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Introduction





Introduction (version française)

Ce mémoire présente de manière synthétique mes travaux de recherche réalisés durant mes
années de post-doctorat (d’abord sous la supervision de Tony Lelièvre et Mathias Rousset au CER-
MICS/Ecole des Ponts, puis sous celle de Michel Benaïm à l’Université de Neuchâtel) puis en tant
que chargé de recherche CNRS, affecté à l’Institut Camille Jordan, depuis octobre 2015. Les travaux
seront mis en perspective par rapport à ceux de ma thèse de doctorat [1], préparée sous la direction
d’Arnaud Debussche et Erwan Faou, à l’ENS Rennes, soutenue en 2012.

Ces travaux combinent plusieurs ingrédients, à différentes doses: modèles stochastiques, équa-
tions aux dérivées partielles et méthodes numériques. Les approches sont diverses et complémen-
taires: analyse théorique, construction d’algorithmes, expériences numériques. Enfin, parfois la mo-
tivation des travaux provient d’une problématique d’une autre discipline (physique, astrophysique,
biologie), nourrie directement à travers des collaborations. Tandis que certains travaux demandent
des outils conceptuels avancés, d’autres consistent à minutieusement étudier de nombreux termes
d’erreur, enfin certains sont fondés sur un argument plus élémentaire quoique puissant.

L’écriture de ce manuscript vise à illustrer la diversité et l’unité de ces travaux de recherche en
mathématiques appliquées. On mettra en avant les résultats obtenus, le contexte et la littérature; on
donnera les idées principales des preuves, et on mettra en évidence des questions ouvertes. Dans le
but de ne pas allonger plus le manuscript, le contenu des expériences numériques n’est pas détaillé,
bien qu’il s’agisse d’une partie significative du travail effectué.

Le manuscript est divisé en trois parties. La troisième peut être lue indépendamment, tandis
que la deuxième utilise quelques outils et notations introduits dans la première.

La première partie de ce mémoire est consacrée à la problématique principale de mes travaux: la
construction et l’analyse de méthodes numériques de simulation d’équations aux dérivées partielles
stochastiques (EDPS). Plus précisément, on considère essentiellement des équations paraboliques
semilinéaires du type

∂tX = ∆X + f(X) + σ(X)Ẇ

où la perturbation est de type bruit-blanc espace-temps. Un chapitre préliminaire est inclus pour
rappeler les concepts et notations utiles, permettant de poser et résoudre les problèmes étudiés dans
les trois chapitres principaux de cette première partie.

Les problèmes de l’approximation numérique de solutions d’EDP stochastiques sont les suivants.

• Les propriétés de régularité en temps et en espace des solutions sont réduites par rapport
aux solutions d’EDP déterministes, et aux solutions d’équations différentielles stochastiques
(EDS), en dimension finie. Par conséquent, on doit s’attendre à des ordres de convergence
réduits.
• Plusieurs notions d’ordre de convergence sont distingués: l’ordre fort est associé à l’erreur
au sens quadratique moyen dans la norme associée (ou une variante), alors que l’ordre faible
est associé à la convergence en distribution. Le défi est d’établir (sous certaines conditions)
que l’ordre faible est le double de l’ordre fort.
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• L’analyse de l’erreur faible utilise comme outil auxiliaire les solutions d’équations de Kol-
mogorov et de Poisson, posées en dimension infinie. L’étude des propriétés de régularité
de leurs solutions est nettement plus difficile que pour celles associées aux EDS.
• Comme pour les EDS, si les nonlinéarités ne sont pas globalement Lipschitziennes, on ne
peut pas utiliser de schémas numériques explicites naïfs. L’équation d’Allen-Cahn est un
exemple de problème pour lequel on peut utiliser une méthode de splitting pour avoir un
schéma explicite stable et convergent.
• En temps long, le processus stochastique (de Markov) converge, sous certaines hypothèses,
en loi, vers une distribution invariante non-triviale (au lieu d’une convergence vers des
points stationnaires dans un cadre déterministe). Il s’agira alors d’étudier si des schémas
numériques peuvent approcher cette distribution invariante.

Notons également une différence majeure avec le cas des EDS: les solutions d’EDPS sont des pro-
cessus à valeurs dans des espaces de fonctions de dimension infinie (typiquement des espaces de
Hilbert), il faut donc ajouter une discrétisation spatiale (par différences finies par exemple).

Les travaux présentés dans la première partie répondent à plusieurs objectifs:
• analyser rigoureusement l’ordre (fort et faible) de convergence de schémas existants,
• proposer de nouveaux schémas mieux adaptés aux modèles étudiés (nonlinéarités non Lip-
schitziennes, approximation de la distribution invariante,...), si possible d’ordre plus élevé,
• étudier des techniques permettant de réduire le coût, même sans augmenter l’ordre de
convergence.

Les résultats théoriques et l’étude de l’efficacité des nouveaux schémas sont accompagnés d’expériences
numériques qui ne sont pas détaillées dans ce manuscript.

Le chapitre 1 présente trois contributions sur l’analyse de l’ordre faible pour l’appproximation de
la solution des EDPS paraboliques semilinéaires en dimension 1, dirigée par un bruit-blanc espace-
temps. D’abord, le résultat de [2] montre une spécificité du cas EDPS par rapport à la dimension
finie (pour une EDS elliptique): la régularité de la fonction test ne peut pas être réduite, l’ordre
faible est la double de l’ordre fort seulement si la fonction test est deux fois continûment dérivable.
Ensuite, le résultat de [3] (écrit en collaboration avec Martin Hairer et Andrew Stuart dans le cadre
d’un séjour post-doctoral à l’Université de Warwick) montre qu’on peut choisir des fonctions tests qui
dépendent (de façon régulière) de la trajectoire du processus (au lieu de sa valeur finale), en gardant
un ordre faible double de l’ordre fort, pour une discrétisation en espace par méthode de Galerkin
spectrale. Les arguments de [2] et [3] sont élémentaires et basés sur l’analyse de processus Gaussiens.
Le travail présenté ensuite est à la fois plus technique et beaucoup plus avancé conceptuellement: on
montre dans [4] (écrit en collaboration avec Arnaud Debussche) que l’ordre faible n’est pas modifié
si le coefficient de diffusion n’est pas constant (bruit multiplicatif). Pour surmonter les limitations
en passant du cas bruit additif au cas bruit multiplicatif, le résultat principal de [4] concerne en
fait les propriétés de régularité de la solution d’une équation de Kolmogorov en dimension infinie.
Nous avons introduit une approche originale et avancée, basée sur une formule de dualité, le calcul
de Malliavin, et l’étude d’intégrales stochastiques avec intégrande non adaptée, pour prouver ces
résultats de régularité et passer outre les limitations des approches connues. La fin du chapitre
présente quelques travaux en cours pour étendre ces travaux.

Dans le Chapitre 2, on considère des méthodes de splitting pour la discrétisation en temps
d’EDPS avec nonlinéarité non Lipschitzienne. Les schémas obtenus sont explicites, ils utilisent la
solution exacte (connue pour les modèles étudiés) d’une EDP nonlinéaire auxiliaire. D’abord, dans
la série d’articles [5, 6, 7] (écrits en collaboration avec Ludovic Goudenège ou Jianbao Cui et Jialin
Hong), on s’intéresse à l’équation d’Allen-Cahn (nonlinéarité cubique): succesivement on introduit
le schéma, puis on établit les valeurs des ordres de convergence fort et faible. Il faut noter que
l’analyse de l’erreur faible utilise à nouveau les propriétés de régularité des solutions d’une équation
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de Kolmogorov en dimension infinie: nous avons introduit une nouvelle approche (une variante de
celle de [4]) pour traiter la nonlinéarité non Lipschitzienne. Ensuite, dans les prépublications [8, 9]
(écrites en collaboration avec David Cohen), on construit et on analyse des schémas de splitting
pour des équations de Schrödinger stochastiques, avec nonlinéarité cubique nonlocale (on quitte
donc le cadre des EDPS paraboliques semilinéaires dans la section correspondante). L’utilisation de
schémas de splitting est bien adaptée car elle permet de conserver certaines propriétés géométriques
(formule de trace ou conservation de la masse), et détablir des résultats de convergence avec ordre
fort.

Dans le Chapitre 3, on étudie le comportement en temps long des schémas et la problématique de
l’approximation de la distribution invariante (sous hypothèses d’ergodicité). On part de la situation
suivante: dans [10], issue de ma thèse de doctorat [1], on a montré que l’erreur faible du schéma
d’Euler (semi-implicite) est uniforme en temps, avec pour corollaire un résultat sur l’approximation
de la distribution invariante. L’approche utilise une nouvelle fois la solution d’une équation de Kol-
mogorov, et ses propriétés de régularité en temps long. Une variante, où on utilise la solution d’une
équation de Poisson, est étudiée dans [11] (écrit en collaboration avec Marie Kopec), en considérant
une discrétisation totale en temps et espace (par éléments finis). Les travaux ultérieurs visent à con-
struire des méthodes d’ordre plus élevé, en étant guidé par le principe (connu en dimension finie) que
l’ordre de convergence pour l’approximation de la distribution invariante peut être supérieur stricte-
ment à l’ordre faible en temps fini arbitraire. Pour cela, on ajoute l’hypothèse que le système est
de type gradient, et deux recettes d’analyse numérique. D’abord, dans [12] (écrit en collaboration
avec Gilles Vilmart), une technique de postprocessing bien choisie permet dans certains cas d’avoir
un ordre plus élevé pour l’approximation de la distribution invariante, mais une preuve générale
manque. Dans un travail en cours (en collaboration avec Arnaud Debussche et Gilles Vilmart), une
technique de préconditionnement permet de transformer l’EDPS en un problème plus régulier, sans
modifier la distribution invariante, et le problème obtenu est plus simple à analyser. Finalement,
on obtient des méthodes d’ordres plus élevés, en mélangeant postprocessing et préconditionnement,
preuve à l’appui. Enfin, dans la prépublication [13] (et la version fini-dimensionnelle [14] rédigée
dans un but pédagogique), on étudie le problème de l’approximation de la distribution invariante
quand la non-linéarité n’est pas Lipschitzienne. L’idée originale de ces travaux récents est d’utiliser
un schéma explicite modifié, qui garantit des bornes sur les moments de la solution, uniformes par
rapport au pas de temps et à croissance au plus polynomiale par rapport au temps. On montre
que cette propriété est suffisante pour approcher la distribution invariante de la classe d’EDPS
considérée sans surcoût par rapport au cas Lipschitz (où les moments sont bornés uniformément en
temps). Cette idée peut se combiner avec la technique de préconditionnement (travail en cours en
collaboration avec Ludovic Goudenège).

Mentionnons finalement deux travaux supplémentaires sur l’analyse de méthodes numériques
pour les EDPS qui ne sont pas présentés en détail dans ce manuscript (car ils sont relativement
indépendants des problématiques présentées au-dessus). Dans ces deux travaux, on ne cherche
pas à construire des méthodes d’ordre (fort) plus élevé, on étudie plutôt des outils visant à une
réduction du coût. Dans [15] (écrit en collaboration avec Xu Wang), on étudie théoriquement et
numériquement l’utilisation de l’algorithme pararéel. De façon surprenante, on met en évidence le
fait que le gain apporté par les itérations pararéelles dépend de l’intégrateur utilisé pour la partie
linéaire, et de la régularité du bruit: en particulier il n’y a pas de gain si on utilise le schéma d’Euler
semi-implicite standard lorsque l’équation est dirigée par un bruit blanc espace-temps. Dans la
prépublication [16] (écrite en collaboration avec Assyr Abdulle et Gilles Vilmart), on remplace le
schéma d’Euler implicite, comme intégrateur pour la partie linéaire, par une méthode dite explicite-
stabilisée, basée (par exemple) sur les polynômes de Chebyshev. On démontre (dans un cadre
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général) que ces méthodes explicites stabilisées sont utilisables et conduisent au même ordre fort
que le schéma standard.

La deuxième partie de ce mémoire traite d’un sujet actif et aux applications nombreuses:
l’analyse théorique et numérique des systèmes stochastiques multi-échelles, et leurs applications.

Dans le Chapitre 4, on considère des systèmes d’EDPS paraboliques semilinéaires, ayant des
composantes lente et rapide. Dans la limite d’une séparation des échelles de temps infinie, on
prouve un résultat (attendu mais techniquement difficile à justifier parfois) de moyennisation: la
composante lente converge vers la solution d’un problème où l’effet de la composante rapide est
moyenné par ergodicité. Dans la dernière décennie, de nombreuses publications (plus ou moins
pertinentes) ont considéré ce problème. Mon objectif est d’obtenir des ordres de convergence (au
sens fort et faible): cela est motivé par l’analyse de méthodes numériques multi-échelles. A la suite
de la contribution [17] (issue de ma thèse de doctorat [1]), une question est restée ouverte: quels sont
les ordres de convergence fort et faible si les deux composantes sont soumises à des bruits irréguliers,
de type bruit-blanc espace-temps? Alors que [17] ne traite que le cas d’une composante lente sans
bruit (avec techniques s’adaptant facilement au cas d’un bruit régulier), la contribution [18] fournit
une réponse dans le cas général. L’élément clé et délicat des preuves est à nouveau l’étude des
propriétés de régularité d’une équation de Poisson en dimension infinie. Ensuite, on s’intéresse à
une méthode numérique efficace pour approcher la composante lente dans le régime multi-échelle.
Le principe Heterogeneous Multiscale Method consiste à approcher la distribution invariante de la
composante rapide (associée au principe de moyennisation), au lieu de sa dynamique précise. Il
faut noter le lien très fort avec la problématique de l’approximation numérique de la distribution
invariante traitée dans le Chapitre 3. La contribution [19] (issue de ma thèse de doctorat [1])
présente l’algorithme HMM et son analyse dans le cadre de [17], puis le cas général est traité
dans [18].

Dans le Chapitre 5, on présente un sujet abordé récemment: la construction et l’analyse de sché-
mas préservant l’asymptotique (AP) pour des EDS et des EDPS. Ces schémas sont tels que, lorsque
la séparation des échelles de temps devient infinie, on obtient un schéma limite qui est consistant
avec l’équation limite obtenue par moyennisation ou homogénéisation (approximation diffusion)
du système multi-échelle (la composante rapide étant un processus d’Ornstein-Uhlenbeck). Dans
la prépublication [20] (écrite en collaboration avec mon étudiant en thèse Shmuel Rakotonirina-
Ricquebourg), on met en évidence quelques spécificités du cas stochastique: d’abord il faut étudier
une consistance dans un sens faible (associé à la convergence en loi), ensuite certains schémas na-
turels ne capturent pas la bonne équation limite (par exemple le bruit est obtenu au sens Itô alors
qu’il doit être interprété au sens Stratonovich), enfin on propose des schémas AP basés sur des tech-
niques de prédiction-correction. De plus, dans le régime de moyennisation, on prouve une propriété
d’uniforme précision: on obtient une estimation d’erreur faible qui est uniforme en le paramètre de
séparation d’échelles, avec ordre 1/2 par rapport au pas de temps. La preuve utilise les solutions
d’équations de Poisson en temps continu et temps discret, en particulier pour estimer l’erreur dans
le principe de moyennisation et dans sa version discrète. Une expérimentation numérique est en
cours (en collaboration avec Benoît Fabrèges), pour illustrer les estimées d’erreur et étudier leur
généralisation au régime approximation-diffusion. On propose finalement quelques pistes pour con-
struire des schémas AP pour des EDPS, soit de type parabolique semilinéaire, soit cinétiques –
dans le cadre des résultats de moyennisation et d’approximation-diffusion de la thèse de Shmuel
Rakotonirina-Ricquebourg, co-encadrée avec Julien Vovelle, en collaboration avec Hélène Hivert.
Cette problématique des schémas AP pour les systèmes stochastiques est essentiellement nouvelle
et prometteuse.

La contribution [21] (écrite en collaboration avec Guillaume Laibe et Maxime Lombart) aurait
mérité d’être détaillée, au lieu d’être uniquement mentionnée dans le Chapitre 5 pour un aspect
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numérique. Dans cette collaboration avec des astrophysiciens, on étudie un système stochastique
multi-échelle dépendant de deux petits paramètres, et on montre (par développements asympto-
tiques d’équations de Kolmogorov) que les limites ne commutent pas (contrairement à ce que des
calculs formels naïfs donnent): un terme supplémentaire peut apparaître, et on étudie son influence
sur la forme de la distribution invariante du problème limite.

La deuxième partie de ce manuscript aurait pu comporter un chapitre supplémentaire, concer-
nant l’étude du comportement asymptotique de systèmes de particules en interaction champ moyen
avec bruit collectif. Il s’agit de travaux non aboutis initiés avec Maxime Hauray et Christophe
Prange, et récemment repris avec Raphael Winter (post-doctorant). Le problème revient à étudier
le principe de moyennisation pour une classe d’équations de Vlasov stochastique: sous certaines hy-
pothèses, on souhaite montrer la convergence vers un profil ne dépendant que de la variable de vitesse
et solution d’une équation de diffusion non-linéaire. Le méchanisme sous-jacent est l’amortissement
Landau. On a pour le moment obtenu un résultat intermédiaire original (en cours de rédaction):
la convergence vers un équilibre par amortissement Landau pour une équation de Vlasov linéarisée
soumise à u bruit additif Gaussien. De nombreux problèmes techniques et conceptuels pour effec-
tivement obtenir un résultat de moyennisation sont encore à étudier.

La troisième et dernière partie de ce mémoire porte sur l’analyse de méthodes de Monte-Carlo
pour la simulation d’événements rares. Cette partie est essentiellement indépendante des deux
premières (à l’apparition de l’équation d’Allen-Cahn comme modèle jouet de dimension infinie près).
Typiquement, on s’intéresse à des processus de Markov métastables: le système non bruité admet
plusieurs états d’équilibre, et lorsque l’amplitude du bruit est petite le système passe la plupart
du temps proche de chacun de ces états dits métastables, avec des transitions rares entre eux.
On souhaite simuler plus efficacement ces transitions, en utilisant des techniques de réduction de
variance avancées.

Dans le Chapitre 6, on s’intéresse à un algorithme de décomposition multi-niveaux adapta-
tive (AMS, Adaptive Multilevel Splitting): en utilisant un système de répliques en interaction
(en itérant des procédures de mutation et sélection), on peut simuler efficacement et estimer la
probabilité d’événements rares. Les travaux ont été en partie réalisés lors d’un post-doctorat au
CERMICS/Ecole des Ponts, supervisé par Tony Lelièvre et Mathias Rousset, puis poursuivis avec
différents collaborateurs. D’abord, on s’intéresse à une version dite idéalisée de l’algorithme (en
général non utilisable en pratique). Dans la série de contributions [22] (écrite en collaboration avec
Tony Lelièvre et Mathias Rousset), [23] (écrite en collaboration avec Ludovic Goudenège et Loïc
Tudela, dans le cadre du stage de master de ce dernier) et [24] – voir aussi le proceeding [25] pour
un compte-rendu de ces travaux – on établit de nouveaux résultats sur cet algorithme: on définit un
estimateur non biaisé de la probabilité de l’événement rare (quel que soit le nombre de répliques),
puis on démontre un théorème central limite et un principe de grandes déviations (quand le nombre
de répliques tend vers l’infini). Ensuite, le travail principal de ce chapitre est l’article [26] (écrit
en collaboration avec Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre et Mathias Rousset):
on propose une version généralisée de l’algorithme, utilisable en pratique dans de très nombreuses
situations, qui préserve la consistance prouvée dans le cas idéal (estimateur non biaisé de la prob-
abilité). On mentionne également une variante introduite dans [27] (écrit en collaboration avec
Tony Lelièvre), pouvant servir à estimer des fonctionnelles de grandes déviations en temps long.
Au-delà des résultats théoriques, la contribution [26] présente des simulations numériques et des
messages pratiques importants, voir aussi le proceeding [28] (écrit en collaboration avec Maxime
Gazeau, Ludovic Goudenège et Mathias Rousset suite à un projet lors du CEMRACS 2013) pour
la simulation d’événements rares pour l’équation d’Allen-Cahn. Enfin, on présente deux contribu-
tions [29] (en collaboration avec Thibault Lestang, Francesco Ragone, Corentin Herbert et Freddy
Bouchet) et [30] (en collaboration avec Elias Ventre, Thibault Espinasse, Vincent Calvez, Thomas
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Lepoutre et Olivier Gandrillon), pour des applications de l’algorithme AMS en physique et biologie
respectivement.

Dans le Chapitre 7, on étudie des stratégies d’échantillonnage préférentiel adaptatif: l’objectif
est d’estimer des intégrales par rapport à la distribution invariante d’un processus de diffusion
métastable. En biaisant efficacement la dynamique (l’optimal dépendant d’une fonction appelée
énergie libre), on peut accélérer l’échantillonnage de la distribution invariante (avec une technique
de repondération). Les algorithmes étudiés dans ce chapitre utilisent un biaisage adaptatif, pour
approcher l’énergie libre au fur et à mesure de la simulation: il est important de noter qu’on
obtient des processus de diffusion auto-interagissant avec leur passé, en dépendant de leur mesure
d’occupation (en temps) normalisée. Ces processus ne vérifient pas la propriété de Markov, et
l’étude de leur comportement en temps long nécessite des techniques avancées. Les algorithmes
proposés sont des variantes pour des processus de diffusion de méthodes utilisées dans le domaine
de la dynamique moléculaire. Le premier algorithme étudié dans [31] et [32] (en collaboration avec
Michel Benaïm) utilise un biaisage du potential (ABP, Adaptive Biasing Potential), tandis que le
deuxième algorithm étudié dans [33] (en collaboration avec Michel Benaïm et Pierre Monmarché)
utilise un biaisage de la force (ABF, Adaptive Biasing Force). Les constructions et les techniques
de preuve diffèrent, néanmoins le résultat est similaire: on prouve un résultat de consistance de
l’algorithme, i.e. la convergence en temps long vers l’intégrale à estimer. Cela est associé à une
forme faible d’efficacité, i.e. le biais converge vers une approximation du biais optimal donné par
l’énergie libre. Ces travaux ont été initiés lors d’un post-doctorat à l’Université de Neuchâtel,
supervisé par Michel Benaïm, sur proposition initiale de Tony Lelièvre.

Certains travaux, tels que [34] (en collaboration avec Erwan Faou, issu de ma thèse de doc-
torat [1]) sur une méthode de Monte-Carlo semi-lagrangienne, ou un travail initié mains non abouti
avec Alexandre Boritchev et Mauro Mariani sur une interprétation probabiliste par un processus de
Markov déterministe par morceaux de solutions faibles (non entropiques) de l’équation de Burgers,
ne sont pas présentés dans ce manuscript: notamment parce qu’ils ne se rattachent pas directement
aux problématiques des trois parties de ce mémoire.

Pour conclure cette introduction, on insiste sur quelques aspects récurrents de mes travaux de
recherche:

• la preuve d’estimées d’erreur avec ordres de convergence au sens fort et faible
• l’utilisation de solutions d’équations de Kolmogorov et de Poisson auxiliaires pour l’analyse
de l’erreur
• les difficultés dues au cadre de dimension infinie et aux propriétés de régularités réduites,
voire juste à la présence d’une perturbation stochastique
• l’étude de la consistance et du coût des algorithmes
• l’importance du comportement en temps long (distribution invariante, composante rapide
d’un problème multi-échelle, transitions entre états métastables),

sont des questions et outils qui reviennent dans tous les travaux présentés dans ce mémoire. De
nombreux collaborateurs, y compris issus d’autres disciplines, ont participé à ces travaux.

Comme déjà mentionné, la conclusion de ce mémoire présente quelques perspectives, et des
détails supplémentaires sur certains travaux en cours introduits plus haut.
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Introduction (English version)

This manuscript gives a synthetic presentation of my research works, realized first as a postdoc-
toral student (first under the supervision of Tony Lelièvre and Mathias Rousset at CERMICS/Ecole
des Ponts, second under the supervision of Michel Benaïm at Université de Neuchâtel) then as CNRS
Junior Researcher at Institut Camille Jordan, since October 2015. The works will be put into per-
spective with those of my PhD thesis [1], prepared under the supervision of Arnaud Debussche and
Erwan Faou, at ENS Rennes, defended in 2012.

Those works combinent several ingredients, with different doses: stochastic models, partial
differential equations and numerical methods. The approaches are diverse and complementary:
theoretical analysis, construction of algorithms, numerical experiments. Finally, sometimes the
motivation for the work is a problem from another field of science (physics, astrophysics, biology),
directly fe in collaborations. Whereas some works required advanced conceptual tools, others consist
in studying carefully many error terms, finally some are based on a more elementary but powerful
argument.

Writing this manuscript aims at illustrating the diversity and the unity of these research works
in applied mathematics. We will explain the obtained the results, the context and the literature;
we will give the main ideas of the proofs and we will provide some open questions. In order not to
increase the length of this manuscript, the content of the numerical experiments is not reported in
detail, even if they represent a significant part of the work.

The manuscript is divided into three parts. The third one can be read independently, while the
second one requires several tools and notation introduced in the first one.

The first part of this manuscript is devoted to the main subject of my works: the construction
and analysis of numerical methods for the simulation of stochastic partial differential equations
(SPDEs). More precisely, we mainly consider parabolic semilinear equations of the type

∂tX = ∆X + f(X) + σ(X)Ẇ

where the stochastic perturbation is of space-time white noise time. A preliminary chapter is
included to recall the useful concepts and notation, which allows us to state and solve the problems
studied in the three main chapters of this first part.

The problems when considering numerical approximations of solutions of stochastic PDEs are
the following.

• The temporal and spatial regularity properties of the solutions are reduced compared with
solutions of deterministic PDEs and solutions of finite-dimensional stochastic differential
equations (SDEs). As a consequence, a reduction in the orders of convergence is expected.
• Several notions of orders of convergence are to be distinguished: the strong order is as-
sociated with a mean-square error criterion in the associated norm (or a variant of this
criterionà, whereas the weak order is associated with convergence in distribution. The
challenge is to establish (under suitable conditions) that the weak order is twice the strong
order.
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• The analysis of the weak error uses solutions of infinite dimensional Kolmogorov and Pois-
son equations as auxiliary tools. Studying the regularity properties of their solutions is
substantially more involved than in the finite dimensional case.
• Like for the SDE case, if the nonlinearities are not globally Lipschitz continuous, one cannot
use naive explicit numerical schemes. The Allen-Cahn equation is an example of problem
for which a splitting method can be employed to define an explicit scheme which is stable
and converges.
• In the large tome limit, the (Markov) stochastic process converges in distribution, un-
der suitable assumptions, to a non-trivial invariant distribution (instead of a convergence
to stationary points in a deterministic setting). The goal then is to study whether the
numerical methods can be used to approximate that invariant distribution.

Note also a major difference compared with the SDE case: the solutions of SPDEs are processes with
values in infinite dimensional functional spaces (typically Hilbert spaces), a spatial discretization
needs to be added (for instance using finite differences).

The works presented in the first part aim at fulfilling several objectives:
• providing a rigorous analysis of (strong and weak) orders of convergence for existing scheme,
• proposing new schemes which are more adapted to the models under study (non-globally
Lipschitz nonlinearities, approximation of the invariant distribution,...), if possible having
higher order of convergence,
• studying techniques in order to reduce the computational cost, even without increasing the
order of convergence

The theoretical results and the study of the efficiency of the new schemes are accompanied with
numerical experiments, which are not detailed in this manuscript.

Chapter 1 presents three contributions on the analysis of the weak order of convergence for
the approximation of the solutions of parabolic semilinear SPDEs in dimension 1, driven by space-
time white noise. First, the result of [2] illustrates a specificity of the SPDE case compared with
finite dimension (for an elliptic SDE): the regularity of the test function cannot be weakened, the
weak order is twice the strong order only if the test function is twice continuously differentiable.
Then, the result of [3] (written in collaboration with Martin Hairer and Andrew Stuart, following
a postdoctoral stay at the University of Warwick) shows that one can choose test functions which
depend (in a regular way) of the trajectory of the process (instead of its terminal value), while
keeping a weak order which is twice the strong order, when considering a spatial discretization by a
spectral Galerkin method. The arguments of [2] and [3] are elementary and based on the analysis of
Gaussian processes. The work presented next is both more technical and much more advanced at the
conceptual level: we prove in [4] (written in collaboration with Arnaud Debussche) that the weak
order is not modified if the diffusion coefficient is not constant (multiplicative noise). To overcome
the limitations from the additive to the multiplicative noise case, the main result of [4] in fact deals
with regularity properties of the solution of an infinite dimensional Kolmogorov equation. We have
introduced an original and advanced approach, based on duality formula, Malliavin calculus, and
the study of stochastic integral with non-adapted integrands, to show these regularity properties
and to overcome the limitations of previously known approaches. The end of the chapter presents
several ongoing works for the extension of these works.

In Chapter 2, we study splitting methods for the temporal discretization of SPDEs with non-
globally Lipschitz nonlinearities. The obtained schemes are explicit, they use the exact solutions
(which are known for the models we study) of auxiliary nonlinear PDEs. First, in the series of
articles [5, 6, 7] (written in collaboration with Ludovic Goudenège or Jianbao Cui and Jialin
Hong), we are interested in the Allen-Cahn equation (cubic nonlinearity): we successively introduce
the scheme, then we establish the values of the strong and weak orders of convergence. It is worth

16



noting that the weak error analysis is again based on the regularity properties of solutions of an
infinite dimensional Kolmogorov equation: we have introduced a new approach (a variant of the one
from [4]) to treat the non-globally Lipschitz nonlinearity. Then, in the preprints [8, 9] (written in
collaboration with David Cohen), we build and analyze splitting schemes for stochastic Schrödinger
equations, with nonlocal cubic nonlinearities (we leave the framework of parabolic semilinear SPDEs
in the corresponding section). The use of splitting scheme is well adapted since it allows us to
preserve some geometric properties (trace formula or mass preservation), and to prove convergence
results with a value for the strong order.

In Chapter 3, we study the large time behavior of the schemes and the problem of approximating
the invariant distribution (under ergodicity assumptions). We start from the following situation:
in [10], which is issued from my PhD thesis [1], we have showed that the weak error of the (semi-
implicit) Euler scheme is uniform in time, and as a corollary a result for the approximation of
the invariant distribution holds. The approach uses again the solution of a Kolmogorov equation,
and its regularity properties in the large time regime. A variant, where the solution of a Poisson
equation is employed, is studied in [11] (written in collaboration with Marie Kopec), where a full
discretization in time and space (by a finite element method) is considered. The following works
are devoted to the construction of higher order methods, guided by the principle (known in finite
dimension) that the order of convergence for the approximation of the invariant distribution may
be strictly larger than the weak order in an arbitrary finite time. To do so, we add the assumption
that the system is of gradient type, and two numerical analysis recipes. First, in [12] (written in
collaboration with Gilles Vilmart), a well-chosen postprocessing technique provides in some cases
a method with higher order for the approximation of the invariant distribution, however a general
proof is missing. In a work in progress (in collaboration with Arnaud Debussche and Gilles Vilmart),
a preconditioning technique permits to transform the SDPE in a more regular problem, without
modifying the invariant distribution, and the obtained system is simpler to analyze. One then
obtains higher order methods, mixing postprocessing and preconditioning techniques, with proofs.
Finally, in the preprint [13] (and its finite dimensional version [14], which has been written for
pedagogical purpose), we study the problem of the approximation of the invariant distribution
when the nonlinearity is not globally Lipschitz continuous. The original idea of these recent works
is to use a tamed explicit scheme, which guarantees that moment bounds of the numerical solution
hold, uniformly with respect to the time step size and with at most polynomial growth with respect
to time. We show that the latter property is sufficient to approximate the invariant distribution for
the considered class of SPDEs with no supplementary cost compared with the Lipschitz case (for
which moments are bounded uniformly in time). This idea can be combined with the preconditioning
technique (work in progress in collaboration with Ludovic Goudenège).

Let us finally mention two additional works concerning the analysis of numerical methods for
SPDEs which are not presented in detail in this manuscript (because they are relatively independent
of the subjects described above). In these two works, we do not intend to build higher (strong)
order methods, we rather study tools which may help reducing the cost. In [15] (written in collab-
oration with Xu Wang), we study theoretically and numerically the use of the parareal algorithm.
Surprisingly, we show that the gain brought by parareal iterations depends on the chosen integrator
for the linear part, and of the regularity of the noise: in particular there is no gain if one uses
the standard semi-implicit Euler scheme when the equation is driven by space-time white noise. In
the preprint [16] (written in collaboration with Assyr Abdulle and Gilles Vilmart), we replace the
implicit Euler scheme, used as the integrator for the linear part, by a so-called explicit-stabilized
method, based (for instance) on Chebyshev polynomials. We prove (in a general framework) than
the explicit-stabilized methods can be used and lead to the same strong order of convergence as the
standard scheme.
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The second part of this manuscript deals with an active subject with various applications: the
theoretical and numerical analysis of multiscale stochastic systems, and their applications.

In Chapter 4, we consider parabolic semilinear SPDEs with slow and fast components. In the
limit of infinite time scale separation, we prove an averaring result (which is expected but sometimes
technically hard to justify): the slow component converges to the solution of a problem where the
effect of the fast component is averaged out by ergodicity. During the last decade, this problem
has been considered in many( more or less relevant) publications. My aim is to obtain (strong and
weak) rates of convergence: this goal is motivated by the analysis of numerical multiscale methods.
Following the contribution [17] (from my PhD thesis [1]), a question has remained open: what are
the values of the strong and weak orders of convergence if both components are driven by irregular
noises, such as space-time white noises? Whereas [17] only treats the case of a slow component
without noise (with techniques which are adapted to the case of a regular noise in a straightforward
way), the contribution [18] provides an answer in the general case. The key and delicate element
of the proofs is again the study of regularity properties of an infinite dimensional Poisson equation.
Next, we are interested in effective numerical methods to approximate the slow component in the
multiscale regime. The principe of the Heterogeneous Multiscale Methods consists in approximating
the invariant distribution of the fast component (which is associated to the averaging principle),
instead of its precise dynamics. It is worth mentioning the strong link with the subject of the
approximation of the invariant distribution studied in Chapter 3. The contribution [19] (from my
PhD thesis [1]) presents the HMM algorithm and its analysis in the framework of [17], then the
general case is treated in [18].

In Chapter 5, we present a subject I have considered recently: the construction and analysis
of asymptotic preserving (AP) schemes for SDEs and SPDEs. These schemes are constructed such
that, when the time scale separation becomes infinite, one gets a limiting scheme which is consistent
with the limiting equation obtained by averaging or homogenization (diffusion approximation) of the
multiscale system (the fast component being an Ornstein-Uhlenbeck process). In the preprint [20]
(written in collaboration with my PhD student Shmuel Rakotonirina-Ricquebourg), we identify
several specific features of the stochastic cas: first consistence is meant in a weak sense (associated
with convergence in distribution), next some natural schemes fail to capture the correct limiting
equation (for instance the noise would be interpreted in the Itô sense while it must be interpreted in
the Stratonovich sense), finally we propose AP schemes based on prediction-correction techniques.
Moreover, in the averaging regime, we prove a uniform accuracy property: we obtain a weak error
estimate which is uniform with respect to the time scale separation parameter, with order 1/2 with
respect to the time-step size. The proof employs solutions of Poisson equations for continuous and
discrete time problems, in particular to estimate the error in the the discrete time version of the
averaging principle. Numerical investigation is in progress (in collaboration with Benoît Fabrèges),
in order to illustrate the error estimates and study how they generalize in the diffusion approximation
regime. We finally propose ideas to build AP schemes for SPDEs, first in the parabolic semilinear
case, second for kinetic problems – in the framework of the averaging and diffusion approximation
results of the PhD thesis of Shmuel Rakotonirina-Ricquebourg, which is co-supervises with Julien
Vovelle, in collaboration with Hélène Hivert. The subject of AP schemes for stochastic systems is
essentially new and promising.

The contribution [21] (written in collaboration with Guillaume Laibe and Maxime Lombart)
would have deserved to be presented in details, instead of being only mentioned in Chapter 5 for some
numerical aspect. In that collaboration with astrophysicists, we study a stochastic multiscale system
depending on two small parameters, and we show (using asymptotic expansions on Kolmogorov
equations) that the limit do not commute (contrary to what naive formal computations give): an
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additional term may appear, and we study its influence on the shape of the invariant distribution
of the limiting equation.

The second part of this manuscript may have contained an additional chapter, dealing with
the asymptotic behavior of systems of particle systems with mean-field interaction, driven by a
collective noise. This is a work which has been initiated but not finalized with Maxime Hauray
and Christophe Prange, and recently revisited with Raphael Winter (post-doctoral student). A
point of view to interpret the problem is to study the averaging principle for a class of stochastic
Vlaso equations: under certain assumptions, we wish to prove the convergence vers a density profile
depending only on the velocity variable and solving a nonlinear diffusion equation. The underlying
mechanism is Landau damping. So far, we have obtained an original result (redaction is in progress):
the convergence to equilibrium by Landau damping for a linearized Vlasov equation driven by a
Gaussian additive noise. Many technical and conceptual problems to prove an averaging result still
need to be studied.

The third and last part of this manuscript deals with the analysis of Monte-Carlo methods for
the simulation of rare events. This part is independent from the first and second parts (except
for the apparition of the Allen-Cahn equation as an infinite dimensional toy model). Typically, we
are interested in metastable Markov processes: the zero-noise version of the system admits several
equilibrium states, and when the intensity of the noise is small the system spends most of the time
close to these metastable states, with rare transitions between them. We wish to simulate more
efficiently these transitions, using advanced variance reduction techniques.

In Chapter 6, we study an Adaptive Multilevel Splitting (AMS) algorithm: using a system of in-
teracting replicas (where selection and mutation procedures are iterated), one can sample efficiently
sample and estimate the probability of rare events. The works have been partially realized as a
postdoctoral student at CERMICS/Ecole des Ponts, under the supervision of Tony Lelièvre and
Mathias Rousset, and then continued with various collaborators. First, we consider an idealized
version of the algorithm (which in general cannot be used in practice). In the series of contri-
butions [22] (written in collaboration with Tony Lelièvre and Mathias Rousset), [23] (written in
collaboration with Ludovic Goudenège and Loïc Tudela, the latter being a master student) et [24]
– see also the proceeding article [25] for a presentation of these results– we establish new results
on this algorithm: we define an unbiased estimator of the probability of the rare event (whatever
the number of replicas), then we prove central limit theorem and large deviations principle results
(when the number of replicas goes to infinity). Then, the most important work of this chapter is
article [26] (written in collaboration with Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre and
Mathias Rousset): we propose a generalized version of the algorithm, which can be used in practice
in many situations, and we show that the consistency result proved in the idealized case (unbiased
estimator of the probability) is preserved. Let us mention the variant introduced in [27] (written in
collaboration with Tony Lelièvre), which can be used to estimate large deviation rate functionals in
large time regimes. In addition to the theoretical results, the contribution [26] provides numerical
simulations and important messages for the practical use of the algorithm, see also the proceeding
article [28] (written in collaboration with Maxime Gazeau, Ludovic Goudenège and Mathias Rous-
set following participation to CEMRACS 2013) concerned with the simulation of rare events for the
Allen-Cahn equation. Finally, we present two contributions [29] (in collaboration with Thibault
Lestang, Francesco Ragone, Corentin Herbert and Freddy Bouchet) et [30] (in collaboration with
Elias Ventre, Thibault Espinasse, Vincent Calvez, Thomas Lepoutre and Olivier Gandrillon), for
applications of the AMS algorithm in physics and biology respectively.

In Chapter 7, we study some adaptive importance sampling strategies: the objective is to es-
timate integrals with respect to the invariant distribution of a metastable diffusion process. An
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efficient biasing of the dynamics (with the optima bias depending on a so-called free energy func-
tion) permits to enhance sampling of the invariant distribution (using a reweighting technique).
The algorithms studied in this chapter employ an adaptive bias, to approximate the free energy
function while the simulation proceeds: it is worth mentioning that one obtains diffusion process
with self-interaction with their past, depending on a temporal normalized occupation measure.
These processes do not satisfy the Markov property, thus the study of their large time behaviors
requires advanced techniques. The proposed algorithms are variants defined for diffusion processes
of methods used in the field of molecular dynamics. The first algorithm studied in [31] et [32] (in
collaboration with Michel Benaïm) uses a bias of a potential (ABP, Adaptive Biasing Potential),
whereas the second algorithm studied in [33] (in collaboration with Michel Benaïm and Pierre Mon-
marché) uses a bias of a force (ABF, Adaptive Biasing Force). The construction and the analysis
are different, however the result is similar: we prove that the algorithm is consistent, i.e. a con-
vergence when times goes to infinity to the target integral. This comes along with a weak form of
efficiency, i.e. the bias converges to an approximation of the optimal bias given by the free energy.
Those works have been initiated as a post-doctoral student at Université de Neuchâtel, under the
supervision of Michel Benaïm, following an initial proposition by Tony Lelièvre.

Some works are non presented this manuscript since they are not directly connected to the
main themes developped in the three parts of this manuscript: the contribution [34] (written in
collaboration with Erwan Faou, from my PhD thesis [1]) about a semi-lagrangian Monte-Carlo
method, or a work initiated but not finalized with Alexandre Boritchev and Mauro Mariani about the
probabilistic interpretation in terms of a piecewise deterministic Markov process of (non entropic)
weak solutions of the Burgers equation.

To conclude this introduction, let us emphasize several aspects which appear repetedly in my
research works:

• the proof of strong and weak error estimates with orders of convergence,
• the use of auxiliary Kolmogorov and Poisson equations,
• the difficulties due to the infinite dimensional setting and to the reduced regularity prop-
erties, or even due to the sole presence of a stochastic perturbation,
• the study of the consistency and the cost of the algorithms,
• the importance of the large time behavior (invariant distribution, fast component in a
multiscale problem, transitions between metastables states),

are questions and tools which appear in all the works presented in this manuscript. Many collabo-
rators, including specialists from other fields, have participated to those works.

As already mentioned, the conclusion of the manuscript provides several perspectives, and ad-
ditional details concerning some works in progress introduced above.
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Partie 1

Numerical analysis for Stochastic Partial
Differential Equations





Preliminaries on SPDEs and numerical methods

The objective of this chapter is to provide the necessary background concerning parabolic semi-
linear SPDEs and their numerical approximation, in order to make the presentation of our contri-
butions self-contained, to state the main results in a rigorous way, and to illustrate the main ideas
of the proofs and the differences with the (finite dimensional) SDE case. The notions introduced in
this chapter are used in the three main chapters of Part 1, and again in Part 2.

For pedagogical reasons, the setting is kept simple in order to illustrate the main ideas, whereas
some technicalities which are necessary to deal with more realistic models are omitted. Setting a
more general framework is out of the scope of this manuscript, we refer to the relevant published
articles for further details.

Parabolic semilinear Stochastic Partial Differential Equations

This part of the manuscript is devoted to present results concerning the analysis of numerical
methods for stochastic PDE problems of the type

∂tX (t, z) = ∂zzX (t, z) + f0(X (t, z)) + σ0(X (t, z))Ẇ (t, z), t > 0, z ∈ (0, 1),

X (·, 0) = X (·, 1) = 0,

X (0, ·) = X0,

which are parabolic semilinear equations, with homogeneous Dirichlet conditions, driven by a sto-
chastic perturbation given as Gaussian Space-Time White Noise: formally, one has the identity
E[Ẇ (t1, z1)Ẇ (t2, z2)] = δ(t2 − t1)δ(z2 − z1)]. The noise is understood in the Itô sense, and the
solution X may be seen as a random field depending on time t and space z variables. Giving a sense
to solutions of the problem above requires some care, even in the additive noise case (constant σ0)
since the noise is defined only in the sense of distributions. The fact that dimension is equal to 1 is
essential: when f0 = 0 and σ0 = 1, the solution takes values in a space of functions only if d = 1.
As a consequence, semilinear problems can in general only be treated if the noise is more regular
in space (colored noise), or if they are considered as singular SPDEs, using the theory of regularity
structures and renormalization arguments (this aspect of the SPDE theory is not considered in our
contributions and in this manuscript).

In this manuscript, we only deal with equations understood in a classical sense. There are
two approaches to study such problems: considering the solution either as a random field (see the
monograph [Khoshnevisan, 2014]) depending on space-time variables, or as a stochastic process
with values in a functional space (see the monograph [Da Prato and Zabczyk, 2014]). In the
sequel (and in our contributions), only the second approach is considered: this amounts to consider
Stochastic Evolution Equations of the type

(SPDE) dX(t) = AX(t)dt+ F (X(t))dt+ σ(X(t))dW (t) , X(0) = x0,

where the process
(
X(t)

)
t≥0

takes values in an infinite dimensional Hilbert space H (or a Banach
space). For the example introduced above, one may choose H = L2(0, 1), and the random-field
and stochastic process approaches are related by the identity X(t) = X (t, ·). Assumptions on the
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operators appearing in the Equation (SPDE) are given below. As will be explained below, the
solutions of (SPDE) are understood in a mild sense.

Assumptions. Let H be a separable, infinite dimensional, Hilbert space. The inner product
and the norm are denoted by 〈·, ·〉 and | · | respectively.

Let L(H), resp. L2(H), be the space of bounded linear, resp. Hilbert-Schmidt, operators from
H to H. These spaces are endowed with the norms

‖`‖L(H) = sup
x∈H,x 6=0

|`x|
|x|

, ‖`‖L2(H) =
(∑
k∈N
|`εk|2

)
,

where
(
εk
)
k∈N is any complete orthonormal system of H.

The trace operator is denoted by Tr: for a trace-class operator, Tr(`) =
∑

k∈N〈`εk, εk〉, and for
an Hilbert-Schmidt operator ‖`‖2L2(H) = Tr(``?), where `? is the adjoint of `.

The linear operator A. Let
(
ek
)
k∈N be a complete orthonormal system of the Hilbert space

H, and let
(
λk
)
k∈N be a non-decreasing sequence of positive real numbers. We further assume that

λk ∼
k→∞

ck2, for some c ∈ (0,∞). The linear operator A is defined as follows:

−Ax =
∑
k∈N

λk〈x, ek〉ek.

Note that the linear operator A is self-adjoint and unbounded. Its domain is given by

D(A) =

{
x ∈ H;

∞∑
k=1

λ2
k〈x, ek〉2 <∞

}
.

For α ∈ [−1, 1], linear operators (−A)α are defined as follows:

(−A)αx =
∑
k∈N

λαk 〈x, ek〉ek.

Note that when α > 0, then (−A)α is an unbounded linear operator, and its domain is given by
D((−A)α) =

{
x ∈ H;

∑∞
k=1 λ

2α
k 〈x, ek〉2 <∞

}
. The Sobolev type norms |(−A)α · | are convenient

to quantify the (spatial) regularity of elements of H.
The linear operator A generates a strongly continuous semi-group

(
etA
)
t≥0

on H, where

etAx =
∑
k∈N

e−tλk〈x, ek〉ek.

The semi-group has the following smoothing property, which plays a key role in the analysis of
parabolic semilinear SPDEs: for all α ∈ [0, 1] and all t ∈ (0,∞), one has (−A)αetA ∈ L(H), with

(Sp) sup
t>0

min(t, 1)αeλ1t‖(−A)αetA‖L(H) <∞.

The general setting encompasses the example of the Laplace operator with homogeneous Dirich-
let conditions: choose H = L2(0, 1), and for all k ∈ N, set λk = (kπ)2 and ek =

√
2 sin(k2π·). With

appropriate modifications, one may also consider more general elliptic second-order differential oper-
ators of the type div(a∇·), in domains of the type (0, 1)d, where a is a symmetric uniformly positive
definite matrix: in that case eigenvalues behave as λk ∼ ck

2
d when k →∞. In this manuscript, we

stick to the one-dimensional case (d = 1), except for a few arguments, since (SPDE) is generally
driven by space-time white noise.
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The nonlinear operators. Let the nonlinearities F : H → H and σ : H → L(H) be globally
Lipschitz continuous mappings. The Lipschitz constant of F is denoted by Lip(F ). Most of
the results below are concerned with equations driven by additive noise: σ(x) = I (the identity
operator) for all x ∈ H. When σ is not constant, the terminology multiplicative noise is used. In
Chapter 2 below, numerical methods for some SPDEs with non-globally Lipschitz nonlinearities are
studied, however in this chapter this is not discussed.

An important class of nonlinearities is given by Nemytskii operators, defined as follows. Set
H = L2(0, 1), and let f0 : R → R and σ0 : R → R be Lipschitz and bounded continuous real-
valued mappings, then define F (x) = f0(x(·)) and σ(x)y = σ0(x(·))y(·) for all x, y ∈ L2(0, 1).
Many arguments below require additional regularity properties of the nonlinearities F and σ: for
instance, F and σ may be assumed to be three times Fréchet differentiable, with bounded derivatives.
Observe that Nemytskii operators do not satisfy such regularity conditions, as a consequence some
technicalities (omitted in this manuscript) are required to deal with such nonlinearities.

The cylindrical Wiener process. The Stochastic Evolution Equation (SPDE) is driven by
a cylindrical Wiener process

W (t) =
∑
k∈N

βk(t)ek,

where
(
βk
)
k∈N is a sequence of independent standard real-valued Wiener processes, defined on a

probability space
(
Ω,F ,P

)
which satisfies the usual conditions. Formally, space-time white noise

may be interpreted as the time derivative Ẇ (t, z) =
∑

k∈N β̇k(t)ek(z) of the cylindrical Wiener
process. The rigorous analysis employs a stochastic integration theory which is a generalization of
Itô stochastic calculus in infinite dimension (see [Da Prato and Zabczyk, 2014]).

The definition above is formal, indeed for each t > 0 the random variableW (t) does not take val-
ues in H, more precisely |W (t)| =∞ almost surely. In fact, the series converges in any larger Hilbert
space H, such that the embedding H ⊂ H is an Hilbert-Schmidt linear operator. For instance,
the cylindrical Wiener process takes values in D((−A)−α) =

{
x ∈ H;

∑∞
k=1 λ

−2α
k 〈x, ek〉2 <∞

}
if

α > 1
4 , indeed

E[|(−A)−αW (t)|2] = t
∑
k∈N

λ−2α
k .

is finite if and only if α > 1
4 .

Below some problems driven by a colored noise (or a Q-Wiener process) are also considered.
A Q-Wiener process may be defined as follows. Let Q be a self-adjoint linear operator, such that
Q =

∑
k∈N
√
qk〈εk, ·〉εk for some complete orthonormal system

(
εk
)
k∈N of H, and some sequence(

qk
)
k∈N of nonnegative numbers. The Q-Wiener process is then given by

WQ(t) =
∑
k∈N

√
qkβk(t)ek.

WhenQ = I is the identity, theQ-Wiener process coincides with the cylindrical Wiener process. One
important example will appear below (in Chapter 3): Q = (−A)−1. When Tr(Q) =

∑
k∈N qk <∞,

the noise is called trace-class. Note that the spatial and temporal regularity properties of the
solutions of SPDEs of the type (SPDE) heavily depend on the conditions on the covariance operator
Q.

Mild solutions of parabolic semilinear SPDEs. We are now in position to state a well-
posedness result for the Stochastic Evolution Equation (SPDE). There are two major issues to give
a sense to (SPDE): the linear operator A is unbounded and the cylindrical Wiener process W does
not take values in H. Individually, the terms appearing in the right-hand side of (SPDE) thus do
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not make sense in H. For such problems, the notion of mild solutions is used: a process
(
X(t)

)
t≥0

is a mild solution of (SPDE) if it has continuous trajectories with values in H, and if for all t ≥ 0,
one has

(Ms) X(t) = etAX(0) +

∫ t

0
e(t−s)AF (X(s))ds+

∫ t

0
e(t−s)Aσ(X(s))dW (s).

The H-valued Itô stochastic integral is defined in a standard way, and the Itô isometry property is
written as follows (see [Da Prato and Zabczyk, 2014]):

E|
∫ t

0
Σ(s)dW (s)|2 =

∫ t

0
E[‖Σ(s)‖2L2(H)]ds.

Owing to the smoothing property (Sp), one has ‖etA‖L2(H) ≤ Cαt
−α if α > 1

4 . As a consequence,
the stochastic integral in (Ms) is well-defined and a fixed point argument can be applied: under the
conditions above (in particular global Lipschitz continuity of F and σ), the SPDE (SPDE) admits
a unique global mild solution.

When x0 = 0, F = 0, and σ(x) = I, the unique mild solution of (SPDE) is the stochastic
convolution

(SC) WA(t) =

∫ t

0
e(t−s)AdW (s).

The process
(
WA(t)

)
t≥0

is a H-valued Ornstein-Uhlenbeck process, in particular it is Gaussian.
Temporal and spatial regularity properties of the stochastic convolution can be written as follows:

sup
t≥0

E|(−A)αWA(t)|2 <∞ , sup
t,s≥0

E|WA(t)−WA(s)|2

|t− s|2α
<∞.

if and only if α ∈ [0, 1
4). These regularity properties are optimal. Moreover, they are transfered to

the solutions of semilinear equations (SPDE). In particular, owing to the Kolmogorov continuity
criterion, trajectories are only α-Hölder continuous with values in H for all α < 1

4 . Compared with
regularity of Brownian Motion and of solutions of (finite-dimensional) SDEs, this lower regularity
of trajectories will lead to lower rates of convergence for the numerical schemes introduced below,
to original technical difficulties and solutions in the proofs, and to some surprising results.

Numerical methods and orders of convergence

To simulate solutions of SPDEs (SPDE), both spatial and discretization schemes are required.
We refer to [Lord et al., 2014, Chapter] for a comprehensive introduction to numerical methods for
stochastic PDEs, and to [Jentzen and Kloeden, 2011] for a description and analysis of temporal
discretization schemes for SPDEs. In practice, numerical experiments employ a Monte-Carlo method
to estimate expectations. Note that the Multilevel Monte-Carlo method [Giles, 2015] is often used
to reduce the computational cost.

In this manuscript, we mostly describe convergence results for the temporal discretization. Note
that the spatial discretization is often used in the proofs to justify computations at a finite dimen-
sional level: it then suffices to prove that error estimates are independent of dimension.

Spatial discretization. Let us first introduce the spectral Galerkin approximationmethod.
For all N ∈ N, let the orthogonal projection operator PN be defined by

PNx =
N∑
k=1

〈x, ek〉ek.
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The spectral Galerkin approximation for (SPDE) is defined as follows: for all N ∈ N,
(
XN (t)

)
t≥0

solves

(Galerkin) dXN (t) = AXN (t)dt+ FN (XN (t))dt+ σN (XN (t))dW (t) , XN (0) = PNX(0),

where FN (x) = PNF (x) and σN (x) = PNσ(x).

In practice, one may also use finite differences. Consider (SPDE), with Nemytskii operators F
and σ: let h = 1/N denote the mesh size, the approximation is defined by the system of stochastic
differential equations

dxj(t) =
xj+1(t) + xj−1(t)− 2xj(t)

2h2
dt+ f0(xj(t))dt+

σ0(xj(t))√
h

dβ̃j(t)

with 1 ≤ j ≤ N − 1, and x0(t) = xN (t) = 0 for all t ≥ 0, where β̃1, . . . , β̃j are independent
standard real-valued Wiener processes. Then xj(t) is interpreted as an approximation of X(t)(jh) =
X (t, jh). The scaling of the noise with respect to h may be justified as follows: in distribution
h−1

∫ (j+1)h
jh W (t, z)dz = 〈W (t), h−11[jh,(j+1)h]〉 ∼ 1√

h
β̃j(t). More generally, Finite Element Methods

are often employed and studied.

Temporal discretization. Based on the mild formulation (Ms) for the solutions of the sto-
chastic evolution equation (SPDE), the temporal discretization schemes are formulated as follows:
for all n ≥ 0,

(Euler) Xn+1 = S∆tXn + ∆tS∆tF (Xn) + S∆tσ(Xn)∆Wn,

where ∆t is the time-step size, tn = n∆t and the Wiener increments are denoted by ∆Wn =
W (tn+1) −W (tn). Two choices for linear operator S∆t will be considered below: an exponential
Euler scheme is obtained when S∆t = e∆tA, and a linear implicit Euler scheme is obtained
when S∆t = (I −∆tA)−1. In the latter case, the scheme (Euler) may be understood as

Xn+1 = Xn + ∆tAXn+1 + ∆tF (Xn) + σ(Xn)∆Wn,

however the formulation (Euler) is more appropriate, in particular to give meaning to the noise
term. Indeed, observe that S∆t is an Hilbert-Schmidt operator when ∆t > 0, thus the process given
by (Euler) is well-defined, in particular S∆tσ(Xn)∆Wn ∈ H. Moreover, one has a discrete-time
mild formulation (compare with the continuous-time version (Ms)): for all n ≥ 0,

Xn = Sn∆tX0 + ∆t
n−1∑
`=0

Sn−`∆t F (X`) +
n−1∑
`=0

Sn−`∆t σ(X`)∆W`.

The discretization of the nonlinear operator F is explicit: this is legitimate when F is globally
Lipschitz continuous – more advanced methods are used if F is not globally Lipschitz continuous
(see Chapters 2 and 3). The nonlinear operator σ is also discretized explicitly: this is consistent
with the Itô interpretation for the stochastic integrals.

Strong and weak orders of convergence. Since the solutions of Stochastic PDEs are random
variables, several notions of convergence may be considered. When analyzing rates of convergence of
numerical methods for SDEs and SPDEs, the two most popular notions are the strong and weak
orders of convergence. Let us present these notions when a temporal discretization scheme with
time-step size ∆t is applied. Let X(T ) be the solution at time T > 0 of (SPDE), and consider
its approximation XN using the numerical scheme (Euler), with time-step size ∆t > 0, such that
N∆t = T .
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On the one hand, if one has an estimate of the type

(S)
(
E[|XN −X(T )|2]

) 1
2 ≤ C(T, r)∆tα−r,

for all r ∈ (0, α), with C(T, r) ∈ (0,∞), then the scheme is said to have strong order of convergence
α. For the linear implicit Euler scheme given by (Euler), this order of convergence coincides with
the Hölder continuity of trajectories

(
X(t)

)
t≥0

: α = 1
4 , see for instance [Printems, 2001]. The

proof of strong convergence error estimates (for globally Lipschitz continuous nonlinearities) requires
three steps. First, one needs to check that the approximation satisfies appropriate moment bounds:
sup
N∈N

E[|XN |2] < ∞. This is a consequence of Lipschitz continuity of the nonlinearities and of

the application of a Gronwall lemma. Second, the error XN − X(T ) is decomposed into several
terms using the mild formulation (Ms) for the exact solution X and the mild formulation for the
approximation XN . Finally, estimating the error terms and using Gronwall’s lemma provide the
strong error estimates. For non-globally Lipschitz continuous nonlinearities, that approach fails and
more refined strategies are employed – in particular the first step concerning moment bounds fails
in general for explicit discretization schemes.

On the other hand, if one has an estimate of the type

(W)
∣∣E[ϕ(XN )]− E[ϕ(X(T ))]

∣∣ ≤ C(T, r, ϕ)∆tβ−r,

for all r ∈ (0, β), with C(T, r, ϕ) ∈ (0,∞) for sufficiently regular test functions ϕ : H → R, then the
scheme is said to have weak order of convergence β. If one considers the class of Lipschitz contin-
uous functions ϕ : H → R, one obtains β ≥ α. It is a well-known fact in numerical probability, that
often one has β > α, and even β = 2α, at least when considering more regular functions ϕ. Proving
this property for numerical schemes applied to SPDEs is a challenging question: several approaches
have been proposed in the last decade, see Chapter 1 for references, and for the presentation of our
contributions in this research area.

When nonlinearities are not globally Lipschitz continuous, proving strong and weak error es-
timates (S) and (W) may be extremely hard or impossible. Weaker notions of convergence may
be employed to exhibit rates of convergence, in the so-called semi-strong sense, for convergence in
probability, and for almost sure convergence. See Chapter 2 for our contributions to the analysis of
numerical schemes for SPDEs with non-globally Lipschitz nonlinearities.

Invariant distribution

In the contributions presented in Chapter 3 below, we study the long-time behavior of nu-
merical methods introduced above, when applied to the Stochastic Evolution Equation (SPDE)
with additive noise (σ(x) = I). Note that some results may be adapted for equations driven by
multiplicative and/or colored noise, under appropriate assumptions.

Assume that we are in the ergodic case, which in this manuscript means that the following
condition is satisfied:

(EC) Lip(F ) < λ1,

where Lip(F ) is the Lipschitz constant of F , and λ1 = min
k∈N

λk. Note that ergodicity of the process

may hold under weaker conditions, however to simplify the presentation such problems are not
treated in this manuscript.

Using the condition (EC), the SPDE (SPDE) defines an ergodic H-valued Markov process: the
process

(
X(t)

)
t≥0

admits a unique invariant distribution µ?, meaning that if L(X(0)) = µ? then
L(X(T )) = µ? for all T ∈ (0,∞). In other words, the process is stationary in distribution when
initialized randomly such that X(0) ∼ µ?.
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Moreover, under the condition (EC), X(T ) converges exponentially fast in distribution to µ? in
the following sense: there exists C ∈ (0,∞) such that if ϕ : H → R is a Lipschitz continuous test
function, then ∣∣E[ϕ(X(T ))]−

∫
ϕdµ?

∣∣ ≤ CLip(ϕ)(1 + E[|X(0)|])e−(λ1−Lip(F ))T .

Let us mention an important example. When F = 0, the invariant distribution µ? of the
stochastic convolution is the Gaussian distribution ν = N (0, 1

2(−A)−1): X ∼ ν means that in
distribution X =

∑
k∈N

1√
2λk

γkek, where
(
γk
)
k∈N are independent standard real-valued Gaussian

random variables.
In Chapter 3, our results concerning numerical approximation of the invariant distribution µ?

are presented, in order to answer the following questions (presented for temporal discretization).
• Let ∆t > 0, does the process

(
Xn

)
n∈N defined by (Euler) admit a unique invariant distri-

bution µ∆t
? ? Is the convergence to equilibrium exponentially fast?

• What is the order of convergence for the error
∫
ϕdµ∆t

? −
∫
ϕdµ? when ∆t → 0? More

generally, what is the size of the error E[ϕ(XN )]−
∫
ϕdµ??

• In general, the order of convergence is equal to the weak order given by (W), with upper
bound not depending on time T : can higher-order methods be designed when looking only
at the error between invariant distributions?

Kolmogorov and Poisson equations

Let us finally introduce two of the most important tools used in the analysis of the weak error
and of the error between invariant distributions for approximation of solutions of SPDEs. Note that
they are also important tools in the proof of convergence results in Part 2 and in Part 5.3.2.2.

In the sequel, the following standard convention is used for derivatives of a function φ : H → R:
using Riesz Theorem, the first-order derivative Dφ(x) can be identified as an element of H, and the
second-order derivative D2φ(x) can be identified as a self-adjoint linear operator in L(H), and for
all h, k ∈ H one has

Dφ(x).h = 〈Dφ(x), h〉 , D2φ(x).(h, k) = 〈D2φ(x).h, k〉.
Let ϕ be a function of class C2 from H to R. For all t ≥ 0 and x ∈ H, set

u(t, x) = EX(0)=x[ϕ(X(t))],

and in the ergodic case (i.e. under condition (EC)) set

Ψ(x) =

∫ ∞
0

(
u(t, x)−

∫
ϕdµ?

)
dt.

Formally, u is solution of the Kolmogorov equation

(K) ∂tu(t, x) = Lu(t, x), u(0, ·) = ϕ,

and Ψ is solution of the Poisson equation

(P) − LΨ(x) = ϕ(x)−
∫
ϕdµ?,

where L is the infinitesimal generator associated with the Stochastic Evolution Equation (SPDE):

(G) Lφ(x) = 〈Ax+ F (x), Dφ(x)〉+
1

2
Tr
(
D2φ(x)σ(x)σ?(x)

)
.

The Kolmogorov and Poisson equations (K) and (P) are infinite dimensional PDEs, see the mono-
graph [Cerrai, 2001], and see also [Andersson et al., 2019]: giving a rigorous meaning would
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require to check that Lu(t, x) and LΨ(x) are well-defined. In order to avoid justifying the required
regularity properties at the infinite dimensional level, it is convenient to consider the finite dimen-
sional spectral Galerkin approximation of the process (or any appropriate regularization technique):
it then remains to obtain bounds which are independent of dimension on the quantities appearing
in (K), (P) and (G). Except for simple situations (additive noise and globally Lipschitz nonlinearity
F ), this is a challenging task: some of the contributions presented in Chapters 1 and 2 below consist
in proving new regularity results for the infinite dimensional Kolmogorov equation (K).

To illustrate the challenge discussed above, consider the term 〈Ax,Dφ(x)〉 appearing in (G).
Since the process X takes values in D((−A)

1
4
−ε), it is not reasonable to assume that x ∈ D(A).

Instead, a regularity estimate of the type

(D1) |(−A)αDu(t, x)| . t−α

can be used, if α > 3
4 , to handle the term 〈Ax,Dφ(x)〉 with x ∈ D((−A)

1
4
−ε). Similar arguments

are required to give a meaning to the trace term appearing in (G) when φ = u(t, ·): in the additive
noise case (σ(x) = I), Tr(D2u(t, x)) =

∑
k∈ND

2u(t, x).(ek, ek) is finite for t > 0 using a regularity
estimate of the type

(D2) ‖(−A)βD2u(t, x)(−A)γ‖L(H) . t−β−γ

with β, γ > 0 and β+ γ > 1
2 . The challenge is to prove that one can choose α ∈ [0, 1) for (D1), and

β, γ ∈ [0, 1
2) for (D2), in order to overcome limitations coming from crude approaches, of the type

α ∈ [0, 1
2) and β + γ < 1

2 . The limitations and the solutions will be explained below.
Note that the singularities t−α and t−β−γ appearing in the regularity estimates are due to the

fact that at t = 0 one only assumes that |Dϕ(x)| and ‖D2ϕ(x)‖L(H) are finite. They can be
understood as follows: let ϕ(t, x) = ϕ(etAx), then one has

Dϕ(t, x) = etADϕ(etAx)

thus |(−A)αDϕ(t, x)| ≤ ‖(−A)αetA‖L(H)|Dϕ(etAx)| . t−α using the inequality (Sp). Observe that
ϕ(t, x) = u(t, x) if F = σ = 0: one needs to understand the regularity estimates as perturbations of
the parabolic smoothing property (Sp) when nonlinearities and noise are introduced in the model.
No such regularization properties hold for instance for hyperbolic models.

To conclude this section, let us explain why the solutions of the Kolmogorov and Poisson
equations (K) and (P) are useful tools in the analysis of the weak error. See [Talay, 1986]
and [Mattingly et al., 2010] for finite dimensional versions or variants, and further details in
the SPDE case are given in Chapters 1 and 3. To simplify the presentation, let us first consider the
error for the spectral Galerkin approximation XN defined by (Galerkin). Let LN be the associated
infinitesimal generator. For all T ∈ (0,∞), the weak error is written as

E[ϕ(XN (T ))]− E[ϕ(X(T ))] = E[u(0, XN (T ))]− E[u(T,X(0))]

= E[u(0, XN (T ))]− E[u(T,XN (0))] + E[u(T,XN (0))]− E[u(T,X(0))].

Using Itô’s formula and the fact that u solves the Kolmogorov equation (K), one obtains

E[u(0, XN (T ))]− E[u(T,XN (0))] =

∫ T

0
E[
(
LN − ∂t

)
u(T − t,XN (t))]dt

=

∫ T

0
E[
(
LN − L

)
u(T − t,XN (t))]dt.
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In the ergodic case, assume that µN? is an invariant distribution of (Galerkin), then the error between
invariant distributions can be written as∫

ϕ(PN ·)dµN? −
∫
ϕdµ? = −

∫
LΨ(PN ·)dµN?

=

∫ (
LN − L

)
Ψ(PN ·)dµN? ,

indeed
∫
LNφNdµN? = 0 for any (sufficiently smooth) mapping φN .

Similar ideas are used to study the weak error when temporal discretization schemes are consid-
ered, however the presentation is more complex. Let

(
Xn

)
n≥0

be given by the scheme (Euler), and
let
(
X̃(t)

)
t≥0

be a continuous-time process such that X̃(tn) = Xn for all n ≥ 0. The decomposition
of the weak error is obtained as follows: using the definition of u, a telescoping sum argument and
Itô’s formula, one has (with T = N∆t and X0 = X(0))

E[ϕ(XN )]− E[ϕ(X(T ))] = E[u(0, XN )]− E[u(T,X0)]

=

N−1∑
n=0

(
E[u(T − tn+1, Xn+1)]− E[u(T − tn, Xn)]

)
=

N−1∑
n=0

∫ tn+1

tn

E[
(
L̃n − ∂t

)
u(T − t, X̃(t))]dt

=

N−1∑
n=0

∫ tn+1

tn

E[
(
L̃n − L

)
u(T − t, X̃(t))]dt,

where L̃n is an auxiliary infinitesimal generator, associated with the definition of the auxiliary
process X̃ on each subinterval [tn, tn+1].

In the ergodic case, assume that µ∆t
? is an invariant distribution for (Euler). Assume that

X0 ∼ µ∆t
? . On the one hand,

E[Ψ(X1)]− E[Ψ(X0)] = 0

by definition of an invariant distribution. On the other hand, using Itô’s formula and the expression
of the Poisson equation (P), one has

E[Ψ(X1)]− E[Ψ(X0)] =

∫ ∆t

0
E[L̃0Ψ(X̃(t))]dt

=

∫ ∆t

0
E[
(
L̃0 − L

)
Ψ(X̃(t))]dt−

∫ ∆t

0
E[ϕ(X̃(t))− ϕ(X̃(0)]dt−∆t

(
E[ϕ(X0)]−

∫
ϕdµ?

)
.

Since E[ϕ(X0)] =
∫
ϕdµ∆t

? , one obtains∫
ϕdµ∆t

? −
∫
ϕdµ? =

1

∆t

∫ ∆t

0
E[
(
L̃0 − L

)
Ψ(X̃(t))]dt+

1

∆t

∫ ∆t

0
E[ϕ(X̃(0))− ϕ(X̃(t)]dt.

Rigorous analysis requires to establish regularity estimates, moment bounds, and additional argu-
ments in order to study the error terms exhibited in the computations above. The details depend
on the choice of the method and on the regularity of the solutions.

This concludes the presentation of the main tools used in the analysis of numerical methods for
SPDEs of the type (SPDE).
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CHAPTER 1

Weak error analysis of numerical schemes for SPDEs

In this chapter, we describe first three results, then a few works in progress, concerning the proof
of weak error estimates of the type (W) for numerical schemes applied to the Stochastic Evolution
Equations (SPDE): more precisely, we state error estimates and give the main ideas of the proofs,
of the type∣∣E[ϕ(XN (T ))]− E[ϕ(X(T ))]

∣∣ ≤ Cε(ϕ, T )λ
− 1

2
+ε

N ,
∣∣E[ϕ(XN )]− E[ϕ(X(T ))]

∣∣ ≤ Cε(ϕ, T )∆t
1
2
−ε,

where ϕ : H → R is of class C2. We consider either the spatial discretization using the spec-
tral Galerkin method (Galerkin), or the temporal discretization using the linear implicit Euler
scheme (Euler). It is worth mentioning that the weak order of convergence 1

2 is optimal, and is
related to the regularity of the mild solution of (SPDE); the strong order of convergence for the
same methods is 1

4 .
In Sections 1.1 and 1.2, we relax the conditions on the test function ϕ. First, in Section 1.1,

based on [2], we show that the weak order 1/2 is attained only if ϕ is at least of class C2
b : more

precisely, the weak order is only 1/4 if ϕ is of class C1
b , and no order of convergence can be obtained

if ϕ is only of class C0
b . Second, in Section 1.2, based on [3], we show that one can obtain a weak

error estimate for sufficiently regular test functions which depend on the trajectory of the process
from time 0 to T , instead of its value at the given time T , when considering the spectral Galerkin
approximation, in the additive noise case.

The major contribution of this Chapter is presented in Section 1.3, concerning the proof of weak
error estimates in the multiplicative noise case (σ is not constant). As will be explained below, an
important challenge is overcome using a completely original strategy: we prove that the required
regularity results of the type (D1) and (D2) hold with the optimal range of values α ∈ [0, 1) and
β, γ ∈ [0, 1

2) for the parameters (naive approaches would give limitations α < 1
2 and β + γ < 1

2).
The content of Section 1.3 is based on [4], however for pedagogical reasons a simpler framework
will be considered (namely we replace time discretization using the linear implicit scheme by spatial
discretization using the spectral Galerkin method).

Some recent works in progress concerning weak error estimates for related models – higher
dimensional parabolic semilinear SPDEs with colored noise, and the viscous Burgers equation in
dimension 1 driven by additive trace-class noise, respectively – are presented in Section 1.4.

Before proceeding to the presentation of our contributions, let us review existing results and
methods for weak error analysis of numerical schemes for parabolic semilinear SPDEs (results for
other types of SPDEs are omitted). In all those works, test functions ϕ are at least of class
C2
b . In [Debussche and Printems, 2009], the authors study the weak error for the linear case

with additive noise (F = 0 and σ = I in (SPDE)), using a change of unknowns and a vari-
ant of the Kolmogorov equation approach. The semilinear case with additive noise, or with a
diffusion coefficient σ satisfying a special regularity condition, is treated in [Debussche, 2011]
(for temporal discretization) and in [Andersson and Larsson, 2016] (for spatial discretization),
using the Kolmogorov equation approach and Malliavin calculus techniques. In [Wang, 2016],
the weak error when the exponential Euler scheme is applied is studied, with an approach close
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to [Debussche and Printems, 2009]: the Kolmogorov equation approach is used but Malliavin
calculus is not required owing to a change of unknowns. A completely different approach is used
in [Andersson et al., 2016]: the authors use an appropriate duality formula and Malliavin cal-
culus techniques, in the additive noise case. Finally, the Kolmogorov equation approach is adapted
in [Conus et al., 2019], using the so-called mild Itô formula instead of the standard Itô formula for
the decomposition of the error, in the multiplicative noise case. Our contribution [4] is a substantial
and non-trivial improvement of [Debussche, 2011] and [Andersson and Larsson, 2016] in the
multiplicative noise case. Our contribution [3] is the first one where test functions depending on
the trajectory are considered (see [Andersson and Lindner, 2019] for similar results for SPDEs
driven by Lévy processes, using another approach).

Weak error estimates are relevant when studying the approximation of the invariant distribution
for ergodic SPDEs (SPDE): additional references and approaches are given in Chapter 3.

1.1. Influence of the regularity of the test function

The content of this section is based on the article [2].
The objective is to study the role of the regularity of the functions ϕ when considering weak

error estimates of the type (W): for some schemes such as the spectral Galerkin method or the linear
implicit Euler scheme, the weak order of convergence is twice the strong order of convergence only if
functions of class C2 are considered. If functions are only of class C1, the weak order coincides with
the strong order, whereas no order at all is obtained for functions of class C0. These results may
be surprising since they substantially differ from the finite dimensional situation: for hypoelliptic
SDEs, the weak order of the Euler-Maruyama scheme is equal to 1 also for test functions which are
only measurable and bounded, see [Bally and Talay, 1996]. We thus illustrate a specificity of the
SPDE case.

More precisely, we consider the Stochastic Evolution Equation (SPDE) with additive noise
(σ(x) = I), driven by space-time white noise, with F = 0. As a consequence, the solution is a
Gaussian process, namely the stochastic convolution given by (SC). To simplify the presentation in
this manuscript, we study the weak error between the invariant distributions ν, and νN (Galerkin
approximation) or ν∆t (linear-implicit Euler scheme) of the processes

dX = AXdt+ dW (t),

dXN = AXNdt+ PNdW (t),

Xn+1 = (I −∆tA)−1
(
Xn +W (tn+1)−W (tn)

)
.

The three invariant distributions ν, νN and ν∆t are Gaussian distributions

ν = N (0, Q) , νN = N (0, QN ) , ν∆t = N (0, Q∆t),

where the covariance operators Q,QN , Q∆t satisfy for all k ∈ N

Qek =
1

2λk
ek, QNek =

1k≤N
2λk

ek, Q∆tek =
1

2λk

2

2 + ∆tλk
ek.

The results from the article [2] can now be written as follows. To simplify the presentation, in
this manuscript we only present the result, some comments and the ideas of the proofs, for test
functions of class C2 and C0. If φ : H → R is of class C0, let ‖φ‖0 = sup

x∈H
|φ(x)|, and if φ : H → R,

let ‖φ‖2 = sup
x∈H
|φ(x)|+ sup

x∈H
|Dφ(x)|+ sup

x∈H
|D2φ(x)|.
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Theorem 1.1. For test functions of class C2, one has

(1.1)

lim sup
N→∞

λrN sup
φ∈C2(H,R),‖φ‖2≤1

|
∫
φdν−

∫
φdνN | =

{
0, ∀ r ∈ [0, 1

2)

∞, ∀ r > 1
2

,

lim sup
∆t→0

1

∆tr
sup

φ∈C2(H,R),‖φ‖2≤1

|
∫
φdν −

∫
φdν∆t| =

{
0, ∀ r ∈ [0, 1

2)

∞, ∀ r > 1
2

,

whereas for test functions of class C0 one has

(1.2)

lim sup
N→∞

sup
φ∈C0(H,R),‖φ‖0≤1

|
∫
φdν −

∫
φdνN | ≥ 1,

lim sup
∆t→0

sup
φ∈C0(H,R),‖φ‖0≤1

|
∫
φdν −

∫
φdν∆t| ≥ 1.

On the one hand, the error estimates (1.1) are the type of results expected for weak error
estimates (W), with order of convergence 1

2 , compared with strong error estimates (S), with order
of convergence 1

4 which coincides with regularity properties of the stochastic convolution. The proof
can be obtained by the following straightforward yet powerful argument, in the spectral Galerkin
approximation case: let

(
γk
)
k∈N be a sequence of independent standard real-valued Gaussian random

variables, and set XN =
∑N

k=1
γk√
2λk

ek and RN =
∑∞

k=N+1
γk√
2λk

ek. Then one has XN ∼ νN? and
XN +RN ∼ ν?, and a second-order Taylor expansion argument yields∫

ϕdν? −
∫
ϕdνN? = E[ϕ(XN +RN )]− E[ϕ(XN )]

= E[Dϕ(XN ).RN ] + O(E[|RN |2]).

Next, observe that E[Dϕ(XN ).RN ] = 0 since XN and RN are independent and E[RN ] = 0. That
is the key argument of the proof. It finally suffices to check that, one has

E[|RN |2] =
∞∑

k=N+1

1

2λk
= O(λ−rN ),

to obtain a part of the result for r < 1
2 – recall that λk ∼ ck2. The case r > 1

2 is treated by choosing
ϕ(x) = exp(−|x|2). The argument above explains in this simple situation why the weak order can
be expected to be twice the strong order for sufficiently smooth test functions.

On the other hand, the error estimates (1.2) show that for test functions which are only con-
tinuous and bounded, one cannot expect to exhibit an order of convergence. A proof is obtained
by choosing an appropriate and simple class of test functions: for all M ∈ N and ε > 0, set
ϕε,M (x) = exp(−ε|PM (−A)

1
4x|2). For all ε > 0, one has

lim
M→∞

∫
ϕε,Mdν = 0,

however for all N ∈ N, one has

lim
ε→0

lim
M→∞

∫
ϕε,Mdν

N = lim
ε→0

∫
ϕε,Ndν

N = 1.

Considering the supremum of the weak error over the set {ϕε,M}ε>0,M∈N then gives (1.2) for the
spectral Galerkin approximation. Similar arguments give the results for the linear implicit Euler
scheme.

The reason behind the argument presented above is the fact that ν and νN are singular prob-
ability distributions on H, in particular in total variation distance dTV(ν, νN ) = 1. This behavior
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may be interpreted as a difference in the regularity of associated random variables: if X ∼ ν and
XN ∼ νN , then almost surely |(−A)

1
4X| =∞ whereas |(−A)

1
4XN | <∞. Similarly, ν and ν∆t are

singular probability distributions. This property is discussed again in Chapter 3, when considering
the construction of higher-order methods for the approximation of the invariant distribution in the
ergodic case.

1.2. The Itô map approach for spectral Galerkin approximation

The content of this section is based on the article [3], written in a post-doctoral
collaboration with Martin Hairer and Andrew Stuart.

The main result is a weak convergence estimate for the spectral Galerkin approximation (Galerkin)
of (SPDE), in the additive noise case (σ(x) = I), which differs from the standard weak error
estimates of the type (W): the test functions Φ : C([0, T ], H) → R depend on the trajectory
X =

(
X(t)

)
0≤t≤T , instead of considering test functions ϕ : H → R depending only on the value

X(T ) of the process at a given time T . When the test function depends on the trajectory, standard
tools such as the Kolmogorov equation are not applicable. Our strategy is to express the solution
in terms of an auxiliary mapping referred to as the Itô map. Let us first describe the main result
of [3].

Theorem 1.2. Let T ∈ (0,∞) and XN =
(
XN (t)

)
0≤t≤T and X =

(
X(t)

)
0≤t≤T . Assume that

F : H → R is of class C2. Let Φ : C([0, T ], H)→ R be a mapping of class C2 with bounded first and
second order derivatives. Assume that x0 ∈ D((−A)α) for some α ∈ (0, 1). For all r ∈ (0, 1

2), there
exists Cr,α(T,Φ) such that∣∣E[Φ(XN )]− E[Φ(X)]

∣∣ ≤ Cr,α(T,Φ)
(
λ−αN+1(1 + |(−A)αx0|) + λ

− 1
2

+r

N+1

)
.

The statement above is a simplified version compared with [3, Theorem 4.3], which is more
general and for instance encompasses colored noise if the covariance operator Q commutes with A,
and holds with weaker regularity conditions for F . The case of a non-commutative noise is more
challenging: an example is treated in [3, Section 6], using a similar strategy combined with some
commutator estimates. The case of stochastic wave equations is also treated in [3, Section 5]. Note
that the study is limited to spectral Galerkin approximation, and to the best of our knowledge the
strategy has not been generalized for the treatment of the weak error for finite element approximation
in space, or timestepping schemes such as the linear implicit Euler scheme (Euler).

Note that if the test function Φ only depends on the value of the process at time T , i.e. if
Φ(X) = ϕ(X(T )), then one retrieves the standard weak error estimate (W). Theorem 1.2 is more
general since test functions depending on trajectories are allowed: for instance one can consider
Φ(X) =

∫ T
0 ϕ(X(t))dt.

The strategy used to prove Theorem 1.2 gives an original point of view to explain why the weak
order is expected to be twice the strong order when test functions are of class C2. The main idea
is to introduce the so-called Itô map Θ. For every trajectory W ∈ C([0, T ], H), let Θ(W) be the
unique solution of the following equation: for all t ∈ [0, T ]

Θ(W)(t) = etAx0 +

∫ t

0
e(t−s)AF (Θ(W)(s))ds+ W(t).

The Itô map Θ is deterministic, it depends on the initial condition x0 and on the terminal time T
(and on F and A). It is proved in [3] that the Itô map Θ is of class C2 with bounded first and
second order derivatives.
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The main consequence of the definition of the Itô map is as follows. On the one hand, the mild
solution X =

(
X(t)

)
0≤t≤T of (SPDE) can be written as

X = Θ(WA)

where WA =
(
WA(t)

)
0≤t≤T is the stochastic convolution process given by (SC). On the other hand,

the approximate solution XN =
(
XN (t)

)
0≤t≤T given by (Galerkin) can be written as

XN = Θ(WN
A + RN )

where WN
A =

(
PNWA(t)

)
0≤t≤T , and the reminder term RN =

(
RN (t)

)
0≤t≤T is given by

RN (t) =

∫ t

0
e(t−s)A(PN − I)F (XN (s))ds+ (PN − I)etAx0.

The weak error can finally be written as

E[Φ(XN )]− E[Φ(X)] = E[Ψ(WN
A + RN )]− E[Ψ(WA)],

where Ψ = Φ ◦ Θ is of class C2 with bounded first and second-order derivatives. The fundamental
property is that WN

A and WA −WN
A are independent random variables: performing a second-order

Taylor expansion then yields

E[Ψ(WN
A + RN )]− E[Ψ(WA)] = E[Ψ(WN

A + RN )]− E[Ψ(WN
A )] + E[Ψ(WN

A )]− E[Ψ(WA)]

= O
(
E[‖RN‖∞]

)
+ O

(
E[‖WN

A −WA‖2∞]),

where ‖ · ‖∞ denote the norm of the Banach space C([0, T ], H). We have used the key identity
E[DΨ(WA

N ).(WA −WN
A )] = 0, which follows from the independence property stated above. It is

straigthforward to prove that E[‖RN‖∞] ≤ Cα(T )λ−αN+1(1 + |(−A)αx0|). In addition, E[‖WN
A −

WA‖2∞] ≤ Crλ
−r
N+1 for all r ∈ [0, 1

2) (this is proved using the factorization method in [3]), and

E[‖WN
A −WA‖∞] ≤ Crλ

− r
2

N+1.
When α ≥ 1

2 , Theorem 1.2 thus shows that the weak order is twice the strong order for this
problem, and the argument behind this property is a second-order Taylor expansion in the space of
trajectories.

The use of independence properties and second-order Taylor expansions in Section 1.1 and 1.2
gives proofs of weak error estimates (W) by elementary arguments in the case of the stochastic
convolution, and nice interpretations for the differences between strong and weak error estimates.
However the treatment of semilinear problems requires more involved arguments as presented below.

1.3. The Kolmogorov equation approach in the multiplicative noise case

The content of this section is based on [4], written in collaboration with Arnaud
Debussche.

As explained above, the motivation is to extend the result of [Debussche, 2011] to the mul-
tiplicative noise case, in particular to remove the restrictive condition (2.5) in that reference. The
main result of [4] can be written as follows (in a slightly simplified setting).

Theorem 1.3. Let
(
X(t)

)
t≥0

be the solution of the SPDE

dX(t) = AX(t)dt+ F (X(t))dt+ σ(X(t))dW (t), X(0) = x0,

driven by a cylindrical Wiener process, where the nonlinearities F and σ are Nemytskii operators
associated with real-valued functions of class C3 with bounded derivatives.

37



Let
(
Xn

)
n≥0

be defined as the approximation of the process using the linear implicit Euler scheme

Xn+1 = S∆t

(
Xn + ∆tF (Xn) + σ(Xn)∆Wn

)
, X0 = x0,

with S∆t =
(
I −∆tA

)−1. Assume that T = N∆t for some N ∈ N. Let ϕ : H → R be a function of
class C3 with bounded derivatives.

For all r ∈ (0, 1
2), there exists Cr(T, ϕ, x0) ∈ (0,∞) such that∣∣E[ϕ(XN )]− E[ϕ(X(T ))]

∣∣ ≤ Cr(T, ϕ, x0)∆tr.

The result proved in [4] allows to consider more general test functions ϕ (which may defined and
regular only on Lp spaces for p ∈ (2,∞)), and nonlinearities of the type F (x) = f0(x)+b(x)′, where
b is a function of class C3 with bounded derivatives. The approach does not allow to consider the
viscous Burgers case b(x) = x2 (since b would not be globally Lipschitz continuous), see Section 1.4
below for a discussion.

The proof of Theorem 1.3 combines two types of arguments (in very technical computations):
regularity estimates of the type (D1) and (D2) for the derivatives of the solution of the associated
Kolmogorov equation (K), and weak error analysis techniques to estimate error terms. The second
type of arguments are similar to those developped in [Debussche, 2011] – in particular the use of
Malliavin calculus and integration by parts techniques to handle the most singular terms – and are
not discussed in this manuscript, in order to focus on our original ideas.

In the remainder of this section, the objective is to explain the role of the regularity results (D1)
and (D2) in the weak error analysis, why a crude approach fails in the multiplicative noise case,
and finally what is the original solution proposed in [4]. For pedagogical reasons, we consider the
following simplified setting: we consider the SPDE (SPDE) and assume that the nonlinearities
F : H → H and σ : H → L(H) are of class C3 with bounded derivatives (this abstract condition
excludes Nemytskii operators), and are bounded. In addition, we consider the spectral Galerkin
approximation (Galerkin) instead of a temporal discretization using the linear implicit Euler scheme.
With this choice of approximation, the most technical arguments used in the weak error analysis
from [Debussche, 2011] are avoided. The objective is to prove the following result: for all r ∈
(0, 1

2), there exists Cr(T, ϕ, x0) ∈ (0,∞) such that for all N ∈ N one has

(1.3)
∣∣E[ϕ(XN (T ))]− E[ϕ(X(T ))]

∣∣ ≤ Cr(T, ϕ, x0)λ−rN .

Note that one recovers the same weak order of convergence as in Section 1.1, where the stochastic
convolution (F = 0, σ(x) = I) is considered, in particular the optimal weak order of convergence is
1/2, and is twice the strong order 1/4.

Recall that u(t, x) = EX(0)=x[ϕ(X(t))] is solution of the Kolmogorov equation (K): an auxiliary
approximation argument is used to justify the computations, and is omitted to simplify the presen-
tation. As explained in the preliminaries, the weak error for the Galerkin approximation is written
as

E[ϕ(XN (T ))]− E[ϕ(X(T ))] = E[u(0, XN (T ))]− E[u(T,X(0))]

= E[u(0, XN (T ))]− E[u(T,XN (0))] + E[u(T,XN (0))]− E[u(T,X(0))].

On the one hand, using a regularity estimate of the type (D1), one obtains∣∣E[u(T,XN (0))]− E[u(T,X(0))]
∣∣ ≤ CT−α|(−A)−α(PN − I)x0| ≤ CT−αλ−αN |x0|.

38



On the other hand, using Itô’s formula, the Kolmogorov equation (K) and symmetry of the second-
order derivative linear operators Du(T − t, x), as explained in the preliminaries, one obtains

E[u(0, XN (T ))]−E[u(T,XN (0))] =

∫ T

0
E
[
〈(PN − I)F (XN (t)), Du(T − t,XN (t))〉

]
dt

+

∫ T

0
E
[
Tr
(
PNσ(XN (t))σ?(XN (t))(I − PN )D2u(T − t,XN (t))

)]
dt

− 1

2

∫ T

0
E
[
Tr
(
(I − PN )σ(XN (t))σ?(XN (t))(I − PN )D2u(T − t,XN (t))

)]
dt.

The first error term is treated as follows: using a regularity estimate of the type (D1), then the
inequality ‖(−A)−α(PN − I)‖L(H) ≤ Cαλ−αN , one has

∫ T

0
E
[∣∣〈(PN − I)F (XN (t)), Du(T − t,XN (t))〉

∣∣]dt
≤ Cα

∫ T

0
(T − t)−αE

[
|(−A)−α(PN − I)F (XN (t))|

]
dt

≤ Cαλ−αN
∫ T

0
(T − t)−α

(
1 + sup

N∈N
sup

0≤t≤T
E[|XN (t)|]

)
dt.

The second error term is treated as follows. Observe that Tr
(
(−A)−

1
2
−ε) <∞ if and only if ε > 0,

then using a regularity estimate of the type (D2) with β = 1
2 − ε and γ = 1

2 −
ε
2 , and boundedness

of σ (or Lipschitz continuity and a moment estimate), one has∫ T

0
E
[∣∣Tr

(
PNσ(XN (t))σ?(XN (t))(I − PN )D2u(T − t,XN (t))

)∣∣]dt
≤
∫ T

0
‖(I − PN )(−A)−

1
2

+ε‖L(H)‖(−A)
1
2
−εD2u(T − t,XN (t))(−A)

1
2

+ ε
2 ‖L(H)Tr

(
(−A)−

1
2
− ε

2
)
dt

≤ Cελ
− 1

2
+ε

N

∫ T

0
(T − t)−1+ ε

2dt.

The third error term is treated using the same arguments as for the second one.
To obtain a weak order r arbitrarily close to 1

2 , it is necessary to choose α arbitrarily close to 1
2 ,

and β, γ arbitrarily close to 1
2 . Note that working with a pedagogical framework may be misleading:

in more complex cases, it is in fact necessary to choose α arbitrarily close to 1. This concludes the
explanation of the role of the regularity estimates. Let us now explain how they can be proved,
first by a crude approach with limitations α < 1

2 and β + γ < 1
2 , and then by our proposed original

approach.
The first and second order derivatives Du(t, x).h and D2u(t, x).(h, k) are expressed in terms of

auxiliary random variables ηh(t) and ζh,k(t), as follows (see for instance [Andersson et al., 2019,
Cerrai, 2001, Debussche, 2011]):

Du(t, x).h = Ex[Dϕ(X(t)).ηh(t)]

Du(t, x).(h, k) = Ex[Dϕ(X(t)).ζh,k(t)] + Ex[D2ϕ(X(t)).(ηh(t), ηk(t))],
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where

dηh(t) = Aηh(t)dt+DF (X(t)).ηhdt+Dσ(X(t)).ηh(t)dW (t)

dζh,k(t) = Aζh,k(t)dt+DF (X(t)).ζh,k(t)dt+Dσ(X(t)).ζh,k(t)dW (t)

+D2F (X(t)).(ηh(t), ηk(t))dt+D2σ(X(t)).(ηh(t), ηk(t))dW (t),

with initial conditions ηh(0) = h and ζh,k(0) = 0. The associated mild formulations are

ηh(t) = etAh+

∫ t

0
e(t−s)ADF (X(s)).ηh(s)ds+

∫ t

0
e(t−s)ADσ(X(s)).ηh(s)dW (s),

ζh,k(t) =

∫ t

0
e(t−s)ADF (X(s)).ζh,k(s)ds+

∫ t

0
e(t−s)ADσ(X(s)).ζh,k(s)dW (s)

+

∫ t

0
e(t−s)AD2F (X(s)).(ηh(s), ηk(s))ds+

∫ t

0
e(t−s)AD2σ(X(s)).(ηh(s), ηk(s))dW (s).

In the additive noise case, Dσ(X(t)) = 0 and D2σ(X(t)) = 0; using the smoothing property of
the semi-group (Sp) and boundedness of the derivatives DF (i.e. Lipschitz continuity of F ) and
D2F , one obtains almost sure estimates

|ηh(t)|2 ≤ Cαt−α|(−A)−αh|+ C

∫ t

0
|ηh(s)|ds

d|ζh,k(t)|2 ≤ C
∫ t

0
|ζh,k(s)|ds+ C

∫ t

0
|ηh(s)||ηk(s)|ds.

Using the Gronwall Lemma yields

|ηh(t)| ≤ Cαt−α|(−A)−αh|, |ζh,k(t)| ≤ Cβ,γ |(−A)−βh||(−A)γk|,

where the conditions α ∈ [0, 1) and β, γ ∈ [0, 1) with β + γ < 1 are imposed to ensure integrability
properties

∫ t
0 s
−αds <∞ and

∫ t
0 s
−β−γds <∞.

In the multiplicative noise case, Itô’s isometry formula is required to estimate the stochastic
integrals appearing in the mild formulations above: using the inequality ‖esA‖L2(H) ≤ Cεs−

1
4
−ε for

all ε ∈ (0, 1
4), one obtains

E[|ηh(t)|2] ≤ Cαt−2α|(−A)−αh|2 + Cε

∫ t

0

(
1 + (t− s)−

1
2
−ε)E[|ηh(s)|2]ds

E[ζh,k(t)|2] ≤ Cε
∫ t

0

(
1 + (t− s)−

1
2
−ε)E[|ζh,k(s)|2]ds+ Cε

∫ t

0

(
1 + (t− s)−

1
2
−ε)E[|ηh(s)|2|ηk(s)|2]ds.

Due to the application of Itô’s isometry formula, square integrability conditions are required: the
limitations 2α < 1 and 2(β + γ) < 1 cannot be overcome (see [Andersson et al., 2019]), and
this range of parameters is not sufficient to obtain the optimal weak rates of convergence in the
multiplicative noise case.

We are now in position to explain our original strategy. The first idea is to obtain an explicit
formula for ηh(t) and ζh,k(t), in order to avoid the use of Gronwall Lemma. The second idea is to
use a duality (or integration by parts) formula for E[Dϕ(X(t)).ηh(t)], in order to avoid the use of
Itô’s isometry formula. Introduce the auxiliary random variable

η̃h(t) = ηh(t)− etAh,
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then

dη̃h(t) = Aη̃h(t)dt+DF (X(t)).η̃hdt+Dσ(X(t)).η̃h(t)dW (t)

+DF (X(t)).etAhdt+Dσ(X(t)).etAhdW (t).

Observe that the evolution equations for η̃h(t) and ζh,k(t) have the same structure, and it is natural
to introduce the random linear operators

(
Π(t, s)

)
t≥s≥0

such that Πh
t,s = Π(t, s)h solves

dΠh
t,s = AΠh

t,sdt+DF (X(t)).Πh
t,sdt+Dσ(X(t)).Πh

t,sdW (t)

for t ≥ s, with Πh
s,s = h. First, using a Duhamel type formula, η̃h(t) and ζh,k(t) can be formally

written as

η̃h(t) =

∫ t

0
Π(t, s)DF (X(s)).esAhds+

∫ t

0
Π(t, s)Dσ(X(s))dW (s),

ζh,k(t) =

∫ t

0
Π(t, s)D2F (X(s)).(ηh(s), ηk(s))ds+

∫ t

0
Π(t, s)D2σ(X(s)).(ηh(s), ηk(s))dW (s).

Second, the strategy consists in applying the following duality formula: under appropriate regularity
and integrability conditions, if θ : [0, T ]→ L2(H) is an adapted process,

E[Dϕ(X(t)).

∫ t

0
θ(s)dW (s)] = E[

∫ t

0
Tr
(
θ(s)?D2ϕ(X(t))DsX(t)

)
ds],

where DsX(t) denotes the Malliavin derivative of X(t) at time s.
Unfortunately, the strategy outlined above cannot be implemented directly. Indeed the sto-

chastic integrals
∫ t

0 Π(t, s)Dσ(X(s))dW (s) and
∫ t

0 Π(t, s)D2σ(X(s)).(ηh(s), ηk(s))dW (s) cannot be
defined and interpreted as Itô integrals, since the mapping s 7→ Π(t, s) is not an adapted process:
by definition, the random linear operator Π(t, s) depends on the values of X(r) for r ≥ s. To the
best of our knowledge, the required two-sided, forward-backward, stochastic integrals have not been
constructed and studied in the literature. To overcome this issue, we employ an auxiliary discrete
time approximation, using a scheme of the type (Euler): the new formulas for the discrete-time ver-
sions of η̃h(t) and ζh,k(t) make sense in a straightforward way. Another issue remains: the duality
formula written above cannot be applied since it requires θ to be adapted. A generalized duality
formula for the formal stochastic two-sided integrals (or their discrete-time versions) appearing in
our arguments can be written. It is fundamental to note that an additional term appears, the
duality formula is expected to be of the type

E
(
Dϕ(X(t)).

∫ t

0
Π(t, s)σ′(X(s)).esAhdW (s)

)
= E

(∫ t

0
Ds (Dϕ(X(t))) .Π(t, s)σ′(X(s)).esAhds

+

∫ t

0
Dϕ(X(t, x)).D+

s (Π(t, s))σ′(X(s)).esAhds
)
,

where D+
s denotes a variant of the Malliavin derivative. For discrete-time versions, all the compu-

tations make sense (but require many non-trivial arguments to prove the regularity estimates). It
would be interesting to rigorously define the type of stochastic integrals and to prove the associated
version of the duality formula at the continuous-time level, in order to generalize this strategy to
other problems, without the need to employ the auxiliary temporal discretization scheme. To the
best of our knowledge, this has not been considered in the literature.

Using the strategy described above, in [4], we prove that the regularity estimates of the type (D1)
and (D2) hold for α arbitrarily close to 1 and β, γ arbitrarily close to 1

2 respectively: we refer to [4,
Theorems 4.2 and 4.3] for precise statements. These estimates are then used to prove Theorem 1.3,
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to have a weak order 1/2 for the temporal approximation using the implicit Euler scheme. This
concludes the presentation of the main arguments to prove Theorem 1.3.

1.4. Further weak error estimates (in progress)

In this section we describe some projects and works in progress, where the aim is to prove weak
error estimates of the type (W) for variants of the Stochastic Evolution Equations (SPDE).

1.4.1. Multiplicative noise case: colored noise and higher dimension. We consider
variants of (SPDE) of the type

dX(t) = AX(t)dt+ F (X(t))dt+ σ(X(t))dWQ(t),

where A refers to the Laplace operator with homogeneous Dirichlet conditions on the domain (0, 1)d,
with arbitrary dimension d ≥ 1, and

(
WQ(t)

)
t≥0

is a Q-Wiener process with covariance Q. The
nonlinearities F and σ are Nemytskii operators associated with sufficiently smooth and globally
Lipschitz continuous real-valued functions. It is not assumed that Q and A commute. Recall
that if d ≥ 2, then one cannot consider space-time white noise (Q = I). We impose a condi-
tion of the following type to ensure well-posedness of the problem, and obtain moment estimates
(see [Cerrai, 2003]): let

(
qk
)
k∈N be the eigenvalues of Q; if d ≥ 1, assume that sup

k∈N
|qk| <∞, and

if d ≥ 2, assume that there exists % ∈ [2, 2d
d−2) such that

∑
k∈N q

%
2
k <∞. Then the solutions satisfies

X(t) ∈ D((−A)α) if α < 1
2 −

d
4(1− 2

%).
The objective is to prove weak error estimates for a Finite Element spatial discretization (and

for temporal discretization scheme of the type (Euler)). The core of the study is the generalization
of the strategy outlined in Section 1.3 to prove the required regularity estimates for the solutions of
the Kolmogorov equation, with many new technical difficulties which are treated with non-trivial
arguments. In the current version of this work, an additional constraint appears on the parameter
% in order to apply the strategy: one needs that the condition α < 1

2 −
d
4(1 − 2

%) is satisfied for
α = 1

4 – in that case the regularity of trajectories then coincides with the setting considered in
Section 1.3. Further investigations are required to identify the types of regularity and weak error
estimates which can be obtained when this additional constraint is not satisfied.

This is a work initiated in collaboration with Arnaud Debussche and Stig Larsson.

1.4.2. Viscous Burgers equation with trace-class additive noise in dimension 1. Let
us consider the following Stochastic Evolution Equation

dX(t) = AX(t)dt+B(X(t))dt+ dWQ(t),

where x ∈ L2(0, 1), B(x) = ∇(x2), and
(
WQ(t)

)
t≥0

is a Q-Wiener process with trace-class covari-
ance operator: Tr(Q) <∞. To the best of our knowledge, no weak error estimates of the type (W)
have been proved for numerical methods applied to this model. Note that [4] gives a convergence
result if B(x) = ∂z(b(x)) (for space-time white noise) where b is a globally Lipschitz real-valued
function, for a linearly implicit Euler scheme. This result does not apply if b is quadratic. Two issues
need to be overcome. First, an explicit discretization of the corresponding term is not appropriate
when nonlinearities grow more than linearly: one may for instance employ a split-step scheme with
implicit treatment of the nonlinearity. Second, some care is required to study the regularity prop-
erties of the solution of the Kolmogorov equation. Let us focus on our progress on the investigation
of the second issue, for the first-order derivative. The computations will be formal, they may be
justified using some usual approximation arguments.

Let u(t, x) = Ex[ϕ(X(t))], then the first-order derivative Du(t, x) is given by

Du(t, x).h = Ex[Dϕ(X(t)).ηh(t)],
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where
d

dt
ηh(t) = Aηh(t) +B[X(t), ηh(t)],

with ηh(0) = h, and B[x, η] = 2∇(xη). Using the mild formulation does not provide a nice estimate.
Using an energy inequality and integration by parts formula, one obtains

1

2

d

dt
|ηh(t)|2 + |∇ηh(t)|2 = 〈ηh(t), B[X(t), ηh(t)]〉

= 2〈ηh(t),∇(X(t)ηh(t))〉 = −2〈∇ηh(t), Xηh(t)〉

= −〈∇
(
(ηh(t))2

)
, X(t)〉 = 〈(ηh(t))2,∇X(t)〉.

Using the Gagliaro-Nirenberg and Young inequalities, one has

〈(ηh(t))2,∇X(t)〉 ≤ C|ηh(t)|
3
2

L2 |∇ηh(t)|
1
2

L2 |∇X(t)|L2

≤ 1

2
|∇ηh(t)|2L2 + C|∇X(t)|

4
3

L2 |ηh(t)|2L2 .

Using Young’s inequality again, for all arbitrarily small δ ∈ (0, 1), one obtains
1

2

d

dt
|ηh(t)|2 ≤

(
δ|∇X(t)|2L2 + Cδ

)
|ηh(t)|2,

for some Cδ ∈ (0,∞). Applying Gronwall’s lemma, one obtains

E[|ηh(t)|2] ≤ E
[
exp
(
δ

∫ t

0
‖∇X(s)‖2L2ds

)]
exp
(
Cδt
)
|h|2 ≤ Cδ(T, x0)|h|2

where an exponential moment estimate yields Cδ(T, x0) < ∞ for t ≤ T , if δ is chosen sufficiently
small.

The argument above gives a regularity estimate of the type (D1) only if α = 0. The gen-
eralization for α ∈ (0, 1) follows from a variant of the strategy presented in Section 1.3: set
η̃h(t) = ηh(t)− etAh. Note that

d

dt
η̃h(t) = Aη̃h(t) +B[X(t), η̃h(t)] +B[X(t), etAh].

First, the strategy based on the energy inequality explained above can be employed, however a
square-integrability condition imposes the constraint α ∈ [0, 1

2). As in Section 1.3, this constraint
is overcome writing

η̃h(t) =

∫ t

0
Π(t, s)B[X(s), esAh]ds,

for a family of random linear operators
(
Π(t, s)

)
t≥s. One then obtains the result for α ∈ [0, 1).

After obtaining the regularity estimates for solutions of Kolmogorov equations, it would then
remain to prove weak error estimates for well-chosen numerical schemes.

This is a work initiated in collaboration with Sonja Cox. In future works, we plan to study two
generalizations which require new arguments. On the one hand, we can consider the viscous one-
dimensional Burgers equation driven by additive space-time white noise: the exponential moments
mentioned above do not hold in this scase. On the other hand, we can consider the incompressible
stochastic Navier-Stokes equations in dimension 2 (driven by a sufficiently smooth Q-Wiener pro-
cess): the use of the two-dimensional Gagliardo-Nirenberg inequality is not sufficient (or leads to
restriction on the final time, the size of the noise or of the initial condition), and one may apply
truncation arguments which are used to prove strong error estimates. Let us also mention that
studying the long-time behavior of the weak error estimates, related to the approximation of the
invariant distribution, is another natural perspective for future works.
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CHAPTER 2

Splitting methods for SPDEs with non-globally Lipschitz
nonlinearities

In this chapter, we study temporal discretization schemes applied to SPDEs with non-globally
Lipschitz nonlinearities. One needs to overcome a fundamental issue, which is not specific to the
infinite dimensional setting: consider the explicit Euler-Maruyama scheme with time-step size ∆t =
T/N ,

x
T/N
n+1 = xT/Nn + ∆f(xT/Nn ) + ∆βn

with ∆βn = β(n+1
N )− β( nN ), applied to the SDE

(2.1) dx(t) = f(x(t))dt+ dβ(t),

when the nonlinearity f is not assumed to be globally Lipschitz continuous: instead, assume that
f has at most polynomial growth, and f is one-sided Lipschitz continuous: there exists c ∈ (0,∞)
such that for all x1, x2 one has

(
f(x2)− f(x1)

)
.(x2 − x1) ≤ c|x2 − x1|2. For instance, f(x) = −x3.

Then one lacks (uniform) moment bounds: one has

sup
N≥1

sup
0≤n≤N

E[|xT/Nn |] =∞,

see the monograph [Hutzenthaler and Jentzen, 2015] and references therein; see also the arti-
cle [Mattingly et al., 2002], where it is proved that the explicit scheme may in addition fail to
be ergodic. As a consequence, the explicit Euler-Maruyama does not converge in the strong sense
(for instance in the mean-square sense) for SDEs with non-globally Lipschitz nonlinearities. The
situation is the same for SPDEs: if one applies the scheme (Euler) when F is not globally Lipschitz
continous, moment bounds and strong convergence do not hold.

In the last decades, several recipes have been designed to overcome the issue of the lack of
moment bounds. On the one hand, one may use implicit schemes to discretize the SDE (2.1): for
instance if one applies the fully implicit Euler scheme

xn+1 = xn + ∆tf(xn+1) + ∆βn,

or the split-step Euler scheme {
x̂n+1 = xn + ∆tf(x̂n+1)

xn+1 = x̂n+1 + ∆βn,

then one retrieves moment bounds

sup
N≥1

sup
0≤n≤N

E[|xn|] <∞,

and one can then prove strong convergence results, see for instance [Higham et al., 2002]. From
a theoretical point of view, choosing implicit schemes is natural, however in practice, the cost of an
implicit scheme is higher than for an explicit scheme. On the other hand, one can design explicit
schemes, for instance with a taming technique, see for instance [Sabanis, 2013]:

xn+1 = xn +
∆t

1 + ∆t|f(Xn)|
f(Xn) + ∆βn.
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Again one recovers moment bounds and strong convergence results.
In this manuscript, we present contributions where splitting schemes are applied to two type

of SPDEs. Let us first explain the idea of splitting for the SDE (2.1) (for an overview of splitting
schemes, see [McLachlan and Quispel, 2002]): one defines the scheme

(2.2)
{
x̂n+1 = Φ∆t(xn)

xn+1 = x̂n+1 + ∆βn,

where
(
Φt

)
t≥0

is the flow associated with the vector field f : for any x0,
(
Φt(x0)

)
t≥0

solves the ODE
ẋ = f(x). To define the (Lie-Trotter) splitting scheme (2.2), the right-hand side of the SDE (2.1)
has been decomposed into two parts, dx = f(x)dt and dx = dβ(t) which are integrated exactly.

The splitting scheme (2.2) is explicit, however its properties are improved compared with the
Euler-Maruyama scheme: one retrieves the moment bounds. Indeed, if f is one-sided Lipschitz
continuous, it is straightforward to check that the flow Φ∆t is Lipschitz continuous, uniformly with
respect to ∆t, and moment bounds follow from a discrete Gronwall inequality argument. The
structure of the splitting scheme (2.2) is close to the one of the split-step scheme above, which may
be applied is the flow is unknown. In practice, the splitting scheme (2.2) can be applied only when
the flow is known: this is the case when f(x) = x− x3, in that case

(2.3) Φt(x) =
x√

x2 + (1− x2)e−2t
,

for all t ≥ 0 and x ∈ R.
In Section 2.1, we exploit the expression (2.3) of the flow associated with the cubic nonlinearity

f(x) = x− x3, to study splitting schemes for the stochastic Allen-Cahn equation

(2.4) dX(t) = AX(t)dt+
(
X(t)−X(t)3

)
dt+ dW (t).

Our contributions are reported in three articles. First, the scheme has been proposed in [5], in
collaboration with Ludovic Goudenège; we then proved moment bounds, [5, Proposition 3], and
a preliminary convergence result in the semi-strong sense, [5, Theorem 4.1]; finally, we reported
numerical experiments to investigate strong and weak convergence rates, [5, Section 5], and we
identified that the strong and weak rates are 1/4 and 1/2 respectively, like in the globally Lipschitz
continuous case. Second, in [6], in collaboration with Jianbao Cui and Jialin Hong, we improved
the preliminary result [5, Theorem 4.1] and proved proper strong convergence results (for equations
driven either by white or colored noise). The strong order of convergence depends on the regularity
of the noise: for space-time white noise, it is equal to 1/4, and for trace-class noise it is equal to
1/2. The proof is based on a suitable decomposition of the error using an auxiliary process. Since
the noise is additive it is even equal to 1 when the noise is sufficiently regular; the proof exploits
a Gronwall inequality argument combined with exponential moment bounds. Finally, in [7], in
collaboration with Ludovic Goudenège, we proved a weak error estimate, with weak order 1/2. The
proof is based on the Kolmogorov equation approach, and requires careful analysis to obtain the
regularity estimates (D1) and (D2).

In the last decade, there have been many works devoted to the analysis of numerical methods
for the stochastic Allen-Cahn equation. Strong convergence rates for different types of schemes
have been obtained in [Becker et al., 2017], in [Kovács et al., 2015, Kovács et al., 2018],
in [Qi and Wang, 2019], and in [Wang, 2020]. Note that our contribution [7] has been the first
one where weak error estimates are proved, see also [Cui and Hong, 2019].

In Section 2.2, we present two recent works [8] and [9], written in collaboration with David
Cohen, where splitting schemes are applied for the discretization of two stochastic Schrödinger
equations. We thus depart from the main class of models considered in this manuscript (parabolic
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semilinear SPDEs). In the two models we have considered, the nonlinearity is of the type V [u]u with
V [u] = V ? |u|2 for some real-valued continuous function V , where ? denotes the convolution. Such
nonlocal interaction nonlinearities may arise as mean-field limits (for boson particles), see for
instance [Gérard, 2005] and references therein, and the deterministic Schrödinger equations with
such nonlocal interactions are sometimes referred to as Hartree equations (a specific example
is the Schrödinger-Poisson system). Note that, to the best of our knowledge, the derivation of
stochastic Hartree equations as mean-field limits has not been considered yet in the literature.
We are also not aware of other works devoted to theoretical or numerical analysis of stochastic
Schrödinger equations with such nonlinearities. When studying numerical schemes, there is a benefit
in considering convolutional potentials, compared with the standard cubic nonlinear Schrödinger
equation, with V [u] = |u|2: the mapping u ∈ L2(Td) 7→ V [u]u ∈ L2(Td) is locally Lipschitz
continuous when the interaction potential V is assumed to be bounded (where Td denotes the d-
dimensional torus). However, the nonlinearity is still cubic, and challenges mentioned above remain
when studying time-discretization schemes.

On the one hand, in [8] (see Section 2.2.1), we consider stochastic Schrödinger equations
with nonlocal interaction driven by additive noise:

(2.5) idu = ∆udt+ V [u]udt+ αdWQ(t), u(0) = u0 ∈ L2(Td),

where
(
WQ(t)

)
t≥0

is a trace-class Wiener process and α > 0 is a parameter.
On the other hand, in [9] (see Section 2.2.2), we consider stochastic Schrödinger equations

with nonlocal interaction with white noise dispersion:

(2.6) idu+ ∆u ◦ dβ(t) + V [u]udt = 0, u(0) = u0 ∈ L2(Td),

where
(
β(t)

)
t≥0

is a real-valued standard Wiener process, and the noise is interpreted in the
Stratonovich sense.

The solutions of (2.5) and (2.6) have different behaviors. On the one hand, a trace formula is
satisfied for the L2 norm of the solution of (2.5): for all t ≥ 0,

E|u(t)|2L2(Td) = E|u(0)|2L2(Td) + tα2Tr(Q).

On the other hand, the L2 norm of the solution of (2.6) is preserved almost surely: for all t ≥ 0, one
has |u(t)|L2(T d) = |u(0)|L2(Td) . Splitting schemes are known (in the field of Geometric Numerical
Integration, see for instance [Faou, 2012]) to be appropriate methods in order to preserve these
properties at the discrete time level. For (2.5) and (2.6), splitting schemes are applicable owing to
the following expression: the flow of the PDE idu = V [u]u is given by

(2.7) Φt(u) = e−itV [u]u.

In Section 2.2, we introduce the relevant splitting schemes for (2.5) and (2.6), and state the as-
sociated strong convergence results. The techniques of proof for the two cases are quite differ-
ent, due to the different behaviors for the L2-norm. Compared with existing works – see for
instance [de Bouard and Debussche, 2006, Anton and Cohen, 2018, Hong et al., 2019]
for (2.5) and see [Belaouar et al., 2015, Cohen and Dujardin, 2017, Cui et al., 2017], for (2.6)
– we are able to prove strong convergence estimates for two classes of stochastic nonlinear Schrödinger
equations with cubic nonlocal interaction nonlinearities (instead of strong convergence estimates for
Lipschitz nonlinearities and semi-strong convergence or convergence in probability by truncation
arguments in the cubic case).

Reviewing the extensive literature concerning the analysis of numerical methods for other types
of SPDEs with non-globally Lipschitz nonlinearities – such as stochastic Burgers, Navier-Stokes,
Cahn-Hilliard, Maxwell equations – is out of the scope of this manuscript.
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Note that numerical schemes for SPDEs with non-globally Lipschitz nonlinearities are discussed
in other chapters of this manuscript (see Section 1.4.2 in Chapter 1 and 3.1.2 in Chapter 3).

2.1. Splitting schemes for the Allen-Cahn equation

The content of this section is based on [5, 6, 7], written in collaboration with Ludovic
Goudenège, or with Jianbao Cui and Jialin Hong.

In this section, we consider splitting schemes for the one-dimensional stochastic Allen-Cahn
equation (2.4) driven by space-time white noise, of the form

(2.8)

{
X̂n+1 = Φ∆t(Xn)

Xn+1 = S∆t

(
X̂n+1 + ∆Wn

)
,

where S∆t = e∆tA (exponential Euler scheme) or S∆t = (I−∆tA)−1 (linear implicit Euler scheme),
similarly to (Euler), and where Φ∆t is the flow map defined by (2.3), associated with the cubic
nonlinearity f(x) = x− x3. The splitting scheme (2.8) is expressed and implemented in an explicit
way (since the flow map Φ∆t is known), however it significantly differs from the standard explicit
scheme (Euler). Precisely, observe that

Xn+1 = S∆t

(
Xn + ∆tΨ∆t(Xn) + ∆Wn

)
,

where the auxiliary map Ψ∆t is defined by Ψ∆t(x) = ∆t−1(Φ∆t(x) − x), is the expression of the
standard explicit scheme (Euler) applied to the SPDE with modified nonlineariy

dX(∆t)(t) = AX(∆t)(t)dt+ Ψ∆t(X
(∆t)(t))dt+ dW (t).

The mappings Φ∆t and Ψ∆t satisfy the following properties (see [5, Section 3.3]): for all ∆t ∈ (0, 1),
• Φ∆t is Lipschitz continuous, with |Φ′∆t(·)| ≤ e∆t,
• Ψ∆t is one-sided Lipschitz continuous, with Ψ′∆t(·) ≤ e∆t,
• Ψ∆t is locally Lipschitz continuous, and its derivative grows at most polynomially,
• |Ψ∆t(x)−Ψ0(x)| ≤ C∆t(1 + |x|5) for all x ∈ R, with Ψ0(x) = x− x3.

Below we state the main results of [5, 6, 7], and explain the most important arguments of their
proofs (omitting the most technical parts).

2.1.1. Moment bounds. The main result from [5] states that the splitting scheme (2.8) sat-
isfies moment bounds. Let E = C0([0, 1],R) ⊂ H = L2(0, 1), with norm denoted by | · |E .

Theorem 1.4. For all T ∈ (0,∞) and p ∈ [1,∞), there exists Cp(T ) ∈ (0,∞) such that

sup
N∈N

E[|XN |2pE ] ≤ Cp(T )(1 + E[|X0|2pE ]),

where XN is the value at time N of the splitting scheme (2.8) with time-step size ∆t = T
N .

The proof of Theorem 1.4 exploits two properties: the Lipschitz continuity of the flow map Φ∆t,
and moment bounds for the discretization of the stochastic convolution (SC). Indeed, set

ωn+1 = S∆t

(
ωn + ∆Wn

)
and rn = Xn − ωn. Then, since the noise is additive, one obtains the following recursion formula:
for all n ≥ 0,

rn+1 = S∆t

(
Φ∆t(rn + ωn)− Φ∆t(ωn)

)
+ ∆tS∆tΨ∆t(ωn).

Note that |S∆t · |E ≤ | · |E . Then using the Lipschitz continuity property of Φ∆t, one has

|rn+1| ≤ e∆t|rn|+ ∆t|Ψ(ωn)|
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and a Gronwall inequality argument yields

|rN |E ≤ eT
(
|r0|E + ∆t

N−1∑
n=0

|Ψ∆t(ωn)|E
)
.

To conclude the proof of Theorem 1.4, since the growth of Ψ∆t is at most polynomial, it remains
to use moment bounds for ωn:

sup
N∈N

E[|ωN |2pE ] <∞,

which may (for instance) be obtained as a consequence of the Kolmogorov continuity criterion
(see [5, Lemma 3.5] for details). It is worth mentioning that the strategy of proof outlined above
is a variant of the standard approach to prove global well-posedness and moment bounds for the
solution of the continuous-time problem: set r(t) = X(t) − WA(t), where WA is the stochastic
convolution (SC), then r solves the PDE

dr(t)

dt
= Ar(t) + F (r(t) +WA(t)).

Energy estimates combined with the one-sided Lipschitz continuity of F , and moment bounds for
WA(t), then give the required moment bounds first for r(t), then for X(t).

Note that [5, Section 4] states one theorem concerning a semi-strong convergence result with
order 1/4, and three corollaries concerning strong convergence without rate, convergence in proba-
bility with order 1/4, and weak convergence combined with rejection of exploding trajectories with
order 1/4. Since the results from [6] and [7] presented below are stronger than those results, their
description is omitted.

Numerical experiments concerning strong and weak convergence rates are reported in [5, Sec-
tion 5], they illustrate the theoretical results proved in the later works [6] and [7], which are presented
below.

2.1.2. Strong convergence. The main result from [6] states that the splitting scheme (2.8)
converges in the strong sense with order of convergence 1

4 , when S∆t = e∆tA (exponential Euler
scheme).

Theorem 1.5. For all T ∈ (0,∞), x0 ∈ E and ε ∈ (0, 1
4), there exists Cε(T, x0) ∈ (0,∞) such

that (
E[|XN −X(T )|2]

) 1
2 ≤ Cε(T, x0)∆t

1
4
−ε,

where XN is the value at time N of the splitting scheme (2.8) with time-step size ∆t = T
N and

S∆t = e∆A.

Let us give the most important arguments of the proof of Theorem 1.5, compared with the
standard proof in the globally Lipschitz case sketched in the preliminaries. First, the error is
decomposed as

XN −X(t) = XN −X(∆t)(T ) +X(∆t)(T )−X(T ),

where X(∆t) is the solution of the SPDE with modified nonlinearity Ψ∆t mentioned above. Us-
ing the fundamental properties of the mapping Ψ∆t mentioned above and moment bounds, it is
straightforward to check that(

E[|X(∆t)(T )−X(T )|2]
) 1

2 ≤ C(T, x0)∆t.

To study the other part of the error, two auxiliary processes
(
X̃(t)

)
t≥0

and
(
Ỹ (t)

)
t≥0

are introduced.
First, for all n ≥ 0 and t ∈ [tn, tn+1] (recall that tn = n∆t), set

X̃(t) = e(t−tn)A
(
Xn + (t− tn)Ψ∆t(Xn) +W (t)−W (tn)

)
.

49



For all t ≥ 0, one has a mild formulation

X̃(t) = etAX0 +

∫ t

0
e(t−t`(s))AΨ∆t(X`(s))ds+

∫ t

0
e(t−t`(s))AdW (s),

where `(s) = n if and only if tn ≤ s < tn+1. Note that XN = X̃(T ). The mild formulation above is
similar to the one of the solution X(∆t) of the SPDE with modified nonlinearity:

X(∆t)(t) = etAX(0) +

∫ t

0
e(t−s)AΨ∆t(X

(∆t)(s))ds+

∫ t

0
e(t−s)AdW (s).

One cannot deal with the error term X̃(t) −X(∆t)(t) using simple standard arguments since Ψ∆t

is not globally Lipschitz continuous (uniformly in ∆t): controlling a term of the type Ψ∆t(X̃(s))−
Ψ∆t(X

(∆t)(s)) using a Gronwall inequality argument would require exponential moment estimates,
which are not known to hold neither for the stochastic Allen-Cahn equation driven by space-time
white noise nor for its approximation. The second auxiliary process is introduced to overcome this
problem: set

Ỹ (t) = etAX0 +

∫ t

0
e(t−t`(s))AΨ∆t(X(s))ds+

∫ t

0
e(t−t`(s))AdW (s).

Compared with X̃(t), Ψ∆t(X̃(t`(s))) is replaced by Ψ∆t(X(s)) in the right-hand side of the mild
formulation.

The error term is then decomposed as

XN −X(∆t)(T ) = X̃(T )−X(∆t)(T ) = X̃(T )− Ỹ (T ) + Ỹ (T )−X(∆t)(T ).

On the one hand, note that for all t ≥ 0, one has∣∣Ỹ (t)−X(∆t)(t)
∣∣ ≤ ∫ t

0

∣∣Ψ∆t(X(s))−Ψ∆t(X
(∆t)(s))

∣∣ds.
Using the fundamental properties of Ψ∆t (its derivative grows at most polynomially, and one has
the error estimate for Ψ∆t −Ψ0), it is straightforward to check that(

E[|Ỹ (t)−X(∆t)(t)|2]
) 1

2 ≤ C(T, x0)∆t.

On the other hand, one has

d
(
X̃(t)− Ỹ (t)

)
dt

= A
(
X̃(t)− Ỹ (t)

)
+ e(t−t`(t))A

(
Ψ∆t(X̃(t`(t))−Ψ∆t(X

(∆t)(t))
)

= A
(
X̃(t)− Ỹ (t)

)
+ Ψ∆t(X̃(t))−Ψ∆t(Ỹ (t)) + ε(t),

where the error term ε(t) is estimated a priori, depending on the regularity in time properties of X̃
and X, and on the estimate of Ỹ (t)−X(∆t)(t) mentioned above.

We are now in position to conclude the sketch of proof of Theorem 1.5: using an energy estimate
inequality and the one-sided Lipschitz continuity property of Ψ∆t, one obtains (for some C ∈ (0,∞))

d
∣∣X̃(t)− Ỹ (t)

∣∣2
dt

≤ C
∣∣X̃(t)− Ỹ (t)

∣∣2 + |ε(t)|2,

and it remains to apply a Gronwall inequality argument, combined with appropriate estimates for
the error term ε(t), to obtain the strong convergence estimate.

Note that the introduction of the auxiliary process above can be employed to study the error due
to spatial discretization of the problem. The sketch of proof above indicates that the strategy can
be applied to study splitting schemes applied to other examples of SPDEs with one-sided Lipschitz
nonlinearities – the practical limitation being that in general the flow map Φ∆t is not known.
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Note that [6] contains additional results, for splitting schemes of the type (2.8) applied to the
stochastic Allen-Cahn equation (2.4) driven by a colored noise: the order of convergence depends on
regularity conditions for the covariance operator. One achieves strong order 1/2 if the noise is trace-
class (see [6, Corollary 3.2]), and even strong order 1 if the noise is more regular ([6, Theorem 4.1]),
using exponential moment estimates.

2.1.3. Weak convergence. The main result from [6] states that the splitting scheme (2.8)
converges in the strong sense with order of convergence 1

2 .

Theorem 1.6. For all ϕ : H → R of class C2
b , all T ∈ (0,∞), x0 ∈ E and ε ∈ (0, 1

2), there
exists Cε(T, x0) ∈ (0,∞) such that∣∣E[ϕ(XN )]− E[ϕ(X(T ))]

∣∣ ≤ Cε(T, x0)∆t
1
2
−ε,

where XN is the value at time N of the splitting scheme (2.8) with time-step size ∆t = T
N .

Precisely, the weak convergence result stated above is given in [7, Theorem 3.3] when one chooses
S∆t = (I − ∆tA)−1, and for a variant of the exponential Euler scheme in [7, Theorem 3.2]. The
result of Theorem 1.6 is of the same type as the weak convergence estimates studied in Chapter 1:
it is thus not suprising that the order of convergence is 1/2 (and is twice the strong order obtained
in Theorem 1.5) and that test functions are required to be at least of class C2

b (see Section 1.1).
Let us provide the main arguments of the proof of Theorem 1.6. Like in the analysis of the

strong error presented above, the weak error is decomposed as∣∣E[ϕ(XN )]− E[ϕ(X(T ))]
∣∣ ≤ ∣∣E[ϕ(XN )]− E[ϕ(X(∆t)(T ))]

∣∣+
∣∣E[ϕ(X(∆t)(T ))]− E[ϕ(X(T ))]

∣∣,
where X(∆t) is the solution of the SPDE with modified nonlinarity. The second term on the right-
hand side is bounded by C∆t, owing to the strong error estimate E|X(∆t)(T ) −X(T )| ≤ C∆t, by
Lipschitz continuity of ϕ. The analysis of the first term on the remaining error term follows the
usual Kolmogorov equation approach:

E[ϕ(XN )]− E[ϕ(X(∆t)(T ))] = E[u(∆t)(0, XN )]− E[u(∆t)(T,X0)],

where u(∆t)(t, x) = EX(∆t)(0)=x[ϕ(X(∆t)(t)]. The most important results of [7] are the regularity
estimates for the derivatives of u(∆t), of the type (D1) and (D2) (see Theorems 4.1 and 4.2 of
that reference): there exists a polynomial function P , and for all α ∈ [0, 1) and β, γ ∈ [0, 1) with
β + γ < 1, and all T ∈ (0,∞), there exists Cα(T ), Cβ,γ(T ) ∈ (0,∞) such that for all ∆t ∈ (0, 1),
t ∈ (0, T ] and x ∈ E, one has

(2.9)
|(−A)αDu(∆t)(t, x)| ≤ Cα(T )P (|x|E)t−α

‖(−A)βD2u(∆t)(t, x)(−A)γ‖L(H) ≤ Cβ,γ(T )P (|x|E)t−β−γ .

To the best of our knowledge, such regularity estimates for derivatives of Kolmogorov equations
associated with SPDEs with one-sided Lipschitz continuous nonlinearity have been established for
the first time in our contribution [7] (and shortly after in [Cui and Hong, 2019]).

After proving those regularity estimates, the proof of Theorem 1.6 uses the same type of argu-
ments as in [Debussche, 2011] or [4] (and many other references), with some additional technical
arguments. Let us sketch the proof of (2.9), for the first order derivative only. The argument is a
variant of the more complex idea described in Section 1.3 for the multiplicative noise case (see also
Section 1.4 for the variant applied to the stochastic Burgers equation). Note that

Du(∆t)(t, x).h = E[Dϕ(X(∆t)(x)).ηh(t)]
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where
dηh(t)

dt
= Aηh(t) + Ψ′∆t(X

(∆t)(t))ηh(t).

By an energy inequality, using the fundamental property Ψ′∆t ≤ e∆t, one obtains

1

2

d|ηh(t)|2

dt
≤ e∆t|ηh(t)|2

which gives (2.9) with α = 0 using the Gronwall lemma. To treat the case α ∈ (0, 1), let

η̃h(t) = ηh(t)− etAh,

then
dη̃h(t)

dt
=
(
Aη̃h(t) + Ψ′∆t(X

(∆t)(t))η̃h(t)
)

+ Ψ′∆t(X
(∆t)(t))etAh.

Like in Section 1.3, from this trick one obtains a new expression

η̃h(t) =

∫ t

0
Π(t, s)

(
Ψ′∆t(X

(∆t)(s))esAh
)
ds.

However, the situation is much simpler than in Section 1.3: indeed no subtle stochastic integrals
appear, and proving the inequality ‖Π(t, s)‖L(H) ≤ e(t−s)∆t ≤ C for all t ≥ s and ∆t ∈ (0, 1) is
straightforward, owing to the energy inequality argument explained above. Finally, using moment
bounds for |X(∆t(t)|E (where E = C([0, 1])) and at most polynomial growth of Ψ′∆t, one obtains

E[|ηh(t)|] ≤ |etAh|+ C

∫ t

0
E[|Ψ′∆t(X(∆t)(s)|E |]|esAh|ds

≤
(
Cαt

−α + C(T, |x0|E)

∫ t

0
s−αds

)
|(−A)−αh| ≤ Cα(T )P (|x0|E)t−α|(−A)−αh|,

using the smoothing property (Sp). That estimate then yields (2.9) for the first order derivative. A
similar argument yields the result for the second order derivative. This concludes the sketch of proof
of the regularity estimates for the derivatives of the Kolmogorov equation when the nonlinearity is
one-sided Lipschitz continuous. As explained above, the weak error estimate of Theorem 1.6 follows
from the application of the Kolmogorov equation approach, exploiting these fundamental and new
regularity properties and other arguments which are omitted.

This concludes the presentation of our contributions [5, 6, 7] concerning splitting schemes for
the stochastic Allen-Cahn equation.

2.2. Splitting schemes for stochastic Schrödinger equations with nonlocal interaction

The content of this section is based on the preprints [8, 9] written in collaboration
with David Cohen.

The objective of this section is to present strong convergence estimates of splitting schemes
applied to the stochastic Schrödinger equations with nonlocal interaction (2.5) and (2.6). In this
section, the time-step size is denoted by τ (instead of ∆t) to avoid conflict of notation with the
Laplace operator ∆.

2.2.1. Model driven by additive noise. The (Lie-Trotter) splitting scheme for (2.5) is ob-
tained by composing the flow (2.7) associated with the dynamics idu = V [u]udt, and an exponential
Euler scheme for the dynamics idu = ∆udt+ αdW (t): one obtains

(2.10) un+1 = e−iτ∆
(

Φτ (un)− iα
(
WQ(tn+1)−WQ(tn)

))
.
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The most important property of the splitting scheme (2.10) is the preservation of the trace formula
for the L2 norm: for all n ≥ 0, one has

E[|un|2L2(Td)] = E[|u0|2L2(Td) + α2nτTr(Q) = E[|u(nτ)|2L2(Td).

The proof of this trace formula is straightforward: indeed, the linear operator e−iτ∆ and the non-
linear operator Φτ defined by (2.7) are isometries for the L2 norm, and the increments of the noise
are independent, thus for all n ≥ 0 one has

E[|un+1|2L2 ] = E[
∣∣Φτ (un)− iα

(
WQ(tn+1)−WQ(tn)

)∣∣2
L2

= E[|Φτ (un)|2L2 ] + α2E[|WQ(tn+1)−WQ(tn)|2L2 ]

= E[|un|2L2 ] + α2τTr(Q).

The trace formula is not preserved by other numerical methods, for instance if the nonlinearity is
discretized by the explicit Euler scheme, see the numerical experiments in [8, Section 6].

To state the convergence estimates, let us introduce an auxiliary parameter

KF = sup
u1,u2∈L2

|V [u2]u2 − V [u1]u1|L2

(|u1|2L2 + |u1|2L2)|u2 − u1|2L2

.

One has KF ∈ (0, 3 sup |V |
2 ] for the nonlocal interaction nonlinearity V [u] = V ? |u|2.

Theorem 1.7. Assume that u0 ∈ H1, that V is of class C0 and that the Wiener process(
WQ(t)

)
t≥0

takes values in H1(Td). Let T ∈ (0,∞).
Introduce the auxiliary quantity Sn = τ

∑n−1
k=0

(
|u(kτ)|2L2 +|uk|2L2

)
, where

(
u(t)

)
t≥0

is the solution
of (2.5) and

(
un
)
n≥0

is defined by the splitting scheme (2.10).
There exist κ ∈ (0,∞) and τ? ∈ (0, 1), such that under the condition

(2.11) µα2T <
κ

Tr(Q)
,

one has the exponential moment bound

(2.12) sup
0<τ<τ?

sup
0≤nτ≤T

E[exp(µSn)] <∞.

In addition, for all r ∈ (0,∞), if the condition (2.11) is satisfied, then there exists C(r, µ) ∈ (0,∞)
such that

(2.13) sup
0≤n≤N

(
E[|u(nτ)− un)|rL2

) 1
r ≤ C(r, µ)τ

1
2

min(1, µ
rKF

)
.

Let us first comment the order of convergence in (2.13). There is a threshold at r = µ
KF

. On
the one hand, one has min(1, µ

rKF
) = 1 when r ≤ µ

KF
, and one recovers a standard strong order of

convergence 1
2 . This is sufficient to prove convergence in probability and in almost sure sense with

order 1
2 . On the other hand, when r ≥ µ

KF
, the order of convergence exhibited in (2.13) depends

on r and goes to 0 when r → ∞. Whether one can get rid of the threshold and obtain a strong
order of convergence equal to 1

2 for all r ∈ (0,∞) is not known. Note that the value of KF is set
by the potential V , whereas the condition (2.11) on µ depends on the size of the noise α2Tr(Q),
on the final time T , and on the parameter κ ∈ (0,∞). The condition (2.11) may not be optimal.
For a given real number µ, the condition (2.11) is satisfied for sufficiently small noise intensity α or
sufficiently small final time T .

Note that a version where strong order 1 is achieved instead of order 1
2 under strong regularity

requirements on u0 and Q is stated in [8], however this version is omitted to (sligthly) simplify
the presentation. Achieving order 1 may not be surprising since the noise is additive, and the
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proof requires several additional technical arguments. The numerical experiments reported in [8,
Section 6] illustrate that the strong order of convergence is equal to 1

2 or 1, depending on the
regularity of the noise.

Let us explain the three main steps of the proof of Theorem 1.7. First, the following preliminary
result (using the same notation) is obtained.

Proposition 1.8. For all q ∈ [1,∞) and T ∈ (0,∞), there exists C(q, T ) ∈ (0,∞) such that

(2.14) sup
0≤nτ≤T

(
E[exp(−qKFSn)|u(nτ)− un|qL2

) 1
2 ≤ C(q, T )τ

1
2 .

To the best of our knowledge, no strong error estimates of the type (2.14) with exponential
weights inside the expectation in the left-hand side have been stated in the literature. Even if (2.14)
is weaker than the desired error estimate of the type (2.13) with no exponential weight, the benefit
is that the order of convergence is 1

2 . The proof of the strong error estimate (2.14) is initiated by
decomposing the error in a standard way. When one applies a discrete Gronwall inequality (before
taking expectation), the exponential weight initially appears on the right-hand side. Our original
idea is first to have it appear on the left-hand side, second to take expectation – instead of taking
expectation and invoking an exponential moment estimate. This original argument is not specific
to the stochastic nonlinear Schrödinger equations (2.5) and may be of interest to study strong error
estimates for our classes of SPDEs with non-globally Lipschitz nonlinearities.

The second step of the proof of Theorem 2.13 is to prove the exponential moment estimates (2.12)
under the condition (2.11). In fact, it suffices to combine exponential moment bounds of the type

sup
0≤t≤T

E[exp(µ|u(t)|2L2)] + sup
τ∈(0,τ?)

sup
0≤nτ≤T

E[exp(µ|un|2L2)] <∞

under the condition µα2T < κ
Tr(Q) , with the Hölder inequality. In the continuous-time case, the

exponential moment bound follows from applying Itô’s formula to obtain for all t ∈ [0, T ] and
µ ≤ e−1

2Tα2Tr(Q)

E[exp(µ|u(t)|2L2)] ≤ E[exp(
1

2Tα2Tr(Q)
e−

t
T |u(t)|2L2)] ≤ C(T ).

A variant is used to prove the exponential moment bound in the discrete-time case. Note that the
exponential moment bounds are expected to hold only if Tµ is below some threshold (depending on
the size of the noise): indeed the mass (i.e. the square of the L2 norm) |u(t)|2L2 behaves as a drifted
Brownian Motion. The argument above is consistent with this scaling for the threshold, even if the
value of κ may not be optimal.

The final step of the proof of Theorem 1.7 is to combine the strong error estimate (2.14) with
exponential weights, with the exponential moment bounds (2.12). The proof requires an auxiliary
truncation parameter R and to optimize the value of R using (2.14) and (2.12): we refer to the
proof of Theorem 14 in [8] for the technical details.

2.2.2. Model with white noise dispersion. The (Lie-Trotter) splitting scheme for (2.6) is
obtained by composing the flows associated with the stochastic equation idu+ ∆u ◦ dβ(t) = 0 and
with the deterministic nonlinear equation idu+ V [u]udt = 0: one obtains

(2.15) un+1 = ei
(
β(tn+1)−β(tn)

)
∆
(
eiτV [un]un

)
,

where
(
eit∆

)
t∈R is the group associated with the linear Schrödinger equation idu+∆udt = 0, and we

refer to (2.7) for the flow associated with the nonlinear part of the equation. Since the interaction
potential V and the Wiener process β are real-valued, the L2 norm is preserved almost surely for
the splitting scheme (2.15): for all n ≥ 0, |un+1|2L2(Td)

= |un|2L2(Td)
= |u0|2L2(Td)

. Note that the L2
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norm is not preserved for the exponential integrator considered in [Cohen and Dujardin, 2017],
whereas it is preserved for the Crank-Nicolson integrator considered in [Belaouar et al., 2015] in
the standard cubic case V [u]u = |u|2u, however how to adapt the latter scheme for the nonlocal
case V [u] = V ? |u|2 is not clear.

The main result of [9] is the following strong convergence estimate (see [9, Theorem 8] for a
more general version where the L2 norm is replaced by the Sobolev Hm norm, for arbitrary integer
m ≥ 1, under appropriate assumptions).

Theorem 1.9. Assume that V is of class C4 and that u0 ∈ H4. For all T ∈ (0,∞) and
p ∈ [1,∞), there exists Cp(T, |u0|H4(Td)) ∈ (0,∞) such that

(2.16) sup
0≤n≤N

(
E[|u(tn)− un|pL2 ]

) 1
p ≤ Cp(T, |u0|H4(Td))τ,

where T = Nτ for some N ∈ N,
(
u(t)

)
t≥0

is the solution of (2.6) and
(
un
)

0≤n≤N is defined by the
splitting scheme (2.15).

The strong order of convergence of the scheme (2.15) is thus equal to 1, if the potential V and
the initial condition u0 are sufficiently regular. This order of convergence is optimal as revealed
by the numerical simulations reported in [9, Section 6], and is not surprising since a Lie-Trotter
splitting strategy is used. In that setting, the weak order of convergence is expected to be equal to
the strong order 1, therefore we only study strong error estimates. Note that under weak regularity
conditions (V of class C2 and u0 in H2), one obtains a strong order 1/2.

The strategy of proof of Theorem 1.9 differs from the techniques used in [Belaouar et al., 2015,
Cohen and Dujardin, 2017], which would only work for p = 2. Not that obtaining a strong or-
der 1 whereas the trajectories are only 1/2− Hölder continuous is not trivial: subtle but standard
decompositions of the error terms involving the noise term are used, and they require the high
regularity conditions on V and u0.

One of the key ideas we have used to prove Theorem 1.9 is to change unknowns as follows
(which is a standard idea but has not been used in the other publications on stochastic Schrödinger
equations with white noise dispersion): for all t ≥ 0 and n ≥ 0, set

v(t) = e−iβ(t)∆u(t), vn = e−iβ(tn)∆un.

To explain the role of the change of unknowns, let S(t, s) = ei(β(t)−β(s))∆ for all t, s ∈ R. The mild
formulation

u(t) = S(t, 0)u0 + i

∫ t

0
S(t, s)

(
V [u(s)]u(s)

)
ds

for the solution of (2.6) is replaced by

v(t) = u0 + i

∫ t

0
S(0, s)

(
V [u(s)]u(s)

)
ds.

Similarly, the numerical scheme (2.15) is replaced by

vn+1 = vn + iτS(0, tn)Ψτ (un).

where the auxiliary mapping Ψτ is defined as Ψτ (u) = Φτ (u)−u
τ . Note that the operator S(t, s) is

an isometry for all t, s, thus the error satisfies |u(tn) − un|L2 = |v(tn) − vn| for all n ≥ 0. The
decomposition of the error v(tn) − vn is then standard. Let us discuss two other important points
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of the proof of Theorem 1.9. First, the following auxiliary error estimates are used:

|S(t, s)u− u|L2 ≤ C|β(t)− β(s)|u|H2

E[|β(t)− β(s)|p] ≤ Cp|t− s|
p
2

|Ψτ (u)−Ψ0(u)|L2 ≤ C(V )τ(1 + |u|4L2)|u|L2 .

Second, at the end of the proof the Gronwall lemma can be applied since the Hm norm of the
solutions u(t) and un satisfy almost sure estimates (see [9, Propositions 3 and 5]): for all m ∈ N,
if V is of class Cm, there exists Cm(V ) ∈ (0,∞) such that for all t ≥ 0 and n ≥ 0, one has almost
surely

|u(t)|Hm ≤ eCm(V )t|u0|2m
L2 |u0|Hm , |un|Hm ≤ eCm(V )nτ |u0|2m

L2 |u0|Hm .

Owing to these almost sure bounds, one can essentially work as if local Lipschitz continuity of the
mapping u 7→ V [u]u was Lipschitz continuous (with bounds depending on the initial condition u0),
as a consequence the analysis is much simpler as in Section 2.2.1 and preprint [8] We omit the
remaining technical estimates from [9, Section 5].

This concludes the presentation of our contributions [8, 9] concerning splitting schemes for
stochastic Schrödinger equations with nonlocal interaction.
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CHAPTER 3

Numerical approximation of the invariant distribution for SPDEs

In this Chapter, the objective is to present our results concerning the long-time behavior of
numerical schemes and the approximation of the invariant distribution for parabolic semilinear
SPDEs (SPDE), driven by additive space-time white noise (σ(x) = I):

(3.1) dX(t) = AX(t)dt+ F (X(t))dt+ dW (t).

Recall (see Chapter 1) that under the condition (EC), the Markov process
(
X(t)

)
t≥0

which solves
the SPDE (3.1) admits a unique invariant distribution µ?, and that E[ϕ(X(T ))] →

T→∞

∫
ϕdµ?,

exponentially fast, for Lipschitz continuous functions ϕ : H → R. Weak error analysis techniques
discussed in Chapter 1 give error estimates for E[ϕ(X(T ))]−E[ϕ(XN )], where

(
Xn

)
n≥0

is given by
a numerical scheme (Euler), with upper bounds of the type C(T, r, ϕ)∆tβ−r, see (W), where the
constant C(T, r, ϕ) in general depends on T , and explodes as T →∞. In order to deduce results for
the approximation of

∫
ϕdµ?, weak error estimates which are independent of time T are desirable.

If the numerical scheme is ergodic and if µ∆t
? denotes its unique invariant distribution, weak error

estimates independent of time yield error estimates for
∫
ϕdµ? −

∫
ϕdµ∆t

? .

In Section 3.1, we first discuss "old" contributions [10, 11] (Section 3.1.1) which provide such
weak error estimates independent of time and for the invariant distributions, when ap-
plying the linear implicit Euler scheme (Euler) with S∆t = (I −∆tA)−1, for (3.1) with a globally
Lipschitz continuous nonlinearity F satisfying the condition (EC). We then present a recent con-
tribution [13] (Section 3.1.2), when F is only assumed to be one-sided Lipschitz continuous (and to
have at most polynomial growth): we apply a tamed explicit version of the exponential Euler
scheme, and prove that the dependence of the constant C(T, r, ϕ) in the weak error estimate is at
most polynomial with respect to T . As will be explained below, boundedness or polynomial growth
in T for the constant C(T, r, ϕ) make essentially no difference in terms of computational cost.

In Section 3.2, we study how higher-order methods may be constructed, in a specific case:
there exists a function V : H → R such that

(3.2) F (x) = −DV (x)

for all x ∈ H, where DV denotes the Fréchet derivative of V . In that case, the invariant distribution
µ? of (3.1) admits the following expression:

dµ?(x) = Z−1 exp(−2V (x))dν(x),

where ν = N
(
0, 1

2(−A)−1
)
is the invariant distribution when F = 0 (for the stochastic convolu-

tion (SC), see the preliminaries and Section 1.1), and Z =
∫
e−2V (x)dν(x) ∈ (0,∞). Our contribu-

tions are inspired by high-order schemes developed for the overdamped Langevin dynamics

dx(t) = −∇V (x(t))dt+ dB(t),

with invariant distribution Z−1 exp(−2V (x))dx. A scheme which is of order 2 for the approxi-
mation of the invariant distribution, but is only of order 1 at finite times, has been introduced
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in [Leimkuhler and Matthews, 2013], and this scheme has been interpreted in terms of post-
processing in [Vilmart, 2015]. Note that those schemes are not of order 2 for the approximation
of the invariant distribution when applied to general SDEs of the type dxt = f(xt)dt + σ(xt)dBt,
hence the need to assume that F (x) = −DV (x).

In the SPDE case, the construction of higher order methods for the approximation of the invari-
ant distribution of (3.1), with the condition F = −DV , is based on two techniques: postprocessing
and preconditioning. On the one hand, in [12], written in collaboration with Gilles Vilmart, we
propose the following integrator for (3.1):

(3.3)


Xn+1 = S∆t

(
Xn + ∆tF (Xn +

1

2
S∆t∆Wn) + ∆Wn

)
,

Xn = Xn +
1

2
J∆t∆Wn,

with the auxiliary linear operator J∆t = (I − ∆t
2 A)−

1
2 . A postprocessing step is added in the

scheme (3.3), like in the SDE case [Leimkuhler and Matthews, 2013, Vilmart, 2015]. The
computation of Xn is only required once, after computing the values X1, . . . , XN hence the name
postprocessing. In Section 3.2.1, we explain that the scheme (3.3) is exact for the approximation of
the invariant distribution µ? when F = 0, and achieves order of convergence larger than the weak
order 1

2 either on numerical experiments or on specific cases. On the other hand, the preconditioning
technique is based on the following observation: the unique invariant distribution of

(3.4) dXp(t) = −Xp(t)dt− (−A)−1DV (Xp(t))dt+ (−A)−
1
2dW (t)

is equal to µ?. The preconditioning technique is used when designing Markov Chain Monte Carlo
methods in infinite dimension, such as the pCN (preconditioned Crank-Nicolson) proposal, see for
instance [Cotter et al., 2013]. Since (−A)−

1
2 is an Hilbert-Schmidt operator, the trajectories of

the preconditioned process
(
Xp(t)

)
t≥0

have the same regularity as solutions of (finite-dimensional)
SDEs, and standard Euler schemes have a weak order 1: for instance the scheme

(3.5) Xp
n+1 = (1−∆t)Xp

n −∆t(−A)−1DV (Xp
n) + (−A)−

1
2 ∆Wn

has weak order 1 at all times, and thus provides an order 1 approximation for the invariant dis-
tribution µ?. Combining the preconditioning and the postprocessing techniques allow us to define
integrators of order 2 for the approximation of µ?. We present the new integrators and the conver-
gence results obtained in collaboration with Arnaud Debussche and Gilles Vilmart (Lipschitz case,
see Section 3.2.2) and Ludovic Goudenège (non-globally Lipschitz case, using implicit schemes, see
Section 3.2.3) in Section 3.2. Abstract order conditions to study the new integrators are stated in
Section 3.2.4.

Let us mention that the construction of higher-order integrators (in the weak sense) may be
more crucial for SPDEs than for SDEs. Indeed, for SDEs the application of the Multilevel Monte-
Carlo method [Giles, 2015] leads to complexity results which essentially do not depend on the
weak order of the method. On the contrary, for SPDEs, one needs to combine temporal and spatial
discretization errors, with low strong and weak orders of convergence, and the Multilevel Monte-
Carlo and Multi-Index Monte-Carlo [Haji-Ali et al., 2016] methods lead to complexity results
where the weak order still plays a role (see [Lang, 2016]).

Before proceeding, let us overview the literature concerning the numerical approximation of
the invariant distribution for SPDEs. Our contribution [10] has been the first one to provide
weak error estimates independent of time for parabolic semilinear SPDEs. The motivation for
that work, which was part of our PhD thesis [1], was the analysis the Heterogeneous Multiscale
Method for slow-fast systems in the averaging regime, see [19, 18] and Chapter 4 below. Our
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contribution [11], written in collaboration with Marie Kopec, is a variant of [10] where the Kol-
mogorov equation approach is replaced by a Poisson equation approach, and fully-discrete schemes
were considered. We refer to the recent articles [Chen et al., 2020, Cui et al., 2018] for addi-
tional variants. Results have also been obtained for some stochastic Schrödinger equations, see the
monograph [Hong and Wang, 2019] and references therein and for some stochastic scalar conser-
vations laws [Boyaval et al., 2019]. To the best of our knowledge, no error estimates have been
proved yet for the numerical approximation of the invariant distribution for stochastic Burgers or
Navier-Stokes equations, we plan to study this problem in future works.

3.1. Large time behavior of the weak error

3.1.1. The Lipschitz continuous case.
The content of this section is based on [10] (issued from our PhD thesis [1]) and

on [11] written in collaboration with Marie Kopec.
Even if fully discrete schemes are considered in [11], with Finite Element methods for spatial

discretization, in this manuscript we focus only on the temporal discretization error, when the
following numerical scheme is applied (see (Euler)):

(3.6) Xn+1 = S∆tXn + ∆tS∆tF (Xn) + S∆tσ(Xn)∆Wn,

where S∆t = (I −∆tA)−1 (linear implicit Euler scheme).
The main result of [10, 11] can be written as follows.

Theorem 1.10. Let the condition (EC)

Lip(F ) < λ1

be satisfied, where Lip(F ) is the Lipschitz constant of F .
For all values of the time-step size ∆t ∈ (0, 1), the scheme (3.6) is ergodic, and there exists

c, C ∈ (0,∞) such that for all ∆t ∈ (0, 1) and N ≥ 0, one has∣∣E[ϕ(XN )−
∫
ϕdµ∆t

?

∣∣ ≤ CLip(F )(1 + E|X0|)e−cN∆t,

where µ∆t
? denotes the unique invariant distribution of the numerical scheme (3.6).

Let ϕ : H → R be a function of class C2 with bounded derivatives. For any r ∈ (0, 1
2), there

exists C(r, ϕ, x0), C(r, ϕ) ∈ (0,∞) such that for all ∆t ∈ (0, 1) and all N ∈ N,∣∣E[ϕ(XN )]− E[ϕ(X(N∆t))]
∣∣ ≤ C(r, ϕ, x0)∆t

1
2
−r,∣∣ ∫ ϕdµ∆t

? −
∫
ϕdµ?

∣∣ ≤ C(r, ϕ)∆t
1
2
−r.

Note that from the discussion in Section 1.1, order 1
2 is optimal, and the C2 regularity con-

ditions on the test function ϕ cannot be weakened. Let us state two important remarks. First,
it is straightforward to extend Theorem 1.10 for SPDEs driven by colored noise and/or in higher
dimension, as long as the condition (EC) is enforced, with appropriate modification of the order of
convergence depending on the regularity of the noise. One may also consider the exponential Euler
scheme, S∆t = e∆tA, or other variants. Second, in [10, 11], the condition (EC) is not enforced,
instead it is only assumed that F is bounded: since the noise is a cylindrical Wiener process, this
is sufficient to ensure ergodicity and exponential convergence to equilibrium of the SPDE (3.1) by
coupling methods. On the one hand, it is not known whether the numerical scheme remains ergodic
in that setting. On the other hand, the weak error estimate independent of time in Theorem 1.10
is proved to hold, and one is able to deduce weak error estimates between µ? and any invariant
distribution µ∆t

? of the numerical scheme.
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Let us provide the most important arguments of the proof of Theorem 1.10. The proof of the
ergocity of the numerical scheme and of the exponential convergence to equilibrium is straightfor-
ward. For existence of invariant distributions, one may employ the Krylov-Bogoliubov criterion.
For uniqueness, a coupling argument is used: the distance between two solutions starting from
different initial conditions but driven by the same noise goes to 0 exponentially fast. To prove error
estimates, one needs to prove versions of the regularity estimates (D1) and (D2), for the solution of
the Kolmogorov equation (K), of the following type: there exists c ∈ (0,∞) such that for all t ≥ 0
one has

(3.7) |(−A)αDu(t, x)| . e−ctt−α, ‖(−A)βD2u(t, x)(−A)γ‖L(H) . e−ctt−β−γ ,

for all α, β, γ ∈ [0, 1) with β + γ < 1 (see Section 1.3 for explanations about the role of these
regularity estimates in the weak error analysis). Under the condition (EC), the proof of (3.7)
follows from a straightforward application of the Gronwall lemma: for the first-order derivative

Du(t, x).h = E[Dϕ(X(t)).ηh(t)] = E[Dϕ(X(t)).(etAh)] + E[Dϕ(X(t)).η̃h(t)],

with
dηh(t)

dt
= Aηh(t) +DF (X(t)).ηh(t), ηh(0) = h,

dη̃h(t)

dt
= Aη̃h(t) +DF (X(t)).η̃h(t) +DF (X(t)).etAh, η̃h(0) = 0.

Then one writes

ηh(t) = Π(t, 0)h, η̃h(t) =

∫ t

0
Π(t, s)esAhds,

using the family of operators
(
Π(t, s)

)
t≥s introduced in Sections 1.3 and 2.1. By an energy estimate

and the Gronwall lemma, one has ‖Π(t, s)‖L(H) ≤ e−
(
λ1−Lip(LF )

)
(t−s), and it remains to combine

this result with the smoothing estimate (Sp) to conclude. Note that a different and more complex
approach is used in [10, 11] where the condition (EC) is not satisfied.

Once the regularity estimates (3.7) are obtained, two different strategies can be employed.
In [10], the weak error estimate independent of time is proved using the Kolmorov equation approach
presented in the preliminaries. In [11], we use the Poisson equation approach presented in the
preliminaries: indeed the regularity estimates of the type (3.7) for the solution of the Kolmogorov
equation (K) provide similar results for the solution of the Poisson equation (P), by integrating in
time. In both articles [10] and [11], the weak error analysis requires to use the same additional
techniques as in [Debussche, 2011] or [4], the details are omitted.

3.1.2. Tamed scheme in the non-globally Lipschitz case.
The content of this section is based on the preprint [13], and on its variant [14] for

SDEs.
We consider the parabolic semilinear SPDE (3.1) and relax the Lipschitz continuity condi-

tion (EC) for the nonlinearity F : instead, we assume that F (x) = f(x(·)) is a Nemystskii operator
associated with a function f which has at most polynomial growth and satisfies the one-sided Lip-
schitz condition

(3.8) sup
z∈R

f ′(z) < 0.

The condition above is satisfied for instance if f(z) = −z2q−1 for some integer q ≥ 1. Note that
the condition above could be relaxed, see [13, Section 2.2] for a more general version – in addition,
equations driven by colored noise and/or in higher dimension are considered in that preprint. Under
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the conditions above, the SPDE (3.1) is well-posed on a Lq(0, 1) space for some q ∈ [2,∞) and it
admits a unique invariant distribution µ?, such that∣∣E[ϕ(X(T ))]−

∫
ϕdµ?

∣∣ ≤ CLip(ϕ)e−cT (1 + E|X0|Lq)

if ϕ : Lq → R is Lipschitz continuous, for some c, C ∈ (0,∞).
As explained in Chapter 2, using a scheme of the type (Euler), where F is discretized explicitly,

is not appropriate when F is not globally Lipschitz. We refer to [Mattingly et al., 2002] for
examples of ergordic SDEs with non globally Lipschitz nonlinearities for which the (explicit) Euler-
Maruyama scheme gives non-erdogic discrete-time processes. In [Cui et al., 2018], the authors
studied a fully implicit version of (Euler)

Xn+1 = e∆tA
(
Xn + ∆tF (Xn+1) + ∆Wn

)
and proved ergodicity of the numerical scheme and weak error estimates between invariant distribu-
tions. In the Allen-Cahn case, one may also employ a splitting scheme to get an explicit integrator,
see Section 2.1 and references therein. Let us now present the explicit scheme proposed and studied
in [13]:

(3.9) Xn+1 = e∆tAXn + (−A)−1(I − e∆tA)
F (Xn)

1 + ∆t|F (Xn)|
+ e∆tA∆Wn.

This is a variant of the accelerated exponential Euler scheme, see [Jentzen and Kloeden, 2009],
the expression is motivated by the equality (−A)−1(I − e∆tA) =

∫ ∆t
0 etAdt. The nonlinearity

is treated explicitly, with a taming procedure, see for instance [Sabanis, 2013] and the mono-
graph [Hutzenthaler and Jentzen, 2015].

The main results of [13] can be written as follows.

Theorem 1.11. Let
(
Xn

)
n≥0

be given by the tamed explicit exponential Euler scheme (3.9), and
let the condition (3.8) be satisfied.

For all m ∈ N, there exists a polynomial function Pm : R→ R such that for all T ∈ (0,∞)

sup
∆t∈(0,1)

sup
0≤n∆t≤T

(
E[|Xn|mL∞ ]

) 1
m ≤ (1 + T )Pm(|x0|L∞).

In addition, there exists a polynomial function P : R → R and an integer Q ∈ N, and for all
r ∈ (0, 1

2) and all functions ϕ : L2 → R of class C2
b , there exists Cr(ϕ) ∈ (0,∞), such that one has∣∣E[ϕ(XN )]−

∫
ϕdµ?

∣∣ ≤ Cr(ϕ)
(

∆t
1
2
−r(1 + (N∆t)Q

)
+ e−γN∆t

)
P(|x0|L∞)

for all ∆t ∈ (0, 1) and N ∈ N.

The fundamental and maybe surprising result in Theorem 1.11 above is the moment estimate
which is not uniform in time, whereas at the continuous time level one has

sup
t≥0

(
E[|X(t)|mL∞ ]

) 1
m ≤ Pm(|x0|L∞).

It is not known whether the moment estimate for the numerical scheme in Theorem 1.11 is optimal,
or whether uniform in time estimates hold. Our numerical experiments have not been able to answer
this question. If moment bounds uniform in time do not hold, it is expected that the numerical
scheme may not admit invariant distributions.

We refer to [13, Section 5] for a proof of the moment estimate, based on the introduction of
appropriate auxiliary processes and of a truncation argument. The non-trivial and fundamental
point is to prove that the growth with respect to T is at most linear (polynomial would suffice),
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whereas a naive approach may yield exponential growth. The proof of the weak error estimate from
Theorem 1.11 is based on the Kolmororov equation approach discussed in the preliminaries (using
variants of the regularity estimates (2.9) discussed in Section 2.1) and in Section 3.1.1.

Compared with Theorem 1.10 (globally Lipschitz case), a polynomial dependence with respect
to T = N∆t appears on the right-hand side. If one considers complexity issues instead of error
estimates, there is essentially no difference: let ε > 0, then the cost to compute an estimator
E[ϕ(XN )] of

∫
ϕdµ? with an error less than ε is proportional to the number of time steps N = T

∆t
required to compute XN , where T and ∆t are chosen such that the righ-hand side of the weak
error estimates in Theorems 1.10 or 1.11 is of size ε. (the Monte-Carlo approximation and spatial
discretization are neglected in this argument since they have the same impact in both cases). In
both cases, T is of size | log(ε)|. In the globally Lipschitz case (Theorem 1.10), ∆t is of the size ε

2
1−2r ,

and the cost is of the size ε
2

1−2r | log(ε)|. In the non-globally Lipschitz case (Theorem 1.11), ∆t is of
the size ε

2
1−2rT

− 2
Q(1−2r) , and the cost is of the size ε

2
1−2r | log(ε)|1−

2
Q(1−2r) . Since the convergence to

equilibrium is exponential in T (at the continuous-time level, thus in both cases), and the dependence
in T is at most polynomial in the weak error estimate of Theorem 1.11, in terms of cost the overhead
is polynomial in | log(ε)| and is negligible. Since the parameter r is positive and arbitrarily small,
there is essentially no difference in terms of cost.

To the best of our knowledge, the preprints [13] and [14] are the first ones where the large-time
behavior of the weak error for a tamed Euler scheme is studied, for parabolic semilinear SPDEs and
SDEs respectively. It also seems to be the first time that a numerical scheme for which moment
estimates may not hold uniformly in time is used for the approximation of the invariant distribution
of a stochastic process.

3.2. High order integrators for the approximation of the invariant distribution

In this section, we study numerical schemes for the approximation of the invariant distribution
of (3.1), under the two conditions (EC) (resp. (3.8)) in the Lipschitz case (resp. in the one-sided, non-
globally, Lipschitz case), and (3.2). We present our contributions for the construction and analysis
of higher order methods, compared with the weak order 1

2 methods considered in Section 3.1.

3.2.1. Postprocessing technique.
The content of this section is based on [12], written in collaboration with Gilles

Vilmart.
The main result of that article can be written as follows.

Theorem 1.12. Let
(
Xn, Xn

)
n≥0

be given by the postprocessed integrator (3.3). Then the
limiting distribution for the postprocessed component µ∆t

? = lim
n→∞

L(Xn) is well-defined, does not
depend on the distribution of X0, and the convergence is exponentially fast: there exists c, C ∈ (0,∞)
such that ∣∣E[ϕ(Xn)]−

∫
ϕdµ∆t

?

∣∣ ≤ CLip(ϕ)(1 + E[|X0|])e−cn∆t

for all n ≥ 0, all ∆t ∈ (0, 1) and all Lipschitz continuous functions ϕ : H → R.
In the linear Gaussian case F = 0, the scheme is exact for the approximation of the invariant

distribution: µ∆t
? = µ? = ν = N (0, 1

2(−A)−1) for all ∆t ∈ (0, 1).
If F (x) = Bx where B is a linear self-adjoint bounded operator which commutes with A, then

for all r ∈ (0, 3
2) and all functions ϕ : H → R of class C2

b , there exists Cr(ϕ) such that∣∣ ∫ ϕdµ∆t
? −

∫
ϕdµ?

∣∣ ≤ Cr(ϕ)∆t
3
2
−r.
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Theorem 1.12 states that the postprocessed integrator is an higher-order method (compared
with (3.6)) at least in the case of a linear opeator F . We have not been able so far to extend
this result for general nonlinear operators: numerical experiments reported in [12] indicate that in
practice the method has at least order 1 (which is intermediate between the standard order 1

2 and
the optimal order 3

2 in the linear case).
From a qualitative point of view, the following fundamental observation explains why the post-

processed integrator (3.3) behaves better than (3.6): the spatial regularity of Xn coincides with the
regularity of the exact solution X(t), whereas (for fixed time-step size ∆t) Xn is more regular: for
all t > 0 and n ≥ 1, one has

• E|(−A)αX(t)| <∞ if and only if α < 1
4

• E|(−A)αXn| <∞ if and only if α < 1
4

• E|(−A)αXn| <∞ for all α ∈ [0, 1].

Indeed, the powers in the definitions of S∆t = (I −∆tA)−1 and J∆t = (I − ∆t
2 A)−

1
2 are different,

and the postprocessing is a way to correct the spatial regularity of the numerical solution.
The coefficients in the postprocessed integrator (3.3) have been chosen such that the scheme is

exact in two cases:
• when F = 0,
• if one considers a finite dimensional version (for instance using a spectral Galerkin approx-
imation), and then set A = 0 and F (x) = Bx.

More generally, in a finite dimensional case with A = 0, i.e. for the overdamped Langevin dynamics

dx(t) = −∇V (x(t))dt+ dβ(t),

the postprocessed scheme (3.3) is written as
xn+1 = xn −∆t∇V (xn +

1

2
∆βn) + ∆βn

xn = xn +
1

2
∆βn,

which is the interpretation as a postprocessed integrator [Vilmart, 2015] of the (non-Markovian)
scheme

xn+1 = xn −∆t∇V (xn) +
∆βn + ∆βn+1

2

introduced in [Leimkuhler and Matthews, 2013]. This scheme has order 2 for the approxima-
tion of the invariant distribution.

The analysis of the order of convergence in the Gaussian case stated in Theorem 1.12 is based on
elementary arguments. When F = 0, the verification that µ∆t

? = µ? = ν only requires to compute
the limit of the covariance of Xn, which is straightforward.

The postprocessed integrator (3.3) introduced in [12] is the first higher-order method for the
approximation of the invariant distribution µ? for a class of SPDEs (3.1). However, we have not
been able to prove error estimates except in specific cases. On the contrary, we are able to prove
that the order of convergence of the proposed preconditioned schemes presented in Section 3.2.2
below, is equal to 1 or 2. In this manuscript, we thus do not provide more details about the analysis
of the postprocessed integrator (3.3).

3.2.2. Preconditioning technique – the Lipschitz case.
The content of this section is based on a joint work in progress in collaboration

with Arnaud Debussche and Gilles Vilmart.
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We present integrators for the preconditioned stochastic evolution equation (3.4)

dXp(t) = −Xp(t)dt− (−A)−1DV (Xp(t))dt+ (−A)−
1
2dW (t),

which is obtained from the original dynamics (3.1) (with F = −DV ) by multiplying the drift terms,
resp. the diffusion term, by (−A)−1, resp. by (−A)−

1
2 . This preconditioning technique preserves

the invariant distribution: when t → ∞, Xp(t) converges in distribution to µ?, exponentially fast,
for any choice of the initial condition.

Let us state the main differences between the original and preconditioned equations (3.1)
and (3.4).

• The preconditioned equation (3.4) is not a parabolic semilinear SPDE, since A as been
replaced by −I. As a consequence, the smoothing property (Sp) and its consequences
(for instance in terms of regularity estimates (D1) and (D2) for solutions of Kolmogorov
equations) are not relevant for the preconditioned dynamics.
• The preconditioned equation (3.4) is driven by a trace-class noise, with covariance operator

(−A)−1. Therefore the noise takes values in the Hilbert space H and well-posedness follows
from a straightforward fixed point argument – whereas for (3.1) the cylindrical Wiener
process does not take values in H, and the smoothing property (Sp) is crucial to justify
well-posedness in H.
• Due to preconditioning, the temporal regularity of the solutions is substantially improved.
Precisely, for all α ∈ (0, 1

2), the solution
(
Xp(t)

)
t≥0

of (3.4) is almost surely α-Hölder con-
tinuous (with values in H), whereas the solution

(
X(t)

)
t≥0

of (3.1) is α
2 -Hölder continuous.

Note that the preconditioning technique does not modify the spatial regularity of the trajectories:
this is consistent with the fact that both processes have the same invariant distribution µ?.

Since one retrieves the same temporal regularity as for (finite-dimensional) SDEs driven by
Brownian Motion for the preconditioned version, one may adapt the definitions of SDE integrators
for (3.4) and obtain high-order schemes for the approximation of the invariant distribution µ?.
Let us present three schemes of order 1 or 2. Note that contrary to the method proposed in
Section 3.2.1, rigorous proofs can be completed: either using the abstract order conditions presented
in Section 3.2.4 below, or using variants of the Kolmogorov and Poisson equations approaches
discussed in the preliminaries and in Section 3.1.1. It happens that with the latter approach the
analysis of the weak error for integrators applied to the preconditioned equation (3.4) is much
simpler than for the original problem (3.1) (which applies also to more general, non-gradient cases),
and is closer to the weak error analysis for SDEs: indeed, as explained above, the solutions of
Kolmogorov and Poisson equations do not satisfy regularity estimates of the type (D1)–(D2) for the
preconditioned version, however these properties are not needed at all.

To simplify notation, set G(x) = −x − (−A)−1DV (x). First, the standard Euler-Maruyama
scheme

(3.10) Xp
n+1 = Xp

n + ∆tG(Xp
n) + (−A)−

1
2 ∆Wn

is a method with weak order 1 at all times, and provides a method of order 1 for the approximation
of the invariant distribution: precisely, there exists c ∈ (0,∞), and for all ϕ : H → R of class C2

b ,
there exists C(ϕ) ∈ (0,∞), such that for all N ∈ N and ∆t ∈ (0, 1)

∣∣E[ϕ(Xp
N )]−

∫
ϕdµ?

∣∣ ≤ C(ϕ)
(

∆t+ e−cN∆t
)
.
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A second order integrator is obtained as a postprocessed version of (3.5):

(3.11)


Xp
n+1 = Xp

n + ∆G
(
Xp
n +

1

2
(−A)−

1
2 ∆Wn

)
+ (−A)−

1
2 ∆Wn

Xn = Xn +
1

2
(−A)−

1
2 ∆Wn.

The scheme above is a generalization for the preconditioned SPDE (3.4) of the second-order scheme
introduced in [Leimkuhler and Matthews, 2013] mentioned above. The postprocessed integra-
tor (3.11) provides a method of order 2 for the approximation of the invariant distribution: precisely,
there exists c ∈ (0,∞), and for all ϕ : H → R of class C2

b , there exists C(ϕ) ∈ (0,∞), such that for
all N ∈ N and ∆t ∈ (0, 1)∣∣E[ϕ(X

p
N )]−

∫
ϕdµ?

∣∣ ≤ C(ϕ)
(

∆t2 + e−cN∆t
)
.

Finally, the following stochastic Heun method

(3.12)
X̂p
n = Xp

n + ∆tG(Xp
n) + (−A)−

1
2 ∆Wn

Xp
n+1 = Xp

n +
∆t

2

(
G(Xp

n) +G(X̂p
n)
)

+ (−A)−
1
2 ∆Wn

provides a method of order 2 for the approximation of the invariant distribution: precisely, there
exists c ∈ (0,∞), and for all ϕ : H → R of class C2

b , there exists C(ϕ) ∈ (0,∞), such that for all
N ∈ N and ∆t ∈ (0, 1) ∣∣E[ϕ(Xp

N )]−
∫
ϕdµ?

∣∣ ≤ C(ϕ)
(

∆t2 + e−cN∆t
)
.

In principle, methods with arbitrary order for the approximation of the invariant distribution may
be constructed.

The second order methods (3.11) and (3.12) have different behaviors. On the one hand, the latter
is of order 2 at all times (not only for the approximation of the invariant distribution), however it is
not exact in the Gaussian case F = 0 and thus suffers from the issue raised in Section 1.1 concerning
the regularity of the test functions. On the other hand, the former is exact in the Gaussian case
F = 0; whether the weak error estimate holds for less regular test functions ϕ when using the
postprocessed scheme (3.11) with nonzero F is an open challenging question which may be studied
in future works.

3.2.3. Preconditioning technique – the non Lipschitz case.
The content of this section is based on a work in progress, in collaboration with

Ludovic Goudenège.
The first and second order integrators designed in Section 3.2.2 can not be applied when con-

sidering SPDEs (3.1) with non-globally Lipschitz nonlinearities, i.e. in the setting of Section 3.1.2.
Note also that even in the cubic case F (x) = x − x3, one can not apply a splitting scheme as in
Chapter 2 (Section 2.1) since the solution of the equation Ẋp = (−A)−1

(
Xp− (Xp)3

)
is not known.

There are (at least) two solutions to deal with the nonlinearity. First, the nonlinearity may be
treated implicitly. For instance, one may use the following split-step scheme

(3.13)

{
X̂p
n = Xp

n + ∆tG(X̂p
n)

Xp
n+1 = X̂p

n + (−A)−
1
2 ∆Wn,

where G(x) = −x+ (−A)−1F (x). Under the condition (3.8), moment estimates of the type

sup
∆t∈(0,1)

sup
n≥0

E[|Xp
n|mL∞ ] <∞

65



are satisfied, and the scheme (3.13) provides a method of order 1 for the approximation of the
invariant distribution: precisely, there exists c ∈ (0,∞), and for all ϕ : H → R of class C2

b , there
exists C(ϕ) ∈ (0,∞), such that for all N ∈ N and ∆t ∈ (0, 1)∣∣E[ϕ(Xp

N )]−
∫
ϕdµ?

∣∣ ≤ C(ϕ)
(

∆t+ e−cN∆t
)
.

One may also use the fully implicit scheme

(3.14) Xp
n+1 = Xp

n + ∆tG(Xp
n+1) + (−A)−

1
2 ∆Wn,

and obtain a method of order 1. Note that the split-step scheme (3.13) and the implicit scheme (3.14)
are conjugated in the following sense: if Xp

n is defined by (3.14), then Xp
n + ∆Wn satisfies the

recursion (3.13) of the split-step scheme. It thus suffices to study the split-step scheme. In the
analysis, the norm |(−A)

1
2 · | plays an important role, in order to exploit the one-sided Lipschitz

continuity condition (3.8) to justify the well-posedness of the scheme and obtain regularity properties
for the solution of the Kolmogorov equation.

Using a postprocessing technique, one may design order 2 methods, which are variants of the
scheme (3.11) where the nonlinearity is treated implicitly, see [Vilmart, 2015] for the SDE versions.

Second, the nonlinearity may be treated using a taming procedure, as explained in Section 3.1.2.
One obtains for instance the following scheme

(3.15) Xp
n+1 = e−∆tXp

n +
1− e−∆t

1 + ∆t|F (Xn)|
(−A)−1F (Xn) +

√
1− e−2∆t

2∆t
(−A)−

1
2 ∆Wn.

If F = 0, the scheme is exact in distribution. As in Section 3.1.2, one cannot prove uniform moment
bounds, instead one checks that growth with respect to time is at most polynomial, and then proves
weak error estimates as in Theorem 1.11.

3.2.4. Order conditions for preconditioned (and postprocessed) integrators. The ob-
jective of this section is to provide abstract order conditions, which are the guidelines for the design
of the schemes presented in Sections 3.2.2 and 3.2.3 above. The arguments are understood at a
formal level, justifications of the computations in the infinite dimensional setting and regularity
questions are omitted to simplify the presentation. Note that the analysis below is performed only
for the preconditioned version (3.4), indeed the expansions do not hold for the original version (3.1)
(which may not be suprising since the weak order of convergence is not an integer).

Let us set some abstract notation. An integrator is defined as a mapping Φ∆t, such that the
mapping is of the type Xn+1 = Φ∆t(Xn,∆Wn), where

(
∆Wn

)
n≥0

are the Wiener increments.

When a postprocessing is applied, it is understood to be of the type Xn = Φ
∆t

(Xn,∆Wn) for
some mapping Φ

∆t. Assume that µ∆t
? is an invariant distribution of the Markov chain

(
Xn

)
n≥0

;

if a postprocessing is applied, let µ∆t
? be such defined as the distribution of Φ

∆t
(X,∆W0), where

X ∼ µ∆t
? is independent of the Wiener increment ∆W0.

Let Lp denote the infinitesimal generator associated with the preconditioned evolution equa-
tion (3.4):

Lpφ(x) = 〈−x+ (−A)−1F (x), Dφ(x)〉+
1

2
Tr
(
(−A)−1D2φ(x)

)
.

Two ingredients are required to state the order conditions.
First, introduce Ψp(x) =

∫ (
Ex[ϕ(Xt)]−

∫
ϕdµ?)dt, which is the solution of the Poisson equation

−LpΨp = ϕ− ϕdµ?. Second, assume that one has weak Taylor expansions of the type

E[φ(Xn+1)|Xn] = φ(Xn) + ∆tLpφ(Xn) + ∆t2A1φ(Xn) + O(∆t3)
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for some operator A1 (which depends on the numerical scheme), for sufficiently regular functions φ,
and with appropriate upper bounds for the remainder term.

A variant of the Poisson equation approach presented in the preliminaries yields the following
result: since Xn ∼ µ∆t

? implies that Xn+1 ∼ µ∆t
? , integrating the weak Taylor expansion above with

φ = Ψp yields

0 = ∆t

∫
LpΨpdµ∆t

? + ∆t2
∫
A1Ψpdµ∆t

? + O(∆t3),

thus the following error estimate is obtained:∫
ϕdµ∆t

? −
∫
ϕdµ? = −

∫
LpΨpdµ∆t

?

= ∆t

∫
A1Ψpdµ∆t

? + O(∆t2)

= O(∆t).

Since the weak Taylor expansion holds for all the schemes defined in Section 3.2.2 and 3.2.3, the
schemes have at least weak order 1.

If one applies the result above with ϕ = A1Ψp, one obtains a more precise expansion∫
ϕdµ∆t

? −
∫
ϕdµ? = ∆t

∫
A1Ψpdµ? + O(∆t2).

With that result, the stochastic Heun method (3.12) is of weak order 2 since A1 = 1
2(Lp)2, and∫

Lpφdµ? = 0 for all functions φ. One also sees that the method can be of weak order 2 for the
approximation of the invariant distribution without the condition A1 = 1

2(Lp)2 (which means that
the weak order is equal to 2 at all times), being of weak order 1 at finite times.

It remains to incorporate the postprocessing technique in this picture. If a weak Taylor expansion
of the type

E[φ(Xn)|Xn] = φ(Xn) + ∆tA1φ(Xn) + O(∆t2)

is satisfied, then by definition of µ∆t
? one obtains∫

ϕdµ∆t
? −

∫
ϕdµ∆t

? = ∆t

∫
A1ϕdµ

∆t
? + O(∆t2),

and gathering expansions yields∫
ϕdµ∆t

? −
∫
ϕdµ? =

∫ (
A1 + [Lp,A1]

)
Ψpdµ? + O(∆t2),

where [Lp,A1] = LpA1 −A1Lp denotes the commutator.
Finally, one obtains the following order conditions:
• an integrator is of order 2 for the approximation of the invariant distribution if A?1µ? = 0,
• a postprocessed integrator is of order 2 for the approximation of the invariant distribution
if
(
A1 + [Lp,A1]

)?
µ? = 0,

whereA?µmeans that
∫
Aφdµ = 0 for a (sufficiently large) class of functions φ satisfying appropriate

growth and regularity conditions.
The order conditions above are the same as for SDEs (see [Vilmart, 2015]), however their

derivation is slightly different (and simpler) with the use of the solution of the Poisson equation.
The order conditions can be applied to the schemes defined in Sections 3.2.2 and 3.2.3.

This concludes the presentation of higher order methods for the SPDE (3.1), in the gradient
case F = −DV , using preconditioning and/or postprocessing techniques. Note that the theoretical
results are supported with numerical experiments (work in progress).
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Partie 2

Multiscale stochastic systems: limit theorems
and numerical methods





CHAPTER 4

The averaging principle for systems of slow-fast parabolic
semilinear SPDEs

In this chapter, we consider multiscale systems of parabolic semilinear SPDEs, of the type

(4.1)


dXε(t) = AXε(t)dt+ F (Xε(t), Y ε)dt+ σQ

1
2dw(t)

dY ε(t) =
1

ε

(
BY ε(t) +G(Xε(t), Y ε(t))

)
dt+

1√
ε
dW (t),

where ε ∈ (0, 1) is the time scale separation parameter and we are interested in the behavior of the
system when ε→ 0. We state our results in the same setting as in the first part of the manuscript
for the analysis of parabolic semilinear SPDEs (see the preliminaries): the processes Xε and Y ε

take values in the Hilbert space H = L2(0, 1), the linear operators A and B are the realizations of
the Laplace operator with homogeneous Dirichlet boundary conditions (we use different notation
to suggest possible generalizations) and the nonlinearities F and G are at least globally Lipschitz
continuous. The equation is driven by independent cylindrical Wiener processes

(
w(t)

)
t≥0

and(
W (t)

)
t≥0

, Q is the covariance operator and σ ≥ 0 is the size of the noise in the first component.
The initial conditions Xε(0) = x0 and Y ε(0) = y0 are assumed to be deterministic and to be
independent of ε for simplicity.

When the time scale separation parameter ε is small, the evolution of Xε is slow whereas the
evolution of Y ε is fast. To simplify the presentation, assume from now on that G does not depend
on x; then one has the equality in distribution of processes

(
Y ε(t)

)
t≥0

=
(
Y (t/ε)

)
t≥0

, where Y is
the solution of the SPDE

dY (t) =
(
BY (t) +G(Y (t))

)
dt+ dW (t).

Assume that the following variant of the condition (EC) is satisfied:

Lip(G) < λ1

where λ1 is the smallest eigenvalue of −B = −A. Then the process
(
Y (t)

)
t≥0

is ergodic, and
let its unique invariant distribution be denoted by µ. When ε → 0, it is expected that the effect
of Y ε = Y (·/ε) in the evolution of the slow component Xε is averaged out, by a law of large
numbers effect. Roughly, the averaging principle means that Xε converges to the solution X of
the averaged equation

(4.2) dX(t) = AX(t)dt+ F (X(t))dt+ σQ
1
2dw(t), X(0) = x0,

which depends on the averaged coefficient

(4.3) F (x) =

∫
F (x, y)dµ(y).

The convergence of Xε to X may be understood and studied in different meanings. In the arti-
cles [Cerrai, 2009, Cerrai and Freidlin, 2009], the first averaging results for parabolic semi-
linear SPDEs were obtained and convergence in distribution of

(
Xε(t)

)
t≥0

to
(
X(t)

)
t≥0

has been
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obtained. In our contributions [17] (issued from our PhD thesis [1]) and [18], we go beyond such
convergence results and exhibit rates of convergence, in both strong and weak senses in the
averaging principle: we prove error estimates (similar to (S) and (W) in the preliminaries) for

E|Xε(T )−X(T )|,
∣∣E[ϕ(Xε(T ))]− E[ϕ(X(T ))]

∣∣,
for any given T ∈ (0,∞), where ϕ : H → R are sufficiently regular test functions. The motivation
for proving error estimates is the construction and analysis of numerical methods which are effective
when ε → 0. We wish to prove that, the weak order is twice the strong order, as in Part 1, under
appropriate assumptions.

In the last decade, many articles and preprints have been devoted to the proof of the averaging
principle and the analysis of convergence rates have been released. The authors of these works study
variants of the system (4.1) (Burgers, Allen-Cahn, Navier-Stokes, Schrödinger, wave equations,
equations driven by Lévy noise,...). We omit references to those works, which are based on variants
of the techniques from [Cerrai, 2009, Cerrai and Freidlin, 2009] and [17, 18].

This chapter is organized as follows. First, in Section 4.1, we state the main results from the
contributions [17] (σ = 0) and [18] (σ > 0), and we explain why the generalization to positive
σ requires non-trivial technical arguments, and possibly modification of the rates of convergence
depending on the regularity of the noise. Second, we explain the construction of an efficient scheme,
based on the Heterogeneous Multiscale Method (HMM), and present the convergence results proved
in our contributions [19] and [18].

Note that if the noise is not additive, with a diffusion coefficient depending on the fast compo-
nent, the expression of the averaged equation is more subtle and requires to consider the averaged
version of the infinitesimal generator. The restriction to the additive noise case is not necessary
in the derivation of the averaging principle, however it is important when investigating rates of
convergence: indeed, solutions of Kolmogorov and Poisson equations play a key role in the analysis,
and as explained in Chapter 1 the analysis is substantially more challenging in the multiplicative
noise case. In future works, one may adapt the analysis of Section 1.3 to deduce new strong and
weak error estimates in the averaging principle for SPDE systems driven by multiplicative noise.

4.1. Strong and weak orders of convergence

The content of this section is based on the contributions [17] and [18].
The first result concerning strong and weak error estimates, with rates, in the averaging principle

for SPDEs, has been obtained in our contribution [17]. In that article, it is assumed that σ = 0,
and in particular the averaged equation (4.2) is a deterministic PDE. The main results of [17] may
be written as follows.

Theorem 2.1. Let σ = 0, T ∈ (0,∞) and let ϕ : H → R be of class C2 with bounded first and
second-order derivatives. Under appropriate technical assumptions for the initial conditions x0 and
y0, for all κ ∈ (0, 1

2), there exists Cκ(T, x0, y0), Cκ(T, x0, y0, ϕ) ∈ (0,∞) such that for all ε ∈ (0, 1)
one has

E|Xε(T )−X(T )| ≤ Cκ(T, x0, y0)ε
1
2
−κ∣∣E[ϕ(Xε(T ))]− E[ϕ(X(T ))]

∣∣ ≤ Cκ(T, x0, y0, ϕ)ε1−κ.

Note that Theorem 2.1 is proved in [17] in the coupled case where G depends on x. The strong
and weak orders of convergence 1

2 and 1 respectively are optimal, and they coincide with the results
obtained for (finite dimensional) SDEs.

The proof of the strong error estimate in Theorem 2.1 uses the Khasminskii technique, introduced
in [Khasminskii, 1968] for SDEs and also used in [Cerrai, 2009] and many references for SPDEs:
one introduces an auxiliary process depending on an auxiliary parameter δ(ε), where on intervals
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[nδ(tε), (n+ 1)δ(ε)] the evolution of the slow component is frozen. Essentially, one obtains an error
estimate of the type

E|Xε(T )−X(T )| ≤ C
( ε

δ(ε)
+ δ(ε)1−κ),

where the first term comes from an ergodicity result applied on each subinterval, and the second
term is a temporal discretization error (due to the freezing of the slow component), where δ(ε) plays
the role of a time-step size. Choosing δ(ε) = ε

1
2 gives the strong error estimate in Theorem 2.1.

The proof of the weak error estimate in Theorem 2.1 is based on asymptotic expansions for the
solution of Kolmogorov equations, in the spirit of [Khasminskii and Yin, 2005]: let

uε(t, x, y) = Ex,y[ϕ(Xε(t))],

then uε is solution of a Kolmogorov equation

∂tu
ε = Lεuε =

(1

ε
L1 + L2

)
uε,

where the infinitesimal generators L1 and L2 are associated with the fast and slow components
respectively. The strategy of the proof is to build an expansion

uε = u0 + εu1 + rε,

using a hierarchy of equations: {
0 = L1u0

∂tu0 = L2u0 + L1u1.

One identifies that u0(t, x, y) = u(t, x) where u(t, x) = Ex[ϕ(X(t))] solves the Kolmogorov equation
∂tu = Lu associated with the averaged equation (4.2). In addition, u1 is well-defined as the solution
of the Poisson equation −L1u1 = L2u0 −

∫
L2u0dµ. The weak error estimate then follows from

u1 = O(1) and rε = O(ε1−κ), which are proved using a combination of standard arguments and
additional techniques specific to SPDEs, which are omitted. This concludes the sketch of proof of
Theorem 2.1.

A question left open from [17] concerns the values of the strong and weak orders of convergence
when σ > 0, i.e. when the slow component solves a SPDE driven by additive noise, instead of
a PDE depending on the fast component. If one applies the techniques described above in the
case σ > 0, one obtains again strong order 1

2 and weak order 1 only if very strong conditions
on the covariance operator Q are imposed: for instance, for the weak error analysis, one requires
that Xε and X take values in D((−A)1−κ) for arbitrarily small κ > 0, thus a strong condition of
the type Tr(Q(−A)) < ∞ is needed. If no such condition is satisfied (in particular this condition
excludes space-time white noise Q = I), the value of the weak order of convergence is unknown.
The Khasminskii technique (with auxiliary temporal discretization) can always be applied, to get a
strong error estimate of the type

E|Xε(T )−X(T )| ≤ C
( ε

δ(ε)
+ δ(ε)α−κ

)
,

where α depends on Q: α = 1
4 for space-time white noise Q = I, α = 1

2 for trace-class noise.
However the order of convergence α

1+α obtained by optimizing the choice δ(ε) in terms of ε may not
be optimal.

In our contribution [18], we have been able to go beyond the limitations explained above when
σ > 0. We identify conditions, depending on regularity properties of the slow and the fast compo-
nents, which allow to distinguish two regimes for the value of the orders of convergence. The precise
conditions are technical, so we make two simplifications in this manuscript. First, the nonlinearity F
is assumed to satisfy an appropriate class of regularity conditions (which are satisfied for Nemytskii
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operators when considering appropriate Lp spaces). Second, we assume that the fast component
is driven by a cylindrical Wiener process, which means γmax = 1

4 in the notation of [18]. In this
simplified setting, the main results of [18] may be written as follows.

Theorem 2.2. Let σ > 0, T ∈ (0,∞) and let ϕ : H → R be of class C2 with bounded first and
second-order derivatives. Under appropriate technical assumptions for the initial conditions x0 and
y0 and for the nonlinearity F , for all α ∈ (0, 1) such that

Tr(Q(−A)2α−1) <∞

and for all arbitrarily small κ ∈ (0, 1), there exists Cα,κ(T, x0, y0), Cα,κ(T, x0, y0, ϕ) ∈ (0,∞) such
that for all ε ∈ (0, 1) one has the following error estimates:

E|Xε(T )−X(T )| ≤ Cα,κ(T, x0, y0)ε
1
2

max(1, 2α
3
4 +α

)−κ

∣∣E[ϕ(Xε(T )]− E[ϕ(X(T ))]
∣∣ ≤ Cα,κ(T, x0, y0, ϕ)ε

max(1, 2α
3
4 +α

)−κ
.

Note that 2α
1
2

+α
≥ 1 if and only if α ≥ 3

4 : if Tr(Q(−A)
1
2 ) <∞, we retrieve the (optimal) strong

and weak orders of convergence 1
2 and 1 respectively, as in the case σ = 0. The condition is weaker

than the one mentioned above. If the slow component is driven by space-time white noise, Q = I
and one is limited to α ∈ (0, 1

4): in that case, the strong and weak orders of convergence obtained
in Theorem 2.2 are 1

4 and 1
2 respectively. Note that these orders of convergence coincide with the

orders of convergence for numerical approximation of the solution X of the averaged equation (4.2),
even if no auxiliary numerical scheme is employed in the proof of Theorem 2.2. This may be due to
the similarity in the techniques used in the analysis of Kolmogorov and Poisson equations. Whether
the strong order 1

4 and weak order 1
2 are optimal for the case Q = I is an open question which is

left for future works.
A limitation of the study in [18] is the assumption that G(x, y) = G(y) does not depend on the

slow component, thus Y ε(t) = Y (t/ε) where the process Y does not depend on ε and x. It is expected
that the result extends in the general coupled case where G depends on x. This generalization may
be investigated in future works.

The reason why the condition on Q in Theorem 2.2 is weaker compared with the stronger
condition Tr(Q(−A)) exhibited above (which allows to generalize the analysis of [17] with minor
modifications), is a subtle use of the regularity properties of the fast process: one can interpret
3
4 = 1− 1

4 , with Y
ε taking values in D((−A)

1
4
−κ). Using such regularity properties, and appropriate

conditions on the linearity F , one obtains improved regularity results for the solution of Poisson
equations. We omit the technical statements of these regularity properties and their proofs, we refer
to [18, Section 5].

The proofs in the cases α ≤ 3
4 and α > 3

4 need to be separated. In fact, the error estimates
in the case α ≤ 3

4 follow from an approximation argument (see [18, Section 8]): if δ ∈ (0, 1), one
considers processes Xε

δ and Xδ defined by{
dXε

δ(t) = AXε(t)dt+ F (Xε(t), Y ε)dt+ σeδAQ
1
2dw(t)

dXδ(t) = AXδ(t)dt+ F (Xδ(t))dt+ σeδAQ
1
2dw(t).

Using strong and weak error estimates, on the one hand for Xε−Xε
δ and Xδ−X, on the other hand

for Xε
δ −Xδ (which goes to 0 when ε→ 0 with strong order 1/2 and weak order 1, with a constant

which blows up as δ → 0, owing to the analysis of the case α > 3
4), one obtains error estimates of
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the type

E|Xε(T )−X(T )|2 +
∣∣E[ϕ(Xε(T ))]− E[ϕ(X(T ))]

∣∣ ≤ C(δ2α + εδα−
3
4
)
.

It remains to choose δ = 1
α+ 3

4

to optimize the right-hand side and to obtain the strong and weak

error estimates in Theorem 2.2 when α < 3
4 . Due to the use of the approximation argument, the

values of the orders of convergence may not be optimal. Note that the approximation argument
exploits error estimates where the dependence with respect to the properties Q is analyzed precisely,
precise statements are omitted here.

Let us now discuss how Theorem 2.2 is proved in the case α > 3
4 , to obtain strong and weak

orders 1
2 and 1 respectively. One of our original arguments in [18] is the identification of two new

expressions of the strong and weak errors respectively, which depend on the solutions of Poisson
equations, to replace and go beyond the Khasminskii and Kolmogorov equations techniques [17]
employed in the case σ = 0.

First, for the strong error estimate (see [18, Section 6]), starting from mild formulations for Xε

and X, one has

X
ε
(t)−X(t) =

∫ t

0
e(t−s)A(F (Xε(s), Y ε(s))− F (Xε(s), X(t))

)
ds+

∫ t

0
e(t−s)AδF (X(s), Y ε(s))ds,

with δF (x, y) = F (x, y) − F (x). For all x, θ ∈ H, let Φ(x, ·, θ) be the solution of the Poisson
equation

(4.4) − L1Φ(x, ·, θ) = δF (x, ·),

where we recall that L1 is the infinitesimal generator associated with the fast dynamics (which is
assumed to be independent of x), such that the generator for the full dynamics is ε−1L1 + L2. It
suffices to prove that

E|
∫ t

0
e(t−s)AδF (X(s), Y ε(s))ds|2 = O(ε),

and this is performed using the following expression:

E|
∫ t

0
e(t−s)AδF (X(s), Y ε(s))ds|2

= 2

∫ t

0

∫ t

s
E〈e(t−s)AδF (X(s), Y ε(s)), e(s−r)AδF (X(r), Y ε(r))〉drds

= 2

∫ t

0

∫ t

s
E[−L1Φ(X(r), Y ε(r), θs,t(r))]drds,

with θs,t(r) = e(2t−s−r)AδF (X(s), Y ε(s)) for s ≤ r ≤ t. After these preliminary steps, one uses a
standard technique: applying Itô’s formula to r ∈ [s, t] 7→ Φ(X(r), Y ε(r), θs,t(r)) yields formally an
expression of the type ∣∣ ∫ t

s
E[−L1Φ(X(r), Y ε(r), θs,t(r))]dr

∣∣ = O(ε),

however proving that all the terms appearing in the obtained decomposition of the error term are of
the expected order requires technical arguments and the new regularity estimates for the function Φ
of [18, Section 4] mentioned above, with respect to all its variables x, y, θ. We refer to [18, Section 5]
for the application of these estimates to prove the strong error estimate.

Second, to prove the weak error estimate, see [18, Section 5], our strategy is based on the
following expression: if u(t, x) = Ex[ϕ(X(t))] denotes the solution of the Kolmogorov equation
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associated with the averaged equation, the weak error is expressed as

E[ϕ(Xε(T ))]− E[ϕ(X(T ))] = E[u(0, Xε(T ))]− E[u(T,Xε(0))]

=

∫ T

0
E[
(
L2 − ∂t

)
u(T − t,Xε(t))]dt

=

∫ T

0
E[〈F (Xε(t), Y ε(t))− F (Xε(t)), Y ε(t)), Du(T − t,Xε(t))〉]dt

=

∫ T

0
E[−L1v(T − t,Xε(t), Y ε(t))]dt,

using Itô’s formula, where v is defined as follows:

v(t, x, y) = Φ(x, y,Du(t, x))

in terms of the auxiliary function Φ introduced above, which solves the Poisson equation (4.4). It
then remains to apply Itô’s formula to t ∈ [0, T ] 7→ v(T − t,Xε(t), Y ε(t)) to obtain formally

E[ϕ(Xε(T ))]− E[ϕ(X(T ))] = O(ε).

Again justifying the error estimates requires additional technical arguments which are omitted, we
refer to [18, Section 5]. The arguments combine regularity estimates for the solution Φ of the
Poisson equation, with respect to all its variables x, y, θ, and for the derivatives of the solution u of
the Kolmogorov equation associated with the averaged equation (in the spirit of those discussed in
the preliminaries of Part 1 (or Section 1.3). Note that contrary to the approach in [17], the solution
uε of the Kolmogorov equation associated with the coupled slow-fast system does not appear in the
new approach.

The new expressions and decompositions of the strong and weak error, depending on the solution
Φ of the Poisson equation, has been a powerful tool to prove Theorem 2.2. Note that variants have
recently been applied to study the averaging principle for other stochastic PDE systems, see for
instance [Röckner et al., 2020, Sun et al., 2021].

4.2. The Heterogeneous Multiscale Method

The content of this section is based on the contributions [19] (issued from our PhD
thesis [1]) and [18].

In this section, we propose a numerical method for the approximation of the slow component
Xε of the system (4.1) when ε is small. We refer to [19] and to [18, Section 9] for a detailed
analysis, in the cases σ = 0 and σ > 0 respectively. The strategy is based on the Heterogeneous
Multiscale Method (HMM), see [Abdulle et al., 2012] for a review article, and our contribution
is to generalize the definition of the scheme studied in [E et al., 2005] for slow-fast SDEs and to
provide rigorous error bounds.

When ε is small, it would be prohibitive to use a timestepping method with time-step size ∆t
directly for the system: a condition of the type ∆t = O(ε) would naturally be required to capture
the evolution of the fast component Y ε. The guideline of the HMM approach applied to stochastic
slow-fast systems of the type (4.1) is as follows. First, owing to the averaging principle, when ε is
small, it is sufficient to approximate the solution X of the averaged equation (4.2): a timestepping
method with time-step size ∆t independent of ε can be chosen: for instance, one may use the linear
implicit Euler scheme

(4.5) Xn+1 = S∆t

(
Xn + ∆tF (Xn) + σQ

1
2 ∆wn

)
,

with S∆t = (I − ∆tA)−1 and Wiener increments ∆wn = w((n + 1)∆t) − w(n∆t). Second, in
practice, that approach cannot be implemented directly, since in general one does not know the
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values of the averaged coefficient F (Xn), defined by (4.3). In the HMM strategy, for all n ≥ 0, an
approximation of F (Xn) is obtained by running a long-time simulation of the fast equation with
frozen slow component, based on an ergodic integrator. It is fundamental to note that the time-step
size τ for this auxiliary approximation can be chosen independently of ∆t. Indeed, one is interested
only in the approximation of F (Xn), not in the approximation of the fast component Y ε.

We are now in position to provide the definition of the HMM scheme for the slow-fast SPDE
system. It depends on the two time-step sizes ∆t and τ (for the coarse/slow and fine/fast integrators
respectively), and two additional auxiliary parameters: let 1 ≤ Na ≤ N be two integers, N denotes
the number of iterations of the fine integrator for each coarse iteration, and Na denotes the number
of values which are taken into account to compute an ergodic average. More generally, independent
Monte-Carlo realizations may be used, however to simplify the presentation this is omitted in this
manuscript. The HMM scheme is defined as follows: for all n,m ≥ 0

(4.6)



Xn+1 =
(
I −∆tA)−1

(
Xn + ∆tF̃n + σQ

1
2
(
w((n+ 1)∆t)− w(n∆t)

))
Yn,m+1 = (I − τB)−1

(
Yn,m + τG(Xn, Yn,m) +

(
W ((m+ 1)τ)−W (mτ)

))
F̃n =

1

Na

M∑
N−Na+1

F (Xn, Yn,m).

To implement the HMM scheme (4.6), one needs to specify the initial value of Yn,m=0, at each
iteration n. It is convenient to choose Yn,0 = Yn−1,N . When N,Na → ∞ and τ → 0, the ergodic
average F̃n approximates the value F (Xn) of the averaged coefficients, by ergodicity of the numerical
scheme and a result concerning the error in the approximation of the invariant distribution of the
fast dynamics (with frozen slow component if G depends on x). More precisely, F̃n converges when
N,Na → ∞ to

∫
F (Xn, y)dµτ (y) where µτ is the invariant distribution of the fast/fine integrator

(with frozen slow component Xn).
Strong and weak error estimates for the convergence of XN to Xε(T ) (with T = N∆t) have been

proven in the contributions [19] (σ = 0) and [18] (σ > 0, G independent of x). The statement is
simplified, in order to highlight the dependence of the error bound with respect to the discretization
parameters.

Theorem 2.3. Under appropriate technical assumptions on the nonlinearities F and G and on
the initial conditions xε0 and yε0, one has the strong error estimate

(4.7) E|XN −Xε(T )| ≤ C
(
εθav,s + ∆tθE,s + τ θinv +Rs(N,Na, τ)

)
and one has the weak error estimate

(4.8)
∣∣E[ϕ(XN )]− E[ϕ(Xε(T ))

∣∣ ≤ C(εθav,w + ∆θE,w + τ θinv +Rw(N,Na, τ)
)
,

where
• θav,s (resp. θav,w) is the strong (resp. weak) order of convergence in the averaging principe,
obtained in Theorem 2.1 (σ = 0) or 2.2 (σ > 0)
• θE,s (resp. θE,w) is the strong (resp. weak) order of convergence for the approximation of
the averaged equation (4.2) using the integrator (4.5)
• θinv is the order of convergence for the approximation of the invariant distribution µ by the
numerical invariant distribution µτ associated with the fast/fine integrator (one can take
θinv = 1

2 − κ for the problem considered here)
• the terms Rs(N,Na, τ) and Rw(N,Na, τ) quantify the convergence when N,Na →∞ of F̃n
to
∫
F (Xn, ·)dµτ .
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The proof of Theorem 2.3 consists in an appropriate decomposition of the error which leads to
the expressions in the right-hand sides of (4.7) and (4.8). Importantly, one combines result reported
in other sections of this manuscript, concerning the error in the averaging principe (see Section 4.1),
the strong and weak error estimates for the discretization of the averaged equation (4.2) (using
the results and techniques from Chapter 1 for the weak error, when σ 6= 0), and the error in the
approximation of the invariant distribution µ (using the results from Chapter 3). The detailed proof
requires to use again Kolmogorov and Poisson equation techniques to exhibit the expected strong
and weak convergence rates and to identify Rs(N,Na, τ) and Rw(N,Na, τ). Note that the analysis
of the error for the HMM scheme is the main motivation to exhibit orders of convergence in the
averaging principle as presented in Section 4.1.

According to the error estimates (4.7) and (4.8), the time-step sizes ∆t and τ can be chosen
independently of the time-scale separation parameter ε, they only need to be chosen in terms of the
desired accuracy. From Theorem 2.3, the complexity of the HMM scheme (4.6) can be analyzed, we
refer to [19] for details (in the case σ = 0). The resulting complexity is much smaller than a direct
approach.

The HMM approach presented in this section is versatile (see for instance the review arti-
cle [Abdulle et al., 2012]). Below in Section 5.3 we propose an alternative to HMM when G = 0.

This concludes the presentation of the HMM scheme for slow-fast SPDEs.
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CHAPTER 5

Asymptotic Preserving schemes for SDEs and SPDEs

The content of this chapter is based on the preprint [20], written in collaboration
with our PhD student Shmuel Rakotonirina-Ricquebourg.

In this chapter, we focus on slow-fast systems of Stochastic Differential Equations and Stochastic
Partial Differential Equations, and investigate the construction of Asymptotic Preserving (AP)
schemes. To explain this notion, let

(
Xε
t ,m

ε
t

)
t≥0

be the solution of a stochastic system, depending
on a time-scale separation parameter ε > 0. For the construction of AP schemes, a crucial structural
assumption is made:

(
mε
t

)
t≥0

is a one-dimensional Ornstein-Uhlenbeck process, which is the solution
of

dmε
t = −m

ε
t

ε2
dt+

1

ε
dβ(t).

More generally, coefficients of the SDE for mε
t may depend on the component Xε

t , however this is
not treated in this manuscript.

Assume that the process Xε converges in distribution to a process X0 when ε→ 0 (examples are
provided below). Let ∆t > 0 denote the time-step size, and consider a numerical approximation of
the type

(
Xε
n,m

ε
n

)
n≥0

. The scheme is asymptotic preserving if there exists a limiting discrete-time
process

(
X0
n

)
n≥0

such that the following diagram commutes when ∆t→ 0 and ε→ 0:

(5.1)

Xε
N

∆t→0−−−−→ Xε(T )yε→0

yε→0

X0
N

∆t→0−−−−→ X0(T )

where the final time T = N∆t is fixed. The main novelty of our work (compared with the extensive
literature on AP schemes) is to consider convergence in distribution in the diagram (5.1). Indeed, it
is the most natural notion of convergence associated with the asymptotic behavior of the SDE and
SPDE systems when ε→ 0. Another way to write the AP property is as follows: for any continuous
function ϕ : Td → R, one has

(5.2) lim
∆t→0

lim
ε→0

E[ϕ(Xε
N )] = E[ϕ(X0(T ))] = lim

ε→0
lim

∆t→0
E[ϕ(Xε

N )].

The convergence in distribution that is represented by the arrow on the right of the diagram (5.1)
does not depend on the numerical scheme. The arrow on the top means that for any fixed value
of ε → 0, the numerical scheme is consistent (in the sense of weak convergence) with the model.
The construction of an AP scheme requires to check the remaining two properties. First, one needs
to check the existence of a limiting scheme, such that the arrow on the left of (5.1) holds: as will
be explained below, for the models we consider, that property is satisfied for many examples of
schemes. Second, one needs to check that the limiting scheme is consistent (in the sense of weak
convergence) with the limiting equation, i.e. that the arrow at the bottom of (5.1) holds. The
second step is crucial and non-trivial. On the one hand, we show examples of schemes which fail to
be AP. On the other hand, we provide examples of AP schemes.
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In Section 5.1, we study three examples, which allow us to illustrate the difficulties of the
construction of AP schemes for SDEs, and to exhibit the role of the stochasticity in this problem
(for instance due to the interpretation of the noise in the limiting equation). In Section 5.2, we
state and discuss the proof of estimates for the weak error

(5.3) sup
ε∈(0,1]

∣∣E[ϕ(Xε
N )]− E[ϕ(Xε(T ))]

∣∣
when ∆t → 0, uniformly with respect to ε, for one of the examples. As expected, Kolmogorov
and Poisson equations are employed to prove the weak error estimates.

In Section 5.3, we present ideas for the construction of AP schemes for certain classes of SPDEs,
which will be studied more in details in future works.

The notion of Asymptotic Preserving schemes has been introduced in [Jin, 1999], for applica-
tions to multiscale kinetic PDEs where the limiting PDE is a diffusion equation. To the best of our
knowledge, our contribution [20] is the first one where the construction of AP schemes for SDE sys-
tems has been considered. A few authors have studied AP schemes for SPDEs: see [Marty, 2006,
Duboscq and Marty, 2016] for Schrödinger equations and [Ayi and Faou, 2019] for a class of
stochastic kinetic PDEs. The construction and analysis of [20] and the ideas mentioned in Sec-
tion 5.3 below go beyond those results. In our opinion, many interesting questions remain open
concerning AP schemes for SDEs and SPDEs, and will be studied in future works: for instance,
how to encompass general fast processes, instead of only Ornstein-Uhlenbeck type processes, is not
obvious.

5.1. Design of AP schemes for SDEs

The content of this section is based on the preprint [20].
Our objective is to illustrate some of the difficulties in the construction of AP schemes due to

stochasticity, and for pedagogical reasons we consider simplified models, namely the ones presented
in [20, Section 1], and we refer to [20, Section 3] for the more general versions.

In the sequel, the component Xε
t takes values in the one dimensional torus. The nonlinearities

are assumed to be periodic with respect to the x-variable and sufficiently regular.

5.1.1. Averaging regime. First, let us study the construction of an AP scheme for the fol-
lowing SDE system:

(5.4)


dXε

t = b(Xε
t ,m

ε
t)dt,

dmε
t = −m

ε
t

ε
dt+

√
2√
ε
dβt.

Owing to the averaging principle (see for instance [Pavliotis and Stuart, 2008, Chapter 10]), the
slow component Xε converges to a (deterministic) process X0 which is the solution of the ordinary
differential equation

Ẋ0 = b(X0),

where the averaged coefficient is defined by b(x) =
∫
b(x,m)dν(m) and ν = N (0, 1) is the standard

Gaussian distribution. The construction of an AP scheme requires to capture the averaged coefficient
in the limiting scheme.

An AP scheme for (5.4) is given by

(5.5)


Xε
n+1 = Xε

n + ∆tb(Xε
n,m

ε
n+1)

mε
n+1 = e−

∆t
ε mε

n +

√
1− e−

2∆t
ε γn,
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where
(
γn
)
n≥0

are independent random variables with distribution ν = N (0, 1). The associated
limiting scheme is

X0
n+1 = X0

n + ∆tb(X0
n, γn).

The reason why the averaged coefficient b is captured, is the following identity for the conditional
expectation: E[b(X0

n, γn)|X0
n] = b(X0

n). This identity is sufficient to establish the AP property in
the sense of convergence in distribution.

In the definition of the AP scheme (5.5), the component mε is discretized exactly in distribu-
tion: mε

n and mε(n∆t) are equal in distribution. As a consequence, the invariant distribution ν is
preserved by the numerical scheme. More generally, one may consider a discretization of the type

mε
n+1 = A(−∆t

ε
)mε

n + B(−∆t

ε
)

√
2∆t√
ε
γn.

The limiting scheme above is obtained when the following conditions are satisfied:

A(z) →
z→−∞

0, B(z) ∼
z→−∞

1√
−2z

.

Indeed, one obtains mε
n+1 → γn when ε→ 0 under these two conditions. The first condition means

the L-stability of the integrator – this excludes for instance a Crank-Nicolson method, even if it
preserves the invariant distribution ν. Once the first condition is satisfied, a sufficient (but not

necessary condition) for the second one to hold, is that B(z) =

√
1−A(z)2
√
−2z

for all z ∈ (−∞, 0]: in
that case the invariant distribution of the numerical scheme is ν.

Note that one cannot consider the standard version of the implicit Euler scheme with A(z) =
B(z) = 1

1−z , which gives the scheme

mε
n+1 =

1

1 + ∆t
ε

mε
n +

√
2∆t
ε

1 + ∆t
ε

γn.

Indeed, when ε → 0, with that scheme one would have mε
n+1 → 0, as a consequence the limiting

schemeX0
n+1 = X0

n+∆tb(X0
n, 0) would in general fail to capture the averaged coefficient b. Using the

implicit Euler scheme is not appropriate since the invariant distribution of the Ornstein-Uhlenbeck
process is the nondegenerate Gaussian distribution ν, and not a Dirac mass δ0 as in the case without
noise – this illustrates a role of stochasticity in the construction of AP schemes.

Error estimates for the AP scheme (5.5) are discussed in Section 5.2 below.

5.1.2. Diffusion-approximation regime. We now describe the construction of AP schemes
in a diffusion-approximation regime: the time-scale separation parameter ε appears also in the slow
component, in an appropriate scaling. Whereas the averaging regime above corresponds to a law
of large numbers effect, in the diffusion approximation regime the limiting equation is obtained by
a central limit theorem effect, thus it is a stochastic differential equation. In the literature, the
diffusion-approximation results described below are also referred to as homogenization, or Kramers-
Smoluchowski approximation results.

5.1.2.1. First model: Stratonovich interpretation. Let us consider the following system:

(5.6)


dXε

t =
σ(Xε

t )m
ε
t

ε
dt,

dmε
t = −m

ε
t

ε2
dt+

1

ε
dβt.

When ε→ 0, Xε converges in distribution to the solution X of the SDE

dX0
t = σ(X0

t ) ◦ dβt
81



where the noise is interpreted in the Stratonovich sense. See for instance [Pavliotis and Stuart, 2008,
Chapter 11].

An AP scheme for (5.6) is given by

(5.7)



mε
n+1 = mε

n −
∆t

ε2
mε
n+1 +

√
∆t

ε
γn,

Y ε
n+1 = Xε

n + σ(Xε
n)

∆tmε
n+1

ε
,

Xε
n+1 = Xε

n +
σ(Xε

n) + σ(Y ε
n+1)

2

∆tmε
n+1

ε
,

where a prediction-correction technique is used. The associated limiting scheme is given by Yn+1 = Xn +
√

∆tσ(Xn)γn,

Xn+1 = Xn +
√

∆t
σ(Xn) + σ(Yn+1)

2
γn,

and is obtained using the following identity: multiplying the equation for mε
n in (5.7) by ε,

∆tmε
n+1

ε
=
√

∆tγn − ε
(
mε
n+1 −mε

n

)
.

The limiting scheme above is consistent, in the weak sense, with the limiting equation (with
Stratonovich interpretation of the noise): it suffices to check that

E[ϕ(Xn+1)|Xn]− ϕ(Xn) = ∆tLϕ(Xn) + o(∆t),

where Lϕ = 1
2σ
′σϕ′ + 1

2σ
2ϕ′′ is the infinitesimal generator associated with the limiting equation.

Without the prediction-correction procedure in (5.7), the limiting scheme would be consistent
with an Itô interpretation of the noise: setting Xn+1 = Yn+1 would give the limiting scheme
Xn+1 = Xn +

√
∆tσ(Xn)γn, which is not consistent with the correct limiting equation, thus the

scheme would not be AP.
5.1.2.2. Second model: noise-induced drift term. Let us consider the following model.

(5.8)


dXε

t =
mε
t

ε
dt,

dmε
t = f(Xε

t )
(
−m

ε
t

ε2
dt+

g(Xε
t )

ε
dt+

h(Xε
t )

ε
dβt

)
,

Compared with (5.6), the most important feature is the presence of a non constant function f ,
which is assumed to be positive: min f > 0. This model has been studied for instance in our
contribution [21], written in collaboration with Guillaume Laibe and Maxime Lombart,
for application in astrophysics.

Using asymptotic expansions techniques for solutions of Kolmogorov equations, one identifies
that the limiting equation for X0 = lim

ε→0
Xε contains a drift component referred to as the noise-

induced drift term (when f is not constant): the limiting equation is

dXt = g(X0
t )dt− h(X0

t )2f ′(X0
t )

2f(X0
t )

dt+ h(X0
t )dWt.

To construct an AP scheme, the challenge is to capture the noise-induced drift term, and like for
the AP scheme (5.7) an effective recipe is to use a prediction-correction technique: an AP scheme
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for (5.8) is given by

(5.9)



m̂ε
n+1 = mε

n −
∆tf(Xε

n)

ε2
m̂ε
n+1 +

∆tf(Xε
n)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

X̂ε
n+1 = Xn +

∆tm̂ε
n+1

ε

mε
n+1 = mε

n −
∆tf(X̂ε

n+1)

ε2
mε
n+1 +

∆tf(X̂ε
n+1)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

Xε
n+1 = Xε

n +
∆t

ε

m̂ε
n+1 +mε

n+1

2

The associated limiting scheme is given by
X̂n+1 = Xn + ∆tg(Xn) + h(Xn)

√
∆tγn,

Xn+1 = Xn + ∆tg(Xn) +
1 + f(Xn)

f(X̂n+1)

2
h(Xn)

√
∆tγn.

This limiting scheme is consistent in the weak sense with the limiting equation (which contains the
noise-induced drift term): again it suffices to check that

E[ϕ(Xn+1)|Xn]− ϕ(Xn) = ∆tLϕ(Xn) + o(∆t),

where L is the appropriate infinitesimal generator.
Without the prediction-correction procedure in (5.9), the limiting scheme would fail to capture

the noise-induced drift term: setting Xn+1 = X̂n+1 would give the limiting scheme Xn+1 = Xn +
∆tg(Xn)+h(Xn)

√
∆tγn, which is not consistent with the correct limiting equation, thus the scheme

would not be AP.
This concludes the presentation of AP schemes in the averaging and diffusion approximation

regimes. The counter examples illustrate the care which is required due to the stochasticity.

5.2. Error estimates in the averaging regime

In Section 5.1 above, we have exhibited examples and counter-examples of AP schemes for SDE
systems. The next step in the analysis of such numerical schemes is to investigate whether a type of
Uniform Accuracy property is satisfied: can we prove that the error (5.3) vanishes when ∆t→ 0,
uniformly with respect to ε ∈ (0, 1]? and what is the associated order of convergence?

If a scheme is not AP, such uniform error estimates cannot hold, and one can only prove error
estimates of the type ∣∣E[ϕ(Xε

N )]− E[ϕ(Xε(T ))]
∣∣ ≤ C(ε)∆t,

where C(ε) →
ε→0
∞. This means that the time-step size required to reach a given precision depends

on ε and goes to 0 when ε→ 0.
We have been able to prove (see [20, Theorem 3.8]) the following error estimate, in the averaging

regime, which proves that a Uniform Accuracy property holds. The diffusion approximation case
will be investigated in future works.

Theorem 2.4. Let
(
Xε
t

)
t≥0

be the solution of the SDE system (5.4), and
(
Xε
n

)
n≥0

be defined
by the numerical scheme (5.5), with time-step size ∆t.

For any T ∈ (0,∞) and ϕ : T → R of class C4, there exists C(T, ϕ) ∈ (0,∞) such that for all
∆t ∈ (0, 1], one has

(5.10) sup
ε∈(0,1]

∣∣E[ϕ(Xε
N )]− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)
√

∆t.
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As a consequence of the uniform error estimate (5.10), the time-step size required to reach a
given precision may be chosen independently of ε. It is not known whether the order of convergence
1
2 in (5.10) is optimal, indeed, for all ε ∈ [0, 1] (including the limit case ε = 0) the scheme is of weak
order 1.

Let us sketch the proof of Theorem 2.4: it suffices to combine the following four error estimates∣∣E[ϕ(Xε
N )]− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)
∆t

ε
(5.11) ∣∣E[ϕ(X0(T ))]− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)ε(5.12) ∣∣E[ϕ(X0
N )]− E[ϕ(X0(T ))]

∣∣ ≤ C(T, ϕ)∆t(5.13) ∣∣E[ϕ(Xε
N )]− E[ϕ(X0

N )]
∣∣ ≤ C(T, ϕ) max(∆t, ε),(5.14)

which correspond to the four arrows in the commutative diagram (5.1) which illustrates the AP
property. Decomposing the error in two different ways, one obtains∣∣E[ϕ(Xε

N )]− E[ϕ(Xε(T ))]
∣∣ ≤ C(T, ϕ) min

(∆t

ε
,∆t+ ε

)
≤ C(T, ϕ)

√
∆t,

where the last inequality follows by considering the two cases ε ≤
√

∆t and
√

∆t < ε. In the
argument, a reduction of the order of convergence from 1 to 1

2 is obtained, however this may not be
optimal.

It remains to explain how the four error estimates are proved. On the one hand, the first and
second ones are standard weak error estimates. First, the estimate (5.11) is a weak error estimate
for the numerical scheme (5.5) at fixed ε > 0, and is proved using a usual decomposition of the error
using the solution of the Kolmogorov equation for the system (5.4). The error converges at order 1
in terms of ∆t

ε which appears in the definition of mε
n. Second, the estimate (5.12) is the weak error

in the averaging principle. It can be proved using asymptotic expansions for the difference uε−u0 of
the solutions uε and u0 of Kolmogorov equations associated with the dynamics for ε > 0 and ε = 0
respectively, however see [20, Proof of Lemma 5.2] for an argument (in the spirit of the argument
of Section 4.1 in the case σ > 0 from [18]), which employs u0 and the solution of a Poisson equation
and which is more suitable for generalization in the discrete-time setting.

The error estimate (5.13) is fundamental since it states the consistency (in the weak sense) of
the limiting scheme with the limiting equation. Its proof differs from the standard proof of weak
error estimates for the Euler-Maruyama scheme, and the main new and crucial argument is the
equality E[b(X0

n, γn)|Xn] = b(Xn), which has already mentioned above to justify the AP property.
Our most challenging task has been to prove the fourth error estimate (5.14), which quantifies the

speed of convergence to the limiting scheme when ε→ 0, for fixed ∆t > 0. Note that the error error
estimate may not be optimal: we conjecture that it holds with max(∆t, ε) (which does not vanish
when ε→ 0) replaced by ε. For the complete proof of (5.14), see [21, Proof of Lemma 5.4]. The idea
is to adapt the proof of the estimate (5.12) concerning the error in the averaging principle, to the
discrete-time case, and one uses properties of the solution to a Poisson equation associated with a
discrete-time process. Note also that we are able to prove variants of the three error estimates (5.11)–
(5.12)–(5.13) also in the diffusion approximation case, however so far we have not been able to obtain
a variant of (5.14) in this case.

The numerical illustration of the error estimates (5.10) and (5.11)–(5.12)–(5.13)–(5.14) is a work
in progress, in collaboration with Benoît Fabrèges.

In future works, we may also study similar error estimates by theoretical analysis and numer-
ical experiments for the AP schemes (5.7) and (5.9) (or the more general version in [20] which
encompasses these two schemes) in the diffusion approximation regime.
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5.3. Description of AP schemes for SPDEs

The objective of this section is to present works in progress concerning the generalization of
the AP schemes presented in Section 5.1 for some examples of SPDEs. We only propose examples
of schemes and omit the theoretical arguments which would be necessary to rigorously justify the
well-posedness and convergence properties, and numerical experiments.

5.3.1. AP schemes for a class of linear kinetic SPDEs. The content of this section is
based on a joint work in progress with Hélène Hivert and Shmuel Rakotonirina-Ricquebourg. We
are interested in linear kinetic SPDEs in a diffusion approximation regime

∂tf
ε +

v

ε
· ∇xf ε =

1

ε2
Lf ε +

1

ε
mε
tf
ε

dmε
t = − 1

ε2
mε
tdt+

1

ε
dWQ(t),

where the function f ε depends on time t ≥ 0, position x ∈ Td and velocity v ∈ Rd. Let ρε(t, x) =∫
f ε(t, x, v)dv. The linear operator L is defined by Lf ε = ρεM−f ε, where one defines the Maxwellian

M(v) =
(
2π
)− d

2 exp(− |v|
2

2 ). The noise
(
WQ(t)

)
t≥0

is a L2(Td)-valued Q-Wiener process, thus(
mε
t

)
t≥0

is an Ornstein-Uhlenbeck process.
A diffusion approximation result in both the PDE and the probability senses holds when ε→ 0,

see [Debussche and Vovelle, 2012] (and references therein for the deterministic case mε = 0)
and the recent preprint [Rakotonirina-Ricquebourg, 2020] (for slightly different models): ρε
converges (in an appropriate sense) to the solution of the linear stochastic diffusion equation

dρ = ∆ρdt+ ρ ◦ dWQ(t),

where (as in Section 5.1) the noise is interpreted in the Stratonovich sense.
Our idea to define AP schemes is to employ a splitting strategy. On the one hand, AP

schemes for the deterministic part

∂tf
ε +

v

ε
· ∇xf ε =

1

ε2
Lf ε,

have been studied extensively, starting from the seminal article [Jin, 1999]. The limiting equation
for the deterministic part is the linear diffusion equation

∂tρ = ∆ρ.

To simplify the presentation, we do not choose a particular AP scheme for the deterministic part.
On the other hand, for the stochastic part

∂tf
ε =

1

ε
mε
tf
ε

dmε
t = − 1

ε2
mε
tdt+

1

ε
dWQ(t),

one may adapt the scheme (5.7). Alternatively, for this simple linear problem, one may use the fact
that the exact solution is given by

f ε(tn+1) = f ε(tn) exp
(1

ε

∫ tn+1

tn

mε
tdt
)
.
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That expression suggests to define the scheme for the stochastic part
f εn+1 = f εn exp

(∆t

ε
mε
n+1

)
mε
n+1 = mε

n −
∆t

ε2
mε
n+1 +

1

ε
∆WQ

n ,

This scheme is AP for the stochatic part: the limiting scheme is given by

f0
n+1 = f0

n exp
(
∆WQ

n

)
,

which corresponds to the linear stochastic evolution equation

df = f ◦ dWQ(t)

with the Stratonovich interpretation of the noise.
It remains to combine an AP scheme for the deterministic part, and the AP scheme above for

the stochastic part, to get an AP scheme for the kinetic stochastic problem. The splitting approach
may be used to propose an alternative AP scheme for the model

df ε +
v

ε
· ∇xf εdt =

1

ε2
Lf εdt+ f ε ◦ dWQ(t)

considered in [Ayi and Faou, 2019], where the diffusion approximation is understood only in the
sense of PDEs.

Note that one the strategy sketched above may also be considered for stochastically forced
kinetic PDEs 

∂tf
ε +

v

ε
· ∇xf ε +

1

ε2
mε
t · ∇vf ε =

1

ε2
Lf ε

dmε
t = − 1

ε2
mε
tdt+

1

ε
dWQ(t),

treated in [Debussche and Vovelle, 2021]. Finally, one may also study problems where a diffusion-
approximation result holds in the PDE sense, whereas an averaging result holds for the stochastic
part.

The theoretical and numerical validation, and the study of the role of the AP scheme chosen for
the deterministic part, are works in progress which will be detailed in future works.

5.3.2. AP schemes for parabolic SPDE systems. The AP schemes proposed in Section 5.1
above for SDE systems may be generalized to parabolic semilinear SPDE systems of the following
type. Theoretical analysis of the schemes proposed below and numerical experiments are works in
progress.

5.3.2.1. Averaging regime. In the averaging regime, we consider the slow-fast system (similar
to (4.1) from Chapter 4, with G = 0 and σ = 0)

(5.15)


dXε(t) = AXε(t)dt+ F (Xε(t), Y ε(t))dt

dY ε(t) =
1

ε
BY ε(t) +

1√
ε
dW (t),

where
(
W (t)

)
t≥0

is a cylindrical Wiener process, B = A (for simplicity), and F is a globally Lipschitz
nonlinearity. The limiting equation obtained by the averaging principle (see Chapter 4) is

dX0(t) = AX0(t)dt+ F (X0(t))dt,

where F (x) = Eµ[F (x, Y )] with µ = N (0, 1
2(−B)−1), which is the invariant Gaussian distribution

for the fast component.
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Compared with the scheme (5.5), one needs to treat the linear operator A implicitly, or using
an exponential Euler scheme: the scheme for the slow component is of the type

Xε
n+1 = S∆t

(
Xε
n + ∆tF (Xε

n, Y
ε
n+1)

)
.

The scheme for the fast component needs to be chosen carefully, in order to obtain a limiting scheme
when ε→ 0 which captures the averaged coefficient. The standard linear implicit Euler scheme

Y ε
n+1 =

(
I − ∆t

ε
B
)−1
(
Y ε
n +

√
∆t√
ε
γn

)
,

with γn = W (tn+1)−W (tn)√
∆t

, is not appropriate, as explained in Section 5.1, since the limiting scheme

would be of the type X0
n = S∆t

(
X0
n + ∆tF (X0

n, 0)
)
and would not capture the averaged coefficient.

We propose the following AP scheme:

(5.16)


Xε
n+1 = S∆t

(
Xε
n + ∆tF (Xε

n, Y
ε
n+1)

)
Y ε
n+1 =

(
I − ∆t

ε
B
)−1

Y ε
n +

√
∆t√
ε

(
I − 2

∆t

ε
B
)− 1

2γn.

The AP property is satisfied for the scheme (5.16): indeed one obtains the following limiting
scheme

Xn+1 = S∆t

(
Xn + ∆tF

(
Xn,

1√
2

(−B)−
1
2γn
))
,

which is consistent (in a weak sense) with the limiting equation when ∆t→ 0, owing the identity

E
[
F
(
Xn,

1√
2

(−B)−
1
2γn
)
|Xn

]
= F (Xn).

Other variants may be defined: let us for instance mention the scheme
Xε
n+1 = S∆t

(
Xε
n + ∆tF

(
Xε
n, Y

ε
n+1 +

1

2
(I − ∆t

2ε
B)−

1
2

√
∆t√
ε
γn
))

Y ε
n+1 =

(
I − ∆t

ε
B
)−1
(
Y ε
n +

√
∆t√
ε
γn

)
,

which employs the postprocessing technique presented in Section 3.2.1 and studied in the contribu-
tion [12]. The limiting scheme for this variant is the same as for (5.16), thus the scheme satisfies
the AP property. Note that operators (I − 2∆t

ε B)−
1
2 and (I − ∆t

2εB)−
1
2 , which require to compute

a square root, appear in the two AP schemes. On the one hand, the role of the square root is
fundamental – it ensures the convergence to a non-trivial limit for Y ε

n+1 when ε → 0 – and its
apparition is not surprising – as explained in Section 3.2.1, this is a way to fix the spatial regularity
of the numerical solution. On the other hand, in practice it is not required to compute the square
root, indeed a Cholesky decomposition is sufficient.

Note that if the cylindrical Wiener process is replaced with a Q-Wiener process in (5.15),
the construction above gives an AP scheme only when the covariance operator Q commutes with
B. Indeed, if B and Q do not commute, the covariance of the invariant distribution µ is more
complicated and depends on the unknown solution to a Lyapunov equation which is not captured
in the scheme (5.16). The construction of an AP scheme when the covariance Q of the noise does
not commute with the linear operator B remains a completely open question.

The construction of the AP scheme (5.16) is specific to the case where the fast component
Y ε is an Ornstein-Uhlenbeck process, i.e. one has G = 0 in (4.1) (Chapter 4). Let us give a
comparison with the HMM scheme presented in Section 4.2. On the one hand, for positive fixed
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ε the AP scheme (5.16) provides a consistent approximation of the fast component, whereas the
HMM scheme 4.6 only provides an approximation for the slow component. On the other hand, the
HMM scheme can be applied even if G 6= 0, which is a major advantage (as long as AP schemes in
the case G 6= 0 are not known).

5.3.2.2. Diffusion-approximation regime. Let us now consider the simplest version of a parabolic
semilinear SPDE system in the diffusion-approximation regime

(5.17)


dXε(t) =

1

ε
Y ε(t)dt

dY ε(t) = − 1

ε2
Y ε(t)dt+

1

ε

(
AXε(t) + F (Xε(t))

)
dt+

σ(Xε(t))

ε
dW (t).

The limiting equation for this problem

dX(t) = AX(t)dt+ F (X(t))dt+ σ(X(t))dW (t),

see for instance [Cerrai et al., 2017] where the diffusion approximation result is referred to as
the Smoluchowski-Kramers limit. Similarly to the averaging regime, the scheme (5.7) needs to be
adapted for SPDEs, in order to treat the linear operator A in an implicit way – in particular in the
limiting scheme. We propose the following scheme

(5.18)


Xε
n+1 = Xε

n +
∆t

ε
Y ε
n+1

Y ε
n+1 = Y ε

n −
∆t

ε2
Y ε
n+1 +

∆t

ε

(
AXε

n+1 + F (Xε
n)
)

+ σ(Xε
n)

√
∆t

ε
γn.

Formally, the limiting scheme is

Xn+1 = S∆t

(
Xn + ∆F (Xn) +

√
∆tσ(Xn)γn

)
with S∆t = (I −∆tA)−1, which is the standard linear implicit Euler scheme applied to the limiting
equation. The argument is formal, since it is required to prove appropriate moment bounds, in
well-chosen norms, to justify the convergence.

This concludes the description of possible generalizations of the AP schemes from [20] to some
systems of SPDE systems. Theoretical analysis and numerical experiments are works in progress.
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Preliminaries

Reliable and fast simulation of extreme events is critical in many academic, industrial and
societal contexts, and the design and analysis of new algorithms is still an active area in applied
mathematics. To set the problem, let X be a random variable, with values in a state space S and
let p = P(X ∈ A) be the probability of the event A ⊂ S. The crude Monte-Carlo method yields the
estimator (ensemble average)

p̂cMC
M =

1

M

M∑
m=1

1Xm∈A,

where
(
Xm

)
m≥1

are independent and identically distributed realizations of the distribution of X.
Then p̂cMC

M is an unbiased estimator of p: E[p̂cMC
M ] = p, for all M ≥ 1. In addition, the mean-square

error satisfies
E[|p̂cMC

M − p|2] =
p(1− p)
M

.

In the rare event regime, p is small and it is more appropriate to consider the relative error√
E[|p̂cMC

M − p|2]

p
=

√
1− p√
pM

.

Given an error size ε > 0, M ≈ M cMC
ε,p = ε−2p−1 independent realizations are required to ensure

that the relative error is less than ε. On the one hand, the dependence in terms of ε−2 is standard
in Monte-Carlo computations. On the other hand, the requirement that M increases like p−1 when
p goes to 0 is prohibitive in practice. Using variance reduction techniques, rare event algorithms
require M � M cMC

ε,p independent realizations in the regime p � 1. The most popular variance
reduction techniques are importance sampling and splitting strategies.

In this part of the manuscript, it is convenient to have in mind the example of metastable
Markov processes (even if some of the results in Chapter 6 below hold in greater generality). First,
in Chapter 6, a splitting strategy is studied. Its main motivation is to sample rare transitions
between metastable states for Markov processes. Second, in Chapter 7, an importance sampling
strategy is studied, to estimate averages of the type

∫
ϕdµ, where µ is the invariant distribution of

an ergodic metastable Markov process.
Even if Chapters 6 and 7 are essentially independent, let us mention some common features.
• Long-time simulation of (high-dimensional) Markov processes is required.
• Mappings referred to as reaction coordinates or score functions are employed in order
to reduce the dimensionality. In practice, they are assumed to be representative of the
metastable behavior of the processes.
• We will be mostly interested in proving consistency results: unbiasedness in Chapter 6
and almost sure convergence in the large time regime in Chapter 7. The rigorous analysis
of the efficiency is not treated in this manuscript, it is often illustrated by numerical
experiments (which are omitted).
• We will study adaptive algorithms, thus careful and non-trivial analysis will be required.
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CHAPTER 6

Analysis of the Adaptive Multilevel Splitting algorithm

In this chapter, we present a series of contributions to the analysis of a rare event algorithm
based on selection-mutation of a system of interacting replicas. The Adaptive Multilevel Splitting
algorithm has been introduced in [Cérou and Guyader, 2007]. In Section 6.1, we first recall
the principles of the multilevel splitting strategy, as introduced in [Kahn and Harris, 1951]. We
refer to the recent review article [Cérou et al., 2019b] for a presentation of the algorithm, com-
parison to related methods in the literature, see for instance [Del Moral and Garnier, 2005,
Gobet and Liu, 2015, Villén-Altamirano and Villén-Altamirano, 1991], and further refer-
ences.

In Section 6.2, we study the so-called idealized version of the AMS algorithm: the content is
based on the series of contributions [22, 23, 24] (see also the proceeding article [25, Section 3]).
The results of these contributions are stated in Theorem 2.6. In Section 6.3, we present a generalized
version of the AMS algorithm which can be applied in a great variety of contexts (in contrast to
the idealized version). The content is based on the contribution [26], and the main result is that
one defines an unbiased estimator of the probability of interest (see Theorem 2.8). See also [27]
for a variant of the algorithm which fits in the Generalized AMS framework introduced in [26].
Finally, applications of the AMS algorithm are discussed in Section 6.4, in particular based on the
contributions [28] (metastable transitions of solutions of the stochastic Allen-Cahn equation), [29]
(computation of return times and applications in physics) and [30] (estimation of transition times
between metastable states in biology). Note that a substantial part of our work on this subject is
to perform numerical experiments: however we do not report them here, instead we refer to the
associated publications.

6.1. Description of (Adaptive) Multilevel Splitting

The idea of the splitting algorithms is to decompose the probability p = P(X ∈ A) as a product
p =

∏N
n=1 pn of conditional probabilities pn = P(X ∈ An | X ∈ An−1), where

A = AN =⊂ . . . ⊂ A1 ⊂ A0 = S

is a nested sequence of events. If the events are of the type An = L−1
(
[zn,∞)

)
with z0 ≤ . . . ≤ zN

and L : S → R a measurable real-valued mapping, this strategy is referred to as multilevel splitting
(and the parameters zn are referred to as levels).

The choice of the intermediate events An is crucial for the efficiency of the approach: the
guideline is to choose the An’s such that pn are much larger than the small probability p, and
thus much easier to estimate, for instance by a crude Monte-Carlo method. More precisely, let(
p̂n
)
n=1,...,N

be independent estimators of pn, obtained by the crude Monte-Carlo method, averaging
over M independent realizations. Then p̂ is an unbiased estimator of p (one has E[p̂] = p) and its
variance satisfies

ME[|p̂− p|2] →
M→∞

Np2
(
−1 +

1

N

N∑
n=1

1

pn

)
= VN (p1, . . . , pN ).
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The asymptotic variance VN (p1, . . . , pN ) is minimized (under the constraint p1 . . . pN = p) when
one has p1 = . . . = pN = p

1
N . More precisely, when N →∞, one has

inf
N≥1

min
p1,...,pn∈[p,1],

∏N
n=1 pn=p

VN (p1, . . . , pN ) = inf
N≥1

VN (p
1
N , . . . , p

1
N )

= lim
N→∞

Np2
(
p−

1
N − 1

)
= −p2 log(p) = V?(p).

Note that the optimal asymptotic variance V?(p) is much smaller than the variance p(1 − p) for
the crude Monte Carlo method, when p is small. In addition, the relative asymptotic variance
p−2V?(p) = − log(p) goes more slowly to infinity when p → 0. Unfortunately, in practice, it is not
possible in general to choose the intermediate sets AN−1 ⊂ . . . ⊂ A1 or the levels z1, . . . , zN−1, such
that the condition p1 = . . . = pN is satisfied. The guideline of the Adaptive Multilevel Splitting
(AMS) algorithm, as introduced in [Cérou and Guyader, 2007], is to change the perspective:
instead of fixing the levels and estimating probabilities, quantiles are fixed and the associated levels
are estimated, using order statistics of a system of interacting replicas. In the sequel, we shall present
two versions of the AMS algorithm. First, in the idealized version, we prove that the estimator of
the probability is unbiased, and we prove that the asymptotic variance (when the number of replicas
goes to infinity) is of size V?(p), as in the optimal fixed level splitting algorithm. Second, in the
general case (which is the one wich is used in practice), we prove that the unbiasedness of the
estimator of the probability is satisfied.

6.2. Analysis in the idealized case

The content of this section is based on the contributions [22, 23, 24, 25], written
with several collaborators.

6.2.1. Setting and algorithm. In this section, we describe the AMS algorithm in the so-called
idealized setting. Precisely, we assume that the following conditions are satisfied:

• the objective is to estimate the probability p = P(X ≥ a), where X is a real-valued random
variable and a is a threshold,
• the cumulative distribution F : R→ [0, 1] of X is continuous, and F (0) = 0,
• for any z ∈ [0, a], the conditional distribution L(X|X ≥ z) is simulatable.

The conditions are restrictive: one needs to consider real-valued random variables or processes,
discrete-valued random variables are excluded, and in practice the third condition is seldom verified.
Still, the study of the AMS algorithm in the idealized case has been challenging and provides useful
information. The conditions above are satisfied for instance if X is exponentially distributed: that
example is of no practical use, however it is of theoretical importance below.

The definition of the AMS algorithm requires to introduce two parameters: let nrep ≥ 2 be the
number of interating replicas, and k ∈ {1, . . . , nrep − 1} be the number of replicas computed to
estimate the levels. The AMS algorithm in the idealized case is written as follows.

Algorithm 2.5 (Adaptive Multilevel Splitting–Idealized case).
Initialization step (q = 0): Sample nrep i.i.d. replicas X(1,0), . . . , X(nrep,0), with the distribution
L(X).

Let σ(0) be the (a.s. unique) permutation such that X(σ(0)(1),0) < . . . < X(σ(0)(nrep),0), and set
Z(0) = X(σ(0)(k,0) (k-th order statistics).
Iterations (on q ≥ 0): While Z(q) < a:
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Conditionally on Z(q), sample k new independent random variables (χ(1,q), . . . , χ(k,q)), according
to the conditional distribution L(X|X > Z(q)).

For all ` ∈ {1, . . . , nrep}, set

(6.1) X(`,q+1) =

{
χ(σ(q))−1(`),q) if (σ(q))−1(`) ≤ k
X(`,q) if (σ(q))−1(`) > k.

Let σ(q+1) be the (a.s. unique) permutation such that X(σ(q+1)(1),q+1) < . . . < X(σ(q+1)(nrep),q+1),
and set Z(q+1) = X(σ(q+1)(k,q+1) (k-th order statistics).

Finally increment q ← q + 1.
End of the algorithm: Set Jnrep,k = q (number of iterations).

The estimator of the probability p is defined by

(6.2) p̂nrep,k = Cnrep,k

(
1− k

nrep

)Jnrep,k

,

with

(6.3) Cnrep,k =
1

nrep
Card

{
i; XJnrep,k

i ≥ a
}
.

At each iteration, a selection-mutation mechanism is applied: each replica has the score X(n,q),
the k replicas with a score below Z(q) are resampled (using the conditional distribution) whereas the
remaining nrep−k replicas are left unchanged. By this procedure the replicasX(1,q+1), . . . , X(nrep,q+1)

have a score larger than Z(q). At the end of each iteration, a new level is computed Z(q+1), using
k-th order statistics (which are well-defined, owing to the assumption that the cumulative distri-
bution F is continuous): by definition, the proportion of the replicas having a score below the new
level Z(q+1) is equal to k/nrep. Thus a proportion 1− k/nrep is selected at each iteration, that pro-
portion is intepreted as related to the values of intermediate probabilities in the fixed level splitting
algorithm.

When the algorithm stops, one has ZJn,k+1 ≥ a, i.e. at least nrep − k of the replicas have the
score larger than a: the quantity Cnrep,k is the proportion of the replicas which have score larger
than a. Note that Cnrep,1 = 1.

6.2.2. Analysis of the algorithm. We are now in position to state the main results of the
contributions [22] (in collaboration with Tony Lelièvre and Mathias Rousset), [23] (in collaboration
with Ludovic Goudenège and Loïc Tudela) and [24]. Results concerning the AMS algorithm in the
idealized case are also discussed in the proceeding paper [25].

Theorem 2.6. The following proporties are satisfied for the AMS algorithm in the idealized
case 2.5.

• Unbiasedness: for all nrep ≥ 2 and k ∈ {1, . . . , nrep}, one has

(6.4) E[p̂nrep,k] = p.

• Asymptotic variance: for any fixed k ≥ 1, one has

(6.5) nrepE[|p̂nrep,k − p|2] →
nrep→∞

−p2 log(p).

• Central Limit Theorem: for any fixed k ≥ 1, one has
√
nrep

(
p̂nrep,k − p

)
→

nrep→∞
N
(
0,−p2 log(p)

)
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• Large Deviations Principle: for any fixed k ≥ 1, when nrep → ∞, a large deviations
principle with rate function defined by

I(y) =

{
+∞ if y /∈ (0, 1)

log(y) log( log(p)
log(y)) + log(yp ) if y ∈ (0, 1),

is satisfied.

Interestingly, the asymptotic variance in (6.5) (which also appears in the Central Limit Theorem)
is equal to the optimal asymptotic variance V?(p) obtained for the non-adaptive version of the
splitting algorithm (when the levels z1, . . . , zN are fixed such that p1 = . . . = pN and N →∞). The
adaptive version is close to the optimal non-adaptive version, interpreting that pj = 1− k/nrep.

In [22], we have been able to go further in the analysis: one can also prove that the asymptotic
cost of the algorithm (defined as the product of the asymptotic variance and of the expected value
of the number of iterations) is minimized when k = 1.

The most important result (which will be generalized below for practical versions of the AMS
algorithm) is the unbiasedness property. Note that this is not an asymptotic property: the equal-
ity (6.4) is valid for any values of the parameters nrep and k.

When k = 1, the unbiasedness property (6.4) and the behavior of the asymptotic variance (6.5)
have been proved earlier in [Guyader et al., 2011]. Our main contribution is the study of the
case k ≥ 2. The asymptotic variance of the AMS algorithm has also been studied in the different
regime k, nrep →∞ with fixed ratio k/nrep in [Cérou and Guyader, 2007].

Let us present the key arguments of the proof of Theorem 2.6. First, the assumption that
the cumulative distribution F is continuous is used to perform a change of variables: it is a well-
known property that F (X) is uniformly distributed on (0, 1), thus − log(1−F (X)) is exponentially
distributed, with parameter 1. We refer to [22, Section 3] for a rigorous proof that for the analysis
of the algorithm in the idealized case one can assume that X is exponentially distributed.

In the exponential case, the case k = 1 can be analyzed by elementary arguments (as observed
in [Guyader et al., 2011]): the minimum of nrep independent exponentially distributed random
variables (with parameter 1) is exponentially distributed with parameter nrep. Using the absence
of memory property of the exponential distribution, one then checks that the number of iterations
Jnrep,1 follows a Poisson distribution with parameter nrepa = −nrep log(p) (in the exponential case
p = exp(−a)). Proving (6.4) (recall that Cnrep,1 = 1) and (6.5) then follows from straightforward
computations; the Central Limit Theorem and Large Deviations Principle can be obtained first for
log(p̂nrep,1) from results on the Poisson distribution, second for p̂nrep,1 by a transfer argument.

The analysis in the case k ≥ 2 (in the exponential case) requires other arguments. The funda-
mental idea is to observe that a kind of Markov property is satisfied: at each iteration, the situation
is the same as if the algorithm was initialized with replicas sampled with the conditional distribu-
tion L(X|X > Zj−1). The Markov property leads to consider the technique of first-step analysis
to obtain functional equations, with an auxiliary variable x which denotes the initial condition.
Let Jnrep,k(x), p̂nrep,k(x) and Cnrep,k(x) be defined by Algorithm 2.5 where the initial condition is
Z0 = x instead of Z0 = 0 (and X(1,0), . . . , X(nrep,0) are sampled following the conditional distribu-
tion L(X|X ≥ x)). Considering that either Z1 ≥ a (and the algorithm stops) or Z1 < a (and the
algorithm continues starting from Z1), one for instance obtains that x 7→ E[p̂nrep,k(x)] is the unique
solution of the functional equation of the type

q(x) =

∫ a

x

(
1− k

n

)
q(y)fn,k(y;x)dy + θn,kp (x),

for all x ∈ [0, a], with the terminal condition q(a) = 1, where fn,k(·;x) is the density of the k-th
order statistics associated with the conditional distribution L(X|X ≥ x), see [22, Section 4.1] for
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the derivation. It remains to check that x ∈ [0, a] 7→ P(X ≥ a|X ≥ x) is a solution of the functional
equation, using combinatorial elementary arguments. By uniqueness, and setting x = 0, one obtains
the equality E[p̂nrem,k(0)] = P(X ≥ a), i.e. the unbiasedness property (6.4).

To study the behavior of the asymptotic behavior of the variance, one first writes a functional
equation for x ∈ [0, a] 7→ E[p̂nrep,k(x)2]. Second, one transforms the functional equation into a
linear ordinary differential equation of order k, with constant coefficients, with a terminal condition
for x = a, see [22, Proposition 6.4] (for that step, assuming that the distribution is exponential
is crucial). The asymptotic analysis of the solution of the obtained differential equation when
nrep →∞ (which uses elementary but technical computations) then provides the result (6.5) when
x = 0.

To prove the Central Limit Theorem and the Large Deviations Principle in Theorem 2.6, the
strategy is similar: first, one obtains functional equations for x ∈ [0, a] 7→ E[exp

(
z log(p̂nrep,k(x))

)
],

for all z ∈ C (with z ∈ iR for the Central Limit Theorem and z ∈ R for the Large Deviations Prin-
ciple). Considering log(p̂nrep,k(x)) instead of p̂nrep,k(x) is fundamental: this allows us to transform
again the functional equations into linear ordinary differential equation of order k, with constant
coefficients. Using similar arguments as for the proof of (6.5) for the asymptotic variance, one
obtains asymptotic results for the characteristic function and the moment generating function. One
then concludes first using Lévy and Gartner-Ellis theorems to get the results for log(p̂nrep,k), second
using the δ-method and the contraction principle to obtain them for p̂nrep,k.

This concludes the sketch of proof of Theorem 2.6 concerning the properties of the AMS al-
gorithm in the idealized case. As explained above, practical problems fall out of the scope of the
idealized setting. The objective of the following section is to provide a generalized simulatable algo-
rithm, and to check that the unbiasedness property remains satisfied. Note that the unbiasedness
property (6.4) in the idealized case holds for any value of k (in particular for k ≥ 2, one of our new
results in [22]) is important for the generalized version, where the value of the number of resampled
replicas needs also to be adaptive.

6.3. The Generalized AMS algorithm

The content of this section is based on the contribution [26] written in collaboration
with Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre and Mathias Rousset. We
also mention the contribution [27] written in collaboration with Tony Lelièvre.

6.3.1. Setting and algorithm. In this section, we go beyond the idealized setting of Sec-
tion 6.2, and discuss the construction, the properties and the practical application of an AMS
algorithm which overcomes the restrictions of the idealized algorithm above.

Let us first state the problem of interest: the objective is to estimate a rare event probability
of the type

p = P
(
τB < τA

)
,

where
(
Xn

)
n≥0

is a Markov chain on a state space S (with a fixed initial condition x0) and τA, τB
are the hitting times of two disjoint measurable sets A,B ∈ S, assumed to be almost surely finite:

τA = inf{n ≥ 0;Xn ∈ A}, τB = inf{n ≥ 0;Xn ∈ B}.
The Markov chain may be obtained by temporal discretization of a SDE, for instance using the
Euler-Maruyama scheme associated with the overdamped Langevin dynamics on S = Rd

dXt = −∇V (Xt)dt+
√

2β−1dBt,

with inverse temperature β > 0. We are interested in the following situation where the event
τB < τA is rare: let A and B be open balls centered on two local minima of the potential energy
function V , then if the initial condition X0 is close to A, the event τB < τA is rare when β → ∞,
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as quantified using large deviations and potential theory approaches (Eyring-Kramers law). The
process is called metastable: when β → ∞, it spends long periods of time in neighborhoods of the
local minima, whereas hopping from one local minimum to another one happens rarely.

Even if theoretical tools have been developped to understand transitions between metastable
states, in particular concerning the asymptotic behavior of the probability p when β → ∞, it is
desirable to have algorithms which do not depend on such results at disposal. Indeed, not all models
are covered by theoretical results, or even depend on a parameter, associated with large deviations.
Note that the AMS algorithm presented below treats the Markov chain as a black-box.

The AMS algorithm presented in this section follows the same strategy as the idealized algorithm:
multiple replicas (of the Markov chain) are used, and one combines a selection mechanism (to choose
the replicas with the highest score) with a partial resampling (or mutation) mechanism, to keep
the number of replicas constant. In the idealized algorithm, the mutation step uses the conditional
distribution L(X|X > z) where z is the current level. In the generalized algorithm below, this is
replaced using the Markov property of the model: let z be the current level, after selecting a parent
replica among the highest score replicas, the new replica coincides with its parent up to the first
time it reaches a level larger than z, and then the Markov kernel is employed for the dynamics, until
reaching A or B.

To define the selection mechanism and compute levels in the AMS algorithm, a new ingredient
(compared with the idealized setting of Section 6.2) is needed: a real-valued (measurable) mapping
ξ : S → R, which is referred to as the reaction coordinate in [26], or as the score function
in [27]. The role of this mapping is essential: it allows to compute a sequence of levels Z(1), Z(2), . . .
using order statistics (which can only be computed for an ordered set, like the set of real numbers).
For the consistency of the algorithm, the only requirement is the existence of a real number zmax

such that B ⊂ {ξ(·) > zmax}. In the sequel, ξ(x) = z is referred to as the level of a state x ∈ S, and
Ξ(X) = sup

t≤τA
ξ(Xt) is referred to as the score of a trajectory of the Markov chain (stopped when

entering A).
Like in the idealized case, the definition of the AMS algorithm requires to introduce two param-

eters: let nrep ≥ 2 be the number of interating replicas, and k ∈ {1, . . . , nrep − 1} be the number of
replicas computed to estimate the levels. The AMS algorithm in the generalized case is written as
follows.

Algorithm 2.7 (Adaptive Multilevel Splitting–Generalized case).
Initialization step (q = 0) Sample nrep i.i.d. replicas X(1,0), . . . , X(nrep,0) of the Markov process.

Let Σ(0) be a permutation of {1, . . . , nrep} such that

Ξ(X(Σ(0)(1),0)) ≤ . . . ≤ Ξ(X(Σ(0)(nrep,0))

and set Z(0) = X(Σ(0)(k),0).
If card{n; Ξ(n,0) ≤ Z(0)} = nrep, then set Z(0) =∞.

Iterations (on q ≥ 0):
Iterate the following steps while the stopping criterion is not satisfied

Stopping criterion
If Z(q) > zmax, then the algorithm stops. Set Qiter = q.
Splitting step
Let K(q+1) = card{n; Ξ(n,q) ≤ Z(q)} ≥ k.
For every ` ∈ {Σ(q)(1), . . . ,Σ(q)(K(q+1))}, sample independently and uniformly an index P (q+1)(`)

in the set {Σ(q)(K(q+1) + 1), . . . ,Σ(q)(nrep)}, corresponding to the replicas having a score strictly
larger than Z(q).

Partial resampling step
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The replicas with index ` ∈ {Σ(q)(K(q+1) + 1), . . . ,Σ(q)(nrep)} (replicas having a score strictly
larger than Z(q)) are not modified: set X(`,q+1) = X(`,q).

The replicas with index ` ∈ {Σ(q)(1), . . . ,Σ(q)(K(q+1))} (replicas having a score smaller than
Z(q)) are partially resampled using the Markov kernel: first, if n ≤ inf{j;X(P (q+1)(`),q)

j > Z(q)},

set X(`,q+1)
n = X

(P (q+1)(`),q)
n ; after reaching time inf{j;X(P (q+1)(`),q)

j > Z(q)}, use the Markov kernel
(with independent random numbers) up to the first time the replica reaches A to define the replica
X(`,q+1).

Level computation step
Let Σ(q+1) be a permutation of {1, . . . , nrep} such that

Ξ(X(Σ(q+1)(1),q+1)) ≤ . . . ≤ Ξ(X(Σ(q+1)(nrep,q+1))

and set Z(q+1) = X(Σ(q+1)(k),q+1).
If card{n; Ξ(n,q+1) ≤ Z(q+1)} = nrep, then set Z(q+1) =∞.
Increment: q ← q + 1 and go back to the stopping criterion step.
End of the algorithm: Set q = Qiter (number of iterations).
The estimator of the probability p is defined by

(6.6) p̂nrep,k = Cnrep,k
Qiter∏
q=1

(
1− K(q)

nrep

)
.

with

(6.7) Cnrep,k =
1

nrep

nrep∑
n=1

1τB(X(n,Qiter))<τA(X(n,Qiter)).

6.3.2. Unbiasedness. The main result of our contribution [26] states that (6.6) defines an
unbiased estimator of the probability p.

Theorem 2.8. Assume that the number of iterations Qiter in the algorithm 2.7 is almost surely
finite. Then, for any choice of the reaction coordinate/score function ξ, and for all nrep ≥ 2 and
k ∈ {1, . . . , nrep}, one has

(6.8) E[p̂nrep,k] = p,

where the estimator p̂nrep,k is defined by (6.6).

It is remarkable that Theorem 2.8 is not an asymptotic result (it holds for all values of nrep), and
that the unbiasedness property holds for any choice of the auxiliary parameters of the algorithm,
in particular the reaction coordinate/score function ξ.

Before explaining the main ideas of the proof of Theorem 2.8, let us comment on the main
difference with the idealized setting: whereas in Algorithm 2.5 at each iteration the scores of the
replicas are pairwise distinct, this is not the case in Algorithm 2.7, and the number K(q+1) of
replicas with score larger than Z(q) may be strictly larger than k. Indeed, when using the Markov
dynamics starting from a state x with level z = ξ(x), there is no guarantee that the replica (stopped
when reaching A) has a score strictly larger than z. When considering metastable processes which
are solutions of SDE driven by a Brownian Motion, the issue is due to the discretization in time
of the dynamics (note that Theorem 2.8 means that the estimator is unbiased when considering
a given time step size). We refer to [25, Section 3.6] for a discussion of this phenomenon and
why it requires some care when constructing the algorithm and the estimator to have an unbiased
estimator. Observe that it may happen that all the replicas have a score smaller than or equal
to Z(q): in that case the algorithm stops, since there are no available replicas to run a partial

99



resampling step (which requires to start from a state with level strictly larger than Z(q)), and the
value 0 is returned for the estimator.

Note that formally, if one sets K(q) = k in (6.6) one retrieves the definition (6.2) in the idealized
case. In the general case, the value ofK(q) is adaptive, and the unbiasedness property in Theorem 2.8
in the generalized case would not hold if the unbiasedness property in the idealized case when k ≥ 2
(Theorem 2.6) was not correct, hence the need to study the idealized case in details.

Algorithm 2.7 is a simplified version of the AMS algorithm of [26, Section 4]: indeed, there the
replicas which have a score smaller than Z(q) are not discarded (as is done in Algorithm 2.7 to keep
a constant number of replicas), instead all replicas are kept in the system, with a division between
active and retired weighted replicas. In Algorithm 2.7, we have only kept the active replicas: indeed
for the definition of the estimator p̂nrep,k of p the retired replica have no contribution, owing to
the assumption that B ⊂ {ξ(·) > zmax}. Keeping all replicas (with appropriate definition of the
weight) is useful to estimate quantities of the type E[ϕ(X)] for arbitrary ϕ, and is fundamental for
the strategy of the proof of Theorem 2.8. Precisely, the version of Algorithm 2.7 where all replicas
are kept is a special case of the so-called Generalized Adaptive Multilevel Splitting framework
described in [26, Section 2], for which unbiasedness holds in a general way, see [26, Theorem 3.2].
The proof is based on martingale arguments: first, the system is understood as being parametrized
by level z, and a martingale property in this variable z is checked. Second, the levels Z(q) are
interpreted as stopping times (for appropriate filtrations indexed by z, for each q), and one obtains
the unbiasedness property as a corollary of the martingale property at these stopping times, if the
number of iterations in Algorithm 2.7 had been fixed to a given deterministic value. Finally, the
number of iterations Qiter is interpreted as a stopping time (for an appropriate filtration indexed by
q), and the unbiasedness result follows by applying the optional sampling theorem. The details are
very technical and are omitted, see [26, Section 3]. It is needed to assume that Qiter < ∞ almost
surely for this theoretical analysis, however in practice this is not a major issue, one can always
impose a maximum number of iterations.

Let us mention that in [27], in collaboration with Tony Lelièvre, we have proposed an AMS
algorithm which fits in the Generalized AMS framework of [26], for the estimation of probabilities
of the type

P
(
Φ(XT ) > a

)
where T is a fixed time, a ∈ R is a threshold and Φ : S → R is a given mapping. In [29], in
collaboration with Thibault Lestang, Francesco Ragone, Corentin Herbert and Freddy Bouchet, we
have also proposed an AMS algorithm for the estimation of probabilities of the type

P
(

sup
0≤t≤T

Φ(Xt) > a
)
.

In particular, for those algorithms, the unbiasedness property of Theorem 2.8 holds since it is in
fact proven for the Generalized AMS framework.

6.3.3. Discussion on the efficiency. The unbiasedness result stated in Theorem 2.8 implies
that the expected value of the estimator p̂nrep,k depends neither on the choice of reaction coordi-
nate/score function ξ, nor on the number of replicas nrep and k (chosen to be equal to 1 in the
sequel). However, in practice the performance of the algorithm strongly depends on the choice of
ξ: indeed the asymptotic variance

lim
nrep→∞

nrepE[p̂nrep,1 − p|2] = V(p, ξ)

depends on the reaction coordinate. We refer to [Cérou et al., 2019a] for a proof of a Central
Limit Theorem and the expression of the asymptotic variance V(p, ξ) (for a slighlty different but
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related version of the AMS algorithm). It is proved in [Cérou et al., 2019a] that

V(p, ξ) ∈ [−p2 log(p), 2p(1− p)].

On the one hand, the upper bound means that using the AMS algorithm may not bring any
improvement with respect to the crude Monte Carlo for badly chosen ξ. On the other hand, the
lower bound coincides with the value (6.5) of the asymptotic variance in the idealized case (see
Theorem 2.6), and it is attained for the following choice for the reaction coordinate:

(6.9) ξcom(x) = Px(τB < τA),

where Px means that the initial condition for the Markov chain is the arbitrary state x. The
mapping defined by (6.9) is referred to as the committor function. The probability of interest is
p = ξcom(x0), thus if ξcom is known there is no reason to run the AMS algorithm. In general, the
committor function is not known. If the Markov dynamics is given by a SDE, with generator L,
omitting the time discretization, the committor function is solution of the PDE

Lξcom(x) = 0, x /∈ (A ∪B)

ξcom(x) = 0, x ∈ A; ξcom(x) = 1, x ∈ B,

which may not be solved (even approximately) when the dimension is large. Knowing the com-
mittor function would bring a lot of information about the metastable process: we refer for in-
stance to [Lu and Nolen, 2015]. Recently, the use of machine learning techniques to approxi-
mate committor function has attracted a lot of research, see for instance [Lucente et al., 2019,
Khoo et al., 2019]. In future works, it may be interesting to investigate how to couple machine
learning techniques with the AMS algorithm to approximate committor functions.

Let us explain why the optimal asymptotic variance −p2 log(p) of the idealized case is obtained
when using the AMS algorithm with the committor function as the reaction coordinate: if the time
discretization issue is omitted, in fact the AMS algorithm (2.7) would coincide with the idealized
AMS algorithm (2.5), see [22, Section 2.2] for details. The nice property of the committor function
for the behavior of the AMS algorithm is the following: the value of Px(τB < τA) only depends on
z = ξcom(x), not on the value of x.

Even if the committor function is not chosen as the reaction coordinate, the performance of
the AMS algorithm is usually satisfactory, provided the results are interpreted correctly. Note that
the asymptotic variance remains always bounded from above, contrary to what may happen when
using a badly designed importance sampling strategy. Whereas an optimally designed importance
sampling strategy achieves zero-variance, the AMS algorithm may appear to be less efficient close
to the optimal choice of reaction coordinate, but in general it seems to be more robust.

Let us now describe two practical consequences of the unbiasedness result of Theorem 2.8. First,
it is not needed to choose a large number of replicas nrep to have a small mean-square error (and
to be in a regime governed by a central limit theorem): it suffices to increase the sample size
of the Monte-Carlo experiment to reduce the statistical error. This is appealing since independent
realizations of the algorithm can be run in parallel. Second, since the expected value of the estimator
p̂nrep,k is equal to p and does not depend on the reaction coordinate, one may run simulations of
the AMS algorithm using different choices of the reaction coordinate. In practice, the expected
value is approximated using a Monte-Carlo average: for a given sample size, one may compare the
values of the averages and the associated confidence intervals. If the sample size is too small, one
may observe an apparent bias phenomenon, see the numerical experiments in [26, Section 5]: the
confidence intervals do not overlap. If that happens, this means that the numerical result cannot
be trusted and that the sample size needs to be increased, until confidence intervals overlap. Even
if Theorem 2.8 does not speak about efficiency, it is thus relevant and crucial in practice.

101



6.4. Applications of the AMS algorithm

To conclude this presentation of our contributions to AMS algorithms, it remains to discuss
applications.

First, note that the AMS algorithm appears as a fundamental tool in the PhD thesis of
Henri Louvin [Louvin, 2017] (Monte-Carlo particle transport), Romain Poncet [Poncet, 2017]
(Bose-Einstein condensation), Thibault Lestang [Lestang, 2018] (turbulent flows) and Laura Silva
Lopes [Lopes, 2019] (molecular dynamics). This reveals that the AMS algorithm has penetrated
other fields of science. It has also been employed to simulate transitions between metastable states
in fluid mechanics problems by Freddy Bouchet, Joran Rolland and Eric Simonnet, see for in-
stance [Bouchet et al., 2019].

The AMS algorithm has been applied to sample rare events for stochastic partial differential
equations in [Rolland et al., 2016] and in our contribution [28] (proceeding of a participation
to the 2013 CEMRACS summer school), written in collaboration with Maxime Gazeau, Ludovic
Goudenège and Mathias Rousset. In the last two references, the SPDE model is the Allen-Cahn
equation, considered in Chapter 2 of this manuscript: in fact, this is where (a variant of) the splitting
method presented in Section 2.1 has been designed, to avoid using an implicit method which would
have increased the cost for simulating replicas used for the AMS algorithm.

Let us finally discuss two contributions [29] and [30] where the AMS algorithm is applied
in physics and biology respectively. First, the contribution [29], written in collaboration with
Thibault Lestang, Francesco Ragone, Corentin Herbert and Freddy Bouchet, is devoted to present
a methodology to compute so-called return times of extreme events using rare event algorithms
(AMS and importance sampling). This work is part of the PhD thesis [Lestang, 2018] mentioned
above, where it has been applied to study turbulent flows. Let us roughly describe how the return
times are defined and computed: given a stationary stochastic process

(
Xt

)
t≥0

, the return time r(a)

of the extreme event A = { sup
0≤t≤T

Φ(Xt) ≥ a}, is such that

P(A) = 1− e−T/r(a),

where T is a given period. Behind this definition, an approximation is made: if T is sufficiently
small compared with r(a) and sufficiently large compared with the correlation time of the process,
excursions above the threshold a are well-approximated by a Poisson process. More generally, one
may define r(a, T ) such that P(A) = 1− exp(−T/r(a, T )), the resulting time may depend on T . To
estimate the return time r(a), it suffices to set

r̂(a) =
−T

log(1− p̂(a))

where the estimator p̂(a) of the probability P(A) is computed using the AMS algorithm. Inter-
estingly, running the AMS algorithm gives information about return times r(am) for intermediate
values of am ≤ a, taking into account the replicas which have not reached the final threshold, with
appropriate weights (this is consistent owing to the more general version of the AMS algorithm 2.7
and of Theorem 2.8 in [26] where all replicas are kept in the system). The estimator r̂(a) is not an
unbiased estimator of the return time r(a), nevertheless the numerical experiments in [29] reveal
that the AMS algorithm is efficient to consistently estimate return times, in particular for thresholds
far beyond events which can be observed by direct numerical simulation.

Second, the contribution [30], written in collaboration with Elias Ventre, Thibault Espinasse,
Vincent Calvez, Thomas Lepoutre and Olivier Gandrillon, is devoted to the analysis of metastable
gene regulatory networks (described using piecewise deterministic Markov processes). Whereas
the main theoretical results of this contribution are related to the analysis of the quasi-potential
associated with a large deviation principle and its Lagrangian interpretation, numerical experiments
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are performed using the AMS algorithm. The transitions times between metastable states are
estimated using the methodology of [Cérou et al., 2011] (which differs from the methodology
of [29] explained above). The numerical experiments show that it is possible to extract information
concerning the large deviation rate function and the prefactor in the Eyring-Kramers formula (see
also [27] for similar results concerning the approximation of the large deviation rate function).

The few references and the contributions mentioned above show that the AMS algorithm may
be an efficient tool in many fields of science. Sometimes, the application of the algorithm is limited,
since having a well-chosen reaction coordinate may be a challenging task. Note that its application
may also require designing variants of the algorithm to improve its performance. There are still
open interesting questions to be solved concerning the AMS algorithm and its practical application.
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CHAPTER 7

Adaptive Biasing based on self-interacting SDE dynamics

In this chapter, we are interested in sampling the invariant distribution µ? of a metastable
stochastic Markov process (which results in the distribution µ? to be multimodal). We refer to
Section 7.1 below for a precise statement of the problem, and to Section 7.2 for a presentation of the
literature (from applications or related mathematical works). Sampling the invariant distribution of
a metastable process is challenging since it is necessary to visit all the state space to have complete
and reliable information, whereas escaping metastable states requires long times (governed by large
deviations estimates).

The algorithms studied in this chapter are based on an adaptive importance sampling
strategy: the dynamics is biased in order to facilitate transitions between metastable states. The
guideline of the adaptive biasing mechanism is to approach the optimal bias, given in terms of the
free energy functional associated to a given reaction coordinate. The resulting adaptively biased
processes considered below are self-interacting diffusion processes: they are solutions of SDEs
where the drift depends on the normalized occupation measure of the process, in other words the
process has interaction with its past. Self-repulsion from already visited states induced by this
interaction with the past is expected to be a sensible mechanism to enhance sampling. From a
mathematical point of view, the analysis of the long-time behavior of the adaptively biased processes
(which do not satisfy the Markov property) is susbtantially more complicated than if the bias is
fixed: one needs to employ stochastic approximation techniques, solutions of Poisson equations, and
even involved PDE estimates to prove convergence to the limit.

We consider two versions of the adaptively biased strategy: on the one hand, the Adaptive
Biasing Potential method studied in the contributions [31] and [32] (both written in collabora-
tion with Michel Benaïm), on the other hand, the Adaptive Biasing Force method studied in
the contribution [33] (in collaboration with Michel Benaïm and Pierre Monmarché). For the two
algorithms, the main result is the consistency of the approach (convergence to the target distribu-
tion when time goes to infinity), combined with a weak form of efficiency (the bias converges to an
approximation of the optimal bias). We describe the construction of the algorithms in Section 7.3,
then the main results are stated in Section 7.4, and we illustrate the similarities and differences
between the two algorithms. Perspectives are mentioned in Section 7.5.

7.1. Description of the problem

Let V : Td → R be a smooth function, defined on the d-dimensional torus Td, V is sometimes
referred to as the potential energy function. Under the condition

∫
Td exp(−V (x))dx = 1, define the

associated probability distribution

(7.1) µ?(dx) = exp
(
−V (x)

)
dx.

The objective is to estimate averages of the type

µ?(ϕ) =

∫
ϕdµ?,
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for smooth regular functions ϕ : Td → R. When the dimension d is large, the cost of deterministic
methods (quadrature rules) is prohibitive. Instead Monte-Carlo methods are employed, writing
µ?(ϕ) = E[ϕ(X)] where X is a random variable with distribution µ?. In practice, sampling from µ?,
i.e. constructing independent realizations X1, X2, . . ., is challenging. A general solution is to use
a Markov Chain Monte-Carlo (MCMC) method: one generates samples of a Markov chain which
admits µ? as unique invariant distribution.

In this manuscript, the following continuous-time version of the MCMC method is considered
– and temporal discretization issues are not considered: it is well-known that µ? is the unique
invariant distribution for the overdamped Langevin dynamics

dX0
t = −∇V (X0

t )dt+
√

2dW (t),

driven by a d-dimensional standard Wiener process
(
W (t)

)
t≥0

. In addition, the empirical distribu-
tion

µT =
1

T

∫ T

0
δXtdt

converges to µ?, almost surely, when T →∞, i.e. µT (ϕ) →
T→∞

µ?(ϕ) for all bounded and continuous

functions ϕ : Td → R.
We do not consider the sampling problem in full generality. We consider the following situation:

the convergence of µT to µ? may be slow due to metastability [Bovier and den Hollander, 2015]
of the process X0. This metastability happens for instance when the function V can be written
as V (x) = βV1(x), where V1 admits several local minima and the parameter β is large. In that
regime, when the process is trapped in a local minimum, it tends to stay there for a long time
before hopping to another one. In order to speed up the convergence to µ?, one needs to find ways
to explore faster the state space.

The strategy considered in this chapter consists in modifying the dynamics, in an adaptive way:
stochastic differential equations (SDEs) of the type

dXt = −∇V (Xt)dt+ Ft(Xt)dt+
√

2dW (t)

are considered, where possible constructions of the bias Ft : Td → Rd are made precise below. An
important feature is that Ft is of the form Ft(x) = F̃t

(
ξ(x),∇ξ(x)

)
, where ξ : Td → Tm is referred to

as the reaction coordinatemapping, andm is much smaller than d in practice. In order to simplify
the presentation, it is assumed that x ∈ Td is written as x = (y, z) with y ∈ Td−m, and z ∈ Tm, and
that ξ(y, z) = z. This condition is not too restrictive, indeed it is always applicable up to extending
the state space: for any given ξ0 : Td → Tm, let V ′(x′, z′) = V (x′) + 1

δ

(
z′ − ξ0(x′)

)2, for some small
parameter δ > 0, and define ξ(x′, z′) = z′ for all (x′, z′) ∈ Td × Tm. This modification slightly
reduces the efficiency of the methods studied below, however choosing ξ(x) = ξ(y, z) = z as the
reaction coordinate mapping significantly simplifies the practical application and the mathematical
analysis of the methods: in that setting, the bias is of the type Ft(x) = F̃t

(
z
)
where F̃t : Tm → Td.

From a modelling point of view, it is assumed that the reaction coordinate is “well-chosen”: the
metastability of the process is mostly due to the behavior of Zt = ξ(Xt) only. If ξ(x) = ξ(y, z) = z,
this means that the convergence to equilibrium is fast in the y-variable whereas it is slow in the
z-variable. Thus, to overcome metastability in the sampling problem, it is relevant to bias the
dynamics in the z-variable only.

To explain the construction of the adaptive biasing methods, let us consider first non-adaptive
versions: if A : Tm → R is a smooth function, let us introduce the SDE

dXA
t = −∇

(
V −A ◦ ξ)(Xt)dt+

√
2dW (t).
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First, observe that

µAT =
1

T

∫ T

0
δXA

t
dt →

T→∞
µA? ∝ exp

(
−V (x) +A(ξ(x))

)
dx.

Observe that a reweighting procedure is thus necessary to estimate µ?(ϕ):

µ?(ϕ) =
µA? (e−A◦ξϕ)

µA? (e−A◦ξ)
= lim

T→∞

∫ T
0 e−A(ξ(XA

t ))δXA
t
dt∫ T

0 e−A(ξ(XA
t )dt

.

A smart choice to make the biasing method efficient is given by the so-called free energy function
(see [Lelièvre et al., 2010]), denoted by A? in this manuscript: define

(7.2) A?(z) = − log
(∫

Td−m
exp
(
−V (y, z)

)
dy
)
, ∀ z ∈ Tm.

It is natural to interpret the free energy function A? as an effective potential in the z-variable,
which contains all the information on the metastability in the z-variable. Choosing A = A? (if A?
was known) would solve the sampling problem due to metastability (if the reaction coordinate is
well-chosen): the z-marginal of the empirical distribution µA?T converges to the uniform distribution
on Tm when T →∞, more generally

1

T

∫ T

0
δξ(Xt)dt →

T→∞

1∫
T d e

A−A? e
A(z)−A?(z)dz.

If one could choose A = A?, a flat-histogram in the z-variable would be reached asymptotically (as
T →∞), and the free energy barriers would have been removed by the biasing technique.

Unfortunately, in practice the free energy function A? is not known, and the smart choice
A = A? is only ideal, and serves at a guide line to design implementable effective algorithms. The
adaptive strategies considered in this manuscript are designed such that the bias is of the type
Ft = ∇(At ◦ ξ), where At approximates A? as t → ∞. Two strategies are considered: for the
Adaptive Biasing Potential (ABP) method, the potential At is directly updated, whereas for
theAdaptive Biasing Force (ABF)method, a force Ft is update. In this manuscript, we consider
a projected ABF method: after updating the force, a potential At is computed in order to write
Ft = ∇(At ◦ ξ). Precise definitions will be given below. Even if the two ABP and ABF strategies
have common objectives and features, there are significant differences which will be discussed. The
most important similarity between the ABP and ABF methods considered in this manuscript is their
interpretation as self-interacting diffusions (see [Benaïm et al., 2002]): the update of At or Ft is
based on knowledge of the past {Xs, s ≤ t} of the trajectory (in terms of an appropriate empirical
distribution). The dynamics for

(
Xt

)
t≥0

then becomes non-Markovian. The major results from
the contributions [31, 32, 33] reported in this manuscript (which are non-trivial due to temporal
dependence of the biasing potential At) are the proof of the consistency of the ABP and ABF
algorithms – convergence of estimators µt(ϕ) to µ?(ϕ) as t → ∞ – and the justification of the
efficiency of the approach – At approximates the free energy function A? when t→∞.

7.2. Context

7.2.1. Applications. The main field of application of the Adaptive Biasing methods is Molec-
ular Dynamics. In fact, such methods and many variants have been designed by practitioners from
this field. Molecular Dynamics, see [Leimkuhler and Matthews, 2015] is a modelling and com-
putational approach to study properties of systems at the atomic scale, and to infer properties of
molecules and materials. The evolution of such systems is described by stiff (stochastic) differential
equations: the numerical integration requires to choose very small time step sizes, whereas events
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of interest are often transitions between metastable states, thus they occur on much longer time
scales. Examples include protein folding, ligand-protein dissociation, etc...

Many techniques are based on biasing the dynamics in order to escape from metastable states,
by accumulating information to estimate the free energy function, see [Lelièvre et al., 2010], and
to overcome free energy barriers in sampling. Here are a few examples of such techniques: (self-
healing) umbrella sampling [Torrie and Valleau, 1977, Marsili et al., 2006], (well-tempered)
metadynamics [Laio and Parrinello, 2002, Barducci et al., 2008] and the Wang-Landau al-
gorithm [Wang and Landau, 2001a, Wang and Landau, 2001b]. For a comparison of these
methods, we refer to [Dickson, 2017].

The Adaptive Biasing Potential method studied in this manuscript is motivated by the ar-
ticle [Dickson et al., 2010]. The Adaptive Biasing Force method has been introduced in the
articles [Darve and Pohorille, 2001, Hénin and Chipot, 2004]. We also refer to the review
paper [Comer et al., 2014], and to [Fu et al., 2016] for the Extended-ABF algorithm.

In addition to applications in Molecular Dynamics, these methods may also be employed in Sta-
tistical Physics [Landau and Binder, 2015], Bayesian statistics and Machine Learning problems.

7.2.2. Related mathematical literature. Biasing the dynamics in order to enhance sam-
pling can be interpreted as an importance sampling strategy: indeed, for any smooth function
A : Tm → R, the average µ?(ϕ) = µA? (e−A◦ξϕ)µA? (e−A◦ξ)−1 is rewritten in terms of a tilted proba-
bility distribution µA? .

Some of the methods mentioned above have been studied in the last decade: we refer to
[Fort et al., 2017] (self-healing umbrella sampling), [Jourdain et al., 2019](well-tempered meta-
dynamics), [Fort et al., 2014, Fort et al., 2015] (Wang-Landau algorithm). Note that the re-
cent work [Jourdain et al., 2019] establishes a connexion between metadynamics and the self-
interacting diffusions studied in [Benaïm et al., 2015], and it is thus related to the approach
considered in this manuscript. In all the works above, the authors employ stochastic approximation
techniques [Benveniste et al., 1990, Duflo, 1997].

The mathematical analysis of ABF methods relied on PDE techniques[Lelièvre et al., 2008,
Alrachid and Lelièvre, 2015, Lelièvre and Stoltz, 2016], and the use of interacting parti-
cle systems for practical implementation [Jourdain et al., 2010]. Note that the recent arti-
cle [Ehrlacher et al., 2020] studies an ABF method combined with tensor approximation tech-
niques which is similar to the ABF system presented below.

The study of the ABP and ABF methods presented in this manuscript is based on stochastic
approximation techniques [Benaïm, 1999] in connexion with the analysis of self-interacting diffu-
sions [Benaïm et al., 2002]. However, the structure of the interaction between the diffusion and
the empirical distribution has a specific structure which requires some new arguments compared
with [Benaïm et al., 2002]. Note that the construction and the analysis of the ABF method,
using a single self-interacting replica, are thus different from previous works in the literature, which
rely on approximation by interacting replicas and analysis using PDE techniques. In addition, the
ABP method we study has not been analyzed by other authors.

7.3. Description of the ABP and ABF algorithms

Let us describe the two adaptive biasing algorithms. Note that the ABP and ABF methods
have a similar structure: the diffusion process is of the type Xt = (Yt, Zt) ∈ Td−m×Tm (recall that
ξ(x) = ξ(y, z) = z), and follows the SDE dynamics

(7.3)

{
dYt = −∇yV (Yt, Zt)dt+

√
2dW

(d−m)
t ,

dZt = −∇zV (Yt, Zt)dt+∇zAt(Zt)dt+
√

2dW
(m)
t .
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The main difference between the ABP and ABF methods is the way At is computed. Let us
introduce the empirical distributions µt and µt, for all t ≥ 0, defined by

(7.4)
µt =

1

1 + t

(
µ0 +

∫ t

0
δXτdτ

)
,

µt =
1

µ0 +
∫ t

0 e
−Aτ (Zτ )dτ

(
1 +

∫ t

0
e−Aτ (Zτ )δXτdτ

)
.

On the one hand, in the ABP case,

(7.5) At = AABP[µt],

i.e. the weighted empirical distribution µt is employed. This is motivated by the reweighting
procedure mentioned above when the bias A is fixed instead of being adaptive. With such a choice,
it is natural to expect that if At and µt converge, then first the limit of µt will be equal to the target
probability distribution µ?, second the limit of At will be equal to AABP[µ?].

On the other hand, in the ABF case,

(7.6) At = AABF[µt],

i.e. the reweighting procedure is not taken into account in the computation of the bias. This is
motivated by the following expression of the mean force ∇A?(z), following from (7.2):

∇A?(z) =

∫
Td−m ∇zV (y, z)e−V (y,z)dy∫

Td−m e
−V (y,z)dy

= E(Y,z)∼µ? [∇zV (Y,Z)|Z = z]

=

∫
Td−m ∇zV (y, z)eA(z)−V (y,z)dy∫

Td−m e
A(z)−V (y,z)dy

= E(Y,Z)∼µA? [∇zV (Y,Z)|Z = z],

for any smooth function A : Tm → R, where the biased distribution is µA? ∝ eA(z)−V (y,z)dydz. The
bias thus has no role in the computation of the mean force, and it is natural and relevant not to
take it into account in the computation of At.

Observe that reweighting still plays a role in the problem: it is again natural to expect that µt
will converge to µ?, if At converges. The identification of the limit A∞ of At is more complex: it
has to solve a fixed point equation A∞ = AABF[µA∞? ] and A∞ 6= A?.

It remains to explain the definitions of the mappings AABP and AABF. In both cases, it is
necessary that A[µ] is a smooth function on Tm, for any probability distribution µ on Td. Since
in the algorithm µ = µt or µ = µt are empirical distributions, it is not sufficient to deal with
distributions which are absolutely continuous with respect to Lebesgue measure. To overcome this
issue and having well-defined mappings, a smooth kernel mapping K : Tm×Tm → (0,+∞) is used.

Let P(Td) be the set of probability distributions on Td. To define the ABP algorithm, set

(7.7) AABP[µ] = − log
(∫∫

Td
K(·, z)dµ(y, z)

)
,

for all µ ∈ P(Td). For every µ ∈ P(Td), the function AABP[µ] is a smooth function on Tm. Under
the condition that

∫
Tm K(·, z)dz = 1 for all z ∈ Tm, then a normalization condition is satisfied:∫

Tm exp
(
−AABP[µ](z)

)
dz = 1, for all µ ∈ P(Tm).
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To define the ABF algorithm, a stronger assumption on the kernel is required: assume that(
Kε(·, ·)

)
ε∈(0,1)

is a family of smooth positive functions, such that Kε(z, ·) →
ε→0

δz in the sense of
distributions, for all z ∈ Tm. This yields the identity

∇A? = lim
ε→0

∫∫
Td−m×Tm Kε(·, z)∇zV (y, z)dµA? (y, z)∫∫

Td−m×Tm Kε(·, z)dµA? (y, z)

for all smooth functions A : Tm → R. With this observation, it is natural to set

(7.8) F ε[µ] =

∫∫
Td−m×Tm Kε(·, z)∇zV (y, z)dµ(y, z)∫∫

Td−m×Tm Kε(·, z)dµ(y, z)
,

and that definition makes sense for all ε ∈ (0, 1) and all µ ∈ P(Td).
Due to the presence of the kernel Kε, two important properties are lost when ε > 0. First, for

ε > 0, the force F ε[µA? ] depends on the bias A (whereas at the limit lim
ε→0

F ε[µA? ] = ∇A? for all A).

Second, F ε[µA? ] is not a gradient in general, thus a projection step is added: set

(7.9) AABF[µ] = Aε[µ] = argmin
A∈H1(Tm),

∫
Tm A(z)dz=0

{
∫
‖F ε[µ](z)−∇A(z)‖2dz},

for all µ ∈ P(Td).

The ABP method is defined by (7.3)–(7.5)–(7.7), whereas the ABF method is defined by (7.3)–
(7.9)–(7.8)–(7.9).

7.4. Convergence results

7.4.1. Statements. The convergence of probability measures on the space P(Td) is analyzed
using the distance dP(Td) defined by

dP(Td)(µ
1, µ2) =

∑
n∈Zd

1

2n
max

(
1,
∣∣ ∫

Td
ein·xdµ1(x)−

∫
Td
ein·xdµ2(x)

∣∣), ∀ µ1, µ2 ∈ P(Td).

In addition, let C0(Tm) andW 1,p(Tm) be the space of continuous functions and Sobolev spaces (with
p ∈ [1,∞]), with associated norms denoted by ‖ · ‖C0(Tm) and ‖ · ‖W 1,p(Tm). By Sobolev embedding
properties, ‖ · ‖C0(Tm) ≤ Cp‖ · ‖W 1,p(Tm) for all p > m.

Recall that the potential energy function V is assumed to be of class C∞. In the most general
setting, it is assumed that the kernel mapping K : Td × Td → (0,∞) is of class C∞ and positive,
and that ∫

K(z, ·)dz =

∫
K(·, z)dz = 1.

The following more restrictive class of kernels is also required to make some arguments more quan-
titative: assume that K = Kε, with ε > 0, such that∫∫

Td
ψ(y, z′)Kε(z

′, z)dydz′ →
ε→0

∫
Td−m

ψ(y, z)dy , ∀ z ∈ Tm,

for any bounded and continuous function ψ : Td → R. Finally, there exists cK ∈ (0,∞), such that

sup
z∈Tm

∫
Tm
|z − z′|2

(
Kε(z

′, z) +Kε(z, z
′)
)
dz′ ≤ cKε.
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For instance, one may consider the following class of kernels:

Kε(z
1, z2) =

m∏
j=1

kε
(
z2
j − z1

j

)
, kε(z) = Z−1

ε exp
(
−sin2(πz)

ε2/2

)
, z ∈ Td.

The initial conditions for the dynamics (y0, z0) ∈ Td and µ0 ∈ P(Td) are arbitrary (and deter-
ministic to simplify the presentation).

We are now in position to state rigorously the convergence results for the ABP dynamics.

Theorem 2.9. [Convergence of ABP] Consider the ABP dynamics (7.3)–(7.5)–(7.7)

(7.10)



dYt = −∇yV (Yt, Zt)dt+
√

2dW
(d−m)
t ,

dZt = −∇zV (Yt, Zt)dt+∇zAt(Zt)dt+
√

2dW
(m)
t

µt =
1

µ0 +
∫ t

0 e
−Aτ (Zτ )dτ

(
1 +

∫ t

0
e−Aτ (Zτ )δXτdτ

)
At = AABP[µt] = − log

(∫∫
Td
K(·, z)dµt(y, z)

)
.

Then, almost surely, one has

(7.11)
dP(Td)(µt, µ?) →

t→∞
0,

‖At −A∞‖C0(Tm) →
t→∞

0,

where A∞ = AABP[µ?].

Note that Theorem 2.9 holds for any choice of the kernel mapping K. However in order to study
whether A∞ = AABP[µ?] is an approximation of A?, it is necessary to assume that K = Kε and
ε→ 0, with the conditions stated above: then

‖AK=Kε
ABP [µ?]−A?‖C0(Tm) →

ε→0
0.

The study of the ABF method requires to assume that K = Kε from the beginning. The
following fundamental auxiliary result allows us to identify the only possible limits for µt and At
when t→∞, for sufficiently small ε.

Lemma 2.10. There exists ε0 > 0 and, for all p ∈ [1,+∞), there exists Cp ∈ [0,+∞) such that,
for all ε ∈ (0, ε0], there exists a unique probability distribution µε∞ ∈ P(Td) which satisfies the fixed
point property

µε∞ = µ
Aε[µε∞]
? ,

where we recall that Aε = AABF. Moreover, one has

‖Ā? −Aε[µε∞]‖W 1,p(Tm) ≤ Cp
√
ε,

where Ā? = A? −
∫
z∈Td A?(z)dz.

We are now in position to state rigorously the convergence results for the ABF dynamics.

Theorem 2.11. [Convergence of ABF] Consider the ABF dynamics (7.3)–(7.9)–(7.8)–(7.9)

(7.12)



dYt = −∇yV (Yt, Zt)dt+
√

2dW
(d−m)
t ,

dZt = −∇zV (Yt, Zt)dt+∇At(Zt)dt+
√

2dW
(m)
t

µt =
1

1 + t

(
µ0 +

∫ t

0
δXτdτ

)
At = AABF[µt] = Aε[µt].
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Then, almost surely, one has

(7.13)
dP(Td)(µt, µ

ε
∞) →

t→∞
0,

‖At −Aε[µε∞]‖C0(Tm) →
t→∞

0.

and
dP(Td)(µt, µ?) →

t→∞
0.

The main result of Theorems 2.9 and 2.11 is the consistency of the ABP and ABF strategies
respectively: for any continuous function ϕ : Td → R, almost surely

µt(ϕ) →
t→∞

µ?(ϕ).

In other words, the consistency in the non-adaptive case has been extended to adaptive algorithms.
Note that the reweighting technique explained above in the non-adaptive case is taken into account
when defining µt.

Observe that the limit of µt does not depend on the initial conditions of the dynamics, nor
on the kernel mapping K. However, in both the ABP and ABF cases, the (almost sure) limit
A∞ = lim

t→∞
At is not equal to A?, and depends on the choice of the kernel K. In the ABP case,

A∞ = AABP[µ?], and satisfies

e−A∞ =

∫
K(·, z)e−A?(z)dz.

Assume that in both cases the kernel is chosen as K = Kε, then one has

lim
ε→0

lim
t→∞

At = A?.

This convergence is a qualitative justification of the efficiency of the approach: for sufficiently small
ε, asymptotically the bias in the adaptive algorithm is close to the ideal bias, i.e. the free energy
function.

It would be desirable to have more quantitative justifications of the effiency (as is observed in
numerical experiments for such methods). A discussion is provided below.

7.4.2. Analysis using the ODE method. Let us describe the main ideas for proving Theo-
rems 2.9 and 2.11, and what are the similarities and differences. A key argument is the ODE method
from stochastic approximation: the empirical distributions µt and µt are solutions of differential
equations in the space of measures:

dµt
dt

=
1

t+ 1

(
δXt − µt

)
,

dµt
dt

=
θ′(t)

1 + θ(t)

(
δXt − µt

)
,

where Xt = (Yt, Zt) ∈ Td, δx is the Dirac probability distribution at x, and

θ(t) =

∫ t

0
e−As(Zs)ds.

An asymptotic time-scale separation appears (as t→∞), between the fast evolution of Xt and the
slow evolution of µt. To see this for the evolution of µt, the idea is to employ a (random) change of
time variable: with s = θ(t), Xs = Xt and νs = µt, one obtains

dνs
ds

=
1

1 + s

(
δXs − νs

)
.

Observe that s = θ(t) →
t→∞

∞ almost surely, since the positivity of the kernel implies that
sup
t≥0
‖At‖C0(Tm) <∞ almost surely.
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Employing the change of time-variable also modifies the dynamics of the diffusion: if Bs =
AABP[νs], the SDE dynamics becomes

dXs = −eAs(ξ(Xs))∇
(
V −As ◦ ξ

)
(Xs)ds+ e

1
2
As(ξ(Xs))dW(s).

The ODE method establishes (for instance using the notion of asymptotic pseudo-trajectories,
see [Benaïm, 1999]) a link between the evolutions of νt, resp. µt, and the flow generated by
the differential equation

dπt
dt

= Π[πt]− πt,
resp.

dπs
ds

= Π[πs]− πs,

where, for every µ ∈ P(Td), Π[µ] and Π[µ] are the invariant distributions of the diffusion processes(
Xt

)
t≥0

and
(
Xs

)
s≥0

where the slow evolutions of the empirical measures are frozen. In the ABP
case, this means that Bs is replaced with B = AABP[µ], whereas in the ABF case, this means that
At is replaced with A = AABF[µ]. The application of the ODE method follows the same approach
as in [Benaïm et al., 2002], except that the structure of the self-interaction is different.

We are now in position to explain the major differences for the analysis of the ABP and ABF.
On the one hand, in the ABP case, it is straightforward to check that the identity

Π[µ] = µ? , ∀ µ ∈ P(Td)

holds. This reveals why introducing the weights in the definition of µt, and also in At = AABP[µt],
is fundamental: in the new time variable, this makes the target distribution µ? appear. The analysis
of the limiting flow associated with Π, and then the proof of Theorem 2.9, is straightforward.

The situation in the ABF case is more complicated: in fact

Π[µ] = µ
Aε[µ]
? , ∀ µ ∈ P(Td),

where the notation µA? has been introduced above. Since there is no reweighting, Π[µ] depends on µ.
Recall that in the ABF case, it is assumed that the kernel is of the form K = Kε, with sufficiently
small ε, thus the notation Πε[µ] is used. The main ingredients of the proof are given below.

(1) One has an estimate sup
ε∈(0,1]

sup
µ∈P(Td)

‖Aε[µ]‖C0(Tm) <∞.

(2) It is sufficient to study the dynamics of the limit flow on the attracting set {µA? ; A ∈
C0(Tm)}.

(3) On this attracting set, one has the expression

F ε[µA? ] =

∫
∇A?Kε(z, ·)eA(z)−A?(z)dz∫
Kε(z, ·)eA(z)−A?(z)dz

.

(4) One obtains, Aε[µA? ] →
ε→0

A? −
∫
A?(z)dz, and Πε[µA? ] →

ε→0
µA?? , for every A ∈ C0(Tm).

(5) For sufficiently small ε, the mapping µ 7→ Πε[µ] defines a contraction, in particular one
obtains Lemma 2.10.

The critical argument is the first one, precisely that the upper bound is independent of ε: this
follows from the following elliptic regularity result: if A solves ∆A = div(F ), then

‖A‖C0(Tm) ≤ cp‖A‖W 1,p(Tm) ≤ Cp‖F‖C0(Td,Td),

for some cp, Cp ∈ (0,∞), if p > m.
Combining the attracting set property and the contraction property for Πε on this attracting

set, the conclusion of the proof follows from standard arguments.
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Remark 2.12. Let us revisit the role of the reweighting, using the ideas described above.
First, one may modify the ABF method in order to take into account reweighting: replace

AABF[µt] by AABP[µt]. Based on the ideas described above, it is straightforward to obtain the con-
sistency, following the proof of Theorem 2.9, indeed Π

ε
ABF[µ] = µ? for all µ ∈ P(Td). As explained

above, it is expected that the reweighting is not necessary (in the limit ε→ 0): indeed, Theorem 2.11
shows this is correct but the proof is more involved.

Second, one may modify the ABP method so that the reweigthing is not taken into account
anymore: replace AABP[µt] by AABP[µt]. This algorithm is not expected to be consistent, even in
the regime ε→ 0 (with K = Kε): indeed in this case, for every µ ∈ P(Td), AεABP[µA? ] →

ε→0
A?−A (up

to an additive constant), and one cannot expect to find a fixed point for the mapping µ 7→ Πε
ABP[µ].

Thus, as expected, the reweighting procedure is essential for the ABP algorithm.

7.5. Efficiency of the biasing algorithms

The main message of Theorems 2.9 and 2.11 is the consistency of the ABP and ABF algorithms:
when t → ∞, µt converges to the target distribution µ?, almost surely. That result does not
depend on the choice of the auxiliary kernel K used to defined the mappings µ 7→ AABP[µ] and
µ 7→ AABF[µ]. However, the efficiency of the algorithms depends on this choice, and also on the
choice of the reaction coordinate ξ.

As explained in Section 7.4, there exists a deterministic function A∞, such that At → A∞
almost surely when t → ∞. If A∞ is an approximation of the free energy function A? defined
by (7.2), this convergence can be interpreted as justifying the efficiency of the ABP and ABF
algorithms compared with a direct approach: recall that choosing A? as the biasing potential in a
non-adaptive algorithm is known to provide an efficient importance sampling algorithm. On the one
hand, it is straightforward to check that A∞ indeed approximates A? when the kernel is of the type
K(z, z′) = Kε(z − z′) when ε → 0. On the other hand, in the ABP algorithm, if K(z, z′) = K(z),
then At does not depend on time, thus the adaptive algorithm is not efficient in general.

A natural question is to investigate more quantitative expressions of the efficiency of the ABP
and ABF algorithms. The first relevant quantity to consider is the asymptotic variance. In the case
of the ABP algorithm, we have proved (see [32, Proposition 4.1]) that

lim
t→∞

tE
[
|µt(ϕ)− µ?(ϕ)|2

]
= V∞(ϕ,A∞)

where V∞(ϕ,A∞) is the asymptotic variance obtained when applying the non-adaptive biasing al-
gorithm with A = A∞ = lim

t→∞
At. The fact that the asymptotic variance of the adaptive algorithm

coincides with the asymptotic variance of a non-adaptive version where the learning parameter (i.e.
the bias A) is chosen as the limit obtained in the adaptive version, is standard in stochastic approx-
imation. The same type of result is expected to hold also for the ABF algorithm. In fact, it is even
expected that a Central Limit Theorem holds (instead of only a result on the asymptotic variance),
however the proof requires more complex computations, this may be considered in future works.
The choice of A which minimizes V∞(ϕ,A) depends on A, therefore it is not straightforward to
extract useful information from the asymptotic variance. Let us mention another possible direction
to investigate the efficiency of the ABP and ABF algorithms: one may study the behavior of the
time required to escape metastable states, in a small noise limit.

As already mentioned, the efficiency of the algorithms is known to crucially depend on the
choice of the reaction coordinate ξ. This aspect is not treated in the analysis presented above.
It would be interesting to study whether a result similar to [Lelièvre et al., 2008] (where log-
Sobolev inequalities are used to quantify whether the reaction coordinate is a good representative
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for metastability, for an ABF algorithm using interacting replicas) can be obtained for the self-
interacting dynamics of the APB and ABF algorithms considered in our contributions [31, 32, 33].
To improve the efficiency of the algorithms, it may be interesting to employ machine learning
techniques [Lucente et al., 2019, Khoo et al., 2019] to estimate relevant reaction coordinates.
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Conclusion





Perspectives

To conclude this manuscript, let us present a selection of open questions of interest which
may be studied in future works, as well as some works already in progress. I wish to follow similar
approaches as described in the three main parts of this manuscript – combining stochastic, PDE and
numerical analysis techniques – with the objective to consider new classes of models. In addition,
I intend to continue existing collaborations with physicists, astrophysicists and biologists, and to
initiate new ones.

Some works in progress (at the time of writing this manuscript) have already been mentioned in
the three main parts of this manuscript, in this conclusion we provide more details and additional
questions and references.

Concerning the design and analysis of numerical schemes for SPDEs, the short-term objective is
the theoretical and numerical study of the integrators based on preconditioning for the approxima-
tion of the invariant distribution. The schemes are presented in Section 3.2.2 (Lipschitz continuous
case, in collaboration with Arnaud Debussche and Gilles Vilmart), and in Section 3.2.3 (non-globally
Lipschitz case, in collaboration with Ludovic Goudenège). Recently, we have also started to inves-
tigate the application of decreasing time step size algorithms for the approximation of the invariant
distribution (in collaboration with Igor Honoré).

To go beyond the class of parabolic semilinear SPDEs considered in Part 1, we intend to turn
our attention to stochastic viscous and inviscid conservation laws.

First, in Section 1.4.2, we have presented some arguments of a work in progress (in collaboration
with Sonja Cox), devoted to the analysis of numerical schemes for the one-dimensional viscous
stochastic Burgers equation

∂tX(t, z) = ∆X(t, z) + ∂z(X(t, z)2) + Ẇ (t, z)

driven by a trace-class noise. The first step is to study weak rates of convergence of numerical
schemes, using newly derived regularity properties of solutions of Kolmogorov equations. As a next
step, we may study the case of space-time white noise.

Second, we have started to study strong and weak rates of convergence of a fully-discrete scheme
applied to an inviscid transport equation of the type

∂tX(t, z) + a∂zX(t, z) = σ(X(t, z))Ẇ (t, z).

The spatial discretization is performed using a finite volume approximation, whereas the temporal
discretization is performed using the upwind scheme. The theoretical analysis is a joint work
in progress in collaboration with Julia Charrier, while numerical experiments are conducted in
collaboration with Benoît Fabrèges.

Finally, we would like to study the long-time behavior of numerical schemes applied to the
two models above, to approximate their invariant distributions. The objective is to go beyond the
results of [Boyaval et al., 2019] which prove convergence of numerical invariant distributions with
no rate in general.
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In a joint work in progress in collaboration with Marta Leocata (former postdoc student), we
study a two-dimensional stochastic Vlasov-Fokker-Planck-Navier-Stokes system of the type

dft + v · ∇xftdt = divv(∇vft + (v − ut)ft)dt+ divv(ζkft ◦ dβk(t)),
∂tut + ut · ∇ut −∆ut +∇π = Jt − ρtut,
divv(ut) = 0,

which models the behavior of a system of particles (described by the density function f), submitted
to a random Brownian force, interacting with a fluid (described by the velocity field u). The two
components are coupled via a drag force and a Brinkman force terms. Our objective is to prove
existence of solutions using an auxiliary numerical scheme.

Let us now describe three directions for current and future works concerning the theoretical and
numerical analysis of multiscale stochastic systems, following the results presented in Part 2.

First, the construction and analysis of asymptotic preserving schemes presented in Chapter 5
may be generalized. We have mentioned the construction of AP schemes for parabolic semilinear
SPDE systems. As a short-term perspective, we plan to consider stochastic kinetic equations of the
type 

∂tf
ε +

v

ε
· ∇xf ε =

1

ε2
Lf ε +

1

ε
mε
tf
ε

dmε
t = − 1

ε2
mε
tdt+

1

ε
dWQ(t),

as considered in the prepublication [Rakotonirina-Ricquebourg, 2020] of our PhD student (co-
supervised with Julien Vovelle). This work (combining design of AP schemes, theoretical arguments
and numerical experiments) is a part of the PhD thesis of Shmuel Rakotonirina-Ricquebourg and
is investigated in collaboration with Hélène Hivert.

The second direction we describe concerns the large time behavior of particles in mean-field
interaction subject to environmental (or collective) noise. We have already obtained partial results
(in collaboration with Maxime Hauray and Christophe Prange, and recently with our postdoc
student Raphael Winter), however many theoretical challenges remain.

Precisely, we consider systems of N particles with positions Xi,N ∈ Td and velocities V i,N ∈ Rd,
with dynamics of the type

dXi,N
t = V i,N

t dt

dV i,N
t = − 1

N

N∑
j=1

∇V(Xi,N
t −Xj,N

t )dt− εV i,N
t dt+

√
εdWt(X

i,N
t ),

where V is a smooth interaction potential, ε > 0 is the size of the noise perturbation, and where
Wt(x) =

∑
k∈Zd,k 6=0 γkβk(t)e

ik·x denotes a real-valued Wiener process. In [Nardini et al., 2012],
a nonlinear diffusion equation (where only the v variable appears) is derived using kinetic theory
arguments to describe the large time behavior of the system (on the time scale t/ε when ε→ 0). The
objective of our project is to derive the limiting equation mentioned above using a SPDE approach
and the averaging principle. Below we explain the strategy, using formal computations.

The first step is to study the mean-field limit N → ∞: using the techniques from the arti-
cle [Coghi and Flandoli, 2016], the evolution of the system is described by the stochastic kinetic
equation (written in Itô form) of the type

df εt + v · ∇xf εt dt+∇V[f εt ] · ∇vf εt dt = γε∆f εt dt+ divv(vf
ε
t ) +

√
ε∇vf εt · dWt(x),

where V[f ] =
∫
V(· − x)f(x, v)dxdv and γ =

∑
k γ

2
k/2. It may be surprising that the noise remains

in the mean-field limit: in fact, the environmental noise plays a role of a random, time-varying, force
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which acts on all particles simultaneoulsy and cannot be eliminated. The behavior of the system
would be completely different if Wt(X

i,N
t ) was replaced by independent Wiener process dBi,N

t for
each particle, as in standard mean-field results.

In the absence of noise (ε = 0), the mean-field evolution equation is a deterministic Vlasov
equation. Under appropriate assumptions, when t→∞, the density ft(x, v) converges (in a suitable
weak sense), to g(v) which depends only on the velocity variable v: this is the celebrated Landau
damping phenomenon [Mouhot and Villani, 2011]. When ε > 0, it is necessary to change the
time-scale to observe a non-trivial effect of the noise: in times of size t/ε, if one then introduce a
decomposition f εt (x, v) = gεt(v) +

√
εhεt(x, v), one obtains a slow-fast system. The application of the

averaging principle (to be justified) formally leads to a limit equation of the type

∂tg = ν∆g + divv(vg) + F (g)

for the slow component gε, where the averaged coefficient F is defined as

F (g) = Eµg
[∫
∇V[h] · ∇vhdx

]
with µg being the invariant distribution for the fast equation with frozen slow component:

dh+ v · ∇xhdt+∇V[h] · ∇vgdt = ∇vg · dWt.

The equation above is a linearized Vlasov equation with an additive Gaussian perturbation. Our
main partial result (in collaboration with Maxime Hauray and Christophe Prange) is the analysis
of the large time behavior of this SPDE: we have identified a class of well-chosen spaces (using
Sobolev type norms with asymmetric weights) such that the process h is ergodic with a unique
invariant distribution µg, under appropriate assumptions on g. Note that the linear Landau damping
mechanism is sufficient for that purpose.

The next step, in progress with Raphael Winter, is to justify the validity of the averaging
principle, first in the case V = 0: this is non-trivial since convergence to equilibrium in the fast
equation only holds in a weak sense.

The ides described above are part of a challenging project started several years ago, a short-
term objective is to fully prove and understand the partial results, before investigating the original
problem which may require substantially more involved PDE skills.

Finally, the study of stochastic multiscale systems is also a source of interesting collaborations.
In the recent years, I have participated to the TURBULLET project (Particles drifting and pro-
pelling in turbulent flows). First, an application to astrophysics has lead to the publication [21] in
collaboration with Guillaume Laibe and Maxime Lombart, which may lead to further works. Sec-
ond, in collaboration with Mickaël Bourgoin, Florence Raynal and Romain Volk, we are studying
the problem of diffusiophoresis: we study the behavior of particles with dynamics

dXt = u(Xt)dt+ αvdp(Xt)dt+
√

2DdBt

where u is a periodic flow (for instance a cellular flow), D is a diffusion coefficient, α is a (small)
parameter, and vdp represents the effect of the diffusiophoresis on the particles. For instance,
the particles are immersed in the fluid (with velocity field u), the fluid contains another species
described by a stationary concentration S, and vdp = ∇S+G where G is an imposed gradient. This
work in progress combines mathematical analysis, numerical experiments and lab experiments. The
mathematical contribution is to identify terminal velocity and effective diffusion coefficients using
multiscale techniques, and to study their behavior depending on the small parameter α, and on the
diffusion coefficients of the two species.
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Concerning the Monte-Carlo algorithms for the simulation of rare events presented in Sec-
tion 5.3.2.2, one of the most natural perspectives is the combination with machine learning tech-
niques. For instance, for the AMS algorithm, one may using a reinforcement learning strategy to
simultaneously sample transitions between metastable states and approach the committor function,
which is the optimal score function for the estimation of the probability of those transitions. A
study of this topic has been initiated but not completed, while participating to the ACADEMICS
project (Machine Learning & Data Science for Complex and Dynamical Models). The choice of
the reaction coordinate in the ABP and ABF algorithms may also benefit from machine learning
techniques.

Even if recently there have been only few theoretical results concerning the AMS algorithm, there
still remain important open questions to justify its efficiency. However, the main perspective would
be the application of the AMS, ABP and ABF algorithms, which may lead to new collaborations
with other fields of science.

To conclude, the questions mentioned above reveal that the results and approaches reported
in this manuscript have a huge potential to study numerical methods for other classes of SPDE
models and multiscale stochastic systems. Combining stochastic modelling and numerical analysis,
theoretical analysis and numerical investigations, abstract analysis and practical applications, is an
exciting way of studying all aspects of applied mathematics.

122

http://www.ixxi.fr/equipes/projet-ACADEMICS


123





Contributions

[1] Charles-Edouard Bréhier. Numerical Analysis of Highly Oscillatory Stochastic PDEs. PhD thesis, ENS Cachan
Antenne de Bretagne, 2012.

[2] Charles-Edouard Bréhier. Influence of the regularity of the test functions for weak convergence in numerical
discretization of SPDEs. J. Complexity, 56:101424, 15, 2020.

[3] Charles-Edouard Bréhier, Martin Hairer, and Andrew M. Stuart. Weak error estimates for trajectories of SPDEs
under spectral Galerkin discretization. J. Comput. Math., 36(2):159–182, 2018.

[4] Charles-Edouard Bréhier and Arnaud Debussche. Kolmogorov equations and weak order analysis for SPDEs
with nonlinear diffusion coefficient. J. Math. Pures Appl. (9), 119:193–254, 2018.

[5] Charles-Edouard Bréhier and Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-
Cahn equation. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4169–4190, 2019.

[6] Charles-Edouard Bréhier, Jianbo Cui, and Jialin Hong. Strong convergence rates of semidiscrete splitting ap-
proximations for the stochastic Allen-Cahn equation. IMA J. Numer. Anal., 39(4):2096–2134, 2019.

[7] Charles-Edouard Bréhier and Ludovic Goudenège. Weak convergence rates of splitting schemes for the stochastic
Allen-Cahn equation. BIT, 60(3):543–582, 2020.

[8] Charles-Edouard Bréhier and David Cohen. Analysis of a splitting scheme for a class of nonlinear stochastic
Schrödinger equations. Preprint, 2020.

[9] Charles-Edouard Bréhier and David Cohen. Strong rates of convergence of a splitting scheme for schrödinger
equations with nonlocal interaction cubic nonlinearity and white noise dispersion. Preprint, 2020.

[10] Charles-Edouard Bréhier. Approximation of the invariant measure with an Euler scheme for stochastic PDEs
driven by space-time white noise. Potential Anal., 40(1):1–40, 2014.

[11] Charles-Edouard Bréhier and Marie Kopec. Approximation of the invariant law of SPDEs: error analysis using
a Poisson equation for a full-discretization scheme. IMA J. Numer. Anal., 37(3):1375–1410, 2017.

[12] Charles-Edouard Bréhier and Gilles Vilmart. High order integrator for sampling the invariant distribution of a
class of parabolic stochastic PDEs with additive space-time noise. SIAM J. Sci. Comput., 38(4):A2283–A2306,
2016.

[13] Charles-Edouard Bréhier. Approximation of the invariant distribution for a class of ergodic spdes using an explicit
tamed exponential euler scheme. Preprint, 2020.

[14] Charles-Edouard Bréhier. Approximation of the invariant distribution for a class of ergodic sdes with one-sided
lipschitz continuous drift coefficient using an explicit tamed euler scheme. Preprint, 2020.

[15] Charles-Edouard Brehier and Xu Wang. On parareal algorithms for semilinear parabolic stochastic PDEs. SIAM
J. Numer. Anal., 58(1):254–278, 2020.

[16] Assyr Abdulle, Charles-Edouard Bréhier, and Gilles Vilmart. Convergence analysis of explicit stabilized integra-
tors for parabolic semilinear stochastic pdes. Preprint, 2021.

[17] Charles-Edouard Bréhier. Strong and weak orders in averaging for SPDEs. Stochastic Process. Appl., 122(7):2553–
2593, 2012.

[18] Charles-Edouard Bréhier. Orders of convergence in the averaging principle for SPDEs: the case of a stochastically
forced slow component. Stochastic Process. Appl., 130(6):3325–3368, 2020.

[19] Charles-Edouard Bréhier. Analysis of an HMM time-discretization scheme for a system of stochastic PDEs.
SIAM J. Numer. Anal., 51(2):1185–1210, 2013.

[20] Charles-Edouard Bréhier and Shmuel Rakotonirina-Ricquebourg. On asymptotic preserving schemes for a class
of stochastic differential equations in averaging and diffusion approximation regimes. Preprint, 2020.

[21] Guillaume Laibe, Charles-Edouard Bréhier, and Maxime Lombart. On the settling of small grains in dusty discs:
analysis and formulae. Monthly Notices of the Royal Astronomical Society, 494(4):5134–5147, 05 2020.

[22] Charles-Edouard Bréhier, Tony Lelièvre, and Mathias Rousset. Analysis of adaptive multilevel splitting algo-
rithms in an idealized case. ESAIM Probab. Stat., 19:361–394, 2015.

125



[23] Charles-Edouard Bréhier, Ludovic Goudenège, and Loïc Tudela. Central limit theorem for adaptive multilevel
splitting estimators in an idealized setting. In Monte Carlo and quasi-Monte Carlo methods, volume 163 of
Springer Proc. Math. Stat., pages 245–260. Springer, [Cham], 2016.

[24] Charles-Edouard Bréhier. Large deviations principle for the adaptive multilevel splitting algorithm in an idealized
setting. ALEA Lat. Am. J. Probab. Math. Stat., 12(2):717–742, 2015.

[25] Charles Edouard Bréhier, Paul Eric Chaudru de Raynal, Vincent Lemaire, Fabien Panloup, and Clément Rey.
Recent advances in various fields of numerical probability. In Modélisation Aléatoire et Statistique—Journées
MAS 2014, volume 51 of ESAIM Proc. Surveys, pages 272–292. EDP Sci., Les Ulis, 2015.

[26] Charles-Edouard Bréhier, Maxime Gazeau, Ludovic Goudenège, Tony Lelièvre, and Mathias Rousset. Unbiased-
ness of some generalized adaptive multilevel splitting algorithms. Ann. Appl. Probab., 26(6):3559–3601, 2016.

[27] Charles-Edouard Bréhier and Tony Lelièvre. On a new class of score functions to estimate tail probabilities of
some stochastic processes with adaptive multilevel splitting. Chaos, 29(3):033126, 13, 2019.

[28] Charles-Edouard Bréhier, Maxime Gazeau, Ludovic Goudenège, and Mathias Rousset. Analysis and simulation
of rare events for SPDEs. In CEMRACS 2013—modelling and simulation of complex systems: stochastic and
deterministic approaches, volume 48 of ESAIM Proc. Surveys, pages 364–384. EDP Sci., Les Ulis, 2015.

[29] Thibault Lestang, Francesco Ragone, Charles-Edouard Bréhier, Corentin Herbert, and Freddy Bouchet. Com-
puting return times or return periods with rare event algorithms. J. Stat. Mech. Theory Exp., (4):043213, 33,
2018.

[30] Elias Ventre, Thibault Espinasse, Charles-Edouard Bréhier, Vincent Calvez, Thomas Lepoutre, and Olivier
Gandrillon. Reduction of a stochastic model of gene expression: Lagrangian dynamics gives access to basins of
attraction as cell types and metastability. Preprint, 2020.

[31] Michel Benaïm and Charles-Édouard Bréhier. Convergence of adaptive biasing potential methods for diffusions.
C. R. Math. Acad. Sci. Paris, 354(8):842–846, 2016.

[32] Michel Benaïm and Charles-Edouard Bréhier. Convergence analysis of adaptive biasing potential methods for
diffusion processes. Commun. Math. Sci., 17(1):81–130, 2019.

[33] Michel Benaïm, Charles-Edouard Bréhier, and Pierre Monmarché. Analysis of an adaptive biasing force method
based on self-interacting dynamics. Electron. J. Probab., 25:Paper No. 88, 28, 2020.

[34] Charles-Edouard Bréhier and Erwan Faou. Analysis of the Monte-Carlo error in a hybrid semi-Lagrangian
scheme. Appl. Math. Res. Express. AMRX, (2):167–203, 2015.

126



References

[Abdulle et al., 2012] Abdulle, A., E, W., Engquist, B., and Vanden-Eijnden, E. (2012). The heterogeneous multiscale
method. Acta Numer., 21:1–87.

[Alrachid and Lelièvre, 2015] Alrachid, H. and Lelièvre, T. (2015). Long-time convergence of an adaptive biasing
force method: variance reduction by Helmholtz projection. SMAI J. Comput. Math., 1:55–82.

[Andersson et al., 2019] Andersson, A., Hefter, M., Jentzen, A., and Kurniawan, R. (2019). Regularity properties for
solutions of infinite dimensional Kolmogorov equations in Hilbert spaces. Potential Anal., 50(3):347–379.

[Andersson et al., 2016] Andersson, A., Kruse, R., and Larsson, S. (2016). Duality in refined Sobolev-Malliavin spaces
and weak approximation of SPDE. Stoch. Partial Differ. Equ. Anal. Comput., 4(1):113–149.

[Andersson and Larsson, 2016] Andersson, A. and Larsson, S. (2016). Weak convergence for a spatial approximation
of the nonlinear stochastic heat equation. Math. Comp., 85(299):1335–1358.

[Andersson and Lindner, 2019] Andersson, A. and Lindner, F. (2019). Malliavin regularity and weak approximation
of semilinear SPDEs with Lévy noise. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4271–4294.

[Anton and Cohen, 2018] Anton, R. and Cohen, D. (2018). Exponential integrators for stochastic Schrödinger equa-
tions driven by Itô noise. J. Comput. Math., 36(2):276–309.

[Ayi and Faou, 2019] Ayi, N. and Faou, E. (2019). Analysis of an asymptotic preserving scheme for stochastic linear
kinetic equations in the diffusion limit. SIAM/ASA J. Uncertain. Quantif., 7(2):760–785.

[Bally and Talay, 1996] Bally, V. and Talay, D. (1996). The law of the Euler scheme for stochastic differential equa-
tions. I. Convergence rate of the distribution function. Probab. Theory Related Fields, 104(1):43–60.

[Barducci et al., 2008] Barducci, A., Bussi, G., and Parrinello, M. (2008). Well-tempered metadynamics: a smoothly
converging and tunable free-energy method. Physical review letters, 100(2):020603.

[Becker et al., 2017] Becker, S., Gess, B., Jentzen, A., and Kloeden, P. E. (2017). Strong convergence rates for explicit
space-time discrete numerical approximations of stochastic allen-cahn equations. arXiv preprint arXiv:1711.02423.

[Belaouar et al., 2015] Belaouar, R., de Bouard, A., and Debussche, A. (2015). Numerical analysis of the nonlinear
Schrödinger equation with white noise dispersion. Stoch. Partial Differ. Equ. Anal. Comput., 3(1):103–132.

[Benaïm, 1999] Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités,
XXXIII, volume 1709 of Lecture Notes in Math., pages 1–68. Springer, Berlin.

[Benaïm et al., 2015] Benaïm, M., Ciotir, I., and Gauthier, C.-E. (2015). Self-repelling diffusions via an infinite
dimensional approach. Stoch. Partial Differ. Equ. Anal. Comput., 3(4):506–530.

[Benaïm et al., 2002] Benaïm, M., Ledoux, M., and Raimond, O. (2002). Self-interacting diffusions. Probab. Theory
Related Fields, 122(1):1–41.

[Benveniste et al., 1990] Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag, Berlin. Translated from
the French by Stephen S. Wilson.

[Bouchet et al., 2019] Bouchet, F., Rolland, J., and Simonnet, E. (2019). Rare event algorithm links transitions in
turbulent flows with activated nucleations. Phys. Rev. Lett., 122:074502.

[Bovier and den Hollander, 2015] Bovier, A. and den Hollander, F. (2015). Metastability, volume 351 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham. A
potential-theoretic approach.

[Boyaval et al., 2019] Boyaval, S., Martal, S., and Reygner, J. (2019). Finite-volume approximation of the invariant
measure of a viscous stochastic scalar conservation law. arXiv preprint arXiv:1909.08899.

[Cérou et al., 2019a] Cérou, F., Delyon, B., Guyader, A., and Rousset, M. (2019a). On the asymptotic normality of
adaptive multilevel splitting. SIAM/ASA J. Uncertain. Quantif., 7(1):1–30.

[Cérou and Guyader, 2007] Cérou, F. and Guyader, A. (2007). Adaptive multilevel splitting for rare event analysis.
Stoch. Anal. Appl., 25(2):417–443.

[Cérou et al., 2011] Cérou, F., Guyader, A., Lelièvre, T., and Pommier, D. (2011). A multiple replica approach to
simulate reactive trajectories. Journal of Chemical Physics, 134(5).

127



[Cérou et al., 2019b] Cérou, F., Guyader, A., and Rousset, M. (2019b). Adaptive multilevel splitting: historical
perspective and recent results. Chaos, 29(4):043108, 12.

[Cerrai, 2001] Cerrai, S. (2001). Second order PDE’s in finite and infinite dimension, volume 1762 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin. A probabilistic approach.

[Cerrai, 2003] Cerrai, S. (2003). Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz
reaction term. Probab. Theory Related Fields, 125(2):271–304.

[Cerrai, 2009] Cerrai, S. (2009). A Khasminskii type averaging principle for stochastic reaction-diffusion equations.
Ann. Appl. Probab., 19(3):899–948.

[Cerrai and Freidlin, 2009] Cerrai, S. and Freidlin, M. (2009). Averaging principle for a class of stochastic reaction-
diffusion equations. Probab. Theory Related Fields, 144(1-2):137–177.

[Cerrai et al., 2017] Cerrai, S., Freidlin, M., and Salins, M. (2017). On the Smoluchowski-Kramers approximation for
SPDEs and its interplay with large deviations and long time behavior. Discrete Contin. Dyn. Syst., 37(1):33–76.

[Chen et al., 2020] Chen, Z., Gan, S., and Wang, X. (2020). A full-discrete exponential Euler approximation of the
invariant measure for parabolic stochastic partial differential equations. Appl. Numer. Math., 157:135–158.

[Coghi and Flandoli, 2016] Coghi, M. and Flandoli, F. (2016). Propagation of chaos for interacting particles subject
to environmental noise. Ann. Appl. Probab., 26(3):1407–1442.

[Cohen and Dujardin, 2017] Cohen, D. and Dujardin, G. (2017). Exponential integrators for nonlinear Schrödinger
equations with white noise dispersion. Stoch. Partial Differ. Equ. Anal. Comput., 5(4):592–613.

[Comer et al., 2014] Comer, J., Gumbart, J. C., Hénin, J., Lelieèvre, T., Pohorille, A., and Chipot, C. (2014). The
adaptive biasing force method: Everything you always wanted to know but were afraid to ask. The Journal of
Physical Chemistry B, 119(3):1129–1151.

[Conus et al., 2019] Conus, D., Jentzen, A., and Kurniawan, R. (2019). Weak convergence rates of spectral Galerkin
approximations for SPDEs with nonlinear diffusion coefficients. Ann. Appl. Probab., 29(2):653–716.

[Cotter et al., 2013] Cotter, S. L., Roberts, G. O., Stuart, A. M., andWhite, D. (2013). MCMCmethods for functions:
modifying old algorithms to make them faster. Statist. Sci., 28(3):424–446.

[Cui and Hong, 2019] Cui, J. and Hong, J. (2019). Strong and weak convergence rates of a spatial approximation for
stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal., 57(4):1815–1841.

[Cui et al., 2017] Cui, J., Hong, J., Liu, Z., and Zhou, W. (2017). Stochastic symplectic and multi-symplectic methods
for nonlinear Schrödinger equation with white noise dispersion. J. Comput. Phys., 342:267–285.

[Cui et al., 2018] Cui, J., Hong, J., and Sun, L. (2018). Weak convergence and invariant measure of a full discretization
for non-globally lipschitz parabolic spde. arXiv preprint arXiv:1811.04075.

[Da Prato and Zabczyk, 2014] Da Prato, G. and Zabczyk, J. (2014). Stochastic equations in infinite dimensions,
volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second
edition.

[Darve and Pohorille, 2001] Darve, E. and Pohorille, A. (2001). Calculating free energies using average force. The
Journal of Chemical Physics, 115(20):9169–9183.

[de Bouard and Debussche, 2006] de Bouard, A. and Debussche, A. (2006). Weak and strong order of convergence of
a semidiscrete scheme for the stochastic nonlinear Schrödinger equation. Appl. Math. Optim., 54(3):369–399.

[Debussche, 2011] Debussche, A. (2011). Weak approximation of stochastic partial differential equations: the nonlin-
ear case. Math. Comp., 80(273):89–117.

[Debussche and Printems, 2009] Debussche, A. and Printems, J. (2009). Weak order for the discretization of the
stochastic heat equation. Math. Comp., 78(266):845–863.

[Debussche and Vovelle, 2012] Debussche, A. and Vovelle, J. (2012). Diffusion limit for a stochastic kinetic problem.
Commun. Pure Appl. Anal., 11(6):2305–2326.

[Debussche and Vovelle, 2021] Debussche, A. and Vovelle, J. (2021). Diffusion-approximation in stochastically forced
kinetic equations. Tunis. J. Math., 3(1):1–53.

[Del Moral and Garnier, 2005] Del Moral, P. and Garnier, J. (2005). Genealogical particle analysis of rare events.
Ann. Appl. Probab., 15(4):2496–2534.

[Dickson et al., 2010] Dickson, B., Legoll, F., Lelièvre, T., Stoltz, G., and Fleurat-Lessard, P. (2010). Free energy
calculations: An efficient adaptive biasing potential method. J. Phys. Chem. B, 114:5823–5830.

[Dickson, 2017] Dickson, B. M. (2017). Survey of adaptive biasing potentials: comparisons and outlook. Current
Opinion in Structural Biology, 43:63–67.

[Duboscq and Marty, 2016] Duboscq, R. and Marty, R. (2016). Analysis of a splitting scheme for a class of random
nonlinear partial differential equations. ESAIM Probab. Stat., 20:572–589.

[Duflo, 1997] Duflo, M. (1997). Random iterative models, volume 34 of Applications of Mathematics (New York).
Springer-Verlag, Berlin. Translated from the 1990 French original by Stephen S. Wilson and revised by the author.

128



[E et al., 2005] E, W., Liu, D., and Vanden-Eijnden, E. (2005). Analysis of multiscale methods for stochastic differ-
ential equations. Comm. Pure Appl. Math., 58(11):1544–1585.

[Ehrlacher et al., 2020] Ehrlacher, V., Lelièvre, T., and Monmarché, P. (2020). Adaptive force biasing algorithms:
new convergence results and tensor approximations of the bias. arXiv preprint arXiv:2007.09941.

[Faou, 2012] Faou, E. (2012). Geometric numerical integration and Schrödinger equations. Zurich Lectures in Ad-
vanced Mathematics. European Mathematical Society (EMS), Zürich.

[Fort et al., 2014] Fort, G., Jourdain, B., Kuhn, E., Lelièvre, T., and Stoltz, G. (2014). Efficiency of the Wang-Landau
algorithm: a simple test case. Appl. Math. Res. Express. AMRX, (2):275–311.

[Fort et al., 2015] Fort, G., Jourdain, B., Kuhn, E., Lelièvre, T., and Stoltz, G. (2015). Convergence of the Wang-
Landau algorithm. Math. Comp., 84(295):2297–2327.

[Fort et al., 2017] Fort, G., Jourdain, B., Lelièvre, T., and Stoltz, G. (2017). Self-healing umbrella sampling: conver-
gence and efficiency. Stat. Comput., 27(1):147–168.

[Fu et al., 2016] Fu, H., Shao, X., Chipot, C., and Cai, W. (2016). Extended adaptive biasing force algorithm.
an on-the-fly implementation for accurate free-energy calculations. Journal of Chemical Theory and Computation,
12(8):3506–3513. PMID: 27398726.

[Gérard, 2005] Gérard, P. (2005). Équations de champ moyen pour la dynamique quantique d’un grand nombre de
particules (d’après Bardos, Erdös, Golse, Gottlieb, Mauser, Yau). Number 299, pages Exp. No. 930, viii, 147–164.
Séminaire Bourbaki. Vol. 2003/2004.

[Giles, 2015] Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numer., 24:259–328.
[Gobet and Liu, 2015] Gobet, E. and Liu, G. (2015). Rare event simulation using reversible shaking transformations.
SIAM J. Sci. Comput., 37(5):A2295–A2316.

[Guyader et al., 2011] Guyader, A., Hengartner, N., and Matzner-Lø ber, E. (2011). Simulation and estimation of
extreme quantiles and extreme probabilities. Appl. Math. Optim., 64(2):171–196.

[Haji-Ali et al., 2016] Haji-Ali, A.-L., Nobile, F., and Tempone, R. (2016). Multi-index Monte Carlo: when sparsity
meets sampling. Numer. Math., 132(4):767–806.

[Hénin and Chipot, 2004] Hénin, J. and Chipot, C. (2004). Overcoming free energy barriers using unconstrained
molecular dynamics simulations. The Journal of chemical physics, 121(7):2904–2914.

[Higham et al., 2002] Higham, D. J., Mao, X., and Stuart, A. M. (2002). Strong convergence of Euler-type methods
for nonlinear stochastic differential equations. SIAM J. Numer. Anal., 40(3):1041–1063.

[Hong et al., 2019] Hong, J., Miao, L., and Zhang, L. (2019). Convergence analysis of a symplectic semi-discretization
for stochastic NLS equation with quadratic potential. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4295–4315.

[Hong and Wang, 2019] Hong, J. and Wang, X. (2019). Invariant measures for stochastic nonlinear Schrödinger equa-
tions, volume 2251 of Lecture Notes in Mathematics. Springer, Singapore. Numerical approximations and symplectic
structures.

[Hutzenthaler and Jentzen, 2015] Hutzenthaler, M. and Jentzen, A. (2015). Numerical approximations of stochastic
differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc., 236(1112):v+99.

[Jentzen and Kloeden, 2009] Jentzen, A. and Kloeden, P. E. (2009). Overcoming the order barrier in the numerical
approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 465(2102):649–667.

[Jentzen and Kloeden, 2011] Jentzen, A. and Kloeden, P. E. (2011). Taylor approximations for stochastic partial
differential equations, volume 83 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[Jin, 1999] Jin, S. (1999). Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM
J. Sci. Comput., 21(2):441–454.

[Jourdain et al., 2010] Jourdain, B., Lelièvre, T., and Roux, R. (2010). Existence, uniqueness and convergence of a
particle approximation for the adaptive biasing force process. M2AN Math. Model. Numer. Anal., 44(5):831–865.

[Jourdain et al., 2019] Jourdain, B., Lelièvre, T., and Zitt, P.-A. (2019). Convergence of metadynamics: discussion
of the adiabatic hypothesis. arXiv preprint arXiv:1904.08667.

[Kahn and Harris, 1951] Kahn, H. and Harris, T. E. (1951). Estimation of particle transmission by random sampling.
National Bureau of Standards, 12:27–30.

[Khasminskii, 1968] Khasminskii, R. Z. (1968). On the principle of averaging the Itô’s stochastic differential equations.
Kybernetika (Prague), 4:260–279.

[Khasminskii and Yin, 2005] Khasminskii, R. Z. and Yin, G. (2005). Limit behavior of two-time-scale diffusions
revisited. J. Differential Equations, 212(1):85–113.

[Khoo et al., 2019] Khoo, Y., Lu, J., and Ying, L. (2019). Solving for high-dimensional committor functions using
artificial neural networks. Res. Math. Sci., 6(1):Paper No. 1, 13.

129



[Khoshnevisan, 2014] Khoshnevisan, D. (2014). Analysis of stochastic partial differential equations, volume 119 of
CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sci-
ences, Washington, DC; by the American Mathematical Society, Providence, RI.

[Kovács et al., 2015] Kovács, M., Larsson, S., and Lindgren, F. (2015). On the backward Euler approximation of the
stochastic Allen-Cahn equation. J. Appl. Probab., 52(2):323–338.

[Kovács et al., 2018] Kovács, M., Larsson, S., and Lindgren, F. (2018). On the discretisation in time of the stochastic
Allen-Cahn equation. Math. Nachr., 291(5-6):966–995.

[Laio and Parrinello, 2002] Laio, A. and Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the Na-
tional Academy of Sciences, 99(20):12562–12566.

[Landau and Binder, 2015] Landau, D. P. and Binder, K. (2015). A guide to Monte Carlo simulations in statistical
physics. 4th updated edition. Cambridge: Cambridge University Press, 4th updated edition edition.

[Lang, 2016] Lang, A. (2016). A note on the importance of weak convergence rates for SPDE approximations in
multilevel Monte Carlo schemes. In Monte Carlo and quasi-Monte Carlo methods, volume 163 of Springer Proc.
Math. Stat., pages 489–505. Springer, [Cham].

[Leimkuhler and Matthews, 2013] Leimkuhler, B. and Matthews, C. (2013). Rational construction of stochastic nu-
merical methods for molecular sampling. Appl. Math. Res. Express. AMRX, (1):34–56.

[Leimkuhler and Matthews, 2015] Leimkuhler, B. and Matthews, C. (2015). Molecular dynamics. With deterministic
and stochastic numerical methods., volume 39. Cham: Springer.

[Lelièvre et al., 2008] Lelièvre, T., Rousset, M., and Stoltz, G. (2008). Long-time convergence of an adaptive biasing
force method. Nonlinearity, 21(6):1155–1181.

[Lelièvre et al., 2010] Lelièvre, T., Rousset, M., and Stoltz, G. (2010). Free energy computations: A mathematical
perspective. Imperial College Press, London.

[Lelièvre and Stoltz, 2016] Lelièvre, T. and Stoltz, G. (2016). Partial differential equations and stochastic methods
in molecular dynamics. Acta Numer., 25:681–880.

[Lestang, 2018] Lestang, T. (2018). Numerical simulation and rare events algorithms for the study of extreme fluctu-
ations of the drag force acting on an obstacle immersed in a turbulent flow. PhD thesis, Université de Lyon.

[Lopes, 2019] Lopes, L. S. (2019). Méthodes numériques pour la simulation d’événements rares en dynamique molécu-
laire. PhD thesis, Université Paris Est.

[Lord et al., 2014] Lord, G. J., Powell, C. E., and Shardlow, T. (2014). An introduction to computational stochastic
PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York.

[Louvin, 2017] Louvin, H. (2017). Development of an adaptive variance reduction technique for Monte Carlo particle
transport. PhD thesis, Université Paris-Saclay.

[Lu and Nolen, 2015] Lu, J. and Nolen, J. (2015). Reactive trajectories and the transition path process. Probab.
Theory Related Fields, 161(1-2):195–244.

[Lucente et al., 2019] Lucente, D., Duffner, S., Herbert, C., Rolland, J., and Bouchet, F. (2019). Machine learning of
committor functions for predicting high impact climate events.

[Marsili et al., 2006] Marsili, S., Barducci, A., Chelli, R., Procacci, P., and Schettino, V. (2006). Self-healing umbrella
sampling: A non-equilibrium approach for quantitative free energy calculations. The Journal of Physical Chemistry
B, 110(29):14011–14013. PMID: 16854090.

[Marty, 2006] Marty, R. (2006). On a splitting scheme for the nonlinear Schrödinger equation in a random medium.
Commun. Math. Sci., 4(4):679–705.

[Mattingly et al., 2002] Mattingly, J. C., Stuart, A. M., and Higham, D. J. (2002). Ergodicity for SDEs and approx-
imations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl., 101(2):185–232.

[Mattingly et al., 2010] Mattingly, J. C., Stuart, A. M., and Tretyakov, M. V. (2010). Convergence of numerical
time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal., 48(2):552–577.

[McLachlan and Quispel, 2002] McLachlan, R. I. and Quispel, G. R. W. (2002). Splitting methods. Acta Numer.,
11:341–434.

[Mouhot and Villani, 2011] Mouhot, C. and Villani, C. (2011). On Landau damping. Acta Math., 207(1):29–201.
[Nardini et al., 2012] Nardini, C., Gupta, S., Ruffo, S., Dauxois, T., and Bouchet, F. (2012). Kinetic theory
of nonequilibrium stochastic long-range systems: phase transition and bistability. J. Stat. Mech. Theory Exp.,
(12):P12010, 28.

[Pavliotis and Stuart, 2008] Pavliotis, G. A. and Stuart, A. M. (2008). Multiscale methods, volume 53 of Texts in
Applied Mathematics. Springer, New York. Averaging and homogenization.

[Poncet, 2017] Poncet, R. (2017).Méthodes numériques pour la simulation d’équations aux dérivées partielles stochas-
tiques non-linéaires en condensation de Bose-Einstein. PhD thesis, Université Paris-Saclay.

[Printems, 2001] Printems, J. (2001). On the discretization in time of parabolic stochastic partial differential equa-
tions. M2AN Math. Model. Numer. Anal., 35(6):1055–1078.

130



[Qi and Wang, 2019] Qi, R. and Wang, X. (2019). Optimal error estimates of Galerkin finite element methods for
stochastic Allen-Cahn equation with additive noise. J. Sci. Comput., 80(2):1171–1194.

[Rakotonirina-Ricquebourg, 2020] Rakotonirina-Ricquebourg, S. (2020). Diffusion limit for a stochastic kinetic prob-
lem with unbounded driving process.

[Rolland et al., 2016] Rolland, J., Bouchet, F., and Simonnet, E. (2016). Computing transition rates for the 1-D
stochastic Ginzburg-Landau-Allen-Cahn equation for finite-amplitude noise with a rare event algorithm. J. Stat.
Phys., 162(2):277–311.

[Röckner et al., 2020] Röckner, M., Xie, L., and Yang, L. (2020). Asymptotic behavior of multiscale stochastic partial
differential equations.

[Sabanis, 2013] Sabanis, S. (2013). A note on tamed Euler approximations. Electron. Commun. Probab., 18:no. 47,
10.

[Sun et al., 2021] Sun, X., Xie, L., and Xie, Y. (2021). Averaging principle for slow-fast stochastic partial differential
equations with Hölder continuous coefficients. J. Differential Equations, 270:476–504.

[Talay, 1986] Talay, D. (1986). Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances
de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér., 20(1):141–179.

[Torrie and Valleau, 1977] Torrie, G. and Valleau, J. (1977). Nonphysical sampling distributions in monte carlo free-
energy estimation: Umbrella sampling. Journal of Computational Physics, 23(2):187 – 199.

[Villén-Altamirano and Villén-Altamirano, 1991] Villén-Altamirano, M. and Villén-Altamirano, J. (1991).
RESTART: A method for accelerating rare events simulations. In Proceeding of the thirteenth International
Teletraffic Congress, volume Copenhagen, Denmark, June 19-26 of Queueing, performance and control in ATM:
ITC-13 workshops, pages 71–76. North-Holland, Amsterdam-New York.

[Vilmart, 2015] Vilmart, G. (2015). Postprocessed integrators for the high order integration of ergodic SDEs. SIAM
J. Sci. Comput., 37(1):A201–A220.

[Wang and Landau, 2001a] Wang, F. and Landau, D. (2001a). Determining the density of states for classical statis-
tical models: A random walk algorithm to produce a flat histogram. Physical Review E, 64(5):056101.

[Wang and Landau, 2001b] Wang, F. and Landau, D. (2001b). Efficient, multiple-range random walk algorithm to
calculate the density of states. Physical review letters, 86(10):2050.

[Wang, 2016] Wang, X. (2016). Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without
Malliavin calculus. Discrete Contin. Dyn. Syst., 36(1):481–497.

[Wang, 2020] Wang, X. (2020). An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-
Cahn equation. Stochastic Process. Appl., 130(10):6271–6299.

131



Contributions to stochastic numerics :
simulation of infinite dimensional, multiscale and metastable processes

Abstract : The works reported in this manuscript combine probabilistic models, tools from analysis of
partial differential equations and numerical methods, and go from theoretial analysis to applications (in
physics, astrophysics and biology), supplemented with numerical experiments.
The first part is about analysis of numerical schemes for stochastic partial differential equations. First, we
obtain rates of convergence in a weak sense, mainly exploiting regularity properties of infinite dimensional
Kolmogorov equations. For some equations with polynomial nonlinearities (Allen-Cahn and Schrödinger),
we propose splitting schemes and study their speed of convergence. Finally, we study the large time
behavior of numerical schemes, with the objective to approximate the invariant distribution : in particular
we provide higher order methods for this problem. The results are based on theoretical analysis and
numerical investigation.
The second part is devoted to the study of some multiscale stochastic systems. On the one hand, we study
the rate of convergence in the averaging principle for some SPDE systems, and an efficient numerical
method is proposed. On the other hand, we provide the construction and analysis of some asymptotic
preserving schemes for SDE and SPDE systems in averaging and diffusion approximation regimes.
The third part deals with two Monte Carlo methods to sample rare events, applied to metastable processes.
First, we introduce a generalized version of the Adaptive Multilevel Splitting algorithms, used to estimate
probabilities or rare events. We study some theoretical properties (unbiasedness) and various applications.
Second, we study the consistency of adaptive biasing techniques to sample from multimodal distributions,
using self-interacting dynamics.

Keywords : Stochastic Partial Differential Equations ; Numerical methods ; Monte Carlo methods ; Mul-
tiscale systems ; Rare events



Contributions en probabilités numériques :
simulation de processus infini-dimensionnels, multiéchelles et métastables

Résumé : Les travaux présentés dans ce mémoire combinent des modèles probabilistes, des outils d’ana-
lyse des équations aux dérivées partielles et des méthodes numériques, en allant de l’analyse théorique
aux applications (en physique, astrophysique et biologie) en passant par de l’expérimentation numérique.
La première partie porte sur l’analyse de schémas numériques pour les Equations aux Dérivées Partielles
Stochastiques. D’abord il sagit d’établir l’ordre de convergence au sens faible, principalement en exploitant
des résultats de rgularité d’équations de Kolmogorov en dimension infinie. Pour certaines équations avec
non-linéarités à croissance polynomiale (Allen-Cahn et Schrödinger), on propose des schémas de splitting
et on étudie leur vitesse de convergence. Enfin, on étudie le comportement en temps long de ces schémas,
en visant l’approximation de la distribution invariante : en particulier on fournit des méthodes d’ordre
élevé pour ce problème. Les résultats sappuient sur l’analyse théorique et une expérimentation numérique.
La deuxième partie est consacrée l’étude de systèmes stochastiques multiéchelles. D’une part, on étudie la
vitesse de convergence dans le principe de moyennisation pour des systèmes d’EDPS, avec pour application
la construction d’un schéma efficace. D’autre part, on propose la construction et l’analyse de méthodes
numériques préservant lasymptotique, pour des systèmes d’Equations Différentielles et aux Dérivées Par-
tielles Stochastiques, dans des régimes moyennisation et approximation-diffusion.
La troisième partie présente deux méthodes de Monte Carlo pour la simulation d’vnements rares, ap-
pliquées pour des processus métastables. D’abord, on introduit une version généralisée d’un algorithme
de Décomposition Adaptative Multi–niveaux (AMS) pour estimer la probabilité d’un événement rare, et
on étudie ses propriétés théoriques (non biaisé) et diverses applications. Ensuite, on prouve la consistance
de techniques de biaisage adaptatif pour échantillonner une distribution multimodale, via une dynamique
en auto-interaction.

Mots clés : Equations aux Dérivées Partielles Stochastiques ; Méthodes numériques ; Méthodes de Monte
Carlo ; Systèmes multiéchelles ; événements rares
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