neural network and displays its final

accuracy to compare it to training software such as Tensorflow. For now, lets focus

on the hardware NNP SystemC components in the sources folder: the scheduler and

the neuron processing unit. Those two files contain the source code used by the HLS

software to create the HDL code for the hardware NNP. Their code is basically the

SystemC equivalent to Algorithms 4.1 and 4.2. But it is encapsulated in an infinite

loop to simulate their permanent processing. There are also some "pragma" macro used

for the HLS software configuration. Furthermore, to emulate the system bus inside the

FPGA, in our case AXI4Stream channels, the sc_fifo class is used to simulate a FIFO

communication channel. Now, lets talk about the testbench. Its purpose is to load a

model (dataset and trained neural network) to test its accuracy with the simulated NNP.

First, the dataset and NN layer files are loaded to generate the instructions for the NNP.

Then the NN weights are loaded inside the FIFO. Finally, we loop for each sample in

the dataset in order to load the input, run the SystemC NNP and test the resulting

classification. Once all samples processed, the accuracy is calculating. Each NN model

was trained beforehand with Tensorflow [94] and was then stored in a compressed Numpy

file along with the testing samples of the dataset. Those files are the ones in the models

folder.

4.2.3.2 HDL Synthesis

Once the NNP simulation is working and the testbench results are OK, each component is

converted to HDL code with Vivado HLS directly from their SystemC source code. Once

the HDL has been generated, we then use the Vivado tool (Figure 4.6) to make the FPGA

68



architecture and generate the bitstream. The bitstream is then deployed to the FPGA,

either with a hardware storage such as a SD Card or by sending it through a network

access.

Figure 4.6 – Vivado diagram of our NNP using the PS/PL with three DMA and the
scheduler connected to four neural processing unit

4.3 NNP integration into the full prototype

This section will focus on the integration of the NNP into a prototype. Three parts are

tackled: the design of embedded data processing on FPGA, the NNP control software

and the NNP as part of the application workflow.

4.3.1 Embedded processing to improve performance

Because of the usage of a DNN, embedded data processing design might be a necessary

part for the application in order to improve the performance. Designing data processing

hardware is not new, but in the case of DL there is one question that needs to be asked:

How can we highlight the data features? The answer to this question is the main job of

the embedded processing. It should be noted that some applications might not require

69



embedded processing, and data can be directly transferred to the NNP throught the usage

of the control software.

4.3.2 Control software for reconfiguration purposes

With the NNP hardware designed, a software stack is needed to load data into the DRAM

to control the NNP. The purpose of this software is twofold: to read a configuration file

that regroups all weight matrix binary file paths to determines the instructions, and to

sort all weights in matrices for scheduling purposes. Once the architecture is inferred,

instructions are generated to process this specific architecture. The weight matrices are

then written in the external DRAM, the NNP is started and waits for the input vector from

the data processing IP. Every time the NNP finishes a calculation, the output vector is

read from the external DRAM. The control of the NNP is also done with the configuration

of DMA registers since the processor is waiting until it can read DRAM data. Algorithm

4.3 describes how the configuration software behaves.

Algorithm 4.3: NNP configuration software algorithm
Data: Weight matrix files
Read weight matrix files;
Infer layer dimensions from each matrix;
foreach layer do

Generate instruction;

Sort weight matrices to correspond to neuron processing unit scheduling;
Load sorted weight matrices into DRAM;
Load instructions into DRAM;
repeat

Wait for output from NNP;
Save output from DRAM;
Raise flag;

until system stop;

Finally, regarding the weight sorting, since data is coming as a FIFO queue and also

to reduce data memory cache usage inside the FPGA, weights shall be transmitted in

the same order as the transmissions to their associated neuron processing unit. The

scheduling algorithm loads each pair of inputs and weights to each core until all neurons

70



Weight matrix

N

M

Weight sub-matrices

N

K K K ′

Figure 4.7 – Splitting the weight matrix into sub-matrices with their size depending on
the number of cores. N is the number of neurons in the current layer. M is the number
of neurons in the next layer. K is the number of neuron processing unit. K ′ is the size of
the last sub-matrix, with K ′ ≤ K.

are processed, which means that weights must be sorted depending on the layer size and

the number of available cores. The basic process is about dividing the weight matrix into

sub-matrices with a size depending on the number of available cores (Figure 4.7). Each

sub-matrices represent weights for one set of K neuron processing units. Those weights

need to be sorted by processing unit and this is done with a transposition. Then, each

transposed matrix is vectorized for memory writing purposes. All vectors are then merged

into one vector and written into DRAM.

The main issue with the control software is the DMA configuration. Accessing the DMA

registers is done using an access to the system physical memory from the OS. From this

point, it is necessary to follow the instructions of the documentation to correctly configure

and control the DMA [95]. First, let’s detail the basics of the DMA, and what we need

to use for our application. A DMA (Direct Memory Access) is a hardware component

that transfers data from a memory storage, such as the DRAM in our case, to another

hardware component, our NNP here. It transfers slices of bytes from or to a configured

address. The primary functioning mode of the DMA is called "direct register mode"

which means that we need to setup the DRAM address and the length in bytes of the

data to read from or to write to. There are two available channels for the data, the MM2S

(Memory-Mapped to Stream) from which the DMA read from the DRAM and write the

data to the connected hardware component, and the S2MM (Stream to Memory-Mapped)

which transfers the data from the connected hardware component to the DRAM. All data

71



is streamed as FIFO (First In First Out). In order to configure the DMA with the DRAM

addresses and data length, the DMA has an internal register with specific bits for each

task. In the case of our application, we only need 8 specific registers, 4 for MM2S and 4

for S2MM, displayed in Table 4.4 (note that this table is for direct register mode only).

Address space offset Register size (bytes) Name Description
00h 4 MM2S_DMACR MM2S DMA Control register
04h 4 MM2S_DMASR MM2S DMA Status register

18h 4 MM2S_SA MM2S Source Address. Lower 32 bits of
address.

28h 4 MM2S_LENGTH MM2S Transfer Length (Bytes)
30h 4 S2MM_DMACR S2MM DMA Control register
34h 4 S2MM_DMASR S2MM DMA Status register

48h 4 S2MM_DA S2MM Destination Address. Lower 32 bit
address.

58h 4 S2MM_LENGTH S2MM Buffer Length (Bytes)

Table 4.4 – Direct register mode DMA registers [95]

Those registers are all those needed for this application using the DMA in direct register

mode to transfer data as FIFO from the DRAM to the NNP and vice versa. The registers

named MM2S_DMACR and S2MM_DMACR are dedicated to the control of the DMA

such as starting and stopping it, and configuring interruptions. The registers named

MM2S_DMASR and S2MM_DMASR are dedicated to the status of the DMA which

means those are the registers to watch in order to see what the DMA is doing. The register

named MM2S_SA stores the source address, which is the DRAM address from which the

DMA reads the data. The register named MM2S_LENGTH stores the number of bytes to

read from the source address, and the real register length is 26 bytes. The register named

S2MM_SA stores the destination address, which is the DRAM address to which the DMA

writes the data. The register named S2MM_LENGTH stores the number of bytes to write

to the destination address, and the real register length is 26 bytes. Moreover, there are

some special behavior from the MM2S_LENGTH and S2MM_LENGTH registers. For

the S2MM_LENGTH register, whenever a non-zero value is written, it enables the S2MM

transfer, furthermore the number of actual bytes written transferred through the S2MM

channel is updated to the register at the end of the transfer. For the MM2S_LENGTH

register, whenever a non-zero value is written, it starts the MM2S transfer. Now, let’s

72



Step Description
1 Reserve memory block for the DMA to read (called source)
2 Reserve memory block for the DMA to write (called destination)
3 Write data inside the source memory block
4 Reset the destination memory block to value 0 so that no previous values can be

read by accident
5 Reset the DMA: write 1 to bit 2 of MM2S_DMACR/S2MM_DMACR
6 Halt the DMA: write 0 to bit 0 of MM2S_DMACR/S2MM_DMACR
7 Enable the Interrupts on Complete (IOC): write 1 to bit 12 of

MM2S_DMACR/S2MM_DMACR
8 Enable the Interrupt on Error: write 1 to bit 14 of

MM2S_DMACR/S2MM_DMACR
9 Set DMA to ready: : write 1 to bit 0 of MM2S_DMACR/S2MM_DMACR
10 Set destination address: write memory address to S2MM_DA
11 Set destination transfer length: write length in bytes to S2MM_LENGTH. Writing

a non-zero value enables S2MM channel to receive data packet!
12 Set source address: write memory address to MM2S_SA
13 Set source transfer length: write length in bytes to MM2S_LENGTH. Writing a

non-zero value starts the MM2S transfer!
14 Wait for MM2S transfer to finish by looking to MM2S_DMASR: bit 0 to check if

it is running correctly, bit 1 to check if it is not idle, bit 12 to check the IOC and
bit 14 to check if there are any errors

15 Wait for S2MM transfer to finish by looking to S2MM_DMASR: bit 0 to check if
it is running correctly, bit 1 to check if it is not idle, bit 12 to check the IOC and
bit 14 to check if there are any errors

16 Read data inside the destination memory block

Table 4.5 – Description of the different steps to configure a DMA

details the steps to correctly configure the DMA and manage the data flow (Table 4.5).

But there is still some limitations when using a DMA. The first one is the transfer band-

width which is limited by the system bus bandwidth. So depending on your application,

you might need to choose a system or design one with internal bandwidth constraints ac-

cording to your needs. Moreover, in the case of the Vivado DMA in direct register mode,

the amount of data transmitted is limited by the MM2S_LENGTH and S2MM_LENGTH

register real size, which is 26 bit. Which means that only 226 (a bit more than 67 million)

words can be transferred.

73



Physical world

Hybrid CPU/FPGA-based smart CPS

Sensors

Software

OS

CPU

DRAM

FPGA

Data processing

Neural network processor

Classification or regression

Figure 4.8 – Hybrid CPU/FPGA-based smart CPS workflow

4.3.3 Workflow of an application using the NNP

In the case of a CPS prototype using our methodology with the NNP, a specific workflow

(Figure 4.8) is required. As a CPS, the first step is to observe the physical worlds and

acquire data from it. This can be done with sensors that will queue their data either to

the CPU, or directly into a buffer as part of the DRAM. Meanwhile, the CPU is running

an OS with different services on it depending on the CPS needs. But one of the most

important services is the control software to load the DNN parameters into the DRAM

and configure the FPGA DMA to access the parameters and the sensor’s output. This is

mainly needed for the DMA configuration, so the FPGA knows where the data is in the

DRAM. Inside the FPGA, the embedded processing corrects data from sensors in order

74



to highlight features for the DNN. A DMA module is dedicated to pick data from sensors

from the specified address in the DRAM. Then the NNP receives the processed data as

its input and loads the parameters from the DRAM to either classify or regress. There is

a DMA module dedicated to the NNP to get the parameters from the DRAM and then to

output the NNP results into the DRAM for the CPU to use it. The embedded processing

can directly communicate with the NNP through the use of system buses, no need for a

DMA. Finally, the system can make decisions based on the NNP output when the CPU

is reading the results from the DRAM.

4.4 Experimentation and results

In this section, the NNP performances are tested in standalone mode, the goal is to

understand its limitation. Tests have been done on a Zedboard development kit using the

Xilinx Zynq-7000 SoC (XC7Z020). Each test corresponds to the usage of a specific known

dataset with a specific NN architecture for each dataset. Those datasets are the MNIST

[91], Fashion MNIST [96], Cifar10 and Cifar100 [90]. NN model training and testing is

done with Tensorflow [94].

NN topologies are shown in Figure 4.9. These topologies are chosen in order to improve

the performance of DNN thanks to linear bottleneck layers [88]. Fully connected layers

generally cause loss of spatial information because all neurons are connected, which often

means that DNN struggles for image classification while it may have better results for

tasks such as segmentation. Using a linear activation function between two non-linear

functions such as ReLU, and without any bias, means two things:

• Better calculation efficiency, either for feed-forward or back-propagation because,

as demonstrated by Lin et al, two fully connected non-linear ReLU layers of size

N means N2 + N parameters to calculate, whereas adding a linear layer of size L

in-between means 2NL + L + N parameters to calculate because there is no need

to calculate negative ReLU input since the output will be zero.

75



(a) Topology for MNIST and Fashion MNIST dataset

(b) Topology for Cifar10 dataset

(c) Topology for Cifar100 dataset

Figure 4.9 – DNN Topologies for each Dataset

• Better accuracy as seen empirically. Though there is no mathematical proof that

explains why it is more accurate compared to other fully-connected models.

The Tensorflow source code to train those neural networks is available in Appendix B. The

accuracy results achieved by our NNP are exactly the same as evaluated by Tensorflow

whatever the number of cores, as shown in Table 4.6. The accuracy for Cifar 10 and

Cifar 100 datasets are low compared to a CNN because of the usage of a DNN, though

it is possible to achieve better results with unsupervised pre-training using Restricted

Blotzmann Machines (RBM) [97] [98] or Zero-bias AutoEncoders (ZAE) [99].

It is to be noted that the maximum number of cores (neuron processing units) embedded

in the NNP is 4 because of the FPGA DSP (Digital Signal Processor) limitation (220

76



Dataset Tensorflow 1 core 2 cores 3 cores 4 cores
MNIST 99.71% 99.71% 99.71% 99.71% 99.71%
Fashion MNIST 98.53% 98.53% 98.53% 98.53% 98.53%
Cifar10 44.13% 44.13% 44.13% 44.13% 44.13%
Cifar100 14.71% 14.71% 14.71% 14.71% 14.71%

Table 4.6 – Accuracy for each dataset

DSP available on our FPGA chip and each core uses 48 DSP, see Table 4.3). In this

work, the execution time is our main concern, and it is obviously related to the number

of parameters in the NN and the number of cores in the processor. Figure 4.10 shows the

execution time of three datasets depending on the number of cores. The execution time

seems to be close to linear, with the same architecture and a different number of cores,

except for when there is only one core, which shows a bottleneck. Moreover the execution

time per parameter seems to be the same between the different datasets as shown in Figure

4.11. With Vivado HLS transforming the SystemC models to HDL, our hardware threads

are running in parallel (the scheduler and neuron processing units are independent finite

state machines using the same clock). The clock for the hardware threads is running

at 100 MHz, which is 150 MHz lower than the maximal frequency on our hardware.

But increasing more than this frequency means that time constraints are not met. The

use of parallel hardware threads improved the processing time of our system. However,

we want to point out the data transfer bottleneck in the AXI system bus which affects

the whole processing time of the system. This bottleneck is mainly due to the number

of parameters transmitted. Since we are using 32-bit floating points, the parameters

matrices of the NN are in the MB scale and our AXI channels are running at a theoretical

maximum of 300 MB/s. We would get better results if using compression such as 16-bit

fixed point integer or binary weights. Another option to improve the time consumption

would be to run the scheduler which controls the neural processing units with a faster clock

than the neuron processing units so that data is read faster from DMA and distributed

faster to the processing units, but we did not confirm this will bypass the data transfer

bottleneck. In the context of the defined topologies, MNIST has 26,432 parameters,

77



Cifar 10 has 791,552 parameters (because since the input is grayscaled, the image size

is 32x32x1), and Cifar 100 has 2,107,392 parameters. Figure 4.11 analysis shows that

the execution time of the feed forward sequence of a specific NN model may be predicted,

which means we can determine the needed NNP cores for a given application with its

real-time constraint. Moreover, it might be possible to estimate the maximal number of

cores before reaching the data transmission bandwidth bottleneck, which would be when

the estimated parameter calculation time is less than the transmission time. But because

those measures take into account the data transmission bandwidth, the estimation would

be a rough one.

0 2,000 4,000 6,000

M
N

IS
T

5,864
1,236

866
636

Time (us)

50 100 150

C
ifa

r1
0

35.92
23.95
18.3

Time (ms)

0 100 200 300 400 500

C
ifa

r1
00

464.66
95.83

65.75
48.53

Time (ms)
1 core 2 cores 3 cores 4 cores

Figure 4.10 – Tests results of the NNP,
the execution time is for one feed for-
ward sequence

50 100 150 200 250

M
N

IS
T

222
47

33
24

Time (ns)

50 100 150 200 250

C
ifa

r1
0

220
45

30
23

Time (ns)

50 100 150 200 250

C
ifa

r1
00

220
45

31
23

Time (ns)
1 core 2 cores 3 cores 4 cores

Figure 4.11 – Execution time per param-
eter with different number of cores and
topologies

78



4.5 Conclusion

In this chapter, we introduced the concept of NNP (Neural Network Processor) and how

they are designed. We explained the math behind the feed-forward of a fully-connected

neural network and defined some guidelines to design our NNP such as data precision and

main architecture. We displayed the methodology toward the integration of our NNP into

a real prototype, the software as well as the hardware. We described the source code of

our NNP so that other people can use it for their own purposes. Finally, we presented

some unit testing on our NNP, to show the accuracy and execution time of our NNP. The

different contributions in this chapter are as follows:

• We proposed an architecture, a design and a prototype for a hardware Neural Net-

work Processor (NNP)

• We created a configuration and benchmarking software for the NNP

• We validated the NNP with different configurations and we got different results

• We shared the source code of the NNP in a public online Git repository

• We also shared the source code of the different neural network topologies training

and testing with Tensorflow in the appendices

In the next chapter, we will present the full experiment and results from our case study

implementation using our methodology and NNP.

79



80



Chapter 5

Implementation and validation: a

smart LIDAR for pedestrian detection

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Autonomous Vehicle Case Study: Description . . . . . . . . . 82

5.3 Design of the application . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Embedded processing algorithms . . . . . . . . . . . . . . . . . 87

5.4.2 Deep learning algorithms . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Implementation and results . . . . . . . . . . . . . . . . . . . . 97

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

81



5.1 Introduction

In previous chapters, we presented a methodology for FPGA-based CPS using Deep Learn-

ing (DL) as well as a Neural Network Processor (NNP) used to hardware accelerate DL

calculation. Now that we have a methodology to design an FPGA-based DL application

and that the NNP is designed, we can now test all those together with a use-case. In

this chapter, a smart LIDAR for pedestrian detection use-case will be presented, in order

to test our methodology along with our NNP, and display its limitations. In this work,

our definition of a “smart LIDAR” is a LIDAR sensor that, instead of outputting a 3D

representation of its physical environment (a 3D point cloud in our case), will output

the detected elements in this environment. Those elements could be any type of object

present in a constrained environment. In our case, since we chose the autonomous car,

because of our lab thematic, those elements could be any type of urban objects such

as pedestrians, cars, bicycles, etc. But because of dataset constraints, we chose to only

detect pedestrians, in order to have enough data to train our DL models.

5.2 Autonomous Vehicle Case Study: Description

The chosen case study is a smart LIDAR for pedestrian detection, which fits the au-

tonomous vehicle context. The goal is to use a 3D sensor such as a LIDAR to directly

detect pedestrians as the output of this sensor instead of outputting 3D mapping data.

We want to create a smart sensor system [100] as a CPS using a LIDAR sensor and a

hybrid CPU/FPGA platform using our NNP. The features required in this case study are

the ability to detect pedestrians in the observed environment through the use of a 3D

point cloud made by the LIDAR, and communicating the position of those pedestrians

relative to the LIDAR position. The main constraint in this case study is a real-time

one. We want to be able to detect all pedestrians mapped for each 3D frame sent by the

LIDAR, which is running at 10/15 Hz in this case study, so between 66.67 and 100 ms

per 3D frame. This means that we need to accelerate all tasks related to the processing of

82



each frame in order to reach the real-time constraint. However, the use of deep learning,

particularly a modern model with high accuracy, is not meant to run in such a short

time on an embedded system with low resources compared to other systems. This is why

the acceleration of the NN processing is mandatory in such cases. Consequently, we are

using our methodology described in a previous chapter to speed up the prototyping of

this system.

5.3 Design of the application

The first step toward this application is to define the goal and the different tasks to reach

this goal. The purpose of this smart LIDAR is to sense its environment, then detect

pedestrians in it. A LIDAR works kind of like a RADAR (based on echolocation) but

it uses a different electromagnetic wavelength: ultraviolet, visible or near infrared lights.

With such wavelengths, a narrow laser beam is projected on a rotating mirror to probe

the environment with a specified vertical and horizontal range angle. For each movement

of the mirror, the reflected wave is recorded to map physical features as points in a 3D

space. Once the mirror movement phase is completed, a map of all the points recorded

in the 3D space (often called point cloud) is generated and sent to the system linked to

the LIDAR sensor. From this point cloud, we need to detect and recognize pedestrians.

Segmentation

LIDAR
sensor

Occupancy
grid

Point
filtering

Box slicingPoints
to voxels

NNP

Object detection and recognition

Figure 5.1 – Smart LIDAR use-case task flow

83



For this purpose, there are several algorithms available. We will be using the ones most

used in robotics, especially for robotics and autonomous cars [101]. First, we will use

segmentation to detect points categorized as an obstacle and remove non-obstacle points.

This will reduce the number of points to remove the floor and other noise points. This

operation can be split in two parts: occupancy grid and point filtering. The occupancy

grid maps points in a cell in the XY dimension parallel to the floor and determine the

mean height (defined on the Z axis) of those points. If the mean height is above a defined

threshold, all points in the cell are categorized as an obstacle and the cell is defined as

active. Otherwise, the cell is defined as inactive if there are no obstacles. The point

filtering removes all points in inactive cells to keep only the active cell’s points. Once

the segmentation is done, we need to isolate points in boxes to analyze them afterwards.

This process is similar to the window sliding [102] but is used in a 3D space instead of

a 2D one. Once the points have been isolated in boxes, we need to convert them to a

data model that can be used by deep learning algorithms. We can look into images, often

used for object classification with cameras. They are made of pixels, a 2D datum that

indicates information at a specified coordinate. The 3D equivalent of a pixel is called a

voxel, a 3D datum that indicates information at a specified 3D coordinate. So the last

task before the deep learning classification is to convert points to voxels. Figure 5.1 is a

visual representation of all those tasks and the links between them.

The next step is to define the workflow of the application. Figure 5.2 represents all

the steps of the application. It first starts with the physical world data that is acquired

through the LIDAR sensor. The sensor transmits its raw data to the embedded processing

hardware module in order to process and transform the information so that it can be used

by the NNP, which analyzes the data and classifies the objects. Meanwhile the embedded

processing part is split in four tasks: Occupancy grid, point filtering, sliding box and

points to voxels. The goal of the occupancy grid is to create binary cells based on the

Z-axis mean to detect if those points are relevant. The point filtering stage takes care of

discarding all points which are in inactive cells. The sliding box splits the filtered point

84



cloud in predetermined boxes that can overlap themselves in order to extract objects. The

points to voxels transforms each box from a continuous 3D space to a discrete one, with

voxels.

Now we can proceed to the implementation of the workflow following our methodology.

There are four main steps: deep learning software, embedded processing, hardware accel-

eration and hardware platform. The deep learning software implements a neural network

made to analyze a voxelized 3D space and determine if its a pedestrian or not. The em-

bedded processing is the first step toward hardware acceleration; the goal is to determine

data processing algorithms to be hardware accelerated then implement it as a software to

Physical world

Smart LIDAR

LIDAR sensor CPU

DRAM

FPGA

Embedded processing

Occupancy grid Point filtering

Points to voxels Sliding box

Neural network processor

Pedestrian classification

Figure 5.2 – Smart LIDAR for object classification case study

85



test the performances. The hardware acceleration transforms the embedded processing

algorithms as HDL (Hardware Description Language) and implements it along the NNP.

Finally, the hardware accelerated application along the deep learning weight matrices are

loaded on the configured hardware platform in order to have a prototype. Figure 5.3 is

the illustration of this implementation following our methodology.

Deep learn-
ing software

Architecture
definition

Training & Testing

Validation

Weight extraction

Embedded
processing

Algorithm
specification

Compilation
& Linking

Debug

Profiling

Validation

Export source code

Hardware ac-
celeration

HLS software

RTL synthesis

HDL integration

Neural network pro-
cessor integration

Validation

Bitstream
generation

Hardware
platform

U-Boot

FSBL

Unix kernel

Add ramdisk image

Add generic
devicetree

Add bitstream

Load deep learn-
ing weights

Figure 5.3 – Design flow for the embedded DL methodology

5.4 Experimentations

Following the workflow of the smart LIDAR use case, we now need to design the differ-

ent algorithms for the embedded processing, as well as determining the DL architecture

to do its training/testing. We also need to determine the experimental protocol to cor-

rectly measure the performances of our experimentation. And finally we implement those

algorithms on our final prototype.

86



5.4.1 Embedded processing algorithms

We first start to detail the different embedded processing algorithms. The goal is to trans-

form LIDAR sensor data to 3D space voxel objects which are then classified by the NNP.

There are four parts in the embedded processing. The first one is the segmentation,

but because of the hardware constraints, segmentation needs to be separated in two

sub-tasks: occupancy grid and point filtering. Then comes the box slicing and finally

the points to voxels. Each tasks were first made as different pieces of software in order

to verify the algorithms, then they were tweaked for the hardware requirements.

5.4.1.1 Segmentation

For the segmentation part as a piece of software, the process (see Algorithm 5.1) is about

making an occupancy grid on the XY plan of the point cloud i.e. calculating the mean

Z axis distance on each cell and comparing it to a threshold so a binary grid of the 3D

space is created. The purpose is to calculate the Z mean axis density of an object in order

to estimate if it is an obstacle, and thus determining if it is an object to be classified.

If the occupancy sub-area (cell) is inactive, then the points covered by the cell will be

discarded from the output filtered point cloud. The filtered point cloud can be considered

as the point cloud containing all the "to be classified" objects. This step improves the

performance of the box slicing module, removes the ground from the original point cloud,

and simplifies object classification. The algorithm runs through the point cloud with a

predetermined step size on the XY plan. For each step, we calculate the mean Z axis for

all the point cloud box, if it is greater than the threshold, then it means that an obstacle

has been detected, and will be stored in the final point cloud. It is distinguished that the

processing is done on one plan of the point cloud, which corresponds to the ground. If the

first Segmentation (Algorithm 5.1) is refined as an hardware component, its tasks need

to be run as two steps in a row and not as concurrent tasks, because of the FIFO data

access. Those two tasks are defined as: the occupancy grid and the point filtering. The

occupancy grid creates binary cells based on the Z-axis mean to detect if those points are

87



relevant. The point filtering discards all points which are in inactive cells.

Algorithm 5.1: The software segmentation algorithm
Data: Point Cloud, Sub-area/Cell (width, height), Threshold
Result: Filtered Point Cloud

pointMIN ← find the Minimum in the point cloud;
pointMAX ← find the Maximum in the point cloud;

stepX ← pointMAX .X−pointMIN .X
cellWIDTH

;
stepY ← pointMAX .Y−pointMIN .Y

cellHEIGHT
;

for Y ← 0 to stepY do
for X ← 0 to stepX do

boxMIN ←
{pointMIN .X+cellWIDTH ∗X, pointMIN .Y +cellHEIGHT ∗Y, pointMIN .Z};
boxMAX ← {boxMIN .X+cellWIDTH , boxMIN .Y +cellHEIGHT , pointMAX .Z};
box← get points from point cloud between boxMIN and boxMAX ;

if the box is not empty then
Zmean ← make the Z axis mean for points in box;
if Zmean > threshold then

add the box in the filtered_cloud;
end

end
end

end
return filtered_cloud;

For the Occupancy Grid (Algorithm 5.2), since data is streamed, when a point is

received, the cell it belongs to is identified and the Z-axis mean of the cell is updated.

Once all points are received, the mean of each cell is compared to the threshold to compute

the occupancy grid. In this work, the threshold, width and height data, as well as the

implicit number of points, are all sent from the CPU. The Point Cloud is then streamed

point per point to the occupancy grid IP (Intellectual Property). For each points received,

the X and Y axis coordinates are normalized between 0 and the grid width/height. The

0.5 offset in the algorithm is due to the X and Y axis range of original points:

X ∈ IR| − width

2
≤ X ≤ width

2
(5.1)

Y ∈ IR| − height

2
≤ Y ≤ height

2
(5.2)

88



Algorithm 5.2: The occupancy grid algorithm from the hardware segmentation
task
threshold← threshold configuration;
width← point cloud map width;
height← point cloud map height;

repeat
point← receive point from CPU;

x← trunc[(point.x
width

+ 0.5) ∗ grid width];
y ← trunc[(point.y

height
+ 0.5) ∗ grid height];

if point.z < cell(x, y).zmin then
cell(x, y).zmin ← point.z;

end

cell(x, y).zsum ← cell(x, y).zsum + point.z;
cell(x, y).zcount ← cell(x, y).zcount + 1;

until no more points received ;

for y ← 0 to grid height do
for x← 0 to grid width do

mean← cell(x,y).zsum
cell(x,y).zcount

− cell(x, y).zmin;

if mean > threshold then
Send cell(x, y) active to next IP;

else
Send cell(x, y) inactive to next IP;

end
end

end

Once normalized, each X and Y is truncated and associated to a cell. For the correspond-

ing cell, Z-axis points are summed, the point counter is incremented and the minimum Z

value of the cell is stored for later. When all points have been received from the CPU,

each cell is computed. The mean with an offset is calculated in order to find the mean

size of the object from the zero point origin. The mean is then compared to the threshold,

and the result of each cell, is called the occupancy grid, which is send to the next IP: the

point filtering.

The second part of the segmentation task is the Point Filtering (Algorithm 5.3). Each

point from the Point Cloud is compared to the occupancy grid. If the cell is active, the

point is kept, otherwise it is discarded. As in the previous algorithm, the width and

89



height data, as well as the implicit number of points, are all sent from CPU. For each

point received, it is scaled to the same range as in the occupancy grid part and mapped

to the correct cell. If the cell is active, the point is sent to the CPU so it can be used for

the next task, the box slicing. With those two tasks as part of the segmentation, points

from the Point Cloud are sent two times within the system bus.

Algorithm 5.3: The points filtering algorithm from the hardware segmentation
task
width← point cloud map width;
height← point cloud map height;
occupancy grid← receive occupancy grid from previous IP;

repeat
point← receive point from CPU;

x← trunc[(point.x
width

+ 0.5) ∗ grid width];
y ← trunc[(point.y

height
+ 0.5) ∗ grid height];

if cell(x, y) is active then
Send point to CPU

end
until no more points received ;

5.4.1.2 Box slicing

The box slicing module split the filtered point cloud in predetermined boxes that can

overlap themselves. The box size is chosen to contain the object to be detected (see algo-

rithm [5.4]). In order to filter noise, boxes with few points are discarded. The box slicing

methodology is inspired from the concept of sliding window [103] in image processing,

and object detection. The box slicing presents a generic way to detect any object and

find its position in the vehicle’s environment. In our experience, we conclude that the

sliding consumes more processing time than the slicing technique, even if it consumes

more storage. The algorithm runs through the point cloud with a predetermined step size

on an XY plan. For each step, get all points in the box (box size can be greater than step

size, which means that boxes can overlap). If the number of points in the box is greater

than a threshold, then add the box to the returning array. It is notable that the run is

90



made on one plan of the point cloud, which should correspond to the ground.

Algorithm 5.4: The box slicing software algorithm
Data: Point Cloud, Box (width, height, depth), Step (width, height), Threshold
Result: Point Cloud Boxes

pointMIN ← find minimum point in input point cloud;
pointMAX ← find maximum point in input point cloud;

stepX ← pointMAX .X−pointMIN .X
stepWIDTH

;
stepY ← pointMAX .Y−pointMIN .Y

stepHEIGHT
;

for Y ← 0 to stepY do
for X ← 0 to stepX do

boxMIN ←
{pointMIN .X+stepWIDTH∗X, pointMIN .Y +stepHEIGHT ∗Y, pointMIN .Z};
boxMAX ←
{boxMIN .X+boxWIDTH , boxMIN .Y +boxHEIGHT , boxMIN .Z+boxDEPTH};
box← get points from point cloud between boxMIN and boxMAX ;

if number of points in box > threshold then
add box in array;

end
end

end

return array of box;

For the Box Slicing hardware algorithm, data streaming revealed a hierarchical problem.

In the software algorithm, boxes were sliding from step to step with a double for-loop.

With data coming as FIFO, to exactly reproduce this behavior, the whole point cloud

needs to be sent for each box, which will lead to the congestion of the AMBA. So the initial

task needs to be reversed as assigning a box to a point whenever the point is received by

the IP in order to only transfer the point cloud once. For the explanation of this part,

only the X dimension will be observed and the box will be reduced as 2D, but it is notable

that everything written here applies to every other space dimensions. The constraint for

this task is the overlapping of boxes depending on their width and step size. For this

work, the step width was defined as:

stepwidth ∈ IR|0 < stepwidth ≤ boxwidth (5.3)

91



Thus the hierarchical problem: the overlapping depends on the step width. Two kinds

of overlapping are defined in this work. We defined the "simple overlapping" (see Figure

5.4) as the overlap case when:

stepwidth >
boxwidth

2
(5.4)

In the case of “simple overlapping,” points are first mapped to the corresponding box

identifier (ID) (Equation 5.5). Once the box is mapped, the position of the point in this

box is processed in order to find out if the point is in the overlapping zone (Equation 5.6).

There is an exception in the overlapping zone for the first and last boxes of the row, since

there is no overlapping zone as defined in equation 5.6, so if boxID is 0 or boxmax ID, there

is no box overlapping possible. The points are always matched to the most advanced

boxID and if the position of the point in the stepwidth grid is considered in the overlapping

zone, the point is also matched to the previous box ID which is boxID − 1.

Box width
Step width Overlap No overlap

Figure 5.4 – Box simple overlapping hierarchical problem. The blue zone represents no
box overlapping, the red zone represents two boxes overlapping.

boxID = trunc(
X

stepwidth

) (5.5)

Overlap(X) =


1, if X − boxID ∗ stepwidth < boxwidth − stepwidth

0, otherwise
(5.6)

Then there is the "multiple overlapping" (Figure 5.5), which we defined as the overlap

92



case when:

stepwidth ≤
boxwidth

2
(5.7)

This problem is a bit more complex, because boxes always overlap, there is no “no-

overlapping” zone between overlapping as in the “simple overlapping” problem.

In the case of “multiple overlapping,” points are also matched to a specific boxID with

the same equation 5.5. The main difference is the handling of the overlapping zone. The

boxID is always the most advanced box, so it is now important to calculate the maximum

overlap of the zone in order to match the correct previous boxes (see Equation 5.8). Once

the point is matched with equation 5.5, the point is determined to be inside all boxes

between boxID and boxID −Overlap(X).

Box width
Step width Overlap 3 No overlap

Overlap 2

Figure 5.5 – Box multiple overlapping hierarchical problem. The blue zone represents no
box overlapping, the red zone represents two boxes overlapping. The green zone represents
three boxes overlapping

Overlap(X) =


boxID, if XID < boxwidth

stepwidth

boxmax ID − boxID, if XID ≥ boxmax ID − boxwidth

stepwidth

b boxwidth

stepwidth
c, otherwise

(5.8)

This problem applies to each dimension needed, so dimensions X and Y in this work.

Algorithm 5.5 is the implementation of this problem for one dimension. But processing

each dimension individually lacks the dimension intersection. So once each dimension is

processed for the point, the boxID need to be finally adjusted to the two dimensions X and

Y (see Algorithm 5.6) to correctly be mapped as boxes in the Point Cloud. Finally, when

all points and boxes are sent to the CPU, it is necessary to regroup all points to their

93



respective box to completely terminate the main HW/SW co-design application. After

this, all processing can be done by any supervised machine learning classification system

to identify the objects in the boxes. Object position in space is also known since any box

position can be decrypted from the boxID.

Algorithm 5.5: The part of the box slicing algorithm for one dimension from
the hardware box slicing task
width← point cloud map width;
boxwidth ← box width;
stepwidth ← step width;

repeat
point← receive point from CPU;

x← point.x+ width
2

;
xoverlap ← 0;
xID ← x

stepwidth
;

if stepwidth > boxwidth

2
then

if x− xID ∗ stepwidth < boxwidth − stepwidth then
xoverlap ← 1;

end
else

if xID < boxwidth

stepwidth
then

xoverlap ← xID;
else if xID ≥ width−boxwidth

stepwidth
then

xoverlap ← width
stepwidth

−XID;
else

xoverlap ← boxwidth

stepwidth
;

end
end

for id← xID − xoverlap to xID do
Transmit point and id;

end
until no more points received ;

5.4.1.3 Points to Voxels

3D Point Cloud data is the output of the LIDAR, but it is not the input of the NNP.

Deep learning algorithms are not particularly made to learn on continuous space, thus we

need to transform the 3D Point Cloud to a discrete space. A 3D discrete space is made

94



Algorithm 5.6: The dimension merging algorithm from the hardware box slicing
task
width← point cloud map width;
stepwidth ← step width;

repeat
point← receive point;
xID ← receive X dimension ID of point;
yID ← receive Y dimension ID of point;

boxID ← xID + yID ∗ width
stepwidth

;
Send point and boxID to CPU;

until no more points and ids received ;

Algorithm 5.7: Point cloud to voxel grid hardware algorithm
voxel size← (24, 24, 24);
padding size← (32, 32, 32);
resolution← 0.1m;
minimum coordinates← (+inf,+inf,+inf);
voxel grid← 32x32x32 cells of 1 bit;
repeat

if point coordinates < minimum coordinates then
minimum coordinates← point coordinates;

until all points received ;
repeat

point coordinates← point coordinates−minimum coordinates;
if 0 ≤ point coordinates AND point coordinates < voxel size ∗ resolution
then

center point coordinates←
point coordinates+ (padding size− voxel size) ∗ resolution

2
;

voxel coordinates←

trunc(
center point coordinates

resolution
)

;
voxel grid[voxel coordinates]← 1;

until all points received ;
return voxel grid;

of entities called voxels. Each voxel represents the occupation of the space in a certain

continuous volume. This occupation can either be proportional or binary. In the case of a

proportional occupation, we describe the voxel as a percentage of occupation. In the case

of a binary occupation, we describe the voxel as an occupied space or an empty space.

95



In our case, we are using binary occupation. Hence, each object in the 3D Point Cloud

needs to be extracted and transformed to voxels as an input for the NNP. The final step

is to convert extracted objects from the sliding box into a volumetric binary occupancy

grid. The algorithm for the "points to voxels" module is presented in Algorithm 5.7.

The module receives all the points from a box two times: the first time to calculate the

bounding box, the second time to calculate the volumetric binary occupancy grid. Once

the object has been transformed into a 32x32x32 voxels grid, it is sent to the NNP to be

classified.

5.4.2 Deep learning algorithms

Once the data has been processed, we need DL algorithms in order to detect and recog-

nize pedestrians. The presented DL architecture is the one taking 3D voxel objects and

classifying them. One of the steps when working on this prototype is to define how to

classify objects from 3D data such as the point cloud received from the LIDAR. One way

is to convert the point cloud to voxels, then use deep learning to determine the category

[55]. The dataset used in our case study is the Sydney Urban Objects Dataset (SUOD)

[93][92] but we converted point clouds into grids of 32x32x32 voxels using a volumetric

binary occupancy grid approach. The training is done with the architecture represented in

Figure 5.6 thanks to the Tensorflow software [94]. Once the architecture has been defined

and the training/testing has been done, the weights were extracted in a NumPy binary

format [89]. The SUOD dataset is used for training here because it contains several types

of urban objects (pedestrians, cars, cyclists, ...). We wanted to use this dataset in order to

have a complete training with different objects in order to differentiate pedestrians from

them. Moreover, it also means that multi-object classification is possible, but the current

processing algorithms are made with pedestrians in mind, and as such will misclassify

other objects. Now, in order to export weights, we used Tensorflow weight matrices after

the training and converted them into a Numpy format file. This file is then exported into

our SDCard prototype to be used by the control software in order to feed those param-

96



eters to the NNP. The source code for the training and the weight export is available in

Appendice C. The SUOD dataset we used, which is a convertion from 3D Point Cloud to

voxels, is available in our NNP repository [87] inside the models/suod/dataset.npz file.

32@32x32

Dense

1x128

ReLU

1x32

Linear

1x128

ReLU

1x13

Softmax

Figure 5.6 – DNN topology for SUOD dataset

5.4.3 Implementation and results

Now the workflow and all algorithms have been defined, it is time to implement everything

on top of a real application and a hardware prototype. The hardware platform used is a

ZedBoard Zynq-7000 [47]. The SD card generation is automated using our automation

software [74]. This software deploys a UNIX Operating System (OS) with a Linux kernel

and all other needed resources to boot this OS. All hardware modules are written in

SystemC and synthesized to RTL with an HLS software (Xilinx Vivado HLS [47]). The

LIDAR data comes from the 3D Point Cloud People Dataset [104] [105] which uses a

Velodyne HDL 64E S2 sensor with a frequency of 5Hz at a maximum range limited

to 20m. The different steps presented here will be the four embedded processing tasks

presented in Figure 4.8, then NNP results will be presented.

5.4.3.1 Embedded processing

Table 5.1 shows the execution time for the embedded processing tasks when running as

software and when hardware accelerated. As shown here, hardware acceleration has a

huge impact on the execution time. The software time execution on the Zedboard was

103,460 ms and it comes to 344 ms when it is hardware accelerated. This represents a

300 times acceleration.

97



SW Occupancy Grid + Point Filtering Box Slicing Total
Time 90,230 ms 13,230 ms 103,460 ms
HW Occupancy Grid Point Filtering Box Slicing Total
Time 98 ms 132 ms 114 ms 344 ms

Table 5.1 – Comparison of SW and HW Applications Execution Time

In Figure 5.7, we compare the execution time between the software profiling and the hard-

ware profiling for the Segmentation (Occupancy Grid and Point Filtering) and the Box

Slicing tasks. As shown in this figure, the tasks that benefited the hardware acceleration

the most were the Occupancy Grid and Point Filtering (OG+PF) tasks, with a 392 times

acceleration. This difference is mainly due to the hardware task parallelism, because of

the use of a FPGA compared to a single software thread when benchmarking our soft-

ware. But the task is still considered as slow when compared to the real time constraint

of the use case. This is mainly due to a bottleneck in the system bus because of the large

amount of data transmitted, as well as the use of 32-bit floating points which use a lot of

resources and are not as fast as integers calculation.

OG+PF Box Slicing

0

0.2

0.4

0.6

0.8

1

1.2
·105

90,230

13,230

230 114

m
s

Software Hardware

Figure 5.7 – Comparison between software and hardware application execution times

Occupancy grid

98



The occupancy grid task uses the initial 3D point cloud and determines with a 2D binary

grid, parallel to the ground, in which cells are occupied by objects. Figure 5.8 shows

the result of the occupancy grid. The occupancy grid generated here considers all mean

heights greater than 0.5 meters as an obstacle. The grid is composed of 120 × 120 cells

on a 3D point cloud which is around 40m × 40m. This means that one cell represents a

33cm × 33cm square.

(a) The initial point cloud [104][105]

(b) The generated 2D binary occupancy grid

Figure 5.8 – Example of the occupancy grid task

The occupancy grid processes 205,300 points and takes 98 ms to compute [106]. This

is way faster than the software occupancy grid and point filtering which took 90,230 ms to

complete. Once the occupancy grid is done, the point filtering will remove all unnecessary

points.

Point filtering

The point filtering task uses the binary occupancy grid and removes the points not con-

sidered as obstacles. Figure 5.9 represents the 3D point cloud after the point filtering

task. 205,300 points are processed within 132 ms. Once the point filtering is done, the

sliding box task follows.

99



Figure 5.9 – Example of the point filtering task results

Sliding box

Once the 3D point cloud has been cleared of unnecessary points, we need to apply a

sliding box to isolate objects. Figure 5.10 is an example of a sliding box that measures

1× 1 meters (width × height) with a step width of 1m. The mean box size is around 163

points and the processing time is 144 ms, which is way less compared to the software

box slicing, with a processing time of 13,230 ms.

Figure 5.10 – Example of three sliding boxes on a pedestrian

Points to voxels

The input and ouput of the Points to voxels module is shown in Figure 5.11. The

pedestrians have been extracted in boxes of 2 × 2 × 2 meters then converted to a 32 ×

100



32× 32 voxel grid. FPGA synthesized results are shown in Table 5.2. After the hardware

modules have been implemented, we tested all extracted pedestrian boxes to find the

mean execution time per point (Table 5.3).

(a) LIDAR Point Cloud (b) Voxel Grid

Figure 5.11 – Pedestrian extracted from a box

Name BRAM_18K DSP48E FF LUT
Utilization 2 6 4043 7778

Table 5.2 – Hardware “points to voxels” resource utilization

Mean box size Mean execution time Mean time per point
163 points 880,240 ns 5,431 ns/point

Table 5.3 – Results from hardware "points to voxels" module

5.4.3.2 Neural Network Processor

The NN models for the NNP were trained using Tensorflow, the source code is available

in Appendix C. The hardware used for the training was 16 GB of RAM with an Intel Core

i7-8550U CPU with 4 cores, 8 threads, a base frequency of 1.8GHz up to a turbo frequency

of 4GHz, as well as an 8 MB cache. Once the model has been trained, the parameters

are extracted in a Numpy format. Then the embedded processing is synthesized with

the NNP. The bitstream is then ported on top of the platform. The weight matrices are

integrated within the system SD card along with the configuration software. In order to

101



evaluate the system, two tests are done: The first test is related to the SUOD dataset.

The accuracy is evaluated with all classes contained in the dataset. The second test is

related to the 3D Point Cloud People Dataset. We extracted all pedestrian boxes from

the Polyterrasse set to test if they were correctly classified, which means 599 fully visible

pedestrians. Thus the accuracy is related to the number of box that are correctly classified

as pedestrians. Results are shown in Table 5.4. The results of the SUOD accuracy for

multiple object detection are really low compared to state of the art neural networks. This

is mainly due to two things: the use of Dense NN instead of CNN, and the limited number

of parameters in the NN compared to the number of classified objects. But when trying

to apply the same topology to only detecting pedestrians, the results are far better, which

means the use of Dense NN and the number of parameters are enough to classify one type

of object. The processing time of this network topology, using 4,204,160 parameters,

is shown in Figure 5.12. The time per parameter is an interesting metric here, because

it shows two things. First, that the use of 32-bit floating points is slowing down the

processing compared to the state-of-the-art neural network accelerators. Secondly, there

is still a data transfer bottleneck as pointed out in Chapter 4.

Dataset SUOD 3D Point Cloud People Dataset
Accuracy 37.22% 93.99%

Table 5.4 – Accuracy results per dataset

5.5 Conclusion

In this chapter, we presented a smart LIDAR use-case using our methodology for FPGA

DL application using a NNP. We showed the workflow of the application and described

its different components. We detailed the algorithms of the embedded processing tasks

and the DL architecture computed by the NNP. We finally presented detailed results

for each part of the application. The embedded processing went from 103,460 ms for the

software segmentation and box slicing to 344 ms using hardware threads, which represents

102



0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

G
lo

ba
lt

im
e

1,555
189.63

127.54
95

Time (ms)

0 50 100 150 200 250 300 350 400 450T
im

e/
pa

ra
m

et
er

s

370
45

30
23

Time (ns)
1 core 2 cores 3 cores 4 cores

Figure 5.12 – Time performance and time per parameter for the SUOD neural network
topology

a 300 times acceleration. Using our NNP, we have a low accuracy of 37.22% on the

SUOD dataset, but when using the 3D Point Cloud People Dataset we reach an accuracy

of 93.99%, which is enough to correctly detect pedestrians. And we can estimate the

execution time of our NNP to be 23 ns per parameter of the neural network, when using

four cores.

103



104



Chapter 6

General conclusion and future works

“Still sane, exile?”

Zana, Master Cartographer in Path of Exile

Contents

6.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

105



6.1 General conclusion

Cyber-Physical Systems (CPS) are a robust solution for monitoring a physical environ-

ment and responding to it with the usage of analysis algorithms such as Deep Learning

(DL). But because of DL algorithms being resource greedy, hardware acceleration is a

great solution to embed a DL application inside a CPS. Moreover, a prototyping method-

ology for DL application in CPS is needed in order to speed up the prototyping. In the

context of this thesis, the CPS is represented by an autonomous vehicle and a case study

is done with a smart LIDAR for pedestrian detections.

In Chapter 1, we explained the context of CPS, the use of DL applications for CPS,

and the needs for a prototyping methodology for DL applications on hybrid CPU/FPGA

platform-based CPS. In Chapter 2, we present: what a CPS is, what the DL hardware

accelerators for CPS are, which AI algorithms to use in the context of CPS, what 3D

vision techniques to use in order to detect 3D objects, and the challenge of prototyping

a hardware accelerated DL application for CPS. In Chapter 3, we present our journey

toward a DL methodology around a hybrid CPU/FPGA-based neural network accelerator

in the context of CPS and the challenges we experienced. In Chapter 4, we present

standard design for neural network accelerators and how we design our own neural network

processor with its experimentation results. Finally, in Chapter 5, we present the case study

of this thesis and all our experimentation results.

In this thesis, we focused on the creation of a new hardware platform-based DL co-design

methodology for CPS prototyping and the design of a neural network accelerator, that

we named a Neural Network Processor (NNP). We tackled the challenges of making a

DL application in the context of CPS using a hybrid CPU/FPGA platform. During our

exploration, we encountered several challenges around several topics such as hardware

thread design, data transfer, HW/SW integration, the automation of our methodology,

and so on. From those challenges, we found some solutions and we achieved the following

contributions:

106



• A methodology to develop DL applications for CPS using a hybrid CPU/FPGA

platform which is based on the usage of a neural network accelerator and a piece of

automation software to speed up the prototyping time.

• A hardware Neural Network Processor (NNP) architecture, design and prototype

which is used as the core of our methodology in order to simplify the deployment

of DL application on a hybrid CPU/FPGA platform.

• A configuration and benchmarking software for the NNP, in order to test it and

yield detailed results for analysis.

• A validation of the NNP with different configurations and results which are presented

and analysed to understand the strengh and weakness of our NNP.

• An automation tool to setup a hybrid CPU/FPGA prototype board, which we used

to automate some parts of our prototyping phase.

• A case study about pedestrian detection for autonomous vehicles based on a LIDAR

sensor and the analysis of the 3D PointCloud from the LIDAR with a DL algorithm

executed by our NNP on a hybrid CPU/FPGA platform.

• Several algorithms for pedestrian detection using a 3D PointCloud from a LIDAR

that we first tried as software and hardware accelerated afterwards in order to speed

up the execution time. All the results regarding those algorithms are presented:

execution time as well as hardware resources.

The main difference with our work, compared to the related work presented in Chapter 2,

is the methodology steps used in the design and prototyping of these new CPS systems. We

shared a way to develop deep learning based CPS architectures, using Multi-CPU/FPGA-

based HW/SW co-design with a neural network accelerator. In our methodology steps,

we explore a way to speed up CPS systems prototyping with predetermined steps and

automation. That is why we propose a methodology based on specific constraints, an

107



already conceived neural network accelerator and an automation software to develop a

prototype. Automating Multi-CPU/FPGA based prototyping steps is one of the key parts

of our design thinking. This automation is a key point for fast design and prototyping of

new CPS architecture, and it allows a large test spectrum in terms of DSE (Design Space

Exploration). The software source code of some automation steps are already shared on

a Git repository for any design and reuse. Automating the methodology is an important

issue toward decreasing the time-to-prototype. Moreover, automation can help reduce

the required skills necessary for this kind of task, and thus make it more accessible. We

believe that each part of the design steps for the methodology can be automated. The

deep learning software is already simplified with the use of either programming tools or

visual editors to develop a deep learning architecture. Deep learning hardware IP reuse

in the context of CPS design and prototyping automation is a motivation for faster hard-

ware development. In our methodology, the neural network accelerator IP (Intellectual

Property) is considered as a pre-designed component from the IP library that can be

used for the automation process (we also shared our neural network accelerator source

code as a reusable IP component). Moreover, the specific use case “a smart LIDAR for

pedestrian detection” is in here just as a specific example in order to demonstrate our

methodology work. It is a better way for readers to have a deep understanding of how to

use our methodology and our different developed tools. So, they can use our methodology

to develop their own CPS applications using FPGA-based HW/SW co-design and neural

network accelerator. Again, our work is oriented toward new automated methodology

steps and new approaches to designing and prototyping an embedded DL application on

a hybrid FPGA/CPU platform for CPS systems. Our approach is based on an existing

platform (Xilinx Zynq Platform). Even if, and as we mention, we were inspired by some

very interesting related work at the neural network accelerator architecture level, the

automation of the design and prototyping steps of DL-based CPS systems using hybrid

CPU/FPGA architecture is the main aim and goal of our work. We believe that this

automation is the key step of better design and fast prototyping.

108



6.2 Future works

In our future works, we plan to completely automate our methodology with specific tools

to easily synthesize the hardware threads and deploy the software system onto the hard-

ware prototype, as well as a software tool to predict the performance of the NNP and

implement the correct number of cores depending of the required performances.

Furthermore, automation tools would be a must have combined with the use of design

reuse toward simplifying the prototyping of a hyrbid CPU/FPGA-based DL application

in a CPS context. By this, we mean a way to define different IPs and state their work

flow to automate the generation of an RTL model to use on the FPGA. The ultimate

automation goal would be an interface for a DL application developer to specify the

different hardware threads, in order to process data between the CPS input and the NNP.

Then, depending on some time constraints, the number of NNP cores would be chosen

to reach this constraint. The whole system would finally be synthesized and ready to be

implemented on a hardware prototype.

Finally, we plan to improve the NNP performances, specifically by refactoring the data

transfer and the calculation bottlenecks, as well as trying to use fixed point integers or

binary data types. We also plan to improve the NNP capability with more activation

functions and neural network topology available, such as Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN).

109



110



Publications

Cabanes, Q., & Senouci, B. (2017, July). Objects detection and recognition in smart

vehicle applications: Point cloud based approach. In 2017 Ninth International Con-

ference on Ubiquitous and Future Networks (ICUFN) (pp. 287-289). IEEE. https:

//doi.org/10.1109/ICUFN.2017.7993795

Abid, O., Cabanes, Q., & Senouci, B. (2018, March). Supervisor and control investigation

in smart/autonomous vehicles: Environment recognition and objects detection ADAS ap-

plication case study. In 2018 11th International Symposium on Mechatronics and its

Applications (ISMA) (pp. 1-7). IEEE. https://doi.org/10.1109/ISMA.2018.8330135

Cabanes, Q., Senouci, B., & Ramdane-Cherif, A. (2019, February). A Complete Multi-

CPU/FPGA-based Design and Prototyping Methodology for Autonomous Vehicles: Mul-

tiple Object Detection and Recognition Case Study. In 2019 International Conference on

Artificial Intelligence in Information and Communication (ICAIIC) (pp. 158-163). IEEE.

https://doi.org/10.1109/ICAIIC.2019.8669047

Senouci, B., Rouis, H., Cabanes, Q., Ramdan, A. C., & Han, D. S. (2019). HW/SW

Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study.

Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 11(4), 31-

40. http://journal.utem.edu.my/index.php/jtec/issue/view/242

111

https://doi.org/10.1109/ICUFN.2017.7993795
https://doi.org/10.1109/ICUFN.2017.7993795
https://doi.org/10.1109/ISMA.2018.8330135
https://doi.org/10.1109/ICAIIC.2019.8669047
http://journal.utem.edu.my/index.php/jtec/issue/view/242


Cabanes Q, Senouci B, Ramdane-Cherif A. Embedded Deep Learning Prototyping Ap-

proach for Cyber-Physical Systems: Smart LIDAR Case Study. Journal of Sensor and

Actuator Networks. 2021; 10(1):18. https://doi.org/10.3390/jsan10010018

112

https://doi.org/10.3390/jsan10010018


Appendix A

SystemC source code of the Neural

Network Processor

Listing A.1 – Scheduler header code

1 #ifndef SCHEDULER_HPP

2 #define SCHEDULER_HPP

3

4 #include <systemc . h>

5 #include " verbose . hpp"

6

7 #define CORE 4

8 #define INSTRUCTION_BUFFER 512

9 #define INPUT_BUFFER 65536

10

11 SC_MODULE( scheduler_module )

12 {

13 // PORTS

14 sc_in<bool> c lk ;

15 sc_in<bool> r e s e t ;

16 sc_f i fo_in<f loat> from_dma_weight ;

17 sc_f i fo_in<f loat> from_dma_input ;

18 sc_f i fo_in< sc_uint<64> > from_dma_instructions ;

113



19 sc_fi fo_out<f loat> to_dma ;

20

21 // PROCESSING ENGINES

22 sc_fi fo_out< sc_uint<34> > npu_instruct ions [CORE] ;

23 sc_fi fo_out<f loat> npu_weight [CORE] ;

24 sc_fi fo_out<f loat> npu_input [CORE] ;

25 sc_f i fo_in<f loat> npu_output [CORE] ;

26

27 // STATES

28 sc_uint<64> state_ins t ruc t ion_counte r ;

29 sc_uint<64> s ta t e_ in s t ruc t i on_bu f f e r [INSTRUCTION_BUFFER] ;

30 f loat s tate_input_buf fer [INPUT_BUFFER] ;

31 f loat state_output_buffer [INPUT_BUFFER] ;

32

33 // PROCESS

34 void proce s s (void ) ;

35

36 SC_CTOR( scheduler_module )

37 {

38 // I n i t STATES

39 s ta te_ins t ruct ion_counter = 0 ;

40

41 SC_CTHREAD( process , c l k . pos ( ) ) ;

42 r e s e t_s i gna l_ i s ( r e s e t , t rue ) ;

43 }

44 } ;

45

46 #endif

Listing A.2 – Scheduler source code

1 #include " . . / headers / s chedu l e r . hpp"

2

3 void scheduler_module : : p roce s s (void )

4 {

114



5 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = from_dma_weight

6 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = from_dma_input

7 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = from_dma_instructions

8 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = to_dma

9

10 #pragma HLS array_par t i t i on va r i ab l e = npu_instruct ions complete dim = 1

11 #pragma HLS array_par t i t i on va r i ab l e = npu_weight complete dim = 1

12 #pragma HLS array_par t i t i on va r i ab l e = npu_output complete dim = 1

13 #pragma HLS array_par t i t i on va r i ab l e = npu_input complete dim = 1

14

15 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = npu_instruct ions

16 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = npu_weight

17 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = npu_input

18 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = npu_output

19

20 sc_uint<30> instruct ion_input_layer , ins t ruct ion_output_layer ;

21

22 while ( t rue )

23 {

24 // Load i n s t r u c t i o n s

25 from_dma_instructions . read ( s ta te_ins t ruc t ion_counte r ) ;

26 for (unsigned int i = 0 ; i < state_ins t ruc t i on_counte r ; i++)

27 {

28 s t a t e_ in s t ruc t i on_bu f f e r [ i ] = from_dma_instructions . read ( ) ;

29 }

30 i n s t ruct ion_input_layer = ( s ta t e_ in s t ruc t i on_bu f f e r [ 0 ] ) >> 34 ;

31 ins t ruct ion_output_layer = s ta t e_ in s t ruc t i on_bu f f e r [

s ta te_ins t ruct ion_counter − 1 ] >> 4 ;

32

33 // Load inpu t s

34 for (unsigned int i = 0 ; i < ins t ruct ion_input_layer ; i++)

35 {

36 s tate_input_buf fer [ i ] = from_dma_input . read ( ) ;

37 }

115



38

39 // Process neura l network

40 for (unsigned int i n s t ruc t i on_index = 0 ; in s t ruc t i on_index <

state_ins t ruct ion_counter ; in s t ruc t i on_index++)

41 {

42 sc_uint<30> state_current_length = s ta t e_ in s t ruc t i on_bu f f e r [

in s t ruc t i on_index ] >> 34 ;

43 sc_uint<30> state_next_length = s ta t e_ in s t ruc t i on_bu f f e r [

in s t ruc t i on_index ] >> 4 ;

44 sc_uint<4> state_act iva t i on_funct i on = s ta t e_ in s t ruc t i on_bu f f e r [

in s t ruc t i on_index ] & 0b1111 ;

45

46 #ifndef __SYNTHESIS__

47 #i f VERBOSITY_LEVEL >= 2

48 cout << " [ scheduler_module ] @" << sc_time_stamp ( ) << " inputs loaded

( " << state_current_length << " ) " << endl ;

49 cout << " [ scheduler_module ] @" << sc_time_stamp ( ) << " next loaded ( "

<< state_next_length << " ) " << endl ;

50 #endif

51 #endif

52

53 // Schedu le

54 for (unsigned int core_done = 0 ; core_done < state_next_length ;

core_done += CORE)

55 {

56 // Load cores

57 // I f t h e r e i s l e s s nodes than cores , do not s t a r t unused cores

58 for (unsigned int i = 0 ; i + core_done < state_next_length && i <

CORE; i++)

59 {

60 npu_instruct ions [ i ] . wr i t e ( ( state_current_length << 4) +

sta te_act iva t i on_funct i on ) ;

61 }

62

116



63 // Send data to cores

64 for (unsigned int current_counter = 0 ; current_counter <

state_current_length ; current_counter++)

65 {

66 #pragma HLS p i p e l i n e I I = 1 enable_f lush

67 for (unsigned int i = 0 ; i + core_done < state_next_length && i <

CORE; i++)

68 {

69 npu_weight [ i % CORE] . wr i t e ( from_dma_weight . read ( ) ) ;

70 npu_input [ i % CORE] . wr i t e ( s tate_input_buf fer [ current_counter %

state_current_length ] ) ;

71 }

72 }

73

74 // Return output

75 #pragma HLS p i p e l i n e I I = 1 enable_f lush

76 for (unsigned int i = 0 ; i + core_done < state_next_length && i <

CORE; i++)

77 {

78 state_output_buffer [ i + core_done ] = npu_output [ i % CORE] . read ( ) ;

79 }

80 }

81

82 // Process a c t i v a t i o n func t i on t ha t need f u l l output v e c t o r

83 i f ( s ta t e_act iva t i on_funct i on == 3) // Softmax

84 {

85 f loat sum = 0 ;

86 for (unsigned int i = 0 ; i < state_next_length ; i++)

87 {

88 sum += state_output_buffer [ i ] ;

89 }

90

91 for (unsigned int i = 0 ; i < state_next_length ; i++)

92 {

117



93 state_output_buffer [ i ] /= sum ;

94 }

95 }

96

97 for (unsigned int i = 0 ; i < state_next_length ; i++)

98 {

99 s tate_input_buf fer [ i ] = state_output_buf fer [ i ] ;

100 }

101 }

102

103 for (unsigned int i = 0 ; i < inst ruct ion_output_layer ; i++)

104 {

105 to_dma . wr i t e ( state_input_buf fer [ i ] ) ;

106

107 // This i s f o r Vivado f o r the DMA IP

108 // i f ( i < ( ins t ruc t ion_outpu t_ layer − 1) )

109 // to_dma_TLAST. wr i t e (0) ;

110 // e l s e {

111 // to_dma_TLAST. wr i t e (1) ;

112 // wai t ( ) ;

113 // }

114 }

115

116 // This i s f o r Vivado f o r the DMA IP

117 // wai t ( ) ;

118 // to_dma_TLAST. wr i t e (0) ;

119 }

120 }

Listing A.3 – Neuron processing engine header code

1 #ifndef PROCESSING_ENGINE_HPP

2 #define PROCESSING_ENGINE_HPP

3

4 #include <systemc . h>

118



5 #include " verbose . hpp"

6

7 SC_MODULE( processing_engine_module )

8 {

9 // PORTS

10 sc_in<bool> c lk ;

11 sc_in<bool> r e s e t ;

12 sc_f i fo_in<f loat> from_scheduler_weight ;

13 sc_f i fo_in<f loat> from_scheduler_input ;

14 sc_f i fo_in< sc_uint<34> > from_schedu ler_inst ruct ions ;

15 sc_fi fo_out<f loat> to_scheduler ;

16

17 // STATES

18 sc_uint<30> state_length ;

19 sc_uint<4> state_act iva t i on_funct i on ;

20

21 // PROCESS

22 void proce s s (void ) ;

23

24 // UTIL

25 f loat s igmoid ( f loat input ) ;

26 f loat r e l u ( f loat input ) ;

27 f loat softmax ( f loat input ) ;

28

29 SC_CTOR( processing_engine_module )

30 {

31 s tate_length = 0 ;

32 s ta t e_act iva t i on_funct i on = 0 ;

33

34 SC_CTHREAD( process , c l k . pos ( ) ) ;

35 r e s e t_s i gna l_ i s ( r e s e t , t rue ) ;

36 }

37 } ;

38

119



39 #endif

Listing A.4 – Neuron processing engine source code

1 #include " . . / headers / process ing_eng ine . hpp"

2

3 void processing_engine_module : : p roce s s (void )

4 {

5 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = from_scheduler_weight

6 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = from_scheduler_input

7 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e =

from_scheduler_inst ruct ions

8 #pragma HLS re sou r c e core = AXI4Stream va r i ab l e = to_scheduler

9

10 // I n i t

11 sc_uint<34> i n s t r u c t i o n s ;

12 f loat input , weight , output ;

13

14 while ( t rue )

15 {

16 output = 0 . f ;

17 f rom_scheduler_inst ruct ions . read ( i n s t r u c t i o n s ) ;

18 s tate_length = i n s t r u c t i o n s >> 4 ;

19 s ta t e_act iva t i on_funct i on = i n s t r u c t i o n s & 0b1111 ;

20

21 #ifndef __SYNTHESIS__

22 #i f VERBOSITY_LEVEL >= 2

23 cout << " [ processing_engine_module ] @" << sc_time_stamp ( ) << "

load ing l ength ( " << state_length << " ) and a c t i v a t i o n (#" <<

state_act iva t i on_funct i on << " ) " << endl ;

24 #endif

25 #endif

26

27 // Process

28 #pragma HLS p i p e l i n e I I = 1 enable_f lush

120



29 for (unsigned int i = 0 ; i < state_length ; i++)

30 {

31 from_scheduler_input . read ( input ) ;

32 from_scheduler_weight . read ( weight ) ;

33 output += weight ∗ input ;

34 }

35

36 i f ( s ta t e_act iva t i on_funct i on == 1) // Sigmoid

37 {

38 output = sigmoid ( output ) ;

39 }

40 else i f ( s ta t e_act iva t i on_funct i on == 2) // Relu

41 {

42 output = r e l u ( output ) ;

43 }

44 else i f ( s ta t e_act iva t i on_funct i on == 3) // Softmax

45 {

46 output = softmax ( output ) ;

47 }

48

49 to_scheduler . wr i t e ( output ) ;

50

51 #ifndef __SYNTHESIS__

52 #i f VERBOSITY_LEVEL >= 2

53 cout << " [ processing_engine_module ] @" << sc_time_stamp ( ) << "

re tu rn ing r e s u l t ( " << output << " ) " << endl ;

54 #endif

55 #endif

56 }

57 }

58

59 f loat processing_engine_module : : s igmoid ( f loat input )

60 {

61 return 1 . f / ( 1 . f + exp(− input ) ) ;

121



62 }

63

64 f loat processing_engine_module : : r e l u ( f loat input )

65 {

66 return input < 0 . f ? 0 . f : input ;

67 }

68

69 f loat processing_engine_module : : softmax ( f loat input )

70 {

71 return exp ( input ) ;

72 }

122



Appendix B

Tensorflow source code for Dense

Neural Network topologies

Listing B.1 – Tensorflow source code for MNIST

1 from __future__ import absolute_import , d i v i s i on , pr int_funct ion

2

3 # TensorFlow and t f . keras

4 import t en so r f l ow as t f

5 from t en so r f l ow import keras

6 from t en so r f l ow . keras . p r ep ro c e s s i ng import image ;

7 from t en so r f l ow . keras . models import load_model

8

9 # Helper l i b r a r i e s

10 import numpy as np

11 import matp lo t l i b . pyplot as p l t

12

13 batch_size = 128

14 epochs = 20

15

16 # se s s = t f . compat . v1 . I n t e r a c t i v e S e s s i o n ()

17 datase t = keras . da ta s e t s . mnist

18 ( x_train , y_train ) , ( x_test , y_test ) = datase t . load_data ( )

123



19

20 # # Normalize p i x e l v a l u e s to be between 0 and 1

21 x_train = x_train / 2 55 . 0 ;

22 x_test = x_test / 2 5 5 . 0 ;

23

24 # # Fla t t en images

25 x_train = x_train . reshape ( x_train . shape [ 0 ] , x_train . shape [ 1 ] ∗ x_train .

shape [ 2 ] )

26 x_test = x_test . reshape ( x_test . shape [ 0 ] , x_test . shape [ 1 ] ∗ x_test . shape [ 2 ] )

27

28 # # Create and t r a i n model

29 model = keras . Sequent i a l ( [

30 keras . l a y e r s . Dense (32 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

31 keras . l a y e r s . Dense (16 , a c t i v a t i o n=keras . a c t i v a t i o n s . l i n e a r , use_bias=

False ) ,

32 keras . l a y e r s . Dense (32 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

33 keras . l a y e r s . Dense (10 , a c t i v a t i o n=keras . a c t i v a t i o n s . softmax , use_bias=

False )

34 ] )

35 model . compile ( opt imize r=’adam ’ ,

36 l o s s=’ mean_squared_error ’ ,

37 # l o s s =’ spar se_ca tegor i ca l_cros sen t ropy ’ ,

38 metr i c s =[ ’ accuracy ’ ] )

39 model . f i t ( x_train , y_train , batch_size=batch_size , epochs=epochs )

40

41 # Saving we i gh t s and model

42 model . save ( "model . h5" ) ;

43

44 # Evaluat ion

45 print ( ’ \n# Evaluate on t e s t data ’ )

46 r e s u l t s = model . eva luate ( x_test , y_test , batch_size=batch_size )

47 print ( ’ t e s t l o s s , t e s t acc : ’ , r e s u l t s )

124



Listing B.2 – Tensorflow source code for CIFAR10

1 from __future__ import absolute_import , d i v i s i on , pr int_funct ion

2 import t en so r f l ow as t f

3 from t en so r f l ow import keras

4 import numpy as np

5

6 def rgb2gray ( rgb ) :

7 return np . dot ( rgb [ . . . , : 3 ] , [ 0 . 2 9 89 , 0 .5870 , 0 . 1 1 4 0 ] )

8

9 batch_size = 500

10 epochs = 100

11

12 datase t = keras . da ta s e t s . c i f a r 1 0

13 ( x_train , y_train ) , ( x_test , y_test ) = datase t . load_data ( )

14

15 # Grayscale

16 x_train = rgb2gray ( x_train ) ;

17 x_test = rgb2gray ( x_test ) ;

18

19 # Normalize p i x e l v a l u e s to be between 0 and 1

20 x_train = x_train / 2 55 . 0 ;

21 x_test = x_test / 2 5 5 . 0 ;

22

23 # Fla t t en images

24 x_train = x_train . reshape ( x_train . shape [ 0 ] , x_train . shape [ 1 ] ∗ x_train .

shape [ 2 ] )

25 x_test = x_test . reshape ( x_test . shape [ 0 ] , x_test . shape [ 1 ] ∗ x_test . shape [ 2 ] )

26

27 # Create and t r a i n model

28 model = keras . Sequent i a l ( [

29 keras . l a y e r s . Dense (512 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

125



30 keras . l a y e r s . Dense (128 , a c t i v a t i o n=keras . a c t i v a t i o n s . l i n e a r , use_bias=

False ) ,

31 keras . l a y e r s . Dense (512 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

32 keras . l a y e r s . Dense (128 , a c t i v a t i o n=keras . a c t i v a t i o n s . l i n e a r , use_bias=

False ) ,

33 keras . l a y e r s . Dense (512 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

34 keras . l a y e r s . Dense (10 , a c t i v a t i o n=keras . a c t i v a t i o n s . softmax , use_bias=

False )

35 ] )

36 model . compile ( opt imize r=’adam ’ ,

37 l o s s=’ spar s e_catego r i ca l_cro s s ent ropy ’ ,

38 metr i c s =[ ’ accuracy ’ ] )

39 model . f i t ( x_train , y_train , batch_size=batch_size , epochs=epochs )

40

41 # Saving model

42 model . save ( "model . h5" ) ;

43

44 # Evaluat ion

45 print ( ’ \n# Evaluate on t e s t data ’ )

46 r e s u l t s = model . eva luate ( x_test , y_test , batch_size=batch_size )

47 print ( ’ t e s t l o s s , t e s t acc : ’ , r e s u l t s )

Listing B.3 – Tensorflow source code for CIFAR100

1 from __future__ import absolute_import , d i v i s i on , pr int_funct ion

2 import t en so r f l ow as t f

3 from t en so r f l ow import keras

4 import numpy as np

5

6 def assert_parameters ( model ) :

7 max_params = 8388608

8 params = 0

9

126



10 model . bu i ld ( x_train . shape )

11 for l a y e r in model . l a y e r s :

12 params += laye r . count_params ( )

13

14 i f params > max_params :

15 print ( "Too many parameters ({}) " . format ( params ) )

16 e x i t (0 )

17

18 def rgb2gray ( rgb ) :

19 return np . dot ( rgb [ . . . , : 3 ] , [ 0 . 2 9 89 , 0 .5870 , 0 . 1 1 4 0 ] )

20

21 batch_size = 500

22 epochs = 100

23

24 datase t = keras . da ta s e t s . c i f a r 1 0 0

25 ( x_train , y_train ) , ( x_test , y_test ) = datase t . load_data ( )

26

27 # Grayscale

28 x_train = rgb2gray ( x_train ) ;

29 x_test = rgb2gray ( x_test ) ;

30

31 # Normalize p i x e l v a l u e s to be between 0 and 1

32 x_train = x_train / 2 55 . 0 ;

33 x_test = x_test / 2 5 5 . 0 ;

34

35 # Fla t t en images

36 x_train = x_train . reshape ( x_train . shape [ 0 ] , x_train . shape [ 1 ] ∗ x_train .

shape [ 2 ] )

37 x_test = x_test . reshape ( x_test . shape [ 0 ] , x_test . shape [ 1 ] ∗ x_test . shape [ 2 ] )

38

39 # Create and t r a i n model

40 model = keras . Sequent i a l ( [

41 keras . l a y e r s . Dense (1024 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

127



42 keras . l a y e r s . Dense (256 , a c t i v a t i o n=keras . a c t i v a t i o n s . l i n e a r , use_bias=

False ) ,

43 keras . l a y e r s . Dense (1024 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

44 keras . l a y e r s . Dense (256 , a c t i v a t i o n=keras . a c t i v a t i o n s . l i n e a r , use_bias=

False ) ,

45 keras . l a y e r s . Dense (1024 , a c t i v a t i o n=keras . a c t i v a t i o n s . re lu , use_bias=

False ) ,

46 keras . l a y e r s . Dense (100 , a c t i v a t i o n=keras . a c t i v a t i o n s . sigmoid , use_bias=

False )

47 ] )

48 model . compile ( opt imize r=’adam ’ ,

49 l o s s=’ spar s e_catego r i ca l_cro s s ent ropy ’ ,

50 metr i c s =[ ’ accuracy ’ ] )

51 assert_parameters ( model )

52 model . f i t ( x_train , y_train , batch_size=batch_size , epochs=epochs )

53

54 # Saving model

55 model . save ( "model . h5" ) ;

56

57 # Evaluat ion

58 print ( ’ \n# Evaluate on t e s t data ’ )

59 r e s u l t s = model . eva luate ( x_test , y_test , batch_size=batch_size )

60 print ( ’ t e s t l o s s , t e s t acc : ’ , r e s u l t s )

128



Appendix C

Tensorflow source code for SUOD

dataset

Listing C.1 – Tensorflow source code for SUOD training

1 from __future__ import absolute_import , d i v i s i on , pr int_funct ion ,

un i c od e_ l i t e r a l s

2

3 import numpy as np

4 import t en so r f l ow as t f

5 from t en so r f l ow import keras

6 from t en so r f l ow . keras . models import load_model

7

8 BATCH = 64

9 EPOCHS = 20

10

11 s e s s = t f . compat . v1 . I n t e r a c t i v e S e s s i o n ( )

12 with np . load ( ’ suod_dataset . npz ’ ) as data :

13 x_train = data [ ’ x_train ’ ]

14 y_train = data [ ’ y_train ’ ]

15 x_test = data [ ’ x_test ’ ]

16 y_test = data [ ’ y_test ’ ]

17

129



18 model = keras . Sequent i a l ( [

19 keras . l a y e r s . Dropout ( 0 . 5 ) ,

20 keras . l a y e r s . Dense (128 , a c t i v a t i o n=’ r e l u ’ , use_bias=False ) ,

21 keras . l a y e r s . Dense (32 , a c t i v a t i o n=’ l i n e a r ’ , use_bias=False ) ,

22 keras . l a y e r s . Dense (128 , a c t i v a t i o n=’ r e l u ’ , use_bias=False ) ,

23 keras . l a y e r s . Dense (13 , a c t i v a t i o n=’ softmax ’ , use_bias=False ) ,

24 ] ) ;

25 model . compile ( opt imize r="adam" ,

26 l o s s=’ spar s e_catego r i ca l_cro s s ent ropy ’ ,

27 metr i c s =[ ’ accuracy ’ ] )

28 model . f i t ( x_train , y_train , batch_size=BATCH, epochs=EPOCHS)

29

30 # # Saving we i gh t s and model

31 model . save ( "model . h5" ) ;

32

33 # # Evaluat ion

34 print ( ’ \n# Evaluate on t e s t data ’ )

35 r e s u l t s = model . eva luate ( x_test , y_test , batch_size=BATCH)

36 print ( ’ t e s t l o s s , t e s t acc : ’ , r e s u l t s )

Listing C.2 – Tensorflow source code for SUOD weight export

1 from t en so r f l ow import keras

2 from t en so r f l ow . keras . models import load_model

3 import numpy as np

4 import re

5

6 with np . load ( ’ suod_dataset . npz ’ ) as data :

7 np . savez ( " datase t . npz" , x=data [ ’ x_test ’ ] , y=data [ ’ y_test ’ ] )

8

9 # Export l a y e r s

10 model = load_model ( ’ model . h5 ’ ) ;

11 pattern = r ’<func t i on ( [ a−z ]+) at .∗> ’

12 layers_data = {}

13 funct ion_counter = {}

130



14 w_size = 0

15 for i , l a y e r in enumerate( model . l a y e r s ) :

16 try :

17 a c t i v a t i o n = str ( l a y e r . a c t i v a t i o n )

18 m = re . match ( pattern , a c t i v a t i o n )

19 function_name = m. group (1)

20 W = laye r . get_weights ( )

21 w_size += W[ 0 ] . shape [ 0 ] ∗ W[ 0 ] . shape [ 1 ] ;

22 funct ion_counter [ function_name ] = funct ion_counter . get (

function_name , −1) + 1 ;

23 key = "a{}_{}_{}" . format ( i , function_name , funct ion_counter [

function_name ] )

24 layers_data [ key ] = np . array (W[ 0 ] , dtype=" f " ) ;

25 print ( "{} ({}) " . format (W[ 0 ] . shape [ 1 ] , function_name ) )

26 except :

27 pass

28 np . savez ( " l a y e r s . npz" , ∗∗ layers_data )

29

30 print ( "Number o f parameters : {}" . format ( w_size ) )

31 print ( "Number o f bytes : {}" . format ( w_size ∗ 4) )

32 print ( "Estimated time : {} us" . format ( w_size ∗ 0 . 023 ) )

131



132



Appendix D

Résumé de thèse

Les Systèmes Cyber-Physiques (SCP) sont un sujet de recherche mature qui interagis-

sent avec l’intelligence artificielle (IA) et les systèmes embarqués (SE). Un SCP peut être

défini comme un SE en réseau qui peut analyser un environnement physique et prendre

des décisions à partir de son état actuel pour affecter son environnement physique vers

un résultat souhaité, via des actionneurs. Les SCP interagissent avec le monde physique

via des capteurs/actionneurs pour résoudre des problèmes dans plusieurs applications

(robotique, transport, santé, etc.). Ils nécessitent des algorithmes d’analyse de données

puissants associés à des architectures matérielles robustes. D’une part, l’Ap-prentissage

en Profondeur (AP) est proposé comme algorithme principal. D’autre part, les méthodo-

logies de conception et de prototypage standard pour SE ne sont pas adaptées au SCP

moderne basé sur de l’AP, et plus particulièrement, des accélérateurs matériels d’AP.

En effet, l’intégration des applications d’AP dans un SCP s’accompagne de nombreuses

contraintes qui sont soit en conflit avec les performances de calcul, en raison des con-

traintes de ressources de calcul nécessaires, soit avec le temps de prototypage, en raison

de l’utilisation d’une plate-forme logicielle/matérielle spéci-fique. Dans le cas d’une plate-

forme matérielle/logicielle utilisant des accélérateurs de réseau de neu-rones, nous avons

observé un manque de méthodologie définie dans le contexte du SCP basé sur les plate-

formes hybride CPU/FPGA (Field-Programmable Gate Array). Ce type de plate-forme

133



est en mesure d’apporter un moyen simple de prototyper des algorithmes matériels spécial-

isés dans le calcul de réseau de neurones avec la flexibilité de l’automatisation logicielle et

une plus grande rapidité de prototypage comparé à une plateforme purement matérielle.

Notre conviction est qu’une méthodolo-gie mélangeant les principes matériels tels que

la réutilisation de conception, et les principes logi-cielles tels que l’automatisation de la

conception, pourrait réduire le temps de prototypage des SCP basés sur des applications

d’AP, tout en étant capable d’optimiser le temps de calcul.

Dans cette thèse, nous étudions la conception d’IA pour SCP autour d’application d’AP

embarquée avec une plate-forme hybride CPU/FPGA. Nous proposons une méthodologie

de co-conception matérielle/logicielle pour développer des applications d’AP pour SCP

qui est basée sur l’utilisation d’un accélérateur de réseau de neurones et d’un logiciel

d’automatisation des étapes de la méthodo-logie pour accélérer le temps de prototypage.

L’accélérateur de réseau de neurones fonctionne comme un outil faisant partie intégrante

de la méthodologie afin de simplifier le transfert du logiciel vers le matériel pour les

applications d’AP. Le logiciel d’automatisation fonctionne comme un outil de support à

cette méthodologie dont l’objectif est de faciliter les différentes tâches de prototypages

qui nécessitent souvent des compétences de très bas niveau. Nous présentons ensuite la

conception et le prototypage de notre accélérateur matériel de réseau de neurones ainsi que

le résultat de ses performances. De plus, le code source de cet accélérateur de réseau de

neurone est accessible en source libre. Cet accélérateur est capable de traiter des réseaux

de neurones entièrement connecté sans biais avec un choix de fonctions d’activation limité

(linéaire, relu, sigmoid, softmax). Des tests sont effectués sur notre accélérateur de réseau

de neurone avec des base de données connu de la communauté scientifiques, tels que

MNIST ou CIFAR10. Nous estimons le temps de calcul de notre accélérateur à 23 ns

par paramètres du modèle d’AP, en prenant en compte le temps de transfert des données

dans le bus système de la plateforme. Enfin, nous validons notre travail à l’aide d’un

cas d’usage : un LIDAR (LIght Detection And Ranging) intelligent pour de la détection

d’objet autour du véhicule autonome. L’objectif est d’utiliser un capteur 3D tel qu’un

134



LIDAR pour détecter direc-tement des objets, plus spécifiquement des piétons, et leurs

positions dans l’espace 3D en sortie de ce capteur, au lieu de retourner des données

cartographiques 3D. Ce cas d’usage est accompagné de plusieurs algorithmes de détection

de piétons à l’aide du nuage de points 3D provenant d’un LI-DAR. Les données 3D du

LIDAR sont traitées afin de les transformés en une grille de voxels 3D puis sont envoyé

à notre accélérateur de réseau de neurone pour effectuer la classification de chaque objet

détecté. Les données du LIDAR proviennent d’une base de données utilisant un vrai

LIDAR sur une place piétonne et l’entrainement de notre modèle d’AP est effectué sur

une base de données classifiant de multiples objets urbains afin de se rapprocher le plus

possible d’un cas d’étude réel.

135



136



References

1. Lee, E. A. Cyber Physical Systems: Design Challenges. en, 10 (Jan. 2008).

2. Klotzer, C., WeiBenborn, J. & Pflaum, A. The Evolution of Cyber-Physical Systems

as a Driving Force Behind Digital Transformation en. in 2017 IEEE 19th Confer-

ence on Business Informatics (CBI) (IEEE, Thessaloniki, July 2017), 5–14. isbn:

978-1-5386-3035-8. http://ieeexplore.ieee.org/document/8012392/ (2020).

3. Hehenberger, P. et al. Design, modelling, simulation and integration of cyber phys-

ical systems: Methods and applications. en. Computers in Industry 82, 273–289.

issn: 01663615. https://linkinghub.elsevier.com/retrieve/pii/S0166361516300902

(2020) (Oct. 2016).

4. Inggs, G., Fleming, S., Thomas, D. & Luk, W. Is High Level Synthesis ready for

business? A computational finance case study. en, 8 (2014).

5. Bengler, K. et al. Three Decades of Driver Assistance Systems: Review and Future

Perspectives. en. IEEE Intelligent Transportation Systems Magazine 6, 6–22. issn:

1939-1390. http://ieeexplore.ieee.org/document/6936444/ (2019) (2014).

6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. en. Nature 521, 436–444. issn:

0028-0836, 1476-4687. http://www.nature.com/articles/nature14539 (2019)

(May 2015).

7. Wickramasinghe, C. S., Marino, D. L., Amarasinghe, K. & Manic, M. Gener-

alization of Deep Learning for Cyber-Physical System Security: A Survey en. in

IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society

(IEEE, Washington, DC, Oct. 2018), 745–751. isbn: 978-1-5090-6684-1. https:

//ieeexplore.ieee.org/document/8591773/ (2019).

8. Arif, A. et al. Performance and energy-efficient implementation of a smart city

application on FPGAs. en. Journal of Real-Time Image Processing. issn: 1861-

137

http://ieeexplore.ieee.org/document/8012392/
https://linkinghub.elsevier.com/retrieve/pii/S0166361516300902
http://ieeexplore.ieee.org/document/6936444/
http://www.nature.com/articles/nature14539
https://ieeexplore.ieee.org/document/8591773/
https://ieeexplore.ieee.org/document/8591773/


8200, 1861-8219. http://link.springer.com/10.1007/s11554-018-0792-x

(2020) (June 2018).

9. Iandola, F. & Keutzer, K. Small neural nets are beautiful: enabling embedded sys-

tems with small deep-neural-network architectures. en, 10. https://ieeexplore.

ieee.org/abstract/document/8101283 (2017).

10. Wang, C. et al. DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. en.

arXiv:1605.06894 [cs]. arXiv: 1605.06894. http://arxiv.org/abs/1605.06894

(2019) (May 2016).

11. Birk, M., Zapf, M., Balzer, M., Ruiter, N. & Becker, J. A comprehensive comparison

of GPU- and FPGA-based acceleration of reflection image reconstruction for 3D

ultrasound computer tomography. en. Journal of Real-Time Image Processing 9,

159–170. issn: 1861-8200, 1861-8219. http://link.springer.com/10.1007/

s11554-012-0267-4 (2020) (Mar. 2014).

12. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. Efficient Processing of Deep Neural

Networks: A Tutorial and Survey. en. arXiv:1703.09039 [cs]. arXiv: 1703.09039.

http://arxiv.org/abs/1703.09039 (2020) (Aug. 2017).

13. Sangiovanni-Vincentelli, A. & Martin, G. Platform-based design and software de-

sign methodology for embedded systems. IEEE Design & Test of Computers 18

(Nov. 2001).

14. ETSI, E. E. 302 665 V1. 1.1: Intelligent transport systems (ITS), communications

architecture. European Standard (Telecommunications Series)(September 2010) (2010).

15. Committee, I. C. S. L. S. IEEE Standard for Information technology-Telecommunications

and information exchange between systems-Local and metropolitan area networks-

Specific requirements Part 11 : Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications. IEEE Std 802.11^<TM>. https://ci.nii.

ac.jp/naid/10030068811/en/ (2007).

138

http://link.springer.com/10.1007/s11554-018-0792-x
https://ieeexplore.ieee.org/abstract/document/8101283
https://ieeexplore.ieee.org/abstract/document/8101283
http://arxiv.org/abs/1605.06894
http://link.springer.com/10.1007/s11554-012-0267-4
http://link.springer.com/10.1007/s11554-012-0267-4
http://arxiv.org/abs/1703.09039
https://ci.nii.ac.jp/naid/10030068811/en/
https://ci.nii.ac.jp/naid/10030068811/en/


16. Bouchemal, N. Quality of Service Provisioning and Performance Analysis in Ve-

hicular Network en. PhD thesis (June 2015).

17. Jensen, J. C., Chang, D. H. & Lee, E. A. A model-based design methodology for

cyber-physical systems en. in 2011 7th International Wireless Communications and

Mobile Computing Conference (IEEE, Istanbul, Turkey, July 2011), 1666–1671.

isbn: 978-1-4244-9539-9. http://ieeexplore.ieee.org/document/5982785/

(2020).

18. Shi, J., Wan, J., Yan, H. & Suo, H. A survey of Cyber-Physical Systems en. in

2011 International Conference on Wireless Communications and Signal Processing

(WCSP) (IEEE, Nanjing, China, Nov. 2011), 1–6. isbn: 978-1-4577-1010-0 978-

1-4577-1009-4 978-1-4577-1007-0 978-1-4577-1008-7. http://ieeexplore.ieee.

org/document/6096958/ (2020).

19. Sangiovanni-Vincentelli, A., Damm, W. & Passerone, R. Taming Dr. Frankenstein:

Contract-Based Design for Cyber-Physical Systems*. en. European Journal of Con-

trol 18, 217–238. issn: 09473580. https://linkinghub.elsevier.com/retrieve/

pii/S0947358012709433 (2020) (Jan. 2012).

20. Sztipanovits, J. et al. Toward a Science of Cyber–Physical System Integration.

en. Proceedings of the IEEE 100, 29–44. issn: 0018-9219, 1558-2256. http://

ieeexplore.ieee.org/document/6008519/ (2020) (Jan. 2012).

21. Sztipanovits, J. et al. Model and Tool Integration Platforms for Cyber–Physical

System Design. en. Proceedings of the IEEE 106, 1501–1526. issn: 0018-9219, 1558-

2256. https://ieeexplore.ieee.org/document/8396214/ (2020) (Sept. 2018).

22. Pinto, A., Bonivento, A., Sangiovanni-Vincentelli, A. L., Passerone, R. & Sgroi, M.

System level design paradigms: Platform-based design and communication synthe-

sis. en. ACM Transactions on Design Automation of Electronic Systems 11, 537–

563. issn: 10844309. http://portal.acm.org/citation.cfm?doid=1142980.

1142982 (2019) (July 2006).

139

http://ieeexplore.ieee.org/document/5982785/
http://ieeexplore.ieee.org/document/6096958/
http://ieeexplore.ieee.org/document/6096958/
https://linkinghub.elsevier.com/retrieve/pii/S0947358012709433
https://linkinghub.elsevier.com/retrieve/pii/S0947358012709433
http://ieeexplore.ieee.org/document/6008519/
http://ieeexplore.ieee.org/document/6008519/
https://ieeexplore.ieee.org/document/8396214/
http://portal.acm.org/citation.cfm?doid=1142980.1142982
http://portal.acm.org/citation.cfm?doid=1142980.1142982


23. Nuzzo, P., Sangiovanni-Vincentelli, A. L., Bresolin, D., Geretti, L. & Villa, T. A

Platform-Based Design Methodology With Contracts and Related Tools for the

Design of Cyber-Physical Systems. en. Proceedings of the IEEE 103, 2104–2132.

issn: 0018-9219, 1558-2256. http://ieeexplore.ieee.org/document/7268792/

(2020) (Nov. 2015).

24. Guo, K., Zeng, S., Yu, J., Wang, Y. & Yang, H. [DL] A Survey of FPGA-based

Neural Network Inference Accelerators. en. ACM Transactions on Reconfigurable

Technology and Systems 12, 1–26. issn: 19367406. http://dl.acm.org/citation.

cfm?doid=3310278.3289185 (2019) (Mar. 2019).

25. Li, L. et al. An integrated hardware/software design methodology for signal pro-

cessing systems. en. Journal of Systems Architecture 93, 1–19. issn: 13837621.

https://linkinghub.elsevier.com/retrieve/pii/S1383762118301735 (2020)

(Feb. 2019).

26. Shawahna, A., Sait, S. M. & El-Maleh, A. FPGA-Based Accelerators of Deep Learn-

ing Networks for Learning and Classification: A Review. en. IEEE Access 7, 7823–

7859. issn: 2169-3536. https://ieeexplore.ieee.org/document/8594633/

(2020) (2019).

27. Sackinger, E., Boser, B., Bromley, J., LeCun, Y. & Jackel, L. Application of the

ANNA neural network chip to high-speed character recognition. IEEE Transactions

on Neural Networks 3, 498–505. issn: 10459227. http://ieeexplore.ieee.org/

document/129422/ (2019) (May 1992).

28. Säckinger, E., Boser, B. E. & Jackel, L. D. A Neurocomputer Board Based on the

ANNA Neural Network Chip. en, 8 (1992).

29. Botros, N. & Abdul-Aziz, M. Hardware implementation of an artificial neural net-

work using field programmable gate arrays (FPGA’s). en. IEEE Transactions on

Industrial Electronics 41, 665–667. issn: 02780046. http://ieeexplore.ieee.

org/document/334585/ (2020) (Dec. 1994).

140

http://ieeexplore.ieee.org/document/7268792/
http://dl.acm.org/citation.cfm?doid=3310278.3289185
http://dl.acm.org/citation.cfm?doid=3310278.3289185
https://linkinghub.elsevier.com/retrieve/pii/S1383762118301735
https://ieeexplore.ieee.org/document/8594633/
http://ieeexplore.ieee.org/document/129422/
http://ieeexplore.ieee.org/document/129422/
http://ieeexplore.ieee.org/document/334585/
http://ieeexplore.ieee.org/document/334585/


30. Ferrer, D., Gonzalez, R., Fleitas, R., Acle, J. & Canetti, R. NeuroFPGA-implementing

artificial neural networks on programmable logic devices en. in Proceedings Design,

Automation and Test in Europe Conference and Exhibition (IEEE Comput. Soc,

Paris, France, 2004), 218–223. isbn: 978-0-7695-2085-8. http://ieeexplore.ieee.

org/document/1269233/ (2019).

31. FPGA implementations of neural networks en (eds Ormondi, A. R. & Rajapakse,

J. C.) OCLC: ocm61477766. isbn: 978-0-387-28485-9 978-0-387-28487-3 (Springer,

Dordrecht, The Netherlands, 2006).

32. Sahin, S., Becerikli, Y. & Yazici, S. en. in Neural Information Processing (eds

Hutchison, D. et al.) 1105–1112 (Springer Berlin Heidelberg, Berlin, Heidelberg,

2006). isbn: 978-3-540-46484-6 978-3-540-46485-3. http://link.springer.com/

10.1007/11893295_122 (2020).

33. Farabet, C., Poulet, C. & LeCun, Y. An FPGA-based stream processor for em-

bedded real-time vision with Convolutional Networks en. in 2009 IEEE 12th In-

ternational Conference on Computer Vision Workshops, ICCV Workshops (IEEE,

Kyoto, Sept. 2009), 878–885. isbn: 978-1-4244-4442-7. http://ieeexplore.ieee.

org/document/5457611/ (2019).

34. Farabet, C., Poulet, C., Han, J. Y. & LeCun, Y. CNP: An FPGA-based processor

for Convolutional Networks en. in 2009 International Conference on Field Pro-

grammable Logic and Applications (IEEE, Prague, Czech Republic, Aug. 2009),

32–37. http://ieeexplore.ieee.org/document/5272559/ (2019).

35. Farabet, C. et al. Hardware accelerated convolutional neural networks for synthetic

vision systems en. in Proceedings of 2010 IEEE International Symposium on Cir-

cuits and Systems (IEEE, Paris, France, May 2010), 257–260. isbn: 978-1-4244-

5308-5. http://ieeexplore.ieee.org/document/5537908/ (2019).

36. Farabet, C. et al. NeuFlow: A runtime reconfigurable dataflow processor for vision

en. in CVPR 2011 WORKSHOPS (IEEE, Colorado Springs, CO, USA, June 2011),

141

http://ieeexplore.ieee.org/document/1269233/
http://ieeexplore.ieee.org/document/1269233/
http://link.springer.com/10.1007/11893295_122
http://link.springer.com/10.1007/11893295_122
http://ieeexplore.ieee.org/document/5457611/
http://ieeexplore.ieee.org/document/5457611/
http://ieeexplore.ieee.org/document/5272559/
http://ieeexplore.ieee.org/document/5537908/


109–116. isbn: 978-1-4577-0529-8. http://ieeexplore.ieee.org/document/

5981829/ (2019).

37. Farabet, C. et al. en. in Scaling Up Machine Learning (eds Bekkerman, R., Bilenko,

M. & Langford, J.) 399–419 (Cambridge University Press, Cambridge, 2011). isbn:

978-1-139-04291-8. https://www.cambridge.org/core/product/identifier/

CBO9781139042918A158/type/book_part (2019).

38. Pham, P.-H. et al. NeuFlow: Dataflow vision processing system-on-a-chip en. in

2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWS-

CAS) (IEEE, Boise, ID, USA, Aug. 2012), 1044–1047. isbn: 978-1-4673-2527-1

978-1-4673-2526-4 978-1-4673-2525-7. http://ieeexplore.ieee.org/document/

6292202/ (2019).

39. Esmaeilzadeh, H., Sampson, A., Ceze, L. & Burger, D. Neural acceleration for

general-purpose approximate programs. en. Communications of the ACM 58, 105–

115. issn: 00010782. http://dl.acm.org/citation.cfm?doid=2688498.2589750

(2019) (Dec. 2014).

40. Lozito, G.-M., Laudani, A., Riganti Fulginei, F. & Salvini, A. FPGA Implementa-

tions of Feed Forward Neural Network by using Floating Point Hardware Accelera-

tors. en. Advances in Electrical and Electronic Engineering 12, 30–39. issn: 1804-

3119, 1336-1376. http://advances.utc.sk/index.php/AEEE/article/view/831

(2020) (Mar. 2014).

41. Chen, T. et al. DianNao: a small-footprint high-throughput accelerator for ubiqui-

tous machine-learning en. in Proceedings of the 19th international conference on

Architectural support for programming languages and operating systems - ASPLOS

’14 (ACM Press, Salt Lake City, Utah, USA, 2014), 269–284. isbn: 978-1-4503-

2305-5. http://dl.acm.org/citation.cfm?doid=2541940.2541967 (2019).

42. Zhang, C. et al. Optimizing FPGA-based Accelerator Design for Deep Convolutional

Neural Networks en. in Proceedings of the 2015 ACM/SIGDA International Sym-

142

http://ieeexplore.ieee.org/document/5981829/
http://ieeexplore.ieee.org/document/5981829/
https://www.cambridge.org/core/product/identifier/CBO9781139042918A158/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9781139042918A158/type/book_part
http://ieeexplore.ieee.org/document/6292202/
http://ieeexplore.ieee.org/document/6292202/
http://dl.acm.org/citation.cfm?doid=2688498.2589750
http://advances.utc.sk/index.php/AEEE/article/view/831
http://dl.acm.org/citation.cfm?doid=2541940.2541967


posium on Field-Programmable Gate Arrays - FPGA ’15 (ACM Press, Monterey,

California, USA, 2015), 161–170. isbn: 978-1-4503-3315-3. http://dl.acm.org/

citation.cfm?doid=2684746.2689060 (2019).

43. Zhang, C., Fang, Z., Zhou, P., Pan, P. & Cong, J. Caffeine: towards uniformed

representation and acceleration for deep convolutional neural networks en. in Pro-

ceedings of the 35th International Conference on Computer-Aided Design - IC-

CAD ’16 (ACM Press, Austin, Texas, 2016), 1–8. isbn: 978-1-4503-4466-1. http:

//dl.acm.org/citation.cfm?doid=2966986.2967011 (2019).

44. Venkatesh, G., Nurvitadhi, E. & Marr, D. Accelerating Deep Convolutional Net-

works using low-precision and sparsity. en. arXiv:1610.00324 [cs]. arXiv: 1610.00324.

http://arxiv.org/abs/1610.00324 (2019) (Oct. 2016).

45. Gokhale, V., Zaidy, A., Chang, A. X. M. & Culurciello, E. Snowflake: A Model Ag-

nostic Accelerator for Deep Convolutional Neural Networks. en. arXiv:1708.02579

[cs]. arXiv: 1708.02579. http://arxiv.org/abs/1708.02579 (2019) (Aug. 2017).

46. Kreinar, E. J. RFNoC Neural Network Library using Vivado HLS. en. Proceedings

of the GNU Radio Conference, 7 (2017).

47. Xilinx. Vivado Design Suite HLx Editions 2018. https : / / www . xilinx . com /

products/design-tools/vivado.html.

48. Zhou, Y., Redkar, S. & Huang, X. Deep learning binary neural network on an

FPGA en. in 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS) (IEEE, Boston, MA, USA, Aug. 2017), 281–284. isbn: 978-1-

5090-6389-5. http://ieeexplore.ieee.org/document/8052915/ (2019).

49. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks.

en. Neural Computing and Applications. issn: 0941-0643, 1433-3058. http://link.

springer.com/10.1007/s00521-018-3761-1 (2019) (Oct. 2018).

143

http://dl.acm.org/citation.cfm?doid=2684746.2689060
http://dl.acm.org/citation.cfm?doid=2684746.2689060
http://dl.acm.org/citation.cfm?doid=2966986.2967011
http://dl.acm.org/citation.cfm?doid=2966986.2967011
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1708.02579
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://ieeexplore.ieee.org/document/8052915/
http://link.springer.com/10.1007/s00521-018-3761-1
http://link.springer.com/10.1007/s00521-018-3761-1


50. Venieris, S. I., Kouris, A. & Bouganis, C.-S. Toolflows for Mapping Convolutional

Neural Networks on FPGAs: A Survey and Future Directions. en. arXiv:1803.05900

[cs]. arXiv: 1803.05900. http://arxiv.org/abs/1803.05900 (2019) (Mar. 2018).

51. Wang, T., Wang, C., Zhou, X. & Chen, H. A Survey of FPGA Based Deep Learn-

ing Accelerators: Challenges and Opportunities. en. arXiv:1901.04988 [cs]. arXiv:

1901.04988. http://arxiv.org/abs/1901.04988 (2019) (Dec. 2018).

52. Liu, B., Gould, S. & Koller, D. Single image depth estimation from predicted seman-

tic labels en. in 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (IEEE, San Francisco, CA, USA, June 2010), 1253–1260. isbn:

978-1-4244-6984-0. http://ieeexplore.ieee.org/document/5539823/ (2021).

53. Liu, F., Chunhua Shen & Guosheng Lin. Deep convolutional neural fields for depth

estimation from a single image en. in 2015 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, June 2015),

5162–5170. isbn: 978-1-4673-6964-0. http://ieeexplore.ieee.org/document/

7299152/ (2021).

54. Chen, X., Ma, H., Wan, J., Li, B. & Xia, T.Multi-view 3D Object Detection Network

for Autonomous Driving en. in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (IEEE, Honolulu, HI, July 2017), 6526–6534. isbn:

978-1-5386-0457-1. http://ieeexplore.ieee.org/document/8100174/ (2019).

55. Maturana, D. & Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-

time object recognition en. in 2015 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS) (IEEE, Hamburg, Germany, Sept. 2015), 922–928.

isbn: 978-1-4799-9994-1. http://ieeexplore.ieee.org/document/7353481/

(2019).

56. Brock, A., Lim, T., Ritchie, J. M. & Weston, N. Generative and Discriminative

Voxel Modeling with Convolutional Neural Networks. en. arXiv:1608.04236 [cs,

stat]. arXiv: 1608.04236. http://arxiv.org/abs/1608.04236 (2020) (Aug. 2016).

144

http://arxiv.org/abs/1803.05900
http://arxiv.org/abs/1901.04988
http://ieeexplore.ieee.org/document/5539823/
http://ieeexplore.ieee.org/document/7299152/
http://ieeexplore.ieee.org/document/7299152/
http://ieeexplore.ieee.org/document/8100174/
http://ieeexplore.ieee.org/document/7353481/
http://arxiv.org/abs/1608.04236


57. Garcia-Garcia, A. et al. PointNet: A 3D Convolutional Neural Network for real-

time object class recognition en. in 2016 International Joint Conference on Neural

Networks (IJCNN) (IEEE, Vancouver, BC, Canada, July 2016), 1578–1584. isbn:

978-1-5090-0620-5. http://ieeexplore.ieee.org/document/7727386/ (2020).

58. Hegde, V. & Zadeh, R. FusionNet: 3D Object Classification Using Multiple Data

Representations. en. arXiv:1607.05695 [cs]. arXiv: 1607.05695. http://arxiv.

org/abs/1607.05695 (2020) (Nov. 2016).

59. Jing Huang & Suya You. Point cloud labeling using 3D Convolutional Neural Net-

work en. in 2016 23rd International Conference on Pattern Recognition (ICPR)

(IEEE, Cancun, Dec. 2016), 2670–2675. isbn: 978-1-5090-4847-2. http://ieeexplore.

ieee.org/document/7900038/ (2020).

60. Charles, R. Q., Su, H., Kaichun, M. & Guibas, L. J. PointNet: Deep Learning on

Point Sets for 3D Classification and Segmentation en. in 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, July

2017), 77–85. isbn: 978-1-5386-0457-1. http://ieeexplore.ieee.org/document/

8099499/ (2020).

61. Zhi, S., Liu, Y., Li, X. & Guo, Y. LightNet: A Lightweight 3D Convolutional Neural

Network for Real-Time 3D Object Recognition. en. Eurographics Workshop on 3D

Object Retrieval, 8 pages. issn: 1997-0471. https://diglib.eg.org/handle/10.

2312/3dor20171046 (2020) (2017).

62. Ioannidou, A., Chatzilari, E., Nikolopoulos, S. & Kompatsiaris, I. en. in MultiMedia

Modeling (eds Kompatsiaris, I. et al.) 495–506 (Springer International Publishing,

Cham, 2019). isbn: 978-3-030-05709-1 978-3-030-05710-7. http://link.springer.

com/10.1007/978-3-030-05710-7_41 (2020).

63. Nurvitadhi, E. et al. Accelerating Binarized Neural Networks: Comparison of FPGA,

CPU, GPU, and ASIC en. in 2016 International Conference on Field-Programmable

145

http://ieeexplore.ieee.org/document/7727386/
http://arxiv.org/abs/1607.05695
http://arxiv.org/abs/1607.05695
http://ieeexplore.ieee.org/document/7900038/
http://ieeexplore.ieee.org/document/7900038/
http://ieeexplore.ieee.org/document/8099499/
http://ieeexplore.ieee.org/document/8099499/
https://diglib.eg.org/handle/10.2312/3dor20171046
https://diglib.eg.org/handle/10.2312/3dor20171046
http://link.springer.com/10.1007/978-3-030-05710-7_41
http://link.springer.com/10.1007/978-3-030-05710-7_41


Technology (FPT) (IEEE, Xi’an, China, Dec. 2016), 77–84. isbn: 978-1-5090-5602-

6. http://ieeexplore.ieee.org/document/7929192/ (2019).

64. Nurvitadhi, E. et al. Accelerating recurrent neural networks in analytics servers:

Comparison of FPGA, CPU, GPU, and ASIC en. in 2016 26th International Con-

ference on Field Programmable Logic and Applications (FPL) (IEEE, Lausanne,

Switzerland, Aug. 2016), 1–4. isbn: 978-2-8399-1844-2. http://ieeexplore.ieee.

org/document/7577314/ (2019).

65. Nurvitadhi, E. et al. Can FPGAs Beat GPUs in Accelerating Next-Generation Deep

Neural Networks? en. in Proceedings of the 2017 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays - FPGA ’17 (ACM Press, Monterey,

California, USA, 2017), 5–14. isbn: 978-1-4503-4354-1. http://dl.acm.org/

citation.cfm?doid=3020078.3021740 (2019).

66. Andrews, D., Niehaus, D. & Ashenden, P. Programming models for hybrid CPU/F-

PGA chips. en. Computer 37, 118–120. issn: 0018-9162. http://ieeexplore.

ieee.org/document/1319290/ (2020) (Jan. 2004).

67. Andrews, D., Niehaus, D. & Jidin, R. Implementing the Thread Programming

Model on Hybrid FPGA/CPU Computational Components. en, 6 (2004).

68. Nane, R. et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools.

en. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems 35, 1591–1604. issn: 0278-0070, 1937-4151. http://ieeexplore.ieee.org/

document/7368920/ (2019) (Oct. 2016).

69. Jouppi, N. P. et al. In-Datacenter Performance Analysis of a Tensor Processing

UnitTM. en, 17 (June 2017).

70. Apple Inc. iPhone XS - Technical Specification Sept. 2018. https://www.apple.

com/iphone-xs/specs/.

146

http://ieeexplore.ieee.org/document/7929192/
http://ieeexplore.ieee.org/document/7577314/
http://ieeexplore.ieee.org/document/7577314/
http://dl.acm.org/citation.cfm?doid=3020078.3021740
http://dl.acm.org/citation.cfm?doid=3020078.3021740
http://ieeexplore.ieee.org/document/1319290/
http://ieeexplore.ieee.org/document/1319290/
http://ieeexplore.ieee.org/document/7368920/
http://ieeexplore.ieee.org/document/7368920/
https://www.apple.com/iphone-xs/specs/
https://www.apple.com/iphone-xs/specs/


71. Jeremy Hsu. Nervana Systems Puts Deep Learning AI in the Cloud Mar. 2016.

https://spectrum.ieee.org/tech- talk/computing/software/nervana-

systems-puts-deep-learning-ai-in-the-cloud.

72. Marantos, C. et al. Efficient support vector machines implementation on Intel/-

Movidius Myriad 2 en. in 2018 7th International Conference on Modern Circuits

and Systems Technologies (MOCAST) (IEEE, Thessaloniki, May 2018), 1–4. isbn:

978-1-5386-4788-2. https://ieeexplore.ieee.org/document/8376630/ (2021).

73. Eigner, M., Dickopf, T. & Apostolov, H. en. in Product Lifecycle Management and

the Industry of the Future (eds Ríos, J., Bernard, A., Bouras, A. & Foufou, S.)

Series Title: IFIP Advances in Information and Communication Technology, 382–

393 (Springer International Publishing, Cham, 2017). isbn: 978-3-319-72904-6 978-

3-319-72905-3. http://link.springer.com/10.1007/978-3-319-72905-3_34

(2020).

74. Cabanes, Q. Automation script of bootable SDcard for Zynq board https://github.com/Tigralt/zynq-

boot. 2018. https://github.com/Tigralt/zynq-boot.

75. Cabanes, Q. & Senouci, B. Objects detection and recognition in smart vehicle ap-

plications: Point cloud based approach en. in 2017 Ninth International Conference

on Ubiquitous and Future Networks (ICUFN) (IEEE, Milan, July 2017), 287–289.

isbn: 978-1-5090-4749-9. http://ieeexplore.ieee.org/document/7993795/

(2019).

76. GNU make http://www.gnu.org/software/make/manual/make.html.

77. Xilinx. ZedBoard https://www.xilinx.com/products/boards-and-kits/1-

8dyf-11.html.

78. Ovtcharov, K. et al. Accelerating Deep Convolutional Neural Networks Using Spe-

cialized Hardware. en, 4 (2015).

147

https://spectrum.ieee.org/tech-talk/computing/software/nervana-systems-puts-deep-learning-ai-in-the-cloud
https://spectrum.ieee.org/tech-talk/computing/software/nervana-systems-puts-deep-learning-ai-in-the-cloud
https://ieeexplore.ieee.org/document/8376630/
http://link.springer.com/10.1007/978-3-319-72905-3_34
https://github.com/Tigralt/zynq-boot
http://ieeexplore.ieee.org/document/7993795/
http://www.gnu.org/software/make/manual/make.html
https://www.xilinx.com/products/boards-and-kits/1-8dyf-11.html
https://www.xilinx.com/products/boards-and-kits/1-8dyf-11.html


79. Courbariaux, M., Bengio, Y. & David, J.-P. Training deep neural networks with

low precision multiplications. en. arXiv:1412.7024 [cs]. arXiv: 1412.7024. http:

//arxiv.org/abs/1412.7024 (2020) (Sept. 2015).

80. Govindu, G., Ling Zhuo, Seonil Choi & Prasanna, V. Analysis of high-performance

floating-point arithmetic on FPGAs en. in 18th International Parallel and Dis-

tributed Processing Symposium, 2004. Proceedings. (IEEE, Santa Fe, NM, USA,

2004), 149–156. isbn: 978-0-7695-2132-9. http://ieeexplore.ieee.org/document/

1303135/ (2020).

81. Underwood, K. FPGAs vs. CPUs: trends in peak floating-point performance en.

in Proceeding of the 2004 ACM/SIGDA 12th international symposium on Field

programmable gate arrays - FPGA ’04 (ACM Press, Monterey, California, USA,

2004), 171. isbn: 978-1-58113-829-0. http://portal.acm.org/citation.cfm?

doid=968280.968305 (2020).

82. Dou, Y., Vassiliadis, S., Kuzmanov, G. K. & Gaydadjiev, G. N. 64-bit floating-

point FPGA matrix multiplication en. in Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays - FPGA ’05 (ACM

Press, Monterey, California, USA, 2005), 86. isbn: 978-1-59593-029-3. http://

portal.acm.org/citation.cfm?doid=1046192.1046204 (2020).

83. Roldao Lopes, A. & Constantinides, G. A. en. in Reconfigurable Computing: Ar-

chitectures, Tools and Applications (eds Hutchison, D. et al.) Series Title: Lecture

Notes in Computer Science, 157–168 (Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2010). isbn: 978-3-642-12132-6 978-3-642-12133-3. http://link.springer.

com/10.1007/978-3-642-12133-3_16 (2020).

84. Courbariaux, M., Bengio, Y. & David, J.-P. BinaryConnect: Training Deep Neural

Networks with binary weights during propagations. en, 9 (2015).

85. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. & Bengio, Y. Binarized

Neural Networks: Training Deep Neural Networks with Weights and Activations

148

http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
http://ieeexplore.ieee.org/document/1303135/
http://ieeexplore.ieee.org/document/1303135/
http://portal.acm.org/citation.cfm?doid=968280.968305
http://portal.acm.org/citation.cfm?doid=968280.968305
http://portal.acm.org/citation.cfm?doid=1046192.1046204
http://portal.acm.org/citation.cfm?doid=1046192.1046204
http://link.springer.com/10.1007/978-3-642-12133-3_16
http://link.springer.com/10.1007/978-3-642-12133-3_16


Constrained to +1 or -1. en. arXiv:1602.02830 [cs]. arXiv: 1602.02830. http://

arxiv.org/abs/1602.02830 (2019) (Feb. 2016).

86. Ioualalen, A. & Martel, M. en. in Quantitative Evaluation of Systems (eds Parker,

D. & Wolf, V.) Series Title: Lecture Notes in Computer Science, 129–143 (Springer

International Publishing, Cham, 2019). isbn: 978-3-030-30280-1 978-3-030-30281-8.

http://link.springer.com/10.1007/978-3-030-30281-8_8 (2021).

87. Cabanes, Q. Hardware Neural Network Processor https://github.com/Tigralt/hardware-

neural-network-processor. 2020. https://github.com/Tigralt/hardware-neural-

network-processor.

88. Lin, Z., Memisevic, R. & Konda, K. How far can we go without convolution: Im-

proving fully-connected networks. en. arXiv:1511.02580 [cs]. arXiv: 1511.02580.

http://arxiv.org/abs/1511.02580 (2020) (Nov. 2015).

89. Oliphant, T. NumPy: A guide to NumPy Published: USA: Trelgol Publishing. http:

//www.numpy.org/ (2006).

90. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images en. Tech

Report. Apr. 2009.

91. LeCun, Y. & Cortes, C. MNIST handwritten digit database. http://yann.lecun.

com/exdb/mnist/ (2016) (2010).

92. Quadros, A. J. Representing 3D Shape in Sparse Range Images for Urban Object

Classification. en, 204.

93. Deuge, M. D., Quadros, A., Hung, C. & Douillard, B. Unsupervised Feature Learn-

ing for Classification of Outdoor 3D Scans. en, 9 (2013).

94. Abadi, M. et al. TensorFlow: A system for large-scale machine learning. en, 21

(2016).

149

http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://link.springer.com/10.1007/978-3-030-30281-8_8
https://github.com/Tigralt/hardware-neural-network-processor
https://github.com/Tigralt/hardware-neural-network-processor
http://arxiv.org/abs/1511.02580
http://www.numpy.org/
http://www.numpy.org/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


95. Vivado Design Suite. AXI DMA v7.1 LogiCORE IP Product Guide. en, 97. https:

//www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_

1/pg021_axi_dma.pdf (2019).

96. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms arXiv: cs.LG/1708.07747. Aug. 2017.

97. Hinton, G. E. en. in Neural Networks: Tricks of the Trade (eds Montavon, G., Orr,

G. B. & Müller, K.-R.) Series Title: Lecture Notes in Computer Science, 599–619

(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012). isbn: 978-3-642-35288-1 978-

3-642-35289-8. http://link.springer.com/10.1007/978-3-642-35289-8_32

(2020).

98. Hinton, G. E. Training products of experts by minimizing contrastive divergence.

Neural computation 14. Publisher: MIT Press, 1771–1800 (2002).

99. Konda, K., Memisevic, R. & Krueger, D. Zero-bias autoencoders and the benefits

of co-adapting features. en. arXiv:1402.3337 [cs, stat]. arXiv: 1402.3337. http:

//arxiv.org/abs/1402.3337 (2020) (Apr. 2015).

100. Senouci, B., Charfi, I., Heyrman, B., Dubois, J. & Miteran, J. Fast prototyping

of a SoC-based smart-camera: a real-time fall detection case study. en. Journal

of Real-Time Image Processing 12, 649–662. issn: 1861-8200, 1861-8219. http:

//link.springer.com/10.1007/s11554-014-0456-4 (2021) (Dec. 2016).

101. Thrun, S. et al. Stanley: The robot that won the DARPA Grand Challenge. en.

Journal of Field Robotics 23, 661–692. issn: 15564959, 15564967. http://doi.

wiley.com/10.1002/rob.20147 (2020) (Sept. 2006).

102. Wojek, C., Dorkó, G., Schulz, A. & Schiele, B. en. in Pattern Recognition (eds

Hutchison, D. et al.) 71–81 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).

isbn: 978-3-540-69320-8 978-3-540-69321-5. http://link.springer.com/10.

1007/978-3-540-69321-5_8 (2019).

150

https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://link.springer.com/10.1007/978-3-642-35289-8_32
http://arxiv.org/abs/1402.3337
http://arxiv.org/abs/1402.3337
http://link.springer.com/10.1007/s11554-014-0456-4
http://link.springer.com/10.1007/s11554-014-0456-4
http://doi.wiley.com/10.1002/rob.20147
http://doi.wiley.com/10.1002/rob.20147
http://link.springer.com/10.1007/978-3-540-69321-5_8
http://link.springer.com/10.1007/978-3-540-69321-5_8


103. Rosebrock, Adrian. Sliding Windows for Object Detection with Python and OpenCV

Mar. 2015. http://www.pyimagesearch.com/2015/03/23/sliding-windows-

for-object-detection-with-python-and-opencv/.

104. Spinello, L., Arras, K. O., Triebel, R. & Siegwart, R. A Layered Approach to Peo-

ple Detection in 3D Range Data. en. Proc. of The AAAI Conference on Artificial

Intelligence (AAAI), 6 (2010).

105. Spinello, L., Luber, M. & Arras, K. O. Tracking people in 3D using a bottom-

up top-down detector en. in 2011 IEEE International Conference on Robotics and

Automation (IEEE, Shanghai, China, May 2011), 1304–1310. isbn: 978-1-61284-

386-5. http://ieeexplore.ieee.org/document/5980085/ (2019).

106. Cabanes, Q., Senouci, B. & Ramdane-Cherif, A. A Complete Multi-CPU/FPGA-

based Design and Prototyping Methodology for Autonomous Vehicles: Multiple Ob-

ject Detection and Recognition Case Study en. in 2019 International Conference on

Artificial Intelligence in Information and Communication (ICAIIC) (IEEE, Oki-

nawa, Japan, Feb. 2019), 158–163. isbn: 978-1-5386-7822-0. https://ieeexplore.

ieee.org/document/8669047/ (2019).

151

http://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
http://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
http://ieeexplore.ieee.org/document/5980085/
https://ieeexplore.ieee.org/document/8669047/
https://ieeexplore.ieee.org/document/8669047/


Maison du doctorat de l’Université Paris-Saclay 

2ème étage aile ouest, Ecole normale supérieure Paris-Saclay           

4 avenue des Sciences,  

91190 Gif sur Yvette, France 

 

Titre : Nouvelle méthodologie de co-conception pour de l'apprentissage en profondeur basée sur une plate-

forme matérielle pour le prototypage de SCP: reconnaissance d'objets dans une étude de cas de véhicule 

autonome 

Mots clés : systèmes cyber-physiques; apprentissage en profondeur embarqué; FPGA; accélérateur de réseau 

de neurones; automatisation de prototype 

Résumé : Les Systèmes Cyber-Physiques (SCP) sont un 

sujet de recherche mature qui interagissent avec 

l'intelligence artificielle (IA) et les systèmes embarqués (SE). 

Un SCP peut être défini comme un SE en réseau qui peut 

analyser un environnement physique, via des capteurs, et 

prendre des décisions à partir de son état actuel pour 

affecter son environnement physique vers un résultat 

souhaité, via des actionneurs. Ces SCP nécessitent des 

algorithmes d’analyse de données puissants associés à des 

architectures matérielles robustes. D'une part, 

l'Apprentissage en Profondeur (AP) est proposé comme 

algorithme principal. D'autre part, les méthodologies de 

conception et de prototypage standard pour SE ne sont 

pas adaptées au prototypage de SCP moderne basé sur de 

l'AP, et plus particulièrement, des accélérateurs matériels 

d’AP. Finalement, cette méthodologie est validée avec un 

cas d’usage autour du véhicule autonome.  

Dans cette thèse, nous étudions la conception d'IA pour 

SCP autour de l'AP embarquée avec une plate-forme 

hybride CPU/FPGA (Field-Programmable Gate Array). 

Nous proposons une méthodologie de co-conception 

matérielle/logicielle pour développer des applications 

d'AP pour SCP qui est basée sur la conception et 

l'utilisation d'un accélérateur de réseau de neurones et 

d'un logiciel d'automatisation des étapes de la 

méthodologie pour accélérer le temps de prototypage. 

Nous présentons la conception et le prototypage de 

notre accélérateur matériel de réseau de neurones ainsi 

que le résultat de ses performances. Enfin, nous validons 

notre travail à l'aide d'un cas d’usage : un LIDAR (LIght 

Detection And Ranging) intelligent pour la détection 

d’objet autour d’un véhicule autonome. Ce cas d'usage 

est accompagné de plusieurs algorithmes de détection 

de piétons à l'aide du nuage de points 3D d'un LIDAR 

réalisé et testé sur plateforme logicielle et materielle. 

 

 

Title: New hardware platform-based deep learning co-design methodology for CPS prototyping: Objects 

recognition in autonomous vehicle case-study 

Keywords: cyber-physical systems; embedded deep learning; FPGA; neural network accelerator; hardware 

prototype automation 

Abstract: Cyber-Physical Systems (CPS) are a mature 

research technology topic that deals with Artificial 

Intelligence (AI) and Embedded Systems (ES). A CPS can be 

defined as a networked ES that can analyze a physical 

environment, via sensors, and make decisions from its 

current state to affect this physical environment toward a 

desired outcome with actuators. These CPS deal with data 

analysis, which need powerful algorithms combined with 

robust hardware architectures. On one hand, Deep 

Learning (DL) is proposed as the main solution algorithm. 

On the other hand, the standard design and prototyping 

methodologies for ES are not adapted to modern DL-based 

CPS, especially when using hardware accelerated DL 

processor. Finally, this methodology is validated with a use-

case around an autonomous vehicle. 

In this thesis, we investigate AI design for CPS around 

embedded DL using a hybrid CPU/FPGA (Field-

Programmable Gate Array) platform. We proposed a 

hardware/software co-design methodology to develop 

DL applications for CPS which is based on the usage of a 

neural network accelerator and automation software to 

speed up the prototyping time. We present our hardware 

neural network accelerator design and prototyping, as 

well as its performance results. Finally, we validate our 

work using a smart LIDAR (LIght Detection And Ranging) 

application use-case for object detection and 

recognition around an autonomous vehicle. This use-

case is presented with several algorithms for pedestrians 

detection using a 3D point cloud from a LIDAR, designed 

and tested on software and hardware platform.  

 

 


