In this dissertation, we are interested in the data gathering with energy constraint for Wireless Sensor Networks (WSNs). Yet, there exist several challenges that may disturb a convenient functioning of this kind of networks. Indeed, WSNs' applications have to deal with limited energy, memory and processing capabilities of sensor nodes.

Furthermore, as the size of these networks is growing continually, the amount of data for processing and transmitting becomes enormous. In many practical cases, the wireless sensors are distributed across a physical eld to monitor physical phenomena with high space-time correlation. Hence, the main focus of this thesis is to reduce the amount of processed and transmitted data in the data gathering scenario.

In the rst part of this thesis, we consider the Compressive Sensing (CS), which is a promising technique to exploit this correlation in order to limit the number of transmission and therefore increase the lifetime of the network. Typically, we are interested in the mesh network topology, where the sink node is not in the range of sensors and routing schemes must be applied. We propose a joint Space-Time Compressive Sensing (STCS) by exploiting jointly the inter-sensors and intra-sensor data dependency.

Moreover, since the routing and the number of retransmission aect signicantly the total energy consumption, we introduce the routing in our cost function in order to optimize the selection of the transmitting sensors. Simulation results show that this method outperforms the existing ones and conrm the validity of our approach.

In the second part of this thesis, we attempt to address nearly the same twofold energy saving scheme that is investigated in the rst part with the use of the Matrix Completion (MC) methodology. Precisely, we assume that a restricted number of sensor nodes are selected to be active and represent the whole network, while the rest of nodes remain idle and do not participate at all in the data sensing and transmission. Furthermore, the set of active nodes' readings is eciently reduced, in each time slot, according to a cluster scheduling with the Optimized Cluster-based MC data gathering approach (OCBMC). Relying on the existing MC techniques, the sink node is unable to recover the entire data matrix due to the existence of the completely empty rows that correspond to the inactive nodes. Thereby, we propose a complementary iv v interpolation technique, based on a minimization problem, that benets from nodes inter-correlation, to guarantee the reconstruction of all the empty rows, despite their large number. The proposed three-stage MC-based reconstruction pattern, combined with the aforementioned data sampling one, is evaluated under extensive simulations.

The results conrm the validity of each building block as well as the eciency of the whole unied structured approach and prove that it outperforms the baseline schema.

Generally, in the WSNs, ensuring long-term survival of the wireless sensor devices is crucial, especially for the non energy harvesting networks. Thus, there is a huge need to further optimize the use of WSN resources. Although applying a high data compression ratio extremely reduces the overall network energy consumption, the network lifetime is not necessarily extended due to the uneven energy depletion of the sensor nodes' batteries. To this end, in the third part of this thesis, we have developed the Energy-Aware Matrix Completion based data gathering approach (EAMC), which designates the active nodes according to their residual energy levels. Furthermore, since we are mainly interested in the high data loss scenarios, the limited amount of delivered data must be sucient in terms of informative quality it holds in order to reach a good and satisfactory recovery accuracy for the entire network data. For that reason, the EAMC selects the nodes that can best represent the network depending on their inter-correlation as well as the network energy eciency, with the use of a combined energy-aware and correlation-based metric. This introduced active node cost function changes with the type of application one wants to perform, with the intention to reach a longer lifespan for the network. Therewith, relying on the three-stage MC based approach for data recovery, the proposed scheme achieves an attractive and competitive trade-o between the data reconstruction quality and the network lifetime for all the investigated scenarios.

Résumé

Dans cette thèse, nous nous intéressons à la collecte de données avec la contrainte d'énergie pour les réseaux de capteurs sans l (RCSFs). En eet, il existe plusieurs dés qui peuvent perturber le bon fonctionnement de ce type de réseaux. Par exemple, les applications des RCSFs doivent faire face aux capacités très limitées en termes d'énergie, de mémoire et de traitement des n÷uds de capteurs. De plus, à mesure que la taille de ces réseaux continue de croître, la quantité de données à traiter et à transmettre devient énorme. Dans de nombreux cas pratiques, les capteurs sans l sont répartis sur un champ physique an de surveiller les phénomènes physiques à forte corrélation spatio-temporelle. Par conséquent, l'objectif principal de cette thèse est de réduire la quantité de données traitées et transmises dans le scénario de collecte de données.

Dans la première partie de cette thèse, nous utilisons le Compressive Sensing (CS), une technique prometteuse pour exploiter cette corrélation an de limiter le nombre de transmissions et ainsi augmenter la durée de vie du réseau. En règle générale, nous nous intéressons à la topologie de réseau maillé, où le point de collecte de données n'est pas situé dans le rayon de communication du capteur transmetteur et des schémas de routage doivent être alors appliqués. Nous proposons le Space-Time Compressive Sensing (STCS) en exploitant conjointement la dépendance de données inter-capteurs et intra-capteur. De plus, comme le routage et le nombre de retransmissions aectent de manière signicative la consommation totale d'énergie, nous introduisons le routage dans notre fonction de coût an d'optimiser la sélection des capteurs de transmission.

Les simulations montrent que cette méthode surpasse les méthodes existantes et conrment la validité de notre approche.

Dans la deuxième partie de cette thèse, nous tentons de traiter un désign d'économie d'énergie presque similaire à celui proposé dans la première partie avec l'utilisation de la méthodologie de Matrix Completion (MC). Précisément, nous supposons qu'un nombre limité de n÷uds de capteurs sont sélectionnés pour être actifs et représenter l'ensemble du réseau, tandis que les autres n÷uds restent inactifs et ne participent pas du tout à la détection et à la transmission de leurs données. En outre, l'ensemble vi vii de lectures de données des n÷uds actifs est ecacement réduit, à chaque intervalle de temps, conformément à une planication de cluster avec l'approche de collecte de données Optimized Cluster-based MC (OCBMC). En se basant sur les techniques existantes de MC, le point de collecte de données n'est pas en mesure de récupérer l'intégralité de la matrice de données en raison de l'existence de lignes complètement vides correspondant aux n÷uds inactifs. Ainsi, nous proposons une technique d'interpolation complémentaire, basée sur un problème de minimisation, qui bénécie de l'inter-corrélation entre les noeuds de capteurs, an de garantir la reconstruction de toutes les lignes vides, malgré leur grand nombre. Le modèle three-stage MC-based reconstruction proposé, combiné à celui de l'échantillonnage/compression des données susmentionné, est évalué avec des simulations approfondies. Les résultats conrment la validité de chaque bloc constitutif ainsi que l'ecacité de toute l'approche structurée et uniée et prouvent qu'elle surpasse le schéma le plus proche.

Généralement, dans les RCSFs, il est crucial d'assurer la survie à long terme des capteurs sans l, en particulier pour les réseaux sans récupération d'énergie. Ainsi, il existe un énorme besoin d'optimiser davantage l'utilisation des ressources énergétique du réseau. Bien que l'application d'un taux de compression des données élevé réduit considérablement la consommation d'énergie globale du réseau, la durée de vie du réseau n'est pas nécessairement prolongée en raison de l'épuisement inégal des batteries des n÷uds de capteurs. A cette n, dans la troisième partie de cette thèse, nous développons l'approche de collecte de données Energy-Aware Matrix Completion (EAMC), qui désigne les n÷uds actifs en fonction de leurs niveaux d'énergies résiduelles. De plus, étant donné que nous sommes principalement intéressés par les scénarios de perte de données élevées, la quantité limitée de données fournies doit être susante en termes de qualité informative qu'elle détient an d'atteindre une précision de récupération bonne et satisfaisante pour l'ensemble des données du réseau. Pour cette raison, l'EAMC sélectionne les n÷uds qui peuvent représenter le mieux le réseau en fonction de leur inter-corrélation ainsi que de l'ecacité énergétique du réseau, avec l'utilisation d'une métrique combinée qui est éco-énergétique et basée sur la corrélation. Cette fonction de coût, qu'on a introduit, change avec le type d'application que l'on veut eectuer, dans le but d'atteindre une durée de vie plus longue pour le réseau. Sur ce, en s'appuyant sur l'approche three-stage MC-based reconstruction pour la récupération des données, le schéma proposé permet un compromis attractif viii et compétitif entre la qualité de la reconstruction des données et la durée de vie du réseau pour tous les scénarios étudiés.
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5.7

Performance trade-o between the data reconstruction error and the network lifetime for the compared approaches in the single-level compression scenario and multi-hop mesh topology with the greedy power sensors. . . IoT requirements 1 [START_REF] Anuga | A survey on 5g networks for the internet of things: Communication technologies and challenges[END_REF]. Recently, the massive IoT access has been considered as a part of the 5 th generation mobile communication system (5G). Nevertheless, researchers, scientists, and engineers are facing emerging challenges to eectively incorporate the IoT based systems, especially the resource allocation, in the 5G [5]. In fact, the inclusion of the IoT into the 5G and their evolution still represent a formidable technical challenge due to the huge number of sensors and the generated information. Note that one of the main challenges of the 5G is the massive connectivity for MTC and the management of its coexistence with the high data-rate continuous trac generated by Human-Type Communications (HTC) in an ecient and eective manner.

Wireless Sensor Networks (WSNs), which represent a key pillar of IoT, take place in the center of this revolution. Typically, these networks consist of a large set of sensor nodes that are self-organising and geographically distributed across the monitored area. Despite the miniaturization of these sensor-based devices, they are able to probe dierent magnitudes. Indeed, they are usually deployed to supervise various physical phenomena with a high resolution and at a low cost, such as in forests, under water and in civilian and habitat application areas [START_REF] Mehmood | Internet-of-things-based smart cities: Recent advances and challenges[END_REF]. In usual data gathering techniques, each sensor node takes measures and sends periodically its raw data to the sink, which is the collector node, via multi-hop transmission. If nodes face packet losses, due to collisions or buer overows, packets are retransmitted, which leads to 1 Specically, it aims to automate as much as possible the data communications between devices, in such a way that these latters can occur rightly without any human intervention [START_REF] Verma | Machine-to-machine (m2m) communications: A survey[END_REF].

a high cost and a heavy trac. Nevertheless, this kind of data collecting is either impossible or impractical, especially for the large-scale networks, due to the energy and memory limitations of nodes. In fact, these tiny devices operate in an unattended mode and are usually unable to renew their batteries. Hence, reducing the network energy consumption while gathering and forwarding sensory data is the main challenge for these networks since it directly aects their lifetimes and thus their sustainability. This can be achieved by minimizing the amount of information to be communicated. Indeed, establishing energy-ecient data gathering and acquisition schemes, while obviously keeping a good quality in the recovered data, is always welcomed.

The spatial and the temporal correlations that characterize most of the WSNs signal proles represent a key for the adaptive and ecient data gathering schemes. While the temporal correlation, reecting the intra-sensor dependency, nds out the time evolution of the signal, the spatial correlation, reecting the inter-sensors dependency, captures the spatial variation of the signal between the dierent sensed locations of the network. Beneting from this property, sensors' resources can be further saved by eliminating the useless and redundant information.

Problems Statement

In this thesis, we investigate the challenging scenario of data gathering in WSNs. Most of related works have considered the resource access problems like data collisions, losses and re-transmissions. Recently, some researches have focused on the scheduling of data collecting strategies, through the use of compressive sensing. Moreover, the burgeoning demand of many recent applications to deploy more sensor nodes, with their crucial nature of limited power and computational capacities, urges for the establishment of energy-ecient data gathering and acquisition schemes in order to save as longer as possible the sensors' limited batteries. Usually, the activities for which a sensor node consumes its energy are sensing, processing, and data communication. Most of the existing energy management strategies assume that radio transmission and reception, and in some setups the acquisition/sampling, are the most energy-consuming operations [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF]- [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF]. Several papers have mainly focused on data compression in order to minimize the energy consumption by reducing the packets size, such as transform coding or entropy coding [START_REF] Sandeep | Distributed source coding using syndromes (discus): Design and construction[END_REF]- [START_REF] Kim | Increasing network lifetime using data compression in wireless sensor networks with energy harvesting[END_REF]. However, these kinds of in-network processing-based compression schemes require full data signal, and afterwards most of the information is thrown away at the compression stage. Furthermore, they require explicit computational and communication overheads leading to a high space and time complexity at the sensor side, which is preferable to avoid in this type of networks.

In parallel with the consideration of sensors' resources, a second factor, of prime importance, to be taken into account, is the quality of the decompressed data and the accuracy of the missing data recovery in data loss scenarios. Indeed, after receiving the compressed data, the sink node should perform data reconstruction algorithms.

That being the case, the purpose of this thesis is to reduce drastically the amount of data readings, while ensuring a suciently good data recovery quality at the sink node.

In addition to the minimization of the sensors energy consumption, preserving an energy load balancing between nodes in order prolong the overall network lifetime is another big challenge to tackle. Indeed, due to the multi-hop systems conguration that most of the WSNs adopt, energy consumption between nodes is uneven, leading usually to fast batteries depletion of some nodes, typically the ones that are situated around the sink. Generally, the supervised environments are of harsh nature, which makes the re-change of the exhausted batteries either impractical or a costly task. Therefrom, to ensure a long term monitoring and enhance the network lifespan, there is a need to provide a suitable energy-aware based data gathering technique.

Note that the case of rechargeable power supplies of the Energy-Harvesting Wireless Sensor Networks (EHWSNs), where sensor devices can replenish their batteries with energy from the surrounding environment, is out of scope of this thesis, but can be an underlying technique to prolong the lifespan of WSNs.

Motivations

As it is well-known, the principle key that underlies the data sampling techniques and the analog-to-digital conversion in the current used consumer devices is the Nyquist-Shannon sampling theorem [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF]. This theorem reports that if the signal sampling rate represents at least twice its maximum frequency component (i.e the so-called Nyquist rate), the recovery process of that signal can be acheived successfully. However, usually in the resource-limited sensors, the signal samples acquisition is specically followed by a data compression phase, where the gathered information has to be encoded in a reduced size manner. Accordingly, a substantial portion of the expensively acquired data is eventually thrown away at the compression stage prior to storage or transmission.

Moreover, in several emerging applications that we can face in the WSNs, the Nyquist rate is still very high regarding the network capability [START_REF] Yonina | Compressed sensing: theory and applications[END_REF]. Hopefully, under certain conditions, a new paradigm called the Compressive Sensing (CS), or the Compressed Sampling, goes against the common and known wisdom in data acquisition [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF], and states that a perfect reconstruction of the whole data may be possible using a number of measurments or data samples that are far lower than those required by the traditional methods (i.e. the rate that respects the Nyquist property) [START_REF] David | Compressed sensing[END_REF]. Particularly, analog CS, denoted also by the Low-rate CS, violates the conventional sampling notion and allows to sample the signal nonuniformly and at a sub-Nyquist frequency [16] [17], permitting to realize savings on the number of data samples to be gathered. Roughly speaking, instead of sampling the compressible signals at the Nyquist frequency and then performing a compression algorithm, the aforementioned presented technique captures them directly in a compressed form using a sub-Nyquist frequency 2 , i.e. a simultaneous sampling and compression mecanism. Here, the resulting data measurements don't need to be manipulated for processing in any way before being delivered, except some quantization eventually [START_REF] Marco F Duarte | Universal distributed sensing via random projections[END_REF]. To this end, for the case of WSN applications, the principal asset of the CS technique is its common and simple encoding phase [START_REF] Markus | DISTRIBUTED COMPRESSED DATA GATHERING IN WIRELESS SENSOR NETWORKS[END_REF]. Note that a data vector might hold many small elements and few large ones, in such a way that most of the data signal information is carried by the larger coecients. Such a data vector is known to be a compressible signal [START_REF] Zhang | Spatio-temporal compressive sensing and internet trac matrices[END_REF]. Among the conditions that one must aord to ensure a "perfect" reconstruction after the CS, we have the signal sparsity feature. That is, the data vector to be processed should hold only a few non-zero elements 3 . Since correlation structure and redundancy that characterize most of the WSNs' signal proles are often synonymous with sparsity, the CS method seems to be a good t for such data gathering frameworks. Afterwards, a data reconstruction algorithm is executed at the sink node, who has less energy and computational constraints. Hence, the computation complexity is moved from sensor nodes to the sink. This meets well the resource-constrained devices of WSNs and sig-2 In this dissertation, the "sub-Nyquist data acquisition feature" performed with CS refers to measuring and sensing an analog source, by reducing the measurements' projections. The latters denote the discrete-time data measurements obtained from (2.2). 3 More details are available in 2.1.1.

nicantly reduces their energy consumption. Indeed, unlike the measurement phase, the recovery phase of CS requires a lot of calculation. For that reason, we assume that the collector node possesses the necessary resources to execute the data recovery operation as it is far less constrained compared to the low powered sensor nodes [START_REF] Ravelomanantsoa | Approche déterministe de l'acquisition comprimée et la reconstruction des signaux issus de capteurs intelligents distribués[END_REF].

Key Contributions

In this thesis, we focus on the data gathering task in the WSNs, and we seek for a good trade-o between the network limited-resources constraint and the end-user requirements. In fact, we have investigated the following questions; how to eciently reduce the number of data readings to be gathered by sensor nodes, while being able to recover the missing ones? and how to accomplish this task with a near-optimal utilization of sensors resources in order to further extend the overall network lifetime ?

Trying to provide answers to these questions, in this work, we have developed adaptive and energy-ecient distributed data gathering schemes, each of which is accompanied by the suitable data reconstruction framework. The preponderant work of this thesis is assembled in the following three contributions;

In our rst contribution, we address the rst question. We take advantage of the spatial and temporal correlations to perform simultaneously both the distributed CS and the local CS, where a subset of well designated active sensors are deterministically chosen to be representative of the network for the entire detection period, and to gather measurements only in specic time slots, i.e. according to a given sampling ratio. Indeed, they only acquire the required amount of data readings. Relying on the techniques of [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], to compute adaptive compression and sparsifying matrices that vary with the signal correlation structure, we consider a dierent design that enables us to treat the signal in its matrix form instead of the standard use of the data in CS, i.e. the data vector form. To further improve the network energy savings, the routing is jointly considered with the correlation criteria in the active node selection. Withal, the simulation results shows that we are able to keep a good data reconstruction performance, while reducing signicantly the energy consumption. This work was validated in our original paper [START_REF] Kortas | Routing aware space-time compressive sensing for wireless sensor networks[END_REF].

In our second contribution, we attempt to address nearly the same issue that is investigated in the rst part with the use of dierent techniques. We propose a data gathering approach based on the Matrix Completion (MC) method, a data sampling and reconstruction technique that, on the heels of CS, has recently emerged. The theory of MC states that if the data matrix has a low-rank or approximately a lowrank structure 4 , it can be recovered with high accuracy using the partially received elements [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF]. The existence of inactive sensor nodes that do not participate in the data sensing during the entire detection period entails the existence of completely missing data rows in the received data matrix, which unfortunately not only impedes the MC resolution but also pollutes the received data [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF]. In this context, we develop a novel structured MC-based framework that guarantees the reconstruction of a signicant number of missing data rows thanks to the proposed complementary minimization-based interpolation technique 5 . Furthermore, In order to improve the data reconstruction quality, we propose to perform a sensor nodes clustering phase, so that the participation of the active sensing nodes is scheduled according to the clusters assignment. This preliminary phase is done in order to involve all the detected clusters in the data sensing and avoid disregarding sensor nodes that belong to the small clusters, a deciency or a slip that can occur with high probability in the purely random data sampling, which is usually used in the conventional MC. This work was validated in our original paper [START_REF] Kortas | Energy ecient data gathering schema for wireless sensor network: A matrix completion based approach[END_REF].

Although the two previous data gathering schemes provide an ecient solution to reduce the amount of sensed data, minimize the network energy consumption and save its energy, mastering the load balancing between nodes remains a relevant challenge.

In our third contribution, we undertake the aforementioned second question issue and propose an energy-aware data gathering strategy aiming to alleviate the uneven 4 In the context of data matrices, the signal low-rank feature is analogous to the sparsity [START_REF] Zhang | Spatio-temporal compressive sensing and internet trac matrices[END_REF]. 5 The proposed framework is also useful for another challenging scenario; when we have a small number of sensors that have to be deployed in a spacious area. Indeed, either the sensor nodes are costly or the environment is large enough to be content with the limited number of sensors. This may concern also the harsh environments that are dicult to access such as volcanoes and other troublesome environments, where the deployment of many sensor nodes is not practical and becomes expensive. However, in many applications, the amount of gathered data must be signicant enough to be processed. The idea here is to place a relatively small number of spatially spaced sensor nodes to control the correlated eld under a compression ratio. These sensor nodes represent other sensor nodes that do not really exist.Particularly, the sensory data eld is, most of the time, highly correlated and redundant between nearby sensor nodes, which makes possible to estimate readings at locations, where the signal cannot be sensed.

energy depletion problem that may occur in most of the WSNs. The proposed data gathering strategy extends the previous one and selects the representative nodes that can report more information about the others and at the same time aord the sustainability as long as possible for the network lifetime. Since the schemes performance usually vary with the network congurations, we evaluate our approach under different network topologies and scenarios, while selecting, in each time, the adequate energy-aware cost selection function. For each case, the trade-o between the data recovery error and the network lifetime is measured, and the performance behaviour of the proposed data gathering approach is studied for both types of sensor nodes; the low-power nodes and the greedy-power ones (in terms of sensing). This work was validated in our original paper [START_REF] Kortas | The energy-aware matrix completion-based data gathering scheme for wireless sensor networks[END_REF].

Manuscript Organization

This dissertation contains two parts that are divided into 6 chapters. Following this introduction, we discuss some related works in the next chapter. Before going into details, overviews on the CS and MC theories will be introduced. Then, in the second part, we detail the main proposed techniques of this thesis. The subsequent chapters 3 -5 are orderly arranged in accordance with the contributions that have been stated herebefore. More precisely, in chapter 3, we present our routing-aware CS-based approach and describe its components and its design in details, where, dierently to most of the existing CS-based schemes, the proposed one integrates both the temporal and the spatial dimensions not only in the data recovery phase but also in the data acquisition one. In chapter 4, we address a challenging compression pattern, which is composed of both structured and random losses, that we successfully manage with the use of a structured MC-based data recovery framework. Chapters 3 and 4 propose also a description of the signals generation models that have been used for the evaluation of the proposed schemes. In chapter 5, we present how the energy constraint can be jointly considered with the correlation criteria in the active node selection cost function in order to maintain a load balancing among nodes and maximize the network lifetime, while still preserving a low data reconstruction error. Finally, we conclude this thesis in chapter 6 by recapitulating our contributions and presenting some eventual perspectives that can be worth pursuing in the future. We present all the publications of this thesis in Appendix A. Chapter In this chapter, we start with an overview of the used theories of CS and MC and we discuss some existing data collection schemes from the literature.

Overview of Compressive Sensing

CS provides a new paradigm that makes possible a high-dimensional sparse signal recovery with the use of a small number of measurements. It is based on two principal conditions: sparsity, which is directly related to the signals of interest, and incoherence, which concerns the data sensing modality [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF].

Sparsity Condition

Consider an N -dimensional signal vector x = [x 1 , x 2 , ..., x N ] tr ∈ IR N ×1 and suppose that x can be represented in some invertible transformation basis Ψ = {ψ 1 , ψ 2 , ..., ψ N } ∈ IR N ×N as:

x = N i=1 α i ψ i = Ψα, (2.1) 
where α = [α 1 , α 2 , ..., α N ] tr holds the transform domain coecients in Ψ. The k-sparse/compressible signal x can be accurately recovered from M < N linear projections (y ∈ IR M ×1 ) with high probability [START_REF] David | Compressed sensing[END_REF]. These projections are obtained through an M × N matrix Φ according to the following equation:

y = Φ.x = Φ.Ψ.α = Θ.α. (2.
2)

Yet, this underdetermined system is ill-posed as the number M of equations is smaller than the number N of unknown variables. Consequently, there exists an innity of vectors α satisfying (2.2). However, according to the CS theory, if α is sparse or approximately sparse and if the matrix product Θ satises the Restricted Isometry Property (RIP) for some isometry constant 0 < δ k < 1 2 [START_REF] Yonina | Compressed sensing: theory and applications[END_REF][START_REF] Marco | Kronecker compressive sensing[END_REF]:

(1 -δ k ) α 2 2 Θα 2 2 (1 + δ k ) α 2 2 , (2.3) 
then, it has been shown that recovering the signal x from the projections of y can be achieved through the use of specialized optimization techniques. As an example, we have the Basis Pursuit (BP) convex optimization technique which uses 1 norm 3 and involves linear programming techniques [START_REF] David | Compressed sensing[END_REF][START_REF] Shaobing | Atomic decomposition by basis pursuit[END_REF][START_REF] Candes | l 1 -magic: Recovery of sparse signals via convex programming[END_REF]:

α = arg min α∈IR N ×1 α 1 s.t. y = Θ.α. (2.4) 
Note that solving (2.2) through the 1 -minimization problem has been adopted as the best alternative convex approximation to the original NP-hard 0 -minimization problem:

α = arg min α∈IR N ×1 α 0 s.t. y = Θ.α.
(2.5)

In the state-of-art, many ecient convex relaxation and greedy pursuit-based solvers have been proposed such L1-MAGIC [START_REF] Candes | l 1 -magic: Recovery of sparse signals via convex programming[END_REF] and Orthogonal Matching Pursuit (OMP) [START_REF] Cai | Orthogonal matching pursuit for sparse signal recovery with noise[END_REF].

2 Broadly speaking, we loosely denote that a matrix Θ obeys the RIP of order k if δ k is not too close to 1 [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF]. 3 The norm 1 of a vector x ∈ IR N ×1 is dened by

x 1= N i=1 | xi |, whereas, its 2 norm is dened by x 2= N i=1 x 2 i .
Similarly, we can directly minimize the 0 norm using the Smoothed 0 (SL0) [START_REF] Mohimani | Sparse recovery using smoothed l 0 (sl0): Convergence analysis[END_REF].

In [START_REF] Markus | DISTRIBUTED COMPRESSED DATA GATHERING IN WIRELESS SENSOR NETWORKS[END_REF]Table. 1], authors have provided details on the dierent classes of many existing CS recovery algorithms.

Finally, once α is estimated, (2.1) is used to compute the signal x. In the case of noisy data, we take into account the additive noise in the obtained measurements, and we replace (2.2) by (2.6), as follows:

y = Φ.x + no = Θ.α + no, (2.6)
where no ∈ IR M ×1 is a vector representing the noise. In most cases, it is considered to be a Gaussian white noise with a zero mean and a variance σ 2 no . To approximate the noisy version of (2.5) and search for the sparsest solution α that is consistent with the known or received measurements y, instead of (2.4), we solve (2.7):

α = arg min α∈IR N ×1 α 1 s.t. y -Θ.α 2 ε, (2.7)
where ε is an upper bound of the noise [START_REF] Becker | Nesta: A fast and accurate rst-order method for sparse recovery[END_REF]. 

Incoherence Condition

To achieve a successful CS reconstruction of the signal, another condition must be satised, that is, the mutual coherence µ(Θ) between Ψ and Φ is required to be small:

µ(Θ) = max i =j , 1 i , j N | θ i , θ j | θ i 2 θ j 2 .
(2.8)

In this equation, θ i and θ j denote the columns of Θ. The mutual coherence µ(Θ)

determines the number of required projections for an accurate recovery. According to [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF], unlike the signal of interest x, the mutual incoherence property (MIP) means that the sensing/compression matrix Φ holds an extremely dense representation in the basis Ψ, and the smaller the coherence (2.8) is, the fewer measurements are required.

Dierently, the RIP of Θ ensures the measurements or projections to approximately preserve the Euclidean length of all k-sparse signals [START_REF] Leinonen | Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks[END_REF] 4 . Since it is dicult to check whether a matrix satises the RIP or not, in practice, it is replaced by the mutual incoherence property as shown in [START_REF] Cai | Orthogonal matching pursuit for sparse signal recovery with noise[END_REF]: The MIP implies the RIP but the reverse is not true.

Interestingly, the independent and identically distributed (i.i.d) Gaussian and Bernoulli (random ±1) Φ exhibit a very low coherence with any given orthonormal basis Ψ then satises the RIP and ensures an exact data reconstruction with overwhelming probability, if M ≥ C 0 .k.log(N/k), where C 0 is a small positive constant [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF][START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF]. Typically, in practice M = c.k with c ≈ 3 or 4 can be sucient to meet this condition [START_REF] Marco F Duarte | Universal distributed sensing via random projections[END_REF]. However, these dense random matrices 5 still cause high inter-communication costs between sensors and thus limit the eciency for the applications of CS in WSNs. To overcome such limitations, [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF][START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF]- [START_REF] Wang | Distributed sparse random projections for renable approximation[END_REF] proposed to use sparse random matrices that contain very few non-zero elements but require a multi-hop routing algorithm establishment.

Besides aecting the data recovery performance, the encoding matrix Φ determinates the data readings gathering structure. For that reason, a notable attention has been paid to the design structure of Φ [START_REF] Mamaghanian | Compressed sensing for real-time energy-ecient ecg compression on wireless body sensor nodes[END_REF][START_REF] Ravelomanantsoa | Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm[END_REF]. 4 Namely, we verify whether the matrix Θ preserves the distances between all the k-sparse signals, i.e. if the matrix Θ satises the RIP, then the distance between two measurement vectors y1 = Θα1 and y2 = Θα2 is proportional to the distance between α1 and α2 [20, Chapter. 2]. 5 The use of dense encoding matrices refers to the digital CS [START_REF] Brunelli | Sparse recovery optimization in wireless sensor networks with a sub-nyquist sampling rate[END_REF]. 

[P Ω (X)] ij = X ij (i, j) ∈ Ω 0 otherwise.
(2.9)

Note that the signicance or indication of the notation M in the MC theory diers from that in the CS theory. Here, M refers to the received data matrix to be recovered, whereas, in the CS theory, M refers to the number of received measurements that compose the projection vector y (2.2).

Roughly speaking, the goal of the MC is to nd a low-rank matrix X that is consistent with the observed measurements M ij . According to [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF], if Ω contains enough information and if M ∈ IR N ×T is a low rank or approximately a low-rank matrix, we can ll the unknown entries by solving the following rank minimization problem: minimize X∈IR N ×T rank(X) s.t P Ω (X) = P Ω (M ).

(2.10)

Yet, problem (2.10) is not convex, and algorithms solving it are doubly exponential.

Fortunately, the nuclear norm X * minimization problem, which is a convex relaxation, can be solved. In fact, it is deployed as an alternative to the NP-hard rank minimization problem [START_REF] Emmanuel | Matrix completion with noise[END_REF]. Thus, we have:

minimize X∈IR N ×T X * = r i=1
τ i (X) s.t P Ω (X) = P Ω (M ).

(2.11)

X * denotes the sum of the singular values τ i ≥ 0 of the matrix X. As it might be seen, the relationship between the nuclear norm and the rank function in MC is analogous to that between the convex 1 norm and the 0 norm in CS. Indeed, while the rank provides the number of non zero singular values τ i > 0, the nuclear norm measures their sum.

In the literature, various ecient solvers for this type of systems have been suggested.

For example, the Singular Value Thresholding (SVT) optimizes an approximation of (2.11) by using a threshold parameter τ au and adding a Frobenius-norm term to the objective function [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]:

minimize X∈IR N ×T τ au X * + 1 2 X 2 F s.t P Ω (X) = P Ω (M ).
(2.12)

Dierent from (2.11), another method has been proposed to approximate (2.10) rather than the nuclear norm, which is the matrix factorization. Low rank matrix tting (LMaFit) [START_REF] Wen | Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[END_REF], Sparsity Regularized SVD (SRSVD) and Sparsity Regularized Matrix Factorization (SRMF) [START_REF] Roughan | Spatio-temporal compressive sensing and internet trac matrices[END_REF] are among the approaches that use the matrix factorization method. These approaches are based on the fact that any matrix X ∈ IR N ×T of a rank up to r can be explicitly written as the product of two matrices with the form X = LR tr , where L ∈ IR N ×r and R ∈ IR T ×r . Hence, the goal here is to search over the set of rank-r matrices and nd a point LR tr that is closest to the set of matrices, which meets M at all known entries. To solve the problem, an alternating minimization scheme is used by xing one of L and R and making the other one as the optimization variable.

Incoherence Condition

As with the CS theory, from a theoretical point of view, in order to nd the desired solution with this kind of methods, the sampling set Ω must be selected uniformly at random 6 . However, it has been shown in [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF] that it is impossible to get that kind of guarantees of the MC-based recovery to all the low-rank matrices. To see the problem, suppose that the rank-r singular value decomposition (SVD) of the known data matrix M is U Π V tr , where V ∈ IR T ×T and U ∈ IR N ×N are two unitary matrices. Besides, we assume that r = 1 and both (or one) singular vectors are sparse, i.e. their total energy is carried only by few entries. Yet, when this occurs, the resulting matrix M will, as well, hold its energy concentrated on just a few number of its entries, i.e. M equals to zero in almost all columns or rows [START_REF] Mark | An overview of low-rank matrix recovery from incomplete observations[END_REF]. In such particular situations, it is impossible to nd M unless all of its elements are observed 7 . This example illustrates that one cannot hope to ll or complete the data matrix if some of the singular vectors are extremely sparse 8 [START_REF] Emmanuel | Matrix completion with noise[END_REF]. To avoid such informal considerations and particular situation, the singular vectors of M should be spread across all the coordinates. The authors of [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF] have introduced a geometric incoherence assumption, that is, M has to satisfy the incoherence condition with parameter µ 0 as follows:

max 1 i N U tr e i 2 ≤ µ 0 r N , max 1 j T V tr e j 2 ≤ µ 0 r T , (2.13) 
where {e i } and {e j } both represent the canonical basis for the appropriate dimension and 1 ≤ µ 0 ≤ min{N,T } r . Fortunately, this is usually the case in most of the practical applications. According to [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF], most matrices M of low rank r can be perfectly recovered with probability 1 -n -3 c , and the solution of (2.11) will converge to the solution of (2.10), if the number of received data samples is in the order of m M ≥ C c n 6/5 c rlog(n c ), where C c is a constant and n c = max(N, T ) [START_REF] Emmanuel | The power of convex relaxation: Nearoptimal matrix completion[END_REF][START_REF] Giannopoulos | Application of tensor and matrix completion on environmental sensing data[END_REF].

CS and MC based data gathering approaches

Environmental WSN signal proles exhibit both spatial and temporal dependency.

Such structures generate redundancy and enable a succinct representation of the data using a number of coecients much smaller than its actual dimension. One popular postulate of such low-dimensional structures is sparsity, that is, a signal can be simply represented with a few non-zero coecients in an invertible proper sparsifying domain [START_REF] Chen | Harnessing structures in big data via guaranteed low-rank matrix estimation[END_REF]. With a number of measurements proportional to the sparsity level, CS enables a reliable reconstruction of the signal. Over the past years, plenty of papers have addressed the data gathering problems in WSNs by the integration of the CS theory to drastically reduce the number of transmitted measurements [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF][START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF][START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF]]- [START_REF] Wang | Distributed sparse random projections for renable approximation[END_REF][START_REF] Luo | Compressive data gathering for large-scale wireless sensor networks[END_REF].

Originally, CS-based schemes were designed to sample and recover sparse vectors and were classied either as purely spatial approaches [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF][START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF][START_REF] Zheng | Data gathering with compressive sensing in wireless sensor networks: a random walk based approach[END_REF][START_REF] Luo | Compressive data gathering for large-scale wireless sensor networks[END_REF][START_REF] Quer | Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework[END_REF] or as purely temporal ones [START_REF] Chen | Dass: Distributed adaptive sparse sensing[END_REF]. For the spatially (inter-sensors) CS-based data gathering approaches, in each time slot, along the multi-hop path that relays the initial transmitting source node to the sink, the readings of the relaying sensor nodes and the initial transmitting source node are linearly combined using their coecients of Φ, resulting to a measurement projection of a weighted sum. Here, each vector row of the compression/measurement matrix Φ represents a path and holds non-zero coecients only in the positions of the initial sensor node and the relaying ones. Given the example of Figure 2.2, suppose that the applied compression ratio imposes the collection of M = 2 measurements projection, i.e. y = [y 1 , y 2 ] tr ∈ IR M ×1 . In this case, each of the initial transmitting source nodes N 2 and N 5 initiates a separate projection that is computed hop by hop until being received by the sink. However, this kind of innetwork aggregation scheme is highly dependent to the considered routing rules and to the network topology [START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF][START_REF] Zheng | Data gathering with compressive sensing in wireless sensor networks: a random walk based approach[END_REF][START_REF] Luo | Ecient measurement generation and pervasive sparsity for compressive data gathering[END_REF]. As another example of typical application of the spatial CS, illustrated in Figure 2.3, all the leaf nodes initiate the data transmission process. For each projecton y j , sensor node N i multiplies its probed data reading x i by its coecient φ j,i . The resulting partial projetion is added to the received ones that are computed by the children nodes and then forwarded to the higher node. Even though, this method implies the use of dense encoding matrices Φ, compared to the baseline data collection, this kind of CS data gathering scheme reduces the number of messages to be delivered to the sink for large-scale WSNs, i.e. when M is much smaller than N and N is too large. Moreover and more importantly, the transmission load is uniformly spread out between all nodes since they forward the same size of information whatever the distance from the destination is [START_REF] Luo | Compressive data gathering for large-scale wireless sensor networks[END_REF]. For the temporally (intra-sensor) CS-based data gathering approaches, each sensor node reports to the sink only the CS measurements projection, obtained from a block of its data readings that are sampled during a number of successive time slots then buered [START_REF] Chen | Dass: Distributed adaptive sparse sensing[END_REF][START_REF] Li | Compressed sensing signal and data acquisition in wireless sensor networks and internet of things[END_REF]. Dierent from the spatial CS methods, this in-node compression technique is localized and network independent. To this end, chapter 3 relies on the idea of exploiting both the distributed (spatial) and local (temporal) CS designs to deliver only a fraction of data sensory readings to the sink without any on-board sensor nodes computation 9 .

The inherent correlation between sensory data readings enables the data, probed by nodes during a period of time, to exhibit a low rank structure, which is analogous to sparsity. Following the CS, the MC theory presents a remarkable new eld that takes advantage of the low-rank feature of the data matrix to recover the missing entries. In [START_REF] Cheng | Stcdg an ecient data gathering algorithm based on matrix completion for wireless sensor networks[END_REF], a state-of-the-art of MC-based algorithm for compressive data gathering has introduced the short-term stability with the low-rank feature. The considered feature was used not only to reduce the recovery error but also to recover the likely empty columns appearing in the received data matrix. The existence of the empty columns was possible since the readings were forwarded according to a presence probability. Furthermore, authors in [START_REF] Fragkiadakis | Joint compressed-sensing and matrix-completion for ecient data collection in wsns[END_REF] addressed joint CS and MC. They used the CS to compress the sensor node readings then the MC to recover the non-sampled or lost information. However, this approach has not been compared to other state-of-the-art approaches to show its real contribution. In addition, they didn't take advantage of the space-time correlation of the signal as it should be, since they used standard compression and sparsifying matrices for the CS. Dierent from [START_REF] Fragkiadakis | Joint compressed-sensing and matrix-completion for ecient data collection in wsns[END_REF], Wang et al.,[START_REF] Wang | Efcient data gathering methods in wireless sensor networks using gbtr matrix completion[END_REF],

explored the graph based transform sparsity of the sensed data and considered it as a penalty term in the resolution of the MC problem. Similarly, [START_REF] He | Compressive data gathering with low-rank constraints for wireless sensor networks[END_REF] has combined the sparsity and the low-rank feature in the decoding part and, as in [START_REF] Wang | Efcient data gathering methods in wireless sensor networks using gbtr matrix completion[END_REF], used the alternating direction method of multipliers to solve the constrained optimization problem.

Since adaptability and eciency are two very important issues in WSNs data gathering, [START_REF] Xie | Low cost and high accuracy data gathering in wsns with matrix completion[END_REF] proposed an adaptive and online data gathering scheme for weather data that is purely based on the MC requirements. Yet, the main drawback of this approach was the computational overhead at the sink to reconstruct and re-reconstruct the same active window data as well as the extra communication cost between the sink and the sensor nodes in order to adjust the number of needed measurements. The process is reiterated until the required error gap is reached, even though they have already found a very low reconstruction error. In contrast to our proposed approaches, this paper addressed the sampling side. Indeed, they focused on the sampled data locations in the received data matrix, whereas, we have considered the sampled data locations in the network area. Authors of [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] focused on the case of MC recovery with the existence of successive data missing or corruption, referred to as structure faults. Indeed, they considered that successive data may be missing or corrupted due to channel fading or sensor node failures, which creates successive missing data on rows and/or on columns. Although this successive missing data may result in the existence of some few empty rows, the proposed data reconstruction approach does not take into account these particular totally empty rows, and fails to recover the data matrix when the number of missing rows becomes signicant. Hence, in our work of chapter 4, we investigate how to solve a challenging problem in the WSNs: how to omit a considerable number of sensor nodes from the monitoring schedule and estimate their readings from the partially reported readings of a set of representative sensor nodes using a MC-based approach.

Energy-ecient based data gathering approaches

In the state-of-art of the energy-ecient based algorithms for data gathering, reducing the amount of collected data readings or reducing the packets size are two well investigated methods that are closely related to the minimization of the network energy consumption [START_REF] Kim | Increasing network lifetime using data compression in wireless sensor networks with energy harvesting[END_REF][START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF]. CS and MC take benets from the redundancy that occurs in the environmental WSN signals in order to reduce the number of transmitted measurements and thus achieve an appealing progress in the network energy consumption [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF][START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF][START_REF] Tan | An adaptive collection scheme-based matrix completion for data gathering in energy-harvesting wireless sensor networks[END_REF]]- [START_REF] Li | Msdg: A novel green data gathering scheme for wireless sensor networks[END_REF].

Li et al., in [START_REF] Li | Msdg: A novel green data gathering scheme for wireless sensor networks[END_REF], have combined the CS and the routing scheme and proposed a multi-strip data gathering approach for green data collecting. Using this approach, the network is partitioned into multiple strips, where nodes around each strip forward data to the center with data fusion technique. The amount of data readings undertaken by sensors is relatively balanced since the transmitting nodes are chang-

ing. Yet, according to [START_REF] Srimathi | Fuzzy gene optimized reweight boosting classication for energy ecient data gathering in wsn[END_REF], this scheme doesn't use an adaptive distributed technique to minimize the complexity in data gathering. On the heels of MC, Tan et al., in [START_REF] Tan | A low redundancy data collection scheme to maximize lifetime using matrix completion technique[END_REF],

targeted to enhance the network energy eciency and proposed a low redundancy data collection scheme. This MC-based approach serves to quickly compensate the set of collected data in cases of packet loss. In order to not aect the network lifetime, this approach takes advantage of the energy surplus, remaining away from the sink area, and conceives the backup data set to satisfy the minimum number of measurements required by the MC theory. Dierent from the compression-based aspect that the aforementioned schemes have proceeded, the authors of [START_REF] Li | Minimizing convergecast time and energy consumption in green internet of things[END_REF] have addressed the network lifetime issue by reducing the number of nodes' state transitions, pointing out that the processor consumes energy through state transition. This technique bears a resemblance to ours in the sense that, in our scenario, a set of sensor nodes is scheduled to not sense the environment for a large number of consecutive time slots in order to reduce their power consumption.

In line with the consideration of the transmission path to increase the network lifetime, Yao et al., in [START_REF] Yao | Edal: An energy-ecient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks[END_REF], have developed an energy-ecient delay-aware lifetime-balancing data collection algorithm for heterogeneous WSNs, in which nodes holding poor communication links and less remaining energy have a lower chance to be chosen as forwarders. At the beginning of each collection period, a set of nodes is selected to be the sources. However, in our proposed approaches of chapter 4 and chapter 5, the source nodes dier from a time slot to another ensuring a diversity in the reported data and thus a better monitoring quality and energy balancing. Similarly, the paper [START_REF] Jan | A balanced energy-consuming and holealleviating algorithm for wireless sensor networks[END_REF] has proposed two algorithms, where a sensor node always chooses, as next hop, the node that has the highest residual energy. Yet, the proposed techniques have been proved in [START_REF] Wadud | Lifetime maximization via hole alleviation in iot enabling heterogeneous wireless sensor networks[END_REF] to be unable to manage the problem of void hole. To overcome the energy hole problem, authors in [START_REF] Mahendrababu | A solution to energy hole problem in wireless sensor networks using witricity[END_REF] have introduced a new layer, referred to as the charging layer, into the basic node network protocol stack. As soon as the battery level of a node goes done, it is charged wirelessly using witricity (wireless electricity).

In this context, the EHWSNs, where nodes can replenish their batteries with energy from the surrounding environment, have got attention of several researchers. Among the in-network processing-based schemes, an m-hop averaging data compression technique, with energy harvesting, has been proposed in [START_REF] Kim | Increasing network lifetime using data compression in wireless sensor networks with energy harvesting[END_REF] in order to deal with the unevenness of the energy levels among the nodes. In this algorithm, each node has to continuously assemble the usable energy levels of other nodes then make a decision about how much it needs to compress the forwarded data packets after comparing its own energy level with those assembled from the next m nodes within m hops. As the packet is relayed towards the sink, the data packet length becomes smaller leading to a gradual decrease in the energy cost. Dierent from [START_REF] Kim | Increasing network lifetime using data compression in wireless sensor networks with energy harvesting[END_REF], in [START_REF] Tan | An adaptive collection scheme-based matrix completion for data gathering in energy-harvesting wireless sensor networks[END_REF], authors have presented an adaptive collection scheme-based MC, which adjusts the amount of data to be gathered at each moment depending on the residual usable energy absorbed from solar radiation. This scheme has been designed to improve the network energy utilization, increase the duty cycle of sensors far away from the sink and gather as less data readings as possible, when there is no sucient usable energy and vice versa.

Yet, this is not the case with our scenario since our deployed sensor nodes can neither charge their batteries nor renew them. Dealing only with the nodes' batteries, we have investigated in chapter 5 tow to extend the network lifetime and prevent it from being prematurely partitioned or dead by considering the residual energy of the entire multi-hop path that links the source node with the sink. Furthermore, at the end of the network lifetime, the remaining energy of the border nodes (i.e. nodes far away from the sink) is almost close to the average remaining energy thanks to the introduced energy-aware cost functions that select the representative sensor nodes. Without any extra communication between nodes, the proposed metrics aim not only to achieve energy eciency but also to preserve a suciently good quality of data reconstruction as they take into account correlation among sensors to select those who can report more information about the network.

Part II 

Introduction

Recently, it has been shown that the incorporation of CS techniques has enhanced WSNs scenarios since they have been introduced as a good t for such applications in both, the acquisition as well as in the reconstruction of the signal [START_REF] Edwin | A comprehensive review on the impact of compressed sensing in wireless sensor networks[END_REF].

To achieve a successful application of CS in WSNs, incoherence condition between the transformation matrix Ψ and the measurement matrix Φ must be present while simultaneously considering data gathering problems and communication cost. In this context, [START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF] and [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF] 1 addressed the impact of the network topology and the routing system on the CS process in WSNs. [START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF] found that none of the standard transformations can sparsify the signal in question while being simultaneously incoherent with the measurement matrix Φ, which badly aects the recovery performance. [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF] presented a centralized algorithm that iteratively build projections and choose paths that minimize the intermediate coherence with a given Ψ in order to reduce the reconstruction error. However, no performance improvement was found compared to the randomized downsampling. Likewise, [START_REF] Zheng | Data gathering with compressive sensing in wireless sensor networks: a random walk based approach[END_REF] studied the problem of data gathering using CS in WSNs and graph theory. They provided mathematical foundations for a novel approach leading to a non-uniform collection of measurements through a random walk based manner. Yet, the problem with this approach is the direct inuence of the random selected paths on the compression performance. As a sequel of [START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF], Quer et al.,

in [START_REF] Quer | Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework[END_REF], came with the idea of the online estimation of Ψ, exploiting the Principal Component Analysis (PCA) approach, referred by many authors as Karhunen-Loève Transform (KLT), to capture the temporal or the spatial characteristics of the received signal. Basically, the idea of the PCA technique is to rotate the axes of the data in order to minimize the correlation that can be interpreted as redundancy between coecients and as a result increase the energy concentration. Particularly, the basis vectors of the PCA matrix are given by the orthonormalized eigenvectors of the data autocorrelation or covariance matrix [START_REF] Schulz | Compressive sensing[END_REF]. The results of paper [START_REF] Quer | Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework[END_REF] have attracted the attention to the CS when it is used as a recovery tool in WSNs. [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF] and [START_REF] Chen | Dass: Distributed adaptive sparse sensing[END_REF] used also the PCA technique by making adjustments according to their applications.

Hooshmand et al., in [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], added the covariogram computation to the standard PCA to get a better estimation of the spatial transformation matrix. On the other hand, 1 They are two state-of-the-art studies for the CS-based approaches in WSNs.

Chen et al., in [START_REF] Chen | Dass: Distributed adaptive sparse sensing[END_REF], used the incremental PCA to calculate the temporal dictionary, which stores in memory just the k largest eigenvalues of the covariance matrix.

Since environmental WSN signals have, most of the time, both temporal and spatial dependency, this characterization was then exploited by the incorporation of the kronecker CS framework [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF][START_REF] Marco | Kronecker compressive sensing[END_REF][START_REF] Leinonen | Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks[END_REF][START_REF] Wang | Cs²-collector: A new approach for data collection in wireless sensor networks based on two-dimensional compressive sensing[END_REF]. However, in [START_REF] Leinonen | Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks[END_REF] and [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF] the integration of the multi-dimensional CS aspect was done on the sparsifying level, ignoring the compression one which is highly important in the case of WSNs. Wang et al., in [START_REF] Wang | Cs²-collector: A new approach for data collection in wireless sensor networks based on two-dimensional compressive sensing[END_REF],

proposed a 2D data gathering strategy called CS²-collector, which applies CS locally at each sensor as well as in the whole network. However, the proposed approach didn't take advantage of the 2D-correlation existing in the signal as it should be, since it uses standard transformation matrices. These data independent matrices ignore how the signal is correlated and when its correlation changes, which leads to a limited WSNs possess a nite and limited power supply capacity [START_REF] Balouchestani | Robust wireless sensor networks with compressed sensing theory[END_REF]. For that reason, the primary factor to consider is the minimization of the energy consumption, even though this may aect or degrade a little bit the recovery performance. As the CS approach is based on transmitting a small number of coecients rather than the full set of the signal coecients, it provides schemes that can reduce eciently the network power consumption, as shown in [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF][START_REF] Balouchestani | Compressed sensing in wireless sensor networks: Survey[END_REF][START_REF] Karakus | Analysis of energy eciency of compressive sensing in wireless sensor networks[END_REF]. In this direction, to further increase the network energy saving, we integrate the routing in the active node selection process through the STCS-Routing Aware (STCS-RA). Several researches used the routing in conjunction with compression in order to linearly combine sensors readings along the multi-hop selected paths [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF][START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF]- [START_REF] Wang | Distributed sparse random projections for renable approximation[END_REF]. However, in this work, the routing is used in conjunction with the spatial correlation in order to select the nodes that can best present the whole network, when at the same time, are "near" the sink.

The main contributions of this chapter are summarized as follows:

In the data gathering part, only a small subset of sensor nodes is selected to be active and report their readings to the sink. These sensor nodes should capture enough information to be chosen as the representative of the network. In the following, we dene the node selection criterion that allows the sink to recover the entire data. Correlation among sensors is calculated and those holding the greatest informative values are better ranked to be chosen.

Both distributed and local data gathering based on CS technique are eciently investigated in this work. Dierent from [START_REF] Wang | Cs²-collector: A new approach for data collection in wireless sensor networks based on two-dimensional compressive sensing[END_REF], the temporal compression pattern of our approach with its sparse combination does not entail on-board sensors computation. Making use of this kind of conception for the compression matrices meets well the constraint of limited computational capacities that characterizes the sensor devices. Consequently, the proposed STCS consumes less energy than [START_REF] Wang | Cs²-collector: A new approach for data collection in wireless sensor networks based on two-dimensional compressive sensing[END_REF], while reaching higher data recovery quality.

If the gathered data is expressed in the vector form, as it is usually the case in the standard CS, spatial and temporal correlations can not be handled together.

Thus, to take benets from both inter and intra-dependency, the signal is treated in its 2D form, using tools from linear algebra.

Finally, the sensor route length is taken into account with the STCS-RA in the active node selection phase in order to signicantly improve the trade-o between minimizing the energy consumption of the network and maintaining a good reconstruction quality.

This chapter is organized as follows. Section 3.2 denes the network model and the signal model. Section 3.3 presents the proposed algorithm and describes its components and its design in details. In Section 3.4, we carry out with simulations to show the performance of our STCS and STCS-RA. Finally we conclude the chapter in section 3.5.

System Model

Network Model

We consider a multi-hop wireless sensor network consisting of a set N ∫ = {1, . . . , N} of randomly distributed sensors in a square observation area. We assume that the sink is located at the center of the area to gather the transmitted measurements, and we suppose that it has an innite power supply. We consider that two nodes are connected only if the Euclidean distance between them is shorter than some transmission radius (r) that scales with ( logN/N ) to guarantee the connectivity of the network with high probability [START_REF] Zheng | Data gathering with compressive sensing in wireless sensor networks: a random walk based approach[END_REF][START_REF] Gupta | The capacity of wireless networks[END_REF].

To route the data towards the sink we use the shortest path tree computed by Dijkstra algorithm [START_REF] Musznicki | Dijkstra-based localized multicast routing in wireless sensor networks[END_REF] 2 . 

Signal Model

Since the temporal and the spatial correlations represent a huge potential for compressing especially in the WSN signal prole, it will be interesting, if we can vary numerically their degrees to gure out how would be the performance of any proposed compression scheme [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF]. This solution was introduced by [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF], which allows the ecient generation of a synthetic continuous space-time signal eld, where spatial 2 According to [START_REF] Musznicki | Dijkstra-based localized multicast routing in wireless sensor networks[END_REF], paths established by Dijkstra algorithm usually present a lower number of connections, hence, the average delay of message dissemination decreases which reinforces the energy management.

(γ > 0) and temporal (ρ ∈ [0, 1]) correlation parameters can be separately adjusted 3 , since their corresponding functions are independent.

To generate the signal of interest, we suppose that D = [-x D , x D ] × [-y D , y D ] is the space domain, where x and y are the space coordinates. Moreover, we suppose that the time is slotted into equal time slots t = 1, 2, . . . ., T cs . Algorithm 1 states how to generate a correlated stationary signal eld z(p, t) : D × T → IR, where T is the time domain and p is a point in (x, y) plan D.

To start the signal generation process, for t = 1, we dene w(p, t) : D × T → IR to be an i.i.d random Gaussian eld. More precisely, for any specic position p = (x, y), w(p, 1) is a Gaussian random variable with zero mean and unit variance.

To obtain a temporally correlated signal, authors of [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF] have used an autoregressive lter to enforce the temporal correlation in the signal model (step 3 of the algorithm 1).

Since the time is slotted into equal time slots, they only consider the one-step time correlation and use a simple coecient ρ. Note that it has been shown in [77, Eq. 8 and Eq. 9] that the performed autoregressive model maintains the statistical properties and preserves the mean and the variance of the initial used signal w(p, 1), i.e µ w(p,t) = 0 and σ 2 w(p,t) = 1, ∀t ∈ T .

Regarding the spatial correlation, we apply to the signal, to be generated, a 2D ltering procedure using a specic correlation function rs(p) (step 6 of the algorithm 1).

Among the numerous existing models in the literature, we generate the signal using the Gaussian ltering 4 , used in [21, Eq. 2], which can be controlled by the parameter γ:

rs(p) = exp( -(x 2 + y 2 ) γα s ). (3.1) 
In (3.1), α s is a scaling parameter that depends on the size of the eld. In [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF], authors stated that the coloration of the signal with rs(p) has to be done in the frequency domain. Hence, before modeling the spatial correlation, a Fourier transformation is performed (step 5 of the algorithm 1). Note that it has been proven in [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF]Eq. 12] that the signal eld z is still stationary and Gaussian with zero mean (µ z(p,t) = 0). 3 The values of γ and ρ are in the same order of magnitude as those of the empirical values found in [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF]. 4 The Power Exponential model, when ν is equal to 2 [START_REF] Abrahamsen | A review of gaussian random elds and correlation functions[END_REF].

Algorithm 1 Model for generating the correlated signal eld.

Input: the generated eld for t = 1 : w(p, t), the temporal correlation parameter ρ, the spatial correlation parameter γ, the spatial correlation function computed in the frequency domain Rs(ω) = F (rs(p)).

1: for t = 1 to T cs do 2: if (t = 1) then 3:

w(p, t) = ρ × w(p, t -1) + 1 -ρ 2 × ε(p, t), where ε(p, t) is a N (0, 1) i.i.d random Gaussian noise. 4: end if 5: W (ω, t) = F (w(p, t)). 6: Z(ω, t) = W (ω, t) × Rs(ω) 1/2 . 7: z(p, t) = F -1 (Z(ω, t)).

8: end for

Output: the spacetime correlated signal eld z(p, t).

By construction, the signal eld z(p, t) is a 3D matrix of size (2y D × 2x D × T cs ). The data matrix of interest, X cs ∈ IR N ×Tcs , denotes the 2D signal discretized from z(p, t) by the N sensor nodes along the T cs time slots, where the (i, t) th entry of X cs , x cs i,t , represents the t th data reading (t ∈ [1, T cs ]) sensed by the i th sensor node (i ∈ N ∫ ). 

g * = arg max g∈S 1 (m g ), (3.2) 
where

m g =   i∈S 1 σ 2 ig σ 2 g   .
(3.3)

In equation (3.3), σ ig is the covariance between the variable x i of node i and the variable x g of node g and σ 2 g is the variance of the variable x g . Dierently to [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], in which all the N sensors participate in the transmission along the T cs slots, in STCS, only M s sensors will be the representatives and transmit for the entire sensing period.

To see the problem when considering only the metric of (3.2), suppose that the selected node is faraway from the sink, while there is another node with slightly the same metric but near the sink. In this case, it would be a waste of energy for the network, if we keep using the selected node. consideration not only correlation between sensors but also their paths cost, measured 5 Basically, the overall conditional variance mg of sensor node g is dened by mg =

i∈S 1 σ 2 i -i∈S 1 σ 2 ig σ 2 g
. Since the rst sum does not depend on node g, we rely only on the second sum for reasons of simplicity.

with number of hops. Therefore, we add to (3.2) an additional penalty modeled by the sensors paths costs. For a given sensor g ∈ N ∫ , the balance between its m value of (3.2) and its path cost towards the sink, nbHops(g), is controlled by a tuning parameter β. Thus, (3.2) is replaced by (3.4) for our STCS-RA:

g * = arg min g∈S 1 (-m g + β.nbHops(g)).
(3.4) Generally, the covariance takes its values in the interval [-1, 1]. Thus, the fractions

(σ 2 ig /σ 2 g ) 1.
Furthermore, at each selection iteration, these values still decrease until being insignicant, as it will be explained hereafter. Besides, nbHops is an integer 1 and it varies according to the transmission radius. Therefore, the values assigned to β must be much less than 1 in order to not neglect the weight of the correlation presented by m .

For the rest of this chapter, we refer to STCS when we use (3.2) and STCS-RA when we perform (3.4) for the transmitting source nodes selection procedure.

The node selection algorithm is detailed as follows. At the iteration n ∈ {1, . . . , M s }, a sensor g * (n) is selected and moved from set S 1 to set S 2 . Note that S 2 is the set containing the sensors that are already selected over the previous selection iterations.

The metrics m of the sensors of the set S 1 will be recomputed in order to cancel out the impact of the selected node g * (n) on the rest of the sensors of S 1 and to prepare for the selection of the next sensor node g * (n + 1). The selection of the node g * (n + 1) will be done as if the node g * (n) did not exist in the network. The process is reiterated until the selection of M s < N sensors. The node selection process, especially the manner how we remove the correlation eect of node g * (n) from S 1 , follows the steps outlined in algorithm 2. At the initialization and before the rst sensing period, we dene the data matrix X lp = [x tr lp 1 , x tr lp 2 , . . . , x tr lp N ] tr ∈ IR N ×T lp that is delivered during a short learning period T lp T cs , where all sensor nodes report their information to the sink 6 . We assume that the spatial correlation feature inherent in X lp reects that in X cs .

Once the best M s sensors are selected, the compression operation can be represented Algorithm 2 The representative sensor nodes selection process.

Input: n = 1, S 1 = N ∫ , S 2 = {∅}, M s = {∅}, X 1 = X lp , a zero-vector X 2 ∈ IR 1×T lp . 1: for n = 1 to M s do 2:
if (n == 1) then 3:

Compute the covariance matrix Σ ∈ IR N ×N of X lp .

4:

According to (3.3) and using Σ, compute the metrics m . Then, select g * (n)

using (3.
2) or (3.4).

5:

Remove the reading x lp g * (n) of node g * (n) from X 1 so that it becomes X 1 = [x tr lp 1 , x tr lp 2 , . . . , x tr lp g * (n)-1 , x tr lp g * (n)+1 , ..., x tr lp N ] tr ∈ IR N -n×T lp and X 2 takes the values of node g * (n) so that X 2 = x lp g * (n) .

6:

Following that removal, Σ can be written as:

Σ = Σ 1,1 Σ 1,2 Σ 2,1 Σ 2,2 , (3.5) 
where Σ 1,1 ∈ IR N -n×N -n is the covariance matrix of X 1 , Σ 1,2 = Σ tr 2,1 ∈ IR N -n×1 is the covariance vector between X 2 and X 1 , and Σ 2,2 is the variance of X 2 .

7:

else if (n ≥ 2) then 8:

Following the removal of node g * (n-1) from S 1 , re-compute the conditional covariance matrix of X 1 knowing X 2 = x lp g * (n-1) ; Σ 1,1|2 ∈ IR N -(n-1)×N -(n-1) , where:

Σ 1,1|2 = Σ 1,1 -Σ 1,2 (Σ 2,2 ) -1 Σ 2,1 . (3.6)

9:

According to (3.3) and using Σ 1,1|2 , re-compute the metrics m . Then, select g * (n) using (3.2) or (3.4). 10:

Σ takes the values of Σ 1,1|2 . 11:

Perform step 5 then step 6. 12: end if [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF]:

S 1 = N ∫ \ {g * (n)} and g * (n) ∈ S 2 . 14: end for Output: M s = S 2 .
by a left multiplication of the 2D signal X cs with the spatial projection matrix Φ S ∈ IR Ms×N as:

Y S = Φ S .X cs + N o, (3.7)
where Y S ∈ IR Ms×Tcs is the spatially compressed 2D signal, N o ∈ IR Ms×Tcs is the measurement noise and Φ S is a sparse matrix that consists of a single '1' in each row and at most a single '1' in each column 7 . Note that '1' corresponds to a selected sensor node i M s ∈ M s , which means that exactly M s nodes are selected as sampling nodes and they cannot transmit their readings twice. According to [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF], this kind of data sampling is denoted as the Nonuniform Sampler (NUS). Here, the i th M s row of Y S holds the set of T cs data readings, sensed by the i th M s sensor node belonging to M s . The columns of the matrix Φ S are thus orthogonal, and according to [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF], Φ S is a valid compression matrix 8 .

As a result, in contrast to [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], where they have to generate a dierent compression matrix for each time slot t to compress separately the columns of Xcs, our approach needs just one Φ S to compress the entire data matrix Xcs.

Temporal sampling pattern

Dierent from [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], for an entire sensing period, the selected sensors are the same. This allows us to compress also the timing signal at each sensor. Thus, each of the selected M s sensors applies the CS locally on its temporal data vector in order to reduce its dimension, from T cs to M t < T cs readings, using a sparse random sampling pattern. This can be easily implemented by sharing the seed of random generator.

For example, the sink can broadcast the seed to all the sensors at the beginning of each sensing period. These operations can be represented by a right multiplication of the matrix Y S with the temporal projection matrix Φ T ∈ IR Tcs×Mt as: 7 Note that the use of this kind of sparse measurement matrices refers to the analog CS, called also Low-rate CS [START_REF] Brunelli | Sparse recovery optimization in wireless sensor networks with a sub-nyquist sampling rate[END_REF]. 8 According to the analysis made by [START_REF] Lee | Compressed sensing and routing in multi-hop networks[END_REF], the coherence between the sensing/compression matrix and the sparsifying one is determined by the column vectors of Φ. Since Ψ is an orthonormal basis matrix, we require that Φ tr Φ ≈ I in order to get a small coherence value, i.e. the column vectors of Φ are required to be approximately orthogonal. In this equation, Φ T has a sparseness structure similar to that of Φ S since it holds a single '1' in each column and at most a single '1' in each row. This multiplication consists of randomly selecting M t moments among T cs moments for which a given active sensor will transmit its readings to the sink. To summarize, if it is selected as a transmitting source node among the M s selected nodes, this sensor node has just to collect measurements according to a designated temporal schedule and transmit them to the sink. As a result, we obtain a much lower number of measurements in Y ∈ IR Ms×Mt compared to the original 2D signal X cs ∈ IR N ×Tcs .

Y = Y S .Φ T = Φ S .X cs .Φ T + N o , (3.8)

Kronecker sparsifying basis

To reach an accurate recovery of the received 2D compressed signal Y , we take advantage of the space-time correlation existing in the original signal X cs to highlight its sparseness in its two dimensions. In fact, each of the signal dimensions owns a sparse representation in a proper transform domain, denoted as Ψ S ∈ IR N ×N for the spatial basis and Ψ T ∈ IR Tcs×Tcs for the temporal one. Thus, we have:

X cs = Ψ S .α.Ψ T , (3.9) 
where α ∈ IR N ×Tcs is the 2D-sparse representation of X cs in Ψ S and Ψ T . The determination of these two bases is very important since they are deeply involved in the reconstruction step of CS as shown in expressions (2.4) and (2.7). Therefore, we detail hereafter how these transformation bases have been implemented.

Signal transformation in the spatial domain

To construct the spatial sparsifying basis Ψ S , we resort to the online estimation PCA approach merged with the covariogram theory, proposed in [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF]. In order to estimate the spatial correlation inherent in the signal X cs , this related approach relies on the computation of the experimental variogram γ exp (d) using the learning data matrix X lp . That is, for a given geographical distance d > 0, we have: 

γ exp (d) = 1 2N d p s.t. p-p 2 =d [x lp (p) -x lp (p )]
γ exp (d) = C exp (0) N 0 - 1 N d p s.t. p-p 2 =d C exp (d), (3.11) 
where C exp (0)/N 0 denotes the average variance computed from the considered data samples (x lp ) p since C exp (0) denotes the sum of the covariances that correspond to zero distances, N 0 denotes the number of the considered data samples (x lp ) p , and C exp (d) denotes the covariance computed from the pair (p, p ). that is chosen from a set of predened variogram models (such as the spherical, gaussian, circular, etc.) so as to t the best the experimental values γ exp (d). This step is done in order to provide correlation information between locations where there is no gathered data. Indeed, the expression (3.10) or (3.11) estimates the average of the 9 The interval size can be xed according to the average distance to the nearest neighbor.

experimental variograms for distances d using only the available data samples.

Once the best suited variogram t γ th is obtained, it is integrated in the computation of the covariogram matrix Σ c ∈ IR N ×N using the following expression, where the element (i, j) of Σ c can be written as:

σ c i,j = sill -γ th (d i,j
).

(3.12)

In this equation, sill = lim d→∞ γ th (d) is a parameter that is obtained during the selection process of the suitable variogram model and d i,j is the geographical distance between sensor i and sensor j.

Once Σ c is estimated, we consider the orthonormal basis Ψ S whose columns are the eigenvectors of Σ c , corresponding to the eigenvalues sorted in decreasing order. As it will be validated with simulations in the next section, this combined covariogram-PCA method exploits well the correlation among sensors 10 and makes improvements compared to the sample covariance-PCA method used in [START_REF] Quer | Sensing, compression, and recovery for wsns: Sparse signal modeling and monitoring framework[END_REF]. The advantage of this method is that Ψ S is dynamically adapted to the signal model and is not xed for all the sensing periods.

Signal transformation in the temporal domain

Regarding the temporal basis Ψ T , we use the Discrete Cosine Transform (DCT), given by the following expression [START_REF] Ravelomanantsoa | Approche déterministe de l'acquisition comprimée et la reconstruction des signaux issus de capteurs intelligents distribués[END_REF]:

Ψ T i,j = C dct .cos((i -1)(1 + 2(j -1)) π 2T cs ), (3.13) 
where C dct = 1/T cs if i = 1 and 2/T cs otherwise. The DCT is very similar to the Discrete Fourier Transform (DFT) in the sense that it gives a spectral analysis of the data [START_REF] Schulz | Compressive sensing[END_REF]. The DCT makes a sparse signal by concentrating most of its information into few low frequency components. The remaining high frequency components tend to be weak values and become less important, and thus they can be removed without visual losses [START_REF] Ravelomanantsoa | Approche déterministe de l'acquisition comprimée et la reconstruction des signaux issus de capteurs intelligents distribués[END_REF]. Both of the bases DCT and DFT worked well with our approach and gave similar results.

It is noteworthy that in contrast to [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], where new Ψ S and Ψ T are computed in each 10 As it has been stated in [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], the proposed method works well with signals that are non-stationary.

time slot t to recover the correspondent data vector (column vector t of X cs ) 11 , in this work, these bases are calculated once to rebuild the entire sensing data X cs .

Note that the data learning X lp is used only for the rst sensing period T 1 cs , where the sink node does not have information corresponding to the sensor nodes. Yet, for the following sensing periods T T cs , i.e. T > 1 , it makes use of the just previous recovered data matrix X T -1 cs of the previous sensing period T T -1 cs to adaptively estimate both the compression matrix and the transformation basis that will be used during the current sensing period T T cs . Besides, these appropriate matrices are computed, known and used only by the sink. As we can see, our algorithm imposes neither intersensor communication nor on-sensor computation. Hence, our STCS algorithm is characterized by its simple encoding and complex decoding as required in the CS for WSNs. Figure 3.3 illustrates a owchart that simplies the design of the proposed approach. For simplicity reasons, the index referring to the ordering of the sensing periods is used only in this part to better explain the working of the proposed approach.

3.3.3

From matricial product to kronecker product

As illustrated in expressions (2.6) and (2.7), the resolution of standard CS is formulated with x and y in vector form. Therefore, we use tools from linear algebra in order to reformulate the 2D problem as a 1D problem. It is worth noting that this conversion does not lose or change any information and preserves the intra and intercorrelations [START_REF] Quer | On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[END_REF]. Using [36, Eq. 13 and Eq. 14], we consider the vec(.) function, which converts a P × Q matrix to a P.Q vector by vectorizing it by column. Then, we can write : vec(Xcs) = (x cs (1, 1), ..., x cs (N, 1), x cs (1, 2), ..., x cs (N, 2), ..., x cs (1, T cs), ..., x cs (N, T cs)) tr , and (3.8) becomes:

y = (Φ tr T ⊗ Φ S ).vec(X cs ) + vec(N o ) = Φ.vec(X cs ) + vec(N o ), (3.14)
where Φ ∈ IR Mt.Ms×Tcs.N is the kronecker product between Φ S and the transpose of Φ T and y ∈ IR Mt.Ms×1 . As in [START_REF] Marco | Kronecker compressive sensing[END_REF], we can obtain a single sparsifying basis Ψ for an 11 In [START_REF] Leinonen | Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks[END_REF], authors have used a kind of sliding window processing that covers the data of W < Tcs successive time slots to estimate the data vector of the current time slot and re-estimate those of the previous W -1 time slots. 

Numerical Results

In this section, we analyze the performance of STCS and we compare our results to those of CS²-collector and CB-CS. Then, we evaluate the STCS-RA with respect to dierent parameter values of β, see equation (3.4). The metrics, that we use for the simulations, are the normalized Mean Squared Error (MSE) and the Compression Ratio (η) dened as follows:

M SE = X cs -X cs 2 F X cs 2 F and η = (υ -δ) υ , (3.17) 
as well as E, the average consumed energy per sensor per time slot (µJ) [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF]. X cs and X cs represent respectively the sensed 2D signal before compression and the 2D recovered one by the sink for a given sensing period, whereas, . F is the Frobenius norm. υ and δ present respectively the number of elements in X cs and in the 2D compressed data Y .

For the network parameters, we consider N = 50, T cs = 90 and the observation area size is 100 × 100 units. Regarding η, we vary M t between 9 and T cs , and M s between 5 and N . approximately 10% of the sample-PCA coecients assemble less than 70% of the signal energy. Here, we added the curve for the DCT basis to be a reference, since the DCT matrix is considered as a standard transformation basis in the CS theory.

In the next simulations, we compare our algorithm STCS with the CS²-collector in terms of normalized MSE and η with the variation of the spatial correlation γ parameter. From Figure 3.6, we can see that the reconstruction accuracy (lower MSE)

increases with the number of measurements M t and M s (lower η), and STCS provides considerable improvements compared to CS²-collector across the entire range of η, especially when the transmitted signal is correlated in space. This is due to the fact that with STCS we exploit well the spatial dependency in the signal thanks to the node selection strategy and the covariogram-PCA method of [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF] to construct Φ S and Ψ S . This is dierent to CS²-collector that chooses to select nodes randomly and uses a simple DCT matrix as Ψ S . Even for the moderately correlated signal in space, Fig. 3.5. The signal accumulated energy percentage with dierent sparsifying basis for (ρ = 0.9, γ = 5). Regarding E, in order to be comparable with [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], we use the same hardware implementation, i.e, an MSP430 Micro-Controller with CC2420 radio. In Figure 3.7, we compare the average consumed energy per sensor per time slot of our proposed STCS precedes the spatial one). We consider respectively 395 and 184 clock cycles for the multiplication and the addition operations [START_REF] Bierl | Msp430 family mixed-signal microcontroller application reports[END_REF], and E cc =0.726 nJ the energy consumption per clock cycle for an MSP430F1612 [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF]. The minimization or even the cancellation of the number of operations improves the runtime and consequently optimizes the response in real time.

Obviously, the radio consumes the bulk of the total power consumption of WSN systems as shown when comparing with CB-CS but considering as well the computation cost can be more benecial for further improving the overall energy eciency as shown when comparing with CS²-collector. vary the normalized MSE, we changed η from 0.19 to 0.91. For each case, the energy is calculated and then depicted in Figure 3.9. We note the improvement of sensor lifetime by considering the routing in the metric. For example, when M s = 35 (η = 0.51), the normalized MSE is about 0.11. Thus, we can save 11,11% of energy when β = 10 -15 . As it can be seen, the curves for β = 10 -4 and β = 1 are superposed in Figure 3.9 but slightly dierent in Figure 3.8. It means that the performance is very dependent to the number of hops, and because it is an integer value, among all the paths with the same hop number, the one giving the best correlation properties is selected. Another observation from these two plots is to say that the optimum sensor selection is sensitive to the correlation criteria (γ). Therefore, for small M s (big Compression Ratio), it is important to weaken the eect of routing by reducing β.

As a perspective, it is possible to include the residual energy of sensors in the cost function (3.4). In this way, even though the energy consumption will not be minimized, the overall lifetime can be extended.

Conclusion

Motivated by reducing eciently the number of representative measurements to be transmitted to the sink node, thanks to the redundancy nature of most WSNs signals,

we addressed in this chapter the STCS approach. We proposed a joint space-time compression scheme that adaptively learns the signal model from the past received data to schedule when and where to sample the 2D time-varying spatial eld. Then, we recover the entire 2D signal from the small number of measurements using appropriate transformation bases, that can well sparsify the signal according to the correlation structure inherent on it.

Characterized by a much lower number of transmissions and no on-sensor computation, STCS reduces the energy consumption compared to other CS-based schemes, while still achieving appealing reconstruction performance. This trade-o between energy saving and reconstruction accuracy has been further improved with the STCS-RA, which takes into account the routing in the representative node selection process.

Introduction

In some applications, especially the densely deployed WSNs, the sensed data is in general highly correlated, and redundancy exists between sensor nodes belonging to the same geographic area. To enhance the network management, nodes can be arranged into groups or clusters. Since they are monitoring the same targets or events, collecting raw data from all cluster members becomes inecient and energy wasteful. Therefore, as a sequel of the previous chapter 3, a sucient subset of nodes can be selected from each group to be the representative of the whole network. These active nodes deliver their readings to the sink under a compression ratio, while the rest of nodes remain silent and do not participate in the data sensing operation.

The CS is an interesting proposal since it reduces the number of active agents at a given time slot, while remaining able to recover the sensing data. However, to reach a suciently satisfying data interpolation quality with a higher compression rate, i.e. fewer delivered data readings, the signal correlation should be fully captured simultaneously in both space and time dimensions. To do so with the kronecker CS framework, as we have already seen in the previous chapter 3, tools from linear algebra are still be needed in order to reformulate the data matrix into the vector form since the standard resolution of CS is still formulated in the 1D form. Without the need of computing an adaptive sparsifying basis Ψ, the MC, viewed as an extension of the CS, has emerged recently using another type of structural sparsity 1 [START_REF] Roughan | Spatio-temporal compressive sensing and internet trac matrices[END_REF], which is the matrix low rank property [START_REF] Emmanuel | Exact matrix completion via convex optimization[END_REF]. Since it treats the data matrix as a genuine matrix, MC can take advantage of the correlation in its two dimensions and capture more information 2 .

In this chapter, we carry on with the twofold data compression scenario, where we rstly assume that part of nodes do not sense the environment at all. We can consider that these sensors are inactive or idle for a long period or that these nodes are absent. The second compression level is that, at each time slot, only a subset of the active nodes, referred to as the transmitting source ones, send their sensing data to the sink. Note that dierent from the previous work, where according to the temporal sampling pattern (3.8) there are several time slots during which no data is transmitted, in this work, at every time slot, we ensure the transmission of a number of data readings sensed from dierent locations belonging to dierent clusters of the monitored network area. This kind of strategies not only minimizes the energy cost and extend the network lifetime, but also helps to avoid other problems such as the trac congestion [START_REF] Luo | Compressive data gathering for large-scale wireless sensor networks[END_REF][START_REF] Hung | Energy-aware setcovering approaches for approximate data collection in wireless sensor networks[END_REF].

Yet, the application of these atypical high-loss scenarios leads to a signicant number of empty rows in the received data matrix 3 , which completely disagrees with MC fundamentals. In fact, since MC approaches are based on the minimization of the matrix rank, they become useless when there is any empty row or empty column in the matrix. Indeed, MC techniques have been conceived to recover matrix containing random missing elements [START_REF] Du | Effective urban trac monitoring by vehicular sensor networks[END_REF]. Even though the existence of the inactive sensor nodes has already been considered, in the previous work of chapter 3, the recovery of their missing data has been achieved using the CS technique with the Kronecher framework.

In the state-of-art of MC-based algorithms in WSNs, to the best of our knowledge, [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] is the only paper who dealt with the case where there are some missing rows in the received data matrix. They appeal a spatial pre-interpolation technique that recovers data from neighboring sensor nodes. However, as the number of active nodes decreases, we face absent nodes having absent neighbor sensors as well. Thus, this framework becomes unable to recover the data rows of these isolated sensor nodes.

Although this approach is interesting, it seems to be not well suited for the addressed scenario and fails to take into account the existence of the isolated sensor nodes (absent nodes having all their neighbors absent). In this context, we present our developed scheme, which rstly, schedules the sampling pattern after eciently identifying the dierent clusters and their representative nodes. Secondly, it treats the case of high compression ratios with a considerable number of inactive sensor nodes (empty rows) using a combination of three dierent interpolation techniques.

The main contributions of this chapter are summarized as follows:

We generate a synthetic space-time signal composed of dierent Gaussians, each of which presents a cluster of wireless nodes. As in all the WSNs signals' proles, the portions are correlated in space and time, where spatial and temporal 3 A row (resp. column) is called an empty row (resp. column) if and only if all the values of the row (resp. column) are un-sampled.

correlation parameters dier from one Gaussian (portion) to another and can be separately adjusted.

To perform an adaptive data gathering, a preliminary phase is established, where nodes are arranged into a number of clusters. Then, in order to equitably involve all the detected clusters in the sensing schedule and ensure the diversity in the transmitted data, in each time slot, using the same percentage and according to a given sampling ratio, a subset of nodes is picked from each cluster to ensure data sensing.

For the reconstruction part, we propose to use three dierent techniques to accurately rebuild the entire data matrix. In the rst step, we ll the missing readings of the active sensor nodes by applying the MC. Then, we carry on with the spatial pre-interpolation to handle a part of the empty rows while adjusting the topology matrix to the presence of the disjoint clusters in the monitored eld.

Finally, we recover the rows of the isolated sensor nodes using a minimizationbased interpolation technique with a spatial correlation matrix.

Through extensive simulations, we show that the proposed framework outperforms other existing techniques in the literature, especially when the number of inactive nodes increases.

The remainder of the chapter is organized as follows. The next section discusses the problem formulation of this work. In section 4.3, we present the signal model that we used for the evaluation of our approach. Then, in section 4.4, rstly, we introduce the ecient clustering method that we propose. Secondly, we describe in detail our strategy for an adaptive data sampling. Section 4.5 is dedicated to the data reconstruction framework. Before concluding the chapter in section 4.7, we carry out, in section 4.6, with extensive simulations in order to evaluate the performance of the proposed approach.

Problem Formulation

Consider a WSN composed of a set N ∫ = {1, . . . , N } of N sensor nodes. Let X ∈ IR N ×T denote the data matrix that contains measurements collected by the set N ∫ during a sensing period of length T time slots. Precisely, the entry in the i th row and t th column of X, x i,t , represents the t th data reading (t ∈ [1, T ]) sensed by the i th node (i ∈ N ∫ ). The considered scenario aims to obtain all sensor nodes readings, X, through the use of a small subset N rep = {1, . . . , N rep N } of active sensors, denoted by representative sensor nodes. It is worth mentioning that the number of active sensors is relatively small compared to the number of inactive ones. Specically, decreasing the number of active sensors can likely generate a set of absent sensors that have also all their neighbors absent as well. We call them isolated (IS) sensor nodes.

We propose to group together sensor nodes having similar readings in the same cluster using a spectral clustering technique. In fact, the whole network is organized as follows:

N ∫ = J j=1 CL j and N = J j=1 cl j , where cl j is the number of sensor nodes belonging to CL j (cl j = card(CL j )), J is the number of detected clusters and CL j is the cluster j. It will be shown, in the sequel, that the representative node selection as well as the data transmission schedule depend on the detected clusters.

To further reduce energy consumption, the representative sensors do not transmit their raw data to the sink. Instead, they trade on the data sensing along the T time slots and deliver a part of their readings according to a given compression ratio, that is, m < N rep readings rather than N rep readings per time slot. Consequently, the received data matrix M ∈ IR N ×T is composed of N rep partially empty data rows and (N -N rep ) completely empty data rows. Note that to replace any missing entry in M , we set a zero as a placeholder. We use a binary sample matrix Ω M ∈ IR N ×T that we call sensing and transmitting schedule to indicate, in each time slots t, which nodes sense and transmit measurements. That is,

Ω M (i,t) = 1 if x i,t is available 0 otherwise. (4.1)
Note that x i,t is available, when the location i is sampled and transmitted at time slot t. We refer to a location by i when it is sampled by the sensor node i. Hence, the incomplete delivered data matrix M can be expressed as follows:

M = X. * Ω M , (4.2) 
where • * represents a Hadamard product of two matrices. The rst aim of our work is to well identify the matrix Ω M as it represents the sampling schedule, which is of prime importance in the recovery performance.

The second aim of our work is to successfully recover all the missing entries using a limited number of received readings. Therefore, we opted for the MC technique because of its numerous benets. Indeed, the application of MC with the existence of a signicant number of empty rows is still a challenging task to tackle since the presence of empty rows or columns impedes the MC reconstruction. Thereby, we propose in this chapter a novel interpolation technique that will be annexed to the MC one in order to recover the empty rows. It is noteworthy that the MC, as the rst step in the reconstruction operation, is an important part since the performance of the subsequent proposed interpolation technique depends on the recovery accuracy of the MC. The Signal Generation

In this section, we investigate the generation of a synthetic signal composed of dierent Gaussians, each of which presents a portion of the whole monitored geographic area.

Each portion of the signal is correlated in space and time, where the spatial correlation as well as the temporal correlation parameters dier from one Gaussian to another.

The proposed signal model is inspired by [START_REF] Zordan | Modeling and generation of space-time correlated signals for sensor network elds[END_REF] that has introduced the solution of M D j=1 rs(x -i, y -j) 2 . However, in this chapter, we consider heterogeneous elds that are divided into a number of regions. Each one is modeled by a specic Gaussian (mean, variance) and dierent correlation characteristic. The number of dierent Gaussians as well as their distribution in the eld can be xed or dened according to the kind of the signal one wants to reproduce. Thereupon, this method represents an eective alternative to the real world signals.

As in chapter 3, to generate the signal of interest, we suppose that D = [-x D , x D ] × [-y D , y D ] is the space domain, where x and y are the space coordinates. Then, we consider that we have H dierent regions, where D h is the space domain of region h = 1, 2, . . . , H, and D = H h=1 D h . Without loss of generality, for a given pair (ρ h , γ h ) of specic temporal and spatial correlation parameter values, we suppose that algorithm 1 of chapter 3 describes how to generate a correlated portion of the signal z h (p h , t) : D h × T → IR representing one region, where T is the time domain and p h is a point in (x, y) plane corresponding to region h. Note that the signal of the whole area is the combination of all the generated portions. The resulting z h holds generated samples with zero mean and variance that depends to the performed spatial correlation function. Accordingly, in order to obtain an heterogeneous signal eld for the entire network, for each region h, we enforce a non-zero mean η h ∈ IR =0 to its corresponding generated signal z h as follows:

z h (p h , t) = z h (p h , t) + η h . (4.3)
In addition to the mean, the variance amplitude σ 2 h of the signal eld that one wants to produce can be tuned by multiplying the samples z h (p h , t) by a constant parameter cst σ h > 1, according to the following expression: sensor nodes. We can notice through the colors that this eld is divided into three dierent regions (H = 3) presented by three dierent Gaussians.

z h (p h , t) = cst σ h .z h (p h , t) + η h .

The Low-Rank feature

To ensure the use of the MC, the manipulated data matrix should exhibit a low rank or approximately low-rank structure. To do so, one can use the SVD method [START_REF] Cheng | Stcdg an ecient data gathering algorithm based on matrix completion for wireless sensor networks[END_REF]. In fact, any real N × T matrix X can be written as follows:

X = U Λ V T , (4.5) 
where V ∈ IR T ×T and U ∈ IR N ×N are two unitary matrices and Λ ∈ IR N ×T is a diagonal matrix assembling the singular values τ i of X. Typically, τ 1 , τ 2 , ..., τ r are arranged in a decreasing order so that τ i ≥ τ i+1 , where r denotes the rank of X. If we nd out that the top l singular values of the data matrix X occupy the near total or the total energy, then X holds the low rank feature. The metric that we use to check this property is the fraction of the nuclear norm captured by the top l singular values [START_REF] Cheng | Stcdg an ecient data gathering algorithm based on matrix completion for wireless sensor networks[END_REF]:

g(l) = l i=1 τ i X * = l i=1 τ i r i=1 τ i . (4.6) 
As we have mentioned before, the low rank property, inherent in the signal, enables the use of the MC tools to recover the raw data matrix from the received entries. 

Sampling Pattern

Clusters Detection

In this part, we investigate the partition of the deployed sensor nodes into J clusters.

The main reason for partitioning the nodes is to involve all the detected clusters in the data sensing. In the conventional MC, it is well-known that transmitting source nodes are selected in a purely random way during the T time slots. This kind of selection can disregard sensors belonging to small clusters, which can heavily deteriorate the recovery process. However, if we ensure that all the clusters contribute in the data sensing and transmission process, we can fortify the diversity in the delivered data set and thus enhance the data reconstruction quality. Therefore, for each time slot t, according to a given compression ratio and using the same shared percentage, a set of sensor nodes is picked from each cluster to form the sampling and transmission schedule. It will be shown, in the simulation section, that taking into account the detected clusters during the sampling process signicantly enhances the data recovery performance, especially for high compression ratios. Indeed, our aim is to partition the sensor nodes into dierent clusters, where nodes in the same cluster have similar readings. Namely, we attempt to minimize the inter-clusters similarity and maximize the intra-clusters similarity, and such a successful grouping can be achieved using the normalized spectral clustering, unlike the unnormalized one that implements only the rst objective [START_REF] Von | A tutorial on spectral clustering[END_REF]. and considers the set of data vectors, χ lp = {x tr lp 1 , x tr lp 2 , . . . , x tr lp N }, that we want to partition into J clusters. The spectral clustering technique performs data clustering 4 As in chapter 3 with the STCS, at the initialization, we let all the sensor nodes send their information during a short learning period T lp T . and treats it as a graph partitioning problem without setting any assumption on the clusters form. It transforms the given set χ lp into a weighted graph G = (V, E) using some notion of symmetric similarity matrix A ∈ IR N ×N , where each vertex v i represents x lp i , and each edge between two vertices v j and v i represents the similarity a j,i ≥ 0 [START_REF] Zhou | Accurate trac matrix completion based on multi-gaussian models[END_REF]. As mentioned above, it is recommended to use the normalized spectral clustering. Hence, we implemented the NJW 5 algorithm [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF], which is detailed in algorithm 3.

Algorithm 3

The NJW spectral clustering algorithm.

Input: The set of data vectors χ lp = {x tr lp 1 , x tr lp 2 , . . . , x tr lp N }, the number J of clusters to detect.

Pre-processing:

1: Calculate the similarity matrix A.

2: Calculate the degree matrix D g , which is a diagonal matrix dened by : d g i,i = N j=1 a i,j .

Spectral representation:

3: Compute the Normalized graph Laplacian matrix

L sym = D -1/2 g (D g -A)D -1/2 g 6 .
4: Proceed the eigenvalues decomposition of L sym and nd the J eigenvectors corresponding to the smallest eigenvalues, arranged in increasing order.

5: Form the matrix U , by stacking the J eigenvectors in columns: U = [u 1 , . . . , u J ] ∈ IR N ×J . 6: Normalize the U 's rows to norm 1 in order to get the matrix U n ∈ IR N ×J , that is, U n i,j = u i,j /( j u 2 i,j ) 1/2 . Clustering:

7: Treat each row of U n , (u n i ) i=1,. . . ,N , as a data point in IR J , then partition them into J subgroups, Q 1 , . . . , Q J , using the k-means algorithm 4. 8: Attribute the original points x lp i to cluster j if and only if row i of the matrix U n was attributed to cluster j.

Output: Clusters CL 1 , . . . , CL J with CL j = {i | u n i ∈ Q j }.
Commonly, identifying the number of clusters J in an optimal manner is the main concern of all clustering algorithms. Generally, with spectral clustering, we nd the number J by analyzing the Laplacian matrix eigenvalues that are computed using A Algorithm 4 The k-means algorithm. Input: Choosing randomly J dierent prototype vectors (centroids) y 1 , ..., y J among the data vectors u n 1 , ..., u n N . repeat:

1: Assign each data points u n i to the closest centroid y j (in an Euclidean sense). Q j presents thus the cluster, which contains the objects u n i that are closest to y j . 2: Update the new prototype vectors as follows:

y j = (1/ | Q j |) un i ∈Q j u n i , ∀j ∈ [1, J].
until an allocated time ends or convergence 7 .

and according to the chosen clustering method. In the ideal case, the multiplicity of the eigenvalue 0 equals the number of clusters J. However, this criterion is only valid when the groups are well separated in the graph. In this work, we choose to apply the eigengap heuristic [START_REF] Von | A tutorial on spectral clustering[END_REF], which denes J by nding a drop in the magnitude of Laplacian eigenvalues, {λ 1 , λ 2 , . . . , λ N }, sorted in increasing order. That is:

J = arg max 1 i N (λ i+1 -λ i ). (4.7)
The idea here is to pick the number J in such a way that all the Laplacian eigenvalues λ 1 , . . . , λ J are very small compared to λ J+1 , which marks relatively a large value.

Regarding the similarity matrix A, we opted for the Gaussian kernel to measure the similarity between the data points {x lp i } [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF], where σ is a scaling parameter that controls the neighborhoods width:

a i,j = exp(-

x lp i -x lp j 2 2σ 2 
).

(4.8)

According to [87, Theorem. 2], an appropriate σ can be xed automatically after repeatedly running the algorithm using a number of values and choosing the one that forms the least distorted partition in the spectral representation space. To determine the appropriate parameter σ, in [85, Section. 8], authors had provided several rules of thumb that are frequently used. For example, the method that we have used states that σ can be chosen to be in the order of nearly the mean distance of a point to its Using the rst four steps of the aforementioned clustering algorithm 3, Figure 4.5 plots the sorted eigenvalues of the Normalized Laplacian matrix that is computed from the generated signal of the example of section 4.3. Since we used the Gaussian kernel as a similarity matrix, the resulting graph is fully connected, which consists of one connected component. Hence, eigenvalue 0 has multiplicity 1. Clearly, there is a relatively large gap between the 3 th and 4 th eigenvalue of this trace. According to metric (4.7), the data set contains three clusters, which is well approved.

Sensing and Transmission Schedule

In this part, we determine how we take into account the detected clusters in the representative sensor node selection as well as in the sensing and transmission schedule.

Relying on the method of chapter 3, the active node selection process is achieved by considering the inter-spatial correlation between nodes, which can be estimated through (3.2). Dierent from the previous work of chapter 3 and in order to cover all the clusters, the set N rep consists of the combination of J subsets, (N rep j ) j=1,. . . ,J , where N rep j includes N rep j representative nodes picked from cluster CL j using the same shared percentage pct N rep . That is:

N rep = J j=1 N rep j , (4.9) 
where

N rep j = pct N rep % × cl j .
(4.10)

In (4.10), if pct N rep % × cl j is not an integer, we round N rep j to the nearest integer greater than or equal to the value of that element. Here, the selection of the sets N rep j of the clusters' representative nodes is independent from one cluster to another.

Hence, the set S 1 appearing in expression (3.2) of chapter 3 is replaced by the set S j 1 , which represents the set of sensor nodes of the cluster CL j that are not yet selected.

Thus, we have:

g * = arg max g∈S j 1 (m g ), (4.11) 
where

m g =    i∈S j 1 σ 2 ig σ 2 g    . (4.12)
The selection process is the same for the J sets N rep j . Thus, for each cluster CL j , according to (4.11), at each iteration n ∈ {1, . . . , N rep j }, a sensor node g * (n) is selected and moved from set S j 1 to set S j 2 . Note that S j 2 represents the set of nodes of cluster CL j that are already chosen during the previous iterations. To proceed with the representative nodes selection procedure, we make use of the learning data matrix X lp = [x tr lp 1 , x tr lp 2 , . . . , x tr lp N ] tr ∈ IR N ×T lp that we partition into J sub-matrices X j lp ∈ IR cl j ×T lp , where X j lp holds data sent by nodes belonging to CL j . Without loss of generality, for each cluster CL j and using its corresponding data matrix X j lp , we perform the steps of the nodes selection process that have been outlined in algorithm 2 of chapter 3, in order to get the set N rep j , while replacing (3.2) and (3.3) by (4.11) and (4.12) respectively. Here, the proposed data gathering scheme is referred to as the Optimized Cluster-based MC data gathering approach (OCBMC). We denote the OCBMC as the updated version of the Cluster-based MC data gathering approach (CBMC) that has been presented in our paper [START_REF] Kortas | Energy ecient data gathering schema for wireless sensor network: A matrix completion based approach[END_REF]. Precisely, with the CBMC, the set N rep of the representative nodes is randomly chosen and with clusters consideration, whereas, with the OCBMC, the set N rep of the representative nodes is neatly chosen according to the correlation-based metric (4.11) and with clusters consideration.

Given the example of Figure 4.1, we can note the existence of three detected clusters within the network. We suppose that pct N rep = 30. Thus, 30% of nodes will be selected from each cluster to be active. That is to say that we should pick N rep 1 = 2 sensors from CL 1 , N rep 2 = 1 sensor from CL 2 and N rep 3 = 3 sensors from CL 3 . That is, in total N rep = 6 representative sensors. Based on the correlation among the sensor nodes and using algorithm 2, the obtained subsets are as follows:

N rep 1 = {13, 1}, N rep 2 = {9} and N rep 3 = {12, 6, 16}.
Once the set N rep of representative sensor nodes is dened, the sink focuses on the sensing and transmitting schedule, Ω M , by assigning m transmitting source nodes for each time slot t. Obviously, these sensor nodes are picked from the set N rep . Hence, the binary matrix Ω M consists of N rep (0, 1) binary row vectors and (N -N rep ) completely zero row vectors. As it has been stated in the previous subsection, in order to ensure the diversity in the delivered data, the m transmitting source nodes are chosen in such a way that we randomly pick, with the same shared percentage pct m , m j nodes from each subset N rep j corresponding to cluster CL j . Likewise (4.9) and ( 4 Let us focus again on the example of Figure 4.1. We suppose that pct m = 20. Thus, for each t, 20% of sensors from each subset N rep j are randomly designated to deliver their data to the sink. Since the used number N of this example is very small, we end with m j = 1 transmitting source node from each cluster for each t. Note that without enforcing the involvement of all the clusters in the data sensing and transmission process, cluster 2 that contains only sensor 9 could be totally ignored.

To conclude, rather than selecting in a purely random way the measurement locations, as usually used in the conventional MC method, in this part, we presented how to intelligently assign transmitting source nodes that can well represent the network relying on their correlations with the OCBMC.

The Three-stage MC-based reconstruction approach

After revealing in detail how to select the N rep representative sensor nodes and how to schedule their participation in the data sensing and transmission, we focus, in this section, on how to approximate the entire N × T data matrix X based on the limited amount of reported readings. Isolating (N -N rep ) inactive sensor nodes from the sampling and transmission schedule entails the existence of (N -N rep ) fully empty rows in the received data matrix M ∈ IR N ×T , which impedes the MC technique that is completely unable to estimate the original matrix. Therefore, the use of other complementary interpolation techniques becomes needful. In this context, we develop a structured MC-based recovery framework that is able to ensure the reconstruction of the entire N × T data matrix X.

Stage 1

Obviously, it is not feasible to directly apply the MC technique with the existence of (N -N rep ) fully empty rows. Therefore, we have to remove these rows from M . We denote the resultant matrix as M M C ∈ IR Nrep×T , containing the partially delivered readings of the representative sensor nodes. We carry on with the same removal from Ω M to obtain Ω M C ∈ IR Nrep×T . Then, making use of the solution introduced in (2.12)

or any other method proposed for the MC resolution, we ll the missing entries of M M C that correspond to the non-transmitted data readings of the N rep sensor nodes.

As it has been introduced in [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF], the threshold parameter τ au roughly equals 100 times the largest singular value of M M C . We denote X ∈ IR Nrep×T as the combination of the MC-based estimation and the directly observed data. Finally, we update X ∈ IR N ×T by adding the (N -N rep ) empty rows and placing them in their proper corresponding locations of M .

Stage 2

After lling the random missing readings, remain the (N -N rep ) completely missing rows that correspond to the inactive sensor nodes. In this phase, we carried on with the spatial pre-interpolation technique of [24, Section. VI], which rebuilds the data of an empty row using the available data of the neighboring sensor nodes. This method relies on a spatial constraint matrix H sc ∈ IR N ×N , whose computation steps are presented as follows:

1-We start with an identity matrix H sc . 

2-For

H (i)
sc represents the i th column of H sc . To apply this method, we adjust the 1-hop topology matrix Y c to the presence of the disjoint clusters in the monitored eld, according to B.1, in order to avoid untrustworthy data reconstruction.

3-Finally, the rows of the resulting matrix H sc are normalized in such way that the sum of the elements of a row is 1.

Once H sc is calculated, the spatial pre-interpolation technique can be performed by multiplying H sc by X . Here, the missing data of an inactive node is obtained using the average of the data readings of its one-hop neighbors.

As mentioned before, the number N rep of the active sensor nodes is very small compared to the total number N , which means that the (N -N rep ) inactive sensor nodes constitute the preponderant portion of the network. Consequently, there are several IS nodes in the network (having all their neighbors absent). Hence, with the use of the stated topology matrix Y c , this interpolation technique can achieve the data reconstruction only for the absent sensor nodes, whose neighbors are belonging to the set N rep . We suppose that the network distribution contains N Is isolated sensor nodes.

Then, the resulting data matrix X ∈ IR N ×T , obtained at the end of this stage, i.e. X = H sc × X , still holds N Is empty rows to be recovered (N Is all-zeros rows).

Stage 3

Since the above interpolation technique is limited to recover only a part of the total empty rows (absent nodes), we resort to a second spatial interpolation to rebuild the remaining part of the empty rows (isolated nodes). Beneting once again from the spatial dependency among the sensor nodes, we ll the remaining empty rows using the following minimization problem:

minimize X∈IR N ×T (f ac 1 × X -X 2 F + f ac 2 × S × X 2 F ), (4.15) 
where S represents a spatial constraint matrix, whose computation steps will be detailed hereafter, f ac 1 and f ac 2 are two tuning parameters and X ∈ IR N ×T is the nal reconstructed data matrix. The resolution of this optimization problem can be easily accomplished using the semidenite programming (SDP). To solve (4.15) and obtain X, we opted for the CVX package [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF], implemented in Matlab, as an advanced convex programming solver.

In this equation, the matrix S ∈ IR N ×N relatively reects our knowledge about the spatial structure inherent in the data since it is computed based on the learning data matrix X lp ∈ IR N ×T lp . This spatial matrix expresses the similarities between the sensor nodes readings. Suitably, we use the Euclidean distance as a distance function, computed in the data domain of the sensor nodes, to model the similarity between the rows of X lp . Indeed, the smaller the distance between two rows, the closer they are. Below are the steps to determine S [START_REF] Roughan | Spatio-temporal compressive sensing and internet trac matrices[END_REF]:

1-We initiate these steps with an all-zeros matrix S.

2-

The similarity between the rows in X lp is not evident as the ordering of the sensor nodes indexes in X lp is arbitrary. Thus, for each row i of X lp , we search for the set j i of indexes of the K closest rows to i, that is,

j i = {j k = i | k = 1, ..., K}.
3-Assuming that the row i can be approximated through the linear combination of the rows of set j i , we perform the linear regression to compute the weight vector W i = [w i (1), . . . , w i (K)] ∈ IR 1×K through the following equation:

W i = X lp (i, :) × X lp (j i , :) T × [X lp (j i , :) × X lp (j i , :) T ] -1 . (4.16)
4-Finally, we assign 1 to S(i, i) and -w i (k) to S(i, j k ).

As soon as these steps have been carried out for all the rows i, we obtain the matrix S, with which we interpolate X as in (4.15). Now, remains the last adjustment to realize, that is, the scaling of the two parameters, f ac 1 and f ac 2 of (4.15). The regularization parameters f ac 1 and f ac 2 are introduced in order to establish a trade-o between a close t to the matrix X and the intention of fullling the N Is remaining empty rows using S. It will be shown through simulations that adjusting these parameters nicely improves the reconstruction performance [START_REF] Roughan | Spatio-temporal compressive sensing and internet trac matrices[END_REF],

and the founded values of f ac 1 and f ac 2 are independent of the size of the matrix (N and T ).

Let us focus again on the example of Figure 4.1. The dotted lines refer to the neighborhood relation between sensors. As we can see, the sensors {5, 8, 10, 11, 14} are each linked at least to a representative sensor. Thus, their data readings can be easily recovered through the spatial pre-interpolation method of stage 2. However, the nodes {2, 3, 4, 7, 15} are considered as isolated from the network. Thus, their readings are recovered thanks to the minimization (4.15) of stage 3.

Numerical Results

In this section, we compare the performance of our proposed structured approach to that of a benchmark scheme, which was designed basically on what was proposed in [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] and in line with our scenario requirements. Indeed, at the end of their work, Xie et al. considered in [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] that there is a small number of empty rows in M , that is, for N = 196, 14 data rows were missing, namely 7% of N (i.e. 93% of N of representative sensors). As we have already stated at the beginning of this chapter, treating an important number of missing data rows has not been the main focus of their work. Thus, their proposed approach has not taken into account the existence of the isolated nodes in the network. In fact, they focused basically on the existence of successive missing or corrupted entries in the received data matrix M . However, to the best of our knowledge, this is the unique approach that has treated a similar case using MC, and with which we can compare our approach in the rst part of this section. Then, in the second part, we try to evaluate separately the benets of each building block of the proposed approach, namely:

Involving all the detected clusters equitably in the sampling process using (4.9, 4.10) and (4. 13, 4.14).

Selecting the representative sensor nodes using algorithm 2 with (4.11) and (4.12).

Adding the minimization (4.15) to the reconstruction pattern.

Making use of the multi-Gaussian signal model of section 4.3, we perform our structured approach over dierent scenarios to illustrate the impact of these aforementioned techniques on the interpolation accuracy of the data matrix. To measure the reconstruction error, we opted for the following metrics, where X and X represent respectively the initial raw data matrix and the reconstructed one:

1-N M AE tot : The Normalized Mean Absolute Error on all missing entries: 

N M AE tot = i,t:Ω M (i,t)=0 |X(i, t) -X(i, t)| i,t:Ω M (i,t)=0 |X(i, t)| . ( 4 
N M AE M C = i,t:(i,t)∈Ωmc |X(i, t) -X(i, t)| i,t:(i,t)∈Ωmc |X(i, t)| , (4.18) 
where Ω mc is the set of indexes of the partially missing entries, found in the received data matrix M ∈ IR N ×T . This metric measures the error ratio following the 1 rst stage of the reconstruction pattern.

3-N M AE ER :

The Normalized Mean Absolute Error on the missing entries of the fully empty rows, which correspond to the inactive sensor nodes readings:

N M AE ER = i,t:i∈Ω ER |X(i, t) -X(i, t)| i,t:i∈Ω ER |X(i, t)| , (4.19) 
where Ω ER is the set of indexes of the (N -N rep ) empty rows, found in the received data matrix M ∈ IR N ×T . This metric measures the error ratio following the 2 nd and the 3 rd stages of the reconstruction pattern.

4-CR:

The Compression Ratio:

CR = N × T -card(Ω) N × T , (4.20) 
where Ω = {(i, t) | Ω M (i, t) = 1}. Hence, card(Ω) denotes the number of observed To begin, we implement a benchmark approach based on what was proposed in [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF].

The sampling pattern of this approach consists in choosing the set N rep of representative sensor nodes in a purely random way, which is exactly the same as randomly selecting the empty rows. Likewise, for each time slot t, m nodes are uniformly selected from the set N rep to deliver their readings to the sink. Here, neither the selection of the representative sensors nor the selection of the transmitting source ones takes into account the detected clusters. As for the reconstruction pattern, to obtain the nal recovered data matrix X, this approach performs the MC then the spatial preinterpolation. The temporal pre-interpolation was omitted since we don't consider the existence of empty columns in the observed data matrix M8 . In in order to separate the error ratios and demonstrate the recovery performance enhancement achieved by our proposed approach on respectively the partially and the fully missing readings.

Note that the considered framework extremely reduces the overall network energy consumption since we only use a small set of representative sensors for the data transmission. Furthermore, compared to the benchmark approach, the proposed one can further improve the sensors lifetime. In fact, for a given N M AE tot target of 0.02 and pct N rep = 60, we compute the energy consumption during the T time slots for the both compared approaches depending on the number N of sensors. In this simulation, as in chapter 3, we consider that two nodes i and j can directly communicate with each other, without the need for relaying, only if the Euclidean distance dst i,j between them is within some transmission radius (r) that scales with ( logN/N ),

and to route the data towards the sink node, we perform the shortest path tree computed by Dijkstra algorithm. In order to compute the energy consumption during data transmission, the following model is used [START_REF] Chang | Maximum lifetime routing in wireless sensor networks[END_REF]:

E T x (L, dst i,j ) = E elec × L + ε amp × L × dst 2 i,j E Rx (L) = E elec × L, (4.21) 
where E T x (L, dst i,j ) and E Rx (L) represent respectively the amount of energy consumed by a specic node i, to deliver and receive an L-bit packet through a distance of length dst i,j . In (4.21), E elec is the energy required by the transceiver circuitry at the sender or the receiver and ε amp is the energy consumed by the transmitter amplier.

Hence, depending on the distance dst between the transmitter and the receiver, the total energy cost for forwarding L bits of data is E T x (L, dst)+E Rx (L). Regarding the parameters setting, L = 120 bits [START_REF] Hooshmand | Covariogram-based compressive sensing for environmental wireless sensor networks[END_REF], E elec = 50 nJ/bit and ε amp = 100 pJ/bit/m 2 [89].

Figure 4.9 illustrates the energy consumption for the proposed framework as well as for the benchmark one. Indeed, our approach requires far less sensor nodes' readings, consequently much less energy consumption, to achieve the same reconstruction performance.

Let us focus now on the benets of the clusters selection. We show that taking into account the detected clusters during the representative nodes selection process as well as during the assignment of the sensing and transmitting schedule signicantly ameliorates the data recovery performance. Thus, we compare our approach to another one, for which we proceed regardless the existence of the dierent clusters. The set N rep of representative sensor nodes is selected according to ( The next scenario aims to prove the importance of neatly selecting the N rep representative nodes. Making use of the spatial correlation in the selection process, these nodes are selected under the criterion of having the best representation of the whole network. To investigate the eciency of the proposed selection process, we compare our algorithm to another one that selects its representative nodes randomly. However, in order to be comparable, this one takes into account the existing clusters when selecting its representative nodes. Hence, the set N rep of representative nodes consists of the combination of J subsets, (N rep j ) j=1,. . . ,J , where N rep j includes N rep j representative nodes selected randomly from cluster CL j using the same shared percentage pct N rep , where N rep = J j=1 N rep j and N rep j = pct N rep % × cl j . As described in 4. or an improvement to the proposed approach of [START_REF] Kortas | Energy ecient data gathering schema for wireless sensor network: A matrix completion based approach[END_REF]. The results of this simulation are depicted in Figures 4. [START_REF] Emmanuel | An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition[END_REF] The third simulation highlights the benet of the 3 rd stage of the proposed reconstruction pattern. We compare our algorithm to the one that uses only the rst two stages of section 4.5 to get its nal recovered data matrix X. Following the same logic of the previous experiences, in order to be comparable, we use the sampling pattern of section 4.4 with both simulated algorithms, which yields the same set N rep of rep- 

Conclusion

In this chapter, we have proposed to let a signicant number of sensor nodes remain idle. Then, relying on a novel MC-based reconstruction framework, we recover their readings based on the received ones. The strength of our approach lies in its integration or inclusivity for both the compression and the reconstruction patterns. For the sampling part, by making use of the inter-spatial correlation feature, we have used a cluster-based strategy that neatly selects a restricted number of representative sensor nodes from each cluster in order to eciently afterwards schedule where and when to sense the eld. As for the reconstruction part, by taking advantage of the readings similarities in the WSNs, we propose an optimization technique that is annexed to the MC resolution. This method, positioned in the third stage of the recovery operation, guarantees the reconstruction of all the empty rows corresponding to the inactive sensor nodes. Altogether, these techniques succeed in handling the aforementioned high loss scenario. We have obtained satisfactory results proving the eciency and the robustness of the proposed techniques as well as the whole unied approach. The results, obtained with the multi-Gaussian generated signal, outperform those of all the state-of-art techniques. They revealed that we are able to go up to 90% of missing rows (i.e. only 10% of N of representative sensor nodes), while we still achieve interesting data reconstruction accuracy by giving a N M AE tot of about 0.08 compared to the benchmark one, which is still within the range of [0.46, 0.5].

Introduction

In this chapter we carry on with the twofold data compression scenario that has been addressed in the previous chapter 4 with the OCBMC. Reducing the amount of sensing data can indeed minimize the power consumption of the network and save its energy. Nevertheless, it is not sucient since it does not necessarily alleviate the problem of energy load imbalance between nodes. Indeed, depending on the events to be monitored, even though the representative sensors may change from one detection period to another, the signal in most WSNs is time-stationary. Hence, the set of selected representative nodes can remain the same for many successive sensing periods. To avoid the overcharge that may occur over some sensor nodes, and thus their fast death, the representative nodes should be changed from a detection period to another. In addition, in the multi-hop WSNs, data packets that are generated from the transmitting source nodes should be relayed via intermediate nodes to be routed to the sink. Accordingly, nodes around the sink would exhaust their batteries faster as they carry heavier trac loads than the border nodes, causing the problem of energy hole. In this case, even if the rest of nodes still hold sucient energy levels, communication with the sink will be cut o leading to the end the network lifespan.

To overcome the issue of uneven energy depletion phenomenon, in addition to the correlation, we have incorporated the sensors' residual energies in the representative node selection function with the proposed Energy-Aware MC-based data gathering approach (EAMC). It is noteworthy that taking into account the residual energy in the node selection process is related to the type of application one wants to perform.

To this end, we have evaluated our selection strategy under dierent scenarios and network topologies while presenting for each one the adequate energy-aware metric.

More specically, our main contributions in this chapter are given as follows:

As a sequel of chapter 4, in this chapter, we focus on the node selection process taking into account the reconstruction quality as well as the energy eciency. In addition to the correlation, we have incorporated the sensors' residual energies in the representative node selection function to develop dierent energy-aware cost selection functions for the EAMC. The proposed combined metrics have been introduced in order to systematically maintain a load balancing among nodes and thus maximize the network lifetime, while still achieving a low data reconstruction error.

Dierent topologies and scenarios have been assessed under the adequate energyaware proposed metric. Indeed, in the star topology networks, where communication with the sink is direct, choosing a node to be a representative one according to its residual energy in order to improve the network energy utilization is sucient. However, in the mesh topology networks, where routing schemes must be applied and data is forwarded via relaying nodes, the entire route should be assessed. In addition to the correlation, a node can be chosen to be a representative one if there is no depleted relaying node in its route.

In this chapter, we target to minimize the energy consumption and extend the network lifespan through nodes energy load balancing, while, at the same time, ensuring a suciently good quality of data reconstruction. In the numerical results section, we have studied the trade-o between the data recovery error and the network lifetime for all the investigated scenarios.

The assumption that the energy consumed in the data acquisition is much lower than that consumed in radio communications does not hold for a number of practical applications, such as the gas sensors which are considered as power greedy sensors [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF]. Therefore, in this chapter, we have assessed our approach under both sensor nodes types, the ordinary sensors (low sensing power sensors) and the power greedy ones.

The chapter is organized as follows. The next section is devoted to state the preliminary and the energy consumption system model. In section 5.3, we present the proposed energy-aware data gathering strategy under dierent scenarios. Then, in order to evaluate the performance of the proposed scheme, we carry out, in section 5.4, with various simulations, where we vary the cost selection function, the addressed scenario and the type of the deployed sensor nodes. Finally, we conclude the work in section 5.5.

Preliminary and Energy Consumption Model

Preliminary

In this work, we keep using the technique proposed in chapter 4, section 4.5, i.e the three-stage MC-based reconstruction approach. The sink node applies this technique to recover the entire data matrix X ∈ IR N ×T , after receiving a partly empty matrix M ∈ IR N ×T , where N denotes the number of deployed sensor nodes, and T designates the number of time slots t composing the detection period. The three-stage MC-based reconstruction framework is considered as a data recovery building block for all the data gathering schemes that will be introduced in section 5.3. Moreover, note that we keep using notations used along the previous chapter such as those related to the representative nodes, transmitting source nodes and clusters consideration.

The Energy Consumption Model

Generally, a sensor node consumes the energy of its battery in three operations that are communications (i.e. both data transmission and reception), data sensing and data processing.

Since with the MC method, there is no on-sensor computation, and data is directly sub-sampled in the compressed form (i.e. the data x i,t is available only if a location i is chosen to be sensed in the time slot t), we assume here that there is no energy consumed in data processing. Moreover, the high energy-intensive reconstruction algorithm is executed at the sink node, which is free of energy constraint and whose energy consumption does not be included in the network overall energy consumption.

Regarding the transmission and reception activities, we consider the model (4.21) of the previous chapter in which we dierentiate the amount of energy consumed by the transceiver circuitry at the sender, i.e E elec-tr , to that consumed by the transceiver circuitry at the receiver i.e E elec-rc :

E T x (L, dst i,j ) = E elec-tr × L + ε amp × L × dst 2 i,j E Rx (L) = E elec-rc × L, (5.1) 
To monitor the network area and sense the data eld, we have used the following expression to compute the energy dissipation by a sensor node when performing the sensing operation for L bit packet [START_REF] Malka N Halgamuge | An estimation of sensor energy consumption[END_REF]:

E sens (L) = L × V sup × I sens × T sens , (5.2) 
where V sup is the supply voltage, I sens is the total current required for the data sensing operation, and T sens denotes the time duration allowed to a sensor node for data sensing.

Our proposed data gathering scheme

In this section, we present how the energy constraint can be jointly considered with the correlation criteria in the active node selection process in order to maintain a load balancing among nodes and maximize the network lifetime, while still achieving a low data reconstruction error. Since the performance usually vary with the network congurations, we dierentiate, in this section, the proposed energy-aware cost functions for the representative node selection according to the given network topologies.

Usually, nodes are randomly scattered in the area to be monitored, without any infrastructure, leading to the existence of dierent network topologies, which are determined according to the nodes' locations and the connections between them and the sink node.

Dierent topologies may exist, in the WSNs, and vary with the kind of application one wants to proceed. In the sequel, we consider the frequently used topologies, which are the star and the tree/mesh topologies with the twofold addressed scenario.

Single-Hop Star Topology

The star topology networks are single-hop systems [START_REF] Sharma | Network topologies in wireless sensor networks: a review 1[END_REF] since all nodes operate as terminal devices and directly communicate with a centralized communication server.

This type of architecture is generally used in wireless micro sensor networks as the covered area is, most of the time, small and limited by the communication range of the end nodes. As we have previously stated, the rst step in the network sampling proceeding is to partition nodes into J disjoint clusters. Performing this step is of prime importance to reach an adaptive and overall representation for the whole monitored area, and thus a more ecient data sampling. Beneting from the dependency among nodes, the aforementioned representative node selection strategy, using algorithm 2 with (4.11) and (4.12), targets to achieve a better data sampling quality and hence a much lower data reconstruction error at the sink node, despite the limited number of reported data readings with the addressed twofold data compression scenario. However, there is still a crucial factor that cannot be overlooked at all, and must be cautiously taken into consideration, which is the network lifespan and energy load balancing between nodes. Indeed, depending on the events to be monitored, even though the set of representative sensors may change from one detection period T to another, the signal in most WSNs is time-stationary. Hence, the set N rep of selected representative nodes can remain the same for many successive detection periods. To avoid the overcharge that may occur over some continuously operating sensor nodes and thus the fast depletion of their batteries, the active node selection process should take into account not only correlation between sensor nodes but also their residual energies. Accordingly, we incorporate in (4.11) the fraction of the sensor residual energy, as a complementary factor, in order to choose the sensor nodes that can well represent the network and at the same time hold the highest residual energy. Precisely, for a given sensor node g ∈ S j 1 , the trade-o between its informative value m g , computed in (4.12), and its residual energy with regard to the other sensors' residual energies, Ef resdg , is achieved through a multiplication of the two considered factors. Thereby, (4.11) is replaced by (5.3) for our EAMC approach:

g * = arg max g∈S j 1 m g × Ef resdg , (5.3) 
where

Ef resdg = E g i∈S j 1 E i .
(5.4) Thus, the EAMC represents an update of the OCBMC. The unique dierence here is that, with the OCBMC scheme, the set N rep j is selected from cluster CL j passing through the correlation-based cost function (4.11), whereas, with the EAMC, this set is selected from CL j according to the combined energy-aware and correlation-based metric (5.3).

Performing (5.3) means that we attempt to choose the sensor node carrying the maximum value of the combined metric (m g ×Ef resdg ). Here, multiplying the two addressed factors aggregates them into a one single entity, and it is analogous to computing the needed correlation per unit of energy. In other words, this operation makes the relation between the two factors fusional. If one of them is weak it will automatically weaken the other, and the carrier sensor node will not be chosen. Since the residual energy of the operating nodes decreases from one detection period to another, the metrics (m g × Ef resdg ) g∈S j 1 vary and the representative nodes will be selected eciently, according to the available energy in their batteries.

In order to determine the set N rep j of the EAMC, we perform the same steps of the nodes selection process that have been outlined in algorithm 2, while replacing only the metric (4.11) by the metric (5.3).

Multi-Hop Mesh Topology

Compared to the star topologies, the mesh network does not suer from the limited scalability. Thus, much wider area can be covered and monitored thanks to the multihop transmissions. In this type of networks, several routes may exist between sensor nodes and the sink, and most of the time the network software chooses the shortest one for data delivery. To forward the data towards the sink, we opted for the shortest path tree, implemented with Dijkstra algorithm. Note that the routing protocol to use is not the main focus of this work since our aim is to achieve energy load balancing between nodes and reach a higher lifetime for the network with the already established routes. Updating the paths systematically according to the remaining energy levels in order to further prolong the network lifetime is left as a perspective for future works.

A more detailed discussion on this point is aorded in the last chapter 6, section 6.2.

In light of the importance of energy utilization enhancement, as far as the size of these networks gets bigger and the diameter of the covered area gets larger, the problem of uneven energy depletion aggravates and gets worse. In fact, data packets, which are generated by the transmitting source nodes, have to be relayed through intermediate nodes to be nally routed to the sink. Accordingly, nodes that are close to the sink are susceptible to carry much heavier trac loads than nodes of the outer-regions.

Consequently, they would speedily run out of power, leading to the problem of energy hole around the sink. In this case, even if the rest of nodes, specially the border ones, still hold sucient energy, communication with the sink would be cut o, causing probably the end of the network lifespan.

The twofold compression pattern

To alleviate the overwhelming issue of energy hole, nodes' residual energies should be considered when selecting the set of representative nodes N rep . When all the nodes are directly connected to the sink, as in the star network topology, performing the selection cost function (5.3) is eective enough to attain the purpose of this work.

Yet, when the data have to be forwarded via relaying nodes to reach the destination, taking into account only the transmitting source node residual energy is completely insucient. Instead, the residual energy level of all the relaying nodes that would participate in the data forwarding should be assessed. Indeed, the metric (5.3) does not consider the entire route. Using (5.3), we will select sensor nodes with the highest residual energy, while ignoring the continuity ability of the entire route. Suppose a sensor node g * , holding the maximum value of the combined metric (i.e. correlationenergy), is selected and there is a relaying node with a used up battery in its route towards the sink. In this case, the path will be cut o announcing probably the end of the network lifetime. Therefore, in addition to the correlation, a node is chosen to be a representative one under the condition that there is no depleted relaying node in its route. That is, the metric (5.5) is chosen for our EAMC for this scenario:

g * = arg max g∈S j 1 m 2 g × E g × min hpg∈HPg E hpg ( i∈N ∫ E i ) 2 , (5.5) 
where HP g represents the set of nodes composing the route of the representative node g towards the sink 1 . In (5.5), adding the term (min hpg∈HPg E hpg ) means that we take into account also the relaying node with the lowest residual energy in the representative node selection process in order to avoid the fast depletion of the routes and hence the network partition, while there are still nodes with sucient remaining energy that can forward data. Here, if the energy level of the relaying node hp g that is belonging to the route of node g towards the sink is very low compared to other nodes, the combined entity value will be weakened, and the node g won't be chosen as a representative node for the current detection period. As we can notice, in this energy-aware cost function, we have strengthened the weight of the factor m g , which reects how much the sensor g can represent the network, in order to maintain a good/ecient recovery quality. It will be shown in the simulations section that the introduced cost function is able to achieve an interesting and satisfactory trade-o between the data recovery quality and the network lifespan.

The single-level compression pattern

Generally, the multi-hop transmission is essential for the dense WSNs as well as for the the case of large networks (in terms of geographic distance), without being too much dense, where sensor nodes are far away from the sink. Particularly, in this kind of network, there is no need to make a signicant number of sensor nodes completely inactive, for the entire current detection period, when executing data sensing. Accordingly, in this part, we won't pass through the selection of a set of representative sensor nodes. Instead, we proceed directly for the transmitting source nodes schedule.

Furthermore, we want to evaluate our approach under the ordinary data sampling scenario, as well, in order to provide an overall work, where nodes can participate at least once during one detection period T . To do so, in each time slot t, using the same shared percentage pct m , m j transmitting source nodes are directly selected from the set CL j of nodes composing the cluster j, according to (5.5), to sense the eld and transmit their data readings to the sink. That is, instead of (4.13) and (4.14), we have:

m = J j=1 m j , (5.6) 
where m j = pct m % × cl j .

(5.7)

Here, we proceed as if we set pct N rep = 100 and all the nodes are representative for the network. Certainly, there will be more computation than the twofold scenario, where the active node selection process, via (5.5), is eectuated only once for the entire detection period T . Fortunately, the one that is responsible for all that calculation is the sink, which is free of energy constraint. In fact, we assume that the sink node has all the information regarding the sensor nodes' locations. Thus, it can compute, in advance, the energy to be consumed by the nodes for data sensing and forwarding. Thereupon, it is able to schedule beforehand the participation of the nodes during the entire detection period. In order to not increase again the communication overhead, the sink informs the concerned nodes about their data sensing schedule at the beginning of the detection period, i.e. we designate only one-shot scheduling transmission for the entire detection period.

Since, in each time slot t, energy consumption is uneven between nodes due to the multi-hop systems conguration, over a period of time we outface some sensor nodes whose routes hold relaying nodes with low residual energy. Performing (5.5) will keep these nodes out of the selection range for several successive time slots, until other nodes take their places. The fact of not being selected as a transmitting source node for successive time slots and not reporting data to the sink leads to the existence of successive missing entries in the received data matrix M . This sequence of missing data entries that may exist in the rows, referred to as a row structure fault in [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF], impedes the MC resolution and highly increases the data reconstruction error. Therefore, for this single-level compression scenario, an extra step is added to the three-stage MCbased reconstruction pattern and set at the beginning of the recovery process, in order to detect the rows that hold structure faults and consider them as completely empty rows. This step consists simply in nding the sequence of successive zero entries holding a length larger than a given xed size, which represents the minimum size of successive data missing from which that sequence is considered as a structure fault.

That is:

StrF ault min = pct strF % × T, (5.8) 
where, in accordance with the duration T of the detection period, pct strF represents the parameter that xes the minimum size of successive data missing from which the detected sequence is considered as a structure fault. It will be shown in the simulation part that treating separately the rows that hold structure faults signicantly improves and renes the data reconstruction accuracy.

Numerical Resutls

In chapter 4, we have compared the performance of the proposed OCBMC versus the scheme of [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] that had treated a relatively similar scenario to our twofold data loss one. We have found that our structured approach outperforms the baseline scheme in terms of both data reconstruction error and overall network energy consumption. For that reason, in this chapter, we have based on this comparison to carry on with our structured scheme and improve its design and techniques. The proposed energy-aware data gathering EAMC, where energy is jointly taken into account with the correlation criteria, is compared to the OCBMC scheme. This simulation will reveal the impact of the updated selection cost function on the trade-o between the data recovery accuracy and the network lifetime under all the investigated scenarios, and for both types of sensor nodes. Then, to summarize and conrm our results, this trade-o is evaluated in a dierent manner.

Thereupon, in order to estimate the data reconstruction accuracy for the implemented schemes, we opted for the metrics (4.17 In these simulations, we focus on the principal purpose of this work, which is the network lifetime improvement. For that reason, we analyze the performance of the EAMC, where we consider for each scenario and network topology the adequate cost function. Namely, we evaluate the metric (5.3) for the single-hop star topology and the metric (5.5) for the multi-hop mesh topology. Moreover, we assess the proposed approach under both of sensor nodes types; the ordinary sensors, where the energy consumed in data sensing is quite low, and the specic power greedy ones, where the acquisition energy cost is greater than that of the communication cost [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF]. The parameters of the used energy consumption model are outlined in the Table 5.1.

To begin, we consider the single-hop star network and we compare the EAMC approach to the OCBMC. when the correlation criteria is not taken into account. Let us now compare the metrics (5.3) and (5.5), we can observe that the metric (5.5) achieves a better N b rounds at the cost of a slight increase of the N M AE tot . Indeed, since the entire route is considered with (5.5), sensor nodes having depleted relaying nodes in their paths towards the sink are less susceptible to be selected as representative nodes. Here, it is worth mentioning that as long as we keep achieving a suciently good recovery quality (i.e. a low N M AE tot ), we privilege the second crucial factor that is the network lifetime expanding. As we can see in Figure 5.3, for pct N rep equals to 60, the resulting data recovery error, when we perform the metric (5.5), is almost the same as when we use (5.3), whereas, the N b rounds ensured by the retained metric (5.5) is higher than that given by (5.3). For example for (pct N rep = 60, pct m = 10), with the same N M AE tot , performing the EAMC using the cost function (5.5) can prolong the network lifetime with a percentage of 35.69% compared to the OCBMC, whereas, the yield of (5.3) is limited to 8.7%. This is because metric (5.5) takes into account the entire route through the value of (min hpg∈HPg E hpg ). Hence, this technique is able to ensure a much longer lifetime for the network, when the sensor nodes are ordinary we can note that it is reduced as N is raised since the overall energy consumption is increased due to packet relaying.

In scenario three (i.e. the single-level compression scenario in the multi-hop mesh topology), whose results are depicted in Figures 5.6 and 5.7, we have compared the EAMC scheme using the metric (5.5) with its original version, the CBMC, for pct N rep = 100. Indeed, since in the WSNs, most of the time, the signal is timestationary, using only the correlation criteria via the OCBMC to seek for the m transmitting source nodes in each time slot t leads to probably having the same transmitting source nodes during all the detection period T . The resulting conguration entails a schedule, where the same chosen source nodes will transmit their data during all the time slots t composing the detection period T , while the rest of nodes remain completely inactive. The OCBMC is not suitable for this scenario since, in this part, we aim to address an ordinary data sampling scenario, where nodes can participate in data sensing and transmission at least once during one detection period T . As we can note from Figure 5.6, the N M AE tot achieved by the EAMC (i.e. the dark green curve) gets worse compared to the original CBMC, despite the amelioration achieved in terms of N b rounds . This is due to the existence of the row structure faults that appear in the data vectors corresponding to the nodes that are remaining outside the range of selection for several successive time slots. In addition to the fully empty data rows, the structure faults are among the serious obstacles that not only impede the MC resolution but also pollute the received data [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF]. For that reason, before applying the MC method, the rows holding these structure faults should be removed from M then recovered through stage two if the node corresponding to this row is an absent node or recovered through stage three if the node is an Isolated one. In [24, Section. V],

authors have proposed an algorithm that detects rows holding structure faults. This technique is implemented here and the resulting performance are depicted with the dotted black curve. As we can note from the gure legend, this technique is dependent to two dierent parameters N and α. Altogether, these parameters give χ 2 N ,α , which represents the upper α percentage point of the chi-square distribution with the degree of freedom N . Although they had shown how to choose N , the selection of α has been done without any explanation, and according to our several simulations, it should be noted that the slightest variation of any of these parameters makes an important dierence in the N M AE tot performance. Here, the value of α has been determined empirically 3 . As for our proposed structure faults detector (5.8), it has been evaluated with respect to a threshold parameter pct strF that, in accordance with the detection period duration T , xes the minimum size of successive missing entries from which the sequence is considered as a structural fault. Surprisingly, we can clearly note from Figure 5.6 that, despite its simplicity, our proposed method can signicantly reduce the data recovery error of our EAMC for the entire range of CR, while still keeping the same N b rounds , whereas, the improvement brought by the technique 3 We report here the simulation of only the most performing value. of [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF] is limited by a restricted range of CR. Moreover, the N M AE tot given by the EAMC with our structure fault detection method is not only lower than that given by the EAMC without structure fault detection, but also it is lower than the N M AE tot resulting from the EAMC with the method of [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF], which unfortunately makes the data recovery accuracy worse for the high CRs (i.e. CR > 0.66). In fact, using the same parameter value α for both high and low CRs impedes the imposed threshold for the structure faults detection from maintaining a low error ratio across the entire range of CR. These simulations show that our technique is not only simpler than that proposed in [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF], but also it is more ecient. relaying nodes composing its path towards the sink. As a result, the number of the structural faults as well as their sizes are reduced. For that reason, we vary again the parameter α in this simulation since the one used in Figure 5.6 was not suitable for the present case. As for the network lifetime performance, unexpectedly, for this kind of data compression scenario and when the deployed sensors are greedy power ones, the energy consumption is too great that we can make signicant improvements in terms of N b rounds .

In the nal part of the simulations section, the trade-o between the data recovery error N M AE tot and the network lifetime, measured with N b rounds , has been investigated in a more realistic manner. For a given pct N rep = 30, an error ratio upper bound is xed. Here, the F ixed N M AE tot is varied from 0.02 to 0.1, and for each value we compute the maximum number of detection periods that the scheme can ensure, despite the eventual existence of dead sensor nodes. As long as the implemented scheme can achieve an N M AE tot lower or equal to the xed bound, the network is considered as operational. When the data recovery error ratio of this scheme exceeds Likewise the previous simulations, we start with the single-hop star topology. We can note from Figure 5.8 that the EAMC, using the metric (5.3), can highly prolong the network lifetime compared to the OCBMC, while still able to maintain a data reconstruction quality better than the imposed level. Another interesting point is that the potential improvement of EAMC is higher than OBMC in terms of network lifetime. In other words, the Real N b rounds achieved by the EAMC increases faster than that achieved by the OCBMC, when the upper bound error ratio is expanded. Since we perform a discretized CR to reach an N M AE tot that is less than or equal to the xed one, i.e. pct m varies from 10 to 70 with step of 10, there is possibility that a CR under the needed one is used (pct m above the needed one), and some The latter explanation denotes that a piecewise eect appears in these points. As we can note, the appearance of these particular points is clearer with the case of the greedy power sensor nodes, where the data sensing activities carried out by the transmitting source nodes consume the bulk of the total power consumption, and the selection of the active nodes is mainly based on the residual energy of the sensor of interest. Nevertheless, note that what mostly interests us is the dierence, in terms of network lifetime performance, between the curves that still exists even with the drop points.

Conclusion

In light of the importance of the energy saving and lifetime for wireless sensor nodes that are suering from a limited power capacity, in this chapter, we have presented an adaptive data collecting scheme, called the EAMC. Since the all-node-active condition is completely impractical for WSNs with the energy constraints, the proposed approach can dynamically designate the transmitting source sensor nodes that can aord the sustainability as long as possible of the network lifetime and alleviate the problem of energy load imbalacing, according to an energy-aware cost selection function. Additionally, the proposed EAMC scheme aims not only for achieving the energy eciency for the network but also for preserving a suciently good quality of data reconstruction as it still takes into account the correlation criteria among sensors in order to select those who can best represent the network. Furthermore, we have evaluated our approach under dierent network topologies and scenarios, while performing, in each time, the adequate energy-aware metric. Moreover, to recover the entire data matrix, despite the existence of a signicant number of completely missing rows corresponding to the inactive nodes, we have relied on the three-stage data reconstruction framework of the previous chapter. For the last addressed scenario, to rene and enhance the data recovery quality, we have added a simple step to the data recovery techniques, which eciently detect the structure faults that may appear in the received data matrix. Simulations have proven that the proposed scheme can achieve an interesting trade-o between the data reconstruction accuracy and the network lifetime compared to the baseline schemes. Accordingly, the EAMC scheme can be considered as very interesting for research in the eld of energy saving since, particularly, it is able to eciently overcome the twofold data loss scenarios.

Chapter 6

Conclusion and Perspectives "

Summary of Contributions

In WSN, sensors are deployed in order to collect periodically measures of physical elds, which can be related to a wide range of applications as security, science, industry, civil infrastructure, etc. However, their crucial nature of limited power, memory and computational capacities requires focusing on minimizing energy consumption and processing complexity to ensure a longer lifetime for the network [START_REF] Balouchestani | Robust wireless sensor networks with compressed sensing theory[END_REF]. Thereupon, the purpose of this thesis is to establish and evaluate energy-ecient data gathering schemes for future WSNs. Relying on the CS and the MC methodologies, this dissertation proposes three dierent approaches.

We started by evaluating an uncommon space-time CS-based design, where we have performed a strategy that neatly and determinately selects a subset of active sensor nodes under the criterion of having the best presentation of the whole network, using a correlation-based metric, when, at the same time, they are "near" the sink. These designated nodes will deliver their data readings to the sink for only the same subset of predetermined time slots, i.e. the data signal is adaptively sub-sampled in the space as well as temporal dimension. This is dierent to the existing spatial CS data gathering patterns, where, in each time slot, the sensors' readings are linearly combined along a multi-hop routing. Surprisingly, recovering the entire data with such unfamiliar or unusual situation has worked successfully thanks to the use of an adaptive spatial sparsifying basis Ψ S with a covariogram-based estimation. Since the addressed data gathering strategy reduces dimensionally the number of data samples in space and time, the Kronecker framework has been performed in the data reconstruction process for the proposed STCS-RA approach to take advantage of the signal sparsity in both dimensions.

The remaining schemes of this dissertation focused on the application of the MC methodology because of its numerous benets. In the second contribution, we have developed a structured MC-based framework that is able to deal with the existence of a signicant number of completely missing data rows in the received data matrix.

These empty rows result from the inactive nodes that do not participate at all in the data sensing process during the entire detection period. The reconstruction of the entire data has been achieved successfully with high accuracy thanks to the proposed minimization-based interpolation technique, which is annexed, as a third stage, to the MC resolution. Furthermore, since we are mainly interested in the high data loss scenarios, gathering the limited amount of data to be transmitted from the active nodes must be neatly scheduled to aord the sucient information about the whole network area. For that reason, we have proposed the CBMC and the OCBMC data gathering approaches, which assign the sensor nodes into groups using a data-based spectral clustering technique. The detected clusters are taken into account in the representative nodes (active nodes) selection process then in the data sensing schedule with the use of the same shared percentage between clusters in order to provide an equitable representation of the monitored area. Through simulations, we have shown that such an adaptive data sampling deeply aects the recovery quality of not only the missing data corresponding to the active nodes but also those corresponding to the completely inactive ones.

Aiming to further optimize the use of WSNs resources, we present in our third contribution an adaptive EAMC data gathering approach that extends the introduced scheme of the second contribution. The proposed data gathering strategy has been conceived with the intention of systematically maintaining a load balancing among nodes and maximizing the network lifetime, while still achieving a low data reconstruction error. Indeed, in addition to the correlation, we have incorporated the sensors' residual energies in the representative node selection process and developed dierent combined energy-aware cost selection metrics. Depending on the variation that occurs on the nodes inter-correlation as well as on their available power supplies, the proposed approach selects nodes that can best represent the network, taking into account the eciency of the network energy utilization. We have evaluated our approach under dierent network topologies and scenarios, while performing, in each time, the adequate energy-aware metric. For each case, the trade-o between the data recovery error and the network lifetime is measured, and the performance behaviour of the proposed data gathering approach is studied for both types of sensor nodes; the low-power sensors and the hungry-power ones.

Perspectives

The solutions suggested throughout this dissertation permit the rise of some new insights and ideas, which can further ameliorate the WSNs performance. Indeed, a number of mechanisms developed and proposed in this work can be extended and updated, and then performed in another domain or in a variety of manners. In this context, a natural modication is to estimate a temporal sparsifying basis Ψ T that can be dynamically adapted to the time-varying statistics of the signal eld.

Thus, as a perspective, we propose an iterative algorithm, where the estimation of X cs can be progressively rened. Suppose that X cs is reconstructed based on the received measurements, as described in chapter 3. Then, using this X cs as a rst estimation denoted by X cs 1 , we can improve the accuracy of X cs 2 , of the same current sensing period, after recalculating Ψ T through replacing DCT by the PCA basis or another data dependent and advanced temporal sparsifying basis in order to better exploit the intra-sensor correlation. Note that we can refer to a new iteration Itr each time X cs Itr is re-estimated using X cs (Itr-1) . Besides, for the next sensing periods, these estimations will be used and the precision may increase. Here, for example, an experimental study can be done to x the number of re-estimations (iterations) that one should perform to reach a required error ratio.

6.2.2

From a centralized approach to a distributed one

In the proposed approaches, a centralized node, which is the the sink, is the one that is responsible for the selection of the representative nodes and for their data sensing activities schedule over each detection period. Even though, this meets well the constrained resources and computational capacities of the deployed wireless devices, it may be more desirable to distribute the computation of the active node selection algorithm and the data sensing schedule between nodes in order to make them more autonomous. Moreover, suppose that the sink has a nite power supply, as in many practical applications. Thus, establishing an adaptive data gathering scheme, with a decentralized manner, can signicantly reduce the computational complexity carried by the sink node and even speed the data gathering process. To this end, performing this purpose, while keeping in mind the overall network energy capacity and eciency, makes it an extremely challenging and worth pursuing research issue.

6.2.3

The three-stage MC-based reconstruction approach in Massive

MiMo

In massive Multi-Input Multi-Output (MIMO) systems, a precise acquisition of the Channel State Information (CSI) is needed for signal detection, resource allocation, beamforming, etc [START_REF] Gao | Structured compressive sensing-based spatio-temporal joint channel estimation for fdd massive mimo[END_REF]. Yet, with the explosive growth of the single-antenna user terminals number, the Base Station (BS) should estimate channels that are associated with hundreds of users, leading to high pilot overhead. The idea here is to let only a small number of users transmit their pilots in the training phase of each coherence interval and, using the proposed three-stage MC-based reconstruction approach of chapter 4, the BS will estimate all channels, even those corresponding to users who have not sent pilot signals. This framework can be implemented and introduced as a channel estimation scheme for the uplink massive MIMO systems based on the assumption of channel reciprocity in the Time Division Duplexing (TDD) mode [START_REF] Lv | Temporally and spatially correlated uplink channel estimation for massive mimo systems[END_REF].

Since most of wireless channels are sparse, the MC method can represent a suitable solution for channels estimation [START_REF] Albreem | Massive mimo detection techniques: a survey[END_REF], [START_REF] Khan | A robust channel estimation scheme for 5g massive mimo systems[END_REF]. To model the considered massive MIMO system, we assume that the BS is equipped with an array of a signicant number To reduce the number of transmissions during the coherence time, we assume that a small number K rep K of the users will transmit their L-length training pilot sequences, i.e Φ rep of size K rep × L, and instead of nding H ∈ C M ×K , the BS would rstly estimate a sub-matrix H ∈ C M ×Krep using the MC method with its noisy version. As an example, paper [START_REF] Le | Compressive sensing-based channel estimation for massive multiuser mimo systems[END_REF] had provided a mathematical MC-based formulation of the problem (6.1) in Eq. 7 and developed a solution in Eq. 11. Here, for our case, we have to solve the equation (6.2) instead of (6.1) and nd H :

Y = H Φ rep + N . (6.2) 
Secondly, the BS updates H ∈ C M ×K by adding the (K -K rep ) empty columns, which correspond to the users that did not sent their training pilot sequences, and placing them in their proper locations of H. Finally, it carries on with stage 2 and stage 3 to estimate these remaining columns to get the entire M × K channel matrix H.

6.2.4

The EAMC data gathering scheme with a dynamic routing Using the already established routes with a static routing protocol, in data forwarding, may limits the performance improvement that an energy-aware data gathering scheme can achieve. An interesting practical consideration is to update the paths systematically according to the remaining energy levels of the relaying nodes in order to further prolong the network lifespan. Indeed, it is noteworthy that cross layer optimization may achieve a considerable performance improvement. Hence, our idea here is to to keep using the representative node selection cost function (5.3) even in the multi-hop mesh topologies in order to preserve a better data recovery accuracy. However, instead of forwarding data to the sink through static paths, for example, each sensor node would choose as its next hop the sensor node, within its range obviously, that has the highest residual energy and at the same time can achieve the largest geographical advancement toward the sink. To select the appropriate forwarder, the balance between the residual energy of the node of interest and its distance toward the sink can be modeled by a certain cost function. Doing that may further improve the network lifetime, N b rounds , while maintaining the same low N M AE tot . 

B.2 Temporal Correlation feature

To evaluate the temporal stability of the data X, we measure the normalized gap between each two consecutive gathered data samples, X(i, t -1) and X(i, t), in a specic space location i. That is:

∆T gap (i, t) = | X(i, t) -X(i, t -1) | max of ∆T gap (i, t) ≤ 0.25 is equal to 80%, which means that the synthetic data holds a temporal correlation property.

B.3 Cross Conguration

In gure B.3, we have performed a cross conguration for an empirical choice of the used tuning parameters of (4.15). As we can note from the simulation, adjusting these parameters nicely enhances the data reconstruction performance of the proposed approach. The combination (f ac 1 = 10 -13 , f ac 2 = 1 and K = 5) seems to aord suciently good results compared to other tested values. Note that tuning these parameters serves just to further improve and rene the data reconstruction quality.

Indeed even with the the extreme values (f ac 1 = 1, f ac 2 = 1 and K = 2), our proposed approach still achieves a very low data recovery error. As we can note from these plots, the reconstruction performance, with and without parameters scaling, is independent to the performed numbers N and T . 
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Figure 2

 2 .1 provides an illustrative schematic representation of the CS method.

Figure 2 . 1 :

 21 Figure 2.1: Data under-sampling and recovery using CS thechnique.

Figure 2 . 2 :

 22 Figure 2.2: Example 1 of data gathering process using spatial CS method.

Figure 2 . 3 :

 23 Figure 2.3: Example 2 of data gathering process using spatial CS method.

  reconstruction performance. Inspired by the CS²-collector model, and relying on the CS mechanisms used for the CB-CS (Covariogram-Based Compressive Sensing [21]),we include in our design, the temporal sampling and sparsifying pattern to compress, then, reconstruct the signal in an ecient way through the Space-Time Compressive Sensing (STCS) approach.

Figure 3 .

 3 1 includes an example of a routing tree, found by Dijkstra algorithm, for a network composed of N = 50 sensor nodes.

Figure 3 . 1 :

 31 Figure 3.1: A routing tree for a network composed of N = 50 sensor nodes.

3. 3

 3 Space-Time Compressive Sensing Routing-Aware approach (STCS-RA) 3.3.1 Space-Time compression matrices 3.3.1.1 Spatial sampling pattern In this part, we explain how routing can be jointly considered with the correlation criteria for the active sensor selection in order to minimize the overall network consumption. At the beginning of each sensing period, the sink selects a set M s = {1, ..., M s < N } of sensors that can best represent the whole network and, at the same time have the shortest path towards the sink. Relying on the the Enhanced Correlation Based Deterministic Node Selection (ECB-DNS) procedure [21], we select the M s sensor nodes according to their conditional variances, computed through [21, Eq. 11], which help selecting the sensor g * with the maximum informative value m respecting to the set of sensors that are not yet selected: S 1 . That is 5 :

  Figure 3.2 illustrates a simplied clarication of the problem. As mentioned above, the node selection process for the STCS-RA takes into (a) Selecting a sensor node without routing consideration. (b) Selecting a sensor node with routing consideration.

Figure 3 . 2 :

 32 Figure 3.2: Active sensor node selection.

  where N o ∈ IR Ms×Mt and N o = N o.Φ T .

  To estimate the average variogram γ exp (d) for a set of samples pairs on an irregular grid with distance d, Jindal et al., in [80, Section. 2], have stated a simple and detailed method for that: 1-For each pair of samples, distance d between them and the squared dierence between their data values [x lp (p) -x lp (p )] 2 are calculated. 2-The entire range of distances is divided into discrete contiguous intervals 9 . 3-Attribute each of the pair of samples (p, p ) to one of the distance intervals, then calculate the average variogram for each interval through the division of the sum of the squared-dierences between data values by the total number of pairs lying in that distance interval. Generally, performing (3.10) or (3.11) is followed by the search of the theoretical variogram values γ th (d), which represent the values of the variogram expression model

Fig. 3 .

 3 Fig. 3.3. A owchart simplifying the design of the proposed approach.

Fig. 3 . 4 .

 34 Fig. 3.4. The signal accumulated energy percentage with dierent sparsifying basis for (ρ = 0.9, γ = 2).

Fig. 3 .

 3 Fig. 3.6. A performance comparison in terms of reconstruction error between STCS and CS²-collector for (ρ = 0.9, γ = 2) and (ρ = 0.9, γ =5).

Fig. 3 .

 3 Fig. 3.7. A performance comparison in terms of energy consumption between STCS, CS²-collector and CB-CS.

Figures 3 .

 3 Figures 3.8 and 3.9 depict the trade-o between the normalized MSE and E for dierent values of β (note that β = 0 corresponds to STCS according to (3.2)). In order to

Fig. 3 . 9 .

 39 Fig.3.9. Energy consumption E for STCS (β = 0) and STCS-RA with respect to dierent β for (ρ = 0.9, γ = 5).

Fig. 4 . 1 .

 41 Fig. 4.1. An illustrative miniature WSN with the resulting transmitted data matrix M .

Figure 4 .

 4 1 illustrates an example of a WSN consisting of N = 16 sensor nodes, among which N rep = 6 sensor nodes are selected to be active. The proposed combined reconstruction approach targets to ll all the missing entries corresponding to the non-transmitted readings.

  reproducing a signal retaining the behavior of a given real world data by adjusting the correlations parameters. In their model, all the generated samples of the whole signal are Gaussian random variables with a zero mean and a variance following the spatial correlation function used in the signal generation. Indeed, according to [77, Eq. 14], for p = (x, y) with x = {1, 2, ..., N D } and y = {1, 2, ..., M D }, representing a space point of a sensor grid of N D × M D points, the resulting variance of z(p, t) following algorithm 1 is σ 2 z(p,t) = N D i=1

( 4 . 4 )

 44 Algorithm 1 followed by (4.3) or (4.4) outlines how to produce a portion z h (p h , t) : D h × T → IR of the whole signal eld z (p, t) : D × T → IR, which represents the (x, y) signal. Similarly to what we have done in section 3.2.2, z (p, t) represents a 3D matrix of size (2y D × 2x D × T ), and the data matrix of interest, X, denotes the 2D signal discretized from z by the N sensor nodes along the T time slots.

Figure 4 .

 4 Figure 4.2 illustrates an example of an area of size 100m × 100m monitored by N = 50

Fig. 4 . 2 .

 42 Fig. 4.2. An example of a monitored area composed of three portions, each of which is presented by a dierent Gaussian.

Figure 4 .

 4 Figure 4.3 plots the fraction of the total variance captured by the top l singular values for a signal generated from the monitored eld presented in Figure 4.2. The signal generation parameters for this example are summarized in Table.4.1. We note from

Fig. 4 . 3 .

 43 Fig. 4.3. Fraction captured by the top l singular values for a multi-Gaussian synthetic signal, generated using the values of Table.4.1.

4 . 1 .

 41 Fig. 4.3. Fraction captured by the top l singular values for a multi-Gaussian synthetic signal, generated using the values of Table.4.1.

Fig. 4 . 4 .

 44 Fig. 4.4. Civilian and habitation deployment areas for sensor nodes.
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Fig. 4 . 5 .

 45 Fig. 4.5. The Laplacian matrix L sym eigenvalues of the generated signal of section 4.3 that are computed using the similarity matrix of (4.8).

  k th m nearest neighbor, where k m ∼ log(N ) + 1.

  .10), we have:m j = pct m % × N rep j .
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 46 Fig. 4.6. N M AE tot for the proposed technique and for the Benchmark.

Figure 4 .

 4 Fig. 4.7. N M AE M C for the proposed technique and for the Benchmark.

Fig. 4 . 8 .

 48 Fig. 4.8. N M AE ER for the proposed technique and for the Benchmark.

( 4 .

 4 [START_REF] Schoellhammer | Lightweight temporal compression of microclimate datasets[END_REF]) and (4.12), i.e. the spatial correlation criteria is present during the nodes selection process. Nevertheless, we do not have equitable representation of the dierent regions that compose the whole network. Withal, for each t, the m transmitting source nodes are picked from the set N rep in a purely random way to sense then deliver their data readings, i.e. m = pct m % × N rep instead of (4.13) and (4.14). To recover the received data matrix, both algorithms apply the three-stage MC-based reconstruction pattern of section 4.5. Figure4.10 illustrates the 3-D bar graph of the N M AE tot values with the variation of pct N rep and pct m . This simulation shows how curiously interesting the clusters consideration is. The barres depict that our approach provides a considerable improvement in terms of N M AE tot compared to the algorithm of comparison, especially in the high compression ratios, i.e. when the number of transmitting source nodes is very limited. Note that without enforcing the involvement of all the clusters in the data sensing and transmission process, sensor nodes belonging to the small clusters could be totally ignored, which gravely deteriorates the recovery process. InFigures 4.11 

  and 4.12, we have measured respectively the N M AE M C and the N M AE ER with respect to the variation of CR, namely pct m , for dierent values of pct N rep . Figures 4.11

and 4 .

 4 Fig. 4.10. N M AE tot with and without clusters consideration.

Fig. 4 .Fig. 4 .

 44 Fig. 4.12. N M AE ER with and without clusters consideration.
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 42 Fig. 4.14. The impact of the representative node selection technique on the N M AE ER .

  and 4.14.

Figure 4 .Figure 4 .

 44 Figure 4.14 that highlights the N M AE ER to reveal the impact of our selection process on the reconstruction performance of the empty rows. Expectedly, we nd that the N M AE ER is sensitive to the used selection method, which conrms the aforementioned hypothesis. That is, in order to guarantee an accurate reconstruction for the inactive nodes missing data, a great care must be taken when selecting the set N rep of representative nodes.

Fig. 4 .Fig. 4 .

 44 Fig. 4.15. The impact of the spatial interpolation technique on the N M AE tot .

Figure 4 .

 4 16, which depicts the N M AE ER for both approaches, illustrates that we can reduce the reconstruction error of the empty rows up to 65.079% for (pct N rep = 10, pct m = 40), 76.842% for (pct N rep = 20, pct m = 40), 82.857% for (pct N rep = 30, pct m = 40) and 82.353% for (pct N rep = 40, pct m = 40), when we apply the minimization (4.15). These results show that the number of isolated nodes is important for the small pct N rep values. Hence, adding a third interpolation technique, as our proposed minimization (4.15), becomes heavily needed. Otherwise, we can end up with a data matrix, which is almost half built, even less.

  schemes, we opted for the metrics (4.17) and (4.20) of chapter 4. To simulate the implemented schemes and evaluate their performance under dierent CRs, we vary pct N rep from 10 to 60, and for each given pct N rep , we vary pct m from 10 to 80. Regarding the network parameters, we consider that N = 50 sensor nodes are randomly deployed in a square observation area of size 100m × 100m, and we monitor the WSN throughout a detection period of length T = 100 time slots.

Figures 5 .

 5 1 and 5.2 depict the trade-o between the N M AE tot and the network lifetime. The network lifetime denotes the number of detection period

  (a) The N M AE tot for OCBMC and EAMC approaches. (b) N b rounds for OCBMC and EAMC approaches.

Fig. 5 . 1 .

 51 Fig. 5.1. Performance trade-o between the data reconstruction error and the network lifetime for OCBMC and EAMC approaches in the single-hop star topology with ordinary sensors.

Fig. 5 . 2 .

 52 Fig. 5.2. Performance trade-o between the data reconstruction error and the network lifetime for OCBMC and EAMC approaches in the single-hop star topology with the greedy power sensors.

Fig. 5 . 3 .

 53 Fig. 5.3. Performance trade-o between the data reconstruction error and the network lifetime for the compared approaches in the twofold compression scenario and multi-hop mesh topology with ordinary sensors.

Fig. 5 . 4 .

 54 Fig. 5.4. Performance trade-o between the data reconstruction error and the network lifetime for the compared approaches in the twofold compression scenario and multi-hop mesh topology with greedy power sensors.

Fig. 5 . 6 .

 56 Fig. 5.6. Performance trade-o between the data reconstruction error and the network lifetime for the compared approaches in the single-level compression scenario and multi-hop mesh topology with the ordinary sensors.
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 557 Figure 5.7 depicts the simulations obtained with the greedy power sensors. It shows a signicant decrease in the N M AE tot corresponding to EAMC compared to those of the ordinary low power sensors of Figure 5.6. Since the amount of consumed energy in data forwarding by the relaying nodes becomes far less than that consumed in sensing, we do not have paths that run out quickly, and the choice of the active transmitting source node becomes directed only by the energy of the node in question, not the

Fig. 5 . 8 .

 58 Fig. 5.8. Real network lifetime vs. xed upper bound data recovery error ratio for the compared approaches in the single-hop star topology with both types of sensor nodes. the F ixed N M AE tot value, we consider the network as dead. Doubtless, if a sensor node runs out of energy, it can no longer participate in data sensing and forwarding.

Figure 5 .

 5 Figure 5.9 depicts the obtained results for scenario two, which is the twofold data compression in the multi-hop mesh network topology. As we can notice, the obtained performance results conrm those of Figure 5.3 and Figure 5.4 and prove the eciency of the proposed EAMC with both types of sensor nodes. Particularly, we can perceive the existence of drop points in the plots, namely, F ixed N M AE tot = 0.06 with the ordinary sensor nodes and F ixed N M AE tot = 0.1 with the greedy power sensor nodes.

Fig. 5 . 9 .

 59 Fig. 5.9. Real network lifetime vs. xed upper bound data recovery error ratio for the compared approaches in twofold compression scenario and multi-hop mesh topology with both types of sensor nodes.

6. 2 . 1 STCS

 21 iterative reconstruction using an adaptive Ψ T Although spatial and temporal correlations have been jointly exploited with the STCS, as both distributed and local CS have been applied for data compression, and the Kronecker CS framework have been performed for decompression, only the spatial matrices Φ S and Ψ S have been adaptively computed according to the signal variation.

M

  of antennas. For the uplink mode, to estimate the channel matrix H ∈ C M ×K , the BS receives training signal vectors of pilots Φ = [φ(1) tr , φ(2) tr , ..., φ(K) tr ] tr sent by a large number K of users, where K ≤ M . Conventionally, for each coherence interval, each user should transmit a pilot sequence of length L in the training phase, where L ≥ K. Accordingly, Φ represents the K × L total training matrix that consists of K L-length training pilot sequences, and the received signal matrix, denoted by Y ∈ C M ×L , is given by the following equation [97]: Y = HΦ + N.

(6. 1 )

 1 In (6.1), N ∈ C M ×L represents the additive white Gaussian noise matrix, whose entries are i.i.d N (0, σ 2 N ) C .

Fig. B. 1 .

 1 Fig. B.1. The CDF of ∆S gap of a multi-Gaussian synthetic signal generated using the values of Table.4.1.
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  i N,2 t T | X(i, t) -X(i, t -1) | .

(B. 2 )

 2 Figure B.2 plots the CDF of the ∆T gap values. We can note that the probability

  Fig. B.2. The CDF of ∆T gap of a multi-Gaussian synthetic signal generated using the values of Table.4.1.

Fig. B. 3 .

 3 Fig. B.3. The N M AE tot for the proposed technique with the variation of the parameters K, f ac 1 and f ac 2 .

Figure B. 4

 4 Figure B.4 shows that our proposed approach ,executed without the regularization of (K , f ac 1 and f ac 2 ), still distinctly outperforms the Benchmark scheme, implemented in Figure 4.6. In Figures B.5 and B.6, we have varied the size of the data matrix X (i.e. N and T ).

Fig. B. 4 .

 4 Fig. B.4. The N M AE tot for the Benchmark technique and for the proposed one without parameters adjustment.

Fig. B. 5 .

 5 Fig. B.5. The N M AE tot for the proposed approach with and without parameters adjustment with respect to the number of sensor nodes N .
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  We say that x is k-sparse in Ψ, if α has at most k << N non-zero entries, i.e. α 0 ≤ k,

	2.1.2	Under-sampling and Sparse Signal Recovery
	where	α 0 =| {i | α i = 0, i = 1, ..., N } | 1 . In many applications, signals have a few
	k large coecients, while the remaining ones are small; in this case we say that x
	is approximately k-sparse. CS work can be extended to compressible signals which
	are not exactly sparse. We say that the signal x is compressible if the magnitude
	of its transform coecients typically decay according to a power law, that is, | α i |<
	Ri -1/p ∀i, where | α 1 | ≥ | α 2 | ≥ ... ≥ | α N |, R is a constant, and 0 < p < 1, i.e, the
	energy in α is concentrated [27].
	1 | . | presents the cardinality for a discrete set.

  x lp (p) denotes the data sample of X lp sensed from the space location p, and N d represents the number of pairs (p, p ) that are separated by the same distance d. According to[START_REF] Smith | Notebook on spatial data analysis[END_REF], for a stationary data eld, the experimental variogram can be computed through the experimental covariance variables of the signal of interest. That is, for a given geographical distance d, we have:

	(3.10)

2 

, where

  Table. 4.1. We note from the plot that the top 5 singular values capture nearly 93% of the nuclear norm, which indicates that the signal matrix X has a very good low-rank approximation. Hence,

we are able to apply the MC technique.

Table 4 .

 4 Portion 2 Portion 3

	η h	35	20	5
	ρ h	0.9	0.7	0.5
	γ h	7	5	2

1: Signal generation Parameters Parameter Portion 1

  each row i ∈ {1, . . . , N } of M that corresponds to an inactive node, replaceH sc (i) by Y c (i), where H sc (i) and Y c (i) represent respectively the i th row of H sc and the i th row of the topology matrix Y c , stated in B.1. Then, replace H

	(i) sc by an all-zero
	vector, where

Table 5 .

 5 1: Simulation Parameters for energy consumption that a scheme can achieve without causing the death of any sensor node in the network, i.e. N b rounds . Indeed, the rst node that exhausts all its battery energy announces the death of the network and determines its lifetime N b rounds . Note that for each case, when we vary the compression ratios pct N rep and pct m , the N M AE tot and the N b rounds are simultaneously calculated then depicted in Figures 5.1 and 5.2 for both compared approaches. Moreover, the nal depicted N M AE tot represents the average of all the resulting N M AE tot during the ensured N b rounds 2 . Integrating the residual energy with the correlation, as a second weighty factor, will certainly lighten the impact of the correlation on the data recovery quality. However, in this chapter, we target to reach a robust and equitable compromise between the two addressed factors.As we can note, we still achieve a suciently good data recovery accuracy even for small values of pct N rep (i.e. when there is a signicant number of completely empty data rows in M ), while at the same time the network lifetime is highly improved. As an example, with the ordinary sensor nodes (pct N rep = 20, pct m = 10), the N M AE tot passes from 0.023 to 0.037 with the EAMC, while the network lifetime is expanded with a percentage of 416.94% (i.e. N b rounds passes from 43.34 to 224.04 rounds). On the other hand, with the greedy power sensor nodes (pct N rep = 20, pct m = 10), the N M AE tot passes from 0.029 to 0.038 with the EAMC, while the network lifetime is expanded with a percentage of 303.2% (i.e. N b rounds passes from 22.52 to 90.8 rounds). Moreover, we can notice that as the number of active nodes is increased, the gap of N M AE tot between the two compared algorithms is signicantly reduced,

	Parameter Ordinary sensor Greedy power
		node	sensor node
	E init	0.8 J	40 J
	I sens	50 µA [91]	25 mA [8]
	T sens	0.5 mS [8]	0.5 mS [8]
	V sup	2.25 V [91]	2.7 V [8]
	E elec-tr	50 nJ/bit [92]
	E elec-rc	5 nJ/bit [92]
	ε amp	100 pJ/bit/m 2 [8]
	L	1024 bits
	T		

From the matrix-RIP theory point of view, we verify if the operator PΩ preserves or not the distances between all the rank-r data matrices[START_REF] Mark | An overview of low-rank matrix recovery from incomplete observations[END_REF] [START_REF] Candes | Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements[END_REF].

An analogous situation with the CS is that one evidently is unable to reconstruct a signal, which is sparse in the time domain, through sub-sampling it in the time domain.

Generally, in the case where a column (or row) does not have a relationship to the other columns (or rows) in such a way that they are approximately orthogonals, basically we would require to observe all the data entries in that column (or row) to reconstruct M .

Note that a more detailed discussion of how CS methods have been applied in WSNs is aorded in the introduction of the chapter 3.

x lp i ∈ IR 1×T lp , considered as a T lp -dimensional data points, holds the readings sent by the sensor node i during the learning period.

A low-rank matrix holds singular values composing a sparse spectrum.

In[START_REF] Kortas | Compressive sensing and matrix completion in wireless sensor networks[END_REF] Fig. 

3], we have illustrated that a simple MC-based approach requires a smaller fraction of sensor node readings to reach the same data recovery accuracy.

The algorithm name, NJW, is attributed according to the authors' names, that is, Ng, Jordan and Weiss.

The unnormalized graph Laplacian matrix is dened by L = (Dg -A), which refers to the unnormalized spectral clustering.

As an example, we can x a threshold for the sum of the distances that are computed between the nodes and their respective prototype vectors.

This is not the case with our scenario since, at every t, we ensure the transmission of m readings sensed in dierent m locations.

Note that HPg contains only the relaying nodes and neither the representative node g nor the sink belongs to it.

The N M AEtot and the N b rounds of the simulations of Figures 5.3, 5.4, 5.5, 5.6 and 5.7 have been calculated following the same manner.

Fig. B.6. The N M AE tot for the proposed approach with and without parameters adjustment with respect to the number of time slots T .
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To evaluate the spatial dependency between the deployed sensor nodes, we use a kind of an N × N binary symmetric matrix Y c , called a 1-hop topology matrix, where both columns and rows denote the sensor nodes. We assign 1 to Y c (i, j) and Y c (j, i) if we nds that sensor node i and sensor node j are 1-hop neighbors. But, according to the signals nature that we consider, we assume that even though two sensor nodes are geographically close to each other, if they don't belong to the same portion eld D h , they are not considered as neighbors. Since spatial correlation is mostly apparent between nearby sensor nodes, we compute the normalized dierence between the data reading X(i, t) of node i in time slot t with the sum of data readings of its one-hop neighbors [START_REF] Xie | Recover corrupted data in sensor networks: A matrix completion solution[END_REF]. That is:

where X (t) is the t th column of X, Y c (i) is the i th row of Y c and mean h (dif f ) represents the average of the calculated dierences between the maximum and minimum data samples X(i, t) discretized from the H elds' portions, i.e. the average of the largest dierences between data samples of the H elds' portions.