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Abstract/Résumé

Abstract

Controlling gas transport properties through polymeric membranes remains today an
important parameter for different applications including barrier and gas separation
applications. The optimization of such properties requires the addition of nano-fillers in the
polymer matrix. Their presence is either an obstacle or a preferential path for the diffusing
molecules. These systems have been studied in the literature experimentally as well as by
modeling, most often considering ideal two-dimensional systems. In this thesis, we seek to
develop a 3-dimensional numerical model in order to predict and analyze the barrier and
separation properties of multiphase polymer-based systems taking into account various
parameters, as well as to evidence the most important factors governing these properties. Gas
diffusion in nanocomposites (polymer matrix phase with the dispersion of impermeable
fillers) and the influence of fillers structural parameters on the final properties of the system
were studied in the first part of this thesis through a numerical approach based on the Finite
Element Method. The obtained model is valid for a wide range of fillers volume fraction
values as well as aspect ratios, which makes it possible to consider diluted regimes as well as
concentrated regimes. Furthermore, relationships between the system structure (presence of
interphase layer/ aggregates, filler size polydispersity and spatial distribution) and the desired
properties are investigated. As a second step of this work, gas separation properties of
different multiphase polymer-based systems are studied. We considered two- and three-
component systems composed essentially of polymer, ionic liquid and permeable fillers. The
specificity of this work consists in the investigation of gas separation properties of such
systems experimentally and numerically using the model developed in the first part and

considering permeable fillers.

Keywords: multiphase; diffusion; separation; barrier; modeling; FEM



Abstract/Résumé

Résumé

Le controle des propriétés de transport du gaz a travers les membranes polymeéres constitue
aujourd'hui un parametre important pour différentes applications, y compris les propriétés
barricre et la séparation des gaz. L'optimisation de telles propriétés nécessite 'ajout de nano-
charges dans la matrice polymére. Leur présence constitue soit un obstacle soit un chemin
préférentiel pour les molécules diffusantes. Ces systemes ont été étudiés dans la littérature
expérimentalement ainsi que par la modélisation en considérant le plus souvent des systémes
1idéaux a deux dimensions. Dans les études menées dans le cadre de cette thése, nous
cherchons a développer un modéle numérique en 3 dimensions afin de prédire et analyser les
propriétés de transport des systemes multiphasés a base de polymeres en fonction de divers
parameétres ainsi qu’a déterminer les principaux facteurs qui régissent ces propriétés. La
diffusion des gaz dans les nanocomposites (matrice polymeére avec dispersion de charges
imperméables) et l'influence des paramétres structuraux des charges sur les propriétés finales
du systéme ont été étudi¢es dans la premicre partie de cette thése par une approche numérique
basée sur la méthode des éléments finis. Le modéle obtenu est valable sur une large gamme de
valeurs de fractions volumiques de charges ainsi que des facteurs de forme, ce qui permet de
considérer des régimes dilués aussi bien que des régimes concentrés. En outre, les relations
entre la structure du systéme (présence d’interphase/ agrégats, hétérogénéité de la taille des
charges et leur distribution spatiale) et les propriétés souhaitées sont élucidées. Dans un
deuxiéme temps, les propriétés de séparation des gaz de différents systemes multiphasés a
base de polymeres sont étudiées. Nous avons considéré des systémes a deux et trois
composants constitués d’une phase polymere, de liquide ionique et de charges perméables. La
spécificité¢ de ce travail réside dans I’étude des propriétés de séparation des gaz de tels
systemes expérimentalement, mais aussi numériquement en utilisant le modele développé

dans la premiere partie et en considérant des charges perméables.

Mots-clés: multiphase; diffusion; séparation; barriére; modélisation; FEM
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N,: the average mass flux across a plane section normal to z-direction
D: the average diameter

a: the average aspect ratio of fillers

y%: dispersive surface energy

yP: polar surface energy

&r: the slope of the plot defined by Falla and coworkers
a, b: the slope and the intercept

A: pre-exponential scaling parameter

ay: scaling constant of the exponential decay

Aq: surface area of the membrane

B: an exponential scaling decay constant

BC: Boundary Conditions

BEM: Boundary Element Method

C: the concentration of the gas

¢y, ¢2: the concentration at the upper and lower bounds of a membrane
CH,Cl,: methylene chloride

D: disk diameter

D the effective diffusivity coefficient

d;: distances between i disks in the same plane

Djy;: Fickian diffusivity coefficient

D;,,;: the coefficient of diffusion in the interphase

D;neer: the interplatelet space diffusivity coefficient

D, the relative effective diffusivity coefficient
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ds: the straight path length across the neat polymer
d;: the diffusion path length in the filled matrix

e: disk thickness

einr: the interphase thickness

einter: the interplatelet spacing

Emim-BF,: 1-Ethyl-3-methylimidazolium Tetrafluoroborate
[: filler volume fraction

Ji: blocked pores volume fraction

FEM: Finite Element Method

Jir: 1onic liquid filler volume fraction

Jm: maximum packing volume fraction of the fillers
Joprim: optimized filler volume fraction

Jv: voids volume fraction

FVM: Finite Volume Method

Jfw: the welled dispersed phase volume fraction

g: size distribution function

h: geometric factor defined by Fredrickson and Bicerano
IL: Ionic Liquid

k: the projected area ratio

Ku: Higuchi empirical parameter

kiim: a limiting value of k

L: filler length

I: the thickness of the polymeric membrane

L: the average normalized path length
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L, L,, L;: RVE dimensions in X, y and z directions
MC: Monte Carlo

MMMs: Mixed Matrix Membranes

MOF: Metal Organic Framework
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n.: MWS factor

Nijj: the solute diffusive flux
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O: orientational factor introduced by Bharadwaj
PBC: Periodic Boundary Conditions

P;: the permeability in the dispersed phase
PDE: Partial Differential Equation

PDF: Probability Density Function
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p: the gas pressure
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Prans: trans-membrane pressure
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r: A parameter defined by Minelli and coworkers

R: parameter defining the ratio between the interplatelet space volume and the total stack
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RAM: Random Access memory
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RVE: Representative Volume Element
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Saisk: the projected area of a disk

Sij: the solubility coefficient

SILM: Supported Ionic Liquid Membrane
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Smarrix: the projected area of the matrix
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S,.: the cross-section area of filler
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St the projected area of the unit cell
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Tg: glass transition temperature

T: thickness of the galleries as defined by Greco and coworkers
W: filler width
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a: filler aspect ratio

o.: the corrected shape factor
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B: scaled space-step parameter
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Ap: the pressure gradient

€: the standard deviation between the numerical results

1: empirical coefficient defined by Dondero and coworkers
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0)g: time lag

A: an adjustable geometrical parameter defined by Tsiantis and coworkers
u: geometric factor defined by Cussler and Aris

p: a factor introduced by Nielsen and coworkers
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T: the tortuosity factor

v: Herman’s orientation function
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General Introduction

General Introduction

Polymer materials came into prominence in the early twentieth century because of their

interesting properties, low cost and easy processing allowing them to be used in various

fields.

The industrial applications of these materials are being very diverse today: as it can be
observed through the following chart, more than 1/3 of the mass of polymers produced in
2015 were used for packaging. Polymers are also widely exploited in other technological
fields such as building, manufacturing of textiles, consumer goods and transportation

equipment.

Packaging 35.9%
Building and construction 16.0%
Textiles 14.5%
Other 11.5%
Consumer and institutional products [18:3%
Transportation 6.6%
Electrical/electronic 4.4%
Industrial machinery 0.7%

Figure 1.1 The worldwide use of polymers (Geyer, Jambeck, & Law, 2017)

In order to meet the ever-increasing requirements of engineering applications, polymers are
often combined with inorganic fillers in order for enhancing their properties. Hence, in the
last decades, new strategies have been proposed by material scientists in order to develop
high-performance multiphase polymer systems. One immediately thinks about mechanical
reinforcement, which in most cases comes down to increase the strength-to-weight ratio for
structural applications. However, a substantial part of the research effort is devoted to the
development of other material functions, which consists on “tailoring” the material physic-
chemical properties in order to satisfy a particular technical need. Examples of common
material functions, among others, are related to thermal properties (heat dissipation, thermal
insulation, heat storage), electrical properties (electrical insulation / conduction,
electromagnetic shielding), or mass transport properties (barrier effect, gas trapping,
separation and filtration, etc.). This thesis will focus on two types of multiphase systems
particularly appropriate and efficient for the development of material functionalities involving

mass transport: polymer-based nanocomposites and mixed matrix membranes, respectively.
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Polymer-based nanocomposite result from the dispersion of fillers showing at least one
dimension in the nanometer range within a polymer matrix. These materials demonstrate a
series of advantageous properties that are not found in higher (micrometric) scale composites
(Camargo, Satyanarayana, & Wypych, 2009). As such, they are involved in an exceptionally
extensive range of applications going from electronics to packaging and building. In the
packaging field (food, sensitive products), where mass transport properties are key,
nanocomposites based on impermeable lamellar nanofillers have become very popular due to
their improved barrier properties, which reduces the gas flux through the packaging material
(usually a film or membrane) without compromising optical transparency. This leads to an
improved protection of the packaged product from the ambient atmosphere and allows the
increasing of the product shelf life (Bhunia, Dhawan, & Sablani, 2012). Indeed, gas transport
process through nanocomposites is based on a diffusion-solution mechanism in which
diffusing molecules must follow a tortuous path because of the presence of impermeable

fillers and thus enhanced barrier properties could be obtained (Figure 1.2).

[ ] @< Diffusing specie

Figure 1.2 Gas transport process through nanocomposites showing the tortuous path

Increasing barrier (and mechanical) properties has thus gained a lot of attention for packaging
applications but also for energy applications (protective coatings, gas tank, gas distribution,
etc.). It has also to be noticed that transparency could be kept in these materials due to the low
size of the dispersed objects and this represents an advantage for some applications. In this
context, a lot of experimental work has been devoted to the study of the impact of adding
inorganic fillers within various polymer matrices. Significant differences have generally been
observed in the resulting properties, depending on the filler shape, content, and dispersion
state. In particular, IMP laboratory has performed intensive work on nanocomposites based on
natural and synthetic nanofillers during the last twenty years, focusing on the effect of

structural parameters and also on interfacial parameters on the barrier properties (Cheviron,
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Gouanvé, & Espuche, 2016; Gain, Espuche, Pollet, Alexandre, & Dubois, 2005; Jacquelot,
Espuche, Gérard, Duchet, & Mazabraud, 2006; Masclaux, Gouanvé, & Espuche, 2010; Morel,
Bounor-Legaré, Espuche, Persyn, & Lacroix, 2012; Picard, Espuche, & Fulchiron, 2011;
Picard, Gérard, & Espuche, 2008; Picard, Vermogen, Gérard, & Espuche, 2007; Sabard,
Gouanvé, Espuche, Fulchiron, Fillot, et al., 2014a; Sabard, Gouanvé, Espuche, Fulchiron,
Seytre, et al., 2014).

On the other hand, while barrier nanocomposites are designed to block penetrant molecules,
gas separation membranes are designed to permeate gases selectively. The gas separation field
(e.g. air dehydration, ultrapure water production, CO, and other harmful gases removal from
natural gas, etc.) has grown significantly since its beginnings in the early 1970’s and it is
expected to grow further in the coming years (Baker & Low, 2014). Compared to
conventional technologies such as sorbents and scrubbing solutions which are generally
energy-intensive, membrane technology has several advantages: low cost, small
environmental footprint (such as carbon foot-print in water purification technology), easy
processing, reliability and possibility to obtain highly pure products (Carreon, Dahe, Feng, &
Venna, 2017).

The fundamental parameters characterizing membrane performance for gas separation
applications are the permeability and the selectivity and the main goal is to optimize the trade-
off relationship between these antagonistic parameters (Robeson, 2008). Hence, the
development of new classes of membranes combining both high flux and selectivity is still a
challenging issue. Different types of gas separation membranes were described in the
literature, generally consisting of 2-components systems, the polymer acting as the continuous
phase and the second component providing its high permeability and/or selectivity (Sanders et
al., 2013). Mixed matrix membranes based on carbon molecular sieves have been deeply
investigated and more recently a great attention has been paid on metal organic frameworks
(MOFs) as functional fillers for association with polymer matrices. Another original bi-
component membrane family that has been developed regarding CO, separation applications
is Polymer/Ionic liquid membranes (H. B. Park, Kamcev, Robeson, Elimelech, & Freeman,

2017).

More recently, the development of three-component systems based on the addition of ionic
liquid to mixed matrix membranes has been reported in literature as a way to achieve
interesting separation properties thanks to the affinity of both fillers and IL towards diffusing
gases (Monteiro et al., 2018).
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In order to predict gas transport properties in both types of systems (i.e. nanocomposites for
barrier properties and mixed matrix membranes for gas separation), the development of
modeling approaches is essential. Several analytical models describing mass transfer through
nanocomposite systems are available in the literature. These approaches are commonly based
on geometrical analyses of the path traveled by diffusing molecules through the studied
systems and have enabled approximate prediction of the gas transport properties of
multicomponent polymer-based systems. Indeed, they necessarily assume (over)idealized
systems, which can be insufficiently accurate to take into account the various effects induced
by complexities and heterogeneities in the actual nanocomposite structure. (Wolf, Angellier-

Coussy, Gontard, Doghieri, & Guillard, 2018).

In order to go further in the structure-properties relationships of these materials and to
promote their optimization, advanced models able to describe mass transport in realistic
systems are needed. Those models are generally too mathematically complex to yield explicit
analytical equations, hence they have to be numerically solved using various techniques such
as the Monte Carlo method (MC), the finite element method (FEM), the finite volume method
(FVM) or the boundary element method (BEM). Several numerical studies of mass transport
in multiphase polymer-based systems accounting for the influence of various structural
parameters (filler size, orientation, dispersion, distribution) have been reported in the

literature (Monsalve-Bravo & Bhatia, 2018).

It is noteworthy that most of these numerical models have considered two-dimensional
systems and only few of them have taken into account the three-dimensional aspect of the
actual materials. It has been shown that for a given filler loading content, 2D models generally
overestimate the barrier properties compared to 3D models, due to the infinite extension
assumption they imply for the dispersed phase (Swannack, Cox, Liakos, & Hirt, 2005).

Moreover, existing numerical models rarely considered the presence of imperfections in the
system structure such as incomplete filler exfoliation (presence of stacks) or the existence of
filler-matrix interphases which are known to have a non-negligible influence on the

nanocomposite final properties.
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Objectives of the thesis

The aim of this thesis project is to study gas transport properties of multiphase polymer-based
systems considering two complementary aspects: numerical modeling and experimentation.
As discussed above, we have focused on two types of systems: nanocomposites for barrier

applications and mixed matrix membranes for gas separation applications.
1) Nanocomposite systems

During the last decades, several experimental works have been carried out in order to
characterize mass diffusion through nanocomposite systems with various filler shapes for gas
barrier applications. Useful analytical models predicting the gas transport properties of these
systems have been derived and extensively reported in the literature. However, the complexity
of the systems these models can describe is necessarily limited. In order to predict more
accurately the behavior of actual nanocomposite materials (randomly distributed fillers with
different shapes or sizes, presence of stacks, filler-matrix interphases), numerical approaches

are indispensable.

In this context, our first objective is to develop a 3D finite element model of mass transfer
through nanocomposite systems suitable for predicting their effective transport properties.
Impermeable disk-shaped fillers embedded in a permeable matrix are considered. The
influence of several structural parameters on the barrier properties will be investigated
through parametric studies: filler aspect ratio distribution (assuming constant thickness and
variable diameter), spatial distribution (ordered distributions / random distributions) and

dispersion state (exfoliated fillers / intercalated systems).

The developed model will be extended to take into account and analyze the influence of a
third phase, the interphase layer, on the gas barrier properties. The simulations will be
validated by confronting them to existing numerical and analytical results as well as to

existing experimental data.

2) Multi component polymer-based membranes

For gas separation applications, multi-component polymer-based membranes include mixing
polymer materials with other additives such as zeolites, carbon molecular sieves or metal
organic frameworks. In particular, the development of mixed matrix/ionic liquid membranes

could further optimize the permeability/selectivity trade-off.
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Hence, the second objective of this thesis is to prepare and characterize two-component and
three-component membranes in order to obtain improved selectivity/permeability properties.
Furthermore, numerical modeling will be used in order to develop a better understanding of

the relationship between membrane’s morphology and its diffusion properties.
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PhD work plan

The PhD work plan is divided into two major parts: Part A, which aims at providing a
numerical analysis of the gas barrier properties of nanocomposite systems based on polymer
matrices and impermeable lamellar nanofillers and Part B, which is devoted to an
experimental and numerical study of gas separation properties of multiphase systems based on

a glassy polymer, MOFs and ionic liquid.
1) Part A

The first chapter of the thesis proposes a review of the existing knowledge and approaches

available to model the gas barrier behavior of multiphase systems.

After a short reminder of the parameters governing the gas transport in polymers and a brief
overview of the existing analytical approaches, a review of the numerical models available to
predict the barrier properties of nanocomposite systems is presented. Moreover, the effects of
parameters influencing diffusion such as fillers shape, orientation, dispersion and spatial
distribution are discussed. A particular attention is paid to the recent developments and a

critical comparative analysis of the different approaches is proposed.

®,

¢ This chapter is the subject of a paper published in Journal of Polymer Science Part B,
on January, 2 2018 and titled Modeling Diffusion Mass Transport in Multiphase

Polymer Systems for Gas Barrier Applications: A Review.

The second chapter presents the general formulation of a 3D numerical model of mass
transport in ordered nanocomposite systems, in the case of disk-shaped nanofillers. In a first
step, the geometrical model is described and the variable parameters are specified. Then the
mass transfer equation and the associated boundary conditions are formulated. After detailing
the numerical analysis, the simulation results are presented and discussed with respect to the
corresponding regimes (dilute, semi-dilute and concentrated regimes). Accordingly, a
phenomenological analytical equation is derived and validated against the numerical results,
allowing prediction of gas barrier properties of ordered nanocomposite systems with minimal

computational effort.

% This chapter is the subject of a paper published in Journal of Polymer Science Part B,
on November, 21 2018 and titled 3D Mass Diffusion in Ordered Nanocomposite

Systems: Finite Element Simulation and Phenomenological Modeling



PhD work plan

The third chapter is devoted first to the analysis of the effect of fillers size polydispersity on
gas barrier properties. We have developed for that purpose a step-by-step approach based on
3D finite element modeling, considering disk-shaped nanofillers randomly distributed in the
polymer matrix. A comparison between monodisperse and polydisperse fillers is conducted
and a study of the aggregation effect is presented. Moreover, in this chapter, the effect of
interplatelet diffusion was assessed through a sensitivity study considering a wide range of

diffusion coefficient values in the interplatelet area.

% This chapter is the subject of a paper published in Journal of Membrane Science, on
July, 24 2019 and titled Numerical analysis of 3D mass diffusion in random (nano)

composite systems: Effects of polydispersity and intercalation on barrier properties.

The fourth and last chapter of Part A is devoted to the numerical analysis of the effect of
the filler-matrix interphase layer on the barrier properties of nanocomposites loaded with
disk-shaped fillers. The 3D FEM models developed in chapters 2 and 3 are extended in order
to take into account a third distinct phase in addition to the filler and matrix phases. Two
types of filler distributions are investigated: ordered and random distributions. We have
considered the possibility of interphase overlapping which could lead to the presence of
continuous diffusion paths through the thickness of the nanocomposite and could affect
significantly the barrier properties. Results are discussed considering a large range of
interphase diffusivity values in order to understand and quantify the effect of such medium on

the overall barrier properties.

*

¢ This chapter is the subject of a publication submitted to Journal of Membrane Science,
titled 3D Numerical Analysis of Mass Diffusion in Nanocomposites: the Effect of the

Filler-Matrix Interphase on Barrier Properties.
2) PartB

The first chapter of this part provides a review of polymer-based membranes for gas
separation: after presenting the background of existing membranes in literature, a description
of their properties is given through examples of their gas separation performances. This
analysis of the state of the art is followed by a presentation of the existing analytical and

numerical models in literature for the prediction of membrane gas separation properties.



PhD work plan

The second chapter of part B consists in an experimental and numerical study of gas
separation properties of three different systems: polymer/ionic liquid membranes, mixed
matrix membranes and mixed matrix membranes containing ionic liquid. Prepared
membranes are characterized and their permeabilities and selectivities are determined. The
relationships between the membrane structure and properties are established. The main
objective concerning the three-component system is to identify an optimum area for
permeability/selectivity trade-off. The experimental study is complemented by a numerical
analysis using a 3D FEM model built in order to predict gas diffusion properties of the mixed

matrix membranes. The simulation results are compared to the obtained experimental results.
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Part A Multiphase polymer-based systems
for improved barrier applications
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Chapter 1  Modeling Diffusion Mass Transport in Multiphase Polymer Systems for Gas
Barrier Applications: A Review

An overview of the chapter

Polymer nanocomposites based on impermeable fillers (especially lamellar nanofillers) offer a
great interest as gas barrier materials because of their much-enhanced properties arising from
the nanoparticles shape, size and spatial arrangement within the matrix. However,
optimization and further development of such materials requires fundamental understanding
of the influence of the nanocomposite structure on the gas diffusion phenomena. This step can
be greatly facilitated through modeling/simulation strategies used to establish relations
between material microstructural parameters and the barrier properties. This chapter first
presents the analytical models developed to estimate the effective diffusivity in polymer
nanocomposites. The predictions of the models are analyzed in relation to experimental data
reported in the literature and their ability to describe accurately the nanocomposite transport
properties when the microstructure complexity increases is discussed. Then, modeling
approaches based on numerical solution techniques (e.g. the finite element method) that allow
simulating the diffusion processes and assessing the effect of filler shape, orientation,
dispersion and spatial arrangement are reviewed and discussed. Finally, the importance of 3D
simulation strategies for the understanding and prediction of gas transport in the most

complex nanocomposite microstructures is addressed.
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1.1 Introduction

The need for efficient gas barrier materials is of crucial importance for a large range of
applications going from packaging to protective coatings. These applications are of major
importance for a wide variety of domains (food preservation, biomedical applications, energy,
building, etc.). In the last decades, a great attention has been paid to polymer materials due to
their low cost, easy processing and interesting mechanical properties such as their high
flexibility(A. Blanchard, Gouanvé, & Espuche, 2017; Mokwena & Tang, 2012;
Vandewijngaarden et al., 2014). However, neat polymers cannot meet anymore the ever
increasing barrier level required for these applications. Hence, they have been often combined
with less permeable or totally impermeable components to improve their barrier properties
(Charifou, Espuche, Gouanvé, Dubost, & Monaco, 2016; Ge & Popham, 2016; D. Kim &
Kim, 2003; Mattioli et al., 2013; Mokwena, Tang, Dunne, Yang, & Chow, 2009). In this
context, a lot of experimental work has been devoted to the study of the impact of adding
inorganic fillers within various polymer matrices and significant differences have been
experimentally observed in the resulting properties depending on the filler shapes, contents
and dispersion states (Attaran, Hassan, & Wahit, 2017; Cui, Kumar, Rao Kona, & van
Houcke, 2015; Cui, Kundalwal, & Kumar, 2016; Lizundia, Vilas, Sangroniz, & Etxeberria,
2017; Miiller et al., 2017; Szymczyk et al., 2015). Although some trends have been drawn
from these experimental works, notably showing the efficiency of lamellar type nanofillers
(Espuche, 2011), the need for specific tools allowing better understanding and prediction of
the effect of each parameter has become of paramount importance in order to design materials
with targeted properties.

The aim of this work is to review the approaches developed to model the behavior of
multiphase systems of interest for barrier applications. The earlier approaches are analytical,
but recently, calculations based on numerical approaches such as finite element method
(FEM) have been carried out to simulate the diffusion processes into such systems. The
constant evolution in the modeling approach has allowed a progressive increase in the
complexity of the described systems (e.g. tridimensional morphologies), enabling the models
to become more realistic with respect to the actual materials. After a short reminder of the
parameters governing the gas transport in polymers and a brief overview of the existing
analytical approaches, this paper extensively reviews the numerical models available to
predict the barrier properties of (nano) composites, assessing the effect of parameters

influencing diffusion such as filler shape, orientation, quantity, dispersion and spatial
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distribution. A particular attention will be paid to the recent developments and a critical

comparative analysis of the different approaches will be proposed.

1.2 Background: transport mechanism in dense polymer materials

Basically, mass transport in a polymer is related to the ease with which gas molecules can
penetrate and get through the material. It is described by a solution-diffusion mechanism. At a
given temperature, the transport of a gas molecule through a homogeneous polymer matrix in
a permeation mode is the result of a three-step process (Crank & Park, 1968): sorption of the
component at the upstream face of the membrane, followed by diffusion/solution through the
material cross- section under the influence of the applied driving force (pressure gradient
which corresponds to a chemical potential gradient) and finally desorption at the downstream
face of the film. In a Fickian transport mechanism, the time necessary to reach interfacial
equilibrium is much shorter than the characteristic time of the diffusion process, which is then
the governing process of the transport mechanism. Both the solubility and diffusion
parameters are dependent on the nature of the membrane material and of the permeating
gases.

In a Fickian mechanism, the permeability coefficient of specie i in a medium j, denoted by Py,

is the product of the solubility coefficient S;; and the diffusion coefficient D;;:

The solubility coefficient has a thermodynamic origin and depends on the molecule-polymer
interactions, on the polymer free volume as well as on the ability of the gas to condense. It is
related to the local concentration of the gas C dissolved in the polymer and to the gas pressure
by the following relation:

Diffusion is the process by which the small molecule is transferred in the system due to
random molecular motions. Therefore, the diffusion coefficient D;; is a kinetic term related to

the free volume and the molecular mobility in the polymer phase; it is expressed in m”.s™.

As mentioned, diffusion is often the dominant mechanism of the transport process. It is
described by Fick’s law, which assumes a proportionality relationship between the diffusive
flux and the concentration gradient. By analogy to Fourier’s law of heat conduction, the first

Fick’s law for one-dimensional diffusion reads:
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ac

T (A.1.3)

Nij = —D

) ) ) ac . ) ) )
where Nj; is the solute diffusive flux and o 8 the solute concentration gradient. Later, Fick

developed the unsteady form of this equation that relates the rate of change of concentration

to the diffusive flux:

ac
=D

=DV (A.1.4)

In the case of one-dimensional diffusion, the previous equation could be written as follow:

ac 0°C

— =D, — A.l5

at Yoox? ( )
If [ is the thickness of the polymer membrane, under the assumptions of steady state and
constant diffusion coefficient, the gas flux N is constant and equal to:

(G- C)

N;; = —Dy; l (A.1.6)

where C; and C, are respectively concentrations of gas dissolved at the downstream and

upstream faces of the polymer membrane. N;; can be related to the permeability:

lNl'j

Py="3 (A.1.7)

where Ap is the pressure gradient applied to the membrane.

Adding a second dispersed phase (the fillers) to the continuous phase constituted by the
polymer matrix can significantly influence the transport properties. Hence, several
phenomenological models have been built in order to correlate diffusivity with various
characteristic parameters for such systems. These models can either be based on analytical or
numerical approaches. In the following sections of this paper, modeling works belonging to
both categories will be presented with a special focus on the models devoted to the study of
nanocomposite systems. It is noteworthy to precise that the various models/equations
discussed in this review consider ideal binary systems. They do not take into account the
potential effect of the filler/matrix interface (which can be considered as a third phase). This
means that sufficiently strong interactions between the dispersed phase and the continuous
phase are supposed to take place in order to have no defects at the interface. Moreover, it is

assumed that these interactions are not strong enough to modify the properties at the
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boundaries of each phase and that the presence of the dispersed phase does not modify the
properties of the continuous phase.
In the case of ideal binary systems composed of impermeable fillers dispersed in a continuous

permeable phase, the solubility S;; can be expressed by:

Sij = So(1—f) (A.1.8)

where S is the solubility in the neat polymer and f is the volume fraction of the fillers.

Due to the presence of those fillers, the diffusion path is lengthened, as defined by the
tortuosity factor (Barrer, 1968):

T= (A.1.9)

where d, is the diffusion path length in the filled matrix and d; is the straight path length
across the neat polymer (Figure A.1.1).

@ O ©
- Q9 @
O C.PJ O

Figure A.1.1 Distance travelled by a penetrant in the neat polymer (ds) and in the filled

polymer (d)

Besides, the effective diffusivity in the nanocomposite can be expressed as follow:

Dy
Degr=— (A.1.10)

where Dy is the diffusivity in the neat polymer.
Considering a Fickian transport mechanism, the permeability coefficient of the composite

material (or effective permeability) can be expressed as:

-1

T

P =P, (A.1.11)
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where Py is the permeability of the neat polymer. The relative effective permeability can then

be defined as:

Perr  (1—1)
= = A.1.12
A T ( )
and the relative effective diffusion coefficient as:
Desr P. 1
D.. = = = —
. D, A= 1 (A.1.13)

Throughout this paper, for comparison purposes, it has been chosen to represent the effect of

nanofillers on the composite barrier properties by a unique parameter: the relative effective
op .. D . . . e . .
diffusivity ;—ff, which relates to the effective relative permeability as given by equation
0

(A.1.13).
1.3 Modeling approaches
1.3.1 Analytical approaches

The main analytical approaches developed to model gas transport properties in biphasic
polymer based films are presented hereafter. We will show how different parameters (such as
filler shape and content, filler location and distribution, filler size distribution, filler
orientation or filler stacking) have been taken into account in these models and how the
models have been exploited in combination with experimental data to bring a better

understanding of the relations between the materials structure and their barrier properties.

1.3.1.1 Influence of the filler shape and location/distribution

Maxwell and Bruggemann (Barrer, 1968; Bouma, Checchetti, Chidichimo, & Drioli, 1997;
Bruggeman, 1935; Maxwell, 1873) developed the first theoretically based models to predict
the permeability properties of gases in biphasic systems, considering a spherical morphology

for the dispersed phase. The general Maxwell law can be expressed as:

Degs _ 1 Pa+2Py—=2f(Py = Pa)
Dy (1—=f) Pg+2Py+ f(Po—Py)

(A.1.14)

where D,y is the effective diffusivity in the composite system, Py and Dy are the permeability

and diffusivity of the continuous phase respectively, P, is the permeability in the dispersed
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phase and f is the volume fraction of the dispersed phase. In the case of impermeable
dispersed spheres, Maxwell’s model can be reduced to the following expression:
Deys _ 1
Do 144

(A.1.15)

According to this model, as expected, the effective diffusivity decreases as the volume
fraction of impermeable nanoparticles increases.
Bruggemann also proposed an equation to describe the transport phenomenon in biphasic

media composed of a continuous matrix with spherical dispersed fillers:

3

, Py Pesr
;ff= Fo PPO (A.1.16)
0 1 — ~d _
- (F-1)
where P.yis the effective permeability in the nanocomposite.
Hence, the relative effective diffusivity is expressed as follow:
Py _Pepr 1\’
D 1 P, P,
eff _ Fo P (A.1.17)

Dy A-f) a-n(-1)

After the impermeable dispersed phase assumption (P; = 0), Bruggemann equation could be

reduced to:

%: (1= )12 (A.1.18)
0

The Maxwell model showed a good accuracy with experimental permeability data for filler
volume fraction up to 0.2 whereas Bruggeman model could consider heavier filling. However,
in both Maxwell and Bruggeman models, neither the filler shape/size distribution nor the filler
dispersion was considered.

The modified Maxwell-Wagner-Sillar model (Bouma et al., 1997; Rafiq, Maulud, Man, &
Muhammad, 2014) was developed to consider these morphological parameters. For

impermeable dispersed fillers, Maxwell-Wagner-Sillar equation can be written as:

Deff _ 1 . (1 - ne) - (1 - ne)f
Dy (A-f) (A-n)+nf

(A.1.19)
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where n, accounts for the filler shape, size and dispersion state. n, is defined as:

ne = ai (A.1.20)
m
a is the filler shape factor and f,is the maximum packing volume fraction of the fillers,
which depends on the filler shape, filler size and filler dispersion. For n, =1/3, the modified
Maxwell-Wagner-Sillar model is equivalent to the Maxwell model.
Higuchi (Higuchi, 1958; Higuchi & Higuchi, 1960; Idris, Man, Maulud, & Ahmed, 2016;
Sadeghi, Semsarzadeh, & Moadel, 2009; Semsarzadeh & Ghalei, 2013) studied the

permeability of composites constituted of the dispersion of impermeable spheres within a

permeable matrix and proposed a model that could be written as:

Doy _ 1. 6f
po a-n YT a2 —Kka-p)

(A.1.21)

In the Higuchi equation, the empirical parameter Ky is related to the filler dispersion state.
While a large number of studies initially focused on the dispersion of spherical fillers, a
growing interest has been then paid to impermeable fillers of various shapes (disks, cylinders,
ribbons, etc.). Most models considered dilute or semi-dilute regime, meaning that the fillers
could not overlap. Moreover, the studies were primarily focused on systems in which the
fillers were oriented perpendicularly to the gas flow. Nielsen (Nielsen, 1967) gave a
mathematical solution that allowed the description of the molecular flux in a medium filled
with circular and square platelets of infinite length, uniformly and completely dispersed in the
polymer matrix. The general Nielsen law expression for effective diffusivity is:

Dy

Defp = ———
L (A.1.22)

where L is the filler length and W its width. By this equation, Nielsen showed that the fillers
shape (circular or square) had an effect on diffusivity: the higher the % ratio, the lower the
diffusion and the permeability.

In agreement with Nielsen law, Raleigh et al. (L. Rayleigh, 1892) showed that the relative
diffusivity in a nanocomposite system, where the polymer membrane contains a periodic array
of infinite cylinders perpendicular to the membrane surface, only depends on the filler volume

fraction:
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Degy 1 (A.1.23)

Dy 1+f

Fredrickson and Bicerano (Fredrickson & Bicerano, 1999) proposed the following equation to
predict barrier properties of composites containing a random dispersion of impermeable disks

in a dilute regime:

DDeff -1 —h(af) +h2(af)2 + . (A.1.24)
0

where h = % is a geometric factor and a is the disk aspect ratio defined as the ratio between

the diameter D and the thickness e.

Cussler (Cussler, Hughes, Ward, & Aris, 1988; Lape, Nuxoll, & Cussler, 2004; Moggridge,
Lape, Yang, & Cussler, 2003; C. Yang, Smyrl, & Cussler, 2004) increased the complexity of
the studied systems by considering different arrays of the dispersed impermeable fillers
(flakes or lamellae). Two types of arrays were studied: regular and random arrays of oriented

plates. The model developed by Cussler and coworkers can be expressed as follow:

Defy 1 (A.1.25)

Do 1wt dhe

assuming that o is the filler aspect ratio defined as the quotient of the width of the dispersed
ribbons w by its thickness ¢, f is their volume fraction and ¢ is a factor that depends on the

case studied:

- &=1, when the ribbons are dispersed in a regular array (Cussler et al., 1988);
- & = 1/2, when flakes are dispersed into two sequences with alignment and
misalignment occurring with equal probability (C. Yang et al., 2004);
- & =2/27, when fillers are hexagons and randomly distributed within the matrix (C.
Yang et al., 2004).
According to ¢ values, regular array of ribbons is the most efficient configuration for
improving barrier properties.
Equation (A.1.26) is derived from the one developed by Cussler et al. (Lape et al., 2004)in the

case of a random distribution of ribbons within a polymer matrix:
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Desr 1 (A.1.26)

Do (14+2fa)

Due to the limitation of the previous equations to describe the behavior at high filler content,
some authors investigated the effect of more concentrated systems. Aris and Cussler (Cussler
et al., 1988) developed a model for plate-like particles in the semi-dilute regime. In this case,

the relative effective diffusivity could be expressed by:

D
eff _ (1+ 'uasz)—1 (A.1.27)
Dy
where y = 167;;“ is the geometric factor.

Fredrickson and coworkers (Fredrickson & Bicerano, 1999) also considered the semi-dilute
regime where disks are randomly distributed. They derived a model resulting in the following

equation:

-2
Desy _ (4(1 Fx+ 0.1245;(2)) (A128)

D, 2+y
assuming that y = (za f)/(2In(0/2)).

Lu and coworkers (Lu & Mai, 2007) proposed a 2D theoretical model where platelets of high
aspect ratios are randomly distributed in the polymer matrix. The equation developed by the

group for such geometry results in the following expression for (D.4/Dy):

Derys _ 1,66 (A.1.29)
D. 5/3
9

Through this model, it was shown that an increase in relative diffusivity at higher filler
content could be due to a lack of exfoliation or a decrease in fillers aspect ratio. Hence
nanocomposites properties (critical volume fraction and aspect ratios) have been estimated

and compared to experimental results.
1.3.1.2  Influence of the filler size distribution

In the previously cited studies, it was assumed that all the dispersed fillers have the same
dimensions. Lape et al. (Lape et al., 2004) investigated the effect of the dispersion of

impermeable flakes having different size. They studied two cases: a discrete distribution of
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polydisperse flakes and a continuous distribution of polydisperse flakes. In all cases, the flake
thickness # was assumed to be constant.
In the first case, the relative diffusivity in a film filled with a discrete distribution of

polydisperse flakes could be described by equation (A.1.30):

-2
Deyy 2 f
_(1 (_ )Z w2 A.1.30
Dy ( ’ 3txnwi) £a ( )
L

where n; and w; are respectively the number and the width of flakes in size category i.

In the second case (continuous distribution) the equation has been modified to obtain:

-2
Deyy (Zf)f“’
—I =1+ (2= 2gd A131
D, <+ 3tw) ), ¥ I (A.131)

In this equation, g is the size distribution function of flakes i.e. gdw is the fraction of flakes
having a width w. In both cases, the authors found that an increase in polydispersity leads to a
decrease in permeability. In other words, barrier properties of polydisperse flakes were

predicted to be superior to those of monodisperse flakes.
1.3.1.3 Influence of the filler orientation and stacking

Bharadwaj (Bharadwaj, 2001) modified the Nielsen model by giving a correlation between
parameters such as filler orientation, length, concentration and their state of aggregation in the
matrix. This model was developed in order to describe diffusivity in filled polymers based on
tortuosity considerations. He introduced a new orientational order factor O in the Nielsen

equation:

1
0= E(3c0529 -1) (A.1.32)

where 6 is the angle between the direction of penetrant flow and the normal to the layers.
O values can range from 1 (6 = 0), indicating perfect orientation of fillers with diffusing gas
direction, to -1/2 (6 = #/2) indicating perpendicular or orthogonal orientation. A value of 0

indicates random orientation of fillers. The resulting equation reads:

Desr _ 1 (A.1.33)
REERTACICS)
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The Bharadwaj model predicts that small platelets are more sensitive to orientational disorder
than large ones. It shows, in agreement with previous models, that barrier properties are lower
in the case of aggregates with smaller aspect ratio than an individual platelet aspect ratio,

taking into account the absence of intra-platelet diffusion.

Sorrentino et al. (Sorrentino, Tortora, & Vittoria, 2006) built a new geometrical model in
order to study barrier properties of nanocomposite systems as a function of fillers orientation,
volume fraction and intercalation between them. According to their description, their model
seems the most adequate one for analyzing diffusion behavior in systems in which fillers have
a very high aspect ratio. From their work, two main equations can be derived for a system of

regularly distributed ribbons:

- regularly oriented ribbons:

-1
Deff _ a2
D - ((1—f) + f (1+§) > (A.1.34)

- randomly oriented ribbons:

Derr _ <(1— f+ 4f(1+5+ 1)) (A.135)

D, T 4" a

Another approach was developed recently by Nazarenko et al. (Nazarenko, Meneghetti,
Julmon, Olson, & Qutubuddin, 2007), considering the effect of layers stacking on gas barrier
properties. They modified the Nielsen model in order to obtain an accurate equation that
represents this configuration. Their model was based on the substitution of the individual

mineral layer by layer stacks as shown in Figure A.1.2:
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\\

= X
J = 7

Figure A.1.2 Filler configuration studied by Nazarenko et al. (Nazarenko et al., 2007)

The Nazarenko model can be considered as an extension of the Bharadwaj model, in which
the volume fraction and aspect ratio of the impermeable phase are taken into account. They
supposed that diffusion inside the nanofillers, which are in this case homogenously dispersed
and randomly oriented perpendicular to the diffusion direction, is neglected. Accordingly, the

modified Nielsen equation is presented in the following form:

Derr 1 (A.1.36)

Dy 1 f_L)
1+3 (ZWNL

assuming that L and W are respectively the length and the thickness of the fillers and N, is the
number of layers in each aggregate.

Some authors (Aris, 1985, 1986; Cussler et al., 1988; Falla, Mulski, & Cussler, 1996; Lape et
al., 2004; Moggridge et al., 2003) attempted to model mass diffusion in tridimensional
heterogeneous systems. A 3D analytical model based on a regular array as shown in Figure

A.1.3 was considered:

LAy Sl A
///L

N V1 V

|

Figure A.1.3 Filler distribution studied in 3D models (Aris, 1985, 1986; Cussler et al., 1988;
Falla et al., 1996; Lape et al., 2004; Moggridge et al., 2003)
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It is worth to note that Aris built one of the first 3D analytical models (Aris, 1985, 1986). The
well-known model he proposed to describe diffusion in such nanocomposite systems can be

cast in the following form:

Dery a’f?  af 4af wa’f -
D, _<1+1—f+0_s+n(1—f)ln<as(1—f)>> .

where o, is the slit shape i.e. the ratio of the distance between two adjacent flakes to its

thickness (s/f) while the expression of f depends on the space surrounding the plates
(f = (@-t)/((5+5)- (t + b))) and the filler aspect ratio is @ = d/(21).

The first term in Eq. (A.1.37) is just unity. The relative diffusivity becomes 1 when the flake
volume fraction f equals zero. The second term is attributed to the tortuous path around the
flakes. The third term, involving oy, represents resistance to diffusion due to constriction
between adjacent flakes. The last term corresponds to the resistance offered by the “necking”
phenomenon faced by a diffusive molecule while circumventing the edges of the flakes at the
entrance or exit of the slit. Wakeham and Mason (Wakeham & Mason, 1979) proposed a
slightly different equation:

-1
Derr a’f? af 1-f
D = <1 troptot 2(1 —f)ln<205f>> (A.1.38)

The difference between equations (A.1.37) and (A.1.38) is the fourth term. It is assumed to be
dependent of the aspect ratio for Aris and independent of this parameter for Wakeham and
Mason. This fourth term is the most controversial of those in these equations. Cussler et al.
(Cussler et al., 1988; Moggridge et al., 2003; C. Yang et al., 2004) argued that this resistance
as well as the third term should be insignificant for nanocomposites with a large number of
layers or flakes. They proposed then two simplified equations depending on the filler shape.

For ribbon-like flakes, the simplified equation is:

Derr a’f? -
Do (1 + m) (A1)

For hexagonal flakes, it reads:
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Dess 2223 \ '
D <1 + m) (A.1.40)

More recently, Dil and coworkers (Jalali Dil, Ben Dhieb, & Ajji, 2019) have developed a new
analytical model in order to study the effect of fillers on nanocomposites barrier properties.
They have derived their model from Bharadwaj’s analytical model where they have defined a
new factor called “Herman’s orientation function” v (v=(3cos’0-1)/2).

Their derived equation is given by equation (A.1.41) :

-1
Deff _ _ 2
D—o = af(1 /—3(1 - (A.1.41)

The expressions of the relative diffusivity for the analytical models detailed in this review are
summarized in Table A.1.1. In the next section it will be shown how these analytical models
have been used to make comparison with experimental data to improve the understanding of

gas barrier properties of biphasic systems in regards to their morphology.

1.3.2 Confrontation of the models with experimental data

Among the different models depicted in the previous part, Maxwell law is one of the most
used models when focusing on polymer matrices loaded with spherical phases and
considering f below 0.3 (Alix et al., 2012; Bitinis et al., 2012; Bugatti et al., 2010;
Choudalakis & Gotsis, 2009; O. C. Compton, Kim, Pierre, Torkelson, & Nguyen, 2010;
Crétois et al., 2014; Guan et al., 2016; Ha et al., 2016; Hotta & Paul, 2004, p. 200; Jacquelot
et al., 2006; Kwon & Chang, 2015; Y. T. Park et al., 2013; Picard, Vermogen, et al., 2007;
Shah, Krishnaswamy, Takahashi, & Paul, 2006; Takahashi et al., 2006; Thomas P & Thomas,
2012; Yano, Usuki, Okada, Kurauchi, & Kamigaito, 1993). Simplified Maxwell law (equation
(A.1.15)) has been shown to accurately describe the transport properties of a wide range of
polymers filled with spherical inorganic particles such as precipitated calcium carbonate
fillers, metal nanofillers (Di Maio, Santaniello, Di Renzo, & Golemme, 2017; Morel et al.,
2012; Morel, Espuche, Bounor-Legaré, Persynn, & Lacroix, 2016; Simon, Alcouffe, &
Espuche, 2014; Su, Buss, McCloskey, & Urban, 2015). This law permits to describe the
impact of dispersed domains with very different sizes (from a few tens of nanometers to a few

hundred micrometers). However, it fails when defects (voids) or increase in free volume
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produces at the polymer/filler interface leading to an unpredicted increase of permeability or
when strong interactions are established at the polymer/filler interface inducing a slowdown
of the diffusion rate in the interfacial area in comparison with the diffusion rate in the bulk
matrix (J. Compton et al., 2006; Espuche et al., 2005; Morel et al., 2012; Shen & Lua, 2012;
Takahashi et al., 2006). Only few authors have focused on comparing different models
concerned with the dispersion of spherical domains to the same experimental data. Shen et al.
(Shen & Lua, 2012) showed that the following order was obtained for prediction of
permeability results of polyvinylidene fluoride/SiO, membranes: Maxwell model >
Bruggeman model > Higuchi model.

During the last decades, a great attention has been paid to lamellar nanofillers (such as
montmorillonite, vermiculite, double hydroxide layers, graphene...) due to the significant
reinforcement of barrier properties expected from their high aspect ratio (Alix et al., 2012;
Bitinis et al., 2012; Bugatti et al., 2010; Choudalakis & Gotsis, 2009; J. Compton et al., 2006;
Crétois et al., 2014; Cui et al., 2016; Guan et al., 2016; Ha et al., 2016; Hotta & Paul, 2004;
Jacquelot et al., 2006; Kwon & Chang, 2015; Y. T. Park et al., 2013; Picard, Vermogen, et al.,
2007; Shah et al., 2006; Takahashi et al., 2006; Thomas P & Thomas, 2012; Yano et al.,
1993). For platelets lying in the plane of the film, experimental results have been often
analyzed thanks to Nielsen equation. In most studies, the methodology consists in using the
chosen model (Nielsen, Cussler or Fredrickson & Bicerano...) to calculate the filler mean
aspect ratio that allows fitting with a good accuracy the experimental relative permeability
values of the nanocomposites prepared for increasing filler volume contents. The calculated
mean aspect ratio is finally compared with the theoretical aspect ratio of the individual
platelet or more often with the mean aspect ratio measured thanks to morphological analyses
performed by transmission electron microscopy. A rather good agreement is obtained between
experimental and theoretical values when a high degree of platelet exfoliation is achieved (E.
Picard, Vermogen, et al. 2007; Y. T. Park et al. 2013; Shah et al. 2006; Hotta et Paul 2004).
Moreover, although some differences are observed between the aforementioned models, it is
generally difficult to decide which of the various theories provide the best prediction because
the theoretical aspect ratio values are often within the range of aspect ratios determined by
experimental observations (Picard, Vermogen, et al., 2007; Takahashi et al., 2006). However,
for many systems, the morphology obtained is significantly different from the ideal
morphology (e.g. fully exfoliated structures lying in the plane of the film). Very often, all the
dispersed objects are not perfectly lying perpendicular to the gas flow (Jacquelot et al., 2006;
Van Rooyen, Bissett, Khoathane, & Karger-Kocsis, 2016). Furthermore, in many cases, the
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dispersed objects do not have the same size due to the coexistence of exfoliated and
intercalated structures (Hotta & Paul, 2004; Mittal, 2008; Picard, Vermogen, et al., 2007,
Shah et al., 2006). For these non-ideal morphologies, the barrier properties calculated by the
previous models do not agree with experimental results. Therefore, Bharadwaj equation has
been used to model systems with a random orientation of exfoliated platelets (Bharadwaj,
2001). For that morphology, the value of O parameter in Bharadwaj equation is fixed to 0 and
the methodology consists here again in determining the filler mean aspect ratio value that
allows the best fitting of the experimental results obtained for increasing volume fractions of
dispersed fillers. The calculated value is then discussed with respect to the experimental one
estimated thanks to the morphological observations performed on the samples. When the
dispersed structures are intercalated, the platelet stacks are usually considered as impermeable
domains for modeling. A reduced filler aspect ratio value is taken into account due to the
increase of the considered thickness. A reduction of barrier properties is generally evidenced
through experimental data in agreement with theoretical analysis. However, it is to highlight
that some authors have experimentally shown that platelet stacks could not always be
considered as impermeable phases. Indeed, an increase of gas solubility was evidenced in
some nanocomposites based on intercalated structures in comparison with nanocomposites
based on exfoliated structures (Jacquelot et al., 2006). However, it appears that this does not
significantly impact the barrier properties at low filler volume fraction. One explanation could
be that the volume fraction concerned by this phenomenon (related to the volume between the
platelets in the stacks) is too small to play a significant role in the transport phenomenon. For
a significant number of nanocomposite systems, the morphology is not as simple as that
depicted in the previous discussed cases. A coexistence of exfoliated and intercalated
structures can be observed. Moreover, all intercalated structures do not always contain the
same platelet number. This complex morphology is often favored as the filler volume fraction
increases in the material. Some experimental results (Picard, Vermogen, et al., 2007) have
shown that contrary to what was commonly expected, some interesting gas barrier properties
could be obtained in agreement with Lape et al. work (Lape et al., 2004). To explain such
results, Picard et al. assigned different density values to exfoliated and intercalated structures
due to the presence of organic species in the last structures (Picard, Vermogen, et al., 2007).
Taking into account these different density values and based on a detailed quantitative
analysis of the dispersed objects resulting from transmission electron microscopy and
scanning electron microscopy observations, they have proposed a modified expression of the

classical models (Nielsen, Cussler). In their modified models, a discretization of the aspect
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ratio values of the different dispersed phases is considered in relation with the morphological
data obtained from a detailed TEM and SEM analysis of the samples. A good agreement
between experimental and calculated permeability values was observed. The fact that the
intercalated structures haven’t a detrimental effect on gas barrier properties is explained in
this case by the limited number of platelets forming the stacks and also the relatively low
amount of stacks. By this example, it can be clearly seen that the analysis and understanding
of barrier properties in non-ideal systems can become very complex, needing both detailed
morphological analyses and more complex models. Among the analytical models described in
the previous part of this review, Aris model is one of the most detailed and complex models
(Aris, 1985, 1986). According to our knowledge, unfortunately, the Aris model was not
confronted with nanocomposites experimental results probably due to a general lack of
detailed quantitative morphological analyses performed on materials.

Table A.1.1 - Summary of analytical models cited in the review.

Model

Filler type

Array/Orientation Model Aspect

dimension ratio

Relative diffusivity

Maxwell Spherical Homogeneous 2D 1 Depr 1
(Maxwell, form dispersion of Dy, 1+f/2
1873) impermeable
spheres
Bruggeman Spherical Homogeneous 2D 1 Derr 1 1/2
(Bruggeman, form dispersion of D, -5
1935) impermeable
spheres
Maxwell- Spherical Homogeneous 2D 1 Desp  (1—m) — (1 —ne)f
Wagner-Siller form dispersion of D, (-1 —-n,)+n.f)
(Bouma et al., impermeable
1997; Rafiq et spheres = ai
al., 2014) e 3
Higuchi Spherical Homogeneous 2D 1 Desr _
(Higuchi, form dispersion of Do
1958; Higuchi : (1 _ L) 1— )1
& Higuchi, 1mpe;meable H2f-Ku(1=1) ( jl
1960) spheres
Nielsen Ribbons of Regular array, 2D wit Depp 1
(Nielsen, 1967)  infinite length oriented D, af
with a width L+
w and

thickness t
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Cussler Ribbons of Regular array, 2D wit Ds f_ 1
(Cussler et al.,  infinite length oriented D, g af. .
1988) with a width =)’
w and 1
thickness t &=
Cussler (C. Ribbons of Two courses of 2D w/t Deff 1
Yang et al., infinite length ribbons with D, & af., .,
2004) witha width ~ alignment and =7 &)
w and misalignment —1
thickness t occurring with &=
equal probability
Cussler (C. Hexagons Random array, 2D w/t Defr 1
Yang et al., with a width oriented D, £ (af\?
2004) w and I+1=7 (7)
thickness t
£=2/27
Raleigh(Lord Cylindrical Regular array, 2D 1 Derr 1
Rayleigh, form oriented D, 1+
1892)
Lape-Cussler Ribbons of Random array, 2D w/t Desr 1
(Lape et al., infinite length oriented D 2 a
2004) ithia widih * (+3fa)
w and
thickness t
Lu (Lu & Mai, Platelets of Random array, 2D wit Dess 1,66
2007) infinite length non-oriented Dy af 5/3
with a width (1 + T)
w and
thickness t
Bharadwaj Ribbons of Random array, 2D w/t D,y f_ 1
(Bharadwaj, inﬁnite lepgth non-oriented D, f ( )0 + )
2001) with a width w3 2
W i =1 (3cos20—] )
thickness t
Sorrentino Ribbons of Regular array, 2D wi/t Derr 1
(Sorrentino et infinite length non-oriented Dy Z+1 )
al., 2006) with a width A )
w and
thickness t
Nazarenko Stacks of Random array, 2D dit Des f_ 1
(Nazarenko et disks with a non-oriented D f D
al., 2007) diameter D ° 1+ 1/3(2 )
and thickness
e
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Aris (Aris, Flakes of d Regular array, 3D d/2t D 202
1986) wide and t oriented ;—ff =11+ ij aF 4 +
thick, o S )
separated by A 2 B
distance b, af In ( ey )
and extending w{=) os(1=f)
infinitely
Fredrickson— D.isk with a Randgm array, 3D d/t Dess 4(1+x+0.12452) -2
Bicerano diameter D oriented Dr ( 24y )
(Fredrickson &  and thickness 0
Bicerano, e =no/ f (2In(a/2))
1999)
Dil et al (Jalali Ribbons of Random array, 2D d/2t -1
Dil et al., infinite length non-oriented Desr =|af(1- _2
2019) with a width D, 3(1—-v)
w and
thickness t 3co0s%0 — 1
YT

The vast majority of models cited in this first part of the review cover cases that range from
simple 2D / 3D systems, where particles of rectangular shape such as platelets or ribbons are
regularly or randomly distributed in the polymer matrix. In these approaches, the effects of
several parameters (volume fraction, aspect ratio, orientation, dispersion, distribution) on
barrier properties have been investigated. According to most authors, the modification of the
expression of the tortuosity factor is sufficient to account for the main effects of those
parameters on barrier properties. Furthermore, those analytical models are often
experimentally supported for the most simple nanocomposite structures. However, in order to
go further in the understanding of actual materials and their barrier properties, the need for
new models allowing simulation of 2D and 3D complex systems is clearly evidenced. New
models have been built in order to simulate 2D and 3D complex systems where fillers are
symmetrical disks or flakes of different shapes instead of infinite ribbons. Those models are
too complex to yield a simple analytical equation for the relative diffusivity, so they need to

be solved numerically using various numerical methods and tools.
1.4 Numerical approaches

In order to overcome the limitations of the previous approaches, more geometrically complex
models have been proposed to predict the enhancement in barrier properties of 2D and 3D

systems containing different nanofiller types. Generally, as these models cannot be solved
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through analytical calculations, various numerical methods can be used to obtain approximate
solutions. This paper discusses several works based on the Monte Carlo (MC) method, the
boundary element method (BEM), the finite volume method (FVM) and the finite element
method (FEM) (Bhunia et al., 2012). The Monte Carlo (MC) method relies on a repeated
random sampling of a large number of single events in order to provide an approximate
averaged solution. Schematically, MC simulations provide numerical solutions of a
deterministic problem through a microscopic and probabilistic approach (Eitzman, Melkote,
& Cussler, 1996; Swannack et al., 2005). Contrary to the MC method, the BEM, FVM and
FEM are based on the solution of partial differential equations (PDE), meaning that the
problem formulation is cast in a macroscopic and deterministic way. The BEM distinguishes
itself as a “boundary” method, meaning that the numerical discretization is conducted at
reduced spatial dimension, leading to smaller linear equation systems and less computer
memory requirements (Wrobel, 2002). The FVM is conservative in essence and based on flux
evaluation at cell boundaries (Versteeg & Malalasekera, 2007). Its main strengths are
accuracy and rapidity on regular meshes. However, when the studied geometry becomes more
irregular and complex, these advantages turn out to be less remarkable. The FEM is also a
method of choice for simulating diffusion problems. One of its main benefits is that it offers
great freedom in the selection of discretization: shape and dimension of elements that can be
used to discretize the space domain as well as basis interpolation functions. Furthermore, in
order to describe the diffusion process in nanocomposites and to analyze the influence of the
structural parameters such as aspect ratio, orientation angle, volume fraction, intercalation
level, etc., the FEM was found to be the most suitable because it is consistently robust for
representing various structures. It is also flexible enough to incorporate a 3D structuration of
the nanofillers (Bhunia et al., 2012). As aforementioned, the complexity of the structure of the
systems (polymer matrix + fillers) is the main reason why numerical models have been
developed. Hence, in the following, several modeling approaches (from simple, regular 2D
systems to more complex, randomly distributed 3D morphologies) will be presented and

discussed.

1.4.1 Regular array

This type of dispersion, for which fillers are placed perpendicularly to the gas flow, has often
been considered because it is supposed to lead to better barrier performance. It has been

analyzed in the case of two-dimensional systems as well as three-dimensional systems.

32



Part A: Chapter 1

1.4.1.1 2D systems

Similarly to analytical models, the earlier numerical approaches have been conducted for a
regular distribution of fillers in the polymer matrix because those systems are the simplest
ones and can be considered as ideal systems. The studied geometries are often distributed as

shown in Figure A.1.4.

1)

(2)

Figure A.1.4 Filler regular distribution in 2D systems

Falla et al. (Falla et al., 1996) used Monte Carlo approaches to simulate transport across
membranes containing oriented fillers. The method adopted by the authors consists in
calculating the molecular mean square displacement as a function of time to estimate the
relative effective diffusivity:

Derr  3xep

A.1.42
Dq y ( )

where ¢ is the slope of the plot of the mean square displacement versus time and y is the mean
free path travelled by the molecule. Their model is one of the oldest ones, but it was efficient
to predict barrier properties of nanocomposites in which fillers were organized as shown in
the work of Cussler et al. (Figure A.1.3), except in the present case the system is 2D. The
considered fillers were ribbons of infinite length, regularly spaced and oriented
perpendicularly to the diffusion path. The volume fraction of the fillers, their aspect ratio «
and the slit shape o, were varied. As a result, it has been found that diffusivity is less affected
when o is small and oy is large, while it is more affected when a is large with small values of

o,. These results are in good agreement with Aris’s equation (A.1.37).
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Chen et al. (X. Chen & Papathanasiou, 2007) focused their study on the barrier properties of
flake-filled polymer membranes. They built a numerical model where flakes were aligned
parallel to the membrane surfaces and diffusion has been set to be perpendicular to the
membrane surface. They used the boundary element method to solve diffusion equations.
Two cases of arrays for a periodic arrangement of aligned monodisperse flakes were
analyzed: quadratic array (Figure A.1.4 (1)) and staggered array (Figure A.1.4 (2)). The red
boxes shown in Figure A.1.4 are the unit cells chosen for each distribution. The authors
found that the results yielded by their numerical model are in good agreement with the Aris
model which predict barrier properties of high aspect ratio, monodisperse flakes in a
staggered array. This conclusion is similar to that of Falla’s study.

Swannack et al. (Swannack et al., 2005) have conducted Monte Carlo simulations of a
polymer-clay nanocomposite system in order to study its barrier properties. They built a 2D
model where impermeable rectangular platelets were regularly dispersed in the polymer
matrix as shown in Figure A.1.4 (2). They also proved that their 2D Monte Carlo simulation
results are in accordance with Aris equation. Figure A.1.5 shows this agreement for a slit
shape value of 0.1 (the slit shape is defined as the ratio of the horizontal gap between fillers to

their thickness).

—&— 2D numerical results
—— Aris's model

D./Do

0.00 0.05 0.10 0.15 0.20

Figure A.1.5 Comparison of Swannack’s 2D numerical results with Aris's model

Minelli et al. (Minelli, Baschetti, et Doghieri 2009) focused on impermeable fillers inserted
regularly in the polymer matrix perpendicularly to gas diffusion, in a staggered array. As well
as in Chen’s work, they considered a repeating unit cell to simplify the diffusion problem

(Figure A.1.4 (2)). They used a finite volume method to build and solve a numerical model
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which could take into account parameters such as filler shape, distribution and volume
fraction. They compared their numerical results to an analytical model derived from a

modification of Aris’s equation:

Dy £(1+§)2+(0€f)2(1+05/a)4

Defr 05 1-f(1+05/a)
of [ on? [ 1-f+0,/@) (A.1.43)
Ta/a (1+ Z) tn [fas(l +0,/a)(m/2)

In this equation, the overall resistance to mass transport is subdivided into two resistances: the
resistance of the neat matrix and the resistance due to the tortuous path. They have found a
good agreement. Moreover, their results have been compared to previous empirical models
developed for the same purpose (X. Chen & Papathanasiou, 2007; Falla et al., 1996;
Swannack et al., 2005). They concluded that the increase in barrier properties is predicted for
low slit shape values.

According to their results, the smaller the ratio a/o,, the lower the enhancement of barrier
properties. Sridhar et al. (L. N. Sridhar, Gupta, & Bhardwaj, 2006) attempted to evaluate the
transport properties in 2D heterogeneous system containing aligned flakes. Again, the studied
configuration can be represented by Figure A.1.4. They considered a computational method
based on a network of series/parallel resistances associated with a finite difference method.
They could assess the decrease in relative diffusivity as a function of filler aspect ratio,
volume fraction, orientation and their structural parameters. Numerical results matched with
experimental data for a gap between fillers value equal to 6 nm.

Later, in the same context, Statler et al. (Jr & Gupta, 2007) used a finite element method to
evaluate the reduction of the diffusivity in nanocomposites systems. The impermeable fillers
have been considered as uniformly dispersed platelets with perpendicular orientation to the
mass transfer direction similarly to previously cited works (Figure A.1.6). In the
computational procedure, a unit cell has been chosen and boundary conditions were set (a
ratio of concentration (C/Cy) was set between 0 and 1 at the left and right boundaries of the
unit cell). It was found that the numerical results are in good agreement with the Cussler
analytical model for a slightly important filler volume fraction (beyond 8%). In addition, the
Nielsen model over-predicts relative diffusivity in the same region (Figure A.1.6). Indeed, the
Nielsen theory does not take into account the reduction of the area for diffusion whereas

Cussler’s model does.
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Figure A.1.6 Unit cell and results of Statler et al. (Jr & Gupta, 2007) model

1.4.1.2 3D systems

Most of the earlier numerical approaches developed to model gas diffusion properties of
nanocomposite materials only considered bi-dimensional systems. However, new approaches
allowing the description of the composite material in 3 dimensions have been used
increasingly.

Swannack et al. (Swannack et al., 2005) built a 3D model in which the fillers are regularly
spaced parallelepiped platelets. Similarly to the 2D part of their work, they used a Monte
Carlo approach in order to calculate the values of the ratio Dy/D,¢s for several ranges of
structural parameters. The results were compared to their 2D model and Aris’s equation. They
obtained a reasonable agreement with Aris’s equation for low values of filler volume fraction
but in the majority of cases, Aris’s equation under-predicts the effective diffusivity values,
contrary to what has been obtained with the 2D geometry (Figure A.1.7). Actually, the 2D
simulations predict a lower effective diffusivity than the 3D simulations. The authors
explained these discrepancies by pointing out that for a given filler volume fraction, a truly
3D geometry (platelets with finite extension) allows more permeation than a 2D geometry

(platelets with infinite extension) and thus leads to a higher effective diffusivity value.
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—a— 3D results
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Figure A.1.7 Comparison of 3D Swannack numerical results and Aris equation

Goodyer and Bunge (Goodyer & Bunge, 2007) later developed a finite element model based
on the resolution of Fick’s law in 3D geometries with different filler shape (ribbons, squares,
hexagons). The main objective of their work was to compare numerical simulation results to
the experimental work of Cussler and Liu (Q. Liu & Cussler, 2006). The unit cell, shown by a
dotted red line in Figure A.1.8, extends down through the transversal direction of the domain.
Besides, the chosen unit cell depends on the repeated unit in the considered geometry. They
considered in their model the so-called necking effect of molecules diffusing into and out of
the slits between fillers. They could show that for one layer of flakes, whatever the filler
geometry, the numerical results were in agreement with previous models. Furthermore, for
multiple layers of fillers, the numerical results over-estimated the barrier effect

experimentally achieved by Cussler and Liu.

Figure A.1.8 Example of geometry studied by Goodyer et al. (Goodyer & Bunge, 2007) (the
dashed red box is the unit cell)
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In order to gain a better understanding of the relationship between morphological
characteristics and effective permeability in nanocomposites systems, Minelli et al. (Minelli,
Baschetti, & Doghieri, 2011) built a 3D finite volume model of ordered dispersed flakes

which presented various (but homogeneous) shapes (Figure A.1.9).

Figure A.1.9 Example of geometry adopted in Minelli's model

They considered hexagonal tablets, square tablets, octagonal tablets and circular disks. In this

work, the authors introduced the following expressions of filler aspect ratio and slit shape:

Sn
a=g (A.1.44)
S
0y = =1 (A.1.45)
St

where S is the area of the filler lateral surface, S, is the cross section area of filler (normal to
the flux direction) and S, is the area corresponding to cross section of the matrix region
between adjacent fillers, in the filler plane. Several ranges of fillers aspect ratio values,
volume fractions and slit shapes have been considered in order to study their effect on the
composite transport properties. For both 2D and 3D geometries, the authors compared their
simulation results to Aris’s equation (A.1.37). The good agreement obtained means that Aris’s
equation could be directly applied to the 3D ordered geometries if the definitions they
proposed for the fillers aspect ratio and slit shape (Eqs. (A.1.44) and (A.1.45)) were used.
Figure A.1.10 shows the variation of diffusivity as a function of the filler shape and volume

fraction for fixed values of slit shape o, = 0.5 and aspect ratio a = 5.

38



Part A: Chapter 1

1.0 5

—=— Hexagons
—e— Squares
—a— Circles
0.9
0.8
&
=
15
0 0.7
0.6
0.5 T T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025

f

Figure A.1.10 3D numerical results for ordered fillers of various shapes (Minelli et al., 2011)

It is interesting to note through Figure A.1.10 that relative diffusivity actually depends on the
filler shape. Indeed, for a given volume fraction, a dispersion of circular flakes affects less

diffusivity than a dispersion of hexagonal or square flakes does.
1.4.2 Random array

1.4.2.1 Homogeneous filler orientation/size

2D systems

Several efforts have been carried out to numerically evaluate the enhancement in barrier
properties brought by random dispersion of impermeable flakes in a dense matrix. Geometries

studied in the next works are presented in Figure A.1.11.

(A) ‘l’ (B) ‘1’

Figure A.1.11 Fillers random dispersion in 2D systems. BC indicate boundary conditions
imposed at the upper and lower faces of the system. Arrows indicate mass flux direction. (A):
filler mid-plane perpendicular to mass flux direction; (B): filler mid-plane angled with respect

to mass flux direction.
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Using the fast multipole accelerated boundary element method, Chen and coworkers (X. Chen
& Papathanasiou, 2007) have built a 2D model where simulations were based on models of
random arrays of monodisperse flakes (Figure A.1.11(A)). While the dispersion of fillers
seemed complex and non-uniform, the authors have adopted a non-periodic representative
volume element (RVE) to solve the problem. The concentration boundary conditions were
applied on the upper and lower faces of the unit cell as shown in Figure A.1.11. They found
that their model over-predicted the results of the theoretical model proposed by Lape et al.
(Lape et al., 2004) because the latter induced too much simplification of the influence of the
flake-flake interactions on the diffusion path tortuosity.

In order to study a random array with homogeneous filler size and orientation, Minelli
(Minelli et al., 2011) built a 2D geometry through an algorithm that randomly distributes
platelets of fixed structural parameters in the computational domain. They concluded that the
barrier enhancement effect increases as filler aspect ratio or volume fraction increases.
Furthermore, their numerical results showed an agreement with previous numerical models
such as Chen’s model. Bhunia et al. (Bhunia et al., 2012) developed a computer simulation
model using the FEM method in order to analyze the changes in barrier nancomposites
properties when the structural parameters are modified. Fillers were chosen to be platelets of
rectangular cross section, either perpendicular to the diffusion path or showing an orientation
angle 6 between the direction of diffusion and the average orientation of the flakes as shown

in Figure A.1.12.

0

L

v
diffusive flux direction

Figure A.1.12 Angle of orientation defined in the cited models

Their results indicated that for a filler volume fraction f ranging from 1% to 7% and a filler
aspect ratio o ranging from 50 to 1000, the best barrier property for an exfoliated system
could be obtained for the optimum structural parameter couple (f = 5%, a = 500). Moreover,
they showed that an exfoliated system could improve barrier properties much more efficiently

than an intercalated one. Finally, the gas barrier properties could be greatly reduced if the
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orientation angle increases (€ ranges from 0 to 85 i.e. from perpendicular to quasi parallel
direction with respect to the diffusion flux).

Another recent model has been built by Tsiantis and Papathanasiou (Tsiantis &
Papathanasiou, 2017), which treated the barrier properties of flake filled composites as a
function of fillers orientation. For that purpose, they used a Random Sequential Adsorption
(RSA) algorithm in order to build a representative volume element of the geometry. The unit
cell adopted was quite similar to the one presented in Figure A.1.11 (B). They used the
OpenFOAM software in order to generate the adequate mesh to solve the steady-state
diffusion equation. Their computational results have shown that the effective diffusivity for a
system of randomly placed flakes oriented with an angle (7/2 - 8) with respect to the direction
of the diffusive flux is:

Deff 1_f 2 1_f )
Dy~ (A +af/d) C0s 0 + 1+f/2asm 0 (A.1.46)

where 6 is the angle formed between the direction of the diffusion and the outward normal
vector on the flake surface and ./ is an adjustable geometrical parameter.

The same authors (Tsiantis & Papathanasiou, 2019) derived numerical solutions for barrier
properties of flake filled composites where fillers were randomly placed and oriented
(0<6<m/2).

They have shown through their work that 1D representation of the studied systems is suitable
for very high aspect ratio flakes. Their numerical results were in adequacy with the harmonic
and the arithmetic averages based on Nielsen and Lape’s models.

3D systems

Various 3D models have been built taking into account the random dispersion of fillers in a

homogenous system as shown in Figure A.1.13.
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BC2

Diffusive flux direction

Figure A.1.13 3D dispersion of homogeneous disks in the matrix

Gusev and Lusti (Gusev & Lusti, 2001) have used a direct finite element method to solve a
three dimensional periodic model comprised of a random dispersion of perfectly parallel
impermeable disks in an isotropic matrix (Figure A.1.13) by solving Laplace’s equation.
Concentration boundary conditions have been applied on the upper and lower faces of the box
and periodic boundary conditions on the lateral faces of the box. As results, they have shown
that permeability in such a system was reduced by a factor defined as the product of the filler
aspect ratio a and its volume fraction f. Furthermore, Gusev and coworkers derived an

empirical equation from these numerical predictions:

-0.71
Deys (of (A.1.47)
Dy _ex”( (3.47))

Through this study, they also showed that the presence of high-aspect-ratio atomic-thickness
nanofillers could lead to changes in the local gas properties especially around fillers.

A similar work has been performed by Nagy et al. (Nagy & Duxbury, 2002) to study the
effect of the tortuous path on the overall diffusivity in a 3D flake-filled system. They adopted
a resistor representation and showed that the enhancement of barrier properties is a function

of the factor a f through the sum of linear and quadratic contributions.

Minelli et al. (Minelli et al., 2011) also developed a 3D finite element model to analyze a
similar configuration (Figure A.1.13). Their work resulted in the following equations which

could be applied for either 2D or 3D systems:
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Derr  f f?(a+2)* 2 2 a
D, ﬁ(a t2%+ 4(a? —af(a+2) * g(a +2)%In [n (f(a + 2) 1)] (A.1.48)
ifr<1
DDe—];f=1+§(0{+2)+%(a+2)21n[%(a+2)] (A.1.49)
ifr >1
where
_ 2(a—f(a+2) (A.1.50)
 f(a+2)?

and a is the filler aspect ratio as defined in equation (A.1.44). Like previous works, they have
concluded that in the case of 3D random systems, the barrier enhancement effect increases as
a or f increases. Figure A.1.14 shows that the shape of the filler cross section (circles or

squares) has no significant effect on the overall barrier properties of the nanocomposite.

—a— Circles
—e— Squares
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Figure A.1.14 Effect of structural parameters on diffusivity for the 3D random model

proposed by Minelli et al. (Minelli et al., 2011)
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1.4.2.2 Heterogeneous filler orientation/size
2D systems

In this class of systems, the fillers are randomly positioned in the matrix as in the previously
described works, but in addition, they do not all have the same size or orientation. Several
configurations have been considered in 2D systems and some of them are summed up in

Figure A.1.15.

(A) (B) ©)
Figure A.1.15 Fillers randomly distributed in 2D: (A) random orientation; (B) polydisperse
fillers; (C) stacks of fillers (intercalated system) with diffusive flux lines. Bold red lines

correspond to the inlet and outlet boundaries for mass diffusion.

Greco (Greco, 2014a) used the finite element method in order to build a 2D model that
describes barrier properties of randomly oriented nanocomposites (Figure A.1.15 (A)). In this

study, the ‘normalized’ diffusivity coefficient was defined as:

Deff — (Leff)_4 (AISI)

L.y being the average normalized length which depends on structural parameters such as
fillers aspect ratio, volume fraction and orientation angle. The relation proposed by Greco in

2D is given by equation (A.1.52) :
4

Ders = (=) (1+v2(1~2) fa(cosd) ?) (A.1.52)

0 1s the angle formed between the direction of diffusion and the normal vector to the platelet
surface. Later, Greco (Greco, 2014b) expanded his previous work to intercalated
nanocomposites by introducing the notion of galleries, i.e. matrix layers between stacked
nanofillers. He considered that diffusing moieties could follow trajectories corresponding to
the flux lines shown in Figure A.1.15 (C). He introduced a new equation of diffusivity taking

into account the orientation angles of fillers as well as the presence of galleries:
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fa . W\Te\ . :
Derr=|1+0.5—cosf(1—sinf)+f|1+|1——]—])sin6(1 — sinb) (A.1.53)
2 n n t

where G subscript refers to galleries. n is the number of platelets while 7 and ¢ are the
thickness of the galleries and platelets respectively. Since the numerical model built by Greco
was able to simulate diffusion between platelets, it was concluded that the coefficient of
diffusion decreases as the following parameters increase: the degree of intercalation, the
lamellar galleries thickness, and the degree of dispersion. It also decreases as the number of
lamellar sheets in each stack decreases.

Dondero and coworkers (Dondero, Tomba, & Cisilino, 2016) built a model in which
impermeable fillers of rectangular shapes are randomly dispersed in a homogenous and
isotropic matrix and focused on the effect of the orientation angle. The configuration is
represented by Figure A.1.15 (A). The boundary element method (BEM) was used to
simulate the diffusion process governed by Fick’s law. The authors considered that the
membrane becomes anisotropic in terms of diffusion due to the presence of fillers. Hence, the
expression of the diffusion coefficient was associated to a flux in i-direction due to a
concentration gradient in j-direction. They have adopted also the RVE strategy which
consisted in determining the number of flakes, the aspect ratio and the width of excluded
boundary strips. A new equation was introduced for the prediction of the diffusivity tensor
which extends Lape’s model (Lape et al., 2004) by using Bharadwaj’s approach (Bharadwaj,
2001):

Deff _ 1-f
Dy

enderd(o D] e
assuming that O is the orientational order introduced by Bharadwaj and 7 is an empirical
coefficient which was introduced by Dondero et al. in order to improve the performance of
their analytical model compared to the numerical results. Dondero’s analytical model showed
that the disorder in flake orientation had a significant impact on diffusivity in the direction
parallel to the flakes orientation.

Chen (X. Chen & Papathanasiou, 2007) also studied the barrier performances of
nanocomposites in which polydisperse fillers were randomly dispersed. The configuration
adopted is represented in Figure A.1.15 (B). The main results obtained for this configuration

is that polydisperse flakes could have a greater impact on the relative effective diffusivity than
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monodisperse flakes i.e. barrier properties are more enhanced in the polydisperse case. This
conclusion validates Lape’s and Cussler’s analytical approaches.

A new work has been developed recently by Papathanasiou et al. (Tsiantis & Papathanasiou,
2019) studying the barrier properties in 2D nanocomposite systems of randomly oriented high
aspect ratio fillers. Fillers geometry considered in their work is flakes having a very long
length in the out-of-plane direction. Moreover, they have considered three different
predictions of effective diffusivity expressions (arithmetic, harmonic and geometric averages)
and associated for each a corresponding equation. They showed that, for fillers parallel to
diffusion direction, the harmonic average is the most close to their computational work and
relative effective diffusivity follows an asymptotic behavior when (af) is high. Moreover,
their model is in agreement in existing models in literature for different misalignment states
going from unidirectional to random.

3D systems

Although 3D models are computationally intensive, the ability to analyze quite realistic
configurations incited authors to build such models in order to study diffusion in randomly
dispersed and oriented nancomposites. To this purpose, Greco and Maffezzoli (Greco &
Maffezzoli, 2015a) used the FEM approach and a geometrical representation based on the
random distribution of small stacks composed of regularly spaced lamellae (Figure A.1.16).
All stacks comprised the same number of lamellae. This work is a continuity of Greco’s

previous work in 2D.

Figure A.1.16 Geometry proposed by Greco et al. (Greco & Maffezzoli, 2015a)

In addition to the effect of the structural parameters on diffusivity, the authors integrated in
their model the effect of galleries thickness and orientation parameter, taking into account
diffusion between stacks and around them. This work seems to be the first 3D approach to
study diffusion inside galleries. The comparison of the results to those obtained from an
analytical model such as Nazarenko and coworkers (Nazarenko et al., 2007) showed a good

agreement. They introduced an alternative equation to express the normalized diffusivity:

46



Part A: Chapter 1

-4

Desy=(1—fF)-| 1+ (%) (%) <1 - %) (’%“) (1 + 6ﬂ£) (als) (A.1.55)

where ag is the stack aspect ratio, a the platelet aspect ratio, n is the number of platelets and f
is the volume fraction of fillers.

Another step towards the improvement of the representativeness of numerical models consists
in building a 3D geometry directly from the morphological and filler dispersion data obtained
by TEM images. For instance, using this approach, Cerisuelo et al. (Cerisuelo, Gavara, &
Hernandez-Muiloz, 2015) have shown through FEM simulations a reduction in the effective
diffusivity which was in agreement with previous works. They also studied the effect of the
tortuosity and necking effects on diffusivity in nanocomposite materials. Cerisuelo and
coworkers showed that in spite of possible size effect of diffusing molecules, which wasn’t
considered in their model, the results obtained seem to agree with previous analytical models
and with experimental data. As well, they showed that filler particles are responsible for the
reduction in the solute diffusivity, since they increase the distance of the diffusion path,
reduce the crossing area, and, as a result, increase the resistance undergone by the solute when
it is displaced through the spacing between adjacent particles in the same horizontal plane.
Table A.1.2 gives a concise overview of the numerical models discussed in this part, with
respect to the considered filler shape, orientation, array, the model dimension and the
simulation method they use. It also clarifies which type of methodology is related to each
model as it specifies for each case if an analytical equation has been derived from numerical
results, if an equation has been used to formulate the numerical model or if an analytical
equation has been used to validate the numerical model, the details being discussed

previously.
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Table A.1.2 : Sum-up of numerical models discussed in the review
a) Equation derived from numerical results, b) Equation used to formulate the numerical
model, ¢) Analytical equation used to validate the numerical model

Method

Filler type Array/Orientation Model Equation

dimension

Minelli
(Minelli,
Baschetti, &
Doghieri,
2009)

Falla (Falla et
al., 1996)

Chen (X.
Chen &
Papathanasio
u, 2007)

Swannack
(Swannack et
al., 2005)

Sridhar (L. N.
Sridhar et al.,
2006)

Statler (Jr &
Gupta, 2007)

Minelli
(Minelli et
al., 2011)

Bhunia
(Bhunia et
al., 2012)

Tsiantis
(Tsiantis &
Papathanasio
u, 2017)

Platelets

Platelets

Rectangular
flakes

Rectangular
flakes

Platelets

Platelets

Hexagonal,
square,
octagonal
tablets and
circular disks

Platelets

Rectangular
flakes

regular array// homogeneous
distribution

regular array// homogeneous
distribution

regular array// homogeneous
distribution

Random array// homogeneous
distribution

regular array// heterogeneous
distribution

Regular array// homogeneous
distribution

Regular array// homogenous
distribution

Regular array// homogenous
distribution

Random array// homogenous
distribution

Random array// homogeneous
distribution

Random array// homogeneous
distribution
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2D

2D

2D

2D

2D

2D

2D

2D

2D

FVM

Monte
Carlo

BEM

Monte
Carlo

FDM

FEM

FVM

FEM

RSA
algorithm

c)

b)

b)
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Tsiantis Rectangular Random array// homogeneous 2D RSA a)c)
(Tsiantis & flakes distribution algorithm
Papathanasio
u, 2019)
Greco Rectangular Random array// heterogeneous 2D FEM a)
(Greco, platelets distribution
2014a)
Dondero Rectangular Random array// heterogeneous 2D BEM a)
(Dondero et flakes distribution
al., 2016)
Greco Rectangular Random array// heterogeneous 2D FEM a)
(Greco, platelets with distribution
2014b) presence of
galleries
Minelli Hexagonal, regular array// homogeneous 3D FVM c)
(Minelli et squares, distribution
al., 2011) octagonal
tablets and
circular disks
Random array// homogeneous a)
distribution
Swannack Rectangular regular array// homogeneous 3D Monte c)
(Swannack et flakes distribution Carlo
al., 2005)
Goodyer Ribbons, regular array// homogeneous 3D FEM a)
(Goodyer & squares and distribution
Bunge, 2007) hexagons
Gusev Disks Random array// homogeneous 3D FEM b)
(Gusev & distribution
Lusti, 2001)
Greco (Greco Permeable Random array// heterogeneous 3D FEM a)
& disks with distribution
Maffezzoli, presence of
2015a) galleries
Cerisuelo TEM Random array// heterogeneous 3D FEM c)
(Cerisuelo et micrographs distribution
al., 2015)

1.5 Conclusion

The development of polymer-based nanocomposites for barrier applications requires a

comprehensive understanding of the impact of their structure on gas diffusion. In the past
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decades, this need has significantly stimulated the development of analytical and numerical
modeling, either as complementary or alternative approaches to experimental ones. Analytical
approaches led to the first models. They have been widely used and have permitted to
establish the first relationships between gas barrier properties and the size, shape, content,
dispersion and array of nanofillers. Although these approaches have undoubtedly enhanced
the understanding of gas barrier properties and agree rather well with experimental data, they
suffer from some limitations when considering complex structures. In this context, various
numerical approaches using the most common and proven computational methods (the Monte
Carlo method, the boundary element method, the finite volume method and the finite element
method) have been developed. The finite element method has made possible to study more
complex nanocomposite structures ranging from simple, regular 2D systems to randomly
distributed 3D morphologies. It has also allowed to evidence and to discuss the effect of
additional parameters in comparison with the analytical models such as necking effects, flake-
flake interactions, possibility for the gas to diffuse in the interspace gallery between platelets
in filler stacks as some examples. Some recent developments have shown the definite
potential of the FEM-based approach in modeling the behavior of a real sample on the basis

of representing the actual sample morphology acquired by transmission electron microscopy.
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Chapter 2 3D Mass Diffusion in Ordered Nanocomposite Systems: Finite Element
Simulation and Phenomenological Modeling

An overview of the chapter

It has been shown through the extensive state of art presented in Othat barrier properties of
nanocomposite systems are strongly related to the structural parameters of fillers, their
dispersion and distribution in the polymer matrix. Indeed; various nanofiller natures, shapes
and loading fractions have been experimentally considered and a wide range of barrier
materials has been obtained. Concurrently, several numerical approaches have been developed
to model gas diffusion properties of nanocomposite materials. However, these approaches
often considered bi-dimensional systems, which can be inaccurate for certain filler. The aim
of the present chapter is to develop a 3D finite element model in order to predict to predict the
gas barrier properties of ordered nanocomposites with disk-shaped nano-fillers, valid in
diluted, semi-diluted and concentrated regimes. An analytical equation describing barrier
properties of such systems has been also derived from phenomenological considerations and

numerical simulation results.
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2.1 Introduction

Problems involving gas diffusion arise today in a large range of fields such as food
preservation , medicinal products packaging (X. Li et al., 2016), solar cell protective coatings
(Kausar, 2018; Yu, Yang, Chen, Tao, & Liu, 2016), fuel cell membranes (Magana et al.,
2015; Makinouchi, Tanaka, & Kawakami, 2017; Yamazaki & Kawakami, 2010), fuel and gas
transportation (Deveci, Oksuz, Birtane, & Oner, 2016; Klopffer, Berne, & Espuche, 2015), as
a few. Most of these domains need materials that combine low cost, easy processing, long-
term flexibility and barrier properties. Although polymers exhibit appropriate cost, processing
and mechanical properties, they cannot meet alone the ever increasing level of barrier
properties required by the applications. Impermeable fillers are then dispersed within the host
polymer matrix to increase the gas diffusion path length by a tortuosity effect (Barrer, 1968;
Bruggeman, 1935; Cussler et al., 1988; Nielsen, 1967). Among the wide range of available
impermeable fillers, nanometer thick lamellar fillers such as montmorillonite, graphene,
double hydroxide layer, zirconium phosphate platelets, etc. are chosen due to their high aspect
ratio (Dal Pont, Gérard, & Espuche, 2013; Follain et al., 2016; Jia, Ma, Gao, & Lv, 2018; X.
Li, Bandyopadhyay, Nguyen, Park, & Lee, 2018; Picard, Vermogen, et al., 2007; Sun, Boo,
Clearfield, Sue, & Pham, 2008; Wolf et al., 2018). Most of the experimental studies and
analytical modeling approaches based on nanocomposites agree with the fact that lamellar
fillers have to be placed perpendicular to the gas flow to maximize the tortuosity effect and
therefore increase the barrier properties (Bharadwaj, 2001; Cussler et al., 1988; Gusev &
Lusti, 2001; Nielsen, 1967; Picard, Vermogen, et al., 2007). In this context, analytical
modeling approaches have investigated the effects of filler content (f) and aspect ratio («)
(Bouma et al., 1997; Nielsen, 1967). The fillers are most often represented as regularly
dispersed ribbons of infinite length. Moreover, the penetrant trajectory is considered as a one
dimensional path in a dilute regime (af <<1) (Fredrickson & Bicerano, 1999). With the
development of high performance numerical tools such as finite element modeling (FEM)
(Cerisuelo et al., 2015; Gusev & Lusti, 2001)or boundary element method (BEM) (X. Chen &
Papathanasiou, 2007; Dondero et al.,, 2016), detailed modeling of more realistic
nanocomposite structures has become possible and several numerical approaches have
focused on diffusion in nanocomposites with homogeneous distribution of nanofillers oriented
perpendicular to the diffusion direction (Goodyer & Bunge, 2007; Minelli et al., 2009, 2011;
Swannack et al., 2005). It is noteworthy that although most of these numerical models have

considered the studied systems as two-dimensional ones, only few of them have taken into
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account the three-dimensional aspect of the studied materials. The main objective of these 3D
models has been to investigate the effects of different filler shapes (hexagonal tablets, square
tablets, octagonal tablets and circular disks) and to compare the obtained results with those
derived by 2D or analytical approaches. It has been shown that 2D simulations generally
predict a lower effective diffusivity than the 3D simulations (Swannack et al., 2005). Indeed,
for a given filler volume fraction, a truly 3D geometry (platelets with finite extension) allows
a more important permeation than a 2D geometry (platelets with infinite extension) and thus
leads to a higher effective diffusivity value. One interest of the numerical modeling approach
is that it permits quite easily to extent the studies to semi-diluted regimes.

Specifically, the aim of this work is to build a 3D numerical model using the finite element
method in order to predict gas barrier properties in nanocomposite systems where fillers,
considered as disks, are distributed regularly and uniformly in a unit cell. The specificity of
the model is its validity for a wide range of fillers volume fractions and aspect ratios, allowing
to go from diluted regime (af<<1) to semi-diluted and concentrated regime as a values up to
25 were considered. Moreover, the analysis of the numerical simulation results obtained for
all the systems considered in this work allowed to clearly evidence the governing role of a
particular geometrical parameter. Accordingly, a phenomenological analytical model was
derived, aiming to predict gas barrier properties of nanocomposites as a function of the
parameters describing the fillers shape and their spatial distribution. Comparison with FEM
simulation results showed an excellently good agreement.

2.2 Finite Element Simulations

2.2.1 Geometrical model

The nanocomposite systems considered in this work consist in a polymer matrix
homogeneously filled with disk-shaped impermeable nanofillers (Figure A.2.1). This simple
filler shape can be considered as representative of platelet-like fillers and has already been
used by several authors to investigate the gas transport properties of nanocomposites from
analytical or numerical approaches. The volume fraction of nanofillers f, chosen in the range 0
—10%, 1s a parameter of the geometrical model. The disk thickness values e have been chosen
in the range 0.6 nm - 2 nm to match the typical thickness values of the elementary platelets for
the most common lamellar nanofiller types (Charifou, Gouanvé, Fulchiron, & Espuche, 2015;
Dal Pont et al., 2013). The disk diameter D was varied between 100 nm and 500 nm. Finally,
couples of (e, D) values were considered to cover filler aspect ratio values a = D/e ranging

from 50 to 250. All disks are oriented perpendicular to the overall diffusion direction z. The
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fillers are dispersed in the matrix in an ordered arrangement consisting in a superposition of
odd and even layers. Though the even layers are identical (in nature and arrangement) to the
odd layers, they are shifted by distances s, and s,, in the x and y directions respectively, with
respect to the odd layers. Within a given layer, the fillers are arranged according to an
orthogonal grid. The distances separating the centers of two adjacent fillers (or in-plane space
steps) in the x and y directions are respectively p, and p,. The in-plane distribution of the
fillers is assumed to be isotropic, i.e. p, = p,. The space step in the diffusion direction (or
thickness-wise direction) p, is defined as the interlayer distance from center to center (as
specified for p, and py). In order to further analyze the results in terms of dimensionless
parameters, a scaled space-step = p/D is defined. The representative volume element (RVE)
of such a two-phase ordered periodic system is the simplest repeating unit in the system, as
shown on Figure A.2.1. It consists of a parallelepipedic volume whose vertices coincide with
the centers of the eight nearest neighboring odd layer disks. The middle layer corresponds to
the even disks. It should be noted that this unit cell contains one net odd layer disk (8 x 1/8
disk) and one net even layer disk. By definition, the unit cell is invariant by translation along

x, y and z by a distance equal to any integer multiple of p,, p, and p. respectively.

Matrix (D,) Nanofiller Overall diffusion

(impermeable) dlractich

— e -

.—%J e | =

Zl unit cell
| J | I
y

-
¢
¢

0

Figure A.2.1 Geometrical model of the ordered nanocomposite and definition of the unit cell

(thickness-wise and plane-wise projections)
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Considering the unit cell, the filler volume fraction is the ratio of the volume occupied by

fillers (two net disks) to the total volume of the unit cell, which reads:

2
nD e

f=—7—
2pxDyP;

(A.2.1)

Hence, the in-plane space step p, can be expressed solely as a function of the geometrical

parameters of the system:

2 (1/2
_ D e A2
px - prz ( et )

In other words, the in-plane dimensions p, and p, of the unit cell are completely determined

by the given filler dimensions D and e, volume fraction f and thickness-wise space step p..
Using appropriate boundary conditions, the unit cell constitutes a relevant computational
domain for solving the governing equation of the diffusion mass transfer process in the

repeating structure.

2.2.2 Governing equation and boundary conditions

Mass transfer in the nanocomposite is assumed to follow Fick’s second law of diffusion,
which can be expressed, in the absence of mass source and in stationary regime, by the partial

differential equation:
V- (=D;Ve;)) =0 (A.2.3)

where ¢; is the molar concentration of the permeating specie i and D;; is the mass diffusion

coefficient (or diffusivity) of permeating specie i in medium j. In the present case, diffusion is
assumed to occur only in the matrix phase and the diffusivity of the considered specie in the
matrix phase is denoted by Dy. In the numerical simulation, a constant value Dy = 102 m2.s!
has been used. It is a representative value of the diffusion of gases in polymers. In the
following, the variable associated with the molar concentration of the permeating specie at

any point of the computational domain (i.e. the concentration field) is denoted by c(x, y, z).

In order to obtain a well-posed boundary value problem, Fick’s PDE was solved together with

the following boundary conditions:

- concentration boundary conditions were imposed on the lower (z = 0) and upper (z =

p.) faces of the unit cell, respectively c(x,y, 0) = ¢; = 1000 mol.m™ and c(x, y,p,) =
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¢, = 500 mol.m™. In this work, the matrix diffusivity is assumed constant and not
concentration-dependent, meaning that the concentration values chosen as boundary
conditions for the upper and lower faces have rigorously no influence on the effective
diffusivity calculated in this work;

periodic boundary conditions were imposed on the side boundaries of the unit cell in
order to set up a constraint that makes any quantity equal on the so-called “source”
and “destination” boundaries. Thus, the periodic boundary condition allows simulating
an infinite repetitive structure based on the explicit modeling of the unit cell
representing this structure;

no-flux boundary conditions were imposed on all filler-matrix interfaces in order to

model the impermeability of the fillers.

Upper boundary:
concentration BC (c,)

Side boundaries (source):
periodic BC

Filler-matrix interfaces:
no-flux BC

Lower boundary:

concentration BC (c;)
Matrix domain:

Fick’s law PDE
V- (—Do VC) =0

Side boundaries (destination):
periodic BC

Figure A.2.2 - Tridimensional representation of the unit cell showing the boundary conditions

Numerical solution and effective diffusivity evaluation

The boundary value problem is solved by the finite element method using the commercial

package COMSOL Multiphysics. The FEM requires proper discretization (or meshing) of the

computational domain in order for the numerical solver to provide accurate and stable results.

Since the fillers are assumed impermeable, only the matrix phase domain needs to be meshed.

An unstructured mesh consisting in tetrahedral elements was generated (Figure A.2.3) and
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refined sufficiently to ensure obtaining a mesh-independent solution, meaning that the results

are not affected by any numerical artifact arising from the discretization method.

Figure A.2.3 - Tetrahedral mesh used to discretize the computational domain
The solution of the boundary value problem yields the molar concentration field of the
permeating specie c(x,y, z). Then, the mass flux vector field of the permeating specie can be

calculated from the concentration field:
N(x,y,2) = —DoVc(x,y,2) (A.2.4)

The effective diffusivity of the nanocomposite is finally given by:

N,p,

1~ (2

Derr = p (A.2.5)

where N, is the average mass flux of the permeating specie across a plane section S normal to

z-direction and located at z = 7y within the unit cell:

— 1

N, = # N,(x,y,z0)dxdy (A.2.6)
PxPy JJg

with N, the z-component of the mass flux vector. It should be noted the mass conservation
principle and the periodic boundary conditions ensure that the average mass flux is the same
in any plane section. Hence, z9 could be indifferently any value chosen between 0 and p,. In
the present work, the mass flux surface integral was evaluated on the upper face of the unit

cell (i.e. zo =py).

2.3 Results and discussion

Previous analytical models (Cussler et al., 1988; Nielsen, 1967) and experimental results (O.

C. Compton et al., 2010; Hotta & Paul, 2004; Thomas P & Thomas, 2012) showed that
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diffusivity in nanocomposites is highly dependent on nanofillers aspect ratio and volume
fraction values. The effect of these parameters on the relative effective diffusivity was
investigated by varying the parameter £ between 0.00585 and 0.1, for several filler aspect
ratios ranging from o = 50 (D = 100 nm, ¢ = 2 nm) to =250 (D = 171 nm, e = 0.684 nm).
The middle layer filler is assumed to be centered within the unit cell (s, = p,/2, s, = py/2), as
shown on Figure A.2.4. Hence, the filler volume fraction f varied in the range 0 - 10% for
each aspect ratio value. The most convenient quantity to characterize and compare the
enhancement of barrier properties in different filled systems is the relative effective
diffusivity, defined as the ratio of the nanocomposite effective diffusivity to the neat matrix
diffusivity: D.g/Do. As expected, improvement of barrier properties is observed when the filler
volume fraction increases for a given value of filler aspect ratio. Likewise, for a given volume
fraction, the higher the filler aspect ratio, the better the barrier effect. Similar trends were
observed by Minelli and coworkers (Minelli et al., 2009) who built a two-dimensional model

using an algorithm based on the finite volume method.
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Figure A.2.4 — FEM-calculated relative effective diffusivity versus filler volume fraction in

ordered nanocomposite systems for different filler aspect ratio values

As a further analysis of the obtained results, the effect of the number of unit cells on the

overall diffusivity has been investigated and the obtained results are presented in Figure

A.2S.
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Figure A.2.5 The effect of the number of unit cells on the overall diffusivity for different

filler volume fraction and aspect ratio values

As it can be observed, 250 unit cells have been considered and the corresponding numerical
results were compared to those corresponding to a unique unit cell. The results show that the
size of the simulation domain (the number of unit cells) doesn’t have a significant effect on

the overall diffusivity of the considered system.

The decrease of diffusivity in nanocomposites constituted of impermeable fillers has been
explained by a tortuosity effect that is enhanced as the aspect ratio and volume content of
fillers increase (Espuche, 2011). Several analytical models such as the Gusev and Lusti model
(Gusev & Lusti, 2001), the Fredrickson and Bicerano model (Fredrickson & Bicerano, 1999)
and the modified-Cussler model (Cussler et al., 1988) already investigated the effect of
impermeable disks on the diffusion properties of a polymer nanocomposite system. In these
approaches, a random dispersion of nanofillers was considered. Figure A.2.6 (a to c)
compares the predictions of the different models with the present FEM simulation results for

three values of a: 20, 50 and 100.
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Figure A.2.6 Comparison of numerical results to Cussler, Fredrickson and Gusev models for
different values of disks aspect ratio a) a=20, b) a=50 and ¢) 0=100) and d) to literature
experimental results (Dal Pont, 2011; Dal Pont et al., 2013; Gain et al., 2005; Jacquelot et al.,
2006; Kato, Okamoto, Hasegawa, Tsukigase, & Usuki, 2003; Meneghetti, Shaikh,
Qutubuddin, & Nazarenko, 2008)

The FEM results show good agreement with Cussler’s predictions for different values of disks
aspect ratio and for disks volume fraction ranging between 1% and 10%. Nevertheless, a
slight deviation is observable and may be related to different filler distributions. Furthermore,
the Fredrickson model and the Gusev models yield similar trends for the decrease of the
relative effective diffusivity values. One should remember that those models were derived
based on some approximations (dilute and semi-dilute regime in the Fredrickson model for
example) which could explain the observed deviations. The difference between the four
models is slightly reduced for high values of disk volume fraction and aspect ratio. Moreover,
our numerical results were compared in Figure A.2.6 d to experimental data covering a wide
range of nanocomposite materials (going from PE to PCL and rubber matrices and
montmorillonite to ZrP nanofillers) (Dal Pont, 2011; Dal Pont et al., 2013; Gain et al., 2005;
Jacquelot et al., 2006; Kato et al., 2003; Meneghetti et al., 2008). It should be noticed that
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FEM results are fitting well with Dal Pont et al. results (Dal Pont et al., 2013) for fillers aspect
ratio 50. The experimental results obtained by Meneghetti et al. (Meneghetti et al., 2008) and
Kato et al. (Kato et al., 2003) can be accurately described by our FEM approach considering a
filler aspect ratio close to 200. Finally the comparison between the experimental results
obtained by Jacquelot et al. (Jacquelot et al., 2006)and our FEM approach suggests that filler
stacks are formed as the filler amount increases, this trend being largely observed in the
literature (Picard, Vermogen, et al., 2007). Indeed, a filler aspect ratio value near to 100
allows to describe the experimental data for a filler volume fraction around 0.04 whereas it decreases

down to 50 when the filler volume amount increases up to 0.07.

2.3.1 The projected area ratio as a governing parameter

The simulation results presented in Figure A.2.6 have shown that in addition to the filler
volume fraction, the filler aspect ratio has quite a significant effect on the diffusion properties
of the nanocomposite. Hence, it can be suggested that a single parameter encompassing the
effects of both geometrical quantities may govern the relationship between the structural
arrangement of the ordered nanocomposite and its diffusion properties. More specifically, in
this work, it is postulated that the relative effective diffusivity of the nanocomposite is
strongly correlated to the probability that a molecule entering the unit cell at the lower
boundary can diffuse to the upper boundary according to a path strictly parallel to the z
direction, without being deflected by the presence of impermeable filler. This probability can

be related to the projected area ratio k, defined as:

Smatrix
k =
Stot

(A2.7)

where S, is the total projected area of the unit cell on a plane normal to the diffusion

direction z:

Stot = PxPy (A.2.8)

and S,..ix 1S the projected area of the matrix phase on a plane normal to the diffusion direction
Z, as shown on Figure A.2.7. Indeed, a molecule entering the unit cell inside the contour of
the S,..ix area has a non-zero probability of diffusing strictly parallel to the z direction, and

the farther from the contour the molecule enters, the closer to 1 this probability.
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Stot

S

matrix

Figure A.2.7 - Definition of the total projected area S,,, and matrix projected area Sy On a

plane normal to the diffusion direction (i.e. x-y plane) for a unit cell

Spamix 18 equal to the total projected area of the unit cell, from which is subtracted the
projected area of the fillers (area of two net disks in a unit cell) minus the overlapping

projected area:

Smatrix = Stot — (stisk - Soverlap) (A.2.9)
where
nD?
SdiSk = T (Ale)

The overlapping projected area is composed of the individual overlapping areas §; of the

middle layer disk with each one of the four disks located in the corners of the unit cell:

Si (A.2.11)

4
Soverlap
i=1

The intersection area S; of two disks of same diameter D whose centers are located at a

distance d; from each other is given by:

1 d;
Si== [chos‘1 (—l) —d; |D? - dizl ifd; <D
2 YA (A2.12)

Sl:OIdeZD
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where the distances d; (represented on Figure A.2.7) are calculated as:

( dl == ’sz + Syz

d, = \/(px —5)% + Syz
; 2 (A.2.13)
d; = \/sxz + (py —sy)

\d4 = \/(px —s)% + (py - SJ/)Z

Assuming that p, = p, = p, (i.e. the filler spacing in each nanocomposite layer is isotropic in

both in-plane directions x and y), the projected area ratio is expressed as:

nD?
Py’ =+ Lie1Si

(A.2.14)
Pp?

k =

Recalling the expression of the filler volume fraction f (Eq. (A.2.1)), the in-plane dimension

of the unit cell p, can be written as:

e
pp =D i (A.2.15)
2fp,

Inserting Eq. (A.2.15) into Eq. (A.2.14), the k ratio finally reads:

4
2
k=1—-apf (1 _ WZ Si> (A.2.16)

i=1
One should note that if there is no overlapping of the filler layers, Eq. (A.2.16) reduces to:
k=1-apf (A.2.17)
The effect of the k ratio on the effective relative diffusivity was investigated at first on a unit
cell configuration with a centered position of the middle layer disk (i.e. s, = s, = p,/2). In
order to allow matching a volume fraction range of 1% to 10%, the dimensionless space step
S was varied between 0.05 and 1. For each f value, the k ratio was then changed by
modifying the filler volume fraction f. For each studied configuration, the relative effective
diffusivity D.g¢/Dy was evaluated from the FEM calculation results (Eq. (A.2.5)) and plotted

against the corresponding k ratio value (Figure A.2.8).
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Figure A.2.8 - Relative effective diffusivity versus the projected area ratio k for several

values of parameter £ (centered position of the middle-layer disk)

As the k ratio decreases from 1 to 0, the obtained plots exhibit two distinct sections, or
regimes. First, for k ratio values over around 0.25, the relative effective diffusivity decreases
linearly with decreasing k. Since there is no overlapping of the fillers, the effect of the free
diffusion section (quantified by the projected area of the matrix phase) governs the effective
diffusivity, whereas tortuosity effects are not predominant. However, the smaller the
parameter £, the faster the effective diffusivity decrease, meaning that tortuosity effects are
more sensitive for closely superposed filler layers. Then, for k values below around 0.25, the
correlation is no longer linear, but a concave-shaped curvature is evidenced in the lower end
of the k range. In other words, the effective diffusivity decreases faster and faster as the free
diffusion section reduces and overlapping increases (as shown on the unit cell representations
on top of Figure A.2.8). In this case, the presence of overlapping disks forces more molecules
to deflect their diffusion path, inducing more significant second order tortuosity effects. In the

present configuration of the unit cell (centered middle layer), it can be shown that overlapping

occurs for disk diameter values superior to p,,/ V2, hence for k ratio values inferior to:

A
kim = 1—7 = 0215 (A.2.18)
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This theoretical value is quite consistent with the value discriminating the two regimes

observed on the plot of Figure A.2.8.

As expected, as the & ratio tends to unity (i.e. unfilled matrix), the relative effective diffusivity
also tends to unity. On the other hand, as the k ratio approaches zero, (i.e. maximum
overlapping) the relative effective diffusivity reaches a minimum value. Besides, for a fixed
disk diameter value, the smaller the parameter f, the closer to zero that minimum value,
which can be explained by the increasing tortuosity and the decreasing diffusion section as the
filler layers are positioned closer to one another. One should note that in the limiting case of
contacting filler layers (minimum /f value), the relative effective diffusivity is rigorously
equal to the k ratio: the diffusing molecules cannot circumvent the fillers, they can only
diffuse in the matrix zones where there is no overlapping. These observations are of major
importance since the correlation equation developed further in this work must be consistent

with these limiting cases.

The effect of the k ratio on effective diffusivity can also be investigated in the case of a unit
cell with an off-centered (or shifted) middle layer. Using a similar simulation methodology,
the evolution of the relative effective diffusivity values versus k has been plotted for
comparison in Figure A.2.9, for three different positions of the middle-layer disk and three

values (0.2, 0.5 and 1).
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Figure A.2.9 - Relative effective diffusivity versus the projected area ratio k for different S

values

In these example configurations, the middle-layer disk position was changed by modifying the
values of the shift parameters in the x and y directions, s, and s,. The first position
corresponds to the previously discussed “centered” configuration: s, = s, = p,/2. The second

position is obtained with s, = p,/3 and s, = p,/6 and the third position with s, = p,/50 and s, =
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pp/4. It should be mentioned here that for the sake of simplicity, the disks dimensions were
kept constant and the various k values were obtained by varying the in-plane space step size
pp values. However, the same study could be carried out for different disk dimensions without

fundamentally changing the conclusions.

These plots exhibit the same curve shape: almost linear for small £ values, linear to nonlinear
regime transition for larger £ values, the nonlinearity being all the more pronounced as the S
value is larger. One can note that the more the middle layer position deviates from the so-
called centered position, the more the regime transition is shifted towards larger k values
(approximately k£ = 0.3 for position 2 and k = 0.45 for position 3). Indeed, overlapping is
likely to occur for smaller filler volume fraction, i.e. larger k ratio, when the middle layer disk

is significantly off-center.

Eventually, the plots presented in Figure A.2.8 and Figure A.2.9 clearly show that diffusivity
reduction is affected by the increasing values of £ and predominantly governed by the k ratio.
Based on these numerical simulation results, the following section is devoted to the
development and identification of an analytical equation correlating the relative effective
diffusivity variation to the full range of k values. Then, the obtained model will be validated

against FEM simulation results on a broader range of unit cell configurations.

2.3.2 Phenomenological modeling
2.3.2.1 Model derivation

At the first order, as shown by the plots of the numerical simulation results, the relationship
between the relative effective diffusivity and the & ratio is assumed to follow a linear regime.

Hence, it can be represented by the affine equation:

Deyr
Dy ak +b (A.2.19)

where a and b are respectively the slope and the intercept (i.e. the limit value of the relative
effective diffusivity as k tends to zero) of the affine line. However, as demonstrated by Figure
A.2.8 the relative effective diffusivity also depends on the thickness-wise space step
parameter f. Plotting the values of the obtained slope a against the corresponding /S values
(Figure A.2.10) leads to a decreasing exponential relationship, which can be expressed in the

following way:
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a = agexp(—p) (A.2.20)

where ay is the scaling constant of the exponential decay. Inserting Eq. (A.2.20) into Eq.
(A.2.19):

f_
. = Goexp(=f)k +b (A.2.21)
0
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Figure A.2.10 - Exponential variation of the slope parameter a versus

In order to find the b constant, the limiting case k = 1 (i.e. unfilled matrix) has to be
considered. Obviously, in this case, the effective diffusivity is that of the matrix: D.s/Dy = 1.

Hence,

b=1-apexp(—p) (A.2.22)

which leads to:

D,
D’; L=1- 1 -Kagep(-p) (A2.23)

The opposite limiting case is kK — 0 (i.e. maximum overlapping, the matrix phase projected
area is zero). If in addition the filler layers are in contact (£ = Suin = 2/a), then no diffusion is

possible and D.4/Dy = 0. This yields:

2
0=1-—agexp (— E) (A.2.24)

then ag can be written as:
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ay = exp (2) (A.2.25)

Inserting Eq. (A.2.25) into Eq. (A.2.23), the expression of the relative effective diffusivity
finally reads:

D, 2
L =1- (1~ e <— (B - E)) (A.2.26)

0

One should note that the present linear model does not contain any adjustable parameter and

has a clear physical meaning:

- the diffusion barrier effect induced by the increase of the filler projected area
(represented by the quantity (1 — k)) decays exponentially with the distance between
the successive layers in the z-direction, as this corresponds to a decrease in tortuosity;

- the diffusion barrier effect induced by the increase of the filler projected area is
enhanced for larger filler diameters, as this leads to a longer diffusion path and an

increase in tortuosity.

Moreover, for the limiting case f = 2/a (contacting layers), the equation indeed yields a

proportionality relationship:

0

which is consistent with the behavior observed in Figure A.2.8.

However, the linear model becomes less accurate as the k values get lower, due to the
overlapping effects increasing the tortuosity of the system: in the low k range, the linear
model tends to overestimate the effective diffusivity. Hence, a supplementary term o has to be

subtracted from Eq. (A.2.27) in order to correct the D.s/Dy values in the low k range:

5= [1 — exp <— (/3 - ;))l A exp (— g) (A2.28)

The first factor 1 — exp (— (ﬁ - 5)) ensures that § vanishes if S = f,;,, = 2/a and that § is

maximum if £ is very large. Indeed, as shown by Figure A.2.9, the deviation between the
linear regime and the non-linear regime increases with . A is a pre-exponential scaling
parameter to be determined by fitting the numerical simulation results. The value A = 0.27 has

been found to provide good agreement with the numerical data. Finally, the second
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. k .
exponential factor exp ( -3 } ensures that the value of § asymptotically tends to zero as k
tends to unity. Hence, B is an exponential decay constant that can be approximated as:

- klim

B~
5

(A.2.29)

recalling that any quantity undergoing exponential decay virtually vanishes when the
dependent variable reaches a value approximately equal to 5 times the decay constant. Indeed,
in the present case, the o term is supposed to vanish when overlapping disappears, i.e. for k >
kiim- Considering that kj;,, = 0.215 (for the centered middle layer disk case), a value B = 0.04

has been assumed and proved to yield good agreement.

In summary, based on equations (A.2.26) and (A.2.28), the complete expression of the
analytical model correlating the relative effective diffusivity to the k ratio by taking into

account linear and non-linear effects reads:

(~e-2))-[r-e(-(-2)

with A =0.27 and B = 0.04.

“A-exp (— g) (A.2.30)

D
o —q— (1—-k)exp
Dy

2.3.2.2 Model validation

Both analytical equations (A.2.26) and (A.2.30) have been compared to the FEM simulation

results and the plots are shown on Figure A.2.11, for several £ values ranging from 0.05 to 1.
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Figure A.2.11 - Relative effective diffusivity versus projected area ratio predicted by the

linear and nonlinear analytical models and by FEM simulations
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The linear model Eq. (A.2.26) is quite accurate on the full k range for small p, values only, as
well as on the non-overlapping k range [0.2 — 1] for the larger £ values. The nonlinear model
(including the o correction term) Eq. (A.2.30) leads to very good overall prediction of the

effective diffusivity, even in the low k range (where overlapping occurs) for large £ values.

In order to assess the accuracy of the developed analytical model on a larger filler aspect ratio
range, the values yielded by Eq. (A.2.30) were compared to the results of the finite element
analysis. Relative effective diffusivity values obtained from the numerical simulation and
predicted by the analytical equation were plotted against filler volume fraction f for values of
the aspect ratio a ranging between 50 and 250 (Figure A.2.12). A p, value of 10 nm has been
fixed in order to allow reaching significant filler volume fractions compatible with the chosen
aspect ratio range. The obtained plot shows that the simulation results and the analytical
equation are in very good agreement for disk aspect ratio values below 200. Beyond this value
and especially for filler volume fractions greater than 7% (leading to a quasi-total barrier
effect), a slight deviation can be observed. This could be due to the fixed values of the
adjustable parameters A and B, which were identified for the case a = 50. Nevertheless, the
analytical model proves to be quite robust and accurate on a relatively broad range of
configurations using only a single set of two adjustable parameters. One should note that for
this small p, value, the linear model Eq. (A.2.26) would give quasi-similar predictions to

those of Eq. (A.2.30).
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Figure A.2.12 Relative effective diffusivity versus filler volume fraction predicted by the

analytical model (Eq. (A.2.30)) and by FEM simulations for several filler aspect ratio values
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Furthermore, results obtained from FEM calculations and from the developed equation were
compared to Minelli (Minelli et al., 2011) and Aris (Aris, 1986) works. It should be
mentioned here that Minelli and coworkers proposed an analytical model depending on the r

factor defined as:

_a—f(a+oy)
~ fla+oy)?

where g is the so-called slit shape i.e. the parameter quantifying the aspect ratio of the matrix

(A2.31)

phase region located between adjacent fillers. For the unit cell geometry used in the present
work, the slit shape could be expressed as follows:
D?

_ Dby "7 (A.2.32)

ol
$ nDe

Minelli’s model consists of two equations:

B PP i ()

; " ) 1_f (1 ' U“S) (A2.33)
(1+2))\
af O 2 1-f 1+ES
Z(1+3)1
T e 9e))
and
O -1
r>1 Dg—?= 1+(Z—f)(1+%)+%(1+%)21n % (A.2.34)

It should be mentioned that fillers aspect ratio in Minelli’s model is defined in a slightly

different way with respect to the current work.

Aris’s equation is recalled hereinafter:

Doy a’f?  af Afa wa’f -

The results are compared for a fixed value of o, = 5 and a = 40 and for fillers volume fraction

ranging between 0.5% and 10% (Figure A.2.13).

71



Part A: Chapter 2

1.2 T T T T T T T T T T
=40 Equat?onARIS
1.0 - ~’~~ GSZS et Equat?OnThis work ]
0‘,‘ . """ EquatloanNELLl
0.8 ’{\ ’.\ " FEMThis work T
‘s ..
e . ® FVMMINELLI
no 0 6 '..5' o T .
© ® Vi T
\&5 ~ N ; “~ .
Q M IS :: .
0.4 e i
® REREIN
& K -
0.2 JRREERORS T
0.0 T T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
f

Figure A.2.13 — Relative effective diffusivity versus filler volume fraction predicted by the

analytical model (Eq. (A.2.30)), FEM simulations and existing models in literature

As demonstrated in Figure A.2.13, the FEM numerical simulation results as well as the
analytical equation developed in this work are in good agreement with Minelli’s FVM results
and analytical equation. However, some discrepancies with the predictions of Aris equation
can be noted, which could be due to differences in the geometrical shape of the fillers (flake-

shaped fillers in Aris model).

2.4 Conclusion

In this paper, a 3D FEM model was developed in order to study gas diffusion in
nanocomposites for barrier applications. The adopted geometry was the disk shape. Thus,
different disk volume fraction, aspect ratio and positions were investigated here. The results
raise several observations that merit discussion, the first being that increasing fillers volume
fraction and aspect ratio had a great effect on improving barrier properties of nanocomposite
systems. Furthermore, it was shown that relative diffusivity is strongly governed by a
remarkable parameter, the projected area ratio, reflecting the area available for straight path
diffusion of the molecules. Calculation results show that the greater this parameter, the higher
the relative effective diffusivity. Through these results, a new analytical equation was
developed, taking into consideration the filler aspect ratio, the thickness-wise spacing between
fillers and the projected area ratio. The equation was validated against FEM calculations and

showed good agreement with other existing models.
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Chapter 3  Numerical Analysis of 3D Mass Diffusion in Random Nanocomposite
Systems: Effects of Polydispersity and Intercalation on Barrier Properties

An overview of the chapter

The previous chapter was focused on the effect of fillers structure parameters on the overall
diffusivity of “idealized” nanocomposite systems assuming full exfoliation (i.e. individual
fillers) and ordered spatial dispersion in the matrix. However, in actual systems, the fillers are
generally randomly distributed in the polymer matrix and individual fillers can coexist with
filler stacks, making the morphology much more complex. Besides, filler size polydispersity
can also be observed and could affect barrier properties. It appears essential to elucidate the
influence of such parameters on the effective diffusivity of nanocomposites. The first
objective of the present chapter is to analyze and discuss the effect of filler size polydispersity
on the gas barrier properties of nanocomposites using three-dimensional finite element
modeling. Secondly, systems composed of monodisperse and polydisperse stacks are
considered and the effect of interplatelet diffusion effect on the overall diffusivity is
quantified through a parametric study. The analysis is carried out for large ranges of fillers

dimensions and diffusion coefficient values in the interplatelet area.
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3.1 Introduction

In the past decades, there has been specific interest in nanocomposite materials because of
their applications in various fields, especially for gas barrier application. An increase of the
barrier properties is expected from the addition of impermeable lamellar nanofillers to the
polymer matrix thanks to an increase of the gas diffusion path. Different experimental,
analytical and numerical studies have been carried out to investigate the dependency of this
tortuous effect and resulting barrier properties on morphological factors such as the filler
content or aspect ratio (Greco, 2014a; Greco & Maffezzoli, 2013; H. D. Huang et al., 2014;
Minelli et al., 2009, 2011; Nielsen, 1967; Yano et al., 1993). In these studies, it is usually
considered that all dispersed objects have the same dimensions (Greco, 2014a; Greco &
Maffezzoli, 2013). However, the nanocomposite morphology is often more complex. Several
studies have underlined the coexistence of dispersed objects with different aspect ratios in
nanocomposites prepared from a single nanofiller type due to the difficulty to achieve
complete exfoliation of the platelets (Alexandre et al. 2009; Masclaux, Gouanvé, et Espuche
2010; Picard, Gérard, et Espuche 2008; Kim, Abdala, et Macosko 2010). Picard et al. (Picard,
Gauthier, Gérard, & Espuche, 2007) showed that in PA6/montmorillonite nanocomposites the
coexistence of exfoliated structures and small filler stacks (less than 5 sheets per stack) was
not detrimental to barrier properties. This result, that could appear surprising with respect to
commonly used Nielsen law (Nielsen, 1967), was explained by the low amount and low width
of the stacks. Thus, the small decrease of mean filler aspect ratio was compensated by the
increase of the impermeable volume fraction, the volume occupied by the stacks being

considered as impermeable.

The effect of the polydispersity of the filler aspect ratios on barrier properties has been
modeled in several works (X. Chen & Papathanasiou, 2007; Lape et al., 2004). In these
studies, the considered fillers have the same thickness but generally differ by their length. The
analytical model developed by Lape et al. (Lape et al., 2004) evidenced that the barrier
properties are better improved when fillers are larger. Moreover, Chen et al. (X. Chen &
Papathanasiou, 2007) developed a 2D numerical model based on the Boundary Element
Method (BEM) through which they confirmed the interest of filler size polydispersity for
improved barrier properties. As already mentioned, in all these studies, the dispersed objects
consisted of individual fillers with the same thickness but different lengths. On the other hand,
some works focused on the effect of filler stacks on gas transport (Bharadwaj, 2001; Paul &

Robeson, 2008). The stacks dispersed in the matrix had the same size and they were usually
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considered as impermeable phases. Only few authors investigated the influence of possible
gas diffusion in the interplatelet space on the overall gas transport properties. By considering
the gas diffusion rate in the interplatelet space similar to that in the matrix, Nazarenko
(Nazarenko et al., 2007) found that the contribution of the interplatelet diffusion on the
overall transport was negligible. An extension of the model proposed by Nazarenko was
derived by Greco and coworkers (Greco, Corcione, & Maffezzoli, 2016; Greco & Maffezzoli,
2015a) with the aim to discuss the impact of different diffusion rates in the interplatelet space.
Through their numerical approach, Greco et al. showed that diffusion in the interplatelet space
is quite relevant especially for high values of the space inside stacks. It is noteworthy that in
all these previous works the platelet stacks dispersed in the matrix were all of the same sizes.
According to our knowledge, no modeling study investigated the impact of stacks with

polydisperse sizes on the gas transport properties.

The aim of the present study is to discuss the effect of the filler size polydispersity on gas
barrier properties through a step-by-step approach based on three-dimensional finite element
modeling (FEM). In the first part, systems filled with polydisperse single platelets (i.e. same
thickness but different diameter distributions) are compared with monodisperse systems. In
the second part, dispersions of monodisperse stacks and polydisperse stacks are investigated.
In order to assess the effect of interplatelet diffusion, a sensitivity study is carried out
considering a wide range of diffusion coefficient values in the interplatelet area. It should be
kept in mind that throughout this study, random spatial dispersion of the fillers (or stacks) has

been assumed in order to be as representative of the actual systems as possible.

3.2 Modelling Methodology
3.2.1 Geometry

The geometric modeling of the nanocomposite systems is based on a three-dimensional
representative volume element (RVE) approach. The parallelepipedic simulation domain
representing the RVE has dimensions L,, L, and L, in a Cartesian coordinate system (x,y,z),
with z the overall diffusion direction. As in the previous section 2.2 , fillers are modeled as
three-dimensional disks (diameter D, thickness e). The choice of the discoidal filler shape was
based on literature as detailed in the first chapter because of its representativeness of platelet-

like nanofillers. Two types of geometric configurations have been considered:

- the first type of configuration consisted of dispersions of single impermeable disks

randomly positioned in the matrix and oriented normally to the overall flux direction z.
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The disk size can be either monodisperse or polydisperse. The random positioning of
disks in the computational domain was generated using a JAVA algorithm coupled
with the commercial finite element package COMSOL Multiphysics. This algorithm
contains conditions that ensure non-overlapping of the generated disks.

- the second type of configuration consisted in dispersions of stacks of three
impermeable disks, randomly positioned and oriented in the polymer matrix using the
same generation algorithm. As in the first type of configuration, the disk size can be

either monodisperse or polydisperse.

In the whole study, the disk thickness was assumed to be 2 nm and the mean diameter value D
was targeted to 60 nm. The filler aspect ratio @ was defined as the ratio between the diameter
and the thickness. A target value of the filler volume fraction was specified as an input
parameter of the distribution generation algorithm. However, the actual volume fraction f of
the generated distribution was calculated through a volume integration of the matrix domain
after generating the geometry and was varied between 1% and 14%. The computational
domain contains a sufficient number of fillers through which well-aimed results could be

obtained (200 - 264 dispersed fillers with and without stacks).

3.2.2 Physical equations

The mass diffusion process in stationary regime was modeled according to Fick’s second law

without mass source (2.2.2

V- (=D;Vc;) =0 (A3.1)
where ¢; is the molar concentration of the permeating specie i (mol.m™) and D; ;j 1s the mass

diffusion coefficient of permeating specie i in medium j. In the present study, the diffusion

coefficient of permeating specie in the neat matrix was chosen as Dy = 107> m?/s.

The finite element method is used to solve the mass diffusion equation in the matrix domain

with the following boundary conditions:

- concentration boundary conditions were imposed on the upper and lower faces of the
simulation domain: ¢; = 1000 mol.m>; ¢, = 500 mol.m™. The matrix diffusivity is
considered constant and not concentration-dependent, meaning that concentration
values chosen as BCs for the upper and lower faces have rigorously no effect on the

effective diffusivity calculated in this study;
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- since disks are impermeable to mass diffusion, no-flux boundary condition was
imposed on all filler-matrix interfaces;
- for symmetry reasons, no-flux boundary conditions were applied on the lateral faces of

the simulation domain.

3.2.3 Numerical analysis

An unstructured mesh consisting of tetrahedral linear elements in order to provide accurate
results was adopted in the previous chapter 2.2.3 . It has been verified that the number of
mesh elements is sufficiently high not to affect the obtained results (e.g. for 200 disks
generated in the RVE, the number of mesh elements is about 126360). The solution of the
boundary value problem yields the molar concentration field of the permeating specie c(x,y,z).
Finite element solutions were obtained using the commercial package Comsol Multiphysics
(version 5.4, DELL computer with i3 processor and 8 Go of RAM). The computational time
was between 1 and 5 min. Then, the mass flux vector field of the permeating specie can be

calculated from the concentration field:
N(x,v,2z) = —D,Ve(x, y, z) (A.3.2)
and the overall effective diffusivity is given as follow:

NzL,

1~ (2

Degy = = (A3.3)

where N, is the average mass flux of the permeating specie across a plane section S normal to
z-direction and located at z = 7y within the unit cell:

— 1

27 LyLy,

ffs N,(x,y,zy)dxdy (A.3.4)

assuming that NV, is the z-component of the mass flux vector.

In the current work, relative effective diffusivity, defined as the ratio D,.y/Dy, 1s considered the
most convenient parameter to characterize and compare the enhancement of barrier properties
in the various studied systems. It has been shown through the previous chapter 2.2.3  that it
does not depend on the neat matrix diffusivity value Dy.

Since the systems under consideration are composed of disks randomly placed in the RVE, we
show hereinafter that the use of impermeable boundary condition on the sides of the RVE is

similar in terms of results to the use of symmetry boundary conditions (Figure A.3.1).
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(b)
f=14,1vol%

Figure A.3.1 Comparison of the obtained results considering (a) symmetry and (b)

impermeable boundary conditions

3.3 Results and Discussion

3.3.1 Effect of filler aspect ratio polydispersity on the overall diffusivity

This section focuses on the effect of filler aspect ratio polydispersity on nanocomposite
barrier properties. For this purpose, simulations were conducted for different generated
distributions in order to compare their effect on the overall diffusivity. For the sake of clarity,
the generated distributions are described first, then the obtained results are discussed and

compared to existing models from literature.
3.3.1.1 Monodisperse distribution

Monodisperse distributions have been generated according to the following method: single
disks having a fixed diameter value D = 60 nm corresponding to an aspect ratio value o= 30
were positioned randomly on 4 layers separated by 1 nm of the polymer matrix, each. The
developed generation algorithm ensured that disks did not overlap in a given layer (Figure

A3.2).

Figure A.3.2 Geometrical model of monodisperse system

3.3.1.2 Polydisperse distributions

Nanocomposite systems could have various filler size distributions. In this section, three

different types of distributions are presented where the polydispersity was controlled. For
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each type of distribution, three dispersions were randomly generated in order to verify the

repeatability of the method.
3.3.1.2.1 Polydisperse uniform distribution

In order to generate a polydisperse system with uniform size repartition in a given range, the
generation algorithm randomly picks an equiprobable random value of the disk diameter in
the specified range (20 — 100 nm in the present case) and attempts to position the disk at a
randomly chosen position. If no overlapping occurs, the disk is actually inserted. Otherwise,
the disk is discarded and a new disk with new random diameter and position is generated. The
process is repeated as many times as needed to attain the desired number of disks in the RVE.
Due to this process, it is expected that the actual diameter distribution slightly deviate from
the ideal uniform distribution, since small disks are generally easier to position than large
disks. For a total number of 200 generated disks in the RVE, the actually obtained
distributions of disk size for an average disk aspect ratio @ = 30 (corresponding to an average

diameter D = 60 nm) is presented in Figure A.3.3.
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Figure A.3.3 Disk size distribution for three different polydisperse uniform dispersions

(a = 30); resulting averaged distribution

3.3.1.2.2 Polydisperse Gaussian distribution

Polydisperse systems with Gaussian size distribution were generated. This type of distribution

has the following probability density function (PDF):
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¢ = e 20° (A.3.5)

where D is the diameter mean value and o the diameter standard deviation. Two different
standard deviation values ¢ = 1 (narrow distribution) and ¢ = 10 (wide distribution) were
chosen, in order to stay in the same range of individual D values as for the uniform
distribution. For each o value, three different dispersions were generated. The obtained
diameter distributions are plotted and compared to Gaussian fits of these distributions on figs
Figure A.3.4 and Figure A.3.5 for ¢ = 1 and ¢ = 10, respectively. It appears clearly that for
both ¢ values, the actually obtained distributions (represented by the histograms) were quite

close to Gaussian distributions.

3.3.1.2.3 Polydisperse “specific” distribution (derived from Gaussian distribution with large
standard deviation)

The aim was to generate target Gaussian distributions with a mean aspect ratio value @ = 30
and a larger standard deviation value o = 20. However, due to the overlapping management
process described earlier, the generation algorithm tends to discard the larger disks (whose
diameters belong to the upper tail of the Gaussian) more frequently and thus to favor the
smaller disks. Consequently, the mean aspect ratio values of the actually obtained
distributions (@ = 22.3; @, = 22.4 and a3 = 21.7) are significantly smaller than the target
value a@ = 30. Moreover, the obtained distributions clearly deviate from true Gaussian

distributions and present a truncated aspect in the lower tail (Figure A.3.6).
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Figure A.3.4 Disk size distribution actually generated for target values of Gaussian
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Figure A.3.5 Disk size distribution actually generated for target values of Gaussian
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Figure A.3.6 Disk size distribution actually generated for target values of Gaussian

parameters & = 30 and o = 20

3.3.1.3 Comparison of barrier properties

An objective of this study is to clarify which type of filler dispersion is the most efficient in
the enhancement of nanocomposite barrier properties. Hence, in this section, relative effective
diffusivity (D.s/Do) results from finite element simulations of the different studied
configurations are compared. Moreover, the numerical results are compared to Lape et al.
(Lape et al., 2004) analytical equation, for which filler size also follows a Gaussian

distribution:

Derr 1-f

Dy <1 s (35_5) (%+ 02)>2 (A3.6)

where f is the filler volume fraction, e the disk thickness, D the disk average diameter and o

the diameter standard deviation. Figure A.3.7 plots the relative diffusivity predicted by FEM
for the monodisperse and Gaussian polydisperse systems, as well as Lape analytical model’s
predictions for the Gaussian polydisperse systems (¢ =1 and 10). It must be noted here that ¢

1s the standard deviation between the obtained results.
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Figure A.3.7 Relative effective diffusivity vs. filler volume fraction for monodisperse and

polydisperse Gaussian systems (¢ = 1 (a) and o = 10 (b)): FEM predictions and Lape et al.

model (Lape et al., 2004)

It can be noticed that in both cases, results from the present simulations are in good agreement

with Lape’s model predictions. Moreover, when ¢ is increasing, the deviation between

polydisperse and monodisperse systems is slightly increasing too. Lape et al. (Lape et al.,

2004) showed that an increase in polydispersity (i.e. an increase in ¢) implies a decrease in

diffusivity, which is consistent with our calculations. Moreover, the statistical analysis made

through calculating & shows that small differences between the obtained results can be

considered as insignificant.

In a next step, the comparison has been extended by taking into account the polydisperse

uniform distribution and the polydisperse specific distribution described previously (Figure

A3.8).
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Figure A.3.8 Relative effective diffusivity vs. filler volume fraction for monodisperse,

polydisperse uniform and polydisperse Gaussian systems: FEM predictions

It appears clearly that although relative effective diffusivity always decreases as fillers
volume fraction increases, the type of distribution does have a significant effect. Indeed, the
lowest diffusivity values were obtained in the case of uniform polydispersity. It has been
shown in 2.3.1 that barrier properties enhancement is correlated to the projected area ratio
for penetrating molecules which was defined as the ratio of the projected area of the matrix
phase on a plane normal to the diffusion direction z and the total projected area of the RVE. In
this case, this factor, denoted k;, was calculated for three different cases of size distributions
(monodisperse (k;), polydisperse uniform (k;), and Gaussian ¢ = 10 (k3)). The values of k;
reported in Figure A.3.9 are the average values calculated from 3 different dispersions for
each size distribution. As it can be observed, the lowest value of the projected area ratio is
obtained for the polydisperse uniform configuration which is in adequacy with the obtained
numerical diffusivity results.

Furthermore, a comparison of the results for the Gaussian distribution shows a slightly better
decrease in relative effective values in the case where o = 15 compared to ¢ = 10. One should
remember that, when the standard deviation is targeted to o = 20, the generated distribution is
not perfectly Gaussian and the actual standard deviation is about ¢ = 15. Thus, In all cases,
relative effective diffusivity values are smaller than the monodisperse case; this is consistent

with Chen et al.’s 2D simulation results (X. Chen & Papathanasiou, 2007).
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Figure A.3.9 Representative volume element (z-direction view) of three types of filler

dispersion for similar filler volume fraction

3.3.2 Effects of intercalation on the effective diffusivity

Fillers present in nanocomposites (graphene, montmorillonite) often have an intercalated
structure (Corcione, Freuli, & Maffezzoli, 2013; H. Kim et al., 2010; Masclaux et al., 2010;
Picard et al., 2008; Picard, Vermogen, et al., 2007). Hence, investigating the effects of filler
stacking on diffusion mass transfer is an indispensable step to understand the barrier
properties of such nanocomposite films. In the previous section, the size polydispersity of the
dispersed objects (single fillers) was taken into account by the variation of the disk diameter.
In the case of nanocomposites prepared from lamellar nanofillers, the size polydispersity is
related to the presence of nanofiller stacks (Picard, Vermogen, et al., 2007). In this section, a
step-by-step analysis is presented, covering monodisperse and polydisperse stacks and

considering the most efficient size distributions evidenced previously.
3.3.2.1 Effects of stacking and polydispersity

First, an analysis has been conducted in order to examine to what extent the presence of
stacked fillers affects the barrier properties in comparison to an exfoliated system with a
similar volume fraction. Each stack was modeled as a superposition of three identical disks

(diameter D, thickness e). The interplatelet spacing, i.e. the gap between two adjacent disks in
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a stack, e;u.r, was assumed identical (e;.r = 1 nm) for all stacks. The stacks were randomly
positioned in the simulation domain and oriented perpendicularly to the gas flow. The z-
dimension of the simulation domain corresponds to four layers of stacks. Two examples of
generated stacks dispersions are shown in Figure A.3.10. In all cases, the generation
algorithm ensured non-overlapping of stacks. The following distributions have been generated
and diffusion mass transfer has been numerically simulated for various volume fractions using

the methodology presented in 3.2

- monodisperse distribution: identical stacks (D = 60 nm, e = 2 nm, €., = 1 nm);
- polydisperse uniform distribution (diameter range : 20-80 nm, D = 60 nm, e = 2 nm,
Cinter = 1 nm),

- polydisperse Gaussian distribution (average diameter D = 60 nm with a standard

deviation =10, e =2 nm, €., = 1 nm);

Figure A.3.10 Example of 3D simulation domain of intercalated nanocomposites; (a)

Monodisperse stacks (b) Polydisperse stacks (uniform distribution)

The effective relative diffusivity values predicted for the three types of intercalated
dispersions have been reported in Figure A.3.11 and compared to the results obtained in
section 3.3.1.3  for the exfoliated structures. As expected, the relative effective diffusivity is
a decreasing function of fillers volume fraction. It is noteworthy that whatever the filler
volume fraction, the relative diffusivity is lower for the exfoliated dispersions than for
intercalated ones. This observation can be assigned to the tortuosity effect. Indeed, for a given
value of the filler volume fraction, the total projected area of the impermeable phase is larger
in the case of single disks than in the case of stacks. According to the results obtained in the

previous chapter 2.3.1 , this factor can be related to the tortuous path a diffusing molecule
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has to follow due to the presence of the impermeable phase. More specifically, for the
intercalated systems, it can be noticed that the highest relative diffusivity values are obtained
for monodisperse stacks while the lowest relative diffusivity values are recorded for the
polydisperse uniform distribution of stacks. Thus, the trends observed for exfoliated

dispersion are also valid for intercalated dispersion.
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Figure A.3.11 Comparison of effective relative diffusivity predicted by FEM for exfoliated

and intercalated systems as a function of filler volume fraction

3.3.2.2 Influence of the interplatelet space characteristics (spacing, diffusivity)

In order to investigate the potential contribution of the interplatelet space to overall diffusion,
monodisperse systems composed of 3-disks stacks with a fixed diameter were considered. The
stacks were randomly positioned in the polymer matrix. Moreover, they were randomly tilted
with angles ranging between 0° and 30° around both x and y axes, as shown in Figure A.3.12.
The disk thickness was fixed to e = 2 nm whereas the disk diameter could be chosen in the
range [20 nm - 100 nm]. The interplatelet spacing e;,,., was varied between 1 nm and 10 nm.
This range of values is representative of the interplatelet distance measured on several organo-
modified lamellar nanofillers (Dal Pont, Gérard, & Espuche, 2012; Mariano, Freitas, Mendes,
Carvalho, & Ramos, 2019). The matrix diffusivity was fixed to Dy = 10"? m?/s while in a
second step, the diffusivity in the interplatelet space, denoted by D, could be varied in the
range [10™* Dy — 10° Dy]. Indeed, some experimental works have shown that the interplatelet
space within stacks could not always be considered as impermeable (Aitken, Koros, & Paul,

1992; Dal Pont, 2011; Jacquelot et al., 2006). It could then be interesting to consider through
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a parametric analysis a wide range of interplatelet behavior going from very low permeability

to high permeability.

Figure A.3.12 Geometrical model of intercalated non-oriented monodisperse system

3.3.2.2.1 Analysis of interplatelet space contribution to overall diffusion for D;,.., = Dy

Several experimental studies available in literature describe intercalated nanocomposite as
systems for which interplatelet diffusion inside stacks is considered similar to diffusion in the
polymer matrix (Bharadwaj et al., 2002; Nazarenko et al., 2007; Wolf et al., 2018). Indeed,
Nazarenko et al. (Nazarenko et al., 2007) showed that for low values of e, (about 5 nm),
intra-stack diffusion can be considered as negligible compared to the overall diffusion. In
addition, different analytical and numerical models (Greco et al., 2016; Greco & Maffezzoli,
2015a, 2015b) investigated the effect of stacks on the barrier properties of intercalated
nanocomposite systems. However, the structural parameters appearing in some works were
considered over a limited range of values, for example, in Greco et al. work (Greco &
Maffezzoli, 2015a), the filler aspect ratio was fixed to 50 however interplatelet space did not
exceed 4 nm). Since it was shown in previous works (Cussler et al., 1988) and in the previous
chapter that the effective diffusivity in nanocomposite systems strongly depends on fillers

structural parameters, it appears necessary to extend those analyses to different values.

In order to assess the importance of interplatelet diffusion, a suitable approach consists in
comparing the predicted effective diffusivity in identical systems in which the interplatelet

space is assumed either permeable (D;,,, = Do) or impermeable. In the latter case, the stacks
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can be modeled by the corresponding fully impermeable cylindrical volume, as shown in
Figure A.3.13. Note that in both cases, stacks positions are kept strictly identical in order to

cancel all variability effects due to random positioning.
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Figure A.3.13 (a) Geometry of the actual stack and (b) corresponding fully impermeable

stack

The relative effective diffusivity values predicted by the FEM simulations (for a
monodisperse size distribution case; D ranging between 20 and 100 nm, e=2nm and f between
0.11 and 2.7%) have been plotted on Figure A.3.14 as a function of the interlayer thickness
eimser and of the parameter R which was defined as the ratio of the interplatelet space volume to

the total stack volume:

2einter
R=——8H4/—#¥—
3e + 2einter (A.3.7)

As shown by equation (A.3.7), the parameter R increases with increasing intra-stacks spacing

Cinter-
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Figure A.3.14 (a) Relative effective diffusivity variation versus parameters R and e;;,, for
systems with permeable stacks (empty symbols) and corresponding fully impermeable stacks
(full symbols), for several disk diameter values; (b) Diffusive flux lines in system with fully
impermeable stacks (left) and permeable stacks (right), D = 20 nm, e;,.,=7nm; (¢) Diffusive

flux lines in system with fully impermeable stacks (left) and permeable stacks (right), D = 100

nm, €e,~/nNm

Figure A.3.14 shows that for a given volume fraction, the barrier effect is enhanced when R
(i.e. einer) 1s increased. Moreover, the enhancement is more pronounced as the diameter of
stacks increases. This result could be explained by the following mechanism: since spacing
between stacked fillers increases, the stacks occupy more space in the matrix, which is
correlated to a reduction of the free volume and then a decrease in effective diffusivity.
Comparing the results for permeable stacks and impermeable stacks leads to the conclusion
that interplatelet flux could be neglected if the filler diameter or the interplatelet gap are
small. Indeed, the relative effective diffusivity values predicted in the cases of permeable
stacks and impermeable stacks remain very close (e.g. for R = 0.75 and D = 20 nm, the
deviation in relative effective diffusivity v