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Préface

Résumé

L’interaction personne-machine fait partie des problèmes les plus complexes dans le
domaine de l’intelligence artificielle (IA). En effet, les logiciels qui coopèrent avec des
personnes dépendantes doivent avoir des qualités incompatibles telles que la rapidité
et l’expressivité, voire la précision et la généralité. L’objectif est alors de concevoir
des modèles et des mécanismes capables de faire un compromis entre efficacité et
généralité. Ces modèles permettent d’élargir les possibilités d’adaptation de manière
fluide et continue. Ainsi, la recherche d’une réponse complète et optimale a éclipsé
l’utilité de ces modèles. En effet, l’explicabilité et l’interactivité sont au cœur des
préoccupations populaires des systèmes modernes d’IA. Le principal problème avec de
telles exigences est que l’information sémantique est difficile à transmettre à un pro-
gramme. Une partie de la solution à ce problème réside dans la manière de représenter
les connaissances.

La formalisation est le meilleur moyen de définir rigoureusement un problème. Aussi,
les mathématiques sont le meilleur ensemble d’outils pour exprimer des notions
formelles. Cependant, comme notre approche exige des mathématiques non clas-
siques, il est plus facile de définir une théorie cohérente qui correspond simplement
à nos besoins. Cette théorie est une instance partielle de la théorie des catégories.
On propose une algèbre fonctionnelle inspirée du lambda calcul. Il est alors possible
de reconstruire des concepts mathématiques classiques ainsi que d’autres outils et
structures utiles à notre usage.

En se servant de ce formalisme, il devient possible d’axiomatiser un métalangage en-
domorphique. Celui-ci manipule une grammaire dynamique capable d’ajuster sa séman-
tique à l’usage. La reconnaissance des structures de base permet à ce langage de ne
pas utiliser de mot-clés. Ceci, combiné à un nouveau modèle de représentation des
connaissances, supporte la construction d’un modèle de représentation des connais-
sances expressive.

Avec ce langage et ce formalisme, il devient envisageable de créer des cadriciels dans
des champs jusqu’alors hétéroclites. Par exemple, en planification automatique, le
modèle classique à état rend l’unification de la représentation des domaines de plan-
ification impossible. Il en résulte un cadriciel général de la planification permettant
d’exprimer tout type de domaines en vigueur.

On crée alors des algorithmes concrets qui montrent le principe des solutions inter-
médiaires. Deux nouvelles approches à la planification en temps réel sont présen-
tées et évaluées. La première se base sur une euristique d’utilité des opérateurs de
planification afin de réparer des plans existants. La seconde utilise la planification
hiérarchique pour générer des plans valides qui sont des solutions abstraites et inter-
médiaires. Ces plans rendent possible un temps d’exécution plus court pour tout usage
ne nécessitant pas le plan détaillé.

1



Symbols

On illustre alors l’usage de ces plans sur la reconnaissance d’intention par planification
inversée. En effet, dans ce domaine, le fait de ne pas nécessiter de bibliothèques de
plans rend la création de modèles de reconnaissance plus aisée. En exploitant les plans
abstraits, il devient possible de réaliser un système théoriquement plus performant
que ceux utilisant de la planification complète.

Formatage

Dans cette section, nous présentons un guide rapide de la présentation de
l’information contenue dans ce document. Cela donnera sa structure globale et
chaque type de formatage et de sa signification.

Format texte

Le texte peut être souligné plus ou moins pour rendre un mot-clé plus visible.

Example

Certaines parties sont dans des cadres afin de les séparer du reste.

Les figures, extrait de code source, et autre présentation de données sont indexés par
un numéro unique afin de pouvoir facilement y faire référence dans le texte.

Références

Les citations textuelles seront dans ce format : Auteur et al. (année)) pour que l’auteur
fasse partie du texte et (Auteur et al.année) lorsqu’on se contente de faire référence
à l’œuvre. Cela peut aussi être des références internes qui sont aussi accessible par
un lien.

Citations

Parfois, les citations importantes doivent être mises en avant. Ils sont présentés
comme :

““Ne me citez pas là-dessus !”Gréa (2019)
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Preface

Abstract

Human-machine interaction is among the most complex problems in the field of AIArtificial
Intelligence

. In-
deed, software that cooperates with dependent people must have incompatible quali-
ties such as speed and expressiveness, or even precision and generality. The objective
is then to design models and mechanisms capable of making a compromise between ef-
ficiency and generality. These models make it possible to expand the possibilities of
adaptation in a fluid and continuous way. Thus, the search for a complete and optimal
response has overshadowed the usefulness of these models. Indeed, explainability
and interactivity are at the heart of popular concerns of modern AI systems. The main
issue with such requirements are that semantic information is hard to convey to a
program. Part of the solution to this problem lies in how to represent knowledge.

Formalization is the best way to rigorously define the problem. Mathematics is the
best set of tools to express formal notions. However, since our approach requires
non-classical mathematics, it is easier to define a coherent theory that simply fits
our needs. That theory is a weak instance of category theory. We propose a func-
tional algebra inspired by lambda calculus. It is then possible to reconstruct classical
mathematical concepts as well as other tools and structures useful for our usage.

By using this formalism, it becomes possible to axiomatize an endomorphic metalan-
guage. This one manipulates a dynamic grammar capable of adjusting its semantics to
exploitation. The recognition of basic structures allows this language to avoid using
keywords. This, combined with a new model of knowledge representation, supports
the construction of an expressive knowledge description model.

With this language and this formalism, it becomes possible to create frameworks in
fields that were previously heterogeneous. For example, in automatic planning, the
classic state-based model makes it impossible to unify the representation of planning
domains. This results in a general planning framework that allows all types of planning
domains to be expressed.

Concrete algorithms are then created that show the principle of intermediate solu-
tions. Two new approaches to real-time planning are developed and evaluated. The
first is based on a usefulness heuristic of planning operators to repair existing plans.
The second uses hierarchical task networks to generate valid plans that are abstract
and intermediate solutions. These plans allow for a shorter execution time for any
use that does not require a detailed plan.

We then illustrate the use of these plans on intent recognition by reverse planning.
Indeed, in this field, the fact that no plan libraries are required makes it easier to
design recognition models. By exploiting abstract plans, it becomes possible to create
a system theoretically more efficient than those using complete planning.
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Format

In this section we present a quick guide to the presentation of the information in this
document. This will give its global structure and each of the type of formatting and
its meaning.

Text format

The text can be emphasized more or less to make a key word more noticeable.

Example

Some parts are in frames to separate them from the rest.

Figures, source code excerpts, and other data presentations are indexed by a unique
number so that they can be easily referenced in the text.

Citations

In text citations will be in this format: Author et al. (year) to make the author part
of the text and (Author et al. year) when simply referencing the work.

It can also be internal references that are also accessible through a link.

Quotes

Sometimes, important quotes needs emphasis. They are presented as:

““Don’t quote me on that !” Gréa (2019)
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1 Introduction
In antiquity, philosophy, mathematics and logic were considered as a single discipline.
Since Aristotle we have realized that the world is not just black and white but full of
nuances and colors. The inspiration for this thesis comes from one of the most influen-
tial philosophers and scientists of his time: Alfred Korzibsky. He founded a discipline
he called general semantics to deal with problems of knowledge representation in hu-
mans. Korzibsky then found that complete knowledge of reality being inaccessible,
we had to abstract. This abstraction is then only similar to reality in its structure.
In these pioneering works, we find notions similar to that of modern descriptive lan-
guages.

It is from this inspiration that this document is built. We start off the beaten track
and away from computer science by a brief excursion into the world of mathematical
and logical formalism. This makes it possible to formalize a language that allows to
describe itself partially by structure and that evolves with its use. The rest of the
work illustrates the possible applications through specific fields such as automatic
planning and intention recognition.

1.1 Motivations

The social skills of modern robots are rather poor. Often, that lack inhibits human-
robot communication and cooperation. Humans being a social species, they require
the use of implicit social cues in order to interact comfortably with an interlocutor.

In order to enhance assistance to dependent people, we need to account for any defi-
ciency they might have. The main issue is that the patient is often unable or unwilling
to express their needs. That is a problem even with human caregivers as the informa-
tion about the patient’s intents needs to be inferred from their past actions.

This aspect of social communications often eludes the understanding of AI systems.
This is the reason why intent recognition is such a complicated problem. The primary
goal of this thesis is to address this issue and create the formal foundations of a
system able to help dependent people.

1.2 Problem

First, what exactly is intent recognition ? The problem is simple to express: finding
out what other agents want to do before they do. It is important to distinguish be-
tween several notions. Plans are the sequence of actions that the agent is doing to
achieve a goal. This goal is a concrete explanation of the wanted result. However, the
intent is more of a set of abstract goals, some of which may be vague or impossible
(e.g. drink something, survive forever, etc.).

7
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Some approaches use trivial machine learning methods, along with a hand-made plan
library to match observations to their most likely plan using statistics. The issue with
these common approaches is that they require an extensive amount of training data
and need to be trained on each agent. This makes the practicality of such system
quite limited. To address this issue, some works proposed hybrid approaches using
logical constraints on probabilistic methods. These constraints are made to guide the
resolution toward amore coherent solution. However, all probabilistic methods require
an existing plan library that can be quite expensive to create. Also, plan libraries
cannot take into account unforeseen or unlikely plans.

A work from Ramırez and Geffner (2009) added an interesting method to solve this
issue. Indeed, they noticed an interesting parallel between that problem and the field
of automated planning. This analogy was made by using the Theory of mind (Baker et
al. 2011), which states that any agent will infer the intent of other agents using a
projection of their own expectations on the observed behaviors of the other agents.

Planning

Intent
recognition 

Plan GOAL

This made the use of planning techniques possible to infer intents without the need for
extensive and well-crafted plan libraries. Now only the domain of the possible actions,
their effects and prerequisites are needed to infer the logical intent of an agent.

The main issue of planning for that particular use is computation time and search space
size. This prevents most planners to make any decision before the intent is already
realized and therefore being useless for assistance. This time constraint leads to the
search of a real-time planner algorithm that is also expressive and flexible.

1.3 Contributions

In order to achieve such a planner, the first step was to formalize what is exactly
needed to express a domain. Hierarchical and partially ordered plans gave the most
expressivity and flexibility but at the cost of time and performance. This is why, a new
formalism of knowledge representation was needed in order to increase the speed of
the search space exploration while restricting it using semantic inference rules.

While searching for a knowledge representation model, we developed some prototypes
using standard ontology tools but all proved to be too slow and inexpressive for that
application. This made the design of a lighter but more flexible knowledge represen-
tation model, a requirement for planning domain representation.

Then the planning formalism has to be encoded using our general knowledge represen-
tation tool. Since automated planning has a very diverse ecosystem of approaches and
paradigms, its standard, the PDDLPlanning Domain

Description
Language

needs use of various extensions. However, no gen-
eral formalism has been given for PDDL and some approaches often lack proper exten-
sions (hierarchical planning, plan representation, etc.). This is why a new formalism is
proposed and compared to the one used as the standard of the planning community.

Then finally, a couple of planners were designed to attempt answering the speed and
flexibility requirements of human intent recognition. The first one is a prototype that
aims to evaluate the advantages of repairing plans to use several heuristics. The sec-
ond is a more complete prototype derived from the first (without plan repairs), which
also implements a BFSBreadth-First

Search
approach to hierarchical decomposition of composite actions.

This allows the planner to provide intermediary plans that, while incomplete, are an

8



1.4 Plan

abstraction of the result plans. This allows for anytime intent recognition probability
computation using existing techniques of inverted planning.

1.4 Plan

In this document we will describe a few contributions from the new SELF Structurally
Expressive
Language
Framework

for intent
recognition. Each chapter builds on the previous one. Usually a chapter will be the
application of the one before, all going toward intent recognition using inverted plan-
ning.

Chapter 2First we will present a new mathematical model that suits our needs. This axiomatic
theory is used to create a model capable of describing all the mathematical notions
required for our work.

Chapter 3In the third chapter, a new knowledge description system is presented as well as the
associated grammar and inference framework. This system is based on triple repre-
sentation to allow for structurally defined semantic.

Chapter 4The chapter 4 is an introduction to automated planning along with a formal description
of a general planner using appropriate search spaces and solution constraints.

Chapter 5The fifth chapter is an application of knowledge description to automated planning.
This allows us to design a general planning framework that can express any existing
type of domain. Existing languages are compared to our proposed approach.

Chapter 6Using this framework, two online planning algorithms are presented in chapter six: one
that uses repairs on existing plans and one that uses hierarchical domains to create
intermediary abstract plans.

Chapter 7The final chapter is about intent recognition and its link to planning. Existing works
are presented as well as a technique called inverted planning.
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2 Foundation and Tools

Alfred Korzybski
(1933, ch. 4

pp. 58)

““A map is not the territory it represents, but, if correct, it has a similar
structure to the territory, which accounts for its usefulness.”

Mathematics and logic are at the heart of all formal sciences, including computer sci-
ence. The boundary between mathematics and computer science is quite blurry. In-
deed, computer science is applied mathematics and mathematics are abstract com-
puter science. Both cannot be separated when needing a formal description of a new
model.

In mathematics, a foundation is an axiomatic theory that is consistent and well-
defined. It can also be called a model. For a foundation to be generative of a subset
of mathematics, it must define all the supported notions.

In this chapter, we define a new formalism as well as a proposed foundation that lies
on the bases of the type theory and lambda calculus. With this formalism, we define
the classical set theory (which is the foundation for classical mathematics). The con-
tribution is mainly in the axiomatic system, and functional algebra. The rest is simply
an explanation, using our formalism, of existing mathematical notions and structures
commonly used in computer science. This formalism is used for all the formulas later
on this document.

2.1 Existing Model Properties

Any knowledge must be expressed using an encoding support (medium) like a language.
Natural languages are quite expressive and allow for complex abstract ideas to be
communicated between individuals. However, in science we encounter the first issues
with such a language. It is culturally biased and improperly conveys formal notions
and proof constructs. Indeed, natural languages are not meant to be used for rigorous
mathematical proofs. This is one of the main conclusions of the works of Korzybski
(1958) on “general semantics”. The original goal of Korzybski was to pinpoint the errors
that led humans to fight each other in World War I. He affirmed that the language is
unadapted to convey information reliably about objective facts or scientific notions.
There is a discrepancy between the natural language and the underlying structure of
the reality.

In the following sections we describe a few inherent properties of formalism and math-
ematical reasoning that are useful to consider when defining a theory.

10



2.1 Existing Model Properties

2.1.1 Abstraction

“abstraction (n.d.): The process of formulating generalized ideas or con-
cepts by extracting common qualities from specific examples Collins English

Dictionary (2014)
The idea behind abstraction is to simplify the representation of complex instances.
This mechanism is at the base of any knowledge representation system. Indeed, it is
unnecessarily expensive to try to represent all properties of an object. An efficient
way to reduce that knowledge representation is to prune away all irrelevant proper-
ties while also only keeping the ones that will be used in the context. This means
that abstraction is a losy process since information is lost when abstracting from an
object.

Since this is done using a language as a medium, this language is a host language.
Abstraction will refer to an instance using a term (also called symbol) of the host
language. If the host language is expressive enough, it is possible to do abstraction
on an object that is already abstract. The number of layers abstraction needed for a
term is called its abstraction level. Very general notions have a higher abstraction
level and we represent reality using the null abstraction level. In practice abstraction
uses terms of the host language to bind to a referenced instance in a lower abstraction
level. This forms a structure that is strongly hierarchical with higher abstraction level
terms on top.

Example

We can describe an individual organism with a name that is associated to this
specific individual. If we name a dog “Rex” we abstract a lot of information about
a complex, dynamic living being. We can also abstract from a set of qualities of
the specimen to build higher abstraction. For example, its species would be Canis
lupus familiaris from the Canidae family. Sometimes several terms can be used
at the same abstraction level like the commonly used denomination “dog” in this
case.

Terms are only a part of that structure. It is possible to combine several terms into a
formula (also called proposition, expression or statements).

2.1.2 Formalization

“formal (adj.): Relating to or involving outward form or structure, often in
contrast to content or meaning. American

Heritage
Dictionary
(2011a)

A formalization is the act to make formal. The word “formal” comes from Latin fōrmālis,
from fōrma, meaning form, shape or structure. This is the same base as for the word
“formula”. In mathematics and formal sciences the act of formalization is to reduce
knowledge down to formulas. Like stated previously, a formula combines several terms.
But a formula must follow rules at different levels:

• Lexical by using terms belonging in the host language.
• Syntactic as it must follow the grammar of the host language.
• Semantic as it must be internally consistent and meaningful.

11



2 Foundation and Tools

The information conveyed from a formula can be reduced to one element: its semantic
structure. Like its etymology suggests, a formula is simply a structured statement
about terms. This structure holds its meaning. Along with using abstraction, it be-
comes possible to abstract a formula and therefore, to make a formula about other
formulas should the host language allowing it.

Example

The formula using English “dog is man’s best friend” combines terms to hold a
structure between words. It is lexically correct since it uses English words and
grammatically correct since it can be grammatically decomposed as (n. v. n. p. adj.
n.). In that the (n.) stands for nouns (v.) for verbs (adj.) for adjectives and
(p.) for possessives. Since the verb “is” is the third person singular present
indicative of “be” and the adjective is the superlative of “good”, this form is
correct in the English language. From there the semantic aspect is correct too
but that is too subjective and extensive to formalize here. We can also build
a formula about a formula like “this is a common phrase” using the referential
pronoun “this” to refer to the previous formula.

Any language is comprised of formulas. Each formula holds knowledge about their sub-
ject and state facts or belief. A formula can describe other formulas and even define
them. However, there is a strong limitation of a formalization. Indeed, a complete
formalization cannot occur about the host language. It is possible to express for-
mulas about the host language but it is impossible to completely describe the host
language using itself (Klein 1975). This comes from two principal reasons. As abstrac-
tion is a loose process one cannot completely describe a language while abstracting its
definition. If the language is complex enough, its description requires an even more
complex metalanguage to describe it. And even for simpler language, the issue stands
still while making it harder to express knowledge about the language itself. For this
we need knowledge of the language a priori and this is contradictory for a definition
and therefore impossible to achieve.

When abstracting a term, it may be useful to add information about the term to define
it properly. That is why most formal system requires a definition of each term using
a formula. This definition is the main piece of semantic information on a term and is
used when needing to evaluate a term in a different abstraction level. However, this
is causing yet another problem.

2.1.3 Circularity

“circularity (n.d.): Defining one word in terms of another that is itself de-
fined in terms of the first word.American

Heritage
Dictionary

(2011b)
Circularity is one of the issues we explore in this section about the limits of formaliza-
tion languages. Indeed, defining a term requires using a formula in the host language
to express the abstracted properties of the generalization (Korzybski 1933). The prob-
lem is that most terms will have circular definitions.
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2.2 Functional theory

Type 
theory

Lambda calculus

Set 
theory

First Order Logic

Proof 
theory

Hilbert calculus

Category 
theory

Higher Order Logic

Natural language
Figure 2.1: Dependency graph of the most common foundational mathematical theories

and their underlying implicit formalism.

Example

Using definitions from the American Heritage Dictionary (2011b), we can find that
the term “word” is defined using theword “meaning” that is in turn defined using
the term “word”. Such circularity can happen to use an arbitrarily long chain of
definition that will form a cycle in the dependencies.

For example, we illustrate dependencies between some existing theories and their
formalism in figure 2.1. Since a formalization cannot fully be self defined, another
host language is generally used, sometimes without being acknowledged.

The only practical way to make some of this circularity disappear is to base on a nat-
ural language as host language for defining the most basic terms. This allows to ac-
knowledge the problem in an instinctive way while being aware of it while building the
theory.

2.2 Functional theory

We aim to reduce the set of axioms allowing to describe a model. The following theory
is a proposition for a possible model that takes into account the previously described
constraints. It is inspired by category theory (Awodey 2010), and typed lambda calcu-
lus (Barendregt 1984).
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2 Foundation and Tools

2.2.1 Category theory

This theory is based, as its name implies, on categories. A category is a mathematical
structure that consists of two components:

• A set of objects that can be any arbitrary mathematical entities.
• A set of morphisms that are functional monomes. They are often represented as
arrows.

Many definitions of categories exist (Barr and Wells 1990, vol. 49) but they are all in
essence similar to this explanation. The best way to see the category theory is as a
general theory of functions. Even if we can use any mathematical entity for the types
of the components, the structure heavily implies a functional connotation.

2.2.2 Axioms

In this part, we propose a model based on functions. The unique advantage of it lays in
its explicit structure that allows it to be fully defined. It also holds a coherent algebra
that is well suited for our usage. This approach can be described as a special case of
category theory. However, it differs in its priorities and formulation. For example,
since our goal is to build a standalone foundation, it is impossible to fully specify the
domain or co-domain of the functions and they are therefore weakly specified (Godel
and Brown 1940).

Our theory is axiomatic, meaning it is based on fundamental logical proposition called
axioms. Those form the base of the logical system and therefore are accepted without
any need for proof. In a nutshell, axioms are true prior hypotheses.

The following axioms are the explicit base of the formalism. It is mandatory to prop-
erly state those axioms as all the theory is built on top of it.

Axiom: Identity

Let’s the identity function be = that associates every function to itself.(=) = 𝑥 → 𝑥 This
function is therefore transparent as by definition = (𝑥) is the same as 𝑥. It
can be described by using it as affectation or aliases to make some expressions
shorter or to define any function.

In the rest of the document, classical equality and the identity function will refer to
the same notion.

That axiom implies that the formalism is based on functions. Any function can be used
in any way as long as it has a single argument and returns only one value at a time
(named image, which is also a function).

It is important to know that everything in our formalism is a function. Even no-
tions such as literals, variables or set from classical mathematics are functions. This
property is inspired by lambda calculus and some derived functional programming lan-
guages.
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2.2 Functional theory

Axiom: Association

Let’s the term → be the function that associates two expressions to another
function that associates those expressions. This special function is derived from
the notation of morphisms of the category theory.

The formal definition uses Currying to decompose the function into two. Using
definitions 2.2.1
and 2.2.2, it can
be defined as:(→) = 𝑥 →
(𝑓(𝑥) → 𝑓)

It associates
a parameter to a function that takes an expression and returns a function.

Next we need to lay off the base definitions of the formalism.

2.2.3 Formalism definition

This functional algebra at the base of our foundation is inspired by operator algebra
(Takesaki 2013, vol. 125) and relational algebra (Jónsson 1984). The problem with the
operator algebra is that it supposes vectors and real numbers to work properly. Also,
relational algebra, like category theory, presupposes set theory.

Here we define the basic notions of our functional algebra that dictates the rules of
the formalism we are defining.

Definition 2.2.1: Currying

⦇𝑓⦈ = (𝑥 → ⦇𝑓(𝑥)⦈)Currying is the operation named after the mathematician Haskell Brooks Curry
(1958) that allows multiple argument functions in a simpler monoidal formalism.
A monome is a function that has only one argument and has only one value, as
the axiom of Association.
The operation of Currying is a function ⦇⦈ that associates to each function 𝑓 an-
other function that recursively partially applies 𝑓 with one argument at a time.

⦗𝑓⦘ = ⦗𝑥,𝑦 →𝑓(𝑥)(𝑦)⦘+
If we take a function ℎ such that when having 𝑥 as a parameter, gives the function𝑔 that takes an argument 𝑦, unCurrying is the function ⦗⦘ so that 𝑓(𝑥, 𝑦) behaves
the same way as ℎ(𝑥)(𝑦). We note ℎ = ⦗𝑓⦘.
Definition 2.2.2: Application

𝑦 = 𝑓(𝑥)We note the application of 𝑓 with an argument 𝑥 as 𝑓(𝑥). The application allows
to recover the image 𝑦 of 𝑥 which is the value that 𝑓 associates with 𝑥.

Various usages of
() range from
basic arithmetic
to action
application in
planning (see
chapter 4)

Along with Currying, function application can be used partially to make constant some
arguments.

Definition 2.2.3: Partial Application

We call partial application the application using an insufficient number of argu-
ments to any function 𝑓. This results in a function that has fewer arguments
with the first ones being locked by the partial application. It is interesting to
note that Currying is simply a recursion of partial applications.

From now on we will note 𝑓(𝑥, 𝑦, 𝑧,…) any function that has multiple arguments but will
suppose that they are implicitly Curryied. If a function only takes two arguments, we
can also use the infix notation e.g. 𝑥𝑓𝑦 for its application.
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2 Foundation and Tools

Example

Applying this to basic arithmetic for illustration, it is possible to create a func-
tion that will triple its argument by making a partial application of the multi-
plication function ×(3)×(3) = 𝑥 → 3 × 𝑥 so we can write the operation to triple the number 2 as×(3)(2) or ×(2, 3) or with the infix notation 2 × 3.
Definition 2.2.4: Null

The null function is the function between nothing and nothing. We note this
function ⋗ .⋗=⋗→⋗

The notation ⋗ was chosen to represent the association arrow → but with a dot in-
stead of the tail of the arrow. This is meant to represent the fact that it inhibits
associations.

2.2.4 Literal and Variables

As everything is a function in our formalism, we use the null function to define notions
of variables and literals.

Definition 2.2.5: Literal

A literal is a function that associates null to its value. This consists of any
function 𝑙 written as ⋗→ 𝑙.𝑙 =⋗→ 𝑙 This means that the function has only itself as an
immutable value. We call constants functions that have no arguments and have
as value either another constant or a literal.

Example

A good example of that would be the yet to be defined natural numbers. We can
define the literal 3 as 3 =⋗→ 3. This is a function that has no argument and is
always valued to 3.
Definition 2.2.6: Variable

A variable is a function that associates itself to ⋗ . This consists of any function𝑥 written as 𝑥 →⋗.𝑥 = 𝑥 →⋗ This means that the function requires an argument and has
undefined value. Variables can be seen as a demand of value or expression and
mean nothing without being defined properly.

Example

The function 𝑓 defined in figure 2.2 associates its argument to an expression.
Since the argument 𝑥 is also a variable, the value is therefore dependent on
the value required by 𝑥. In that example, the number 3 is a literal and 3 ÷ 𝑥 is
therefore an expression using the function ÷.

An interesting property of this notation is that ⋗ is both a variable and a constant.
Indeed, by definition, ⋗ is the function that associates ⋗→⋗ and fulfills both defini-
tions.
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2.2 Functional theory

f
x → 3 ÷ x

x→⋗

x , f(x)→ f

⋗→ 3

Legend

variable

literal

expression

definition

Figure 2.2: Illustration of basic functional operators and their properties.

When defining Currying, we annotated it using the notation ⦇𝑓⦈ = 𝑓 → (𝑥 → ⦇𝑓(𝑥)⦈).
The obvious issue is the absence of stopping condition in that recursive expression.
While the end of the recursion doesn’t technically happen, in practice from the way
variables and literals are defined, the recursion chain either ends up becoming a vari-
able or a constant because it is undefined when Currying a nullary function.

2.2.5 Functional algebra

Inspired by relational algebra and by category theory, we present a functional algebra
that fits our needs. The first operator of this algebra allows to combine several func-
tions into one. This is very useful to merge the definition of two functions in order to
specify more complex functions.

Definition 2.2.7: Combination

⋈= (𝑓,⋗→ 𝑓) ⋈ (⋗,𝑓 → 𝑓)
The combination function⋈ associates any two functions to a new function that
is the union of the definition of either functions. If both functions are defined
for any given argument, then the combination is undefined (⋗). One can use an
asymetrical variant of the combination noted⋊ which keeps the behavior of the
function on the right when both are contradictory (also with a left variant noted⋉).

Combination is
useful to define
boolean
constantly in
first order logic
(section 2.3.1).

It is interesting to note that the formal definition of the combination is recursive.
This means that it will be evaluated if any of the expression matches, decomposing
the functions until one of them isn’t defined or until nothing matches and therefore
the result is ⋗.
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Example

For two functions 𝑓1 and 𝑓2 that are defined respectively by:

• 𝑓1 = (1 → 2) ⋈ (3 → 4)
• 𝑓2 = (2 → 3) ⋈ (3 → 5)

the combination 𝑓3 = 𝑓1 ⋈ 𝑓2 will behave as follows:
• 𝑓3(1) = 2
• 𝑓3(2) = 3
• 𝑓3(3) =⋗

Definition 2.2.8: Superposition

▵= (⋈) ⋈ (𝑓,𝑓 → 𝑓) The superposition function ▵ associates any two functions to a new function.
This function is what the definition of the two functions taken as arguments
have in common. The resulting function associates 𝑥 → 𝑦 when both functions
are superposing. We can say that the superposition is akin to a joint where the
resulting function is defined when both functions have the same behavior.

Example

Reusing the functions of the previous example, we can note that 𝑓3 ▵ 𝑓1 = 1 → 2
because it is the only association that both functions have in common. We can
also say that 𝑓1 ▵ 𝑓2 =⋗ because these functions do not share any associations.

Superposition has a “negative” counterpart called a subposition. It allows to do the
inverse operation of the super position. More intuitively, if the superposition is akin
to the set “intersection”, the subposition is the “difference” counterpart.

Definition 2.2.9: Subposition

▿ = 𝑓1, 𝑓2 → 𝑓1 ⋈(𝑓1 ▵ 𝑓2)
The subposition is the function ▿ that associates any two functions 𝑓1 and 𝑓2 to a
new function 𝑓1▿𝑓2. The subposition will allow to “substract” associations from
existing functions. The result removes the superposition from the first function
definition.

The subposition is akin to a subtraction of function where we remove everything de-
fined by the second function to the definition of the first.

Example

From the previous example we can write 𝑓3▿𝑓2 = (1 → 2). Since 𝑓2 has the 2 → 3
associations in common with 𝑓3 it is removed from the result.
This operation is more useful with the superposition as it can behave like so:(𝑓1 ▵ 𝑓2)▿𝑓2 = 𝑓1. This allows to undo the superposition.

We can also note a few properties of these functions in table 2.1.
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Table 2.1: Example properties of superposition and subposition
Formula Description
𝑓 ▵ 𝑓 = 𝑓 A function superposed to itself is the same.𝑓 ▵⋗=⋗ Any function superposed by null is null.𝑓1 ▵ 𝑓2 = 𝑓2 ▵ 𝑓1 Superposition order doesn’t affect the result.𝑓▿𝑓 =⋗ A function subposed by itself is always null.𝑓▿ ⋗= 𝑓 Subposing null to any function doesn’t change it.

These functions are intuitively the functional equivalent of the union, intersection
and difference from set theory. In our formalism we will define the set operations
from these.

Composition is
useful along
especially with
the mapping
notation to make
complex
definition more
succint.

The following operators are the classical operations on functions.

Definition 2.2.10: Composition

The composition function is the function that associates any two functions 𝑓1 and𝑓2 to a new function such that: 𝑓1 ∘ 𝑓2 = 𝑥 → 𝑓1(𝑓2(𝑥)).
Definition 2.2.11: Inverse

The inverse function is the function that associates any function to its inverse
such that if 𝑦 = 𝑓(𝑥) then 𝑥 = •(𝑓)(𝑦).
We can also use an infix version of it with the composition of functions: 𝑓1 • 𝑓2 =𝑓1 ∘ •(𝑓2).

These properties are akin to multiplication and division in arithmetic.

Table 2.2: Example of function composition and inverse with their properties.
Formula Description
𝑓∘ ⋗=⋗ This means that ⋗ is the absorbing element of the composition.𝑓∘ == 𝑓 Also, = is the neutral element of the composition.•(⋗) =⋗ ∧ • (=) = (=) This means that ⋗ and = are commutative functions.𝑓1 ∘ 𝑓2 ≠ 𝑓2 ∘ 𝑓1 However, ∘ is not commutative.

From now on, we will use numbers and classical arithmetic as we had defined them.
However, we consider defining them from a foundation point of view, later using set
theory and Peano’s axioms.

In classical mathematics, the inverse of a function 𝑓 is often written as 𝑓−1. Therefore
we can define the transitivity of the 𝑛th degree as the power of a function such that𝑓𝑛 = 𝑓𝑛−1∘𝑓. Figure 2.3 shows how the power of a function is behaving at key values.

By generalizing the formula, we can define the transitive cover of a function 𝑓 and
its inverse respectively as 𝑓+ = 𝑓+∞ and 𝑓− = 𝑓−∞. This cover is the application of
the function to its result infinitely. This is useful especially for graphs as the tran-
sitive cover of the adjacency function of a graph gives the connectivity function (see
section 2.5).
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Figure 2.3: Illustration of how the functional equivalent of the power function is be-
having with notable values (in filled circles)

We also call arity the number of arguments (or the Currying order) of a function noted|𝑓|.

2.2.6 Properties

A modern approach of mathematics is called reverse mathematics as instead of build-
ing theorems from axioms, we search the minimal set of axioms required by a theorem.
Inspired by this, we aim to minimize the formal basis of our system as well as iden-
tifying the circularity issues, we provide a dependency graph in figure 2.4. We start
with the axiom of Association at the bottom and the axiom of Identity at the top. Ev-
erything depends on those two axioms but drawing all the arrows makes the figure
way less legible.

Then we define the basic application function () that has as complement the Currying⦇⦈ and unCurrying ⦗⦘ functions. Similarly, the combination ⋈ has the superposition▵ and the subpostion ▿ functions as complements. The bottom bound of the algebra
is the null function ⋗ and the top is the identity function =. Composition ∘ is the
main operator of the algebra and allows it to have an inverse element as the inverse
function • . The composition function needs the application function in order to be
constructed.

The algebra formed by the previously defined operations on functions is a semiring(𝔽,⋈, ∘) with 𝔽 being the set of all functions.

Indeed,⋈ is a commutative monoid having ⋗ as its identity element and ∘ is a monoid
with = as its identity element.
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Figure 2.4: Dependency graph of notions in the functional theory

Also the composition of the combination is the same as the combination of the compo-
sition. Therefore, ∘ distributes over ⋈ .

At last, using partial application composing with null gives null: ∘(⋗) = ((⋗) →⋗) =⋗.
This foundation is now ready to define other fields of mathematics. We start with logic
as it is a very basic formalism in mathematics.

2.3 Logic and reasoning

2.3.1 First Order Logic

In this section, we present FOL First Order
Logic

. FOL is based on boolean logic with the two literals
true (noted ⊤ ) and false (noted ⊥ ).

A function noted 𝑞 that has as only values either ⊤ or ⊥ is called a predicate. 𝒟(•𝑞) = {⊥,⊤}
We define the classical logic entailment, the predicate that holds true when a predi-
cate (the conclusion) is true if and only if the first predicate (the premise) is true.

⊢= (⊥, 𝑥 → ⊤) ⋈ (⊤,𝑥 → 𝑥)
Then we define the classical boolean operators ¬ not, ∧ and and ∨ or as:

• ¬ = (⊥ → ⊤) ⋈ (⊤ → ⊥), the negation associates true to false and false to true.
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• ∧ = 𝑥 → ((⊤ → 𝑥) ⋈ (⊥ → ⊥)), the conjunction is true when all its arguments are
simultaneously true.

• ∨ = 𝑥 → ((⊤ → ⊤) ⋈ (⊥ → 𝑥)), the disjunction is true if all its arguments are not
false.

The last two operators are curried function and can take any number of arguments as
necessary and recursively apply their definition.

Another basic predicate is the equation. It is the identity function = but as a binary
predicate that is true whenever the two arguments are the same.

Functions that take an expression as parameters are calledmodifiers. FOL introduces a
useful kind of modifier used to moralize expressions: quantifiers. The quantifiers take
an expression and a variable as arguments. Classical quantifiers are also predicates:
they restrict the values that the variable can take.

In the realm of FOL, quantifiers are restricted to individual variable (booleans) as
follows:

• The universal quantifier ∀ meaning “for all”.∀ = §(∧)
• The existential quantifier ∃ meaning “it exists”.∃ = §(∨)

2.3.2 Higher Order Logic

HOLHigher Order
Logic

is a class of logic formalism that supersedes FOL. It is, however, less well-behaved
than FOL and is not as popular as a consequence. Indeed, HOL allows quantifiers to be
applied to sets and even set of sets (see section 2.4). This makes the expressivity of
this kind of logic higher but also makes it harder to use and compute.

2.3.3 Modal logic

Section 3.6 will
illustrate on an

example.

Even bigger than HOL is modal logic. In that logic, quantifiers can be applied to any-
thing. The most interesting feature of modal logic is quantifying expressions them-
selves. This allows for modality of statements such as their likelihood, context or to
even ask for information.

Using that kind of logic, we can also add some less used quantifiers such as:

• The uniqueness quantifier ∃! meaning “it exists a unique”.∃! = §(= (1) ∘ +)
• The exclusive quantifier ∄ meaning “it doesn’t exist”.∄ = §(¬ ∘ ∧)

It is also possible to change the nature of quantifiers by using a variable instead of
restriction to retrieve a set of values (Hehner 2012):

• The solution quantifier § meaning “those”.§ = 𝑓,𝑥,𝑞 →
⟬𝑓(𝑥) ∶ 𝑞⟭

It is interesting to note that most quantified expression can be expressed using the
set builder notation discussed in the following section.
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2.4 Set Theory

2.4 Set Theory

Since we need to represent knowledge, we will handle more complex data than simple
booleans. One such way to describe more complex knowledge is by using set theory. It
is used as the classical foundation of mathematics. Most other proposed foundations of
mathematics invoke the concept of sets even before their first formula to describe the
kind of notions they are introducing. The issue is then to define the sets themselves.
At the beginning of his founding work on set theory, Cantor wrote:

““A set is a gathering together into a whole of definite, distinct objects of
our perception or of our thought–which are called elements of the set.”

Georg Cantor

For Cantor, a set is a collection of concepts and percepts. In our case both notions
are grouped in what we call objects, entities that are all ultimately functions in our
formalism.

2.4.1 Base Definitions

This part is based on the work of Cantor (1895) and the set theory. The goal is to
define the notions of set theory using our formalism.

Definition 2.4.1: Set

A collection of distinct objects considered as an object in its own right. We define
a set one of two ways (always using braces):

• In extension by listing all the elements in the set: {0, 1, 2, 3, 4}
• In intention by specifying the rule that all elements follow: {𝑛 ∶ 𝑞(𝑛)}

Using our functional foundation, we can define any set as a predicate 𝒮 = 𝑒 → ⊤ with𝑒 being a member of 𝒮. This allows us to define the member function noted 𝑒 ∈ 𝒮 to
indicate that 𝑒 is an element of 𝒮. ∈= 𝑒,𝒮 → 𝒮(𝑒)
Another, useful definition using sets is the domain of a function 𝑓 as the set of all
arguments for which the function is defined. We call co-domain the domain of the in-
verse of a function. We can note them 𝑓 ∶ 𝒟(𝑓) → 𝒟(•𝑓). In the case of our functional
version of sets, they are their own domain.

Definition 2.4.2: Specification

The function of specification (noted ∶) is a function that restricts the validity of
an expression given a predicate. ∶= 𝑓,𝑞 → 𝑓▿(𝒟(𝑞 =⊥) → 𝒟(•𝑓))

It can intuitively be read as “such that”.

The specification operator is extensively used in classical mathematics but informally,
it is often seen as an extension of natural language and can be quite ambiguous. In the
present document any usage of ∶ in anymathematical formula will follow the previously
discussed definition.
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2.4.2 Set Operations

Along with defining the domains of functions using sets, we can use function on sets.
This is very important in order to define ZFCZermelo–

Fraenkel set
theory with the
axiom of Choice

and is extensively used in the rest of the
document.
In this section, basic set operations are presented. The first one is the subset.

Definition 2.4.3: Subset

A subset is a part of a set that is integrally contained within it. We note 𝒮 ⊂𝒯 ⊢ ((𝑒 ∈ 𝒮 ⊢ 𝑒 ∈ 𝒯)∧𝒮 ≠ 𝒯), as a set 𝒮 is a proper subset of a more general set𝒯.
Definition 2.4.4: Union

The union of two or more sets 𝒮 and 𝒯 is the set that contains all elements in
either set. We can note it:

𝒮 ∪𝒯 = {𝑒 ∶ 𝑒 ∈ 𝒮 ∨ 𝑎 ∈ 𝒯}
Definition 2.4.5: Intersection

The intersection of two or more sets 𝒮 and 𝒯 is the set that contains only the
elements member of both set. We can note it:

𝒮 ∩𝒯 = {𝑒 ∶ 𝑒 ∈ 𝒮 ∧ 𝑒 ∈ 𝒯}
Definition 2.4.6: Difference

The difference of one set 𝒮 to another set 𝒯 is the set that contains only the
elements contained in the first but not the last. We can note it:

𝒮 ⧵ 𝒯 = {𝑒 ∶ 𝑒 ∈ 𝒮 ∧ 𝑒 ∉ 𝒯}
An interesting way to visualize relationships with sets is by using Venn diagrams (Venn
1880). In figure 2.5 we present the classical union, intersection and difference opera-
tions. It also introduces a new way to represent more complicated notions such as the
Cartesian product by using a representation for powerset and higher dimensionality
inclusion that a 2D Venn diagram cannot represent.

Example

Figure 2.5 is the graphical representation of the statements in table 2.3.

Table 2.3: Caption
Formula Description
𝑒1 ∈ 𝒮1 𝑒1 is an element of the set 𝒮1.𝑒2 ∈ 𝒮1 ∩ 𝒮2 𝑒2 is an element of the intersection of 𝒮1 and 𝒮2.𝑒3 ∈ 𝒮1 ∩ 𝒮2 ∩ 𝒮3 𝑒3 is an element of the intersection of 𝒮1, 𝒮2 and 𝒮3.𝒮5 ⊂ 𝒮2 𝒮5 is a subset of 𝒮2.
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Formula Description
𝒮6 ⊂ 𝒮2 ∪ 𝒮3 𝒮6 is a subset of the union of 𝒮2 and 𝒮3.𝑓 = 𝒮5 → 𝒮6 𝑓 is a function which domain is 𝒮5 and co-domain is 𝒮6.𝒮4 ⊂ ℘(𝒮1) 𝒮4 is a combination of elements of 𝒮1.

These Venn diagrams, originally have a lack of expressivity regarding complex opera-
tions on sets. Indeed, from their dimensionality it is complicated to express numerous
sets having intersection and disjunctions. For example, it is difficult to represent the
following notion.

Definition 2.4.7: Cartesian product

The Cartesian product of two sets 𝒮 and 𝒯 is the set that contains all possi-
ble combinations of an element of both sets. These combinations are a kind of
ordered set called tuples. We note this product:

𝒮 ×𝒯 = {⟨𝑒𝒮, 𝑒𝒯⟩ ∶ 𝑒𝒮 ∈ 𝒮 ∧ 𝑒𝒯 ∈ 𝒯}

From this we can also define the set power recursively by 𝒮1 = 𝒮 and 𝒮𝑛 = 𝒮 × 𝒮𝑛−1.
The Cartesian product can be seen as the set equivalent of Currying. The angles ⟨⟩
notation is used for tuples, those are another view on Currying by replacing several
arguments using a single one as an ordered list. A tuple of two elements is called a
pair, of three elements a triple, etc. We can access elements in tuples using their
index in the following way 𝑒2 = ⟨𝑒1, 𝑒2, 𝑒3⟩2. By decomposing the tuples as sets we can
write:

𝒮 ×𝒯 = 𝑒𝒮, 𝑒𝒯 → 𝒮(𝑒𝒮) ∧ 𝒯(𝑒𝒯)

Definition 2.4.8: Mapping

The mapping notation ⟬⟭ is a function such that ⟬𝑓(𝑥) ∶ 𝑥 ∈ 𝒮⟭ will give the
result of applying all elements in set 𝒮 as arguments of the function using the
unCurrying operation recursively. If the function isn’t specified, the mapping
will select a member of the set non deterministically. The function isn’t defined
on empty sets or on sets with fewer members than arguments of the provided
function.

Example

The classical sum operation on numbers can be noted:

3∑
𝑖=1

2𝑖 = ⟬+(2 ∗ 𝑖) ∶ 𝑖 ∈ [1, 3]⟭ = +(2 ∗ 1)(+(2 ∗ 2)(2 ∗ 3))
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Figure 2.5: Example of an upgraded Venn diagram to illustrate operations on sets.

2.4.3 The ZFC Theory

Themost common axiomatic set theory is ZFC (Kunen 1980, vol. 102). In that definition
of sets there are a few notions that come from its axioms. By being able to distinguish
elements in the set from one another we assert that elements have an identity and
we can derive equality from there:

Axiom: Extensionality

∀𝒮∀𝒯 ∶ ∀𝑒((𝑒 ∈ 𝒮) = (𝑒 ∈ 𝒯)) ⊢ 𝒮 = 𝒯
This means that two sets are equal if and only if they have all their members in com-
mon.

Another axiom of ZFC that is crucial in avoiding Russel’s paradox (𝒮 ∈ 𝒮) is the follow-
ing:

Axiom: Foundation

∀𝒮 ∶ (𝒮 ≠ ∅ ⊢ ∃𝒯 ∈ 𝒮, (𝒯 ∩ 𝒮 = ∅))
This axiom uses the empty set ∅ (also noted {}) as the set with no elements. Since
two sets are equal if and only if they have precisely the same elements, the empty set
is unique.

The definition by intention uses the set builder notation to define a set. It is composed
of an expression and a predicate 𝑞 that will make any element 𝑒 in a set 𝒯 satisfying
its part of the resulting set 𝒮, or as formulated in ZFC:
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Axiom: Specification

∀𝑞∀𝒯∃𝒮 ∶ (∀𝑒 ∈ 𝒮 ∶ (𝑒 ∈ 𝒯 ∧ 𝑞(𝑒)))
The last axiom of ZFC we use is to define the power set ℘(𝒮) as the set containing all
subsets of a set 𝒮:

Axiom: Power set

℘(𝒮) = {𝒯 ∶ 𝒯 ⊆ 𝒮}
With the symbol 𝒮 ⊆ 𝒯 ⊢ (𝒮 ⊂ 𝒯∨𝒮 = 𝒯). These symbols have an interesting property
as they are often used as a partial order over sets.

2.5 Graphs

With set theory, it is possible to introduce all of standard mathematics. A field of
interest for this thesis is the study of the structure of data. This interest arises
from the need to encode semantic information in a knowledge base using a very sim-
ple language (see chapter 3). Most of these structures use graphs and isomorphic
derivatives.

Definition 2.5.1: Graph

A graph is a mathematical structure 𝑔 which is defined by its connectivity func-
tion 𝜒 that links two sets into a structure: the edges 𝐸 and the vertices 𝑉.

2.5.1 Adjacency, Incidence and Connectivity

Definition 2.5.2: Connectivity

The connectivity function is a combination of the classical adjacency and inci-
dence functions of the graph. It is defined using a circular definition in the
following way:

• Adjacency: 𝜒
⧟
= 𝑣 → {𝑒 ∶ 𝑣 ∈ 𝜒−•−(𝑒)}

Also: 𝜒
⧟
= •𝜒−•−• Incidence: 𝜒−•− = 𝑒 → {𝑣 ∶ 𝑒 ∈ 𝜒

⧟
(𝑣)}

Defining either function defines the graph. For convenience, the connectivity
function combines the adjacency and incidence:

𝜒 = 𝜒
⧟
⋈ 𝜒−•−

Usually, graphs are noted 𝑔 = (𝑉,𝐸) with the set of vertices 𝑉 (also called nodes)
and edges 𝐸 (arcs) that links two vertices together. Each edge is classically a pair of
vertices ordered or not depending on whether the graph is directed or not. 𝐸 ⊆ 𝑉2It is possi-
ble to go from the set based definition to the functional relation using the following
equation: 𝒟(𝜒−•−) = 𝐸
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Figure 2.6: Example of the recursive application of the transitive cover to a graph.

Example

A graph is often represented with lines or arrows linking points together like
illustrated in figure 2.6. In that figure, the vertices 𝑣1 and 𝑣2 are connected
through an undirected edge. Similarly 𝑣3 connects to 𝑣4 but not the opposite
since they are bonded with a directed edge. The vertex 𝑣8 is also connected to
itself.

2.5.2 Digraphs

The digraphs or directional graphs are a specific case of graphs where all edges have
a direction. This means that we can have two vertices 𝑣1 and 𝑣2 linked by an edge and
while it is possible to go from 𝑣1 to 𝑣2, the inverse is impossible. For such case the
edges are ordered pairs and the incidence function can be decomposed into:

𝜒−•− = 𝜒 .. .• ⋈ 𝜒• / //

We note 𝜒 .. .• the incoming relation and 𝜒• / // the outgoing relation.
In digraphs, classical edges can exist if allowed and will simply be bidirectional
edges.

2.5.3 Path, cycles and transitivity

Most of the intrinsic information of a graph is contained within its structure. Exploring
its properties requires to study the “shape” of a graph and to find relationships be-
tween vertices. That is why graph properties are easier to explain using the transitive
cover 𝜒+ of any graph 𝑔 = (𝑉,𝐸).
This transitive cover will create another graph in which two vertices are connected
through an edge if and only if it exists a path between them in the original graph 𝑔.
We illustrate this process in figure 2.6. Note how there is no edge in 𝜒2(𝑔) between 𝑣5
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and 𝑣6 and the one in 𝜒3(𝑔) is directed toward 𝑣5 because there is no path back to 𝑣6
since the edge between 𝑣3 and 𝑣4 is directed. Intuitively, the different powers of the
connectivity graph 𝜒𝑛, are representation of all destinations within a distance 𝑛 from
any vertices. Extending that notion to 𝑛 = ∞ we can define the following:

Definition 2.5.3: Path

We say that vertices 𝑣1 and 𝑣2 are connected if it exists a path from one to
the other. Said otherwise, there is a path from 𝑣1 to 𝑣2 if and only if ⟨𝑣1, 𝑣2⟩ ∈𝒟(𝜒+(𝑔)).

The notion of connection can be extended to entire graphs. An undirected graph 𝑔 is
said to be connected if and only if ∀𝑒 ∈ 𝑉2(𝑒 ∈ 𝒟(𝜒+(𝑔))).
Similarly we define cycles as the existence of a path from a given vertex to itself. For
example, in figure 2.6, the cycles of the original graph are colored in blue. Some graphs
can be strictly acyclical, enforcing the absence of cycles.

2.5.4 Trees

A tree is a special case of a graph. A tree is an acyclical connected graph. If a special
vertex called a root is chosen, we call the tree a rooted tree. It can then be a directed
graph with all edges pointing away from the root. When progressing away from the
root, we call the current vertex parent of all exterior children vertices. Vertex with
no children are called leaves of the tree and the rest are called branches.

An interesting application of trees to FOL is called and/or trees where each vertex has
two sets of children: one for conjunction and the other for disjunction. Each vertex is a
logic formula and the leaves are atomic logic propositions. This is often used for logic
problem reduction. In figure 2.7 we illustrate how and/or trees are often depicted.

v1

v2 v3

v4 v5 v6

v8v7 v9

∧

∨
and
or

leaf
branch
root

Legend

Figure 2.7: Example of and/or tree.
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2.5.5 Quotient

Another notion often used for reducing big graphs is the quotiening as illustrated in
figure 2.8.

Definition 2.5.4: Graph Quotient

A quotient over a graph is the act of reducing a subgraph into a node while pre-
serving the external connections. All internal structure becomes ignored and
the subgraph now acts like a regular node. We note it ÷𝑓(𝑔) = ({𝑓(𝑣) ∶ 𝑣 ∈𝑉}, {𝑓(𝑒) ∶ 𝑒 ∈ 𝐸}) with 𝑓 being a function that maps any vertex either toward
itself or toward its quotiened vertex.
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Figure 2.8: Example of graph quotient.

A quotient can be thought of as the operation of merging several vertices into one
while keeping their connections with other vertices.

Example

Figure 2.8 explains how to do the quotient of a graph by merging the vertices𝑣2, 𝑣5 and 𝑣8 into 𝑣÷. The edge between 𝑣2 and 𝑣5 is lost since it is inside the
quotienned part of the graph. All other edges are now connected to the new
vertex 𝑣÷.

2.5.6 Hypergraphs

A generalization of graphs are hypergraphs where the edges are allowed to connect to
more than two vertices (Ray-Chaudhuri and Berge 1972). They are often represented
using Venn-like representations but can also be represented with edges “gluing” sev-
eral vertex like in figure 2.9.
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Figure 2.9: Example of hypergraph with total freedom on the edges specification.

Example

In figure 2.9, vertices are the discs and edges are either lines or gluing surfaces.
In hypergraph, classical edges can exist like 𝑒4, 𝑒6 or 𝑒7. Taking for example 𝑒1,
we can see that it connects 3 vertices: 𝑣1, 𝑣2 and 𝑣3. It is also possible to have
an edge connecting edges like 𝑒8 that connects 𝑒3 to itself. Edges can also “glue”
more than two edges like 𝑒2 connects 𝑒1, 𝑒3 and 𝑒4. The most exotic structures
are edge-loops as seen with 𝑒9 and 𝑒10 which allow graphs that are only made of
edges without any vertices.

An hypergraph is said to be 𝑛-uniform if the edges are restricted to connect to only 𝑛
vertices together. In that regard, classical graphs are 2-uniform hypergraphs.

Hypergraphs have a special case where 𝐸 ⊂ 𝑉. This means that edges are allowed
to connect to other edges. In figure 2.9, this is illustrated by the edge 𝑒2 connecting
to three other edges. That type of edge-graphs are akin to port graphs (Silberschatz
1981). An interesting discussion about the compatibility of hypergraphs with ZFC is
presented by Vepstas (2008). He said that a generalization of hypergraph allowing
for edge-to-edge connections violate the axiom of Foundation of ZFC by allowing edge
loops. Indeed, like in figure 2.9, an edge 𝑒9 = {𝑒10} can connect to another edge 𝑒10 = {𝑒9}
causing an infinite descent inside the ∈ relation in direct contradiction with ZFC .

This shows the limitations of FOL and ZFC based models, particularly in the field of
knowledge representation. Some structures require higher dimensions as proposed by
HOL , modal logic and hypergraphs. However, it is important to note that these models
are more general than those based on FOL and ZFC . Indeed, these models contain what
is possible to represent in a classical way but remove restrictions specific to these
models.
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2.6 Sheaf

In order to understand sheaves, we need to present a few auxiliary notions. Most of
these definitions are adapted from (Vepštas 2008). The first of which is a seed.

Germ
Connector
Edge
Projection

Legend

Seed

Section Stalk

Figure 2.10: Example of a seed, a section and a stalk.

Definition 2.6.1: Seed

A seed corresponds to a vertex along with the set of adjacent edges. Formally
we note a seed ✶ = (𝑣,𝜒

⧟
(𝑣)) which means that a seed built from the vertex 𝑣

contains a set of adjacent edges 𝜒
⧟
(𝑣). We call the vertex 𝑣 the germ of the

seed. All edges in a seed do not connect to the other vertices but keep the
information and are able to match the correct vertices through typing (often a
type of a single individual). We call the edges in a seed connectors.

Seeds are extracts of graphs that contain all information about a vertex. Illustrated
in the figure 2.10, seeds have a central germ (represented with discs) and connectors
leading to a typed vertex (outlined circles). Those external vertices are not directly
contained in the seed but the information about what vertex can fit in them is kept.
It is useful to represent connectors like jigsaw puzzle pieces: they can match only a
restricted number of other pieces that match their shape.

From there, it is useful to build a kind of partial graph from seeds called sections.

Definition 2.6.2: Section

A section is a set of seeds that have their common edges connected. This means
that if two seeds have an edge in common connecting both germs, then the seeds
are connected in the section and the edges are merged. We note 𝑔✶ = (𝑉, ⟬∪ ∶𝐸𝑠𝑒𝑐𝑡𝑖𝑜𝑛⟭) the graph formed by the section.
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In figure 2.10, a section is represented. It is a connected section composed of seeds
along with the additional seeds of any vertices they have in common. They are very
similar to subgraph but with an additional border of typed connectors. This tool was
originally mostly meant for big data and categorization over large graphs. As the graph
quotient is often used in that domain, it was transposed to sections. Quotients allow
us to define stalks.

Definition 2.6.3: Stalk

Given a projection function 𝑓 ∶ 𝑉 → 𝑉′ over the germs of a section ✶, the stalk
above the vertex 𝑣′ ∈ 𝑉′ is the quotient of all seeds that have their germ follow𝑓(𝑣) = 𝑣′.

The quotienning is used in stalks for their projection. Indeed, as shown in figure 2.10,
the stalks are simply a collection of seeds with their germs quotiened into their com-
mon projection. The projection can be any process of transformation getting a set of
seeds in one side and gives object in any base space called the image. Sheaves are a
generalization of this concept to sections.

Stalk Field Sheaf

Figure 2.11: Example of sheaves.

Definition 2.6.4: Sheaf

A sheaf is a collection of sections, together with a projection. We note itℱ = ⟨𝑔✶, 𝑔𝑙𝑢𝑒⟩ with the function 𝑔𝑙𝑢𝑒 being the gluing axioms that the projec-
tion should respect depending on the application. The projected sheaf graph is
noted as the fusion of all quotiened sections:

𝑔𝑙𝑢𝑒ℱ = {÷𝑔𝑙ᵆ𝑒✶ ∶ {𝑔𝑙𝑢𝑒✶ ∈ 𝑔✶}
By putting several sections into one projection, we can build stack fields. These fields
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are simply a subcategory of sheaves. Illustrated in figure 2.11, a sheaf is a set of
sections with a projection relation that usually merges similarly typed connectors.

2.7 Conclusion

In this chapter, we presented the tools we will use for the rest of the document along
with its underlying formalism. First we presented a functional theory that allows for
a concise expression of the formula for our usage. We also described classical mathe-
matical tools like FOL , set theory and graphs. In parallel, we introduced non-classical
tools of higher order such as HOL , modal logic, hypergraphs and sheaves. Those no-
tions are mostly data structures and allow to express any model needed for our us-
age.
The first of these models is about a partial self described language for knowledge
representation.
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Noam Chomsky
2017

Knowledge representation is at the intersection of maths, logic, language and com-
puter sciences. Knowledge description systems rely on syntax to interoperate sys-
tems and users to one another. The base of such languages comes from the formal-
ization of automated grammars by Chomsky (1956). It mostly consists of a set of
production rules aiming to describe all accepted input strings. Usually, the rules are
hierarchical and deconstruct the input using simpler rules until it matches a terminal
symbol. This deconstruction is called parsing and is a common operation in computer
science. More tools for the characterization of computer language emerged soon after
thanks to Backus (1959) while working on a programming language at IBM. This is how
the BNF Backus-Naur

Form
metalanguage was created on top of Chomsky’s formalization.

A similar process happened in the 1970s, when logic based knowledge representation
gained popularity among computer scientists (Baader et al. 2003). Systems at the
time explored notions such as rules and networks to try and organize knowledge into
a rigorous structure. At the same time other systems were built based on FOL. Then,
around the 1990s, the research began to merge in search of common semantics in what
led to the development of DL Description

Logic
. This domain is expressing knowledge as a hierarchy of

classes containing individuals.

From there and with the advent of the world wide web, actors of the internet were on
the lookout for standardization and interoperability of computer systems. One such
standardization took the name of “semantic web” and aimed to create a widespread
network of connected services sharing knowledge between one another in a common
language. At the beginning of the 21st century, several languages were created, all
based on the W3C World Wide Web

Consortium
specifications called RDF (Klyne and Carroll 2004). This language is

based on the notion of statements as triples. Each can express a unit of knowledge.
All the underlying theoretical work of DL continued with it and created more expres-
sive derivatives. One such derivative is the family of languages called OWL Ontology Web

Language
(Horrocks

et al. 2003). The ontologies and knowledge graphs are more recent names for the rep-
resentation and definition of categories (DL classes), properties and relation between
concepts, data and entities.

Nowadays, when designing a knowledge representation, one usually starts with ex-
isting framework. The most popular in practice is certainly the classical relational
database, followed closely by more novel methods for either big data or more expres-
sive solutions like ontologies.

In this chapter, we present a new tool that is more expressive than ontologies while
remaining efficient. This model is based on dynamic grammar and basically is defined
mostly by the structure of knowledge. Our model is inspired from RDF Resource

Description
Framework

triplets, espe-
cially in its Turtle syntax (W3C 2014). Of course, this will lead to compromises, but
can also have some interesting properties. This knowledge representation system will
allow us to express hierarchical planning domains in chapter 6.
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3.1 Grammar and Parsing

Grammar is an old tool that used to be dedicated to linguists. With the funding works
by Chomsky and his CFGContext-Free

Grammar
, these tools became available to mathematicians and shortly

after to computer scientists.

A CFG is a formal grammar that aims to generate a formal language given a set of
hierarchical rules. Each rule is given a symbol as a name. From any finite input of text
in a given alphabet, the grammar should be able to determine if the input is part of
the language it generates.

3.1.1 Backus-Naur Form

In computer science, popular metalanguage called BNF was created shortly after Chom-
sky’s work on CFG. The syntax is of the following form :

1 <rule> : := <other_rule> | <terminal_symbol> | ”literals”

A terminal symbol is a rule that does not depend on any other rule. It is possible to
use recursion, meaning that a rule will use itself in its definition. This actually allows
for infinite languages. Despite its expressive power, BNF is often used in one of its
extended forms.

In this section, we introduce a widely used form of BNF syntax that is meant to be
human readable despite not being very formal. We add the repetition operators * and
+ that respectively repeat 0 and 1 times or more the preceding expression. We also add
the negation operator ~ that matches only if the following expression does not match.
We also add parentheses for grouping expression and brackets to group literals.

Example

We can make a grammar for all sequence of A using the rule <scream> ::=”A”+. If
we want to make a rule that prevent the use of the letter z we can write <no−
sleep> ::=~”z”.

3.1.2 Tools for text analysis

A regular grammar is static, it is set once and for all and will always produce the same
language. In order to be more flexible we need to talk about dynamic grammars and
their associated tools and explain our choice of grammatical framework.

One of themain tools for both static and dynamic grammar is a parser. It is the program
that will decode the input into a syntax tree. This process is detailed in figure 3.1. To
do that it first scans the input text for matching tokens. Tokens are akin to words and
are the data unit at the lexical level. Then the tokens are matched against production
rules of the parser (usually in the form of a grammar). The matching of a rule will add
an entry into the resulting tree that is akin to the hierarchical grammatical description
of a sentence (e.g. proposition, complement, verb, subject, etc.).

Most of the time, a parser will be used with an evaluator. This component transforms
the syntax tree into another similarly structured result. It can be a storage inside
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Figure 3.1: Process of a parser while analyzing text

objects or memory, or compiled into another format, or even just for syntax coloration.
Since a lot of usage requires the same kind of function, a new kind of tool emerged
to make the creation of a compiler simpler. We call those tools compiler-compilers
or parser generators (Paulson 1982). They take a grammar description as input and
gives the program of a compiler of the generated language as an output. Figure 3.2a
explains how both the generation and resulting program work. Each of them uses a
parser linked to an evaluator. In the case of a compiler-compiler, the evaluator is
actually a compiler process. It will transform the syntax tree of the grammar into
executable code. This code is the generated compiler and is subject to our interest in
this case.
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(a) Classical compiler-compiler
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(b) Dynamic grammar modifi-
cation

Figure 3.2: Illustration of the meta-process of compiler generation

3.1.3 Dynamic Grammar

One of the issues with classical grammars is that they are set in stone once compiled.
One cannot change the definition of a grammar without editing the grammar defini-
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tion and compiling it. Although this might be more than sufficient for most usages, it
can hinder the adaptability of a general-purpose tool. In this section we present the
existing types of dynamic grammar and their advantages and limitations.

For dynamic grammar, compilers can get more complicated. The most straightforward
way to make a parser able to handle a dynamic grammar is to introduce code in the
rule handling that will tweak variables affecting the parser itself (Souto et al. 1998).
This allows for handling context in CFG without needing to rewrite the grammar.

Another kind of dynamic grammar is grammar that can modify themselves. In order to
do this a grammar is valuated with reified objects representing parts of itself (Hutton
and Meijer 1996). These parts can be modified dynamically by rules as the input gets
parsed (Renggli et al. 2010; Alessandro and Piumarta 2007). Reusing our prior illus-
tration, we can show in figure 3.2b, the particularity of this type of grammar. This
approach uses PEGParsing

Expression
Grammar

(Ford 2004) with Packrat parsing that backtracks by ensuring that
each production rule in the grammar is not tested more than once against each position
in the input stream (Ford 2002). While PEG is easier to implement and more efficient in
practice than their classical counterparts (Loff et al. 2018; Henglein and Rasmussen
2017), it offsets the computation load in memory making it actually less efficient in
general (Becket and Somogyi 2008).

Some tools actually just infer entire grammars from inputs and software (Höschele
and Zeller 2017; Grünwald 1996). However, these kinds of approaches require a lot of
input data to perform well. They also simply provide the grammar after expensive
computations.

My system uses a grammar, composed of classical rules and is extended using meta-
rules that activate once the classical grammar fails.

3.2 Description Logics

One of the most standard and flexible way of representing knowledge is by using on-
tologies. They are based mostly on the formalism of DL (Krötzsch et al. 2013). It is
based on the notion of classes (or types) as a way to make the knowledge hierarchi-
cally structured. A class is a set of individuals that are called instances of the classes.
Classes have the same basic properties as sets but can also be constrained with logic
formula. Constraints can be on anything about the class or its individuals. Knowledge
is also encoded in relations that are predicates over attributes of individuals.

It is common when using DL to store statements into three boxes (Baader et al.
2003):

• The TBox for terminology (statements about types)
• The RBox for rules (statements about properties) (Bürckert 1994)
• The ABox for assertions (statements about individual entities)

These are used mostly to separate knowledge about general facts (intentional knowl-
edge) from specific knowledge of individual instances (extensional knowledge). The
extra RBox is for “knowhow” or knowledge about entity behavior. It restricts usages
of roles (properties) in the ABox. The terminology is often hierarchically ordered using
a subsumption relation noted ⊆. If we represent classes or type as a set of individuals
then this relation is akin to the subset relation of set theory.
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Example

In the classical genealogy example (Baader et al. 2003), the TBox can be a state-
ment similar to Woman = Person ∩ Female. This is reasoning about the concept
hierarchy and is usually modeled at design time.
The RBox is often not present in DL systems but have interesting expressivity
properties. For example, it is possible to define the atomic role gender so that
Person∩∀gender ∈ {Male, Female,NonBinary}. This will enforce that every person
should have one of the three genders exposed in the set.
The ABox is about instances like Female∪Person(ALICE) stating that Alice is a fe-
male and a person. This statement allows the system to infer that Woman(ALICE)
by applying the rules of the TBox and RBox.

There are several versions and extensions of DL. They all vary in expressivity. Improv-
ing the expressivity of a DL system often comes at the cost of less efficient inference
engines that can even become undecidable for some extensions of DL.

3.3 Ontologies and their Languages

Most AI problem needs a way to represent knowledge. The classical way to do so has
been more and more specialized for each AI community. Every domain uses its DSL Domain Specific

Language
that

neatly fits the specific use it is intended to do.

There was a time when the branch of AI wanted to unify knowledge description under
the banner of the “semantic web”. This domain has given numerous works on service
composition that is very close to hierarchical planning (Rao et al. 2004).

From numerous works, a repeated limitation of the “semantic web” seems to come
from the languages used (Dornhege et al. 2012; Hirankitti and Xuan 2011). In order
to guarantee performance of generalist inference engines, these languages have been
restricted so much that they became quite complicated to use and quickly cause huge
amounts of recurrent data to be stored because of some forbidden representation that
will push any generalist inference engine into undecidability.

The most basic of these languages is perhaps RDF Turtle (Beckett and Berners-Lee
2011). It is based on triples with an XML eXtensible

Markup
Language

syntax and has a graph as its knowledge
structure (Klyne and Carroll 2004). A RDF graph is a set of RDF triples ⟨𝑠𝑢𝑏, 𝑝𝑟𝑜, 𝑜𝑏𝑗⟩
which fields are respectively called subject, property and object. It can also be seen
as a partially labeled directed graph (𝑉,𝐸) with 𝑉 being the set of RDF nodes and𝐸 being the set of edges. This graph also comes with an incomplete label relation
that associates a unique string called a URI Uniform Resource

Identier
to most nodes. Nodes without an URI are

called blank nodes. It is important that, while not named, blank nodes have a distinct
internal identifier from one another that allows to differentiate them.
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Example

To illustrate how RDF is used, we present in listing 3.1, an example from the W3C
(2004a). This example is from the famous “Library” example commonly used to
explain relational databases. The short triple representation in that listing is
possible thanks to the Turtle variant of RDF (Beckett and Berners-Lee 2011). This
example also shows the use for properties from the rdf: namespace. These prop-
erties are fundamental to RDF and allow standard description of basic properties
such as the type.

Listing 3.1: Example of RDF turtle ontology
1 ex :ontology rdf : type owl :Ontology .
2 ex :name rdf : type owl :DatatypeProperty .
3 ex :author rdf : type owl : ObjectProperty .
4 ex :Book rdf : type owl : Class .
5 ex :Person rdf : type owl : Class .
6
7 _:x rdf : type ex :Book .
8 _:x ex :author _:x1 .
9 _:x1 rdf : type ex :Person .

10 _:x1 ex :name ”Fred”^^xsd: string .

Built on top of RDF, the W3C recommended another standard called OWL (W3C 2012). It
adds the ability to have hierarchical classes and properties along with more advanced
description of their arrity and constraints. OWL is, in a way, more expressive than
RDF (Van Harmelen et al. 2008, 1,p825). OWLcomes in three versions: OWL Lite, OWL
DL and OWL Full. The lite version is less advanced but its inference is decidable, OWL
DL contains all notions of DL and the full version contains all features of OWL but is
strongly undecidable.

The expressivity can also come from a lack of restriction. If we allow some freedom
of expression in RDF statements, its inference can quickly become undecidable (Motik
2007). This kind of extremely permissive language is better suited for specific usage
for other branches of AI. Even with this expressivity, several works still deem exist-
ing ontology system as not expressive enough, mostly due to the lack of classical con-
structs like lists, parameters and quantifiers that don’t fit the triple representation
of RDF.

One of the ways which have been explored to overcome these limitations is by adding
a 4th field in RDF. This field is used for information about any statement represented
as a triple (or 3 fields as the subject property and object). These include context,
annotations, access rights, probabilities, or most of the time the source of the data
(Tolksdorf et al. 2004). One of the other uses of the fourth field of RDF is to reify
statements (Hernández et al. 2015). The reification is a compound process. It needs
two steps:

• abstraction or generalization of the relational structure of a concept. It can be
seen as an imperfect description of an object.

• symbolization or referring to another structure as being equivalent to a single
object. It can be seen as “compressing” the information into one symbol.

In RDF, reification is the act of describing a statement using special relations such
as rdf:subject, rdf:property and rdf:object. Then the node describing the statement is
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typed as a statement and can be used in high order knowledge. Consequently, by iden-
tifying each statement, it becomes possible to efficiently form statements about any
statements.

Reifying isn’t the only way to express reflexivity in ontologies. In the work of Toro et
al. (2008), the solution explored is to encode queries into the ontology. This allows
for query caching and certainly adds to the expressivity. However, encoding queries
will only be relevant once queries are already executed.

3.4 Limits

The issue with using these classical tools is that they are very hard to combine. In-
deed, making ontologies with a dynamic grammar is out of the question when using
the main ontology frameworks. This difficulty is only slightly alleviated when trying
to build an ontology framework on top of a dynamic grammar. This lack of adaptability
or expressivity is the reason why other approaches must be considered.

Hart and Goertzel (2008) uses a different approach in their framework for AGI Artificial General
Intelligence

called
OpenCog. The structure of the knowledge is based on a rhizome, a collection of trees,
linked to each other. This structure is called Atomspace. Each vertex in the tree is
an atom, leaf vertices are nodes, the others are links. Atoms are immutable, indexed
objects. Values can be dynamic and, since they are not part of the rhizome, are an
order of magnitude faster to access. Atoms and values alike are typed.

The goal of such a structure is to be able to merge concepts from widely different
domains of AI. The major drawback being that the whole system is very slow compared
to pretty much any domain specific software.

In this chapter, we present a similar knowledge structure as AtomSpace that is used
along with notions inspired by ontology. The next section presents our contribution
toward a knowledge description framework that allows native higher order represen-
tation needed for hierarchical planning.

3.5 Structurally Expressive Language Framework

As we have seen, the most used knowledge description systems (e.g. RDF, ontologies
and relational databases) have a common drawback: they are static. This means that
they are created to be optimized for a specific use case, or gets general at the cost of
efficiency.

This issue is mainly due to the lack of flexibility of the language. Since the grammars
used for ontologies are static, the language cannot be modified unless manually and
by recompiling the tools.

The main issue is that such systems are unable to adapt to the use case by themselves.
To fix this issue, a new knowledge representation model is presented. We propose to
base our framework on dynamic grammar and exploit the properties of the grammar to
make the knowledge description evolve to fit its usage.

The goal is to make a minimal language framework that can adapt to its use to become
as specific as needed. If it becomes specific, it must start from a generic base. Since
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that base language must be able to evolve to fit the most cases possible, it must
be neutral and simple. To summarize, that framework must maximize the following
criteria:

• Neutral: Must be independent from preferences and regional localization.
• Permissive: Must allow as many data representation as possible.
• Minimalist: Must have the minimum number of base axioms and as little native
notions as possible.

• Adaptive: Must be able to react to user input and be as flexible as possible.

Table 3.1: Comparison of different approaches using our criteria.
Approaches Neutral Permissive Minimalist Adaptative
Relational - - - - - - - -
Triple + ++ + +
Ontology - + - -
AtomSpace ++ +++ - - ++
SELF +++ +++ ++ +++

Table 3.1 presents the fitness of each approach for each criterion. The first approach
is the relational database. While widely used, this approach requires an extensive
definition of the database schema and, while using simple syntax, is quite verbose in
comparison of modern languages. The second approach is the triple representation of
RDF. While it allows for more possibilities of expression, it still requires some specific
node URIs in order to express higher order knowledge. The ontologies don’t have many
advantages. They can be more expressive but the added restrictions on interpretation
makes it less appealing for our use. Indeed, it needs library worth of specific core URIs
and its typing system restricts the ability to abstract even more, especially on OWL
Lite. What it gains in speed and desirability, it loses on flexibility. The last existing
approach is the AtomSpace of OpenCog. This knowledge base allows for very abstract
structures. It, however, is quite heavy and not meant to be directly understood by hu-
man readers. This along with the time needed for inference makes it an unfit approach
for our objectives.

In order to respect these requirements, we developed a framework for knowledge de-
scription. This SELF is our answer to these criteria. SELF is inspired by RDF Turtle and
Description Logic.

3.5.1 Knowledge Structure

SELF extends the RDF graphs by adding another label to the edges of the graph to
uniquely identify each statement. This basically turns the system into a quadruple
storage even if this forth field is transparent to the user.
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Axiom: Structure

A SELF graph is a set of statements that transparently include their own identity.
The closest representation of the underlying structure of SELF is as follows:

𝑔𝕌 = (𝕌, 𝑆) ∶ 𝑆 = {𝑠 = ⟨𝑠𝑢𝑏, 𝑝𝑟𝑜, 𝑜𝑏𝑗⟩ ∶ 𝑠 ∈ 𝒟 ⊢ 𝑠 ∧𝒟}
with:

• 𝑠𝑢𝑏, 𝑜𝑏𝑗 ∈ 𝕌 being entities representing the subject and object of the state-
ment 𝑠,

• 𝑝𝑟𝑜 ∈ 𝑃 being the property of the statement 𝑠,
• 𝒟 ⊂ 𝑆 is the domain of the world 𝑔𝕌,
• 𝑆, 𝑃 ⊂ 𝕌 with 𝑆 the set of statements and 𝑃 the set of properties.

This means that the world 𝑔𝕌 is a graph with the set of entities 𝕌 as vertices and the
set of statements 𝑆 as edges. This model also supposes that every statement 𝑠 must
be true if it belongs to the domain 𝒟. This graph is a directed 3-uniform hypergraph.

See
section 2.5.6.Since sheaves are a representation of hypergraphs, we can encode the structure of

SELF into a sheaf-like form. Each seed is a statement, the germ being the statement
vertex. It is always accompanied by an incoming connector (its subject), an outgoing
connector (its object) and a non-directed connector (its property). The sections are
domains and must be coherent. Each statement, along with its property, makes a stalk
as illustrated in figure 3.3.

s

sub obj

sub obj

pro

pro

↻self

RDF

Figure 3.3: Projection of a statement from the SELF to RDF space.

The difference with a sheaf is that the projection function is able to map the pair
statement-property into a labeled edge in its projection space. We map this pair into
a classical labeled edge that connects the subject to the object of the statement in a
directed fashion. This results in the projected structure being a correct RDF graph.

3.5.1.1 Consequences

The base knowledge structure is more than simply convenience. The fact that state-
ments have their own identity, changes the degrees of freedom of the representation.
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RDF has a way to represent reified statements that are basically blank nodes with
properties that are related to information about the subject, property and object of
a designated statement. The problem is that such statements require three regular
statements just to be defined. Using the fourth field, it becomes possible to make
statements about any statements. It also becomes possible to express modal logic
about statements or to express various traits like the probability or the access rights
of a statement.

The knowledge structure holds several restrictions on the way to express knowledge.
As a direct consequence, we can add several theorems to the logic system underlying
SELF. The axiom of Structure is the only axiom of the system. From this axiom it is
possible to derive theorems that are logical propositions directly deductible from the
axioms of a system.

Theorem 3.5.1: Identity

Any entity is uniquely distinct from any other entity.

This theorem comes from the axiom of Extensionality of ZFC. Indeed it is stated that a
set is an unordered collection of distinct objects. Distinction is possible if and only if
intrinsic identity is assumed. This notion of identity entails that a given entity cannot
change in a way that would alter its identifier.

Theorem 3.5.2: Consistency

Any statement in a given domain is consistent with any other statements of this
domain.

Consistency comes from the need for a coherent knowledge system and is often a re-
quirement of such constructs. This theorem is also a consequence of the axiom of Struc-
ture: 𝑠 ∈ 𝒟 ⊢ 𝑠 ∧𝒟.

Theorem 3.5.3: Uniformity

Any object in SELF is an entity. Any relations in SELF are restricted to 𝕌.
This also means that all native relations are closed under 𝕌. This allows for a uniform
knowledge database.

3.5.1.2 Native Properties

In the following, we suppose all notions from previous chapter. The difference is that
we define and use only a subset of the functions defined in the SELF formalism. In
relation to the theory of SELF, we use the functional theory previously defined as the
underlying formalism.

Theorem 3.5.1 leads to the need for two native properties in the system : equality and
name.

The equality relation =∶ 𝕌 ↦ 𝕌, behaves like the classical operator. Since the knowl-
edge database will be expressed through text, we also need to add an explicit way to
identify entities. This identification is done through the name relation 𝜈 ∶ 𝕌 ↦ 𝐿𝑆𝑡𝑟
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that affects a string literal to some entities. This leads us to introduce literals into
SELF that are also entities that have a native value.

The axiom of Structure puts a type restriction on property. Since it compartments 𝕌
using various named subsets, we must adequately introduce an explicit type system
into SELF. That type system requires a type relation named using the colon ∶. It is
noted ∶∶ 𝕌 ↦ 𝑇. That relation is complete as all entities have a type. Theorem 3.5.3
causes the set of entities to be universal. Type theory, along with DL, introduces a
subsumption relation⊆∶ 𝑇 ↦ 𝑇 as a partial ordering relation to the types. Since types
can be seen as sets of instances, we simply use the subset relation from set theory.
In our case, the entity type is the greatest element of the lattice formed by the set
of types with the subsumption relation (𝑇,⊆).
The theorem 3.5.3 also allows for some very interesting meta-constructs. That is why
we also introduce a signed Meta relation 𝜇 ∶ 𝕌 ↦ 𝒟 with 𝜇• = •𝜇. This allows to
create domain from certain entities and to encapsulate domains into entities. 𝜇• is
for reification and 𝜇 is for abstraction. This Meta relation also allows to express value
of entities, like lists or various containers.

To fulfill the principle of adaptability and in order to make the type systemmore useful,
we introduce the parameter relation 𝜌 ∶ 𝕌 ↦ 𝕌. This relation affects a list of param-
eters, using the Meta relation, to some parameterized entities. This also allows for
variables in statements.

Since axiom of Structure gives the structure of SELF a hypergraph shape, we must
port some notions of graph theory into our framework. We introduce the statement
relation 𝜒 ∶ 𝑆 ↦ 𝕌 reusing the same symbol as for the adjacency and incidence relation
of graphs. This isn’t a coincidence as this relation has the same properties.

Example

Since statements are triplets and edges, 𝑠0 gives the subject of a statement𝑠. Respectively, 𝑠1 and 𝑠2 give the property and object of any statement. For
adjacencies, 𝜒 can give the set of statements any entity is the object or subject
of. For any property 𝑝𝑟𝑜, the notation 𝜒(𝑝𝑟𝑜) gives the set of statements using
this property.

These definitions allow us to build the hypergraph structure by using basic graph for-
malism.

All of this structure along with the native relations are presented in the table of sym-
bols. Figure 3.4 illustrates the way those sets and relations interact with one another.
The Venn diagram of SELF is contained within 𝕌 since it is endomorphic. It is interest-
ing to notice that 𝒟 is a subset of the powerset of 𝑆.

3.5.2 Syntax

Since we need to respect the requirements of the problem, the RDF syntax cannot be
used to express the knowledge. Indeed, RDF states native properties as English nodes
with a specific URI that isn’t neutral. It also isn’t minimalist since it uses an XML
syntax so verbose that it is not used for most examples in the documents that defines
RDF because it is too confusing and complex (W3C 2004b; W3C 2004c). The XML syntax
is also quite restrictive and cannot evolve dynamically to adapt to the usage.
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Figure 3.4: Venn diagram of subsets of 𝕌 along with their relations. Dotted lines mean
that the sets are defined a subset of the wider set.

The problem is that our principles can be contradictive. Indeed, a general language
that is very permissive is often far from minimalist or adaptive. A potential solution
would be to use two languages:

• A first one that is general and minimalistic.
• A second one that is permissive and adaptive.

The issue is that we certainly don’t want users to have to learn two separate languages
to use our framework. Also the second languagewould be complicated to describe since
it will be specific and will need to fit any particular use cases.

The best solution is to make a mechanism to adapt the language as it is used. We start
off with a simple framework that uses a minimalistic grammar.

3.5.2.1 Grammar

The description of 𝕘 is pretty straightforward: it mostly is just a triple representation
separated by whitespaces. The goal is to add a minimal syntax consistent with the
axiom of Structure. In grammar 3.2, we give a simplified version of 𝕘. It is written in
a pseudo-BNF fashion, which is extended with the classical repetition operators * and
+ along with the negation operator ~. All tokens have names in uppercase. We also
add the following rule modifiers:

• <~name> are ignored for the parsing. However, the tokens are consumed and there-
fore acts like separators for the other rules.

• <?name> are inferred rules and tokens. They play a key role for the process of
derivation explained in section 3.5.3.
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Listing 3.2: Simplified pseudo-BNF description for basic SELF.
1 <~COMMENT: <INLINE : ”//” (~[”\n” , ”\r”])*>
2 | <BLOCK : ”/*” (~[”*/”])*> > //Ignored
3 <~WHITE_SPACE : ”␣” |”\t” |”\n” |”\r” |”\f”>
4 <LITERAL : <INT> | <FLOAT> | <CHAR> | <STRING>> //Java definition
5 <ID : <TYPE : <UPPERCASE>(<LETTERS> |<DIGITS>)* >
6 | <ENTITY : <LOWERCASE>(<LETTERS> |<DIGITS>)*>
7 | <SYMBOL: (~[<LITERALS>, <LETTERS>, <DIGITS>])*>>
8
9 <self > : := <first > <statement>* <EOF>
10 <first > : := <subject> <?EQUAL> <?SOLVE> <?EOS>
11 <statement> : := <subject> <property> <object> <EOS>
12 <subject> : := <entity>
13 <property> : := <ID> | <?meta_property>
14 <object> : := <entity>
15 <entity> : := <ID> | <LITERAL> | <?meta_entity>

In 𝕘, the first two token definitions are ignored. This means that comments and white-
spaces will act as separation and won’t be interpreted. Comments are there only for
convenience since they do not serve any real purpose in the language. It was arbitrar-
ily decided to use Java-style comments.

Line 4 uses the basic Java definition for literals. In order to keep the independence
from any natural language, boolean literals are not natively defined (since they are
English words).

The rule at line 10 is used for the definition of three tokens that are important for
the rest of the input. <EQUAL> is the symbol for equality and <SOLVE> is the symbol
for the solution quantifier (and also the language pendant of 𝜇•). The most useful
token <EOS> is used as a statement delimiter. This rule also permits the inclusion of
other files if a string literal is used as a subject. The underlying logic of the solution
quantifier is presented in section 3.5.5.1. In the following examples we will consider
that <EQUAL> ::=”=”, <SOLVE> ::=”?” and <EOS> ::=”;”.

At line 11, we can see one of the most defining features of 𝕘: statements. The input
is nothing but a set of statements. Each component of the statements is an entity.
We defined two specific rules for the subject and object to allow for eventual runtime
modifications. The property rule is more restricted in order to guarantee the non-
ambiguity of the grammar.

3.5.2.2 Neutrality and encoding

In order to respect the principle of neutrality, the language must not suppose any
regional predisposition of the user. There are few exceptions for the sake of conve-
nience and performance. The first exception is that the language is meant to be read
from left to right and have an occidental biased subject verb object triple description.
Another exception is for literals that use the same grammar as in classical Java. This
means that the decimal separator is the dot (.). This concession is made for reasons
of simplicity and efficiency, but it is possible to define literals dynamically in theory
(see section 8.1.1.1).

The principle of neutrality makes mandatory to use an extensive character encoding
standard in order to support non-roman languages. The best candidate for such an
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encoding is the UTF-8Unicode
Transformation

Format on 8-bits

(see Unicode Consortium 2018a, chap. 2). This standard is cer-
tainly the most used in the world and have a significant impact on the way text is
expressed in any written language used nowadays.

The Unicode consortium caters to a database that names, categorizes and describes
all characters. That database is called the UCDUnicode

Character
Database

(Unicode Consortium 2018b).

SELF can work with UTF-8 and exploits the UCD for its token definitions. This means
that SELF comes keywords free and that the definition of each symbol is left to the user.
Each notion and symbol is inferred (with the exception of the first statement which is
closer to an imposed configuration file). For efficiency’s sake it is still recommended
to restrain our use to the ASCIIAmerican

Standard Code
for Information

Interchange

(One of UTF-8’s predecessor) subset of characters.

White-spaces are defined against UCD’s definition of the separator category Z& (see
Unicode Consortium 2018a, chap. 4).

Another aspect of that language independence is found starting at line 5 where the
definitions of <UPPERCASE>, <LOWERCASE>, <LETTERS> and <DIGITS> are defined from the
UCD (respectively categories Lu, Ll, L&, Nd). This means that any language’s uppercase
can be used in that context. For performance and simplicity reasons we will only use
ASCII in our examples and application.

3.5.3 Dynamic Grammar

The syntax we described is only valid for 𝕘. As long as the input is conforming to these
rules, the framework keeps theminimal behavior. In order to accessmore features, one
needs to break a rule. We add a second outcome to hande with violations : derivation.
There are several kinds of possible violations that will interrupt the normal parsing
of the input :

• Violations of the <first> statement rule : This will cause a fatal error.
• Violations of the <statement> rule : This will cause a derivation if an unexpected
additional token is found instead of <EOS>. If not enough tokens are present, a
fatal error is triggered.

• Violations of the secondary rules (<subject>, <entity>, …) : This will cause a fatal
error except if there is also an excess of token in the current statement which
will cause derivation to happen.

Derivation will cause the current input to be analyzed by a set of meta-rules. The main
restriction of these rules is given in 𝕘: each statement must be expressible using a
triple notation. This means that the goal of the meta-rules is to find an interpretation
of the input that is reducible to a triple and to augment 𝕘 by adding an expression
to any <meta_*> rules. If the input has fewer than 3 entities for a statement then
the parsing fails. When there is extra input in a statement, there is a few ways the
infringing input can be reduced back to a triple.

3.5.3.1 Containers

The first meta-rule is to infer a container. A container is delimited by, at least, a left
and a right delimiter (they can be the same symbol). An optional middle delimiter can
also be used but must be different from any other delimiters. We infer the delimiters
using the algorithm 1.
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Algorithm 1 Container meta-rule
1: function container(Token current)
2: lookahead(current, EOS) ▷ Populate all tokens of the statement
3: for all token in horizon do
4: if token is a new symbol then delimiters.append(token)
5: if length(delimiters) <2 then
6: if coherentDelimiters(horizon, delimiters[0]) then
7: inferMiddle(delimiters[0])▷ New middle delimiter in existing containers
8: return Success
9: return Failure
10: while length(delimiters) > 0 do
11: for all (left, middle, right) in sortedDelimiters(delimiters) do
12: if coherentDelimiters(horizon, left, middle, right) then
13: inferDelimiter(left, right)
14: inferMiddle(middle) ▷ Ignored if null
15: delimiters.remove(left, middle, right)
16: break
17: if length(delimiters) stayed the same then return Success
18: return Success

The algorithm will start at line 4, by searching all new symbols and store them as
delimiter candidates in delimiters. The function sortedDelimiters at line 11 will generate
all possible orders to put the delimiters into. It will also sort those combinations from
most likely to unlikely. This is done by using the UCD Bidi_Mirrored property of paired
delimiters (category Z) and checking if the order is coherent with the Bidi_Class.

Checking the result of the choice is very important. At line 12 the function
coherentDelimiters checks if the delimiters allow for triple reduction and enforce
restrictions.

Example

For example, a property cannot be wrapped in a container (except if part of pa-
rameters). This is done in order to avoid a type mismatch later in the interpre-
tation.

Once the inference is done, the resulting calls to inferDelimiter will add the rules listed
in listing 3.3 to 𝕘. This functionwill create a <container> rule and add it to the definition
of <meta_entity>. Then it will create a rule for the container named after the UCD name
of the left delimiter (using the property Name starting with “left” and the property
Bidi_Class). Those rules are added as a conjunction list to the rule <container>. It
is worthy to note that the call to inferMiddle will add rules to the token <MIDDLE>
independently from any container and therefore, all containers share the same pool of
middle delimiters.

Listing 3.3: Rules added to the current grammar for handling the new container for
parenthesis

1 <meta_entity> : := <container>
2 <container> : : = <parenthesis> | …
3 <parenthesis> : := ”(” [<naked_entity>] (<?MIDDLE> <naked_entity>)* ”)”
4 <naked_entity> : := <statement> | <entity>
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The rule at line 4 is added once and enables the use of meta-statements inside con-
tainers. It is the language pendant of the 𝜇 relation, allowing to wrap abstraction in
a safe way.

Example

If we parse the expression a = (b,c);, we start by tokenizing it as <ENTITY> <
EQUAL> <SYMBOL><ENTITY><SYMBOL><ENTITY><SYMBOL> <EOS> (ignoring whitespaces
and comments). This means that the statement is 4 tokens too long to form a
triple. This triggers a parsing error and then an evaluation using meta-rules. All
the <ID> tokens are new symbols, but they don’t have the same subtype. This
means that candidate delimiters are ((), (,) and ()). To infer the correct combina-
tion, the left and right delimiters are found via their Unicode description. The
comma is left to be inferred as the middle delimiter. The grammar is rewritten
and the statement becomes <ENTITY> <EQUAL> <container> <EOS> which is a valid
triple statement.

3.5.3.2 Parameters

If no viable container has been found, we proceed with the next meta-rule. This rule
needs the first one to have been used at least once before being able to work. This
meta-rule allows for parameterized entities using containers. A parameter is an or-
dered list of arguments, just like for functions. Algorithm 2 presents how we infer
parameters from invalid statements.

Algorithm 2 Parameter meta-rule
1: function parameter(Entity[] statement)
2: reduced = statement
3: while length(reduced) >3 do
4: for i from 0 to length(reduced) - 1 do
5: if name(reduced[i]) not null and
6: type(reduced[i+1]) = Container and
7: coherentParameters(reduced, i) then
8: param = inferParameter(reduced[i], reduced[i+1])
9: reduced.remove(reduced[i], reduced[i+1])
10: reduced.insert(param, i) ▷ Replace parameterized entity
11: break
12: if length(statement) stayed the same then return Success
13: return Failure

This algorithm will search for extra containers in the statement. For each container,
the function coherentParameters at line 7 will check if the container can be turned into
a parameter for the preceding entity. In order to remove ambiguities, we disallow
parameters on containers as well as using containers as properties.

Once a coherent parameter has been found, the container is removed from the state-
ment and added as the preceding entity’s parameter. To do so quicker the next time,
the function inferParameter at line 8 adds that syntax as new rules as illustrated in
listing 3.4, replacing <?container> with the name of the container used.
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Listing 3.4: Rules added to the current grammar for handling parameters
1 <meta_entity> : := <ID> <?container>
2 <meta_property> : := <ID> <?container>

Example

In this case we have to parse f(x) = x;. If we already have the parenthesis delim-
iter defined, it becomes <ENTITY> <container> <EQUAL> <ENTITY> <EOS>. Since the
statement isn’t a triple, we execute the meta-rules. The container rule finds
no new symbols and fails. Then the parameter meta-rule will reduce the state-
ment by bounding the first entity to the following container and mark it as a
parameterized entity. This gives <meta_entity> <EQUAL> <ENTITY> <EOS>.

3.5.3.3 Modifiers

In some cases, using containers for parameters can become verbose. In order to make
that task more concise, it is useful to add syntactic sugar. This term refers to a writing
convenience that is actually equivalent to a longer or more complex notation. In our
case, making containers optional comes mainly from the use of modifiers. So this
will be our last meta-rule since it requires parameters to have been used at least
once before. In algorithm 3 we explain the process of how the modifier notation is
inferred.

Algorithm 3 Modifier meta-rule
1: function modifer(Entity[] statement)
2: reduced = statement
3: while length(reduced) >3 do
4: for i from 0 to length(reduced) - 1 do
5: if 𝜈(reduced[i]) not null and
6: 𝜈(reduced[i+1]) not null and
7: (𝜈(reduced[i]) is a new symbol or
8: reduced[i] has been parameterized before) and
9: coherentModifier(reduced, i) then
10: mod = inferModifier(reduced[i], reduced[i+1])
11: reduced.remove(reduced[i], reduced[i+1])
12: reduced.insert(mod, i) ▷ Replace parameterized entity
13: break
14: if length(statement) stayed the same then return Success
15: return Failure

In a very similar way as with algorithm 2, this algorithm will first determine if the pro-
posed modifier is coherent. If the entity has been parameterized before, and the state-
ment is valid after reduction, the syntax will be accepted. From the call of inferModifier,
comes new rules explicated in listing 3.5. The call also adds the modifier entity to an
inferred token <MOD>.

Listing 3.5: Rules added to the current grammar for handling modifiers
1 <meta_entity> : := <?MOD> <ID>
2 <meta_property> : := <?MOD> <ID>
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Since it is most used for special entities like quantifiers, once used, the parent entity
will take a polymorphic type. This means that type inference will not issue errors for
any usage of them.

Example

With the input !x = 0; we parse <SYMBOL> <ENTITY> <EQUAL> <LITERAL> <EOS>. This
cannot be a container since the new symbol is at the beginning without any mir-
roring possible. It cannot be a parameter since no container is present. But
this will conclude with the modifier meta-rule as the new symbol precedes an
entity. This becomes <meta_entity> <EQUAL> <LITERAL> <EOS> and becomes a valid
statement.

If all meta-rules fail, then the parsing fails and returns a classical syntax error to the
user.

3.5.4 Contextual Interpretation

While parsing, another important part of the processing is done after the success of a
grammar rule. The grammar in SELF is valuated, meaning that each rule has to return
an entity. A set of functions are used to then populate the knowledge description
system with the right entities or retrieve an existing one that corresponds to what is
being parsed.

When parsing, the rules <entity> and <property> will trigger the creation or retrieval of
an entity. This mechanism will use the name of the entity to retrieve an entity with
the same name in a given scope. If no such entity exists it is created and added to the
current scope.

3.5.4.1 Naming and Scope

When parsing an entity, the system will first request for an existing entity with the
same name. If such an entity is retrieved, it is returned instead of creating a new one.
The validity of a name is limited by the notion of scope.

f(x)=(x+2);
g(x)=x;
h(x)=42;

Legend

Global
Property
Literal
Variable

Figure 3.5: Example of scope resolution.
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Example

In order to make this notion easier to understand, we start with its expected
behavior. In figure 3.5 the process of variable qualification is illustrated. In
order to become a variable, an entity must fulfill two conditions:

• Be used as a parameter in the statement.
• Be mentioned twice in the statement.

In our example, f has x as parameters and x is used in the statement inside
the contained statement on the right hand of the first statement. Of course we
suppose in this example that parentheses are delimiters and that (;) is the end
of statement tokens.
An important nuance can be shown in the second statement. Indeed, x is also a
variable but since it is a different global level statement, it is not resolved as the
same variable as the previous x. This means that both variables are independent.
In the third statement, x is only mentioned once and therefore is now a global
symbol. It is still independent from the two previous statements.

A scope is the reach of an entity’s direct influence. It affects the naming relation by
removing variable names. Scopes are delimited by containers and statements. This
local context is useful when wanting to restrict the scope of the declaration of an
entity. The main goal of such restriction is to allow for a similar mechanism as the RDF
namespaces. This also makes the use of variables possible, akin to RDF blank nodes.

The scope of an entity has three special values :

• Variable: This scope restricts the scope of the entity to only the other entities
in its scope.

• Local: This scope is temporarily bound to a given entity during the parsing. This
scope is limited to the statement being interpreted.

• Global: This scope means that the name has no scope limitation.

The scope of an entity also contains all its parent entities, meaning all containers or
statement the entity is part of. This is used when choosing between the special values
of the scope. The process is detailed in algorithm 4.

The process happens for each entity created or requested by the parser. If a given
entity is part of any other entity, the enclosing entity is added to its scope. When an
entity is enclosed in any entity while already being a parameter of another entity, it
becomes a variable since it is referenced twice in the same statement.

3.5.4.2 Instanciation identification

When a parameterized entity is parsed, another process starts to identify if a com-
patible instance already exists. From theorem 3.5.1, it is impossible for two entities
to share the same identifier. This makes mandatory to avoid creating an entity that
is equal to an existing one. Given the order of which parsing is done, it is not always
possible to determine the parameter of an entity before its creation. In that case a
later examination will merge the new entity onto the older one and discard the new
identifier.
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Algorithm 4 Determination of the scope of an entity
1: function inferScope(Entity 𝑒)
2: Entity[] reach = []
3: if ∶ (𝑒) = 𝑆 then
4: for all 𝑖 ∈ 𝜒(𝑒) do reach.append(inferVariable(var)) ▷ Adding scopes nested

in statement 𝑒
5: for all 𝑖 ∈ 𝜇•(𝑒) do reach.append(inferVariable(𝑖)) ▷ Adding scopes nested in

container 𝑒
6: if ∃𝜌(𝑒) then
7: Entity[] param = inferScope(𝜌(𝑒))
8: for all 𝑖 ∈ param do param.remove(inferScope(𝑖)) ▷ Remove duplicate

scopes from parameters
9: for all 𝑖 ∈ param do reach.append(inferVariable(𝑖)) ▷ Adding scopes from

paramters of 𝑒
10: scope(𝑒) ← reach
11: if GLOBAL ∉ scope(𝑒) then scope(𝑒)← scope(𝑒) ∪{LOCAL}

return reach
12: function inferVariable(Entity 𝑒)
13: Entity[] reach = []
14: if LOCAL ∈ scope(𝑒) then
15: for all 𝑖 ∈ scope(𝑒) do
16: if ∃𝑒𝑝 ∈ 𝕌 ∶ 𝜌(𝑝) = 𝑖 then▷ 𝑒 is already a parameter of another entity 𝑒𝑝
17: scope(𝑒)← scope(𝑒) ⧵{LOCAL}
18: scope(𝑒𝑝)← scope(𝑒𝑝) ∪ scope(𝑒)
19: scope(𝑒)← scope(𝑒) ∪{VARIABLE, 𝑝}
20: reach.append(𝑒)
21: reach.append(scope(𝑒))

return reach
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3.5.5 Structure as a Definition

The derivation feature on its own does not allow to define most of the native proper-
ties. For that, one needs a light inference mechanism. This mechanism is part of the
default inference engine. An inference engine is the term that describes an algorithm
used in ontologies to infer new statements from an explicit set of statements known
as an ontological database.

In our case, this engine only works on the principle of structure as a definition. Since
all names must be neutral from any language, that engine cannot rely on classical
mechanisms like configuration files with keys and values or predefined keywords.

To use SELF correctly, one must be familiar with the native properties and their struc-
ture or implement their own inference engine to override the default one.

3.5.5.1 Quantifiers

In SELF quantifiers differ from their mathematical counterparts. The quantifiers are
special entities that are meant to be of a generic type that matches any entities includ-
ing quantifiers. There are infinitely many quantifiers in SELF but they are all derived
from a special one called the solution quantifier. We mentioned it briefly during the
definition of the grammar 𝕘. It is the language equivalent of 𝜇• and is used to extract
and evaluate reified knowledge (see section 3.5.1.2).

Example

The statement bob is <SOLVE>(x) will give either a default container filled with
every value that the variable x can take or if the value is unique, it will take
that value. If there is no value it will default to <NULL>, the exclusion quantifier.

How are other quantifiers defined? We use a definition akin to Lindstöm quantifiers
(1966) which is a generalization of counting quantifiers (Gradel et al. 1997). Meaning
that a quantifier is defined as a constrained range over the quantified variable. We
suppose five quantifiers as existing in SELF as native entities.

• The solution quantifier <SOLVE> noted § in classical mathematics, turns the ex-
pression into the possible value range of its variable. It is like replacing it by
the natural expression “those 𝑥 that”.

• The universal quantifier <ALL> behaves like ∀ and forces the expression to take
every possible value of its variable.

• The existential quantifier <SOME> behaves like ∃ and forces the expression to
match at least one arbitrary value for its variable.

• The uniqueness quantifier <ONE> behaves like ∃! and forces the expression to
match exactly one arbitrary value for its variable.

• The exclusion quantifier <NULL> behaves like ∄ and forces the expression not to
match the value of its variable.

The last four quantifiers are inspired from Aristotle’s square of opposition (D’Alfonso
2011) as illustrated in figure 3.6.

In SELF, quantifiers are not always followed by a quantified variable and can be used as
a value. In that case the variable is simply anonymous. We use the exclusion quantifier
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Figure 3.6: Aristotle’s square of opposition

as a value to indicate that there is no value, sort of like null or nil in programming
languages.

Example

If we want to express the fact that a glass of water is not empty we can write
either glass contains ~(~); or glass ~(contains)~ with <NULL> =~. This shows that
<NULL> is used for negation and to indicate the absence of value.

This property is quite handy as it requires only one symbol and allows for complex
constructs that are difficult to explain using available paradigms.

In listing 3.6, we present an example file that is meant to define most of the useful
native properties along with default quantifiers.

Listing 3.6: The default lang.w file.
1 * =? ;
2 ?(x) = x; //Optional definition
3 ?~ = { };
4 ?_ ~(=) ~;
5 ?!_ = {_};
6
7 (*e, !T) : (e : : T) ; *T : (T : : Type) ;
8 *T : ( Entity / T) ;
9
10 : : : : Property (Entity , Type) ;
11 (___) : : Statement ;
12 (~ , ! , _ , *) : : Quantifier ;
13 ( ) : :Group ;
14 { } : : Set ;
15 [ ] : : List ;
16 < > : : Tuple ;
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17 Collection/(Set , List ,Tuple ) ;
18 0 : : Integer ; 0.0 : : Float ;
19 '\0 ' : : Character ; ”” : : String ;
20 Literal/(Boolean , Integer , Float , Character , String ) ;
21
22 (*e, ! (s : : String ) ) : (e named s) ;
23 (*e(p) , !p) : (e param p) ;
24 *(s p o) : ( ( ( s p o) subject s) , ( ( s p o) property p) , ( ( s p o) object o) ) ;

At line 1, we give the first statement that defines the solution quantifier’s symbol.
The reason this first statement is shaped like this is that global statements are al-
ways evaluated to be a true statement. Since domains are sets of statements, this
means that anything equaling the solution quantifier at this level will be evaluated
as a domain. This is because the entity is a domain by structure. If it is a single
entity then it becomes synonymous to the entire SELF domain and therefore contains
everything. We can infer that it becomes the universal quantifier.

If it is a string literal, then it must be either a file path or URL Uniform Resource
Locator

or a valid SELF expres-
sion.

Example

Using the first statement, we can include external domains akin to the import
directive in Java. Writing ”path/lang.w”=?; as a first statement will make the
process parse the file located at path/lang.w and insert it at this spot.

All statements up to line 5 are quantifiers definitions. On the left side we got the
quantifier symbol used as a parameter to the solution quantifier using the operator
notation. On the right we got the domain of the quantifier. The exclusive quantifier has
as a range the empty set. For the existential quantifier we have only a restriction of it
not having an empty range. At last, the uniqueness quantifier got a set with only one
element matching its variable (noting that anonymous variables do not match other
anonymous variables necessarily in the same statement).

In listing 3.6 the type hierarchy can be illustrated by the figure 3.7. It shows how
the type Entity is the parent of all types. This figure is separated by two axes of
symmetry. The vertical separation concern abstraction. Types on the left are used
for the Meta relation. The horizontal line distinguishes valuation. Terms on top are
externally valued (valued by the context) and terms on the bottom are intrinsically
valued (valued by their definition).

↻selfType

Entity

Quantifier

Container

Legend

PropertyStatement

()

~ _ *

; : :: /

Literal Abstract

Normal

Valued

Figure 3.7: Hierarchy of types in SELF
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3.5.5.2 Inferring Native Properties

All native properties can be inferred by structure using quantified statements. Here
is the structural definition for each of them:

• = (at line 1) is the equality relation given in the first statement.
• ⊆ (at line 8) is the first property to relate a particular type of all types. That
type becomes the entity type.

• 𝜇• (at line 1) is the solution quantifier discussed above given in the first state-
ment.

• 𝜇 is represented using containers.
• 𝜈 (at line 22) is the first property affecting a string literal uniquely to each entity.
• 𝜌 (at line 23) is the first property to affect all entities to a possible parameter
list.

• ∶ (at line 7) is the first property that matches every entity to a type.
• 𝜒 (at line 24) is the first property to match for all statements.

We limit the inference to one symbol to eliminate ambiguities and prevent accidental
redefinition of native properties. This also improves performance as the inference is
stopped after finding a first matching entity that can be used programmatically using
a single constant.

3.5.6 Extended Inference Mechanisms

In this section we present the default inference engine. It is quite limited since it is
meant to be universal and the goal of SELF is to provide a framework that can be used
by specialists to define and code exactly what tools they need.

Inference engines need to create new knowledge but this knowledge shouldn’t be sim-
ply merged with the explicit user provided domain. Since this knowledge is inferred, it
is not exactly part of the domain but must remain consistent with it. This knowledge
is stored in a special scope dedicated to each inference engine. This way, inference en-
gines can use defeasible logic or have dynamic inference from any knowledge insertion
in real time.

3.5.6.1 Type Inference

Type inference works on matching types in statements. The main mechanism consists
in inferring the type of properties in a restrictive way. Properties have a parameter-
ized type with the type of their subject and object. The goal is to make that type
match the input subject and object.

For that we start by trying to match the types. If the types differ, the process tries
to reduce the more general type against the lesser one (subsumption-wise). If they
are incompatible, the inference uses some light defeasible logic to undo previous infer-
ences. In that case the types are changed to the last common type in the subsumption
tree.

However, this may not always be possible. Indeed, types can be explicitly specified as
a safeguard against mistakes. If that’s the case, an error is raised and the parsing or
knowledge insertion is interrupted.
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3.5.6.2 Instantiation

Another inference mechanism is instantiation. Since entities can be parameterized,
they can also be defined against their parameters. When those parameters are vari-
ables, they allow entities to be instantiated later.

Since entities are immutable, updating their instance can be quite tricky. Indeed,
parsing happens from left to right and therefore an entity is often created before all
the instantiation information are available. Even harder are completion of definition
in several separate statements. In all cases, a new entity is created and then the
inference realizes that it is either matching a previous definition and will need to be
merged with the older entity or it is a new instance and needs all properties to be
duplicated and instantiated.

This gives us two mechanisms to take into account: merging and instanciating.

Merging is pretty straightforward: the new entity is replaced with the old one in all of
the knowledge graph. Containers, parameterized entities, quantifiers and statements
must be duplicated with the correct value and the original destroyed. This is a heavy
and complicated process but seemingly the only way to implement such a case with
immutable entities.

Instanciating is similar to merging but even more complicated. It starts with com-
puting a relation that maps each variable that needs replacing with their grounded
value. Then it duplicates all knowledge about the parent entity while applying the
replacement map.

3.6 Example

In the following section, a use case of the framework will be presented. First we have
to explain a few notions.

3.6.1 Modality of Statements

In the field of logic there exists one special flavor of it called modal logic. It lays the
emphasis upon the qualifications of statements, and especially the way they are inter-
preted. This is a very appropriate example for SELF. The modality of a statement acts
like a modifier, it specifies a property regarding its plausibility, origin or validity.
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Figure 3.8: Example of modal logic propositions: Alice gossips about what Beatrice said
about Claire
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Example

In the figure 3.8, we present a case of three persons gossiping, Alice, Becky and
Carol. The presentation is inspired by the work of Schwarzentruber (2018). Here
is a list of the statements in this example:

• Alice said to Becky that Carol should probably change her style from 𝐶1 to𝐶2.
• Becky said to Alice that she finds the Carol’s style usually good.
• Alice told Carol that Becky told her that she should sometimes change her
style to 𝐶2.

The following statement can be inferred:

• Carol possibly thinks that Becky thinks that the style 𝐶2 is often good.
In the example, all modalities are emphasized. One can notice an interesting property
of these statements in that they are about other statements. This kind of description
is called higher order knowledge.

3.6.2 Higher order knowledge

SELF is based on the ability to easily process higher order knowledge. In that case the
term order refers to the level of abstraction of a statement (Schwarzentruber 2018).
For such usages, a hypergraph structure is a clear advantage in terms of expressivity
and ease of manipulation of those statements. This is due to the higher dimensionality
of sheaves (and by extension hypergraphs) that makes meta-statement as simple to
express as any other statement. This chain of abstractions using meta-statements is
where the higher order knowledge is encoded.

Example

We present the previous example using RDF (in listing 3.7) and SELF (in listing 3.8)
to describe knowledge of the gossip.

Listing 3.7: RDF representation of the gossip example
1 @prefix : <http ://genn . io/self/gossip#> .
2 @prefix owl : <http ://www.w3.org/2002/07/owl#> .
3 @prefix rdf : <http ://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix xml: <http ://www.w3.org/XML/1998/namespace> .
5 @prefix xsd: <http ://www.w3.org/2001/XMLSchema#> .
6 @prefix rdfs : <http ://www.w3.org/2000/01/rdf−schema#> .
7 @base <http ://genn . io/self/gossip> .
8
9 <http ://genn . io/self/gossip> rdf : type owl :Ontology ;
10 owl : imports rdf : .
11
12 :modality rdf : type owl : AnnotationProperty ;
13 rdfs : range :Modality .
14
15 : told_a rdf : type owl : ObjectProperty .
16 : told_b rdf : type owl : ObjectProperty .

61



3 Knowledge Representation

17 : told_c rdf : type owl : ObjectProperty .
18 :Modality rdf : type owl : Class .
19 :good rdf : type owl :NamedIndividual .
20 : is rdf : type owl :NamedIndividual ,
21 rdf : Property .
22 :probably rdf : type owl :NamedIndividual ,
23 :Modality .
24 :s1 rdf : type owl :NamedIndividual ,
25 rdf :Statement ;
26 rdf : object : c2 ;
27 rdf : predicate :worsethan ;
28 rdf : subject : c ;
29 :modality :probably .
30 :s2 rdf : type owl :NamedIndividual ;
31 rdf : object :good ;
32 rdf : predicate : is ;
33 rdf : subject : c ;
34 :modality : usually .
35 :s3 rdf : type owl :NamedIndividual ,
36 rdf :Statement ;
37 rdf : object :s4 ;
38 rdf : predicate : told_a ;
39 rdf : subject :b .
40 :s4 rdf : type owl :NamedIndividual ,
41 rdf :Statement ;
42 rdf : object : c2 ;
43 rdf : predicate : should ;
44 rdf : subject : c ;
45 :modality :sometimes .
46 : should rdf : type owl :NamedIndividual ,
47 rdf : Property .
48 :sometimes rdf : type owl :NamedIndividual ,
49 :Modality .
50 : told_a rdf : type owl :NamedIndividual ,
51 rdf : Property .
52 : usually rdf : type owl :NamedIndividual ,
53 :Modality .
54 :worsethan rdf : type owl :NamedIndividual ,
55 rdf : Property .
56 :a rdf : type owl :NamedIndividual ;
57 : told_b :s1 ;
58 : told_c :s3 .
59 :b rdf : type owl :NamedIndividual ;
60 : told_a :s2 .
61 : c rdf : type owl :NamedIndividual .
62 : c2 rdf : type owl :NamedIndividual .

Listing 3.8: SELF representation of the gossip example
1 ”lang .s” = ? ;
2 a told (b) probably ( c worsethan ctwo) ;
3 b told (a) usually ( c is good) ;
4 a told ( c ) (b told (a) sometimes( c should ctwo) ) ;

It is obvious that the SELF version is an order of magnitude more concise than RDF to
express modal logic. The 4 lines of SELF are equivalent to the 62 lines of RDF. In the
RDF version we use the reified statements :s1, :s2, :s3 and :s4 along with a :modality
annotation to express high order knowledge and modalities. In SELF, everything is
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inferred by structure and one can start exploiting their database right away.

3.7 Conclusion

In this chapter, we presented a new endomorphic metalanguage for knowledge de-
scription. This language along with its framework allows for extended expressivity
and higher order knowledge. This framework was needed to overcome the limitations
of classical knowledge representation tools, mainly in order to encode hierarchical
planning domains into human and computer-readable text.
In the following chapter we will show an application of this framework to encode plan-
ning domains. This application allows to transpose a general planning framework into
a specialized language using SELF.
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When designing intelligent systems, an important feature is the ability to make de-
cisions and act accordingly. To act, one should plan ahead. This is why the field of
automated planning is being actively researched in order to find efficient algorithms
to find the best course of action in any given situation. The previous chapter pre-
sented a new knowledge representation model. The way to represent the knowledge
of planning domains is an important factor to take into account in order to conceive
most planning algorithms.

All planning formalisms are based on mainly two notions that define the planning do-
main: actions and states. A state is a set of fluents that describe aspects of the
world modeled by the domain. Each action has a logic formula over states that allows
its correct execution. This requirement is called precondition. The mirror image of
this notion is called possible effects which are logic formulas that are enforced on
the current state after the action is executed. The domain is completed with a prob-
lem, most of the time specified in a separate file. The problem basically contains two
states: the initial and goal states.

In this chapter, we will start with a popular planning problem as an example of what
planning is about. Then, we will formalize general notions of planning using the func-
tional formalism of chapter 2. This leads to our contribution: by factorizing how plan-
ners search for a result, it becomes possible to formalize all planning paradigms into
one unified approach. To finish we will show how this formalism can be applied to every
single planning paradigm.

4.1 Illustration

To illustrate how automated planners work, we introduce a typical planning problem
called block world.
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A

B

C D

Table

Figure 4.1: The block world domain setup.

Example

In this example, a robotic grabbing arm tries to stack blocks on a table in a spe-
cific order. The arm is only capable of handling one block at a time. We suppose
that the table is large enough so that all the blocks can be put on it without any
stacks. Figure 4.1 illustrates the setup of this domain.
The possible actions are pickup, putdown, stack and unstack. There are at least
three fluents needed:

• one to state if a given block is down on the table,
• one to specify which block is held at any moment and
• one to describe which block is stacked on which block.

We also need a special block value to state when noblock is held or on top of
another block. This block is a constant.

The knowledge we just described is called planning domain.

In that example, the initial state is described as stacks and a set of blocks directly on
the table. The goal state is usually the specification of one or many stacks that must
be present on the table. This part of the description is called planning problem.

In order to solve it we must find a valid sequence of actions called a plan. If this
plan can be executed in the initial state and result in the goal state, it is called a
solution of the planning problem. To be executed, each action must be done in a state
satisfying its preconditions and will alter that state according to its effects. A plan
can be executed if all its actions can be executed in the sequence of the plan.
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pickup(blockA)stack(blockB,blockC)unstack(blockB) stack(blockA,blockB)

1 2 3 4

Figure 4.2: An example of a solution to a planning problem with a goal that requires
three blocks stacked in alphabetical order.

Example

For example, in the block world domain we can have an initial state with
the 𝑏𝑙𝑜𝑐𝑘𝐵 on top of 𝑏𝑙𝑜𝑐𝑘𝐴 and the 𝑏𝑙𝑜𝑐𝑘𝐶 being on the table. In fig-
ure 4.2, we give a plan solution to the problem consisting of having the stack⟨𝑏𝑙𝑜𝑐𝑘𝐴, 𝑏𝑙𝑜𝑐𝑘𝐵, 𝑏𝑙𝑜𝑐𝑘𝐶⟩ from that initial state.

All automated planners aim to find such a solution to their planning problem. The main
issue is that planning problem quickly becomes very expensive to solve. This is why
planners are often evaluated on time and solution quality. The quality of a plan is
often measured by how hard it is to execute, whether by its execution time or by the
resources needed to accomplish it. This metric is often called the cost of a plan and is
often simply the sum of the costs of its actions.

Automated planning is very diverse. A lot of paradigms shift the definition of the do-
main, actions and even plan to widely varying extents. This is the reason why making
a general planning formalism was deemed so hard or even impossible:

““It would be unreasonable to assume there is one single compact and cor-
rect syntax for specifying all useful planning problems.” Sanner
(2010)

Indeed, the block world example domain we give is mostly theoretical since there is
infinitely more subtlety into this problem such as mechatronic engineering, balancing
issues and partial ability to observe the environment and predict its evolution as well
as failure in the execution. In our example, we didn’t mention the misplaced 𝑏𝑙𝑜𝑐𝑘𝐷
that could very well interfere with any execution in unpredictable ways. This is why so
many planning paradigms exist and why they are all so diverse: they try to address an
infinitely complex problem, one sub-problem at a time. In doing so we lose the general
view of the problem and by simply stating that this is the only way to resolve it we
close ourselves to other approaches that can become successful. Like once said:

““The easiest way to solve a problem is to deny it exists.” Asimov (1973)

However, in the next section we aim to define such a general planning formalism. The
main goal is to provide the automated planning community with a general unifying
framework.
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4.2 Formalism

In this section, we will present how automated planning works by using the formalism
we first described in chapter 2. This leads to a general formalism of automated plan-
ning. The goal is to explain what is planning and how it works. First we must express
the knowledge domain formalism, then we describe how problems are represented and
lastly how a general planning algorithm can be envisioned.

4.2.1 Planning domain

In order to conceive a general formalism for planning domains, we base its definition
on the formalism of SELF. This means that all parts of the domain must be a member of
the universe of discourse 𝕌.
4.2.1.1 Fluents

First, we need to define the smallest unit of knowledge in planning, the fluents.

Definition 4.2.1: Fluent

A planning fluent is a predicate 𝑓 ∈ 𝐹.
Fluents are signed. Negative fluents are noted ¬𝑓 and behave as a logical com-
plement. We do not use the closed world hypothesis: fluents are only satisfied
when another compatible fluent is provided.

The name “fluent” comes from their fluctuating value. Indeed the truth value of a
fluent is meant to vary with time and specifically by acting on it. In this formalism we
represent fluents using either parameterized entities or using statements for binary
fluents.

Example

In our example, back in section 4.1, we have three predicates: down, held and
on. They can form many fluents like ℎ𝑒𝑙𝑑(𝑛𝑜 − 𝑏𝑙𝑜𝑐𝑘), 𝑜𝑛(𝑏𝑙𝑜𝑐𝑘𝐴, 𝑏𝑙𝑜𝑐𝑘𝐵) or¬𝑑𝑜𝑤𝑛(𝑏𝑙𝑜𝑐𝑘𝐴). When expressing a fluent we suppose its truth value is ⊤ and
denote falsehood using the negation ¬.

4.2.1.2 States

When expressing states, we need a formalism to express sets of fluents as formulas.

Definition 4.2.2: State

A state is a logical formula of fluents. Since all logical formulas can be reduced
to a simple form using only ∧, ∨, and ¬, we can represent states as and/or trees.
This means that the leaves are fluents and the other nodes are states. We note
states using small squares ▫ as it is often the symbol used in the representation
of automates and grafcets.
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down(blockC)

held (blockC)held (blockC)

down(blockA)
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f(x)

Figure 4.3: Example of a state encoded as an and/or tree.

Example

In the domain block world, we can express a couple of states as :

• ▫1 = ℎ𝑒𝑙𝑑(𝑛𝑜𝑏𝑙𝑜𝑐𝑘) ∧ 𝑜𝑛(𝑏𝑙𝑜𝑐𝑘𝐴, 𝑏𝑙𝑜𝑐𝑘𝐵) ∧ 𝑑𝑜𝑤𝑛(𝑏𝑙𝑜𝑐𝑘𝐶)
• ▫2 = ℎ𝑒𝑙𝑑(𝑏𝑙𝑜𝑐𝑘𝐶) ∧ 𝑑𝑜𝑤𝑛(𝑏𝑙𝑜𝑐𝑘𝐴) ∧ 𝑑𝑜𝑤𝑛(𝑏𝑙𝑜𝑐𝑘𝐵)

In such a case, both states ▫1 and ▫2 have their truth value being the conjunction
of all their fluents. We can express a disjunction in the following way: ▫3 = ▫1∨▫2.
In that case, ▫3 is the root of the and/or tree and all its direct children are or
vertices. The states ▫1 and ▫2 have their children as and vertices. All the leaves
are fluents. This tree is presented in the figure 4.3.

4.2.1.3 Verification and binding constraints

When planning, there are two operations that are usually done on states: verify if a
precondition fits a given state and then apply the effects of an action.

Classical planning has a clear distinction between preconditions and effects. Precon-
ditions are predicates that need to be satisfied before the action can be executed. In
classical formalism, effects are separated into positive and negative effects (Ghallab
et al. 2004). Most of the time, planners will only support simple positive and grounded
effects in order to make planning much easier.

In our model we consider preconditions and effects as states. The idea is to make
the planning formalism as uniform as possible in order to factor most operations into
generic ones.

The verification is the operation ▫pre ⊧ ▫ that has either no value when the verification
fails or a binding map for variables and fluents with their respective values.

The algorithm is a regular and/or tree exploration and evaluation applied on the state⧉ = ▫pre ∧ ▫. During the evaluation, if an inconsistency is found then the algorithm
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returns nothing.

Binding map

⧉

▫pre ▫

fluent 1

fluent 2

fluent 3

fluent 1

¬ fluent 2

fluent 3

▫
ot

fluent 1 →  ⊤

fluent 2 →  ⊤

fluent 3 →  ⊤

fluent 4 →  ⊥
x →  value

Otherwise, at each node of the tree, the algorithm will populate the
binding map and verify if the truth value of the node holds under those constraints.
All quantified variables are also registered in the binding map to enforce coherence in
the root state. If the node is a state, the algorithm recursively applies until it reaches
fluents. Once⧉ is valuated as true, the binding map is returned.

Example

Using previously defined example states ▫1,2,3, and adding the following:

• ▫4(𝑥) = {ℎ𝑒𝑙𝑑(𝑛𝑜𝑏𝑙𝑜𝑐𝑘), 𝑑𝑜𝑤𝑛(𝑥)} and
• ▫5(𝑦) = {ℎ𝑒𝑙𝑑(𝑦), ¬𝑑𝑜𝑤𝑛(𝑦)},

We can express a few examples of fluent verification:

• ℎ𝑒𝑙𝑑(𝑛𝑜𝑏𝑙𝑜𝑐𝑘) ⊧ ℎ𝑒𝑙𝑑(𝑥) = {𝑥 = 𝑛𝑜𝑏𝑙𝑜𝑐𝑘}
• ¬ℎ𝑒𝑙𝑑(𝑥) ⊧ ℎ𝑒𝑙𝑑(𝑥) = ∅

4.2.2 Effect Application

Once the verification is done, the binding map is kept until the planner needs to apply
the action to the state. In our formalism, effects are states instead of describing
what fluents are added or deleted. The application will therefore be much different
than with classical planning. Indeed the goal of the application will be to enforce the
validity of the effect state while maintaining the coherence of the next state.

▫eff

▫'

¬ fluent 1

fluent 4

¬ fluent 1

fluent 2

fluent 3

▫
ot

Binding map
fluent 1 →  ⊥

fluent 2 →  ⊤

fluent 3 →  ⊤

fluent 4 →  ⊤

x →  value

fluent 4

The application of an effect state is noted ▫eff (▫) = ▫′ and is very similar to the ver-
ification. The algorithm will traverse the state ▫ and use the binding map to force
the values inside it. The binding map is previously completed using ▫eff to enforce the
application of its new value in the current state. This leads to changing the state ▫
progressively into ▫′ and the application algorithm will return this state.

4.2.2.1 Actions

Actions are the main mechanism behind automated planning, they describe what can be
done and how it can be done. For clarity’s sake, in this document we use the following
informal definitions:

• Action (or task): Any and all form of function that is closed on the domain of
states. Meaning that actions are functions (cf. chapter 2) that take a state and
returns another state or ⋗. Actions are the more general notion of this list.

• Operator: Any generalized action that is provided as part of a planning domain.
Operators are fully lifted.

• Plan: Any action that isn’t reducible to a single atomic instanced operator. Often
plans are described as sequence of existing actions.

• Method: is a plan that is a possible realisation of an action or task. An action can
have several possible method to be realized.
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Definition 4.2.3: Action

An action is a parameterized tuple 𝑎(𝑎𝑟𝑔𝑠) = ⟨pre, eff , 𝛾, ¢, 𝑑,ℙ,ℿ⟩ where:
• pre and eff are states that are respectively the preconditions and the effects
of the action.

• 𝛾 is the state representing the constraints.
• ¢ is the intrinsic cost of the action.
• 𝑑 is the intrinsic duration of the action.
• ℙ is the prior probability of the action succeeding.
• ℿ is a set of methods that decompose the action into smaller simpler ones.

Operators take many names in different planning paradigms: actions, steps, tasks, etc.
In our case we call operators, all fully lifted actions and actions are all the possible
instances (including operators).

In order to be more generalist, we allow in the constraints description, any time con-
straints, equality or inequality, as well as probabilistic distributions. These con-
straints can also express derived predicates. It is even possible to place arbitrary
constraints on order and selection of actions.

Actions are often represented as state operators that can be applied in a given state
to alter it. The application of actions is done by using the action as a relation on the
set of states 𝑎 ∶ □→□ defined as follows:

𝑎(▫) = {∅, if pre ⊧ ▫ = ∅
eff (▫), using the binding map otherwise

Example

A useful action we can define from previously defined states is the following:

𝑝𝑖𝑐𝑘𝑢𝑝(𝑥) = ⟨▫4(𝑥), ▫5(𝑥), (𝑥 ∶ 𝐵𝑙𝑜𝑐𝑘), 1.0¢, 3.5𝑠, 75%,∅⟩
That action can pick up a block 𝑥 in 3.5 seconds using a cost of 1.0 with a prior
success probability of 75%.

4.2.2.2 Domain

The planning domain specifies the allowed operators that can be used to plan and all
the fluents they use as preconditions and effects.

Definition 4.2.4: Domain

A planning domain 𝒟 is a set of operators which are fully lifted actions, along
with all the relations and entities needed to describe their preconditions and
effects.
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Example

In the previous examples the domain was named block world. It consists in four
actions: 𝑝𝑖𝑐𝑘𝑢𝑝,𝑝𝑢𝑡𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑐𝑘 and 𝑢𝑛𝑠𝑡𝑎𝑐𝑘. Usually the domain is self con-
tained, meaning that all fluents, types, constants and operators are contained
in it.

4.2.3 Planning Problem & Solution

The aim of an automated planner is to find a plan to satisfy the goal. This plan can be
of multiple forms, and there can even be multiple plans that meet the demand of the
problem.

a0 a*

Legend

a0 a*

INITIAL GOALStep

Causal
link

Order
link

Figure 4.4: Structure of a partially ordered plan.

4.2.3.1 Solution to Planning Problems

Definition 4.2.5: Partial Plan / Method

A partially ordered plan is an acyclic directed graph ℼ = (𝐴ℼ, 𝐸), with:
• 𝐴ℼ the set of steps of the plan as vertices. A step is an action belonging in
the plan. 𝐴ℼ must contain an initial step 𝑎0ℼ and goal step 𝑎∗ℼ as convenience
for certain planning paradigms.

• 𝐸 the set of causal links of the plan as edges. We note 𝑙 = 𝑎𝑠 ▫−→ 𝑎𝑡 the link
between its source 𝑎𝑠 and its target 𝑎𝑡 caused by the set of fluents ▫. If▫ = ∅ then the link is used as an ordering constraint.
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With this definition, any kind of plan can be expressed. This includes temporal, fully
or partially ordered plans or even hierarchical plans (using the methods of the actionsℿ). It can even express diverse planning results. An exhaustive list of instance is
presented in section 4.5.

The notation can be reminiscent of functional affectation and it is on purpose. Indeed,
those links can be seen as relations that only affect their source to their target and
the plan is a graph with its adjacence function being the combination of all links.

In our framework, ordering constraints are defined as the transitive cover of causal
links over the set of steps. We note ordering constraints: 𝑎𝑎 ≻ 𝑎𝑠, with 𝑎𝑎 being an-
terior to its successor 𝑎𝑠. Ordering constraints cannot form cycles, meaning that the
steps must be different and that the successor cannot also be anterior to its anterior
steps: 𝑎𝑎 ≠ 𝑎𝑠∧𝑎𝑠 ⊁ 𝑎𝑎. If we need to enforce order, we simply add a link without spec-
ifying a cause. The use of graphs and implicit order constraints helps to simplify the
model while maintaining its properties. Totally ordered plans are made by specifying
links between all successive actions of the sequence.

Example

In the section 4.1, we described a classical fully ordered plan, illustrated in fig-
ure 4.2. A partially ordered plan has a tree-like structure except that it also
meets in a “sink” vertex (goal step). We explicit this structure in figure 4.4.
This figure is an example of how partially ordered plans are structured. The
main feature of such a graph is its acyclicity.

4.2.3.2 Planning Problem Definition

With this formalism, the problem is very simplified but still general.

Definition 4.2.6: Planning Problem

The planning problem is defined as the root operator 𝜔 which methods are po-
tential solutions of the problem. Its preconditions and effects are respectively
used as initial state and goal description.

As for the preconditions and effects, we decided to factorize processes by making
the problem homogeneous. Indeed, since the problem itself is an action and that each
action also can have methods comprised of actions, it is possible to treat problems and
actions the same way (especially useful for hierarchical planning). Most of the specific
notions of this framework are optional. The user is free to support any features of the
framework according to their use case.

Since we base our planning formalism on the one of SELF, we can express the structure
of our formalism using the same extended Venn diagram as in figure 3.4. The figure 4.5
explains how planning uses the previously defined relations to make its structure ho-
mogeneous and contained within the universe 𝕌. We can also see the relation ⩙ be-
tween the set of all states □ and the set of all fluents 𝐹 that form the previously
shown and-or trees. Multiple relations are used for actions in 𝐴. Those are all ex-
plained in definition 4.2.3. We included the root operator 𝜔 in the set of all actions.
It is interesting to note how the set of plans ℿ is by definition a set of graphs since
it uses a connectivity function 𝜒 between actions and states.
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Figure 4.5: Venn diagram extended from the one from SELF to add all planning knowl-
edge representation.

4.3 Planning search

A general planning algorithm can be described as a guided exploration of a search space.
The detailed structure of the search space as well as search iterators are dependent
on the planning paradigm used and therefore are parameters of the algorithm. There
are also quite a few aspects that need consideration like solution and temporal con-
straints.

4.3.1 Search space

Definition 4.3.1: Planner

A planning algorithm, often called planner, is an exploration of a search space 𝕊
partially ordered by an iterator 𝜒𝕊 guided by a heuristic ℎ. From any problem 𝕡
every planner can derive two pieces of information immediately:

• the starting point 𝕤0 ∈ 𝕊 and
• the solution predicate 𝑞𝕤∗ that gives the validity of any potential solution
in the search space.

Formally the problem can be viewed as a path-finding problem in the directed
graph 𝑔𝕊 formed by the vertex set 𝕊 and the adjacency function 𝜒𝕊. The set of
solutions is therefore expressed as:

𝕤∗ = {𝕤∗ ∶ ⟨𝕤0, 𝕤∗⟩ ∈ 𝜒+𝕊 (𝕤0) ∧ 𝑞𝕤∗}
We note a provided heuristic ℎ(𝕤). It gives off the shortest predicted distance to any
point of the solution space. The exploration is guided by it by minimizing its value.

In order to accommodate some specific planning paradigm, it is interesting to have a
common way to encode search constraints such as the expected number of solutions,
or even the allocated time to complete the search.
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4.3.2 Solution constraints

As finding a plan is computationally expensive, it is sometimes better to try to find
either a more generally applicable plan or a set of alternatives. This is especially
important in the case of execution monitoring or human interactions as proposing sev-
eral relevant solutions to pick from is a very interesting feature. Also, in planning,
time is of the essence and it is useful to inform the planner of the time it has to find
a solution.

We note 𝛾𝕊 the set of constraints on the solution. These constraints are represented
as states: a set of predicates that evaluates to true once the solution is meeting the
expectations.

These constraints can vary widely between planning paradigm. As such, it is interest-
ing to standardize how each planning paradigm will encode extra problem specification
and requirements. In order to explain why solution constraints are relevant to plan-
ning, we will give it all on a simple example.

B Example

Bob is a machinist and plans to make a part using a mill. This part is needed for
a bigger project and must be ready by a specific deadline.
While taking a tea break, Bob spills over his drink over the mill’s electronics
making it unusable. Bob originally planned to make the part using computer
control. This is a problem because Bob needs an alternative plan now that his
original plan failed.

In the following sections we will explain what Bob can do to meet his deadline and how
it is relevant for planning.

4.3.2.1 Diversity

A planning paradigm in particular requires explicit constraints on the solution. This
paradigm is called diverse planning. The goal is to find several plans that are all
solutions but all different enough as to be different approaches. It can be taught
as a form of hierarchical planning where the composition isn’t specified but we expect
nonetheless different methods.

In order to quantify the expected diversity of a set of solutions, we introduce to 𝛾𝕊
the plan distance metric Δ (Lee 1999) that allows to compare how much two plans are
different.

Example

Bob could have come up with two different plans to make that part such as using
the mill manually or using a subcontractor to make the part.
The main idea behind diverse planning is to come prepared and to present very
different plans. For example, Bob couldn’t just have used a plan that would have
consisted of switching the orientation of the work on the mill or anything too
similar to the original plan.
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4.3.2.2 Cardinality

In diverse planning, another criteria that is user specified is the cardinality of the
set of solutions. We note 𝑘 the number of expected different solutions. This simply
makes the process return when either it found 𝑘 solutions or when it determined that𝑘 > |𝕤∗|.
In classical planning, 𝑘 = 1 since only the best plan is expected. This parameter is
added to the set of constraints 𝛾𝕊.

Example

In our example, Bob clearly came prepared with a unique plan. The replanning he
is now doing could have been avoided with more plans prepared in advance.
In practice, finding a good number of plans is quite arbitrary and context depen-
dent and so often left at the user’s discretion.

4.3.2.3 Probability

For probabilistic planning, all elements of the probability distributions used are typ-
ically included in the domain. The prior probability distribution noted ℙ is therefore
encoded into 𝛾𝕊.
Probabilistic planning uses this probability distribution to compute a policy that helps
reach a goal. A policy is a heuristic guide that returns the action most likely to succeed
in any given situation. So a policy is basically a function Using the

mapping notation
⟬⟭ from
chapter 2.

𝕡𝕠𝕝 = ▫ → ⟬max ∘ℙ▫ ∶ 𝐴⟭ that
will always give the action with the maximum success probability knowing the current
state.

Example

Bob can use a policy to solve that issue. In his case it is probably more of a
“protocol” or a document instructing of what to do in most situations. That way,
Bob doesn’t have to improvise and will follow what was decided before.

4.3.2.4 Temporality

Another aspect of planning lies in its timing. Indeed sometimes acting needs to be
done before a deadline and planning are useful only during a finite timeframe. This is
done even in optimal planning as researchers evaluating algorithms often need to set a
timeout in order to be able to complete a study in a reasonable amount of time. Indeed,
often in efficiency graphs, planning instances are stopped after a defined amount of
time.

This time component is quite important as it often determines the planning paradigm
used. It is expressed as two parameters:

• 𝑡𝕊 the allotted time for the algorithm to find at least a fitting solution.
• 𝑡∗ additional time for plan optimization.
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This means that if the planner cannot find a fitting solution in time it will either return
a timeout error or a partial or abstract solution that needs to be refined. Anytime
planners will also use these parameters to optimize the solution some more. If the
amount of time is either unknown or unrestricted the parameters can be omitted and
their value will be set to infinity.

Example

In our running example, Bob has a specified deadline to abide with. This kind of
constraints are often implicit and not given to the planner. Classical planners
will simply make a best effort to find the best solution and are only evaluated
up to a certain time to compare results between approaches.

4.4 General Planning Algorithm

A general planner is an algorithm capable of resolving all types of planning domains
and problems. This means that it becomes possible to compare the characteristics
of completely different planning approaches. It also makes it possible to use several
planning paradigms at once (e.g. durative actions and probabilistic planning combined).
The formalization of such a planner allows for a more general explanation and descrip-
tion of planning problems and solutions.

4.4.1 Formalization

We note a general planner ℿ∗(𝕤∗, 𝕤0, 𝑞𝕤∗ , ℎ, 𝛾𝕊,𝒟) an algorithm that can find solutions
to any planning formalism using the appropriate instance.

The most important point to understand is that a general planner is a shortest path
algorithm. These kinds of algorithms are very common in AI and are often used as an
example of classical algorithms. One of the first classical shortest path algorithms is
called 𝐴∗ (Hart et al. 1968). It is a simple heuristic powered shortest path algorithm.
It is important to note that any shortest path algorithm can be used to make a general
planner. For example, a variant of the 𝐴∗ algorithm can be used for diverse planning.
This algorithm is called 𝐾∗ after the term 𝑘 used to denote the number of expected
solutions (Aljazzar and Leue 2011, alg. 1).

In automated planning, this last algorithm is used as the base of some diverse planners
(Stentz and others 1995; Riabov et al. 2014). Using our formalism, the parameters are
as follows: 𝐾∗(𝑔𝕊, 𝕤0, 𝑞𝕤∗ , ℎ). In this case, the solution predicate contains the solution
constraints 𝛾𝕊.
Of course this is merely an instance of a general planning algorithm. We haven’t eval-
uated the performance of any instance. All we propose in this chapter is the formal-
ism.

Figure 4.6 is an illustration of how such a general planner is structured. The darker
inner circle represents the search space 𝕊 as defined in definition 4.3.1. The gears
represent different aspects of the solution constraints 𝛾𝕊.
Now that a general planner has been formed it is quite relevant to provide instances
of it on every planning paradigms to show that it can fit them all.
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Figure 4.6: Venn diagram extended with our general planning formalism.

4.5 Classical Planning Paradigms

One of the most comprehensive work on summarizing the automated planning domain
was done by Ghallab et al. (2004). This book explains the different planning paradigm
of its time and gives formal description of some of them. This work has been updated
later (Ghallab et al. 2016) to reflect the changes occurring in the planning commu-
nity.

In the following sections we will show instances of the general planner for each plan-
ning formalism. We will omit the last three parameters ℎ, 𝛾𝕊, 𝒟. We do so in order to
use the partial application of chapter 2 and obtain a specific planner ready to be fully
instantiated by the user (the domain is built in a way so that it doesn’t depend on the
paradigm).

4.5.1 State-transition planning

The most classical representation of automated planning is using the state transition
approach: actions are operators on the set of states and a plan is a finite-state au-
tomaton. We can also see any planning problem as either a graph exploration problem
or even a constraint satisfaction problem. In any way that problem is isomorph to its
original formulation and most efficient algorithms use a derivative of 𝐴∗ exploration
techniques on the state space.

The parameters for state space planning are trivial:

ℿ∗□ = ℿ∗ ((□,𝐴),pre(𝜔), eff (𝜔))
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This formulation takes advantage of several tools previously described. It uses the
partial application of a function to omit the last parameters. It also defines the search
graph using the set of all states□ as the vertices set and the set of all available ac-
tions 𝐴 as the set of edges while considering actions as relations that can be applied
to states to make the search progress toward an eventual solution. We also use the
binary nature of states to use the effects of the root operator as the solution predi-
cate.

Usually, we would set both 𝑡𝕊 and 𝑡∗ to an infinite amount as it is often the case for
such planners. These parameters are left to the user of the planner.

State based planning usually supposes total knowledge of the state space and action
behavior. No concurrence or time constraints are expressed and the state and action
space must be finite as well as the resulting state graph. This process is also deter-
ministic and doesn’t allow uncertainty. The result of such planning is a totally ordered
sequence of actions called a plan. The total order needs to be enforced even if it is
unnecessary.

All those features are important in practice and lead to other planning paradigms that
are more complex than classical state-based planning.

4.5.2 Plan space planning

PSPPlan Space
Planning

is a form of planning that uses plan space as its search space. It starts with an
empty plan and tries to iteratively refine that plan into a solution.

The transformation into a general planner is more complicated than for state-based
planning as the progress is made through refinements. We note the set of possible
refinements of a given plan 𝑟 = ℼ → ⟬⊙ ∶ ⊗(ℼ)⟭ with ⊗ being the flaws and ⊙ the
resolvers. Each refinement is a new plan in which we fixed a flaw using one of the
possible resolvers (see definition 6.1.1 and definition 6.1.2).

ℿ∗ℿ = ℿ∗ (𝑟, 𝑎0 → 𝑎∗,⊗(𝕤) = ∅)

with 𝑎0 and 𝑎∗ being the initial and goal steps of the plan corresponding to 𝕤0 such
that eff (𝑎0) = pre(𝜔) and pre(𝑎∗) = eff (𝜔). The iterator is all the possible resolutions
of all flaws on any plan in the search space and the solution predicate is true when the
plan has no more flaws.

Details about flaws, resolvers and the overall POCLPartial Order
Causal Links

algorithm will be presented in
section 6.1.1.

This approach can usually give a partial plan if we set 𝑡𝕊 too low for the algorithm to
complete. This plan is not a solution but can eventually be used as an approximation
for certain use cases (like intent recognition, see chapter 7).
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4.5.3 Case based planning

Another plan oriented planning is called CBP Case-Based
Planning

. This kind of planning relies on a library𝒞 of already complete plans and tries to find the most appropriate one to repair. To
repair a plan we use a derivative of the refinement function noted 𝑟∗ that will make
either a classical refinement or repair a part of the plan.

ℿ𝒞 = ℿ∗ (𝑟∗, ⟬min ∶ ℼ ∈ 𝒞 ∧ℼ(pre(𝜔)) ⊧ eff (𝜔)⟭, 𝕤(pre(𝜔)) ≠ ∅)
The planner selects a plan that realize the goal state of the problem from its initial
state. This plan is then repaired and validated iteratively. The problem with this
approach is that it may be unable to find a valid plan or might need to populate and
maintain a good plan library. For such case an auxiliary planner is used (preferably a
diverse planner; that gives several solutions).

4.5.4 Probabilistic planning

Probabilistic planning tries to deal with uncertainty by working on a policy instead
of a plan. The initial problem holds probability laws that govern the execution of any
actions. It is sometimes accompaniedwith a reward function instead of a deterministic
goal. We use the set of states as search space with the policy as the iterator.

ℿℙ = ℿ∗ (𝕡𝕠𝕝,pre(𝜔), 𝕤 ⊧ eff (𝜔))
At each iteration a state is chosen from the frontier. The frontier is updated with the
application of the most likely to succeed action given by the policy. The search stops
when the frontier satisfies the goal.

4.5.5 Hierarchical planning

HTN Hierarchical Task
Network

are a totally different kind of planning paradigm. Instead of a goal description,
HTN uses a root task that needs to be decomposed. The task decomposition is an
operation that replaces a task (action) by one of its methods ℿ. We note 𝑟+ the set of
classical refinements in a plan along with any action decomposition (see chapter 6).

ℿ𝜔 = ℿ∗ (𝑟+, ℿ(𝜔),⊗(𝕤) = ∅ ∧ ∀𝑎 ∈ 𝐴ℼ∈𝕤ℿ(𝑎) = ∅)
The instance of the general planner for HTN planning is similar to the PSP one: it fixes
flaws in plans. The idea is to add a decomposition flaw to the classical flaws of PSP.
This technique is more detailed in chapter 6.
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4.6 Discussion on General Planning

In this chapter, we presented a way to formalize all planning paradigms under a uni-
fying notation. This is quite interesting in the fact that it is now easier to explain
planners that use one or more paradigms at once: the so-called “hybrid planners.”
That last notion is far from new as demonstrated by Gerevini et al. (2008) and in the
field of HTN-TIHierarchical Task

Network with
Task Insersion

which reuses PSP like techniques.
In the following two chapters, we will show how using SELF with this formalism allows
for a general planning framework and how it can be used to make hybrid planners.
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5 COLOR Framework
Using the formalism for a general planner, it becomes possible to define a general
action language. Action languages are languages used to encode planning domains
and problems. Among the first to emerge, we can find the popular STRIPS Stanford

Research
Institute
Problem Solver

. It is derived
from its eponymous planner Stanford Research Institute Problem Solver (Fikes and
Nilsson 1971).

After STRIPS, one of the first languages to be introduced to express planning domains
is called ADL Action

Description
Language

(Pednault 1989). That formalism adds negation and conjunctions into
literals to STRIPS. It also drops the closed world hypothesis for an open world one:
anything not stated in conditions (initials or action effects) is unknown.

The current standard was strongly inspired by Penberthy et al. (1992) and his UCPOP soUnd Complete
Partial Order
Planner

planner. Like STRIPS, UCPOP had a planning domain language that was probably the
most expressive of its time. It differs from ADL by merging the add and delete lists
in effects and to change both preconditions and effects of actions into logic formula
instead of simple states.

5.1 PDDL

The most popular standard action language in automated planning is the PDDL. It was
created for the first major automated planning competition hosted by AIPS Artificial

Intelligence
Planning
Systems

in 1998
(Ghallab et al. 1998). This language came along with syntax and solution checker
written in Lisp. The goal was to standardize the notation of planning domains and
problems so that libraries of standard problems can be used for benchmarks. The main
goal of the language was to be able to express most of the planning problems of the
time.

With time, the planning competitions became known under the name of IPC International
Planning
Competitions

. With each
installment, the language evolved to address issues encountered the previous years.
The current version of PDDL is 3.1 (Kovacs 2011). Its syntax goes similarly as described
in listing 5.1.

Listing 5.1: Simplified explanation of the syntax of PDDL.
1 (define (domain <domain−name>)
2 ( : requirements :<requirement−name>)
3 ( : types <type−name>)
4 ( : constants <constant−name> − <constant−type>)
5 ( : predicates (<predicate−name> ?<var> − <var−type>) )
6 ( : functions (<function−name> ?<var> − <var−type>) − <function−type>)
7 ( : action <action−name>
8 : parameters (?<var> − <var−type>)
9 : precondition (and (= (<function−name> ?<var>) <value>)
10 (<predicate−name> ?<var>) )
11 : effect (and (not (<predicate−name> ?<var>) )
12 (assign (<function−name> ?<var>) ?<var>) ) )
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PDDL uses the functional notation style of Lisp. It usually defines two files: one for
the domain and one for the problem instance. The domain describes constants, fluents
and all possible actions. The problem lays the initial and goal states description.

Example

Consider the classic block world domain expressed in listing 5.2. It uses a pred-
icate to express whether a block is on the table because several blocks can be
on the table at once. However it uses a 0-ary function to describe the one block
allowed to be held at a time. The description of the stack of blocks is done with
a unary function to give the block that is on top of another one. To be able to
express the absence of blocks it uses a constant named no−block. All the actions
described are pretty straightforward: stack and unstack make sure it is possible
to add or remove a block before doing it and pick−up and put−down manages the
handling operations.

Listing 5.2: Classical PDDL 3.0 definition of the domain Block world
1 (define (domain BLOCKS−object−fluents)
2 ( : requirements : typing : equality : object−fluents )
3 ( :types block )
4 ( : constants no−block − block )
5 ( : predicates (on−table ?x − block ) )
6 ( : functions (in−hand) − block
7 (on−block ?x − block ) − block ) ; ;what is in top of block ?x
8
9 ( : action pick−up
10 : parameters (?x − block )
11 : precondition (and (= (on−block ?x) no−block) (on−table ?x) (= (

in−hand) no−block) )
12 : effect
13 (and (not (on−table ?x) )
14 (assign (in−hand) ?x) ) )
15
16 ( : action put−down
17 : parameters (?x − block )
18 : precondition (= (in−hand) ?x)
19 : effect
20 (and (assign (in−hand) no−block)
21 (on−table ?x) ) )
22
23 ( : action stack
24 : parameters (?x − block ?y − block )
25 : precondition (and (= (in−hand) ?x) (= (on−block ?y) no−block) )
26 : effect
27 (and (assign (in−hand) no−block)
28 (assign (on−block ?y) ?x) ) )
29
30 ( : action unstack
31 : parameters (?x − block ?y − block )
32 : precondition (and (= (on−block ?y) ?x) (= (on−block ?x) no−block)

(= (in−hand) no−block) )
33 : effect
34 (and (assign (in−hand) ?x)
35 (assign (on−block ?y) no−block) ) ) )

However, PDDL is far from a universal standard. Some efforts have been made to stan-
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dardize the domain of automated planning in the form of optional requirements. The
latest of the PDDL standard is the version 3.1 (Kovacs 2011). It has 18 atomic require-
ments as represented in figure 5.1. Most requirements are parts of PDDL that either
increase the complexity of planning significantly or that require extra implementation
effort to meet. For example, the quantified−precondition adds quantifiers into the log-
ical formula of preconditions forcing a check on all fluents of the state to check the
validity

adl

derived-predicates constraints preferences

action-costs
durative-actions

object-fluents
numeric-fluents

fluents

strips
equality
typing
negative-preconditions
disjunctive-preconditions
quantified-preconditions

conditional-effects

existential-preconditions
universal-preconditions

duration-inequalities
continious-effects
timed-initial-literals

Legend
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x requires y
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x & y requires

x yz

z contains x & y

Figure 5.1: Dependencies and grouping of PDDL requirements.

Even with that flexibility, PDDL is unable to cover all of automated planning paradigms.
This caused most subdomains of automated planning to be left in a state similar to
before PDDL: a collection of languages and derivatives that aren’t interoperable. The
reason for this is the fact that PDDL isn’t expressive enough to encode more than a
limited variation in action and fluent description.

Another problem is that PDDL isn’t made to be used by planners to help with their
planning process. Most planners will totally separate the compilation of PDDL before
doing any planning, so much so that most planners of the latest IPC used a framework
that translates PDDL into a useful form before planning, adding computation time to
the planning process.

The domain is so diverse that attempts to unify it haven’t succeeded so far. The main
reason behind this is that some paradigms are vastly different from the classical plan-
ning description. Sometimes just adding a seemingly small feature like probabilities
or plan reuse can make for a totally different planning problem. In the next section
we describe planning paradigms and how they differ from classical planning along with
their associated languages.
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5.2 Temporality oriented

When planning, time can become a sensitive constraint. Some critical tasks may re-
quire to be completed within a certain time. Actions with duration are already a
feature of PDDL 3.1. However, PDDL might not provide support for external events
(i.e. events occurring independently from the agent). To do this one must use another
language.

5.2.1 PDDL+

PDDL+ is an extension of PDDL 2.1 that handles processes and events (Fox and Long
2002). It can be viewed as similar to PDDL 3.1 continuous effects but it differs on
the expressivity. A process can have an effect on fluents at any time. The effect can
happen either from the agent’s own doing or being purely environmental. It might be
possible in certain cases to model this using the durative actions, continuous effects
and timed initial literals of PDDL 2.2 (Edelkamp and Hoffmann 2004) or later versions.

In listing 5.3, we reproduce an example from Fox and Long (2002). It shows the syntax
of durative actions in PDDL+. The language uses timed preconditions to specify how
an action behaves with time and what is needed for its success. It can also specify
condition on the duration of the action. The timed preconditions are also available
in PDDL 3.1, but the increase and decrease rate of fluents is an exclusive feature of
PDDL+.

Listing 5.3: Example of PDDL+ durative action from Fox’s paper.
1 ( :durative−action downlink
2 : parameters (?r − recorder ?g − groundStation)
3 : duration (> ?duration 0)
4 : condition (and (at start ( inView ?g) )
5 (over al l ( inView ?g) )
6 (over al l (> (data ?r ) 0) ) )
7 : effect (and ( increase (downlinked)
8 (* #t (transmissionRate ?g) ) )
9 (decrease (data ?r )
10 (* #t (transmissionRate ?g) ) ) ) )

The main issue with durative actions is that time becomes a continuous resource that
may change the values of fluents. The search for a plan in that context has a higher
complexity than regular planning.

5.2.2 ANML

A more recent proposition of a temporal orriented language, is called ANML (Smith et al.
2008). This language is used to express complex temporal constraints and dynamical
values through time. It does so by using temporal quantifiers applied to classical
logical fluents. For example we can write [start+5, end−2)heater ==on ; to signify that
the heater must stay on for that ammount of time. In listing 5.4, we can see the
syntax used for durative actions in ANML. This action is a simple travel from a specified
location to another while having a fixed duration. While it also does support HTN
ploblem descriptions, the support seems to be still limited (To et al. 2016).
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Listing 5.4: Example of a simple ANML action.
1 action Navigate ( location from , to) {
2 duration := 5 ;
3 [ al l ] { arm == stowed ;
4 position == from :−> to ;
5 batterycharge :consumes 2.0 } }

5.3 Probabilistic

Sometimes, acting can become unpredictable. An action can fail for many reasons,
from logical errors down to physical constraints. This calls for a way to plan using
probabilities with the ability to recover from any predicted failures. PDDL doesn’t
support using probabilities. That is why all IPC’s tracks dealing with it always used
another language than PDDL.

The idea behind that probabilistic planning is to account for the probability of success
when choosing an action. The resulting plan must be the most likely to succeed. But
even with the best plan, failure can occur. This is why probabilistic planning often
gives policies instead of a plan. A policy dictates the best choice in any given state,
failure or not. While this allows for much more resilient execution, computation of
policies is exponentially harder than classical planning. Indeed the planner needs to
take into account every outcome of every action in the plan and react accordingly.

5.3.1 PPDDL

PPDDL was used during the 4th and 5th IPC for its probabilistic track (Younes and
Littman 2004). It allows for probabilistic effects as demonstrated in listing 5.5. These
effects, have an associated probability that denotes the likelihood of them happening.
This allows for planners to select actions with adverse effects if they deems the risks
worth the damage.

Listing 5.5: Example of PPDDL use of probabilistic effects from Younes’s paper.
1 (define (domain bomb−and−toilet)
2 ( : requirements : conditional−effects : probabilistic−effects )
3 ( : predicates (bomb−in−package ?pkg) ( toilet−clogged )
4 (bomb−defused) )
5 ( : action dunk−package
6 : parameters (?pkg)
7 : effect (and (when (bomb−in−package ?pkg)
8 (bomb−defused) )
9 ( probabilistic 0.05 ( toilet−clogged ) ) ) ) )

5.3.2 RDDL

Another language used by the 7th IPC’s uncertainty track is RDDL (Sanner 2010). This
language has been chosen because of its ability to express problems that are hard
to encode in PDDL or PPDDL. Indeed, RDDL is capable of expressing probabilistic net-
works in planning domains. This along with complex probability laws allows for easy
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implementation of most probabilistic planning problems. Its syntax differs greatly
from PDDL, and seems closer to Scala or C++. An example of a BNF is provided in list-
ing 5.6 from Sanner (2010). In this listing, we can see that actions in RDDL don’t need
preconditions or effects. In that case the reward is the closest information to the
classical goal and the action is simply a parameter that will influence the probability
distribution of the events that conditioned the reward. This distribution is a part of
the planning problem and is entirely defined in the listing 5.6.

Listing 5.6: Example of RDDL syntax by Sanner.
1 domain prop_dbn {
2 requirements = { reward−deterministic };
3 pvariables {
4 p : { state−fluent , bool , default = false };
5 q : { state−fluent , bool , default = false };
6 r : { state−fluent , bool , default = false };
7 a : { action−fluent , bool , default = false };
8 };
9
10 cpfs {
11 // Some standard Bernoulli conditional probability tables
12 p´ = i f (p ^ r ) then Bernoulli ( .9) else Bernoulli ( .3) ;
13 q´ = i f (q ^ r ) then Bernoulli ( .9)
14 else i f (a) then Bernoulli ( .3) else Bernoulli ( .8) ;
15 // KronDelta is like a DiracDelta , but for discrete data (boolean or

int )
16 r´ = i f (~q) then KronDelta ( r ) else KronDelta ( r <=> q) ;
17 };
18
19 // A boolean functions as a 0/1 integer when a numerical value is needed
20 reward = p + q − r ; // a boolean functions as a 0/1 integer when a

numerical value is needed
21 }
22
23 instance inst_dbn {
24 domain = prop_dbn;
25 init−state {
26 p = true ; // could also just say 'p ' by itself
27 q = false ; // default so unnecessary , could also say '~q ' by itself
28 r ; // same as r = true
29 };
30
31 max−nondef−actions = 1;
32 horizon = 20;
33 discount = 0.9;
34 }

5.4 Multi-agent

Planning can also be a collective effort. In some cases, a systemmust account for other
agents trying to either cooperate or compete in achieving similar goals. The problem
that arises is coordination. How to make a plan meant to be executed with several
agents concurrently ? Several multi-agent action languages have been proposed to
answer that question.
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5.4.1 MAPL

MAPL is another extension of PDDL 2.1 that was introduced to handle synchronization
of actions (Brenner 2003). This is done using modal operators over fluents. In that
regard, MAPL is closer to the PDDL+ extension proposed earlier. It encodes durative
actions that will later be integrated into the PDDL 3.0 standard. It also seems to share
a similar syntax to PDDL 3.0. MAPL also introduces a synchronization mechanism using
speech as a communication vector. This seems very specific as explicit communication
isn’t a requirement of collaborative work. Listing 5.7 is an example of the syntax of
MAPL domains. In that example, a durative action Move is used to account for the
temporal aspect of connecting travels. This describes the fact that a connection is
possible only if it departs after the arrival of the previous connecting travel. This
enables agents to plan their travel accordingly to maximize the sharing of ressources
and enhance cooperative behaviors.

Listing 5.7: Example of MAPL syntax by Brenner.
1 ( : state−variables
2 (pos ?a − agent) − location
3 ( connection ?p1 ?p2 − place ) − road
4 ( clear ?r − road) − boolean)
5 ( :durative−action Move
6 : parameters (?a − agent ?dst − place )
7 : duration ( := ?duration ( interval 2 4) )
8 : condition
9 (at start ( clear ( connection (pos ?a) ?dst) ) )
10 : effect (and
11 (at start ( := (pos ?a) ( connection (pos ?a) ?dst) ) )
12 (at end ( := (pos ?a) ?dst) ) ) )

5.4.2 MA-PDDL

Another aspect of multi-agent planning is the ability to affect tasks and to manage
interactions between agents efficiently. For this MA-PDDL seems more adapted than
MAPL. It is an extension of PDDL 3.1, that makes easier to plan for a team of hetero-
neous agents (Kovács 2012). In the example in listing 5.8, we can see how action can
be affected to agents. While it makes the representation easier, it is possible to ob-
tain similar effect by passing an agent object as parameter of an action in PDDL 3.1.
It is then possible to treat agents as variables and use all available conditional ex-
pression on them to ensure proper multi-agent planning. More complex expressions
are possible in MA-PDDL, like referencing the action of other agents in the precondi-
tions of actions or the ability to affect different goals to different agents. Later on,
MA-PDDL was extended with probabilistic capabilities inspired by PPDDL (Kovács and
Dobrowiecki 2013).

Listing 5.8: Example of MA-PDDL syntax by Kovacs.
1 (define (domain ma−lift−table)
2 ( : requirements : equality : negative−preconditions
3 : existential−preconditions : typing :multi−agent)
4 ( :types agent) ( : constants table )
5 ( : predicates ( l i fted (?x − object ) (at ?a − agent ?o − object ) )
6 ( : action l i f t :agent ?a − agent : parameters ( )
7 : precondition (and (not ( l i fted table ) ) (at ?a table )
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8 ( exists (?b − agent)
9 (and (not (= ?a ?b) ) (at ?b table ) ( l i f t ?b) ) ) )
10 : effect ( l i fted table ) ) )

5.5 Hierarchical

Another approach to planning is using HTNs to resolve some planning problems. In-
stead of searching to satisfy a goal, HTNs try to find a decomposition to a root task
that fits the initial state requirements and that generates an executable plan.

5.5.1 UMCP

One of the first planners to support HTN domains was UCMP by Erol et al. (1994). It uses
Lisp like most of the early planning systems. Apparently PDDL was in part inspired by
UCMP’s syntax. Like for PDDL, the domain file describes action (called operators here)
and their preconditions and effects (called post conditions). The syntax is exposed in
listing 5.9. The interesting part of that language is the way decomposition is handled.
Each task is expressed as a set of methods. Each method has an expansion expression
that specifies how the plan should be constructed. It also has a pseudo-precondition
with modal operators on the temporality of the validity of the literals.

Listing 5.9: Example of the syntax used by UCMP.
1 (constants a b c table ) ; declare constant symbols
2 ( predicates on clear ) ; declare predicate symbols
3 (compound−tasks move) ; declare compound task symbols
4 (primitive−tasks unstack dostack restack ) ; declare primitive task

symbols
5 (variables x y z) ; declare variable symbols
6
7 (operator unstack(x y)
8 : pre ( ( clear x) (on x y) )
9 : post ((~on x y) (on x table ) ( clear y) ) )
10 (operator dostack (x y)
11 : pre ( ( clear x) (on x table ) ( clear y) )
12 : post ((~on x table ) (on x y) (~clear y) ) )
13 (operator restack (x y z)
14 : pre ( ( clear x) (on x y) ( clear z) )
15 : post ((~on x y) (~clear z) ( clear y) (on x z) ) )
16 (declare−method move(x y z)
17 : expansion ( (n restack x y z) )
18 : formula (and (not (veq y table ) )
19 (not (veq x table ) )
20 (not (veq z table ) )
21 (before ( clear x) n)
22 (before ( clear z) n)
23 (before (on x y) n) ) )
24 (declare−method move(x y z)
25 : expansion ( (n dostack x z) )
26 : formula (and (veq y table )
27 (before ( clear x) n)
28 (before (on x y) n) ) )
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5.5.2 SHOP2

The next HTN planner is SHOP2 by Nau et al. (2003). It remains to this day, the ref-
erence implementation of an HTN planner. The SHOP2 formalism is quite similar to
UCMP’s: each method has a signature, a precondition formula and eventually a decom-
position description. This decomposition is a set of methods like in UCMP. The methods
can also be partially ordered allowing more expressive plans. An example of the syntax
of a method is given in listing 5.10. This Lisp-like language is using a :method keyword
to define subtasks and their order. However, this only allows totally ordered plans.

Listing 5.10: Example of method in the SHOP2 language.
1 ( :method
2 ; head
3 (transport−person ?p ?c2)
4 ; precondition
5 (and
6 (at ?p ?c1)
7 ( aircraft ?a)
8 (at ?a ?c3)
9 ( different ?c1 ?c3) )
10 ; subtasks
11 ( : ordered
12 (move−aircraft ?a ?c1)
13 (board ?p ?a ?c1)
14 (move−aircraft ?a ?c2)
15 (debark ?p ?a ?c2) ) )

5.5.3 HDDL

A more recent example of HTN formalism comes from the PANDA framework by Bercher
et al. (2014). This framework is considered the current standard of HTN planning and
allows for great flexibility in domain description. It is proposed to be the language for
the new hierarchical planning track at the IPC. PANDA takes previous formalisms and
generalizes them into a new language exposed in listing 5.11. That language was called
HDDL. It uses the same :method keyword to define the same kind of totally ordered
methods. With this complete example, it seams that defining several methods for a
given task isn’t possible in this language.

Listing 5.11: Example of HDDL syntax as used in the PANDA framework.
1 (define (domain transport )
2 ( : requirements : typing : action−costs )
3 ( : types
4 location target locatable − object
5 vehicle package − locatable
6 capacity−number − object
7 )
8 ( : predicates
9 ( road ?l1 ?l2 − location )
10 (at ?x − locatable ?v − location )
11 ( in ?x − package ?v − vehicle )
12 ( capacity ?v − vehicle ?s1 − capacity−number)
13 ( capacity−predecessor ?s1 ?s2 − capacity−number)
14 )
15
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16 ( : task deliver : parameters (?p − package ? l − location ) )
17 ( : task unload : parameters (?v − vehicle ? l − location ?p − package) )
18
19 ( :method m−deliver
20 : parameters (?p − package ?l1 ?l2 − location ?v − vehicle )
21 : task ( deliver ?p ?l2 )
22 :ordered−subtasks (and
23 (get−to ?v ?l1 )
24 ( load ?v ?l1 ?p)
25 (get−to ?v ?l2 )
26 (unload ?v ?l2 ?p) )
27 )
28 ( :method m−unload
29 : parameters (?v − vehicle ? l − location ?p − package ?s1 ?s2 −

capacity−number)
30 : task (unload ?v ? l ?p)
31 : subtasks (drop ?v ? l ?p ?s1 ?s2)
32 )
33
34 ( : action drop
35 : parameters (?v − vehicle ? l − location ?p − package ?s1 ?s2 −

capacity−number)
36 : precondition (and
37 (at ?v ? l )
38 ( in ?p ?v)
39 ( capacity−predecessor ?s1 ?s2)
40 ( capacity ?v ?s1)
41 )
42 : effect (and
43 (not ( in ?p ?v) )
44 (at ?p ? l )
45 ( capacity ?v ?s2)
46 (not ( capacity ?v ?s1) )
47 )
48 )
49 )

5.5.4 HPDDL

A very recent language proposition was done by Ramoul (2018). He proposes HPDDL
with a simple syntax similar to the one of UCMP. In listing 5.12 we give an example of
HPDDL method. Its expressive power seems similar to that of UCMP and SHOP. It works
in Java using the PDDL4J framework (Pellier and Fiorino 2018).

Listing 5.12: Example of HPDDL syntax as described by Ramoul.
1 ( :method do_navigate
2 : parameters(?x − rover ?from ?to − waypoint)
3 : expansion ( ( tag t1 (navigate ?x ?from ?mid) )
4 (tag t2 ( visit ?mid) )
5 (tag t3 (do_navigate ?x ?mid ?to) )
6 (tag t4 ( unvisited ?mid) ) )
7 : constraints ( ( before (and (not ( can_traverse ?x ?from ?to) ) (not (

visited ?mid) )
8 ( can_traverse ?x ?from ?mid) ) t1) ) )
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5.6 Ontological

Another idea is to merge automated planning and other artificial intelligence fields
with knowledge representation and more specifically ontologies. Indeed, since the
“semantic web” is already widespread for service description, why not make planning
compatible with it to ease service composition ?

This kind of approaches are interesting for more than compatibility. Indeed, it becomes
then easier to have very expressive planning domains linked to complex ontologies.
This also allows to take into account semantic information of the domain description
to sign,ificantly improve heuristics using “common sense” logic (Babli et al. 2015).
The main issue is then of complexity and performance on large domains.

5.6.1 WebPDDL

The first instance of such a system isWebPDDL. This language, shown in listing 5.13, is
meant to be compatible with RDF by using URI identifiers for domains (McDermott and
Dou 2002). The syntax is inspired by PDDL, but axioms are added as constraints on the
knowledge domain. Actions also have a return value and can have variables that aren’t
dependent on their parameters. This allows for greater expressivity than regular PDDL,
but can be partially emulated using PDDL 3.1 constraints and object fluents.

Listing 5.13: Example of WebPDDL syntax by Mc Dermott.
1 (define (domain www−agents)
2 ( : extends ( uri ”http ://www. yale .edu/domains/knowing”)
3 ( uri ”http ://www. yale .edu/domains/regression−planning”)
4 ( uri ”http ://www. yale .edu/domains/commerce”) )
5 ( : requirements : existential−preconditions : conditional−effects )
6 ( : types Message − Obj Message−id − String )
7 ( : functions (price−quote ?m − Money)
8 (query−in−stock ?pid − Product−id )
9 ( reply−in−stock ?b − Boolean) − Message)
10 ( : predicates (web−agent ?x − Agent)
11 ( reply−pending a − Agent id − Message−id msg − Message)
12 (message−exchange ?interlocutor − Agent
13 ?sent ?received − Message
14 ?eff − Prop)
15 (expected−reply a − Agent sent expect−back − Message) )
16 ( :axiom
17 : vars (?agt − Agent ?msg−id − Message−id ?sent ?reply − Message)
18 : implies (normal−step−value ( receive ?agt ?msg−id) ?reply )
19 : context (and (web−agent ?agt)
20 ( reply−pending ?agt ?msg−id ?sent)
21 (expected−reply ?agt ?sent ?reply ) ) )
22 ( : action send
23 : parameters (?agt − Agent ?sent − Message)
24 : value (?sid − Message−id)
25 : precondition (web−agent ?agt)
26 : effect ( reply−pending ?agt ?sid ?sent) )
27 ( : action receive
28 : parameters (?agt − Agent ?sid − Message−id)
29 : vars (?sent − Message ?eff − Prop)
30 : precondition (and (web−agent ?agt) (reply−pending ?agt ?sid ?sent) )
31 : value (?received − Message)
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32 : effect (when (message−exchange ?agt ?sent ?received ?eff ) ?eff ) ) )

5.6.2 OPT

This previous work was updated by McDermott (2005). The new version is called OPT
and allows for some further expressivity. It can express hierarchical domains with
links between actions and even advanced data structure. The syntax is mostly an
update of WebPDDL. In listing 5.14, we can see that the URI was replaced by simpler
names, the action notation was simplified to make the parameter and return value
more natural. Axioms were replaced by facts with a different notation.

Listing 5.14: Example of the updated OPT syntax as described by Mc Dermott.
1 (define (domain www−agents)
2 ( : extends knowing regression−planning commerce)
3 ( : requirements : existential−preconditions : conditional−effects )
4 ( :types Message − Obj Message−id − String )
5 ( :type−fun (Key t ) (Feature−type (keytype t ) ) )
6 ( :type−fun (Key−pair t ) (Tup (Key t ) t ) )
7 ( : functions (price−quote ?m − Money)
8 (query−in−stock ?pid − Product−id )
9 ( reply−in−stock ?b − Boolean) − Message)
10 ( : predicates (web−agent ?x − Agent)
11 ( reply−pending a − Agent id − Message−id msg − Message)
12 (message−exchange ?interlocutor − Agent
13 ?sent ?received − Message
14 ?eff − Prop)
15 (expected−reply a − Agent sent expect−back − Message) )
16 ( : facts
17 ( freevars (?agt − Agent ?msg−id − Message−id
18 ?sent ?reply − Message)
19 (<− (and (web−agent ?agt)
20 ( reply−pending ?agt ?msg−id ?sent)
21 (expected−reply ?agt ?sent ?reply ) )
22 (normal−value ( receive ?agt ?msg−id) ?reply ) ) ) )
23 ( : action (send ?agt − Agent ?sent − Message) − (?sid − Message−id)
24 : precondition (web−agent ?agt)
25 : effect ( reply−pending ?agt ?sid ?sent) )
26 ( : action ( receive ?agt − Agent ?sid − Message−id) − (?received −

Message)
27 : vars (?sent − Message ?eff − Prop)
28 : precondition (and (web−agent ?agt)
29 ( reply−pending ?agt ?sid ?sent) )
30 : effect (when (message−exchange ?agt ?sent ?received ?eff ) ?eff ) ) )

5.7 Hybrids

Due to the limitations of PDDL, the research on hybrid planner seems to be limited.
We can cite the previously discussed ANML for its limited support of HTN problems. It
is interesting to note that most hybrid planners are starting as temporally oriented
planners. Indeed, PDDL support on this particular area is quite limited and complex du-
rative actions and fluents are only available as of PDDL 3. This shows the link between
language and standard availability and ease of planner conception.
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In this section we will not discuss simple hybrid planners that combine two separate
planners into one like Duet (Gerevini et al. 2008) because the hybridation is limited
to a call to the other planner when encountering a different paradigm.

5.7.1 SIADEX

One of the few hybrid planner is called SIADEX (Castillo et al. 2006). Like ANML, it
combines HTN and temporal orriented planning. The main difference is that SIADEX
is an HTN planner that also does temporal constraints and ANML is the opposite. As
it is mainly an HTN planner, SIADEX supports partially ordered methods. It is based
on STNs Simple Temporal

Networks
to solve for temporal constraints while doing the hierarchical decomposition

process. In listing 5.15, we illustrate an example of a composite action travel−to with
two methods Fly and Drive. A durative primitive action is also shown with complex tem-
poral constraints. The interesting aspect is the ability to express composite action
with such complex temporalities.

Listing 5.15: Example of SIADEX composite and durative actions.
1 ( : task travel−to
2 : parameters (?destination )
3 ( :method Fly
4 : precondition ( f l ight ?destination )
5 : tasks ( (go−to−an−airport)
6 (take−a−flight−to ?destination ) ) )
7 ( :method Drive
8 : precondition (not ( f l ight ?destination ) )
9 : tasks ( (take−my−car)
10 (drive−to ?destination ) ) ) )
11
12 ( :durative−action drive−to
13 : parameters(?destination )
14 : duration (= ?duration
15 (/ (distance ?current ?destination )
16 (average−speed my−car) ) )
17 : condition (and ( current−position ?current )
18 ( available my−car) )
19 : effect (and ( current−position ?destination )
20 (not ( current−position ?current ) ) ) )

5.8 Color and general planning representation

From the general formalism of planning proposed earlier, it is possible to create an
instantiation of the SELF language for expressing planning domains. This extension
was the primary goal of creating SELF and uses almost all features of the language.

5.8.1 Framework

In order to describe this planning framework into SELF, we simply put all fields of the
actions into properties. Entities are used as fluents, and the entire knowledge domain
as constraints.
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Listing 5.16: Definition of default planning notions in SELF
1 ”lang .w” = ? ; //include default language f i le .
2 Fluent = Entity ;
3 State = (Group( Fluent ) , Statement) ;
4 BooleanOperator = (& , | ) ;
5 (pre , eff , constr ) : : Property (Action , State) ;
6 ( costs , lasts , probability ) : : Property (Action , Float ) ;
7 Plan = Group(Statement) ;
8 −> : : Property (Action , Action ) ; //Causal links
9 methods : : Property (Action , Plan ) ;

The file presented in listing 5.16, gives the definition of the syntax of fluents and
actions in SELF. The first line includes the default syntax file using the first state-
ment syntax. The fluents are simply typed as entities. This allows them to be either
parameterized entities or statements. States are either a set of fluents or a logical
statement between states or fluents. When a state is represented as a set, it repre-
sents the conjunction of all fluents in the set.

Then at line 5, we define the preconditions, effects and constraint formalism. They
are represented as simple properties between actions and states. This allows for the
simple expression of commonly expressed formalism like the ones found in PDDL. Line 6
expresses the other attributes of actions like its cost, duration and prior probability
of success.

Plans are needed to be represented in the files, especially for a case based and hierar-
chical paradigms. They are expressed using statements for causal link representation.
The property −> is used in these statements and the causes are either given explicitly
as parameters of the property or they can be inferred by the planner. We add a last
property to express methods relative to their actions.

It is interesting to note that some of the most popular feature on action languages
such as object types hierarchies and instanciation of actions and planning domain are
native to SELF and therefore already included by default. So if one wants to make a
planning domain and then to create a specific planning problem from it, it is as simple
as simply either programatically append the problem file to the existing knowledge
database or to simply use the include notation ”domain.w”=?; to extend the domain
definition with new ones.

5.8.2 Example domain

Using the classical example domain used earlier, we can write the following file in
listing 5.17.

Listing 5.17: Blockworld written in SELF to work with Color
1 ”planning .w” = ? ; //include base terminology
2
3 ( ! on ! , held ( ! ) , down(_) ) : : Fluent ;
4
5 pickUp(x) pre (~ on x, down(x) , held (~) ) ;
6 pickUp(x) eff (~(down(x) ) , held (~) ) ;
7
8 putDown(x) pre (held (x) ) ;
9 putDown(x) eff (held (~) , down(x) ) ;
10
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11 stack(x, y) pre (held (x) , ~ on y) ;
12 stack(x, y) eff (held (~) , x on y) ;
13
14 unstack(x, y) pre (held (~) , x on y) ;
15 unstack(x, y) eff (held (x) , ~ on y) ;

At line line 1, we need to include the file defined in listing 5.16. After that, line 3
defines the allowed arrity of each relation/function used by fluents. This restricts
the cardinality eventually between parameters (one to many, many to one, etc.).
Line 5 encodes the action 𝑝𝑖𝑐𝑘𝑢𝑝 defined earlier. It is interesting to note that instead
of using a constant to denote the absence of the block, we can use an anonymous
exclusive quantifier to make sure no block is held. This is quite useful to make concise
domains that stay expressive and intuitive.

5.8.3 Differences with PDDL

SELF+Color is more concise than PDDL. It will infer most types and declarations. Vari-
ables are also inferred if they are used more than once in a statement while also used
as parameters.
While PDDL uses a fixed set of extensions to specify the capabilities of the domain,
SELF uses inclusion of other files to allow for greater flexibility. In PDDL, everything
must be declared while in SELF, type inference allows for usage without definition. It
is interesting to note that the use of variable names x and y are arbitrary and can be
changed for each statement and the domain will still be functionally the same. The
line 3 in listing 5.2 is a specific feature of SELF that is absent in PDDL. It is possible to
specify constraints on the cardinality of properties. This limits the number of different
combinations of values that can be true at once. This is typically done in PDDL using
several predicates or constraints.
Most of the differences can be summarized saying that ‘SELF do it once, PDDL needs it
twice’. This doesn’t only mean that SELF is more compact but also that the expressivity
allows for a drastic reduction of the search space if taken into account. Thiébaux
et al. (2005) advocate for the recognition of the fact that expressivity isn’t just a
convenience but is crucial for some problems and that treating it like an obstacle by
trying to compile it away only makes the problem worse. If a planner is agnostic to
the domain and problem, it cannot take advantages of clues that lies in the name and
parameters of an action (Babli et al. 2015).
Whatever the time and work that an expert spends on a planning domain it will always
be incomplete and fixed. SELF allows for dynamic extension and even addresses the
use of reified actions as parameters. Such a framework can be useful in multi-agent
systems where agents can communicate composite actions to instruct another agent.
It can also be useful for macro-action learning that allows to improve hierarchical
domains from repeating observations. It can also be used in online planning to repair
a plan that failed. And at last this framework can be used for explanation or inference
by making easy to map two similar domains together.
Also another difference between SELF and PDDL is the underlying planning framework.
We presented the one of SELF (listing 5.16) but PDDL seems to suppose a more classical
state based formalism. For example, the fluents are of two kinds depending on if they
are used as preconditions or effects. In the first case, the fluent is a formula that is
evaluated like a predicate to know if the action can be executed in any given state.
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Effects are formulas enforcing the values of existing fluent in the state. SELF just
supposes that the new knowledge is enforcing and that the fluents are of the same kind
since verification about the coherence of the actions is made prior to its application
in planning.

5.9 Conclusion

In this chapter we have explained how a general planning framework can be designed to
interpret any planning paradigm. We explained how classical action languages encode
their domain representation and specific features. After illustrating each language
with an example, we have proposed our framework based on SELF and compared it to
the standard currently in use.In this chapter we have explained how a general plan-
ning framework can be designed to interpret any planning paradigm. We explained how
classical action languages encode their domain representation and specific features.
After illustrating each language with an example, we have proposed our framework
based on SELF and compared it to the standard currently in use.In this chapter we
have explained how a general planning framework can be designed to interpret any
planning paradigm. We explained how classical action languages encode their domain
representation and specific features. After illustrating each language with an exam-
ple, we have proposed our framework based on SELF and compared it to the standard
currently in use.In this chapter we have explained how a general planning framework
can be designed to interpret any planning paradigm. We explained how classical action
languages encode their domain representation and specific features. After illustrat-
ing each language with an example, we have proposed our framework based on SELF
and compared it to the standard currently in use.
An interesting perspective on the subject of Color is to use that planning formalism
for multi-agent planning. Indeed, the ability to merge and extend arbitrary part of a
planning domain makes it very suitable for distributed planning as well as for coop-
eration and negociation. We can imagine an agent expressing its concern for the cost
of a plan or the value of a variable used in an instance using the same language as
the planning domain is expressed and interpreted in. We will explore a subset of the
multi-agent aspect of the language with intent recognition in chapter 7.
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6 Online and Flexible Planning
Algorithms

The planning processworks using distinct execution phases. In figure 6.1, we illustrate
the components of the process.

Domain

compilation

Initialisation Planning Solution
optimisation

Figure 6.1: Planning phases for online planning

The first phase has been explained in chapter 5, it transforms the input domain de-
scription into a machine ready form. This allows for easy manipulation of the planning
entities by the planning algorithm. The second phase is the initialization. It starts
pre-processing the planning domain and problem so that the planning phase gets sig-
nificantly faster. Adding code to this part is a tradeoff between overhead and planning
performance. Only the planning phase is meant to have real-time constraints on its ex-
ecution the rest is usually a linear process and can be negligible in terms of execution
times. After a result is found, it is processed or further refined (if time constraints
allow for it) and returned to the user in a readable form.

In this chapter, we present planners and approaches to inverted planning and intent
recognition. To do that we must first have an efficient online planning algorithm that
can take into account observed plans or fluents and find the most likely plan to be
pursued by an external agent. The planning process must be done in real time and
take into account new observations to make new predictions. This requires the use of
online planners.

Classical planning can be used for such a work but lacks flexibility when needing to
re-plan at high frequency. The planner must be either able to reuse previously found
plans or be able to compute quickly plans that are good approximation of the intended
goal. Further discussions of inverted planning and intent recognition can be found in
chapter 7.

In order to make an efficient online planner, we chose to explore more expressive and
flexible approaches to use the semantics of the planning domain to attempt to guide
the search to a more sensical plan. This approach uses either repair heuristics or
explanations to provide fast predictions of the intended goals.

First we will discuss existing planning algorithms of the sort. Next we propose and
evaluate our first planner that uses plan repair instead of re-planning. And finally, we
present a hierarchical planner that is able to produce intermediary abstract plans at
any time of its resolution.
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6.1 Existing Flexible Planning Algorithms

In order to make a planner capable of repairing plans, the most fitting paradigm is
PSP as described in section 4.5.2. Using the plan space for search allows to modify the
refinement process into repairing existing plans.

The second approach using explanations is hierarchical. The planner will use a HTN
planning domain that contains composite actions (or tasks) that have several methods
(as plans) to realize them.

First, PSP will be presented in more details regarding its classical formulation and
definition.

6.1.1 Plan Space Planning

All PSP algorithms work in a similar way: their search space is the set of all plans
and their iteration operation is plan refinement. This means that every PSP planner
searches for flaws in the current plan and then computes a set of resolvers that poten-
tially fix each of them. The algorithm usually starts with an empty plan only having
the initial and goal steps and recursively refine the plan until all flaws have been
solved.

In general, PSP is faster than naive classical planning. However, with the advent of
efficient state based heuristics used in FFFast Forward (Hoffmann 2001) and LAMA (Richter and
Westphal 2010), plan space planning has been left behind regarding raw performance.
While PSP delays commitment and therefore canmake very efficient choices that can be
faster than classical planning, most formulations of PSP problems lead to significant
increase in complexity (Tan and Gruninger 2014). The backtracking in PSP algorithms
along with heavy data structures such as plans to modify at each iteration makes the
approach slower by design without an excellent heuristic.

Works on PSP didn’t stop at that point (Nguyen and Kambhampati 2001) since it has
unique advantages over classical planning. Indeed, by using backward chaining, PSP
algorithms are sound and complete and therefore guarantee to find a solution if it
exists (Sjöberg and Nissar 2015).

As PSP finds partially ordered plans, it is also by nature more flexible. Indeed, multiple
totally ordered plans are contained within a partially ordered one, they are called
linearizations. So, when wanting to have several plans with low diversity, PSP is the
way to go.

6.1.1.1 Definitions

In section 4.5.2 we have formalized how PSP works in the general planning formalism.
However, this formalism is not used by the rest of the community. This means that we
still need to define the classical POCL algorithm. In order to define this algorithm, we
need to explain the notions of flaws and resolvers.
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6.1 Existing Flexible Planning Algorithms

Definition 6.1.1: Flaws

Flaws are constraints violations within a plan. The set of flaws in a plan ℼ is
noted ⨂ℼ. There are different kinds of flaws in classical PSP and additional
ones can be defined depending on the application.
Classical flaws often have a few common features. They are constructive since
they all require an addition of causal links and steps in a plan to be fixed. They
have a proper fluent 𝑓 that is the cause of the violation in the plan the flaw is
representing and a needer 𝑎𝑛 that is the action requiring the proper fluent to be
fulfilled. In classical PSP flaws are either:

• Subgoals, also called open condition that are yet to be supported by a
provider 𝑎𝑝. We note subgoals ⊗⤈𝑎𝑛(𝑓).

• Threats are caused by steps that can break a causal link with their effects.
They are called breakers of the threatened link. A step 𝑎𝑏 threatens a causal
link 𝑙𝑡 = 𝑎𝑝 𝑓−→ 𝑎𝑛 if and only if (eff (𝑎𝑏)⊧̸𝑓) ∧ (𝑎𝑏 ⊁ 𝑎𝑝 ∧ 𝑎𝑛 ⊁ 𝑎𝑏). Said
otherwise, the breaker can potentially cancel an effect of a providing step𝑎𝑝, before it gets used by its needer 𝑎𝑛. We note threats ⊗†𝑎𝑛(𝑓, 𝑎𝑏).
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Figure 6.2: Example of partial plan having flaws

Example

In figure 6.2 we present a partially ordered plan with two typical flaws. The first
is a subgoal missing from the plan to fulfill the 𝑓5 precondition of 𝑎1.
The second flaw in the figure 6.2 is the threat between 𝑎2 and a causal link out-
going from 𝑎3. This happens because nothing prevents 𝑎2 to be executed after𝑎3 and negate the fluent 𝑓2 needed by the next step.

These flaws need to be fixed in order for the plan to be valid. In POCL it is done by
finding their resolvers.
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Definition 6.1.2: Resolvers

A resolver is a plan refinement that attempts to solve a flaw ⊗𝑎𝑛. Since classi-
cal flaws are constructive, the classical resolvers are called positive. They are
defined as follows:

• For subgoals, the resolvers are a potential causal link containing the proper
fluent 𝑓 of a given subgoal in their causes while taking the needer step𝑎𝑛 as their target and a provider step 𝑎𝑝 as their source. They are noted

⨀+
𝑎𝑝(⊗⤈𝑎𝑛(𝑓)) = 𝑎𝑝 𝑓−→ 𝑎𝑛.

• For threats, we usually consider only two resolvers: demotion (𝑎𝑏 ≻ 𝑎𝑝) and
promotion (𝑎𝑛 ≻ 𝑎𝑏) of the breaker relative to the threatened link. We call
the added causeless causal link a guarding link. The resolvers for threats
are noted ⊙+≻ (⊗†𝑎𝑛(𝑓, 𝑎𝑏)) = 𝑎𝑝 → 𝑎𝑏 for promotion and ⊙+≺ (⊗†𝑎𝑛(𝑓, 𝑎𝑏)) =𝑎𝑏 → 𝑎𝑛 for demotion.

It is possible to introduce extra resolvers to fix custom flaws. In such a case we call
positive resolvers, those which add causal links and steps to the plan and negative
those that removes causal links and steps. It is preferable to engineer flaws and
resolver not to mix positive and negative aspect at once because of the complicated
side effects that might result from it.

Example

From our previous example, we present the complete plan in figure 6.3. The sub-
goal needs to be fixed by inserting another causal link to provide the missing
fluent and inserting any necessary steps to do so. In that case the initial state
happens to provide the necessary fluent so we simply add a causal link for it.
For the threat, the solution is to either promote or demote 𝑎2 so that it doesn’t
interfere with the causal link between 𝑎3 and 𝑎4. We chose here to demote 𝑎2 so
it requires 𝑎4 to be executed before it.

The application of a resolver does not necessarily mean progress. It can have conse-
quences that may require reverting its application in order to respect the backtracking
of the POCL algorithm.
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Figure 6.3: Example of resolvers that fixes the previously illustrated flaws

Definition 6.1.3: Side effects

Flaws that are caused by the application of a resolver are called related flaws.
They are inserted into the agenda An agenda is a

flaw container
used for the flaw
selection of POCL.

with each application of a resolver:

• Related subgoals are all the new open conditions inserted by new steps.
• Related threats are the causal links threatened by the insertion of a new
step or the deletion of a guarding link.

Flaws can also become irrelevant when a resolver is applied. It is always the
case for the targeted flaw, but this can also affect other flaws. Those invalidated
flaws are removed from the agenda upon detection:

• Invalidated subgoals are subgoals satisfied by the new causal links or the
removal of their needer.

• Invalidated threats happen when the breaker no longer threatens the
causal link because the order guards the threatened causal link or either of
them have been removed.

Example

In our example, by adding the step 𝑎2 to fix an unsupported subgoal needed by𝑎1, we introduced another subgoal to support the new step that also threatens
the causal link between 𝑎3 and 𝑎4.

6.1.1.2 Classical POCL Algorithm

In algorithm 5 we present a generic version of POCL inspired by Ghallab et al. (2004,
sec. 5.4.2).
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Algorithm 5 POCL Algorithm
1: function POCL(Agenda 𝒜, Action 𝜔)
2: if 𝒜 = ∅ then ▷ Populated agenda needs to be provided
3: return Success ▷ Stops all recursion
4: Flaw ⊗← ⟬𝒜⟭ ▷ Heuristically chosen flaw
5: Resolvers⨀← solve(⊗, ⟬ℿ(𝜔)⟭) ▷ The root operator has only one method for

PSP
6: for all ⊙ ∈⨀ do ▷ Non-deterministic choice operator
7: apply(⊙, ℼ) ▷ Apply resolver to partial plan
8: Agenda 𝒜′ ← update(𝒜)
9: if POCL(𝒜′, 𝜔) = Success then ▷ Refining recursively
10: return Success
11: revert(𝒜, ℼ) ▷ Failure, undo resolver application
12: 𝒜←𝒜∪ {⊗} ▷ Flaw was not resolved
13: return Failure ▷ Revert to last non-deterministic choice
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tea in cup
make(drink)

2. Variable unification

drink : tea

5. Side effects search

make(tea)taken(tea)?

pour(thing, into)

make(drink) tea in cup?

1. Resolver candidates

a*

3. Resolver selection

pour(tea, cup)

tea in cup?make(tea) a*
4. Resolver application

tea in cupmake(tea) a*

Figure 6.5: Refinement process of POCL as used in HEART
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For our version of POCL we follow a refinement procedure that works in several generic
steps. In figure 6.5 we detail the resolution of a subgoal as done in the algorithm 5.

The first is the search for resolvers. It is often done in two separate steps: first,
select the candidates and then check each of them for validity. This is done using the
polymorphic function solve at line 5.

In the case of subgoals, variable unification is performed to ensure the compatibility
of the resolvers. Since this step is time-consuming, the operator is instantiated ac-
cordingly at this step to factor the computational effort. Composite operators have
also all their methods instantiated at this step if they are selected as a candidate.

Then a resolver is picked non-deterministically for applications (this can be heuristi-
cally driven). At line 7 the resolver is effectively applied to the current plan. All side
effects and invalidations are handled during the update of the agenda at line 8. If a
problem occurs, line 11 backtracks and tries other resolvers. If no resolver fits the
flaw, the algorithm backtracks to previous resolver choices to explore all the possible
plans and ensure completeness.

6.1.1.3 Existing PSP Planners

Related works already tried to explore new ideas to make PSP an attractive alterna-
tive to regular state-based planners like the appropriately named “Reviving partial or-
der planning” (Nguyen and Kambhampati 2001) and VHPOP (Younes and Simmons 2003).
More recent efforts (Coles et al. 2011; Sapena et al. 2014) adapted the powerful
heuristics from state-based planning to PSP’s approach. An interesting approach of
these last efforts is found in (Shekhar and Khemani 2016) with meta-heuristics based
on offline training on the domain. Yet, we clearly note that only a few papers lay the
emphasis upon plan quality using PSP (Ambite and Knoblock 1997; Say et al. 2016).

6.1.2 Plan Repair & Reuse

In online planning, the plan is computed frequently from a changing initial state. This
means that the previous plan is very often available. In order to take advantage of
the effort invested in previous plans, it is tempting to simply reuse the existing plan
instead of replanning from scratch. Most work on the field focus on monitoring execu-
tion and finding ways to make resilient plans.

In such a case, the planning models can be subject to uncertainty. Indeed, the execu-
tion of an action can fail because an external event changed a precondition required
to do it or because the model itself is inaccurate.

The idea of reusing plan emerged early on (Nebel and Koehler 1995) but with a caveat:
often repairing needed more effort than replanning. So plan repair became more of a
gamble and needed incentives to reuse an existing plan given an application. For exam-
ple, such process is useful for multi-agent planning where a significant change of plan
is expansive among agents (Ephrati and Rosenschein 1993; Alami et al. 1995; Sugawara
1995; Borrajo 2013; Luis and Borrajo 2014). This motivation for plan repair comes from
plan merging. Applications of plan merging ranges from cooperation problems to plan
optimization.
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The question of the efficiency of replanning vs. repairing has been since studied ex-
tensively under several aspects (Van Der Krogt and De Weerdt 2005; Fox et al. 2006).
The emergence of diverse planning and requirement on plan stability of execution mon-
itoring gave new research on the subject. At this point, most of the literature focuses
on a case-based planning, where a plan library is already provided and the planner
must select a plan and repair it to fit a given case (Gerevini et al. 2013; Borrajo et al.
2015).
A recent work of Zhuo and Kambhampati (2017) gives an interesting approach to the
problem by questioning the domain. Indeed, the need to re-plan can be an opportunity
to revise issues in the current model and to improve it by adding newly found solution
to complete the given planning model.
In our case, we focus on PSP and how to make plan repair efficiently using that tech-
nique. Classical PSP algorithms don’t take as an input an existing plan but can be
enhanced to fit plan to repair, as for instance in (Van Der Krogt and De Weerdt 2005).
Usually, PSP algorithms take a problem as an input and use a loop or a recursive func-
tion to refine the plan into a solution. We can’t solely use the refining recursive func-
tion to be able to use our existing partial plan. This causes multiple side effects if
the input plan is suboptimal. This problem was already explored in LGP-adapt (Borrajo
2013). This work explains how reusing a partial plan often implies replanning parts of
the plan.

6.1.3 Hierarchical Task Networks

““HTN planners differ from classical planners in what they plan for and how
they plan for it. In an HTN planner, the objective is not to achieve a set
of goals but instead to perform some set of tasks.”Ghallab et al.

(2004)
Planning using HTN gives a completely different approach to the problem and its for-
mulation. In this formalism, actions are composite tasks and there is no goal other
than to complete the root task. One can find similarities with our general planning
formalism and it isn’t a coincidence. Indeed, HTN is more general than planning and
therefore one needs to be able to allow for this level of expressivity.
Figure 6.6 shows how the domain expressivity are classed in relation to one another.
The most expressive formalism can encode context-sensitive languages. HTN problems
are less expressive than these kind of languages. Restricting the expressivity, we
can remove precondition and effects of tasks and even enforce total order. That last
restriction reduces the expressivity to the level of context-free languages.Generated by the

CFGs of Chomsky
We can

see that STRIPS is about the smallest subset of problems in regard to expressivity.
This means that, while it is possible to transform some HTN problems into STRIPS like
classical planning problem, for most of them this is impossible to do without losing
expressivity.
This expressivity comes at a cost. HTN problems are on a complexity category that is
significantly harder than regular STRIPS planning:From Bercher and

Höller (2018) HTN
Tutorial at ICAPS

2018 Table 6.1: HTN models expressivity associated with their respective complexity
classes

Restrictions Complexity
Classical P-SPACE
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Restrictions Complexity
Task Insertion NEXP-TIME
Totally Ordered EXP-TIME
Acyclic NEXP-TIME
Tail-recursive EXP-SPACE

Table 6.1 gives the complexity of each kind of HTN problem restrictions. Classical HTN
problems require P-SPACE algorithms to solve. Adding task insertion the complexity
becomes NEXP-TIME and so on.

HTN is often combined with classical approaches since it allows for a more natural ex-
pression of domains making expert knowledge easier to encode. These kinds of plan-
ners are named decompositional planners when no initial plan is provided (Fox 1997).
Most of the time the integration of HTN simply consists in calling another algorithm
when introducing a composite operator during the planning process. The Duet planner
by Gerevini et al. (2008) does so by calling an instance of an HTN planner based on the
task insertion called SHOP2 (Nau et al. 2003) to decompose composite actions. Some
planners take the integration further by making the decomposition of composite ac-
tions into a special step in their refinement process. Such works include the discourse
generation oriented DPOCL (Young and Moore 1994) and the work of Kambhampati et al.
(1998) generalizing the practice for decompositional planners.

In our case, we chose a class of hierarchical planners based on PSP algorithms (Bechon
et al. 2014; Dvorak et al. 2014; Bercher et al. 2014) as a reference approach. The
main difference here is that the decomposition is integrated into the classical POCL
algorithm by only adding new types of flaws. This allows keeping all the flexibility
and properties of POCL while adding the expressivity and abstraction capabilities of
HTN.

6.2 LOLLIPOP

LOLLIPOP aLternative
Optimization
with partiaL pLan
Injection Partial
Ordered
Planner

is a planning algorithm made to test the feasibility of plan repair using PSP
techniques. The repairing is done through the addition of special negative flaws and
resolver to the classical POCL algorithm. This causes some issues specific to that
kind of resolvers that POCL is not equiped to solve. Additionally, the plan to repair
may have a few different types of inconsistencies that can void the valiodity of the
resulting plan or affect negatively the performances of the repair.

In this section, we explore this technique and its related issues and advantages. We
also start by explaining how existing relaxation based heuristics can be adapted into
a plan repair problem.

6.2.1 Operator Graph

Operator graphs, are a depedancy graph of all the operators in the domain with edges
annotated with the fluent that can become a potential causal link.
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Figure 6.6: Venn diagram of the expressivity classes of HTN paradigms.

Definition 6.2.1: Operator Graph

An operator graph 𝑔𝑂 of a set of operators 𝑂 is a labeled directed graph that

binds two operators with the causal link 𝑜1 𝑓−→ 𝑜2 if and only if there exists at
least one fluent so that (𝑓 ∈ eff (𝑜1)) ∧ 𝑓 ⊧ pre(𝑜2).

This definition was inspired by the notion of domain causal graph as explained in (Gö-
belbecker et al. 2010) and originally used as a heuristic in (Helmert et al. 2011).
Causal graphs have fluents as their nodes and operators as their edges. Operator
graphs are the opposite: they are an operator dependency graph for a set of actions.
A similar structure was used in (Peot and Smith 1994) that builds the operator depen-
dency graph of goals and uses precondition nodes instead of labels.

6.2.1.1 Building the graph

While building the operator graph, we need a providing map that indicates, for each
fluent, the list of operators that can provide it. This is a simpler version of the causal
graph that is reduced to an associative table easier to maintain. The list of providers
can be sorted to drive resolver selection (as detailed in section 6.2.3). We note 𝑔𝒟 the
operator graph built with the set of operators in the domain 𝒟.

106



6.2 LOLLIPOP

Corridor Living-room

Kitchen

Robot Keys

go(?movable, ?room) 

?movable is Movable, ?room is Room

pre ?movable room != ?room,

?room locked false

eff ?movable room ?room

grab(?graber, ?pickable)

?graber is Graber, ?pickable is Pickable

pre ?graber holds nothing, 

?graber room = ?pickable room

eff ?graber holds ?pickable

unlock(?graber, ?room)

?graber is Graber, ?room is Room

pre ?room locked, ?graber holds keys

eff ?graber holds nothing, 

?room locked false
robot holds lollipop

Lollipop

a*

Figure 6.7: Example domain and problem featuring a robot that aims to fetch a lollipop
in a locked kitchen. The operator go is used for movable objects (such as the
robot) to move to another room. The grab operator is used by grabbers to
hold objects and the unlock operator is used to open a door when the robot
holds the key.

corridor locked false

livingroom locked false

robot room corridor m room r
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robot holds lollipop
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g room r

kitchen locked true

"planning.w" = ? ;
(g, r, m, k) :: Variables;
Movable/Grabber;
g :: Grabber; r :: Room;
m :: Movable; k keyof r;
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Figure 6.8: Diagram of the operator graph of example domain. Full arrows represent
the domain operator graph and dotted arrows the dependencies added to
inject the initial and goal steps.
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Example

In the figure 6.8, we illustrate the application of this mechanism on our exam-
ple from figure 6.7. Continuous lines correspond to the domain operator graph
computed during domain compilation time.

The generation of the operator graph is detailed in algorithm 6. It explores the opera-
tor space and builds a providing and a needing map that gives the provided and needed
fluents for each operator. Once done it iterates on every precondition and searches
for a satisfying cause to add the causal links to the operator graph.

Algorithm 6 Operator graph generation and update algorithm
1: function addVertex(Action 𝑎)
2: cache(𝑎) ▷ Update of the providing and needing map
3: if binding then ▷ boolean that indicates if the binding was requested
4: bind(𝑎)
5: function cache(Action 𝑎)
6: for all 𝑓 ∈ eff (𝑎) do ▷ Adds 𝑎 to the list of providers of 𝑓
7: add(𝐴𝑝, 𝑓,𝑎)
8: ... ▷ Same operation with needing actions and preconditions
9: function bind(Action 𝑎)
10: for all 𝑓 ∈ pre(𝑎) do
11: if 𝑓 ∈ 𝐴𝑝 then
12: for all ℼ ∈ get(𝐴𝑝, 𝑓) do
13: Link 𝑙 ← getEdge(ℼ, 𝑎) ▷ Create the link if needed
14: addCause(𝑙, 𝑓) ▷ Add the fluent as a cause
15: ... ▷ Same operation with needing and effects

6.2.1.2 Plan extraction from heuristic indexes

Using heuristics or pre-computed indexes is common in classical planning. A good por-
tion of the research into PSP has been intended toward making the paradigm as ef-
ficient than classical planning when using the new generation of heuristics from FDFast Downward
and LAMA (Richter and Westphal 2010). An example of this research is called VHPOP
(Younes and Simmons 2003) that uses a kind of meta-heuristic by combining several
heuristic approaches to allow for efficient flaw selection in POCL.

In our case, the approach is completely different. We propose the use of data struc-
tures usually used for heuristics as input data of a plan repair algorithm. The idea is
to extract a partial plan that acts as scafolding for the planning algorithm to build a
valid plan.

To apply the notion of operator graphs to planning problems, we just need to add the
initial and goal steps to the operator graph. In figure 6.8, we depict this insertion
with our previous example using dotted lines. However, since operator graphs may
have cycles, they can’t be used directly as input to POCL algorithms to ease the initial
back chaining. Moreover, the process of refining an operator graph into a usable one
could be more computationally expensive than POCL itself.

In order to give a head start to the LOLLIPOP algorithm, we propose to build operator
graphs differently with the algorithm detailed in algorithm 7. A similar notion was al-
ready presented as “basic plans” in (Sebastia et al. 2000). These “basic” partial plans
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use a more complete but slower solution for the generation that ensures that each se-
lected steps are necessary for the solution. In our case, we built a simpler solution
that can solve some basic planning problems but that also makes early assumptions
(since our algorithm can handle them). It does a simple and fast backward construc-
tion of a partial plan driven by the providing map. Therefore, it can be tweaked with
the powerful heuristics of state search planning.

Algorithm 7 Safe operator graph generation algorithm
1: function safe(Action 𝜔)
2: Stack<Action> 𝑜𝑝𝑒𝑛 ← [𝑎∗]
3: Stack<Action> 𝑐𝑙𝑜𝑠𝑒𝑑 ← ∅
4: while 𝑜𝑝𝑒𝑛 ≠ ∅ do
5: Action 𝑎 ← pocl(𝑜𝑝𝑒𝑛) ▷ Remove 𝑎 from 𝑜𝑝𝑒𝑛
6: push(𝑐𝑙𝑜𝑠𝑒𝑑, 𝑎)
7: for all 𝑓 ∈ pre(𝑎) do
8: Actions 𝐴𝑝 ← getProviding(ℼ, 𝑓) ▷ Sorted by usefulness
9: if 𝐴𝑝 = ∅ then
10: 𝐴𝑠 ←𝐴𝑠 ⧵ {ℼ}
11: continue
12: Action 𝑎′ ← getFirst(ℼ)
13: if 𝑎′ ∈ 𝑐𝑙𝑜𝑠𝑒𝑑 then
14: continue
15: if 𝑎′ ∉ 𝐴𝑠 then
16: push(𝑜𝑝𝑒𝑛, 𝑎′)
17: 𝑆 ← 𝐴𝑠 ∪ {𝑎′}
18: Link 𝑙 ← getEdge(𝑎′, 𝑎) ▷ Create the link if needed
19: addCause(𝑙, 𝑓) ▷ Add the fluent as a cause

This algorithm is useful since it is specifically used on goals. The result is a valid
partial plan that can be used as input to POCL algorithms.

6.2.2 Negative Refinements

The classical POCL algorithm works upon a principle of positive plan refinements. The
two standard flaws (subgoals and threats) are fixed by adding steps, causal links, or
variable binding constraints to the partial plan. Online planning needs to be able to
remove parts of the plan that are not necessary for the solution. Since we assume
that the input partial plan is quite complete, we need to define new flaws to optimize
and fix this plan. These flaws are called negative as their resolvers apply subtractive
refinements on partial plans.

Definition 6.2.2: Alternative

An alternative⊗⤼ is a negative flaw that occurs when there is a better provider

choice for a given link. An alternative to a causal link 𝑎𝑝 𝑓−→ 𝑎𝑛 is a provider 𝑎𝑏
that has a better utility value than 𝑎𝑝.

The utility value of an operator is ameasure of usefulness being the base of our ranking
mechanism detailed in section 6.2.3. It uses the incoming and outgoing degrees of the
operator in the domain operator graph to measure its usefulness.

Finding an alternative to an operator is computationally expensive. It requires search-
ing a better provider for every fluent needed by a step. To simplify that search, we
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6 Online and Flexible Planning Algorithms

select only the best provider for a given fluent and check if the one used is the same.
If not, we add the alternative as a flaw. This search is done only on updated steps
for online planning. Indeed, the safe operator graph mechanism is guaranteed to only
choose the best provider (algorithm 7 at line 12). Furthermore, subgoals won’t in-
troduce new fixable alternatives as they are guaranteed to select the best possible
provider.

Definition 6.2.3: Orphan

An orphan⊗⤑ is a negative flaw that occurs when a step in the partial plan (other
than the initial or goal step) is not participating in the plan. Formally 𝑎𝑜 is an
orphan if and only if 𝑎𝑜 ≠ 𝑎0 ∧ 𝑎𝑜 ≠ 𝑎∗ ∧ (|𝜒• / // (𝑎𝑜)| = 0) ∨ ⟬= (∅) ∶ 𝜒• / // (𝑎𝑜)⟭.

With 𝜒• / // (𝑎𝑜) being the set of outgoing causal links of 𝑎𝑜 inℼ. This last condition checks
for dangling orphans that are linked to the goal with only bare causal links (introduced
by threat resolution).

The solution to an alternative is a negative refinement that simply removes the tar-
geted causal link. This causes a new subgoal as a side effect, which will focus on its
resolver by its rank (explained in section 6.2.3) and then pick the first provider (the
most useful one). The resolver for orphans is the negative refinement that is meant
to remove a step and its incoming causal link while tagging its providers as potential
orphans.

Positive Flaws
Subgoal

Threat

Alternative

Orphan

-

+

+ Invalidates Causes

Side Effects

Both

+Positive

Resolvers

- Negative

Steps & Causal Links 

AffectedExisting

-

Legend

Figure 6.9: Schema representing flaws with their signs, resolvers and side effects rel-
ative to each other

The side effects mechanism also needs an upgrade since the new kinds of flaws can
interfere with one another. This is why we extend the side effect definition (cf. defi-
nition 6.1.3) with a notion of sign.

Definition 6.2.4: Signed Side Effects

A signed side effect is either a regular causal side effect or an invalidating side
effect. The sign of a side effect indicates if the related flaw needs to be added
or removed from the agenda.

The figure 6.9 exposes the extended notion of signed resolvers and side effects. When
treating positive resolvers, nothing needs to change from the classical method. When
dealing with negative resolvers, we need to search for extra subgoals and threats.
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6.2 LOLLIPOP

Deletion of causal links and steps can cause orphan flaws that need to be identified
for removal.

In the method described in (Peot and Smith 1993), a invalidating side effect is ex-
plained under the name of DEnd strategy. In classical POCL, it has been noticed that
threats can disappear in some cases if subgoals or other threats were applied before
them. For our mechanisms, we decide to gather under this notion every side effect
that removes the need to consider a flaw. For example, orphans can be invalidated if
a subgoal selects the considered step. Alternatives can remove the need to compute
further subgoal of an orphan step as orphans simply remove the need to fix any flaws
that concern the selected step.

These interactions between flaws are decisive for the validity and efficiency of the
whole model, that is why we aim to drive flaw selection in a rigorous manner.

6.2.3 Usefulness Heuristic

Resolvers and flaws selection are the keys to improving performances. Choosing a good
resolver helps to reduce the branching factor that accounts for most of the time spent
on running POCL algorithms (Kambhampati 1994 ). Flaw selection is also important for
efficiency, especially when considering negative flaws which can conflict with other
flaws.

Conflicts between flaws occur when two flaws of opposite sign target the same ele-
ment of the partial plan. This can happen, for example, if an orphan flaw needs to
remove a step needed by a subgoal or when a threat resolver tries to add a promoting
link against an alternative. The use of side effects will prevent most of these occur-
rences in the agenda but a base ordering will increase the general efficiency of the
algorithm.

Based on the figure 6.9, we define a base ordering of flaws by type. This order takes
into account the number of flaw types affected by causal side effects.

1. Alternatives will cut causal links that have a better provider. It is necessary to
identify them early since they will add at least another subgoal to be fixed as a
related flaw.

2. Subgoals are the flaws that cause most of the branching factor in POCL algorithms.
This is why we need to make sure that all open conditions are fixed before pro-
ceeding on finer refinements.

3. Orphans remove unneeded branches of the plan. Yet, these branches can be found
out to be necessary for the plan to meet a subgoal. Since a branch can contain
many actions, it is preferable to leave the orphan in the plan until they are no
longer needed. Also, threats involving orphans are invalidated if the orphan is
resolved first.

4. Threats occur quite often in the computation. Searching and solving them is com-
putationally expensive since the resolvers need to check if there are no paths
that fix the flaw already. Many threats are generated without the need of re-
solver application (Peot and Smith 1993). That is why we rank all related sub-
goals and orphans before threats because they can add causal links or remove
threatening actions that will fix the threat.
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6 Online and Flexible Planning Algorithms

The resolvers need to be ordered as well, especially for the subgoal flaws. Ordering
resolvers for a subgoal is the same operation as choosing a provider. Therefore, the
problem becomes “how to rank operators?” Usually, each operator has an assigned
cost in the domain, but more often than not, costs are hard to estimate manually. In
our case we need an automated way to rank operators. The most relevant information
on an operator is how useful it may be to other actions in the plan and how hard is it
to realize.

Since this may be computationally expensive to compute while planning, the evalua-
tion of the cost of an operator is done offline using the operator graph.

The first metric to compute this heuristic is the degree of the operator.

Definition 6.2.5: Degree of an operator

Degrees are a measurement of the usefulness of an operator. Such a notion is
derived from the incoming and outgoing degrees of a node in the operator graph.
We note |𝜒• / // (𝑎)| being the outgoing degree of 𝑎 in the directed graph formed byℼ and |𝜒 .. .•(𝑎)| being the incoming degree of 𝑎 in the directed graph formed by ℼ
respectively the outgoing and incoming degrees of an operator in a plan ℼ. These
represent the number of causal links that goes out or toward the operator. We
call proper degree of an operator |eff (𝑎)| and |pre(𝑎)| the number of preconditions
and effects that reflect its intrinsic usefulness.

There are several ways to use the degrees as indicators. The utility value increases
with every outgoing degree, since this reflects a positive participation in the plan. It
decreases with every negative degree since actions with higher incoming degrees are
harder to satisfy. The utility value bounds are useful when selecting special operators.
For example, a user-specified constraint could be laid upon an operator to ensure it is
only selected as a last resort. This operator will be affected with the smallest utility
value possible. More commonly, the highest value is used for initial and goal steps to
ensure their selection.

Our ranking mechanism is based on scores noted |(𝑎). A score is a tuple of metrics:In this section 𝜒
is the

connectivity of
the operator

graph 𝑔𝑂.

• |1(𝑎) = |𝜒• / // (𝑎)| is the positive degree of 𝑎 in the domain operator graph. This will
give a measurement of the predicted usefulness of the operator.

• |2(𝑎) = |⊗⤈𝑎| is the number of open conditions of 𝑎 in the domain operator graph.
This is symptomatic of action that can’t be satisfied without a compliant initial
step.

• |3(𝑎) = |pre(𝑎)| is the proper negative degree of 𝑎. Having more preconditions will
likely add subgoals.

• |4(𝑎) = ⟬min+∞(𝑛) ∶ 𝑛 ∈ ℕ ∧ (𝑎 → 𝑎) ∈ 𝜒𝑛 ∧ 𝜒𝑛 ≠ 𝜒+⟭ is the size of the short-
est cycle involving 𝑎 in the operator graph or +∞ if there is none. Having this
value at 1 is usually symptomatic of a toxic operator (cf. definition 6.2.7). Hav-
ing an operator behaving this way can lead to backtracking because of operator
instantiation.

The computation of the cost of the operator is done by multiplying the score tuple with
a weighted parameter tuple 𝛼 given by the user. The cost is then:

¢(𝑎) = − 4∑
𝑖=1

𝛼𝑖|𝑖(𝑎)
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In practice, 𝛼1 is positive, and the rest is negative. It is also better to make sure that−1 ≤ 𝛼4 ≤ 0 so that the penalties goes down as the cycles gets bigger.

This respects the criteria of having a bound for the utility value as it ensures that it
remains positive with 0 as a minimum bound and +∞ for a maximum. The initial and
goal steps have their utility values set to the upper bound to ensure their selection
over other steps.

Choosing to compute the resolver selection at operator level has some positive con-
sequences on the performances. Indeed, this computation is much lighter than ap-
proaches with heuristics on plan space (Shekhar and Khemani 2016) as it reduces the
overhead caused by real time computation of heuristics on complex data. In order to
reduce this overhead more, the algorithm sorts the providing associative array to eas-
ily retrieve the best operator for each fluent. This means that the evaluation of the
heuristic is done only once for each operator. This reduces the overhead and allows
for faster results on smaller plans.

6.2.4 Algorithm

The LOLLIPOP algorithm uses the same refinement algorithm as described in algo-
rithm 5. The differences reside in the changes made on the behavior of resolvers
and side effects. In line 7 of algorithm 5, the LOLLIPOP algorithm applies negative
resolvers if the selected flaw is negative. Another change resides in the initialization
of the solving mechanism and the domain as detailed in algorithm 8. This algorithm
contains several parts. First, the domainInit function corresponds to the code com-
puted during the domain compilation time. It will prepare the rankings, the operator
graph, and its caching mechanisms. It will also use strongly connected component
detection algorithms to detect cycles. These cycles are used during the base score
computation (line 11). We add a detection of illegal fluents and operators in our do-
main initialization (line 5). Illegal operators are either inconsistent or toxic.

Definition 6.2.6: Inconsistent operators

An operator 𝑎 is contradictory if and only if (pre(𝑎) = ⊥) ∨ (eff (𝑎) = ⊥).
Definition 6.2.7: Toxic operators

Toxic operators have effects that are already in their preconditions or empty
effects. An operator 𝑎 is toxic if and only if pre(𝑎) ∩ eff (𝑎) ≠ ∅ ∨ eff (𝑎) = ∅.

Toxic actions can damage a plan as well as make the execution of POCL algorithms
longer than necessary. This is fixed by removing the toxic fluents (pre(𝑎) ⊈ eff (𝑎)) and
by updating the effects with eff (𝑎) = eff (𝑎) ⧵ pre(𝑎). If the effects become empty, the
operator is removed from the domain.

The lollipopInit function is executed during the initialization of the solving algorithm.
We start by realizing the scores, then we add the initial and goal steps in the providing
map by caching them. Once the ranking mechanism is ready, we sort the providing map.
With the ordered providing map, the algorithm runs the fast generation of the safe
operator graph for the problem’s goal.
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Algorithm 8 LOLLIPOP initialization (preprocessing) mechanisms
1: function domainInit(Actions 𝐴)
2: operatorgraph 𝑔𝑂
3: Score |
4: for all Action 𝑎 ∈ 𝐴 do
5: if isIllegal(𝑎) then ▷ Remove toxic and useless fluents
6: 𝐴←𝐴⧵ {𝑎} ▷ If entirely toxic or useless
7: continue
8: addVertex(𝑎,𝑔𝑂) ▷ Add and bind all operators
9: 𝑝 ← cache(𝑎) ▷ Cache operator in providing map
10: Cycles 𝐶 ← stronglyConnectedComponent(𝑔𝑂) ▷ Using DFS
11: ▫ ← baseScores(𝐴, 𝒟ℿ)
12: 𝑖 ← inapplicables(𝒟ℿ)
13: 𝑒 ← eagers(𝒟ℿ)
14: function lollipopInit(Problem 𝕡, Providing 𝑎𝑝, Reward |)
15: ¢ ← realize(|, 𝕡) ▷ Compute the scores
16: cache(𝑎𝑝, 𝑎0) ▷ Cache initial step in providing ...
17: cache(𝑎𝑝, 𝑎∗) ▷ ... as well as goal step
18: 𝑝 ← sort(𝑎𝑝, ¢) ▷ Sort the providing map
19: if ℿ(𝜔) = ∅ then
20: ℿ(𝜔) ← {safe(𝕡)} ▷ Computing the safe operator graph if the plan is empty
21: populate(𝒜, 𝕡) ▷ populate agenda with first flaws
22: function populate(Agenda 𝒜, Problem 𝕡)
23: for all Update ᵆ ∈ 𝑈 do ▷ Updates due to online planning
24: Fluents 𝐹 ← eff (ᵆnew) ⧵ eff (ᵆold) ▷ Added effects
25: for all Fluent 𝑓 ∈ 𝐹 do
26: for all Operator 𝑎 ∈ better(𝑎𝑝, 𝑓, 𝑎) do
27: for all Link 𝑙 ∈ 𝜒• / // (𝑎) do
28: if 𝑓 ∈ 𝑙 then
29: 𝑙𝑜 ←𝜒• / // (𝑙) ▷ With 𝜒• / // (𝑙) the target of 𝑙
30: addAlternative(𝑎, 𝑓, 𝑎, 𝑙𝑜, 𝕡)
31: 𝐹 ← eff (ᵆold) ⧵ eff (ᵆnew) ▷ Removed effects
32: for all Fluent 𝑓 ∈ 𝐹 do
33: for all Link 𝑙 ∈ 𝜒• / // (ᵆnew) do
34: if isLiar(𝑙) then
35: 𝐿 ← 𝐿 ⧵ {𝑙}
36: addOrphans(𝑎, ᵆ, 𝕡)
37: ... ▷ Same with removed preconditions and incoming liar links
38: for all Operator 𝑎 ∈ 𝐴ℼ(𝜔) do
39: addSubgoals(𝑎, 𝕡)
40: addThreats(𝑎, 𝕡)
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The last part of this initialization (line 21) is the agenda population that is detailed
in the populate function. During this step, we perform a search of alternatives based
on the list of updated fluents. Online updates can make the plan outdated relative to
the domain. This forms liar links :

Definition 6.2.8: Liar links

A liar link is a link that doesn’t hold a fluent in the preconditions or effect of its
source and target. We note:

𝑎𝑖 𝑓−→ 𝑎𝑗|𝑓 ∉ eff (𝑎𝑖) ∩ pre(𝑎𝑗)
A liar link can be created by the removal of an effect or preconditions during online
updates (with the causal link still remaining).

We call lies the fluents that are held by links without being in the connected operators.
To resolve the problem, we remove all lies. We delete the link altogether if it doesn’t
bear any fluent as a result of this operation. This removal triggers the addition of
orphan flaws as side effects.

While the list of updated operators is crucial for solving online planning problems, a
complementary mechanism is used to ensure that LOLLIPOP is complete. User-provided
plans have their steps tagged. If the failure has backtracked to a user-provided step,
then it is removed and replaced by subgoals that represent each of its participation in
the plan. This mechanism loop until every user provided steps have been removed.

6.2.5 Theoretical and Empirical Results

As proven in (Penberthy et al. 1992), the classical POCL algorithm is sound and com-
plete.

First, we define some new properties of partial plans. The following properties are
taken from the original proof. We present them again for convenience.

Definition 6.2.9: Full Support

A partial plan ℼ is fully supported if each of its steps 𝑎 ∈ 𝐴ℼ is fully supported.
A step is fully supported if each of its preconditions 𝑓 ∈ pre(𝑎) is supported. A
precondition is fully supported if there exists a causal link 𝑙 that provides it. We
note:

⇓ (ℼ) = ⟬∧∘ ⊧ ∘𝜒 ∶ 𝐴ℼ⟭ ∧ (⊗†(ℼ) = ∅)
with ⟬⟭ being the mapping function, 𝜒 being the connectivity function of the
graph formed by the plan ℼ and 𝐴ℼ being the set of all actions in the plan.

Definition 6.2.10: Partial Plan Validity

A partial plan is a valid solution of a problem 𝕡 if it is fully supported and
contains no cycles. The validity of ℼ regarding a problem 𝕡 is noted ℼ ⊧(𝕡 ≡⇓ (ℼ) ∧ ⟬=∶ 𝜒+ℼ ⟭ = ∅).
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6.2.5.1 Proof of Soundness

In order to prove that this property applies to LOLLIPOP, we need to introduce some
hypothesis:

• operators updated by online planning are known.
• user provided steps are known.
• user provided plans don’t contain illegal artifacts. This includes toxic or incon-
sistent actions, lying links and cycles.

Based on the definition 6.2.10 we state that:

∀𝑓 ∈ pre(𝜔) ∶⇓ (𝑓) ∧ ⟬=∶ 𝜒+ℼ ⟭ = ∅ ⟹ ℼ ⊧ 𝕡
where 𝜔 is the root operator with pre(𝜔) = 𝑎∗.
This means that ℼ is a solution if all preconditions of 𝑎∗ are fully supported without
cycles in the plan. We can satisfy these preconditions using operators if and only if
their preconditions are all satisfied and if there is no other operator that threatens
their supporting links.

First, we need to prove that equation 6.2.5.1 holds on LOLLIPOP initialization. We use
our hypothesis to rule out the case when the input plan is invalid. The algorithm 7 will
only solve open conditions in the same way subgoals do it. Thus, safe operator graphs
are valid input plans.

Since the soundness is proven for regular refinements and flaw selection, we need
to consider the effects of the added mechanisms of LOLLIPOP. The newly introduced
refinements are negative, they don’t add new links:

∀⊗ ∈⨂ℼ ∀⊙ ∈⨀ℼ (⊗) ∶ ⟬=∶ 𝜒+ℼ ⟭ = ⟬=∶ 𝜒+⊙(ℼ)⟭
with ⊗ being any flaw in ℼ, ⊙ being the set of resolvers of said flaw and ⊙(ℼ) being
the resulting partial plan after the application of the resolver. Said otherwise, an
iteration of LOLLIPOP won’t add cycles inside a partial plan.

The orphan flaw targets steps that have no path to the goal and so can’t add new
open conditions or threats. The alternative targets existing causal links. Removing a
causal link in a plan breaks the full support of the target step. This is why an alter-
native will always insert a subgoal in the agenda corresponding to the target of the
removed causal link. Invalidating side effects also doesn’t affect the soundness of
the algorithm since the removed flaws are already solved. This makes:

∀⊗ ∈ −
⨂ℼ ∀⊙ ∈⨀ℼ (⊗) ∶⇓ (ℼ) ⟹⇓ (⊙(ℼ))

with⨂−
ℼ being the set of negative flaws in the plan ℼ. This means that negative flaws

don’t compromise the full support of the plan.

Equations 6.2.5.1 and 6.2.5.1 lead to equation 6.2.5.1 being valid after the execution of
LOLLIPOP. The algorithm is sound.
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6.2.5.2 Proof of Completeness

The soundness proof shows that LOLLIPOP’s refinements don’t affect the support of
plans in terms of validity. It was proven that POCL is complete. There are several
cases to explore to transpose the property to LOLLIPOP:

Lemma 6.2.1: Conservation of Validity

If the input plan is a valid solution, LOLLIPOP returns a valid solution.

Proof 6.2.1

With equations 6.2.5.1 and 6.2.5.1 and the proof of soundness, the conservation
of validity is already proven.

Lemma 6.2.2: Reaching Validity with incomplete partial plans

If the input plan is incomplete, LOLLIPOP returns a valid solution if it exists.

Proof 6.2.2

Since POCL is complete and the equation 6.2.5.1 proves the conservation of sup-
port by LOLLIPOP, then the algorithm will return a valid solution if the provided
plan is an incomplete plan and the problem is solvable.

Lemma 6.2.3: Reaching Validity with empty partial plans

If the input plan is empty and the problem is solvable, LOLLIPOP returns a valid
solution.

Proof 6.2.3

This is proven using lemma 6.2.2 and POCL’s completeness. However, we want to
add a trivial case to the proof: pre(𝜔) = ∅. In this case the algorithm 5 will
return a valid plan with only the root operator.

Lemma 6.2.4: Reaching Validity with a dead-end partial plan

If the input plan is in a dead-end, LOLLIPOP returns a valid solution.

Proof 6.2.4

Using input plans that can be in an undetermined state is not covered by the
original proof. The problem lies in the existing steps in the input plan. Still,
using our hypothesis we add a failure mechanism that makes LOLLIPOP complete.
On failure, the needer of the last flaw is deleted if it wasn’t added by LOLLIPOP.
User-defined steps are deleted until the input plan acts like an empty plan. Each
deletion will cause corresponding subgoals to be added to the agenda. In this
case, the backtracking is preserved and all possibilities are explored as in POCL.

Since all cases are covered, this proves the property of completeness.
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6.2.5.3 Experimental Results

The experimental results focused on the properties of LOLLIPOP for online planning.
Since classical POCL is unable to perform online planning, we tested our algorithm
considering the time taken for solving the problem for the first time. We profiled the
algorithm on a benchmark problem containing each of the possible issues described
earlier.
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Figure 6.10: Domain used to compute the results. First line is the initial and goal steps
along with the useful actions. Second line contains a threatening action𝑎8, two co-dependent actions 𝑎5 and 𝑎6, a useless action 𝑎0, a toxic action𝑎1, a dead-end action 𝑎7 and an inconsistent action 𝑎9

In figure 6.10, we expose the planning domain used for the experiments. During the
domain initialization, the actions 𝑎0 and 𝑎1 are eliminated from the domain since they
serve no purpose in the solving process. The action 𝑎9 is stripped of its negative effect
because it is inconsistent with the effect 𝑓2.
As the solving starts, LOLLIPOP computes a safe operator graph (full lines in fig-
ure 6.11). As we can see, this partial plan is nearly complete already. When the main
refining function starts it receives an agenda with only a few flaws remaining.
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Figure 6.11: In full lines the initial safe operator graph. In thin, sparse and irregularly
dotted lines respectively a subgoal, alternative and threat caused causal
link.

Then the main refinement function starts (time markers 1). LOLLIPOP selects as re-
solver a causal link from 𝑎2 to satisfy the open condition of the goal step. Once the
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first threat between 𝑎2 and 𝑎8 is resolved the second threat is invalidated. On a sec-
ond execution, the domain changes for online planning with 𝑓6 added to the initial step.
This solving (time markers 2) adds as flaw an alternative on the link from 𝑎4 to the
goal step. A subgoal is added that links the initial and goal step for this fluent. An
orphan flaw is also added that removes 𝑎4 from the plan. Another solving takes place
as the goal step doesn’t need 𝑓3 as a precondition (time markers 3). This causes the
link from 𝑎2 to be cut since it became a liar link. This adds 𝑎2 as an orphan that gets
removed from the plan even if it was hanging by the bare link to 𝑎8.
The measurements exposed in table 6.2 were made with an Intel® Core™ i7-4720HQ
with a 2.60GHz clock. Only one core was used for the solving. The same experiment
done only with the chronometer code gave a result of 70𝑛𝑠 of errors. We can see an
increase of performance in the online runs because of the way they are conducted by
LOLLIPOP.

Table 6.2: Average times of 1.000 executions on the problem. The first column is for
a simple run on the problem. Second and third columns are times to replan
with one and two changes done to the domain for online planning.

Experiment Single Online 1 Online 2
Time (𝑚𝑠) 0.86937 0.38754 0.48123

6.3 HEART

6.3.1 Domain Compilation

In order to simplify the input of the domain, the causes of the causal links in the meth-
ods are optional. If omitted, the causes are inferred by unifying the preconditions and
effects with the same mechanism as in the subgoal resolution in our POCL algorithm.
Since we want to guarantee the validity of abstract plans, we need to ensure that
user provided plans are solvable. We use the following formula to compute the final
preconditions and effects of any composite action 𝑎:

𝑎 = ⟨ ℼ∈ℿ(𝑎)
⋀𝑎′∈𝜒• / // (𝑎0ℼ)

pre(𝑎′), ℼ∈ℿ(𝑎)
⋀𝑎′∈𝜒 .. .•(𝑎0ℼ)

eff (𝑎′),…⟩

An instance of the classical POCL algorithm is then run on the problem 𝕡𝑎 = ⟨𝒟, 𝛾𝕡, 𝑎⟩ to
ensure its coherence. The domain compilation fails if POCL cannot be completed. Since
our decomposition hierarchy is acyclic (𝑎 ∉ 𝐴𝑎, see definition 6.3.2) nested methods
cannot contain their parent’s action as a step.

6.3.2 Abstraction in POCL

In order to properly introduce the changes made for using HTN domains in POCL, we
need to define a few notions.

Transposition is needed to define decomposition.
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Definition 6.3.1: Transposition

In order to transpose the causal links of an action 𝑎′ with the ones of an existing
step 𝑎 in a plan ℼ, we use the following operation:

𝑎 ↪ 𝑎′ = 𝑥 → ⟬= ⋊(𝑎 → 𝑎′) ∶ 𝑥⟭
Example

𝑎 ↪ 𝑎′(𝜒 .. .•) gives all incoming links of 𝑎 with the 𝑎 replaced by 𝑎′.
This supposes that the respective preconditions and effects of 𝑎 and 𝑎′ are equiv-
alent.

Definition 6.3.2: Proper Actions

Proper actions are actions that are “contained” within an entity (either a domain,
plan or action). We note this notion 𝐴𝑎 for an action 𝑎. It can be applied to
various concepts:

• For a domain or a problem, 𝐴𝕡 = 𝐴𝒟.
• For a plan, it is 𝐴0ℼ = 𝐴 ∩𝒟(𝜒ℼ).
• For an action, it is𝐴0𝑎 =⋃ℼ𝑚∈ℿ𝑎 𝐴∩𝒟(𝜒ℼ𝑚). Recursively: 𝐴𝑛𝑎 =⋃𝑎′∈𝐴0𝑎 𝐴𝑛−1𝑎′ .
For atomic actions, 𝐴𝑎 = ∅.

Example

The proper actions of𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) are the actions contained within its methods.
The set of extended proper actions adds all proper actions of its single proper
composite action 𝑖𝑛𝑓𝑢𝑠𝑒(𝑑𝑟𝑖𝑛𝑘,𝑤𝑎𝑡𝑒𝑟, 𝑐𝑢𝑝).

We use Iverson
brackets here [],

meaning that
[⊥] = 0 ∧ [⊤] = 1.

Definition 6.3.3: Abstraction Level

This is a measure of the maximum amount of abstraction an entity can express,
defined recursively by:

𝑙𝑣(𝑥) = (max𝑎∈𝐴𝑥
(𝑙𝑣(𝑎)) + 1) [𝐴𝑥 ≠ ∅]

Example

The abstraction level of any atomic action is 0 while it is 2 for the composite
action 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘). We can also note that by definition 𝐴𝑎 = 𝐴𝑙𝑣(𝑎)𝑎 .

The most straightforward way to handle abstraction in regular planners is illustrated
by Duet (Gerevini et al. 2008) by managing hierarchical actions separately from a task
insertion planner. We chose to add abstraction in POCL in a manner inspired by the
work of Bechon et al. (2014) on a planner called HiPOP. The difference between the
original HiPOP and our implementation of it is that we focus on the expressivity and
the ways flaw selection can be exploited for partial resolution. Our version is lifted
at runtime while the original is grounded for optimizations. All mechanisms we have
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implemented use POCL but with different management of flaws and resolvers. The
original algorithm 5 is left untouched.

One of those changes is that resolver selection needs to be altered for subgoals. In-
deed, as stated by the authors of HiPOP: the planner must ensure the selection of
high-level operators in order to benefit from the hierarchical aspect of the domain.
Otherwise, adding operators only increases the branching factor. Composite actions
are not usually meant to stay in a finished plan and must be decomposed into atomic
steps from one of their methods.

Definition 6.3.4: Decomposition Flaws

They occur when a partial plan contains a non-atomic step. This step is the
needer 𝑎𝑛 of the flaw. We note its decomposition ⊗∗𝑎𝑛.

• Resolvers: A decomposition flaw is solved with a decomposition resolver.
The resolver will replace the needer with one of its instantiated methodsℼ𝑚 ∈ ℿ𝑎𝑛 in the plan ℼ. This is done by using transposition such that:⊗∗𝑎𝑛(ℼ,ℼ𝑚) = 𝑎𝑛 ↪ 𝑎0ℼ𝑚(𝜒ℼ.. .•) ⋈ 𝑎𝑛 ↪ 𝑎∗ℼ𝑚(𝜒ℼ• / // ) ⋈ 𝜒ℼ𝑚

• Side effects: A decomposition flaw can be created by the insertion of a
composite action in the plan by any resolver and invalidated by its removal.

Example

When adding the step 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) in the plan to solve the subgoal that needs
tea being made, we also introduce a decomposition flaw that will need this com-
posite step replaced by its method using a decomposition resolver. In order to
decompose a composite action into a plan, all existing links are transposed to
the initial and goal step of the selected method, while the composite action and
its links are removed from the plan.

The main differences between HiPOP and HEART HiErarchical
Abstraction for
Real-Time partial
order planner

in our implementations are the func-
tions of flaw selection and the handling of the results (one plan for HiPOP and a plan
per cycle for HEART). In HiPOP, the flaw selection is made by prioritizing the decom-
position flaws. Bechon et al. (2014) state that it makes the full resolution faster.
However, it also loses opportunities to obtain abstract plans in the process.

6.3.3 Planning in cycle

The main focus of our work is toward obtaining abstract plans which are plans that
are completed while still containing composite actions. In order to do that the flaw
selection function will enforce cycles in the planning process.

Definition 6.3.5: Cycle

A cycle is a planning phase defined as a triplet 𝑐 = ⟨𝑙𝑣(𝑐), 𝑎𝑔𝑒𝑛𝑑𝑎,ℼ𝑙𝑣(𝑐)⟩ where:𝑙𝑣(𝑐) is the maximum abstraction level allowed for flaw selection in the 𝑎𝑔𝑒𝑛𝑑𝑎
of remaining flaws in partial plan ℼ𝑙𝑣(𝑐). The resolvers of subgoals are there-
fore constrained by the following: 𝑎𝑝 ↓𝑓 𝑎𝑛 ∶ 𝑙𝑣(𝑎𝑝) ≤ 𝑙𝑣(𝑐). With ↓ the partial
support of an action by another.
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During a cycle all decomposition flaws are delayed. Once no more flaws other than
decomposition flaws are present in the agenda, the current plan is saved and all re-
maining decomposition flaws are solved at once before the abstraction level is lowered
for the next cycle: 𝑙𝑣(𝑐′) = 𝑙𝑣(𝑐)−1. Each cycle produces a more detailed abstract plan
than the one before.

Abstract plans allow the planner to do an approximate form of anytime execution. At
any given time the planner is able to return a fully supported plan. Before the first
cycle, the plan returned is ℼ𝑙𝑣(𝑎0).

Example

In our case using the method of intent recognition of Sohrabi et al. Sohrabi et al.
(2016), we can already use ℼ𝑙𝑣(𝑎0) to find a likely goal explaining an observation
(a set of temporally ordered fluents). That can make an early assessment of the
probability of each goal of the recognition problem.

For each cycle 𝑐, a new plan ℼ𝑙𝑣(𝑐) is created as a new method of the root operator 𝑎0.
These intermediary plans are not solutions of the problem, nor do they mean that the
problem is solvable. In order to find a solution, the HEART planner needs to reach the
final cycle 𝑐0 with an abstraction level 𝑙𝑣(𝑐0) = 0. However, these plans can be used
to derive meaning from the potential solution of the current problem and give a good
approximation of the final result before its completion.

ω hot(water), tea in cup, water in cup,
placed(spoon), placed(cup)

placed (~), taken (~),
hot (~), * ~(in) *

make(tea)a0 a*

pour(water, cup)

take(spoon)

take(cup)

a0
i

a*
i

a0
m

a*
m

infuse(tea, water, cup)

heat(water)

taken(~)

put(spoon)

put(cup)

~(taken(spoon)) placed(spoon)

take(tea)

take(water)

pour(tea, cup)

placed(cup)

2

0 

1

Lv 3

…

… …

Figure 6.12: Illustration of how the cyclical approach is applied on the example domain.
Atomic actions that are copied from a cycle to the next are omitted.
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Example

In the figure 6.12, we illustrate the way our problem instance is progressively
solved. Before the first cycle 𝑐2, all we have is the root operator and its plan ℼ3.
Then within the first cycle, we select the composite action 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) instanti-
ated from the operator 𝑚𝑎𝑘𝑒(𝑑𝑟𝑖𝑛𝑘) along with its methods. All related flaws
are fixed until all that is left in the agenda is the abstract flaws. We save the
partial plan ℼ2 for this cycle and expand 𝑚𝑎𝑘𝑒(𝑡𝑒𝑎) into a copy of the current
plan ℼ1 for the next cycle. The solution of the problem will be stored in ℼ0 once
found.

6.3.4 Properties of Abstract Planning

In this section, we prove several properties of our method and resulting plans: HEART
is complete, sound and its abstract plans can always be decomposed into a valid solu-
tion.

The completeness and soundness of POCL has been proven in (Penberthy et al. 1992).
An interesting property of POCL algorithms is that flaw selection strategies do not
impact these properties. Since the only modification of the algorithm is the extension
of the classical flaws with a decomposition flaw, all we need to explore, to update the
proofs, is the impact of the new resolver. By definition, the resolvers of decomposition
flaws will take into account all flaws introduced by its resolution into the refined plan.
It can also revert its application properly.

Lemma 6.3.1: Decomposing preserves acyclicity

The decomposition of a composite action with a valid method in an acyclic plan
will result in an acyclic plan. Formally ∀𝑎𝑠 ∈ 𝐴ℼ ∶ 𝑎𝑠 ⊁ℼ 𝑎𝑠 ⟹ ∀𝑎′ ∈𝐴⊗∗𝑎𝑠(ℼ,ℼ𝑚) ∶ 𝑎′ ⊁⊗∗𝑎𝑠(ℼ,ℼ𝑚) 𝑎′.
Proof 6.3.1

When decomposing a composite action 𝑎 with a method ℼ𝑚 in an existing
plan ℼ, we add all steps 𝐴ℼ𝑚 in the refined plan. Both ℼ and 𝑚 are guar-
anteed to be cycle free by definition. We can note that ∀𝑎𝑠 ∈ 𝑆𝑚 ∶(∄𝑎𝑡 ∈ 𝐴ℼ𝑚 ∶ 𝑎𝑠 ≻ 𝑎𝑡 ∧ ¬𝑓 ∈ eff (𝑎𝑡)) ⟹ 𝑓 ∈ eff (𝑎). Said otherwise, if an ac-
tion 𝑎𝑠 can participate a fluent 𝑓 to the goal step of the method ℼ𝑚 then it is
necessarily present in the effects of 𝑎. Since higher level actions are preferred
during the resolver selection, no actions in the methods are already used in the
plan when the decomposition happens. This can be noted ∃𝑎 ∈ ℼ ⟹ 𝐴ℼ𝑚 ⊍𝐴ℼ
meaning that in the graph formed both partial plans ℼ𝑚 and ℼ cannot contain
the same edges therefore their acyclicity is preserved when inserting one into
the other.

Lemma 6.3.2: Solved decomposition flaws cannot reoccur

The application of a decomposition resolver on a plan ℼ, guarantees that 𝑎 ∉𝐴ℼ′ for any partial plan refined from ℼ without reverting the application of the
resolver.
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Proof 6.3.2

As stated in the definition of the methods (definition 4.2.3): 𝑎 ∉ 𝐴𝑎. This means
that 𝑎 cannot be introduced in the plan by its decomposition or the decomposi-
tion of its proper actions. Indeed, once 𝑎 is expanded, the level of the following
cycle 𝑐𝑙𝑣(𝑎)−1 prevents 𝑎 to be selected by subgoal resolvers. It cannot either be
contained in the methods of another action that are selected afterward because
otherwise following definition 6.3.3 its level would be at least 𝑙𝑣(𝑎) + 1.
Lemma 6.3.3: Decomposing to abstraction level 0 guarantees solvability

Finding a partial plan that contains only decomposition flaws with actions of
abstraction level 1, guarantees a solution to the problem.

Proof 6.3.3

Any method ℼ𝑚 of a composite action 𝑎 ∶ 𝑙𝑣(𝑎) = 1 is by definition a solution of
the problem represented by 𝑎. By definition, 𝑎 ∉ 𝐴𝑎, and 𝑎 ∉ 𝐴⊗∗𝑎𝑠(ℼ,ℼ𝑚) (meaning
that 𝑎 cannot reoccur after being decomposed). It is also given by definition that
the instantiation of the action and its methods are coherent regarding variable
constraints (everything is instantiated before selection by the resolvers). Since
the plan ℼ only has decomposition flaws and all flaws within 𝑚 are guaranteed
to be solvable, and both are guaranteed to be acyclical by the application of any
decomposition ⊗∗𝑎(ℼ,ℼ𝑚), the plan is solvable.

Lemma 6.3.4: Abstract plans guarantee solvability

Finding a partial plan ℼ that contains only decomposition flaws, guarantees a
solution to the problem.

Proof 6.3.4

Recursively, if we apply the previous proof on higher level plans we note that
decomposing at level 2 guarantees a solution since the method of the composite
actions are guaranteed to be solvable.

From these proofs, we can derive the property of soundness (from the guarantee that
the composite action provides its effects from any methods) and completeness (since
if a composite action cannot be used, the planner defaults to using any action of the
domain).

6.3.5 Computational Profile

In order to assess its capabilities, HEART was evaluated on two criteria: quality and
complexity. All tests were executed on an Intel® Core™ i7-7700HQ CPU clocked at
2.80GHz. The Java process used only one core and was not limited by time or mem-
ory (32 GB that wasn’t entirely used up) . Each experiment was repeated between 700
and 10000 times to ensure that variations in speed were not impacting the results.
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Figure 6.13: Evolution of the quality with computation time.

Figure 6.13 shows how the quality is affected by the abstraction in partial plans.
The quality is measured by counting the number of providing fluents in the plan||⋃𝑎∈𝐴ℼ eff (𝑎)||. This metric is actually used to approximate the probability of a
goal given observations in intent recognition (𝑃(𝐺|𝑂) with noisy observations, see
(Sohrabi et al. 2016)). The percentages are relative to the total number of unique
fluents of the complete solution. These results show that in some cases it may be
more interesting to plan in a leveled fashion to solve HTN problems. For the first
cycle of level 3, the quality of the abstract plan is already of 60%. This is the quality
of the exploitation of the plan before any planning. With almost three quarters of the
final quality and less than half of the complete computation time, the result of the
first cycle is a good quality/time compromise.
In the second test, we used generated domains. These domains consist of an action
of abstraction level 5. This action has a single method containing a number of actions
of levels 4. We call this number the width of the domain. All needed actions are
built recursively to form a tree shape. Atomic actions only have single fluent effects.
The goal is the effect of the higher level action and the initial state is empty. These
domains do not contain negative effects. Figure 6.14 shows the computational profile
of HEART for various levels and widths. We note that the behavior of HEART seems to
follow an exponential law with the negative exponent of the trend curves seemingly
being correlated to the actual width. This means that computing the first cycles has
a complexity that is close to being linear while computing the last cycles is of the
same complexity as classical planning which is at least P-SPACE (depending on the
expressivity of the domain) (Erol et al. 1995).

6.4 Conclusion

In this chapter we showed two planners that are oriented toward real time and flexi-
bility. This makes fast decision-making easier and improves the expressive power of
domain writing tools such as the one we presented in chapter 5.
Such planners may be used in intent recognition using inverted planning. This tech-
nique is described in the next chapter.
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Since the original goal of this thesis was on intent recognition of dependent persons,
we need to explain some more about that specific domain. The problem is to infer
the goals of an external agent through only observations without intervention. In the
end, the idea is to infer that goal confidently enough to start assisting the other agent
without explicit instructions.

7.1 Domain problems

This field was widely studied. Indeed, at the end of the last century, several works
started using abduction to infer intents from observational data. Of course this comes
as a challenge since there is a lot of uncertainty involved. We have no reliable informa-
tion on the possible goals of the other agent and we don’t have the same knowledge of
the world. Also, observations can sometimes be incomplete or misleading, the agent
can abandon goals or pursue several goals at once while also doing them sub-optimally
or even fail at them. To finish, sometimes agents can actively try to hide their intents
to the viewer.

7.1.1 Observations and inferences

As explained above, we can only get close to reality and any progress in relevance and
detail is exponentially expensive in terms of computing and memory resources. That
is why any system will maintain a high degree of abstraction that will cause errors
inherent in this approximation.
This noise phenomenon can impact the activity and situation recognition system and
therefore seriously impact the intention recognition and decision-making system with
an amplification of the error as it is processed. It is also important to remember
that this phenomenon of data noise is also present in inhibition and that the lack of
perception of an event is as disabling as the perception of the wrong event.
It is possible to protect recognition systems in an appropriate way, but this often
implies a restriction on the levels of possibilities offered by the system such as spe-
cialized recognition or recognition at a lower level of relevance.

7.1.2 Cognitive inconsistencies

In the field of personal assistance, activity recognition is a crucial element. However,
it happens that these events are very difficult to recognize. The data noise mentioned
above can easily be confused with an omission on the part of the observed agent. This
dilemma is also present during periods of inactivity, the system can start creating
events from scratch to fill what it may perceive as inhibition noise.
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These problems are accompanied by others related to the behavior of the observed
agent. For example, they may perform unnecessary steps, restart ongoing activities
or suddenly abandon them. It is added that other aspects of observations can make
automated inferences such as ambiguous actions or the agent performing an action
that resembles another complicated.

However, some noise problems can be easily detected by simple cognitive processes
such as impossible sequences (e. g. closing a closed door). Contextual analyses pro-
vide a partial solution to some of these problems.

7.1.3 Sequentiality

Since our recognition is based on a highly temporal planning aspect, we must take into
account the classic problems of sequentiality.

A first problem is to determine the end of one plan and the beginning of another. In-
deed, it is possible that some transitions between two planes may appear to be a
plane in itself and therefore may cause false positives. Another problem is that of
intertwined planes. A person can do two things at once, such as answering the phone
while cooking. An action in an intertwined plan can then be identified as a discon-
tinuation of activity or a logical inconsistency. A final problem is that of overloaded
actions. Not only can an agent perform two tasks simultaneously, but also perform an
action that contributes to two activities. These overloaded actions make the process
of intention recognition complex because they are close to data noise.

7.2 Existing approaches

The problem of intention recognition has been strongly addressed from many angles.
It is therefore not surprising that there are many paradigms in the field. The first
studies on the subject highlight the fact that intention recognition problems are prob-
lems of abductive logic or graph coverage. Since then, many models have competed
in imagination and innovation to improve the field. These include constraint system-
based models that provide a solution based on pre-established rules and compiled plan
libraries, those that use state or action networks that then launch algorithms on this
data, and reverse planning systems.

7.2.1 Constraint

One of the approaches to intention recognition is the one that builds a system around
a strong logical constraint. There is often a time constraint system that is comple-
mented by various extensions to cover as many sequential problems as possible.
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7.2.1.1 Deductive Approach

In order to solve a problem of intention recognition, abductive logic can be used. Con-
trary to deductive logic, the goal is to determine the objective from the observed
actions. Among the first models introduced is Goldman et al. (1999)’s model, which
uses the principle of action to construct a logical representation of the problem. This
paradigm consists in creating logical rules as if the action in question was actually
carried out, but in hypothesizing the predicates that concretize the action and thus
being able to browse the research space thus created in order to find all the possible
plans to contain the observed actions and concretizing defined intentions. This model
is strongly based on first-order logic and SWI Prolog logic programming languages. Al-
though revolutionary for the time, this system pale in comparison to recent systems,
particularly in terms of prediction accuracy.

7.2.1.2 Algebraic Approach

Some paradigms use algebra to determine possible plans from observed actions. In
particular, we find the model of Bouchard et al. (2006) which extends the subsumption
relationship from domain theory to the description of action and sequence of action
in order to introduce it as an order relationship in the context of the construction
of a lattice composed of possible plans considering the observed actions. This model
simply takes into account the observed actions and selects any plan from the library of
plans that contains at least one observed action. Then this paradigm will construct all
the possible plans that correspond to the Cartesian product of the observed actions
with the actions contained in the selected plans (while respecting their order). This
system makes it possible to obtain a subsumption relationship that corresponds to
the fact that the plans are more or less general. Unfortunately, this relationship alone
does not provide any information on which plan is most likely.
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Figure 7.1: The lattice formed by observations (top), matching plans, possible hypoth-
esis and problem (bottom)

That is why Roy et al. (2011) created a probabilistic extension of this model. This uses
frequency data from a system learning period to calculate the influence probabilities
of each plane in the recognition space. This makes it possible to calculate probabilistic
intervals for each plan, action as well as for a plan to know a given action. In order to
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determine the probability of each plane knowing the upper bound of the lattice (plane
containing all observed actions) the sum of the conditional probabilities of the plane
for each observed action divided by the number of observed actions is made. This
gives a probability interval for each plane allowing the ordinates. This model has the
advantage of considering many possible plans but has the disadvantage of seeing a
computational explosion as soon as the number of observed actions increases and the
context is not taken into account.

7.2.1.3 Grammatical Approach

Another approach is that of grammar. Indeed, we can consider actions as words and
sequences as sentences and thus define a system that allows us to recognize shots
from incomplete sequences. Vidal et al. (2010) has therefore created a system of
intention recognition based on grammar. It uses the evaluated grammar system to
specify measurements from observations. These measures will make it possible to
select specific plans and thus return a hierarchical hypothesis tree with the actions
already carried out, the future and the plans from which they are derived. This model
is very similar to first order logic-based systems, and uses a SWI Prolog type logic
language programming system. Given the scope of maritime surveillance, this model,
although taking very well into account the context and the evolution of the measures,
is only poorly adapted to an application in assistance, particularly in the absence of a
system for discriminating against results plans.
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Figure 7.2: The valued grammar used for intent recognition

7.2.1.4 Linear programming approach

Another class of approaches is that of diverting standard problem-solving tools to
solve the problem of intention recognition. It is therefore possible, by modifying tra-
ditional algorithms or by transforming a problem, to ensure that the solution of the
tool corresponds to the one sought.
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Inoue and Inui (2011) develops the idea of a model that uses linear programming to
solve the recognition problem. Indeed, observations are introduced in the form of
causes in relation to hypotheses, in a first-order logic predicate system. Each atom is
then weighed and introduced into a process of problem transformation by feedback and
the introduction of order and causality constraints in order to force the linear program
toward optimal solutions by taking into account observations. Although ingenious,
this solution does not discriminate between possible plans and is very difficult to ap-
ply to real-time recognition situations, mainly because of the problem transformation
procedure required each time the problem is updated.

7.2.1.5 Markovian Logic Approach

Another constraint paradigm is the one presented by Raghavana et al. using a Marko-
vian extension of first-order logic. The model consists of a library of plans represented
in the form of Horn clauses indicating which actions imply which intentions. The aim
is therefore to reverse the implications in order to transform the deduction mecha-
nism into an abduction mechanism. Exclusionary constraints and a system of weights
acquired through learning must then be introduced to determine the most likely inten-
tion. Once again, despite the presence of a system of result discrimination, there is
no consideration of context and abductive transformation remains too cumbersome a
process for real-time recognition.

7.2.2 Networks

7.2.2.1 And/Or trees approach

As in its early days, intention recognition can still be modeled in the form of graphs.
Very often in intention recognition, trees are used to exploit the advantages of acyclic-
ity in resolution and path algorithms. In the prolific literature of Geib et al. we find
the model at the basis of PHATT (Geib 2002) which consists of an AND/OR tree repre-
senting a HTN that contains the intentions as well as their plans or methods. A prior
relationship is added to this model and it is through this model that constraints are
placed on the execution of actions. Once an action is observed, all the successors of
the action are unlocked as potential next observed action. We can therefore infer by
hierarchical path the candidate intentions for the observed sequence.

Since thismodel does not allow discrimination of results, Geib and Goldman (2005) then
adds probabilities to the explanations of the observations. The degree of coverage of
each possible goal is used to calculate the probability of each goal. That is, the goal
with the plan containing the most observed action and the least unobserved action
will be the most likely. This is very ingenious, as the coverage rate is one of the
most reliable indicators. However, the model only takes into account temporality and
therefore has no contextual support. The representation in the form of a tree also
makes it very difficult to be flexible in terms of the plans, which are then fixed a
priori.
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7.2.2.2 HTN Approach

The HTN model is often used in the field, such as the hierarchical tree form used by
Avrahami-Zilberbrand et al. (2005). The tree consists of nodes that represent various
levels of action and intent. A hierarchical relationship links these elements together
to define each intention and its methods. To this tree is added an anteriority rela-
tionship that constrains the execution order. This paradigm uses time markers that
guarantee order to use an actualization algorithm that also updates a hypothesis tree
containing possible intentions for each observation.
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Figure 7.3: The HTN and decision tree used for intent recognition

A probabilistic extension of the Avrahami-Zilberbrand and Kaminka (2006) applies a
hierarchical hidden Markov model to the action tree. Using three types of probability
that of plan tracking, execution interleaving and interruption, we can calculate the
probability of execution of each plan according to the observed sequence. The logic
and contextual model filtered on the possible plans upstream leaving us with few cal-
culations to order these plans.

This contextual model uses a decision tree based on a system of world properties. Each
property has a finite (and if possible very limited) number of possible values. This
allows you to create a tree containing for each node a property and an arc for each
value. This is combined with other nodes or leaves that are actions. While running
through the tree during execution, the branches that do not correspond to the current
value of each property are pruned. Once a leaf is reached, it is stored as a possible
action. This considerably reduces the research space but requires a balanced tree that
is not too large or restrictive.

7.2.2.3 Hidden Markovian Approach

When we approach stochastic models, we very often find Markovian or Bayesian mod-
els. These models use different probabilistic tools ranging from simple probabilistic
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inference to the fusion of stochastic networks. It can be noted that probabilities are
often defined by standard distributions or are isomorphic to weighted systems.

A stochastic model based on THRs is the one presented by Blaylock and Allen (2006).
This creates hierarchical stacks to categorize abstraction levels from basic actions to
high level intentions. By chaining a hidden Markov model to these stacks, the model
is able to affect a probability of intention according to the observed action.

7.2.2.4 Bayesian Approach

Another stochastic paradigm is the one of Han and Pereira (2013). It uses Bayesian
networks to define relationships between causes, intentions and actions in a given
field. Each category is treated separately in order to reduce the search space. The
observed actions are then selected from the action network and extracted. The system
then uses the intention network to build a temporary Bayesian network using the
NoisyOR method. The network created is combined in the same way with the network
of causes and makes it possible to have the intention as well as the most probable
cause according to the observations.

7.2.2.5 Markovian network approach

The model of Kelley et al. (2012) (based on (Hovland et al. 1996)) is a model using
hidden Markov networks. This stochastic network is built here by learning data from
robotic perception systems. The goal is to determine intent using past observations.
This model uses the theory of mind by invoking that humans infer the intentions of
their peers by using a projection of their own.

Another contextual approach is the one developed for robotics by Hofmann and
Williams (2007). The stochastic system is completed by weighting based on an
analysis of vernacular corpuses. We can therefore use the context of an observation
to determine the most credible actions using the relational system built with corpus
analysis. This is based on the observation of the objects in the scene and their
condition. This makes common sense actions much more likely and almost impossible
actions leading to semantic contradictions.

7.2.2.6 Bayesian Theory of Mind

This principle is also used as the basis of the paradigm of Baker and Tenenbaum (2014)
which forms a Bayesian theory of themind. Using a limited representation of the human
mind, this model defines formulas for updating beliefs and probabilities a posteriori
of world states and actions. This is constructed with sigmoid distributions on the
simplex of inferred beliefs. Then the probabilities of desire are calculated in order to
recover the most probable intention. This has been validated as being close to the
assessment of human candidates on simple intention recognition scenarios.
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7.3 Inverted planning

Another way to do intent recognition do not rely on having a plan library at all by
using inverted planning. In fact, intent recognition is the opposite problem as plan-
ning. In planning we compute the plan from the goal and in intent recognition we seek
the goal from the plan. This means that planning is a deduction problem while intent
recognition is an abduction problem. It is therefore possible to transform an intent
recognition problem into a planning one.

More intuitively, this transformation relies on the theory of mind. This notion of psy-
chology states that one of the easiest ways to predict the mind of another agent is by
projecting our own way of thinking onto the target. The familiar way to understand
this is to ask the question, “what would I do if I were them ?”. This is obviously imper-
fect since we don’t have the complete knowledge of the other mind but is often good
enough at basic predictions.

This theory is based on the Belief, Desire and Intention (BDI) model. In our case the
belief part is akin to the knowledge database, the desires are the set of possible goals
(weighted by costs) and the intent is the plan that achieve a selected goal.

A good analysis of this way of thinking in the context of intent recognition can be found
in Baker et al. (2007)’s work on the subject.

To get further, the work of Ramırez and Geffner (2009) is the founding paper on the
principle of transforming the intent recognition problem into a planning one. That work
was later improved by Chen et al. (2013) in order to support multiple and concurrent
goals at once.

In order to do that Ramirez rediscovers an old tool called constraints encoding into
planning Baioletti et al. (1998). This allows to force the selection of operators in a
given a certain order or adding arbitrary constraints on the solution.
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Figure 7.4: Representation of the encoding of constraints using extra fluents.

The encoding on itself is quite straight forward : Adding artificial fluents to derive an
action’s behavior considering its selection. In the case of Ramirez’s work, the fluents
ensure that the observed actions are selected at the start. The resulting plan is then
compared to another plan computed while avoiding the observed action. The difference
in cost is proportional to the likelihood of the goal to be pursued.

This problem transformation was more recently improved significantly by Sohrabi et al.
(2016). Indeed, their work allows for using observed fluents instead of actions. This
modification allows for a more accurate and flexible prediction with less advanced ob-
servations. It also takes into account the missing and noisy observation to affect
negatively the likelihood of a goal. Along with the use of diverse planning, this tech-
nique allows for seamless multi-goal recognition.
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7.3 Inverted planning

In order to see this technique used in practice we refer to the works of Talamadupula
et al. (2011).

7.3.1 Probabilities and approximations

Now that the intuition is covered, we need to prove that the result of the planning
process is indeed correlated to the probability of the agent pursuing that plan knowing
the observations. But first we need to formalize how probabilities work.

An event is a fixed fluent, a logical proposition that can occur. The likelihood of an
event happening ranges from 0 (impossible) to 1 (certain). This is represented by a
relation named probability of any event 𝑒 noted ℙ(𝑒) ∈ [0, 1]ℝ. This means that proba-
bilities are real numbers restricted between 0 and 1.

Definition 7.3.1: Conditional probabilities

Conditional probabilities are probabilities of an event assuming that another
related event happened. This allows to evaluate the ways in which events are
affecting one another. The probability of the event 𝐴 occurring knowing that 𝐵
occurred is written:

ℙ(𝐴|𝐵) = ℙ(𝐴 ∩ 𝐵)ℙ(𝐵)
with, ℙ(𝐴 ∩ 𝐵) being the probability that both events occur. In the case of two
independent events ℙ(𝐴|𝐵) = ℙ(𝐴).

We note the set of goals that can be pursued 𝐺 and the temporal sequence of observa-
tions 𝒪. Using conditional probabilities, we seek to have a measure of ℙ(𝑔|𝒪) for any
goal 𝑔 ∈ 𝐺.
In that section we explain how inverted planning does that computation.

For any set of observations𝒪 the probability of the set is the product of the probability
of any observation 𝑜 ∈ 𝒪. We can then note ℙ(𝒪) =∏𝑜∈𝒪ℙ(𝑜).
We assume that the observed agent is pursuing one of the known goals. The event of
an agent pursuing a specific goal is noted 𝑔. This means that ℙ(𝐺) = ∑𝑔∈𝐺 ℙ(𝐺) = 1
because the event is considered certain.

Using conditional probabilities we can also note ℙ(𝐺|ℼ) = 1 for a valid plan ℼ that
achieves any goals 𝑔 ∈ 𝐺.

Theorem 7.3.1: Bayes

Bayes’s theorem allows to find the probability of an event based on prior knowl-
edge of other factors related to said event. It is another basic way to compute
conditional probabilities as follows:

ℙ(𝐴|𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴)
ℙ(𝐵)
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In the Bayesian logic, one should start with a prior probability of an event and actual-
ize it with any new information to make it more precise. In our case, we suppose thatℙ(𝐺) is given or computed by an external tool.

From the direct application of Bayes’s theorem and the previous assumptions, we have
:

ℙ(ℼ|𝒪) = ℙ(𝒪|ℼ)ℙ(ℼ)
ℙ(𝒪) = ℙ(𝒪|ℼ)ℙ(ℼ|𝐺)ℙ(𝐺)

ℙ(𝒪)
Using the event ℼ transitively we can simplify to:

ℙ(𝐺|𝒪) = ℙ(𝒪|𝐺)ℙ(𝐺)
ℙ(𝒪)

Theorem 7.3.2: Total Probability

If we have a countable set of disjoint events 𝐸 we can compute the probability
of all events happening as the sum of the probabilities of each event:

ℙ(𝐸) = ∑
𝑒∈𝐸

ℙ(𝑒)

Since we consider that we have all likely plans for a given goal we can neglect the
very improbable ones and assert that the events of any given plans being acted are
independent from one another. Also, the total probability of all plans is certain. From
the total probability formula:

ℙ(𝒪|𝐺) = ∑
ℼ∈ℿ𝐺

ℙ(𝒪|ℼ)ℙ(ℼ|𝐺)

In equation 7.3.1, we have ℙ(𝐺) and ℙ(𝒪) known from prior knowledge. Along with
equation 7.3.1, we can say that:

ℙ(𝐺|𝒪) = 𝛼ℙ(𝒪|𝐺)ℙ(𝐺)
With 𝛼 being a normalizing constant. Also, using the previous formula we can assert
that:

ℙ(𝑔|𝒪) ∝ ∑
ℼ∈ℿ𝑔

ℙ(ℼ|𝒪)

This means that if the cost of the plan is related to its likeliness of being pursued
knowing the observation sequence, we can evaluate the probability of any goal being
pursued. This allows for Sohrabi’s problem transformation to work.

That transformation is simply affecting the cost of a plan by dissuading any missed or
added fluents while rewarding correct predicted fluents relative to the observations.
This process is illustrated in figure 7.5.
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Figure 7.5: Illustration of how plan costs are affecting the resulting probabilities.

7.4 Intent recognition Using Abstract Plans

The initial objective of this thesis was to make intent predictions use abstract plans
and repairs. Since plan repair is very susceptible to the heuristic, it is not a reliable
tool for general and uncertain planning and will perform worse on all cases not handled
well by a given heuristic.
This is not the case of abstract HTN planning since the plan generated is valid while
incomplete. The idea here is to quantify the quality of an abstract plan to weigh its
plausibility and the likelihood of missing fluents using Sohrabi’s method.
The unforeseen problem is that, while in theory this seems like a very efficient ap-
proach, in practice it can lack a lot of performance since turning a sequence of observed
fluents into a backward chaining heuristic is tricky at best.
In this section, some idea of how that could be done is explored along with perspec-
tives for further works regarding the subject.

7.4.1 Linearization

In order to use the approach of Sohrabi, we need total ordered plans. This is quite an
issue since our planner generates partial order plans. Each of these plans have one or
several linearizations: totally ordered plans that correspond to all possible orders of
the plan.
The idea here is to merge parallel actions into one using graph quotient. This is the
same mechanism behind sheaves. To do this we use the fact that there are no threats
in valid plans and therefore parallel actions have compatible preconditions and effects.
This allows to merge several actions into one that is equivalent in terms of fluents and
cost. To merge two actions into one we do the following: pre(𝑎𝑚) = pre(𝑎1) ∘ pre(𝑎2)
and eff (𝑎𝑚) = eff (𝑎1) ∘ eff (𝑎2). We use the application of states over other states and
ignore the order.

7.4.2 Abstraction

Since abstract plans use composite actions that have explicit preconditions and ef-
fects, they can be treated as a normal action. Indeed, while it is possible that an
abstract action has fewer requirements and effects than what is done in its methods,
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it can’t have more since the methods must at least fulfill the parent action’s “con-
tract.”
Adding to that, while merging actions in the linearization step, it may be appropriate
to merge actions into a composite action that holds all the merged actions in its only
method.

7.4.3 Example

In this section we present an example as well as a description of the execution of our
planning algorithm and how the results are used for intent recognition.

a0

a
u

a
t

a
p

a
v

a
sl

a
sr

a*

a
bl

a
br

a0 a
ut

a
vp a*a

s
a
b

Figure 7.6: Example of linearization of partial order plans.

Example

Figure 7.6 illustrates an example of such a linearization. The linearization hap-
pens by merging actions that can be done simultaneously. Of course, this is not
a valid totally ordered plan since classical planning supposes that the agent can
only perform an action at once.
In our example, a person wants to get dressed. In a partial order plan there is
no need to order between top clothing and bottom clothing. It is also necessary
to specify if the right or left socks and shoes should be put on first.

In a first time, we explain how the planning algorithm can affect the result of the
intent recognition.
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7.5 Conclusion

7.4.3.1 Partial Order Approach

Using a previously described POP algorithm (chapter 6) we can create a planning domain
with the following actions from the example in figure 7.6: 𝑎ᵆ, 𝑎𝑡, 𝑎𝑝, 𝑎𝑣, 𝑎𝑠(𝑙|𝑟) and𝑎𝑏(𝑙|𝑟). Each action instinctively requires you to wear clothes that are underneath their
related garment and put it on. For example, the action 𝑎𝑏𝑟 requires the right socket
to be put on (effect of 𝑎𝑠𝑟) and will result in putting the right shoe on.
The goal is to put on all the clothes from a state of none are already put on. The
planner will select each action to fulfill the goal and add causal links to prevent threats
between actions and to fulfill their preconditions. The resulting plan is the upper one
in figure 7.6.
Now the intent recognition part quick in and linearize the plan. To do so, the algorithm
identifies actions that can be done simultaneously and merge them into a single action.
The purpose of this merging is tomake the plan totally ordered while keeping fluents in
chronological order. Here we can see that the linear plan describes actions of putting
clothes by layers instead of by the garment. Details are lost but the chronological
order and cost is kept (by adding costs of all actions being merged).
This allows for existing intent recognition methods to be applied on the resulting plan
without losing on the advantages of partial order plans. This technique results in the
plan on the bottom of figure 7.6. This plan is totally ordered and can be used by the
classical inverted planning approaches as described previously.

7.4.3.2 Abstract Plan Approach

This example also illustrates the advantages of using abstract plans for intent recog-
nition. If the domain is properly designed for it, we can use an abstract plan that has
composite actions made by layers of clothing.
In that approach, we reuse the previous domain but extend it with the following ac-
tions: 𝑎ᵆ𝑡, 𝑎𝑣𝑝, 𝑎𝑠, 𝑎𝑏. These actions will behave in the same way as the merged
actions of the linearization. Each action corresponds to a layer of clothing and can be
decomposed into the atomic actions relative to that layer. For example, the action 𝑎ᵆ𝑡
is the action related to putting on the first layer of clothing. It can be decomposed
into the action of putting underwear 𝑎ᵆ and the action of putting on a t-shirt 𝑎𝑡.
Using our HEART planner, it is possible to request only an abstract plan to contain this
level of action. The planning process will therefore result into the plan on the bottom
of figure 7.6 that is also the linearized plan found earlier.
Since the abstract plans are easier to compute, the intent recognition becomes faster
for the same result in that case. The main factor in the efficiency of this method is
the design of the domain.

7.5 Conclusion

In this chapter, we present existing intent recognition techniques and expose how
inverted planning can be fitted to our planning approach.

139



8 Conclusion and Perspectives
In this document, we underlined various issues, from knowledge representation to how
planning can be used to guess each other’s intent.

First we briefly exposed dome mathematical bases to our various formalisms. We built
a coherent logical system to present the tools necessary to describe the theorical
aspects of later contributions.

Once those tools presented, we used them to design a knowledge representation sys-
tem that is partially described by structure and allows for higher order logic. This
framework and dynamic language allows for a significant increase in expressivity while
remaining concise and understandable.

Those qualities were needed in the task of providing automated planning with a uni-
fying framework that can handle all existing paradigms using a general description of
the planning process itself.

This makes the design of a general planning language possible. This language based
on our earlier contribution makes hybrid domain description easier and is useful in
making planner that aims to take advantage of several planning approaches at once.

Using this framework, we designed two planners:

• One for real-time plan repair, using an operator graph and a usefulness heuristic
to guide the planning process.

• Another that allows for abstract intermediate plans to be returned before the
planning process is complete.

Each approaches are evaluated against similar algorithms. Results shows that, at least
on some problems, the planning process can be made faster using these kind of tech-
nique, especially when a complete solution is not required for a given application.

An example of such an application can be found in the last chapter. Using the theory of
mind, it is possible to apply automated planning to the problem of intent recognition.
We show the advantages of inverted planning and how the abstract plans of our latest
prototype may be exploited for fast and accurate intent recognition.

8.1 Perspectives and discussions

8.1.1 Knowledge representation.

Listing the contributions there are a couple that didn’t make the cut. It is mainly ideas
or projects that were too long to check or implement and neededmore time to complete.
SELF is still a prototype, and even if the implementation seemed to perform well on
a simple example, no benchmarks have been done on it. It might be good to make a
theoretical analysis of OWL compared to SELF along with some benchmark results.
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8.1 Perspectives and discussions

On the theoretical parts there are some works that seems worthy of exposure even if
unfinished.

8.1.1.1 Literal definition using Peano’s axioms

The only real exceptions to the axioms and criteria are the first statement, the com-
ments and the liberals.

For the first statement, there is yet to find a way to express both inclusion, the equal-
ity relation and solution quantifier. If such a convenient expression exists, then the
language can become almost entirely self described.

Comments can be seen as a special kind of container. The difficult part is to find a
clever way to differentiate them from regular containers and to ignore their content
in the regular grammar. It might be possible to at first describe their structure but
then they become parseable entities and fail at their purpose.

Lastly, and perhaps the most complicated violation to fix: laterals. It is quite possible
to define literals by structure. First we can define boolean logic quite easily in SELF
as demonstrated by listing 8.1.

Listing 8.1: Possible definition of boolean logic in SELF.
1 ~( false ) = true ;
2 ( false , true ) : : Boolean ;
3 true =? ; //conflicts with the first statement !
4 *a : ( (a | true ) = true ) ;
5 *a : ( ( false | a) = a) ;
6 *a : ( (a & false ) = false ) ;
7 *a : ( ( true & a) = a) ;

Starting with line 1, we simply define the negation using the exclusive quantifier.
From there we define the boolean type as just the two truth values. And now it gets
complicated. We could either arbitrarily say that the false literal is always parameters
of the exclusion quantifier or that it comes first on either first two statements but
that would just violate minimalism even more. We could use the solution quantifier to
define truth but that collides with the first statement definition. There doesn’t seem
to be a good answer for now.

From line 4 going on, we state the definition of the logical operators ∧ and ∨. The
problem with this is that we either need to make a native property for those operators
or the inference to compute boolean logic will be terribly inefficient.

We can use Peano’s axioms (1889) to define integers in SELF. The attempt at this defi-
nition is presented in listing 8.2.

Listing 8.2: Possible integration of the Peano axioms in SELF.
1 0 : : Integer ;
2 *n : (++(n) : : Integer ) ;
3 (*m, *n) : ( (m=n) : (++m = ++n) ) ;
4 *n : (++n ~= 0) ;
5 *n : ( (n + 0) = n) ;
6 (*n, *m) : ( (n + ++m)= ++(n + m) ) ;
7 *n : ( (n × 0) = 0) ;
8 (*n, *m) : ( (n × ++m) = (n + (n × m) ) ) ;
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We got several problems doing so. The symbols * and / are already taken in the default
file and so would need replacement or we should use the non-ASCII × and ÷ symbols for
multiplication and division. Anothermore fundamental issue is as previously discussed
for booleans: the inference would be excruciatingly slow or we should revert to a kind
of parsing similar to what we have already under the hood. The last problem is the
definition of digits and bases that would quickly become exceedingly complicated and
verbose.
For floating numbers this turns out even worse and complicated and such a description
wasn’t even attempted for now.
The last part concerns textual laterals. The issue is the same as the one with com-
ments but even worse. We get to interpret the content as literal value and that would
necessitate a similar system as we already have and wouldn’t improve the minimalist
aspect of things much. Also we should define ways to escape characters and also to
input escape sequences that are often needed in such case. And since SELF isn’t meant
for programming that can become very verbose and complex.

8.1.1.2 Advanced Inference

The inference in SELF is very basic. It could be improved a lot more by simply checking
the consistency of the database on most aspects. However, such a task seems to be
very difficult or very slow. Since that kind of inference is undecidable in SELF, it would
be all a research problem just to find a performant inference algorithm.
Another kind of inference is more about convenience. For example, one can erase sin-
glets (containers with a single value) to make the database lighter and easier to main-
tain and query.

8.1.1.3 Queries

We haven’t really discussed quarries in SELF. They can be made using the main syntax
and the solution quantifiers but efficiency of such queries is unknown. Making an
efficient query engine is a big research project on its own.
For now a very simplified query API exists in the prototype and seems to perform well
but further tests are needed to assess its scalability capacities.
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