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A problem that has always fascinated me in the study of manifolds with boundary can be phrased as:

How much structure do you need on a domain for the boundary to carry relevant information on the interior? Reciprocally, how much does the interior of a domain "know" about its boundary? This is inspired by Marc Kac's paper [START_REF] Kac | Can one hear the shape of a drum?[END_REF] "Can you hear the shape of a drum?". This paper generalises a question of H. A. Lorentz 1 which was answered by Weyl 2 . Weyl proved that one can recover the area of a domain by examining how rapidly the Dirichlet eigenvalues of the Laplace operator grow [START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung[END_REF].

Symplectic and contact geometry originated in a mathematical formulation of the classical mechanics of dynamical systems with finitely many degrees of freedom. The objects studied are smooth manifolds with an additional structure, symplectic in the even-dimensional case and contact in the odd-dimensional one. One of the most prominent features of symplectic and contact geometry is that rigidity and flexibility phenomena coexist. Flexibility is illustrated by Darboux's 1 Zum Schluss soll ein mathematisches Problem Erwähnung finden, as vielleicht bei den anwesenden Mathematikern Interesse erwecken wird. Es stammt aus der Strahlungstheorie von Jeans. In einer vollkommen spiegelnden Hülle können sich stehende elektromagnetische Schwingungen ausbilden, ähnlich den Tönen einer Orgelpfeife; wir wollen nur auf die sehr hohen Obertöne das Augenmerk richten. Jeans fragt nach der auf ein Frequenzintervall d n fallenden Energie. Dazu berechnet er zuerst die Anzahl der zwischen den Frequenzen n und n `dn liegenden Obertöne und multipliziert die Zahl dann mit der zu jeder Frequenz gehörigen Energie, die nach einem Satze der statistischen Mechanik für alle Frequenzen gleich ist. Auf diese Weise bekommt er in der Tat das richtige Gesetz der Strahlung für langwellige Wärmestrahlen. Hierbei entsteht das mathematische Problem, zu beweisen, dass die Anzahl der genügend hohen Obertöne zwischen n und n `dn unabhängig von der Gestalt der Hülle und nur ihrem Volumen proportional ist. Für mehrere einfache Formen der Hülle, wo sich die Rechnung durchführen lässt, wird der Satz in einer Leidener Dissertation bestätigt werden. Es ist nicht zu zweifeln, dass er allgemein, auch für mehrfach zusammenhängende Räume, gültig ist. Analoge Sätze werden auch bei andern schwingenden Gebüden, wie elastischen Membranen und Luftmassen etc., bestehen To conclude, there is a mathematical problem which perhaps will arouse the interest of mathematicians who are present. It originates in Jeans' theory of radiation. In an enclosure with a perfectly reflecting surface, standing electromagnetic waves can form, similar to tones of an organ pipe; we shall focus only on very high overtones. Jeans asks for the energy falling on a frequency interval dn. To do this, he first calculates the number of overtones lying between the frequencies n and n `dn and then multiplies this number by the energy belonging to each frequency, which according to a theorem of statistical mechanics is the same for all frequencies. In this way, he indeed gets the right law of radiation for long-wave radiation. Here arises the mathematical problem of proving that the number of sufficiently high overtones between n and n `dn is independent of the shape of the enclosure and proportional only to its volume. For several simple shapes on which the calculations can be carried out, this theorem has been confirmed in a Leiden dissertation. There is no doubt that it holds in general, even for multiply connected regions. Analogous results for other vibrating structures, such as elastic membranes, air masses, etc. should also hold. 2 who also introduced the term symplectic in [START_REF] Weyl | The Classical Groups. Their Invariants and Representations[END_REF] iii theorem (locally all symplectic, respectively all contact, manifolds are "the same") and by various h-principles. Rigidity is illustrated by Gromov's non-squeezing theorem (which is at the origin of symplectic topology); it states that one can symplectically embedd a ball in a cylinder if and only if the radius of the ball is less than that of the cylinder.

Understanding rigidity and flexibility is one of my goals. I approach this goal by considering a symplectic manifold whose boundary is a contact manifold. The central question, almost formulated as such in [START_REF] Cieliebak | Applications of symplectic homology. II. Stability of the action spectrum[END_REF], is then: "How much does the contact boundary know about the symplectic interior, and, reciprocally, how much does the symplectic interior know about its contact boundary?"

Two classical conjectures are directly related to this question. Weinstein conjecture (conjecture 1.1.1) concerns the existence of periodic orbits in the Reeb dynamics on a compact contact manifold and Viterbo's conjecture (conjecture 4.0.1) concerns symplectic embeddings and obstructions (symplectic capacities) thereof.

This memoir is divided in two part; the First part is devoted to the how much does the symplectic interior know about its contact boundary? viewpoint. Contact manifolds come with (a lot of) dynamical systems (Reeb vector fields) and their study, in particular the periodic orbits, is the main focus of this first part. The Second part is about the how much does the contact boundary know about the symplectic interior viewpoint. The focus is on obstructions to symplectic embeddings of a symplectic manifold in another one coming from the dynamics (periods of orbits) on the boundaries.

Part I.

Reeb dynamics

1. Introduction to Part I

General context

A contact manifold is an odd-dimensional manifold M 2n´1 endowed with a contact structure, i.e. a codimension one distribution ξ having a maximal non-integrability property. If we write locally the distribution as the kernel of a 1-form, ξ " ker α, the condition is that α ^pdαq n´1 is nowhere vanishing; such a 1-form α is called a contact form. Throughout this memoir we shall always assume that a contact structure is co-oriented, that is, α is defined globally.

One of the simplest examples of closed contact manifolds is the unit sphere S 2n´1 in 2n with the standard contact form α 0 P Ω1 pS 2n´1 q which is given by the restriction to the sphere of the Liouville 1-form λ 0 P Ω 1 p 2n q. α 0 :" λ 0 ˇˇS 2n´1 :" 1 2 n ÿ j"1 px j d y j ´y j d x j q ˇˇS 2n´1 .

(1.1.1) where x j , y j are the standard coordinates on 2n .

To a contact form α on M corresponds a unique vector field R α (the Reeb vector field) characterized by the equations ι R α dα " 0 and αpR α q " 1. The Reeb vector field never vanishes; hence its flow does not have any fixed point. Periodic orbits are thus the most noticeable objects thereof. In his "traité de la mécanique céleste", Poincaré pointed out the interest of periodic orbits: Ce qui nous rend ces solutions périodiques si précieuses, c'est qu'elles sont, pour ainsi dire, la seule brêche par où nous puissions essayer de pénétrer dans une place jusqu'ici réputée inabordable.

If α is a contact form on M , f α is also a contact form for any non-vanishing function f P C 8 pM, q. There are thus as many Reeb vector fields on a contact manifold M as there are non-vanishing smooth functions on M . Nonetheless there is, conjecturally, a very strong rigidity phenomenon.

Conjecture 1.1.1 (Weinstein,[START_REF] Weinstein | On the hypotheses of Rabinowitz' periodic orbit theorems[END_REF]). Every contact form on a compact contact manifold carries at least one periodic Reeb orbit.

The Weinstein conjecture was proven in dimension three by Taubes in 2007 [START_REF] Henry | The Seiberg-Witten equations and the Weinstein conjecture[END_REF]. Taubes' result was later improved independently by Cristofaro-Gardiner and Hutchings [START_REF] Cristofaro | From one Reeb orbit to two[END_REF] and by Ginzburg, Hein, Hryniewicz and Macarini [START_REF] Viktor | Closed Reeb orbits on the sphere and symplectically degenerate maxima[END_REF] who proved that every contact form on a compact contact manifold of dimension three carries at least two geometrically distinct periodic Reeb orbits. Recently, Cristofaro-Gardiner, Hutchings and Pomerleano [START_REF] Cristofaro-Gardiner | Torsion contact forms in three dimensions have two or infinitely many Reeb orbits[END_REF] have proven that, modulo assumptions 1 , every contact form on a compact contact manifold of dimension three carries either two or infinitely many geometrically distinct periodic Reeb orbits. This last result does not generalize to higher dimensions since Albers, Geiges and Zehmisch [START_REF] Albers | Reeb dynamics inspired by Katok's example in Finsler geometry[END_REF] constructed
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examples, in all odd dimensions greater than three, of contact forms on compact connected contact manifolds carrying an arbitrarily large (but finite) number of geometrically distinct periodic Reeb orbits.

Those results motivate:

Question 1.1.2. Given a contact manifold, what is the lower bound on the number of geometrically distinct periodic Reeb orbits and what is the topological (or analytic) significance of that bound?

Note that, at the time of writing, except for a few manifolds, we do not have any idea what this bound should be.

degenerate vs non-degenerate

The bound in question 1.1.2 might depend on whether the contact form α is degenerate or nondegenerate. Similarly to the Morse condition for smooth function, the non-degeneracy condition is to ensure isolation of the periodic Reeb orbits.

Definition 1.1.3. A contact form is non-degenerate if all periodic Reeb orbits are non-degenerate.

A periodic Reeb orbit γ of period T is non degenerate if 1 is not an eigenvalue of the Poincaré return map; i.e. 1 is not an eigenvalue of the differential of the flow restricted to the contact structure ξ φ R α ,T ‹ : ξ γp0q Ñ ξ γpT q .

For smooth functions on a compact manifold f : M Ñ , we have lower bounds on the minimal number of critical points of f . If f is Morse, then we have the Morse inequalities # Critp f q ě dimpM q ÿ i"1 b i pMq where the b i pMq are the Betti numbers of M . If f is not Morse, then # Critp f q ě cuplengthpM q `1 where the cuplength of M is defined as follows Definition 1.1.4. Let M be a manifold. The cuplength of M is defined as cuplengthpM q :" max k P | Dβ 1 , . . . ,

β k P H ě1 pMq such that β 1 Y . . . Y β k ‰ 0 ( .
For instance, looking at the 2-torus T 2 , every Morse function f : T 2 Ñ must have at least 4 critical points, but there exists smooth functions g : T 2 Ñ with only 3 critical points (which is minimal). Figure 1.1 represent an immersion [START_REF] Curtis | A strange immersion of the torus in 3-space[END_REF] of T 2 in 3 where the height function has only 3 critical points.

Smallest orbit

Another natural question is Question 1.1.5. What is the minimal period among all periodic Reeb orbits? Note that, as stated, question 1.1.5 is not well-posed. Indeed, when multiplying the contact form α by a constant k, the Reeb vector field is multiplied by 1 k . A more "reasonable" quantity (since invariant by rescaling) to look at is called the systolic ratio of the contact form α and is defined as pT min,α q n VolpM , αq where T min,α denote the smallest period of a periodic orbit of R α and VolpM , αq " ş M α ^pdαq n´1 .
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Question 1.1.5 would then become Question 1.1.6. Given a contact manifold pM, ξq, is there a bound (upper and/or lower) for the systolic ratios of all contact form defining the contact structure ξ?

Star-shaped hypersurfaces

A distinguished class of contact manifolds consists of the boundaries of some star-shaped2 domains with respect to the origin in 2n . It appears naturally in many dynamical problems. For instance, hypersurfaces bounding strictly convex domains (called strictly convex hypersurfaces) arise as regularized energy hypersurfaces in the planar restricted three-body problem. The boundary Σ of a star-shaped domain X is called a star-shaped hypersurface in 2n . The 1-form α 0 :" 1 2

ř n i"1 px i d y i ´yi d x i q ˇˇΣ is a contact form on Σ. The 2-form ω 0 :" dα 0 " ř n i"1 d x i ^d y i is a symplectic form on X Lemma-Remark 1.2.1. The study of the Reeb field on all star-shaped hypersurfaces is equivalent to the study of the Reeb field for all contact forms defining the standard contact structure3 on the sphere S 2n´1 .

Proof. Let X Ă 2n be a star-shaped bounded domain with smooth boundary Σ. Then

λ 0 " 1 2 :" n ÿ i"1 x i d y i ´yi d x i
restricts to a contact form on Σ. Let h Σ : S 2n´1 Ñ a smooth positive function such that, X " trz | z P S 2n´1 , 0 ď r ď h Σ pzqu. We now look at the diffeomorphism ϕ : S 2n´1 Ñ Σ : z Þ Ñ h Σ pzqz and we can easily check that ϕ ‹ pλ 0 | Σ q " h 2 Σ λ 0 | S 2n´1 .

Star-shaped hypersurfaces are one of the few manifolds for which we have a candidate for the bound in Question 1.1.2. Conjecture 1.2.2. Every star-shaped hypersurface in 2n carries at least n geometrically distinct periodic Reeb orbits.

n " 2

A crucial ingredient to study the planar restricted three-body problem is a global surface of section, a notion which goes back to Poincaré. A global surface of section (of disk type) is an embedded 2-disk in an energy hypersurface of dimension 3. It is equipped with the Poincaré return map encoding the qualitative properties of the dynamics. In addition, the boundary is required to be a periodic orbit, called a binding orbit. A global surface of section reduces the complexity by one dimension. Finding this fascinating object is, in general, a nontrivial problem. However a beautiful theorem due to Hofer, Wysocki, and Zehnder [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF] asserts that every dynamically 1.2. Star-shaped hypersurfaces convex 4 hypersurface in 4 has a global surface of section. In contrast to perturbation methods, [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF] uses holomorphic curve theory and dynamical convexity is essential for a compactness result of holomorphic planes.

Both methods have their own merits. In perturbation theory, one begins with a well-known dynamical system (e.g. Kepler problem) where we know which embedded disk is a global surface of section. The disk survives under small perturbations but it is difficult to estimate how long this lasts. For example perturbation methods show that in the planar restricted three-body problem the most famous orbit, the retrograde orbit, is a binding orbit of a global surface of section if the situation is close enough to the Kepler problem. On the other hand, the theorem in [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF] enables us to easily know the existence of global surfaces of section in a given dynamical system because strict convexity of a dynamical system is a property that can be checked a priori. For example in [AFF `11] the authors proved strict convexity and hence the existence of a global surface of section in the planar restricted three-body problem close to the Hill's lunar problem where perturbation methods do not apply. But the method in [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF] does not tell where the resulting global surface of section is located. This was already pointed out by Hofer, Wysocki, and Zehnder and led them to raise the question whether a periodic orbit with the smallest action always is a binding orbit of a global surface of section. In the following we call a periodic orbit with the smallest action a smallest periodic orbit.

n ě 2

The problem of finding periodic Reeb orbits on a contact manifold which is embedded in a symplectic manifold can often be translated into the problem of finding periodic orbits of a Hamiltonian vector field on a prescribed energy level. For instance, if X is a star-shaped domain in 2n such that 0 P Int X , finding periodic orbits of the Reeb vector field on the boundary Σ of X (for the standard contact form α 0 ) amounts to finding periodic orbits of the Hamiltonian vector field defined by a power of the gauge function, on the boundary of X which is a level set of this Hamiltonian. Indeed, the gauge function of X , j X : 2n Ñ r0, 8q is defined by j X pxq :" min h ˇˇx h P C ( and the Hamiltonian vector field associated to H β " j X pxq β is

X H β " β 2 R α 0 .
Finding periodic Reeb orbits on Σ thus translates into finding T P ą0 and a smooth curve

x : r0, T s Ñ 2n such that $ ' & ' % H β `xptq ˘" 1 @t 9 xptq " X H β xp0q " xpT q (1.2.1)
Solutions of (1.2.1) are usually called closed characteristics.

In this context, a beautiful idea was developped for strictly convex Hamiltonians: the Clarke-Ekeland dual principle [START_REF] Clarke | Hamiltonian trajectories having prescribed minimal period[END_REF]. A lot of foundational research in Hamiltonian dynamics and symplectic geometry is based on it. Nevertheless after holomorphic curve theory has become one of the main tools of symplectic geometry, this elegant idea has received little attention. A reason 1. Introduction to Part I is that the Clarke-Ekeland dual principle is only valid under the condition of strict convexity. In exchange however this tells stories that methods in modern symplectic geometry have not seen so far. The main reason is that, in contrast to the classical action functional, the Clarke-Ekeland dual action functional attains a minimizer. This minimizer yields a smallest periodic orbit. Thus one of the things the dual principle tells is that in strictly convex Hamiltonian systems a periodic orbit with the smallest action has minimal index. This is precisely the index for being a binding orbit in dimension 3.

Another formulation (which generalizes to the case where Σ is only continuous) uses the exterior normal vector, ν Σ and the complex structure J on 2n . The Reeb vector field, R α is proportional to Jν Σ since ιpJν Σ qdα " 0 because ιpJν Σ qdαpY q " ωpJν Σ , Y q " ´xν Σ , Y y " 0 for all

Y P T Σ. Thus R α " cJν Σ with |c| " }R α }.
Given in 2n a star-shaped domain X with boundary Σ, one can define for x P Σ, the normal cone to X at x, N Σ pxq.

N Σ pxq :" t y P 2n | xx 1 ´x, yy ď 0, @x 1 P X u.

Problem (1.2.1) then becomes finding T ą 0 and an absolutely continuous curve x : r0, T s Ñ 2n such that:

$ ' & ' % xptq P Σ @t 9 xptq P J N Σ pxq xp0q " xpT q
This later formulation allows to look at periodic Reeb orbits on polytopes, for which algorithmic methods were recently implemented, [START_REF] Chaidez | Computing reeb dynamics on polytopes in 4d[END_REF].

Convexity

Regarding question 1.1.6, It is shown in [START_REF] Hofer | Symplectic Invariants and Hamiltonian Dynamics[END_REF][START_REF] Abbondandolo | Sharp systolic inequalities for Reeb flows on the three-sphere[END_REF] that the systolic ratio of pS 3 , ξ 0 q is unbounded. [START_REF] Abbondandolo | Sharp systolic inequalities for Reeb flows on the three-sphere[END_REF] build examples of star-shaped hypersurface in 4 with arbitrarily large systolic ratio. On the other hand, it is believed that convex domains carry special rigidity phenomena which general starshaped domains do not have. In particular, Viterbo [Vit00] conjectured a systolic inequality for convex domains

Conjecture 1.3.1 (Weak Viterbo conjecture). If X Ă 2n is a convex set, then `Tmin ˘n ď n! VolpX q.
Moreover, equality holds if and only if X is symplectomorphic to the ball.

Note that here VolpX q denotes the Euclidean volume of X . The Euclidean volume of X and the contact volume of the boundary Σ of X VolpΣ, α 0 q are related by n! VolpX q " VolpΣ, α 0 q.

Convexity is not a symplectically invariant property. This was already pointed out a long time ago but only a few symplectic substitutions have been suggested. The most prominent one is dynamical convexity, introduced in [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF], where they show that strict convexity guarantees dynamical convexity. A natural question is whether these two notions agree. The rest of this first part is divided in two chapters. Chapter 2 presents the various results I obtained in the direction of Question 1.1.2, first on star-shaped hypersurfaces in 2n then on more general manifolds. Chapter 3 is an exposition of the tools (and their properties) used in the proofs of the results in Chapter 2. In particular, §3.2 consists of an exposition of equivariant symplectic homology which is also relevant to Part II.

Results

Star-shaped hypersurfaces in 2n

In any dimension

The first result in the direction of Conjecture 1.2.2 is the proof by Rabinowitz [START_REF] Rabinowitz | Periodic solutions of a Hamiltonian system on a prescribed energy surface[END_REF] of the existence of one periodic orbit on every star-shaped hypersurface; this was extended to all hypersurfaces in 2n , of contact type by Viterbo [Vit87]. Conjecture 1.2.2 was proven by Ekeland and Lasry [START_REF] Ekeland | On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface[END_REF] and by Beresticky, Lasry, Mancini and Ruf [START_REF] Berestycki | Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces[END_REF] for convex hypersurfaces which are "pinched" between two spheres whose ratio of radii is strictly less than ? 2.

Theorem 2.1.1 ([EL80, BLMR85]). Let Σ be a star-shaped hypersurface in 2n . Assume there exists a point x 0 P 2n and numbers 0 ă R 1 ď R 2 such that:

@x P Σ, R 1 ď }x ´x0 } ď R 2 with R 2 R 1 ă ? 2
Assume also that @x P Σ, T x Σ X B R 1 px 0 q " H. Then Σ carries at least n geometrically distinct periodic Reeb orbits.

Long, Zhu, Hu et Wang [START_REF] Long | Closed characteristics on compact convex hypersurfaces in 2n[END_REF][START_REF] Wang | Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces[END_REF] managed to remove the pinching assumption and showed that every strictly convex hypersurface carries at least t n 2 u `1 geometrically distinct periodic Reeb orbits. They proved moreover that if all periodic Reeb orbits are non-degenerate, then there are at least n of them. Those results rely on variational methods: the action functional and its dual in the sense of Clarke-Ekeland, for which the convexity of the hypersurface is crucial. The second ingredient in those proofs is a detailed study of the Conley-Zehnder index; it is an integer number (or half-integer in the degenerate cases) associated to every periodic Reeb orbit.

My approach was to replace the variational tools by tools of a more symplectic nature. I developped properties of the positive S 1 -equivariant symplectic homology (denoted by C H from now on) and obtained the following results. First, [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF] an elementary proof of theorem 2.1.1 of Ekeland and Lasry and Beresticky, Lasry, Mancini and Ruf (with a non-degeneracy assumption). Then, with Jungsoo Kang [GK16], we considerably weakened the convexity assumption, keeping a non-degeneracy assumption.

Theorem 2.1.2 ([GK16]

). Let pΣ, α 0 q be a non-degenerate star-shaped hypersurface in 2n such that all periodic orbits have Conley-Zehnder index at least n ´1. Then pΣ, α 0 q carries at least n simple periodic Reeb orbits.

Replacing the convexity assumption by something weaker than dynamical convexity was perceived as an interesting step. The main idea is to combine the homology C H (to find many periodic Reeb orbits) and a "translation" of the common index jump theorem [START_REF] Long | Closed characteristics on compact convex hypersurfaces in 2n[END_REF] (to distinguish which orbits are geometrically distinct).

Results

Theorem 2.1.3 (common index jump theorem ). Let γ 1 , . . . , γ k be simple periodic orbits on a given contact manifold of dimension 2n´1. Assume that all the iterates of the periodic orbits are nondegenerate and that all the mean indices1 of the periodic orbits are positive; x CZpγ i q ą 0 for all i P r 0 , k s. Then, for any given M P , there exist infinitely many N P and pm 1 , . . . , m k q P k such that for any m P t1, . . . , M u

CZ `γ2m i ´m i ˘" 2N ´CZpγ m i q and CZ `γ2m i `m i ˘" 2N `CZpγ m i q and
2N ´pn ´1q ď CZpγ 2m i i q ď 2N `pn ´1q. Since then, our techniques have been generalized to other manifolds and pushed further by other authors, [GG16, GGM18, AM16, DLW16, DLLW16]. To the best of my knowledge, the current optimal statement (compilation of the results by the aforementioned authors) is Theorem 2.1.4. Let pΣ, α 0 q be a compact star-shaped hypersurface in 2n .

• If Σ is dynamically convex (possibly degenerate) then there is at least r n 2 s `1 simple periodic Reeb orbits.

• If Σ is non-degenerate, all periodic Reeb orbits have positive mean Conley-Zehnder index, and there are no orbits of CZ-index 0 (if n is even) or no orbits of CZ-index ´1, 0 or 1 (if n is odd), then there are at least n simple periodic Reeb orbits.

• If Σ Ă 8 is convex, then Conjecture 1.2.2 holds.
Removing completely the assumption on the indices, we showed [GK16] that there are generally "a lot" of periodic orbits, unless the quantities Those quantities already appeared in [EH87, [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF][START_REF] Başak | Perfect Reeb flows and action-index relations[END_REF]. A non-degenerate contact form α is called perfect if the number of good periodic nondegenerate orbits with Conley Zehnder index k is equal to the dimension of the k-th positive S 1 -equivariant symplectic homology group. Gürel [START_REF] Başak | Perfect Reeb flows and action-index relations[END_REF] proved that if a non-degenerate contact form on the sphere is perfect, then all the quantities pγq x CZpγq are equal. With Jungsoo [GK16], we proved that if a non-degenerate contact form on the sphere is perfect, then there are precisely n even simple periodic orbits of the Reeb vector field. If the contact form is moreover dynamically convex, the converse is also true.

The first guess is that the quantities pγq x CZpγq exhibit some kind of symmetry of the hypersurface.

A diffeomorphism f : pΣ, αq Ñ pΣ, αq is called a strict (anti)-contactomorphism if f ‹ α " α or if f ‹ α " ´α, respectively.
Question 2.1.7. If Σ is a star-shaped hypersurface in 2n and f : pΣ, α 0 q Ñ pΣ, α 0 q is a strict (anti)-contactomorphism, are all periodic Reeb orbits invariant under f ?

We showed [GK16] that if a non-degenerate star-shaped hypersurface pΣ, α 0 q in 2n is dynamically convex and has precisely n geometrically distinct periodic Reeb orbits, and if there exists a strict (anti)-contactomorphism of pΣ, α 0 q, then all periodic orbits are invariant under it.

"Symmetric" hypersurfaces (in particular under the involution; i.e. Σ " ´Σ) have been studied in [Wan09, LWZ19, LW18, JKS18, JKS20, GM19].

In dimension 3

The most notable result in dimension three is due to Hofer Wysocki and Zehnder [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF] Theorem 2.1.8. Any dynamically convex star-shaped hypersurface in 4 carries either 2 or infinitely many simple periodic Reeb orbits.

The key idea is to find for every dynamically convex star-shaped hypersurface in 4 a disk-like global surface of section and then use a result by Franks [START_REF] Franks | Geodesics on S 2 and periodic points of annulus homeomorphisms[END_REF].

Definition 2.1.9. Let ϕ t be a smooth flow on a closed manifold M of dimension 3. An embedded surface Σ ãÑ M is a global surface of section for ϕ t if:

1. Each component of the boundary BΣ of Σ is a periodic orbit of ϕ t .
2. The flow ϕ t is transverse to ΣzBΣ.

3. For every p P ΣzBΣ, there exist t `P ą0 and t ´P ă0 such that both ϕ t `ppq and ϕ t ´ppq belong to ΣzBΣ.

If Σ is diffeomorphic to a disk, then Σ is called disk-like.
Theorem 2.1.10 ( [START_REF] Hofer | The dynamics on three-dimensional strictly convex energy surfaces[END_REF]). Any dynamically convex Reeb flow on pS 3 , ξ 0 q admits a disk-like global surface of section.

Theorem 2.1.11 [START_REF] Hryniewicz | Fast finite-energy planes in symplectizations and applications[END_REF][START_REF] Hryniewicz | Systems of global surfaces of section for dynamically convex Reeb flows on the 3-sphere[END_REF]). Let γ be a periodic orbit of a dynamically convex Reeb flow on pS 3 , ξ 0 q. Then γ bounds a disk-like global surface of section if, and only if, it is unknotted and has self-linking number ´1. Moreover, such an orbit binds an open book decomposition whose pages are disk-like global surfaces of section. Question 2.1.12 ([HWZ98]). Does a periodic orbit with the smallest action in a (dynamically) convex hypersurface in 4 always bound a global surface of section? Question 2.1.13. On a (dynamically) convex hypersurface in 4 , is the smallest periodic orbit unknotted and has self-linking number ´1? One can also do the "reverse process" and build a contact form on S 3 starting with a compactly supported Hamiltonian diffeomorphism on the disk (viewed as a global surface of section) (see [START_REF] Bramham | Pseudoholomorphic foliations for area preserving disc maps[END_REF][START_REF] Usher | Symplectic Banach-Mazur distances between subsets of n[END_REF]). Using this, Abbondandolo, Bramham, Hryniewicz and Salomao build a dynamicaly convex contact form on S 3 with a systolic ratio of almost 2. Theorem 2.1.14 [START_REF] Abbondandolo | Contact forms with large systolic ratio in dimension three[END_REF]). For every ε ą 0 there is a dynamically convex contact form α on S 3 such that

2 ´ε ă T 2 min VolpS 3 , α ^dαq ă 2
In particular, the supremum of the systolic ratio over all dynamically convex contact forms on S 3 is at least 2.
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Other manifolds

Concerning the minimal number of periodic Reeb orbits on contact manifolds (of dimension ě 5) other than the sphere, very little is known and I would like to point out that nothing is known outside some restricted class of prequantization bundles. That is, E is a -bundle over a symplectic manifold pW, ωq with c 1 pEq " ´rωs P H2 pW ; q. In particular, the cohomology class rωs of the symplectic form must admit an integral lift. A Hermitian connection on E gives rise to a connection 1-form α 0 on the corresponding S 1 -bundle Σ over W . The 1-form α 0 is naturally a contact form. Its Reeb vector field is the infinitesimal generator of the S 1 -action on Σ, see [Gei08, Section 7.2] for more details. Moreover, the Hermitian structure defines circle resp. disk bundles S R resp. D R of radius R ą 0. We extend α 0 to EzM by pullback. We call a hypersurface Σ f Ă E graphical if it can be written as the graph of a function f :

Σ Ñ ą0 inside E Σ f " t f pxqx | x P Σu . (2.2.1) Then α f :" f α 0 is a contact form on Σ f .
Conjecture 2.2.1. Assuming pW, ωq is a closed connected symplectic manifold with integral symplectic form rωs P H 2 pM, q in the construction above, then the graphical hypersurface Σ f carries at least k simple periodic Reeb orbits with k "

# ř dim W i"1 b i pW q if α f is non-degenerate cuplengthpW q `1 if α f is degenerate
I gave the first results, in this context, answering partially Conjecture 2.2.1, thanks to the use of the homology C H.

Proposition 2.2.2 ([Gut14c]

). Let Σ f be a graphical hypersurface in E such that the intersection of Σ f with each fiber is a circle. Then Σ f carries at least ř dim W i"0 b i geometrically distinct periodic Reeb orbits, where b i denote the Betti numbers of W .

With Peter Albers and Doris Hein [AGH18], we gave one of the first geometrical explanation 2 of the minimal number of geometrically distinct periodic Reeb orbits for some hypersurfaces in prequantization bundles. This lower bound is given in terms of the cuplength of the base. In particular for star-shaped hypersurfaces in 2n , the minimal number originates in the cuplength of P n´1 .

Theorem 2.2.3 ([AGH18]

). Let E be prequantization bundle over the symplectic manifold pW 2n , ωq.

Assume that the graphical hypersurface

Σ f Ă E is pinched between S R 1 and S R 2 with R 2 R 1 ă ? 2.
Then there exist either infinitely many periodic Reeb orbits of R α f or there are periodic orbits γ 1 , . . . , γ c of R α f with c " cuplengthpW q `1 such that

πR 2 1 ă α f pγ 1 q ă . . . ă α f pγ c q ă πR 2 2
where α f pγq :" ş γ α f is the action or period of a Reeb orbit γ.

Note that the two previous results do not assume non-degeneracy of the contact form.

Corollary 2.2.4. In the context of Theorem 2.2.3, either the minimal period of periodic Reeb orbits of R α f is less than πR 2 1 or α f carries at least cuplengthpW q `1 simple periodic Reeb orbits.

In short, there is either a short periodic orbit or cuplengthpM q`1 simple periodic Reeb orbits. As a particular case of Corollary 2.2.4, we have Theorem 2.1.1. We recall that S 2n´1 is the S 1 -bundle corresponding to a prequantization bundle over P n´1 and that cuplengthp P n´1 q " n ´1.

Removing the pinching condition (but adding a non-degeneracy assumption), we proved, with Miguel Abreu, Jungsoo Kang and Leonardo Macarini [AGKM20] that under a mild growing condition of the homology C H, there are always at least two periodic Reeb orbits.

Theorem 2.2.5 ([AGKM20]

). Let pM 2n`1 , ξq be a closed contact manifold admitting a strong symplectic filling W such that c 1 pT W q " 0. Let Γ be a set of free homotopy classes of loops in W closed under iterations and assume that there exist K P and a non-vanishing section σ of the determinant line bundle

Λ n`1 T W such that dim C H n pW, Γ q ă dim C H n`jK pW, Γ q or dim C H ´npW, Γ q ă dim C H ´n´jK pW, Γ q
for every j P , where the grading in C H ˚pW, Γ q is taken with respect to the homotopy class of σ.

Then every non-degenerate Reeb flow on M carries either infinitely many geometrically distinct closed

Reeb orbits or at least two geometrically distinct closed Reeb orbits γ 1 and γ 2 such that their Conley-Zehnder indices satisfy µpγ k 1 q ‰ µpγ k 2 q for some k P . Moreover, all these orbits have free homotopy class in Γ .

We then showed that Theorem 2.2.5 applies to many manifolds: to displaceable contact manifolds exactly embedded in an exact symplectic manifold, to unit cotangent bundle of closed, spin, oriented manifolds of dimension bigger than one (with an assumption on the π 1 ), to good toric contact manifolds, to prequantization bundles, to connected sums of Liouville domains,. . .

Displaceable contact manifolds

Given a contact manifold pM, ξq and an exact symplectic manifold pX , dλq, an embedding M ãÑ X is called an exact contact embedding if it is bounding and if there exists a contact form α supporting ξ such that α ´λ| M is exact. Here bounding means that M separates X into two connected components, with one of them relatively compact. This embedding is displaceable if M can be displaced from itself by a Hamiltonian diffeomorphism with compact support on X . We say that X is convex at infinity if there exists an exhaustion X " Y k X k by compact subsets X k Ă X k`1 with smooth boundaries such that λ| BX k is a contact form for every k. A big class of contact manifolds admitting displaceable exact contact embeddings in exact symplectic manifolds that are convex at infinity is given in [START_REF] Biran | Lagrangian embeddings into subcritical Stein manifolds[END_REF]: the boundary of every subcritical Stein manifold.

Let pM, ξq be a contact manifold admitting a displaceable exact contact embedding into a convex at infinity exact symplectic manifold X such that c 1 pT X q| π 2 pX q " 0 and denote by W the compact region in X bounded by M .We showed that W satisfies the hypothesis of Theorem 2.2.5 for Γ " t0u. Hence, we get the following result.

Corollary 2.2.6 ([AGKM20]

). Let pM, ξq be a contact manifold admitting a displaceable exact contact embedding into a convex at infinity exact symplectic manifold X with c 1 pT X q| π 2 pX q " 0 and
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denote by W the compact region in X bounded by M . Then every non-degenerate Reeb flow on M has at least two simple closed orbits contractible in W . If c 1 pT X q " 0 and H 1 pM, q " 0 then every Reeb flow on a contact finite quotient of M carries at least two simple closed orbits. Moreover, the closed lifts of iterates of these orbits to M are contractible in W .

Cosphere bundles and closed geodesics

Let N be a closed Riemannian manifold and ΛN its free loop space. There is an isomorphism between the (non-equivariant) symplectic homology of T ˚N and the homology of ΛN twisted by a local system of coefficients. For the S 1 -equivariant version, if N is orientable and spin, we have the isomorphism

CH ˚pD ˚N q -H ˚pΛN {S 1 , N ; q, (2.2.2)
where N Ă ΛN {S 1 indicates the subset of constant loops, D ˚N is the obvious filling of the cosphere bundle S ˚N given by the unit disk bundle. The grading of CH ˚pD ˚N q is given by a nonvanishing section of Λ n`1 T D ˚N induced from the choice of a volume form in the base so that the Conley-Zehnder index of a non-degenerate closed geodesic coincides with its Morse index, see e.g. [START_REF] Bourgeois | S 1 -equivariant symplectic homology and linearized contact homology[END_REF]. This isomorphism respects the filtration given by the free homotopy classes, that is,

CH Γ ˚pD ˚N q -H ˚pΛ Γ N {S 1 , N ; q (2.2.3)
for every set Γ of free homotopy classes in D ˚N , where Λ Γ N denotes the set of loops in N with free homotopy class in Γ . (Note that, since π 1 pD ˚N q -π 1 pN q, the set of free homotopy classes in D ˚N and N are naturally identified. Moreover, N Ă Λ 0 N {S 1 and therefore if Γ does not contain the trivial free homotopy class then the right hand side of the isomorphism (2.2.3) has to be understood as H ˚pΛ Γ N {S 1 ; q.) For general N , it is expected that the same isomorphism holds with a local system of coefficients as in the non-equivariant case but a rigorous proof has not been written in the literature yet. It turns out that if N is simply connected and H ˚pΛN {S 1 , N ; q is not asymptotically unbounded then it satisfies the assumption in Theorem 2.2.5. Using this, we can prove the following result. Before we state it, let us recall a definition and introduce a notation. A topological space X is ksimple if π 1 pX q acts trivially on π k pX q. If a closed manifold N has dimension bigger than one and π 1 pN q -then N is not rationally aspherical, that is, there exists j ą 1 such that π j pN q b ‰ 0. Let k be the smallest such j. In what follows, ξ can denotes the canonical contact structure on S ˚N .

Corollary 2.2.7 ([AGKM20]

). Let N be a closed oriented spin manifold with dimension bigger than one. Suppose that N satisfies one of the following conditions: (i) π 1 pN q is finite;

(ii) π 1 pN q -, π 2 pN q " 0 and N is k-simple, with k as discussed above;

(iii) π 1 pN q is infinite and there is no a P π 1 pN q such that every non-zero b P π 1 pN q is conjugate to some power of a.

In case (i), we have that every non-degenerate contact form on pS ˚N , ξ can q has at least two simple closed orbits. Under hypothesis (ii) or (iii), we have two simple closed orbits for any contact form on pS ˚N , ξ can q, without assuming that it is non-degenerate.

Remark 2.2.8. The hypothesis that N is oriented spin is used only to have the isomorphism (2.2.3).

Possibly, it can be relaxed once we have this isomorphism with the relative homology of pΛN {S 1 , N q twisted by a local system of coefficients.

Remark 2.2.9. In case (ii), the hypothesis that N is k-simple can be relaxed in the following way: let a be a generator of π 1 pN q and denote by A the linear map corresponding to the action of a on π k pN q b . Then it is enough that kerpA ´Idq ‰ 0. This hypothesis and the assumption that π 2 pN q " 0 are probably just technical but we do not know how to drop them so far.

Theorem 2.2.5 is used to prove Corollary 2.2.7 only under hypothesis (i). For hypotheses (ii) and (iii), we show the existence of two periodic orbits γ 1 and γ 2 such that no iterate of γ 1 is freely homotopic to γ 2 . This is easy in case (iii) using (2.2.3) but highly non-trivial in case (ii) where we show that CH 0 ˚pD ˚N q ‰ 0 and CH a ˚pD ˚N q ‰ 0 for some non-trivial homotopy class a. The proof in case (ii) actually shows the following result. It can be considered as a sort of Lusternik-Fet theorem for Reeb flows; see e.g. [START_REF] Asselle | The Lusternik-Fet theorem for autonomous Tonelli Hamiltonian systems on twisted cotangent bundles[END_REF].

Theorem 2.2.10 ([AGKM20]

). Let N be a closed not rationally aspherical manifold. Suppose that N is oriented spin, π 1 pN q is abelian, π 2 pN q " 0 and N is k-simple, with k as discussed above. Then every (possibly degenerate) Reeb flow on S ˚N carries a contractible closed orbit. As a consequence, if, furthermore, π 1 pN q is infinite, then every Reeb flow on S ˚N has at least two simple closed orbits.

The hypothesis that N is oriented spin and the second and third conditions in item (ii) can be dropped when we restrict ourselves to Reeb flows given by geodesic flows of Finsler metrics as follows. The proof of item (i) in Theorem 2.2.5 uses only the fact that, given a non-degenerate contact form α on M , CH Γ ˚pW q is the homology of a chain complex generated by the good periodic orbits of α with free homotopy class in Γ graded by the Conley-Zehnder index; the nature of the differential is absolutely unessential. Let F be a Finsler metric on N . It is well known that the closed geodesics of F are the critical points of the corresponding energy functional defined on the free loop space. We will say that F has only one prime closed geodesic if either the corresponding geodesic flow has only one simple closed orbit or F is reversible (i.e. F px, vq " F px, ´vq for every px, vq P T N ) and its geodesic flow has only two simple periodic orbits (given by the lifts of a closed geodesic γptq and its reversed geodesic γp´tq).

It turns out that if F is bumpy (i.e. its geodesic flow is non-degenerate) and has only one prime closed geodesic then H ˚pΛN {S 1 , N ; q is the homology of the chain complex generated by the good periodic orbits of the geodesic flow of F with trivial differential. Using this fact we can prove the following result. In what follows, we say that F has at least two prime closed geodesics if it does not have only one prime closed geodesic in the sense above. (Note that every Finsler metric has at least one prime closed geodesic.)

Corollary 2.2.11 ([AGKM20]

). Let N be a closed manifold with dimension bigger than one. Suppose that N satisfies one of the following conditions: (i) π 1 pN q is finite;

(ii) π 1 pN q -; (iii) π 1 pN q is infinite and there is no a P π 1 pN q such that every non-zero b P π 1 pN q is conjugate to some power of a.

In case (i), we have that every bumpy Finsler metric F on N has at least two prime closed geodesics. Under hypothesis (ii) or (iii), we have two prime closed geodesics for any Finsler metric F on N , without assuming that it is bumpy.
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Remark 2.2.12. Our contribution in this corollary is that we find two closed geodesics when N has finite fundamental group and F is bumpy. The remaining cases can be covered by classical minimax methods. This is in contrast with Corollary 2.2.7 for which these minimax methods are not available, making the proof of item (ii) much harder than in the case of geodesic flows.

Remark 2.2.13. We are not aware of any example of N which is excluded in the statement, see [START_REF] Taimanov | The type numbers of closed geodesics[END_REF]Section 5]. For instance, if π 1 pN q is abelian, N meets the hypothesis in Corollary 2.2.11.

Good toric contact manifolds

Toric contact manifolds are the odd dimensional analogues of toric symplectic manifolds. They can be defined as contact manifolds of dimension 2n`1 equipped with an effective Hamiltonian action of a torus of dimension n`1. Good toric contact manifolds of dimension three are pS 3 , ξ st q and its finite quotients. Good toric contact manifolds of dimension greater than three are compact toric contact manifolds whose torus action is not free. These form the most important class of compact toric contact manifolds and can be classified by the associated moment cones, in the same way that Delzant's theorem classifies compact toric symplectic manifolds by the associated moment polytopes. We refer to [START_REF] Lerman | Contact toric manifolds[END_REF] for details.

In [START_REF] Abreu | Contact homology of good toric contact manifolds[END_REF] the authors show that on any good toric contact manifold pM 2n`1 , ξq such that c 1 pξq " 0, any non-degenerate toric contact form is even, that is, all contractible closed orbits of its Reeb flow have even contact homology degree, where the contact homology degree of a closed orbit γ is given by µpγq `n ´2. (As proved in [START_REF] Abreu | On the Mean Euler Characteristic of Gorenstein Toric Contact Manifolds[END_REF], this is also true for the non-contractible closed Reeb orbits.) Suppose that M admits a symplectic filling W with vanishing first Chern class. Then, as showed in [AM12, AM20], CH 0 ˚pW q can be computed in a purely combinatorial way in terms of the associated momentum cone. Using this computation, we showed that W satisfies the hypothesis of Theorem 2.2.5 for Γ " t0u and consequently we get the following result. Note that the fundamental group of every good toric contact manifold M is finite and consequently H 1 pM, q " 0.

Corollary 2.2.14 ([AGKM20]

). Let pM, ξq be a good toric contact manifold admitting a strong symplectic filling W such that c 1 pT W q " 0. Then every non-degenerate contact form on a contact finite quotient of M carries at least two geometrically distinct contractible closed orbits.

Remark 2.2.15. It turns out that every good toric contact manifold pM, ξq in dimensions three and five such that c 1 pξq " 0 admits a (toric) filling with vanishing first Chern class [START_REF] Abreu | On the Mean Euler Characteristic of Gorenstein Toric Contact Manifolds[END_REF].

Prequantization circle bundles over symplectic manifolds

Let pB 2n , ωq be a closed integral symplectic manifold. Consider the prequantization circle bundle pM, ξq of pB, ωq, that is, the contact manifold given by the total space of a principal circle bundle over B whose first Chern class is ´rωs and with contact structure given by the kernel of a connection form. Suppose that M admits a symplectic filling W with vanishing first Chern class. Then, under some assumptions on B, we can show that W satisfies the hypothesis of Theorem 2.2.5 with Γ " t0u. More precisely, we have the following result. In what follows, c B :" inftk P | DS P π 2 pBq with xc 1 pT Bq, Sy " ku denotes the minimal Chern number of B.

Corollary 2.2.16 ([AGKM20]

). Let pM, ξq be a prequantization circle bundle of a closed integral symplectic manifold pB, ωq such that ω| π 2 pBq ‰ 0, c 1 pT Bq| π 2 pBq ‰ 0 and, furthermore, H k pB; q " 0 for every odd k or c B ą n. Suppose that M admits a strong symplectic filling W such that c 1 pT W q " 0. Then every non-degenerate Reeb flow on M carries at least two geometrically distinct closed orbits contractible in W . If, additionally, H 1 pM, q " 0 then every contact form on a contact finite quotient of M carries at least two geometrically distinct closed orbits. Moreover, the closed lifts of iterates of these orbits to M are contractible in W .

Remark 2.2.17. It follows from the Gysin exact sequence that H 1 pM, q " 0 whenever H 1 pB; q " 0.

Remark 2.2.18. When ω| π 2 pBq " 0 and B satisfies some extra conditions (for instance, when π i pBq " 0 for every i ě 2) it is proved in [START_REF] Viktor | On the Conley conjecture for Reeb flows[END_REF] (c.f. [START_REF] Viktor | On the filtered symplectic homology of prequantization bundles[END_REF]) that every Reeb flow on M (possibly degenerate) carries infinitely many simple closed orbits.

Remark 2.2.19. We have that H ˚pB; q vanishes in odd degrees and c 1 pT Bq| π 2 pBq ‰ 0 whenever B admits a Hamiltonian circle action with isolated fixed points.

Note that the prequantization bundle M has a natural symplectic filling W given by the corresponding disk bundle in the complex line bundle L π Ý Ñ B whose first Chern class is ´rωs. Suppose that B is monotone, that is, rωs " λc 1 pT Bq for some λ P . (We say that B is positive monotone if λ ą 0.) One can check that c 1 pT W q " p1 ´λqπ ˚c1 pT Bq.

Consequently, when λ " 1 we have that c 1 pT W q " 0. Now, suppose that λ is an integer bigger than one and let r M be the prequantization bundle of pB, 1 λ ωq. It is easy to see that M is the finite quotient of r M by the λ -action induced by the obvious S 1 -action on r M . Thus, we have the following corollary; see Remark 2.2.17.

Corollary 2.2.20 ([AGKM20]

). Let pM, ξq be the prequantization circle bundle of a closed integral symplectic manifold pB, ωq such that ω| π 2 pBq ‰ 0, c 1 pT Bq| π 2 pBq ‰ 0 and, furthermore, H k pB; q " 0 for every odd k or c B ą n. Suppose that rωs " λc 1 pT Bq for some λ P and that H 1 pB; q " 0. Then every contact form on a contact finite quotient of M carries at least two geometrically distinct closed orbits. Moreover, the closed lifts of iterates of these orbits to M have contractible projections to B.

Brieskorn spheres

Given a " pa 0 , . . . , a n`1 q P n`2 define Σ a as the intersection of the hypersurface

z a 0 0 `¨¨¨`z a n`1 n`1 " 0
in n`2 with the unit sphere S 2n`3 Ă n`2 . It is well known that α a " i 8 ř n`1 j"0 a j pz j dz j ´z j dz j q defines a contact form on Σ a and pΣ a , ξ a :" ker α a q is called a Brieskorn manifold. When n is even, a 0 " ˘1 mod 8 and a 1 " ¨¨¨" a n`1 " 2 we have that Σ a is diffeomorphic to the sphere S 2n`1 and called a Brieskorn sphere. Brieskorn spheres admit strong symplectic fillings given by Liouville domains W satisfying c 1 pT W q " 0 and it turns out that W satisfies the hypothesis of Theorem 2.2.5 with Γ " t0u. Therefore, we obtain the following result which is a generalization of [Kan13, Theorem C].

Corollary 2.2.21 ([AGKM20]

). Let M be a contact finite quotient of a Brieskorn sphere. Then every non-degenerate Reeb flow on M carries at least two geometrically distinct closed orbits.
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Connected sums

Let pW 1 , λ 1 q and pW 2 , λ 2 q be two Liouville domains of dimension 2n `2. The boundary connected sum of them is again a Liouville domain pW 1 #W 2 , λ 1 #λ 2 q and the contact connected sum pBW 1 #BW 2 , ξ 1 #ξ 2 q is the boundary of it. The following result establishes that the main hypothesis of Theorem 2.2.5 is preserved by boundary connected sums of Liouville domains, furnishing many other examples of contact manifolds satisfying the assumptions of Theorem 2.2.5.

Theorem 2.2.22 ([AGKM20]

). Let pW 1 , λ 1 q and pW 2 , λ 2 q be Liouville domains of dimension 2n

`2 with vanishing first Chern class. Assume that there are non-vanishing sections σ 1 and σ 2 of Λ n`1 T W 1 and Λ n`1 T W 2 respectively satisfying the hypothesis of Theorem 2.2.5 with Γ given by the set of all free homotopy classes. Suppose that c 1 pT pW 1 #W 2 qq " 0 and let σ be a non-vanishing section of Λ n`1 T pW 1 #W 2 q extending σ 1 and σ 2 . Then W 1 #W 2 satisfies the hypothesis of Theorem 2.2.5 with the grading of CH ˚pW 1 #W 2 q induced by σ.

A question

A question which emerged from all those examples is Question 2.2.23. If a 2n´1 dimensional manifold M admits a contact form α such that all periodic Reeb orbits have Conley-Zehnder index at least n `1 (dynamically convex), is M diffeomorphic to a sphere?

The methods

Action functional

The problem (1.2.1) of finding periodic orbits on a fixed energy level can be transformed in finding periodic orbits with fixed period in the whole space. Indeed, solutions pT, γq of

# 9 xptq " X H β xp0q " xpSq come in continuous families parametrized by the energy level E. More precisely, if r γ is a solution of # 9 xptq " X H β xp0q " xp1q (3.1.1) then, γ : r0, T s Ñ Σ is a closed characteristic with T :" E 2´β β γptq :" E ´1 β r γ ´E 2´β β t ¯.
This reduces the fixed energy problem to the fixed period problem.

It is known, since Lagrange, that solutions of problem (3.1.1) correspond to critical points of the action functional.

H β : C 8 `S1 , 2n ˘Ñ H β pγq " ´1 2 ż 1 0 J 9 γptq ¨γptqd t ´ż 1 0 H β `γptq ˘d t.

Strategy to find periodic orbits

In view of Conjecture 1.2.2, the goal is to find critical points of the action functional corresponding to geometrically distinct periodic orbits. So far, all the results are proved in two steps. The first one is to find critical points. This is done almost always using some type of Morse theoretic argument (recently, [START_REF] Viktor | Lusternik-Schnirelman theory and closed Reeb orbits[END_REF], also introduce the use of Lusternik-Schnirelmann theory). The second step (for which most of the assumptions in the statements are for) is to distinguish, among the critical points found in step 1, which one originate from iterate of the same orbit and which one correspond to geometrically distinct periodic orbits. Arguments for this second step use mostly combinatorial properties of the Conley-Zehnder index. We won't recall the definition of the Conley-Zehnder index and its properties; we refer to [Gut14a, CZ84, RS93, Lon00] and references therein.

Modifying the Hamiltonian

Since H β is autonomous, every 1-periodic orbit, γ H β of X H β , corresponding to the periodic Reeb orbit γ, gives birth to a S 1 -family of 1-periodic orbits of X H β which is denoted by S γ . For Morse theoretic arguments, it is easier to have isolated critical points. We can modify the Hamiltonian H β , as in [START_REF] Cieliebak | Applications of symplectic homology. II. Stability of the action spectrum[END_REF], to deform this autonomous Hamiltonian into a time-dependent Hamiltonian H δ with only non degenerate 1-periodic orbits. The Hamiltonian H δ pθ , pq will coincide with H β ppq outside a neighbourhood of the image of the non-constant 1-periodic orbits of X H . We proceed as follows:

We choose a perfect Morse function on the circle, f :

S 1 Ñ . For each 1-periodic orbit γ H β of X H β , we consider the integer l γ H β so that γ H β is a l γ H β -fold cover
of a simple periodic orbit:

l γ H β :" max k P | γ H β pθ `1 k q " γ H β pθ q @θ P S 1 ( .
This number l γ H β is constant on the S 1 -family of 1-periodic orbits of X H corresponding to the periodic Reeb orbit γ. We set l γ " l γ H β " 1 T where T is the period of γ. We choose a symplectic trivialization ψ :" pψ 1 ,

ψ 2 q : U γ Ñ V Ă S 1 ˆ 2n´1 between open neighborhoods U γ Ă BW ˆ `Ă p W of the image of γ H β and V of S 1 ˆt0u such that ψ 1 `γH β pθ q ˘" l γ θ .
Here S 1 ˆ 2n´1 is endowed with the standard symplectic form. Let ǧ : S 1 ˆ 2n´1 Ñ r0, 1s be a smooth cutoff function supported in a small neighborhood of S 1 ˆt0u such that ǧ| S 1 ˆt0u " 1.

We denote by fγ the function defined on S γ by f ˝ψ1| S γ .

For δ ą 0 and pθ , p, ρq P S 1 ˆUγ , we define

H δ pθ , p, ρq :" hpρq `δ ǧ`ψ pp, ρq ˘f `ψ1 pp, ρq ´lγ θ ˘. (3.1.2)
The Hamiltonian H δ coincides with H β outside the open sets S 1 ˆUγ .

Lemma 3.1.1 ([CFHW96, BO09]

). The 1-periodic obits of H δ , for δ small enough, are either constant orbits (the same as those of H β ) or nonconstant orbits which are non degenerate and form pairs (p γ, q γ) which coincide with the orbits in S γ starting at the minimum and the maximum of fγ respectively, for each Reeb orbit γ such that S γ appears in the 1-periodic orbits of H β . Their Conley-Zehnder index is given by µ C Z pp γq " µ C Z pγq ´1 and µ C Z pq γq " µ C Z pγq.

Reformulation of the functional

We can reformulate problem (3.1.1) as finding 1-periodic orbits of H δ . More generally, Let H : S 1 ˆ 2n Ñ be a smooth time-periodic Hamiltonian on 2n . The 1-periodic orbits of X H are the critical points of the action functional

H : C 8 `S1 , 2n ˘Ñ H pγq :" ´1 2 ż 1 0 J 9 γptq ¨γptqd t ´ż 1 0 H `t, γptq ˘d t (3.1.3) " ´ż 1 0 γ ‹ λ 0 ´ż 1 0 H `t, γptq ˘d t. (3.1.4)
The idea to approach Question 1.1.2 is to have a homology for this action functional and mimicking the Morse inequalities. The action functional is not bounded from below nor from above. To build a homology of this functional, three ideas have been developped.

1. Build an infinite dimensional version of Morse homology (Floer / symplectic homology) ( §3.2).

2. Modify the functional to a new functional (Clarke-Ekeland dual) where one can apply finite dimensional Morse homology ( §3.3).

3. Do a relative homology so that all intersections of stable and unstable manifolds are finite dimensional ( §3.4)

Equivariant symplectic homology

(Positive) symplectic homology was developed by Viterbo [Vit99], using works of Cieliebak, Floer, and Hofer [START_REF] Floer | Symplectic homology. I. Open sets in[END_REF][START_REF] Cieliebak | Symplectic homology. II. A general construction[END_REF]. The S1 -equivariant version of (positive) symplectic homology was originally defined by Viterbo [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF], and an alternate definition using family Floer homology was given by Bourgeois-Oancea [BO16, §2.2], following a suggestion of Seidel [START_REF] Seidel | A biased view of symplectic cohomology[END_REF]. We will use the family Floer homology definition here which is often amenable to computations. We follow the treatment in [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF], with some minor tweaks which do not affect the results. Let pX , λq be a Liouville domain, so that X is a compact smooth manifold with boundary and λ P Ω 1 pX q has the properties that dλ is non-degenerate and that λ| BX is a contact form. We say that pX , λq is non-degenerate if the linearized return map of the Reeb flow at each closed Reeb orbit on BX , acting on the contact hyperplane ker λ, does not have 1 as an eigenvalue. We will also assume that the first Chern class of T X vanishes on π 2 pX q.

In this situation, for each L P we have an L-filtered positive S 1 -equivariant symplectic homology, SH S 1 ,`,L pX , λq, which will be defined properly in §3.2.3.3. To simplify notation, we often denote SH S 1 ,`,L pX , λq by C H L pX , λq below 1 . These are -vector2 spaces that come equipped with

maps ı L 1 ,L 2 : C H L 1 pX , λq Ñ C H L 2 pX , λq for L 1 ď L 2 such that ı L,L is the identity and ı L 2 ,L 3 ˝ıL 1 ,L 2 " ı L 1 ,L 3 . 3
The assumption on c 1 pT X q implies that the C H L pX , λq are -graded. The (unfiltered) positive S 1 -equivariant symplectic homology of pX , λq is C HpX , λq " lim Ý ÑL C H L pX , λq where the direct limit is constructed using the maps ı L 1 ,L 2 . Proposition 3.2.1 ([Gut17, GH18, GU19]). The positive S 1 -equivariant symplectic homology C HpX , λq has the following properties:

(Free homotopy classes) C HpX , λq has a direct sum decomposition C HpX , λq " à Γ C HpX , λ, Γ q
where Γ ranges over free homotopy classes of loops in X . We let C HpX , λ, 0q denote the summand corresponding to contractible loops in X .

(Action filtration) For each L P , there is a -module C H L pX , λ, Γ q which is an invariant of pX , λ, Γ q. If L 1 ă L 2 , then there is a well-defined map

ı L 1 ,L 2 : C H L 1 pX , λ, Γ q ÝÑ C H L 2 pX , λ, Γ q. (3.2.1)
These maps form a directed system, and we have the direct limit

lim LÑ8 C H L pX , λ, Γ q " C HpX , λ, Γ q.
We denote the resulting map C H L pX , λ, Γ q Ñ C HpX , λ, Γ q by ı L . We write C H L pX , λq "

À Γ C H L pX , λ, Γ q.
(U map) There is a distinguished map

U : C HpX , λ, Γ q ÝÑ C HpX , λ, Γ q,
which respects the action filtration in the following sense: For each L P there is a map

U L : C H L pX , λ, Γ q ÝÑ C H L pX , λ, Γ q. If L 1 ă L 2 then U L 2 ˝ıL 1 ,L 2 " ı L 1 ,L 2 ˝UL 1 .
The map U is the direct limit of the maps U L , i.e.

ı L ˝UL " U ˝ıL . (3.2.2)
(Reeb Orbits) Assume as above that pX , λq is a non-degenerate Liouville domain with c 1 pT X q| π 2 pX q " 0. There is an -filtered chain complex `C C ˚pX , λq, B ˘, freely generated over by the good 4Reeb orbits of λ| BX with the generator corresponding to a Reeb orbit γ having filtration level equal to the action ş γ λ and grading equal to the Conley-Zehnder index of γ, such that for each k P and L P the space C H L k pX , λq is the kth homology of the subcomplex C C L ˚pX , λq of C C ˚pX , λq consisting of elements with filtration level at most L, and such that for

L 1 ď L 2 the image of the map ı L 1 ,L 2 : C H L 1 k pX , λq Ñ C H L 2 k pX , λq is isomorphic to the image of the inclusion-induced map H k `C C L 1 ˚pX , λq ˘Ñ H k `C C L 2 ˚pX , λq ˘.
Moreover, the boundary operator B on C C ˚pX , λq strictly decreases filtration, in the sense that if x P C C L ˚pX , λq then there is ε ą 0 such that B x P C C L´ε ˚pX , λq.

(δ map) There is a distinguished map δ : C HpX , λ, Γ q ÝÑ H ˚pX , BX ; q b H ˚pBS 1 ; q which vanishes whenever Γ ‰ 0.

(Scaling) If r is a positive real number, then there are canonical isomorphisms

C HpX , λ, Γ q » ÝÑ C HpX , rλ, Γ q, C H L pX , λ, Γ q » ÝÑ C H r L pX , rλ, Γ q
which commute with all of the above maps.

(Star-Shaped Domains) If X is a nice star-shaped domain in 2n and λ 0 is the restriction of the standard Liouville form λ 0 " 1 2 ř n i"1 px i d y i ´yi d x i q, then: (i) C HpX , λ 0 q and C H L pX , λ 0 q have canonical gradings. With respect to this grading, we have

C H ˚pX , λ 0 q » " , if ˚P n `1 `2 , 0, otherwise. (3.2.3) (ii)
The map δ sends a generator of C H n´1`2k pX , λ 0 q to a generator of H 2n pX , BX ; q tensor a generator of H 2k´2 pBS 1 ; q.

(iii) The U map has degree ´2 and is an isomorphism

C H ˚pX , λ 0 q » ÝÑ C H ˚´2 pX , λ 0 q, except when ˚" n `1.
(iv) If λ 0 | BX is nondegenerate and has no Reeb orbit γ with pγq P pL 1 , L 2 s and CZpγq " n ´1 `2k, then the map

ı L 2 ,L 1 : C H L 1 n´1`2k pX , λ 0 q Ñ C H L 2 n´1`2k pX , λ 0 q is surjective.
Now suppose that pX 1 , λ 1 q is another nondegenerate Liouville domain and ϕ : pX , λq Ñ pX 1 , λ 1 q is a generalized Liouville embedding (see Definition 6.3.4) with ϕpX q Ă intpX 1 q. One can then define a transfer morphism ]). The transfer morphism Φ has the following properties:

Φ : C HpX 1 , λ 1 q ÝÑ C HpX , λq, Proposition 3.2.2 ([Gut17, GH18 
(Action) Φ respects the action filtration in the following sense: For each L P there are distinguished maps

Φ L : C H L pX 1 , λ 1 q ÝÑ C H L pX , λq such that if L 1 ă L 2 then Φ L 2 ˝ıL 2 ,L 1 " ı L 2 ,L 1 ˝ΦL 1 , (3.2.4)
and Φ is the direct limit of the maps Φ L , i.e. ı L ˝ΦL " Φ ˝ıL .

(3.2.5)

(Functoriality) The transfer map is functorial in the sense that if pX 1 , λ 1 q, pX 2 , λ 2 q, and pX 3 , λ 3 q are Liouville domains domains and if φ : X 1 ãÑ X 2 and ψ : X 2 ãÑ X 3 are either generalized Liouville embeddings or isomorphisms of Liouville domains, then the following diagram is commutative:

C H L pX 3 , λ 3 q Φ L ψ / / Φ L ψ˝φ 6 6 C H L pX 2 , λ 2 q Φ L φ / / C H L pX 1 , λ 1 q. (3.2.6) (Commutativity with U) For each L P , the diagram C H L pX 1 , λ 1 q Φ L ÝÝÝÑ C H L pX , λq § § đU L § § đU L C H L pX 1 , λ 1 q Φ L ÝÝÝÑ C H L pX , λq (3.2.7)
commutes.

(Commutativity with δ) The diagram

C HpX 1 , λ 1 q Φ ÝÝÝÑ C HpX , λq § § đδ § § đδ H ˚pX 1 , BX 1 ; q b H ˚pBS 1 ; q ρb1 ÝÝÝÑ H ˚pX , BX ; q b H ˚pBS 1 ; q (3.2.8)
commutes. Here ρ : H ˚pX 1 , BX 1 ; q Ñ H ˚pX , BX ; q denotes the composition H ˚pX 1 , BX 1 ; q ÝÑ H ˚pX 1 , X 1 zϕpintpX qq; q » ÝÑ H ˚pϕpX q, ϕpBX q; q " H ˚pX , BX ; q where the first map is the map on relative homology induced by the triple pX 1 , X 1 zϕpintpX qq, BX 1 q, and the second map is excision.

Symplectic homology

Let pX , λq be a Liouville domain with boundary Y . Let R λ denote the Reeb vector field associated to λ on Y . Below, let SpecpY, λq denote the set of periods of Reeb orbits, and let ε " 1 2 min SpecpY, λq. Recall that the completion p p X , p λq of pX , λq is defined by 

p X :" X Y `r0,
: S 1 Ñ p X satisfying the equation γ 1 pθ q " X θ H `γpθ q ˘.
Definition 3.2.3. An admissible Hamiltonian is a smooth function H : S 1 ˆp X Ñ satisfying the following conditions:

(1) The restriction of H to S 1 ˆX is negative, autonomous (i.e. S 1 -independent), and C 2 -small (so that there are no non-constant 1-periodic orbits). Furthermore, H ą ´ε (3.2.9)

on S 1 ˆX .

(2) There exists ρ 0 ě 0 such that on S 1 ˆrρ 0 , 8q ˆY we have Hpθ , ρ, yq " β e ρ `β1 (3.2.10) with 0 ă β R SpecpY, λq and β 1 P . The constant β is called the limiting slope of H.

(3) There exists a small, strictly convex, increasing function h : r1, e ρ 0 s Ñ such that on S 1 r0, ρ 0 s ˆY , the function H is C 2 -close to the function sending pθ , ρ, xq Þ Ñ hpe ρ q. The precise sense of "small" and "close" that we need here is explained in Remarks 3.2.4 and 3.2.8.

(4) The Hamiltonian H is nondegenerate, i.e. all 1-periodic orbits of X H are nondegenerate.

We denote the set of admissible Hamiltonians by std .

Remark 3.2.4. Condition (1) implies that the only 1-periodic orbits of X H in X are constants; they correspond to critical points of H.

The significance of condition ( 2) is as follows. On S 1 ˆr0, 8q ˆY , for a Hamiltonian of the form H 1 pθ , ρ, yq " h 1 pe ρ q, we have

X θ H 1 pρ, yq " ´h1 1 pe ρ qR λ p yq.
Hence for such a Hamitonian H 1 with h 1 increasing, a 1-periodic orbit of X H 1 maps to a level tρuˆY , and the image of its projection to Y is the image of a (not necessarily simple) periodic Reeb orbit of period h 1 1 pe ρ q. In particular, condition (2) implies that there is no 1-periodic orbit of X H in rρ 0 , 8qŶ . Condition (3) ensures that for any non-constant 1-periodic orbit γ H of X H , there exists a (not necessarily simple) periodic Reeb orbit γ of period T ă β such that the image of γ H is close to the image of γ in tρu ˆY where T " h 1 pe ρ q. Definition 3.2.5. An S 1 -family of almost complex structures J : S 1 Ñ EndpT p X q is admissible if it satisfies the following conditions:

• J θ is p ω-compatible for each θ P S 1 .
• There exists ρ 1 ě 0 such that on rρ 1 , 8q ˆY , the almost complex structure J θ does not depend on θ , is invariant under translation of ρ, sends ξ to itself compatibly with dλ, and satisfies

J θ pB ρ q " R λ . (3.2.11)
We denote the set of all admissible J by .

Given J P , and γ ´, γ `P pHq, let x Ă M pγ ´, γ `; Jq denote the set of maps u : ˆS1 ÝÑ p X satisfying Floer's equation Bu Bs ps, θ q `Jθ `ups, θ q ˘ˆBu Bθ ps, θ q ´X θ H `ups, θ q ˘˙" 0 (3.2.12) as well as the asymptotic conditions lim sÑ˘8 ups, ¨q " γ ˘.

The methods

If J is generic and u

P x Ă M pγ ´, γ `; Jq, then x Ă M pγ ´, γ `;
Jq is a manifold near u whose dimension is the Fredholm index of u defined by indpuq " CZ τ pγ `q ´CZ τ pγ ´q.

Here CZ τ denotes the Conley-Zehnder index computed using trivializations τ of γ ‹ ˘T p X that extend to a trivialization of u ‹ T p X . Note that acts on x Ă M pγ ´, γ `; Jq by translation of the domain; we denote the quotient by r M pγ ´, γ `; Jq.

Definition 3.2.6. Let H P std , and let J P be generic. Define the Floer chain complex pC F pH, Jq, Bq as follows. The chain module C F pH, Jq is the free -module5 generated by the set of 1-periodic orbits pHq. If γ ´, γ `P pHq, then the coefficient of γ `in Bγ ´is obtained by counting Fredholm index 1 points in r M pγ ´, γ `; Jq with signs determined by a system of coherent orientations as in [START_REF] Floer | Coherent orientations for periodic orbit problems in symplectic geometry[END_REF].

(The chain complexes for different choices of coherent orientations are canonically isomorphic.)

Let H F pH, Jq denote the homology of the chain complex pC F pH, Jq, Bq. Given H, the homologies for different choices of generic J are canonically isomorphic to each other, so we can denote this homology simply by H F pHq.

The construction of the above canonical isomorphisms is a special case of the following more general construction. Given two admissible Hamiltonians H 1 ,

H 2 P std , write H 1 ď H 2 if H 1 pθ , xq ď H 2 pθ , xq
for all pθ , xq P S 1 ˆp X . In this situation, one defines a continuation morphism H F pH 1 q Ñ H F pH 2 q as follows; cf. [Gut17, Thm. 4.5] and the references therein. Choose generic J 1 , J 2 P so that the chain complexes C F pH i , J i q are defined for i " 1, 2. Choose a generic homotopy tpH s , J s qu sP such that H s satisfies equation (3.2.10) for some β, β 1 depending on s; J s P for each s P ; B s H s ě 0; pH s , J s q " pH 1 , J 1 q for s ăă 0; and pH s , J s q " pH 2 , J 2 q for s ąą 0. One then defines a chain map C F pH 1 , J 1 q Ñ C F pH 2 , J 2 q as a signed count of Fredholm index 0 maps u : ˆS1 Ñ p X satisfying the equation

Bu Bs `Jθ s ˝u´B u Bθ ´X θ H s ˝u¯" 0 (3.2.13)
and the asymptotic conditions lim sÑ´8 ups, ¨q " γ 1 and lim sÑ8 ups, ¨q " γ 2 . The induced map on homology gives a well-defined map H F pH 1 q Ñ H F pH 2 q. If H 2 ď H 3 , then the continuation map H F pH 1 q Ñ H F pH 3 q is the composition of the continuation maps H F pH 1 q Ñ H F pH 2 q and H F pH 2 q Ñ H F pH 3 q.

Definition 3.2.7. We define the symplectic homology of pX , λq to be the direct limit SHpX , λq :" lim ÝÑ HP adm H F pHq with respect to the partial order ď and continuation maps defined above.

Equivariant symplectic homology

Positive symplectic homology

Positive symplectic homology is a modification of symplectic homology in which constant 1periodic orbits are discarded.

To explain this, let H : S 1 ˆp X Ñ be a Hamiltonian in std . The Hamiltonian action functional

H : C 8 pS 1 , p X q Ñ is defined by H pγq :" ´żS 1 γ ‹ p λ ´żS 1 H `θ , γpθ q ˘dθ .
If J P , then the differential on the chain complex pC F pH, Jq, Bq decreases the Hamiltonian action H . As a result, for any L P , we have a subcomplex C F ďL pH, Jq of C F pH, Jq, generated by the 1-periodic orbits with Hamiltonian action less than or equal to L.

To see what this subcomplex can look like, note that the 1-periodic orbits of H P std fall into two classes: (i) constant orbits corresponding to critical points in X , and (ii) non-constant orbits contained in r0, ρ 0 s ˆY .

If x is a critical point of H on X , then the action of the corresponding constant orbit is equal to ´Hpxq. By (3.2.9), this is less than ε.

By Remark 3.2.4, a non-constant 1-periodic orbit of X H is close to a 1-periodic orbit of ´h1 pe ρ qR λ located in tρu ˆY for ρ P r0, ρ 0 s with h 1 pe ρ q P SpecpY, λq. The Hamiltonian action of the latter loop is given by ´żS 1 e ρ λp´h 1 pe ρ qR λ qdθ ´żS 1 hpe ρ qdθ " e ρ h 1 pe ρ q ´hpe ρ q.

(3.2.14)

Since h is strictly convex, the right hand side is a strictly increasing function of ρ.

Remark 3.2.8. In Definition 3.2.3, we assume that h is sufficiently small so that the right hand side of (3.2.14) is close to the period h 1 pe ρ q, and in particular greater than ε. We also assume that H is sufficiently close to hpe ρ q on S 1 ˆr0, ρ 0 s ˆY so that the Hamiltonian actions of the 1-periodic orbits are well approximated by the right hand side of (3.2.14), so that:

(i) The Hamiltonian action of every 1-periodic orbit of X H corresponding to a critical point on X is less than ε; and the Hamiltonian action of every other 1-periodic orbit is greater than ε.

(ii

) If γ is a Reeb orbit of period T ă β, and if γ 1 is a 1-periodic orbit of X H in r0, ρ 0 s ˆY associated to γ, then | H pγ 1 q ´T | ă min β ´1, 1 3 gappβq ( .
Here gappβq denotes the minimum difference between two elements of SpecpY, λq that are less than β.

We can now define positive symplectic homology.

Definition 3.2.9. Let pX , λq be a Liouville domain, let H be a Hamiltonian in std , and let J P . Consider the quotient complex

C F `pH , Jq :" C F pH, Jq C F ďε pH, Jq .
The homology of the quotient complex is independent of J, so we can denote this homology by H F `pH q. More generally, if H 1 ď H 2 , then the chain map used to define the continuation map H F pH 1 q Ñ H F pH 2 q descends to the quotient, since the Hamiltonian action is nonincreasing along a solution of (3.2.13) when the homotopy is nondecreasing. Thus we obtain a well-defined continuation map H F `pH 1 q Ñ H F `pH 2 q satisfying the same properties as before.

We now define the positive symplectic homology of pX , λq to be the direct limit SH `pX , λq :" lim ÝÑ HP std H F `pH q.

Positive symplectic homology can sometimes be better understood using certain special admissible Hamiltonians obtained as follows.

Definition 3.2.10. [START_REF] Bourgeois | Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces[END_REF] Let pX , λq be a Liouville domain. An admissible Morse-Bott Hamiltonian is an autonomous Hamiltonian H : p X Ñ such that:

(1) The restriction of H to X is a Morse function which is negative and C 2 -small (so that the Hamiltonian vector field has no non-constant 1-periodic orbits).

(2) There exists ρ 0 ě 0 such that on rρ 0 , 8q ˆY we have Hpρ, xq " β e ρ `β1 with 0 ă β R SpecpY, λq and β 1 P .

(3) On r0, ρ 0 q ˆY we have Hpρ, xq " hpe ρ q where h is as in Definition 3.2.3, and moreover h 2 ´h1 ą 0.

We denote the set of admissible Morse-Bott Hamiltonians by MB .

Given H P MB , each 1-periodic orbit of X H is either: (i) a constant orbit corresponding to a critical point of H in X , or (ii) a non-constant 1-periodic orbit, with image in tρu ˆY for ρ P p0, ρ 0 q, whose projection to Y has the same image as a Reeb orbit of period e ρ h 1 pρq. Since H is autonomous, every Reeb orbit γ with period less than β gives rise to an S 1 family of 1-periodic orbits of X H , which we denote by S γ .

An admissible Morse-Bott Hamiltonian as in Definition 3.2.10 can be deformed into an admissible Hamiltonian as in Definition 3.2.3, which will be time-dependent and have nondegenerate 1-periodic orbits:

Lemma 3.2.11. ([CFHW96, Prop. 2.2] and [BO09, Lem. 3.4]) An admissible Morse-Bott Hamiltonian H can be perturbed to an admissible Hamiltonian H 1 whose 1-periodic orbits consist of the following:

(i) Constant orbits at the critical points of H.

(ii) For each Reeb orbit γ with period less than β, two nondegenerate orbits p γ and q γ. Given a trivialization τ of ξ|γ, their Conley-Zehnder indices are given by ´CZ τ pp γq " CZ τ pγq `1 and ´CZ τ pq γq " CZ τ pγq. Remark 3.2.12. The references [START_REF] Cieliebak | Applications of symplectic homology. II. Stability of the action spectrum[END_REF] and [START_REF] Bourgeois | Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces[END_REF] use the notation γ min instead of p γ, and γ Max instead of q γ. The motivation is that these orbits are distinguished in their S 1 -family as critical points of a perfect Morse function on S 1 .

S 1 -equivariant symplectic homology

S 1 -equivariant homology

Let X be a topological space endowed with an S 1 -action. If the S 1 -action is free, X { S 1 is a topological space. The aim of S 1 -equivariant homology is to build on the space X a homology which coincides, when the action is free, with the singular homology of the quotient. One considers the universal principal S 1 -bundle ES 1 Ñ BS 1 .The diagonal action on X ˆES 1 is free and one denotes by X ˆS1 ES 1 the quotient pX ˆES 1 q{ S 1 . Definition 3.2.13 (Borel). Let X be a topological space endowed with an S 1 -action. The S 1 -equivariant homology of X with -coefficients is H S 1 ˚pX q :" H ˚pX ˆS1 ES 1 , q. An axiomatic definition of equivariant homology was stated later by Basu, [Bas], based on the following Proposition: Proposition 3.2.14. The S 1 -equivariant homology with -coefficients is a functor H S 1 ˚from the category of S 1 -spaces and S 1 -maps to the category of abelian groups and homomorphisms. Let X be a topological space endowed with a S 1 -action, H S 1 ˚associates to X a sequence of abelian groups: H S 1 i pX , q, i ě 0. Let f : X Ñ Y be an S 1 -equivariant map between topological spaces endowed with an S 1 -action. It induces homomorphisms f S 1 i : H S 1 i pX , q Ñ H S 1 i pY, q. The functor H S 1 ˚satisfy the two following conditions:

1. If the S 1 -action on X is free, then H S 1 ˚pX , q " H ˚pX { S 1 , q (the singular homology of X { S 1 ). 2. If f : X Ñ Y induces an isomorphism f ˚: H ˚pX , q Ñ H ˚pY, q, then it also induces an isomorphism f S 1 ˚: H S 1 ˚pX , q Ñ H S 1 ˚pY, q. Any functor satisfying the two conditions of Proposition 3.2.14 is given by Definition 3.2.13. Indeed, the projection pr 1 : X ˆES 1 Ñ X : px, eq Þ Ñ x is an S 1 -equivariant map which induces an isomorphism pr 1˚: H ˚pX ˆES 1 , q Ñ H ˚pX , q since ES 1 is contractible. By 2, pr 1˚i nduces an isomorphism

pr 1 S 1 ˚: H S 1 ˚pX ˆES 1 , q Ñ H S 1 ˚pX , q. Condition 1 then implies H S 1 ˚pX , q -H ˚pX ˆS1 ES 1 , q.

S 1 -equivariant symplectic homology

Let pX , λq be a Liouville domain with boundary Y . We now review how to define the S 1 -equivariant symplectic homology SH S 1 pX , λq. The S 1 -equivariant symplectic homology SH S 1 pX , λq is defined as a limit as N Ñ 8 of homologies SH S 1 ,N pX , λq, where N is a nonnegative integer. To define the latter, fix the perfect Morse function f N : P N Ñ defined by f N `rw 0 : . . . :

w n s ˘" ř N j"0 j|w j | 2 ř N j"0 |w j | 2 .

The methods

Let r f N : S 2N `1 Ñ denote the pullback of f N to S 2N `1. We will consider gradient flow lines of Ă f N and f N with respect to the standard metric on S 2N `1 and the metric that this induces on P N .

Remark 3.2.15. The family of functions f N has the following two properties which are needed below. We have two isometric inclusions i 0 , i 1 : P N Ñ P N `1 defined by i 0 prz 0 : . . . : z N sq " rz 0 : . . . : z N : 0s and i 1 prz 0 : . . . : z N sq " r0 : z 0 : . . . : z N s. Then:

(1) The images of i 0 and i 1 are invariant under the gradient flow of f N `1.

(2) We have f N " f N `1 ˝i0 " f N `1 ˝i1 `constant, so that the gradient flow of f N `1 pulls back via i 0 or i 1 to the gradient flow of f N .

Now choose a "parametrized Hamiltonian"

H : S 1 ˆp X ˆS2N`1 ÝÑ (3.2.15)
which is S 1 -invariant in the sense that Hpθ `ϕ, x, ϕzq " Hpθ , x, zq @θ , ϕ P S 1 " { , x P p X , z P S 2N `1.

Here the action of S 1 " { on S 2N `1 Ă N `1 is defined by ϕ ¨z " e 2πiϕ z. (ii) If z is a critical point of r f N , then the 1-periodic orbits of H z are nondegenerate.

(iii) H is nondecreasing along downward gradient flow lines of r f N .

Let S 1 p fN , Hq denote the set of pairs pz, γq, where z P S 2N `1 is a critical point of fN , and γ is a 1-periodic orbit of the Hamitonian H z . Note that S 1 acts freely on the set S 1 p fN , Hq by ϕ ¨pz, γq " `ϕ ¨z, γp¨´ϕq ˘.

If p " pz, γq P S 1 p fN , Hq, let S p denote the orbit of pz, γq under this S 1 action. Next, choose a generic map

J : S 1 ˆS2N`1 Ñ , pθ , zq Þ Ñ J θ z , (3.2.16)
which is S 1 -invariant in the sense that J θ `ϕ ϕ¨z " J θ z for all ϕ, θ P S 1 and z P S 2N `1.

Let p ´" pz ´, γ ´q and p `" pz `, γ `q be distinct elements of (3.2.17)

Equivariant symplectic homology

Here the middle equation is a modification of Floer's equation (3.2.12) which is "parametrized by η". Note that acts on the set x pS p ´, S p `; Jq by reparametrization: if σ P , then σ ¨pη, uq " `ηp¨´σq, up¨´σ, ¨q˘.

In addition, S 1 acts on the set x pS p ´, S p `; Jq as follows: if τ P S 1 , then τ ¨pη, uq :" `τ ¨η, up¨, ¨´τq ˘. We denote the homology of this chain complex by H F S 1 ,N pHq. This does not depend on the choice of J, by the usual continuation argument; one defines continuation chain maps using a modification of (3.2.17) in which the second line is replaced by an "η-parametrized" version of Floer's continuation equation (3.2.13).

Let

We now define a partial order on the set of pairs pN , Hq, where N is a nonnegative integer and H is an admissible parametrized Hamiltonian (3.2.15), as follows. Let r i 0 : S 2N `1 Ñ S 2N `3 denote the inclusion sending z Þ Ñ pz, 0q. (This lifts the inclusion i 0 defined in Remark 3.2.15.) Then pN 1 , H 1 q ď pN 2 , H 2 q if and only if:

• N 1 ď N 2 , and

• H 1 ď p r i 0 ‹ q N 2 ´N1 H 2 pointwise on S 1 ˆp X ˆS2N 1 `1.
In this case we can define a continuation map H F S 1 ,N 1 pH 1 q Ñ H F S 1 ,N 2 pH 2 q using an increasing homotopy from

H 1 to p r i 0 ‹ q N 2 ´N1 H 2 on S 1 ˆp X ˆS2N 1 `1.
Definition 3.2.18. Define the S 1 -equivariant symplectic homology

SH S 1 ˚pX , λq :" lim ÝÑ N ,H H F S 1 ,N ˚pH q.
It is sometimes useful to describe S 1 -equivariant symplectic homology in terms of individual Hamiltonians on S 1 ˆp X , rather than S 2N `1-families of them, by the following procedure. Remark 3.2.19. [Gut14c, §2.1.1] Fix an admissible Hamiltonian H 1 : S 1 ˆp X Ñ and a nonnegative integer N . Consider a sequence of admissible parametrized Hamiltonians tH k u k"0,...,N as in (3.2.15), where H k is defined on S 1 ˆp X ˆS2k`1 , with the following properties:

• For each k " 0, . . . , N ´1, the pullbacks r i ‹ 0 H k`1 and r i ‹ 1 H k`1 agree with H k up to a constant. Here r i 1 : S 2k`1 Ñ S 2k`3 denotes the lift of i 1 sending z Þ Ñ p0, zq.

• For each k " 0, . . . , N and each z P Critp fk q, we have

H k pθ , x, zq " H 1 `θ ´φpzq, x ˘`c. (3.2.18)
Here c is a constant depending on k and z; and the map φ : Critp fk q Ñ S 1 sends a critical point p0, . . . , 0, e 2πiψ , 0, . . . , 0q Þ Ñ ψ.

Next, choose a sequence of families of almost complex structures J k : S 1 ˆS2k`1 Ñ p p X q for k " 0, . . . , N such that:

• J k is generic so that the chain complex ´C F S 1 ,k pH k , J k q, B S 1 ¯is defined. • r i ‹ 0 J k`1 " r i ‹ 1 J k`1 " J k .
The chain complex ´C F S 1 ,N pH N , J N q, B S 1 ¯can now be described as follows. By (3.2.18), we can identify the chain module as

C F S 1 ,N pH N , J N q " t1, u, . . . , u N u b C F pH 1 , J 0 q. (3.2.19)
This identification sends a pair pz, γq, where z P Critp r

f N q is a lift of an index 2k critical point of f N and γ is a reparametrization of a 1-periodic orbit γ 1 of H 1 , to u k b γ 1 .
Since the sequences tH k u and tJ k u respect the inclusions r i 1 , the differential has the form

B S 1 pu k b γq " k ÿ i"0 u k´i b ϕ i pγq (3.2.20)
where the operator ϕ i on C F pH 1 , J 0 q does not depend on k. In particular, ϕ 0 is the differential on C F pH 1 , J 0 q. We can also formally write

B S 1 " N ÿ i"0 u ´i b ϕ i
where it is understood that u ´i annihilates terms of the form u j b γ with i ą j. The usual continuation arguments show that the homology of this chain complex does not depend on the choice of sequences tH k u and tJ k u satisfying the above assumptions. We denote this homology by H F S 1 ,N pH 1 q.

Since in the above construction we assume that the sequences tH k u and tJ k u respect the inclusions r i 0 , it follows that when N 1 ď N 2 we have a well-defined map H F S 1 ,N 1 pH 1 q Ñ H F S 1 ,N 2 pH 1 q induced by inclusion of chain complexes. As before, if H 1 1 ď H 1 2 , then there is a continuation map H F S 1 ,N pH 1 1 q Ñ H F S 1 ,N pH 1 2 q satisfying the usual properties.

As in [BO16, §2.3], we now have: Proposition 3.2.20. The S 1 -equivariant homology of pX , λq is given by

SH S 1 ˚pX , λq " lim ÝÑ N P , H 1 P std H F S 1 ,N pH 1 q.

Positive S 1 -equivariant symplectic homology

As for symplectic homology, S 1 -equivariant symplectic homology also has a positive version in which constant 1-periodic orbits are discarded. Proof. Given a solution pη, uq to the equations (3.2.17), one can think of η as fixed and regard u as a solution to an instance of equation (3.2.13), where J s and H s in (3.2.13) are determined by η. By condition (iii) in Definition 3.2.16, this instance of (3.2.13) corresponds to a nondecreasing homotopy of Hamiltonians. Consequently, the action is nonincreasing along this solution of (3.2.13) as before.

It follows from Lemma 3.2.22 that for any L P , we have a subcomplex C F S 1 ,N ,ďL pH, Jq of C F S 1 ,N pH, Jq, spanned by S 1 -orbits of pairs pz, γq where z P Critp fN q and γ is a 1-periodic orbit of H z with H pz, γq ď L.

As in §3.2.2, if the S 1 -orbit of pz, γq is a generator of C F S 1 ,N pH, Jq, then there are two possibilities: (i) γ is a constant orbit corresponding to a critical point of H z on X , and H pz, γq ă ε; or (ii) γ is close to a Reeb orbit in tρu ˆY with period ´h1 pe ρ q, and H pz, γq is close to this period; in particular H pz, γq ą ε. Definition 3.2.23. Consider the quotient complex C F S 1 ,N ,`p H, Jq :"

C F S 1 ,N pH, Jq C F S 1 ,N ,ďε pH, Jq . (3.2.22)
As in Definition 3.2.9, the homology of the quotient complex is independent of J, so we can denote this homology by H F S 1 ,N ,`p Hq; and we have continuation maps H F S 1 ,N 1 ,`p H 1 q Ñ H F S 1 ,N 2 ,`p H 2 q when pN 1 , H 1 q ď pN 2 , H 2 q. We now define the positive S 1 -equivariant symplectic homology by

SH S 1 ,`p X , λq :" lim ÝÑ N ,H H F S 1 ,N ,`p Hq. (3.2.23)
Returning to the situation of Remark 3.2.19, define H F S 1 ,N ,`p H 1 q to be the homology of the quotient of the chain complex (3.2.19) by the subcomplex spanned by u k b γ where γ is a critical point of H 1 in X . We then have the following analogue of Proposition 3.2.20: Proposition 3.2.24. The positive S 1 -equivariant homology of pX , λq is given by SH S 1 ,`p X , λq " lim ÝÑ N P , H 1 P std H F S 1 ,N ,`p H 1 q.

Clarke duality

Origin of Clarke duality

The Legendre tranform of a function F P C 1 p N , q is defined by the implicit formula

F ˚pvq " pv, uq ´F puq v " ∇F puq
when ∇F is invertible. It has the remarkable property that

p∇F q ´1 " ∇F ˚.
Its geometrical meaning is the following: the tangent hyperplane to the graph of F with normal rv, 1s is given by trw, ss P N `1 | s " pw, vq ´F ˚pvqu. Thus the graph of F can be described in a dual way, either as a set of points or as an envelope of tangent hyperplanes.

The Fenchel transform extends the Legendre transform to not necessarily smooth convex functions by using affine minorants instead of tangent hyperplanes. To motivate, notice that when F is convex, the function Fv : u Þ Ñ pv, uq´F puq is concave and the definition of the Legendre transform just expresses that u is a critical point of Fv , and hence the global maximum of Fv is achieved at u. Consequently, F ˚pvq " sup wP n rpv, wq ´F pwqs and the right-hand member of this equality, which is defined as an element of s ´8, 8s without the smoothness and invertibility conditions required by the Legendre transforms is, by definition, the Fenchel transform of the convex function F . In classical Hamiltonian mechanics, if the Lagrangian Lpt, q, rq is given, the corresponding Hamiltonian H " Hpt, q, pq is the Legendre transform of Lpt, q, ¨q, namely Hpt, q, pq " pp, qq ´Lpt, q, rq where r is expressed in terms of pt, q, pq through the relation p " B r Lpt, q, rq.

Besides this Hamiltonian duality, there is, in the study of Hamiltonian systems, another duality based on the Legendre transform of Hpt, ¨, ¨q. If we write u " pq, pq, the Hamiltonian equations can be written in the compact form ´J 9

uptq " ∇Hpt, uptqq.

Setting 9 v " ´J 9 u, so that u " J v ´c where c is a constant, we obtain 9 v " ∇Hpt, uq or equivalently u " ∇H ˚pt , 9 vq if the Legendre transform H ˚pt , .q of Hpt, .q exists. Therefore, the Hamiltonian equations expressed in terms of v become J v ´∇H ˚pt , 9 vq " c. The integrated Euler-Lagrange equations corresponding to the critical points of the functions χ defined on a suitable space of T -periodic functions is χpvq "

ż T 0 1 2 pJ 9 vptq, vptqq `H˚p t, 9 vptqq d t
This dual action χ can therefore be used as well as the Hamiltonian action to prove the existence of T -periodic solutions of the Hamiltonian system.

Clarke's dual action functional

Definition 3.3.1. Clarke's dual action functional is defined by the formula

H pγq :" ´1 2 ż 1 0 J 9 γptq ¨γptqd t ´ż 1 0 H ˚`t , J 9 γptq ˘d t.
The functional H is continuously differentiable on the Hilbert space 1 :" H 1 pS 1 , 2n q{ 2n , where the action of 2n onto the Sobolev space H 1 pS 1 , 2n q is given by translations. Rather than working with equivalence classes of curves modulo translations, it is convenient to work with genuine curves by identifying 1 with the space of closed curves with zero mean:

1 "

" x P H 1 pS 1 , 2n q | ż S 1 xptqd t " 0 * .
Let Π : H 1 pS 1 , 2n q Ñ 1 be the quotient projection.

There is a one-to-one correspondence between the critical points of H and H . More precisely, we have the following result

Lemma 3.3.2 ([Eke90, AK19]). If x is a critical point of H , then Πpxq is a critical point of H .
Conversely, every critical point x of H is smooth and there exists a unique vector v 0 P 2n such that x `v0 is a critical point of H . In this case, we have H px `v0 q " H pxq. 

.3.(3) (Convexity). Then the dual action functional

H : 1 Ñ satisfies the Palais-Smale condition.

If we assume that the smooth Hamiltonian H satisfies 3.2.3.(2), 3.2.3.(3), and 3.2.3.(4) (Nondegeneracy), the functional H is Morse, meaning that the (Gateaux) second differential of H at each critical point is non-degenerate. However, the functional H is in general not of class C 2 (it is not even twice differentiable), so some care is needed in order to associate a Morse complex to it. The strategy from [START_REF] Abbondandolo | Symplectic homology of convex domains and Clarke's duality[END_REF] is to use the fact that H is smooth when restricted to a suitable finite dimensional smooth submanifold of 1 , which contains all the critical points of H and is defined by a saddle-point reduction.

Given a natural number N P , consider the splitting

1 " N ,1 ' p N ,1 with N ,1 :" # x P 1 ˇˇxptq " N ÿ k"1
x k e 2πikt , x k P 2n + , p N ,1 :"

# x P 1 ˇˇxptq " ÿ kď´1
x k e 2πikt `ÿ kěN `1 x k e 2πikt , x k P 2n

+ .

This splitting is orthogonal with respect to the 1 and to the L 2 inner products. We identify 1 with the product space N ,1

ˆp N ,1 . The following proposition summarizes the main properties of the saddle point reduction.

Proposition 3.3.5 [START_REF] Abbondandolo | Symplectic homology of convex domains and Clarke's duality[END_REF]). Assume that the Hamiltonian H P C 8 pS 1 , 2n q satisfies 3.2.3.(2) and 3.2.3.(3). If N P is large enough, then the following facts hold: 1. For every x P N ,1 the restriction of H to txu ˆp N ,1 has a unique critical point `x, Y pxq ˘, which is a non-degenerate global minimizer of this restriction.

The map Y :

N ,1 Ñ p N ,1 takes values in C 8 pS 1 , 2n q and is smooth with respect to the C k -norm for any k P on the target. In particular, its graph M :"

! px, yq P N ,1 ˆp N ,1 | y " Y pxq ) is a smooth 2nN -dimensional submanifold of 1 .
3. The restriction of H to M , which is denoted by ψ H : M Ñ is smooth.

A point z P 1 is a critical point of H if and only if it belongs to M and is a critical point of ψ H .

In this case, the Morse index and the nullity with respect to the two functionals coincide:

indpz; H q " indpz; ψ H q nullpz; H q " nullpz; ψ H q.

5. If M is endowed with the Riemannian metric induced by the inclusion into 1 , the functional ψ H satisfies the Palais-Smale condition.

If we further assume that the Hamiltonian H satisfies 3.2.3.(4), we obtain that ψ H is a smooth Morse function with finitely many critical points and satisfying the Palais-Smale condition on the finite-dimensional manifold M . As such, it has a Morse complex, uniquely defined up to chain isomorphisms, denoted by C M ˚pψ H q, B M ( .

The space C M ˚pψ H q is the -vector space generated by the critical points of ψ H , graded by the Morse index. The boundary operator B M : C M ˚pψ H q Ñ C M ˚´1 pψ H q is defined for all x P C r i tpψ H q by the formula

B M pxq " ÿ y # px, yq y
where y ranges over all critical points with Morse index equal to the index of x minus 1 and # px, yq is the number of negative gradient flow lines of ψ H going from x to y. Here, the negative gradient vector field of ψ H is induced by a generic Riemannian metric on M , uniformly equivalent to the standard one and such that the negative gradient flow is Morse-Smale, meaning that stable and unstable manifolds of pairs of critical points meet transversally. Changing the generic metric changes the Morse complex by a chain isomorphism. The homology of the Morse complex C M ˚pψ H q is isomorphic to the singular homology of the pair `M, tψ H ă au ˘, where a is any number which is smaller than the smallest critical level of ψ H :

H M k pψ H q » H k `M, tψ H ă au ˘.

Morse Homology for the action functional

Morse homology for Hilbert spaces

Abbondandolo and Majer [AM05, AM03, AM01, AM04], have defined a relative Morse homology on Hilbert spaces for some functionals. This applies, in particular, to the action functional but, we start by recalling the general definition, following the aforementionned references. Let be a real Hilbert space and L a linear, invertible, self-adjoint operator on , one considers the class of functionals f :

Ñ of the form

f pxq " 1 2 pL x , xq `bpxq
where b is C 2 and ∇b : Ñ is a compact map. Denote this class of functionals by pLq. The main idea is that under suitable assumptions, even so the Morse indices and coindices of the critical points are infinite, the intersections of of stable and unstable manifolds, W u pxq X W s p yq are finite dimensional. To prove such a result (and to define a relative Morse index) requires a orthogonal decomposition of the Hilbert space in two subspaces. Given a bounded self-adjoint operator S :

Ñ , denote by V `pSq (respectively V ´pSq) the maximal S-invariant subspace on which S is strictly positive (respectively strictly negative). The spaces V `pSq and V ´pSq are called the positive eigenspace of S and the negative eigenspace of S respectively. Since the operator L has been fixed, we denote by `and ´the positive and negative eigenspaces of L `:" V `pLq,

´:" V ´pLq.

Note that we have " `' ´. The Hessian of a functional f P pLq at x is given by

D 2 f pxq " L `D2 bpxq.
Note that D 2 f pxq is a Fredholm operator since D 2 bpxq is a compact linear operator (because ∇b is compact).

We now recall the notion of "relative Morse index" for the critical points of f . Definition 3.4.1. Let V and W be closed linear subspaces of a Hilbert space . They form a Fredholm pair if dimpV XW q ă 8, V `W is closed and dim V `W " dimpV `W q K " dimpV K XW K q ă 8.

Remark 3.4.2. An operator A : 1 Ñ 2 is Fredholm if and only if ` 1 ˆt0u, G r aphpAq ˘is a Fredholm pair in 1 ˆ 2 . The index of a Fredholm pair pV, W q is defined as indpV, W q " dimpV X W q ´codimpV `W q P . Let V and W be closed linear subspaces of a Hilbert space . W is a compact perturbation of V if P W ´PV is compact, where P is the orthogonal projection. In particular pV, W K q is a Fredholm pair. The relative dimension of V with respect to W is defined as dimpV, W q :" indpV, W K q " dimpV X W K q ´dimpV K X W q.

If A is a self-adjoint Fredholm operator and K is a compact operator, V ´pAq is a compact perturbation of V ´pA `Kq.

Going back to the functional f , we have D 2 f pxq " L `D2 bpxq where D 2 bpxq is a compact operator. We have that V ´`D 2 f pxq ˘is a compact perturbation of ´and we can define the relative Morse index of x as

ind ´p xq " dim ´V ´`D 2 f pxq ˘, ´¯.
Remark that when ´" t0u , this index is the usual Morse index. We denote by crit k p f q the set of critical points of f of relative Morse index k. Now, let x and y be critical points of f , we look at W u pxq X W s p yq to define moduli spaces of gradient trajectories u 1 " ∇ f puq.

Let I Ă Y t´8, `8u be an interval.

Definition 3.4.3. A functional f P C 2 p q is called Morse on I if the Hessian D 2 f pxq is invertible for every critical point x such that f pxq P I.

Assuming that the functional f is Morse, we have the two following facts @p P W u pxq: Definition 3.4.4. A functional f P C 1 p q satisfies the Palais-Smale condition on I if every sequence px n q Ă such that lim nÑ8 f px n q " c P I and lim nÑ8 ∇ f px n q " 0 is relatively compact.

1. T p W u pxq
Lemma 3.4.5. The functional f satisfies the Palais-Smale condition (PS) if and only if all PS sequences are bounded.

Proof. Indeed, ∇ f pxq " L x `∇bpxq. Take a PS sequence x n , so ∇ f px n q Ñ 0 and, since ∇b is compact,

∇bpx n q Ñ z. Therefore L x n Ñ ´z. Since L is invertible, x n Ñ ´L´1 z.
Definition 3.4.6. A functional f P C 2 p q has the Morse-Smale property on I up to order k if it is a Morse function on I and the unstable and stable manifolds of every pair of critical points x, y P f ´1pI q such that ind ´p xq ´ind ´p yq ď k, meet transversally Theorem 3.4.7. Assume that the functional f P pLq satisfies PS and the Morse-Smale property up to order k on the interval I. Let x, y P f ´1pI q be two critical points of f such that ind ´p xq índ ´p yq ď k. Then W u pxq X W s p yq, if nonempty, is an embedded C 1 -submanifold of of dimension dim `W u pxq X W s p yq ˘" ind ´p xq ´ind ´p yq.

Moreover, we have the following:

• When k ě 0, ind ´p xq ´ind ´p yq ď 0, and x ‰ y, we have W u pxq X W s p yq " H.

• When k ě 0, and ind ´p xq ´ind ´p yq " 1, W u pxq X W s p yq Y tx, yu is compact.

This theorem implies, in particular, that when ind ´p xq ´ind ´p yq " 1, there is a finite number of trajectories from x to y. The manifolds W u pxq X W s p yq admit an orientation [AM05, §3.5] and thus, when ind ´p xq ´ind ´p yq " 1, all the trajectories from x to y come with a sign.

The idea of orientation is the following. Let F p p q denote the set of Fredholm pairs in . We have the non-trivial line bundle

Λ max pV X W q b Λ max ´´ V `W ¯˚¯ / / Det `Fp p q F p p q
If x is a critical point of the functional f , the pair `Tx W u pxq, `˘is in F p p q. We choose an orientation of the determinanl line bundle over this pairs and we do the same at every (critical) point. This induces an orientation over `Tx W s pxq, ´˘.

Thus, `Tp W u pxq, `˘and `Tp W s pxq, ´˘are oriented for all p P W u pxq. This induces a cannical orientation of `Tp W u pxq, T p W s pxq ˘. If the functional is Morse-Smale, we are done.

When ind ´p xq ´ind ´p yq " 1, let # px, yq denote the count, with signs, of trajectories from x to y.

Given an interval I of the extended real line and a functional f satisfying the following conditions (M.1) f P pLq;

(M.2) f satisfies the PS condition on I;

(M.3) f is a Morse function on I;
(M.4) f has the Morse-Smale property on I up to order 2; (M.5) for every a P I and every k P , the set crit k `f , I X p´8, as ˘is finite;

we can define a Morse homology of the pair p f , Iq. The Morse complex in degree k is defined as 

C M k p f , Iq :" ' xPcrit k p f ,Iq xxy.

and the boundary operator

B f ,I k : C M k p f , Iq Ñ C M k´1 p f , Iq is defined, for x P crit k p f , Iq, as

The case of the action functional for star-shaped domains

Let Λp 2n q :" C 8 pS 1 , 2n q be the free loop space of 2n . The Hamiltonian action functional H on Λp 2n q is defined as

H pγq :" ´żγ λ 0 ´żS 1 H `θ , γpθ q ˘dθ . (3.4.1)
To ensure, we have a Morse theory of this H , we have to complete Λp 2n q in a Hilbert manifold; its structure will be induced by H 1 2 pS 1 , 2n q. Then we shall extend the functional H and check that it satisfies the 5 conditions (M.1)-(M.5) listed above.

The Hilbert manifold

Since Λp 2n q Ă L 2 pS 1 , 2n q, every element x P Λp 2n q can be written as a Fourrier series with coefficients in 2n .

xptq "

ÿ kP x k e 2πikt .
Using this Fourrier decomposition, Λp 2n q can be completed in the Sobolev space: H 1 2 pS 1 , 2n q (which carries a Hilbert structure).

H 1 2 pS 1 , 2n q :" # x P L 2 pS 1 , 2n q | ÿ kP |k|}x k } 2 ă 8 + .
We have the orthogonal decomposition H 1 2 pS 1 , 2n q " E `' E 0 ' E ẃith respect to the inner product xx, yy :" xx 0 , y 0 y `2π ř 0‰kP |k|xx k , y k y and where

E ´" tx P H 1 2 pS 1 , 2n q | x k " 0 for k ě 0u E 0 " tx P H 1 2 pS 1 , 2n q | x k " 0 for k ‰ 0u -2n E `" tx P H 1 2 pS 1 , 2n q | x k " 0 for k ď 0u.
Let P E `, P E ´and P E 0 denote the orthogonal projections on E `, E ´and E 0 respectively.

The functional

Recall the class pLq of functionals for which the Morse homology is defined. Let be a real Hilbert space and let L be a linear, invertible, self-adjoint operator on . We are looking at the functional f : Ñ

f pxq " 1 2 pL x , xq `bpxq
where b is C 2 and ∇b : Ñ is a compact map. In the case of a nice star-shaped domain in 2n , the Hilbert space is " H 1 2 and the functional is given by

H pxq " ´1 2 ż J 9 x ¨x d t ´ż 1 0 H `t, xptq ˘d t. (3.4.2)
The fact that this functional coincides with the one from equation (3.4.1) is a direct computation.

Fixing L, we denote by `the maximal L-invariant subspace on which L is positive and by ´the maximal L-invariant subspace on which L is negative. We have " `' ´. Here decomposes as " E `' E 0 ' E ´where E 0 -2n is the set of constant loops. We split E 0 arbitrarily in E 0 " E 0

`'E 0 ´where E 0 `- n -E 0
´. In the previous notation, we take `" E `'E 0 ànd

´" E ´' E 0 ´by extending L with the matrix ˆId 0 0 ´Id ˙.

Remark 3.4.9. By taking the splitting of E 0 to be given by E 0

´" xx 1 , . . . , x n y, we have that the CZ-index is equal to the relative Morse index, see [START_REF] Abbondandolo | Morse theory for Hamiltonian systems[END_REF].

The functional then writes as Ñ is continuous and compact.

H " ´1 2 ż 1 0 J 9 x ¨x d t ´ż 1 0 H `t, xptq ˘d t (3.4.3) " 1 2 `}P E `p xq} 2 H 1 2 ´}P E ´p xq} 2 H 1 2 ˘´ż 1 0 H `t, xptq ˘d t (3.4.4) " 1 2 pL x , xq 1 2 ´1 2 }P E 0 `x } 2 `1 2 }P E 0 ´x } 2 ´ż 1 0 H `t,
We need a better understanding of the Sobolev spaces H s before going on. Indeed not all element of H 1 2 can be represented by a continuous function.

Proposition 3.4.11. [HZ11, Proposition 3.4] Let s ą 1 2 . If x P H s pS 1 , 2n q, then x P C 0 pS 1 , 2n q. Moreover, there is a constant c, depending on s, such that }x} C 0 ď c}x} H s , @x P H s pS 1 , 2n q.

Recall that from [HZ11, Proposition 3.3], for t ą s ě 0, the inclusion map I : H t pS 1 , 2n q Ñ H s pS 1 , 2n q is compact.

The following inclusion j, and its adjoint j ˚, will play a key role in the following.

j : H 1 2 pS 1 , 2n q Ñ H 0 pS 1 , 2n q " L 2 pS 1 , 2n q j ˚: L 2 pS 1 , 2n q Ñ H 1 2 pS 1 , 2n q Proposition 3.4.12. [HZ11, Proposition 3.5] j ˚`L 2 pS 1 , 2n q ˘Ă H 1 pS 1 , 2n q and } j ˚p yq} H 1 ď } y} L 2 . 

([AM01]

). There is a residual set (in the sense of Baire) r eg Ă C 8 pS 1 ˆ 2n , q of Hamiltonians such that the negative H 12 -gradient X of H is a Morse vector field for evey H P r eg . In particular, the set of critical points of H is a finite set.

To ensure transversality (condition (M.4)), we need to perturb the vector field X " ´∇ 1 2 H by adding a small compactly supported vector field X . We do it this way rather than following [START_REF] Abbondandolo | A Morse complex for infinite dimensional manifolds-part i[END_REF] in preparation for transversality for hybrid-type curves §3.5. Let p q Ă C 3 b p q be the closed subspace of all C 3 -vector fields which are compact and bounded on . We choose a C 1 -function g : Ñ `satisfying 1. gppq ą 0 everywhere else; i.e. for all p P z Crit H ,

2. gppq ď 1 2 }∇ 1 2 H ppq} H 1 2
for all p P .

In particular, we have gpxq " 0 for all x P Crit H . We consider the subset of vector fields g :"

! X P p q | Dc ą 0 such that }X p } H 1 2 ď c gppq @p P ) .
This set is a Banach space when equipped with the following norm:

}X } g :" sup pP z Critp H q }X p } H 1 2 gppq `}∇X } C 2 .
We denote the open unit ball in g , with respect to the above norm, by g,1 . It is a Banach manifold with trivial tangent bundle.

Lemma 3.4.16. Let X P g,1 and let r X :" ´∇ 1 3.5. All three homologies coincide 2. For all x P Critp H q, we have D r X pxq " ´D2 H pxq.

3. The action functional is a Lyapunov function for r X ; i.e. D H ppq `r X ppq ˘ă 0 for all p P z Critp H q.

Theorem 3.4.17. There is a residual subset r eg Ă g,1 of compact vector fields X such that the perturbed vector field r X :" ´∇ 1 2 H `X fulfills the Morse-Smale condition up to order 2.

We are therefore in a situation where we can define the Morse homology as in Section 3.4.1.

Continuations

In view of an isomorphism with symplectic homology, we need to be able to change the Hamiltonian. Let f 0 and f 1 be two functionals and let f s be a homotopy interpolating between the two; f s " f 0 for s ď ε and f s " f 1 for s ě 1 ´ε. Let ϕ : Ñ a smooth function with two critical points: a maximum at 0, with ϕp0q " 1 and a minimum at 1 with ϕp1q " 0. Let r f : ˆ Ñ be the functional defined by r f ps, xq " ϕpsq `fs pxq. The critical points of r

f of index k are crit k r f " t0u ˆcrit k´1 f 0 ď t1u ˆcrit k f 1 .
The associated differential B r f writes as

B r f " ˆBf 0 φ 0 B f 1 ˙.
This φ is precisely the continuation map (as in finite-dimensional Morse homology)

All three homologies coincide

This section describes some known results and ongoing work (joint with V. Ramos). The main (ongoing) statement is that given an admissible Hamiltonian, there are chain complexes isomorphisms between the three aforementionned constructions which commute with continuations. One of the isomorphism was proved by Abbondandolo and Kang. To prove the other one is under progress.

Theorem 3.5.1 ([AK19]

). Let H : S 1 ˆ 2n Ñ be a smooth Hamiltonian function satisfying the conditions 3.2.3.(2), 3.2.3.(3), and 3.2.3.(4). Then there exists a chain complex isomorphism

Θ : `C M ˚´n pψ H q, B M ˘Ñ pC F ˚pH , Jq, Bq
The isomorphism Θ is defined as a count of "hybrid trajectories". Let x and y be 1-periodic orbits of X H . We shall see Πpxq P 1 as a critical point of H (and hence of ψ H ) and y P H 1 2 as a critical point of H . Let J be a family of uniformly bounded ω 0 -compatible almost complex structures on 2n parametrized by r0, 8q ˆS1 such that J " J 0 on r0, 1s ˆS1 . Denote by px, yq " px, y, H, Jq the space of smooth maps u : r0, 8q ˆS1 Ñ 2n which solve the Floer equation B s u `Jps, t, uqpB t u ´XH t puqq " 0 on r0, 8q ˆS1 with the asymptotic condition lim sÑ8 ups, ¨q " y in C 8 pS 1 , 2n q, and the boundary condition up0, ¨q P Π ´1W u `pΠpxq; ´∇ψ H q `

1 2 .
where W u `pΠpxq; ´∇ψ H q is the unstable manifold of the negative gradient vector field of ψ H at Πpxq in a finite dimensional submanifold M of 1 , which is used to construct the Morse complex of ψ H in §3.3.

Abbondandolo and Kang proved that, generically, px, yq is a smooth manifold of dimension CZpxq ´CZp yq; moreover if CZpxq " CZp yq then the manifold is compact and thus consists of finitely many points. They then define for all k P the isomorphism

Θ k : `C M k´n pψ H q, B M ˘Ñ pC F k pH, Jq, Bq by Θ k `Πpxq ˘" ÿ y # px, yq y
where the sum runs over all 1-periodic orbits y of X H of Conley-Zehnder index k. Note that the aforementionned isomorphism is defined with 2 coefficients. It should extend to coefficients after an orientation have been added.

For the other isomorphism, the statement I am trying to prove with V. Ramos is Statement 3.5.2. Let H : S 1 ˆ 2n Ñ be a smooth Hamiltonian function satisfying the conditions 3.

2.3.(2), 3.2.3.(3), and 3.2.3.(4). Then there exists a chain complex isomorphism

Φ : `C M ˚pH q, B M ˘Ñ pC F ˚pH , Jq, Bq
We define this chain map Φ : C M pHq Ñ C F pHq by counting hybrid curves in a similar manner as [START_REF] Abbondandolo | Symplectic homology of convex domains and Clarke's duality[END_REF]. Let Z " r0, 8q ˆS1 and let x, y P pHq. We also let H and X be generic as explained in Section 3.2.1. We define h y b px, y, X q " ! u P H 1 l oc pZ, 2n q | BJ 0 ,H puq " 0, up0, ¨q P W u X pxq, lim sÑ8 ups, ¨q " y

) .

As before, generically, h y b px, yq is a smooth manifold of dimension CZpxq ´CZp yq; moreover if CZpxq " CZp yq then the manifold is compact and thus consists of finitely many points. So we let Φpxq " ÿ µp yq"µpxq # h y b px, yq ¨y.

We still have to prove that Θ and Φ commute with continuation maps and that we can "extend" them to the S 1 -equivariant setup.

Part II.

Symplectic embeddings

Introduction to Part II

If X and X1 are domains 1 in 2n " n , a symplectic embedding from X to X 1 is a smooth embedding ϕ : X ãÑ X 1 such that ϕ ‹ ω " ω, where ω denotes the standard symplectic form on 2n . If there exists a symplectic embedding from X to X 1 , we write X ãÑ s X 1 .

An important problem in symplectic topology is to determine when symplectic embeddings exist, and more generally to classify the symplectic embeddings between two given domains. Modern work on this topic began with the Gromov nonsqueezing theorem [START_REF] Gromov | Pseudoholomorphic curves in symplectic manifolds[END_REF], which asserts that the ball B 2n prq " z P n ˇˇπ|z| 2 ď r ( symplectically embeds into the cylinder If there exists a symplectic embedding X ãÑ s X 1 , then we have the volume constraint volpX q ď volpX 1 q. To obtain more nontrivial obstructions to the existence of symplectic embeddings, one often uses various symplectic capacities. Definitions of the latter term vary; here we define a symplectic capacity to be a function c which assigns to each domain in 2n , possibly in some restricted class, a number cpX q P r0, 8s, satisfying the following axioms:

Z 2n pRq " z P n ˇˇπ|z 1 | 2 ď
(Monotonicity) If X and X 1 are domains in 2n , and if there exists a symplectic embedding X ãÑ s X 1 , then cpX q ď cpX 1 q.

(Conformality) If r is a positive real number then cpr X q " r 2 cpX q.

We say that a symplectic capacity c is normalized if it is defined at least for convex domains and satisfies c `B2n p1q ˘" c `Z2n p1q ˘" 1.

The first example of a normalized symplectic capacity is the Gromov width defined by

c Gr pX q " sup " r ˇˇˇB 2n prq ãÑ s X * .
This trivially satisfies all of the axioms except for the normalization requirement c Gr pZ 2n p1qq, which holds by Gromov non-squeezing theorem. A similar example is the cylindrical capacity defined by

c Z pX q " inf " R ˇˇˇX ãÑ s Z 2n pRq * .
Additional examples of normalized symplectic capacities are the Hofer-Zehnder capacity c HZ defined in [START_REF] Hofer | Symplectic Invariants and Hamiltonian Dynamics[END_REF] and the Viterbo capacity c SH defined in [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF]. There are also useful families of symplectic capacities parametrized by a positive integer k including the Ekeland-Hofer capacities c EH k defined in [EH89, EH90] using calculus of variations; the "equivariant capacities" c CH k defined in [GH18] using positive equivariant symplectic homology; and in the four-dimensional case, the ECH capacities c ECH k defined in [START_REF] Hutchings | Quantitative embedded contact homology[END_REF] using embedded contact homology. For each of these families, the k " 1 capacities c EH 1 , c CH 1 , and c ECH 1 are normalized. For more about symplectic capacities in general we refer to [START_REF] Cieliebak | Quantitative symplectic geometry[END_REF][START_REF] Schlenk | Symplectic embedding problems, old and new[END_REF] and the references therein.

The goal of this second part is to present some results and examples related to the following conjecture, which apparently has been folkore since the 1990s. Lemma 4.0.3. If X is a domain in 2n , then c Gr pX q ď c Z pX q, with equality if and only if all normalized symplectic capacities of X agree (when they are defined for X ).

Proof. It follows from the definitions that if c is a normalized symplectic capacity defined for X , then c Gr pX q ď cpX q ď c Z pX q.

Thus the strong Viterbo conjecture is equivalent to the statement that every convex domain X satisfies c Gr pX q " c Z pX q. We now discuss some examples where it is known that c Gr " c Z . Hermann [Her98] showed that all T n -invariant convex domains do satisfy c Gr " c Z . This generalizes to S 1 -invariant convex domains by the following elementary argument: Proposition 4.0.4 (Y. Ostrover, private communication). Let X be a compact convex domain in n which is invariant under the S 1 action by e iθ ¨z " pe iθ z 1 , . . . , e iθ z n q. Then c Gr pX q " c Z pX q.

Proof. By compactness, there exists z 0 P BX minimizing the distance to the origin. Let r ą 0 denote this minimal distance. Then the ball p|z| ď rq is contained in X , so by definition c Gr pX q ě πr2 .

By applying an element of Upnq, we may assume without loss of generality that z 0 " pr, 0, . . . , 0q. By a continuity argument, we can assume without loss of generality that BX is a smooth hypersurface in 2n . By the distance minimizing property, the tangent plane to BX at z 0 is given by pz ¨p1, 0, . . . , 0q " rq where ¨denotes the real inner product. By convexity, X is contained in 4.1. Structure of Part 2 the half-space pz ¨p1, 0, . . . , 0q ď rq. By the S 1 symmetry, X is also contained in the half-space pz ¨pe iθ , 0, . . . , 0q ď rq for each θ P {2π . Thus X is contained in the intersection of all these half-spaces, which is the cylinder |z 1 | ď r. Then c Z pX q ď πr 2 by definition.

Remark 4.0.5. A similar argument shows that if k ě 3 is an integer and if X Ă n is a convex domain invariant under the {k action by j ¨z " pe 2πi j{k z 1 , . . . , e 2πi j{k z n q, then c Z pX q c Gr pX q ď k π tanpπ{kq.

The role of the convexity hypothesis in Conjecture 4.0.1 is somewhat mysterious. We shall explore to what extent non-convex domains satisfy c Gr " c Z .

Structure of Part 2

Part 2 is structured as follows: Chapter 5 is devoted to toric domains which will provide the framework for all results concerning symplectic embeddings. Chapter 6 presents the ECH capacities, the Ekeland-Hofer capacities and the new capacities from positive S 1 -equivariant symplectic homology as well as computations and applications. Chapter 7 consists of known and new results around Conjecture 4.0.1. Chapter 8 presents a new notion of inequivalence of symplectic embeddings and examples thereof. The Last Chapter, about symplectic convexity, consists essentially of a list of questions and open problems which I intend to work upon.

Toric domains

This chapter introduces toric domains and one of the main result is Proposition 5.1.4 which gives a necessary and sufficient geometric condition for a toric domain to be dynamically convex.

Definition and examples

To describe an important family of examples of symplectic manifolds, let n ě0 denote the set of x P n such that x i ě 0 for all i " 1, . . . , n. Define the moment map µ : n Ñ n ě0 by µpz 1 , . . . , z n q " πp|z 1 | 2 , . . . ,

|z n | 2 q.
If Ω is a domain in n ě0 , define the toric domain

X Ω " µ ´1pΩq Ă n .
The factors of π ensure that volpX Ω q " volpΩq.

(5.1.1)

Example 5.1.1. If a 1 , . . . , a n ą 0, define the ellipsoid Epa 1 , . . . , a n q "

# z P n ˇˇˇn ÿ i"1 π|z i | 2 a i ď 1 + (5.1.2)
We will occasionally find it convenient to extend this to the case that some a i " 0 by taking Ep. . . , 0, . . .q " ∅. The polydisk is defined as Ppa 1 , . . . , a n q " " z P n ˇˇˇπ |z i | 2 ď a i , @i " 1, . . . , n * .

(5.1.3) Also, define the ball Bpaq " Epa, . . . , aq.

π|z 1 | 2 π|z 2 | 2 a 2 a 1 π|z 1 | 2 π|z 2 | 2 a 2 a 1
Example 5.1.2. The four dimensional cylinder, Zpaq :" pz 1 , z 2 q P 2 | π|z 1 | 2 ď a ( is a (limit of) toric domain whose underlying domain in 2 is an "infinite strip".

π|z 1 | 2 π|z 2 | 2 a
Let B `Ω denote the set of µ P BΩ such that µ j ą 0 for all j " 1, . . . , n.

Definition 5.1.3 ([GHR20]).

A monotone toric domain is a compact toric domain X Ω with smooth boundary such that if µ P B `Ω and if v is an outward normal vector at µ, then v j ě 0 for all j " 1, . . . , n.

A strictly monotone toric domain is a compact toric domain X Ω with smooth boundary such that if µ P B `Ω and if v is a nonzero outward normal vector at µ, then v j ą 0 for all j " 1, . . . , n.

Note that monotone toric domains do not have to be convex; see §5.2.4 for details on conditions for toric domains to be convex. (Toric domains that are convex are already covered by Proposition 4.0.4.)

To clarify the hypothesis, let X be a compact domain in 2n with smooth boundary, and suppose that X is "star-shaped", meaning that the radial vector field on 2n is transverse to BX . Then there is a well-defined Reeb vector field R on BX . We say that X is dynamically convex if, in addition to the above hypotheses, every Reeb orbit γ has Conley-Zehnder index CZpγq ě n 1 if nondegenerate, or in general has minimal Conley-Zehnder index1 at least n `1. It was shown by Hofer-Wysocki-Zehnder [HWZ95] that if X is strictly convex, then X is dynamically convex. However the Viterbo conjecture would imply that not every dynamically convex domain is symplectomorphic to a convex domain; see Remark 7.0.2 below.

Proposition 5.1.4 ([GHR20]). (proved in §5.2.4) Let X Ω be a compact star-shaped toric domain in

4 with smooth boundary. Then X Ω is dynamically convex if and only if X Ω is a strictly monotone toric domain.

Two special type of monotone toric domains are defined as follows. Given Ω Ă n ě0 , define p Ω " px 1 , . . . , x n q P n ˇˇp|x 1 |, . . . , |x n |q P Ω ( .

Definition 5.1.5. [GH18]

A convex toric domain is a toric domain X Ω such that p Ω is compact and convex.

It is convenient here to define a (discontinuous) modification r G : Σ Ñ n of the Gauss map G by setting a component of the output to zero whenever the corresponding component of the input is zero. That is, for i " 1, . . . , n we define r Gpwq i "

"

Gpwq i , w i ‰ 0, 0, w i " 0.

(5.2.3)

Observe from (5.2.1) that the Reeb vector field R is tangent to µ ´1pwq. Let Zpwq denote the number of components of w that are equal to zero; then µ ´1pwq is a torus of dimension n ´Zpwq.

It follows from (5.2.1) that if r

Gpwq is a scalar multiple of an integer vector, then µ ´1pwq is foliated by an pn ´Zpwq ´1q-dimensional Morse-Bott family of Reeb orbits; otherwise µ ´1pwq contains no Reeb orbits.

Let V denote the set of nonnegative integer vectors v such that v is a scalar multiple of an element ṽ of the image of the modified Gauss map r G. Given v P V , let dpvq denote the greatest common divisor of the components of v. Let pvq denote the set of dpvq-fold covers of simple Reeb orbits in the torus µ ´1 ´r G ´1 pṽq ¯. Then it follows from the above discussion that the set of Reeb orbits on BX Ω equals \ vPV pvq. Moreover, condition (iii) above implies that v P V whenever ř i v i ď k. Equation (5.2.1) implies that each Reeb orbit γ P pvq has symplectic action pγq " }v} Ω.

Also, we can define a trivialization τ of ξ| γ from (5.2.2), identifying ξ z for each z P γ with a codimension two subspace of 2n with coordinates x i , y i for each i with w i " 0, and coordinates a i , b i for each i with w i ‰ 0. Then, we have

c 1 pγ, τq " n ÿ i"1 v i .
(5.2.4)

Nondegeneracy

We now approximate the convex toric domain X Ω by a nice star-shaped domain X 1 such that λ 0 | BX 1 is nondegenerate. Given v P V with dpvq " 1, one can perturb BX Ω in a neighborhood of the n ´Zpvq dimensional torus swept out by the Reeb orbits in pvq, using a Morse function f on the n ´Zpvq ´1 dimensional torus pvq, to resolve the Morse-Bott family pvq into a finite set of nondegenerate Reeb orbits corresponding to the critical points of f (possibly together with some additional Reeb orbits of much larger symplectic action). Owing to the strict convexity of Σ, each such nondegenerate Reeb orbit γ will have Conley-Zehnder index with respect to the above trivialization τ in the range Zpvq ď CZ τ pγq ď n ´1.

(5.2.5)

It then follows from (5.2.4) that

Zpvq `2 n ÿ i"1 v i ď CZpγq ď n ´1 `2 n ÿ i"1 v i .
(5.2.6)

In particular,

CZpγq " 2k `n ´1 ùñ k ď n ÿ i"1 v i ď k `n ´1 ´Zpvq 2 .
(5.2.7)

Moreover, even if we drop the assumption that dpvq " 1, then after perturbing the orbits in pv{dpvqq as above, the family pvq will still be replaced by nondegenerate orbits each satisfying (5.2.6) (possibly together with additional Reeb orbits of much larger symplectic action), as long as dpvq is not too large with respect to the perturbation. Now choose ε ą 0 small and choose

R ą max # }v} Ω ˇˇˇv P n , ÿ i v i ď k `n ´1 2 + .
We can then perturb X Ω to a nice star-shaped domain X 1 with λ 0 | BX 1 nondegenerate such that for each v P V with }v} Ω ă R, the Morse-Bott family pvq is perturbed as above; each nondegenerate orbit γ arising from each such pvq has symplectic action satisfying pγq ě }v} Ω ´ε;

(5.2.8) and there are no other Reeb orbits of symplectic action less than R.

Proof of Proposition 5.1.4.

Proof. As a preliminary remark, note that if a Reeb orbit has rotation number ρ ą 1, then so does every iterate of the Reeb orbit. Thus X Ω is dynamically convex if and only if every simple Reeb orbit has rotation number ρ ą 1. Since X Ω is star-shaped, Ω itself is also star-shaped. Since X Ω is compact with smooth boundary, B `Ω is a smooth arc from some point p0, bq with b ą 0 to some point pa, 0q with a ą 0.

We can find the simple Reeb orbits and their rotation numbers by the calculations in [CCGF `14, §3.2] and [GH18, §2.2]. The conclusion is the following. There are three types of simple Reeb orbits on BX Ω : (i) There is a simple Reeb orbit corresponding to pa, 0q, whose image is the circle in BX Ω with π|z 1 | 2 " a and z 2 " 0.

(ii) Likewise, there is a simple Reeb orbit corresponding to p0, bq, whose image is the circle in BX Ω with z 1 " 0 and π|z 2 | 2 " b.

(iii) For each point µ P B `Ω where B `Ω has rational slope, there is an S 1 family of simple Reeb orbits whose images sweep out the torus in BX Ω where πp|z 1 | 2 , |z 2 | 2 q " µ.

Let s 1 denote the slope of B `Ω at pa, 0q, and let s 2 denote the slope of B `Ω at p0, bq. Then the Reeb orbit in (i) has rotation number ρ " 1 ´s´1 1 , and the Reeb orbit in (ii) has rotation number ρ " 1 ´s2 . For a Reeb orbit in (iii), let ν " pν 1 , ν 2 q be the outward normal vector to B `Ω at µ, scaled so that ν 1 , ν 2 are relatively prime integers. Then each Reeb orbit in this family has rotation number ρ " ν 1 `ν2 .

If X Ω is strictly monotone, then s 1 , s 2 ă 0, and for each Reeb orbit of type (iii) we have ν 1 , ν 2 ě 1. It follows that every simple Reeb orbit has rotation number ρ ą 1.

Conversely, suppose that every simple Reeb orbit has rotation number ρ ą 1. Applying this to the Reeb orbits (i) and (ii), we obtain that s 1 , s 2 ă 0. Thus B `Ω has negative slope near its endpoints. The arc B `Ω can never go horizontal or vertical in its interior, because otherwise there would be a Reeb orbit of type (iii) with ν " p1, 0q or ν " p0, 1q, so that ρ " 1. Thus X Ω is strictly monotone.

Symplectic capacities

This chapter presents some known capacities (ECH and Ekeland-Hofer) and the capacities I introduced with Michael Hutchings. The latter are defined using positive S 1 -equivariant symplectic homology. A nice feature is that they can be computed explicitely for all convex or concave toric domains. A nice application is to prove (Theorem 6.3.18) that the inclusion gives the "optimal" symplectic embedding of a cube in any concave or convex toric domain.

ECH capacities

Let pY, λq be a non-degenerate 3-dimensional contact manifold. The embedded contact homology (ECH) of Y is the homology of a chain complex (over ) which is generated by the ECH generators. We refer to [START_REF] Hutchings | Lecture notes on embedded contact homology[END_REF] and the reference therein for a complete presentation. Definition 6.1.1. An ECH generator is a finite set of pairs α " tpα i , m i qu where the α i are distinct periodic Reeb orbits, the m i are positive integers and if α i is hyperbolic, then m i " 1.

The symplectic action of an ECH generator is defined as

Ipαq :"

ÿ i m i pα i q
The differential counts certain embedded pseudo-holomorphic curves in ˆY . In general the ECH is a topological invariant of compact three-manifolds, related to Seiberg-Witten Floer homology (see [START_REF] Henry | Embedded contact homology and Seiberg-Witten Floer cohomology[END_REF][START_REF] Hutchings | Lecture notes on embedded contact homology[END_REF]).

The ECH spectrum of Y is a sequence of real numbers 0 ă c EC H 1 pY q ď c EC H 2 pY q ď ¨¨¨ď 8 such that c EC H k pY q is the minimal L such that the grading 2k class in ECH can be represented in the ECH chain complex by a linear combination of ECH generators each having symplectic action ď L. When Y is the boundary of a symplectic manifold X , c EC H k pY q is called the k th ECH capacity of X .

We now recall some facts about ECH capacities which we will use to prove Theorem 7.0.1. Definition 6.1.2. A weakly convex toric domain in 4 is a compact toric domain X Ω Ă 4 such that Ω is convex, and B `Ω is an arc with one endpoint on the positive µ 1 axis and one endpoint on the positive µ 2 axis.

Theorem 6.1.3 ). In four dimensions, let X Ω be a concave toric domain, and let X Ω 1 be a weakly convex toric domain. Then there exists a symplectic embedding intpX

Ω q ãÑ s X Ω 1 if and only if c ECH k pX Ω q ď c ECH k pX Ω 1 q for all k ě 0.
To make use of this theorem, we need some formulas to compute the ECH capacities c ECH k . To start, let us consider a 4-dimensional concave toric domain X Ω . Associated to X Ω is a "weight sequence" W pX Ω q, which is a finite or countable multiset of positive real numbers defined in [CCGF `14], see also [START_REF] Gripp | Symplectic embeddings and the Lagrangian bidisk[END_REF], as follows. Let r be the largest positive real number such that the triangle ∆ 2 prq Ă Ω. We can write Ωz∆ 2 prq " r Ω 1 \ r Ω 2 , where r Ω 1 does not intersect the µ 2 -axis and r Ω 2 does not intersect the µ 1 -axis. It is possible that r Ω 1 and/or r Ω 2 is empty. After translating the closures of r Ω 1 or r Ω 2 by p´r, 0q and p0, ´rq and multiplying them by the matrices

" 1 1 0 1  and " 1 0 1 1 
, respectively, we obtain two new domains Ω 1 and Ω 2 in 2 ě0 such that X Ω 1 and X Ω 2 are concave toric domains. We then inductively define

W pX Ω q " prq Y W pX Ω 1 q Y W pX Ω 2 q, (6.1.1)
where 'Y' denotes the union of multisets, and the term W pX Ω i q is omitted if Ω i is empty.

Let us call two subsets of 2 "affine equivalent" if one can be obtained from the other by the composition of a translation and an element of GLp2, q. If W pX Ω q " pa 1 , a 2 , . . .q, then the domain Ω is canonically decomposed into triangles, which are affine equivalent to the triangles ∆ 2 pa 1 q, ∆ 2 pa 2 q, . . . and which meet only along their edges; the first of these triangles is ∆ 2 prq. See [Hut19, §3.1] for more details. We now recall the "Traynor trick": Proposition 6.1.4. [START_REF] Traynor | Symplectic packing constructions[END_REF] If T Ă 2 ě0 is a triangle affine equivalent to ∆ 2 paq, then there is a symplectic embedding intpB 4 paqq ãÑ s X intpT q .

As a result, there is a symplectic embedding

ž i intpB 4 pa i qq Ă X Ω .
Consequently, by the monotonicity property of ECH capacities, we have

c ECH k ˜ž i intpB 4 pa i qq ¸ď c ECH k pX Ω q. (6.1.2)
Theorem 6.1.5 ([CCGF `14]). If X Ω is a four-dimensional concave toric domain with weight expansion W pX Ω q " pa 1 , a 2 , . . .q, then equality holds in (6.1.2).

To make this more explicit, we know from

[Hut11] that 1 c ECH k ˜ž i intpB 4 pa i qq ¸" sup k 1 `¨¨¨"k ÿ i c ECH k i pintpB 4 pa i qqq (6.1.3) and c ECH k pintpB 4 paqqq " c ECH k pB 4 paqq " d a, (6.1.4)
where d is the unique nonnegative integer such that

d 2 `d ď 2k ď d 2 `3d.
To state the next lemma, given a 1 , a 2 ą 0, define the polydisk Ppa 1 , a 2 q "

" z P 2 ˇˇˇπ |z 1 | 2 ď a 1 , π|z 2 | 2 ď a 2 * .
This is a convex toric domain X Ω 1 where Ω1 is a rectangle of side lengths a 1 and a 2 .

ECH capacities

Lemma 6.1.6. Let X Ω be a four-dimensional concave toric domain. Let pa, 0q and p0, bq be the points where B `Ω intersects the axes. Let µ be a point on B `Ω minimizing µ 1 `µ2 , and write r " µ 1 `µ2 .

Then there exists a symplectic embedding

intpX Ω q ãÑ s Ppr, maxpb, a ´µ1 qq.

Proof. One might hope for a direct construction using some version of "symplectic folding" [Sch99], but we will instead use the above ECH machinery. By Theorem 6.1.3, it is enough to show that

c ECH k pX Ω q ď c ECH k pPpr, maxpb, a ´µ1 qq (6.1.5)
for each nonnegative integer k.

Consider the weight expansion W pX Ω q " pa 1 , a 2 , . . .q where a 1 " r. The decomposition of Ω into triangles corresponding to the weight expansion consists of the triangle ∆ 2 prq, plus some additional triangles in the quadrilateral with corners p0, rq, pµ 1 , µ 2 q, pµ 1 , bq, p0, bq, plus some additional triangles in the quadrilateral with corners pµ 1 , µ 2 q, pr, 0q, pa, 0q, pa, µ 2 q; see Figure 6.1a. The latter quadrilateral is affine equivalent to the quadrilateral with corners pµ 1 , µ 2 q, pr, 0q, pr, a μ1 q, pµ 1 , a´µ 1 q; see Figure 6.1b. This allows us to pack triangles affine equivalent to ∆ 2 pa 1 q, ∆ 2 pa 2 q, . . . into the rectangle with horizontal side length r and vertical side length maxpb, a ´µ1 q. Thus by the Traynor trick, we have a symplectic embedding ž i intpBpa i qq ãÑ s Ppr, maxpb, a ´µ1 qq.

Then Theorem 6.3.14 and the monotonicity of ECH capacities imply (6.1.5). 

Ekeland-Hofer capacities

Let " H 1{2 pS 1 , 2n q. We can decompose " `' 0 ' ´where `and ´are the subsets of the functions that only contain positive and negative Fourier coefficients, respectively, and 0 is the subset of constant functions. Let H : 2n Ñ a Hamiltonian which is quadratic outside of a compact set and whose support contains Ω. For x P , we define

H pxq " ´1 2 ż 1 0 J 9 xptq ¨xptqd t ´ż 1 0 H `t, xptq ˘d t.
For an S 1 invariant subset X Ă , one can define an index αpX q P as follows. Consider the classifying map f : X ˆS1 ES 1 Ñ BS 1 " P 8 . So f induces a map f ˚: H ˚p P 8 q Ñ H S1 pX q " H ˚pX ˆS1 ES 1 q. Let u be a generator of the ring H ˚p P 8 q and define αpX q " maxtk P | f ˚uk ‰ 0u. Now we give an alternative description of the index α. Let U : H S 1 ˚pX q Ñ H S 1 ˚pX q be the map defined by Upγq " f ‹ u X γ. Proposition 6.2.1. Let X be an S 1 -space. Then αpX q " maxtk P |U k ‰ 0u.

Proof. We first remark that there is a map τ U on the dual. We have H S1 pX q » Hom `HS 1 ˚pX q;

˘.

Hom `HS 1 ˚pX q; ˘Hom `HS 1 ˚pX q;

τU o o » H S1 pX q » O O H S1 pX q Y f ‹ puq o o τ U » Y f ‹ puq Fact 6.2.2. U " 0 if and only if τ U " 0.
The fact follows from the "duality" between U and τ U; i.e. x τ U a, by " xa, U by.

Thus, suptk|U k ‰ 0u " suptk|p τ Uq k ‰ 0u " suptk| f ‹ u k ‰ 0u
Indeed, to see the last equality, note first that ě is obvious and ď is because

f ‹ u k Y 1 " f ‹ u k .
Ekeland and Hofer defined a subgroup Γ of the group of homeomorphisms of with compact support (which we recall later) and denoted by S `the unit sphere in `. For an S 1 -invariant subspace ξ Ă , they also defined indpξq " min hPΓ αpX X hpS `qq Finally, they defined c EH k pHq " inf sup H pξq ˇˇindpξq ě k ( .

Let us now recall the definition of the group Γ : a homeomorphism h belongs to Γ if h is of the following form:

hpxq " e γ `px q x ``x 0 `eγ ´px q x ´`K pxq where γ `and γ `are maps Ñ which are required to be continuous, S 1 -invariant and mapping bounded sets into bounded sets while K : Ñ is continuous, S 1 -equivariant, mapping bounded sets to pre-compact sets. Additionally, there must exists a number ρ ą 0 such that, either H pxq ď 0 or }x} ě ρ implies γ `px q " γ ´px q " 0 and Kpxq " 0. Computations of these capacities are known in a few examples. To state these, if a 1 , . . . , a n ą 0, let pM k pa 1 , . . . , a n qq k"1,2,... denote the sequence of positive integer multiples of a 1 , . . . , a n , arranged in nondecreasing order with repetitions. We then have:

• [EH90, Prop. 4] The Ekeland-Hofer capacities of an ellipsoid are given by c EH k pEpa 1 , . . . , a n qq " M k pa 1 , . . . , a n q. (6.2.1)

• [EH90, Prop. 5] The Ekeland-Hofer capacities of a polydisk are given by c EH k pPpa 1 , . . . , a n qq " k ¨minpa 1 , . . . , a n q. (6.2.2)

• Generalizing (6.2.2), it is asserted in [CHLS07, Eq. (3.8)] that if X Ă 2n and X 1 Ă 2n 1 are compact star-shaped domains, then for the (symplectic) Cartesian product X ˆX 1 Ă 2pn`n 1 q , we have

c EH k pX ˆX 1 q " min i`j"k tc EH i pX q `cEH j pX 1 qu, (6.2.3)
where i and j are nonnegative integers and we interpret c EH 0 " 0. to be the infimum over L such that there exists α P C H L pX , λq satisfying δU k´1 ı L α " rX s b rpts P H ˚pX , BX q b H ˚pBS 1 q. (6.3.1)

Capacities from positive

Arbitrary Liouville domains

We now extend the definition of c k to an arbitrary Liouville domain pX , λq. To do so, we use the following procedure to perturb a possibly degenerate Liouville domain to a nondegenerate one. First recall that there is a distinguished Liouville vector field V on X characterized by ı V dλ " λ. Write Y " BX . The flow of V then defines a smooth embedding p´8, 0s ˆY ÝÑ X , (6.3.2) sending t0u ˆY to Y in the obvious way, such that if ρ denotes the p´8, 0s coordinate, then B ρ is mapped to the vector field V . This embedding pulls back the Liouville form λ on X to the 1-form e ρ pλ| Y q on p´8, 0s ˆY . The completion of pX , λq is the pair p p X , p λq defined as follows. First, p X " X Y Y pr0, 8q ˆY q, glued using the identification (6.3.2). Observe that p X has a subset which is identified with ˆY , and we denote the coordinate on this subset by ρ. The 1-form λ on X then extends to a unique 1-form p λ on p X which agrees with e ρ pλ| Y q on ˆY . Now if f : Y Ñ is any smooth function, define a new Liouville domain pX f , λ f q, where

X f " p X ztpρ, yq P ˆY | ρ ą f p yqu,
and λ f is the restriction of p λ to X f . For example, if f " 0, then pX f , λ f q " pX , λq. In general, there is a canonical identification

Y ÝÑ BX f , y Þ ÝÑ p f p yq, yq P ˆY. Under this identification, λ f | BX f " e f λ| Y .
We now consider c k of nondegenerate perturbations of a possibly degenerate Liouville domain. 

sup f ´ă0 c k pX f ´, λ f ´q " inf f `ą0 c k pX f `, λ f `q. (6.3.3)
Here the supremum and infimum are taken over functions f ´: Y Ñ p´8, 0q and f `: Y Ñ p0, 8q respectively such that the contact form e f ˘pλ| Y q is nondegenerate.

(b) If pX , λq is nondegenerate, then the supremum and infimum in (6.3.3) agree with c k pX , λq.

As a result of Lemma 6.3.2, it makes sense to extend Definition 6.3.1 as follows:

Definition 6.3.3. If pX , λq is any Liouville domain, let us define c k pX , λq to be the supremum and infimum in (6.3.3). Definition 6.3.4. Let pX , λq and pX 1 , λ 1 q be Liouville domains of the same dimension. A generalized Liouville embedding pX , λq Ñ pX 1 , λ 1 q is a symplectic embedding ϕ : pX , dλq Ñ pX 1 , dλ 1 q such that

" pϕ ‹ λ 1 ´λq ˇˇBX ‰ " 0 P H 1 pBX ; q.
Of course, if H 1 pBX ; q " 0, for example if X is a nice star-shaped domain in 2n , then every symplectic embedding is a generalized Liouville embedding. Theorem 6.3.5. The functions c k of Liouville domains satisfy the following axioms:

(Conformality) If pX , λq is a Liouville domain and r is a positive real number, then cpX , rλq " r cpX , λq.

(Increasing) c 1 pX , λq ď c 2 pX , λq ď ¨¨¨ď 8.

(Restricted Monotonicity) If there exists a generalized Liouville embedding pX , λq Ñ pX 1 , λ 1 q, then c k pX , λq ď c k pX 1 , λ 1 q.

(Contractible Reeb Orbits) If c k pX , λq ă 8, then c k pX , λq " pγq for some Reeb orbit γ of λ| BX which is contractible2 in X .

Remark 6.3.6. In the case where X is a star-shaped domain in 2n and if λ 0 | BX is nondegenerate, then c k pX q " pγq for some Reeb orbit γ of λ 0 | BX with CZpγq " 2k `n ´1.

Remark 6.3.7. Monotonicity does not extend from generalized Liouville embeddings to arbitrary symplectic embeddings: in some cases there exists a symplectic embedding pX , dλq Ñ pX 1 , dλ 1 q even though c k pX , λq ą c k pX 1 , λ 1 q. For example, suppose that T Ă X 1 is a Lagrangian torus. Let λ T denote the standard Liouville form on the cotangent bundle T ˚T . By the Weinstein Lagrangian tubular neighborhood theorem, there is a symplectic embedding pX , dλq Ñ pX 1 , dλ 1 q, where X Ă T ˚T is the unit disk bundle for some flat metric on T , and λ " λ T | X . Then pX , λq is a Liouville domain.

But λ| BX has no Reeb orbits which are contractible in X , so by the Contractible Reeb Orbits axiom, c k pX , λq " 8 for all k. Note that the symplectic embedding pX , dλq Ñ pX 1 , dλ 1 q is a generalized Liouville embedding if and only if T is an exact Lagrangian torus in pX 1 , λ 1 q, that is λ 1 | T is exact. The Restricted Monotonicity axiom then tells us that if pX 1 , λ 1 q is a Liouville domain with c 1 pX 1 , λ 1 q ă 8, then pX 1 , λ 1 q does not contain any exact Lagrangian torus. Remark 6.3.8. The functions c k are defined for disconnected Liouville domains. However, it follows from the definition that

c k ˜m ž i"1 pX i , λ i q ¸" max i"1,...,m c k pX i , λ i q.
As a result, Restricted Monotonicity for embeddings of disconnected Liouville domains does not tell us anything more than it already does for their connected components. Remark 6.3.9. One can ask whether, by analogy with ECH capacities [Hut11, Prop. 1.5], the existence of a generalized Liouville embedding

š m i"1 pX i , λ i q Ñ pX 1 , λ 1 q implies that m ÿ i"1 c k i pX i , λ i q ď c k 1 `¨¨¨`k m pX 1 , λ 1 q (6.3.4)
for all positive integers k 1 , ¨¨¨, k m . We have heuristic reasons to expect this when the k i are all multiples of n ´1. However it is false more generally. For example, in 2n dimensions, the Traynor trick [START_REF] Traynor | Symplectic packing constructions[END_REF] can be used to symplectically embed the disjoint union of n 2 copies of the ball Bp1{2 ´ q into the ball Bp1q, for any ą 0. If (6.3.4) is true with all k i " 1, then we obtain n 2 p1{2 ´ q ď n.

But this is false when n ą 2 and ą 0 is small enough.

Computations

One can compute the capacities c k for many examples of star-shaped domains in 2n , using only the axioms in Theorem 6.3.5. We now compute the capacities c k of a convex toric domain X Ω in 2n . If v P n ě0 is a vector with all components nonnegative, define 3 }v} Ω " maxtxv, wy | w P Ωu (6.3.5)

where x¨, ¨y denotes the Euclidean inner product. Let denote the set of nonnegative integers.

Theorem 6.3.10 ([GH18]). Suppose that X Ω is a convex toric domain in 2n . Then

c k pX Ω q " min # }v} Ω ˇˇˇv " pv 1 , . . . , v n q P n , n ÿ i"1 v i " k + . (6.3.6)
In fact, (6.3.6) holds for any function c k defined on nice star-shaped domains in 2n and satisfying the axioms in Theorem 6.3.5.

Example 6.3.11. The polydisk Ppa 1 , . . . , a n q is a convex toric domain X Ω , where Ω is the rectangle

Ω " tx P n ě0 | x i ď a i , @i " 1, . . . , nu. In this case }v} Ω " n ÿ i"1 a i v i .
It then follows from (6.3.6) that c k pPpa 1 , . . . , a n qq " k ¨minta 1 , . . . , a n u. Example 6.3.12. The ellipsoid Epa 1 , . . . , a n q is a convex toric domain X Ω , where Ω is the simplex

Ω " # x P n ě0 ˇˇˇn ÿ i"1 x i a i ď 1 + .
In this case }v} Ω " max i"1,...,n a i v i .

Then (6.3.6) gives c k pEpa 1 , . . . , a n qq " min

ř i v i "k max i"1,...,n a i v i .
It is a combinatorial exercise 4 to check that

min ř i v i "k max i"1,...,n a i v i " M k pa 1 , . . . , a n q. (6.3.7)
We conclude that c k pEpa 1 , . . . , a n q " M k pa 1 , . . . , a n q. (6.3.8) 3 The reason for this notation is as follows. Let } ¨}Ω denote the norm on n whose unit ball is p Ω. Then in equation (6.3.5), } ¨}Ω denotes the dual norm on p n q ˚, where the latter is identified with n using the Euclidean inner product. 4 To do the exercise, by a continuity argument we may assume that a i {a j is irrational when i ‰ j, so that the positive integer multiples of the numbers a i are distinct. If v P n and ř i v i " k, then the k numbers ma i where 1 ď i ď n and 1 ď m ď v i are distinct, which implies that the left hand side of (6.3.7) is greater than or equal to the right hand side. To prove the reverse inequality, if L " M k pa 1 , . . . , a n q, then the numbers v i " tL{a i u satisfy ř i v i " k and max i"1,...,n a i v i " L.

Comparing the above two examples with equations (6.2.1) and (6.2.2) suggests that our capacities c k may agree with the Ekeland-Hofer capacities c EH k : Conjecture 6.3.13. Let X be a compact star-shaped domain in 2n . Then c k pX q " c EH k pX q for every positive integer k.

We can also compute the capacities c k of another family of examples: concave toric domains. Suppose that X Ω is a concave toric domain. Let Σ denote the closure of the set BΩX n ą0 . Similarly to (6.3.5), if v P n ě0 , define5 rvs Ω " min xv, wy ˇˇw P Σ ( . (6.3.9) Theorem 6.3.14

([GH18]). If X Ω is a concave toric domain in 2n , then c k pX Ω q " max # rvs Ω ˇˇˇv P n ą0 , n ÿ i"1 v i " k `n ´1+ . (6.3.10)
Note that in (6.3.10), all components of v are required to be positive, while in (6.3.6), we only required that all components of v be nonnegative. Example 6.3.15. Let us check that (6.3.10) gives the correct answer when X Ω is an ellipsoid Epa 1 , . . . , a n q. Similarly to Example 6.3.12, we have

rvs Ω " min i"1,...,n a i v i .

Thus, we need to check that

max ř i v i "k`n´1 min i"1,...,n a i v i " M k pa 1 , . . . , a n q (6.3.11)
where, unlike Example 6.3.12, now all components of v must be positive integers. This can be proved similarly to (6.3.7).

A quick application of Theorem 6.3.14, pointed out by Schlenk [Sch18, Cor. 11.5], is to compute the Gromov width of any concave toric domain6 :

Corollary 6.3.16 ([GH18]). If X Ω is a concave toric domain in 2n , then c Gr pX Ω q " maxta | Bpaq Ă X Ω u.
Proof. Let a max denote the largest real number a such that Bpaq Ă X Ω . By the definition of the Gromov width c Gr , we have c Gr pX Ω q ě a max . To prove the reverse inequality c Gr pX Ω q ď a max , suppose that there exists a symplectic embedding Bpaq Ñ X Ω ; we need to show that a ď a max . By equation (6.3.8), the monotonicity property of c 1 , and Theorem 6.3.14, we have

a " c 1 pBpaqq ď c 1 pX Ω q " rp1, . . . , 1qs Ω " min # n ÿ i"1 w i ˇˇˇw P Σ + " a max .

Application to cube capacities

We now use the above results to solve some symplectic embedding problems where the domain is a cube.

Given δ ą 0, define the cube l n pδq " Ppδ, . . . , δq Ă n .

Equivalently,

l n pδq " " z P n ˇˇˇm ax i"1,...,n π|z i | 2 ( ď δ * .
Definition 6.3.17 ([GH18]). Given a 2n-dimensional symplectic manifold pX , ωq, define the cube capacity c l pX , ωq " sup tδ ą 0 | there exists a symplectic embedding l n pδq ÝÑ pX , ωqu .

It is immediate from the definition that c l is a symplectic capacity.

Theorem 6.3.18 ([GH18]). Let X Ω Ă n be a convex toric domain or a concave toric domain. Then c l pX Ω q " maxtδ | pδ, . . . , δq P Ωu.

That is, c l pX Ω q is the largest δ such that l n pδq is a subset of X Ω ; one cannot do better than this obvious symplectic embedding by inclusion.

Since the proof of Theorem 6.3.18 is short, we will give it now. We need to consider the nondisjoint union of n symplectic cylinders, L n pδq "

" z P n ˇˇˇm in i"1,...,n π|z i | 2 ( ď δ * .
Lemma 6.3.19 ([GH18]). c k pL n pδqq " δpk `n ´1q.

Proof. Observe that L n pδq " X Ω δ where

Ω δ " " x P n ě0 ˇˇˇm in i"1,...,n x i ď δ * .
As such, Ω δ is the union of a nested sequence of concave toric domains. By an exhaustion argument, the statement of Theorem 6.3.14 is valid for X Ω δ . Similarly to Example 6.3.11, we have

rvs Ω δ " δ n ÿ i"1 v i .
The lemma then follows from equation (6.3.10).

Proposition 6.3.20 ([GH18]

). c l pL n pδqq " δ.

Proof. We have l n pδq Ă L n pδq, so by the definition of c l , it follows that c l pL n pδqq ě δ.

To prove the reverse inequality c l pL n pδqq ď δ, suppose that there exists a symplectic embedding l n pδ 1 q Ñ L n pδq; we need to show that δ 1 ď δ. By the Monotonicity property of the capacities c k , we know that c k pl n pδ 1 qq ď c k pL n pδqq

Results towards the strong Viterbo conjecture

In this chapter, we prove the strong Viterbo conjecture for all dynamically convex toric domains in 4 . We then study non convex domains and check whether they satisfy the equality of all capacities. The last section of this chapter is devoted to higher dimensions.

Theorem 7.0.1 ([GHR20]). If X Ω is a monotone toric domain in 4 , then c GrpX q " c Z pX q.

Proof. Let r be the largest positive real number such that ∆ 2 prq Ă Ω. We have B 4 prq Ă X Ω , so r ď c Gr pX Ω q, and we just need to show that c Z pX Ω q ď r.

Let µ be a point on BΩ `such that µ 1 `µ2 " r. By an approximation argument, we can assume that X Ω is strictly monotone, so that the tangent line to B `Ω at µ is not horizontal or vertical. Then we can find a, b ą r such that Ω is contained in the quadrilateral with vertices p0, 0q, pa, 0q, pµ 1 , µ 2 q, and p0, bq. It then follows from Lemma 6.1.6 that there exists a symplectic embedding intpX Ω q ãÑ s Ppr, Rq for some R ą 0. Since Ppr, Rq Ă Z 4 prq, it follows that c Z pX Ω q ď r.

By proposition 5.1.4, Theorem 7.0.1 implies that all dynamically convex toric domains in 4 have c Gr " c Z .

If X is a star-shaped domain with smooth boundary, let A min pX q denote the minimal period of a Reeb orbit on BX .

Remark 7.0.2. Without the toric hypothesis, not all dynamically convex domains in 4 have c Gr " c Z . In particular, it is shown in [START_REF] Abbondandolo | Sharp systolic inequalities for Reeb flows on the three-sphere[END_REF] that for ε ą 0 small, there exists a dynamically convex domain X in 4 such that A min pX q 2 {p2 volpX qq ě 2 ´ε. One has c CH 1 pX q ě A min pX q by [GH18, Thm. 1.1], but c Gr pX q 2 ď 2 volpX q by the volume constraint. Thus c Z pX q c Gr pX q ě ? 2 ´ε. For monotone toric domains in higher dimensions, we do not know how to prove that all normalized symplectic capacities agree, but we can at least prove the following:

Theorem 7.0.4 ([GHR20]). (proved in §7.3) If X Ω is a monotone toric domain in 2n , then c Gr pX Ω q " c CH 1 pX Ω q. (7.0.1)
Returning to convex domains, some normalized symplectic capacities are known to agree (not the Gromov width or cylindrical capacity however), as we review in the following theorem: Theorem 7.0.5 (Ekeland, Hofer, Zehnder, Abbondandolo-Kang, Irie). If X is a convex domain in 2n , then:

(a) c EH 1 pX q " c HZ pX q " c SH pX q " c CH 1 pX q.

(b) If in addition BX is smooth1 , then all of the capacities in (a) agree with A min pX q.

Proof. Part (b) implies part (a) by a continuity argument. Part (b) was shown for c HZ pX q by Hofer-Zehnder in [START_REF] Hofer | Symplectic Invariants and Hamiltonian Dynamics[END_REF] and for c SH pX q by Irie [Iri19] and Abbondandolo-Kang [START_REF] Abbondandolo | Symplectic homology of convex domains and Clarke's duality[END_REF]. The agreement of these two capacities with c CH 1 pX q for convex domains now follows from the combination of [GH18, Theorem 1.24] and [GS18, Lemma 3.2], as explained by Irie in [Iri19, Remark 2.15]. Finally, part (b) for c EH 1 pX q has been claimed and understood for a long time, but since we could not find a complete proof in the literature we give one here in §7.2.

A family of non-monotone toric examples

We now study a family of examples of non-monotone toric domains, and we determine when they satisfy the conclusions of Conjecture 4.0.1 or Conjecture 4.0.2.

For 0 ă a ă 1{2, let Ω a be the convex polygon with corners p0, 0q, p1 ´2a, 0q, p1 ´a, aq, pa, 1 ´aq and p0, 1 ´2aq, and write X a " X Ω a . Then X a is a weakly convex (but not monotone) toric domain.

Proposition 7.1.1 ([GHR20]

). Let 0 ă a ă 1{2. Then the Gromov width and cylindrical capacity of X a are c Gr pX a q " minp1 ´a, 2 ´4aq, (7.1.1) c Z pX a q " 1 ´a.

(7.1.2)

Corollary 7.1.2. Let 0 ă a ă 1{2 and let X a be as above. Then:

(a) The conclusion of Conjecture 4.0.1 holds for X a , i.e. all normalized symplectic capacities defined for X a agree, if and only if a ď 1{3.

(b) The conclusion of Conjecture 4.0.2 holds for X a , i.e. every normalized symplectic capacity c defined for X a satisfies cpX a q ď a 2 VolpX a q, if and only if a ď 2{5.

Proof of Corollary 7.1.2. (a) By Lemma 4.0.3, we need to check that c Gr pX a q " c Z pX a q if and only if a ď 1{3. This follows directly from (7.1.1) and (7.1.2). (b) Since c Z is the largest normalized symplectic capacity, the conclusion of Conjecture 4.0.2 holds for X a if and only if

c Z pX a q ď b 2 VolpX a q. (7.1.3)
By equation (5.1.1), we have

VolpX Ω a q " 1 ´4a 2 2 .

It follows from this and (7.1.2) that (7.1.3) holds if and only if a ď 2{5.

To prove Proposition 7.1.1, we will use the following formula for the ECH capacities of a weakly convex toric domain X Ω . Let r be the smallest positive real number such that Ω Ă ∆ 2 prq. Then ∆ 2 prqzΩ " r Ω 1 \ r Ω 2 where r Ω 1 does not intersect the µ 2 -axis and r Ω 2 does not intersect the µ 1 -axis. It is possible that r Ω 1 and/or r Ω 2 is empty. As in the discussion preceding (6.1.1), the closures of r Ω 1 and r Ω 2 are affine equivalent to domains Ω 1 and Ω 2 such that X Ω 1 and X Ω 2 are concave toric domains. Denote the union (as multisets) of their weight sequences by

W pX Ω 1 q Y W pX Ω 2 q " pa 1 , . . .q.
We then have:

Theorem 7.1.3 (Choi-Cristofaro-Gardiner [CG14]). If X Ω is a four-dimensional weakly convex toric domain as above, then c ECH k pX Ω q " inf lě0 # c ECH k`l `B4 prq ˘´c ECH l ˜ž i B 4 pa i q ¸+ . (7.1.4)
We need one more lemma, which follows from [LMS13, Cor. 4.2]:

Lemma 7.1.4. Let µ 1 , µ 2 ě a ą 0.
Let Ω be the "diamond" in 2 ě0 given by the convex hull of the points pµ 1 ˘a, µ 2 q and pµ 1 , µ 2 ˘aq. Then there is a symplectic embedding

intpB 4 p2aqq ãÑ s X Ω .
Proof of Proposition 7.1.1. To prove (7.1.1), we first describe the ECH capacities of X a . In the formula (7.1.4) for X a , we have r " 1, while the weight expansions of Ω 1 and Ω 2 are both pa, aq; the corresponding triangles are shown in Taking k " 1 and pl 1 , . . . , l 4 q " p1, 0, 0, 0q in equation (7.1.5), we get

c ECH 1
pX Ω a q ď 1 ´a. (7.1.6)

Taking k " 5 and pl 1 , . . . , l 4 q " p1, 1, 1, 1q in equation (7.1.5), we get

c ECH 1
pX Ω a q ď 2 ´4a. (7.1.7) By (7.1.6) and (7.1.7) and the fact that c ECH 1 is a normalized symplectic capacity, we conclude that c Gr pX Ω a q ď minp1 ´a, 2 ´4aq. (7.1.8)

To prove the reverse inequality to (7.1.8), suppose first that 0 ă a ď 1{3. It is enough to prove that there exists a symplectic embedding intpB 4 p1 ´aqq ãÑ This embedding exists by the Traynor trick (Proposition 6.1.4) using the triangles shown in Figure 7.1(a). Finally, when 1{3 ď a ă 1{2, it is enough to show that there exists a symplectic embedding intpB 4 p2 ´4aqq ãÑ s X Ω a . This exists by Lemma 7.1.4 using the diamond shown in Figure 7.1(b). This completes the proof of (7.1.1). Equation (7.1.2) follows from Theorem 7.1.5 below.

Theorem 7.1.5 ([GHR20]). Let X Ω Ă 4 be a weakly convex toric domain, see Definition 6.1.2. For j " 1, 2, let M j " maxtµ j | µ P Ωu.

Assume that there exists pM 1 , µ 2 q P B `Ω with µ 2 ď M 1 , and that there exists pµ 1 , M 2 q P B `Ω with µ 1 ď M 2 . Then c Z pX Ω q " minpM 1 , M 2 q.

That is, under the hypotheses of the theorem, the optimal symplectic embedding of X Ω into a cylinder is the inclusion of X Ω into either pπ|z 1 | 2 ď M 1 q or pπ|z 2 | 2 ď M 2 q.

A family of non-monotone toric examples

Proof. From the above inclusions we have c Z pX Ω q ď minpM 1 , M 2 q. To prove the reverse inequality, suppose that there exists a symplectic embedding X Ω ãÑ s Z 4 pRq.

(7.1.10)

We need to show that R ě minpM 1 , M 2 q. To do so, we will use ideas2 from [START_REF] Hutchings | Beyond ECH capacities[END_REF].

Let ε ą 0 be small. Let pA, 0q and p0, Bq denote the endpoints of B `Ω. By an approximation argument, we can assume that B `Ω is smooth, and that B `Ω has positive slope less than ε near pA, 0q and slope greater than ε ´1 near p0, Bq. As in the proof of Proposition 5.1.4, there are then three types of Reeb orbits on BX Ω :

(i) There is a simple Reeb orbit whose image is the circle with π|z 1 | 2 " A and z 2 " 0. This Reeb orbit has symplectic action (period) equal to A, and rotation number 1 ´ε´1 .

(ii) There is a simple Reeb orbit whose image is the circle with z 1 " 0 and π|z 2 | 2 " B. This Reeb orbit has symplectic action B and rotation number 1 ´ε´1 .

(iii) For each point µ P B `Ω where B `Ω has rational slope, there is an S 1 family of simple Reeb orbits in the torus where πp|z 1 | 2 , |z 2 | 2 q " µ. If ν " pν 1 , ν 2 q is the outward normal vector to B `Ω at µ, scaled so that ν 1 , ν 2 are relatively prime integers, then these Reeb orbits have rotation number ν 1 `ν2 and symplectic action µ ¨ν, see [GH18, §2.2].

We claim now that (*) Any Reeb orbit on BX Ω with positive rotation number has symplectic action at least minpM 1 , M 2 q.

To prove this claim, we only need to check the type (iii) simple Reeb orbits where ν 1 `ν2 ě 1. We must have ν 1 ě 1 or ν 2 ě 1. If ν 1 ě 1, then by the hypotheses of the theorem there exists µ 1 2 such that pM 1 , µ 1 2 q P B `Ω and M 1 ě µ 1 2 . Since Ω is convex and ν is an outward normal at µ, the symplectic action

µ ¨ν ě pM 1 , µ 1 2 q ¨ν " M 1 `pν 1 ´1qpM 1 ´µ1 2 q `pν 1 `ν2 ´1qµ 1 2 ě M 1 .
Likewise, if ν 2 ě 1, then the symplectic action µ ¨ν ě M 2 . Now starting from the symplectic embedding (7.1.10), by replacing X Ω with an appropriate subset and replacing Z 4 pRq with an appropriate superset, we obtain a symplectic embedding X 1 ãÑ s intpZ 1 q, where:

• Z 1 is an ellipsoid whose boundary has one simple Reeb orbit γ `with symplectic action pγ `q " R `ε and Conley-Zehnder index CZpγ `q " 3, another simple Reeb orbit with very large symplectic action, and no other simple Reeb orbits.

• X 1 is a (non-toric) star-shaped domain with smooth boundary, all of whose Reeb orbits are nondegenerate. Every Reeb orbit on BX 1 with rotation number greater than or equal to 1 has action at least minpM 1 , M 2 q ´ε.

The symplectic embedding gives rise to a strong symplectic cobordism W whose positive boundary is BZ 1 and whose negative boundary is BX 1 . The argument in [START_REF] Hutchings | Beyond ECH capacities[END_REF]§6] shows that for a generic "cobordism-admissible" almost complex structure J on the "completion" of W , there exists an embedded J-holomorphic curve u with one positive end asymptotic to the Reeb orbit γ `in BZ 1 , negative ends asymptotic to some Reeb orbits γ 1 , . . . , γ m in BX 1 , and Fredholm index indpuq " 0. The Fredholm index is computed by the formula indpuq " 2g `"CZpγ `q ´1‰ ´m ÿ i"1 rCZpγ i q ´1s (7.1.11)

where g denotes the genus of u. Furthermore, since J-holomorphic curves decrease symplectic action, we have pγ `q ě m ÿ i"1 pγ i q.

(7.1.12)

We claim now that at least one of the Reeb orbits γ i has action at least minpM 1 , M 2 q ´ε. Then the inequality (7.1.12) gives R `ε ě minpM 1 , M 2 q ´ε, and since ε ą 0 was arbitrarily small, we are done. To prove the above claim, suppose to the contrary that all of the Reeb orbits γ i have action less than minpM 1 , M 2 q ´ε. Then all of the Reeb orbits γ i have rotation number ρpγ i q ă 1, which means that they all have Conley-Zehnder index CZpγ i q ď 1. It now follows from (7.1.11) that indpuq ě 2, which is a contradiction3 .

The first Ekeland-Hofer capacity

The goal of this section is to (re)prove the following theorem. This is well-known in the community and is attributed to Ekeland, Hofer and Zehnder [START_REF] Ekeland | Symplectic topology and Hamiltonian dynamics[END_REF][START_REF] Hofer | Periodic solutions on hypersurfaces and a result by C. Viterbo[END_REF]. It was first mentioned by Viterbo in [Vit89, Proposition 3.10].

Theorem 7.2.1 (Ekeland-Hofer-Zehnder). Let W Ă 2n be a compact convex domain with smooth boundary. Then c EH 1 pW q " A min pW q.

Proof. Since W is star-shaped, there is a unique differentiable function r : 2n Ñ which is C 8 in 2n zt0u satisfying rpczq " c 2 rpzq for c ě 0 such that W " tz P 2n | rpzq ď 1u, BW " tz P 2n | rpzq " 1u.

Let α " A min pW q and fix ε ą 0. Let f P C 8 ě0 p q be a convex function such that f prq " 0 for r ď 1 and f prq " pα `εqpr ´1q for r ě 2. In particular, f prq ě pα `εqpr ´1q, for all r.

(7.2.1) 

µ 1 µ 2 ∆ 2 paq Lpµ 1 , µ 2 q Ω Figure 7.
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By [GH18, Lemma 4.7], the first equivariant capacity is given by

c C H 1 pX q " inftL | C H L n`1 pX q ‰ 0u. (7.3.3)
Since X is convex, BX is dynamically convex, which implies that the three elements of the lower triangle in Equation (7.3.2) vanish in degrees n ´1 and n ´2.

SH S 1 ,ε n´2 pX q " 0 " SH S 1 ,ε n´1 pX q SH S 1 ,ε n´2 pX q " 0 " SH S 1 ,ε n´1 pX q C H L n´2 pX q " 0 " C H L n´1 pX q
Thus, in degree n, the maps a, b and c are isomorphisms. Therefore inftL | C H L n`1 pX q ‰ 0u " inftL | SH `,L n`1 pX q ‰ 0u. (7.3.4)

Knotted embeddings

Recent years have seen a significant improvement in our understanding of when one region in 4 symplectically embeds into another, see e.g. [START_REF] Mcduff | Symplectic embeddings of 4-dimensional ellipsoids[END_REF], [START_REF] Mcduff | The embedding capacity of 4-dimensional symplectic ellipsoids[END_REF], [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF]. Complementing this existence question, one can ask whether embeddings are unique up to an appropriate notion of equivalence; in particular, if A Ă U Ă 4 this entails asking whether every symplectic embedding A ãÑ U is equivalent to the inclusion. Somewhat less is known about this uniqueness question, though there are positive results in [START_REF] Mcduff | Symplectic embeddings of 4-dimensional ellipsoids[END_REF], [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF] and negative results in [START_REF] Floer | Applications of symplectic homology[END_REF], [START_REF] Hind | Symplectic folding and nonisotopic polydisks[END_REF].

We showed with M. Usher [GU19] that modern techniques of constructing symplectic embeddings B ãÑ U often give rise, when restricted to certain subsets A Ă B X U, to embeddings A ãÑ U that are distinct from the inclusion in a strong sense. The subsets of 4 (and in some cases more generally in 2n -n ) that we consider are toric domains, see §5.

We use the following standard notational convention:

Definition 8.0.1. If A Ă n and α ą 0, we define αA " t ? αa|a P Au.

(The square root ensures that any capacity c will obey cpαAq " αcpAq, and also that we have Epαa 1 , . . . , αa n q " αEpa 1 , . . . , a n q and similarly for polydisks.)

For any subset B Ă n let B ˝denote the interior of B. We were mostly concerned with symplectic embeddings X ãÑ αX ˝where X is a concave or convex toric domain and α ą 1. The definitions imply that concave or convex toric domains X always satisfy X Ă αX ˝for all α ą 1, so one such embedding is given by the inclusion of X into αX ˝. However we will find that in many cases there are other such embeddings that are inequivalent to the inclusion in the following sense: Definition 8.0.2. Let A and U be symplectic manifolds, and let ϕ 1 and ϕ 2 be symplectic embeddings A ãÑ U . We say ϕ 1 and ϕ 2 are equivalent if there exists a symplectomorphism Ψ : U Ñ U such that Ψ ˝ϕ1 pAq " ϕ 2 pAq. Otherwise they are called inequivalent.

In the particular case of nested domains in n , we introduced the notion of knottedness as follows.

Definition 8.0.3. Let A Ă U Ă n , with A closed and U open, and let φ : A Ñ U be a symplectic embedding. 1 We say that φ is unknotted if there is a symplectomorphism Ψ : U Ñ U such that ΨpAq " φpAq. We say that φ is knotted if it is not unknotted.

Note that we do not require the map Ψ to be compactly supported, or Hamiltonian isotopic to the identity, or even to extend continuously to the closure of U; accordingly our definition of knottedness is in principle more restrictive than others that one might use.

In [GU19] we have proven the existence of knotted embeddings from X to αX ˝for many toric domains X Ă 2 and suitable α ą 1. (i) All convex toric domains X such that, for some c ą 0, B 4 pcq Ĺ X Ă Ppc, cq.

(ii) All concave toric domains X Ω such that, for some c ą 0, tpx, yq P r0, 8q 2 | mint2x `y, x `2 yu ď cu Ă Ω Ĺ tpx, yq P r0, 8q 2 |x `y ď cu.

(iii) All complex p balls tpw, zq P 2 ||w| p `|z| p ď r p u for p ą log 9 log 6 « 1.23, except for p " 2. (iv) All polydisks Ppa, bq for a ď b ă 2a.

Then there exist α ą 1 and a knotted embedding φ : X Ñ αX ˝.

For context, recall that McDuff showed in [START_REF] Mcduff | Blow ups and symplectic embeddings in dimension 4[END_REF] that the space of symplectic embeddings from one four-dimensional ball to another is always connected; by the symplectic isotopy extension theorem this implies that symplectic embeddings B 4 pcq Ñ αB 4 pcq ˝can never be knotted. (In particular the exclusion of B 4 pcq from each of the classes (i),(ii),(iii) above is necessary.) McDuff's result was later extended to establish the connectedness of the space of embeddings of one fourdimensional ellipsoid into another [START_REF] Mcduff | Symplectic embeddings of 4-dimensional ellipsoids[END_REF] or of a four-dimensional concave toric domain into a convex toric domain [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF]. So Theorem 8.0.4 reflects that embeddings from concave toric domains into concave ones, or convex toric domains into convex ones, can behave differently than embeddings from concave toric domains into convex ones.

We do not know whether the bound b ă 2a in part (iv) of Theorem 8.0.4 is sharp. The bound p ą log 9 log 6 in part (iii) is not sharp; we are aware of extensions of our methods that lower this bound slightly, though in the interest of brevity we do not include them. Note that the domains in part (iii) are concave when p ă 2 and convex when p ą 2 (in the latter case the result follows directly from part (i)).

While our primary focus in this paper is on domains in 4 , we show in Theorem 8.0.5 that the embeddings from Cases (i) and (iv) of Theorem 8.0.4 remain knotted after being trivially extended to the product of X Ω with an ellipsoid of sufficiently large Gromov width. It remains an interesting problem to find knotted embeddings involving broader classes of high-dimensional domains that do not arise from lower-dimensional constructions.

Theorem 8.0.5. Let X Ă 2 belong to any of the following classes of domains:

(i) All convex toric domains X such that, for some c ą 0, B 4 pcq Ĺ X Ă Ppc, cq.

(ii) All polydisks Ppa, bq for a ď b ă 2a.

Then there exist numbers α ą 1 and R ą 0 and a knotted embedding φ : X ˆEpb 1 , . . . , b n´2 q Ñ α `X ˆEpb 1 , . . . , b n´2 q ˘˝for any b 1 , . . . , b n´2 with each b i ě R.

By the way, embeddings such as those in Theorem 8.0.4 can only be knotted for a limited range of α, since the extension-after-restriction principle [Sch05, Proposition A.1] implies that for any compact set X Ă n which is star-shaped with respect to the origin and contains the origin in its interior and any symplectic embedding φ : X Ñ n , there is α 0 ą 1 such that φpX q Ă α 0 X ˝and such that φ is unknotted when considered as a map to αX ˝for all α ě α 0 . The values for α that we find in the proof of Theorem 8.0.4 vary from case to case, but in each instance lie between 1 and 2. This suggests the: Question 8.0.6. Do there exist a domain X Ă 2n , a number α ą 2, and a knotted symplectic embedding φ : X Ñ αX ˝? Theorem 8.0.4 concerns embeddings of a domain X into the interior of a dilate αX ˝of X ; of course it is also natural to consider embeddings in which the source and target are not simply related by a dilation. Our methods in principle allow for this, though the proofs that the embeddings are knotted become more subtle. We carried this out for embeddings of four-dimensional polydisks into other polydisks, and in particular we proved the following: Theorem 8.0.7. Given any y ě 1, there exist polydisks Ppa, bq and Ppc, dq and knotted embeddings of Ppa, bq into Pp1, yq ˝and of Pp1, yq into Ppc, dq ˝.

Theorem 8.0.7 and Case (iv) of Theorem 8.0.4 should be compared to [FHW94, Section 3.3], in which it is shown that, if a ď b ă c but a `b ą c, then the embeddings φ 1 , φ 2 : Ppa, bq Ñ Ppc, cq given by φ 1 pw, zq " pw, zq and φ 2 pw, zq " pz, wq are not isotopic through compactly supported symplectomorphisms of Ppc, cq ˝. However our embeddings are different than these; in fact the embeddings from [START_REF] Floer | Applications of symplectic homology[END_REF] are not even knotted in our (rather strong) sense since there is a symplectomorphism of the open polydisk Ppc, cq ˝mapping Ppa, bq to Ppb, aq. If one instead considers embeddings into Ppc, dq with c ă d chosen such that Ppc, dq ˝contains both Ppa, bq and Ppb, aq and a `b ą d, then Ppa, bq and Ppb, aq are inequivalent to each other under the symplectomorphism group of Ppc, dq ˝. However in situations where this construction and the construction underlying Theorem 8.0.4 (iv) and Theorem 8.0.7 both apply, our knotted embeddings represent different knot types than both Ppa, bq and Ppb, aq.

Let us be a bit more specific about how we prove Theorem 8.0.4; the proof of Theorem 8.0.7 is conceptually similar. The knotted embeddings φ : X Ñ αX ˝described in Theorem 8.0.4 are obtained as compositions of embeddings X Ñ E Ñ αX ˝where E is an ellipsoid. In the cases that X is convex, the first map X Ñ E is just an inclusion, while the second map E Ñ αX ˝is Figure 8.2.: The strategy underlying our knotted embedding in the case that X is the 5 ball of capacity 1, as in Case (i) or (iii) of Theorem 8.0.4. X is the toric domain associated to the smaller region on the left; the toric domain associated to the triangle on the left is the ellipsoid E " Epp3{2q 3{5 , 3 3{5 q, which in particular contains X . The larger region at right is obtained by dilating X by α " p1 `εqp3{2q 3{5 for a small ε ą 0, and we showed that there is a symplectic embedding φ : E Ñ αX ˝(in fact, φ has image contained in the preimage under µ of the inscribed quadrilateral on the right). Our knotted embedding is φ| X ; Theorem 8.0.9(a) implies that any unknotted embedding X Ñ αX ˝that extends to a symplectic embedding E Ñ αX ˝would have α ě 2 3{5 , whereas in this construction α can be taken arbitrarily close to p3{2q 3{5 .

obtained by using recent developments from [START_REF] Mcduff | Symplectic embeddings of 4-dimensional ellipsoids[END_REF], [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF] that ultimately have their roots in Taubes-Seiberg-Witten theory. (For a limited class of convex toric domains X that are close to a cube Ppc, cq, we provide a much more elementary and explicit construction in Section 8.1.) In the cases that X is concave the reverse is true: E Ñ αX ˝is an inclusion while X Ñ E is obtained from these more recent methods. Meanwhile, we use the properties of transfer maps in filtered S 1 -equivariant symplectic homology to obtain a lower bound on possible values α such that there can exist any unknotted embedding X Ñ αX ˝which factors through an ellipsoid E. In each case in Theorem 8.0.4, we will find compositions X Ñ E Ñ αX ˝arising from the constructions for which α is less than this symplectic-homology-derived lower bound, leading to the conclusion that the composition must be knotted. Figure 8.2 and its caption explain this more concretely in a representative special case.

To carry this out systematically, let us introduce the following two quantities associated to a star-shaped domain X Ă n , where the symbol ãÑ always denotes a symplectic embedding: δ ell pX q " inftα ě 1|pDa 1 , . . . , a n qpX ãÑ Epa 1 , . . . , a n q ãÑ αX ˝qu (8.0.1) and δ u ell pX q " inf " α ě 1 ˇˇˇp Da 1 , . . . , a n , f : X ãÑ Epa 1 , . . . , a n q, g : Epa 1 , . . . , a n q ãÑ αX ˝qpg ˝f is unknotted.q * (8.0.2) (The u in δ u ell stands for "unknotted.") To put this into a different context, as was suggested to us by Y. Ostrover and L. Polterovich, one can define a pseudometric on the space of star-shaped domains in n by declaring the distance between two domains X and Y to be the logarithm of the infimal α P such that there is a sequence of symplectic embeddings α ´1{2 X ãÑ Y ãÑ α 1{2 X ˝;

a more refined version of this pseudometric would additionally ask that neither of the resulting compositions X Ñ αX ˝and Y Ñ αY ˝be knotted. Then (at least if n " 2) the logarithm of δ ell pX q or of δ u ell pX q is the distance from X to the set of ellipsoids with respect to such a pseudometric. (In the case of δ u ell this statement depends partly on the result from [START_REF] Mcduff | Symplectic embeddings of 4-dimensional ellipsoids[END_REF] that when E is an ellipsoid in 4 a symplectic embedding E ãÑ αE ˝is never knotted.)

We will prove Theorem 8.0.4 by proving, for each X as in the statement, a strict inequality δ ell pX q ă δ u ell pX q. This entails finding upper bounds for δ ell pX q by exhibiting particular compositions of embeddings X ãÑ E ãÑ αX ˝, and finding lower bounds for δ u ell pX q using filtered positive S 1 -equivariant symplectic homology. As it happens, for convex or concave toric domains both our upper bounds and our lower bounds can be conveniently expressed in terms of the following notation: Notation 8.0.8. For a domain Ω Ă r0, 8q n we define functions } ¨}Ω and r ¨sΩ from n to as follows:

• For α P n , } α} Ω " supt α ¨ v | v P Ωu. • For α P n , r αs Ω " inft α ¨ v | v P r0, 8q n zΩu.
The estimates for δ u ell that are relevant to Theorem 8.0.4 are given by the following result: Theorem 8.0.9. (a) If X Ω Ă 2 is a convex toric domain, then

δ u ell pX Ω q ě }p1, 1q} Ω maxt}p1, 0q} Ω, }p0, 1q} Ωu . (b) If X Ω Ă 2 is a concave toric domain, then δ u ell pX Ω q ě mintrp2, 1qs Ω , rp1, 2qs Ω u rp1, 1qs Ω .
As for upper bounds on δ ell , we proved the following:

Theorem 8.0.10. (a) Suppose that Ω Ă r0, 8q 2 is a domain such that Ω is convex and such that Ω contains points pa, 0q, p0, bq, px, yq with 0 ă x ď a ď b ď x `y. Then

δ ell pX Ω q ď › › › › ˆ1 a , 1 x `y ˙› › › › Ω .
(b) Suppose that Ω Ă r0, 8q 2 is a domain that contains p0, 0q in its interior and whose complement in r0, 8q 2 is convex, and such that points pa, 0q, p0, bq, px, yq with 0 ă x `y ď a ď b all belong to r0, 8q 2 zΩ. Then

δ ell pX Ω q ď 1 "´1 b , 1
x`y ¯ıΩ .

(c) For a polydisk Ppa, bq with a ď b ď 2a we have

δ ell pPpa, bqq ď › › › › ˆ3 a `b , 1 2a `b ˙› › › ›
r0,asˆr0,bs .

An explicit construction

The embeddings that underlie Theorem 8.0.10 are obtained by very indirect methods and are difficult to understand concretely. We will now explain a more direct construction that, for instance, leads to an explicit formula for a knotted embedding Pp1, 1q Ñ αPp1, 1q ˝for any α P ´1 2´?2 , 2 ¯.

The key ingredient is a toric structure on the complement of the antidiagonal in S 2 ˆS2 that appears (at least implicitly) in [EP09, Example 1.22], [START_REF] Fukaya | Toric degeneration and nondisplaceable Lagrangian tori in S 2 ˆS2[END_REF], [OU16, Section 2]. View S 2 as the unit sphere in 3 and let A " tpv, wq P S 2 ˆS2 | w " ´vu be the antidiagonal. Define functions F 1 , F 2 : S 2 ˆS2 Ñ by F 1 pv, wq " v 3 `w3 F 2 pv, wq " }v `w}.

Now F 2 fails to be smooth along A " F ´1 2 pt0uq, but on S 2 ˆS2 zA the Hamiltonian flows of the functions F 1 and F 2 induce S 1 -actions that commute with each other and are rather simple to understand: F 1 induces simultaneous rotation of the factors about the z-axis, and F 2 induces the flow which rotates the pair pv, wq P S 2 ˆS2 zA about an axis in the direction of v `w. In formulas: i.e. J " p2 ´F2 , ´F1 `F2 q. Then J is smooth away from A, and its restriction to S 2 ˆS2 zA is the moment map for a Hamiltonian T 2 -action. `|z| 2 8 ă 1

φ t F 1 `pv 1 , v 2 , v 3 q, pw 1 , w 2 , w 3 q ˘(8.
) , the map

Φ `|z 1 |e iθ , |z 2 |e iϕ ˘" φ ϕ F 1 ˆφθ´ϕ F 2 ˆs ˆ|z 1 | 2 2 , |z 2 | 2 2 ˙˙ḋ efines a symplectomorphism Φ: Ep4π, 8πq ˝Ñ S 2 ˆS2 zQ which satisfies J ˝Φpz 1 , z 2 q " ´|z 1 | 2 2 , |z 2 | 2 2
¯.

2 Here we view T 2 as p {2π q 2 . On the other hand the map µpw, zq " pπ|w| 2 , π|z| 2 q that we have considered elsewhere is the moment map for a Hamiltonian p { q 2 -action; to get a p {2π q 2 -action one would take µ 2π .

Now if

Dp4πq denotes the open disk of area 4π (so radius 2) in , there is a symplectomorphism σ : S 2 ztp0, ´1qu Ñ Dp4πq defined by

σpz, v 3 q " d 2 1 `v3 z (8.1.4)
where as in Remark 8.1.2 we regard S 2 as the unit sphere in ˆ . So if we let " `tp0, ´1qu ˆS2 ˘Y `S2 ˆtp0, ´1qu ˘then σ ˆσ defines a symplectomorphism S 2 ˆS2 z -Pp4π, 4πq ˝" Dp4πq ˆDp4πq.

For v " pz, v 3 q P S 2 Ă ˆ , we have }v `p0, ´1q} 2 " |z| 2 `v2 3 ´2v 3 `1 " 2 ´2v 3 and hence

J `v, p0, ´1q ˘" J `p0, ´1q, v ˘" ´2 ´a2 ´2v 3 , a 2 ´2v 3 `p1 ´v3 q ¯.

Thus

Jp q Ă px, yq P 2 | p2 ´xq Proof. The sets 1 2π Ω and S :" px, yq P r0, 8q 2 | y ě x 2 2 ´3x `4( are disjoint, closed, convex subsets of 2 , and the first of these sets is compact, so the hyperplane separation theorem shows that they must be separated by a line , which passes through the first quadrant since both sets are contained in the first quadrant. This line must have negative slope, since S intersects all lines with positive slope and also intersects all horizontal or vertical lines that pass through the first quadrant. So we can write the separating line as " px, yq P 2 | x a `y b " 1 ( with a, b ą 0, and then it will hold that 1

2π Ω Ă x a `y b ă 1 ( and S Ă t x a `y b ą 1u. The first inclusion shows that X Ω Ă Ep2πa, 2πbq ˝. Meanwhile since p2, 0q, p0, 4q P S Ă x a `y b ą 1 ( , we have a ă 2 and b ă 4. So Ep2πa, 2πbq is contained in the domain of the map Φ from Proposition 8.1.1, and by the discussion before the proposition the fact that X S " ∅ implies that Ep2πa, 2πbq X Φ ´1p q " ∅. Hence the proposition holds with E " Ep2πa, 2πbq. Corollary 8.1.4. Suppose that X Ω is a convex toric domain with Ω Ă tp2πx, 2π yq P r0, 8q 2 | y ă x 2 2 ´3x `4u, and that we have Pp4π, 4πq Ă αX Ω for some α ă δ u ell pX Ω q. Then pσˆσq˝Φ| X Ω : X Ω ãÑ Pp4π, 4πq ˝Ă αX Ω defines a knotted embedding X Ω ãÑ αX Ω.

Proof. By Proposition 8.1.3 we have an ellipsoid E and a sequence X Ω ãÑ E ˝ãÑ Pp4π, 4πq ˝Ă αX Ω where the first map is the inclusion and the second map is pσ ˆσq ˝Φ| E . So the corollary follows directly from the assumption that α ă δ u ell pX Ω q and the definition of δ u ell .

Figure 8.3.: After appropriate rescalings, the map Φ from Proposition 8.1.1 sends the interior of the ellipsoid Ep1, 2q to a product of spheres of area 1, with the preimage of pS 2 tp0, 0, ´1quq Y ptp0, 0, ´1qu ˆS2 q contained in µ ´1pC q where C is the red curve at left. Consequently the preimage under µ of any domain lying below C, such as the small square at left, is embedded into the polydisk Pp1, 1q ˝by a rescaling of pσˆσq˝Φ. This gives an explicit knotted embedding Ppc, cq ãÑ Pp1, 1q ˝for 1{2 ă c ă 2 ´?2.

We emphasize that this embedding pσ ˆσq ˝Φ is completely explicit: σ is defined in (8.1.4) and Φ is defined in Proposition 8.1.1 based partly on the formulas (8.1.1) and (8.1.2), or even more explicitly is given by (8.1.3).

Example 8.1.5. For instance, Ω could be taken to be a square r0, 2πcs 2 with c smaller than the smallest root of the polynomial x 2 2 ´4x `4, namely 4 ´2? 2 (see Figure 8.3). So we obtain an embedding pσ ˆσq ˝Φ: Pp2πc, 2πcq ãÑ Pp4π, 4πq ˝" 2 c Pp2πc, 2πcq ˝, which is knotted provided that 2 c ă δ u ell `Pp2πc, 2πcq ˘. By Theorem 8.0.9 we have δ u ell `Ppa, aq ˘ě 2 for any a, so our embedding is knotted provided that 1 ă c ă 4 ´2? 2. So after conjugating by appropriate rescalings our explicit embedding pσ ˆσq ˝Φ defines a knotted embedding Ppa, aq ãÑ αPpa, aq ˝provided that 2 ą α ą 1 2´?2 « 1.71. For comparison, our less explicit construction (leading to the bound δ ell pPpa, aqq ď 3{2 from Theorem 8.0.10) gives knotted embeddings Ppa, aq ãÑ αPpa, aq ˝whenever 2 ą α ą 1.5.

Choosing the scaling so that the codomain is Pp4π, 4πq ˝, the image of this embedding α ´1 Pp4π, 4πq ãÑ Pp4π, 4πq ˝is not hard to describe explicitly as a subset of Pp4π, 4πq ˝: it is given as the region pz 1 , z 2 q P Pp4π, 4πq ˝|G 2 pz 1 , z 2 q ě 2 ´2{α, ´G1 pz 1 , z 2 q `G2 pz 1 , z 2 q ď 2{α ( , where G i " F i ˝pσ ˆσq ´1, i.e.,

G 1 pz 1 , z 2 q " 2 ´|z 1 | 2 `|z 2 | 2 2

Symplectic convexity

As we saw throughout this memoir, convexity plays a big role in symplectic geometry, and is often synonymous of rigidity but is not invariant under symplectomorphism. The main question is Question 9.0.1. What is the symplectic analogue of convexity?

In 2n , defining symplectic convexity as being symplectomorphic to a convex domain is a hardly verifiable condition and therefore not ideal. The main alternative is dynamical convexity.

Question 1.3.3. Is every dynamically convex domain in 2n symplectomorphic to a convex domain in 2n ?

The answer is NO. Recently, Chaidez and Edtmair [CE20, Theorem 1.8] constructed a dynamically convex domain which is not symplectomorphic to a convex one. The main new ingredient in Chaidez and Edtmair is the Ruelle invariant (see [START_REF] Ruelle | Rotation numbers for diffeomorphisms and flows[END_REF][START_REF] Chaidez | 3d convex contact forms and the Ruelle invariant[END_REF][START_REF] Hutchings | ECH capacities and the Ruelle invariant[END_REF]).

The "Ruelle invariant" is defined for a contact form on a homology three-sphere, which, roughly speaking, is a measure of the average rotation rate of the Reeb flow. We follow the exposition from [START_REF] Hutchings | ECH capacities and the Ruelle invariant[END_REF] in what follows.

Let Ă Spp 2 , Ω 0 q denote the universal cover of the group Spp 2 , Ω 0 q of 2 ˆ2 symplectic matrices. There is a standard "rotation number" function rot : Ă Spp 2 , Ω 0 q ÝÑ defined as follows. Let A P Spp 2 , Ω 0 q, and let r A P Ă Spp 2 , Ω 0 q be a lift of A. This lift r A can be represented by a path tA t u tPr0,1s in Spp 2 , Ω 0 q with A 0 " Id and A 1 " A. If v is a nonzero vector in 2 , then the path of vectors tA t vu tPr0,1s rotates by some angle which we denote by 2πρpvq P . We then define rot

`r A ˘" lim nÑ8 1 n n ÿ k"1 ρ `Ak´1 v ˘.
This does not depend on the choice of nonzero vector v. For example, if A is conjugate to rotation by angle 2πθ , then rot `r A ˘is a lift of θ from S 1 " {2π to . The rotation number is a

quasimorphism: if r B is another element of Ă Spp 2 , Ω 0 q, then ˇˇrot `r A r B ˘´rot `r A ˘´rot `r B ˘ˇă 1.
Now let Y be a homology three-sphere, and let λ be a contact form on Y with associated contact structure ξ and Reeb vector field R. For t P , let φ t : Y Ñ Y denote the diffeomorphism given by the time t Reeb flow. For each y P Y , the derivative of φ t restricts to a linear map dφ t : ξ y ÝÑ ξ φ t p yq which is symplectic with respect to dλ. Now fix a symplectic trivialization of ξ, consisting of a symplectic linear map τ : ξ y Ñ 2 for each y P Y . Then for y P Y and t P , the composition

2 τ ´1 ÝÑ ξ y dφ t ÝÑ ξ φ t p yq τ ÝÑ 2
is a symplectic matrix which we denote by A τ y,t . In particular, if y P Y and T ě 0, then the path of symplectic matrices tA τ y,t u tPr0,T s defines an element of Ă Spp2q. We denote its rotation number by rot τ p y, T q " rot ´tA τ y,t u tPr0,T s ¯P .

One can use the quasimorphism property to show [CGS20, Rue85] that for almost all y P Y , the limit ρp yq " lim For example of computations, we have the following proposition:

Proposition 9.0.4 (Gutt-Zhang). Let X Ω be any 4-dimensional toric star-shaped domain1 . Then its Ruelle invariant is RupX Ω q " apΩq `bpΩq where apΩq and bpΩq are the w 1 -intercept and w 2 -intercept, respectively, of the moment image Ω in r0, 8q2 (in pw 1 , w 2 q-coordinate.

The question of being symplectomorphic to a convex domain still remains for the particular example of Theorem 2.1.14. If this example were to be symplectomorphic to a convex domain, this would imply that the weak Viterbo conjecture is false.

Another approach to Question 1.3.3, is by using some interleaving distance, see [Ush20, SZ]. The notion of knotted embedding (Definition 8.0.3) allows one to define a Banach-Mazur type distance on the set of star-shaped domains in 2n . Given two star-shaped domains X and Y in 2n , their distance ρpX , Y q is defined as 

Perspectives

In the text, I have mentioned questions and developments directly related to the results presented in this memoir and which I intend to study. This last section will be devoted to present a longer term perspective for my research.

Coming back to the motivation of uncovering the link between the geometry of a symplectic manifold and the contact geometry of its boundary, the long term dream is to try to mimick what has been done in the Riemannian case and relate those links to operator theory.

Does there exist an operator (or a family of operators) defined on an "appropriate space"

(depending on the given symplectic manifold) such that its spectrum is related to symplectic capacities?

This is in the spirit of Lorentz question (see Foreword) about the Dirichlet spectrum of the Laplacian. Recall that if pM, gq is a Riemannian manifold with boundary, then M has a Laplace operator , defined by p f q :" ´divpgrad f q, that acts on smooth functions on M . The spectrum of M is the sequence of eigenvalues of . The Dirichlet spectrum is the spectrum of acting on smooth functions that vanish on the boundary and the Neumann spectrum is that of acting on functions with vanishing normal derivative at the boundary. The spectral gap is the smallest positive eigenvalue of .

The dreamy idea is to first try to build such an operator for star-shaped domains in 2n , starting with n " 2, then to extend it to cotangent bundles and prequantization bundles and see if it can be generalised to other symplectic manifold. The definition of such an operator would require additional geometric structures (other than the symplectic form), for instance a compatible almost complex structure or an appropriate symplectic connexion.

In the near future, the first step is to study the desired spectrum (i.e. symplectic capacities). The various directions which are described in what follows are: the asymptotics of the capacities, their behaviour under symplectic products, the smallest capacity, and applications to Reeb dynamics. The next step, consisting in the combined approaches of building an operator from its spectrum and computing the spectrum of known operators carrying some symplectic data, being at this point wildly speculative, will not be developed here.

As seen in Chapter 6, there are, in dimension 4, two distinct sequences of capacities, the ECH capacities ( §6.1) and the capacities from positive S 1 -equivariant symplectic homology ( §6.3) / Ekeland-Hofer capacities ( §6.2). The latter being well-defined in higher dimensions. In the following, we shall distinguish the case of dimension 4, where we are going to focus on ECH capacities, and the higher dimensional case, where we shall consider the capacities from positive S 1 -equivariant symplectic homology.

Dimension 4

There is the following fundamental result about the ECH spectrum This Theorem is to be compared to the following Theorem, named Weyl's law (which generalises Weyl's answer to Lorentz question). We refer to [START_REF] Ivrii | 100 years of Weyl's law[END_REF] and references therein for a nice history of Weyl's law and later work. For the higher order terms, there is the Weyl conjecture which is proven under the assumption that the set of all periodic geodesic billiards has measure 0.

On the ECH side the higher order terms have been studied in [START_REF] Hutchings | ECH capacities and the Ruelle invariant[END_REF][START_REF] Cristofaro | Sub-leading asymptotics of ECH capacities[END_REF]. Given a Liouville domain pX , λq, one define the error term as e k pX q :" c EC H k pX q ´2b k VolpX q Conjecture 0.3 [START_REF] Hutchings | ECH capacities and the Ruelle invariant[END_REF]). If X is a star-shaped domain in 4 , then e k pX q " Op1q So far, [Sun18, CGS20, Hut19], the current statement is that e k pX q " Opk 1 4 q. In fact, Hutchings proved that Theorem 0.4 [START_REF] Hutchings | ECH capacities and the Ruelle invariant[END_REF]). If X Ă 4 is a strictly convex or strictly concave toric domain, then lim kÑ8 e k pX q " ´1 2 RupX q (0.1)

where RupX q is the Ruelle invariant (see Definition 9.0.3). Hutchings conjectured Equation (0.1) to hold for all generic star-shaped domains. The term "generic" is crucial since (0.1) is false for the ball. Also, This led Jun Zhang and I to the three following questions / future directions: Question 0.7. Can one generalise the Ruelle invariant to contact flows (i.e. flows preserving the contact structure but not necessarily a contact form) and extract dynamical information, in particular on periodic orbits, on those flows? Question 0.8. Can we compute the Ruelle invariant (for Reeb flows) for other manifolds than the sphere. For instance for prequantized spaces (e,g, unit cosphere bundles)? Question 0.9. Can we generalise the Ruelle invariant to higher dimensions?

At the moment, we focus our attention on the latter question where the starting point is to use the map ρ from [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF] (and constructed in details in [START_REF] Gutt | Normal forms for symplectic matrices[END_REF][START_REF] Gutt | Generalized Conley-Zehnder index[END_REF]) to generalize the rotation number.

Dimension ě 4

The main sequences of symplectic capacities defined in any dimension are the Ekeland-Hofer capacities (for star-shaped domains in 2n , §6.2) and for all Liouville domains the capacities from positive S 1 -equivariant symplectic homology ( §6.3). The conjecture is that those coincides: Conjecture 6.3.13 ([GH18]). For all star-shaped domain X in 2n , we have c EH k pX q " c k pX q.

Remark 0.10. More evidence for this conjecture: Theorem 6.3.10 implies that our capacities c k satisfy the Cartesian product property (6.2.3) in the special case when X and X 1 are convex toric domains. We do not know whether the capacities c k satisfy this property in general.

The proof of this conjecture is ongoing work with V. Ramos. Our strategy is the following:

1. Define an S 1 -equivariant Morse theory in infinite dimension for the Hamiltonian action functional, for a fixed Hamiltonian. This was done in the non-equivariant case for starshaped domains by Abbondandolo and Majer [START_REF] Abbondandolo | A Morse complex for infinite dimensional manifolds-part i[END_REF]. We shall adapt this construction to the S 1 -equivariant setting, define H M p q as the direct limit of this S 1 -equivariant Morse homology in infinte dimensions over a family of admissible Hamiltonians (in the sense of the homology C H).

2. Show that H M p q is isomorphic to the homology C H. In fact, we would like to show that the two chain complexes (for the same fixed Hamiltonian) of those two homologies are chain-complex isomorphic and that this isomorphism "commutes" with the direct limit operation. M. Hecht [Hec13] showed such an isomorphism on tori in the non-equivariant case and for a fixed Hamiltonian. See §3.5 for more details about those two first points.

3. Show that the Ekeland-Hofer capacities, c EH , are spectral invariants of the homology H M p q.

The major problem here is to understand the Fadell-Rabinowitz index in the context of symplectic homology.

4. The fact that the Ekeland-Hofer capacities are the same as the equivariant capacities should result from the three previous points.

For the asymptotics of those capacities, little is known and it will be different from the ECH case. Indeed, the example of the Polydisk (see Example 6.3.11) in particular show that the capacities from positive S 1 -equivariant symplectic homology do not detect the volume, not even asymptotically.

The proof of Theorem 6.3.18 shows that if X Ă n is a star-shaped domain satisfying (6.3.12), then lim kÑ8 c k pX q k " c l pX q. (0.2) This is related to the following question of Cieliebak-Mohnke [START_REF] Cieliebak | Punctured holomorphic curves and lagrangian embeddings[END_REF].

Given a domain X Ă 2n , define the Lagrangian capacity c L pX q to be the supremum over A such that there exists an embedded Lagrangian torus T Ă X such that the symplectic area of every map pD 2 , BD 2 q Ñ pX , T q is an integer multiple of A. It is asked in [START_REF] Cieliebak | Punctured holomorphic curves and lagrangian embeddings[END_REF] whether if X Ă 2n is a convex domain then lim kÑ8 c EH k pX q k " c L pX q. (0.3)

It is confirmed by [CM14, Cor. 1.3] that (0.3) holds when X is a ball.

Observe that if X is any domain in n , then the Lagrangian capacity is related to the cube capacity by c l pX q ď c L pX q, because if l n pδq symplectically embeds into X , then the restriction of this embedding maps the "corner" µ ´1pδ, . . . , δq Ă l n pδq to a Lagrangian torus T in X such that the symplectic area of every disk with boundary on T is an integer multiple of δ. Thus the asymptotic result (0.2) implies that if X Ă n is a domain satisfying (6.3.12), then lim kÑ8 c k pX q k ď c L pX q.

Assuming Conjecture 6.3.13, this proves one inequality in (0.3) for these examples.

Question 0.11. What about the higher order asymptotics?

In order to construct an operator whose spectrum is (or at least contains) the capacites from positive S 1 -equivariant symplectic homology, the more information we have on the behavior of c k the merrier. This imply finding new algebraic structures on the homology C H. For those, we would like to start by exploring the two following directions: the pair-of-pants product and the Künneth formula. The pair-of-pant product is defined in non-equivariant symplectic homology. The lift of this product to the homology C H is not a product anymore but becomes a bracket. We plan to use Floer trajectories, with an additional constraint on the angle, to build a product structure on the homology C H. To construct a Künneth-type long exact sequence for the homology C H, we plan to use techniques such as those in the construction of the long exact sequence for non-equivariant symplectic homology by Oancea [Oan08]. This would in principle lead to the Cartesian product property (6.2.3). c k pX ˆX 1 q " min i`j"k tc i pX q `cj pX 1 qu, where i and j are positive integers and X Ă 2n and X 1 Ă 2n 1 are star-shaped domains. Another approach to build algebraic structures on the homology C H of the unit disk bundle pDT ‹ N , λ can q (whose boundary is the contact manifold S T ‹ N ), for N a closed spin oriented manifold, is to prove the following isomorphism: C H ˚pDT ‹ N , λ can q -H ˚pΛN {S 1 , N ; q, (0.4)

where ΛN is the free loop space of N and N Ă ΛN indicates the subset of constant loops. Then we would "push" the operations on H ˚pΛN {S 1 , N ; q onto C H via this isomorphism. This isomorphism is mentioned without any proof in [START_REF] Viterbo | Indice de Morse des points critiques obtenus par minimax[END_REF] and [START_REF] Bourgeois | S 1 -equivariant symplectic homology and linearized contact homology[END_REF]. We would like to point out that there are several approaches to the non-equivariant version of this isomorphism [AS06, Abo15, Vit88, SW06] and we expect that both the methods of Abbondandolo and Schwarz [AS06] and of Abouzaid [START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF] should adapt to the S 1 -equivariant setting that we consider. Another sequence of symplectic capacities called the higher symplectic capacities was introduced by K. Siegel [START_REF] Siegel | Higher symplectic capacities[END_REF][START_REF] Siegel | International Mathematics Research Notices[END_REF]. Those are defined using Rational Symplectic Field Theory [START_REF] Eliashberg | Introduction to symplectic field theory[END_REF] and are conjectured to wield similar properties as ECH capacities. They make use of the 8 -structure. The higher symplectic capacities differ from the capacities from positive S 1 -equivariant symplectic homology, as shown by computation in [START_REF] Siegel | International Mathematics Research Notices[END_REF]. These capacities are particularly suited for obstructions of stabilized symplectic embeddings (i.e. of the form 4dimensional manifold ˆ 2 n). Question 0.12. What is the asymptotics of the higher symplectic capacities?

Application to Dynamics

The symplectic capacities from positive S 1 -equivariant symplectic homology carry relevant information on the dynamics of the Reeb vector field on the boundary for all contact form defining the contact structure Theorem 0.13 [START_REF] Viktor | Lusternik-Schnirelman theory and closed Reeb orbits[END_REF]). Let Y be a star-shaped hypersurface in 2n . If Y carries only finitely many simple periodic Reeb orbits, then, for all i ě 1 c i pY q ă c i`1 pY q

The same statement holds true in 4 with the ECH capacities. The actual statement from [START_REF] Viktor | Lusternik-Schnirelman theory and closed Reeb orbits[END_REF] is a bit stronger. It states that the inequality remains valid for "capacities" defined in a similar way as in §6.3 but taking the "inverse image by powers of U of any class in H ˚pX , BX qbH ˚pBS 1 q (with correct degree)". It is therefore very tempting to ask for a lower bound on the minimal number of geometrically distinct periodic Reeb orbits in a prescribed homotopy class. Together, with J. Kang, we consider prequantization bundles i.e. complex line bundles E over a symplectic manifold pM, ωq sucht that c 1 pEq " ´rωs P H 2 pM; q. The circle bundle in E is naturally a contact manifold. Without restriction on the homotopy class, the minimal number of geometrically distinct periodic Reeb orbits is bounded below (in some case) by the sum of the Betti numbers of the base (in the non-degenerate case) and by the cuplength of the base (in the degenerate case).

We plan to check whether these lower bounds remain valid if we consider only periodic Reeb orbits homotopic to a fiber (in particular non-contractible). The restriction to this particular free homotopy class of loops comes from the fact that in the case of P 2n´1 , finding periodic Reeb orbits homotopic to a fibre is equivalent to finding periodic orbits on a star-shaped hypersurface in 2n which are invariant by antipodal reflection.

The positive S 1 -equivariant symplectic homology C H decomposes as a direct sum of homologies corresponding to orbits in different homotopy classes. It is difficult to obtain information on this decomposition from the global homology. We plan to use the fact that periodic orbits are homotopic to a fibre if and only if they are the boundary of a disk and have winding number equal to 1. We try to construct a variant of the homology C H, using positivity of intersection in a similar manner as what is done in [START_REF] Abbondandolo | Symplectic homology of convex domains and Clarke's duality[END_REF] to detect the orbits in a given homotopy class. Another approach would consist in defining an S1 -equivariant version of the Rabinowitz-Floer homology [START_REF] Albers | Rabinowitz Floer homology: a survey[END_REF].

Smallest capacity

In this last section, we describe some questions and research related to the first capacity (or related spectral invariant 1 ) which we call spectral gap in what follows. The first question would be Question 0.14. What is the significance of the spectral gap?

Can the spectral gap be read on the barcode of the homology C H? Also, if all eigenvalues are distinct, can we extract a lower bound on the minimal number of simple periodic Reeb orbits?

The hope is that the spectral gap will shed some light on Question 2.2.23. So far, Jean-François Barraud and I try to apply the "crocodile walk" techniques [START_REF] Barraud | A Floer fundamental group[END_REF]; it generate the fundamental group from the Floer moduli spaces. We try to extend this to equivariant symplectic homology. Assuming the contact manifold is fillable by a cotangent bundle and assuming dynamical convexity we try to extract information about its π 1 from C H.

Question 2.2.23 is related to questions stemming from algebraic geometry. We refer to [START_REF] Mclean | Reeb orbits and the minimal discrepancy of an isolated singularity[END_REF] and references therein for the algebraic geometrical interpretation. where the supremum is taken over all contact forms α such that ker α " ξ and pαq is the set of all periodic Reeb orbits of R α .

Remark that min. log. discr.pS 2n´1 , ξ st d q " n. Question 2.2.23 reformulates in this context as Question 0.16. Given a 2n-1-dimensional compact contact manifold pM, ξq, is it true that min. log. discr.pM , ξq ď n with equality if and only if M is diffeomorphic to the sphere S 2n´1 ?

Note that this question englobes Shokurov's conjecture [START_REF] Vyacheslav | Letters of a bi-rationalist. IV: Geometry of log flips[END_REF] and a positive answer to the first part would give a disproval of a conjecture (expected to be false) of a conjecture by Thurston. Recall that a c-symplectic manifold is a triple pX , J, cq such that 1. X is a 2n-dimensional compact manifold, 2. J is an almost complex structure on X , 3. c P H 2 pX , q such that c n :" c Y ¨¨¨Y c ‰ 0. Conjecture 0.17 (Thurston). c-symplectic ñ symplectic.

It is expected that for a generic compact contact manifold, min. log. discr.pM , ξq " ´8. The approach to this conjecture is to test it on link of affine variety (i.e. the intersection of an affine variety and a large ball) where the homology CH and the spectral gap, together with the additional ambiant structure might generalise [START_REF] Mclean | Reeb orbits and the minimal discrepancy of an isolated singularity[END_REF]. The other approach is by looking the case n " 2 and using ECH.

There are some links [START_REF] Ein | Jet schemes, log discrepancies and inversion of adjunction[END_REF] (also McLean, private communications) between minimal log discrepancy and arc space (i.e. space of holomorphic disks). This prompted the question whether the two-systole can be detected from symplectic capacities?

Defining the two-systole of the 4-dimensional torus endowed with a Riemmannian metric to be sys 2 pT 4 , gq :" inf Ap q where the infimum is taken over all non-trivial cycle of H 2 pT 4 , 2 q and Ap q is the area of . We have the following question: Conjecture 0.18 (Balacheff-Gutt). Let pT 4 , ω 0 q be the standard symplectic 4-torus. There exists a constant K ą 0 such that for all Riemmannian metrics which are ω 0 -compatible, we have `sys 2 pT 4 , gq ˘2 ď K 2 VolpT 4 , gq.

Remark 0.19. This statement is known to be false for a non ω 0 -compatible metric but true for all flat metrics which are ω 0 -compatible [START_REF] Babenko | Systolic volume of homology classes[END_REF].
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 1 Figure 1.1.: Immersion of T 2 , from [Cur92], for which the height function only have 3 critical points
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 4 Structure of Part I Definition 1.3.2. A contact form α on S 2n´1 is dynamically convex if all closed Reeb orbits have Conley-Zenhder index at least n `1. Question 1.3.3. Is every dynamically convex domain symplectomorphic to a convex domain? 1.4. Structure of Part I
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  Assuming the functional f satisfies (M.1)-(M.5), the boundary operator B f ,I k is an actual boundary homomorphism, i.e. B f ,I k ˝B f ,I k " 0. Therefore the pair `C M p f , Iq, B f ,I k ˘is a chain complex called the Morse complex of p f , Iq and its homology is called the Morse homology of p f , Iq.
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  Lemma 3.4] The map b : Ñ from equation (3.4.5) is differentiable. Its gradient ∇b :

  Conjecture 4.0.1 (strong Viterbo conjecture). If X is a convex domain in 2n , then all normalized symplectic capacities of X are equal. Viterbo originally conjectured the following statement 2 in [Vit00]: Conjecture 4.0.2 (Viterbo conjecture). If X is a convex domain in 2n and if c is a normalized symplectic capacity, then cpX q ď pn! VolpX qq 1{n . (4.0.1) The inequality (4.0.1) is true when c is the Gromov width c Gr , by the volume constraint. Thus Conjecture 4.0.1 implies Conjecture 4.0.2. The Viterbo conjecture recently gained even more attention as it was shown in [AAKO14] that it implies the Mahler conjecture 3 in convex geometry.

  Figure 6.1.: Embedding a concave toric domain into a polydisk
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 2 (cf. [Hut11, Lem. 3.5]) (a) If pX , λq is any Liouville domain, then

Remark 7.0. 3 .

 3 It is also not true that all star-shaped toric domains have c Gr " c Z . Counterexamples have been known for a long time, see e.g. [Her98], and in §7.1 we consider a new family of examples where we can explicitly compute both cGr and c Z .

  Figure 7.1(b). Thus by Theorem 7.1.3 and equation (6.1.3), we have c ECH k pX a q " inf l 1 ,...,l 4 ě0

sXpB 4

 4 Figure 7.1.: Ball packings

  Figure 7.2.: The inclusions ∆ n paq Ă Ω Ă Lpµ 1 , . . . , µ n q for n " 2

Figure 8

 8 Figure 8.1.: The shaded regions are examples of choices of Ω such that Theorem 8.0.4 gives knotted embeddings X Ω Ñ αX Ω for suitable α ą 1. The dashed lines delimit the regions which are assumed to contain pBΩq X p0, 8q n in, respectively, Cases (i) and (ii) of the theorem.

  Theorem 0.1 ([CGHR14]). Let pX , λq be a four dimensional Liouville domain such that c EC H k pX , λq ă 8 for all k. Then lim kÑ8

Theorem 0. 2

 2 (Weyl's law in dimension 4,[START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung[END_REF][START_REF] Weyl | Ramifications, old and new, of the eigenvalue problem[END_REF]). Let X be a star-shaped domain in 4 with smooth boundary Y :" BX . Denote by tλ k | k P u the Dirichlet spectrum (associated to X )

Counterexample 0. 5 (

 5 Gutt-Zhang). The ellipsoid Ep1, 2q and the polydisk Pp1, 1q have the same ECH capacities and the same volume (and thus same e k ). But, by Proposition 9.0.4, their Ruelle invariant is different.Remark 0.6. The ellipsoid Ep1, 2q and the polydisk Pp1, 1q where already distinguished as nonsymplectomorphic by the third Ekeland-Hofer capacity or the third capacity from positive S 1 -equivariant symplectic homology. c EH 3 `Ep1, 2q ˘" c 3 `Ep1, 2q ˘" 3 and c EH 3 `Pp1, 1q ˘" c 3 `Pp1, 1q ˘" 2.

Definition 0. 15 .

 15 Given a compact contact manifold pM, ξq, define the minimal log discrepancy as min. log. discr.pM , ξq :" sup α min γP pαq t `CZpγq `n ´3q 1 2 `1u

  S 1 p fN , Hq. Define x pS p ´, S p `; Jq to be the set of pairs pη, uq, where η : Ñ S 2N `1 and u : ˆS1 Ñ p

		X , satisfying the following
	equations:	
	$ ' '	9 η ` ∇ fN pηq " 0,
	'	
	&	B s u `Jθ
	'	
	'	
	'	
	%	

ηpsq ˝u`B θ u ´XH θ ηpsq ˝u˘" 0, lim sÑ˘8 `ηpsq, ups, ¨q˘P S p ˘.

  pS p ´, S p `; Jq denote the quotient of the set x pS p ´, S p `; Jq by these actions of and S 1 . If J is generic, thenS 1 pS p ´, S p `; Jq is a manifold near pη, uq of dimension indpη, uq " pindp f N , z ´q ´CZ τ pγ ´qq ´pindp f N , z `q ´CZ τ pγ `qq ´1.Here indp f N , z ˘q denotes the Morse index of the critical point z ˘of f N , and CZ τ denotes the Conley-Zehnder index with respect to a trivialization τ of pγ

	S 1

˘q‹ T p X that extends over u ‹ T p X . Definition 3.2.17. [BO16, §2.2] Define a chain complex ´C F S 1 ,N pH, Jq, B S 1 ¯as follows. The chain module C F S 1 ,N pH, Jq is the free module 6 generated by the orbits S p . If S p ´, S p `are two such orbits, then the coefficient of S p `in B S 1 S p ´is a signed count of elements pη, uq of S 1 pS p ´, S p `; Jq with indpη, uq " 1.

  If H is an admissible parametrized Hamiltonian, and if J is a generic S 1 -invariant family of almost complex structures as in (3.2.16), then the differential B S 1 on C F S 1 ,N pH, Jq does not increase the parametrized action (3.2.21).

	Definition 3.2.21. Let H : S 1 ˆp X ˆS2N`1 Ñ be an admissible parametrized Hamiltonian. The
	parametrized action functional H : S 2N `1 ˆC8 pS 1 , p X q ÝÑ is defined by	
	H pz, γq :"	´żγ	p λ	´żS 1	H `θ , γpθ q, z ˘dθ .	(3.2.21)
	Lemma 3.2.22.					

  1.1)" ´`pcos tqv 1 ´psin tqv 2 , psin tqv 1 `pcos tqv 2 , v 3 ˘, `pcos tqw 1 ´psin tqw 2 , psin tqw 1 `pcos tqw 2 , w 3 ˘ānd

	φ t F 2	pv, wq "	ˆv	`w 2	`pcos tq	v	´w 2	`psin tq	w }v `w} ˆv	,	v	`w 2	`pcos tq	w	´v 2	`psin tq	}v `w} v ˆw	˙.
																	(8.1.2)
	Define																
			J : S 2 ˆS2 Ñ 2 by Jpv, wq " p2 ´}v `w}, }v `w} ´v3 ´w3 q ,		

  Theorem III], any convex body K Ă n has an associated John ellipsoid E K which obeys E K Ă K Ă nE K . Thus any dynamically convex domain which is "far" from the set of ellipsoids would not be symplectomorphic to any convex domain. This criterion fails on the example from Theorem 2.1.14. This prompted the question Is every convex set in 4 symplectomorphic to a monotone toric domain?An affirmative answer would provide a proof of the strong Viterbo Conjecture in dimension 4.

	inf the set of ellipsoids? $ ' & ' % log λ Another argument in favor of Viterbo's conjecture is ˇˇˇˇ$ ' & ' % there exists symplectic embeddings λ ´1X ãÑ Y ãÑ λX ; there exists symplectic embeddings λ ´1Y ãÑ X ãÑ λY ; the two compositions above are unknotted. Theorem 9.0.6 (Hryniewicz, private communication). In dimension 4, the strong Viterbo Conjec-, / . / -. ? n) to ture implies a positive answer to Question 2.1.12 An alternative notion of symplectic convexity, in dimension 4, is to be monotone toric (see Definition 5.1.3). This distance is invariant under symplectomorphism. By [Joh48, Question 9.0.5. Are all dynamically convex domain close (at interleaving distance less than Question 9.0.7.

The assumptions are that the contact form is non-degenerate and the first Chern class of the contact structure is torsion.

by star-shaped, I mean that the radial vector field is everywhere transverse to the boundary.

Defined as Ker α 0 .

Dynamical convexity is a generalization of strict convexity, see Definition 1.3.2

The mean index of a periodic orbit γ is defined as x CZpγq " lim mÑ8 CZpγ m q m

See also[START_REF] Moser | Periodic Orbits near an Equilibrium and a Theorem by Alan Weinstein[END_REF] 

The reason for this notation is that positive S 1 -equivariant symplectic homology can be regarded as a substitute for linearized contact homology, which can be defined without transversality difficulties [BO16, §3.2].

It is also possible to define positive S 1 -equivariant symplectic homology with integer coefficients. However the torsion in the latter is not relevant to the applications explained here, and it will simplify our discussion to discard it.

Warning: In[GH18] the map that we denote by ı L 1 ,L 2 is denoted by ı L 2 ,L 1 .

Recall that a Reeb orbit γ is bad if it is an even degree multiple cover of another Reeb orbit γ 1 such that the Conley-Zehnder indices of γ and γ 1 have opposite parity. Otherwise, γ is good.

It is also possible to use coefficients here, but we will use coefficients in order to later establish the Reeb Orbits property in Proposition 3.2.1, which leads to the Reeb Orbits property of the capacities c k . In special cases when the Conley-Zehnder index of a 1-periodic orbit is unambiguously defined, for example when all 1-periodic orbits are contractible and c 1 pT X q| π 2 pX q " 0, the chain complex is graded by minus the Conley-Zehnder index.

It is also possible to define SH S 1 ,`, using coefficients, as with SH.

H `X . Then 1. The singular points of r X are the critical points of the action functional singp r X q " Critp H q.

In this memoir, a "domain" is the closure of an open set. One can of course also consider domains in other symplectic manifolds, but we will not do so here.

Viterbo also conjectured that equality holds in (4.0.1) only if intpX q is symplectomorphic to an open ball.

The Mahler conjecture[START_REF] Mahler | Ein Übertragungsprinzip für konvexe Körper[END_REF] states that for any n-dimensional normed space V , we have VolpB V q VolpB V ˚q ě

n n! , where B V denotes the unit ball of V , and B V ˚denotes the unit ball of the dual space V ˚. For some examples of Conjectures 4.0.1 and 4.0.2 related to the Mahler conjecture see [SL20].

If γ is nondegenerate then the Conley-Zehnder index CZpγq P is well defined. If γ is degenerate then there is an interval of possible Conley-Zehnder indices of nondegenerate Reeb orbits near γ after a perturbation, and for dynamical convexity we require the minimum number in this interval to be at least n `1. In the 4-dimensional case (n "

2), this means that the dynamical rotation number of the linearized Reeb flow around γ, which we denote by ρpγq P , is greater than 1.

For the sequence of numbers a i coming from a weight expansion, or for any finite sequence, the supremum in (6.1.3) is achieved, so we can write 'max' instead of 'sup'.

Here pγq denotes the symplectic action of γ, which is defined by pγq " ş γ λ.

Unlike (6.3.5), the function r¨s Ω is not a norm; instead it satisfies the reverse inequality rv `v1 s Ω ě rvs Ω `rv 1 s Ω .

The four-dimensional case of this was shown using ECH capacities in [CCGF `14, Cor. 1.10].

Without the smoothness assumption, it is shown in [AAO14, Prop.

2.7] that c HZ pX q agrees with the minimum action of a "generalized closed characteristic" on BX .

The main theorem in[START_REF] Hutchings | Beyond ECH capacities[END_REF] gives a general obstruction to a symplectic embedding of one four-dimensional convex toric domain into another, which sometimes goes beyond the obstruction coming from ECH capacities. This theorem can be generalized to weakly convex toric domains; but rather than carry out the full generalization, we will just explain the simple case of this that we need.

One way to think about the information that we are getting out of (7.1.11), as well as the general symplectic embedding obstruction in[START_REF] Hutchings | Beyond ECH capacities[END_REF], is that we are making essential use of the fact that every holomorphic curve has nonnegative genus.

Since A may not be a manifold or even a manifold with boundary we should say what it means for φ : A Ñ U to be a symplectic embedding; our convention will be that it means that there is an open neighborhood of A to which φ extends as a symplectic embedding. When A is a manifold with boundary it is not hard to see using a relative Moser argument that this is equivalent to the statement that φ : A Ñ U is a smooth embedding of manifolds with boundary which preserves the symplectic form.

Here, a toric star-shaped domain means BX Ω is smooth and the radial vector field of 4 is transversal to BX Ω . In particular, BΩ is smooth and the radial vector field of

is transversal to BΩ.

One direction is to impose condition on the linking number or on the index of the orbit whose action represent the symplectic capacity

Acknowledgments

Definition and examples

This terminology may be misleading because a "convex toric domain" is not the same thing as a compact toric domain that is convex in 2n ; see Proposition 5.1.7 below. Definition 5.1.6. [GH18] A concave toric domain is a toric domain X Ω such that Ω is compact and n ě0 zΩ is convex.

We remark that if X Ω is a convex toric domain or concave toric domain and if X Ω has smooth boundary, then it is a monotone toric domain.

Proposition 5.1.7. A toric domain X Ω is a convex subset of 2n if and only if the set r Ω "

Proof. pñq The set r Ω is just the intersection of the toric domain X Ω with the subspace n Ă n . If X Ω is convex, then its intersection with any linear subspace is also convex.

pðq Suppose that the set r Ω is convex. Let z, z 1 P X Ω and let t P r0, 1s. We need to show that p1 ´tqz `tz 1 P X Ω .

That is, we need to show that `ˇp 1 ´tqz 1 `tz 1 1 ˇˇ, . . . , ˇˇp1 ´tqz n `z1 n ˇˇ˘P r Ω.

(5.1.5)

We know that the 2 n points p˘|z 1 |, . . . , ˘|z n |q are all in r Ω, as are the 2 n points p˘|z 1 1 |, . . . , ˘|z 1 n |q. By the triangle inequality we have |p1 ´tqz j `tz 1 j | ď p1 ´tq|z j | `t|z 1 j | for each j " 1, . . . , n. It follows that the point in (5.1.5) can be expressed as p1 ´tq times a convex combination of the points p˘|z 1 |, . . . , ˘|z n |q, plus t times a convex combination of the points p˘|z 1 1 |, . . . , ˘|z 1 n |q. Since r Ω is convex, it follows that (5.1.5) holds.

Example 5.1.8. If X Ω is a convex toric domain, then X Ω is a convex subset of 2n .

Proof. Similarly to the above argument, this boils down to showing that if w, w 1 P and 0

The above inequality follows by expanding the left hand side and using the triangle inequality.

However the converse is not true:

Example 5.1.9. Let p ą 0, and let Ω be the positive quadrant of the L p unit ball,

Then X Ω is a concave toric domain iff p ď 1, and a convex toric domain iff p ě 1. By Proposition 5.1.7, the domain X Ω is convex in 2n if and only if p ě 1{2.

Dynamics on the boundary

We perturb Ω to have some additional properties that will be useful. We may assume the following, where Σ denotes the closure of the set BΩ X n ą0 :

(i) Σ is a smooth hypersurface in n .

(ii) The Gauss map G : Σ Ñ S n´1 is a smooth embedding, and BX Ω is a smooth hypersurface in 2n . In particular, X Ω is a nice star-shaped domain.

(iii) If w P Σ and if w i " 0 for some i, then the i th component of Gpwq is positive and small.

Reeb vector field

We first compute the Reeb vector field on BX Ω " µ ´1pΣq.

Let w P Σ and let z P µ ´1pwq. Also, write Gpwq " pν 1 , . . . , ν n q. Observe that

We now define local coordinates on a neighborhood of z in n as follows. For i " 1, . . . , n, let i denote the i th summand in n . If z i " 0, then we use the standard coordinates x i and y i on i . If z i ‰ 0, then on i we use local coordinates µ i and θ i , where µ i " πpx 2 i `y2 i q, and θ i is the angular polar coordinate.

In these coordinates, the standard Liouville form (1.1.1) is given by

Also, the tangent space to BX Ω at z is described by

It follows from the above three equations that the Reeb vector field at z is given by

For future reference, we also note that the contact structure ξ at z is given by

Reeb orbits

We now compute the Reeb orbits and their basic properties.

for each positive integer k. By Example 6.3.11 and Lemma 6.3.19, this means that kδ 1 ď δpk `n ´1q.

Since this holds for arbitrarily large k, it follows that δ 1 ď δ as desired.

Proof of Theorem 6.3.18. Let δ ą 0 be the largest real number such that pδ, . . . , δq P Ω. It follows from the definitions of convex and concave toric domain that

The first inclusion implies that δ ď c l pX Ω q by the definition of c l , while the second inclusion implies that c l pX Ω q ď δ by Proposition 6.3.20. Thus c l pX Ω q " δ.

Remark 6.3.21. The proof of Theorem 6.3.18 shows more generally that any star-shaped domain X Ă n such that l n pδq Ă X Ă L n pδq (6.3.12) satisfies c l pX q " δ.

We now choose a convex function H P C 8 p 2n q such that Hpzq " f prpzqq, if rpzq ď 2, Hpzq ě f prpzqq, for all z P 2n , Hpzq " c |z| 2 , if z ąą 0 for some c P ą0 zπ .

(7.2.2) Let x 0 P E be an action-minimizing Reeb orbit on BW , reparametrized as a map x 0 : { " S 1 Ñ 2n of speed α, so that Apx 0 q " α and rpx 0 q " 1 and 9 x 0 " αJ∇rpx 0 q. From a simple calculation we deduce that x 0 is a critical point of the functional Ψ : E Ñ defined by

Observe that Ψpc xq " c 2 Ψpxq for c ě 0. So s x 0 is a critical point of Ψ for all s ě 0. Let ξ " r0, 8q ¨P`x 0 ' E 0 ' E

´.

We now claim that Ψpxq ď 0 for all x P ξ. To prove this, let ξ s " sP `x0 ' E 0 ' E ´. Observe that Ψ ξ s is a concave function. Since s x 0 is a critical point of Ψ ξ s it follows that max Ψpξ s q " Ψps x 0 q " s 2 Ψpx 0 q " 0.. From (7.2.1), (7.2.2) and (7.2.3) we obtain

To prove the reverse inequality, recall from [EH90, Prop. 2] that c EH 1 pW q is the symplectic action of some Reeb orbit on BW . Thus c EH 1 pW q ě α.

High dimensions

We start by proving Theorem 7.0.4. (Some related arguments appeared in [GH18, Lem. 1.19].) If a 1 , . . . , a n ą 0, define the "L-shaped domain"

Lpa 1 , . . . , a n q " ! µ P n ě0 ˇˇµ j ď a j for some j

) .

Lemma 7.3.1. If a 1 , . . . , a n ą 0, then

Proof. Observe that n ě0 zLpa 1 , . . . , a n q " pa 1 , 8q ˆ¨¨¨ˆpa n , 8q.

is convex. Thus X Lpa 1 ,...,a n q satisfies all the conditions in the definition of "concave toric domain", except that it is not compact. A formula for c CH k of a concave toric domain is given in [GH18, Thm. 1.14]. The k " 1 case of this formula asserts that if X Ω is a concave toric domain in 2n , then

By an exhaustion argument (see [GH18, Rmk. 1.3]), this result also applies to X Lpa 1 ,...,a n q . For Ω " Lpa 1 , . . . , a n q, the minimum in (7.3.1) is realized by µ " pa 1 , . . . , a n q.

Lemma 7.3.2. If X Ω is a monotone toric domain in 2n and if µ P B `Ω, then Ω Ă Lpµ 1 , . . . , µ n q.

Proof. By an approximation argument we can assume without loss of generality that X Ω is strictly monotone. Then B `Ω is the graph of a positive function f over an open set U Ă n´1 ě0 with B j f ă 0 for j " 1, . . . , n ´1. It follows that if pµ 1 1 , . . . , µ 1 n´1 q P U and µ 1 j ą µ j for all j " 1, . . . , n ´1, then f pµ 1 1 , . . . , µ 1 n´1 q ă f pµ 1 , . . . , µ n´1 q. Consequently Ω does not contain any point µ 1 with µ 1 j ą µ j for all j " 1, . . . , n. This means that Ω Ă Lpµ 1 , . . . , µ n q. Figure 7.2 illustrates this inclusion for n " 2.

Proof of Theorem 7.0.4. For a ą 0, consider the simplex

Observe that the toric domain X ∆ n paq is the ball B 2n paq. Now let a ą 0 be the largest real number such that ∆ n paq Ă Ω; see Figure 7.2. We have B 2n paq Ă X Ω , so by definition a ď c Gr pX Ω q. Since c CH 1 is a normalized symplectic capacity, c Gr pX Ω q ď c CH 1 pX Ω q. By the maximality property of a, there exists a point µ P B `Ω with ř n j"1 µ j " a. By an approximation argument we can assume that µ P B `Ω. By Lemma 7.3.2, X Ω Ă X Lpµ 1 ,...,µ n q . By the monotonicity of c CH 1 and Lemma 7.3.1, we then have

Combining the above inequalities gives c Gr pX Ω q " c CH 1 pX Ω q " a.

We conclude this section by a quick sketch on how to prove Theorem 7.0.5.

Proof of Theorem 7.0.5. We assume that BX is smooth. By monotonicity of the capacities the result follows for all convex domains. From Viterbo's isomorphism ([Vit99, Proposition 1.4]) we know that SH ε n`1 pX q " 0 and SH ε n pX q " . So from the upper triangle in Equation (7.3.2)we obtain the following exact sequence:

Now recall from [AK19, Main Corolary] that c SH pX q " l min pBX q. If the map SH ăε n pX q Ñ SH ăL n pX q is zero, then the map δ is surjective, in particular SH `,L n`1 pX q ‰ 0. So

n`1 pX q ‰ 0u. (7.3.5) It now follows from Theorem 7.2.1, (7.3.3), (7.3.4) and (7.3.5) that c EH 1 pX q " l min pBX q " c SH pX q ě c C H 1 pX q ě l min pBX q.

Therefore c EH 1 pX q " c C H 1 pX q " c SH pX q.

Proof. First we observe that s indeed takes values in S 2 ˆS2 Ă 3 ˆ 3 , which follows by computing

Given px, yq P ∆ ˝, if we write pv, wq " spx, yq, then }v `w} 2 " 4 y ˆ1 ´x 2 ´y 4 ˙`p2 ´x ´yq 2 " x 2 ´4x `4 " p2 ´xq 2 , so (since x ă 2) J `spx, yq ˘" `2 ´}v `w}, ´v3 ´w3 `}v `w} ˘" px, x `y ´2 `2 ´xq " px, yq.

In particular, the image of s is contained in S 2 ˆS2 zQ " J ´1p∆ ˝q, and it intersects each fiber of J| J ´1p∆ ˝q just once. Moreover, since the image of s is contained in pv, Rvq | v P S 2 ( where R is the reflection through the v 2 v 3 -plane and hence is antisymplectic, we see that s ‹ Ω " 0 where Ω is the standard product symplectic form on S 2 ˆS2 . Thus s : ∆ ˝Ñ J ´1p∆ ˝q is a Lagrangian right inverse to the moment map J.

Write ψ 1 pθ ,ϕq pz 1 , z 2 q " pe ´iθ z 1 , e ´iϕ z 2 q for the standard T 2 -action on Ep4π, 8πq ˝(with moment map µ 2π having image equal to ∆ ˝; the negative signs in front of θ and ϕ arise because our convention for Hamiltonian vector fields is ω 0 pX H , ¨q " d H). Likewise write ψ 2 pθ ,ϕq " φ ´ϕ

for the T 2 -action on S 2 ˆS2 zQ induced by the moment map J. Our map Φ maps the Lagrangian section of µ 2π given by the nonnegative real locus of Ep4π, 8πq ˝to the Lagrangian section of J| S 2 ˆS2 zQ given by the image of s, and Φ obeys J ˝Φ " µ 2π and, for all pθ , ϕq P T 2 , Φ ˝ψ1 pθ ,ϕq " ψ 2 pθ ,ϕq ˝Φ. These facts are easily seen to imply that Φ is a symplectomorphism, as it identifies action-angle coordinates on Ep4π, 8πq ˝with action-angle coordinates on S 2 ˆS2 zQ. The last statement is immediate from the formula for Φ and the facts that J ˝s is the identity and that J is preserved under the Hamiltonian flows of F 1 and F 2 .

Remark 8.1.2. With sufficient effort, one can derive the following equivalent formula for the map Φ: Ep4π, 8πq ˝Ñ S 2 ˆS2 from Proposition 8.1.1: regarding S 2 as the unit sphere in ˆ , we have Φpw, zq " `Γ pw, zq, Γ p´w, zq ˘where

Since Ep4π, 8πq ˝is precisely the locus where 2|w| 2 `|z| 2 ă 8, this makes clear that Φ is a smooth (indeed even real-analytic) map despite the appearance of square roots in the formula for s in Proposition 8.1.1. and

Corollary 8.1.4 also applies to some other convex toric domains besides the cube Ppa, aq, though it as not as broadly applicable as Theorem 8.0.4. For example the reader may check that, in Corollary 8.1.4, for appropriate α one can take X Ω equal to a polydisk Pp1, aq with 1 ď a ď 1.2, or to an appropriately rescaled p ball as in Theorem 8.0.4 for p ě 10. Remark 8.1.6. By construction, the embedding Φ from Proposition 8.1.1 maps the torus T ? 2 :" pw, zq P 2 ˇˇ|w| " |z| " ? 2 ( to the Lagrangian torus in S 2 ˆS2 that is denoted K in [EP09, Example 1.22], and which can be identified with the Chekanov-Schlenk twist torus Θ, see [START_REF] Chekanov | Notes on monotone Lagrangian twist tori[END_REF], [START_REF] Oakley | On certain Lagrangian submanifolds of S 2 ˆS2 and P n[END_REF]. Since, as shown in [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF], there is no symplectomorphism mapping K to the Clifford torus in S 2 ˆS2 (i.e., to the image of T ?

2 under the standard embedding pσ ˆσq ´1 of Pp4π, 4πq ˝into S 2 ˆS2 ), one easily infers independently of our other results that pσ ˆσq ˝Φ: Pp2πc, 2πcq ãÑ Pp4π, 4πq ˝must not be isotopic to the inclusion by a compactly supported Hamiltonian isotopy for 1 ă c ă 4 ´2? 2 (for such a Hamiltonian isotopy could be extended to S 2 ˆS2 , giving a symplectomorphism that would send K to the Clifford torus). However this argument based on Lagrangian tori does not seem to adapt to yield the full result that pσ ˆσq ˝Φ is knotted in the stronger sense of Definition 8.0.3.

By the way, if c ă 1, our embedding pσ ˆσq ˝Φ: Pp2πc, 2πcq ãÑ Pp4π, 4πq ˝is unknotted. Indeed in this case the ball B 4 p4πcq is contained both in Pp4π, 4πq ˝and in Ep4π, 8πqzΦ ´1p q, and so both pσ ˆσq ˝Φ| Pp2πc,2πcq and the inclusion Pp2πc, 2πcq ãÑ Pp4π, 4πq ˝extend to embeddings B 4 p4πc, 4πcq ãÑ Pp4π, 4πq ˝; these two embeddings of the ball are symplectically isotopic by [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF]Proposition 1.5]. Thus a transition between knottedness and unknottedness occurs at the value c " 1, which is precisely the first value for which Pp2πc, 2πcq contains the torus T ? 2 mentioned at the start of the remark. Remark 8.1.7. A similar construction to that in Proposition 8.1.1, using results from [OU16, Section 3], allows one to construct a symplectic embedding of Ep3π, 12πq ˝into P 2 where the symplectic form on P 2 is normalized to give area 6π to a complex projective line, such that the torus T ?

2 is sent to the P 2 version of the Chekanov-Schlenk twist torus Θ. Combining this with a symplectomorphism from the complement of a line in P 2 to a ball and restricting to Pp2πc, 2πcq for c slightly larger than 1, we obtain a symplectic embedding Pp2πc, 2πcq ãÑ B 4 p6πq ˝which cannot be Hamiltonian isotopic to the inclusion because Θ is not Hamiltonian isotopic to the Clifford torus. It is less clear whether this embedding Pp2πc, 2πcq ãÑ B 4 p6πq ˝is knotted in the sense of Definition 8.0.3; the symplectic-homology-based methods in the present paper seem ill-equipped to address this because the filtered positive S 1 -equivariant symplectic homology of B 4 p6πq does not have as rich a structure as that of the domains X that appear in Theorem 8.0.4.
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