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“Rien dans la vie n’est à craindre, tout doit être compris.
C’est maintenant le moment de comprendre davantage,
afin de craindre moins.”

Marie Curie
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Introduction

When they propagate in the subsurface, seismic waves are very sensitive to the characteristics
of the medium through which they pass. Depending on their wavelength, they will react
to changes in the environment, which correspond to variations in physical parameters. This
property is exploited in geophysical imaging, which aim characterizing natural underground
reservoirs likely to contain water, gas, oils, etc. One of the main steps of this characterization
is to obtain the location of the reservoir and to draw a map of the subsurface. To achieve this, a
set of sensors is deployed to measure the reflected waves generated by seismic sources placed on
the surface of the probed area. The seismic data forms an acquisition containing the reflected
and diffracted waves and this acquisition is then processed to find the position of the reflectors.
This involves extrapolating the recorded data to the reflectors. The recorded data are back-
propagated, i.e. they are extrapolated in the opposite direction to the direction of propagation
of the source. This technique is called seismic migration and encompasses different approaches
with varying degrees of efficiency. Among them, Reverse Time Migration (RTM, [Bednar,
2005]) is known to be the most accurate. It is based on the resolution of the complete wave
equation in the time domain and the image of the subsurface is formed by applying an imaging
condition that expresses the correlation between the propagated field and the back-propagated
field. The reconstruction of the subsurface is very dependent on the imaging condition and
this is not always easy to define. RTM is the most common technique used in industrial codes.
It is a qualitative method as it only gives reflector locations. It thus indicates the presence of
natural reservoirs but does not give any information on their contents. We refer to Zhou et al.
[2018] for a recent review on RTM. As far as RTM numerical implementation is concerned, it
provides a numerical tool which turns out to be computationally intensive. Indeed, it requires
solving as many forward and backward problems as sources and its efficiency requires using
advanced numerical methods.

Full Waveform Inversion (FWI) meets the same interest as RTM in having a non-invasive
probing tool applied in complex environments penetrated by waves whose reflections can
be measured. The strength of this technology lies in the deployment of advanced numer-
ical methods, the efficiency of which is enhanced by modern computing architectures that
allow large-scale calculations. In this work, we consider FWI as a numerical technique for
reconstructing a medium through which mechanical waves pass, by using as input data the
recordings recovered from a set of receivers whose location is known a priori. The reconstruc-
tion is achieved by retrieving constitutive parameters such as velocity, density, attenuation,
etc. It was introduced in the 1980s by Lailly [1983] and Tarantola [1984], which were pre-
ceded by preliminary studies of Bamberger et al. [1977, 1982]. While RTM is a qualitative
imaging tool, FWI is a quantitative method since it allows to characterize the physical pa-
rameters defining the subsurface. To implement FWI, it is essential to have an efficient tool
for calculating synthetic seismograms. Since the success of FWI depends on the quality of
the numerical wavefields, geophysics is contributing very significantly to the development and
performance analysis of numerical methods for solving wave equations. The first numerical
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code developments have been made with finite differences (see Moczo et al. [2014]) for a re-
view of this specific topic) set on regular grids that have been extended to staggered grids (see
Virieux [1984, 1986]), arranged to include boundary conditions and material discontinuities
[Robertsson, 1996, Ohminato and Chouet, 1997] and anisotropy [Igel et al., 1995]. Finite dif-
ferences are very efficient for calculations in media that can be meshed with rectilinear grids.
Some works have proposed extensions to curved grids using curvilinear coordinate transforms
[Fornberg, 1988, Hestholm, 1999, de la Puente et al., 2014, Petersson and Sjögreen, 2015,
Shragge, 2016], but each time, the developed technique is computationally expensive and,
moreover, is only valid in smooth media. Moreover, taking into account boundary conditions
is very difficult. Finally, it is important to note that the stencil of the matrices increases
considerably with the order of approximation, which strongly affects the parallel scaling char-
acteristics. To avoid possible weak points of finite differences, finite element and finite volume
methods are very good candidates. As regards their use in seismic applications, a consensus
was quickly reached in the numerical geophysical community that these methods are not ef-
fective if used for low orders of approximation (see for example [Marfurt, 1984]). High-order
finite volume methods are indeed very efficient [Dumbser et al., 2007] but they turn out to
be computationally extensive. This observation has motivated several studies [de la Puente
et al., 2007, Käser et al., 2007, Wilcox et al., 2010, Tago et al., 2012] promoting DG (Discon-
tinuous Galerkin) methods, which are hybrids between standard (continuous) finite element
methods and finite volumes. These methods are easily implemented on simplicial unstruc-
tured meshes (triangles or tetrahedrons), which is a real asset for solving wave problems in
complex geological environments. They are formulated with a block diagonal mass matrix,
which makes them more interesting than standard finite element methods whose mass matrix
cannot be easily lumped without deteriorating their order of convergence. Moreover, by con-
struction, an element communicates only with its neighbors, which ensures that the stencil
of the matrices does not vary with the order of approximation and facilitates the paralleliza-
tion of the method which comes naturally. But it is important to note that DG methods
are more expensive than standard finite element methods because they use a larger num-
ber of degrees of freedom and require additional work to manage the fluxes that ensure the
communication of neighboring elements. In particular, it has been shown in [Ferroni et al.,
2017] that numerical flux management contributes to decrease the Friedrichs Levy Current
Constant (CFL) when using explicit time schemes. When the propagation domain can be
meshed in hexahedrons, the spectral elements have clearly demonstrated their efficiency and
the literature illustrating the interest of their use is very important (without being exhaustive,
see for example [Seriani and Priolo, 1994, Faccioli et al., 1996, 1997, Komatitsch and Tromp,
1999, Capdeville et al., 2003, Chaljub et al., 2003, Fichtner and Igel, 2008, Peter et al., 2011,
Nissen-Meyer et al., 2014]). The Spectral Element Method (SEM) uses high-order polynomial
approximations with degrees of freedom coinciding with Gauss-Lobatto-Legendre points. The
mass matrix is then diagonal, which makes the method very efficient in the time domain and
well adapted for using SIMD (Single Instruction, Multiple Data) computing architectures. In
a recent paper [Afanasiev et al., 2019] focusing on the acoustic wave equation formulated as
a second-order equation in time, one can find a very broad description of useful contribu-
tions to develop a SEM-based FWI code. These contributions are inspired by several works
that gave rise to different packages ([Cupillard et al., 2012] in Specfem, [Logg et al., 2012] in
FENicS, [Bangerth et al., 2007] in Deal.II, [Bauman and Stogner, 2016] in GRINS, [Dedner
et al., 2010] in DUNE). Based on the resolution of an optimization problem, FWI is a high-
definition technique for the reconstruction of the physical parameters of a medium traversed
by waves. One of the major obstacles to FWI is the cost of implementation, which, not to
mention the preprocessing stages such as the acquisition and processing of the observed data,
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is very high because it is based on an iterative method that can take time to converge and
that uses a priori as many direct problem-solving as sources. Frequency FWI is the most
widely used approach since it leads to the forward problem with multiple right-hand sides
[Pocock and Walker, 1998, Operto et al., 2014, Faucher, 2017]. Moreover, the simulations
can be done only for a few number of frequencies. In the time domain, FWI requires more
computational resources, especially because all wave fields must be stored. In [Singh et al.,
2018], a comparison of the two approaches has been carried out using the Marmousi model as
a target. It shows that time-domain FWI is more efficient when it comes to solving the direct
problem in large propagation domains; the frequency method may indeed be limited by the
ability of solvers to solve large-scale problems. The time solver actually requires less memory
than the frequency one and in [Sirgue et al., 2010, Brossier et al., 2014], attempts have been
done to solve the forward problem in the time-domain and to optimize the cost function in
the frequency domain. Unfortunately, this approach is very expensive since it requires using
discrete Fourier transforms.

Regarding the industrial problems under consideration, using full time-domain FWI is
recommended since the size of the problems often reaches the limit of the solver. FWI, which
is written as a strongly non-linear problem, may also have difficulties to converge in the sense
that the minimization algorithm tends to converge to a local minimum. This problem may be
caused by a wrong initial model, too noisy data, lack of low frequency data and also errors in
the approximation of the direct wave problem which is in itself complicated to achieve. Usually
to help the algorithm run iteratively, we start with low-frequency calculations, then gradually
increase the frequency to refine the reconstruction. The surveyed medium is characterized
through the minimization of a cost function that measures the difference between the observed
data and the synthetic data. FWI is a strongly non-linear inverse problem that is difficult
to solve with a global optimization method due to high computational loads, especially for
geophysical applications. In practice, an iterative algorithm is used and it evolves via a local
optimization method. This approach depends very strongly on the initial environment and
if this is too different from the environment to be reconstructed, one risks remaining stuck
on a local minimum. To obtain a more reliable initial environment, different strategies can
be applied (see the work of Biondi and Almomin [2012] for tomography traveltime and of
Almomin and Biondi [2012] for migration velocity analysis). One can also apply a multiscale
method following the ideas of Bunks et al. [1995]. This approach is widely used in the
frequency domain (see Faucher [2017] and the bibliography therein). It enables to reconstruct
the medium from low to high frequency and thus avoid local minima. However, low-frequency
data are generally missing and when they are available, they are most often very noisy. In
the time domain, envelope inversion [Wu et al., 2014, Luo and Wu, 2013] can also be applied
to extract low-frequency content in order to image structures at the long wavelength scale.
Another idea is to use attenuated data and this approach seems to be very effective in limiting
the skipping cycle effect [Chen et al., 2015]. Some attemps have also been done by enlarging
the search space [Van Leeuwen and Herrmann, 2013]. Over the last few decades, FWI has been
the result of numerous methodological developments that have been aided by access to quality
data in sufficient numbers to hopefully yield information that can be used by the application
world. For example, FWI has been applied in global seismology [Lekić and Romanowicz, 2011,
French and Romanowicz, 2014], and local seismology [Fichtner et al., 2009, Zhu et al., 2015,
Simutė et al., 2016], geophysical exploration [Igel et al., 1995, Virieux and Operto, Sirgue
et al., 2011, Warner et al., 2013]. This is a high-resolution numerical technique for estimating
propagation medium parameters with the following main features:

• FWI is the result of minimizing a cost function;
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• the gradient of the function is prevented by the adjoint state method;

• minimizing is done iteratively;

• the vast size of the geophysical environment requires using numerous sources.

If we look at the FWI only at the level of the optimization method used to estimate the
medium parameters, attention naturally turns to the minimized cost function and with it to
the way its gradient is determined, i.e., how the adjoint state method is implemented. The
idea of using different costs functions to mitigate the local minima issue has been investigated
quite recently [Bozdağ et al., 2011, Chi et al., 2014].

The objective of this thesis is to develop an inversion code based on FWI for the acoustic
wave equation in time-domain. The numerical method chosen is a discontinuous Galerkin
method (DG). It is important to note that the code was developed in a computing platform
maintained and developed by the company Total. This implies certain constraints that will be
exposed, when necessary, in the document. We will follow the next plan. In the first chapter,
we will introduce the inverse problem and describe the optimization method used. The second
chapter will be dedicated to the direct problem. We will introduce the discretization method
in space and the time schemes used. We will discuss the Bernstein-Bézier polynomial base
application, which could be an interesting option to reduce the computational costs when using
high order polynomials. Indeed, it has been shown by Chan and Warburton [2016] that in the
case of a GPU implementation, this basis allows speeding up computations. In the context
of this thesis, we will use CPUs, which is why we will carry out a study on this polynomial
basis in order to know if the conclusions of Chan and Warburton [2016] are still valid. Then,
we will present a variant of the DG method, the so-called Weight Adjusted Discontinuous
Galerkin (WADG) method [Chan et al., 2017], which allows taking into account the variations
of physical parameters within elements. This approach seemed to us to be inseparable from
the idea of using high-order elements in meshes whose cells can be very large. The third
chapter is devoted to the characterization of the adjoint state. This can be determined in two
different ways: either one constructs the adjoint problem of the continuous direct problem and
one calculates the adjoint state as the numerical solution of the continuous adjoint problem;
or one constructs a discrete adjoint problem defined as the adjoint of the system resulting
from the space-time discretization of the direct problem. It will be emphasized that the
second method applied to a discrete problem built on DG approximations requires additional
tedious developments that are not always easy to implement in a large industrial code and in
a massively parallel context. Chapter 4 will describe the development environment in which
the code was developed. This chapter will also be the opportunity to present first inversion
results in 2D and 3D. However, these results have been obtained using a single mesh during
the whole inversion, which can be expensive. In Chapter 5, we propose to use tools dedicated
to mesh adaptation in order to generate a mesh adapted to the model parameters but also to
the reconstruction frequency. In this chapter we will define the mesh adaptation process and
finally determine criteria for optimizing the meshes for wave propagation simulations using
the DG method. This chapter will be the opportunity to benefit from all the specificities of
DG method (hp-adaptivity, choice of the polynomial basis, WADG) by proposing a workflow,
compatible with the industrial code, which will be based upon an adapted and evolutive
discretization during the FWI course.



Chapter 1

The Inverse Problem

1.1 General setting

To reconstruct the propagation environment, one of the most popular techniques is the Full
Waveform Inversion (FWI), which is a numerical procedure that is based upon an iterative
update of the constituent parameters until the synthetic data are very close to the observed
data (ideally equal). In this thesis, we focus on the reconstruction of a wavespeed model, i.e.,
the propagation medium (see Figure 1.1a for an example of a wavespeed model). The initial-
ization of the FWI requires on the one hand collecting data (the observables) and on the other
hand calculating numerical data by solving a direct problem posed in a blindly constructed
medium from the characteristic magnitudes collected during the acquisition campaign (see
Figure 1.1b).

x

z

(a) Target Sigsbee wavespeed model (m.s−1)

x

z

2,000

3,000

4,000

m · s−1

(b) Blind wavespeed model (m.s−1)

Figure 1.1: Comparison between blind model and target wavespeed model.

FWI relies on the solution of an inverse problem that can be defined from the three
following fundamental spaces:

• the space of parameters, denoted by M ;

• the space of data or observations, denoted by D;

• the space of wavefields, denoted by U .

Then, the parameters are explicitly related to the wavefield through the state equation F
(here, it will be the acoustic wave equation) as follows:

F (m,u) = s, m ∈M,u ∈ U , (1.1)

where s denotes the source field. One can use the relationship

u = Ps(m) = um,s , (1.2)

23
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by using the argument that the direct problem (operator P ) is well-posed and therefore, even if
we restrict the space of the parameters, we can always associate to a parameter (or wavespeed
model) and a source, a single wavefield um. It is also interesting to write the problem in terms
of observations. This is done with an observation equation that aims at getting information
from the wavefield in terms of measurements. It reads:

d = Q(u), u ∈ U . (1.3)

It is worth noting that, if we inject (1.2) inside (1.3), we obtain the relation

d = Q(u) = Q(Ps(m)) . (1.4)

We then end up with the formulation of the inverse problem: let dobs be the observation data;
find the parameters m such that

dobs = Φ(m) , (1.5)

where Φ is the operator defined in (1.5). Here, we have dropped the s index to simplify
the notations. It is important to note that although the state equation, and possibly the
observation equation, is linear, the operator Φ is non-linear. This suggests that the inverse
problem will be more difficult to solve the problem straightforwardly than the direct problem.
But the difficulties do not stop at the non-linearity of the inverse problem. Indeed, it is also
ill-posed, and to explain it, let us begin by recalling what is a well-posed problem in the sense
of Hadamard [1923]. A well-posed problem is a problem for which we have:

• existence of a solution;

• uniqueness of the solution;

• the solution depends continuously on the parameters.

The inverse problem we are interested in is not well-posed because it is based on noisy ex-
perimental data that therefore differ from the real data and are not for sure the data that
correspond to the model that we are seeking. Moreover, the uniqueness of the solution cannot
be guaranteed, even if the data are not noisy. It is therefore difficult to solve and in practice,
it is replaced by a minimization problem, most often written in the sense of least squares.
Equation (1.5) is therefore replaced by minimizing:

J (m) =
1

2
‖ Φ(m)− dobs ‖2, m ∈M . (1.6)

Figure 1.2: Comparisons of seismograms from observations and simulations to illustrate the
role of the cost function J .
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The function J is the cost function (or misfit function or error function) that is used to
measure the difference between numerical and observed parameters (see Figure 1.2). Obvi-
ously, this formulation does not prevent from the fact that the inverse problem is ill-posed but
it allows having the existence of a solution because the cost function is positive. However, the
cost function is in general non-convex and thus admits local minima. The underlying iterative
process for minimizing is thus likely to converge on a local minimum which is not the right
solution. Another problem is related to a possible lack of data (typically low-frequency data)
which explains that different parameters may produce the same observations. Noisy data may
also be difficult if not impossible to invert. Last but not least is the very high computational
burden: the cost function computation requires solving the state equation. This point should
be of particular interest to us in the application context we are interested in. Indeed, the
geophysical environments we are trying to reconstruct are large, which means that we have
to use numerous sources to collect information on the entire surface of the surveyed domain
(see Figure 1.3). In practice, we have one source every several hundred meters and thus, if
the surface on which they are deployed is of the order of five square kilometers and if we chose
to place one source each 250m, we must use about four hundred sources. This means that we
have to solve four hundred wave equations for each iteration. These equations are posed in
heterogeneous media, which also contributes to increasing the computational burden, whether
it is related to the solution of the direct problem or to the inversion itself.

Figure 1.3: Illustration of source deployment on 3D regular domain.

Indeed, in order to properly integrate the heterogeneous characteristics of the medium,
the numerical method used for the direct problem must be of very high precision. Moreover, a
significant increase in the number of iterations is to be expected in order to converge towards
a set of discontinuous parameters, as it is the case to describe a heterogeneous medium. It is
therefore important to address the challenge of avoiding local minima while keeping calculation
costs acceptable for the majority of end-users. For solving the minimization problem (1.6), one
can use a local or a global approach. A local approach is based upon the following condition:
in order to be a global minimum of the cost function, m must be a zero of its gradient. This
condition is sufficient if the cost function is convex, which is not the case here. Hence, by
adopting this approach, there is a chance to converge to a local minimum. It is possible to
control this drawback by using the Hessian [Métivier et al., 2013, Fichtner and Trampert,
2011] but taking the second-order derivatives will increase the computational costs.

Regarding global algorithms, they search for a global minimum by exploring a larger
parameter space. These methods avoid the computation of the gradient of the cost function
and require an important amount of cost function evaluations. Such methods are more suitable
for retrieving a low number of parameters in problems where the cost function evaluation can
be performed in a short time. To mention few global optimization algorithms, we can cite
the simulated annealing [van Laarhoven and Aarts, 1987] and genetic algorithm [Davis, 1991].
The first approach is inspired by the annealing process used in metallurgy, where shaping
the metal is easier at high temperatures. This algorithm introduces a numerical temperature
which, if elevated, allows the cost function to be worse (in the case of a minimization) than
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in the previous state. This kind of behavior encourages the exploration of the parameter
space and prevents getting stuck in a local minimum. Concerning the genetic algorithm,
the parameter space coverage is ensured by genetic mixing and the introduction of random
mutations in a population of solutions that are studied during several generations.

However, such methods cannot be applied to the geophysical inverse problems we aim to
solve. On the one hand, the number of parameters to recover is very high in geophysics, on
the ohther and, the evaluation of the cost function is computationally challenging. For these
reasons, we will only use local optimization algorithms. Such an optimization relies on the
computation of the gradient of the cost function J with respect to the geophysical parameters
m (see Figure 1.4). Two methods are commonly used to determine the gradient. The first one,
which is the most intuitive, is the sensitivity functions method that computes the Jacobian
of the cost function with respect to the physical parameters. The gradient evaluation is then
proportional to the number of parameters we aim to recover. The second option is the adjoint
state method that gives access to the gradient by computing the state equation and its adjoint,
which have essentially the same computational cost. With this method, it is then possible to
compute the gradient of the cost function with respect to the parameters for a cost which is
equivalent to evaluate the state equation twice regardless of the number of parameters. The
adjoint state method is then recommended for recovering geophysical models.

Figure 1.4: Classical workflow of minimization problem.

In order to recover the physical model, this inversion method requires the simulation of the
overall behavior of the wave in the domain of interest, which gives the name Full Waveform
Inversion. The term “Full” comes from the fact that this method is going way beyond refraction
and reflection tomography techniques, which only use the travel time kinematics of the seismic
data.

The FWI, which is a minimization problem that aims to recover physical properties by
adjoint state method, has been introduced in the early 80s by Patrick Lailly [1983] and Albert
Tarantola [1984].

In this section, we placed the general setting of the FWI. We did not go into details in
the definition of the objective function neither on the parameterization. The objective of this
chapter is to define all the required notions that will be addressed in the thesis.

In what follows, we will describe more precisely the cost function we aim to minimize. We
will also come back on the gradient computation, and we will go further in details to compare
the sensitivity functions and the adjoint state method. Then, we will make an overview of the



1.2. GEOPHYSICAL CONTEXT 27

optimization algorithm that can be used, and we will make some benchmarks on well-known
synthetic optimization problems to define an optimization strategy in the remainder of the
thesis.

1.2 Geophysical context

In this section, we aim to go further into details concerning the geophysical context and all
the mechanics and notions inherited from the problem we are considering. We will present
the context and familiarize the reader with notions and vocabulary specific to geophysics.

We will more precisely describe the classical setup used in seismic campaigns in order to
obtain data from the subsurface. Then, we will describe what the observed data look like and
how they are recorded. In particular, we will discuss the different types of receivers that exist
and the physical quantities of interest.

Finally, we will present the cost function that will be studied throughout the thesis where
we will list alternatives to the usual least square norm commonly used.

1.2.1 Seismic data acquisition

The objective of the inverse problem is to minimize a cost function that aims to quantify
the differences between the data from numerical simulations, for a given model m, with the
observed data dobs. The objective of the seismic acquisition campaign is to collect these data
dobs. This consists in using a set of sources and receivers placed close enough to the surface,
so that the problem is neither too intrusive nor too expensive. The acquisition devices are
therefore divided into two categories, the sources and the receivers. In seismic exploration
the sources are artificial. We then have a complete control of their location and a fairly good
understanding of their formulation. In the same way, we know where the receivers are located.
The sources generate a disturbance in the environment of interest Ω that propagates and is
recorded by the receivers.

So, for each source, each receiver records a disturbance during the time of the experiment.
The receivers can register different physical quantities, but we will come back to this a little
later. Let us first consider that receivers register a pressure perturbation (in kg.m−1.s−2 or
Pa) over time. This disturbance, an example of which we display in Figure 1.5, is what we
call a seismic trace. This kind of trace is the result of the propagation of the perturbation
generated by the source and owns information from the different geophysical reflectors that
the wave has passed through.
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Figure 1.5: Example of seismic trace.
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For one source, we then record as many seismic traces as there are receivers. We denote
by nrcv the number of receivers used during the acquisition. We represent in Figure 1.6 a
scheme of a 2D synthetic seismic acquisition campaign for one central source.

Figure 1.6: Illustration of seismic data acquisition for one source.

By collecting all the seismic traces thus obtained, we can form what is called a seismo-
gram.A seismogram represents on the X-axis the index of the receiver, on the Y-axis the time
and the color map represents the amplitude of the measurement. Figure 1.7 represents the
synthetic seismogram of a 2D problem where the source is located in the center of the domain
of interest. The picture highlights the cone of propagation, which is typical in this type of
representation. The cone is explained by the time of the first arrival, which is shorter if the
receiver is located close to the source. We have also tried to be faithful to this phenomenon
in the illustration in Figure 1.6.
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Figure 1.7: Example of seismogram.

Note that, for better coverage of the domain of interest Ω, several sources are used. For
each source, the number of receivers nrcv and their locations may vary. If we denote the
number of sources by nsrc, the set of observed data dobs is then defined by nsrc×nrcv seismic
traces in the case where nrcv is constant for each acquisition.

Now that we have described the experimental configuration of data acquisition, we will
focus the following on how the data are defined, and we will also make a brief overview of the
different geophysical devices used to record them.
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1.2.2 Observations and measurement tools

Seismic data are naturally defined in the time domain. In the case where the observed quantity
is the field u, we can define the spatial restriction function Rxr, which consists in keeping
only the information located at the point of coordinate xr where the receiver r is located, i.e.,

Rxr(u) = u(xr) .

In a more general way, we can note Rx the global spatial restriction on all receivers. We
then have:

Rx(u) = {u(xr)}1≤r≤nrcv .

The observed data are not continuous and are defined on a sample at specific times. We
will note nt the number of sampling points in time of the observations and dt the time step
between two samples. To give estimates of dt, we usually record the signal every 2 or 4
microseconds.

If we define the observed data associated with the source s by ds = {dsi}, where i ∈
{0, ..., nt}, it is then possible to define the application Q from (1.3) by the successive applica-
tion of a temporal and spatial restriction on the field u:

ds = Q(u) = RtRx(u) .

We can get back to expression (1.4) by using the Ps operator introduced in (1.2). Then,
we have:

ds = Φs(m) = Q(Ps(m)) = RtRx(Ps(m)) . (1.7)

We have introduced above the measured field u. It is the field of interest and it may vary,
depending on the acquisition. In marine seismic acquisition the receivers, or hydrophones,
measure the pressure disturbance. For land acquisitions, it is geophones that are used. They
are exclusively located on the surface of the domain of interest. They measure the normal
displacement at the surface. For more technical details on the configuration of sources and
receivers in real land seismic acquisition, we refer to [Baeten, 1989].

Some receivers measure two physical components, they are called dual-sensor devices. For
instance, they record the pressure, as well as the normal velocity of the disturbance [Carlson
et al., 2007]. The access to the traces on two physical variables offers more information on
the subsurface and gives new perspectives, especially on the description of the cost function.

Being aware of the configuration in which the data acquisition took place is crucial to
numerically reproduce the same acquisition. The cost function J is a function that quantifies,
for a given model m, how far away the simulated data are from the observed data. In what
follows, we will define the cost function used during the thesis. We will also review the different
cost functions used in geophysical exploration.

1.2.3 The cost function

We have previously shown in (1.7) that the operator Φ includes the evaluation of the state
equation Ps that gives the field u according to the parameters m. The operator Ps represents
the wave operator that governs the propagation of the perturbation from the source s in an
acoustic, elastic, elasto-acoustic, or other media. In this thesis, we will consider exclusively
acoustic media. The field u then represents the pressure p and the velocity v of the wavefield.
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To obtain the simulated observations, it is necessary to evaluate the wavefield u and its
restriction to the receivers (1.7).

The cost function can then be set up in the following way:

J (m) =
1

2

nsrc∑
s=1

‖ φs(m)− dobs(s) ‖2D .

For simplification, we will put aside the s index, which will not impact the following. We
can then establish the generic cost function formulation:

J (m) =
1

2
‖ φ(m)− dobs ‖2D .

The choice of the norm ‖ . ‖D remains to be defined. The most common choice is the L2

standard norm and we have then:

J (m) =
1

2
‖ φ(m)− dobs ‖22,

=
1

2

nt∑
i=0

nrcv∑
r=1

([Φ(m)]i,r − [dobs]i,r)
2 ,

where Φ(m) and dobs can be expressed as matrices of size nt × nrcv, which is perfectly repre-
sented by the seismogram we pictured previously in Figure 1.7.

Within the framework of this thesis, we will exclusively use pressure measurements, which
is commonly the case in marine acquisitions. In this case, the L2 standard norm is expressed
as follows:

J (m) =
1

2

nt∑
i=0

nrcv∑
r=1

([Q(p(m))]i,r − [dobs]i,r)
2 , (1.8)

which we have slightly adapted in order to handle normalized quantity:

J (m) =
1

2

nt∑
i=0

nrcv∑
r=1

([Q(p(m))]i,r − [dobs]i,r)
2

σ2
r

, (1.9)

where σr =
√

1
nt+1

∑nt
i=0[dobs]

2
i,r represents the standard deviation of the data observed on the

seismic trace associated with the receiver r. In this way, there are no preponderant receivers in
the evaluation of the cost function. Since in the L2 classical cost function defined in (1.8) the
amplitude of the wavefield is naturally more important for the receivers close to the source, the
normalization by the variance σr allows to balance the participation of the receivers according
to their distance to the source.

The cost function defined in (1.9) is the one that is used in the framework of the thesis.
However, there exist several cost functions and norms that can be used to quantify the misfit
between simulations and observations. Brossier et al. [2010] focuses on the L1 norm applied
to frequency FWI, which has been demonstrated to be weakly sensitive to noise. Some hybrid
L1/L2 strategies have also been studied by Bube and Langan [1997] and also shown improved
robustness to noise compared with conventional L2 norm.

Still in the frequency domain, we can cite the works [Shin et al., 2007, Bednar et al., 2007,
Pyun et al., 2007], which compare the results obtained for different cost functions based on
the phase and/or amplitude of the signal. These works focus on the logarithmic function first
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mentioned in [Tarantola, 1987]. The logarithm misfit function has also been employed by Shin
and Min [2006], Faucher [2017], which reveals to be central for complex frequency inversion.

More recently, a new class of misfit functions based on optimal transport theory has been
studied in [Métivier et al., 2016a, Yang et al., 2017, Chen et al., 2018]. Mainly based on
Wasserstein [Engquist and Froese, 2013] or Kantorovich-Rubenstein [Métivier et al., 2016b]
norms, optimal transport misfit is not a ’point by point’ objective function, which means that
we do not compute the difference in amplitude at each sampling time. The optimal transport
methods compute the minimal cost to rearrange one signal into another. In that way, these
methods bring new criteria to quantify the difference between observed and simulated data.
Furthermore, such methods are less sensitive to noise and offer better convexity properties
that reduce cycle skipping effects [Yunan, 2018].

In this subsection, we have defined, in a geophysical context, the cost function that we
wish to minimize. As explained previously, this minimization problem will be solved by local
optimization methods, which we will detail later in this chapter. These methods depend on
the calculation of the gradient of the cost function by the set of physical parameters we are
trying to retrieve m. The calculation of the gradient ∇J is then a key step of the FWI
that, as explained above, is calculated by the adjoint state method. In order to motivate this
choice, we will present in the next section the options available to calculate the gradient ∇J
and discuss the possibilities in light of the geophysical context.

1.3 Gradient computation

We introduced in Section 1.1 the three spaces defining the inverse problem that we recall here:

• M , the space of parameters;

• D, the space of observations;

• U , the wavefield or state space.

These spaces, which are generally defined as Hilbert spaces, require, for the sake of nu-
merical optimization, to be reduced into a finite-dimensional space. Note that this is often
the case for the D space because we generally have a finite number of observations. Without
describing the discretization of U , which will be discussed in more details in Chapters 2 and 3
of this document, we will approach M by Rnp , which is intrinsically defined by the discretiza-
tion of the U space. The set of parameters will be represented by the vector m = {mi}1≤i≤np
and np denotes the total number of parameters.

Definition 1.3.1. The function J : M → R, is Fréchet-differentiable or F-differentiable at
point m0, if and only if there is a bounded linear operator J ′(m0) : W → R, with W ⊂ M
such that:

lim‖δm‖M→0
|J (m0 + δm)− J (m0)− J ′(m0)δm|

‖ δm ‖M
= 0, ∀ δm ∈M .

Then, J ′(m0) is the differential of J at the point m0. In the remaining of the chapter we
will also denote the differential operator by a capital D. The Fréchet derivative of the cost
function J with respect to the parameter at point m0 will be then noted that way:

DmJ (m0)δm = J ′(m0)δm .
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Remark. It is then possible to obtain the first order expansion, we have:

J (m0 + δm) = J (m0) + J ′(m0)δm + o(‖ δm ‖M ).

Let us recall the Riesz representation theorem:

Theorem 1.3.1. Let H being a Hilbert space, with inner product 〈·, ·〉 and f ∈ H∗ a
continuous linear form on H,

∃!y ∈ H, ∀x ∈ H, f(x) = 〈y, x〉.

By applying the Riesz representation theorem, one will denote by ∇J (m0) the gradient
of J at the point m0 that is the unique vector of M defined as:

< ∇J (m0), δm >M= J ′(m0)δm δm ∈M .

Thus, the gradient of the cost function at m0 with respect to the model parameters is
represented by the vector:

∇J (m0) = { ∂J
∂mi

(m0)}1≤i≤np .

Intuitively, we could calculate ∇J (m0) by using finite difference approximation:

{∇J (m0)}i ≈
J (m0 + hei)− J (m0)

h
∀i ∈ {1, ..., np},

where ei represents the canonical vector of size np that is equal to 0 everywhere but at the ith

component where it is equal to 1. This calculation requires np + 1 times the evaluation of the
objective functional. The cost of this method is prohibitive if the number of parameters np is
large and if the calculation burden to evaluate J is important. This method, to be avoided,
can however be used as a means of verifying the calculation of the gradient by the methods
we will see below.

1.3.1 Sensitivity functions method

The sensitivity function method is a natural way to determine the gradient of the cost function
J . We refer to [Kern, 2002, Chavent, 2010] for more details concerning this method. It consists
in determining explicitly the derivative of J with respect to the parameters m.

We remind that we will consider the following standard formulation of the cost function:

J (m) =
1

2
‖ φ(m)− dobs ‖2D .

Using the derivative chain rule, its gradient is given by:

∇J (m) = φ′(m)∗(φ(m)− dobs) , (1.10)

where φ′ represents the Jacobian of the observation functional φ with respect to the model
m. The symbol "∗" represents the adjoint operator.

Proof:

DmJ (m)δm = Dm
1

2
< φ(m)− dobs, φ(m)− dobs >D δm,

=< Dm(φ(m)− dobs)δm, φ(m)− dobs >D,
=< φ′(m)δm, φ(m)− dobs >D,
=< δm,φ′(m)∗φ(m)− dobs >M ,
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where we denote by DmJ (m) the Fréchet-derivative of the cost function J .
Then we retrieve the results given in (1.10) by identification.
This formula shows that we have to determine Φ′ and for that purpose, we apply the

implicit function theorem. We recall this theorem in the following.

Theorem 1.3.2. Let X, Y and Z be three Banach spaces, and the mapping f : X ×
Y → Z be continuously Fréchet-differentiable. If (x0, y0) ∈ X × Y, f(x0, y0) = 0, and y →
Dyf(x0, y0)(0, y) is a Banach space isomorphism from Y to Z, then, there exist a neighborhood
U of x0 and V of y0 and a Fréchet-differentiable function g : U → V such that :

∀(x, y) ∈ U × V , f(x, y) = 0 ⇐⇒ ∀x ∈ U, y = g(x) .

Then, we go back to the state equation given for a model m0 and a source field s:

F (m0, u) = s.

By passing s to the left-hand side, we can rewrite the state equation as:

Fs(m0, u) = 0.

Then the mapping Fs : M × U → Z, is Fréchet-differentiable with respect to both variables.
By applying the implicit function theorem, there exists a Fréchet-differentiable function

g : W ⊂M → U , where ∀m ∈W neighborhood of m0 we have:

Fs(m,u) = Fs(m, g(m)) = 0 .

The derivative of the state equation according to the model parameters writes:

DmFs(m, g(m)) +DuFs(m, g(m))g′(m) = 0 .

This expression shows that the Jacobian of g is obtained as a solution of a linear system.
Now we go back to the derivative of Φ. According to the above calculations, since we have
Φ(m) = Qg(m), we get:

g′(m) = −DuFs(m, g(m))−1DmFs(m, g(m)) .

Finally, in the neighborhood W of m0 we have:

φ′(m) = Qg′(m),

= −QDuFs(m, g(m))−1DmFs(m, g(m)).

The model is represented with a finite number np of parameters. Hence, the computational
cost to evaluate φ′(m) is equivalent to resolve np linear systems. The computational cost of the
sensitive functions method is then proportional to the number of parameters np characterizing
the model parameter space M . Hence, if np is very large as it is for describing a geophysical
medium, this method could be too much expensive.

However, this method gives access to the Jacobian of the observation operator φ, which
brings new possibilities concerning the choice of the optimization method used to solve the
minimization problem under study. Besides, the gradient obtained with such a method is
exact.

In order to have a gradient whose calculation cost does not depend on the number of
parameters to be reconstructed, a very favored alternative is to use the adjoint state method.
We will see in the next section that it is possible to define the gradient ∇J for an additional
cost close to the one of the evaluation of the state equation.
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1.3.2 Adjoint State method

We have seen in the previous section, that we can calculate the gradient of the function in
the following way:

∇J (m) = −(QDuFs(m, g(m))−1DmFs(m,u))∗(Qu(m)− dobs), (1.11)

= −(DmFs(m,u)∗(DuFs(m, g(m))∗)−1Q∗)(Qu(m)− dobs).

Kern [2002] shows that, with a trivial manipulation of the parentheses, we can fundamen-
tally modify the reading of expression (1.11):

∇J (m) = −(DmFs(m,u))∗
(
DuFs(m, g(m)∗)−1)Q∗(Qu(m)− dobs)

)
.

Let us denote by λ the solution of:

DuFs(m, g(m))∗)λ = −Q∗(Qu(m)− dobs) ..

Then, the gradient of the cost function is written in a simple way as follows:

∇J (m) = (DmFs(m,u))∗λ .

As a matter of fact, obtaining the gradient involves non-trivial adjoint operators.
This result can also be obtained as a solution to a constrained minimization problem.

This formulation is based on the calculation trick that consists in considering that u and m
are independent variables and that u is constrained to satisfy the state equation (1.1). A
justification of this formalism can be found in [Chavent, 2010, Allaire, 2019]. We introduce
the Lagrangian L as follows:

L(u,m, λ) = Ĵ (u) + 〈Fs(m,u), λ〉Z ,

where we have the mapping function Fs : M × U → Z and

Ĵ (u) =
1

2
‖ Q(u)− dobs ‖2D ,

which only depends on the field u. The Lagrangian is a common way to define an optimization
problem under constraint and λ is then called the Lagrange variable.

This Lagrangian has four fundamental properties that should be listed to automate the
calculations leading to the ∇J (m) gradient.

• If u satisfies the state equation (1.1), then:

∀λ ∈ Z , L(u(m),m, λ) = Ĵ (u(m)) = J (m) ,

the Lagrangian L equals the cost function J we aim to minimize.

• By computing the derivative DλL with respect to the Lagrange variable:

DλL(u,m, λ)δλ = DλĴ (u)δλ+Dλ〈Fs(m,u), λ〉Zδλ
=< Fs(m,u), δλ >Z ,

and requiring DλLδλ = 0 for all δλ ∈ Z, gives us the state equation:

Fs(m,u) = 0 .



1.3. GRADIENT COMPUTATION 35

• By computing the derivative DuL, we have:

DuL(u,m, λ)δu = DuĴ (u)δu+Du〈Fs(m,u), λ〉Zδu,

=
1

2
Du〈Qu− dobs, Qu− dobs〉Dδu+ 〈DuFs(m,u)δu, λ〉Z ,

= 〈δu,Q∗(Qu− dobs)〉U + 〈δu,DuFs(m,u)∗λ〉U .

Requiring DuLδu = 0 for all δu ∈ U gives us the adjoint state equation:

DuFs(m,u)∗λ+Q∗(Qu− dobs) = 0 . (1.12)

• Since we know that if u is solution of the state equation, then L(u,m, λ) = J (m), we
can express the derivative of the cost function with respect to m as follows:

J ′(m)δm = DmL(u,m, λ)δm+DuL(u,m, λ)Dmuδu.

By choosing λ ∈ Z satisfying the adjoint state equation (1.12) then the term DuL(u,m, λ)
vanishes. Then, the differential of J simplifies to:

J ′(m)δm = 〈DmFs(m,u(m))δm, λ〉Z

It is then possible to identify the gradient ∇J (m):

∇J (m) = DmFs(m,u(m))∗λ , (1.13)

which is the expression we determined before in (1.11).
Contrary to sensitivity functions methods, the adjoint state methods determine directly

the gradient of the cost function without computing its Jacobian. This makes this approach
particularly interesting because the optimization process may only deal with the gradient.
The gradient can then be obtained by solving first the state equation and then the adjoint
state equation. More importantly, the computational cost of the gradient does not depend
on the number of parameters used for representing the wavespeed model. Indeed, geophysical
models usually involve several thousands to millions of parameters.

The introduction of a Lagrangian offers a chain rule to be followed to determine the
gradient of the considered problem. The resulting gradient is then easily expressed as long as
the adjoint state λ is well determined. Once λ is calculated, the gradient can be determined
by the formula (1.13) with a negligible extra cost compared with the one of the evaluation of
u and λ.

1.3.3 Concluding remarks

We saw in the previous section that we can obtain the first order derivative of the cost function
with respect to the model parameters m applying several methods:

• finite difference approximation;

• sensitivity functions method;

• adjoint state method.
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The first method is really expensive and required the evaluation of np + 1 cost functions
to get an approximation of the gradient. However, this method is easy to implement and can
easily be adjusted to the choice of the parameterization and the choice of the objective func-
tional. We have also presented the sensitivity functions and adjoint state methods that enable
the computation of the gradient. Each method has its own advantages and disadvantages,
and following Kern [2016], we displayed them in Table 1.1.

Sensitivity functions Adjoint state
Jacobian 3 7

Gradient 3 3

Computation cost proportional to np 1 state equation
+ 1 adjoint state equation

Adaptative parameterization 7 3

Adaptative cost function 7 3

Optimization Algorithm Gauss-Newton Quasi-Newton

Table 1.1: Comparison of sensitivity functions and adjoint state method to evaluate gradient
of the objective function with respect to the model parameters.

It is clear that, with a high number of parameters, the adjoint state is the best candidate
method to compute the gradient. Besides, this method offers a lot of flexibility not only
concerning the choice of parameterization, but also the choice of the cost function. Indeed,
as explained previously in this section, there exist plenty of objective functions that can
quantify the differences between observed and numerical solutions. With the adjoint state
method, it may be simpler to conserve the overall workflow for different cost functions or
parameterization.

The computation of the gradient then requires to compute the state variable u also called
“Forward wavefield”, by computing the forward simulation, and the adjoint state λ called
“Backward wavefield” by computing the backward simulation. We presented in figure Fig-
ure 1.4 on page 26 the flowchart of the optimization process that can be updated including
the adjoint state method. Figure 1.8 represents the optimization loop used in the FWI.

Figure 1.8: FWI workflow using the adjoint state method.

It remains for us to study the possible optimization methods that can be used for mini-
mizing the cost function.
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1.4 Optimization Method

We have previously justified the choice of a local optimization algorithm and to carry it out,
the access to the gradient of the cost function which is a prerequisite.

As shown in Figure 1.8, FWI relies on successive updates of the physical parameters to
match as well as possible the observations with the simulation. Newton method proves its
efficiency for resolving such nonlinear iterative problems. Based on Taylor expansion of the
gradient of the cost function, we may write for a small perturbation δm:

∇J (m+ δm) = ∇J (m) +H(m)δm + o(‖ δ2
m ‖) ,

where H represents the second derivative of the cost function called the Hessian.
The perturbation δm is a sequence depending on m which is defined for making ∇J (m+

δm) converge to zero ideally. By writing that the gradient of the updated model is zero, we
get an approximate expression of the perturbation up to order 2:

δm = −H(m)−1∇J (m) ,

and it leads to the Newton optimization update formula at the ith iteration of the process:

mi+1 = mi −H(mi)−1∇J (mi) .

Remark. Unfortunately, the condition∇J = 0 does not guarantee to retrieve the global min-
imum and may converge to a local minimum. Regularization, and multiscale reconstruction,
may be used to ensure the convergence toward the global minimum. However, regulariza-
tion may be difficult to set since it requires adding prior information of the targeted model.
Furthermore, a strong regularization can fade the reconstruction and may remove small struc-
tures. We refer to Lopez [2014] for a detailed description of regularization methods applied
to FWI. In this thesis, we will only use multiscale reconstruction [Bunks et al., 1995] to force
the convergence toward the global minimum. This issue will be discussed later in Chapter 4.

However, Newton optimization requires the Hessian computation, which can be very ex-
pensive with an important memory burden especially when the number of parameters is high.
Such limitations make the access to the second order information unavailable and justify the
use of Quasi-Newton algorithm. Furthermore, in the context of seismic reconstruction, it
has been mentioned by Tarantola [1987] that the second order information does not provide
enough interesting improvements to privilege Newton-type methods over classical descent al-
gorithm. It might even be preferable to introduce additional iterations of descent direction,
than trying to calculate the Hessian matrix at each iteration. Nevertheless, the opposite
view is defended in [Pratt et al., 1998] where an interpretation of the information contained
in the Hessian is provided in a context of seismic reconstruction. Faucher [2017] makes the
comparisons by using Hessian conjugate gradient approximation and gradient method seismic
model reconstruction in frequency domain. At high frequencies, using Hessian seems to im-
prove convergence but the computational cost seems really unreasonable in view of the final
reconstructed model which is very close for both approaches.

We choose, for this thesis, to consider only gradient descent methods that we will describe
in this section. At the ith iteration, these methods can be written in such a way:

mi+1 = mi + αidi ,

where,
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• the scalar α: represents the step length real coefficient (α ≥ 0);

• the vector d = {dj}1≤j≤np : represents the vector of model updates also known as search
direction.

For more information on the algorithms that will be used, we refer to the book of Nocedal
and Wright [2006], which proposes a vast documentation of existing optimization techniques.
The study of these methods can then be split in two. We will first review the different
search direction method implemented and then the methods giving an adapted line search
step length. Finally, we will propose a benchmark of these methods on synthetic cases of
optimizations in order to identify a strategy to be applied for FWI.

1.4.1 Steepest descent method

A simple choice for the search direction is to choose the opposite of the gradient direction,
di = −∇J (mi). This method, called the steepest descent, is really easy to implement once
the gradient is computed. However, this search direction is a bad choice to decrease J . If
J is complex and the initial guessed parameters m0 is far from the solution, the steepest
descent requires small step length α increasing the computational burden. Such methods
are also sensitive to “zigzags”. We illustrate this effect by plotting the resolution path of a
minimization problem based on the Banana Rosenbrock function using the steepest descent
method and Newton algorithm in Figure 1.9.

(a) Optimization with steepest descent method. (b) Optimization with Newton method.

Figure 1.9: Path realized by the couple (xi, yi) we aim to retrieve to minimize the Banana
Rosenbrock functional for steepest descent method (a) and Newton method (b).

Unfortunately, according to the book of Bonnans [2006], this method may never converge
and for this reason, it must be abandoned in favor of other methods that we will present in
the following and that have similar calculation costs. However, it is common for the steepest
descent method to be used to initialize the optimization loop which is then implemented with
another more efficient method. In the following subsections, we will develop other methods
that are compatible with the memory and computational restriction of the FWI.

1.4.2 Non-linear Conjugate Gradient

Non-linear Conjugate Gradient (NLCG) algorithm is a generalization of the classical Conju-
gate Gradient (CG) method for nonlinear optimization problems [Nocedal and Wright, 2006].
NLCG method offers an alternative approach to the steepest descent and requires the knowl-
edge of the gradient only.

Basically, the search direction in NLCG methods is computed following this formula:
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di = −∇J (mi) + βidi−1 ,

where the first iteration is simply the steepest descent step. There exist several formulations
to define the coefficient βi. In this thesis we have implemented the four main formulations:

• Fletcher and Reeves [1964] formula (FR), βi = ∇J (mi)>∇J (mi)
∇J (mi−1)>∇J (mi−1)

;

• Polak and Ribiere [1969] formula (PR), βi = ∇J (mi)>(∇J (mi)−∇J (mi−1))
∇J (mi−1)>∇J (mi−1)

;

• Hestenes et al. [1952] formula (HS), βi = −∇J (mi)>(∇J (mi)−∇J (mi−1))

di−1>(∇J (mi)−∇J (mi−1))
;

• Dai and Yuan [1999] formula (DY), βi = − ∇J (mi)>∇J (mi)

di−1>(∇J (mi)−∇J (mi−1))
.

NLCG method does not have an excessive computational cost since it only requires to
compute the scalar βi, which is obtained by evaluating two inner products. However, this
method requires saving in memory the gradient and the search direction of the previous
iteration. In practice, we save this information on disk since the computational time required
by the gradient computation is much more important than the one of optimization routines.
It is then more valuable to spend some time reading and writing on the disk than trying to
keep everything in memory.

For an in-depth study of NLCG methods and an interesting analogy with quasi-Newton
methods we refer to [Bonnans, 2006].

1.4.3 BFGS and L-BFGS

We saw at the beginning of this section that Newton methods cannot be used for the problem
we are considering for computational and memory issues. We recall that the search direction
computed by Newton method is given by:

di+1 = −H(mi)−1∇J (mi) .

The class of method called Quasi-Newton methods are meant to approximate the inverse
of the Hessian by using only the gradient information. A quasi-Newton method is based upon
the approximation of H(mi)−1 by a Symmetric Definite Positive (SPD) matrix W i, which
evolves recursively as follows:

W i+1 = W i +Bi ,

where Bi represents a correction. Once the operator Bk is defined the Quasi-Newton search
direction becomes:

di+1 = −W i−1∇J (mi) .

It remains to define the initial matrix W 0 and the correction Bi.
The most popular Quasi-Newton method is the BFGS method elaborated by Broyden,

Fltecher, Goldfarb and Shanno. This algorithm gives:

W i+1 = (I − pisiyi>)W i(I − pisiyi>) + pisisi
>
,

where:

• si = mi+1 −mi = αidi;

• yi = ∇J (mi+1)−∇J (mi);
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• pi = 1

yi>si
.

Concerning the choice ofW 0, an effective choice is to use an approximation of the Hessian.
But since this is what we avoid calculating using a quasi-newton method, we mainly choose
the identity operator I.

BFGS has been proved to be robust and to have a superlinear convergence [Nocedal and
Wright, 2006]. Despite being less efficient than the Newton method, Quasi-Newton methods
are more affordable since they do not require to compute the Hessian and avoid resolution of
a linear system.

However, since the method is recursive, it requires to store the approximate matrix W i,
which may be unfeasible because it is of size np × np. To reduce the memory load, Nocedal
[1980] proposes an algorithm that approximates the BFGS product W i∇J (mi), using the n
previous stages of the optimization that is to say the n previous mi and ∇J (mi) vectors.
Initially called Sampled Quasi-Newton algorithm, this method is now known as Limited-
memory BFGS or L-BFGS. We display in Algorithm 1 the computation of the search direction
using L-BFGS method.

Input: mi, ∇J (mi)
Stored: mi−1,..., mi−n−1, ∇J (mi−1),..., ∇J (mi−n−1)
Delete from disc mi−n−1, ∇J (mi−n−1)
Save to disc mi, ∇J (mi)
q ← ∇J (mi)
for k = (i− 1), (i− 2), ..., (i− n) do

gk ← ∇J (mk)
sk ← mk+1 −mk

yk ← gi+k − gk
pk ← 1

yk>sk

αk ← pksk
>
yk

q ← q − αkyk
end

γi ← yi−1>si−1

yi−1>yi−1

di ← γiq
for k = (i− 1), (i− 2), ..., (i− n) do

βk ← pkyk
>
di

di ← di + (αk − βk)sk
end
di ← −di
Output: di

Algorithm 1: Compute search direction di using L-BFGS algorithm.

This algorithm requires only the storage of the n previous states of m and ∇J (m), which
is manageable by saving on disc as suggested in the NLCG subsection. Métivier et al. [2013]
compares the reconstructions for several choices of n (5, 20 and 40), but no particular dif-
ferences emerge from this test. For the thesis we have chosen arbitrarily n = 8, allowing a
compromise between efficiency, computational cost and memory storage.

In this section, we have established the different methods of search direction developed
during the thesis in order to solve the problem of minimization raised by the FWI. In Chapter 4
at Subsection 4.2.1, we perform a convergence study, of these search direction methods, applied
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to the reconstruction of a geophysical medium. Now that we have reviewed the different ways
to calculate the search direction, we will discuss the strategies to compute an efficient line
search.

1.4.4 Line search method

The minimization is carried out by activating an iterative process. At each iteration of the
optimization, we define a search direction di to update the parameters as follows:

mi+1 = mi + αidi .

The optimal step length at the ith iteration consists in finding αi such that:

αi = inf
α
J (mi + αdi) . (1.14)

However, the optimal step length is solution of another minimization problem (1.14) which
is not affordable. The choice of the line search coefficient is then a trade-off between the
computational time and the decrease of J .

A step length αi is considered as valid if it satisfies Armijo conditions [Armijo, 1966]. This
conditions guarantees that the step αi is not too large and is defined by the following relation:

J (mi + αidi) ≤ J (mi) + c1α
idi
>∇J (mi) , (1.15)

where c1 is a real parameter such as c1 ≤ 1, and in practice it is chosen small (c1 = 10−4)
[Nocedal and Wright, 2006].

It is important to note that such a condition is not sufficient by itself to have a well-
behaved optimization since the condition (1.15) is always satisfied for small steps. To avoid
undesirable small updates, we may use the Wolfe condition defined as follows:

di
>∇J (m+ αidi) ≥ c2d

i>∇J (mi) , (1.16)

where c2 is a real factor such that : c1 < c2 < 1. However, condition (1.16) requires the
computation of the gradient at the new update parameter m+αidi, which may be expensive
when using adjoint state method. Bonnans [2006] suggests that, for situations that require
as few computations of the gradient as possible, it may be more efficient to use the Goldstein
criterion:

J (mi + αidi) ≥ J (mi) + c2α
i>∇J (mi) .

We described criteria that define if the step length αi is ’too large’ (Armijo condition) or
’too short’ (Wolfe or Goldstein condition). We then propose to use a backtracking line search
algorithm to find an appropriate step length. We display in Algorithm 2 the backtracking
procedure. This algorithm requires starting with a large enough initial step. If it is too small,
it may take several iterations to be efficient.
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Input: m, d
define α # Initial step length
define p1 # growth factor p1 > 1
define p2 # reduction coefficient p2 < 1
while do

compute J (m+ αd)
if (Armijo condition) then

if (Wolfe or Goldstein condition) then
exit # Keep step length

end
else

α← p1 ∗ α # Increase the step length
cycle

end
end
else

α← p2 ∗ α # Decrease the step length
cycle

end
end
Output: α

Algorithm 2: Compute step length αi using Backtrack method:

The backtracking algorithm requires introducing the definition of two parameters, p1 and
p2, that represent respectively the growth and reduction factor. These parameters enable to
adjust the step length if Armijo condition or Wolfe/Goldstein condition fails. We usually
choose p1 = 1.5 and p2 = 0.5. According to the choice of c1 c2, p1, p2 there is no preset recipe
to define the step length.

The backtracking algorithm is interesting because it requires only the computation of one
cost function at each iteration of the minimization process of the algorithm (one extra gradient
also if Wolfe condition is used). Other line search strategies exist, we can mention the cubic
fitting developed in [Bonnans, 2006] which aims to fit the cost function in the direction of the
search direction by a third order polynomial or the Maximum Projected Curvature (MPC)
from [Khoury and Chavent, 2006] which requires the Jacobian of the cost function. These
alternatives are technically better but require more computation.

We have defined all the strategies considered in the thesis, both in terms of search direction
and in terms of line search. We propose in the next section to test these algorithms on different
known cases assuming that the calculation of the gradient is obtained by adjoint state method
in order to see if a strategy emerges knowing that the cost of the calculation of the gradient
with this method is significant.

1.4.5 Numerical analysis

In this subsection, we want to test the minimization strategies previously introduced. The
interest of these tests is of several orders. First, they allow us to validate the implementation
on known synthetic cases, but also, in a second step, to see if there are more suitable methods
for an optimization using adjoint state method. To do so, we will propose a set of problems
to minimize. Since, for FWI, the gradient is computed by adjoint state methods, we will
consider the cost of the gradient to be twice the cost of the evaluation of the cost function.
In this way, by accounting for all the evaluations of J and ∇J , we will be able to quantify
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the total cost of the method for each given problem.
We display in Table 1.2 the set of optimization problem we implement in order to test the

optimization routine.

Problem np Formula Global
minimum

Initial
location

“Sphere”
[Tang et al.] 100 J (X) =

∑np
i iX2

i (0,. . . .,0) (10,. . . ,10)

Rosenbrock
[Rosenbrock, 1960] 2

J (x, y) = (1− x)2

+ 100(y − x2)2 (1.0,1.0) (-1.2,1.0)

Beale
[Jamil and Yang, 2013] 2

J (x, y) = (1.5− x+ xy)2

+ (2.25− x+ xy2)2

+ (2.625− x+ xy3)2
(3,0.5) (0.0,0.0)

Three-hump
[Branin, 1972] 2

J (x, y) = 2x2 − 1.05x4

+ x6

6 + xy + y2 (0,0,0,0) (3.0,3.0)

Matyas
[Hedar, 2007] 2 J (x, y) = 0.26(x2 + y2)

− 0.48xy
(0.0,0.0) (-9.0,9.0)

Booth
[Jamil and Yang, 2013] 2 J (x, y) = (x+ 2y − 7)2

+ (2x+ y − 5)2 (1.0,3.0) (7.5,5.5)

Table 1.2: Collection of benchmark functions for optimization problem.

There are already developed optimization libraries that are the result of several years
of development. I will quote in particular the optimized procedure from scipy and the
toolbox of optimization from Matlab. Unfortunately, in the context of this thesis, these
tools can not be used for compatibility reasons. It is required to have an inverse problem
optimizer compatible with the massively parallel context already existing. There are also
consistency reasons that require the code to deal with class and types developed in Total
environment. So there is no other choice than to develop the optimization algorithm.
These benchmarks are thus the opportunity to test and validate the optimization routines
that have been incorporated into the industrial code.

Industrial context

First of all, we aim to determine the most efficient search direction strategy between the
steepest descent, NLCG (FR,PR,DY,HS), and L-BFGS. For these tests, we propose to fix the
line search strategy by employing backtracking using Armijo and Wolfe line search conditions.
As said before, the efficiency of the method will be assessed by comparing the overall cost of
the method. We will then quantify the number of iterations Nit, the number of cost function
evaluations NJ , and the number of gradient computations N∇J . We will consider that the
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overall cost of the optimization Nall satisfies the following relation: Nall = NJ + 2N∇J , since
we supposed that the adjoint state method enables to compute the gradient with twice the
cost of the cost function evaluation. For all these problems, we consider that the algorithm
has converged if and only if we have: |J | < 10−9 or ‖ ∇J ‖2< 10−3.

Table 1.3 highlights the superiority of L-BFGS over the other search direction methods.
This result was expected since we aim by this method gives access to Hessian information.
It also shows that the steepest descent is most of the time much more expensive than other
search directions. This is more particularly visible in the three first problems displayed in
Table 1.3. For the Three-Hump problem, some figures are not available since the algorithm
does not converge to the global minima. We then do not take into account these configurations
in such a case.

Let us now consider the choice of the line search. We propose to evaluate the global
computational cost the same way we did for the search direction, by fixing the search direction
method to be L-BFGS and by changing the line search strategy using single Armijo condition,
Armijo and Wolfe, or Armijo and Goldstein conditions. The objective is to know if it is worth
computing one extra gradient during the line search for Wolfe criterion, knowing that one
gradient evaluation is twice as expensive as computing the cost function. We display in
Table 1.4 the results of the experiment. It is clearly shown that, despite the fact that the line
search using Armijo + Wolfe condition can give the lowest number of iterations, the global
cost of the method is way more expensive than the one using single Armijo or Armijo and
Goldstein conditions. For the different experiments, adding Goldstein condition to avoid ’too
short’ step length seems to improve the efficiency of the method when using single Armijo
condition, but both configurations seem to have a similar cost.

In this section concerning optimization, we made an inventory of methods that complied
with FWI requirements. Indeed, when the number of parameters is very important and the
evaluation of the function is time-consuming, not all optimization methods are reasonable,
hence we focus on low memory Quasi-Newton search directions such as Non-linear conjugate
gradient or the Limited-Memory BFGS. We also defined an adapted line search strategy that
consists in using a backtracking algorithm to find a step length satisfying several conditions we
have defined (Armijo, Wolfe, and Goldstein conditions). We then proceeded to a benchmark of
these methods on various well-known optimization problems (see Table 1.2). The so-obtained
results allowed us to validate our implementation, but also to define an optimization strategy
adapted to problems whose gradient is obtained by adjoint state method.

As a consequence, to reconstruct physical parameters with FWI, we propose to use L-
BFGS search direction and a backtracking line search based on single Armijo or Armijo +
Goldstein conditions.

1.5 Conclusion

In this chapter, we defined the inverse problem in a geophysical context, and we described
the modalities of a seismic acquisition campaign. These campaigns provoke, at the levels of
seismic sources a disturbance that spreads in the subsoil. The wavefield that propagates is
then recorded at the receivers levels. The inverse problem consists then in finding the physical
parameters of the subsoil such as the simulations coincide ’at best’ with the observed data.
We can quantify this difference between observations and numerical results by defining a cost
function. In this thesis, we chose to consider a least square cost function.

We have then introduced optimization algorithms. Global algorithms seem impossible to
use in view of the large number of parameters to be reconstructed but also in view of the cost
function that is revealed to be computationally challenging. For local optimization algorithms,
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Problem Search direction Line search Nit NJ N∇J Nall

“Sphere” Steepest Armijo + Wolfe 264 620 885 2390
NLCG_FR Armijo + Wolfe 120 279 418 1115
NLCG_PR Armijo + Wolfe 232 467 699 1865
NLCG_HS Armijo + Wolfe 82 189 271 731
NLCG_DY Armijo + Wolfe 89 179 268 715
L-BFGS Armijo + Wolfe 85 173 258 689

Rosenbrock Steepest Armijo + Wolfe 744 2113 2857 7827
NLCG_FR Armijo + Wolfe 122 421 543 1507
NLCG_PR Armijo + Wolfe 75 441 516 1473
NLCG_HS Armijo + Wolfe 48 211 259 729
NLCG_DY Armijo + Wolfe 70 163 233 629
L-BFGS Armijo + Wolfe 38 88 126 340

Beale Steepest Armijo + Wolfe 156 416 572 1560
NLCG_FR Armijo + Wolfe 59 118 177 472
NLCG_PR Armijo + Wolfe 64 221 286 793
NLCG_HS Armijo + Wolfe 36 118 154 426
NLCG_DY Armijo + Wolfe 25 56 81 218
L-BFGS Armijo + Wolfe 26 53 79 211

Three-hump Steepest Armijo + Wolfe # # # #
NLCG_FR Armijo + Wolfe # # # #
NLCG_PR Armijo + Wolfe # # # #
NLCG_HS Armijo + Wolfe 30 62 92 246
NLCG_DY Armijo + Wolfe 63 127 190 507
L-BFGS Armijo + Wolfe 18 39 57 153

Matyas Steepest Armijo + Wolfe 35 89 124 337
NLCG_FR Armijo + Wolfe 46 107 153 413
NLCG_PR Armijo + Wolfe 30 97 127 351
NLCG_HS Armijo + Wolfe 19 47 66 179
NLCG_DY Armijo + Wolfe 23 47 70 187
L-BFGS Armijo + Wolfe 5 14 19 52

Booth Steepest Armijo + Wolfe 29 63 92 247
NLCG_FR Armijo + Wolfe 26 53 79 211
NLCG_PR Armijo + Wolfe 28 62 89 240
NLCG_HS Armijo + Wolfe 28 61 89 239
NLCG_DY Armijo + Wolfe 19 40 59 158
L-BFGS Armijo + Wolfe 12 25 37 99

Table 1.3: Benchmark results for several search direction strategies using Armijo and Wolfe
condition line search.
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Problem Search direction Line search Nit NJ N∇J Nall

Sphere L-BFGS Armijo 64 81 64 209
L-BFGS Armijo + Wolfe 85 173 258 689
L-BFGS Armijo + Goldstein 54 87 54 195

Rosenbrock L-BFGS Armijo 59 80 59 198
L-BFGS Armijo + Wolfe 38 88 126 340
L-BFGS Armijo + Goldstein 43 84 43 170

Beale L-BFGS Armijo 17 21 17 55
L-BFGS Armijo + Wolfe 26 53 79 211
L-BFGS Armijo + Goldstein 13 19 13 45

Three-hump L-BFGS Armijo 26 30 26 82
L-BFGS Armijo + Wolfe 18 39 57 153
L-BFGS Armijo + Goldstein 20 37 20 77

Matyas L-BFGS Armijo 15 19 15 49
L-BFGS Armijo + Wolfe 5 14 19 52
L-BFGS Armijo + Goldstein 5 12 5 22

Booth L-BFGS Armijo 21 25 21 67
L-BFGS Armijo + Wolfe 12 25 37 99
L-BFGS Armijo + Goldstein 18 31 18 67

Table 1.4: Benchmarks results for several line search strategies using L-BFGS search direction.

it is necessary to obtain the gradient of the cost function according to the parameters that we
are trying to reconstruct. This gradient can be obtained by different ways, but the adjoint
state method [Chavent, 2010] is recommended because it allows great flexibility (change of
parameterization and cost function) while having a fixed calculation cost whatever the number
of parameters to be reconstructed. This process is called Full Waveform Inversion (FWI)
[Lailly, 1983, Tarantola, 1984].

In the last part of this chapter, we have discussed the optimization to be followed for
efficient resolution. We defined different search direction and line search strategies. Following
tests on well-known synthetic cases, we were able to benchmarks the cost of the different meth-
ods by taking into account that the gradient is computed using the adjoint state method. We
then concluded that the FWI should be implemented by using Limited-memory BFGS [No-
cedal, 1980] and a backtracking line search defined by the conditions of Armijo and Goldstein
[Bonnans, 2006].

Now that we have defined the inverse problem and a guideline to solve it, we will devote the
next chapter to define in a precise manner the forward problem from its continuous formulation
to its discretization by Discontinuous Galerkin methods (DGm). DGm have several properties
that make this space discretization very suitable in geophysical context and more particularly
in terms of High Performance Computation.



Chapter 2

The Forward Problem

The objective of this chapter is to introduce the direct problem dealt with in the thesis. It
is important to define the physical and mathematical context in which we will evolve in the
continuation of the manuscript, in particular because it is driven by industrial constraints
of development. All the work carried out during this thesis has been done in an acoustic
environment. It is for this reason that this chapter aims to introduce acoustic wave equations
and their discretizations. The core of this work is the resolution of the inverse problem in a
time domain geophysical context using Discontinuous Galerkin method in space. A particular
care will thus be taken, during this chapter, to define the discretized model in space and time.

In order to promote DG methods, which are mainly implemented using Lagrange nodal
polynomial basis, we will investigate on the asset of Bernstein-Bézier polynomial basis. The
latter brings interesting properties and allows reducing computational costs when using high
order polynomials, which is exactly the framework in which DG methods have proved their
interest in front of continuous methods (e.g. [Dumbser, 2005, Baldassari, 2009]).

In the majority of cases, and for obvious reasons of practicality, the DG method is im-
plemented on the assumption that the physical parameters of the medium are constant per
cell. This leads to an undersampling of the physical parameters and to a misrepresentation of
the geological model. In this chapter, we will also investigate Weight Adjusted Discontinuous
Galerkin method, which provides more information on the physical parameters within each
cell. This technology changes the parameterization of the physical model, which in particular
influences the inverse problem. It is therefore important to develop also this aspect of the
direct problem in this chapter that introduces all tools used in the perspective of solving the
inverse problem.

2.1 The Continuous Acoustic Problem

In this section, we will define the physical equation describing the propagation of mechanical
waves. We will more precisely describe the continuous acoustic wave equation, which is the
physical phenomenon we consider in this thesis.

2.1.1 The Acoustic wave equations

In fluid medium, an acoustic wave is a vibration that propagates information, from a point
to another, like the circular fronts on the surface of water if you throw a rock. An acoustic
wave is generated when the molecules that compose the propagating medium start to move,
pushing each other. A wave is characterized by a fundamental frequency that, if it is too

47
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high (ultrasound) or too low (infrasound), will correspond to a wave that cannot be heard by
the human ear. We then speak of pressure or compressional waves or P waves to refer to the
mode of propagation of acoustic waves (see Figure 2.1).

Figure 2.1: Illustration of a compressional wave.

An acoustic wave can be represented by a scalar field p which corresponds to the pressure
field. We can add to it the velocity field v, which is a vector with two or three components,
depending on the dimension (2 or 3) of the propagation medium. The wavefield (p,v) is the
solution of the following system of equations that describes the wave propagation knowing a
certain initial state (p0,v0) and a space and time perturbation defined by f :

∂p

∂t
(t,x) + κ(x)∇ · v(t,x) = f(t,x) ,

ρ(x)
∂v

∂t
(t,x) +∇p(t,x) = 0 ,

p(t0,x) = p0 ,

v(t0,x) = v0 .

(2.1)

(2.2)

These equations are set in the time-dependent domain described by the time variable t
and the space variable x. In this system, the propagation medium is depicted by the bulk
modulus κ and the density ρ but can also be represented by the wavespeed c.

The wavefield and the physical model parameters are defined by the following units:

p = pressure (kg.m−1.s−2);
v = velocity (m.s−1);
κ = bulk modulus (κ = ρc2) (kg.m−1.s−2);
ρ = density (kg.m−3);
c = wavespeed of wave propagation (m.s−1).

This system of equations is obtained by combining the conservation of momentum and
conservation of mass equations derived from the linearized Euler equations (see for instance
[Dahlen and Tromp, 1998]). It is possible to get the pressure field p alone as the solution to
the second-order wave equation:

1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= g ,

p(t0,x) = p0 ,

(2.3)

which is obtained after eliminating the velocity field of the previous system by time derivation
of the equations.

The second order acoustic equation (2.3) is equivalent to the first order ones (2.1), (2.2) but
as far as the computational costs are concerned, it is fundamentally different because the only
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unknown managed here (p) is a scalar. In this thesis, we will principally work with the first
order formulation. The propagation code under development in Total uses this formulation.
This choice can be motivated by the fact that we do not need extra computation to get access
to the velocity field which is stored in memory. For instance, this simplifies implementation
of absorbing boundary condition, which require the both fields p and v. It is also important
to point out that the velocity field, v, is also a key variable for inversion. It is therefore
interesting to access it at the same time as the pressure field, p, without any post-processing.

2.1.2 The Acoustic model

Acoustic modeling is one of the pillars of the inversion technique that we are going to develop.
Here, we will use the first order formulation (see (2.1), (2.2)), which gives us access to the
pressure field and the velocity field in the same time. A distinction is made between the
direct problem, which consists in simulating the wave field in a given medium, and the inverse
problem, which associates a given wave field with a set of parameters to be retrieved in order
to reconstruct the propagation medium.

The real physical problem is set in a half-space Ωinf that is infinite in the depth direction.
The problem lasts between the time t = 0 and the final time t = Tf . The surface Γ1

corresponds to the boundary of the half-space Ωinf , it is basically the surface of a portion of
the Earth.

The propagation medium (see Figure 2.2) is then defined by physical parameters like the
wavespeed, c, the bulk modulus κ, the density ρ, and a source field (in red) generates a
perturbation inside the propagation medium represented by the pair (p, v). In Figure 2.2, we
have represented in blue receivers that can be used to record signals. These signals are the
result of the reflections of the waves generated by the source, which indicate discontinuities
in the medium.

Figure 2.2: Semi-infinite propagation domain.

As far as numerical simulations are concerned, it is convenient to limit the computation
to a truncated domain. Artificial boundaries are then introduced to make these boundaries as
invisible as possible to the computed waves within the truncated domain. Thus, the solution
computed within the bounded computational domain provides an accurate simulation of the
real wavefield that would only be evaluated regionally within the bounded domain (see Figure
2.3). In the following of this manuscript, we denote by Ω the truncated domain and Γ2 the
artificial boundary, Γ2 = ∂Ω\Γ1.



50 CHAPTER 2. THE FORWARD PROBLEM

Figure 2.3: Truncated infinite domain.

Unsurprisingly, a difficulty of the approach is contained in the definition of the Boundary
Condition that is imposed on artificial boundaries. The literature is quite rich on the subject
and either in the time domain or in the frequency domain, these conditions can be divided
into two large families that are the absorbing boundary conditions (ABC) and the perfectly
matched layers (PML).

Absorbing Boundary Condition (ABC)

The idea of using ABCs has been promoted by Engquist and Majda [1977]). The ABC
construction can be the result of different approaches. For example, in [Engquist and Majda,
1977], ABCs are constructed as an approximation of a transparent condition that conveys the
perfect transmission of a wave through an artificial surface. In [Bayliss and Turkel, 1980],
these conditions are derived from the expression of an analytical solution that can be written
in the harmonic regime for particular geometries. Here, we use the simplest ABC for the
time-dependent acoustic wave equation, following for instance [Engquist and Majda, 1977].
It reads:

∂p

∂t
(t,x) + c(x)∇p(t,x).n = 0 , x ∈ Γ2 , (2.4)

where n stands for the unitary normal vector outwardly directed to Γ2.
Knowing that at time t = t0 the pressure and velocity fields are null, the physical acoustic

wave in Ω is then solution of the following system:

∂p

∂t
(t,x) + κ(x)∇ · v(t,x) = f , on [t0, Tf ]× Ω ,

ρ(x)
∂v

∂t
(t,x) +∇p(t,x) = 0 , on [t0, Tf ]× Ω ,

p(t,x) = 0 , on [t0, Tf ]× Γ1,

p(t,x)− c(x)ρ(x)v(t,x).n = 0 , on [t0, Tf ]× Γ2,

p(t0,x) = 0 , v(t0,x) = 0 on Ω.

The term f represents the pressure perturbation induced by the source field. The boundary
Γ1 is characterized by a free surface condition. This condition allows the ground surface to
move freely into the upper part (which is air in geophysical exploration). In acoustics, the
free surface is represented by a Dirichlet boundary condition on Γ1 :

p|Γ1 = 0 acoustic free surface condition.

ABCs are generally developed by assuming that possible reflected waves are generated by
waves impinging the artificial surface with an incidence following a direction which is close
to the one of normal vector (see for instance [Keys, 1985]). Obviously, their efficiency is thus
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optimal for waves traveling in close proximity of the normal incidence. It has been shown
that it is possible to widen the angle of incidence for which the ABC is efficient by increasing
the order of approximation of the transparent condition. The ABC involves then higher
order differential operators (see for instance [Givoli et al., 2006, Engquist and Majda, 1977,
Higdon, 1986, Diaz, 2005]). Here, we chose ABCs because it turns out to be quite efficient
for geophysical applications.

Perfectly Matched Layer (PML)

As previously mentioned, ABCs can become less efficient, especially in heterogeneous environ-
ments that allow waves to propagate in all directions and thus reduce the percentage of waves
hitting the artificial boundary to an incidence close to the direction of the normal vector. A
solution was first proposed to simulate electromagnetic waves in the time domain by Bérenger
[1994] with the idea of using a system of perturbed equations written as the initial system
of equations to be solved modified only in an area surrounding the initial field of study (see
Figure 2.4). The perturbation of the system is made so that the waves propagating in the
layer are sufficiently attenuated and thus, the possible waves reflected by the outer boundary
of the layer cannot perturb the computed field in the inner domain. The difficulty of this
approach lies in the construction of the perturbation which must be done in such a way that
the waves propagating from the inner domain to the layer must be perfectly transmitted, as
suggested by the generic terms of perfectly matched layers (PML). Like the work of Engquist
and Majda [1977], Bérenger’s work has been followed by numerous publications, extending
PMLs to other systems, either in the time domain or in the frequency domain [Turkel and
Yefet, 1998].

Figure 2.4: Illustration of PML surrounding the computational media.

For the work carried out in this manuscript, we will only consider ABC. This choice is
motivated by the observation made by many users that PMLs could make DG formulations
unstable as it was clearly demonstrated in [Citrain, 2019] which uses exactly the same DG
solver as we do. Using an ABC seems to us the most appropriate choice to implement FWI
in the time domain.

2.2 Discretized Acoustic Problem

In this section, we will focus on the discretization of these equations using time domain
Discontinuous Galerkin methods (DGm). We will first describe what is DGm, then we will
introduce the space discretization related to such methods, and we will finally describe the
time discretization used in this thesis.
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2.2.1 Introduction to Discontinuous Galerkin method

Discontinuous Galerkin Methods (DGm) appeared around 1970 for solving the neutron trans-
port equations [Reed and Hill, 1973, Lesaint and Raviart, 1974]. It was then applied to
hyperbolic equations by [Johnson et al., 1984] but it did not spread immediately into the geo-
physical community and more generally in numerical simulation of waves. It was in the 2000s
that DGm was really launched thanks to an important promotion delivered by the works
of Shu and Cockburn Cockburn et al. [2000], Cockburn [2001] followed by [Hesthaven and
Warburton, 2007]. Namely, the review article [Cockburn, 2003], shows very well how DGm
has been extensively used by many authors between 2000 and 2002.

DGm is a finite element method using discontinuous polynomial basis functions whose
variational formulation is constructed element by element, each local formulation being glued
with the others thanks to numerical fluxes defined on the edges or faces of the elements.
Numerical fluxes makes it possible to see DGm as a method combining finite elements and
finite volumes. With a DG approximation, the continuity of the solution at the interface
between the elements is thus relaxed and the orders of the polynomial basis functions can be
different from one element to another. We can see here that DGm allows to easily implement
p-adaptivity (see Figure 2.5) which contributes a lot to obtain a numerical method with limited
costs.

Discontinuous polynomial basis generates a bloc diagonal mass matrix, which is convenient
to invert and encourage explicit time schemes. Furthermore, the fluxes make the element
communicating only with its neighbors. Those two properties make it natural to implement
the calculation in parallel. Each element works individually except for the fluxes which are
only with the neighbors. Such fluxes prevent heavy communications which are required for
high order Finite Difference and Finite Element Method and also give a block structure to
any resulting matrix.

We have already talked about the p-adaptivity which is easily implemented with a DGm.
The p-adaptivity could also easily be coupled with the h-adaptivity (see Figure 2.6) to further
increase the accuracy of the method for reduced calculation costs. Indeed, as the formulation
is written element by element, it is quite possible to mix elements of very different sizes to
use even unstructured meshes with hanging nodes. It is therefore easy to carry out local
anisotropic refinements in order to adapt the size of the elements to the physical parameters
of the environment.

Figure 2.5: Illustration of
p-adaptivity.

Figure 2.6: Illustration of
h-adaptivity.

Why is it interesting to use a DGm to reconstruct a geological reservoir? To begin with,
the surveyed domain is very heterogeneous, represented by a large number of parameters. For
example, we know that a wavefield can only be correctly represented if the mesh is adapted to
the characteristic wavelengths of the medium. Thus, the h-adaptivity is an asset of DGm giv-
ing it all the flexibility required to adapt the mesh size without difficulty. One can then adjust
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the approximation orders according to the mesh size by also implementing p-adaptivity. This
provides an ideal compromise between accuracy and computation costs. Next, a geological
reservoir is a complex object whose discrete representation with regular grids (like those used
with Finite Difference methods) can be difficult, especially in the presence of sharp zones or
topography (Figure 2.7). The ability to work with unstructured grids is therefore another
asset of DGm. Finally, the parallelization of DGm calculations is intrinsic, which is particu-
larly important because a geological reservoir is generally large and its reconstruction requires
a large number of simulations. We are therefore faced with a large-scale problem that has
no chance of being solved sequentially. In particular, it has been shown that high-order DG
approximations lead to a better scalability of the solver in a HPC environment. This is a
major feature as compared to other space discretization methods (see [Shragge, 2014] for a
comparison with Finite Difference method). This is mainly due to the fact that the matrices
associated with most of the methods have a stencil which increases significantly with the order
of approximation, requiring the interaction between distant elements. Then, the number of
communications are strongly increased, which hampers the performance of the parallelization.

(a) 3D unconstrained meshes following topography.
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(b) Sharp wavespeed model (m.s−1).

Figure 2.7: Complex areas motivating unstructured mesh utilization.

2.2.2 DGm Formulation for Acoustic wave equations

In this section, we will describe the discretization of the first order acoustic wave equations
(2.1)-(2.2) based upon DG formulation. But before initiating any calculation, let us introduce
some useful notations for the formulation used here.

NOTATIONS

• Ω: the computational domain;

• ∂Ω: the boundary of the computational domain Ω;

• dim: the space dimension (dim = 2 in 2D, dim = 3 in 3D);

• N : the polynomial order of approximation chosen;

• DoF : number of degrees of freedom per element, since DoF depends on the polynomial
order approximation of the current element, we will also denote, when required, the
number of degrees of freedom of an element of order N by DoF (N);

• Th: triangulation of Ω;

• K: an element of Th (triangles in 2D, tetrahedrons in 3D);

• Ne: the total number of elements in Th;
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• x: position vector in Ω of size dim (x = (x1, x2)> in 2D, x = (x1, x2, x3)> in 3D);

• Γ: intersection between two elements or with the boundary of the domain;

• n: the unitary normal vector outwardly directed to the domain it is associated to.
It may be the normal associated to the boundary of Ω (Figure 2.8a) or the normal
associated to an element K (Figure 2.8b).

• EK : set of edges (in 2D) or faces (in 3D) of the element K.

• Bint: interior set of edges (in 2D) or faces (in 3D) of Th that belong to Ω\∂Ω.

• Bext: exterior set of edges (in 2D) or faces (in 3D) of Th that belong to ∂Ω.

(a) Normal vector in element/boundary con-
figuration.

(b) Normal vector in element/element config-
uration.

Figure 2.8: 2D illustration of the outgoing normal whether the interface is external (a) or
internal (b).

The DG formulation involves numerical fluxes that ensures the communication between
internal elements. The main feature of DG approximation is to use piecewise continuous
basis functions elementwise defined. That leads to introducing jump J.K and average {.} of
a quantity w (a scalar or a vector) defined at the interface Γ between two elements K+ and
K−. The index ± denotes the value of w in the element K± at the interface Γ in Bint. If w
is a scalar, the jump is the vector defined by:

JwK = w+n
+ + w−n

− .

If w is a vector, the jumps is the scalar defined by:

JwK = w+ · n+ +w− · n− .

The average of w is defined by:

{w} =
w+ + w−

2
,

whether w is a scalar or a vector.



2.2. DISCRETIZED ACOUSTIC PROBLEM 55

Acoustic wave equation discretization

In order to understand DG formulation, let us consider the following acoustic wave equation
system where the boundary condition has been simplified to be pressure free-surface boundary
condition all over ∂Ω:

1

κ

∂p

∂t
+∇ · v =

1

κ
f , in Ω× [t0, Tf ],

ρ
∂v

∂t
+∇p = 0 , in Ω× [t0, Tf ],

p = 0, on ∂Ω× [t0, Tf ] ,

p(t0,x) = 0 , u(t0,x) = 0, in Ω .

(2.5)

Theorem 2.2.1 (Well-posedness). Let κ and ρ be positive piecewise constant functions on
Ω. Let f be given in L2([t0, Tf ];L2(Ω)). Then (2.5) admits a unique solution (p,v) in
L2([t0, Tf ];H1

0 (Ω))× L2([t0, Tf ];H(div,Ω)).

This results can be established with Hille-Yosida theory (see for instance Dautray and
Lions [2012]). We denote by H1

0 (Ω) the standard Sobolev space and H(div,Ω) = {w ∈
L2(Ω)dim,∇ ·w ∈ L2(Ω)}.

Let Th be a triangulation of Ω. Let K be one element of Th. DG formulations start with
local variational problems that are defined by:
find (p,v) such that for any (q,w) ∈ L2(Ω) × L2(Ω)dim satisfying q|K ∈ H1(K), w|K ∈
(H1(K))dim, we have: 

∫
K

(
1

κ

∂p

∂t
q +∇ · vq

)
dK =

∫
K

1

κ
fqdK,∫

K

(
ρ
∂v

∂t
.w +∇p.w

)
dK = 0 .

(2.6)

To obtain (2.6), we multiply by q and w the two first equations of (2.5) and we integrate
on the element K.

In order to construct a global DG formulation, communication must be established be-
tween the elements that comprise the triangulation covering the computational domain. A
natural way to introduce these communications is to carry out an integration by part of
the local problem that brings out boundary terms shared in the neighboring elements (see
Figure 2.8b). We then have, at element level:

∫
K

1

κ

∂p

∂t
qdK −

∫
K
v.∇qdK +

∫
∂K
v.nqds =

∫
K

1

κ
fqdK,∫

K
ρ
∂v

∂t
.wdK −

∫
K
p∇ ·wdK +

∫
∂K

pw.nds = 0 .

Remark. Here both
∫
∂K are in fact duality products (H−

1
2 (∂K), H

1
2 (∂K)).

Then, the global formulation is obtained by summing over all the elements K with a
specific treatment of boundary terms. To do this, we have to identify the internal edges
(faces) which correspond to the interfaces between two different elements and the external
edges (faces) which bear the boundary conditions. Let Bint be the set of internal edges (faces)
and Bext be the set of external edges (faces). We then have:
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∫
Ω

1

κ

∂p

∂t
qdK −

∫
Ω
v.∇qdK +

∑
K

∫
∂K
v · nqds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂v

∂t
.wdK −

∫
Ω
p∇ ·wds+

∑
K

∫
∂K

pw · nds = 0 ,

and∑
K

∫
∂K
v · nqds =

∑
Γ∈Bint

∫
Γ

(
v+ · n+q+ + v− · n−q−

)
ds+

∑
Γ∈Bext

∫
Γ
v · nqds ,

along with

∑
K

∫
∂K

pw.nds =
∑

Γ∈Bint

∫
Γ

(
p+w+ · n+ + p+w+ · n+

)
ds+

∑
Γ∈Bext

∫
Γ
pw · nds ,

where q ∈ Q and w ∈W , the functional spaces being defined such that:

Q = {q ∈ L2(Ω), q|K ∈ H
1(K)} ,

W = {w ∈ (L2(Ω))2, w|K ∈ (H1(K))2} .

Since we are using free-surface condition on the pressure field on ∂Ω, we have:

∑
∂K∈Bext

∫
∂K

pw · nds = 0.

Regarding the terms Γ ∈ Bint, we can rewrite both equations in terms of jumps:

∑
Γ∈Bint

∫
Γ
(v+ · n+q+ + v− · n−q−)ds =

∑
Γ∈Bint

∫
Γ
JqvKds ,

and ∑
Γ∈Bint

∫
Γ
(p+w+ · n+ + p−w− · n−)ds =

∑
Γ∈Bint

∫
Γ
JpwKds.

We thus end up with the following global DG variational formulation:

∫
Ω

1

κ

∂p

∂t
qdK −

∫
Ω
v.∇qdK +

∑
Γ∈Bint

∫
Γ
JqvKds+

∑
Γ∈Bext

∫
Γ
qv · nds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂v

∂t
.wdK −

∫
Ω
p∇ ·wds+

∑
Γ∈Bint

∫
Γ
JpwKds = 0 .

(2.7)

Then, it is convenient to rewrite jump terms in (2.7) in order to exhibit interesting prop-
erties. For that purpose, we state:

Property 1. Let α be a scalar and w be a vector. Then on Γ ∈ Bint:

JαwK = {α}JwK + {w} · JαK
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Proof: For Γ ∈ Bint:

{α}JwK + {w} · JαK =
1

2

[
(α+ + α−)(w+ · n+ +w− · n+) + (w+ +w−) · (α+n+ + α−n+)

]
=

1

2

[
(α+w+ · 2n+ + α+w− · (n+ + n+) + α−w+ · (n+ + n+) + α−w− · 2n+)

]
= α+w+ · n+ + α−w− · n+

because n+ = −n+ by definition, hence the two last terms cancel each other out. We then
obtain:

{α}JwK + {w}.JαK = JαwK

We have then completed the proof of Property 1 for Γ ⊂ Bint. Then by injecting the
relationship of Property 1 in (2.7) we get:



∫
Ω

1

κ

∂p

∂t
qdK −

∫
Ω
v.∇qdK +

∑
Γ∈Bint

∫
Γ

({q}JvK + {v}.JqK) ds+
∑

Γ∈Bext

∫
Γ
qv · nds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂v

∂t
.wdK −

∫
Ω
p∇ ·wdK +

∑
Γ∈Bint

∫
Γ

({p}JwK + {w}.JpK) ds = 0 ,

(2.8)

which displays a sort of symmetry in the interface terms and more importantly a way to
separate the solution trace from the test function one. By this way, it is possible to inject one
regularity of the solution, that is:

JpK = 0 on Bint ∪ Bext, since p(t, .) ∈ H1
0 (Ω) ⊂ H1(Ω) ,

JvK = 0 on Bint, since v(t, .) ∈ H(div,Ω) .

Hence, (2.8) changes to:

∫
Ω

1

κ

∂p

∂t
qdK −

∫
Ω
v.∇qdK +

∑
Γ⊂Bint

∫
Γ
{v}.JqKds+

∑
Γ⊂Bext

∫
Γ
qv · nds =

∫
Ω

1

κ
fqds,∫

Ω
ρ
∂v

∂t
.wdK −

∫
Ω
p∇ ·wdK +

∑
Γ⊂Bint

∫
Γ
{p}JwKds = 0 .

(2.9)

Then, let us introduce the approximation spaces QNh and WN
h that are defined by:

QNh = {q ∈ L2(Ω), q|K ∈ PN (K), ∀K ∈ Th },

WN
h = {w ∈ L2(Ω)dim, w|K ∈ (PN (K))dim, ∀K ∈ Th},

where PN (K) denotes the set of polynomials of order N defined on an element K. Then, we
can define a polynomial approximation of p and v that we seek in the form:

ph =
∑
K∈Th

ph
K , vh =

∑
K∈Th

vh
K

where phK and vhK are defined as:
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ph
K =

DoF∑
j=1

Phj
KϕKj , (vh

K)d =

DoF∑
j=1

Vhd
K
j ϕ

K
j , for d = 1 to dim ,

and ϕKj ∈ PN (K).
The number of Degrees of Freedom per elements (DoF ) is determined by the polynomial

order (N) and the space dimension (dim) as reminded in Table 2.1.

DoF (N, dim) dim = 1 dim = 2 dim = 3

DoF N + 1 (N+2)(N+1)
2

(N+3)(N+2)(N+1)
6

Table 2.1: DoF per element as a function of dim and N .

Here, it is worth noting that once the continuous solutions in (2.9) are substitute with the
approximate solutions, there is no reason to have ph and vh both continuous at the interface
between each element. Hence, to guarantee the approximate solutions keep this property, we
introduce penalization terms led by penalization parameters α, β, γ and δ.



∫
Ω

1

κ

∂ph
∂t

qdK −
∫

Ω
vh.∇qdK +

∑
Γ∈Bint

∫
Γ

({vh}.JqK +αJvhK.JqK + βJphK.JqK) ds

+
∑

Γ∈Bext

∫
Γ
qvh · nds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂vh
∂t

.wdK −
∫

Ω
ph∇ ·wdK +

∑
Γ∈Bint

∫
∂K

({ph}JwK + γ.JphKJwK + δJvhKJwK) ds = 0 .

(2.10)

Hesthaven and Warburton [2007], proposed, once the penalization is introduced, to go
back to the strong variational formulation of the volume equations. It requires to apply an
integration by part which allows to only consider the jump of the approximate solution. This
way of formulating the DG solution is then given by:



∫
Ω

1

κ

∂ph
∂t

qdK +

∫
Ω
∇ · vhqdK −

∑
Γ⊂Bint

∫
Γ

(JvhK{q}+αJvhK.JqK + βJphK.JqK) ds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂vh
∂t

.wdK +

∫
Ω
∇ph.wdK −

∑
Γ⊂Bint

∫
Γ

(JphK.{w}+ γ.JphKJwK + δJvhKJwK) ds

−
∑

Γ⊂Bext

∫
Γ
phw · nds = 0 .

(2.11)

Remark. Note that this formulation (2.11) is mathematically equivalent to (2.10) but is
computationally different. Indeed, it requires to only compute jumps of the approximate
wavefield which simplifies the implementation, contrary to (2.10) where the mean value is
also necessary.

With free-surface condition, we can adapt the jump and the mean formula on Γ ∈ Bext to
be:

JphK = phn , JvhK = 0 {ph} = ph {vh} = vh .

With this notation, we can have the general expression of (2.11):
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∫
Ω

1

κ

∂ph
∂t

qdK +

∫
Ω
∇ · vhqdK −

∑
Γ

∫
Γ

(JvhK{q}+αJvhK.JqK + βJphK.JqK) ds =

∫
Ω

1

κ
fqdK,∫

Ω
ρ
∂vh
∂t

.wdK +

∫
Ω
∇ph.wdK −

∑
Γ

∫
Γ

(JphK.{w}+ γ.JphKJwK + δJvhKJwK) ds = 0 .

(2.12)

Note that in this expression, the penalization parameters α and δ are zero if Γ ∈ Bext.
By choosing q = ϕKi and w = ϕKi ed, where ed is the canonical vector of size dim that

is null except 1 at the dth component (for d = 1 to dim), we explore the whole space of
approximation (QNh and WN

h ), and (2.12) changes to a system of (dim + 1) × DoF × Ne

equations.
We then have the following expression for jumps and averages of the test functions:

{q} = {ϕKi } =
1

2
ϕKi |∂K ,

JqK = JϕKi K = ϕKi |∂Kn ,

{w} = {ϕKi } =
1

2
ϕKi |∂Ked for d = 1 to dim ,

JwK = JϕKi K = ϕKi |∂Ked.n for d = 1 to dim.

System (2.11) can thus be written as a system composed of (dim+ 1) equations:



∫
Ω

1

κ

∂ph
∂t

ϕKi dK +

dim∑
d=1

∫
Ω

∂vhd
∂xd

ϕKi dK

−
∑

Γ

∫
Γ

(
1

2
JvhK +αJvhK.n+ βJphK.n

)
ϕKi ds =

∫
Ω

1

κ
fϕKi dK,∫

Ω
ρ
∂vhd
∂t

ϕKi dK +

∫
Ω

∂ph
∂xd

ϕKi dK

−
∑

Γ

∫
Γ

(
1

2
JphK + γ.JphKn+ δJvhKn

)
.ϕKi edds = 0 , for d = 1 to dim.

(2.13)

It is then convenient to introduce the numerical fluxes:

FpΓ(ph,vh) =
1

2
JvhK +αJvhK.n+ βJphK.n

FvΓ
d (ph,vh) =

(
1

2
JphK + γ.JphKn+ δJvhKn

)
.ed

so that system (2.13) takes the form:



∫
Ω

1

κ

∂ph
∂t

ϕKi dK +

dim∑
d=1

∫
Ω

∂vhd
∂xd

ϕKi dK −
∑

Γ

∫
Γ
FpΓ(ph,vh)ϕKi ds =

∫
Ω

1

κ
fϕKi dK,∫

Ω
ρ
∂vhd
∂t

ϕKi dK +

∫
Ω

∂ph
∂xd

ϕKi dK −
∑

Γ

∫
Γ
FvΓ

d (ph,vh)ϕKi ds = 0 , for d = 1 to dim.
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Obviously, this system is solved elementwise, this is the essence of DGm. Hence, we
consider elemental systems of the form:

∫
K

(
1

κ

∂

∂t

DoF∑
j=1

Ph
K
j ϕ

K
j ϕ

K
i +

dim∑
d=1

∂

∂xd

DoF∑
j=1

Vhd
K
j ϕ

K
j ϕ

K
i )dK

+
∑

Γ

∫
Γ
FpΓ(ph,vh)ϕKi ds =

∫
K

1

κ

DoF∑
j=1

Fh
K
j ϕ

K
j ϕ

K
i dK,

∫
K

(ρ
∂

∂t

DoF∑
j=1

Vhd
K
j ϕ

K
j ϕ

K
i +

∂

∂xd

DoF∑
j=1

Ph
K
j ϕ

K
j ϕ

K
i )dK

+
∑

Γ

∫
Γ
FvΓ

d (ph
K ,vh

K)ϕKi ds = 0 (for d = 1 to dim) .

(2.14)

To simplify (2.14), we introduce the following matricial operators:

[M ]Ki,j =

∫
K
ϕKi ϕ

K
j dK, Local Mass matrix on K,

[Sxd ]
K
i,j =

∫
K
ϕKi

∂ϕKj
∂xd

dK, Local Stiffness matrix on K,

[MΓ]Ki,j =

∫
Γ
ϕKi ϕ

K
j ds, Local surface Mass matrix on Γ,

F̄pΓ and F̄vΓ
d , The flux vectors of size DoF ,

where we consider:

FpΓ(ph,vh) =
DoF∑
j=1

F̄pΓ
j ϕ

K
j ,

FvΓ
d (ph,vh) =

DoF∑
j=1

F̄vΓ
djϕ

K
j .

We also define the source term such that:

f |K =

DoF∑
j=1

Fh
K
j ϕ

K
j .

Remark. The flux computation depends on the polynomial approximation order of the two
elements apart from the edge Γ. If those elements do not have the same polynomial order
approximation, some projections to the local space are required. We do not describe the
calculations of F̄p and F̄vd, but we keep in mind that the flux terms allow the communications
between elements whether they have the same order or not. This is the idea of p-adaptivity.

These operators lead to rewrite (2.14) into the simplified matricial system that follows:
1

κ
MK ∂Ph

K

∂t
+

dim∑
d=1

SKxdVhd
K +

∑
Γ

MK
Γ F̄pΓ

=
1

κ
MKFh

K ,

ρMK ∂Vh
K
d

∂t
+ SKxdPh

K +
∑

Γ

MΓF̄v
Γ
d = 0 (for d = 1 to dim) . (2.15)
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Concerning the fluxes, in the industrial DG solver used in this thesis, the choice has been
done to implement the acoustic upwind fluxes as described by Hesthaven and Warburton
[2007]. They are:

FpΓ(ph,vh) =
1

2
(JvhiK + τpJphiK.n), Upwind fluxes,

FvΓ
d (ph,vh) =

1

2
(JphiK + τuJvhiKn).ed, Upwind fluxes,

(2.16)

(2.17)

where τp = 1
{ρc} and τu = {ρc}. Those fluxes are obtained by setting the penalization

parameters as follows:

α = 0, β =
1

2
τp,

γ = 0, δ =
1

2
τv,

The choice of the penalization parameters is important for the modeling process. Without
penalization, the simulation is polluted by spurious numerical modes. Adding penalization
terms affects the conditioning of the stiffness matrix that may reduce the computational time
step while solving the equation in time domain using explicit time schemes [Ventimiglia]. Here
we chose the upwind fluxes defined in [Hesthaven and Warburton, 2007]. It has been shown
that such fluxes are dissipative giving smaller jumps in between two elements. However, a
smoother solution is not necessarily more accurate but this smoothness damp the spurious
numerical mode. For an interesting study concerning the choice of the penalization parameters
we refer to [Ainsworth et al., 2006].

We end up with a symmetrical system (2.15) where the unknowns are the coefficients ph
and vhd for d = 1 to dim. It is then possible to write a synthetic that summed up all those
equations:

M
∂

∂t
U + SU = MF ,

UK = (Ph
K ,Vh

K
1 , . . . ,Vh

K
dim)> ,

U = (UK1 ,UK2 , . . . ,UKNe
)> ,

FK = (Fh
K , 0, . . . , 0)> by supposing that: f |K ≈ fKh =

DoF∑
i=1

Fh
K
i ϕ

K
i ,

F = (F 1,F 2, . . . ,FNe)
> ,

Matrix M represents the global mass matrix on the entire domain Ω. S is the global
stiffness matrix that contains the volume and surface terms (fluxes).

Remark. Since M is block-diagonal, we can consider without any additional difficulty the
formulation:

∂

∂t
U +M−1SU = F , (2.18)

which is well-suited for explicit time integration.

With DGm, the Mass operator (M) is then easier to invert than the one obtained using
classical Finite Element Methods:
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M =


M̄K1

. . .
M̄Ki

. . .
M̄KNe

 , M−1 =


(M̄K1)−1

. . .
(M̄Ki)−1

. . .
(M̄KNe )−1

 ,

where each matrix M̄K is a (dim+ 1)×DoF square matrix:

M̄K =


1
κM

K

ρMK

. . .
ρMK

 and (M̄K)−1 =


κ(MK)−1

1
ρ(MK)−1

. . .
1
ρ(MK)−1

 .

Note that we are considering here, for sake of simplicity, that the model parameters ρ
and κ are piecewise constant. Hence, those parameters are outside the integrals. We will
see farther that it is possible to have parameters varying inside each element using Weight
Adjusted Discontinuous Galerkin (WADG) method.

Now that we have defined how to compute each local operator on each element K of Th,
we are going to introduce the notion of reference element that will make the computation of
the mass and stiffness matrices easier.

Generalization using a reference element

With this way of defining local operators, it would be necessary to store as many of these
operators as there are elements. In order to have a more generic expression but also to
reduce the memory size required by the solver, we introduce the calculations on a reference
element K̂. This element will be represented in 1D by the segment [0,1] in 2D by the triangle
[(0,0);(1,0);(0,1)] and in 3D by the tetrahedron [(0,0,0);(1,0,0);(0,1,0);(0,0,1)]. We will then
define the transformation of this reference element to an element K by the linear and bijective
application TK as illustrated in Figure 2.9. We will also denote TΓ the bijective transformation
that changes Γ̂ ⊂ EK̂ into Γ ⊂ EK .

Figure 2.9: Transformation of K̂ into K in 2D.

Thanks to this transformation, all the calculations are expressed according to the coef-
ficients on the reference element. It is a real advantage to be able to proceed in this way
because in addition to drastically simplifying the calculations, we can avoid storing the mass
and stiffness matrices. These operators can therefore be calculated thanks to their equivalent
form established on the reference element.
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The local operators can, indeed, be computed thanks to reference operators as follows:

[MK ]i,j =

∫
K
ϕKi ϕ

K
j dK = |det(JTK )|

∫
K̂
ϕK̂i ϕ

K̂
j dK̂ = |det(JTK )|[M̂ ]i,j ,

[SKxd ]i,j =

∫
K
ϕKi

∂ϕKj
∂xd

dK

= |det(JTK )|
∫
K̂
ϕK̂i (J−>TK ∇ϕ

K̂
j ).eddK̂

= |det(JTK )|
dim∑
k

[J−>TK ]d,k[Ŝx̂k ]i,j ,

[MΓ]Ki,j =

∫
Γ
ϕKi ϕ

K
j ds = |det(JTΓ

)|
∫

Γ̂
ϕK̂i ϕ

K̂
j dŝ = |det(JTΓ

)|[M̂Γ]i,j .

(2.19)

We are now able to compute all local operators thanks to the reference element. The
reference matrices are defined by:

[M̂ ]i,j =

∫
K̂
ϕ̂iϕ̂jdK̂, The reference mass matrix of size DoF ×DoF .

[Ŝx̂d ]i,j =

∫
K̂
ϕ̂i
∂ϕ̂j
∂xd

dK̂, The reference stifness matrices of size DoF ×DoF .

[M̂Γ]i,j =

∫
Γ
ϕ̂iϕ̂jdŝ with Γ ⊂ EK̂ , The reference surface mass matrices of size DoF ×DoF .

JTK , The Jacobian matrix of TK of size dim× dim .

(2.20)

In (2.19) we also requires some determinants derived from JTK . We then introduce the
notations:

|TK | = |det(JTK )| ,
|TΓ| = |det(JTΓ

)| ,
where det stands for the determinant.

It is then possible to generalize system (2.15) defined on each element by using reference
operators:



1

κ
|TK |M̂

∂Ph
K

∂t
+ |TK |

dim∑
k=1

(

dim∑
d=1

[JTK ]k,dŜx̂dVhd
K) +

∑
Γ

|TΓ|M̂ΓF̄p
Γ

=
1

κ
|TK |M̂FhK ,

ρ|TK |M̂
∂Vhd

K

∂t
+ |TK |

dim∑
k=1

[JTK ]k,dŜx̂dPh
K +

∑
Γ

|TΓ|M̂ΓF̄v
Γ
d = 0 (for d = 1 to dim) .

We then apply the reference matrix M̂−1 to get a formulation in which the time derivatives
are isolated:



∂Ph
K

∂t
= −κ

dim∑
k=1

(

dim∑
d=1

[J−>TK ]k,dM̂
−1Ŝx̂dVhd

K)− κ
∑

Γ

|TΓ|
|TK |

M̂−1M̂ΓF̄p
Γ

+ Fh
K ,

∂Vhd
K

∂t
= −1

ρ

dim∑
k=1

[J−>TK ]k,dM̂
−1Ŝx̂dPh

K − 1

ρ

∑
Γ

|TΓ|
|TK |

M̂−1M̂ΓF̄v
Γ
d (for d = 1 to dim) . (2.21)
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By using the reference mass matrix we define above (2.20), only a single inversion of a small
matrix has to be computed. This is one real advantage of using DGm instead of classical Finite
Element method. This enables to deal with p-adaptivity naturally. Furthermore, DGm have
interesting HPC properties thanks to employing fluxes. Indeed, fluxes allow communications
at the immediate neighbors which is not the case while using Finite Difference or Finite
Element methods where the space scheme stencil requires more communications than the one
coming from the direct neighborhood.

As all DG operators can be determined thanks the reference element K̂, a unique basis
(ϕ̂) of PN (K̂) has to be implemented. In the next part, we will illustrate the choice of the
Lagrange polynomial basis function.

Lagrange polynomial basis functions

Lagrange polynomial approximation is commonly used in DGm. The Lagrange polynomial
basis is defined as follows:

ϕ̂i ∈ PN (K̂), ϕ̂i(x̂j) = δji =

{
1 if i = j, 1 ≤ i, j ≤ DoF,
0 otherwise .

For instance, we illustrate the Lagrange polynomial basis in 1D, expressed in (2.22), on
the reference element [0, 1] in Figure 2.10 at order five.


∀x ∈ [0, 1], `Ni (x) =

∏
1≤j≤N+1,j 6=i

x− xj
xi − xj

,

with: xi =
(i− 1)

N
. (2.22)

0 0.2 0.4 0.6 0.8 1
−1

0

1

x

`51
`52
`53
`54
`55
`56

Figure 2.10: Illustration of P 5([0, 1]) Lagrange basis.

The Lagrange basis is a nodal basis since we have `Ni (x̂j) = δji . Therefore, we get:

ph
K(xj) = Ph

K
j ,vh

K
d (xj) = Vh

K
d j ,

where xj is defined by xj = TK(x̂j), where x̂j represent the jth interpolation point on the
reference element K̂.
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Figure 2.11: Location of the degrees of freedom in 2D on the reference element.

Figure 2.12: Location of the degrees of freedom in 3D on the reference element.

We illustrate the location of the interpolation points in the reference element for the first
polynomial orders in 2D and 3D respectively in Figure 2.11 and Figure 2.12.

In the above pictures, the interpolation points are all equidistant. It is noteworthy that at
very high order, this nodal basis employed on equidistant nodes suffers the well-known Runge
phenomenon [Davis, 1975]. The Runge phenomenon can by illustrate, in 1D, by interpolating
a function regular enough (for instance : f(x̂1) = 1

(10x̂1−5)2+1
) in the Lagrange polynomial

basis. In Figure 2.13 we clearly see what we are calling the Runge effect, located in the vicinity
of 0 and 1. We can observe high undesirable values between two interpolation points.

0 0.2 0.4 0.6 0.8 1

0

1

2

x1

y

f(x̂1) = 1
(10∗x̂1−5)2+1

Lagrange interpolation N = 15
Interpolation point

Figure 2.13: Illustration of the Runge effect coming from a Lagrange interpolation on 16
equidistant points.

As a solution to avoid this phenomenon, Hesthaven and Warburton [2007] propose to
use Legendre-Gauss-Lobatto (LGL) quadrature points as interpolation points. Avoiding high
parasitic values also improves the conditioning number of the DG mass matrix M̂ because it
guarantees that its components are not included in a too wide range of values. As far as this
thesis is concerned, the (LGL) nodes are not implemented in Total propagator. For now, only
equidistant points, pictured in Figure 2.11 and Figure 2.12, are used.

Lagrange polynomial bases are convenient and intuitive ways to represent a polynomial
representation of a solution. Evaluating the approximate solution at the interpolation point is
trivial. Since it is a nodal basis, the approximate solution is given at each interpolation point
by the value of the coefficient associated. Everywhere else, the evaluation is more expensive
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and requires the computation of the whole polynomial at the point of interest. We will see
farther that we can employ other polynomial basis functions in a DG framework that seems
more efficient than nodal polynomials regarding the computational effort.

Now that we have specified the discretization in space of the wave equation, it remains for
us to describe its integration in time. This is precisely the purpose of the following section.

2.2.3 Time schemes

We have shown in the previous section that DGm yields a global semi-discrete system (2.18)
that can be written using this synthetic expression:

∂

∂t
U +M−1SU = F ,

where U = (Ph,Vh1, . . . ,Vhdim)> is the global vector of all the coefficients of the polynomial
approximation ph of p and vh of v and F represents the source terms. DGm offers a block
diagonal mass matrix that is shown to be easy to invert. Let us consider A = M−1S.

∂

∂t
U(t) = AU(t) + F (t) , for t ∈ [t0, Tf ] ,

U(t0) = 0 .

(2.23)

The synthetic equation (2.23) can also be written by using a unique operator L(U(t), t)
describing the right-hand side AU(t) + F (t). The following expression is the one commonly
used to describe time scheme procedures:

∂

∂t
U(t) = L(U(t), t) , for t ∈ [t0, Tf ],

U(t0) = 0.

(2.24)

The time is discretized along the regular time grid (tn) for n ∈ [0, N ] that represents
[t0, Tf ] as a collection of points tn+1 = tn + ∆t and tN = Tf . Integrating (2.24) between two
time steps gives :

U(tn+1)−U(tn) =

∫ tn+1

tn

L(U(t), t)dt . (2.25)

The right hand side replaced by the general function L is symptomatic of the way the
program is structured. Once this function is implemented, it is enough to follow the procedures
that we will explain in what follows.

We make the choice of using explicit time schemes whose stability is ensured providing
the time step is chosen small enough. This choice is dictated by the need of reducing as much
as possible intermediate calculations such as matrix inversions which would be necessary
for the implementation of an implicit scheme. The value of the time step is calculated as a
function of the size of the smallest cell of the mesh, the mean values of the physical parameters
describing the propagation medium and the polynomial order of approximation. A global time
step might induce very high computational costs that could be reduced significantly by using
local time stepping [Diaz and Grote, 2015, Gödel et al., 2010, Baldassari, 2009], but it has
been observed that local time stepping tends to hamper the parallelization performances due
to balancing issues arising from the domain decomposition [Rietmann et al., 2015]. Implicit
time schemes have better stability properties but since they require solving one linear system
at each time step, we prefer to favor explicit formulations, in particular in the context of FWI
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which is computationally intensive since requiring solving many forward problems. However,
it has been discussed in [N’Diaye, 2017] that implicit schemes promote using Hybridizable
Discontinuous Galerkin methods because of their structure which allow main computation on
the skeleton of the mesh. It is indeed convenient to implement hybrid schemes as in [Barucq
et al.]. Herein, we limit out study to DGm with explicit time schemes.

We now describe the time schemes that have been developed in the industrial code of
Total.

Explicit Runge-Kutta 2 time scheme

The Runge-Kutta time scheme of order 2 (RK2) is obtained by applying the midpoint quadra-
ture formula to the integral from (2.25). We then have:

U(tn+1)−U(tn) =

∫ tn+1

tn

L(U(t), t)dt,

≈ ∆t (L(U(tn +
1

2
∆t), tn +

1

2
∆t)︸ ︷︷ ︸

k2

.

The explicit RK2 is then given by:

Un+1 ≈ Un + ∆tk2 with:
k1 = L(Un, tn) ,

k2 = L(Un +
1

2
∆tk1) .

This can be represented by the Butcher table (Table 2.2) [J.C. Butcher, 2016] as follows.

RK2 :
0
0.5 0.5

0 1

Table 2.2: Butcher table for RK2 time scheme.

The Butcher table sums up the quadrature coefficients used to define a Runge-Kutta
time scheme. There exist several Runge Kutta time schemes of order two, we display the
corresponding table, in Table 2.2, for discerning reader to determine at first glance which
time scheme we are dealing with.

The explicit RK2, described here, requires two computations of the right-hand-side func-
tion and one extra stage to be saved.

Explicit Runge-Kutta 4 time scheme

The standard fourth-order explicit Runge-Kutta time scheme (RK4) is given by the following
four stage procedure:

Un+1 ≈ Un +
1

6
∆t(k1 + 2k2 + 2k3 + k4) with :

k1 = L(Un, tn) ,

k2 = L(Un +
1

2
∆tk1, tn +

1

2
∆t) ,

k3 = L(Un +
1

2
∆tk2, tn +

1

2
∆t) ,

k4 = L(Un + ∆tk3, tn + ∆t) .
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and the associated Butcher table is given in Table 2.3.

RK4 :

0
0.5 0.5
0.5 0 0.5
1 0 0 1

1/6 1/3 1/3 1/6

Table 2.3: Butcher table for RK4 time scheme.

RK4 requires computing four right-hand-sides. It is more expensive than RK2 but this
scheme, in addition to being more accurate, is more stable. The time step ∆t that satisfies the
stability of the scheme is bigger using RK4 instead of using RK2. For more details concerning
the stability of such schemes in the context of wave equations, we refer to the thesis of N’Diaye
[2017].

The drawback of this scheme is that it needs four additional stages to be stored, which
can lead to a undesirable memory burden. Alternatives exist, notably with the Low Storage
Explicit Runge Kutta 4 (LSERK4) [Carpenter and Kennedy, 1994], which only needs one
extra state to be stored in return for an extra calculation of the right-hand side function.

Adams-Bashforth 3 time scheme

Adams-Bashforth time scheme uses another strategy to approximate the time derivative.
It aims to reduce the number of right-hand side computations. Contrary to Runge-Kutta
schemes that are using intermediate stages, the computation of Un+1 uses several previous
states Un,Un−1,...,Un−p. We will denote by p the number of previous stages we are keeping.

By storing this information, it is possible to compute the polynomial Lagrange interpola-
tion of L. We note L(n−i) = L(U i, ti). We have then the following polynomial interpolation:

L(U(t), t) ≈
p∑
i=1

L(n−i)ln,i,p(t),

with:

ln,i,p(t) =
∏

0≤j≤p, j 6=i

t− tn−j
tn−i − tn−j

.

It gives rise to the following approximation of Un+1:

Un+1 ≈ Un +

p∑
i=0

L(n−i)
∫ tn+1

tn

ln,i,p(t) ,

≈ Un +

p∑
i=0

L(n−i)∆t

∫ 1

0
ln,i,p(tn + ∆t t′)dt′ ,

≈ Un + ∆t

p∑
i=0

L(n−i)βi,p .

Adams-Bashforth time schemes are proved to be of order p+1, the case p = 0 corresponding
to the classical explicit Euler scheme. Those schemes require only one evaluation of the right-
hand side per time step but with the price of storing p stages. In the industrial code from
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Total, the Adams-Bashforth 3 (p = 2) scheme has been implemented. This scheme is defined
by the following (βi,2) coefficients:

β0,2 =
23

12
, β1,2 = −16

12
, β2,2 = − 5

12
,

which yields the following scheme:

Un+1 ≈ Un + ∆t(β0,2Ln + β1,2L(n−1) + β2,2L(n−2)) .

Note that the two previous estimations of the right-hand are needed to perform the current
step. It is then impossible for AB3 to evaluate L1 and L2 without using another time scheme
(RK2 for instance) to start the process. The choice that has been done in the industrial code
of Total is to trick the coefficients βi,2 to be:

β0,2 = 1 , β1,2 = 0 , β2,2 = 0 ,

at the first iteration. Here we are performing an AB1 time step which is nothing but an
explicit Euler time step. For the second iteration, the set of coefficients βi,2 is chosen as:

β0,2 =
3

2
, β1,2 = −1

2
, β2,2 = 0 ,

defining the AB2 time scheme. Schemes AB1 then AB2 are thus involved to perform the first
and second iterations. The remaining time steps are then carried out by following the process
AB3.

The main asset of Adams-Bashforth time scheme is to require only one computation of the
right-hand side. However, and unfortunately, those methods suffer from a bad conditioning
that can be controlled by reducing the time step size ∆t and thus, they may have a high
computational cost.

The low computational cost per steps of the method makes this scheme a good candidate
for accurate multi-rate local time stepping. In the case where the size of the mesh and
the physical model vary from small to large scales in the computational domain, multi-rate
Adams-Bashforth scheme has already proved its efficiency [Gödel et al., 2010].

Remark. Those time schemes are used because they are stable and compatible with the
upwind fluxes. It is worth noting that such fluxes prevent using Leap-Frog time scheme which
would not be explicit anymore. The choice of the fluxes influences the conditioning of the
system. For example, using centered fluxes with RK2 time scheme is unconditionally unstable
[Deriaz, 2012], which is not the case while using upwind fluxes.

The purpose of what follows is to determine an empirical stability condition on the time
step ∆t by introducing the Courant–Friedrichs–Lewy (CFL) condition.

Courant–Friedrichs–Lewy (CFL) condition

As explained before, we focus on explicit time schemes. Contrary to implicit time schemes,
they are constrained by a stability condition.

Definition 2.2.1. A method is stable if it exists a constant α ∈ R+ such that for two
sequences (yn) and (ỹn) defined as follows:
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yn+1 = yn + ∆tΨ(tn, yn,∆t),

ỹn+1 = ỹn + ∆tΨ(tn, ỹn,∆t) + εn,

we have:

max
0≤n≤N

|ỹn − yn| ≤ α

|ỹ0 − y0|+
∑

0≤n≤N
|εn|

 .

That is to say that the error at each iteration can be controlled by the initial error |ỹ0−y0|
and the rounding error εn done at each step. It is easy to see that both RK and AB schemes
can be rewritten as sequences (yn) and (ỹn) of Definition 2.2.1.

In our case, the stability condition depends on the spatial operator L and defines the
proper time step ∆t for the explicit time scheme. To obtain the optimal time step, an
eigenvalue study can be carried out on L. This is generally done by an iterated power method
for compatible time schemes such as Leap-Frog [Citrain, 2019]. Note that explicit Leap-Frog
time scheme is only available with centered fluxes. Here we are using upwind fluxes that we
defined in (2.16) and (2.17). For the multistep time schemes presented here, the eigenvalue
analysis is difficult to implement. In practice, we do approximate the stability condition by
using a heuristic CFL condition. This condition gives an estimate of the ideal time step by
defining an empirical relation between time step ∆t, space discretization size ∆x and physical
parameters (here the wavespeed c).

The relation defining the CFL condition is most of the time inspired by advection problems.
The geometrical relation derived from the CFL condition expresses the distance travelled by
the wave during one time step.

Inspired by the CFL condition defined in [Hesthaven and Warburton, 2007], we define the
geometrical condition:

∆tK ≤ C rK

cKpK
, (2.26)

with:

• C: the CFL condition coefficient to be configured for the different time schemes;

• rK : the inner radius of the cell K;

• cK : the wavespeed parameter associated to K;

• pK : the polynomial order of approximation in element K.

Figure 2.14: Illustration of inner radius for two cell configurations.
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We have chosen to configure the CFL condition using the inner radius instead of the
minimal edge as done in [Hesthaven and Warburton, 2007]. If the element is really acute as
illustrated in Figure 2.14, the size of the edges is, indeed, not representative of the distance
between each node in the element. This scenario is likely to occur in geophysical applications
where the meshes can be strongly anisotropic.

With this CFL condition (2.26), we are able to quantify an approximation of the time
step ∆tK for each cell. The selected global time step will be the more restrictive one that is
to say min

K
(∆tK).

The central point is therefore the computation of the coefficient C for the different time
schemes. Those coefficients are displayed in Table 2.4 and have been determined by dichotomy
from a collection of numerical experiments. These values are by no way absolute references.
They can probably be the subject of adaptation in the future. As far as the work done in this
thesis is concerned, these are the coefficients that are used. In any case, these values represent
and give an order of idea of the ranges of the stability conditions for the different schemes,
but they have advantage of giving stable simulations.

RK2 RK4 AB3
C 0.66 0.84 0.18

Table 2.4: CFL coefficients for different time schemes.

2.2.4 Numerical Experiments

In the foregoing sections, we defined the space and time discretization. The theoretical foun-
dations are in place to perform direct problem simulations. In this part, we aim to validate
the time domain acoustic DG solver implemented in Total environment.

We will compare the output of this solver with the results obtained with two other pieces
of software developed by Inria Bordeaux Sud-Ouest, in the Project-Team Magique 3D. The
first software is [Gar6more2D]. This code displays acoustic, elastic and poroelastic simulations
on 2D homogeneous or bilayered media based on Cagniard-de-Hoop method. We will use it
in order to validate our numerical results thanks to a comparison with analytic solutions on
bilayered models. The second software is [Hou10ni] which uses Interior Penalty Discontinuous
Galerkin (IPDG) to solve acoustic, elastic and elasto-acoustic wave equation. We will use this
software in order to validate our results in a more complex heterogeneous media.

In what follows, the results we obtain will be on the form of seismograms. A seismogram
represents on the X-axis all the receivers successively and on the Y-axis the simulated time.
Each column represents a trace, that is to say the perturbation recorded by the associate
receiver. This signal recorded can be either a pressure, a displacement or a velocity pertur-
bation. In the tests developed in this section we will only consider the recorded pressure at
receivers. We illustrate in Figure 2.15 an example of seismograms and the corresponding trace
associated to the receiver no110.
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(a) Example of seismograms.
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(b) Recorded signal at receiver no 110.

Figure 2.15: Illustration of a seismograms (a) and the trace corresponding to the receiver no

110 (b).

Bilayered Acoustic problem

For this experiment, we are considering a 2D bilayered acoustic medium. The domain of
interest is a rectangle of size 9200m × 3000m. The first upper part is composed of a homo-
geneous wavespeed model of 1500m.s−1. The second part is defined by a wavespeed model of
3000m.s−1 (see Figure 2.16a). The interface is located at 1500m depth. We will consider the
density to be constant, on the entire domain, ρ=1000kg.m−3.

x

z

1,500

2,000

2,500

3,000
m · s−1

(a) bilayered wavespeed model. (b) Mesh used for wave propagation on bilayered
model (interface forced for sake of visibility).

Figure 2.16: Illustration of the bilayered wavespeed model and the associated mesh for the
current experiment.

We consider 183 receivers located at 50m depth equally distributed on the X-axis from
50m to 9150m. One source located at (4600m,60m) perturbs the medium: it is a first order
Ricker function pressure disturbance with fpeak = 10Hz and tpeak = 0.2s.

It is given by (see Figure 2.17):

f(t) = (t− tpeak) exp−(πfpeak(t−tpeak))2
.
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Figure 2.17: First order Ricker function for fpeak = 10Hz and tpeak = 0.2s.

Concerning the boundary condition, we choose a free surface condition at the top boundary
(p|Γ1

) and absorbing boundary condition on the others. We recall the absorbing boundary
condition introduced in (2.4) in page 50:

∂p

∂t
(t,x) + c(x)∇p(t,x).n = 0 , x ∈ Γ2 , t ∈ [t0, Tf ].

We aim to validate the industrial solver by comparing the traces obtained after 2.6s time
of simulation. We used a mesh constituted of 12556 P4 elements and a RK2 time scheme. The
interface has been taken into account in the mesh generation. The interface is then perfectly
respected by the mesh as shown in Figure 2.16b. Even if we are using piecewise constant
parameters per element here, with this kind of mesh, we do not misrepresent the wavespeed
model since the mesh is exactly following the interface.

We display in Figure 2.18 the two seismograms recorded by the receivers and obtained
with the analytical solution generator Gar6more2D and the DG solver. We can see that both
are very similar, in particular regarding the kinematic.

In order to get significant information, we can compute the global L2 error on the seismo-
grams that is defined as:

Error =

√√√√∑rcv

∑Tf
t (pref (rcv, t)− pnum(rcv, t))2∑
rcv

∑Tf
t (pref (rcv, t))2

.

With such formula, we obtain a relative error of 1%, which validates the numerical exper-
iment.

For further visual assessment, we also display both traces obtained on the receiver no110
in Figure 2.19. We can see that both perturbations perfectly match.
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(a) Seismogram obtained using Gar6more2D.
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(b) Seismogram obtained using Total’s code.

Figure 2.18: Comparison of bilayered seismograms between: Reference solution with
Gar6more2D (a) and Numerical solution using Total DG solver (b).
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Figure 2.19: Trace comparison between references and numerical solutions recorded by the
110th receiver.

Moving forward on the validation of the DG solver, we propose to deal with a more
complex wavespeed model.

Marmousi Acoustic problem

For this study, we will use the Marmousi wavespeed model (see Figure 2.20) with a constant
density parameter on the entire domain (ρ = 1000kg.m−3). The domain is a rectangle of
dimension 9200m × 3000m. We set 183 receivers at the same location that in the previous
study, that is to say, at 50m depth and equally separated on the X-axis from 50m to 9150m.
One single source is located at (4550m,100m) which perturbs the pressure wavefield as a
first order Ricker function with fpeak = 10Hz and tpeak = 0.2s. For the space discretization,
we use a mesh constituted of 59266 P4 elements for both Total DG solver and Hou10ni
simulations. Indeed, we cannot employ the analytical solution generator in this case. We are
using the same mesh in order to have a comparison that is not affected by the difference of
the model approximation. Concerning the time schemes, we are using a RK2 time scheme
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for the simulation performed by Total solver and Leap Frog time scheme for the one from
Hou10ni. The top surface is defined by a free surface boundary condition and absorbing
boundary condition are set for the three last boundaries.
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Figure 2.20: Illustration of the Marmousi wavespeed model.

In Figure 2.21 we display the resulting seismograms. Both of them look really similar.
As we did before, we can compute a relative L2 error to quantify the error between the two
seismograms. Here we obtain an error of 0.16% which validates the capability of Total’s solver
to simulate acoustic wave propagation in complex media using Hou10ni solver as reference.
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(a) Seismogram obtained using Hou10ni.
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(b) Seismogram obtained using Total’s code.

Figure 2.21: Comparison of Marmousi seismograms between: Reference solution (a), Numer-
ical solution Total’s code (b).

In Figure 2.22, we display the solution recorded by the 110th receiver, and we can see that
both traces match perfectly.
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Figure 2.22: Trace comparison between references and numerical solutions recorded by the
110th receiver.

The comparisons that have well been performed here in a bilayered media and on Marmousi
acoustic domain show that we recover the reference signal. On the first model, the comparison
has been performed with an analytical solution giving good accuracy. Concerning the second
medium, which is more complex, the comparison has been done with another DG solver using
another time scheme. The seismograms we obtained by Total and Hou10ni solver are similar.
The small relative L2 error, of 0.16% between those two results proves the capability of Total
DG acoustic solver to simulate propagation in complex media.

Those experiments have been performed using nodal representation of Legendre polyno-
mial basis set on equidistant points which is then equivalent to the Lagrange polynomial basis
we introduced before. For further information concerning the nodal representation of the
Legendre basis, we refer to [Hesthaven and Warburton, 2007]. We aim, in the next section,
to explore other polynomial bases and more precisely the advantage brought by the modal
Bernstein-Bézier polynomial basis.

2.3 Bernstein-Bézier Polynomial Basis

Sergei Natanovich Bernstein introduced a basis of polynomials at the beginning of the 20th
century in the purpose of implementing an elegant proof of the Weierstrass approximation
theorem [Bernšteın, 1912]. Then it is necessary to wait until the 1960s to see this polynomial
basis, currently call Bernstein polynomials, regaining an interest no longer in probability
but in geometry. Two rival French automobile engineers, Pierre Etienne Bézier and Paul de
Faget de Castlejau, were trying to express the Bézier curves analytically in order to reduce
the memory cost of geometrical vehicle parameterization at the dawn of computer science
technology. Bézier curves are actually very useful for representing automobile parts digitally,
and they can be expressed in terms of Bernstein polynomial basis. It is for this reason that
the polynomials derived from this basis are commonly called Bernstein-Bézier polynomials.
For further information we refer to the work of Farouki [2012], which historically but also
mathematically retraces a century of retrospection on this polynomial basis.

Recently, Bernstein polynomials have had an increasing interest in the context of imple-
menting high order finite elements which generate extra costs. Some of their properties indeed
make it possible to reduce the computational cost caused by treatment of the high-order ma-
trices of mass and stiffness [Ainsworth et al., 2011, Kirby and Thinh, 2012]. In the acoustic
DG solver developed by Total, the Bernstein polynomials implementation is inspired by the
architecture proposed by Jesse Chan and Tim Warburton in [Chan and Warburton, 2016].
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In this section dedicated to Bernstein polynomial basis, we will first state the main prop-
erties of this polynomial basis. By exploiting these properties, we will show how such basis
can enhance the DG operators defined in the previous section. Finally, we will study and
assess how the use of Bernstein basis can improve numerical performance of DGm, thanks to
numerical experiments.

2.3.1 Bernstein polynomial basis description and properties

Let us introduce the Bernstein polynomial basis in one dimension as we did for Lagrange
polynomial basis before (2.2.2). For g ∈ P (K̂)N , where K̂ corresponds to the [0, 1] segment,
we have:

g(x̂1) =

N∑
i=0

GiB
N
i (x̂1) ,

with BN
i (x̂1) = CNi (1− x̂1)N−ix̂1

i , and CNi =

(
N

i

)
= N !

(N−i)!i! .

Each BN
i represents a binomial distribution, that is to say, the probability of i successes

on N draws with replacement where the probability of one success is x̂1. For an illustration
of the basis at order N = 5, see Figure 2.23.
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Figure 2.23: Representation of the Bernstein polynomial basis of order 5.

To study the Bernstein polynomial in higher dimension, the position of a point x̂ in the
reference element K̂ has to be expressed in the barycentric coordinates (λ̂). We note λ̂ the
vector of size dim + 1 where λ̂i is the ith component of the barycentric coordinates. By
considering the reference elements (in 1D, 2D and 3D) previously defined , such coordinates
can be expressed in this way:

In 1D: λ̂0 = (1− x̂1), λ̂1 = x̂1.

In 2D: λ̂0 = (1− x̂1 − x̂2), λ̂1 = x̂1, λ̂2 = x̂2.

In 3D: λ̂0 = (1− x̂1 − x̂2 − x̂3), λ̂1 = x̂1, λ̂2 = x̂2, λ̂3 = x̂3.

(2.27)

We introduce the multi-indices notation of the polynomials to generalize Bernstein poly-
nomial basis properties at different orders and dimensions. For instance, in 3D (dim = 3),
a basis function BN

ijkl(λ̂0, λ̂1, λ̂2, λ̂3) can be noted as BN
α (λ̂); where α represents the tuple

(i, j, k, l) and (λ̂0, λ̂1, λ̂2, λ̂3) are the 3D barycentric coordinates in the reference element. In
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an arbitrary dimension, α ∈ Ndim+1 with
∑N

i=0 αi = N and λ̂ ∈ [0, 1]dim+1 with
∑N

i=0 λ̂i = 1.
For example, we have in 3D the following notation:

BN
α (λ̂) = BN

ijkl(λ̂0, λ̂1, λ̂2, λ̂3) = CNijklλ̂0
i
λ̂1

j
λ̂2

k
λ̂3

l
=

N !

i!j!k!l!
λ̂0

i
λ̂1

j
λ̂2

k
λ̂3

l

Now that the notation is set, we will develop the properties of interest offered by the
Bernstein polynomial basis. These properties are inherited from the binomial distribution
which is a key idea of the construction of these polynomials.

Since each basis is a probability law, we have the following statements:

• Positivity: ∀λ̂ ∈ K̂, 0 ≤ BN
α (λ̂).

• Boundedness: ∀λ̂ ∈ K̂, BN
α (λ̂) ≤ 1.

• Partition of unity: ∀λ̂ ∈ K̂,
∑
αB

N
α (λ̂) = 1.

These statements enable us to define more interesting properties that can be exploited in
the context of high order finite element method discretization.

Property 2. Lower and Upper bounds.
For g ∈ P (K̂)N such as g(λ̂) =

∑
αGαB

N
α (λ̂) with Gα the polynomial coefficients associated

to the (dim+1)-tuple α, we have min
α

(Gα) ≤ g(λ̂) ≤ max
α

(Gα). The value of the polynomial
g is thus bounded by the minimal and maximal values of its coefficient in the Bernstein
polynomial basis.

This inequality prevents from Runge effects. To illustrate this property we can reuse the
interpolation example introduced before in Figure 2.24.
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Figure 2.24: Comparison the Lagrange polynomial interpolation and the Bernstein approxi-
mation regarding the Runge effect.

We clearly see in Figure 2.24 that the Bernstein approximation in not hampered by Runge
effects. It is worth noting that when considering Bernstein polynomials we do not talk about
interpolation but approximation. The notion of interpolation is associated to the fact that
the reconstructed solution is achieved on a finite set of interpolation points.

Avoiding Runge effects leads to reduce the range of the value distribution in the DG
operator, which enhances the conditioning of finite element operators.
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Property 3. Efficient evaluation.
For g ∈ P (K̂)N such as g(λ̂) =

∑
αGαB

N
α (λ̂), knowing Pα, p(λ̂) can be efficiently computed

using the pyramidal de Casteljau algorithm [Ainsworth, 2014].

This algorithm is suboptimal in terms of complexity but its recursive structure leads to
have a stable algorithm easy to implement for a minimal memory cost.

This algorithm is termed with pyramidal because it is a recursive algorithm that constructs
a vector of size DoF − i at the ith iteration. Then, at the first iteration, we are constructing
a vector of size DoF − 1 from the initial vector of size DoF representing the coefficient of
a polynomial g ∈ P (K̂)N . After DoF − 1 iterations, the single value that remains is the
evaluation of the polynomial g at the point of interest x̂1.

Here is a brief description that generalizes the behavior of this pyramidal algorithm. To
illustrate the de Casteljau algorithm we are considering this algorithm in 1D. We will define G
as a vector of size DoF in which the polynomial coefficients in the Bernstein basis are stored.
To compute g(x̂1) we can run an algorithm similar to this simplistic program:

1 for j in range(DoF):
2 for i in range(DoF-(j+1)):
3 G[i] = (1-x)*G[i] + x*G[i+1] # weighted mean
4

5 return G[0] # contains the evaluation of g at point x

The term pyramidal becomes clear in 1D when the algorithm is depicted graphically. The
Figure 2.25 illustrates this algorithm for a polynomial of order N = 3. At each step, we are
computing, recursively, a weighted mean between two points.

Figure 2.25: Illustration of pyramidal de Casteljau algorithm in 1D for a P3 function.

Concerning Lagrange polynomial basis, the evaluation is trivial. The evaluation on the
interpolation point consists in taking the proper coefficient associated to the basis function
that is equal to one at this point. If the polynomial has to be evaluated in between two
interpolation points then, there is no underlying efficient algorithm. Such evaluation can be
used, for instance, when considering high order visualization where it is required to evaluate
the polynomial solution in between interpolation points for an enhanced rendering.

Property 4. Sparse elevation order
A Bernstein polynomial of order N−1 can be represented with a linear combination of dim+1
Bernstein polynomials of order N as follows:
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BN−1
α (λ̂) =

dim∑
i=0

αi + 1

N
BN
α+ei(λ̂) . (2.28)

Proof:

BN−1
α (λ̂) = CN−1

α

dim∏
j=0

λ
αj
d ,= CN−1

α

dim∏
j=0

λ
αj
d

dim∑
i=0

λ̂i ,

=
dim∑
i=0

CN−1
α

dim∏
j=0

λ
αj+δ

i
j

d =
dim∑
i=0

CN−1
α

CNα+ei

BN
α+ei(λ̂) ,

=
dim∑
i=0

αi + 1

N
BN
α+ei(λ̂) ,

with ei the canonical tuple, whose components are all zero except the ith equaling 1.
We call this an elevation order because it enables to express the Bernstein polynomial

coefficients from the basis generating PN−1(K̂) into the one generating PN (K̂). This operator
is considered as sparse because it only comprises a linear combination of dim+ 1 terms when
most of the time we have: dim+ 1 << DoF .

Property 5. Sparse derivative operator
The derivative of a Bernstein polynomial BN

α with respect to λ̂i is given by:

∂BN
α

∂λ̂i
(λ̂) = NBN−1

α−ei(λ̂) .

Proof:
∂BN

α

∂λ̂i
(λ̂) =

∂

∂λ̂i
CNα

dim∏
j=0

λ
αj
j = CNα αi

dim∏
j=0

λ
αj−δij
j = NBN−1

α−ei(λ̂).

Coupling this result with Property 4, we get a sparse derivative operator by computing
dim+ 1 combination of Bernstein polynomials:

∂BN
α

∂λ̂i
(λ̂) = NBN−1

α−ei(λ̂) =
dim∑
j=0

(αj + 1)BN
α−ei+ej (λ̂) . (2.29)

This operator is cleary sparse since it allows to express the derivative of one element of the
polynomial basis by one of the barycentric coordinate λ̂i with a single linear combination of
dim+1 terms of the other elements of the basis (2.29). This is sparse since dim+1 << DoF .

A discussion and experimental results will be addressed in the next section to quantify
the sparsity of these operators.

Those properties enable us to compute differently the DG operators defined in Subsection
2.2.2. In the following part, we will use those properties, more precisely the two last properties,
to define sparse operators in the semi-discrete DGm formulation.

2.3.2 Sparse operators using Bernstein polynomial basis

We developed in the previous sections a local DG semi-discrete formulation (2.21), which is
recalled here:



2.3. BERNSTEIN-BÉZIER POLYNOMIAL BASIS 81



∂Ph
K

∂t
= −κ

dim∑
k=1

(
dim∑
d=1

[J−>TK ]k,dM̂
−1Ŝx̂dVhd)− κ

dim∑
d=1

∑
Γ∈K

|TΓ|
|TK |

M̂−1M̂ΓFpΓ + Fh
K ,

∂Vhd
K

∂t
= −1

ρ

dim∑
k=1

[J−>TK ]k,dM̂
−1Ŝx̂dPh

K − 1

ρ

∑
Γ

|TΓ|
|TK |

M̂−1M̂ΓFvΓ
d (for d = 1 to dim) . (2.30)

We introduce the reference derivative matrix operator D̂d for d = 1, to dim such that:

∂ph
K

∂x̂d
=

DoF∑
i=1

(D̂dPh
K)iϕ̂i,

with (ϕ̂) any polynomial basis generating PN (K̂). It is then possible to replace this derivative
operator in (2.30),



∂Ph
K

∂t
= −κ

dim∑
k=1

(

dim∑
d=1

[J−>TK ]k,dD̂dVhd)− κ
dim∑
d=1

∑
Γ∈K

|TΓ|
|TK |

M̂−1M̂ΓFpΓ + Fh
K ,

∂Vhd
K

∂t
= −1

ρ

dim∑
k=1

[J−>TK ]k,dD̂dPh
K − 1

ρ

∑
Γ

|TΓ|
|TK |

M̂−1M̂ΓFvΓ
d (for d = 1 to dim) .

By choosing the Bernstein polynomial basis we proved previously that this basis offers a
sparse spatial derivative operators with respect to the barycentric coordinates. We have:

∂BN
α

∂λ̂i
= NBN−1

α−ei =

dim∑
j=0

(αj + 1)BN
α−ei+ej .

Then we can write the derivative with respect to the barycentric coordinates of any poly-
nomial on K such as:

∂ph
K

∂λ̂i
=

∂

∂λ̂i

∑
α

Ph
K
αB

N
α ,

=
∑
α

Ph
K
α

dim∑
j=0

(αj + 1)BN
α−ei+ej ,

=
∑
α

(D̂λ̂i
Ph

K)αB
N
α .

The derivatives of the quantity phK with respect to λ̂i are matrices containing dim + 1
terms per row. For any degree of approximation N , the rows of the derivative operator keeps
a constant amount of terms. This property ensures that the matrices are sparser and sparser
for high degrees of approximation.

Knowing the geometrical transformation from cartesian coordinates x̂ to barycentric λ̂
expressed in 1D, 2D and 3D in (2.27), we have, by using derivative chain rule, these expressions
of the regular derivative operators:

∂

∂x̂1
ph = (

∂

∂λ̂1

− ∂

∂λ̂0

)ph,
∂

∂x̂2
ph = (

∂

∂λ̂2

− ∂

∂λ̂0

)ph,
∂

∂x̂3
ph = (

∂

∂λ̂3

− ∂

∂λ̂0

)ph .
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Then :

D̂x̂1 = D̂λ̂1
− D̂λ̂0

, D̂x̂2 = D̂λ̂2
− D̂λ̂0

, D̂x̂3 = D̂λ̂3
− D̂λ̂0

.

For Lagrange polynomial basis, for instance, there is no underlying formula describing the
derivative operator. This operator is then computed using the reference inverse mass matrix
and the reference stiffness matrices described above. In this case we have then:

D̂x̂1 = M̂−1Ŝx̂1 , D̂x̂2 = M̂−1Ŝx̂2 , D̂x̂3 = M̂−1Ŝx̂3 .

With such construction, knowing that M̂ and Ŝx̂d are full matrices, there is no guarantee
that the derivative operator from nodal polynomial basis has the same sparsity properties as
Bernstein operators.

Concerning the surface terms, sparse operators can be constructed, still thanks to from
the Bernstein polynomial basis properties. [Chan and Warburton, 2016] introduced the lift
operator LΓ:

LΓ = M̂−1MΓ = EΓ
LL0 ,

where EΓ
L is the face reduction matrix and L0 is a sparse matrix of size DoF (Γ) × DoF (Γ)

where DoF (Γ) represents the number of degrees of freedom on the face Γ.
To get the explicit expression of EΓ

L and L0 we refer to [Chan and Warburton, 2016]. It
has to be noted that the sparse combination used to create those two operators is derived
from the elevation order property of Bernstein polynomials.

Let us consider phK of order N − 1 we have then :

ph
K =

∑
β

Ph
K
β B

N−1
β ,

where β is one of the dim + 1-tuple such that
∑dim

i=0 βi = N − 1. Then, by using the sparse
elevation order (2.28), we have:

ph
K =

∑
β

Ph
K
β

N−1∑
i=0

αi + 1

N
BN
β+ei

,

ph
K =

∑
β

PhβB
N−1
β =

∑
α

Ph
′K
α BN

α .

Here, Ph′ = ENN−1Ph. E
N
N−1 is aDoF (N)×DoF (N−1) matrix whereDoF (N) andDoF (N−

1) correspond respectively to the number of degrees of freedom per element of order N and
N − 1. We recall that the formulation of DoF as a function of N and dim is presented
in Table 2.1 (see page 58). The elevation order operator is a sparse operator because, by
construction, there is no more than dim+ 1 elements per row.

It is then possible to benefit from this advantage to construct recursively an elevation
operator between N − i and N with i ≤ N in such a way that:

ENN−i = ENN−1E
N−1
N−2 ... E

N−i+2
N−i+1 E

N−i+1
N−i .

The reduction order operator is obtained by taking the transpose of the elevation operator.
We then have:

(ENN−i)
> = (EN−i+1

N−i )> (EN−i+2
N−i+1)> ... (EN−1

N−2)> (ENN−1)> .
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Such decomposition is a keystone to compute efficiently the surface operator EΓ
L. We refer

to [Chan and Warburton, 2016], to get the technical fully detailed algorithm to compute the
lift operator LΓ. This algorithm computes the lift matrix in O(Ndim) operations, and it is
important to note that this operator is computed with O(N2dim−1) operations using nodal
basis.

It has been shown that strategies exist, thanks to Bernstein polynomial basis properties, to
combine sparse operators in order to compute combination of the reference matrices developed
in Subsection 2.2.2. The resulting sparse operator, D̂ for the volume terms and LΓ for the
surface terms are both computed in O(Ndim) operations. The complexity is then optimal
because the number of degrees of freedom also grows like O(Ndim).

In the next part we will validate the industrial DG solver and we will quantify the saving
in computational time by comparing experiments in 1D, 2D and 3D.

2.3.3 1D Numerical Experiments

First of all, in order to better understand the DG technology and Bernstein polynomial basis
we have developed a 1D acoustic propagator in Fortran90 from scratch. This 1D program
solves the following equation on the 1D domain Ω pictured in Figure 2.26:

∂

∂t
p+ κ

∂

∂x1
v = f , in Ω× [0, Tf ] ,

ρ
∂

∂t
v +

∂

∂x1
p = 0 , in Ω× [0, Tf ] ,

p(t, 0) = p(L, t) , in ∂Ω× [0, Tf ] ,

vx1(t, 0) = v(L, t) , in ∂Ω× [0, Tf ] ,

p(0, x1) = p0(x1) , in Ω ,

vx1(0, x1) = v0(x1) , in Ω .

(2.31)

Figure 2.26: 1D domain illustration.

To validate the 1D propagator developed in this thesis, we choose periodic boundary
conditions between x1 = 0 (the left boundary) and x1 = L (the right boundary). We do
not add source terms, but we choose to propagate an initial state (p0, vx10). We choose an
initial pressure and velocity state representing a first order Ricker function centered in x0 of
frequency peak of f0:

p0(x1) = v0(x1) = (x1 − x0)e−(πf0(x1−x0))2
.

In this specific case, when we have p(x1, 0) = v(x1, 0) and with ρ = 1 and κ = 1 in Ω
we are solving the acoustic equation that behaves as an advection problem (see Figure 2.27).
Both equations on Ω in (2.31) are the same. We can then easily determine the analytical
solution pref :
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pref (t, x1) = p0((x1 − t)[L]) .

x1

pr
es
su
re

p(x1, t0)

(a) Solution at time t = t0.

x1

p(x1, t1)

(b) Solution at time t = t1.

x1

p(x1, t2)

(c) Solution at time t = t2.

Figure 2.27: Pressure behaving as an advection problem (t0 < t1 < t2).

Since we have an analytical solution, we are able to validate the scheme developed by
achieving a convergence study. We choose to use the RK4 time scheme to perform the conver-
gence tests. For this purpose, we assess the relative L2 error between the analytical and the
numerical solution while decreasing the size of the space discretization ∆x. For each test, we
determine the corresponding time step ∆t respecting the CFL condition. The L2 error, εL2,
defined in equation (2.32) quantifies the differences between the analytical and the numerical
solutions at time t:

εL2 =

√
(
∑

i(pref (x1i, t)− pnum(x1i, t))
2)√

(
∑

i(pref (x1i, t)2))
. (2.32)

The convergence study enables us to draw the convergence graphs in Figure 2.28. On
the one hand, we observe that we have the exact same results whatever the polynomial basis
is, either Bernstein or Lagrange polynomials. On the other hand, the slopes obtained by
studying the log(εL2) as a function of log(∆x1) highlight that the developed method is well
implemented since we retrieve the DGm convergence order of N + 1 [Arnold et al., 2002].
Surprisingly, we have a super-convergence behaviour for N = 4, where we expect to have
a global maximal order of 4 determined by the time scheme. A smaller time step ∆t than
necessary can explain the phenomenon. In any case, those orders prove the validity of DGm
implementation in 1D.

Now that we have proved the 1D program correctness, we illustrate the sparsity advantage
offered by the Bernstein polynomial basis. We will more precisely show results concerning the
sparse derivative operator, that it to say, the volume terms.

The quantity of interest here is the local derivative operator D̂x̂1 . As explained above,
there is no underlying decomposition to compute this operator using nodal polynomial basis.
We are then computing D̂x̂1 such as:

D̂x̂1 = M̂−1Ŝx̂1 .

M̂−1 and Ŝx̂1 are full matrices. There is then no guarantee that D̂x̂1 has a sparse pattern.
Concerning Bernstein polynomials we have shown that:

D̂x̂1 = D̂λ̂1
− D̂λ̂0

,

where D̂λ̂1
and D̂λ̂0

are sparse operators with only dim + 1 non-zero values per row. In
Figure 2.29, we compare the sparseness of the local reference matrix D̂x̂1 using Lagrange and
Bernstein polynomial basis for N = 4 and N = 10.
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Figure 2.28: Convergence study for Bernstein and Lagrange polynomial bases with P1 (a) to
P4 (d) elements.
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(a) D̂x̂1
for Lagrange and N = 4. (b) D̂x̂1

for Bernstein and N = 4.

(c) D̂x̂1
for Lagrange and N = 10. (d) D̂x̂1

for Bernstein and N = 10.

Figure 2.29: Sparsity comparison between Lagrange and Bernstein D̂x̂1 operator for N = 4
and N = 10.
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Figure 2.29 clearly highlights the sparsity obtained by using Bernstein polynomial basis,
but those results concern the local operator. To quantify the overall gain of the method, we
propose to study the number of non-zero values (NZV) of the global volume term on a one
hundred 1D cell problem for different orders of approximation. We display in Figure 2.30 the
comparison of the NZV using Lagrange and Bernstein polynomial basis. In 1D, as the surface
terms are trivial to compute (only one node as interface), the number of NZV of the volume
operator gives an order of idea of the overall computational cost at each time step.

0 5 10 15 20

0

0.5

1

·105

Polynomial order N

N
ZV

Bernstein-Bézier
Lagrange

Figure 2.30: NZV of the global volume operator as a function of the polynomial order.

Figure 2.30 shows the superiority of Bernstein polynomial basis over Lagrange at high
order N . In 1D, the graph attests of an interesting improvement starting at order N = 5.
Below, Bernstein polynomials contribution is not significative in comparison with Lagrange
polynomials.

Note that this heuristic results are only valid in 1D. For further comparison in 3D we refer
to [Chan and Warburton, 2016], where an exhaustive comparison has been realized on GPUs.
As far as this thesis is concerned, we are using Total DG propagator that we run on CPUs.
The objective of the next section is to confirm the validity of the solver and to quantify the
CPU time gain using Bernstein polynomial basis.

2.3.4 2D and 3D Numerical Experiments

Before displaying CPU time comparison between Bernstein and nodal acoustic DG solver, we
aim to show the accuracy of the solver whether we are using nodal or Bernstein polynomial
basis. For that purpose, we will use again the Marmousi test introduced in Subsection 2.2.4 at
page 71. In this section, we will compare the simulation performed with the Legendre nodal
formulation with the same experiment using Bernstein-Bézier polynomial basis.

We remind that we study the propagation of a first order Ricker function perturbation on a
source located at point (4550m,100m) in a domain of size 9200m × 3000m during 6.0 seconds.
The Ricker function is determined by a tpeak = 0.2s and a fpeak = 10Hz. The wavespeed
model c(x) is the one from Marmousi while for the density we consider ρ(x) = 1000kg.m−3.
We will use a second order Runge Kutta time scheme with a time step ∆t satisfying the CFL
condition. The solutions will be compared at receivers that record the pressure perturbation
over time. The 183 receivers used are placed in line at 50 meters depth from x1 = 50m to
x1 = 9150m with a 50m gap in between each receiver. Concerning the boundary condition we
used a free-surface condition at the top boundary (pΓ1 = 0) and absorbing boundary condition
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elsewhere (∂p∂t (t,x) + c(x)∇p(t,x).n = 0 , x ∈ Γ2). The mesh generated for these tests is
composed of 12980 triangles. For each element, we will use a polynomial approximation of
order fourth.

We will then compare the seismogram obtained with the Bernstein polynomial basis with
the reference seismogram and the one obtained with nodal simulation.

First of all, those seismograms look similar. We also display the trace associated to the
110th receiver in Figure 2.32 for a better visualization. We can observe that the trace fit
perfectly. As an indication, we also evaluate the relative L2 norm of the error between the 2
seismograms. This error is equal to 1.6 10−4%, which highlights the high similarity between
Bernstein and Lagrange computed solution with a ridiculous small relative error close to
machine precision between them.
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(a) Nodal seismogram.
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(b) Bernstein seismogram.

Figure 2.31: Seismograms comparison between: (a) Numerical solution using Nodal polyno-
mial basis, (b) Numerical solution using Bernstein polynomial basis.
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Figure 2.32: Trace comparison between Nodal and Modal numerical solution recorded by the
110th receiver.

Since the Bernstein polynomial basis has been numerically validated, we define here an
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experimental setup to compare the computational cost of DG modeling of acoustic wave
equation using the two different polynomial bases.

Those comparisons will be held on three experimental setups. Two 2D cases are considered,
one on Marmousi model and a second on Sigsbee model [Sig]. One 3D study is also treated
on a truncated section of the SEAM Foothills model.

2D test on Marmousi model

Here we describe the experimental setup employed on Marmousi for nodal and modal com-
parisons:

• Domain size: 9200m × 3000m;

• Wavespeed model: c of Marmousi model (Figure 2.33);

• Density model: Constant ρ = 1000 kg.m−3;

• Source:

– nsrc = 1;
– location : xsrc = (4550.0, 0.0, 10.0);
– kind of sources : First order Ricker function fpeak = 8Hz, tpeak = 0.2s;

• Simulation time: Tf = 4.0s;

• CPUs: nproc = 120.
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2,000

3,000

4,000

5,000

m · s−1

Figure 2.33: Marmousi wavespeed model (m.s−1).

We compare, for different orders, the global computational time during a simulation lasting
4s, achieved with nodal and Bernstein polynomial bases. The considered global time is the
total CPU time of the simulation where the communication times has been ignored. Then,
it is principally defined by the addition of the computational time of the volume and surface
terms. For each approximation order from 1 to 5, we define an adapted mesh, and we run the
same experiment for both polynomial bases with the same mesh. In Table 2.5, we display the
number of elements (Ne) and the global computational time for each simulation.

Marmousi P1 P2 P3 P4 P5
Number of elements (Ne) 53077 23461 11804 6343 3455
Nodal CPU time (s) 1873 1459 1412 1401 1298
Bernstein CPU time (s) 3910 2676 1920 1423 1030
Ratio total CPU time (BB/Nodal) 2.1 1.8 1.4 1.0 0.8

Table 2.5: Global CPU time from nodal and Bernstein simulations on the Marmousi model.
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The last row synthetises the ratio between the global computational time using Bernstein
polynomial basis over the computational time using the nodal polynomial basis. It is clear
that, for this 2D experiment, Bernstein basis is more expensive at low order (ratio > 1). The
ratio is getting better for higher orders. It seems that we have comparable efficiency from P4
approximation and getting better after P4.

In order to verify that those figures do not depend on the current experiment, we provide
the same comparison on a simulation made on the Sigsbee model.

2D test on Sigsbee model

We describe here the experimental setup employed on the Sigsbee model for nodal and modal
comparisons:

• Domain size: 24348m × 9144m;

• Wavespeed model: c of Sigsbee model (see Figure 2.34);

• Density model: Constant ρ = 1000kg.m−3;

• Source:

– nsrc = 1;

– location : xsrc = (12000.0, 0.0, 10.0);

– kind of sources : First order Ricker function fpeak = 8Hz, tpeak = 0.2s;

• Simulated time: Tf = 4.0s;

• CPUs: nproc = 120.
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Figure 2.34: Sigsbee wavespeed model (m.s−1).

We repeat the same experiment on the Sigsbee model. The global computational time
is displayed in Table 2.6. The computational time is much more important than the one
obtained with the Marmousi model but this is explained by the domain size that is much
larger for the Sigsbee model.

Sigsbee P1 P2 P3 P4 P5
Number of elements (Ne) 569522 243636 121235 66644 35929
Nodal time computation (s) 20628 15938 14518 14649 13471
Bernstein Bézier time computation (s) 41976 27660 19944 15492 10960
Ratio total CPU time (BB/Nodal) 2.0 1.7 1.4 1.1 0.8

Table 2.6: Global CPU time from nodal and Bernstein simulations on the Sigsbee model.
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Once again, the last row contains the main information of this table. The time ratios we
get here are really similar to the ones obtained with the Marmousi experiment. We conclude
that this behavior is symptomatic of 2D simulations performed with the solver we are using.

We can conclude that, in 2D, there is no advantage in using Bernstein polynomial basis
instead of nodal basis for order below 5. Above this order, a computational gain is observed
and is theoretically getting better for higher orders.

To figure out what is going on, we decompose the total computational time into the time
associated to volume (Figure 2.35a) and surface terms (Figure 2.35b) in the two following
histograms. We scaled the values by the CPU time from nodal experiments.
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(a) Comparative histogram for volume
terms time computation.
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(b) Comparative histogram for surface
terms time computation.

Figure 2.35: Comparative histograms for 2D volume and surface terms time computation.

Those histograms in Figure 2.35 compare the computational time between the two poly-
nomial bases for the volume and the surface operators. Concerning the volume terms, it is
clear that the Bernstein volume operator benefits from the sparsity offered by higher polyno-
mial approximations. The higher the order is, the shorter the calculation time is. From P4
approximation, the 2D volume term has an interesting speed up in comparison with nodal
operators.

Concerning the surface terms, the improvement by order elevation is less efficient. For
every order studied, the computational cost of the surface terms using Bernstein polynomial
is always more expensive.

For these 2D experiments, we showed that Bernstein polynomial basis can offer a speed up
for higher order approximation. This enhancement is still moderate in view of the polynomial
order considered (1 to 5).

In the following, we address a 3D case to see if our conclusions still hold.

3D test on SEAM Foothills model

We describe here the experimental setup employed on the truncated SEAM Foothills model
for nodal and modal comparisons:

• SEAM Foothills model restricted to : (5000m, 5000m, 1500m)×(8000m, 8000m, 5000m)
subcube;

• Wavespeed model: c Seam Foothills model (see Figure 2.36);
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• Density model: Constant ρ = 1000 kg.m−3;

• Source:

– nsrc = 1;
– location : xsrc = (7000.0m, 7000.0m, 2002.0m);
– kind of sources : First order Ricker function fpeak = 8Hz, tpeak = 0.2s;

• Simulation time: Tf = 4.0s.
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(c) Section y = 8000.0m.

Figure 2.36: Seam-Foothills wavespeed model (m.s−1).

In 3D, we aim to reproduce the same benchmark we did in 2D. We produce an adapted
mesh, for the different polynomial orders (from 1 to 5). We display in Table 2.7 the resulting
CPU time study.

Seam Foothills (reduced) P1 P2 P3 P4 P5
Number of elements (Ne) 401424 122806 45932 20378 11299
Nodal CPU time (s) 42280 43080 46920 54120 69960
Bernstein CPU time (s) 100080 62640 43560 34200 33600
Ratio total CPU time (BB/Nodal) 2.2 1.5 0.9 0.6 0.5

Table 2.7: Global CPU time from nodal and modal simulations on the reduced Seam foothills
model.

The last row in Table 2.7, presents an interesting speed up from order 3. Below the order
3, the computational time using Bernstein polynomial basis is comparable or even worse than
the one obtained using nodal basis. For P4 or P5 approximation, the overall computational
time is twice shorter. To narrow the origin of the speed up, we display in the histogram
(Figure 2.37) the relative time comparison between Bernstein and nodal basis for volume and
source terms.

These histograms look the same in 2D and in 3D but the time savings is even stronger
in 3D. The surface terms are slowly getting cheaper and cheaper with the polynomial order
whereas the volume terms computation drops literally from 3 times more expensive for P1
elements to one quarter cheaper for P5 elements when using Bernstein polynomial basis.

Conclusion

We showed in this section that Bernstein polynomial bases have properties that enable to
compute DG operators by combination of sparse matrices. For high order, such basis seems
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(a) Comparative histogram for volume
terms time computation.
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terms time computation.

Figure 2.37: Comparative histograms for 3D volume and surface terms time computation.

efficient to reduce the computational time of DG solvers. We led then some investigations on
1D, 2D and 3D acoustic problem to quantify the time savings that Bernstein polynomial basis
can bring in comparison with nodal basis. Benchmarks have been realized using the industrial
DG solver. They highlight, at least for the acoustic solver, that Bernstein-Bézier polynomial
bases are interesting starting from P5 elements in 2D and from P3 in 3D. It is in 3D that
Bernstein polynomial basis proved its true potential. Deeper investigations show that the
sparse computation of the volume terms is the main asset which allows such performances.

2.4 Weight Adjusted Discontinuous Galerkin

To deal with physical parameters varying inside the elements, Mercerat and Glinsky [2015]
proposed to use a weighted mass matrix. The weighted mass matrix coefficients are computed
through quadrature rules and it does not affect stiffness matrices or source terms. Importantly,
their technique is energy stable and high order accurate. However, because the wavespeed
varies from element to element, each local weighted mass matrix is different. Thus, weighted
mass matrices have to be inverted over each element for time-explicit schemes, which signif-
icantly increases storage costs. The idea of a weighted mass matrix was first introduced in
[Koutschan et al., 2012] and later on in [Chan et al., 2017]. It is worth noting that Weight
Adjusted DG (WADG) approximation only modifies the local mass matrix. Hence, much
of the structure of DG methods can be reused from any prior DG implementation. WADG
implementation distinguishes itself from DG one with the computation of a quadrature-based
polynomial L2 projection.

The main interest of considering a model varying by element is that we can avoid fine
meshes for a decent approximation of the physical media. Methods such as WADG allows
using coarser meshes with high order polynomial approximations which could reduce the
overall computational cost while having a fine parameterized model.

In this section, we will develop the key idea of WADG and show how this can be easily
implemented into an existing DGm solver. We will then show some results on a simple
bilayered case for pedagogical purposes. Finally, we will discuss its efficiency in terms of
computational time.
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2.4.1 WADG formulation

In Subsection 2.2.2 describing the DG formulation of the acoustic wave equation, we intro-
duced the local semi-discrete systems (2.33):

1

κ
MK ∂Ph

K

∂t
+

dim∑
d=1

SKxdVhd
K +

∑
Γ

MK
Γ FpΓ(Ph,Vh) =

1

κ
MKFh

K ,

ρMK ∂Vh
K
d

∂t
+ SKxdPh

K +
∑

Γ

MΓFvΓ
d (Ph,Vh) = 0 (for d = 1 to dim) , (2.33)

that has to be solved for each element K.
In order to reduce the computational load, in particular by saving a large number of

storage in memory, it is usual to assume that the physical parameters (ρ,κ) are constant per
element K. Indeed, under this assumption, one can express the local mass matrix MK as a
function of a reference mass matrix M̂ as follows:

MK = |det(JTK )|M̂ .

Such hypothesis defines a poor approximation of the model as illustrated in Figure 2.38. In
particular, the model is discontinuous at the interface of the element creating artificial spurious
reflections. One option to increase the resolution is to reduce the size of the elements which
will increase drastically the computational cost. Moreover, it will prohibit the opportunity
for speed-up offered by the use of coarse high order elements. There is thus a clear interest
in accounting for physical parameters that vary inside the elements and this is what WADG
formulations propose.

x

z

2,000

3,000

4,000

5,000

m · s−1

Figure 2.38: Illustration of the Marmousi wavespeed model represented on a 2000 elements
unstructured mesh.

Let us denote by MK
γ the local mass matrix weighted by the variable coefficient γ:

[MK
γ ]i,j =

∫
K
γ(x)ϕKi (x)ϕKj (x)dx. (2.34)

In the acoustic case, γ can be either ρ or 1
κ . Mercerat and Glinsky [2015] have considered the

idea of computing all the local mass matrices defined in (2.34) for all elements. This approach
has been proven to be energy stable but requires an expensive computational burden by
inverting on the fly the local mass matrices besides an important memory use needed to store
all of them.

WADG formulation consists in replacing the weighted mass matrices of Mercerat and
Glinsky by approximate matrices defined through a weight-adjusted operator preserving the
low-storage advantage of DGm. Chan et al. [2017] have proposed the following weight-adjusted

approximation
∼
M

K

γ of size DoF ×DoF :
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MK
γ ≈

∼
M

K

γ = MK(MK
1/γ)−1MK .

The inverse of the approximate operator is then:

(MK
γ )−1 ≈ (

∼
M

K

γ )−1 = (MK)−1MK
1/γ(MK)−1.

This formula shows that for computing the inverse of MK
γ , we can use MK

1/γ . By plugging
this approximation in the semi-discrete equation and introducing the reference mass matrix
defined above, we have:



∂Ph
K

∂t
= −(MK)−1MK

κ

(
dim∑
k=1

dim∑
d=1

[J−>TK ]k,dM̂
−1Ŝx̂dVhd −

dim∑
d=1

∑
Γ∈K

|TΓ|
|TK |

M̂−1M̂ΓFpΓ

)
+ Fh

K

∂Vhd
K

∂t
= −(MK)−1MK

1/ρ

(
dim∑
k=1

[J−>TK ]k,dM̂
−1Ŝx̂dPh

K −
∑

Γ

|TΓ|
|TK |

M̂−1M̂ΓFvΓ
d

)
, (2.35)

for d = 1 to dim.
Let us now express each component of the local weight adjusted matrix using an exact

quadrature for polynomials of order 2N + 1. We denote by x̂q and ω̂q the quadrature point
location and its associated weight on the reference element. Then, we have:

[MK
1
γ

]i,j =

∫
K

1

γ
(x)ϕKi (x)ϕKj (x)dx,

= |TK |
∫
K̂

1

γ
(TK(x̂))ϕ̂i(x̂)ϕ̂j(x̂)dx̂,

= |TK |
nq∑
q=1

ω̂q
1

γ
(TK(x̂q))ϕ̂i(x̂q)ϕ̂j(x̂q) ,

where TK is the bijection from the reference element K̂ to the element K. We refer to
Subsection 2.2.2 in page 62. We denote by nq the number of quadrature points on the
reference element K̂. We introduce:

• γK : vector of size nq where γKq represents γ(TK(x̂q)), where x̂q is the location of the
qth quadrature point on the reference element ;

• Q̄: Matrix of size DoF × nq such as [Q]i,q = ϕ̂i(x̂q) ;

• diag(ω̂ 1
γK

): diagonal matrix of size nq × nq where diag(ω̂ 1
γ )q,q = ω̂q

1
γKq

.

From these new notations, the weight-adjusted matrix can be computed as follows:

MK
1
γ

= |TK | Q̄ diag(ω̂
1

γK
) Q̄> (2.36)

Considering the extra operator introduced in (2.35), we have:

(MK)−1MK
1
γ

= M̂−1 Q̄ diag(ω̂
1

γK
) Q̄>

Since Q̄ and ω̂ are local operators, the main memory burden of this method comes from
the parameter values γK that requires O(Ndim) storage per element. This is what Guo and
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Chan [2019] mention as a matrix-free fashion way to compute the inverse of the mass matrix
containing the parameter information on each element. On the contrary, storing the full
weighted mass matrix of Mercerat and Glinsky would imply an O(N2dim) storage requirement.

The new semi-discrete system per element can be edited in such a way:



∂Ph
K

∂t
= −M̂−1 Q̄ diag(ω̂κK) Q̄>

(
dim∑
k=1

dim∑
d=1

[J−>TK ]k,dM̂
−1Ŝx̂dVhd −

dim∑
d=1

∑
Γ∈K

|TΓ|
|TK |

M̂−1M̂ΓFpΓ

)
+ Fh

K

∂Vhd
K

∂t
= −M̂−1 Q̄ diag(ω̂

1

ρ

K

) Q̄>

(
dim∑
k=1

[J−>TK ]k,dM̂
−1Ŝx̂dPh

K −
∑

Γ

|TΓ|
|TK |

M̂−1M̂ΓFvΓ
d

)
,

for d = 1 to dim.
This framework differs from classical DG one only by the model application that consists,

in that case, in applying a scalar on each element. With WADG, we only have to replace the
scalar multiplication by the matrix operator defined in (2.36). It is then relatively easy to
plug the WADG parameterization in an existing DG solver. This operator requires O(N2dim)
extra operations per element, which should not be neglected in the overall computational
process. The computation of the volume and surface terms are model independent.

2.4.2 Quadrature points

The quadrature formula used for WADG implementation is inspired from [Cools, 1999]. To
ensure good accureacy for each component of the mass matrix:

[MK
1
γ

]i,j =

∫
K

1

γ
(x)ϕKi (x)ϕKj (x)dx ,

where ϕKi (x) and ϕKj (x) are polynomials of order N and by supposing that the model pa-
rameters is at least a linear function on K, it is required to choose a quadrature of order
Nq = 2N + 1. This result is confirmed with numerical experiments in [Chan et al., 2017].

Therefore, the number of physical parameters strongly increases with the polynomial order
approximation N . We display in Table 2.8 the number of quadrature points nq required on
the reference element K̂ for several quadrature orders Nq.

Nq 1 2 3 4 5 6 7 8 9 10
nq in 2D 1 3 6 6 7 12 15 16 19 25
nq in 3D 1 4 6 11 14 23 31 44 57 74

Table 2.8: Number of quadrature points for several quadrature orders in 2D and 3D reference
element (triangle and tetrahedron).

For high quadrature order, the amount of quadrature points can become important leading
to increase both the memory and the computational burden of the solver more particularly in
3D. We illustrate the location of quadrature points displayed in 2D and 3D reference element
in Figure 2.39 for quadrature order Nq = 6.

It is worth noting that WADG method is particularly interesting when addressing large
scale problems as it is done for geophysical applications. It indeed offers the opportunity of
using coarse meshes without loosing information on the physical parameters.

In the next part, we will present few numerical results of wave acoustic propagation based
upon WADG formulation.
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(a) Quadrature points on 2D reference elements. (b) Quadrature points on 3D reference elements.

Figure 2.39: Quadrature points on 2D and 3D reference element for Nq = 6.

2.4.3 Experimental results using WADG method

The WADG formulation was implemented in order to accurately account for the physical
parameters describing the propagation domain when the propagation domain is discretized by
a mesh composed of large cells and the parameters vary within the cells. This avoids numerical
artifacts created by artificial reflections that are inherent to the coarse representation of the
model by constant parameters per element. We propose to start this numerical study by
comparing the seismograms obtained on a bilayered medium in three different configurations.

• Case 1: we use a mesh respecting the interface, and we use a model represented by
constant parameters per element.

• Case 2: it is not always feasible to have a mesh following the interfaces, this case
is using an isotropic mesh with no prior information of the interface. The model is
represented as a constant model per element.

• Case 3: this case is using the same mesh from case 2 but the model will be represented
using WADG method.

For all those simulations, we will consider P4 elements. For the WADG implementation,
we will use a quadrature of order 9 in order to respect the 2N + 1 accuracy criterion. One
source located at (4600m,60m) is perturbing the pressure wavefield with a first order Ricker
function (tpeak = 0.2s, fpeak = 10Hz). A set of 183 receivers has been equally spaced on the
X-axis from 50m to 9150m on a domain of size (9200m × 3000m). The interface is located at
1500m depth separating one wavespeed medium of 1500m.s−1 and an other of 3000m.s−1.

We display in Figure 2.40 an illustration of the different model representation for the three
configurations.

In inverse problems, the location of the interfaces is most of the time not known precisely.
In practice, we never have ideal meshes that fit the interface as the one used in Figure 2.40a.
We clearly see in Figure 2.40b that large elements, may hamper the interface representation.
Figure 2.40c shows the improvement of the interface shape which is very much closer to the
plane (real) interface than in the case Figure 2.40b. Using WADG formulation clearly allows
to improve the definition of the interface, hence reducing the chance of artificial reflections in
the simulation. The mesh used for the two last configurations (case 2 and case 3) is the same
and comprises 2984 elements. Then, those two configurations are represented respectively by
2984 and 56696 parameters. For case 1, the mesh following the interface is constituted of
3500 elements.

The simulation of the propagation is pictured in Figure 2.41. This experiment highlights
the effects of the artificial reflectors induced by the misrepresentation of the model. In Fig-
ure 2.41b, the second, and expected, reflection is polluted by the extra artificial reflectors.
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(a) BiLayEred wavespeed model for case 1.
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(b) BiLayEred wavespeed model for case 2.
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(c) BiLayEred wavespeed model for case 3.

Figure 2.40: Illustration of the wavespeed model for three different configurations: (a) case
1, (b) case 2, (c) case 3.

Even with a geometry as simple as an interface, the mesh does not always allow for a good
approximation of the model. We can see in Figure 2.41c that the solution computed with
WADG method is closer to the one obtained when the interface is perfectly modeled (Fig-
ure 2.41a) despite a coarse mesh. We observe that the WADG solution still suffers from
residual oscillations coming from the coarseness of the mesh but those oscillations are atten-
uated in comparison with the ones in the solution computed with the mesh constructed with
parameters constant per element. This new tool offers thus a possibility to mitigate errors
coming from misrepresentation of the model due to space discretization.

Avoiding the artificial reflectors is crucial for achieving accurate FWI results. Indeed, FWI
is based on the evaluation of a cost function that measures the difference between seismograms
coming from observations and simulations. Hence, there is a clear interest in having accurate
model approximation. Indeed, the underlying iterative process of minimization should be
eased by avoiding spurious reflectors, since waves are a physical phenomenon very sensitive
to the variations of the medium. This is clearly in favor of Weight Adjusted Discontinu-
ous Galerkin approximations which provides a way to use a more accurate representation
of the propagation domain. But WADG method is not the only way to improve the model
representation.

Instead of increasing the number of existing parameters per element (WADG), you can
also simply have a finer mesh. This handling on the mesh is what is called h-adaptivity, which
is made possible by the flexibility of DGm. However, reducing the element size would also
affect the computational cost of the simulation and it will be not possible to benefit from
the computational advantage of using larger elements at higher orders. In the following, we
continue our analysis of the WADG method by carrying out numerical tests to evaluate the
calculation times required by this technique.

2.4.4 Computational time study of WADG method

To quantify the computational cost of WADG method, given that this approach conists in
providing a better reresentation of the propagation model, we will estimate the proportion
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(a) Seismogram obtained using classical DG P4 elements with adapted mesh at the interface.
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(b) Seismogram obtained using classical P4.
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(c) Seismogram obtained using P4 Q9 elements.

Figure 2.41: Seismograms in a bilayered model represented in three different ways: (a) with
case 1 configuration, (b) with case 2 configuration, (c) with case 3 configuration.
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time of calculation dedicated to model application. For that purpose, we repeat numerical
experiments in the bi-layered domain described just above with P2 to P5 polynomial approx-
imations in DG and WADG formulations. For a polynomial approximation of order N , we
use a quadrature formula of order Nq = 2N + 1 as recommended in [Chan et al., 2017].

We recall that the problem to be solved reads:

∂Ph
K

∂t
=−M̂−1Q̄diag(ω̂κK)Q̄>

(
dim∑
k=1

dim∑
d=1

[J−>TK ]k,dM̂
−1Ŝx̂dVhd

−
dim∑
d=1

∑
Γ∈K

|TΓ|
|TK |

M̂−1M̂ΓFpΓ

)
+Fh

K ,

∂Vhd
K

∂t
=−M̂−1Q̄diag(ω̂

1

ρ

K

)Q̄>

(
dim∑
k=1

[J−>TK ]k,dM̂
−1Ŝx̂dPh

K−
∑

Γ

|TΓ|
|TK |

M̂−1M̂ΓFvΓ
d

)
,

(2.37)

with d = 1 to dim.
Apart from the calculation of the source, we can see that the evaluation of the time

derivative of the wave-field is step-halved:

• the evaluation of the volume and surface terms for all elements (terms in the parenthe-
ses);

• the model application, which consists in evaluating y = −M̂−1 Q̄ diag(ω̂ 1
γ

K
) Q̄>x for

all elements.

Remark. When classical DG is used (constant model per element), the application of the
model is replaced by the product of the parenthesis by a scalar.

In the remaining of this section, we provide the proportion of computational time of
WADG method compared with the one of DG method, in 2D and 3D. Most of the simulation
computation time is spent on the evaluation of the right hand side of (2.37). We then export
only the computational time needed to evaluate the temporal derivative of the wavefield.

Computational time assesment of WADG method in 2D

As we have just seen, Eqs. (2.37) show that the computational time is defined in two pieces:

• volume and surface terms evaluation (constant whatever we are using classical DG or
WADG);

• model application.

In Table 2.9, we display the CPU time of these two key steps for different polynomial approx-
imations and quadrature formulas in 2D.

Remark. It is worth noting that a quadrature formula of order 1 is equivalent to a classical
DG method applied in a model parameterized with constant parameters per element.

Polynomial Order 2 3 4 5
CPU Time for Nq = 1 model computation (s) 22 15 8 5
CPU Time for Nq = 2N + 1 model computation (s) 86 111 76 67
Ratio CPU time (WADG/No WADG) 3.9 7.4 9.5 13.4
Proportion over total time (Nq = 1) 17.4% 13.4% 9.5% 7.1%
Proportion over total time (Nq = 2N + 1) 44.8% 53.3% 50.0% 50.7%

Table 2.9: CPU times comparison between constant and WADG model application in 2D.
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This table clearly highlights the additional calculation cost caused by the 2D WADG
operator. In the fourth row, we give the multiplicative factor to express the WADG calculation
time as a function of the DG time. Depending on the polynomial order considered, the
implementation of WADG operator is 4 to 13 times more expensive than considering a constant
model per element. However, this ratio must be put into perspective of the total cost required
for the simulation, i.e, here, in the evaluation of the wavefield time derivative.

When the model is constant per element, its application takes between 17% and 7% of
the overall computational cost of the time derivative term, which is a reasonable proportion.
Moreover, this fraction seems to decrease with the polynomial order. Which is explained by
the fact that volume and surface terms are getting more and more expensive with the increase
of the polynomial order. In contrast, the CPU time of WADG operator represents between
45% and 53% of the CPU time dedicated to compute the time derivative. This means that we
increase the overall computational time and approximately 50% of this time is spent in the
WADG operator. In addition, the cost of those operators does not seem to decrease with the
polynomial approximation order. This is explained by the fact that the number of quadrature
point is increasing with the polynomial approximation order.

The computational cost of the volume and surface terms does not depend on the quadra-
ture formula used for the model approximation. The associated computational time is there-
fore the same whether you use the DG or WADG method. We display in the following his-
togram (see Figure 2.42), the repartition CPU of the two key steps for solving the problem.
We scaled the values by the CPU time from classical DG experiments.
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Figure 2.42: Histogram illustrating the computational proportion of the model operators in
the time derivative evaluation in 2D.

We see that the WADG application in 2D contributes to increase significantly the CPU
time, we actually have an augmentation of the CPU time of about 50% to 80%. In the next
part, we propose the same study in 3D.

Computational time study of WADG method in 3D

We use again the SEAM Foothills setup we introduced in the previous section dealing with
Bernstein-Bézier polynomial basis. We refer to page 91 for more details concerning the con-
figuration of this experiment. The objective is the same as the one made in 2D. We performed
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P2 to P4 simulations using nodal Legendre polynomial bases. We display in Table 2.10 the
CPU time so obtained.

Polynomial Order 2 3 4
CPU Time for Nq = 1 model computation (s) 49 30 22
CPU Time for Nq = 2N + 1 model computation (s) 789 1062 1439
Ratio CPU time (WADG/No WADG) 16.1 35.4 65.4
Proportion over total time (Nq = 1) 3.0% 1.6% 0.9%
Proportion over total time (Nq = 2N + 1) 32.3% 36.8% 39.4%

Table 2.10: CPU times comparison between constant and WADG model application in 3D.

We arrive at the same conclusion as in 2D. If the model is constant per element, the
proportion of the computation dedicated to the model application is small and represents
between 1% to 3% of the overall computational time. The application of WADG operators
takes between 16 and 65 times more CPU time depending on the polynomial and quadrature
orders. Hence, the WADG application represents 32% to 39% of the overall computation in
3D for polynomial approximation orders varying from 2 to 4.

As before, we picture the changes brought by 3DWADGmodel application on the solution.
In 3D, the time dedicated to volume and surface terms are much more important but does
not depend on the model representation. In the histogram depicted in Figure 2.43, we display
the computational time to compute the WADG solution scaled with the time obtained using
constant model per element for P2 to P4 elements.
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Figure 2.43: Histogram illustrating the computational proportion of the model operators in
the time derivative evaluation in 3D.

As in 2D, the CPU time spent for WADG model application in 3D is a substantial part
of the overall computational time. In addition, this part is getting more and more important
while the polynomial approximation order increases.

Conclusion

In the time domain, the simulation consists in evaluating successively the time derivative of
the wavefield. The corresponding CPU estimation we made on this evaluation is then repre-
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sentative of the overall computational cost of the direct problem. If a WADG implementation
ensures a better model definition, it requires non-negligible additional computational cost.
We must, however, acknowledge that we conducted our study on CPUs and that the WADG
method was designed for calculations on GPUs. Indeed, WADG implementation is based upon
products of small matrices times local vectors, which is in favor to GPU architectures. But
the objective of this thesis is to develop a time-domain FWI procedure that runs on CPUs. It
could therefore be concluded that in this context, WADG method is not advisable. However,
this method remains a very efficient way to improve the representation of the propagation
model, which is, let us not forget, the solution to the inverse problem which is at the heart
of this thesis. By being able to handle variable parameters in the elements, it also allows to
use large cells, which represents a potential gain in computational time since the cost of im-
plementing the WADG method does not seem to really increase with the order of polynomial
approximation. There is then a trade-off between refinement and quadrature points in order
to perform efficient simulations with accurate model approximation. We propose in Chapter
5, by the use mesh adaptation, to estimates this trade-off in the course of the FWI iterations.
The inverse problem requires successive direct problem computations and it is then important
to optimize the efficiency of the simulation more particularly in an industrial context.

As a perspective, we could try to change the basis functions in order to decrease the com-
putational cost of WADG. For instance, Guo and Chan [2019] showed that WADG operator
(2.36) can be expressed from combinations of sparse operators based upon Bernstein polyno-
mial basis. Such an optimization would enhance the WADG complexity from O(N2dim) to
O(Ndim+1) using Bernstein polynomial basis. This feature is not implemented yet in the in-
dustrial code we are contributing to, but such a possible improvement seems quite conceivable
since both Bernstein basis and WADG technique are already developed in the code.
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Chapter 3

Characterization and numerical study
of the adjoint state

We have seen in the first chapter of this manuscript how to solve an inverse problem with the
adjoint state method. In the second chapter, we have defined the forward problem and more
precisely its discretization using Discontinuous Galerkin method (DGm). In this chapter,
we will define the adjoint state associated with the acoustic wave equation, which is either
formulated as a first-order system or a second-order scalar equation. There are two standard
approaches, namely the numerical adjoint state, which is the solution of the discrete adjoint
problem or a more physical adjoint, which is the discrete adjoint problem. In [Chavent,
2010], the two strategies are respectively called: Optimize then Discretize and Discretize then
Optimize, with the respective acronyms DtO and OtD. We display in Figure 3.1 a diagram
showing how to switch from one formulation of the adjoint state to the other.

Continuous
Direct Problem

Continuous
Adjoint Problem

Optimize

Discretized
Adjoint State

Discretize

Discrete
Direct Problem

Discretize

Discrete
Adjoint StateOptimize

Figure 3.1: DtO and OtD diagram.

The objective of this chapter is to characterize the adjoint state and the resulting gradient
and to investigate these two possibilities numerically. We will provide a numerical comparison
of the two approaches to explain what led us to favor the Optimize then Discretize strategy
for this thesis.
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3.1 Characterization of the continuous adjoint state

In this section, we will focus on determining the continuous adjoint state. We will consider
the second-order formulation of the acoustic wave equation, and we will deduce the con-
tinuous adjoint velocity-pressure field from the equivalence between both direct and adjoint
formulations.

3.1.1 Second order scalar equation

We have seen in the previous chapter (see page 48) that the acoustic wave equation can
be expressed either as a first-order equation system or as a second-order scalar equation.
In this subsection, we will first construct the continuous adjoint state associated with the
second-order scalar equation, which is defined as follows: find p := p(t,x) the pressure field
satisfying: 

1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= g , in [t0, Tf ]× Ω ,

p(t0,x) = 0 ,
∂p

∂t
(t0,x) = 0 , in Ω ,

p = 0, in [t0, Tf ]× Γ1 ,

1

c

∂p

∂t
+ ∂np = 0, in [t0, Tf ]× Γ2 ,

(P2)

where Γ1 and Γ2 represent respectively the upper and inner boundaries of the subsoil domain
of interest Ω. In Figure 3.2, we display the domain Ω and its boundaries Γ1 and Γ2.

Figure 3.2: Truncated infinite domain.

The source g is defined with compact support in Ω and is assumed to be in C0([t0, Tf ];L2(Ω)).
On the boundary Γ2, one imposes an absorbing boundary condition and on Γ1, which repre-
sents the terrestrial surface (x3 = 0), one chooses a free surface condition p = 0.

We note dobs the set of observations, and we introduce the cost function J given by:

J (m) =
1

2

∫ Tf

t0

∫
Ω

(Qp(m)− dobs)2dxdt,

where p(m) is the solution of the continuous problem (P2) according to the set of parameter
(m). The operator Q is the restriction operator from solution pressure field space to the obser-
vation space, this corresponding to the pressure fields recorded at the receivers. Numerically,
we use the following formula:

(Qp(m)− dobs)2 =

nrcv∑
j=1

(Qp(m)j − dobsj)2 ,
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where nrcv corresponds to the number of receivers used for recording the observations.
We are interested in the following optimization problem:

min
m
J (m), under the constraint “p is satisfying (P2)”.

As we saw in Chapter 1, we can express this problem of minimization under constraint as
a Lagrangian L := L(p,m, p∗), with:

L(p,m, p∗) = Ĵ (p) + 〈1
κ

∂2p

∂t2
−∇ · (1

ρ
∇p)− g, p∗〉 , (3.1)

where the inner product 〈 , 〉 designates a scalar product on L2([t0, Tf ],Ω). The simplest and
widely used scalar product is defined as follows:

∀(f, g) ∈ (L2([t0, Tf ],Ω))2 〈f, g〉 =

∫ Tf

t0

∫
Ω
fgdxdt.

It is worth noting that in the definition of the Lagrangian (3.1), we implicitly consider
that p does not satisfy (P2) since this is considered as a constraint. Hence, there is no reason
for assuming that p depends on the physical parameters m. This is the reason why we define
a new cost function Ĵ that only depends on p:

Ĵ (p) =
1

2

∫ Tf

t0

∫
Ω

(Qp− dobs)2dxdt.

The minimum of L := L(p,m, p∗) is necessary solution to:

∂L
∂p

(p, p∗,m) = 0 ,
∂L
∂p∗

(p, p∗,m) = 0 ,
∂L
∂m

(p, p∗,m) = 0 .

Then, we have:

• By taking the derivative with respect to the adjoint state in the direction δp∗ , at first
glance, we can see that:

∂L
∂p∗

(p,m, p∗)δp∗ = 〈1
κ

∂2p

∂t2
−∇ · (1

ρ
∇p)− g, δp∗〉 ,

which shows that ∂L
∂p∗ (p,m, p

∗) = 0 ensures that, if (p,m, p∗) is a minimum, then p is
solution of (P2).

• Let us compute the derivative of L with respect to p, in the direction δp:

∂L
∂p

(p,m, p∗)δp =
∂Ĵ
∂p

(p)δp +
∂

∂p
〈1
κ

∂2p

∂t2
−∇ · (1

ρ
∇p)− g, p∗〉δp .

Then we have:

∂Ĵ
∂p

(p)δp =
1

2
(〈Qp− dobs, Qδp〉+ 〈Qδp, Qp− dobs〉) ,

= 〈Qp− dobs, Qδp〉 ,
= 〈Q∗(Qp− dobs), δp〉 .
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The derivative of the cost function Ĵ with respect to the state variable p is given by
the following expression:

∂Ĵ
∂p

(p)δp = 〈Q∗(Qp− dobs), δp〉 . (3.2)

To keep computing the derivative with respect to p, it is convenient to modify the second
term in (3.1) in order to isolate p itself. For that purpose, we do integrate by parts:

〈
1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)
− g, p∗

〉
=

∫ Tf

t0

∫
Ω

(
1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)
− g
)
p∗dxdt ,

=

∫
Ω

[
1

κ
∂tpp

∗
]Tf
t0

dx−
∫ Tf

t0

∫
Ω

1

κ
∂tp∂tp

∗dxdt

+

∫ Tf

t0

∫
Ω

1

ρ
∇p · ∇p∗dxdt−

∫ Tf

t0

∫
∂Ω
∂npp

∗dsdt

−
∫ Tf

t0

∫
Ω
gp∗dxdt ,

=

∫
Ω

[
1

κ
∂tpp

∗
]Tf
t0

dx−
∫

Ω

[
1

κ
p∂tp

∗
]Tf
t0

dx

+

∫ Tf

t0

∫
Ω

1

κ
∂2
t p
∗pdxdt−

∫ Tf

t0

∫
Ω
∇ · 1

ρ
∇p∗pdxdt

−
∫ Tf

t0

∫
∂Ω
∂npp

∗dsdt+

∫ Tf

t0

∫
∂Ω
p∂np

∗dsdt

−
∫ Tf

t0

∫
Ω
gp∗dxdt .

Since we have p(t0) = 0 and
∂p

∂t
(t0) = 0, we get:

〈
1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)
− g, δp∗

〉
=

〈
1

κ

∂2p∗

∂t2
−∇ ·

(
1

ρ
∇p∗

)
− g, p

〉
−
∫ Tf

t0

∫
∂Ω
∂npp

∗ +

∫ Tf

t0

∫
∂Ω
p∂np

∗

+

∫
Ω

(
1

κ
∂tp(Tf )p∗(Tf )− 1

κ
p(Tf )∂tp

∗(Tf )

)
dx .

In addition, using the boundary conditions on Γ2 yields:

∫ Tf

t0

∫
∂Ω
∂npp

∗dsdt =

∫ Tf

t0

∫
Γ1

∂npp
∗dsdt+

∫ Tf

t0

∫
Γ2

∂npp
∗dsdt ,

=

∫ Tf

t0

∫
Γ1

∂npp
∗dsdt−

∫ Tf

t0

∫
Γ2

1

c
∂tpp

∗dsdt ,

=

∫ Tf

t0

∫
Γ1

∂npp
∗dsdt+

∫ Tf

t0

∫
Γ2

1

c
p∂tp

∗dsdt−
[∫

Γ2

1

c
pp∗ds

]Tf
t0

,
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and since p = 0 at time t = t0, we have:∫ Tf

t0

∫
∂Ω
∂npp

∗dsdt =

∫ Tf

t0

∫
Γ1

∂npp
∗dsdt+

∫ Tf

t0

∫
Γ2

1

c
p∂tp

∗dsdt−
∫

Γ2

1

c
p(Tf )p∗(Tf )ds .

Then, if we assume that p∗ satisfies:


p∗(Tf ,x) = 0 , in Ω ,

∂tp
∗(Tf ,x) = 0 , in Ω ,

p∗ = 0 , in [t0, Tf ]× Γ1 ,

we end up with the following relation:

〈
1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)
− g, p∗

〉
=

〈
1

κ

∂2p∗

∂t2
−∇ · (1

ρ
∇p∗)− g, p

〉
+

∫ Tf

t0

∫
Γ2

p

(
1

c
∂tp
∗ − ∂np∗

)
dsdt , (3.3)

whose derivative with respect to p is easy to compute. By gathering results from (3.2)
and (3.3), we obtain the derivative of the Lagrangian with respect to the state p in the
direction δp:

∂L(p,m, p∗)

∂p
δp =

∂Ĵ
∂p

(p)δp +
∂

∂p

〈
1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)
− g, p∗

〉
δp ,

=

〈
1

κ

∂2p∗

∂t2
−∇ · (1

ρ
∇p∗) +Q∗(Qp− dobs), δp

〉
+

∫ Tf

t0

∫
Γ2

δp

(
1

c
∂tp
∗ − ∂np∗

)
dsdt .

Then, we can define p∗ such that ∂L
∂p (p,m, p∗) = 0 is the solution to the adjoint state

problem:

1

κ

∂2p∗

∂t2
−∇ ·

(
1

ρ
∇p∗

)
= −Q∗(Qp− dobs) , in [t0, Tf ]× Ω ,

p∗(Tf ,x) = 0 , ∂tp∗(Tf ,x) = 0 , in Ω ,

p∗ = 0 , in [t0, Tf ]× Γ1 ,

− 1

c

∂

∂t
p∗ + ∂np

∗ = 0 , in [t0, Tf ]× Γ2 .

We see that p∗ is solution to a backward problem since its values are given at the final
time Tf . However, it can be rewritten in the same form as the forward problem (P2),
by introducing the change of variable t′ 7→ Tf + t0 − t and the auxiliary unknown:
p̃∗(t′,x) = p∗(Tf + t0 − t, x). Hence, we obtain:



110 CHAPTER 3. CHARACTERIZATION AND STUDY OF THE ADJOINT STATE

Proposition 1. The adjoint state p∗ such that
∂L
∂p

(p,m, p∗) = 0 satisfies the adjoint state

problem as follows:

1

κ

∂2p̃∗

∂t′2
−∇ ·

(
1

ρ
∇p̃∗

)
= −Q∗(Q((p− dobs)(Tf + t0 − t′))) , in [t0, Tf ]× Ω ,

p̃∗(t0,x) = 0 , ∂t′p̃∗(t0,x) = 0 , in Ω ,

p̃∗ = 0 , in [t0, Tf ]× Γ1 ,

1

c
∂t′ p̃∗ + ∂np̃∗ = 0 , in [t0, Tf ]× Γ2 .

(P ∗2 )

It is worth noting that the continuous equations defined in (P2) and (P ∗2 ) are identical ex-
cept for the source term. This is a very interesting property that enable us to solve the forward
and the backward problems with the same solver. Obtaining the adjoint state in the strategy
Optimize then Discretize can therefore be done using the discrete operators constructed to
approximate (P2). This might be particularly interesting to avoid the development of adjoint
operators that can be complicated to obtain.

Remark. The adjoint state solution of (P ∗2 ) is defined by the change of variable t 7→ Tf+t0−t,
which is equivalent to considering the evolution of p∗ going from Tf to t0. This is why the
adjoint field is commonly called the “Backward” wavefield.

In this subsection, we have constructed an adjoint state as a solution to a boundary value
problem that differs from the original problem only in the definition of the right-hand-side. In
the numerical library we are developing, we solve the acoustic wave equation as a first-order
system. This is actually convenient since this formulation gives access to the pressure and
velocity directly. This is why, in the following, we construct an adjoint state for the first-order
formulation.

3.1.2 First order system of equations

We recall the first order formulation of the acoustic wave equation:

1

κ

∂p

∂t
+∇ · v = f , in [t0, Tf ]× Ω ,

ρ
∂v

∂t
+∇p = 0 , in [t0, Tf ]× Ω ,

p = 0 , in [t0, Tf ]× Γ1,

p− ρcv · n = 0 , in [t0, Tf ]× Γ2,

p(t0,x) = 0 , v(t0,x) = 0 , in Ω.

(3.4)

Contrary to the second-order equation, which is scalar, the first-order equation system governs
a vector unknown whose components are the pressure field p and the velocity field v.

We then introduce the global wavefield state variable u given by

u =

(
p
v

)
and defined in L2([t0, Tf ],Ω))dim+1 as a solution to problem (3.1.2). As in the scalar case, we
define the adjoint state variable λ ∈ (L2([t0, Tf ],Ω))dim+1 as the vector:

λ =

(
p∗

v∗

)
.



3.1. CHARACTERIZATION OF THE CONTINUOUS ADJOINT STATE 111

The Lagrangian of the problem can then be expressed as follows:

L(u,m,λ) = Ĵ (u) +

〈
1

κ

∂p

∂t
+∇ · v − f

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
,

where

Ĵ (u) =
1

2

∫ Tf

t0

∫
Ω

(Qp− dobs)2dxdt. (3.5)

The scalar product in (L2([t0, Tf ],Ω))dim+1 is defined by:

∀(f , g) ∈ (L2([t0, Tf ],Ω))dim+1, 〈f , g〉 =
dim+1∑
i=1

∫ Tf

t0

∫
Ω
figidxdt =

dim+1∑
i=1

∫ Tf

t0

∫
Ω
f ·gdxdt .

As we did in the previous section, we will calculate the different derivatives of the La-
grangian with respect to u, m, and λ. Indeed, we seek for the minimum of a Lagrangian,
which must satisfy the necessary conditions of having each partial derivative equal to zero.

• First of all, let us compute the derivatives with respect to the adjoint state:

∂L
∂λ

(u,m,λ)δλ =

〈
1

κ

∂p

∂t
+∇ · v − f

ρ
∂v

∂t
+∇p

 , δλ

〉
.

Then we end up with the same formula as in the scalar case, which shows that ∂L∂λ(u,m,λ) =
0 is sufficient to guarantee that u is solution to (3.1.2).

• Next, we compute the derivative of the Lagrangian with respect to the wavefield u,
which leads to:

∂L
∂u

(u,m,λ)δu =
∂Ĵ (u)

∂u
δu +

∂

∂u

〈
1

κ

∂p

∂t
+∇ · v − f

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
δu .

On the one hand, by computing the derivative of Ĵ , we get:

∂Ĵ (u)

∂u
δu = 〈∇uĴ , δu〉 ,

where

∇uĴ =


∂Ĵ
∂p

∂Ĵ
∂v

 =

(
Q∗(Qp− dobs)

0

)
.

On the other hand, we proceed as in the scalar case: by integrating by parts, we can
isolate the state Ĵ . We have:
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〈
1

κ

∂p

∂t
+∇ · v − f

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
=

∫ Tf

t0

∫
Ω

(
1

κ

∂p

∂t
+∇ · v − f

)
p∗dxdt

+

∫ Tf

t0

∫
Ω

(
ρ
∂v

∂t
+∇p

)
· v∗dxdt ,

= −
∫ Tf

t0

∫
Ω

1

κ
p
∂p∗

∂t
dxdt+

[∫
Ω

1

κ
pp∗dxdt

]Tf
t0

−
∫ Tf

t0

∫
Ω
v · ∇p∗dxdt+

∫ Tf

t0

∫
∂Ω
v · np∗dxdt

−
∫ Tf

t0

∫
Ω
fp∗dxdt

−
∫ Tf

t0

∫
Ω
ρv · ∂v

∗

∂t
dxdt+

[∫
Ω
ρv · v∗dxdt

]Tf
t0

−
∫ Tf

t0

∫
Ω
p∇ · v∗dxdt+

∫ Tf

t0

∫
∂Ω
pv∗ · ndxdt.

On the boundary ∂Ω, we have:∫ Tf

t0

∫
∂Ω
v · np∗dxdt+

∫ Tf

t0

∫
∂Ω
pv∗ · ndxdt =

∫ Tf

t0

∫
Γ1

v · np∗dxdt+

∫ Tf

t0

∫
Γ1

pv∗ · ndxdt

+

∫ Tf

t0

∫
Γ2

v · np∗dxdt+

∫ Tf

t0

∫
Γ2

pv∗ · ndxdt.

Given that p|Γ1
= 0 and assuming that λ satisfies p∗|Γ1

= 0, we get:∫ Tf

t0

∫
∂Ω
v · np∗dxdt+

∫ Tf

t0

∫
∂Ω
pv∗ · ndxdt (3.6)

=

∫ Tf

t0

∫
Γ2

v · np∗dxdt+

∫ Tf

t0

∫
Γ2

pv∗ · ndxdt

Since on Γ2 the absorbing boundary condition is given by:

p− cρv.n = 0 ,

then, relation (3.6) becomes:∫ Tf

t0

∫
∂Ω
v · np∗dxdt+

∫ Tf

t0

∫
∂Ω
pv∗ · ndxdt =

∫ Tf

t0

∫
Γ2

v · np∗dxdt+

∫ Tf

t0

∫
Γ2

cρv · nv∗ · ndxdt,

=

∫ Tf

t0

∫
Γ2

v · n(p∗ + cρv∗ · n)dxdt.

Now, if we choose λ(Tf ) = 0 and p∗|Γ1
= 0, we end up with:

〈
1

κ

∂p

∂t
+∇ · v

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
=

〈(
p
v

)
,

 −
1

κ

∂p∗

∂t
−∇ · v∗

ρ
∂v∗

∂t
+∇p∗


〉

(3.7)

−
∫ Tf

t0

∫
Ω
fp∗dxdt+

∫ Tf

t0

∫
Γ2

v · n(p∗ + cρv∗ · n)dxdt .
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By combining the calculation from (3.5) and (3.7), and choosing λ such that:

p∗ + cρv∗ · n = 0 ,

then the derivative of the Lagrangian with respect to u reads:

∂

∂u
L(u,m,λ)δu =

∂

∂u
Ĵ (m)δu +

∂

∂u

〈
1

κ

∂p

∂t
+∇ · v

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
δu ,

=
∂

∂u

〈
u,

(
Q∗(Qp− dobs)

0

)〉
δu +

∂

∂u

〈
u,

 −
1

κ

∂p∗

∂t
−∇ · v∗

ρ
∂v∗

∂t
+∇p∗


〉
δu ,

=

〈
δu,

 −
1

κ

∂p∗

∂t
−∇ · v∗ +Q∗(Qp− dobs)

−ρ∂v
∗

∂t
−∇p∗


〉
.

Thus, an adjoint state λ satisfying ∂
∂uL(u,m,λ) = 0 can be defined as a solution to the

following boundary value problem:

1

κ

∂p∗

∂t
+∇ · v∗ = Q∗(Qp− dobs) , in [t0, Tf ]× Ω ,

ρ
∂v∗

∂t
+∇p∗ = 0 , in [t0, Tf ]× Ω ,

p∗ = 0 , in [t0, Tf ]× Γ1 ,

p∗ + ρcv∗.n = 0 , in [t0, Tf ]× Γ2 ,

p∗(Tf ,x) = 0 , v∗(Tf ,x) = 0 , in Ω.

We then introduce the change of variable t′ 7→ Tf +t0−t and the auxiliary unknown λ̃(t′,x) =
λ(Tf + t0 − t, x) and we obtain the following result:

Proposition 2. The adjoint state λ̂ =

(
p̃∗

−ṽ∗
)

can be defined as a solution to:



1

κ

∂p̂∗

∂t′
+∇ · v̂∗ = −Q∗(Q((p− dobs)(Tf + t0 − t′))) , in [t0, Tf ]× Ω ,

ρ
∂v̂∗

∂t′
+∇p̂∗ = 0 , in [t0, Tf ]× Ω ,

p̂∗ = 0 , in [t0, Tf ]× Γ1 ,

p̂∗ − cρv̂∗ · n = 0 , in [t0, Tf ]× Γ2 ,

p̂∗(Tf ,x) = 0 , v̂∗(Tf ,x) = 0 , in Ω.

As in the scalar case, we can define an adjoint state that is solution to a boundary value
problem that differs from the original one only with the right-hand-side. Considering the Op-
timize then discretize strategy is thus very interesting regarding its numerical implementation
since we can use the same discretized operator for both the forward and backward simulations.
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We have defined the adjoint state in a formal way. To achieve its characterization, it is
necessary to establish that the underlying boundary value problem is well-posed. This is the
subject of the following section.

3.1.3 Wellposedness of first order formulation of the acoustic wave equa-
tion

In the two previous subsections, we have shown formally that the adjoint state can be defined
as a solution of a boundary value problem that differs from the original one with the right-
hand-side. Here, we are going to prove that the boundary value problem is well-posed and in
this way, we will prove that the so-called adjoint state exists and is unique. We begin with
the scalar wave equation and then address the case of the first-order formulation.

Existence and uniqueness of the solution to second order boundary value problem

We first consider the acoustic wave equation formulated as a second order scalar equation
with the pressure field p as unknown. The problem we are interested in reads: for a given
source g with support in Ω× [t0, Tf ], and given initial data (p0, p1) defined at time t = t0 in
Ω, find p solution to:

1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= g , on [t0, Tf ]× Ω ,

p(t0,x) = p0(x) ,
∂p

∂t
(0,x) = p1(x) , on Ω ,

p = 0 , on [t0, Tf ]× Γ1 ,

1

c

∂p

∂t
+ ∂np = 0 , on [t0, Tf ]× Γ2 ,

(P2)

The computational domain Ω is an open bounded domain in Rdim with boundary ∂Ω.
The domain Ω is assumed being regular enough to have a normal vector field n at any point
of ∂Ω. For now, it is assumed that ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅.

The source g is given in C0([t0, Tf ], L2(Ω)). The initial data (p0, p1) belong to H where
H = H1

0,Γ1
(Ω) × L2(Ω) with H1

0,Γ1
(Ω) = {φ ∈ H1(Ω), φ = 0 on Γ1}. We provide H with the

graph norm and the associated scalar product:

∀V = (V1, V2) ∈ H, ‖ V ‖2H=

∫
Ω

1

ρ
|∇V1|2dx+

∫
Ω

(V2)2dx ,

∀(U, V ) ∈ H ×H, 〈U, V 〉H =

∫
Ω

1
√
ρ
∇U1 ·

1
√
ρ
∇V1dx+

∫
Ω
U2V2dx ,

It is worth noting that in H1
0,Γ1

(Ω), the semi-norm ‖ 1√
ρ∇V1 ‖2L2 is a norm equivalent to the

usual norm of H1(Ω), assuming that ρ > 0. This result is a consequence of the Poincaré-
Wirtinger’s theorem.

Then, we obtain the following theorem:

Theorem 3.1.1. Let g ∈ L2([t0, Tf ], L2(Ω)) and (p0, p1) ∈ H. Problem (P2) admits a unique
solution p and p ∈ C2([t0, Tf ], L2(Ω)) ∩ C1([t0, Tf ], H1

0,Γ1
(Ω)) ∩ C0([t0, Tf ], H2(Ω)).
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Sketch of the proof. This result has been demonstrated in [Barucq, 1993]. We resume
the main steps of the demonstration based on Hille-Yosida’s theorem (see [Dautray and Lions,
2012]). We introduce the operator A defined on H by:

A =

(
0 I

∇ ·
(

1
ρ∇
)

0

)
.

Its domain D(A) is defined in H by D(A) = {U = (U1, U2) ∈ H,AU ∈ H, 1
cU2 + ∂nU1 =

0 on Γ2}.
Then, problem (P2) can be rewritten as follows:

1√
κ

∂

∂t
P = AP +G , (3.8)

where

P =

 p
1√
κ

∂p

∂t

 , G =

(
0
g

)
.

To prove the existence and uniqueness of the solution of (3.8), we verify that the operator A
is a maximal monotone operator in H:

(i) ∀V ∈ D(A), 〈AV, V 〉H ≤ 0,

(ii) ∃λ ∈ R such that A+ λI is surjective on H.

• point (i) can be demonstrated using Green formula, we have:

∀V ∈ D(A), 〈AV, V 〉H =

∫
Ω

1
√
ρ
∇V1 ·

1
√
ρ
∇V2dx +

∫
Ω

(
∇ · 1

ρ
∇V1

)
V2dx ,

=

∫
∂Ω

1

ρ
∂nV1V2 ,

= −
∫

Γ2

1

ρc
V 2

2 .

• point (ii) results from the application of Lax-Milgram theorem, with any λ < 0.

We can remark that in general, Ω is a rectangle in 2D or a parallelepiped in 3D. Typically,
Γ1 is the upper boundary of Ω and we do not have Γ1 ∩ Γ2 = ∅, as Γ2 is the inner-surface
introduced to truncate the propagation medium to get a bounded computational domain
(see Figure 3.2). In practice, as we use discontinuous approximation spaces, the degrees
of freedom at the junction between the two boundaries are different which amounts having
Γ1 ∩Γ2 = ∅ and Theorem 3.1.1 remains valid. Now that we have demonstrated the existence
and uniqueness of the solution of the second order boundary value problem, let us demonstrate
the equivalence between the first and second order formulations.

Equivalence between first and second order boundary value problems

For our simulations, we use the first-order formulation using pressure and velocity fields. We
recall its expression:
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1

κ

∂p

∂t
+∇ · v = f , on [t0, Tf ]× Ω ,

ρ
∂v

∂t
+∇p = 0 , on [t0, Tf ]× Ω ,

p = 0 , on [t0, Tf ]× Γ1 ,

p− cρv · n = 0 , on [t0, Tf ]× Γ2 ,

p(t0,x) = 0 , v(t0,x) = 0 , on Ω.

(P1)

We will first assume that the initial conditions are zero. We seek to establish the equiva-
lence between the two formulations ((P2) and (P1)). For that purpose, we will first show that
if (v, p) satisfies (P1), then p satisfies (P2).

• If (v, p) is solution to (P1), by deriving the first equation with respect to the time, we
obtain:

1

κ

∂2p

∂t2
+∇ · ∂v

∂t
=
∂f

∂t
, on [t0, Tf ]× Ω .

By injecting the expression of
∂v

∂t
, we get:

1

κ

∂2p

∂t2
−∇ · 1

ρ
∇p =

∂f

∂t
.

Then, the equation that governs (P2) can be found by imposing g =
∂f

∂t
.

Regarding the initial conditions of (P2), if we consider (p̃0,v0) designating the initial
state of (P1), one must impose:

p0 = p̃0, p1 = −κ∇ · v0 , on Ω .

The boundary condition at the boundaries Γ2 can be written in the following way by
taking the time derivative:

∂

∂t
(p− cρv · n) = 0 ,

∂p

∂t
− cρ∂v

∂t
· n = 0 ,

∂p

∂t
+ c∂np = 0 .

We then recover the expression of the second order absorbing boundary condition.

Let us move on to the converse, which consists in checking that if p is solution of (P2),
then we can construct a vector field v such that (v, p) is solution to (P1).

• Let p be a solution to (P2). We integrate in time the volume equation. Assuming that
the initial data are zero, we have:

1

κ

∂p

∂t
−
∫ t

t0

∇ · 1

ρ
∇p =

∫ t

t0

g(s, x)ds .

We choose:
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g(t, x) =

∫ t

t0

f(s, x)ds and v(t, x) =
1

ρ

∫ t

t0

∇p(s, x)ds .

We then obtain:

1

κ

∂p

∂t
+∇ · v = f , on [t0, Tf ]× Ω .

In addition, by construction we have:

ρ
∂v

∂t
+∇p = 0 , on [t0, Tf ]× Ω .

It has therefore been proven that, if we set:

v(t, x) = −1

ρ

∫
t0

∇p(s, x)ds ,

then problem (P2) is equivalent to problem (P1), under the assumption that the initial

conditions are zero and that the source terms f and g are linked by the relation g =
∂f

∂t
.

As a conclusion, if the initial data are zero and if p is the solution to (P2), then the couple
(v, p) is solution to (P1) with:

v(t, x) = −1

ρ
∇p(s, x)ds , f(t, x) =

∫ t

t0

g(s, x)ds , on [t0, Tf ]× Ω . (3.9)

Conversely, if (v, p) is solution to (P1) then we have (3.9) and p is solution to (P2) with

g(t, x) =
∂f

∂t
.

If the initial conditions are non zero, we can notice that:
1

c

∂p

∂t
+ ∂np = 0 , on [t0, Tf ]× Γ2 ,

v(t, x) = −1

ρ

∫ t

t0

∇p(s, x)ds ,

implies
1

c
p+ v · n =

1

c
p0 + v0 · n , on [t0, Tf ]× Γ2 .

Hence, if p0 and v0 have a support strictly included in Ω, we have
1

c
p0 + v0 · n = 0 , on Γ2 ,

so that both problems (P2) and (P1) are equivalent.
Finally, by equivalence of the two problems and as a corollary of Theorem 3.1.1, we get:

Corollary 3.1.1. Let f ∈ C1([t0, Tf ];L2(Ω)). Let (p0,v0) ∈ H1
0,Γ1
× H(div,Ω). Problem

(P1) admits a unique solution (p,v) such that p is solution to the second-order equation (P2)
and

v(t, x) = −1

ρ
∇p(s, x)ds , on [t0, Tf ]× Ω .

Corollary 3.1.1 states the well-posedness of the first order boundary value problem, which
defines both the forward and backward state with different right-hand sides.

Now that we have defined the continuous adjoint problem and have demonstrated its well-
posedness, we propose in the following section to do an analogue work for the Discretize then
Optimize strategy.
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3.2 Characterization of the discrete adjoint state

In the previous section, we characterized the adjoint state by considering first the forward
continuous problem (Optimize then Discretize). The adjoint state is then defined exactly
through a backward continuous problem and this approach is convenient because both the
forward and the backward problems have the same continuous expression, with different right-
hand sides. This is an important feature regarding numerical implementation since it requires
the discretization of the same set of operators for the two problems.

Another approach called Discretize then Optimize allows to obtain an exact gradient of
the discrete problem. The objective of this section is to present the key ideas on how to define
the discrete adjoint problem from the discrete direct problem constructed with DGm, in order
to see what are the difficulties arising from the discretization.

3.2.1 Definition of the global linear system

In the previous chapter, we introduced the DG space discretization of the first-order formula-
tion of the acoustic wave equation. We have introduced a set of notation, mainly in pages 53
and 63, that are necessary for the understanding of this section. As a reminder, the discrete
problem is defined as follows: find

• the approximate pressure wavefield ph,

• the approximate velocity wavefield vh,

belonging to their respective approximation spaces QNh and WN
h that are defined as follows:

QNh = {q ∈ L2(Ω), q|K ∈ PN (K), ∀K ∈ Th } ,

WN
h = {w ∈ L2(Ω)dim, w|K ∈ (PN (K))dim, ∀K ∈ Th} .

The unknowns of the discrete problem are thus the coefficients of the approximate fields phK

and vhK given in each element K as a polynomial written as follows:

ph
K =

DoF∑
j=1

Phj
KϕKj , (vh

K)d =
DoF∑
j=1

Vhd
K
j ϕ

K
j , for d = 1 to dim ,

where ϕKj is part of a polynomial basis of PN (K). Then, the approximate field is solution to
the following local system (see page 60):

1

κ
MK ∂Ph

K

∂t
+

dim∑
d=1

SKxdVhd
K +

∑
Γ

MK
Γ F̄pΓ

=
1

κ
MKFh

K ,

ρMK ∂Vh
K
d

∂t
+ SKxdPh

K +
∑

Γ

MΓF̄v
Γ
d = 0 (for d = 1 to dim) .

and the global system is given by:

M
∂

∂t
U + SU = MF ,

UK = (Ph
K ,Vh

K
1 , . . . ,Vh

K
dim)> ,

U = (UK1 ,UK2 , . . . ,UKNe
)> ,

FK = (Fh
K , 0, . . . , 0)> by assuming that: f |K ≈ fKh =

DoF∑
i=1

Fh
K
i ϕ

K
i ,

F = (FK1 ,FK2 , . . . ,FKNe
)> .
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We can rewrite it by introducing A = −M−1S:

∂

∂t
U = AU + F .

Now, let us consider the time discretization. We denote by Ū i an approximation of the
wavefield U at time i∆t, that is to say:

Ū
i ≈ U(i∆t) .

The global space and time unknown Ū is then defined as:

Ū = (Ū
0
, Ū

1
, . . . , Ū

Nt)> ,

where Nt denotes the number of time samples in the time discretization.

Property 6. For the time schemes considered in this thesis, the discrete direct problem can
always be expressed in the following way:

LŪ = EF̄ ,

where L is a [(Nt + 1)(dim + 1)NeDoF ] × [(Nt + 1)(dim + 1)NeDoF ] matrix. The sizes of
the vector F̄ and of the matrix E depend on the time scheme we are using.

As stated in the above property, the global discrete problem has the same structure what-
ever the time scheme is. Nevertheless, we will give hints on the proof by considering a
particular scheme. By this way, we will end up with the expressions of L and E.

Proof for Runge Kutta scheme of order 2 (RK2).

For RK2 scheme, the global space and time source term F̄ is evaluated on half time steps:

F̄ = (F̄
0
, F̄

1
2 , . . . , F̄

Nt− 1
2 , F̄

Nt)>, .

The RK2 time scheme reads:

Ū
i+1

= Ū
i
∆tk2 , (3.10)

where

k1 = AŪ
i
+ F̄

i
,

k2 = A(Ū
i
+

∆t

2
k1) + F̄

i+ 1
2 .

Then, by removing k1, we get

Ū
i+1

= Ū
i
∆tk2 ,

= (I + ∆tA+
∆t2

2
A2)Ū

i
+

∆t2

2
AF̄

i
+ ∆tF̄

i+ 1
2 .

Hence, one time iteration of RK2 time scheme can be summed up as follows:

Ū
i+1

= BŪ
i
+ C0F̄

i
+ C 1

2
F̄
i+ 1

2 ,
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with

B = I + ∆tA+
∆t2

2
A2 ,

C0 =
∆t2

2
A ,

C 1
2

= ∆tI .

Then, the matrix L of size [(Nt+1)(dim+1)NeDoF ]× [(Nt+1)(dim+1)NeDoF ] is given
by:

L =


I
−B I

−B I
. . . . . .

−B I

 .

The matrix E of size [(Nt + 1)(dim + 1)NeDoF ] × [2((Nt + 1)(dim + 1)NeDoF ) − 1] is
given by:

E =


0
C0 C 1

2

C0 C 1
2

. . . . . .
C0 C 1

2
0

 .

Proof for Runge Kutta time scheme of order 4 (RK4).

For RK4 time scheme, the global space and time source term F̄ is also evaluated on half time
steps:

F̄ = (F̄
0
, F̄

1
2 , . . . , F̄

Nt− 1
2 , F̄

Nt)>.

The RK4 scheme writes:

Ū
i+1

= Ū
i∆t

6
(k1 + 2k2 + 2k3 + k4) ,

where
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k1 = AŪ
i
+ F̄

i
,

k2 = A(Ū
i
+

∆t

2
k1) + f i+

1
2 ,

= AŪ
i
+

∆t

2
A(AŪ

i
+ F̄

i
) + F̄

i+ 1
2 ,

= AŪ
i
+

∆t

2
A2Ū

i
+

∆t

2
AF̄

i
+ F̄

i+ 1
2 ,

k3 = A(Ū
i
+

∆t

2
k2) + F̄

i+ 1
2 ,

= A(Ū
i
+

∆t

2
(AŪ

i
+

∆t

2
A2Ū

i
+

∆t

2
AF̄

i
+ F̄

i+ 1
2 )) + F̄

i+ 1
2 ,

= AŪ
i
+

∆t

2
A2Ū

i
+

∆t2

4
A3Ū

i
+

∆t2

2
A2F̄

i
+

∆t

2
AF̄

i+ 1
2 + F̄

i+ 1
2 ,

k4 = A(Ū
i
+ ∆tk3) + F̄

i
,

= A(Ū
i
+ ∆t(AŪ

i
+

∆t

2
A2Ū

i
+

∆t2

4
A3Ū

i
+

∆t2

2
A2F̄

i
+

∆t

2
AF̄

i+ 1
2 + F̄

i+ 1
2 )) + F̄

i
,

= AŪ
i
+ ∆tA2Ū

i
+

∆t2

2
A3Ū

i
+

∆t3

4
A4Ū

i
+

∆t3

4
A3F̄

i
+

∆t2

2
A2F̄

i+ 1
2 + ∆tAF̄

i+ 1
2 + F̄

i+1
.

Then,

Ū
i+1

= Ū
i
+
dt

6
(k1 + 2k2 + 2k3 + k4) ,

= (I + ∆tA+
∆t2

2
A2 +

∆t3

6
A3 +

∆t4

24
A4)Ū

i

+
1

6
(∆tI + ∆t2A+

∆t3

2
A2 +

∆t4

4
A4)F̄

i

+
1

6
(4∆t+ 2∆t2A+

∆t3

2
A2)F̄

i+1/2

+
∆t

6
F̄
i+1

.

and one iteration of RK4 time scheme can be summed up in that way:

Ū
i+1

= BŪ
i
+ C0F̄

n
+ C 1

2
F̄
i+ 1

2 + C1F̄
i+1

,

where

B = I + ∆tA+
∆t2

2
A2 +

∆t3

6
A3 +

∆t4

24
A4 ,

C0 =
1

6
(∆tI + ∆t2A+

∆t3

2
A2 +

∆t4

4
A4) ,

C 1
2

=
1

6
(4∆t+ 2∆t2A+

∆t3

2
A2) ,

C1 =
∆t

6
I .
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Then, the matrix L of size [(Nt+1)(dim+1)NeDoF ]× [(Nt+1)(dim+1)NeDoF ] is given
by:

L =


I
−B I

−B I
. . . . . .

−B I

 .

The matrix E of size [(Nt + 1)(dim + 1)NeDoF ] × [2((Nt + 1)(dim + 1)NeDoF ) − 1] is
given by:

E =


0
C0 C 1

2
C1

C0 C 1
2

C1

. . . . . . . . .
C0 C 1

2
C1

 .

Proof for Adams Bashforth of order 3 (AB3).

For AB3 time scheme, the global space and time source terms is defined as follows:

F̄ = (F̄
0
, F̄

1
, . . . , F̄

Nt)> .

AB3 time scheme then reads:

Ū
i+1

= (I + ∆tβ0,2A)Ū
i
+ ∆tβ1,2AŪ

i−1
+ ∆tβ2,2AŪ

i−2

+ ∆tβ0,2F̄
i
+ ∆tβ1,2F̄

i−1
+ ∆tβ2,2F̄

i−2
. (3.11)

We can identify the global matrix L of size [(Nt + 1)(dim+ 1)NeDoF ]× [(Nt + 1)(dim+
1)NeDoF ] which is given by:

L =



I
−(I + β0,2A) I
−∆tβ1,2A −(I + ∆tβ0,2A) I
−∆tβ2,2A −∆tβ1,2A −(I + ∆tβ0,2A) I

. . . . . . . . . . . .
−∆tβ2,2A −∆tβ1,2A −(I + ∆tβ0,2A) I


.

The matrix E, of size [(Nt + 1)(dim+ 1)NeDoF ]× [(Nt + 1)(dim+ 1)NeDoF ], is defined
by:

E =



0
∆tβ0,2

∆tβ1,2 ∆tβ0,2

∆tβ2,2 ∆tβ1,2 ∆tβ0,2

. . . . . . . . . . . .
∆tβ2,2 ∆tβ1,2 ∆tβ0,2 0


.

Whatever the explicit time scheme used, matrix L is a block lower triangular. The discrete
direct problem can therefore be written as follows: For any given Ū0, find Ū i for i = 1 to Nt

such that:
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LŪ = EF̄ . (3.12)

The solution to the discrete problem exists because L is a real lower triangular matrix
with non-zero diagonal coefficients, and is unique because the field at time i + 1 is deduced
from the previous snapshots with an initial field at time t = 0 set to be zero.

Remark. The block by block resolution of the discrete system (3.12) gives us back the
induction formula given by the explicit time schemes (see (3.10)-(3.11)).

In this subsection, we have used the discretization defined in detail in the previous chapter
to formulate a global time and space system that define the discrete state (3.12).

Now that an overall formulation of the discrete problem is given, we will define in the next
subsection the associated constrained optimization problem and thus define the adjoint state
for the Discretize then Optimize strategy.

3.2.2 Discrete Adjoint state

In the previous section, we have constructed the space-time discrete system that has the
following general form, whether RK2, RK4 or AB3 is used:

LŪ = EF̄ , (3.13)

In the above expression, Ū and F̄ represent respectively the discrete unknown wavefield vector
and the source term in space and time. In the following, we introduce the minimization
problem exactly as in the previous section but, here, we consider the discrete problem as a
constraint:

min
m
Jh(m), under the constraint “Ū is satisfying (3.13)”.

The cost function is here defined as follows:

Jh(m) =
1

2

nt∑
i=0

nrcv∑
r=1

([QhŪ(m)]i,r − [dobs]i,r)
2 .

where Qh is the restriction of the approximate pressure field evaluated at the receivers and
interpolated on the same time sampling as the observations. Indeed, the time sampling of the
discrete wavefield is not the same as the one of the observations.

The minimization problem can therefore be written in the form of a discrete Lagrangian
Lh:

Lh(Ū ,m, Λ̄) = Ĵh(Ū) + 〈LŪ − EF̄ , Λ̄〉 , (3.14)

where Λ̄ is the discrete adjoint state built on the same pattern that Ū , that is to say:

• Λ̄ = (Λ̄
0
, Λ̄

1
, ...Λ̄

Nt)>represents the global space time adjoint wavefield, where:

• Λ̄
i

= (Λ̄
i
K1
, Λ̄

i
K2
, ...Λ̄

i
KNe

)>represents the adjoint wavefield at the ith time step, where:

• Λ̄
i
Kj = ((Ph)∗iKj , (Vh1)∗iKj , .., (Vhdim)∗iKj )

> represents the adjoint wavefield on the jth

element, where:

• (Ph)∗iKj , (Vhd)
∗i
Kj

for d=1 to dim, represent respectively the coefficient of the polyno-
mial approximation of the adjoint pressure and velocity field on the jth element at the
ith time step.
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The scalar product used in (3.14) is usually chosen to be the canonical scalar product on
R(Nt+1)NeDoF . Then, the adjoint of a matrix operator is its transposition. For generalization
purposes, we will note L∗ the adjoint operator of any matrix operator L.
Ĵh is the discrete cost function that is expressed only as a function of the state Ū and is

defined as follows:

Ĵh(Ū) =
1

2

nt∑
i=0

nrcv∑
r=1

([QhŪ ]i,r − [dobs]i,r)
2 .

Hence, we seek for (Ū , Λ̄,m) satisfying:

∂

∂Ū
Lh(Ū ,m, Λ̄) = 0 ,

∂

∂Λ̄
Lh(Ū ,m, Λ̄) = 0 ,

∂

∂m
Lh(Ū ,m, Λ̄) = 0 ,

which are necessary conditions on Ū , Λ̄,m to minimize the Lagrangian. Then, we end up
with the same types of conclusion as with the continuous problem:

• If we look at the derivative with respect to the discrete adjoint state in the direction δΛ̄
we have:

∂

∂Λ̄
Lh(Ū ,m, Λ̄)δΛ̄ =

∂

∂Λ̄
Ĵh(Ū)δΛ̄ +

∂

∂Λ̄
〈LŪ − EF̄ , Λ̄〉δΛ̄ ,

= 〈LŪ − EF̄ , δΛ̄〉 .

which is zero if and only if Ū is the solution to the direct discrete problem (3.13).

• If we compute the Lagrangian derivative with respect to the state variable Ū in any
direction δŪ , we get:

∂

∂Ū
Lh(Ū ,m, Λ̄)δŪ =

∂

∂Ū
Ĵh(Ū)δŪ +

∂

∂Ū
〈LŪ − EF̄ , Λ̄〉δŪ ,

=
∂

∂Ū

1

2
〈QhŪ − dobs, QhŪ − dobs〉+

∂

∂Ū
〈LŪ , Λ̄〉 ,

= 〈Q∗h(QhŪ − dobs) + L∗Λ̄, δŪ 〉 .

Hence, in order to have
∂

∂Ū
Lh(Ū ,m, Λ̄) =0, Λ̄ must be a solution to the following linear

system:

L∗Λ̄ +Q∗h(QhŪ − dobs) = 0 , (3.15)

where Q∗h(QhŪ − dobs) is the adjoint source that we will note Ḡ for simplicity. Then, we
define the discrete adjoint state as the solution to:

L∗Λ̄ + Ḡ = 0 .

Matrix L∗ is block upper triangular. From the definition of the global operator L for the
different time schemes we use, we can easily compute the adjoint operator L∗. For Runge
Kutta time schemes, we can show that the adjoint operator L∗ is given by:

L∗ =


I −B∗

I −B∗
. . . . . .

I −B∗
I

 .



3.2. CHARACTERIZATION OF THE DISCRETE ADJOINT STATE 125

where

B∗ = I + ∆tA∗ +
∆t2

2
A∗2, for RK2 ,

B∗ = I + ∆tA∗ +
∆t2

2
A∗2 +

∆t3

6
A∗3 +

∆t4

24
A∗4, for RK4 .

Concerning the AB3 time scheme, we get:

L∗ =



I −(I + δβ0,2A
∗) −∆tβ1,2A

∗ −∆tβ2,2A
∗

. . . . . . . . . . . .
I −(I + δβ0,2A

∗) −∆tβ1,2A
∗ −∆tβ2,2A

∗

I −(I + δβ0,2A
∗) −∆tβ1,2A

∗

I −(I + δβ0,2A
∗)

I


.

The block upper triangular structure of the matrix L∗ allows to solve the adjoint system
(3.15) by substitution from bottom to top, i.e., backward in time. We retrieve numerically the
change of variable performed to establish the continuous adjoint state. We also remark that
such systems require that Λ̄

Nt = Ḡ
Nt = 0, since we assume that the acquisition is long enough

to not have any information recorded at time t = Tf . Moreover, the matrix E inherited from
the time scheme no longer appears. It is therefore not possible to use the same time scheme
routines for the calculation of the direct state and the adjoint state.

Regarding the time scheme, the Discretize then Optimize strategy then requires the devel-
opment of specific time schemes routines to solve the discrete adjoint state problem. We have
shown previously that such a development is not required when considering the optimization
prior the discretization. We then propose the following adaptation of the time schemes to
solve the adjoint discrete problem:

Proposition 3. Adaptation of RK2 time scheme for discrete adjoint problem:

Λ̄
i−1

= Λ̄
i
+ ∆tk2 − Ḡ

i
,

where

k1 = A∗Λ̄
i
,

k2 = A∗(Λ̄
i
+

1

2
∆tk1) .

Proposition 4. Adaptation of RK4 time scheme for discrete adjoint problem:

Λ̄
i−1

= Λ̄
i
+

∆t

6
(k1 + 2k2 + 2k3 + k4)− Ḡi

,

where

k1 = A∗Λ̄
i
,

k2 = A∗(Λ̄
i
+

1

2
∆tk1) ,

k3 = A∗(Λ̄
i
+

1

2
∆tk2) ,

k4 = A∗(Λ̄
i
+ ∆tk3) .
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Proposition 5. Adjoint AB3 time scheme:

Λ̄
i−1

= Λ̄
i
+ ∆t(β0,2A

∗Λ̄
i
+ β0,2A

∗Λ̄
i
+ β0,2A

∗Λ̄
i
) + Ḡ

i
.

It now remains to determine the operator A∗ that is the adjoint of the discrete space
operator. We remind that the operator A was previously defined as:

∂U

∂t
= AU + F ,

where
A = M−1S ,

and A, M and S are of size NeDoF ×NeDoF . Then we have:

A∗ = S∗M−1∗ .

If we add access to the complete matrix A, it would be easy to build A∗ and to fully
characterize the equation system defining the discrete adjoint state in time and in space.
Unfortunately, in the framework of DG method, the space operator A is never completely
built. We indeed solve a local problem on each element. We recall that on one element, the
direct problem is expressed in the following way:

1

κ
MK ∂Ph

K

∂t
+

dim∑
d=1

SKxdVhd
K +

∑
Γ

MK
Γ F̄pΓ

=
1

κ
MKFh

K ,

ρMK ∂Vh
K
d

∂t
+ SKxdPh

K +
∑

Γ

MΓF̄v
Γ
d = 0 (for d = 1 to dim) .

In order to understand how to compute A∗, it is necessary to link these local problems with
the global matrices M and S. It is clear that the mass matrix M , is composed of square
submatrices of size DoF (dim+ 1) defined on each element as:

M|K =


1
κM

K 0 0 0
0 ρMK 0 0
0 0 ρMK 0
0 0 0 ρMK

 .

Thus, the transpose of M can also be expressed as the transpose of the submatrices M|K :

M|K
−∗ =


κMK−∗ 0 0 0

0 1
ρM

K−∗ 0 0

0 0 1
ρM

K−∗ 0

0 0 0 1
ρM

K−∗

 .

Matrix S can be separated into two parts:

S = SΩ + SΓ .

Similarly to M , SΩ is defined elementwise as

SΩ|K =


0 SKx1

SKx2
SKx3

SKx1
0 0 0

SKx2
0 0 0

SKx3
0 0 0

 ,
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and its transpose can also be constructed element by element:

SΩ
∗
|K =


0 SKx1

∗
SKx2

∗
SKx3

∗

SKx1

∗
0 0 0

SKx2

∗
0 0 0

SKx3

∗
0 0 0

 .

Matrix SΓ accounts for the calculation of surface terms, i.e., the calculation of fluxes and
boundary conditions, and link each element with its neighbors. It cannot be expressed as
easily as the previous matrices and its adjoint is much more complicated to determine. This
matrix is actually never built in the code and the corresponding matrix-vector product is
rather computed thanks to a succession of operations.

The structure of the DG code inexorably requires additional development to define the
adjoint operators of the discrete adjoint problem. One possibility would then be to turn to the
automatic differentiation tools [Griewank and Walther, 2008] to obtain directly the adjoint
functions or even directly the gradient. Unfortunately, the functions linked to flux computa-
tion must manage the MPI communications between the subdomains of the simulation. Using
automatic differentiation tools in parallel environment is challenging [Tröltzsch, 2010] and will
give slow and poorly optimized functions.

In addition to the parallel environment, another technical difficulty is that the code is split
into three libraries and one application. This hierarchical organization (see Chapter 4)
makes automatic differentiation software even more complex to employ.

Industrial context

To conclude, we have described in this chapter, step by step, the construction of the system
of equations whose discrete adjoint state is the solution. Unfortunately, the difficulties of the
Discretize then Optimize strategy are technical. Indeed, it requires the development of the
adjoint of a huge amount of modular functions inherited from the DG structure that is solved
element by element.

However, even if the adjoint operator requires some extra developments, it exists a way
to validate the implementation via an adjoint test.

3.2.3 Adjoint test

We have seen before that the discrete forward problem as well as its adjoint can be expressed
synthetically in the following way:

LŪ = EF̄ ,

L∗Λ̄ = Ḡ .

The difficulty lies in obtaining L∗ knowing L, since L is never entirely constructed in the code.
According to the discretization, it can be tough to obtain the adjoint operator. Nevertheless,
dealing with the adjoint of the discrete problem allows setting up a test proving that the
adjoint operator L∗ is well constructed. This test is commonly called the adjoint test.

Let us consider two randomly generated source terms f̃ and g̃, we now choose Ū and Λ̄
as:

LŪ = f̃ , L∗Λ̄ = g̃ . (3.16)
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Then, by definition, L∗ is the adjoint of L if and only if:

〈LŪ , Λ̄〉 = 〈Ū , L∗Λ̄〉 ,

which writes, according to (3.16),:

〈f̃ , Λ̄〉 = 〈Ū , g̃〉 . (3.17)

This is what we call "adjoint test", it consists in verifying (3.17) to the roundoff machine error.
Validating this test is a proof that L∗ provides a way to properly calculate the adjoint state
of the considered problem (provided that the adjoint source is also correctly implemented).
This test is only available when considering the strategy Optimize then Discretize.

In this section, we described two approaches for computing the adjoint states according
to whether one decides to optimize before discretizing or discretize before optimize. The two
resulting adjoint operators are different. On the one hand, when we optimize the continuous
problem, the continuous adjoint state is expressed in the same way as the direct state. It is
therefore possible to use the same discretization for both problems, saving the development
of an additional solver.

On the other hand, the strategy that consists in discretizing before optimizing requires
additional development in order to define the adjoint discrete problem.

Concerning the discrete adjoint operators, they can be tested thanks to the adjoint test.
Unfortunately, this test is only available considering the Discretize then Optimize strategy.
Indeed, we only have access to an approximation of the continuous states, so that the test
will fail because of the error from the discretization, which is much greater than the round-off
error.

The adjoint state is only an intermediate step in the calculation of the gradient of the
physical model. We propose in the next section to define the calculation of the gradient
according to the Optimize then Discretize and Discretize then Optimize strategies.

3.3 The gradient expressions

In this section, we will define the expression of the gradient of the cost function according
to the physical parameters of the continuous or discrete problem. We will first establish
the gradient of the continuous problem. This gradient is thus used in the inversion algorithm
after discretization, and we will call the resulting gradient the discretized gradient. In a second
approach, we will discretize the problem before computing its gradient. Then, the resulting
gradient will be called the discrete gradient.

The gradient is relative to the parameters representing the model and several choices of
parameterization are possible. For instance, for the acoustic wave equation one can choose
( 1
κ , ρ), (c,

1
ρ) etc. In [Faucher, 2017], it has been shown that the conditioning of the associ-

ated Jacobian may be hindered for some choices of parameterization while other improve the
reconstruction. For instance ( 1

κ , ρ) is a good choice of parameterization for the acoustic wave
equation.

For the sake of generalization, we will denote the parameterization by (α, β). In what
follows, we will define the discretized gradient expression for any parameterization (α, β).

3.3.1 Discretized gradient

The gradient is obtained by considering the derivative of the Lagrangian with respect to the
physical parameters. Here, we will consider the first order equation system we defined in
(3.1.2). Let us consider the derivative with respect to the parameter α:
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∂J
∂α

(m)δα =
∂L
∂α

(u,m,λ)δα =
∂

∂α
Ĵ (m)δα +

∂

∂α

〈 1

κ

∂p

∂t
+∇ · v − f

ρ
∂v

∂t
+∇p

 ,

(
p∗

v∗

)〉
δα ,

=
∂

∂α

∫
Ω

∫ Tf

t0

[(
1

κ

∂p

∂t
+∇ · v − f

)
p∗+

(
ρ
∂v

∂t
+∇p

)
·v∗
]
dtdxδα,

=

∫
Ω
δα

∫ Tf

t0

[
∂

∂α

1

κ

∂p

∂t
p∗ +

∂

∂α
ρ
∂v

∂t
· v∗

]
dxdt .

It should be noted that parameters 1
κ and ρ are functions of α and β. We could then write

them down as 1
κ(α, β) ρ(α, β). But for the sake of conciseness, we will keep the notation 1

κ ,
ρ. We warn the reader not to forget that these parameters are functions of α and β.

By identification, we may express the continuous gradient with respect to the parameter-
ization α as follows:

∇αJ =

∫ Tf

t0

(
∂

∂α

1

κ

∂p

∂t
p∗ +

∂

∂α
ρ
∂v

∂t
· v∗

)
dxdt . (3.18)

Since we are considering any parameterization (α, β), then the gradient with respect to
the parameter β is obtained by replacing α by β in (3.18).

∇βJ =

∫ Tf

t0

(
∂

∂β

1

κ

∂p

∂t
p∗ +

∂

∂β
ρ
∂v

∂t
· v∗

)
dxdt .

Since we do not have access to the exact pressure field, we keep computing the gradient
by replacing p and p∗ by their approximations ph and ph∗. In the case where the parameters
are constant per element, we define the parameterization α (or β) by the set of parameter
α1≤l≤np . Here we have np = Ne. Let us consider the approximation of the derivative of the
continuous cost function by the lth parameter αl. We have:(

∂

∂αl
J (m)

)
h

≈ ∂

∂αl

∫ Tf

t0

∫
Ω

(
1

κ

∂ph
∂t

(p∗)h + ρ
∂vh
∂t
· (v∗)h

)
dxdt ,

≈
∫ Tf

t0

∫
Ω

(
∂

∂αl

1

κ

∂ph
∂t

(p∗)h +
∂

∂αl
ρ
∂vh
∂t
· (v∗)h

)
dxdt ,

≈
∫ Tf

t0

 Ne∑
j

∫
Kl

(
∂

∂αl

1

κ j

∂ph
∂t

(p∗)h +
∂

∂αl
ρj
∂vh
∂t
· (v∗)h

)
dx

 dt .
Since

∂

∂αl

1

κj
= 0 and

∂

∂αl
ρj = 0 for j 6= l, then:

(
∂

∂αl
J (m)

)
h

≈
∫ Tf

t0

∫
Kl

(
∂

∂αl

1

κ l

∂ph
∂t

(p∗)h +
∂

∂αl
ρl
∂vh
∂t
· (v∗)h

)
dxdt .

We can then consider the forward and backward approximate states as a polynomial approx-
imation on the lth element:

∂

∂t
ph
Kl

=
DoF∑
j=1

(
∂

∂t
Phj )

Kl
ϕK

l

j , (p∗)h
Kl

=
DoF∑
j=1

(P ∗)hj
Kl

ϕK
l

j ,
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∂

∂t
vhd

Kl
=

DoF∑
j=1

(
∂

∂t
Vhdj )

Kl
ϕK

l

j , (v∗)h
Kl

=

DoF∑
j=1

(V ∗)hdj
Kl

ϕK
l

j .

Then, by introducing the time discretization, the approximate derivative of the cost func-
tion with respect to the lth component of 1

κ can be written as follows:

(
∂

∂αl
J (m)

)
h

≈
∫ Tf

t0

∫
Kl

∂

∂αl

1

κ l

∂ph
∂t

(p∗)hdxdt+

∫ Tf

t0

∫
Kl

∂

∂αl
ρl
∂vh
∂t
· (v∗)hdxdt,

≈
Nt∑
n=0

∆t

∫
Kl

DoF∑
i=1

∂

∂αl

1

κ l
(
∂

∂t
Ph

n
i )K

l
ϕK

l

i

DoF∑
j

((P ∗)h
n
j )K

l
ϕK

l

j

 dx

+

Nt∑
n=0

∆t
∂

∂αl

1

κ l

∫
Kl

dim∑
d=1

DoF∑
i=1

∂

∂αl
ρl(

∂

∂t
Vhd

n
i )K

l
ϕK

l

i

DoF∑
j

((V ∗)hd
n
j )K

l
ϕK

l

j

 dx ,

≈
Nt∑
n=0

∆t

∫
Kl

DoF∑
i=1

(
∂

∂t
Ph

n
i )K

l
ϕK

l

i

DoF∑
j

((P ∗)h
n
j )K

l
ϕK

l

j

 dx

+

Nt∑
n=0

∆t
∂

∂αl
ρl

dim∑
d=1

∫
Kl

DoF∑
i=1

(
∂

∂t
Vhd

n
i )K

l
ϕK

l

i

DoF∑
j

((V ∗)hd
n
j )K

l
ϕK

l

j

 dx ,

≈ ∆t
∂

∂αl

1

κ l

Nt∑
n=0

DoF∑
i=1

DoF∑
j=1

(
∂

∂t
Ph

n
i )K

l

∫
Kl

ϕK
l

i ϕK
l

j ((P ∗)h
n
j )K

l
dx

+ ∆t
∂

∂αl
ρl

Nt∑
n=0

dim∑
d=1

DoF∑
i=1

DoF∑
j=1

(
∂

∂t
Vhd

n
i )K

l

∫
Kl

ϕK
l

i ϕK
l

j ((V ∗)hd
n
j )K

l
dx ,

≈ ∆t
∂

∂αl

1

κ l

Nt∑
n=0

(
∂

∂t
Ph

n)K
l>
MKl

((P ∗)h
n)K

l

+ ∆t
∂

∂αl
ρl

Nt∑
n=0

dim∑
d=1

(
∂

∂t
Vhd

n)K
l>
MKl

((V ∗)hd
n)K

l

,

≈ ∆t
∂

∂αl

1

κ l
|TKl |

Nt∑
n=0

(
∂

∂t
Ph

n)K
l>
M̂((P ∗)h

n)K
l

+ ∆t
∂

∂αl
ρl|TKl |

dim∑
d=1

Nt∑
n=0

(
∂

∂t
Vhd

n)K
l>
M̂((V ∗)hd

n)K
l

,

where MK , M̂ and |TKl | are the DG operators defined in Chapter 2, page 63.

We have thus computed the lth component of the discretized gradient of the cost function
with respect to any parameter α representing the lth element, and we get:

Proposition 6. For any parameterization (α, β) constant per element, the discretized gradi-
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ent of the continuous first order acoustic problem relative to (α, β) is given by:

(
∂

∂αl
J (m)

)
h

≈ ∆t
∂

∂αl

1

κ l
(αl, βl)|TKl |

Nt∑
n=0

(
∂

∂t
Ph

n)K
l>
M̂((P ∗)h

n)K
l

+ ∆t
∂

∂αl
ρl|TKl |

dim∑
d=1

Nt∑
n=0

(
∂

∂t
Vhd

n)K
l>
M̂((V ∗)hd

n)K
l

. (3.19)

(
∂

∂βl
J (m)

)
h

≈ ∆t
∂

∂βl

1

κ l
(αl, βl)|TKl |

Nt∑
n=0

(
∂

∂t
Ph

n)K
l>
M̂((P ∗)h

n)K
l

+ ∆t
∂

∂βl
ρl|TKl |

dim∑
d=1

Nt∑
n=0

(
∂

∂t
Vhd

n)K
l>
M̂((V ∗)hd

n)K
l

. (3.20)

To simplify the computation and implementation of the gradient for any parameteriza-
tion, we may notice that the gradient expression is way more simplified when choosing
(α, β) = ( 1

κ , ρ). Indeed, we have:

(
∂

∂ 1
κ l

J (m))h ≈ ∆t|TKl |
Nt∑
n=0

(
∂

∂t
Ph

n)K
l>
M̂((P ∗)h

n)K
l

,

and

(
∂

∂ρl
J (m))h ≈ ∆t|TKl |

dim∑
d=1

Nt∑
n=0

(
∂

∂t
Vhd

n)K
l>
M̂((V ∗)hd

n)K
l

.

In the code, since this parameterization gives a very simple expression of the gradient,
we use it as a reference, and we compute the gradient relative to other parameterizations
by applying the derivation chain rule. Hence, for any (α, β), we have:

∂

∂α
J =

∂ 1
κ

∂α

∂J
∂ 1
κ

+
∂ρ

∂α

∂J
∂ρ

,

∂

∂β
J =

∂ 1
κ

∂β

∂J
∂ 1
κ

+
∂ρ

∂β

∂J
∂ρ

.

Industrial context

Eqs. (3.19) and (3.20) show how the approximate gradient is computed when considering
a model constant per element. However, the DG solver we are using also has Weight Adjusted
Discontinuous Galerkin method that allows to set multiple parameters per element. In this
case, the parameterization (α, β) is defined by a set of parameters (αl,q}βl,q})), where 1 ≤
l ≤ Ne and 1 ≤ q ≤ nq. Using the WADG method, the total number of parameters np is
defined such that: np = nqNe. The quantity αl,q or βl,q represents the parameter evaluated
at the qth quadrature point on the lth element. Let us compute the derivative with respect to
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parameter αl,q. It reads:(
∂

∂αl,q
J (m)

)
h

≈ ∂

∂αl,q

∫ Tf

t0

∫
Ω

(
1

κ

∂ph
∂t

(p∗)h + ρ
∂vh
∂t
· (v∗)h

)
dxdt ,

≈ ∂

∂αl,q

∫ Tf

t0

[
Ne∑
k=1

∫
Kk

(
1

κ

∂ph
∂t

(p∗)h + ρ
∂vh
∂t
· (v∗)h

)
dx

]
dt ,

By using the WADG quadrature formerly defined in page 95, we can approximate the integral
on the lth element K l and the approximate gradient becomes:

(
∂

∂(αl,q)
J (m)

)
h

≈
Nt∑
n=0

∆t
∂

∂αl,q
|TKl |

nq∑
m=1

ω̂m

[(
1

κ

)
l,m

ph(xm)(p∗)h(xm) + ρl,mvh(xm) · (v∗)h(xm)

]
,

≈
Nt∑
n=0

∆t
∂

∂αl,q
|TKl |PhnK

l>
MKl

1
κ

(P ∗)h
nKl

+

Nt∑
n=0

∆t
∂

∂αl,q
|TKl |

dim∑
d=1

Vhd
nKl>

MKl

ρ (V ∗)hd
nKl

,

≈ ∆t|TKl |
Nt∑
n=0

Ph
nKl>

Q̄
∂

∂αl,q
diag

[
ω̂

(
1

κ

)l]
Q̄>(P ∗)h

nKl

+ ∆t|TKl |
Nt∑
n=0

dim∑
d=1

Vh
nKl>

Q̄
∂

∂αl,q
diag(ω̂ρl)Q̄>(V ∗)hd

Kl

,

≈ ∆t|TKl |
∂

∂αl,q

(
1

κ

)
l,q

Nt∑
n=0

Ph
nKl>

Q̄diag(ω̂δq)Q̄
>(P ∗)h

nKl

+ ∆t|TKl |
∂

∂αl,q
ρl,q

Nt∑
n=0

dim∑
d=1

Vh
nKl>

Q̄diag(ω̂δq)Q̄
>(V ∗)hd

Kl

.

To facilitate the reading of these formulas, we recall the notations related to the implementa-
tion of WADG method:

• nq represents the number of quadrature points on each element;

• Q̄ is the matrix of size DoF × nq such that [Q̄]i,q = ϕ̂i(x̂q) ;

• for a set of parameters γl on the lth element K l we denote by diag(ω̂γl) the diagonal
matrix of size nq × nq, where diag(ω̂γl)q,q = ω̂qγl,q ;

• diag(ω̂δq) is a matrix of size nq × nq whose entry is zero everywhere except at the
intersection of the qth row and the qth column, where it is equal to ω̂q.

Hence we have:
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Proposition 7. Let us assume that the parameterization is given by (αl,q}βl,q})), where
1 ≤ l ≤ Ne and 1 ≤ q ≤ nq, the discretized gradient is given by:

(
∂

∂αl,q
J (m)

)
h

≈ ∆t|TKl |
∂

∂αl,q

(
1

κ

)
l,q

Nt∑
n=0

Ph
nKl>

Q̄diag(ω̂δq)Q̄
>(P ∗)h

nKl

+ ∆t|TKl |
∂

∂αl,q
ρl,q

Nt∑
n=0

dim∑
d=1

Vh
nKl>

Q̄diag(ω̂δq)Q̄
>(V ∗)hd

Kl

,

and (
∂

∂βl,q
J (m)

)
h

≈ ∆t|TKl |
∂

∂βl,q

(
1

κ

)
l,q

Nt∑
n=0

Ph
nKl>

Q̄diag(ω̂δq)Q̄
>(P ∗)h

nKl

+ ∆t|TKl |
∂

∂βl,q
ρl,q

Nt∑
n=0

dim∑
d=1

Vh
nKl>

Q̄diag(ω̂δq)Q̄
>(V ∗)hd

Kl

.

Once again, to simplify the developpement of the gradient expression in the industrial
code, we compute a reference gradient using the parameterization (α, β) = ( 1

κ , ρ) leading
to the following expression:(

∂

∂ 1
κ l,q

J (m)

)
h

≈ ∆t|TKl |
Nt∑
n=0

Ph
nKl>

Q̄diag(ω̂δq)Q̄
>(P ∗)h

nKl

,

and (
∂

∂ρl,q
J (m)

)
h

≈ ∆t|TKl |
Nt∑
n=0

dim∑
d=1

Vh
nKl>

Q̄diag(ω̂δq)Q̄
>(V ∗)hd

Kl

.

Once these quantities computed, we can, as explained before, express the gradient
for any parameterization (α,β).

∂

∂α
J =

∂ 1
κ

∂α

∂J
∂ 1
κ

+
∂ρ

∂α

∂J
∂ρ

,

∂

∂β
J =

∂ 1
κ

∂β

∂J
∂ 1
κ

+
∂ρ

∂β

∂J
∂ρ

.

Industrial context

We have thus constructed the discretized gradient using DG discretization when the model is
constant per element and WADG discretization in case of multiple parameters per element.
It is worth noting that the discretized gradient is an approximation of the gradient associated
with the continuous problem. It is thus inaccurate regarding the continuous problem. This
is the reason why the strategy Optimize then Discretize is quite criticized [Bonnans, 2006].
Indeed, potential inaccuracies can lead to convergence issues of the optimization algorithms
[Gunzburger, 2002]. Non-exact gradient can actually disturb quasi-Newton methods such as
L-BFGS algorithm, which is widely used for inverse problems in geophysics.
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Moreover, the so-called discretized gradient is not unique. [Sei and Symes, 1994]. Indeed,
It depends on the scalar product applied in the functional space and the discretization method
used. For instance, the gradient obtained with DG discretization and computed over a model
constant per element is not the same as the one obtained with WADG discretization and
one quadrature point. The difference is due to the fact that in the first case, the integral is
computed on an element by integrating the polynomial basis functions while in the second
case, the integral is only approached by a one point quadrature.

We have defined in this section how to compute each component of the discretized gradient
according to any parameterization (α, β) of the acoustic first order problem. Its expression
varies according to whether we consider constant physical parameters per element or WADG
parameterization.

In what follows, we will define the key steps to compute the discrete gradient.

3.3.2 Discrete gradient

The discrete gradient is the gradient obtained by considering the minimization problem writ-
ten directly with the discrete problem. We recall that we have determined a synthetic writing
of the discrete problem using space-time matrix operators. The associated Lagrangian is then
expressed as follows:

Lh(Ū ,m, Λ̄) = Ĵh(Ū) + 〈LŪ − EF̄ , Λ̄〉 .

Let us consider the calculation of the derivative for any parameterization (α, β). We
will consider the derivative by the kth component and see what are the required operator to
compute the discrete gradient whether we are using constant model per element or WADG
parameterization. The calculations are the same using β this why we restrict the study to α
parameter in the subsection.

Let us consider the derivative by the kth component of the parameter field α:

∂

∂αk
Jh(m) =

∂

∂αk
Lh(Ū ,m, Λ̄),

=
∂

∂αk
Ĵh(m) +

∂

∂αk
〈LŪ − EF̄ , Λ̄〉 .

Given that only operator L depends on the physical parameters, we get:

∂

∂αk
Jh(m) =

〈
∂

∂αk
LŪ , Λ̄

〉
.

Then it is important to see that the discrete gradient depends on the time scheme as L
corresponds to a space-time discretization. Hence, the discrete gradient will inevitably change
with the time scheme. Hence, by replacing L by its expression and summing over all the time
steps, we obtain respectively for each time scheme the expression of the gradient regarding
the parameter of interest. For RK2 and RK4, the discrete gradient is given by:

∂

∂αk
Jh(m) = ∆t

Nt−1∑
n=2

〈
∂

∂αk
(I −B)Ū

n
, Λ̄

n
〉
,

where

B = I + ∆tA+
∆t2

2
A2 , for RK2,

B = I + ∆tA+
∆t2

2
A2 +

∆t3

6
A3 +

∆t4

24
A4 , for RK4.
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For AB3, the discrete gradient is:

∂

∂αk
Jh(m) = ∆t

Nt−1∑
n=2

〈
− ∂

∂αk
∆tAŪ

n
, Λ̄

n
〉
.

We recall that we have defined A as the global DG operator in space as follows:

A(m) = M−1(m)(SΩ + SΓ(m)) .

Hence, in each case, it is necessary to compute the derivative of operator A with respect to
the model parameter. In the above formula, the physical parameters are involved in (M−1

and also in SΓ). Indeed, the matrix SΓ contains the flux terms that we defined at page 61.
These flux terms are functions of the physical parameters. Unlike the discretized gradient, the
discrete one cannot be computed element by element since the flux terms are global operators.
It is therefore necessary to develop the operator ∂

∂γk
SΓ, where γk denotes the kth parameter

for all parameterization (α, β). The fluxes are global operators and will therefore necessarily
involve MPI communications, making the calculation of the discrete gradient more complex.
Indeed, the fluxes are exclusively numerical and do not appear in the continuous problem.
We are thus facing one difficulty related to DG discretization: the calculation of the discrete
gradient is really more difficult than the computation of the discretized gradient, as it was
formerly observed by Wilcox et al. [2013].

Once again, as for the calculation of the adjoint state of the discrete adjoint problem, the
associated gradient also requires the development of additional operators. Its construction is
very sensitive to the DG fluxes and turns out to be very difficult to handle. As a conclusion,
the implementation of DtO approach seems much more tricky that OtD one. On the one
hand, the Optimize then Discretize strategy allows us to see the direct problem as a black
box that we use almost identically to define the adjoint state. The resulting gradient is
then an approximation of the continuous gradient formulation and is therefore computed by
exploiting all the DG operators already implemented. On the other hand, the Discretize then
Optimize strategy allows us to have an exact discrete gradient but requires the development
and implementation of the discrete adjoint problem and its discrete gradient.

In order to convince ourselves on which strategy to adopt in the industrial code, we have
performed a numerical study in 1D. This is the purpose of the next section.

3.4 1D numerical comparison

In this section, we aim at comparing the performance of the Optimize then Discretize (OtD)
and Discretize the Optimize (DtO) solution methodologies in a simplified FWI 1D test case.
For this test, we propose to adapt the 1D solver developed at the beginning of the thesis for
pedagogical reasons, into an application solving the inverse problem in 1D. We recall that
convergence tests validating this code have been shown in Subsection 2.3.3, page 83.

Having a full mastery of the code sources, it was easy to formulate all the operators as
matrices and thus formulate the discrete adjoint problem. Forming the global space-time
matrix of the problem is of course to be avoided in production code for reasons of efficiency
and memory.

3.4.1 1D FWI problem

Let Ω be a domain of 1000m length. We use a source and a receiver respectively placed at
xs = 10m and xr = 300m (see Figure 3.3).
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ReceiverSource

Figure 3.3: 1D domain Ω.

The source f is a first order Ricker function, which is expressed as follows:

f(t) = (t− tpeak) exp−(πfpeak(t−tpeak))2
.

For this experiment, we choose fpeak = 1Hz and tpeak = 0.5s.
We generate data from a homogeneous density model with ρ(x) = 1000kg.m−3 but a bi-

layer wavespeed medium with c(x)=1000m.s−1 for 0m< x < 333m and c(x) = 1200m.s−1 for
333m< x < 1000m. The data are obtained by using a 3s-long simulation (t0 = 0s, Tf = 3s)
For this reconstruction, we propose a homogeneous initial model with c(x)=1000m.s−1 and
ρ(x)=1000kg.m−3. We represent the initial model and the target model in Figure 3.4.
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(a) Initial wavespeed model.
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(b) Target wavespeed model.

Figure 3.4: Initial (a) and Target model (b) for the 1D FWI.

For this test, we used a 100-element grid on which the pressure and velocity fields were
approximated by Bernstein-Bézier second order polynomials. The physical model is described
by parameters constant per element.

For the sake of simplicity, we have used centered fluxes, thus avoiding the derivation of flux
terms with respect to the physical parameters for the discrete gradient calculation. Indeed,
as we have previously pointed out, the upwind fluxes, used in Total’s code, are functions of
the physical parameters. They must therefore be taken into account in the calculation of the
DtO gradient, which makes the implementation of the gradient very complicated. We also
made sure that the adjoint state resulting from the discrete problem satisfied the adjoint test
as introduced in Subsection 3.2.3.

3.4.2 1D Gradient validation

Before comparing the convergence of the optimization algorithm using either the Optimize
then Discretize (OtD) or Discretize then Optimize (DtO) strategy, we aim to verify that the
gradient thus obtained by the adjoint state method is valid. First, we propose to compare
the gradient obtained via these two strategies with a reference gradient obtained by finite
difference (3.21).
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The gradient calculated by finite difference for the ith parameter can be calculated as
follows:

{∇J (m0)}i =
J (m0 + εδi) + J (m0 − εδi)

2ε
, (3.21)

where εδi corresponds to a perturbation made on the initial set of parameters m0 on the ith

parameter.

N.B.: Here the problem is one-dimensional, which makes the evaluation of the gradient for
all the parameters, by this method, feasible. It would be inconceivable in higher dimensions due
to the increasing number of parameters but above all, due to the exponential computational cost.
In this example, the gradient obtained by finite difference using a centered scheme is obtained
with 2np evaluations of the cost function against an equivalent cost of two evaluations when
using the adjoint state method.
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Figure 3.5: Gradient obtained using OtD and DtO strategies compared with gradient com-
puted using FD.

We display in Figure 3.5 the comparison of the gradient obtained by finite difference which
serves as reference, as well as those obtained by adjoint state method with the OtD and DtO
strategies. All three methods give a similar result. Moreover, we do not observe any significant
difference between the gradients obtained by the OtD or DtO strategy.

For further validation of the gradient, we know that for any scalar α, we have the Taylor
expansion of the cost function J which can be expressed as follows:

J (m0 + αdm) = J (m0) + α〈∇J (m0), dm〉+O(α2), (3.22)

where dm corresponds to a random perturbation of the set of parameters m0.
We then study the variation of this quantity for α being smaller and smaller:

|J (m0 + αdm)− J (m0)− α〈∇J (m0), dm〉|
|J (m0)|

= O(α2). (3.23)

We displayed in Figure 3.6 the convergence curves of this 1D experiment with both gra-
dients computed using OtD and DtO strategies.
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Figure 3.6: Convergence study of the cost function J (m0 + αdm) as a function of α.

We can observe that, whatever the chosen strategy (DtO or OtD), we obtain a conver-
gence of order two. This is the result expected if the gradient is well-defined in view of the
Taylor expansion of the cost function expressed in equations (3.22) and (3.23). If the slope
of convergence is of order one then the gradient obtained is wrong and the convergence is
only due to the continuity of the observed quantity for α going to zero. Note that, if the
convergence order is null then it exists a trivial bug in the optimization loop. This test is
then useful to assess the gradient computed but also to verify the validity of the optimization
algorithm.

3.4.3 1D Results and convergence comparisons

We propose to study the evolution of the wavespeed model over 400 optimization iterations
using the L-BFGS method. We display in Figure 3.7 the comparison of the final models thus
reconstructed. We see that both methods manage to reconstruct the two-layer medium. The
strategy Optimize then Discretize seems to work in spite of an optimization based on the
computation of an approximate gradient and thus not exact in the sense of the continuous
problem.

To further compare the two approaches, we propose to compare the speed of convergence of
the cost function according to the method used. We display the evolution curves in Figure 3.8.

Finally, we can observe that both strategies lead to similar results. It is difficult to assert
the superiority of one method over the other, at least in this case. Convergence is not faster
with one method than another. This numerical comparison does not make it possible to assert
the superiority of one strategy over the other, notwithstanding the fact that the OtD strategy
performs the optimization with an approximation of the continuous gradient that can alter
the convergence of the optimization algorithm.

3.5 Conclusion

Before proceeding to implement the inverse problem in the Total code, it is important to
determine the strategy to be followed. Since the problem is formulated as a constrained
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Figure 3.7: Final 1D wavespeed model reconstructed in 400 L-BFGS iterations using OtD
and DtO strategy.
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minimization problem solved by the adjoint state method, should we proceed with the op-
timization of the continuous problem and then discretize it or on the contrary, implement
the optimization on the discrete problem? It would seem that a consensus [Bonnans, 2006,
Chavent, 2010, Kern, 2016] chooses the strategy Discretize then Optimize. Indeed, with the
strategy Optimize then Discretize, the gradient of the cost function with respect to the param-
eters to be reconstructed is only an approximation of the gradient of the continuous problem.
This approximation can then lead to imprecisions on the gradient, which can be detrimental
to the efficiency of local optimization routines [Gunzburger, 2002] and all the more when one
tries to approach the Hessian of the cost function with methods such as L-BFGS. On the
other hand, the gradient obtained by the Discretize then Optimize is correct in the sense of
the discrete problem and does not suffer from approximation penalizing optimization.

We have shown in this chapter that, depending on the used strategy, the needs for devel-
opment are not the same. Indeed, if we consider the optimization of the continuous problem,
the associated adjoint state can be written as a solution of the same continuous problem with
another right hand side expressed in terms of the solution of the direct problem. It is then
possible, with this strategy, to use the same discretization for the forward problem as for the
backward problem. This allows to avoid a specific development of the adjoint problem that
is necessary in the strategy Discretize then Optimize.

The difficulty resulting from the implementation of the discrete adjoint problem is relative
to the discretization of the direct problem and to the architecture of the code. Even if
automatic differentiation tools are used to obtain the desired functions, these are often poorly
optimized and difficult to include into the parallelism, if it exists. In the industrial context of
this thesis, it seems to us impossible to use this type of tool. Indeed, we would have to consider
another problem given by the associated adjoint problem that would take a very long time to
solve. It is actually necessary within the framework of the strategy Discretize then Optimize
to develop the discrete adjoint problem. In this chapter, we have reviewed the necessary
developments to show how many efforts are required. For a time domain DG solver, these
developments can be complicated by the complex interplay of operators expressing themselves
either globally (time and fluxes) or locally within a mesh (mass and stiffness matrix). Once
the discrete adjoint state has been determined, the discrete gradient must still be computed.
The latter is also complex to determine in DG framework if upwind fluxes are used. Indeed,
it involves the physical parameters and must therefore be derived for the calculation of the
exact gradient in the sense of the discrete problem [Wilcox et al., 2013]. In practice, this
derivation is ignored [Wang, 2017] and an approximate gradient is used.

Nevertheless, we can cite the case of solvers that are more conducive to the expression
of the adjoint state. In FEM/SEM solvers, all operators are more simply decomposed than
DG ones into local matrices. Their adjoint operators are then easier to determine than the
adjoint operators of DG fluxes. For example, the AxiSEM3D code, which is a solver combining
SEM and Fourier pseudo-spectral method for the azimuthal wavefield, has been shown to be
self-adjoint [Szenicer et al., 2020].

Even if the construction of the discrete gradient in DG formulation seems very complex, we
wanted to implement it on a 1D case. The objective of this numerical study was to compare
discrete and discretized gradients in a simple inversion case. We have decided to use the
L-BFGS algorithm, which was expected to perform better with DtO approach. We observed
that the two calculations lead to similar results.

In the following, we opt for the implementation strategy privileging the method Optimize
then Discretize, reassured by a simple 1D case. Since we have to develop from scratch the
minimization problem in Total’s code, there is no structure managing the adjoint state, the
gradient or even the optimization routines. It is therefore easier to set up all the necessary
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structures by taking the forward operators to calculate the backward field. Getting the discrete
adjoint state requires a sharp knowledge of the implementation of the industrial direct solver
and, after that, a consequent development time while the entire optimization structure does
not exist yet. Starting with the strategy Optimize then Discretize will therefore allow us to
set up everything we need, and build the skeleton of the FWI while leaving the possibility,
for later, to calculate the discrete exact gradient.

In the next chapter, we will describe the industrial framework in which this thesis has
been developed.
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Chapter 4

Time Domain Full Waveform
Inversion in an industrial context

The objective of this thesis is to implement a FWI algorithm using a time-domain DG solver
provided by the industrial partner Total.

The choice of the DGm has already been motivated in Chapter 2. The DGm actually offers
a great flexibility to handle complex subsoil models (topography, discontinuities) and allows
a simplified parallelism as it works by communicating only fluxes between each element.

FWI has been used in the frequency-domain for a long time. Its frequency formulation
is indeed very practical since it is limited to solving the direct problem with different right-
hand sides, depending on whether one calculates the forward or backward solution. If one
has a solver that is able to exploit the multi right-hand side structure of the discrete inverse
problem, one reduces the computational burden considerably and the method can operate in
3D [Pocock and Walker, 1998, Operto et al., 2014, Faucher, 2017]. Another advantage of the
frequency approach is that wavefields need to be stored only for a discrete set of frequencies
that are not in large numbers. The efficiency of the inversion method is also considerably
increased by a multi-frequency approach, but it is not easy to determine which frequencies
to work with. FWI in the time domain requires more computational resources, especially
because all wave fields must be stored. Shoja et al. [2018] performed a study in 2D on a
simple model (four parameters) that shows that the time approach is more robust than the
frequency approach and that this robustness can be explained by the possibility to take into
account a full band of frequencies. In [Singh et al., 2018], a comparison of the two approaches
is also carried out using the Marmousi model as a target. This study highlights the following
points:

• the time method is more efficient when it comes to solving the direct problem in large
propagation domains; the frequency method may indeed be limited by the ability of
solvers to solve large-scale problems;

• the frequency method is less expensive than the time method: computational costs are
proportional to the number of frequencies used if the multi right-hand-side option is
implemented; in time, computational costs are proportional to the number of sources;

• the frequency method is very sensitive to the choice of the initial model and the data
must have a very low frequency content to obtain accurate results.

Given that the time solver requires less memory than the frequency one, one option consists
in performing time-dependent forward simulations on 3D large cases in time-domain and then
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to perform the optimization in the frequency-domain [Sirgue et al., 2010, Brossier et al.,
2014]. Unfortunately, this approach requires using discrete Fourier transforms over the whole
wavefield which turns out to be very expensive.
In an industrial context, the choice of a full time-domain FWI is motivated by the will to
overcome the memory limitations of frequency solvers. Even in 2D, the forward problem is
solved in a much more efficient way than in time domain. More importantly, in 3D, frequency
solvers require a significant amount of computer memory and often have difficulty solving
large-scale problems [Operto et al., 2007]. One way to deal with this problem is to use an
iterative solver [Warner et al., 2008]. However, iterative methods require good preconditioners.
Moreover, iterative solvers do not deal with multiple right-hand sides which increase drastically
the solution of the inverse problem. Hence, the resolution of 3D problems solved in frequency-
domain comes to a bottleneck and as our industrial partner has to deal with 3D problems, we
chose to develop an FWI in the time domain. It is worth noting that the use of a time-domain
solver allows to limit the storage of the forward field, which is necessary to solve the inverse
problem. Checkpointing strategies [Griewank, 1992] or storage of the solution only at the
interfaces [Clapp, 2008] can be used to limit the storage requirement for the cost of additional
calculations.

In this chapter we will describe the industrial environment in which the development of
the FWI has been carried out. We will then present the different results of the reconstructions
obtained.

4.1 Industrial architecture and contributions

In this section, we will describe the industrial environment in which the FWI code was devel-
oped.

First, we will introduce the development environment. Then, we will describe the resources
and clusters we had access to for solving the inverse problems. Finally, we will explain the
different levels of parallelism we had to deal with to realize massively parallel inversion code.

4.1.1 Description of the development environment

The industrial code in which the development of the thesis took place is a Fortran code sepa-
rated into three libraries and a main application. These libraries are subject to a hierarchical
dependency. We can then sketch out the whole code as in Figure 4.1.

Figure 4.1: Illustration of the hierarchical Total’s code.

Going from the base to the top of the pyramid that is the application we have:
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• SABL: Seismic Application Base Library is a library that contains a set of packages
commonly used in different seismic applications. Mainly, it is this library that will
manage parallelism, errors, as well as the reading of physical parameters, seismic traces
and acquisition configuration (sources and receivers locations).

• ACL: Application Core Library is an application that will manage everything concern-
ing space discretization. Indeed, we will find there the management of the mesh, the
decomposition in sub-domains as well as the creation of the local DG operators according
to the various polynomial bases.

• utNML: Unstructured Time-domain Numerical Methods Library contains various prop-
agators on unstructured meshes (acoustic isotropic, elastic isotropic, elastic TTI and
coupled elastic-acoustic isotropic propagators). The time schemes are developed in this
library and it is also where local DG operators, built thanks to ACL to construct
these different propagators, are assembled. In this library we may also find the types
characterizing the physical parameters and seismic data, which are key for FWI.

• utModeling: Unstructured Time-domain Modeling is the main application. It will
read the input parameters provided by the user, initialize the parallelism and simulate
the time domain wave propagation with the propagator provided by the user.

At the beginning of this thesis, only the application utModeling existed. Then, the new
application utFWI, on the model of utModeling, has been developed to perform FWI in
time domain with DG propagators. The utFWI application must provide a generic FWI
workflow compatible with all existing propagators. Basically, the utFWI application follows
the global FWI workflow defined earlier and illustrated in Figure 4.2.

Figure 4.2: General FWI workflow.

For specific functions induced by the propagator, it is necessary to develop the library
below, referred to as utNML.

Each of the codes comprising the FWI workflow is followed by its own git repository thus
splitting the development library by library. The majority of the developments in this thesis
have been done in utFWI and in utNML.

We have developed specific applications compatible with the libraries provided by the
industrial partner. We have also enriched these libraries with functions specific to inversion,
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especially in the acoustic propagator.
Now that we have briefly described the development environment, we propose in the rest

of this section to make an overview of the HPC framework in which the thesis took place.

4.1.2 HPC environnement

The very high cost to perform forward modeling, associated to a large number of data (number
of sources), makes FWI a complex High Performance Computing (HPC) problem.

To solve either forward or inverse problem, we use a parallelism developed in Open MPI
[Gabriel et al., 2004]. This formalism allows to separate the calculations on cores. One
important issue is the development of communications that allow data exchange between
cores when necessary.

In the developed code, we have preserved and adapted the existing parallelism for solving
FWI problems. There are two levels of parallelism:

• one parallelism by subdomain decomposition;

• and one parallelism per shot.

What we call a shot, is the resolution of the direct problem for a given source. To carry out
a shot, it is possible to divide the domain of calculation Ω in subdomains (see Figure 4.3).

Figure 4.3: Illustration of a potential domain decomposition to solve one forward problem.

Subdomain decomposition is widely used for solving partial derivative equations either
using finite difference or finite element methods [Smith et al., 2004]. The advantage with
DGm is that it drastically reduces the cost of communication between each subdomain thanks
to numerical fluxes that are part of the numerical method. In fact, in DGm, it is enough
to communicate with the direct neighbor regardless of the order of approximation in space,
while other solvers using continuous finite element methods require communication with more
distant elements. Having a high amount of information to be exchanged during communication
can hammper the scalability of the problem, this is an additional reason to favour DGmethods.
The subdomain decomposition displayed in Figure 4.3 has been obtained by the Total code
which uses the external library PARMETIS [Karypis et al., 1997]. It is important to have an
appropriate decomposition to have the best load balancing possible.

To highlight the scalability property provided by DG technology, we displayed in Figure 4.4
the strong Speed-up curve obtained by computing the acoustic wave on a large 3D domain
of 5km×9.1km×3.2km. The spatial discretization is based on a mesh of 72 526 tetrahedra
where the solution is approximated by polynomials of order 4. For this experiment, we are
using a first order Ricker pressure source with a frequency peak of 15Hz.
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Figure 4.4: Speed-up analysis using 3D DG acoustic solver.

The speed up is computed as follows:

Speed-up(ncpu) =
t1
tncpu

,

where:

• t1 represents the computational time required for one CPU core to compute the simu-
lation,

• tncpu represents the computational time required for ncpu CPU cores to compute the
simulation.

In the ideal case, we expect to have simulations ncpu times faster when using ncpu cores
(Speed-up(ncpu) = ncpu). As formerly mentioned in many publications, we can observe in
Figure 4.4 that DG solvers have interesting HPC properties, since the experimental curve is
close to the ideal one. This is due to the low communication cost of DG solvers. Indeed,
the discontinuous finite element methods only required flux communication between each
subdomain [Biswas et al., 1994]. Note that for high numbers of subdomains, the amount
of communication increases and the speed-up is getting less competitive. This is why, in
what follows, we will propose another level of parallelism that consists in computing shots
separately.

We have just described the parallelism defined for one shot. However, for the inverse
problem, the resolution of the direct problem has to be done over several shots. It is then
intuitive to compute the shots in parallel. For large problems, it is necessary to couple these
two levels of parallelism. If only subdomain decomposition is used, then, for a large number
of cores, communications would kill the scalability of the problem. Conversely, if only shot
parallelism is used, only one core must have enough memory to carry out the forward modeling
over the entire domain Ω.

We denote by nb_cluster the number of shots performed in parallel. In order to simplify
the communications, we consider that each shot has the same subdomain decomposition. Let
nb_domain be the number of subdomains to compute each shot. We call a cluster a set of
nb_domain cores. Then each cluster has to compute a gradient, which we will denote as a
subgradient since it is computed with the subset of shot attributed to it. Each cluster has its
own subgradient, which is itself divided into the different nb_domain subdomains. In this way,
the number of cores to allocate for the job is necessarily given by nb_cluster × nb_domain.
For the same reasons, we favor that the total number of sources considered is a multiple of
the number of cluster : nb_cluster.
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The global gradient for the considered full set of sources is then the sum of the subgradients
calculated on each cluster. We have developed an additional communication in order to adapt
the FWI to the existing parallelism already implemented for the direct problem. Once all the
subgradients are computed, we have to sum the contribution of each cluster subdomain by
subdomain. The difficulty of such a communication is that it is necessary to distinguish the
global rank of a core from its local rank in each cluster. This information is contained and
managed in types defined in the ACL library. We illustrate the computation of the global
gradient using the two levels of parallelism, we just described, in Figure 4.5.

Figure 4.5: Illustration of shot parallelism for gradient computation.

The choice of nb_cluster and nb_domain must then take into consideration the size of
the computational domain and the number of available shots. To illustrate the choice of those
two quantities, we studied on a 2D model the computational time of 20 shots for different
(nb_cluster,nb_domain) configurations (see Figure 4.6).
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Figure 4.6: Computational time for 20 shots simulations for several (nb_domain, nb_cluster)
configurations.

In this experiment, we are timing the calculation of the 20 shots propagating on the Mar-
mousi 2D model. This consists in the simulation of a 5s-long acoustic propagation caused by
20 pressure sources modeled by a first order Ricker. The elapsed times reported in the Fig-
ure 4.6 allow to highlight the influence of (nb_domain, nb_cluster) configurations employed.
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This choice has to take into account the geometry and the discretization of the simulated
problem. In this example (≈7500 P4 triangles), the choice of parallelism allows, for a fixed
number of cores (here 120 CPU cores), to reduce the computational time by almost 40%.

To carry out the reconstructions that will follow, we had the opportunity to use different
computer clusters provided by Total. We had access to the Mesquite and Hickory clusters
located in Houston and the Pangea2 cluster located in Pau. Most of the 2D reconstructions
were launched on Mesquite while the 3D reconstructions required using Hickory or Pangea2
as they provide greater computing capacity.

We give in Table 4.1 the number of cores available on each of these clusters.

Cluster Location Nodes Cores
Mesquite Houston 24 CPU 480
Hickory1 Houston 48 CPU + 64 CPU/GPU 176 KNL 13632
Pangea2 Pau 4608 CPU 110592

Table 4.1: Cluster information.

In this section, we have described the industrial environment in which we have developed
the FWI time-domain code. We have also briefly described the used parallelism and the
clusters provided to perform our reconstructions.

In the rest of the chapter, we will test the inverse problem with the different options
proposed by the industrial solver. Then, we will define what is a multiscale reconstruction,
and we will show some results using this process for the reconstruction of different 2D and
3D models.

4.2 Reconstruction analysis regarding the discretizations and
the optimization

Whether we solve the direct or the inverse problems, we have several discretizations in the
code. One can choose the time scheme, the polynomial basis used for the DG method, the
type of parameterization to describe the model that can be defined either by a set of constant
parameters per element or by variable parameters which are managed by the WADG method.
In this section, we will look at the influence of these choices on the reconstruction performed
by the developed FWI.

Throughout this section, we aim at reconstructing the Marmousi wavespeed model from
an initial guess obtained with a smoothed version of the true model. The initial model is
constructed by using a Gaussian filter with a standard deviation choosen to be equal to
40. This filter is applied to the true model defined as regular grid of resolution 2301 × 751.
Concerning the density, we will consider it as known and homogeneous all over the domain:
ρ = 1000 kg.m−3. We display the initial guess and the target model in Figure 4.7.

For the reconstruction we will use data generated with the true model by using 20 sources
inducing a first order Ricker pressure perturbation (tpeak = 0.2s, fpeak = 10Hz). These
sources are evenly located on the X-axis from 550m to 8150m with 400m in between at 10m
depth. We use 183 receivers at a depth of 100m positioned from 50m to 9150m on the X-axis
with 50m between each other. The data so obtain are then noised with a white Gaussian
noise with a Signal Noise Ratio (SNR) of 10 (see Figure 4.8c).

1Hickory has been shut down in september 2020.
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(b) Target Marmousi velocity model (m.s−1)

Figure 4.7: Initial and target model.
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(a) Sismograph obtained by simulation of the 10th
source.
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(b) Sismograph obtained after adding white Gaus-
sian noise (SNR=10).
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(c) Comparison of the trace on the 80th receiver with and without noise.

First, we will test the different optimization methods that have been implemented in the
industrial code. Then, we will study the influence of discretization, i.e., the time scheme, the
polynomial basis and the parameterization of the model depending on whether we use WADG
method.

4.2.1 FWI reconstruction with different search direction method.

The optimization algorithm is carried out through an iterative process that ends up with
updating the physical model mi at the ith iteration into mi+1 in order to make the cost
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function J decrease “well enough”. Such update follows the relation:

mi+1 = mi + αidi,

where α is the line search step length coefficient that we described in Subsection 1.4.4 and d
is the search direction.

We introduced in Chapter 1 different search directions. In the industrial environment, we
have implemented the following ones:

• Steepest descent method

• NonLinear conjugate gradient (NLCG) [Nocedal and Wright, 2006] with several formu-
lations:

– Fletcher-Reeves (FR)

– Polak-Ribière (PR)

– Hestenes-Stiefel (HS)

– Dai-Yuan (DY)

• Limited-BFGS (L-BFGS)

We choose to perform 50 iterations using the full frequency component of the observed
data. For the reconstruction, we will use a mesh composed of 10977 P3 elements using nodal
polynomial basis. The model is parameterized with a set of constant parameters per element
which means that we have 10977 velocity parameters to retrieve.

We display in Figure 4.9 the behavior of the cost function during the 50 iterations.
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Figure 4.9: Cost function evolution for different search direction strategies.

First of all, we can see that all the optimization algorithms converge. For this case of
study, it seems that steepest descent and NLCG methods have quite the same behavior.
As expected, the Limited-BFGS method gives the best convergence as it is a quasi-Newton
method that aims to give an estimate of the Hessian.

NLCG methods can be enhanced by adding a restart condition as suggested in [Nocedal
and Wright, 2006]. A restart consists in using the steepest descent direction instead of the one
computed with NLCG methods in order to refresh information from previous old iterations.
We recompute the reconstruction using a restart all n iterations with n = 10 in this case. We
display in Figure 4.10 the corresponding behavior of the cost function with restart.
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Figure 4.10: Cost function evolution for different search direction strategies; NLCG methods
have been performed with a restart all n = 10 iteration.

Figure 4.10 clearly shows the advantage to use seldom restarts in the NLCG search di-
rection. In this test, all optimizers give better convergence than the steepest descent except
for Polak-Ribière NLCG formulation which remains close to it. The improvement is particu-
larly impressive when comparing the cost functions in Figure 4.9 and Figure 4.10 around the
twentieth iteration.

In Figure 4.11, we compare the final velocity model reconstructed for different search
direction methods.

The optimization methods implemented in Total’s environment accurately recover the
velocity Marmousi model with a comparable accuracy and computational time. The different
layers of the domain are well located with the appropriate wave speed values. It is worth
noting that in addition to obtain the better cost function, the Limited-BFGS approach is
also capable of retrieving the deepest structures of the target medium. To illustrate this
important feature of L-BFGS algorithm, we display in Figure 4.12 a one dimensional profile
of the reconstructed velocity model using Limited-BFGS algorithm in comparison with the
initial guess and target results. This profile is established on the segment defined by the
vertical axis x1 = 4500m.

The profile obtained with the L-BFGS method is close to the true profile we are looking
for. We notice that the reconstructed model is more accurate near the surface than at depth.
The deeper a structure is, the more difficult it is to reconstruct it accurately.

We presented in this subsection the different convergence curves obtained for the different
quasi-Newton algorithms implemented in the code. All the methods are able to reconstruct
pretty well the targeted model. For this experiment, Limited-BFGS gives the best convergence
results as expected since this method aims to approximate the Hessian of the cost function.
This method is well known in geophysical community for its efficiency and in addition its rea-
sonable memory burden. Other examples where the L-BFGS algorithm has been successfully
applied can be found in [Virieux and Operto] and [Brossier et al., 2010].

For the rest of the thesis, the optimization process will be exclusively performed using
Limited-BFGS search direction.

4.2.2 Influence of the time scheme

In the industrial solver, we can use three different time schemes

• a second order Runge-Kutta time scheme (RK2);
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(b) Reconstruction with L-BFGS.
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(d) Reconstruction with NLCG PR formula.
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(f) Reconstruction with NLCG DY formula.

Figure 4.11: Final reconstruction of the Marmousi velocity model obtained with an initial
smoothed model using the entire frequency component of the source and the observed data
for different search directions.
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Figure 4.12: 1D profile of the Marmousi velocity model reconstructed with L-BFGS search
direction compared with initial and target model.

• a fourth order Runge-Kutta time scheme (RK4);

• the third order Adams Basforth time scheme (AB3).

They have been introduced in Subsection 2.2.3 page 71.
The objective of this subsection is to analyze the influence of the time scheme on the

reconstruction of the Marmousi velocity model previously described in 4.2. For these re-
constructions, we used a P1 mesh with 47000 elements. The time step is adapted at each
iteration of the FWI, following the update of the wavespeed model, according to the criterion
established with the CFL condition.

At the beginning of the thesis, Total’s code was meant to solve the direct problem and
the time step was computed manually by dichotomy. This approach is perfectly adapted
to simulations with a single velocity model represented with parameters constant per
elements. However, when performing a FWI, the model is likely to evolve. Hence, a time
step ∆t given as input may no longer be correct. This could ruin the job and require a
manual restart.

It was then imperative to experimentally define an agile CFL condition and to im-
plement it in the solver. This is mandatory to have a scheme that keeps stable at any
FWI iteration where the model keeps evolving. In addition, respecting the CFL gives a
reasonable time step size, which prevents from hampering the computational time. We
have developed in the solver an automatic calculation of the time step that takes into
account the mesh, the time scheme and the velocity model. We give the definition of
CFL that we have developed on page 69.

Industrial context
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After 30 iterations of the FWI, we get, for each time scheme, the reconstructed Marmousi
velocity models depicted in Figure 4.13. We do not observe any difference between the recon-
structed models obtained with a time scheme or another. This observation is corroborated by
the graph in Figure 4.14, which shows a strictly similar evolution of the cost function during
iterations.
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(a) Marmousi velocity model (m.s−1) after 30
iterations using RK2.
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(b) Marmousi velocity model (m.s−1) after 30
iterations using RK4.
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(c) Marmousi velocity model (m.s−1) after 30 iter-
ations using AB3.

Figure 4.13: Marmousi velocity model (m.s−1) reconstructed using several time schemes.

However, if we observe the same accuracy of the reconstruction, it might have a difference
in calculation times. We have thus displayed the computational time associated with each
reconstruction in Table 4.2.

RK2 RK4 AB3
Elapsed time 3h15 4h30 5h10

Table 4.2: Comparison of the computational time for Marmousi wavespeed model reconstruc-
tion using different time schemes.
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Figure 4.14: Evolution of the cost function using different time schemes.
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Indeed, we are observing that the choice of the time scheme has an impact on the global
computational time. We also notice that, despite the fact that RK4 scheme is a 4th order time
scheme, it is faster than AB3 scheme, which is a 3rd order scheme only. Indeed, forward and
backward computation represent the main part of the FWI computational burden. Relaxing
the discretization allows then to accelerate the reconstruction. In addition, high lovel of
accuracy is unnecessary regarding the uncertainties on the data.

For this reason, for all the other reconstructions performed during this thesis, we have
chosen to use the RK2 scheme which gives the best performance in terms of computational
time.

In the next section, we propose to make a similar study comparing a reconstruction using
either the nodal polynomial basis or the Bernstein-Bézier modal basis.

4.2.3 Influence of the polynomial basis

In this section, we will compare the reconstruction of the Marmousi model when using the
nodal polynomial basis [Hesthaven and Warburton, 2007] or the Bernstein-Bézier modal basis
[Chan and Warburton, 2016]. We already had the opportunity to show, in Chapter 2, page
76, that a simulation performed with one or the other of these bases is equivalent. There is
therefore, in theory, no difference to be expected from such a comparison when addressing
the solution of the inverse problem. However, comparing the two reconstructions allows to
validate the gradient formula developed in the previous chapter (see page 128) regardless the
considered polynomial used.

For this reconstruction, we will use the same discretization as in the previous test, i.e. a
mesh of 47000 P1 elements and a model constant per element. The time scheme employed is
RK2.

As we can see in the graph in Figure 4.15, the cost function evolves in the same way
whatever the polynomial basis used. This similarity validates the implementation of the
discrete gradient whether a nodal or modal basis is used.
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Figure 4.15: Evolution of the cost function using nodal or modal polynomial bases.

We can see that the reconstructed model is strictly identical for both polynomial bases.
We display the obtained velocity models in Figure 4.16.

However, the polynomial basis has an impact on the computational time. We display in
Table 4.3 the value of the computational time for the reconstruction performed with the two
polynomial bases.

With P1 elements, we see that using Bernstein-Bézier elements takes 1.9 times longer than
when using the nodal polynomial basis. This factor is close to the one obtained during the
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(a) Marmousi velocity model (m.s−1) after 30
iterations using RK2 and Nodal basis.
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(b) Marmousi veocity model (m.s−1) after 30
iterations using RK2 and Modal basis.

Figure 4.16: Marmousi velocity model (m.s−1) reconstructed using nodal and modal polyno-
mial base.

Nodal Modal
Elapsed time 3h15 6h20

Table 4.3: Comparison of the computational time of a Marmousi velocity model reconstruction
using different polynomial bases (using 120 CPU cores).

numerical tests carried out on page 90 of Chapter 2. Hence, it seems that the computational
time for solving the direct problem with a given discretization gives a reliable hint on the
computational time for solving the inverse problem with the same discretization.

Since we find a similar factor when performing FWI, we deduce that the factor obtained
on the direct problem can be used to choose the most suitable polynomial base for the inverse
problem.

For the sake of synthesis, we summarize these results in Table 4.4. Table 4.4 seems to

Polynomial order (N) 1 2 3 4 5
Ratio total CPU time (Modal/Nodal) in 2D 2.0 1.7 1.4 1.1 0.8
Ratio total CPU time (Modal/Nodal) in 3D 2.2 1.5 0.9 0.6 0.5

Table 4.4: Ratio of the global CPU time between Modal and Nodal simulations in 2D and
3D.

indicate that it is more interesting to use a nodal polynomial basis for polynomials of order
lower than 5 in 2D and 3 in 3D. Also, in the following, we will use the Bernstein-Bézier
polynomial basis only if N ≥ 5 in 2D and N ≥ 3 in 3D.

4.2.4 Conclusion and observations

In this section, we were able to perform the very first reconstruction tests with the FWI code
developed in Total’s environment. These tests have allowed us to validate the optimization
routines that were developed during the thesis. Thanks to these tests, we were also able to
test the different choices related to discretization, whatever the choice of the time scheme or
the choice of the polynomial basis. The computational time is a very important factor to be
taken into account during the FWI which is very expensive because several simulations are
carried out successively. For reasons of calculation cost, we have decided in this chapter that
we will use the RK2 time scheme. Concerning the choice of the polynomial basis, Bernstein-
Bézier basis should be used only if the polynomial order is high enough (N ≥ 5 in 2D and
N ≥ 3 in 3D).
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In the following we will see how to perform a reconstruction with a WADG parameteriza-
tion of the problem.

4.3 FWI withWeight Adjusted Discontinuous Galerkin Method

In the previous tests, we considered the model to be constant per element. We implemented
the Weight Adjusted Discontinuous Galerkin method previously introduced by Chan et al.
[2017], which allows taking into account variable physical parameters within the elements.
This approach has been introduced page 93 and we have already shown that it allows to
improve the representation of the model. We propose here to use it in the inversion algorithm.

As we have already said, this technique is very interesting because it avoids using fine
mesh while keeping a sufficient amount of parameter to describe the physical model. It then
gives the possibility to use large meshes which allows high order polynomials that contributes
to reduce the number of degrees of freedom and thus to reduce computational costs.

This technology was introduced in the industrial code during the thesis and it was also
necessary to implement an adapted visual interface. Before presenting reconstructions using
this new parameterization, we will describe the tools that have been developed to visualize
the physical parameters expressed at WADG quadrature points.

4.3.1 Visualization of WADG model parameters

Visualization is a feature that is essential for FWI. Hence, FWI is meant to provide a map of
the subsoil as an output that will be analyzed next by geologists. In the WADG formulation,
the physical parameters are expressed on a set of quadrature points that are located inside
the elements. This is a very different way of defining the physical parameters and, for their
visualization, we need tools working on point cloud. The objective of this subsection is to
discuss the different strategies we have investigated to make possible the visualization of the
physical parameters. The solution methodologies proposed in this subsection will be tested
on the Marmousi velocity wavefield. The objective is to provide a visualization that is able
to give a reliable rendering of the true Marmousi model that we display again in Figure 4.17.
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Figure 4.17: True Marmousi velocity model.

Vizualize as a constant model per element

A first attempt was to transform the WADG representation in such a way the model can be
visualized with existing tools. At the very beginning, we dealt with piecewise constant model
per elements, which are easily displayed on each element. Hence, to mimic this idea, one
approach consisted in taking the average value of the physical parameters on each element
to obtain a piecewise constant model that could be visualized straightforwardly with existing
routines.
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Figure 4.18: Ilustration of the Marmousi velocity model on 2000 P4-Q9 element mesh.

In the example displayed in Figure 4.18, we represent the visualization we obtained by
averaging the velocity parameter on each element. In this case, we chose a mesh composed of
2000 elements and the space discretization is carried out with fourth order polynomials. With
P4 WADG elements, it is recommended to choose a quadrature of order 9 (Nq = 2N + 1),
which leads in 2D to have 19 parameters per cell [Chan et al., 2017]. In the figure caption,
we have introduced the notation P4 Q9 element to indicate that the WADG approximation
involves a polynomial approximation of order 4 and a quadrature formula of order 9. As
expected, we can see that averaging the physical parameters provides model with a poor
resolution. The idea of replacing the model with its representation based upon averaged
values of the physical parameters is therefore non receivable, and we have to develop a more
sophisticated method for visualizing the model. .

High-order visualization and projection into the wavefield interpolation nodes

The development of high-order finite element solvers raises questions concerning the vizual-
ization of complex solutions at cell levels. Remacle et al. [2007] suggest subdividing the
computational mesh into smaller elements on which the solution will be represented as a
linear function. This is exactly what is done while outputting snapshots for wavefield visual-
ization. We display an example in Figure 4.19, where a sub-triangulation is done in between
each node supporting the nodal definition of the wavefield.
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Figure 4.19: P4 pressure snapshot visualized using subdivided cells.

In this snapshot, we can see the wavefield that varies inside the element. Note that we
can observe some in-print from the sub-triangulation managed by the output and Paraview
software which is the software we are using for visualization [Ayachit, 2015].

Since such an output already exists for each wavefield, we investigate the interpolation of
the parameter field (Figure 4.20a) into the node representing the wavefield (Figure 4.20b).

In the reference element K̂, the wavefield (p,v) is represented on DoF nodes located at
points x̂j for j = 1 to DoF . In the following, we will use the generic letter γ to refer to one of
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(a) Example of quadrature point on 2D refer-
ence element for Nq = 6.

(b) Example of interpolation node on a 2D
reference element for N = 4.

Figure 4.20: Illustration of quadrature points defining the model parameter (a) and the
interpolation node representing the wavefield in nodal polynomial basis (b).

the physical parameters (c, ρ, κ, etc.). We assume that γ is defined on nq quadrature points
located at points x̂q for q = 1 to nq.

We aim to project the set of physical parameters, γ, located at the quadrature points onto
a new set, γ̃, defined such that:

DoF∑
j=1

γ̃jϕ̂j(x̂q) = γq,

where (ϕ̂) is the nodal polynomial basis on the reference element K̂.
We have then the following over-determined matrix system of size nq ×DoF :

Aγ̂ = γ, [A]q,j = ϕ̂j(x̂q), for q = 1 to nq, and for j = 1 to DoF. (4.1)

We aim to find γ̂ that minimizes the L2 norm of the residual of (4.1) (inf
γ̂
‖ Aγ̂ − γ ‖2).

The solution of this least square problem can be obtained by solving the following normal
equation:

A>Aγ̂ = A>γ,

γ̂ = (A>A)−1A>γ.

The operator (A>A)A> is local and it can be computed only once and saved with a small
memory burden. After implementing this extra operator, we are able to project the model
expressed on quadrature points on the nodal points. The corresponding L2 projection allows
us to exploit a routine already developed for wavefield visualization but for WADG model
visualization. We have then adapted an existing routine for wavefield output into a new
one that enables to visualize WADG parameter field on the wavefield interpolation point. In
Figure 4.21a, we display the visualization of the velocity model Marmousi defined with 38000
parameters located on 19 quadrature points on a 2000 elements mesh. We observe a great
improvement in comparison with what we get in Figure 4.18.

It is possible to plot the variation of the model inside each element. Unfortunately, the
interpolation we performed in between quadrature points and nodal points generate Runge
effects (see illustration page 65) and deteriorate the quality of the visualization where there
are high model discontinuities. We display a zoom of such areas in Figure 4.21b showing some
inaccuracies in the model representation.

To improve the visualization performed by Paraview software, we have addressed the op-
tion pixel by pixel rendering develop by Inria team GAMMA3 [Loseille and Feuillet]. Based on
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(a) Marmousi velocity model visualized using
nodal points.

(b) Zoom on area with high discontinuities.

Figure 4.21: Illustration of the Marmousi model on 2000 P4 Q9 elements mesh using projection
on nodal points.

OpenGL 4.0 graphic pipeline, mainly used in animation or CAD (Computer Aided Design),
ViZiR enables to rewrite Lagrange polynomial solution on each element as a Bézier curve.
That way, the solution can be represented with an almost pixel-exact rendering. Such ren-
dering is much more efficient than the one obtained with subdivided mesh. The subdivision
can be expensive if it is too much refined or poorly represented if too coarse.

Unfortunately, the model parameters we aim to visualize are not defined as a Lagrange
polynomial solution on each element. Hence, this interesting tool for high order visualization
can not be used for physical parameters. However, it can be applied on the wavefield for a
better rendering of the solution, but this is not the main purpose here.

Visualization mesh

We saw previously that there are two different ways to visualize high order solutions:

• subdivision of the mesh into linear interpolation on each sub-cells;

• almost pixel-exact rendering of Nodal polynomial solution on each element.

Since the second option is not compatible with the quadrature point representation in the
WADG model, we aim to create a triangulation that links all quadrature points and visualize
the model field with a linear interpolation on each element. We represent in Figure 4.22 a
sample of the visualization mesh in 2D.

Figure 4.22: Zoom on 2D visualization mesh.

From a list of points and their coordinates, some software enables to generate a triangu-
lation linking all the quadrature points. As far as this thesis is concerned, we used Mmg2D
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[Mmg Software] for 2D triangulations and TetGen [Si, 2015] in 3D.
With these visualization meshes, we are able to render in Paraview a linearly interpolated

solution on each element.
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(a) Marmousi velocity model using visualization
mesh.

(b) Zoom on area with high discontinuities.

Figure 4.23: Illustration of the Marmousi model on 2000 P4 Q9 elements using visualization
mesh.

Note that we can clearly see an enhancement on the model rendering by comparing Fig-
ure 4.23b and Figure 4.21b. This strategy seems to be the more reliable one with respect
to the targeted velocity model. This visualization ensures to represent exactly the model at
quadrature points and does not generate Runge effects.

Once the visualization mesh is defined, it is straightforward to associate a value of the
physical model to each vertex and have a linearly interpolate visualization on Paraview. More
precisely, Mmg2D and TetGen software are able to manage VTK files (which is a compatible
format with Paraview) describing the intermediate mesh which is useful to automatize post-
processing script in order to visualize the physical model in 2D (see Marmousi wavespeed
model at Figure 4.23a) or in 3D (see SEAM-foothills wavespeed model at Figure 4.24).

Figure 4.24: 3D visualization of truncated SEAM-foothills velocity model using 7K P4 Q9
WADG elements.

In this section, we discussed how we dealt with WADG parameters visualization. Since
WADG is a new method implemented from scratch inside Total’s code, there was no existing
routine to visualize this new model architecture based on quadrature points.

For the visualization, we investigated three different strategies which are almost develop-
ment free. We have either used existing tools (constant model output and high order wavefield
output) or use external pieces of software as post-processing. These pieces of software create
a visualization mesh on which the solution is seen as a linear function in between each vertex.
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This last strategy gives the most appealing and reliable visualization of the model and is the
one we definitely choose for representing physical parameters using WADG.

4.3.2 Reconstruction using WADG

Now that we have defined a tool to visualize a model defined with WADG method, we will
proceed to the reconstruction of the Marmousi wavespeed model defined in the previous
section (see Section 4.2 at page 150) using this new technology.

For this reconstruction, we propose to use the mesh of 10977 P3 elements using nodal
polynomial basis. This mesh is the same as the one used for the tests in Subsection 4.2.1.
We can then have a possible comparison between the reconstruction performed with WADG
or with a constant model per element. Since we have elements of order 3, we have to choose
a quadrature of order 7 giving then 15 coefficients defining the wavespeed model in each
element. Without WADG we had 10977 parameters to reconstruct, while with WADG there
are 164655 unknowns for the inverse problem.

We display in Figure 4.25 the final model reconstructed with 50 L-BFGS iterations.
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(b) Reconstruction with WADG parameterization.

Figure 4.25: Comparison of the reconstructions with and without WADG

This reconstruction allows to validate the adaptation of the FWI workflow to the WADG
method. Definitely, the WADG parameterization allows a better appreciation of the model
which varies within the elements. The result when using WADG is much smoother and is no
longer subject to the discontinuities from constant parameterization per element.

Regarding the evolution of the cost function, we have a similar convergence between both
methods. Indeed, as it can be seen in Figure 4.26, the two curves are very close to each other.
As long as the parameterization is fine enough regarding the processed wavelength, it would
seem that the developed FWI is not hindered by the large number of parameters due to the
WADG parameterization.

However, the two methods do not have the same calculation cost. Indeed, we report in
Table 4.5 the elapsed time for the 50 iterations performed during this test.

Constant model WADG
Number of parameters np 10977 164655
Elasped time (h) 2.9 4.9

Table 4.5: Comparison of the computational time of a Marmousi wavespeed model recon-
struction using constant model per element or WADG technique (using 120 CPU cores).

The calculation cost with WADG method is, in this case, 1.7 times higher than the cal-
culation cost with constant parameters by elements. This result is not surprising in view of
the computational time study we made on WADG method on the direct problem (see page
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Figure 4.26: Comparison of the cost function evolution having a model constant per element
or with WADG representation.

100). Despite the fact that WADG method can handle more complex models, it is neverthe-
less much more expensive. This method can be advantageous if the mesh size is very large
compared to the wavelength of the emitted signal. This case requires high order polynomial
approximation. In Chapter 5, we propose to define tools designing this type of discretization.

All the results shown here and in the previous sections are aimed at reconstructing the
Marmousi velocity model from an initial model relatively close to the target model. This type
of reconstruction favors the convergence of the optimization towards the global minimum
of the problem. However, it is rare to have information on the model that we are trying to
reconstruct. The objective, here, was to test the developed FWI with the different possibilities
offered by the Total solver.

In the following section, we will work on reconstructing models for which we have no prior
information, which is more complex.

4.4 Multiscale reconstructions

In the tests previously carried out on the Marmousi model, the initial model was a regularized
version of the target velocity model. We could see that, hence, the optimization algorithm
works very well. Indeed, the regularized model, by being deduced from the targeted model,
contains enough information to prevent the cost function from stagnating on a local mini-
mum, thus preventing the algorithm from converging. However, in practice, there is no prior
information on the model to be reconstructed. Initialization is performed with a nearly blind
model, with the help of geophysicists and geologists who interpret the acquisitions as best as
they can. We present in Figure 4.27 a typical initial model which corresponds to a regularized
version of a stratified model corresponding to continuous variations of velocity in the depth
direction, the maximum and minimum values of the velocity corresponding to the maximum
and minimum values of the velocities of the Marmousi model.

If we use this initial speed model to reconstruct the Marmousi velocity model, we get the
reconstruction shown in Figure 4.28).

We can see that the optimization algorithm converges to a local minimum, victim of the
non-convexity of the cost function that makes FWI difficult to implement. We observe a
well-known phenomenon in wave equation inversion called cycle-skipping. This occurs when
the observed and simulated data are out of phase by more than half a period of observed
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Figure 4.27: Initial velocity model (m.s−1) without any prior information.
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Figure 4.28: Velocity model (m.s−1) reconstructed with an initial nearly blind velocity model.

input data. This phenomenon is all the more frequent as the initial model is far from the real
model [Gauthier et al., 1986].

To avoid cycle-skipping, and thus ensure convergence towards the global minimum, it
would be interesting to use a ’more convex’ cost function. Recently, the Wasserstein norm
based on the optimal transport theory has shown good performance and improved convergence
to the global minimum [Yang et al., 2017]. This approach is quite recent and is not yet
widespread in the geophysical community for reconstructing models with real data. Most
often, multiscale methods are used. For example, Bunks et al. [1995], proposed to filter the
data with a low-pass filter using the FIR Hamming-window function. In Figure 4.29, we
illustrate heuristically the effect of low frequencies on an arbitrary 1D cost function. This
method allows to reconstruct the model step by step from low to high frequencies and the
presented results show that the optimization algorithm is more likely to converge towards the
global minimum.

J

(a) Low frequency filter. (b) Medium frequency filter.

m0

(c) No filtering.

Figure 4.29: Heuristic representation of frequency filter influence on the misfit function.

To reconstruct the model by considering successive frequency values is an approach that
is naturally implemented in frequency solvers. However, the choice of the frequencies to be
considered is not obvious and can result in a significant increase in computing costs. To
reduce these costs intelligently, Sirgue and Pratt [2004] proposed a strategy in the frequency
domain to select the frequencies to be reconstructed. However, this strategy requires an
adaptation in order to be usable in the time domain. In Boonyasiriwat et al. [2009], the
leaky-low pass Hamming-window filter is replaced by more efficient filters that minimize the
leaking of high-frequency components and the method for for choosing the frequency to filter
in frequency-domain in [Sirgue and Pratt, 2004] is extended to time-domain.
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Among the set of filters proposed by Boonyasiriwat et al. [2009], the Nutall-window func-
tion [Nuttall, 1981] caught our attention as it was available within Total’s code. We will
systematically use it to filter out the perturbations at the input of the direct problem as
follows than the observed data. We display in Figure 4.30 the effect of the filter on the
disturbance signal at a source simulated by a Ricker of order one with fpeak = 15Hz.
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Figure 4.30: First order Ricker signals filtered by using low-pass Nutall filter.

4.4.1 2D Multiscale reconstruction of Marmousi wavespeed model

Contrary to the previously presented Marmousi reconstructions, we seek to reconstruct the
model without a priori information (Figure 4.32a). To do this, we will carry out a multiscale
reconstruction, using the frequencies presented in Table 4.6.

Filter [0,2Hz] [0,5Hz] [0,8Hz] [0,12Hz] [0,15Hz] Total
Nb of iterations 20 20 20 20 20 100

Table 4.6: Multiscale strategy proposed to reconstruct Marmousi wavespeed model.

Since the frequency content of the signal emitted by the sources is mostly contained
between 0 and 15Hz, we propose a sampling of frequency bands for multiscale reconstruction
as indicated in the Table 4.6. This choice allows to progressively reconstruct a wide range of
frequencies scaled between 2 and 15Hz.

The objective is to find the wavespeed model used for the generation of the input data that
we displayed in Figure 4.31. For this reconstruction, we propose the following configuration:

• Domain: 9200m × 3000m;

• Total time: 5.2s (t0 = 0s, Tf=5.2s);

• Number of sources: 20;
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• Source location: Evenly located on the X-axis from 550m to 8150m with 400m in
between at 10m depth;

• Source type: First order Ricker (fpeak = 10Hz, tpeak=0.2s);

• Number of receivers: 183;

• Receiver location: At a depth of 100m, positioned from 50m to 9150m on the X-axis
with 50m between each other;

• Parallelism: 120 CPU; (nb_cluster = 20, nb_subdomain = 5)

• Noise: White Gaussian noise with a SNR of 10;

• Polynomial basis: Nodal;

• Time scheme: RK2;

• Number of elements Ne: 7218;

• Polynomial order N : 4;

• WADG quadrature Nq: 9;

• Number of parameters np: 137142;

• Parameterization: ( 1
κ ,ρ) with known density (ρ = 1000kg.m−3);

• Optimizer: Limited-BFGS.
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Figure 4.31: Target wavespeed model for Marmousi reconstruction.
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(b) Reconstructed wavespeed model.

Figure 4.32: Initial and reconstructed wavespeed models.

After 100 iterations, which took a total computing elapsed time of 18 hours, we obtain the
final result displayed in Figure 4.32b. The reconstruction is accurate even in depth where the
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structures are also reconstructed. Despite the added noise, the implemented FWI allows to
reconstruct the Marmousi wavespeed model accurately even without initial information (see
Figure 4.32a).

4.4.2 2D Multiscale reconstruction of Overthrust wavespeed model

The Overthrust model presented in this sub-section is a 2D section extracted from the original
Overthrust model which is a 3D model coming from SEG-EAGE 3D wavespeed model of
Aminzadeh et al. [1994]. The objective is to reconstruct the 2D velocity model displayed in
Figure 4.33, the latter comprises several layers in which wavespeed increases with depth.
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Figure 4.33: Target wavespeed model for 2D Overthrust reconstruction.

The initial model (see Figure 4.34a) being nearly blind, we propose to reconstruct the
problem with a multiscale approach, according to the frequencies presented in Table 4.7.

Filter [0,2Hz] [0,5Hz] [0,8Hz] [0,12Hz] [0,15Hz] Total
Nb of iterations 20 20 20 20 20 100

Table 4.7: Multiscale strategy proposed to reconstruct Overthrust 2D wavespeed model.

• Domain: 20km × 4.65km;

• Total time: 5.2s (t0 = 0s, Tf=5.2s);

• Number of sources: 30;

• Source location: evenly located on the X-axis from 900m to 18300m with 600m in
between at 50m depth;

• Source type: first order Ricker (fpeak = 10Hz, tpeak=0.2s);

• Number of receivers: 391;

• Receiver location: at a depth of 100m, positioned from 100m to 1975m on the X-axis
with 50m between each other;

• Parallelism: 120 CPU (nb_cluster = 10, nb_subdomain = 12);

• Polynomial basis: nodal;

• Time scheme: RK2;

• Number of elements Ne: 20678;

• Polynomial order N : 2;
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• WADG quadrature Nq: 1;

• Number of parameters np: 20678;

• Parameterization: ( 1
κ ,ρ) with known density (ρ = 1000kg.m−3);

• Optimizer: Limited-BFGS.

In Figure 4.34b, we present the result obtained after 100 iterations of FWI. We can see
that the reconstruction is successful as we can see the different layers that constitute the
Overthrust 2D model. For this reconstruction, we run the calculation on 120 CPU during 21
hours.
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(b) Reconstructed wavespeed model.

Figure 4.34: Initial and reconstructed wavespeed models for 2D Overthrust reconstruction.

4.4.3 2D Multiscale reconstruction of Sigsbee wavespeed model

The Sigsbee model (see Figure 4.35) is a particularly challenging wavespeed model [Sig]. In-
deed, in addition to having a larger size than the previously treated 2D models (i.e. 24.4km ×
9.1km), this model includes a salt dome. This highly contrasted object corresponds to a prop-
agation wavespeed of 4500m.s−1 while the background varies gently from 1500 to 3300m.s−1.
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Figure 4.35: Target wavespeed model for Sigsbee reconstruction.

We propose to reconstruct this model from a model that has no prior information about the
object (see Figure 4.36a). In this particular case, where we are looking for a high-contrasted
object, the absence of initial information is very challenging because there is no structure in
the initial model anticipating strong reflections coming from the searched object.

For the reconstruction, we used the frequencies presented in Table 4.8.

Filter [0,2Hz] [0,5Hz] [0,7Hz] [0,10Hz] Total
Nb of iterations 30 20 15 10 75

Table 4.8: Multiscale strategy proposed to reconstruct Sigsbee wavespeed model.

The conditions of the reconstruction are given below:
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• Domain: 24.4km × 9.1km;

• Total time: 7.2s (t0 = 0s, Tf=7.2s);

• Number of sources: 72;

• Source location: evenly located on the X-axis from 1500m to 22800m with 300m in
between at 10m depth;

• Source type: first order Ricker (fpeak = 10Hz, tpeak=0.2s);

• Number of receivers: 320;

• Receiver location: at a depth of 100m, positioned from 100m to 1975m on the X-axis
with 50m between each other;

• Parallelism: 120 CPU (nb_cluster = 12, nb_subdomain = 10);

• Polynomial basis: Nodal;

• Time scheme: RK2;

• Number of elements Ne: 20454;

• Polynomial order N : 2;

• WADG quadrature Nq: 1;

• Number of parameters np: 20454;

• Parameterization: ( 1
κ ,ρ) with known density (ρ = 1000kg.m−3);

• Optimizer: Limited-BFGS.

The results have been obtained in 75 iterations, which were completed in 16 hours on 120
cores. Except for the surface of the object, which is rather well recovered, the reconstruction
did not allow to find accurately the Sigsbee wavespeed model we were looking for. We can
observe structures with high wavespeed values appearing in the lower part of the domain.
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(b) Reconstructed wavespeed model.

Figure 4.36: Initial and reconstructed wavespeed models for Sigbsee reconstruction.

The obtained result is very similar to the one obtained in the thesis of Faucher [2017]
using a frequency FWI code. Indeed, when reconstructing with only real frequencies, the
final reconstruction also shows a vague approximation of the upper interface of the object and
volutes with high velocities in the lower part of the domain.
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However, to fill the initial information gap, it is possible in the frequency domain to use
complex frequencies which will allow better determination of high-contrast salt domes. We
refer to the work of Shin et al. [2010], Petrov and Newman [2014], Faucher [2017] for examples
of applications where the benefits of using complex frequencies are illustrated. However, the
data as such frequencies suffer from the noise and may be inaccessible in seismic (see [Faucher,
2017] page 164). Moreover, this technique cannot be exploited in time domain.

Once the upper interface part of the object was found, it was shown [Yang, 2019] that
the L2 cost function had difficulties to reconstruct the interior of such an obstacle. Then,
it has been shown that Wasserstein norm seams more efficient that L2 norm for thick high
wavespeed value structures.

In this section, we have shown the results obtained with a multiscale approach. The latter
allows to reconstruct the model in the absence of initial information and has been tested
on three different 2D models. For Marmousi and Overthrust 2D models the reconstruction
works properly but occurs difficulties on Sigsbee model where a salt dome without previous
information complicates the reconstruction. However, it is in 3D where the performance of
the FWI in time domain is expected. In the following section we propose to test the developed
algorithm on a synthetic 3D case.

4.5 3D Reconstructions

In this section, we will present the 3D reconstructions performed in the thesis. First of all,
we aim to test and validate the FWI workflow performed on a reduced 3D wavespeed model.
We then choose to reconstruct the SEAM foothills within a simplified framework which will
be described in details in what follows. Finally, we propose to reconstruct a model with a
challenging dimension and representative of the scale of seismic exploration campaigns. This
reconstruction will be done on the full 3D Overthrust model that was presented previously in
2D in section 4.4.2 at page 168.

4.5.1 3D reconstruction of truncated SEAM Foothills wavespeed model

In order to test and validate the code in 3D, we propose to reconstruct a truncated sub-
cube of the SEAM foothills model. Since we want to show that the developed architecture
also works in 3D, we will make a set of choices that will allow to reduce the amount of
computation to perform this test. Because of the dramatically higher calculation costs in 3D,
we have chosen to reconstruct the model from an initial model which is a smooth version of
the targeted model. In this way, we can then avoid a multiscale reconstruction which would
require several iterations of reconstruction for several frequency bands. In order to reduce the
computational cost of the test, we have chosen to reconstruct the model by transmission and
not by reflection as would be required for a classical representation of a seismic acquisition
campaign. Reconstructing by transmission consists in carrying out the inverse problem by
looking at the data recorded at receivers which are at the bottom of the domain of interest.
Then, the simulation time can be reduced to the propagation time of a wave from the surface
to the bottom of the domain. In the case of a reflective reconstruction, the receivers are on the
surface, which means that the simulations reproduce waves traveling back and forth. Using
the transmission approach, it is then possible to have a final simulation time about half as
long as for a reflective reconstruction.

The 3D problem corresponds to the following configuration:

• Domain: (5000m, 5000m, 1500m) × (8000m, 8000m, 5000m) subcube;
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• Total time: 3.2s (t0 = 0s, Tf=3.2s);

• Number of sources: 30;

• Source location: 3 lines of sources oriented in the Y direction. The sources are located
at position (xsrc, ysrc, zsrc), where xsrc goes from 5250m to 7000m with a 200m step,
ysrc goes from 6250m to 6750m with a 250m step, and zsrc is a constant depth of 50m,
which represents the depth according to the topography;

• Source type: first order Ricker (fpeak = 8Hz, tpeak=0.2s);

• Number of receivers: 1225;

• Receiver location: positioned at points (xrcv, yrcv, zrcv), where xrcv and yrcv go from
5200m to 7750m with a 75m step, and zrcv = 4950m;

• Parallelism: 360 CPU (nb_cluster = 30, nb_subdomain = 12);

• Polynomial basis: Bernstein-Bézier;

• Time scheme: RK2;

• Number of elements Ne: 16544;

• Polynomial order N : 4;

• WADG quadrature Nq: 9;

• Number of parameters np: 943008;

• Parameterization: ( 1
κ ,ρ) with density known (ρ = 1000kg.m−3);

• Optimizer: Limited-BFGS.

For calculation cost reasons, we have chosen not to illuminate the whole domain. We
chose to focus the sources along three lines aligned in the X direction in the center of the
domain. In this way we expect an efficient reconstruction mostly in the X direction. We
present the reconstruction results according to different planes depicted in Figure 4.37, where
we compare the reconstructed wavespeed model with the initial and targeted model. We see
that the reconstruction is much better on the plane y = 6530m, which allows to observe the
slice plane located under the source lines.

We can see that on this plane, we are able to reconstruct some layers that did not exist in
the initial model. The reconstruction gives better results near the receivers. Since here, the
resolution is done by transmission, it is the lower part of the domain that is better imaged.
We can however see some artifacts at the level of localized sources which are close to the
topography.

The topography turned out to be a challenge for the reconstruction of this model. Indeed,
the location of the sources and receptors is done from the topography drawn by the mesh.
Therefore, depending on the mesh used, the location of the sources and receivers changes,
which strongly compromises the inverse problem if this location is approximative. In the
absence of tools that allows for placing in an absolute way the position of the sources

Industrial context
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Figure 4.37: Wavespeed models for truncated SEAM reconstruction (Initial model at the left,
reconstructed model at the center and target model at the right).
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and receivers according to the exact topography, we have bypassed this issue by using
the same mesh for the inverse problem as the one used to generate the data.
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Figure 4.38: Cost function evolution for truncated SEAM wavespeed model reconstruction.

We display in Figure 4.38 the evolution of the cost function during the 50 optimization
iterations. These iterations were performed in 68 hours of calculation on 360 cores. We can
see the ability of the developed code to minimize the cost function on a 3D problem.

In this sub-section, we showed the ability of the developed code to reconstruct a 3D
model. The problem proposed in 3D is deliberately created so that it can be reconstructed in
a reasonable computational time.

However, the result of the reconstruction is mixed. Indeed, we manage to reconstruct
some interfaces from which we had no prior information. But we were not able to reconstruct
the whole model and there are multiple reasons to this. First, we have reduced the number of
sources while deciding to privilege a direction of illumination. By undersampling the source
fields, we surely contribute to hinder the behavior of the cost function.

We propose then, in the following subsection, to carry out a reconstruction on a model of
size corresponding to the size of the seismic acquisition campaigns without any simplifying as-
sumptions. In this way, we can perform an inversion in a realistic industrial configuration.

4.5.2 3D reconstruction of Overthrust wavespeed model

For this experiment, we wish to use the developed code to an industrial size problem. Indeed,
we propose here to reconstruct the velocity model of the 3D synthetic Overthrust model.
Contrary to the previous 3D experiment, the reconstruction will be performed by reflection,
as usual, which will increase the total simulation time required. Moreover, the initial set of
parameters chosen does not provide any information concerning the targeted model. Then, a
multi-scale reconstruction is required to drive the convergence towards the global minimum.
Due to its size (20km × 20km × 4.65km), the high number of sources required (3171) and
the lack of knowledge concerning the targeted model, this reconstruction using DGm turns
out to be a real HPC challenge.

The configuration of the reconstruction is as follows:

• Domain: (20km, 20km, 4.65km);

• Total time: 5s (t0 = 0s, Tf=5s);

• Number of sources: 3171;



4.5. 3D RECONSTRUCTIONS 175

• Source location: 21 lines of sources oriented in the Y direction. The sources are
located at position (xsrc, ysrc, zsrc), where xsrc goes from 25000m to 17500m with a
100m step, ysrc goes from 2500m to 125000m with a 500m step, and zsrc is a constant
depth of 50m;

• Source type: first order Ricker (fpeak = 8Hz, tpeak=0.2s);

• Number of receivers: 3171;

• Receiver location: located at 100m depth, 50m below the sources;

• Parallelism: up to 2972 CPU;

• Time scheme: RK2;

• Number of elements Ne: up to 453612;

• Parameterization: ( 1
κ ,ρ) with density known (ρ = 1000kg.m−3);

• Optimizer: Limited-BFGS.

Contrary to the previous example, the lack of initial information on the velocity model
requires to apply a multiscale method for the reconstruction. In view of the size of the
problem and due to computational requirements, we then propose a discretization adapted to
the current reconstructed frequencies. The choice of discretization is made with the help of
criteria that we do not expose here. We refer the reader to the next chapter for more details.
These criteria lead us to the choices specified in the Table 4.9 concerning the discretization,
the frequency segmentation and the parallelism. We have chosen, here, to have a constant
model per element for memory reasons.

Filters [0-2.5Hz] [0-5.0Hz] [0-7.5Hz]
Ne 121755 121755 453612

% P1 8.5%
% P2 90.5% 1%
% P3 1% 81.5% 99%
% P4 18.5%

Number of unknowns 4670521 11091880 63191693
Polynomial Basis Lagrange Bernstein-Bézier Bernstein-Bézier

CPU 1920 2976 2976
n_cluster 40 62 31
n_domain 48 48 96

Number of iterations 17 20 8
Elapsed-time (days) 3.5 10.5 ≈29

Table 4.9: Discretization and parallelism configuration for Overthrust 3D wavespeed model
reconstruction.

The choices displayed in Table 4.9 allow us to significantly reduce the computational load
for the first two frequency bands processed. Restarting the reconstruction in between two fre-
quency bands enables to adapt the discretization (hp-adaptivity and polynomial basis choice)
but also the parallelism configuration. Despite an adapted discretization, the computational
cost, especially for the highest frequency band, is very important. The dedicated job was
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stopped after 29 days for time allocation cluster reason. We display in the Figure 4.39 the
final reconstructed velocity model that we compare with the initial and target ones.
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Figure 4.39: Wavespeed models for 3D Overthrust reconstruction (Initial model at the left,
reconstructed model at the center and target model at the right).

In the Figure 4.39 we see that the final result obtained allows to call structures which did
not exist initially in the velocity model and which are present in the target velocity model.
These details are however limited to the area illuminated by all the sources employed. This
area is clearly visible in the visualization according to the XY plane. The plane privileged by
the location of the sources being the XZ plane, it is this last one where layers are the most
visible. Indeed, in spite of a resolution limited by the time and the capacities of calculation
implemented, the visible results on the first line of image of the Figure 4.39 are convincing
and very satisfactory in view of the technical challenge of this 3D reconstruction carried out
using a Discontinuous Galerkin solver.
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4.6 Conclusion and perspectives

In this chapter, we have described the industrial environment in which the developments of
this thesis were established.

We have then tested and validated the optimization code developed within the Total envi-
ronment. These tests have been performed on the reconstruction of the Marmousi wavespeed
model from an initial smooth model which already has information on the target model. These
tests have allowed to validate the optimization functions and in particular the Limited-BFGS
algorithm that, as thought, happens to be the most efficient optimization method among
the implemented ones. On this reconstruction, we were able to test the influence of the time
scheme and the polynomial basis. Both did not influence the reconstruction except the associ-
ated computational load. In order to reduce this load, we decided to use the RK2 time-scheme
and to privilege Bernstein-Bezier basis over Nodal [Chan and Warburton, 2016, Hesthaven
and Warburton, 2007] when this basis is more efficient (N ≥ 5 in 2D and N ≥ 3 in 3D for
the CPU architecture used).

We have also performed reconstructions where physical parameters are expressed using
WADG technique [Chan et al., 2017]. As a recent technology in Total’s code, it lacked an
associated visualization tool. Hence, we have proposed one to observe a field of physical
parameters defined by WADG method. Then, we have been able to observe and validate
reconstructions performed by physical parameters expressed at quadrature points from the
WADG method.

For more complex reconstructions, i.e., without prior information about the medium to be
reconstructed, we have seen that it is possible to facilitate the convergence of optimization by
multiscale methods as in [Bunks et al., 1995, Boonyasiriwat et al., 2009]. The latter consist in
reconstructing the model by increasing frequency bands. This process allows reconstructing
first the large structures of the model and thus to facilitate the convergence of the inverse
problem towards the global minimum. It has been tested and validated on different 2D models:
Marmousi, Overthrust and Sigsbee model. We had some difficulties to reconstruct the Sigsbee
velocity model, which presents a salt dome generating reflected waves with high contrast in the
input data. It seems that for this type of model the considered L2 cost function, has difficulties
to be minimized. The recent literature suggests to look for cost functions coming from the
optimal transport theory, which seems to greatly improve the reconstructions of physical
parameters representing models where there are large structures with high propagation speed
[Yang, 2019]. Developing this type of cost functions is a very interesting perspective that
should be addressed in the future.

We then tried to reconstruct 3D wavespeed models. First, we aim to retrieve the physical
parameters coming from the SEAM Foothills problem truncated into a 3km × 3km × 3km
cube. Despite mixed results due to simplified assumptions, this reconstruction enables to
validate the capability of the program to deal with 3D problems and to make the objective
function decrease. Finally, we aim to perform industrial scale inverse problem. For this
reason, we manage to perform the reconstruction of the wavespeed model from the synthetic
3D Overthrust problem. This reconstruction turned out to be a real HPC challenge due
to the size of domain and leads to satisfactory results. This technical inversion was only
possible thanks to a discretization adapted to the different frequency band treated by using
hp-adaptivity of the DG solver.

Such adaptation turns out to be necessary for challenging multiscale reconstructions.
However, in the current state of the program described in this chapter, the multiscale re-
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construction is based upon one single mesh which is inherited from the initial structure of
the industrial code for solving the direct problem. This makes the multi-scale method very
expensive since it requires meshing at low frequencies more than necessary, given that the
mesh is built according to the highest frequency.

In order to best adapt the calculations necessary for the reconstruction of a given model
in 2D or 3D, we propose in the next chapter to define a discretization in space adapted to the
model evolving during the FWI, while taking into account the order of approximation in space
desired by the user and the frequency of the used sources. As the physical model and the
reconstruction frequency evolve during iterations, we will naturally turn to mesh adaptation
methods.



Chapter 5

Mesh adaptation in FWI workflow

The mesh adaptation consists in adjusting the mesh size and the polynomial order approxi-
mation locally from a posteriori numerical errors providing insight into the accuracy of the
scheme. The mesh is then locally refined and unrefined to reach an error threshold. Nowadays,
the mesh adaptation is extensively used for solving boundary value problems, in particular in
Computational Fluid Dynamics (CFD) field. Litterature on this subject is abundant, we can
cite among others [Castro-Díaz et al., 1997, Schall et al., 2004] where the mesh is updated
among the iterations of the simulation in order to control a posteriori errors of the numerical
scheme [Gauci et al., 2019]. Two strategies are commonly adopted to adapt the mesh accord-
ing to these numerical errors. A first option consists in determining an error estimation on
a given mesh from the discrete solution. By introducing the adjoint state, it is possible to
track areas to be refined in order to minimize a posteriori estimates of the error [Becker and
Rannacher, 1996]. A second option consists in minimizing the continuous model error. For
example, using a classical finite element method makes it possible to handle the approxima-
tion error by monitoring the interpolation error. The numerical solution converges towards
the continuous solution as the mesh size decreases [Frey and Alauzet, 2005]. In this case, a
metric based on the Hessian of the solution gives a size map that determines a guideline to
adapt the mesh to reduce a posteriori errors on the numerical solution.

The objective of this chapter is to define a tool, inspired by classical mesh adaptation,
that enables to redefine a mesh in keeping with the updated model parameters obtained
through the FWI workflow. We remind that FWI is based upon an iterative minimization
algorithm which is meant to converge towards the set of the physical parameters representing
the subsoil. Minimization refers to a cost function which measures the difference (or error)
between numerical data and observations (or real data).

With the current workflow, the mesh dedicated to the Forward and Adjoint simulations
is driven by the initial model, which contains very little information in contrast with the
intermediate reconstructions and obviously the targeted final model. In this context, the
same mesh is used for any inversion loop. However, during the FWI process, there is no
guarantee that the mesh keeps being adapted to the model that continues to evolve until
convergence and this may contribute to increase the computational cost of the method. For
instance, if the initial wavespeed model are taken far from the real values, for a fixed frequency,
the initial mesh will have cells that do not have an appropriate size. It can be smaller than
necessary resulting in an undesirable computational time or coarser which may hamper the
accuracy of the forward and backward problem and then the quality of the reconstruction.

Adapted meshes are efficient to reduce the computational cost and the memory burden
of the FWI. They have been recently investigated in [Thrastarson et al., 2020], for fitting the
mesh with the geometry of the acquisition. More precisely, Thrastarson et al. [2020] propose
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Figure 5.1: FWI workflow extended with mesh adaptation.

to use an anisotropic adaptive mesh refinement centered at each source. The underlying
meshes designed for each source propagation fasten the computation. However, this strategy
works if the model is smooth enough, which is rarely the case with the targeted model in
seismic exploration. In this work, we investigate a mesh adaptation methodology regarding
the physical parameters of the domain of interest.

The objective of this chapter is to provide a proof of concept of the mesh adaptation
integrated in the FWI workflow. This implementation is carried out in 2D. We implement
one extra step in this workflow to adapt the mesh in keeping with the model information. We
represent in Figure 5.1 an extension of the current FWI workflow including mesh adaptation
(in blue).

We intend to develop this additional module by mimicking the mesh adaptation scheme,
usually included within the iterations of the simulation of the direct problem, by integrating
it into the resolution of the inverse problem. Hence, here, we focus on the set of physical
parameters m which are used for estimating the numerical error. We display in Figure 5.2
the classical mesh adaptation workflow with the one we aim to implement for the inversion
problem.

(a) Classical mesh adaptation. (b) Mesh adaptation in FWI context.

Figure 5.2: Mesh adaptation flowchart for direct problem simulation and FWI context.

The main difference between those two workflows is the metric that has to be defined as
a function of the geophysical model, but also other parameters such as the frequency of the
source or the polynomial approximation order N . The metric, also called the size map, is the
guideline to update the mesh Thi at iteration i to a mesh Thi+1 for next iteration.
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Keeping the same mesh during all the FWI iterations requires working from the beginning
with a sufficiently fine mesh to take into account a wide range of frequencies. This obviously
implies unwelcomed computational costs, in particular when reconstructing low frequency
information. Adapting the mesh frequently during the FWI process will allow us to fully ex-
ploit the hp-adaptivity of Discontinuous Galerkin method. This will give us the opportunity
to optimize the computation of the Forward and Adjoint states, which are the keystones of
the inversion process. Moreover, in a multiscale reconstruction framework, the mesh adapta-
tion will reduce drastically the computational cost and the memory burden at low frequency
reconstructions.

We will therefore implement a mesh adaptation tool that will be based on the physical
parameters, contrary to what is classically done in mesh adaptation, which rather takes into
account the unknown of the boundary problem under consideration. We will inspire ourselves
from what is done in mesh adaptation by using and/or adapting tools and software dedicated
to it. A first step consists in defining a metricM determining the size of an element in the
triangulation of the computational domain Ω in order to meet an error criterion. There are
programs to determine this size map as the Mshmet program of the Adapt_Tools software.
[AdaptTools - Mshmet] that we have chosen to consider. We will have to adapt it to make
it compatible with geophysical models. Motivation to use Mshmet, for the calculation of the
size map, comes from the fact that it is an open source project which already has all the
structures to integrate a metric compatible with the parameters of our geophysical models.
With such already existing structures, we limit developments, which we believe is appropriate,
our objective being to provide a proof of concept.

Since we are developing in an industrial context, it is more suitable to use external tools to
make a proof of concept. A new method must be proven before it can be implemented. In
addition a rigid framework would hamper the time of setting up all the mesh adaptation
workflow.

Industrial context

Once the size map is built, we can use it to adapt the mesh and for this, we chose to use Mmg
[Mmg Software], which is an open source remeshing software.

The remainder of this section is organized as follows. First of all, we will introduce some
notions specific to the adaptation of meshes, and we will briefly describe the process. We
will then construct the size map according to the velocity model and the DG discretization
used. The resulting mesh adaptation will be validated by comparing several simulations
applied to the Marmousi velocity model. The size map will allow implementing local mesh
refinement which may be isotropic or anisotropic. Both types of refinement will be described
and compared numerically. Finally, mesh adaptation will be integrated in the resolution of
the inverse problem. Numerical results will also be presented.

5.1 Definitions

Unstructured meshes have demonstrated their effectiveness in improving the accuracy of nu-
merical solutions, in particular to better capture physical phenomena. To adapt the mesh,
it is important to estimate the error caused by the numerical scheme, the goal being to have
a good accuracy with a reasonable calculation time. The discontinuous Galerkin method fa-
cilitates the h adaptation which exploits the relation between the local error estimated on
an element and the size h of this element. This relation, given for each element, is used to
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construct a metric or size map that guides the evolution of the Thi mesh to the Thi+1 mesh
in order to evenly distribute the error over the adapted mesh.

In practice, the mesh adaptation follows three steps:

• estimate the numerical error;

• define a metric field;

• adapt the mesh (h-adaptivity).

The two first items are most of the time based on the Hessian of the solution field of
the treated PDE [Kunert, 2002]. The so obtained metric field M describes on each point
of the computational domain Ω a Symmetrical Positive-Definite (SPD) matrix that defines
a distance in the associated geometrical metric space. Mesh adaptation relies heavily on the
notions of metrics and distance that we introduce in the following sub-section. In this context,
the way the metric will be constructed is determined by a geometrical interpretation of the
metric space.

It is then important to define the notions of metric and distance and to depict briefly
how mesh adaptation, according to a metric field, is working. This is the purpose of the next
subsection that will introduce all the notions involved in the remainder of this chapter.

5.1.1 Metrics and distance

Let us consider a continuous metric field M on the domain Ω. For any point P ∈ Ω, we
denote byM(P ) the SPD matrix of size dim× dim, where dim is the space dimension (2 in
2D, 3 in 3D).

We define the scalar product in Rdim with respect to the metricsM(P ):

〈u, v〉M(P ) = 〈u,M(P )v〉 = u>M(P )v ∈ R .

The corresponding distance is given by:

‖ u ‖2M(P )= 〈u, u〉M(P ) = 〈u,M(P )u〉 = u>M(P )u ∈ R .

In the case whereM(P ) = Idim, we retrieve the classical euclidean distance.
Since the metricsM(P ) is a real SPD matrix, it is similar to a positive diagonal matrix:

M(P ) = SΛS> ,

where Λ is the diagonal matrix of the eigenvalues ofM(P ) and S is the matrix composed on
each column by the eigenvectors ofM(P ). Then :

Λ =


λ1

. . .
λi

. . .
λdim

 and S = (v1 | . . . | vi | . . . | vdim),

where vi is the eigenvector associated to the eigenvalue λi (Mvi = λivi).
With these notations, it is possible to represent geometrically the unit ball defined by the

metricsM(P ) at a point P of Ω. For a point M ∈ Ω, M belongs to the unit ball centered on
P with respect to the metricsM(P ) if and only if:

‖
−−→
PM ‖M(P )=

√−−→
PM>M(P )

−−→
PM = 1 .
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The set of points M satisfying the above relation is an ellipse in 2D, or ellipsoid in 3D,
centered on P . The orientation and size of the unit ball are defined by the eigenvectors
and their associated eigenvalues of the metrics M. In 2D, for instance, the ellipse axes are
oriented following the two eigenvectors −→v1 and −→v2 and the semi-axes are equal to 1√

λi
with λi

the eigenvalue associated to the eigenvector −→vi , as illustrated in Figure 5.3.

P

Figure 5.3: Unit ball centered on P with respect to the distance norm ‖ . ‖M(P ).

In the case where we have one or several predominant eigenvalues, the metrics is naturally
anisotropic. For example, in Figure 5.3 we have λ1 >> λ2 and we can clearly see that the
unit ball is represented by an ellipse stretched in the direction given by the eigenvector −→v2 .
On the contrary, when all the eigenvalues are equal, the unit ball is a circle in 2D or a sphere
in 3D (Figure 5.4). In this case, the metrics corresponds to an isotropic adaptation.

Remark. Considering isotropic metric fields, we generally assimilate the metrics M to the
real factor corresponding to the radius of its unit ball:

M(P ) = λIdim ,

h(P ) =
1√
λ
.

In this situation, we employ the term size map that corresponds to a scalar field instead of a
metric field.

P

Figure 5.4: Unit ball centered on P with respect to the distance norm ‖ . ‖M(P ) in isotropic
case.

We have then defined a geometrical interpretation of the metrics M at point P . In the
next subsection, we will show how the metric field is used in mesh adaptation.

5.1.2 Application of the metric field to mesh adaptation

It has been shown by Frey and Alauzet [2005] that it is possible to construct, on each element
K of Th, a metrics M̄(K) that quantifies the numerical error εK on K such that:
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εK = max−→e ∈EK
〈−→e ,M̄(K)−→e 〉. (5.1)

Here, EK denotes the set of vertices of the element K. Relation (5.1) links the interpolation
of the solution on K to the square of the longest edge of the element. In other words, it is
possible to monitor the interpolation error by controlling the size of the mesh.

In the framework of mesh adaptation, the goal is to evenly distribute, on all the elements
of the triangulation of Ω, the interpolation error to control the accuracy of the numerical
simulation. Let us consider ε, the maximum error threshold authorized on each element of
the adapted mesh. In mesh adaptation, we adjust the edge length so that the error level on
each edge is controlled by ε. Then, we construct an optimal mesh Th′ from Th by imposing
to all edges:

ε = 〈−→e ,M̄(K)−→e 〉 , ∀K ∈ Th′ , ∀−→e ∈ EK .

Let us considerM(K) = 1
εM̄(K), we have:

〈−→e ,M(K)−→e 〉 = 1 , ∀K ∈ Th′ , ∀−→e ∈ EK .

This relation is the key of the mesh adaptation. We are just defining a criterion on each
edge −→e of Th in order to satisfy a tolerated error ε. The objective of the mesh adaptation is
to update Thi into Thi+1 where all the new edges have a unitary length with respect to the
metrics.

By considering a continuous metric field, it is then possible to express the distance between
two points with respect to the metrics as follows:

‖
−−→
PM ‖M=

∫ 1

0

√−−→
PM>M((1− t)P + tM)

−−→
PM dt , (5.2)

where (1− t)P + tM for t ∈ [0, 1] describes all the points between P and M .
Such a distance is mainly computed using a quadrature formula during the mesh adap-

tation process. In practice, the metric field is never known continuously and is principally
given at the vertices of the mesh. We refer to [Frey and Alauzet, 2005] for more explanation
concerning how to interpolate the metrics in between two vertices.

The main steps of the mesh adaptation algorithm are then:

1. Scan all the edges
−−→
PM and compute ‖

−−→
PM ‖M using (5.2):

• Split the current edge if too long;

• Collapse the edge if too short.

2. Check quality of the elements:

• Swap edges if "too bad elements" (see Figure 5.5);

• Move points.

3. Go to 1. until convergence of the algorithm defined by the expected ‖
−−→
PM ‖M values.

The above process is lightened for simplicity. Mesh adaptation is a complex subject that is
not intended to be described in this thesis. It is worth noting that there are different ways to
couple the split/collapse/swap/move steps, which are the main procedures of this algorithm.

We aim to construct an adapted mesh Thi+1 comprised of edges that satisfy ‖
−−→
PM ‖M= 1.

In practice, the strict equality is impossible to obtain and this is the reason why a tolerance
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Figure 5.5: Illustration of the swap edge operator in 2D.

is allowed. For instance, the external tool we chose to perform the h-adaptation targets edge
lengths such as:

√
2

2
≤‖
−−→
PM ‖M≤

√
2 . (5.3)

Depending on the eigenvalues of the metrics, the element will be more or less stretched.
We illustrate in Figure 5.6a and Figure 5.6b what we will call respectively isotropic and
anisotropic cell in the rest of the chapter.

(a) Isotropic cell. (b) Anisotropic cell.

Figure 5.6: Illustration of isotropic and anisotropic cells.

We have then described the main keys of mesh adaptation which has been introduced for
an abstract metric field. In the following part of this chapter, the objective is to define a
metric field according to the geophysical model. We will first determine a heuristic relation
between the size of the element and the parameters of the simulation. Since we are considering
the physical model that is defined point-wise, we will first construct, for the sake of simplicity,
a heuristic size map which will be naturally isotropic. This isotropic size map will be the first
step before further investigations.

5.2 Size Map Computation

In this section, the objective is to adapt a mesh by taking into account the model parame-
ters. As we are considering a DG acoustic wave solver, we are particularly interested in the
wavespeed model c that is defined, in the DG solver we are using, as a point cloud in the
computational domain Ω, as shown in Figure 5.7a. The idea of seeing the wavespeed model as
a point cloud is inherited from the Weight Adjusted Discontinuous Galerkin (WADG) method
(see Section 2.4). For each point P of the point cloud with coordinates (x1, x2) (in 2D), we
match a value c(P ) of the wavespeed model. To facilitate the presentation of our approach,
we will first assume that the model is known at all the vertices of the initial mesh that we aim
to adapt. The set of all those vertices is actually defining a point cloud. We will assimilate
for the rest of this section the physical model to its point cloud.

For DG PDEs solver, a posteriori error estimates [Grote and Schötzau, 2009] and mesh
adaptation [Dolejší et al., 2018] have already been studied on the solution field in order to
optimize the computational burden all along the time iterations of the simulation. Therefore,
using classical mesh adaptation according to the wavefield would modify the mesh several
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times in the forward and backward propagation. This strategy would make difficult the gra-
dient computation and the model update. Here we require to keep the same mesh during
one iteration of the FWI in order to have manageable operators on the physical parameters.
Classically, the mesh is adapted in order to control the error a posteriori which is made when
calculating the solution of a PDE. In the case of a DG solver, the calculation of the a poste-
riori error has been considered in [Grote and Schötzau, 2009] for the acoustic wave equation
and a mesh adaptation method has been implemented in [Dolejší et al., 2018]. The objective
of these two works was to optimize the computational burden throughout the time iterations.
Adapting the mesh several times in the course of the time iterations performed in one opti-
mization step, would complicate the gradient computation since the model parameterization
would change with the mesh. Instead, we will implement a method that allows to use the
same mesh during a FWI iteration.

Instead of computing the mesh with respect to the PDEs solutions, we desire to adapt
the mesh and to control the discretization error by taking into account the wavespeed model.
Since the model is evolving in the FWI process, we want to perform mesh adaptation in the
course of the FWI in order to solve forward and backward simulation accurately and efficiently.
We need then to define a size map (Figure 5.7b) that will be the guideline to adapt the mesh
for the next FWI iterations (Figure 5.7c).
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(a) Wavespeed model (m.s−1).
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(c) Mesh adapted with respect to the size map.

Figure 5.7: Meshing steps illustrated with Sigsbee wavespeed model. (a) set of points defining
the wavespeed of the Sigsbee model. (b) Size map obtained for p = 4, freq = 10Hz, nppw =
10. (c) Resulting mesh using mesh adaptation in keeping with the size map.

The framework presented in Figure 5.7 requires the definition of the size map. As there is
no existing criterion to define the more appropriate size of cell on each point of Ω, we aim, in
the next subsection, to determine with a heuristic and experimental way an expression that
provides an appropriate size map for a given wavespeed model for DG acoustic solver.

5.2.1 Heuristic expression of the isotropic size map

The objective of this subsection is to determine an expression of the size map as a function of
the wavespeed model. As a first step, the size map defined here will be intrinsically isotropic.
We will denote by h(P ) the scalar size prescribed at point P giving the suitable size h of the
element as a function of the wavespeed model.



5.2. SIZE MAP COMPUTATION 187

The notion of number of points per wavelength, nppw, is directly inherited from convergence
studies of Finite Difference solvers [Alford et al., 1974]. This value determines the size of the
mesh and is natural for regular grids. To obtain a criterion on the size of a 2D unstructured
mesh grid, we introduce the notion of points per wavelength on a 2D triangulation Th. The
objective is to determine how many elements should be fitted in a reference square of size λ,
to reach a given accuracy. The parameter λ denotes the local wavelength of the simulated
signal. As usual, λ = c/fmax where fmax is the maximal frequency component of the source
used in the current simulation.

The criterion we are looking for, determines the number of degrees of freedom that should
be fitted in a reference area of size λ × λ. The number of nodes as well as the element size
are clearly dependent on the polynomial approximation order. We can then express a relation
that defines nppw as a function of the area a of one element and the number of degrees of
freedom DoF that in the reference square:

n2
ppw =

λ2

a
DoF . (5.4)

For instance with DG triangles, DoF = (N+1)(N+2)
2 and then relation (5.4) becomes:

n2
ppw =

λ2

a

(N + 1)(N + 2)

2
, (5.5)

where N stands for the polynomial approximation order.
By assuming the mesh is isotropic, we can consider that all the triangles are equilateral.

We then have this simple relation linking the area a of an element with its edge h:

a =

√
3

4
h2 . (5.6)

If we inject (5.5) in (5.6), it is thus possible to define a function defining the isotropic
size map which gives the suitable length h(P ) for all points P of the point cloud. This
function depends on the polynomial order N , the wavelength λ and the number of points per
wavelength nppw. We get the following expression of the heuristic isotropic size map:

h(P ) = 2
λ(P )

nppw

√
(N + 1)(N + 2)

2
√

3
. (5.7)

In this heuristic relation, only nppw remains undefined and is closely related to the poly-
nomial approximation order. To automatize the size map calculation, an accuracy assessment
is done in a homogeneous wavespeed model to determine the appropriate nppw regarding the
polynomial approximation order N . This study is presented in the following subsection.

5.2.2 Numerical assessment of the isotropic size map

In this section, we aim to define the most appropriate element size h according to the
wavespeed model for a fixed polynomial approximation order N . We will consider a sim-
ple homogeneous test case for which we will calculate the number of points per wavelength
nppw for several orders of approximation to guarantee a relative error of at most 1%.

To establish the proper values nppw for different polynomial orders in the DG solver,
an experimental protocol has been defined. We will consider a homogeneous model (c =
1500m.s−1, ρ = 1000kg.m−3) to avoid errors coming from the possible misrepresentation
of the physical parameters induced by using constant parameters over each element. The
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objective is to make a convergence study for several meshes constructed using the previously
defined isotropic size map. Since we will modify the mesh size, it is important to maintain
the same approximation of the subsurface model for all the different numerical experiments
we are about to describe. This is actually the reason why we will consider for this study a
homogeneous model.

A set of receivers has been placed in a 2D acoustic model of size 9200m by 3000m. This set
contains 462 receivers spaced 50m apart each other, their locations are shown in Figure 5.9. We
use a second order Ricker function source, located at (6100m,250m), defined by fpeak=10Hz
and tpeak = 0.12s, which leads to have a maximum frequency fmax = 30Hz. Figure 5.8
represents the signal used and its amplitude spectrum. The receivers are located on wide
horizontal lines, which guarantees measurements of the perturbation for wide incident wave
angles. The experimental time is calibrated to last 2s. Since fmax = 30Hz, 2s is then 60 times
longer than the smallest period of the signal we are using. Then, we will consider that 2s is
long enough for the reliability of the experiment. The goal of this test is to figure out the
behavior of the error depending on the size of the element h that we determined by using
relation (5.7).
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Figure 5.8: (a) Source defined as a Ricker perturbation. (b) Amplitude spectrum of the
fpeak = 10Hz Ricker perturbation.

To evaluate the level of accuracy, we use a relative L2 error defined as follows:

Error =

√√√√√√√√√√
∑
rcv

Tf∑
t

(pref (rcv, t)− pnum(rcv, t))2

∑
rcv

Tf∑
t

(pref (rcv, t))2

.

It measures the difference between the analytical pressure pref , generated with Gar6more
software [Gar6more2D] and the numerical solution pnum, obtained with Elasticus software
[Elasticus], which also uses DGm. The interest, here, is to quantify the space-time error
observed for several meshes built for different values of nppw. The time step ∆t is fixed
with respect to the CFL condition associated to the Runge-Kutta 2 time scheme used in the
experiment.
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Figure 5.9: Experimental setup for the accuracy assessment.

The objective is to determine the appropriate element size h according to the isotropic size
map we defined previously. To do so, we aim to numerically determine the appropriate nppw
values as a function of the polynomial order. Then, for a fixed polynomial approximation
order N , we will vary h by modifying the value nppw in the isotropic size map. We choose
to satisfy a relative error of 1% for this experiment. Such accuracy is quite restrictive, in
particular in FWI context, where the uncertainty of the input data can be larger than 1%.
This criterion can then be relaxed when treating FWI. However, the objective, here, is to
determine the size map that leads to an efficient and accurate direct problem simulation. By
increasing, step by step, the number of points per wavelength, we are able to vary the size
of the mesh and find the appropriate nppw that satisfies the 1% relative error for each order.
Those tests enable us to complete the graphs presented in Figure 5.10.
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Figure 5.10: Error evolution as a function of nppw for different polynomial orders (a) and
λ/h ratio (b). These graphs allow to link, via the size map, the error of the simulation in a
homogeneous medium to the size of elements. According to the desired error criterion, it is
possible to extract from these graphs an element size adapted to the simulation using several
polynomial order approximations.

We choose to determine the element size h that satisfies the 1% relative error. This
criterion is satisfied for the following values of nppw we display in Table 5.1. These values
are not so far from the ones typically taken around five to ten grid points per wavelength as
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mentioned in [Fichtner, 2010] and [Igel, 2017] for Finite Element methods. To give an idea of
the size of the elements in comparison with the wavelength, we also display in the same table
the corresponding ratio λ/h. This ratio is computed by replacing the value of nppw in (5.7).

Polynomial order (N) 2 3 4 5 6
nppw 13 10 10 9 9
Ratio λ/h 3.49 2.08 1.70 1.29 1.12
Number of Element (Ne) 303283 105788 69813 40012 29894
Computational time (s) 5230 2764 1956 2017 1789

Table 5.1: Summary table for 1% relative error for 2D DG acoustic solver on triangular grid.

The simulation has been performed using Elasticus software on eigth open mpi threads.
The obtained computational time shows the efficiency of p-adaptivity over h-adaptivity as
described in [Hesthaven andWarburton, 2007], as long as the physical parameters are correctly
approximated. Indeed, using large high order elements is computationally efficient but does
not guarantee that the model is accurately defined. In the ideal case, we aim to use large high
order elements where the model occurs weak variations and smaller elements with a lower order
of approximation (for computational time savings) in regions of the computational domain
where the parameters significantly vary.

To determine nppw for each polynomial order, to get an accurate and efficient modeling is
a must-have feature to control the computational time of simulations In addition, these
values are required for the automation of the h or p-adaptivity process. The objective is
to obtain a mesh adaptation (combining h and p-adaptivity) tool that conforms to the
input model, whatever its complexity. The robustness of the process will then allow to
adapt the mesh to the physical parameter between any iteration of the FWI.

Industrial context

In this subsection, we determined through numerical experiments, the number of point
per wavelength nppw required for several polynomial orders we displayed in Table 5.1. The
numerical experiments have been carried out on a very specific numerical configuration (see
Figure 5.9). The so obtained nppw has been determined in order to get a final global error
less than 1% on a 2s long experiment made on homogeneous model.

In what follows, we aim to validate this criterion on a more complex experiment realized
on Marmousi model.

5.2.3 Validation on Marmousi model

In this subsection, we aim at checking that the nppw values we determined on homogeneous
model remain valid in a more complicated test case. The isotropic size map relation we defined
previously can be used for two different purposes:

• if the maximal polynomial approximation is fixed, then the size map gives a guideline
for h-adaptivity,

• if the mesh is given, then we can evaluate the appropriate polynomial approximation
order at each element thanks to the isotropic size map formula (p-adaptivity).
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It is difficult to compare accuracy results for different h-adaptivity on a heterogeneous
model because the error due to the misrepresentation of the model largely dominates the
error in which the discretization error itself is hidden. For the validation, we propose the
second option that consists in adapting the polynomial order on each element (p-adaptivity)
of a given mesh, using the values of the ratio λ/h previously obtained and summed up in
Table 5.1.

The mesh used in this validation is composed of 12809 triangles (Figure 5.11c) and is locally
refined at the main interfaces of the geophysical model (Figure 5.11d). (The refinement has
been achieved with refinement techniques we describe in Subsection 5.2.5). We choose such
a mesh in order to test our criterion on several configurations of cell size and wavespeed
model. We could have used a uniform isotropic mesh but this mesh ensures a wider diversity
of polynomial orders and is an interesting case mixing h and p-adaptivity.

To assess if the choice of the value of nppw as a function of N is valid or at least agreeable,
we compare the traces obtained after a direct problem simulation for one shot, which lasts
4.2s, for different polynomial order approximations. We will compare the efficiency of the p-
adaptivity, with respect to the criterion we defined in Table 5.1, in three other configurations
that consist in keeping the same polynomial order, from P2 to P4 for each element. A
full P5 modeling is used as a reference solution. The time integration is performed with a
Runge Kutta scheme of order 2. We are using a first order Ricker function source with a
fpeak = 6Hz, that is to say a fmax = 15Hz. The application of the p-adaptivity, regarding the
ratio λ/h we benchmarked previously, gives us for the given mesh displayed in Figure 5.11c,
an order distribution composed of 11% P2, 62% P3 and 27% P4 elements. The corresponding
p-adaptivity map is shown in Figure 5.11.

p-adaptivity Full P2 Full P3 Full P4 Full P5
L2 relative error 0.38% 17.40% 1.44% 0.30% ref.
CPU Time (s) 815 502 1122 2244 3455

Table 5.2: Relative error on traces obtained for different p-adaptivity strategies.

In Table 5.2, we display the L2 relative error between the traces obtained for the different
polynomial approximation configurations previously stated. In light of the results in this
table, it is obvious that applying the p-adaptivity, while considering the established values
of λ/h, gives the best compromise between the computational cost and the accuracy. Even
if the wavespeed model is more complex, the criterion obtained for the values of nppw on a
homogeneous model seems to be still valid since we get an error less than 1%. Using, for this
case, a full P2 order distribution gives a relative error of 17% on the traces, which is far over
the 1% subjective error we addressed before. Using the p-adaptivity rule we benchmarked
before gives an error close to the full P4 configuration, with a computational time that is
2.75 times lower. Beyond simulations in full P3, the CFL condition obtained with such a
mesh and such a model starts to be too much restrictive, which leads to smaller and smaller
time steps and explodes the cost of computation. Here, we observe the well-known interest
of p-adaptivity that turns out to be a key tool for explicit time schemes. The p-adaptivity
actually avoids reducing the time-step and thus contributes to limit the overall computational
costs.

To summarize, the simulations performed with the p-adaptivity computed using the nppw
and λ/h ratio obtained on homogeneous model, remain efficient on a more complex model
such as Marmousi. The isotropic size map relation gives us either an efficient h-adaptivity



192 CHAPTER 5. MESH ADAPTATION IN FWI WORKFLOW

x

z

2,000

3,000

4,000

5,000

m · s−1

(a) Wavespeed model (m.s−1).

x

z

2

2.5

3

3.5

4
order

(b) p-adaptivity map.

x

z

(c) Marmousi refined mesh at the interface. (d) Zoom on interface mesh refinement.

Figure 5.11: Mesh and model used to check the validity of the isotropic size map on more
complex media (Marmousi), (a) Piecewise constant Marmousi model on the mesh, (b) p-
adaptivity map following the λ/h ratio summed-up in Table 5.1, (c) Mesh refined at the main
interfaces of Marmousi wavespeed model. (d) Zoom on interface mesh refinement.

size map if the maximal polynomial order approximation is given or an efficient p-adaptivity
criterion.

In the case where we aim to adapt the mesh according to a set of parameters, the size map
expression defines an efficient guideline for the mesh adaptation. It is then possible to fully
benefit of h-adaptivity, which has been shown to be very efficient for DG elements [Bernard
et al., 2007]. In addition, as shown in the test performed in this subsection, it is still feasible,
once we have a given h-adaptivity, to re-evaluate the p-adaptivity on each cell. Indeed, the
maximal polynomial order requested by the user in the isotropic size map formula may not
be always satisfied at each cell because of geometrical limitations (see (5.3)). Then, applying
twice the size map expression (first for the h-adaptivity then for the p-adaptivity) enables us
to exploit hp-adaptivity of DG methods for a given model.

Concerning the p-adaptivity, we show in the piece of program 5.1 a code that enables to
attribute a polynomial order for each cell of a given mesh. The polynomial order is computed,
here, in 2D with respect to the ratio λ/h we determined before (see Table 5.1).

1 # Ratio obtained experimentally
2 ratio_p1 = 5.00 # Chosen arbitrarily
3 ratio_p2 = 3.49
4 ratio_p3 = 2.08
5 ratio_p4 = 1.70
6 ratio_p5 = 1.29
7 ratio_p6 = 1.12
8

9 # Loop over all elements k
10 for k in range(nb_elem):
11 c_min = np.min(c[:,k]) # Determine the smallest wavespeed inside k
12 lambda = c_min/freq



5.2. SIZE MAP COMPUTATION 193

13 max_edge = get_max_edge_length(mesh,k)
14 ratio = lambda/max_edge
15

16 if ratio>ratio_p1:
17 p_map[k] = 1
18 elif ratio <= ratio_p1 and ratio > ratio_p2:
19 p_map[k] = 2
20 elif ratio <= ratio_p2 and ratio > ratio_p3:
21 p_map[k] = 3
22 elif ratio <= ratio_P3 and ratio > ratio_P4:
23 p_map[k] = 4
24 elif ratio <= ratio_p4 and ratio > ratio_p5:
25 p_map[k] = 5
26 elif ratio <= ratio_p5 and ratio > ratio_p6:
27 p_map[k] = 6
28 else:
29 p_map[k] = 7

Listing 5.1: Synthetic algorithm to determine p-adaptivity map.

Tests and validations performed in this section have been realized to automate the size map
computation. The computation of the size map that we designed for geophysical application
requires only few parameters:

• the values of wavespeed c expressed as a point cloud on the vertices of the associated
mesh;

• fmax, the maximal frequency of the source;

• N , the global polynomial approximation order.

We first determined an heuristic expression of the isotropic size map:

h(P ) = 2
λ(P )

nppw(N)

√
(N + 1)(N + 2)

2
√

3
. (5.8)

Then, using numerical experiments performed on a homogeneous model, we determined
the optimal value of the parameter nppw(N) to estimate a mesh size that ensures a given error
for different polynomial orders (see Table 5.1 and Figure 5.10).

Finally, formula (5.8) has been validated on a more complex model (Marmousi). In the
remainder of the chapter, the expression displayed in (5.8) will be referred to default size
map, to say that the size map is used by default when no extra information is given.

In the next subsections, we will discuss how to fully use the flexibility offered by the size
map computation for defining a local refinement in order to fit the main interfaces of the
wavespeed model. But, first of all, we need to be able to detect the interfaces from the model
information we have, which is the question addressed next.

5.2.4 Interfaces detection

Most often, for obvious reasons of simplicity, wavespeed models are displayed as constant
parameters per cell. However, in an inversion procedure, the wavespeed model needs to be
updated and one of the key elements of this update is the detection of true reflectors or
interfaces. Basically, interfaces are the areas in the wavespeed model where the wavespeed
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undergoes an abrupt change. Reducing the size of the mesh at locations where it is known
that a seismic event may occur helps to catch the model and avoid artificial reflectors. The
notion of interfaces is linked with the notion of the spatial gradient of the model. We do not
have access to a continuous formulation of this gradient since the model is expressed as a
point cloud (see Figure 5.12). However, it is possible to have a discrete approximation of this
gradient using least square method. It turns out that this method is already implemented in
Mshmet which gives an additional motivation to adapt this open source program to compute
our metric field.

Figure 5.12: Illustration of a point cloud defining Marmousi wavespeed model. Each point
represents the quadrature point of WADG method on each element.

By computing the spatial gradient ~∇c of the wavespeed model, we get information of the
interfaces (see Figure 5.13). The norm of ~∇c helps to localize the interfaces (see Figure 5.13a)
and their orientation is given by ~∇c as pictured in Figure 5.13b. Using the gradient is then
more intuitive than using the Hessian of the wavespeed model. It gives direct access to the
location and orientation of the different interfaces. The objective is to add this information
in the expression of the default isotropic size map we defined above (5.8) in order to better
approximate geophysical interfaces.

We recall that c(P ) corresponds to the wavespeed at point P and ~∇c(P ) is a vector, of
dimension 2 in 2D (3 in 3D) that describes the spatial derivative of the wavespeed model at
point P :

~∇c(P ) =

 ∂c

∂x1
∂c

∂x2

 (P ) .
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z
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(a) Marmousi ||~∇c||2 normalized between [0, 1] (b) Sketch of ~∇c at an interface

Figure 5.13: P1 representation of the spatial gradient of the model. (a) Gradient amplitude
to localize interfaces. (b) Illustration of gradient orientation at an interface.

For the sake of simplicity, we scale ||~∇c||2 between [0, 1]. Unfortunately, in this case
of study, the discrete ||~∇c||2 poorly highlights the interfaces of the wavespeed model, as
shown in Figure 5.13a. The reason is that the discrete ||~∇c||2 is sensitive to the point cloud
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locations and the wavespeed model. Some high values of ||~∇c||2 are fading the interpretation
of the interface location. This effect is obvious when studying the histogram that records the
number of points from the point cloud as a function of the normalized gradient amplitude
(see Figure 5.14). The point cloud we are using to define the Marmousi model is composed
of 75532 points, and we can clearly see that the majority of the points are associated to a
normalized value of the gradient that is comprised in between 0.0 and 0.1. Some outliers
prevent the interface from being defined easily.
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Figure 5.14: Histogram recording the number of points in the point cloud as a function of the
normalized gradient amplitude

One way to resolve this is to define a threshold, ε ∈ [0, 1], over which we will apply the
refinement. For each point P of the point cloud, we need to know if it belongs to an interface
or not. For each point P , we define the Boolean Interface(P ) that satisfies:

Interface(P ) =

1, if ‖~∇c(P )‖
max
P

(‖~∇c(P )‖)
≥ ε,

0, otherwise.
(5.9)

Remark. This threshold is not unique as it can vary depending on the wavespeed model
but also the point cloud which is determined by the mesh to be updated. For instance, two
similar models represented on different meshes can have different least square gradients ||~∇c||2
leading to different thresholds. To illustrate this, we compare two histograms corresponding
to the number of points that are associated with the values of the amplitude of the nor-
malized gradient for two distinct point clouds defining the Marmousi wavespeed model (see
Figure 5.15).
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Figure 5.15: Histogram recording the number of points in the point cloud as a function of the
normalized gradient amplitude for two different point clouds.

This histogram clearly shows that the distribution of the normalized amplitude is really
different despite point clouds that contain a similar amount of points (75532 for point cloud
1 and 74720 for point cloud 2), and represent the same wavespeed model. At a glance, it is
possible to conclude that the threshold, chosen in (5.9), to define the interface cannot be the
same for these two point clouds.

We will then consider a given point cloud defining the Marmousi model. For this param-
eterization, we use a dichotomy over the threshold and a visual assessment of the interface
to define a threshold of 0.08. Concerning the point cloud we are using, such threshold corre-
sponds to the fact that 5% of the points are labeled as an interface. Then, the Interface(P )
map obtained is pictured in Figure 5.16.
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Figure 5.16: Highlighted interfaces.

The definition of the threshold depends on the wavespeed model but also on the point
cloud. It is difficult to set a universal criterion that highlights all the interfaces for all kind
of models defined on an unstructured grid. The way we are highlighting the interfaces can,
without any doubt, be improved in particular with techniques borrowed from image processing
or statistics by skipping outliers. The difficulty, here, relies on the fact that the information
is not located on a Cartesian grid (see Figure 5.12). It is important to note that the interface
detection is a complex task that is not automated yet. We brought in this subsection some
hints to define the interface locations, which can be done by defining the threshold ε between
0 and 1 at the convenience of the user. To illustrate the choice of the threshold, we display in
Figure 5.17 the resulting interfaces for several thresholds values. Note that we are using the
point cloud that defines the histogram pictured in Figure 5.14.

The objective of the two following subsections is to exploit the flexibility offered by a size
map computation, by introducing interface information in the metrics. First, we will edit the
isotropic size map regarding a point P is on an interface or not. Secondly, we will consider
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(b) Interfaces highlighted using ε = 0.1.
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(d) Interfaces highlighted using ε = 0.02.

Figure 5.17: Marmousi highlighted interfaces for several threshold values.

anisotropic metrics at the interfaces in order to take the interface orientation into account.
As it is a proof of concept, we will consider the Marmousi model and the interface map we
just defined in Figure 5.16.

5.2.5 Isotropic refinement

Before defining what is an isotropic refinement, let us clarify what we are calling a refinement.
A refinement consists in adapting the size map at a point P leading to construct smaller
elements than the default isotropic metrics developed before.

Without taking into account the interface, the default isotropic size map has been defined
by the scalar field h (5.10), where N is fixed and denotes the maximal polynomial order of
approximation desired by the user:

h(P ) = 2
λ(P )

nppw

√
(N + 1)(N + 2)

2
√

3
. (5.10)

Then, we redefine locally the size map where an interface is detected. At these locations, the
size map will adapt the mesh to be locally reduced or shrunk from what it could have been
with the default isotropic size map. In this section, we will consider an isotropic refinement:
the size map at an interface is represented by a scalar, leading to reduce homogeneously the
size of the cell in all directions. Basically, we define the scalar size map as follows:

h(P ) =

2 λ(P )
nppw

√
(N+1)(N+2)

2
√

3
, if Interface(P ) = 0,

1
r2 λ(P )

nppw

√
(N+1)(N+2)

2
√

3
, r ≥ 1.0, if Interface(P ) = 1.

The isotropic case is the easiest one. The refinement is only described by a real factor
r that stands for the reduction of the element area. We have adapted the interface of the
software computing the size map in order to take into account the refinement factor r at the
user convenience.

Remark. If we choose r = 1, then the refinement at the interfaces is ignored.

To compare the impact of the local refinement of the mesh near the interfaces, we conduct
an error study on three different meshes. The objective is to quantify the error made by a
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misrepresentation of the model induced by the mesh. We set up direct problem simulations
on a shot in Marmousi model for a source represented by a first order Ricker function (tpeak =
0.2s, fpeak = 6Hz and fmax = 15Hz). The first mesh is a mesh without any refinement.
It is obtained by generating a mesh according to the default isotropic size map (5.10). The
second and the third ones are respectively refined at the interfaces by a factor r =

√
2 and

r = 2. A fourth mesh is used to have a reference solution. Its size map has been computed
with a global refinement of r = 2 which is carried out by setting the threshold ε = 0.0 and
amounts considering all points of the point cloud to be located on an interface. In addition,
in the fourth case, we are using Weight-Adjusted Discontinuous Galerkin (WADG) model
description to generate a solution that is as little as possible polluted by errors from model
approximation. We refer to the section dedicated to WADG method at page 93.

The parameters used to generate the size maps are summed up in Table 5.3.

Order Frequency ε r factor
mesh 1 4 15Hz 0.0 1.0
mesh 2 4 15Hz 0.08

√
2

mesh 3 4 15Hz 0.08 2.0
mesh 4 4 15Hz 0.0 2.0

Table 5.3: Parameters to generate the size map.

Table 5.4 gives us the total number of elements of the generated meshes. After refinement
at the interface, the sizes of elements under consideration are not following anymore the default
size map which provides rules to adapt the size of the mesh according to the polynomial order
requested by the user. In practice, since the elements are smaller after adaptation, we may
reduce the polynomial order at the interfaces. Then, it makes sense to re-evaluate the p-
adaptivity, at each cell, in the same way we proceeded in the validation subsection. We display
in Table 5.4 the percentage of elements for each order of approximation after evaluating the
p-adaptivity.

Remark. It is worth noting that 92% of the elements for the first mesh are P4 elements.
This percentage highlights the capability of our workflow to adapt the mesh in keeping with
the user instructions.

Nb of P2 P3 P4
Elements Elements Elements Elements

Mesh 1 6808 5 (<0.1%) 518 (8%) 6225 (92%)
Mesh 2 8434 180 (2%) 2127 (25%) 6127 (73%)
Mesh 3 12809 1424 (11%) 7981 (62%) 3404 (27%)
Mesh 4 26621 0 (0%) 0 (0%) 26621 (100%)

Table 5.4: Meshes information and polynomial order decomposition.

Figure 5.18 represents the mesh for four levels of refinement (left pictures) and the associ-
ated representation of the wavespeed model (right pictures). We can see that the refinement
improves the quality of the interfaces in the wavespeed model. This helps to clean the medium
from possible parasitic reflectors that can affect the wavefield to the point of giving erroneous
results despite using a very precise numerical method.

To quantify the advantage brought by the refinement, we compute the relative L2 error
of the traces obtained on mesh 1 to 3 with the reference solution obtained on mesh 4. The
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reference solution has been obtained using a P4 polynomial approximation on each cell and
a WADG quadrature formula of order 9 resulting in 505799 points defining the model. This
last configuration ensures we have a reference solution that avoids perturbations from model
misrepresentation.
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(b) Wavespeed model on mesh 1 (m.s−1).
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(d) Wavespeed model one mesh 2 (m.s−1).
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(f) Wavespeed model on mesh 3 (m.s−1).
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(h) Wavespeed model on mesh 4 (m.s−1) using 9th
order quadrature formula for WADG.

Figure 5.18: Visualization of the wavespeed model and the related mesh for different refine-
ments. (a,b) for mesh 1, (c,d) for mesh 2, (e,f) for mesh 3, (g,h) for mesh 4.

After refinement, the computational burden obviously increases due to the growing number
of elements. But this can be attenuated by applying the p-adaptivity. p-adaptivity after
refinement is crucial in time domain, as it avoids to reduce too much the computational time
step ∆t which may increase unnecessarily the computational cost.

Table 5.5 shows the effect of local refinement near the interfaces of the model. We will
assume that these errors are mainly induced by the poor approximation of the physical model
and the numerical errors are here comparatively insignificant. We showed previously, in
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Table 5.2, that the employed numerical scheme is accurate. The higher the refinement, the
closer the solution is to the reference solution. These tests also bring to light the error induced
by a misrepresentation of the physical parameters. The refinement is here a well recommended
strategy to improve the model approximation. For instance, a refinement with a factor r = 2
can divide by three the error done without refinement at the interface.

CPU Relative
time(s) L2 error

Mesh 1 379 15.0%
Mesh 2 463 10.5%
Mesh 3 815 5.2%
Mesh 4 4384 ref.

Table 5.5: Performances induced by the different refinement.

The possibility to design the size map computation as desired offers a lot of flexibility.
Using the spatial gradient of the model is a way to highlight interfaces and to enhance the
model approximation on those tough areas. We investigated in this section the asset brought
by isotropic refinement. Without any, it is difficult to accurately reproduce the characteristics
of the medium, especially in the vicinity of interfaces with sharp zones. The previous statement
has been confirmed by the error study we conducted in 5.2.7.

We have implemented a refinement method that is capable of locating and then remeshing
problematic interfaces. The error of approximation can then be clearly reduced (Table 5.5).

The isotropic refinement is a straightforward way to refine the mesh since it is mainly
implemented by applying a single reduction factor r to the elements. In the next subsection,
we will define an anisotropic refinement at interfaces and see its efficiency in comparison with
the isotropic refinement developed right here.

5.2.6 Anisotropic refinement

The key idea of the local refinement is to increase the model resolution near the interfaces by
reducing locally the size of the mesh. Previously, we showed that the error can be reduced by
applying such a refinement to areas where an interface has been detected. Isotropic refinement
leads to locally reduce the size of the element in all directions.

In this subsection, we will extend the investigation conducted for isotropic refinement to
anisotropic one. In the previous case, the size map was only defined by a scalar h that deter-
mines the size of the edge of the element at a given location. When dealing with anisotropy,
the size map is defined as a discrete metric field on all points P of the point cloud. We have
then to define a metrics M(P ) at point P that describes the tolerated edge lengths in all
directions. The idea of introducing this metrics is borrowed from error estimates that are
classically computed on the numerical solution [Alauzet and Frey, 2003] of the PDE under
consideration. The objective here, is to overcome the misrepresentation of the model at inter-
faces by increasing the density of elements at those areas. The anisotropic refinement consists
in adapting the mesh to get elements that can be shrunk in the direction of spatial gradient
(~∇c) if an interface is detected as shown in Figure 5.19a. This refinement is more natural
than an isotropic refinement that reduces the size of the element in all directions. It will
lead to have elements whose elongation will be favoured in the direction of the interface (see
Figure 5.19b).
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(a) Ilustration of an anisotropic cell at an interface. (b) Zoom on anisotropic refinement.

Figure 5.19: Illustration of anisotropic refinement at an interface.

We showed at the beginning of this chapter, see Section 5.1, that we can define a metrics
M(P ) at each point P , which is a Symmetrical Positive-Definite (SPD) matrix. Such metrics
defines a distance norm ‖ . ‖M(P ).

The metricsM(P ) can then be computed by taking into account the information of the
model c, its spatial gradient ~∇c and the interface map, Interface that has been previously
introduced in Subsection 5.2.4.

Depending whether or not the point P is located on an interface, we propose to compute
the metricsM(P ) as follows:

Interface(P ) = 0



M(P ) =

(
λ1 0

0 λ2

)
,

λ1 = λ2 =
1

h(P )2
,

h(P ) = 2
λ(P )

nppw

√
(N + 1)(N + 2)

2
√

3
,

Interface(P ) = 1



M(P ) = SΛS> , Λ =
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λ1 0

0 λ2

)
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(
v1x v2x
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)
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,
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(N+1)(N+2)

2
√

3
,

with: ~v1 =
~∇c

‖~∇V c‖2
and ~v2 such as t ~v1 ~v2 = 0 and ‖ ~v2 ‖2= 1.

When there is no interface, we define locally the metrics in order to build isotropic cells
satisfying the default isotropic size map. Else, we construct the metrics in order to shrink
the element in the spatial gradient ~∇c direction. The lengths h(P ) and hr(P ) are computed
similarly to what it is done in the isotropic refinement section. The anisotropic refinement
is also defined by a factor (r ≥ 1.0) that can be set while computing the size map at the
convenience of the user.

To analyze the improvement of the model approximation brought by using anisotropic
refinement, we will compare the global error obtained with the same experimental setup used
for isotropic refinement tests. First of all, based on Marmousi wavespeed model, we construct
two new meshes denoted by mesh 2’ and mesh 3’ (Figure 5.20) where we apply an anisotropic
refinement of factor r =

√
2 and r = 2 respectively. Those meshes are echoing with mesh
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2 and mesh 3 of the previous section with the same respective refinement factors. Table 5.6
displays the different parameters used in order to generate the different meshes:

Order Isotropic Freq ε r factor
Mesh 1 4 True 15Hz 0.0 1.0
Mesh 2’ 4 False 15Hz 0.08

√
2

Mesh 3’ 4 False 15Hz 0.08 2.0
Mesh 4 4 True 15Hz 0.0 2.0

Table 5.6: Parameters to generate the size map.

For the same refinement factor r, the anisotropic refinement creates a triangulation that
holds fewer elements than the one obtained with isotropic refinement. Instead of reducing
elements in all directions, applying an anisotropic refinement results in adapting the size of
the element only in the direction ~∇c. It is worth noting that, despite having fewer elements
with the anisotropic refinement, the computational time is shorter on isotropic meshes. This
is because the CFL condition is computed with the radius of the inscribed circle, which is
ineluctably smaller for anisotropic cells. We refer to Section 2.2.3 on time schemes, page 71
for further explanations on the CFL condition. Furthermore, anisotropic elements require also
a high order polynomial approximation to accurately simulate the wavefield in the elongated
direction. For those reasons, the CFL condition is even more restrictive on anisotropic cells.
A small computational time step ∆t inexorably increases the global computational cost.
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(b) Wavespeed model on mesh 2’ (m.s−1).
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(d) Wavespeed model on mesh 3’ (m.s−1).

Figure 5.20: Visualization of the wavespeed model and the related mesh for different
anisotropic refinements. (a,b) for mesh 2’, (c,d) for mesh 3’.

A reasonable refinement, such as the one used in mesh 2 and mesh 2’, highlights that
anisotropic meshes better catch the interfaces and thus help reducing the error. By comparing
the results obtained with mesh 3 and mesh 3’ in Table 5.7, applying p-adaptivity on the
anisotropic mesh leads to have a higher fraction of high-order elements than with isotropic
refinement (58% of P4 elements using anisotropic refinement against 27% for the isotropic
one). We can see that the computational time is much more important using mesh 3’ (1731s)
than mesh 3 (815s) with a similar final error. We obtain the same error in both cases because
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the refinement factor is similar, and we certainly reach a precision limit at the interfaces.
The observed difference in computational time is explained by the fact that in the case of an
anisotropic refinement, long edges are kept, which requires using high order of approximation
and therefore requires more computations. In the case of an isotropic refinement, the size of
the elements is uniformly decreased, which enables to reduce the order of approximation and
therefore the amount of associated calculations.

Nb of P2 P3 P4 CPU Relative
Elements Elements Elements Elements time(s) L2 error

Mesh 1 6808 5 (<0.1%) 518 (8%) 6225 (92%) 379 15.2%
Mesh 2 8434 180 (2%) 2127 (25%) 6127 (73%) 463 10.5%
Mesh 2’ 8226 75 (1%) 1167 (14%) 6984 (85%) 602 8.5%
Mesh 3 12809 1424 (24%) 7981 (62%) 3404 (27%) 815 5.2%
Mesh 3’ 11496 603 (5%) 4288 (37%) 6605 (58%) 1731 5.1%
Mesh 4 26621 0 (0%) 0 (0%) 26621 (100%) 4384 ref.

Table 5.7: Performance comparison between isotropic and anisotropic mesh refinement.

Unfortunately, anisotropic cells can strongly affect the stability condition of explicit time
scheme. On the one hand, anisotropic cells require higher order polynomial approximation
than isotropic ones, due to the preserved edge size in the tangent direction to the interface.
On the other hand, we use an explicit time scheme where the time step is computed as a
function of the inner radius of the element, so that the anisotropic ratio would degrade the
CPU time.

Strategies such as explicit local time stepping [Diaz and Grote, 2015, Gödel et al., 2010] or
even local implicit time stepping [N’Diaye, 2017, Barucq et al.] can reduce such effects and can
improve the overall time computation. In the frequency domain, there is no such geometrical
restrictions and anisotropic refinement is undoubtedly an interesting path to follow because
it allows to improve the accuracy with a lower cost in memory in comparison with isotropic
refinement.

An anisotropic refinement seems to be more efficient in terms of precision but with higher
computational cost than with isotropic refinement. Thus, while working with explicit time
schemes and without the implementation of variable time steps, it seems more appropriate to
use isotropic refinement.

5.2.7 Conclusion

We have constructed a heuristic size map to include mesh adaption tools in an inverse prob-
lem framework in order to have accurate and computationally efficient Forward and Adjoint
simulations. To sum up the overall section that concerns the computation of the size map,
we first developed a heuristic expression of an isotropic size map in 2D (5.11):

h(P ) = 2
λ(P )

nppw(N)

√
(N + 1)(N + 2)

2
√

3
, (5.11)

where:

• P is a point of the point cloud defining the model;

• λ is the local wavelength λ = c(P )
fmax

;
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• N is the maximal polynomial approximation order (fixed by the user);

• nppw is a heuristic definition of the number of points per wavelength, which depends on
the polynomial approximation order.

Then, thanks to several numerical experiments, we have defined a value of nppw for different
polynomial orders to generate meshes for accurate simulations.

We recall the nppw values and the corresponding ratio λ
h that ensures a global error of 1%

that we defined thanks to numerical experiments described on page 187:

Polynomial order (N) 2 3 4 5 6
nppw 13 10 10 9 9
Ratio λ/h 3.49 2.08 1.70 1.29 1.12

Table 5.8: Summary of the appropriate size map for accurate space discretization using 2D
DGm.

After validation of the formula (5.11), we have used the calculation of a size map to define
local isotropic and anisotropic refinements to improve the interface representation of a given
geophysical model. In a first step, we had to detect these interfaces and for this, we used the
gradient of the velocity model. It should be noted that the detection of interfaces is difficult
to achieve. We have given in the subsection 5.2.4 a few hints to highlight areas where the
model is subject to strong contrasts, but we have not been able to establish absolute criteria
for locating the interfaces in a simple way. As expected, we have shown that an anisotropic
refinement is more efficient than an isotropic refinement in terms of model accuracy. However,
it is important to note that if an explicit time scheme is used, an isotropic refinement seems
to be more preferable to keep reasonable computational times.

To process isotropic and anisotropic refinement, we have adapted the interface of Mshmet,
which calculates the size map, by introducing the following new parameters:

• i, a boolean that defines whether the refinement is isotropic (T ) or anisotropic (F ) ;

• r, the refinement factor (r ≥ 1);

• is epsilon, the threshold for highlighting the interfaces (epsilonin[0.1]).

It has to be emphasized that such local refinements are dependent on interface detection,
which is difficult to achieve. We do not provide any absolute criterion to detect the interfaces,
but we brought in Subsection 5.2.4 some hints to highlight areas where the model undergoes
strong contrasts.

Having a better discretization allows for a better description of the interfaces and thus a
better parameterization of the physical model. To finish this section, we propose a final test
which consists in comparing the error obtained on simulations with meshes having a similar
number of elements. We will compare the seismographs obtained with the adapted meshes
with isotropic refinement proposed on page 199 (Meshes 1,2,3) with uniform isotropic meshes
(Meshes 1∗,2∗,3∗) on the same experiment.

Table 5.9 shows the gain in accuracy that can be achieved with meshes adapted to the
wavespeed model. For a (approximately) fixed number of elements, we observe a better accu-
racy and therefore a better parameterization of the physical parameters. The computational
time is also lower when the mesh is adapted. This can be explained by a geometry favorable
to a less restrictive CFL.
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Nb of CPU Relative
elements time(s) L2 error

Mesh 1 6808 379 15.0%
Mesh 2 8434 463 10.5%
Mesh 3 12809 815 5.2%
Mesh 4 26621 4384 ref.

Nb of CPU Relative
elements time(s) L2 error

Mesh 1∗ 7090 482 19.7%
Mesh 2∗ 8462 582 17.3%
Mesh 3∗ 12974 850 8.0%
Mesh 4 26621 4384 ref.

Table 5.9: Comparison of performances using adapted mesh with isotropic refinement (left)
and uniform isotropic meshes with comparable number of elements (right).

For this test, we still used the p-adaptivity criterion developed in this chapter to make
sure that the final inaccuracy is, at best, exclusively due to the representation of the model.
It should be noticed that, before the study conducted in this chapter, we did not have clearly
defined criteria to set the p-adaptivity, which would have resulted in either inaccuracies or
excessive computational time.

The size map formulation adapted for acoustic wave model has been carefully studied in
this section. We determined criteria that offered meshes giving an accurate space discretization
that is adapted to the physical model in which we aim to perform simulations. To assess
tools we developed, we have generated a mesh (Figure 5.21), which aims to give a reliable
discretization for high frequency simulations (fmax = 25Hz, N = 3, ε = 0.08, r = 2, i =
F ). The strength of the workflow we propose is its capability to describe an adapted space
discretization with only few parameters, here: c, fmax, N , i, ε and r (where i, ε and r are
optional).

Figure 5.21: Example of adapted meshes obtained with respect to a size map and taking into
account sharp interfaces (42K elements).

These meshes offered an efficient h-adaptivity in keeping with the physical parameters. In
addition, the parameter determined in Table 5.8 allows re-evaluating on each cell the proper
polynomial order (p-adaptivity). We have then elaborated tools that enable to adapt a mesh
with respect to the physical model by exploiting the hp-adaptivity feature of DGm. Such op-
timized space discretization offered accurate simulation obtained in an optimal computational
time.

5.3 FWI workflow extended with mesh adaptation

FWI is a computational intensive process as the direct problem is repeated, successively, to
the rhythm of updates of the set of numerical parameters. It is then essential to reduce the
calculation time and the memory burden of the direct problem while maintaining sufficient



206 CHAPTER 5. MESH ADAPTATION IN FWI WORKFLOW

accuracy. The computational loads are directly correlated to the number of elements that
comprise the mesh and thus the size of the involved matrices. A significant reduction of that
number helps to increase the performance of FWI, whatever the solver is. We can mention
the mesh doubling democratized by Spectral Element methods [Komatitsch and Tromp, 2002]
and which is used in the SPECFEM code. AxiSEM code is also based upon an impressive
degrees of freedom reduction using Axisymmetric Spectral Element Method [Nissen-Meyer
et al., 2014]. More recently, [van Driel et al., 2020] proposes to use anisotropic SEM adaptive
mesh in an inversion workflow in order to construct wavefield adapted meshes for each shot
propagation.

The objective of this section is to include the size map computation and the h-adaptation,
previously described, in the FWI workflow. Before going into details, we give a brief overview
of the inclusion of mesh adaptation in the FWI process in the scheme Figure 5.22.

Figure 5.22: FWI workflow extended with mesh adaptation.

This section is organized as follows. We will first explain how the mesh adaptation has
been included inside the FWI workflow. We will then discuss a criterion to decide if mesh
adaptation must be on or off. Finally, we will present results of inversion, and we will compare
reconstruction of wavespeed models with and without the re-meshing process.

5.3.1 Mesh adaptation in FWI workflow

As said previously, we have decided to adopt and possibly adjust tools and software dedicated
to mesh adaptation to our FWI workflow. Concerning the size map, we have developed its
expression in Mshmet piece of software. It is in this program where main adjustments have
been developed in order to take into account the geophysical wavespeed parameters expressed
as a point cloud. In the classical mesh adaptation process, this program takes as an input the
mesh of the simulation at the ith time step with the unknown field located on all the vertices
of Thi.

Let us now consider the FWI workflow extended with the mesh adaptation. Then, we
quickly run into an issue. Indeed, we assumed in the previous section that the model is known
at the vertices of the mesh to be updated and this is a prerequisite for computing the size
map. But here, this is not the case as the physical parameters are located on the quadrature
points formerly defined on page 93, and those points are not located at the vertices of the
elements. We then propose to generate an intermediate triangulation Thint that is linking
all points in the wavespeed point cloud. This intermediate mesh has two advantages: it
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does not only serve for the calculation of the size map but it also allows a visualization of
the wavespeed model at the point cloud (see Chapter 4, page 158). For constructing the
intermediate triangulation Thint, we are using Mmg software that provides a mesher in 2D. It
is worth noting that the points are only linked together (without any node insertion, deletion
or displacement), hence the resulting mesh is of poor quality but the pints in point cloud are
now located at the vertices of the mesh. By using Thint, the mesh adaptation as a key link
of the resolution of the inverse problem diverges from the one traditionally followed in direct
problems. The flowchart in Figure 5.23 illustrates how we deal with mesh adaption in the
FWI process. It is fundamentally different because we are introducing an intermediate mesh
to handle geophysical models.

1

2

2
3

3

Figure 5.23: Flowchart representing steps for generating a mesh from wavespeed model as a
point cloud. ((1) Triangulation, (2) Size map computation, (3) Remeshing)

The mesh adaptation s included in the FWI progressively by accomplishing the following
steps:

• Getting the size map: ithas been described in 5.2 (see page 185).

• Building the mesh: this step is processed by Mmg software. The mesh adaptation
algorithm is briefly presented in 5.1.2 (see page 183).

• Apply preprocessing tools: this final achievement consists in extracting all the in-
formation of the new mesh and the previous model to generate files required to restart
the FWI process.

Once the mesh is created, the new coordinates of the model are computed in keeping
of the quadrature order (1 for classical DG piecewise constant model, ≥2 for WADG). The
projection step consists in projecting the values from the outputted model of the ith iteration
to the new model that initializes the i+ 1th iteration. This projection is naively done for each
new model point by taking the value of the nearest point from the old model.

Concerning the creation of the polynomial order map, it can be computed thanks to
the ratio λ/h we numerically determined previously (see Table 5.8 page 204). This ratio is
computed by taking the smallest value of the wavespeed model and the longest edge of the
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element. Depending on the value of this ratio, we are able to determine the polynomial order
associated to each cell. We refer to the synthetic code displayed in the piece of program 5.1
(see page 192).

Let us consider that, at some point after the ith iteration of the FWI, the decision is taken
to adapt the mesh with the new model for next iterations. We sum up in the flowchart in
Figure 5.24 the different steps that have been developed in order to have an automatic mesh
adaptation in the FWI workflow. Figure 5.24 describes all required steps, in between two
FWI iterations, to adapt the mesh with the new model parameters.

In the inversion process, we choose to only consider the default isotropic size map defined
in the previous section by the following formula:

h(P ) = 2
λ(P )

nppw

√
(N + 1)(N + 2)

2
√

3
. (5.12)

Remark. We also showed before that it is possible to modify this formula in order to refine the
mesh near the main interfaces of the medium. The detection of the interfaces is unfortunately
defined with a criterion that is for the moment only defined by visual assessment. It is then
not appropriate in the industrial framework, since the procedure is not automated. It is a
track that we put aside for future enhancement.

By following the process pictured in Figure 5.24, we defined an automated remeshing
procedure that exploits h and p-adaptivity of the DG solver. It is important to note that,
once the h-adaptivity is defined, it is worth reevaluating the p-adaptivity on each element. In
the case where the default isotropic map is used, most of the elements will satisfy the maximal
order given by the user. However, since the mesh adaptation stops at a given threshold (5.3)
and the physical model is slightly modified by the projection, we cannot assume that 100%
of the elements have a size that satisfies the ratio λ/h for the polynomial order N requested
by the user. For computational savings, we recommend to reevaluate the p-adaptivity map
after defining the h-adaptivity.

One of the tedious task to develop this framework is to keep tracking the different for-
mats required in between two steps. Making all the workflow displayed in Figure 5.24
working required also to automate the compatibility format between each step. All the
dependencies are not expressed in the flowchart. Our objective here is to give a brief
idea of the main steps required to adapt the mesh with the current model parameters
obtained in the FWI.

Industrial context

Now that we have built an automated procedure to adapt the mesh from the information
on the physical parameters, we need a criterion in order to go through this procedure or not.
Several criteria can be considered. We can for instance, adapt the mesh every n iterations
where n is an integer set by the user. But n has to be chosen to be aware of the optimization
process. For instance, the L-BFGS optimizer we developed is computing the search direction
using the eight previous iterations’ information. In that case, we would not recommend
changing the parameterization of the problem every n iterations as long as n ≤ 8. If n is
chosen too small, it can hamper the performances of the optimization process.

We can also impose a criterion on the computational time step. We recall the CFL
condition we defined at page 70. For each element, we determine a time step ∆tK that is
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Figure 5.24: Flowchart explaining the steps to be followed to automate the remeshing process
between two iterations of the FWI.
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defined as follows:

∆tK ≤ C rK

cKNK
.

This formula illustrates the difficulty induced by the presence of small elements. Indeed,
if rK is very small, the time step expressed at the scale of the element tends to be small too,
more particularly if the speed is high and the order of approximation is also large. Then,
the time step associated to the element K is small and it penalizes the overall computational
cost. It is a typical situation where re-meshing is efficient by allowing to increase locally the
mesh size (rK) while applying p-adaptivity.

One important feature in the inversion process is the multiscale reconstruction. Indeed,
to avoid to fall in a local minimum of the cost function to be minimized, Bunks et al. [1995]
recommended reconstructing the medium from low to high frequencies. Reconstructing first
large scales with low frequencies enables to deal with simplified problem where there are less
local minima. Such a method is performed by filtering the forward source and the observed
data with the frequency of interest. We remind that the default isotropic size map formula
we defined in (5.12), is a function of the frequency (λ(P ) = c(P )/fmax). It is then possible
to use a coarser mesh at low frequencies.

At the beginning of the thesis, there was no FWI code. It has been developed from
an existing code solving the forward problem. Hence, it has inherited a certain rigidity
that imposes the same mesh throughout the run. Such an approach means using a
mesh constructed to satisfy the highest frequency for all the steps of the multiscale
reconstruction. This is a serious disadvantage resulting in unwelcome additional costs at
low frequency.

Industrial context

Having a mesh adapted to the frequency component of the simulations is clearly promising
in terms of efficiency. This feature is particularly interesting when doing FWI, where it
is important to address simulations in a wide band of frequencies including absolutely low
frequencies. Indeed, it has been shown [Pratt et al., 1996] that the low frequency content
is required. This will drastically improve the computational time when reconstructing low
frequencies. Furthermore, between two frequencies, the model parameters and more precisely
the wavespeed model, will be taken into account in order to optimize the hp-adaptivity.

As a proof of concept of the re-meshing, we decide, in what follows, to re-mesh only at
the end of all frequency band in the multiscale reconstruction process. We will present, in
the next subsection, comparisons of reconstruction with and without the mesh adaptation in
a multiscale reconstruction of the Marmousi wavespeed model.

5.3.2 Mesh adaptation applied on Marmousi reconstruction

In this subsection, we will provide a comparison of the Marmousi reconstruction with and
without using the mesh adaptation. We aim to reconstruct the wavespeed model Marmousi
starting with a linear initial guess where the wavespeed goes from 1500m.s−1 to 4500m.s−1

(see Figure 5.25). We will consider a constant density, ρ = 1000kg.m−3, all over the domain.
The observed data have been generated by using 20 sources given as a first order Ricker

pressure perturbation (tpeak = 0.2s, fpeak = 10Hz). Those sources are localized at a constant
depth of 50m and are evenly disposed on the X-axis from 550m to 8150m with 400m between
each other. Concerning the receivers, we are using 183 receivers at 100m depth positioned
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Figure 5.25: Comparison between blind model and target wavespeed model.

from 50m to 9150m on the X-axis with 50m in between. For the reconstruction, we choose
to perform 20 iterations at each scale. One scale corresponds to a low pass frequency we
apply on the direct and adjoint source. We select five frequency bands, which are displayed
in Table 5.10.

0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz Total
Number of iterations 20 20 20 20 20 100

Table 5.10: Number of iterations for each frequency band.

With such a configuration, we will perform four times the mesh adaptation respectively
after the iterations 20, 40, 60 and 80. Without mesh adaptation, we are constrained to use
the same mesh during the 100 iterations.

P4 reconstruction with and without adapted meshes

In this experiment we aim to compare the reconstruction of Marmousi wavespeed model,
with and without the mesh adaptation tools we have developed. To perform this comparison,
we use P4 elements. We will set up the mesh adaptation scheme to adapt meshes for P4
simulations. For the sake of simplicity, we will ignore the p-adaptivity map computed at the
end of the workflow pictured in Figure 5.24 and we will force all the elements to be of order 4.

The initial mesh is determined by a blind linear wavespeed model, the polynomial approx-
imation order and the value of the considered maximal frequency. In the classical reconstruc-
tion (without the mesh adaptation), we have a mesh that contains 7218 elements. This mesh
has been constructed in order to have an accurate representation of a 15Hz signal propagation.
However, concerning the experiment with mesh adaptation, the initial mesh contains only 277
elements for the first frequency band since the maximal frequency treated is 2Hz.

We display in Table 5.11 the number of elements in the mesh that has been used at each
frequency during the FWI process. Since we are using classical piecewise constant model per
element, we have the same amount of parameters to recover as there are elements in the mesh.

0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz
Number of elements (with mesh adaptation) 277 779 2090 4859 7065
Number of elements (without mesh adaptation) 7218 7218 7218 7218 7218

Table 5.11: Comparison of the number of elements in the mesh for each frequency band for
both strategies.

We can observe in Table 5.11 that the number of elements increases with the frequency,
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as expected. Adapting the mesh to the frequency leads to have, most of the time, fewer
elements except for the last frequency band where there is a similar amount of cells since
both configurations are built in order to have accurate propagation of 15Hz signals.

We represent in Figure 5.26 the evolution of the wavespeed model for both strategies. We
also display the mesh obtained by using mesh adaptation in the left column.
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(h) c model at iter=40.
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(i) Mesh for 0-8Hz FWI.
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Figure 5.26: Comparison of Marmousi multiscale reconstruction with and without mesh adap-
tation. (left column = current mesh using the mesh adaptation / central column = with mesh
adaptation / right column = without mesh adaptation).
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We observe that both methodologies allow to reconstruct the Marmousi model. It is even
possible to recover the deepest structures of the model considered. The mesh adaptation
strategy offers an interesting computational time saving in comparison with the classical
configuration. We display in Table 5.12 the CPU time obtained at each frequency band.
Without mesh adaptation, we only know the overall computational time. We can easily
assume that each frequency band has the same load.

Remark. We do not consider the time spent in the mesh adaption workflow since it is
negligible in comparison with the time required by FWI workflow. For this case, it goes from
5s to 5min depending on we are at low or high frequencies.

It is clear that we are saving a lot of time when reconstructing low frequencies. Concerning
the total computational time of those runs, we obtained an overall speed-up factor of 3, which
is an impressive speed-up for a similar final result. We can also study the speed-up of the
method for each frequency band. In this case, at the first frequency band considered, for
instance, we are able to operate 20 iterations of the FWI 144 times faster.

0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz Total
CPU time
with mesh adaptation (h) 3 11 60 230 408 712

CPU time
without mesh adaptation (h) ∼432 ∼432 ∼432 ∼432 ∼432 2164

CPU time ratio
(No mesh adapt/mesh adapt) 144.0 39.3 7.2 1.9 1.1 3.0

Table 5.12: CPU time comparison between FWI with and without mesh adaptation.

Remark. Note that we are using the CPU time to compare the different methods. The CPU
time represents the sum of the contributions of all the processors. We may use the elapsed
time but the comparison will not be relevant. For instance, at the lowest frequency, the
number of elements is relatively different in the two configurations (277 against 7218) so that
we adapt the parallelism. For instance, we are using respectively 20/40/60/80/120 cores for
the 5 frequency bands using mesh adaptation against 120 cores during all the old workflow.
The method we developed also proposes a great flexibility on the choice of the parallelism,
since we are able to change the number of cores in the course of the iterations. Furthermore,
a lower CPU time means that the code developed has a lower energy consumption.

For further comparison, we also display the behavior of the cost function for both strategies
at each frequency band in Figure 5.27.

We can see at low frequencies in Figure 5.27a and Figure 5.27b that the behavior of the
cost function is similar despite the parameterization that is obviously different. At higher
frequencies, in Figure 5.27c and Figure 5.27d, both curves have the same trend even if the
advantage is still in favor of the strategy that does not use the mesh adaptation. This is
clearly visible on the last frequency reconstruction in Figure 5.27e.

This behavior can be explained by the coarse discretization, which can lead to under-
sample the required number of parameters that describe the medium, hence hindering the
reconstruction of the model. In fact, we choose P4 elements based on the observation that
it is computationally more efficient to use high order elements than a very fine mesh. Thus,
not only we lower calculation costs, but we also reduce the number of parameters to be found
during the inversion. For P4 elements, we determined the size of the element h with respect
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Figure 5.27: Evolution of the cost function J for the different frequency bands during the
minimization algorithm, with and without mesh adaptation.
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to (5.12), leading to have elements of size h = λ/1.70, where λ is the local wavelength. Such
element is quite large knowing that the FWI is theoretically supposed to retrieve events of size
λ/3 or λ/2 [Virieux and Operto]. With the mesh adaptation, the low frequency reconstruction
is probably undersampled.

To overcome this problem, we can increase the density of the physical parameters. We
have then two different ways to proceed. We can either use h-adaptivity to lower the size
of the element and then p-adaptivity to adapt as good as possible the polynomial order
approximation, or we can use Weight Adjusted Discontinuous Galerkin (WADG) and define
the physical model located at quadrature points to consider a variable model per element.

Since our mesh adaptation methodology has been developed to be compatible with WADG
formulation, we aim, in what follows, to perform the same experiment with a much denser
parameterization using WADG method. Furthermore, we saw in the section dedicated to this
technique that its computational cost is not negligible (see page 100). But the use of a coarse
mesh as the one we are using at low frequency would reduce the computational load of WADG
method while keeping a good model approximation on each element.

P4 + WADG reconstruction with and without adapted meshes

In this experiment, we performed reconstructions using P4-Q9 elements. P4-Q9 means that
the wavefield is approached using a polynomial approximation of order 4 and the model is
defined at WADG quadrature points related to a quadrature of order 9 on each element. The
use of WADG increases the number of unknowns and enables us to overcome the lack of
parameters due to large P4 elements. In Table 5.13, we summed up the number of elements
and the number of parameters that we aim to retrieve in the inverse problem. In this exper-
iment, the mesh contains a similar number of elements as in the previous experiment. The
difference is in the number of parameters that define the physical model. Here since we are
in a 2D configuration with a quadrature of order 9, each element contains 19 parameters. For
this problem, we have therefore at each frequency band about 19 times more parameters to
reconstruct.

0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz
Number of elements
(with mesh adaptation) 277 754 1958 4465 6905

Number of parameters
(with mesh adaptation) 5263 14326 37202 54340 131195

Number of elements
(without mesh adaptation) 7218 7218 7218 7218 7218

Number of parameters
(without mesh adaptation) 137142 137142 137142 137142 137142

Table 5.13: Number of elements in the mesh for each frequency band.

With such a parameterization, we observe in Figure 5.28 that we are able to reconstruct
the wavespeed Marmousi model in both configurations. As before, an interesting speed-up
is offered by the mesh adaptation. We saw, with the previous experiment, that the mesh
adaptation offers a FWI reconstruction that can be performed 3.0 times faster. With WADG
method, since the computational cost per element is higher, we observe an enhanced speed-
up. For this experiment, we compute the 100 FWI iterations 3.75 times faster, which is a
really interesting time saving for the FWI. We summed up the computational time at each
frequency band in Table 5.14.
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0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz Total
CPU time
with mesh adaptation (h) 5 22 73 334 541 975

CPU time
without mesh adaptation (h) ∼730 ∼730 ∼730 ∼730 ∼730 3654

CPU time ratio
(No mesh adapt/ mesh adapt) 146.0 33.2 10.0 2.2 1.3 3.75

Table 5.14: CPU time comparison between FWI with and without mesh adaptation.

Table 5.14 highlights the efficiency provided by the mesh adaptation. It seems that mesh
adaptation is even more efficient while using WADG formulation. Given that WADG dis-
cretization increases the computational time compared to constant model per element (see
results from Subsection 2.4 at page 100), it is even more important to optimize the number of
elements with respect to the frequency and the physical parameters. For instance, regarding
the ongoing experiment, using WADG method without any mesh adaptation requires a total
computational time of 3654h while 2164h were required with the standard DG method for the
same amount of FWI iterations. Those figures represent a global computational time multi-
plied by 1.7 while we have a factor of 1.4 when using mesh adaptation. This meshing strategy
makes the WADG method more affordable in terms of computational time. In addition, it
makes sense to use this technique when using coarse elements as we did in this experiment.

In Figure 5.28 we displayed at iteration 20, 40, 60, 80 and 100 the evolution of the model
we have reconstructed. Both strategies result in a high definition reconstruction that is close
to the target model. Furthermore, at each iteration, we can observe clear similarities between
the two reconstructions performed with and without adapting the mesh. For instance, the
final models we obtained in Figure 5.28p and in Figure 5.28q are almost identical.

Remark. In pictures obtained with mesh adaptation reconstruction, we can observe small
scale textures while the image from the reconstruction keeping the same mesh all along the
optimization is smoother. These artifacts come from the projection of the model from the old
mesh to the new one. For now, we are using a simplistic projection that consists in taking the
value of the nearest neighbor. We have the perspective to enhance this projection but due to
time constraints, we have not yet completed this project.

We display in Figure 5.29 the behavior of the cost function, we aim to minimize, for
all frequency band as a function of the FWI iterations. We observe that the behavior is
similar for both strategies. In contrast with the previous experiment, the trend is in favor
of the configuration applying the mesh adaptation. Most of the time, the cost function
in the reconstruction performed with mesh adaptation is lower and the slope gives better
perspectives of evolution more precisely at high frequency where the curve obtained with the
method without mesh adaptation decreases slightly (see Figure 5.29e).

We have successfully included the mesh adaptation in the FWI workflow. We have shown,
through two experiments for reconstructing the Marmousi wavespeed model, that we are able
to retrieve the targeted model with a comparable accuracy and with an impressive speed-up
factor on the overall inversion. For the two experiments performed in this subsection, we
have been able to obtain a speed-up factor between 3.0 and 3.75, depending on whether we
are using WADG parameterization or not. We also show that WADG technique particularly
makes sense for these reconstructions, since we are using very coarse meshes at low frequency.
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Figure 5.28: Comparison of Marmousi multiscale reconstruction with and without mesh adap-
tation using WADG method (central column = with mesh adaptation / right column = with-
out mesh adaptation).
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Figure 5.29: Evolution of the cost function J for the different frequency bands with and
without mesh adaptation.
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In this situation, having a constant parameter per element leads to undersample the physical
model compared to the capability of the FWI to retrieve events of size approximately about
λ/3 or λ/2 [Virieux and Operto]. These first reconstructions provided the opportunity to
test the overall framework including the mesh adaptation that has been automated. Thanks
to the size map formula we introduced sooner in this chapter, the mesh is abstracted to the
user’s eye. Depending on the polynomial approximation, the current physical model and the
frequency of the source we are injecting, the mesh is defined according to the user needs.
This abstraction of the mesh is even more important during the inversion process, where the
intermediate reconstructed physical parameters are not necessarily known by the user and do
not necessarily represent the reality.

The above presented workflow is also really flexible. In the experiments shown in this
subsection, we restrict ourselves to generate meshes according to a fixed polynomial order
approximation (P4). We also defined in advance whether we use WADG formulation or not.
In what follows, we aim to make a demonstration of the flexibility of the tools we developed by
performing a reconstruction using several configurations in terms of polynomial approximation
and model approximation.

5.3.3 Flexibility of the workflow applied to Overthrust 2D model

In this subsection, we intend to fully exploit the flexibility of the mesh adaptation workflow we
developed. For this experiment, we propose to reconstruct the 2D section of the Overthrust
wavespeed model from a linear initial approximation of the wavespeed model. We pictured
the initial and target models in Figure 5.30.
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Figure 5.30: Comparison between blind model and target wavespeed model.

For this reconstruction, we propose to use smart configurations in between each re-
meshing. The workflow we developed enables to select the polynomial order approximation
and the quadrature order each time we adapt the mesh. On the one hand, this experiment
will enable to demonstrate the versatility brought by the method. On the other hand, it will
give the opportunity to discuss on a strategy to fasten the reconstruction with a smart use of
the h-adaptivity, p-adaptivity and WADG parameterization of the model.

For this experiment, we will use 30 sources located at 50m depth with 600m between each
other, on the X-axis, from 1000m to 18000m. Concerning the receivers, we are using 391
receivers located at 100m depth from 250m to 19800m, in the X-axis, with 50m in between.
We focus on the wavespeed model reconstruction, thus we consider the density as a constant
parameter (ρ = 1000kg.m−3).

For the reconstruction, we propose the following schedule that we motivate with the fol-
lowing computational arguments:

• [0-2Hz] 20 iterations using P4 Q9 elements: for the low frequencies, we aim to
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perform these iterations as fast as possible. We then propose to use high polynomial
orders to get as few elements as possible. WADG here compensates the lack of infor-
mation when the mesh comprises large elements in which the parameters are supposed
to be constant.

• [0-5Hz] 20 iterations using P3 Q7 elements: we aim to decrease the cost of WADG
discretization by reducing the polynomial order and thus the quadrature order. With
P3 elements, WADG formulation requires applying a quadrature formula of order 7.

• [0-8Hz] 20 iterations using P2 Q5 elements: we continue to decrease the polyno-
mial order approximation from 3 to 2 in order to reduce the cost of the model application
that can be important using WADG. With P2 elements, WADG formulation requires
applying a quadrature formula of order 5.

• [0-12Hz] 20 iterations using P2 Q1 elements: For this frequency band, we give up
WADG method and use the classical DG formulation set in a model with elementwise
constant parameters. The polynomial order is 2 and the quadrature formula is of order
1. We use P2 elements since we determined previously the ratio λ/h ≈ 3.5. In that way,
we can have a parameterization that covers an area of size smaller than λ/2 and λ/3.

• [0-15Hz] 20 iterations using P5 Q11 elements: each iteration will be very time-
consuming. For this reason, we aim to use the most efficient configuration as possible.
For these final iterations, we aim to exploit Bernstein-Bézier polynomial basis efficiency
with high polynomial order elements. We showed, in the chapter dedicated to the for-
ward problem, that Bernstein-Bézier polynomials is getting more efficient in comparison
with nodal polynomials for polynomial order N ≥ 5 in 2D (see Table 2.5 in page 89).
But high order polynomials go with large elements. Hence, we go back to WADG formu-
lation. By this way, this step will compensate the lack of resolution inherited from the
previous step where the model was misrepresented with piecewise constant parameters.

Remark. It is worth noting that, until now, we defined a size map according to a restrictive
accuracy threshold of 1% on the experimental setup developed in 5.2.2. Such criterion is prob-
ably too strong for FWI where the uncertainty on the observed data is way more important
than 1%. To fasten the last frequency band reconstruction, we use nppw = 5 instead of 9. In
such a case, WADG method is even more important since the elements are approximately of
size h ≈ 1.4λ.

The strategy we propose here, is probably not optimal in terms of time consumption, but
it proves the capability and the flexibility of the mesh adaption to switch easily from one
discretization to another.

We display in Figure 5.31 the evolution of the wavespeed model through the FWI iter-
ations. We see in this picture the capability of our FWI workflow to reconstruct the 2D
Overthrust wavespeed model while changing the polynomial and model approximations at
each frequency band.

We display in Table 5.15 the number of elements for each configuration with the associated
number of parameters defining the wavespeed model. We also sum-up in this table all the
details of the discretization we have chosen. The last configuration is very coarse but has the
most important number of parameters. In that case, the space discretization seems to remain
sufficiently precise in light of the wavespeed model that keeps being improved.

We exhibit in Table 5.16 the computational time of the reconstruction for the different
configurations. As expected, the low frequency iterations are solved faster.



5.3. FWI WORKFLOW EXTENDED WITH MESH ADAPTATION 221

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(a) c model at iter=0.

x

z

(b) Mesh for 0-2Hz FWI.

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(c) c model at iter=20.

x

z

(d) Mesh for 0-5Hz FWI.

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(e) c model at iter=40.

x

z

(f) Mesh for 0-8Hz FWI.

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(g) c model at iter=60.

x

z

(h) Mesh for 0-12Hz FWI.

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(i) c model at iter=80.

x

z

(j) Mesh for 0-15Hz FWI.

x

z

2,000
3,000
4,000
5,000
6,000

m · s−1

(k) c model at iter=100.

Figure 5.31: Comparison of Overthrust multiscale reconstruction with several polynomial and
WADG approximations.
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0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz
Number of elements (Ne) 391 907 5144 11252 1825
Number of parameters 7429 13605 36008 11252 51100
Polynomial order (N) 4 3 2 2 5
WADG quadrature order (Nq) 9 7 5 1 11
Polynomial basis Nodal Nodal Nodal Nodal Bernstein-Bézier

Table 5.15: Summary of the discretization chosen for each frequency band.

However, we can observe that we spent less time in the 20 iterations associated to the
0-15Hz reconstruction than the ones for the 0-12Hz frequency band. The run took an average
of 13h CPU time per iteration for the 15Hz reconstruction compared to 13.8h for 12Hz. Those
figures tend to prove that it is probably computationally more efficient to use high polynomial
orders with coarse elements in WADG formulation instead of a fine mesh with low polynomial
order and constant model per element. Furthermore, we have to keep in mind that the last
configuration benefits from the efficiency of Bernstein-Bézier polynomial basis.

0-2Hz 0-5Hz 0-8Hz 0-12Hz 0-15Hz Total
CPU time (h) 18 33 134 276 260 721
Ratio over the total CPU time 2.5% 4.6% 18.6% 38.3% 36.0% 100%

Table 5.16: CPU time for the different frequency bands considered for Overthrust 2D
wavespeed model reconstruction.

In this subsection, we were able to highlight the flexibility of the method by switching
between several polynomial approximation orders and model quadrature orders in the FWI
process. We also try to relax the criterion on the size of the element, we defined for accurate
forward simulations, as it is too strict for the FWI. To fasten the last 20 iterations, we relax
the criterion for P5 elements by changing nppw = 9 to nppw = 5. Regarding the graph at
Figure 5.10 in page 189, this change makes the accuracy criterion move from 1% to 2%, which
is still severe but compatible with having much coarser elements of size h ≈ 1.4λ instead of
h ≈ 0.8λ.

The framework we presented enables the user to customize very precisely each step of
the FWI process. We also show that it is possible to relax the space discretization without
deteriorating the model reconstructed leading to enlarge the space discretization and fasten
the reconstruction. On this example, we proposed one strategy that combines most of the
numerical tools addressed in the thesis, that is to say:

• hp-adaptivity of DGm;

• nodal and Bernstein-Bézier polynomial basis;

• WADG model approximation,

5.4 Conclusion and perspectives

In this chapter, we first introduced classical h-adaptation that is usually employed during
PDE simulations for memory and computational time savings. Inspired by what is done for
direct problem simulations, we proposed an implementation that is compatible with 2D DG
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time domain FWI workflow. This resulted in adding one extra step in the FWI workflow in
order to perform the hp-adaptivity when required (see Figure 5.22).

h-adaptivity is basically defined in two steps:

• definition of a size map (metric);

• adaptation of the mesh according to the metric.

To include these two key features in the FWI process, we adopted and adjusted existing
pieces of software contributing to mesh adaptation in the industrial framework in which we
are developing. We used:

• Mshmet [AdaptTools - Mshmet], for size map computation;

• Mmg [Mmg Software], for the mesh adaptation.

First of all, we defined and validated, thanks to numerical experiments, a heuristic isotropic
size map formula that yields a guideline to adapt the mesh according to the geophysical
model represented as the wavespeed model. This size map has been proved to be efficient and
accurate for both direct and inverse problems.

Since we were able to define the size map explicitly, we have included the spatial gradient
of the model in the size map formula in order to take into account the strong interfaces of
the geophysical model. We then proceeded to an isotropic and anisotropic mesh refinement
at these tough areas. Such refinements improve the accuracy of the simulation by introducing
a better parameterization using h-adaptivity of DG solver where the model undergoes strong
contrasts. On the example treated in this chapter, we showed that anisotropic refinement
seems to be more accurate but the time step should be reduced to guarantee the stability of
the explicit time scheme. In fact, we have observed that an anisotropic refinement roughly
doubles the calculation time. We showed that, with only two parameters (a refinement factor r
and a threshold ε), the user is able to adjust the interface refinement as desired. Unfortunately,
such refinement requires the user’s hand. For the moment, we do not provide any algorithm
that is performing a well adapted refinement whatever the model parameters in input is. After
performing benchmarks and tests on the size map, we have included the entire h-adaptivity
in the FWI course. The benchmarks we performed were crucial to automate the workflow in
the industrial framework. To achieve a proof of concept, we have compared reconstructions of
Marmousi wavespeed model with and without h-adaptivity. For this test, we chose to apply
h-adaptation at each frequency band of the multiscale reconstruction. The comparison of the
results obtained with and without h-adaptivity highlighted clearly the asset of reconstructing
faster the model at low frequencies. This comparison has been performed by considering
piecewise constant model per element but also with parameters varying inside each element
thanks to WADG technology. WADG method seems to be justified when the elements are
coarse, which is the case when considering high polynomial order approximation. In such
situation, WADG technology helps to avoid undersampling the parameterization that could
compromise the inverse problem resolution.

Finally, in a last experiment, we performed a reconstruction of a 2D section of the Over-
thrust wavespeed model by combining all the technologies treated in the thesis. We have
shown that the new workflow, we developed, gives a high degree of flexibility by adapting at
any iterations of the FWI the hp-adaptivity, the model parameterization, the choice of the
polynomial basis and also the parallelism. There are so many possible configurations that the
question arises as to which one is more efficient in terms of computational time.
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Perspectives concerning the mesh adaptation

The work presented in this chapter raises numerous perspectives concerning the future of the
mesh adaptation workflow we developed in an industrial framework. One of these perspectives
is the definition of an absolute criterion, or algorithm, that enables an autonomous interface
detection regardless the model considered. This refinement would improve the model approx-
imation while using piecewise constant models. We aim to use h-adaptivity, to increase the
density of parameters where the model occurs variations and then use p-adaptivity to adapt
the polynomial approximation with respect to the size of the cell.

We defined in this chapter an appropriate formulation of a default isotropic size map
according to wavespeed model in order to have accurate direct problem simulations. As it
has been discussed during this chapter, such an accuracy is probably too strict for solving an
inverse problem regarding the uncertainty on the data. We have the ambition to determine an
equivalent criterion that will be a trade-off between the computational time and the accuracy
of the forward and backward simulation in order to get an efficient FWI workflow.

And last but not least, we aim to adapt the size map formula we defined in 2D to 3D
problems. Here the crucial point is to obtain a formula of the 3D size map, as the rest
of the workflow remains unchanged. The extension of the existing tools that enable the h-
adaptivity is straightforward once the proper metrics is defined. The 2D results we presented
in this chapter proves the efficiency of FWI workflow enhanced with mesh adaptation. The
application of such a method in 3D are really promising in terms of computational time
savings.



Conclusion

Full Waveform Inversion (FWI) is a high-definition imaging method, based upon the min-
imization of a cost function that is carried out by applying the adjoint method. The cost
function is defined as the difference of the real data (observables) and numerical data. It
has been widely used in the frequency domain because its implementation uses only a few
frequency values and the Lagrangian formulation of the inverse problem is simplified. It has
demonstrated a high level of efficiency in seismic imaging, in particular by using a formulation
of the problem in the Laplace domain (see [Faucher, 2017] and the references therein). Seis-
mic imaging of realistic regions by solving frequency wave problems actually corresponds to
discrete representations involving more than n = 5003 degrees of freedom, several hundreds of
wavelengths per dimension and many thousands of right-hand sides. The system is currently
intractable with direct linear solvers due to the size of the resulting linear system. Arith-
metic factorization complexity indeed grows usually like O(n2) and memory consumption like
O(n4/3) where n, the size of the system, increases with the cube of the frequency or even
more in order to ensure stability of the discretization. An iterative solver would certainly be
more suitable, but then the question arises of the simultaneous management of the right-hand
sides.

In collaboration with the company Total, we were interested in the FWI written completely
in the time domain and compatible with the computing environment deployed in the industrial
platform of our partner. This platform is equipped with a DG (Discontinuous Galerkin) high
order solver and several time domain schemes. In the framework of this thesis, we developed
from scratch a time domain inversion code whose computational performances have been
optimized by exploiting all the interesting properties of the DG method. We have considered
the acoustic wave equation formulated as a first order system. In the purpose of improving
the existing solver, we have first considered the Bernstein-Bézier polynomial basis [Chan and
Warburton, 2016]. We conducted a performance analysis based on the comparison between
standard DG methods and DG methods with Bernstein-Bézier polynomial basis. This study,
made on CPU architecture, led us to conclude that the Bernstein-Bézier basis is interesting
for high order polynomials (5 in dimension 2, 3 in dimension 3) and that and that the nodal
bases should be privileged for low orders.

Most solvers assume that the propagation medium is discretized by a mesh comprised of
elements in which the physical parameters are constant. This hypothesis is not completely
satisfactory from the perspective of solving an inverse problem. Indeed, the solution of the
inverse problem is the propagation medium itself and it is obtained through the convergence
of an iterative minimization method. The set of parameters is thus updated at each iteration,
which suggests the possibility that some parameters may change in value within an element
during the inversion procedure. We have studied this issue and shown that without taking it
into consideration, updating the model can create numerical artifacts. We have therefore inte-
grated the WADG (Weight Adjusted Discontinuous Galerkin) formulation proposed by Chan
and Warburton [2016] into the inversion method. WADG formulation is able to take into ac-
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count variable parameters within an element thanks to a quadrature formula. We have shown
that this formulation eliminates numerical artifacts possibly caused by a misrepresentation of
the velocity model.

One important question is the discrete formulation of the minimization problem. There
are two options called OtD (Optimize then Discretize) and DtO (Discretize then Optimize)
and several authors [Bonnans, 2006, Chavent, 2010, Kern, 2016] have shown that DtO is the
best approach because it consists in using an exact gradient for the discrete problem. With
OtD, the minimization is implemented with an approximate gradient which can therefore
be calculated with errors and these errors can significantly hamper the efficiency of local
optimization routines [Gunzburger, 2002], in particular when using the so-called L-BFGS
algorithm yet reputed to be among the most efficient. We have thus constructed the DtO and
OtD discrete gradients, and we have shown that since they are based upon DG discretizations,
DtO gradient turns out to be difficult to implement, due to constraints of programming
environment. Moreover, automatic differentiation in order to implement DtO methodology
could increase significantly the computational costs, which we already anticipate to be very
high. Hence, we opted for the implementation of OtD method, the DtO one being reserved
for future development.

We have then tested and validated the optimization code developed on 2D and 3D cases,
the objective being first to reconstruct physical parameters constant per element. We have
also performed reconstructions of physical parameters varying inside the elements thanks to
WADG method [Chan et al., 2017]. As a recent technology in Total’s code, it lacked an
associated visualization tool. Hence, we have proposed one which has been integrated into
the industrial code. We have then shown that WADG technique clearly helps to avoid an
under-sampling of the parameterization that could compromise the inverse problem resolu-
tion. For more complex reconstructions, i.e. without prior information about the medium to
be reconstructed, we have developed a multiscale algorithm that consists in reconstructing
the model by increasing frequency bands [Bunks et al., 1995, Boonyasiriwat et al., 2009].
Concerning the 3D case, the results are mixed and this is essentially because we were forced
to relax several constraints in order to limit calculation costs. In particular, we have clearly
identified the need of having a discretization method that adapts to the wavespeed model but
also to the current frequency band used for the reconstruction. This point led us to consider
adaptive meshing (h and p-adaptivity) integration into FWI iterations.

As the solution of a minimization iterative process, the model is updated at each iteration
until convergence, and we have first implemented h-adaptivity inside the FWI workflow. We
inspired ourselves from what is currently done in mesh adaptation for memory and computa-
tional time savings when solving PDEs. This work is preliminary and is meant to be a proof of
concept in 2D. For that purpose, we have developed a routine which constructs a size map or
metrics related to the model and another routine doing the mesh adaptation according to the
metrics. We have used Mshmet [AdaptTools - Mshmet], for size map computation and Mmg
[Mmg Software], for the mesh adaptation. We have implemented isotropic and anisotropic
size maps. Both turn out to be efficient tools for geophysical applications where the model
may undergo strong contrasts. Unfortunately, if anisotropic map provides better results, it
increases the computational time as it requires halving the time step. We have then compared
reconstructions of Marmousi model with and without h-adaptivity. The comparison of the
results obtained with and without h-adaptivity highlighted clearly the asset of reconstructing
faster the model at low frequencies, hence demonstrating the interest of h-adaptivity. This
comparison has been performed by considering piecewise constant model per element but also
with parameters varying inside each element thanks to WADG technology. The latter turns
out to be interesting when the elements are coarse, as they should be with high polynomial
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order approximation.

The perspectives for the work carried out in this thesis are numerous, and we propose to
distinguish two major axes.

On the one hand, we can consider everything that is related to the inverse problem itself.
Indeed, the next logical step is to treat more complex physics by adapting all the development
done for the acoustic solver to the existing elastic and elasto-acoustic sovler in the industrial
code. However, considering a more complex physics makes it inevitably more difficult to solve
the minimization problem under constraint considered. As seen in the results presented in
Chapter 3 and in the theory presented in Chapter 1, the problem is ill-posed and does not
necessarily converge to the expected result. To improve the ability of the optimization to
find out the global minimum and avoid local ones (cycle-skipping), it would be appropriate to
improve the convexity of the cost function. To do so, we plan to add different regularization
methods such as Tikhonov or Total Variation which attenuate the strong discontinuity of
the reconstructed model but improve the convexity of the regularized cost function [Lopez,
2014]. We also wish to define other cost functions than the classical L2 error function used
during the thesis, in particular functions coming from the optimal transport theory which
seems, according to the recent literature, to give impressive results for geophysical problems
[Engquist and Froese, 2013, Métivier et al., 2016b, Yang et al., 2017].

On the other hand, many improvements are possible to accelerate the direct problem
improving de facto the opportunity of iterating the optimization loop more times. To speed
up the direct solver we can, as we did in 2D, in the chapter 5, determine a set of criteria to
fix the hp-adaptivity efficiently. It is also possible to deal with limited aperture, that consists
in computing each shot on a sub-mesh which allows to reduce the cost of the direct problem
by limiting the domain of calculation. To do this, the mesh adaptation tools but also the
solver within the inversion problem must be improved to take into account this additional
functionality. In this thesis, we also attempted to reduce the computational cost by using
properties of DGs (principally the use of Bernstein-Bézier bases and the use of WADGs).
However, these technologies are much more relevant on a GPU architecture than a CPU one
[Chan and Warburton, 2016, Chan et al., 2017]. Adding GPU parallelism would reduce the
computational costs of the direct DG solver and has already proved its efficiency for imaging
applications [Shin et al., 2014]. Finally, as illustrated several times in this manuscript, DGm
are particularly efficient for solving PDEs in complex medium and geometries. Coupling the
DGm and the SEM as in [Citrain, 2019] would allow to use the DGm to achieve a high
accuracy near complex geological structures and to maintain the SEM on more homogeneous
or of less interesting areas such as water layers, interior of salt domes or very deep zones.

All of these achievements are possible ways to improve the inversion program, developed
during this thesis, for industrial driven applications.
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Abstract

Inversion par forme d’ondes complète en domaine temporel
utilisant des méthodes de Galerkine Discontinues avancées.

Dans ce projet, nous avons développé des outils de reconstruction du sous-sol pour l’imagerie
sismique ainsi que la caractérisation de réservoirs dans un contexte industriel. Pour ce faire,
nous utilisons la méthode d’inversion par forme d’ondes complète (Full Waveform Inversion,
FWI). Cette reconstruction emploie les données issues de perturbations sismiques qui génèrent
des ondes dont le comportement est influencé par le milieu dans lequel elles se propagent. Dans
le cadre de cette thèse, on considère des ondes acoustiques dont la simulation est mise en œu-
vre par des méthodes de Galerkine Discontinues. Ces dernières reposent sur une discrétisation
en espace très flexible permettant d’approcher des modèles et des géométries complexes. Elles
sont aussi parfaitement adaptées à une mise en œuvre dans un environnement de Calcul Haute-
Performance. En effet cette technique permet une forte scalabilité grâce au faible coût des
communications induites par le calcul des flux caractéristiques des éléments finis discontinus.
Ici, l’équation d’onde est résolue en domaine temporel afin d’outrepasser les limitations en
mémoire rencontrées en domaine fréquentiel pour la reconstruction de milieux industriels 3D
de grandes échelles.

Pour reconstruire de manière quantitative le modèle physique étudié, nous avons formulé le
problème inverse comme un problème de minimisation résolu par la méthode de l’état adjoint.
Cette méthode permet d’obtenir le gradient de la fonction coût par rapport aux paramètres
physiques au prix de deux simulations ; celle du problème direct et celle du problème rétro-
propagé aussi appelé problème adjoint. L’état adjoint est solution du problème adjoint continu
discrétisé (“Optimiser Puis Discrétiser ”). Ce choix est justifié par une comparaison 1D avec
la stratégie qui consiste à "Discrétiser puis Optimiser" complété par une étude algébrique en
dimension supérieure. Le gradient ainsi calculé s’inclut dans une procédure d’optimisation
développée et intégrée au code industriel fourni par le partenaire industriel, Total.

Le propagateur joue un rôle central dans la résolution du problème inverse. En effet, cette
dernière met en jeu une méthode itérative dont chaque itération implique des résolutions
successives du problème direct. Il est alors important de tirer parti au mieux de la discréti-
sation de Galerkine Discontinue. Dans cette thèse, nous avons notamment étudié le choix
de la base polynomiale d’approximation (Legendre ou Bernstein-Bézier) ainsi que le choix de
la paramétrisation qui peut être constante par élément ou variable grâce à l’utilisation de la
méthode de Galerkine Discontinue à Pondération Ajustée (Weight Adjusted Discontinuous
Galerkin, WADG). Cette dernière stratégie offre l’occasion d’élargir les cellules du maillage
sans perdre d’information sur le modèle et permet donc une utilisation plus poussée de la
hp-adaptivité qu’on proposera d’exploiter pleinement grâce à un maillage adaptatif s’ajustant
au modèle qui évolue avec les itérations du problème inverse.





Abstract

Time-Domain Full Waveform Inversion using advanced
Discontinuous Galerkin methods.

In this project, we developed tools for the reconstruction of subsurface media for seismic
imaging and reservoir characterization in an industrial context. For that purpose, we used
the Full Waveform Inversion (FWI) method. It is a reconstruction technique using data taken
from seismic disturbances and whose behavior reflects the properties of the environment in
which they propagate. In the framework of this thesis, we consider acoustic waves which are
simulated thanks to Discontinuous Galerkin methods. These methods offer a very flexible
discretization in space allowing to approach complex models and geometries. Discontinuous
Galerkin methods are characterized by the use of fluxes in between each cell. Those fluxes
contribute to have low communication costs which are highly recommended for High Per-
formance Computing. Here, the wave equation is solved in time domain to overcome the
memory limitations encountered in frequency domain for the reconstruction of large-scale 3D
industrial media.

To reconstruct quantitatively the physical model under study, we wrote the inverse prob-
lem as a minimization problem solved by adjoint state method. This method makes it possible
to obtain the gradient of the cost function with respect to the physical parameters for the
cost of two simulations; the direct problem and the backward problem also called adjoint
problem. The adjoint state will be the solution of the discretized continuous adjoint problem
("Optimize Then Discretize"). This choice is justified by a 1D comparison with the strategy
which consists in "Discretize then Optimize" completed by an algebraic study in superior
dimension. The gradient thus calculated, is a key in the optimization procedure developed
and integrated in the industrial environment provided by the industrial partner, Total.

The propagator is a keystone in solving the inverse problem. Indeed, it is repeated suc-
cessively and represents the majority of the computation time of the optimization process. It
is therefore important to control the discretization by the Discontinuous Galerkin method as
well as possible. In particular, in this thesis, we have considered the idea of using different
polynomial bases of approximation (Legendre or Bernstein-Bézier) as well as the choice of
the parameterization, which can either be constant per element or variable thanks to the use
of the Weight Adjusted Discontinuous Galerkin (WADG) method. This last strategy offers
the opportunity to enlarge the mesh cells without losing information on the model and thus
allows a more advanced use of the hp-adaptivity that we propose to fully exploit thanks to
an adaptive mesh that is adjusted to the model meant to evolve with the iterations of the
inverse problem.
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