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Chapter 1

Introduction

N = 4 Super-Yang-Mills theory has been playing an important role in our under-
standing of Quantum Field Theories, especially in an AdS/CFT context. Due to the
Kotikov-Lipatov maximal transcendentality principle |1,/2] some of the results obtained
in this theory can be directly exported to more realistic planar QCD. In this work we
describe how to efficiently perform calculations in this theory for one of the key QCD
observables — BFKL spectrum, using integrability at any value of the 't Hooft coupling
constant A\, which was discovered initially by L.N. Lipatov in the LO BFKL spectrum [3],
and developed far beyond the perturbative regime in the A/ = 4 SYM in recent years.
Lev Nikolaevich was one of the main driving forces behind this progress and it is deeply
saddening for us to know that he left us in September 2017.

In the beginning we are going to briefly describe the meaning of the quantities studied
in the present work in the context of high energy scattering. The total cross-section o(s)
for the high-energy scattering of two colorless particles A and B can be written as [4]

a+1i00
d*qd?q , dw [ s\ ,
o(s) = / W‘I)A(Q)‘I)B(Q) / i (So) Gu(e,q) (1.1)

where ®;(¢;) are the impact factors, Gy, (q,¢’) is the t-channel partial wave for the gluon-
gluon scattering, sop = |q||¢'| and depends on the transverse momenta and s = 2papg,
where ps and pp are the 4-momenta of the particles A and B respectively. For the
t-channel partial wave the following Bethe-Salpeter equation holds

wGy(g,q1) = P2 (g —q1) + /dDiQQQK(QaQQ)Gw(QQa(h) : (1.2)

It appears to be possible to classify the eigenvalues w of the BFKL kernel K using two
quantum numbers: integer n (conformal spin) and real v

w=w(n,v) . (1.3)

The function w(n,v) is called the Pomeron eigenvalue of the BFKL kernel or just the
BFKL Pomeron eigenvalue and its values for different n and v constitute the BFKL
spectrum. For the phenomenological applications of the BFKL kernel eigenvalues with

3



4 CHAPTER 1. INTRODUCTION

non-zero conformal spin see [5]. The object w(n, V)D in the planar N' =4 SYM will be
studied in this work by means of integrability.

Before turning to the consideration of the integrable structure of the 4d gauge theories
let us briefly remind the action of N' = 4 SYM and how the states in this theory are
characterized. The action calculated in [6] is given by

4

L gvatfue (UL, — XERXOT) — g (fanedlyo) (fadegb%’j%“e)} . (14)

1 1 g .
S = / diz {—Ffjl,F““” + 5 Dt D™ i DX~
i

All the fields in the action are decorated with the index of the adjoint representation
of the gauge group SU(N), which runs from 1 to (N?—1)/2. In what follows we designate
the SU(N) structure constant by fup.. The field content of the theory includes the gauge
field A%, for which Fjj, = 0,47 — 0, A7 + gy m fabCAZAf,. Then, there are the scalar fields,
described by an antisymmetric matrix of complex fields ¢7; with ¢, j =1,...,4 and ¢ and
Jj indices being rotated by the R-symmetry group SU(4) and subject to the conditions

P = S, = (65) (15)
Imposition of the conditions leads to only 3 independent components in ¢7;, which
are usually denoted as X = ¢{,77, Y = ¢{37* and Z = ¢§,T*, where T are the SU(N)
generators. D, is a covariant derivative in the adjoint representation and acts on the
field as D, F* = 0, F® — gym fabcAZ]:c. Also, there are four 4-component spinors x?,
i =1,...,4 with the projectors L = (1 + ~5)/2 and R = (1 — v5)/2, which transform in
the fundamental representation of the R-symmetry group SU(4). In addition, the spinor
i = C(x%)! transforming in the antifundamental of SU(4), where C' = —iy?7? is the
charge conjugation matrix. The t’Hooft coupling constant is connected with the Yang-
Mills coupling constant as A = g2,;N. In what follows we are going to utilize the coupling
constant g = v/ \/(4r).

The symmetry group of the action is the superconformal group PSU(2,2/4).
The states in N' =4 SYM are labelled by the quantum numbers which are the values of
the Cartan charges of the corresponding Lie superalgebra psu(2,2|4). They are usually
written as (A, S1, Sa|J1, J2, J3), where A is the dimension, S and Sy are called spins and
Jiy 1 =1,2,3 correspond to the R-symmetry subgroup SU(4) of the whole superconformal
group.

The study of integrable structures in 4d gauge theory has long and interesting his-
tory of development. Integrability in QCD and supersymmetric Yang-Mills theories ap-
peared in two contexts. First, in the gauge theory, namely QCD, the Bartels-Kwiecinski-
Praszalowicz (BKP) equation [7,8] for multi-reggeon states was reformulated by L.N. Li-
patov [3] as the model with holomorphic and antiholomorphic hamiltonians, which has
a set of mutually commuting operators originating from the monodromy matrix satis-
fying the Yang-Baxter equation. After that L.D. Faddeev and G.P. Korchemsky in [9]
proved this model to be completely integrable and equivalent to the spectral problem
for SL(2,C) XXX Heisenberg spin chain. Then, in the context of high-energy scattering

Tn [4] the function w is used with the different argument v = 1/2 + iv.



there was considered a certain class of light-cone operators in QCD and supersymmetric
Yang-Mills theories and in |10H13] the problem of finding the anomalous dimensions of
the light-cone operators was formulated in terms of SL(2,R) Heisenberg spin chain.

The other achievement was that the maximally supersymmetric N' = 4 Yang-Mills
theory in 4 dimensions, which is dual to AdSs x S° type IIB superstring theory was shown
to be integrable [14}/15]. The study of the integrability structure of the latter theory
allowed to explore its spectrum in the non-perturbative regime. The solution to the
spectral problem was formulated in terms of the Quantum Spectral Curve (QSC) [16,[17]
(for the recent reviews see [18] and [19]), following a long and successful study of this
problem during the last decade and a half [15]. The QSC approach has already a history
of a number of non-trivial tests and applications. In the weak coupling limit, the one-
loop dimensions for twist-L operators of the type tr ZD? ZL~1 of the sl(2) sector (these
operators are identified with the states with the Cartan charges S =S5, So =0, J1 =L
and Jo = J3 = 0) were reproduced [16] and then the method was applied for calculating
the dimension of Konishi operator at 10 loops |20]. For the small S expansion of anomalous
dimension of twist-2 operator v = f1(A\)S + f2(A)S? + O(S3), the slope function f; [21],
exact at any 't Hooft coupling A, was reproduced from the QSC and the slope-to-slope
function fo was then found in [22]. The results for the cusp anomalous dimension at
small angle of the cusp, known from localization [23] and Thermodynamic Bethe Ansatz
[22,24}25], was reproduced in an elementary way from QSC in [16]. The QSC method
was generalized to the case of ABJM theory [26,27] which allowed the efficient calculation
of the ABJM slope function and helped to identify the mysterious interpolating function
fixing the dependence of dispersion relation on the ‘t Hooft coupling A [28]E] and gave the
last missing element in the solution of the spectral problem for this model.

Nevertheless, until recently it was not known how to build the bridge between the in-
tegrability in the BFKL limit and integrability found in the AdS/CFT framework. In [30]
the 4-loop Asymptotic Bethe Ansatz (ABA) contribution to the anomalous dimension
of the twist-2 s[(2) operators was analytically continued to the non-integer spins and
compared with the corresponding prediction from the BFKL Pomeron eigenvalues. This
analytic continuation to non-integer spins was incorporated into the QSC formalism in [22]
for twist-2 operators from the sl(2) sector and in this work we explain how to derive the
Faddeev-Korchemsky Baxter equation [9] for Lipatov SL(2,C) spin chain correctly repro-
ducing the leading order (LO) BFKL Pomeron eigenvalue. In addition, QSC allowed to
calculate analytically [31] the previously unknown next-to-next-to-leading order (NNLO)
BFKL eigenvalue in the N' = 4 supersymmetric Yang-Mills theory. At the same time, a
very efficient numerical algorithm was constructed in [32], which allows to study not only
the BFKL limit of the spectrum of the theory, but the whole anomalous dimension of a
given operator for arbitrary values of the charges.

Let us consider the twist-2 s[(2) operators of the form

O = trZD% Z + (permutations) (1.6)

and remember that from the perturbative calculations in the gauge theory for the case
of even integer S we know the dimension of these operators A as a function of S up
to several loops order. In the QSC framework the solution of the Baxter equation for

2Tested by a heroic strong coupling two loop calculation in [29)].



6 CHAPTER 1. INTRODUCTION

the spectrum of such operators in the case of zero conformal spin n and integer even
spins S was obtained in [16]. Then in [33}34] there was found the solution of this Baxter
equation valid for arbitrary spin S, which leads to the anomalous dimension of the twist-2
5[(2) operators analytically continued for non-integer spin S. After making this analytic
continuation in the BFKL regime we are able to exchange the roles of A and S obtaining
S+1=w(n =0,v), where v = —iA/2 and A is the dimension of the operator in question.

Here we demonstrate another application of the QSC to an important problem — the
calculation of conformal dimensions A of the operators of a type belonging to the
5[(2) sector in the BFKL limit, corresponding to a double scaling regime of small 't Hooft
constant g = VA /(4m) — 0 and the Lorentz spin S approaching to —1, whereas the ratio
A= g?/(S +1) is kept fixed. We will reproduce the famous formula for this dimension,
obtained in [2}35,36] from the direct re-summation of Feynman graphs

1 1 A 1 A )
4A:—1/)<2—2>—¢<2+2>+2¢(1)+0(9)> (1.7)
where ¢ (z) = I"(z)/T'(z). Remarkably, this result is also known to be valid for the pure
Yang-Mills theory in the planar limit since only the gluons appear inside the Feynman
diagrams of N/ = 4 SYM at LO! In [37] the conformal invariance of the BFKL kernel
with the characteristic function was shown. This formula was a result of a long and
remarkable history of applications of the BFKL method to the study of Regge limit of high
energy scattering amplitudes and correlators in QCD [9}38-41] and in the N’ =4 SYM
theory [2,130,42-48]. The effective action for the high-energy processes in nonabelian
gauge theories was derived in [49]. Not a long time ago certain scattering amplitudes
describing the adjoint sector (single reggeized gluon) were computed by means of all loop
integrability in the BFKL limit [50] in the integrable polygonal Wilson loop formalism [51].

To recover the formula from the QSC approach, we will have to compute cer-
tain quantities not only in the LO, but also in the NLO. In particular, we extract from
the analytic Q-system describing QSC the Baxter-Faddeev-Korchemsky equation for the
Pomeron wave function [3,9,/52-55] in the LO and generalize it to the NLO. Some other
ingredients of the QSC, entering the underlying so-called Pu- and Qw-equations, will be
determined in the LO or even up to NLO. These calculations lay out a good basis for
the construction of a systematic BFKL expansion of this anomalous dimension in planar
N =4 SYM, now known up to NNLO correction to from the direct computation
of [2,4,56] and from the QSC [31].

Our method, designed here for the case of Pomeron singularity (a bound state of two
reggeized gluons) should be applicable to the study of a bound state of L reggeized gluons
as well.

Let us stress that one of the main results of this work — the correct reproduction of the
formula from the QSC — is a very non-trivial test of the QSC as well as of the whole
integrability approach to planar AdS/CFT spectrum. It sums up an infinite number of
the so-called wrapping corrections infinitely many loops for a highly non-trivial non-BPS
quantity.

In the present work we consider the generalization allowing for an arbitrary value of
the conformal spin. Namely, we consider the operators

o= trZDji1 a%z + (permutations) . (1.8)



-In|-1 In[+1 A

-In|-2

Figure 1.1: Trajectory of the length-2 operator for conformal spin n = S5 as a function of
the full dimension A. The dots correspond to local operators trZ DiaﬁZ . For the local
operators S + n is restricted to be even.

For the operators we follow the same strategy as for the case of zero conformal spin.
Analogously to that case we build the analytic continuation in the spins S; and Ss, which
are identified with the spin S and conformal spin n respectively. Let us illustrate this
analytic continuation with the Figure The physical operators, for which the sum
of non-negative integer S = S7 and n = S5 is even, are depicted with the dots. Then,
flipping the roles of the dimension A and S = S; we can reach the BFKL regime described
by the quantity w(n = Sa,v) = S; + 1, where v = —iA/2.

The way to proceed with the problem in question is to first generalize the QSC ap-
proach to non-integer values of S; (as was already done in [22]) and then also to non-
integer values of Sy. We describe the technical details of this procedure in the Section
This allows to treat w(n,r) as an analytic function of both its parameters, which
simplifies both analytical and numerical considerations. This gives a universal framework
for studying the BFKL spectrum in full generality for all values of the parameters on
equal footing within the extended QSC formalism.

Having formulated the problem as an extension of the initial QSC, a number of meth-
ods, initially developed for the local operators, became available for the BFKL problem.
In particular we are enabled to employ a very powerful numerical algorithm [32] after
some modifications. As we take the spins S7 to be continuous variable we can consider
instead of the function A(S1,S2) the function S;(A,S2). Then, using the algorithm we
build the operator trajectories for different values of conformal spin Sy and the depen-
dencies of the spin S; on the coupling constant g for different values of conformal spin So
and dimension A (including a particular interesting intercept function corresponding to
A = 0). Having the numerical results for the operator trajectories we were able to fit the
numerical values of the BFKL kernel eigenvaluesﬂ, which were confirmed in [58] using a
different method.

Another method available within the QSC formalism is an efficient perturbative ex-
pansion developed in [20,31,59-61]. We applied this method to find the value of the

3See M.Alfimov’s presentation at the GATIS Training Event at DESY [57].
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Pomeron intercept for an arbitrary value of conformal spin up to 3 loops. Our result is
in full agreement with [58] at the NNLO level, but we also give a prediction for the next
(NNNLO) order.

Then, we found and studied in detail a particularly interesting point in the space of
parameters of the BFKL Pomeron. This is the “BPS” point A = 0 and n = 1. As we
have confirmed both numerically and analytically, the operator trajectory goes through
the point § = —1, n = 1 and A = 0 for any value of the coupling constant g. Studying
the vicinity of this point we were able to find two non-perturbative quantities: “slope-
to-intercept function” and “curvature function”. The first function is the first derivative
of S (A,n) with respect to n at the point A = 0, n = 1 and the second function is the
second derivative of S (A,n) with respect to A at the same point. We used the methods
developed in [22] to compute analytically these quantities non-perturbatively to all orders
in g.

Finally, we were able to identify the intercept function in the strong coupling expansion
up to the 4th order. To obtain it we utilized the dependencies of the intercept on the
coupling constant calculated by the QSC numerical method. By conducting the numerical
fit of these dependencies for different values of conformal spin n we predict the formula
for the intercept strong coupling expansion up to the 4th order for arbitrary conformal
spin.

Let us present a brief summary of the quantities we calculated. They include the
NNLO intercept function and the non-rational part of the NNNLO intercept
function . The other quantities we computed exactly to all orders in the 't Hooft
coupling constant are the slope-to-intercept and the curvature functions
with the strong coupling expansions of these functions given by (4.233)) and (4.320) re-
spectively. In addition, there was written the strong coupling expansion of the
intercept function for arbitrary conformal spin n. We also implemented the numerical
method for finding the eigenvalues at arbitrary values of the parameters in Mathematica,
the corresponding files code_for_arxiv.nb and BFKLdata.mx can be found in the attach-
ments to the arXiv submission [62]. See description.txt file for the description.

This work is organized as follows. In the Chapter [2] we report a brief description of the
Quantum Spectral Curve method. It includes the Section on the Y- and T-systems, a
sketchy derivation of the Pp-system in the Section[2.2] motivation from the weak coupling
in and the QSC generalities in The Chapter [3]is devoted to the application of
the QSC to the twist-2 operators with zero conformal spin and consists of the Section
on the weak coupling limit and on the BFKL limit. In the Chapter [4] we turn to
a more general class of the length-2 operators with non-zero conformal spin and address
several issues there. In the Section we give the general introduction into the QSC
approach, extending it to the situation when both spins are non-integer. The Section [1.2]
describes our numerical results. The Section contains the weak coupling analysis. In
the Section [4.4] we analyze the expansion near the BPS point to find the non-perturbative
quantities such as the slope-to-intercept and the curvature functions. In the Section
we analyze the Pomeron intercept at strong coupling.




Chapter 2

Quantum Spectral Curve for
N =4 SYM

In the present Chapter we are going to cover several topics. First of all, in the two
initial Sections we will explain the derivation of the QSC method, which we want to utilize
to find the spectrum of our operators of interest in N/ = 4 SYM. Second, we motivate the
QSC method from considering s(2) Heisenberg spin chain. And thirdly we explain the
formulation of the QSC suitable for analysis of the spectrum of N’ = 4 SYM for a general
state.

Before starting to explain the QSC method we would like to introduce several conve-
nient notations. The shifts of the functions are denoted as

f <u 4 22”) — ) (2.1)

For the case n = £1 we introduce the following short notation

f <u 4 ;) — ) . (2.2)

In addition, analytic continuation of the functions under the cut on the real axis is denoted
by tilde f(u). Thus, as the cuts we consider are quadratic we have

fu) = f(u) . (2.3)

Besides, we are going to use LHS and RHS for left- and right-hand side respectively.

2.1 Y- and T-systems for N =4 SYM

First we would like to shortly remind the history of the AdS;/CFT, integrability.
Since the discovery of the AdS/CFT correspondence [63-65] the integrable structures
were found both on the side of the gauge theory, which is N' = 4 SYM, and on the
side of the string theory, which is the AdSs x S® IIB superstring. In N' = 4 SYM the
dilatation operator was shown [14] to be integrable. On the other side, the classical
integrable structure [66] and the S-matrix [66-68] of the AdS5 x S® superstring. Using
this S-matrix it is possible to find all-loop asymptotic Bethe ansatz equations [69] and

9



10 CHAPTER 2. QUANTUM SPECTRAL CURVE FOR N =4 SYM

Liischer corrections [70-{73| from the TBA equations, from which the Y-system for the
AdS5/CFTy case was first conjectured in [74]

by (FYae) (14 Yo 1)
Ya,sYa,s (1 n Yail’s) (1 N Yail,s> s

where the Y-functions are depicted by the circles on the T-hook (see the Figure . For

(2.4)

a

AN

N
L4

S

Figure 2.1: T-hook for AdS5;/CFT,4 Y- and T-systems.

the values of a and s outside the circular nodes the Y-functions are equal to the following
(see |74])
Yos=00,s€Z, Yos=00,|s|>3, Y,10=0,a>3. (2.5)

The Y-functions are defined on the Riemann sheet with the long cuts (—oo, —2¢g+ik/2] U
[2g + ik/2,+00) for some k. The equations ([2.4)) have to be supplemented with the three
discontinuity relations, first of which is

disc log lYM [2”]H(1+Y2” ‘1)]:0, n>1, (2.6)

and the other two together with (2.6)) can be found in [75.(76].
The Y-functions in the AdS/CFT can be parametrized in terms of the Hirota T-
functions in the following way

Ta s+1Ta s—1
Yoo = ottt 2.7
“e Ta+1,sTa71,s ( )

where the indices of the T-function go over all the nodes of the T-hook and the indices
of the Y-function go over the circular nodes of the same T-hook. After the substitution
of (2.7)), the Hirota equation looks as follows

TJF T,s= Ta—i—l,sTa—l,s + Ta,s—l—lTa,s—l . (28)

a,s— a,s

The statement above means that if the set of the T-functions solves the equations ([2.8]),
then the Y-functions given by (2.7) represent a solution of the (2.4)).
It should be noted that the Hirota equation (2.8)) possesses the following gauge sym-
metry |77
Ta,s N gga-&-s]gga—s]g:[)’—a—s]gé[l—a+s]Ta’s ' (29)
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From [77] we know that there exists such a gauge for the T-functions, which satisfies
the first discontinuity relation (2.6) and for which the T-functions T,—10, T4 +1 and
Tot1,42 are analytic inside the strip —a/2 < Imu < a/2 for a > 1. In addition, for all

n >3 Ty, = Tya, To_, =T, 2, Too is t-periodic and T s = T([;ros]. The other two
discontinuity relations mentioned together with (2.6) are naturally encoded in the other

gauge
a—2
2

Tos = (—1)*Tq, (TG ) (2.10)

Namely, they lead to Ty s = 1 and on the Riemann sheet with the short cuts ']AI‘LS has only
two of them for |s| > 1 and Ty, = ’ﬁ‘[lfls]'ﬁ‘[;f] (hat and check denote the function on the
Riemann sheet with the short and long cuts respectively).

Its solution for the right band of the T-hook is parametrized by two functions P; and
Py fors>1
P[1+s} P[l—s}
P[Q—‘rs} P[Z—s}

where these P-functions have only one short cut from +2¢g to —2¢ on their defining sheet
(here we omitted hat for brevity). We are also able to write down a similar solution for
the left band of the T-hook, which is parametrized by the functions P? and P* for s < —1

Tl,s _ P[1+S}P[278] . P[2+S}P[fs] _ | ’ (2'11)

pPilt+s]  pal-s]

P3[+s] P3[7s] (212)

T, , = PAltsipdl=sl _ p3ltsipdl-—s] — ‘

Our aim is to reveal the whole analytic structure of these functions. In |77] it was shown
that if we also use the function w2 = (T0,1)%, which is ¢-periodic on the Riemann sheet
with the long cuts, together with (2.11) and we are able to express all the T-
functions in terms of Py, Py, P3, P* and 1. However, we have to derive the set of
restrictions on Py, Py, P3, P4 and pj2 to resolve the analyticity requirements for the
T-functions mentioned in this Section in the paragraph before in the upper band
of the T-hook on the Fig. To achieve this and simplify our reasonings, we turn to
the specific left-right symmetric states.

2.2 Ppu-system in the left-right symmetric case

As we are interested in the case of twist-2 operators with the charges So =0, J; = 2
and Jo = J3 = 0, this results in the left-right symmetry of the T-system, namely

Ta,s(u) = Ta,fs(u) . (2'13)

This symmetry can be motivated from the strong coupling limit. In this limit
the T-functions are equal to the super-characters of SU(2,2[4) group |78] and is
fulfilled. The symmetry is satisfied by the identification P* = P; and P? = —P».

Let us introduce two additional functions P3 and P4, which also have only one short
cut [—2g,2g] on their defining sheet and an infinite tower of short cuts if we analytically
continue under this cut on the real axis. We assume that if we go under the cut the result
P, can be expressed as a linear combination of initial P-functions

P, = ,uabxbcPc , (2.14)
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where p145(u) are subject to the conditions p1o134 — p13pos+p2, = 1 and a3 = p14 and b
are antisymmetric matrices and pq,(u) has an infinite ladder of cuts [—2g + in, 2g + in],
n € Z, while x!* = —x® = x3? = —x*' = —1 with the other entries being zeroes.
Therefore, the analytic continuation P, also has the same infinite ladder of cuts on its
sheet. As pgp is i-periodic on the sheet with the long cuts the analytic continuation of

tap on the sheet with the short cuts is given by the relation
fap () = pgp(u+1) . (2.15)

Therefore figy(u) has the same cut structure as pigp(u).
Because the branch points are quadratic, going under the cut twice gives the same
result

P, = Py = i °P.. . (2.16)

After this, using the relation f1ay X teaXx? = fapX " ficax® = 6¢, we get two equations

]-sa = MabXbCPc ) (217)
]-Sa = ,aabXbCPc )
from which we immediately obtain
(ﬂab - Mab)XbCPc =0. (2.18)

Or, in other words, we can formulate the following system of equations

laabXbCPc = MabXbCPc )
fiapX*Pe = papx"Pe
frab = —flba 5

~ be de __ §€
HabX HedX = Oy -

(2.19)

Note, it is possible that not all of the equations (2.19)) are independent. If we assume,
that the matrix of the system of the first two equations

-Py P3 —Py Py
(—P4 153 _P2 P1> (220)

has rank 2, or, equivalently, vectors P, and P, are linear independent, then, the solution
to the first two equations from (2.19) is given by

fiah = tab + C1aPp + 24Py, - (2.21)

From the requirement iz, = 0 for all a we get

P
Coa = —?—“cla (2.22)

a

and o 3
flab = fhab + #(Pan - P,Py) . (2.23)

a
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Using the equation figy = —fipg for a # b we obtain

fla _ %6 (2.24)
Pa Pb
Therefore, the result is
flab(w) = pap(u) + e(w)(Pa(u)Py(u) — Py(u)Pa(u)) - (2.25)

Then, using the fact that Paxabe = f’axabe = f’axabf’b = 0 it is easy to check, that
the fourth equation from (2.19)) is also satisfied by the result (2.25]).
Now it remains to fix the coefficient e(u). First, let us calculate the product of Y7 1Y3 2

T10(w)

fira(u)

Y11Yao = (2.26)

We are going to calculate this product for —i/2 < Imu < /2. Let’s consider the domain
0 <Imu < i/2. After some calculations we find
T Ty, T4,T5
g oL1TLL 22722 (2.27)
T2 Ty 2T 3

Tio=fi1,2

The subtlety here is that for 0 < Imwu < i/2 we have "]VI‘T1 #* PT+P2 — PQH'Pl and

']VI‘;Q # ']VI‘[1T13]’]VT[1T11], because we are out of the analyticity strip and have to take an analytical
continuation. The result is

T =PI*Py - PPy, (2.28)
o - J— - — +3
Ti, = (PP~ — PoPy )T

Then, calculating with Mathematica we obtain the result for 0 < Imwu < i/2

P,P; — P,P 1 7
VigYep=14-—12 2201~ 4 M2 (2.29)
12 e(u)  e(u)pz
Analogously for the case —i/2 < Imu < 0 we have
Ty, =PiP; —PoP (2.30)
Tyo = (PP, - PHHP)T Y
And again, calculation with Mathematica gives for —i/2 < Imu < 0
PP, — P,P 1
YinYop=1+-—+2 211 — faz_ (2.31)
fi12 e(u)  e(u)fnz
Then, using the equation from [77], which is valid on the long cut on the real axis,
. 1
Y1,1Y272 (U + ZO) = (2.32)

Y171Y2,2 (u — iO)



14 CHAPTER 2. QUANTUM SPECTRAL CURVE FOR N =4 SYM

we obtain
ﬂ12 — U112 = P1].32 — PQ:[jl . (233)
Therefore
fio(u)  pi2(u+ 1)
Yi1Yoo(u) = = 2.34
L1Y22(v) pa2(u) piz(w) (2:34)
which is consistent with (2.32)). Therefore, we can write down
fiab — pap = PoPy — PP, . (2.35)

In the work [77] it was shown that the equations (2.35) and (2.19) (remembering that
t23 = pi14) together with the analytic structure of P3 and P4 ensure that the analytic
conditions for the upper band T-functions Ty_10, Tq+1 and Ty41 +2 are satisfied.

Therefore in the left-right symmetric case we can express all the T-functions in terms
of the three functions P1, P2 and p1o and then, using additional functions P3 and Py
and gy besides p12 with certain analytic properties and the equations (2.19) and ([2.35)),
all the analytic properties of the T-functions are guaranteed. Now we can turn to the
symmetries of the Pu-system.

2.2.1 Symmetries of the Pu-system

Let us write down once more the equations of the P pu-system

P, = ptapx*Pe (2.36)
fiab — pap = PoPp — PPy .

The transformation law of the p-functions, which follows from P, — (H B)lz1 P, and the

second equation of ([2.36)), is
pab = (Hp)g prea (HB)j - (2.37)

Note, that to keep the equation papx*peax® = 0¢ satisfied it is sufficient to impose the
condition

(Hp)jx"(Hp)d =X, (2.38)

which means that the matrix Hp is symplectic and Hg € Sp(4,C). Therefore, we are
interested in the symplectic transformations, which preserve the asymptotics of the P-
functions. Without ruining the asymptotics and maintaining the parity of the P-functions,
which takes place for the states with J; = 2 and Jo = J3 = 0 and is dictated by them,
the matrix Hp is
(Hg)i 0 0 0

0 (Hp) O 0
(Hp); 0  (Hp)j 0

0 (Hp)i 0 (Hp)

Hp = (2.39)
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The fact that Hp is symplectic imposes (Hp)! = 1/(HB)3:§ for i = 3,4 and (Hp)} =
—(Hp)i(Hp)1/(Hp)3. Thus

(Hp)! 0 0 0
0 (Hp); 0 0
H == H 1 =
7 _(HB)igHgé 0 (H}B)S 0
U S
1 0 0 0\ [(Hp)! 0 0 0
0 1 00 0 (Hp)3 0 0 .10
= (H )2 1 .
—mt 0 roff P O mm Y
0 (Hp)j 01 0 0 0 @

The factorized transformation matrix (2.40)) shows that the H-rotation is a superposition
of a rescaling of the P-functions and a rotation of them, which conserves the asymptotics.

As the P-functions have only one short cut on their defining sheet, we are able to
introduce the following parametrization of them

Y Y 0, R
P, =z M (g_M“Aa <1 + ;’24) +> x‘;’;) , (2.41)
k=1
which takes into account the parity of the P-functions manifesting itself in the even powers
in the series in the Zhukovsky variable z(u).

2.3 DMotivation from weak coupling

To get an idea of the QSC it is instructive to start from the example of a non-compact,
5[(2) Heisenberg spin chain with negative values of spins —s (usually denoted as XXX _y),
where s is not necessarily integer or half-integer. In particular, the Heisenberg spin chain
with s = 1/2 describes the twist-2 operators at weak coupling at one loop. Furthermore,
we will see that it is also responsible for the BFKL regime of these operators. Let us
consider the case with two particles (two nodes of the spin chain) for simplicity. For this
integrable model the problem of finding of its spectrum reduces to the Baxter equation

T(w)Q(u) + (u—1i5)?Q(u — i) + (u +1i5)?Q(u+i) =0, (2.42)

where T'(u) is some 2"¢ order polynomial which encodes the total spin S of the state via
T(u) = —2u? 4+ 82 — S + 4sS + 2s? for zero momentum states. For the case of the one-
loop spectrum of the twist-2 operators S corresponds to the operator with S covariant
derivatives.

The equation is in many respects similar to the usual Schréodinger equation,
where Q(u) plays the role of a wave function and 7'(u) is an external potential. When S
is integer one can find a polynomial solution of of degree S, which we denote as
Q1(u). The energy of the state is then given by

Q1 (u + iS)

A=2+8+2ig? 9, log ="~
T 0B O (w—is) g

+0(gh) . (2.43)



16 CHAPTER 2. QUANTUM SPECTRAL CURVE FOR N =4 SYM

For s = 1/2 this polynomial can be found explicitly (see, for example, [79]) and it gives
for the energy

S
AS)=2+5 -8+ O(g") . (2.44)
n=1 n

An important point is that since is a second degree finite difference equation there
must be another solution to it. It is easy to show, by plugging u® into the equation
and taking u — oo, that the second linearly independent solution, denoted as Q2(u) has
the asymptotics u'~%*79. Tt is clear from here that for s > 0 both solutions cannot be
polynomial. Unavoidably, Q2(u) should have infinitely many zeros and poles. To see the
positions of these poles we build the Wronskian @12(u) out of these two solutions

Q12 =0Q7Q; —Q7Q3 . (2.45)
As a consequence of (2.42)) it satisfies Q75/Q = (u —is)?/(u +is)? which can be solved
to give
D(—iu+41/2 — s)\?
= 2.46

from where we see explicitly that Q12 has second order poles at u = i(n—s+1/2), n € Z>
and is analytic in the upper half plane. We also see that Q3 should have double poles at
u=—i(n—s+1).

The normalization in is chosen so that for s = 1/2 it gives precisely the 1-loop
dimensions of twist-2 operators with S covariant derivatives and two scalars. To pass to
the BFKL regime and take the limit S — —1 we have to analytically continue away from
even integer S. The analytic continuation of the energy itself A(S) is naturally given by

the following rewriting of (2.43))

1

— n) O(g") . (2.47)

A(S):2+S—892§:(

n=1

In this form the sum is meaningful for non-integer S and we also clearly see a pole in this
energy at w=S54+1—10

A(-1+w)=1+w— g (i + (’)(wo)) +0(gh, (2.48)

which reproduces the BFKL prediction at one loop (which can be found from
by inverting the series for the expansion A — 1). However, at the level of @Q-functions it
is not immediately clear how to make the analytic continuation. Indeed, 1 as a solution
with u° asymptotics could no longer be polynomial and must also have poles. Requiring
the power-like asymptotics the best possible thing to achieve is to cancel the second order
pole and build a unique, up to a constant multiplier, @)1 so that it has only simple poles.
The singularities of the both “big” solution ()7 and “small” solution Q5 are located at
u = —in — /2 for all positive integers n as we discussed before. These poles result in
infinities in the expression for the energy . The way to avoid such infinities is to
form a regular combination, still solving the Baxter equation,

Q1 (u) + cosh(2mu)Q2(u) , (2.49)
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where all poles are cancelled, having however an exponential asymptotics. One can show
that there is a unique, up to an overall normalization, combination of this form which is
regular everywhere in the whole complex plane [33[[34]. It automatically gives the correct
analytic continuation for the dimension . In other words, one should find a regular
solution of EI) with the large positive u asymptotics u® + const e2™“ly=1=5 and plug
it into @ to get the correct analytic continuation to non-integer S. We will see how
a similar prescription allows to define the QSC for non-physical operators for any S.

2.4 Quantum Spectral Curve — (Generalities

The QSC gives a generalization of the above construction to all loops. When we go
away from weak coupling regime we start exploring all other degrees of freedom of the
dual super-string in 10D. Thus the full symmetry group PSU(2, 2|4) emerges, which simply
means that we should consider generalized Baxter equations with 2+2+4 = 8 Q-functions
with one index, which we denote as Py, a =1,...,4 (S® part) and Q;, i = 1,...,4 (AdS;
part). Out of them, we can form Wronskians like in - which give another 8+7/2 = 28
Q-functions with two indices, then we can iterate the process several times. In total we
get 28 various Q-functions.

Another effect which happens at finite coupling is that the poles of Q-functions in the
lower half-plane, described above, resolve into cuts [—2g, 2g] (where g = v/\/4).

Finally, we have to introduce new objects — the monodromies 4, and w;; corresponding
to the analytic continuation of the functions P, and Q; under these cuts. They will be
given by the equations (2.53)) and (2.60)).

Below we describe in more details this construction following [17]. We also derive
some new relation important for the BFKL applications.

2.4.1 Algebraic properties

The AdS/CFT Q-system is formed by 2% Q-functions which we denote as Q A1 (u)
where A,J C {1,2,3,4} are two ordered subsets of indices. They satisfy the QQ-

relations[l, generalizing (2.45))

QuirQaablr = Lo Lapir — Laar Lo - (2.50a)
QAal1Qari = QL\UQZU - QXUQ;mm (2.50c)

and reshuffling a pair of individual indices (small letters a,b,i,j) we can express all Q-
functions through 8 basic ones. The QQ-relations can be nicely illustrated by the
so-called Hasse diagram on the Fig. Namely, the left picture on the Fig. depicts a
facet of the Hasse diagram corresponding to the bosonic QQ-relation with A = 0.
The right cubic Hasse diagram on the Fig. designates other bosonic QQ-relations
from (2.50a). The whole AdSs x S Q-system is encoded by the gl(4/4) Hasse diagram.
Comprehensive description of the Hasse diagrams including ones connected to the other

'As usually, we will denote the shifts w.r.t. the spectral parameter as f* = flu+£14/2) and fl =
flu+in/2)
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also impose the constraint o = Q12341234 = 1, the first one being a normalization
and the second can be interpreted as a consequence of the unimodularity of the symmetry
group [81]. The Hodge dual of this Q-system, built out of the Q-functions defined through
the old ones as Q417 = (—1)M ‘J‘QAH (notations are the same as in |17]) satisfies the
same QQ-relations. Here the bar over a subset means the subset complementary w.r.t. the
full set {1,2,3,4} and | X| denotes the number of indexes in X. We use special notations
for 16 most important Q-functions mentioned before: P, = Q,9, P* = Q9. Q; = Qq|;
and Q7 = Q" where a,j = 1,2, 3, 4.

QQ-relations (2.50b|) and (2.50c|) can be found in the articles [17,|19,80]. In addition we
1 Qo

Q a1
Q@u
Qa|I chI
Qa|I leI
Qab|I chlI
Qab|I
QabcII

Figure 2.2: Facet and a cubic Hasse diagram.

One can think of P, (and P%) as of quantum counterparts of the classical quasimo-
menta describing the S part of the string motion, whereas Q; (and Q) correspond to
the AdSs part. A nice feature of the Q-system is that any Q-function can be expressed
in terms of P, and P? or, alternatively, in terms of Q; and Q’. Furthermore, the discon-
tinuity relations for P’s decouple from the rest of the system and form a closed system
of equations, called Pu-system, which carries complete information about the spectrum
of the whole AdSs x S® worldsheet sigma model. Alternatively, one can decouple Q; and
Q' from the rest of the system getting a description more natural for the AdS type of
excitations, called Quw-system. In different situations one or another description could be
more convenient, or even a completely new set of basic Q-functions could be chosen to
form a closed set of equations. At the same time one can always pass from one description
to another.

Here we present our new result which allows for the direct transition between these
two equivalent systems. We show in the Appendix that, as a consequence of the
QQ-relations, P’s and Q’s are related through the following 4th order finite-difference
equation [82]

Q[+4} o Q[+2] {Dl _ PL+2]PG[+4]D0:| + Q [_DQ o PaPa[+2]D1 + PaPa[+4]D0} -
— Q2 [Dl n PL—Q]PG[—‘HDO] +Q =0, (251)

2By @ we denote the empty set.
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Figure 2.3: Cut structure of P and p, Q and w and their analytic continuations P and
i, Q and @ [16,/17].

where
pli+2 p2+2] p3l+2  p4l+2 pli+4  p2+4 p3l+4]  pal+4]
P! P2 P3 P P! P2 P3 P

Do=det | pip-2) po-21 par-2 pa-2 | o Di=det | pug pora par-a pa-a |
pll—4  p2-4 p3l-4 pi-4 pll—4  p2l-4 p3l-4 pi-4
P1[+4] P2[+4] P3[+4] P4[+4] P1[74] P2[74] P3[74] P4[74]
P1[+2] P2[+2] P3[+2] P4[+2] _ Pl P2 P3 P4

D2 = det pll-2l p2-2] psl-2 pil-2] ;D1 =det pll+2l  p2i+2  psl+2  pil+2) )
P-4 p2-4] p3l-4  pi-4 plitd  p2+4 p3l+4 paltd
Pl[—2] PQ[—Q] P3[—2] P4[—2]

- P! P2 P3 P!

Do=det [ Lipro) porv2l parr2l parea | - (2.52)

pll+4  p2l+4  p3l+4]  pal+4]

The four solutions of this equation give four functions Q,. This relation will be useful for
us since, whether as Pu-system is simpler at weak coupling, Qw-system a priori is more
suitable for the s[(2) sector to which the twist-2 operators belongﬂ

2.4.2 Analytic properties, Pu- and Quw-systems

The Q-system is a generic Grassmanian algebraic construction, based entirely on the
symmetry group. To apply it to our particular model we have to complete it by analyticity
properties. An important analytic feature of the AdS/CFT Q-functions is that they are
multi-valued functions of w, with infinitely many Riemann sheets connected by cuts,
parallel to R, with fixed quadratic branch-points at u € +2g + iZ or u € +2g + i(Z +
1/2). According to the arguments of [17] there are no other singularities on the whole
Riemann surface of any Q-function. The basic 16 Q-functions Q and P have particularly
nice properties: P, and P* have only one “short” cut u € [—2g,2g] on their main,
defining sheet of its Riemann surface, whether Q; and Q’ have only one “long” cut
u € (—o0, —2¢]U[2g, 00) on their main sheet. The rest of the Q-functions can be expressed
in terms of either 8 P’s or 8 Q’s using QQ-relations. Depending on this choice we have
two equivalent systems of equations described below.

As we explained above, we can focus on a much smaller closed subsystem constituted
of 8 functions P, and P?, having only one short cut on the real axis on their defining
sheet. To close the system we have to describe their analytic continuation under this

*We also note that in a similar way one can derive similar relation (2.51)) with P and Q exchanged.
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cut, to the next sheet, as shown in Fig. [2.3 Denoting this continuation by P we simply
have [17]

P, = pap(w)P | P? = ;% ()P, , (2.53)
where piqp(u) is an antisymmetric matrix with unit Pfaffian, having infinitely many branch
points at u € +2g + iZ and u® = —%e“de,ucd is its inverse. To distinguish between short
cut/long cut version of the same function we add hat/check over the symbol. Then for

liap We have the i-periodicity condition
frap(u + 1) = figp(u) (2.54)

This means that all cuts are exact copies of each other with the distance ¢ between them.
The analytic continuation under these cuts is again very simple and is given by [17]

fiab — pap = PPy — PP, . (2.55)

Note that if we decide to consider fiq;, instead of the periodic fiq,, we can combine the
two above relations into a linear finite difference equation for figp

fid" = fab + PafincPC = PpjiacPC . (2.56)

To see this we can take u to be slightly below the real axis, then jigy(u + i) = flgp(u), as
shown in Fig. 2.3

Finally P’s satisfy the orthogonality relations P,P% = 0 and at large u they should
behave as

—Jy —Jo+J5—2 Ty +Jy—J
P, A1 U 2 P! Al U 2
P Ao u p? e
=~ +Jy—Jg—J3—2 ) 3 = —J1+Jo+J3 . (2'57)
Py Az u 2 P4 A3 u 2
P +J1+Jo+J3 P —Jy—Jy—J3—2
4 Asu 2 Aty 2

We note, that the coefficients A, and A® could be also determined solely in terms of the
global symmetry Cartan charges (A, S1, S2|J1, J2, J3) of the state, including the energy
A. We will briefly discuss this below.

It may seem that the description in terms of Pu-system breaks the symmetry between
AdSs5 and S® parts of the string background. It is possible however to pass to an alter-
native, equivalent description where the roles of these parts are interchanged. We will
see that we also have to interchange short and long cuts. To construct this alternative
system we can use , which, for a given P,, gives us 4 linear independent solutions
Q; (similarly we construct Q*). Knowing P, and Q; we construct Qg using which
allows us to define w;;

wij = Qg Q™ - (2.58)

One can show that Q, defined in this way will have one long cut. Also @;;, with short

cuts, happens to be periodic d);; = Wy, similarly to its counterpart with long cuts fig!

Finally, their discontinuities are given by

@ij —wij = QiQ; — Q;Qi (2.59)
Q: = wi; Q. (2.60)



2.4. QUANTUM SPECTRAL CURVE — GENERALITIES 21

Similarly to (2.57)), we have the large u asymptotics originating from the classical limit
of the superstring sigma model

+A—S51—S —A+S1+89—2

Q; B u 2 Ql Blu 2

Q B +A+S1+S9—-2 Q2 BZ —A—-S51—S5
2 2U 2 U 2

Q = —A—S1+S5 ) Q3 = g FA+S1-5y-2 . (2-61)
3 BB U 2 A B°u 2
4 —A+S1—85-2 +A—81+S,

Q By u 2 Q B4 2

Now we are able to analyze the asymptotics of pgp(u) in the limit of big u. Let us
assume that po(u) ~ v~ if u — co. In other words, we consider the state with S; = S,
So =0, J; =L and Jo = J3 = 0. Then, suggesting that all the terms in the RHS of the
formula for P, have the same asymptotics, we obtain

(134, 135 [114, 24, p12) = (334UA+L,313UA+1,B14UA,BQ4UA_17312UA_L) . (262)
For large u the system for the difference fiqp — p1qp converts to
iy (w) ~ —PoPox ey + PePeXlica (2.63)

which contains five non-equivalent equations. Putting the asymptotics of () in this
system of five first order differential equations gives us the linear system of five equations
on the variables B,,. This system has to have a non-trivial solution, which means that
its determinant is equal to zero. This gives the 5-th order equation for A, which has the
solutions (+a, £4,0) with

B \/l +iL2 4 2(14 L)A2A3 +2(1 — L)A1Aq + \/—(L2 = 1)(—4i(L - 1)A2A3 + (L + 1)(L — 1 + 4iA1 Ag))
=132

a=1 7 s (2.64)

\/77: —4L2 —2(1 4+ L)AgA3 —2(1 — L)A1 Ay + \/7(L2 —1)(—4i(L — 1)A2A3 + (L + 1)(L — 1 + 4iA1 Ay))

V2

1
B=i2

For the operators from the s[(2) sector, identifying one of the roots with A and the other
with S — 1, where S is the Lorentz spin of the operator, we obtain

((L+9)? = A?)((L - S +2)? - A?)

AxAg = —i 6L+ 1) , (2.65)
((L—=8)2=A%)((L+ S5 —2)2—A?

AAy = —i 6L 1) . (2.66)

We note that since P’s and Q’s are not independent due to there is a non-trivial
compatibility condition for their asymptotics and , which, in particular, fixes
[17] the AA products for the most general state characterized by the psu(2,2|4) Cartan
charges (A, S1, 53| J1, J2, J3)
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(14 2= J3 =82 +1)> = (A+S1—=1)?) (1 + J2 = Js + S2 +1)° = (A = S1 + 1)%)

)
ArA = —16i (J1 + J2 + 1) (J1 — J3) (J2 — J3 + 1) 26D
ApA? = (<J1_J2+J3_52_1) A‘f‘51—1)2) ((Jl—J2+J3+52—1)2—(A—Sl+1)2)
+16i (J1 — Jo — 1) (J1 + J3) (Jo — J3 + 1) ’
dot® (1= 2= Js+ 82— 1) = (A+ 51 = 1)%) ((Js = o= Js = S2 = 1)* — (A= $1 + 1))
—16i (J1 — Jo — 1) (J1 — J3) (J2 + J3 + 1) ’
AgAt — ()14 Jo+ J3 = S2+1)% — (A — Sl+1))2) (14 Jo+ s+ Sa+1)> = (A+ 81 —1)?) .

+16¢ (J1 + J2 + 1) (J1 + J3) (J2 + J3 + 1)

Now we will apply these general formulas, true for any local operator, to our current
problems — the spectrum of twist-2 operators in the different limits.



Chapter 3

Twist-2 operators with zero
conformal spin

In this Chapter we consider the class of the twist-2 operators , which are par-
ticularly important in the context of the BFKL limit of the high-energy scattering. For
this we are going to utilize the Quantum Spectral Curve method, including the Pu- and
Qu-systems, described in the Chapter [2| It is logically divided into two Sections. In the
first one we study the weak coupling limit of the P p-system for the twist-2 operators
first for the integer spin S and then analytically continue in S. In the second Section using
the aforementioned analytic continuation we find the QSC solution in the BFKL limit
restoring the seminal LO BFKL kernel eigenvalue. The second Section of this Chapter is
based on the article [82]. The main author’s contribution to this part is the conjecture of
the ansatz for the solution of the Pu-system in the BFKL limit.

3.1 Weak coupling limit

This Section is devoted to the consideration of the weak coupling limit of the QSC.
Namely, we start from solving it at 1-loop order for the integer spin S, obtaining the
second order Baxter equation. Then we find the analytic continuation of the solution
of this equation in S, which correctly reproduces the analytically continued in S 1-loop
anomalous dimension of the twist-2 operators. This allows us to reconstruct the whole
Pu-system at 1-loop order and partially at 2-loop order.

3.1.1 QSC solution for non-negative even S| = S

Before proceeding with solving the system of equations we have to describe their
scaling in the limit of interest, i.e. small g and non-negative even S7 = .S and Sy =n =
0. In this limit A = 24+ S + O(g?) and therefore A;A4 = Ay = —A; = O(¢?) and
AgAs = Ay = —A3 = O(g"). Using the rescaling symmetry, we can set A1 = O(g?) and
Ay = O(g") along with Ay = O(g°) and A3z = O(g°). Or, in other words,

A A
Aa = <g27 17 _A37 924> ) A = (9217A27 _1a92> . (31)

23
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Application of the rotation symmetry from , taking into account the number of free
parameters in , also allows us to set the coefficient c41 = 0 in all orders in the
coupling constant.

Assuming that the scaling of each P-function is determined by its coefficient in front
of the leading asymptotic and introducing the notation

+oo
P, = Z ng)g2k s (32)
k=0

we conclude that
P =0 (3.3)

in the weak coupling limit. The scaling (3.2) and (3.3]) imposes the following restrictions
on the coefficients in (2.41)

Cli = O(g~%%) and Cak = O(g‘Qk_M‘l) , a=2,34. (3.4)
To understand the scaling of the p-functions we can do the following. Let us consider
Ay

P, = 97$2 +3 ettt (3.5)
k=1

The leading term of the RHS of scales as g—2. We assume that the scaling of P is
determined by its leading term and Py ~ ¢g~2. Thus, from the RHS of the Pu-equations
for we conclude that at least some of the p-functions have to scale as g~2. As the pu-
functions are present also in the RHS of the Pu-equations for P, for a = 2, 3,4, we see
that the scaling g2 is transferred to the other components of P,. Therefore a natural
hypothesis for the scaling of the p-functions would be

k _
pap = > 1l g?h 2 (3.6)
k=0

The scaling of the P-functions P, = O(g~2), taking into account the expansion (3.2),

implies the scaling ¢, = O(gM“+2(k_1)) and the following weak coupling expansion of

these coeflicients

= (m) ;
Cak = Z C(:]i 92(m+k—1)+Ma ) (3.7)
m=0

Having now (3.2)),(3.6)) and (3.7)) we are able to proceed with solving the P u-equations in
the LO.
The system of equations for pgp in the LO in g taking into account that Pgo) =0

~(0) (0 —Pgo)Pgo) (Pgo)f 0 0 0 (0)
s s A pO) PORY g 0 0 "B
lf%g’fﬂ%% _ <o>3 (0) ?o> i(4\’0) M%ff’)
/:L%é_u%é) B (542 s (o? (0) (c?) (0) g) 2 /%1)
oy = Hay - (P{") 0 PP _p P32 (P5”) fas
H34 — H3q 0 _ (Pflo)) 2P§O)Pio) o (P§0)> PgO)PgO) H34
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On can see from ({3.8)) that the equations for ,ugg) and u%%) decouple from the system.

Excluding Mg?v,) from them with the formula

(0)++ (0)
0 7 P 1 0
Mgs) =1 + 3 — Mgz) (3.9)

(p) \PY ()]

we get the equation

0)[+3 0 - 0)—
TR B S o L S O+, My _
(0)+)2 (0)+ (0)- (0)+) 2 02 | 112 + (0)—\ 2 =0 (3.10)
() \Pm P (B7) () (P"")
and the equation for ,ugg)
I £ L O WU SO SN
0)+) 2 0)+ (0)— 0)+)2 0)—)2 -\
(B7)" AP P (R) (P) (Pi")
Introducing a new notation ,ugg)—i_ = a@), where « is the normalization coefficient, we
rewrite the equation (3.10)
TQ + ;Q" + ;QH =0 (3.12)
(P<0>7)2 (P(0)+)2 o '
2 2
where 0+ ©)
7= s Ps S S (3.13)

0+ pO- N2 2
Py PP (RO) (P
From (3.2)) and (3.7) together with the normalization A = Ay = 1 we derive that
L0l 0 g0 pO 40, (3.14)

then T' is known. Therefore all the coefficients in (3.12)) are polynomials and (3.12)) takes
the form

<u+ ;>2Q++ + <u— ;>2Q“ — <2u2 —S(S+1) - ;) Q=0. (3.15)

Now we are going to analyze the analyticity properties of . Let us represent pgp in

the following form
Hab M:b+ ) 2 Hab — ,u+b+
=|—2 | +\/u*—4 —a ] 3.16
Hab < 2 g 9 u2 — 4g2 ( )

Thanks to the continuity pig,(u £ 0) = f12(u F i0) the expressions in the brackets have
no jump on the cut. This means that in the LO the function ugg) is analytic in the

whole complex plane. For the twist-2 physical states from the s[(2) sector of the function
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p12 ~ u2~2 and we see that ,ugg) = Q= ~ u° has the polynomial asymptotic as S is

non-negative integer in our consideration. Thus from the Liouville’s theorem about entire
functions we conclude that @ is a polynomial of degree S.

Now we are to find the solution of for the case of non-negative even S. A
polynomial solution to can be expressed in terms of the hypergeometric function

1
Q(U,S) = 3k, <—S, 145, 5~ 1u; 1, 1, 1) R (3.17)

which is a polynomial of the order S if S is a non-negative integer.
Up to the normalization in the LO ,ugg) = a@Q™ (u;5), where « is the normalization

constant to be determined. To do this, let us use the equation

uig - iy = PP (3.18)
In the LO in g we get
+oo
13&0) =u? + Z cf,luzkw , (3.19)
k=1
which leads us to
+00 0
e (Q+(u; S)—Q (u; S)) =—u— Z ci,)gu%ﬂ . (3.20)
k=1

Solving (3.20)) with respect to « gives us

1
‘T (0uQT (u; S) — 0,Q~ (u; S))|u=0 (3.21)
Thus,
phy = - s (3.22)

8 cos? Z3.51(S)

where S1(5) is the value of the harmonic sum at even non-negative S.

Finding P> and 1-loop anomalous dimension for integer S
To proceed further, let us write down two of the Pu-system equations in the LO

5 (0 0)p (0 0)p(0

Pg )= M§2)Pz(1 ) M§4)Pg ) ’ (3.23)
= (0 0)++p(0 0)++p(0

Pg ) = N(12) Pf1 ) ,u(14) Pé i

The important observation is that if we express from the RHS of (3.23))

pO  pO
2= ) — ) (3.24)

Pgo) - Pgo)
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taking into account the P-functions in the LO (3.14) and the fact that all u((l%) are poly-

nomials for integer S, we conclude that f’go) / Pgo) is a polynomial. Then, combining and
shifting the equations (3.23]), we obtain

BOVT (BO\ T ((BONT B0
2 2 2 2

In the LO in g according to (3.14) we know the P-functions(3.7)), thus, the RHS of ({3.25])

reduces to N
PO PO~
(?0)> - <?® = 2iaQ(u; S)Aio)u . (3.26)
P, P,

The polynomial solution of (3.26)) taken from the article [20] supplemented by the solution
of the homogeneous version of (3.26) is

Eézz — 2K ((iu +0) (T Q)+ % (@*+ Q‘)) ta, (3.27)

where K, 0 and a are the constants to be fixed. They can be fixed from the conjectured
form of P5 in the leading order in g and small u. So, we have

+o0o
f’éo) =u-+ Z cé?,)cu%ﬂ , (3.28)
k=1

P — % +KQ (; 5) u+t Ko (0,0" - 9,Q7) ’u:o w?+ 0 (w)

Thus, comparing the first and second equations of (3.28]), we obtain K = 1/Q(i/2;5) and
0 = a = 0. The solution takes the form

pO) _ U : oL -
P2O—Q(;.;S)<ZU(Q+—Q)+2(Q++Q)>. (3.29)

Plugging this result (3.29)) together with (3.14)) into the equation (3.26)), we are able to
express AZ(LO
(S+2)(S-1)

AL(P) _ : . (3.30)
20Q (5 S)
On the other hand from (3.1]) we know
] 2 -1
AP =AW = 15F i(s Ly, (3.31)

where (1) is the 1-loop anomalous dimension of the considered twist-2 sl(2) operator.
Therefore, comparing (3.30) and (3.31) and remembering (3.21)), we obtain

" (u; 9)

M = 29, log =——"2 :
7 Qw9

(3.32)
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To sum up, using (3.32)), we are able to write down a particularly simple formula for the
1-loop anomalous dimension of the twist-2 operators of the s[(2) sector

, Q" (u; ) 4
A =2+ 8+2ig°0, log =———2|  +0(g"). 3.33
g°0ulog o) . (9") (3.33)
Substituting (3.17]) into (3.33) we derive the formula
51
A:2+S+8g22%+(’)(g4). (3.34)

k=1

However, the presented solution allows to find the solution of the Pu-system and 1-
loop anomalous dimension only in the case of the physical operators, i.e. when S is a
non-negative even integer. Our aim now is to generalize the solution above to the case of
non-integer S.

3.1.2 Analytic continuation to non-integer spin S

The aim of the present Subsection is to generalize the solution presented in the previous
Subsection for integer S for the case of non-integer S. Let us start with writing down the
analytic continuation of the 1-loop anomalous dimension

A=2+S+85* (S +1) — (1) + O(g") (3.35)

which has the infinite series of poles in the points S = —1, -2, —3, ... due to the presence
of the digamma function. Also, the 1-loop anomalous dimension can be rewritten in terms
of the harmonic sums v1) = 85(S). Now we are going to build the solution of the Py,
which produces for non-integer S.

We consider now the situation when S is not integer anymore and it is clear that the
P-functions are the same in the LO, i.e. given by the formula . In the weak coupling

limit P; = O(g?), which allowed us to decouple the equations for ,ug) and ,ug%) decouple

and we obtained the Baxter equation (3.15|) for ,ugg)Jr =a@

1 -\ 2 )
<2u2 - S(S+1)— 2) Q= <u + ;) QYT+ <u - ;) Q. (3.36)
For further convenience let us consider a more general equation with an additional pa-
rameter j
(2u2 —S(S+1)+2j(j — 1)) Q= (u+ij)2QTT + (u—ij)?Q . (3.37)

For j = 1/2 the equation (3.37)) turns into (3.15). It is notable that if Q(u;S,j) is a
solution of (3.37)), then due to the symmetries of this Baxter equation Q(u; —S —1, j) and
Q(—u; —S — 1,7) are also solutions. The solution to this equation (3.37)) has the form

Qo(u; S, j) = 2(27) 3F5(2) —1—8,25 + S, j —iu; 24,255 1) (3.38)
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and it is true that Qo(u; S,1/2) = Q(u;S) from (3.17). This solution (3.38) is symmetric
under the flip S — —S — 1. Its asymptotic expansion at v — oo is (it can be obtained by
the method described, for example, in [34])

o 25 +1) im(S—j), —2j+5+1
QO(U’S’])_I‘2(S+1)F(2j—|—5)w 27y +
r(-25-1) —in($+45), ~2j—S
252 — 5 - 1)6 2Ty . (3.39)
This function (3.38)) is meromorphic in the complex plane, i.e. it has the infinite series of
poles in the points u = i(1 — j) + ik, k =0,1,2,.... The residue in the pole u = i(1 — j)
idl]

. { 1 ‘ 20
Qi S.) = ~rr T —gr@i s a g =y t O (- il=9r) . 340
If we use the Baxter equation , we can find the residues in all points u = i(1—7)+ik,
where k = 1,2, 3, ... From the formula (3.40) we see that Qo(u; S, 1/2) does not reproduce
the 1-loop anomalous dimension , therefore we have to look for the other solution.
We can obtain the second linear independent solution to the Baxter equation (3.37))
by taking

, r(l—j+ iu))2 .
w, S, ) = ——2 " w 8,1 — 7). 3.41
ofu:.5) = (ps? ) QoS =) (3.41)
The second solution g(u; S, j) has the following asymptotic expansion at u — oo
28 +1) o (5-1)y—25+5+1

10450 = g e -2+ 9)

F(—2S— 1) —im(24+4) — j—
T2(—S)(—2j—S+1)° s a2)

Also due to the factor consisting of gamma functions, ¢(u; .S, j) has the second order poles
at the points u = i(1 — j) + ik, where kK = 0,1,2,... and first order zeroes at the points
u =1j + ik, where k =0,1,2,...

Let us now restrict ourselves to the case j = 1/2. First, we would like to build the
decaying at infinity solution for S > —1/2, i.e. with the asymptotic «~'~%, from these

two: (3.38) and (3.41]). This can be achieved by

Qu(us$) = lim — (glus SJ)—MQO(% ). @y

- 1 =
=53] 3

It can be easily found that
1 1
Qu(us$) = ~4v (5 +iu) Qu (usS. 5) -

~40(S+ 1) (155 ) =2 (00 (wS.7)|,_y - (349)

!Note that the residue in this pole can be obtained by taking the asymptotic expansion of the terms
of the hypergeometric series at large n. The sum of the obtained series gives ((2 — j +iu)/(I'(2j — 1 —
ST(25 + S)T'(F — iu)).
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Note that Qy(u;S) behaves as u~!~° at u — oo. Taking into account the expansion

Qo (u; S, ;) = M + cos (7S) + 2 sin (75) (P(S+1)+~)+O (u — ;) , (3.45)

7 (u- %) m

in the vicinity of the point u = i/2 we have

Qur(u: ) — 2sin (775)2 _ 4isin (rS) (1[)(5'4— 1) +7) Lo ((u - i)0> | (5.46)
w(u-1) ) :

By definition the solution @Q1/(u; S) is analytic for Im v < 1/2 and for j = 1/2 has

an infinite series of second order poles at the points u = i/2 + ik, k = 0,1,2,... and the

expansion at these points can be understood from the Baxter equation .

The solution with the same asymptotics and analytic properties as Qq/(u;S) can be
constructed by an equivalent method by requiring from this solution to be decaying for
S > —1/2at u — oo (u~971) and to have the second order poles at the points u = i/2+ik,
k=0,1,2,... determined by and no singularities in the LHP. Taking into account
that Qo(—wu;S;1/2) is also a solution, these requirements lead us to the formula

Q1(u; S) =27 (cot(wS)QO <u;S, ;) _

1 1 1
- —u; S, = ) —itanh ;S = . (347
1 () st (5. 2)) -
First, one can check that Q1 (u,S) ~ v~ if u — oco. Then, the poles at u = —% — ik,
k = 0,1,2,... originating from Qo(—u,S;1/2) and tanh(mu) should be cancelled. We
checked the cancellation of the pole at u = —i/2. The second order pole in u = i/2 is

given by

2 . 4 .. 1 . O

Q) = 2 M () WS+ +) ( (u _ ;) >  34y)
w (1) w2

Because Qo(u; S,1/2) and Q1(u; S) have the poles at the same points, we can try to build

a combination of these solutions, which has no singularities in the whole complex plane

Q2(u; 8) = Qo (u; S, ;) + ﬁ@l(u; S) sinh(27u) . (3.49)

At least, in u = i/2 poles annihilate each other and Q2(u,S) = O((u —i/2)?). Thus, as
is a solution of with j = 1/2 absence of the poles in the points u = —i/2
and u = i/2 allows us to conclude that in the points u = i/2 + ik, k = 1,2,3,... there
are also no poles.

One can obtain the linear independent solution by taking Qa(—u;S). Because, the
solution to the Baxter equation we are looking for possesses the symmetry Q(i/2,S5) =
Q(—1i/2,S5) (due to the symmetry of the p-function ,ugg)(i) = ,ugg)(()), which follows from
piy(—u) = pfy(u)), it is natural to take the combination

Q(u; S) = Qa2(u; S) + Qa(—u; S) . (3.50)
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After the substitution of (3.47)) and (3.49)), we getﬂ

Q(u; S) = (Qo (u; S, ;) + Qo <—u; S, ;)) cosh? (mu)+

4 % (QO (u; S, ;) — Qo (—u; S, ;)) cot <7T25) sinh(27u) . (3.51)

First of all, using (3.45)) we can calculate from (3.51))

Q (;, S) = 2cos? (f) . (3.52)

For the derivatives with respect to u

0uQ(u; S) = 0, (Qo (u; S, ;) + Qo (—u; S, ;)) cosh? (mu)+
+ <Q0 <U; S, ;) + Qo <—u; S, ;)) 7 sinh(27mu)+

+ %(% (Qo (u; S, ;) - Qo (—u; S, ;)) cot (7T25> sinh(27u)+
+ mi <Q0 (u, S, ;) — Qo (—u, S, ;)) cot (7T2S> cosh(2mu) . (3.53)

When we go to the point u = i/2, the double poles from the third and fourth terms of
(3.53|) annihilate each other and we have only the contributions from the first, second and
fourth terms

0.Q( )|,y = ~ticos* (57 (6(S + 1)~ v(1)). (3.54)

Q(u; S) is an even function, therefore 0,Q(u; S)|u=—ij2 = —0uQ(u; S)|y=ij2. Thus, the
formula for the dimension (3.33) simplifies to

8. Q" (u; S)
QT (w; )

Substituting the obtained results (3.52) and (3.54]) into (3.55)), we have

A=2+8+4ig? +0(g") . (3.55)

u=0

A=2+85+8¢2W(S+1)—¢(1) +O(g?) =2+ S +8¢251(S) + O(g*) . (3.56)

2Let us cite the result of [34]

Q1(u) = % ((1 — itan (#) coth(ﬂu)) Qu)—

- (1 + itan (#) coth(wu)) Q(—u)) .
With the identification Q(u) = Qo(u;S,1/2) and M = S we get for our solution Q(u;S)

Qu, §) = 2 cos” (?) O1(u) ,

which shows the consistency of Q(u;.S) with the solution in [34].
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which is equal to (3.35). Therefore, we managed to build the solution of the Baxter
equation , which reproduces the 1-loop anomalous dimension for non-integer
S. However, the asymptotic of the solution to this Baxter equation is no longer v, but is
a mixture of the component and the solution with the asymptotic u=°~! enhanced by the
exponentials e?™ and e~2™*. Let us now proceed with the finding of the other p-functions
in the LO in the coupling constant g.

3.1.3 Reconstructing other P and u. Leading order in ¢°.

Up to the normalization in the leading order ,ug%) = aQ ™ (u; S), where « is the nor-
malization constant to be determined. To do this, let us use the equation

MT;F — H12 = P1P2 — P2P1 (357)
expanded in the LO
0 0 0)5(0
T L R (3.58)

Exactly as in [20], but for non-integer S, we get

1 i
¢ 00T (wS) — 0.~ (W )l Scos2E25y(S) (3.59)

where S7 is a harmonic sum. One should note that also due to the formula (3.9) and

taking into account that Ago) = —15(S + 1) we can immediately write ,ug%)

/Ag%) = au? <Q+ — Q_> —aiS(S + 1u@™ . (3.60)

Note, that as we introduce two expansion parameters w = S + 1 and A = ¢ /w, it means
that we have o and g3 in the order A~! and in all orders in w.
In addition, we are able now to update P;. Let us start from writing P,

B 2 —+00 “+o00
P, = Al% + Z 61,k$2k+2 = 972 (u + Z Cg?])gu2k+1> + O(QO) . (361)
k=1 k=1

Thus, we obtain
wy =l = 0@ 8) — @ (w 8) =u+ P 0@ . (3.62)
We know that Q(u;S) is an even function, then Q™ (u; S) — Q~ (u; S) is an odd function

and therefore its expansion near u = 0 does not contain the term w?, which is consistent

with the RHS of (3.62)). In addition, we derive from (3.62]) that

)

A = %Q'" (; S) . (3.63)
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Finding f’éo) and PZ(LO)

As in the case of integer S, to proceed further, let us write down two of the Pu-system
equations in the LO

5 (0 0)p(0 0)p(0

PY = uYPY — )P, (3.64)
= (0 0)++p (0 0)++p(0

Pg = :qu) Pz(x ) #54) Pé .

Then, combining and shifting the equations (3.64]), we obtain

5\ O+ 5\ (0)- + -
Py _ (P2 =0+ ﬂ _ @ (3.65)
P2 PQ H12 Pg(]) Pgo) ’ .

whose right part in the leading g2 order reduces to

5\ (0)+ 5\ (0)—
P (P2 i O (e ) 4O
<P2> <P2> - QZQQ(U, S)A4 u . (366)
The solution from [20] considered for non-integer S gives us the solution of ([3.66]
po " K((iu+6)(Q@" —Q )+§(Q +Q7)) +Au), (3.67)
2

where K and ¢ are the constants to be fixed, A(u) is an i-periodic function. In the case
of integer S the constant a was shown to be equal to 0, here we can also choose A(u) =0
and this will also be consistent with the integer S case. They can be fixed from the
conjectured form of Py in the leading order in g and small u. So, we have

+oo
PY = w3 eppul (3.68)
k=1
p(O) _ L. + 80" 2 1
P = KQ (2,5) u+t K6 (auQ 8,Q )‘uzou e (u ) :
Thus, from (3.68)) we see that K =1/Q(i/2;S) and 6 = 0. The solution takes the form

_ (@ - Q)+ HQF+ Q)
Py = - . (3.69)
Q(55)
Plugging this result into the equation ({3.66)), we reproduce Ag))
40 _ (S+2)(S—1) (3.Q" (w; ) — auQ_(u§ S))lu=0
! 2 Q(3:5)
It should be noted, that actually one can add a periodic function to Ps. Also, let’s find

cgg from ({3.69)

— —2i(S+2)(5—1)51(5) . (3.70)

2iQ (55) +3Q" (4:9)
Q(ss)

Now we are able to proceed with finding the other elements of the P u-system.

(0
Cy

) _ (3.71)

)
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Finding ugi)

Using one of the equations of the Pu-system, we find
~ (0 0)15(0 0)15(0
Py =y P — Py (3.72)

From this equation we are able to find ,u,(l(i) in the leading order

0 ~ (0
0 _ 0P PY

Hig = Hi2 Pgo) - @ . (3.73)
After the easy calculations we find
2 1 8451
1 — <zu + 2) Qt + <—w Q|- (3.74)
o0

Using the fact that Q(u; S) is a solution of the Baxter equation (3.15]), we can rewrite ugs
in a very nice form

2, 1)2
L0+ _ m(w —20+Q ). (3.75)

It should be noted, that ugﬂ”(—u) = Mﬁ”(u)-

Finding ué?l) and ugz)

To find the other p-functions we have to use the other Ppu-system equations. The

P-equations for ugi) and ugi) are

0 0 0\2 (0 0)15(0) (0 0)15(0) (0 0\2 (0
s =) = = (PPl + 2P PP — PP WG+ (PY) ), (3.76)
0 0 0\2 (0 0)5(0) (0 0\2 (0 0)5(0) (0
i)t =) = = (P Y + 2P PP — (P) ) + PP )

Excluding p{} with the help of the formula

(0))? 0 0
= (P") 9 2P} 19 L0+ Py 1 9, @
2 (0) 0)\2 (0) 0 no
(B P (R Pl (RY)

we obtain the Baxter equation with source, which after shifting by —i/2 takes the form

0 0)—
S SRS PO SIS |« Kl « A S W 1
0 0)— (0)+ (0)— 0 0)—
(P2"") (P2") P B (BY) (R
0+ 2 (0)—
P ) o+ [P 1 0-\2 (0~
=\ =Zox | M2 + 0_+ 2 1:)4 K1 —
<P§ )+ Pg) (Pgo) ) ( )
(0)+ (0)—
0-\2 - P 0 P 0)—
- (P"7) i +27P?0) +u§4)+—27P?0),u§4) - (3.78)
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Substituting P-functions from (3.14)) and remembering that cﬁ = 0, we obtain

EAROIE) Y - (o2 SN o+ (S-1)(S+2)

ul4u<u> Q“+Q< ( (S+1)+;2u2)+z’(8u21)>] . (3.79)

Or, utilizing the Baxter equation (3.36), we can write down (3.79)) in a more symmetric

form

<\ 2 AN) ~ 1
(u + ;) sy <u - ;) us) - (2u2 —S(S+1)— 2) PO+ =
(5 —1)(S +2) N 2 o

This equation is of the second order and is hard to solve. So our strategy is as
follows: we find some solution of the inhomogeneous Baxter equation by some other
means, add to it the solution of the homogeneous equation, which is Q(u;S) multiplied
by a constant, and then fix this constant. Let us use the constraint

fapiss — fspies + pig =1, (3.81)
from which it follows that in the leading order in g

(0) (0)2

0 0) H H
usy = piy 22 — H (3.82)
Hig

Then, putting (3.82)) into the equation 1 , we get the simpler equation for ugi)
) (0)2

Mg%) Hoy P14 _
0 0
Mgz) /1452)
(0))? 0 0
_ () iy — 2Py uQ+ L po (P nsy  (3.83)
0))2 (0) 2 (0) 0)) 2 ’ '
(P") (P “) P’ (PY)

which is not the second order Baxter equation. Because we know all the quantities there,
after some simplifications we get

0 0 0 0

(P 1 W0 — 0 (Pi) ~ u%ﬁ)
2 0 2 0

(Pf”) 128 (P") uiy

0 0
o
Substituting all P-functions from (3.14) and p-functions from (3.60|) and (3.74) and di-
viding by ©?Q*, we obtain the following equation

O N (0) 2 N2 N+ 2
(&) (&) g () E (=) G 2ei).

2

(3.84)
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Due to the fact that
. ++
.2 (u ~ 2>2 Q" _
2) Q~

S (s o (oea) (lers) s o

we are able to find the solution of the equation (3.85)). Making the substitution

(0) 2 L2
Haq F(u) u i\ Q
= — =] =, 3.87
Q™ a? (%, S) a@? (%, S) <u 2> Q- (3.87)
the equation for F'(u) is
F (u + ;) ~F (u — ;) = —4iu® + (S — 1)(S + 2)u® + % (3.88)
and it has the solution
F(u) = 4 <u2 + 1) (3u+i(S —1)(S +2)) + Ba@? (Z S) (3.89)
-3 4 2'7) 7 '

where (3 is a constant. Thus, substituting (3.89) into (3.87)), we get

1 . .
nyy = u(uz) <1 <u + Z) (Bu+i(S—1)(S+2)Q —u <u = ’) Q+) +BQ .
a@)? (%, S’) 3 2 2
(3.90)
However, it is possible to have the last expression in a more symmetric form. Let us first
shift w — u 4 i/2, then

O _ Zg;;r/;? (;(uﬂ') <3u—|—i <52 +5- ;)) Q+u <“+ ;> QH) +ﬂ?3:91)

Using the Baxter equation (3.36) for @, we derive ugi)Jr in a more symmetric form

0+ iu(u? +1/4) ] . . )
pit = —W <(u—|— 2) (u—9)QT —2(u—i)(u+i)Q+

4 <u _ ;) (u + i)Q“) 150 . (3.92)

One can now check that (3.92)) really solves the second order Baxter equation (3.80)).
However we still have one non-fixed parameter 5, which we are going to find further.

Fixing the coefficient 3

We can fix the coefficient § from the equation

T 39
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From the fact that cgg = 0 we conclude that f’go) = 0 and in the leading order in g* and
close to u = 0 we obtain
0 0
ot () = 15 (w) = O?) (3.94)

where we also used (3.14)) and the first formula from (3.26|). On the other hand, one can
get for the obtained solution ([3.92)) for ua4(u)

O O g o2 (”25) S (S)u + O(u2) (3.95)

which immediately gives § = 0. Now we are able to find the last remaining u-function
from the LO Ppu-system.

Calculation of pgi)

Because we know all the quantities of the LO Ppu-system except for ugi), we can just

use (3.82), which gives us

(0) u?(u — 1)
34 = 354127 /9
12a9%Q?(i/2)

+i(S = 1)S(S+1)(S +2)Q™ +4i(S*+ S+ 1)u <u — ;) Q+) . (3.96)

((—41'(52 + S+ D+ (S(S+1)(S2+ 5 +2) — 2)ut

However, it can be rewritten in a simpler form using the Baxter equation (3.36) for @

i - Sl s (o o)

+(5* 425 + 752 + 65 + 2)@} . (3.97)

Having found now all the elements of the Pu-system we can compactly write them down.

3.1.4 Summary of the leading order P- and pu-functions

Let us start from writing the values of the P-functions in the LO in g2

1 P
, PO =_iss+1), PY= _E=DE+2) (3.98)

2aQ) (%;S)
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where « is given by (3.59)). The list of the LO p-functions looks as follows

WY =0Q, uY =ou? (Q1 - Q) —0iS(S +1)uQ (3.99)
0) u? v (L S24 S~ 1) _1
14 0 (%;S) (w + ) Q ( Ut ——— Q| .

0 — 2 (9) (; <u+ ;) (Bu+i(S—1)(S+2)Q —u (u _ ;) Q+>

u?(u—i
sy = 120@(%22(@)/2) ((—4i(S2+ S + Du? + (S(S + 1)(S* + S +2) — 2)u+

Fi(S — 1)S(S + 1)(S +2))Q~ +4i(S> + 5 + 1)u (u - ;) Q+) .

Then, we are able to present the list of p-functions in a different form with the usage of
(3.36), in which their parity is more manifest

#12 T=aQ, u§°3)+:m <U2+111) (<u+;> Ot — 2u0Q + (u;) Q__) ’

2
0+ _ (v +1) -
Mg = 20 (2’ ) (Q++ 20+Q77), (3.100)
O+ _Zj;z U/;)) ((u + ;) (u = D)Q = 2(u— i) (u+ H)Q+

+ (u — ;) (u+ ziQ) ,
wsi* = “)) 2+ 5+1) ((ur5) @ = (u-g) @)+

120Q” (
+(S*+25° + 782+ 65+ 2)Q] .

Now, having the results (3.98), (3.99) and (3.100)) we can study their expansion in the
vicinity of the point S = —1 as this point is particularly interesting for the study of the

BFKL limit.

3.1.5 Expansion around the point S = —1

The most important ingredient to find the expansion of the obtained LO solution

(3-98), (3.99) and (3.100) of the Pu-system is to calculate the function Q(u;S) given
by (3.51) in the vicinity of the point S = —1. The main obstacle is the generalized

hypergeometric function, which we treat by using the series representation

-5 S = —1u
Qo (uSi) :1+:2::1 ) (H(k!; ( )k (3.101)
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where () is the Pochhammer symbol. We derive the following from (3.101])

Qo (u;—l—i—w,;) —1—w<1/1(0) (;—i-zu) —i—’yE)—i—
2

+ w? (—;w“) (; + zu) + % (w“)) (; + zu) + 7E>2 + ;) +Ow?®) . (3.102)

Expanding the solution (3.100|) in the parameter w =5+ 1

. 2
(0)+ _ 1cosh®(mu) (1 Wy ) )
. P 5 (u) ) +O(w) , (3.103)
wu cosh? (mu
pigt = ) 4 o).
O+ _ (4u® + 1) cosh? (mu) < w B )
p = o -2 (W) -2)) + Ow)
O+ _ 4u(4u? + 1) cosh?(ru) w _1
Moy = 3203 1- 5 (\Il(u) - 4) + O(w ) )
©+ _  i(16u* — 8u® — 3) cosh®(mu) 0
M34 - 1277211) + O( ) )
where . )
T(u) =0 (2 - zu) + 4 (2 + w) —20(1) . (3.104)
Utilizing the rescaling symmetry of the Pu-system with the transformation matrix
w 0 0 0
0 & 0 0
Hp = 00 w? o (3.105)
o 0o o0 I

we are able to make all the p-functions scale in the same way as w approaches 0. This fact
will be very important in our consideration of the BFKL limit in the subsequent Sections.
Now let us turn to the calculation of the P- and u-functions in the NLO in g.

3.1.6 Next-to-leading order

Let us start from the brief summary of P-functions in the NLO order in g

Pi=5+0(g"), Pa=—+5 40", (3-106)

(0) (0)
C C

Updating Pj3
We can update P35 from using the asymptotic conditions for the coefficient Ag

5% — A%][(2 - 5)% — A?]

Ag = —As =~ 32i !

(3.107)




40 CHAPTER 3. TWIST-2 OPERATORS WITH ZERO CONFORMAL SPIN

from which Agl) can be found just putting A = 2+ S + 8¢251(S) + O(g*)

AW = —2i(S +2)(35 +1)5,(S) . (3.108)
0)

To fix the coefficient c:()),l we use the following trick. The principal value of pgp, i.e.
fhop, = (Hab+fiab) /2 = (Hab+ p1157)/2 is free of any singularities in the complex plane, thus
taking the half-sum of the Ppu-equations, we obtain

P, =4 x"Pe.. (3.109)
Now let us turn to the Ppu-equation for P;
P, = %12].33 — %13].32 + //114P1 . (3.110)

Note, that to find P3 in the order O(g?) at the first sight we need fio 15 14 0 the order

O(g"). In fact, that’s not true, because we are looking for a singular part of P3. First,
consider P4

+
P, = 2 = 2(k+1) _
1=x + Z C1 kX =

k=1
u2 100 2(k+1) 2+ 1
= o S (e () - 20 Lo
g =1 9 u
or, briefly,
~ 1
P, = 7 (u2 + cg?}ull + O(UG)) _9 (1 + Cg(?%u2 + (9(u4)) +O(g?) (3.112)

which means, that P; does not contain any singularities in the orders O(g~2) and O(g°)
in the point u = 0. To proceed let us consider the equation (3.110)) in the NLO

5 (1 1 0 1 0 1
Py = P 4 P — P — P 0P (3.3

The term //zglz)PgO) = Ago) //l%) has no singularities as well because the functions 4 , are
analytic in the complex plane. We know the expression

_jaﬁs+nQ(;5)

u2

pOPL = +O(u) . (3.114)

Remembering that Nfg is an odd function, we see that the Taylor expansion of J (u) in
the vicinity of u = 0 goes over the odd powers of u. This means that //%)Pgo) = /A? Ju

is analytic when u approaches 0. Let us analyse %591) Pgl) = ,;/Lgi) /u?, the latter one. We
have

2
w9 = —“'5) ((52+ 5 +4iw)Q* + (82 + 5 —4iw)Q™) + O(¢%) . (3.115)
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which possesses the following expansion at v =0

S(S +1
© - _(2)u2 + oM. (3.116)

Then the term %gel)Pgl) has no no singularities at the origin. Finally, let us consider

(0) i
ac&lQ 5;9
M991>g>:: 1&5)%-67(u0). (3.117)

Recalling that the only singular terms in the equation (3.113)), which are (3.114)) and
(3.117)), the discussion above leads us to the conclusion that 03(2 = —iS(S+1). Let us
now turn to the determination of the function w12 in the NLO as now we have all P- and

p-functions in the LO and all P-functions in the NLO up to one coefficient Afll), which
contains the 2-loop anomalous dimension v, which was not yet fixed.

Updating P,
Using the energy in the NLO, we can completely reconstruct P’s in the next to leading
order. Let us first write the result for the energy

A=2+85+ gQ’y(l) + 947(2) + (’)(g6) , (3.118)

2
A0 =881(8) = - + L 4 OW?),

7® = —16(S5(S) + S—3(S) — 25_21(S) + 251(5)(S2(S) + S2(9))) = O(w") .

From the above formulas for A3 we easily obtain

AP = —is(s+1), AP = —i(s +2)(35 + 1)y (3.119)

And for Ay
AP = (S-S +2 M, AL = — (S + TS+ 1) (W) +6(5? + 5 —2)7) .
(3.120)

To find the coefficient 04(82 we can use one of the P p-equations P, = w14P1—poaPs+ps3aPo
in the LO, for which from one side

P = u+ 0@ (3.121)

and from the other side we can calculate the RHS in the LO using the result (3.99)

P m@?zzs) (2(u+g) (a(u-3) + 565+ D@=0) Q-

-2 (u - ;) (4 <u + ;) +S(S+1)(u+ i)) Q++) . (3.122)
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As the expansion of ([3.122) is f’io) = O(u?), we arrive to the following

A = 25— 1)(S + 24 . (3.123)

The list of the P’s in the NLO

2

P, = % +0(g"), (3.124)
1 g 4

' 1
P3 = —iS(S+1)+4° (—;(S +2)(35 + 1)y —iS(S + 1)u2> +0(gY)

P, = —i(s —1)(S + 2)yVu+

+f(—;«s%ww+4x¢%2+as—nw+aw®)u+0@ﬂ-

In the vicinity of the point S = -1+ w

P, = % +O(gY, (3.125)
1 g 4

Po= -+

2 U+U3+O(g)7

4i 1
P; = iw + O(w?) + ¢ (—uf + 2i + O(w) + (iw + (’)(w2))u2> +0(gY) ,
AR S o (400 40i 0 4
P4—< " 22+(9(w))u+g (3w2 73w+(’)(w )>u+(’)(g).

Let us proceed now with the calculation of the p12 in the NLO.

Finding p12 in the NLO

To derive the equation for ui1s in the NLO, we are going to use the all-loop equation
for p1, which can be derived by excluding P; and p;3 from

P = p19P3 — p113Ps + p1aPy (3.126)
P, = /’LT2+P3 - Mi’-3+P2 + ,UT4+P1 .

Such an equation takes the form

3 — _
MQJQ} <P§ Py . 1 . 1 )ME*' Hiz
(P3)2 \P3 Py (P3)2 (P;)? (P5)?

P72 (P2 \p, pj)im
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Let us first write o = ¢ 2aQ™ + M%), thus we have to extract the coefficient in the

equation (3.127) above in the order g°. We start from the RHS of (3.127) in the NLO
Pg1)+f,go)+ - Pgl)—pgo)— . (Pgl)— - P§1)+> M(O)Jr _
R I S L
— # ((u—i— z) Q++ _ (u _ Z) Q—— _ §i5’(S—i— 1)@) —
Q (l S) 2 2 2

35

— 4iaSy(8) ((u + ;) Q- <u - ;) Q- giS(S + 1)51(5)62) . (3.128)

where @ is the function from (3.51)). The LHS of (3.127) in the LO contains besides the
LO Baxter equation for 1o the part of the order O(g"). It is given by

iy (P:?_Pg_ L1 >u++ Mo
— — 12 — -
(P3)2  \Py Py (P3)? (Py)? (P3)?
ARNOIE i\ - 2 1\ o+
=<U+2> H12 +<U—2> H12 —<2U _S(S+1)—2)H12 -
—20QT —2aQ7 + (4 +2(35* + 7S +2)51(9))aQ + O(g%) . (3.129)

Therefore, we get the equation
(u + ;) u%m?’] + (u - ;) ugl) - <2u2 - S(S+1) - 2) §12)+ =
- (2 + 4iS1(S) (u + ;)) aQtt + (2 — 4iS1(S) (u - ;)) Q™ —
—(44451(S)(2S+1))a@ . (3.130)

Note, that the equation (3.130)) is a little bit different from the result [34], which looks as

i\? i\2 5 1
(u—l—) ;++(u—> QZ__—<2u —S(S—i—l)—)Qg:
2 2 2
- (2 —4iS51(S) <u + ;)) Qft + (2 + 4381 (9) <u - ;)) Q —
—(4+451(5)(25+1)@Q1 . (3.131)
We have to underline that here the functions @; and )2 are different from the ones in

the Subsection [3.1.2] The functions @ and @ only differ by some numerical constant.
Let us remember the asymptotics of these functions from the Subsection [3.1.2]

Q ~ au® + bu~ 5" Le2mIYl (3.132)

Thus, in our equation the right hand side has the asymptotic behaviour aju® +
blu_s_362”|“|, in @ asu’ 2 + bgu_s_le%'“'. Let us try to find the solution of the
equations and ED in the forms u® and u” logu.

For our equation @ we obtain a = —S5 — 1 and g = S. The solution with
the asymptotic u~°~"!sinh 27u is consistent with the leading asymptotic of the RHS
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uw973e27lul and the solution with the asymptotic u®logu is consistent with the sub-
leading asymptotic of the RHS u°. So, the resulting asymptotic of the solution is

0% ~ AuSlogu + Bu=S—te2mlul | (3.133)

which agrees with H12 o~ AuA_2 + Bu~5" 12Ul if we expand A in ¢2.
For the equation (3.131)) we obtain o = S and ﬁ S. The solution with the asymptotic
—S-1e2mul 1og 44 is consistent with the leading asymptotic of the RHS w5127l and
the solution with the asymptotic u® is consistent with the subleading asymptotic of the
RHS u°~2. The asymptotic behaviour of the solution of

Q2 ~ Au® + Bu= "1™ g u . (3.134)

Now let us proceed with the solving the equation (3.130]). Remembering the notation

v = 85(8) for 1-loop anomalous dimension and uglz) = ag’Q;, we rewrite the NLO
Baxter equation in the following way

(u + ;)2 Q3+ (u - ) Qy  — (2u2 —S(S+1) - ) Q2 = (3.135)

W : o) : W
- <2+z"72 <u+;>> QT+ (2—@72 (u— Z)) Q- <4+72(2S+1)> Q.

where @ in (3.135]) is understood as Q(u; S) from (3.51f). Due to the fact that the equation
(13.135]) is linear, we can divide its solution into several stages. First, let us solve the

equation

et (ot soen e
(u + 2) Tt —i (u - ;) Qy — (2S+1)Qo . (3.136)
where Qo is Qo(u; S,1/2) from (3.38). To find the solution, let us use (3.7) from [83] for
Qi (u) = 3Fy (—5 —26,5+1, é —iu;1— 6, 1; 1) , (3.137)

which gives (note, that Q4" = Qo)

2
(u+ ) Qg‘+++< ) QO__—<2u2—S(S+1)—>QO =
<u + > ot —i (u - ;) Qo —(25+1)Qo . (3.138)
Thus, Q()‘V = 8@34 /0d|5=o is a part of the solution. Analogously, the functions

1
Q(;B(u) = 3F2 (—S,S + 1, -

5 —tu;1+6,1—0; 1) , (3.139)

QS (u) = 3Fy (—S,S+1,1—z’u+6;1+5,1+5;1> .

2
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produce the solutions to the equations
Z. 2 B,C”++ Z 2 B,C”** 2 1 B Cl/
utg Qo Tlv—3 Qo —|2u *S(S+1)*§ 0
= 2Qo(u) —2Qo(uF1) . (3.140)
Therefore, the solution to the equation (3.130)) is given by

Q2(0) = 5= =55 902 952 ’ (3.141)

0=0

0=0

where Qf(u), QB (u) and Q(;C(u) are given by (3.137)) and (3.139)). After this we can easily
derive the bare solution to the equation ([3.130))

6=0

b (u) = [@a(u) + Qa(—u)| cosh?(ru)+
+ i {Qg(u) — Qg(—u)] cot <7TS> sinh(27u) . (3.142)
2 2

This is one of the solutions of (3.130). Unfortunately, it has some poles. From the Ppu-
system we have the requirement, that near the points +i/2 the solution @Q2(u) has to
behave in the following way

8i cos (”S) S1(S) i\O
Q2(u) =+ +0 <u F ) . (3.143)
uF § 2
The analysis of the poles of the bare solution gives
at) =
4cos? (=2 4icos? (T2 (—281(S) + mtan (2 i\ 0
o) i
To cancel the second order poles let us add the term
4eos? (T2)  —8icos® (T2) S1(9) i\ 0
— 272 tanh?(7u)Q(u) = — ( 2) F ( ) +0 ((u F ;) > . (3.145)
(75) v

Therefore, we have
bare () — 272 tanh? (mu) Q(u) =

i cos2 (%) (—451(5) + 7 tan (§)) L0 <<u + ;>0> . (3.146)

7

=F

It can be easily seen, that to obtain the right combination with the desired poles we have
to add the following term

Q2(u) = Q5% (u) — 272 tanh? (7u) Q(u; S)+
+on <7r —25,(S) cot ( . )) (Qo ( ) + Qo (—u; S, ;)) + 3O S) . (3.147)
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The residues of this solution in the points u = +i/2 are

8icos? (%2) S1(S) N
Qo(u) =+ <2) +O<<“7—LZ> ) : (3.148)
Returning to ,u%) we can write
1 , 1
pi = ——+0((u=1i)), pf == +0"), (3.149)

which perfectly agrees with the equation of the Pu-system, expanded in the vicinity of
the origin

il = ma =97 (~ut O + (S +060) +0(?) . (3150)

Remembering that u%) (u) = aQ2(u) with « given by (3.59)) and substituting (3.148]) into
(3.149) and (3.150) we find that our result is consistent.
Now it remains to fix the constant 8. To do this let us again use the equation for o

plst — g2 = P1Py — PoPy (3.151)
which looks in the NLO as
Mg12)++ _ M%) _ Pgnpgo) _ P;0)15g1) . Pg)lg,gm ' (3.152)
Then, using (3.112)) that
Pg‘” =u? + cﬂu4 + Oud), (3.153)
P~ 22+ 0,
Py = ut i’ + O(u?)

we obtain after combining with
piy T -y = % + () + ) u+ 0w . (3.154)

We can find 3 from the condition that
o@F Q) +HQT Q) =24 (N + D ur o), (@155)
where cg?% and cgg are given by and respectively It remains to find the

expansion of Q2(u) in the vicinity of the pole u = i/2 up to the linear term. We start
with —272 tanh? (mu)Q(u)

~2rtank? (7 (w5 )} (@(wS) - @ (wS) =

— _4@’(5;5) — ; (Q”’ (;, S) + 4m%Q’ (;, S)) u+O@W’). (3.156)
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By combining the the previous results and one can find the coefficient f3,
whose explicit form we leave for the future research.

In the present Section we built the weak coupling solution of the QSC for twist-2
operators in the LO and partially NLO. These results can be used for the inspiration
in considering the BFKL limit of the QSC for the same operators. The next Section is
devoted to this issue.

3.2 BFKL limit

For the twist-2 operators in question, the charges are fixed to Jo = J3 = S5 = 0 and

J1 = 2, and we will use the notation S; =S = —1 + w. These operators belong to the so
called left-right symmetric sector for which we have the following reduction [17]
P*=x"P., Q =x"Q,, (3.157)

where Y is the antisymmetric constant 4 x 4 matrix with the only non-zero entries x23 =
M = = —x* = 1. From (3.157), (2.56), (2.59) and (2.60) we see that o3 = 14
and wog = w1y, i.e. we have only 5 linearly independent components in each of these
antisymmetric matrices in addition to the non-linear condition of unit Pfaffian. The
asymptotics ([2.57) and (2.61]) are simplified to

P, ~ (Aju=2 Ayu™t, As, Agu) | (3.158)

Qi ~ (BT Bou" 2 Bau~ 2 Bz (3.159)
and reduces to

AAy = —A AT = %((5 —w)? = AYH (1 +w)? - A?), (3.160)

AgAz = +AxA% = 5((1 —w)? = A?)((3 —w)? — A?). (3.161)

Note that one can always make a suitable rescaling to set A; = Ao = 1, then A3 and Ay
are fixed uniquely by (3.160]). This is the normalization we use below in this Section.

Prescription for analytic continuation in S

Before finding the solution for QSC with the asymptotics (3.158]) and (3.159)), we
should specify the prescription for analytic continuation in S at the level of QSC. In

the Section [3.1.2] we explained how the continuation works at weak coupling, in one-
loop approximation. We have to translate this prescription into the QSC language. The
role of the Q-function in the QSC construction is played by pi2 |[16]. To make
a direct link with the prescription we consider the 15* order equation for
5 independent components of j4. For fixed P, it has 5 independent solutions whose
asymptotics follow from the asymptotics of P’s . One finds that for p12 one could
have one of the following 5 asymptotics (v 17>, ut272 =2 u=272, 4t573), where we
ordered the possible asymptotics according to their magnitude in the BFKL regime, i.e.
when S — —1 and 0 < A < 1 (see Fig. . Note that for the usual perturbative regime
considered in the introduction we have A = 2 + S + O(g?) and thus we can recognize in
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Figure 3.1: Operator trajectories S(A) corresponding to the twist-2 operator tr Z(D,)%Z
and different values of g.

the first two solutions Qo and ) correspondingly! This motivates the prediction which
was put forward and tested by [22], stating that in order to analytically continue the QSC
to non-physical domain of non-integer S one should relax the power-like behavior of g
(required for all physical states) allowing for the following leading and subleading terms
in the asymptotics

fi12 ~ const uTA7% 4 ¥ const u T T 4L (3.162)

This is the generalization of to a finite coupling. In [22] it was proven that with
this prescription there is a unique solution for any coupling, at least in the vicinity of
S = 0 up to the order S? inclusively. We also know that at weak coupling there exists the
unique solution for these asymptotics. We consider this to be a strong indication towards
uniqueness of such solution to an arbitrary number of loops, which would be however very
interesting to prove rigorously. As we will also see below, such a solution is also unique
in the BFKL regime. As this asymptotic is also consistent with the asymptotics for the
physical states it should thus provide an analytic continuation of the physical solutions
to an arbitrary non-integer S.

3.2.1 Leading order solution for Pu-system

The logic of this Section is the following: we begin by arguing a certain scaling in the
small parameter w = S + 1 for various quantities and then write an ansatz for P, and
fiap- First, we assume that P, ~ w®, in accordance with its large u asymptotics .
Second, we keep in mind that the BFKL regime is still a regime of weak coupling, even
though it re-sums all singularities of A of the type (¢?/w)". This means that all cuts
are collapsed to a point and, in a generic situation, all functions should be regular on
the entire complex plane. However, there could be some special cases where this rule is
violated. Namely, consider a function f(u) = 1/(gx)?, where z(u) = (u++/u% — 4g2)/(29)
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is the Zhukovsky variable. In the BFKL regime g — 0

= $2 U2 u2

1
f(u):ﬁ, f(u):g—zzgzw%xz . (3.163)

This shows that in principle even in the limit when the cut totally disappears some
functions still can develop a singularity by the cost of being very large (but regular) on
the next sheet. Note, that this exception is clearly not applicable to u(u) since fi(u) is
the same as shifted p(u + 7), so that both p and f should be of the same order and thus
are regular at the leading order in w.

Nevertheless, P1(u) must be exactly a function of this type. Indeed, at large wu it
behaves as 1/u? and has no other singularities except for the cut. From that we conclude
that we must have a double pole at zero or even a stronger singularity. The residue at the
double pole is uniquely fixed at this order by , i.e. Py(u) = 1/u? whereas we will
see that the stronger singularities could indeed appear at the next order in w. This 1/u?
singularity at zero implies that at the next sheet the function scales with our expansion
parameter as P ~ 1 Jw?, which is only possible if at least some components of jiq; scale
as flgp ~ 1/w?, as we can see from . Consequently, 1/w? will propagate via
into all components of P,. To summarize, we have to find a solution with the following
scaling in w

Po~uw’, pa~w?, P,~w?. (3.164)

This scaling will lead us to an ansatz which we then plug into the Pu-system to fix
the remaining freedom. We start from the P-functions which have the simplest analytic
structure: only one short cut on the main sheet, and integer powers in asymptotics. We
can thus uniformize them by Zhukovsky map v = g(z + 1/x), with the inverse x(u)
introduced above, such that & = 1/x, and expand P, into the Laurent series around
x =0 |20

(0.9}
c
Po= > — (3.165)
n=-—1
It is guaranteed to converge for |z| > |1/x(2g + i)| which allows to cover the whole upper
sheet and even a finite part of the next sheet and leads to the corresponding ansatz for

P,
Po= > cona". (3.166)

n=-—1

To reduce the number of coefficients we note that for our observable there must be a
parity symmetry u — —u (or equivalently z — —z). Of course all Pu—system equations
are invariant w.r.t. this transformation, which means that this symmetry in general maps
one solution to another. As we know that our state with these quantum numbers is
unique we conclude of course that the parity transformation should map our solution to
an equivalent solution. Using the arguments similar to [17] in the Section 4.4.2 of that
article it is possible to show that we can fix the remaining freedom in the construction
and choose solution where P, are mapped to themselves. From the asymptotics we see
that Py is even, whereas P5 is odd etc. To summarize, we impose

Pl,Pg — even PQ,P4 — odd. (3167)
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Similarly p’s should be covariant under the parity transformation. As the parity trans-
formation is sensitive to the choice of cuts we should also take fi,; with short cuts to be
covariant under the parity transformation which implies that fi12 is even, however as a
consequence of this fi12 should transforms nontrivially fi1o(—u) = ﬁlg(u) = fi12(u + 19)
which by itself implies, by changing u — u — /2, that u, is even. To summarize, we
have

iy pily gy — even . pfy, 3y — odd. (3.168)

This conditions allows us to drop each other coefficient in our ansatz c2 2, = c1.2n—1 =
c4on = C32n—1 = 0 at any n. It also follows from (3.158) that the coefficients cy 1 =
c10 = 0. After that we still have one-parametric scalar freedom in our construction [22]:

P3—>P3—|—’YP1, P4—>P4—’}/P2,
14 — ph14 — YH12, [34 — p3a + 214 — VA pa2, (3.169)

preserving the leading © — oo asymptotics but modifying the subleading ones. This
allows to fix in addition c3 2 = 0. Finally, as we use the normalization with A; = Ay =1
_ 1 1
we have to fix cp 1 = The and 12 = 5.
Let us now restrict the possible scaling of the coefficients ¢, , in the BFKL limit. In
this limit g ~ w — 0 the Zhukovsky cut shrinks into a point and the x(u) becomes

ew)y=>-9 9 4 . (3.170)

To satisfy the scaling P, ~ 1 Jw? ~ 1/g* the coefficients Cq,k should become smaller and
smaller with k rising and in general they scale as ¢, ~ g"~*. We thus denote

+oo
Cmn = 9" * Z cgi)nwk. (3.171)
k=0

(k)

where ¢, are already ~ 1. To the leading order in w we thus simply get

(1)
1
PO = PO-_ py=al PO 0, L (3.172)
U Au
where from (3.160) we have A\”) = —i(A2—1)(A2—25)/96, ALY = —i(A2—1)(A2—9)/32

and the only coefficient to fix is cflli. Now, when P-functions are essentially fixed, we

can use the 5" order equation to find the p-functions. Note that P; and P
are singular, whereas P, should be regular at v = 0. This is only possible if 14, are
regular and have a sufficient amount of zeros at u = 0. This observation singles out one
solution out of 5 possible ones, with 12 ~ u~3~! for which all components of 45 have a
polynomial asymptotic for large u: (ulg,ulg,u14,u24,u34)(0) ~ (u®,ut, u? v, ut). To find
this solution we plug a polynomial ansatz into and also remember the expressions
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(13.103)), to find

L0 _ip (3.173)
WOF _Z%iu (a2 -1)",

uyt = _%i (40” +1) (A - 1)2 ’

4 = g (w2 +1) (82 -1)"

O _ﬁ (16u — 8u —3) (A% - 1)4 ,

and in addition (2.56)) also to fix CEH = —i(A%2—1)2A/96. Thus we fix j145 up to a common
multiplier P. As we deal with a finite difference equation this multiplier could be only an
i-periodic function, which has to be chosen in accordance with the prescription
and which respects the parity . The most general choice is

P = O} + Cy cosh?(mu) (3.174)

for some constants C7 and Cs. Thus we have only two constants to fix and still several

nontrivial conditions to satisfy, namely (2.55)) and (2.53]). From ([2.53|) we find

N Pi(A2-1)P i (A2 — 1) uP-
po) _ i 4) oo il 4) ’
3, 2p— 2 3/3 _
S0 (AP—1)7P S0 (A1) (P +u)P
P = o , PO = o (3.175)

To fix Oy and C5 we note that from the ansatz for Py (13.166[) we should have

u? + O(u?)

P, =
! w2A2

+O(w™), (3.176)
which is also clear from our basic discussion (3.163)). Comparing with (3.175)) we fix

B 4i
C m2A2w2(AZ 1)

Ci=0, G (3.177)

We found a consistent solution with no free parameters left. We also might expect that we
could get a relation between the energy A and the coupling A, which are so far completely
independent. However, it is not the case at this order. The reason for this is that we are
not able to use efficiently the remaining condition Pf ug, = 1, because the LHS is of the
order 1/w* and with our precision we cannot distinguish the 1 in the RHS from any other
finite number. We would have to continue the procedure to the next 4 orders in w until
we get this condition to work. As we will see, a much more efficient way to overcome this
difficulty is to pass to Qw-system.
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3.2.2 Next-to-leading order solution

We can also extend the consideration of the previous Section to the next order in w.

Using the ansatz (3.165)) and (3.171) we get, up to w' terms

1 2Aw
P,= -+ 1 OWw? 3.178
1 u2+ WA +O(w?), ( )
1 2A
Py= — + " +O(u?),
u u

Py = AP + A w + O(u?)

A2 132 (2) A2 1\2
P, = Aflo)u _aa -1 + (Afll)u + L Z(ADA) w+ O(w?) .

96u ul 48u3

where from Agl) = —i(A%? - 3)/4, Afll) = —i(A% +5)/12. Again there is only one
missing constant cf%. To fix it we have to proceed further to find p in the NLO. At this
order the solution cannot be just a polynomial as the asymptotic ™" of u15 suggests that
the ansatz is more complicated. We discuss details of this calculation in Appendix
where we find that the missing constant is

& = -2 (A2-1) [2(A2-1)A - 1] . (3.179)

We will use this result to find the NLO for Q-functions and also the LO result for the
BFKL dimension.

3.2.3 Passing to Qw-system

An important step in our calculation is to switch now to the Quw-system. It is espe-
cially easy having at hand the equation . We simply plug the already known P’s
(3.172) into (2.51)) an get a 4-th order linear finite difference equation on Q; with explicit
polynomial coefficients. As a good sign that we are on the right track, the finite difference
operator of this 4-th order equation can be nicely factorized as follows

1— A2
4u?

B 17 — A2

D+D ' —2—
1 +

Q¥ =0,

(3.180)
where D = €% is the shift operator. This implies that two out of four Q-functions satisfy
the 2-nd order equation

(u+ 2i)2D + (u — 2i)>D™" — 202

A% — 1 —8u? __
QY= o +Q" T +qQ" =0. (3.181)

Even before solving this equation, it is easy to check that there are two independent
solutions with the large u asymptotics w5 and u%l, which indicates, together with
, that they can be identified as ng) and ng).

Notice that (3.181) after redefinition Q = ng) /u? is precisely the famous sl(2,C)

Baxter equation defining, through Sklyanin’s separation of variables method, the Pomeron
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LO BFKL wave function [3,/9,52-55]! It can be solved (for example, by using Mellin
transform method), taking into account the asymptotics and the UHP analyticity, in
terms of a hypergeometric function

1
Q" = 2iu 3P, (w +1,-—

1 A
-+ —1,2;1 .182
55t L) (3.152)

QY (u) = Q) (—u) sec ™2

5 + ng)(u) {—i coth(mu) + tan A

2

where Q(lo) is a solution chosen to be analytic in the upper half plane, and it can be
read off from the papers [3,9,52-55]. At the same time, it serves as a building block for

the second solution Q:(go), which has a smaller (for A > 0) asymptotic. To build ng) we
use that ng)(—u) is also an independent solution of the same Baxter equation, which,
however, has poles in the upper half plane. We cancel these poles by adding ng) (u) we a

suitable periodic coefficient, and finally extract const x ng) (u) to ensure the right large
u asymptotics. The choice appears to be unique.

Although for the rest of the paper we will not need to determine the other two Q-
functions, Q(QO) and QELO) we give here for completeness the inhomogeneous equation fol-

lowing from (3.180|) expressing them through ng) and Q:(,)O)

L 1— A2
Q§O)++ n ng) _ <2+ ) ng) _

492

_ (A% 1) (QE-O_)l++ . QY Q§~0_)1> ;

: 9 —92.4. (3183
16cos ™2\ (u+i)?  (u—1i)? u? ( )

The Q2 and Q4 may become useful for the calculation of dimension in NLO and NNLO
of the BFKL approximation.

Similarly we can use our knowledge of the NLO P’s to construct the NLO
Baxter equation which takes into account the O(w) terms in (2.51)). For that we have to

plug there P, given by (3.178)), (3.179)). Again, this 4-th order finite difference equation
appears to be factorizable and as a result we get the following 2-nd order equation for Q1

and Qs, generalizing (3.181))
A? —1 — 8u? A? — 1) A —u?
Qj ( o ) +

J 42 2ut

w w ,
+Q; (1—2(U_Z,)> +Q; " <1+2(u+i)> =0, j=13. (3.184)
Its solution can be found using Mellin transformation method of |9] and is given in Ap-
pendix [A73] For our present goal — the calculation of BFKL dimension, we only need a
simple fact about the NLO Q. Namely, we want to know its behavior around v = 0.
This information is easier to extract directly from the Baxter equation by shifting
u — u+14. Recalling that Q; must be regular in the upper half plane we obtain from the

second term

(1 — ;w) Q;(u) =regularat u ~ 0, (3.185)
U
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which gives the relation between the behaviour at the origin of the leading in w order
QE»O) and the subleading order le)

QW _ i,
Q) 2

The strategy is now to compute this ratio independently, using the Qw-system. Matching
these two results we will recover the BFKL Pomeron eigenvalue.

oW, j=1,3. (3.186)

Going to the next sheet

So far we mostly recycled the information from the Pu-system into Q’s. To get
something new we have to work a bit harder and reconstruct w’s. This will allow us to
compute, for example, Q3 (0) from which we will instantly determine the pole in the ratio
. Let us remind the relation between 4, and w;j. They are related to each other
by a Q-function with 2 + 2 indices

Hab = Qab\z‘j_Qb\j_ij ) (3.187)

where Qg;; can be decomposed in terms of P, and Q; and as a result should be ~ w.

This implies that at least one of the components of w¥ should scale as 1/w?. As we
know, at the leading order in w, up to a periodic function, g2 ~ v~ °~! and we can
precisely identify it with w'® = woy which should be ~ 1/w? whereas other components
should be smaller. We will see that the consistent scaling is wig ~ wig ~ w3s ~ w® and
wos ~ w2 and w3 ~ w?. The reason why wi3 appears to be w? is due to the fact that
this component multiplies woy in the Pfaffian, which is set to 1.

With this insight coming from p’s we can see that only two terms survive in the
relation for Q; and Qg since the terms with wq3 are too small

~ (0 0 0 0 0

QY () = iy () QY (u) + wiy () QY (u) (3.188)

~ (0 0 0 0 0

QY (u) = +wi7 ()QY () — i (WQ () .
Note that since these components are suppressed compared to w4 no explicit information
about their form can be extracted from the Pu-system at the given order in w. At the
same time we can say that wég) = Bsinh?(7u) just because the Q-function in (3.187) has

a power-like asymptotics and all the exponents can only originate from the factor wéz).

Another thing to notice, is that ng) and Qéo) decouple from the rest of the Qw-system.
This explains in particular the mysterious factorization of the 4th order equation .

We will now fix w’s appearing in ([3.188]) using some elementary properties of ng) and
ng) found explicitly in M We already pointed out that ng)(—u) and Qéo)(—u)
would also be solutions of the same finite difference equation and thus they can be re-
expanded in terms of the basis ng) (u), ng) (u). Right from we have

. T iA
ng)(—u) _ _’_ng) (U)Z COShsgnh((Z:_) 2 )) + ng)(u) cos (7T2A> , (3.189)
Ta /) 7 (u— %2
Q' () = QY <u>;11g(i3) +QP ) “Shinh((m 2))
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this equation in many respects is similar to the equation we want to recover, .
Indeed, both Q¥ (u) and Q(© (—u) are analytic below the real axis, and the coefficients
in the RHS are periodic functions of u as w’s should be. We have to find a relation
between Q) (u) and Q) (—u), which we may already expect to be simple. Combining

(13.189) and (3.188]) we can write

QY (1) = a1 QY (—u) + a15Q" (—u) | (3.190)
QY (u) = 431Q1" (—u) + a53QY (—u) . (3.191)

A priori a;; are some periodic functions of u. Let us show that they must be constants.
Firstly, they should have no poles. That is because both Q) (u) and Q(® (—u) could not
have any poles below the real axis, from the explicit form of QSO) and ng) we can verify
they do not vanish at v = —in and cannot cancel the poles themselves, furthermore
the cancellation of the poles between the two terms in the RHS is impossible as ng)
decays faster and soon becomes negligible comparing to the term with ng), when we
go down in the complex plane. Secondly, a’s cannot grow exponentially at infinity as
Q©(—u)’s and Q) (u)’s behave power-like in the lower half-plane. Therefore, according
to the Liouville theorem these coefficients are constants. Thus our problem of finding w’s
is already simplified enormously and reduced to the problem of finding a few constants.

Next, we have to remember that Q; is an analytic continuation of Q; and so they
should match at u = 0 in the LO as well

%0 =a%0) =0, G0 =0 +0, (3.192)

which fixes a13 = 0 and as3 = 1. Now we can combine this information with (3.189) to see
what it implies for w’s. We notice that in (3.188)) there are only 3 different coefficients,
which gives a nontrivial constraint on a’s

cosh (wu + ”f) oo E B iCOSh (7Tu — WZA)
sinh(7u) - 2 sinh(7u)

ia11 (3.193)
On the first sight, it seems to be impossible to satisfy with constant a7 and as; for any
u. Luckily, it is solved at once for a;; = —1 and a3; = —2tan(7A/2)! From where we
obtain in particular

QP () = -Q”(~u) , (3.194)
- TA
Q) =+ (- — 2tan () Q% (-u)

One can also read w’s from this expression, which is done in Appendix [A74]

3.2.4 LO BFKL dimension

We are just one step away from the main result - BFKL dimension. For that we notice
that the knowledge of, say, Qs and Qs in the u ~ 1 scaling gives an access to the leading
singularity in Qs at u = 0 to all orders in w. Indeed, the combination Q3 — Q3 changes
the sign when we go under the Zhukovsky cut and thus is proportional to y/u? — 4¢2. In
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other words (Qsz — Q3)/+/u2 — 4¢% does not have the cut [—2g,2g] anymore and thus it
is regular in g < u ~ 1 scaling. Same is true about the even combination Qs + Q3. Thus
we can rewrite

Qs — Qs 5 5 . Q+Qs
= us — + —
Qs 2y/u? — 4g? 2
e A A2 2
— [(‘23‘2332] (_;1) — ;;-1—) + regular (3.195)
us —ag

and note that we know explicitly the expression in the square brackets at the leading

order in w from (3.194) and (3.182)). Its small u expansion gives
Qs — Qs

— 9,00
where 1 A 1 A
From that we can immediately find that the pole in w at the first order in w should be
:00)
Qs(u) = _2Qs (OL\P(A)AM + regular + O(w?) , (3.198)

which compared with (3.186)) leads to
—4U(A)A=1. (3.199)

This is precisely the formula ([1.7]) for the eigenvalue of the QCD BFKL kernel, or, equiva-
lently, for the dimension of twist-2 operator in BFKL approximation at the leading Regge
singularity!



Chapter 4

Length-2 operators with non-zero
conformal spin

The present Chapter is devoted to the study of a more general class of operators of
N = 4 SYM - length-2 operators with non-zero conformal spin. To achieve this aim
we first consider a QSC-based framework particularly useful to analyze such class of
operators. Then by adopting the QSC numerical algorithm [32] for the states without
left-right symmetry we manage to calculate the operator trajectories for non-zero con-
formal spin. After this we present the weak coupling expansion, reproducing the known
Pomeron eigenvalue of the BFKL integral kernel for non-zero n. Also, applying the it-
erative procedure [31] in our case we find the intercept function up to the NNLO and
partially NNNLO in the coupling constant. In addition, the QSC framework we use
allowed us to derive two non-perturbative quantities — slope-to-intercept and curvature
functions together with their weak and strong coupling expansions. Finally, from fitting
of our numerical results we guess the formula for the strong coupling expansion of the
intercept function for arbitrary conformal spin. We used the material of the article [62] to
write this Chapter. The main author’s contribution are the Sections devoted to the QSC
based framework, near-BPS all-loop expansion and intercept function at strong coupling.
In the Sections on the weak coupling solution the author’s role was to find the starting
point for both numerical algorithm and iterative procedure, which is the weak coupling
QSC solution for non-zero conformal spin in the BFKL limit. In the numerical results
the author computed the dependencies of the intercept S(0,7n) on the coupling constant
g for different values of conformal spin n.

4.1 Description of the QSC based framework

In this Section we are going to present the framework which we use to solve the QSC
[16,17] and whose derivation is based on the analytic and asymptotic properties of the Q-
functions. First, we reformulate the QSC in terms of gluing matrix. Namely, we start from
the several axioms concerning the analytic structure of the Q-system and the symmetries
which preserve the QQ-relations and derive from them the so-called gluing conditions.
These gluing conditions already appeared in [17,/31] but our approach presented below
does not utilize the notion of u- and w-functions to obtain the gluing matrix. Second,
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using the connection between the asymptotics of the certain subset of Q-functions and
the global charges together with their analytic properties, the system of constraints for
the gluing matrix is derived. It appears to be possible to solve these equations in some
physically interesting cases. Namely, we find the gluing matrix for the case when both
AdS spins S and S5 are integers of the same parity and its form appears to be very simple
and in complete agreement with the result of [17]. Then we consider a more general case
of non-integer AdS spins S1 and So, which is particularly interesting for the exploration
of the BFKL regime. For this case we have not found the general solution for the gluing
matrix, however we found the certain subclass of solutions and it appears to be applicable
to our quantities of interest. We mostly follow the original paper [17], but the discussion
of the gluing matrix and the extension to the non-integer quantum numbers is new. The
reader familiar with the QSC formalism could skip to Subsection [£.1.5]

4.1.1 Algebraic part of the construction

QSC consists of a set of Q-functions of the complex spectral parameter u and relations
between them. We will restrict ourselves to the most essential parts of the construction
but still keeping the discussion self-contained. For more detailed description of the QSC
see [16,[22] and for the pedagogical introduction see [17].

In total there are 256 Q-functions Qq, ... |y, ... im (u) totally antisymmetric in the two
groups of “bosonic" (a’s) and “fermionic" (i’s) indices with 1 < n,m < 4, however not all
of them are independent. The main building blocks of the QSC construction are the 4+4
“elementary” Q-functions: Qgqg(u), where a = 1,...,4, and Qp|;(u), where i = 1,... 4.
Setting the normalization Qp = 1 and starting from these 8 Q-functions, one can recover
the whole Q-system applying the QQ-relations written in [17]. In particular the QQ-
relation for the Q-function with one “bosonic" and one “fermionic" index looks as follows

Quis (u+5) = Qi (1= 5) = Quol)Quiw). (1)

and Q,;(u) is a solution of (£.I). From now on we are going to use the shorthand notation
for the shift in the variable u: f(u + ik/2) = f*/(u). In a similar way one can build all
256 Q-functions out of the basic 8 mentioned above. One should also impose the quantum
unimodularity condition

Q12341234 = L. (4.2)

An important symmetry of the QSC is the Hodge-duality, which exchanges

. i alv---van|i17---7im —
Qau---,anlm---,lm < Q =

= (_1)(4—n)m€bn+1...b4a1...an Ejm+1...j4i1...im Qb (43)

10| Fmg 1,004

where in the right-hand side of there is no summation over the repeated indices. The
Hodge-dual Q-functions with the upper indices also satisfy the same QQ-relations
as the Q-functions with the lower indices.
Due to (4.2)) we are able to obtain the relations which allow to get fast to the Hodge-
dual Q’s
Q"' Quyy =05, QVQy; =5 . (4.4)
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The Q-function Q" allows to write the Q-functions with one upper index in a concise
form

Q" = (@) *Qu; (45)

and ‘ ‘
Q" = Q") Qup - (4.6)

From the condition (4.2)) it can be shown that
Quu@™" =0, Q" =0. (47)

In addition, the Q-system has a symmetry, which is called the H-symmetry [17] and
which leaves the QQ-relations intact. It corresponds to the transformations of Q-functions
by i-periodic matrices that rotate the “bosonic" and “fermionic" indices separately. Their
form for all Q-functions can be found in [17], but in this Section we need the explicit form
of them only for the Q-functions with one index. They are

Quo = (Hp)eQeo - Q" = (H5"2Q" . Qo ~ Hp)]Quy . Q" — (Hz");Q",
(4.8)
where Hp(u) and Hp(u) are i-periodic 4 x 4 matrices. The determinants of these matrices
have to satisfy
det Hg(u)det Hp(u) =1 (4.9)

for the quantum unimodularity condition (4.2) not to change under such H-rotations.
The important particular case of this symmetry is the rescaling of the Q-functions with
one index. It acts as follows

1

1 .
Qupp — ®aQapo > Qo — BiQupi » Q™" — ;Qalw ool 3
a i

The equation (4.1) allows to obtain a 4th order Baxter equation for the functions
Qpi(u), i =,1...,4. In [82] this equation was derived and looks as follows

Q. (4.10)

Q4 Do - QF2 [y - QEAQ I D) +
Qo [D2 ~ QapQ""IDy + QamQa‘@H‘”Do] B
- Q&Tf] [Dl T QZ&]Q(IWFMDO} n QW]DO —0, (411)

where
— 0]5[4—2i+26; ] _
Dy 1531%4@ , k=0,1, (4.12)
— 015[4—2i4-25;,1+20; 2]
Dz 153‘%4@ ’
D = det Q@U[*‘H?F?&,k] L k=0,1.
1<i,j<4

It is also possible to show from the same equation as for the Q-functions with upper
indices that the functions Qmi(u), 1 = 1,...,4 satisfy the 4th order Baxter equation,
which looks as but with Q49 exchanged with Q. For the sake of conciseness we
do not write this Baxter equation explicitly.

After finishing the description of the algebraic structure of the QSC essential for the
formulation of the QSC equations in the next Subsection we describe the analyticity
properties of the Q-functions, which constitute the crucial part of our QSC framework.
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4.1.2 Analytic part of the construction

To describe the analytic structure of the Q-system we have to first define the an-
alyticity properties of the basic set of Q-functions: Qam(u), a=1,...,4 and Qmi(u),
i = 1,...,4. The only singularities of these functions are quadratic branch points
which come in pairs at the positions +2g + ik, where k£ € Z. For each pair of branch
points we can choose either short cut on the interval [—2g + ik,2g + ik] or a long cut
(—oco+ik, —2g +ik]U[2g + ik, ik + 00), where k is some integer. In what follows the sheet
of the Q-function with only the short cuts is called physical and the function on this sheet
is denoted by Q(u), while on the sheet, where all the cuts are long, is called mirror and
the function is designated by Q(u) on it. The continuation of any function f(u) under
the cut on the real axis is denoted by f(u). The branch points of all the functions we will
consider are quadratic, i.e. f(u) = f(u).

In what follows we will denote the functions Qqp(u), QU0 (w), Qg)i(u) and Qi(w),
with prescribed analytical properties, as Py(u), P*(u), Q;(u) and Q'(u) respectively. To
proceed let us write the asymptotics of the Q-functions with one index. We know that all
the Q-functions including P,, P%, Q; and Q! have the power-like asymptotics at large w,
which for the basic 8 Q-functions can be taken from [17]

P, ~ Agu ™M | PO~ Ay Ma—1 . Qi~BuMTl Qi ~ By~ M , (4.13)
where M,, a = 1,...,4and M;, i = 1,...,4 are functions of the values of the 6 Cartan

generators of the psu(2, 2|4) symmetry algebra of the N' = 4 SYM: integer J1, Jo, J3 (M)

A~

and A, S, Sy (M;), which are specified below

- 1 1 1 1
M, = {2 (Jir2-3+2) 7§J172+3 '3 (—J1-2-3+2) T ‘]1+2+3} '

A

1 1
NI, = {2 (A—Sii2+2), (~A-8i2+2),5 (-A+ 512)} C(4.14)

DO | —

(A + Sl+2> )

DN |

where J/L'Jrj =J,+ Jj and Si+j =5+ Sj.

As we know from the classical integrability of the dual superstring o-model (see, for
example, [18]), the P- and Q-functions at least have the quadratic branch points at
u = £2¢g. From the asymptotics and we can expect the cuts of P-functions
to be shortﬂ The minimal choice for the functions P,(u) and P%(u), a = 1,...,4 is to
have only one short cut on the real axis. From the asymptotics of the Q-functions we
can see that they have a nontrivial monodromy around infinity, thus we have to assume
the cuts of these functions to be long. So again the minimal choice for Q;(u) and Q*(u),
1 =1,...,4 would be to have only one long cut on the real axis. The analytic structure
of P- and Q-functions is illustrated on the Figure 4.1} Notice, that because the functions
Q; and Q! have the long cuts in the complex plane, their asymptotics prescribed from
the large u limit of the superstring o-model hold in the upper half-plane and in the lower
half-plane they can be different, therefore the third and fourth formulas from are
valid for Im u > (]

'For some values of the Cartan charges Ji, J2 and J3 of the N’ = 4 SYM symmetry algebra psu(2, 2|4)
there could appear a quadratic branch cut going to infinity. However, the P-functions usually come in
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P, P Qi Q'
° ® -—-—— o—--
—2g 29 —2g 29

Figure 4.1: Analytic structure of the P- and Q-functions on their defining sheet.

It is convenient for us to introduce some short-hand notations as in [17]: UHP — upper
half-plane, LHP — lower half-plane, UHPA — upper half-plane analytic and LHPA — lower
half-plane analytic.

As we have introduced the analytic structure of the basic set of Q-functions, let us
proceed with the consideration of the other ones. We define the function Q,; as an UHPA
solution of the equation

Q(‘;i -9, =P.Qi, Tmu>0 (4.15)
with the asymptotic
. AgBi — Mo+ M;
Qi = —l——=———u" " (4.16)
— M, + M;

In what follows we will denote the UHPA Q-functions of the Q-system obtained from
P,, Q; and Q,; by the application of the QQ-relations by curly Q (as it was done
in [17] to underline that these Q-functions have certain analytic properties and where the
corresponding Q-system was called fundamental). For the Hodge-dual Q-functions, which
are UHPA as well and satisfy the same QQ-relations, we will also use curly Q to depict
its Q-functions.

Substitution of and into Q; = —Q:'Z.Pa and P, = —Q:HQi expressed
from and themselves leads us to the systems of equations for A,A® and B;B’
respectively, which can be solved [17,/18] and give the result

4 ~ ~ 4
I (Mo — ;) | I1 (A, — 1)
Agg A% = 2= ., BB =i . agio=1,....4,
11 (Mao - Mb) 11 (Mig _ Mj)
b#%0 J’J:it
(4.17)

where there is no summation over the indices ag and ig implied. For further convenience
we introduce the shorthand notations A,, A% = A;, and B;, B® = By,.

Each function Q,);(u) is analytic for Im u > —1/2 due to the fact that both P,(u)
and Q;(u) are UHPA. As it was mentioned in the Subsection with the usage of
the QQ-relations we can restore the remaining Q-functions thus building the UHPA Q-
system. The Hodge-duality does not change the analytic properties, therefore the
Hodge-dual Q-system with the upper indices has the same analytic properties, i.e. UHPA.

Now we are going to turn to the analytic structure of the functions Q;(u), i =1,...,4.
Let us remember the formulas . One can notice that the functions Q; and Q° with

bilinear combinations and these cuts cancel each other in these combinations.

2Tt should be noted that in the case, when at least one of the spins S; and So is non-integer, the
asymptotics of the Q-functions in the lower half-plane on the sheet with the long cuts can be not power-
like but instead become some power times an exponential factor.
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—Q:{HP“ and QU+ P, respectively coincide only in the UHP, because their analytic struc-
ture in the LHP is different. Indeed, we can see that if we rewrite the QQ-relations for

Qq; using
Q,, = (1+P.P) O, (4.18)

it is possible to find the values of Q,; for Im v < —1/2. In the strip —k —1 <Imu < —k
for Kk =0,1,2,... the functions Q;ﬁ are given by

ali —

k

Q=11 (1+Pa Pb) el anl (4.19)

ali ali
=0

From (4.19) we can see that the functions Q,); have the infinite number of short cuts

at the horizontal lines with Im v = —k — 1/2 for k = 0,1,2,... and due to ([&.4) QI

has the same structure of cuts in the complex plane. Therefore, the functions —Q:'ZP“

and Q%tP, have also the infinite ladder of cuts at Im v = —k for k = 0,1,2,..., which
clearly do not coincide with the analytic structure of Q; and Q' in the LHP, who are
LHPA.

However, we can resolve this difficulty by interpreting the analytic continuation of
—Q:{HP“ and Q*P, under their short cut on the real axis from above as Q; and Q'
respectively. To formulate this clearly let us use the hats and checks introduced in the
beginning of the present Subsection, which denote the values of the P- and Q-functions
on the different sheets. In these notations first of all the equations (4.15) and (4.19)
determine Qah on the physical sheet with the short cuts. Then, the values of the QZ and

Q on their physical sheet with the short cuts are given by

Qi =-9/ P, Q=9"P, (4.20)
and coincide with the Q-functions on the mirror sheet with the long cut on the real axis
in the UHP

Q=Q, Q=Q", Imu>0. (4.21)
Whereas in the LHP we interpret the analytic continuation of QZ and Q’ under their cut
on the real axis as Q; and Q' in the LHP

where tilde denotes the analytic continuation under the cut on the real axis. We illustrated
the equalities and describing the analytic structure of the Q-functions of the
Fig.

Looking at the obtained picture from above, we conclude that there is no fundamental
reason to choose the generated Q-system to be UHPA. Indeed, there exists a transforma-
tion of complex conjugation, which preserves the QQ-relations but interchanges UHPA
with LHPA. Its explicit form is written in [17]

(mA4n)(m+n—1) _

Qarvosan iy i (W) = (=1) 2 Qaranlityim (W) 5 (4.23)

where the complex conjugated Q-functions are defined as Q(u) = (Q(u*))*.
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Figure 4.2: Analytic structure of the Q-functions on the different sheets of the Riemann
surface.

The transformation (4.23|) generates the Q-system which is LHPA and satisfies the
same QQ-relations as the initial UHPA Q-system. It should be noted that the Hodge-dual
Q-system also admits such a transformation

(m4n)(m+n—1)
2

Qalz~~~7an|i1:~~~7im(u) - (_1> Qa1,~~~7an\i17-~~yim (U) ) (4_24)

Let us now remember the analyticity properties of the function Q' from ([4.21)) and
({4.22). We see that the functions Q_Z are LHPA and therefore have the same analyticity

properties as the functions QZ and QZ From the strong coupling limit of the superstring
o-model and its classical integrability (see the pedagogical explanation of this in [18]) we

know that for the case of integer spins S7 and Ss each function Qi,i=1,...,4 coincides
with the certain function from the set Qj, 7 =1,...,4 in this limit. Thus, summarizing

all this, we impose the equality of the LHPA functions QZ and Qj up to some matrix
M4 (u)

Q'(u) = MY (u)Q;(u) . (4.25)
From now on we will call the gluing condition and M*¥ (u) the gluing matrix, whose
properties we will analyze below. We formulated QSC in the form because this form
is convenient to analytically continue the QSC solution for the case of non-integer spins
S1 and Sy. The transformation generates the Q-system which is LHPA and satisfies
the same QQ-relations as the initial UHPA Q-system. As there is no principal difference
between UHPA and LHPA Q-systems and they describe the same spectral problem and
due to the unitarity of the N' = 4 SYM theory, the UHPA and LHPA Q-systems have
to be related by the symmetries of the Q-system, namely, the combination of the Hodge
duality and H —symmetryﬁ Thus, we can interpret the gluing matrix M% as an i-periodic
matrix of the H-transformation, which, in particular, relates the Q-functions with one
lower and one upper “fermionic" index on the mirror sheet

Q' =MIQ;, Q= (M) &, (4.26)
ij
where —t means that the inverse matrix is transposed.

Using the analyticity properties of the functions Q‘ and Qj we are able to establish
some properties of the matrix M*. Utilizing the i-periodicity of the matrix MY, it

3The presence of the Hodge duality can explained from the consideration of the classical limit of the
superstring o-model, which says that the analytic continuation of the Q-functions with the lower indices

Qz(u) are related to the Q-functions with the upper indices Q°, not the lower ones.
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is possible to express its elements in terms of Q! and Qj. From the i-periodicity of
M" (u), (4.26]) and remembering the QQ-relation for Q-function with 4 “fermionic" indices

Qoj1231 = 1&?;654 Q([Z;’,:z” one can show that

é[1+3} ?[1+1] 7[1—1] é[l—g}

Mijém1234:det Qi3 QI QU Q-3 | ien row (4.27)

Qi & A Qr

First of all let us show that the matrix elements M% do not have any branch points.
To see this let us notice that for Im v < —3/2 the Q-function on the LHS and the
determinant on the RHS of are analytic and do not have branch points. Therefore
in the same region and due to the i-periodicity M has to be free from the branch points
in the whole complex plane.

Second, in principle, M* can have poles. As M% is i-periodic, the existence of a pole,
for example, in the point ug automatically leads to the infinite number of poles in the
points ug + ik, where k € Z. However, at least in the region Im u < —3/2 the RHS of

([4.27) is analytic, thus the poles of M* have to be compensated by the zeroes of Q@|1234
in the same points or, in other words, there exists kg such that Q@|1234(u0 +ik) = 0 for
k < kg. In its turn this means that the number of zeroes of Q@‘1234 is infinite and these

zeroes accumulate at infinity. We know that Q@|1234 has power-like asymptotic, then there
exist such a and b that

é0|1234(u) —au’ =0 (Ub_l) ;U= 00. (4.28)

However, evaluating the LHS of at u = ug + ik for k < kg leads to a contradiction
with the RHS of . From this contradiction we conclude that M% cannot have any
poles.

Summarizing what was said we see that the gluing matrix M is analytic in the whole
complex plane. For the physical state, which means that the spins S; and S» are integer
and the asymptotics of the functions Q' are the power-like, analyticity and i-periodicity
of the gluing matrix M% leads us to the conclusion that it is constant in this case.

Now let us return back to the equations . As we know that the matrix M% is
free of any singularities, then analytically continuing both sides of the equations (4.26))
to the sheet with the short cuts we obtain

~

Q=MIQ;, Q=(M") Q. (4.29)
i

Analytic properties of the Q-functions allow us to establish one important property

of the gluing matrix. Analytically continuing both sides of the first equation from (4.29)),

using the fact that due to the quadratic nature of the branch points analytic continuation
and complex conjugation commute with each other, and then applying the second equation

from (4.29) we derive
Qi = M (M*t) QF. (4.30)
j
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Noticing that (4.30) is true for any point u and applying the same trick as above and
using the analyticity properties of the gluing matrix, we arrive to the conclusion that

i (-t _ i
M (M )jk =6l (4.31)
and the gluing matrix is hermitian
M (u) = M7 (u) . (4.32)

In what follows we are going mainly to deal with the Q-functions on the physical
sheet therefore from now on we omit the hats and checks above the designations of the
Q-functions implying that all the Q-functions are considered on the sheet with the short
cuts if the opposite is not mentioned specifically.

Now we are ready to find the other constraints on the gluing matrix which follow
from the conjugation and parity symmetries of the Q-system. To do this we will need
the 4th order Baxter equation for the functions Q;(u) to see if the certain properties of
the P,(u) and P%(u) can allow us to relate Q;(u), Q;(u) and Q;(—u). In the two sub-
sequent Subsections we analyze the implications of the conjugation and parity properties
respectively.

4.1.3 Complex conjugation symmetry

Let us now concentrate on the conjugation properties of the P- and Q-functions as-
suming the charges A, S; and Sy to be real. In [17] from the reality of the energy, Y-
and T-functions and the fact that the complex conjugation supplemented by the cer-
tain sign factor is the symmetry of the Q-system it is shown that complex conjugation
is equivalent to some H-symmetry transformation already mentioned in the Subsection
4.1.1, The matrix hp of this transformation was proven in [17] to be constant due to
analytic properties and power-like asymptotic of the P-functions. Then there was found
a transformation which allows to make all P-functions with lower indices purely real and
thus the P-functions with upper indices pure imaginary. However, in our calculations we
use the different normalization and make the other H-rotation by multiplying P3 and P4
by i and thus P' and P? also by 4 and obtain

13172 — P1’2 ’ 13374 — —P3’4 ’ 13172 — —PLQ ’ 133,4 — P3,4
or, in other words
P,=C'P,, P=_-C¢P’, C=diag{l,1,-1,-1}. (4.33)

Given the conjugation properties (4.33]), we see that the Baxter equation (4.11)), writ-
ten for the Q-functions with prescribed analytic properties

Q£+4} _ Q£+2] |:D1 _ PL+2]P(1[+4]D0:| + Q’L |:D2 . PaPa[+2]D1 + PaP(Z[+4]DO:| o
— QI [Dy+ PPN Qi =0 (430)

with Dy, and Dy, given by (4.12)) with Q"% = P2, remains the same, but for Q;(u) now.
Thus, the functions Q; satisfy the equation (4.34)) too. As the functions Q;(u) constitute



66 CHAPTER 4. LENGTH-2 OPERATORS WITH NON-ZERO CONFORMAL SPIN

a basis in the space of solutions of the Baxter equation (4.34) this means that there has
to exist an i-periodic matrix Q7 (u) such that

Q;(u) = Qf (u)Q;(u). (4.35)
As in [84] from and this matrix can be found to be
Q) = QG (4.36)
It is i-periodic Qf = Qf (see Appendix for the proof) and using this it is not hard
to show that
Q0 = 9,05 QM Q7.CiQ"M = 9, ,Cp QM Q. CQM T = o (4.37)

which means that Q! = Q and

Qi(u) = & (u)Q;(u) - (4.38)
The matrix Qg also relates Q’ and Q'
Q= _QgQi (4.39)
and vice versa ' o
Q =-9/Q". (4.40)

To determine the consequences of the conjugation symmetry for the gluing matrix we
substitute (4.35]) into the first gluing condition from (4.29)) and obtain

Q' = MYQEQy, . (4.41)

Let us analyze the matrix M% Qg“ more closely. As it is a product of two i-periodic
matrices it has also to be i-periodic. We remember that according to its definition (4.36]
the matrix Qf (u) has an infinite ladder of short cuts. Using the result of [84] we get the

discard of Qg“ (u)
OF -0 = -Q,;Q" + Q;Q" . (4.42)
Multiplying both sides of (4.42)) by M% and utilizing the first gluing condition from ([4.29)
we derive the equatio
MG — MOk = —Q'QF + QFQ' . (4.43)

We note that the RHS of is antisymmetric in the indices ¢ and k, thus we conclude
that the function M ”Qf + Mk Q; has no cuts on the real axis. As this function is
i-periodic it follows that M% Q;“ + M*I Qz is analytic in the whole complex plane.

Let us introduce a new notation

wk = MIQY (4.44)

“Notice that the RHS of the equation (4.43)) coincides with the RHS of the equation of the Quw-system
o — Wi = Q'O + QA



4.1. DESCRIPTION OF THE QSC BASED FRAMEWORK 67

where w? are the i-periodic functions on the sheet with the short cuts. Remembering
(4.41)) and applying (4.44) on the sheet with the short cuts we obtain the equation

B - o = (51QMQu - Qi) o' (4.45)

On the other hand, the functions w'* are i-periodic on the sheet with the short cuts, thus
on the sheet with the long cuts their analytic continuation under the cut on the real axis
is given by the simple formula

Gk = (wi’“)++ . (4.46)

Rewriting (4.45) on the sheet with the long cuts gives us
N 4 ) o .. )
(@) — o = (5QFQ - 57 QIQu) & . (4.47)

If we return several steps back, we can derive from the QQ-relations the equation for the
function Q% which looks almost exactly like (4.47)

QU — QI — (Y Q- 51QIQr) Q. (4.48)

Recalling the notion of p-functions introduced in the QSC framework in [16,/17], which
are i-periodic on the sheet with the long cuts, we multiply both sides by fi4p, which leads
us to

(1 @57) " = (097 ) = (Y Qi - FQAQ) (™) . (4.49)

Therefore, the functions &% and [Labéab'ij ~ satisfy the same equation. As the functions
fiap Q11— are antisymmetric in i and j due to the antisymmetry of the Q-function Q!
it is natural to impose the constraint that w® is also antisymmetric and

W = MIQE = MRl = (4.50)

In the following Subsections we are going to exploit (4.50) to constrain the gluing matrix
for different spins S7 and Ss.

4.1.4 Parity symmetry

Now we are going to describe the parity properties of the Q-system. For a large class
of states the P-functions possess the certain parity. Such states include the states with
the charges J; = 2, Jo = J3 = 0, which we consider in the rest of the paper and also the
ground state with the charges J; = 3 and Jy = J3 = 0, which is relevant for the BFKL
Odderon eigenvalue (see [8586]). Thus, for the case J; =2, Jo = J3 = 0 we have

M, ={2,1,0,—-1}, (4.51)
(—A+ S1—2)} :

A

1
Mi_{Q(A—Sl+2+2) ,

N | =

1
(A+Si42) 15 (FA=S12+2)

N | —

As we understood the analytic structure of P- and Q-functions, taking into account
the asymptotics of these functions expressed in terms of the charges (4.51)), it is natural
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to assume the existence of the certain symmetry between the Q-functions with lower and
upper indices, which also changes sign of A. This symmetry takes a particularly simple
form for the following choice of the normalization of the P-

A, = (1,1,-A3,Ay) , A= (A, Ay, —1,1), (4.52)
and Q-functions
B;j=(-By,1,-B3,—1) , B'=(-1,By,—1,-By) , (4.53)

which can be set with the usage of the rescaling symmetry (4.10). We obtainlﬂ

PY(A u) = Xabe(—A,u) , Qi(A,u) = niij(—A,u) , (4.54)
where
0O 0 0 -1 0O -1 0 0
w 0 0 1 0 4 |1 0 0 o0
XZ 1o 10 0 |> "7 lo o o 1 (4.55)
1 0 0 O 0O 0 -1 0

and x® is the same matrix for the left-right symmetric states as in [164[17].
For the operators we examine (J; = 2 and Jy = J3 = 0) in the following Sections the
P-functions have the certain parity. Their parity is dictated by the asymptotics of the

P-functions
P.(—u) = (—1)“+1Pa(u) , P —u)=(-1)"P%u) . (4.56)

The symmetry (4.56)) is a symmetry of the Baxter equation (4.34)), thus Q;(—u) is also
a solution of (4.34)). Utilizing the same logic as in the case of the complex conjugation,
we conclude that there exists an i-periodic matrix ©7(u) (see the proof in Appendix |
such that

Qi(—u) = 0] (u)Q;(u) . (4.57)
It is possible also to find the matrix with such a property. Utilizing again (4.5]), we obtain
6l(u) = (=1)*" Q, () Q"™ (u) , (4.58)

where the summation over a is implied. The matrix © has the property G)z (u)@f(—u) = oF
and thus ©7!(u) = ©(—u). We can write

Qi(u) = O] (-u)Qj(~u). (4.59)
The matrix @{(—u) also relates Q’(—u) and Q' (u)
Q' (~u) = 0] (-u)Q'(u) (4.60)

5The change of the sign A — —A is a symmetry of the equation and it should map one solution to
another solution. One can check that P'® = x**Py, P/, = (xil)ab P’ Q" =7"Q;, Q. = (1771)”_ Q’ and

M’ = pk (Mft) il 7Y is also a solution to the QQ-relations and the gluing conditions but with A flipped
to —A. As it can be seen explicitly in the Appendix in the weak coupling limit these two solutions
coincide therefore our solution is mapped onto itself. Given the starting point the recursive procedure
described in the Section is non-ambiguous we conclude that this property holds to all orders in the
coupling constant.
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and vice versa A ' A
Q' (u) = O (w)Q'(—u). (4.61)
Analogously to the consideration of parity symmetry, we can find the discard of @?
on the cut which is situated on the real axis

OF (u) — O (u) = —Q;(—u) Q" (u) + Q;(—u)Q* (u) . (4.62)

Using the matrix ©7(u) from (&.58), the gluing conditions (&.41) and ([£59) we are
able to introduce another gluing matrix

Q'(u) = L7 (u)Q;(~u) , Qi= (L—f)ij () QI (—u) | (4.63)

where

L (u) = MY (u)Qf (u)O),(—u) , (4.64)

and as the Q-functions on the both sides of the gluing conditions are LHPA, then by the
same arguments as for M%(u) the matrix L¥(u) is also analytic in the whole complex
plane. Analogously to the case of the gluing matrix M%(u) by going under the cut twice
we derive the property

L7 (u) = LY (—u) . (4.65)

Together with (4.32)), (4.50)) and (4.64]) condition (4.65]) constitutes the set of equations

which are used to calculate the gluing matrix for different values of the spins S7 and Ss.

Since for the states in question the P-functions have the certain parity, this has some
consequences for the asymptotic expansion of the Q-functions. As it is explained in detail
in the Section [4:2] with the description of the numerical algorithm the certain parity of
the P-functions leads to the form of the asymptotic expansion of Q,;

Qi) = uMatMi Z Bajiat (4.66)

w2l

By applying analogous arguments to the QQ-relation for the Hodge dual function Q4
we conclude that the asymptotic expansion of Q%" is also given by

+o0 Ba|i,2l

Qa‘z(u) ~ UMaiMi 7 (467)

=0

Then we remember that Q; = —Q;;HP“ and Q! = Q¥+ P,, which after the substitution
of (4.98]), (4.66) and (4.67)) lead us to the asymptotic expansions at infinity of the Q-

functions

+o0 B ,21

= Ble ;
Q;(u) ~ (B +Z ) . Qi(u) ~u” (sz ) . (4.68)

In what follows we will regard to the Q-functions with the asymptotic expansions
as having the “pure" asymptotic, as these expansions contain the powers of w, which
differ only by an integer number. The asymptotic expansions will be important in
determining the structure of the matrices Qj (u) and O] (u), Which are analyzed below.
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4.1.5 Constraining the gluing matrix

In the present Subsection we are going to derive the set of equations for the elements
of the gluing matrix originating from the conditions found in the previous Subsections.
To remind briefly the QSC framework we are using let us recall the constraints on the
gluing matrices known by now. The non-degenerate matrices M% (u) and L% (u) satisfy
the following set of constraints

W () = M), M) = M @), (27) (@) = ). (4.69)

i

U%onWm%meﬂo,LWﬂozﬁ%w,(eﬂﬁwzeﬁﬂw

Now we are able to consider the gluing matrix for the case of different AdS spins S7 and
Sy solving the set of constraints (4.69)).

Integer S; and S,

Let us start our study from the situation when all the charges except for the dimension
A are integer. More precisely, in the present Subsection we address the case when the
spins S1 and Ss have the same parity. This is motivated by the fact that for S, = 0
the physical states have even non-negative Slﬂ To analyze the constraints (4.69) more
closely we need to find the properties of the matrices Qj (u) and @‘27 (u).

In what follows we Wlll need the asymptotics of the matrices Q{ and @g (u). To analyze
them let us remember and ( - As the asymptotics of the Q-functions on the
both sides of and are power-like and the {2-matrix consists of the i-periodic
functions, the series expansions of Qf (u) and @j (u) for |Re u| > 1 are given by

“+o00 . —+o0
Q(w) = (o) T2 elw) = Y (@(k))z eF2mhu. (4.70)
k=0 k=0

where the signs correspond to expansion at 400 and —oo respectively. It should be noted
that does not have any growing terms on the RHS, because this would violate the
power-like asymptotic of the Q-functions.

The asymptotlcs of the Q-functions are pure and the asymptotic expansion is glven
by (4.68] Looklng at the values of Mz, i =1,...,4 one may think that because Ny — Ny
and M3 — My are integers, there could potentlally appear a mixing of Q(u) with Qa(u)
and Qz(u) with Q4(u) as this does not violate the purity of the asymptotics. However as
the spins S and So have the same parity and

My—My=1 mod 2, Ms—MNM;=1 mod 2, (4.71)

the functions Q1, Q2 and Q3, Q4 cannot mix, because their asymptotic expansions (4.68])
contain only even powers of u in the round brackets. Therefore the matrices (ng ))Z and
(@gg))g have to be diagonal. Let us now find them.

5This is due to the cyclicity constraint on the states of the 5[(2) Heisenberg spin chain, which is only
consistent with the symmetric distribution of roots leading to S1 even.
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First, we consider the matrix Qf (u) and remember (4.35)). If Re u tends to +oo, then,
as Q; ~ ByuMi~1, the diagonal element (QS?))’: is equal to B;/B;. But if Re u tends to

—oo the situation is a little more subtle. The qunctions Q;(u) have an infinite ladder of
short cuts going down from the real axis, while the functions Q;(u) have the same ladder
of cuts going up. Then taking the limit of Re u to —oo we have to go to —oo along
the semicircle in the UHP for Q;(u), i.e. Q;(u) ~ Bie”(]\;[i_l)(—u)Mi_1 and along the
semicircle in the LHP for Q;(u), i.e. Qj(u) ~ Bie_”(Mi_l)(—u)Mi_l, therefore we see
that the diagonal element of (Q(_O))i is equal to B;/ Bie*%“Mi. To sum up, we obtain

0 (u) = { §1e%0B5 4 (Qg)){e*%“ + O (e*™), Reu>1, (4.72)

5g€2i¢Bj —2iwM; + (Qg))feQ’iTu +0 (647ru) ., Reu<x -1,

where ¢?9B; = B; /Bi.

Second, analyzing the matrix @g (u) from is analogous. Thus, applying the
arguments from the previous paragraph, we see that at Re u tending to +o00 we have
to go around the semicircle in the UHP and Q;(—u) ~ B;e!™Mi=1yMi=1 while at Re u

-

tending to —oo we have Q;(—u) ~ B;(—u L. Then we obtain

. _ J im M (1) ] —27u —47u
@i(u):{ 6 e + (04 )je + 0 (™), Reu>1, (4.73)

—5le=imM; 4 (@9))562” + O (e'™), Reu< —1.

As it was explained for example in [18] in the strong coupling limit the asymptotics
of the functions Qz(u) are some powers of u, then the only possible ansatz for the gluing
matrix M%(u) is to assume it to be a constant matrix. Thus for the case in question we
obtain from (4.50) and (4.72) rather simple conditions

Mji — _MijeQi(¢Bj —¢Bi)’ (4'74)
MIi — _ \fi 2108, —0B,)+2im(M;—M;) (4.75)

Combining the two conditions (4.74) and (4.75)) we obtain the following
M (eQi”(Mi—Mz‘) ~1) =0. (4.76)

Let us see now which additional restrictions do we have in the case Jo = J3 = 0 and
J1 = 2. First of all from our assumptions about the asymptotics of the functions Q*(u) we
understand that the gluing matrix L% given by @ has to be constant, i.e. L¥(u) = L%
is a symmetric matrix. Therefore, from the , @D and we immediately find

L = — i 29 —inhl (4.77)
Then, using (4.74) and the symmetry of LY, we derive
M (e”(Mi*Mﬁ +1)=0. (4.78)

It is easy to see that if (4.78) is true then (4.76]) is also true. We have to calculate the
differences between the charges M; to determine which elements of the matrix M% are
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non-vanishing. It appears that only N — My and My — My are integers

My — NMy=—8 —Sy+1, (4.79)
Mg—M4:—Sl—|—SQ—|—1.

Thus for the case of integer spins S; and Sy we are left with the spins S; and Se with
the same parity, which is consistent with our initial setup. Therefore, only the matrix
elements M2 = M?! and M?3* = M*3 are non-zero. Then, in the case of integer spins S;
and So of the same parity we obtain the following gluing matrix

0 M2 0 0
y M2 0 0 0
/R
MI= T (4.80)

0 0 M3* 0

Using also (4.74]) and (4.75)), which are equivalent for S; of So of the same parity as
M7 — My and M3 — My equal 1 modulo 2, we are able to fix the phases of the non-zero

matrix elements of ([4.80))

12— a2 ¢i(F5+085-08,) (4.81)

i(:l:%—l—(f)Bl —(1)32) , M34 — ‘M34

Now let us start the consideration of the case when at least one of the spins is not
integer as this is particularly interesting for the BFKL limit.

Non-integer S; and S,

First of all, from the asymptotics we immediately see that if at least one of the
charges S or Ss is non-integer, then not to violate the purity of the asymptotic expansions
the matrices (Q(io))f and (@(io))g cannot mix different Q-functions and have to be
diagonal. Therefore, these matrices are given by . This means, that in the case of
at least one non-integer spin under the assumption that the gluing matrix is constant we
obtain the same constraint ( - However, as S1 or Sy or both spins are non-integer, all
the differences M; — M are non-integer in general, therefore we conclude that M% = 0.
Then we have to modlfy the ansatz for M% (u).

The matrix M¥(u) is analytic and i-periodic, so the minimal choice would be to add

the terms proportional to e>™* and e~ 2™
M (’LL) — M{] + M5j627ru + M?Z;jefZﬂu (482)

and this is consistent with what we know from the consideration of the BFKL limit for
which S approaches —1 and S = 0 (see [82]). From the previous conditions (4.32) it
follows that the matrices My, 5 are hermitian.

Substituting (4.82)) into (4.50) we obtain the following conditions for the matrix M% (u)

M = — M0 —0m) (4.83)
Mgz _ _Méje%((j)]gj —¢p, ) +2im(M;—M;)

9
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where the summation over the repeated indices is not implied. For i = j we immediately

see from (4.83)) that ) )
Mi=Mi=0. (4.84)

Let us remember that for the case in question Jy = J3 = 0 and J; = 2. The matrix
LY (u) is given by the formula . Taking the limits v — 400 and remembering
the expansions and we have to assume the existence of the exponential
contributions to L* (u)

Li(u) = LY + L e?™ + L2 (4.85)

where the matrix Lij is symmetric and Léi = ng due to (4.65)) and the latter two of them
are given by

L = My @)f(O)} = —gferomimih, (4386)
L = M (QH©P)), = —Mleriom—imM (4.87)

Exploiting the symmetry LI = L;j and the relation from (4.83]) we derive
MP = — M =) (4.88)

As we observed in the case of integer spins S; and S the determinant of the gluing
matrix is constant. According to in the case of at least one non-integer spin this
determinant is not guaranteed to be integer. However, if we assume for a moment that the
determinant of contains exponents, the form of the second gluing condition from
will contain exponents in the denominator. But as there is no preference to upper
and lower indices, which get exchanged under A — —A symmetry, we have to assume
that both gluing conditions include the exponents e?™ only in the numerator of
M?% (u), therefore we impose a new constraint

det M"Y (u) = const . (4.89)
1<4,5<4

Let us now show that staring from some simple ansatz for the gluing matrix M% (u)
we are able to solve the constraints and . We saw from the implementation of
the numerical algorithm described in the Section that in the case when both spins Sy
and S are non-integer it is sufficient for convergence of the numerical procedure to allow
presence of exponents in M'3(u) and M'(u) only. Thus, we have the following ansatz
for the hermitian matrices My's

0 0 M3 M}
i 0 0 0 0
LY

Mgy 0 0 0

where the non-zero matrix elements are subject to the relations (4.83) and (4.88)).
From the constraint (4.50) we find the equation

298 N[22 — 62i¢32—2i7rM2M122 -0, (4.91)
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from which we have
M2 =0. (4.92)

Application of the constraint (4.89)), i.e. the demand of the absence of the powers of
e?™ in the determinant of the gluing matrix leads us to the following equations

MEM* = M M3 (4.93)

MM (752750 —1) =0

As the spins S and Sy are non-integer and we assume their difference to be non-integer

too and from (4.93) we obtain
MM = MP M =0. (4.94)

In the case in question MJ3 and M214 are not equal to zero, therefore we are left with the
equality
MP=M*=0. (4.95)

Summarizing the results (4.92)) and (4.95) we obtairm

Mt AR S
20 0 0

_ ~1
Yo a0 |
114 0 Mf’4 M{M
0 0 My* My 0 0 M?* My
0 0 0 0 2mu 0 0 0 0 o
M3* 0 0 0 M3t 0 0 0

where the elements of the matrices M§]3 are subject to (4.83) and (4.88). As we have the
relation (4.88) it is sufficient to write only the phases of the non-zero matrix elements of
the matrix M’ extracted from (4.83))

ei(£5+¢8,—05,) (4.97)

M = ‘M213 o (£5+68,~0B;) . MM = ‘M214

Let us point out that the construction presented above will provide an analytic con-
tinuation to all values of S5 from the integer values So > 0. However, this analytic
continuation breaks down the symmetry So — —So, which is naively present in the QSC,
as one can see from the asymptotic . The analytic continuation, which describes
perfectly positive integer Ss will produce poles at negative integer So. This could look a
bit puzzling, but the resolution of this paradox is in the existence of the second solution for
the mixing matrix which is obtained by relabeling indices in accordance with Sy — —S5.
In practice result must be even in Sy and it is enough to consider Sy > 0 so it is sufficient
to use the mixing matrix presented above.

"In the case when the spin Ss is integer, the gluing matrix simplifies to ([#.107)) and we have M14(u) =
M*(u) = 0 as we will see it in the Section describing the applied QSC numerical algorithm.
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To sum up the contents of the present Section, we have to point out several things.
First, we formulated the algebraic structure of the Q-system by writing down the QQ-
relations and 4th order Baxter equation originating from them. Second, the analytic
structure of the Q-system was motivated from the solution of the classically integrable
dual superstring o-model and the QQ-relations. The symmetries of the Q-system allowed
us to introduce the gluing conditions for which we managed to impose several constraints.
These constraints were partially solved for different values of the spins S and Ss. We
examined the case when both spins are integer and non-integer. In the next Section we
are going to appreciate an importance of the derived gluing conditions and see how they
appear in the QSC numerical algorithm.

4.2 Numerical solution

The equations of QSC are especially well-suited for numerical analysis: simple ana-
lytical properties of the P-functions allow to parametrize them in terms of a truncated
Laurent series and then constrain these coefficients by the gluing condition. Numerical
algorithms for solving QSC equations were developed and applied in [32}84,87,88]. In
a non-symmetric case, such as BFKL with Sy = n # 0, the procedure has to be modi-
fied in a way which we will describe here. We attached a Mathematica notebook named
code_for_arxiv.nb implementing the algorithm, which we used to obtain the results
described in this Section.

Let us start by briefly reminding the main steps of the numerical algorithm. A com-
prehensive description of the algorithm for the left-right symmetric case can be found
in [18/32]. Here we will point out the main features we have to take into account in the
case without left-right symmetry. As in the left-right symmetric case, for the P-functions
there is a sheet with only one cut in the complex plane where the following parametrisation
is valid

—M —M da
P,(u) =z Me (g Magp, (1 + m’24

+o0 Cake
>+ > gk> : (4.98)
i
k=1
+00 bk
) +> x2k> ;

k=1

vra v 5
Pa(u) — :L‘M —1 (gM“_lAa <1 + ;’21

where z(u) = VU299 ”“229 Vut29 - The expansions (.98) contain only the even powers of
Zhukovsky variable a:(gu) because for the state in question the P-functions possess the
certain parity determined by their asymptotics from (4.13|) and (4.51). However, the
coefficients ¢, and ¢®* are not independent and are subject to the conditions following
from

P,P*=0. (4.99)

In the left-right symmetric case the condition (4.99)) was satisfied automatically.
Since Q,; is analytic in the UHP and has a power-like behaviour at u — oo, its
asymptotic expansion for sufficiently large Im u in the UHP can be written as

Ba|i7k

pa (4.100)

. 1
Qqpi(u) o ™ Met MY
k=0
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where AB
Byjip = —i———— . (4.101)
—Ma + M’L
Plugging the ansatz (4.98)) and the expansion of Q,); into the equation
Qi — Qi = —PanQbﬁi, (4.102)

we are able to fix the coefficients B,; j, in terms of the operator charges and the coefficients
Cq,k and ¢k The fact that the P-functions have the certain parity and they are given by
@ leads to the disappearance of the odd coefficients Bgj; 941 =0 for [ =0,1,2,... in
@D and we obtain

07 <= Bai
Qui(u) ~ u >y R (4.103)
=0
After doing this, using the same finite difference equation in the form
Q,, = (b +P.P") O, (4.104)

we find the numerical value of Q,; in the vicinity of the real axis.

One remaining ingredient of the iterative numerical procedure is the loss function —
a function which is zero for the exact solution and which should decrease as each iteration
brings us closer to the exact solution. We have the following loss function

S = |F(uj), (4.105)

i?j
which is zero when the gluing condition is satisfied. Here

F(u) = Q" (w)Py(u) + MY (u) Qy (u)P* (u) (4.106)

and {u;} is a set of points on the interval [—2g;2g]. Every function F(u) depends on the
charges S, A, n, the coeflicients ¢, and ¢®* and the coefficients of the gluing matrix.
As a starting point for the numerical algorithm one can use the weak coupling data from
Appendix

In the present work we are interested in the case of non-integer spin S; = S. As it was
already shown in the Section in this situation we cannot keep all the gluing conditions
(4-80). However, we found that only two gluing conditions F?2 and F* are sufficient to
constrain all the coeflicients ¢ and are still valid even for non-integer 57 providing thus a
natural way to analytically continue to non-integer spins. In terms of this means
that the sum in that formula goes only over ¢ = 2,4. After the loss function and all
the constraints are formulated, the algorithm searches for the parameters which minimize
the loss function subject to the constraints using a numerical optimisation procedure
(Levenberg-Marquardt algorithm). Then, using the obtained numerical values of the Q-
functions, we are able to restore the ansatz for the gluing matrix, which tells us which
elements of the gluing matrix contain the exponential terms and which of them are equal
to zero. This allows to verify the modification proposed in the Section for the gluing
matrix (4.107) (in agreement with [31]). Thus for integer Sy = n this leads to the gluing
matrix for non-integer S; given by with

MY () = M*(u)=0. (4.107)
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In the situation when S = n is not integer the gluing matrix needs further modi-
fication. To achieve this we use the fact that relaxing the conditions is sufficient to
make the numerical procedure convergent. Restoring again the gluing matrix, for general
real value of the spin Sy (or conformal spin 7 in high-energy scattering terminology) we

are left with the gluing matrix which coincides with .

Using the proposed numerical algorithm, we managed to calculate several numerical
quantities for the cases when n is non-zero and even non-integer. On the Figure [4.3] one
can find the length-2 operator trajectory for n = 1.

g=0.1, n=1, §(4)
03k ' ' ' 1

Figure 4.3: Trajectory of the length-2 operator for conformal spin n = 1 and coupling
constant g = 0.1.

It is also possible to numerically calculate the dependence of the spin S on the coupling
constant g for the fixed dimension A. On the Figure you can see the dependence S(g)
for A = 0.45 and n = 1 in comparison with the same result calculated perturbatively as
the sum of LO and NLO BFKL eigenvalues.

Additionally, this numerical scheme allows us to compare the numerical values of
BFKL kernel eigenvalues with the known perturbative eigenvalues at LO and NLO orders.
In the Table the numerical values of the BFKL kernel eigenvalue fitted from the plots
of the Figure [£.4] are written in the first four orders together with perturbative results in
the first two orders calculated for n = 1 and A = 0.45. In the LO, NLO and NNLO order
we observe the agreement with 22, 20 and 16 digits precision respectively.

From now on let us concentrate on the numerical calculation of the intercept function.
On the Figure [£.5|one can find the dependencies of the intercept on the coupling constant
g for the different values of conformal spin n. The dashed lines are plotted according
to the intercept function from Section [.3] calculated in the small coupling regime. The
continuous lines correspond to the strong coupling expansion of the intercept function
from Section which was fitted from numerical data obtained in the present Section.

In the next Section we are going to analyze the weak coupling expansion of the inter-
cept function. To achieve this we apply the iterative method first applied in [31].
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Figure 4.4: Dependence of S on the coupling constant for A = 0.45 and n = 1. Red dots
depict the numerical result and dashed line depicts the sum of analytical perturbative
results at LO and NLO orders.

Numerical fit Exact perturbative
LO 0.50919539836118337091859 | 0.509195398361183370691860
NLO -9.9263626361061612225 -9.9363626361061612225
NNLO 151.9290181554014 151.9290181554014
NNNLO -2136.77907308 ?

Table 4.1: BFKL kernel eigenvalues calculated numerically up to NNNLO and perturba-
tively up to NNLO for the conformal spin n = 1 and dimension A = 0.45.

4.3 Weak coupling expansion

In this Section we explore the function S(A,n) perturbatively at weak coupling for
arbitrary integer conformal spin n. In particular, we are interested in the BFKL intercept
j(n) = 5(0,n) + 1. The calculation of this quantity consists of two steps.

First, we apply the QSC iterative procedure introduced in [31] to the calculation of
the intercept function for some integer nﬂ To do this we adopt this procedure to the case
without the left-right symmetry. We repeat the main points of the iterative algorithm
introduced in [31] and describe the functions which are used in it for the case n # 0.

In the second part we formulate an ansatz for the weak coupling expansion of the
intercept function for arbitrary value of conformal spin in terms of binomial harmonic
sums and fix the coefficients of this ansatz using the values of the intercept at several
integer n, which we calculate solving the QSC iteratively order by order. This approach
appears to be successful in the NNLO order in the coupling constant allowing us to find

8The reason we have to take specific n in our analytic calculations is that for arbitrary n the leading
order solution is already quite complicated hypergeometric function. It would be really great to extend
the method of |31] to be able to deal with this class of functions iteratively. This would allow one to derive
the result for arbitrary n at once.
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Figure 4.5: Intercept S(0,n) as the function of the coupling constant g for conformal
spins n =0, n = 3/2, n = 2 and n = 3 (dots), weak coupling expansion of the intercept
(dashed lines) and strong coupling expansion (continuous lines).

the intercept function at this order, but at NNNLO order we were not able to fix the
rational part of the result for arbitrary n (see the details in the Subsection . This
is due to the lack of the generalized-“reciprocity" at the NNNLO order. It would be very
interesting to understand why and how the reciprocity in n is violated, which would allow
to obtain the rational part with a greatly reduced basis of functions. We postpone this
question to the future investigation.

Let us also mention that the method we explain here should be also applicable for
non-zero A when A+n takes odd integer values. The case of n = 0 was considered in [31],
and it was sufficient to take a few values of A in order to fix the NNLO dimension. This
would be also interesting to investigate in the future.

4.3.1 BFKL limit with nonzero S; = n

In this Subsection we consider BFKL limit of the QSC with non-zero conformal spin.
Let us first of all briefly remind what BFKL limit is. We are going to study the regime
when at the same time the coupling constant ¢ — 0 and one of the spins 57 =5 — —1
while keeping the ratio g2/(S+1) finite. LO BFKL in this limit corresponds to resumming
all the contributions of the form (g2/(S + 1))¥, NLO BFKL - to the contributions of the
form (S + 1)(¢?/(S + 1))* and so on. However, in the present Subsection we take the
second spin (conformal spin) Sy = n # 0 and there appear some differences from the
BFKL regime with zero conformal spin.

In order to find the BFKL kernel eigenvalue we are going to utilize the old fashioned
method of Pu-system. The Pu-system consists of the functions P, (u), P%(u), which we
introduced before and of an antisymmetric matrix pq,(u) (see [16,/17] for the detailed
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description). They satisfy the following equations

fiab = pab = PaPy —PyPa . Po =P’ (4.108)

/:Lab _ ,uab — Paf)b _ be)a ’ 13& — Iuabe ,

P,P*=0, ,U'ab,ubc _ (52 . iy = M(—l&-b—l- , ﬂab _ Mab++ .
Before proceeding we are going to introduce a couple of new notations. Our notation for
the BFKL scaling parameter is w = S+ 1. It is also convenient to introduce the notation
A= g?/w.

To start solving the P u-system in the BFKL regime we have to determine the scaling
of the P- and p-functions in the limit w — 0. In what follows we are going to use the
arguments from [82], where the left-right symmetric case with zero conformal spin was
considered. First, we assume that the scaling of the P-functions coincides with the scaling
of their leading coefficients in the large u asymptotics. Thus as from (4.17)) for the length-
2 state in question in the BFKL limit 4,4% = O(w®) for a = 1,...,4 these functions can
be chosen to scale as w"

400 400
P, =Y PPuwk — pr=3"phlayk, (4.109)
k=0 k=0

Second, because the asymptotic of the function Pj(u) is the same as in the left-right
symmetric case, for So = n # 0 the argument from [82] about the scaling of the pu-
functions is applicable and they scale as w2

+00 & +oo
lap = Z Mgb)wkfz - Zu(k)abwkﬂ ' (4.110)
k=0 k=0

Additionally, as all the P-functions for the length-2 states being considered possess the
certain parity from the Pu-system equations (4.108)) we can conclude that the functions
,u:b(u) have the certain parity, which will be specified below.

Finally, we are to determine the asymptotics of the p-functions for the case of non-
integer S1 = S for non-zero So = n. Let us restrict ourselves from now on in this Section
to the case of integer conformal spin Sy = n. The p-functions with the lower indices are
given by the formula from [17] combined with from the Section

1
2
Substituting the matrices (4.107)) and (4.72)), which are applicable to the case of integer
conformal spin, into (4.111f), we are able to determine the asymptotics of the w-functions.

Taking into account also the antisymmetry of w” = M ZkQ? from (4.50) we find that they
are

U
Lhab = Qab|ijwm = iQab\ijM’L Qi: . (4111)

w" ~ <const,627r‘“|,6_2“‘“|,6_2“‘“|,6_2“‘“|,const> . (4.112)

Using (4.112)) we see that the leading asymptotics of the u-functions with the lower indices
at u — £oo are

Lab ~ (U_S_l, U_S, U_S+1, U_S+1, U_S+2, u—S+3)627r\u\ ’ (4113)
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while the p-functions with the upper indices have the same asymptotics but in the reverse
order.

In addition, we know that the P-functions have only one cut on one of the sheets,
therefore they can be written as a series in the Zhukovsky variable. The parametrization
of the P-functions for the case J; = 2 and Jo = J3 = 0 is already known to us and can be
taken from the formula (4.98]). Utilizing the P-functions rescaling we can set the
coefficients A; = 1, Ay = 1, A3 = —1 and A* = 1. Then, we are also allowed to apply the
certain H-transformation of the P-functions, which do not alter their asymptotics and
parity

P, — (hg)’P,, P*— (h;): P’ (4.114)
where
1 0 00
» |0 1 00
(h8)a= |4, 0 1 0 (4.115)
0 a9 0 1

As (4.115)) has two parameters then, applying this transformation, we can set the coeffi-
cients c3,1 and c®! to zero. Thus, we arrive to the formulas

1 —+oco 1k ) 1 1 +o0 Cl,k’
1 +o00 Cok +o00 CQ,k
PQ = — + . 5 P2 == A2 + G AR)
N 1?::2 22kt 1 kz::z z2k
1 c>
Py=Az+ Y b, Pl=— iy
L At S
1 —+00 Cak 1 +o0 c4,k‘

The scaling of P-functions (4.109) suggests that the coefficients should have the expan-
sions

+o0o

n—m-— = n+m—=6
Cmn = (\/ Aw)2 ' Z k) ko emm = (v Aw)2 e Z A E gk (4.117)
k=0

n,
k=0

In what follows for the sake of convenience we change the numeration of the p-functions
to pi2 = w1, p13 = M2, H1a = {13, 123 = f4, poa = p5 and pzq = pe and the same for p
with the upper indices. Having set the scaling and the expansions of P- and p-functions
in the scaling parameter together with their asymptotics we are able to proceed with the
solution of the Pu-system order by order in the scaling parameter.

LO solution

In the present part we will find the LO solution of the Pu-system in the BFKL regime.
Taking into account that P scale as 1/w?, in the LO in w we obtain for the P-functions
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from (A.116) and ([T.117)

(1)

0 1 0 _ 1 0 0 0 0 Cq1
P =, PY = PP =P, PP =aluy (4.118)
1) 1 1
PO — A0),, 4 P02 — 4200 poO3__~- pO4_ —
u ) ) U ) u2 )
where we implied 41 = ——1g75 (c(l)w + O(w2)) =1 (cl’l(l)w + O(wQ)) and
p 4,1 (hw)?? \“41 ) (Aw)?/?
o i((A=n?=1)((A+n)’-9) " i((A+n)*=1) ((A=n)’—25)
A3 - — 5 A4 - — .
32 96
(4.119)
Let us now examine the p-functions in the vicinity of the point S = —1. In the LO,
when S = —1, p-functions with the lower indices at © — oo have the asymptotics
(Mb 2, (13, ta, 15, .UJﬁ) ~ (u07 ul) u2) U2, U3, u4)62ﬂ—|u‘ : (4120)

To find the p-functions with the lower indices in the LO analogously to the left-right

symmetric case we notice that Pg?% and P34 are singular, while Pyo and P34 are

regular at v = 0. This can be guaranteed if ug;) are regular at © = 0 and have a zero of

sufficient order at this point. Therefore, as in the left-right symmetric case we can assume

that in the LO the only solution which contributes in M((z?;) is the one with the asymptotics

(4.120]). Consequently, we conjecture u((l? to possess the form of a polynomial times some
i-periodic factor. As for the length-2 operators the functions p;rb have the certain parity,
we are led to the ansatz

O =Py, 0T = Pu)beyu (4.121)

p T = Plu)(bsau® +bs) o pT = Plu)(bagu® +bia)

% = Pw)(bs1u® + bs o), p T = Pu)(be1ut + be2u® + b 3) -
where P(u) is an i-periodic function. Let us first determine only the polynomial part of the
solution. Plugging the ansatz into the equations ujﬁ = gp + PopipcP¢ — Pppig P°
we fix all the coefficients besides b1 1 and 1) = —cﬂ. The latter equality automatically

leads to the validity of the requirement

POPOe — (4.122)

a

in the LO.

Now let us return to the general solution. Because in the leading order the equations
for p’s are homogeneous, the solution is determined up to some i-periodic function. This
periodic function grows not faster than e27/“l, then the most general ansatz for it is

Bi1e*™ + Bige *™ + By 3. (4.123)

Also we have to remember about the requirements of analyticity, i.e. that the following
expressions have no cuts

- P-P p— i

PP TEmme MR Ve amw

VT (4.124)
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The constraints (4.124)) lead us to the results

iA 2
Bia=Bi,, Bis=-2B11, ) = -2 <(A2 —1) —2(A%4+1)n? + n4) . (4.125)
' 96
With these conditions (4.125)) the parity requirement for p* is automatically satisfied.
Summarizing the obtained results and setting By ; = —B1/4, all the requirements give
us the unique solution (up to a multiplicative constant) given by

,ugo)—i_ = By cosh?(mu) , (4.126)
ugO)Jr = —Bl% (<A2 - 1)2 -2 <A2 + 1) n* + n4> u cosh?(mu) |

,ugO)Jr = ,ufloH = 731%2.8 <(A2 - 1)2 -2 <A2 + 1) n? + n4) (4u2 + 1) cosh?(7u) |

Mg0)+ = —Blﬁ ((A2 - 1)2 -2 (A2 + 1) n? + n4> u (4u2 + 1) cosh?(ru) |

P =yt (82 1) 2 (A% k)t ) (102 = ) (402 + 1) conh(rar)

Having obtained the LO solution given by (4.118]), (4.126)) and (4.119)) we are able to
proceed with finding the NLO solution of the Pu-system together with the coefficient By,

which will be done in the next Subsection.

NLO solution

Now it remains to fix the coefficient B; and find the P-functions in the next order in
w. To do this we need to calculate P. First, we have to understand, which coefficients it
is necessary to find in order to calculate P in the NLO order w' using the scaling or the

P- ([£.109) and P-functions (w~?)

2A 6171(2) 0171(1) + A0172(0)
_ (D1 _ A1)
il P AN+ A + 3 ;

(0)
14 cy55) Aw
P =+ (532) +0(w?), PW2= 20 4 220w+ O@w?),

(4.127)

14 320)) A
Pg) :Agl) pL3 — ( - ) :

(2) (1) (0)
W) _ 4, Gi o, can A na_ 2A

Notice, that we already know cﬂ = —cb*D) given by (4.125) and Agl), Afll), A and

A2(1)

L
12
1(1) _ 2 2 201) _ Y (A2 2

A _12(A 3An +n +5) A2 - 4(A An+n 3) :

(A% +an+n?-3), A= (A% +3An+n?+5) ,  (4128)



84 CHAPTER 4. LENGTH-2 OPERATORS WITH NON-ZERO CONFORMAL SPIN

Thus, we have to find cg?%, cfi, cfl?%, 1) 120) and ¢320). Comparing the P-functions
calculated from the LO result and the ones found with the equation P, = tap PP we can

fix some unknown coefficients. On the one hand we get

P, = A; ; (+0(ut))+0 (v ), (4.129)
ro(u).

rou) .

+0 (w!

CR

M2@W+ow»
2@&f o (u))
o ( ()

cg,u‘r’ + 0 (u” )

l\’)

On the other hand

P, = —%% ((A=n)*=1)sinh®(ru) + O (w) (4.130)
P, = i;i ((A=n)*=1) usinh?(ru) + O (w™") |

P, — _%% ((a=np=1)" (A +n? - 1) u?sinh(re) + O (w!)

P, - i; 3;4 ((a=n)?=1)" (A +n)” = 1) u(u? + 1) sink?(mu) + O (w™") .

The result is the following

43 (0)
D=1, (4.131)
w2 ((a-n?-1)az’

cfl?%:O, cf%: 96((A2_1)2_2(A2+1)n2+n4>.

Thus, the final answer for the LO p-functions is

By =

O+ 4 cosh?(mu)
M1 7T2A2 (A _ n)2 1 ’ (4132)

M(O)Jr _ ! ((A +n)? - 1) u cosh?(mu) |

2 42 A2
M:())O)Jr _ MEPH _ 32732/\2 ((A +n)?— 1) <4u2 + 1) cosh?(7u) |
PO+ 487r12A2 ((A +n)? - 1) u <4u2 n 1) cosh?(mu)
L _ m ((a—n? 1) ((A+m)? 1) (40 = 3) (4 +1) cosh®(ru) .

Using the equation
:uab:ubc = 52 ) (4133)

we are able to determine the p-functions with the upper indices in the LO up to a
multiplication constant. Then, inserting them into Pu-system equations, we fix this



4.3. WEAK COUPLING EXPANSION 85

constant obtaining

O m ((A +n)? - 1) ((A —n)? - 1)2 (4u2 _ 3) (4u2 i 1) cosh?(ru) |
(4.134)

02+ — 48732 e ((A —n)? - 1) u (4u2 n 1) cosh?(mu)

P03+ = O+ _32732 5 ((A=n)° —1) (4 + 1) cosh®(ru)

O3+ _ 4W; o (8= n)* = 1) weosh?(mu)

4i  cosh?(mu)

06+ —
A% (A +n)* -1

and some other coefficients in the P-functions with the upper indices

12000 _ © 2 . 2\%2 2, .2 3200) _ _
c —96(<A n?) —2(a —|—n)+1>, ¢ 1. (4.135)

We are able even to go further and calculate completely the u-functions in the NLO
and partly fix the expansion coefficients in the P-functions in the NNLO. Let us now fix the

other coefficients in the NLO in w. To find the unknown coefficient cfl), we have to build

2

an ansatz for p in the NLO. The asymptotics of the NLO pu are {u®, w3, u? ul, v’} logu.

First we introduce a new function

1

Wo(u) = ¥ (; + zu) +o (2 - zu) — (1) (4.136)

This function has the infinite series of poles in the points % + iZ. As the case of general
integer conformal spin n has to be consistent with the known left-right symmetric case
n = 0, it is natural to assume that the ansatz for the NLO p-functions is essentially the
same as for n = 0, but relaxing the requirement that us is equal to py4. So, we use the
following ansatz
O+ _ 2

e = (Bl\I’()(’LL) + bl) cosh (7Tu) + K1, (4137)

M511)+ = (BouWo(u) + bayu) cosh?(mu) + Kou

p0" = (Bs(4u? + 1)Wo(u) + bgyu? + bsy) cosh?(ru) + Ks(4u? + 1)

ui = (By(4u? + 1)Wo(u) + bagu? + byo) cosh? (mu) + Ky(4u? + 1) ,

uél)Jr = (Bsu(4u® + 1)U (u) + bs1u® + bsau) cosh? (mu) + Ksu(4u? +1) ,

uF = (Bg(4u? — 3)(4u2 + 1)U (w) + beru® + beau® + bes) cosh?(mu)+

+ K5(4u® — 3)(4u® + 1) .
Substituting this ansatz (4.121]) into the Pu-system equations (4.108]), first, we get the

unknown coefficient

o = -2 (a2-1) (2(a-1)A-1) (4.138)
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and obtain p with the lower indices in the NLO

W _ 2iW(u) 160 (A ((A-n)>=1)+3) ) 8i
y =GBy A2 39A2 cosh®(mu) + — | ,

Cl A0 u 2 U
(A—F’I’L <( 87‘(2/\2 3A+27T2A2((A+n)2_1)>COSh (7ru).|_2A> ’
(1)+ (4u2 + 1 ) 2 (4u2 + 1) _ 6_
e (( 647T2A2 2472\ (4.139)
1 cosh?( 4“ +1
1672A%((A +n)% — 1) 16A )7
pi = (A4 n)? @2 U) 7 (4t 1) -6 du? + 1
647T2A2 247T2A 167T2A2((A+n)2_1)
(4U +1)An M 41
2m2A2 (A —n)? — ) (A+n2-1) cosh?(ru) + on ’
(1)+ — (A +n)? u (4u? + 1) U(u) u(4u2+1)_ w (4 4 1)
967‘(2[\2 36A 87T2A2 ((A_n)2 _ 1)
(4u +1 An ) u(4u2+1)
h 7 T
+67T2A2((A+n ) (A— ) _1) COS (7Tu)-|— 1A 7
M+ _ 2 1)\2 N2 i (4u? = 3) (4u? + 1) U(u)
P = (A2 =12 (A=) —1) (( ) (407 +1) ¥0),
(2 (4u? — 2 e )
+ (" (4u” — 3) +36) (4u” + 1) i (4u® = 3) (4u* +1) cosh?(mu)—
921672A 61447272 (A —n)2 — 1)
i (4u® = 3) (4 +1)
6144A :
The p-functions with the upper indices in the NLO are given by the formula
p V% (0, 1) = 3 ply) (=, w)x® | (4.140)

where the matrix y is given by (4.55). Usage of the equation P, = ugP? allows to
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partially fix the P-functions in the NNLO. They are written in the formulas below

202 5N i(A%4n?=3) MO
pd_ T AT pe@n _ 4.141
! Jut * ub ’ 48 ut Au ( )
24— (51 +72) ((A—n)* -1
_Z'A<(A—|—n)2—1) ( )( )— An2 ig+
288 6((a+n)?-1))u
5id? (A+n)* —1) (A =n)* - 1)
+ 5 )
96w
p@ _ (™A A 1,548
2 7\ 3 (A—n)2—1)ud wud’
SN2 L2 iA2 (A 21 ((Aa-n)?+1
P(2)2_1(A +n?-11) ¢ (A+n) (A—n)"+
- 16 32ut ’
p® _ 1 (A? +n? —11) in? ((A +n)® - 1) ((A —n)? — 1)
3 = 16 32u4 ’
272 2
p@3 — _”AJF 4A i_%,
3 (A+n)2=1)) ud W
. (3)
(2)_@(A2—|—n2—3) m
P, = 13 U+ Au+
24— (51 +7%) ((A+n)* -1
+ih (A —n)* 1) ( ) >+ An2 ig—
288 6((a-n)-1))u
5id? (A+n)” = 1) (A =n)* 1)
B 96u> ’
2A2 2
(24 _ AT 5A7
P 3ut ub -

Also, from the obtained results one can notice that the P- and p-functions possess
the following symmetry

P?(n,u) = X""Py(—n 1), p™(n,u) = X" pea(—n, wx™ . (4.142)

where the matrix x is given by (4.55)). In what follows we will assume that this symmetry
is present in all orders of the perturbative expansion.

Passing to Qw-system

To proceed we need to use the system which is dual to Pu-system — Qw-system. The
equations of this system look as follows |16}|17]

@ —wij = QiQ; — QQi, Qi =uw;Q, (4.143)
S - QY- Q. @ =ui,

b ik __ <k ++ _
Qin =0 y wijoﬂ = (51 y wij = wi]’ .
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We assume the scaling of the w-functions is the same as in the case n = 0 considered
in [82], which is motivated by the fact that the case of general n has to be consistent with
the known data for n = 0. Thus, the function w' scales as w2, w'?, w™, wW?? and w3
scale as w9 and w??* scales as w?. For the lower indices we have wyy as w_2, w12, W14, W3

and w4 as w’ and w3 as w?. Let us remind the connection between u- and w-functions
1
2

With the obtained P- and p-functions in the LO (4.118]), (4.132]) and NLO (4.127)), (4.139))

we can extract the functions Q13 and Q124 i the LO and NLO as well. Let us proceed

Hay = 5 Qapjig™ s pt = Q“b‘”wj : (4.144)

with further calculations taking Q13 only as the actions with Q124 are completely the
same but with the exchange n — —n.
One of the QQ-relations says

Q41943 — Qaj39p1 = Qab|13 (4.145)

and it allows to express Q31 and Qy); in terms of Qyy, Qg1 and Q13- Using this fact
and the equation
ot —Q,; = —P.P'Q} (4.146)

ali ali

we are able to derive the following second order Baxter equation for Qy; in the LO

1 - A —n)® -
(u2 n 4) Qi + < ) o <—2u2 + W) ol =0. (4147)

Then, utilizing

Q) — Q) =P1Qu (4.148)
we obtain the second order Baxter equation
_ A —n)?
Q) (—2 TR 42) ) Q) = (4.149)

where an additional index 3 appears because the Baxter equation for Qs is the same.
Repeating analogous calculations with Q2% we get the similar equation for Q2 and
Q* in the LO

2
Q24+ | Q24— | (2 n W) Q24 _ | (4.150)

As we know the P-functions completely in the LO and NLO orders the equations
and are known to us up to NLO order and will be used below.

It was said in the Section that we should find the solutions to the Baxter equation
with pure asymptotics. Let us consider n = 0 in (4.149)) and (4.150) for simplicity (we
always can restore them by shifting A — A — n for the lower indices or A — A 4+ n for
the upper indices). The Baxter equation

g+ 2+7A2_1 = (4.151)
a"+a = :
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is known to have two independent solutions, which are UHPA

1-A 14+A
ar(A,u) = 2iusFy (27 +T 1+iu;l,2; 1) , (4.152)
A, —
arr(A,u) = —icoth(mu)qr (A, u) + ql(iﬂAu) .

COS -5

A
We found two solutions q; and qs with the pure asymptotics w3 and u= "3 respectively

a1 (A, u) = —tan %qI(A,u) +arr(Aju) = (—z’ coth(mu) — tan 7T2A) ar(A,u)+

A, —
+ ql( WAU) ’

cos T2

TA . TA
q2(A,u) = tan ?q[(A, u) +qrr(A,u) = (—z coth(mu) + tan 2) ar(Au)+
A —

R UCRON (4.153)

cos 12

Then, the solutions of (4.149) and (4.150) with the pure asumptotics can be expressed as
follows

Q1% (u) = qra(A —n,u) (4.154)
Q% (u) = qo1 (A +n,u) .

Let us now turn back to the gluing conditions for the integer conformal spin (4.107)
and write down two of them containing only the Q-functions from (4.154)) in the LO in
the scaling parameter w

Q? = M""Q, (4.155)
Q4 _ M1(0)34Q3 .

To find M1(0)12 and M{O)M we can use the continuity of the functions Q2 and Q* on the

cut Q%(0) = Q%(0) and Q*(0) = Q*(0). The result is

w(A+n)
(0)12 B (0)34 . COS — 5 (A — ’I?,) -1
M = M = R AT T (4.156)

In terms of the Q-functions with the pure asymptotics, we derive the following gluing
conditions in the LO

w(A+n) 9
Sy _ s (A —m)? 10
Q (u) = cos %—n) (A + n)z — 1Q173(U) . (4.157)
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LO BFKL eigenvalue

Here we will obtain the LO BFKL eigenvalue in a way similar to [82]. To begin with,
let us write down the Baxter equation for Q%% in the NLO

Q24++ | 2d— 4 (_2 " (A + ”)22 - 1) Q24 —
4u

. . 2 2
_ ? Q(0)2,4++ + LQ(O)27477 + w = A(A + n) — 1) Q(O)Z4 . (4158)

2(u + 1) 2(u — 1) 2ut
From one side from the Baxter equation (4.158) it follows that
QWiu) i 0 ’
—t = — =2,4. 4.1

On the other side, we can apply the following trick to find the singular part of Q7 in the
NLO

Qj:Q]—;-QJ—FQ%m' (4.160)

For Q? we obtain

Q- Q° _ 1 Q2(y) — cos W(AQM) (A-n)?-1
2v u? — 4Aw N 2u “ cos m(A—n) (A + TL)2 -1

2
Combining (4.161f) and the previously obtained results (4.154)), we get
QM2 () = <_iQ(0)2(0)(\IJ(A +n)+ YA —-n))A

Qﬁ”(u)) +O(w). (4.161)

+ O(u0)> w4 O(w?) , (4.162)

u
where 1 A 1 A
V(A) = (2 - 2) Ty (2 4 2) —ay(1) . (4.163)
Thus, comparing two independent results and , we have the relation
—2(¥(A+n)+¥(A—-n)A=1. (4.164)

After some calculations, we obtain for the integer n
1
Y (P(A+n)+P(A—-—n))+0(w) =
1 —A 1 A
=y (”;) — (”‘;) +20(1) + O(w) . (4.165)

Rewriting the result in terms of the usual expansion parameters, we obtain the well-known
LO BFKL kernel eigenvalue for nonzero integer conformal spin n |4

S = —1—dg (¢ <1+”2_A> +o (””;A> - 2¢(1)> +O(Y . (4.166)

Having finished with reproducing the LO BFKL kernel eigenvalue with non-zero conformal
spin from the QSC, we can now turn to the iterative procedure to calculate the intercept
function.
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4.3.2 Description of the iterative procedure

The iterative procedure increasing the number of orders is essentially the same as
described in |31], but modified to account for non left-right symmetric case. The procedure
is based on applying a version of variation of parameters method applied to the equation

Q. — 9

ali

~P,P’Q,., (4.167)

ali

which is a simple consequence of (4.1)) and (4.5)). Indeed, suppose the function Q ; solves
the equation (4.167)) up to a dlscrepancy alSa|Z

Q) — ol + P,PY Q) = dS,; (4.168)

ali bli

The exact solution can be represented as the zero-order solution plus a correction. We
expand the correction in the basis over the components of the zero-order solution

Qi = O + 57 alf (4.169)

ali

If the discrepancy is of the order of some small parameter € to the power m, i.e. dS,; =
O(e™), then we can obtain the equation for the coefficients b¥ with the doubled precision

DfF — b = (dSa); + bdS,);) QT = dS,; QO E - O(em) . (4.170)

The discrepancy thus becomes two orders smaller with each iteration step.

For the problem in question we restrict ourselves to the situation when A = 0, n is an
integer number and we perform the expansion in the parameter € = g2. To start solving
the finite difference equation , we have to find the zero-order in g solution QS‘?
The way to find these functions is to consider the 4-th order Baxter equation with
the P-functions in the coefficients of it in the LO given by (4.118)), (4.119)), (4.125) and
@D with A = 0. For example, the solution of this equation with the pure asymptotics
@ in the LO for n =7 is

0 3 ].1 0 ’U,2
(1):175(7’u”2+5“"2+“+2“_30“ 10) Q= Q)Y =u'- .
(0) 9 8iu? 9% [, u? 4
_ Al R 171
4 1715 (( f+ 49 )"2+ R G A (4.171)
N + u? 115 174 N 33 N 9
I SICCAN S O LU B CO
2 204" 98 T 190u " 190u2 |

where ns(u) are examples of the so-called n-functions, whose definition is given below.
As we checked by solving the 4th order Baxter equation for different values of
the conformal spin n, for odd values of n, as for the case n = 0 and odd A described
in [31], the Q-functions in the LO in g at A = 0 can be expressed as linear combinations
of the n-functions with the coefficients being Laurent polynomialsﬂ in u plus a Laurent
polynomial in u without n-function multiplying it as in . The n-functions were

9Laurent polynomial is a polynomial with both positive and negative powers of the variable plus a
constant term.
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introduced in [89] and then used in [20,31,[87] with their generalized version in [84] and
for ABJM theory in [90] with an application in [91] as

1

My eesi (W) = . . : (4.172)
S150e,Sk m>n2;>nk20 (u + Zn1)51 . (u + an)sk
where s; > 1,9 = 1,...,k. For non-zero even n and A = 0 the asymptotics of the

Q-functions are half-integer, therefore in this case the Q-functions cannot be described
as linear combinations of the n-functions with the Laurent polynomial coefficients plus a
Laurent polynomial, as the latter have only integer asymptotics. Unfortunately, we were
not able to determine the class of functions to which QEO) belong for non-zero even n,
therefore from this moment we restrict ourselves to the odd values of n. Then, applying
the equation

Q) — ol =pQ" (4.173)
where P&O) are given by with A = 0, we can find the functions Q,; in the leading
order in the coupling constant.

To describe the solution to we have to explain some properties of n-functions.
This class of functions is particulary convenient because it is closed under all relevant for us
operations. First, a product of two n-functions can be expressed as a linear combination of
n-functions using the so-called “stuffle" relations [92]. Second, the solution of the equation
of the form

flu+i) = f(u) =u"ns,.s (4.174)

can be expressed as a linear combination of n-functions with the coefficients being Lau-
rent polynomials in w. These two properties make n-functions very useful when solving
the QSC perturbatively at weak coupling [20}31,/89]. The described properties of the

n-functions lead us to the conclusion that at least Q((Iog are also expressed as linear com-
binations of the n-functions with the coefficients being Laurent polynomials in u plus a
Laurent polynomial in u. Then, recalling that the P-functions in the NLO in the coupling
constant are Laurent polynomials in u as well (see, for example, the formulas and
({4.141)), we see that the discrepancy dS,; and the product in the RHS of (4.170) are
also of the form of a linear combination of the n-functions with the Laurent polynomial
coefficients plus a Laurent polynomial.

We call the operation inverting the linear operator in the LHS of “periodiza-
tion" (for a more precise definition see . It is easy to see that the “periodization”
operation solves the equation if the zero-order approximation entering the RHS is
expressed as a linear combination of n-functions with the coefficients being Laurent poly-
nomials in u plus a Laurent polynomial in u. We were able to find such representation for
odd values of n, but not for even ones. After the zero-order solution is found, we iterate
it as described above, applying the operation of periodization to the RHS of in
order to find the coefficients bf . Because of the two properties of n-functions mentioned
above, at each iteration the solution is again obtained in the form of a linear combination
of n-functions with Laurent polynomial coefficients plus a Laurent polynomial.

After finding the corrected Q,; (4.169) at the given iteration step we still have some
unfixed coefficients in it including the quantity of our interest S(0,7n). To find them we
calculate the Q-functions from and and apply the gluing conditions for the case
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of integer conformal spin n, i.e. with satisfied. As it was explained in the
Section in these gluing conditions the Q-functions has to possess the pure asymptotics
(4.68)). Therefore we find the combinations of the Q-functions with the pure asymptotics.
It appears to be sufficient to use only 2 of 4 gluing conditions, namely

Q* =M*Q, (4.175)
Q' = Mi"Qs
taking the Q-functions on the cut on the real axis. This procedure allows to fix the
remaining unknown coefficients including the function S(0,n). The described method
allowed us to find the values of the intercept functions for odd conformal spins in the
range from n = 1 to n = 91 up to NNNLO order in the coupling constant. These data

will be used in the next Subsection, where we put forward the ansatz for the structure of
the intercept function for arbitrary value of conformal spin.

4.3.3 Multiloop expansion of the intercept function for arbitrary con-
formal spin

Using the procedure described in the previous Subsection [4.3.2] we have calculated the
expansion of the BFKL eigenvalue intercept for odd n up to n = 91 in the weak coupling
limit up to the order g8 (NNNLO). These data are valuable by themselves, as they can
serve as a test for future higher-order or non-perturbative calculations. What is more
important, however, is that it allowed us to find NNLO and partially NNNLO BFKL
eigenvalue intercept as a function of the conformal spin n.

We start by noticing that LO and NLO BFKL intercept can be represented as a linear
combination of nested harmonic sums of uniform transcendentality. Indeed, the LO and
NLO BFKL Pomeron eigenvalues themselves can be expressed (see, for example, [2] and
Appendix where this calculation is explained in details) through the nested harmonic
sums described, for example, in [4§]

* sign(a)?
Suranan (@) = 3 SO ¢ ) Sl =1, (4.176)

where x is a positive integer. The indices a; are non-zero integer numbers and the tran-

n
scendentality of the given nested harmonic sum is defined as the sum )" |a;|. Note that
i=1
if one of the indices a; is negative, the formula (4.176)) holds only for even integer z. In
the literature [93-97] there was described the analytic continuation of the harmonic sums
in question from the positive integer even x. To work with such a continuation we utilize
the Mathematica package Supppackage applied in [31]. One can take A = 0 in these

eigenvalues, which after some simple algebra gives

jro(n) =851 (n ; 1> ; (4.177)

, n—1 n—1 n—1 272 n—1
]NLO(”)—4SS< 5 )+4S_3< 5 >—8S_271< 5 >+351< 5 )

Here and below the transcendentality is computed as follows: the transcendentality of
a product is assumed to be equal to the sum of transcendentalities of the factors and
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transcendentality of a rational number is 0. Transcendentality of log2 is 1 and tran-
scendentality of (; is k. Since (j, for even k is proportional to 72, it is easy to see that
transcendentality of 7 is 1.

To conduct the calculations with harmonic sums one can use the HarmonicSums pack-
age for Mathematica [97-103] or the Supppackage utilized by the authors of [31]. It
should be noted, that in the present work we utilize the same conventions for the analytic
continuation of harmonic sums as in the latter work [31]. As we see, the argument of all
the harmonic sums in (4.177)) is (n — 1)/2. This leads one to an idea of trying to find
NNLO and NNNLO intercepts as analogous linear combinations of harmonic sums with
transcendental coefficients of uniform transcendentality. The coefficients of the linear
combination can be constrained using the data generated by the iterative procedure. But
the number of harmonic sums of certain transcendentality grows fast as transcendentality
increases. Fortunately, one can drastically reduce the number of harmonic sums in the
ansatz by conjecturing a certain property of the result we call reciprocity.

The property in question [104-107] is parallel to the Gribov-Lipatov reciprocity [108),
109] and was observed in the weak coupling expansion of the scaling dimensions of the
twist operators. Let us remind the statement of the reciprocity: if one defines an auxiliary
function P [104-106] such that the anomalous dimension «y of the operator with the spin
M satisfies in all orders in the coupling constant

V(M)

(M) =P (M + 2) (4.178)

then the inverse Mellin transform of P has the property
1
(MPY(&) = —a{ M 1P} (x> . (4.179)

The asymptotic expansion of the function P(M) for large M then acquires a nice property:
it consists only of the powers and possibly logarithms of M (M + 1) thus possessing the
symmetry M — —1 — M.

Thus the function P(M) is much more convenient to work with than (M) itself:
the function (M) can be expressed through the nested harmonic sums, while P, on the
other hand, can be expressed through a much smaller class of functions which satisfy the
property . Such functions were identified and used in [105[110H112] as reciprocity-
respecting harmonic sums. However, in our calculations we use another basis of the
functions satisfying , which was applied in the works [59,/113-118]. These functions
are called the binomial harmonic sums and for integer M they are defined as (see [103])

Siy. i (M) = (—1)M§:(—1)j ( M ) < Mj )Sil,...,ik(j) : (4.180)

= j J

Note that we consider only the positive indices i;, [ = 1,...,k in the definition (4.180)).
Those are exactly the sums whose asymptotic expansion is even at infinity after the
argument is shifted by 1/2.

All this is directly applicable to our case and we are able to formulate an ansatz for
the NNLO intercept function. From the LO and NLO expressions we see that

their asymptotic expansions at large n are even in n. Since we are using the harmonic



4.3. WEAK COUPLING EXPANSION 95

sums of the argument M = (n — 1)/2, we need to keep only the harmonic sums invariant
under the transformation M — —1 — M or n — —n in our notations. Those are exactly
the binomial sums (4.180). The expressions for LO and NLO intercepts can be
easily expressed through them

jro =4Sy , (4.181)
2

. 4
JnLo = 8(S21 + S3) + 5

where the arguments of the sums are again (n — 1)/2.

In order to find the NNLO intercept we make an ansatz in a form of a linear combi-
nation of binomial harmonic sums with transcendental coefficients. The maximal tran-
scendentality principle, formulated by L.N. Lipatov and A.V. Kotikov [1,[2], holds for
the intercept as well: every term in the sum should be of the total transcenedentality
5. The terms of the sum can of course be multiplied by arbitrary rational coefficients
which do not affect the transcendentality. Having constructed the ansatz in this way, we
can now constrain its coefficients by the iterative data: we evaluate the ansatz (a linear
combination of binomial nested harmonic sums) at several integer values of n and match
the result to the data obtained from the numerical procedure for the corresponding n.
Equating the coefficients in front of each unique product of transcendental constants in
these two expressions, we get a linear system for the rational coefficients of the ansatz.
Solving it we obtain a surprisingly simple expression

Sl7

1677 32m
S3 —
3 45
The result for the intercept function for arbitrary n can be compared with the
other known quantities. First of them is the NNLO BFKL Pomeron eigenvalue for the
conformal spin n = 0 calculated in [31]. Taking in this eigenvalue A = 0 and comparing
it with for n = 0 we see perfect agreement. Second, for non-zero conformal spins
the formulas for the Pomeron trajectories were found in [58], from which we can extract
the intercept for given n. We also checked that the result of that work coincides with
our result for several first non-negative conformal spins n, thus representing an
independent confirmation of the correctness of our calculation.

The same procedure can be repeated in the NNNLO. The values of the NNNLO
intercept for several first odd values of the conformal spin n are given in the Appendix
[A77l Again, as for NNLO, an ansatz in a form of a linear combination of binomial
harmonic sums with transcendental coefficients of uniform transcendentality 7 can be
constructed and we attempted to fit it to the iterative data. However, we found that the
basis of binomial harmonic sums is insufficient to fit the data. This signals that reciprocity
understood as parity under n to —n seems to be broken down in this case. The reasons
for this are unclear and will be the subject of further work. A possible way to proceed is
to try to use an ansatz consisting of linear combinations of nested harmonic sums
with transcendental coefficients of uniform transcendentality 7. But this basis is much
larger than the one with binomial harmonic sums and we do not have enough data to fix
all the coefficients in it. However, we managed to fit the certain part of the NNNLO data.

For each odd n we took for the calculation (see Appendix for several first conformal
spins n), the value of the NNNLO intercept is a linear combination of the transcendental

JNNLO = 32(S1,4 —S32 — S122 — Sp21 — 2S23) — Si . (4.182)
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constants consisting of w, (3, (5 and (7 with rational coefficients and a rational number
(see the file intercept_values_Nodd.mx with the data for the odd conformal spins from
n =1 ton =91 in the arXiv submission of [62]). Let us restrict ourselves to the values
of the conformal spin in our data equal to n = 4k + 1 with £ = 0,1,...,22. The reason
for this is that for such n = 4k + 1 the argument of each harmonic sum is (n —1)/2 = 2k,
i.e. an even integer number, and at these point harmomic sums take rational values. In
these points the values of the intercept functions are given by

. 2 A 6 2
innvro(dk+1) = TR ynro + T iknNio + T iNNNLo T 7r2<3317\r11$/3}VLO+
+ C3j]<\}Q’NNLo + §5j]<\?NNLO +j§\?}c\?NLO 9 (4'183)

where all coefficients in front of the transcendental constants on the RHS of are
rational functions of k. Each coefficient in the RHS of is conjectured to be
a linear combination with rational coefficients of the binomial harmonic sums with the
transcendentality, supplementing the transcendentality of the corresponding coefficient to
7. We were able to fit all the contributions except for jf\?NN 1o and j% /5, which, as
other harmonic sums, take rational values at the points n = 4k + 1 for integer £ > 0.
However, we found that the term jf\?N ~rLo cannot be fitted with the ansatz consisting of
the binomial harmonic sums . This motivated us to try to fit this contribution with
the nested harmonic sums . This appeared to be really the case and we managed
to fit this part with the ordinary harmonic sums, which means that the reciprocity, i.e.
the symmetry n — —n in the asymptotic expansion, is violated. For the last, rational
contribution j3% .o, we also found that it is not described by the binomial harmonic
sums. Unfortunately, fitting this contribution with the ordinary harmonic sums did not
lead us to completely fixing this contribution due to the lack of data. Therefore combining
the obtained results we write down the non-rational part of the answer for the points
n = 4k + 1, which is the sum of the terms in the RHS of except for j3% 1o

non- 3272
jrenrat o (4k 4+ 1) = 3 (3S1,4 —3S23 —S3.2 +S1,1,3 — 2S1,22 + S221 —S3,1,1) +
1674 5676 3272

+ 1; (4S5 — Sg,1) + 13775 S+ 7; C?’Sm +224(5S1,1 —128(3 (S—3,1 +25_22 — 551,—3—

— 15513 — 485 20 — 12855 — 15531 —4S5_211 + 251,21 +8S1,1,—2 + 125112+
+125121 + 128211+ S—4 + 9S,) . (4.184)

One can find the full values of the NNNLO intercept function including the rational terms
for the conformal spins n = 4k 4+ 1 from 1 to 89 in the arXiv submission of this paper in
the file named intercept_values_Nodd.mx. As the part of the harmonic sum consisting
of the nested harmonic sums of the transcendentality 7, which constitutes the rational
part at the points n = 4k + 1, was not fitted we are unable to write an expression for the
NNNLO intercept working for all conformal spins leaving this task for future studies.
Let us briefly summarize the results of the present Section. In the first Subsection we
reproduce the LO BFKL kernel eigenvalue by the application of the QSC. In the second
Subsection applying the QSC iterative algorithm we found the values of the intercept up to
NNNLO order in the coupling constant in the certain range of odd values of the conformal
spin. In the third Subsection we saw that the LO and NLO intercept functions satisfy the
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reciprocity symmetry, which allowed us to rewrite them in terms of the binomial harmonic
sums and using the ansatz in terms of these sums in the NNLO order, fix the answer for
the NNLO intercept for arbitrary conformal spin. In the NNNLO order the reciprocity
breaks down, nevertheless, for the conformal spins n = 4k + 1 we managed to describe
the non-rational part of the NNNLO intercept function in terms of binomial and ordinary
nested harmonic sums.

4.4 Near-BPS all loop expansion

In this Section we are going to analyze the QSC equations near the BPS point A = 0,
S1 = —1 and Sy = 1. It appears that it is possible to calculate two non-perturbative
quatities in this point by the methods of QSC. Another BPS-point S5 = 0, S; = 0 was
analyzed in detail in [21,22,{119]. In this Section we follow closely the Near-BPS expansion
method by [22].

4.4.1 Slope of the intercept near the BPS point

A particularly important role in BFKL computations is played by the intercept func-
tion j(n) = S(0,n) + 1, where S = S; and n = S>. As we mentioned above, the point
A =0, n =1 is BPS, by which we mean that it is fixed for any ‘t Hooft coupling. The
group-theoretical argument explaining this phenomenon should be based on the shorten-
ing condition. From the QSC perspective the BPS points are the points where A*A, =0
simultaneously for all @ = 1,...,4. In this Subsection we study small deviations from
this BPS point and calculate the slope of j(n) with respect to n in the point n =1 in all
orders in the coupling constant g.

LO solution

The fact that at the BPS point A*A, = 0 usually leads to more powerful condition
P, = P?® = 0, which is known to lead to considerable simplifications [22] (see also [25]
for a similar simplification in the TBA equations). Based on that we also expect that in
our situation the Q-system simplifies a lot near the BPS point. Let us show that, indeed,
Q,; takes a very simple form for Sp =1, A = 0.

Recall that the functions Q,; satisfy the equation

Qi — Qi = PaQi . (4.185)
Let us look at how the right and left hand sides of the equation behave as S
approaches 1. Scaling of P, and Q; can be deduced from their leading coefficients A, and
B;. For the convenience of the calculations we perform the rescaling of the P-functions.
The H-symmetry and its particular case rescaling symmetry explained in [17]
allow us to set some of the coefficients from to some fixed values. To describe
them we introduce a scaling parameter v = /52 — 1, which is real for Sy > 1. For the
coefficients of the P-functions we obtain

A, = (V, v, ——f, ) , c31=0, A"= (, —, -, l/) . At=0.  (4.186)
v
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For the Q-functions in their turn

BZ’ - (_]317’/7_]337_1/> y Bz = (_V7]327_V7_:B4> . (4187)
14 14 14 14

As follows from the AA-, BB-relations (4.17)), (4.186]) and (4.187)) in the small v limit

A, = (1/,1/, 1%01'1/, 1 _giu> +0 (1/3) , Bi= (—1 +9i1/,1/, L _Hz'u, —1/) + 0 (1/3> .

2 2 2
| (4.188)
Notice that then from (4.17)), (4.186) and (4.187)) we derive that A% and B* all scale as v
and are given by the formulas

Ae — (1 — 02.]/’ ﬂﬁ/’ —v, V) + O (1/3) , Bi — <I/, 7&02‘1/, —v, 71 — 0“/) + O (1/3) ,
2 2 2 2
(4.189)
where

_ s
085,

_ 9
= On

A
Sp=1

0 (4.190)

n=1

is the slope-to-intercept function, which is the quantity of interest in the present Sub-
section. This means that the right-hand side in is small and the functions Q;
are i-periodic in the LO. Since they are also analytic in the upper half plane, they are
analytic everywhere. Recall that the asymptotics of Q,; are given by

Qulj ~ _i—BaBi -t : (4.191)
_Ma + Mj
After plugging the global charges into the expressions for M, and M; taken at the
BPS point A =0, S = —1 and Sz = 0 we see that all components of Q,; are either
zero or scale like constants at infinity in the LO. Constant at infinity entire function is
constant everywhere, so in the LO

Quji = +O®). (4.192)

o O = O
SO = O O
o O O
_ o O O

When A = 0 and Se = n is arbitrary, the left-right symmetry is restored, which
simplifies the solution a lot. Despite the normalizations and differ from
and by a rescaling symmetry one can see that the left-right symmetry is
restored (which is also confirmed by the weak coupling data for arbitrary A and Sy from

Appendix [4.3.1)). At this point the symmetry (4.54) takes the form
P? = Xabev QZ = UZ]Q]» (4193)

where x® and 7% are given by (#.55) and x® is the same matrix as for the left-right
symmetric states as in [16}/17]. As we consider the case when both spins S; and Ss are
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not integer, let us recall the gluing matrix for this case (4.96]) taking into account the
hermiticity of the gluing matrix
Ql —_ ]\4—111(21 _|_]\4—112(:22 + (M113 +M213e27ru +M§36—27ru) Q3 + (M114 + M214627ru + M§4€_2ﬂ—u) Q4 ,
Q° = M{*Qu, (4.194)
QB _ (MIIB + M21362Tru +M313672Tru) Ql +M?3Q3 +M?4Q4 :
Q4 _ (M114 + M214627ru + M§4e—27ru) Ql + M134Q3 +M{14Q4
and keeping in mind that M{!, M3 and M{* are real.
As now we have the matrix 7 from (4.55)), which relates the Q-functions with lower

and upper indices, it is possible to obtain an additional constraint on the gluing matrix.
Plugging this relation into the first gluing condition (4.29) we derive

Qi = i MM, Q7 (4.195)

which after comparison with the second gluing condition from (4.29)) leads us to (M ~*);; =
ni M klmj, and after multiplication of the both sides by (M?)"™ we obtain an additional
constraint for the gluing matrix

Nit M i (M) = 67 (4.196)
Substitution of (4.82)) into (4.196) leads us to the following equations
Nik My 5mm (Mg 3)™ =0, (4.197)
Mite M N (M3 3)™ + 133, ME S (M)™ = 0, (4.198)
Mt M Dy (ME)™ - 135 M 1y (ME)™ 4 135 ME 1 (M) = 57 (4.199)

It should be noted that the first equation (4.197) is satisfied for the gluing matrix (4.96))
(the same as in (4.194).

To start solving the constraint (4.196]) order by order in v we use the following expan-
sion of the gluing matrix, which is motivated by the scaling of the Q-functions (4.188))

and (Z.189)

+oo
M () = 3> MKV ()28 (4.200)
k=0
where - g g y
MW () = MMV 4 P e2me g g em2m (4.201)

In the LO in v the constraints (4.83)), if we take into account (4.188)) and S = —1 +
O(n —1) + O((n — 1)?), lead us to

M2(0)31 _ _M2(0)13 7 M2(0)41 _ M2(0)14 ’ (4.202)
M?Eo):n _ _M3(0)13 ’ M?Eo)zu _ M§0)14 ‘

Together with the hermiticity of the gluing matrix (4.202) means that M2(03) 1 are pure
imaginary, while M2(?3) " are real. In addition, from (4.88) in the LO in v we obtain

M§0)13 _ M2(0)13 7 M?EO)14 _ _M2(0)14 ) (4.203)
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Now we have to apply the constraint (4.196]) in the LO in v. Substitution of (4.202)
and (4.203)) into (4.198)) allows us to fix

M1(0)33 _ M1(0)44 —0, M1(0)12 _ M1(0)34 _ M1(0)43 : (4.204)

given that M2(0)13 and M2(0)14 are non-zero. Combination of (4.199), (4.202)), (4.203) and
(4.204)) makes it possible for us to derive the solution

M1(0)12 _ M1(0)34 — 1, M1(0)31 _ _M1(0)13 ’ M1(0)41 — M1(0)14 ) (4.205)

Also there exists a solution with the opposite sign of M1(0)12 and M1(0)34, but as we will
see below, it is not relevant for us. Summarizing (4.202)), (4.203)), (4.204)) and (4.205)), we
are able to write down the solution

Ml(o)n 1 Ml(o)ls M1(0)14

s —1 0 0 0
MO —
_M1(0)13 0 0 1 +
MO0 0
0 010 0010
@0 000 140 0 0 0Of .
+ 2M, 100 0 cosh(27mu) + 2M, 100 0 sinh(27u) (4.206)
0 0 0 O 00 0O

where Ml(o)11 and MI(OQ) ' are real and M1(02) '3 are pure imaginary.

Let us start solving these equations in the LO. We have already found Q,; and thus

Q= —(Q)7". (4.207)

As the scaling of the P- and Q-functions is determined by the scaling (4.188)) and (4.189)
of the leading coefficient at large u, we are left with the following expansions of these
quantities in the small v limit

+o0 +oo
Pa =y Z P((lk)y2k 7 P =y Z P(k)a]/Zk ,
k=0 k=0

+oo “+o0o
Qi =v Z ng)y% ., Q=v Z Q(k)iy% . (4.208)
k=0

k=0

Then, the correspondence between Q- and P-functions (4.5) and (4.6]) in the LO taking
into account (4.192)) looks as follows

ng) — _pO2 _ —P:(,,O) _ Q(O)2 ’ (4.209)
Qéo) — _pO3 _ PéO) =-QO1
Q:(),O) — _pOn _ PiO) _ _Q(0)4 ,
QE}O) — _P(0)4 = —Pgo) = Q(0)3 .
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First of all let us substitute (4.209)) into the gluing conditions (4.194)) written in the L.O
with the gluing matrix (4.206)) and use the conjugacy properties of the P-functions (4.33))

PO = _p® 4 (Mfo)13 +2MO cosh(27ru)> P, (4.210)
PP = (M{O)M + 2080 sinh(27ru)) P + P — MOV PO 4 (Ml‘o’13 +2Mm{" Cosh(27ru)) P,
f’ém _ P(go) ’

PO — _ (Mfo)“ 2O sinh(27ru)) P — P

According to (4.98) we see that in the LO Pgo) is simply a constant. Furthermore the
constant is fixed by the leading coefficient (4.188) in the large u asymptotics

P = % (1496) . (4.211)

To find the solutions of the other equations from (4.210) we have to introduce the
following notations for the expansion of the hyperbolic functions

cosh(2mu) = cosh'y 4+Iy + cosh® , sinh(27u) = sinh! +sinh? , (4.212)
where
+o0o
cosh = > Iy (4mg)2z*® (u) , sinh} = > Ipp_1(4mg)a= () . (4.213)
k=1 k=1

In what follows we will usually omit the superscript with the variable v if the context
does not imply the usage of coshy and sinhy with different arguments and the expression
47g in the argument of the generalized Bessel function for the sake of conciseness.

Substituting P3 from (4.211)) into the first equation of (4.210]), we have

P+ P = (M 4 2M"" Iy + 205" (coshy + cosh-)) % (1+6) . (4.214)

We need to find the solution for Pgo) as power series in x with the leading asymptotic
A1/(gx)?, where Aj is given by (4.188). Expanding the right-hand side as power series in
T it is easy to see that the unique solution is

7

(0)13 (0)13 (0)13
M = —2M. I M. = 4.21
1 2 0> 2 (1 n 9)9212 ( 5)
and b
0) cosh_
pl = 7L (4.216)

Substituting again P3 from (4.211) and Py from (4.216)) into the fourth equation of
(4.210)), we have

PP+ PP = — (MM 4+ Mg (sinhy +sinh_)) i(1+6) , (4.217)

from which and (4.188]) together with the oddity of Py it follows that M1(0)14 = 0 and the
solution for Pz(lo) is

Py iy (95 B 1) — (1+ )iy sinh_ . (4.218)
X
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Now let us substitute (4.211), (4.216)), (4.218)), and (4.215) into the second equation of
(4.210). It gives the following equation

_ 146 1-0 1
PO _p) — —%iMl(O)” L, (x - :B) (coshy 4 cosh_) +

+ 2M2(0)14 (sinh; cosh_ —sinh_ coshy) . (4.219)
As the LHS of (4.219) does not contain the even powers of x for the RHS we have

MO ¢ (4.220)
The equation (4.219)) takes the form
(0)14
~ 1-0 1 1
Pgo)—Pgo) = 14—3912 (gc - m) (cosh + cosh_)+ 92212 (sinhy cosh_ —coshy sinh_) |
(4.221)

which still depends on the unknown coefficient M2(0)14, which we will fix in the next
Section, but going to the next order.

So far, starting from the gluing conditions for non-integer conformal spin n
we managed to solve the constraints on it in the LO getting and then, using the
connection between the Q- and P-functions in the LO formulated the system of equations
for the P-functions in the LO. Then from this system we found all the P-functions
in the LO except for Py for which we derived the equation (4.221)), still containing one
unknown constant. In the next Subsection using this equation we are going to show how
to find the slope-to-intercept function.

Result for the slope-to-intercept function
From now on let us consider the equations (4.1)) for the Q,; functions in the NLO.
We start with Qg3
(H+ D= _ p0)0) _
Q3|3 o Q3|3 =P3'Qy" =

::quﬁm::1;9i(1;91(u_29>_(1+9ﬁﬂgmMsmh_). (4.222)
X

As Qg?% = 0, then Qg}% should not contain logw in its large u asymptotic, which can only

appear from the expansion of non-integer powers Au* ~ A + AXlogu + .... Thus, in
the large u expansion of the RHS of (4.222)) the coefficient in front of 1/u (which would

produce logu in Q:(,)B)) has to be equal to 0, which is guaranteed by

(0)14 1-6g
M = - 4.22
2 1+606L (4.223)

The substitution of (4.223)) into (4.221]) gives

~ (0 0 1-60/1 1
Pg ) —Pg ) = 110 (g[g (x— a:) (coshy + cosh_) —

——r7 (sinhy cosh_ — cosh sinh)) . (4.224)
gi1l2
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We do not need to solve completely (4.224)), because only the first coefficient of the
expansion of Py in the powers of x is sufficient to find the slope-to-intercept function

pO_ _1=0(y, 2 io( DTl | — + (4.225)
2 - 1+0 Ill2k:1 kLk+1 gx e .

Remembering the leading coefficient of the large v asymptotic of Py from (4.188) we
obtain the equation

L0 2 +OO( DI =1 (4.226)
110 Ll 2 kg1 | =1 .

The previous equation (4.226]) fixes 6, which is now equal to

L,

0(g) =1+ oo , (4.227)

2 (=D)FIk I

k=1
and constitutes our result for the slope-to-intercept function.
The weak coupling expansion of the obtained result (4.227) is given by

272 4t 2876 878
0(g) = ——q¢* + —g* — by —¢®+0(g") . 4.228
(9) 39+ 59 135g+405g+<9) (4.228)

Since the slope-to-intercept function by definition is the derivative of the intercept function
with respect to the conformal spin n at n = 1 we can immediately compare the first few
coefficients in the weak coupling expansion with the derivative of and
(4.182)). This will also show that these expressions provide the formulas compatible with
our analytic continuation in n away from the integer values. To find the derivatives of the
binomial harmonic sums with respect to the argument we apply the SuppPackage used
in [31], which expresses the nested harmonic sums in terms of the n-functions
and allows to find the derivatives of these sums. The derivatives of the intercept
function and can be calculated and we find that they are in full agreement

with ({.228)

dj 2n? 5, Ant 0 287 8
= == —gt - @ 4.229
anl AR AT s (g), ( )

confirming our result (4.227)).

In the next Section we compute the strong coupling expansion of our result for the
slope-to-intercept function. As we will see the calculation is less straightforward than at
weak coupling, even thought the result is still quite simple.
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Strong coupling expansion of the slope-to-intercept function

To obtain the strong coupling expansion of the slope-to-intercept function (4.227) first
we calculate the following expansion at strong coupling

Iy (4mg) Iy 41 (4mg) L o L 4 3 2
—1-— (K+k-2)+— (k*+2k% — 4k® — 5k + 6) —
T\ (47 g) I (47g) sz (k= 2) + o5 (k1 +6)
1 6 5 4 3 2
~ g (4K 12K —26k* — 724% 4 67K + 105k —90) +
1 8 7 6 5 4 3 2
g (K H4KT — 10k% — 4417 + 35k* 4 148k° — TLK> — 153k + 90) —

~ 03 (16k10 1 80kY — 2405 — 1440k + 1128k5+

1
+8760k° — 2140k* — 20720k> + 3261k> 4 15345k — 4050) +0 ( A3> . (4.230)

where
A = (4ng)? . (4.231)

If we just sum the series multiplying it by (—1), it appears to be divergent.
However, simple (-regularization gives the right result, as we verified numerically with
high precision. Namely, multiplying this expression by k° and understanding the result
as the limit § — 0, we get the following answer

*f (—=1)* I, (47g) I 41 (4g)
= D(dmg)lx(4mg)
1 3 3 9 9 2331 1
=_ _ — — — | . (4.232
2 " i(drg)  4(dmg)?  32(dmg? | 8(dmg)l ' 512(dmg)s ( 96) (4232)
Then, substituting (4.232)) into the expression for the slope-to-intercept function (4.227)),
we obtain the strong coupling expansion for it

3 3 9 9 711 1
A2 20 8A3/2 4N? 128)\5/2+ A3

(4.233)

This expansion (4.233)) will be useful for us in the Sectionwhen we are able to compare
it with the derivative of our formula for the strong coupling expansion of the intercept
function for arbitrary conformal spin n taken at the point n = 1, which is based on
intensive numerical analysis.

4.4.2 Curvature function near the BPS point

As it was mentioned above in the Subsection we are considering the expansion
in the vicinity of the BPS point A =0, S; = —1 and S3 = 1. In the previous Subsection
we expanded in the powers of Sy — 1, however, to find the curvature we keep Sy = 1
and expand in the powers of A. The scheme of solving the QSC equations in this case is
similar but with one difference. Since the function S(A, 1) is an even function of A we
have to expand to the NLO order in A to get a non-trivial result.

As in the previous Section we will utilize a simplification in the Q,; function to solve
the Q-system explicitly.



4.4. NEAR-BPS ALL LOOP EXPANSION 105

LO solution

Recall that the functions Q,); satisfy the equation
Qf. —Q . =P,Q; . (4.234)

ali ali —

Let us look at how the right and left hand sides of the equation behave as A approaches
0. Behaviour of P, and Q; can be deduced from their leading coefficients A, and B;.
Analogously to the case of the slope-to-intercept function the H-symmetry and its
particular case rescaling symmetry explained in [17] allow us to set some of the
coefficients from (4.98]) to some fixed values. To describe them we introduce a scaling

parameter € = v/A, which is real for A > 0. For the coefficients of the P-functions we
obtain
A; A A, A
A, = (e,e,—3,4> . 31 =0, A*= <1,2,—e, e) , Al=0.  (4.235)
€ € € €
For the Q-functions in their turn
B B , B B
P = (—1,6, - —6) , B'= (—e, =2, —4) . (4.236)
€ € € €

As follows from the AA-, BB-relations (4.17)), (4.235]) and (4.236]) in the small € limit

1 1-— 1-— 1
A, = (e, €, %ie, 5 aie) +0 (63> , B; = (2(12'6,6, —%ie, —6) +0 (63> ,
(4.237)

where
05

A=0
So=1

Note that due to the parity symmetry A — —A we expect a = 0, which will be the

consistency check of our calculation. We only get a non-trivial result in the NLO order.
Then from (4.17)), (4.235) and (4.236)) we derive that A* and B* all scale as € and are
given by the formulas

At = (1 + az’e, —I_Jie, —e,e) + 0O (63) , B'= (—e, —Hiaie, —e€, 1 aie) + 0 (63) .
2 2 2 2
(4.239)
This means that the right-hand side in is small and the functions Q,; are i-periodic
in the LO in e. Since they are also analytic in the upper half plane, they are analytic
everywhere. Recall that the asymptotics of Q,); are given by

AoB; oK
Qalj ~ —iﬁu‘%“‘@ , U= 00 (4.240)
— a _.I_ ]

After plugging the global charges into the expressions (4.51)) for M and M we see that all
components of Q,; are either zero in the LO or scale like constants at infinity. Constant
at infinity entire function is constant everywhere, so again in the LO

0010

Q)i = + O(e) (4.241)

S O =
S = O
S O O
_ o O
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the result is the same as in the case of the slope-to-intercept function.

As in the case of the slope-to-intercept function we can exploit the symmetry between
the P- and Q-functions with lower and upper indices. Since A is different from 0 we
remember the symmetry . Despite the normalizations and differ
from (4.52)) and (4.53) by a rescaling one can see that the symmetry takes the form
(which is also confirmed by the weak coupling data for arbitrary A and Sy from Appendix
13.1)

PQ(A’U) = ngPb(*Aa u) ) QZ(A,U) = nszj(*Aau) ) (4242)

where we set e(—A) = v/—A = iv/A = ie choosing the branch of the square root with the
cut going from 0 to +o0o0 and

0 00 —i 0 ¢ 0 0
0 0 ¢« O i 1 0 0 O
=l o io0o0 | ®=|oo 0 (4.243)
- 0 0 0 0 0 — O
Usage of (4.242)) and the substitution of (4.237)) and (4.239)) leads us to the equality

a=0 (4.244)

as it should be. Substituting « from (4.244) into (4.237) and (4.239) we obtain A’s and
B’s in the LO

A, = <e,e, % Z;) +0 (63) . AT = (126—126 e, e> +0 (63> , (4.245)

(e e 3 i (e e 3
BZ—(Q,E, X e)—i—(?(e), B-(e, 5> 6 2)+O(e).
As we consider the case when the spin Sp is not integer and the spin Ss is integer, we

can use the gluing conditions (4.107)) from the Section which were also mentioned in
the Section [4.1] thus

Q= MPQ+ MEQ (P VP P 4, (2
Q* = M*Qq ,

Q* = (Mll3 + My3e®™ + M§3€_2m) Qi + M{°Qs + M*Qu,

Q' = M{“Qs ,

keeping in mind that Mi! and M3? are real.

As now we have the matrix 7. from , which relates the Q-functions with lower
and upper indices with A replaced by —A, it is possible to obtain an additional constraint
on the gluing matrix. Plugging the relation into the first gluing condition
we derive

Qi(—A,u) = ()i M™ (A, 1) (7)1, Q) (—A, ) (4.247)
which after comparison with the second gluing condition from leads us to
(M7Y)(=Au) = (nc)ikMkl(A,u)(nc)lj and after multiplication of the both sides by
(M%)™i(—A,u) we obtain an additional constraint for the gluing matrix

(M) ik ML (A, ) (7)1 (ME)™ (= A u) = 67 (4.248)
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Substitution of (4.82)) into (4.248) leads us to the following equations

(06)ik M35 (A) (e)im (M3 3)™ (=A) = 0, (4.249)
()it ME(A) ()i (M3 3)™ (= A) + ()i M5 (A) (7le)im (M])™ (=A) =0, (4.250)
(me) it M (D) (Fe)im (M)™ (= A) + (ne)ix My (A)(T_I Jim (M3)™ (= A)+ (4.251)
+ ()it MEL (D) (7 )um (ME)™ (= A) = 67 .

It should be noted that the first equation is satisfied for the gluing matrix (4.246)
(the same as in (4.194)).

To start solving the constraint order by order in € analogously to the case of
the slope-to-intercept function we use the following expansion of the gluing matrix, which
is motivated by the scaling of the Q-functions (4.237) and (4.239)

MY (u Z M)y, (4.252)

where - . g y
MW () = M7 4 P2y pp 0 2 (4.253)

In the LO in € the constraints (4.83)), if we take into account (4.237)) and S(A,1) =
—147v(g)A? + O(A*), where ¥(g) is the curvature function, lead us to

M2(0)31 _ 7M2(0)13 : (4.254)
M§0)31 _ _M§0)13 ’

which together with the hermiticity of the gluing matrix means that MQ(O)13 are
pure imaginary. In addition, from (4.88)) in the LO in € we obtaln
MO = {018 (4.255)

Now we have to apply the constraint (4.248)) in the LO in e. Substitution of (4.254)

and (4.255)) into ( - ) allows us to fix

MO = 03 (4.256)

given that M2(0)13 is non-zero. Combination of (4.199)), (4.254)), (4.255) and (4.256|) allows
us to fix the following elements of the gluing matrix on the LO

‘Ml(o)u’ —1, Ml(o)ll _ M1(0)33 ~0, M1(0)31 _ _M1(0)13 ' (4.257)
In the LO after some calculations we obtain under the assumptions that M2(0)13 is not
zero the solution which is
0 MO O o083 cosh(2u) 0
A MmO 0 0 0
_M1(0)13 2M2(0)13 cosh(2mu) 0 0 _M1(0)12 ’
0 0 — 012 0

(4.258)
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(0)13 . .
where M5~ are pure imaginary.
Let us start solving these equations in the LO. We have already found Q,); and thus

Qi = — (Qu) " (4.259)

As the scaling of the P- and Q-functions is determined by the scaling (4.237)) and (4.239)
of the leading coefficient at large u, we are left with the following expansions of these
quantities in the small € limit

+oo +oo +oo ) +00 )
Pa —¢ Z ng)€2k , P? = ¢ Z P(k)a62k , Qz —¢ Z Ql(k‘)62k’ ’ QZ —¢ Z Q(k)’Ler )
k=0 k=0 k=0 k=0
(4.260)
Then, the correspondence between Q- and P-functions (4.5) and (4.6]) in the LO taking
into account (4.241)) looks as follows
Q= P2 =P = —Q2, (4.261)
0 0
Qg ) _ _P(0)3 — Pg ) _ _Q(O)l 7
0 0
Qé ) — _P(O)l _ _P4(1 — Q(0)4 ’
0 0
Qi ) — _pO)4 _ —Pg ) _ Q(0)3 .
First of all we substitute (4.261)) to the gluing conditions (4.246)) written in the LO with the

gluing matrix (4.258) and take into account the conjugacy properties of the P-functions
(14.33))

P = PP — (M7 4 257" cosh(27u) ) PYY (4.262)

vl

1

P = —m2P — (MO 4 20" cosh(2ru) ) PP,
Pgo) _ M1(0)12P§0) :

PO — i012pO)

Let us consider the third equation from (4.262). According to (4.98]) the LHS contains
only the non-negative powers of Zhukovsky variable z(u), whereas the RHS has only the

non-positive powers of x(u). Therefore Pgo) is given only by the constant term from its
expansion in the powers of z(u) and taking into account the scaling of the P-functions

(4.245]) we see that in the LO

MO = (4.263)
and '
0 @
P = 5 (4.264)
Substituting P3 from (4.264)) and M1(0)12 from (4.263)) into the first equation of (4.262)),
we have

. (4.265)

N | .

f’go) + P§°) =— <M1(0)13 + 2M2(0)13.TO + 2M2(0)13 (coshy + cosh,))
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After inserting the z-expansion of Pgo) from (|4.98]), we see that the LHS of (4.265]) contains
all even powers of x(u) except for 2, thus the same term in the z-expansion of the RHS

of (4.265)) has to vanish
MO _ 9013
o1 _ oy, (4.266)
and then we obtain
IN’SO) + Pgo) = —MQ(O)13 (coshy +cosh_)i . (4.267)

Of course, the solution of (4.265)) is defined modulo the solution of the homogeneous
equation ((4.265)) with zero RHS), but as the solution to this equation has to contain the

positive powers of z(u) it cannot contribute to Pgo)' Therefore recalling the expansion
(4.98) it follows that the solution for Pgo) is

P = —im{9% cosh_ . (4.268)

As we know the leading coeflicient of Pgo) then, remembering (4.245)), we obtain

0)13 {
MO = L (4.269)
and write down the solution .
0 cosh_
pl = 7L (4.270)

Considering the fourth equation from (4.262)) with the substituted (4.263))
P =p{ (4.271)

we see that in accordance with the expansion (4.98)) the RHS has the odd powers of z(u)

less or equal to 1 and the LHS has the odd powers of x(u) greater or equal to —1. This
means that PELO) contains only the terms with z(u) and 1/z(u) and the only combination

satisfying (4.271) is

P = %g (a: + i) . (4.272)

Now let us substitute (4.264]), (4.270) and (4.272]) into the second equation of (4.262]).

It gives the following expression

- ) 1
Pgo) i Péo) _ (M1(0)13 n 2]\42(0)131-0 " 2]\42(0)13 (cosh +cosh_)) %g (x + x) . (4.273)

Remembering (4.266]) and (4.269) we obtain

. 1 1
Pgo) + Pgo) = — <;p + ) (coshy +cosh_) . (4.274)
gl2 x

Analogously to the equation (4.265)) for Py, the solution to (4.274) for Pgo) may potentially
include the solution of the homogeneous equation. However, this solution of (4.274)) with
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the zero RHS inevitably has positive powers of x(u) in it, thus it cannot contribute to
Pgo). Then, from (4.274]) we can extract the LO solution for Pgo)

(0) 1 1>
P,y =— — h_ . 4.2
5 ol (x + ) cos (4.275)

To summarize this part, we started from the gluing conditions for integer conformal
spin n and we managed to solve the constraints on it in the LO getting
and then, using the connection between the Q- and P-functions in the LO formulated
the system of equations for the P-functions in the LO. Then from this system we
found all the P-functions. In what follows using these functions we are going to show
how to find the NLO solution.

NLO solution

Since the function S(A,n) is even, we have to consider the next-to-leading order. Our
strategy is to find the P-functions in the NLO order and extract the quantity of interest
— the curvature function — from the leading coefficients of these functions. Indeed, from
(4.235) and (4.17) we derive

A, = (e,e, %e +i (; + 2) e, %e —i (g _ 172> 63) +0(&), (4.276)
At = (; + <; - 172> 63,—;6+i<;+:> €, e,e) —|—(9(e3) ,
where )
= (?9 AS; . (4.277)
Sp=1

is the curvature function.
We begin by finding the correction to Q((l?g. The equation (4.234)), taking into account
(4.5) and the scaling (4.260)) and expanding it in the NLO, takes the form

D+ 1)— , 0 0
Qi) — U} = —ipO o)\ bP( . (4.278)
As the functions P((lo) were completely fixed in the previous calculations we are able to
determine all QS'Z) up to a constant. In solving (4.278|) we are going to act in a way similar
to the one presented in [22]. We have to find an UHPA solution to the equation of the
form

F0 () = f(u) = h(u) (4.279)

where the RHS has one cut on the real axis and it can be represented as a series in the
Zhukovsky variable z(u), whose powers are bounded from above. To build the solution
of such an equation let us rewrite the RHS in the following form

h(u) = hpot(u) + h—(u) , (4.280)
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where hpo(u) is a polynomial in « and h_(u) is a series in the Zhukovsky variable z(u)
starting from the power not greater than z~!(u). Since h(u) is a series in x(u) bounded
from above, we can always rewrite x%(u) with a > 0 as

C=|z4+—)—— 4.281
o= (2" + ) = 2o (4.281)

where 2% 4+ 1/2% is a polynomial in u. Thus, using we are able to replace any
positive power of x(u) in h(u) with the difference of polynomial in v and the negative
power of z(u) which justifies the form (4.280).

The UHPA solution of is given by

fu) =% (hpot) (u) + Ty - h) (w =i) + ¢, (4.282)
where ¥ (hpo1) (u) is the solution of
I:J);l+ (u) - fpol(u) = hpol(u) (4.283)
subject to the condition _
5 (hpol) (;) =0 (4.284)
and (I'y - h_) (u) is the solution of
o () = fu(u) = h-(u) (4.285)

and c is a constant. The operator I'yy is determined by
Ty -h)(u) = ¢ —ih D (—i(u—v)+1)h(v) , (4.286)

where the integration contour around the cut goes clockwise. Also we determine the
operator I'p which we will use to obtain the LHPA solution

2g
(Tp - h)(u) = %m@) (i(u —v) + 1)h(v) . (4.287)
—2g
It is not hard to check that
Ty - h)(u+i)— Ty -h)(u) =h_(u-+i), (4.288)

(Cp-h-)(u+4) = (Tp - ho)(w) = h-(u)
Rewriting the RHS of (4.278]) in the form (4.280) we can find the solution of it

Q(1)+ _ (Q(1)+)pol 4 (Q(1)+)U + Cafi (4.289)

ali ali ali

where (Q(1)+)p01 and (Q 1i)+)U are given in Appendix [A.§| by the formulas (A.51)) and

ali al

(A.52) respectively. Using the equation (4.102)), it is possible to fix the coefficients c,); in
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terms of the curvature function ~y and the NLO coefficient cﬁ of the z-series of
the function P4 (see the formula (A.53) in the Appendix [A.8)).

In what follows we will also need the complex conjugated function leh)
have the equation

, for which we

Qi) =gl =—iPMol)xkPY . (4.290)

Conjugating the solution (4.289)) and noting that this operation transforms the UHPA
part of it with the kernel I';; into the LHPA one with the kernel I'p we get the solution

of the previous equation (4.290)
A= _ (p)- ~(1)—
Qali (Q )pol + (Qa\i > + Ca|z ) (4291)

ali

 )pol and (Q(l?f)D are given by the formulas (A.55)) and (A.56)

where the functions (Q(l) aoli

ali

respectively (see Appendix [A.8)).
To proceed we are to solve the equations for the gluing matrix in the NLO in A. The

constraints (4.83) in the NLO in € lead us to the following equalities

M2(1)31 _ _M2(1)13 ’ Mél)?’l _ —M§1)13 _ 2i7rM3(0)13 , (4.292)

whereas the constraint (4.88)) gives
M = I a0 (4.293)

where the elements of the LO gluing matrix M(©%(v) are known to us. After this it
remains to solve the constraints (4.250) and (4.251)) in the NLO order. The solution can
be compactly described by the formula

(12 _ M(1)34)
NI ( 1 1
M7 = 57T, : (4.294)

while the other matrix elements of MQ(OS)” are determined by the relations (4.292) and

4.293)) holds and M(l)n, M(l)u, MWD33 together with M V3 are real.
1 1 1 g 1
To proceed let us slightly rewrite the gluing conditions expressing the Q-functions in

terms of the P-functions as
P, = QM7 Q, P’. (4.295)

The same equation (4.295)) written in the NLO
p(l) — _Q((I]?+M(O)ijQ(O?—Z’ch)ep(l)

+ (@ MO QR + QN MO Q™) ik P 4+ QU MW Qi P
(4.296)

Recalling the LO gluing matrix (4.258)) we are able to rewrite (4.296)) in the following way

2
ZI (coshy +cosh_) P:():i +Ri2, (4.297)
2
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where

Ra — (Q((l|3+M(O UQ + Q(0)+M 7,j Ql()|1j) ) beP + Q +M I)Zj Qb ch)ef)go) .
(4.298)
In finding the solution of (4.297) we follow the same method as in [22]. Let us briefly

sketch its main points. One can notice that the equations for the P-functions in the NLO
(4.297) have one of the two forms

F(u)+ F(u) = G(u) and F(u)— F(u) = G(u) , (4.299)

where F'(u) is a power series in Zhukovsky variable x(u) and the function G(u) can be
represented as Laurent series in Zhukovsky variable z(u) in the vicinity of the point
xz(u) = 0. As it can be seen, the equations (4.299)) are self-consistent only if, respectively,
the conditions

G(u) —G(u) =0 and G(u)+ G(u) =0 (4.300)

are satisfied. As it was explained in [17], the unique solutions to the equations (4.299)) on
the classes of functions non-growing and decaying at infinity are respectively

2g 2g
Flu) = (H-G) (u) = jf dvH (u,v)G(v) and F(u) = (K - G) (u) = 7{ dvK (u,v)G(v) |
—2g —2g
(4.301)
where the integral kernels are given by

1 Va2 =42 1 Klu) —
u,v) = — )
N —4g2u—v’ ’ dmiu—v

It should be noted that if the asymptotic of F(u) is not specified to be non-growing
of decaying respectively the solutions of (4.299) may include the zero-modes, i.e. the
solutions of the homogeneous equations with zero RHS.

With the usage of the integral kernels H (u,v) defined in first the 3rd and 4th
equations of are solved, then the obtained Pél) and P 41 are substituted into the
1st and 2nd equations of (4.297)), which are solved by utilizing the integral kernel K (u, v)
and we derive the answer for Pgl) and Pgl). But before starting to solve we are
to check the validity of the conditions in the case in question. First of all, from
the form of the 3rd and 4th equations in it follows that the equations

H(u,v) = (4.302)

R34—R34=0 (4.303)

are satisfied exactly and do not fix any constants in the RHS of (4.297). But from the
1st and 2nd equations of (4.297)) we obtain

21
R, 2+ Rio+ —+ A (coshy +cosh_) R34 =0, (4.304)

which is solved fixing Ml(l)13 in terms of Ml(l)12 and Ml(l)34 together with Ml(l)ll and

M1(1)33. One can find the details of this calculation and the values of these constants in
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Appendix Therefore we checked that the RHS of satisfy and we can
apply .
As Pgl) has the constant asymptotic at infinity, the unique solution for Pgl) is given
by
P = H.Ry (4.305)

and contains the constants M. 1(1)12, 04(1%1) and the curvature function «y(g) defined in (4.277)),
which we have to fix. With the usage of (4.235)) and (4.276]) we can express M1(1)12 and
(1)

€41 in terms of y

iz 1 iHg(u(I-cosh?) (u)) iHo ((I'-vcosh?) (u))
M; =2y 5 + 721, 71, , (4.306)
o — (.74 N 1) iot KB N iHs (u (L - cosh?) (u))  iHa ((T-vcosh?) (u)) 7
’ 61> 3 24g 9312 g3_[2
where the integral kernel I' is defined as
(I~ h(v)) (u) = (Fv - h(v)) (w) + (Tp - h(v)) (u) (4.307)

and Hy is the k-th coefficient in the large u expansion of the convolution of the integral
kernel H (u,v) with the function on which it acts.

The asymptotic of Pil)(u) is growing as u, then the solution with the kernel
H (u,v) is not unique and we have to add the solution of the homogeneous equation (zero-
mode) to it. To find this zero-mode we first notice that according to the asymptotic of
Pfll)(u) it can include only the powers z(u) and 1/z(u) and thus it is proportional to
x(u) —1/x(u). The coefficient in front of this zero-mode is determined by the coefficients

(14.276|), then Pgl) is equal to

W _ (T 7Y, _1> .
P, —(24 2)zg<x . +H- Ry (4.308)

and contains the constants Ml(l)34 and v, which are not fixed yet.
To proceed with the solution of the 3rd and 4th equations of (4.297)) we take each
equation and subtract the same equation conjugated

= (1) 1 _ { 1) R, — Ry
Py’ -Py’ = _E (coshy 4 cosh_) (R3 — 2P, ) + ——

Ry — Ry
——.

(4.309)

1351) _ Pél) — (coshy +cosh_) <R4 — 2P4(11)) +

1
9?1
As both the functions Pgl)(u) and Pgl)(u) have the decaying at infinity asymptotics,
the solutions of (4.309) are uniquely determined by the formula (4.301f) with the kernel
K (u,v). Calculating R with the usage of (4.305) and (4.306]), we find the solution for
p{V

Pgl) = —LK- ((COSth +cosh_) (Rg — 2P§1))) + K- RI;E .

4.310
g*1y ( )
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Doing the same for R4 with the usage of (4.308]), we find the solution for Pgl)

g _op(V B2 Ry
Py’ = 9212K ((cosh++cosh_) (R4 2P, ))—i—K 5 . (4.311)

From (4.276) we conclude that
AP =4l =0, (4.312)

which leads to fixing the following constants

7 iHp ((T-vcosh?) (u) — u (T - cosh?) (u))

a3 f
1 6 + 21, +
2iK h* (T hY - h" (I"- cosh”
+Zz®w(””8)$;ums< cosh) ) (4 313)
2

where K} is the k-th coefficient in the large u expansion of the convolution of the kernel
K (u,v) with the function on which it acts.

To sum up, we managed to solve the constraints for the gluing matrix in the NLO,
which allowed us to write down the system of equations for the P-functions in the NLO
. In the NLO some @Q-functions contain infinite series of cuts, which led us to the
usage of the integral kernels (4.286)), (4.287) and ([4.302). After finding the P-functions
in the NLO by solving the system for them we are ready to fix the curvature function by
utilizing the values of the coefficients found in the previous calculations.

Result for the curvature function

To obtain the curvature function, we have to remember that cflli from (4.306|) deter-

mines the coefficient in front of 1/x in Pfll). Comparing this coefficient found from (4.308))
with the usage of (4.313)) and the one from (4.306])) we find the answer

iHo ((F . vcoshﬁ) (u) —u (F . cosh’i) (u)) iHy (u (F . vcosh"j) (u) — (F -2 cosh’i) (u))
2971 * 1921

v(9) = +

iHo ((F . vcoshli) (u) —u (F . coshli) (u)) N 1Ko (coshli ((F . vcoshﬂ) (u) —u (F . coshﬁ) (u)))

* 49215 gtz

(4.314)

By expanding the integral kernels (4.302)) at large v we can rewrite the curvature function
in a more concise form

1 ! v u 2 v u
v(g) = 47T94[22_Zi dv(vcosh? (T - wucosh?) (v) — v* cosh” (T - cosh™) (v))+
2g
1 v3 (T - cosh™) (v) — 202 (T - wcosh™) (v) + v (I - u? cosh*
W@b%m« ( ) (v) (%_é)<> ( )>7wmm
where )
g
d I'e(u— 1
(T - h(v)) (u) = 7{ Q—:iau log = [Eztu _Uz)++ ]1]h(v) . (4.316)
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After obtaining we can compare it with the other known results. In the first two
orders we know the BFKL Pomeron eigenvalues for arbitrary conformal spin including
n = 1, therefore we are able to calculate the curvature from these eigenvalues in these
two first orders. Comparing with the weak coupling expansion of the formula for
the curvature function

272 1674 2272 2876 8t
= 203>+ ——C — 35 4 504 64 (- —
7(g9) = 2C39 +< 3 G3 Cs) g +( 5 G+ 3 G5+ C?) g + 135 @3 3 s
13678 66876 11274
k20 3 _ 2 9 10
567 (7 6930(9) g + < 2835 (3 + 139 (s 3 (7 4+ 50871“(e + 937 0(11> g+

( 754710 140278 7376 461874

— — —12 2¢11 — 12342 12 14
19525 3 wer 15 Cr + 3 Co 9697°C11 3 33Cl3>g +0 (¢9')

(4.317)

we find that the first two terms of the expansion coincide with the values obtained
from the BFKL Pomeron eigenvalues, which represents a check of our result. Having
computed the weak coupling expansion , in the next part we analyze the other
interesting limit, i.e. the strong coupling expansion, which is a separate computational
task in the case of the curvature function.

Strong coupling expansion of the curvature function

For the calculation of the strong coupling expansion of the curvature function (4.315))
we utilize the same method as the one used in [22]. Let us briefly sketch the scheme of
this calculation. The curvature function can be represented in the following form

29 29 )
1(9) = f du ]{ dvF (2, ) Oy log F(YE?U—_U3)++1i) : (4.318)
—2g —2g

Integrating by parts (4.318) and changing the integration variables to z, and z, respec-
tively, we obtain

I'(i(u—v)+1)
M'(—i(u—v)+1)’

v(g9) = %dmuj{d:cv(}’(xu, z,) log (4.319)
where the integrals go over the unit circle and G(z,,x,) is a polynomial in the variables
Ty, Ty, 1)y, 1/xy, cosh”, cosh” and sinh“. Then, expanding cosh_ and sinh_ in a
series in the Zhukovsky variable x, we can represent as an infinite series in the
coefficients of the BES dressing phase [69,|]120-122], which admits the large g expansion
in the form of asymptotic series [69).

Using the computed series we calculated the numerical value of the curvature function
for a number of points in the range 5 < g < 40 and obtained the first coefficients of the
strong coupling expansion of the curvature function with high precision by fitting the
data with inverse powers of g. The first several coefficients appear to be simple rational
numbers. In the 6th coefficient it was expected to have (-function, which we managed to
fit utilizing the EZFace [123] webpage. As in the case of the slope-to-slope function [22],
usage of the exact value fit in the order 1/g" increases accuracy of the fit in the next order
1/g**1, which represents a non-trivial check of the validity of the used method.
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Application of the numerical method described above yields us the large g expansion
of the curvature function

1 1 33 81

TONZ T AN 16M3/2 16X2
2265 (1440@-) - 765) 1 (207360C5 - 22545) L ( 1 )  4.320)
25615/2 64 64 2048 2048 ) A7/2 A

A3

where A is given by (4.231)). Together with the curvature function (4.315)) and its weak

coupling expansion (4.317)) the formula (4.320]), containing the strong coupling expansion
of this function, concludes the list of the results of the present Section.

4.5 Intercept function at strong coupling

The other interesting limit of the intercept function besides the small coupling limit
considered in the Section [£.3] is the strong coupling one. For n = 0 case the intercept
function in the strong coupling limit was analyzed in [48,124-126] and then extended to
the next orders by the QSC method in [22]. As we have already the numerical data for the
intercept for the different values of conformal spin n, then using the numerical algorithm
described in the Section [£.2] and assuming that the coefficients are some simple rational
numbers and extrapolating the high precision numerical data by the inverse powers of
A/2 we extract

10 25 175 1

- - _ == -7 —2
5(0,3) = 3+ 5E % T 1 A3/2+O(A ) (4.321)
B 4 6 91 L
5(0,2) = —2+W—X+§W+O(A ),
S(0,1) = -1,
2 1 11
S(0,0) = 0 —+ +0(\7?),

A2 N T a2

where A is given by (4.231) and the result for n = 0 is taken from [22]. We see that
the leading term is linear in n, sub-leading is quadratic and so on. This pattern is quite
typical at strong coupling (see for example [61]). Assuming this polynomial pattern from

the above data (4.321)) we get

S(O,n):—n+m_i\)1(g—i_2)—
n—1)(n n — n—1)n n? —9n —
(= 1) ;2)(2 1)+( 1)( +82;g72 9 1)+O()\12)’ (4.322)

which we can cross-check with our slope-to-intercept function by differentiating
it at n = 1! Comparison with shows us complete agreement. We also verified our
result numerically by taking n = 1.5 and fitting the data with inverse powers of A\}/2 we
reproduced precisely the coefficients from .
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Chapter 5

Conclusions and outlook

In this work we managed to reproduce the dimension of twist-2 operator of N' = 4
SYM theory in the 't Hooft limit in the leading order (LO) of the BFKL regime directly
from the exact equations for the spectrum of local operators called the Quantum Spectral
Curve — QSC. This result is a very non-trivial confirmation of the general validity of
this QSC approach and of the whole program of integrability of the spectral problem in
AdS/CFT — S-matrix and asymptotic Bethe ansatz, TBA, Y-system, FINLIE equations,
etc. In particular, this is one of a very few examples of all-loop calculations, with all
wrapping corrections included, where the integrability result can be checked by direct
Feynman graph summation of the original BFKL approach. An obvious step to do in
this direction is to compute the NLO correction to the twist-2 dimension for finite A
from QSC and compare to the direct BFKL computation of [2]. Many of the elements of
the NLO construction, such as the NLO Baxter equation for the Q-functions, are present
already in this paper, but the most difficult ingredient — the formula of the type for
the leading singularity, has yet to be derived. Of course, the ultimate goal of the BFKL
approximation to QSC would be to find an algorithmic way of generation of any BFKL
correction (NNLO, NNNLO, etc.) on Mathematica program, similarly to the one for the
weak coupling expansion via QSC, proposed by [20]. It would be also very interesting
to build numerically from the QSC the twist-2 dimension as a continuous function of
spin S € R qualitatively described in [127]. We also hope that our approach will allow
to understand deeper the similarities and differences of N'= 4 SYM and the pure Yang-
Mills theory (multicolor QCD) starting from the BFKL approximation, regarding the well
known fact that, at least in the 't Hooft limit, N' = 4 SYM Feynman graphs capture an
important part of all QCD graphs and in the LO BFKL the results simply coincide. We
also hope that the methods of QSC presented here will be inspiring for construction of the
systematic strong coupling expansion in N/ = 4 SYM. A deeper insight into the structure
of QSC will be needed to approach the whole circle of these complex problems.

BFKL regime is traditionally one of the “hard” problems of high-energy theoretical
physics. QSC method allowed to make progress in this direction when the traditional
perturbative methods become too complex to implement. In our work we extended the
area of application of QSC even further, adding an additional parameter — conformal spin
n. Importantly, we can deal with the situation when conformal spin takes an arbitrary real
value. QSC can now deal with the situation when all three global charges corresponding
to the 5-dimensional sphere S° — S;, Sy and A are non-integer. This required allowing
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exponential asymptotics in two components of the gluing matrix. Gluing conditions are
thus the main ingredient of analytical continuation of QSC presented in this paper.

As an illustration of our method we have computed two all-coupling quantities — slope
of BFKL intercept at A = 0 with respect to n around n = 1 and curvature of the twist-2
operator trajectory in the vicinity of the point A = 0 and n = 1. We generated analytical
perturbative and numerical data using the iterative procedures described in [31], which
we had to modify to take into account exponential asymptotics for non-integer global
charges. The iterative data helped us to fix NNLO and NNNLO BFKL intercept in terms
of nested harmonic sums.

Several further directions of work come to mind immediately. First, the basis of nested
harmonic sums seems to describe well the perturbative expansion of BFKL eigenvalue and
in particular its intercept. Since the iterative procedure can be used up to arbitrary high
order in g and for arbitrary odd n, it is just a question of time and computational power to
fix BFKL eigenvalues at higher orders. The first task would be to find a closed expression
for the NNLO BFKL eigenvalue for arbitrary n. It should then agree with the results
of [58], where a procedure calculating NNLO BFKL eigenvalue for any particular given n
was presented.

The second direction one can pursue is exploring the neighborhood of the BPS point
n=1,A = 0. After computing the slope-to-intercept with respect to n, one can compute
the next order term proportional to (n—1)2. The computation should be similar in spirit
to the computation of S? correction to the twist operator anomalous dimension [22].

Furthermore, one should study in a similar way the Odderon spectrum, which is ex-
pected to correspond to the length parameter to be taken L = 3. Most of the steps
described in this paper should be applicable for arbitrary L and it would be very in-
teresting to reproduce previously known perturbative results and extend them to finite
coupling.

Finally, there are indications |[128] that the structure constants can be also governed
by the QSC Q-functions, which were evaluated in this paper in various regimes. So it
would be interesting to compare and extend to finite coupling the results on the triple
Pomeron vertex [129].



Chapter 6

Résumé en francais

6.1 Introduction

La N = 4 théorie de Super-Yang-Mills joue un rdle important dans notre compréhen-
sion des théories quantiques des champs, en particulier dans un contexte AdS/CFT. En
raison du principe de transcendentalité maximale de Kotikov-Lipatov, |1,2] certains des
résultats obtenus dans cette théorie peuvent étre directement exportés vers une QCD
planaire plus réaliste. Dans ce travail, nous décrivons comment effectuer efficacement des
calculs dans cette théorie pour 'une des principales observables de la QCD - le spectre
BFKL, en utilisant I'intégrabilité a toute valeur du couplage ‘t Hooft A, initialement dé-
couverte par Lipatov a la spectre LO BFKL [3], et s’est développé bien au-dela du régime
perturbatif dans le N' = 4 SYM ces derniéres années. Lev Nikolaevich a été 1'un des
principaux moteurs de ces progres et nous sommes profondément attristés de savoir qu’il
nous a quitté en Septembre 2017.

Au début, nous allons décrire brievement la signification des quantités étudiées dans
le présent travail dans le contexte de la diffusion de haute énergie. La section totale o(s)
pour la diffusion a haute énergie de deux particules incolores A et B peut étre écrite
comme [4]

a+i0o
d?>qd*q , dw [ s\¥ ,
o) = [ grpaa®a@ted) [ 35 (2] Gutad). (61)

ou ®;(q;) sont les facteurs d’impact, G, (g, ¢’) est 'onde partielle ¢-channel pour la diffusion
gluon-gluon, sop = |q||¢’| et dépendent des impulsions transversales et de s = 2pappg, ou
pa et pp sont respectivement les 4-moments des particules A et B. Pour 'onde partielle
t-channel, il existe I’équation de Bethe-Salpeter

wGu(g.q1) = 672 (q—q1) + /dD_QqQK(q, 32)Gu(q2, 1) - (6.2)

Il semble possible de classer les valeurs propres w du noyau BFKL K en utilisant deux
nombres quantiques: entier n (spin conforme) et réel v

w=w(n,v) . (6.3)
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La fonction w(n,v) est appelée I'eigenvalue de Pomeron du noyau BFKL ou simplement
Ieigenvalue de BFKL Pomeron et ses valeurs pour différents n et v constituent le spectre
BFKL. Pour les applications phénoménologiques des eigenvalues du noyau BFKL avec un
spin conforme non nul, voir [5]. L’objet w(n, V)E| dans le planaire N’ = 4 SYM sera étudié
dans ce travail au moyen de l'intégrabilité.

L’étude des structures intégrables dans la théorie jauge 4d a une longue et intéres-
sante histoire du développement. L’intégrabilité dans la théorie QCD et les théories
supersymétriques de Yang-Mills sont apparues dans deux contextes. Premierement, dans
la théorie des jauges, a savoir la QCD, I’équation de Bartels-Kwiecinski-Praszalowicz
(BKP) [7,[8] pour les états multi-reggeon a été reformulée par L.N. Lipatov [3] le mod-
ele avec les hamiltoniens holomorphes et antiholomorphes, qui posseéde un ensemble
d’opérateurs commutés mutuellement provenant de la matrice de monodromie satisfaisant
a I’équation de Yang-Baxter. Apres cela, L.D. Faddeev et G.P. Korchemsky dans 9] ont
prouvé que ce modele était complétement intégrable et équivalent au probléme spectral
pour SL(2,C) XXX chaine de spin de Heisenberg. Puis, dans le contexte de la diffusion
a haute énergie, on a considéré une certaine classe d’opérateurs de cone de lumiere dans
les théories QCD et Yang-Mills supersymétriques et dans [10-H13| Le probléme de trouver
les dimensions anormales des opérateurs de cones de lumiere a été formulé en termes de
chaine de spin de SL(2,R) Heisenberg.

L’autre réalisation a été que la théorie supersymétrique N' = 4 Yang-Mills en 4 di-
mensions, qui est double & AdSs x S° la théorie des supercordes de type IIB, était inté-
grable [14,/15]. L’étude de la structure d’intégrabilité de cette derniere théorie a permis
d’explorer son spectre dans le régime non-perturbatif. La solution du probléme spectral
a été formulée en termes de la Courbe Spectrale Quantique (QSC) [16}/17]).

Néanmoins, jusqu’a récemment, on ne savait pas comment établir un pont entre
I'intégrabilité dans la limite BFKL et l'intégrabilité trouvée dans le cadre AdS/CFT.
Dans [30], la contribution asymptotique de Bethe Ansatz (ABA) & 4 boucles a la di-
mension anormale des opérateurs twist-2 s[(2) a été poursuivie de maniére analytique
aux spins non entiers et comparée avec la prédiction correspondante des eigenvalues de
BFKL Pomeron. Cette suite analytique aux spins non entiers a été incorporée au for-
malisme QSC dans [22] pour les opérateurs twist-2 du secteur sl(2) et dans ce travail,
nous expliquons comment dériver I'equation de Faddeev-Korchemsky Baxter |9] pour la
chaine de spin de Lipatov SL(2,C) reproduisant correctement ’eigenvalue de premier or-
dre (LO) BFKL Pomeron. De plus, QSC a permis de calculer [31] de maniére analytique
leigenvalue BFKL de l'ordre suivant proche de l’avant-plan (NNLO) dans la théorie de
Yang-Mills supersymétrique N = 4.

Considérons les opérateurs twist-2 s[(2) de la forme

O = trZD?3 Z + (permutations) (6.4)

et rappelez-vous que des calculs perturbatifs dans la théorie de jauge pour le cas d’un
entier pair S, nous connaissons la dimension de ces opérateurs A en fonction de S jusqu’a
plusieurs ordres de boucles. Dans le cadre QSC, la solution de I’équation de Baxter pour
le spectre de tels opérateurs dans le cas d’un spin conforme a n et d’un entier méme spins
S a été obtenue dans [16]. Puis, dans [33,34], la solution de ces équations de Baxter était

Tn [4] 1a fonction w est utilisée avec les différents arguments v = 1/2 + iv.



6.1. INTRODUCTION 123

valide pour un spin arbitraire S, ce qui conduit a la dimension anormale des opérateurs
twist-2 s[(2) continué analytiquement pour le spin non entier S. Aprés avoir fait cette
continuation analytique dans le régime BFKL, nous pouvons échanger les roles de A et
S pour obtenir S+ 1 =w(n =0,v), ou v = —iA/2 et A est la dimension de 'opérateur
en question.

Nous démontrons ici 'application du QSC a un probléme important — le calcul des
dimensions conformes A des opérateurs d’un type appartenant au secteur s[(2) dans
le Limite BFKL, correspondant & un double régime d’échelle de la petite constante 't Hooft
g = VA/(4m)a0 et le spin de Lorentz S approchant & —1, alors que le ratio A = ¢g2/(S+1)
est maintenu fixe. Nous reproduirons la fameuse formule de cette dimension, obtenue
dans [2,3536] & partir de la re-sommation directe des graphes de Feynman

1 1 A 1 A )
4A:—¢<2—2>—¢(2+2>+2¢(1)+O(9)7 (6.5)
ou ¢Y(x) = I'(x)/T'(z). Remarquablement, ce résultat est également connu pour étre
valide pour la théorie pure de Yang-Mills dans la limite planaire puisque seuls les gluons
apparaissent & l'intérieur des diagrammes de Feynman de NV = 4 SYM & LO! Notre
méthode, congue ici pour le cas de la singularité de Pomeron (un état lié de deux gluons
reggized), devrait étre applicable a I’étude d’un état lié de gluons régularisés par L.
infinitely many loops for a highly non-trivial non-BPS quantity.

Soulignons 'un des principaux résultats de ce travail — la reproduction correcte de
la formule du QSC — est un test tres non-trivial du QSC ainsi que de I’approche
intégrable de l'intégrabilité de le spectre AdS/CFT planaire. Il résume un nombre infini
de corrections dites d’enveloppement infiniment de boucles pour une quantité non-BPS
hautement non-triviale.

Dans le présent travail, nous considérons la généralisation permettant une valeur ar-
bitraire du spin conforme. A savoir, nous considérons les opérateurs

0= trZDi1 aj'zz + (permutations) . (6.6)

Pour les opérateurs nous suivons la méme stratégie que pour le cas du spin conforme
a zéro. De maniere analogue a ce cas, nous construisons la suite analytique dans les spins
S1 et Sa, qui sont identifiés respectivement avec le spin S et le spin conforme n. Ilustrons
cette suite analytique avec la figure Les opérateurs physiques, pour lesquels la somme
de ’entier non négatif S = 51 et n = S5 est égale, sont représentés avec les points. Ensuite,
en retournant les roles de la dimension A et S = S, on peut atteindre le régime BFKL
décrit par la quantité w(n = So,v) = 51 + 1, ot v = —iA /2.

La facon de procéder avec le probléeme en question est de généraliser I'approche QSC
a des valeurs non-entieres de S; (comme cela a déja été fait dans [22]) et aussi a des
valeurs non-entieres de S3. Nous décrivons les détails techniques de cette procédure dans
la section Cela permet de traiter w(n, ) comme une fonction analytique de ses deux
parametres, ce qui simplifie les considérations analytiques et numériques. Cela donne un
cadre universel pour étudier le spectre BFKL en généralité pour toutes les valeurs des
parametres sur un pied d’égalité dans le formalisme QSC étendu.

Apres avoir formulé le probléme comme une extension du QSC initial, un certain
nombre de méthodes, initialement développées pour les opérateurs locaux, sont devenues
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disponibles pour le probleme BFKL. En particulier, nous pouvons utiliser un algorithme
numérique tres puissant [32] apres quelques modifications. Comme nous prenons les spins
S7 comme variable continue, nous pouvons considérer a la place de la fonction A(Sy,S2)
la fonction S7(A, S2). Ensuite, en utilisant 1’algorithme, nous construisons les trajectoires
d’opérateur pour différentes valeurs de spin conforme S5 et les dépendances du spin Sy sur
la constante de couplage g pour différentes valeurs de spin conforme et de dimension A
(y compris un fonction d’intercept particulierement intéressante correspondant & A = 0).
Ayant les résultats numériques pour les trajectoires d’opérateurs, nous avons pu ajuster
les valeurs numériques des eigenvalues du noyau BFKIEL qui ont été confirmées par une
méthode différente dans [58].

Une autre méthode disponible dans le formalisme QSC est une expansion perturbative
efficace développée dans [20431,/59-61]. Nous avons appliqué cette méthode pour trouver
la valeur de l'intercept de Pomeron pour la valeur arbitraire du spin conforme jusqu’a
des 3 boucles. Notre résultat est en plein accord avec [58] au niveau NNLO, mais nous
donnons également une prédiction pour la prochaine commande NNNLO.

Ensuite, nous avons trouvé et étudié en détail un point particulierement intéressant
dans D’espace des parametres du BFKL Pomeron. C’est le point “BPS” A = 0 et n =
1. Comme nous 'avons confirmé numériquement et analytiquement, la trajectoire de
Popérateur passe par le point S = —1, n =1 et A = 0 pour toute valeur de la constante
de couplage g. En étudiant la proximité de ce point, nous avons pu trouver deux grandeurs
non perturbatives: la fonction “slope-to-intercept” et la “curvature function”. La premiere
fonction est la premiere dérivée de S (A,n) par rapport & n au point A =0, n = 1 et
la deuxieme fonction est la dérivée seconde de S (A, n) par rapport & A au méme point.
Nous avons utilisé les méthodes développées dans [22] pour calculer analytiquement ces
quantités de maniere non-perturbative dans tous les ordres de g.

Enfin, nous avons pu identifier la fonction d’intercept dans la forte expansion du
couplage jusqu’au 4éme ordre. Pour l'obtenir, nous avons utilisé les dépendances de
Iintercept sur la constante de couplage calculée par la méthode numérique QSC. En
effectuant ’ajustement numérique de ces dépendances pour différentes valeurs de spin
conforme n, nous prédisons la formule de ’expansion du couplage fort a ’origine jusqu’a
la 4éme ordre pour un spin conforme arbitraire.

Présentons un bref résumé des quantités que nous avons calculées. Ils incluent la
fonction d’intercept NNLO et la partie non rationnelle de la fonction d’intercept
NNNLO . Les autres grandeurs que nous avons calculées exactement pour tous les
ordres dans la constante de couplage 't Hooft sont les fonctions slope-to-intercept
et la curvature avec les extensions fortes de couplage de ces fonctions données
par @D et (6.53]) respectivement. De plus, il a été écrit ’expansion de couplage fort
@ de la fonction d’intercept pour un spin conforme arbitraire n. Nous avons égale-
ment implémenté la méthode numérique pour trouver les eigenvalues a des valeurs arbi-
traires des parametres de Mathematica, les fichiers correspondants code_for_arxiv.nb
et BFKLdata.mx peuvent étre trouvés dans les pieces jointes a cette arXiv. soumission [62].
Voir le fichier "description.txt"pour la description.

2Voir la présentation de M.Alfimov au GATIS Training Event & DESY [57].
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6.2 Description du cadre basé sur QSC

Dans cette Section, nous allons présenter le cadre que nous utilisons pour résoudre le
QSC [16,17] et dont la dérivation est basée sur les propriétés analytiques et asymptotiques
des Q-fonctions. Premierement, nous reformulons le QSC en termes de matrice de collage.
A savoir, nous partons des plusieurs axiomes concernant la structure analytique du Q-
systeme et les symétries qui préservent les QQ-relations et en dérivent les conditions
dites de collage. Ces conditions de collage apparaissaient déja dans [17,/31] mais notre
approche présentée ci-dessous n’utilise pas la notion de fonctions p et w pour obtenir
la matrice de collage. Deuxiémement, en utilisant la connexion entre les asymptotiques
de certains sous-ensembles de Q-fonctions et les charges globales avec leurs propriétés
analytiques, le systéme de contraintes pour la matrice de collage est dérivé. Il semble
possible de résoudre ces équations dans certains cas physiquement intéressants. A savoir,
nous trouvons la matrice de collage pour le cas ou les deux spins AdS S et Sy sont des
entiers de la méme parité et que sa forme semble tres simple et en accord avec le résultat
de [17]. Nous considérons ensuite un cas plus général des spires non entieres AdS Sp et So,
ce qui est particulierement intéressant pour ’exploration du régime BFKL. Dans ce cas,
nous n’avons pas trouvé la solution générale pour la matrice de collage, mais nous avons
trouvé la sous-classe de solutions qui semble s’appliquer a nos quantités d’intérét. Nous
suivons principalement article original |17], mais la discussion de la matrice de collage
et de 'extension aux nombres quantiques non entiers est nouvelle.

6.2.1 Contraindre la matrice de collage

Dans la présente Subsection, nous allons résoudre ’ensemble des équations pour les
éléments de la matrice de collage a partir des conditions de collage

Q'(u) = MY ()Q;, Qi(u) = (M ";Q . (6.7)
Rappelons brievement le cadre QSC que nous utilisons, rappelons-nous les contraintes sur
les matrices de collage connues a ce jour. Les matrices non dégénérées MY (u) et L (u)
satisfont & I’ensemble de contraintes suivant

M (u) = MU (), MY ()5 (w) = — MM (u)Q(u) | (Q_l)j

) =0, (63)

L (w) = MI@@Ok(-u), Li(~u) = 1), (671)" () = ©k(-u).

Nous pouvons maintenant considérer la matrice de collage pour les cas ou AdS spins S
et Sy résolvent ’ensemble des contraintes .

Entier S et Sy

Commengons notre étude a partir de la situation ou tous les frais sauf la dimension A
sont des nombres entiers. Plus précisément, dans la présente Subsection, nous traitons le
cas ol les spins 57 et Sy ont la méme parité. Ceci est motivé par le fait que pour Se = 0,
les états physiques ont méme Slﬂ Pour analyser les contraintes de plus pres, nous
devons trouver les propriétés des matrices Q (u) et ©7(u).

3Cela est diit & la contrainte de cyclicité sur les états de sl(2) Heisenberg chaine de spin, qui est
uniquement compatible avec la distribution symétrique des racines menant & S; pair.
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Tout d’abord, nous considérons la matrice QZ (u) et rappelons la conjugaison complexe
des Q-fonctions. Si Re u tend vers 400, alors, comme Q; ~ BiuMi_l, le élément diagonal
(Qf))f est égal & B;/B;. Mais si Re u tend vers —oo, la situation est un peu plus subtile.
Les fonctions Q;(u) ont une échelle infinie de raccourcis descendant de 'axe réel, tandis
que les fonctions Ql(u) ont la méme échelle de coupure. Puis en prenant la limite de Re u
pour —oo, nous devons aller dans —oo le long du demi-cercle dans le UHP pour Q;(u),
soit Q;(u) ~ Bl-e“r(]\%_l)(—u)Mi_1 et le long du demi-cercle dans le LHP pour Q;(u),
cest-a-dire Q;(u) ~ Bie*i”(Mifl)(—u)M“l, nous voyons donc que 1’élément diagonal de
(Q(,O))ﬁ est égal & B;/ Bie~2mMi  En résumé, nous obtenons

() = { | i{emdf]" —|—A(.Q(+1))ge*2"r“ + O (e™), Reu>1, (6.9)
dle iop;=2mM; | (Qg))fe%“ + O (e!™), Reu< —1,

ol ezid)Bi = Bz/Bz

Deuxiemement, ’analyse de la matrice @g(u) de est analogue. Ainsi, en appli-
quant les arguments du paragraphe précédent, on voit que chez Re u tendant vers +o00 on
doit faire le tour du demi-cercle dans UHP et Q;(—u) ~ Bie”(]\/[i*UuMi*1 a Re u tendant

M;

& —o0 nous avons Q;(—u) ~ B;(—u)Mi=1. Alors on obtient

. _ J im M, 1) J —21u —4mu
@g(u):{ 5™+ (0 )jeF ™+ O (e7™), Reu>1, (6.10)

_6ge—i7er + (@9)){62wu +0 (647ru) ., Reu< —1.

Dans le cas de spins entiers Sy et So de méme parité, on obtient la matrice de collage
suivante

0 M2 0 0
g M2 0 0
7\{2] _
0 0 0 M (6.11)

0 0 M3* 0

Nous sommes capables de fixer les phases des éléments matriciels non nuls de (4.80))

M2 = ‘M12 oi(£5+68,—¢5,) (6.12)

oi(£5+é8,~9B,) oM = ‘M34

Commengons maintenant la prise en compte du cas ot au moins un des spins n’est
pas un nombre entier car cela est particulierement intéressant pour la limite BFKL.

Non entier S; et Sy

Tout d’abord, a partir de 'asymptotique des Q-fonctions, nous voyons immédiatement
que si au moins une des charges S; ou Sy est non entiére, alors ne pas violer la pureté
des extensions asymptotiques du Q-fonctions les matrices (ng)){ et (@f ))f ne peut pas
mélanger différentes Q-fonctions et étre en diagonale. Cependant, comme S; ou S5 ou les
deux tours ne sont pas des nombres entiers, toutes les différences M;— M ; sont en général
non entiéres, donc nous concluons que M% = 0. Ensuite, il faut modifier I'ansatz pour
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La matrice M (u) est analytique et i-periodique, donc le choix minimal serait d’ajouter

les termes proportionnels & e?™ et e~ 2™

M (u) = My + M e*™ 4 My e~ (6.13)

et ceci est cohérent avec ce que nous savons de la considération de la limite de BFKL
pour laquelle S; approche —1 et Sy = 0 (voir [82]). D’apres les conditions précédentes
(6-8), les matrices Mf{zg sont hermitiennes.

Résumant les résultats des contraintes que nous obtenong’]

11 12 13 14
M+ My Mp° M

| M2 o0 0 0
M=1 s o wup up | T

Mt 0 M M
0 0 M3 M* 0 0 M M
0 0 0 0 o 0 0 0 0 _oru

=+ - e + — e , (6.14
My*> 0 0 0 Mg* 0 0 0 (6.14)
M#* 0 0 0 M#* 0 0 0

ol les éléments des matrices M,’; sont soumis aux contraintes (6.8). Il suffit d’écrire
k)

uniquement les phases des éléments matriciels non nuls de la matrice My’ extraits de

M = ‘M213 (£5+0m—053)  ppld = ‘MZ)M‘ oi(£5+08,—05,) (6.15)

Signalons que la construction présentée ci-dessus fournira une suite analytique a toutes
les valeurs de S5 a partir des valeurs entiéres Sy > 0. Cependant, cette suite analytique
décompose la symétrie Sy — —S2, qui est naivement présente dans le QSC, comme on
peut le voir dans la relation asymptotique des Q-fonctions. La suite analytique, qui décrit
un entier parfaitement positif Se, produira des pdles a nombre entier négatif Sy. Cela
peut paraitre un peu déroutant, mais la résolution de ce paradoxe réside dans I'existence
de la seconde solution pour la matrice de mixage, obtenue en réétiquetant les indices
conformément a Sy — —S5. En pratique, le résultat doit étre égal a Sy et il suffit de
considérer So > 0, il suffit donc d’utiliser la matrice de mixage présentée ci-dessus.

6.3 Solution numérique

Les équations de QSC sont particulierement bien adaptées a I'analyse numérique: les
propriétés analytiques simples des P-fonctions permettent de les paramétrer en termes
de séries de Laurent tronquées puis de contraindre ces coefficients par la condition de
collage. Des algorithmes numériques pour résoudre les équations QSC ont été développés
et appliqués dans [32,84,87,|88]. Dans un cas non symétrique, tel que BFKL avec Sy =
n # 0, la procédure doit étre modifiée de maniere & étre décrite ici. Nous avons joint un
cahier Mathematica nommé code_for_arxiv.nb implémentant ’algorithme, que nous
avons utilisé pour obtenir les résultats décrits dans cette Section.

4Dans le cas ol le spin Sz est un entier, la matrice de collage simplifie et nous avons M14(u) =
M 44(u) = 0 comme nous le verrons dans la section décrivant 'algorithme numérique QSC appliqué.
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En utilisant l'algorithme numérique proposé, nous avons réussi a calculer plusieurs
quantités numériques pour les cas ou n est non nul et méme non entier. Sur la Figure
on peut trouver la trajectoire de 'opérateur longueur-2 pour n = 1.

Il est également possible de calculer numériquement la dépendance du spin S sur la
constante de couplage g pour la dimension fixe A. Sur la Figure vous pouvez voir la
dépendance S(g) pour A = 0.45 et n = 1 en comparaison avec le méme résultat calculé
de maniere perturbante comme la somme de LO et NLO Valeurs propres BFKL.

De plus, ce schéma numérique nous permet de comparer les valeurs numériques des
eigenvalues du noyau BFKL avec les eigenvalues perturbatives connues des ordres LO et
NLO. Dans la Table les valeurs numériques de I’eigenvalue du noyau BFKL ajustées
a partir des tracés de la Figure sont écrites dans les quatre premiers ordres avec
des résultats perturbatifs dans les deux premieres commandes calculées pour n = 1 et
A = 0,45. Dans les ordres LO, NLO et NNLO, nous observons 1’accord avec une précision
de 22, 20 et 16 chiffres respectivement.

Désormais, concentrons-nous sur le calcul numérique de la fonction d’intercept. Sur
la figure on peut trouver les dépendances de 'intercept sur la constante de couplage
g pour les différentes valeurs de spin conforme n. Les lignes pointillées sont tracées
en fonction de la fonction d’intercept de la section calculée dans le petit régime de
couplage. Les lignes continues correspondent & I’expansion du couplage fort de la fonction
d’intercept de la Section ajustée a partir des données numériques obtenues dans la
présente Section.

Dans la section suivante, nous allons analyser I'expansion du couplage faible de la
fonction d’intercept. Pour ce faire, nous appliquons la méthode itérative appliquée dans
[31].

6.4 Expansion du couplage faible

Dans cette section, nous explorons la fonction S(A,n) perturbativement au couplage
faible pour un spin conforme & un nombre entier arbitraire n. En particulier, nous nous
intéressons a l'intercept BFKL j(n) = S(0,n) + 1. Le calcul de cette quantité comprend
deux étapes.

6.4.1 Limite BFKL du QSC pour les opérateurs de twist-2 avec des
valeurs non nulles S, = n

Dans cette Subsection, nous considérons la limite de BFKL du QSC avec un spin
conforme non nul. Rappelons d’abord brievement quelle est la limite de BFKL. Nous
allons étudier le régime en méme temps que la constante de couplage g — 0 et I'un des
spins S1 = S — —1 tout en gardant le rapport ¢g?/(S + 1) fini. LO BFKL dans cette
limite correspond & la reprise de toutes les contributions de la forme (g2/(S +1))*, NLO
BFKL - aux contributions de la forme (S + 1)(g?/(S +1))* et ainsi de suite. Cependant,
dans la présente Subsection, nous prenons le deuxiéme tour (spin conforme) Sy =n # 0
et il apparait des différences par rapport au régime BFKL avec un spin conforme nul.
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LO solution

Dans la présente partie, nous trouverons la solution LO du Pu-systéme dans le régime
BFKL. Tenant compte du fait que P est égal & 1/w?, dans le LO de w, on obtient pour
les P-fonctions

(1)
0 1 0 1 0 0 0 0 Cq1
L T S CRPTU: 619
PO — A0, 4 =~ pO2_ 4200 pO3__= pOL_ __
Au ’ w’ w2’
otl nous avons impliqué ¢4 = —57 (c(l)w + O(w2)) =L (cl’l(l)w + (’)(w2))
pliq 4,1 (Aw)3/2 4,1 ) (Aw)3/2
et
, 2 2 . 2 2
4O _ Ci(a-n’-1) ((a+n)’-9) 4O _ Ci((a+n)’ 1) (A -n)® - 25) |
3 32 P 96
(6.17)
Examinons maintenant les u-fonctions au voisinage du point S = —1. Dans le LO,
quand S = —1, p -fonctions avec les indices inférieurs & © — co ont les asymptotiques
(,Uf12’ H13, 14, (123, 424, M34) ~ (UO, U17 u27 u2’ u3) u4)€2ﬂ'|u‘ . (618)

Pour trouver les p-fonctions avec les indices les plus bas de la variable LO de maniere

Lo . 0 .
analogue au cas symétrique gauche-droite, nous remarquons que Pg% et PO3:4 gont sin-

guliers, tandis que 151’2 et P34 sont réguliers & u = 0. Cela peut étre garanti si ,u((l%) sont

réguliers & u = 0 et ont un zéro de commande suffisante a ce stade. Par conséquent,
comme dans le cas symétrique gauche-droite, nous pouvons supposer que dans la LO, la

seule solution contribuant a ugl))) est celle avec 'asymptotique (6.18)). Par conséquent,

. (0) . , . ny .
nous conjecturons p,’ pour avoir la forme d'un polyndéme multiplié par un facteur i.
Comme pour les opérateurs de longueur-2, les fonctions ,u;fb ont la certaine parité, on est

conduit a ansatz
pO = Pwbiy, pT = Pubu, (6.19)
ut = P(u)(bsau® + b32) , pfF = P(u)(baru® + bag)
St = P(u) (b au® + b o), T = Pu) (b1’ + bg 2u® + b 3) -

ou P(u) est une fonction i-periodic. Déterminons d’abord la partie polynomiale de la

solution. En connectant les ansatz (6.19)) aux équations p:;r = pap + Potipc P — Pppig PC

1,1(1) _ )

. 1 Y
nous fixons tous les coefficients en dehors de by et ¢ —ci ;. Cette derniére égalité

entraine automatiquement la validité de ’exigence
PP — ¢ (6.20)
dans le LO.

Revenons maintenant a la solution générale. Parce que dans le premier ordre, les
équations pour p sont homogenes, la solution est déterminée jusqu’a une fonction péri-
odique i. Cette fonction périodique ne pousse pas plus vite que e2™%l alors la réponse la
plus générale pour elle est

31’1627m + 31’26_2ﬂu + B173 . (621)
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Nous devons également nous souvenir des exigences de 'analytique, c’est-a-dire que
les expressions suivantes ne comportent pas de coupes
N P-P . — i
P+P, ————— 4+,
Vu? — 4Aw Vu? — 4Aw

Les contraintes (6.22)) nous ameénent aux résultats

(6.22)

Bi2=B11, Bisz=-2Bi1, Cz(g% = _iA ((A2 — 1)2 -2 <A2 + 1) n? + n4>

96
(6.23)
Avec ces conditions, ([6.23) I'exigence de parité pour u* est automatiquement satisfaite.
Résumant les résultats obtenus et définissant B ; = —Bj /4, toutes les exigences nous
donnent la solution unique (jusqu’a une constante multiplicative) donnée par
9" = By cosh?(mu) (6.24)
(OFS 2 1\?_ 2 2 4 2
Hys = Bllﬁ ((A 1) 2<A +1)n +n >ucosh (mu) ,
7 2
Mg‘i” = Iug%)J’ = —311—28 <(A2 - 1) -2 (A2 + 1) n? + n4) <4u2 + 1) cosh?(ru) |
O+ _ 2 1\2 _ 2 2, .4 2 2
Uoy = B1192 ((A 1) Q(A +1)n +n >u<4u —|—1) cosh®(mu) ,
2
O+ _ 1 2 \2 2 2, 4 2 2 2
psy = —DBi1 19150 <(A 1) 2 (A + 1) n°+n ) (4u 3) (4u + 1) cosh”(mu) .

Ayant obtenu la solution LO donnée par (6.16)), (6.24]) et (6.17]) nous pouvons procéder
a la recherche de la solution NLO du Ppu-systeme avec le coefficient By, ce qui sera fait
dans la prochaine Subsection.

Conditions de collage

Revenons maintenant aux conditions de collage du spin conforme & Ientier et notons
deux d’entre elles contenant uniquement les Q-fonctions dans le parametre de mise a
I’échelle w

Q? = {""*Qu (6.25)
Q4 _ M1(0)34Q3 .
(0)1

Pour trouver M % et M1(0334 on peut utiliser la continuité des fonctions Q? et Q* sur
la coupe Q%(0) = Q%(0) et Q*(0) = Q*(0). Le résultat est

M(0)12 _ M(0)34 ~ cos Tr(A2+n) (A — n)2 _1

1 1 - cos W(A2—n) (A+n)2 -1

(6.26)

En ce qui concerne les Q-fonctions avec I’asymptotique pur, nous obtenons les conditions
de collage suivantes dans le LO

m(Atn) 2
(002,44, _ COS T (A—=n) =1~
Q (u) - oS W(A2—n) (A + n)Q . 1Q1,3(u) : (6'27)
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LO BFKL eigenvalue

Nous allons ici obtenir l'eigenvalue de LO BFKL de maniére similaire a [82]. Pour
commencer, notons I’équation de Baxter pour Q** dans le NLO

Q24++ 4 Q2A-—— (_2 n (A+ n); - 1) Q24 —
4u

. . 2 2
— ' Qe+t Q24— U T AA+n)” - 1)Q(0)2’4 . (6.28)

2(u+1) 2(u — 1) 2ut
D’un c6té de I’équation de Baxter (6.28]) il s’ensuit que
(1)j ]
QW _ L ondy, 24, (6.29)

Q) (u) 2

De l'autre c6té, on peut appliquer ’astuce suivante pour trouver la partie singuliere de

Q’ dans le NLO

) J oY i _ QO
Q-9 ;Q +Q%\/u2—4m. (6.30)

Pour Q? on obtient

2 N2 1 w(A+4n) A — 2_1_
2\(/3% " 2u (Q(O)z(u) g EA n Z;Q —1 (10)(“)> +O0(w) . (6.31)

2
En combinant (6.31]) et les résultats précédemment obtenus pour les solutions de Baxter

(6.28)), on obtient

COS

Q2 () — (_z’Q(O)Z(O)(\II(A +n)+ U(A-m)A 0(u0)> Wi oW,  (632)
W(A) = (; _ ﬁ) + (; + 2) _op(1) . (6.33)

Ainsi, en comparant deux résultats indépendants (6.29) et (6.32)), nous avons la relation
—2(0(A+n)+¥Y(A—-n)A=1. (6.34)
Apres quelques calculs, on obtient pour ’entier n

Lo LAt s v —n) + ow) -

4A 2
— o (FER) o (RS e+ 0w) . (639

En réécrivant le résultat en fonction des parametres d’expansion habituels, nous obtenons
la valeur propre du noyau LO BFKL bien connue pour un spin conforme & nombre entier
non nul n [4]

S =—1—4g? (w (1+”2_A> + 1 (M;A) — 2¢(1)> +0(gh) . (6.36)
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6.4.2 Multiloop expansion de la fonction d’intercept pour un spin con-
forme arbitraire

En utilisant la procédure itérative, nous avons calculé ’expansion de l'intercept de
I'eigenvalue de BFKL pour n et n = 91 dans la limite de couplage faible jusqu’a 'ordre de
g% (NNNLO). Ces données sont précieuses en elles-mémes, car elles peuvent servir de test
pour de futurs calculs d’ordre supérieur ou non-perturbatif. Ce qui est plus important,
cependant, c’est que cela nous a permis de trouver NNLO et les eigenvalues de NNNLO
BFKL partiellement comme une fonction du spin conforme n.

Nous commencons par remarquer que les intercepts de LO et NLO BFKL peuvent
étre représentées comme une combinaison linéaire de sommes harmoniques imbriquées
de transcendance globale. En effet, les eigenvalues BFKL Pomeron LO et NLO peuvent
étre exprimées (voir, par exemple, [2]) a travers les sommes des harmoniques imbriquées
décrites, par exemple, dans [48]

xT

sign(ai)Y
Sa1,027~--,an(m) = Z ygll)SaQ,,,.7an(y) , Spz) =1, (6.37)
y=1

ou z est un entier positif. On peut prendre A = 0 dans ces eigenvalues, ce qui apres une
algebre simple donne

jro(n) =89 (n 5 1) : (6.38)

. n—1 n—1 n—1 272 n—1
]NLO(n)—4SS< 5 )+4S_3< 5 )—85_271< 5 >+351< 5 )

On calcule ici et ci-dessous la transcendentalité comme suit: on suppose que la tran-
scendance des produits est égale a la somme des transcendantalités des facteurs et que
la transcendance des nombres est 0. Transcendance des log2 est 1 et transcendance des
(i est k. Puisque ¢, pour meme k est proportionnel 4 72, il est facile de voir que la
transcendantalité de 7 est 1.

Comme on le voit, 'argument de toutes les sommes harmoniques dans est
(n—1)/2. Cela conduit & une idée d’essayer de trouver des intercepts NNLO et NNNLO
comme des combinaisons linéaires analogues de sommes harmoniques avec des coeffi-
cients transcendants de transcendance globale uniforme. Les coefficients de la combinai-
son linéaire peuvent étre contraints en utilisant les données générées par la procédure
itérative. Mais le nombre de sommes harmoniques de certaines transcendentalités aug-
mente rapidement au fur et & mesure que la transcendentalité augmente. Heureusement,
on peut réduire considérablement le nombre de sommes harmoniques dans les ansatz en
conjecturant une certaine propriété du résultat que nous appelons la réciprocité.

Tout cela est directement applicable & notre cas et nous sommes en mesure de formuler
un ansatz pour la fonction d’intercept NNLO. A partir des expressions LO et NLO ,
nous voyons que leurs extensions asymptotiques a grande échelle n sont méme dans n.
Puisque nous utilisons les sommes harmoniques de largument M = (n — 1)/2, nous
ne devons garder que l'invariant des sommes harmoniques sous la transformation M —
—1 — M ou n — —n dans nos notations. Ce sont exactement les sommes binomiales

M .
Sty (M) = (DM Y (1) ( " ) ( e ) Siirld) . (639

J=1 J
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Les expressions ([6.38) pour les intercepts LO et NLO peuvent étre facilement exprimées
a travers elles

jro =4S , (6.40)

4 2
s

JNLo = 8(S21 +S3) + 3

ou les arguments des sommes sont a nouveau (n — 1)/2.

Pour trouver l'intercept NNLO, nous faisons un ansatz sous la forme d’une combinai-
son linéaire de sommes d’harmoniques binomiales avec des coefficients transcendants. Le
principe de transcendentalité maximale, formulé par L.N. Lipatov et A.V. Kotikov [1}2],
vaut également pour l'intercept: chaque terme de la somme doit étre de la transcendance
totale 5.

En assimilant les coeflicients devant chaque produit unique de constantes transcen-
dantales dans ces deux expressions, on obtient un systeéme linéaire pour les coefficients
rationnels des ansatz. En le résolvant on obtient une expression étonnamment simple

) 1672 3274
JNNLO =32 (S14 —S32—S122 —S221 —2S23) — ——S3 — ——S; . (6.41)

3 45

Le résultat pour la fonction d’intercept pour n arbitraire peut étre comparé aux
autres quantités connues. Le premier d’entre eux est la valeur propre de NNLO BFKL
Pomeron pour le spin conforme n = 0 calculé dans [31]. En prenant cette valeur propre
A = 0 et en la comparant avec (6.41)) pour n = 0, nous voyons un accord parfait.
Deuxiémement, pour les spins conformes non nuls, les formules pour les trajectoires de
Pomeron ont été trouvées dans [58], & partir duquel nous pouvons extraire l'intercept pour
n donné. Nous avons également vérifié que le résultat de ce travail coincide avec notre
résultat pour plusieurs premiers spins conformes non négatifs n, ce qui représente
une confirmation indépendante de I’exactitude de notre calcul.

Limitons-nous aux valeurs du spin conforme dans nos données égales a n = 4k + 1
avec k = 0,1,...,22. Dans ces points, les valeurs des fonctions d’intercept sont données
par

. 2 ! .6 2
jnnnLo(dk +1) = TR ynro + ™ iknvio + T iNNNLo T W2C3JNJ$7?}VLO+
+ C3j]<\?NNLO + C5jjc\?NNLO + jNNNLo - (6.42)

ou tous les coefficients devant les constantes transcendantales sur le RHS de sont
des fonctions rationnelles de k. Chaque coefficient du RHS de est supposé étre une
combinaison linéaire avec des coefficients rationnels des sommes harmoniques binomiales
avec la transcendance, complétant la transcendance des coefficients correspondants a 7.
Nous avons pu adapter toutes les contributions sauf jf\}”N NLo et N N Lo, qui, comme
les autres sommes harmoniques, prennent des valeurs rationnelles au points n = 4k + 1
pour entier £ > 0. Cependant, nous avons constaté que le terme jf\?NN 1o he peut pas
étre utilisé avec les ansatz qui consistent en des sommes harmoniques binomiales (|6.39)).
Cela nous a motivés a essayer d’adapter cette contribution aux sommes harmoniques
imbriquées . Cela semblait étre le cas et nous avons réussi a adapter cette par-
tie aux sommes harmoniques ordinaires, ce qui signifie que la réciprocité, a savoir la
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symétrie n — —n dans I’expansion asymptotique, est violée. Pour la derniere contribu-
tion rationnelle j5% o, Nous avons également constaté qu’elle n’était pas décrite par les
sommes harmoniques binomiales. Malheureusement, le fait d’adapter cette contribution
aux sommes harmoniques ordinaires ne nous a pas conduit a corriger completement cette
contribution en raison du manque de données. Par conséquent, en combinant les résultats
obtenus, nous écrivons la partie non rationnelle de la réponse pour les points n = 4k + 1,

qui est la somme des termes de le RHS de (6.42)), a 'exception de j¥% 1o

o 3272
INNNLo(4k +1) = — (3S1,4 — 3S2,3 —S32 + 81,13 — 28122 +S221 —S31,1) +
1674 5676 3272

+ ST (4S5 — Sg1) + 135 Si1+ 3 C35171 +224(5S1,1 —128(3 (S—3,1 +25_22 — 551,—3—

— 15513 — 452 2 — 12529 — 15531 — 45211 + 251,21 + 851,12 + 12511 2+
—|—12517271 + 123271,1 +S_4+ 954) . (643)

On peut trouver les valeurs completes de la fonction d’intercept NNNLO, y compris les
termes rationnels pour les spins conformes n = 4k + 1 de 1 a 89 dans la soumission arXiv
de l'article [62] dans le fichier intercept_values_Nodd.mx. Etant donné que la partie de
la somme harmonique constituée des sommes harmoniques imbriquées de la transcendance
7, qui constitue la partie rationnelle aux points n = 4k 4+ 1, nous ne pouvons pas écrire
une expression pour le travail d’intercept NNNLO pour tous les spins conformes laissant
cette tdche pour des études futures.

6.5 Pres-BPS expansion de toutes les boucles

Dans cette Section, nous allons analyser les équations QSC proches du point BPS
A=0,5 =—-1et S = 1. Il apparait qu’il est possible de calculer deux valeurs non-
perturbatives sur ce point par les méthodes de QSC. Un autre point BPS S5 =0, S1 =0
a été analysé en détail dans [21,22,|119]. Dans cette Section, nous suivons de pres la
méthode d’expansion pres-BPS par [22].

6.5.1 Slope-to-intercept pres du point BPS

La fonction d’intercept j(n) = S(0,n) + 1, ou S = S; et n = S, joue un role
particulierement important dans les calculs de BFKL. Comme nous ’avons mentionné
ci-dessus, le point A =0, n =1 est BPS, ce qui signifie qu’il est fixé pour tout couplage
't Hooft. L’argument théorique du groupe expliquant ce phénomene devrait étre basé
sur la condition de raccourcissement. Du point de vue de QSC, les points BPS sont les
points ou A®A, = 0 simultanément pour tous les a = 1,...,4. Dans cette Subsection,
nous étudions de petits écarts par rapport a ce point BPS et calculons la pente de j(n)
par rapport a n dans le point n = 1 dans tous les ordres de la constante de couplage g.
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Résultat pour la slope-to-intercept fonction

De I’équation QSC, nous corrigeons 6, qui est maintenant égal a

I I
0(g) = 1+—2 |, (6.44)

“+o0
kZ (—1)k I T4
=1

et constitue notre résultat pour la slope-to-intercept fonction.
L’expansion du couplage faible du résultat obtenu (/6.44)) est donnée par

Blg) = — 20 g2+ T L0
(9) 39t 59 15 Tt

2% 5 4Ant . 28n® 8r® ( ) . (6.45)
Etant donné que la slope-to-intercept fonction par définition est la dérivée de la fonction
d’intercept par rapport au spin conforme n & n = 1, nous pouvons comparer immédi-
atement les premiers coefficients de ’expansion du couplage faible avec la dérivée

e et . Cela montrera également que ces expressions fournissent les for-
mules compatibles avec notre continuation analytique dans n, loin des valeurs entieres.
Les dérivées de la fonction d’intercept (4.177) et (6.41) peuvent étre calculées et nous

trouvons qu’elles sont entierement en accord avec ((6.45))

dj 2n? 5 4mt 2870 8
Gl 2 A BT () 6.46
dn ., 379 799 357 g (6.46)
confirmant notre résultat (6.44)).
Dans la Section suivante, nous calculons ’expansion du couplage fort de notre résultat
pour la slope-to-intercept fonction. Comme nous le verrons, le calcul est moins simple
qu’a couplage faible, méme si le résultat est encore assez simple.

Expansion du couplage fort de la slope-to-intercept fonction

Nous obtenons la réponse suivante

f (=D* Iy, (4mg) L1 (47g) _
= Li(dmg)lz(4mg)

1 2331 1

_ 3 3 9 9 33) 0(

T2 A(4mg)  4(4mg)?  32(4mg)3 * 8(47g)* * 512(47g)® gﬁ) - (647)

Ensuite, nous obtenons la forte expansion de couplage pour cela

3 3 9 9 711 1
P= 1t 5im oy s e e 9 (W) (8.48)

Cette expansion nous sera utile dans la Section lorsque nous pourrons la com-
parer avec la dérivée de notre formule pour I'expansion du couplage fort de la fonction
d’intercept pour un spin conforme arbitraire n pris au point n = 1, basé sur une analyse
numérique intensive.
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6.5.2 Fonction de courbure a proximité du point BPS

Comme il a été mentionné ci-dessus dans la Subsection[6.5.1] nous considérons I’expansion
a proximité du point BPS A =0, S1 = —1 et S3 = 1. Dans la Subsection précédente,
nous avons développé les puissances de Sy — 1, cependant, pour trouver la courbure, nous
conservons Sy = 1 et développons les puissances de A. Le schéma de résolution des équa-
tions QSC dans ce cas est similaire mais avec une différence. Puisque la fonction S(A, 1)
est une fonction paire de A, nous devons élargir 'ordre NLO dans A pour obtenir un
résultat non-trivial.

Comme dans la section précédente, nous utiliserons une simplification de la fonction
Qi pour résoudre explicitement le Q-systeme.

Résultat de la fonction de courbure
Pour obtenir la fonction de courbure, il faut se rappeler que cg% détermine le coefficient
devant 1/z dans Pfll). Ensuite, nous trouvons la réponse
iHo ((T-vcosh” ) (u) —u (T - cosh” ) (u)) . iHy (u (T - veosh? ) (u) — (T - v2cosh” ) (u))
29215 49212

v(9) =

iHo ((F . fucoshﬂ) (u) —u (F . cosh'”_) (u)) N 1Ko (coshﬁ ((F . ’ucoshﬂ) (u) —u (F . cosh'”_) (u)))

JF
49215 g4Iz

(6.49)

En élargissant les noyaux intégraux a grande échelle, nous pouvons réécrire la fonction de
courbure sous une forme plus concise

~v(g) = @ j{ dv(vcosh” (T - ucosh™) (v) — v? cosh? (I cosh™) (v))+
1 1 v3 (T - cosh®) (v) — 20% (T - wcosh®) (v) 4+ v (I" - u* cosh®)
+ m % dv ( vy — xl ) N (650)
—2g v
ou )
g
d I'i(u — 1
(T - h(v)) (u) = 27:;3“ log — [ﬁgzﬁu _”i)++ ]1] h(v) . (6.51)

Apres avoir obtenu , nous pouvons le comparer aux autres résultats connus. Dans
les deux premiers ordres, nous connaissons les eigenvalues de BFKL Pomeron pour un
spin conforme arbitraire incluant n = 1. Nous pouvons donc calculer la courbure & partir
de ces eigenvalues dans ces deux premiers ordres. En comparant avec ’expansion de

couplage faible de la formule (6.50) pour la fonction de courbure

272 1674 2972 2876 8t
= 2(qg> 2 — 4 4 6 2 e 2
v(g9) = 2¢39” + < 3 G3 3545) g+ ( 5 3+ 3 (s + 50 C7> g + < 135 (3 3 s
13678 66876 11274
_ 24 _ 8 _ 2 10
567=(; 693069) q° + < 9835 (3 + 139 (s 3 (7 4 5087 (o + 93720(11> g+

754710 14027° 737 C +46187r4
42525 7 567 45 7 3

Co — 129697211 — 1234233413> g2 +0 (9"
(6.52)
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Nous trouvons que les deux premiers termes de l’expansion coincident avec les
valeurs obtenues a partir des eigenvalues de BFKL Pomeron, ce qui représente une vérifica-
tion de notre résultat. Ayant calculé ’expansion du couplage faible , nous analysons
dans la partie suivante ’autre limite intéressante, a savoir I’expansion du couplage fort,
qui est une tache de calcul distincte dans le cas de la fonction de courbure.

Expansion du couplage forte de la fonction de courbure

Pour le calcul de ’expansion du couplage fort de la fonction de courbure , nous
utilisons la méme méthode que celle utilisée dans [22].

L’application de la méthode numérique décrite ci-dessus nous donne la grande exten-
sion de g de la fonction de courbure

TOON/2Z T AN 16X32 16X2
2265 (144OQ3__765) 1 (207360@;__22545) 1 C)<jl> (6.53)
2561572 64 64 2048 2048 ) A7/2 M)

)\3

ot A est donné par A = (47g)%. Avec la fonction de courbure (6.50)) et sa expansion de
couplage faible (6.52)) la formule (6.53)), contenant 1’expansion de couplage fort de cette
fonction, conclut la liste des résultats de la présente Section.

6.6 Fonction d’intercept a couplage fort

L’autre limite intéressante de la fonction d’intercept en plus de la limite de couplage
petite considérée dans la Section [6.4] est celle du couplage fort. Pour n = 0 cas, la fonction
d’intercept dans la limite de couplage fort a été analysée dans [48,124126], puis étendue
aux prochains ordres par la méthode QSC dans [22]. Comme nous avons déja les données
numériques pour l'intercept des différentes valeurs du spin conforme n, alors en utilisant
I’algorithme numérique décrit dans la Section [6.3| et en supposant que les coefficients sont
des nombres rationnels simples et extrapolant la haute précision données numériques par
les puissances inverses de A\'/2 extraites

10 25 175 1

_ Y e Sl - -2
5(0,3) = 3+»ﬂ A+4A3/2+0(A), (6.54)
B 4 6 9 1 L
5(0,2) —‘Q+ﬁﬁ_X+§EE+O“ ),
S5(0,1) = -1,
2 1 11
S(0,0) = 0 —+ + 0\ 7?),

a2 ) T 432

ot A est donné par A\ = (4mg)? et le résultat pour n = 0 est tiré de [22]. Nous voyons que
le terme principal est linéaire en n, le subleading est quadratique et ainsi de suite. Ce
modele est assez typique au couplage fort (voir par exemple [61]). En supposant ce motif
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polynomial & partir des données ci-dessus (6.54]), nous obtenons

n—1)(n+2)(2n—1 n—1)(n+2)(Tm?>—-9n—1 1
IGEDEL RS IRUEB RS >+O<A2>, (6.55)

que nous pouvons contre-vérifier avec notre slope-to-intercept fonction vers en la
différenciant a n = 1! La comparaison avec ([6.48]) nous montre un accord complet. Nous
avons également vérifié numériquement notre résultat en prenant n = 1.5 et en ajustant
les données avec des puissances inverses de A\/2 nous avons reproduit précisément les
coeflicients de (|6.55]).

6.7 Conclusions et perspectives

Dans ce travail, nous avons réussi a reproduire la dimension de 'opérateur twist-2
de la théorie N' =4 SYM dans la limite 't Hooft dans le premier ordre (LO) du régime
BFKL directement a partir des équations exactes pour le spectre d’opérateurs locaux
appelé la Courbe Spectrale Quantique - QSC. Ce résultat est une confirmation tres non-
triviale de la validité générale de cette approche QSC et de I’ensemble du programme
d’intégrabilité du probléme spectral dans les équations AdS/CFT S-matrice et asymp-
totique Bethe ansatz, TBA, Y-system, FINLIE équations, etc. En particulier, il s’agit
de I'un des tres rares calculs de boucle, avec toutes les corrections d’emballage incluses,
ou le résultat de l'intégrabilité peut étre vérifié par une sommation directe du graphe de
Feynman de I'approche BFKL originale. Une étape évidente dans cette direction consiste
a calculer la correction NLO a la dimension twist-2 pour A fini de QSC et & la comparer
au calcul direct de BFKL de [2]. Bon nombre des éléments de la construction NLO, tels
que ’équation NLO Baxter pour les Q-fonctions, sont déja présents dans cet article, mais
I’ingrédient le plus difficile — la formule du type pour la singularité dominante, doit
encore étre dérivé. Bien entendu, le but ultime de I'approximation BFKL de QSC serait
de trouver une méthode algorithmique de génération de toute correction BFKL (NNLO,
NNNLO, etc.) sur le programme Mathematica, similaire & celle du couplage faible via
QSC, proposée par [20]. II serait également treés intéressant de construire numériquement
a partir du QSC la dimension twist-2 en tant que fonction continue du spin S € R décrit
qualitativement dans [127]. Nous espérons également que notre approche permettra de
mieux comprendre les similitudes et les différences entre N' = 4 SYM et la théorie de
Yang-Mills pure (multicolor QCD) a partir de 'approximation BFKL, en raison du fait
bien connu que, du moins dans le 't Hooft limit, N' = 4 SYMgraphes de Feynman cap-
turent une part importante de tous les graphes QCD et dans le LO BFKL les résultats
coincident simplement.

Nous espérons également que les méthodes de QSC présentées ici seront une source
d’inspiration pour la construction de l’expansion systématique du couplage fort dans
N = 4 SYM. Un apercu plus approfondi de la structure du QSC sera nécessaire pour
aborder I'’ensemble de ces problémes complexes.

Le régime BFKL est traditionnellement 'un des problémes “durs” de la physique
théorique des hautes énergies. La méthode QSC a permis de progresser dans cette di-
rection lorsque les méthodes perturbatives traditionnelles deviennent trop complexes a
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mettre en ceuvre. Dans notre travail, nous avons encore élargi la zone d’application de
QSC en ajoutant un parametre supplémentaire: le conformal spin n. Fait important, nous
pouvons gérer la situation lorsque le spin conforme prend une valeur réelle arbitraire. QSC
peut maintenant faire face a la situation ou les trois charges globales correspondant a la
sphere & 5 dimensions S° — S, S5 et A sont non entieres. Cela a nécessité une asymp-
totique exponentielle dans deux composants de la matrice de collage. Les conditions
de collage constituent donc le principal ingrédient de la poursuite analytique de QSC
présentée dans cet article.

Pour illustrer notre méthode, nous avons calculé deux quantités de tous les couplages
— slope-to-intercept BFKL & A = 0 par rapport a n autour de n = 1 et courbure de la
trajectoire de 'opérateur twist-2 dans le voisinage du point A =0 et n = 1. Nous avons
généré des données analytiques perturbatives et numériques en utilisant les procédures
itératives décrites dans [31], que nous avons dii modifier pour prendre en compte les
asymptotiques exponentielles pour les charges globales non entieres. Les données itératives
nous ont permis de corriger les intercepts NNLO et NNNLO BFKL en termes de sommes
harmoniques imbriquées.

Plusieurs autres pistes de travail viennent immédiatement a l’esprit. Tout d’abord,
la base des sommes harmoniques imbriquées semble bien décrire I’expansion perturbative
de l’eigenvalue de BFKL et en particulier son intercept. Puisque la procédure itérative
peut étre utilisée pour un ordre élevé arbitraire dans g et pour un n impair arbitraire,
il est juste question de temps et de puissance de calcul pour corriger les eigenvalues de
BFKL a d’autres commandes. La premiere tache serait de trouver une expression fermée
pour 'eigenvalue NNLO BFKL pour n arbitraire. Il devrait alors étre en accord avec les
résultats de [58], qui a présenté une procédure de calcul de 'eigenvalue de NNLO BFKL
pour un n donné.

La deuxieme direction que I'on peut suivre est I’exploration du voisinage du point
BPSn =1, A = 0. Apres avoir calculé la slope-to-intercept par rapport a n, on peut
calculer I'ordre suivant (n — 1)2. Le calcul devrait étre semblable en esprit au calcul de
la correction de S? & la dimension anormale de I'opérateur de torsion [22].

De plus, il convient d’étudier de maniere similaire le spectre Odderon, qui devrait
correspondre au parametre de longueur a prendre L = 3. La plupart des étapes décrites
dans cet article devraient étre applicables & L arbitraire et il serait tres intéressant de
reproduire des résultats perturbatifs connus antérieurement et les étendre au couplage
fini.

Enfin, il existe des indications [128] que les constantes de structure peuvent également
étre gouvernées par les Q-fonctions de QSC, qui ont été évaluées dans cet article sous
différents régimes. Il serait donc intéressant de comparer et d’étendre au couplage fini les
résultats sur le triple sommet (vertex) de Pomeron [129].
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Appendix A

Appendices

A.1 Derivation of the 4th order Baxter equation for the
Q-functions

Following the discussion in [17] we begin by picking a few QQ-relations out of many
possible

Q:l] - Q;‘j = Pan ) Q] = _PQQ:E (Al)

alj

The first one follows directly from with A = I = (). The second one is also an
algebraic consequence of general QQ-relations , and . It is shown
in [17] (see the equations (4.5)-(4.7) therein) that all Q-functions can be obtained in a
simple way through 3 ones — Py, Q; and Q,;. Thus, expressing P* = Qj1234, where
a = {1234}\a is a subset complementary to a, through these 3 types of Q-functions we
can prove the second of equations (A.1]).

We see that the function Q,; is designed to “rotate” P¢ into Q;. The strategy is
to exclude Q,|; and relate P- and Q-functions directly. Shifting the argument u in the
second of these two equations by +4, +2i and then using there the first equation to bring
all shifted arguments in Q,; to the the same one we obtain a linear system of 4 equations

Pa[f.?)] Qau — Q‘gffﬂ _ QE*].](PCL[*?)]PL*”) , (AQ)

P, =q
Pa[+1] Qa\j _ Q[""” ’

J
Prlg,; = Q- QPP

from which we can express Q,; in terms of P,, P and Q,. Now, taking the second of

alj
two equations in the shifted form Q?] = —pabl Q([;l‘]j and using there again the first
equation to bring all shifted arguments in Q,; to the the same one, we get, together with
(A.2)), a system of 5 linear equations on only 4 functions Qq; (the second index is fixed in
all equations). From their compatibility we obtain the closed 4-th order linear equation

(2.51)) with coefficients expressed only through P, and P°.

141
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A.2 Computation of the P-functions in the NLO in w

The asymptotics of u’s in this order contains a logarithmic correction. For example,
from it follows that, up to the exponential factor, p12 ~ u °~! ~ 1 — wlogu.
This shows that pa, can no longer be a polynomial times exponentials. Nevertheless, we
show here that the non-polynomial part can be identified easily and we will have to find
a few coefficients in the polynomial part as we did for the leading order.

As we discuss in the main text, in the expression , relating pqp to w;; in the LO
only the term with way (or equivalently w'3) survives since the other terms are suppressed
by w?. Therefore we can write as

tap = Qi (A3)

(013 i a periodic function, whereas le);)u_?, is analytic in the upper

where, importantly, w
half-plane. We denote the LO and NLO orders w'? = woy = w72w(0)13—i—w*lw(l)w—i—(’)(wo)

and fiqp = w_2ug%) +w™! u&) + O(w") and represent (A.3) in the form

(0) @ W13
5(113 - wlzg)bl:a <1 Tw (gt(z(l))) - w(0)13>> +O0(w?) = ng))hg + wQS,)ug +O0(w?) . (A4)
ab

First, let us look at the leading term in the RHS: u((l%) /w(lg’) should be analytic in the
upper half-plane and it has a power-like asymptotics, as the RHS does. This means that
w13 = Bsinh?(ru) and thus ugl)))/w(o)l?’ ~ u((l%)/sinhQ(ﬂu) = P, is a polynomial. So
w13 /w(o)l?’ could contain in the upper half-plane a sum of poles of the second order and
of the first order at all u = in, n € Z with equal residues (because w'? is periodic). To
preserve the analyticity in the upper half-plane we should cancel these poles by the poles
in ,ug))/ugob). Also we note that the ratio ,ué?(u + i/2)/ugob) (w+1i/2) is an even function,
which also fixes the pole structure in the lower half-plane. In addition ,ugj) / ug%) could
have a finite number of poles at zeros of the polynomial P,. In other words, the most
general function with these properties can be written as

(1) : R
Koy, (w+1/2) 1 ab(w)
= Tab + Pap W (u) +
M((l[z),)(“ i/2) cosh? (mu) o+ Pl () Pop(u)

(A.5)

where rq, and pg, are some constants and Rgp(u) are regular functions. The first term
represents an infinite series of the second order poles with equal residues and the second
term gives an infinite series of the first order poles with equal residues since

W(u) = (; - zu) 4 (; + zu> —2y(1). (A6)
The last term takes into account the possibility that there are extra poles cancelled by
the ratio ,u((lg) /w(0)13 outside the brackets. We notice that R, can only be a polynomial
of the same order as P,;. Thus again we have a small number of constant coefficients in
our ansatz to fix.

We can fix 745, pap and Rgp(u) in the same way as we did for the leading order, i.e.
by applying and the regularity conditions, telling that the combinations pap + fiap
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and (ptap — fiap)/\/u? — 4g? are regular at u ~ 0. This procedure leads to the following
result

ra =20, pa=— (A7)
R L 8i (2% (A% — 1) A + 3)

1 3-2n2(A%2-1)A
R13 - 7'['2A2 6 u,

1 [(27n(A%2-1)A+3, , (AZ —1)A
T ( 18 it == )
1 (27 (A?-1)A+9) 9

Rou=-—373 = u(4u® + 1),

1 i(AQ — 1)2 2 2 2 2 2
Ry (4u® + 1)((272(A2 — 1)A + 3)(4u® — 3) + 72(A% — 1)A) .

T T2A2° 18432

and also fixes the remaining coefficient in (3.178)) to (3.179).

A.3 NLO solution of the second order Baxter equation
By making the Mellin transformation of Q(u) we converted the finite difference equa-

tion (|3.184)) into a second order PDE which we managed to solve and transform the
solution back explicitly. The result we found reads

Ji(u? — 20wy T (=iu+ ¥ +iv2hiw)
. . X
—iu— ¢ +ivV2Aw T (—iu - ¥ - i\/2Aw)

com (1588 e N Y e )

4

Note that this solution contains \/w terms. As the initial equation is analytic in w
changing the sign of /w we get two linear independent solutions. Suitable combinations
of these two solutions should give Q; and Qs with O(w) accuracy. As this result is
not required for the leading order calculation of this paper these combinations will be
published elsewhere.

The Baxter equation in the NLO

J 42 2ul

AZ — 1 — 8u? AZ 1) A — 2
Q-( Su —I—w( ) u>—|—

+Q; <1— 2(5111.)) +Q; " <1+2(5‘ii)> =0, j=1,3. (A9)

Let’s consider the NLO solution of this Baxter equation (for now we consider w to be
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finite)

22— 9Aw T (—iu— %+ }vuw? = 32Aw)
X
iu—%—%\/ml“<—iu+@+l\/m>

X 3Fy (H,HA —z’u———i— \/ 2 — 32Aw; — 2 1\/w2 32Aw + 1; 1) . (A.10)

2 2

Expanding this solution in w, we obtain

Q(u) =

A% 1. 1-A 1+A 1
_— - 1:1.2:1 — | =
(F5= 5 i nat) <o)

A% -1 (0)
4w ()+O(\/w>'

Let us determine the poles. To do this, we expand the hypergeometric function in the
series and find the large n limit of this series. This gives

 cos (%) T (-%) (u? = 20w) T (§/w(w = 324) +1) .
wl (iu+ Jy/w(w —328) - 4 + 1)
x((z’u—l—i w(w—32A)—Z+1> -

:zcos( )wI‘(——)( w(w—32'/\)—w)+0<u_i (w320 + ZZ’) (A.12)

87 (u— 1iv/w(w —32A) + %)

Thus, the poles of the solution Q(u) are situated in the points v = —iw/4+i/w(w — 2A)+
in, wheren = 0,1,...,4+00. Also we have the poles in the points u = iw/4—iy/w(w — 2A)—
in in the lower half-plane. And the solution has the series of zeroes in the points
u=—iw/4 —iy/w(w — 2A) —i(n+ 1). For simplicity let us denote from this moment

Tw .
LN T R SN eeS (A13)

There is another solution of the NLO Baxter equation with the different sign of the
square root \/w(w — 2Aw). But, in fact, if we expand this solution in the powers of w, we
get the same functions, but with the different signs. This follows just from the following
expansion

(A.11)

Q) = 01" + =@ ) + Q1) + v Q) (w) + Ow). (A14)

Due to the fact that the Baxter equation is analytic in w, there exists the other
solution with the opposite sign of the root

o T e et 0N
c\¥) = 7
zu—%+%\/mf(—iu+%—%\/m>

1-A 1+A 1 1
X 3Fy (,+,—iu—z—4\/w2—2Aw;—;),—2\/w2—2Aw—i—1;1>. (A.15)

2 2
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This solution has two series of poles in the points v = b+ in and u = —b — in and the
series of zeroes in the points u = a — i(n + 1), where n =0, 1,...,+o0.

The solution Q(—u) has the same two series of poles as Q(u), but with the different
residues. But the key observation is that the ratio of the residues is constant for any pair
of poles symmetric with respect to zero. Calculating these residues we obtain

u:rae-iS-ZnQ(U) _ cos % (A 16)
res Qu) sinTP )
U=—a—1n

From the equation (A.16) we can obtain the solution which is analytic in the upper

half-plane
A
0 3 0(~u). (A.17)

s T
SlIl2

Q(u) = Q(u) +

There is also an independent UHPA solution with the different sign of the square root

coS %
Q-(u) = Qc(u) + =55 Qc(—u) . (A.18)
sin 757
Expanding the first of these functions, we derive
(A% —1)cos ™2 g 1

A.4 Finding w;;
Combining (3.188]) and (3.194]) we can extract

wig) = —Cos <7T2A> , (A.20)
h A
i)
cos (T2 cosh (7 (u + &
(2) s (7Y (7 (4 5))
wéi) B _sinh2(727u) - Zitan <7T> sinh(mu) =

Next, using the unit Pfaffian constraint we get
0) (0 0) (0 0)) 2
W%Q)W:(M) - Wgs)wézl) + (W§4)) =1, (A.21)

from where we obtain
WPl = 2. (A.22)

As we discussed in Appendix [A22]

B sinh?(7u)

wag = 5

" + 0w, (A.23)
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i.e. from (A.22)
2

"B sinh? (mu) 0w 20

w13 =

To complete the calculation we have to find the constant B. We note that B can be
extracted from the singularity of w3 which can be computed independently from

w13 + W13 w13 — W13
w1z = + Vu?2 —4Aw , A.25
1 2 2vVu? — 4Aw ( )

where the combinations (w13 + @13)/2 and (w13 — @13)/(2vVu? — 4Aw) are regular around
u = 0. We shall use that

—u Q1Qs — Qi1G 16 cos T2
NearTvis Qz%?’ = (—7@( 238_21)2u+0<u3)> Low).  (A26)

Therefore for the leading singularity of w3 we have

32cos T2 A2 1

and comparing with (A.24) we get

(Ao
16A2 cos% '

(A.28)

A.5 Details of QSC construction

To show that the matrix Qf = Q;HC’;} Q= is i-periodic let us apply the conjugated
equation (4.15)) and the same equation for Q%% which is valid now in the whole complex
plane as we know the functions Q; and Q° on the sheet with the short cuts. We have

QT -0 = —P,Q,C QM + Q,,CiP' Q) =
= —QP, QM - 0, P"Q/ = —Q:Q/ +Q:Q =0. (A29)

To show that the matrix @g(u) = (—1)o+! Q;ﬁ(_u) Qb= (u) is i-periodic let us apply the
equation (4.15) with u replaced by —u and the same equation for Q%" which is valid now

in the whole complex plane as we know the functions Q;(—u) and Q'(u) on the sheet
with the short cuts. We have

07" — 0] = ~(= 1) "Pu(~0)Qu(-u) @ (u) + (=) Q) (~w) P (W)@ (w) =

= —Qi(~u)Py(w) Q™ (u) = Oy, (~w)P*(~u)Q’ (u) =
= —Qi(—u)Q’(u) + Qi(—u)Q’ (u) = 0. (A.30)
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A.6 NLO BFKL eigenvalue in terms of nested harmonic
sums

In this Appendix we show how to rewrite the NNLO BFKL Pomeron eigenvalue given
in [1,2] in terms of nested harmonic sums. In the notations of the present work we have

S(A,n) = 1+ ¢*xzo(A,n) +g'xnro(A,n) + O(¢°) (A.31)

where the LO BFKL Pomeron eigenvalue is known in terms of the harmonic sums

xXro(A,n) = —4 <51 (H;HL - 1) + 51 (HQ—HL - 1)) : (A.32)

Upon identification with the notations of [1,2] of the BFKL Pomeron eigenvalues xro nrLo(A,n) =

4x1.2(n, (1 + A)/2) we write down the original expression, which reads as

XQ(n7’Y) = _i [2@(77,7 7) + 2@(77,7 1- '7) + 2C2X1 (n7 '7)_

-ﬁg—w”@+g>—w”@—y+gﬂ, (A.33)

where v = (1 4+ A)/2 and

0 (_1)k+1

dn,y) =S ——— [ (k 1) — ' (k +1 A.34
(n,7) k;mwn/ﬂ“*”*) Wk + 1)+ (A.34)
_1\k+1/pr / o
HEDSHIF 44 1)+ B+ D) s (Gl 1) vl 1))
and N
/ _1[/<Z+1> /<) = (=)t
Bl =719 = ;{)Z+k (A.35)
Let us consider the following function
5w) =y a1 - p) (.36
x) = 2 (v a)? x . .
We can express it in terms of harmonic sums
= 5
O(x) =8 91(x—1)+ é4(3) : (A.37)
Then we use the following identity for ®(0, z)[] which can be found in [48]
3
- - ™
@0, —z) + ®(0,1 + z) = 20(—x) +20(1 + z) + Fem(rn) (A.38)

Tn our notations ®(0, ) coicides with ®(x) from [48].
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Taking into account the relation

™

=8 1(z)—S_1(—x—1)—2log?2, (A.39)

sin(7x)

we obtain the following equation

@(O, —.1‘) + CD(O, 1+ .1‘) = 25_271(27) + 25_271(—16 — 1)+

7T2

+ gg(g) TS () +Sa(—w — 1) +2102) . (A40)

Thus, the NLO BFKL Pomeron eigenvalue

xvro(A,n) = —20 (n ! ;A> —2® <n ! 2A> —2¢(2)xro(A, n)+

+6¢(3) + ¢ (H"QA> +9" (W) (A.41)

forn=20

o0 = —20 (0.255) — 20 (0,252 ) — 2@)ao(a,0)+

2
1-A 1+ A
+6¢(3) + " (2 ) + ¢ (J; ) (A.42)
can be rewritten as follows
1—-A 1+ A
xNzo(A,0) = Fy <2> + Fy <2) , (A.43)

where
2
Fy(z) = —;C(B)—Hr2 log 2+%Sl(x—1)+7r25_1(m—1)+253(x—1)—45_271(x—1) . (A44)

Using these results, we are able to rewrite the NLO BFKL Pomeron eigenvalue for non-
zero conformal spin in the following way

1 1—-A 1+ A
xnro(n,A) = §(XNLO(O7A +n) 4+ xvro(0,A —n)) + R, <2> + R, (2> )

(A.45)
After some calculations, we derive

Ru(7) + Ra(1 = 7) = 28(n,) +28(n,1 — ) — ® (0,7 + ’;) _

—<I><0,7—Z)—<I><0,1—'y—|—g>—<I><0,1—'y—7;> . (A.46)

To proceed we rewrite ®(n,) in the following way

n ! / 400
@(n,'y):—ﬁ’<7+g>zl+z 8'(p) +Zﬁk+17)l A

SPTYTE S PTY T > ikt T
(A.47)
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Then, after simple calculations, we obtain the result

R,(7) = =28 <7 + Z) E": p_i_g =

p=1

“2sale g ) B) (5 (5wl 5 ) -

To sum up, substituting into (A.45) the expressions from (A.42)) with (A.44) and
(A.48), we are able to write the NLO BFKL Pomeron eigenvalue with non-zero conformal
spin in terms of nested harmonic sums.

A.7 Values of the NNNLO intercept

Using the iterative procedure we managed to calculate the values of NNNLO intercept
for a set of values of the conformal spin n. They are written below

.jN3LO(1) =0, (A~49)
32t 32072 54476 327t 128x72

i 3) = —128(2 22 64n? — 704 2208 - —

Jn3Lo(3) Cs+( 3 W>C3+< 3 )C5+ ¢r+ 789 3 3
567%  4x?

jnspo(5) = (4877 — 864) ¢ + 1008¢s + 4—2 + % — 127 + 2832,

) 7043 16976 97672 327t 32072 15536

Jnsro(7) = 3 + 9 9 + 3 (s + 3 9 s

299275 847672  644xt 5440444
22 - -

+2208G+ e+ g 81 2187

vo10(9) = 25007% 196750 ¢ 4+ 1750065 1407° 957 291275m° | 76123175

In3Lols) = 27 81 3 9 81 54 5832 17496 °

vono(11) = _4384¢5 | (157729  330767% 327 st 3207 573836 ot

InsLo\it) = =7 45 225 3 )% 3 225 ) %°

| 220867 + 1863275 N 9598920437% 1458537 20803468134991

7 2835 18225000 20250 5467500000

A.8 Solution of the NLO finite difference equation for Q,;
Rewriting the equation (4.278) in the form (4.280f) we have

i cosh_ ucosh? iu cosh_ cosh?
29215 PRt T 2920 T gAI2
) 2 2 ) (22 2 2
iu cosh_ u* cosh® i z(u cosh_ —g 12) u cosh?
oW+ _ o= _ | "247h s T2 29°T> R
ali ali 1 iu cosh u __dcosh_
4 2921 4 29215
o i + i(u2 cosh_ *9212) 2 _ducosh_
1 2 29715 1 29215
(A.50)
The parts of the solution are given by
0 0 0 0
u
1)+ 0 0 ~32 0
Q) = : 2 A51
( ali pol % 0 —% + % 0 ( )
iu? U U iud u? U
78 2 "12tsta 0
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and
cosh?  — 9332 v (cosh”)®  —vcosh? 93}2 (cosh” )*
; v 2,2 vy2 2 v 2 v )2
(le‘l)-‘r) _ 12 T, - v cosh?. 75,V (cosh?) v?2 cosh” 25 (cosh?) 7
U 2¢°0 0 v cosh?. 0 — cosh?”.
0 v? cosh? 0 —v cosh?”
(A.52)

where we used the fact that (I'yy - const) = 0.
Using the large u expansion of the kernel I'y, it is possible to fix the coefficients cgj;

7 T
LY 0 7 0
s 1
ali = _1 3 im  _ig°ls | ig° _ g KA
1t 73 20, T 12 — 2Ca1 1 38 0
ig?ly _ig2 L g (1) i i 0 7 _in
241, 12 T 9641 7 18 7] 12 4
(A.53)
Rewriting equation (4.290)) in the form (4.280]) we have
icosh_ wcosh? iucosh_ cosh?
29215 B g4122 2921 g4122
iu cosh_ u? cosh? i i(u2 cosh_ —9212) ucosh?
Q(l)-&- . Q(l)— _ 29215 L 2 2921 gtI2
ali ali 1 iu cosh_ u __icosh_
4 2¢%1; 1 2¢%1>
w i i(ufcosho —gh) w2 _iucosh_
7] 2 2921, 4 29215
(A.54)
Parts of the solution are as follows
0 0 0 0
U
1) 00 3 0
; = : - A.55
@)= % 0 wix )
_w? _woow ot w? u
8 § 2 1 S 24
and
; 2 ; 2
cosh” 2 (cosh?) —vcosh”  —-2 (cosh”)
] gz 5 g°1I2 )
(Q(1)7> o ’ v cosh?. 93}2 v? (cosh” )”  —v?cosh” —93—}21) (cosh)
. = . 5
ai )b 2621, 0 v cosh?” 0 — cosh”.
0 v2 cosh” 0 —v cosh”
(A.56)

where we used the fact that I'p (const) = 0.

A.9 Fixing the constants Ml(l)l?’, M1(1)11 and M1(1)33.

Let us rewrite the equation (4.304]) once more introducing a new designation for the

LHS of (£.298)
2

Z19=Rio+ Rio+
1,2 1,2 1,2 2T

(coshy +cosh_) R34 =0, (A.57)
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where R,;, a = 1,...,4 are given by (4.298]). After the substitution of the P-functions,
Q-functions with two indices and the gluing matrix we see that the integral kernels I'yy
and I'p in (A.57) combine into the difference

2g

(Cu-B)w) = (Tp 1)) = f 2=

2mi

e + 7 coth(m(u — v))) h(v) . (A.58)
g

As we are dealing in (A.57)) with the functions h(v) being the series in x(v) with negative
powers, the first integral in (A.58)) with the kernel 1/(u — v) can be taken by using the
residue theorem and we obtain

2g
(Ty-h)(uw) — (Tp-h)(u) = h(u) + ]{ %w coth(m(u —v))h(v) . (A.59)
—2g

Rewriting coth(27(u — v)) = (e?™ 4 €¥™)/(e?™ — €2™) and changing the integration
variable from v to Zhukovsky variable z(v), we are able to derive relatively compact
expressions for Z; and Zo

. 1
Z) = ——— sinh(2ra) — iMy P+ {0 4 2 (8 (M - M) )

915 921
(A.60)
] . Iy . .
Zy = %u sinh(27u) — (le(l)l?’ + ;2102 (z (Ml(l)12 — M1(1)34> + 77)) u+ le(l)ll + 715,
where
im dx, 2™ + e*™ ( 1 > < 1> < 11 )
Th=——= - - — - ——— A.61
' 92122| fl omi e2mu — g2rv \ Ty Tu To) \ Ty Ty % ( )
Ty |=
X (Ip + cosh” —sinh(27u)) cosh? |
7= d%§”+¥m6g_1>er_1><1_1>x
’ 9—722‘ - 2mi e2me — g2 \7Y g2 Yoxy ) \my oy
To|=

X (I()(l — Lxya?) + cosh? —(1 — Lx,x?) sinh(27ru)) cosh? |

where the integration contour goes clockwise. To calculate the integrals we utilize
the following trick. If in both integrals we make the inversion of the integration variable
x, this does not change their value. Thus, taking the half-sum of 77 o and T3 2 with z,
replaced by 1/z, leaves the integrals intact, but gives us the integrands which are much
simpler to work with

T dz, 1 1 1 1
7= Moy — = S A.62
! 292122 f 2me (xv xv) (xu xv) (l"u xu) 8 ( )
Ty|=1
x (coshf — cosh?) (sinh(27u) 4 sinh(27v)) ,
T dx, 9 1 ) < 1 ) < 1 1 )
=" - S Y
2 2912 7{ 211 (xv x2 Tu Ty) \ Ty Tu %
2o |=1

x (coshf —cosh?) (sinh(2mu) + sinh(27v)) .
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Calculation of the integrals ((A.62)) leads us to the result

i it X
Ty = ——sinh(27u) + —5u Y  lop(lokt1 — lok—1) A.63)
i in %
Ty = Y sinh(27u) — —5 > Dop(Takys + Toks1 — Tor—1 — Top—3) -
g-12 2 k=1

After the substitution of (A.63) into (A.60), we manage to fix the following coefficients
of the gluing matrix in the NLO

W _ do oz ()34
Mt = - (i (] M) 4 x) (A.64)
O _ T X
V= > Dok(Tokys + Toky1 — Top—1 — Top—3) |
92 i3

+oo
T
M = N7 Do (Iogyr = Lo 1) -
g°1 k=1
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Résumé

Dans la présente thése, nous avons
développé un cadre non-perturbatif
général pour le spectre de Balitsky-
Fadin-Kuraev-Lipatov  (BFKL) de
N = 4 SYM planaire, basé sur la
Courbe Spectrale Quantique (QSC).
Il permet d’étudier le spectre dans
toute la généralité pour les spins
conformes arbitraires n. Notre
approche ppermet de reproduire
les résultats perturbatifs connus et
obtenir les nouvelles prévisions.

En utilisant les méthodes du QSC
provenant de lintégrabilité de N' =
4 SYM, nous poursuivons analy-
tiquement les dimensions d’échelle
des opérateurs twist-2 et length-
2 et reproduisons l'eigenvalue de
BFKL Pomeron pour zéro et non
zéro spins conformes. Aussi nous
avons récupéré I'équation Baxter de
Faddeev-Korchemsky pour la chaine
de spin de Lipatov dans les deux cas.
Nos résultats sont un test non trivial
de QSC décrivant le spectre exact de
N = 4 SYM planaire a linfinité de
boucles pour une quantité non-BPS
et ouvrent la voie a une expansion
systématique de le régime BFKL.
Nous obtenons de nouveaux ré-
sultats analytiques non-perturbatifs
pour I'eigenvalue Pomeron prés de
point [n| = 1 et la dimension A = 0 et
une formule explicite pour I'intercept
BFKL pour un spin conforme arbi-
traire jusqu’a l'ordre des 3 et par-
tiellement 4 boucles dans le limite du
couplage petite. De plus, nous avons
implémenté l'algorithme numérique
QSC. Du résultat numérique nous
avons dérivé une formule analytique
pour I'expansion du couplage fort de
l'intercept pour un spin conforme ar-
bitraire.

Mots Clés

Théorie des champs intégrable
AdS/CFT correspondance
Chromodynamique quantique

Abstract

In the present thesis we developed a
general non-perturbative framework
for the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) spectrum of planar N' = 4
SYM, based on the Quantum Spec-
tral Curve (QSC). It allows one to
study the spectrum in the whole gen-
erality, extending previously known
methods to arbitrary values of confor-
mal spin n. We apply our approach
to reproduce the known perturbative
results and get new predictions.
Using the methods of the QSC orig-
inating from integrability of NV =
4 SYM we analytically continue the
scaling dimensions of twist-2 and
length-2 operators and reproduce the
Pomeron eigenvalue of the BFKL
equation for zero and non-zero con-
formal spins. Furthermore, we recov-
ered the Faddeev-Korchemsky Bax-
ter equation for Lipatov’s spin chain
in both cases. Our results provide a
non-trivial test of QSC describing the
exact spectrum in planar NV = 4 SYM
at infinitely many loops for a highly
non-trivial non-BPS quantity and also
open a way for a systematic expan-
sion in the BFKL regime.

We also get new non-perturbative
analytic results for the Pomeron
eigenvalue in the vicinity of |n| = 1
and dimension A = 0 point and we
obtained an explicit formula for the
BFKL intercept function for arbitrary
conformal spin up to the 3-loop order
and partially 4-loop in the small cou-
pling expansion. In addition, we im-
plemented the QSC numerical algo-
rithm. From the numerical result we
managed to deduce an analytic for-
mula for the strong coupling expan-
sion of the intercept function for arbi-
trary conformal spin.

Keywords
Integrable field theory

AdS/CFT correspondence
Quantum Chromodynamics
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